[multiple changes]
[gcc.git] / gcc / ada / sem_ch3.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Elists; use Elists;
31 with Einfo; use Einfo;
32 with Errout; use Errout;
33 with Eval_Fat; use Eval_Fat;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Dist; use Exp_Dist;
38 with Exp_Tss; use Exp_Tss;
39 with Exp_Util; use Exp_Util;
40 with Fname; use Fname;
41 with Freeze; use Freeze;
42 with Itypes; use Itypes;
43 with Layout; use Layout;
44 with Lib; use Lib;
45 with Lib.Xref; use Lib.Xref;
46 with Namet; use Namet;
47 with Nmake; use Nmake;
48 with Opt; use Opt;
49 with Restrict; use Restrict;
50 with Rident; use Rident;
51 with Rtsfind; use Rtsfind;
52 with Sem; use Sem;
53 with Sem_Aux; use Sem_Aux;
54 with Sem_Case; use Sem_Case;
55 with Sem_Cat; use Sem_Cat;
56 with Sem_Ch6; use Sem_Ch6;
57 with Sem_Ch7; use Sem_Ch7;
58 with Sem_Ch8; use Sem_Ch8;
59 with Sem_Ch10; use Sem_Ch10;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Dim; use Sem_Dim;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elim; use Sem_Elim;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Mech; use Sem_Mech;
67 with Sem_Prag; use Sem_Prag;
68 with Sem_Res; use Sem_Res;
69 with Sem_Smem; use Sem_Smem;
70 with Sem_Type; use Sem_Type;
71 with Sem_Util; use Sem_Util;
72 with Sem_Warn; use Sem_Warn;
73 with Stand; use Stand;
74 with Sinfo; use Sinfo;
75 with Sinput; use Sinput;
76 with Snames; use Snames;
77 with Targparm; use Targparm;
78 with Tbuild; use Tbuild;
79 with Ttypes; use Ttypes;
80 with Uintp; use Uintp;
81 with Urealp; use Urealp;
82
83 package body Sem_Ch3 is
84
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
88
89 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
92 -- record type.
93
94 procedure Analyze_Object_Contract (Obj_Id : Entity_Id);
95 -- Analyze all delayed pragmas chained on the contract of object Obj_Id as
96 -- if they appeared at the end of the declarative region. The pragmas to be
97 -- considered are:
98 -- Async_Readers
99 -- Async_Writers
100 -- Effective_Reads
101 -- Effective_Writes
102 -- Part_Of
103
104 procedure Build_Derived_Type
105 (N : Node_Id;
106 Parent_Type : Entity_Id;
107 Derived_Type : Entity_Id;
108 Is_Completion : Boolean;
109 Derive_Subps : Boolean := True);
110 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
111 -- the N_Full_Type_Declaration node containing the derived type definition.
112 -- Parent_Type is the entity for the parent type in the derived type
113 -- definition and Derived_Type the actual derived type. Is_Completion must
114 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
115 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
116 -- completion of a private type declaration. If Is_Completion is set to
117 -- True, N is the completion of a private type declaration and Derived_Type
118 -- is different from the defining identifier inside N (i.e. Derived_Type /=
119 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
120 -- subprograms should be derived. The only case where this parameter is
121 -- False is when Build_Derived_Type is recursively called to process an
122 -- implicit derived full type for a type derived from a private type (in
123 -- that case the subprograms must only be derived for the private view of
124 -- the type).
125 --
126 -- ??? These flags need a bit of re-examination and re-documentation:
127 -- ??? are they both necessary (both seem related to the recursion)?
128
129 procedure Build_Derived_Access_Type
130 (N : Node_Id;
131 Parent_Type : Entity_Id;
132 Derived_Type : Entity_Id);
133 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
134 -- create an implicit base if the parent type is constrained or if the
135 -- subtype indication has a constraint.
136
137 procedure Build_Derived_Array_Type
138 (N : Node_Id;
139 Parent_Type : Entity_Id;
140 Derived_Type : Entity_Id);
141 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
142 -- create an implicit base if the parent type is constrained or if the
143 -- subtype indication has a constraint.
144
145 procedure Build_Derived_Concurrent_Type
146 (N : Node_Id;
147 Parent_Type : Entity_Id;
148 Derived_Type : Entity_Id);
149 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
150 -- protected type, inherit entries and protected subprograms, check
151 -- legality of discriminant constraints if any.
152
153 procedure Build_Derived_Enumeration_Type
154 (N : Node_Id;
155 Parent_Type : Entity_Id;
156 Derived_Type : Entity_Id);
157 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
158 -- type, we must create a new list of literals. Types derived from
159 -- Character and [Wide_]Wide_Character are special-cased.
160
161 procedure Build_Derived_Numeric_Type
162 (N : Node_Id;
163 Parent_Type : Entity_Id;
164 Derived_Type : Entity_Id);
165 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
166 -- an anonymous base type, and propagate constraint to subtype if needed.
167
168 procedure Build_Derived_Private_Type
169 (N : Node_Id;
170 Parent_Type : Entity_Id;
171 Derived_Type : Entity_Id;
172 Is_Completion : Boolean;
173 Derive_Subps : Boolean := True);
174 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
175 -- because the parent may or may not have a completion, and the derivation
176 -- may itself be a completion.
177
178 procedure Build_Derived_Record_Type
179 (N : Node_Id;
180 Parent_Type : Entity_Id;
181 Derived_Type : Entity_Id;
182 Derive_Subps : Boolean := True);
183 -- Subsidiary procedure used for tagged and untagged record types
184 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
185 -- All parameters are as in Build_Derived_Type except that N, in
186 -- addition to being an N_Full_Type_Declaration node, can also be an
187 -- N_Private_Extension_Declaration node. See the definition of this routine
188 -- for much more info. Derive_Subps indicates whether subprograms should be
189 -- derived from the parent type. The only case where Derive_Subps is False
190 -- is for an implicit derived full type for a type derived from a private
191 -- type (see Build_Derived_Type).
192
193 procedure Build_Discriminal (Discrim : Entity_Id);
194 -- Create the discriminal corresponding to discriminant Discrim, that is
195 -- the parameter corresponding to Discrim to be used in initialization
196 -- procedures for the type where Discrim is a discriminant. Discriminals
197 -- are not used during semantic analysis, and are not fully defined
198 -- entities until expansion. Thus they are not given a scope until
199 -- initialization procedures are built.
200
201 function Build_Discriminant_Constraints
202 (T : Entity_Id;
203 Def : Node_Id;
204 Derived_Def : Boolean := False) return Elist_Id;
205 -- Validate discriminant constraints and return the list of the constraints
206 -- in order of discriminant declarations, where T is the discriminated
207 -- unconstrained type. Def is the N_Subtype_Indication node where the
208 -- discriminants constraints for T are specified. Derived_Def is True
209 -- when building the discriminant constraints in a derived type definition
210 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
211 -- type and Def is the constraint "(xxx)" on T and this routine sets the
212 -- Corresponding_Discriminant field of the discriminants in the derived
213 -- type D to point to the corresponding discriminants in the parent type T.
214
215 procedure Build_Discriminated_Subtype
216 (T : Entity_Id;
217 Def_Id : Entity_Id;
218 Elist : Elist_Id;
219 Related_Nod : Node_Id;
220 For_Access : Boolean := False);
221 -- Subsidiary procedure to Constrain_Discriminated_Type and to
222 -- Process_Incomplete_Dependents. Given
223 --
224 -- T (a possibly discriminated base type)
225 -- Def_Id (a very partially built subtype for T),
226 --
227 -- the call completes Def_Id to be the appropriate E_*_Subtype.
228 --
229 -- The Elist is the list of discriminant constraints if any (it is set
230 -- to No_Elist if T is not a discriminated type, and to an empty list if
231 -- T has discriminants but there are no discriminant constraints). The
232 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
233 -- The For_Access says whether or not this subtype is really constraining
234 -- an access type. That is its sole purpose is the designated type of an
235 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
236 -- is built to avoid freezing T when the access subtype is frozen.
237
238 function Build_Scalar_Bound
239 (Bound : Node_Id;
240 Par_T : Entity_Id;
241 Der_T : Entity_Id) return Node_Id;
242 -- The bounds of a derived scalar type are conversions of the bounds of
243 -- the parent type. Optimize the representation if the bounds are literals.
244 -- Needs a more complete spec--what are the parameters exactly, and what
245 -- exactly is the returned value, and how is Bound affected???
246
247 procedure Build_Underlying_Full_View
248 (N : Node_Id;
249 Typ : Entity_Id;
250 Par : Entity_Id);
251 -- If the completion of a private type is itself derived from a private
252 -- type, or if the full view of a private subtype is itself private, the
253 -- back-end has no way to compute the actual size of this type. We build
254 -- an internal subtype declaration of the proper parent type to convey
255 -- this information. This extra mechanism is needed because a full
256 -- view cannot itself have a full view (it would get clobbered during
257 -- view exchanges).
258
259 procedure Check_Access_Discriminant_Requires_Limited
260 (D : Node_Id;
261 Loc : Node_Id);
262 -- Check the restriction that the type to which an access discriminant
263 -- belongs must be a concurrent type or a descendant of a type with
264 -- the reserved word 'limited' in its declaration.
265
266 procedure Check_Anonymous_Access_Components
267 (Typ_Decl : Node_Id;
268 Typ : Entity_Id;
269 Prev : Entity_Id;
270 Comp_List : Node_Id);
271 -- Ada 2005 AI-382: an access component in a record definition can refer to
272 -- the enclosing record, in which case it denotes the type itself, and not
273 -- the current instance of the type. We create an anonymous access type for
274 -- the component, and flag it as an access to a component, so accessibility
275 -- checks are properly performed on it. The declaration of the access type
276 -- is placed ahead of that of the record to prevent order-of-elaboration
277 -- circularity issues in Gigi. We create an incomplete type for the record
278 -- declaration, which is the designated type of the anonymous access.
279
280 procedure Check_Delta_Expression (E : Node_Id);
281 -- Check that the expression represented by E is suitable for use as a
282 -- delta expression, i.e. it is of real type and is static.
283
284 procedure Check_Digits_Expression (E : Node_Id);
285 -- Check that the expression represented by E is suitable for use as a
286 -- digits expression, i.e. it is of integer type, positive and static.
287
288 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
289 -- Validate the initialization of an object declaration. T is the required
290 -- type, and Exp is the initialization expression.
291
292 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
293 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
294
295 procedure Check_Or_Process_Discriminants
296 (N : Node_Id;
297 T : Entity_Id;
298 Prev : Entity_Id := Empty);
299 -- If N is the full declaration of the completion T of an incomplete or
300 -- private type, check its discriminants (which are already known to be
301 -- conformant with those of the partial view, see Find_Type_Name),
302 -- otherwise process them. Prev is the entity of the partial declaration,
303 -- if any.
304
305 procedure Check_Real_Bound (Bound : Node_Id);
306 -- Check given bound for being of real type and static. If not, post an
307 -- appropriate message, and rewrite the bound with the real literal zero.
308
309 procedure Constant_Redeclaration
310 (Id : Entity_Id;
311 N : Node_Id;
312 T : out Entity_Id);
313 -- Various checks on legality of full declaration of deferred constant.
314 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
315 -- node. The caller has not yet set any attributes of this entity.
316
317 function Contain_Interface
318 (Iface : Entity_Id;
319 Ifaces : Elist_Id) return Boolean;
320 -- Ada 2005: Determine whether Iface is present in the list Ifaces
321
322 procedure Convert_Scalar_Bounds
323 (N : Node_Id;
324 Parent_Type : Entity_Id;
325 Derived_Type : Entity_Id;
326 Loc : Source_Ptr);
327 -- For derived scalar types, convert the bounds in the type definition to
328 -- the derived type, and complete their analysis. Given a constraint of the
329 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
330 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
331 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
332 -- subtype are conversions of those bounds to the derived_type, so that
333 -- their typing is consistent.
334
335 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
336 -- Copies attributes from array base type T2 to array base type T1. Copies
337 -- only attributes that apply to base types, but not subtypes.
338
339 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
340 -- Copies attributes from array subtype T2 to array subtype T1. Copies
341 -- attributes that apply to both subtypes and base types.
342
343 procedure Create_Constrained_Components
344 (Subt : Entity_Id;
345 Decl_Node : Node_Id;
346 Typ : Entity_Id;
347 Constraints : Elist_Id);
348 -- Build the list of entities for a constrained discriminated record
349 -- subtype. If a component depends on a discriminant, replace its subtype
350 -- using the discriminant values in the discriminant constraint. Subt
351 -- is the defining identifier for the subtype whose list of constrained
352 -- entities we will create. Decl_Node is the type declaration node where
353 -- we will attach all the itypes created. Typ is the base discriminated
354 -- type for the subtype Subt. Constraints is the list of discriminant
355 -- constraints for Typ.
356
357 function Constrain_Component_Type
358 (Comp : Entity_Id;
359 Constrained_Typ : Entity_Id;
360 Related_Node : Node_Id;
361 Typ : Entity_Id;
362 Constraints : Elist_Id) return Entity_Id;
363 -- Given a discriminated base type Typ, a list of discriminant constraints,
364 -- Constraints, for Typ and a component Comp of Typ, create and return the
365 -- type corresponding to Etype (Comp) where all discriminant references
366 -- are replaced with the corresponding constraint. If Etype (Comp) contains
367 -- no discriminant references then it is returned as-is. Constrained_Typ
368 -- is the final constrained subtype to which the constrained component
369 -- belongs. Related_Node is the node where we attach all created itypes.
370
371 procedure Constrain_Access
372 (Def_Id : in out Entity_Id;
373 S : Node_Id;
374 Related_Nod : Node_Id);
375 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
376 -- an anonymous type created for a subtype indication. In that case it is
377 -- created in the procedure and attached to Related_Nod.
378
379 procedure Constrain_Array
380 (Def_Id : in out Entity_Id;
381 SI : Node_Id;
382 Related_Nod : Node_Id;
383 Related_Id : Entity_Id;
384 Suffix : Character);
385 -- Apply a list of index constraints to an unconstrained array type. The
386 -- first parameter is the entity for the resulting subtype. A value of
387 -- Empty for Def_Id indicates that an implicit type must be created, but
388 -- creation is delayed (and must be done by this procedure) because other
389 -- subsidiary implicit types must be created first (which is why Def_Id
390 -- is an in/out parameter). The second parameter is a subtype indication
391 -- node for the constrained array to be created (e.g. something of the
392 -- form string (1 .. 10)). Related_Nod gives the place where this type
393 -- has to be inserted in the tree. The Related_Id and Suffix parameters
394 -- are used to build the associated Implicit type name.
395
396 procedure Constrain_Concurrent
397 (Def_Id : in out Entity_Id;
398 SI : Node_Id;
399 Related_Nod : Node_Id;
400 Related_Id : Entity_Id;
401 Suffix : Character);
402 -- Apply list of discriminant constraints to an unconstrained concurrent
403 -- type.
404 --
405 -- SI is the N_Subtype_Indication node containing the constraint and
406 -- the unconstrained type to constrain.
407 --
408 -- Def_Id is the entity for the resulting constrained subtype. A value
409 -- of Empty for Def_Id indicates that an implicit type must be created,
410 -- but creation is delayed (and must be done by this procedure) because
411 -- other subsidiary implicit types must be created first (which is why
412 -- Def_Id is an in/out parameter).
413 --
414 -- Related_Nod gives the place where this type has to be inserted
415 -- in the tree.
416 --
417 -- The last two arguments are used to create its external name if needed.
418
419 function Constrain_Corresponding_Record
420 (Prot_Subt : Entity_Id;
421 Corr_Rec : Entity_Id;
422 Related_Nod : Node_Id) return Entity_Id;
423 -- When constraining a protected type or task type with discriminants,
424 -- constrain the corresponding record with the same discriminant values.
425
426 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
427 -- Constrain a decimal fixed point type with a digits constraint and/or a
428 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
429
430 procedure Constrain_Discriminated_Type
431 (Def_Id : Entity_Id;
432 S : Node_Id;
433 Related_Nod : Node_Id;
434 For_Access : Boolean := False);
435 -- Process discriminant constraints of composite type. Verify that values
436 -- have been provided for all discriminants, that the original type is
437 -- unconstrained, and that the types of the supplied expressions match
438 -- the discriminant types. The first three parameters are like in routine
439 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
440 -- of For_Access.
441
442 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
443 -- Constrain an enumeration type with a range constraint. This is identical
444 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
445
446 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
447 -- Constrain a floating point type with either a digits constraint
448 -- and/or a range constraint, building a E_Floating_Point_Subtype.
449
450 procedure Constrain_Index
451 (Index : Node_Id;
452 S : Node_Id;
453 Related_Nod : Node_Id;
454 Related_Id : Entity_Id;
455 Suffix : Character;
456 Suffix_Index : Nat);
457 -- Process an index constraint S in a constrained array declaration. The
458 -- constraint can be a subtype name, or a range with or without an explicit
459 -- subtype mark. The index is the corresponding index of the unconstrained
460 -- array. The Related_Id and Suffix parameters are used to build the
461 -- associated Implicit type name.
462
463 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
464 -- Build subtype of a signed or modular integer type
465
466 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
467 -- Constrain an ordinary fixed point type with a range constraint, and
468 -- build an E_Ordinary_Fixed_Point_Subtype entity.
469
470 procedure Copy_And_Swap (Priv, Full : Entity_Id);
471 -- Copy the Priv entity into the entity of its full declaration then swap
472 -- the two entities in such a manner that the former private type is now
473 -- seen as a full type.
474
475 procedure Decimal_Fixed_Point_Type_Declaration
476 (T : Entity_Id;
477 Def : Node_Id);
478 -- Create a new decimal fixed point type, and apply the constraint to
479 -- obtain a subtype of this new type.
480
481 procedure Complete_Private_Subtype
482 (Priv : Entity_Id;
483 Full : Entity_Id;
484 Full_Base : Entity_Id;
485 Related_Nod : Node_Id);
486 -- Complete the implicit full view of a private subtype by setting the
487 -- appropriate semantic fields. If the full view of the parent is a record
488 -- type, build constrained components of subtype.
489
490 procedure Derive_Progenitor_Subprograms
491 (Parent_Type : Entity_Id;
492 Tagged_Type : Entity_Id);
493 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
494 -- operations of progenitors of Tagged_Type, and replace the subsidiary
495 -- subtypes with Tagged_Type, to build the specs of the inherited interface
496 -- primitives. The derived primitives are aliased to those of the
497 -- interface. This routine takes care also of transferring to the full view
498 -- subprograms associated with the partial view of Tagged_Type that cover
499 -- interface primitives.
500
501 procedure Derived_Standard_Character
502 (N : Node_Id;
503 Parent_Type : Entity_Id;
504 Derived_Type : Entity_Id);
505 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
506 -- derivations from types Standard.Character and Standard.Wide_Character.
507
508 procedure Derived_Type_Declaration
509 (T : Entity_Id;
510 N : Node_Id;
511 Is_Completion : Boolean);
512 -- Process a derived type declaration. Build_Derived_Type is invoked
513 -- to process the actual derived type definition. Parameters N and
514 -- Is_Completion have the same meaning as in Build_Derived_Type.
515 -- T is the N_Defining_Identifier for the entity defined in the
516 -- N_Full_Type_Declaration node N, that is T is the derived type.
517
518 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
519 -- Insert each literal in symbol table, as an overloadable identifier. Each
520 -- enumeration type is mapped into a sequence of integers, and each literal
521 -- is defined as a constant with integer value. If any of the literals are
522 -- character literals, the type is a character type, which means that
523 -- strings are legal aggregates for arrays of components of the type.
524
525 function Expand_To_Stored_Constraint
526 (Typ : Entity_Id;
527 Constraint : Elist_Id) return Elist_Id;
528 -- Given a constraint (i.e. a list of expressions) on the discriminants of
529 -- Typ, expand it into a constraint on the stored discriminants and return
530 -- the new list of expressions constraining the stored discriminants.
531
532 function Find_Type_Of_Object
533 (Obj_Def : Node_Id;
534 Related_Nod : Node_Id) return Entity_Id;
535 -- Get type entity for object referenced by Obj_Def, attaching the
536 -- implicit types generated to Related_Nod
537
538 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
539 -- Create a new float and apply the constraint to obtain subtype of it
540
541 function Has_Range_Constraint (N : Node_Id) return Boolean;
542 -- Given an N_Subtype_Indication node N, return True if a range constraint
543 -- is present, either directly, or as part of a digits or delta constraint.
544 -- In addition, a digits constraint in the decimal case returns True, since
545 -- it establishes a default range if no explicit range is present.
546
547 function Inherit_Components
548 (N : Node_Id;
549 Parent_Base : Entity_Id;
550 Derived_Base : Entity_Id;
551 Is_Tagged : Boolean;
552 Inherit_Discr : Boolean;
553 Discs : Elist_Id) return Elist_Id;
554 -- Called from Build_Derived_Record_Type to inherit the components of
555 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
556 -- For more information on derived types and component inheritance please
557 -- consult the comment above the body of Build_Derived_Record_Type.
558 --
559 -- N is the original derived type declaration
560 --
561 -- Is_Tagged is set if we are dealing with tagged types
562 --
563 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
564 -- Parent_Base, otherwise no discriminants are inherited.
565 --
566 -- Discs gives the list of constraints that apply to Parent_Base in the
567 -- derived type declaration. If Discs is set to No_Elist, then we have
568 -- the following situation:
569 --
570 -- type Parent (D1..Dn : ..) is [tagged] record ...;
571 -- type Derived is new Parent [with ...];
572 --
573 -- which gets treated as
574 --
575 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
576 --
577 -- For untagged types the returned value is an association list. The list
578 -- starts from the association (Parent_Base => Derived_Base), and then it
579 -- contains a sequence of the associations of the form
580 --
581 -- (Old_Component => New_Component),
582 --
583 -- where Old_Component is the Entity_Id of a component in Parent_Base and
584 -- New_Component is the Entity_Id of the corresponding component in
585 -- Derived_Base. For untagged records, this association list is needed when
586 -- copying the record declaration for the derived base. In the tagged case
587 -- the value returned is irrelevant.
588
589 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
590 -- Propagate static and dynamic predicate flags from a parent to the
591 -- subtype in a subtype declaration with and without constraints.
592
593 function Is_Valid_Constraint_Kind
594 (T_Kind : Type_Kind;
595 Constraint_Kind : Node_Kind) return Boolean;
596 -- Returns True if it is legal to apply the given kind of constraint to the
597 -- given kind of type (index constraint to an array type, for example).
598
599 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
600 -- Create new modular type. Verify that modulus is in bounds
601
602 procedure New_Concatenation_Op (Typ : Entity_Id);
603 -- Create an abbreviated declaration for an operator in order to
604 -- materialize concatenation on array types.
605
606 procedure Ordinary_Fixed_Point_Type_Declaration
607 (T : Entity_Id;
608 Def : Node_Id);
609 -- Create a new ordinary fixed point type, and apply the constraint to
610 -- obtain subtype of it.
611
612 procedure Prepare_Private_Subtype_Completion
613 (Id : Entity_Id;
614 Related_Nod : Node_Id);
615 -- Id is a subtype of some private type. Creates the full declaration
616 -- associated with Id whenever possible, i.e. when the full declaration
617 -- of the base type is already known. Records each subtype into
618 -- Private_Dependents of the base type.
619
620 procedure Process_Incomplete_Dependents
621 (N : Node_Id;
622 Full_T : Entity_Id;
623 Inc_T : Entity_Id);
624 -- Process all entities that depend on an incomplete type. There include
625 -- subtypes, subprogram types that mention the incomplete type in their
626 -- profiles, and subprogram with access parameters that designate the
627 -- incomplete type.
628
629 -- Inc_T is the defining identifier of an incomplete type declaration, its
630 -- Ekind is E_Incomplete_Type.
631 --
632 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
633 --
634 -- Full_T is N's defining identifier.
635 --
636 -- Subtypes of incomplete types with discriminants are completed when the
637 -- parent type is. This is simpler than private subtypes, because they can
638 -- only appear in the same scope, and there is no need to exchange views.
639 -- Similarly, access_to_subprogram types may have a parameter or a return
640 -- type that is an incomplete type, and that must be replaced with the
641 -- full type.
642 --
643 -- If the full type is tagged, subprogram with access parameters that
644 -- designated the incomplete may be primitive operations of the full type,
645 -- and have to be processed accordingly.
646
647 procedure Process_Real_Range_Specification (Def : Node_Id);
648 -- Given the type definition for a real type, this procedure processes and
649 -- checks the real range specification of this type definition if one is
650 -- present. If errors are found, error messages are posted, and the
651 -- Real_Range_Specification of Def is reset to Empty.
652
653 procedure Propagate_Default_Init_Cond_Attributes
654 (From_Typ : Entity_Id;
655 To_Typ : Entity_Id;
656 Parent_To_Derivation : Boolean := False;
657 Private_To_Full_View : Boolean := False);
658 -- Subsidiary to routines Build_Derived_Type and Process_Full_View. Inherit
659 -- all attributes related to pragma Default_Initial_Condition from From_Typ
660 -- to To_Typ. Flag Parent_To_Derivation should be set when the context is
661 -- the creation of a derived type. Flag Private_To_Full_View should be set
662 -- when processing both views of a private type.
663
664 procedure Record_Type_Declaration
665 (T : Entity_Id;
666 N : Node_Id;
667 Prev : Entity_Id);
668 -- Process a record type declaration (for both untagged and tagged
669 -- records). Parameters T and N are exactly like in procedure
670 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
671 -- for this routine. If this is the completion of an incomplete type
672 -- declaration, Prev is the entity of the incomplete declaration, used for
673 -- cross-referencing. Otherwise Prev = T.
674
675 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
676 -- This routine is used to process the actual record type definition (both
677 -- for untagged and tagged records). Def is a record type definition node.
678 -- This procedure analyzes the components in this record type definition.
679 -- Prev_T is the entity for the enclosing record type. It is provided so
680 -- that its Has_Task flag can be set if any of the component have Has_Task
681 -- set. If the declaration is the completion of an incomplete type
682 -- declaration, Prev_T is the original incomplete type, whose full view is
683 -- the record type.
684
685 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
686 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
687 -- build a copy of the declaration tree of the parent, and we create
688 -- independently the list of components for the derived type. Semantic
689 -- information uses the component entities, but record representation
690 -- clauses are validated on the declaration tree. This procedure replaces
691 -- discriminants and components in the declaration with those that have
692 -- been created by Inherit_Components.
693
694 procedure Set_Fixed_Range
695 (E : Entity_Id;
696 Loc : Source_Ptr;
697 Lo : Ureal;
698 Hi : Ureal);
699 -- Build a range node with the given bounds and set it as the Scalar_Range
700 -- of the given fixed-point type entity. Loc is the source location used
701 -- for the constructed range. See body for further details.
702
703 procedure Set_Scalar_Range_For_Subtype
704 (Def_Id : Entity_Id;
705 R : Node_Id;
706 Subt : Entity_Id);
707 -- This routine is used to set the scalar range field for a subtype given
708 -- Def_Id, the entity for the subtype, and R, the range expression for the
709 -- scalar range. Subt provides the parent subtype to be used to analyze,
710 -- resolve, and check the given range.
711
712 procedure Set_Default_SSO (T : Entity_Id);
713 -- T is the entity for an array or record being declared. This procedure
714 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
715 -- to the setting of Opt.Default_SSO.
716
717 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
718 -- Create a new signed integer entity, and apply the constraint to obtain
719 -- the required first named subtype of this type.
720
721 procedure Set_Stored_Constraint_From_Discriminant_Constraint
722 (E : Entity_Id);
723 -- E is some record type. This routine computes E's Stored_Constraint
724 -- from its Discriminant_Constraint.
725
726 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
727 -- Check that an entity in a list of progenitors is an interface,
728 -- emit error otherwise.
729
730 -----------------------
731 -- Access_Definition --
732 -----------------------
733
734 function Access_Definition
735 (Related_Nod : Node_Id;
736 N : Node_Id) return Entity_Id
737 is
738 Anon_Type : Entity_Id;
739 Anon_Scope : Entity_Id;
740 Desig_Type : Entity_Id;
741 Enclosing_Prot_Type : Entity_Id := Empty;
742
743 begin
744 Check_SPARK_05_Restriction ("access type is not allowed", N);
745
746 if Is_Entry (Current_Scope)
747 and then Is_Task_Type (Etype (Scope (Current_Scope)))
748 then
749 Error_Msg_N ("task entries cannot have access parameters", N);
750 return Empty;
751 end if;
752
753 -- Ada 2005: For an object declaration the corresponding anonymous
754 -- type is declared in the current scope.
755
756 -- If the access definition is the return type of another access to
757 -- function, scope is the current one, because it is the one of the
758 -- current type declaration, except for the pathological case below.
759
760 if Nkind_In (Related_Nod, N_Object_Declaration,
761 N_Access_Function_Definition)
762 then
763 Anon_Scope := Current_Scope;
764
765 -- A pathological case: function returning access functions that
766 -- return access functions, etc. Each anonymous access type created
767 -- is in the enclosing scope of the outermost function.
768
769 declare
770 Par : Node_Id;
771
772 begin
773 Par := Related_Nod;
774 while Nkind_In (Par, N_Access_Function_Definition,
775 N_Access_Definition)
776 loop
777 Par := Parent (Par);
778 end loop;
779
780 if Nkind (Par) = N_Function_Specification then
781 Anon_Scope := Scope (Defining_Entity (Par));
782 end if;
783 end;
784
785 -- For the anonymous function result case, retrieve the scope of the
786 -- function specification's associated entity rather than using the
787 -- current scope. The current scope will be the function itself if the
788 -- formal part is currently being analyzed, but will be the parent scope
789 -- in the case of a parameterless function, and we always want to use
790 -- the function's parent scope. Finally, if the function is a child
791 -- unit, we must traverse the tree to retrieve the proper entity.
792
793 elsif Nkind (Related_Nod) = N_Function_Specification
794 and then Nkind (Parent (N)) /= N_Parameter_Specification
795 then
796 -- If the current scope is a protected type, the anonymous access
797 -- is associated with one of the protected operations, and must
798 -- be available in the scope that encloses the protected declaration.
799 -- Otherwise the type is in the scope enclosing the subprogram.
800
801 -- If the function has formals, The return type of a subprogram
802 -- declaration is analyzed in the scope of the subprogram (see
803 -- Process_Formals) and thus the protected type, if present, is
804 -- the scope of the current function scope.
805
806 if Ekind (Current_Scope) = E_Protected_Type then
807 Enclosing_Prot_Type := Current_Scope;
808
809 elsif Ekind (Current_Scope) = E_Function
810 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
811 then
812 Enclosing_Prot_Type := Scope (Current_Scope);
813 end if;
814
815 if Present (Enclosing_Prot_Type) then
816 Anon_Scope := Scope (Enclosing_Prot_Type);
817
818 else
819 Anon_Scope := Scope (Defining_Entity (Related_Nod));
820 end if;
821
822 -- For an access type definition, if the current scope is a child
823 -- unit it is the scope of the type.
824
825 elsif Is_Compilation_Unit (Current_Scope) then
826 Anon_Scope := Current_Scope;
827
828 -- For access formals, access components, and access discriminants, the
829 -- scope is that of the enclosing declaration,
830
831 else
832 Anon_Scope := Scope (Current_Scope);
833 end if;
834
835 Anon_Type :=
836 Create_Itype
837 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
838
839 if All_Present (N)
840 and then Ada_Version >= Ada_2005
841 then
842 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
843 end if;
844
845 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
846 -- the corresponding semantic routine
847
848 if Present (Access_To_Subprogram_Definition (N)) then
849
850 -- Compiler runtime units are compiled in Ada 2005 mode when building
851 -- the runtime library but must also be compilable in Ada 95 mode
852 -- (when bootstrapping the compiler).
853
854 Check_Compiler_Unit ("anonymous access to subprogram", N);
855
856 Access_Subprogram_Declaration
857 (T_Name => Anon_Type,
858 T_Def => Access_To_Subprogram_Definition (N));
859
860 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
861 Set_Ekind
862 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
863 else
864 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
865 end if;
866
867 Set_Can_Use_Internal_Rep
868 (Anon_Type, not Always_Compatible_Rep_On_Target);
869
870 -- If the anonymous access is associated with a protected operation,
871 -- create a reference to it after the enclosing protected definition
872 -- because the itype will be used in the subsequent bodies.
873
874 if Ekind (Current_Scope) = E_Protected_Type then
875 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
876 end if;
877
878 return Anon_Type;
879 end if;
880
881 Find_Type (Subtype_Mark (N));
882 Desig_Type := Entity (Subtype_Mark (N));
883
884 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
885 Set_Etype (Anon_Type, Anon_Type);
886
887 -- Make sure the anonymous access type has size and alignment fields
888 -- set, as required by gigi. This is necessary in the case of the
889 -- Task_Body_Procedure.
890
891 if not Has_Private_Component (Desig_Type) then
892 Layout_Type (Anon_Type);
893 end if;
894
895 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
896 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
897 -- the null value is allowed. In Ada 95 the null value is never allowed.
898
899 if Ada_Version >= Ada_2005 then
900 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
901 else
902 Set_Can_Never_Be_Null (Anon_Type, True);
903 end if;
904
905 -- The anonymous access type is as public as the discriminated type or
906 -- subprogram that defines it. It is imported (for back-end purposes)
907 -- if the designated type is.
908
909 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
910
911 -- Ada 2005 (AI-231): Propagate the access-constant attribute
912
913 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
914
915 -- The context is either a subprogram declaration, object declaration,
916 -- or an access discriminant, in a private or a full type declaration.
917 -- In the case of a subprogram, if the designated type is incomplete,
918 -- the operation will be a primitive operation of the full type, to be
919 -- updated subsequently. If the type is imported through a limited_with
920 -- clause, the subprogram is not a primitive operation of the type
921 -- (which is declared elsewhere in some other scope).
922
923 if Ekind (Desig_Type) = E_Incomplete_Type
924 and then not From_Limited_With (Desig_Type)
925 and then Is_Overloadable (Current_Scope)
926 then
927 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
928 Set_Has_Delayed_Freeze (Current_Scope);
929 end if;
930
931 -- Ada 2005: If the designated type is an interface that may contain
932 -- tasks, create a Master entity for the declaration. This must be done
933 -- before expansion of the full declaration, because the declaration may
934 -- include an expression that is an allocator, whose expansion needs the
935 -- proper Master for the created tasks.
936
937 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
938 then
939 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
940 then
941 Build_Class_Wide_Master (Anon_Type);
942
943 -- Similarly, if the type is an anonymous access that designates
944 -- tasks, create a master entity for it in the current context.
945
946 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
947 then
948 Build_Master_Entity (Defining_Identifier (Related_Nod));
949 Build_Master_Renaming (Anon_Type);
950 end if;
951 end if;
952
953 -- For a private component of a protected type, it is imperative that
954 -- the back-end elaborate the type immediately after the protected
955 -- declaration, because this type will be used in the declarations
956 -- created for the component within each protected body, so we must
957 -- create an itype reference for it now.
958
959 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
960 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
961
962 -- Similarly, if the access definition is the return result of a
963 -- function, create an itype reference for it because it will be used
964 -- within the function body. For a regular function that is not a
965 -- compilation unit, insert reference after the declaration. For a
966 -- protected operation, insert it after the enclosing protected type
967 -- declaration. In either case, do not create a reference for a type
968 -- obtained through a limited_with clause, because this would introduce
969 -- semantic dependencies.
970
971 -- Similarly, do not create a reference if the designated type is a
972 -- generic formal, because no use of it will reach the backend.
973
974 elsif Nkind (Related_Nod) = N_Function_Specification
975 and then not From_Limited_With (Desig_Type)
976 and then not Is_Generic_Type (Desig_Type)
977 then
978 if Present (Enclosing_Prot_Type) then
979 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
980
981 elsif Is_List_Member (Parent (Related_Nod))
982 and then Nkind (Parent (N)) /= N_Parameter_Specification
983 then
984 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
985 end if;
986
987 -- Finally, create an itype reference for an object declaration of an
988 -- anonymous access type. This is strictly necessary only for deferred
989 -- constants, but in any case will avoid out-of-scope problems in the
990 -- back-end.
991
992 elsif Nkind (Related_Nod) = N_Object_Declaration then
993 Build_Itype_Reference (Anon_Type, Related_Nod);
994 end if;
995
996 return Anon_Type;
997 end Access_Definition;
998
999 -----------------------------------
1000 -- Access_Subprogram_Declaration --
1001 -----------------------------------
1002
1003 procedure Access_Subprogram_Declaration
1004 (T_Name : Entity_Id;
1005 T_Def : Node_Id)
1006 is
1007 procedure Check_For_Premature_Usage (Def : Node_Id);
1008 -- Check that type T_Name is not used, directly or recursively, as a
1009 -- parameter or a return type in Def. Def is either a subtype, an
1010 -- access_definition, or an access_to_subprogram_definition.
1011
1012 -------------------------------
1013 -- Check_For_Premature_Usage --
1014 -------------------------------
1015
1016 procedure Check_For_Premature_Usage (Def : Node_Id) is
1017 Param : Node_Id;
1018
1019 begin
1020 -- Check for a subtype mark
1021
1022 if Nkind (Def) in N_Has_Etype then
1023 if Etype (Def) = T_Name then
1024 Error_Msg_N
1025 ("type& cannot be used before end of its declaration", Def);
1026 end if;
1027
1028 -- If this is not a subtype, then this is an access_definition
1029
1030 elsif Nkind (Def) = N_Access_Definition then
1031 if Present (Access_To_Subprogram_Definition (Def)) then
1032 Check_For_Premature_Usage
1033 (Access_To_Subprogram_Definition (Def));
1034 else
1035 Check_For_Premature_Usage (Subtype_Mark (Def));
1036 end if;
1037
1038 -- The only cases left are N_Access_Function_Definition and
1039 -- N_Access_Procedure_Definition.
1040
1041 else
1042 if Present (Parameter_Specifications (Def)) then
1043 Param := First (Parameter_Specifications (Def));
1044 while Present (Param) loop
1045 Check_For_Premature_Usage (Parameter_Type (Param));
1046 Param := Next (Param);
1047 end loop;
1048 end if;
1049
1050 if Nkind (Def) = N_Access_Function_Definition then
1051 Check_For_Premature_Usage (Result_Definition (Def));
1052 end if;
1053 end if;
1054 end Check_For_Premature_Usage;
1055
1056 -- Local variables
1057
1058 Formals : constant List_Id := Parameter_Specifications (T_Def);
1059 Formal : Entity_Id;
1060 D_Ityp : Node_Id;
1061 Desig_Type : constant Entity_Id :=
1062 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1063
1064 -- Start of processing for Access_Subprogram_Declaration
1065
1066 begin
1067 Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1068
1069 -- Associate the Itype node with the inner full-type declaration or
1070 -- subprogram spec or entry body. This is required to handle nested
1071 -- anonymous declarations. For example:
1072
1073 -- procedure P
1074 -- (X : access procedure
1075 -- (Y : access procedure
1076 -- (Z : access T)))
1077
1078 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1079 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1080 N_Private_Type_Declaration,
1081 N_Private_Extension_Declaration,
1082 N_Procedure_Specification,
1083 N_Function_Specification,
1084 N_Entry_Body)
1085
1086 or else
1087 Nkind_In (D_Ityp, N_Object_Declaration,
1088 N_Object_Renaming_Declaration,
1089 N_Formal_Object_Declaration,
1090 N_Formal_Type_Declaration,
1091 N_Task_Type_Declaration,
1092 N_Protected_Type_Declaration))
1093 loop
1094 D_Ityp := Parent (D_Ityp);
1095 pragma Assert (D_Ityp /= Empty);
1096 end loop;
1097
1098 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1099
1100 if Nkind_In (D_Ityp, N_Procedure_Specification,
1101 N_Function_Specification)
1102 then
1103 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1104
1105 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1106 N_Object_Declaration,
1107 N_Object_Renaming_Declaration,
1108 N_Formal_Type_Declaration)
1109 then
1110 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1111 end if;
1112
1113 if Nkind (T_Def) = N_Access_Function_Definition then
1114 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1115 declare
1116 Acc : constant Node_Id := Result_Definition (T_Def);
1117
1118 begin
1119 if Present (Access_To_Subprogram_Definition (Acc))
1120 and then
1121 Protected_Present (Access_To_Subprogram_Definition (Acc))
1122 then
1123 Set_Etype
1124 (Desig_Type,
1125 Replace_Anonymous_Access_To_Protected_Subprogram
1126 (T_Def));
1127
1128 else
1129 Set_Etype
1130 (Desig_Type,
1131 Access_Definition (T_Def, Result_Definition (T_Def)));
1132 end if;
1133 end;
1134
1135 else
1136 Analyze (Result_Definition (T_Def));
1137
1138 declare
1139 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1140
1141 begin
1142 -- If a null exclusion is imposed on the result type, then
1143 -- create a null-excluding itype (an access subtype) and use
1144 -- it as the function's Etype.
1145
1146 if Is_Access_Type (Typ)
1147 and then Null_Exclusion_In_Return_Present (T_Def)
1148 then
1149 Set_Etype (Desig_Type,
1150 Create_Null_Excluding_Itype
1151 (T => Typ,
1152 Related_Nod => T_Def,
1153 Scope_Id => Current_Scope));
1154
1155 else
1156 if From_Limited_With (Typ) then
1157
1158 -- AI05-151: Incomplete types are allowed in all basic
1159 -- declarations, including access to subprograms.
1160
1161 if Ada_Version >= Ada_2012 then
1162 null;
1163
1164 else
1165 Error_Msg_NE
1166 ("illegal use of incomplete type&",
1167 Result_Definition (T_Def), Typ);
1168 end if;
1169
1170 elsif Ekind (Current_Scope) = E_Package
1171 and then In_Private_Part (Current_Scope)
1172 then
1173 if Ekind (Typ) = E_Incomplete_Type then
1174 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1175
1176 elsif Is_Class_Wide_Type (Typ)
1177 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1178 then
1179 Append_Elmt
1180 (Desig_Type, Private_Dependents (Etype (Typ)));
1181 end if;
1182 end if;
1183
1184 Set_Etype (Desig_Type, Typ);
1185 end if;
1186 end;
1187 end if;
1188
1189 if not (Is_Type (Etype (Desig_Type))) then
1190 Error_Msg_N
1191 ("expect type in function specification",
1192 Result_Definition (T_Def));
1193 end if;
1194
1195 else
1196 Set_Etype (Desig_Type, Standard_Void_Type);
1197 end if;
1198
1199 if Present (Formals) then
1200 Push_Scope (Desig_Type);
1201
1202 -- Some special tests here. These special tests can be removed
1203 -- if and when Itypes always have proper parent pointers to their
1204 -- declarations???
1205
1206 -- Special test 1) Link defining_identifier of formals. Required by
1207 -- First_Formal to provide its functionality.
1208
1209 declare
1210 F : Node_Id;
1211
1212 begin
1213 F := First (Formals);
1214
1215 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1216 -- when it is part of an unconstrained type and subtype expansion
1217 -- is disabled. To avoid back-end problems with shared profiles,
1218 -- use previous subprogram type as the designated type, and then
1219 -- remove scope added above.
1220
1221 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1222 then
1223 Set_Etype (T_Name, T_Name);
1224 Init_Size_Align (T_Name);
1225 Set_Directly_Designated_Type (T_Name,
1226 Scope (Defining_Identifier (F)));
1227 End_Scope;
1228 return;
1229 end if;
1230
1231 while Present (F) loop
1232 if No (Parent (Defining_Identifier (F))) then
1233 Set_Parent (Defining_Identifier (F), F);
1234 end if;
1235
1236 Next (F);
1237 end loop;
1238 end;
1239
1240 Process_Formals (Formals, Parent (T_Def));
1241
1242 -- Special test 2) End_Scope requires that the parent pointer be set
1243 -- to something reasonable, but Itypes don't have parent pointers. So
1244 -- we set it and then unset it ???
1245
1246 Set_Parent (Desig_Type, T_Name);
1247 End_Scope;
1248 Set_Parent (Desig_Type, Empty);
1249 end if;
1250
1251 -- Check for premature usage of the type being defined
1252
1253 Check_For_Premature_Usage (T_Def);
1254
1255 -- The return type and/or any parameter type may be incomplete. Mark the
1256 -- subprogram_type as depending on the incomplete type, so that it can
1257 -- be updated when the full type declaration is seen. This only applies
1258 -- to incomplete types declared in some enclosing scope, not to limited
1259 -- views from other packages.
1260
1261 -- Prior to Ada 2012, access to functions can only have in_parameters.
1262
1263 if Present (Formals) then
1264 Formal := First_Formal (Desig_Type);
1265 while Present (Formal) loop
1266 if Ekind (Formal) /= E_In_Parameter
1267 and then Nkind (T_Def) = N_Access_Function_Definition
1268 and then Ada_Version < Ada_2012
1269 then
1270 Error_Msg_N ("functions can only have IN parameters", Formal);
1271 end if;
1272
1273 if Ekind (Etype (Formal)) = E_Incomplete_Type
1274 and then In_Open_Scopes (Scope (Etype (Formal)))
1275 then
1276 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1277 Set_Has_Delayed_Freeze (Desig_Type);
1278 end if;
1279
1280 Next_Formal (Formal);
1281 end loop;
1282 end if;
1283
1284 -- Check whether an indirect call without actuals may be possible. This
1285 -- is used when resolving calls whose result is then indexed.
1286
1287 May_Need_Actuals (Desig_Type);
1288
1289 -- If the return type is incomplete, this is legal as long as the type
1290 -- is declared in the current scope and will be completed in it (rather
1291 -- than being part of limited view).
1292
1293 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1294 and then not Has_Delayed_Freeze (Desig_Type)
1295 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1296 then
1297 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1298 Set_Has_Delayed_Freeze (Desig_Type);
1299 end if;
1300
1301 Check_Delayed_Subprogram (Desig_Type);
1302
1303 if Protected_Present (T_Def) then
1304 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1305 Set_Convention (Desig_Type, Convention_Protected);
1306 else
1307 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1308 end if;
1309
1310 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1311
1312 Set_Etype (T_Name, T_Name);
1313 Init_Size_Align (T_Name);
1314 Set_Directly_Designated_Type (T_Name, Desig_Type);
1315
1316 Generate_Reference_To_Formals (T_Name);
1317
1318 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1319
1320 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1321
1322 Check_Restriction (No_Access_Subprograms, T_Def);
1323 end Access_Subprogram_Declaration;
1324
1325 ----------------------------
1326 -- Access_Type_Declaration --
1327 ----------------------------
1328
1329 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1330 P : constant Node_Id := Parent (Def);
1331 S : constant Node_Id := Subtype_Indication (Def);
1332
1333 Full_Desig : Entity_Id;
1334
1335 begin
1336 Check_SPARK_05_Restriction ("access type is not allowed", Def);
1337
1338 -- Check for permissible use of incomplete type
1339
1340 if Nkind (S) /= N_Subtype_Indication then
1341 Analyze (S);
1342
1343 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1344 Set_Directly_Designated_Type (T, Entity (S));
1345
1346 -- If the designated type is a limited view, we cannot tell if
1347 -- the full view contains tasks, and there is no way to handle
1348 -- that full view in a client. We create a master entity for the
1349 -- scope, which will be used when a client determines that one
1350 -- is needed.
1351
1352 if From_Limited_With (Entity (S))
1353 and then not Is_Class_Wide_Type (Entity (S))
1354 then
1355 Set_Ekind (T, E_Access_Type);
1356 Build_Master_Entity (T);
1357 Build_Master_Renaming (T);
1358 end if;
1359
1360 else
1361 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1362 end if;
1363
1364 -- If the access definition is of the form: ACCESS NOT NULL ..
1365 -- the subtype indication must be of an access type. Create
1366 -- a null-excluding subtype of it.
1367
1368 if Null_Excluding_Subtype (Def) then
1369 if not Is_Access_Type (Entity (S)) then
1370 Error_Msg_N ("null exclusion must apply to access type", Def);
1371
1372 else
1373 declare
1374 Loc : constant Source_Ptr := Sloc (S);
1375 Decl : Node_Id;
1376 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1377
1378 begin
1379 Decl :=
1380 Make_Subtype_Declaration (Loc,
1381 Defining_Identifier => Nam,
1382 Subtype_Indication =>
1383 New_Occurrence_Of (Entity (S), Loc));
1384 Set_Null_Exclusion_Present (Decl);
1385 Insert_Before (Parent (Def), Decl);
1386 Analyze (Decl);
1387 Set_Entity (S, Nam);
1388 end;
1389 end if;
1390 end if;
1391
1392 else
1393 Set_Directly_Designated_Type (T,
1394 Process_Subtype (S, P, T, 'P'));
1395 end if;
1396
1397 if All_Present (Def) or Constant_Present (Def) then
1398 Set_Ekind (T, E_General_Access_Type);
1399 else
1400 Set_Ekind (T, E_Access_Type);
1401 end if;
1402
1403 Full_Desig := Designated_Type (T);
1404
1405 if Base_Type (Full_Desig) = T then
1406 Error_Msg_N ("access type cannot designate itself", S);
1407
1408 -- In Ada 2005, the type may have a limited view through some unit in
1409 -- its own context, allowing the following circularity that cannot be
1410 -- detected earlier.
1411
1412 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1413 then
1414 Error_Msg_N
1415 ("access type cannot designate its own classwide type", S);
1416
1417 -- Clean up indication of tagged status to prevent cascaded errors
1418
1419 Set_Is_Tagged_Type (T, False);
1420 end if;
1421
1422 Set_Etype (T, T);
1423
1424 -- If the type has appeared already in a with_type clause, it is frozen
1425 -- and the pointer size is already set. Else, initialize.
1426
1427 if not From_Limited_With (T) then
1428 Init_Size_Align (T);
1429 end if;
1430
1431 -- Note that Has_Task is always false, since the access type itself
1432 -- is not a task type. See Einfo for more description on this point.
1433 -- Exactly the same consideration applies to Has_Controlled_Component
1434 -- and to Has_Protected.
1435
1436 Set_Has_Task (T, False);
1437 Set_Has_Controlled_Component (T, False);
1438 Set_Has_Protected (T, False);
1439
1440 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1441 -- problems where an incomplete view of this entity has been previously
1442 -- established by a limited with and an overlaid version of this field
1443 -- (Stored_Constraint) was initialized for the incomplete view.
1444
1445 -- This reset is performed in most cases except where the access type
1446 -- has been created for the purposes of allocating or deallocating a
1447 -- build-in-place object. Such access types have explicitly set pools
1448 -- and finalization masters.
1449
1450 if No (Associated_Storage_Pool (T)) then
1451 Set_Finalization_Master (T, Empty);
1452 end if;
1453
1454 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1455 -- attributes
1456
1457 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1458 Set_Is_Access_Constant (T, Constant_Present (Def));
1459 end Access_Type_Declaration;
1460
1461 ----------------------------------
1462 -- Add_Interface_Tag_Components --
1463 ----------------------------------
1464
1465 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1466 Loc : constant Source_Ptr := Sloc (N);
1467 L : List_Id;
1468 Last_Tag : Node_Id;
1469
1470 procedure Add_Tag (Iface : Entity_Id);
1471 -- Add tag for one of the progenitor interfaces
1472
1473 -------------
1474 -- Add_Tag --
1475 -------------
1476
1477 procedure Add_Tag (Iface : Entity_Id) is
1478 Decl : Node_Id;
1479 Def : Node_Id;
1480 Tag : Entity_Id;
1481 Offset : Entity_Id;
1482
1483 begin
1484 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1485
1486 -- This is a reasonable place to propagate predicates
1487
1488 if Has_Predicates (Iface) then
1489 Set_Has_Predicates (Typ);
1490 end if;
1491
1492 Def :=
1493 Make_Component_Definition (Loc,
1494 Aliased_Present => True,
1495 Subtype_Indication =>
1496 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1497
1498 Tag := Make_Temporary (Loc, 'V');
1499
1500 Decl :=
1501 Make_Component_Declaration (Loc,
1502 Defining_Identifier => Tag,
1503 Component_Definition => Def);
1504
1505 Analyze_Component_Declaration (Decl);
1506
1507 Set_Analyzed (Decl);
1508 Set_Ekind (Tag, E_Component);
1509 Set_Is_Tag (Tag);
1510 Set_Is_Aliased (Tag);
1511 Set_Related_Type (Tag, Iface);
1512 Init_Component_Location (Tag);
1513
1514 pragma Assert (Is_Frozen (Iface));
1515
1516 Set_DT_Entry_Count (Tag,
1517 DT_Entry_Count (First_Entity (Iface)));
1518
1519 if No (Last_Tag) then
1520 Prepend (Decl, L);
1521 else
1522 Insert_After (Last_Tag, Decl);
1523 end if;
1524
1525 Last_Tag := Decl;
1526
1527 -- If the ancestor has discriminants we need to give special support
1528 -- to store the offset_to_top value of the secondary dispatch tables.
1529 -- For this purpose we add a supplementary component just after the
1530 -- field that contains the tag associated with each secondary DT.
1531
1532 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1533 Def :=
1534 Make_Component_Definition (Loc,
1535 Subtype_Indication =>
1536 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1537
1538 Offset := Make_Temporary (Loc, 'V');
1539
1540 Decl :=
1541 Make_Component_Declaration (Loc,
1542 Defining_Identifier => Offset,
1543 Component_Definition => Def);
1544
1545 Analyze_Component_Declaration (Decl);
1546
1547 Set_Analyzed (Decl);
1548 Set_Ekind (Offset, E_Component);
1549 Set_Is_Aliased (Offset);
1550 Set_Related_Type (Offset, Iface);
1551 Init_Component_Location (Offset);
1552 Insert_After (Last_Tag, Decl);
1553 Last_Tag := Decl;
1554 end if;
1555 end Add_Tag;
1556
1557 -- Local variables
1558
1559 Elmt : Elmt_Id;
1560 Ext : Node_Id;
1561 Comp : Node_Id;
1562
1563 -- Start of processing for Add_Interface_Tag_Components
1564
1565 begin
1566 if not RTE_Available (RE_Interface_Tag) then
1567 Error_Msg
1568 ("(Ada 2005) interface types not supported by this run-time!",
1569 Sloc (N));
1570 return;
1571 end if;
1572
1573 if Ekind (Typ) /= E_Record_Type
1574 or else (Is_Concurrent_Record_Type (Typ)
1575 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1576 or else (not Is_Concurrent_Record_Type (Typ)
1577 and then No (Interfaces (Typ))
1578 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1579 then
1580 return;
1581 end if;
1582
1583 -- Find the current last tag
1584
1585 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1586 Ext := Record_Extension_Part (Type_Definition (N));
1587 else
1588 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1589 Ext := Type_Definition (N);
1590 end if;
1591
1592 Last_Tag := Empty;
1593
1594 if not (Present (Component_List (Ext))) then
1595 Set_Null_Present (Ext, False);
1596 L := New_List;
1597 Set_Component_List (Ext,
1598 Make_Component_List (Loc,
1599 Component_Items => L,
1600 Null_Present => False));
1601 else
1602 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1603 L := Component_Items
1604 (Component_List
1605 (Record_Extension_Part
1606 (Type_Definition (N))));
1607 else
1608 L := Component_Items
1609 (Component_List
1610 (Type_Definition (N)));
1611 end if;
1612
1613 -- Find the last tag component
1614
1615 Comp := First (L);
1616 while Present (Comp) loop
1617 if Nkind (Comp) = N_Component_Declaration
1618 and then Is_Tag (Defining_Identifier (Comp))
1619 then
1620 Last_Tag := Comp;
1621 end if;
1622
1623 Next (Comp);
1624 end loop;
1625 end if;
1626
1627 -- At this point L references the list of components and Last_Tag
1628 -- references the current last tag (if any). Now we add the tag
1629 -- corresponding with all the interfaces that are not implemented
1630 -- by the parent.
1631
1632 if Present (Interfaces (Typ)) then
1633 Elmt := First_Elmt (Interfaces (Typ));
1634 while Present (Elmt) loop
1635 Add_Tag (Node (Elmt));
1636 Next_Elmt (Elmt);
1637 end loop;
1638 end if;
1639 end Add_Interface_Tag_Components;
1640
1641 -------------------------------------
1642 -- Add_Internal_Interface_Entities --
1643 -------------------------------------
1644
1645 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1646 Elmt : Elmt_Id;
1647 Iface : Entity_Id;
1648 Iface_Elmt : Elmt_Id;
1649 Iface_Prim : Entity_Id;
1650 Ifaces_List : Elist_Id;
1651 New_Subp : Entity_Id := Empty;
1652 Prim : Entity_Id;
1653 Restore_Scope : Boolean := False;
1654
1655 begin
1656 pragma Assert (Ada_Version >= Ada_2005
1657 and then Is_Record_Type (Tagged_Type)
1658 and then Is_Tagged_Type (Tagged_Type)
1659 and then Has_Interfaces (Tagged_Type)
1660 and then not Is_Interface (Tagged_Type));
1661
1662 -- Ensure that the internal entities are added to the scope of the type
1663
1664 if Scope (Tagged_Type) /= Current_Scope then
1665 Push_Scope (Scope (Tagged_Type));
1666 Restore_Scope := True;
1667 end if;
1668
1669 Collect_Interfaces (Tagged_Type, Ifaces_List);
1670
1671 Iface_Elmt := First_Elmt (Ifaces_List);
1672 while Present (Iface_Elmt) loop
1673 Iface := Node (Iface_Elmt);
1674
1675 -- Originally we excluded here from this processing interfaces that
1676 -- are parents of Tagged_Type because their primitives are located
1677 -- in the primary dispatch table (and hence no auxiliary internal
1678 -- entities are required to handle secondary dispatch tables in such
1679 -- case). However, these auxiliary entities are also required to
1680 -- handle derivations of interfaces in formals of generics (see
1681 -- Derive_Subprograms).
1682
1683 Elmt := First_Elmt (Primitive_Operations (Iface));
1684 while Present (Elmt) loop
1685 Iface_Prim := Node (Elmt);
1686
1687 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1688 Prim :=
1689 Find_Primitive_Covering_Interface
1690 (Tagged_Type => Tagged_Type,
1691 Iface_Prim => Iface_Prim);
1692
1693 if No (Prim) and then Serious_Errors_Detected > 0 then
1694 goto Continue;
1695 end if;
1696
1697 pragma Assert (Present (Prim));
1698
1699 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1700 -- differs from the name of the interface primitive then it is
1701 -- a private primitive inherited from a parent type. In such
1702 -- case, given that Tagged_Type covers the interface, the
1703 -- inherited private primitive becomes visible. For such
1704 -- purpose we add a new entity that renames the inherited
1705 -- private primitive.
1706
1707 if Chars (Prim) /= Chars (Iface_Prim) then
1708 pragma Assert (Has_Suffix (Prim, 'P'));
1709 Derive_Subprogram
1710 (New_Subp => New_Subp,
1711 Parent_Subp => Iface_Prim,
1712 Derived_Type => Tagged_Type,
1713 Parent_Type => Iface);
1714 Set_Alias (New_Subp, Prim);
1715 Set_Is_Abstract_Subprogram
1716 (New_Subp, Is_Abstract_Subprogram (Prim));
1717 end if;
1718
1719 Derive_Subprogram
1720 (New_Subp => New_Subp,
1721 Parent_Subp => Iface_Prim,
1722 Derived_Type => Tagged_Type,
1723 Parent_Type => Iface);
1724
1725 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1726 -- associated with interface types. These entities are
1727 -- only registered in the list of primitives of its
1728 -- corresponding tagged type because they are only used
1729 -- to fill the contents of the secondary dispatch tables.
1730 -- Therefore they are removed from the homonym chains.
1731
1732 Set_Is_Hidden (New_Subp);
1733 Set_Is_Internal (New_Subp);
1734 Set_Alias (New_Subp, Prim);
1735 Set_Is_Abstract_Subprogram
1736 (New_Subp, Is_Abstract_Subprogram (Prim));
1737 Set_Interface_Alias (New_Subp, Iface_Prim);
1738
1739 -- If the returned type is an interface then propagate it to
1740 -- the returned type. Needed by the thunk to generate the code
1741 -- which displaces "this" to reference the corresponding
1742 -- secondary dispatch table in the returned object.
1743
1744 if Is_Interface (Etype (Iface_Prim)) then
1745 Set_Etype (New_Subp, Etype (Iface_Prim));
1746 end if;
1747
1748 -- Internal entities associated with interface types are
1749 -- only registered in the list of primitives of the tagged
1750 -- type. They are only used to fill the contents of the
1751 -- secondary dispatch tables. Therefore they are not needed
1752 -- in the homonym chains.
1753
1754 Remove_Homonym (New_Subp);
1755
1756 -- Hidden entities associated with interfaces must have set
1757 -- the Has_Delay_Freeze attribute to ensure that, in case of
1758 -- locally defined tagged types (or compiling with static
1759 -- dispatch tables generation disabled) the corresponding
1760 -- entry of the secondary dispatch table is filled when
1761 -- such an entity is frozen.
1762
1763 Set_Has_Delayed_Freeze (New_Subp);
1764 end if;
1765
1766 <<Continue>>
1767 Next_Elmt (Elmt);
1768 end loop;
1769
1770 Next_Elmt (Iface_Elmt);
1771 end loop;
1772
1773 if Restore_Scope then
1774 Pop_Scope;
1775 end if;
1776 end Add_Internal_Interface_Entities;
1777
1778 -----------------------------------
1779 -- Analyze_Component_Declaration --
1780 -----------------------------------
1781
1782 procedure Analyze_Component_Declaration (N : Node_Id) is
1783 Id : constant Entity_Id := Defining_Identifier (N);
1784 E : constant Node_Id := Expression (N);
1785 Typ : constant Node_Id :=
1786 Subtype_Indication (Component_Definition (N));
1787 T : Entity_Id;
1788 P : Entity_Id;
1789
1790 function Contains_POC (Constr : Node_Id) return Boolean;
1791 -- Determines whether a constraint uses the discriminant of a record
1792 -- type thus becoming a per-object constraint (POC).
1793
1794 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1795 -- Typ is the type of the current component, check whether this type is
1796 -- a limited type. Used to validate declaration against that of
1797 -- enclosing record.
1798
1799 ------------------
1800 -- Contains_POC --
1801 ------------------
1802
1803 function Contains_POC (Constr : Node_Id) return Boolean is
1804 begin
1805 -- Prevent cascaded errors
1806
1807 if Error_Posted (Constr) then
1808 return False;
1809 end if;
1810
1811 case Nkind (Constr) is
1812 when N_Attribute_Reference =>
1813 return Attribute_Name (Constr) = Name_Access
1814 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1815
1816 when N_Discriminant_Association =>
1817 return Denotes_Discriminant (Expression (Constr));
1818
1819 when N_Identifier =>
1820 return Denotes_Discriminant (Constr);
1821
1822 when N_Index_Or_Discriminant_Constraint =>
1823 declare
1824 IDC : Node_Id;
1825
1826 begin
1827 IDC := First (Constraints (Constr));
1828 while Present (IDC) loop
1829
1830 -- One per-object constraint is sufficient
1831
1832 if Contains_POC (IDC) then
1833 return True;
1834 end if;
1835
1836 Next (IDC);
1837 end loop;
1838
1839 return False;
1840 end;
1841
1842 when N_Range =>
1843 return Denotes_Discriminant (Low_Bound (Constr))
1844 or else
1845 Denotes_Discriminant (High_Bound (Constr));
1846
1847 when N_Range_Constraint =>
1848 return Denotes_Discriminant (Range_Expression (Constr));
1849
1850 when others =>
1851 return False;
1852
1853 end case;
1854 end Contains_POC;
1855
1856 ----------------------
1857 -- Is_Known_Limited --
1858 ----------------------
1859
1860 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1861 P : constant Entity_Id := Etype (Typ);
1862 R : constant Entity_Id := Root_Type (Typ);
1863
1864 begin
1865 if Is_Limited_Record (Typ) then
1866 return True;
1867
1868 -- If the root type is limited (and not a limited interface)
1869 -- so is the current type
1870
1871 elsif Is_Limited_Record (R)
1872 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1873 then
1874 return True;
1875
1876 -- Else the type may have a limited interface progenitor, but a
1877 -- limited record parent.
1878
1879 elsif R /= P and then Is_Limited_Record (P) then
1880 return True;
1881
1882 else
1883 return False;
1884 end if;
1885 end Is_Known_Limited;
1886
1887 -- Start of processing for Analyze_Component_Declaration
1888
1889 begin
1890 Generate_Definition (Id);
1891 Enter_Name (Id);
1892
1893 if Present (Typ) then
1894 T := Find_Type_Of_Object
1895 (Subtype_Indication (Component_Definition (N)), N);
1896
1897 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1898 Check_SPARK_05_Restriction ("subtype mark required", Typ);
1899 end if;
1900
1901 -- Ada 2005 (AI-230): Access Definition case
1902
1903 else
1904 pragma Assert (Present
1905 (Access_Definition (Component_Definition (N))));
1906
1907 T := Access_Definition
1908 (Related_Nod => N,
1909 N => Access_Definition (Component_Definition (N)));
1910 Set_Is_Local_Anonymous_Access (T);
1911
1912 -- Ada 2005 (AI-254)
1913
1914 if Present (Access_To_Subprogram_Definition
1915 (Access_Definition (Component_Definition (N))))
1916 and then Protected_Present (Access_To_Subprogram_Definition
1917 (Access_Definition
1918 (Component_Definition (N))))
1919 then
1920 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1921 end if;
1922 end if;
1923
1924 -- If the subtype is a constrained subtype of the enclosing record,
1925 -- (which must have a partial view) the back-end does not properly
1926 -- handle the recursion. Rewrite the component declaration with an
1927 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1928 -- the tree directly because side effects have already been removed from
1929 -- discriminant constraints.
1930
1931 if Ekind (T) = E_Access_Subtype
1932 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1933 and then Comes_From_Source (T)
1934 and then Nkind (Parent (T)) = N_Subtype_Declaration
1935 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1936 then
1937 Rewrite
1938 (Subtype_Indication (Component_Definition (N)),
1939 New_Copy_Tree (Subtype_Indication (Parent (T))));
1940 T := Find_Type_Of_Object
1941 (Subtype_Indication (Component_Definition (N)), N);
1942 end if;
1943
1944 -- If the component declaration includes a default expression, then we
1945 -- check that the component is not of a limited type (RM 3.7(5)),
1946 -- and do the special preanalysis of the expression (see section on
1947 -- "Handling of Default and Per-Object Expressions" in the spec of
1948 -- package Sem).
1949
1950 if Present (E) then
1951 Check_SPARK_05_Restriction ("default expression is not allowed", E);
1952 Preanalyze_Default_Expression (E, T);
1953 Check_Initialization (T, E);
1954
1955 if Ada_Version >= Ada_2005
1956 and then Ekind (T) = E_Anonymous_Access_Type
1957 and then Etype (E) /= Any_Type
1958 then
1959 -- Check RM 3.9.2(9): "if the expected type for an expression is
1960 -- an anonymous access-to-specific tagged type, then the object
1961 -- designated by the expression shall not be dynamically tagged
1962 -- unless it is a controlling operand in a call on a dispatching
1963 -- operation"
1964
1965 if Is_Tagged_Type (Directly_Designated_Type (T))
1966 and then
1967 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1968 and then
1969 Ekind (Directly_Designated_Type (Etype (E))) =
1970 E_Class_Wide_Type
1971 then
1972 Error_Msg_N
1973 ("access to specific tagged type required (RM 3.9.2(9))", E);
1974 end if;
1975
1976 -- (Ada 2005: AI-230): Accessibility check for anonymous
1977 -- components
1978
1979 if Type_Access_Level (Etype (E)) >
1980 Deepest_Type_Access_Level (T)
1981 then
1982 Error_Msg_N
1983 ("expression has deeper access level than component " &
1984 "(RM 3.10.2 (12.2))", E);
1985 end if;
1986
1987 -- The initialization expression is a reference to an access
1988 -- discriminant. The type of the discriminant is always deeper
1989 -- than any access type.
1990
1991 if Ekind (Etype (E)) = E_Anonymous_Access_Type
1992 and then Is_Entity_Name (E)
1993 and then Ekind (Entity (E)) = E_In_Parameter
1994 and then Present (Discriminal_Link (Entity (E)))
1995 then
1996 Error_Msg_N
1997 ("discriminant has deeper accessibility level than target",
1998 E);
1999 end if;
2000 end if;
2001 end if;
2002
2003 -- The parent type may be a private view with unknown discriminants,
2004 -- and thus unconstrained. Regular components must be constrained.
2005
2006 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
2007 if Is_Class_Wide_Type (T) then
2008 Error_Msg_N
2009 ("class-wide subtype with unknown discriminants" &
2010 " in component declaration",
2011 Subtype_Indication (Component_Definition (N)));
2012 else
2013 Error_Msg_N
2014 ("unconstrained subtype in component declaration",
2015 Subtype_Indication (Component_Definition (N)));
2016 end if;
2017
2018 -- Components cannot be abstract, except for the special case of
2019 -- the _Parent field (case of extending an abstract tagged type)
2020
2021 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2022 Error_Msg_N ("type of a component cannot be abstract", N);
2023 end if;
2024
2025 Set_Etype (Id, T);
2026 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2027
2028 -- The component declaration may have a per-object constraint, set
2029 -- the appropriate flag in the defining identifier of the subtype.
2030
2031 if Present (Subtype_Indication (Component_Definition (N))) then
2032 declare
2033 Sindic : constant Node_Id :=
2034 Subtype_Indication (Component_Definition (N));
2035 begin
2036 if Nkind (Sindic) = N_Subtype_Indication
2037 and then Present (Constraint (Sindic))
2038 and then Contains_POC (Constraint (Sindic))
2039 then
2040 Set_Has_Per_Object_Constraint (Id);
2041 end if;
2042 end;
2043 end if;
2044
2045 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2046 -- out some static checks.
2047
2048 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2049 Null_Exclusion_Static_Checks (N);
2050 end if;
2051
2052 -- If this component is private (or depends on a private type), flag the
2053 -- record type to indicate that some operations are not available.
2054
2055 P := Private_Component (T);
2056
2057 if Present (P) then
2058
2059 -- Check for circular definitions
2060
2061 if P = Any_Type then
2062 Set_Etype (Id, Any_Type);
2063
2064 -- There is a gap in the visibility of operations only if the
2065 -- component type is not defined in the scope of the record type.
2066
2067 elsif Scope (P) = Scope (Current_Scope) then
2068 null;
2069
2070 elsif Is_Limited_Type (P) then
2071 Set_Is_Limited_Composite (Current_Scope);
2072
2073 else
2074 Set_Is_Private_Composite (Current_Scope);
2075 end if;
2076 end if;
2077
2078 if P /= Any_Type
2079 and then Is_Limited_Type (T)
2080 and then Chars (Id) /= Name_uParent
2081 and then Is_Tagged_Type (Current_Scope)
2082 then
2083 if Is_Derived_Type (Current_Scope)
2084 and then not Is_Known_Limited (Current_Scope)
2085 then
2086 Error_Msg_N
2087 ("extension of nonlimited type cannot have limited components",
2088 N);
2089
2090 if Is_Interface (Root_Type (Current_Scope)) then
2091 Error_Msg_N
2092 ("\limitedness is not inherited from limited interface", N);
2093 Error_Msg_N ("\add LIMITED to type indication", N);
2094 end if;
2095
2096 Explain_Limited_Type (T, N);
2097 Set_Etype (Id, Any_Type);
2098 Set_Is_Limited_Composite (Current_Scope, False);
2099
2100 elsif not Is_Derived_Type (Current_Scope)
2101 and then not Is_Limited_Record (Current_Scope)
2102 and then not Is_Concurrent_Type (Current_Scope)
2103 then
2104 Error_Msg_N
2105 ("nonlimited tagged type cannot have limited components", N);
2106 Explain_Limited_Type (T, N);
2107 Set_Etype (Id, Any_Type);
2108 Set_Is_Limited_Composite (Current_Scope, False);
2109 end if;
2110 end if;
2111
2112 Set_Original_Record_Component (Id, Id);
2113
2114 if Has_Aspects (N) then
2115 Analyze_Aspect_Specifications (N, Id);
2116 end if;
2117
2118 Analyze_Dimension (N);
2119 end Analyze_Component_Declaration;
2120
2121 --------------------------
2122 -- Analyze_Declarations --
2123 --------------------------
2124
2125 procedure Analyze_Declarations (L : List_Id) is
2126 Decl : Node_Id;
2127
2128 procedure Adjust_Decl;
2129 -- Adjust Decl not to include implicit label declarations, since these
2130 -- have strange Sloc values that result in elaboration check problems.
2131 -- (They have the sloc of the label as found in the source, and that
2132 -- is ahead of the current declarative part).
2133
2134 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2135 -- Determine whether Body_Decl denotes the body of a late controlled
2136 -- primitive (either Initialize, Adjust or Finalize). If this is the
2137 -- case, add a proper spec if the body lacks one. The spec is inserted
2138 -- before Body_Decl and immedately analyzed.
2139
2140 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2141 -- Spec_Id is the entity of a package that may define abstract states.
2142 -- If the states have visible refinement, remove the visibility of each
2143 -- constituent at the end of the package body declarations.
2144
2145 -----------------
2146 -- Adjust_Decl --
2147 -----------------
2148
2149 procedure Adjust_Decl is
2150 begin
2151 while Present (Prev (Decl))
2152 and then Nkind (Decl) = N_Implicit_Label_Declaration
2153 loop
2154 Prev (Decl);
2155 end loop;
2156 end Adjust_Decl;
2157
2158 --------------------------------------
2159 -- Handle_Late_Controlled_Primitive --
2160 --------------------------------------
2161
2162 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2163 Body_Spec : constant Node_Id := Specification (Body_Decl);
2164 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2165 Loc : constant Source_Ptr := Sloc (Body_Id);
2166 Params : constant List_Id :=
2167 Parameter_Specifications (Body_Spec);
2168 Spec : Node_Id;
2169 Spec_Id : Entity_Id;
2170 Typ : Node_Id;
2171
2172 begin
2173 -- Consider only procedure bodies whose name matches one of the three
2174 -- controlled primitives.
2175
2176 if Nkind (Body_Spec) /= N_Procedure_Specification
2177 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2178 Name_Finalize,
2179 Name_Initialize)
2180 then
2181 return;
2182
2183 -- A controlled primitive must have exactly one formal which is not
2184 -- an anonymous access type.
2185
2186 elsif List_Length (Params) /= 1 then
2187 return;
2188 end if;
2189
2190 Typ := Parameter_Type (First (Params));
2191
2192 if Nkind (Typ) = N_Access_Definition then
2193 return;
2194 end if;
2195
2196 Find_Type (Typ);
2197
2198 -- The type of the formal must be derived from [Limited_]Controlled
2199
2200 if not Is_Controlled (Entity (Typ)) then
2201 return;
2202 end if;
2203
2204 -- Check whether a specification exists for this body. We do not
2205 -- analyze the spec of the body in full, because it will be analyzed
2206 -- again when the body is properly analyzed, and we cannot create
2207 -- duplicate entries in the formals chain. We look for an explicit
2208 -- specification because the body may be an overriding operation and
2209 -- an inherited spec may be present.
2210
2211 Spec_Id := Current_Entity (Body_Id);
2212
2213 while Present (Spec_Id) loop
2214 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure)
2215 and then Scope (Spec_Id) = Current_Scope
2216 and then Present (First_Formal (Spec_Id))
2217 and then No (Next_Formal (First_Formal (Spec_Id)))
2218 and then Etype (First_Formal (Spec_Id)) = Entity (Typ)
2219 and then Comes_From_Source (Spec_Id)
2220 then
2221 return;
2222 end if;
2223
2224 Spec_Id := Homonym (Spec_Id);
2225 end loop;
2226
2227 -- At this point the body is known to be a late controlled primitive.
2228 -- Generate a matching spec and insert it before the body. Note the
2229 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2230 -- tree in this case.
2231
2232 Spec := Copy_Separate_Tree (Body_Spec);
2233
2234 -- Ensure that the subprogram declaration does not inherit the null
2235 -- indicator from the body as we now have a proper spec/body pair.
2236
2237 Set_Null_Present (Spec, False);
2238
2239 Insert_Before_And_Analyze (Body_Decl,
2240 Make_Subprogram_Declaration (Loc, Specification => Spec));
2241 end Handle_Late_Controlled_Primitive;
2242
2243 --------------------------------
2244 -- Remove_Visible_Refinements --
2245 --------------------------------
2246
2247 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2248 State_Elmt : Elmt_Id;
2249 begin
2250 if Present (Abstract_States (Spec_Id)) then
2251 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2252 while Present (State_Elmt) loop
2253 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2254 Next_Elmt (State_Elmt);
2255 end loop;
2256 end if;
2257 end Remove_Visible_Refinements;
2258
2259 -- Local variables
2260
2261 Context : Node_Id;
2262 Freeze_From : Entity_Id := Empty;
2263 Next_Decl : Node_Id;
2264 Spec_Id : Entity_Id;
2265
2266 Body_Seen : Boolean := False;
2267 -- Flag set when the first body [stub] is encountered
2268
2269 In_Package_Body : Boolean := False;
2270 -- Flag set when the current declaration list belongs to a package body
2271
2272 -- Start of processing for Analyze_Declarations
2273
2274 begin
2275 if Restriction_Check_Required (SPARK_05) then
2276 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2277 end if;
2278
2279 Decl := First (L);
2280 while Present (Decl) loop
2281
2282 -- Package spec cannot contain a package declaration in SPARK
2283
2284 if Nkind (Decl) = N_Package_Declaration
2285 and then Nkind (Parent (L)) = N_Package_Specification
2286 then
2287 Check_SPARK_05_Restriction
2288 ("package specification cannot contain a package declaration",
2289 Decl);
2290 end if;
2291
2292 -- Complete analysis of declaration
2293
2294 Analyze (Decl);
2295 Next_Decl := Next (Decl);
2296
2297 if No (Freeze_From) then
2298 Freeze_From := First_Entity (Current_Scope);
2299 end if;
2300
2301 -- At the end of a declarative part, freeze remaining entities
2302 -- declared in it. The end of the visible declarations of package
2303 -- specification is not the end of a declarative part if private
2304 -- declarations are present. The end of a package declaration is a
2305 -- freezing point only if it a library package. A task definition or
2306 -- protected type definition is not a freeze point either. Finally,
2307 -- we do not freeze entities in generic scopes, because there is no
2308 -- code generated for them and freeze nodes will be generated for
2309 -- the instance.
2310
2311 -- The end of a package instantiation is not a freeze point, but
2312 -- for now we make it one, because the generic body is inserted
2313 -- (currently) immediately after. Generic instantiations will not
2314 -- be a freeze point once delayed freezing of bodies is implemented.
2315 -- (This is needed in any case for early instantiations ???).
2316
2317 if No (Next_Decl) then
2318 if Nkind_In (Parent (L), N_Component_List,
2319 N_Task_Definition,
2320 N_Protected_Definition)
2321 then
2322 null;
2323
2324 elsif Nkind (Parent (L)) /= N_Package_Specification then
2325 if Nkind (Parent (L)) = N_Package_Body then
2326 Freeze_From := First_Entity (Current_Scope);
2327 end if;
2328
2329 -- There may have been several freezing points previously,
2330 -- for example object declarations or subprogram bodies, but
2331 -- at the end of a declarative part we check freezing from
2332 -- the beginning, even though entities may already be frozen,
2333 -- in order to perform visibility checks on delayed aspects.
2334
2335 Adjust_Decl;
2336 Freeze_All (First_Entity (Current_Scope), Decl);
2337 Freeze_From := Last_Entity (Current_Scope);
2338
2339 elsif Scope (Current_Scope) /= Standard_Standard
2340 and then not Is_Child_Unit (Current_Scope)
2341 and then No (Generic_Parent (Parent (L)))
2342 then
2343 null;
2344
2345 elsif L /= Visible_Declarations (Parent (L))
2346 or else No (Private_Declarations (Parent (L)))
2347 or else Is_Empty_List (Private_Declarations (Parent (L)))
2348 then
2349 Adjust_Decl;
2350 Freeze_All (First_Entity (Current_Scope), Decl);
2351 Freeze_From := Last_Entity (Current_Scope);
2352 end if;
2353
2354 -- If next node is a body then freeze all types before the body.
2355 -- An exception occurs for some expander-generated bodies. If these
2356 -- are generated at places where in general language rules would not
2357 -- allow a freeze point, then we assume that the expander has
2358 -- explicitly checked that all required types are properly frozen,
2359 -- and we do not cause general freezing here. This special circuit
2360 -- is used when the encountered body is marked as having already
2361 -- been analyzed.
2362
2363 -- In all other cases (bodies that come from source, and expander
2364 -- generated bodies that have not been analyzed yet), freeze all
2365 -- types now. Note that in the latter case, the expander must take
2366 -- care to attach the bodies at a proper place in the tree so as to
2367 -- not cause unwanted freezing at that point.
2368
2369 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl) then
2370
2371 -- When a controlled type is frozen, the expander generates stream
2372 -- and controlled type support routines. If the freeze is caused
2373 -- by the stand alone body of Initialize, Adjust and Finalize, the
2374 -- expander will end up using the wrong version of these routines
2375 -- as the body has not been processed yet. To remedy this, detect
2376 -- a late controlled primitive and create a proper spec for it.
2377 -- This ensures that the primitive will override its inherited
2378 -- counterpart before the freeze takes place.
2379
2380 -- If the declaration we just processed is a body, do not attempt
2381 -- to examine Next_Decl as the late primitive idiom can only apply
2382 -- to the first encountered body.
2383
2384 -- The spec of the late primitive is not generated in ASIS mode to
2385 -- ensure a consistent list of primitives that indicates the true
2386 -- semantic structure of the program (which is not relevant when
2387 -- generating executable code.
2388
2389 -- ??? a cleaner approach may be possible and/or this solution
2390 -- could be extended to general-purpose late primitives, TBD.
2391
2392 if not ASIS_Mode and then not Body_Seen and then not Is_Body (Decl)
2393 then
2394 Body_Seen := True;
2395
2396 if Nkind (Next_Decl) = N_Subprogram_Body then
2397 Handle_Late_Controlled_Primitive (Next_Decl);
2398 end if;
2399 end if;
2400
2401 Adjust_Decl;
2402 Freeze_All (Freeze_From, Decl);
2403 Freeze_From := Last_Entity (Current_Scope);
2404 end if;
2405
2406 Decl := Next_Decl;
2407 end loop;
2408
2409 -- Analyze the contracts of packages and their bodies
2410
2411 if Present (L) then
2412 Context := Parent (L);
2413
2414 if Nkind (Context) = N_Package_Specification then
2415
2416 -- When a package has private declarations, its contract must be
2417 -- analyzed at the end of the said declarations. This way both the
2418 -- analysis and freeze actions are properly synchronized in case
2419 -- of private type use within the contract.
2420
2421 if L = Private_Declarations (Context) then
2422 Analyze_Package_Contract (Defining_Entity (Context));
2423
2424 -- Build the bodies of the default initial condition procedures
2425 -- for all types subject to pragma Default_Initial_Condition.
2426 -- From a purely Ada stand point, this is a freezing activity,
2427 -- however freezing is not available under GNATprove_Mode. To
2428 -- accomodate both scenarios, the bodies are build at the end
2429 -- of private declaration analysis.
2430
2431 Build_Default_Init_Cond_Procedure_Bodies (L);
2432
2433 -- Otherwise the contract is analyzed at the end of the visible
2434 -- declarations.
2435
2436 elsif L = Visible_Declarations (Context)
2437 and then No (Private_Declarations (Context))
2438 then
2439 Analyze_Package_Contract (Defining_Entity (Context));
2440 end if;
2441
2442 elsif Nkind (Context) = N_Package_Body then
2443 In_Package_Body := True;
2444 Spec_Id := Corresponding_Spec (Context);
2445
2446 Analyze_Package_Body_Contract (Defining_Entity (Context));
2447 end if;
2448 end if;
2449
2450 -- Analyze the contracts of subprogram declarations, subprogram bodies
2451 -- and variables now due to the delayed visibility requirements of their
2452 -- aspects.
2453
2454 Decl := First (L);
2455 while Present (Decl) loop
2456 if Nkind (Decl) = N_Object_Declaration then
2457 Analyze_Object_Contract (Defining_Entity (Decl));
2458
2459 elsif Nkind_In (Decl, N_Abstract_Subprogram_Declaration,
2460 N_Subprogram_Declaration)
2461 then
2462 Analyze_Subprogram_Contract (Defining_Entity (Decl));
2463
2464 elsif Nkind (Decl) = N_Subprogram_Body then
2465 Analyze_Subprogram_Body_Contract (Defining_Entity (Decl));
2466
2467 elsif Nkind (Decl) = N_Subprogram_Body_Stub then
2468 Analyze_Subprogram_Body_Stub_Contract (Defining_Entity (Decl));
2469 end if;
2470
2471 Next (Decl);
2472 end loop;
2473
2474 -- State refinements are visible upto the end the of the package body
2475 -- declarations. Hide the refinements from visibility to restore the
2476 -- original state conditions.
2477
2478 if In_Package_Body then
2479 Remove_Visible_Refinements (Spec_Id);
2480 end if;
2481 end Analyze_Declarations;
2482
2483 -----------------------------------
2484 -- Analyze_Full_Type_Declaration --
2485 -----------------------------------
2486
2487 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2488 Def : constant Node_Id := Type_Definition (N);
2489 Def_Id : constant Entity_Id := Defining_Identifier (N);
2490 T : Entity_Id;
2491 Prev : Entity_Id;
2492
2493 Is_Remote : constant Boolean :=
2494 (Is_Remote_Types (Current_Scope)
2495 or else Is_Remote_Call_Interface (Current_Scope))
2496 and then not (In_Private_Part (Current_Scope)
2497 or else In_Package_Body (Current_Scope));
2498
2499 procedure Check_Ops_From_Incomplete_Type;
2500 -- If there is a tagged incomplete partial view of the type, traverse
2501 -- the primitives of the incomplete view and change the type of any
2502 -- controlling formals and result to indicate the full view. The
2503 -- primitives will be added to the full type's primitive operations
2504 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2505 -- is called from Process_Incomplete_Dependents).
2506
2507 ------------------------------------
2508 -- Check_Ops_From_Incomplete_Type --
2509 ------------------------------------
2510
2511 procedure Check_Ops_From_Incomplete_Type is
2512 Elmt : Elmt_Id;
2513 Formal : Entity_Id;
2514 Op : Entity_Id;
2515
2516 begin
2517 if Prev /= T
2518 and then Ekind (Prev) = E_Incomplete_Type
2519 and then Is_Tagged_Type (Prev)
2520 and then Is_Tagged_Type (T)
2521 then
2522 Elmt := First_Elmt (Primitive_Operations (Prev));
2523 while Present (Elmt) loop
2524 Op := Node (Elmt);
2525
2526 Formal := First_Formal (Op);
2527 while Present (Formal) loop
2528 if Etype (Formal) = Prev then
2529 Set_Etype (Formal, T);
2530 end if;
2531
2532 Next_Formal (Formal);
2533 end loop;
2534
2535 if Etype (Op) = Prev then
2536 Set_Etype (Op, T);
2537 end if;
2538
2539 Next_Elmt (Elmt);
2540 end loop;
2541 end if;
2542 end Check_Ops_From_Incomplete_Type;
2543
2544 -- Start of processing for Analyze_Full_Type_Declaration
2545
2546 begin
2547 Prev := Find_Type_Name (N);
2548
2549 -- The full view, if present, now points to the current type
2550 -- If there is an incomplete partial view, set a link to it, to
2551 -- simplify the retrieval of primitive operations of the type.
2552
2553 -- Ada 2005 (AI-50217): If the type was previously decorated when
2554 -- imported through a LIMITED WITH clause, it appears as incomplete
2555 -- but has no full view.
2556
2557 if Ekind (Prev) = E_Incomplete_Type
2558 and then Present (Full_View (Prev))
2559 then
2560 T := Full_View (Prev);
2561 Set_Incomplete_View (N, Parent (Prev));
2562 else
2563 T := Prev;
2564 end if;
2565
2566 Set_Is_Pure (T, Is_Pure (Current_Scope));
2567
2568 -- We set the flag Is_First_Subtype here. It is needed to set the
2569 -- corresponding flag for the Implicit class-wide-type created
2570 -- during tagged types processing.
2571
2572 Set_Is_First_Subtype (T, True);
2573
2574 -- Only composite types other than array types are allowed to have
2575 -- discriminants.
2576
2577 case Nkind (Def) is
2578
2579 -- For derived types, the rule will be checked once we've figured
2580 -- out the parent type.
2581
2582 when N_Derived_Type_Definition =>
2583 null;
2584
2585 -- For record types, discriminants are allowed, unless we are in
2586 -- SPARK.
2587
2588 when N_Record_Definition =>
2589 if Present (Discriminant_Specifications (N)) then
2590 Check_SPARK_05_Restriction
2591 ("discriminant type is not allowed",
2592 Defining_Identifier
2593 (First (Discriminant_Specifications (N))));
2594 end if;
2595
2596 when others =>
2597 if Present (Discriminant_Specifications (N)) then
2598 Error_Msg_N
2599 ("elementary or array type cannot have discriminants",
2600 Defining_Identifier
2601 (First (Discriminant_Specifications (N))));
2602 end if;
2603 end case;
2604
2605 -- Elaborate the type definition according to kind, and generate
2606 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2607 -- already done (this happens during the reanalysis that follows a call
2608 -- to the high level optimizer).
2609
2610 if not Analyzed (T) then
2611 Set_Analyzed (T);
2612
2613 case Nkind (Def) is
2614
2615 when N_Access_To_Subprogram_Definition =>
2616 Access_Subprogram_Declaration (T, Def);
2617
2618 -- If this is a remote access to subprogram, we must create the
2619 -- equivalent fat pointer type, and related subprograms.
2620
2621 if Is_Remote then
2622 Process_Remote_AST_Declaration (N);
2623 end if;
2624
2625 -- Validate categorization rule against access type declaration
2626 -- usually a violation in Pure unit, Shared_Passive unit.
2627
2628 Validate_Access_Type_Declaration (T, N);
2629
2630 when N_Access_To_Object_Definition =>
2631 Access_Type_Declaration (T, Def);
2632
2633 -- Validate categorization rule against access type declaration
2634 -- usually a violation in Pure unit, Shared_Passive unit.
2635
2636 Validate_Access_Type_Declaration (T, N);
2637
2638 -- If we are in a Remote_Call_Interface package and define a
2639 -- RACW, then calling stubs and specific stream attributes
2640 -- must be added.
2641
2642 if Is_Remote
2643 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2644 then
2645 Add_RACW_Features (Def_Id);
2646 end if;
2647
2648 -- Set no strict aliasing flag if config pragma seen
2649
2650 if Opt.No_Strict_Aliasing then
2651 Set_No_Strict_Aliasing (Base_Type (Def_Id));
2652 end if;
2653
2654 when N_Array_Type_Definition =>
2655 Array_Type_Declaration (T, Def);
2656
2657 when N_Derived_Type_Definition =>
2658 Derived_Type_Declaration (T, N, T /= Def_Id);
2659
2660 when N_Enumeration_Type_Definition =>
2661 Enumeration_Type_Declaration (T, Def);
2662
2663 when N_Floating_Point_Definition =>
2664 Floating_Point_Type_Declaration (T, Def);
2665
2666 when N_Decimal_Fixed_Point_Definition =>
2667 Decimal_Fixed_Point_Type_Declaration (T, Def);
2668
2669 when N_Ordinary_Fixed_Point_Definition =>
2670 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2671
2672 when N_Signed_Integer_Type_Definition =>
2673 Signed_Integer_Type_Declaration (T, Def);
2674
2675 when N_Modular_Type_Definition =>
2676 Modular_Type_Declaration (T, Def);
2677
2678 when N_Record_Definition =>
2679 Record_Type_Declaration (T, N, Prev);
2680
2681 -- If declaration has a parse error, nothing to elaborate.
2682
2683 when N_Error =>
2684 null;
2685
2686 when others =>
2687 raise Program_Error;
2688
2689 end case;
2690 end if;
2691
2692 if Etype (T) = Any_Type then
2693 return;
2694 end if;
2695
2696 -- Controlled type is not allowed in SPARK
2697
2698 if Is_Visibly_Controlled (T) then
2699 Check_SPARK_05_Restriction ("controlled type is not allowed", N);
2700 end if;
2701
2702 -- Some common processing for all types
2703
2704 Set_Depends_On_Private (T, Has_Private_Component (T));
2705 Check_Ops_From_Incomplete_Type;
2706
2707 -- Both the declared entity, and its anonymous base type if one
2708 -- was created, need freeze nodes allocated.
2709
2710 declare
2711 B : constant Entity_Id := Base_Type (T);
2712
2713 begin
2714 -- In the case where the base type differs from the first subtype, we
2715 -- pre-allocate a freeze node, and set the proper link to the first
2716 -- subtype. Freeze_Entity will use this preallocated freeze node when
2717 -- it freezes the entity.
2718
2719 -- This does not apply if the base type is a generic type, whose
2720 -- declaration is independent of the current derived definition.
2721
2722 if B /= T and then not Is_Generic_Type (B) then
2723 Ensure_Freeze_Node (B);
2724 Set_First_Subtype_Link (Freeze_Node (B), T);
2725 end if;
2726
2727 -- A type that is imported through a limited_with clause cannot
2728 -- generate any code, and thus need not be frozen. However, an access
2729 -- type with an imported designated type needs a finalization list,
2730 -- which may be referenced in some other package that has non-limited
2731 -- visibility on the designated type. Thus we must create the
2732 -- finalization list at the point the access type is frozen, to
2733 -- prevent unsatisfied references at link time.
2734
2735 if not From_Limited_With (T) or else Is_Access_Type (T) then
2736 Set_Has_Delayed_Freeze (T);
2737 end if;
2738 end;
2739
2740 -- Case where T is the full declaration of some private type which has
2741 -- been swapped in Defining_Identifier (N).
2742
2743 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2744 Process_Full_View (N, T, Def_Id);
2745
2746 -- Record the reference. The form of this is a little strange, since
2747 -- the full declaration has been swapped in. So the first parameter
2748 -- here represents the entity to which a reference is made which is
2749 -- the "real" entity, i.e. the one swapped in, and the second
2750 -- parameter provides the reference location.
2751
2752 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2753 -- since we don't want a complaint about the full type being an
2754 -- unwanted reference to the private type
2755
2756 declare
2757 B : constant Boolean := Has_Pragma_Unreferenced (T);
2758 begin
2759 Set_Has_Pragma_Unreferenced (T, False);
2760 Generate_Reference (T, T, 'c');
2761 Set_Has_Pragma_Unreferenced (T, B);
2762 end;
2763
2764 Set_Completion_Referenced (Def_Id);
2765
2766 -- For completion of incomplete type, process incomplete dependents
2767 -- and always mark the full type as referenced (it is the incomplete
2768 -- type that we get for any real reference).
2769
2770 elsif Ekind (Prev) = E_Incomplete_Type then
2771 Process_Incomplete_Dependents (N, T, Prev);
2772 Generate_Reference (Prev, Def_Id, 'c');
2773 Set_Completion_Referenced (Def_Id);
2774
2775 -- If not private type or incomplete type completion, this is a real
2776 -- definition of a new entity, so record it.
2777
2778 else
2779 Generate_Definition (Def_Id);
2780 end if;
2781
2782 if Chars (Scope (Def_Id)) = Name_System
2783 and then Chars (Def_Id) = Name_Address
2784 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
2785 then
2786 Set_Is_Descendent_Of_Address (Def_Id);
2787 Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
2788 Set_Is_Descendent_Of_Address (Prev);
2789 end if;
2790
2791 Set_Optimize_Alignment_Flags (Def_Id);
2792 Check_Eliminated (Def_Id);
2793
2794 -- If the declaration is a completion and aspects are present, apply
2795 -- them to the entity for the type which is currently the partial
2796 -- view, but which is the one that will be frozen.
2797
2798 if Has_Aspects (N) then
2799
2800 -- In most cases the partial view is a private type, and both views
2801 -- appear in different declarative parts. In the unusual case where
2802 -- the partial view is incomplete, perform the analysis on the
2803 -- full view, to prevent freezing anomalies with the corresponding
2804 -- class-wide type, which otherwise might be frozen before the
2805 -- dispatch table is built.
2806
2807 if Prev /= Def_Id
2808 and then Ekind (Prev) /= E_Incomplete_Type
2809 then
2810 Analyze_Aspect_Specifications (N, Prev);
2811
2812 -- Normal case
2813
2814 else
2815 Analyze_Aspect_Specifications (N, Def_Id);
2816 end if;
2817 end if;
2818 end Analyze_Full_Type_Declaration;
2819
2820 ----------------------------------
2821 -- Analyze_Incomplete_Type_Decl --
2822 ----------------------------------
2823
2824 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
2825 F : constant Boolean := Is_Pure (Current_Scope);
2826 T : Entity_Id;
2827
2828 begin
2829 Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
2830
2831 Generate_Definition (Defining_Identifier (N));
2832
2833 -- Process an incomplete declaration. The identifier must not have been
2834 -- declared already in the scope. However, an incomplete declaration may
2835 -- appear in the private part of a package, for a private type that has
2836 -- already been declared.
2837
2838 -- In this case, the discriminants (if any) must match
2839
2840 T := Find_Type_Name (N);
2841
2842 Set_Ekind (T, E_Incomplete_Type);
2843 Init_Size_Align (T);
2844 Set_Is_First_Subtype (T, True);
2845 Set_Etype (T, T);
2846
2847 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2848 -- incomplete types.
2849
2850 if Tagged_Present (N) then
2851 Set_Is_Tagged_Type (T, True);
2852 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
2853 Make_Class_Wide_Type (T);
2854 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2855 end if;
2856
2857 Push_Scope (T);
2858
2859 Set_Stored_Constraint (T, No_Elist);
2860
2861 if Present (Discriminant_Specifications (N)) then
2862 Process_Discriminants (N);
2863 end if;
2864
2865 End_Scope;
2866
2867 -- If the type has discriminants, non-trivial subtypes may be
2868 -- declared before the full view of the type. The full views of those
2869 -- subtypes will be built after the full view of the type.
2870
2871 Set_Private_Dependents (T, New_Elmt_List);
2872 Set_Is_Pure (T, F);
2873 end Analyze_Incomplete_Type_Decl;
2874
2875 -----------------------------------
2876 -- Analyze_Interface_Declaration --
2877 -----------------------------------
2878
2879 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
2880 CW : constant Entity_Id := Class_Wide_Type (T);
2881
2882 begin
2883 Set_Is_Tagged_Type (T);
2884 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
2885
2886 Set_Is_Limited_Record (T, Limited_Present (Def)
2887 or else Task_Present (Def)
2888 or else Protected_Present (Def)
2889 or else Synchronized_Present (Def));
2890
2891 -- Type is abstract if full declaration carries keyword, or if previous
2892 -- partial view did.
2893
2894 Set_Is_Abstract_Type (T);
2895 Set_Is_Interface (T);
2896
2897 -- Type is a limited interface if it includes the keyword limited, task,
2898 -- protected, or synchronized.
2899
2900 Set_Is_Limited_Interface
2901 (T, Limited_Present (Def)
2902 or else Protected_Present (Def)
2903 or else Synchronized_Present (Def)
2904 or else Task_Present (Def));
2905
2906 Set_Interfaces (T, New_Elmt_List);
2907 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2908
2909 -- Complete the decoration of the class-wide entity if it was already
2910 -- built (i.e. during the creation of the limited view)
2911
2912 if Present (CW) then
2913 Set_Is_Interface (CW);
2914 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
2915 end if;
2916
2917 -- Check runtime support for synchronized interfaces
2918
2919 if VM_Target = No_VM
2920 and then (Is_Task_Interface (T)
2921 or else Is_Protected_Interface (T)
2922 or else Is_Synchronized_Interface (T))
2923 and then not RTE_Available (RE_Select_Specific_Data)
2924 then
2925 Error_Msg_CRT ("synchronized interfaces", T);
2926 end if;
2927 end Analyze_Interface_Declaration;
2928
2929 -----------------------------
2930 -- Analyze_Itype_Reference --
2931 -----------------------------
2932
2933 -- Nothing to do. This node is placed in the tree only for the benefit of
2934 -- back end processing, and has no effect on the semantic processing.
2935
2936 procedure Analyze_Itype_Reference (N : Node_Id) is
2937 begin
2938 pragma Assert (Is_Itype (Itype (N)));
2939 null;
2940 end Analyze_Itype_Reference;
2941
2942 --------------------------------
2943 -- Analyze_Number_Declaration --
2944 --------------------------------
2945
2946 procedure Analyze_Number_Declaration (N : Node_Id) is
2947 Id : constant Entity_Id := Defining_Identifier (N);
2948 E : constant Node_Id := Expression (N);
2949 T : Entity_Id;
2950 Index : Interp_Index;
2951 It : Interp;
2952
2953 begin
2954 Generate_Definition (Id);
2955 Enter_Name (Id);
2956
2957 -- This is an optimization of a common case of an integer literal
2958
2959 if Nkind (E) = N_Integer_Literal then
2960 Set_Is_Static_Expression (E, True);
2961 Set_Etype (E, Universal_Integer);
2962
2963 Set_Etype (Id, Universal_Integer);
2964 Set_Ekind (Id, E_Named_Integer);
2965 Set_Is_Frozen (Id, True);
2966 return;
2967 end if;
2968
2969 Set_Is_Pure (Id, Is_Pure (Current_Scope));
2970
2971 -- Process expression, replacing error by integer zero, to avoid
2972 -- cascaded errors or aborts further along in the processing
2973
2974 -- Replace Error by integer zero, which seems least likely to cause
2975 -- cascaded errors.
2976
2977 if E = Error then
2978 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
2979 Set_Error_Posted (E);
2980 end if;
2981
2982 Analyze (E);
2983
2984 -- Verify that the expression is static and numeric. If
2985 -- the expression is overloaded, we apply the preference
2986 -- rule that favors root numeric types.
2987
2988 if not Is_Overloaded (E) then
2989 T := Etype (E);
2990 if Has_Dynamic_Predicate_Aspect (T) then
2991 Error_Msg_N
2992 ("subtype has dynamic predicate, "
2993 & "not allowed in number declaration", N);
2994 end if;
2995
2996 else
2997 T := Any_Type;
2998
2999 Get_First_Interp (E, Index, It);
3000 while Present (It.Typ) loop
3001 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
3002 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
3003 then
3004 if T = Any_Type then
3005 T := It.Typ;
3006
3007 elsif It.Typ = Universal_Real
3008 or else
3009 It.Typ = Universal_Integer
3010 then
3011 -- Choose universal interpretation over any other
3012
3013 T := It.Typ;
3014 exit;
3015 end if;
3016 end if;
3017
3018 Get_Next_Interp (Index, It);
3019 end loop;
3020 end if;
3021
3022 if Is_Integer_Type (T) then
3023 Resolve (E, T);
3024 Set_Etype (Id, Universal_Integer);
3025 Set_Ekind (Id, E_Named_Integer);
3026
3027 elsif Is_Real_Type (T) then
3028
3029 -- Because the real value is converted to universal_real, this is a
3030 -- legal context for a universal fixed expression.
3031
3032 if T = Universal_Fixed then
3033 declare
3034 Loc : constant Source_Ptr := Sloc (N);
3035 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3036 Subtype_Mark =>
3037 New_Occurrence_Of (Universal_Real, Loc),
3038 Expression => Relocate_Node (E));
3039
3040 begin
3041 Rewrite (E, Conv);
3042 Analyze (E);
3043 end;
3044
3045 elsif T = Any_Fixed then
3046 Error_Msg_N ("illegal context for mixed mode operation", E);
3047
3048 -- Expression is of the form : universal_fixed * integer. Try to
3049 -- resolve as universal_real.
3050
3051 T := Universal_Real;
3052 Set_Etype (E, T);
3053 end if;
3054
3055 Resolve (E, T);
3056 Set_Etype (Id, Universal_Real);
3057 Set_Ekind (Id, E_Named_Real);
3058
3059 else
3060 Wrong_Type (E, Any_Numeric);
3061 Resolve (E, T);
3062
3063 Set_Etype (Id, T);
3064 Set_Ekind (Id, E_Constant);
3065 Set_Never_Set_In_Source (Id, True);
3066 Set_Is_True_Constant (Id, True);
3067 return;
3068 end if;
3069
3070 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3071 Set_Etype (E, Etype (Id));
3072 end if;
3073
3074 if not Is_OK_Static_Expression (E) then
3075 Flag_Non_Static_Expr
3076 ("non-static expression used in number declaration!", E);
3077 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3078 Set_Etype (E, Any_Type);
3079 end if;
3080 end Analyze_Number_Declaration;
3081
3082 -----------------------------
3083 -- Analyze_Object_Contract --
3084 -----------------------------
3085
3086 procedure Analyze_Object_Contract (Obj_Id : Entity_Id) is
3087 Obj_Typ : constant Entity_Id := Etype (Obj_Id);
3088 AR_Val : Boolean := False;
3089 AW_Val : Boolean := False;
3090 ER_Val : Boolean := False;
3091 EW_Val : Boolean := False;
3092 Prag : Node_Id;
3093 Seen : Boolean := False;
3094
3095 begin
3096 if Ekind (Obj_Id) = E_Constant then
3097
3098 -- A constant cannot be effectively volatile. This check is only
3099 -- relevant with SPARK_Mode on as it is not a standard Ada legality
3100 -- rule. Do not flag internally-generated constants that map generic
3101 -- formals to actuals in instantiations (SPARK RM 7.1.3(6)).
3102
3103 if SPARK_Mode = On
3104 and then Is_Effectively_Volatile (Obj_Id)
3105 and then No (Corresponding_Generic_Association (Parent (Obj_Id)))
3106 then
3107 Error_Msg_N ("constant cannot be volatile", Obj_Id);
3108 end if;
3109
3110 -- The loop parameter in an element iterator over a formal container
3111 -- is declared with an object declaration but no contracts apply.
3112
3113 elsif Ekind (Obj_Id) = E_Loop_Parameter then
3114 null;
3115
3116 else pragma Assert (Ekind (Obj_Id) = E_Variable);
3117
3118 -- The following checks are only relevant when SPARK_Mode is on as
3119 -- they are not standard Ada legality rules. Internally generated
3120 -- temporaries are ignored.
3121
3122 if SPARK_Mode = On and then Comes_From_Source (Obj_Id) then
3123 if Is_Effectively_Volatile (Obj_Id) then
3124
3125 -- The declaration of an effectively volatile object must
3126 -- appear at the library level (SPARK RM 7.1.3(7), C.6(6)).
3127
3128 if not Is_Library_Level_Entity (Obj_Id) then
3129 Error_Msg_N
3130 ("volatile variable & must be declared at library level",
3131 Obj_Id);
3132
3133 -- An object of a discriminated type cannot be effectively
3134 -- volatile (SPARK RM C.6(4)).
3135
3136 elsif Has_Discriminants (Obj_Typ) then
3137 Error_Msg_N
3138 ("discriminated object & cannot be volatile", Obj_Id);
3139
3140 -- An object of a tagged type cannot be effectively volatile
3141 -- (SPARK RM C.6(5)).
3142
3143 elsif Is_Tagged_Type (Obj_Typ) then
3144 Error_Msg_N ("tagged object & cannot be volatile", Obj_Id);
3145 end if;
3146
3147 -- The object is not effectively volatile
3148
3149 else
3150 -- A non-effectively volatile object cannot have effectively
3151 -- volatile components (SPARK RM 7.1.3(7)).
3152
3153 if not Is_Effectively_Volatile (Obj_Id)
3154 and then Has_Volatile_Component (Obj_Typ)
3155 then
3156 Error_Msg_N
3157 ("non-volatile object & cannot have volatile components",
3158 Obj_Id);
3159 end if;
3160 end if;
3161 end if;
3162
3163 -- Analyze all external properties
3164
3165 Prag := Get_Pragma (Obj_Id, Pragma_Async_Readers);
3166
3167 if Present (Prag) then
3168 Analyze_External_Property_In_Decl_Part (Prag, AR_Val);
3169 Seen := True;
3170 end if;
3171
3172 Prag := Get_Pragma (Obj_Id, Pragma_Async_Writers);
3173
3174 if Present (Prag) then
3175 Analyze_External_Property_In_Decl_Part (Prag, AW_Val);
3176 Seen := True;
3177 end if;
3178
3179 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Reads);
3180
3181 if Present (Prag) then
3182 Analyze_External_Property_In_Decl_Part (Prag, ER_Val);
3183 Seen := True;
3184 end if;
3185
3186 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Writes);
3187
3188 if Present (Prag) then
3189 Analyze_External_Property_In_Decl_Part (Prag, EW_Val);
3190 Seen := True;
3191 end if;
3192
3193 -- Verify the mutual interaction of the various external properties
3194
3195 if Seen then
3196 Check_External_Properties (Obj_Id, AR_Val, AW_Val, ER_Val, EW_Val);
3197 end if;
3198
3199 -- Check whether the lack of indicator Part_Of agrees with the
3200 -- placement of the variable with respect to the state space.
3201
3202 Prag := Get_Pragma (Obj_Id, Pragma_Part_Of);
3203
3204 if No (Prag) then
3205 Check_Missing_Part_Of (Obj_Id);
3206 end if;
3207 end if;
3208 end Analyze_Object_Contract;
3209
3210 --------------------------------
3211 -- Analyze_Object_Declaration --
3212 --------------------------------
3213
3214 procedure Analyze_Object_Declaration (N : Node_Id) is
3215 Loc : constant Source_Ptr := Sloc (N);
3216 Id : constant Entity_Id := Defining_Identifier (N);
3217 T : Entity_Id;
3218 Act_T : Entity_Id;
3219
3220 E : Node_Id := Expression (N);
3221 -- E is set to Expression (N) throughout this routine. When
3222 -- Expression (N) is modified, E is changed accordingly.
3223
3224 Prev_Entity : Entity_Id := Empty;
3225
3226 function Count_Tasks (T : Entity_Id) return Uint;
3227 -- This function is called when a non-generic library level object of a
3228 -- task type is declared. Its function is to count the static number of
3229 -- tasks declared within the type (it is only called if Has_Tasks is set
3230 -- for T). As a side effect, if an array of tasks with non-static bounds
3231 -- or a variant record type is encountered, Check_Restrictions is called
3232 -- indicating the count is unknown.
3233
3234 -----------------
3235 -- Count_Tasks --
3236 -----------------
3237
3238 function Count_Tasks (T : Entity_Id) return Uint is
3239 C : Entity_Id;
3240 X : Node_Id;
3241 V : Uint;
3242
3243 begin
3244 if Is_Task_Type (T) then
3245 return Uint_1;
3246
3247 elsif Is_Record_Type (T) then
3248 if Has_Discriminants (T) then
3249 Check_Restriction (Max_Tasks, N);
3250 return Uint_0;
3251
3252 else
3253 V := Uint_0;
3254 C := First_Component (T);
3255 while Present (C) loop
3256 V := V + Count_Tasks (Etype (C));
3257 Next_Component (C);
3258 end loop;
3259
3260 return V;
3261 end if;
3262
3263 elsif Is_Array_Type (T) then
3264 X := First_Index (T);
3265 V := Count_Tasks (Component_Type (T));
3266 while Present (X) loop
3267 C := Etype (X);
3268
3269 if not Is_OK_Static_Subtype (C) then
3270 Check_Restriction (Max_Tasks, N);
3271 return Uint_0;
3272 else
3273 V := V * (UI_Max (Uint_0,
3274 Expr_Value (Type_High_Bound (C)) -
3275 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3276 end if;
3277
3278 Next_Index (X);
3279 end loop;
3280
3281 return V;
3282
3283 else
3284 return Uint_0;
3285 end if;
3286 end Count_Tasks;
3287
3288 -- Start of processing for Analyze_Object_Declaration
3289
3290 begin
3291 -- There are three kinds of implicit types generated by an
3292 -- object declaration:
3293
3294 -- 1. Those generated by the original Object Definition
3295
3296 -- 2. Those generated by the Expression
3297
3298 -- 3. Those used to constrain the Object Definition with the
3299 -- expression constraints when the definition is unconstrained.
3300
3301 -- They must be generated in this order to avoid order of elaboration
3302 -- issues. Thus the first step (after entering the name) is to analyze
3303 -- the object definition.
3304
3305 if Constant_Present (N) then
3306 Prev_Entity := Current_Entity_In_Scope (Id);
3307
3308 if Present (Prev_Entity)
3309 and then
3310 -- If the homograph is an implicit subprogram, it is overridden
3311 -- by the current declaration.
3312
3313 ((Is_Overloadable (Prev_Entity)
3314 and then Is_Inherited_Operation (Prev_Entity))
3315
3316 -- The current object is a discriminal generated for an entry
3317 -- family index. Even though the index is a constant, in this
3318 -- particular context there is no true constant redeclaration.
3319 -- Enter_Name will handle the visibility.
3320
3321 or else
3322 (Is_Discriminal (Id)
3323 and then Ekind (Discriminal_Link (Id)) =
3324 E_Entry_Index_Parameter)
3325
3326 -- The current object is the renaming for a generic declared
3327 -- within the instance.
3328
3329 or else
3330 (Ekind (Prev_Entity) = E_Package
3331 and then Nkind (Parent (Prev_Entity)) =
3332 N_Package_Renaming_Declaration
3333 and then not Comes_From_Source (Prev_Entity)
3334 and then
3335 Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
3336 then
3337 Prev_Entity := Empty;
3338 end if;
3339 end if;
3340
3341 if Present (Prev_Entity) then
3342 Constant_Redeclaration (Id, N, T);
3343
3344 Generate_Reference (Prev_Entity, Id, 'c');
3345 Set_Completion_Referenced (Id);
3346
3347 if Error_Posted (N) then
3348
3349 -- Type mismatch or illegal redeclaration, Do not analyze
3350 -- expression to avoid cascaded errors.
3351
3352 T := Find_Type_Of_Object (Object_Definition (N), N);
3353 Set_Etype (Id, T);
3354 Set_Ekind (Id, E_Variable);
3355 goto Leave;
3356 end if;
3357
3358 -- In the normal case, enter identifier at the start to catch premature
3359 -- usage in the initialization expression.
3360
3361 else
3362 Generate_Definition (Id);
3363 Enter_Name (Id);
3364
3365 Mark_Coextensions (N, Object_Definition (N));
3366
3367 T := Find_Type_Of_Object (Object_Definition (N), N);
3368
3369 if Nkind (Object_Definition (N)) = N_Access_Definition
3370 and then Present
3371 (Access_To_Subprogram_Definition (Object_Definition (N)))
3372 and then Protected_Present
3373 (Access_To_Subprogram_Definition (Object_Definition (N)))
3374 then
3375 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3376 end if;
3377
3378 if Error_Posted (Id) then
3379 Set_Etype (Id, T);
3380 Set_Ekind (Id, E_Variable);
3381 goto Leave;
3382 end if;
3383 end if;
3384
3385 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3386 -- out some static checks
3387
3388 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
3389
3390 -- In case of aggregates we must also take care of the correct
3391 -- initialization of nested aggregates bug this is done at the
3392 -- point of the analysis of the aggregate (see sem_aggr.adb).
3393
3394 if Present (Expression (N))
3395 and then Nkind (Expression (N)) = N_Aggregate
3396 then
3397 null;
3398
3399 else
3400 declare
3401 Save_Typ : constant Entity_Id := Etype (Id);
3402 begin
3403 Set_Etype (Id, T); -- Temp. decoration for static checks
3404 Null_Exclusion_Static_Checks (N);
3405 Set_Etype (Id, Save_Typ);
3406 end;
3407 end if;
3408 end if;
3409
3410 -- Object is marked pure if it is in a pure scope
3411
3412 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3413
3414 -- If deferred constant, make sure context is appropriate. We detect
3415 -- a deferred constant as a constant declaration with no expression.
3416 -- A deferred constant can appear in a package body if its completion
3417 -- is by means of an interface pragma.
3418
3419 if Constant_Present (N) and then No (E) then
3420
3421 -- A deferred constant may appear in the declarative part of the
3422 -- following constructs:
3423
3424 -- blocks
3425 -- entry bodies
3426 -- extended return statements
3427 -- package specs
3428 -- package bodies
3429 -- subprogram bodies
3430 -- task bodies
3431
3432 -- When declared inside a package spec, a deferred constant must be
3433 -- completed by a full constant declaration or pragma Import. In all
3434 -- other cases, the only proper completion is pragma Import. Extended
3435 -- return statements are flagged as invalid contexts because they do
3436 -- not have a declarative part and so cannot accommodate the pragma.
3437
3438 if Ekind (Current_Scope) = E_Return_Statement then
3439 Error_Msg_N
3440 ("invalid context for deferred constant declaration (RM 7.4)",
3441 N);
3442 Error_Msg_N
3443 ("\declaration requires an initialization expression",
3444 N);
3445 Set_Constant_Present (N, False);
3446
3447 -- In Ada 83, deferred constant must be of private type
3448
3449 elsif not Is_Private_Type (T) then
3450 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3451 Error_Msg_N
3452 ("(Ada 83) deferred constant must be private type", N);
3453 end if;
3454 end if;
3455
3456 -- If not a deferred constant, then the object declaration freezes
3457 -- its type, unless the object is of an anonymous type and has delayed
3458 -- aspects. In that case the type is frozen when the object itself is.
3459
3460 else
3461 Check_Fully_Declared (T, N);
3462
3463 if Has_Delayed_Aspects (Id)
3464 and then Is_Array_Type (T)
3465 and then Is_Itype (T)
3466 then
3467 Set_Has_Delayed_Freeze (T);
3468 else
3469 Freeze_Before (N, T);
3470 end if;
3471 end if;
3472
3473 -- If the object was created by a constrained array definition, then
3474 -- set the link in both the anonymous base type and anonymous subtype
3475 -- that are built to represent the array type to point to the object.
3476
3477 if Nkind (Object_Definition (Declaration_Node (Id))) =
3478 N_Constrained_Array_Definition
3479 then
3480 Set_Related_Array_Object (T, Id);
3481 Set_Related_Array_Object (Base_Type (T), Id);
3482 end if;
3483
3484 -- Special checks for protected objects not at library level
3485
3486 if Is_Protected_Type (T)
3487 and then not Is_Library_Level_Entity (Id)
3488 then
3489 Check_Restriction (No_Local_Protected_Objects, Id);
3490
3491 -- Protected objects with interrupt handlers must be at library level
3492
3493 -- Ada 2005: This test is not needed (and the corresponding clause
3494 -- in the RM is removed) because accessibility checks are sufficient
3495 -- to make handlers not at the library level illegal.
3496
3497 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3498 -- applies to the '95 version of the language as well.
3499
3500 if Has_Interrupt_Handler (T) and then Ada_Version < Ada_95 then
3501 Error_Msg_N
3502 ("interrupt object can only be declared at library level", Id);
3503 end if;
3504 end if;
3505
3506 -- The actual subtype of the object is the nominal subtype, unless
3507 -- the nominal one is unconstrained and obtained from the expression.
3508
3509 Act_T := T;
3510
3511 -- These checks should be performed before the initialization expression
3512 -- is considered, so that the Object_Definition node is still the same
3513 -- as in source code.
3514
3515 -- In SPARK, the nominal subtype is always given by a subtype mark
3516 -- and must not be unconstrained. (The only exception to this is the
3517 -- acceptance of declarations of constants of type String.)
3518
3519 if not
3520 Nkind_In (Object_Definition (N), N_Identifier, N_Expanded_Name)
3521 then
3522 Check_SPARK_05_Restriction
3523 ("subtype mark required", Object_Definition (N));
3524
3525 elsif Is_Array_Type (T)
3526 and then not Is_Constrained (T)
3527 and then T /= Standard_String
3528 then
3529 Check_SPARK_05_Restriction
3530 ("subtype mark of constrained type expected",
3531 Object_Definition (N));
3532 end if;
3533
3534 -- There are no aliased objects in SPARK
3535
3536 if Aliased_Present (N) then
3537 Check_SPARK_05_Restriction ("aliased object is not allowed", N);
3538 end if;
3539
3540 -- Process initialization expression if present and not in error
3541
3542 if Present (E) and then E /= Error then
3543
3544 -- Generate an error in case of CPP class-wide object initialization.
3545 -- Required because otherwise the expansion of the class-wide
3546 -- assignment would try to use 'size to initialize the object
3547 -- (primitive that is not available in CPP tagged types).
3548
3549 if Is_Class_Wide_Type (Act_T)
3550 and then
3551 (Is_CPP_Class (Root_Type (Etype (Act_T)))
3552 or else
3553 (Present (Full_View (Root_Type (Etype (Act_T))))
3554 and then
3555 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
3556 then
3557 Error_Msg_N
3558 ("predefined assignment not available for 'C'P'P tagged types",
3559 E);
3560 end if;
3561
3562 Mark_Coextensions (N, E);
3563 Analyze (E);
3564
3565 -- In case of errors detected in the analysis of the expression,
3566 -- decorate it with the expected type to avoid cascaded errors
3567
3568 if No (Etype (E)) then
3569 Set_Etype (E, T);
3570 end if;
3571
3572 -- If an initialization expression is present, then we set the
3573 -- Is_True_Constant flag. It will be reset if this is a variable
3574 -- and it is indeed modified.
3575
3576 Set_Is_True_Constant (Id, True);
3577
3578 -- If we are analyzing a constant declaration, set its completion
3579 -- flag after analyzing and resolving the expression.
3580
3581 if Constant_Present (N) then
3582 Set_Has_Completion (Id);
3583 end if;
3584
3585 -- Set type and resolve (type may be overridden later on). Note:
3586 -- Ekind (Id) must still be E_Void at this point so that incorrect
3587 -- early usage within E is properly diagnosed.
3588
3589 Set_Etype (Id, T);
3590
3591 -- If the expression is an aggregate we must look ahead to detect
3592 -- the possible presence of an address clause, and defer resolution
3593 -- and expansion of the aggregate to the freeze point of the entity.
3594
3595 if Comes_From_Source (N)
3596 and then Expander_Active
3597 and then Has_Following_Address_Clause (N)
3598 and then Nkind (E) = N_Aggregate
3599 then
3600 Set_Etype (E, T);
3601
3602 else
3603 Resolve (E, T);
3604 end if;
3605
3606 -- No further action needed if E is a call to an inlined function
3607 -- which returns an unconstrained type and it has been expanded into
3608 -- a procedure call. In that case N has been replaced by an object
3609 -- declaration without initializing expression and it has been
3610 -- analyzed (see Expand_Inlined_Call).
3611
3612 if Back_End_Inlining
3613 and then Expander_Active
3614 and then Nkind (E) = N_Function_Call
3615 and then Nkind (Name (E)) in N_Has_Entity
3616 and then Is_Inlined (Entity (Name (E)))
3617 and then not Is_Constrained (Etype (E))
3618 and then Analyzed (N)
3619 and then No (Expression (N))
3620 then
3621 return;
3622 end if;
3623
3624 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3625 -- node (which was marked already-analyzed), we need to set the type
3626 -- to something other than Any_Access in order to keep gigi happy.
3627
3628 if Etype (E) = Any_Access then
3629 Set_Etype (E, T);
3630 end if;
3631
3632 -- If the object is an access to variable, the initialization
3633 -- expression cannot be an access to constant.
3634
3635 if Is_Access_Type (T)
3636 and then not Is_Access_Constant (T)
3637 and then Is_Access_Type (Etype (E))
3638 and then Is_Access_Constant (Etype (E))
3639 then
3640 Error_Msg_N
3641 ("access to variable cannot be initialized "
3642 & "with an access-to-constant expression", E);
3643 end if;
3644
3645 if not Assignment_OK (N) then
3646 Check_Initialization (T, E);
3647 end if;
3648
3649 Check_Unset_Reference (E);
3650
3651 -- If this is a variable, then set current value. If this is a
3652 -- declared constant of a scalar type with a static expression,
3653 -- indicate that it is always valid.
3654
3655 if not Constant_Present (N) then
3656 if Compile_Time_Known_Value (E) then
3657 Set_Current_Value (Id, E);
3658 end if;
3659
3660 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
3661 Set_Is_Known_Valid (Id);
3662 end if;
3663
3664 -- Deal with setting of null flags
3665
3666 if Is_Access_Type (T) then
3667 if Known_Non_Null (E) then
3668 Set_Is_Known_Non_Null (Id, True);
3669 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
3670 Set_Is_Known_Null (Id, True);
3671 end if;
3672 end if;
3673
3674 -- Check incorrect use of dynamically tagged expressions
3675
3676 if Is_Tagged_Type (T) then
3677 Check_Dynamically_Tagged_Expression
3678 (Expr => E,
3679 Typ => T,
3680 Related_Nod => N);
3681 end if;
3682
3683 Apply_Scalar_Range_Check (E, T);
3684 Apply_Static_Length_Check (E, T);
3685
3686 if Nkind (Original_Node (N)) = N_Object_Declaration
3687 and then Comes_From_Source (Original_Node (N))
3688
3689 -- Only call test if needed
3690
3691 and then Restriction_Check_Required (SPARK_05)
3692 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
3693 then
3694 Check_SPARK_05_Restriction
3695 ("initialization expression is not appropriate", E);
3696 end if;
3697 end if;
3698
3699 -- If the No_Streams restriction is set, check that the type of the
3700 -- object is not, and does not contain, any subtype derived from
3701 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3702 -- Has_Stream just for efficiency reasons. There is no point in
3703 -- spending time on a Has_Stream check if the restriction is not set.
3704
3705 if Restriction_Check_Required (No_Streams) then
3706 if Has_Stream (T) then
3707 Check_Restriction (No_Streams, N);
3708 end if;
3709 end if;
3710
3711 -- Deal with predicate check before we start to do major rewriting. It
3712 -- is OK to initialize and then check the initialized value, since the
3713 -- object goes out of scope if we get a predicate failure. Note that we
3714 -- do this in the analyzer and not the expander because the analyzer
3715 -- does some substantial rewriting in some cases.
3716
3717 -- We need a predicate check if the type has predicates, and if either
3718 -- there is an initializing expression, or for default initialization
3719 -- when we have at least one case of an explicit default initial value
3720 -- and then this is not an internal declaration whose initialization
3721 -- comes later (as for an aggregate expansion).
3722
3723 if not Suppress_Assignment_Checks (N)
3724 and then Present (Predicate_Function (T))
3725 and then not No_Initialization (N)
3726 and then
3727 (Present (E)
3728 or else
3729 Is_Partially_Initialized_Type (T, Include_Implicit => False))
3730 then
3731 -- If the type has a static predicate and the expression is known at
3732 -- compile time, see if the expression satisfies the predicate.
3733
3734 if Present (E) then
3735 Check_Expression_Against_Static_Predicate (E, T);
3736 end if;
3737
3738 Insert_After (N,
3739 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
3740 end if;
3741
3742 -- Case of unconstrained type
3743
3744 if Is_Indefinite_Subtype (T) then
3745
3746 -- In SPARK, a declaration of unconstrained type is allowed
3747 -- only for constants of type string.
3748
3749 if Is_String_Type (T) and then not Constant_Present (N) then
3750 Check_SPARK_05_Restriction
3751 ("declaration of object of unconstrained type not allowed", N);
3752 end if;
3753
3754 -- Nothing to do in deferred constant case
3755
3756 if Constant_Present (N) and then No (E) then
3757 null;
3758
3759 -- Case of no initialization present
3760
3761 elsif No (E) then
3762 if No_Initialization (N) then
3763 null;
3764
3765 elsif Is_Class_Wide_Type (T) then
3766 Error_Msg_N
3767 ("initialization required in class-wide declaration ", N);
3768
3769 else
3770 Error_Msg_N
3771 ("unconstrained subtype not allowed (need initialization)",
3772 Object_Definition (N));
3773
3774 if Is_Record_Type (T) and then Has_Discriminants (T) then
3775 Error_Msg_N
3776 ("\provide initial value or explicit discriminant values",
3777 Object_Definition (N));
3778
3779 Error_Msg_NE
3780 ("\or give default discriminant values for type&",
3781 Object_Definition (N), T);
3782
3783 elsif Is_Array_Type (T) then
3784 Error_Msg_N
3785 ("\provide initial value or explicit array bounds",
3786 Object_Definition (N));
3787 end if;
3788 end if;
3789
3790 -- Case of initialization present but in error. Set initial
3791 -- expression as absent (but do not make above complaints)
3792
3793 elsif E = Error then
3794 Set_Expression (N, Empty);
3795 E := Empty;
3796
3797 -- Case of initialization present
3798
3799 else
3800 -- Check restrictions in Ada 83
3801
3802 if not Constant_Present (N) then
3803
3804 -- Unconstrained variables not allowed in Ada 83 mode
3805
3806 if Ada_Version = Ada_83
3807 and then Comes_From_Source (Object_Definition (N))
3808 then
3809 Error_Msg_N
3810 ("(Ada 83) unconstrained variable not allowed",
3811 Object_Definition (N));
3812 end if;
3813 end if;
3814
3815 -- Now we constrain the variable from the initializing expression
3816
3817 -- If the expression is an aggregate, it has been expanded into
3818 -- individual assignments. Retrieve the actual type from the
3819 -- expanded construct.
3820
3821 if Is_Array_Type (T)
3822 and then No_Initialization (N)
3823 and then Nkind (Original_Node (E)) = N_Aggregate
3824 then
3825 Act_T := Etype (E);
3826
3827 -- In case of class-wide interface object declarations we delay
3828 -- the generation of the equivalent record type declarations until
3829 -- its expansion because there are cases in they are not required.
3830
3831 elsif Is_Interface (T) then
3832 null;
3833
3834 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
3835 -- we should prevent the generation of another Itype with the
3836 -- same name as the one already generated, or we end up with
3837 -- two identical types in GNATprove.
3838
3839 elsif GNATprove_Mode then
3840 null;
3841
3842 -- If the type is an unchecked union, no subtype can be built from
3843 -- the expression. Rewrite declaration as a renaming, which the
3844 -- back-end can handle properly. This is a rather unusual case,
3845 -- because most unchecked_union declarations have default values
3846 -- for discriminants and are thus not indefinite.
3847
3848 elsif Is_Unchecked_Union (T) then
3849 if Constant_Present (N) or else Nkind (E) = N_Function_Call then
3850 Set_Ekind (Id, E_Constant);
3851 else
3852 Set_Ekind (Id, E_Variable);
3853 end if;
3854
3855 Rewrite (N,
3856 Make_Object_Renaming_Declaration (Loc,
3857 Defining_Identifier => Id,
3858 Subtype_Mark => New_Occurrence_Of (T, Loc),
3859 Name => E));
3860
3861 Set_Renamed_Object (Id, E);
3862 Freeze_Before (N, T);
3863 Set_Is_Frozen (Id);
3864 return;
3865
3866 else
3867 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
3868 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
3869 end if;
3870
3871 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
3872
3873 if Aliased_Present (N) then
3874 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3875 end if;
3876
3877 Freeze_Before (N, Act_T);
3878 Freeze_Before (N, T);
3879 end if;
3880
3881 elsif Is_Array_Type (T)
3882 and then No_Initialization (N)
3883 and then Nkind (Original_Node (E)) = N_Aggregate
3884 then
3885 if not Is_Entity_Name (Object_Definition (N)) then
3886 Act_T := Etype (E);
3887 Check_Compile_Time_Size (Act_T);
3888
3889 if Aliased_Present (N) then
3890 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3891 end if;
3892 end if;
3893
3894 -- When the given object definition and the aggregate are specified
3895 -- independently, and their lengths might differ do a length check.
3896 -- This cannot happen if the aggregate is of the form (others =>...)
3897
3898 if not Is_Constrained (T) then
3899 null;
3900
3901 elsif Nkind (E) = N_Raise_Constraint_Error then
3902
3903 -- Aggregate is statically illegal. Place back in declaration
3904
3905 Set_Expression (N, E);
3906 Set_No_Initialization (N, False);
3907
3908 elsif T = Etype (E) then
3909 null;
3910
3911 elsif Nkind (E) = N_Aggregate
3912 and then Present (Component_Associations (E))
3913 and then Present (Choices (First (Component_Associations (E))))
3914 and then Nkind (First
3915 (Choices (First (Component_Associations (E))))) = N_Others_Choice
3916 then
3917 null;
3918
3919 else
3920 Apply_Length_Check (E, T);
3921 end if;
3922
3923 -- If the type is limited unconstrained with defaulted discriminants and
3924 -- there is no expression, then the object is constrained by the
3925 -- defaults, so it is worthwhile building the corresponding subtype.
3926
3927 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
3928 and then not Is_Constrained (T)
3929 and then Has_Discriminants (T)
3930 then
3931 if No (E) then
3932 Act_T := Build_Default_Subtype (T, N);
3933 else
3934 -- Ada 2005: A limited object may be initialized by means of an
3935 -- aggregate. If the type has default discriminants it has an
3936 -- unconstrained nominal type, Its actual subtype will be obtained
3937 -- from the aggregate, and not from the default discriminants.
3938
3939 Act_T := Etype (E);
3940 end if;
3941
3942 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
3943
3944 elsif Nkind (E) = N_Function_Call
3945 and then Constant_Present (N)
3946 and then Has_Unconstrained_Elements (Etype (E))
3947 then
3948 -- The back-end has problems with constants of a discriminated type
3949 -- with defaults, if the initial value is a function call. We
3950 -- generate an intermediate temporary that will receive a reference
3951 -- to the result of the call. The initialization expression then
3952 -- becomes a dereference of that temporary.
3953
3954 Remove_Side_Effects (E);
3955
3956 -- If this is a constant declaration of an unconstrained type and
3957 -- the initialization is an aggregate, we can use the subtype of the
3958 -- aggregate for the declared entity because it is immutable.
3959
3960 elsif not Is_Constrained (T)
3961 and then Has_Discriminants (T)
3962 and then Constant_Present (N)
3963 and then not Has_Unchecked_Union (T)
3964 and then Nkind (E) = N_Aggregate
3965 then
3966 Act_T := Etype (E);
3967 end if;
3968
3969 -- Check No_Wide_Characters restriction
3970
3971 Check_Wide_Character_Restriction (T, Object_Definition (N));
3972
3973 -- Indicate this is not set in source. Certainly true for constants, and
3974 -- true for variables so far (will be reset for a variable if and when
3975 -- we encounter a modification in the source).
3976
3977 Set_Never_Set_In_Source (Id, True);
3978
3979 -- Now establish the proper kind and type of the object
3980
3981 if Constant_Present (N) then
3982 Set_Ekind (Id, E_Constant);
3983 Set_Is_True_Constant (Id);
3984
3985 else
3986 Set_Ekind (Id, E_Variable);
3987
3988 -- A variable is set as shared passive if it appears in a shared
3989 -- passive package, and is at the outer level. This is not done for
3990 -- entities generated during expansion, because those are always
3991 -- manipulated locally.
3992
3993 if Is_Shared_Passive (Current_Scope)
3994 and then Is_Library_Level_Entity (Id)
3995 and then Comes_From_Source (Id)
3996 then
3997 Set_Is_Shared_Passive (Id);
3998 Check_Shared_Var (Id, T, N);
3999 end if;
4000
4001 -- Set Has_Initial_Value if initializing expression present. Note
4002 -- that if there is no initializing expression, we leave the state
4003 -- of this flag unchanged (usually it will be False, but notably in
4004 -- the case of exception choice variables, it will already be true).
4005
4006 if Present (E) then
4007 Set_Has_Initial_Value (Id, True);
4008 end if;
4009
4010 Set_Contract (Id, Make_Contract (Sloc (Id)));
4011 end if;
4012
4013 -- Initialize alignment and size and capture alignment setting
4014
4015 Init_Alignment (Id);
4016 Init_Esize (Id);
4017 Set_Optimize_Alignment_Flags (Id);
4018
4019 -- Deal with aliased case
4020
4021 if Aliased_Present (N) then
4022 Set_Is_Aliased (Id);
4023
4024 -- If the object is aliased and the type is unconstrained with
4025 -- defaulted discriminants and there is no expression, then the
4026 -- object is constrained by the defaults, so it is worthwhile
4027 -- building the corresponding subtype.
4028
4029 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4030 -- unconstrained, then only establish an actual subtype if the
4031 -- nominal subtype is indefinite. In definite cases the object is
4032 -- unconstrained in Ada 2005.
4033
4034 if No (E)
4035 and then Is_Record_Type (T)
4036 and then not Is_Constrained (T)
4037 and then Has_Discriminants (T)
4038 and then (Ada_Version < Ada_2005 or else Is_Indefinite_Subtype (T))
4039 then
4040 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
4041 end if;
4042 end if;
4043
4044 -- Now we can set the type of the object
4045
4046 Set_Etype (Id, Act_T);
4047
4048 -- Non-constant object is marked to be treated as volatile if type is
4049 -- volatile and we clear the Current_Value setting that may have been
4050 -- set above. Doing so for constants isn't required and might interfere
4051 -- with possible uses of the object as a static expression in contexts
4052 -- incompatible with volatility (e.g. as a case-statement alternative).
4053
4054 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
4055 Set_Treat_As_Volatile (Id);
4056 Set_Current_Value (Id, Empty);
4057 end if;
4058
4059 -- Deal with controlled types
4060
4061 if Has_Controlled_Component (Etype (Id))
4062 or else Is_Controlled (Etype (Id))
4063 then
4064 if not Is_Library_Level_Entity (Id) then
4065 Check_Restriction (No_Nested_Finalization, N);
4066 else
4067 Validate_Controlled_Object (Id);
4068 end if;
4069 end if;
4070
4071 if Has_Task (Etype (Id)) then
4072 Check_Restriction (No_Tasking, N);
4073
4074 -- Deal with counting max tasks
4075
4076 -- Nothing to do if inside a generic
4077
4078 if Inside_A_Generic then
4079 null;
4080
4081 -- If library level entity, then count tasks
4082
4083 elsif Is_Library_Level_Entity (Id) then
4084 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4085
4086 -- If not library level entity, then indicate we don't know max
4087 -- tasks and also check task hierarchy restriction and blocking
4088 -- operation (since starting a task is definitely blocking).
4089
4090 else
4091 Check_Restriction (Max_Tasks, N);
4092 Check_Restriction (No_Task_Hierarchy, N);
4093 Check_Potentially_Blocking_Operation (N);
4094 end if;
4095
4096 -- A rather specialized test. If we see two tasks being declared
4097 -- of the same type in the same object declaration, and the task
4098 -- has an entry with an address clause, we know that program error
4099 -- will be raised at run time since we can't have two tasks with
4100 -- entries at the same address.
4101
4102 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4103 declare
4104 E : Entity_Id;
4105
4106 begin
4107 E := First_Entity (Etype (Id));
4108 while Present (E) loop
4109 if Ekind (E) = E_Entry
4110 and then Present (Get_Attribute_Definition_Clause
4111 (E, Attribute_Address))
4112 then
4113 Error_Msg_Warn := SPARK_Mode /= On;
4114 Error_Msg_N
4115 ("more than one task with same entry address<<", N);
4116 Error_Msg_N ("\Program_Error [<<", N);
4117 Insert_Action (N,
4118 Make_Raise_Program_Error (Loc,
4119 Reason => PE_Duplicated_Entry_Address));
4120 exit;
4121 end if;
4122
4123 Next_Entity (E);
4124 end loop;
4125 end;
4126 end if;
4127 end if;
4128
4129 -- Some simple constant-propagation: if the expression is a constant
4130 -- string initialized with a literal, share the literal. This avoids
4131 -- a run-time copy.
4132
4133 if Present (E)
4134 and then Is_Entity_Name (E)
4135 and then Ekind (Entity (E)) = E_Constant
4136 and then Base_Type (Etype (E)) = Standard_String
4137 then
4138 declare
4139 Val : constant Node_Id := Constant_Value (Entity (E));
4140 begin
4141 if Present (Val) and then Nkind (Val) = N_String_Literal then
4142 Rewrite (E, New_Copy (Val));
4143 end if;
4144 end;
4145 end if;
4146
4147 -- Another optimization: if the nominal subtype is unconstrained and
4148 -- the expression is a function call that returns an unconstrained
4149 -- type, rewrite the declaration as a renaming of the result of the
4150 -- call. The exceptions below are cases where the copy is expected,
4151 -- either by the back end (Aliased case) or by the semantics, as for
4152 -- initializing controlled types or copying tags for classwide types.
4153
4154 if Present (E)
4155 and then Nkind (E) = N_Explicit_Dereference
4156 and then Nkind (Original_Node (E)) = N_Function_Call
4157 and then not Is_Library_Level_Entity (Id)
4158 and then not Is_Constrained (Underlying_Type (T))
4159 and then not Is_Aliased (Id)
4160 and then not Is_Class_Wide_Type (T)
4161 and then not Is_Controlled (T)
4162 and then not Has_Controlled_Component (Base_Type (T))
4163 and then Expander_Active
4164 then
4165 Rewrite (N,
4166 Make_Object_Renaming_Declaration (Loc,
4167 Defining_Identifier => Id,
4168 Access_Definition => Empty,
4169 Subtype_Mark => New_Occurrence_Of
4170 (Base_Type (Etype (Id)), Loc),
4171 Name => E));
4172
4173 Set_Renamed_Object (Id, E);
4174
4175 -- Force generation of debugging information for the constant and for
4176 -- the renamed function call.
4177
4178 Set_Debug_Info_Needed (Id);
4179 Set_Debug_Info_Needed (Entity (Prefix (E)));
4180 end if;
4181
4182 if Present (Prev_Entity)
4183 and then Is_Frozen (Prev_Entity)
4184 and then not Error_Posted (Id)
4185 then
4186 Error_Msg_N ("full constant declaration appears too late", N);
4187 end if;
4188
4189 Check_Eliminated (Id);
4190
4191 -- Deal with setting In_Private_Part flag if in private part
4192
4193 if Ekind (Scope (Id)) = E_Package and then In_Private_Part (Scope (Id))
4194 then
4195 Set_In_Private_Part (Id);
4196 end if;
4197
4198 -- Check for violation of No_Local_Timing_Events
4199
4200 if Restriction_Check_Required (No_Local_Timing_Events)
4201 and then not Is_Library_Level_Entity (Id)
4202 and then Is_RTE (Etype (Id), RE_Timing_Event)
4203 then
4204 Check_Restriction (No_Local_Timing_Events, N);
4205 end if;
4206
4207 <<Leave>>
4208 -- Initialize the refined state of a variable here because this is a
4209 -- common destination for legal and illegal object declarations.
4210
4211 if Ekind (Id) = E_Variable then
4212 Set_Encapsulating_State (Id, Empty);
4213 end if;
4214
4215 if Has_Aspects (N) then
4216 Analyze_Aspect_Specifications (N, Id);
4217 end if;
4218
4219 Analyze_Dimension (N);
4220
4221 -- Verify whether the object declaration introduces an illegal hidden
4222 -- state within a package subject to a null abstract state.
4223
4224 if Ekind (Id) = E_Variable then
4225 Check_No_Hidden_State (Id);
4226 end if;
4227 end Analyze_Object_Declaration;
4228
4229 ---------------------------
4230 -- Analyze_Others_Choice --
4231 ---------------------------
4232
4233 -- Nothing to do for the others choice node itself, the semantic analysis
4234 -- of the others choice will occur as part of the processing of the parent
4235
4236 procedure Analyze_Others_Choice (N : Node_Id) is
4237 pragma Warnings (Off, N);
4238 begin
4239 null;
4240 end Analyze_Others_Choice;
4241
4242 -------------------------------------------
4243 -- Analyze_Private_Extension_Declaration --
4244 -------------------------------------------
4245
4246 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4247 T : constant Entity_Id := Defining_Identifier (N);
4248 Indic : constant Node_Id := Subtype_Indication (N);
4249 Parent_Type : Entity_Id;
4250 Parent_Base : Entity_Id;
4251
4252 begin
4253 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4254
4255 if Is_Non_Empty_List (Interface_List (N)) then
4256 declare
4257 Intf : Node_Id;
4258 T : Entity_Id;
4259
4260 begin
4261 Intf := First (Interface_List (N));
4262 while Present (Intf) loop
4263 T := Find_Type_Of_Subtype_Indic (Intf);
4264
4265 Diagnose_Interface (Intf, T);
4266 Next (Intf);
4267 end loop;
4268 end;
4269 end if;
4270
4271 Generate_Definition (T);
4272
4273 -- For other than Ada 2012, just enter the name in the current scope
4274
4275 if Ada_Version < Ada_2012 then
4276 Enter_Name (T);
4277
4278 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4279 -- case of private type that completes an incomplete type.
4280
4281 else
4282 declare
4283 Prev : Entity_Id;
4284
4285 begin
4286 Prev := Find_Type_Name (N);
4287
4288 pragma Assert (Prev = T
4289 or else (Ekind (Prev) = E_Incomplete_Type
4290 and then Present (Full_View (Prev))
4291 and then Full_View (Prev) = T));
4292 end;
4293 end if;
4294
4295 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
4296 Parent_Base := Base_Type (Parent_Type);
4297
4298 if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then
4299 Set_Ekind (T, Ekind (Parent_Type));
4300 Set_Etype (T, Any_Type);
4301 goto Leave;
4302
4303 elsif not Is_Tagged_Type (Parent_Type) then
4304 Error_Msg_N
4305 ("parent of type extension must be a tagged type ", Indic);
4306 goto Leave;
4307
4308 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
4309 Error_Msg_N ("premature derivation of incomplete type", Indic);
4310 goto Leave;
4311
4312 elsif Is_Concurrent_Type (Parent_Type) then
4313 Error_Msg_N
4314 ("parent type of a private extension cannot be "
4315 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
4316
4317 Set_Etype (T, Any_Type);
4318 Set_Ekind (T, E_Limited_Private_Type);
4319 Set_Private_Dependents (T, New_Elmt_List);
4320 Set_Error_Posted (T);
4321 goto Leave;
4322 end if;
4323
4324 -- Perhaps the parent type should be changed to the class-wide type's
4325 -- specific type in this case to prevent cascading errors ???
4326
4327 if Is_Class_Wide_Type (Parent_Type) then
4328 Error_Msg_N
4329 ("parent of type extension must not be a class-wide type", Indic);
4330 goto Leave;
4331 end if;
4332
4333 if (not Is_Package_Or_Generic_Package (Current_Scope)
4334 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
4335 or else In_Private_Part (Current_Scope)
4336
4337 then
4338 Error_Msg_N ("invalid context for private extension", N);
4339 end if;
4340
4341 -- Set common attributes
4342
4343 Set_Is_Pure (T, Is_Pure (Current_Scope));
4344 Set_Scope (T, Current_Scope);
4345 Set_Ekind (T, E_Record_Type_With_Private);
4346 Init_Size_Align (T);
4347 Set_Default_SSO (T);
4348
4349 Set_Etype (T, Parent_Base);
4350 Set_Has_Task (T, Has_Task (Parent_Base));
4351 Set_Has_Protected (T, Has_Task (Parent_Base));
4352
4353 Set_Convention (T, Convention (Parent_Type));
4354 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
4355 Set_Is_First_Subtype (T);
4356 Make_Class_Wide_Type (T);
4357
4358 if Unknown_Discriminants_Present (N) then
4359 Set_Discriminant_Constraint (T, No_Elist);
4360 end if;
4361
4362 Build_Derived_Record_Type (N, Parent_Type, T);
4363
4364 -- Propagate inherited invariant information. The new type has
4365 -- invariants, if the parent type has inheritable invariants,
4366 -- and these invariants can in turn be inherited.
4367
4368 if Has_Inheritable_Invariants (Parent_Type) then
4369 Set_Has_Inheritable_Invariants (T);
4370 Set_Has_Invariants (T);
4371 end if;
4372
4373 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4374 -- synchronized formal derived type.
4375
4376 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
4377 Set_Is_Limited_Record (T);
4378
4379 -- Formal derived type case
4380
4381 if Is_Generic_Type (T) then
4382
4383 -- The parent must be a tagged limited type or a synchronized
4384 -- interface.
4385
4386 if (not Is_Tagged_Type (Parent_Type)
4387 or else not Is_Limited_Type (Parent_Type))
4388 and then
4389 (not Is_Interface (Parent_Type)
4390 or else not Is_Synchronized_Interface (Parent_Type))
4391 then
4392 Error_Msg_NE ("parent type of & must be tagged limited " &
4393 "or synchronized", N, T);
4394 end if;
4395
4396 -- The progenitors (if any) must be limited or synchronized
4397 -- interfaces.
4398
4399 if Present (Interfaces (T)) then
4400 declare
4401 Iface : Entity_Id;
4402 Iface_Elmt : Elmt_Id;
4403
4404 begin
4405 Iface_Elmt := First_Elmt (Interfaces (T));
4406 while Present (Iface_Elmt) loop
4407 Iface := Node (Iface_Elmt);
4408
4409 if not Is_Limited_Interface (Iface)
4410 and then not Is_Synchronized_Interface (Iface)
4411 then
4412 Error_Msg_NE ("progenitor & must be limited " &
4413 "or synchronized", N, Iface);
4414 end if;
4415
4416 Next_Elmt (Iface_Elmt);
4417 end loop;
4418 end;
4419 end if;
4420
4421 -- Regular derived extension, the parent must be a limited or
4422 -- synchronized interface.
4423
4424 else
4425 if not Is_Interface (Parent_Type)
4426 or else (not Is_Limited_Interface (Parent_Type)
4427 and then not Is_Synchronized_Interface (Parent_Type))
4428 then
4429 Error_Msg_NE
4430 ("parent type of & must be limited interface", N, T);
4431 end if;
4432 end if;
4433
4434 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4435 -- extension with a synchronized parent must be explicitly declared
4436 -- synchronized, because the full view will be a synchronized type.
4437 -- This must be checked before the check for limited types below,
4438 -- to ensure that types declared limited are not allowed to extend
4439 -- synchronized interfaces.
4440
4441 elsif Is_Interface (Parent_Type)
4442 and then Is_Synchronized_Interface (Parent_Type)
4443 and then not Synchronized_Present (N)
4444 then
4445 Error_Msg_NE
4446 ("private extension of& must be explicitly synchronized",
4447 N, Parent_Type);
4448
4449 elsif Limited_Present (N) then
4450 Set_Is_Limited_Record (T);
4451
4452 if not Is_Limited_Type (Parent_Type)
4453 and then
4454 (not Is_Interface (Parent_Type)
4455 or else not Is_Limited_Interface (Parent_Type))
4456 then
4457 Error_Msg_NE ("parent type& of limited extension must be limited",
4458 N, Parent_Type);
4459 end if;
4460 end if;
4461
4462 <<Leave>>
4463 if Has_Aspects (N) then
4464 Analyze_Aspect_Specifications (N, T);
4465 end if;
4466 end Analyze_Private_Extension_Declaration;
4467
4468 ---------------------------------
4469 -- Analyze_Subtype_Declaration --
4470 ---------------------------------
4471
4472 procedure Analyze_Subtype_Declaration
4473 (N : Node_Id;
4474 Skip : Boolean := False)
4475 is
4476 Id : constant Entity_Id := Defining_Identifier (N);
4477 T : Entity_Id;
4478 R_Checks : Check_Result;
4479
4480 begin
4481 Generate_Definition (Id);
4482 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4483 Init_Size_Align (Id);
4484
4485 -- The following guard condition on Enter_Name is to handle cases where
4486 -- the defining identifier has already been entered into the scope but
4487 -- the declaration as a whole needs to be analyzed.
4488
4489 -- This case in particular happens for derived enumeration types. The
4490 -- derived enumeration type is processed as an inserted enumeration type
4491 -- declaration followed by a rewritten subtype declaration. The defining
4492 -- identifier, however, is entered into the name scope very early in the
4493 -- processing of the original type declaration and therefore needs to be
4494 -- avoided here, when the created subtype declaration is analyzed. (See
4495 -- Build_Derived_Types)
4496
4497 -- This also happens when the full view of a private type is derived
4498 -- type with constraints. In this case the entity has been introduced
4499 -- in the private declaration.
4500
4501 -- Finally this happens in some complex cases when validity checks are
4502 -- enabled, where the same subtype declaration may be analyzed twice.
4503 -- This can happen if the subtype is created by the pre-analysis of
4504 -- an attribute tht gives the range of a loop statement, and the loop
4505 -- itself appears within an if_statement that will be rewritten during
4506 -- expansion.
4507
4508 if Skip
4509 or else (Present (Etype (Id))
4510 and then (Is_Private_Type (Etype (Id))
4511 or else Is_Task_Type (Etype (Id))
4512 or else Is_Rewrite_Substitution (N)))
4513 then
4514 null;
4515
4516 elsif Current_Entity (Id) = Id then
4517 null;
4518
4519 else
4520 Enter_Name (Id);
4521 end if;
4522
4523 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
4524
4525 -- Class-wide equivalent types of records with unknown discriminants
4526 -- involve the generation of an itype which serves as the private view
4527 -- of a constrained record subtype. In such cases the base type of the
4528 -- current subtype we are processing is the private itype. Use the full
4529 -- of the private itype when decorating various attributes.
4530
4531 if Is_Itype (T)
4532 and then Is_Private_Type (T)
4533 and then Present (Full_View (T))
4534 then
4535 T := Full_View (T);
4536 end if;
4537
4538 -- Inherit common attributes
4539
4540 Set_Is_Volatile (Id, Is_Volatile (T));
4541 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
4542 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
4543 Set_Convention (Id, Convention (T));
4544
4545 -- If ancestor has predicates then so does the subtype, and in addition
4546 -- we must delay the freeze to properly arrange predicate inheritance.
4547
4548 -- The Ancestor_Type test is really unpleasant, there seem to be cases
4549 -- in which T = ID, so the above tests and assignments do nothing???
4550
4551 if Has_Predicates (T)
4552 or else (Present (Ancestor_Subtype (T))
4553 and then Has_Predicates (Ancestor_Subtype (T)))
4554 then
4555 Set_Has_Predicates (Id);
4556 Set_Has_Delayed_Freeze (Id);
4557 end if;
4558
4559 -- Subtype of Boolean cannot have a constraint in SPARK
4560
4561 if Is_Boolean_Type (T)
4562 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
4563 then
4564 Check_SPARK_05_Restriction
4565 ("subtype of Boolean cannot have constraint", N);
4566 end if;
4567
4568 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4569 declare
4570 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
4571 One_Cstr : Node_Id;
4572 Low : Node_Id;
4573 High : Node_Id;
4574
4575 begin
4576 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
4577 One_Cstr := First (Constraints (Cstr));
4578 while Present (One_Cstr) loop
4579
4580 -- Index or discriminant constraint in SPARK must be a
4581 -- subtype mark.
4582
4583 if not
4584 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
4585 then
4586 Check_SPARK_05_Restriction
4587 ("subtype mark required", One_Cstr);
4588
4589 -- String subtype must have a lower bound of 1 in SPARK.
4590 -- Note that we do not need to test for the non-static case
4591 -- here, since that was already taken care of in
4592 -- Process_Range_Expr_In_Decl.
4593
4594 elsif Base_Type (T) = Standard_String then
4595 Get_Index_Bounds (One_Cstr, Low, High);
4596
4597 if Is_OK_Static_Expression (Low)
4598 and then Expr_Value (Low) /= 1
4599 then
4600 Check_SPARK_05_Restriction
4601 ("String subtype must have lower bound of 1", N);
4602 end if;
4603 end if;
4604
4605 Next (One_Cstr);
4606 end loop;
4607 end if;
4608 end;
4609 end if;
4610
4611 -- In the case where there is no constraint given in the subtype
4612 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4613 -- semantic attributes must be established here.
4614
4615 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
4616 Set_Etype (Id, Base_Type (T));
4617
4618 -- Subtype of unconstrained array without constraint is not allowed
4619 -- in SPARK.
4620
4621 if Is_Array_Type (T) and then not Is_Constrained (T) then
4622 Check_SPARK_05_Restriction
4623 ("subtype of unconstrained array must have constraint", N);
4624 end if;
4625
4626 case Ekind (T) is
4627 when Array_Kind =>
4628 Set_Ekind (Id, E_Array_Subtype);
4629 Copy_Array_Subtype_Attributes (Id, T);
4630
4631 when Decimal_Fixed_Point_Kind =>
4632 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
4633 Set_Digits_Value (Id, Digits_Value (T));
4634 Set_Delta_Value (Id, Delta_Value (T));
4635 Set_Scale_Value (Id, Scale_Value (T));
4636 Set_Small_Value (Id, Small_Value (T));
4637 Set_Scalar_Range (Id, Scalar_Range (T));
4638 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
4639 Set_Is_Constrained (Id, Is_Constrained (T));
4640 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4641 Set_RM_Size (Id, RM_Size (T));
4642
4643 when Enumeration_Kind =>
4644 Set_Ekind (Id, E_Enumeration_Subtype);
4645 Set_First_Literal (Id, First_Literal (Base_Type (T)));
4646 Set_Scalar_Range (Id, Scalar_Range (T));
4647 Set_Is_Character_Type (Id, Is_Character_Type (T));
4648 Set_Is_Constrained (Id, Is_Constrained (T));
4649 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4650 Set_RM_Size (Id, RM_Size (T));
4651 Inherit_Predicate_Flags (Id, T);
4652
4653 when Ordinary_Fixed_Point_Kind =>
4654 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
4655 Set_Scalar_Range (Id, Scalar_Range (T));
4656 Set_Small_Value (Id, Small_Value (T));
4657 Set_Delta_Value (Id, Delta_Value (T));
4658 Set_Is_Constrained (Id, Is_Constrained (T));
4659 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4660 Set_RM_Size (Id, RM_Size (T));
4661
4662 when Float_Kind =>
4663 Set_Ekind (Id, E_Floating_Point_Subtype);
4664 Set_Scalar_Range (Id, Scalar_Range (T));
4665 Set_Digits_Value (Id, Digits_Value (T));
4666 Set_Is_Constrained (Id, Is_Constrained (T));
4667
4668 when Signed_Integer_Kind =>
4669 Set_Ekind (Id, E_Signed_Integer_Subtype);
4670 Set_Scalar_Range (Id, Scalar_Range (T));
4671 Set_Is_Constrained (Id, Is_Constrained (T));
4672 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4673 Set_RM_Size (Id, RM_Size (T));
4674 Inherit_Predicate_Flags (Id, T);
4675
4676 when Modular_Integer_Kind =>
4677 Set_Ekind (Id, E_Modular_Integer_Subtype);
4678 Set_Scalar_Range (Id, Scalar_Range (T));
4679 Set_Is_Constrained (Id, Is_Constrained (T));
4680 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4681 Set_RM_Size (Id, RM_Size (T));
4682 Inherit_Predicate_Flags (Id, T);
4683
4684 when Class_Wide_Kind =>
4685 Set_Ekind (Id, E_Class_Wide_Subtype);
4686 Set_First_Entity (Id, First_Entity (T));
4687 Set_Last_Entity (Id, Last_Entity (T));
4688 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4689 Set_Cloned_Subtype (Id, T);
4690 Set_Is_Tagged_Type (Id, True);
4691 Set_Has_Unknown_Discriminants
4692 (Id, True);
4693 Set_No_Tagged_Streams_Pragma
4694 (Id, No_Tagged_Streams_Pragma (T));
4695
4696 if Ekind (T) = E_Class_Wide_Subtype then
4697 Set_Equivalent_Type (Id, Equivalent_Type (T));
4698 end if;
4699
4700 when E_Record_Type | E_Record_Subtype =>
4701 Set_Ekind (Id, E_Record_Subtype);
4702
4703 if Ekind (T) = E_Record_Subtype
4704 and then Present (Cloned_Subtype (T))
4705 then
4706 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
4707 else
4708 Set_Cloned_Subtype (Id, T);
4709 end if;
4710
4711 Set_First_Entity (Id, First_Entity (T));
4712 Set_Last_Entity (Id, Last_Entity (T));
4713 Set_Has_Discriminants (Id, Has_Discriminants (T));
4714 Set_Is_Constrained (Id, Is_Constrained (T));
4715 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4716 Set_Has_Implicit_Dereference
4717 (Id, Has_Implicit_Dereference (T));
4718 Set_Has_Unknown_Discriminants
4719 (Id, Has_Unknown_Discriminants (T));
4720
4721 if Has_Discriminants (T) then
4722 Set_Discriminant_Constraint
4723 (Id, Discriminant_Constraint (T));
4724 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4725
4726 elsif Has_Unknown_Discriminants (Id) then
4727 Set_Discriminant_Constraint (Id, No_Elist);
4728 end if;
4729
4730 if Is_Tagged_Type (T) then
4731 Set_Is_Tagged_Type (Id, True);
4732 Set_No_Tagged_Streams_Pragma
4733 (Id, No_Tagged_Streams_Pragma (T));
4734 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4735 Set_Direct_Primitive_Operations
4736 (Id, Direct_Primitive_Operations (T));
4737 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4738
4739 if Is_Interface (T) then
4740 Set_Is_Interface (Id);
4741 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
4742 end if;
4743 end if;
4744
4745 when Private_Kind =>
4746 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4747 Set_Has_Discriminants (Id, Has_Discriminants (T));
4748 Set_Is_Constrained (Id, Is_Constrained (T));
4749 Set_First_Entity (Id, First_Entity (T));
4750 Set_Last_Entity (Id, Last_Entity (T));
4751 Set_Private_Dependents (Id, New_Elmt_List);
4752 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4753 Set_Has_Implicit_Dereference
4754 (Id, Has_Implicit_Dereference (T));
4755 Set_Has_Unknown_Discriminants
4756 (Id, Has_Unknown_Discriminants (T));
4757 Set_Known_To_Have_Preelab_Init
4758 (Id, Known_To_Have_Preelab_Init (T));
4759
4760 if Is_Tagged_Type (T) then
4761 Set_Is_Tagged_Type (Id);
4762 Set_No_Tagged_Streams_Pragma (Id,
4763 No_Tagged_Streams_Pragma (T));
4764 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4765 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4766 Set_Direct_Primitive_Operations (Id,
4767 Direct_Primitive_Operations (T));
4768 end if;
4769
4770 -- In general the attributes of the subtype of a private type
4771 -- are the attributes of the partial view of parent. However,
4772 -- the full view may be a discriminated type, and the subtype
4773 -- must share the discriminant constraint to generate correct
4774 -- calls to initialization procedures.
4775
4776 if Has_Discriminants (T) then
4777 Set_Discriminant_Constraint
4778 (Id, Discriminant_Constraint (T));
4779 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4780
4781 elsif Present (Full_View (T))
4782 and then Has_Discriminants (Full_View (T))
4783 then
4784 Set_Discriminant_Constraint
4785 (Id, Discriminant_Constraint (Full_View (T)));
4786 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4787
4788 -- This would seem semantically correct, but apparently
4789 -- generates spurious errors about missing components ???
4790
4791 -- Set_Has_Discriminants (Id);
4792 end if;
4793
4794 Prepare_Private_Subtype_Completion (Id, N);
4795
4796 -- If this is the subtype of a constrained private type with
4797 -- discriminants that has got a full view and we also have
4798 -- built a completion just above, show that the completion
4799 -- is a clone of the full view to the back-end.
4800
4801 if Has_Discriminants (T)
4802 and then not Has_Unknown_Discriminants (T)
4803 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
4804 and then Present (Full_View (T))
4805 and then Present (Full_View (Id))
4806 then
4807 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
4808 end if;
4809
4810 when Access_Kind =>
4811 Set_Ekind (Id, E_Access_Subtype);
4812 Set_Is_Constrained (Id, Is_Constrained (T));
4813 Set_Is_Access_Constant
4814 (Id, Is_Access_Constant (T));
4815 Set_Directly_Designated_Type
4816 (Id, Designated_Type (T));
4817 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
4818
4819 -- A Pure library_item must not contain the declaration of a
4820 -- named access type, except within a subprogram, generic
4821 -- subprogram, task unit, or protected unit, or if it has
4822 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4823
4824 if Comes_From_Source (Id)
4825 and then In_Pure_Unit
4826 and then not In_Subprogram_Task_Protected_Unit
4827 and then not No_Pool_Assigned (Id)
4828 then
4829 Error_Msg_N
4830 ("named access types not allowed in pure unit", N);
4831 end if;
4832
4833 when Concurrent_Kind =>
4834 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4835 Set_Corresponding_Record_Type (Id,
4836 Corresponding_Record_Type (T));
4837 Set_First_Entity (Id, First_Entity (T));
4838 Set_First_Private_Entity (Id, First_Private_Entity (T));
4839 Set_Has_Discriminants (Id, Has_Discriminants (T));
4840 Set_Is_Constrained (Id, Is_Constrained (T));
4841 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4842 Set_Last_Entity (Id, Last_Entity (T));
4843
4844 if Is_Tagged_Type (T) then
4845 Set_No_Tagged_Streams_Pragma
4846 (Id, No_Tagged_Streams_Pragma (T));
4847 end if;
4848
4849 if Has_Discriminants (T) then
4850 Set_Discriminant_Constraint (Id,
4851 Discriminant_Constraint (T));
4852 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4853 end if;
4854
4855 when E_Incomplete_Type =>
4856 if Ada_Version >= Ada_2005 then
4857
4858 -- In Ada 2005 an incomplete type can be explicitly tagged:
4859 -- propagate indication.
4860
4861 Set_Ekind (Id, E_Incomplete_Subtype);
4862 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4863 Set_Private_Dependents (Id, New_Elmt_List);
4864
4865 if Is_Tagged_Type (Id) then
4866 Set_No_Tagged_Streams_Pragma
4867 (Id, No_Tagged_Streams_Pragma (T));
4868 end if;
4869
4870 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
4871 -- incomplete type visible through a limited with clause.
4872
4873 if From_Limited_With (T)
4874 and then Present (Non_Limited_View (T))
4875 then
4876 Set_From_Limited_With (Id);
4877 Set_Non_Limited_View (Id, Non_Limited_View (T));
4878
4879 -- Ada 2005 (AI-412): Add the regular incomplete subtype
4880 -- to the private dependents of the original incomplete
4881 -- type for future transformation.
4882
4883 else
4884 Append_Elmt (Id, Private_Dependents (T));
4885 end if;
4886
4887 -- If the subtype name denotes an incomplete type an error
4888 -- was already reported by Process_Subtype.
4889
4890 else
4891 Set_Etype (Id, Any_Type);
4892 end if;
4893
4894 when others =>
4895 raise Program_Error;
4896 end case;
4897 end if;
4898
4899 if Etype (Id) = Any_Type then
4900 goto Leave;
4901 end if;
4902
4903 -- Some common processing on all types
4904
4905 Set_Size_Info (Id, T);
4906 Set_First_Rep_Item (Id, First_Rep_Item (T));
4907
4908 -- If the parent type is a generic actual, so is the subtype. This may
4909 -- happen in a nested instance. Why Comes_From_Source test???
4910
4911 if not Comes_From_Source (N) then
4912 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
4913 end if;
4914
4915 T := Etype (Id);
4916
4917 Set_Is_Immediately_Visible (Id, True);
4918 Set_Depends_On_Private (Id, Has_Private_Component (T));
4919 Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
4920
4921 if Is_Interface (T) then
4922 Set_Is_Interface (Id);
4923 end if;
4924
4925 if Present (Generic_Parent_Type (N))
4926 and then
4927 (Nkind (Parent (Generic_Parent_Type (N))) /=
4928 N_Formal_Type_Declaration
4929 or else Nkind (Formal_Type_Definition
4930 (Parent (Generic_Parent_Type (N)))) /=
4931 N_Formal_Private_Type_Definition)
4932 then
4933 if Is_Tagged_Type (Id) then
4934
4935 -- If this is a generic actual subtype for a synchronized type,
4936 -- the primitive operations are those of the corresponding record
4937 -- for which there is a separate subtype declaration.
4938
4939 if Is_Concurrent_Type (Id) then
4940 null;
4941 elsif Is_Class_Wide_Type (Id) then
4942 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
4943 else
4944 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
4945 end if;
4946
4947 elsif Scope (Etype (Id)) /= Standard_Standard then
4948 Derive_Subprograms (Generic_Parent_Type (N), Id);
4949 end if;
4950 end if;
4951
4952 if Is_Private_Type (T) and then Present (Full_View (T)) then
4953 Conditional_Delay (Id, Full_View (T));
4954
4955 -- The subtypes of components or subcomponents of protected types
4956 -- do not need freeze nodes, which would otherwise appear in the
4957 -- wrong scope (before the freeze node for the protected type). The
4958 -- proper subtypes are those of the subcomponents of the corresponding
4959 -- record.
4960
4961 elsif Ekind (Scope (Id)) /= E_Protected_Type
4962 and then Present (Scope (Scope (Id))) -- error defense
4963 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
4964 then
4965 Conditional_Delay (Id, T);
4966 end if;
4967
4968 -- Check that Constraint_Error is raised for a scalar subtype indication
4969 -- when the lower or upper bound of a non-null range lies outside the
4970 -- range of the type mark.
4971
4972 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4973 if Is_Scalar_Type (Etype (Id))
4974 and then Scalar_Range (Id) /=
4975 Scalar_Range (Etype (Subtype_Mark
4976 (Subtype_Indication (N))))
4977 then
4978 Apply_Range_Check
4979 (Scalar_Range (Id),
4980 Etype (Subtype_Mark (Subtype_Indication (N))));
4981
4982 -- In the array case, check compatibility for each index
4983
4984 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
4985 then
4986 -- This really should be a subprogram that finds the indications
4987 -- to check???
4988
4989 declare
4990 Subt_Index : Node_Id := First_Index (Id);
4991 Target_Index : Node_Id :=
4992 First_Index (Etype
4993 (Subtype_Mark (Subtype_Indication (N))));
4994 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
4995
4996 begin
4997 while Present (Subt_Index) loop
4998 if ((Nkind (Subt_Index) = N_Identifier
4999 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
5000 or else Nkind (Subt_Index) = N_Subtype_Indication)
5001 and then
5002 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
5003 then
5004 declare
5005 Target_Typ : constant Entity_Id :=
5006 Etype (Target_Index);
5007 begin
5008 R_Checks :=
5009 Get_Range_Checks
5010 (Scalar_Range (Etype (Subt_Index)),
5011 Target_Typ,
5012 Etype (Subt_Index),
5013 Defining_Identifier (N));
5014
5015 -- Reset Has_Dynamic_Range_Check on the subtype to
5016 -- prevent elision of the index check due to a dynamic
5017 -- check generated for a preceding index (needed since
5018 -- Insert_Range_Checks tries to avoid generating
5019 -- redundant checks on a given declaration).
5020
5021 Set_Has_Dynamic_Range_Check (N, False);
5022
5023 Insert_Range_Checks
5024 (R_Checks,
5025 N,
5026 Target_Typ,
5027 Sloc (Defining_Identifier (N)));
5028
5029 -- Record whether this index involved a dynamic check
5030
5031 Has_Dyn_Chk :=
5032 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
5033 end;
5034 end if;
5035
5036 Next_Index (Subt_Index);
5037 Next_Index (Target_Index);
5038 end loop;
5039
5040 -- Finally, mark whether the subtype involves dynamic checks
5041
5042 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
5043 end;
5044 end if;
5045 end if;
5046
5047 -- A type invariant applies to any subtype in its scope, in particular
5048 -- to a generic actual.
5049
5050 if Has_Invariants (T) and then In_Open_Scopes (Scope (T)) then
5051 Set_Has_Invariants (Id);
5052 Set_Invariant_Procedure (Id, Invariant_Procedure (T));
5053 end if;
5054
5055 -- Make sure that generic actual types are properly frozen. The subtype
5056 -- is marked as a generic actual type when the enclosing instance is
5057 -- analyzed, so here we identify the subtype from the tree structure.
5058
5059 if Expander_Active
5060 and then Is_Generic_Actual_Type (Id)
5061 and then In_Instance
5062 and then not Comes_From_Source (N)
5063 and then Nkind (Subtype_Indication (N)) /= N_Subtype_Indication
5064 and then Is_Frozen (T)
5065 then
5066 Freeze_Before (N, Id);
5067 end if;
5068
5069 Set_Optimize_Alignment_Flags (Id);
5070 Check_Eliminated (Id);
5071
5072 <<Leave>>
5073 if Has_Aspects (N) then
5074 Analyze_Aspect_Specifications (N, Id);
5075 end if;
5076
5077 Analyze_Dimension (N);
5078 end Analyze_Subtype_Declaration;
5079
5080 --------------------------------
5081 -- Analyze_Subtype_Indication --
5082 --------------------------------
5083
5084 procedure Analyze_Subtype_Indication (N : Node_Id) is
5085 T : constant Entity_Id := Subtype_Mark (N);
5086 R : constant Node_Id := Range_Expression (Constraint (N));
5087
5088 begin
5089 Analyze (T);
5090
5091 if R /= Error then
5092 Analyze (R);
5093 Set_Etype (N, Etype (R));
5094 Resolve (R, Entity (T));
5095 else
5096 Set_Error_Posted (R);
5097 Set_Error_Posted (T);
5098 end if;
5099 end Analyze_Subtype_Indication;
5100
5101 --------------------------
5102 -- Analyze_Variant_Part --
5103 --------------------------
5104
5105 procedure Analyze_Variant_Part (N : Node_Id) is
5106 Discr_Name : Node_Id;
5107 Discr_Type : Entity_Id;
5108
5109 procedure Process_Variant (A : Node_Id);
5110 -- Analyze declarations for a single variant
5111
5112 package Analyze_Variant_Choices is
5113 new Generic_Analyze_Choices (Process_Variant);
5114 use Analyze_Variant_Choices;
5115
5116 ---------------------
5117 -- Process_Variant --
5118 ---------------------
5119
5120 procedure Process_Variant (A : Node_Id) is
5121 CL : constant Node_Id := Component_List (A);
5122 begin
5123 if not Null_Present (CL) then
5124 Analyze_Declarations (Component_Items (CL));
5125
5126 if Present (Variant_Part (CL)) then
5127 Analyze (Variant_Part (CL));
5128 end if;
5129 end if;
5130 end Process_Variant;
5131
5132 -- Start of processing for Analyze_Variant_Part
5133
5134 begin
5135 Discr_Name := Name (N);
5136 Analyze (Discr_Name);
5137
5138 -- If Discr_Name bad, get out (prevent cascaded errors)
5139
5140 if Etype (Discr_Name) = Any_Type then
5141 return;
5142 end if;
5143
5144 -- Check invalid discriminant in variant part
5145
5146 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
5147 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
5148 end if;
5149
5150 Discr_Type := Etype (Entity (Discr_Name));
5151
5152 if not Is_Discrete_Type (Discr_Type) then
5153 Error_Msg_N
5154 ("discriminant in a variant part must be of a discrete type",
5155 Name (N));
5156 return;
5157 end if;
5158
5159 -- Now analyze the choices, which also analyzes the declarations that
5160 -- are associated with each choice.
5161
5162 Analyze_Choices (Variants (N), Discr_Type);
5163
5164 -- Note: we used to instantiate and call Check_Choices here to check
5165 -- that the choices covered the discriminant, but it's too early to do
5166 -- that because of statically predicated subtypes, whose analysis may
5167 -- be deferred to their freeze point which may be as late as the freeze
5168 -- point of the containing record. So this call is now to be found in
5169 -- Freeze_Record_Declaration.
5170
5171 end Analyze_Variant_Part;
5172
5173 ----------------------------
5174 -- Array_Type_Declaration --
5175 ----------------------------
5176
5177 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
5178 Component_Def : constant Node_Id := Component_Definition (Def);
5179 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
5180 Element_Type : Entity_Id;
5181 Implicit_Base : Entity_Id;
5182 Index : Node_Id;
5183 Related_Id : Entity_Id := Empty;
5184 Nb_Index : Nat;
5185 P : constant Node_Id := Parent (Def);
5186 Priv : Entity_Id;
5187
5188 begin
5189 if Nkind (Def) = N_Constrained_Array_Definition then
5190 Index := First (Discrete_Subtype_Definitions (Def));
5191 else
5192 Index := First (Subtype_Marks (Def));
5193 end if;
5194
5195 -- Find proper names for the implicit types which may be public. In case
5196 -- of anonymous arrays we use the name of the first object of that type
5197 -- as prefix.
5198
5199 if No (T) then
5200 Related_Id := Defining_Identifier (P);
5201 else
5202 Related_Id := T;
5203 end if;
5204
5205 Nb_Index := 1;
5206 while Present (Index) loop
5207 Analyze (Index);
5208
5209 -- Test for odd case of trying to index a type by the type itself
5210
5211 if Is_Entity_Name (Index) and then Entity (Index) = T then
5212 Error_Msg_N ("type& cannot be indexed by itself", Index);
5213 Set_Entity (Index, Standard_Boolean);
5214 Set_Etype (Index, Standard_Boolean);
5215 end if;
5216
5217 -- Check SPARK restriction requiring a subtype mark
5218
5219 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
5220 Check_SPARK_05_Restriction ("subtype mark required", Index);
5221 end if;
5222
5223 -- Add a subtype declaration for each index of private array type
5224 -- declaration whose etype is also private. For example:
5225
5226 -- package Pkg is
5227 -- type Index is private;
5228 -- private
5229 -- type Table is array (Index) of ...
5230 -- end;
5231
5232 -- This is currently required by the expander for the internally
5233 -- generated equality subprogram of records with variant parts in
5234 -- which the etype of some component is such private type.
5235
5236 if Ekind (Current_Scope) = E_Package
5237 and then In_Private_Part (Current_Scope)
5238 and then Has_Private_Declaration (Etype (Index))
5239 then
5240 declare
5241 Loc : constant Source_Ptr := Sloc (Def);
5242 New_E : Entity_Id;
5243 Decl : Entity_Id;
5244
5245 begin
5246 New_E := Make_Temporary (Loc, 'T');
5247 Set_Is_Internal (New_E);
5248
5249 Decl :=
5250 Make_Subtype_Declaration (Loc,
5251 Defining_Identifier => New_E,
5252 Subtype_Indication =>
5253 New_Occurrence_Of (Etype (Index), Loc));
5254
5255 Insert_Before (Parent (Def), Decl);
5256 Analyze (Decl);
5257 Set_Etype (Index, New_E);
5258
5259 -- If the index is a range the Entity attribute is not
5260 -- available. Example:
5261
5262 -- package Pkg is
5263 -- type T is private;
5264 -- private
5265 -- type T is new Natural;
5266 -- Table : array (T(1) .. T(10)) of Boolean;
5267 -- end Pkg;
5268
5269 if Nkind (Index) /= N_Range then
5270 Set_Entity (Index, New_E);
5271 end if;
5272 end;
5273 end if;
5274
5275 Make_Index (Index, P, Related_Id, Nb_Index);
5276
5277 -- Check error of subtype with predicate for index type
5278
5279 Bad_Predicated_Subtype_Use
5280 ("subtype& has predicate, not allowed as index subtype",
5281 Index, Etype (Index));
5282
5283 -- Move to next index
5284
5285 Next_Index (Index);
5286 Nb_Index := Nb_Index + 1;
5287 end loop;
5288
5289 -- Process subtype indication if one is present
5290
5291 if Present (Component_Typ) then
5292 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
5293
5294 Set_Etype (Component_Typ, Element_Type);
5295
5296 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
5297 Check_SPARK_05_Restriction
5298 ("subtype mark required", Component_Typ);
5299 end if;
5300
5301 -- Ada 2005 (AI-230): Access Definition case
5302
5303 else pragma Assert (Present (Access_Definition (Component_Def)));
5304
5305 -- Indicate that the anonymous access type is created by the
5306 -- array type declaration.
5307
5308 Element_Type := Access_Definition
5309 (Related_Nod => P,
5310 N => Access_Definition (Component_Def));
5311 Set_Is_Local_Anonymous_Access (Element_Type);
5312
5313 -- Propagate the parent. This field is needed if we have to generate
5314 -- the master_id associated with an anonymous access to task type
5315 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5316
5317 Set_Parent (Element_Type, Parent (T));
5318
5319 -- Ada 2005 (AI-230): In case of components that are anonymous access
5320 -- types the level of accessibility depends on the enclosing type
5321 -- declaration
5322
5323 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
5324
5325 -- Ada 2005 (AI-254)
5326
5327 declare
5328 CD : constant Node_Id :=
5329 Access_To_Subprogram_Definition
5330 (Access_Definition (Component_Def));
5331 begin
5332 if Present (CD) and then Protected_Present (CD) then
5333 Element_Type :=
5334 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
5335 end if;
5336 end;
5337 end if;
5338
5339 -- Constrained array case
5340
5341 if No (T) then
5342 T := Create_Itype (E_Void, P, Related_Id, 'T');
5343 end if;
5344
5345 if Nkind (Def) = N_Constrained_Array_Definition then
5346
5347 -- Establish Implicit_Base as unconstrained base type
5348
5349 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
5350
5351 Set_Etype (Implicit_Base, Implicit_Base);
5352 Set_Scope (Implicit_Base, Current_Scope);
5353 Set_Has_Delayed_Freeze (Implicit_Base);
5354 Set_Default_SSO (Implicit_Base);
5355
5356 -- The constrained array type is a subtype of the unconstrained one
5357
5358 Set_Ekind (T, E_Array_Subtype);
5359 Init_Size_Align (T);
5360 Set_Etype (T, Implicit_Base);
5361 Set_Scope (T, Current_Scope);
5362 Set_Is_Constrained (T, True);
5363 Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
5364 Set_Has_Delayed_Freeze (T);
5365
5366 -- Complete setup of implicit base type
5367
5368 Set_First_Index (Implicit_Base, First_Index (T));
5369 Set_Component_Type (Implicit_Base, Element_Type);
5370 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
5371 Set_Has_Protected (Implicit_Base, Has_Protected (Element_Type));
5372 Set_Component_Size (Implicit_Base, Uint_0);
5373 Set_Packed_Array_Impl_Type (Implicit_Base, Empty);
5374 Set_Has_Controlled_Component
5375 (Implicit_Base,
5376 Has_Controlled_Component (Element_Type)
5377 or else Is_Controlled (Element_Type));
5378 Set_Finalize_Storage_Only
5379 (Implicit_Base, Finalize_Storage_Only
5380 (Element_Type));
5381
5382 -- Unconstrained array case
5383
5384 else
5385 Set_Ekind (T, E_Array_Type);
5386 Init_Size_Align (T);
5387 Set_Etype (T, T);
5388 Set_Scope (T, Current_Scope);
5389 Set_Component_Size (T, Uint_0);
5390 Set_Is_Constrained (T, False);
5391 Set_First_Index (T, First (Subtype_Marks (Def)));
5392 Set_Has_Delayed_Freeze (T, True);
5393 Set_Has_Task (T, Has_Task (Element_Type));
5394 Set_Has_Protected (T, Has_Protected (Element_Type));
5395 Set_Has_Controlled_Component (T, Has_Controlled_Component
5396 (Element_Type)
5397 or else
5398 Is_Controlled (Element_Type));
5399 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
5400 (Element_Type));
5401 Set_Default_SSO (T);
5402 end if;
5403
5404 -- Common attributes for both cases
5405
5406 Set_Component_Type (Base_Type (T), Element_Type);
5407 Set_Packed_Array_Impl_Type (T, Empty);
5408
5409 if Aliased_Present (Component_Definition (Def)) then
5410 Check_SPARK_05_Restriction
5411 ("aliased is not allowed", Component_Definition (Def));
5412 Set_Has_Aliased_Components (Etype (T));
5413 end if;
5414
5415 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5416 -- array type to ensure that objects of this type are initialized.
5417
5418 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
5419 Set_Can_Never_Be_Null (T);
5420
5421 if Null_Exclusion_Present (Component_Definition (Def))
5422
5423 -- No need to check itypes because in their case this check was
5424 -- done at their point of creation
5425
5426 and then not Is_Itype (Element_Type)
5427 then
5428 Error_Msg_N
5429 ("`NOT NULL` not allowed (null already excluded)",
5430 Subtype_Indication (Component_Definition (Def)));
5431 end if;
5432 end if;
5433
5434 Priv := Private_Component (Element_Type);
5435
5436 if Present (Priv) then
5437
5438 -- Check for circular definitions
5439
5440 if Priv = Any_Type then
5441 Set_Component_Type (Etype (T), Any_Type);
5442
5443 -- There is a gap in the visibility of operations on the composite
5444 -- type only if the component type is defined in a different scope.
5445
5446 elsif Scope (Priv) = Current_Scope then
5447 null;
5448
5449 elsif Is_Limited_Type (Priv) then
5450 Set_Is_Limited_Composite (Etype (T));
5451 Set_Is_Limited_Composite (T);
5452 else
5453 Set_Is_Private_Composite (Etype (T));
5454 Set_Is_Private_Composite (T);
5455 end if;
5456 end if;
5457
5458 -- A syntax error in the declaration itself may lead to an empty index
5459 -- list, in which case do a minimal patch.
5460
5461 if No (First_Index (T)) then
5462 Error_Msg_N ("missing index definition in array type declaration", T);
5463
5464 declare
5465 Indexes : constant List_Id :=
5466 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
5467 begin
5468 Set_Discrete_Subtype_Definitions (Def, Indexes);
5469 Set_First_Index (T, First (Indexes));
5470 return;
5471 end;
5472 end if;
5473
5474 -- Create a concatenation operator for the new type. Internal array
5475 -- types created for packed entities do not need such, they are
5476 -- compatible with the user-defined type.
5477
5478 if Number_Dimensions (T) = 1
5479 and then not Is_Packed_Array_Impl_Type (T)
5480 then
5481 New_Concatenation_Op (T);
5482 end if;
5483
5484 -- In the case of an unconstrained array the parser has already verified
5485 -- that all the indexes are unconstrained but we still need to make sure
5486 -- that the element type is constrained.
5487
5488 if Is_Indefinite_Subtype (Element_Type) then
5489 Error_Msg_N
5490 ("unconstrained element type in array declaration",
5491 Subtype_Indication (Component_Def));
5492
5493 elsif Is_Abstract_Type (Element_Type) then
5494 Error_Msg_N
5495 ("the type of a component cannot be abstract",
5496 Subtype_Indication (Component_Def));
5497 end if;
5498
5499 -- There may be an invariant declared for the component type, but
5500 -- the construction of the component invariant checking procedure
5501 -- takes place during expansion.
5502 end Array_Type_Declaration;
5503
5504 ------------------------------------------------------
5505 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5506 ------------------------------------------------------
5507
5508 function Replace_Anonymous_Access_To_Protected_Subprogram
5509 (N : Node_Id) return Entity_Id
5510 is
5511 Loc : constant Source_Ptr := Sloc (N);
5512
5513 Curr_Scope : constant Scope_Stack_Entry :=
5514 Scope_Stack.Table (Scope_Stack.Last);
5515
5516 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
5517
5518 Acc : Node_Id;
5519 -- Access definition in declaration
5520
5521 Comp : Node_Id;
5522 -- Object definition or formal definition with an access definition
5523
5524 Decl : Node_Id;
5525 -- Declaration of anonymous access to subprogram type
5526
5527 Spec : Node_Id;
5528 -- Original specification in access to subprogram
5529
5530 P : Node_Id;
5531
5532 begin
5533 Set_Is_Internal (Anon);
5534
5535 case Nkind (N) is
5536 when N_Component_Declaration |
5537 N_Unconstrained_Array_Definition |
5538 N_Constrained_Array_Definition =>
5539 Comp := Component_Definition (N);
5540 Acc := Access_Definition (Comp);
5541
5542 when N_Discriminant_Specification =>
5543 Comp := Discriminant_Type (N);
5544 Acc := Comp;
5545
5546 when N_Parameter_Specification =>
5547 Comp := Parameter_Type (N);
5548 Acc := Comp;
5549
5550 when N_Access_Function_Definition =>
5551 Comp := Result_Definition (N);
5552 Acc := Comp;
5553
5554 when N_Object_Declaration =>
5555 Comp := Object_Definition (N);
5556 Acc := Comp;
5557
5558 when N_Function_Specification =>
5559 Comp := Result_Definition (N);
5560 Acc := Comp;
5561
5562 when others =>
5563 raise Program_Error;
5564 end case;
5565
5566 Spec := Access_To_Subprogram_Definition (Acc);
5567
5568 Decl :=
5569 Make_Full_Type_Declaration (Loc,
5570 Defining_Identifier => Anon,
5571 Type_Definition => Copy_Separate_Tree (Spec));
5572
5573 Mark_Rewrite_Insertion (Decl);
5574
5575 -- In ASIS mode, analyze the profile on the original node, because
5576 -- the separate copy does not provide enough links to recover the
5577 -- original tree. Analysis is limited to type annotations, within
5578 -- a temporary scope that serves as an anonymous subprogram to collect
5579 -- otherwise useless temporaries and itypes.
5580
5581 if ASIS_Mode then
5582 declare
5583 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
5584
5585 begin
5586 if Nkind (Spec) = N_Access_Function_Definition then
5587 Set_Ekind (Typ, E_Function);
5588 else
5589 Set_Ekind (Typ, E_Procedure);
5590 end if;
5591
5592 Set_Parent (Typ, N);
5593 Set_Scope (Typ, Current_Scope);
5594 Push_Scope (Typ);
5595
5596 Process_Formals (Parameter_Specifications (Spec), Spec);
5597
5598 if Nkind (Spec) = N_Access_Function_Definition then
5599 declare
5600 Def : constant Node_Id := Result_Definition (Spec);
5601
5602 begin
5603 -- The result might itself be an anonymous access type, so
5604 -- have to recurse.
5605
5606 if Nkind (Def) = N_Access_Definition then
5607 if Present (Access_To_Subprogram_Definition (Def)) then
5608 Set_Etype
5609 (Def,
5610 Replace_Anonymous_Access_To_Protected_Subprogram
5611 (Spec));
5612 else
5613 Find_Type (Subtype_Mark (Def));
5614 end if;
5615
5616 else
5617 Find_Type (Def);
5618 end if;
5619 end;
5620 end if;
5621
5622 End_Scope;
5623 end;
5624 end if;
5625
5626 -- Insert the new declaration in the nearest enclosing scope. If the
5627 -- node is a body and N is its return type, the declaration belongs in
5628 -- the enclosing scope.
5629
5630 P := Parent (N);
5631
5632 if Nkind (P) = N_Subprogram_Body
5633 and then Nkind (N) = N_Function_Specification
5634 then
5635 P := Parent (P);
5636 end if;
5637
5638 while Present (P) and then not Has_Declarations (P) loop
5639 P := Parent (P);
5640 end loop;
5641
5642 pragma Assert (Present (P));
5643
5644 if Nkind (P) = N_Package_Specification then
5645 Prepend (Decl, Visible_Declarations (P));
5646 else
5647 Prepend (Decl, Declarations (P));
5648 end if;
5649
5650 -- Replace the anonymous type with an occurrence of the new declaration.
5651 -- In all cases the rewritten node does not have the null-exclusion
5652 -- attribute because (if present) it was already inherited by the
5653 -- anonymous entity (Anon). Thus, in case of components we do not
5654 -- inherit this attribute.
5655
5656 if Nkind (N) = N_Parameter_Specification then
5657 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5658 Set_Etype (Defining_Identifier (N), Anon);
5659 Set_Null_Exclusion_Present (N, False);
5660
5661 elsif Nkind (N) = N_Object_Declaration then
5662 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5663 Set_Etype (Defining_Identifier (N), Anon);
5664
5665 elsif Nkind (N) = N_Access_Function_Definition then
5666 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5667
5668 elsif Nkind (N) = N_Function_Specification then
5669 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5670 Set_Etype (Defining_Unit_Name (N), Anon);
5671
5672 else
5673 Rewrite (Comp,
5674 Make_Component_Definition (Loc,
5675 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
5676 end if;
5677
5678 Mark_Rewrite_Insertion (Comp);
5679
5680 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition) then
5681 Analyze (Decl);
5682
5683 else
5684 -- Temporarily remove the current scope (record or subprogram) from
5685 -- the stack to add the new declarations to the enclosing scope.
5686
5687 Scope_Stack.Decrement_Last;
5688 Analyze (Decl);
5689 Set_Is_Itype (Anon);
5690 Scope_Stack.Append (Curr_Scope);
5691 end if;
5692
5693 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
5694 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
5695 return Anon;
5696 end Replace_Anonymous_Access_To_Protected_Subprogram;
5697
5698 -------------------------------
5699 -- Build_Derived_Access_Type --
5700 -------------------------------
5701
5702 procedure Build_Derived_Access_Type
5703 (N : Node_Id;
5704 Parent_Type : Entity_Id;
5705 Derived_Type : Entity_Id)
5706 is
5707 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
5708
5709 Desig_Type : Entity_Id;
5710 Discr : Entity_Id;
5711 Discr_Con_Elist : Elist_Id;
5712 Discr_Con_El : Elmt_Id;
5713 Subt : Entity_Id;
5714
5715 begin
5716 -- Set the designated type so it is available in case this is an access
5717 -- to a self-referential type, e.g. a standard list type with a next
5718 -- pointer. Will be reset after subtype is built.
5719
5720 Set_Directly_Designated_Type
5721 (Derived_Type, Designated_Type (Parent_Type));
5722
5723 Subt := Process_Subtype (S, N);
5724
5725 if Nkind (S) /= N_Subtype_Indication
5726 and then Subt /= Base_Type (Subt)
5727 then
5728 Set_Ekind (Derived_Type, E_Access_Subtype);
5729 end if;
5730
5731 if Ekind (Derived_Type) = E_Access_Subtype then
5732 declare
5733 Pbase : constant Entity_Id := Base_Type (Parent_Type);
5734 Ibase : constant Entity_Id :=
5735 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
5736 Svg_Chars : constant Name_Id := Chars (Ibase);
5737 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
5738
5739 begin
5740 Copy_Node (Pbase, Ibase);
5741
5742 Set_Chars (Ibase, Svg_Chars);
5743 Set_Next_Entity (Ibase, Svg_Next_E);
5744 Set_Sloc (Ibase, Sloc (Derived_Type));
5745 Set_Scope (Ibase, Scope (Derived_Type));
5746 Set_Freeze_Node (Ibase, Empty);
5747 Set_Is_Frozen (Ibase, False);
5748 Set_Comes_From_Source (Ibase, False);
5749 Set_Is_First_Subtype (Ibase, False);
5750
5751 Set_Etype (Ibase, Pbase);
5752 Set_Etype (Derived_Type, Ibase);
5753 end;
5754 end if;
5755
5756 Set_Directly_Designated_Type
5757 (Derived_Type, Designated_Type (Subt));
5758
5759 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
5760 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
5761 Set_Size_Info (Derived_Type, Parent_Type);
5762 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5763 Set_Depends_On_Private (Derived_Type,
5764 Has_Private_Component (Derived_Type));
5765 Conditional_Delay (Derived_Type, Subt);
5766
5767 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5768 -- that it is not redundant.
5769
5770 if Null_Exclusion_Present (Type_Definition (N)) then
5771 Set_Can_Never_Be_Null (Derived_Type);
5772
5773 -- What is with the "AND THEN FALSE" here ???
5774
5775 if Can_Never_Be_Null (Parent_Type)
5776 and then False
5777 then
5778 Error_Msg_NE
5779 ("`NOT NULL` not allowed (& already excludes null)",
5780 N, Parent_Type);
5781 end if;
5782
5783 elsif Can_Never_Be_Null (Parent_Type) then
5784 Set_Can_Never_Be_Null (Derived_Type);
5785 end if;
5786
5787 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5788 -- the root type for this information.
5789
5790 -- Apply range checks to discriminants for derived record case
5791 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5792
5793 Desig_Type := Designated_Type (Derived_Type);
5794 if Is_Composite_Type (Desig_Type)
5795 and then (not Is_Array_Type (Desig_Type))
5796 and then Has_Discriminants (Desig_Type)
5797 and then Base_Type (Desig_Type) /= Desig_Type
5798 then
5799 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
5800 Discr_Con_El := First_Elmt (Discr_Con_Elist);
5801
5802 Discr := First_Discriminant (Base_Type (Desig_Type));
5803 while Present (Discr_Con_El) loop
5804 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
5805 Next_Elmt (Discr_Con_El);
5806 Next_Discriminant (Discr);
5807 end loop;
5808 end if;
5809 end Build_Derived_Access_Type;
5810
5811 ------------------------------
5812 -- Build_Derived_Array_Type --
5813 ------------------------------
5814
5815 procedure Build_Derived_Array_Type
5816 (N : Node_Id;
5817 Parent_Type : Entity_Id;
5818 Derived_Type : Entity_Id)
5819 is
5820 Loc : constant Source_Ptr := Sloc (N);
5821 Tdef : constant Node_Id := Type_Definition (N);
5822 Indic : constant Node_Id := Subtype_Indication (Tdef);
5823 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
5824 Implicit_Base : Entity_Id;
5825 New_Indic : Node_Id;
5826
5827 procedure Make_Implicit_Base;
5828 -- If the parent subtype is constrained, the derived type is a subtype
5829 -- of an implicit base type derived from the parent base.
5830
5831 ------------------------
5832 -- Make_Implicit_Base --
5833 ------------------------
5834
5835 procedure Make_Implicit_Base is
5836 begin
5837 Implicit_Base :=
5838 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
5839
5840 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
5841 Set_Etype (Implicit_Base, Parent_Base);
5842
5843 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
5844 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
5845
5846 Set_Has_Delayed_Freeze (Implicit_Base, True);
5847 end Make_Implicit_Base;
5848
5849 -- Start of processing for Build_Derived_Array_Type
5850
5851 begin
5852 if not Is_Constrained (Parent_Type) then
5853 if Nkind (Indic) /= N_Subtype_Indication then
5854 Set_Ekind (Derived_Type, E_Array_Type);
5855
5856 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5857 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
5858
5859 Set_Has_Delayed_Freeze (Derived_Type, True);
5860
5861 else
5862 Make_Implicit_Base;
5863 Set_Etype (Derived_Type, Implicit_Base);
5864
5865 New_Indic :=
5866 Make_Subtype_Declaration (Loc,
5867 Defining_Identifier => Derived_Type,
5868 Subtype_Indication =>
5869 Make_Subtype_Indication (Loc,
5870 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
5871 Constraint => Constraint (Indic)));
5872
5873 Rewrite (N, New_Indic);
5874 Analyze (N);
5875 end if;
5876
5877 else
5878 if Nkind (Indic) /= N_Subtype_Indication then
5879 Make_Implicit_Base;
5880
5881 Set_Ekind (Derived_Type, Ekind (Parent_Type));
5882 Set_Etype (Derived_Type, Implicit_Base);
5883 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5884
5885 else
5886 Error_Msg_N ("illegal constraint on constrained type", Indic);
5887 end if;
5888 end if;
5889
5890 -- If parent type is not a derived type itself, and is declared in
5891 -- closed scope (e.g. a subprogram), then we must explicitly introduce
5892 -- the new type's concatenation operator since Derive_Subprograms
5893 -- will not inherit the parent's operator. If the parent type is
5894 -- unconstrained, the operator is of the unconstrained base type.
5895
5896 if Number_Dimensions (Parent_Type) = 1
5897 and then not Is_Limited_Type (Parent_Type)
5898 and then not Is_Derived_Type (Parent_Type)
5899 and then not Is_Package_Or_Generic_Package
5900 (Scope (Base_Type (Parent_Type)))
5901 then
5902 if not Is_Constrained (Parent_Type)
5903 and then Is_Constrained (Derived_Type)
5904 then
5905 New_Concatenation_Op (Implicit_Base);
5906 else
5907 New_Concatenation_Op (Derived_Type);
5908 end if;
5909 end if;
5910 end Build_Derived_Array_Type;
5911
5912 -----------------------------------
5913 -- Build_Derived_Concurrent_Type --
5914 -----------------------------------
5915
5916 procedure Build_Derived_Concurrent_Type
5917 (N : Node_Id;
5918 Parent_Type : Entity_Id;
5919 Derived_Type : Entity_Id)
5920 is
5921 Loc : constant Source_Ptr := Sloc (N);
5922
5923 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
5924 Corr_Decl : Node_Id;
5925 Corr_Decl_Needed : Boolean;
5926 -- If the derived type has fewer discriminants than its parent, the
5927 -- corresponding record is also a derived type, in order to account for
5928 -- the bound discriminants. We create a full type declaration for it in
5929 -- this case.
5930
5931 Constraint_Present : constant Boolean :=
5932 Nkind (Subtype_Indication (Type_Definition (N))) =
5933 N_Subtype_Indication;
5934
5935 D_Constraint : Node_Id;
5936 New_Constraint : Elist_Id;
5937 Old_Disc : Entity_Id;
5938 New_Disc : Entity_Id;
5939 New_N : Node_Id;
5940
5941 begin
5942 Set_Stored_Constraint (Derived_Type, No_Elist);
5943 Corr_Decl_Needed := False;
5944 Old_Disc := Empty;
5945
5946 if Present (Discriminant_Specifications (N))
5947 and then Constraint_Present
5948 then
5949 Old_Disc := First_Discriminant (Parent_Type);
5950 New_Disc := First (Discriminant_Specifications (N));
5951 while Present (New_Disc) and then Present (Old_Disc) loop
5952 Next_Discriminant (Old_Disc);
5953 Next (New_Disc);
5954 end loop;
5955 end if;
5956
5957 if Present (Old_Disc) and then Expander_Active then
5958
5959 -- The new type has fewer discriminants, so we need to create a new
5960 -- corresponding record, which is derived from the corresponding
5961 -- record of the parent, and has a stored constraint that captures
5962 -- the values of the discriminant constraints. The corresponding
5963 -- record is needed only if expander is active and code generation is
5964 -- enabled.
5965
5966 -- The type declaration for the derived corresponding record has the
5967 -- same discriminant part and constraints as the current declaration.
5968 -- Copy the unanalyzed tree to build declaration.
5969
5970 Corr_Decl_Needed := True;
5971 New_N := Copy_Separate_Tree (N);
5972
5973 Corr_Decl :=
5974 Make_Full_Type_Declaration (Loc,
5975 Defining_Identifier => Corr_Record,
5976 Discriminant_Specifications =>
5977 Discriminant_Specifications (New_N),
5978 Type_Definition =>
5979 Make_Derived_Type_Definition (Loc,
5980 Subtype_Indication =>
5981 Make_Subtype_Indication (Loc,
5982 Subtype_Mark =>
5983 New_Occurrence_Of
5984 (Corresponding_Record_Type (Parent_Type), Loc),
5985 Constraint =>
5986 Constraint
5987 (Subtype_Indication (Type_Definition (New_N))))));
5988 end if;
5989
5990 -- Copy Storage_Size and Relative_Deadline variables if task case
5991
5992 if Is_Task_Type (Parent_Type) then
5993 Set_Storage_Size_Variable (Derived_Type,
5994 Storage_Size_Variable (Parent_Type));
5995 Set_Relative_Deadline_Variable (Derived_Type,
5996 Relative_Deadline_Variable (Parent_Type));
5997 end if;
5998
5999 if Present (Discriminant_Specifications (N)) then
6000 Push_Scope (Derived_Type);
6001 Check_Or_Process_Discriminants (N, Derived_Type);
6002
6003 if Constraint_Present then
6004 New_Constraint :=
6005 Expand_To_Stored_Constraint
6006 (Parent_Type,
6007 Build_Discriminant_Constraints
6008 (Parent_Type,
6009 Subtype_Indication (Type_Definition (N)), True));
6010 end if;
6011
6012 End_Scope;
6013
6014 elsif Constraint_Present then
6015
6016 -- Build constrained subtype, copying the constraint, and derive
6017 -- from it to create a derived constrained type.
6018
6019 declare
6020 Loc : constant Source_Ptr := Sloc (N);
6021 Anon : constant Entity_Id :=
6022 Make_Defining_Identifier (Loc,
6023 Chars => New_External_Name (Chars (Derived_Type), 'T'));
6024 Decl : Node_Id;
6025
6026 begin
6027 Decl :=
6028 Make_Subtype_Declaration (Loc,
6029 Defining_Identifier => Anon,
6030 Subtype_Indication =>
6031 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
6032 Insert_Before (N, Decl);
6033 Analyze (Decl);
6034
6035 Rewrite (Subtype_Indication (Type_Definition (N)),
6036 New_Occurrence_Of (Anon, Loc));
6037 Set_Analyzed (Derived_Type, False);
6038 Analyze (N);
6039 return;
6040 end;
6041 end if;
6042
6043 -- By default, operations and private data are inherited from parent.
6044 -- However, in the presence of bound discriminants, a new corresponding
6045 -- record will be created, see below.
6046
6047 Set_Has_Discriminants
6048 (Derived_Type, Has_Discriminants (Parent_Type));
6049 Set_Corresponding_Record_Type
6050 (Derived_Type, Corresponding_Record_Type (Parent_Type));
6051
6052 -- Is_Constrained is set according the parent subtype, but is set to
6053 -- False if the derived type is declared with new discriminants.
6054
6055 Set_Is_Constrained
6056 (Derived_Type,
6057 (Is_Constrained (Parent_Type) or else Constraint_Present)
6058 and then not Present (Discriminant_Specifications (N)));
6059
6060 if Constraint_Present then
6061 if not Has_Discriminants (Parent_Type) then
6062 Error_Msg_N ("untagged parent must have discriminants", N);
6063
6064 elsif Present (Discriminant_Specifications (N)) then
6065
6066 -- Verify that new discriminants are used to constrain old ones
6067
6068 D_Constraint :=
6069 First
6070 (Constraints
6071 (Constraint (Subtype_Indication (Type_Definition (N)))));
6072
6073 Old_Disc := First_Discriminant (Parent_Type);
6074
6075 while Present (D_Constraint) loop
6076 if Nkind (D_Constraint) /= N_Discriminant_Association then
6077
6078 -- Positional constraint. If it is a reference to a new
6079 -- discriminant, it constrains the corresponding old one.
6080
6081 if Nkind (D_Constraint) = N_Identifier then
6082 New_Disc := First_Discriminant (Derived_Type);
6083 while Present (New_Disc) loop
6084 exit when Chars (New_Disc) = Chars (D_Constraint);
6085 Next_Discriminant (New_Disc);
6086 end loop;
6087
6088 if Present (New_Disc) then
6089 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
6090 end if;
6091 end if;
6092
6093 Next_Discriminant (Old_Disc);
6094
6095 -- if this is a named constraint, search by name for the old
6096 -- discriminants constrained by the new one.
6097
6098 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
6099
6100 -- Find new discriminant with that name
6101
6102 New_Disc := First_Discriminant (Derived_Type);
6103 while Present (New_Disc) loop
6104 exit when
6105 Chars (New_Disc) = Chars (Expression (D_Constraint));
6106 Next_Discriminant (New_Disc);
6107 end loop;
6108
6109 if Present (New_Disc) then
6110
6111 -- Verify that new discriminant renames some discriminant
6112 -- of the parent type, and associate the new discriminant
6113 -- with one or more old ones that it renames.
6114
6115 declare
6116 Selector : Node_Id;
6117
6118 begin
6119 Selector := First (Selector_Names (D_Constraint));
6120 while Present (Selector) loop
6121 Old_Disc := First_Discriminant (Parent_Type);
6122 while Present (Old_Disc) loop
6123 exit when Chars (Old_Disc) = Chars (Selector);
6124 Next_Discriminant (Old_Disc);
6125 end loop;
6126
6127 if Present (Old_Disc) then
6128 Set_Corresponding_Discriminant
6129 (New_Disc, Old_Disc);
6130 end if;
6131
6132 Next (Selector);
6133 end loop;
6134 end;
6135 end if;
6136 end if;
6137
6138 Next (D_Constraint);
6139 end loop;
6140
6141 New_Disc := First_Discriminant (Derived_Type);
6142 while Present (New_Disc) loop
6143 if No (Corresponding_Discriminant (New_Disc)) then
6144 Error_Msg_NE
6145 ("new discriminant& must constrain old one", N, New_Disc);
6146
6147 elsif not
6148 Subtypes_Statically_Compatible
6149 (Etype (New_Disc),
6150 Etype (Corresponding_Discriminant (New_Disc)))
6151 then
6152 Error_Msg_NE
6153 ("& not statically compatible with parent discriminant",
6154 N, New_Disc);
6155 end if;
6156
6157 Next_Discriminant (New_Disc);
6158 end loop;
6159 end if;
6160
6161 elsif Present (Discriminant_Specifications (N)) then
6162 Error_Msg_N
6163 ("missing discriminant constraint in untagged derivation", N);
6164 end if;
6165
6166 -- The entity chain of the derived type includes the new discriminants
6167 -- but shares operations with the parent.
6168
6169 if Present (Discriminant_Specifications (N)) then
6170 Old_Disc := First_Discriminant (Parent_Type);
6171 while Present (Old_Disc) loop
6172 if No (Next_Entity (Old_Disc))
6173 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
6174 then
6175 Set_Next_Entity
6176 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
6177 exit;
6178 end if;
6179
6180 Next_Discriminant (Old_Disc);
6181 end loop;
6182
6183 else
6184 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
6185 if Has_Discriminants (Parent_Type) then
6186 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6187 Set_Discriminant_Constraint (
6188 Derived_Type, Discriminant_Constraint (Parent_Type));
6189 end if;
6190 end if;
6191
6192 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
6193
6194 Set_Has_Completion (Derived_Type);
6195
6196 if Corr_Decl_Needed then
6197 Set_Stored_Constraint (Derived_Type, New_Constraint);
6198 Insert_After (N, Corr_Decl);
6199 Analyze (Corr_Decl);
6200 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
6201 end if;
6202 end Build_Derived_Concurrent_Type;
6203
6204 ------------------------------------
6205 -- Build_Derived_Enumeration_Type --
6206 ------------------------------------
6207
6208 procedure Build_Derived_Enumeration_Type
6209 (N : Node_Id;
6210 Parent_Type : Entity_Id;
6211 Derived_Type : Entity_Id)
6212 is
6213 Loc : constant Source_Ptr := Sloc (N);
6214 Def : constant Node_Id := Type_Definition (N);
6215 Indic : constant Node_Id := Subtype_Indication (Def);
6216 Implicit_Base : Entity_Id;
6217 Literal : Entity_Id;
6218 New_Lit : Entity_Id;
6219 Literals_List : List_Id;
6220 Type_Decl : Node_Id;
6221 Hi, Lo : Node_Id;
6222 Rang_Expr : Node_Id;
6223
6224 begin
6225 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6226 -- not have explicit literals lists we need to process types derived
6227 -- from them specially. This is handled by Derived_Standard_Character.
6228 -- If the parent type is a generic type, there are no literals either,
6229 -- and we construct the same skeletal representation as for the generic
6230 -- parent type.
6231
6232 if Is_Standard_Character_Type (Parent_Type) then
6233 Derived_Standard_Character (N, Parent_Type, Derived_Type);
6234
6235 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
6236 declare
6237 Lo : Node_Id;
6238 Hi : Node_Id;
6239
6240 begin
6241 if Nkind (Indic) /= N_Subtype_Indication then
6242 Lo :=
6243 Make_Attribute_Reference (Loc,
6244 Attribute_Name => Name_First,
6245 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6246 Set_Etype (Lo, Derived_Type);
6247
6248 Hi :=
6249 Make_Attribute_Reference (Loc,
6250 Attribute_Name => Name_Last,
6251 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6252 Set_Etype (Hi, Derived_Type);
6253
6254 Set_Scalar_Range (Derived_Type,
6255 Make_Range (Loc,
6256 Low_Bound => Lo,
6257 High_Bound => Hi));
6258 else
6259
6260 -- Analyze subtype indication and verify compatibility
6261 -- with parent type.
6262
6263 if Base_Type (Process_Subtype (Indic, N)) /=
6264 Base_Type (Parent_Type)
6265 then
6266 Error_Msg_N
6267 ("illegal constraint for formal discrete type", N);
6268 end if;
6269 end if;
6270 end;
6271
6272 else
6273 -- If a constraint is present, analyze the bounds to catch
6274 -- premature usage of the derived literals.
6275
6276 if Nkind (Indic) = N_Subtype_Indication
6277 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
6278 then
6279 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
6280 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
6281 end if;
6282
6283 -- Introduce an implicit base type for the derived type even if there
6284 -- is no constraint attached to it, since this seems closer to the
6285 -- Ada semantics. Build a full type declaration tree for the derived
6286 -- type using the implicit base type as the defining identifier. The
6287 -- build a subtype declaration tree which applies the constraint (if
6288 -- any) have it replace the derived type declaration.
6289
6290 Literal := First_Literal (Parent_Type);
6291 Literals_List := New_List;
6292 while Present (Literal)
6293 and then Ekind (Literal) = E_Enumeration_Literal
6294 loop
6295 -- Literals of the derived type have the same representation as
6296 -- those of the parent type, but this representation can be
6297 -- overridden by an explicit representation clause. Indicate
6298 -- that there is no explicit representation given yet. These
6299 -- derived literals are implicit operations of the new type,
6300 -- and can be overridden by explicit ones.
6301
6302 if Nkind (Literal) = N_Defining_Character_Literal then
6303 New_Lit :=
6304 Make_Defining_Character_Literal (Loc, Chars (Literal));
6305 else
6306 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
6307 end if;
6308
6309 Set_Ekind (New_Lit, E_Enumeration_Literal);
6310 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
6311 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
6312 Set_Enumeration_Rep_Expr (New_Lit, Empty);
6313 Set_Alias (New_Lit, Literal);
6314 Set_Is_Known_Valid (New_Lit, True);
6315
6316 Append (New_Lit, Literals_List);
6317 Next_Literal (Literal);
6318 end loop;
6319
6320 Implicit_Base :=
6321 Make_Defining_Identifier (Sloc (Derived_Type),
6322 Chars => New_External_Name (Chars (Derived_Type), 'B'));
6323
6324 -- Indicate the proper nature of the derived type. This must be done
6325 -- before analysis of the literals, to recognize cases when a literal
6326 -- may be hidden by a previous explicit function definition (cf.
6327 -- c83031a).
6328
6329 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
6330 Set_Etype (Derived_Type, Implicit_Base);
6331
6332 Type_Decl :=
6333 Make_Full_Type_Declaration (Loc,
6334 Defining_Identifier => Implicit_Base,
6335 Discriminant_Specifications => No_List,
6336 Type_Definition =>
6337 Make_Enumeration_Type_Definition (Loc, Literals_List));
6338
6339 Mark_Rewrite_Insertion (Type_Decl);
6340 Insert_Before (N, Type_Decl);
6341 Analyze (Type_Decl);
6342
6343 -- After the implicit base is analyzed its Etype needs to be changed
6344 -- to reflect the fact that it is derived from the parent type which
6345 -- was ignored during analysis. We also set the size at this point.
6346
6347 Set_Etype (Implicit_Base, Parent_Type);
6348
6349 Set_Size_Info (Implicit_Base, Parent_Type);
6350 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
6351 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
6352
6353 -- Copy other flags from parent type
6354
6355 Set_Has_Non_Standard_Rep
6356 (Implicit_Base, Has_Non_Standard_Rep
6357 (Parent_Type));
6358 Set_Has_Pragma_Ordered
6359 (Implicit_Base, Has_Pragma_Ordered
6360 (Parent_Type));
6361 Set_Has_Delayed_Freeze (Implicit_Base);
6362
6363 -- Process the subtype indication including a validation check on the
6364 -- constraint, if any. If a constraint is given, its bounds must be
6365 -- implicitly converted to the new type.
6366
6367 if Nkind (Indic) = N_Subtype_Indication then
6368 declare
6369 R : constant Node_Id :=
6370 Range_Expression (Constraint (Indic));
6371
6372 begin
6373 if Nkind (R) = N_Range then
6374 Hi := Build_Scalar_Bound
6375 (High_Bound (R), Parent_Type, Implicit_Base);
6376 Lo := Build_Scalar_Bound
6377 (Low_Bound (R), Parent_Type, Implicit_Base);
6378
6379 else
6380 -- Constraint is a Range attribute. Replace with explicit
6381 -- mention of the bounds of the prefix, which must be a
6382 -- subtype.
6383
6384 Analyze (Prefix (R));
6385 Hi :=
6386 Convert_To (Implicit_Base,
6387 Make_Attribute_Reference (Loc,
6388 Attribute_Name => Name_Last,
6389 Prefix =>
6390 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6391
6392 Lo :=
6393 Convert_To (Implicit_Base,
6394 Make_Attribute_Reference (Loc,
6395 Attribute_Name => Name_First,
6396 Prefix =>
6397 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6398 end if;
6399 end;
6400
6401 else
6402 Hi :=
6403 Build_Scalar_Bound
6404 (Type_High_Bound (Parent_Type),
6405 Parent_Type, Implicit_Base);
6406 Lo :=
6407 Build_Scalar_Bound
6408 (Type_Low_Bound (Parent_Type),
6409 Parent_Type, Implicit_Base);
6410 end if;
6411
6412 Rang_Expr :=
6413 Make_Range (Loc,
6414 Low_Bound => Lo,
6415 High_Bound => Hi);
6416
6417 -- If we constructed a default range for the case where no range
6418 -- was given, then the expressions in the range must not freeze
6419 -- since they do not correspond to expressions in the source.
6420
6421 if Nkind (Indic) /= N_Subtype_Indication then
6422 Set_Must_Not_Freeze (Lo);
6423 Set_Must_Not_Freeze (Hi);
6424 Set_Must_Not_Freeze (Rang_Expr);
6425 end if;
6426
6427 Rewrite (N,
6428 Make_Subtype_Declaration (Loc,
6429 Defining_Identifier => Derived_Type,
6430 Subtype_Indication =>
6431 Make_Subtype_Indication (Loc,
6432 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6433 Constraint =>
6434 Make_Range_Constraint (Loc,
6435 Range_Expression => Rang_Expr))));
6436
6437 Analyze (N);
6438
6439 -- Propagate the aspects from the original type declaration to the
6440 -- declaration of the implicit base.
6441
6442 Move_Aspects (From => Original_Node (N), To => Type_Decl);
6443
6444 -- Apply a range check. Since this range expression doesn't have an
6445 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6446 -- this right???
6447
6448 if Nkind (Indic) = N_Subtype_Indication then
6449 Apply_Range_Check
6450 (Range_Expression (Constraint (Indic)), Parent_Type,
6451 Source_Typ => Entity (Subtype_Mark (Indic)));
6452 end if;
6453 end if;
6454 end Build_Derived_Enumeration_Type;
6455
6456 --------------------------------
6457 -- Build_Derived_Numeric_Type --
6458 --------------------------------
6459
6460 procedure Build_Derived_Numeric_Type
6461 (N : Node_Id;
6462 Parent_Type : Entity_Id;
6463 Derived_Type : Entity_Id)
6464 is
6465 Loc : constant Source_Ptr := Sloc (N);
6466 Tdef : constant Node_Id := Type_Definition (N);
6467 Indic : constant Node_Id := Subtype_Indication (Tdef);
6468 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6469 No_Constraint : constant Boolean := Nkind (Indic) /=
6470 N_Subtype_Indication;
6471 Implicit_Base : Entity_Id;
6472
6473 Lo : Node_Id;
6474 Hi : Node_Id;
6475
6476 begin
6477 -- Process the subtype indication including a validation check on
6478 -- the constraint if any.
6479
6480 Discard_Node (Process_Subtype (Indic, N));
6481
6482 -- Introduce an implicit base type for the derived type even if there
6483 -- is no constraint attached to it, since this seems closer to the Ada
6484 -- semantics.
6485
6486 Implicit_Base :=
6487 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6488
6489 Set_Etype (Implicit_Base, Parent_Base);
6490 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6491 Set_Size_Info (Implicit_Base, Parent_Base);
6492 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
6493 Set_Parent (Implicit_Base, Parent (Derived_Type));
6494 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
6495
6496 -- Set RM Size for discrete type or decimal fixed-point type
6497 -- Ordinary fixed-point is excluded, why???
6498
6499 if Is_Discrete_Type (Parent_Base)
6500 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
6501 then
6502 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
6503 end if;
6504
6505 Set_Has_Delayed_Freeze (Implicit_Base);
6506
6507 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
6508 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
6509
6510 Set_Scalar_Range (Implicit_Base,
6511 Make_Range (Loc,
6512 Low_Bound => Lo,
6513 High_Bound => Hi));
6514
6515 if Has_Infinities (Parent_Base) then
6516 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
6517 end if;
6518
6519 -- The Derived_Type, which is the entity of the declaration, is a
6520 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6521 -- absence of an explicit constraint.
6522
6523 Set_Etype (Derived_Type, Implicit_Base);
6524
6525 -- If we did not have a constraint, then the Ekind is set from the
6526 -- parent type (otherwise Process_Subtype has set the bounds)
6527
6528 if No_Constraint then
6529 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
6530 end if;
6531
6532 -- If we did not have a range constraint, then set the range from the
6533 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6534
6535 if No_Constraint or else not Has_Range_Constraint (Indic) then
6536 Set_Scalar_Range (Derived_Type,
6537 Make_Range (Loc,
6538 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
6539 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
6540 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6541
6542 if Has_Infinities (Parent_Type) then
6543 Set_Includes_Infinities (Scalar_Range (Derived_Type));
6544 end if;
6545
6546 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
6547 end if;
6548
6549 Set_Is_Descendent_Of_Address (Derived_Type,
6550 Is_Descendent_Of_Address (Parent_Type));
6551 Set_Is_Descendent_Of_Address (Implicit_Base,
6552 Is_Descendent_Of_Address (Parent_Type));
6553
6554 -- Set remaining type-specific fields, depending on numeric type
6555
6556 if Is_Modular_Integer_Type (Parent_Type) then
6557 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
6558
6559 Set_Non_Binary_Modulus
6560 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
6561
6562 Set_Is_Known_Valid
6563 (Implicit_Base, Is_Known_Valid (Parent_Base));
6564
6565 elsif Is_Floating_Point_Type (Parent_Type) then
6566
6567 -- Digits of base type is always copied from the digits value of
6568 -- the parent base type, but the digits of the derived type will
6569 -- already have been set if there was a constraint present.
6570
6571 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6572 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
6573
6574 if No_Constraint then
6575 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
6576 end if;
6577
6578 elsif Is_Fixed_Point_Type (Parent_Type) then
6579
6580 -- Small of base type and derived type are always copied from the
6581 -- parent base type, since smalls never change. The delta of the
6582 -- base type is also copied from the parent base type. However the
6583 -- delta of the derived type will have been set already if a
6584 -- constraint was present.
6585
6586 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
6587 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
6588 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
6589
6590 if No_Constraint then
6591 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
6592 end if;
6593
6594 -- The scale and machine radix in the decimal case are always
6595 -- copied from the parent base type.
6596
6597 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
6598 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
6599 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
6600
6601 Set_Machine_Radix_10
6602 (Derived_Type, Machine_Radix_10 (Parent_Base));
6603 Set_Machine_Radix_10
6604 (Implicit_Base, Machine_Radix_10 (Parent_Base));
6605
6606 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6607
6608 if No_Constraint then
6609 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
6610
6611 else
6612 -- the analysis of the subtype_indication sets the
6613 -- digits value of the derived type.
6614
6615 null;
6616 end if;
6617 end if;
6618 end if;
6619
6620 if Is_Integer_Type (Parent_Type) then
6621 Set_Has_Shift_Operator
6622 (Implicit_Base, Has_Shift_Operator (Parent_Type));
6623 end if;
6624
6625 -- The type of the bounds is that of the parent type, and they
6626 -- must be converted to the derived type.
6627
6628 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
6629
6630 -- The implicit_base should be frozen when the derived type is frozen,
6631 -- but note that it is used in the conversions of the bounds. For fixed
6632 -- types we delay the determination of the bounds until the proper
6633 -- freezing point. For other numeric types this is rejected by GCC, for
6634 -- reasons that are currently unclear (???), so we choose to freeze the
6635 -- implicit base now. In the case of integers and floating point types
6636 -- this is harmless because subsequent representation clauses cannot
6637 -- affect anything, but it is still baffling that we cannot use the
6638 -- same mechanism for all derived numeric types.
6639
6640 -- There is a further complication: actually some representation
6641 -- clauses can affect the implicit base type. For example, attribute
6642 -- definition clauses for stream-oriented attributes need to set the
6643 -- corresponding TSS entries on the base type, and this normally
6644 -- cannot be done after the base type is frozen, so the circuitry in
6645 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6646 -- and not use Set_TSS in this case.
6647
6648 -- There are also consequences for the case of delayed representation
6649 -- aspects for some cases. For example, a Size aspect is delayed and
6650 -- should not be evaluated to the freeze point. This early freezing
6651 -- means that the size attribute evaluation happens too early???
6652
6653 if Is_Fixed_Point_Type (Parent_Type) then
6654 Conditional_Delay (Implicit_Base, Parent_Type);
6655 else
6656 Freeze_Before (N, Implicit_Base);
6657 end if;
6658 end Build_Derived_Numeric_Type;
6659
6660 --------------------------------
6661 -- Build_Derived_Private_Type --
6662 --------------------------------
6663
6664 procedure Build_Derived_Private_Type
6665 (N : Node_Id;
6666 Parent_Type : Entity_Id;
6667 Derived_Type : Entity_Id;
6668 Is_Completion : Boolean;
6669 Derive_Subps : Boolean := True)
6670 is
6671 Loc : constant Source_Ptr := Sloc (N);
6672 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
6673 Par_Scope : constant Entity_Id := Scope (Par_Base);
6674 Full_N : constant Node_Id := New_Copy_Tree (N);
6675 Full_Der : Entity_Id := New_Copy (Derived_Type);
6676 Full_P : Entity_Id;
6677
6678 procedure Build_Full_Derivation;
6679 -- Build full derivation, i.e. derive from the full view
6680
6681 procedure Copy_And_Build;
6682 -- Copy derived type declaration, replace parent with its full view,
6683 -- and build derivation
6684
6685 ---------------------------
6686 -- Build_Full_Derivation --
6687 ---------------------------
6688
6689 procedure Build_Full_Derivation is
6690 begin
6691 -- If parent scope is not open, install the declarations
6692
6693 if not In_Open_Scopes (Par_Scope) then
6694 Install_Private_Declarations (Par_Scope);
6695 Install_Visible_Declarations (Par_Scope);
6696 Copy_And_Build;
6697 Uninstall_Declarations (Par_Scope);
6698
6699 -- If parent scope is open and in another unit, and parent has a
6700 -- completion, then the derivation is taking place in the visible
6701 -- part of a child unit. In that case retrieve the full view of
6702 -- the parent momentarily.
6703
6704 elsif not In_Same_Source_Unit (N, Parent_Type) then
6705 Full_P := Full_View (Parent_Type);
6706 Exchange_Declarations (Parent_Type);
6707 Copy_And_Build;
6708 Exchange_Declarations (Full_P);
6709
6710 -- Otherwise it is a local derivation
6711
6712 else
6713 Copy_And_Build;
6714 end if;
6715 end Build_Full_Derivation;
6716
6717 --------------------
6718 -- Copy_And_Build --
6719 --------------------
6720
6721 procedure Copy_And_Build is
6722 Full_Parent : Entity_Id := Parent_Type;
6723
6724 begin
6725 -- If the parent is itself derived from another private type,
6726 -- installing the private declarations has not affected its
6727 -- privacy status, so use its own full view explicitly.
6728
6729 if Is_Private_Type (Full_Parent)
6730 and then Present (Full_View (Full_Parent))
6731 then
6732 Full_Parent := Full_View (Full_Parent);
6733 end if;
6734
6735 -- And its underlying full view if necessary
6736
6737 if Is_Private_Type (Full_Parent)
6738 and then Present (Underlying_Full_View (Full_Parent))
6739 then
6740 Full_Parent := Underlying_Full_View (Full_Parent);
6741 end if;
6742
6743 -- For record, access and most enumeration types, derivation from
6744 -- the full view requires a fully-fledged declaration. In the other
6745 -- cases, just use an itype.
6746
6747 if Ekind (Full_Parent) in Record_Kind
6748 or else Ekind (Full_Parent) in Access_Kind
6749 or else
6750 (Ekind (Full_Parent) in Enumeration_Kind
6751 and then not Is_Standard_Character_Type (Full_Parent)
6752 and then not Is_Generic_Type (Root_Type (Full_Parent)))
6753 then
6754 -- Copy and adjust declaration to provide a completion for what
6755 -- is originally a private declaration. Indicate that full view
6756 -- is internally generated.
6757
6758 Set_Comes_From_Source (Full_N, False);
6759 Set_Comes_From_Source (Full_Der, False);
6760 Set_Parent (Full_Der, Full_N);
6761 Set_Defining_Identifier (Full_N, Full_Der);
6762
6763 -- If there are no constraints, adjust the subtype mark
6764
6765 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
6766 N_Subtype_Indication
6767 then
6768 Set_Subtype_Indication
6769 (Type_Definition (Full_N),
6770 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
6771 end if;
6772
6773 Insert_After (N, Full_N);
6774
6775 -- Build full view of derived type from full view of parent which
6776 -- is now installed. Subprograms have been derived on the partial
6777 -- view, the completion does not derive them anew.
6778
6779 if Ekind (Full_Parent) in Record_Kind then
6780
6781 -- If parent type is tagged, the completion inherits the proper
6782 -- primitive operations.
6783
6784 if Is_Tagged_Type (Parent_Type) then
6785 Build_Derived_Record_Type
6786 (Full_N, Full_Parent, Full_Der, Derive_Subps);
6787 else
6788 Build_Derived_Record_Type
6789 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
6790 end if;
6791
6792 else
6793 Build_Derived_Type
6794 (Full_N, Full_Parent, Full_Der,
6795 Is_Completion => False, Derive_Subps => False);
6796 end if;
6797
6798 -- The full declaration has been introduced into the tree and
6799 -- processed in the step above. It should not be analyzed again
6800 -- (when encountered later in the current list of declarations)
6801 -- to prevent spurious name conflicts. The full entity remains
6802 -- invisible.
6803
6804 Set_Analyzed (Full_N);
6805
6806 else
6807 Full_Der :=
6808 Make_Defining_Identifier (Sloc (Derived_Type),
6809 Chars => Chars (Derived_Type));
6810 Set_Is_Itype (Full_Der);
6811 Set_Associated_Node_For_Itype (Full_Der, N);
6812 Set_Parent (Full_Der, N);
6813 Build_Derived_Type
6814 (N, Full_Parent, Full_Der,
6815 Is_Completion => False, Derive_Subps => False);
6816 end if;
6817
6818 Set_Has_Private_Declaration (Full_Der);
6819 Set_Has_Private_Declaration (Derived_Type);
6820
6821 Set_Scope (Full_Der, Scope (Derived_Type));
6822 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
6823 Set_Has_Size_Clause (Full_Der, False);
6824 Set_Has_Alignment_Clause (Full_Der, False);
6825 Set_Has_Delayed_Freeze (Full_Der);
6826 Set_Is_Frozen (Full_Der, False);
6827 Set_Freeze_Node (Full_Der, Empty);
6828 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
6829 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
6830
6831 -- The convention on the base type may be set in the private part
6832 -- and not propagated to the subtype until later, so we obtain the
6833 -- convention from the base type of the parent.
6834
6835 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
6836 end Copy_And_Build;
6837
6838 -- Start of processing for Build_Derived_Private_Type
6839
6840 begin
6841 if Is_Tagged_Type (Parent_Type) then
6842 Full_P := Full_View (Parent_Type);
6843
6844 -- A type extension of a type with unknown discriminants is an
6845 -- indefinite type that the back-end cannot handle directly.
6846 -- We treat it as a private type, and build a completion that is
6847 -- derived from the full view of the parent, and hopefully has
6848 -- known discriminants.
6849
6850 -- If the full view of the parent type has an underlying record view,
6851 -- use it to generate the underlying record view of this derived type
6852 -- (required for chains of derivations with unknown discriminants).
6853
6854 -- Minor optimization: we avoid the generation of useless underlying
6855 -- record view entities if the private type declaration has unknown
6856 -- discriminants but its corresponding full view has no
6857 -- discriminants.
6858
6859 if Has_Unknown_Discriminants (Parent_Type)
6860 and then Present (Full_P)
6861 and then (Has_Discriminants (Full_P)
6862 or else Present (Underlying_Record_View (Full_P)))
6863 and then not In_Open_Scopes (Par_Scope)
6864 and then Expander_Active
6865 then
6866 declare
6867 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
6868 New_Ext : constant Node_Id :=
6869 Copy_Separate_Tree
6870 (Record_Extension_Part (Type_Definition (N)));
6871 Decl : Node_Id;
6872
6873 begin
6874 Build_Derived_Record_Type
6875 (N, Parent_Type, Derived_Type, Derive_Subps);
6876
6877 -- Build anonymous completion, as a derivation from the full
6878 -- view of the parent. This is not a completion in the usual
6879 -- sense, because the current type is not private.
6880
6881 Decl :=
6882 Make_Full_Type_Declaration (Loc,
6883 Defining_Identifier => Full_Der,
6884 Type_Definition =>
6885 Make_Derived_Type_Definition (Loc,
6886 Subtype_Indication =>
6887 New_Copy_Tree
6888 (Subtype_Indication (Type_Definition (N))),
6889 Record_Extension_Part => New_Ext));
6890
6891 -- If the parent type has an underlying record view, use it
6892 -- here to build the new underlying record view.
6893
6894 if Present (Underlying_Record_View (Full_P)) then
6895 pragma Assert
6896 (Nkind (Subtype_Indication (Type_Definition (Decl)))
6897 = N_Identifier);
6898 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
6899 Underlying_Record_View (Full_P));
6900 end if;
6901
6902 Install_Private_Declarations (Par_Scope);
6903 Install_Visible_Declarations (Par_Scope);
6904 Insert_Before (N, Decl);
6905
6906 -- Mark entity as an underlying record view before analysis,
6907 -- to avoid generating the list of its primitive operations
6908 -- (which is not really required for this entity) and thus
6909 -- prevent spurious errors associated with missing overriding
6910 -- of abstract primitives (overridden only for Derived_Type).
6911
6912 Set_Ekind (Full_Der, E_Record_Type);
6913 Set_Is_Underlying_Record_View (Full_Der);
6914 Set_Default_SSO (Full_Der);
6915
6916 Analyze (Decl);
6917
6918 pragma Assert (Has_Discriminants (Full_Der)
6919 and then not Has_Unknown_Discriminants (Full_Der));
6920
6921 Uninstall_Declarations (Par_Scope);
6922
6923 -- Freeze the underlying record view, to prevent generation of
6924 -- useless dispatching information, which is simply shared with
6925 -- the real derived type.
6926
6927 Set_Is_Frozen (Full_Der);
6928
6929 -- Set up links between real entity and underlying record view
6930
6931 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
6932 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
6933 end;
6934
6935 -- If discriminants are known, build derived record
6936
6937 else
6938 Build_Derived_Record_Type
6939 (N, Parent_Type, Derived_Type, Derive_Subps);
6940 end if;
6941
6942 return;
6943
6944 elsif Has_Discriminants (Parent_Type) then
6945 -- Build partial view of derived type from partial view of parent.
6946 -- This must be done before building the full derivation because the
6947 -- second derivation will modify the discriminants of the first and
6948 -- the discriminants are chained with the rest of the components in
6949 -- the full derivation.
6950
6951 Build_Derived_Record_Type
6952 (N, Parent_Type, Derived_Type, Derive_Subps);
6953
6954 -- Build the full derivation if this is not the anonymous derived
6955 -- base type created by Build_Derived_Record_Type in the constrained
6956 -- case (see point 5. of its head comment) since we build it for the
6957 -- derived subtype. And skip it for protected types altogether, as
6958 -- gigi does not use these types directly.
6959
6960 if Present (Full_View (Parent_Type))
6961 and then not Is_Itype (Derived_Type)
6962 and then not (Ekind (Full_View (Parent_Type)) in Protected_Kind)
6963 then
6964 declare
6965 Der_Base : constant Entity_Id := Base_Type (Derived_Type);
6966 Discr : Entity_Id;
6967 Last_Discr : Entity_Id;
6968
6969 begin
6970 -- If this is not a completion, construct the implicit full
6971 -- view by deriving from the full view of the parent type.
6972 -- But if this is a completion, the derived private type
6973 -- being built is a full view and the full derivation can
6974 -- only be its underlying full view.
6975
6976 Build_Full_Derivation;
6977
6978 if not Is_Completion then
6979 Set_Full_View (Derived_Type, Full_Der);
6980 else
6981 Set_Underlying_Full_View (Derived_Type, Full_Der);
6982 end if;
6983
6984 if not Is_Base_Type (Derived_Type) then
6985 Set_Full_View (Der_Base, Base_Type (Full_Der));
6986 end if;
6987
6988 -- Copy the discriminant list from full view to the partial
6989 -- view (base type and its subtype). Gigi requires that the
6990 -- partial and full views have the same discriminants.
6991
6992 -- Note that since the partial view points to discriminants
6993 -- in the full view, their scope will be that of the full
6994 -- view. This might cause some front end problems and need
6995 -- adjustment???
6996
6997 Discr := First_Discriminant (Base_Type (Full_Der));
6998 Set_First_Entity (Der_Base, Discr);
6999
7000 loop
7001 Last_Discr := Discr;
7002 Next_Discriminant (Discr);
7003 exit when No (Discr);
7004 end loop;
7005
7006 Set_Last_Entity (Der_Base, Last_Discr);
7007 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
7008 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
7009
7010 Set_Stored_Constraint
7011 (Full_Der, Stored_Constraint (Derived_Type));
7012 end;
7013 end if;
7014
7015 elsif Present (Full_View (Parent_Type))
7016 and then Has_Discriminants (Full_View (Parent_Type))
7017 then
7018 if Has_Unknown_Discriminants (Parent_Type)
7019 and then Nkind (Subtype_Indication (Type_Definition (N))) =
7020 N_Subtype_Indication
7021 then
7022 Error_Msg_N
7023 ("cannot constrain type with unknown discriminants",
7024 Subtype_Indication (Type_Definition (N)));
7025 return;
7026 end if;
7027
7028 -- If this is not a completion, construct the implicit full view by
7029 -- deriving from the full view of the parent type. But if this is a
7030 -- completion, the derived private type being built is a full view
7031 -- and the full derivation can only be its underlying full view.
7032
7033 Build_Full_Derivation;
7034
7035 if not Is_Completion then
7036 Set_Full_View (Derived_Type, Full_Der);
7037 else
7038 Set_Underlying_Full_View (Derived_Type, Full_Der);
7039 end if;
7040
7041 -- In any case, the primitive operations are inherited from the
7042 -- parent type, not from the internal full view.
7043
7044 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
7045
7046 if Derive_Subps then
7047 Derive_Subprograms (Parent_Type, Derived_Type);
7048 end if;
7049
7050 Set_Stored_Constraint (Derived_Type, No_Elist);
7051 Set_Is_Constrained
7052 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
7053
7054 else
7055 -- Untagged type, No discriminants on either view
7056
7057 if Nkind (Subtype_Indication (Type_Definition (N))) =
7058 N_Subtype_Indication
7059 then
7060 Error_Msg_N
7061 ("illegal constraint on type without discriminants", N);
7062 end if;
7063
7064 if Present (Discriminant_Specifications (N))
7065 and then Present (Full_View (Parent_Type))
7066 and then not Is_Tagged_Type (Full_View (Parent_Type))
7067 then
7068 Error_Msg_N ("cannot add discriminants to untagged type", N);
7069 end if;
7070
7071 Set_Stored_Constraint (Derived_Type, No_Elist);
7072 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7073 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
7074 Set_Has_Controlled_Component
7075 (Derived_Type, Has_Controlled_Component
7076 (Parent_Type));
7077
7078 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7079
7080 if not Is_Controlled (Parent_Type) then
7081 Set_Finalize_Storage_Only
7082 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
7083 end if;
7084
7085 -- If this is not a completion, construct the implicit full view by
7086 -- deriving from the full view of the parent type.
7087
7088 -- ??? If the parent is untagged private and its completion is
7089 -- tagged, this mechanism will not work because we cannot derive from
7090 -- the tagged full view unless we have an extension.
7091
7092 if Present (Full_View (Parent_Type))
7093 and then not Is_Tagged_Type (Full_View (Parent_Type))
7094 and then not Is_Completion
7095 then
7096 Build_Full_Derivation;
7097 Set_Full_View (Derived_Type, Full_Der);
7098 end if;
7099 end if;
7100
7101 Set_Has_Unknown_Discriminants (Derived_Type,
7102 Has_Unknown_Discriminants (Parent_Type));
7103
7104 if Is_Private_Type (Derived_Type) then
7105 Set_Private_Dependents (Derived_Type, New_Elmt_List);
7106 end if;
7107
7108 -- If the parent base type is in scope, add the derived type to its
7109 -- list of private dependents, because its full view may become
7110 -- visible subsequently (in a nested private part, a body, or in a
7111 -- further child unit).
7112
7113 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
7114 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
7115
7116 -- Check for unusual case where a type completed by a private
7117 -- derivation occurs within a package nested in a child unit, and
7118 -- the parent is declared in an ancestor.
7119
7120 if Is_Child_Unit (Scope (Current_Scope))
7121 and then Is_Completion
7122 and then In_Private_Part (Current_Scope)
7123 and then Scope (Parent_Type) /= Current_Scope
7124
7125 -- Note that if the parent has a completion in the private part,
7126 -- (which is itself a derivation from some other private type)
7127 -- it is that completion that is visible, there is no full view
7128 -- available, and no special processing is needed.
7129
7130 and then Present (Full_View (Parent_Type))
7131 then
7132 -- In this case, the full view of the parent type will become
7133 -- visible in the body of the enclosing child, and only then will
7134 -- the current type be possibly non-private. Build an underlying
7135 -- full view that will be installed when the enclosing child body
7136 -- is compiled.
7137
7138 if Present (Underlying_Full_View (Derived_Type)) then
7139 Full_Der := Underlying_Full_View (Derived_Type);
7140 else
7141 Build_Full_Derivation;
7142 Set_Underlying_Full_View (Derived_Type, Full_Der);
7143 end if;
7144
7145 -- The full view will be used to swap entities on entry/exit to
7146 -- the body, and must appear in the entity list for the package.
7147
7148 Append_Entity (Full_Der, Scope (Derived_Type));
7149 end if;
7150 end if;
7151 end Build_Derived_Private_Type;
7152
7153 -------------------------------
7154 -- Build_Derived_Record_Type --
7155 -------------------------------
7156
7157 -- 1. INTRODUCTION
7158
7159 -- Ideally we would like to use the same model of type derivation for
7160 -- tagged and untagged record types. Unfortunately this is not quite
7161 -- possible because the semantics of representation clauses is different
7162 -- for tagged and untagged records under inheritance. Consider the
7163 -- following:
7164
7165 -- type R (...) is [tagged] record ... end record;
7166 -- type T (...) is new R (...) [with ...];
7167
7168 -- The representation clauses for T can specify a completely different
7169 -- record layout from R's. Hence the same component can be placed in two
7170 -- very different positions in objects of type T and R. If R and T are
7171 -- tagged types, representation clauses for T can only specify the layout
7172 -- of non inherited components, thus components that are common in R and T
7173 -- have the same position in objects of type R and T.
7174
7175 -- This has two implications. The first is that the entire tree for R's
7176 -- declaration needs to be copied for T in the untagged case, so that T
7177 -- can be viewed as a record type of its own with its own representation
7178 -- clauses. The second implication is the way we handle discriminants.
7179 -- Specifically, in the untagged case we need a way to communicate to Gigi
7180 -- what are the real discriminants in the record, while for the semantics
7181 -- we need to consider those introduced by the user to rename the
7182 -- discriminants in the parent type. This is handled by introducing the
7183 -- notion of stored discriminants. See below for more.
7184
7185 -- Fortunately the way regular components are inherited can be handled in
7186 -- the same way in tagged and untagged types.
7187
7188 -- To complicate things a bit more the private view of a private extension
7189 -- cannot be handled in the same way as the full view (for one thing the
7190 -- semantic rules are somewhat different). We will explain what differs
7191 -- below.
7192
7193 -- 2. DISCRIMINANTS UNDER INHERITANCE
7194
7195 -- The semantic rules governing the discriminants of derived types are
7196 -- quite subtle.
7197
7198 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7199 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7200
7201 -- If parent type has discriminants, then the discriminants that are
7202 -- declared in the derived type are [3.4 (11)]:
7203
7204 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7205 -- there is one;
7206
7207 -- o Otherwise, each discriminant of the parent type (implicitly declared
7208 -- in the same order with the same specifications). In this case, the
7209 -- discriminants are said to be "inherited", or if unknown in the parent
7210 -- are also unknown in the derived type.
7211
7212 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7213
7214 -- o The parent subtype must be constrained;
7215
7216 -- o If the parent type is not a tagged type, then each discriminant of
7217 -- the derived type must be used in the constraint defining a parent
7218 -- subtype. [Implementation note: This ensures that the new discriminant
7219 -- can share storage with an existing discriminant.]
7220
7221 -- For the derived type each discriminant of the parent type is either
7222 -- inherited, constrained to equal some new discriminant of the derived
7223 -- type, or constrained to the value of an expression.
7224
7225 -- When inherited or constrained to equal some new discriminant, the
7226 -- parent discriminant and the discriminant of the derived type are said
7227 -- to "correspond".
7228
7229 -- If a discriminant of the parent type is constrained to a specific value
7230 -- in the derived type definition, then the discriminant is said to be
7231 -- "specified" by that derived type definition.
7232
7233 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7234
7235 -- We have spoken about stored discriminants in point 1 (introduction)
7236 -- above. There are two sort of stored discriminants: implicit and
7237 -- explicit. As long as the derived type inherits the same discriminants as
7238 -- the root record type, stored discriminants are the same as regular
7239 -- discriminants, and are said to be implicit. However, if any discriminant
7240 -- in the root type was renamed in the derived type, then the derived
7241 -- type will contain explicit stored discriminants. Explicit stored
7242 -- discriminants are discriminants in addition to the semantically visible
7243 -- discriminants defined for the derived type. Stored discriminants are
7244 -- used by Gigi to figure out what are the physical discriminants in
7245 -- objects of the derived type (see precise definition in einfo.ads).
7246 -- As an example, consider the following:
7247
7248 -- type R (D1, D2, D3 : Int) is record ... end record;
7249 -- type T1 is new R;
7250 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7251 -- type T3 is new T2;
7252 -- type T4 (Y : Int) is new T3 (Y, 99);
7253
7254 -- The following table summarizes the discriminants and stored
7255 -- discriminants in R and T1 through T4.
7256
7257 -- Type Discrim Stored Discrim Comment
7258 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7259 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7260 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7261 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7262 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7263
7264 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7265 -- find the corresponding discriminant in the parent type, while
7266 -- Original_Record_Component (abbreviated ORC below), the actual physical
7267 -- component that is renamed. Finally the field Is_Completely_Hidden
7268 -- (abbreviated ICH below) is set for all explicit stored discriminants
7269 -- (see einfo.ads for more info). For the above example this gives:
7270
7271 -- Discrim CD ORC ICH
7272 -- ^^^^^^^ ^^ ^^^ ^^^
7273 -- D1 in R empty itself no
7274 -- D2 in R empty itself no
7275 -- D3 in R empty itself no
7276
7277 -- D1 in T1 D1 in R itself no
7278 -- D2 in T1 D2 in R itself no
7279 -- D3 in T1 D3 in R itself no
7280
7281 -- X1 in T2 D3 in T1 D3 in T2 no
7282 -- X2 in T2 D1 in T1 D1 in T2 no
7283 -- D1 in T2 empty itself yes
7284 -- D2 in T2 empty itself yes
7285 -- D3 in T2 empty itself yes
7286
7287 -- X1 in T3 X1 in T2 D3 in T3 no
7288 -- X2 in T3 X2 in T2 D1 in T3 no
7289 -- D1 in T3 empty itself yes
7290 -- D2 in T3 empty itself yes
7291 -- D3 in T3 empty itself yes
7292
7293 -- Y in T4 X1 in T3 D3 in T3 no
7294 -- D1 in T3 empty itself yes
7295 -- D2 in T3 empty itself yes
7296 -- D3 in T3 empty itself yes
7297
7298 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7299
7300 -- Type derivation for tagged types is fairly straightforward. If no
7301 -- discriminants are specified by the derived type, these are inherited
7302 -- from the parent. No explicit stored discriminants are ever necessary.
7303 -- The only manipulation that is done to the tree is that of adding a
7304 -- _parent field with parent type and constrained to the same constraint
7305 -- specified for the parent in the derived type definition. For instance:
7306
7307 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7308 -- type T1 is new R with null record;
7309 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7310
7311 -- are changed into:
7312
7313 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7314 -- _parent : R (D1, D2, D3);
7315 -- end record;
7316
7317 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7318 -- _parent : T1 (X2, 88, X1);
7319 -- end record;
7320
7321 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7322 -- ORC and ICH fields are:
7323
7324 -- Discrim CD ORC ICH
7325 -- ^^^^^^^ ^^ ^^^ ^^^
7326 -- D1 in R empty itself no
7327 -- D2 in R empty itself no
7328 -- D3 in R empty itself no
7329
7330 -- D1 in T1 D1 in R D1 in R no
7331 -- D2 in T1 D2 in R D2 in R no
7332 -- D3 in T1 D3 in R D3 in R no
7333
7334 -- X1 in T2 D3 in T1 D3 in R no
7335 -- X2 in T2 D1 in T1 D1 in R no
7336
7337 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7338 --
7339 -- Regardless of whether we dealing with a tagged or untagged type
7340 -- we will transform all derived type declarations of the form
7341 --
7342 -- type T is new R (...) [with ...];
7343 -- or
7344 -- subtype S is R (...);
7345 -- type T is new S [with ...];
7346 -- into
7347 -- type BT is new R [with ...];
7348 -- subtype T is BT (...);
7349 --
7350 -- That is, the base derived type is constrained only if it has no
7351 -- discriminants. The reason for doing this is that GNAT's semantic model
7352 -- assumes that a base type with discriminants is unconstrained.
7353 --
7354 -- Note that, strictly speaking, the above transformation is not always
7355 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7356 --
7357 -- procedure B34011A is
7358 -- type REC (D : integer := 0) is record
7359 -- I : Integer;
7360 -- end record;
7361
7362 -- package P is
7363 -- type T6 is new Rec;
7364 -- function F return T6;
7365 -- end P;
7366
7367 -- use P;
7368 -- package Q6 is
7369 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7370 -- end Q6;
7371 --
7372 -- The definition of Q6.U is illegal. However transforming Q6.U into
7373
7374 -- type BaseU is new T6;
7375 -- subtype U is BaseU (Q6.F.I)
7376
7377 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7378 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7379 -- the transformation described above.
7380
7381 -- There is another instance where the above transformation is incorrect.
7382 -- Consider:
7383
7384 -- package Pack is
7385 -- type Base (D : Integer) is tagged null record;
7386 -- procedure P (X : Base);
7387
7388 -- type Der is new Base (2) with null record;
7389 -- procedure P (X : Der);
7390 -- end Pack;
7391
7392 -- Then the above transformation turns this into
7393
7394 -- type Der_Base is new Base with null record;
7395 -- -- procedure P (X : Base) is implicitly inherited here
7396 -- -- as procedure P (X : Der_Base).
7397
7398 -- subtype Der is Der_Base (2);
7399 -- procedure P (X : Der);
7400 -- -- The overriding of P (X : Der_Base) is illegal since we
7401 -- -- have a parameter conformance problem.
7402
7403 -- To get around this problem, after having semantically processed Der_Base
7404 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7405 -- Discriminant_Constraint from Der so that when parameter conformance is
7406 -- checked when P is overridden, no semantic errors are flagged.
7407
7408 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7409
7410 -- Regardless of whether we are dealing with a tagged or untagged type
7411 -- we will transform all derived type declarations of the form
7412
7413 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7414 -- type T is new R [with ...];
7415 -- into
7416 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7417
7418 -- The reason for such transformation is that it allows us to implement a
7419 -- very clean form of component inheritance as explained below.
7420
7421 -- Note that this transformation is not achieved by direct tree rewriting
7422 -- and manipulation, but rather by redoing the semantic actions that the
7423 -- above transformation will entail. This is done directly in routine
7424 -- Inherit_Components.
7425
7426 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7427
7428 -- In both tagged and untagged derived types, regular non discriminant
7429 -- components are inherited in the derived type from the parent type. In
7430 -- the absence of discriminants component, inheritance is straightforward
7431 -- as components can simply be copied from the parent.
7432
7433 -- If the parent has discriminants, inheriting components constrained with
7434 -- these discriminants requires caution. Consider the following example:
7435
7436 -- type R (D1, D2 : Positive) is [tagged] record
7437 -- S : String (D1 .. D2);
7438 -- end record;
7439
7440 -- type T1 is new R [with null record];
7441 -- type T2 (X : positive) is new R (1, X) [with null record];
7442
7443 -- As explained in 6. above, T1 is rewritten as
7444 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7445 -- which makes the treatment for T1 and T2 identical.
7446
7447 -- What we want when inheriting S, is that references to D1 and D2 in R are
7448 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7449 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7450 -- with either discriminant references in the derived type or expressions.
7451 -- This replacement is achieved as follows: before inheriting R's
7452 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7453 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7454 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7455 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7456 -- by String (1 .. X).
7457
7458 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7459
7460 -- We explain here the rules governing private type extensions relevant to
7461 -- type derivation. These rules are explained on the following example:
7462
7463 -- type D [(...)] is new A [(...)] with private; <-- partial view
7464 -- type D [(...)] is new P [(...)] with null record; <-- full view
7465
7466 -- Type A is called the ancestor subtype of the private extension.
7467 -- Type P is the parent type of the full view of the private extension. It
7468 -- must be A or a type derived from A.
7469
7470 -- The rules concerning the discriminants of private type extensions are
7471 -- [7.3(10-13)]:
7472
7473 -- o If a private extension inherits known discriminants from the ancestor
7474 -- subtype, then the full view must also inherit its discriminants from
7475 -- the ancestor subtype and the parent subtype of the full view must be
7476 -- constrained if and only if the ancestor subtype is constrained.
7477
7478 -- o If a partial view has unknown discriminants, then the full view may
7479 -- define a definite or an indefinite subtype, with or without
7480 -- discriminants.
7481
7482 -- o If a partial view has neither known nor unknown discriminants, then
7483 -- the full view must define a definite subtype.
7484
7485 -- o If the ancestor subtype of a private extension has constrained
7486 -- discriminants, then the parent subtype of the full view must impose a
7487 -- statically matching constraint on those discriminants.
7488
7489 -- This means that only the following forms of private extensions are
7490 -- allowed:
7491
7492 -- type D is new A with private; <-- partial view
7493 -- type D is new P with null record; <-- full view
7494
7495 -- If A has no discriminants than P has no discriminants, otherwise P must
7496 -- inherit A's discriminants.
7497
7498 -- type D is new A (...) with private; <-- partial view
7499 -- type D is new P (:::) with null record; <-- full view
7500
7501 -- P must inherit A's discriminants and (...) and (:::) must statically
7502 -- match.
7503
7504 -- subtype A is R (...);
7505 -- type D is new A with private; <-- partial view
7506 -- type D is new P with null record; <-- full view
7507
7508 -- P must have inherited R's discriminants and must be derived from A or
7509 -- any of its subtypes.
7510
7511 -- type D (..) is new A with private; <-- partial view
7512 -- type D (..) is new P [(:::)] with null record; <-- full view
7513
7514 -- No specific constraints on P's discriminants or constraint (:::).
7515 -- Note that A can be unconstrained, but the parent subtype P must either
7516 -- be constrained or (:::) must be present.
7517
7518 -- type D (..) is new A [(...)] with private; <-- partial view
7519 -- type D (..) is new P [(:::)] with null record; <-- full view
7520
7521 -- P's constraints on A's discriminants must statically match those
7522 -- imposed by (...).
7523
7524 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7525
7526 -- The full view of a private extension is handled exactly as described
7527 -- above. The model chose for the private view of a private extension is
7528 -- the same for what concerns discriminants (i.e. they receive the same
7529 -- treatment as in the tagged case). However, the private view of the
7530 -- private extension always inherits the components of the parent base,
7531 -- without replacing any discriminant reference. Strictly speaking this is
7532 -- incorrect. However, Gigi never uses this view to generate code so this
7533 -- is a purely semantic issue. In theory, a set of transformations similar
7534 -- to those given in 5. and 6. above could be applied to private views of
7535 -- private extensions to have the same model of component inheritance as
7536 -- for non private extensions. However, this is not done because it would
7537 -- further complicate private type processing. Semantically speaking, this
7538 -- leaves us in an uncomfortable situation. As an example consider:
7539
7540 -- package Pack is
7541 -- type R (D : integer) is tagged record
7542 -- S : String (1 .. D);
7543 -- end record;
7544 -- procedure P (X : R);
7545 -- type T is new R (1) with private;
7546 -- private
7547 -- type T is new R (1) with null record;
7548 -- end;
7549
7550 -- This is transformed into:
7551
7552 -- package Pack is
7553 -- type R (D : integer) is tagged record
7554 -- S : String (1 .. D);
7555 -- end record;
7556 -- procedure P (X : R);
7557 -- type T is new R (1) with private;
7558 -- private
7559 -- type BaseT is new R with null record;
7560 -- subtype T is BaseT (1);
7561 -- end;
7562
7563 -- (strictly speaking the above is incorrect Ada)
7564
7565 -- From the semantic standpoint the private view of private extension T
7566 -- should be flagged as constrained since one can clearly have
7567 --
7568 -- Obj : T;
7569 --
7570 -- in a unit withing Pack. However, when deriving subprograms for the
7571 -- private view of private extension T, T must be seen as unconstrained
7572 -- since T has discriminants (this is a constraint of the current
7573 -- subprogram derivation model). Thus, when processing the private view of
7574 -- a private extension such as T, we first mark T as unconstrained, we
7575 -- process it, we perform program derivation and just before returning from
7576 -- Build_Derived_Record_Type we mark T as constrained.
7577
7578 -- ??? Are there are other uncomfortable cases that we will have to
7579 -- deal with.
7580
7581 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7582
7583 -- Types that are derived from a visible record type and have a private
7584 -- extension present other peculiarities. They behave mostly like private
7585 -- types, but if they have primitive operations defined, these will not
7586 -- have the proper signatures for further inheritance, because other
7587 -- primitive operations will use the implicit base that we define for
7588 -- private derivations below. This affect subprogram inheritance (see
7589 -- Derive_Subprograms for details). We also derive the implicit base from
7590 -- the base type of the full view, so that the implicit base is a record
7591 -- type and not another private type, This avoids infinite loops.
7592
7593 procedure Build_Derived_Record_Type
7594 (N : Node_Id;
7595 Parent_Type : Entity_Id;
7596 Derived_Type : Entity_Id;
7597 Derive_Subps : Boolean := True)
7598 is
7599 Discriminant_Specs : constant Boolean :=
7600 Present (Discriminant_Specifications (N));
7601 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
7602 Loc : constant Source_Ptr := Sloc (N);
7603 Private_Extension : constant Boolean :=
7604 Nkind (N) = N_Private_Extension_Declaration;
7605 Assoc_List : Elist_Id;
7606 Constraint_Present : Boolean;
7607 Constrs : Elist_Id;
7608 Discrim : Entity_Id;
7609 Indic : Node_Id;
7610 Inherit_Discrims : Boolean := False;
7611 Last_Discrim : Entity_Id;
7612 New_Base : Entity_Id;
7613 New_Decl : Node_Id;
7614 New_Discrs : Elist_Id;
7615 New_Indic : Node_Id;
7616 Parent_Base : Entity_Id;
7617 Save_Etype : Entity_Id;
7618 Save_Discr_Constr : Elist_Id;
7619 Save_Next_Entity : Entity_Id;
7620 Type_Def : Node_Id;
7621
7622 Discs : Elist_Id := New_Elmt_List;
7623 -- An empty Discs list means that there were no constraints in the
7624 -- subtype indication or that there was an error processing it.
7625
7626 begin
7627 if Ekind (Parent_Type) = E_Record_Type_With_Private
7628 and then Present (Full_View (Parent_Type))
7629 and then Has_Discriminants (Parent_Type)
7630 then
7631 Parent_Base := Base_Type (Full_View (Parent_Type));
7632 else
7633 Parent_Base := Base_Type (Parent_Type);
7634 end if;
7635
7636 -- AI05-0115 : if this is a derivation from a private type in some
7637 -- other scope that may lead to invisible components for the derived
7638 -- type, mark it accordingly.
7639
7640 if Is_Private_Type (Parent_Type) then
7641 if Scope (Parent_Type) = Scope (Derived_Type) then
7642 null;
7643
7644 elsif In_Open_Scopes (Scope (Parent_Type))
7645 and then In_Private_Part (Scope (Parent_Type))
7646 then
7647 null;
7648
7649 else
7650 Set_Has_Private_Ancestor (Derived_Type);
7651 end if;
7652
7653 else
7654 Set_Has_Private_Ancestor
7655 (Derived_Type, Has_Private_Ancestor (Parent_Type));
7656 end if;
7657
7658 -- Before we start the previously documented transformations, here is
7659 -- little fix for size and alignment of tagged types. Normally when we
7660 -- derive type D from type P, we copy the size and alignment of P as the
7661 -- default for D, and in the absence of explicit representation clauses
7662 -- for D, the size and alignment are indeed the same as the parent.
7663
7664 -- But this is wrong for tagged types, since fields may be added, and
7665 -- the default size may need to be larger, and the default alignment may
7666 -- need to be larger.
7667
7668 -- We therefore reset the size and alignment fields in the tagged case.
7669 -- Note that the size and alignment will in any case be at least as
7670 -- large as the parent type (since the derived type has a copy of the
7671 -- parent type in the _parent field)
7672
7673 -- The type is also marked as being tagged here, which is needed when
7674 -- processing components with a self-referential anonymous access type
7675 -- in the call to Check_Anonymous_Access_Components below. Note that
7676 -- this flag is also set later on for completeness.
7677
7678 if Is_Tagged then
7679 Set_Is_Tagged_Type (Derived_Type);
7680 Init_Size_Align (Derived_Type);
7681 end if;
7682
7683 -- STEP 0a: figure out what kind of derived type declaration we have
7684
7685 if Private_Extension then
7686 Type_Def := N;
7687 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
7688 Set_Default_SSO (Derived_Type);
7689
7690 else
7691 Type_Def := Type_Definition (N);
7692
7693 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7694 -- Parent_Base can be a private type or private extension. However,
7695 -- for tagged types with an extension the newly added fields are
7696 -- visible and hence the Derived_Type is always an E_Record_Type.
7697 -- (except that the parent may have its own private fields).
7698 -- For untagged types we preserve the Ekind of the Parent_Base.
7699
7700 if Present (Record_Extension_Part (Type_Def)) then
7701 Set_Ekind (Derived_Type, E_Record_Type);
7702 Set_Default_SSO (Derived_Type);
7703
7704 -- Create internal access types for components with anonymous
7705 -- access types.
7706
7707 if Ada_Version >= Ada_2005 then
7708 Check_Anonymous_Access_Components
7709 (N, Derived_Type, Derived_Type,
7710 Component_List (Record_Extension_Part (Type_Def)));
7711 end if;
7712
7713 else
7714 Set_Ekind (Derived_Type, Ekind (Parent_Base));
7715 end if;
7716 end if;
7717
7718 -- Indic can either be an N_Identifier if the subtype indication
7719 -- contains no constraint or an N_Subtype_Indication if the subtype
7720 -- indication has a constraint.
7721
7722 Indic := Subtype_Indication (Type_Def);
7723 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
7724
7725 -- Check that the type has visible discriminants. The type may be
7726 -- a private type with unknown discriminants whose full view has
7727 -- discriminants which are invisible.
7728
7729 if Constraint_Present then
7730 if not Has_Discriminants (Parent_Base)
7731 or else
7732 (Has_Unknown_Discriminants (Parent_Base)
7733 and then Is_Private_Type (Parent_Base))
7734 then
7735 Error_Msg_N
7736 ("invalid constraint: type has no discriminant",
7737 Constraint (Indic));
7738
7739 Constraint_Present := False;
7740 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7741
7742 elsif Is_Constrained (Parent_Type) then
7743 Error_Msg_N
7744 ("invalid constraint: parent type is already constrained",
7745 Constraint (Indic));
7746
7747 Constraint_Present := False;
7748 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7749 end if;
7750 end if;
7751
7752 -- STEP 0b: If needed, apply transformation given in point 5. above
7753
7754 if not Private_Extension
7755 and then Has_Discriminants (Parent_Type)
7756 and then not Discriminant_Specs
7757 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
7758 then
7759 -- First, we must analyze the constraint (see comment in point 5.)
7760 -- The constraint may come from the subtype indication of the full
7761 -- declaration.
7762
7763 if Constraint_Present then
7764 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
7765
7766 -- If there is no explicit constraint, there might be one that is
7767 -- inherited from a constrained parent type. In that case verify that
7768 -- it conforms to the constraint in the partial view. In perverse
7769 -- cases the parent subtypes of the partial and full view can have
7770 -- different constraints.
7771
7772 elsif Present (Stored_Constraint (Parent_Type)) then
7773 New_Discrs := Stored_Constraint (Parent_Type);
7774
7775 else
7776 New_Discrs := No_Elist;
7777 end if;
7778
7779 if Has_Discriminants (Derived_Type)
7780 and then Has_Private_Declaration (Derived_Type)
7781 and then Present (Discriminant_Constraint (Derived_Type))
7782 and then Present (New_Discrs)
7783 then
7784 -- Verify that constraints of the full view statically match
7785 -- those given in the partial view.
7786
7787 declare
7788 C1, C2 : Elmt_Id;
7789
7790 begin
7791 C1 := First_Elmt (New_Discrs);
7792 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
7793 while Present (C1) and then Present (C2) loop
7794 if Fully_Conformant_Expressions (Node (C1), Node (C2))
7795 or else
7796 (Is_OK_Static_Expression (Node (C1))
7797 and then Is_OK_Static_Expression (Node (C2))
7798 and then
7799 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
7800 then
7801 null;
7802
7803 else
7804 if Constraint_Present then
7805 Error_Msg_N
7806 ("constraint not conformant to previous declaration",
7807 Node (C1));
7808 else
7809 Error_Msg_N
7810 ("constraint of full view is incompatible "
7811 & "with partial view", N);
7812 end if;
7813 end if;
7814
7815 Next_Elmt (C1);
7816 Next_Elmt (C2);
7817 end loop;
7818 end;
7819 end if;
7820
7821 -- Insert and analyze the declaration for the unconstrained base type
7822
7823 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
7824
7825 New_Decl :=
7826 Make_Full_Type_Declaration (Loc,
7827 Defining_Identifier => New_Base,
7828 Type_Definition =>
7829 Make_Derived_Type_Definition (Loc,
7830 Abstract_Present => Abstract_Present (Type_Def),
7831 Limited_Present => Limited_Present (Type_Def),
7832 Subtype_Indication =>
7833 New_Occurrence_Of (Parent_Base, Loc),
7834 Record_Extension_Part =>
7835 Relocate_Node (Record_Extension_Part (Type_Def)),
7836 Interface_List => Interface_List (Type_Def)));
7837
7838 Set_Parent (New_Decl, Parent (N));
7839 Mark_Rewrite_Insertion (New_Decl);
7840 Insert_Before (N, New_Decl);
7841
7842 -- In the extension case, make sure ancestor is frozen appropriately
7843 -- (see also non-discriminated case below).
7844
7845 if Present (Record_Extension_Part (Type_Def))
7846 or else Is_Interface (Parent_Base)
7847 then
7848 Freeze_Before (New_Decl, Parent_Type);
7849 end if;
7850
7851 -- Note that this call passes False for the Derive_Subps parameter
7852 -- because subprogram derivation is deferred until after creating
7853 -- the subtype (see below).
7854
7855 Build_Derived_Type
7856 (New_Decl, Parent_Base, New_Base,
7857 Is_Completion => False, Derive_Subps => False);
7858
7859 -- ??? This needs re-examination to determine whether the
7860 -- above call can simply be replaced by a call to Analyze.
7861
7862 Set_Analyzed (New_Decl);
7863
7864 -- Insert and analyze the declaration for the constrained subtype
7865
7866 if Constraint_Present then
7867 New_Indic :=
7868 Make_Subtype_Indication (Loc,
7869 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7870 Constraint => Relocate_Node (Constraint (Indic)));
7871
7872 else
7873 declare
7874 Constr_List : constant List_Id := New_List;
7875 C : Elmt_Id;
7876 Expr : Node_Id;
7877
7878 begin
7879 C := First_Elmt (Discriminant_Constraint (Parent_Type));
7880 while Present (C) loop
7881 Expr := Node (C);
7882
7883 -- It is safe here to call New_Copy_Tree since
7884 -- Force_Evaluation was called on each constraint in
7885 -- Build_Discriminant_Constraints.
7886
7887 Append (New_Copy_Tree (Expr), To => Constr_List);
7888
7889 Next_Elmt (C);
7890 end loop;
7891
7892 New_Indic :=
7893 Make_Subtype_Indication (Loc,
7894 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7895 Constraint =>
7896 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
7897 end;
7898 end if;
7899
7900 Rewrite (N,
7901 Make_Subtype_Declaration (Loc,
7902 Defining_Identifier => Derived_Type,
7903 Subtype_Indication => New_Indic));
7904
7905 Analyze (N);
7906
7907 -- Derivation of subprograms must be delayed until the full subtype
7908 -- has been established, to ensure proper overriding of subprograms
7909 -- inherited by full types. If the derivations occurred as part of
7910 -- the call to Build_Derived_Type above, then the check for type
7911 -- conformance would fail because earlier primitive subprograms
7912 -- could still refer to the full type prior the change to the new
7913 -- subtype and hence would not match the new base type created here.
7914 -- Subprograms are not derived, however, when Derive_Subps is False
7915 -- (since otherwise there could be redundant derivations).
7916
7917 if Derive_Subps then
7918 Derive_Subprograms (Parent_Type, Derived_Type);
7919 end if;
7920
7921 -- For tagged types the Discriminant_Constraint of the new base itype
7922 -- is inherited from the first subtype so that no subtype conformance
7923 -- problem arise when the first subtype overrides primitive
7924 -- operations inherited by the implicit base type.
7925
7926 if Is_Tagged then
7927 Set_Discriminant_Constraint
7928 (New_Base, Discriminant_Constraint (Derived_Type));
7929 end if;
7930
7931 return;
7932 end if;
7933
7934 -- If we get here Derived_Type will have no discriminants or it will be
7935 -- a discriminated unconstrained base type.
7936
7937 -- STEP 1a: perform preliminary actions/checks for derived tagged types
7938
7939 if Is_Tagged then
7940
7941 -- The parent type is frozen for non-private extensions (RM 13.14(7))
7942 -- The declaration of a specific descendant of an interface type
7943 -- freezes the interface type (RM 13.14).
7944
7945 if not Private_Extension or else Is_Interface (Parent_Base) then
7946 Freeze_Before (N, Parent_Type);
7947 end if;
7948
7949 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
7950 -- cannot be declared at a deeper level than its parent type is
7951 -- removed. The check on derivation within a generic body is also
7952 -- relaxed, but there's a restriction that a derived tagged type
7953 -- cannot be declared in a generic body if it's derived directly
7954 -- or indirectly from a formal type of that generic.
7955
7956 if Ada_Version >= Ada_2005 then
7957 if Present (Enclosing_Generic_Body (Derived_Type)) then
7958 declare
7959 Ancestor_Type : Entity_Id;
7960
7961 begin
7962 -- Check to see if any ancestor of the derived type is a
7963 -- formal type.
7964
7965 Ancestor_Type := Parent_Type;
7966 while not Is_Generic_Type (Ancestor_Type)
7967 and then Etype (Ancestor_Type) /= Ancestor_Type
7968 loop
7969 Ancestor_Type := Etype (Ancestor_Type);
7970 end loop;
7971
7972 -- If the derived type does have a formal type as an
7973 -- ancestor, then it's an error if the derived type is
7974 -- declared within the body of the generic unit that
7975 -- declares the formal type in its generic formal part. It's
7976 -- sufficient to check whether the ancestor type is declared
7977 -- inside the same generic body as the derived type (such as
7978 -- within a nested generic spec), in which case the
7979 -- derivation is legal. If the formal type is declared
7980 -- outside of that generic body, then it's guaranteed that
7981 -- the derived type is declared within the generic body of
7982 -- the generic unit declaring the formal type.
7983
7984 if Is_Generic_Type (Ancestor_Type)
7985 and then Enclosing_Generic_Body (Ancestor_Type) /=
7986 Enclosing_Generic_Body (Derived_Type)
7987 then
7988 Error_Msg_NE
7989 ("parent type of& must not be descendant of formal type"
7990 & " of an enclosing generic body",
7991 Indic, Derived_Type);
7992 end if;
7993 end;
7994 end if;
7995
7996 elsif Type_Access_Level (Derived_Type) /=
7997 Type_Access_Level (Parent_Type)
7998 and then not Is_Generic_Type (Derived_Type)
7999 then
8000 if Is_Controlled (Parent_Type) then
8001 Error_Msg_N
8002 ("controlled type must be declared at the library level",
8003 Indic);
8004 else
8005 Error_Msg_N
8006 ("type extension at deeper accessibility level than parent",
8007 Indic);
8008 end if;
8009
8010 else
8011 declare
8012 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
8013 begin
8014 if Present (GB)
8015 and then GB /= Enclosing_Generic_Body (Parent_Base)
8016 then
8017 Error_Msg_NE
8018 ("parent type of& must not be outside generic body"
8019 & " (RM 3.9.1(4))",
8020 Indic, Derived_Type);
8021 end if;
8022 end;
8023 end if;
8024 end if;
8025
8026 -- Ada 2005 (AI-251)
8027
8028 if Ada_Version >= Ada_2005 and then Is_Tagged then
8029
8030 -- "The declaration of a specific descendant of an interface type
8031 -- freezes the interface type" (RM 13.14).
8032
8033 declare
8034 Iface : Node_Id;
8035 begin
8036 if Is_Non_Empty_List (Interface_List (Type_Def)) then
8037 Iface := First (Interface_List (Type_Def));
8038 while Present (Iface) loop
8039 Freeze_Before (N, Etype (Iface));
8040 Next (Iface);
8041 end loop;
8042 end if;
8043 end;
8044 end if;
8045
8046 -- STEP 1b : preliminary cleanup of the full view of private types
8047
8048 -- If the type is already marked as having discriminants, then it's the
8049 -- completion of a private type or private extension and we need to
8050 -- retain the discriminants from the partial view if the current
8051 -- declaration has Discriminant_Specifications so that we can verify
8052 -- conformance. However, we must remove any existing components that
8053 -- were inherited from the parent (and attached in Copy_And_Swap)
8054 -- because the full type inherits all appropriate components anyway, and
8055 -- we do not want the partial view's components interfering.
8056
8057 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
8058 Discrim := First_Discriminant (Derived_Type);
8059 loop
8060 Last_Discrim := Discrim;
8061 Next_Discriminant (Discrim);
8062 exit when No (Discrim);
8063 end loop;
8064
8065 Set_Last_Entity (Derived_Type, Last_Discrim);
8066
8067 -- In all other cases wipe out the list of inherited components (even
8068 -- inherited discriminants), it will be properly rebuilt here.
8069
8070 else
8071 Set_First_Entity (Derived_Type, Empty);
8072 Set_Last_Entity (Derived_Type, Empty);
8073 end if;
8074
8075 -- STEP 1c: Initialize some flags for the Derived_Type
8076
8077 -- The following flags must be initialized here so that
8078 -- Process_Discriminants can check that discriminants of tagged types do
8079 -- not have a default initial value and that access discriminants are
8080 -- only specified for limited records. For completeness, these flags are
8081 -- also initialized along with all the other flags below.
8082
8083 -- AI-419: Limitedness is not inherited from an interface parent, so to
8084 -- be limited in that case the type must be explicitly declared as
8085 -- limited. However, task and protected interfaces are always limited.
8086
8087 if Limited_Present (Type_Def) then
8088 Set_Is_Limited_Record (Derived_Type);
8089
8090 elsif Is_Limited_Record (Parent_Type)
8091 or else (Present (Full_View (Parent_Type))
8092 and then Is_Limited_Record (Full_View (Parent_Type)))
8093 then
8094 if not Is_Interface (Parent_Type)
8095 or else Is_Synchronized_Interface (Parent_Type)
8096 or else Is_Protected_Interface (Parent_Type)
8097 or else Is_Task_Interface (Parent_Type)
8098 then
8099 Set_Is_Limited_Record (Derived_Type);
8100 end if;
8101 end if;
8102
8103 -- STEP 2a: process discriminants of derived type if any
8104
8105 Push_Scope (Derived_Type);
8106
8107 if Discriminant_Specs then
8108 Set_Has_Unknown_Discriminants (Derived_Type, False);
8109
8110 -- The following call initializes fields Has_Discriminants and
8111 -- Discriminant_Constraint, unless we are processing the completion
8112 -- of a private type declaration.
8113
8114 Check_Or_Process_Discriminants (N, Derived_Type);
8115
8116 -- For untagged types, the constraint on the Parent_Type must be
8117 -- present and is used to rename the discriminants.
8118
8119 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
8120 Error_Msg_N ("untagged parent must have discriminants", Indic);
8121
8122 elsif not Is_Tagged and then not Constraint_Present then
8123 Error_Msg_N
8124 ("discriminant constraint needed for derived untagged records",
8125 Indic);
8126
8127 -- Otherwise the parent subtype must be constrained unless we have a
8128 -- private extension.
8129
8130 elsif not Constraint_Present
8131 and then not Private_Extension
8132 and then not Is_Constrained (Parent_Type)
8133 then
8134 Error_Msg_N
8135 ("unconstrained type not allowed in this context", Indic);
8136
8137 elsif Constraint_Present then
8138 -- The following call sets the field Corresponding_Discriminant
8139 -- for the discriminants in the Derived_Type.
8140
8141 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
8142
8143 -- For untagged types all new discriminants must rename
8144 -- discriminants in the parent. For private extensions new
8145 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8146
8147 Discrim := First_Discriminant (Derived_Type);
8148 while Present (Discrim) loop
8149 if not Is_Tagged
8150 and then No (Corresponding_Discriminant (Discrim))
8151 then
8152 Error_Msg_N
8153 ("new discriminants must constrain old ones", Discrim);
8154
8155 elsif Private_Extension
8156 and then Present (Corresponding_Discriminant (Discrim))
8157 then
8158 Error_Msg_N
8159 ("only static constraints allowed for parent"
8160 & " discriminants in the partial view", Indic);
8161 exit;
8162 end if;
8163
8164 -- If a new discriminant is used in the constraint, then its
8165 -- subtype must be statically compatible with the parent
8166 -- discriminant's subtype (3.7(15)).
8167
8168 -- However, if the record contains an array constrained by
8169 -- the discriminant but with some different bound, the compiler
8170 -- attemps to create a smaller range for the discriminant type.
8171 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8172 -- the discriminant type is a scalar type, the check must use
8173 -- the original discriminant type in the parent declaration.
8174
8175 declare
8176 Corr_Disc : constant Entity_Id :=
8177 Corresponding_Discriminant (Discrim);
8178 Disc_Type : constant Entity_Id := Etype (Discrim);
8179 Corr_Type : Entity_Id;
8180
8181 begin
8182 if Present (Corr_Disc) then
8183 if Is_Scalar_Type (Disc_Type) then
8184 Corr_Type :=
8185 Entity (Discriminant_Type (Parent (Corr_Disc)));
8186 else
8187 Corr_Type := Etype (Corr_Disc);
8188 end if;
8189
8190 if not
8191 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
8192 then
8193 Error_Msg_N
8194 ("subtype must be compatible "
8195 & "with parent discriminant",
8196 Discrim);
8197 end if;
8198 end if;
8199 end;
8200
8201 Next_Discriminant (Discrim);
8202 end loop;
8203
8204 -- Check whether the constraints of the full view statically
8205 -- match those imposed by the parent subtype [7.3(13)].
8206
8207 if Present (Stored_Constraint (Derived_Type)) then
8208 declare
8209 C1, C2 : Elmt_Id;
8210
8211 begin
8212 C1 := First_Elmt (Discs);
8213 C2 := First_Elmt (Stored_Constraint (Derived_Type));
8214 while Present (C1) and then Present (C2) loop
8215 if not
8216 Fully_Conformant_Expressions (Node (C1), Node (C2))
8217 then
8218 Error_Msg_N
8219 ("not conformant with previous declaration",
8220 Node (C1));
8221 end if;
8222
8223 Next_Elmt (C1);
8224 Next_Elmt (C2);
8225 end loop;
8226 end;
8227 end if;
8228 end if;
8229
8230 -- STEP 2b: No new discriminants, inherit discriminants if any
8231
8232 else
8233 if Private_Extension then
8234 Set_Has_Unknown_Discriminants
8235 (Derived_Type,
8236 Has_Unknown_Discriminants (Parent_Type)
8237 or else Unknown_Discriminants_Present (N));
8238
8239 -- The partial view of the parent may have unknown discriminants,
8240 -- but if the full view has discriminants and the parent type is
8241 -- in scope they must be inherited.
8242
8243 elsif Has_Unknown_Discriminants (Parent_Type)
8244 and then
8245 (not Has_Discriminants (Parent_Type)
8246 or else not In_Open_Scopes (Scope (Parent_Type)))
8247 then
8248 Set_Has_Unknown_Discriminants (Derived_Type);
8249 end if;
8250
8251 if not Has_Unknown_Discriminants (Derived_Type)
8252 and then not Has_Unknown_Discriminants (Parent_Base)
8253 and then Has_Discriminants (Parent_Type)
8254 then
8255 Inherit_Discrims := True;
8256 Set_Has_Discriminants
8257 (Derived_Type, True);
8258 Set_Discriminant_Constraint
8259 (Derived_Type, Discriminant_Constraint (Parent_Base));
8260 end if;
8261
8262 -- The following test is true for private types (remember
8263 -- transformation 5. is not applied to those) and in an error
8264 -- situation.
8265
8266 if Constraint_Present then
8267 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
8268 end if;
8269
8270 -- For now mark a new derived type as constrained only if it has no
8271 -- discriminants. At the end of Build_Derived_Record_Type we properly
8272 -- set this flag in the case of private extensions. See comments in
8273 -- point 9. just before body of Build_Derived_Record_Type.
8274
8275 Set_Is_Constrained
8276 (Derived_Type,
8277 not (Inherit_Discrims
8278 or else Has_Unknown_Discriminants (Derived_Type)));
8279 end if;
8280
8281 -- STEP 3: initialize fields of derived type
8282
8283 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
8284 Set_Stored_Constraint (Derived_Type, No_Elist);
8285
8286 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8287 -- but cannot be interfaces
8288
8289 if not Private_Extension
8290 and then Ekind (Derived_Type) /= E_Private_Type
8291 and then Ekind (Derived_Type) /= E_Limited_Private_Type
8292 then
8293 if Interface_Present (Type_Def) then
8294 Analyze_Interface_Declaration (Derived_Type, Type_Def);
8295 end if;
8296
8297 Set_Interfaces (Derived_Type, No_Elist);
8298 end if;
8299
8300 -- Fields inherited from the Parent_Type
8301
8302 Set_Has_Specified_Layout
8303 (Derived_Type, Has_Specified_Layout (Parent_Type));
8304 Set_Is_Limited_Composite
8305 (Derived_Type, Is_Limited_Composite (Parent_Type));
8306 Set_Is_Private_Composite
8307 (Derived_Type, Is_Private_Composite (Parent_Type));
8308
8309 if Is_Tagged_Type (Parent_Type) then
8310 Set_No_Tagged_Streams_Pragma
8311 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
8312 end if;
8313
8314 -- Fields inherited from the Parent_Base
8315
8316 Set_Has_Controlled_Component
8317 (Derived_Type, Has_Controlled_Component (Parent_Base));
8318 Set_Has_Non_Standard_Rep
8319 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8320 Set_Has_Primitive_Operations
8321 (Derived_Type, Has_Primitive_Operations (Parent_Base));
8322
8323 -- Fields inherited from the Parent_Base in the non-private case
8324
8325 if Ekind (Derived_Type) = E_Record_Type then
8326 Set_Has_Complex_Representation
8327 (Derived_Type, Has_Complex_Representation (Parent_Base));
8328 end if;
8329
8330 -- Fields inherited from the Parent_Base for record types
8331
8332 if Is_Record_Type (Derived_Type) then
8333 declare
8334 Parent_Full : Entity_Id;
8335
8336 begin
8337 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8338 -- Parent_Base can be a private type or private extension. Go
8339 -- to the full view here to get the E_Record_Type specific flags.
8340
8341 if Present (Full_View (Parent_Base)) then
8342 Parent_Full := Full_View (Parent_Base);
8343 else
8344 Parent_Full := Parent_Base;
8345 end if;
8346
8347 Set_OK_To_Reorder_Components
8348 (Derived_Type, OK_To_Reorder_Components (Parent_Full));
8349 end;
8350 end if;
8351
8352 -- Set fields for private derived types
8353
8354 if Is_Private_Type (Derived_Type) then
8355 Set_Depends_On_Private (Derived_Type, True);
8356 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8357
8358 -- Inherit fields from non private record types. If this is the
8359 -- completion of a derivation from a private type, the parent itself
8360 -- is private, and the attributes come from its full view, which must
8361 -- be present.
8362
8363 else
8364 if Is_Private_Type (Parent_Base)
8365 and then not Is_Record_Type (Parent_Base)
8366 then
8367 Set_Component_Alignment
8368 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
8369 Set_C_Pass_By_Copy
8370 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
8371 else
8372 Set_Component_Alignment
8373 (Derived_Type, Component_Alignment (Parent_Base));
8374 Set_C_Pass_By_Copy
8375 (Derived_Type, C_Pass_By_Copy (Parent_Base));
8376 end if;
8377 end if;
8378
8379 -- Set fields for tagged types
8380
8381 if Is_Tagged then
8382 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
8383
8384 -- All tagged types defined in Ada.Finalization are controlled
8385
8386 if Chars (Scope (Derived_Type)) = Name_Finalization
8387 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
8388 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
8389 then
8390 Set_Is_Controlled (Derived_Type);
8391 else
8392 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
8393 end if;
8394
8395 -- Minor optimization: there is no need to generate the class-wide
8396 -- entity associated with an underlying record view.
8397
8398 if not Is_Underlying_Record_View (Derived_Type) then
8399 Make_Class_Wide_Type (Derived_Type);
8400 end if;
8401
8402 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
8403
8404 if Has_Discriminants (Derived_Type)
8405 and then Constraint_Present
8406 then
8407 Set_Stored_Constraint
8408 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
8409 end if;
8410
8411 if Ada_Version >= Ada_2005 then
8412 declare
8413 Ifaces_List : Elist_Id;
8414
8415 begin
8416 -- Checks rules 3.9.4 (13/2 and 14/2)
8417
8418 if Comes_From_Source (Derived_Type)
8419 and then not Is_Private_Type (Derived_Type)
8420 and then Is_Interface (Parent_Type)
8421 and then not Is_Interface (Derived_Type)
8422 then
8423 if Is_Task_Interface (Parent_Type) then
8424 Error_Msg_N
8425 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8426 Derived_Type);
8427
8428 elsif Is_Protected_Interface (Parent_Type) then
8429 Error_Msg_N
8430 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8431 Derived_Type);
8432 end if;
8433 end if;
8434
8435 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8436
8437 Check_Interfaces (N, Type_Def);
8438
8439 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8440 -- not already in the parents.
8441
8442 Collect_Interfaces
8443 (T => Derived_Type,
8444 Ifaces_List => Ifaces_List,
8445 Exclude_Parents => True);
8446
8447 Set_Interfaces (Derived_Type, Ifaces_List);
8448
8449 -- If the derived type is the anonymous type created for
8450 -- a declaration whose parent has a constraint, propagate
8451 -- the interface list to the source type. This must be done
8452 -- prior to the completion of the analysis of the source type
8453 -- because the components in the extension may contain current
8454 -- instances whose legality depends on some ancestor.
8455
8456 if Is_Itype (Derived_Type) then
8457 declare
8458 Def : constant Node_Id :=
8459 Associated_Node_For_Itype (Derived_Type);
8460 begin
8461 if Present (Def)
8462 and then Nkind (Def) = N_Full_Type_Declaration
8463 then
8464 Set_Interfaces
8465 (Defining_Identifier (Def), Ifaces_List);
8466 end if;
8467 end;
8468 end if;
8469 end;
8470 end if;
8471
8472 else
8473 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
8474 Set_Has_Non_Standard_Rep
8475 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8476 end if;
8477
8478 -- STEP 4: Inherit components from the parent base and constrain them.
8479 -- Apply the second transformation described in point 6. above.
8480
8481 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
8482 or else not Has_Discriminants (Parent_Type)
8483 or else not Is_Constrained (Parent_Type)
8484 then
8485 Constrs := Discs;
8486 else
8487 Constrs := Discriminant_Constraint (Parent_Type);
8488 end if;
8489
8490 Assoc_List :=
8491 Inherit_Components
8492 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
8493
8494 -- STEP 5a: Copy the parent record declaration for untagged types
8495
8496 if not Is_Tagged then
8497
8498 -- Discriminant_Constraint (Derived_Type) has been properly
8499 -- constructed. Save it and temporarily set it to Empty because we
8500 -- do not want the call to New_Copy_Tree below to mess this list.
8501
8502 if Has_Discriminants (Derived_Type) then
8503 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
8504 Set_Discriminant_Constraint (Derived_Type, No_Elist);
8505 else
8506 Save_Discr_Constr := No_Elist;
8507 end if;
8508
8509 -- Save the Etype field of Derived_Type. It is correctly set now,
8510 -- but the call to New_Copy tree may remap it to point to itself,
8511 -- which is not what we want. Ditto for the Next_Entity field.
8512
8513 Save_Etype := Etype (Derived_Type);
8514 Save_Next_Entity := Next_Entity (Derived_Type);
8515
8516 -- Assoc_List maps all stored discriminants in the Parent_Base to
8517 -- stored discriminants in the Derived_Type. It is fundamental that
8518 -- no types or itypes with discriminants other than the stored
8519 -- discriminants appear in the entities declared inside
8520 -- Derived_Type, since the back end cannot deal with it.
8521
8522 New_Decl :=
8523 New_Copy_Tree
8524 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
8525
8526 -- Restore the fields saved prior to the New_Copy_Tree call
8527 -- and compute the stored constraint.
8528
8529 Set_Etype (Derived_Type, Save_Etype);
8530 Set_Next_Entity (Derived_Type, Save_Next_Entity);
8531
8532 if Has_Discriminants (Derived_Type) then
8533 Set_Discriminant_Constraint
8534 (Derived_Type, Save_Discr_Constr);
8535 Set_Stored_Constraint
8536 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
8537 Replace_Components (Derived_Type, New_Decl);
8538 Set_Has_Implicit_Dereference
8539 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
8540 end if;
8541
8542 -- Insert the new derived type declaration
8543
8544 Rewrite (N, New_Decl);
8545
8546 -- STEP 5b: Complete the processing for record extensions in generics
8547
8548 -- There is no completion for record extensions declared in the
8549 -- parameter part of a generic, so we need to complete processing for
8550 -- these generic record extensions here. The Record_Type_Definition call
8551 -- will change the Ekind of the components from E_Void to E_Component.
8552
8553 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
8554 Record_Type_Definition (Empty, Derived_Type);
8555
8556 -- STEP 5c: Process the record extension for non private tagged types
8557
8558 elsif not Private_Extension then
8559 Expand_Record_Extension (Derived_Type, Type_Def);
8560
8561 -- Note : previously in ASIS mode we set the Parent_Subtype of the
8562 -- derived type to propagate some semantic information. This led
8563 -- to other ASIS failures and has been removed.
8564
8565 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8566 -- implemented interfaces if we are in expansion mode
8567
8568 if Expander_Active
8569 and then Has_Interfaces (Derived_Type)
8570 then
8571 Add_Interface_Tag_Components (N, Derived_Type);
8572 end if;
8573
8574 -- Analyze the record extension
8575
8576 Record_Type_Definition
8577 (Record_Extension_Part (Type_Def), Derived_Type);
8578 end if;
8579
8580 End_Scope;
8581
8582 -- Nothing else to do if there is an error in the derivation.
8583 -- An unusual case: the full view may be derived from a type in an
8584 -- instance, when the partial view was used illegally as an actual
8585 -- in that instance, leading to a circular definition.
8586
8587 if Etype (Derived_Type) = Any_Type
8588 or else Etype (Parent_Type) = Derived_Type
8589 then
8590 return;
8591 end if;
8592
8593 -- Set delayed freeze and then derive subprograms, we need to do
8594 -- this in this order so that derived subprograms inherit the
8595 -- derived freeze if necessary.
8596
8597 Set_Has_Delayed_Freeze (Derived_Type);
8598
8599 if Derive_Subps then
8600 Derive_Subprograms (Parent_Type, Derived_Type);
8601 end if;
8602
8603 -- If we have a private extension which defines a constrained derived
8604 -- type mark as constrained here after we have derived subprograms. See
8605 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8606
8607 if Private_Extension and then Inherit_Discrims then
8608 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
8609 Set_Is_Constrained (Derived_Type, True);
8610 Set_Discriminant_Constraint (Derived_Type, Discs);
8611
8612 elsif Is_Constrained (Parent_Type) then
8613 Set_Is_Constrained
8614 (Derived_Type, True);
8615 Set_Discriminant_Constraint
8616 (Derived_Type, Discriminant_Constraint (Parent_Type));
8617 end if;
8618 end if;
8619
8620 -- Update the class-wide type, which shares the now-completed entity
8621 -- list with its specific type. In case of underlying record views,
8622 -- we do not generate the corresponding class wide entity.
8623
8624 if Is_Tagged
8625 and then not Is_Underlying_Record_View (Derived_Type)
8626 then
8627 Set_First_Entity
8628 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
8629 Set_Last_Entity
8630 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
8631 end if;
8632
8633 Check_Function_Writable_Actuals (N);
8634 end Build_Derived_Record_Type;
8635
8636 ------------------------
8637 -- Build_Derived_Type --
8638 ------------------------
8639
8640 procedure Build_Derived_Type
8641 (N : Node_Id;
8642 Parent_Type : Entity_Id;
8643 Derived_Type : Entity_Id;
8644 Is_Completion : Boolean;
8645 Derive_Subps : Boolean := True)
8646 is
8647 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
8648
8649 begin
8650 -- Set common attributes
8651
8652 Set_Scope (Derived_Type, Current_Scope);
8653
8654 Set_Etype (Derived_Type, Parent_Base);
8655 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8656 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
8657 Set_Has_Protected (Derived_Type, Has_Protected (Parent_Base));
8658
8659 Set_Size_Info (Derived_Type, Parent_Type);
8660 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
8661 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
8662 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
8663
8664 if Is_Tagged_Type (Derived_Type) then
8665 Set_No_Tagged_Streams_Pragma
8666 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
8667 end if;
8668
8669 -- If the parent has primitive routines, set the derived type link
8670
8671 if Has_Primitive_Operations (Parent_Type) then
8672 Set_Derived_Type_Link (Parent_Base, Derived_Type);
8673 end if;
8674
8675 -- If the parent type is a private subtype, the convention on the base
8676 -- type may be set in the private part, and not propagated to the
8677 -- subtype until later, so we obtain the convention from the base type.
8678
8679 Set_Convention (Derived_Type, Convention (Parent_Base));
8680
8681 -- Set SSO default for record or array type
8682
8683 if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type))
8684 and then Is_Base_Type (Derived_Type)
8685 then
8686 Set_Default_SSO (Derived_Type);
8687 end if;
8688
8689 -- Propagate invariant information. The new type has invariants if
8690 -- they are inherited from the parent type, and these invariants can
8691 -- be further inherited, so both flags are set.
8692
8693 -- We similarly inherit predicates
8694
8695 if Has_Predicates (Parent_Type) then
8696 Set_Has_Predicates (Derived_Type);
8697 end if;
8698
8699 -- The derived type inherits the representation clauses of the parent.
8700 -- However, for a private type that is completed by a derivation, there
8701 -- may be operation attributes that have been specified already (stream
8702 -- attributes and External_Tag) and those must be provided. Finally, if
8703 -- the partial view is a private extension, the representation items of
8704 -- the parent have been inherited already, and should not be chained
8705 -- twice to the derived type.
8706
8707 -- Historic note: The guard below used to check whether the parent type
8708 -- is tagged. This is no longer needed because an untagged derived type
8709 -- may carry rep items of its own as a result of certain SPARK pragmas.
8710 -- With the old guard in place, the rep items of the derived type were
8711 -- clobbered.
8712
8713 if Present (First_Rep_Item (Derived_Type)) then
8714 declare
8715 Par_Item : constant Node_Id := First_Rep_Item (Parent_Type);
8716 Inherited : Boolean := False;
8717 Item : Node_Id;
8718 Last_Item : Node_Id;
8719
8720 begin
8721 -- Inspect the rep item chain of the derived type and perform the
8722 -- following two functions:
8723 -- 1) Determine whether the derived type already inherited the
8724 -- rep items of the parent type.
8725 -- 2) Find the last rep item of the derived type
8726
8727 Item := First_Rep_Item (Derived_Type);
8728 Last_Item := Item;
8729 while Present (Item) loop
8730 if Item = Par_Item then
8731 Inherited := True;
8732 exit;
8733 end if;
8734
8735 Last_Item := Item;
8736 Item := Next_Rep_Item (Item);
8737 end loop;
8738
8739 -- Nothing to do if the derived type already inherited the rep
8740 -- items from the parent type, otherwise append the parent rep
8741 -- item chain to that of the derived type.
8742
8743 if not Inherited then
8744 Set_Next_Rep_Item (Last_Item, Par_Item);
8745 end if;
8746 end;
8747
8748 -- Otherwise the derived type lacks rep items and directly inherits the
8749 -- rep items of the parent type.
8750
8751 else
8752 Set_First_Rep_Item (Derived_Type, First_Rep_Item (Parent_Type));
8753 end if;
8754
8755 -- Propagate the attributes related to pragma Default_Initial_Condition
8756 -- from the parent type to the private extension. A derived type always
8757 -- inherits the default initial condition flag from the parent type. If
8758 -- the derived type carries its own Default_Initial_Condition pragma,
8759 -- the flag is later reset in Analyze_Pragma. Note that both flags are
8760 -- mutually exclusive.
8761
8762 Propagate_Default_Init_Cond_Attributes
8763 (From_Typ => Parent_Type,
8764 To_Typ => Derived_Type,
8765 Parent_To_Derivation => True);
8766
8767 -- If the parent type has delayed rep aspects, then mark the derived
8768 -- type as possibly inheriting a delayed rep aspect.
8769
8770 if Has_Delayed_Rep_Aspects (Parent_Type) then
8771 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
8772 end if;
8773
8774 -- Type dependent processing
8775
8776 case Ekind (Parent_Type) is
8777 when Numeric_Kind =>
8778 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
8779
8780 when Array_Kind =>
8781 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
8782
8783 when E_Record_Type
8784 | E_Record_Subtype
8785 | Class_Wide_Kind =>
8786 Build_Derived_Record_Type
8787 (N, Parent_Type, Derived_Type, Derive_Subps);
8788 return;
8789
8790 when Enumeration_Kind =>
8791 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
8792
8793 when Access_Kind =>
8794 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
8795
8796 when Incomplete_Or_Private_Kind =>
8797 Build_Derived_Private_Type
8798 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
8799
8800 -- For discriminated types, the derivation includes deriving
8801 -- primitive operations. For others it is done below.
8802
8803 if Is_Tagged_Type (Parent_Type)
8804 or else Has_Discriminants (Parent_Type)
8805 or else (Present (Full_View (Parent_Type))
8806 and then Has_Discriminants (Full_View (Parent_Type)))
8807 then
8808 return;
8809 end if;
8810
8811 when Concurrent_Kind =>
8812 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
8813
8814 when others =>
8815 raise Program_Error;
8816 end case;
8817
8818 -- Nothing more to do if some error occurred
8819
8820 if Etype (Derived_Type) = Any_Type then
8821 return;
8822 end if;
8823
8824 -- Set delayed freeze and then derive subprograms, we need to do this
8825 -- in this order so that derived subprograms inherit the derived freeze
8826 -- if necessary.
8827
8828 Set_Has_Delayed_Freeze (Derived_Type);
8829
8830 if Derive_Subps then
8831 Derive_Subprograms (Parent_Type, Derived_Type);
8832 end if;
8833
8834 Set_Has_Primitive_Operations
8835 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
8836 end Build_Derived_Type;
8837
8838 -----------------------
8839 -- Build_Discriminal --
8840 -----------------------
8841
8842 procedure Build_Discriminal (Discrim : Entity_Id) is
8843 D_Minal : Entity_Id;
8844 CR_Disc : Entity_Id;
8845
8846 begin
8847 -- A discriminal has the same name as the discriminant
8848
8849 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8850
8851 Set_Ekind (D_Minal, E_In_Parameter);
8852 Set_Mechanism (D_Minal, Default_Mechanism);
8853 Set_Etype (D_Minal, Etype (Discrim));
8854 Set_Scope (D_Minal, Current_Scope);
8855
8856 Set_Discriminal (Discrim, D_Minal);
8857 Set_Discriminal_Link (D_Minal, Discrim);
8858
8859 -- For task types, build at once the discriminants of the corresponding
8860 -- record, which are needed if discriminants are used in entry defaults
8861 -- and in family bounds.
8862
8863 if Is_Concurrent_Type (Current_Scope)
8864 or else
8865 Is_Limited_Type (Current_Scope)
8866 then
8867 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8868
8869 Set_Ekind (CR_Disc, E_In_Parameter);
8870 Set_Mechanism (CR_Disc, Default_Mechanism);
8871 Set_Etype (CR_Disc, Etype (Discrim));
8872 Set_Scope (CR_Disc, Current_Scope);
8873 Set_Discriminal_Link (CR_Disc, Discrim);
8874 Set_CR_Discriminant (Discrim, CR_Disc);
8875 end if;
8876 end Build_Discriminal;
8877
8878 ------------------------------------
8879 -- Build_Discriminant_Constraints --
8880 ------------------------------------
8881
8882 function Build_Discriminant_Constraints
8883 (T : Entity_Id;
8884 Def : Node_Id;
8885 Derived_Def : Boolean := False) return Elist_Id
8886 is
8887 C : constant Node_Id := Constraint (Def);
8888 Nb_Discr : constant Nat := Number_Discriminants (T);
8889
8890 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
8891 -- Saves the expression corresponding to a given discriminant in T
8892
8893 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
8894 -- Return the Position number within array Discr_Expr of a discriminant
8895 -- D within the discriminant list of the discriminated type T.
8896
8897 procedure Process_Discriminant_Expression
8898 (Expr : Node_Id;
8899 D : Entity_Id);
8900 -- If this is a discriminant constraint on a partial view, do not
8901 -- generate an overflow check on the discriminant expression. The check
8902 -- will be generated when constraining the full view. Otherwise the
8903 -- backend creates duplicate symbols for the temporaries corresponding
8904 -- to the expressions to be checked, causing spurious assembler errors.
8905
8906 ------------------
8907 -- Pos_Of_Discr --
8908 ------------------
8909
8910 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
8911 Disc : Entity_Id;
8912
8913 begin
8914 Disc := First_Discriminant (T);
8915 for J in Discr_Expr'Range loop
8916 if Disc = D then
8917 return J;
8918 end if;
8919
8920 Next_Discriminant (Disc);
8921 end loop;
8922
8923 -- Note: Since this function is called on discriminants that are
8924 -- known to belong to the discriminated type, falling through the
8925 -- loop with no match signals an internal compiler error.
8926
8927 raise Program_Error;
8928 end Pos_Of_Discr;
8929
8930 -------------------------------------
8931 -- Process_Discriminant_Expression --
8932 -------------------------------------
8933
8934 procedure Process_Discriminant_Expression
8935 (Expr : Node_Id;
8936 D : Entity_Id)
8937 is
8938 BDT : constant Entity_Id := Base_Type (Etype (D));
8939
8940 begin
8941 -- If this is a discriminant constraint on a partial view, do
8942 -- not generate an overflow on the discriminant expression. The
8943 -- check will be generated when constraining the full view.
8944
8945 if Is_Private_Type (T)
8946 and then Present (Full_View (T))
8947 then
8948 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
8949 else
8950 Analyze_And_Resolve (Expr, BDT);
8951 end if;
8952 end Process_Discriminant_Expression;
8953
8954 -- Declarations local to Build_Discriminant_Constraints
8955
8956 Discr : Entity_Id;
8957 E : Entity_Id;
8958 Elist : constant Elist_Id := New_Elmt_List;
8959
8960 Constr : Node_Id;
8961 Expr : Node_Id;
8962 Id : Node_Id;
8963 Position : Nat;
8964 Found : Boolean;
8965
8966 Discrim_Present : Boolean := False;
8967
8968 -- Start of processing for Build_Discriminant_Constraints
8969
8970 begin
8971 -- The following loop will process positional associations only.
8972 -- For a positional association, the (single) discriminant is
8973 -- implicitly specified by position, in textual order (RM 3.7.2).
8974
8975 Discr := First_Discriminant (T);
8976 Constr := First (Constraints (C));
8977 for D in Discr_Expr'Range loop
8978 exit when Nkind (Constr) = N_Discriminant_Association;
8979
8980 if No (Constr) then
8981 Error_Msg_N ("too few discriminants given in constraint", C);
8982 return New_Elmt_List;
8983
8984 elsif Nkind (Constr) = N_Range
8985 or else (Nkind (Constr) = N_Attribute_Reference
8986 and then Attribute_Name (Constr) = Name_Range)
8987 then
8988 Error_Msg_N
8989 ("a range is not a valid discriminant constraint", Constr);
8990 Discr_Expr (D) := Error;
8991
8992 else
8993 Process_Discriminant_Expression (Constr, Discr);
8994 Discr_Expr (D) := Constr;
8995 end if;
8996
8997 Next_Discriminant (Discr);
8998 Next (Constr);
8999 end loop;
9000
9001 if No (Discr) and then Present (Constr) then
9002 Error_Msg_N ("too many discriminants given in constraint", Constr);
9003 return New_Elmt_List;
9004 end if;
9005
9006 -- Named associations can be given in any order, but if both positional
9007 -- and named associations are used in the same discriminant constraint,
9008 -- then positional associations must occur first, at their normal
9009 -- position. Hence once a named association is used, the rest of the
9010 -- discriminant constraint must use only named associations.
9011
9012 while Present (Constr) loop
9013
9014 -- Positional association forbidden after a named association
9015
9016 if Nkind (Constr) /= N_Discriminant_Association then
9017 Error_Msg_N ("positional association follows named one", Constr);
9018 return New_Elmt_List;
9019
9020 -- Otherwise it is a named association
9021
9022 else
9023 -- E records the type of the discriminants in the named
9024 -- association. All the discriminants specified in the same name
9025 -- association must have the same type.
9026
9027 E := Empty;
9028
9029 -- Search the list of discriminants in T to see if the simple name
9030 -- given in the constraint matches any of them.
9031
9032 Id := First (Selector_Names (Constr));
9033 while Present (Id) loop
9034 Found := False;
9035
9036 -- If Original_Discriminant is present, we are processing a
9037 -- generic instantiation and this is an instance node. We need
9038 -- to find the name of the corresponding discriminant in the
9039 -- actual record type T and not the name of the discriminant in
9040 -- the generic formal. Example:
9041
9042 -- generic
9043 -- type G (D : int) is private;
9044 -- package P is
9045 -- subtype W is G (D => 1);
9046 -- end package;
9047 -- type Rec (X : int) is record ... end record;
9048 -- package Q is new P (G => Rec);
9049
9050 -- At the point of the instantiation, formal type G is Rec
9051 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9052 -- which really looks like "subtype W is Rec (D => 1);" at
9053 -- the point of instantiation, we want to find the discriminant
9054 -- that corresponds to D in Rec, i.e. X.
9055
9056 if Present (Original_Discriminant (Id))
9057 and then In_Instance
9058 then
9059 Discr := Find_Corresponding_Discriminant (Id, T);
9060 Found := True;
9061
9062 else
9063 Discr := First_Discriminant (T);
9064 while Present (Discr) loop
9065 if Chars (Discr) = Chars (Id) then
9066 Found := True;
9067 exit;
9068 end if;
9069
9070 Next_Discriminant (Discr);
9071 end loop;
9072
9073 if not Found then
9074 Error_Msg_N ("& does not match any discriminant", Id);
9075 return New_Elmt_List;
9076
9077 -- If the parent type is a generic formal, preserve the
9078 -- name of the discriminant for subsequent instances.
9079 -- see comment at the beginning of this if statement.
9080
9081 elsif Is_Generic_Type (Root_Type (T)) then
9082 Set_Original_Discriminant (Id, Discr);
9083 end if;
9084 end if;
9085
9086 Position := Pos_Of_Discr (T, Discr);
9087
9088 if Present (Discr_Expr (Position)) then
9089 Error_Msg_N ("duplicate constraint for discriminant&", Id);
9090
9091 else
9092 -- Each discriminant specified in the same named association
9093 -- must be associated with a separate copy of the
9094 -- corresponding expression.
9095
9096 if Present (Next (Id)) then
9097 Expr := New_Copy_Tree (Expression (Constr));
9098 Set_Parent (Expr, Parent (Expression (Constr)));
9099 else
9100 Expr := Expression (Constr);
9101 end if;
9102
9103 Discr_Expr (Position) := Expr;
9104 Process_Discriminant_Expression (Expr, Discr);
9105 end if;
9106
9107 -- A discriminant association with more than one discriminant
9108 -- name is only allowed if the named discriminants are all of
9109 -- the same type (RM 3.7.1(8)).
9110
9111 if E = Empty then
9112 E := Base_Type (Etype (Discr));
9113
9114 elsif Base_Type (Etype (Discr)) /= E then
9115 Error_Msg_N
9116 ("all discriminants in an association " &
9117 "must have the same type", Id);
9118 end if;
9119
9120 Next (Id);
9121 end loop;
9122 end if;
9123
9124 Next (Constr);
9125 end loop;
9126
9127 -- A discriminant constraint must provide exactly one value for each
9128 -- discriminant of the type (RM 3.7.1(8)).
9129
9130 for J in Discr_Expr'Range loop
9131 if No (Discr_Expr (J)) then
9132 Error_Msg_N ("too few discriminants given in constraint", C);
9133 return New_Elmt_List;
9134 end if;
9135 end loop;
9136
9137 -- Determine if there are discriminant expressions in the constraint
9138
9139 for J in Discr_Expr'Range loop
9140 if Denotes_Discriminant
9141 (Discr_Expr (J), Check_Concurrent => True)
9142 then
9143 Discrim_Present := True;
9144 end if;
9145 end loop;
9146
9147 -- Build an element list consisting of the expressions given in the
9148 -- discriminant constraint and apply the appropriate checks. The list
9149 -- is constructed after resolving any named discriminant associations
9150 -- and therefore the expressions appear in the textual order of the
9151 -- discriminants.
9152
9153 Discr := First_Discriminant (T);
9154 for J in Discr_Expr'Range loop
9155 if Discr_Expr (J) /= Error then
9156 Append_Elmt (Discr_Expr (J), Elist);
9157
9158 -- If any of the discriminant constraints is given by a
9159 -- discriminant and we are in a derived type declaration we
9160 -- have a discriminant renaming. Establish link between new
9161 -- and old discriminant.
9162
9163 if Denotes_Discriminant (Discr_Expr (J)) then
9164 if Derived_Def then
9165 Set_Corresponding_Discriminant
9166 (Entity (Discr_Expr (J)), Discr);
9167 end if;
9168
9169 -- Force the evaluation of non-discriminant expressions.
9170 -- If we have found a discriminant in the constraint 3.4(26)
9171 -- and 3.8(18) demand that no range checks are performed are
9172 -- after evaluation. If the constraint is for a component
9173 -- definition that has a per-object constraint, expressions are
9174 -- evaluated but not checked either. In all other cases perform
9175 -- a range check.
9176
9177 else
9178 if Discrim_Present then
9179 null;
9180
9181 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
9182 and then
9183 Has_Per_Object_Constraint
9184 (Defining_Identifier (Parent (Parent (Def))))
9185 then
9186 null;
9187
9188 elsif Is_Access_Type (Etype (Discr)) then
9189 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
9190
9191 else
9192 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
9193 end if;
9194
9195 Force_Evaluation (Discr_Expr (J));
9196 end if;
9197
9198 -- Check that the designated type of an access discriminant's
9199 -- expression is not a class-wide type unless the discriminant's
9200 -- designated type is also class-wide.
9201
9202 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
9203 and then not Is_Class_Wide_Type
9204 (Designated_Type (Etype (Discr)))
9205 and then Etype (Discr_Expr (J)) /= Any_Type
9206 and then Is_Class_Wide_Type
9207 (Designated_Type (Etype (Discr_Expr (J))))
9208 then
9209 Wrong_Type (Discr_Expr (J), Etype (Discr));
9210
9211 elsif Is_Access_Type (Etype (Discr))
9212 and then not Is_Access_Constant (Etype (Discr))
9213 and then Is_Access_Type (Etype (Discr_Expr (J)))
9214 and then Is_Access_Constant (Etype (Discr_Expr (J)))
9215 then
9216 Error_Msg_NE
9217 ("constraint for discriminant& must be access to variable",
9218 Def, Discr);
9219 end if;
9220 end if;
9221
9222 Next_Discriminant (Discr);
9223 end loop;
9224
9225 return Elist;
9226 end Build_Discriminant_Constraints;
9227
9228 ---------------------------------
9229 -- Build_Discriminated_Subtype --
9230 ---------------------------------
9231
9232 procedure Build_Discriminated_Subtype
9233 (T : Entity_Id;
9234 Def_Id : Entity_Id;
9235 Elist : Elist_Id;
9236 Related_Nod : Node_Id;
9237 For_Access : Boolean := False)
9238 is
9239 Has_Discrs : constant Boolean := Has_Discriminants (T);
9240 Constrained : constant Boolean :=
9241 (Has_Discrs
9242 and then not Is_Empty_Elmt_List (Elist)
9243 and then not Is_Class_Wide_Type (T))
9244 or else Is_Constrained (T);
9245
9246 begin
9247 if Ekind (T) = E_Record_Type then
9248 if For_Access then
9249 Set_Ekind (Def_Id, E_Private_Subtype);
9250 Set_Is_For_Access_Subtype (Def_Id, True);
9251 else
9252 Set_Ekind (Def_Id, E_Record_Subtype);
9253 end if;
9254
9255 -- Inherit preelaboration flag from base, for types for which it
9256 -- may have been set: records, private types, protected types.
9257
9258 Set_Known_To_Have_Preelab_Init
9259 (Def_Id, Known_To_Have_Preelab_Init (T));
9260
9261 elsif Ekind (T) = E_Task_Type then
9262 Set_Ekind (Def_Id, E_Task_Subtype);
9263
9264 elsif Ekind (T) = E_Protected_Type then
9265 Set_Ekind (Def_Id, E_Protected_Subtype);
9266 Set_Known_To_Have_Preelab_Init
9267 (Def_Id, Known_To_Have_Preelab_Init (T));
9268
9269 elsif Is_Private_Type (T) then
9270 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
9271 Set_Known_To_Have_Preelab_Init
9272 (Def_Id, Known_To_Have_Preelab_Init (T));
9273
9274 -- Private subtypes may have private dependents
9275
9276 Set_Private_Dependents (Def_Id, New_Elmt_List);
9277
9278 elsif Is_Class_Wide_Type (T) then
9279 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
9280
9281 else
9282 -- Incomplete type. Attach subtype to list of dependents, to be
9283 -- completed with full view of parent type, unless is it the
9284 -- designated subtype of a record component within an init_proc.
9285 -- This last case arises for a component of an access type whose
9286 -- designated type is incomplete (e.g. a Taft Amendment type).
9287 -- The designated subtype is within an inner scope, and needs no
9288 -- elaboration, because only the access type is needed in the
9289 -- initialization procedure.
9290
9291 Set_Ekind (Def_Id, Ekind (T));
9292
9293 if For_Access and then Within_Init_Proc then
9294 null;
9295 else
9296 Append_Elmt (Def_Id, Private_Dependents (T));
9297 end if;
9298 end if;
9299
9300 Set_Etype (Def_Id, T);
9301 Init_Size_Align (Def_Id);
9302 Set_Has_Discriminants (Def_Id, Has_Discrs);
9303 Set_Is_Constrained (Def_Id, Constrained);
9304
9305 Set_First_Entity (Def_Id, First_Entity (T));
9306 Set_Last_Entity (Def_Id, Last_Entity (T));
9307 Set_Has_Implicit_Dereference
9308 (Def_Id, Has_Implicit_Dereference (T));
9309
9310 -- If the subtype is the completion of a private declaration, there may
9311 -- have been representation clauses for the partial view, and they must
9312 -- be preserved. Build_Derived_Type chains the inherited clauses with
9313 -- the ones appearing on the extension. If this comes from a subtype
9314 -- declaration, all clauses are inherited.
9315
9316 if No (First_Rep_Item (Def_Id)) then
9317 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9318 end if;
9319
9320 if Is_Tagged_Type (T) then
9321 Set_Is_Tagged_Type (Def_Id);
9322 Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T));
9323 Make_Class_Wide_Type (Def_Id);
9324 end if;
9325
9326 Set_Stored_Constraint (Def_Id, No_Elist);
9327
9328 if Has_Discrs then
9329 Set_Discriminant_Constraint (Def_Id, Elist);
9330 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
9331 end if;
9332
9333 if Is_Tagged_Type (T) then
9334
9335 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9336 -- concurrent record type (which has the list of primitive
9337 -- operations).
9338
9339 if Ada_Version >= Ada_2005
9340 and then Is_Concurrent_Type (T)
9341 then
9342 Set_Corresponding_Record_Type (Def_Id,
9343 Corresponding_Record_Type (T));
9344 else
9345 Set_Direct_Primitive_Operations (Def_Id,
9346 Direct_Primitive_Operations (T));
9347 end if;
9348
9349 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
9350 end if;
9351
9352 -- Subtypes introduced by component declarations do not need to be
9353 -- marked as delayed, and do not get freeze nodes, because the semantics
9354 -- verifies that the parents of the subtypes are frozen before the
9355 -- enclosing record is frozen.
9356
9357 if not Is_Type (Scope (Def_Id)) then
9358 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
9359
9360 if Is_Private_Type (T)
9361 and then Present (Full_View (T))
9362 then
9363 Conditional_Delay (Def_Id, Full_View (T));
9364 else
9365 Conditional_Delay (Def_Id, T);
9366 end if;
9367 end if;
9368
9369 if Is_Record_Type (T) then
9370 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
9371
9372 if Has_Discrs
9373 and then not Is_Empty_Elmt_List (Elist)
9374 and then not For_Access
9375 then
9376 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
9377 elsif not For_Access then
9378 Set_Cloned_Subtype (Def_Id, T);
9379 end if;
9380 end if;
9381 end Build_Discriminated_Subtype;
9382
9383 ---------------------------
9384 -- Build_Itype_Reference --
9385 ---------------------------
9386
9387 procedure Build_Itype_Reference
9388 (Ityp : Entity_Id;
9389 Nod : Node_Id)
9390 is
9391 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
9392 begin
9393
9394 -- Itype references are only created for use by the back-end
9395
9396 if Inside_A_Generic then
9397 return;
9398 else
9399 Set_Itype (IR, Ityp);
9400 Insert_After (Nod, IR);
9401 end if;
9402 end Build_Itype_Reference;
9403
9404 ------------------------
9405 -- Build_Scalar_Bound --
9406 ------------------------
9407
9408 function Build_Scalar_Bound
9409 (Bound : Node_Id;
9410 Par_T : Entity_Id;
9411 Der_T : Entity_Id) return Node_Id
9412 is
9413 New_Bound : Entity_Id;
9414
9415 begin
9416 -- Note: not clear why this is needed, how can the original bound
9417 -- be unanalyzed at this point? and if it is, what business do we
9418 -- have messing around with it? and why is the base type of the
9419 -- parent type the right type for the resolution. It probably is
9420 -- not. It is OK for the new bound we are creating, but not for
9421 -- the old one??? Still if it never happens, no problem.
9422
9423 Analyze_And_Resolve (Bound, Base_Type (Par_T));
9424
9425 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
9426 New_Bound := New_Copy (Bound);
9427 Set_Etype (New_Bound, Der_T);
9428 Set_Analyzed (New_Bound);
9429
9430 elsif Is_Entity_Name (Bound) then
9431 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
9432
9433 -- The following is almost certainly wrong. What business do we have
9434 -- relocating a node (Bound) that is presumably still attached to
9435 -- the tree elsewhere???
9436
9437 else
9438 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
9439 end if;
9440
9441 Set_Etype (New_Bound, Der_T);
9442 return New_Bound;
9443 end Build_Scalar_Bound;
9444
9445 --------------------------------
9446 -- Build_Underlying_Full_View --
9447 --------------------------------
9448
9449 procedure Build_Underlying_Full_View
9450 (N : Node_Id;
9451 Typ : Entity_Id;
9452 Par : Entity_Id)
9453 is
9454 Loc : constant Source_Ptr := Sloc (N);
9455 Subt : constant Entity_Id :=
9456 Make_Defining_Identifier
9457 (Loc, New_External_Name (Chars (Typ), 'S'));
9458
9459 Constr : Node_Id;
9460 Indic : Node_Id;
9461 C : Node_Id;
9462 Id : Node_Id;
9463
9464 procedure Set_Discriminant_Name (Id : Node_Id);
9465 -- If the derived type has discriminants, they may rename discriminants
9466 -- of the parent. When building the full view of the parent, we need to
9467 -- recover the names of the original discriminants if the constraint is
9468 -- given by named associations.
9469
9470 ---------------------------
9471 -- Set_Discriminant_Name --
9472 ---------------------------
9473
9474 procedure Set_Discriminant_Name (Id : Node_Id) is
9475 Disc : Entity_Id;
9476
9477 begin
9478 Set_Original_Discriminant (Id, Empty);
9479
9480 if Has_Discriminants (Typ) then
9481 Disc := First_Discriminant (Typ);
9482 while Present (Disc) loop
9483 if Chars (Disc) = Chars (Id)
9484 and then Present (Corresponding_Discriminant (Disc))
9485 then
9486 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
9487 end if;
9488 Next_Discriminant (Disc);
9489 end loop;
9490 end if;
9491 end Set_Discriminant_Name;
9492
9493 -- Start of processing for Build_Underlying_Full_View
9494
9495 begin
9496 if Nkind (N) = N_Full_Type_Declaration then
9497 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
9498
9499 elsif Nkind (N) = N_Subtype_Declaration then
9500 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
9501
9502 elsif Nkind (N) = N_Component_Declaration then
9503 Constr :=
9504 New_Copy_Tree
9505 (Constraint (Subtype_Indication (Component_Definition (N))));
9506
9507 else
9508 raise Program_Error;
9509 end if;
9510
9511 C := First (Constraints (Constr));
9512 while Present (C) loop
9513 if Nkind (C) = N_Discriminant_Association then
9514 Id := First (Selector_Names (C));
9515 while Present (Id) loop
9516 Set_Discriminant_Name (Id);
9517 Next (Id);
9518 end loop;
9519 end if;
9520
9521 Next (C);
9522 end loop;
9523
9524 Indic :=
9525 Make_Subtype_Declaration (Loc,
9526 Defining_Identifier => Subt,
9527 Subtype_Indication =>
9528 Make_Subtype_Indication (Loc,
9529 Subtype_Mark => New_Occurrence_Of (Par, Loc),
9530 Constraint => New_Copy_Tree (Constr)));
9531
9532 -- If this is a component subtype for an outer itype, it is not
9533 -- a list member, so simply set the parent link for analysis: if
9534 -- the enclosing type does not need to be in a declarative list,
9535 -- neither do the components.
9536
9537 if Is_List_Member (N)
9538 and then Nkind (N) /= N_Component_Declaration
9539 then
9540 Insert_Before (N, Indic);
9541 else
9542 Set_Parent (Indic, Parent (N));
9543 end if;
9544
9545 Analyze (Indic);
9546 Set_Underlying_Full_View (Typ, Full_View (Subt));
9547 end Build_Underlying_Full_View;
9548
9549 -------------------------------
9550 -- Check_Abstract_Overriding --
9551 -------------------------------
9552
9553 procedure Check_Abstract_Overriding (T : Entity_Id) is
9554 Alias_Subp : Entity_Id;
9555 Elmt : Elmt_Id;
9556 Op_List : Elist_Id;
9557 Subp : Entity_Id;
9558 Type_Def : Node_Id;
9559
9560 procedure Check_Pragma_Implemented (Subp : Entity_Id);
9561 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9562 -- which has pragma Implemented already set. Check whether Subp's entity
9563 -- kind conforms to the implementation kind of the overridden routine.
9564
9565 procedure Check_Pragma_Implemented
9566 (Subp : Entity_Id;
9567 Iface_Subp : Entity_Id);
9568 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9569 -- Iface_Subp and both entities have pragma Implemented already set on
9570 -- them. Check whether the two implementation kinds are conforming.
9571
9572 procedure Inherit_Pragma_Implemented
9573 (Subp : Entity_Id;
9574 Iface_Subp : Entity_Id);
9575 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9576 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9577 -- Propagate the implementation kind of Iface_Subp to Subp.
9578
9579 ------------------------------
9580 -- Check_Pragma_Implemented --
9581 ------------------------------
9582
9583 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
9584 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
9585 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
9586 Subp_Alias : constant Entity_Id := Alias (Subp);
9587 Contr_Typ : Entity_Id;
9588 Impl_Subp : Entity_Id;
9589
9590 begin
9591 -- Subp must have an alias since it is a hidden entity used to link
9592 -- an interface subprogram to its overriding counterpart.
9593
9594 pragma Assert (Present (Subp_Alias));
9595
9596 -- Handle aliases to synchronized wrappers
9597
9598 Impl_Subp := Subp_Alias;
9599
9600 if Is_Primitive_Wrapper (Impl_Subp) then
9601 Impl_Subp := Wrapped_Entity (Impl_Subp);
9602 end if;
9603
9604 -- Extract the type of the controlling formal
9605
9606 Contr_Typ := Etype (First_Formal (Subp_Alias));
9607
9608 if Is_Concurrent_Record_Type (Contr_Typ) then
9609 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
9610 end if;
9611
9612 -- An interface subprogram whose implementation kind is By_Entry must
9613 -- be implemented by an entry.
9614
9615 if Impl_Kind = Name_By_Entry
9616 and then Ekind (Impl_Subp) /= E_Entry
9617 then
9618 Error_Msg_Node_2 := Iface_Alias;
9619 Error_Msg_NE
9620 ("type & must implement abstract subprogram & with an entry",
9621 Subp_Alias, Contr_Typ);
9622
9623 elsif Impl_Kind = Name_By_Protected_Procedure then
9624
9625 -- An interface subprogram whose implementation kind is By_
9626 -- Protected_Procedure cannot be implemented by a primitive
9627 -- procedure of a task type.
9628
9629 if Ekind (Contr_Typ) /= E_Protected_Type then
9630 Error_Msg_Node_2 := Contr_Typ;
9631 Error_Msg_NE
9632 ("interface subprogram & cannot be implemented by a " &
9633 "primitive procedure of task type &", Subp_Alias,
9634 Iface_Alias);
9635
9636 -- An interface subprogram whose implementation kind is By_
9637 -- Protected_Procedure must be implemented by a procedure.
9638
9639 elsif Ekind (Impl_Subp) /= E_Procedure then
9640 Error_Msg_Node_2 := Iface_Alias;
9641 Error_Msg_NE
9642 ("type & must implement abstract subprogram & with a " &
9643 "procedure", Subp_Alias, Contr_Typ);
9644
9645 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9646 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9647 then
9648 Error_Msg_Name_1 := Impl_Kind;
9649 Error_Msg_N
9650 ("overriding operation& must have synchronization%",
9651 Subp_Alias);
9652 end if;
9653
9654 -- If primitive has Optional synchronization, overriding operation
9655 -- must match if it has an explicit synchronization..
9656
9657 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9658 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9659 then
9660 Error_Msg_Name_1 := Impl_Kind;
9661 Error_Msg_N
9662 ("overriding operation& must have syncrhonization%",
9663 Subp_Alias);
9664 end if;
9665 end Check_Pragma_Implemented;
9666
9667 ------------------------------
9668 -- Check_Pragma_Implemented --
9669 ------------------------------
9670
9671 procedure Check_Pragma_Implemented
9672 (Subp : Entity_Id;
9673 Iface_Subp : Entity_Id)
9674 is
9675 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9676 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
9677
9678 begin
9679 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9680 -- and overriding subprogram are different. In general this is an
9681 -- error except when the implementation kind of the overridden
9682 -- subprograms is By_Any or Optional.
9683
9684 if Iface_Kind /= Subp_Kind
9685 and then Iface_Kind /= Name_By_Any
9686 and then Iface_Kind /= Name_Optional
9687 then
9688 if Iface_Kind = Name_By_Entry then
9689 Error_Msg_N
9690 ("incompatible implementation kind, overridden subprogram " &
9691 "is marked By_Entry", Subp);
9692 else
9693 Error_Msg_N
9694 ("incompatible implementation kind, overridden subprogram " &
9695 "is marked By_Protected_Procedure", Subp);
9696 end if;
9697 end if;
9698 end Check_Pragma_Implemented;
9699
9700 --------------------------------
9701 -- Inherit_Pragma_Implemented --
9702 --------------------------------
9703
9704 procedure Inherit_Pragma_Implemented
9705 (Subp : Entity_Id;
9706 Iface_Subp : Entity_Id)
9707 is
9708 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9709 Loc : constant Source_Ptr := Sloc (Subp);
9710 Impl_Prag : Node_Id;
9711
9712 begin
9713 -- Since the implementation kind is stored as a representation item
9714 -- rather than a flag, create a pragma node.
9715
9716 Impl_Prag :=
9717 Make_Pragma (Loc,
9718 Chars => Name_Implemented,
9719 Pragma_Argument_Associations => New_List (
9720 Make_Pragma_Argument_Association (Loc,
9721 Expression => New_Occurrence_Of (Subp, Loc)),
9722
9723 Make_Pragma_Argument_Association (Loc,
9724 Expression => Make_Identifier (Loc, Iface_Kind))));
9725
9726 -- The pragma doesn't need to be analyzed because it is internally
9727 -- built. It is safe to directly register it as a rep item since we
9728 -- are only interested in the characters of the implementation kind.
9729
9730 Record_Rep_Item (Subp, Impl_Prag);
9731 end Inherit_Pragma_Implemented;
9732
9733 -- Start of processing for Check_Abstract_Overriding
9734
9735 begin
9736 Op_List := Primitive_Operations (T);
9737
9738 -- Loop to check primitive operations
9739
9740 Elmt := First_Elmt (Op_List);
9741 while Present (Elmt) loop
9742 Subp := Node (Elmt);
9743 Alias_Subp := Alias (Subp);
9744
9745 -- Inherited subprograms are identified by the fact that they do not
9746 -- come from source, and the associated source location is the
9747 -- location of the first subtype of the derived type.
9748
9749 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9750 -- subprograms that "require overriding".
9751
9752 -- Special exception, do not complain about failure to override the
9753 -- stream routines _Input and _Output, as well as the primitive
9754 -- operations used in dispatching selects since we always provide
9755 -- automatic overridings for these subprograms.
9756
9757 -- Also ignore this rule for convention CIL since .NET libraries
9758 -- do bizarre things with interfaces???
9759
9760 -- The partial view of T may have been a private extension, for
9761 -- which inherited functions dispatching on result are abstract.
9762 -- If the full view is a null extension, there is no need for
9763 -- overriding in Ada 2005, but wrappers need to be built for them
9764 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9765
9766 if Is_Null_Extension (T)
9767 and then Has_Controlling_Result (Subp)
9768 and then Ada_Version >= Ada_2005
9769 and then Present (Alias_Subp)
9770 and then not Comes_From_Source (Subp)
9771 and then not Is_Abstract_Subprogram (Alias_Subp)
9772 and then not Is_Access_Type (Etype (Subp))
9773 then
9774 null;
9775
9776 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9777 -- processing because this check is done with the aliased
9778 -- entity
9779
9780 elsif Present (Interface_Alias (Subp)) then
9781 null;
9782
9783 elsif (Is_Abstract_Subprogram (Subp)
9784 or else Requires_Overriding (Subp)
9785 or else
9786 (Has_Controlling_Result (Subp)
9787 and then Present (Alias_Subp)
9788 and then not Comes_From_Source (Subp)
9789 and then Sloc (Subp) = Sloc (First_Subtype (T))))
9790 and then not Is_TSS (Subp, TSS_Stream_Input)
9791 and then not Is_TSS (Subp, TSS_Stream_Output)
9792 and then not Is_Abstract_Type (T)
9793 and then Convention (T) /= Convention_CIL
9794 and then not Is_Predefined_Interface_Primitive (Subp)
9795
9796 -- Ada 2005 (AI-251): Do not consider hidden entities associated
9797 -- with abstract interface types because the check will be done
9798 -- with the aliased entity (otherwise we generate a duplicated
9799 -- error message).
9800
9801 and then not Present (Interface_Alias (Subp))
9802 then
9803 if Present (Alias_Subp) then
9804
9805 -- Only perform the check for a derived subprogram when the
9806 -- type has an explicit record extension. This avoids incorrect
9807 -- flagging of abstract subprograms for the case of a type
9808 -- without an extension that is derived from a formal type
9809 -- with a tagged actual (can occur within a private part).
9810
9811 -- Ada 2005 (AI-391): In the case of an inherited function with
9812 -- a controlling result of the type, the rule does not apply if
9813 -- the type is a null extension (unless the parent function
9814 -- itself is abstract, in which case the function must still be
9815 -- be overridden). The expander will generate an overriding
9816 -- wrapper function calling the parent subprogram (see
9817 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
9818
9819 Type_Def := Type_Definition (Parent (T));
9820
9821 if Nkind (Type_Def) = N_Derived_Type_Definition
9822 and then Present (Record_Extension_Part (Type_Def))
9823 and then
9824 (Ada_Version < Ada_2005
9825 or else not Is_Null_Extension (T)
9826 or else Ekind (Subp) = E_Procedure
9827 or else not Has_Controlling_Result (Subp)
9828 or else Is_Abstract_Subprogram (Alias_Subp)
9829 or else Requires_Overriding (Subp)
9830 or else Is_Access_Type (Etype (Subp)))
9831 then
9832 -- Avoid reporting error in case of abstract predefined
9833 -- primitive inherited from interface type because the
9834 -- body of internally generated predefined primitives
9835 -- of tagged types are generated later by Freeze_Type
9836
9837 if Is_Interface (Root_Type (T))
9838 and then Is_Abstract_Subprogram (Subp)
9839 and then Is_Predefined_Dispatching_Operation (Subp)
9840 and then not Comes_From_Source (Ultimate_Alias (Subp))
9841 then
9842 null;
9843
9844 else
9845 Error_Msg_NE
9846 ("type must be declared abstract or & overridden",
9847 T, Subp);
9848
9849 -- Traverse the whole chain of aliased subprograms to
9850 -- complete the error notification. This is especially
9851 -- useful for traceability of the chain of entities when
9852 -- the subprogram corresponds with an interface
9853 -- subprogram (which may be defined in another package).
9854
9855 if Present (Alias_Subp) then
9856 declare
9857 E : Entity_Id;
9858
9859 begin
9860 E := Subp;
9861 while Present (Alias (E)) loop
9862
9863 -- Avoid reporting redundant errors on entities
9864 -- inherited from interfaces
9865
9866 if Sloc (E) /= Sloc (T) then
9867 Error_Msg_Sloc := Sloc (E);
9868 Error_Msg_NE
9869 ("\& has been inherited #", T, Subp);
9870 end if;
9871
9872 E := Alias (E);
9873 end loop;
9874
9875 Error_Msg_Sloc := Sloc (E);
9876
9877 -- AI05-0068: report if there is an overriding
9878 -- non-abstract subprogram that is invisible.
9879
9880 if Is_Hidden (E)
9881 and then not Is_Abstract_Subprogram (E)
9882 then
9883 Error_Msg_NE
9884 ("\& subprogram# is not visible",
9885 T, Subp);
9886
9887 else
9888 Error_Msg_NE
9889 ("\& has been inherited from subprogram #",
9890 T, Subp);
9891 end if;
9892 end;
9893 end if;
9894 end if;
9895
9896 -- Ada 2005 (AI-345): Protected or task type implementing
9897 -- abstract interfaces.
9898
9899 elsif Is_Concurrent_Record_Type (T)
9900 and then Present (Interfaces (T))
9901 then
9902 -- If an inherited subprogram is implemented by a protected
9903 -- procedure or an entry, then the first parameter of the
9904 -- inherited subprogram shall be of mode OUT or IN OUT, or
9905 -- an access-to-variable parameter (RM 9.4(11.9/3))
9906
9907 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
9908 and then Ekind (First_Formal (Subp)) = E_In_Parameter
9909 and then Ekind (Subp) /= E_Function
9910 and then not Is_Predefined_Dispatching_Operation (Subp)
9911 then
9912 Error_Msg_PT (T, Subp);
9913
9914 -- Some other kind of overriding failure
9915
9916 else
9917 Error_Msg_NE
9918 ("interface subprogram & must be overridden",
9919 T, Subp);
9920
9921 -- Examine primitive operations of synchronized type,
9922 -- to find homonyms that have the wrong profile.
9923
9924 declare
9925 Prim : Entity_Id;
9926
9927 begin
9928 Prim :=
9929 First_Entity (Corresponding_Concurrent_Type (T));
9930 while Present (Prim) loop
9931 if Chars (Prim) = Chars (Subp) then
9932 Error_Msg_NE
9933 ("profile is not type conformant with "
9934 & "prefixed view profile of "
9935 & "inherited operation&", Prim, Subp);
9936 end if;
9937
9938 Next_Entity (Prim);
9939 end loop;
9940 end;
9941 end if;
9942 end if;
9943
9944 else
9945 Error_Msg_Node_2 := T;
9946 Error_Msg_N
9947 ("abstract subprogram& not allowed for type&", Subp);
9948
9949 -- Also post unconditional warning on the type (unconditional
9950 -- so that if there are more than one of these cases, we get
9951 -- them all, and not just the first one).
9952
9953 Error_Msg_Node_2 := Subp;
9954 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
9955 end if;
9956 end if;
9957
9958 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
9959
9960 -- Subp is an expander-generated procedure which maps an interface
9961 -- alias to a protected wrapper. The interface alias is flagged by
9962 -- pragma Implemented. Ensure that Subp is a procedure when the
9963 -- implementation kind is By_Protected_Procedure or an entry when
9964 -- By_Entry.
9965
9966 if Ada_Version >= Ada_2012
9967 and then Is_Hidden (Subp)
9968 and then Present (Interface_Alias (Subp))
9969 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
9970 then
9971 Check_Pragma_Implemented (Subp);
9972 end if;
9973
9974 -- Subp is an interface primitive which overrides another interface
9975 -- primitive marked with pragma Implemented.
9976
9977 if Ada_Version >= Ada_2012
9978 and then Present (Overridden_Operation (Subp))
9979 and then Has_Rep_Pragma
9980 (Overridden_Operation (Subp), Name_Implemented)
9981 then
9982 -- If the overriding routine is also marked by Implemented, check
9983 -- that the two implementation kinds are conforming.
9984
9985 if Has_Rep_Pragma (Subp, Name_Implemented) then
9986 Check_Pragma_Implemented
9987 (Subp => Subp,
9988 Iface_Subp => Overridden_Operation (Subp));
9989
9990 -- Otherwise the overriding routine inherits the implementation
9991 -- kind from the overridden subprogram.
9992
9993 else
9994 Inherit_Pragma_Implemented
9995 (Subp => Subp,
9996 Iface_Subp => Overridden_Operation (Subp));
9997 end if;
9998 end if;
9999
10000 -- If the operation is a wrapper for a synchronized primitive, it
10001 -- may be called indirectly through a dispatching select. We assume
10002 -- that it will be referenced elsewhere indirectly, and suppress
10003 -- warnings about an unused entity.
10004
10005 if Is_Primitive_Wrapper (Subp)
10006 and then Present (Wrapped_Entity (Subp))
10007 then
10008 Set_Referenced (Wrapped_Entity (Subp));
10009 end if;
10010
10011 Next_Elmt (Elmt);
10012 end loop;
10013 end Check_Abstract_Overriding;
10014
10015 ------------------------------------------------
10016 -- Check_Access_Discriminant_Requires_Limited --
10017 ------------------------------------------------
10018
10019 procedure Check_Access_Discriminant_Requires_Limited
10020 (D : Node_Id;
10021 Loc : Node_Id)
10022 is
10023 begin
10024 -- A discriminant_specification for an access discriminant shall appear
10025 -- only in the declaration for a task or protected type, or for a type
10026 -- with the reserved word 'limited' in its definition or in one of its
10027 -- ancestors (RM 3.7(10)).
10028
10029 -- AI-0063: The proper condition is that type must be immutably limited,
10030 -- or else be a partial view.
10031
10032 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
10033 if Is_Limited_View (Current_Scope)
10034 or else
10035 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
10036 and then Limited_Present (Parent (Current_Scope)))
10037 then
10038 null;
10039
10040 else
10041 Error_Msg_N
10042 ("access discriminants allowed only for limited types", Loc);
10043 end if;
10044 end if;
10045 end Check_Access_Discriminant_Requires_Limited;
10046
10047 -----------------------------------
10048 -- Check_Aliased_Component_Types --
10049 -----------------------------------
10050
10051 procedure Check_Aliased_Component_Types (T : Entity_Id) is
10052 C : Entity_Id;
10053
10054 begin
10055 -- ??? Also need to check components of record extensions, but not
10056 -- components of protected types (which are always limited).
10057
10058 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10059 -- types to be unconstrained. This is safe because it is illegal to
10060 -- create access subtypes to such types with explicit discriminant
10061 -- constraints.
10062
10063 if not Is_Limited_Type (T) then
10064 if Ekind (T) = E_Record_Type then
10065 C := First_Component (T);
10066 while Present (C) loop
10067 if Is_Aliased (C)
10068 and then Has_Discriminants (Etype (C))
10069 and then not Is_Constrained (Etype (C))
10070 and then not In_Instance_Body
10071 and then Ada_Version < Ada_2005
10072 then
10073 Error_Msg_N
10074 ("aliased component must be constrained (RM 3.6(11))",
10075 C);
10076 end if;
10077
10078 Next_Component (C);
10079 end loop;
10080
10081 elsif Ekind (T) = E_Array_Type then
10082 if Has_Aliased_Components (T)
10083 and then Has_Discriminants (Component_Type (T))
10084 and then not Is_Constrained (Component_Type (T))
10085 and then not In_Instance_Body
10086 and then Ada_Version < Ada_2005
10087 then
10088 Error_Msg_N
10089 ("aliased component type must be constrained (RM 3.6(11))",
10090 T);
10091 end if;
10092 end if;
10093 end if;
10094 end Check_Aliased_Component_Types;
10095
10096 ---------------------------------------
10097 -- Check_Anonymous_Access_Components --
10098 ---------------------------------------
10099
10100 procedure Check_Anonymous_Access_Components
10101 (Typ_Decl : Node_Id;
10102 Typ : Entity_Id;
10103 Prev : Entity_Id;
10104 Comp_List : Node_Id)
10105 is
10106 Loc : constant Source_Ptr := Sloc (Typ_Decl);
10107 Anon_Access : Entity_Id;
10108 Acc_Def : Node_Id;
10109 Comp : Node_Id;
10110 Comp_Def : Node_Id;
10111 Decl : Node_Id;
10112 Type_Def : Node_Id;
10113
10114 procedure Build_Incomplete_Type_Declaration;
10115 -- If the record type contains components that include an access to the
10116 -- current record, then create an incomplete type declaration for the
10117 -- record, to be used as the designated type of the anonymous access.
10118 -- This is done only once, and only if there is no previous partial
10119 -- view of the type.
10120
10121 function Designates_T (Subt : Node_Id) return Boolean;
10122 -- Check whether a node designates the enclosing record type, or 'Class
10123 -- of that type
10124
10125 function Mentions_T (Acc_Def : Node_Id) return Boolean;
10126 -- Check whether an access definition includes a reference to
10127 -- the enclosing record type. The reference can be a subtype mark
10128 -- in the access definition itself, a 'Class attribute reference, or
10129 -- recursively a reference appearing in a parameter specification
10130 -- or result definition of an access_to_subprogram definition.
10131
10132 --------------------------------------
10133 -- Build_Incomplete_Type_Declaration --
10134 --------------------------------------
10135
10136 procedure Build_Incomplete_Type_Declaration is
10137 Decl : Node_Id;
10138 Inc_T : Entity_Id;
10139 H : Entity_Id;
10140
10141 -- Is_Tagged indicates whether the type is tagged. It is tagged if
10142 -- it's "is new ... with record" or else "is tagged record ...".
10143
10144 Is_Tagged : constant Boolean :=
10145 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
10146 and then
10147 Present (Record_Extension_Part (Type_Definition (Typ_Decl))))
10148 or else
10149 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
10150 and then Tagged_Present (Type_Definition (Typ_Decl)));
10151
10152 begin
10153 -- If there is a previous partial view, no need to create a new one
10154 -- If the partial view, given by Prev, is incomplete, If Prev is
10155 -- a private declaration, full declaration is flagged accordingly.
10156
10157 if Prev /= Typ then
10158 if Is_Tagged then
10159 Make_Class_Wide_Type (Prev);
10160 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
10161 Set_Etype (Class_Wide_Type (Typ), Typ);
10162 end if;
10163
10164 return;
10165
10166 elsif Has_Private_Declaration (Typ) then
10167
10168 -- If we refer to T'Class inside T, and T is the completion of a
10169 -- private type, then make sure the class-wide type exists.
10170
10171 if Is_Tagged then
10172 Make_Class_Wide_Type (Typ);
10173 end if;
10174
10175 return;
10176
10177 -- If there was a previous anonymous access type, the incomplete
10178 -- type declaration will have been created already.
10179
10180 elsif Present (Current_Entity (Typ))
10181 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
10182 and then Full_View (Current_Entity (Typ)) = Typ
10183 then
10184 if Is_Tagged
10185 and then Comes_From_Source (Current_Entity (Typ))
10186 and then not Is_Tagged_Type (Current_Entity (Typ))
10187 then
10188 Make_Class_Wide_Type (Typ);
10189 Error_Msg_N
10190 ("incomplete view of tagged type should be declared tagged??",
10191 Parent (Current_Entity (Typ)));
10192 end if;
10193 return;
10194
10195 else
10196 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
10197 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
10198
10199 -- Type has already been inserted into the current scope. Remove
10200 -- it, and add incomplete declaration for type, so that subsequent
10201 -- anonymous access types can use it. The entity is unchained from
10202 -- the homonym list and from immediate visibility. After analysis,
10203 -- the entity in the incomplete declaration becomes immediately
10204 -- visible in the record declaration that follows.
10205
10206 H := Current_Entity (Typ);
10207
10208 if H = Typ then
10209 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
10210 else
10211 while Present (H)
10212 and then Homonym (H) /= Typ
10213 loop
10214 H := Homonym (Typ);
10215 end loop;
10216
10217 Set_Homonym (H, Homonym (Typ));
10218 end if;
10219
10220 Insert_Before (Typ_Decl, Decl);
10221 Analyze (Decl);
10222 Set_Full_View (Inc_T, Typ);
10223
10224 if Is_Tagged then
10225
10226 -- Create a common class-wide type for both views, and set the
10227 -- Etype of the class-wide type to the full view.
10228
10229 Make_Class_Wide_Type (Inc_T);
10230 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
10231 Set_Etype (Class_Wide_Type (Typ), Typ);
10232 end if;
10233 end if;
10234 end Build_Incomplete_Type_Declaration;
10235
10236 ------------------
10237 -- Designates_T --
10238 ------------------
10239
10240 function Designates_T (Subt : Node_Id) return Boolean is
10241 Type_Id : constant Name_Id := Chars (Typ);
10242
10243 function Names_T (Nam : Node_Id) return Boolean;
10244 -- The record type has not been introduced in the current scope
10245 -- yet, so we must examine the name of the type itself, either
10246 -- an identifier T, or an expanded name of the form P.T, where
10247 -- P denotes the current scope.
10248
10249 -------------
10250 -- Names_T --
10251 -------------
10252
10253 function Names_T (Nam : Node_Id) return Boolean is
10254 begin
10255 if Nkind (Nam) = N_Identifier then
10256 return Chars (Nam) = Type_Id;
10257
10258 elsif Nkind (Nam) = N_Selected_Component then
10259 if Chars (Selector_Name (Nam)) = Type_Id then
10260 if Nkind (Prefix (Nam)) = N_Identifier then
10261 return Chars (Prefix (Nam)) = Chars (Current_Scope);
10262
10263 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
10264 return Chars (Selector_Name (Prefix (Nam))) =
10265 Chars (Current_Scope);
10266 else
10267 return False;
10268 end if;
10269
10270 else
10271 return False;
10272 end if;
10273
10274 else
10275 return False;
10276 end if;
10277 end Names_T;
10278
10279 -- Start of processing for Designates_T
10280
10281 begin
10282 if Nkind (Subt) = N_Identifier then
10283 return Chars (Subt) = Type_Id;
10284
10285 -- Reference can be through an expanded name which has not been
10286 -- analyzed yet, and which designates enclosing scopes.
10287
10288 elsif Nkind (Subt) = N_Selected_Component then
10289 if Names_T (Subt) then
10290 return True;
10291
10292 -- Otherwise it must denote an entity that is already visible.
10293 -- The access definition may name a subtype of the enclosing
10294 -- type, if there is a previous incomplete declaration for it.
10295
10296 else
10297 Find_Selected_Component (Subt);
10298 return
10299 Is_Entity_Name (Subt)
10300 and then Scope (Entity (Subt)) = Current_Scope
10301 and then
10302 (Chars (Base_Type (Entity (Subt))) = Type_Id
10303 or else
10304 (Is_Class_Wide_Type (Entity (Subt))
10305 and then
10306 Chars (Etype (Base_Type (Entity (Subt)))) =
10307 Type_Id));
10308 end if;
10309
10310 -- A reference to the current type may appear as the prefix of
10311 -- a 'Class attribute.
10312
10313 elsif Nkind (Subt) = N_Attribute_Reference
10314 and then Attribute_Name (Subt) = Name_Class
10315 then
10316 return Names_T (Prefix (Subt));
10317
10318 else
10319 return False;
10320 end if;
10321 end Designates_T;
10322
10323 ----------------
10324 -- Mentions_T --
10325 ----------------
10326
10327 function Mentions_T (Acc_Def : Node_Id) return Boolean is
10328 Param_Spec : Node_Id;
10329
10330 Acc_Subprg : constant Node_Id :=
10331 Access_To_Subprogram_Definition (Acc_Def);
10332
10333 begin
10334 if No (Acc_Subprg) then
10335 return Designates_T (Subtype_Mark (Acc_Def));
10336 end if;
10337
10338 -- Component is an access_to_subprogram: examine its formals,
10339 -- and result definition in the case of an access_to_function.
10340
10341 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
10342 while Present (Param_Spec) loop
10343 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
10344 and then Mentions_T (Parameter_Type (Param_Spec))
10345 then
10346 return True;
10347
10348 elsif Designates_T (Parameter_Type (Param_Spec)) then
10349 return True;
10350 end if;
10351
10352 Next (Param_Spec);
10353 end loop;
10354
10355 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
10356 if Nkind (Result_Definition (Acc_Subprg)) =
10357 N_Access_Definition
10358 then
10359 return Mentions_T (Result_Definition (Acc_Subprg));
10360 else
10361 return Designates_T (Result_Definition (Acc_Subprg));
10362 end if;
10363 end if;
10364
10365 return False;
10366 end Mentions_T;
10367
10368 -- Start of processing for Check_Anonymous_Access_Components
10369
10370 begin
10371 if No (Comp_List) then
10372 return;
10373 end if;
10374
10375 Comp := First (Component_Items (Comp_List));
10376 while Present (Comp) loop
10377 if Nkind (Comp) = N_Component_Declaration
10378 and then Present
10379 (Access_Definition (Component_Definition (Comp)))
10380 and then
10381 Mentions_T (Access_Definition (Component_Definition (Comp)))
10382 then
10383 Comp_Def := Component_Definition (Comp);
10384 Acc_Def :=
10385 Access_To_Subprogram_Definition (Access_Definition (Comp_Def));
10386
10387 Build_Incomplete_Type_Declaration;
10388 Anon_Access := Make_Temporary (Loc, 'S');
10389
10390 -- Create a declaration for the anonymous access type: either
10391 -- an access_to_object or an access_to_subprogram.
10392
10393 if Present (Acc_Def) then
10394 if Nkind (Acc_Def) = N_Access_Function_Definition then
10395 Type_Def :=
10396 Make_Access_Function_Definition (Loc,
10397 Parameter_Specifications =>
10398 Parameter_Specifications (Acc_Def),
10399 Result_Definition => Result_Definition (Acc_Def));
10400 else
10401 Type_Def :=
10402 Make_Access_Procedure_Definition (Loc,
10403 Parameter_Specifications =>
10404 Parameter_Specifications (Acc_Def));
10405 end if;
10406
10407 else
10408 Type_Def :=
10409 Make_Access_To_Object_Definition (Loc,
10410 Subtype_Indication =>
10411 Relocate_Node
10412 (Subtype_Mark (Access_Definition (Comp_Def))));
10413
10414 Set_Constant_Present
10415 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
10416 Set_All_Present
10417 (Type_Def, All_Present (Access_Definition (Comp_Def)));
10418 end if;
10419
10420 Set_Null_Exclusion_Present
10421 (Type_Def,
10422 Null_Exclusion_Present (Access_Definition (Comp_Def)));
10423
10424 Decl :=
10425 Make_Full_Type_Declaration (Loc,
10426 Defining_Identifier => Anon_Access,
10427 Type_Definition => Type_Def);
10428
10429 Insert_Before (Typ_Decl, Decl);
10430 Analyze (Decl);
10431
10432 -- If an access to subprogram, create the extra formals
10433
10434 if Present (Acc_Def) then
10435 Create_Extra_Formals (Designated_Type (Anon_Access));
10436
10437 -- If an access to object, preserve entity of designated type,
10438 -- for ASIS use, before rewriting the component definition.
10439
10440 else
10441 declare
10442 Desig : Entity_Id;
10443
10444 begin
10445 Desig := Entity (Subtype_Indication (Type_Def));
10446
10447 -- If the access definition is to the current record,
10448 -- the visible entity at this point is an incomplete
10449 -- type. Retrieve the full view to simplify ASIS queries
10450
10451 if Ekind (Desig) = E_Incomplete_Type then
10452 Desig := Full_View (Desig);
10453 end if;
10454
10455 Set_Entity
10456 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
10457 end;
10458 end if;
10459
10460 Rewrite (Comp_Def,
10461 Make_Component_Definition (Loc,
10462 Subtype_Indication =>
10463 New_Occurrence_Of (Anon_Access, Loc)));
10464
10465 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
10466 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
10467 else
10468 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
10469 end if;
10470
10471 Set_Is_Local_Anonymous_Access (Anon_Access);
10472 end if;
10473
10474 Next (Comp);
10475 end loop;
10476
10477 if Present (Variant_Part (Comp_List)) then
10478 declare
10479 V : Node_Id;
10480 begin
10481 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
10482 while Present (V) loop
10483 Check_Anonymous_Access_Components
10484 (Typ_Decl, Typ, Prev, Component_List (V));
10485 Next_Non_Pragma (V);
10486 end loop;
10487 end;
10488 end if;
10489 end Check_Anonymous_Access_Components;
10490
10491 ----------------------
10492 -- Check_Completion --
10493 ----------------------
10494
10495 procedure Check_Completion (Body_Id : Node_Id := Empty) is
10496 E : Entity_Id;
10497
10498 procedure Post_Error;
10499 -- Post error message for lack of completion for entity E
10500
10501 ----------------
10502 -- Post_Error --
10503 ----------------
10504
10505 procedure Post_Error is
10506
10507 procedure Missing_Body;
10508 -- Output missing body message
10509
10510 ------------------
10511 -- Missing_Body --
10512 ------------------
10513
10514 procedure Missing_Body is
10515 begin
10516 -- Spec is in same unit, so we can post on spec
10517
10518 if In_Same_Source_Unit (Body_Id, E) then
10519 Error_Msg_N ("missing body for &", E);
10520
10521 -- Spec is in a separate unit, so we have to post on the body
10522
10523 else
10524 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
10525 end if;
10526 end Missing_Body;
10527
10528 -- Start of processing for Post_Error
10529
10530 begin
10531 if not Comes_From_Source (E) then
10532
10533 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
10534
10535 -- It may be an anonymous protected type created for a
10536 -- single variable. Post error on variable, if present.
10537
10538 declare
10539 Var : Entity_Id;
10540
10541 begin
10542 Var := First_Entity (Current_Scope);
10543 while Present (Var) loop
10544 exit when Etype (Var) = E
10545 and then Comes_From_Source (Var);
10546
10547 Next_Entity (Var);
10548 end loop;
10549
10550 if Present (Var) then
10551 E := Var;
10552 end if;
10553 end;
10554 end if;
10555 end if;
10556
10557 -- If a generated entity has no completion, then either previous
10558 -- semantic errors have disabled the expansion phase, or else we had
10559 -- missing subunits, or else we are compiling without expansion,
10560 -- or else something is very wrong.
10561
10562 if not Comes_From_Source (E) then
10563 pragma Assert
10564 (Serious_Errors_Detected > 0
10565 or else Configurable_Run_Time_Violations > 0
10566 or else Subunits_Missing
10567 or else not Expander_Active);
10568 return;
10569
10570 -- Here for source entity
10571
10572 else
10573 -- Here if no body to post the error message, so we post the error
10574 -- on the declaration that has no completion. This is not really
10575 -- the right place to post it, think about this later ???
10576
10577 if No (Body_Id) then
10578 if Is_Type (E) then
10579 Error_Msg_NE
10580 ("missing full declaration for }", Parent (E), E);
10581 else
10582 Error_Msg_NE ("missing body for &", Parent (E), E);
10583 end if;
10584
10585 -- Package body has no completion for a declaration that appears
10586 -- in the corresponding spec. Post error on the body, with a
10587 -- reference to the non-completed declaration.
10588
10589 else
10590 Error_Msg_Sloc := Sloc (E);
10591
10592 if Is_Type (E) then
10593 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
10594
10595 elsif Is_Overloadable (E)
10596 and then Current_Entity_In_Scope (E) /= E
10597 then
10598 -- It may be that the completion is mistyped and appears as
10599 -- a distinct overloading of the entity.
10600
10601 declare
10602 Candidate : constant Entity_Id :=
10603 Current_Entity_In_Scope (E);
10604 Decl : constant Node_Id :=
10605 Unit_Declaration_Node (Candidate);
10606
10607 begin
10608 if Is_Overloadable (Candidate)
10609 and then Ekind (Candidate) = Ekind (E)
10610 and then Nkind (Decl) = N_Subprogram_Body
10611 and then Acts_As_Spec (Decl)
10612 then
10613 Check_Type_Conformant (Candidate, E);
10614
10615 else
10616 Missing_Body;
10617 end if;
10618 end;
10619
10620 else
10621 Missing_Body;
10622 end if;
10623 end if;
10624 end if;
10625 end Post_Error;
10626
10627 -- Start of processing for Check_Completion
10628
10629 begin
10630 E := First_Entity (Current_Scope);
10631 while Present (E) loop
10632 if Is_Intrinsic_Subprogram (E) then
10633 null;
10634
10635 -- The following situation requires special handling: a child unit
10636 -- that appears in the context clause of the body of its parent:
10637
10638 -- procedure Parent.Child (...);
10639
10640 -- with Parent.Child;
10641 -- package body Parent is
10642
10643 -- Here Parent.Child appears as a local entity, but should not be
10644 -- flagged as requiring completion, because it is a compilation
10645 -- unit.
10646
10647 -- Ignore missing completion for a subprogram that does not come from
10648 -- source (including the _Call primitive operation of RAS types,
10649 -- which has to have the flag Comes_From_Source for other purposes):
10650 -- we assume that the expander will provide the missing completion.
10651 -- In case of previous errors, other expansion actions that provide
10652 -- bodies for null procedures with not be invoked, so inhibit message
10653 -- in those cases.
10654
10655 -- Note that E_Operator is not in the list that follows, because
10656 -- this kind is reserved for predefined operators, that are
10657 -- intrinsic and do not need completion.
10658
10659 elsif Ekind_In (E, E_Function,
10660 E_Procedure,
10661 E_Generic_Function,
10662 E_Generic_Procedure)
10663 then
10664 if Has_Completion (E) then
10665 null;
10666
10667 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
10668 null;
10669
10670 elsif Is_Subprogram (E)
10671 and then (not Comes_From_Source (E)
10672 or else Chars (E) = Name_uCall)
10673 then
10674 null;
10675
10676 elsif
10677 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
10678 then
10679 null;
10680
10681 elsif Nkind (Parent (E)) = N_Procedure_Specification
10682 and then Null_Present (Parent (E))
10683 and then Serious_Errors_Detected > 0
10684 then
10685 null;
10686
10687 else
10688 Post_Error;
10689 end if;
10690
10691 elsif Is_Entry (E) then
10692 if not Has_Completion (E) and then
10693 (Ekind (Scope (E)) = E_Protected_Object
10694 or else Ekind (Scope (E)) = E_Protected_Type)
10695 then
10696 Post_Error;
10697 end if;
10698
10699 elsif Is_Package_Or_Generic_Package (E) then
10700 if Unit_Requires_Body (E) then
10701 if not Has_Completion (E)
10702 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
10703 N_Compilation_Unit
10704 then
10705 Post_Error;
10706 end if;
10707
10708 elsif not Is_Child_Unit (E) then
10709 May_Need_Implicit_Body (E);
10710 end if;
10711
10712 -- A formal incomplete type (Ada 2012) does not require a completion;
10713 -- other incomplete type declarations do.
10714
10715 elsif Ekind (E) = E_Incomplete_Type
10716 and then No (Underlying_Type (E))
10717 and then not Is_Generic_Type (E)
10718 then
10719 Post_Error;
10720
10721 elsif Ekind_In (E, E_Task_Type, E_Protected_Type)
10722 and then not Has_Completion (E)
10723 then
10724 Post_Error;
10725
10726 -- A single task declared in the current scope is a constant, verify
10727 -- that the body of its anonymous type is in the same scope. If the
10728 -- task is defined elsewhere, this may be a renaming declaration for
10729 -- which no completion is needed.
10730
10731 elsif Ekind (E) = E_Constant
10732 and then Ekind (Etype (E)) = E_Task_Type
10733 and then not Has_Completion (Etype (E))
10734 and then Scope (Etype (E)) = Current_Scope
10735 then
10736 Post_Error;
10737
10738 elsif Ekind (E) = E_Protected_Object
10739 and then not Has_Completion (Etype (E))
10740 then
10741 Post_Error;
10742
10743 elsif Ekind (E) = E_Record_Type then
10744 if Is_Tagged_Type (E) then
10745 Check_Abstract_Overriding (E);
10746 Check_Conventions (E);
10747 end if;
10748
10749 Check_Aliased_Component_Types (E);
10750
10751 elsif Ekind (E) = E_Array_Type then
10752 Check_Aliased_Component_Types (E);
10753
10754 end if;
10755
10756 Next_Entity (E);
10757 end loop;
10758 end Check_Completion;
10759
10760 ------------------------------------
10761 -- Check_CPP_Type_Has_No_Defaults --
10762 ------------------------------------
10763
10764 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
10765 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
10766 Clist : Node_Id;
10767 Comp : Node_Id;
10768
10769 begin
10770 -- Obtain the component list
10771
10772 if Nkind (Tdef) = N_Record_Definition then
10773 Clist := Component_List (Tdef);
10774 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
10775 Clist := Component_List (Record_Extension_Part (Tdef));
10776 end if;
10777
10778 -- Check all components to ensure no default expressions
10779
10780 if Present (Clist) then
10781 Comp := First (Component_Items (Clist));
10782 while Present (Comp) loop
10783 if Present (Expression (Comp)) then
10784 Error_Msg_N
10785 ("component of imported 'C'P'P type cannot have "
10786 & "default expression", Expression (Comp));
10787 end if;
10788
10789 Next (Comp);
10790 end loop;
10791 end if;
10792 end Check_CPP_Type_Has_No_Defaults;
10793
10794 ----------------------------
10795 -- Check_Delta_Expression --
10796 ----------------------------
10797
10798 procedure Check_Delta_Expression (E : Node_Id) is
10799 begin
10800 if not (Is_Real_Type (Etype (E))) then
10801 Wrong_Type (E, Any_Real);
10802
10803 elsif not Is_OK_Static_Expression (E) then
10804 Flag_Non_Static_Expr
10805 ("non-static expression used for delta value!", E);
10806
10807 elsif not UR_Is_Positive (Expr_Value_R (E)) then
10808 Error_Msg_N ("delta expression must be positive", E);
10809
10810 else
10811 return;
10812 end if;
10813
10814 -- If any of above errors occurred, then replace the incorrect
10815 -- expression by the real 0.1, which should prevent further errors.
10816
10817 Rewrite (E,
10818 Make_Real_Literal (Sloc (E), Ureal_Tenth));
10819 Analyze_And_Resolve (E, Standard_Float);
10820 end Check_Delta_Expression;
10821
10822 -----------------------------
10823 -- Check_Digits_Expression --
10824 -----------------------------
10825
10826 procedure Check_Digits_Expression (E : Node_Id) is
10827 begin
10828 if not (Is_Integer_Type (Etype (E))) then
10829 Wrong_Type (E, Any_Integer);
10830
10831 elsif not Is_OK_Static_Expression (E) then
10832 Flag_Non_Static_Expr
10833 ("non-static expression used for digits value!", E);
10834
10835 elsif Expr_Value (E) <= 0 then
10836 Error_Msg_N ("digits value must be greater than zero", E);
10837
10838 else
10839 return;
10840 end if;
10841
10842 -- If any of above errors occurred, then replace the incorrect
10843 -- expression by the integer 1, which should prevent further errors.
10844
10845 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
10846 Analyze_And_Resolve (E, Standard_Integer);
10847
10848 end Check_Digits_Expression;
10849
10850 --------------------------
10851 -- Check_Initialization --
10852 --------------------------
10853
10854 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
10855 begin
10856 -- Special processing for limited types
10857
10858 if Is_Limited_Type (T)
10859 and then not In_Instance
10860 and then not In_Inlined_Body
10861 then
10862 if not OK_For_Limited_Init (T, Exp) then
10863
10864 -- In GNAT mode, this is just a warning, to allow it to be evilly
10865 -- turned off. Otherwise it is a real error.
10866
10867 if GNAT_Mode then
10868 Error_Msg_N
10869 ("??cannot initialize entities of limited type!", Exp);
10870
10871 elsif Ada_Version < Ada_2005 then
10872
10873 -- The side effect removal machinery may generate illegal Ada
10874 -- code to avoid the usage of access types and 'reference in
10875 -- SPARK mode. Since this is legal code with respect to theorem
10876 -- proving, do not emit the error.
10877
10878 if GNATprove_Mode
10879 and then Nkind (Exp) = N_Function_Call
10880 and then Nkind (Parent (Exp)) = N_Object_Declaration
10881 and then not Comes_From_Source
10882 (Defining_Identifier (Parent (Exp)))
10883 then
10884 null;
10885
10886 else
10887 Error_Msg_N
10888 ("cannot initialize entities of limited type", Exp);
10889 Explain_Limited_Type (T, Exp);
10890 end if;
10891
10892 else
10893 -- Specialize error message according to kind of illegal
10894 -- initial expression.
10895
10896 if Nkind (Exp) = N_Type_Conversion
10897 and then Nkind (Expression (Exp)) = N_Function_Call
10898 then
10899 Error_Msg_N
10900 ("illegal context for call"
10901 & " to function with limited result", Exp);
10902
10903 else
10904 Error_Msg_N
10905 ("initialization of limited object requires aggregate "
10906 & "or function call", Exp);
10907 end if;
10908 end if;
10909 end if;
10910 end if;
10911
10912 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
10913 -- set unless we can be sure that no range check is required.
10914
10915 if (GNATprove_Mode or not Expander_Active)
10916 and then Is_Scalar_Type (T)
10917 and then not Is_In_Range (Exp, T, Assume_Valid => True)
10918 then
10919 Set_Do_Range_Check (Exp);
10920 end if;
10921 end Check_Initialization;
10922
10923 ----------------------
10924 -- Check_Interfaces --
10925 ----------------------
10926
10927 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
10928 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
10929
10930 Iface : Node_Id;
10931 Iface_Def : Node_Id;
10932 Iface_Typ : Entity_Id;
10933 Parent_Node : Node_Id;
10934
10935 Is_Task : Boolean := False;
10936 -- Set True if parent type or any progenitor is a task interface
10937
10938 Is_Protected : Boolean := False;
10939 -- Set True if parent type or any progenitor is a protected interface
10940
10941 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
10942 -- Check that a progenitor is compatible with declaration. If an error
10943 -- message is output, it is posted on Error_Node.
10944
10945 ------------------
10946 -- Check_Ifaces --
10947 ------------------
10948
10949 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
10950 Iface_Id : constant Entity_Id :=
10951 Defining_Identifier (Parent (Iface_Def));
10952 Type_Def : Node_Id;
10953
10954 begin
10955 if Nkind (N) = N_Private_Extension_Declaration then
10956 Type_Def := N;
10957 else
10958 Type_Def := Type_Definition (N);
10959 end if;
10960
10961 if Is_Task_Interface (Iface_Id) then
10962 Is_Task := True;
10963
10964 elsif Is_Protected_Interface (Iface_Id) then
10965 Is_Protected := True;
10966 end if;
10967
10968 if Is_Synchronized_Interface (Iface_Id) then
10969
10970 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
10971 -- extension derived from a synchronized interface must explicitly
10972 -- be declared synchronized, because the full view will be a
10973 -- synchronized type.
10974
10975 if Nkind (N) = N_Private_Extension_Declaration then
10976 if not Synchronized_Present (N) then
10977 Error_Msg_NE
10978 ("private extension of& must be explicitly synchronized",
10979 N, Iface_Id);
10980 end if;
10981
10982 -- However, by 3.9.4(16/2), a full type that is a record extension
10983 -- is never allowed to derive from a synchronized interface (note
10984 -- that interfaces must be excluded from this check, because those
10985 -- are represented by derived type definitions in some cases).
10986
10987 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
10988 and then not Interface_Present (Type_Definition (N))
10989 then
10990 Error_Msg_N ("record extension cannot derive from synchronized "
10991 & "interface", Error_Node);
10992 end if;
10993 end if;
10994
10995 -- Check that the characteristics of the progenitor are compatible
10996 -- with the explicit qualifier in the declaration.
10997 -- The check only applies to qualifiers that come from source.
10998 -- Limited_Present also appears in the declaration of corresponding
10999 -- records, and the check does not apply to them.
11000
11001 if Limited_Present (Type_Def)
11002 and then not
11003 Is_Concurrent_Record_Type (Defining_Identifier (N))
11004 then
11005 if Is_Limited_Interface (Parent_Type)
11006 and then not Is_Limited_Interface (Iface_Id)
11007 then
11008 Error_Msg_NE
11009 ("progenitor & must be limited interface",
11010 Error_Node, Iface_Id);
11011
11012 elsif
11013 (Task_Present (Iface_Def)
11014 or else Protected_Present (Iface_Def)
11015 or else Synchronized_Present (Iface_Def))
11016 and then Nkind (N) /= N_Private_Extension_Declaration
11017 and then not Error_Posted (N)
11018 then
11019 Error_Msg_NE
11020 ("progenitor & must be limited interface",
11021 Error_Node, Iface_Id);
11022 end if;
11023
11024 -- Protected interfaces can only inherit from limited, synchronized
11025 -- or protected interfaces.
11026
11027 elsif Nkind (N) = N_Full_Type_Declaration
11028 and then Protected_Present (Type_Def)
11029 then
11030 if Limited_Present (Iface_Def)
11031 or else Synchronized_Present (Iface_Def)
11032 or else Protected_Present (Iface_Def)
11033 then
11034 null;
11035
11036 elsif Task_Present (Iface_Def) then
11037 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11038 & "from task interface", Error_Node);
11039
11040 else
11041 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11042 & "from non-limited interface", Error_Node);
11043 end if;
11044
11045 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11046 -- limited and synchronized.
11047
11048 elsif Synchronized_Present (Type_Def) then
11049 if Limited_Present (Iface_Def)
11050 or else Synchronized_Present (Iface_Def)
11051 then
11052 null;
11053
11054 elsif Protected_Present (Iface_Def)
11055 and then Nkind (N) /= N_Private_Extension_Declaration
11056 then
11057 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11058 & "from protected interface", Error_Node);
11059
11060 elsif Task_Present (Iface_Def)
11061 and then Nkind (N) /= N_Private_Extension_Declaration
11062 then
11063 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11064 & "from task interface", Error_Node);
11065
11066 elsif not Is_Limited_Interface (Iface_Id) then
11067 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11068 & "from non-limited interface", Error_Node);
11069 end if;
11070
11071 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
11072 -- synchronized or task interfaces.
11073
11074 elsif Nkind (N) = N_Full_Type_Declaration
11075 and then Task_Present (Type_Def)
11076 then
11077 if Limited_Present (Iface_Def)
11078 or else Synchronized_Present (Iface_Def)
11079 or else Task_Present (Iface_Def)
11080 then
11081 null;
11082
11083 elsif Protected_Present (Iface_Def) then
11084 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11085 & "protected interface", Error_Node);
11086
11087 else
11088 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11089 & "non-limited interface", Error_Node);
11090 end if;
11091 end if;
11092 end Check_Ifaces;
11093
11094 -- Start of processing for Check_Interfaces
11095
11096 begin
11097 if Is_Interface (Parent_Type) then
11098 if Is_Task_Interface (Parent_Type) then
11099 Is_Task := True;
11100
11101 elsif Is_Protected_Interface (Parent_Type) then
11102 Is_Protected := True;
11103 end if;
11104 end if;
11105
11106 if Nkind (N) = N_Private_Extension_Declaration then
11107
11108 -- Check that progenitors are compatible with declaration
11109
11110 Iface := First (Interface_List (Def));
11111 while Present (Iface) loop
11112 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11113
11114 Parent_Node := Parent (Base_Type (Iface_Typ));
11115 Iface_Def := Type_Definition (Parent_Node);
11116
11117 if not Is_Interface (Iface_Typ) then
11118 Diagnose_Interface (Iface, Iface_Typ);
11119 else
11120 Check_Ifaces (Iface_Def, Iface);
11121 end if;
11122
11123 Next (Iface);
11124 end loop;
11125
11126 if Is_Task and Is_Protected then
11127 Error_Msg_N
11128 ("type cannot derive from task and protected interface", N);
11129 end if;
11130
11131 return;
11132 end if;
11133
11134 -- Full type declaration of derived type.
11135 -- Check compatibility with parent if it is interface type
11136
11137 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11138 and then Is_Interface (Parent_Type)
11139 then
11140 Parent_Node := Parent (Parent_Type);
11141
11142 -- More detailed checks for interface varieties
11143
11144 Check_Ifaces
11145 (Iface_Def => Type_Definition (Parent_Node),
11146 Error_Node => Subtype_Indication (Type_Definition (N)));
11147 end if;
11148
11149 Iface := First (Interface_List (Def));
11150 while Present (Iface) loop
11151 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11152
11153 Parent_Node := Parent (Base_Type (Iface_Typ));
11154 Iface_Def := Type_Definition (Parent_Node);
11155
11156 if not Is_Interface (Iface_Typ) then
11157 Diagnose_Interface (Iface, Iface_Typ);
11158
11159 else
11160 -- "The declaration of a specific descendant of an interface
11161 -- type freezes the interface type" RM 13.14
11162
11163 Freeze_Before (N, Iface_Typ);
11164 Check_Ifaces (Iface_Def, Error_Node => Iface);
11165 end if;
11166
11167 Next (Iface);
11168 end loop;
11169
11170 if Is_Task and Is_Protected then
11171 Error_Msg_N
11172 ("type cannot derive from task and protected interface", N);
11173 end if;
11174 end Check_Interfaces;
11175
11176 ------------------------------------
11177 -- Check_Or_Process_Discriminants --
11178 ------------------------------------
11179
11180 -- If an incomplete or private type declaration was already given for the
11181 -- type, the discriminants may have already been processed if they were
11182 -- present on the incomplete declaration. In this case a full conformance
11183 -- check has been performed in Find_Type_Name, and we then recheck here
11184 -- some properties that can't be checked on the partial view alone.
11185 -- Otherwise we call Process_Discriminants.
11186
11187 procedure Check_Or_Process_Discriminants
11188 (N : Node_Id;
11189 T : Entity_Id;
11190 Prev : Entity_Id := Empty)
11191 is
11192 begin
11193 if Has_Discriminants (T) then
11194
11195 -- Discriminants are already set on T if they were already present
11196 -- on the partial view. Make them visible to component declarations.
11197
11198 declare
11199 D : Entity_Id;
11200 -- Discriminant on T (full view) referencing expr on partial view
11201
11202 Prev_D : Entity_Id;
11203 -- Entity of corresponding discriminant on partial view
11204
11205 New_D : Node_Id;
11206 -- Discriminant specification for full view, expression is
11207 -- the syntactic copy on full view (which has been checked for
11208 -- conformance with partial view), only used here to post error
11209 -- message.
11210
11211 begin
11212 D := First_Discriminant (T);
11213 New_D := First (Discriminant_Specifications (N));
11214 while Present (D) loop
11215 Prev_D := Current_Entity (D);
11216 Set_Current_Entity (D);
11217 Set_Is_Immediately_Visible (D);
11218 Set_Homonym (D, Prev_D);
11219
11220 -- Handle the case where there is an untagged partial view and
11221 -- the full view is tagged: must disallow discriminants with
11222 -- defaults, unless compiling for Ada 2012, which allows a
11223 -- limited tagged type to have defaulted discriminants (see
11224 -- AI05-0214). However, suppress error here if it was already
11225 -- reported on the default expression of the partial view.
11226
11227 if Is_Tagged_Type (T)
11228 and then Present (Expression (Parent (D)))
11229 and then (not Is_Limited_Type (Current_Scope)
11230 or else Ada_Version < Ada_2012)
11231 and then not Error_Posted (Expression (Parent (D)))
11232 then
11233 if Ada_Version >= Ada_2012 then
11234 Error_Msg_N
11235 ("discriminants of nonlimited tagged type cannot have "
11236 & "defaults",
11237 Expression (New_D));
11238 else
11239 Error_Msg_N
11240 ("discriminants of tagged type cannot have defaults",
11241 Expression (New_D));
11242 end if;
11243 end if;
11244
11245 -- Ada 2005 (AI-230): Access discriminant allowed in
11246 -- non-limited record types.
11247
11248 if Ada_Version < Ada_2005 then
11249
11250 -- This restriction gets applied to the full type here. It
11251 -- has already been applied earlier to the partial view.
11252
11253 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
11254 end if;
11255
11256 Next_Discriminant (D);
11257 Next (New_D);
11258 end loop;
11259 end;
11260
11261 elsif Present (Discriminant_Specifications (N)) then
11262 Process_Discriminants (N, Prev);
11263 end if;
11264 end Check_Or_Process_Discriminants;
11265
11266 ----------------------
11267 -- Check_Real_Bound --
11268 ----------------------
11269
11270 procedure Check_Real_Bound (Bound : Node_Id) is
11271 begin
11272 if not Is_Real_Type (Etype (Bound)) then
11273 Error_Msg_N
11274 ("bound in real type definition must be of real type", Bound);
11275
11276 elsif not Is_OK_Static_Expression (Bound) then
11277 Flag_Non_Static_Expr
11278 ("non-static expression used for real type bound!", Bound);
11279
11280 else
11281 return;
11282 end if;
11283
11284 Rewrite
11285 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
11286 Analyze (Bound);
11287 Resolve (Bound, Standard_Float);
11288 end Check_Real_Bound;
11289
11290 ------------------------------
11291 -- Complete_Private_Subtype --
11292 ------------------------------
11293
11294 procedure Complete_Private_Subtype
11295 (Priv : Entity_Id;
11296 Full : Entity_Id;
11297 Full_Base : Entity_Id;
11298 Related_Nod : Node_Id)
11299 is
11300 Save_Next_Entity : Entity_Id;
11301 Save_Homonym : Entity_Id;
11302
11303 begin
11304 -- Set semantic attributes for (implicit) private subtype completion.
11305 -- If the full type has no discriminants, then it is a copy of the
11306 -- full view of the base. Otherwise, it is a subtype of the base with
11307 -- a possible discriminant constraint. Save and restore the original
11308 -- Next_Entity field of full to ensure that the calls to Copy_Node do
11309 -- not corrupt the entity chain.
11310
11311 -- Note that the type of the full view is the same entity as the type
11312 -- of the partial view. In this fashion, the subtype has access to the
11313 -- correct view of the parent.
11314
11315 Save_Next_Entity := Next_Entity (Full);
11316 Save_Homonym := Homonym (Priv);
11317
11318 case Ekind (Full_Base) is
11319 when E_Record_Type |
11320 E_Record_Subtype |
11321 Class_Wide_Kind |
11322 Private_Kind |
11323 Task_Kind |
11324 Protected_Kind =>
11325 Copy_Node (Priv, Full);
11326
11327 Set_Has_Discriminants
11328 (Full, Has_Discriminants (Full_Base));
11329 Set_Has_Unknown_Discriminants
11330 (Full, Has_Unknown_Discriminants (Full_Base));
11331 Set_First_Entity (Full, First_Entity (Full_Base));
11332 Set_Last_Entity (Full, Last_Entity (Full_Base));
11333
11334 -- If the underlying base type is constrained, we know that the
11335 -- full view of the subtype is constrained as well (the converse
11336 -- is not necessarily true).
11337
11338 if Is_Constrained (Full_Base) then
11339 Set_Is_Constrained (Full);
11340 end if;
11341
11342 when others =>
11343 Copy_Node (Full_Base, Full);
11344
11345 Set_Chars (Full, Chars (Priv));
11346 Conditional_Delay (Full, Priv);
11347 Set_Sloc (Full, Sloc (Priv));
11348 end case;
11349
11350 Set_Next_Entity (Full, Save_Next_Entity);
11351 Set_Homonym (Full, Save_Homonym);
11352 Set_Associated_Node_For_Itype (Full, Related_Nod);
11353
11354 -- Set common attributes for all subtypes: kind, convention, etc.
11355
11356 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
11357 Set_Convention (Full, Convention (Full_Base));
11358
11359 -- The Etype of the full view is inconsistent. Gigi needs to see the
11360 -- structural full view, which is what the current scheme gives: the
11361 -- Etype of the full view is the etype of the full base. However, if the
11362 -- full base is a derived type, the full view then looks like a subtype
11363 -- of the parent, not a subtype of the full base. If instead we write:
11364
11365 -- Set_Etype (Full, Full_Base);
11366
11367 -- then we get inconsistencies in the front-end (confusion between
11368 -- views). Several outstanding bugs are related to this ???
11369
11370 Set_Is_First_Subtype (Full, False);
11371 Set_Scope (Full, Scope (Priv));
11372 Set_Size_Info (Full, Full_Base);
11373 Set_RM_Size (Full, RM_Size (Full_Base));
11374 Set_Is_Itype (Full);
11375
11376 -- A subtype of a private-type-without-discriminants, whose full-view
11377 -- has discriminants with default expressions, is not constrained.
11378
11379 if not Has_Discriminants (Priv) then
11380 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
11381
11382 if Has_Discriminants (Full_Base) then
11383 Set_Discriminant_Constraint
11384 (Full, Discriminant_Constraint (Full_Base));
11385
11386 -- The partial view may have been indefinite, the full view
11387 -- might not be.
11388
11389 Set_Has_Unknown_Discriminants
11390 (Full, Has_Unknown_Discriminants (Full_Base));
11391 end if;
11392 end if;
11393
11394 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
11395 Set_Depends_On_Private (Full, Has_Private_Component (Full));
11396
11397 -- Freeze the private subtype entity if its parent is delayed, and not
11398 -- already frozen. We skip this processing if the type is an anonymous
11399 -- subtype of a record component, or is the corresponding record of a
11400 -- protected type, since ???
11401
11402 if not Is_Type (Scope (Full)) then
11403 Set_Has_Delayed_Freeze (Full,
11404 Has_Delayed_Freeze (Full_Base)
11405 and then (not Is_Frozen (Full_Base)));
11406 end if;
11407
11408 Set_Freeze_Node (Full, Empty);
11409 Set_Is_Frozen (Full, False);
11410 Set_Full_View (Priv, Full);
11411
11412 if Has_Discriminants (Full) then
11413 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
11414 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
11415
11416 if Has_Unknown_Discriminants (Full) then
11417 Set_Discriminant_Constraint (Full, No_Elist);
11418 end if;
11419 end if;
11420
11421 if Ekind (Full_Base) = E_Record_Type
11422 and then Has_Discriminants (Full_Base)
11423 and then Has_Discriminants (Priv) -- might not, if errors
11424 and then not Has_Unknown_Discriminants (Priv)
11425 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
11426 then
11427 Create_Constrained_Components
11428 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
11429
11430 -- If the full base is itself derived from private, build a congruent
11431 -- subtype of its underlying type, for use by the back end. For a
11432 -- constrained record component, the declaration cannot be placed on
11433 -- the component list, but it must nevertheless be built an analyzed, to
11434 -- supply enough information for Gigi to compute the size of component.
11435
11436 elsif Ekind (Full_Base) in Private_Kind
11437 and then Is_Derived_Type (Full_Base)
11438 and then Has_Discriminants (Full_Base)
11439 and then (Ekind (Current_Scope) /= E_Record_Subtype)
11440 then
11441 if not Is_Itype (Priv)
11442 and then
11443 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
11444 then
11445 Build_Underlying_Full_View
11446 (Parent (Priv), Full, Etype (Full_Base));
11447
11448 elsif Nkind (Related_Nod) = N_Component_Declaration then
11449 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
11450 end if;
11451
11452 elsif Is_Record_Type (Full_Base) then
11453
11454 -- Show Full is simply a renaming of Full_Base
11455
11456 Set_Cloned_Subtype (Full, Full_Base);
11457 end if;
11458
11459 -- It is unsafe to share the bounds of a scalar type, because the Itype
11460 -- is elaborated on demand, and if a bound is non-static then different
11461 -- orders of elaboration in different units will lead to different
11462 -- external symbols.
11463
11464 if Is_Scalar_Type (Full_Base) then
11465 Set_Scalar_Range (Full,
11466 Make_Range (Sloc (Related_Nod),
11467 Low_Bound =>
11468 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
11469 High_Bound =>
11470 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
11471
11472 -- This completion inherits the bounds of the full parent, but if
11473 -- the parent is an unconstrained floating point type, so is the
11474 -- completion.
11475
11476 if Is_Floating_Point_Type (Full_Base) then
11477 Set_Includes_Infinities
11478 (Scalar_Range (Full), Has_Infinities (Full_Base));
11479 end if;
11480 end if;
11481
11482 -- ??? It seems that a lot of fields are missing that should be copied
11483 -- from Full_Base to Full. Here are some that are introduced in a
11484 -- non-disruptive way but a cleanup is necessary.
11485
11486 if Is_Tagged_Type (Full_Base) then
11487 Set_Is_Tagged_Type (Full);
11488 Set_Direct_Primitive_Operations
11489 (Full, Direct_Primitive_Operations (Full_Base));
11490 Set_No_Tagged_Streams_Pragma
11491 (Full, No_Tagged_Streams_Pragma (Full_Base));
11492
11493 -- Inherit class_wide type of full_base in case the partial view was
11494 -- not tagged. Otherwise it has already been created when the private
11495 -- subtype was analyzed.
11496
11497 if No (Class_Wide_Type (Full)) then
11498 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
11499 end if;
11500
11501 -- If this is a subtype of a protected or task type, constrain its
11502 -- corresponding record, unless this is a subtype without constraints,
11503 -- i.e. a simple renaming as with an actual subtype in an instance.
11504
11505 elsif Is_Concurrent_Type (Full_Base) then
11506 if Has_Discriminants (Full)
11507 and then Present (Corresponding_Record_Type (Full_Base))
11508 and then
11509 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
11510 then
11511 Set_Corresponding_Record_Type (Full,
11512 Constrain_Corresponding_Record
11513 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
11514
11515 else
11516 Set_Corresponding_Record_Type (Full,
11517 Corresponding_Record_Type (Full_Base));
11518 end if;
11519 end if;
11520
11521 -- Link rep item chain, and also setting of Has_Predicates from private
11522 -- subtype to full subtype, since we will need these on the full subtype
11523 -- to create the predicate function. Note that the full subtype may
11524 -- already have rep items, inherited from the full view of the base
11525 -- type, so we must be sure not to overwrite these entries.
11526
11527 declare
11528 Append : Boolean;
11529 Item : Node_Id;
11530 Next_Item : Node_Id;
11531
11532 begin
11533 Item := First_Rep_Item (Full);
11534
11535 -- If no existing rep items on full type, we can just link directly
11536 -- to the list of items on the private type.
11537
11538 if No (Item) then
11539 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
11540
11541 -- Otherwise, search to the end of items currently linked to the full
11542 -- subtype and append the private items to the end. However, if Priv
11543 -- and Full already have the same list of rep items, then the append
11544 -- is not done, as that would create a circularity.
11545
11546 elsif Item /= First_Rep_Item (Priv) then
11547 Append := True;
11548 loop
11549 Next_Item := Next_Rep_Item (Item);
11550 exit when No (Next_Item);
11551 Item := Next_Item;
11552
11553 -- If the private view has aspect specifications, the full view
11554 -- inherits them. Since these aspects may already have been
11555 -- attached to the full view during derivation, do not append
11556 -- them if already present.
11557
11558 if Item = First_Rep_Item (Priv) then
11559 Append := False;
11560 exit;
11561 end if;
11562 end loop;
11563
11564 -- And link the private type items at the end of the chain
11565
11566 if Append then
11567 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
11568 end if;
11569 end if;
11570 end;
11571
11572 -- Make sure Has_Predicates is set on full type if it is set on the
11573 -- private type. Note that it may already be set on the full type and
11574 -- if so, we don't want to unset it.
11575
11576 if Has_Predicates (Priv) then
11577 Set_Has_Predicates (Full);
11578 end if;
11579 end Complete_Private_Subtype;
11580
11581 ----------------------------
11582 -- Constant_Redeclaration --
11583 ----------------------------
11584
11585 procedure Constant_Redeclaration
11586 (Id : Entity_Id;
11587 N : Node_Id;
11588 T : out Entity_Id)
11589 is
11590 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
11591 Obj_Def : constant Node_Id := Object_Definition (N);
11592 New_T : Entity_Id;
11593
11594 procedure Check_Possible_Deferred_Completion
11595 (Prev_Id : Entity_Id;
11596 Prev_Obj_Def : Node_Id;
11597 Curr_Obj_Def : Node_Id);
11598 -- Determine whether the two object definitions describe the partial
11599 -- and the full view of a constrained deferred constant. Generate
11600 -- a subtype for the full view and verify that it statically matches
11601 -- the subtype of the partial view.
11602
11603 procedure Check_Recursive_Declaration (Typ : Entity_Id);
11604 -- If deferred constant is an access type initialized with an allocator,
11605 -- check whether there is an illegal recursion in the definition,
11606 -- through a default value of some record subcomponent. This is normally
11607 -- detected when generating init procs, but requires this additional
11608 -- mechanism when expansion is disabled.
11609
11610 ----------------------------------------
11611 -- Check_Possible_Deferred_Completion --
11612 ----------------------------------------
11613
11614 procedure Check_Possible_Deferred_Completion
11615 (Prev_Id : Entity_Id;
11616 Prev_Obj_Def : Node_Id;
11617 Curr_Obj_Def : Node_Id)
11618 is
11619 begin
11620 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
11621 and then Present (Constraint (Prev_Obj_Def))
11622 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
11623 and then Present (Constraint (Curr_Obj_Def))
11624 then
11625 declare
11626 Loc : constant Source_Ptr := Sloc (N);
11627 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
11628 Decl : constant Node_Id :=
11629 Make_Subtype_Declaration (Loc,
11630 Defining_Identifier => Def_Id,
11631 Subtype_Indication =>
11632 Relocate_Node (Curr_Obj_Def));
11633
11634 begin
11635 Insert_Before_And_Analyze (N, Decl);
11636 Set_Etype (Id, Def_Id);
11637
11638 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
11639 Error_Msg_Sloc := Sloc (Prev_Id);
11640 Error_Msg_N ("subtype does not statically match deferred "
11641 & "declaration #", N);
11642 end if;
11643 end;
11644 end if;
11645 end Check_Possible_Deferred_Completion;
11646
11647 ---------------------------------
11648 -- Check_Recursive_Declaration --
11649 ---------------------------------
11650
11651 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
11652 Comp : Entity_Id;
11653
11654 begin
11655 if Is_Record_Type (Typ) then
11656 Comp := First_Component (Typ);
11657 while Present (Comp) loop
11658 if Comes_From_Source (Comp) then
11659 if Present (Expression (Parent (Comp)))
11660 and then Is_Entity_Name (Expression (Parent (Comp)))
11661 and then Entity (Expression (Parent (Comp))) = Prev
11662 then
11663 Error_Msg_Sloc := Sloc (Parent (Comp));
11664 Error_Msg_NE
11665 ("illegal circularity with declaration for & #",
11666 N, Comp);
11667 return;
11668
11669 elsif Is_Record_Type (Etype (Comp)) then
11670 Check_Recursive_Declaration (Etype (Comp));
11671 end if;
11672 end if;
11673
11674 Next_Component (Comp);
11675 end loop;
11676 end if;
11677 end Check_Recursive_Declaration;
11678
11679 -- Start of processing for Constant_Redeclaration
11680
11681 begin
11682 if Nkind (Parent (Prev)) = N_Object_Declaration then
11683 if Nkind (Object_Definition
11684 (Parent (Prev))) = N_Subtype_Indication
11685 then
11686 -- Find type of new declaration. The constraints of the two
11687 -- views must match statically, but there is no point in
11688 -- creating an itype for the full view.
11689
11690 if Nkind (Obj_Def) = N_Subtype_Indication then
11691 Find_Type (Subtype_Mark (Obj_Def));
11692 New_T := Entity (Subtype_Mark (Obj_Def));
11693
11694 else
11695 Find_Type (Obj_Def);
11696 New_T := Entity (Obj_Def);
11697 end if;
11698
11699 T := Etype (Prev);
11700
11701 else
11702 -- The full view may impose a constraint, even if the partial
11703 -- view does not, so construct the subtype.
11704
11705 New_T := Find_Type_Of_Object (Obj_Def, N);
11706 T := New_T;
11707 end if;
11708
11709 else
11710 -- Current declaration is illegal, diagnosed below in Enter_Name
11711
11712 T := Empty;
11713 New_T := Any_Type;
11714 end if;
11715
11716 -- If previous full declaration or a renaming declaration exists, or if
11717 -- a homograph is present, let Enter_Name handle it, either with an
11718 -- error or with the removal of an overridden implicit subprogram.
11719 -- The previous one is a full declaration if it has an expression
11720 -- (which in the case of an aggregate is indicated by the Init flag).
11721
11722 if Ekind (Prev) /= E_Constant
11723 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
11724 or else Present (Expression (Parent (Prev)))
11725 or else Has_Init_Expression (Parent (Prev))
11726 or else Present (Full_View (Prev))
11727 then
11728 Enter_Name (Id);
11729
11730 -- Verify that types of both declarations match, or else that both types
11731 -- are anonymous access types whose designated subtypes statically match
11732 -- (as allowed in Ada 2005 by AI-385).
11733
11734 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
11735 and then
11736 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
11737 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
11738 or else Is_Access_Constant (Etype (New_T)) /=
11739 Is_Access_Constant (Etype (Prev))
11740 or else Can_Never_Be_Null (Etype (New_T)) /=
11741 Can_Never_Be_Null (Etype (Prev))
11742 or else Null_Exclusion_Present (Parent (Prev)) /=
11743 Null_Exclusion_Present (Parent (Id))
11744 or else not Subtypes_Statically_Match
11745 (Designated_Type (Etype (Prev)),
11746 Designated_Type (Etype (New_T))))
11747 then
11748 Error_Msg_Sloc := Sloc (Prev);
11749 Error_Msg_N ("type does not match declaration#", N);
11750 Set_Full_View (Prev, Id);
11751 Set_Etype (Id, Any_Type);
11752
11753 elsif
11754 Null_Exclusion_Present (Parent (Prev))
11755 and then not Null_Exclusion_Present (N)
11756 then
11757 Error_Msg_Sloc := Sloc (Prev);
11758 Error_Msg_N ("null-exclusion does not match declaration#", N);
11759 Set_Full_View (Prev, Id);
11760 Set_Etype (Id, Any_Type);
11761
11762 -- If so, process the full constant declaration
11763
11764 else
11765 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
11766 -- the deferred declaration is constrained, then the subtype defined
11767 -- by the subtype_indication in the full declaration shall match it
11768 -- statically.
11769
11770 Check_Possible_Deferred_Completion
11771 (Prev_Id => Prev,
11772 Prev_Obj_Def => Object_Definition (Parent (Prev)),
11773 Curr_Obj_Def => Obj_Def);
11774
11775 Set_Full_View (Prev, Id);
11776 Set_Is_Public (Id, Is_Public (Prev));
11777 Set_Is_Internal (Id);
11778 Append_Entity (Id, Current_Scope);
11779
11780 -- Check ALIASED present if present before (RM 7.4(7))
11781
11782 if Is_Aliased (Prev)
11783 and then not Aliased_Present (N)
11784 then
11785 Error_Msg_Sloc := Sloc (Prev);
11786 Error_Msg_N ("ALIASED required (see declaration #)", N);
11787 end if;
11788
11789 -- Check that placement is in private part and that the incomplete
11790 -- declaration appeared in the visible part.
11791
11792 if Ekind (Current_Scope) = E_Package
11793 and then not In_Private_Part (Current_Scope)
11794 then
11795 Error_Msg_Sloc := Sloc (Prev);
11796 Error_Msg_N
11797 ("full constant for declaration#"
11798 & " must be in private part", N);
11799
11800 elsif Ekind (Current_Scope) = E_Package
11801 and then
11802 List_Containing (Parent (Prev)) /=
11803 Visible_Declarations (Package_Specification (Current_Scope))
11804 then
11805 Error_Msg_N
11806 ("deferred constant must be declared in visible part",
11807 Parent (Prev));
11808 end if;
11809
11810 if Is_Access_Type (T)
11811 and then Nkind (Expression (N)) = N_Allocator
11812 then
11813 Check_Recursive_Declaration (Designated_Type (T));
11814 end if;
11815
11816 -- A deferred constant is a visible entity. If type has invariants,
11817 -- verify that the initial value satisfies them.
11818
11819 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
11820 Insert_After (N,
11821 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
11822 end if;
11823 end if;
11824 end Constant_Redeclaration;
11825
11826 ----------------------
11827 -- Constrain_Access --
11828 ----------------------
11829
11830 procedure Constrain_Access
11831 (Def_Id : in out Entity_Id;
11832 S : Node_Id;
11833 Related_Nod : Node_Id)
11834 is
11835 T : constant Entity_Id := Entity (Subtype_Mark (S));
11836 Desig_Type : constant Entity_Id := Designated_Type (T);
11837 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
11838 Constraint_OK : Boolean := True;
11839
11840 begin
11841 if Is_Array_Type (Desig_Type) then
11842 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
11843
11844 elsif (Is_Record_Type (Desig_Type)
11845 or else Is_Incomplete_Or_Private_Type (Desig_Type))
11846 and then not Is_Constrained (Desig_Type)
11847 then
11848 -- ??? The following code is a temporary bypass to ignore a
11849 -- discriminant constraint on access type if it is constraining
11850 -- the current record. Avoid creating the implicit subtype of the
11851 -- record we are currently compiling since right now, we cannot
11852 -- handle these. For now, just return the access type itself.
11853
11854 if Desig_Type = Current_Scope
11855 and then No (Def_Id)
11856 then
11857 Set_Ekind (Desig_Subtype, E_Record_Subtype);
11858 Def_Id := Entity (Subtype_Mark (S));
11859
11860 -- This call added to ensure that the constraint is analyzed
11861 -- (needed for a B test). Note that we still return early from
11862 -- this procedure to avoid recursive processing. ???
11863
11864 Constrain_Discriminated_Type
11865 (Desig_Subtype, S, Related_Nod, For_Access => True);
11866 return;
11867 end if;
11868
11869 -- Enforce rule that the constraint is illegal if there is an
11870 -- unconstrained view of the designated type. This means that the
11871 -- partial view (either a private type declaration or a derivation
11872 -- from a private type) has no discriminants. (Defect Report
11873 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
11874
11875 -- Rule updated for Ada 2005: The private type is said to have
11876 -- a constrained partial view, given that objects of the type
11877 -- can be declared. Furthermore, the rule applies to all access
11878 -- types, unlike the rule concerning default discriminants (see
11879 -- RM 3.7.1(7/3))
11880
11881 if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005)
11882 and then Has_Private_Declaration (Desig_Type)
11883 and then In_Open_Scopes (Scope (Desig_Type))
11884 and then Has_Discriminants (Desig_Type)
11885 then
11886 declare
11887 Pack : constant Node_Id :=
11888 Unit_Declaration_Node (Scope (Desig_Type));
11889 Decls : List_Id;
11890 Decl : Node_Id;
11891
11892 begin
11893 if Nkind (Pack) = N_Package_Declaration then
11894 Decls := Visible_Declarations (Specification (Pack));
11895 Decl := First (Decls);
11896 while Present (Decl) loop
11897 if (Nkind (Decl) = N_Private_Type_Declaration
11898 and then Chars (Defining_Identifier (Decl)) =
11899 Chars (Desig_Type))
11900
11901 or else
11902 (Nkind (Decl) = N_Full_Type_Declaration
11903 and then
11904 Chars (Defining_Identifier (Decl)) =
11905 Chars (Desig_Type)
11906 and then Is_Derived_Type (Desig_Type)
11907 and then
11908 Has_Private_Declaration (Etype (Desig_Type)))
11909 then
11910 if No (Discriminant_Specifications (Decl)) then
11911 Error_Msg_N
11912 ("cannot constrain access type if designated "
11913 & "type has constrained partial view", S);
11914 end if;
11915
11916 exit;
11917 end if;
11918
11919 Next (Decl);
11920 end loop;
11921 end if;
11922 end;
11923 end if;
11924
11925 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
11926 For_Access => True);
11927
11928 elsif Is_Concurrent_Type (Desig_Type)
11929 and then not Is_Constrained (Desig_Type)
11930 then
11931 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
11932
11933 else
11934 Error_Msg_N ("invalid constraint on access type", S);
11935
11936 -- We simply ignore an invalid constraint
11937
11938 Desig_Subtype := Desig_Type;
11939 Constraint_OK := False;
11940 end if;
11941
11942 if No (Def_Id) then
11943 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
11944 else
11945 Set_Ekind (Def_Id, E_Access_Subtype);
11946 end if;
11947
11948 if Constraint_OK then
11949 Set_Etype (Def_Id, Base_Type (T));
11950
11951 if Is_Private_Type (Desig_Type) then
11952 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
11953 end if;
11954 else
11955 Set_Etype (Def_Id, Any_Type);
11956 end if;
11957
11958 Set_Size_Info (Def_Id, T);
11959 Set_Is_Constrained (Def_Id, Constraint_OK);
11960 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
11961 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11962 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
11963
11964 Conditional_Delay (Def_Id, T);
11965
11966 -- AI-363 : Subtypes of general access types whose designated types have
11967 -- default discriminants are disallowed. In instances, the rule has to
11968 -- be checked against the actual, of which T is the subtype. In a
11969 -- generic body, the rule is checked assuming that the actual type has
11970 -- defaulted discriminants.
11971
11972 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
11973 if Ekind (Base_Type (T)) = E_General_Access_Type
11974 and then Has_Defaulted_Discriminants (Desig_Type)
11975 then
11976 if Ada_Version < Ada_2005 then
11977 Error_Msg_N
11978 ("access subtype of general access type would not " &
11979 "be allowed in Ada 2005?y?", S);
11980 else
11981 Error_Msg_N
11982 ("access subtype of general access type not allowed", S);
11983 end if;
11984
11985 Error_Msg_N ("\discriminants have defaults", S);
11986
11987 elsif Is_Access_Type (T)
11988 and then Is_Generic_Type (Desig_Type)
11989 and then Has_Discriminants (Desig_Type)
11990 and then In_Package_Body (Current_Scope)
11991 then
11992 if Ada_Version < Ada_2005 then
11993 Error_Msg_N
11994 ("access subtype would not be allowed in generic body "
11995 & "in Ada 2005?y?", S);
11996 else
11997 Error_Msg_N
11998 ("access subtype not allowed in generic body", S);
11999 end if;
12000
12001 Error_Msg_N
12002 ("\designated type is a discriminated formal", S);
12003 end if;
12004 end if;
12005 end Constrain_Access;
12006
12007 ---------------------
12008 -- Constrain_Array --
12009 ---------------------
12010
12011 procedure Constrain_Array
12012 (Def_Id : in out Entity_Id;
12013 SI : Node_Id;
12014 Related_Nod : Node_Id;
12015 Related_Id : Entity_Id;
12016 Suffix : Character)
12017 is
12018 C : constant Node_Id := Constraint (SI);
12019 Number_Of_Constraints : Nat := 0;
12020 Index : Node_Id;
12021 S, T : Entity_Id;
12022 Constraint_OK : Boolean := True;
12023
12024 begin
12025 T := Entity (Subtype_Mark (SI));
12026
12027 if Is_Access_Type (T) then
12028 T := Designated_Type (T);
12029 end if;
12030
12031 -- If an index constraint follows a subtype mark in a subtype indication
12032 -- then the type or subtype denoted by the subtype mark must not already
12033 -- impose an index constraint. The subtype mark must denote either an
12034 -- unconstrained array type or an access type whose designated type
12035 -- is such an array type... (RM 3.6.1)
12036
12037 if Is_Constrained (T) then
12038 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
12039 Constraint_OK := False;
12040
12041 else
12042 S := First (Constraints (C));
12043 while Present (S) loop
12044 Number_Of_Constraints := Number_Of_Constraints + 1;
12045 Next (S);
12046 end loop;
12047
12048 -- In either case, the index constraint must provide a discrete
12049 -- range for each index of the array type and the type of each
12050 -- discrete range must be the same as that of the corresponding
12051 -- index. (RM 3.6.1)
12052
12053 if Number_Of_Constraints /= Number_Dimensions (T) then
12054 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
12055 Constraint_OK := False;
12056
12057 else
12058 S := First (Constraints (C));
12059 Index := First_Index (T);
12060 Analyze (Index);
12061
12062 -- Apply constraints to each index type
12063
12064 for J in 1 .. Number_Of_Constraints loop
12065 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
12066 Next (Index);
12067 Next (S);
12068 end loop;
12069
12070 end if;
12071 end if;
12072
12073 if No (Def_Id) then
12074 Def_Id :=
12075 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
12076 Set_Parent (Def_Id, Related_Nod);
12077
12078 else
12079 Set_Ekind (Def_Id, E_Array_Subtype);
12080 end if;
12081
12082 Set_Size_Info (Def_Id, (T));
12083 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12084 Set_Etype (Def_Id, Base_Type (T));
12085
12086 if Constraint_OK then
12087 Set_First_Index (Def_Id, First (Constraints (C)));
12088 else
12089 Set_First_Index (Def_Id, First_Index (T));
12090 end if;
12091
12092 Set_Is_Constrained (Def_Id, True);
12093 Set_Is_Aliased (Def_Id, Is_Aliased (T));
12094 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12095
12096 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
12097 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
12098
12099 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
12100 -- We need to initialize the attribute because if Def_Id is previously
12101 -- analyzed through a limited_with clause, it will have the attributes
12102 -- of an incomplete type, one of which is an Elist that overlaps the
12103 -- Packed_Array_Impl_Type field.
12104
12105 Set_Packed_Array_Impl_Type (Def_Id, Empty);
12106
12107 -- Build a freeze node if parent still needs one. Also make sure that
12108 -- the Depends_On_Private status is set because the subtype will need
12109 -- reprocessing at the time the base type does, and also we must set a
12110 -- conditional delay.
12111
12112 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
12113 Conditional_Delay (Def_Id, T);
12114 end Constrain_Array;
12115
12116 ------------------------------
12117 -- Constrain_Component_Type --
12118 ------------------------------
12119
12120 function Constrain_Component_Type
12121 (Comp : Entity_Id;
12122 Constrained_Typ : Entity_Id;
12123 Related_Node : Node_Id;
12124 Typ : Entity_Id;
12125 Constraints : Elist_Id) return Entity_Id
12126 is
12127 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
12128 Compon_Type : constant Entity_Id := Etype (Comp);
12129
12130 function Build_Constrained_Array_Type
12131 (Old_Type : Entity_Id) return Entity_Id;
12132 -- If Old_Type is an array type, one of whose indexes is constrained
12133 -- by a discriminant, build an Itype whose constraint replaces the
12134 -- discriminant with its value in the constraint.
12135
12136 function Build_Constrained_Discriminated_Type
12137 (Old_Type : Entity_Id) return Entity_Id;
12138 -- Ditto for record components
12139
12140 function Build_Constrained_Access_Type
12141 (Old_Type : Entity_Id) return Entity_Id;
12142 -- Ditto for access types. Makes use of previous two functions, to
12143 -- constrain designated type.
12144
12145 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
12146 -- T is an array or discriminated type, C is a list of constraints
12147 -- that apply to T. This routine builds the constrained subtype.
12148
12149 function Is_Discriminant (Expr : Node_Id) return Boolean;
12150 -- Returns True if Expr is a discriminant
12151
12152 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
12153 -- Find the value of discriminant Discrim in Constraint
12154
12155 -----------------------------------
12156 -- Build_Constrained_Access_Type --
12157 -----------------------------------
12158
12159 function Build_Constrained_Access_Type
12160 (Old_Type : Entity_Id) return Entity_Id
12161 is
12162 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
12163 Itype : Entity_Id;
12164 Desig_Subtype : Entity_Id;
12165 Scop : Entity_Id;
12166
12167 begin
12168 -- if the original access type was not embedded in the enclosing
12169 -- type definition, there is no need to produce a new access
12170 -- subtype. In fact every access type with an explicit constraint
12171 -- generates an itype whose scope is the enclosing record.
12172
12173 if not Is_Type (Scope (Old_Type)) then
12174 return Old_Type;
12175
12176 elsif Is_Array_Type (Desig_Type) then
12177 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
12178
12179 elsif Has_Discriminants (Desig_Type) then
12180
12181 -- This may be an access type to an enclosing record type for
12182 -- which we are constructing the constrained components. Return
12183 -- the enclosing record subtype. This is not always correct,
12184 -- but avoids infinite recursion. ???
12185
12186 Desig_Subtype := Any_Type;
12187
12188 for J in reverse 0 .. Scope_Stack.Last loop
12189 Scop := Scope_Stack.Table (J).Entity;
12190
12191 if Is_Type (Scop)
12192 and then Base_Type (Scop) = Base_Type (Desig_Type)
12193 then
12194 Desig_Subtype := Scop;
12195 end if;
12196
12197 exit when not Is_Type (Scop);
12198 end loop;
12199
12200 if Desig_Subtype = Any_Type then
12201 Desig_Subtype :=
12202 Build_Constrained_Discriminated_Type (Desig_Type);
12203 end if;
12204
12205 else
12206 return Old_Type;
12207 end if;
12208
12209 if Desig_Subtype /= Desig_Type then
12210
12211 -- The Related_Node better be here or else we won't be able
12212 -- to attach new itypes to a node in the tree.
12213
12214 pragma Assert (Present (Related_Node));
12215
12216 Itype := Create_Itype (E_Access_Subtype, Related_Node);
12217
12218 Set_Etype (Itype, Base_Type (Old_Type));
12219 Set_Size_Info (Itype, (Old_Type));
12220 Set_Directly_Designated_Type (Itype, Desig_Subtype);
12221 Set_Depends_On_Private (Itype, Has_Private_Component
12222 (Old_Type));
12223 Set_Is_Access_Constant (Itype, Is_Access_Constant
12224 (Old_Type));
12225
12226 -- The new itype needs freezing when it depends on a not frozen
12227 -- type and the enclosing subtype needs freezing.
12228
12229 if Has_Delayed_Freeze (Constrained_Typ)
12230 and then not Is_Frozen (Constrained_Typ)
12231 then
12232 Conditional_Delay (Itype, Base_Type (Old_Type));
12233 end if;
12234
12235 return Itype;
12236
12237 else
12238 return Old_Type;
12239 end if;
12240 end Build_Constrained_Access_Type;
12241
12242 ----------------------------------
12243 -- Build_Constrained_Array_Type --
12244 ----------------------------------
12245
12246 function Build_Constrained_Array_Type
12247 (Old_Type : Entity_Id) return Entity_Id
12248 is
12249 Lo_Expr : Node_Id;
12250 Hi_Expr : Node_Id;
12251 Old_Index : Node_Id;
12252 Range_Node : Node_Id;
12253 Constr_List : List_Id;
12254
12255 Need_To_Create_Itype : Boolean := False;
12256
12257 begin
12258 Old_Index := First_Index (Old_Type);
12259 while Present (Old_Index) loop
12260 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
12261
12262 if Is_Discriminant (Lo_Expr)
12263 or else
12264 Is_Discriminant (Hi_Expr)
12265 then
12266 Need_To_Create_Itype := True;
12267 end if;
12268
12269 Next_Index (Old_Index);
12270 end loop;
12271
12272 if Need_To_Create_Itype then
12273 Constr_List := New_List;
12274
12275 Old_Index := First_Index (Old_Type);
12276 while Present (Old_Index) loop
12277 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
12278
12279 if Is_Discriminant (Lo_Expr) then
12280 Lo_Expr := Get_Discr_Value (Lo_Expr);
12281 end if;
12282
12283 if Is_Discriminant (Hi_Expr) then
12284 Hi_Expr := Get_Discr_Value (Hi_Expr);
12285 end if;
12286
12287 Range_Node :=
12288 Make_Range
12289 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
12290
12291 Append (Range_Node, To => Constr_List);
12292
12293 Next_Index (Old_Index);
12294 end loop;
12295
12296 return Build_Subtype (Old_Type, Constr_List);
12297
12298 else
12299 return Old_Type;
12300 end if;
12301 end Build_Constrained_Array_Type;
12302
12303 ------------------------------------------
12304 -- Build_Constrained_Discriminated_Type --
12305 ------------------------------------------
12306
12307 function Build_Constrained_Discriminated_Type
12308 (Old_Type : Entity_Id) return Entity_Id
12309 is
12310 Expr : Node_Id;
12311 Constr_List : List_Id;
12312 Old_Constraint : Elmt_Id;
12313
12314 Need_To_Create_Itype : Boolean := False;
12315
12316 begin
12317 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
12318 while Present (Old_Constraint) loop
12319 Expr := Node (Old_Constraint);
12320
12321 if Is_Discriminant (Expr) then
12322 Need_To_Create_Itype := True;
12323 end if;
12324
12325 Next_Elmt (Old_Constraint);
12326 end loop;
12327
12328 if Need_To_Create_Itype then
12329 Constr_List := New_List;
12330
12331 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
12332 while Present (Old_Constraint) loop
12333 Expr := Node (Old_Constraint);
12334
12335 if Is_Discriminant (Expr) then
12336 Expr := Get_Discr_Value (Expr);
12337 end if;
12338
12339 Append (New_Copy_Tree (Expr), To => Constr_List);
12340
12341 Next_Elmt (Old_Constraint);
12342 end loop;
12343
12344 return Build_Subtype (Old_Type, Constr_List);
12345
12346 else
12347 return Old_Type;
12348 end if;
12349 end Build_Constrained_Discriminated_Type;
12350
12351 -------------------
12352 -- Build_Subtype --
12353 -------------------
12354
12355 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
12356 Indic : Node_Id;
12357 Subtyp_Decl : Node_Id;
12358 Def_Id : Entity_Id;
12359 Btyp : Entity_Id := Base_Type (T);
12360
12361 begin
12362 -- The Related_Node better be here or else we won't be able to
12363 -- attach new itypes to a node in the tree.
12364
12365 pragma Assert (Present (Related_Node));
12366
12367 -- If the view of the component's type is incomplete or private
12368 -- with unknown discriminants, then the constraint must be applied
12369 -- to the full type.
12370
12371 if Has_Unknown_Discriminants (Btyp)
12372 and then Present (Underlying_Type (Btyp))
12373 then
12374 Btyp := Underlying_Type (Btyp);
12375 end if;
12376
12377 Indic :=
12378 Make_Subtype_Indication (Loc,
12379 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
12380 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
12381
12382 Def_Id := Create_Itype (Ekind (T), Related_Node);
12383
12384 Subtyp_Decl :=
12385 Make_Subtype_Declaration (Loc,
12386 Defining_Identifier => Def_Id,
12387 Subtype_Indication => Indic);
12388
12389 Set_Parent (Subtyp_Decl, Parent (Related_Node));
12390
12391 -- Itypes must be analyzed with checks off (see package Itypes)
12392
12393 Analyze (Subtyp_Decl, Suppress => All_Checks);
12394
12395 return Def_Id;
12396 end Build_Subtype;
12397
12398 ---------------------
12399 -- Get_Discr_Value --
12400 ---------------------
12401
12402 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
12403 D : Entity_Id;
12404 E : Elmt_Id;
12405
12406 begin
12407 -- The discriminant may be declared for the type, in which case we
12408 -- find it by iterating over the list of discriminants. If the
12409 -- discriminant is inherited from a parent type, it appears as the
12410 -- corresponding discriminant of the current type. This will be the
12411 -- case when constraining an inherited component whose constraint is
12412 -- given by a discriminant of the parent.
12413
12414 D := First_Discriminant (Typ);
12415 E := First_Elmt (Constraints);
12416
12417 while Present (D) loop
12418 if D = Entity (Discrim)
12419 or else D = CR_Discriminant (Entity (Discrim))
12420 or else Corresponding_Discriminant (D) = Entity (Discrim)
12421 then
12422 return Node (E);
12423 end if;
12424
12425 Next_Discriminant (D);
12426 Next_Elmt (E);
12427 end loop;
12428
12429 -- The Corresponding_Discriminant mechanism is incomplete, because
12430 -- the correspondence between new and old discriminants is not one
12431 -- to one: one new discriminant can constrain several old ones. In
12432 -- that case, scan sequentially the stored_constraint, the list of
12433 -- discriminants of the parents, and the constraints.
12434
12435 -- Previous code checked for the present of the Stored_Constraint
12436 -- list for the derived type, but did not use it at all. Should it
12437 -- be present when the component is a discriminated task type?
12438
12439 if Is_Derived_Type (Typ)
12440 and then Scope (Entity (Discrim)) = Etype (Typ)
12441 then
12442 D := First_Discriminant (Etype (Typ));
12443 E := First_Elmt (Constraints);
12444 while Present (D) loop
12445 if D = Entity (Discrim) then
12446 return Node (E);
12447 end if;
12448
12449 Next_Discriminant (D);
12450 Next_Elmt (E);
12451 end loop;
12452 end if;
12453
12454 -- Something is wrong if we did not find the value
12455
12456 raise Program_Error;
12457 end Get_Discr_Value;
12458
12459 ---------------------
12460 -- Is_Discriminant --
12461 ---------------------
12462
12463 function Is_Discriminant (Expr : Node_Id) return Boolean is
12464 Discrim_Scope : Entity_Id;
12465
12466 begin
12467 if Denotes_Discriminant (Expr) then
12468 Discrim_Scope := Scope (Entity (Expr));
12469
12470 -- Either we have a reference to one of Typ's discriminants,
12471
12472 pragma Assert (Discrim_Scope = Typ
12473
12474 -- or to the discriminants of the parent type, in the case
12475 -- of a derivation of a tagged type with variants.
12476
12477 or else Discrim_Scope = Etype (Typ)
12478 or else Full_View (Discrim_Scope) = Etype (Typ)
12479
12480 -- or same as above for the case where the discriminants
12481 -- were declared in Typ's private view.
12482
12483 or else (Is_Private_Type (Discrim_Scope)
12484 and then Chars (Discrim_Scope) = Chars (Typ))
12485
12486 -- or else we are deriving from the full view and the
12487 -- discriminant is declared in the private entity.
12488
12489 or else (Is_Private_Type (Typ)
12490 and then Chars (Discrim_Scope) = Chars (Typ))
12491
12492 -- Or we are constrained the corresponding record of a
12493 -- synchronized type that completes a private declaration.
12494
12495 or else (Is_Concurrent_Record_Type (Typ)
12496 and then
12497 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
12498
12499 -- or we have a class-wide type, in which case make sure the
12500 -- discriminant found belongs to the root type.
12501
12502 or else (Is_Class_Wide_Type (Typ)
12503 and then Etype (Typ) = Discrim_Scope));
12504
12505 return True;
12506 end if;
12507
12508 -- In all other cases we have something wrong
12509
12510 return False;
12511 end Is_Discriminant;
12512
12513 -- Start of processing for Constrain_Component_Type
12514
12515 begin
12516 if Nkind (Parent (Comp)) = N_Component_Declaration
12517 and then Comes_From_Source (Parent (Comp))
12518 and then Comes_From_Source
12519 (Subtype_Indication (Component_Definition (Parent (Comp))))
12520 and then
12521 Is_Entity_Name
12522 (Subtype_Indication (Component_Definition (Parent (Comp))))
12523 then
12524 return Compon_Type;
12525
12526 elsif Is_Array_Type (Compon_Type) then
12527 return Build_Constrained_Array_Type (Compon_Type);
12528
12529 elsif Has_Discriminants (Compon_Type) then
12530 return Build_Constrained_Discriminated_Type (Compon_Type);
12531
12532 elsif Is_Access_Type (Compon_Type) then
12533 return Build_Constrained_Access_Type (Compon_Type);
12534
12535 else
12536 return Compon_Type;
12537 end if;
12538 end Constrain_Component_Type;
12539
12540 --------------------------
12541 -- Constrain_Concurrent --
12542 --------------------------
12543
12544 -- For concurrent types, the associated record value type carries the same
12545 -- discriminants, so when we constrain a concurrent type, we must constrain
12546 -- the corresponding record type as well.
12547
12548 procedure Constrain_Concurrent
12549 (Def_Id : in out Entity_Id;
12550 SI : Node_Id;
12551 Related_Nod : Node_Id;
12552 Related_Id : Entity_Id;
12553 Suffix : Character)
12554 is
12555 -- Retrieve Base_Type to ensure getting to the concurrent type in the
12556 -- case of a private subtype (needed when only doing semantic analysis).
12557
12558 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
12559 T_Val : Entity_Id;
12560
12561 begin
12562 if Is_Access_Type (T_Ent) then
12563 T_Ent := Designated_Type (T_Ent);
12564 end if;
12565
12566 T_Val := Corresponding_Record_Type (T_Ent);
12567
12568 if Present (T_Val) then
12569
12570 if No (Def_Id) then
12571 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12572 end if;
12573
12574 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12575
12576 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12577 Set_Corresponding_Record_Type (Def_Id,
12578 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
12579
12580 else
12581 -- If there is no associated record, expansion is disabled and this
12582 -- is a generic context. Create a subtype in any case, so that
12583 -- semantic analysis can proceed.
12584
12585 if No (Def_Id) then
12586 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12587 end if;
12588
12589 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12590 end if;
12591 end Constrain_Concurrent;
12592
12593 ------------------------------------
12594 -- Constrain_Corresponding_Record --
12595 ------------------------------------
12596
12597 function Constrain_Corresponding_Record
12598 (Prot_Subt : Entity_Id;
12599 Corr_Rec : Entity_Id;
12600 Related_Nod : Node_Id) return Entity_Id
12601 is
12602 T_Sub : constant Entity_Id :=
12603 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
12604
12605 begin
12606 Set_Etype (T_Sub, Corr_Rec);
12607 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
12608 Set_Is_Constrained (T_Sub, True);
12609 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
12610 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
12611
12612 if Has_Discriminants (Prot_Subt) then -- False only if errors.
12613 Set_Discriminant_Constraint
12614 (T_Sub, Discriminant_Constraint (Prot_Subt));
12615 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
12616 Create_Constrained_Components
12617 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
12618 end if;
12619
12620 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
12621
12622 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
12623 Conditional_Delay (T_Sub, Corr_Rec);
12624
12625 else
12626 -- This is a component subtype: it will be frozen in the context of
12627 -- the enclosing record's init_proc, so that discriminant references
12628 -- are resolved to discriminals. (Note: we used to skip freezing
12629 -- altogether in that case, which caused errors downstream for
12630 -- components of a bit packed array type).
12631
12632 Set_Has_Delayed_Freeze (T_Sub);
12633 end if;
12634
12635 return T_Sub;
12636 end Constrain_Corresponding_Record;
12637
12638 -----------------------
12639 -- Constrain_Decimal --
12640 -----------------------
12641
12642 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
12643 T : constant Entity_Id := Entity (Subtype_Mark (S));
12644 C : constant Node_Id := Constraint (S);
12645 Loc : constant Source_Ptr := Sloc (C);
12646 Range_Expr : Node_Id;
12647 Digits_Expr : Node_Id;
12648 Digits_Val : Uint;
12649 Bound_Val : Ureal;
12650
12651 begin
12652 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
12653
12654 if Nkind (C) = N_Range_Constraint then
12655 Range_Expr := Range_Expression (C);
12656 Digits_Val := Digits_Value (T);
12657
12658 else
12659 pragma Assert (Nkind (C) = N_Digits_Constraint);
12660
12661 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
12662
12663 Digits_Expr := Digits_Expression (C);
12664 Analyze_And_Resolve (Digits_Expr, Any_Integer);
12665
12666 Check_Digits_Expression (Digits_Expr);
12667 Digits_Val := Expr_Value (Digits_Expr);
12668
12669 if Digits_Val > Digits_Value (T) then
12670 Error_Msg_N
12671 ("digits expression is incompatible with subtype", C);
12672 Digits_Val := Digits_Value (T);
12673 end if;
12674
12675 if Present (Range_Constraint (C)) then
12676 Range_Expr := Range_Expression (Range_Constraint (C));
12677 else
12678 Range_Expr := Empty;
12679 end if;
12680 end if;
12681
12682 Set_Etype (Def_Id, Base_Type (T));
12683 Set_Size_Info (Def_Id, (T));
12684 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12685 Set_Delta_Value (Def_Id, Delta_Value (T));
12686 Set_Scale_Value (Def_Id, Scale_Value (T));
12687 Set_Small_Value (Def_Id, Small_Value (T));
12688 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
12689 Set_Digits_Value (Def_Id, Digits_Val);
12690
12691 -- Manufacture range from given digits value if no range present
12692
12693 if No (Range_Expr) then
12694 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
12695 Range_Expr :=
12696 Make_Range (Loc,
12697 Low_Bound =>
12698 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
12699 High_Bound =>
12700 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
12701 end if;
12702
12703 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
12704 Set_Discrete_RM_Size (Def_Id);
12705
12706 -- Unconditionally delay the freeze, since we cannot set size
12707 -- information in all cases correctly until the freeze point.
12708
12709 Set_Has_Delayed_Freeze (Def_Id);
12710 end Constrain_Decimal;
12711
12712 ----------------------------------
12713 -- Constrain_Discriminated_Type --
12714 ----------------------------------
12715
12716 procedure Constrain_Discriminated_Type
12717 (Def_Id : Entity_Id;
12718 S : Node_Id;
12719 Related_Nod : Node_Id;
12720 For_Access : Boolean := False)
12721 is
12722 E : constant Entity_Id := Entity (Subtype_Mark (S));
12723 T : Entity_Id;
12724 C : Node_Id;
12725 Elist : Elist_Id := New_Elmt_List;
12726
12727 procedure Fixup_Bad_Constraint;
12728 -- This is called after finding a bad constraint, and after having
12729 -- posted an appropriate error message. The mission is to leave the
12730 -- entity T in as reasonable state as possible.
12731
12732 --------------------------
12733 -- Fixup_Bad_Constraint --
12734 --------------------------
12735
12736 procedure Fixup_Bad_Constraint is
12737 begin
12738 -- Set a reasonable Ekind for the entity. For an incomplete type,
12739 -- we can't do much, but for other types, we can set the proper
12740 -- corresponding subtype kind.
12741
12742 if Ekind (T) = E_Incomplete_Type then
12743 Set_Ekind (Def_Id, Ekind (T));
12744 else
12745 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
12746 end if;
12747
12748 -- Set Etype to the known type, to reduce chances of cascaded errors
12749
12750 Set_Etype (Def_Id, E);
12751 Set_Error_Posted (Def_Id);
12752 end Fixup_Bad_Constraint;
12753
12754 -- Start of processing for Constrain_Discriminated_Type
12755
12756 begin
12757 C := Constraint (S);
12758
12759 -- A discriminant constraint is only allowed in a subtype indication,
12760 -- after a subtype mark. This subtype mark must denote either a type
12761 -- with discriminants, or an access type whose designated type is a
12762 -- type with discriminants. A discriminant constraint specifies the
12763 -- values of these discriminants (RM 3.7.2(5)).
12764
12765 T := Base_Type (Entity (Subtype_Mark (S)));
12766
12767 if Is_Access_Type (T) then
12768 T := Designated_Type (T);
12769 end if;
12770
12771 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
12772 -- Avoid generating an error for access-to-incomplete subtypes.
12773
12774 if Ada_Version >= Ada_2005
12775 and then Ekind (T) = E_Incomplete_Type
12776 and then Nkind (Parent (S)) = N_Subtype_Declaration
12777 and then not Is_Itype (Def_Id)
12778 then
12779 -- A little sanity check, emit an error message if the type
12780 -- has discriminants to begin with. Type T may be a regular
12781 -- incomplete type or imported via a limited with clause.
12782
12783 if Has_Discriminants (T)
12784 or else (From_Limited_With (T)
12785 and then Present (Non_Limited_View (T))
12786 and then Nkind (Parent (Non_Limited_View (T))) =
12787 N_Full_Type_Declaration
12788 and then Present (Discriminant_Specifications
12789 (Parent (Non_Limited_View (T)))))
12790 then
12791 Error_Msg_N
12792 ("(Ada 2005) incomplete subtype may not be constrained", C);
12793 else
12794 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12795 end if;
12796
12797 Fixup_Bad_Constraint;
12798 return;
12799
12800 -- Check that the type has visible discriminants. The type may be
12801 -- a private type with unknown discriminants whose full view has
12802 -- discriminants which are invisible.
12803
12804 elsif not Has_Discriminants (T)
12805 or else
12806 (Has_Unknown_Discriminants (T)
12807 and then Is_Private_Type (T))
12808 then
12809 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12810 Fixup_Bad_Constraint;
12811 return;
12812
12813 elsif Is_Constrained (E)
12814 or else (Ekind (E) = E_Class_Wide_Subtype
12815 and then Present (Discriminant_Constraint (E)))
12816 then
12817 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
12818 Fixup_Bad_Constraint;
12819 return;
12820 end if;
12821
12822 -- T may be an unconstrained subtype (e.g. a generic actual).
12823 -- Constraint applies to the base type.
12824
12825 T := Base_Type (T);
12826
12827 Elist := Build_Discriminant_Constraints (T, S);
12828
12829 -- If the list returned was empty we had an error in building the
12830 -- discriminant constraint. We have also already signalled an error
12831 -- in the incomplete type case
12832
12833 if Is_Empty_Elmt_List (Elist) then
12834 Fixup_Bad_Constraint;
12835 return;
12836 end if;
12837
12838 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
12839 end Constrain_Discriminated_Type;
12840
12841 ---------------------------
12842 -- Constrain_Enumeration --
12843 ---------------------------
12844
12845 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
12846 T : constant Entity_Id := Entity (Subtype_Mark (S));
12847 C : constant Node_Id := Constraint (S);
12848
12849 begin
12850 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12851
12852 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
12853
12854 Set_Etype (Def_Id, Base_Type (T));
12855 Set_Size_Info (Def_Id, (T));
12856 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12857 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12858
12859 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12860
12861 Set_Discrete_RM_Size (Def_Id);
12862 end Constrain_Enumeration;
12863
12864 ----------------------
12865 -- Constrain_Float --
12866 ----------------------
12867
12868 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
12869 T : constant Entity_Id := Entity (Subtype_Mark (S));
12870 C : Node_Id;
12871 D : Node_Id;
12872 Rais : Node_Id;
12873
12874 begin
12875 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
12876
12877 Set_Etype (Def_Id, Base_Type (T));
12878 Set_Size_Info (Def_Id, (T));
12879 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12880
12881 -- Process the constraint
12882
12883 C := Constraint (S);
12884
12885 -- Digits constraint present
12886
12887 if Nkind (C) = N_Digits_Constraint then
12888
12889 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
12890 Check_Restriction (No_Obsolescent_Features, C);
12891
12892 if Warn_On_Obsolescent_Feature then
12893 Error_Msg_N
12894 ("subtype digits constraint is an " &
12895 "obsolescent feature (RM J.3(8))?j?", C);
12896 end if;
12897
12898 D := Digits_Expression (C);
12899 Analyze_And_Resolve (D, Any_Integer);
12900 Check_Digits_Expression (D);
12901 Set_Digits_Value (Def_Id, Expr_Value (D));
12902
12903 -- Check that digits value is in range. Obviously we can do this
12904 -- at compile time, but it is strictly a runtime check, and of
12905 -- course there is an ACVC test that checks this.
12906
12907 if Digits_Value (Def_Id) > Digits_Value (T) then
12908 Error_Msg_Uint_1 := Digits_Value (T);
12909 Error_Msg_N ("??digits value is too large, maximum is ^", D);
12910 Rais :=
12911 Make_Raise_Constraint_Error (Sloc (D),
12912 Reason => CE_Range_Check_Failed);
12913 Insert_Action (Declaration_Node (Def_Id), Rais);
12914 end if;
12915
12916 C := Range_Constraint (C);
12917
12918 -- No digits constraint present
12919
12920 else
12921 Set_Digits_Value (Def_Id, Digits_Value (T));
12922 end if;
12923
12924 -- Range constraint present
12925
12926 if Nkind (C) = N_Range_Constraint then
12927 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12928
12929 -- No range constraint present
12930
12931 else
12932 pragma Assert (No (C));
12933 Set_Scalar_Range (Def_Id, Scalar_Range (T));
12934 end if;
12935
12936 Set_Is_Constrained (Def_Id);
12937 end Constrain_Float;
12938
12939 ---------------------
12940 -- Constrain_Index --
12941 ---------------------
12942
12943 procedure Constrain_Index
12944 (Index : Node_Id;
12945 S : Node_Id;
12946 Related_Nod : Node_Id;
12947 Related_Id : Entity_Id;
12948 Suffix : Character;
12949 Suffix_Index : Nat)
12950 is
12951 Def_Id : Entity_Id;
12952 R : Node_Id := Empty;
12953 T : constant Entity_Id := Etype (Index);
12954
12955 begin
12956 if Nkind (S) = N_Range
12957 or else
12958 (Nkind (S) = N_Attribute_Reference
12959 and then Attribute_Name (S) = Name_Range)
12960 then
12961 -- A Range attribute will be transformed into N_Range by Resolve
12962
12963 Analyze (S);
12964 Set_Etype (S, T);
12965 R := S;
12966
12967 Process_Range_Expr_In_Decl (R, T);
12968
12969 if not Error_Posted (S)
12970 and then
12971 (Nkind (S) /= N_Range
12972 or else not Covers (T, (Etype (Low_Bound (S))))
12973 or else not Covers (T, (Etype (High_Bound (S)))))
12974 then
12975 if Base_Type (T) /= Any_Type
12976 and then Etype (Low_Bound (S)) /= Any_Type
12977 and then Etype (High_Bound (S)) /= Any_Type
12978 then
12979 Error_Msg_N ("range expected", S);
12980 end if;
12981 end if;
12982
12983 elsif Nkind (S) = N_Subtype_Indication then
12984
12985 -- The parser has verified that this is a discrete indication
12986
12987 Resolve_Discrete_Subtype_Indication (S, T);
12988 Bad_Predicated_Subtype_Use
12989 ("subtype& has predicate, not allowed in index constraint",
12990 S, Entity (Subtype_Mark (S)));
12991
12992 R := Range_Expression (Constraint (S));
12993
12994 -- Capture values of bounds and generate temporaries for them if
12995 -- needed, since checks may cause duplication of the expressions
12996 -- which must not be reevaluated.
12997
12998 -- The forced evaluation removes side effects from expressions, which
12999 -- should occur also in GNATprove mode. Otherwise, we end up with
13000 -- unexpected insertions of actions at places where this is not
13001 -- supposed to occur, e.g. on default parameters of a call.
13002
13003 if Expander_Active or GNATprove_Mode then
13004 Force_Evaluation (Low_Bound (R));
13005 Force_Evaluation (High_Bound (R));
13006 end if;
13007
13008 elsif Nkind (S) = N_Discriminant_Association then
13009
13010 -- Syntactically valid in subtype indication
13011
13012 Error_Msg_N ("invalid index constraint", S);
13013 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13014 return;
13015
13016 -- Subtype_Mark case, no anonymous subtypes to construct
13017
13018 else
13019 Analyze (S);
13020
13021 if Is_Entity_Name (S) then
13022 if not Is_Type (Entity (S)) then
13023 Error_Msg_N ("expect subtype mark for index constraint", S);
13024
13025 elsif Base_Type (Entity (S)) /= Base_Type (T) then
13026 Wrong_Type (S, Base_Type (T));
13027
13028 -- Check error of subtype with predicate in index constraint
13029
13030 else
13031 Bad_Predicated_Subtype_Use
13032 ("subtype& has predicate, not allowed in index constraint",
13033 S, Entity (S));
13034 end if;
13035
13036 return;
13037
13038 else
13039 Error_Msg_N ("invalid index constraint", S);
13040 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13041 return;
13042 end if;
13043 end if;
13044
13045 Def_Id :=
13046 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
13047
13048 Set_Etype (Def_Id, Base_Type (T));
13049
13050 if Is_Modular_Integer_Type (T) then
13051 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13052
13053 elsif Is_Integer_Type (T) then
13054 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13055
13056 else
13057 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13058 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13059 Set_First_Literal (Def_Id, First_Literal (T));
13060 end if;
13061
13062 Set_Size_Info (Def_Id, (T));
13063 Set_RM_Size (Def_Id, RM_Size (T));
13064 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13065
13066 Set_Scalar_Range (Def_Id, R);
13067
13068 Set_Etype (S, Def_Id);
13069 Set_Discrete_RM_Size (Def_Id);
13070 end Constrain_Index;
13071
13072 -----------------------
13073 -- Constrain_Integer --
13074 -----------------------
13075
13076 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
13077 T : constant Entity_Id := Entity (Subtype_Mark (S));
13078 C : constant Node_Id := Constraint (S);
13079
13080 begin
13081 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13082
13083 if Is_Modular_Integer_Type (T) then
13084 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13085 else
13086 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13087 end if;
13088
13089 Set_Etype (Def_Id, Base_Type (T));
13090 Set_Size_Info (Def_Id, (T));
13091 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13092 Set_Discrete_RM_Size (Def_Id);
13093 end Constrain_Integer;
13094
13095 ------------------------------
13096 -- Constrain_Ordinary_Fixed --
13097 ------------------------------
13098
13099 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
13100 T : constant Entity_Id := Entity (Subtype_Mark (S));
13101 C : Node_Id;
13102 D : Node_Id;
13103 Rais : Node_Id;
13104
13105 begin
13106 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
13107 Set_Etype (Def_Id, Base_Type (T));
13108 Set_Size_Info (Def_Id, (T));
13109 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13110 Set_Small_Value (Def_Id, Small_Value (T));
13111
13112 -- Process the constraint
13113
13114 C := Constraint (S);
13115
13116 -- Delta constraint present
13117
13118 if Nkind (C) = N_Delta_Constraint then
13119
13120 Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
13121 Check_Restriction (No_Obsolescent_Features, C);
13122
13123 if Warn_On_Obsolescent_Feature then
13124 Error_Msg_S
13125 ("subtype delta constraint is an " &
13126 "obsolescent feature (RM J.3(7))?j?");
13127 end if;
13128
13129 D := Delta_Expression (C);
13130 Analyze_And_Resolve (D, Any_Real);
13131 Check_Delta_Expression (D);
13132 Set_Delta_Value (Def_Id, Expr_Value_R (D));
13133
13134 -- Check that delta value is in range. Obviously we can do this
13135 -- at compile time, but it is strictly a runtime check, and of
13136 -- course there is an ACVC test that checks this.
13137
13138 if Delta_Value (Def_Id) < Delta_Value (T) then
13139 Error_Msg_N ("??delta value is too small", D);
13140 Rais :=
13141 Make_Raise_Constraint_Error (Sloc (D),
13142 Reason => CE_Range_Check_Failed);
13143 Insert_Action (Declaration_Node (Def_Id), Rais);
13144 end if;
13145
13146 C := Range_Constraint (C);
13147
13148 -- No delta constraint present
13149
13150 else
13151 Set_Delta_Value (Def_Id, Delta_Value (T));
13152 end if;
13153
13154 -- Range constraint present
13155
13156 if Nkind (C) = N_Range_Constraint then
13157 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13158
13159 -- No range constraint present
13160
13161 else
13162 pragma Assert (No (C));
13163 Set_Scalar_Range (Def_Id, Scalar_Range (T));
13164
13165 end if;
13166
13167 Set_Discrete_RM_Size (Def_Id);
13168
13169 -- Unconditionally delay the freeze, since we cannot set size
13170 -- information in all cases correctly until the freeze point.
13171
13172 Set_Has_Delayed_Freeze (Def_Id);
13173 end Constrain_Ordinary_Fixed;
13174
13175 -----------------------
13176 -- Contain_Interface --
13177 -----------------------
13178
13179 function Contain_Interface
13180 (Iface : Entity_Id;
13181 Ifaces : Elist_Id) return Boolean
13182 is
13183 Iface_Elmt : Elmt_Id;
13184
13185 begin
13186 if Present (Ifaces) then
13187 Iface_Elmt := First_Elmt (Ifaces);
13188 while Present (Iface_Elmt) loop
13189 if Node (Iface_Elmt) = Iface then
13190 return True;
13191 end if;
13192
13193 Next_Elmt (Iface_Elmt);
13194 end loop;
13195 end if;
13196
13197 return False;
13198 end Contain_Interface;
13199
13200 ---------------------------
13201 -- Convert_Scalar_Bounds --
13202 ---------------------------
13203
13204 procedure Convert_Scalar_Bounds
13205 (N : Node_Id;
13206 Parent_Type : Entity_Id;
13207 Derived_Type : Entity_Id;
13208 Loc : Source_Ptr)
13209 is
13210 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
13211
13212 Lo : Node_Id;
13213 Hi : Node_Id;
13214 Rng : Node_Id;
13215
13216 begin
13217 -- Defend against previous errors
13218
13219 if No (Scalar_Range (Derived_Type)) then
13220 Check_Error_Detected;
13221 return;
13222 end if;
13223
13224 Lo := Build_Scalar_Bound
13225 (Type_Low_Bound (Derived_Type),
13226 Parent_Type, Implicit_Base);
13227
13228 Hi := Build_Scalar_Bound
13229 (Type_High_Bound (Derived_Type),
13230 Parent_Type, Implicit_Base);
13231
13232 Rng :=
13233 Make_Range (Loc,
13234 Low_Bound => Lo,
13235 High_Bound => Hi);
13236
13237 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
13238
13239 Set_Parent (Rng, N);
13240 Set_Scalar_Range (Derived_Type, Rng);
13241
13242 -- Analyze the bounds
13243
13244 Analyze_And_Resolve (Lo, Implicit_Base);
13245 Analyze_And_Resolve (Hi, Implicit_Base);
13246
13247 -- Analyze the range itself, except that we do not analyze it if
13248 -- the bounds are real literals, and we have a fixed-point type.
13249 -- The reason for this is that we delay setting the bounds in this
13250 -- case till we know the final Small and Size values (see circuit
13251 -- in Freeze.Freeze_Fixed_Point_Type for further details).
13252
13253 if Is_Fixed_Point_Type (Parent_Type)
13254 and then Nkind (Lo) = N_Real_Literal
13255 and then Nkind (Hi) = N_Real_Literal
13256 then
13257 return;
13258
13259 -- Here we do the analysis of the range
13260
13261 -- Note: we do this manually, since if we do a normal Analyze and
13262 -- Resolve call, there are problems with the conversions used for
13263 -- the derived type range.
13264
13265 else
13266 Set_Etype (Rng, Implicit_Base);
13267 Set_Analyzed (Rng, True);
13268 end if;
13269 end Convert_Scalar_Bounds;
13270
13271 -------------------
13272 -- Copy_And_Swap --
13273 -------------------
13274
13275 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
13276 begin
13277 -- Initialize new full declaration entity by copying the pertinent
13278 -- fields of the corresponding private declaration entity.
13279
13280 -- We temporarily set Ekind to a value appropriate for a type to
13281 -- avoid assert failures in Einfo from checking for setting type
13282 -- attributes on something that is not a type. Ekind (Priv) is an
13283 -- appropriate choice, since it allowed the attributes to be set
13284 -- in the first place. This Ekind value will be modified later.
13285
13286 Set_Ekind (Full, Ekind (Priv));
13287
13288 -- Also set Etype temporarily to Any_Type, again, in the absence
13289 -- of errors, it will be properly reset, and if there are errors,
13290 -- then we want a value of Any_Type to remain.
13291
13292 Set_Etype (Full, Any_Type);
13293
13294 -- Now start copying attributes
13295
13296 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
13297
13298 if Has_Discriminants (Full) then
13299 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
13300 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
13301 end if;
13302
13303 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
13304 Set_Homonym (Full, Homonym (Priv));
13305 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
13306 Set_Is_Public (Full, Is_Public (Priv));
13307 Set_Is_Pure (Full, Is_Pure (Priv));
13308 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
13309 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
13310 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
13311 Set_Has_Pragma_Unreferenced_Objects
13312 (Full, Has_Pragma_Unreferenced_Objects
13313 (Priv));
13314
13315 Conditional_Delay (Full, Priv);
13316
13317 if Is_Tagged_Type (Full) then
13318 Set_Direct_Primitive_Operations
13319 (Full, Direct_Primitive_Operations (Priv));
13320 Set_No_Tagged_Streams_Pragma
13321 (Full, No_Tagged_Streams_Pragma (Priv));
13322
13323 if Is_Base_Type (Priv) then
13324 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
13325 end if;
13326 end if;
13327
13328 Set_Is_Volatile (Full, Is_Volatile (Priv));
13329 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
13330 Set_Scope (Full, Scope (Priv));
13331 Set_Next_Entity (Full, Next_Entity (Priv));
13332 Set_First_Entity (Full, First_Entity (Priv));
13333 Set_Last_Entity (Full, Last_Entity (Priv));
13334
13335 -- If access types have been recorded for later handling, keep them in
13336 -- the full view so that they get handled when the full view freeze
13337 -- node is expanded.
13338
13339 if Present (Freeze_Node (Priv))
13340 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
13341 then
13342 Ensure_Freeze_Node (Full);
13343 Set_Access_Types_To_Process
13344 (Freeze_Node (Full),
13345 Access_Types_To_Process (Freeze_Node (Priv)));
13346 end if;
13347
13348 -- Swap the two entities. Now Private is the full type entity and Full
13349 -- is the private one. They will be swapped back at the end of the
13350 -- private part. This swapping ensures that the entity that is visible
13351 -- in the private part is the full declaration.
13352
13353 Exchange_Entities (Priv, Full);
13354 Append_Entity (Full, Scope (Full));
13355 end Copy_And_Swap;
13356
13357 -------------------------------------
13358 -- Copy_Array_Base_Type_Attributes --
13359 -------------------------------------
13360
13361 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
13362 begin
13363 Set_Component_Alignment (T1, Component_Alignment (T2));
13364 Set_Component_Type (T1, Component_Type (T2));
13365 Set_Component_Size (T1, Component_Size (T2));
13366 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
13367 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
13368 Set_Has_Protected (T1, Has_Protected (T2));
13369 Set_Has_Task (T1, Has_Task (T2));
13370 Set_Is_Packed (T1, Is_Packed (T2));
13371 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
13372 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
13373 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
13374 end Copy_Array_Base_Type_Attributes;
13375
13376 -----------------------------------
13377 -- Copy_Array_Subtype_Attributes --
13378 -----------------------------------
13379
13380 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
13381 begin
13382 Set_Size_Info (T1, T2);
13383
13384 Set_First_Index (T1, First_Index (T2));
13385 Set_Is_Aliased (T1, Is_Aliased (T2));
13386 Set_Is_Volatile (T1, Is_Volatile (T2));
13387 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
13388 Set_Is_Constrained (T1, Is_Constrained (T2));
13389 Set_Depends_On_Private (T1, Has_Private_Component (T2));
13390 Set_First_Rep_Item (T1, First_Rep_Item (T2));
13391 Set_Convention (T1, Convention (T2));
13392 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
13393 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
13394 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
13395 end Copy_Array_Subtype_Attributes;
13396
13397 -----------------------------------
13398 -- Create_Constrained_Components --
13399 -----------------------------------
13400
13401 procedure Create_Constrained_Components
13402 (Subt : Entity_Id;
13403 Decl_Node : Node_Id;
13404 Typ : Entity_Id;
13405 Constraints : Elist_Id)
13406 is
13407 Loc : constant Source_Ptr := Sloc (Subt);
13408 Comp_List : constant Elist_Id := New_Elmt_List;
13409 Parent_Type : constant Entity_Id := Etype (Typ);
13410 Assoc_List : constant List_Id := New_List;
13411 Discr_Val : Elmt_Id;
13412 Errors : Boolean;
13413 New_C : Entity_Id;
13414 Old_C : Entity_Id;
13415 Is_Static : Boolean := True;
13416
13417 procedure Collect_Fixed_Components (Typ : Entity_Id);
13418 -- Collect parent type components that do not appear in a variant part
13419
13420 procedure Create_All_Components;
13421 -- Iterate over Comp_List to create the components of the subtype
13422
13423 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
13424 -- Creates a new component from Old_Compon, copying all the fields from
13425 -- it, including its Etype, inserts the new component in the Subt entity
13426 -- chain and returns the new component.
13427
13428 function Is_Variant_Record (T : Entity_Id) return Boolean;
13429 -- If true, and discriminants are static, collect only components from
13430 -- variants selected by discriminant values.
13431
13432 ------------------------------
13433 -- Collect_Fixed_Components --
13434 ------------------------------
13435
13436 procedure Collect_Fixed_Components (Typ : Entity_Id) is
13437 begin
13438 -- Build association list for discriminants, and find components of the
13439 -- variant part selected by the values of the discriminants.
13440
13441 Old_C := First_Discriminant (Typ);
13442 Discr_Val := First_Elmt (Constraints);
13443 while Present (Old_C) loop
13444 Append_To (Assoc_List,
13445 Make_Component_Association (Loc,
13446 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
13447 Expression => New_Copy (Node (Discr_Val))));
13448
13449 Next_Elmt (Discr_Val);
13450 Next_Discriminant (Old_C);
13451 end loop;
13452
13453 -- The tag and the possible parent component are unconditionally in
13454 -- the subtype.
13455
13456 if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
13457 Old_C := First_Component (Typ);
13458 while Present (Old_C) loop
13459 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
13460 Append_Elmt (Old_C, Comp_List);
13461 end if;
13462
13463 Next_Component (Old_C);
13464 end loop;
13465 end if;
13466 end Collect_Fixed_Components;
13467
13468 ---------------------------
13469 -- Create_All_Components --
13470 ---------------------------
13471
13472 procedure Create_All_Components is
13473 Comp : Elmt_Id;
13474
13475 begin
13476 Comp := First_Elmt (Comp_List);
13477 while Present (Comp) loop
13478 Old_C := Node (Comp);
13479 New_C := Create_Component (Old_C);
13480
13481 Set_Etype
13482 (New_C,
13483 Constrain_Component_Type
13484 (Old_C, Subt, Decl_Node, Typ, Constraints));
13485 Set_Is_Public (New_C, Is_Public (Subt));
13486
13487 Next_Elmt (Comp);
13488 end loop;
13489 end Create_All_Components;
13490
13491 ----------------------
13492 -- Create_Component --
13493 ----------------------
13494
13495 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
13496 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
13497
13498 begin
13499 if Ekind (Old_Compon) = E_Discriminant
13500 and then Is_Completely_Hidden (Old_Compon)
13501 then
13502 -- This is a shadow discriminant created for a discriminant of
13503 -- the parent type, which needs to be present in the subtype.
13504 -- Give the shadow discriminant an internal name that cannot
13505 -- conflict with that of visible components.
13506
13507 Set_Chars (New_Compon, New_Internal_Name ('C'));
13508 end if;
13509
13510 -- Set the parent so we have a proper link for freezing etc. This is
13511 -- not a real parent pointer, since of course our parent does not own
13512 -- up to us and reference us, we are an illegitimate child of the
13513 -- original parent.
13514
13515 Set_Parent (New_Compon, Parent (Old_Compon));
13516
13517 -- If the old component's Esize was already determined and is a
13518 -- static value, then the new component simply inherits it. Otherwise
13519 -- the old component's size may require run-time determination, but
13520 -- the new component's size still might be statically determinable
13521 -- (if, for example it has a static constraint). In that case we want
13522 -- Layout_Type to recompute the component's size, so we reset its
13523 -- size and positional fields.
13524
13525 if Frontend_Layout_On_Target
13526 and then not Known_Static_Esize (Old_Compon)
13527 then
13528 Set_Esize (New_Compon, Uint_0);
13529 Init_Normalized_First_Bit (New_Compon);
13530 Init_Normalized_Position (New_Compon);
13531 Init_Normalized_Position_Max (New_Compon);
13532 end if;
13533
13534 -- We do not want this node marked as Comes_From_Source, since
13535 -- otherwise it would get first class status and a separate cross-
13536 -- reference line would be generated. Illegitimate children do not
13537 -- rate such recognition.
13538
13539 Set_Comes_From_Source (New_Compon, False);
13540
13541 -- But it is a real entity, and a birth certificate must be properly
13542 -- registered by entering it into the entity list.
13543
13544 Enter_Name (New_Compon);
13545
13546 return New_Compon;
13547 end Create_Component;
13548
13549 -----------------------
13550 -- Is_Variant_Record --
13551 -----------------------
13552
13553 function Is_Variant_Record (T : Entity_Id) return Boolean is
13554 begin
13555 return Nkind (Parent (T)) = N_Full_Type_Declaration
13556 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
13557 and then Present (Component_List (Type_Definition (Parent (T))))
13558 and then
13559 Present
13560 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
13561 end Is_Variant_Record;
13562
13563 -- Start of processing for Create_Constrained_Components
13564
13565 begin
13566 pragma Assert (Subt /= Base_Type (Subt));
13567 pragma Assert (Typ = Base_Type (Typ));
13568
13569 Set_First_Entity (Subt, Empty);
13570 Set_Last_Entity (Subt, Empty);
13571
13572 -- Check whether constraint is fully static, in which case we can
13573 -- optimize the list of components.
13574
13575 Discr_Val := First_Elmt (Constraints);
13576 while Present (Discr_Val) loop
13577 if not Is_OK_Static_Expression (Node (Discr_Val)) then
13578 Is_Static := False;
13579 exit;
13580 end if;
13581
13582 Next_Elmt (Discr_Val);
13583 end loop;
13584
13585 Set_Has_Static_Discriminants (Subt, Is_Static);
13586
13587 Push_Scope (Subt);
13588
13589 -- Inherit the discriminants of the parent type
13590
13591 Add_Discriminants : declare
13592 Num_Disc : Int;
13593 Num_Gird : Int;
13594
13595 begin
13596 Num_Disc := 0;
13597 Old_C := First_Discriminant (Typ);
13598
13599 while Present (Old_C) loop
13600 Num_Disc := Num_Disc + 1;
13601 New_C := Create_Component (Old_C);
13602 Set_Is_Public (New_C, Is_Public (Subt));
13603 Next_Discriminant (Old_C);
13604 end loop;
13605
13606 -- For an untagged derived subtype, the number of discriminants may
13607 -- be smaller than the number of inherited discriminants, because
13608 -- several of them may be renamed by a single new discriminant or
13609 -- constrained. In this case, add the hidden discriminants back into
13610 -- the subtype, because they need to be present if the optimizer of
13611 -- the GCC 4.x back-end decides to break apart assignments between
13612 -- objects using the parent view into member-wise assignments.
13613
13614 Num_Gird := 0;
13615
13616 if Is_Derived_Type (Typ)
13617 and then not Is_Tagged_Type (Typ)
13618 then
13619 Old_C := First_Stored_Discriminant (Typ);
13620
13621 while Present (Old_C) loop
13622 Num_Gird := Num_Gird + 1;
13623 Next_Stored_Discriminant (Old_C);
13624 end loop;
13625 end if;
13626
13627 if Num_Gird > Num_Disc then
13628
13629 -- Find out multiple uses of new discriminants, and add hidden
13630 -- components for the extra renamed discriminants. We recognize
13631 -- multiple uses through the Corresponding_Discriminant of a
13632 -- new discriminant: if it constrains several old discriminants,
13633 -- this field points to the last one in the parent type. The
13634 -- stored discriminants of the derived type have the same name
13635 -- as those of the parent.
13636
13637 declare
13638 Constr : Elmt_Id;
13639 New_Discr : Entity_Id;
13640 Old_Discr : Entity_Id;
13641
13642 begin
13643 Constr := First_Elmt (Stored_Constraint (Typ));
13644 Old_Discr := First_Stored_Discriminant (Typ);
13645 while Present (Constr) loop
13646 if Is_Entity_Name (Node (Constr))
13647 and then Ekind (Entity (Node (Constr))) = E_Discriminant
13648 then
13649 New_Discr := Entity (Node (Constr));
13650
13651 if Chars (Corresponding_Discriminant (New_Discr)) /=
13652 Chars (Old_Discr)
13653 then
13654 -- The new discriminant has been used to rename a
13655 -- subsequent old discriminant. Introduce a shadow
13656 -- component for the current old discriminant.
13657
13658 New_C := Create_Component (Old_Discr);
13659 Set_Original_Record_Component (New_C, Old_Discr);
13660 end if;
13661
13662 else
13663 -- The constraint has eliminated the old discriminant.
13664 -- Introduce a shadow component.
13665
13666 New_C := Create_Component (Old_Discr);
13667 Set_Original_Record_Component (New_C, Old_Discr);
13668 end if;
13669
13670 Next_Elmt (Constr);
13671 Next_Stored_Discriminant (Old_Discr);
13672 end loop;
13673 end;
13674 end if;
13675 end Add_Discriminants;
13676
13677 if Is_Static
13678 and then Is_Variant_Record (Typ)
13679 then
13680 Collect_Fixed_Components (Typ);
13681
13682 Gather_Components (
13683 Typ,
13684 Component_List (Type_Definition (Parent (Typ))),
13685 Governed_By => Assoc_List,
13686 Into => Comp_List,
13687 Report_Errors => Errors);
13688 pragma Assert (not Errors);
13689
13690 Create_All_Components;
13691
13692 -- If the subtype declaration is created for a tagged type derivation
13693 -- with constraints, we retrieve the record definition of the parent
13694 -- type to select the components of the proper variant.
13695
13696 elsif Is_Static
13697 and then Is_Tagged_Type (Typ)
13698 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
13699 and then
13700 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
13701 and then Is_Variant_Record (Parent_Type)
13702 then
13703 Collect_Fixed_Components (Typ);
13704
13705 Gather_Components (
13706 Typ,
13707 Component_List (Type_Definition (Parent (Parent_Type))),
13708 Governed_By => Assoc_List,
13709 Into => Comp_List,
13710 Report_Errors => Errors);
13711 pragma Assert (not Errors);
13712
13713 -- If the tagged derivation has a type extension, collect all the
13714 -- new components therein.
13715
13716 if Present
13717 (Record_Extension_Part (Type_Definition (Parent (Typ))))
13718 then
13719 Old_C := First_Component (Typ);
13720 while Present (Old_C) loop
13721 if Original_Record_Component (Old_C) = Old_C
13722 and then Chars (Old_C) /= Name_uTag
13723 and then Chars (Old_C) /= Name_uParent
13724 then
13725 Append_Elmt (Old_C, Comp_List);
13726 end if;
13727
13728 Next_Component (Old_C);
13729 end loop;
13730 end if;
13731
13732 Create_All_Components;
13733
13734 else
13735 -- If discriminants are not static, or if this is a multi-level type
13736 -- extension, we have to include all components of the parent type.
13737
13738 Old_C := First_Component (Typ);
13739 while Present (Old_C) loop
13740 New_C := Create_Component (Old_C);
13741
13742 Set_Etype
13743 (New_C,
13744 Constrain_Component_Type
13745 (Old_C, Subt, Decl_Node, Typ, Constraints));
13746 Set_Is_Public (New_C, Is_Public (Subt));
13747
13748 Next_Component (Old_C);
13749 end loop;
13750 end if;
13751
13752 End_Scope;
13753 end Create_Constrained_Components;
13754
13755 ------------------------------------------
13756 -- Decimal_Fixed_Point_Type_Declaration --
13757 ------------------------------------------
13758
13759 procedure Decimal_Fixed_Point_Type_Declaration
13760 (T : Entity_Id;
13761 Def : Node_Id)
13762 is
13763 Loc : constant Source_Ptr := Sloc (Def);
13764 Digs_Expr : constant Node_Id := Digits_Expression (Def);
13765 Delta_Expr : constant Node_Id := Delta_Expression (Def);
13766 Implicit_Base : Entity_Id;
13767 Digs_Val : Uint;
13768 Delta_Val : Ureal;
13769 Scale_Val : Uint;
13770 Bound_Val : Ureal;
13771
13772 begin
13773 Check_SPARK_05_Restriction
13774 ("decimal fixed point type is not allowed", Def);
13775 Check_Restriction (No_Fixed_Point, Def);
13776
13777 -- Create implicit base type
13778
13779 Implicit_Base :=
13780 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
13781 Set_Etype (Implicit_Base, Implicit_Base);
13782
13783 -- Analyze and process delta expression
13784
13785 Analyze_And_Resolve (Delta_Expr, Universal_Real);
13786
13787 Check_Delta_Expression (Delta_Expr);
13788 Delta_Val := Expr_Value_R (Delta_Expr);
13789
13790 -- Check delta is power of 10, and determine scale value from it
13791
13792 declare
13793 Val : Ureal;
13794
13795 begin
13796 Scale_Val := Uint_0;
13797 Val := Delta_Val;
13798
13799 if Val < Ureal_1 then
13800 while Val < Ureal_1 loop
13801 Val := Val * Ureal_10;
13802 Scale_Val := Scale_Val + 1;
13803 end loop;
13804
13805 if Scale_Val > 18 then
13806 Error_Msg_N ("scale exceeds maximum value of 18", Def);
13807 Scale_Val := UI_From_Int (+18);
13808 end if;
13809
13810 else
13811 while Val > Ureal_1 loop
13812 Val := Val / Ureal_10;
13813 Scale_Val := Scale_Val - 1;
13814 end loop;
13815
13816 if Scale_Val < -18 then
13817 Error_Msg_N ("scale is less than minimum value of -18", Def);
13818 Scale_Val := UI_From_Int (-18);
13819 end if;
13820 end if;
13821
13822 if Val /= Ureal_1 then
13823 Error_Msg_N ("delta expression must be a power of 10", Def);
13824 Delta_Val := Ureal_10 ** (-Scale_Val);
13825 end if;
13826 end;
13827
13828 -- Set delta, scale and small (small = delta for decimal type)
13829
13830 Set_Delta_Value (Implicit_Base, Delta_Val);
13831 Set_Scale_Value (Implicit_Base, Scale_Val);
13832 Set_Small_Value (Implicit_Base, Delta_Val);
13833
13834 -- Analyze and process digits expression
13835
13836 Analyze_And_Resolve (Digs_Expr, Any_Integer);
13837 Check_Digits_Expression (Digs_Expr);
13838 Digs_Val := Expr_Value (Digs_Expr);
13839
13840 if Digs_Val > 18 then
13841 Digs_Val := UI_From_Int (+18);
13842 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
13843 end if;
13844
13845 Set_Digits_Value (Implicit_Base, Digs_Val);
13846 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
13847
13848 -- Set range of base type from digits value for now. This will be
13849 -- expanded to represent the true underlying base range by Freeze.
13850
13851 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
13852
13853 -- Note: We leave size as zero for now, size will be set at freeze
13854 -- time. We have to do this for ordinary fixed-point, because the size
13855 -- depends on the specified small, and we might as well do the same for
13856 -- decimal fixed-point.
13857
13858 pragma Assert (Esize (Implicit_Base) = Uint_0);
13859
13860 -- If there are bounds given in the declaration use them as the
13861 -- bounds of the first named subtype.
13862
13863 if Present (Real_Range_Specification (Def)) then
13864 declare
13865 RRS : constant Node_Id := Real_Range_Specification (Def);
13866 Low : constant Node_Id := Low_Bound (RRS);
13867 High : constant Node_Id := High_Bound (RRS);
13868 Low_Val : Ureal;
13869 High_Val : Ureal;
13870
13871 begin
13872 Analyze_And_Resolve (Low, Any_Real);
13873 Analyze_And_Resolve (High, Any_Real);
13874 Check_Real_Bound (Low);
13875 Check_Real_Bound (High);
13876 Low_Val := Expr_Value_R (Low);
13877 High_Val := Expr_Value_R (High);
13878
13879 if Low_Val < (-Bound_Val) then
13880 Error_Msg_N
13881 ("range low bound too small for digits value", Low);
13882 Low_Val := -Bound_Val;
13883 end if;
13884
13885 if High_Val > Bound_Val then
13886 Error_Msg_N
13887 ("range high bound too large for digits value", High);
13888 High_Val := Bound_Val;
13889 end if;
13890
13891 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
13892 end;
13893
13894 -- If no explicit range, use range that corresponds to given
13895 -- digits value. This will end up as the final range for the
13896 -- first subtype.
13897
13898 else
13899 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
13900 end if;
13901
13902 -- Complete entity for first subtype
13903
13904 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
13905 Set_Etype (T, Implicit_Base);
13906 Set_Size_Info (T, Implicit_Base);
13907 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
13908 Set_Digits_Value (T, Digs_Val);
13909 Set_Delta_Value (T, Delta_Val);
13910 Set_Small_Value (T, Delta_Val);
13911 Set_Scale_Value (T, Scale_Val);
13912 Set_Is_Constrained (T);
13913 end Decimal_Fixed_Point_Type_Declaration;
13914
13915 -----------------------------------
13916 -- Derive_Progenitor_Subprograms --
13917 -----------------------------------
13918
13919 procedure Derive_Progenitor_Subprograms
13920 (Parent_Type : Entity_Id;
13921 Tagged_Type : Entity_Id)
13922 is
13923 E : Entity_Id;
13924 Elmt : Elmt_Id;
13925 Iface : Entity_Id;
13926 Iface_Elmt : Elmt_Id;
13927 Iface_Subp : Entity_Id;
13928 New_Subp : Entity_Id := Empty;
13929 Prim_Elmt : Elmt_Id;
13930 Subp : Entity_Id;
13931 Typ : Entity_Id;
13932
13933 begin
13934 pragma Assert (Ada_Version >= Ada_2005
13935 and then Is_Record_Type (Tagged_Type)
13936 and then Is_Tagged_Type (Tagged_Type)
13937 and then Has_Interfaces (Tagged_Type));
13938
13939 -- Step 1: Transfer to the full-view primitives associated with the
13940 -- partial-view that cover interface primitives. Conceptually this
13941 -- work should be done later by Process_Full_View; done here to
13942 -- simplify its implementation at later stages. It can be safely
13943 -- done here because interfaces must be visible in the partial and
13944 -- private view (RM 7.3(7.3/2)).
13945
13946 -- Small optimization: This work is only required if the parent may
13947 -- have entities whose Alias attribute reference an interface primitive.
13948 -- Such a situation may occur if the parent is an abstract type and the
13949 -- primitive has not been yet overridden or if the parent is a generic
13950 -- formal type covering interfaces.
13951
13952 -- If the tagged type is not abstract, it cannot have abstract
13953 -- primitives (the only entities in the list of primitives of
13954 -- non-abstract tagged types that can reference abstract primitives
13955 -- through its Alias attribute are the internal entities that have
13956 -- attribute Interface_Alias, and these entities are generated later
13957 -- by Add_Internal_Interface_Entities).
13958
13959 if In_Private_Part (Current_Scope)
13960 and then (Is_Abstract_Type (Parent_Type)
13961 or else
13962 Is_Generic_Type (Parent_Type))
13963 then
13964 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
13965 while Present (Elmt) loop
13966 Subp := Node (Elmt);
13967
13968 -- At this stage it is not possible to have entities in the list
13969 -- of primitives that have attribute Interface_Alias.
13970
13971 pragma Assert (No (Interface_Alias (Subp)));
13972
13973 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
13974
13975 if Is_Interface (Typ) then
13976 E := Find_Primitive_Covering_Interface
13977 (Tagged_Type => Tagged_Type,
13978 Iface_Prim => Subp);
13979
13980 if Present (E)
13981 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
13982 then
13983 Replace_Elmt (Elmt, E);
13984 Remove_Homonym (Subp);
13985 end if;
13986 end if;
13987
13988 Next_Elmt (Elmt);
13989 end loop;
13990 end if;
13991
13992 -- Step 2: Add primitives of progenitors that are not implemented by
13993 -- parents of Tagged_Type.
13994
13995 if Present (Interfaces (Base_Type (Tagged_Type))) then
13996 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
13997 while Present (Iface_Elmt) loop
13998 Iface := Node (Iface_Elmt);
13999
14000 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
14001 while Present (Prim_Elmt) loop
14002 Iface_Subp := Node (Prim_Elmt);
14003
14004 -- Exclude derivation of predefined primitives except those
14005 -- that come from source, or are inherited from one that comes
14006 -- from source. Required to catch declarations of equality
14007 -- operators of interfaces. For example:
14008
14009 -- type Iface is interface;
14010 -- function "=" (Left, Right : Iface) return Boolean;
14011
14012 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
14013 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
14014 then
14015 E := Find_Primitive_Covering_Interface
14016 (Tagged_Type => Tagged_Type,
14017 Iface_Prim => Iface_Subp);
14018
14019 -- If not found we derive a new primitive leaving its alias
14020 -- attribute referencing the interface primitive.
14021
14022 if No (E) then
14023 Derive_Subprogram
14024 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14025
14026 -- Ada 2012 (AI05-0197): If the covering primitive's name
14027 -- differs from the name of the interface primitive then it
14028 -- is a private primitive inherited from a parent type. In
14029 -- such case, given that Tagged_Type covers the interface,
14030 -- the inherited private primitive becomes visible. For such
14031 -- purpose we add a new entity that renames the inherited
14032 -- private primitive.
14033
14034 elsif Chars (E) /= Chars (Iface_Subp) then
14035 pragma Assert (Has_Suffix (E, 'P'));
14036 Derive_Subprogram
14037 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14038 Set_Alias (New_Subp, E);
14039 Set_Is_Abstract_Subprogram (New_Subp,
14040 Is_Abstract_Subprogram (E));
14041
14042 -- Propagate to the full view interface entities associated
14043 -- with the partial view.
14044
14045 elsif In_Private_Part (Current_Scope)
14046 and then Present (Alias (E))
14047 and then Alias (E) = Iface_Subp
14048 and then
14049 List_Containing (Parent (E)) /=
14050 Private_Declarations
14051 (Specification
14052 (Unit_Declaration_Node (Current_Scope)))
14053 then
14054 Append_Elmt (E, Primitive_Operations (Tagged_Type));
14055 end if;
14056 end if;
14057
14058 Next_Elmt (Prim_Elmt);
14059 end loop;
14060
14061 Next_Elmt (Iface_Elmt);
14062 end loop;
14063 end if;
14064 end Derive_Progenitor_Subprograms;
14065
14066 -----------------------
14067 -- Derive_Subprogram --
14068 -----------------------
14069
14070 procedure Derive_Subprogram
14071 (New_Subp : in out Entity_Id;
14072 Parent_Subp : Entity_Id;
14073 Derived_Type : Entity_Id;
14074 Parent_Type : Entity_Id;
14075 Actual_Subp : Entity_Id := Empty)
14076 is
14077 Formal : Entity_Id;
14078 -- Formal parameter of parent primitive operation
14079
14080 Formal_Of_Actual : Entity_Id;
14081 -- Formal parameter of actual operation, when the derivation is to
14082 -- create a renaming for a primitive operation of an actual in an
14083 -- instantiation.
14084
14085 New_Formal : Entity_Id;
14086 -- Formal of inherited operation
14087
14088 Visible_Subp : Entity_Id := Parent_Subp;
14089
14090 function Is_Private_Overriding return Boolean;
14091 -- If Subp is a private overriding of a visible operation, the inherited
14092 -- operation derives from the overridden op (even though its body is the
14093 -- overriding one) and the inherited operation is visible now. See
14094 -- sem_disp to see the full details of the handling of the overridden
14095 -- subprogram, which is removed from the list of primitive operations of
14096 -- the type. The overridden subprogram is saved locally in Visible_Subp,
14097 -- and used to diagnose abstract operations that need overriding in the
14098 -- derived type.
14099
14100 procedure Replace_Type (Id, New_Id : Entity_Id);
14101 -- When the type is an anonymous access type, create a new access type
14102 -- designating the derived type.
14103
14104 procedure Set_Derived_Name;
14105 -- This procedure sets the appropriate Chars name for New_Subp. This
14106 -- is normally just a copy of the parent name. An exception arises for
14107 -- type support subprograms, where the name is changed to reflect the
14108 -- name of the derived type, e.g. if type foo is derived from type bar,
14109 -- then a procedure barDA is derived with a name fooDA.
14110
14111 ---------------------------
14112 -- Is_Private_Overriding --
14113 ---------------------------
14114
14115 function Is_Private_Overriding return Boolean is
14116 Prev : Entity_Id;
14117
14118 begin
14119 -- If the parent is not a dispatching operation there is no
14120 -- need to investigate overridings
14121
14122 if not Is_Dispatching_Operation (Parent_Subp) then
14123 return False;
14124 end if;
14125
14126 -- The visible operation that is overridden is a homonym of the
14127 -- parent subprogram. We scan the homonym chain to find the one
14128 -- whose alias is the subprogram we are deriving.
14129
14130 Prev := Current_Entity (Parent_Subp);
14131 while Present (Prev) loop
14132 if Ekind (Prev) = Ekind (Parent_Subp)
14133 and then Alias (Prev) = Parent_Subp
14134 and then Scope (Parent_Subp) = Scope (Prev)
14135 and then not Is_Hidden (Prev)
14136 then
14137 Visible_Subp := Prev;
14138 return True;
14139 end if;
14140
14141 Prev := Homonym (Prev);
14142 end loop;
14143
14144 return False;
14145 end Is_Private_Overriding;
14146
14147 ------------------
14148 -- Replace_Type --
14149 ------------------
14150
14151 procedure Replace_Type (Id, New_Id : Entity_Id) is
14152 Id_Type : constant Entity_Id := Etype (Id);
14153 Acc_Type : Entity_Id;
14154 Par : constant Node_Id := Parent (Derived_Type);
14155
14156 begin
14157 -- When the type is an anonymous access type, create a new access
14158 -- type designating the derived type. This itype must be elaborated
14159 -- at the point of the derivation, not on subsequent calls that may
14160 -- be out of the proper scope for Gigi, so we insert a reference to
14161 -- it after the derivation.
14162
14163 if Ekind (Id_Type) = E_Anonymous_Access_Type then
14164 declare
14165 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
14166
14167 begin
14168 if Ekind (Desig_Typ) = E_Record_Type_With_Private
14169 and then Present (Full_View (Desig_Typ))
14170 and then not Is_Private_Type (Parent_Type)
14171 then
14172 Desig_Typ := Full_View (Desig_Typ);
14173 end if;
14174
14175 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
14176
14177 -- Ada 2005 (AI-251): Handle also derivations of abstract
14178 -- interface primitives.
14179
14180 or else (Is_Interface (Desig_Typ)
14181 and then not Is_Class_Wide_Type (Desig_Typ))
14182 then
14183 Acc_Type := New_Copy (Id_Type);
14184 Set_Etype (Acc_Type, Acc_Type);
14185 Set_Scope (Acc_Type, New_Subp);
14186
14187 -- Set size of anonymous access type. If we have an access
14188 -- to an unconstrained array, this is a fat pointer, so it
14189 -- is sizes at twice addtress size.
14190
14191 if Is_Array_Type (Desig_Typ)
14192 and then not Is_Constrained (Desig_Typ)
14193 then
14194 Init_Size (Acc_Type, 2 * System_Address_Size);
14195
14196 -- Other cases use a thin pointer
14197
14198 else
14199 Init_Size (Acc_Type, System_Address_Size);
14200 end if;
14201
14202 -- Set remaining characterstics of anonymous access type
14203
14204 Init_Alignment (Acc_Type);
14205 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
14206
14207 Set_Etype (New_Id, Acc_Type);
14208 Set_Scope (New_Id, New_Subp);
14209
14210 -- Create a reference to it
14211
14212 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
14213
14214 else
14215 Set_Etype (New_Id, Id_Type);
14216 end if;
14217 end;
14218
14219 -- In Ada2012, a formal may have an incomplete type but the type
14220 -- derivation that inherits the primitive follows the full view.
14221
14222 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
14223 or else
14224 (Ekind (Id_Type) = E_Record_Type_With_Private
14225 and then Present (Full_View (Id_Type))
14226 and then
14227 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
14228 or else
14229 (Ada_Version >= Ada_2012
14230 and then Ekind (Id_Type) = E_Incomplete_Type
14231 and then Full_View (Id_Type) = Parent_Type)
14232 then
14233 -- Constraint checks on formals are generated during expansion,
14234 -- based on the signature of the original subprogram. The bounds
14235 -- of the derived type are not relevant, and thus we can use
14236 -- the base type for the formals. However, the return type may be
14237 -- used in a context that requires that the proper static bounds
14238 -- be used (a case statement, for example) and for those cases
14239 -- we must use the derived type (first subtype), not its base.
14240
14241 -- If the derived_type_definition has no constraints, we know that
14242 -- the derived type has the same constraints as the first subtype
14243 -- of the parent, and we can also use it rather than its base,
14244 -- which can lead to more efficient code.
14245
14246 if Etype (Id) = Parent_Type then
14247 if Is_Scalar_Type (Parent_Type)
14248 and then
14249 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
14250 then
14251 Set_Etype (New_Id, Derived_Type);
14252
14253 elsif Nkind (Par) = N_Full_Type_Declaration
14254 and then
14255 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
14256 and then
14257 Is_Entity_Name
14258 (Subtype_Indication (Type_Definition (Par)))
14259 then
14260 Set_Etype (New_Id, Derived_Type);
14261
14262 else
14263 Set_Etype (New_Id, Base_Type (Derived_Type));
14264 end if;
14265
14266 else
14267 Set_Etype (New_Id, Base_Type (Derived_Type));
14268 end if;
14269
14270 else
14271 Set_Etype (New_Id, Etype (Id));
14272 end if;
14273 end Replace_Type;
14274
14275 ----------------------
14276 -- Set_Derived_Name --
14277 ----------------------
14278
14279 procedure Set_Derived_Name is
14280 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
14281 begin
14282 if Nm = TSS_Null then
14283 Set_Chars (New_Subp, Chars (Parent_Subp));
14284 else
14285 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
14286 end if;
14287 end Set_Derived_Name;
14288
14289 -- Start of processing for Derive_Subprogram
14290
14291 begin
14292 New_Subp :=
14293 New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
14294 Set_Ekind (New_Subp, Ekind (Parent_Subp));
14295 Set_Contract (New_Subp, Make_Contract (Sloc (New_Subp)));
14296
14297 -- Check whether the inherited subprogram is a private operation that
14298 -- should be inherited but not yet made visible. Such subprograms can
14299 -- become visible at a later point (e.g., the private part of a public
14300 -- child unit) via Declare_Inherited_Private_Subprograms. If the
14301 -- following predicate is true, then this is not such a private
14302 -- operation and the subprogram simply inherits the name of the parent
14303 -- subprogram. Note the special check for the names of controlled
14304 -- operations, which are currently exempted from being inherited with
14305 -- a hidden name because they must be findable for generation of
14306 -- implicit run-time calls.
14307
14308 if not Is_Hidden (Parent_Subp)
14309 or else Is_Internal (Parent_Subp)
14310 or else Is_Private_Overriding
14311 or else Is_Internal_Name (Chars (Parent_Subp))
14312 or else Nam_In (Chars (Parent_Subp), Name_Initialize,
14313 Name_Adjust,
14314 Name_Finalize)
14315 then
14316 Set_Derived_Name;
14317
14318 -- An inherited dispatching equality will be overridden by an internally
14319 -- generated one, or by an explicit one, so preserve its name and thus
14320 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
14321 -- private operation it may become invisible if the full view has
14322 -- progenitors, and the dispatch table will be malformed.
14323 -- We check that the type is limited to handle the anomalous declaration
14324 -- of Limited_Controlled, which is derived from a non-limited type, and
14325 -- which is handled specially elsewhere as well.
14326
14327 elsif Chars (Parent_Subp) = Name_Op_Eq
14328 and then Is_Dispatching_Operation (Parent_Subp)
14329 and then Etype (Parent_Subp) = Standard_Boolean
14330 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
14331 and then
14332 Etype (First_Formal (Parent_Subp)) =
14333 Etype (Next_Formal (First_Formal (Parent_Subp)))
14334 then
14335 Set_Derived_Name;
14336
14337 -- If parent is hidden, this can be a regular derivation if the
14338 -- parent is immediately visible in a non-instantiating context,
14339 -- or if we are in the private part of an instance. This test
14340 -- should still be refined ???
14341
14342 -- The test for In_Instance_Not_Visible avoids inheriting the derived
14343 -- operation as a non-visible operation in cases where the parent
14344 -- subprogram might not be visible now, but was visible within the
14345 -- original generic, so it would be wrong to make the inherited
14346 -- subprogram non-visible now. (Not clear if this test is fully
14347 -- correct; are there any cases where we should declare the inherited
14348 -- operation as not visible to avoid it being overridden, e.g., when
14349 -- the parent type is a generic actual with private primitives ???)
14350
14351 -- (they should be treated the same as other private inherited
14352 -- subprograms, but it's not clear how to do this cleanly). ???
14353
14354 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
14355 and then Is_Immediately_Visible (Parent_Subp)
14356 and then not In_Instance)
14357 or else In_Instance_Not_Visible
14358 then
14359 Set_Derived_Name;
14360
14361 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
14362 -- overrides an interface primitive because interface primitives
14363 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
14364
14365 elsif Ada_Version >= Ada_2005
14366 and then Is_Dispatching_Operation (Parent_Subp)
14367 and then Covers_Some_Interface (Parent_Subp)
14368 then
14369 Set_Derived_Name;
14370
14371 -- Otherwise, the type is inheriting a private operation, so enter
14372 -- it with a special name so it can't be overridden.
14373
14374 else
14375 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
14376 end if;
14377
14378 Set_Parent (New_Subp, Parent (Derived_Type));
14379
14380 if Present (Actual_Subp) then
14381 Replace_Type (Actual_Subp, New_Subp);
14382 else
14383 Replace_Type (Parent_Subp, New_Subp);
14384 end if;
14385
14386 Conditional_Delay (New_Subp, Parent_Subp);
14387
14388 -- If we are creating a renaming for a primitive operation of an
14389 -- actual of a generic derived type, we must examine the signature
14390 -- of the actual primitive, not that of the generic formal, which for
14391 -- example may be an interface. However the name and initial value
14392 -- of the inherited operation are those of the formal primitive.
14393
14394 Formal := First_Formal (Parent_Subp);
14395
14396 if Present (Actual_Subp) then
14397 Formal_Of_Actual := First_Formal (Actual_Subp);
14398 else
14399 Formal_Of_Actual := Empty;
14400 end if;
14401
14402 while Present (Formal) loop
14403 New_Formal := New_Copy (Formal);
14404
14405 -- Normally we do not go copying parents, but in the case of
14406 -- formals, we need to link up to the declaration (which is the
14407 -- parameter specification), and it is fine to link up to the
14408 -- original formal's parameter specification in this case.
14409
14410 Set_Parent (New_Formal, Parent (Formal));
14411 Append_Entity (New_Formal, New_Subp);
14412
14413 if Present (Formal_Of_Actual) then
14414 Replace_Type (Formal_Of_Actual, New_Formal);
14415 Next_Formal (Formal_Of_Actual);
14416 else
14417 Replace_Type (Formal, New_Formal);
14418 end if;
14419
14420 Next_Formal (Formal);
14421 end loop;
14422
14423 -- If this derivation corresponds to a tagged generic actual, then
14424 -- primitive operations rename those of the actual. Otherwise the
14425 -- primitive operations rename those of the parent type, If the parent
14426 -- renames an intrinsic operator, so does the new subprogram. We except
14427 -- concatenation, which is always properly typed, and does not get
14428 -- expanded as other intrinsic operations.
14429
14430 if No (Actual_Subp) then
14431 if Is_Intrinsic_Subprogram (Parent_Subp) then
14432 Set_Is_Intrinsic_Subprogram (New_Subp);
14433
14434 if Present (Alias (Parent_Subp))
14435 and then Chars (Parent_Subp) /= Name_Op_Concat
14436 then
14437 Set_Alias (New_Subp, Alias (Parent_Subp));
14438 else
14439 Set_Alias (New_Subp, Parent_Subp);
14440 end if;
14441
14442 else
14443 Set_Alias (New_Subp, Parent_Subp);
14444 end if;
14445
14446 else
14447 Set_Alias (New_Subp, Actual_Subp);
14448 end if;
14449
14450 -- Derived subprograms of a tagged type must inherit the convention
14451 -- of the parent subprogram (a requirement of AI-117). Derived
14452 -- subprograms of untagged types simply get convention Ada by default.
14453
14454 -- If the derived type is a tagged generic formal type with unknown
14455 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
14456
14457 -- However, if the type is derived from a generic formal, the further
14458 -- inherited subprogram has the convention of the non-generic ancestor.
14459 -- Otherwise there would be no way to override the operation.
14460 -- (This is subject to forthcoming ARG discussions).
14461
14462 if Is_Tagged_Type (Derived_Type) then
14463 if Is_Generic_Type (Derived_Type)
14464 and then Has_Unknown_Discriminants (Derived_Type)
14465 then
14466 Set_Convention (New_Subp, Convention_Intrinsic);
14467
14468 else
14469 if Is_Generic_Type (Parent_Type)
14470 and then Has_Unknown_Discriminants (Parent_Type)
14471 then
14472 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
14473 else
14474 Set_Convention (New_Subp, Convention (Parent_Subp));
14475 end if;
14476 end if;
14477 end if;
14478
14479 -- Predefined controlled operations retain their name even if the parent
14480 -- is hidden (see above), but they are not primitive operations if the
14481 -- ancestor is not visible, for example if the parent is a private
14482 -- extension completed with a controlled extension. Note that a full
14483 -- type that is controlled can break privacy: the flag Is_Controlled is
14484 -- set on both views of the type.
14485
14486 if Is_Controlled (Parent_Type)
14487 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
14488 Name_Adjust,
14489 Name_Finalize)
14490 and then Is_Hidden (Parent_Subp)
14491 and then not Is_Visibly_Controlled (Parent_Type)
14492 then
14493 Set_Is_Hidden (New_Subp);
14494 end if;
14495
14496 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
14497 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
14498
14499 if Ekind (Parent_Subp) = E_Procedure then
14500 Set_Is_Valued_Procedure
14501 (New_Subp, Is_Valued_Procedure (Parent_Subp));
14502 else
14503 Set_Has_Controlling_Result
14504 (New_Subp, Has_Controlling_Result (Parent_Subp));
14505 end if;
14506
14507 -- No_Return must be inherited properly. If this is overridden in the
14508 -- case of a dispatching operation, then a check is made in Sem_Disp
14509 -- that the overriding operation is also No_Return (no such check is
14510 -- required for the case of non-dispatching operation.
14511
14512 Set_No_Return (New_Subp, No_Return (Parent_Subp));
14513
14514 -- A derived function with a controlling result is abstract. If the
14515 -- Derived_Type is a nonabstract formal generic derived type, then
14516 -- inherited operations are not abstract: the required check is done at
14517 -- instantiation time. If the derivation is for a generic actual, the
14518 -- function is not abstract unless the actual is.
14519
14520 if Is_Generic_Type (Derived_Type)
14521 and then not Is_Abstract_Type (Derived_Type)
14522 then
14523 null;
14524
14525 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
14526 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
14527
14528 elsif Ada_Version >= Ada_2005
14529 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14530 or else (Is_Tagged_Type (Derived_Type)
14531 and then Etype (New_Subp) = Derived_Type
14532 and then not Is_Null_Extension (Derived_Type))
14533 or else (Is_Tagged_Type (Derived_Type)
14534 and then Ekind (Etype (New_Subp)) =
14535 E_Anonymous_Access_Type
14536 and then Designated_Type (Etype (New_Subp)) =
14537 Derived_Type
14538 and then not Is_Null_Extension (Derived_Type)))
14539 and then No (Actual_Subp)
14540 then
14541 if not Is_Tagged_Type (Derived_Type)
14542 or else Is_Abstract_Type (Derived_Type)
14543 or else Is_Abstract_Subprogram (Alias (New_Subp))
14544 then
14545 Set_Is_Abstract_Subprogram (New_Subp);
14546 else
14547 Set_Requires_Overriding (New_Subp);
14548 end if;
14549
14550 elsif Ada_Version < Ada_2005
14551 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14552 or else (Is_Tagged_Type (Derived_Type)
14553 and then Etype (New_Subp) = Derived_Type
14554 and then No (Actual_Subp)))
14555 then
14556 Set_Is_Abstract_Subprogram (New_Subp);
14557
14558 -- AI05-0097 : an inherited operation that dispatches on result is
14559 -- abstract if the derived type is abstract, even if the parent type
14560 -- is concrete and the derived type is a null extension.
14561
14562 elsif Has_Controlling_Result (Alias (New_Subp))
14563 and then Is_Abstract_Type (Etype (New_Subp))
14564 then
14565 Set_Is_Abstract_Subprogram (New_Subp);
14566
14567 -- Finally, if the parent type is abstract we must verify that all
14568 -- inherited operations are either non-abstract or overridden, or that
14569 -- the derived type itself is abstract (this check is performed at the
14570 -- end of a package declaration, in Check_Abstract_Overriding). A
14571 -- private overriding in the parent type will not be visible in the
14572 -- derivation if we are not in an inner package or in a child unit of
14573 -- the parent type, in which case the abstractness of the inherited
14574 -- operation is carried to the new subprogram.
14575
14576 elsif Is_Abstract_Type (Parent_Type)
14577 and then not In_Open_Scopes (Scope (Parent_Type))
14578 and then Is_Private_Overriding
14579 and then Is_Abstract_Subprogram (Visible_Subp)
14580 then
14581 if No (Actual_Subp) then
14582 Set_Alias (New_Subp, Visible_Subp);
14583 Set_Is_Abstract_Subprogram (New_Subp, True);
14584
14585 else
14586 -- If this is a derivation for an instance of a formal derived
14587 -- type, abstractness comes from the primitive operation of the
14588 -- actual, not from the operation inherited from the ancestor.
14589
14590 Set_Is_Abstract_Subprogram
14591 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
14592 end if;
14593 end if;
14594
14595 New_Overloaded_Entity (New_Subp, Derived_Type);
14596
14597 -- Check for case of a derived subprogram for the instantiation of a
14598 -- formal derived tagged type, if so mark the subprogram as dispatching
14599 -- and inherit the dispatching attributes of the actual subprogram. The
14600 -- derived subprogram is effectively renaming of the actual subprogram,
14601 -- so it needs to have the same attributes as the actual.
14602
14603 if Present (Actual_Subp)
14604 and then Is_Dispatching_Operation (Actual_Subp)
14605 then
14606 Set_Is_Dispatching_Operation (New_Subp);
14607
14608 if Present (DTC_Entity (Actual_Subp)) then
14609 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
14610 Set_DT_Position (New_Subp, DT_Position (Actual_Subp));
14611 end if;
14612 end if;
14613
14614 -- Indicate that a derived subprogram does not require a body and that
14615 -- it does not require processing of default expressions.
14616
14617 Set_Has_Completion (New_Subp);
14618 Set_Default_Expressions_Processed (New_Subp);
14619
14620 if Ekind (New_Subp) = E_Function then
14621 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
14622 end if;
14623 end Derive_Subprogram;
14624
14625 ------------------------
14626 -- Derive_Subprograms --
14627 ------------------------
14628
14629 procedure Derive_Subprograms
14630 (Parent_Type : Entity_Id;
14631 Derived_Type : Entity_Id;
14632 Generic_Actual : Entity_Id := Empty)
14633 is
14634 Op_List : constant Elist_Id :=
14635 Collect_Primitive_Operations (Parent_Type);
14636
14637 function Check_Derived_Type return Boolean;
14638 -- Check that all the entities derived from Parent_Type are found in
14639 -- the list of primitives of Derived_Type exactly in the same order.
14640
14641 procedure Derive_Interface_Subprogram
14642 (New_Subp : in out Entity_Id;
14643 Subp : Entity_Id;
14644 Actual_Subp : Entity_Id);
14645 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
14646 -- (which is an interface primitive). If Generic_Actual is present then
14647 -- Actual_Subp is the actual subprogram corresponding with the generic
14648 -- subprogram Subp.
14649
14650 function Check_Derived_Type return Boolean is
14651 E : Entity_Id;
14652 Elmt : Elmt_Id;
14653 List : Elist_Id;
14654 New_Subp : Entity_Id;
14655 Op_Elmt : Elmt_Id;
14656 Subp : Entity_Id;
14657
14658 begin
14659 -- Traverse list of entities in the current scope searching for
14660 -- an incomplete type whose full-view is derived type
14661
14662 E := First_Entity (Scope (Derived_Type));
14663 while Present (E) and then E /= Derived_Type loop
14664 if Ekind (E) = E_Incomplete_Type
14665 and then Present (Full_View (E))
14666 and then Full_View (E) = Derived_Type
14667 then
14668 -- Disable this test if Derived_Type completes an incomplete
14669 -- type because in such case more primitives can be added
14670 -- later to the list of primitives of Derived_Type by routine
14671 -- Process_Incomplete_Dependents
14672
14673 return True;
14674 end if;
14675
14676 E := Next_Entity (E);
14677 end loop;
14678
14679 List := Collect_Primitive_Operations (Derived_Type);
14680 Elmt := First_Elmt (List);
14681
14682 Op_Elmt := First_Elmt (Op_List);
14683 while Present (Op_Elmt) loop
14684 Subp := Node (Op_Elmt);
14685 New_Subp := Node (Elmt);
14686
14687 -- At this early stage Derived_Type has no entities with attribute
14688 -- Interface_Alias. In addition, such primitives are always
14689 -- located at the end of the list of primitives of Parent_Type.
14690 -- Therefore, if found we can safely stop processing pending
14691 -- entities.
14692
14693 exit when Present (Interface_Alias (Subp));
14694
14695 -- Handle hidden entities
14696
14697 if not Is_Predefined_Dispatching_Operation (Subp)
14698 and then Is_Hidden (Subp)
14699 then
14700 if Present (New_Subp)
14701 and then Primitive_Names_Match (Subp, New_Subp)
14702 then
14703 Next_Elmt (Elmt);
14704 end if;
14705
14706 else
14707 if not Present (New_Subp)
14708 or else Ekind (Subp) /= Ekind (New_Subp)
14709 or else not Primitive_Names_Match (Subp, New_Subp)
14710 then
14711 return False;
14712 end if;
14713
14714 Next_Elmt (Elmt);
14715 end if;
14716
14717 Next_Elmt (Op_Elmt);
14718 end loop;
14719
14720 return True;
14721 end Check_Derived_Type;
14722
14723 ---------------------------------
14724 -- Derive_Interface_Subprogram --
14725 ---------------------------------
14726
14727 procedure Derive_Interface_Subprogram
14728 (New_Subp : in out Entity_Id;
14729 Subp : Entity_Id;
14730 Actual_Subp : Entity_Id)
14731 is
14732 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
14733 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
14734
14735 begin
14736 pragma Assert (Is_Interface (Iface_Type));
14737
14738 Derive_Subprogram
14739 (New_Subp => New_Subp,
14740 Parent_Subp => Iface_Subp,
14741 Derived_Type => Derived_Type,
14742 Parent_Type => Iface_Type,
14743 Actual_Subp => Actual_Subp);
14744
14745 -- Given that this new interface entity corresponds with a primitive
14746 -- of the parent that was not overridden we must leave it associated
14747 -- with its parent primitive to ensure that it will share the same
14748 -- dispatch table slot when overridden.
14749
14750 if No (Actual_Subp) then
14751 Set_Alias (New_Subp, Subp);
14752
14753 -- For instantiations this is not needed since the previous call to
14754 -- Derive_Subprogram leaves the entity well decorated.
14755
14756 else
14757 pragma Assert (Alias (New_Subp) = Actual_Subp);
14758 null;
14759 end if;
14760 end Derive_Interface_Subprogram;
14761
14762 -- Local variables
14763
14764 Alias_Subp : Entity_Id;
14765 Act_List : Elist_Id;
14766 Act_Elmt : Elmt_Id;
14767 Act_Subp : Entity_Id := Empty;
14768 Elmt : Elmt_Id;
14769 Need_Search : Boolean := False;
14770 New_Subp : Entity_Id := Empty;
14771 Parent_Base : Entity_Id;
14772 Subp : Entity_Id;
14773
14774 -- Start of processing for Derive_Subprograms
14775
14776 begin
14777 if Ekind (Parent_Type) = E_Record_Type_With_Private
14778 and then Has_Discriminants (Parent_Type)
14779 and then Present (Full_View (Parent_Type))
14780 then
14781 Parent_Base := Full_View (Parent_Type);
14782 else
14783 Parent_Base := Parent_Type;
14784 end if;
14785
14786 if Present (Generic_Actual) then
14787 Act_List := Collect_Primitive_Operations (Generic_Actual);
14788 Act_Elmt := First_Elmt (Act_List);
14789 else
14790 Act_List := No_Elist;
14791 Act_Elmt := No_Elmt;
14792 end if;
14793
14794 -- Derive primitives inherited from the parent. Note that if the generic
14795 -- actual is present, this is not really a type derivation, it is a
14796 -- completion within an instance.
14797
14798 -- Case 1: Derived_Type does not implement interfaces
14799
14800 if not Is_Tagged_Type (Derived_Type)
14801 or else (not Has_Interfaces (Derived_Type)
14802 and then not (Present (Generic_Actual)
14803 and then Has_Interfaces (Generic_Actual)))
14804 then
14805 Elmt := First_Elmt (Op_List);
14806 while Present (Elmt) loop
14807 Subp := Node (Elmt);
14808
14809 -- Literals are derived earlier in the process of building the
14810 -- derived type, and are skipped here.
14811
14812 if Ekind (Subp) = E_Enumeration_Literal then
14813 null;
14814
14815 -- The actual is a direct descendant and the common primitive
14816 -- operations appear in the same order.
14817
14818 -- If the generic parent type is present, the derived type is an
14819 -- instance of a formal derived type, and within the instance its
14820 -- operations are those of the actual. We derive from the formal
14821 -- type but make the inherited operations aliases of the
14822 -- corresponding operations of the actual.
14823
14824 else
14825 pragma Assert (No (Node (Act_Elmt))
14826 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
14827 and then
14828 Type_Conformant
14829 (Subp, Node (Act_Elmt),
14830 Skip_Controlling_Formals => True)));
14831
14832 Derive_Subprogram
14833 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
14834
14835 if Present (Act_Elmt) then
14836 Next_Elmt (Act_Elmt);
14837 end if;
14838 end if;
14839
14840 Next_Elmt (Elmt);
14841 end loop;
14842
14843 -- Case 2: Derived_Type implements interfaces
14844
14845 else
14846 -- If the parent type has no predefined primitives we remove
14847 -- predefined primitives from the list of primitives of generic
14848 -- actual to simplify the complexity of this algorithm.
14849
14850 if Present (Generic_Actual) then
14851 declare
14852 Has_Predefined_Primitives : Boolean := False;
14853
14854 begin
14855 -- Check if the parent type has predefined primitives
14856
14857 Elmt := First_Elmt (Op_List);
14858 while Present (Elmt) loop
14859 Subp := Node (Elmt);
14860
14861 if Is_Predefined_Dispatching_Operation (Subp)
14862 and then not Comes_From_Source (Ultimate_Alias (Subp))
14863 then
14864 Has_Predefined_Primitives := True;
14865 exit;
14866 end if;
14867
14868 Next_Elmt (Elmt);
14869 end loop;
14870
14871 -- Remove predefined primitives of Generic_Actual. We must use
14872 -- an auxiliary list because in case of tagged types the value
14873 -- returned by Collect_Primitive_Operations is the value stored
14874 -- in its Primitive_Operations attribute (and we don't want to
14875 -- modify its current contents).
14876
14877 if not Has_Predefined_Primitives then
14878 declare
14879 Aux_List : constant Elist_Id := New_Elmt_List;
14880
14881 begin
14882 Elmt := First_Elmt (Act_List);
14883 while Present (Elmt) loop
14884 Subp := Node (Elmt);
14885
14886 if not Is_Predefined_Dispatching_Operation (Subp)
14887 or else Comes_From_Source (Subp)
14888 then
14889 Append_Elmt (Subp, Aux_List);
14890 end if;
14891
14892 Next_Elmt (Elmt);
14893 end loop;
14894
14895 Act_List := Aux_List;
14896 end;
14897 end if;
14898
14899 Act_Elmt := First_Elmt (Act_List);
14900 Act_Subp := Node (Act_Elmt);
14901 end;
14902 end if;
14903
14904 -- Stage 1: If the generic actual is not present we derive the
14905 -- primitives inherited from the parent type. If the generic parent
14906 -- type is present, the derived type is an instance of a formal
14907 -- derived type, and within the instance its operations are those of
14908 -- the actual. We derive from the formal type but make the inherited
14909 -- operations aliases of the corresponding operations of the actual.
14910
14911 Elmt := First_Elmt (Op_List);
14912 while Present (Elmt) loop
14913 Subp := Node (Elmt);
14914 Alias_Subp := Ultimate_Alias (Subp);
14915
14916 -- Do not derive internal entities of the parent that link
14917 -- interface primitives with their covering primitive. These
14918 -- entities will be added to this type when frozen.
14919
14920 if Present (Interface_Alias (Subp)) then
14921 goto Continue;
14922 end if;
14923
14924 -- If the generic actual is present find the corresponding
14925 -- operation in the generic actual. If the parent type is a
14926 -- direct ancestor of the derived type then, even if it is an
14927 -- interface, the operations are inherited from the primary
14928 -- dispatch table and are in the proper order. If we detect here
14929 -- that primitives are not in the same order we traverse the list
14930 -- of primitive operations of the actual to find the one that
14931 -- implements the interface primitive.
14932
14933 if Need_Search
14934 or else
14935 (Present (Generic_Actual)
14936 and then Present (Act_Subp)
14937 and then not
14938 (Primitive_Names_Match (Subp, Act_Subp)
14939 and then
14940 Type_Conformant (Subp, Act_Subp,
14941 Skip_Controlling_Formals => True)))
14942 then
14943 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
14944 Use_Full_View => True));
14945
14946 -- Remember that we need searching for all pending primitives
14947
14948 Need_Search := True;
14949
14950 -- Handle entities associated with interface primitives
14951
14952 if Present (Alias_Subp)
14953 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
14954 and then not Is_Predefined_Dispatching_Operation (Subp)
14955 then
14956 -- Search for the primitive in the homonym chain
14957
14958 Act_Subp :=
14959 Find_Primitive_Covering_Interface
14960 (Tagged_Type => Generic_Actual,
14961 Iface_Prim => Alias_Subp);
14962
14963 -- Previous search may not locate primitives covering
14964 -- interfaces defined in generics units or instantiations.
14965 -- (it fails if the covering primitive has formals whose
14966 -- type is also defined in generics or instantiations).
14967 -- In such case we search in the list of primitives of the
14968 -- generic actual for the internal entity that links the
14969 -- interface primitive and the covering primitive.
14970
14971 if No (Act_Subp)
14972 and then Is_Generic_Type (Parent_Type)
14973 then
14974 -- This code has been designed to handle only generic
14975 -- formals that implement interfaces that are defined
14976 -- in a generic unit or instantiation. If this code is
14977 -- needed for other cases we must review it because
14978 -- (given that it relies on Original_Location to locate
14979 -- the primitive of Generic_Actual that covers the
14980 -- interface) it could leave linked through attribute
14981 -- Alias entities of unrelated instantiations).
14982
14983 pragma Assert
14984 (Is_Generic_Unit
14985 (Scope (Find_Dispatching_Type (Alias_Subp)))
14986 or else
14987 Instantiation_Depth
14988 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
14989
14990 declare
14991 Iface_Prim_Loc : constant Source_Ptr :=
14992 Original_Location (Sloc (Alias_Subp));
14993
14994 Elmt : Elmt_Id;
14995 Prim : Entity_Id;
14996
14997 begin
14998 Elmt :=
14999 First_Elmt (Primitive_Operations (Generic_Actual));
15000
15001 Search : while Present (Elmt) loop
15002 Prim := Node (Elmt);
15003
15004 if Present (Interface_Alias (Prim))
15005 and then Original_Location
15006 (Sloc (Interface_Alias (Prim))) =
15007 Iface_Prim_Loc
15008 then
15009 Act_Subp := Alias (Prim);
15010 exit Search;
15011 end if;
15012
15013 Next_Elmt (Elmt);
15014 end loop Search;
15015 end;
15016 end if;
15017
15018 pragma Assert (Present (Act_Subp)
15019 or else Is_Abstract_Type (Generic_Actual)
15020 or else Serious_Errors_Detected > 0);
15021
15022 -- Handle predefined primitives plus the rest of user-defined
15023 -- primitives
15024
15025 else
15026 Act_Elmt := First_Elmt (Act_List);
15027 while Present (Act_Elmt) loop
15028 Act_Subp := Node (Act_Elmt);
15029
15030 exit when Primitive_Names_Match (Subp, Act_Subp)
15031 and then Type_Conformant
15032 (Subp, Act_Subp,
15033 Skip_Controlling_Formals => True)
15034 and then No (Interface_Alias (Act_Subp));
15035
15036 Next_Elmt (Act_Elmt);
15037 end loop;
15038
15039 if No (Act_Elmt) then
15040 Act_Subp := Empty;
15041 end if;
15042 end if;
15043 end if;
15044
15045 -- Case 1: If the parent is a limited interface then it has the
15046 -- predefined primitives of synchronized interfaces. However, the
15047 -- actual type may be a non-limited type and hence it does not
15048 -- have such primitives.
15049
15050 if Present (Generic_Actual)
15051 and then not Present (Act_Subp)
15052 and then Is_Limited_Interface (Parent_Base)
15053 and then Is_Predefined_Interface_Primitive (Subp)
15054 then
15055 null;
15056
15057 -- Case 2: Inherit entities associated with interfaces that were
15058 -- not covered by the parent type. We exclude here null interface
15059 -- primitives because they do not need special management.
15060
15061 -- We also exclude interface operations that are renamings. If the
15062 -- subprogram is an explicit renaming of an interface primitive,
15063 -- it is a regular primitive operation, and the presence of its
15064 -- alias is not relevant: it has to be derived like any other
15065 -- primitive.
15066
15067 elsif Present (Alias (Subp))
15068 and then Nkind (Unit_Declaration_Node (Subp)) /=
15069 N_Subprogram_Renaming_Declaration
15070 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
15071 and then not
15072 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
15073 and then Null_Present (Parent (Alias_Subp)))
15074 then
15075 -- If this is an abstract private type then we transfer the
15076 -- derivation of the interface primitive from the partial view
15077 -- to the full view. This is safe because all the interfaces
15078 -- must be visible in the partial view. Done to avoid adding
15079 -- a new interface derivation to the private part of the
15080 -- enclosing package; otherwise this new derivation would be
15081 -- decorated as hidden when the analysis of the enclosing
15082 -- package completes.
15083
15084 if Is_Abstract_Type (Derived_Type)
15085 and then In_Private_Part (Current_Scope)
15086 and then Has_Private_Declaration (Derived_Type)
15087 then
15088 declare
15089 Partial_View : Entity_Id;
15090 Elmt : Elmt_Id;
15091 Ent : Entity_Id;
15092
15093 begin
15094 Partial_View := First_Entity (Current_Scope);
15095 loop
15096 exit when No (Partial_View)
15097 or else (Has_Private_Declaration (Partial_View)
15098 and then
15099 Full_View (Partial_View) = Derived_Type);
15100
15101 Next_Entity (Partial_View);
15102 end loop;
15103
15104 -- If the partial view was not found then the source code
15105 -- has errors and the derivation is not needed.
15106
15107 if Present (Partial_View) then
15108 Elmt :=
15109 First_Elmt (Primitive_Operations (Partial_View));
15110 while Present (Elmt) loop
15111 Ent := Node (Elmt);
15112
15113 if Present (Alias (Ent))
15114 and then Ultimate_Alias (Ent) = Alias (Subp)
15115 then
15116 Append_Elmt
15117 (Ent, Primitive_Operations (Derived_Type));
15118 exit;
15119 end if;
15120
15121 Next_Elmt (Elmt);
15122 end loop;
15123
15124 -- If the interface primitive was not found in the
15125 -- partial view then this interface primitive was
15126 -- overridden. We add a derivation to activate in
15127 -- Derive_Progenitor_Subprograms the machinery to
15128 -- search for it.
15129
15130 if No (Elmt) then
15131 Derive_Interface_Subprogram
15132 (New_Subp => New_Subp,
15133 Subp => Subp,
15134 Actual_Subp => Act_Subp);
15135 end if;
15136 end if;
15137 end;
15138 else
15139 Derive_Interface_Subprogram
15140 (New_Subp => New_Subp,
15141 Subp => Subp,
15142 Actual_Subp => Act_Subp);
15143 end if;
15144
15145 -- Case 3: Common derivation
15146
15147 else
15148 Derive_Subprogram
15149 (New_Subp => New_Subp,
15150 Parent_Subp => Subp,
15151 Derived_Type => Derived_Type,
15152 Parent_Type => Parent_Base,
15153 Actual_Subp => Act_Subp);
15154 end if;
15155
15156 -- No need to update Act_Elm if we must search for the
15157 -- corresponding operation in the generic actual
15158
15159 if not Need_Search
15160 and then Present (Act_Elmt)
15161 then
15162 Next_Elmt (Act_Elmt);
15163 Act_Subp := Node (Act_Elmt);
15164 end if;
15165
15166 <<Continue>>
15167 Next_Elmt (Elmt);
15168 end loop;
15169
15170 -- Inherit additional operations from progenitors. If the derived
15171 -- type is a generic actual, there are not new primitive operations
15172 -- for the type because it has those of the actual, and therefore
15173 -- nothing needs to be done. The renamings generated above are not
15174 -- primitive operations, and their purpose is simply to make the
15175 -- proper operations visible within an instantiation.
15176
15177 if No (Generic_Actual) then
15178 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
15179 end if;
15180 end if;
15181
15182 -- Final check: Direct descendants must have their primitives in the
15183 -- same order. We exclude from this test untagged types and instances
15184 -- of formal derived types. We skip this test if we have already
15185 -- reported serious errors in the sources.
15186
15187 pragma Assert (not Is_Tagged_Type (Derived_Type)
15188 or else Present (Generic_Actual)
15189 or else Serious_Errors_Detected > 0
15190 or else Check_Derived_Type);
15191 end Derive_Subprograms;
15192
15193 --------------------------------
15194 -- Derived_Standard_Character --
15195 --------------------------------
15196
15197 procedure Derived_Standard_Character
15198 (N : Node_Id;
15199 Parent_Type : Entity_Id;
15200 Derived_Type : Entity_Id)
15201 is
15202 Loc : constant Source_Ptr := Sloc (N);
15203 Def : constant Node_Id := Type_Definition (N);
15204 Indic : constant Node_Id := Subtype_Indication (Def);
15205 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
15206 Implicit_Base : constant Entity_Id :=
15207 Create_Itype
15208 (E_Enumeration_Type, N, Derived_Type, 'B');
15209
15210 Lo : Node_Id;
15211 Hi : Node_Id;
15212
15213 begin
15214 Discard_Node (Process_Subtype (Indic, N));
15215
15216 Set_Etype (Implicit_Base, Parent_Base);
15217 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
15218 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
15219
15220 Set_Is_Character_Type (Implicit_Base, True);
15221 Set_Has_Delayed_Freeze (Implicit_Base);
15222
15223 -- The bounds of the implicit base are the bounds of the parent base.
15224 -- Note that their type is the parent base.
15225
15226 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
15227 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
15228
15229 Set_Scalar_Range (Implicit_Base,
15230 Make_Range (Loc,
15231 Low_Bound => Lo,
15232 High_Bound => Hi));
15233
15234 Conditional_Delay (Derived_Type, Parent_Type);
15235
15236 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
15237 Set_Etype (Derived_Type, Implicit_Base);
15238 Set_Size_Info (Derived_Type, Parent_Type);
15239
15240 if Unknown_RM_Size (Derived_Type) then
15241 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
15242 end if;
15243
15244 Set_Is_Character_Type (Derived_Type, True);
15245
15246 if Nkind (Indic) /= N_Subtype_Indication then
15247
15248 -- If no explicit constraint, the bounds are those
15249 -- of the parent type.
15250
15251 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
15252 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
15253 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
15254 end if;
15255
15256 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
15257
15258 -- Because the implicit base is used in the conversion of the bounds, we
15259 -- have to freeze it now. This is similar to what is done for numeric
15260 -- types, and it equally suspicious, but otherwise a non-static bound
15261 -- will have a reference to an unfrozen type, which is rejected by Gigi
15262 -- (???). This requires specific care for definition of stream
15263 -- attributes. For details, see comments at the end of
15264 -- Build_Derived_Numeric_Type.
15265
15266 Freeze_Before (N, Implicit_Base);
15267 end Derived_Standard_Character;
15268
15269 ------------------------------
15270 -- Derived_Type_Declaration --
15271 ------------------------------
15272
15273 procedure Derived_Type_Declaration
15274 (T : Entity_Id;
15275 N : Node_Id;
15276 Is_Completion : Boolean)
15277 is
15278 Parent_Type : Entity_Id;
15279
15280 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
15281 -- Check whether the parent type is a generic formal, or derives
15282 -- directly or indirectly from one.
15283
15284 ------------------------
15285 -- Comes_From_Generic --
15286 ------------------------
15287
15288 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
15289 begin
15290 if Is_Generic_Type (Typ) then
15291 return True;
15292
15293 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
15294 return True;
15295
15296 elsif Is_Private_Type (Typ)
15297 and then Present (Full_View (Typ))
15298 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
15299 then
15300 return True;
15301
15302 elsif Is_Generic_Actual_Type (Typ) then
15303 return True;
15304
15305 else
15306 return False;
15307 end if;
15308 end Comes_From_Generic;
15309
15310 -- Local variables
15311
15312 Def : constant Node_Id := Type_Definition (N);
15313 Iface_Def : Node_Id;
15314 Indic : constant Node_Id := Subtype_Indication (Def);
15315 Extension : constant Node_Id := Record_Extension_Part (Def);
15316 Parent_Node : Node_Id;
15317 Taggd : Boolean;
15318
15319 -- Start of processing for Derived_Type_Declaration
15320
15321 begin
15322 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
15323
15324 -- Ada 2005 (AI-251): In case of interface derivation check that the
15325 -- parent is also an interface.
15326
15327 if Interface_Present (Def) then
15328 Check_SPARK_05_Restriction ("interface is not allowed", Def);
15329
15330 if not Is_Interface (Parent_Type) then
15331 Diagnose_Interface (Indic, Parent_Type);
15332
15333 else
15334 Parent_Node := Parent (Base_Type (Parent_Type));
15335 Iface_Def := Type_Definition (Parent_Node);
15336
15337 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
15338 -- other limited interfaces.
15339
15340 if Limited_Present (Def) then
15341 if Limited_Present (Iface_Def) then
15342 null;
15343
15344 elsif Protected_Present (Iface_Def) then
15345 Error_Msg_NE
15346 ("descendant of& must be declared"
15347 & " as a protected interface",
15348 N, Parent_Type);
15349
15350 elsif Synchronized_Present (Iface_Def) then
15351 Error_Msg_NE
15352 ("descendant of& must be declared"
15353 & " as a synchronized interface",
15354 N, Parent_Type);
15355
15356 elsif Task_Present (Iface_Def) then
15357 Error_Msg_NE
15358 ("descendant of& must be declared as a task interface",
15359 N, Parent_Type);
15360
15361 else
15362 Error_Msg_N
15363 ("(Ada 2005) limited interface cannot "
15364 & "inherit from non-limited interface", Indic);
15365 end if;
15366
15367 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
15368 -- from non-limited or limited interfaces.
15369
15370 elsif not Protected_Present (Def)
15371 and then not Synchronized_Present (Def)
15372 and then not Task_Present (Def)
15373 then
15374 if Limited_Present (Iface_Def) then
15375 null;
15376
15377 elsif Protected_Present (Iface_Def) then
15378 Error_Msg_NE
15379 ("descendant of& must be declared"
15380 & " as a protected interface",
15381 N, Parent_Type);
15382
15383 elsif Synchronized_Present (Iface_Def) then
15384 Error_Msg_NE
15385 ("descendant of& must be declared"
15386 & " as a synchronized interface",
15387 N, Parent_Type);
15388
15389 elsif Task_Present (Iface_Def) then
15390 Error_Msg_NE
15391 ("descendant of& must be declared as a task interface",
15392 N, Parent_Type);
15393 else
15394 null;
15395 end if;
15396 end if;
15397 end if;
15398 end if;
15399
15400 if Is_Tagged_Type (Parent_Type)
15401 and then Is_Concurrent_Type (Parent_Type)
15402 and then not Is_Interface (Parent_Type)
15403 then
15404 Error_Msg_N
15405 ("parent type of a record extension cannot be "
15406 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
15407 Set_Etype (T, Any_Type);
15408 return;
15409 end if;
15410
15411 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
15412 -- interfaces
15413
15414 if Is_Tagged_Type (Parent_Type)
15415 and then Is_Non_Empty_List (Interface_List (Def))
15416 then
15417 declare
15418 Intf : Node_Id;
15419 T : Entity_Id;
15420
15421 begin
15422 Intf := First (Interface_List (Def));
15423 while Present (Intf) loop
15424 T := Find_Type_Of_Subtype_Indic (Intf);
15425
15426 if not Is_Interface (T) then
15427 Diagnose_Interface (Intf, T);
15428
15429 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
15430 -- a limited type from having a nonlimited progenitor.
15431
15432 elsif (Limited_Present (Def)
15433 or else (not Is_Interface (Parent_Type)
15434 and then Is_Limited_Type (Parent_Type)))
15435 and then not Is_Limited_Interface (T)
15436 then
15437 Error_Msg_NE
15438 ("progenitor interface& of limited type must be limited",
15439 N, T);
15440 end if;
15441
15442 Next (Intf);
15443 end loop;
15444 end;
15445 end if;
15446
15447 if Parent_Type = Any_Type
15448 or else Etype (Parent_Type) = Any_Type
15449 or else (Is_Class_Wide_Type (Parent_Type)
15450 and then Etype (Parent_Type) = T)
15451 then
15452 -- If Parent_Type is undefined or illegal, make new type into a
15453 -- subtype of Any_Type, and set a few attributes to prevent cascaded
15454 -- errors. If this is a self-definition, emit error now.
15455
15456 if T = Parent_Type or else T = Etype (Parent_Type) then
15457 Error_Msg_N ("type cannot be used in its own definition", Indic);
15458 end if;
15459
15460 Set_Ekind (T, Ekind (Parent_Type));
15461 Set_Etype (T, Any_Type);
15462 Set_Scalar_Range (T, Scalar_Range (Any_Type));
15463
15464 if Is_Tagged_Type (T)
15465 and then Is_Record_Type (T)
15466 then
15467 Set_Direct_Primitive_Operations (T, New_Elmt_List);
15468 end if;
15469
15470 return;
15471 end if;
15472
15473 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
15474 -- an interface is special because the list of interfaces in the full
15475 -- view can be given in any order. For example:
15476
15477 -- type A is interface;
15478 -- type B is interface and A;
15479 -- type D is new B with private;
15480 -- private
15481 -- type D is new A and B with null record; -- 1 --
15482
15483 -- In this case we perform the following transformation of -1-:
15484
15485 -- type D is new B and A with null record;
15486
15487 -- If the parent of the full-view covers the parent of the partial-view
15488 -- we have two possible cases:
15489
15490 -- 1) They have the same parent
15491 -- 2) The parent of the full-view implements some further interfaces
15492
15493 -- In both cases we do not need to perform the transformation. In the
15494 -- first case the source program is correct and the transformation is
15495 -- not needed; in the second case the source program does not fulfill
15496 -- the no-hidden interfaces rule (AI-396) and the error will be reported
15497 -- later.
15498
15499 -- This transformation not only simplifies the rest of the analysis of
15500 -- this type declaration but also simplifies the correct generation of
15501 -- the object layout to the expander.
15502
15503 if In_Private_Part (Current_Scope)
15504 and then Is_Interface (Parent_Type)
15505 then
15506 declare
15507 Iface : Node_Id;
15508 Partial_View : Entity_Id;
15509 Partial_View_Parent : Entity_Id;
15510 New_Iface : Node_Id;
15511
15512 begin
15513 -- Look for the associated private type declaration
15514
15515 Partial_View := First_Entity (Current_Scope);
15516 loop
15517 exit when No (Partial_View)
15518 or else (Has_Private_Declaration (Partial_View)
15519 and then Full_View (Partial_View) = T);
15520
15521 Next_Entity (Partial_View);
15522 end loop;
15523
15524 -- If the partial view was not found then the source code has
15525 -- errors and the transformation is not needed.
15526
15527 if Present (Partial_View) then
15528 Partial_View_Parent := Etype (Partial_View);
15529
15530 -- If the parent of the full-view covers the parent of the
15531 -- partial-view we have nothing else to do.
15532
15533 if Interface_Present_In_Ancestor
15534 (Parent_Type, Partial_View_Parent)
15535 then
15536 null;
15537
15538 -- Traverse the list of interfaces of the full-view to look
15539 -- for the parent of the partial-view and perform the tree
15540 -- transformation.
15541
15542 else
15543 Iface := First (Interface_List (Def));
15544 while Present (Iface) loop
15545 if Etype (Iface) = Etype (Partial_View) then
15546 Rewrite (Subtype_Indication (Def),
15547 New_Copy (Subtype_Indication
15548 (Parent (Partial_View))));
15549
15550 New_Iface :=
15551 Make_Identifier (Sloc (N), Chars (Parent_Type));
15552 Append (New_Iface, Interface_List (Def));
15553
15554 -- Analyze the transformed code
15555
15556 Derived_Type_Declaration (T, N, Is_Completion);
15557 return;
15558 end if;
15559
15560 Next (Iface);
15561 end loop;
15562 end if;
15563 end if;
15564 end;
15565 end if;
15566
15567 -- Only composite types other than array types are allowed to have
15568 -- discriminants.
15569
15570 if Present (Discriminant_Specifications (N)) then
15571 if (Is_Elementary_Type (Parent_Type)
15572 or else
15573 Is_Array_Type (Parent_Type))
15574 and then not Error_Posted (N)
15575 then
15576 Error_Msg_N
15577 ("elementary or array type cannot have discriminants",
15578 Defining_Identifier (First (Discriminant_Specifications (N))));
15579 Set_Has_Discriminants (T, False);
15580
15581 -- The type is allowed to have discriminants
15582
15583 else
15584 Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
15585 end if;
15586 end if;
15587
15588 -- In Ada 83, a derived type defined in a package specification cannot
15589 -- be used for further derivation until the end of its visible part.
15590 -- Note that derivation in the private part of the package is allowed.
15591
15592 if Ada_Version = Ada_83
15593 and then Is_Derived_Type (Parent_Type)
15594 and then In_Visible_Part (Scope (Parent_Type))
15595 then
15596 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
15597 Error_Msg_N
15598 ("(Ada 83): premature use of type for derivation", Indic);
15599 end if;
15600 end if;
15601
15602 -- Check for early use of incomplete or private type
15603
15604 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
15605 Error_Msg_N ("premature derivation of incomplete type", Indic);
15606 return;
15607
15608 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
15609 and then not Comes_From_Generic (Parent_Type))
15610 or else Has_Private_Component (Parent_Type)
15611 then
15612 -- The ancestor type of a formal type can be incomplete, in which
15613 -- case only the operations of the partial view are available in the
15614 -- generic. Subsequent checks may be required when the full view is
15615 -- analyzed to verify that a derivation from a tagged type has an
15616 -- extension.
15617
15618 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
15619 null;
15620
15621 elsif No (Underlying_Type (Parent_Type))
15622 or else Has_Private_Component (Parent_Type)
15623 then
15624 Error_Msg_N
15625 ("premature derivation of derived or private type", Indic);
15626
15627 -- Flag the type itself as being in error, this prevents some
15628 -- nasty problems with subsequent uses of the malformed type.
15629
15630 Set_Error_Posted (T);
15631
15632 -- Check that within the immediate scope of an untagged partial
15633 -- view it's illegal to derive from the partial view if the
15634 -- full view is tagged. (7.3(7))
15635
15636 -- We verify that the Parent_Type is a partial view by checking
15637 -- that it is not a Full_Type_Declaration (i.e. a private type or
15638 -- private extension declaration), to distinguish a partial view
15639 -- from a derivation from a private type which also appears as
15640 -- E_Private_Type. If the parent base type is not declared in an
15641 -- enclosing scope there is no need to check.
15642
15643 elsif Present (Full_View (Parent_Type))
15644 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
15645 and then not Is_Tagged_Type (Parent_Type)
15646 and then Is_Tagged_Type (Full_View (Parent_Type))
15647 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15648 then
15649 Error_Msg_N
15650 ("premature derivation from type with tagged full view",
15651 Indic);
15652 end if;
15653 end if;
15654
15655 -- Check that form of derivation is appropriate
15656
15657 Taggd := Is_Tagged_Type (Parent_Type);
15658
15659 -- Perhaps the parent type should be changed to the class-wide type's
15660 -- specific type in this case to prevent cascading errors ???
15661
15662 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
15663 Error_Msg_N ("parent type must not be a class-wide type", Indic);
15664 return;
15665 end if;
15666
15667 if Present (Extension) and then not Taggd then
15668 Error_Msg_N
15669 ("type derived from untagged type cannot have extension", Indic);
15670
15671 elsif No (Extension) and then Taggd then
15672
15673 -- If this declaration is within a private part (or body) of a
15674 -- generic instantiation then the derivation is allowed (the parent
15675 -- type can only appear tagged in this case if it's a generic actual
15676 -- type, since it would otherwise have been rejected in the analysis
15677 -- of the generic template).
15678
15679 if not Is_Generic_Actual_Type (Parent_Type)
15680 or else In_Visible_Part (Scope (Parent_Type))
15681 then
15682 if Is_Class_Wide_Type (Parent_Type) then
15683 Error_Msg_N
15684 ("parent type must not be a class-wide type", Indic);
15685
15686 -- Use specific type to prevent cascaded errors.
15687
15688 Parent_Type := Etype (Parent_Type);
15689
15690 else
15691 Error_Msg_N
15692 ("type derived from tagged type must have extension", Indic);
15693 end if;
15694 end if;
15695 end if;
15696
15697 -- AI-443: Synchronized formal derived types require a private
15698 -- extension. There is no point in checking the ancestor type or
15699 -- the progenitors since the construct is wrong to begin with.
15700
15701 if Ada_Version >= Ada_2005
15702 and then Is_Generic_Type (T)
15703 and then Present (Original_Node (N))
15704 then
15705 declare
15706 Decl : constant Node_Id := Original_Node (N);
15707
15708 begin
15709 if Nkind (Decl) = N_Formal_Type_Declaration
15710 and then Nkind (Formal_Type_Definition (Decl)) =
15711 N_Formal_Derived_Type_Definition
15712 and then Synchronized_Present (Formal_Type_Definition (Decl))
15713 and then No (Extension)
15714
15715 -- Avoid emitting a duplicate error message
15716
15717 and then not Error_Posted (Indic)
15718 then
15719 Error_Msg_N
15720 ("synchronized derived type must have extension", N);
15721 end if;
15722 end;
15723 end if;
15724
15725 if Null_Exclusion_Present (Def)
15726 and then not Is_Access_Type (Parent_Type)
15727 then
15728 Error_Msg_N ("null exclusion can only apply to an access type", N);
15729 end if;
15730
15731 -- Avoid deriving parent primitives of underlying record views
15732
15733 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
15734 Derive_Subps => not Is_Underlying_Record_View (T));
15735
15736 -- AI-419: The parent type of an explicitly limited derived type must
15737 -- be a limited type or a limited interface.
15738
15739 if Limited_Present (Def) then
15740 Set_Is_Limited_Record (T);
15741
15742 if Is_Interface (T) then
15743 Set_Is_Limited_Interface (T);
15744 end if;
15745
15746 if not Is_Limited_Type (Parent_Type)
15747 and then
15748 (not Is_Interface (Parent_Type)
15749 or else not Is_Limited_Interface (Parent_Type))
15750 then
15751 -- AI05-0096: a derivation in the private part of an instance is
15752 -- legal if the generic formal is untagged limited, and the actual
15753 -- is non-limited.
15754
15755 if Is_Generic_Actual_Type (Parent_Type)
15756 and then In_Private_Part (Current_Scope)
15757 and then
15758 not Is_Tagged_Type
15759 (Generic_Parent_Type (Parent (Parent_Type)))
15760 then
15761 null;
15762
15763 else
15764 Error_Msg_NE
15765 ("parent type& of limited type must be limited",
15766 N, Parent_Type);
15767 end if;
15768 end if;
15769 end if;
15770
15771 -- In SPARK, there are no derived type definitions other than type
15772 -- extensions of tagged record types.
15773
15774 if No (Extension) then
15775 Check_SPARK_05_Restriction
15776 ("derived type is not allowed", Original_Node (N));
15777 end if;
15778 end Derived_Type_Declaration;
15779
15780 ------------------------
15781 -- Diagnose_Interface --
15782 ------------------------
15783
15784 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
15785 begin
15786 if not Is_Interface (E)
15787 and then E /= Any_Type
15788 then
15789 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
15790 end if;
15791 end Diagnose_Interface;
15792
15793 ----------------------------------
15794 -- Enumeration_Type_Declaration --
15795 ----------------------------------
15796
15797 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15798 Ev : Uint;
15799 L : Node_Id;
15800 R_Node : Node_Id;
15801 B_Node : Node_Id;
15802
15803 begin
15804 -- Create identifier node representing lower bound
15805
15806 B_Node := New_Node (N_Identifier, Sloc (Def));
15807 L := First (Literals (Def));
15808 Set_Chars (B_Node, Chars (L));
15809 Set_Entity (B_Node, L);
15810 Set_Etype (B_Node, T);
15811 Set_Is_Static_Expression (B_Node, True);
15812
15813 R_Node := New_Node (N_Range, Sloc (Def));
15814 Set_Low_Bound (R_Node, B_Node);
15815
15816 Set_Ekind (T, E_Enumeration_Type);
15817 Set_First_Literal (T, L);
15818 Set_Etype (T, T);
15819 Set_Is_Constrained (T);
15820
15821 Ev := Uint_0;
15822
15823 -- Loop through literals of enumeration type setting pos and rep values
15824 -- except that if the Ekind is already set, then it means the literal
15825 -- was already constructed (case of a derived type declaration and we
15826 -- should not disturb the Pos and Rep values.
15827
15828 while Present (L) loop
15829 if Ekind (L) /= E_Enumeration_Literal then
15830 Set_Ekind (L, E_Enumeration_Literal);
15831 Set_Enumeration_Pos (L, Ev);
15832 Set_Enumeration_Rep (L, Ev);
15833 Set_Is_Known_Valid (L, True);
15834 end if;
15835
15836 Set_Etype (L, T);
15837 New_Overloaded_Entity (L);
15838 Generate_Definition (L);
15839 Set_Convention (L, Convention_Intrinsic);
15840
15841 -- Case of character literal
15842
15843 if Nkind (L) = N_Defining_Character_Literal then
15844 Set_Is_Character_Type (T, True);
15845
15846 -- Check violation of No_Wide_Characters
15847
15848 if Restriction_Check_Required (No_Wide_Characters) then
15849 Get_Name_String (Chars (L));
15850
15851 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
15852 Check_Restriction (No_Wide_Characters, L);
15853 end if;
15854 end if;
15855 end if;
15856
15857 Ev := Ev + 1;
15858 Next (L);
15859 end loop;
15860
15861 -- Now create a node representing upper bound
15862
15863 B_Node := New_Node (N_Identifier, Sloc (Def));
15864 Set_Chars (B_Node, Chars (Last (Literals (Def))));
15865 Set_Entity (B_Node, Last (Literals (Def)));
15866 Set_Etype (B_Node, T);
15867 Set_Is_Static_Expression (B_Node, True);
15868
15869 Set_High_Bound (R_Node, B_Node);
15870
15871 -- Initialize various fields of the type. Some of this information
15872 -- may be overwritten later through rep.clauses.
15873
15874 Set_Scalar_Range (T, R_Node);
15875 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
15876 Set_Enum_Esize (T);
15877 Set_Enum_Pos_To_Rep (T, Empty);
15878
15879 -- Set Discard_Names if configuration pragma set, or if there is
15880 -- a parameterless pragma in the current declarative region
15881
15882 if Global_Discard_Names or else Discard_Names (Scope (T)) then
15883 Set_Discard_Names (T);
15884 end if;
15885
15886 -- Process end label if there is one
15887
15888 if Present (Def) then
15889 Process_End_Label (Def, 'e', T);
15890 end if;
15891 end Enumeration_Type_Declaration;
15892
15893 ---------------------------------
15894 -- Expand_To_Stored_Constraint --
15895 ---------------------------------
15896
15897 function Expand_To_Stored_Constraint
15898 (Typ : Entity_Id;
15899 Constraint : Elist_Id) return Elist_Id
15900 is
15901 Explicitly_Discriminated_Type : Entity_Id;
15902 Expansion : Elist_Id;
15903 Discriminant : Entity_Id;
15904
15905 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
15906 -- Find the nearest type that actually specifies discriminants
15907
15908 ---------------------------------
15909 -- Type_With_Explicit_Discrims --
15910 ---------------------------------
15911
15912 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
15913 Typ : constant E := Base_Type (Id);
15914
15915 begin
15916 if Ekind (Typ) in Incomplete_Or_Private_Kind then
15917 if Present (Full_View (Typ)) then
15918 return Type_With_Explicit_Discrims (Full_View (Typ));
15919 end if;
15920
15921 else
15922 if Has_Discriminants (Typ) then
15923 return Typ;
15924 end if;
15925 end if;
15926
15927 if Etype (Typ) = Typ then
15928 return Empty;
15929 elsif Has_Discriminants (Typ) then
15930 return Typ;
15931 else
15932 return Type_With_Explicit_Discrims (Etype (Typ));
15933 end if;
15934
15935 end Type_With_Explicit_Discrims;
15936
15937 -- Start of processing for Expand_To_Stored_Constraint
15938
15939 begin
15940 if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then
15941 return No_Elist;
15942 end if;
15943
15944 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
15945
15946 if No (Explicitly_Discriminated_Type) then
15947 return No_Elist;
15948 end if;
15949
15950 Expansion := New_Elmt_List;
15951
15952 Discriminant :=
15953 First_Stored_Discriminant (Explicitly_Discriminated_Type);
15954 while Present (Discriminant) loop
15955 Append_Elmt
15956 (Get_Discriminant_Value
15957 (Discriminant, Explicitly_Discriminated_Type, Constraint),
15958 To => Expansion);
15959 Next_Stored_Discriminant (Discriminant);
15960 end loop;
15961
15962 return Expansion;
15963 end Expand_To_Stored_Constraint;
15964
15965 ---------------------------
15966 -- Find_Hidden_Interface --
15967 ---------------------------
15968
15969 function Find_Hidden_Interface
15970 (Src : Elist_Id;
15971 Dest : Elist_Id) return Entity_Id
15972 is
15973 Iface : Entity_Id;
15974 Iface_Elmt : Elmt_Id;
15975
15976 begin
15977 if Present (Src) and then Present (Dest) then
15978 Iface_Elmt := First_Elmt (Src);
15979 while Present (Iface_Elmt) loop
15980 Iface := Node (Iface_Elmt);
15981
15982 if Is_Interface (Iface)
15983 and then not Contain_Interface (Iface, Dest)
15984 then
15985 return Iface;
15986 end if;
15987
15988 Next_Elmt (Iface_Elmt);
15989 end loop;
15990 end if;
15991
15992 return Empty;
15993 end Find_Hidden_Interface;
15994
15995 --------------------
15996 -- Find_Type_Name --
15997 --------------------
15998
15999 function Find_Type_Name (N : Node_Id) return Entity_Id is
16000 Id : constant Entity_Id := Defining_Identifier (N);
16001 Prev : Entity_Id;
16002 New_Id : Entity_Id;
16003 Prev_Par : Node_Id;
16004
16005 procedure Check_Duplicate_Aspects;
16006 -- Check that aspects specified in a completion have not been specified
16007 -- already in the partial view. Type_Invariant and others can be
16008 -- specified on either view but never on both.
16009
16010 procedure Tag_Mismatch;
16011 -- Diagnose a tagged partial view whose full view is untagged.
16012 -- We post the message on the full view, with a reference to
16013 -- the previous partial view. The partial view can be private
16014 -- or incomplete, and these are handled in a different manner,
16015 -- so we determine the position of the error message from the
16016 -- respective slocs of both.
16017
16018 -----------------------------
16019 -- Check_Duplicate_Aspects --
16020 -----------------------------
16021 procedure Check_Duplicate_Aspects is
16022 Prev_Aspects : constant List_Id := Aspect_Specifications (Prev_Par);
16023 Full_Aspects : constant List_Id := Aspect_Specifications (N);
16024 F_Spec, P_Spec : Node_Id;
16025
16026 begin
16027 if Present (Prev_Aspects) and then Present (Full_Aspects) then
16028 F_Spec := First (Full_Aspects);
16029 while Present (F_Spec) loop
16030 P_Spec := First (Prev_Aspects);
16031 while Present (P_Spec) loop
16032 if
16033 Chars (Identifier (P_Spec)) = Chars (Identifier (F_Spec))
16034 then
16035 Error_Msg_N
16036 ("aspect already specified in private declaration",
16037 F_Spec);
16038 Remove (F_Spec);
16039 return;
16040 end if;
16041
16042 Next (P_Spec);
16043 end loop;
16044
16045 Next (F_Spec);
16046 end loop;
16047 end if;
16048 end Check_Duplicate_Aspects;
16049
16050 ------------------
16051 -- Tag_Mismatch --
16052 ------------------
16053
16054 procedure Tag_Mismatch is
16055 begin
16056 if Sloc (Prev) < Sloc (Id) then
16057 if Ada_Version >= Ada_2012
16058 and then Nkind (N) = N_Private_Type_Declaration
16059 then
16060 Error_Msg_NE
16061 ("declaration of private } must be a tagged type ", Id, Prev);
16062 else
16063 Error_Msg_NE
16064 ("full declaration of } must be a tagged type ", Id, Prev);
16065 end if;
16066
16067 else
16068 if Ada_Version >= Ada_2012
16069 and then Nkind (N) = N_Private_Type_Declaration
16070 then
16071 Error_Msg_NE
16072 ("declaration of private } must be a tagged type ", Prev, Id);
16073 else
16074 Error_Msg_NE
16075 ("full declaration of } must be a tagged type ", Prev, Id);
16076 end if;
16077 end if;
16078 end Tag_Mismatch;
16079
16080 -- Start of processing for Find_Type_Name
16081
16082 begin
16083 -- Find incomplete declaration, if one was given
16084
16085 Prev := Current_Entity_In_Scope (Id);
16086
16087 -- New type declaration
16088
16089 if No (Prev) then
16090 Enter_Name (Id);
16091 return Id;
16092
16093 -- Previous declaration exists
16094
16095 else
16096 Prev_Par := Parent (Prev);
16097
16098 -- Error if not incomplete/private case except if previous
16099 -- declaration is implicit, etc. Enter_Name will emit error if
16100 -- appropriate.
16101
16102 if not Is_Incomplete_Or_Private_Type (Prev) then
16103 Enter_Name (Id);
16104 New_Id := Id;
16105
16106 -- Check invalid completion of private or incomplete type
16107
16108 elsif not Nkind_In (N, N_Full_Type_Declaration,
16109 N_Task_Type_Declaration,
16110 N_Protected_Type_Declaration)
16111 and then
16112 (Ada_Version < Ada_2012
16113 or else not Is_Incomplete_Type (Prev)
16114 or else not Nkind_In (N, N_Private_Type_Declaration,
16115 N_Private_Extension_Declaration))
16116 then
16117 -- Completion must be a full type declarations (RM 7.3(4))
16118
16119 Error_Msg_Sloc := Sloc (Prev);
16120 Error_Msg_NE ("invalid completion of }", Id, Prev);
16121
16122 -- Set scope of Id to avoid cascaded errors. Entity is never
16123 -- examined again, except when saving globals in generics.
16124
16125 Set_Scope (Id, Current_Scope);
16126 New_Id := Id;
16127
16128 -- If this is a repeated incomplete declaration, no further
16129 -- checks are possible.
16130
16131 if Nkind (N) = N_Incomplete_Type_Declaration then
16132 return Prev;
16133 end if;
16134
16135 -- Case of full declaration of incomplete type
16136
16137 elsif Ekind (Prev) = E_Incomplete_Type
16138 and then (Ada_Version < Ada_2012
16139 or else No (Full_View (Prev))
16140 or else not Is_Private_Type (Full_View (Prev)))
16141 then
16142 -- Indicate that the incomplete declaration has a matching full
16143 -- declaration. The defining occurrence of the incomplete
16144 -- declaration remains the visible one, and the procedure
16145 -- Get_Full_View dereferences it whenever the type is used.
16146
16147 if Present (Full_View (Prev)) then
16148 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
16149 end if;
16150
16151 Set_Full_View (Prev, Id);
16152 Append_Entity (Id, Current_Scope);
16153 Set_Is_Public (Id, Is_Public (Prev));
16154 Set_Is_Internal (Id);
16155 New_Id := Prev;
16156
16157 -- If the incomplete view is tagged, a class_wide type has been
16158 -- created already. Use it for the private type as well, in order
16159 -- to prevent multiple incompatible class-wide types that may be
16160 -- created for self-referential anonymous access components.
16161
16162 if Is_Tagged_Type (Prev)
16163 and then Present (Class_Wide_Type (Prev))
16164 then
16165 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
16166 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
16167
16168 -- If the incomplete type is completed by a private declaration
16169 -- the class-wide type remains associated with the incomplete
16170 -- type, to prevent order-of-elaboration issues in gigi, else
16171 -- we associate the class-wide type with the known full view.
16172
16173 if Nkind (N) /= N_Private_Type_Declaration then
16174 Set_Etype (Class_Wide_Type (Id), Id);
16175 end if;
16176 end if;
16177
16178 -- Case of full declaration of private type
16179
16180 else
16181 -- If the private type was a completion of an incomplete type then
16182 -- update Prev to reference the private type
16183
16184 if Ada_Version >= Ada_2012
16185 and then Ekind (Prev) = E_Incomplete_Type
16186 and then Present (Full_View (Prev))
16187 and then Is_Private_Type (Full_View (Prev))
16188 then
16189 Prev := Full_View (Prev);
16190 Prev_Par := Parent (Prev);
16191 end if;
16192
16193 if Nkind (N) = N_Full_Type_Declaration
16194 and then Nkind_In
16195 (Type_Definition (N), N_Record_Definition,
16196 N_Derived_Type_Definition)
16197 and then Interface_Present (Type_Definition (N))
16198 then
16199 Error_Msg_N
16200 ("completion of private type cannot be an interface", N);
16201 end if;
16202
16203 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
16204 if Etype (Prev) /= Prev then
16205
16206 -- Prev is a private subtype or a derived type, and needs
16207 -- no completion.
16208
16209 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
16210 New_Id := Id;
16211
16212 elsif Ekind (Prev) = E_Private_Type
16213 and then Nkind_In (N, N_Task_Type_Declaration,
16214 N_Protected_Type_Declaration)
16215 then
16216 Error_Msg_N
16217 ("completion of nonlimited type cannot be limited", N);
16218
16219 elsif Ekind (Prev) = E_Record_Type_With_Private
16220 and then Nkind_In (N, N_Task_Type_Declaration,
16221 N_Protected_Type_Declaration)
16222 then
16223 if not Is_Limited_Record (Prev) then
16224 Error_Msg_N
16225 ("completion of nonlimited type cannot be limited", N);
16226
16227 elsif No (Interface_List (N)) then
16228 Error_Msg_N
16229 ("completion of tagged private type must be tagged",
16230 N);
16231 end if;
16232 end if;
16233
16234 -- Ada 2005 (AI-251): Private extension declaration of a task
16235 -- type or a protected type. This case arises when covering
16236 -- interface types.
16237
16238 elsif Nkind_In (N, N_Task_Type_Declaration,
16239 N_Protected_Type_Declaration)
16240 then
16241 null;
16242
16243 elsif Nkind (N) /= N_Full_Type_Declaration
16244 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
16245 then
16246 Error_Msg_N
16247 ("full view of private extension must be an extension", N);
16248
16249 elsif not (Abstract_Present (Parent (Prev)))
16250 and then Abstract_Present (Type_Definition (N))
16251 then
16252 Error_Msg_N
16253 ("full view of non-abstract extension cannot be abstract", N);
16254 end if;
16255
16256 if not In_Private_Part (Current_Scope) then
16257 Error_Msg_N
16258 ("declaration of full view must appear in private part", N);
16259 end if;
16260
16261 if Ada_Version >= Ada_2012 then
16262 Check_Duplicate_Aspects;
16263 end if;
16264
16265 Copy_And_Swap (Prev, Id);
16266 Set_Has_Private_Declaration (Prev);
16267 Set_Has_Private_Declaration (Id);
16268
16269 -- Preserve aspect and iterator flags that may have been set on
16270 -- the partial view.
16271
16272 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
16273 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
16274
16275 -- If no error, propagate freeze_node from private to full view.
16276 -- It may have been generated for an early operational item.
16277
16278 if Present (Freeze_Node (Id))
16279 and then Serious_Errors_Detected = 0
16280 and then No (Full_View (Id))
16281 then
16282 Set_Freeze_Node (Prev, Freeze_Node (Id));
16283 Set_Freeze_Node (Id, Empty);
16284 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
16285 end if;
16286
16287 Set_Full_View (Id, Prev);
16288 New_Id := Prev;
16289 end if;
16290
16291 -- Verify that full declaration conforms to partial one
16292
16293 if Is_Incomplete_Or_Private_Type (Prev)
16294 and then Present (Discriminant_Specifications (Prev_Par))
16295 then
16296 if Present (Discriminant_Specifications (N)) then
16297 if Ekind (Prev) = E_Incomplete_Type then
16298 Check_Discriminant_Conformance (N, Prev, Prev);
16299 else
16300 Check_Discriminant_Conformance (N, Prev, Id);
16301 end if;
16302
16303 else
16304 Error_Msg_N
16305 ("missing discriminants in full type declaration", N);
16306
16307 -- To avoid cascaded errors on subsequent use, share the
16308 -- discriminants of the partial view.
16309
16310 Set_Discriminant_Specifications (N,
16311 Discriminant_Specifications (Prev_Par));
16312 end if;
16313 end if;
16314
16315 -- A prior untagged partial view can have an associated class-wide
16316 -- type due to use of the class attribute, and in this case the full
16317 -- type must also be tagged. This Ada 95 usage is deprecated in favor
16318 -- of incomplete tagged declarations, but we check for it.
16319
16320 if Is_Type (Prev)
16321 and then (Is_Tagged_Type (Prev)
16322 or else Present (Class_Wide_Type (Prev)))
16323 then
16324 -- Ada 2012 (AI05-0162): A private type may be the completion of
16325 -- an incomplete type.
16326
16327 if Ada_Version >= Ada_2012
16328 and then Is_Incomplete_Type (Prev)
16329 and then Nkind_In (N, N_Private_Type_Declaration,
16330 N_Private_Extension_Declaration)
16331 then
16332 -- No need to check private extensions since they are tagged
16333
16334 if Nkind (N) = N_Private_Type_Declaration
16335 and then not Tagged_Present (N)
16336 then
16337 Tag_Mismatch;
16338 end if;
16339
16340 -- The full declaration is either a tagged type (including
16341 -- a synchronized type that implements interfaces) or a
16342 -- type extension, otherwise this is an error.
16343
16344 elsif Nkind_In (N, N_Task_Type_Declaration,
16345 N_Protected_Type_Declaration)
16346 then
16347 if No (Interface_List (N))
16348 and then not Error_Posted (N)
16349 then
16350 Tag_Mismatch;
16351 end if;
16352
16353 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
16354
16355 -- Indicate that the previous declaration (tagged incomplete
16356 -- or private declaration) requires the same on the full one.
16357
16358 if not Tagged_Present (Type_Definition (N)) then
16359 Tag_Mismatch;
16360 Set_Is_Tagged_Type (Id);
16361 end if;
16362
16363 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
16364 if No (Record_Extension_Part (Type_Definition (N))) then
16365 Error_Msg_NE
16366 ("full declaration of } must be a record extension",
16367 Prev, Id);
16368
16369 -- Set some attributes to produce a usable full view
16370
16371 Set_Is_Tagged_Type (Id);
16372 end if;
16373
16374 else
16375 Tag_Mismatch;
16376 end if;
16377 end if;
16378
16379 if Present (Prev)
16380 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
16381 and then Present (Premature_Use (Parent (Prev)))
16382 then
16383 Error_Msg_Sloc := Sloc (N);
16384 Error_Msg_N
16385 ("\full declaration #", Premature_Use (Parent (Prev)));
16386 end if;
16387
16388 return New_Id;
16389 end if;
16390 end Find_Type_Name;
16391
16392 -------------------------
16393 -- Find_Type_Of_Object --
16394 -------------------------
16395
16396 function Find_Type_Of_Object
16397 (Obj_Def : Node_Id;
16398 Related_Nod : Node_Id) return Entity_Id
16399 is
16400 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
16401 P : Node_Id := Parent (Obj_Def);
16402 T : Entity_Id;
16403 Nam : Name_Id;
16404
16405 begin
16406 -- If the parent is a component_definition node we climb to the
16407 -- component_declaration node
16408
16409 if Nkind (P) = N_Component_Definition then
16410 P := Parent (P);
16411 end if;
16412
16413 -- Case of an anonymous array subtype
16414
16415 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
16416 N_Unconstrained_Array_Definition)
16417 then
16418 T := Empty;
16419 Array_Type_Declaration (T, Obj_Def);
16420
16421 -- Create an explicit subtype whenever possible
16422
16423 elsif Nkind (P) /= N_Component_Declaration
16424 and then Def_Kind = N_Subtype_Indication
16425 then
16426 -- Base name of subtype on object name, which will be unique in
16427 -- the current scope.
16428
16429 -- If this is a duplicate declaration, return base type, to avoid
16430 -- generating duplicate anonymous types.
16431
16432 if Error_Posted (P) then
16433 Analyze (Subtype_Mark (Obj_Def));
16434 return Entity (Subtype_Mark (Obj_Def));
16435 end if;
16436
16437 Nam :=
16438 New_External_Name
16439 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
16440
16441 T := Make_Defining_Identifier (Sloc (P), Nam);
16442
16443 Insert_Action (Obj_Def,
16444 Make_Subtype_Declaration (Sloc (P),
16445 Defining_Identifier => T,
16446 Subtype_Indication => Relocate_Node (Obj_Def)));
16447
16448 -- This subtype may need freezing, and this will not be done
16449 -- automatically if the object declaration is not in declarative
16450 -- part. Since this is an object declaration, the type cannot always
16451 -- be frozen here. Deferred constants do not freeze their type
16452 -- (which often enough will be private).
16453
16454 if Nkind (P) = N_Object_Declaration
16455 and then Constant_Present (P)
16456 and then No (Expression (P))
16457 then
16458 null;
16459
16460 -- Here we freeze the base type of object type to catch premature use
16461 -- of discriminated private type without a full view.
16462
16463 else
16464 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
16465 end if;
16466
16467 -- Ada 2005 AI-406: the object definition in an object declaration
16468 -- can be an access definition.
16469
16470 elsif Def_Kind = N_Access_Definition then
16471 T := Access_Definition (Related_Nod, Obj_Def);
16472
16473 Set_Is_Local_Anonymous_Access
16474 (T,
16475 V => (Ada_Version < Ada_2012)
16476 or else (Nkind (P) /= N_Object_Declaration)
16477 or else Is_Library_Level_Entity (Defining_Identifier (P)));
16478
16479 -- Otherwise, the object definition is just a subtype_mark
16480
16481 else
16482 T := Process_Subtype (Obj_Def, Related_Nod);
16483
16484 -- If expansion is disabled an object definition that is an aggregate
16485 -- will not get expanded and may lead to scoping problems in the back
16486 -- end, if the object is referenced in an inner scope. In that case
16487 -- create an itype reference for the object definition now. This
16488 -- may be redundant in some cases, but harmless.
16489
16490 if Is_Itype (T)
16491 and then Nkind (Related_Nod) = N_Object_Declaration
16492 and then ASIS_Mode
16493 then
16494 Build_Itype_Reference (T, Related_Nod);
16495 end if;
16496 end if;
16497
16498 return T;
16499 end Find_Type_Of_Object;
16500
16501 --------------------------------
16502 -- Find_Type_Of_Subtype_Indic --
16503 --------------------------------
16504
16505 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
16506 Typ : Entity_Id;
16507
16508 begin
16509 -- Case of subtype mark with a constraint
16510
16511 if Nkind (S) = N_Subtype_Indication then
16512 Find_Type (Subtype_Mark (S));
16513 Typ := Entity (Subtype_Mark (S));
16514
16515 if not
16516 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
16517 then
16518 Error_Msg_N
16519 ("incorrect constraint for this kind of type", Constraint (S));
16520 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
16521 end if;
16522
16523 -- Otherwise we have a subtype mark without a constraint
16524
16525 elsif Error_Posted (S) then
16526 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
16527 return Any_Type;
16528
16529 else
16530 Find_Type (S);
16531 Typ := Entity (S);
16532 end if;
16533
16534 -- Check No_Wide_Characters restriction
16535
16536 Check_Wide_Character_Restriction (Typ, S);
16537
16538 return Typ;
16539 end Find_Type_Of_Subtype_Indic;
16540
16541 -------------------------------------
16542 -- Floating_Point_Type_Declaration --
16543 -------------------------------------
16544
16545 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16546 Digs : constant Node_Id := Digits_Expression (Def);
16547 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
16548 Digs_Val : Uint;
16549 Base_Typ : Entity_Id;
16550 Implicit_Base : Entity_Id;
16551 Bound : Node_Id;
16552
16553 function Can_Derive_From (E : Entity_Id) return Boolean;
16554 -- Find if given digits value, and possibly a specified range, allows
16555 -- derivation from specified type
16556
16557 function Find_Base_Type return Entity_Id;
16558 -- Find a predefined base type that Def can derive from, or generate
16559 -- an error and substitute Long_Long_Float if none exists.
16560
16561 ---------------------
16562 -- Can_Derive_From --
16563 ---------------------
16564
16565 function Can_Derive_From (E : Entity_Id) return Boolean is
16566 Spec : constant Entity_Id := Real_Range_Specification (Def);
16567
16568 begin
16569 -- Check specified "digits" constraint
16570
16571 if Digs_Val > Digits_Value (E) then
16572 return False;
16573 end if;
16574
16575 -- Check for matching range, if specified
16576
16577 if Present (Spec) then
16578 if Expr_Value_R (Type_Low_Bound (E)) >
16579 Expr_Value_R (Low_Bound (Spec))
16580 then
16581 return False;
16582 end if;
16583
16584 if Expr_Value_R (Type_High_Bound (E)) <
16585 Expr_Value_R (High_Bound (Spec))
16586 then
16587 return False;
16588 end if;
16589 end if;
16590
16591 return True;
16592 end Can_Derive_From;
16593
16594 --------------------
16595 -- Find_Base_Type --
16596 --------------------
16597
16598 function Find_Base_Type return Entity_Id is
16599 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
16600
16601 begin
16602 -- Iterate over the predefined types in order, returning the first
16603 -- one that Def can derive from.
16604
16605 while Present (Choice) loop
16606 if Can_Derive_From (Node (Choice)) then
16607 return Node (Choice);
16608 end if;
16609
16610 Next_Elmt (Choice);
16611 end loop;
16612
16613 -- If we can't derive from any existing type, use Long_Long_Float
16614 -- and give appropriate message explaining the problem.
16615
16616 if Digs_Val > Max_Digs_Val then
16617 -- It might be the case that there is a type with the requested
16618 -- range, just not the combination of digits and range.
16619
16620 Error_Msg_N
16621 ("no predefined type has requested range and precision",
16622 Real_Range_Specification (Def));
16623
16624 else
16625 Error_Msg_N
16626 ("range too large for any predefined type",
16627 Real_Range_Specification (Def));
16628 end if;
16629
16630 return Standard_Long_Long_Float;
16631 end Find_Base_Type;
16632
16633 -- Start of processing for Floating_Point_Type_Declaration
16634
16635 begin
16636 Check_Restriction (No_Floating_Point, Def);
16637
16638 -- Create an implicit base type
16639
16640 Implicit_Base :=
16641 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
16642
16643 -- Analyze and verify digits value
16644
16645 Analyze_And_Resolve (Digs, Any_Integer);
16646 Check_Digits_Expression (Digs);
16647 Digs_Val := Expr_Value (Digs);
16648
16649 -- Process possible range spec and find correct type to derive from
16650
16651 Process_Real_Range_Specification (Def);
16652
16653 -- Check that requested number of digits is not too high.
16654
16655 if Digs_Val > Max_Digs_Val then
16656 -- The check for Max_Base_Digits may be somewhat expensive, as it
16657 -- requires reading System, so only do it when necessary.
16658
16659 declare
16660 Max_Base_Digits : constant Uint :=
16661 Expr_Value
16662 (Expression
16663 (Parent (RTE (RE_Max_Base_Digits))));
16664
16665 begin
16666 if Digs_Val > Max_Base_Digits then
16667 Error_Msg_Uint_1 := Max_Base_Digits;
16668 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
16669
16670 elsif No (Real_Range_Specification (Def)) then
16671 Error_Msg_Uint_1 := Max_Digs_Val;
16672 Error_Msg_N ("types with more than ^ digits need range spec "
16673 & "(RM 3.5.7(6))", Digs);
16674 end if;
16675 end;
16676 end if;
16677
16678 -- Find a suitable type to derive from or complain and use a substitute
16679
16680 Base_Typ := Find_Base_Type;
16681
16682 -- If there are bounds given in the declaration use them as the bounds
16683 -- of the type, otherwise use the bounds of the predefined base type
16684 -- that was chosen based on the Digits value.
16685
16686 if Present (Real_Range_Specification (Def)) then
16687 Set_Scalar_Range (T, Real_Range_Specification (Def));
16688 Set_Is_Constrained (T);
16689
16690 -- The bounds of this range must be converted to machine numbers
16691 -- in accordance with RM 4.9(38).
16692
16693 Bound := Type_Low_Bound (T);
16694
16695 if Nkind (Bound) = N_Real_Literal then
16696 Set_Realval
16697 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16698 Set_Is_Machine_Number (Bound);
16699 end if;
16700
16701 Bound := Type_High_Bound (T);
16702
16703 if Nkind (Bound) = N_Real_Literal then
16704 Set_Realval
16705 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16706 Set_Is_Machine_Number (Bound);
16707 end if;
16708
16709 else
16710 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
16711 end if;
16712
16713 -- Complete definition of implicit base and declared first subtype
16714
16715 Set_Etype (Implicit_Base, Base_Typ);
16716
16717 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
16718 Set_Size_Info (Implicit_Base, (Base_Typ));
16719 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
16720 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
16721 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
16722 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
16723
16724 Set_Ekind (T, E_Floating_Point_Subtype);
16725 Set_Etype (T, Implicit_Base);
16726
16727 Set_Size_Info (T, (Implicit_Base));
16728 Set_RM_Size (T, RM_Size (Implicit_Base));
16729 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
16730 Set_Digits_Value (T, Digs_Val);
16731 end Floating_Point_Type_Declaration;
16732
16733 ----------------------------
16734 -- Get_Discriminant_Value --
16735 ----------------------------
16736
16737 -- This is the situation:
16738
16739 -- There is a non-derived type
16740
16741 -- type T0 (Dx, Dy, Dz...)
16742
16743 -- There are zero or more levels of derivation, with each derivation
16744 -- either purely inheriting the discriminants, or defining its own.
16745
16746 -- type Ti is new Ti-1
16747 -- or
16748 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
16749 -- or
16750 -- subtype Ti is ...
16751
16752 -- The subtype issue is avoided by the use of Original_Record_Component,
16753 -- and the fact that derived subtypes also derive the constraints.
16754
16755 -- This chain leads back from
16756
16757 -- Typ_For_Constraint
16758
16759 -- Typ_For_Constraint has discriminants, and the value for each
16760 -- discriminant is given by its corresponding Elmt of Constraints.
16761
16762 -- Discriminant is some discriminant in this hierarchy
16763
16764 -- We need to return its value
16765
16766 -- We do this by recursively searching each level, and looking for
16767 -- Discriminant. Once we get to the bottom, we start backing up
16768 -- returning the value for it which may in turn be a discriminant
16769 -- further up, so on the backup we continue the substitution.
16770
16771 function Get_Discriminant_Value
16772 (Discriminant : Entity_Id;
16773 Typ_For_Constraint : Entity_Id;
16774 Constraint : Elist_Id) return Node_Id
16775 is
16776 function Root_Corresponding_Discriminant
16777 (Discr : Entity_Id) return Entity_Id;
16778 -- Given a discriminant, traverse the chain of inherited discriminants
16779 -- and return the topmost discriminant.
16780
16781 function Search_Derivation_Levels
16782 (Ti : Entity_Id;
16783 Discrim_Values : Elist_Id;
16784 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
16785 -- This is the routine that performs the recursive search of levels
16786 -- as described above.
16787
16788 -------------------------------------
16789 -- Root_Corresponding_Discriminant --
16790 -------------------------------------
16791
16792 function Root_Corresponding_Discriminant
16793 (Discr : Entity_Id) return Entity_Id
16794 is
16795 D : Entity_Id;
16796
16797 begin
16798 D := Discr;
16799 while Present (Corresponding_Discriminant (D)) loop
16800 D := Corresponding_Discriminant (D);
16801 end loop;
16802
16803 return D;
16804 end Root_Corresponding_Discriminant;
16805
16806 ------------------------------
16807 -- Search_Derivation_Levels --
16808 ------------------------------
16809
16810 function Search_Derivation_Levels
16811 (Ti : Entity_Id;
16812 Discrim_Values : Elist_Id;
16813 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
16814 is
16815 Assoc : Elmt_Id;
16816 Disc : Entity_Id;
16817 Result : Node_Or_Entity_Id;
16818 Result_Entity : Node_Id;
16819
16820 begin
16821 -- If inappropriate type, return Error, this happens only in
16822 -- cascaded error situations, and we want to avoid a blow up.
16823
16824 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
16825 return Error;
16826 end if;
16827
16828 -- Look deeper if possible. Use Stored_Constraints only for
16829 -- untagged types. For tagged types use the given constraint.
16830 -- This asymmetry needs explanation???
16831
16832 if not Stored_Discrim_Values
16833 and then Present (Stored_Constraint (Ti))
16834 and then not Is_Tagged_Type (Ti)
16835 then
16836 Result :=
16837 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
16838 else
16839 declare
16840 Td : constant Entity_Id := Etype (Ti);
16841
16842 begin
16843 if Td = Ti then
16844 Result := Discriminant;
16845
16846 else
16847 if Present (Stored_Constraint (Ti)) then
16848 Result :=
16849 Search_Derivation_Levels
16850 (Td, Stored_Constraint (Ti), True);
16851 else
16852 Result :=
16853 Search_Derivation_Levels
16854 (Td, Discrim_Values, Stored_Discrim_Values);
16855 end if;
16856 end if;
16857 end;
16858 end if;
16859
16860 -- Extra underlying places to search, if not found above. For
16861 -- concurrent types, the relevant discriminant appears in the
16862 -- corresponding record. For a type derived from a private type
16863 -- without discriminant, the full view inherits the discriminants
16864 -- of the full view of the parent.
16865
16866 if Result = Discriminant then
16867 if Is_Concurrent_Type (Ti)
16868 and then Present (Corresponding_Record_Type (Ti))
16869 then
16870 Result :=
16871 Search_Derivation_Levels (
16872 Corresponding_Record_Type (Ti),
16873 Discrim_Values,
16874 Stored_Discrim_Values);
16875
16876 elsif Is_Private_Type (Ti)
16877 and then not Has_Discriminants (Ti)
16878 and then Present (Full_View (Ti))
16879 and then Etype (Full_View (Ti)) /= Ti
16880 then
16881 Result :=
16882 Search_Derivation_Levels (
16883 Full_View (Ti),
16884 Discrim_Values,
16885 Stored_Discrim_Values);
16886 end if;
16887 end if;
16888
16889 -- If Result is not a (reference to a) discriminant, return it,
16890 -- otherwise set Result_Entity to the discriminant.
16891
16892 if Nkind (Result) = N_Defining_Identifier then
16893 pragma Assert (Result = Discriminant);
16894 Result_Entity := Result;
16895
16896 else
16897 if not Denotes_Discriminant (Result) then
16898 return Result;
16899 end if;
16900
16901 Result_Entity := Entity (Result);
16902 end if;
16903
16904 -- See if this level of derivation actually has discriminants
16905 -- because tagged derivations can add them, hence the lower
16906 -- levels need not have any.
16907
16908 if not Has_Discriminants (Ti) then
16909 return Result;
16910 end if;
16911
16912 -- Scan Ti's discriminants for Result_Entity,
16913 -- and return its corresponding value, if any.
16914
16915 Result_Entity := Original_Record_Component (Result_Entity);
16916
16917 Assoc := First_Elmt (Discrim_Values);
16918
16919 if Stored_Discrim_Values then
16920 Disc := First_Stored_Discriminant (Ti);
16921 else
16922 Disc := First_Discriminant (Ti);
16923 end if;
16924
16925 while Present (Disc) loop
16926 pragma Assert (Present (Assoc));
16927
16928 if Original_Record_Component (Disc) = Result_Entity then
16929 return Node (Assoc);
16930 end if;
16931
16932 Next_Elmt (Assoc);
16933
16934 if Stored_Discrim_Values then
16935 Next_Stored_Discriminant (Disc);
16936 else
16937 Next_Discriminant (Disc);
16938 end if;
16939 end loop;
16940
16941 -- Could not find it
16942 --
16943 return Result;
16944 end Search_Derivation_Levels;
16945
16946 -- Local Variables
16947
16948 Result : Node_Or_Entity_Id;
16949
16950 -- Start of processing for Get_Discriminant_Value
16951
16952 begin
16953 -- ??? This routine is a gigantic mess and will be deleted. For the
16954 -- time being just test for the trivial case before calling recurse.
16955
16956 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
16957 declare
16958 D : Entity_Id;
16959 E : Elmt_Id;
16960
16961 begin
16962 D := First_Discriminant (Typ_For_Constraint);
16963 E := First_Elmt (Constraint);
16964 while Present (D) loop
16965 if Chars (D) = Chars (Discriminant) then
16966 return Node (E);
16967 end if;
16968
16969 Next_Discriminant (D);
16970 Next_Elmt (E);
16971 end loop;
16972 end;
16973 end if;
16974
16975 Result := Search_Derivation_Levels
16976 (Typ_For_Constraint, Constraint, False);
16977
16978 -- ??? hack to disappear when this routine is gone
16979
16980 if Nkind (Result) = N_Defining_Identifier then
16981 declare
16982 D : Entity_Id;
16983 E : Elmt_Id;
16984
16985 begin
16986 D := First_Discriminant (Typ_For_Constraint);
16987 E := First_Elmt (Constraint);
16988 while Present (D) loop
16989 if Root_Corresponding_Discriminant (D) = Discriminant then
16990 return Node (E);
16991 end if;
16992
16993 Next_Discriminant (D);
16994 Next_Elmt (E);
16995 end loop;
16996 end;
16997 end if;
16998
16999 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
17000 return Result;
17001 end Get_Discriminant_Value;
17002
17003 --------------------------
17004 -- Has_Range_Constraint --
17005 --------------------------
17006
17007 function Has_Range_Constraint (N : Node_Id) return Boolean is
17008 C : constant Node_Id := Constraint (N);
17009
17010 begin
17011 if Nkind (C) = N_Range_Constraint then
17012 return True;
17013
17014 elsif Nkind (C) = N_Digits_Constraint then
17015 return
17016 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
17017 or else Present (Range_Constraint (C));
17018
17019 elsif Nkind (C) = N_Delta_Constraint then
17020 return Present (Range_Constraint (C));
17021
17022 else
17023 return False;
17024 end if;
17025 end Has_Range_Constraint;
17026
17027 ------------------------
17028 -- Inherit_Components --
17029 ------------------------
17030
17031 function Inherit_Components
17032 (N : Node_Id;
17033 Parent_Base : Entity_Id;
17034 Derived_Base : Entity_Id;
17035 Is_Tagged : Boolean;
17036 Inherit_Discr : Boolean;
17037 Discs : Elist_Id) return Elist_Id
17038 is
17039 Assoc_List : constant Elist_Id := New_Elmt_List;
17040
17041 procedure Inherit_Component
17042 (Old_C : Entity_Id;
17043 Plain_Discrim : Boolean := False;
17044 Stored_Discrim : Boolean := False);
17045 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
17046 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
17047 -- True, Old_C is a stored discriminant. If they are both false then
17048 -- Old_C is a regular component.
17049
17050 -----------------------
17051 -- Inherit_Component --
17052 -----------------------
17053
17054 procedure Inherit_Component
17055 (Old_C : Entity_Id;
17056 Plain_Discrim : Boolean := False;
17057 Stored_Discrim : Boolean := False)
17058 is
17059 procedure Set_Anonymous_Type (Id : Entity_Id);
17060 -- Id denotes the entity of an access discriminant or anonymous
17061 -- access component. Set the type of Id to either the same type of
17062 -- Old_C or create a new one depending on whether the parent and
17063 -- the child types are in the same scope.
17064
17065 ------------------------
17066 -- Set_Anonymous_Type --
17067 ------------------------
17068
17069 procedure Set_Anonymous_Type (Id : Entity_Id) is
17070 Old_Typ : constant Entity_Id := Etype (Old_C);
17071
17072 begin
17073 if Scope (Parent_Base) = Scope (Derived_Base) then
17074 Set_Etype (Id, Old_Typ);
17075
17076 -- The parent and the derived type are in two different scopes.
17077 -- Reuse the type of the original discriminant / component by
17078 -- copying it in order to preserve all attributes.
17079
17080 else
17081 declare
17082 Typ : constant Entity_Id := New_Copy (Old_Typ);
17083
17084 begin
17085 Set_Etype (Id, Typ);
17086
17087 -- Since we do not generate component declarations for
17088 -- inherited components, associate the itype with the
17089 -- derived type.
17090
17091 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
17092 Set_Scope (Typ, Derived_Base);
17093 end;
17094 end if;
17095 end Set_Anonymous_Type;
17096
17097 -- Local variables and constants
17098
17099 New_C : constant Entity_Id := New_Copy (Old_C);
17100
17101 Corr_Discrim : Entity_Id;
17102 Discrim : Entity_Id;
17103
17104 -- Start of processing for Inherit_Component
17105
17106 begin
17107 pragma Assert (not Is_Tagged or not Stored_Discrim);
17108
17109 Set_Parent (New_C, Parent (Old_C));
17110
17111 -- Regular discriminants and components must be inserted in the scope
17112 -- of the Derived_Base. Do it here.
17113
17114 if not Stored_Discrim then
17115 Enter_Name (New_C);
17116 end if;
17117
17118 -- For tagged types the Original_Record_Component must point to
17119 -- whatever this field was pointing to in the parent type. This has
17120 -- already been achieved by the call to New_Copy above.
17121
17122 if not Is_Tagged then
17123 Set_Original_Record_Component (New_C, New_C);
17124 end if;
17125
17126 -- Set the proper type of an access discriminant
17127
17128 if Ekind (New_C) = E_Discriminant
17129 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
17130 then
17131 Set_Anonymous_Type (New_C);
17132 end if;
17133
17134 -- If we have inherited a component then see if its Etype contains
17135 -- references to Parent_Base discriminants. In this case, replace
17136 -- these references with the constraints given in Discs. We do not
17137 -- do this for the partial view of private types because this is
17138 -- not needed (only the components of the full view will be used
17139 -- for code generation) and cause problem. We also avoid this
17140 -- transformation in some error situations.
17141
17142 if Ekind (New_C) = E_Component then
17143
17144 -- Set the proper type of an anonymous access component
17145
17146 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
17147 Set_Anonymous_Type (New_C);
17148
17149 elsif (Is_Private_Type (Derived_Base)
17150 and then not Is_Generic_Type (Derived_Base))
17151 or else (Is_Empty_Elmt_List (Discs)
17152 and then not Expander_Active)
17153 then
17154 Set_Etype (New_C, Etype (Old_C));
17155
17156 else
17157 -- The current component introduces a circularity of the
17158 -- following kind:
17159
17160 -- limited with Pack_2;
17161 -- package Pack_1 is
17162 -- type T_1 is tagged record
17163 -- Comp : access Pack_2.T_2;
17164 -- ...
17165 -- end record;
17166 -- end Pack_1;
17167
17168 -- with Pack_1;
17169 -- package Pack_2 is
17170 -- type T_2 is new Pack_1.T_1 with ...;
17171 -- end Pack_2;
17172
17173 Set_Etype
17174 (New_C,
17175 Constrain_Component_Type
17176 (Old_C, Derived_Base, N, Parent_Base, Discs));
17177 end if;
17178 end if;
17179
17180 -- In derived tagged types it is illegal to reference a non
17181 -- discriminant component in the parent type. To catch this, mark
17182 -- these components with an Ekind of E_Void. This will be reset in
17183 -- Record_Type_Definition after processing the record extension of
17184 -- the derived type.
17185
17186 -- If the declaration is a private extension, there is no further
17187 -- record extension to process, and the components retain their
17188 -- current kind, because they are visible at this point.
17189
17190 if Is_Tagged and then Ekind (New_C) = E_Component
17191 and then Nkind (N) /= N_Private_Extension_Declaration
17192 then
17193 Set_Ekind (New_C, E_Void);
17194 end if;
17195
17196 if Plain_Discrim then
17197 Set_Corresponding_Discriminant (New_C, Old_C);
17198 Build_Discriminal (New_C);
17199
17200 -- If we are explicitly inheriting a stored discriminant it will be
17201 -- completely hidden.
17202
17203 elsif Stored_Discrim then
17204 Set_Corresponding_Discriminant (New_C, Empty);
17205 Set_Discriminal (New_C, Empty);
17206 Set_Is_Completely_Hidden (New_C);
17207
17208 -- Set the Original_Record_Component of each discriminant in the
17209 -- derived base to point to the corresponding stored that we just
17210 -- created.
17211
17212 Discrim := First_Discriminant (Derived_Base);
17213 while Present (Discrim) loop
17214 Corr_Discrim := Corresponding_Discriminant (Discrim);
17215
17216 -- Corr_Discrim could be missing in an error situation
17217
17218 if Present (Corr_Discrim)
17219 and then Original_Record_Component (Corr_Discrim) = Old_C
17220 then
17221 Set_Original_Record_Component (Discrim, New_C);
17222 end if;
17223
17224 Next_Discriminant (Discrim);
17225 end loop;
17226
17227 Append_Entity (New_C, Derived_Base);
17228 end if;
17229
17230 if not Is_Tagged then
17231 Append_Elmt (Old_C, Assoc_List);
17232 Append_Elmt (New_C, Assoc_List);
17233 end if;
17234 end Inherit_Component;
17235
17236 -- Variables local to Inherit_Component
17237
17238 Loc : constant Source_Ptr := Sloc (N);
17239
17240 Parent_Discrim : Entity_Id;
17241 Stored_Discrim : Entity_Id;
17242 D : Entity_Id;
17243 Component : Entity_Id;
17244
17245 -- Start of processing for Inherit_Components
17246
17247 begin
17248 if not Is_Tagged then
17249 Append_Elmt (Parent_Base, Assoc_List);
17250 Append_Elmt (Derived_Base, Assoc_List);
17251 end if;
17252
17253 -- Inherit parent discriminants if needed
17254
17255 if Inherit_Discr then
17256 Parent_Discrim := First_Discriminant (Parent_Base);
17257 while Present (Parent_Discrim) loop
17258 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
17259 Next_Discriminant (Parent_Discrim);
17260 end loop;
17261 end if;
17262
17263 -- Create explicit stored discrims for untagged types when necessary
17264
17265 if not Has_Unknown_Discriminants (Derived_Base)
17266 and then Has_Discriminants (Parent_Base)
17267 and then not Is_Tagged
17268 and then
17269 (not Inherit_Discr
17270 or else First_Discriminant (Parent_Base) /=
17271 First_Stored_Discriminant (Parent_Base))
17272 then
17273 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
17274 while Present (Stored_Discrim) loop
17275 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
17276 Next_Stored_Discriminant (Stored_Discrim);
17277 end loop;
17278 end if;
17279
17280 -- See if we can apply the second transformation for derived types, as
17281 -- explained in point 6. in the comments above Build_Derived_Record_Type
17282 -- This is achieved by appending Derived_Base discriminants into Discs,
17283 -- which has the side effect of returning a non empty Discs list to the
17284 -- caller of Inherit_Components, which is what we want. This must be
17285 -- done for private derived types if there are explicit stored
17286 -- discriminants, to ensure that we can retrieve the values of the
17287 -- constraints provided in the ancestors.
17288
17289 if Inherit_Discr
17290 and then Is_Empty_Elmt_List (Discs)
17291 and then Present (First_Discriminant (Derived_Base))
17292 and then
17293 (not Is_Private_Type (Derived_Base)
17294 or else Is_Completely_Hidden
17295 (First_Stored_Discriminant (Derived_Base))
17296 or else Is_Generic_Type (Derived_Base))
17297 then
17298 D := First_Discriminant (Derived_Base);
17299 while Present (D) loop
17300 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
17301 Next_Discriminant (D);
17302 end loop;
17303 end if;
17304
17305 -- Finally, inherit non-discriminant components unless they are not
17306 -- visible because defined or inherited from the full view of the
17307 -- parent. Don't inherit the _parent field of the parent type.
17308
17309 Component := First_Entity (Parent_Base);
17310 while Present (Component) loop
17311
17312 -- Ada 2005 (AI-251): Do not inherit components associated with
17313 -- secondary tags of the parent.
17314
17315 if Ekind (Component) = E_Component
17316 and then Present (Related_Type (Component))
17317 then
17318 null;
17319
17320 elsif Ekind (Component) /= E_Component
17321 or else Chars (Component) = Name_uParent
17322 then
17323 null;
17324
17325 -- If the derived type is within the parent type's declarative
17326 -- region, then the components can still be inherited even though
17327 -- they aren't visible at this point. This can occur for cases
17328 -- such as within public child units where the components must
17329 -- become visible upon entering the child unit's private part.
17330
17331 elsif not Is_Visible_Component (Component)
17332 and then not In_Open_Scopes (Scope (Parent_Base))
17333 then
17334 null;
17335
17336 elsif Ekind_In (Derived_Base, E_Private_Type,
17337 E_Limited_Private_Type)
17338 then
17339 null;
17340
17341 else
17342 Inherit_Component (Component);
17343 end if;
17344
17345 Next_Entity (Component);
17346 end loop;
17347
17348 -- For tagged derived types, inherited discriminants cannot be used in
17349 -- component declarations of the record extension part. To achieve this
17350 -- we mark the inherited discriminants as not visible.
17351
17352 if Is_Tagged and then Inherit_Discr then
17353 D := First_Discriminant (Derived_Base);
17354 while Present (D) loop
17355 Set_Is_Immediately_Visible (D, False);
17356 Next_Discriminant (D);
17357 end loop;
17358 end if;
17359
17360 return Assoc_List;
17361 end Inherit_Components;
17362
17363 -----------------------------
17364 -- Inherit_Predicate_Flags --
17365 -----------------------------
17366
17367 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
17368 begin
17369 Set_Has_Predicates (Subt, Has_Predicates (Par));
17370 Set_Has_Static_Predicate_Aspect
17371 (Subt, Has_Static_Predicate_Aspect (Par));
17372 Set_Has_Dynamic_Predicate_Aspect
17373 (Subt, Has_Dynamic_Predicate_Aspect (Par));
17374 end Inherit_Predicate_Flags;
17375
17376 -----------------------
17377 -- Is_Null_Extension --
17378 -----------------------
17379
17380 function Is_Null_Extension (T : Entity_Id) return Boolean is
17381 Type_Decl : constant Node_Id := Parent (Base_Type (T));
17382 Comp_List : Node_Id;
17383 Comp : Node_Id;
17384
17385 begin
17386 if Nkind (Type_Decl) /= N_Full_Type_Declaration
17387 or else not Is_Tagged_Type (T)
17388 or else Nkind (Type_Definition (Type_Decl)) /=
17389 N_Derived_Type_Definition
17390 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
17391 then
17392 return False;
17393 end if;
17394
17395 Comp_List :=
17396 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
17397
17398 if Present (Discriminant_Specifications (Type_Decl)) then
17399 return False;
17400
17401 elsif Present (Comp_List)
17402 and then Is_Non_Empty_List (Component_Items (Comp_List))
17403 then
17404 Comp := First (Component_Items (Comp_List));
17405
17406 -- Only user-defined components are relevant. The component list
17407 -- may also contain a parent component and internal components
17408 -- corresponding to secondary tags, but these do not determine
17409 -- whether this is a null extension.
17410
17411 while Present (Comp) loop
17412 if Comes_From_Source (Comp) then
17413 return False;
17414 end if;
17415
17416 Next (Comp);
17417 end loop;
17418
17419 return True;
17420 else
17421 return True;
17422 end if;
17423 end Is_Null_Extension;
17424
17425 ------------------------------
17426 -- Is_Valid_Constraint_Kind --
17427 ------------------------------
17428
17429 function Is_Valid_Constraint_Kind
17430 (T_Kind : Type_Kind;
17431 Constraint_Kind : Node_Kind) return Boolean
17432 is
17433 begin
17434 case T_Kind is
17435 when Enumeration_Kind |
17436 Integer_Kind =>
17437 return Constraint_Kind = N_Range_Constraint;
17438
17439 when Decimal_Fixed_Point_Kind =>
17440 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
17441 N_Range_Constraint);
17442
17443 when Ordinary_Fixed_Point_Kind =>
17444 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
17445 N_Range_Constraint);
17446
17447 when Float_Kind =>
17448 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
17449 N_Range_Constraint);
17450
17451 when Access_Kind |
17452 Array_Kind |
17453 E_Record_Type |
17454 E_Record_Subtype |
17455 Class_Wide_Kind |
17456 E_Incomplete_Type |
17457 Private_Kind |
17458 Concurrent_Kind =>
17459 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
17460
17461 when others =>
17462 return True; -- Error will be detected later
17463 end case;
17464 end Is_Valid_Constraint_Kind;
17465
17466 --------------------------
17467 -- Is_Visible_Component --
17468 --------------------------
17469
17470 function Is_Visible_Component
17471 (C : Entity_Id;
17472 N : Node_Id := Empty) return Boolean
17473 is
17474 Original_Comp : Entity_Id := Empty;
17475 Original_Scope : Entity_Id;
17476 Type_Scope : Entity_Id;
17477
17478 function Is_Local_Type (Typ : Entity_Id) return Boolean;
17479 -- Check whether parent type of inherited component is declared locally,
17480 -- possibly within a nested package or instance. The current scope is
17481 -- the derived record itself.
17482
17483 -------------------
17484 -- Is_Local_Type --
17485 -------------------
17486
17487 function Is_Local_Type (Typ : Entity_Id) return Boolean is
17488 Scop : Entity_Id;
17489
17490 begin
17491 Scop := Scope (Typ);
17492 while Present (Scop)
17493 and then Scop /= Standard_Standard
17494 loop
17495 if Scop = Scope (Current_Scope) then
17496 return True;
17497 end if;
17498
17499 Scop := Scope (Scop);
17500 end loop;
17501
17502 return False;
17503 end Is_Local_Type;
17504
17505 -- Start of processing for Is_Visible_Component
17506
17507 begin
17508 if Ekind_In (C, E_Component, E_Discriminant) then
17509 Original_Comp := Original_Record_Component (C);
17510 end if;
17511
17512 if No (Original_Comp) then
17513
17514 -- Premature usage, or previous error
17515
17516 return False;
17517
17518 else
17519 Original_Scope := Scope (Original_Comp);
17520 Type_Scope := Scope (Base_Type (Scope (C)));
17521 end if;
17522
17523 -- This test only concerns tagged types
17524
17525 if not Is_Tagged_Type (Original_Scope) then
17526 return True;
17527
17528 -- If it is _Parent or _Tag, there is no visibility issue
17529
17530 elsif not Comes_From_Source (Original_Comp) then
17531 return True;
17532
17533 -- Discriminants are visible unless the (private) type has unknown
17534 -- discriminants. If the discriminant reference is inserted for a
17535 -- discriminant check on a full view it is also visible.
17536
17537 elsif Ekind (Original_Comp) = E_Discriminant
17538 and then
17539 (not Has_Unknown_Discriminants (Original_Scope)
17540 or else (Present (N)
17541 and then Nkind (N) = N_Selected_Component
17542 and then Nkind (Prefix (N)) = N_Type_Conversion
17543 and then not Comes_From_Source (Prefix (N))))
17544 then
17545 return True;
17546
17547 -- In the body of an instantiation, no need to check for the visibility
17548 -- of a component.
17549
17550 elsif In_Instance_Body then
17551 return True;
17552
17553 -- If the component has been declared in an ancestor which is currently
17554 -- a private type, then it is not visible. The same applies if the
17555 -- component's containing type is not in an open scope and the original
17556 -- component's enclosing type is a visible full view of a private type
17557 -- (which can occur in cases where an attempt is being made to reference
17558 -- a component in a sibling package that is inherited from a visible
17559 -- component of a type in an ancestor package; the component in the
17560 -- sibling package should not be visible even though the component it
17561 -- inherited from is visible). This does not apply however in the case
17562 -- where the scope of the type is a private child unit, or when the
17563 -- parent comes from a local package in which the ancestor is currently
17564 -- visible. The latter suppression of visibility is needed for cases
17565 -- that are tested in B730006.
17566
17567 elsif Is_Private_Type (Original_Scope)
17568 or else
17569 (not Is_Private_Descendant (Type_Scope)
17570 and then not In_Open_Scopes (Type_Scope)
17571 and then Has_Private_Declaration (Original_Scope))
17572 then
17573 -- If the type derives from an entity in a formal package, there
17574 -- are no additional visible components.
17575
17576 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
17577 N_Formal_Package_Declaration
17578 then
17579 return False;
17580
17581 -- if we are not in the private part of the current package, there
17582 -- are no additional visible components.
17583
17584 elsif Ekind (Scope (Current_Scope)) = E_Package
17585 and then not In_Private_Part (Scope (Current_Scope))
17586 then
17587 return False;
17588 else
17589 return
17590 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
17591 and then In_Open_Scopes (Scope (Original_Scope))
17592 and then Is_Local_Type (Type_Scope);
17593 end if;
17594
17595 -- There is another weird way in which a component may be invisible when
17596 -- the private and the full view are not derived from the same ancestor.
17597 -- Here is an example :
17598
17599 -- type A1 is tagged record F1 : integer; end record;
17600 -- type A2 is new A1 with record F2 : integer; end record;
17601 -- type T is new A1 with private;
17602 -- private
17603 -- type T is new A2 with null record;
17604
17605 -- In this case, the full view of T inherits F1 and F2 but the private
17606 -- view inherits only F1
17607
17608 else
17609 declare
17610 Ancestor : Entity_Id := Scope (C);
17611
17612 begin
17613 loop
17614 if Ancestor = Original_Scope then
17615 return True;
17616 elsif Ancestor = Etype (Ancestor) then
17617 return False;
17618 end if;
17619
17620 Ancestor := Etype (Ancestor);
17621 end loop;
17622 end;
17623 end if;
17624 end Is_Visible_Component;
17625
17626 --------------------------
17627 -- Make_Class_Wide_Type --
17628 --------------------------
17629
17630 procedure Make_Class_Wide_Type (T : Entity_Id) is
17631 CW_Type : Entity_Id;
17632 CW_Name : Name_Id;
17633 Next_E : Entity_Id;
17634
17635 begin
17636 if Present (Class_Wide_Type (T)) then
17637
17638 -- The class-wide type is a partially decorated entity created for a
17639 -- unanalyzed tagged type referenced through a limited with clause.
17640 -- When the tagged type is analyzed, its class-wide type needs to be
17641 -- redecorated. Note that we reuse the entity created by Decorate_
17642 -- Tagged_Type in order to preserve all links.
17643
17644 if Materialize_Entity (Class_Wide_Type (T)) then
17645 CW_Type := Class_Wide_Type (T);
17646 Set_Materialize_Entity (CW_Type, False);
17647
17648 -- The class wide type can have been defined by the partial view, in
17649 -- which case everything is already done.
17650
17651 else
17652 return;
17653 end if;
17654
17655 -- Default case, we need to create a new class-wide type
17656
17657 else
17658 CW_Type :=
17659 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
17660 end if;
17661
17662 -- Inherit root type characteristics
17663
17664 CW_Name := Chars (CW_Type);
17665 Next_E := Next_Entity (CW_Type);
17666 Copy_Node (T, CW_Type);
17667 Set_Comes_From_Source (CW_Type, False);
17668 Set_Chars (CW_Type, CW_Name);
17669 Set_Parent (CW_Type, Parent (T));
17670 Set_Next_Entity (CW_Type, Next_E);
17671
17672 -- Ensure we have a new freeze node for the class-wide type. The partial
17673 -- view may have freeze action of its own, requiring a proper freeze
17674 -- node, and the same freeze node cannot be shared between the two
17675 -- types.
17676
17677 Set_Has_Delayed_Freeze (CW_Type);
17678 Set_Freeze_Node (CW_Type, Empty);
17679
17680 -- Customize the class-wide type: It has no prim. op., it cannot be
17681 -- abstract and its Etype points back to the specific root type.
17682
17683 Set_Ekind (CW_Type, E_Class_Wide_Type);
17684 Set_Is_Tagged_Type (CW_Type, True);
17685 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
17686 Set_Is_Abstract_Type (CW_Type, False);
17687 Set_Is_Constrained (CW_Type, False);
17688 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
17689 Set_Default_SSO (CW_Type);
17690
17691 if Ekind (T) = E_Class_Wide_Subtype then
17692 Set_Etype (CW_Type, Etype (Base_Type (T)));
17693 else
17694 Set_Etype (CW_Type, T);
17695 end if;
17696
17697 Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams);
17698
17699 -- If this is the class_wide type of a constrained subtype, it does
17700 -- not have discriminants.
17701
17702 Set_Has_Discriminants (CW_Type,
17703 Has_Discriminants (T) and then not Is_Constrained (T));
17704
17705 Set_Has_Unknown_Discriminants (CW_Type, True);
17706 Set_Class_Wide_Type (T, CW_Type);
17707 Set_Equivalent_Type (CW_Type, Empty);
17708
17709 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
17710
17711 Set_Class_Wide_Type (CW_Type, CW_Type);
17712 end Make_Class_Wide_Type;
17713
17714 ----------------
17715 -- Make_Index --
17716 ----------------
17717
17718 procedure Make_Index
17719 (N : Node_Id;
17720 Related_Nod : Node_Id;
17721 Related_Id : Entity_Id := Empty;
17722 Suffix_Index : Nat := 1;
17723 In_Iter_Schm : Boolean := False)
17724 is
17725 R : Node_Id;
17726 T : Entity_Id;
17727 Def_Id : Entity_Id := Empty;
17728 Found : Boolean := False;
17729
17730 begin
17731 -- For a discrete range used in a constrained array definition and
17732 -- defined by a range, an implicit conversion to the predefined type
17733 -- INTEGER is assumed if each bound is either a numeric literal, a named
17734 -- number, or an attribute, and the type of both bounds (prior to the
17735 -- implicit conversion) is the type universal_integer. Otherwise, both
17736 -- bounds must be of the same discrete type, other than universal
17737 -- integer; this type must be determinable independently of the
17738 -- context, but using the fact that the type must be discrete and that
17739 -- both bounds must have the same type.
17740
17741 -- Character literals also have a universal type in the absence of
17742 -- of additional context, and are resolved to Standard_Character.
17743
17744 if Nkind (N) = N_Range then
17745
17746 -- The index is given by a range constraint. The bounds are known
17747 -- to be of a consistent type.
17748
17749 if not Is_Overloaded (N) then
17750 T := Etype (N);
17751
17752 -- For universal bounds, choose the specific predefined type
17753
17754 if T = Universal_Integer then
17755 T := Standard_Integer;
17756
17757 elsif T = Any_Character then
17758 Ambiguous_Character (Low_Bound (N));
17759
17760 T := Standard_Character;
17761 end if;
17762
17763 -- The node may be overloaded because some user-defined operators
17764 -- are available, but if a universal interpretation exists it is
17765 -- also the selected one.
17766
17767 elsif Universal_Interpretation (N) = Universal_Integer then
17768 T := Standard_Integer;
17769
17770 else
17771 T := Any_Type;
17772
17773 declare
17774 Ind : Interp_Index;
17775 It : Interp;
17776
17777 begin
17778 Get_First_Interp (N, Ind, It);
17779 while Present (It.Typ) loop
17780 if Is_Discrete_Type (It.Typ) then
17781
17782 if Found
17783 and then not Covers (It.Typ, T)
17784 and then not Covers (T, It.Typ)
17785 then
17786 Error_Msg_N ("ambiguous bounds in discrete range", N);
17787 exit;
17788 else
17789 T := It.Typ;
17790 Found := True;
17791 end if;
17792 end if;
17793
17794 Get_Next_Interp (Ind, It);
17795 end loop;
17796
17797 if T = Any_Type then
17798 Error_Msg_N ("discrete type required for range", N);
17799 Set_Etype (N, Any_Type);
17800 return;
17801
17802 elsif T = Universal_Integer then
17803 T := Standard_Integer;
17804 end if;
17805 end;
17806 end if;
17807
17808 if not Is_Discrete_Type (T) then
17809 Error_Msg_N ("discrete type required for range", N);
17810 Set_Etype (N, Any_Type);
17811 return;
17812 end if;
17813
17814 if Nkind (Low_Bound (N)) = N_Attribute_Reference
17815 and then Attribute_Name (Low_Bound (N)) = Name_First
17816 and then Is_Entity_Name (Prefix (Low_Bound (N)))
17817 and then Is_Type (Entity (Prefix (Low_Bound (N))))
17818 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
17819 then
17820 -- The type of the index will be the type of the prefix, as long
17821 -- as the upper bound is 'Last of the same type.
17822
17823 Def_Id := Entity (Prefix (Low_Bound (N)));
17824
17825 if Nkind (High_Bound (N)) /= N_Attribute_Reference
17826 or else Attribute_Name (High_Bound (N)) /= Name_Last
17827 or else not Is_Entity_Name (Prefix (High_Bound (N)))
17828 or else Entity (Prefix (High_Bound (N))) /= Def_Id
17829 then
17830 Def_Id := Empty;
17831 end if;
17832 end if;
17833
17834 R := N;
17835 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
17836
17837 elsif Nkind (N) = N_Subtype_Indication then
17838
17839 -- The index is given by a subtype with a range constraint
17840
17841 T := Base_Type (Entity (Subtype_Mark (N)));
17842
17843 if not Is_Discrete_Type (T) then
17844 Error_Msg_N ("discrete type required for range", N);
17845 Set_Etype (N, Any_Type);
17846 return;
17847 end if;
17848
17849 R := Range_Expression (Constraint (N));
17850
17851 Resolve (R, T);
17852 Process_Range_Expr_In_Decl
17853 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
17854
17855 elsif Nkind (N) = N_Attribute_Reference then
17856
17857 -- Catch beginner's error (use of attribute other than 'Range)
17858
17859 if Attribute_Name (N) /= Name_Range then
17860 Error_Msg_N ("expect attribute ''Range", N);
17861 Set_Etype (N, Any_Type);
17862 return;
17863 end if;
17864
17865 -- If the node denotes the range of a type mark, that is also the
17866 -- resulting type, and we do not need to create an Itype for it.
17867
17868 if Is_Entity_Name (Prefix (N))
17869 and then Comes_From_Source (N)
17870 and then Is_Type (Entity (Prefix (N)))
17871 and then Is_Discrete_Type (Entity (Prefix (N)))
17872 then
17873 Def_Id := Entity (Prefix (N));
17874 end if;
17875
17876 Analyze_And_Resolve (N);
17877 T := Etype (N);
17878 R := N;
17879
17880 -- If none of the above, must be a subtype. We convert this to a
17881 -- range attribute reference because in the case of declared first
17882 -- named subtypes, the types in the range reference can be different
17883 -- from the type of the entity. A range attribute normalizes the
17884 -- reference and obtains the correct types for the bounds.
17885
17886 -- This transformation is in the nature of an expansion, is only
17887 -- done if expansion is active. In particular, it is not done on
17888 -- formal generic types, because we need to retain the name of the
17889 -- original index for instantiation purposes.
17890
17891 else
17892 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
17893 Error_Msg_N ("invalid subtype mark in discrete range ", N);
17894 Set_Etype (N, Any_Integer);
17895 return;
17896
17897 else
17898 -- The type mark may be that of an incomplete type. It is only
17899 -- now that we can get the full view, previous analysis does
17900 -- not look specifically for a type mark.
17901
17902 Set_Entity (N, Get_Full_View (Entity (N)));
17903 Set_Etype (N, Entity (N));
17904 Def_Id := Entity (N);
17905
17906 if not Is_Discrete_Type (Def_Id) then
17907 Error_Msg_N ("discrete type required for index", N);
17908 Set_Etype (N, Any_Type);
17909 return;
17910 end if;
17911 end if;
17912
17913 if Expander_Active then
17914 Rewrite (N,
17915 Make_Attribute_Reference (Sloc (N),
17916 Attribute_Name => Name_Range,
17917 Prefix => Relocate_Node (N)));
17918
17919 -- The original was a subtype mark that does not freeze. This
17920 -- means that the rewritten version must not freeze either.
17921
17922 Set_Must_Not_Freeze (N);
17923 Set_Must_Not_Freeze (Prefix (N));
17924 Analyze_And_Resolve (N);
17925 T := Etype (N);
17926 R := N;
17927
17928 -- If expander is inactive, type is legal, nothing else to construct
17929
17930 else
17931 return;
17932 end if;
17933 end if;
17934
17935 if not Is_Discrete_Type (T) then
17936 Error_Msg_N ("discrete type required for range", N);
17937 Set_Etype (N, Any_Type);
17938 return;
17939
17940 elsif T = Any_Type then
17941 Set_Etype (N, Any_Type);
17942 return;
17943 end if;
17944
17945 -- We will now create the appropriate Itype to describe the range, but
17946 -- first a check. If we originally had a subtype, then we just label
17947 -- the range with this subtype. Not only is there no need to construct
17948 -- a new subtype, but it is wrong to do so for two reasons:
17949
17950 -- 1. A legality concern, if we have a subtype, it must not freeze,
17951 -- and the Itype would cause freezing incorrectly
17952
17953 -- 2. An efficiency concern, if we created an Itype, it would not be
17954 -- recognized as the same type for the purposes of eliminating
17955 -- checks in some circumstances.
17956
17957 -- We signal this case by setting the subtype entity in Def_Id
17958
17959 if No (Def_Id) then
17960 Def_Id :=
17961 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
17962 Set_Etype (Def_Id, Base_Type (T));
17963
17964 if Is_Signed_Integer_Type (T) then
17965 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
17966
17967 elsif Is_Modular_Integer_Type (T) then
17968 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
17969
17970 else
17971 Set_Ekind (Def_Id, E_Enumeration_Subtype);
17972 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
17973 Set_First_Literal (Def_Id, First_Literal (T));
17974 end if;
17975
17976 Set_Size_Info (Def_Id, (T));
17977 Set_RM_Size (Def_Id, RM_Size (T));
17978 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
17979
17980 Set_Scalar_Range (Def_Id, R);
17981 Conditional_Delay (Def_Id, T);
17982
17983 if Nkind (N) = N_Subtype_Indication then
17984 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
17985 end if;
17986
17987 -- In the subtype indication case, if the immediate parent of the
17988 -- new subtype is non-static, then the subtype we create is non-
17989 -- static, even if its bounds are static.
17990
17991 if Nkind (N) = N_Subtype_Indication
17992 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
17993 then
17994 Set_Is_Non_Static_Subtype (Def_Id);
17995 end if;
17996 end if;
17997
17998 -- Final step is to label the index with this constructed type
17999
18000 Set_Etype (N, Def_Id);
18001 end Make_Index;
18002
18003 ------------------------------
18004 -- Modular_Type_Declaration --
18005 ------------------------------
18006
18007 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
18008 Mod_Expr : constant Node_Id := Expression (Def);
18009 M_Val : Uint;
18010
18011 procedure Set_Modular_Size (Bits : Int);
18012 -- Sets RM_Size to Bits, and Esize to normal word size above this
18013
18014 ----------------------
18015 -- Set_Modular_Size --
18016 ----------------------
18017
18018 procedure Set_Modular_Size (Bits : Int) is
18019 begin
18020 Set_RM_Size (T, UI_From_Int (Bits));
18021
18022 if Bits <= 8 then
18023 Init_Esize (T, 8);
18024
18025 elsif Bits <= 16 then
18026 Init_Esize (T, 16);
18027
18028 elsif Bits <= 32 then
18029 Init_Esize (T, 32);
18030
18031 else
18032 Init_Esize (T, System_Max_Binary_Modulus_Power);
18033 end if;
18034
18035 if not Non_Binary_Modulus (T)
18036 and then Esize (T) = RM_Size (T)
18037 then
18038 Set_Is_Known_Valid (T);
18039 end if;
18040 end Set_Modular_Size;
18041
18042 -- Start of processing for Modular_Type_Declaration
18043
18044 begin
18045 -- If the mod expression is (exactly) 2 * literal, where literal is
18046 -- 64 or less,then almost certainly the * was meant to be **. Warn.
18047
18048 if Warn_On_Suspicious_Modulus_Value
18049 and then Nkind (Mod_Expr) = N_Op_Multiply
18050 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
18051 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
18052 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
18053 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
18054 then
18055 Error_Msg_N
18056 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
18057 end if;
18058
18059 -- Proceed with analysis of mod expression
18060
18061 Analyze_And_Resolve (Mod_Expr, Any_Integer);
18062 Set_Etype (T, T);
18063 Set_Ekind (T, E_Modular_Integer_Type);
18064 Init_Alignment (T);
18065 Set_Is_Constrained (T);
18066
18067 if not Is_OK_Static_Expression (Mod_Expr) then
18068 Flag_Non_Static_Expr
18069 ("non-static expression used for modular type bound!", Mod_Expr);
18070 M_Val := 2 ** System_Max_Binary_Modulus_Power;
18071 else
18072 M_Val := Expr_Value (Mod_Expr);
18073 end if;
18074
18075 if M_Val < 1 then
18076 Error_Msg_N ("modulus value must be positive", Mod_Expr);
18077 M_Val := 2 ** System_Max_Binary_Modulus_Power;
18078 end if;
18079
18080 if M_Val > 2 ** Standard_Long_Integer_Size then
18081 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
18082 end if;
18083
18084 Set_Modulus (T, M_Val);
18085
18086 -- Create bounds for the modular type based on the modulus given in
18087 -- the type declaration and then analyze and resolve those bounds.
18088
18089 Set_Scalar_Range (T,
18090 Make_Range (Sloc (Mod_Expr),
18091 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
18092 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
18093
18094 -- Properly analyze the literals for the range. We do this manually
18095 -- because we can't go calling Resolve, since we are resolving these
18096 -- bounds with the type, and this type is certainly not complete yet.
18097
18098 Set_Etype (Low_Bound (Scalar_Range (T)), T);
18099 Set_Etype (High_Bound (Scalar_Range (T)), T);
18100 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
18101 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
18102
18103 -- Loop through powers of two to find number of bits required
18104
18105 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
18106
18107 -- Binary case
18108
18109 if M_Val = 2 ** Bits then
18110 Set_Modular_Size (Bits);
18111 return;
18112
18113 -- Non-binary case
18114
18115 elsif M_Val < 2 ** Bits then
18116 Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
18117 Set_Non_Binary_Modulus (T);
18118
18119 if Bits > System_Max_Nonbinary_Modulus_Power then
18120 Error_Msg_Uint_1 :=
18121 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
18122 Error_Msg_F
18123 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
18124 Set_Modular_Size (System_Max_Binary_Modulus_Power);
18125 return;
18126
18127 else
18128 -- In the non-binary case, set size as per RM 13.3(55)
18129
18130 Set_Modular_Size (Bits);
18131 return;
18132 end if;
18133 end if;
18134
18135 end loop;
18136
18137 -- If we fall through, then the size exceed System.Max_Binary_Modulus
18138 -- so we just signal an error and set the maximum size.
18139
18140 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
18141 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
18142
18143 Set_Modular_Size (System_Max_Binary_Modulus_Power);
18144 Init_Alignment (T);
18145
18146 end Modular_Type_Declaration;
18147
18148 --------------------------
18149 -- New_Concatenation_Op --
18150 --------------------------
18151
18152 procedure New_Concatenation_Op (Typ : Entity_Id) is
18153 Loc : constant Source_Ptr := Sloc (Typ);
18154 Op : Entity_Id;
18155
18156 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
18157 -- Create abbreviated declaration for the formal of a predefined
18158 -- Operator 'Op' of type 'Typ'
18159
18160 --------------------
18161 -- Make_Op_Formal --
18162 --------------------
18163
18164 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
18165 Formal : Entity_Id;
18166 begin
18167 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
18168 Set_Etype (Formal, Typ);
18169 Set_Mechanism (Formal, Default_Mechanism);
18170 return Formal;
18171 end Make_Op_Formal;
18172
18173 -- Start of processing for New_Concatenation_Op
18174
18175 begin
18176 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
18177
18178 Set_Ekind (Op, E_Operator);
18179 Set_Scope (Op, Current_Scope);
18180 Set_Etype (Op, Typ);
18181 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
18182 Set_Is_Immediately_Visible (Op);
18183 Set_Is_Intrinsic_Subprogram (Op);
18184 Set_Has_Completion (Op);
18185 Append_Entity (Op, Current_Scope);
18186
18187 Set_Name_Entity_Id (Name_Op_Concat, Op);
18188
18189 Append_Entity (Make_Op_Formal (Typ, Op), Op);
18190 Append_Entity (Make_Op_Formal (Typ, Op), Op);
18191 end New_Concatenation_Op;
18192
18193 -------------------------
18194 -- OK_For_Limited_Init --
18195 -------------------------
18196
18197 -- ???Check all calls of this, and compare the conditions under which it's
18198 -- called.
18199
18200 function OK_For_Limited_Init
18201 (Typ : Entity_Id;
18202 Exp : Node_Id) return Boolean
18203 is
18204 begin
18205 return Is_CPP_Constructor_Call (Exp)
18206 or else (Ada_Version >= Ada_2005
18207 and then not Debug_Flag_Dot_L
18208 and then OK_For_Limited_Init_In_05 (Typ, Exp));
18209 end OK_For_Limited_Init;
18210
18211 -------------------------------
18212 -- OK_For_Limited_Init_In_05 --
18213 -------------------------------
18214
18215 function OK_For_Limited_Init_In_05
18216 (Typ : Entity_Id;
18217 Exp : Node_Id) return Boolean
18218 is
18219 begin
18220 -- An object of a limited interface type can be initialized with any
18221 -- expression of a nonlimited descendant type.
18222
18223 if Is_Class_Wide_Type (Typ)
18224 and then Is_Limited_Interface (Typ)
18225 and then not Is_Limited_Type (Etype (Exp))
18226 then
18227 return True;
18228 end if;
18229
18230 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
18231 -- case of limited aggregates (including extension aggregates), and
18232 -- function calls. The function call may have been given in prefixed
18233 -- notation, in which case the original node is an indexed component.
18234 -- If the function is parameterless, the original node was an explicit
18235 -- dereference. The function may also be parameterless, in which case
18236 -- the source node is just an identifier.
18237
18238 case Nkind (Original_Node (Exp)) is
18239 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
18240 return True;
18241
18242 when N_Identifier =>
18243 return Present (Entity (Original_Node (Exp)))
18244 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
18245
18246 when N_Qualified_Expression =>
18247 return
18248 OK_For_Limited_Init_In_05
18249 (Typ, Expression (Original_Node (Exp)));
18250
18251 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
18252 -- with a function call, the expander has rewritten the call into an
18253 -- N_Type_Conversion node to force displacement of the pointer to
18254 -- reference the component containing the secondary dispatch table.
18255 -- Otherwise a type conversion is not a legal context.
18256 -- A return statement for a build-in-place function returning a
18257 -- synchronized type also introduces an unchecked conversion.
18258
18259 when N_Type_Conversion |
18260 N_Unchecked_Type_Conversion =>
18261 return not Comes_From_Source (Exp)
18262 and then
18263 OK_For_Limited_Init_In_05
18264 (Typ, Expression (Original_Node (Exp)));
18265
18266 when N_Indexed_Component |
18267 N_Selected_Component |
18268 N_Explicit_Dereference =>
18269 return Nkind (Exp) = N_Function_Call;
18270
18271 -- A use of 'Input is a function call, hence allowed. Normally the
18272 -- attribute will be changed to a call, but the attribute by itself
18273 -- can occur with -gnatc.
18274
18275 when N_Attribute_Reference =>
18276 return Attribute_Name (Original_Node (Exp)) = Name_Input;
18277
18278 -- For a case expression, all dependent expressions must be legal
18279
18280 when N_Case_Expression =>
18281 declare
18282 Alt : Node_Id;
18283
18284 begin
18285 Alt := First (Alternatives (Original_Node (Exp)));
18286 while Present (Alt) loop
18287 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
18288 return False;
18289 end if;
18290
18291 Next (Alt);
18292 end loop;
18293
18294 return True;
18295 end;
18296
18297 -- For an if expression, all dependent expressions must be legal
18298
18299 when N_If_Expression =>
18300 declare
18301 Then_Expr : constant Node_Id :=
18302 Next (First (Expressions (Original_Node (Exp))));
18303 Else_Expr : constant Node_Id := Next (Then_Expr);
18304 begin
18305 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
18306 and then
18307 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
18308 end;
18309
18310 when others =>
18311 return False;
18312 end case;
18313 end OK_For_Limited_Init_In_05;
18314
18315 -------------------------------------------
18316 -- Ordinary_Fixed_Point_Type_Declaration --
18317 -------------------------------------------
18318
18319 procedure Ordinary_Fixed_Point_Type_Declaration
18320 (T : Entity_Id;
18321 Def : Node_Id)
18322 is
18323 Loc : constant Source_Ptr := Sloc (Def);
18324 Delta_Expr : constant Node_Id := Delta_Expression (Def);
18325 RRS : constant Node_Id := Real_Range_Specification (Def);
18326 Implicit_Base : Entity_Id;
18327 Delta_Val : Ureal;
18328 Small_Val : Ureal;
18329 Low_Val : Ureal;
18330 High_Val : Ureal;
18331
18332 begin
18333 Check_Restriction (No_Fixed_Point, Def);
18334
18335 -- Create implicit base type
18336
18337 Implicit_Base :=
18338 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
18339 Set_Etype (Implicit_Base, Implicit_Base);
18340
18341 -- Analyze and process delta expression
18342
18343 Analyze_And_Resolve (Delta_Expr, Any_Real);
18344
18345 Check_Delta_Expression (Delta_Expr);
18346 Delta_Val := Expr_Value_R (Delta_Expr);
18347
18348 Set_Delta_Value (Implicit_Base, Delta_Val);
18349
18350 -- Compute default small from given delta, which is the largest power
18351 -- of two that does not exceed the given delta value.
18352
18353 declare
18354 Tmp : Ureal;
18355 Scale : Int;
18356
18357 begin
18358 Tmp := Ureal_1;
18359 Scale := 0;
18360
18361 if Delta_Val < Ureal_1 then
18362 while Delta_Val < Tmp loop
18363 Tmp := Tmp / Ureal_2;
18364 Scale := Scale + 1;
18365 end loop;
18366
18367 else
18368 loop
18369 Tmp := Tmp * Ureal_2;
18370 exit when Tmp > Delta_Val;
18371 Scale := Scale - 1;
18372 end loop;
18373 end if;
18374
18375 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
18376 end;
18377
18378 Set_Small_Value (Implicit_Base, Small_Val);
18379
18380 -- If no range was given, set a dummy range
18381
18382 if RRS <= Empty_Or_Error then
18383 Low_Val := -Small_Val;
18384 High_Val := Small_Val;
18385
18386 -- Otherwise analyze and process given range
18387
18388 else
18389 declare
18390 Low : constant Node_Id := Low_Bound (RRS);
18391 High : constant Node_Id := High_Bound (RRS);
18392
18393 begin
18394 Analyze_And_Resolve (Low, Any_Real);
18395 Analyze_And_Resolve (High, Any_Real);
18396 Check_Real_Bound (Low);
18397 Check_Real_Bound (High);
18398
18399 -- Obtain and set the range
18400
18401 Low_Val := Expr_Value_R (Low);
18402 High_Val := Expr_Value_R (High);
18403
18404 if Low_Val > High_Val then
18405 Error_Msg_NE ("??fixed point type& has null range", Def, T);
18406 end if;
18407 end;
18408 end if;
18409
18410 -- The range for both the implicit base and the declared first subtype
18411 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
18412 -- set a temporary range in place. Note that the bounds of the base
18413 -- type will be widened to be symmetrical and to fill the available
18414 -- bits when the type is frozen.
18415
18416 -- We could do this with all discrete types, and probably should, but
18417 -- we absolutely have to do it for fixed-point, since the end-points
18418 -- of the range and the size are determined by the small value, which
18419 -- could be reset before the freeze point.
18420
18421 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
18422 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
18423
18424 -- Complete definition of first subtype
18425
18426 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
18427 Set_Etype (T, Implicit_Base);
18428 Init_Size_Align (T);
18429 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
18430 Set_Small_Value (T, Small_Val);
18431 Set_Delta_Value (T, Delta_Val);
18432 Set_Is_Constrained (T);
18433 end Ordinary_Fixed_Point_Type_Declaration;
18434
18435 ----------------------------------
18436 -- Preanalyze_Assert_Expression --
18437 ----------------------------------
18438
18439 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
18440 begin
18441 In_Assertion_Expr := In_Assertion_Expr + 1;
18442 Preanalyze_Spec_Expression (N, T);
18443 In_Assertion_Expr := In_Assertion_Expr - 1;
18444 end Preanalyze_Assert_Expression;
18445
18446 -----------------------------------
18447 -- Preanalyze_Default_Expression --
18448 -----------------------------------
18449
18450 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
18451 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
18452 begin
18453 In_Default_Expr := True;
18454 Preanalyze_Spec_Expression (N, T);
18455 In_Default_Expr := Save_In_Default_Expr;
18456 end Preanalyze_Default_Expression;
18457
18458 --------------------------------
18459 -- Preanalyze_Spec_Expression --
18460 --------------------------------
18461
18462 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
18463 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
18464 begin
18465 In_Spec_Expression := True;
18466 Preanalyze_And_Resolve (N, T);
18467 In_Spec_Expression := Save_In_Spec_Expression;
18468 end Preanalyze_Spec_Expression;
18469
18470 ----------------------------------------
18471 -- Prepare_Private_Subtype_Completion --
18472 ----------------------------------------
18473
18474 procedure Prepare_Private_Subtype_Completion
18475 (Id : Entity_Id;
18476 Related_Nod : Node_Id)
18477 is
18478 Id_B : constant Entity_Id := Base_Type (Id);
18479 Full_B : Entity_Id := Full_View (Id_B);
18480 Full : Entity_Id;
18481
18482 begin
18483 if Present (Full_B) then
18484
18485 -- Get to the underlying full view if necessary
18486
18487 if Is_Private_Type (Full_B)
18488 and then Present (Underlying_Full_View (Full_B))
18489 then
18490 Full_B := Underlying_Full_View (Full_B);
18491 end if;
18492
18493 -- The Base_Type is already completed, we can complete the subtype
18494 -- now. We have to create a new entity with the same name, Thus we
18495 -- can't use Create_Itype.
18496
18497 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
18498 Set_Is_Itype (Full);
18499 Set_Associated_Node_For_Itype (Full, Related_Nod);
18500 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
18501 end if;
18502
18503 -- The parent subtype may be private, but the base might not, in some
18504 -- nested instances. In that case, the subtype does not need to be
18505 -- exchanged. It would still be nice to make private subtypes and their
18506 -- bases consistent at all times ???
18507
18508 if Is_Private_Type (Id_B) then
18509 Append_Elmt (Id, Private_Dependents (Id_B));
18510 end if;
18511 end Prepare_Private_Subtype_Completion;
18512
18513 ---------------------------
18514 -- Process_Discriminants --
18515 ---------------------------
18516
18517 procedure Process_Discriminants
18518 (N : Node_Id;
18519 Prev : Entity_Id := Empty)
18520 is
18521 Elist : constant Elist_Id := New_Elmt_List;
18522 Id : Node_Id;
18523 Discr : Node_Id;
18524 Discr_Number : Uint;
18525 Discr_Type : Entity_Id;
18526 Default_Present : Boolean := False;
18527 Default_Not_Present : Boolean := False;
18528
18529 begin
18530 -- A composite type other than an array type can have discriminants.
18531 -- On entry, the current scope is the composite type.
18532
18533 -- The discriminants are initially entered into the scope of the type
18534 -- via Enter_Name with the default Ekind of E_Void to prevent premature
18535 -- use, as explained at the end of this procedure.
18536
18537 Discr := First (Discriminant_Specifications (N));
18538 while Present (Discr) loop
18539 Enter_Name (Defining_Identifier (Discr));
18540
18541 -- For navigation purposes we add a reference to the discriminant
18542 -- in the entity for the type. If the current declaration is a
18543 -- completion, place references on the partial view. Otherwise the
18544 -- type is the current scope.
18545
18546 if Present (Prev) then
18547
18548 -- The references go on the partial view, if present. If the
18549 -- partial view has discriminants, the references have been
18550 -- generated already.
18551
18552 if not Has_Discriminants (Prev) then
18553 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
18554 end if;
18555 else
18556 Generate_Reference
18557 (Current_Scope, Defining_Identifier (Discr), 'd');
18558 end if;
18559
18560 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
18561 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
18562
18563 -- Ada 2005 (AI-254)
18564
18565 if Present (Access_To_Subprogram_Definition
18566 (Discriminant_Type (Discr)))
18567 and then Protected_Present (Access_To_Subprogram_Definition
18568 (Discriminant_Type (Discr)))
18569 then
18570 Discr_Type :=
18571 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
18572 end if;
18573
18574 else
18575 Find_Type (Discriminant_Type (Discr));
18576 Discr_Type := Etype (Discriminant_Type (Discr));
18577
18578 if Error_Posted (Discriminant_Type (Discr)) then
18579 Discr_Type := Any_Type;
18580 end if;
18581 end if;
18582
18583 -- Handling of discriminants that are access types
18584
18585 if Is_Access_Type (Discr_Type) then
18586
18587 -- Ada 2005 (AI-230): Access discriminant allowed in non-
18588 -- limited record types
18589
18590 if Ada_Version < Ada_2005 then
18591 Check_Access_Discriminant_Requires_Limited
18592 (Discr, Discriminant_Type (Discr));
18593 end if;
18594
18595 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
18596 Error_Msg_N
18597 ("(Ada 83) access discriminant not allowed", Discr);
18598 end if;
18599
18600 -- If not access type, must be a discrete type
18601
18602 elsif not Is_Discrete_Type (Discr_Type) then
18603 Error_Msg_N
18604 ("discriminants must have a discrete or access type",
18605 Discriminant_Type (Discr));
18606 end if;
18607
18608 Set_Etype (Defining_Identifier (Discr), Discr_Type);
18609
18610 -- If a discriminant specification includes the assignment compound
18611 -- delimiter followed by an expression, the expression is the default
18612 -- expression of the discriminant; the default expression must be of
18613 -- the type of the discriminant. (RM 3.7.1) Since this expression is
18614 -- a default expression, we do the special preanalysis, since this
18615 -- expression does not freeze (see section "Handling of Default and
18616 -- Per-Object Expressions" in spec of package Sem).
18617
18618 if Present (Expression (Discr)) then
18619 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
18620
18621 -- Legaity checks
18622
18623 if Nkind (N) = N_Formal_Type_Declaration then
18624 Error_Msg_N
18625 ("discriminant defaults not allowed for formal type",
18626 Expression (Discr));
18627
18628 -- Flag an error for a tagged type with defaulted discriminants,
18629 -- excluding limited tagged types when compiling for Ada 2012
18630 -- (see AI05-0214).
18631
18632 elsif Is_Tagged_Type (Current_Scope)
18633 and then (not Is_Limited_Type (Current_Scope)
18634 or else Ada_Version < Ada_2012)
18635 and then Comes_From_Source (N)
18636 then
18637 -- Note: see similar test in Check_Or_Process_Discriminants, to
18638 -- handle the (illegal) case of the completion of an untagged
18639 -- view with discriminants with defaults by a tagged full view.
18640 -- We skip the check if Discr does not come from source, to
18641 -- account for the case of an untagged derived type providing
18642 -- defaults for a renamed discriminant from a private untagged
18643 -- ancestor with a tagged full view (ACATS B460006).
18644
18645 if Ada_Version >= Ada_2012 then
18646 Error_Msg_N
18647 ("discriminants of nonlimited tagged type cannot have"
18648 & " defaults",
18649 Expression (Discr));
18650 else
18651 Error_Msg_N
18652 ("discriminants of tagged type cannot have defaults",
18653 Expression (Discr));
18654 end if;
18655
18656 else
18657 Default_Present := True;
18658 Append_Elmt (Expression (Discr), Elist);
18659
18660 -- Tag the defining identifiers for the discriminants with
18661 -- their corresponding default expressions from the tree.
18662
18663 Set_Discriminant_Default_Value
18664 (Defining_Identifier (Discr), Expression (Discr));
18665 end if;
18666
18667 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
18668 -- gets set unless we can be sure that no range check is required.
18669
18670 if (GNATprove_Mode or not Expander_Active)
18671 and then not
18672 Is_In_Range
18673 (Expression (Discr), Discr_Type, Assume_Valid => True)
18674 then
18675 Set_Do_Range_Check (Expression (Discr));
18676 end if;
18677
18678 -- No default discriminant value given
18679
18680 else
18681 Default_Not_Present := True;
18682 end if;
18683
18684 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
18685 -- Discr_Type but with the null-exclusion attribute
18686
18687 if Ada_Version >= Ada_2005 then
18688
18689 -- Ada 2005 (AI-231): Static checks
18690
18691 if Can_Never_Be_Null (Discr_Type) then
18692 Null_Exclusion_Static_Checks (Discr);
18693
18694 elsif Is_Access_Type (Discr_Type)
18695 and then Null_Exclusion_Present (Discr)
18696
18697 -- No need to check itypes because in their case this check
18698 -- was done at their point of creation
18699
18700 and then not Is_Itype (Discr_Type)
18701 then
18702 if Can_Never_Be_Null (Discr_Type) then
18703 Error_Msg_NE
18704 ("`NOT NULL` not allowed (& already excludes null)",
18705 Discr,
18706 Discr_Type);
18707 end if;
18708
18709 Set_Etype (Defining_Identifier (Discr),
18710 Create_Null_Excluding_Itype
18711 (T => Discr_Type,
18712 Related_Nod => Discr));
18713
18714 -- Check for improper null exclusion if the type is otherwise
18715 -- legal for a discriminant.
18716
18717 elsif Null_Exclusion_Present (Discr)
18718 and then Is_Discrete_Type (Discr_Type)
18719 then
18720 Error_Msg_N
18721 ("null exclusion can only apply to an access type", Discr);
18722 end if;
18723
18724 -- Ada 2005 (AI-402): access discriminants of nonlimited types
18725 -- can't have defaults. Synchronized types, or types that are
18726 -- explicitly limited are fine, but special tests apply to derived
18727 -- types in generics: in a generic body we have to assume the
18728 -- worst, and therefore defaults are not allowed if the parent is
18729 -- a generic formal private type (see ACATS B370001).
18730
18731 if Is_Access_Type (Discr_Type) and then Default_Present then
18732 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
18733 or else Is_Limited_Record (Current_Scope)
18734 or else Is_Concurrent_Type (Current_Scope)
18735 or else Is_Concurrent_Record_Type (Current_Scope)
18736 or else Ekind (Current_Scope) = E_Limited_Private_Type
18737 then
18738 if not Is_Derived_Type (Current_Scope)
18739 or else not Is_Generic_Type (Etype (Current_Scope))
18740 or else not In_Package_Body (Scope (Etype (Current_Scope)))
18741 or else Limited_Present
18742 (Type_Definition (Parent (Current_Scope)))
18743 then
18744 null;
18745
18746 else
18747 Error_Msg_N ("access discriminants of nonlimited types",
18748 Expression (Discr));
18749 Error_Msg_N ("\cannot have defaults", Expression (Discr));
18750 end if;
18751
18752 elsif Present (Expression (Discr)) then
18753 Error_Msg_N
18754 ("(Ada 2005) access discriminants of nonlimited types",
18755 Expression (Discr));
18756 Error_Msg_N ("\cannot have defaults", Expression (Discr));
18757 end if;
18758 end if;
18759 end if;
18760
18761 -- A discriminant cannot be effectively volatile. This check is only
18762 -- relevant when SPARK_Mode is on as it is not standard Ada legality
18763 -- rule (SPARK RM 7.1.3(6)).
18764
18765 if SPARK_Mode = On
18766 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
18767 then
18768 Error_Msg_N ("discriminant cannot be volatile", Discr);
18769 end if;
18770
18771 Next (Discr);
18772 end loop;
18773
18774 -- An element list consisting of the default expressions of the
18775 -- discriminants is constructed in the above loop and used to set
18776 -- the Discriminant_Constraint attribute for the type. If an object
18777 -- is declared of this (record or task) type without any explicit
18778 -- discriminant constraint given, this element list will form the
18779 -- actual parameters for the corresponding initialization procedure
18780 -- for the type.
18781
18782 Set_Discriminant_Constraint (Current_Scope, Elist);
18783 Set_Stored_Constraint (Current_Scope, No_Elist);
18784
18785 -- Default expressions must be provided either for all or for none
18786 -- of the discriminants of a discriminant part. (RM 3.7.1)
18787
18788 if Default_Present and then Default_Not_Present then
18789 Error_Msg_N
18790 ("incomplete specification of defaults for discriminants", N);
18791 end if;
18792
18793 -- The use of the name of a discriminant is not allowed in default
18794 -- expressions of a discriminant part if the specification of the
18795 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
18796
18797 -- To detect this, the discriminant names are entered initially with an
18798 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
18799 -- attempt to use a void entity (for example in an expression that is
18800 -- type-checked) produces the error message: premature usage. Now after
18801 -- completing the semantic analysis of the discriminant part, we can set
18802 -- the Ekind of all the discriminants appropriately.
18803
18804 Discr := First (Discriminant_Specifications (N));
18805 Discr_Number := Uint_1;
18806 while Present (Discr) loop
18807 Id := Defining_Identifier (Discr);
18808 Set_Ekind (Id, E_Discriminant);
18809 Init_Component_Location (Id);
18810 Init_Esize (Id);
18811 Set_Discriminant_Number (Id, Discr_Number);
18812
18813 -- Make sure this is always set, even in illegal programs
18814
18815 Set_Corresponding_Discriminant (Id, Empty);
18816
18817 -- Initialize the Original_Record_Component to the entity itself.
18818 -- Inherit_Components will propagate the right value to
18819 -- discriminants in derived record types.
18820
18821 Set_Original_Record_Component (Id, Id);
18822
18823 -- Create the discriminal for the discriminant
18824
18825 Build_Discriminal (Id);
18826
18827 Next (Discr);
18828 Discr_Number := Discr_Number + 1;
18829 end loop;
18830
18831 Set_Has_Discriminants (Current_Scope);
18832 end Process_Discriminants;
18833
18834 -----------------------
18835 -- Process_Full_View --
18836 -----------------------
18837
18838 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
18839 procedure Collect_Implemented_Interfaces
18840 (Typ : Entity_Id;
18841 Ifaces : Elist_Id);
18842 -- Ada 2005: Gather all the interfaces that Typ directly or
18843 -- inherently implements. Duplicate entries are not added to
18844 -- the list Ifaces.
18845
18846 ------------------------------------
18847 -- Collect_Implemented_Interfaces --
18848 ------------------------------------
18849
18850 procedure Collect_Implemented_Interfaces
18851 (Typ : Entity_Id;
18852 Ifaces : Elist_Id)
18853 is
18854 Iface : Entity_Id;
18855 Iface_Elmt : Elmt_Id;
18856
18857 begin
18858 -- Abstract interfaces are only associated with tagged record types
18859
18860 if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then
18861 return;
18862 end if;
18863
18864 -- Recursively climb to the ancestors
18865
18866 if Etype (Typ) /= Typ
18867
18868 -- Protect the frontend against wrong cyclic declarations like:
18869
18870 -- type B is new A with private;
18871 -- type C is new A with private;
18872 -- private
18873 -- type B is new C with null record;
18874 -- type C is new B with null record;
18875
18876 and then Etype (Typ) /= Priv_T
18877 and then Etype (Typ) /= Full_T
18878 then
18879 -- Keep separate the management of private type declarations
18880
18881 if Ekind (Typ) = E_Record_Type_With_Private then
18882
18883 -- Handle the following illegal usage:
18884 -- type Private_Type is tagged private;
18885 -- private
18886 -- type Private_Type is new Type_Implementing_Iface;
18887
18888 if Present (Full_View (Typ))
18889 and then Etype (Typ) /= Full_View (Typ)
18890 then
18891 if Is_Interface (Etype (Typ)) then
18892 Append_Unique_Elmt (Etype (Typ), Ifaces);
18893 end if;
18894
18895 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18896 end if;
18897
18898 -- Non-private types
18899
18900 else
18901 if Is_Interface (Etype (Typ)) then
18902 Append_Unique_Elmt (Etype (Typ), Ifaces);
18903 end if;
18904
18905 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18906 end if;
18907 end if;
18908
18909 -- Handle entities in the list of abstract interfaces
18910
18911 if Present (Interfaces (Typ)) then
18912 Iface_Elmt := First_Elmt (Interfaces (Typ));
18913 while Present (Iface_Elmt) loop
18914 Iface := Node (Iface_Elmt);
18915
18916 pragma Assert (Is_Interface (Iface));
18917
18918 if not Contain_Interface (Iface, Ifaces) then
18919 Append_Elmt (Iface, Ifaces);
18920 Collect_Implemented_Interfaces (Iface, Ifaces);
18921 end if;
18922
18923 Next_Elmt (Iface_Elmt);
18924 end loop;
18925 end if;
18926 end Collect_Implemented_Interfaces;
18927
18928 -- Local variables
18929
18930 Full_Indic : Node_Id;
18931 Full_Parent : Entity_Id;
18932 Priv_Parent : Entity_Id;
18933
18934 -- Start of processing for Process_Full_View
18935
18936 begin
18937 -- First some sanity checks that must be done after semantic
18938 -- decoration of the full view and thus cannot be placed with other
18939 -- similar checks in Find_Type_Name
18940
18941 if not Is_Limited_Type (Priv_T)
18942 and then (Is_Limited_Type (Full_T)
18943 or else Is_Limited_Composite (Full_T))
18944 then
18945 if In_Instance then
18946 null;
18947 else
18948 Error_Msg_N
18949 ("completion of nonlimited type cannot be limited", Full_T);
18950 Explain_Limited_Type (Full_T, Full_T);
18951 end if;
18952
18953 elsif Is_Abstract_Type (Full_T)
18954 and then not Is_Abstract_Type (Priv_T)
18955 then
18956 Error_Msg_N
18957 ("completion of nonabstract type cannot be abstract", Full_T);
18958
18959 elsif Is_Tagged_Type (Priv_T)
18960 and then Is_Limited_Type (Priv_T)
18961 and then not Is_Limited_Type (Full_T)
18962 then
18963 -- If pragma CPP_Class was applied to the private declaration
18964 -- propagate the limitedness to the full-view
18965
18966 if Is_CPP_Class (Priv_T) then
18967 Set_Is_Limited_Record (Full_T);
18968
18969 -- GNAT allow its own definition of Limited_Controlled to disobey
18970 -- this rule in order in ease the implementation. This test is safe
18971 -- because Root_Controlled is defined in a child of System that
18972 -- normal programs are not supposed to use.
18973
18974 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
18975 Set_Is_Limited_Composite (Full_T);
18976 else
18977 Error_Msg_N
18978 ("completion of limited tagged type must be limited", Full_T);
18979 end if;
18980
18981 elsif Is_Generic_Type (Priv_T) then
18982 Error_Msg_N ("generic type cannot have a completion", Full_T);
18983 end if;
18984
18985 -- Check that ancestor interfaces of private and full views are
18986 -- consistent. We omit this check for synchronized types because
18987 -- they are performed on the corresponding record type when frozen.
18988
18989 if Ada_Version >= Ada_2005
18990 and then Is_Tagged_Type (Priv_T)
18991 and then Is_Tagged_Type (Full_T)
18992 and then not Is_Concurrent_Type (Full_T)
18993 then
18994 declare
18995 Iface : Entity_Id;
18996 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
18997 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
18998
18999 begin
19000 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
19001 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
19002
19003 -- Ada 2005 (AI-251): The partial view shall be a descendant of
19004 -- an interface type if and only if the full type is descendant
19005 -- of the interface type (AARM 7.3 (7.3/2)).
19006
19007 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
19008
19009 if Present (Iface) then
19010 Error_Msg_NE
19011 ("interface in partial view& not implemented by full type "
19012 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
19013 end if;
19014
19015 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
19016
19017 if Present (Iface) then
19018 Error_Msg_NE
19019 ("interface & not implemented by partial view "
19020 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
19021 end if;
19022 end;
19023 end if;
19024
19025 if Is_Tagged_Type (Priv_T)
19026 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19027 and then Is_Derived_Type (Full_T)
19028 then
19029 Priv_Parent := Etype (Priv_T);
19030
19031 -- The full view of a private extension may have been transformed
19032 -- into an unconstrained derived type declaration and a subtype
19033 -- declaration (see build_derived_record_type for details).
19034
19035 if Nkind (N) = N_Subtype_Declaration then
19036 Full_Indic := Subtype_Indication (N);
19037 Full_Parent := Etype (Base_Type (Full_T));
19038 else
19039 Full_Indic := Subtype_Indication (Type_Definition (N));
19040 Full_Parent := Etype (Full_T);
19041 end if;
19042
19043 -- Check that the parent type of the full type is a descendant of
19044 -- the ancestor subtype given in the private extension. If either
19045 -- entity has an Etype equal to Any_Type then we had some previous
19046 -- error situation [7.3(8)].
19047
19048 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
19049 return;
19050
19051 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
19052 -- any order. Therefore we don't have to check that its parent must
19053 -- be a descendant of the parent of the private type declaration.
19054
19055 elsif Is_Interface (Priv_Parent)
19056 and then Is_Interface (Full_Parent)
19057 then
19058 null;
19059
19060 -- Ada 2005 (AI-251): If the parent of the private type declaration
19061 -- is an interface there is no need to check that it is an ancestor
19062 -- of the associated full type declaration. The required tests for
19063 -- this case are performed by Build_Derived_Record_Type.
19064
19065 elsif not Is_Interface (Base_Type (Priv_Parent))
19066 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
19067 then
19068 Error_Msg_N
19069 ("parent of full type must descend from parent"
19070 & " of private extension", Full_Indic);
19071
19072 -- First check a formal restriction, and then proceed with checking
19073 -- Ada rules. Since the formal restriction is not a serious error, we
19074 -- don't prevent further error detection for this check, hence the
19075 -- ELSE.
19076
19077 else
19078
19079 -- In formal mode, when completing a private extension the type
19080 -- named in the private part must be exactly the same as that
19081 -- named in the visible part.
19082
19083 if Priv_Parent /= Full_Parent then
19084 Error_Msg_Name_1 := Chars (Priv_Parent);
19085 Check_SPARK_05_Restriction ("% expected", Full_Indic);
19086 end if;
19087
19088 -- Check the rules of 7.3(10): if the private extension inherits
19089 -- known discriminants, then the full type must also inherit those
19090 -- discriminants from the same (ancestor) type, and the parent
19091 -- subtype of the full type must be constrained if and only if
19092 -- the ancestor subtype of the private extension is constrained.
19093
19094 if No (Discriminant_Specifications (Parent (Priv_T)))
19095 and then not Has_Unknown_Discriminants (Priv_T)
19096 and then Has_Discriminants (Base_Type (Priv_Parent))
19097 then
19098 declare
19099 Priv_Indic : constant Node_Id :=
19100 Subtype_Indication (Parent (Priv_T));
19101
19102 Priv_Constr : constant Boolean :=
19103 Is_Constrained (Priv_Parent)
19104 or else
19105 Nkind (Priv_Indic) = N_Subtype_Indication
19106 or else
19107 Is_Constrained (Entity (Priv_Indic));
19108
19109 Full_Constr : constant Boolean :=
19110 Is_Constrained (Full_Parent)
19111 or else
19112 Nkind (Full_Indic) = N_Subtype_Indication
19113 or else
19114 Is_Constrained (Entity (Full_Indic));
19115
19116 Priv_Discr : Entity_Id;
19117 Full_Discr : Entity_Id;
19118
19119 begin
19120 Priv_Discr := First_Discriminant (Priv_Parent);
19121 Full_Discr := First_Discriminant (Full_Parent);
19122 while Present (Priv_Discr) and then Present (Full_Discr) loop
19123 if Original_Record_Component (Priv_Discr) =
19124 Original_Record_Component (Full_Discr)
19125 or else
19126 Corresponding_Discriminant (Priv_Discr) =
19127 Corresponding_Discriminant (Full_Discr)
19128 then
19129 null;
19130 else
19131 exit;
19132 end if;
19133
19134 Next_Discriminant (Priv_Discr);
19135 Next_Discriminant (Full_Discr);
19136 end loop;
19137
19138 if Present (Priv_Discr) or else Present (Full_Discr) then
19139 Error_Msg_N
19140 ("full view must inherit discriminants of the parent"
19141 & " type used in the private extension", Full_Indic);
19142
19143 elsif Priv_Constr and then not Full_Constr then
19144 Error_Msg_N
19145 ("parent subtype of full type must be constrained",
19146 Full_Indic);
19147
19148 elsif Full_Constr and then not Priv_Constr then
19149 Error_Msg_N
19150 ("parent subtype of full type must be unconstrained",
19151 Full_Indic);
19152 end if;
19153 end;
19154
19155 -- Check the rules of 7.3(12): if a partial view has neither
19156 -- known or unknown discriminants, then the full type
19157 -- declaration shall define a definite subtype.
19158
19159 elsif not Has_Unknown_Discriminants (Priv_T)
19160 and then not Has_Discriminants (Priv_T)
19161 and then not Is_Constrained (Full_T)
19162 then
19163 Error_Msg_N
19164 ("full view must define a constrained type if partial view"
19165 & " has no discriminants", Full_T);
19166 end if;
19167
19168 -- ??????? Do we implement the following properly ?????
19169 -- If the ancestor subtype of a private extension has constrained
19170 -- discriminants, then the parent subtype of the full view shall
19171 -- impose a statically matching constraint on those discriminants
19172 -- [7.3(13)].
19173 end if;
19174
19175 else
19176 -- For untagged types, verify that a type without discriminants is
19177 -- not completed with an unconstrained type. A separate error message
19178 -- is produced if the full type has defaulted discriminants.
19179
19180 if not Is_Indefinite_Subtype (Priv_T)
19181 and then Is_Indefinite_Subtype (Full_T)
19182 then
19183 Error_Msg_Sloc := Sloc (Parent (Priv_T));
19184 Error_Msg_NE
19185 ("full view of& not compatible with declaration#",
19186 Full_T, Priv_T);
19187
19188 if not Is_Tagged_Type (Full_T) then
19189 Error_Msg_N
19190 ("\one is constrained, the other unconstrained", Full_T);
19191 end if;
19192 end if;
19193 end if;
19194
19195 -- AI-419: verify that the use of "limited" is consistent
19196
19197 declare
19198 Orig_Decl : constant Node_Id := Original_Node (N);
19199
19200 begin
19201 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19202 and then not Limited_Present (Parent (Priv_T))
19203 and then not Synchronized_Present (Parent (Priv_T))
19204 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
19205 and then Nkind
19206 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
19207 and then Limited_Present (Type_Definition (Orig_Decl))
19208 then
19209 Error_Msg_N
19210 ("full view of non-limited extension cannot be limited", N);
19211 end if;
19212 end;
19213
19214 -- Ada 2005 (AI-443): A synchronized private extension must be
19215 -- completed by a task or protected type.
19216
19217 if Ada_Version >= Ada_2005
19218 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19219 and then Synchronized_Present (Parent (Priv_T))
19220 and then not Is_Concurrent_Type (Full_T)
19221 then
19222 Error_Msg_N ("full view of synchronized extension must " &
19223 "be synchronized type", N);
19224 end if;
19225
19226 -- Ada 2005 AI-363: if the full view has discriminants with
19227 -- defaults, it is illegal to declare constrained access subtypes
19228 -- whose designated type is the current type. This allows objects
19229 -- of the type that are declared in the heap to be unconstrained.
19230
19231 if not Has_Unknown_Discriminants (Priv_T)
19232 and then not Has_Discriminants (Priv_T)
19233 and then Has_Discriminants (Full_T)
19234 and then
19235 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
19236 then
19237 Set_Has_Constrained_Partial_View (Full_T);
19238 Set_Has_Constrained_Partial_View (Priv_T);
19239 end if;
19240
19241 -- Create a full declaration for all its subtypes recorded in
19242 -- Private_Dependents and swap them similarly to the base type. These
19243 -- are subtypes that have been define before the full declaration of
19244 -- the private type. We also swap the entry in Private_Dependents list
19245 -- so we can properly restore the private view on exit from the scope.
19246
19247 declare
19248 Priv_Elmt : Elmt_Id;
19249 Priv_Scop : Entity_Id;
19250 Priv : Entity_Id;
19251 Full : Entity_Id;
19252
19253 begin
19254 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
19255 while Present (Priv_Elmt) loop
19256 Priv := Node (Priv_Elmt);
19257 Priv_Scop := Scope (Priv);
19258
19259 if Ekind_In (Priv, E_Private_Subtype,
19260 E_Limited_Private_Subtype,
19261 E_Record_Subtype_With_Private)
19262 then
19263 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
19264 Set_Is_Itype (Full);
19265 Set_Parent (Full, Parent (Priv));
19266 Set_Associated_Node_For_Itype (Full, N);
19267
19268 -- Now we need to complete the private subtype, but since the
19269 -- base type has already been swapped, we must also swap the
19270 -- subtypes (and thus, reverse the arguments in the call to
19271 -- Complete_Private_Subtype). Also note that we may need to
19272 -- re-establish the scope of the private subtype.
19273
19274 Copy_And_Swap (Priv, Full);
19275
19276 if not In_Open_Scopes (Priv_Scop) then
19277 Push_Scope (Priv_Scop);
19278
19279 else
19280 -- Reset Priv_Scop to Empty to indicate no scope was pushed
19281
19282 Priv_Scop := Empty;
19283 end if;
19284
19285 Complete_Private_Subtype (Full, Priv, Full_T, N);
19286
19287 if Present (Priv_Scop) then
19288 Pop_Scope;
19289 end if;
19290
19291 Replace_Elmt (Priv_Elmt, Full);
19292 end if;
19293
19294 Next_Elmt (Priv_Elmt);
19295 end loop;
19296 end;
19297
19298 -- If the private view was tagged, copy the new primitive operations
19299 -- from the private view to the full view.
19300
19301 if Is_Tagged_Type (Full_T) then
19302 declare
19303 Disp_Typ : Entity_Id;
19304 Full_List : Elist_Id;
19305 Prim : Entity_Id;
19306 Prim_Elmt : Elmt_Id;
19307 Priv_List : Elist_Id;
19308
19309 function Contains
19310 (E : Entity_Id;
19311 L : Elist_Id) return Boolean;
19312 -- Determine whether list L contains element E
19313
19314 --------------
19315 -- Contains --
19316 --------------
19317
19318 function Contains
19319 (E : Entity_Id;
19320 L : Elist_Id) return Boolean
19321 is
19322 List_Elmt : Elmt_Id;
19323
19324 begin
19325 List_Elmt := First_Elmt (L);
19326 while Present (List_Elmt) loop
19327 if Node (List_Elmt) = E then
19328 return True;
19329 end if;
19330
19331 Next_Elmt (List_Elmt);
19332 end loop;
19333
19334 return False;
19335 end Contains;
19336
19337 -- Start of processing
19338
19339 begin
19340 if Is_Tagged_Type (Priv_T) then
19341 Priv_List := Primitive_Operations (Priv_T);
19342 Prim_Elmt := First_Elmt (Priv_List);
19343
19344 -- In the case of a concurrent type completing a private tagged
19345 -- type, primitives may have been declared in between the two
19346 -- views. These subprograms need to be wrapped the same way
19347 -- entries and protected procedures are handled because they
19348 -- cannot be directly shared by the two views.
19349
19350 if Is_Concurrent_Type (Full_T) then
19351 declare
19352 Conc_Typ : constant Entity_Id :=
19353 Corresponding_Record_Type (Full_T);
19354 Curr_Nod : Node_Id := Parent (Conc_Typ);
19355 Wrap_Spec : Node_Id;
19356
19357 begin
19358 while Present (Prim_Elmt) loop
19359 Prim := Node (Prim_Elmt);
19360
19361 if Comes_From_Source (Prim)
19362 and then not Is_Abstract_Subprogram (Prim)
19363 then
19364 Wrap_Spec :=
19365 Make_Subprogram_Declaration (Sloc (Prim),
19366 Specification =>
19367 Build_Wrapper_Spec
19368 (Subp_Id => Prim,
19369 Obj_Typ => Conc_Typ,
19370 Formals =>
19371 Parameter_Specifications (
19372 Parent (Prim))));
19373
19374 Insert_After (Curr_Nod, Wrap_Spec);
19375 Curr_Nod := Wrap_Spec;
19376
19377 Analyze (Wrap_Spec);
19378 end if;
19379
19380 Next_Elmt (Prim_Elmt);
19381 end loop;
19382
19383 return;
19384 end;
19385
19386 -- For non-concurrent types, transfer explicit primitives, but
19387 -- omit those inherited from the parent of the private view
19388 -- since they will be re-inherited later on.
19389
19390 else
19391 Full_List := Primitive_Operations (Full_T);
19392
19393 while Present (Prim_Elmt) loop
19394 Prim := Node (Prim_Elmt);
19395
19396 if Comes_From_Source (Prim)
19397 and then not Contains (Prim, Full_List)
19398 then
19399 Append_Elmt (Prim, Full_List);
19400 end if;
19401
19402 Next_Elmt (Prim_Elmt);
19403 end loop;
19404 end if;
19405
19406 -- Untagged private view
19407
19408 else
19409 Full_List := Primitive_Operations (Full_T);
19410
19411 -- In this case the partial view is untagged, so here we locate
19412 -- all of the earlier primitives that need to be treated as
19413 -- dispatching (those that appear between the two views). Note
19414 -- that these additional operations must all be new operations
19415 -- (any earlier operations that override inherited operations
19416 -- of the full view will already have been inserted in the
19417 -- primitives list, marked by Check_Operation_From_Private_View
19418 -- as dispatching. Note that implicit "/=" operators are
19419 -- excluded from being added to the primitives list since they
19420 -- shouldn't be treated as dispatching (tagged "/=" is handled
19421 -- specially).
19422
19423 Prim := Next_Entity (Full_T);
19424 while Present (Prim) and then Prim /= Priv_T loop
19425 if Ekind_In (Prim, E_Procedure, E_Function) then
19426 Disp_Typ := Find_Dispatching_Type (Prim);
19427
19428 if Disp_Typ = Full_T
19429 and then (Chars (Prim) /= Name_Op_Ne
19430 or else Comes_From_Source (Prim))
19431 then
19432 Check_Controlling_Formals (Full_T, Prim);
19433
19434 if not Is_Dispatching_Operation (Prim) then
19435 Append_Elmt (Prim, Full_List);
19436 Set_Is_Dispatching_Operation (Prim, True);
19437 Set_DT_Position (Prim, No_Uint);
19438 end if;
19439
19440 elsif Is_Dispatching_Operation (Prim)
19441 and then Disp_Typ /= Full_T
19442 then
19443
19444 -- Verify that it is not otherwise controlled by a
19445 -- formal or a return value of type T.
19446
19447 Check_Controlling_Formals (Disp_Typ, Prim);
19448 end if;
19449 end if;
19450
19451 Next_Entity (Prim);
19452 end loop;
19453 end if;
19454
19455 -- For the tagged case, the two views can share the same primitive
19456 -- operations list and the same class-wide type. Update attributes
19457 -- of the class-wide type which depend on the full declaration.
19458
19459 if Is_Tagged_Type (Priv_T) then
19460 Set_Direct_Primitive_Operations (Priv_T, Full_List);
19461 Set_Class_Wide_Type
19462 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
19463
19464 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
19465 Set_Has_Protected
19466 (Class_Wide_Type (Priv_T), Has_Protected (Full_T));
19467 end if;
19468 end;
19469 end if;
19470
19471 -- Ada 2005 AI 161: Check preelaborable initialization consistency
19472
19473 if Known_To_Have_Preelab_Init (Priv_T) then
19474
19475 -- Case where there is a pragma Preelaborable_Initialization. We
19476 -- always allow this in predefined units, which is cheating a bit,
19477 -- but it means we don't have to struggle to meet the requirements in
19478 -- the RM for having Preelaborable Initialization. Otherwise we
19479 -- require that the type meets the RM rules. But we can't check that
19480 -- yet, because of the rule about overriding Initialize, so we simply
19481 -- set a flag that will be checked at freeze time.
19482
19483 if not In_Predefined_Unit (Full_T) then
19484 Set_Must_Have_Preelab_Init (Full_T);
19485 end if;
19486 end if;
19487
19488 -- If pragma CPP_Class was applied to the private type declaration,
19489 -- propagate it now to the full type declaration.
19490
19491 if Is_CPP_Class (Priv_T) then
19492 Set_Is_CPP_Class (Full_T);
19493 Set_Convention (Full_T, Convention_CPP);
19494
19495 -- Check that components of imported CPP types do not have default
19496 -- expressions.
19497
19498 Check_CPP_Type_Has_No_Defaults (Full_T);
19499 end if;
19500
19501 -- If the private view has user specified stream attributes, then so has
19502 -- the full view.
19503
19504 -- Why the test, how could these flags be already set in Full_T ???
19505
19506 if Has_Specified_Stream_Read (Priv_T) then
19507 Set_Has_Specified_Stream_Read (Full_T);
19508 end if;
19509
19510 if Has_Specified_Stream_Write (Priv_T) then
19511 Set_Has_Specified_Stream_Write (Full_T);
19512 end if;
19513
19514 if Has_Specified_Stream_Input (Priv_T) then
19515 Set_Has_Specified_Stream_Input (Full_T);
19516 end if;
19517
19518 if Has_Specified_Stream_Output (Priv_T) then
19519 Set_Has_Specified_Stream_Output (Full_T);
19520 end if;
19521
19522 -- Propagate the attributes related to pragma Default_Initial_Condition
19523 -- from the private to the full view. Note that both flags are mutually
19524 -- exclusive.
19525
19526 if Has_Default_Init_Cond (Priv_T)
19527 or else Has_Inherited_Default_Init_Cond (Priv_T)
19528 then
19529 Propagate_Default_Init_Cond_Attributes
19530 (From_Typ => Priv_T,
19531 To_Typ => Full_T,
19532 Private_To_Full_View => True);
19533
19534 -- In the case where the full view is derived from another private type,
19535 -- the attributes related to pragma Default_Initial_Condition must be
19536 -- propagated from the full to the private view to maintain consistency
19537 -- of views.
19538
19539 -- package Pack is
19540 -- type Parent_Typ is private
19541 -- with Default_Initial_Condition ...;
19542 -- private
19543 -- type Parent_Typ is ...;
19544 -- end Pack;
19545
19546 -- with Pack; use Pack;
19547 -- package Pack_2 is
19548 -- type Deriv_Typ is private; -- must inherit
19549 -- private
19550 -- type Deriv_Typ is new Parent_Typ; -- must inherit
19551 -- end Pack_2;
19552
19553 elsif Has_Default_Init_Cond (Full_T)
19554 or else Has_Inherited_Default_Init_Cond (Full_T)
19555 then
19556 Propagate_Default_Init_Cond_Attributes
19557 (From_Typ => Full_T,
19558 To_Typ => Priv_T,
19559 Private_To_Full_View => True);
19560 end if;
19561
19562 -- Propagate invariants to full type
19563
19564 if Has_Invariants (Priv_T) then
19565 Set_Has_Invariants (Full_T);
19566 Set_Invariant_Procedure (Full_T, Invariant_Procedure (Priv_T));
19567 end if;
19568
19569 if Has_Inheritable_Invariants (Priv_T) then
19570 Set_Has_Inheritable_Invariants (Full_T);
19571 end if;
19572
19573 -- Propagate predicates to full type, and predicate function if already
19574 -- defined. It is not clear that this can actually happen? the partial
19575 -- view cannot be frozen yet, and the predicate function has not been
19576 -- built. Still it is a cheap check and seems safer to make it.
19577
19578 if Has_Predicates (Priv_T) then
19579 if Present (Predicate_Function (Priv_T)) then
19580 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
19581 end if;
19582
19583 Set_Has_Predicates (Full_T);
19584 end if;
19585 end Process_Full_View;
19586
19587 -----------------------------------
19588 -- Process_Incomplete_Dependents --
19589 -----------------------------------
19590
19591 procedure Process_Incomplete_Dependents
19592 (N : Node_Id;
19593 Full_T : Entity_Id;
19594 Inc_T : Entity_Id)
19595 is
19596 Inc_Elmt : Elmt_Id;
19597 Priv_Dep : Entity_Id;
19598 New_Subt : Entity_Id;
19599
19600 Disc_Constraint : Elist_Id;
19601
19602 begin
19603 if No (Private_Dependents (Inc_T)) then
19604 return;
19605 end if;
19606
19607 -- Itypes that may be generated by the completion of an incomplete
19608 -- subtype are not used by the back-end and not attached to the tree.
19609 -- They are created only for constraint-checking purposes.
19610
19611 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
19612 while Present (Inc_Elmt) loop
19613 Priv_Dep := Node (Inc_Elmt);
19614
19615 if Ekind (Priv_Dep) = E_Subprogram_Type then
19616
19617 -- An Access_To_Subprogram type may have a return type or a
19618 -- parameter type that is incomplete. Replace with the full view.
19619
19620 if Etype (Priv_Dep) = Inc_T then
19621 Set_Etype (Priv_Dep, Full_T);
19622 end if;
19623
19624 declare
19625 Formal : Entity_Id;
19626
19627 begin
19628 Formal := First_Formal (Priv_Dep);
19629 while Present (Formal) loop
19630 if Etype (Formal) = Inc_T then
19631 Set_Etype (Formal, Full_T);
19632 end if;
19633
19634 Next_Formal (Formal);
19635 end loop;
19636 end;
19637
19638 elsif Is_Overloadable (Priv_Dep) then
19639
19640 -- If a subprogram in the incomplete dependents list is primitive
19641 -- for a tagged full type then mark it as a dispatching operation,
19642 -- check whether it overrides an inherited subprogram, and check
19643 -- restrictions on its controlling formals. Note that a protected
19644 -- operation is never dispatching: only its wrapper operation
19645 -- (which has convention Ada) is.
19646
19647 if Is_Tagged_Type (Full_T)
19648 and then Is_Primitive (Priv_Dep)
19649 and then Convention (Priv_Dep) /= Convention_Protected
19650 then
19651 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
19652 Set_Is_Dispatching_Operation (Priv_Dep);
19653 Check_Controlling_Formals (Full_T, Priv_Dep);
19654 end if;
19655
19656 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
19657
19658 -- Can happen during processing of a body before the completion
19659 -- of a TA type. Ignore, because spec is also on dependent list.
19660
19661 return;
19662
19663 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
19664 -- corresponding subtype of the full view.
19665
19666 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
19667 Set_Subtype_Indication
19668 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
19669 Set_Etype (Priv_Dep, Full_T);
19670 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
19671 Set_Analyzed (Parent (Priv_Dep), False);
19672
19673 -- Reanalyze the declaration, suppressing the call to
19674 -- Enter_Name to avoid duplicate names.
19675
19676 Analyze_Subtype_Declaration
19677 (N => Parent (Priv_Dep),
19678 Skip => True);
19679
19680 -- Dependent is a subtype
19681
19682 else
19683 -- We build a new subtype indication using the full view of the
19684 -- incomplete parent. The discriminant constraints have been
19685 -- elaborated already at the point of the subtype declaration.
19686
19687 New_Subt := Create_Itype (E_Void, N);
19688
19689 if Has_Discriminants (Full_T) then
19690 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
19691 else
19692 Disc_Constraint := No_Elist;
19693 end if;
19694
19695 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
19696 Set_Full_View (Priv_Dep, New_Subt);
19697 end if;
19698
19699 Next_Elmt (Inc_Elmt);
19700 end loop;
19701 end Process_Incomplete_Dependents;
19702
19703 --------------------------------
19704 -- Process_Range_Expr_In_Decl --
19705 --------------------------------
19706
19707 procedure Process_Range_Expr_In_Decl
19708 (R : Node_Id;
19709 T : Entity_Id;
19710 Subtyp : Entity_Id := Empty;
19711 Check_List : List_Id := Empty_List;
19712 R_Check_Off : Boolean := False;
19713 In_Iter_Schm : Boolean := False)
19714 is
19715 Lo, Hi : Node_Id;
19716 R_Checks : Check_Result;
19717 Insert_Node : Node_Id;
19718 Def_Id : Entity_Id;
19719
19720 begin
19721 Analyze_And_Resolve (R, Base_Type (T));
19722
19723 if Nkind (R) = N_Range then
19724
19725 -- In SPARK, all ranges should be static, with the exception of the
19726 -- discrete type definition of a loop parameter specification.
19727
19728 if not In_Iter_Schm
19729 and then not Is_OK_Static_Range (R)
19730 then
19731 Check_SPARK_05_Restriction ("range should be static", R);
19732 end if;
19733
19734 Lo := Low_Bound (R);
19735 Hi := High_Bound (R);
19736
19737 -- Validity checks on the range of a quantified expression are
19738 -- delayed until the construct is transformed into a loop.
19739
19740 if Nkind (Parent (R)) = N_Loop_Parameter_Specification
19741 and then Nkind (Parent (Parent (R))) = N_Quantified_Expression
19742 then
19743 null;
19744
19745 -- We need to ensure validity of the bounds here, because if we
19746 -- go ahead and do the expansion, then the expanded code will get
19747 -- analyzed with range checks suppressed and we miss the check.
19748
19749 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
19750 -- the temporaries generated by routine Remove_Side_Effects by means
19751 -- of validity checks must use the same names. When a range appears
19752 -- in the parent of a generic, the range is processed with checks
19753 -- disabled as part of the generic context and with checks enabled
19754 -- for code generation purposes. This leads to link issues as the
19755 -- generic contains references to xxx_FIRST/_LAST, but the inlined
19756 -- template sees the temporaries generated by Remove_Side_Effects.
19757
19758 else
19759 Validity_Check_Range (R, Subtyp);
19760 end if;
19761
19762 -- If there were errors in the declaration, try and patch up some
19763 -- common mistakes in the bounds. The cases handled are literals
19764 -- which are Integer where the expected type is Real and vice versa.
19765 -- These corrections allow the compilation process to proceed further
19766 -- along since some basic assumptions of the format of the bounds
19767 -- are guaranteed.
19768
19769 if Etype (R) = Any_Type then
19770 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
19771 Rewrite (Lo,
19772 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
19773
19774 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
19775 Rewrite (Hi,
19776 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
19777
19778 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
19779 Rewrite (Lo,
19780 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
19781
19782 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
19783 Rewrite (Hi,
19784 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
19785 end if;
19786
19787 Set_Etype (Lo, T);
19788 Set_Etype (Hi, T);
19789 end if;
19790
19791 -- If the bounds of the range have been mistakenly given as string
19792 -- literals (perhaps in place of character literals), then an error
19793 -- has already been reported, but we rewrite the string literal as a
19794 -- bound of the range's type to avoid blowups in later processing
19795 -- that looks at static values.
19796
19797 if Nkind (Lo) = N_String_Literal then
19798 Rewrite (Lo,
19799 Make_Attribute_Reference (Sloc (Lo),
19800 Prefix => New_Occurrence_Of (T, Sloc (Lo)),
19801 Attribute_Name => Name_First));
19802 Analyze_And_Resolve (Lo);
19803 end if;
19804
19805 if Nkind (Hi) = N_String_Literal then
19806 Rewrite (Hi,
19807 Make_Attribute_Reference (Sloc (Hi),
19808 Prefix => New_Occurrence_Of (T, Sloc (Hi)),
19809 Attribute_Name => Name_First));
19810 Analyze_And_Resolve (Hi);
19811 end if;
19812
19813 -- If bounds aren't scalar at this point then exit, avoiding
19814 -- problems with further processing of the range in this procedure.
19815
19816 if not Is_Scalar_Type (Etype (Lo)) then
19817 return;
19818 end if;
19819
19820 -- Resolve (actually Sem_Eval) has checked that the bounds are in
19821 -- then range of the base type. Here we check whether the bounds
19822 -- are in the range of the subtype itself. Note that if the bounds
19823 -- represent the null range the Constraint_Error exception should
19824 -- not be raised.
19825
19826 -- ??? The following code should be cleaned up as follows
19827
19828 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
19829 -- is done in the call to Range_Check (R, T); below
19830
19831 -- 2. The use of R_Check_Off should be investigated and possibly
19832 -- removed, this would clean up things a bit.
19833
19834 if Is_Null_Range (Lo, Hi) then
19835 null;
19836
19837 else
19838 -- Capture values of bounds and generate temporaries for them
19839 -- if needed, before applying checks, since checks may cause
19840 -- duplication of the expression without forcing evaluation.
19841
19842 -- The forced evaluation removes side effects from expressions,
19843 -- which should occur also in GNATprove mode. Otherwise, we end up
19844 -- with unexpected insertions of actions at places where this is
19845 -- not supposed to occur, e.g. on default parameters of a call.
19846
19847 if Expander_Active or GNATprove_Mode then
19848
19849 -- If no subtype name, then just call Force_Evaluation to
19850 -- create declarations as needed to deal with side effects.
19851 -- Also ignore calls from within a record type, where we
19852 -- have possible scoping issues.
19853
19854 if No (Subtyp) or else Is_Record_Type (Current_Scope) then
19855 Force_Evaluation (Lo);
19856 Force_Evaluation (Hi);
19857
19858 -- If a subtype is given, then we capture the bounds if they
19859 -- are not known at compile time, using constant identifiers
19860 -- xxx_FIRST and xxx_LAST where xxx is the name of the subtype.
19861
19862 -- Note: we do this transformation even if expansion is not
19863 -- active, and in particular we do it in GNATprove_Mode since
19864 -- the transformation is in general required to ensure that the
19865 -- resulting tree has proper Ada semantics.
19866
19867 -- Historical note: We used to just do Force_Evaluation calls
19868 -- in all cases, but it is better to capture the bounds with
19869 -- proper non-serialized names, since these will be accessed
19870 -- from other units, and hence may be public, and also we can
19871 -- then expand 'First and 'Last references to be references to
19872 -- these special names.
19873
19874 else
19875 if not Compile_Time_Known_Value (Lo)
19876
19877 -- No need to capture bounds if they already are
19878 -- references to constants.
19879
19880 and then not (Is_Entity_Name (Lo)
19881 and then Is_Constant_Object (Entity (Lo)))
19882 then
19883 declare
19884 Loc : constant Source_Ptr := Sloc (Lo);
19885 Lov : constant Entity_Id :=
19886 Make_Defining_Identifier (Loc,
19887 Chars =>
19888 New_External_Name (Chars (Subtyp), "_FIRST"));
19889 begin
19890 Insert_Action (R,
19891 Make_Object_Declaration (Loc,
19892 Defining_Identifier => Lov,
19893 Object_Definition =>
19894 New_Occurrence_Of (Base_Type (T), Loc),
19895 Constant_Present => True,
19896 Expression => Relocate_Node (Lo)));
19897 Rewrite (Lo, New_Occurrence_Of (Lov, Loc));
19898 end;
19899 end if;
19900
19901 if not Compile_Time_Known_Value (Hi)
19902 and then not (Is_Entity_Name (Hi)
19903 and then Is_Constant_Object (Entity (Hi)))
19904 then
19905 declare
19906 Loc : constant Source_Ptr := Sloc (Hi);
19907 Hiv : constant Entity_Id :=
19908 Make_Defining_Identifier (Loc,
19909 Chars =>
19910 New_External_Name (Chars (Subtyp), "_LAST"));
19911 begin
19912 Insert_Action (R,
19913 Make_Object_Declaration (Loc,
19914 Defining_Identifier => Hiv,
19915 Object_Definition =>
19916 New_Occurrence_Of (Base_Type (T), Loc),
19917 Constant_Present => True,
19918 Expression => Relocate_Node (Hi)));
19919 Rewrite (Hi, New_Occurrence_Of (Hiv, Loc));
19920 end;
19921 end if;
19922 end if;
19923 end if;
19924
19925 -- We use a flag here instead of suppressing checks on the
19926 -- type because the type we check against isn't necessarily
19927 -- the place where we put the check.
19928
19929 if not R_Check_Off then
19930 R_Checks := Get_Range_Checks (R, T);
19931
19932 -- Look up tree to find an appropriate insertion point. We
19933 -- can't just use insert_actions because later processing
19934 -- depends on the insertion node. Prior to Ada 2012 the
19935 -- insertion point could only be a declaration or a loop, but
19936 -- quantified expressions can appear within any context in an
19937 -- expression, and the insertion point can be any statement,
19938 -- pragma, or declaration.
19939
19940 Insert_Node := Parent (R);
19941 while Present (Insert_Node) loop
19942 exit when
19943 Nkind (Insert_Node) in N_Declaration
19944 and then
19945 not Nkind_In
19946 (Insert_Node, N_Component_Declaration,
19947 N_Loop_Parameter_Specification,
19948 N_Function_Specification,
19949 N_Procedure_Specification);
19950
19951 exit when Nkind (Insert_Node) in N_Later_Decl_Item
19952 or else Nkind (Insert_Node) in
19953 N_Statement_Other_Than_Procedure_Call
19954 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
19955 N_Pragma);
19956
19957 Insert_Node := Parent (Insert_Node);
19958 end loop;
19959
19960 -- Why would Type_Decl not be present??? Without this test,
19961 -- short regression tests fail.
19962
19963 if Present (Insert_Node) then
19964
19965 -- Case of loop statement. Verify that the range is part
19966 -- of the subtype indication of the iteration scheme.
19967
19968 if Nkind (Insert_Node) = N_Loop_Statement then
19969 declare
19970 Indic : Node_Id;
19971
19972 begin
19973 Indic := Parent (R);
19974 while Present (Indic)
19975 and then Nkind (Indic) /= N_Subtype_Indication
19976 loop
19977 Indic := Parent (Indic);
19978 end loop;
19979
19980 if Present (Indic) then
19981 Def_Id := Etype (Subtype_Mark (Indic));
19982
19983 Insert_Range_Checks
19984 (R_Checks,
19985 Insert_Node,
19986 Def_Id,
19987 Sloc (Insert_Node),
19988 R,
19989 Do_Before => True);
19990 end if;
19991 end;
19992
19993 -- Insertion before a declaration. If the declaration
19994 -- includes discriminants, the list of applicable checks
19995 -- is given by the caller.
19996
19997 elsif Nkind (Insert_Node) in N_Declaration then
19998 Def_Id := Defining_Identifier (Insert_Node);
19999
20000 if (Ekind (Def_Id) = E_Record_Type
20001 and then Depends_On_Discriminant (R))
20002 or else
20003 (Ekind (Def_Id) = E_Protected_Type
20004 and then Has_Discriminants (Def_Id))
20005 then
20006 Append_Range_Checks
20007 (R_Checks,
20008 Check_List, Def_Id, Sloc (Insert_Node), R);
20009
20010 else
20011 Insert_Range_Checks
20012 (R_Checks,
20013 Insert_Node, Def_Id, Sloc (Insert_Node), R);
20014
20015 end if;
20016
20017 -- Insertion before a statement. Range appears in the
20018 -- context of a quantified expression. Insertion will
20019 -- take place when expression is expanded.
20020
20021 else
20022 null;
20023 end if;
20024 end if;
20025 end if;
20026 end if;
20027
20028 -- Case of other than an explicit N_Range node
20029
20030 -- The forced evaluation removes side effects from expressions, which
20031 -- should occur also in GNATprove mode. Otherwise, we end up with
20032 -- unexpected insertions of actions at places where this is not
20033 -- supposed to occur, e.g. on default parameters of a call.
20034
20035 elsif Expander_Active or GNATprove_Mode then
20036 Get_Index_Bounds (R, Lo, Hi);
20037 Force_Evaluation (Lo);
20038 Force_Evaluation (Hi);
20039 end if;
20040 end Process_Range_Expr_In_Decl;
20041
20042 --------------------------------------
20043 -- Process_Real_Range_Specification --
20044 --------------------------------------
20045
20046 procedure Process_Real_Range_Specification (Def : Node_Id) is
20047 Spec : constant Node_Id := Real_Range_Specification (Def);
20048 Lo : Node_Id;
20049 Hi : Node_Id;
20050 Err : Boolean := False;
20051
20052 procedure Analyze_Bound (N : Node_Id);
20053 -- Analyze and check one bound
20054
20055 -------------------
20056 -- Analyze_Bound --
20057 -------------------
20058
20059 procedure Analyze_Bound (N : Node_Id) is
20060 begin
20061 Analyze_And_Resolve (N, Any_Real);
20062
20063 if not Is_OK_Static_Expression (N) then
20064 Flag_Non_Static_Expr
20065 ("bound in real type definition is not static!", N);
20066 Err := True;
20067 end if;
20068 end Analyze_Bound;
20069
20070 -- Start of processing for Process_Real_Range_Specification
20071
20072 begin
20073 if Present (Spec) then
20074 Lo := Low_Bound (Spec);
20075 Hi := High_Bound (Spec);
20076 Analyze_Bound (Lo);
20077 Analyze_Bound (Hi);
20078
20079 -- If error, clear away junk range specification
20080
20081 if Err then
20082 Set_Real_Range_Specification (Def, Empty);
20083 end if;
20084 end if;
20085 end Process_Real_Range_Specification;
20086
20087 ---------------------
20088 -- Process_Subtype --
20089 ---------------------
20090
20091 function Process_Subtype
20092 (S : Node_Id;
20093 Related_Nod : Node_Id;
20094 Related_Id : Entity_Id := Empty;
20095 Suffix : Character := ' ') return Entity_Id
20096 is
20097 P : Node_Id;
20098 Def_Id : Entity_Id;
20099 Error_Node : Node_Id;
20100 Full_View_Id : Entity_Id;
20101 Subtype_Mark_Id : Entity_Id;
20102
20103 May_Have_Null_Exclusion : Boolean;
20104
20105 procedure Check_Incomplete (T : Entity_Id);
20106 -- Called to verify that an incomplete type is not used prematurely
20107
20108 ----------------------
20109 -- Check_Incomplete --
20110 ----------------------
20111
20112 procedure Check_Incomplete (T : Entity_Id) is
20113 begin
20114 -- Ada 2005 (AI-412): Incomplete subtypes are legal
20115
20116 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
20117 and then
20118 not (Ada_Version >= Ada_2005
20119 and then
20120 (Nkind (Parent (T)) = N_Subtype_Declaration
20121 or else (Nkind (Parent (T)) = N_Subtype_Indication
20122 and then Nkind (Parent (Parent (T))) =
20123 N_Subtype_Declaration)))
20124 then
20125 Error_Msg_N ("invalid use of type before its full declaration", T);
20126 end if;
20127 end Check_Incomplete;
20128
20129 -- Start of processing for Process_Subtype
20130
20131 begin
20132 -- Case of no constraints present
20133
20134 if Nkind (S) /= N_Subtype_Indication then
20135 Find_Type (S);
20136 Check_Incomplete (S);
20137 P := Parent (S);
20138
20139 -- Ada 2005 (AI-231): Static check
20140
20141 if Ada_Version >= Ada_2005
20142 and then Present (P)
20143 and then Null_Exclusion_Present (P)
20144 and then Nkind (P) /= N_Access_To_Object_Definition
20145 and then not Is_Access_Type (Entity (S))
20146 then
20147 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
20148 end if;
20149
20150 -- The following is ugly, can't we have a range or even a flag???
20151
20152 May_Have_Null_Exclusion :=
20153 Nkind_In (P, N_Access_Definition,
20154 N_Access_Function_Definition,
20155 N_Access_Procedure_Definition,
20156 N_Access_To_Object_Definition,
20157 N_Allocator,
20158 N_Component_Definition)
20159 or else
20160 Nkind_In (P, N_Derived_Type_Definition,
20161 N_Discriminant_Specification,
20162 N_Formal_Object_Declaration,
20163 N_Object_Declaration,
20164 N_Object_Renaming_Declaration,
20165 N_Parameter_Specification,
20166 N_Subtype_Declaration);
20167
20168 -- Create an Itype that is a duplicate of Entity (S) but with the
20169 -- null-exclusion attribute.
20170
20171 if May_Have_Null_Exclusion
20172 and then Is_Access_Type (Entity (S))
20173 and then Null_Exclusion_Present (P)
20174
20175 -- No need to check the case of an access to object definition.
20176 -- It is correct to define double not-null pointers.
20177
20178 -- Example:
20179 -- type Not_Null_Int_Ptr is not null access Integer;
20180 -- type Acc is not null access Not_Null_Int_Ptr;
20181
20182 and then Nkind (P) /= N_Access_To_Object_Definition
20183 then
20184 if Can_Never_Be_Null (Entity (S)) then
20185 case Nkind (Related_Nod) is
20186 when N_Full_Type_Declaration =>
20187 if Nkind (Type_Definition (Related_Nod))
20188 in N_Array_Type_Definition
20189 then
20190 Error_Node :=
20191 Subtype_Indication
20192 (Component_Definition
20193 (Type_Definition (Related_Nod)));
20194 else
20195 Error_Node :=
20196 Subtype_Indication (Type_Definition (Related_Nod));
20197 end if;
20198
20199 when N_Subtype_Declaration =>
20200 Error_Node := Subtype_Indication (Related_Nod);
20201
20202 when N_Object_Declaration =>
20203 Error_Node := Object_Definition (Related_Nod);
20204
20205 when N_Component_Declaration =>
20206 Error_Node :=
20207 Subtype_Indication (Component_Definition (Related_Nod));
20208
20209 when N_Allocator =>
20210 Error_Node := Expression (Related_Nod);
20211
20212 when others =>
20213 pragma Assert (False);
20214 Error_Node := Related_Nod;
20215 end case;
20216
20217 Error_Msg_NE
20218 ("`NOT NULL` not allowed (& already excludes null)",
20219 Error_Node,
20220 Entity (S));
20221 end if;
20222
20223 Set_Etype (S,
20224 Create_Null_Excluding_Itype
20225 (T => Entity (S),
20226 Related_Nod => P));
20227 Set_Entity (S, Etype (S));
20228 end if;
20229
20230 return Entity (S);
20231
20232 -- Case of constraint present, so that we have an N_Subtype_Indication
20233 -- node (this node is created only if constraints are present).
20234
20235 else
20236 Find_Type (Subtype_Mark (S));
20237
20238 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
20239 and then not
20240 (Nkind (Parent (S)) = N_Subtype_Declaration
20241 and then Is_Itype (Defining_Identifier (Parent (S))))
20242 then
20243 Check_Incomplete (Subtype_Mark (S));
20244 end if;
20245
20246 P := Parent (S);
20247 Subtype_Mark_Id := Entity (Subtype_Mark (S));
20248
20249 -- Explicit subtype declaration case
20250
20251 if Nkind (P) = N_Subtype_Declaration then
20252 Def_Id := Defining_Identifier (P);
20253
20254 -- Explicit derived type definition case
20255
20256 elsif Nkind (P) = N_Derived_Type_Definition then
20257 Def_Id := Defining_Identifier (Parent (P));
20258
20259 -- Implicit case, the Def_Id must be created as an implicit type.
20260 -- The one exception arises in the case of concurrent types, array
20261 -- and access types, where other subsidiary implicit types may be
20262 -- created and must appear before the main implicit type. In these
20263 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
20264 -- has not yet been called to create Def_Id.
20265
20266 else
20267 if Is_Array_Type (Subtype_Mark_Id)
20268 or else Is_Concurrent_Type (Subtype_Mark_Id)
20269 or else Is_Access_Type (Subtype_Mark_Id)
20270 then
20271 Def_Id := Empty;
20272
20273 -- For the other cases, we create a new unattached Itype,
20274 -- and set the indication to ensure it gets attached later.
20275
20276 else
20277 Def_Id :=
20278 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
20279 end if;
20280 end if;
20281
20282 -- If the kind of constraint is invalid for this kind of type,
20283 -- then give an error, and then pretend no constraint was given.
20284
20285 if not Is_Valid_Constraint_Kind
20286 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
20287 then
20288 Error_Msg_N
20289 ("incorrect constraint for this kind of type", Constraint (S));
20290
20291 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
20292
20293 -- Set Ekind of orphan itype, to prevent cascaded errors
20294
20295 if Present (Def_Id) then
20296 Set_Ekind (Def_Id, Ekind (Any_Type));
20297 end if;
20298
20299 -- Make recursive call, having got rid of the bogus constraint
20300
20301 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
20302 end if;
20303
20304 -- Remaining processing depends on type. Select on Base_Type kind to
20305 -- ensure getting to the concrete type kind in the case of a private
20306 -- subtype (needed when only doing semantic analysis).
20307
20308 case Ekind (Base_Type (Subtype_Mark_Id)) is
20309 when Access_Kind =>
20310
20311 -- If this is a constraint on a class-wide type, discard it.
20312 -- There is currently no way to express a partial discriminant
20313 -- constraint on a type with unknown discriminants. This is
20314 -- a pathology that the ACATS wisely decides not to test.
20315
20316 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
20317 if Comes_From_Source (S) then
20318 Error_Msg_N
20319 ("constraint on class-wide type ignored??",
20320 Constraint (S));
20321 end if;
20322
20323 if Nkind (P) = N_Subtype_Declaration then
20324 Set_Subtype_Indication (P,
20325 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
20326 end if;
20327
20328 return Subtype_Mark_Id;
20329 end if;
20330
20331 Constrain_Access (Def_Id, S, Related_Nod);
20332
20333 if Expander_Active
20334 and then Is_Itype (Designated_Type (Def_Id))
20335 and then Nkind (Related_Nod) = N_Subtype_Declaration
20336 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
20337 then
20338 Build_Itype_Reference
20339 (Designated_Type (Def_Id), Related_Nod);
20340 end if;
20341
20342 when Array_Kind =>
20343 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
20344
20345 when Decimal_Fixed_Point_Kind =>
20346 Constrain_Decimal (Def_Id, S);
20347
20348 when Enumeration_Kind =>
20349 Constrain_Enumeration (Def_Id, S);
20350 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
20351
20352 when Ordinary_Fixed_Point_Kind =>
20353 Constrain_Ordinary_Fixed (Def_Id, S);
20354
20355 when Float_Kind =>
20356 Constrain_Float (Def_Id, S);
20357
20358 when Integer_Kind =>
20359 Constrain_Integer (Def_Id, S);
20360 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
20361
20362 when E_Record_Type |
20363 E_Record_Subtype |
20364 Class_Wide_Kind |
20365 E_Incomplete_Type =>
20366 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
20367
20368 if Ekind (Def_Id) = E_Incomplete_Type then
20369 Set_Private_Dependents (Def_Id, New_Elmt_List);
20370 end if;
20371
20372 when Private_Kind =>
20373 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
20374 Set_Private_Dependents (Def_Id, New_Elmt_List);
20375
20376 -- In case of an invalid constraint prevent further processing
20377 -- since the type constructed is missing expected fields.
20378
20379 if Etype (Def_Id) = Any_Type then
20380 return Def_Id;
20381 end if;
20382
20383 -- If the full view is that of a task with discriminants,
20384 -- we must constrain both the concurrent type and its
20385 -- corresponding record type. Otherwise we will just propagate
20386 -- the constraint to the full view, if available.
20387
20388 if Present (Full_View (Subtype_Mark_Id))
20389 and then Has_Discriminants (Subtype_Mark_Id)
20390 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
20391 then
20392 Full_View_Id :=
20393 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
20394
20395 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
20396 Constrain_Concurrent (Full_View_Id, S,
20397 Related_Nod, Related_Id, Suffix);
20398 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
20399 Set_Full_View (Def_Id, Full_View_Id);
20400
20401 -- Introduce an explicit reference to the private subtype,
20402 -- to prevent scope anomalies in gigi if first use appears
20403 -- in a nested context, e.g. a later function body.
20404 -- Should this be generated in other contexts than a full
20405 -- type declaration?
20406
20407 if Is_Itype (Def_Id)
20408 and then
20409 Nkind (Parent (P)) = N_Full_Type_Declaration
20410 then
20411 Build_Itype_Reference (Def_Id, Parent (P));
20412 end if;
20413
20414 else
20415 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
20416 end if;
20417
20418 when Concurrent_Kind =>
20419 Constrain_Concurrent (Def_Id, S,
20420 Related_Nod, Related_Id, Suffix);
20421
20422 when others =>
20423 Error_Msg_N ("invalid subtype mark in subtype indication", S);
20424 end case;
20425
20426 -- Size and Convention are always inherited from the base type
20427
20428 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
20429 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
20430
20431 return Def_Id;
20432 end if;
20433 end Process_Subtype;
20434
20435 --------------------------------------------
20436 -- Propagate_Default_Init_Cond_Attributes --
20437 --------------------------------------------
20438
20439 procedure Propagate_Default_Init_Cond_Attributes
20440 (From_Typ : Entity_Id;
20441 To_Typ : Entity_Id;
20442 Parent_To_Derivation : Boolean := False;
20443 Private_To_Full_View : Boolean := False)
20444 is
20445 procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id);
20446 -- Remove the default initial procedure (if any) from the rep chain of
20447 -- type Typ.
20448
20449 ----------------------------------------
20450 -- Remove_Default_Init_Cond_Procedure --
20451 ----------------------------------------
20452
20453 procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id) is
20454 Found : Boolean := False;
20455 Prev : Entity_Id;
20456 Subp : Entity_Id;
20457
20458 begin
20459 Prev := Typ;
20460 Subp := Subprograms_For_Type (Typ);
20461 while Present (Subp) loop
20462 if Is_Default_Init_Cond_Procedure (Subp) then
20463 Found := True;
20464 exit;
20465 end if;
20466
20467 Prev := Subp;
20468 Subp := Subprograms_For_Type (Subp);
20469 end loop;
20470
20471 if Found then
20472 Set_Subprograms_For_Type (Prev, Subprograms_For_Type (Subp));
20473 Set_Subprograms_For_Type (Subp, Empty);
20474 end if;
20475 end Remove_Default_Init_Cond_Procedure;
20476
20477 -- Local variables
20478
20479 Inherit_Procedure : Boolean := False;
20480
20481 -- Start of processing for Propagate_Default_Init_Cond_Attributes
20482
20483 begin
20484 if Has_Default_Init_Cond (From_Typ) then
20485
20486 -- A derived type inherits the attributes from its parent type
20487
20488 if Parent_To_Derivation then
20489 Set_Has_Inherited_Default_Init_Cond (To_Typ);
20490
20491 -- A full view shares the attributes with its private view
20492
20493 else
20494 Set_Has_Default_Init_Cond (To_Typ);
20495 end if;
20496
20497 Inherit_Procedure := True;
20498
20499 -- Due to the order of expansion, a derived private type is processed
20500 -- by two routines which both attempt to set the attributes related
20501 -- to pragma Default_Initial_Condition - Build_Derived_Type and then
20502 -- Process_Full_View.
20503
20504 -- package Pack is
20505 -- type Parent_Typ is private
20506 -- with Default_Initial_Condition ...;
20507 -- private
20508 -- type Parent_Typ is ...;
20509 -- end Pack;
20510
20511 -- with Pack; use Pack;
20512 -- package Pack_2 is
20513 -- type Deriv_Typ is private
20514 -- with Default_Initial_Condition ...;
20515 -- private
20516 -- type Deriv_Typ is new Parent_Typ;
20517 -- end Pack_2;
20518
20519 -- When Build_Derived_Type operates, it sets the attributes on the
20520 -- full view without taking into account that the private view may
20521 -- define its own default initial condition procedure. This becomes
20522 -- apparent in Process_Full_View which must undo some of the work by
20523 -- Build_Derived_Type and propagate the attributes from the private
20524 -- to the full view.
20525
20526 if Private_To_Full_View then
20527 Set_Has_Inherited_Default_Init_Cond (To_Typ, False);
20528 Remove_Default_Init_Cond_Procedure (To_Typ);
20529 end if;
20530
20531 -- A type must inherit the default initial condition procedure from a
20532 -- parent type when the parent itself is inheriting the procedure or
20533 -- when it is defining one. This circuitry is also used when dealing
20534 -- with the private / full view of a type.
20535
20536 elsif Has_Inherited_Default_Init_Cond (From_Typ)
20537 or (Parent_To_Derivation
20538 and Present (Get_Pragma
20539 (From_Typ, Pragma_Default_Initial_Condition)))
20540 then
20541 Set_Has_Inherited_Default_Init_Cond (To_Typ);
20542 Inherit_Procedure := True;
20543 end if;
20544
20545 if Inherit_Procedure
20546 and then No (Default_Init_Cond_Procedure (To_Typ))
20547 then
20548 Set_Default_Init_Cond_Procedure
20549 (To_Typ, Default_Init_Cond_Procedure (From_Typ));
20550 end if;
20551 end Propagate_Default_Init_Cond_Attributes;
20552
20553 -----------------------------
20554 -- Record_Type_Declaration --
20555 -----------------------------
20556
20557 procedure Record_Type_Declaration
20558 (T : Entity_Id;
20559 N : Node_Id;
20560 Prev : Entity_Id)
20561 is
20562 Def : constant Node_Id := Type_Definition (N);
20563 Is_Tagged : Boolean;
20564 Tag_Comp : Entity_Id;
20565
20566 begin
20567 -- These flags must be initialized before calling Process_Discriminants
20568 -- because this routine makes use of them.
20569
20570 Set_Ekind (T, E_Record_Type);
20571 Set_Etype (T, T);
20572 Init_Size_Align (T);
20573 Set_Interfaces (T, No_Elist);
20574 Set_Stored_Constraint (T, No_Elist);
20575 Set_Default_SSO (T);
20576
20577 -- Normal case
20578
20579 if Ada_Version < Ada_2005 or else not Interface_Present (Def) then
20580 if Limited_Present (Def) then
20581 Check_SPARK_05_Restriction ("limited is not allowed", N);
20582 end if;
20583
20584 if Abstract_Present (Def) then
20585 Check_SPARK_05_Restriction ("abstract is not allowed", N);
20586 end if;
20587
20588 -- The flag Is_Tagged_Type might have already been set by
20589 -- Find_Type_Name if it detected an error for declaration T. This
20590 -- arises in the case of private tagged types where the full view
20591 -- omits the word tagged.
20592
20593 Is_Tagged :=
20594 Tagged_Present (Def)
20595 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
20596
20597 Set_Is_Limited_Record (T, Limited_Present (Def));
20598
20599 if Is_Tagged then
20600 Set_Is_Tagged_Type (T, True);
20601 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
20602 end if;
20603
20604 -- Type is abstract if full declaration carries keyword, or if
20605 -- previous partial view did.
20606
20607 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
20608 or else Abstract_Present (Def));
20609
20610 else
20611 Check_SPARK_05_Restriction ("interface is not allowed", N);
20612
20613 Is_Tagged := True;
20614 Analyze_Interface_Declaration (T, Def);
20615
20616 if Present (Discriminant_Specifications (N)) then
20617 Error_Msg_N
20618 ("interface types cannot have discriminants",
20619 Defining_Identifier
20620 (First (Discriminant_Specifications (N))));
20621 end if;
20622 end if;
20623
20624 -- First pass: if there are self-referential access components,
20625 -- create the required anonymous access type declarations, and if
20626 -- need be an incomplete type declaration for T itself.
20627
20628 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
20629
20630 if Ada_Version >= Ada_2005
20631 and then Present (Interface_List (Def))
20632 then
20633 Check_Interfaces (N, Def);
20634
20635 declare
20636 Ifaces_List : Elist_Id;
20637
20638 begin
20639 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
20640 -- already in the parents.
20641
20642 Collect_Interfaces
20643 (T => T,
20644 Ifaces_List => Ifaces_List,
20645 Exclude_Parents => True);
20646
20647 Set_Interfaces (T, Ifaces_List);
20648 end;
20649 end if;
20650
20651 -- Records constitute a scope for the component declarations within.
20652 -- The scope is created prior to the processing of these declarations.
20653 -- Discriminants are processed first, so that they are visible when
20654 -- processing the other components. The Ekind of the record type itself
20655 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
20656
20657 -- Enter record scope
20658
20659 Push_Scope (T);
20660
20661 -- If an incomplete or private type declaration was already given for
20662 -- the type, then this scope already exists, and the discriminants have
20663 -- been declared within. We must verify that the full declaration
20664 -- matches the incomplete one.
20665
20666 Check_Or_Process_Discriminants (N, T, Prev);
20667
20668 Set_Is_Constrained (T, not Has_Discriminants (T));
20669 Set_Has_Delayed_Freeze (T, True);
20670
20671 -- For tagged types add a manually analyzed component corresponding
20672 -- to the component _tag, the corresponding piece of tree will be
20673 -- expanded as part of the freezing actions if it is not a CPP_Class.
20674
20675 if Is_Tagged then
20676
20677 -- Do not add the tag unless we are in expansion mode
20678
20679 if Expander_Active then
20680 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
20681 Enter_Name (Tag_Comp);
20682
20683 Set_Ekind (Tag_Comp, E_Component);
20684 Set_Is_Tag (Tag_Comp);
20685 Set_Is_Aliased (Tag_Comp);
20686 Set_Etype (Tag_Comp, RTE (RE_Tag));
20687 Set_DT_Entry_Count (Tag_Comp, No_Uint);
20688 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
20689 Init_Component_Location (Tag_Comp);
20690
20691 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
20692 -- implemented interfaces.
20693
20694 if Has_Interfaces (T) then
20695 Add_Interface_Tag_Components (N, T);
20696 end if;
20697 end if;
20698
20699 Make_Class_Wide_Type (T);
20700 Set_Direct_Primitive_Operations (T, New_Elmt_List);
20701 end if;
20702
20703 -- We must suppress range checks when processing record components in
20704 -- the presence of discriminants, since we don't want spurious checks to
20705 -- be generated during their analysis, but Suppress_Range_Checks flags
20706 -- must be reset the after processing the record definition.
20707
20708 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
20709 -- couldn't we just use the normal range check suppression method here.
20710 -- That would seem cleaner ???
20711
20712 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
20713 Set_Kill_Range_Checks (T, True);
20714 Record_Type_Definition (Def, Prev);
20715 Set_Kill_Range_Checks (T, False);
20716 else
20717 Record_Type_Definition (Def, Prev);
20718 end if;
20719
20720 -- Exit from record scope
20721
20722 End_Scope;
20723
20724 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
20725 -- the implemented interfaces and associate them an aliased entity.
20726
20727 if Is_Tagged
20728 and then not Is_Empty_List (Interface_List (Def))
20729 then
20730 Derive_Progenitor_Subprograms (T, T);
20731 end if;
20732
20733 Check_Function_Writable_Actuals (N);
20734 end Record_Type_Declaration;
20735
20736 ----------------------------
20737 -- Record_Type_Definition --
20738 ----------------------------
20739
20740 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
20741 Component : Entity_Id;
20742 Ctrl_Components : Boolean := False;
20743 Final_Storage_Only : Boolean;
20744 T : Entity_Id;
20745
20746 begin
20747 if Ekind (Prev_T) = E_Incomplete_Type then
20748 T := Full_View (Prev_T);
20749 else
20750 T := Prev_T;
20751 end if;
20752
20753 -- In SPARK, tagged types and type extensions may only be declared in
20754 -- the specification of library unit packages.
20755
20756 if Present (Def) and then Is_Tagged_Type (T) then
20757 declare
20758 Typ : Node_Id;
20759 Ctxt : Node_Id;
20760
20761 begin
20762 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
20763 Typ := Parent (Def);
20764 else
20765 pragma Assert
20766 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
20767 Typ := Parent (Parent (Def));
20768 end if;
20769
20770 Ctxt := Parent (Typ);
20771
20772 if Nkind (Ctxt) = N_Package_Body
20773 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
20774 then
20775 Check_SPARK_05_Restriction
20776 ("type should be defined in package specification", Typ);
20777
20778 elsif Nkind (Ctxt) /= N_Package_Specification
20779 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
20780 then
20781 Check_SPARK_05_Restriction
20782 ("type should be defined in library unit package", Typ);
20783 end if;
20784 end;
20785 end if;
20786
20787 Final_Storage_Only := not Is_Controlled (T);
20788
20789 -- Ada 2005: Check whether an explicit Limited is present in a derived
20790 -- type declaration.
20791
20792 if Nkind (Parent (Def)) = N_Derived_Type_Definition
20793 and then Limited_Present (Parent (Def))
20794 then
20795 Set_Is_Limited_Record (T);
20796 end if;
20797
20798 -- If the component list of a record type is defined by the reserved
20799 -- word null and there is no discriminant part, then the record type has
20800 -- no components and all records of the type are null records (RM 3.7)
20801 -- This procedure is also called to process the extension part of a
20802 -- record extension, in which case the current scope may have inherited
20803 -- components.
20804
20805 if No (Def)
20806 or else No (Component_List (Def))
20807 or else Null_Present (Component_List (Def))
20808 then
20809 if not Is_Tagged_Type (T) then
20810 Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
20811 end if;
20812
20813 else
20814 Analyze_Declarations (Component_Items (Component_List (Def)));
20815
20816 if Present (Variant_Part (Component_List (Def))) then
20817 Check_SPARK_05_Restriction ("variant part is not allowed", Def);
20818 Analyze (Variant_Part (Component_List (Def)));
20819 end if;
20820 end if;
20821
20822 -- After completing the semantic analysis of the record definition,
20823 -- record components, both new and inherited, are accessible. Set their
20824 -- kind accordingly. Exclude malformed itypes from illegal declarations,
20825 -- whose Ekind may be void.
20826
20827 Component := First_Entity (Current_Scope);
20828 while Present (Component) loop
20829 if Ekind (Component) = E_Void
20830 and then not Is_Itype (Component)
20831 then
20832 Set_Ekind (Component, E_Component);
20833 Init_Component_Location (Component);
20834 end if;
20835
20836 if Has_Task (Etype (Component)) then
20837 Set_Has_Task (T);
20838 end if;
20839
20840 if Has_Protected (Etype (Component)) then
20841 Set_Has_Protected (T);
20842 end if;
20843
20844 if Ekind (Component) /= E_Component then
20845 null;
20846
20847 -- Do not set Has_Controlled_Component on a class-wide equivalent
20848 -- type. See Make_CW_Equivalent_Type.
20849
20850 elsif not Is_Class_Wide_Equivalent_Type (T)
20851 and then (Has_Controlled_Component (Etype (Component))
20852 or else (Chars (Component) /= Name_uParent
20853 and then Is_Controlled (Etype (Component))))
20854 then
20855 Set_Has_Controlled_Component (T, True);
20856 Final_Storage_Only :=
20857 Final_Storage_Only
20858 and then Finalize_Storage_Only (Etype (Component));
20859 Ctrl_Components := True;
20860 end if;
20861
20862 Next_Entity (Component);
20863 end loop;
20864
20865 -- A Type is Finalize_Storage_Only only if all its controlled components
20866 -- are also.
20867
20868 if Ctrl_Components then
20869 Set_Finalize_Storage_Only (T, Final_Storage_Only);
20870 end if;
20871
20872 -- Place reference to end record on the proper entity, which may
20873 -- be a partial view.
20874
20875 if Present (Def) then
20876 Process_End_Label (Def, 'e', Prev_T);
20877 end if;
20878 end Record_Type_Definition;
20879
20880 ------------------------
20881 -- Replace_Components --
20882 ------------------------
20883
20884 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
20885 function Process (N : Node_Id) return Traverse_Result;
20886
20887 -------------
20888 -- Process --
20889 -------------
20890
20891 function Process (N : Node_Id) return Traverse_Result is
20892 Comp : Entity_Id;
20893
20894 begin
20895 if Nkind (N) = N_Discriminant_Specification then
20896 Comp := First_Discriminant (Typ);
20897 while Present (Comp) loop
20898 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20899 Set_Defining_Identifier (N, Comp);
20900 exit;
20901 end if;
20902
20903 Next_Discriminant (Comp);
20904 end loop;
20905
20906 elsif Nkind (N) = N_Component_Declaration then
20907 Comp := First_Component (Typ);
20908 while Present (Comp) loop
20909 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20910 Set_Defining_Identifier (N, Comp);
20911 exit;
20912 end if;
20913
20914 Next_Component (Comp);
20915 end loop;
20916 end if;
20917
20918 return OK;
20919 end Process;
20920
20921 procedure Replace is new Traverse_Proc (Process);
20922
20923 -- Start of processing for Replace_Components
20924
20925 begin
20926 Replace (Decl);
20927 end Replace_Components;
20928
20929 -------------------------------
20930 -- Set_Completion_Referenced --
20931 -------------------------------
20932
20933 procedure Set_Completion_Referenced (E : Entity_Id) is
20934 begin
20935 -- If in main unit, mark entity that is a completion as referenced,
20936 -- warnings go on the partial view when needed.
20937
20938 if In_Extended_Main_Source_Unit (E) then
20939 Set_Referenced (E);
20940 end if;
20941 end Set_Completion_Referenced;
20942
20943 ---------------------
20944 -- Set_Default_SSO --
20945 ---------------------
20946
20947 procedure Set_Default_SSO (T : Entity_Id) is
20948 begin
20949 case Opt.Default_SSO is
20950 when ' ' =>
20951 null;
20952 when 'L' =>
20953 Set_SSO_Set_Low_By_Default (T, True);
20954 when 'H' =>
20955 Set_SSO_Set_High_By_Default (T, True);
20956 when others =>
20957 raise Program_Error;
20958 end case;
20959 end Set_Default_SSO;
20960
20961 ---------------------
20962 -- Set_Fixed_Range --
20963 ---------------------
20964
20965 -- The range for fixed-point types is complicated by the fact that we
20966 -- do not know the exact end points at the time of the declaration. This
20967 -- is true for three reasons:
20968
20969 -- A size clause may affect the fudging of the end-points.
20970 -- A small clause may affect the values of the end-points.
20971 -- We try to include the end-points if it does not affect the size.
20972
20973 -- This means that the actual end-points must be established at the
20974 -- point when the type is frozen. Meanwhile, we first narrow the range
20975 -- as permitted (so that it will fit if necessary in a small specified
20976 -- size), and then build a range subtree with these narrowed bounds.
20977 -- Set_Fixed_Range constructs the range from real literal values, and
20978 -- sets the range as the Scalar_Range of the given fixed-point type entity.
20979
20980 -- The parent of this range is set to point to the entity so that it is
20981 -- properly hooked into the tree (unlike normal Scalar_Range entries for
20982 -- other scalar types, which are just pointers to the range in the
20983 -- original tree, this would otherwise be an orphan).
20984
20985 -- The tree is left unanalyzed. When the type is frozen, the processing
20986 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
20987 -- analyzed, and uses this as an indication that it should complete
20988 -- work on the range (it will know the final small and size values).
20989
20990 procedure Set_Fixed_Range
20991 (E : Entity_Id;
20992 Loc : Source_Ptr;
20993 Lo : Ureal;
20994 Hi : Ureal)
20995 is
20996 S : constant Node_Id :=
20997 Make_Range (Loc,
20998 Low_Bound => Make_Real_Literal (Loc, Lo),
20999 High_Bound => Make_Real_Literal (Loc, Hi));
21000 begin
21001 Set_Scalar_Range (E, S);
21002 Set_Parent (S, E);
21003
21004 -- Before the freeze point, the bounds of a fixed point are universal
21005 -- and carry the corresponding type.
21006
21007 Set_Etype (Low_Bound (S), Universal_Real);
21008 Set_Etype (High_Bound (S), Universal_Real);
21009 end Set_Fixed_Range;
21010
21011 ----------------------------------
21012 -- Set_Scalar_Range_For_Subtype --
21013 ----------------------------------
21014
21015 procedure Set_Scalar_Range_For_Subtype
21016 (Def_Id : Entity_Id;
21017 R : Node_Id;
21018 Subt : Entity_Id)
21019 is
21020 Kind : constant Entity_Kind := Ekind (Def_Id);
21021
21022 begin
21023 -- Defend against previous error
21024
21025 if Nkind (R) = N_Error then
21026 return;
21027 end if;
21028
21029 Set_Scalar_Range (Def_Id, R);
21030
21031 -- We need to link the range into the tree before resolving it so
21032 -- that types that are referenced, including importantly the subtype
21033 -- itself, are properly frozen (Freeze_Expression requires that the
21034 -- expression be properly linked into the tree). Of course if it is
21035 -- already linked in, then we do not disturb the current link.
21036
21037 if No (Parent (R)) then
21038 Set_Parent (R, Def_Id);
21039 end if;
21040
21041 -- Reset the kind of the subtype during analysis of the range, to
21042 -- catch possible premature use in the bounds themselves.
21043
21044 Set_Ekind (Def_Id, E_Void);
21045 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
21046 Set_Ekind (Def_Id, Kind);
21047 end Set_Scalar_Range_For_Subtype;
21048
21049 --------------------------------------------------------
21050 -- Set_Stored_Constraint_From_Discriminant_Constraint --
21051 --------------------------------------------------------
21052
21053 procedure Set_Stored_Constraint_From_Discriminant_Constraint
21054 (E : Entity_Id)
21055 is
21056 begin
21057 -- Make sure set if encountered during Expand_To_Stored_Constraint
21058
21059 Set_Stored_Constraint (E, No_Elist);
21060
21061 -- Give it the right value
21062
21063 if Is_Constrained (E) and then Has_Discriminants (E) then
21064 Set_Stored_Constraint (E,
21065 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
21066 end if;
21067 end Set_Stored_Constraint_From_Discriminant_Constraint;
21068
21069 -------------------------------------
21070 -- Signed_Integer_Type_Declaration --
21071 -------------------------------------
21072
21073 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
21074 Implicit_Base : Entity_Id;
21075 Base_Typ : Entity_Id;
21076 Lo_Val : Uint;
21077 Hi_Val : Uint;
21078 Errs : Boolean := False;
21079 Lo : Node_Id;
21080 Hi : Node_Id;
21081
21082 function Can_Derive_From (E : Entity_Id) return Boolean;
21083 -- Determine whether given bounds allow derivation from specified type
21084
21085 procedure Check_Bound (Expr : Node_Id);
21086 -- Check bound to make sure it is integral and static. If not, post
21087 -- appropriate error message and set Errs flag
21088
21089 ---------------------
21090 -- Can_Derive_From --
21091 ---------------------
21092
21093 -- Note we check both bounds against both end values, to deal with
21094 -- strange types like ones with a range of 0 .. -12341234.
21095
21096 function Can_Derive_From (E : Entity_Id) return Boolean is
21097 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
21098 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
21099 begin
21100 return Lo <= Lo_Val and then Lo_Val <= Hi
21101 and then
21102 Lo <= Hi_Val and then Hi_Val <= Hi;
21103 end Can_Derive_From;
21104
21105 -----------------
21106 -- Check_Bound --
21107 -----------------
21108
21109 procedure Check_Bound (Expr : Node_Id) is
21110 begin
21111 -- If a range constraint is used as an integer type definition, each
21112 -- bound of the range must be defined by a static expression of some
21113 -- integer type, but the two bounds need not have the same integer
21114 -- type (Negative bounds are allowed.) (RM 3.5.4)
21115
21116 if not Is_Integer_Type (Etype (Expr)) then
21117 Error_Msg_N
21118 ("integer type definition bounds must be of integer type", Expr);
21119 Errs := True;
21120
21121 elsif not Is_OK_Static_Expression (Expr) then
21122 Flag_Non_Static_Expr
21123 ("non-static expression used for integer type bound!", Expr);
21124 Errs := True;
21125
21126 -- The bounds are folded into literals, and we set their type to be
21127 -- universal, to avoid typing difficulties: we cannot set the type
21128 -- of the literal to the new type, because this would be a forward
21129 -- reference for the back end, and if the original type is user-
21130 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
21131
21132 else
21133 if Is_Entity_Name (Expr) then
21134 Fold_Uint (Expr, Expr_Value (Expr), True);
21135 end if;
21136
21137 Set_Etype (Expr, Universal_Integer);
21138 end if;
21139 end Check_Bound;
21140
21141 -- Start of processing for Signed_Integer_Type_Declaration
21142
21143 begin
21144 -- Create an anonymous base type
21145
21146 Implicit_Base :=
21147 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
21148
21149 -- Analyze and check the bounds, they can be of any integer type
21150
21151 Lo := Low_Bound (Def);
21152 Hi := High_Bound (Def);
21153
21154 -- Arbitrarily use Integer as the type if either bound had an error
21155
21156 if Hi = Error or else Lo = Error then
21157 Base_Typ := Any_Integer;
21158 Set_Error_Posted (T, True);
21159
21160 -- Here both bounds are OK expressions
21161
21162 else
21163 Analyze_And_Resolve (Lo, Any_Integer);
21164 Analyze_And_Resolve (Hi, Any_Integer);
21165
21166 Check_Bound (Lo);
21167 Check_Bound (Hi);
21168
21169 if Errs then
21170 Hi := Type_High_Bound (Standard_Long_Long_Integer);
21171 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
21172 end if;
21173
21174 -- Find type to derive from
21175
21176 Lo_Val := Expr_Value (Lo);
21177 Hi_Val := Expr_Value (Hi);
21178
21179 if Can_Derive_From (Standard_Short_Short_Integer) then
21180 Base_Typ := Base_Type (Standard_Short_Short_Integer);
21181
21182 elsif Can_Derive_From (Standard_Short_Integer) then
21183 Base_Typ := Base_Type (Standard_Short_Integer);
21184
21185 elsif Can_Derive_From (Standard_Integer) then
21186 Base_Typ := Base_Type (Standard_Integer);
21187
21188 elsif Can_Derive_From (Standard_Long_Integer) then
21189 Base_Typ := Base_Type (Standard_Long_Integer);
21190
21191 elsif Can_Derive_From (Standard_Long_Long_Integer) then
21192 Check_Restriction (No_Long_Long_Integers, Def);
21193 Base_Typ := Base_Type (Standard_Long_Long_Integer);
21194
21195 else
21196 Base_Typ := Base_Type (Standard_Long_Long_Integer);
21197 Error_Msg_N ("integer type definition bounds out of range", Def);
21198 Hi := Type_High_Bound (Standard_Long_Long_Integer);
21199 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
21200 end if;
21201 end if;
21202
21203 -- Complete both implicit base and declared first subtype entities
21204
21205 Set_Etype (Implicit_Base, Base_Typ);
21206 Set_Size_Info (Implicit_Base, (Base_Typ));
21207 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
21208 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
21209
21210 Set_Ekind (T, E_Signed_Integer_Subtype);
21211 Set_Etype (T, Implicit_Base);
21212
21213 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
21214
21215 Set_Size_Info (T, (Implicit_Base));
21216 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
21217 Set_Scalar_Range (T, Def);
21218 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
21219 Set_Is_Constrained (T);
21220 end Signed_Integer_Type_Declaration;
21221
21222 end Sem_Ch3;