[multiple changes]
[gcc.git] / gcc / ada / sem_ch3.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Elists; use Elists;
32 with Einfo; use Einfo;
33 with Errout; use Errout;
34 with Eval_Fat; use Eval_Fat;
35 with Exp_Ch3; use Exp_Ch3;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Disp; use Exp_Disp;
38 with Exp_Dist; use Exp_Dist;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Freeze; use Freeze;
42 with Ghost; use Ghost;
43 with Itypes; use Itypes;
44 with Layout; use Layout;
45 with Lib; use Lib;
46 with Lib.Xref; use Lib.Xref;
47 with Namet; use Namet;
48 with Nmake; use Nmake;
49 with Opt; use Opt;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Case; use Sem_Case;
56 with Sem_Cat; use Sem_Cat;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch7; use Sem_Ch7;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Dim; use Sem_Dim;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elim; use Sem_Elim;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Mech; use Sem_Mech;
67 with Sem_Res; use Sem_Res;
68 with Sem_Smem; use Sem_Smem;
69 with Sem_Type; use Sem_Type;
70 with Sem_Util; use Sem_Util;
71 with Sem_Warn; use Sem_Warn;
72 with Stand; use Stand;
73 with Sinfo; use Sinfo;
74 with Sinput; use Sinput;
75 with Snames; use Snames;
76 with Targparm; use Targparm;
77 with Tbuild; use Tbuild;
78 with Ttypes; use Ttypes;
79 with Uintp; use Uintp;
80 with Urealp; use Urealp;
81
82 package body Sem_Ch3 is
83
84 -----------------------
85 -- Local Subprograms --
86 -----------------------
87
88 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
89 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
90 -- abstract interface types implemented by a record type or a derived
91 -- record type.
92
93 procedure Build_Derived_Type
94 (N : Node_Id;
95 Parent_Type : Entity_Id;
96 Derived_Type : Entity_Id;
97 Is_Completion : Boolean;
98 Derive_Subps : Boolean := True);
99 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
100 -- the N_Full_Type_Declaration node containing the derived type definition.
101 -- Parent_Type is the entity for the parent type in the derived type
102 -- definition and Derived_Type the actual derived type. Is_Completion must
103 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
104 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
105 -- completion of a private type declaration. If Is_Completion is set to
106 -- True, N is the completion of a private type declaration and Derived_Type
107 -- is different from the defining identifier inside N (i.e. Derived_Type /=
108 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
109 -- subprograms should be derived. The only case where this parameter is
110 -- False is when Build_Derived_Type is recursively called to process an
111 -- implicit derived full type for a type derived from a private type (in
112 -- that case the subprograms must only be derived for the private view of
113 -- the type).
114 --
115 -- ??? These flags need a bit of re-examination and re-documentation:
116 -- ??? are they both necessary (both seem related to the recursion)?
117
118 procedure Build_Derived_Access_Type
119 (N : Node_Id;
120 Parent_Type : Entity_Id;
121 Derived_Type : Entity_Id);
122 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
123 -- create an implicit base if the parent type is constrained or if the
124 -- subtype indication has a constraint.
125
126 procedure Build_Derived_Array_Type
127 (N : Node_Id;
128 Parent_Type : Entity_Id;
129 Derived_Type : Entity_Id);
130 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
131 -- create an implicit base if the parent type is constrained or if the
132 -- subtype indication has a constraint.
133
134 procedure Build_Derived_Concurrent_Type
135 (N : Node_Id;
136 Parent_Type : Entity_Id;
137 Derived_Type : Entity_Id);
138 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
139 -- protected type, inherit entries and protected subprograms, check
140 -- legality of discriminant constraints if any.
141
142 procedure Build_Derived_Enumeration_Type
143 (N : Node_Id;
144 Parent_Type : Entity_Id;
145 Derived_Type : Entity_Id);
146 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
147 -- type, we must create a new list of literals. Types derived from
148 -- Character and [Wide_]Wide_Character are special-cased.
149
150 procedure Build_Derived_Numeric_Type
151 (N : Node_Id;
152 Parent_Type : Entity_Id;
153 Derived_Type : Entity_Id);
154 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
155 -- an anonymous base type, and propagate constraint to subtype if needed.
156
157 procedure Build_Derived_Private_Type
158 (N : Node_Id;
159 Parent_Type : Entity_Id;
160 Derived_Type : Entity_Id;
161 Is_Completion : Boolean;
162 Derive_Subps : Boolean := True);
163 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
164 -- because the parent may or may not have a completion, and the derivation
165 -- may itself be a completion.
166
167 procedure Build_Derived_Record_Type
168 (N : Node_Id;
169 Parent_Type : Entity_Id;
170 Derived_Type : Entity_Id;
171 Derive_Subps : Boolean := True);
172 -- Subsidiary procedure used for tagged and untagged record types
173 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
174 -- All parameters are as in Build_Derived_Type except that N, in
175 -- addition to being an N_Full_Type_Declaration node, can also be an
176 -- N_Private_Extension_Declaration node. See the definition of this routine
177 -- for much more info. Derive_Subps indicates whether subprograms should be
178 -- derived from the parent type. The only case where Derive_Subps is False
179 -- is for an implicit derived full type for a type derived from a private
180 -- type (see Build_Derived_Type).
181
182 procedure Build_Discriminal (Discrim : Entity_Id);
183 -- Create the discriminal corresponding to discriminant Discrim, that is
184 -- the parameter corresponding to Discrim to be used in initialization
185 -- procedures for the type where Discrim is a discriminant. Discriminals
186 -- are not used during semantic analysis, and are not fully defined
187 -- entities until expansion. Thus they are not given a scope until
188 -- initialization procedures are built.
189
190 function Build_Discriminant_Constraints
191 (T : Entity_Id;
192 Def : Node_Id;
193 Derived_Def : Boolean := False) return Elist_Id;
194 -- Validate discriminant constraints and return the list of the constraints
195 -- in order of discriminant declarations, where T is the discriminated
196 -- unconstrained type. Def is the N_Subtype_Indication node where the
197 -- discriminants constraints for T are specified. Derived_Def is True
198 -- when building the discriminant constraints in a derived type definition
199 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
200 -- type and Def is the constraint "(xxx)" on T and this routine sets the
201 -- Corresponding_Discriminant field of the discriminants in the derived
202 -- type D to point to the corresponding discriminants in the parent type T.
203
204 procedure Build_Discriminated_Subtype
205 (T : Entity_Id;
206 Def_Id : Entity_Id;
207 Elist : Elist_Id;
208 Related_Nod : Node_Id;
209 For_Access : Boolean := False);
210 -- Subsidiary procedure to Constrain_Discriminated_Type and to
211 -- Process_Incomplete_Dependents. Given
212 --
213 -- T (a possibly discriminated base type)
214 -- Def_Id (a very partially built subtype for T),
215 --
216 -- the call completes Def_Id to be the appropriate E_*_Subtype.
217 --
218 -- The Elist is the list of discriminant constraints if any (it is set
219 -- to No_Elist if T is not a discriminated type, and to an empty list if
220 -- T has discriminants but there are no discriminant constraints). The
221 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
222 -- The For_Access says whether or not this subtype is really constraining
223 -- an access type. That is its sole purpose is the designated type of an
224 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
225 -- is built to avoid freezing T when the access subtype is frozen.
226
227 function Build_Scalar_Bound
228 (Bound : Node_Id;
229 Par_T : Entity_Id;
230 Der_T : Entity_Id) return Node_Id;
231 -- The bounds of a derived scalar type are conversions of the bounds of
232 -- the parent type. Optimize the representation if the bounds are literals.
233 -- Needs a more complete spec--what are the parameters exactly, and what
234 -- exactly is the returned value, and how is Bound affected???
235
236 procedure Build_Underlying_Full_View
237 (N : Node_Id;
238 Typ : Entity_Id;
239 Par : Entity_Id);
240 -- If the completion of a private type is itself derived from a private
241 -- type, or if the full view of a private subtype is itself private, the
242 -- back-end has no way to compute the actual size of this type. We build
243 -- an internal subtype declaration of the proper parent type to convey
244 -- this information. This extra mechanism is needed because a full
245 -- view cannot itself have a full view (it would get clobbered during
246 -- view exchanges).
247
248 procedure Check_Access_Discriminant_Requires_Limited
249 (D : Node_Id;
250 Loc : Node_Id);
251 -- Check the restriction that the type to which an access discriminant
252 -- belongs must be a concurrent type or a descendant of a type with
253 -- the reserved word 'limited' in its declaration.
254
255 procedure Check_Anonymous_Access_Components
256 (Typ_Decl : Node_Id;
257 Typ : Entity_Id;
258 Prev : Entity_Id;
259 Comp_List : Node_Id);
260 -- Ada 2005 AI-382: an access component in a record definition can refer to
261 -- the enclosing record, in which case it denotes the type itself, and not
262 -- the current instance of the type. We create an anonymous access type for
263 -- the component, and flag it as an access to a component, so accessibility
264 -- checks are properly performed on it. The declaration of the access type
265 -- is placed ahead of that of the record to prevent order-of-elaboration
266 -- circularity issues in Gigi. We create an incomplete type for the record
267 -- declaration, which is the designated type of the anonymous access.
268
269 procedure Check_Delta_Expression (E : Node_Id);
270 -- Check that the expression represented by E is suitable for use as a
271 -- delta expression, i.e. it is of real type and is static.
272
273 procedure Check_Digits_Expression (E : Node_Id);
274 -- Check that the expression represented by E is suitable for use as a
275 -- digits expression, i.e. it is of integer type, positive and static.
276
277 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
278 -- Validate the initialization of an object declaration. T is the required
279 -- type, and Exp is the initialization expression.
280
281 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
282 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
283
284 procedure Check_Or_Process_Discriminants
285 (N : Node_Id;
286 T : Entity_Id;
287 Prev : Entity_Id := Empty);
288 -- If N is the full declaration of the completion T of an incomplete or
289 -- private type, check its discriminants (which are already known to be
290 -- conformant with those of the partial view, see Find_Type_Name),
291 -- otherwise process them. Prev is the entity of the partial declaration,
292 -- if any.
293
294 procedure Check_Real_Bound (Bound : Node_Id);
295 -- Check given bound for being of real type and static. If not, post an
296 -- appropriate message, and rewrite the bound with the real literal zero.
297
298 procedure Constant_Redeclaration
299 (Id : Entity_Id;
300 N : Node_Id;
301 T : out Entity_Id);
302 -- Various checks on legality of full declaration of deferred constant.
303 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
304 -- node. The caller has not yet set any attributes of this entity.
305
306 function Contain_Interface
307 (Iface : Entity_Id;
308 Ifaces : Elist_Id) return Boolean;
309 -- Ada 2005: Determine whether Iface is present in the list Ifaces
310
311 procedure Convert_Scalar_Bounds
312 (N : Node_Id;
313 Parent_Type : Entity_Id;
314 Derived_Type : Entity_Id;
315 Loc : Source_Ptr);
316 -- For derived scalar types, convert the bounds in the type definition to
317 -- the derived type, and complete their analysis. Given a constraint of the
318 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
319 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
320 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
321 -- subtype are conversions of those bounds to the derived_type, so that
322 -- their typing is consistent.
323
324 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
325 -- Copies attributes from array base type T2 to array base type T1. Copies
326 -- only attributes that apply to base types, but not subtypes.
327
328 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
329 -- Copies attributes from array subtype T2 to array subtype T1. Copies
330 -- attributes that apply to both subtypes and base types.
331
332 procedure Create_Constrained_Components
333 (Subt : Entity_Id;
334 Decl_Node : Node_Id;
335 Typ : Entity_Id;
336 Constraints : Elist_Id);
337 -- Build the list of entities for a constrained discriminated record
338 -- subtype. If a component depends on a discriminant, replace its subtype
339 -- using the discriminant values in the discriminant constraint. Subt
340 -- is the defining identifier for the subtype whose list of constrained
341 -- entities we will create. Decl_Node is the type declaration node where
342 -- we will attach all the itypes created. Typ is the base discriminated
343 -- type for the subtype Subt. Constraints is the list of discriminant
344 -- constraints for Typ.
345
346 function Constrain_Component_Type
347 (Comp : Entity_Id;
348 Constrained_Typ : Entity_Id;
349 Related_Node : Node_Id;
350 Typ : Entity_Id;
351 Constraints : Elist_Id) return Entity_Id;
352 -- Given a discriminated base type Typ, a list of discriminant constraints,
353 -- Constraints, for Typ and a component Comp of Typ, create and return the
354 -- type corresponding to Etype (Comp) where all discriminant references
355 -- are replaced with the corresponding constraint. If Etype (Comp) contains
356 -- no discriminant references then it is returned as-is. Constrained_Typ
357 -- is the final constrained subtype to which the constrained component
358 -- belongs. Related_Node is the node where we attach all created itypes.
359
360 procedure Constrain_Access
361 (Def_Id : in out Entity_Id;
362 S : Node_Id;
363 Related_Nod : Node_Id);
364 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
365 -- an anonymous type created for a subtype indication. In that case it is
366 -- created in the procedure and attached to Related_Nod.
367
368 procedure Constrain_Array
369 (Def_Id : in out Entity_Id;
370 SI : Node_Id;
371 Related_Nod : Node_Id;
372 Related_Id : Entity_Id;
373 Suffix : Character);
374 -- Apply a list of index constraints to an unconstrained array type. The
375 -- first parameter is the entity for the resulting subtype. A value of
376 -- Empty for Def_Id indicates that an implicit type must be created, but
377 -- creation is delayed (and must be done by this procedure) because other
378 -- subsidiary implicit types must be created first (which is why Def_Id
379 -- is an in/out parameter). The second parameter is a subtype indication
380 -- node for the constrained array to be created (e.g. something of the
381 -- form string (1 .. 10)). Related_Nod gives the place where this type
382 -- has to be inserted in the tree. The Related_Id and Suffix parameters
383 -- are used to build the associated Implicit type name.
384
385 procedure Constrain_Concurrent
386 (Def_Id : in out Entity_Id;
387 SI : Node_Id;
388 Related_Nod : Node_Id;
389 Related_Id : Entity_Id;
390 Suffix : Character);
391 -- Apply list of discriminant constraints to an unconstrained concurrent
392 -- type.
393 --
394 -- SI is the N_Subtype_Indication node containing the constraint and
395 -- the unconstrained type to constrain.
396 --
397 -- Def_Id is the entity for the resulting constrained subtype. A value
398 -- of Empty for Def_Id indicates that an implicit type must be created,
399 -- but creation is delayed (and must be done by this procedure) because
400 -- other subsidiary implicit types must be created first (which is why
401 -- Def_Id is an in/out parameter).
402 --
403 -- Related_Nod gives the place where this type has to be inserted
404 -- in the tree.
405 --
406 -- The last two arguments are used to create its external name if needed.
407
408 function Constrain_Corresponding_Record
409 (Prot_Subt : Entity_Id;
410 Corr_Rec : Entity_Id;
411 Related_Nod : Node_Id) return Entity_Id;
412 -- When constraining a protected type or task type with discriminants,
413 -- constrain the corresponding record with the same discriminant values.
414
415 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
416 -- Constrain a decimal fixed point type with a digits constraint and/or a
417 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
418
419 procedure Constrain_Discriminated_Type
420 (Def_Id : Entity_Id;
421 S : Node_Id;
422 Related_Nod : Node_Id;
423 For_Access : Boolean := False);
424 -- Process discriminant constraints of composite type. Verify that values
425 -- have been provided for all discriminants, that the original type is
426 -- unconstrained, and that the types of the supplied expressions match
427 -- the discriminant types. The first three parameters are like in routine
428 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
429 -- of For_Access.
430
431 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
432 -- Constrain an enumeration type with a range constraint. This is identical
433 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
434
435 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
436 -- Constrain a floating point type with either a digits constraint
437 -- and/or a range constraint, building a E_Floating_Point_Subtype.
438
439 procedure Constrain_Index
440 (Index : Node_Id;
441 S : Node_Id;
442 Related_Nod : Node_Id;
443 Related_Id : Entity_Id;
444 Suffix : Character;
445 Suffix_Index : Nat);
446 -- Process an index constraint S in a constrained array declaration. The
447 -- constraint can be a subtype name, or a range with or without an explicit
448 -- subtype mark. The index is the corresponding index of the unconstrained
449 -- array. The Related_Id and Suffix parameters are used to build the
450 -- associated Implicit type name.
451
452 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
453 -- Build subtype of a signed or modular integer type
454
455 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
456 -- Constrain an ordinary fixed point type with a range constraint, and
457 -- build an E_Ordinary_Fixed_Point_Subtype entity.
458
459 procedure Copy_And_Swap (Priv, Full : Entity_Id);
460 -- Copy the Priv entity into the entity of its full declaration then swap
461 -- the two entities in such a manner that the former private type is now
462 -- seen as a full type.
463
464 procedure Decimal_Fixed_Point_Type_Declaration
465 (T : Entity_Id;
466 Def : Node_Id);
467 -- Create a new decimal fixed point type, and apply the constraint to
468 -- obtain a subtype of this new type.
469
470 procedure Complete_Private_Subtype
471 (Priv : Entity_Id;
472 Full : Entity_Id;
473 Full_Base : Entity_Id;
474 Related_Nod : Node_Id);
475 -- Complete the implicit full view of a private subtype by setting the
476 -- appropriate semantic fields. If the full view of the parent is a record
477 -- type, build constrained components of subtype.
478
479 procedure Derive_Progenitor_Subprograms
480 (Parent_Type : Entity_Id;
481 Tagged_Type : Entity_Id);
482 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
483 -- operations of progenitors of Tagged_Type, and replace the subsidiary
484 -- subtypes with Tagged_Type, to build the specs of the inherited interface
485 -- primitives. The derived primitives are aliased to those of the
486 -- interface. This routine takes care also of transferring to the full view
487 -- subprograms associated with the partial view of Tagged_Type that cover
488 -- interface primitives.
489
490 procedure Derived_Standard_Character
491 (N : Node_Id;
492 Parent_Type : Entity_Id;
493 Derived_Type : Entity_Id);
494 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
495 -- derivations from types Standard.Character and Standard.Wide_Character.
496
497 procedure Derived_Type_Declaration
498 (T : Entity_Id;
499 N : Node_Id;
500 Is_Completion : Boolean);
501 -- Process a derived type declaration. Build_Derived_Type is invoked
502 -- to process the actual derived type definition. Parameters N and
503 -- Is_Completion have the same meaning as in Build_Derived_Type.
504 -- T is the N_Defining_Identifier for the entity defined in the
505 -- N_Full_Type_Declaration node N, that is T is the derived type.
506
507 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
508 -- Insert each literal in symbol table, as an overloadable identifier. Each
509 -- enumeration type is mapped into a sequence of integers, and each literal
510 -- is defined as a constant with integer value. If any of the literals are
511 -- character literals, the type is a character type, which means that
512 -- strings are legal aggregates for arrays of components of the type.
513
514 function Expand_To_Stored_Constraint
515 (Typ : Entity_Id;
516 Constraint : Elist_Id) return Elist_Id;
517 -- Given a constraint (i.e. a list of expressions) on the discriminants of
518 -- Typ, expand it into a constraint on the stored discriminants and return
519 -- the new list of expressions constraining the stored discriminants.
520
521 function Find_Type_Of_Object
522 (Obj_Def : Node_Id;
523 Related_Nod : Node_Id) return Entity_Id;
524 -- Get type entity for object referenced by Obj_Def, attaching the implicit
525 -- types generated to Related_Nod.
526
527 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
528 -- Create a new float and apply the constraint to obtain subtype of it
529
530 function Has_Range_Constraint (N : Node_Id) return Boolean;
531 -- Given an N_Subtype_Indication node N, return True if a range constraint
532 -- is present, either directly, or as part of a digits or delta constraint.
533 -- In addition, a digits constraint in the decimal case returns True, since
534 -- it establishes a default range if no explicit range is present.
535
536 function Inherit_Components
537 (N : Node_Id;
538 Parent_Base : Entity_Id;
539 Derived_Base : Entity_Id;
540 Is_Tagged : Boolean;
541 Inherit_Discr : Boolean;
542 Discs : Elist_Id) return Elist_Id;
543 -- Called from Build_Derived_Record_Type to inherit the components of
544 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
545 -- For more information on derived types and component inheritance please
546 -- consult the comment above the body of Build_Derived_Record_Type.
547 --
548 -- N is the original derived type declaration
549 --
550 -- Is_Tagged is set if we are dealing with tagged types
551 --
552 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
553 -- Parent_Base, otherwise no discriminants are inherited.
554 --
555 -- Discs gives the list of constraints that apply to Parent_Base in the
556 -- derived type declaration. If Discs is set to No_Elist, then we have
557 -- the following situation:
558 --
559 -- type Parent (D1..Dn : ..) is [tagged] record ...;
560 -- type Derived is new Parent [with ...];
561 --
562 -- which gets treated as
563 --
564 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
565 --
566 -- For untagged types the returned value is an association list. The list
567 -- starts from the association (Parent_Base => Derived_Base), and then it
568 -- contains a sequence of the associations of the form
569 --
570 -- (Old_Component => New_Component),
571 --
572 -- where Old_Component is the Entity_Id of a component in Parent_Base and
573 -- New_Component is the Entity_Id of the corresponding component in
574 -- Derived_Base. For untagged records, this association list is needed when
575 -- copying the record declaration for the derived base. In the tagged case
576 -- the value returned is irrelevant.
577
578 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
579 -- Propagate static and dynamic predicate flags from a parent to the
580 -- subtype in a subtype declaration with and without constraints.
581
582 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean;
583 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
584 -- Determine whether subprogram Subp is a procedure subject to pragma
585 -- Extensions_Visible with value False and has at least one controlling
586 -- parameter of mode OUT.
587
588 function Is_Valid_Constraint_Kind
589 (T_Kind : Type_Kind;
590 Constraint_Kind : Node_Kind) return Boolean;
591 -- Returns True if it is legal to apply the given kind of constraint to the
592 -- given kind of type (index constraint to an array type, for example).
593
594 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
595 -- Create new modular type. Verify that modulus is in bounds
596
597 procedure New_Concatenation_Op (Typ : Entity_Id);
598 -- Create an abbreviated declaration for an operator in order to
599 -- materialize concatenation on array types.
600
601 procedure Ordinary_Fixed_Point_Type_Declaration
602 (T : Entity_Id;
603 Def : Node_Id);
604 -- Create a new ordinary fixed point type, and apply the constraint to
605 -- obtain subtype of it.
606
607 procedure Prepare_Private_Subtype_Completion
608 (Id : Entity_Id;
609 Related_Nod : Node_Id);
610 -- Id is a subtype of some private type. Creates the full declaration
611 -- associated with Id whenever possible, i.e. when the full declaration
612 -- of the base type is already known. Records each subtype into
613 -- Private_Dependents of the base type.
614
615 procedure Process_Incomplete_Dependents
616 (N : Node_Id;
617 Full_T : Entity_Id;
618 Inc_T : Entity_Id);
619 -- Process all entities that depend on an incomplete type. There include
620 -- subtypes, subprogram types that mention the incomplete type in their
621 -- profiles, and subprogram with access parameters that designate the
622 -- incomplete type.
623
624 -- Inc_T is the defining identifier of an incomplete type declaration, its
625 -- Ekind is E_Incomplete_Type.
626 --
627 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
628 --
629 -- Full_T is N's defining identifier.
630 --
631 -- Subtypes of incomplete types with discriminants are completed when the
632 -- parent type is. This is simpler than private subtypes, because they can
633 -- only appear in the same scope, and there is no need to exchange views.
634 -- Similarly, access_to_subprogram types may have a parameter or a return
635 -- type that is an incomplete type, and that must be replaced with the
636 -- full type.
637 --
638 -- If the full type is tagged, subprogram with access parameters that
639 -- designated the incomplete may be primitive operations of the full type,
640 -- and have to be processed accordingly.
641
642 procedure Process_Real_Range_Specification (Def : Node_Id);
643 -- Given the type definition for a real type, this procedure processes and
644 -- checks the real range specification of this type definition if one is
645 -- present. If errors are found, error messages are posted, and the
646 -- Real_Range_Specification of Def is reset to Empty.
647
648 procedure Record_Type_Declaration
649 (T : Entity_Id;
650 N : Node_Id;
651 Prev : Entity_Id);
652 -- Process a record type declaration (for both untagged and tagged
653 -- records). Parameters T and N are exactly like in procedure
654 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
655 -- for this routine. If this is the completion of an incomplete type
656 -- declaration, Prev is the entity of the incomplete declaration, used for
657 -- cross-referencing. Otherwise Prev = T.
658
659 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
660 -- This routine is used to process the actual record type definition (both
661 -- for untagged and tagged records). Def is a record type definition node.
662 -- This procedure analyzes the components in this record type definition.
663 -- Prev_T is the entity for the enclosing record type. It is provided so
664 -- that its Has_Task flag can be set if any of the component have Has_Task
665 -- set. If the declaration is the completion of an incomplete type
666 -- declaration, Prev_T is the original incomplete type, whose full view is
667 -- the record type.
668
669 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
670 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
671 -- build a copy of the declaration tree of the parent, and we create
672 -- independently the list of components for the derived type. Semantic
673 -- information uses the component entities, but record representation
674 -- clauses are validated on the declaration tree. This procedure replaces
675 -- discriminants and components in the declaration with those that have
676 -- been created by Inherit_Components.
677
678 procedure Set_Fixed_Range
679 (E : Entity_Id;
680 Loc : Source_Ptr;
681 Lo : Ureal;
682 Hi : Ureal);
683 -- Build a range node with the given bounds and set it as the Scalar_Range
684 -- of the given fixed-point type entity. Loc is the source location used
685 -- for the constructed range. See body for further details.
686
687 procedure Set_Scalar_Range_For_Subtype
688 (Def_Id : Entity_Id;
689 R : Node_Id;
690 Subt : Entity_Id);
691 -- This routine is used to set the scalar range field for a subtype given
692 -- Def_Id, the entity for the subtype, and R, the range expression for the
693 -- scalar range. Subt provides the parent subtype to be used to analyze,
694 -- resolve, and check the given range.
695
696 procedure Set_Default_SSO (T : Entity_Id);
697 -- T is the entity for an array or record being declared. This procedure
698 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
699 -- to the setting of Opt.Default_SSO.
700
701 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
702 -- Create a new signed integer entity, and apply the constraint to obtain
703 -- the required first named subtype of this type.
704
705 procedure Set_Stored_Constraint_From_Discriminant_Constraint
706 (E : Entity_Id);
707 -- E is some record type. This routine computes E's Stored_Constraint
708 -- from its Discriminant_Constraint.
709
710 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
711 -- Check that an entity in a list of progenitors is an interface,
712 -- emit error otherwise.
713
714 -----------------------
715 -- Access_Definition --
716 -----------------------
717
718 function Access_Definition
719 (Related_Nod : Node_Id;
720 N : Node_Id) return Entity_Id
721 is
722 Anon_Type : Entity_Id;
723 Anon_Scope : Entity_Id;
724 Desig_Type : Entity_Id;
725 Enclosing_Prot_Type : Entity_Id := Empty;
726
727 begin
728 Check_SPARK_05_Restriction ("access type is not allowed", N);
729
730 if Is_Entry (Current_Scope)
731 and then Is_Task_Type (Etype (Scope (Current_Scope)))
732 then
733 Error_Msg_N ("task entries cannot have access parameters", N);
734 return Empty;
735 end if;
736
737 -- Ada 2005: For an object declaration the corresponding anonymous
738 -- type is declared in the current scope.
739
740 -- If the access definition is the return type of another access to
741 -- function, scope is the current one, because it is the one of the
742 -- current type declaration, except for the pathological case below.
743
744 if Nkind_In (Related_Nod, N_Object_Declaration,
745 N_Access_Function_Definition)
746 then
747 Anon_Scope := Current_Scope;
748
749 -- A pathological case: function returning access functions that
750 -- return access functions, etc. Each anonymous access type created
751 -- is in the enclosing scope of the outermost function.
752
753 declare
754 Par : Node_Id;
755
756 begin
757 Par := Related_Nod;
758 while Nkind_In (Par, N_Access_Function_Definition,
759 N_Access_Definition)
760 loop
761 Par := Parent (Par);
762 end loop;
763
764 if Nkind (Par) = N_Function_Specification then
765 Anon_Scope := Scope (Defining_Entity (Par));
766 end if;
767 end;
768
769 -- For the anonymous function result case, retrieve the scope of the
770 -- function specification's associated entity rather than using the
771 -- current scope. The current scope will be the function itself if the
772 -- formal part is currently being analyzed, but will be the parent scope
773 -- in the case of a parameterless function, and we always want to use
774 -- the function's parent scope. Finally, if the function is a child
775 -- unit, we must traverse the tree to retrieve the proper entity.
776
777 elsif Nkind (Related_Nod) = N_Function_Specification
778 and then Nkind (Parent (N)) /= N_Parameter_Specification
779 then
780 -- If the current scope is a protected type, the anonymous access
781 -- is associated with one of the protected operations, and must
782 -- be available in the scope that encloses the protected declaration.
783 -- Otherwise the type is in the scope enclosing the subprogram.
784
785 -- If the function has formals, The return type of a subprogram
786 -- declaration is analyzed in the scope of the subprogram (see
787 -- Process_Formals) and thus the protected type, if present, is
788 -- the scope of the current function scope.
789
790 if Ekind (Current_Scope) = E_Protected_Type then
791 Enclosing_Prot_Type := Current_Scope;
792
793 elsif Ekind (Current_Scope) = E_Function
794 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
795 then
796 Enclosing_Prot_Type := Scope (Current_Scope);
797 end if;
798
799 if Present (Enclosing_Prot_Type) then
800 Anon_Scope := Scope (Enclosing_Prot_Type);
801
802 else
803 Anon_Scope := Scope (Defining_Entity (Related_Nod));
804 end if;
805
806 -- For an access type definition, if the current scope is a child
807 -- unit it is the scope of the type.
808
809 elsif Is_Compilation_Unit (Current_Scope) then
810 Anon_Scope := Current_Scope;
811
812 -- For access formals, access components, and access discriminants, the
813 -- scope is that of the enclosing declaration,
814
815 else
816 Anon_Scope := Scope (Current_Scope);
817 end if;
818
819 Anon_Type :=
820 Create_Itype
821 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
822
823 if All_Present (N)
824 and then Ada_Version >= Ada_2005
825 then
826 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
827 end if;
828
829 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
830 -- the corresponding semantic routine
831
832 if Present (Access_To_Subprogram_Definition (N)) then
833
834 -- Compiler runtime units are compiled in Ada 2005 mode when building
835 -- the runtime library but must also be compilable in Ada 95 mode
836 -- (when bootstrapping the compiler).
837
838 Check_Compiler_Unit ("anonymous access to subprogram", N);
839
840 Access_Subprogram_Declaration
841 (T_Name => Anon_Type,
842 T_Def => Access_To_Subprogram_Definition (N));
843
844 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
845 Set_Ekind
846 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
847 else
848 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
849 end if;
850
851 Set_Can_Use_Internal_Rep
852 (Anon_Type, not Always_Compatible_Rep_On_Target);
853
854 -- If the anonymous access is associated with a protected operation,
855 -- create a reference to it after the enclosing protected definition
856 -- because the itype will be used in the subsequent bodies.
857
858 -- If the anonymous access itself is protected, a full type
859 -- declaratiton will be created for it, so that the equivalent
860 -- record type can be constructed. For further details, see
861 -- Replace_Anonymous_Access_To_Protected-Subprogram.
862
863 if Ekind (Current_Scope) = E_Protected_Type
864 and then not Protected_Present (Access_To_Subprogram_Definition (N))
865 then
866 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
867 end if;
868
869 return Anon_Type;
870 end if;
871
872 Find_Type (Subtype_Mark (N));
873 Desig_Type := Entity (Subtype_Mark (N));
874
875 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
876 Set_Etype (Anon_Type, Anon_Type);
877
878 -- Make sure the anonymous access type has size and alignment fields
879 -- set, as required by gigi. This is necessary in the case of the
880 -- Task_Body_Procedure.
881
882 if not Has_Private_Component (Desig_Type) then
883 Layout_Type (Anon_Type);
884 end if;
885
886 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
887 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
888 -- the null value is allowed. In Ada 95 the null value is never allowed.
889
890 if Ada_Version >= Ada_2005 then
891 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
892 else
893 Set_Can_Never_Be_Null (Anon_Type, True);
894 end if;
895
896 -- The anonymous access type is as public as the discriminated type or
897 -- subprogram that defines it. It is imported (for back-end purposes)
898 -- if the designated type is.
899
900 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
901
902 -- Ada 2005 (AI-231): Propagate the access-constant attribute
903
904 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
905
906 -- The context is either a subprogram declaration, object declaration,
907 -- or an access discriminant, in a private or a full type declaration.
908 -- In the case of a subprogram, if the designated type is incomplete,
909 -- the operation will be a primitive operation of the full type, to be
910 -- updated subsequently. If the type is imported through a limited_with
911 -- clause, the subprogram is not a primitive operation of the type
912 -- (which is declared elsewhere in some other scope).
913
914 if Ekind (Desig_Type) = E_Incomplete_Type
915 and then not From_Limited_With (Desig_Type)
916 and then Is_Overloadable (Current_Scope)
917 then
918 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
919 Set_Has_Delayed_Freeze (Current_Scope);
920 end if;
921
922 -- Ada 2005: If the designated type is an interface that may contain
923 -- tasks, create a Master entity for the declaration. This must be done
924 -- before expansion of the full declaration, because the declaration may
925 -- include an expression that is an allocator, whose expansion needs the
926 -- proper Master for the created tasks.
927
928 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
929 then
930 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
931 then
932 Build_Class_Wide_Master (Anon_Type);
933
934 -- Similarly, if the type is an anonymous access that designates
935 -- tasks, create a master entity for it in the current context.
936
937 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
938 then
939 Build_Master_Entity (Defining_Identifier (Related_Nod));
940 Build_Master_Renaming (Anon_Type);
941 end if;
942 end if;
943
944 -- For a private component of a protected type, it is imperative that
945 -- the back-end elaborate the type immediately after the protected
946 -- declaration, because this type will be used in the declarations
947 -- created for the component within each protected body, so we must
948 -- create an itype reference for it now.
949
950 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
951 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
952
953 -- Similarly, if the access definition is the return result of a
954 -- function, create an itype reference for it because it will be used
955 -- within the function body. For a regular function that is not a
956 -- compilation unit, insert reference after the declaration. For a
957 -- protected operation, insert it after the enclosing protected type
958 -- declaration. In either case, do not create a reference for a type
959 -- obtained through a limited_with clause, because this would introduce
960 -- semantic dependencies.
961
962 -- Similarly, do not create a reference if the designated type is a
963 -- generic formal, because no use of it will reach the backend.
964
965 elsif Nkind (Related_Nod) = N_Function_Specification
966 and then not From_Limited_With (Desig_Type)
967 and then not Is_Generic_Type (Desig_Type)
968 then
969 if Present (Enclosing_Prot_Type) then
970 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
971
972 elsif Is_List_Member (Parent (Related_Nod))
973 and then Nkind (Parent (N)) /= N_Parameter_Specification
974 then
975 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
976 end if;
977
978 -- Finally, create an itype reference for an object declaration of an
979 -- anonymous access type. This is strictly necessary only for deferred
980 -- constants, but in any case will avoid out-of-scope problems in the
981 -- back-end.
982
983 elsif Nkind (Related_Nod) = N_Object_Declaration then
984 Build_Itype_Reference (Anon_Type, Related_Nod);
985 end if;
986
987 return Anon_Type;
988 end Access_Definition;
989
990 -----------------------------------
991 -- Access_Subprogram_Declaration --
992 -----------------------------------
993
994 procedure Access_Subprogram_Declaration
995 (T_Name : Entity_Id;
996 T_Def : Node_Id)
997 is
998 procedure Check_For_Premature_Usage (Def : Node_Id);
999 -- Check that type T_Name is not used, directly or recursively, as a
1000 -- parameter or a return type in Def. Def is either a subtype, an
1001 -- access_definition, or an access_to_subprogram_definition.
1002
1003 -------------------------------
1004 -- Check_For_Premature_Usage --
1005 -------------------------------
1006
1007 procedure Check_For_Premature_Usage (Def : Node_Id) is
1008 Param : Node_Id;
1009
1010 begin
1011 -- Check for a subtype mark
1012
1013 if Nkind (Def) in N_Has_Etype then
1014 if Etype (Def) = T_Name then
1015 Error_Msg_N
1016 ("type& cannot be used before end of its declaration", Def);
1017 end if;
1018
1019 -- If this is not a subtype, then this is an access_definition
1020
1021 elsif Nkind (Def) = N_Access_Definition then
1022 if Present (Access_To_Subprogram_Definition (Def)) then
1023 Check_For_Premature_Usage
1024 (Access_To_Subprogram_Definition (Def));
1025 else
1026 Check_For_Premature_Usage (Subtype_Mark (Def));
1027 end if;
1028
1029 -- The only cases left are N_Access_Function_Definition and
1030 -- N_Access_Procedure_Definition.
1031
1032 else
1033 if Present (Parameter_Specifications (Def)) then
1034 Param := First (Parameter_Specifications (Def));
1035 while Present (Param) loop
1036 Check_For_Premature_Usage (Parameter_Type (Param));
1037 Param := Next (Param);
1038 end loop;
1039 end if;
1040
1041 if Nkind (Def) = N_Access_Function_Definition then
1042 Check_For_Premature_Usage (Result_Definition (Def));
1043 end if;
1044 end if;
1045 end Check_For_Premature_Usage;
1046
1047 -- Local variables
1048
1049 Formals : constant List_Id := Parameter_Specifications (T_Def);
1050 Formal : Entity_Id;
1051 D_Ityp : Node_Id;
1052 Desig_Type : constant Entity_Id :=
1053 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1054
1055 -- Start of processing for Access_Subprogram_Declaration
1056
1057 begin
1058 Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1059
1060 -- Associate the Itype node with the inner full-type declaration or
1061 -- subprogram spec or entry body. This is required to handle nested
1062 -- anonymous declarations. For example:
1063
1064 -- procedure P
1065 -- (X : access procedure
1066 -- (Y : access procedure
1067 -- (Z : access T)))
1068
1069 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1070 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1071 N_Private_Type_Declaration,
1072 N_Private_Extension_Declaration,
1073 N_Procedure_Specification,
1074 N_Function_Specification,
1075 N_Entry_Body)
1076
1077 or else
1078 Nkind_In (D_Ityp, N_Object_Declaration,
1079 N_Object_Renaming_Declaration,
1080 N_Formal_Object_Declaration,
1081 N_Formal_Type_Declaration,
1082 N_Task_Type_Declaration,
1083 N_Protected_Type_Declaration))
1084 loop
1085 D_Ityp := Parent (D_Ityp);
1086 pragma Assert (D_Ityp /= Empty);
1087 end loop;
1088
1089 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1090
1091 if Nkind_In (D_Ityp, N_Procedure_Specification,
1092 N_Function_Specification)
1093 then
1094 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1095
1096 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1097 N_Object_Declaration,
1098 N_Object_Renaming_Declaration,
1099 N_Formal_Type_Declaration)
1100 then
1101 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1102 end if;
1103
1104 if Nkind (T_Def) = N_Access_Function_Definition then
1105 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1106 declare
1107 Acc : constant Node_Id := Result_Definition (T_Def);
1108
1109 begin
1110 if Present (Access_To_Subprogram_Definition (Acc))
1111 and then
1112 Protected_Present (Access_To_Subprogram_Definition (Acc))
1113 then
1114 Set_Etype
1115 (Desig_Type,
1116 Replace_Anonymous_Access_To_Protected_Subprogram
1117 (T_Def));
1118
1119 else
1120 Set_Etype
1121 (Desig_Type,
1122 Access_Definition (T_Def, Result_Definition (T_Def)));
1123 end if;
1124 end;
1125
1126 else
1127 Analyze (Result_Definition (T_Def));
1128
1129 declare
1130 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1131
1132 begin
1133 -- If a null exclusion is imposed on the result type, then
1134 -- create a null-excluding itype (an access subtype) and use
1135 -- it as the function's Etype.
1136
1137 if Is_Access_Type (Typ)
1138 and then Null_Exclusion_In_Return_Present (T_Def)
1139 then
1140 Set_Etype (Desig_Type,
1141 Create_Null_Excluding_Itype
1142 (T => Typ,
1143 Related_Nod => T_Def,
1144 Scope_Id => Current_Scope));
1145
1146 else
1147 if From_Limited_With (Typ) then
1148
1149 -- AI05-151: Incomplete types are allowed in all basic
1150 -- declarations, including access to subprograms.
1151
1152 if Ada_Version >= Ada_2012 then
1153 null;
1154
1155 else
1156 Error_Msg_NE
1157 ("illegal use of incomplete type&",
1158 Result_Definition (T_Def), Typ);
1159 end if;
1160
1161 elsif Ekind (Current_Scope) = E_Package
1162 and then In_Private_Part (Current_Scope)
1163 then
1164 if Ekind (Typ) = E_Incomplete_Type then
1165 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1166
1167 elsif Is_Class_Wide_Type (Typ)
1168 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1169 then
1170 Append_Elmt
1171 (Desig_Type, Private_Dependents (Etype (Typ)));
1172 end if;
1173 end if;
1174
1175 Set_Etype (Desig_Type, Typ);
1176 end if;
1177 end;
1178 end if;
1179
1180 if not (Is_Type (Etype (Desig_Type))) then
1181 Error_Msg_N
1182 ("expect type in function specification",
1183 Result_Definition (T_Def));
1184 end if;
1185
1186 else
1187 Set_Etype (Desig_Type, Standard_Void_Type);
1188 end if;
1189
1190 if Present (Formals) then
1191 Push_Scope (Desig_Type);
1192
1193 -- Some special tests here. These special tests can be removed
1194 -- if and when Itypes always have proper parent pointers to their
1195 -- declarations???
1196
1197 -- Special test 1) Link defining_identifier of formals. Required by
1198 -- First_Formal to provide its functionality.
1199
1200 declare
1201 F : Node_Id;
1202
1203 begin
1204 F := First (Formals);
1205
1206 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1207 -- when it is part of an unconstrained type and subtype expansion
1208 -- is disabled. To avoid back-end problems with shared profiles,
1209 -- use previous subprogram type as the designated type, and then
1210 -- remove scope added above.
1211
1212 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1213 then
1214 Set_Etype (T_Name, T_Name);
1215 Init_Size_Align (T_Name);
1216 Set_Directly_Designated_Type (T_Name,
1217 Scope (Defining_Identifier (F)));
1218 End_Scope;
1219 return;
1220 end if;
1221
1222 while Present (F) loop
1223 if No (Parent (Defining_Identifier (F))) then
1224 Set_Parent (Defining_Identifier (F), F);
1225 end if;
1226
1227 Next (F);
1228 end loop;
1229 end;
1230
1231 Process_Formals (Formals, Parent (T_Def));
1232
1233 -- Special test 2) End_Scope requires that the parent pointer be set
1234 -- to something reasonable, but Itypes don't have parent pointers. So
1235 -- we set it and then unset it ???
1236
1237 Set_Parent (Desig_Type, T_Name);
1238 End_Scope;
1239 Set_Parent (Desig_Type, Empty);
1240 end if;
1241
1242 -- Check for premature usage of the type being defined
1243
1244 Check_For_Premature_Usage (T_Def);
1245
1246 -- The return type and/or any parameter type may be incomplete. Mark the
1247 -- subprogram_type as depending on the incomplete type, so that it can
1248 -- be updated when the full type declaration is seen. This only applies
1249 -- to incomplete types declared in some enclosing scope, not to limited
1250 -- views from other packages.
1251
1252 -- Prior to Ada 2012, access to functions can only have in_parameters.
1253
1254 if Present (Formals) then
1255 Formal := First_Formal (Desig_Type);
1256 while Present (Formal) loop
1257 if Ekind (Formal) /= E_In_Parameter
1258 and then Nkind (T_Def) = N_Access_Function_Definition
1259 and then Ada_Version < Ada_2012
1260 then
1261 Error_Msg_N ("functions can only have IN parameters", Formal);
1262 end if;
1263
1264 if Ekind (Etype (Formal)) = E_Incomplete_Type
1265 and then In_Open_Scopes (Scope (Etype (Formal)))
1266 then
1267 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1268 Set_Has_Delayed_Freeze (Desig_Type);
1269 end if;
1270
1271 Next_Formal (Formal);
1272 end loop;
1273 end if;
1274
1275 -- Check whether an indirect call without actuals may be possible. This
1276 -- is used when resolving calls whose result is then indexed.
1277
1278 May_Need_Actuals (Desig_Type);
1279
1280 -- If the return type is incomplete, this is legal as long as the type
1281 -- is declared in the current scope and will be completed in it (rather
1282 -- than being part of limited view).
1283
1284 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1285 and then not Has_Delayed_Freeze (Desig_Type)
1286 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1287 then
1288 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1289 Set_Has_Delayed_Freeze (Desig_Type);
1290 end if;
1291
1292 Check_Delayed_Subprogram (Desig_Type);
1293
1294 if Protected_Present (T_Def) then
1295 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1296 Set_Convention (Desig_Type, Convention_Protected);
1297 else
1298 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1299 end if;
1300
1301 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1302
1303 Set_Etype (T_Name, T_Name);
1304 Init_Size_Align (T_Name);
1305 Set_Directly_Designated_Type (T_Name, Desig_Type);
1306
1307 Generate_Reference_To_Formals (T_Name);
1308
1309 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1310
1311 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1312
1313 Check_Restriction (No_Access_Subprograms, T_Def);
1314 end Access_Subprogram_Declaration;
1315
1316 ----------------------------
1317 -- Access_Type_Declaration --
1318 ----------------------------
1319
1320 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1321 P : constant Node_Id := Parent (Def);
1322 S : constant Node_Id := Subtype_Indication (Def);
1323
1324 Full_Desig : Entity_Id;
1325
1326 begin
1327 Check_SPARK_05_Restriction ("access type is not allowed", Def);
1328
1329 -- Check for permissible use of incomplete type
1330
1331 if Nkind (S) /= N_Subtype_Indication then
1332 Analyze (S);
1333
1334 if Present (Entity (S))
1335 and then Ekind (Root_Type (Entity (S))) = E_Incomplete_Type
1336 then
1337 Set_Directly_Designated_Type (T, Entity (S));
1338
1339 -- If the designated type is a limited view, we cannot tell if
1340 -- the full view contains tasks, and there is no way to handle
1341 -- that full view in a client. We create a master entity for the
1342 -- scope, which will be used when a client determines that one
1343 -- is needed.
1344
1345 if From_Limited_With (Entity (S))
1346 and then not Is_Class_Wide_Type (Entity (S))
1347 then
1348 Set_Ekind (T, E_Access_Type);
1349 Build_Master_Entity (T);
1350 Build_Master_Renaming (T);
1351 end if;
1352
1353 else
1354 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1355 end if;
1356
1357 -- If the access definition is of the form: ACCESS NOT NULL ..
1358 -- the subtype indication must be of an access type. Create
1359 -- a null-excluding subtype of it.
1360
1361 if Null_Excluding_Subtype (Def) then
1362 if not Is_Access_Type (Entity (S)) then
1363 Error_Msg_N ("null exclusion must apply to access type", Def);
1364
1365 else
1366 declare
1367 Loc : constant Source_Ptr := Sloc (S);
1368 Decl : Node_Id;
1369 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1370
1371 begin
1372 Decl :=
1373 Make_Subtype_Declaration (Loc,
1374 Defining_Identifier => Nam,
1375 Subtype_Indication =>
1376 New_Occurrence_Of (Entity (S), Loc));
1377 Set_Null_Exclusion_Present (Decl);
1378 Insert_Before (Parent (Def), Decl);
1379 Analyze (Decl);
1380 Set_Entity (S, Nam);
1381 end;
1382 end if;
1383 end if;
1384
1385 else
1386 Set_Directly_Designated_Type (T,
1387 Process_Subtype (S, P, T, 'P'));
1388 end if;
1389
1390 if All_Present (Def) or Constant_Present (Def) then
1391 Set_Ekind (T, E_General_Access_Type);
1392 else
1393 Set_Ekind (T, E_Access_Type);
1394 end if;
1395
1396 Full_Desig := Designated_Type (T);
1397
1398 if Base_Type (Full_Desig) = T then
1399 Error_Msg_N ("access type cannot designate itself", S);
1400
1401 -- In Ada 2005, the type may have a limited view through some unit in
1402 -- its own context, allowing the following circularity that cannot be
1403 -- detected earlier.
1404
1405 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1406 then
1407 Error_Msg_N
1408 ("access type cannot designate its own class-wide type", S);
1409
1410 -- Clean up indication of tagged status to prevent cascaded errors
1411
1412 Set_Is_Tagged_Type (T, False);
1413 end if;
1414
1415 Set_Etype (T, T);
1416
1417 -- If the type has appeared already in a with_type clause, it is frozen
1418 -- and the pointer size is already set. Else, initialize.
1419
1420 if not From_Limited_With (T) then
1421 Init_Size_Align (T);
1422 end if;
1423
1424 -- Note that Has_Task is always false, since the access type itself
1425 -- is not a task type. See Einfo for more description on this point.
1426 -- Exactly the same consideration applies to Has_Controlled_Component
1427 -- and to Has_Protected.
1428
1429 Set_Has_Task (T, False);
1430 Set_Has_Protected (T, False);
1431 Set_Has_Timing_Event (T, False);
1432 Set_Has_Controlled_Component (T, False);
1433
1434 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1435 -- problems where an incomplete view of this entity has been previously
1436 -- established by a limited with and an overlaid version of this field
1437 -- (Stored_Constraint) was initialized for the incomplete view.
1438
1439 -- This reset is performed in most cases except where the access type
1440 -- has been created for the purposes of allocating or deallocating a
1441 -- build-in-place object. Such access types have explicitly set pools
1442 -- and finalization masters.
1443
1444 if No (Associated_Storage_Pool (T)) then
1445 Set_Finalization_Master (T, Empty);
1446 end if;
1447
1448 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1449 -- attributes
1450
1451 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1452 Set_Is_Access_Constant (T, Constant_Present (Def));
1453 end Access_Type_Declaration;
1454
1455 ----------------------------------
1456 -- Add_Interface_Tag_Components --
1457 ----------------------------------
1458
1459 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1460 Loc : constant Source_Ptr := Sloc (N);
1461 L : List_Id;
1462 Last_Tag : Node_Id;
1463
1464 procedure Add_Tag (Iface : Entity_Id);
1465 -- Add tag for one of the progenitor interfaces
1466
1467 -------------
1468 -- Add_Tag --
1469 -------------
1470
1471 procedure Add_Tag (Iface : Entity_Id) is
1472 Decl : Node_Id;
1473 Def : Node_Id;
1474 Tag : Entity_Id;
1475 Offset : Entity_Id;
1476
1477 begin
1478 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1479
1480 -- This is a reasonable place to propagate predicates
1481
1482 if Has_Predicates (Iface) then
1483 Set_Has_Predicates (Typ);
1484 end if;
1485
1486 Def :=
1487 Make_Component_Definition (Loc,
1488 Aliased_Present => True,
1489 Subtype_Indication =>
1490 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1491
1492 Tag := Make_Temporary (Loc, 'V');
1493
1494 Decl :=
1495 Make_Component_Declaration (Loc,
1496 Defining_Identifier => Tag,
1497 Component_Definition => Def);
1498
1499 Analyze_Component_Declaration (Decl);
1500
1501 Set_Analyzed (Decl);
1502 Set_Ekind (Tag, E_Component);
1503 Set_Is_Tag (Tag);
1504 Set_Is_Aliased (Tag);
1505 Set_Related_Type (Tag, Iface);
1506 Init_Component_Location (Tag);
1507
1508 pragma Assert (Is_Frozen (Iface));
1509
1510 Set_DT_Entry_Count (Tag,
1511 DT_Entry_Count (First_Entity (Iface)));
1512
1513 if No (Last_Tag) then
1514 Prepend (Decl, L);
1515 else
1516 Insert_After (Last_Tag, Decl);
1517 end if;
1518
1519 Last_Tag := Decl;
1520
1521 -- If the ancestor has discriminants we need to give special support
1522 -- to store the offset_to_top value of the secondary dispatch tables.
1523 -- For this purpose we add a supplementary component just after the
1524 -- field that contains the tag associated with each secondary DT.
1525
1526 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1527 Def :=
1528 Make_Component_Definition (Loc,
1529 Subtype_Indication =>
1530 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1531
1532 Offset := Make_Temporary (Loc, 'V');
1533
1534 Decl :=
1535 Make_Component_Declaration (Loc,
1536 Defining_Identifier => Offset,
1537 Component_Definition => Def);
1538
1539 Analyze_Component_Declaration (Decl);
1540
1541 Set_Analyzed (Decl);
1542 Set_Ekind (Offset, E_Component);
1543 Set_Is_Aliased (Offset);
1544 Set_Related_Type (Offset, Iface);
1545 Init_Component_Location (Offset);
1546 Insert_After (Last_Tag, Decl);
1547 Last_Tag := Decl;
1548 end if;
1549 end Add_Tag;
1550
1551 -- Local variables
1552
1553 Elmt : Elmt_Id;
1554 Ext : Node_Id;
1555 Comp : Node_Id;
1556
1557 -- Start of processing for Add_Interface_Tag_Components
1558
1559 begin
1560 if not RTE_Available (RE_Interface_Tag) then
1561 Error_Msg
1562 ("(Ada 2005) interface types not supported by this run-time!",
1563 Sloc (N));
1564 return;
1565 end if;
1566
1567 if Ekind (Typ) /= E_Record_Type
1568 or else (Is_Concurrent_Record_Type (Typ)
1569 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1570 or else (not Is_Concurrent_Record_Type (Typ)
1571 and then No (Interfaces (Typ))
1572 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1573 then
1574 return;
1575 end if;
1576
1577 -- Find the current last tag
1578
1579 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1580 Ext := Record_Extension_Part (Type_Definition (N));
1581 else
1582 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1583 Ext := Type_Definition (N);
1584 end if;
1585
1586 Last_Tag := Empty;
1587
1588 if not (Present (Component_List (Ext))) then
1589 Set_Null_Present (Ext, False);
1590 L := New_List;
1591 Set_Component_List (Ext,
1592 Make_Component_List (Loc,
1593 Component_Items => L,
1594 Null_Present => False));
1595 else
1596 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1597 L := Component_Items
1598 (Component_List
1599 (Record_Extension_Part
1600 (Type_Definition (N))));
1601 else
1602 L := Component_Items
1603 (Component_List
1604 (Type_Definition (N)));
1605 end if;
1606
1607 -- Find the last tag component
1608
1609 Comp := First (L);
1610 while Present (Comp) loop
1611 if Nkind (Comp) = N_Component_Declaration
1612 and then Is_Tag (Defining_Identifier (Comp))
1613 then
1614 Last_Tag := Comp;
1615 end if;
1616
1617 Next (Comp);
1618 end loop;
1619 end if;
1620
1621 -- At this point L references the list of components and Last_Tag
1622 -- references the current last tag (if any). Now we add the tag
1623 -- corresponding with all the interfaces that are not implemented
1624 -- by the parent.
1625
1626 if Present (Interfaces (Typ)) then
1627 Elmt := First_Elmt (Interfaces (Typ));
1628 while Present (Elmt) loop
1629 Add_Tag (Node (Elmt));
1630 Next_Elmt (Elmt);
1631 end loop;
1632 end if;
1633 end Add_Interface_Tag_Components;
1634
1635 -------------------------------------
1636 -- Add_Internal_Interface_Entities --
1637 -------------------------------------
1638
1639 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1640 Elmt : Elmt_Id;
1641 Iface : Entity_Id;
1642 Iface_Elmt : Elmt_Id;
1643 Iface_Prim : Entity_Id;
1644 Ifaces_List : Elist_Id;
1645 New_Subp : Entity_Id := Empty;
1646 Prim : Entity_Id;
1647 Restore_Scope : Boolean := False;
1648
1649 begin
1650 pragma Assert (Ada_Version >= Ada_2005
1651 and then Is_Record_Type (Tagged_Type)
1652 and then Is_Tagged_Type (Tagged_Type)
1653 and then Has_Interfaces (Tagged_Type)
1654 and then not Is_Interface (Tagged_Type));
1655
1656 -- Ensure that the internal entities are added to the scope of the type
1657
1658 if Scope (Tagged_Type) /= Current_Scope then
1659 Push_Scope (Scope (Tagged_Type));
1660 Restore_Scope := True;
1661 end if;
1662
1663 Collect_Interfaces (Tagged_Type, Ifaces_List);
1664
1665 Iface_Elmt := First_Elmt (Ifaces_List);
1666 while Present (Iface_Elmt) loop
1667 Iface := Node (Iface_Elmt);
1668
1669 -- Originally we excluded here from this processing interfaces that
1670 -- are parents of Tagged_Type because their primitives are located
1671 -- in the primary dispatch table (and hence no auxiliary internal
1672 -- entities are required to handle secondary dispatch tables in such
1673 -- case). However, these auxiliary entities are also required to
1674 -- handle derivations of interfaces in formals of generics (see
1675 -- Derive_Subprograms).
1676
1677 Elmt := First_Elmt (Primitive_Operations (Iface));
1678 while Present (Elmt) loop
1679 Iface_Prim := Node (Elmt);
1680
1681 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1682 Prim :=
1683 Find_Primitive_Covering_Interface
1684 (Tagged_Type => Tagged_Type,
1685 Iface_Prim => Iface_Prim);
1686
1687 if No (Prim) and then Serious_Errors_Detected > 0 then
1688 goto Continue;
1689 end if;
1690
1691 pragma Assert (Present (Prim));
1692
1693 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1694 -- differs from the name of the interface primitive then it is
1695 -- a private primitive inherited from a parent type. In such
1696 -- case, given that Tagged_Type covers the interface, the
1697 -- inherited private primitive becomes visible. For such
1698 -- purpose we add a new entity that renames the inherited
1699 -- private primitive.
1700
1701 if Chars (Prim) /= Chars (Iface_Prim) then
1702 pragma Assert (Has_Suffix (Prim, 'P'));
1703 Derive_Subprogram
1704 (New_Subp => New_Subp,
1705 Parent_Subp => Iface_Prim,
1706 Derived_Type => Tagged_Type,
1707 Parent_Type => Iface);
1708 Set_Alias (New_Subp, Prim);
1709 Set_Is_Abstract_Subprogram
1710 (New_Subp, Is_Abstract_Subprogram (Prim));
1711 end if;
1712
1713 Derive_Subprogram
1714 (New_Subp => New_Subp,
1715 Parent_Subp => Iface_Prim,
1716 Derived_Type => Tagged_Type,
1717 Parent_Type => Iface);
1718
1719 declare
1720 Anc : Entity_Id;
1721 begin
1722 if Is_Inherited_Operation (Prim)
1723 and then Present (Alias (Prim))
1724 then
1725 Anc := Alias (Prim);
1726 else
1727 Anc := Overridden_Operation (Prim);
1728 end if;
1729
1730 -- Apply legality checks in RM 6.1.1 (10-13) concerning
1731 -- nonconforming preconditions in both an ancestor and
1732 -- a progenitor operation.
1733
1734 if Present (Anc)
1735 and then Has_Non_Trivial_Precondition (Anc)
1736 and then Has_Non_Trivial_Precondition (Iface_Prim)
1737 then
1738 if Is_Abstract_Subprogram (Prim)
1739 or else
1740 (Ekind (Prim) = E_Procedure
1741 and then Nkind (Parent (Prim)) =
1742 N_Procedure_Specification
1743 and then Null_Present (Parent (Prim)))
1744 then
1745 null;
1746
1747 -- The inherited operation must be overridden
1748
1749 elsif not Comes_From_Source (Prim) then
1750 Error_Msg_NE
1751 ("&inherits non-conforming preconditions and must "
1752 & "be overridden (RM 6.1.1 (10-16)",
1753 Parent (Tagged_Type), Prim);
1754 end if;
1755 end if;
1756 end;
1757
1758 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1759 -- associated with interface types. These entities are
1760 -- only registered in the list of primitives of its
1761 -- corresponding tagged type because they are only used
1762 -- to fill the contents of the secondary dispatch tables.
1763 -- Therefore they are removed from the homonym chains.
1764
1765 Set_Is_Hidden (New_Subp);
1766 Set_Is_Internal (New_Subp);
1767 Set_Alias (New_Subp, Prim);
1768 Set_Is_Abstract_Subprogram
1769 (New_Subp, Is_Abstract_Subprogram (Prim));
1770 Set_Interface_Alias (New_Subp, Iface_Prim);
1771
1772 -- If the returned type is an interface then propagate it to
1773 -- the returned type. Needed by the thunk to generate the code
1774 -- which displaces "this" to reference the corresponding
1775 -- secondary dispatch table in the returned object.
1776
1777 if Is_Interface (Etype (Iface_Prim)) then
1778 Set_Etype (New_Subp, Etype (Iface_Prim));
1779 end if;
1780
1781 -- Internal entities associated with interface types are only
1782 -- registered in the list of primitives of the tagged type.
1783 -- They are only used to fill the contents of the secondary
1784 -- dispatch tables. Therefore they are not needed in the
1785 -- homonym chains.
1786
1787 Remove_Homonym (New_Subp);
1788
1789 -- Hidden entities associated with interfaces must have set
1790 -- the Has_Delay_Freeze attribute to ensure that, in case
1791 -- of locally defined tagged types (or compiling with static
1792 -- dispatch tables generation disabled) the corresponding
1793 -- entry of the secondary dispatch table is filled when such
1794 -- an entity is frozen. This is an expansion activity that must
1795 -- be suppressed for ASIS because it leads to gigi elaboration
1796 -- issues in annotate mode.
1797
1798 if not ASIS_Mode then
1799 Set_Has_Delayed_Freeze (New_Subp);
1800 end if;
1801 end if;
1802
1803 <<Continue>>
1804 Next_Elmt (Elmt);
1805 end loop;
1806
1807 Next_Elmt (Iface_Elmt);
1808 end loop;
1809
1810 if Restore_Scope then
1811 Pop_Scope;
1812 end if;
1813 end Add_Internal_Interface_Entities;
1814
1815 -----------------------------------
1816 -- Analyze_Component_Declaration --
1817 -----------------------------------
1818
1819 procedure Analyze_Component_Declaration (N : Node_Id) is
1820 Loc : constant Source_Ptr := Sloc (Component_Definition (N));
1821 Id : constant Entity_Id := Defining_Identifier (N);
1822 E : constant Node_Id := Expression (N);
1823 Typ : constant Node_Id :=
1824 Subtype_Indication (Component_Definition (N));
1825 T : Entity_Id;
1826 P : Entity_Id;
1827
1828 function Contains_POC (Constr : Node_Id) return Boolean;
1829 -- Determines whether a constraint uses the discriminant of a record
1830 -- type thus becoming a per-object constraint (POC).
1831
1832 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1833 -- Typ is the type of the current component, check whether this type is
1834 -- a limited type. Used to validate declaration against that of
1835 -- enclosing record.
1836
1837 ------------------
1838 -- Contains_POC --
1839 ------------------
1840
1841 function Contains_POC (Constr : Node_Id) return Boolean is
1842 begin
1843 -- Prevent cascaded errors
1844
1845 if Error_Posted (Constr) then
1846 return False;
1847 end if;
1848
1849 case Nkind (Constr) is
1850 when N_Attribute_Reference =>
1851 return Attribute_Name (Constr) = Name_Access
1852 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1853
1854 when N_Discriminant_Association =>
1855 return Denotes_Discriminant (Expression (Constr));
1856
1857 when N_Identifier =>
1858 return Denotes_Discriminant (Constr);
1859
1860 when N_Index_Or_Discriminant_Constraint =>
1861 declare
1862 IDC : Node_Id;
1863
1864 begin
1865 IDC := First (Constraints (Constr));
1866 while Present (IDC) loop
1867
1868 -- One per-object constraint is sufficient
1869
1870 if Contains_POC (IDC) then
1871 return True;
1872 end if;
1873
1874 Next (IDC);
1875 end loop;
1876
1877 return False;
1878 end;
1879
1880 when N_Range =>
1881 return Denotes_Discriminant (Low_Bound (Constr))
1882 or else
1883 Denotes_Discriminant (High_Bound (Constr));
1884
1885 when N_Range_Constraint =>
1886 return Denotes_Discriminant (Range_Expression (Constr));
1887
1888 when others =>
1889 return False;
1890 end case;
1891 end Contains_POC;
1892
1893 ----------------------
1894 -- Is_Known_Limited --
1895 ----------------------
1896
1897 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1898 P : constant Entity_Id := Etype (Typ);
1899 R : constant Entity_Id := Root_Type (Typ);
1900
1901 begin
1902 if Is_Limited_Record (Typ) then
1903 return True;
1904
1905 -- If the root type is limited (and not a limited interface)
1906 -- so is the current type
1907
1908 elsif Is_Limited_Record (R)
1909 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1910 then
1911 return True;
1912
1913 -- Else the type may have a limited interface progenitor, but a
1914 -- limited record parent.
1915
1916 elsif R /= P and then Is_Limited_Record (P) then
1917 return True;
1918
1919 else
1920 return False;
1921 end if;
1922 end Is_Known_Limited;
1923
1924 -- Start of processing for Analyze_Component_Declaration
1925
1926 begin
1927 Generate_Definition (Id);
1928 Enter_Name (Id);
1929
1930 if Present (Typ) then
1931 T := Find_Type_Of_Object
1932 (Subtype_Indication (Component_Definition (N)), N);
1933
1934 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1935 Check_SPARK_05_Restriction ("subtype mark required", Typ);
1936 end if;
1937
1938 -- Ada 2005 (AI-230): Access Definition case
1939
1940 else
1941 pragma Assert (Present
1942 (Access_Definition (Component_Definition (N))));
1943
1944 T := Access_Definition
1945 (Related_Nod => N,
1946 N => Access_Definition (Component_Definition (N)));
1947 Set_Is_Local_Anonymous_Access (T);
1948
1949 -- Ada 2005 (AI-254)
1950
1951 if Present (Access_To_Subprogram_Definition
1952 (Access_Definition (Component_Definition (N))))
1953 and then Protected_Present (Access_To_Subprogram_Definition
1954 (Access_Definition
1955 (Component_Definition (N))))
1956 then
1957 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1958 end if;
1959 end if;
1960
1961 -- If the subtype is a constrained subtype of the enclosing record,
1962 -- (which must have a partial view) the back-end does not properly
1963 -- handle the recursion. Rewrite the component declaration with an
1964 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1965 -- the tree directly because side effects have already been removed from
1966 -- discriminant constraints.
1967
1968 if Ekind (T) = E_Access_Subtype
1969 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1970 and then Comes_From_Source (T)
1971 and then Nkind (Parent (T)) = N_Subtype_Declaration
1972 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1973 then
1974 Rewrite
1975 (Subtype_Indication (Component_Definition (N)),
1976 New_Copy_Tree (Subtype_Indication (Parent (T))));
1977 T := Find_Type_Of_Object
1978 (Subtype_Indication (Component_Definition (N)), N);
1979 end if;
1980
1981 -- If the component declaration includes a default expression, then we
1982 -- check that the component is not of a limited type (RM 3.7(5)),
1983 -- and do the special preanalysis of the expression (see section on
1984 -- "Handling of Default and Per-Object Expressions" in the spec of
1985 -- package Sem).
1986
1987 if Present (E) then
1988 Check_SPARK_05_Restriction ("default expression is not allowed", E);
1989 Preanalyze_Default_Expression (E, T);
1990 Check_Initialization (T, E);
1991
1992 if Ada_Version >= Ada_2005
1993 and then Ekind (T) = E_Anonymous_Access_Type
1994 and then Etype (E) /= Any_Type
1995 then
1996 -- Check RM 3.9.2(9): "if the expected type for an expression is
1997 -- an anonymous access-to-specific tagged type, then the object
1998 -- designated by the expression shall not be dynamically tagged
1999 -- unless it is a controlling operand in a call on a dispatching
2000 -- operation"
2001
2002 if Is_Tagged_Type (Directly_Designated_Type (T))
2003 and then
2004 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
2005 and then
2006 Ekind (Directly_Designated_Type (Etype (E))) =
2007 E_Class_Wide_Type
2008 then
2009 Error_Msg_N
2010 ("access to specific tagged type required (RM 3.9.2(9))", E);
2011 end if;
2012
2013 -- (Ada 2005: AI-230): Accessibility check for anonymous
2014 -- components
2015
2016 if Type_Access_Level (Etype (E)) >
2017 Deepest_Type_Access_Level (T)
2018 then
2019 Error_Msg_N
2020 ("expression has deeper access level than component " &
2021 "(RM 3.10.2 (12.2))", E);
2022 end if;
2023
2024 -- The initialization expression is a reference to an access
2025 -- discriminant. The type of the discriminant is always deeper
2026 -- than any access type.
2027
2028 if Ekind (Etype (E)) = E_Anonymous_Access_Type
2029 and then Is_Entity_Name (E)
2030 and then Ekind (Entity (E)) = E_In_Parameter
2031 and then Present (Discriminal_Link (Entity (E)))
2032 then
2033 Error_Msg_N
2034 ("discriminant has deeper accessibility level than target",
2035 E);
2036 end if;
2037 end if;
2038 end if;
2039
2040 -- The parent type may be a private view with unknown discriminants,
2041 -- and thus unconstrained. Regular components must be constrained.
2042
2043 if not Is_Definite_Subtype (T) and then Chars (Id) /= Name_uParent then
2044 if Is_Class_Wide_Type (T) then
2045 Error_Msg_N
2046 ("class-wide subtype with unknown discriminants" &
2047 " in component declaration",
2048 Subtype_Indication (Component_Definition (N)));
2049 else
2050 Error_Msg_N
2051 ("unconstrained subtype in component declaration",
2052 Subtype_Indication (Component_Definition (N)));
2053 end if;
2054
2055 -- Components cannot be abstract, except for the special case of
2056 -- the _Parent field (case of extending an abstract tagged type)
2057
2058 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2059 Error_Msg_N ("type of a component cannot be abstract", N);
2060 end if;
2061
2062 Set_Etype (Id, T);
2063 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2064
2065 -- The component declaration may have a per-object constraint, set
2066 -- the appropriate flag in the defining identifier of the subtype.
2067
2068 if Present (Subtype_Indication (Component_Definition (N))) then
2069 declare
2070 Sindic : constant Node_Id :=
2071 Subtype_Indication (Component_Definition (N));
2072 begin
2073 if Nkind (Sindic) = N_Subtype_Indication
2074 and then Present (Constraint (Sindic))
2075 and then Contains_POC (Constraint (Sindic))
2076 then
2077 Set_Has_Per_Object_Constraint (Id);
2078 end if;
2079 end;
2080 end if;
2081
2082 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2083 -- out some static checks.
2084
2085 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2086 Null_Exclusion_Static_Checks (N);
2087 end if;
2088
2089 -- If this component is private (or depends on a private type), flag the
2090 -- record type to indicate that some operations are not available.
2091
2092 P := Private_Component (T);
2093
2094 if Present (P) then
2095
2096 -- Check for circular definitions
2097
2098 if P = Any_Type then
2099 Set_Etype (Id, Any_Type);
2100
2101 -- There is a gap in the visibility of operations only if the
2102 -- component type is not defined in the scope of the record type.
2103
2104 elsif Scope (P) = Scope (Current_Scope) then
2105 null;
2106
2107 elsif Is_Limited_Type (P) then
2108 Set_Is_Limited_Composite (Current_Scope);
2109
2110 else
2111 Set_Is_Private_Composite (Current_Scope);
2112 end if;
2113 end if;
2114
2115 if P /= Any_Type
2116 and then Is_Limited_Type (T)
2117 and then Chars (Id) /= Name_uParent
2118 and then Is_Tagged_Type (Current_Scope)
2119 then
2120 if Is_Derived_Type (Current_Scope)
2121 and then not Is_Known_Limited (Current_Scope)
2122 then
2123 Error_Msg_N
2124 ("extension of nonlimited type cannot have limited components",
2125 N);
2126
2127 if Is_Interface (Root_Type (Current_Scope)) then
2128 Error_Msg_N
2129 ("\limitedness is not inherited from limited interface", N);
2130 Error_Msg_N ("\add LIMITED to type indication", N);
2131 end if;
2132
2133 Explain_Limited_Type (T, N);
2134 Set_Etype (Id, Any_Type);
2135 Set_Is_Limited_Composite (Current_Scope, False);
2136
2137 elsif not Is_Derived_Type (Current_Scope)
2138 and then not Is_Limited_Record (Current_Scope)
2139 and then not Is_Concurrent_Type (Current_Scope)
2140 then
2141 Error_Msg_N
2142 ("nonlimited tagged type cannot have limited components", N);
2143 Explain_Limited_Type (T, N);
2144 Set_Etype (Id, Any_Type);
2145 Set_Is_Limited_Composite (Current_Scope, False);
2146 end if;
2147 end if;
2148
2149 -- If the component is an unconstrained task or protected type with
2150 -- discriminants, the component and the enclosing record are limited
2151 -- and the component is constrained by its default values. Compute
2152 -- its actual subtype, else it may be allocated the maximum size by
2153 -- the backend, and possibly overflow.
2154
2155 if Is_Concurrent_Type (T)
2156 and then not Is_Constrained (T)
2157 and then Has_Discriminants (T)
2158 and then not Has_Discriminants (Current_Scope)
2159 then
2160 declare
2161 Act_T : constant Entity_Id := Build_Default_Subtype (T, N);
2162
2163 begin
2164 Set_Etype (Id, Act_T);
2165
2166 -- Rewrite component definition to use the constrained subtype
2167
2168 Rewrite (Component_Definition (N),
2169 Make_Component_Definition (Loc,
2170 Subtype_Indication => New_Occurrence_Of (Act_T, Loc)));
2171 end;
2172 end if;
2173
2174 Set_Original_Record_Component (Id, Id);
2175
2176 if Has_Aspects (N) then
2177 Analyze_Aspect_Specifications (N, Id);
2178 end if;
2179
2180 Analyze_Dimension (N);
2181 end Analyze_Component_Declaration;
2182
2183 --------------------------
2184 -- Analyze_Declarations --
2185 --------------------------
2186
2187 procedure Analyze_Declarations (L : List_Id) is
2188 Decl : Node_Id;
2189
2190 procedure Adjust_Decl;
2191 -- Adjust Decl not to include implicit label declarations, since these
2192 -- have strange Sloc values that result in elaboration check problems.
2193 -- (They have the sloc of the label as found in the source, and that
2194 -- is ahead of the current declarative part).
2195
2196 procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id);
2197 -- Create the subprogram bodies which verify the run-time semantics of
2198 -- the pragmas listed below for each elibigle type found in declarative
2199 -- list Decls. The pragmas are:
2200 --
2201 -- Default_Initial_Condition
2202 -- Invariant
2203 -- Type_Invariant
2204 --
2205 -- Context denotes the owner of the declarative list.
2206
2207 procedure Check_Entry_Contracts;
2208 -- Perform a pre-analysis of the pre- and postconditions of an entry
2209 -- declaration. This must be done before full resolution and creation
2210 -- of the parameter block, etc. to catch illegal uses within the
2211 -- contract expression. Full analysis of the expression is done when
2212 -- the contract is processed.
2213
2214 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2215 -- Determine whether Body_Decl denotes the body of a late controlled
2216 -- primitive (either Initialize, Adjust or Finalize). If this is the
2217 -- case, add a proper spec if the body lacks one. The spec is inserted
2218 -- before Body_Decl and immediately analyzed.
2219
2220 procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id);
2221 -- Spec_Id is the entity of a package that may define abstract states,
2222 -- and in the case of a child unit, whose ancestors may define abstract
2223 -- states. If the states have partial visible refinement, remove the
2224 -- partial visibility of each constituent at the end of the package
2225 -- spec and body declarations.
2226
2227 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2228 -- Spec_Id is the entity of a package that may define abstract states.
2229 -- If the states have visible refinement, remove the visibility of each
2230 -- constituent at the end of the package body declaration.
2231
2232 procedure Resolve_Aspects;
2233 -- Utility to resolve the expressions of aspects at the end of a list of
2234 -- declarations.
2235
2236 function Uses_Unseen_Lib_Unit_Priv (Pkg : Entity_Id) return Boolean;
2237 -- Check if an inner package has entities within it that rely on library
2238 -- level private types where the full view has not been seen.
2239
2240 -----------------
2241 -- Adjust_Decl --
2242 -----------------
2243
2244 procedure Adjust_Decl is
2245 begin
2246 while Present (Prev (Decl))
2247 and then Nkind (Decl) = N_Implicit_Label_Declaration
2248 loop
2249 Prev (Decl);
2250 end loop;
2251 end Adjust_Decl;
2252
2253 ----------------------------
2254 -- Build_Assertion_Bodies --
2255 ----------------------------
2256
2257 procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id) is
2258 procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id);
2259 -- Create the subprogram bodies which verify the run-time semantics
2260 -- of the pragmas listed below for type Typ. The pragmas are:
2261 --
2262 -- Default_Initial_Condition
2263 -- Invariant
2264 -- Type_Invariant
2265
2266 -------------------------------------
2267 -- Build_Assertion_Bodies_For_Type --
2268 -------------------------------------
2269
2270 procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id) is
2271 begin
2272 -- Preanalyze and resolve the Default_Initial_Condition assertion
2273 -- expression at the end of the declarations to catch any errors.
2274
2275 if Has_DIC (Typ) then
2276 Build_DIC_Procedure_Body (Typ);
2277 end if;
2278
2279 if Nkind (Context) = N_Package_Specification then
2280
2281 -- Preanalyze and resolve the class-wide invariants of an
2282 -- interface at the end of whichever declarative part has the
2283 -- interface type. Note that an interface may be declared in
2284 -- any non-package declarative part, but reaching the end of
2285 -- such a declarative part will always freeze the type and
2286 -- generate the invariant procedure (see Freeze_Type).
2287
2288 if Is_Interface (Typ) then
2289
2290 -- Interfaces are treated as the partial view of a private
2291 -- type, in order to achieve uniformity with the general
2292 -- case. As a result, an interface receives only a "partial"
2293 -- invariant procedure, which is never called.
2294
2295 if Has_Own_Invariants (Typ) then
2296 Build_Invariant_Procedure_Body
2297 (Typ => Typ,
2298 Partial_Invariant => True);
2299 end if;
2300
2301 -- Preanalyze and resolve the invariants of a private type
2302 -- at the end of the visible declarations to catch potential
2303 -- errors. Inherited class-wide invariants are not included
2304 -- because they have already been resolved.
2305
2306 elsif Decls = Visible_Declarations (Context)
2307 and then Ekind_In (Typ, E_Limited_Private_Type,
2308 E_Private_Type,
2309 E_Record_Type_With_Private)
2310 and then Has_Own_Invariants (Typ)
2311 then
2312 Build_Invariant_Procedure_Body
2313 (Typ => Typ,
2314 Partial_Invariant => True);
2315
2316 -- Preanalyze and resolve the invariants of a private type's
2317 -- full view at the end of the private declarations to catch
2318 -- potential errors.
2319
2320 elsif Decls = Private_Declarations (Context)
2321 and then not Is_Private_Type (Typ)
2322 and then Has_Private_Declaration (Typ)
2323 and then Has_Invariants (Typ)
2324 then
2325 Build_Invariant_Procedure_Body (Typ);
2326 end if;
2327 end if;
2328 end Build_Assertion_Bodies_For_Type;
2329
2330 -- Local variables
2331
2332 Decl : Node_Id;
2333 Decl_Id : Entity_Id;
2334
2335 -- Start of processing for Build_Assertion_Bodies
2336
2337 begin
2338 Decl := First (Decls);
2339 while Present (Decl) loop
2340 if Is_Declaration (Decl) then
2341 Decl_Id := Defining_Entity (Decl);
2342
2343 if Is_Type (Decl_Id) then
2344 Build_Assertion_Bodies_For_Type (Decl_Id);
2345 end if;
2346 end if;
2347
2348 Next (Decl);
2349 end loop;
2350 end Build_Assertion_Bodies;
2351
2352 ---------------------------
2353 -- Check_Entry_Contracts --
2354 ---------------------------
2355
2356 procedure Check_Entry_Contracts is
2357 ASN : Node_Id;
2358 Ent : Entity_Id;
2359 Exp : Node_Id;
2360
2361 begin
2362 Ent := First_Entity (Current_Scope);
2363 while Present (Ent) loop
2364
2365 -- This only concerns entries with pre/postconditions
2366
2367 if Ekind (Ent) = E_Entry
2368 and then Present (Contract (Ent))
2369 and then Present (Pre_Post_Conditions (Contract (Ent)))
2370 then
2371 ASN := Pre_Post_Conditions (Contract (Ent));
2372 Push_Scope (Ent);
2373 Install_Formals (Ent);
2374
2375 -- Pre/postconditions are rewritten as Check pragmas. Analysis
2376 -- is performed on a copy of the pragma expression, to prevent
2377 -- modifying the original expression.
2378
2379 while Present (ASN) loop
2380 if Nkind (ASN) = N_Pragma then
2381 Exp :=
2382 New_Copy_Tree
2383 (Expression
2384 (First (Pragma_Argument_Associations (ASN))));
2385 Set_Parent (Exp, ASN);
2386
2387 Preanalyze_Assert_Expression (Exp, Standard_Boolean);
2388 end if;
2389
2390 ASN := Next_Pragma (ASN);
2391 end loop;
2392
2393 End_Scope;
2394 end if;
2395
2396 Next_Entity (Ent);
2397 end loop;
2398 end Check_Entry_Contracts;
2399
2400 --------------------------------------
2401 -- Handle_Late_Controlled_Primitive --
2402 --------------------------------------
2403
2404 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2405 Body_Spec : constant Node_Id := Specification (Body_Decl);
2406 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2407 Loc : constant Source_Ptr := Sloc (Body_Id);
2408 Params : constant List_Id :=
2409 Parameter_Specifications (Body_Spec);
2410 Spec : Node_Id;
2411 Spec_Id : Entity_Id;
2412 Typ : Node_Id;
2413
2414 begin
2415 -- Consider only procedure bodies whose name matches one of the three
2416 -- controlled primitives.
2417
2418 if Nkind (Body_Spec) /= N_Procedure_Specification
2419 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2420 Name_Finalize,
2421 Name_Initialize)
2422 then
2423 return;
2424
2425 -- A controlled primitive must have exactly one formal which is not
2426 -- an anonymous access type.
2427
2428 elsif List_Length (Params) /= 1 then
2429 return;
2430 end if;
2431
2432 Typ := Parameter_Type (First (Params));
2433
2434 if Nkind (Typ) = N_Access_Definition then
2435 return;
2436 end if;
2437
2438 Find_Type (Typ);
2439
2440 -- The type of the formal must be derived from [Limited_]Controlled
2441
2442 if not Is_Controlled (Entity (Typ)) then
2443 return;
2444 end if;
2445
2446 -- Check whether a specification exists for this body. We do not
2447 -- analyze the spec of the body in full, because it will be analyzed
2448 -- again when the body is properly analyzed, and we cannot create
2449 -- duplicate entries in the formals chain. We look for an explicit
2450 -- specification because the body may be an overriding operation and
2451 -- an inherited spec may be present.
2452
2453 Spec_Id := Current_Entity (Body_Id);
2454
2455 while Present (Spec_Id) loop
2456 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure)
2457 and then Scope (Spec_Id) = Current_Scope
2458 and then Present (First_Formal (Spec_Id))
2459 and then No (Next_Formal (First_Formal (Spec_Id)))
2460 and then Etype (First_Formal (Spec_Id)) = Entity (Typ)
2461 and then Comes_From_Source (Spec_Id)
2462 then
2463 return;
2464 end if;
2465
2466 Spec_Id := Homonym (Spec_Id);
2467 end loop;
2468
2469 -- At this point the body is known to be a late controlled primitive.
2470 -- Generate a matching spec and insert it before the body. Note the
2471 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2472 -- tree in this case.
2473
2474 Spec := Copy_Separate_Tree (Body_Spec);
2475
2476 -- Ensure that the subprogram declaration does not inherit the null
2477 -- indicator from the body as we now have a proper spec/body pair.
2478
2479 Set_Null_Present (Spec, False);
2480
2481 -- Ensure that the freeze node is inserted after the declaration of
2482 -- the primitive since its expansion will freeze the primitive.
2483
2484 Decl := Make_Subprogram_Declaration (Loc, Specification => Spec);
2485
2486 Insert_Before_And_Analyze (Body_Decl, Decl);
2487 end Handle_Late_Controlled_Primitive;
2488
2489 ----------------------------------------
2490 -- Remove_Partial_Visible_Refinements --
2491 ----------------------------------------
2492
2493 procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id) is
2494 State_Elmt : Elmt_Id;
2495 begin
2496 if Present (Abstract_States (Spec_Id)) then
2497 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2498 while Present (State_Elmt) loop
2499 Set_Has_Partial_Visible_Refinement (Node (State_Elmt), False);
2500 Next_Elmt (State_Elmt);
2501 end loop;
2502 end if;
2503
2504 -- For a child unit, also hide the partial state refinement from
2505 -- ancestor packages.
2506
2507 if Is_Child_Unit (Spec_Id) then
2508 Remove_Partial_Visible_Refinements (Scope (Spec_Id));
2509 end if;
2510 end Remove_Partial_Visible_Refinements;
2511
2512 --------------------------------
2513 -- Remove_Visible_Refinements --
2514 --------------------------------
2515
2516 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2517 State_Elmt : Elmt_Id;
2518 begin
2519 if Present (Abstract_States (Spec_Id)) then
2520 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2521 while Present (State_Elmt) loop
2522 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2523 Next_Elmt (State_Elmt);
2524 end loop;
2525 end if;
2526 end Remove_Visible_Refinements;
2527
2528 ---------------------
2529 -- Resolve_Aspects --
2530 ---------------------
2531
2532 procedure Resolve_Aspects is
2533 E : Entity_Id;
2534
2535 begin
2536 E := First_Entity (Current_Scope);
2537 while Present (E) loop
2538 Resolve_Aspect_Expressions (E);
2539 Next_Entity (E);
2540 end loop;
2541 end Resolve_Aspects;
2542
2543 -------------------------------
2544 -- Uses_Unseen_Lib_Unit_Priv --
2545 -------------------------------
2546
2547 function Uses_Unseen_Lib_Unit_Priv (Pkg : Entity_Id) return Boolean is
2548 Curr : Entity_Id;
2549
2550 begin
2551 -- Avoid looking through scopes that do not meet the precondition of
2552 -- Pkg not being within a library unit spec.
2553
2554 if not Is_Compilation_Unit (Pkg)
2555 and then not Is_Generic_Instance (Pkg)
2556 and then not In_Package_Body (Enclosing_Lib_Unit_Entity (Pkg))
2557 then
2558 -- Loop through all entities in the current scope to identify
2559 -- an entity that depends on a private type.
2560
2561 Curr := First_Entity (Pkg);
2562 loop
2563 if Nkind (Curr) in N_Entity
2564 and then Depends_On_Private (Curr)
2565 then
2566 return True;
2567 end if;
2568
2569 exit when Last_Entity (Current_Scope) = Curr;
2570 Curr := Next_Entity (Curr);
2571 end loop;
2572 end if;
2573
2574 return False;
2575 end Uses_Unseen_Lib_Unit_Priv;
2576
2577 -- Local variables
2578
2579 Context : Node_Id := Empty;
2580 Freeze_From : Entity_Id := Empty;
2581 Next_Decl : Node_Id;
2582
2583 Body_Seen : Boolean := False;
2584 -- Flag set when the first body [stub] is encountered
2585
2586 -- Start of processing for Analyze_Declarations
2587
2588 begin
2589 if Restriction_Check_Required (SPARK_05) then
2590 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2591 end if;
2592
2593 Decl := First (L);
2594 while Present (Decl) loop
2595
2596 -- Package spec cannot contain a package declaration in SPARK
2597
2598 if Nkind (Decl) = N_Package_Declaration
2599 and then Nkind (Parent (L)) = N_Package_Specification
2600 then
2601 Check_SPARK_05_Restriction
2602 ("package specification cannot contain a package declaration",
2603 Decl);
2604 end if;
2605
2606 -- Complete analysis of declaration
2607
2608 Analyze (Decl);
2609 Next_Decl := Next (Decl);
2610
2611 if No (Freeze_From) then
2612 Freeze_From := First_Entity (Current_Scope);
2613 end if;
2614
2615 -- At the end of a declarative part, freeze remaining entities
2616 -- declared in it. The end of the visible declarations of package
2617 -- specification is not the end of a declarative part if private
2618 -- declarations are present. The end of a package declaration is a
2619 -- freezing point only if it a library package. A task definition or
2620 -- protected type definition is not a freeze point either. Finally,
2621 -- we do not freeze entities in generic scopes, because there is no
2622 -- code generated for them and freeze nodes will be generated for
2623 -- the instance.
2624
2625 -- The end of a package instantiation is not a freeze point, but
2626 -- for now we make it one, because the generic body is inserted
2627 -- (currently) immediately after. Generic instantiations will not
2628 -- be a freeze point once delayed freezing of bodies is implemented.
2629 -- (This is needed in any case for early instantiations ???).
2630
2631 if No (Next_Decl) then
2632 if Nkind (Parent (L)) = N_Component_List then
2633 null;
2634
2635 elsif Nkind_In (Parent (L), N_Protected_Definition,
2636 N_Task_Definition)
2637 then
2638 Check_Entry_Contracts;
2639
2640 elsif Nkind (Parent (L)) /= N_Package_Specification then
2641 if Nkind (Parent (L)) = N_Package_Body then
2642 Freeze_From := First_Entity (Current_Scope);
2643 end if;
2644
2645 -- There may have been several freezing points previously,
2646 -- for example object declarations or subprogram bodies, but
2647 -- at the end of a declarative part we check freezing from
2648 -- the beginning, even though entities may already be frozen,
2649 -- in order to perform visibility checks on delayed aspects.
2650
2651 Adjust_Decl;
2652 Freeze_All (First_Entity (Current_Scope), Decl);
2653 Freeze_From := Last_Entity (Current_Scope);
2654
2655 -- Current scope is a package specification
2656
2657 elsif Scope (Current_Scope) /= Standard_Standard
2658 and then not Is_Child_Unit (Current_Scope)
2659 and then No (Generic_Parent (Parent (L)))
2660 then
2661 -- This is needed in all cases to catch visibility errors in
2662 -- aspect expressions, but several large user tests are now
2663 -- rejected. Pending notification we restrict this call to
2664 -- ASIS mode.
2665
2666 if ASIS_Mode then
2667 Resolve_Aspects;
2668 end if;
2669
2670 elsif L /= Visible_Declarations (Parent (L))
2671 or else No (Private_Declarations (Parent (L)))
2672 or else Is_Empty_List (Private_Declarations (Parent (L)))
2673 then
2674 Adjust_Decl;
2675
2676 -- End of a package declaration
2677
2678 -- In compilation mode the expansion of freeze node takes care
2679 -- of resolving expressions of all aspects in the list. In ASIS
2680 -- mode this must be done explicitly.
2681
2682 if ASIS_Mode
2683 and then Scope (Current_Scope) = Standard_Standard
2684 then
2685 Resolve_Aspects;
2686 end if;
2687
2688 -- This is a freeze point because it is the end of a
2689 -- compilation unit.
2690
2691 Freeze_All (First_Entity (Current_Scope), Decl);
2692 Freeze_From := Last_Entity (Current_Scope);
2693
2694 -- At the end of the visible declarations the expressions in
2695 -- aspects of all entities declared so far must be resolved.
2696 -- The entities themselves might be frozen later, and the
2697 -- generated pragmas and attribute definition clauses analyzed
2698 -- in full at that point, but name resolution must take place
2699 -- now.
2700 -- In addition to being the proper semantics, this is mandatory
2701 -- within generic units, because global name capture requires
2702 -- those expressions to be analyzed, given that the generated
2703 -- pragmas do not appear in the original generic tree.
2704
2705 elsif Serious_Errors_Detected = 0 then
2706 Resolve_Aspects;
2707 end if;
2708
2709 -- If next node is a body then freeze all types before the body.
2710 -- An exception occurs for some expander-generated bodies. If these
2711 -- are generated at places where in general language rules would not
2712 -- allow a freeze point, then we assume that the expander has
2713 -- explicitly checked that all required types are properly frozen,
2714 -- and we do not cause general freezing here. This special circuit
2715 -- is used when the encountered body is marked as having already
2716 -- been analyzed.
2717
2718 -- In all other cases (bodies that come from source, and expander
2719 -- generated bodies that have not been analyzed yet), freeze all
2720 -- types now. Note that in the latter case, the expander must take
2721 -- care to attach the bodies at a proper place in the tree so as to
2722 -- not cause unwanted freezing at that point.
2723
2724 -- It is also necessary to check for a case where both an expression
2725 -- function is used and the current scope depends on an unseen
2726 -- private type from a library unit, otherwise premature freezing of
2727 -- the private type will occur.
2728
2729 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl)
2730 and then ((Nkind (Next_Decl) /= N_Subprogram_Body
2731 or else not Was_Expression_Function (Next_Decl))
2732 or else not Uses_Unseen_Lib_Unit_Priv (Current_Scope))
2733 then
2734 -- When a controlled type is frozen, the expander generates stream
2735 -- and controlled-type support routines. If the freeze is caused
2736 -- by the stand-alone body of Initialize, Adjust, or Finalize, the
2737 -- expander will end up using the wrong version of these routines,
2738 -- as the body has not been processed yet. To remedy this, detect
2739 -- a late controlled primitive and create a proper spec for it.
2740 -- This ensures that the primitive will override its inherited
2741 -- counterpart before the freeze takes place.
2742
2743 -- If the declaration we just processed is a body, do not attempt
2744 -- to examine Next_Decl as the late primitive idiom can only apply
2745 -- to the first encountered body.
2746
2747 -- The spec of the late primitive is not generated in ASIS mode to
2748 -- ensure a consistent list of primitives that indicates the true
2749 -- semantic structure of the program (which is not relevant when
2750 -- generating executable code).
2751
2752 -- ??? A cleaner approach may be possible and/or this solution
2753 -- could be extended to general-purpose late primitives, TBD.
2754
2755 if not ASIS_Mode
2756 and then not Body_Seen
2757 and then not Is_Body (Decl)
2758 then
2759 Body_Seen := True;
2760
2761 if Nkind (Next_Decl) = N_Subprogram_Body then
2762 Handle_Late_Controlled_Primitive (Next_Decl);
2763 end if;
2764 end if;
2765
2766 Adjust_Decl;
2767
2768 -- The generated body of an expression function does not freeze,
2769 -- unless it is a completion, in which case only the expression
2770 -- itself freezes. This is handled when the body itself is
2771 -- analyzed (see Freeze_Expr_Types, sem_ch6.adb).
2772
2773 Freeze_All (Freeze_From, Decl);
2774 Freeze_From := Last_Entity (Current_Scope);
2775 end if;
2776
2777 Decl := Next_Decl;
2778 end loop;
2779
2780 -- Post-freezing actions
2781
2782 if Present (L) then
2783 Context := Parent (L);
2784
2785 -- Analyze the contracts of packages and their bodies
2786
2787 if Nkind (Context) = N_Package_Specification then
2788
2789 -- When a package has private declarations, its contract must be
2790 -- analyzed at the end of the said declarations. This way both the
2791 -- analysis and freeze actions are properly synchronized in case
2792 -- of private type use within the contract.
2793
2794 if L = Private_Declarations (Context) then
2795 Analyze_Package_Contract (Defining_Entity (Context));
2796
2797 -- Otherwise the contract is analyzed at the end of the visible
2798 -- declarations.
2799
2800 elsif L = Visible_Declarations (Context)
2801 and then No (Private_Declarations (Context))
2802 then
2803 Analyze_Package_Contract (Defining_Entity (Context));
2804 end if;
2805
2806 elsif Nkind (Context) = N_Package_Body then
2807 Analyze_Package_Body_Contract (Defining_Entity (Context));
2808 end if;
2809
2810 -- Analyze the contracts of various constructs now due to the delayed
2811 -- visibility needs of their aspects and pragmas.
2812
2813 Analyze_Contracts (L);
2814
2815 if Nkind (Context) = N_Package_Body then
2816
2817 -- Ensure that all abstract states and objects declared in the
2818 -- state space of a package body are utilized as constituents.
2819
2820 Check_Unused_Body_States (Defining_Entity (Context));
2821
2822 -- State refinements are visible up to the end of the package body
2823 -- declarations. Hide the state refinements from visibility to
2824 -- restore the original state conditions.
2825
2826 Remove_Visible_Refinements (Corresponding_Spec (Context));
2827 Remove_Partial_Visible_Refinements (Corresponding_Spec (Context));
2828
2829 elsif Nkind (Context) = N_Package_Declaration then
2830
2831 -- Partial state refinements are visible up to the end of the
2832 -- package spec declarations. Hide the partial state refinements
2833 -- from visibility to restore the original state conditions.
2834
2835 Remove_Partial_Visible_Refinements (Corresponding_Spec (Context));
2836 end if;
2837
2838 -- Verify that all abstract states found in any package declared in
2839 -- the input declarative list have proper refinements. The check is
2840 -- performed only when the context denotes a block, entry, package,
2841 -- protected, subprogram, or task body (SPARK RM 7.2.2(3)).
2842
2843 Check_State_Refinements (Context);
2844
2845 -- Create the subprogram bodies which verify the run-time semantics
2846 -- of pragmas Default_Initial_Condition and [Type_]Invariant for all
2847 -- types within the current declarative list. This ensures that all
2848 -- assertion expressions are preanalyzed and resolved at the end of
2849 -- the declarative part. Note that the resolution happens even when
2850 -- freezing does not take place.
2851
2852 Build_Assertion_Bodies (L, Context);
2853 end if;
2854 end Analyze_Declarations;
2855
2856 -----------------------------------
2857 -- Analyze_Full_Type_Declaration --
2858 -----------------------------------
2859
2860 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2861 Def : constant Node_Id := Type_Definition (N);
2862 Def_Id : constant Entity_Id := Defining_Identifier (N);
2863 T : Entity_Id;
2864 Prev : Entity_Id;
2865
2866 Is_Remote : constant Boolean :=
2867 (Is_Remote_Types (Current_Scope)
2868 or else Is_Remote_Call_Interface (Current_Scope))
2869 and then not (In_Private_Part (Current_Scope)
2870 or else In_Package_Body (Current_Scope));
2871
2872 procedure Check_Nonoverridable_Aspects;
2873 -- Apply the rule in RM 13.1.1(18.4/4) on iterator aspects that cannot
2874 -- be overridden, and can only be confirmed on derivation.
2875
2876 procedure Check_Ops_From_Incomplete_Type;
2877 -- If there is a tagged incomplete partial view of the type, traverse
2878 -- the primitives of the incomplete view and change the type of any
2879 -- controlling formals and result to indicate the full view. The
2880 -- primitives will be added to the full type's primitive operations
2881 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2882 -- is called from Process_Incomplete_Dependents).
2883
2884 ----------------------------------
2885 -- Check_Nonoverridable_Aspects --
2886 ----------------------------------
2887
2888 procedure Check_Nonoverridable_Aspects is
2889 function Get_Aspect_Spec
2890 (Specs : List_Id;
2891 Aspect_Name : Name_Id) return Node_Id;
2892 -- Check whether a list of aspect specifications includes an entry
2893 -- for a specific aspect. The list is either that of a partial or
2894 -- a full view.
2895
2896 ---------------------
2897 -- Get_Aspect_Spec --
2898 ---------------------
2899
2900 function Get_Aspect_Spec
2901 (Specs : List_Id;
2902 Aspect_Name : Name_Id) return Node_Id
2903 is
2904 Spec : Node_Id;
2905
2906 begin
2907 Spec := First (Specs);
2908 while Present (Spec) loop
2909 if Chars (Identifier (Spec)) = Aspect_Name then
2910 return Spec;
2911 end if;
2912 Next (Spec);
2913 end loop;
2914
2915 return Empty;
2916 end Get_Aspect_Spec;
2917
2918 -- Local variables
2919
2920 Prev_Aspects : constant List_Id :=
2921 Aspect_Specifications (Parent (Def_Id));
2922 Par_Type : Entity_Id;
2923 Prev_Aspect : Node_Id;
2924
2925 -- Start of processing for Check_Nonoverridable_Aspects
2926
2927 begin
2928 -- Get parent type of derived type. Note that Prev is the entity in
2929 -- the partial declaration, but its contents are now those of full
2930 -- view, while Def_Id reflects the partial view.
2931
2932 if Is_Private_Type (Def_Id) then
2933 Par_Type := Etype (Full_View (Def_Id));
2934 else
2935 Par_Type := Etype (Def_Id);
2936 end if;
2937
2938 -- If there is an inherited Implicit_Dereference, verify that it is
2939 -- made explicit in the partial view.
2940
2941 if Has_Discriminants (Base_Type (Par_Type))
2942 and then Nkind (Parent (Prev)) = N_Full_Type_Declaration
2943 and then Present (Discriminant_Specifications (Parent (Prev)))
2944 and then Present (Get_Reference_Discriminant (Par_Type))
2945 then
2946 Prev_Aspect :=
2947 Get_Aspect_Spec (Prev_Aspects, Name_Implicit_Dereference);
2948
2949 if No (Prev_Aspect)
2950 and then Present
2951 (Discriminant_Specifications
2952 (Original_Node (Parent (Prev))))
2953 then
2954 Error_Msg_N
2955 ("type does not inherit implicit dereference", Prev);
2956
2957 else
2958 -- If one of the views has the aspect specified, verify that it
2959 -- is consistent with that of the parent.
2960
2961 declare
2962 Par_Discr : constant Entity_Id :=
2963 Get_Reference_Discriminant (Par_Type);
2964 Cur_Discr : constant Entity_Id :=
2965 Get_Reference_Discriminant (Prev);
2966
2967 begin
2968 if Corresponding_Discriminant (Cur_Discr) /= Par_Discr then
2969 Error_Msg_N ("aspect incosistent with that of parent", N);
2970 end if;
2971
2972 -- Check that specification in partial view matches the
2973 -- inherited aspect. Compare names directly because aspect
2974 -- expression may not be analyzed.
2975
2976 if Present (Prev_Aspect)
2977 and then Nkind (Expression (Prev_Aspect)) = N_Identifier
2978 and then Chars (Expression (Prev_Aspect)) /=
2979 Chars (Cur_Discr)
2980 then
2981 Error_Msg_N
2982 ("aspect incosistent with that of parent", N);
2983 end if;
2984 end;
2985 end if;
2986 end if;
2987
2988 -- TBD : other nonoverridable aspects.
2989 end Check_Nonoverridable_Aspects;
2990
2991 ------------------------------------
2992 -- Check_Ops_From_Incomplete_Type --
2993 ------------------------------------
2994
2995 procedure Check_Ops_From_Incomplete_Type is
2996 Elmt : Elmt_Id;
2997 Formal : Entity_Id;
2998 Op : Entity_Id;
2999
3000 begin
3001 if Prev /= T
3002 and then Ekind (Prev) = E_Incomplete_Type
3003 and then Is_Tagged_Type (Prev)
3004 and then Is_Tagged_Type (T)
3005 then
3006 Elmt := First_Elmt (Primitive_Operations (Prev));
3007 while Present (Elmt) loop
3008 Op := Node (Elmt);
3009
3010 Formal := First_Formal (Op);
3011 while Present (Formal) loop
3012 if Etype (Formal) = Prev then
3013 Set_Etype (Formal, T);
3014 end if;
3015
3016 Next_Formal (Formal);
3017 end loop;
3018
3019 if Etype (Op) = Prev then
3020 Set_Etype (Op, T);
3021 end if;
3022
3023 Next_Elmt (Elmt);
3024 end loop;
3025 end if;
3026 end Check_Ops_From_Incomplete_Type;
3027
3028 -- Start of processing for Analyze_Full_Type_Declaration
3029
3030 begin
3031 Prev := Find_Type_Name (N);
3032
3033 -- The full view, if present, now points to the current type. If there
3034 -- is an incomplete partial view, set a link to it, to simplify the
3035 -- retrieval of primitive operations of the type.
3036
3037 -- Ada 2005 (AI-50217): If the type was previously decorated when
3038 -- imported through a LIMITED WITH clause, it appears as incomplete
3039 -- but has no full view.
3040
3041 if Ekind (Prev) = E_Incomplete_Type
3042 and then Present (Full_View (Prev))
3043 then
3044 T := Full_View (Prev);
3045 Set_Incomplete_View (N, Parent (Prev));
3046 else
3047 T := Prev;
3048 end if;
3049
3050 Set_Is_Pure (T, Is_Pure (Current_Scope));
3051
3052 -- We set the flag Is_First_Subtype here. It is needed to set the
3053 -- corresponding flag for the Implicit class-wide-type created
3054 -- during tagged types processing.
3055
3056 Set_Is_First_Subtype (T, True);
3057
3058 -- Only composite types other than array types are allowed to have
3059 -- discriminants.
3060
3061 case Nkind (Def) is
3062
3063 -- For derived types, the rule will be checked once we've figured
3064 -- out the parent type.
3065
3066 when N_Derived_Type_Definition =>
3067 null;
3068
3069 -- For record types, discriminants are allowed, unless we are in
3070 -- SPARK.
3071
3072 when N_Record_Definition =>
3073 if Present (Discriminant_Specifications (N)) then
3074 Check_SPARK_05_Restriction
3075 ("discriminant type is not allowed",
3076 Defining_Identifier
3077 (First (Discriminant_Specifications (N))));
3078 end if;
3079
3080 when others =>
3081 if Present (Discriminant_Specifications (N)) then
3082 Error_Msg_N
3083 ("elementary or array type cannot have discriminants",
3084 Defining_Identifier
3085 (First (Discriminant_Specifications (N))));
3086 end if;
3087 end case;
3088
3089 -- Elaborate the type definition according to kind, and generate
3090 -- subsidiary (implicit) subtypes where needed. We skip this if it was
3091 -- already done (this happens during the reanalysis that follows a call
3092 -- to the high level optimizer).
3093
3094 if not Analyzed (T) then
3095 Set_Analyzed (T);
3096
3097 case Nkind (Def) is
3098 when N_Access_To_Subprogram_Definition =>
3099 Access_Subprogram_Declaration (T, Def);
3100
3101 -- If this is a remote access to subprogram, we must create the
3102 -- equivalent fat pointer type, and related subprograms.
3103
3104 if Is_Remote then
3105 Process_Remote_AST_Declaration (N);
3106 end if;
3107
3108 -- Validate categorization rule against access type declaration
3109 -- usually a violation in Pure unit, Shared_Passive unit.
3110
3111 Validate_Access_Type_Declaration (T, N);
3112
3113 when N_Access_To_Object_Definition =>
3114 Access_Type_Declaration (T, Def);
3115
3116 -- Validate categorization rule against access type declaration
3117 -- usually a violation in Pure unit, Shared_Passive unit.
3118
3119 Validate_Access_Type_Declaration (T, N);
3120
3121 -- If we are in a Remote_Call_Interface package and define a
3122 -- RACW, then calling stubs and specific stream attributes
3123 -- must be added.
3124
3125 if Is_Remote
3126 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
3127 then
3128 Add_RACW_Features (Def_Id);
3129 end if;
3130
3131 when N_Array_Type_Definition =>
3132 Array_Type_Declaration (T, Def);
3133
3134 when N_Derived_Type_Definition =>
3135 Derived_Type_Declaration (T, N, T /= Def_Id);
3136
3137 -- Inherit predicates from parent, and protect against illegal
3138 -- derivations.
3139
3140 if Is_Type (T) and then Has_Predicates (T) then
3141 Set_Has_Predicates (Def_Id);
3142 end if;
3143
3144 when N_Enumeration_Type_Definition =>
3145 Enumeration_Type_Declaration (T, Def);
3146
3147 when N_Floating_Point_Definition =>
3148 Floating_Point_Type_Declaration (T, Def);
3149
3150 when N_Decimal_Fixed_Point_Definition =>
3151 Decimal_Fixed_Point_Type_Declaration (T, Def);
3152
3153 when N_Ordinary_Fixed_Point_Definition =>
3154 Ordinary_Fixed_Point_Type_Declaration (T, Def);
3155
3156 when N_Signed_Integer_Type_Definition =>
3157 Signed_Integer_Type_Declaration (T, Def);
3158
3159 when N_Modular_Type_Definition =>
3160 Modular_Type_Declaration (T, Def);
3161
3162 when N_Record_Definition =>
3163 Record_Type_Declaration (T, N, Prev);
3164
3165 -- If declaration has a parse error, nothing to elaborate.
3166
3167 when N_Error =>
3168 null;
3169
3170 when others =>
3171 raise Program_Error;
3172 end case;
3173 end if;
3174
3175 if Etype (T) = Any_Type then
3176 return;
3177 end if;
3178
3179 -- Controlled type is not allowed in SPARK
3180
3181 if Is_Visibly_Controlled (T) then
3182 Check_SPARK_05_Restriction ("controlled type is not allowed", N);
3183 end if;
3184
3185 -- Some common processing for all types
3186
3187 Set_Depends_On_Private (T, Has_Private_Component (T));
3188 Check_Ops_From_Incomplete_Type;
3189
3190 -- Both the declared entity, and its anonymous base type if one was
3191 -- created, need freeze nodes allocated.
3192
3193 declare
3194 B : constant Entity_Id := Base_Type (T);
3195
3196 begin
3197 -- In the case where the base type differs from the first subtype, we
3198 -- pre-allocate a freeze node, and set the proper link to the first
3199 -- subtype. Freeze_Entity will use this preallocated freeze node when
3200 -- it freezes the entity.
3201
3202 -- This does not apply if the base type is a generic type, whose
3203 -- declaration is independent of the current derived definition.
3204
3205 if B /= T and then not Is_Generic_Type (B) then
3206 Ensure_Freeze_Node (B);
3207 Set_First_Subtype_Link (Freeze_Node (B), T);
3208 end if;
3209
3210 -- A type that is imported through a limited_with clause cannot
3211 -- generate any code, and thus need not be frozen. However, an access
3212 -- type with an imported designated type needs a finalization list,
3213 -- which may be referenced in some other package that has non-limited
3214 -- visibility on the designated type. Thus we must create the
3215 -- finalization list at the point the access type is frozen, to
3216 -- prevent unsatisfied references at link time.
3217
3218 if not From_Limited_With (T) or else Is_Access_Type (T) then
3219 Set_Has_Delayed_Freeze (T);
3220 end if;
3221 end;
3222
3223 -- Case where T is the full declaration of some private type which has
3224 -- been swapped in Defining_Identifier (N).
3225
3226 if T /= Def_Id and then Is_Private_Type (Def_Id) then
3227 Process_Full_View (N, T, Def_Id);
3228
3229 -- Record the reference. The form of this is a little strange, since
3230 -- the full declaration has been swapped in. So the first parameter
3231 -- here represents the entity to which a reference is made which is
3232 -- the "real" entity, i.e. the one swapped in, and the second
3233 -- parameter provides the reference location.
3234
3235 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
3236 -- since we don't want a complaint about the full type being an
3237 -- unwanted reference to the private type
3238
3239 declare
3240 B : constant Boolean := Has_Pragma_Unreferenced (T);
3241 begin
3242 Set_Has_Pragma_Unreferenced (T, False);
3243 Generate_Reference (T, T, 'c');
3244 Set_Has_Pragma_Unreferenced (T, B);
3245 end;
3246
3247 Set_Completion_Referenced (Def_Id);
3248
3249 -- For completion of incomplete type, process incomplete dependents
3250 -- and always mark the full type as referenced (it is the incomplete
3251 -- type that we get for any real reference).
3252
3253 elsif Ekind (Prev) = E_Incomplete_Type then
3254 Process_Incomplete_Dependents (N, T, Prev);
3255 Generate_Reference (Prev, Def_Id, 'c');
3256 Set_Completion_Referenced (Def_Id);
3257
3258 -- If not private type or incomplete type completion, this is a real
3259 -- definition of a new entity, so record it.
3260
3261 else
3262 Generate_Definition (Def_Id);
3263 end if;
3264
3265 -- Propagate any pending access types whose finalization masters need to
3266 -- be fully initialized from the partial to the full view. Guard against
3267 -- an illegal full view that remains unanalyzed.
3268
3269 if Is_Type (Def_Id) and then Is_Incomplete_Or_Private_Type (Prev) then
3270 Set_Pending_Access_Types (Def_Id, Pending_Access_Types (Prev));
3271 end if;
3272
3273 if Chars (Scope (Def_Id)) = Name_System
3274 and then Chars (Def_Id) = Name_Address
3275 and then In_Predefined_Unit (N)
3276 then
3277 Set_Is_Descendant_Of_Address (Def_Id);
3278 Set_Is_Descendant_Of_Address (Base_Type (Def_Id));
3279 Set_Is_Descendant_Of_Address (Prev);
3280 end if;
3281
3282 Set_Optimize_Alignment_Flags (Def_Id);
3283 Check_Eliminated (Def_Id);
3284
3285 -- If the declaration is a completion and aspects are present, apply
3286 -- them to the entity for the type which is currently the partial
3287 -- view, but which is the one that will be frozen.
3288
3289 if Has_Aspects (N) then
3290
3291 -- In most cases the partial view is a private type, and both views
3292 -- appear in different declarative parts. In the unusual case where
3293 -- the partial view is incomplete, perform the analysis on the
3294 -- full view, to prevent freezing anomalies with the corresponding
3295 -- class-wide type, which otherwise might be frozen before the
3296 -- dispatch table is built.
3297
3298 if Prev /= Def_Id
3299 and then Ekind (Prev) /= E_Incomplete_Type
3300 then
3301 Analyze_Aspect_Specifications (N, Prev);
3302
3303 -- Normal case
3304
3305 else
3306 Analyze_Aspect_Specifications (N, Def_Id);
3307 end if;
3308 end if;
3309
3310 if Is_Derived_Type (Prev)
3311 and then Def_Id /= Prev
3312 then
3313 Check_Nonoverridable_Aspects;
3314 end if;
3315 end Analyze_Full_Type_Declaration;
3316
3317 ----------------------------------
3318 -- Analyze_Incomplete_Type_Decl --
3319 ----------------------------------
3320
3321 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
3322 F : constant Boolean := Is_Pure (Current_Scope);
3323 T : Entity_Id;
3324
3325 begin
3326 Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
3327
3328 Generate_Definition (Defining_Identifier (N));
3329
3330 -- Process an incomplete declaration. The identifier must not have been
3331 -- declared already in the scope. However, an incomplete declaration may
3332 -- appear in the private part of a package, for a private type that has
3333 -- already been declared.
3334
3335 -- In this case, the discriminants (if any) must match
3336
3337 T := Find_Type_Name (N);
3338
3339 Set_Ekind (T, E_Incomplete_Type);
3340 Init_Size_Align (T);
3341 Set_Is_First_Subtype (T, True);
3342 Set_Etype (T, T);
3343
3344 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
3345 -- incomplete types.
3346
3347 if Tagged_Present (N) then
3348 Set_Is_Tagged_Type (T, True);
3349 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3350 Make_Class_Wide_Type (T);
3351 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3352 end if;
3353
3354 Set_Stored_Constraint (T, No_Elist);
3355
3356 if Present (Discriminant_Specifications (N)) then
3357 Push_Scope (T);
3358 Process_Discriminants (N);
3359 End_Scope;
3360 end if;
3361
3362 -- If the type has discriminants, nontrivial subtypes may be declared
3363 -- before the full view of the type. The full views of those subtypes
3364 -- will be built after the full view of the type.
3365
3366 Set_Private_Dependents (T, New_Elmt_List);
3367 Set_Is_Pure (T, F);
3368 end Analyze_Incomplete_Type_Decl;
3369
3370 -----------------------------------
3371 -- Analyze_Interface_Declaration --
3372 -----------------------------------
3373
3374 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
3375 CW : constant Entity_Id := Class_Wide_Type (T);
3376
3377 begin
3378 Set_Is_Tagged_Type (T);
3379 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3380
3381 Set_Is_Limited_Record (T, Limited_Present (Def)
3382 or else Task_Present (Def)
3383 or else Protected_Present (Def)
3384 or else Synchronized_Present (Def));
3385
3386 -- Type is abstract if full declaration carries keyword, or if previous
3387 -- partial view did.
3388
3389 Set_Is_Abstract_Type (T);
3390 Set_Is_Interface (T);
3391
3392 -- Type is a limited interface if it includes the keyword limited, task,
3393 -- protected, or synchronized.
3394
3395 Set_Is_Limited_Interface
3396 (T, Limited_Present (Def)
3397 or else Protected_Present (Def)
3398 or else Synchronized_Present (Def)
3399 or else Task_Present (Def));
3400
3401 Set_Interfaces (T, New_Elmt_List);
3402 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3403
3404 -- Complete the decoration of the class-wide entity if it was already
3405 -- built (i.e. during the creation of the limited view)
3406
3407 if Present (CW) then
3408 Set_Is_Interface (CW);
3409 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
3410 end if;
3411
3412 -- Check runtime support for synchronized interfaces
3413
3414 if (Is_Task_Interface (T)
3415 or else Is_Protected_Interface (T)
3416 or else Is_Synchronized_Interface (T))
3417 and then not RTE_Available (RE_Select_Specific_Data)
3418 then
3419 Error_Msg_CRT ("synchronized interfaces", T);
3420 end if;
3421 end Analyze_Interface_Declaration;
3422
3423 -----------------------------
3424 -- Analyze_Itype_Reference --
3425 -----------------------------
3426
3427 -- Nothing to do. This node is placed in the tree only for the benefit of
3428 -- back end processing, and has no effect on the semantic processing.
3429
3430 procedure Analyze_Itype_Reference (N : Node_Id) is
3431 begin
3432 pragma Assert (Is_Itype (Itype (N)));
3433 null;
3434 end Analyze_Itype_Reference;
3435
3436 --------------------------------
3437 -- Analyze_Number_Declaration --
3438 --------------------------------
3439
3440 procedure Analyze_Number_Declaration (N : Node_Id) is
3441 E : constant Node_Id := Expression (N);
3442 Id : constant Entity_Id := Defining_Identifier (N);
3443 Index : Interp_Index;
3444 It : Interp;
3445 T : Entity_Id;
3446
3447 begin
3448 Generate_Definition (Id);
3449 Enter_Name (Id);
3450
3451 -- This is an optimization of a common case of an integer literal
3452
3453 if Nkind (E) = N_Integer_Literal then
3454 Set_Is_Static_Expression (E, True);
3455 Set_Etype (E, Universal_Integer);
3456
3457 Set_Etype (Id, Universal_Integer);
3458 Set_Ekind (Id, E_Named_Integer);
3459 Set_Is_Frozen (Id, True);
3460 return;
3461 end if;
3462
3463 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3464
3465 -- Process expression, replacing error by integer zero, to avoid
3466 -- cascaded errors or aborts further along in the processing
3467
3468 -- Replace Error by integer zero, which seems least likely to cause
3469 -- cascaded errors.
3470
3471 if E = Error then
3472 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
3473 Set_Error_Posted (E);
3474 end if;
3475
3476 Analyze (E);
3477
3478 -- Verify that the expression is static and numeric. If
3479 -- the expression is overloaded, we apply the preference
3480 -- rule that favors root numeric types.
3481
3482 if not Is_Overloaded (E) then
3483 T := Etype (E);
3484 if Has_Dynamic_Predicate_Aspect (T) then
3485 Error_Msg_N
3486 ("subtype has dynamic predicate, "
3487 & "not allowed in number declaration", N);
3488 end if;
3489
3490 else
3491 T := Any_Type;
3492
3493 Get_First_Interp (E, Index, It);
3494 while Present (It.Typ) loop
3495 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
3496 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
3497 then
3498 if T = Any_Type then
3499 T := It.Typ;
3500
3501 elsif It.Typ = Universal_Real
3502 or else
3503 It.Typ = Universal_Integer
3504 then
3505 -- Choose universal interpretation over any other
3506
3507 T := It.Typ;
3508 exit;
3509 end if;
3510 end if;
3511
3512 Get_Next_Interp (Index, It);
3513 end loop;
3514 end if;
3515
3516 if Is_Integer_Type (T) then
3517 Resolve (E, T);
3518 Set_Etype (Id, Universal_Integer);
3519 Set_Ekind (Id, E_Named_Integer);
3520
3521 elsif Is_Real_Type (T) then
3522
3523 -- Because the real value is converted to universal_real, this is a
3524 -- legal context for a universal fixed expression.
3525
3526 if T = Universal_Fixed then
3527 declare
3528 Loc : constant Source_Ptr := Sloc (N);
3529 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3530 Subtype_Mark =>
3531 New_Occurrence_Of (Universal_Real, Loc),
3532 Expression => Relocate_Node (E));
3533
3534 begin
3535 Rewrite (E, Conv);
3536 Analyze (E);
3537 end;
3538
3539 elsif T = Any_Fixed then
3540 Error_Msg_N ("illegal context for mixed mode operation", E);
3541
3542 -- Expression is of the form : universal_fixed * integer. Try to
3543 -- resolve as universal_real.
3544
3545 T := Universal_Real;
3546 Set_Etype (E, T);
3547 end if;
3548
3549 Resolve (E, T);
3550 Set_Etype (Id, Universal_Real);
3551 Set_Ekind (Id, E_Named_Real);
3552
3553 else
3554 Wrong_Type (E, Any_Numeric);
3555 Resolve (E, T);
3556
3557 Set_Etype (Id, T);
3558 Set_Ekind (Id, E_Constant);
3559 Set_Never_Set_In_Source (Id, True);
3560 Set_Is_True_Constant (Id, True);
3561 return;
3562 end if;
3563
3564 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3565 Set_Etype (E, Etype (Id));
3566 end if;
3567
3568 if not Is_OK_Static_Expression (E) then
3569 Flag_Non_Static_Expr
3570 ("non-static expression used in number declaration!", E);
3571 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3572 Set_Etype (E, Any_Type);
3573 end if;
3574
3575 Analyze_Dimension (N);
3576 end Analyze_Number_Declaration;
3577
3578 --------------------------------
3579 -- Analyze_Object_Declaration --
3580 --------------------------------
3581
3582 -- WARNING: This routine manages Ghost regions. Return statements must be
3583 -- replaced by gotos which jump to the end of the routine and restore the
3584 -- Ghost mode.
3585
3586 procedure Analyze_Object_Declaration (N : Node_Id) is
3587 Loc : constant Source_Ptr := Sloc (N);
3588 Id : constant Entity_Id := Defining_Identifier (N);
3589 Act_T : Entity_Id;
3590 T : Entity_Id;
3591
3592 E : Node_Id := Expression (N);
3593 -- E is set to Expression (N) throughout this routine. When Expression
3594 -- (N) is modified, E is changed accordingly.
3595
3596 Prev_Entity : Entity_Id := Empty;
3597
3598 procedure Check_Dynamic_Object (Typ : Entity_Id);
3599 -- A library-level object with non-static discriminant constraints may
3600 -- require dynamic allocation. The declaration is illegal if the
3601 -- profile includes the restriction No_Implicit_Heap_Allocations.
3602
3603 procedure Check_For_Null_Excluding_Components
3604 (Obj_Typ : Entity_Id;
3605 Obj_Decl : Node_Id);
3606 -- Verify that each null-excluding component of object declaration
3607 -- Obj_Decl carrying type Obj_Typ has explicit initialization. Emit
3608 -- a compile-time warning if this is not the case.
3609
3610 function Count_Tasks (T : Entity_Id) return Uint;
3611 -- This function is called when a non-generic library level object of a
3612 -- task type is declared. Its function is to count the static number of
3613 -- tasks declared within the type (it is only called if Has_Task is set
3614 -- for T). As a side effect, if an array of tasks with non-static bounds
3615 -- or a variant record type is encountered, Check_Restriction is called
3616 -- indicating the count is unknown.
3617
3618 function Delayed_Aspect_Present return Boolean;
3619 -- If the declaration has an expression that is an aggregate, and it
3620 -- has aspects that require delayed analysis, the resolution of the
3621 -- aggregate must be deferred to the freeze point of the objet. This
3622 -- special processing was created for address clauses, but it must
3623 -- also apply to Alignment. This must be done before the aspect
3624 -- specifications are analyzed because we must handle the aggregate
3625 -- before the analysis of the object declaration is complete.
3626
3627 -- Any other relevant delayed aspects on object declarations ???
3628
3629 --------------------------
3630 -- Check_Dynamic_Object --
3631 --------------------------
3632
3633 procedure Check_Dynamic_Object (Typ : Entity_Id) is
3634 Comp : Entity_Id;
3635 Obj_Type : Entity_Id;
3636
3637 begin
3638 Obj_Type := Typ;
3639
3640 if Is_Private_Type (Obj_Type)
3641 and then Present (Full_View (Obj_Type))
3642 then
3643 Obj_Type := Full_View (Obj_Type);
3644 end if;
3645
3646 if Known_Static_Esize (Obj_Type) then
3647 return;
3648 end if;
3649
3650 if Restriction_Active (No_Implicit_Heap_Allocations)
3651 and then Expander_Active
3652 and then Has_Discriminants (Obj_Type)
3653 then
3654 Comp := First_Component (Obj_Type);
3655 while Present (Comp) loop
3656 if Known_Static_Esize (Etype (Comp))
3657 or else Size_Known_At_Compile_Time (Etype (Comp))
3658 then
3659 null;
3660
3661 elsif not Discriminated_Size (Comp)
3662 and then Comes_From_Source (Comp)
3663 then
3664 Error_Msg_NE
3665 ("component& of non-static size will violate restriction "
3666 & "No_Implicit_Heap_Allocation?", N, Comp);
3667
3668 elsif Is_Record_Type (Etype (Comp)) then
3669 Check_Dynamic_Object (Etype (Comp));
3670 end if;
3671
3672 Next_Component (Comp);
3673 end loop;
3674 end if;
3675 end Check_Dynamic_Object;
3676
3677 -----------------------------------------
3678 -- Check_For_Null_Excluding_Components --
3679 -----------------------------------------
3680
3681 procedure Check_For_Null_Excluding_Components
3682 (Obj_Typ : Entity_Id;
3683 Obj_Decl : Node_Id)
3684 is
3685 procedure Check_Component
3686 (Comp_Typ : Entity_Id;
3687 Comp_Decl : Node_Id := Empty;
3688 Array_Comp : Boolean := False);
3689 -- Apply a compile-time null-exclusion check on a component denoted
3690 -- by its declaration Comp_Decl and type Comp_Typ, and all of its
3691 -- subcomponents (if any).
3692
3693 ---------------------
3694 -- Check_Component --
3695 ---------------------
3696
3697 procedure Check_Component
3698 (Comp_Typ : Entity_Id;
3699 Comp_Decl : Node_Id := Empty;
3700 Array_Comp : Boolean := False)
3701 is
3702 Comp : Entity_Id;
3703 T : Entity_Id;
3704
3705 begin
3706 -- Do not consider internally-generated components or those that
3707 -- are already initialized.
3708
3709 if Present (Comp_Decl)
3710 and then (not Comes_From_Source (Comp_Decl)
3711 or else Present (Expression (Comp_Decl)))
3712 then
3713 return;
3714 end if;
3715
3716 if Is_Incomplete_Or_Private_Type (Comp_Typ)
3717 and then Present (Full_View (Comp_Typ))
3718 then
3719 T := Full_View (Comp_Typ);
3720 else
3721 T := Comp_Typ;
3722 end if;
3723
3724 -- Verify a component of a null-excluding access type
3725
3726 if Is_Access_Type (T)
3727 and then Can_Never_Be_Null (T)
3728 then
3729 if Comp_Decl = Obj_Decl then
3730 Null_Exclusion_Static_Checks
3731 (N => Obj_Decl,
3732 Comp => Empty,
3733 Array_Comp => Array_Comp);
3734
3735 else
3736 Null_Exclusion_Static_Checks
3737 (N => Obj_Decl,
3738 Comp => Comp_Decl,
3739 Array_Comp => Array_Comp);
3740 end if;
3741
3742 -- Check array components
3743
3744 elsif Is_Array_Type (T) then
3745
3746 -- There is no suitable component when the object is of an
3747 -- array type. However, a namable component may appear at some
3748 -- point during the recursive inspection, but not at the top
3749 -- level. At the top level just indicate array component case.
3750
3751 if Comp_Decl = Obj_Decl then
3752 Check_Component (Component_Type (T), Array_Comp => True);
3753 else
3754 Check_Component (Component_Type (T), Comp_Decl);
3755 end if;
3756
3757 -- Verify all components of type T
3758
3759 -- Note: No checks are performed on types with discriminants due
3760 -- to complexities involving variants. ???
3761
3762 elsif (Is_Concurrent_Type (T)
3763 or else Is_Incomplete_Or_Private_Type (T)
3764 or else Is_Record_Type (T))
3765 and then not Has_Discriminants (T)
3766 then
3767 Comp := First_Component (T);
3768 while Present (Comp) loop
3769 Check_Component (Etype (Comp), Parent (Comp));
3770
3771 Comp := Next_Component (Comp);
3772 end loop;
3773 end if;
3774 end Check_Component;
3775
3776 -- Start processing for Check_For_Null_Excluding_Components
3777
3778 begin
3779 Check_Component (Obj_Typ, Obj_Decl);
3780 end Check_For_Null_Excluding_Components;
3781
3782 -----------------
3783 -- Count_Tasks --
3784 -----------------
3785
3786 function Count_Tasks (T : Entity_Id) return Uint is
3787 C : Entity_Id;
3788 X : Node_Id;
3789 V : Uint;
3790
3791 begin
3792 if Is_Task_Type (T) then
3793 return Uint_1;
3794
3795 elsif Is_Record_Type (T) then
3796 if Has_Discriminants (T) then
3797 Check_Restriction (Max_Tasks, N);
3798 return Uint_0;
3799
3800 else
3801 V := Uint_0;
3802 C := First_Component (T);
3803 while Present (C) loop
3804 V := V + Count_Tasks (Etype (C));
3805 Next_Component (C);
3806 end loop;
3807
3808 return V;
3809 end if;
3810
3811 elsif Is_Array_Type (T) then
3812 X := First_Index (T);
3813 V := Count_Tasks (Component_Type (T));
3814 while Present (X) loop
3815 C := Etype (X);
3816
3817 if not Is_OK_Static_Subtype (C) then
3818 Check_Restriction (Max_Tasks, N);
3819 return Uint_0;
3820 else
3821 V := V * (UI_Max (Uint_0,
3822 Expr_Value (Type_High_Bound (C)) -
3823 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3824 end if;
3825
3826 Next_Index (X);
3827 end loop;
3828
3829 return V;
3830
3831 else
3832 return Uint_0;
3833 end if;
3834 end Count_Tasks;
3835
3836 ----------------------------
3837 -- Delayed_Aspect_Present --
3838 ----------------------------
3839
3840 function Delayed_Aspect_Present return Boolean is
3841 A : Node_Id;
3842 A_Id : Aspect_Id;
3843
3844 begin
3845 if Present (Aspect_Specifications (N)) then
3846 A := First (Aspect_Specifications (N));
3847 A_Id := Get_Aspect_Id (Chars (Identifier (A)));
3848 while Present (A) loop
3849 if A_Id = Aspect_Alignment or else A_Id = Aspect_Address then
3850 return True;
3851 end if;
3852
3853 Next (A);
3854 end loop;
3855 end if;
3856
3857 return False;
3858 end Delayed_Aspect_Present;
3859
3860 -- Local variables
3861
3862 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
3863 -- Save the Ghost mode to restore on exit
3864
3865 Related_Id : Entity_Id;
3866
3867 -- Start of processing for Analyze_Object_Declaration
3868
3869 begin
3870 -- There are three kinds of implicit types generated by an
3871 -- object declaration:
3872
3873 -- 1. Those generated by the original Object Definition
3874
3875 -- 2. Those generated by the Expression
3876
3877 -- 3. Those used to constrain the Object Definition with the
3878 -- expression constraints when the definition is unconstrained.
3879
3880 -- They must be generated in this order to avoid order of elaboration
3881 -- issues. Thus the first step (after entering the name) is to analyze
3882 -- the object definition.
3883
3884 if Constant_Present (N) then
3885 Prev_Entity := Current_Entity_In_Scope (Id);
3886
3887 if Present (Prev_Entity)
3888 and then
3889 -- If the homograph is an implicit subprogram, it is overridden
3890 -- by the current declaration.
3891
3892 ((Is_Overloadable (Prev_Entity)
3893 and then Is_Inherited_Operation (Prev_Entity))
3894
3895 -- The current object is a discriminal generated for an entry
3896 -- family index. Even though the index is a constant, in this
3897 -- particular context there is no true constant redeclaration.
3898 -- Enter_Name will handle the visibility.
3899
3900 or else
3901 (Is_Discriminal (Id)
3902 and then Ekind (Discriminal_Link (Id)) =
3903 E_Entry_Index_Parameter)
3904
3905 -- The current object is the renaming for a generic declared
3906 -- within the instance.
3907
3908 or else
3909 (Ekind (Prev_Entity) = E_Package
3910 and then Nkind (Parent (Prev_Entity)) =
3911 N_Package_Renaming_Declaration
3912 and then not Comes_From_Source (Prev_Entity)
3913 and then
3914 Is_Generic_Instance (Renamed_Entity (Prev_Entity)))
3915
3916 -- The entity may be a homonym of a private component of the
3917 -- enclosing protected object, for which we create a local
3918 -- renaming declaration. The declaration is legal, even if
3919 -- useless when it just captures that component.
3920
3921 or else
3922 (Ekind (Scope (Current_Scope)) = E_Protected_Type
3923 and then Nkind (Parent (Prev_Entity)) =
3924 N_Object_Renaming_Declaration))
3925 then
3926 Prev_Entity := Empty;
3927 end if;
3928 end if;
3929
3930 if Present (Prev_Entity) then
3931
3932 -- The object declaration is Ghost when it completes a deferred Ghost
3933 -- constant.
3934
3935 Mark_And_Set_Ghost_Completion (N, Prev_Entity);
3936
3937 Constant_Redeclaration (Id, N, T);
3938
3939 Generate_Reference (Prev_Entity, Id, 'c');
3940 Set_Completion_Referenced (Id);
3941
3942 if Error_Posted (N) then
3943
3944 -- Type mismatch or illegal redeclaration; do not analyze
3945 -- expression to avoid cascaded errors.
3946
3947 T := Find_Type_Of_Object (Object_Definition (N), N);
3948 Set_Etype (Id, T);
3949 Set_Ekind (Id, E_Variable);
3950 goto Leave;
3951 end if;
3952
3953 -- In the normal case, enter identifier at the start to catch premature
3954 -- usage in the initialization expression.
3955
3956 else
3957 Generate_Definition (Id);
3958 Enter_Name (Id);
3959
3960 Mark_Coextensions (N, Object_Definition (N));
3961
3962 T := Find_Type_Of_Object (Object_Definition (N), N);
3963
3964 if Nkind (Object_Definition (N)) = N_Access_Definition
3965 and then Present
3966 (Access_To_Subprogram_Definition (Object_Definition (N)))
3967 and then Protected_Present
3968 (Access_To_Subprogram_Definition (Object_Definition (N)))
3969 then
3970 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3971 end if;
3972
3973 if Error_Posted (Id) then
3974 Set_Etype (Id, T);
3975 Set_Ekind (Id, E_Variable);
3976 goto Leave;
3977 end if;
3978 end if;
3979
3980 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3981 -- out some static checks.
3982
3983 if Ada_Version >= Ada_2005 then
3984
3985 -- In case of aggregates we must also take care of the correct
3986 -- initialization of nested aggregates bug this is done at the
3987 -- point of the analysis of the aggregate (see sem_aggr.adb) ???
3988
3989 if Can_Never_Be_Null (T) then
3990 if Present (Expression (N))
3991 and then Nkind (Expression (N)) = N_Aggregate
3992 then
3993 null;
3994
3995 else
3996 declare
3997 Save_Typ : constant Entity_Id := Etype (Id);
3998 begin
3999 Set_Etype (Id, T); -- Temp. decoration for static checks
4000 Null_Exclusion_Static_Checks (N);
4001 Set_Etype (Id, Save_Typ);
4002 end;
4003 end if;
4004
4005 -- We might be dealing with an object of a composite type containing
4006 -- null-excluding components without an aggregate, so we must verify
4007 -- that such components have default initialization.
4008
4009 else
4010 Check_For_Null_Excluding_Components (T, N);
4011 end if;
4012 end if;
4013
4014 -- Object is marked pure if it is in a pure scope
4015
4016 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4017
4018 -- If deferred constant, make sure context is appropriate. We detect
4019 -- a deferred constant as a constant declaration with no expression.
4020 -- A deferred constant can appear in a package body if its completion
4021 -- is by means of an interface pragma.
4022
4023 if Constant_Present (N) and then No (E) then
4024
4025 -- A deferred constant may appear in the declarative part of the
4026 -- following constructs:
4027
4028 -- blocks
4029 -- entry bodies
4030 -- extended return statements
4031 -- package specs
4032 -- package bodies
4033 -- subprogram bodies
4034 -- task bodies
4035
4036 -- When declared inside a package spec, a deferred constant must be
4037 -- completed by a full constant declaration or pragma Import. In all
4038 -- other cases, the only proper completion is pragma Import. Extended
4039 -- return statements are flagged as invalid contexts because they do
4040 -- not have a declarative part and so cannot accommodate the pragma.
4041
4042 if Ekind (Current_Scope) = E_Return_Statement then
4043 Error_Msg_N
4044 ("invalid context for deferred constant declaration (RM 7.4)",
4045 N);
4046 Error_Msg_N
4047 ("\declaration requires an initialization expression",
4048 N);
4049 Set_Constant_Present (N, False);
4050
4051 -- In Ada 83, deferred constant must be of private type
4052
4053 elsif not Is_Private_Type (T) then
4054 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
4055 Error_Msg_N
4056 ("(Ada 83) deferred constant must be private type", N);
4057 end if;
4058 end if;
4059
4060 -- If not a deferred constant, then the object declaration freezes
4061 -- its type, unless the object is of an anonymous type and has delayed
4062 -- aspects. In that case the type is frozen when the object itself is.
4063
4064 else
4065 Check_Fully_Declared (T, N);
4066
4067 if Has_Delayed_Aspects (Id)
4068 and then Is_Array_Type (T)
4069 and then Is_Itype (T)
4070 then
4071 Set_Has_Delayed_Freeze (T);
4072 else
4073 Freeze_Before (N, T);
4074 end if;
4075 end if;
4076
4077 -- If the object was created by a constrained array definition, then
4078 -- set the link in both the anonymous base type and anonymous subtype
4079 -- that are built to represent the array type to point to the object.
4080
4081 if Nkind (Object_Definition (Declaration_Node (Id))) =
4082 N_Constrained_Array_Definition
4083 then
4084 Set_Related_Array_Object (T, Id);
4085 Set_Related_Array_Object (Base_Type (T), Id);
4086 end if;
4087
4088 -- Special checks for protected objects not at library level
4089
4090 if Has_Protected (T) and then not Is_Library_Level_Entity (Id) then
4091 Check_Restriction (No_Local_Protected_Objects, Id);
4092
4093 -- Protected objects with interrupt handlers must be at library level
4094
4095 -- Ada 2005: This test is not needed (and the corresponding clause
4096 -- in the RM is removed) because accessibility checks are sufficient
4097 -- to make handlers not at the library level illegal.
4098
4099 -- AI05-0303: The AI is in fact a binding interpretation, and thus
4100 -- applies to the '95 version of the language as well.
4101
4102 if Is_Protected_Type (T)
4103 and then Has_Interrupt_Handler (T)
4104 and then Ada_Version < Ada_95
4105 then
4106 Error_Msg_N
4107 ("interrupt object can only be declared at library level", Id);
4108 end if;
4109 end if;
4110
4111 -- Check for violation of No_Local_Timing_Events
4112
4113 if Has_Timing_Event (T) and then not Is_Library_Level_Entity (Id) then
4114 Check_Restriction (No_Local_Timing_Events, Id);
4115 end if;
4116
4117 -- The actual subtype of the object is the nominal subtype, unless
4118 -- the nominal one is unconstrained and obtained from the expression.
4119
4120 Act_T := T;
4121
4122 -- These checks should be performed before the initialization expression
4123 -- is considered, so that the Object_Definition node is still the same
4124 -- as in source code.
4125
4126 -- In SPARK, the nominal subtype is always given by a subtype mark
4127 -- and must not be unconstrained. (The only exception to this is the
4128 -- acceptance of declarations of constants of type String.)
4129
4130 if not Nkind_In (Object_Definition (N), N_Expanded_Name, N_Identifier)
4131 then
4132 Check_SPARK_05_Restriction
4133 ("subtype mark required", Object_Definition (N));
4134
4135 elsif Is_Array_Type (T)
4136 and then not Is_Constrained (T)
4137 and then T /= Standard_String
4138 then
4139 Check_SPARK_05_Restriction
4140 ("subtype mark of constrained type expected",
4141 Object_Definition (N));
4142 end if;
4143
4144 if Is_Library_Level_Entity (Id) then
4145 Check_Dynamic_Object (T);
4146 end if;
4147
4148 -- There are no aliased objects in SPARK
4149
4150 if Aliased_Present (N) then
4151 Check_SPARK_05_Restriction ("aliased object is not allowed", N);
4152 end if;
4153
4154 -- Process initialization expression if present and not in error
4155
4156 if Present (E) and then E /= Error then
4157
4158 -- Generate an error in case of CPP class-wide object initialization.
4159 -- Required because otherwise the expansion of the class-wide
4160 -- assignment would try to use 'size to initialize the object
4161 -- (primitive that is not available in CPP tagged types).
4162
4163 if Is_Class_Wide_Type (Act_T)
4164 and then
4165 (Is_CPP_Class (Root_Type (Etype (Act_T)))
4166 or else
4167 (Present (Full_View (Root_Type (Etype (Act_T))))
4168 and then
4169 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
4170 then
4171 Error_Msg_N
4172 ("predefined assignment not available for 'C'P'P tagged types",
4173 E);
4174 end if;
4175
4176 Mark_Coextensions (N, E);
4177 Analyze (E);
4178
4179 -- In case of errors detected in the analysis of the expression,
4180 -- decorate it with the expected type to avoid cascaded errors
4181
4182 if No (Etype (E)) then
4183 Set_Etype (E, T);
4184 end if;
4185
4186 -- If an initialization expression is present, then we set the
4187 -- Is_True_Constant flag. It will be reset if this is a variable
4188 -- and it is indeed modified.
4189
4190 Set_Is_True_Constant (Id, True);
4191
4192 -- If we are analyzing a constant declaration, set its completion
4193 -- flag after analyzing and resolving the expression.
4194
4195 if Constant_Present (N) then
4196 Set_Has_Completion (Id);
4197 end if;
4198
4199 -- Set type and resolve (type may be overridden later on). Note:
4200 -- Ekind (Id) must still be E_Void at this point so that incorrect
4201 -- early usage within E is properly diagnosed.
4202
4203 Set_Etype (Id, T);
4204
4205 -- If the expression is an aggregate we must look ahead to detect
4206 -- the possible presence of an address clause, and defer resolution
4207 -- and expansion of the aggregate to the freeze point of the entity.
4208
4209 -- This is not always legal because the aggregate may contain other
4210 -- references that need freezing, e.g. references to other entities
4211 -- with address clauses. In any case, when compiling with -gnatI the
4212 -- presence of the address clause must be ignored.
4213
4214 if Comes_From_Source (N)
4215 and then Expander_Active
4216 and then Nkind (E) = N_Aggregate
4217 and then
4218 ((Present (Following_Address_Clause (N))
4219 and then not Ignore_Rep_Clauses)
4220 or else Delayed_Aspect_Present)
4221 then
4222 Set_Etype (E, T);
4223
4224 else
4225 Resolve (E, T);
4226 end if;
4227
4228 -- No further action needed if E is a call to an inlined function
4229 -- which returns an unconstrained type and it has been expanded into
4230 -- a procedure call. In that case N has been replaced by an object
4231 -- declaration without initializing expression and it has been
4232 -- analyzed (see Expand_Inlined_Call).
4233
4234 if Back_End_Inlining
4235 and then Expander_Active
4236 and then Nkind (E) = N_Function_Call
4237 and then Nkind (Name (E)) in N_Has_Entity
4238 and then Is_Inlined (Entity (Name (E)))
4239 and then not Is_Constrained (Etype (E))
4240 and then Analyzed (N)
4241 and then No (Expression (N))
4242 then
4243 goto Leave;
4244 end if;
4245
4246 -- If E is null and has been replaced by an N_Raise_Constraint_Error
4247 -- node (which was marked already-analyzed), we need to set the type
4248 -- to something other than Any_Access in order to keep gigi happy.
4249
4250 if Etype (E) = Any_Access then
4251 Set_Etype (E, T);
4252 end if;
4253
4254 -- If the object is an access to variable, the initialization
4255 -- expression cannot be an access to constant.
4256
4257 if Is_Access_Type (T)
4258 and then not Is_Access_Constant (T)
4259 and then Is_Access_Type (Etype (E))
4260 and then Is_Access_Constant (Etype (E))
4261 then
4262 Error_Msg_N
4263 ("access to variable cannot be initialized with an "
4264 & "access-to-constant expression", E);
4265 end if;
4266
4267 if not Assignment_OK (N) then
4268 Check_Initialization (T, E);
4269 end if;
4270
4271 Check_Unset_Reference (E);
4272
4273 -- If this is a variable, then set current value. If this is a
4274 -- declared constant of a scalar type with a static expression,
4275 -- indicate that it is always valid.
4276
4277 if not Constant_Present (N) then
4278 if Compile_Time_Known_Value (E) then
4279 Set_Current_Value (Id, E);
4280 end if;
4281
4282 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
4283 Set_Is_Known_Valid (Id);
4284 end if;
4285
4286 -- Deal with setting of null flags
4287
4288 if Is_Access_Type (T) then
4289 if Known_Non_Null (E) then
4290 Set_Is_Known_Non_Null (Id, True);
4291 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
4292 Set_Is_Known_Null (Id, True);
4293 end if;
4294 end if;
4295
4296 -- Check incorrect use of dynamically tagged expressions
4297
4298 if Is_Tagged_Type (T) then
4299 Check_Dynamically_Tagged_Expression
4300 (Expr => E,
4301 Typ => T,
4302 Related_Nod => N);
4303 end if;
4304
4305 Apply_Scalar_Range_Check (E, T);
4306 Apply_Static_Length_Check (E, T);
4307
4308 if Nkind (Original_Node (N)) = N_Object_Declaration
4309 and then Comes_From_Source (Original_Node (N))
4310
4311 -- Only call test if needed
4312
4313 and then Restriction_Check_Required (SPARK_05)
4314 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
4315 then
4316 Check_SPARK_05_Restriction
4317 ("initialization expression is not appropriate", E);
4318 end if;
4319
4320 -- A formal parameter of a specific tagged type whose related
4321 -- subprogram is subject to pragma Extensions_Visible with value
4322 -- "False" cannot be implicitly converted to a class-wide type by
4323 -- means of an initialization expression (SPARK RM 6.1.7(3)). Do
4324 -- not consider internally generated expressions.
4325
4326 if Is_Class_Wide_Type (T)
4327 and then Comes_From_Source (E)
4328 and then Is_EVF_Expression (E)
4329 then
4330 Error_Msg_N
4331 ("formal parameter cannot be implicitly converted to "
4332 & "class-wide type when Extensions_Visible is False", E);
4333 end if;
4334 end if;
4335
4336 -- If the No_Streams restriction is set, check that the type of the
4337 -- object is not, and does not contain, any subtype derived from
4338 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
4339 -- Has_Stream just for efficiency reasons. There is no point in
4340 -- spending time on a Has_Stream check if the restriction is not set.
4341
4342 if Restriction_Check_Required (No_Streams) then
4343 if Has_Stream (T) then
4344 Check_Restriction (No_Streams, N);
4345 end if;
4346 end if;
4347
4348 -- Deal with predicate check before we start to do major rewriting. It
4349 -- is OK to initialize and then check the initialized value, since the
4350 -- object goes out of scope if we get a predicate failure. Note that we
4351 -- do this in the analyzer and not the expander because the analyzer
4352 -- does some substantial rewriting in some cases.
4353
4354 -- We need a predicate check if the type has predicates that are not
4355 -- ignored, and if either there is an initializing expression, or for
4356 -- default initialization when we have at least one case of an explicit
4357 -- default initial value and then this is not an internal declaration
4358 -- whose initialization comes later (as for an aggregate expansion).
4359
4360 if not Suppress_Assignment_Checks (N)
4361 and then Present (Predicate_Function (T))
4362 and then not Predicates_Ignored (T)
4363 and then not No_Initialization (N)
4364 and then
4365 (Present (E)
4366 or else
4367 Is_Partially_Initialized_Type (T, Include_Implicit => False))
4368 then
4369 -- If the type has a static predicate and the expression is known at
4370 -- compile time, see if the expression satisfies the predicate.
4371
4372 if Present (E) then
4373 Check_Expression_Against_Static_Predicate (E, T);
4374 end if;
4375
4376 -- If the type is a null record and there is no explicit initial
4377 -- expression, no predicate check applies.
4378
4379 if No (E) and then Is_Null_Record_Type (T) then
4380 null;
4381
4382 -- Do not generate a predicate check if the initialization expression
4383 -- is a type conversion because the conversion has been subjected to
4384 -- the same check. This is a small optimization which avoid redundant
4385 -- checks.
4386
4387 elsif Present (E) and then Nkind (E) = N_Type_Conversion then
4388 null;
4389
4390 else
4391 Insert_After (N,
4392 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
4393 end if;
4394 end if;
4395
4396 -- Case of unconstrained type
4397
4398 if not Is_Definite_Subtype (T) then
4399
4400 -- In SPARK, a declaration of unconstrained type is allowed
4401 -- only for constants of type string.
4402
4403 if Is_String_Type (T) and then not Constant_Present (N) then
4404 Check_SPARK_05_Restriction
4405 ("declaration of object of unconstrained type not allowed", N);
4406 end if;
4407
4408 -- Nothing to do in deferred constant case
4409
4410 if Constant_Present (N) and then No (E) then
4411 null;
4412
4413 -- Case of no initialization present
4414
4415 elsif No (E) then
4416 if No_Initialization (N) then
4417 null;
4418
4419 elsif Is_Class_Wide_Type (T) then
4420 Error_Msg_N
4421 ("initialization required in class-wide declaration ", N);
4422
4423 else
4424 Error_Msg_N
4425 ("unconstrained subtype not allowed (need initialization)",
4426 Object_Definition (N));
4427
4428 if Is_Record_Type (T) and then Has_Discriminants (T) then
4429 Error_Msg_N
4430 ("\provide initial value or explicit discriminant values",
4431 Object_Definition (N));
4432
4433 Error_Msg_NE
4434 ("\or give default discriminant values for type&",
4435 Object_Definition (N), T);
4436
4437 elsif Is_Array_Type (T) then
4438 Error_Msg_N
4439 ("\provide initial value or explicit array bounds",
4440 Object_Definition (N));
4441 end if;
4442 end if;
4443
4444 -- Case of initialization present but in error. Set initial
4445 -- expression as absent (but do not make above complaints)
4446
4447 elsif E = Error then
4448 Set_Expression (N, Empty);
4449 E := Empty;
4450
4451 -- Case of initialization present
4452
4453 else
4454 -- Check restrictions in Ada 83
4455
4456 if not Constant_Present (N) then
4457
4458 -- Unconstrained variables not allowed in Ada 83 mode
4459
4460 if Ada_Version = Ada_83
4461 and then Comes_From_Source (Object_Definition (N))
4462 then
4463 Error_Msg_N
4464 ("(Ada 83) unconstrained variable not allowed",
4465 Object_Definition (N));
4466 end if;
4467 end if;
4468
4469 -- Now we constrain the variable from the initializing expression
4470
4471 -- If the expression is an aggregate, it has been expanded into
4472 -- individual assignments. Retrieve the actual type from the
4473 -- expanded construct.
4474
4475 if Is_Array_Type (T)
4476 and then No_Initialization (N)
4477 and then Nkind (Original_Node (E)) = N_Aggregate
4478 then
4479 Act_T := Etype (E);
4480
4481 -- In case of class-wide interface object declarations we delay
4482 -- the generation of the equivalent record type declarations until
4483 -- its expansion because there are cases in they are not required.
4484
4485 elsif Is_Interface (T) then
4486 null;
4487
4488 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
4489 -- we should prevent the generation of another Itype with the
4490 -- same name as the one already generated, or we end up with
4491 -- two identical types in GNATprove.
4492
4493 elsif GNATprove_Mode then
4494 null;
4495
4496 -- If the type is an unchecked union, no subtype can be built from
4497 -- the expression. Rewrite declaration as a renaming, which the
4498 -- back-end can handle properly. This is a rather unusual case,
4499 -- because most unchecked_union declarations have default values
4500 -- for discriminants and are thus not indefinite.
4501
4502 elsif Is_Unchecked_Union (T) then
4503 if Constant_Present (N) or else Nkind (E) = N_Function_Call then
4504 Set_Ekind (Id, E_Constant);
4505 else
4506 Set_Ekind (Id, E_Variable);
4507 end if;
4508
4509 Rewrite (N,
4510 Make_Object_Renaming_Declaration (Loc,
4511 Defining_Identifier => Id,
4512 Subtype_Mark => New_Occurrence_Of (T, Loc),
4513 Name => E));
4514
4515 Set_Renamed_Object (Id, E);
4516 Freeze_Before (N, T);
4517 Set_Is_Frozen (Id);
4518 goto Leave;
4519
4520 else
4521 -- Ensure that the generated subtype has a unique external name
4522 -- when the related object is public. This guarantees that the
4523 -- subtype and its bounds will not be affected by switches or
4524 -- pragmas that may offset the internal counter due to extra
4525 -- generated code.
4526
4527 if Is_Public (Id) then
4528 Related_Id := Id;
4529 else
4530 Related_Id := Empty;
4531 end if;
4532
4533 Expand_Subtype_From_Expr
4534 (N => N,
4535 Unc_Type => T,
4536 Subtype_Indic => Object_Definition (N),
4537 Exp => E,
4538 Related_Id => Related_Id);
4539
4540 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
4541 end if;
4542
4543 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
4544
4545 if Aliased_Present (N) then
4546 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4547 end if;
4548
4549 Freeze_Before (N, Act_T);
4550 Freeze_Before (N, T);
4551 end if;
4552
4553 elsif Is_Array_Type (T)
4554 and then No_Initialization (N)
4555 and then (Nkind (Original_Node (E)) = N_Aggregate
4556 or else (Nkind (Original_Node (E)) = N_Qualified_Expression
4557 and then Nkind (Original_Node (Expression
4558 (Original_Node (E)))) = N_Aggregate))
4559 then
4560 if not Is_Entity_Name (Object_Definition (N)) then
4561 Act_T := Etype (E);
4562 Check_Compile_Time_Size (Act_T);
4563
4564 if Aliased_Present (N) then
4565 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4566 end if;
4567 end if;
4568
4569 -- When the given object definition and the aggregate are specified
4570 -- independently, and their lengths might differ do a length check.
4571 -- This cannot happen if the aggregate is of the form (others =>...)
4572
4573 if not Is_Constrained (T) then
4574 null;
4575
4576 elsif Nkind (E) = N_Raise_Constraint_Error then
4577
4578 -- Aggregate is statically illegal. Place back in declaration
4579
4580 Set_Expression (N, E);
4581 Set_No_Initialization (N, False);
4582
4583 elsif T = Etype (E) then
4584 null;
4585
4586 elsif Nkind (E) = N_Aggregate
4587 and then Present (Component_Associations (E))
4588 and then Present (Choice_List (First (Component_Associations (E))))
4589 and then
4590 Nkind (First (Choice_List (First (Component_Associations (E))))) =
4591 N_Others_Choice
4592 then
4593 null;
4594
4595 else
4596 Apply_Length_Check (E, T);
4597 end if;
4598
4599 -- If the type is limited unconstrained with defaulted discriminants and
4600 -- there is no expression, then the object is constrained by the
4601 -- defaults, so it is worthwhile building the corresponding subtype.
4602
4603 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
4604 and then not Is_Constrained (T)
4605 and then Has_Discriminants (T)
4606 then
4607 if No (E) then
4608 Act_T := Build_Default_Subtype (T, N);
4609 else
4610 -- Ada 2005: A limited object may be initialized by means of an
4611 -- aggregate. If the type has default discriminants it has an
4612 -- unconstrained nominal type, Its actual subtype will be obtained
4613 -- from the aggregate, and not from the default discriminants.
4614
4615 Act_T := Etype (E);
4616 end if;
4617
4618 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
4619
4620 elsif Nkind (E) = N_Function_Call
4621 and then Constant_Present (N)
4622 and then Has_Unconstrained_Elements (Etype (E))
4623 then
4624 -- The back-end has problems with constants of a discriminated type
4625 -- with defaults, if the initial value is a function call. We
4626 -- generate an intermediate temporary that will receive a reference
4627 -- to the result of the call. The initialization expression then
4628 -- becomes a dereference of that temporary.
4629
4630 Remove_Side_Effects (E);
4631
4632 -- If this is a constant declaration of an unconstrained type and
4633 -- the initialization is an aggregate, we can use the subtype of the
4634 -- aggregate for the declared entity because it is immutable.
4635
4636 elsif not Is_Constrained (T)
4637 and then Has_Discriminants (T)
4638 and then Constant_Present (N)
4639 and then not Has_Unchecked_Union (T)
4640 and then Nkind (E) = N_Aggregate
4641 then
4642 Act_T := Etype (E);
4643 end if;
4644
4645 -- Check No_Wide_Characters restriction
4646
4647 Check_Wide_Character_Restriction (T, Object_Definition (N));
4648
4649 -- Indicate this is not set in source. Certainly true for constants, and
4650 -- true for variables so far (will be reset for a variable if and when
4651 -- we encounter a modification in the source).
4652
4653 Set_Never_Set_In_Source (Id);
4654
4655 -- Now establish the proper kind and type of the object
4656
4657 if Constant_Present (N) then
4658 Set_Ekind (Id, E_Constant);
4659 Set_Is_True_Constant (Id);
4660
4661 else
4662 Set_Ekind (Id, E_Variable);
4663
4664 -- A variable is set as shared passive if it appears in a shared
4665 -- passive package, and is at the outer level. This is not done for
4666 -- entities generated during expansion, because those are always
4667 -- manipulated locally.
4668
4669 if Is_Shared_Passive (Current_Scope)
4670 and then Is_Library_Level_Entity (Id)
4671 and then Comes_From_Source (Id)
4672 then
4673 Set_Is_Shared_Passive (Id);
4674 Check_Shared_Var (Id, T, N);
4675 end if;
4676
4677 -- Set Has_Initial_Value if initializing expression present. Note
4678 -- that if there is no initializing expression, we leave the state
4679 -- of this flag unchanged (usually it will be False, but notably in
4680 -- the case of exception choice variables, it will already be true).
4681
4682 if Present (E) then
4683 Set_Has_Initial_Value (Id);
4684 end if;
4685 end if;
4686
4687 -- Initialize alignment and size and capture alignment setting
4688
4689 Init_Alignment (Id);
4690 Init_Esize (Id);
4691 Set_Optimize_Alignment_Flags (Id);
4692
4693 -- Deal with aliased case
4694
4695 if Aliased_Present (N) then
4696 Set_Is_Aliased (Id);
4697
4698 -- If the object is aliased and the type is unconstrained with
4699 -- defaulted discriminants and there is no expression, then the
4700 -- object is constrained by the defaults, so it is worthwhile
4701 -- building the corresponding subtype.
4702
4703 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4704 -- unconstrained, then only establish an actual subtype if the
4705 -- nominal subtype is indefinite. In definite cases the object is
4706 -- unconstrained in Ada 2005.
4707
4708 if No (E)
4709 and then Is_Record_Type (T)
4710 and then not Is_Constrained (T)
4711 and then Has_Discriminants (T)
4712 and then (Ada_Version < Ada_2005
4713 or else not Is_Definite_Subtype (T))
4714 then
4715 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
4716 end if;
4717 end if;
4718
4719 -- Now we can set the type of the object
4720
4721 Set_Etype (Id, Act_T);
4722
4723 -- Non-constant object is marked to be treated as volatile if type is
4724 -- volatile and we clear the Current_Value setting that may have been
4725 -- set above. Doing so for constants isn't required and might interfere
4726 -- with possible uses of the object as a static expression in contexts
4727 -- incompatible with volatility (e.g. as a case-statement alternative).
4728
4729 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
4730 Set_Treat_As_Volatile (Id);
4731 Set_Current_Value (Id, Empty);
4732 end if;
4733
4734 -- Deal with controlled types
4735
4736 if Has_Controlled_Component (Etype (Id))
4737 or else Is_Controlled (Etype (Id))
4738 then
4739 if not Is_Library_Level_Entity (Id) then
4740 Check_Restriction (No_Nested_Finalization, N);
4741 else
4742 Validate_Controlled_Object (Id);
4743 end if;
4744 end if;
4745
4746 if Has_Task (Etype (Id)) then
4747 Check_Restriction (No_Tasking, N);
4748
4749 -- Deal with counting max tasks
4750
4751 -- Nothing to do if inside a generic
4752
4753 if Inside_A_Generic then
4754 null;
4755
4756 -- If library level entity, then count tasks
4757
4758 elsif Is_Library_Level_Entity (Id) then
4759 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4760
4761 -- If not library level entity, then indicate we don't know max
4762 -- tasks and also check task hierarchy restriction and blocking
4763 -- operation (since starting a task is definitely blocking).
4764
4765 else
4766 Check_Restriction (Max_Tasks, N);
4767 Check_Restriction (No_Task_Hierarchy, N);
4768 Check_Potentially_Blocking_Operation (N);
4769 end if;
4770
4771 -- A rather specialized test. If we see two tasks being declared
4772 -- of the same type in the same object declaration, and the task
4773 -- has an entry with an address clause, we know that program error
4774 -- will be raised at run time since we can't have two tasks with
4775 -- entries at the same address.
4776
4777 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4778 declare
4779 E : Entity_Id;
4780
4781 begin
4782 E := First_Entity (Etype (Id));
4783 while Present (E) loop
4784 if Ekind (E) = E_Entry
4785 and then Present (Get_Attribute_Definition_Clause
4786 (E, Attribute_Address))
4787 then
4788 Error_Msg_Warn := SPARK_Mode /= On;
4789 Error_Msg_N
4790 ("more than one task with same entry address<<", N);
4791 Error_Msg_N ("\Program_Error [<<", N);
4792 Insert_Action (N,
4793 Make_Raise_Program_Error (Loc,
4794 Reason => PE_Duplicated_Entry_Address));
4795 exit;
4796 end if;
4797
4798 Next_Entity (E);
4799 end loop;
4800 end;
4801 end if;
4802 end if;
4803
4804 -- Some simple constant-propagation: if the expression is a constant
4805 -- string initialized with a literal, share the literal. This avoids
4806 -- a run-time copy.
4807
4808 if Present (E)
4809 and then Is_Entity_Name (E)
4810 and then Ekind (Entity (E)) = E_Constant
4811 and then Base_Type (Etype (E)) = Standard_String
4812 then
4813 declare
4814 Val : constant Node_Id := Constant_Value (Entity (E));
4815 begin
4816 if Present (Val) and then Nkind (Val) = N_String_Literal then
4817 Rewrite (E, New_Copy (Val));
4818 end if;
4819 end;
4820 end if;
4821
4822 -- Another optimization: if the nominal subtype is unconstrained and
4823 -- the expression is a function call that returns an unconstrained
4824 -- type, rewrite the declaration as a renaming of the result of the
4825 -- call. The exceptions below are cases where the copy is expected,
4826 -- either by the back end (Aliased case) or by the semantics, as for
4827 -- initializing controlled types or copying tags for class-wide types.
4828
4829 if Present (E)
4830 and then Nkind (E) = N_Explicit_Dereference
4831 and then Nkind (Original_Node (E)) = N_Function_Call
4832 and then not Is_Library_Level_Entity (Id)
4833 and then not Is_Constrained (Underlying_Type (T))
4834 and then not Is_Aliased (Id)
4835 and then not Is_Class_Wide_Type (T)
4836 and then not Is_Controlled_Active (T)
4837 and then not Has_Controlled_Component (Base_Type (T))
4838 and then Expander_Active
4839 then
4840 Rewrite (N,
4841 Make_Object_Renaming_Declaration (Loc,
4842 Defining_Identifier => Id,
4843 Access_Definition => Empty,
4844 Subtype_Mark => New_Occurrence_Of
4845 (Base_Type (Etype (Id)), Loc),
4846 Name => E));
4847
4848 Set_Renamed_Object (Id, E);
4849
4850 -- Force generation of debugging information for the constant and for
4851 -- the renamed function call.
4852
4853 Set_Debug_Info_Needed (Id);
4854 Set_Debug_Info_Needed (Entity (Prefix (E)));
4855 end if;
4856
4857 if Present (Prev_Entity)
4858 and then Is_Frozen (Prev_Entity)
4859 and then not Error_Posted (Id)
4860 then
4861 Error_Msg_N ("full constant declaration appears too late", N);
4862 end if;
4863
4864 Check_Eliminated (Id);
4865
4866 -- Deal with setting In_Private_Part flag if in private part
4867
4868 if Ekind (Scope (Id)) = E_Package
4869 and then In_Private_Part (Scope (Id))
4870 then
4871 Set_In_Private_Part (Id);
4872 end if;
4873
4874 <<Leave>>
4875 -- Initialize the refined state of a variable here because this is a
4876 -- common destination for legal and illegal object declarations.
4877
4878 if Ekind (Id) = E_Variable then
4879 Set_Encapsulating_State (Id, Empty);
4880 end if;
4881
4882 if Has_Aspects (N) then
4883 Analyze_Aspect_Specifications (N, Id);
4884 end if;
4885
4886 Analyze_Dimension (N);
4887
4888 -- Verify whether the object declaration introduces an illegal hidden
4889 -- state within a package subject to a null abstract state.
4890
4891 if Ekind (Id) = E_Variable then
4892 Check_No_Hidden_State (Id);
4893 end if;
4894
4895 Restore_Ghost_Mode (Saved_GM);
4896 end Analyze_Object_Declaration;
4897
4898 ---------------------------
4899 -- Analyze_Others_Choice --
4900 ---------------------------
4901
4902 -- Nothing to do for the others choice node itself, the semantic analysis
4903 -- of the others choice will occur as part of the processing of the parent
4904
4905 procedure Analyze_Others_Choice (N : Node_Id) is
4906 pragma Warnings (Off, N);
4907 begin
4908 null;
4909 end Analyze_Others_Choice;
4910
4911 -------------------------------------------
4912 -- Analyze_Private_Extension_Declaration --
4913 -------------------------------------------
4914
4915 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4916 Indic : constant Node_Id := Subtype_Indication (N);
4917 T : constant Entity_Id := Defining_Identifier (N);
4918 Iface : Entity_Id;
4919 Iface_Elmt : Elmt_Id;
4920 Parent_Base : Entity_Id;
4921 Parent_Type : Entity_Id;
4922
4923 begin
4924 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4925
4926 if Is_Non_Empty_List (Interface_List (N)) then
4927 declare
4928 Intf : Node_Id;
4929 T : Entity_Id;
4930
4931 begin
4932 Intf := First (Interface_List (N));
4933 while Present (Intf) loop
4934 T := Find_Type_Of_Subtype_Indic (Intf);
4935
4936 Diagnose_Interface (Intf, T);
4937 Next (Intf);
4938 end loop;
4939 end;
4940 end if;
4941
4942 Generate_Definition (T);
4943
4944 -- For other than Ada 2012, just enter the name in the current scope
4945
4946 if Ada_Version < Ada_2012 then
4947 Enter_Name (T);
4948
4949 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4950 -- case of private type that completes an incomplete type.
4951
4952 else
4953 declare
4954 Prev : Entity_Id;
4955
4956 begin
4957 Prev := Find_Type_Name (N);
4958
4959 pragma Assert (Prev = T
4960 or else (Ekind (Prev) = E_Incomplete_Type
4961 and then Present (Full_View (Prev))
4962 and then Full_View (Prev) = T));
4963 end;
4964 end if;
4965
4966 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
4967 Parent_Base := Base_Type (Parent_Type);
4968
4969 if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then
4970 Set_Ekind (T, Ekind (Parent_Type));
4971 Set_Etype (T, Any_Type);
4972 goto Leave;
4973
4974 elsif not Is_Tagged_Type (Parent_Type) then
4975 Error_Msg_N
4976 ("parent of type extension must be a tagged type ", Indic);
4977 goto Leave;
4978
4979 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
4980 Error_Msg_N ("premature derivation of incomplete type", Indic);
4981 goto Leave;
4982
4983 elsif Is_Concurrent_Type (Parent_Type) then
4984 Error_Msg_N
4985 ("parent type of a private extension cannot be a synchronized "
4986 & "tagged type (RM 3.9.1 (3/1))", N);
4987
4988 Set_Etype (T, Any_Type);
4989 Set_Ekind (T, E_Limited_Private_Type);
4990 Set_Private_Dependents (T, New_Elmt_List);
4991 Set_Error_Posted (T);
4992 goto Leave;
4993 end if;
4994
4995 -- Perhaps the parent type should be changed to the class-wide type's
4996 -- specific type in this case to prevent cascading errors ???
4997
4998 if Is_Class_Wide_Type (Parent_Type) then
4999 Error_Msg_N
5000 ("parent of type extension must not be a class-wide type", Indic);
5001 goto Leave;
5002 end if;
5003
5004 if (not Is_Package_Or_Generic_Package (Current_Scope)
5005 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
5006 or else In_Private_Part (Current_Scope)
5007 then
5008 Error_Msg_N ("invalid context for private extension", N);
5009 end if;
5010
5011 -- Set common attributes
5012
5013 Set_Is_Pure (T, Is_Pure (Current_Scope));
5014 Set_Scope (T, Current_Scope);
5015 Set_Ekind (T, E_Record_Type_With_Private);
5016 Init_Size_Align (T);
5017 Set_Default_SSO (T);
5018 Set_No_Reordering (T, No_Component_Reordering);
5019
5020 Set_Etype (T, Parent_Base);
5021 Propagate_Concurrent_Flags (T, Parent_Base);
5022
5023 Set_Convention (T, Convention (Parent_Type));
5024 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
5025 Set_Is_First_Subtype (T);
5026 Make_Class_Wide_Type (T);
5027
5028 if Unknown_Discriminants_Present (N) then
5029 Set_Discriminant_Constraint (T, No_Elist);
5030 end if;
5031
5032 Build_Derived_Record_Type (N, Parent_Type, T);
5033
5034 -- A private extension inherits the Default_Initial_Condition pragma
5035 -- coming from any parent type within the derivation chain.
5036
5037 if Has_DIC (Parent_Type) then
5038 Set_Has_Inherited_DIC (T);
5039 end if;
5040
5041 -- A private extension inherits any class-wide invariants coming from a
5042 -- parent type or an interface. Note that the invariant procedure of the
5043 -- parent type should not be inherited because the private extension may
5044 -- define invariants of its own.
5045
5046 if Has_Inherited_Invariants (Parent_Type)
5047 or else Has_Inheritable_Invariants (Parent_Type)
5048 then
5049 Set_Has_Inherited_Invariants (T);
5050
5051 elsif Present (Interfaces (T)) then
5052 Iface_Elmt := First_Elmt (Interfaces (T));
5053 while Present (Iface_Elmt) loop
5054 Iface := Node (Iface_Elmt);
5055
5056 if Has_Inheritable_Invariants (Iface) then
5057 Set_Has_Inherited_Invariants (T);
5058 exit;
5059 end if;
5060
5061 Next_Elmt (Iface_Elmt);
5062 end loop;
5063 end if;
5064
5065 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
5066 -- synchronized formal derived type.
5067
5068 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
5069 Set_Is_Limited_Record (T);
5070
5071 -- Formal derived type case
5072
5073 if Is_Generic_Type (T) then
5074
5075 -- The parent must be a tagged limited type or a synchronized
5076 -- interface.
5077
5078 if (not Is_Tagged_Type (Parent_Type)
5079 or else not Is_Limited_Type (Parent_Type))
5080 and then
5081 (not Is_Interface (Parent_Type)
5082 or else not Is_Synchronized_Interface (Parent_Type))
5083 then
5084 Error_Msg_NE
5085 ("parent type of & must be tagged limited or synchronized",
5086 N, T);
5087 end if;
5088
5089 -- The progenitors (if any) must be limited or synchronized
5090 -- interfaces.
5091
5092 if Present (Interfaces (T)) then
5093 Iface_Elmt := First_Elmt (Interfaces (T));
5094 while Present (Iface_Elmt) loop
5095 Iface := Node (Iface_Elmt);
5096
5097 if not Is_Limited_Interface (Iface)
5098 and then not Is_Synchronized_Interface (Iface)
5099 then
5100 Error_Msg_NE
5101 ("progenitor & must be limited or synchronized",
5102 N, Iface);
5103 end if;
5104
5105 Next_Elmt (Iface_Elmt);
5106 end loop;
5107 end if;
5108
5109 -- Regular derived extension, the parent must be a limited or
5110 -- synchronized interface.
5111
5112 else
5113 if not Is_Interface (Parent_Type)
5114 or else (not Is_Limited_Interface (Parent_Type)
5115 and then not Is_Synchronized_Interface (Parent_Type))
5116 then
5117 Error_Msg_NE
5118 ("parent type of & must be limited interface", N, T);
5119 end if;
5120 end if;
5121
5122 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
5123 -- extension with a synchronized parent must be explicitly declared
5124 -- synchronized, because the full view will be a synchronized type.
5125 -- This must be checked before the check for limited types below,
5126 -- to ensure that types declared limited are not allowed to extend
5127 -- synchronized interfaces.
5128
5129 elsif Is_Interface (Parent_Type)
5130 and then Is_Synchronized_Interface (Parent_Type)
5131 and then not Synchronized_Present (N)
5132 then
5133 Error_Msg_NE
5134 ("private extension of& must be explicitly synchronized",
5135 N, Parent_Type);
5136
5137 elsif Limited_Present (N) then
5138 Set_Is_Limited_Record (T);
5139
5140 if not Is_Limited_Type (Parent_Type)
5141 and then
5142 (not Is_Interface (Parent_Type)
5143 or else not Is_Limited_Interface (Parent_Type))
5144 then
5145 Error_Msg_NE ("parent type& of limited extension must be limited",
5146 N, Parent_Type);
5147 end if;
5148 end if;
5149
5150 -- Remember that its parent type has a private extension. Used to warn
5151 -- on public primitives of the parent type defined after its private
5152 -- extensions (see Check_Dispatching_Operation).
5153
5154 Set_Has_Private_Extension (Parent_Type);
5155
5156 <<Leave>>
5157 if Has_Aspects (N) then
5158 Analyze_Aspect_Specifications (N, T);
5159 end if;
5160 end Analyze_Private_Extension_Declaration;
5161
5162 ---------------------------------
5163 -- Analyze_Subtype_Declaration --
5164 ---------------------------------
5165
5166 procedure Analyze_Subtype_Declaration
5167 (N : Node_Id;
5168 Skip : Boolean := False)
5169 is
5170 Id : constant Entity_Id := Defining_Identifier (N);
5171 R_Checks : Check_Result;
5172 T : Entity_Id;
5173
5174 begin
5175 Generate_Definition (Id);
5176 Set_Is_Pure (Id, Is_Pure (Current_Scope));
5177 Init_Size_Align (Id);
5178
5179 -- The following guard condition on Enter_Name is to handle cases where
5180 -- the defining identifier has already been entered into the scope but
5181 -- the declaration as a whole needs to be analyzed.
5182
5183 -- This case in particular happens for derived enumeration types. The
5184 -- derived enumeration type is processed as an inserted enumeration type
5185 -- declaration followed by a rewritten subtype declaration. The defining
5186 -- identifier, however, is entered into the name scope very early in the
5187 -- processing of the original type declaration and therefore needs to be
5188 -- avoided here, when the created subtype declaration is analyzed. (See
5189 -- Build_Derived_Types)
5190
5191 -- This also happens when the full view of a private type is derived
5192 -- type with constraints. In this case the entity has been introduced
5193 -- in the private declaration.
5194
5195 -- Finally this happens in some complex cases when validity checks are
5196 -- enabled, where the same subtype declaration may be analyzed twice.
5197 -- This can happen if the subtype is created by the pre-analysis of
5198 -- an attribute tht gives the range of a loop statement, and the loop
5199 -- itself appears within an if_statement that will be rewritten during
5200 -- expansion.
5201
5202 if Skip
5203 or else (Present (Etype (Id))
5204 and then (Is_Private_Type (Etype (Id))
5205 or else Is_Task_Type (Etype (Id))
5206 or else Is_Rewrite_Substitution (N)))
5207 then
5208 null;
5209
5210 elsif Current_Entity (Id) = Id then
5211 null;
5212
5213 else
5214 Enter_Name (Id);
5215 end if;
5216
5217 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
5218
5219 -- Class-wide equivalent types of records with unknown discriminants
5220 -- involve the generation of an itype which serves as the private view
5221 -- of a constrained record subtype. In such cases the base type of the
5222 -- current subtype we are processing is the private itype. Use the full
5223 -- of the private itype when decorating various attributes.
5224
5225 if Is_Itype (T)
5226 and then Is_Private_Type (T)
5227 and then Present (Full_View (T))
5228 then
5229 T := Full_View (T);
5230 end if;
5231
5232 -- Inherit common attributes
5233
5234 Set_Is_Volatile (Id, Is_Volatile (T));
5235 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
5236 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
5237 Set_Convention (Id, Convention (T));
5238
5239 -- If ancestor has predicates then so does the subtype, and in addition
5240 -- we must delay the freeze to properly arrange predicate inheritance.
5241
5242 -- The Ancestor_Type test is really unpleasant, there seem to be cases
5243 -- in which T = ID, so the above tests and assignments do nothing???
5244
5245 if Has_Predicates (T)
5246 or else (Present (Ancestor_Subtype (T))
5247 and then Has_Predicates (Ancestor_Subtype (T)))
5248 then
5249 Set_Has_Predicates (Id);
5250 Set_Has_Delayed_Freeze (Id);
5251
5252 -- Generated subtypes inherit the predicate function from the parent
5253 -- (no aspects to examine on the generated declaration).
5254
5255 if not Comes_From_Source (N) then
5256 Set_Ekind (Id, Ekind (T));
5257
5258 if Present (Predicate_Function (T)) then
5259 Set_Predicate_Function (Id, Predicate_Function (T));
5260
5261 elsif Present (Ancestor_Subtype (T))
5262 and then Has_Predicates (Ancestor_Subtype (T))
5263 and then Present (Predicate_Function (Ancestor_Subtype (T)))
5264 then
5265 Set_Predicate_Function (Id,
5266 Predicate_Function (Ancestor_Subtype (T)));
5267 end if;
5268 end if;
5269 end if;
5270
5271 -- Subtype of Boolean cannot have a constraint in SPARK
5272
5273 if Is_Boolean_Type (T)
5274 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
5275 then
5276 Check_SPARK_05_Restriction
5277 ("subtype of Boolean cannot have constraint", N);
5278 end if;
5279
5280 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5281 declare
5282 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5283 One_Cstr : Node_Id;
5284 Low : Node_Id;
5285 High : Node_Id;
5286
5287 begin
5288 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
5289 One_Cstr := First (Constraints (Cstr));
5290 while Present (One_Cstr) loop
5291
5292 -- Index or discriminant constraint in SPARK must be a
5293 -- subtype mark.
5294
5295 if not
5296 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
5297 then
5298 Check_SPARK_05_Restriction
5299 ("subtype mark required", One_Cstr);
5300
5301 -- String subtype must have a lower bound of 1 in SPARK.
5302 -- Note that we do not need to test for the non-static case
5303 -- here, since that was already taken care of in
5304 -- Process_Range_Expr_In_Decl.
5305
5306 elsif Base_Type (T) = Standard_String then
5307 Get_Index_Bounds (One_Cstr, Low, High);
5308
5309 if Is_OK_Static_Expression (Low)
5310 and then Expr_Value (Low) /= 1
5311 then
5312 Check_SPARK_05_Restriction
5313 ("String subtype must have lower bound of 1", N);
5314 end if;
5315 end if;
5316
5317 Next (One_Cstr);
5318 end loop;
5319 end if;
5320 end;
5321 end if;
5322
5323 -- In the case where there is no constraint given in the subtype
5324 -- indication, Process_Subtype just returns the Subtype_Mark, so its
5325 -- semantic attributes must be established here.
5326
5327 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
5328 Set_Etype (Id, Base_Type (T));
5329
5330 -- Subtype of unconstrained array without constraint is not allowed
5331 -- in SPARK.
5332
5333 if Is_Array_Type (T) and then not Is_Constrained (T) then
5334 Check_SPARK_05_Restriction
5335 ("subtype of unconstrained array must have constraint", N);
5336 end if;
5337
5338 case Ekind (T) is
5339 when Array_Kind =>
5340 Set_Ekind (Id, E_Array_Subtype);
5341 Copy_Array_Subtype_Attributes (Id, T);
5342
5343 when Decimal_Fixed_Point_Kind =>
5344 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
5345 Set_Digits_Value (Id, Digits_Value (T));
5346 Set_Delta_Value (Id, Delta_Value (T));
5347 Set_Scale_Value (Id, Scale_Value (T));
5348 Set_Small_Value (Id, Small_Value (T));
5349 Set_Scalar_Range (Id, Scalar_Range (T));
5350 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
5351 Set_Is_Constrained (Id, Is_Constrained (T));
5352 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5353 Set_RM_Size (Id, RM_Size (T));
5354
5355 when Enumeration_Kind =>
5356 Set_Ekind (Id, E_Enumeration_Subtype);
5357 Set_First_Literal (Id, First_Literal (Base_Type (T)));
5358 Set_Scalar_Range (Id, Scalar_Range (T));
5359 Set_Is_Character_Type (Id, Is_Character_Type (T));
5360 Set_Is_Constrained (Id, Is_Constrained (T));
5361 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5362 Set_RM_Size (Id, RM_Size (T));
5363 Inherit_Predicate_Flags (Id, T);
5364
5365 when Ordinary_Fixed_Point_Kind =>
5366 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
5367 Set_Scalar_Range (Id, Scalar_Range (T));
5368 Set_Small_Value (Id, Small_Value (T));
5369 Set_Delta_Value (Id, Delta_Value (T));
5370 Set_Is_Constrained (Id, Is_Constrained (T));
5371 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5372 Set_RM_Size (Id, RM_Size (T));
5373
5374 when Float_Kind =>
5375 Set_Ekind (Id, E_Floating_Point_Subtype);
5376 Set_Scalar_Range (Id, Scalar_Range (T));
5377 Set_Digits_Value (Id, Digits_Value (T));
5378 Set_Is_Constrained (Id, Is_Constrained (T));
5379
5380 -- If the floating point type has dimensions, these will be
5381 -- inherited subsequently when Analyze_Dimensions is called.
5382
5383 when Signed_Integer_Kind =>
5384 Set_Ekind (Id, E_Signed_Integer_Subtype);
5385 Set_Scalar_Range (Id, Scalar_Range (T));
5386 Set_Is_Constrained (Id, Is_Constrained (T));
5387 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5388 Set_RM_Size (Id, RM_Size (T));
5389 Inherit_Predicate_Flags (Id, T);
5390
5391 when Modular_Integer_Kind =>
5392 Set_Ekind (Id, E_Modular_Integer_Subtype);
5393 Set_Scalar_Range (Id, Scalar_Range (T));
5394 Set_Is_Constrained (Id, Is_Constrained (T));
5395 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5396 Set_RM_Size (Id, RM_Size (T));
5397 Inherit_Predicate_Flags (Id, T);
5398
5399 when Class_Wide_Kind =>
5400 Set_Ekind (Id, E_Class_Wide_Subtype);
5401 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5402 Set_Cloned_Subtype (Id, T);
5403 Set_Is_Tagged_Type (Id, True);
5404 Set_Has_Unknown_Discriminants
5405 (Id, True);
5406 Set_No_Tagged_Streams_Pragma
5407 (Id, No_Tagged_Streams_Pragma (T));
5408
5409 if Ekind (T) = E_Class_Wide_Subtype then
5410 Set_Equivalent_Type (Id, Equivalent_Type (T));
5411 end if;
5412
5413 when E_Record_Subtype
5414 | E_Record_Type
5415 =>
5416 Set_Ekind (Id, E_Record_Subtype);
5417
5418 if Ekind (T) = E_Record_Subtype
5419 and then Present (Cloned_Subtype (T))
5420 then
5421 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
5422 else
5423 Set_Cloned_Subtype (Id, T);
5424 end if;
5425
5426 Set_First_Entity (Id, First_Entity (T));
5427 Set_Last_Entity (Id, Last_Entity (T));
5428 Set_Has_Discriminants (Id, Has_Discriminants (T));
5429 Set_Is_Constrained (Id, Is_Constrained (T));
5430 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
5431 Set_Has_Implicit_Dereference
5432 (Id, Has_Implicit_Dereference (T));
5433 Set_Has_Unknown_Discriminants
5434 (Id, Has_Unknown_Discriminants (T));
5435
5436 if Has_Discriminants (T) then
5437 Set_Discriminant_Constraint
5438 (Id, Discriminant_Constraint (T));
5439 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5440
5441 elsif Has_Unknown_Discriminants (Id) then
5442 Set_Discriminant_Constraint (Id, No_Elist);
5443 end if;
5444
5445 if Is_Tagged_Type (T) then
5446 Set_Is_Tagged_Type (Id, True);
5447 Set_No_Tagged_Streams_Pragma
5448 (Id, No_Tagged_Streams_Pragma (T));
5449 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
5450 Set_Direct_Primitive_Operations
5451 (Id, Direct_Primitive_Operations (T));
5452 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5453
5454 if Is_Interface (T) then
5455 Set_Is_Interface (Id);
5456 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
5457 end if;
5458 end if;
5459
5460 when Private_Kind =>
5461 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5462 Set_Has_Discriminants (Id, Has_Discriminants (T));
5463 Set_Is_Constrained (Id, Is_Constrained (T));
5464 Set_First_Entity (Id, First_Entity (T));
5465 Set_Last_Entity (Id, Last_Entity (T));
5466 Set_Private_Dependents (Id, New_Elmt_List);
5467 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
5468 Set_Has_Implicit_Dereference
5469 (Id, Has_Implicit_Dereference (T));
5470 Set_Has_Unknown_Discriminants
5471 (Id, Has_Unknown_Discriminants (T));
5472 Set_Known_To_Have_Preelab_Init
5473 (Id, Known_To_Have_Preelab_Init (T));
5474
5475 if Is_Tagged_Type (T) then
5476 Set_Is_Tagged_Type (Id);
5477 Set_No_Tagged_Streams_Pragma (Id,
5478 No_Tagged_Streams_Pragma (T));
5479 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
5480 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5481 Set_Direct_Primitive_Operations (Id,
5482 Direct_Primitive_Operations (T));
5483 end if;
5484
5485 -- In general the attributes of the subtype of a private type
5486 -- are the attributes of the partial view of parent. However,
5487 -- the full view may be a discriminated type, and the subtype
5488 -- must share the discriminant constraint to generate correct
5489 -- calls to initialization procedures.
5490
5491 if Has_Discriminants (T) then
5492 Set_Discriminant_Constraint
5493 (Id, Discriminant_Constraint (T));
5494 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5495
5496 elsif Present (Full_View (T))
5497 and then Has_Discriminants (Full_View (T))
5498 then
5499 Set_Discriminant_Constraint
5500 (Id, Discriminant_Constraint (Full_View (T)));
5501 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5502
5503 -- This would seem semantically correct, but apparently
5504 -- generates spurious errors about missing components ???
5505
5506 -- Set_Has_Discriminants (Id);
5507 end if;
5508
5509 Prepare_Private_Subtype_Completion (Id, N);
5510
5511 -- If this is the subtype of a constrained private type with
5512 -- discriminants that has got a full view and we also have
5513 -- built a completion just above, show that the completion
5514 -- is a clone of the full view to the back-end.
5515
5516 if Has_Discriminants (T)
5517 and then not Has_Unknown_Discriminants (T)
5518 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
5519 and then Present (Full_View (T))
5520 and then Present (Full_View (Id))
5521 then
5522 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
5523 end if;
5524
5525 when Access_Kind =>
5526 Set_Ekind (Id, E_Access_Subtype);
5527 Set_Is_Constrained (Id, Is_Constrained (T));
5528 Set_Is_Access_Constant
5529 (Id, Is_Access_Constant (T));
5530 Set_Directly_Designated_Type
5531 (Id, Designated_Type (T));
5532 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
5533
5534 -- A Pure library_item must not contain the declaration of a
5535 -- named access type, except within a subprogram, generic
5536 -- subprogram, task unit, or protected unit, or if it has
5537 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
5538
5539 if Comes_From_Source (Id)
5540 and then In_Pure_Unit
5541 and then not In_Subprogram_Task_Protected_Unit
5542 and then not No_Pool_Assigned (Id)
5543 then
5544 Error_Msg_N
5545 ("named access types not allowed in pure unit", N);
5546 end if;
5547
5548 when Concurrent_Kind =>
5549 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5550 Set_Corresponding_Record_Type (Id,
5551 Corresponding_Record_Type (T));
5552 Set_First_Entity (Id, First_Entity (T));
5553 Set_First_Private_Entity (Id, First_Private_Entity (T));
5554 Set_Has_Discriminants (Id, Has_Discriminants (T));
5555 Set_Is_Constrained (Id, Is_Constrained (T));
5556 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5557 Set_Last_Entity (Id, Last_Entity (T));
5558
5559 if Is_Tagged_Type (T) then
5560 Set_No_Tagged_Streams_Pragma
5561 (Id, No_Tagged_Streams_Pragma (T));
5562 end if;
5563
5564 if Has_Discriminants (T) then
5565 Set_Discriminant_Constraint
5566 (Id, Discriminant_Constraint (T));
5567 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5568 end if;
5569
5570 when Incomplete_Kind =>
5571 if Ada_Version >= Ada_2005 then
5572
5573 -- In Ada 2005 an incomplete type can be explicitly tagged:
5574 -- propagate indication. Note that we also have to include
5575 -- subtypes for Ada 2012 extended use of incomplete types.
5576
5577 Set_Ekind (Id, E_Incomplete_Subtype);
5578 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5579 Set_Private_Dependents (Id, New_Elmt_List);
5580
5581 if Is_Tagged_Type (Id) then
5582 Set_No_Tagged_Streams_Pragma
5583 (Id, No_Tagged_Streams_Pragma (T));
5584 Set_Direct_Primitive_Operations (Id, New_Elmt_List);
5585 end if;
5586
5587 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
5588 -- incomplete type visible through a limited with clause.
5589
5590 if From_Limited_With (T)
5591 and then Present (Non_Limited_View (T))
5592 then
5593 Set_From_Limited_With (Id);
5594 Set_Non_Limited_View (Id, Non_Limited_View (T));
5595
5596 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5597 -- to the private dependents of the original incomplete
5598 -- type for future transformation.
5599
5600 else
5601 Append_Elmt (Id, Private_Dependents (T));
5602 end if;
5603
5604 -- If the subtype name denotes an incomplete type an error
5605 -- was already reported by Process_Subtype.
5606
5607 else
5608 Set_Etype (Id, Any_Type);
5609 end if;
5610
5611 when others =>
5612 raise Program_Error;
5613 end case;
5614 end if;
5615
5616 if Etype (Id) = Any_Type then
5617 goto Leave;
5618 end if;
5619
5620 -- Some common processing on all types
5621
5622 Set_Size_Info (Id, T);
5623 Set_First_Rep_Item (Id, First_Rep_Item (T));
5624
5625 -- If the parent type is a generic actual, so is the subtype. This may
5626 -- happen in a nested instance. Why Comes_From_Source test???
5627
5628 if not Comes_From_Source (N) then
5629 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
5630 end if;
5631
5632 -- If this is a subtype declaration for an actual in an instance,
5633 -- inherit static and dynamic predicates if any.
5634
5635 -- If declaration has no aspect specifications, inherit predicate
5636 -- info as well. Unclear how to handle the case of both specified
5637 -- and inherited predicates ??? Other inherited aspects, such as
5638 -- invariants, should be OK, but the combination with later pragmas
5639 -- may also require special merging.
5640
5641 if Has_Predicates (T)
5642 and then Present (Predicate_Function (T))
5643 and then
5644 ((In_Instance and then not Comes_From_Source (N))
5645 or else No (Aspect_Specifications (N)))
5646 then
5647 Set_Subprograms_For_Type (Id, Subprograms_For_Type (T));
5648
5649 if Has_Static_Predicate (T) then
5650 Set_Has_Static_Predicate (Id);
5651 Set_Static_Discrete_Predicate (Id, Static_Discrete_Predicate (T));
5652 end if;
5653 end if;
5654
5655 -- Remaining processing depends on characteristics of base type
5656
5657 T := Etype (Id);
5658
5659 Set_Is_Immediately_Visible (Id, True);
5660 Set_Depends_On_Private (Id, Has_Private_Component (T));
5661 Set_Is_Descendant_Of_Address (Id, Is_Descendant_Of_Address (T));
5662
5663 if Is_Interface (T) then
5664 Set_Is_Interface (Id);
5665 end if;
5666
5667 if Present (Generic_Parent_Type (N))
5668 and then
5669 (Nkind (Parent (Generic_Parent_Type (N))) /=
5670 N_Formal_Type_Declaration
5671 or else Nkind (Formal_Type_Definition
5672 (Parent (Generic_Parent_Type (N)))) /=
5673 N_Formal_Private_Type_Definition)
5674 then
5675 if Is_Tagged_Type (Id) then
5676
5677 -- If this is a generic actual subtype for a synchronized type,
5678 -- the primitive operations are those of the corresponding record
5679 -- for which there is a separate subtype declaration.
5680
5681 if Is_Concurrent_Type (Id) then
5682 null;
5683 elsif Is_Class_Wide_Type (Id) then
5684 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
5685 else
5686 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
5687 end if;
5688
5689 elsif Scope (Etype (Id)) /= Standard_Standard then
5690 Derive_Subprograms (Generic_Parent_Type (N), Id);
5691 end if;
5692 end if;
5693
5694 if Is_Private_Type (T) and then Present (Full_View (T)) then
5695 Conditional_Delay (Id, Full_View (T));
5696
5697 -- The subtypes of components or subcomponents of protected types
5698 -- do not need freeze nodes, which would otherwise appear in the
5699 -- wrong scope (before the freeze node for the protected type). The
5700 -- proper subtypes are those of the subcomponents of the corresponding
5701 -- record.
5702
5703 elsif Ekind (Scope (Id)) /= E_Protected_Type
5704 and then Present (Scope (Scope (Id))) -- error defense
5705 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
5706 then
5707 Conditional_Delay (Id, T);
5708 end if;
5709
5710 -- Check that Constraint_Error is raised for a scalar subtype indication
5711 -- when the lower or upper bound of a non-null range lies outside the
5712 -- range of the type mark.
5713
5714 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5715 if Is_Scalar_Type (Etype (Id))
5716 and then Scalar_Range (Id) /=
5717 Scalar_Range
5718 (Etype (Subtype_Mark (Subtype_Indication (N))))
5719 then
5720 Apply_Range_Check
5721 (Scalar_Range (Id),
5722 Etype (Subtype_Mark (Subtype_Indication (N))));
5723
5724 -- In the array case, check compatibility for each index
5725
5726 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
5727 then
5728 -- This really should be a subprogram that finds the indications
5729 -- to check???
5730
5731 declare
5732 Subt_Index : Node_Id := First_Index (Id);
5733 Target_Index : Node_Id :=
5734 First_Index (Etype
5735 (Subtype_Mark (Subtype_Indication (N))));
5736 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
5737
5738 begin
5739 while Present (Subt_Index) loop
5740 if ((Nkind (Subt_Index) = N_Identifier
5741 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
5742 or else Nkind (Subt_Index) = N_Subtype_Indication)
5743 and then
5744 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
5745 then
5746 declare
5747 Target_Typ : constant Entity_Id :=
5748 Etype (Target_Index);
5749 begin
5750 R_Checks :=
5751 Get_Range_Checks
5752 (Scalar_Range (Etype (Subt_Index)),
5753 Target_Typ,
5754 Etype (Subt_Index),
5755 Defining_Identifier (N));
5756
5757 -- Reset Has_Dynamic_Range_Check on the subtype to
5758 -- prevent elision of the index check due to a dynamic
5759 -- check generated for a preceding index (needed since
5760 -- Insert_Range_Checks tries to avoid generating
5761 -- redundant checks on a given declaration).
5762
5763 Set_Has_Dynamic_Range_Check (N, False);
5764
5765 Insert_Range_Checks
5766 (R_Checks,
5767 N,
5768 Target_Typ,
5769 Sloc (Defining_Identifier (N)));
5770
5771 -- Record whether this index involved a dynamic check
5772
5773 Has_Dyn_Chk :=
5774 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
5775 end;
5776 end if;
5777
5778 Next_Index (Subt_Index);
5779 Next_Index (Target_Index);
5780 end loop;
5781
5782 -- Finally, mark whether the subtype involves dynamic checks
5783
5784 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
5785 end;
5786 end if;
5787 end if;
5788
5789 Set_Optimize_Alignment_Flags (Id);
5790 Check_Eliminated (Id);
5791
5792 <<Leave>>
5793 if Has_Aspects (N) then
5794 Analyze_Aspect_Specifications (N, Id);
5795 end if;
5796
5797 Analyze_Dimension (N);
5798
5799 -- Check No_Dynamic_Sized_Objects restriction, which disallows subtype
5800 -- indications on composite types where the constraints are dynamic.
5801 -- Note that object declarations and aggregates generate implicit
5802 -- subtype declarations, which this covers. One special case is that the
5803 -- implicitly generated "=" for discriminated types includes an
5804 -- offending subtype declaration, which is harmless, so we ignore it
5805 -- here.
5806
5807 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5808 declare
5809 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5810 begin
5811 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint
5812 and then not (Is_Internal (Id)
5813 and then Is_TSS (Scope (Id),
5814 TSS_Composite_Equality))
5815 and then not Within_Init_Proc
5816 and then not All_Composite_Constraints_Static (Cstr)
5817 then
5818 Check_Restriction (No_Dynamic_Sized_Objects, Cstr);
5819 end if;
5820 end;
5821 end if;
5822 end Analyze_Subtype_Declaration;
5823
5824 --------------------------------
5825 -- Analyze_Subtype_Indication --
5826 --------------------------------
5827
5828 procedure Analyze_Subtype_Indication (N : Node_Id) is
5829 T : constant Entity_Id := Subtype_Mark (N);
5830 R : constant Node_Id := Range_Expression (Constraint (N));
5831
5832 begin
5833 Analyze (T);
5834
5835 if R /= Error then
5836 Analyze (R);
5837 Set_Etype (N, Etype (R));
5838 Resolve (R, Entity (T));
5839 else
5840 Set_Error_Posted (R);
5841 Set_Error_Posted (T);
5842 end if;
5843 end Analyze_Subtype_Indication;
5844
5845 --------------------------
5846 -- Analyze_Variant_Part --
5847 --------------------------
5848
5849 procedure Analyze_Variant_Part (N : Node_Id) is
5850 Discr_Name : Node_Id;
5851 Discr_Type : Entity_Id;
5852
5853 procedure Process_Variant (A : Node_Id);
5854 -- Analyze declarations for a single variant
5855
5856 package Analyze_Variant_Choices is
5857 new Generic_Analyze_Choices (Process_Variant);
5858 use Analyze_Variant_Choices;
5859
5860 ---------------------
5861 -- Process_Variant --
5862 ---------------------
5863
5864 procedure Process_Variant (A : Node_Id) is
5865 CL : constant Node_Id := Component_List (A);
5866 begin
5867 if not Null_Present (CL) then
5868 Analyze_Declarations (Component_Items (CL));
5869
5870 if Present (Variant_Part (CL)) then
5871 Analyze (Variant_Part (CL));
5872 end if;
5873 end if;
5874 end Process_Variant;
5875
5876 -- Start of processing for Analyze_Variant_Part
5877
5878 begin
5879 Discr_Name := Name (N);
5880 Analyze (Discr_Name);
5881
5882 -- If Discr_Name bad, get out (prevent cascaded errors)
5883
5884 if Etype (Discr_Name) = Any_Type then
5885 return;
5886 end if;
5887
5888 -- Check invalid discriminant in variant part
5889
5890 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
5891 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
5892 end if;
5893
5894 Discr_Type := Etype (Entity (Discr_Name));
5895
5896 if not Is_Discrete_Type (Discr_Type) then
5897 Error_Msg_N
5898 ("discriminant in a variant part must be of a discrete type",
5899 Name (N));
5900 return;
5901 end if;
5902
5903 -- Now analyze the choices, which also analyzes the declarations that
5904 -- are associated with each choice.
5905
5906 Analyze_Choices (Variants (N), Discr_Type);
5907
5908 -- Note: we used to instantiate and call Check_Choices here to check
5909 -- that the choices covered the discriminant, but it's too early to do
5910 -- that because of statically predicated subtypes, whose analysis may
5911 -- be deferred to their freeze point which may be as late as the freeze
5912 -- point of the containing record. So this call is now to be found in
5913 -- Freeze_Record_Declaration.
5914
5915 end Analyze_Variant_Part;
5916
5917 ----------------------------
5918 -- Array_Type_Declaration --
5919 ----------------------------
5920
5921 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
5922 Component_Def : constant Node_Id := Component_Definition (Def);
5923 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
5924 P : constant Node_Id := Parent (Def);
5925 Element_Type : Entity_Id;
5926 Implicit_Base : Entity_Id;
5927 Index : Node_Id;
5928 Nb_Index : Nat;
5929 Priv : Entity_Id;
5930 Related_Id : Entity_Id := Empty;
5931
5932 begin
5933 if Nkind (Def) = N_Constrained_Array_Definition then
5934 Index := First (Discrete_Subtype_Definitions (Def));
5935 else
5936 Index := First (Subtype_Marks (Def));
5937 end if;
5938
5939 -- Find proper names for the implicit types which may be public. In case
5940 -- of anonymous arrays we use the name of the first object of that type
5941 -- as prefix.
5942
5943 if No (T) then
5944 Related_Id := Defining_Identifier (P);
5945 else
5946 Related_Id := T;
5947 end if;
5948
5949 Nb_Index := 1;
5950 while Present (Index) loop
5951 Analyze (Index);
5952
5953 -- Test for odd case of trying to index a type by the type itself
5954
5955 if Is_Entity_Name (Index) and then Entity (Index) = T then
5956 Error_Msg_N ("type& cannot be indexed by itself", Index);
5957 Set_Entity (Index, Standard_Boolean);
5958 Set_Etype (Index, Standard_Boolean);
5959 end if;
5960
5961 -- Check SPARK restriction requiring a subtype mark
5962
5963 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
5964 Check_SPARK_05_Restriction ("subtype mark required", Index);
5965 end if;
5966
5967 -- Add a subtype declaration for each index of private array type
5968 -- declaration whose etype is also private. For example:
5969
5970 -- package Pkg is
5971 -- type Index is private;
5972 -- private
5973 -- type Table is array (Index) of ...
5974 -- end;
5975
5976 -- This is currently required by the expander for the internally
5977 -- generated equality subprogram of records with variant parts in
5978 -- which the etype of some component is such private type.
5979
5980 if Ekind (Current_Scope) = E_Package
5981 and then In_Private_Part (Current_Scope)
5982 and then Has_Private_Declaration (Etype (Index))
5983 then
5984 declare
5985 Loc : constant Source_Ptr := Sloc (Def);
5986 Decl : Entity_Id;
5987 New_E : Entity_Id;
5988
5989 begin
5990 New_E := Make_Temporary (Loc, 'T');
5991 Set_Is_Internal (New_E);
5992
5993 Decl :=
5994 Make_Subtype_Declaration (Loc,
5995 Defining_Identifier => New_E,
5996 Subtype_Indication =>
5997 New_Occurrence_Of (Etype (Index), Loc));
5998
5999 Insert_Before (Parent (Def), Decl);
6000 Analyze (Decl);
6001 Set_Etype (Index, New_E);
6002
6003 -- If the index is a range or a subtype indication it carries
6004 -- no entity. Example:
6005
6006 -- package Pkg is
6007 -- type T is private;
6008 -- private
6009 -- type T is new Natural;
6010 -- Table : array (T(1) .. T(10)) of Boolean;
6011 -- end Pkg;
6012
6013 -- Otherwise the type of the reference is its entity.
6014
6015 if Is_Entity_Name (Index) then
6016 Set_Entity (Index, New_E);
6017 end if;
6018 end;
6019 end if;
6020
6021 Make_Index (Index, P, Related_Id, Nb_Index);
6022
6023 -- Check error of subtype with predicate for index type
6024
6025 Bad_Predicated_Subtype_Use
6026 ("subtype& has predicate, not allowed as index subtype",
6027 Index, Etype (Index));
6028
6029 -- Move to next index
6030
6031 Next_Index (Index);
6032 Nb_Index := Nb_Index + 1;
6033 end loop;
6034
6035 -- Process subtype indication if one is present
6036
6037 if Present (Component_Typ) then
6038 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
6039
6040 Set_Etype (Component_Typ, Element_Type);
6041
6042 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
6043 Check_SPARK_05_Restriction
6044 ("subtype mark required", Component_Typ);
6045 end if;
6046
6047 -- Ada 2005 (AI-230): Access Definition case
6048
6049 else pragma Assert (Present (Access_Definition (Component_Def)));
6050
6051 -- Indicate that the anonymous access type is created by the
6052 -- array type declaration.
6053
6054 Element_Type := Access_Definition
6055 (Related_Nod => P,
6056 N => Access_Definition (Component_Def));
6057 Set_Is_Local_Anonymous_Access (Element_Type);
6058
6059 -- Propagate the parent. This field is needed if we have to generate
6060 -- the master_id associated with an anonymous access to task type
6061 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
6062
6063 Set_Parent (Element_Type, Parent (T));
6064
6065 -- Ada 2005 (AI-230): In case of components that are anonymous access
6066 -- types the level of accessibility depends on the enclosing type
6067 -- declaration
6068
6069 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
6070
6071 -- Ada 2005 (AI-254)
6072
6073 declare
6074 CD : constant Node_Id :=
6075 Access_To_Subprogram_Definition
6076 (Access_Definition (Component_Def));
6077 begin
6078 if Present (CD) and then Protected_Present (CD) then
6079 Element_Type :=
6080 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
6081 end if;
6082 end;
6083 end if;
6084
6085 -- Constrained array case
6086
6087 if No (T) then
6088 T := Create_Itype (E_Void, P, Related_Id, 'T');
6089 end if;
6090
6091 if Nkind (Def) = N_Constrained_Array_Definition then
6092
6093 -- Establish Implicit_Base as unconstrained base type
6094
6095 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
6096
6097 Set_Etype (Implicit_Base, Implicit_Base);
6098 Set_Scope (Implicit_Base, Current_Scope);
6099 Set_Has_Delayed_Freeze (Implicit_Base);
6100 Set_Default_SSO (Implicit_Base);
6101
6102 -- The constrained array type is a subtype of the unconstrained one
6103
6104 Set_Ekind (T, E_Array_Subtype);
6105 Init_Size_Align (T);
6106 Set_Etype (T, Implicit_Base);
6107 Set_Scope (T, Current_Scope);
6108 Set_Is_Constrained (T);
6109 Set_First_Index (T,
6110 First (Discrete_Subtype_Definitions (Def)));
6111 Set_Has_Delayed_Freeze (T);
6112
6113 -- Complete setup of implicit base type
6114
6115 Set_Component_Size (Implicit_Base, Uint_0);
6116 Set_Component_Type (Implicit_Base, Element_Type);
6117 Set_Finalize_Storage_Only
6118 (Implicit_Base,
6119 Finalize_Storage_Only (Element_Type));
6120 Set_First_Index (Implicit_Base, First_Index (T));
6121 Set_Has_Controlled_Component
6122 (Implicit_Base,
6123 Has_Controlled_Component (Element_Type)
6124 or else Is_Controlled_Active (Element_Type));
6125 Set_Packed_Array_Impl_Type
6126 (Implicit_Base, Empty);
6127
6128 Propagate_Concurrent_Flags (Implicit_Base, Element_Type);
6129
6130 -- Unconstrained array case
6131
6132 else
6133 Set_Ekind (T, E_Array_Type);
6134 Init_Size_Align (T);
6135 Set_Etype (T, T);
6136 Set_Scope (T, Current_Scope);
6137 Set_Component_Size (T, Uint_0);
6138 Set_Is_Constrained (T, False);
6139 Set_First_Index (T, First (Subtype_Marks (Def)));
6140 Set_Has_Delayed_Freeze (T, True);
6141 Propagate_Concurrent_Flags (T, Element_Type);
6142 Set_Has_Controlled_Component (T, Has_Controlled_Component
6143 (Element_Type)
6144 or else
6145 Is_Controlled_Active (Element_Type));
6146 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
6147 (Element_Type));
6148 Set_Default_SSO (T);
6149 end if;
6150
6151 -- Common attributes for both cases
6152
6153 Set_Component_Type (Base_Type (T), Element_Type);
6154 Set_Packed_Array_Impl_Type (T, Empty);
6155
6156 if Aliased_Present (Component_Definition (Def)) then
6157 Check_SPARK_05_Restriction
6158 ("aliased is not allowed", Component_Definition (Def));
6159 Set_Has_Aliased_Components (Etype (T));
6160 end if;
6161
6162 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
6163 -- array type to ensure that objects of this type are initialized.
6164
6165 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
6166 Set_Can_Never_Be_Null (T);
6167
6168 if Null_Exclusion_Present (Component_Definition (Def))
6169
6170 -- No need to check itypes because in their case this check was
6171 -- done at their point of creation
6172
6173 and then not Is_Itype (Element_Type)
6174 then
6175 Error_Msg_N
6176 ("`NOT NULL` not allowed (null already excluded)",
6177 Subtype_Indication (Component_Definition (Def)));
6178 end if;
6179 end if;
6180
6181 Priv := Private_Component (Element_Type);
6182
6183 if Present (Priv) then
6184
6185 -- Check for circular definitions
6186
6187 if Priv = Any_Type then
6188 Set_Component_Type (Etype (T), Any_Type);
6189
6190 -- There is a gap in the visibility of operations on the composite
6191 -- type only if the component type is defined in a different scope.
6192
6193 elsif Scope (Priv) = Current_Scope then
6194 null;
6195
6196 elsif Is_Limited_Type (Priv) then
6197 Set_Is_Limited_Composite (Etype (T));
6198 Set_Is_Limited_Composite (T);
6199 else
6200 Set_Is_Private_Composite (Etype (T));
6201 Set_Is_Private_Composite (T);
6202 end if;
6203 end if;
6204
6205 -- A syntax error in the declaration itself may lead to an empty index
6206 -- list, in which case do a minimal patch.
6207
6208 if No (First_Index (T)) then
6209 Error_Msg_N ("missing index definition in array type declaration", T);
6210
6211 declare
6212 Indexes : constant List_Id :=
6213 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
6214 begin
6215 Set_Discrete_Subtype_Definitions (Def, Indexes);
6216 Set_First_Index (T, First (Indexes));
6217 return;
6218 end;
6219 end if;
6220
6221 -- Create a concatenation operator for the new type. Internal array
6222 -- types created for packed entities do not need such, they are
6223 -- compatible with the user-defined type.
6224
6225 if Number_Dimensions (T) = 1
6226 and then not Is_Packed_Array_Impl_Type (T)
6227 then
6228 New_Concatenation_Op (T);
6229 end if;
6230
6231 -- In the case of an unconstrained array the parser has already verified
6232 -- that all the indexes are unconstrained but we still need to make sure
6233 -- that the element type is constrained.
6234
6235 if not Is_Definite_Subtype (Element_Type) then
6236 Error_Msg_N
6237 ("unconstrained element type in array declaration",
6238 Subtype_Indication (Component_Def));
6239
6240 elsif Is_Abstract_Type (Element_Type) then
6241 Error_Msg_N
6242 ("the type of a component cannot be abstract",
6243 Subtype_Indication (Component_Def));
6244 end if;
6245
6246 -- There may be an invariant declared for the component type, but
6247 -- the construction of the component invariant checking procedure
6248 -- takes place during expansion.
6249 end Array_Type_Declaration;
6250
6251 ------------------------------------------------------
6252 -- Replace_Anonymous_Access_To_Protected_Subprogram --
6253 ------------------------------------------------------
6254
6255 function Replace_Anonymous_Access_To_Protected_Subprogram
6256 (N : Node_Id) return Entity_Id
6257 is
6258 Loc : constant Source_Ptr := Sloc (N);
6259
6260 Curr_Scope : constant Scope_Stack_Entry :=
6261 Scope_Stack.Table (Scope_Stack.Last);
6262
6263 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
6264
6265 Acc : Node_Id;
6266 -- Access definition in declaration
6267
6268 Comp : Node_Id;
6269 -- Object definition or formal definition with an access definition
6270
6271 Decl : Node_Id;
6272 -- Declaration of anonymous access to subprogram type
6273
6274 Spec : Node_Id;
6275 -- Original specification in access to subprogram
6276
6277 P : Node_Id;
6278
6279 begin
6280 Set_Is_Internal (Anon);
6281
6282 case Nkind (N) is
6283 when N_Constrained_Array_Definition
6284 | N_Component_Declaration
6285 | N_Unconstrained_Array_Definition
6286 =>
6287 Comp := Component_Definition (N);
6288 Acc := Access_Definition (Comp);
6289
6290 when N_Discriminant_Specification =>
6291 Comp := Discriminant_Type (N);
6292 Acc := Comp;
6293
6294 when N_Parameter_Specification =>
6295 Comp := Parameter_Type (N);
6296 Acc := Comp;
6297
6298 when N_Access_Function_Definition =>
6299 Comp := Result_Definition (N);
6300 Acc := Comp;
6301
6302 when N_Object_Declaration =>
6303 Comp := Object_Definition (N);
6304 Acc := Comp;
6305
6306 when N_Function_Specification =>
6307 Comp := Result_Definition (N);
6308 Acc := Comp;
6309
6310 when others =>
6311 raise Program_Error;
6312 end case;
6313
6314 Spec := Access_To_Subprogram_Definition (Acc);
6315
6316 Decl :=
6317 Make_Full_Type_Declaration (Loc,
6318 Defining_Identifier => Anon,
6319 Type_Definition => Copy_Separate_Tree (Spec));
6320
6321 Mark_Rewrite_Insertion (Decl);
6322
6323 -- In ASIS mode, analyze the profile on the original node, because
6324 -- the separate copy does not provide enough links to recover the
6325 -- original tree. Analysis is limited to type annotations, within
6326 -- a temporary scope that serves as an anonymous subprogram to collect
6327 -- otherwise useless temporaries and itypes.
6328
6329 if ASIS_Mode then
6330 declare
6331 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
6332
6333 begin
6334 if Nkind (Spec) = N_Access_Function_Definition then
6335 Set_Ekind (Typ, E_Function);
6336 else
6337 Set_Ekind (Typ, E_Procedure);
6338 end if;
6339
6340 Set_Parent (Typ, N);
6341 Set_Scope (Typ, Current_Scope);
6342 Push_Scope (Typ);
6343
6344 -- Nothing to do if procedure is parameterless
6345
6346 if Present (Parameter_Specifications (Spec)) then
6347 Process_Formals (Parameter_Specifications (Spec), Spec);
6348 end if;
6349
6350 if Nkind (Spec) = N_Access_Function_Definition then
6351 declare
6352 Def : constant Node_Id := Result_Definition (Spec);
6353
6354 begin
6355 -- The result might itself be an anonymous access type, so
6356 -- have to recurse.
6357
6358 if Nkind (Def) = N_Access_Definition then
6359 if Present (Access_To_Subprogram_Definition (Def)) then
6360 Set_Etype
6361 (Def,
6362 Replace_Anonymous_Access_To_Protected_Subprogram
6363 (Spec));
6364 else
6365 Find_Type (Subtype_Mark (Def));
6366 end if;
6367
6368 else
6369 Find_Type (Def);
6370 end if;
6371 end;
6372 end if;
6373
6374 End_Scope;
6375 end;
6376 end if;
6377
6378 -- Insert the new declaration in the nearest enclosing scope. If the
6379 -- parent is a body and N is its return type, the declaration belongs
6380 -- in the enclosing scope. Likewise if N is the type of a parameter.
6381
6382 P := Parent (N);
6383
6384 if Nkind (N) = N_Function_Specification
6385 and then Nkind (P) = N_Subprogram_Body
6386 then
6387 P := Parent (P);
6388 elsif Nkind (N) = N_Parameter_Specification
6389 and then Nkind (P) in N_Subprogram_Specification
6390 and then Nkind (Parent (P)) = N_Subprogram_Body
6391 then
6392 P := Parent (Parent (P));
6393 end if;
6394
6395 while Present (P) and then not Has_Declarations (P) loop
6396 P := Parent (P);
6397 end loop;
6398
6399 pragma Assert (Present (P));
6400
6401 if Nkind (P) = N_Package_Specification then
6402 Prepend (Decl, Visible_Declarations (P));
6403 else
6404 Prepend (Decl, Declarations (P));
6405 end if;
6406
6407 -- Replace the anonymous type with an occurrence of the new declaration.
6408 -- In all cases the rewritten node does not have the null-exclusion
6409 -- attribute because (if present) it was already inherited by the
6410 -- anonymous entity (Anon). Thus, in case of components we do not
6411 -- inherit this attribute.
6412
6413 if Nkind (N) = N_Parameter_Specification then
6414 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6415 Set_Etype (Defining_Identifier (N), Anon);
6416 Set_Null_Exclusion_Present (N, False);
6417
6418 elsif Nkind (N) = N_Object_Declaration then
6419 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6420 Set_Etype (Defining_Identifier (N), Anon);
6421
6422 elsif Nkind (N) = N_Access_Function_Definition then
6423 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6424
6425 elsif Nkind (N) = N_Function_Specification then
6426 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6427 Set_Etype (Defining_Unit_Name (N), Anon);
6428
6429 else
6430 Rewrite (Comp,
6431 Make_Component_Definition (Loc,
6432 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
6433 end if;
6434
6435 Mark_Rewrite_Insertion (Comp);
6436
6437 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition)
6438 or else (Nkind (Parent (N)) = N_Full_Type_Declaration
6439 and then not Is_Type (Current_Scope))
6440 then
6441
6442 -- Declaration can be analyzed in the current scope.
6443
6444 Analyze (Decl);
6445
6446 else
6447 -- Temporarily remove the current scope (record or subprogram) from
6448 -- the stack to add the new declarations to the enclosing scope.
6449 -- The anonymous entity is an Itype with the proper attributes.
6450
6451 Scope_Stack.Decrement_Last;
6452 Analyze (Decl);
6453 Set_Is_Itype (Anon);
6454 Set_Associated_Node_For_Itype (Anon, N);
6455 Scope_Stack.Append (Curr_Scope);
6456 end if;
6457
6458 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
6459 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
6460 return Anon;
6461 end Replace_Anonymous_Access_To_Protected_Subprogram;
6462
6463 -------------------------------
6464 -- Build_Derived_Access_Type --
6465 -------------------------------
6466
6467 procedure Build_Derived_Access_Type
6468 (N : Node_Id;
6469 Parent_Type : Entity_Id;
6470 Derived_Type : Entity_Id)
6471 is
6472 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
6473
6474 Desig_Type : Entity_Id;
6475 Discr : Entity_Id;
6476 Discr_Con_Elist : Elist_Id;
6477 Discr_Con_El : Elmt_Id;
6478 Subt : Entity_Id;
6479
6480 begin
6481 -- Set the designated type so it is available in case this is an access
6482 -- to a self-referential type, e.g. a standard list type with a next
6483 -- pointer. Will be reset after subtype is built.
6484
6485 Set_Directly_Designated_Type
6486 (Derived_Type, Designated_Type (Parent_Type));
6487
6488 Subt := Process_Subtype (S, N);
6489
6490 if Nkind (S) /= N_Subtype_Indication
6491 and then Subt /= Base_Type (Subt)
6492 then
6493 Set_Ekind (Derived_Type, E_Access_Subtype);
6494 end if;
6495
6496 if Ekind (Derived_Type) = E_Access_Subtype then
6497 declare
6498 Pbase : constant Entity_Id := Base_Type (Parent_Type);
6499 Ibase : constant Entity_Id :=
6500 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
6501 Svg_Chars : constant Name_Id := Chars (Ibase);
6502 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
6503
6504 begin
6505 Copy_Node (Pbase, Ibase);
6506
6507 -- Restore Itype status after Copy_Node
6508
6509 Set_Is_Itype (Ibase);
6510 Set_Associated_Node_For_Itype (Ibase, N);
6511
6512 Set_Chars (Ibase, Svg_Chars);
6513 Set_Next_Entity (Ibase, Svg_Next_E);
6514 Set_Sloc (Ibase, Sloc (Derived_Type));
6515 Set_Scope (Ibase, Scope (Derived_Type));
6516 Set_Freeze_Node (Ibase, Empty);
6517 Set_Is_Frozen (Ibase, False);
6518 Set_Comes_From_Source (Ibase, False);
6519 Set_Is_First_Subtype (Ibase, False);
6520
6521 Set_Etype (Ibase, Pbase);
6522 Set_Etype (Derived_Type, Ibase);
6523 end;
6524 end if;
6525
6526 Set_Directly_Designated_Type
6527 (Derived_Type, Designated_Type (Subt));
6528
6529 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
6530 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
6531 Set_Size_Info (Derived_Type, Parent_Type);
6532 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
6533 Set_Depends_On_Private (Derived_Type,
6534 Has_Private_Component (Derived_Type));
6535 Conditional_Delay (Derived_Type, Subt);
6536
6537 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
6538 -- that it is not redundant.
6539
6540 if Null_Exclusion_Present (Type_Definition (N)) then
6541 Set_Can_Never_Be_Null (Derived_Type);
6542
6543 elsif Can_Never_Be_Null (Parent_Type) then
6544 Set_Can_Never_Be_Null (Derived_Type);
6545 end if;
6546
6547 -- Note: we do not copy the Storage_Size_Variable, since we always go to
6548 -- the root type for this information.
6549
6550 -- Apply range checks to discriminants for derived record case
6551 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
6552
6553 Desig_Type := Designated_Type (Derived_Type);
6554
6555 if Is_Composite_Type (Desig_Type)
6556 and then (not Is_Array_Type (Desig_Type))
6557 and then Has_Discriminants (Desig_Type)
6558 and then Base_Type (Desig_Type) /= Desig_Type
6559 then
6560 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
6561 Discr_Con_El := First_Elmt (Discr_Con_Elist);
6562
6563 Discr := First_Discriminant (Base_Type (Desig_Type));
6564 while Present (Discr_Con_El) loop
6565 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
6566 Next_Elmt (Discr_Con_El);
6567 Next_Discriminant (Discr);
6568 end loop;
6569 end if;
6570 end Build_Derived_Access_Type;
6571
6572 ------------------------------
6573 -- Build_Derived_Array_Type --
6574 ------------------------------
6575
6576 procedure Build_Derived_Array_Type
6577 (N : Node_Id;
6578 Parent_Type : Entity_Id;
6579 Derived_Type : Entity_Id)
6580 is
6581 Loc : constant Source_Ptr := Sloc (N);
6582 Tdef : constant Node_Id := Type_Definition (N);
6583 Indic : constant Node_Id := Subtype_Indication (Tdef);
6584 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6585 Implicit_Base : Entity_Id;
6586 New_Indic : Node_Id;
6587
6588 procedure Make_Implicit_Base;
6589 -- If the parent subtype is constrained, the derived type is a subtype
6590 -- of an implicit base type derived from the parent base.
6591
6592 ------------------------
6593 -- Make_Implicit_Base --
6594 ------------------------
6595
6596 procedure Make_Implicit_Base is
6597 begin
6598 Implicit_Base :=
6599 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6600
6601 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6602 Set_Etype (Implicit_Base, Parent_Base);
6603
6604 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
6605 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
6606
6607 Set_Has_Delayed_Freeze (Implicit_Base, True);
6608 end Make_Implicit_Base;
6609
6610 -- Start of processing for Build_Derived_Array_Type
6611
6612 begin
6613 if not Is_Constrained (Parent_Type) then
6614 if Nkind (Indic) /= N_Subtype_Indication then
6615 Set_Ekind (Derived_Type, E_Array_Type);
6616
6617 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6618 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
6619
6620 Set_Has_Delayed_Freeze (Derived_Type, True);
6621
6622 else
6623 Make_Implicit_Base;
6624 Set_Etype (Derived_Type, Implicit_Base);
6625
6626 New_Indic :=
6627 Make_Subtype_Declaration (Loc,
6628 Defining_Identifier => Derived_Type,
6629 Subtype_Indication =>
6630 Make_Subtype_Indication (Loc,
6631 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6632 Constraint => Constraint (Indic)));
6633
6634 Rewrite (N, New_Indic);
6635 Analyze (N);
6636 end if;
6637
6638 else
6639 if Nkind (Indic) /= N_Subtype_Indication then
6640 Make_Implicit_Base;
6641
6642 Set_Ekind (Derived_Type, Ekind (Parent_Type));
6643 Set_Etype (Derived_Type, Implicit_Base);
6644 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6645
6646 else
6647 Error_Msg_N ("illegal constraint on constrained type", Indic);
6648 end if;
6649 end if;
6650
6651 -- If parent type is not a derived type itself, and is declared in
6652 -- closed scope (e.g. a subprogram), then we must explicitly introduce
6653 -- the new type's concatenation operator since Derive_Subprograms
6654 -- will not inherit the parent's operator. If the parent type is
6655 -- unconstrained, the operator is of the unconstrained base type.
6656
6657 if Number_Dimensions (Parent_Type) = 1
6658 and then not Is_Limited_Type (Parent_Type)
6659 and then not Is_Derived_Type (Parent_Type)
6660 and then not Is_Package_Or_Generic_Package
6661 (Scope (Base_Type (Parent_Type)))
6662 then
6663 if not Is_Constrained (Parent_Type)
6664 and then Is_Constrained (Derived_Type)
6665 then
6666 New_Concatenation_Op (Implicit_Base);
6667 else
6668 New_Concatenation_Op (Derived_Type);
6669 end if;
6670 end if;
6671 end Build_Derived_Array_Type;
6672
6673 -----------------------------------
6674 -- Build_Derived_Concurrent_Type --
6675 -----------------------------------
6676
6677 procedure Build_Derived_Concurrent_Type
6678 (N : Node_Id;
6679 Parent_Type : Entity_Id;
6680 Derived_Type : Entity_Id)
6681 is
6682 Loc : constant Source_Ptr := Sloc (N);
6683
6684 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
6685 Corr_Decl : Node_Id;
6686 Corr_Decl_Needed : Boolean;
6687 -- If the derived type has fewer discriminants than its parent, the
6688 -- corresponding record is also a derived type, in order to account for
6689 -- the bound discriminants. We create a full type declaration for it in
6690 -- this case.
6691
6692 Constraint_Present : constant Boolean :=
6693 Nkind (Subtype_Indication (Type_Definition (N))) =
6694 N_Subtype_Indication;
6695
6696 D_Constraint : Node_Id;
6697 New_Constraint : Elist_Id;
6698 Old_Disc : Entity_Id;
6699 New_Disc : Entity_Id;
6700 New_N : Node_Id;
6701
6702 begin
6703 Set_Stored_Constraint (Derived_Type, No_Elist);
6704 Corr_Decl_Needed := False;
6705 Old_Disc := Empty;
6706
6707 if Present (Discriminant_Specifications (N))
6708 and then Constraint_Present
6709 then
6710 Old_Disc := First_Discriminant (Parent_Type);
6711 New_Disc := First (Discriminant_Specifications (N));
6712 while Present (New_Disc) and then Present (Old_Disc) loop
6713 Next_Discriminant (Old_Disc);
6714 Next (New_Disc);
6715 end loop;
6716 end if;
6717
6718 if Present (Old_Disc) and then Expander_Active then
6719
6720 -- The new type has fewer discriminants, so we need to create a new
6721 -- corresponding record, which is derived from the corresponding
6722 -- record of the parent, and has a stored constraint that captures
6723 -- the values of the discriminant constraints. The corresponding
6724 -- record is needed only if expander is active and code generation is
6725 -- enabled.
6726
6727 -- The type declaration for the derived corresponding record has the
6728 -- same discriminant part and constraints as the current declaration.
6729 -- Copy the unanalyzed tree to build declaration.
6730
6731 Corr_Decl_Needed := True;
6732 New_N := Copy_Separate_Tree (N);
6733
6734 Corr_Decl :=
6735 Make_Full_Type_Declaration (Loc,
6736 Defining_Identifier => Corr_Record,
6737 Discriminant_Specifications =>
6738 Discriminant_Specifications (New_N),
6739 Type_Definition =>
6740 Make_Derived_Type_Definition (Loc,
6741 Subtype_Indication =>
6742 Make_Subtype_Indication (Loc,
6743 Subtype_Mark =>
6744 New_Occurrence_Of
6745 (Corresponding_Record_Type (Parent_Type), Loc),
6746 Constraint =>
6747 Constraint
6748 (Subtype_Indication (Type_Definition (New_N))))));
6749 end if;
6750
6751 -- Copy Storage_Size and Relative_Deadline variables if task case
6752
6753 if Is_Task_Type (Parent_Type) then
6754 Set_Storage_Size_Variable (Derived_Type,
6755 Storage_Size_Variable (Parent_Type));
6756 Set_Relative_Deadline_Variable (Derived_Type,
6757 Relative_Deadline_Variable (Parent_Type));
6758 end if;
6759
6760 if Present (Discriminant_Specifications (N)) then
6761 Push_Scope (Derived_Type);
6762 Check_Or_Process_Discriminants (N, Derived_Type);
6763
6764 if Constraint_Present then
6765 New_Constraint :=
6766 Expand_To_Stored_Constraint
6767 (Parent_Type,
6768 Build_Discriminant_Constraints
6769 (Parent_Type,
6770 Subtype_Indication (Type_Definition (N)), True));
6771 end if;
6772
6773 End_Scope;
6774
6775 elsif Constraint_Present then
6776
6777 -- Build constrained subtype, copying the constraint, and derive
6778 -- from it to create a derived constrained type.
6779
6780 declare
6781 Loc : constant Source_Ptr := Sloc (N);
6782 Anon : constant Entity_Id :=
6783 Make_Defining_Identifier (Loc,
6784 Chars => New_External_Name (Chars (Derived_Type), 'T'));
6785 Decl : Node_Id;
6786
6787 begin
6788 Decl :=
6789 Make_Subtype_Declaration (Loc,
6790 Defining_Identifier => Anon,
6791 Subtype_Indication =>
6792 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
6793 Insert_Before (N, Decl);
6794 Analyze (Decl);
6795
6796 Rewrite (Subtype_Indication (Type_Definition (N)),
6797 New_Occurrence_Of (Anon, Loc));
6798 Set_Analyzed (Derived_Type, False);
6799 Analyze (N);
6800 return;
6801 end;
6802 end if;
6803
6804 -- By default, operations and private data are inherited from parent.
6805 -- However, in the presence of bound discriminants, a new corresponding
6806 -- record will be created, see below.
6807
6808 Set_Has_Discriminants
6809 (Derived_Type, Has_Discriminants (Parent_Type));
6810 Set_Corresponding_Record_Type
6811 (Derived_Type, Corresponding_Record_Type (Parent_Type));
6812
6813 -- Is_Constrained is set according the parent subtype, but is set to
6814 -- False if the derived type is declared with new discriminants.
6815
6816 Set_Is_Constrained
6817 (Derived_Type,
6818 (Is_Constrained (Parent_Type) or else Constraint_Present)
6819 and then not Present (Discriminant_Specifications (N)));
6820
6821 if Constraint_Present then
6822 if not Has_Discriminants (Parent_Type) then
6823 Error_Msg_N ("untagged parent must have discriminants", N);
6824
6825 elsif Present (Discriminant_Specifications (N)) then
6826
6827 -- Verify that new discriminants are used to constrain old ones
6828
6829 D_Constraint :=
6830 First
6831 (Constraints
6832 (Constraint (Subtype_Indication (Type_Definition (N)))));
6833
6834 Old_Disc := First_Discriminant (Parent_Type);
6835
6836 while Present (D_Constraint) loop
6837 if Nkind (D_Constraint) /= N_Discriminant_Association then
6838
6839 -- Positional constraint. If it is a reference to a new
6840 -- discriminant, it constrains the corresponding old one.
6841
6842 if Nkind (D_Constraint) = N_Identifier then
6843 New_Disc := First_Discriminant (Derived_Type);
6844 while Present (New_Disc) loop
6845 exit when Chars (New_Disc) = Chars (D_Constraint);
6846 Next_Discriminant (New_Disc);
6847 end loop;
6848
6849 if Present (New_Disc) then
6850 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
6851 end if;
6852 end if;
6853
6854 Next_Discriminant (Old_Disc);
6855
6856 -- if this is a named constraint, search by name for the old
6857 -- discriminants constrained by the new one.
6858
6859 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
6860
6861 -- Find new discriminant with that name
6862
6863 New_Disc := First_Discriminant (Derived_Type);
6864 while Present (New_Disc) loop
6865 exit when
6866 Chars (New_Disc) = Chars (Expression (D_Constraint));
6867 Next_Discriminant (New_Disc);
6868 end loop;
6869
6870 if Present (New_Disc) then
6871
6872 -- Verify that new discriminant renames some discriminant
6873 -- of the parent type, and associate the new discriminant
6874 -- with one or more old ones that it renames.
6875
6876 declare
6877 Selector : Node_Id;
6878
6879 begin
6880 Selector := First (Selector_Names (D_Constraint));
6881 while Present (Selector) loop
6882 Old_Disc := First_Discriminant (Parent_Type);
6883 while Present (Old_Disc) loop
6884 exit when Chars (Old_Disc) = Chars (Selector);
6885 Next_Discriminant (Old_Disc);
6886 end loop;
6887
6888 if Present (Old_Disc) then
6889 Set_Corresponding_Discriminant
6890 (New_Disc, Old_Disc);
6891 end if;
6892
6893 Next (Selector);
6894 end loop;
6895 end;
6896 end if;
6897 end if;
6898
6899 Next (D_Constraint);
6900 end loop;
6901
6902 New_Disc := First_Discriminant (Derived_Type);
6903 while Present (New_Disc) loop
6904 if No (Corresponding_Discriminant (New_Disc)) then
6905 Error_Msg_NE
6906 ("new discriminant& must constrain old one", N, New_Disc);
6907
6908 elsif not
6909 Subtypes_Statically_Compatible
6910 (Etype (New_Disc),
6911 Etype (Corresponding_Discriminant (New_Disc)))
6912 then
6913 Error_Msg_NE
6914 ("& not statically compatible with parent discriminant",
6915 N, New_Disc);
6916 end if;
6917
6918 Next_Discriminant (New_Disc);
6919 end loop;
6920 end if;
6921
6922 elsif Present (Discriminant_Specifications (N)) then
6923 Error_Msg_N
6924 ("missing discriminant constraint in untagged derivation", N);
6925 end if;
6926
6927 -- The entity chain of the derived type includes the new discriminants
6928 -- but shares operations with the parent.
6929
6930 if Present (Discriminant_Specifications (N)) then
6931 Old_Disc := First_Discriminant (Parent_Type);
6932 while Present (Old_Disc) loop
6933 if No (Next_Entity (Old_Disc))
6934 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
6935 then
6936 Set_Next_Entity
6937 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
6938 exit;
6939 end if;
6940
6941 Next_Discriminant (Old_Disc);
6942 end loop;
6943
6944 else
6945 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
6946 if Has_Discriminants (Parent_Type) then
6947 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6948 Set_Discriminant_Constraint (
6949 Derived_Type, Discriminant_Constraint (Parent_Type));
6950 end if;
6951 end if;
6952
6953 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
6954
6955 Set_Has_Completion (Derived_Type);
6956
6957 if Corr_Decl_Needed then
6958 Set_Stored_Constraint (Derived_Type, New_Constraint);
6959 Insert_After (N, Corr_Decl);
6960 Analyze (Corr_Decl);
6961 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
6962 end if;
6963 end Build_Derived_Concurrent_Type;
6964
6965 ------------------------------------
6966 -- Build_Derived_Enumeration_Type --
6967 ------------------------------------
6968
6969 procedure Build_Derived_Enumeration_Type
6970 (N : Node_Id;
6971 Parent_Type : Entity_Id;
6972 Derived_Type : Entity_Id)
6973 is
6974 Loc : constant Source_Ptr := Sloc (N);
6975 Def : constant Node_Id := Type_Definition (N);
6976 Indic : constant Node_Id := Subtype_Indication (Def);
6977 Implicit_Base : Entity_Id;
6978 Literal : Entity_Id;
6979 New_Lit : Entity_Id;
6980 Literals_List : List_Id;
6981 Type_Decl : Node_Id;
6982 Hi, Lo : Node_Id;
6983 Rang_Expr : Node_Id;
6984
6985 begin
6986 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6987 -- not have explicit literals lists we need to process types derived
6988 -- from them specially. This is handled by Derived_Standard_Character.
6989 -- If the parent type is a generic type, there are no literals either,
6990 -- and we construct the same skeletal representation as for the generic
6991 -- parent type.
6992
6993 if Is_Standard_Character_Type (Parent_Type) then
6994 Derived_Standard_Character (N, Parent_Type, Derived_Type);
6995
6996 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
6997 declare
6998 Lo : Node_Id;
6999 Hi : Node_Id;
7000
7001 begin
7002 if Nkind (Indic) /= N_Subtype_Indication then
7003 Lo :=
7004 Make_Attribute_Reference (Loc,
7005 Attribute_Name => Name_First,
7006 Prefix => New_Occurrence_Of (Derived_Type, Loc));
7007 Set_Etype (Lo, Derived_Type);
7008
7009 Hi :=
7010 Make_Attribute_Reference (Loc,
7011 Attribute_Name => Name_Last,
7012 Prefix => New_Occurrence_Of (Derived_Type, Loc));
7013 Set_Etype (Hi, Derived_Type);
7014
7015 Set_Scalar_Range (Derived_Type,
7016 Make_Range (Loc,
7017 Low_Bound => Lo,
7018 High_Bound => Hi));
7019 else
7020
7021 -- Analyze subtype indication and verify compatibility
7022 -- with parent type.
7023
7024 if Base_Type (Process_Subtype (Indic, N)) /=
7025 Base_Type (Parent_Type)
7026 then
7027 Error_Msg_N
7028 ("illegal constraint for formal discrete type", N);
7029 end if;
7030 end if;
7031 end;
7032
7033 else
7034 -- If a constraint is present, analyze the bounds to catch
7035 -- premature usage of the derived literals.
7036
7037 if Nkind (Indic) = N_Subtype_Indication
7038 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
7039 then
7040 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
7041 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
7042 end if;
7043
7044 -- Introduce an implicit base type for the derived type even if there
7045 -- is no constraint attached to it, since this seems closer to the
7046 -- Ada semantics. Build a full type declaration tree for the derived
7047 -- type using the implicit base type as the defining identifier. The
7048 -- build a subtype declaration tree which applies the constraint (if
7049 -- any) have it replace the derived type declaration.
7050
7051 Literal := First_Literal (Parent_Type);
7052 Literals_List := New_List;
7053 while Present (Literal)
7054 and then Ekind (Literal) = E_Enumeration_Literal
7055 loop
7056 -- Literals of the derived type have the same representation as
7057 -- those of the parent type, but this representation can be
7058 -- overridden by an explicit representation clause. Indicate
7059 -- that there is no explicit representation given yet. These
7060 -- derived literals are implicit operations of the new type,
7061 -- and can be overridden by explicit ones.
7062
7063 if Nkind (Literal) = N_Defining_Character_Literal then
7064 New_Lit :=
7065 Make_Defining_Character_Literal (Loc, Chars (Literal));
7066 else
7067 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
7068 end if;
7069
7070 Set_Ekind (New_Lit, E_Enumeration_Literal);
7071 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
7072 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
7073 Set_Enumeration_Rep_Expr (New_Lit, Empty);
7074 Set_Alias (New_Lit, Literal);
7075 Set_Is_Known_Valid (New_Lit, True);
7076
7077 Append (New_Lit, Literals_List);
7078 Next_Literal (Literal);
7079 end loop;
7080
7081 Implicit_Base :=
7082 Make_Defining_Identifier (Sloc (Derived_Type),
7083 Chars => New_External_Name (Chars (Derived_Type), 'B'));
7084
7085 -- Indicate the proper nature of the derived type. This must be done
7086 -- before analysis of the literals, to recognize cases when a literal
7087 -- may be hidden by a previous explicit function definition (cf.
7088 -- c83031a).
7089
7090 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
7091 Set_Etype (Derived_Type, Implicit_Base);
7092
7093 Type_Decl :=
7094 Make_Full_Type_Declaration (Loc,
7095 Defining_Identifier => Implicit_Base,
7096 Discriminant_Specifications => No_List,
7097 Type_Definition =>
7098 Make_Enumeration_Type_Definition (Loc, Literals_List));
7099
7100 Mark_Rewrite_Insertion (Type_Decl);
7101 Insert_Before (N, Type_Decl);
7102 Analyze (Type_Decl);
7103
7104 -- The anonymous base now has a full declaration, but this base
7105 -- is not a first subtype.
7106
7107 Set_Is_First_Subtype (Implicit_Base, False);
7108
7109 -- After the implicit base is analyzed its Etype needs to be changed
7110 -- to reflect the fact that it is derived from the parent type which
7111 -- was ignored during analysis. We also set the size at this point.
7112
7113 Set_Etype (Implicit_Base, Parent_Type);
7114
7115 Set_Size_Info (Implicit_Base, Parent_Type);
7116 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
7117 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
7118
7119 -- Copy other flags from parent type
7120
7121 Set_Has_Non_Standard_Rep
7122 (Implicit_Base, Has_Non_Standard_Rep
7123 (Parent_Type));
7124 Set_Has_Pragma_Ordered
7125 (Implicit_Base, Has_Pragma_Ordered
7126 (Parent_Type));
7127 Set_Has_Delayed_Freeze (Implicit_Base);
7128
7129 -- Process the subtype indication including a validation check on the
7130 -- constraint, if any. If a constraint is given, its bounds must be
7131 -- implicitly converted to the new type.
7132
7133 if Nkind (Indic) = N_Subtype_Indication then
7134 declare
7135 R : constant Node_Id :=
7136 Range_Expression (Constraint (Indic));
7137
7138 begin
7139 if Nkind (R) = N_Range then
7140 Hi := Build_Scalar_Bound
7141 (High_Bound (R), Parent_Type, Implicit_Base);
7142 Lo := Build_Scalar_Bound
7143 (Low_Bound (R), Parent_Type, Implicit_Base);
7144
7145 else
7146 -- Constraint is a Range attribute. Replace with explicit
7147 -- mention of the bounds of the prefix, which must be a
7148 -- subtype.
7149
7150 Analyze (Prefix (R));
7151 Hi :=
7152 Convert_To (Implicit_Base,
7153 Make_Attribute_Reference (Loc,
7154 Attribute_Name => Name_Last,
7155 Prefix =>
7156 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
7157
7158 Lo :=
7159 Convert_To (Implicit_Base,
7160 Make_Attribute_Reference (Loc,
7161 Attribute_Name => Name_First,
7162 Prefix =>
7163 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
7164 end if;
7165 end;
7166
7167 else
7168 Hi :=
7169 Build_Scalar_Bound
7170 (Type_High_Bound (Parent_Type),
7171 Parent_Type, Implicit_Base);
7172 Lo :=
7173 Build_Scalar_Bound
7174 (Type_Low_Bound (Parent_Type),
7175 Parent_Type, Implicit_Base);
7176 end if;
7177
7178 Rang_Expr :=
7179 Make_Range (Loc,
7180 Low_Bound => Lo,
7181 High_Bound => Hi);
7182
7183 -- If we constructed a default range for the case where no range
7184 -- was given, then the expressions in the range must not freeze
7185 -- since they do not correspond to expressions in the source.
7186 -- However, if the type inherits predicates the expressions will
7187 -- be elaborated earlier and must freeze.
7188
7189 if Nkind (Indic) /= N_Subtype_Indication
7190 and then not Has_Predicates (Derived_Type)
7191 then
7192 Set_Must_Not_Freeze (Lo);
7193 Set_Must_Not_Freeze (Hi);
7194 Set_Must_Not_Freeze (Rang_Expr);
7195 end if;
7196
7197 Rewrite (N,
7198 Make_Subtype_Declaration (Loc,
7199 Defining_Identifier => Derived_Type,
7200 Subtype_Indication =>
7201 Make_Subtype_Indication (Loc,
7202 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
7203 Constraint =>
7204 Make_Range_Constraint (Loc,
7205 Range_Expression => Rang_Expr))));
7206
7207 Analyze (N);
7208
7209 -- Propagate the aspects from the original type declaration to the
7210 -- declaration of the implicit base.
7211
7212 Move_Aspects (From => Original_Node (N), To => Type_Decl);
7213
7214 -- Apply a range check. Since this range expression doesn't have an
7215 -- Etype, we have to specifically pass the Source_Typ parameter. Is
7216 -- this right???
7217
7218 if Nkind (Indic) = N_Subtype_Indication then
7219 Apply_Range_Check
7220 (Range_Expression (Constraint (Indic)), Parent_Type,
7221 Source_Typ => Entity (Subtype_Mark (Indic)));
7222 end if;
7223 end if;
7224 end Build_Derived_Enumeration_Type;
7225
7226 --------------------------------
7227 -- Build_Derived_Numeric_Type --
7228 --------------------------------
7229
7230 procedure Build_Derived_Numeric_Type
7231 (N : Node_Id;
7232 Parent_Type : Entity_Id;
7233 Derived_Type : Entity_Id)
7234 is
7235 Loc : constant Source_Ptr := Sloc (N);
7236 Tdef : constant Node_Id := Type_Definition (N);
7237 Indic : constant Node_Id := Subtype_Indication (Tdef);
7238 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
7239 No_Constraint : constant Boolean := Nkind (Indic) /=
7240 N_Subtype_Indication;
7241 Implicit_Base : Entity_Id;
7242
7243 Lo : Node_Id;
7244 Hi : Node_Id;
7245
7246 begin
7247 -- Process the subtype indication including a validation check on
7248 -- the constraint if any.
7249
7250 Discard_Node (Process_Subtype (Indic, N));
7251
7252 -- Introduce an implicit base type for the derived type even if there
7253 -- is no constraint attached to it, since this seems closer to the Ada
7254 -- semantics.
7255
7256 Implicit_Base :=
7257 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
7258
7259 Set_Etype (Implicit_Base, Parent_Base);
7260 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
7261 Set_Size_Info (Implicit_Base, Parent_Base);
7262 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
7263 Set_Parent (Implicit_Base, Parent (Derived_Type));
7264 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
7265
7266 -- Set RM Size for discrete type or decimal fixed-point type
7267 -- Ordinary fixed-point is excluded, why???
7268
7269 if Is_Discrete_Type (Parent_Base)
7270 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
7271 then
7272 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
7273 end if;
7274
7275 Set_Has_Delayed_Freeze (Implicit_Base);
7276
7277 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
7278 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
7279
7280 Set_Scalar_Range (Implicit_Base,
7281 Make_Range (Loc,
7282 Low_Bound => Lo,
7283 High_Bound => Hi));
7284
7285 if Has_Infinities (Parent_Base) then
7286 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
7287 end if;
7288
7289 -- The Derived_Type, which is the entity of the declaration, is a
7290 -- subtype of the implicit base. Its Ekind is a subtype, even in the
7291 -- absence of an explicit constraint.
7292
7293 Set_Etype (Derived_Type, Implicit_Base);
7294
7295 -- If we did not have a constraint, then the Ekind is set from the
7296 -- parent type (otherwise Process_Subtype has set the bounds)
7297
7298 if No_Constraint then
7299 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
7300 end if;
7301
7302 -- If we did not have a range constraint, then set the range from the
7303 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
7304
7305 if No_Constraint or else not Has_Range_Constraint (Indic) then
7306 Set_Scalar_Range (Derived_Type,
7307 Make_Range (Loc,
7308 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
7309 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
7310 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7311
7312 if Has_Infinities (Parent_Type) then
7313 Set_Includes_Infinities (Scalar_Range (Derived_Type));
7314 end if;
7315
7316 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
7317 end if;
7318
7319 Set_Is_Descendant_Of_Address (Derived_Type,
7320 Is_Descendant_Of_Address (Parent_Type));
7321 Set_Is_Descendant_Of_Address (Implicit_Base,
7322 Is_Descendant_Of_Address (Parent_Type));
7323
7324 -- Set remaining type-specific fields, depending on numeric type
7325
7326 if Is_Modular_Integer_Type (Parent_Type) then
7327 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
7328
7329 Set_Non_Binary_Modulus
7330 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
7331
7332 Set_Is_Known_Valid
7333 (Implicit_Base, Is_Known_Valid (Parent_Base));
7334
7335 elsif Is_Floating_Point_Type (Parent_Type) then
7336
7337 -- Digits of base type is always copied from the digits value of
7338 -- the parent base type, but the digits of the derived type will
7339 -- already have been set if there was a constraint present.
7340
7341 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
7342 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
7343
7344 if No_Constraint then
7345 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
7346 end if;
7347
7348 elsif Is_Fixed_Point_Type (Parent_Type) then
7349
7350 -- Small of base type and derived type are always copied from the
7351 -- parent base type, since smalls never change. The delta of the
7352 -- base type is also copied from the parent base type. However the
7353 -- delta of the derived type will have been set already if a
7354 -- constraint was present.
7355
7356 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
7357 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
7358 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
7359
7360 if No_Constraint then
7361 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
7362 end if;
7363
7364 -- The scale and machine radix in the decimal case are always
7365 -- copied from the parent base type.
7366
7367 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
7368 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
7369 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
7370
7371 Set_Machine_Radix_10
7372 (Derived_Type, Machine_Radix_10 (Parent_Base));
7373 Set_Machine_Radix_10
7374 (Implicit_Base, Machine_Radix_10 (Parent_Base));
7375
7376 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
7377
7378 if No_Constraint then
7379 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
7380
7381 else
7382 -- the analysis of the subtype_indication sets the
7383 -- digits value of the derived type.
7384
7385 null;
7386 end if;
7387 end if;
7388 end if;
7389
7390 if Is_Integer_Type (Parent_Type) then
7391 Set_Has_Shift_Operator
7392 (Implicit_Base, Has_Shift_Operator (Parent_Type));
7393 end if;
7394
7395 -- The type of the bounds is that of the parent type, and they
7396 -- must be converted to the derived type.
7397
7398 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
7399
7400 -- The implicit_base should be frozen when the derived type is frozen,
7401 -- but note that it is used in the conversions of the bounds. For fixed
7402 -- types we delay the determination of the bounds until the proper
7403 -- freezing point. For other numeric types this is rejected by GCC, for
7404 -- reasons that are currently unclear (???), so we choose to freeze the
7405 -- implicit base now. In the case of integers and floating point types
7406 -- this is harmless because subsequent representation clauses cannot
7407 -- affect anything, but it is still baffling that we cannot use the
7408 -- same mechanism for all derived numeric types.
7409
7410 -- There is a further complication: actually some representation
7411 -- clauses can affect the implicit base type. For example, attribute
7412 -- definition clauses for stream-oriented attributes need to set the
7413 -- corresponding TSS entries on the base type, and this normally
7414 -- cannot be done after the base type is frozen, so the circuitry in
7415 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
7416 -- and not use Set_TSS in this case.
7417
7418 -- There are also consequences for the case of delayed representation
7419 -- aspects for some cases. For example, a Size aspect is delayed and
7420 -- should not be evaluated to the freeze point. This early freezing
7421 -- means that the size attribute evaluation happens too early???
7422
7423 if Is_Fixed_Point_Type (Parent_Type) then
7424 Conditional_Delay (Implicit_Base, Parent_Type);
7425 else
7426 Freeze_Before (N, Implicit_Base);
7427 end if;
7428 end Build_Derived_Numeric_Type;
7429
7430 --------------------------------
7431 -- Build_Derived_Private_Type --
7432 --------------------------------
7433
7434 procedure Build_Derived_Private_Type
7435 (N : Node_Id;
7436 Parent_Type : Entity_Id;
7437 Derived_Type : Entity_Id;
7438 Is_Completion : Boolean;
7439 Derive_Subps : Boolean := True)
7440 is
7441 Loc : constant Source_Ptr := Sloc (N);
7442 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
7443 Par_Scope : constant Entity_Id := Scope (Par_Base);
7444 Full_N : constant Node_Id := New_Copy_Tree (N);
7445 Full_Der : Entity_Id := New_Copy (Derived_Type);
7446 Full_P : Entity_Id;
7447
7448 procedure Build_Full_Derivation;
7449 -- Build full derivation, i.e. derive from the full view
7450
7451 procedure Copy_And_Build;
7452 -- Copy derived type declaration, replace parent with its full view,
7453 -- and build derivation
7454
7455 ---------------------------
7456 -- Build_Full_Derivation --
7457 ---------------------------
7458
7459 procedure Build_Full_Derivation is
7460 begin
7461 -- If parent scope is not open, install the declarations
7462
7463 if not In_Open_Scopes (Par_Scope) then
7464 Install_Private_Declarations (Par_Scope);
7465 Install_Visible_Declarations (Par_Scope);
7466 Copy_And_Build;
7467 Uninstall_Declarations (Par_Scope);
7468
7469 -- If parent scope is open and in another unit, and parent has a
7470 -- completion, then the derivation is taking place in the visible
7471 -- part of a child unit. In that case retrieve the full view of
7472 -- the parent momentarily.
7473
7474 elsif not In_Same_Source_Unit (N, Parent_Type) then
7475 Full_P := Full_View (Parent_Type);
7476 Exchange_Declarations (Parent_Type);
7477 Copy_And_Build;
7478 Exchange_Declarations (Full_P);
7479
7480 -- Otherwise it is a local derivation
7481
7482 else
7483 Copy_And_Build;
7484 end if;
7485 end Build_Full_Derivation;
7486
7487 --------------------
7488 -- Copy_And_Build --
7489 --------------------
7490
7491 procedure Copy_And_Build is
7492 Full_Parent : Entity_Id := Parent_Type;
7493
7494 begin
7495 -- If the parent is itself derived from another private type,
7496 -- installing the private declarations has not affected its
7497 -- privacy status, so use its own full view explicitly.
7498
7499 if Is_Private_Type (Full_Parent)
7500 and then Present (Full_View (Full_Parent))
7501 then
7502 Full_Parent := Full_View (Full_Parent);
7503 end if;
7504
7505 -- And its underlying full view if necessary
7506
7507 if Is_Private_Type (Full_Parent)
7508 and then Present (Underlying_Full_View (Full_Parent))
7509 then
7510 Full_Parent := Underlying_Full_View (Full_Parent);
7511 end if;
7512
7513 -- For record, access and most enumeration types, derivation from
7514 -- the full view requires a fully-fledged declaration. In the other
7515 -- cases, just use an itype.
7516
7517 if Ekind (Full_Parent) in Record_Kind
7518 or else Ekind (Full_Parent) in Access_Kind
7519 or else
7520 (Ekind (Full_Parent) in Enumeration_Kind
7521 and then not Is_Standard_Character_Type (Full_Parent)
7522 and then not Is_Generic_Type (Root_Type (Full_Parent)))
7523 then
7524 -- Copy and adjust declaration to provide a completion for what
7525 -- is originally a private declaration. Indicate that full view
7526 -- is internally generated.
7527
7528 Set_Comes_From_Source (Full_N, False);
7529 Set_Comes_From_Source (Full_Der, False);
7530 Set_Parent (Full_Der, Full_N);
7531 Set_Defining_Identifier (Full_N, Full_Der);
7532
7533 -- If there are no constraints, adjust the subtype mark
7534
7535 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
7536 N_Subtype_Indication
7537 then
7538 Set_Subtype_Indication
7539 (Type_Definition (Full_N),
7540 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
7541 end if;
7542
7543 Insert_After (N, Full_N);
7544
7545 -- Build full view of derived type from full view of parent which
7546 -- is now installed. Subprograms have been derived on the partial
7547 -- view, the completion does not derive them anew.
7548
7549 if Ekind (Full_Parent) in Record_Kind then
7550
7551 -- If parent type is tagged, the completion inherits the proper
7552 -- primitive operations.
7553
7554 if Is_Tagged_Type (Parent_Type) then
7555 Build_Derived_Record_Type
7556 (Full_N, Full_Parent, Full_Der, Derive_Subps);
7557 else
7558 Build_Derived_Record_Type
7559 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
7560 end if;
7561
7562 else
7563 Build_Derived_Type
7564 (Full_N, Full_Parent, Full_Der,
7565 Is_Completion => False, Derive_Subps => False);
7566 end if;
7567
7568 -- The full declaration has been introduced into the tree and
7569 -- processed in the step above. It should not be analyzed again
7570 -- (when encountered later in the current list of declarations)
7571 -- to prevent spurious name conflicts. The full entity remains
7572 -- invisible.
7573
7574 Set_Analyzed (Full_N);
7575
7576 else
7577 Full_Der :=
7578 Make_Defining_Identifier (Sloc (Derived_Type),
7579 Chars => Chars (Derived_Type));
7580 Set_Is_Itype (Full_Der);
7581 Set_Associated_Node_For_Itype (Full_Der, N);
7582 Set_Parent (Full_Der, N);
7583 Build_Derived_Type
7584 (N, Full_Parent, Full_Der,
7585 Is_Completion => False, Derive_Subps => False);
7586 end if;
7587
7588 Set_Has_Private_Declaration (Full_Der);
7589 Set_Has_Private_Declaration (Derived_Type);
7590
7591 Set_Scope (Full_Der, Scope (Derived_Type));
7592 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
7593 Set_Has_Size_Clause (Full_Der, False);
7594 Set_Has_Alignment_Clause (Full_Der, False);
7595 Set_Has_Delayed_Freeze (Full_Der);
7596 Set_Is_Frozen (Full_Der, False);
7597 Set_Freeze_Node (Full_Der, Empty);
7598 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
7599 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
7600
7601 -- The convention on the base type may be set in the private part
7602 -- and not propagated to the subtype until later, so we obtain the
7603 -- convention from the base type of the parent.
7604
7605 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
7606 end Copy_And_Build;
7607
7608 -- Start of processing for Build_Derived_Private_Type
7609
7610 begin
7611 if Is_Tagged_Type (Parent_Type) then
7612 Full_P := Full_View (Parent_Type);
7613
7614 -- A type extension of a type with unknown discriminants is an
7615 -- indefinite type that the back-end cannot handle directly.
7616 -- We treat it as a private type, and build a completion that is
7617 -- derived from the full view of the parent, and hopefully has
7618 -- known discriminants.
7619
7620 -- If the full view of the parent type has an underlying record view,
7621 -- use it to generate the underlying record view of this derived type
7622 -- (required for chains of derivations with unknown discriminants).
7623
7624 -- Minor optimization: we avoid the generation of useless underlying
7625 -- record view entities if the private type declaration has unknown
7626 -- discriminants but its corresponding full view has no
7627 -- discriminants.
7628
7629 if Has_Unknown_Discriminants (Parent_Type)
7630 and then Present (Full_P)
7631 and then (Has_Discriminants (Full_P)
7632 or else Present (Underlying_Record_View (Full_P)))
7633 and then not In_Open_Scopes (Par_Scope)
7634 and then Expander_Active
7635 then
7636 declare
7637 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
7638 New_Ext : constant Node_Id :=
7639 Copy_Separate_Tree
7640 (Record_Extension_Part (Type_Definition (N)));
7641 Decl : Node_Id;
7642
7643 begin
7644 Build_Derived_Record_Type
7645 (N, Parent_Type, Derived_Type, Derive_Subps);
7646
7647 -- Build anonymous completion, as a derivation from the full
7648 -- view of the parent. This is not a completion in the usual
7649 -- sense, because the current type is not private.
7650
7651 Decl :=
7652 Make_Full_Type_Declaration (Loc,
7653 Defining_Identifier => Full_Der,
7654 Type_Definition =>
7655 Make_Derived_Type_Definition (Loc,
7656 Subtype_Indication =>
7657 New_Copy_Tree
7658 (Subtype_Indication (Type_Definition (N))),
7659 Record_Extension_Part => New_Ext));
7660
7661 -- If the parent type has an underlying record view, use it
7662 -- here to build the new underlying record view.
7663
7664 if Present (Underlying_Record_View (Full_P)) then
7665 pragma Assert
7666 (Nkind (Subtype_Indication (Type_Definition (Decl)))
7667 = N_Identifier);
7668 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
7669 Underlying_Record_View (Full_P));
7670 end if;
7671
7672 Install_Private_Declarations (Par_Scope);
7673 Install_Visible_Declarations (Par_Scope);
7674 Insert_Before (N, Decl);
7675
7676 -- Mark entity as an underlying record view before analysis,
7677 -- to avoid generating the list of its primitive operations
7678 -- (which is not really required for this entity) and thus
7679 -- prevent spurious errors associated with missing overriding
7680 -- of abstract primitives (overridden only for Derived_Type).
7681
7682 Set_Ekind (Full_Der, E_Record_Type);
7683 Set_Is_Underlying_Record_View (Full_Der);
7684 Set_Default_SSO (Full_Der);
7685 Set_No_Reordering (Full_Der, No_Component_Reordering);
7686
7687 Analyze (Decl);
7688
7689 pragma Assert (Has_Discriminants (Full_Der)
7690 and then not Has_Unknown_Discriminants (Full_Der));
7691
7692 Uninstall_Declarations (Par_Scope);
7693
7694 -- Freeze the underlying record view, to prevent generation of
7695 -- useless dispatching information, which is simply shared with
7696 -- the real derived type.
7697
7698 Set_Is_Frozen (Full_Der);
7699
7700 -- If the derived type has access discriminants, create
7701 -- references to their anonymous types now, to prevent
7702 -- back-end problems when their first use is in generated
7703 -- bodies of primitives.
7704
7705 declare
7706 E : Entity_Id;
7707
7708 begin
7709 E := First_Entity (Full_Der);
7710
7711 while Present (E) loop
7712 if Ekind (E) = E_Discriminant
7713 and then Ekind (Etype (E)) = E_Anonymous_Access_Type
7714 then
7715 Build_Itype_Reference (Etype (E), Decl);
7716 end if;
7717
7718 Next_Entity (E);
7719 end loop;
7720 end;
7721
7722 -- Set up links between real entity and underlying record view
7723
7724 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
7725 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
7726 end;
7727
7728 -- If discriminants are known, build derived record
7729
7730 else
7731 Build_Derived_Record_Type
7732 (N, Parent_Type, Derived_Type, Derive_Subps);
7733 end if;
7734
7735 return;
7736
7737 elsif Has_Discriminants (Parent_Type) then
7738
7739 -- Build partial view of derived type from partial view of parent.
7740 -- This must be done before building the full derivation because the
7741 -- second derivation will modify the discriminants of the first and
7742 -- the discriminants are chained with the rest of the components in
7743 -- the full derivation.
7744
7745 Build_Derived_Record_Type
7746 (N, Parent_Type, Derived_Type, Derive_Subps);
7747
7748 -- Build the full derivation if this is not the anonymous derived
7749 -- base type created by Build_Derived_Record_Type in the constrained
7750 -- case (see point 5. of its head comment) since we build it for the
7751 -- derived subtype. And skip it for protected types altogether, as
7752 -- gigi does not use these types directly.
7753
7754 if Present (Full_View (Parent_Type))
7755 and then not Is_Itype (Derived_Type)
7756 and then not (Ekind (Full_View (Parent_Type)) in Protected_Kind)
7757 then
7758 declare
7759 Der_Base : constant Entity_Id := Base_Type (Derived_Type);
7760 Discr : Entity_Id;
7761 Last_Discr : Entity_Id;
7762
7763 begin
7764 -- If this is not a completion, construct the implicit full
7765 -- view by deriving from the full view of the parent type.
7766 -- But if this is a completion, the derived private type
7767 -- being built is a full view and the full derivation can
7768 -- only be its underlying full view.
7769
7770 Build_Full_Derivation;
7771
7772 if not Is_Completion then
7773 Set_Full_View (Derived_Type, Full_Der);
7774 else
7775 Set_Underlying_Full_View (Derived_Type, Full_Der);
7776 Set_Is_Underlying_Full_View (Full_Der);
7777 end if;
7778
7779 if not Is_Base_Type (Derived_Type) then
7780 Set_Full_View (Der_Base, Base_Type (Full_Der));
7781 end if;
7782
7783 -- Copy the discriminant list from full view to the partial
7784 -- view (base type and its subtype). Gigi requires that the
7785 -- partial and full views have the same discriminants.
7786
7787 -- Note that since the partial view points to discriminants
7788 -- in the full view, their scope will be that of the full
7789 -- view. This might cause some front end problems and need
7790 -- adjustment???
7791
7792 Discr := First_Discriminant (Base_Type (Full_Der));
7793 Set_First_Entity (Der_Base, Discr);
7794
7795 loop
7796 Last_Discr := Discr;
7797 Next_Discriminant (Discr);
7798 exit when No (Discr);
7799 end loop;
7800
7801 Set_Last_Entity (Der_Base, Last_Discr);
7802 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
7803 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
7804 end;
7805 end if;
7806
7807 elsif Present (Full_View (Parent_Type))
7808 and then Has_Discriminants (Full_View (Parent_Type))
7809 then
7810 if Has_Unknown_Discriminants (Parent_Type)
7811 and then Nkind (Subtype_Indication (Type_Definition (N))) =
7812 N_Subtype_Indication
7813 then
7814 Error_Msg_N
7815 ("cannot constrain type with unknown discriminants",
7816 Subtype_Indication (Type_Definition (N)));
7817 return;
7818 end if;
7819
7820 -- If this is not a completion, construct the implicit full view by
7821 -- deriving from the full view of the parent type. But if this is a
7822 -- completion, the derived private type being built is a full view
7823 -- and the full derivation can only be its underlying full view.
7824
7825 Build_Full_Derivation;
7826
7827 if not Is_Completion then
7828 Set_Full_View (Derived_Type, Full_Der);
7829 else
7830 Set_Underlying_Full_View (Derived_Type, Full_Der);
7831 Set_Is_Underlying_Full_View (Full_Der);
7832 end if;
7833
7834 -- In any case, the primitive operations are inherited from the
7835 -- parent type, not from the internal full view.
7836
7837 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
7838
7839 if Derive_Subps then
7840 Derive_Subprograms (Parent_Type, Derived_Type);
7841 end if;
7842
7843 Set_Stored_Constraint (Derived_Type, No_Elist);
7844 Set_Is_Constrained
7845 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
7846
7847 else
7848 -- Untagged type, No discriminants on either view
7849
7850 if Nkind (Subtype_Indication (Type_Definition (N))) =
7851 N_Subtype_Indication
7852 then
7853 Error_Msg_N
7854 ("illegal constraint on type without discriminants", N);
7855 end if;
7856
7857 if Present (Discriminant_Specifications (N))
7858 and then Present (Full_View (Parent_Type))
7859 and then not Is_Tagged_Type (Full_View (Parent_Type))
7860 then
7861 Error_Msg_N ("cannot add discriminants to untagged type", N);
7862 end if;
7863
7864 Set_Stored_Constraint (Derived_Type, No_Elist);
7865 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7866 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
7867 Set_Disable_Controlled (Derived_Type, Disable_Controlled
7868 (Parent_Type));
7869 Set_Has_Controlled_Component
7870 (Derived_Type, Has_Controlled_Component
7871 (Parent_Type));
7872
7873 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7874
7875 if not Is_Controlled_Active (Parent_Type) then
7876 Set_Finalize_Storage_Only
7877 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
7878 end if;
7879
7880 -- If this is not a completion, construct the implicit full view by
7881 -- deriving from the full view of the parent type.
7882
7883 -- ??? If the parent is untagged private and its completion is
7884 -- tagged, this mechanism will not work because we cannot derive from
7885 -- the tagged full view unless we have an extension.
7886
7887 if Present (Full_View (Parent_Type))
7888 and then not Is_Tagged_Type (Full_View (Parent_Type))
7889 and then not Is_Completion
7890 then
7891 Build_Full_Derivation;
7892 Set_Full_View (Derived_Type, Full_Der);
7893 end if;
7894 end if;
7895
7896 Set_Has_Unknown_Discriminants (Derived_Type,
7897 Has_Unknown_Discriminants (Parent_Type));
7898
7899 if Is_Private_Type (Derived_Type) then
7900 Set_Private_Dependents (Derived_Type, New_Elmt_List);
7901 end if;
7902
7903 -- If the parent base type is in scope, add the derived type to its
7904 -- list of private dependents, because its full view may become
7905 -- visible subsequently (in a nested private part, a body, or in a
7906 -- further child unit).
7907
7908 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
7909 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
7910
7911 -- Check for unusual case where a type completed by a private
7912 -- derivation occurs within a package nested in a child unit, and
7913 -- the parent is declared in an ancestor.
7914
7915 if Is_Child_Unit (Scope (Current_Scope))
7916 and then Is_Completion
7917 and then In_Private_Part (Current_Scope)
7918 and then Scope (Parent_Type) /= Current_Scope
7919
7920 -- Note that if the parent has a completion in the private part,
7921 -- (which is itself a derivation from some other private type)
7922 -- it is that completion that is visible, there is no full view
7923 -- available, and no special processing is needed.
7924
7925 and then Present (Full_View (Parent_Type))
7926 then
7927 -- In this case, the full view of the parent type will become
7928 -- visible in the body of the enclosing child, and only then will
7929 -- the current type be possibly non-private. Build an underlying
7930 -- full view that will be installed when the enclosing child body
7931 -- is compiled.
7932
7933 if Present (Underlying_Full_View (Derived_Type)) then
7934 Full_Der := Underlying_Full_View (Derived_Type);
7935 else
7936 Build_Full_Derivation;
7937 Set_Underlying_Full_View (Derived_Type, Full_Der);
7938 Set_Is_Underlying_Full_View (Full_Der);
7939 end if;
7940
7941 -- The full view will be used to swap entities on entry/exit to
7942 -- the body, and must appear in the entity list for the package.
7943
7944 Append_Entity (Full_Der, Scope (Derived_Type));
7945 end if;
7946 end if;
7947 end Build_Derived_Private_Type;
7948
7949 -------------------------------
7950 -- Build_Derived_Record_Type --
7951 -------------------------------
7952
7953 -- 1. INTRODUCTION
7954
7955 -- Ideally we would like to use the same model of type derivation for
7956 -- tagged and untagged record types. Unfortunately this is not quite
7957 -- possible because the semantics of representation clauses is different
7958 -- for tagged and untagged records under inheritance. Consider the
7959 -- following:
7960
7961 -- type R (...) is [tagged] record ... end record;
7962 -- type T (...) is new R (...) [with ...];
7963
7964 -- The representation clauses for T can specify a completely different
7965 -- record layout from R's. Hence the same component can be placed in two
7966 -- very different positions in objects of type T and R. If R and T are
7967 -- tagged types, representation clauses for T can only specify the layout
7968 -- of non inherited components, thus components that are common in R and T
7969 -- have the same position in objects of type R and T.
7970
7971 -- This has two implications. The first is that the entire tree for R's
7972 -- declaration needs to be copied for T in the untagged case, so that T
7973 -- can be viewed as a record type of its own with its own representation
7974 -- clauses. The second implication is the way we handle discriminants.
7975 -- Specifically, in the untagged case we need a way to communicate to Gigi
7976 -- what are the real discriminants in the record, while for the semantics
7977 -- we need to consider those introduced by the user to rename the
7978 -- discriminants in the parent type. This is handled by introducing the
7979 -- notion of stored discriminants. See below for more.
7980
7981 -- Fortunately the way regular components are inherited can be handled in
7982 -- the same way in tagged and untagged types.
7983
7984 -- To complicate things a bit more the private view of a private extension
7985 -- cannot be handled in the same way as the full view (for one thing the
7986 -- semantic rules are somewhat different). We will explain what differs
7987 -- below.
7988
7989 -- 2. DISCRIMINANTS UNDER INHERITANCE
7990
7991 -- The semantic rules governing the discriminants of derived types are
7992 -- quite subtle.
7993
7994 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7995 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7996
7997 -- If parent type has discriminants, then the discriminants that are
7998 -- declared in the derived type are [3.4 (11)]:
7999
8000 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
8001 -- there is one;
8002
8003 -- o Otherwise, each discriminant of the parent type (implicitly declared
8004 -- in the same order with the same specifications). In this case, the
8005 -- discriminants are said to be "inherited", or if unknown in the parent
8006 -- are also unknown in the derived type.
8007
8008 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
8009
8010 -- o The parent subtype must be constrained;
8011
8012 -- o If the parent type is not a tagged type, then each discriminant of
8013 -- the derived type must be used in the constraint defining a parent
8014 -- subtype. [Implementation note: This ensures that the new discriminant
8015 -- can share storage with an existing discriminant.]
8016
8017 -- For the derived type each discriminant of the parent type is either
8018 -- inherited, constrained to equal some new discriminant of the derived
8019 -- type, or constrained to the value of an expression.
8020
8021 -- When inherited or constrained to equal some new discriminant, the
8022 -- parent discriminant and the discriminant of the derived type are said
8023 -- to "correspond".
8024
8025 -- If a discriminant of the parent type is constrained to a specific value
8026 -- in the derived type definition, then the discriminant is said to be
8027 -- "specified" by that derived type definition.
8028
8029 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
8030
8031 -- We have spoken about stored discriminants in point 1 (introduction)
8032 -- above. There are two sorts of stored discriminants: implicit and
8033 -- explicit. As long as the derived type inherits the same discriminants as
8034 -- the root record type, stored discriminants are the same as regular
8035 -- discriminants, and are said to be implicit. However, if any discriminant
8036 -- in the root type was renamed in the derived type, then the derived
8037 -- type will contain explicit stored discriminants. Explicit stored
8038 -- discriminants are discriminants in addition to the semantically visible
8039 -- discriminants defined for the derived type. Stored discriminants are
8040 -- used by Gigi to figure out what are the physical discriminants in
8041 -- objects of the derived type (see precise definition in einfo.ads).
8042 -- As an example, consider the following:
8043
8044 -- type R (D1, D2, D3 : Int) is record ... end record;
8045 -- type T1 is new R;
8046 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
8047 -- type T3 is new T2;
8048 -- type T4 (Y : Int) is new T3 (Y, 99);
8049
8050 -- The following table summarizes the discriminants and stored
8051 -- discriminants in R and T1 through T4:
8052
8053 -- Type Discrim Stored Discrim Comment
8054 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
8055 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
8056 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
8057 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
8058 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
8059
8060 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
8061 -- find the corresponding discriminant in the parent type, while
8062 -- Original_Record_Component (abbreviated ORC below) the actual physical
8063 -- component that is renamed. Finally the field Is_Completely_Hidden
8064 -- (abbreviated ICH below) is set for all explicit stored discriminants
8065 -- (see einfo.ads for more info). For the above example this gives:
8066
8067 -- Discrim CD ORC ICH
8068 -- ^^^^^^^ ^^ ^^^ ^^^
8069 -- D1 in R empty itself no
8070 -- D2 in R empty itself no
8071 -- D3 in R empty itself no
8072
8073 -- D1 in T1 D1 in R itself no
8074 -- D2 in T1 D2 in R itself no
8075 -- D3 in T1 D3 in R itself no
8076
8077 -- X1 in T2 D3 in T1 D3 in T2 no
8078 -- X2 in T2 D1 in T1 D1 in T2 no
8079 -- D1 in T2 empty itself yes
8080 -- D2 in T2 empty itself yes
8081 -- D3 in T2 empty itself yes
8082
8083 -- X1 in T3 X1 in T2 D3 in T3 no
8084 -- X2 in T3 X2 in T2 D1 in T3 no
8085 -- D1 in T3 empty itself yes
8086 -- D2 in T3 empty itself yes
8087 -- D3 in T3 empty itself yes
8088
8089 -- Y in T4 X1 in T3 D3 in T4 no
8090 -- D1 in T4 empty itself yes
8091 -- D2 in T4 empty itself yes
8092 -- D3 in T4 empty itself yes
8093
8094 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
8095
8096 -- Type derivation for tagged types is fairly straightforward. If no
8097 -- discriminants are specified by the derived type, these are inherited
8098 -- from the parent. No explicit stored discriminants are ever necessary.
8099 -- The only manipulation that is done to the tree is that of adding a
8100 -- _parent field with parent type and constrained to the same constraint
8101 -- specified for the parent in the derived type definition. For instance:
8102
8103 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
8104 -- type T1 is new R with null record;
8105 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
8106
8107 -- are changed into:
8108
8109 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
8110 -- _parent : R (D1, D2, D3);
8111 -- end record;
8112
8113 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
8114 -- _parent : T1 (X2, 88, X1);
8115 -- end record;
8116
8117 -- The discriminants actually present in R, T1 and T2 as well as their CD,
8118 -- ORC and ICH fields are:
8119
8120 -- Discrim CD ORC ICH
8121 -- ^^^^^^^ ^^ ^^^ ^^^
8122 -- D1 in R empty itself no
8123 -- D2 in R empty itself no
8124 -- D3 in R empty itself no
8125
8126 -- D1 in T1 D1 in R D1 in R no
8127 -- D2 in T1 D2 in R D2 in R no
8128 -- D3 in T1 D3 in R D3 in R no
8129
8130 -- X1 in T2 D3 in T1 D3 in R no
8131 -- X2 in T2 D1 in T1 D1 in R no
8132
8133 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
8134 --
8135 -- Regardless of whether we dealing with a tagged or untagged type
8136 -- we will transform all derived type declarations of the form
8137 --
8138 -- type T is new R (...) [with ...];
8139 -- or
8140 -- subtype S is R (...);
8141 -- type T is new S [with ...];
8142 -- into
8143 -- type BT is new R [with ...];
8144 -- subtype T is BT (...);
8145 --
8146 -- That is, the base derived type is constrained only if it has no
8147 -- discriminants. The reason for doing this is that GNAT's semantic model
8148 -- assumes that a base type with discriminants is unconstrained.
8149 --
8150 -- Note that, strictly speaking, the above transformation is not always
8151 -- correct. Consider for instance the following excerpt from ACVC b34011a:
8152 --
8153 -- procedure B34011A is
8154 -- type REC (D : integer := 0) is record
8155 -- I : Integer;
8156 -- end record;
8157
8158 -- package P is
8159 -- type T6 is new Rec;
8160 -- function F return T6;
8161 -- end P;
8162
8163 -- use P;
8164 -- package Q6 is
8165 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
8166 -- end Q6;
8167 --
8168 -- The definition of Q6.U is illegal. However transforming Q6.U into
8169
8170 -- type BaseU is new T6;
8171 -- subtype U is BaseU (Q6.F.I)
8172
8173 -- turns U into a legal subtype, which is incorrect. To avoid this problem
8174 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
8175 -- the transformation described above.
8176
8177 -- There is another instance where the above transformation is incorrect.
8178 -- Consider:
8179
8180 -- package Pack is
8181 -- type Base (D : Integer) is tagged null record;
8182 -- procedure P (X : Base);
8183
8184 -- type Der is new Base (2) with null record;
8185 -- procedure P (X : Der);
8186 -- end Pack;
8187
8188 -- Then the above transformation turns this into
8189
8190 -- type Der_Base is new Base with null record;
8191 -- -- procedure P (X : Base) is implicitly inherited here
8192 -- -- as procedure P (X : Der_Base).
8193
8194 -- subtype Der is Der_Base (2);
8195 -- procedure P (X : Der);
8196 -- -- The overriding of P (X : Der_Base) is illegal since we
8197 -- -- have a parameter conformance problem.
8198
8199 -- To get around this problem, after having semantically processed Der_Base
8200 -- and the rewritten subtype declaration for Der, we copy Der_Base field
8201 -- Discriminant_Constraint from Der so that when parameter conformance is
8202 -- checked when P is overridden, no semantic errors are flagged.
8203
8204 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
8205
8206 -- Regardless of whether we are dealing with a tagged or untagged type
8207 -- we will transform all derived type declarations of the form
8208
8209 -- type R (D1, .., Dn : ...) is [tagged] record ...;
8210 -- type T is new R [with ...];
8211 -- into
8212 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
8213
8214 -- The reason for such transformation is that it allows us to implement a
8215 -- very clean form of component inheritance as explained below.
8216
8217 -- Note that this transformation is not achieved by direct tree rewriting
8218 -- and manipulation, but rather by redoing the semantic actions that the
8219 -- above transformation will entail. This is done directly in routine
8220 -- Inherit_Components.
8221
8222 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
8223
8224 -- In both tagged and untagged derived types, regular non discriminant
8225 -- components are inherited in the derived type from the parent type. In
8226 -- the absence of discriminants component, inheritance is straightforward
8227 -- as components can simply be copied from the parent.
8228
8229 -- If the parent has discriminants, inheriting components constrained with
8230 -- these discriminants requires caution. Consider the following example:
8231
8232 -- type R (D1, D2 : Positive) is [tagged] record
8233 -- S : String (D1 .. D2);
8234 -- end record;
8235
8236 -- type T1 is new R [with null record];
8237 -- type T2 (X : positive) is new R (1, X) [with null record];
8238
8239 -- As explained in 6. above, T1 is rewritten as
8240 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
8241 -- which makes the treatment for T1 and T2 identical.
8242
8243 -- What we want when inheriting S, is that references to D1 and D2 in R are
8244 -- replaced with references to their correct constraints, i.e. D1 and D2 in
8245 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
8246 -- with either discriminant references in the derived type or expressions.
8247 -- This replacement is achieved as follows: before inheriting R's
8248 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
8249 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
8250 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
8251 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
8252 -- by String (1 .. X).
8253
8254 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
8255
8256 -- We explain here the rules governing private type extensions relevant to
8257 -- type derivation. These rules are explained on the following example:
8258
8259 -- type D [(...)] is new A [(...)] with private; <-- partial view
8260 -- type D [(...)] is new P [(...)] with null record; <-- full view
8261
8262 -- Type A is called the ancestor subtype of the private extension.
8263 -- Type P is the parent type of the full view of the private extension. It
8264 -- must be A or a type derived from A.
8265
8266 -- The rules concerning the discriminants of private type extensions are
8267 -- [7.3(10-13)]:
8268
8269 -- o If a private extension inherits known discriminants from the ancestor
8270 -- subtype, then the full view must also inherit its discriminants from
8271 -- the ancestor subtype and the parent subtype of the full view must be
8272 -- constrained if and only if the ancestor subtype is constrained.
8273
8274 -- o If a partial view has unknown discriminants, then the full view may
8275 -- define a definite or an indefinite subtype, with or without
8276 -- discriminants.
8277
8278 -- o If a partial view has neither known nor unknown discriminants, then
8279 -- the full view must define a definite subtype.
8280
8281 -- o If the ancestor subtype of a private extension has constrained
8282 -- discriminants, then the parent subtype of the full view must impose a
8283 -- statically matching constraint on those discriminants.
8284
8285 -- This means that only the following forms of private extensions are
8286 -- allowed:
8287
8288 -- type D is new A with private; <-- partial view
8289 -- type D is new P with null record; <-- full view
8290
8291 -- If A has no discriminants than P has no discriminants, otherwise P must
8292 -- inherit A's discriminants.
8293
8294 -- type D is new A (...) with private; <-- partial view
8295 -- type D is new P (:::) with null record; <-- full view
8296
8297 -- P must inherit A's discriminants and (...) and (:::) must statically
8298 -- match.
8299
8300 -- subtype A is R (...);
8301 -- type D is new A with private; <-- partial view
8302 -- type D is new P with null record; <-- full view
8303
8304 -- P must have inherited R's discriminants and must be derived from A or
8305 -- any of its subtypes.
8306
8307 -- type D (..) is new A with private; <-- partial view
8308 -- type D (..) is new P [(:::)] with null record; <-- full view
8309
8310 -- No specific constraints on P's discriminants or constraint (:::).
8311 -- Note that A can be unconstrained, but the parent subtype P must either
8312 -- be constrained or (:::) must be present.
8313
8314 -- type D (..) is new A [(...)] with private; <-- partial view
8315 -- type D (..) is new P [(:::)] with null record; <-- full view
8316
8317 -- P's constraints on A's discriminants must statically match those
8318 -- imposed by (...).
8319
8320 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
8321
8322 -- The full view of a private extension is handled exactly as described
8323 -- above. The model chose for the private view of a private extension is
8324 -- the same for what concerns discriminants (i.e. they receive the same
8325 -- treatment as in the tagged case). However, the private view of the
8326 -- private extension always inherits the components of the parent base,
8327 -- without replacing any discriminant reference. Strictly speaking this is
8328 -- incorrect. However, Gigi never uses this view to generate code so this
8329 -- is a purely semantic issue. In theory, a set of transformations similar
8330 -- to those given in 5. and 6. above could be applied to private views of
8331 -- private extensions to have the same model of component inheritance as
8332 -- for non private extensions. However, this is not done because it would
8333 -- further complicate private type processing. Semantically speaking, this
8334 -- leaves us in an uncomfortable situation. As an example consider:
8335
8336 -- package Pack is
8337 -- type R (D : integer) is tagged record
8338 -- S : String (1 .. D);
8339 -- end record;
8340 -- procedure P (X : R);
8341 -- type T is new R (1) with private;
8342 -- private
8343 -- type T is new R (1) with null record;
8344 -- end;
8345
8346 -- This is transformed into:
8347
8348 -- package Pack is
8349 -- type R (D : integer) is tagged record
8350 -- S : String (1 .. D);
8351 -- end record;
8352 -- procedure P (X : R);
8353 -- type T is new R (1) with private;
8354 -- private
8355 -- type BaseT is new R with null record;
8356 -- subtype T is BaseT (1);
8357 -- end;
8358
8359 -- (strictly speaking the above is incorrect Ada)
8360
8361 -- From the semantic standpoint the private view of private extension T
8362 -- should be flagged as constrained since one can clearly have
8363 --
8364 -- Obj : T;
8365 --
8366 -- in a unit withing Pack. However, when deriving subprograms for the
8367 -- private view of private extension T, T must be seen as unconstrained
8368 -- since T has discriminants (this is a constraint of the current
8369 -- subprogram derivation model). Thus, when processing the private view of
8370 -- a private extension such as T, we first mark T as unconstrained, we
8371 -- process it, we perform program derivation and just before returning from
8372 -- Build_Derived_Record_Type we mark T as constrained.
8373
8374 -- ??? Are there are other uncomfortable cases that we will have to
8375 -- deal with.
8376
8377 -- 10. RECORD_TYPE_WITH_PRIVATE complications
8378
8379 -- Types that are derived from a visible record type and have a private
8380 -- extension present other peculiarities. They behave mostly like private
8381 -- types, but if they have primitive operations defined, these will not
8382 -- have the proper signatures for further inheritance, because other
8383 -- primitive operations will use the implicit base that we define for
8384 -- private derivations below. This affect subprogram inheritance (see
8385 -- Derive_Subprograms for details). We also derive the implicit base from
8386 -- the base type of the full view, so that the implicit base is a record
8387 -- type and not another private type, This avoids infinite loops.
8388
8389 procedure Build_Derived_Record_Type
8390 (N : Node_Id;
8391 Parent_Type : Entity_Id;
8392 Derived_Type : Entity_Id;
8393 Derive_Subps : Boolean := True)
8394 is
8395 Discriminant_Specs : constant Boolean :=
8396 Present (Discriminant_Specifications (N));
8397 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
8398 Loc : constant Source_Ptr := Sloc (N);
8399 Private_Extension : constant Boolean :=
8400 Nkind (N) = N_Private_Extension_Declaration;
8401 Assoc_List : Elist_Id;
8402 Constraint_Present : Boolean;
8403 Constrs : Elist_Id;
8404 Discrim : Entity_Id;
8405 Indic : Node_Id;
8406 Inherit_Discrims : Boolean := False;
8407 Last_Discrim : Entity_Id;
8408 New_Base : Entity_Id;
8409 New_Decl : Node_Id;
8410 New_Discrs : Elist_Id;
8411 New_Indic : Node_Id;
8412 Parent_Base : Entity_Id;
8413 Save_Etype : Entity_Id;
8414 Save_Discr_Constr : Elist_Id;
8415 Save_Next_Entity : Entity_Id;
8416 Type_Def : Node_Id;
8417
8418 Discs : Elist_Id := New_Elmt_List;
8419 -- An empty Discs list means that there were no constraints in the
8420 -- subtype indication or that there was an error processing it.
8421
8422 begin
8423 if Ekind (Parent_Type) = E_Record_Type_With_Private
8424 and then Present (Full_View (Parent_Type))
8425 and then Has_Discriminants (Parent_Type)
8426 then
8427 Parent_Base := Base_Type (Full_View (Parent_Type));
8428 else
8429 Parent_Base := Base_Type (Parent_Type);
8430 end if;
8431
8432 -- AI05-0115 : if this is a derivation from a private type in some
8433 -- other scope that may lead to invisible components for the derived
8434 -- type, mark it accordingly.
8435
8436 if Is_Private_Type (Parent_Type) then
8437 if Scope (Parent_Type) = Scope (Derived_Type) then
8438 null;
8439
8440 elsif In_Open_Scopes (Scope (Parent_Type))
8441 and then In_Private_Part (Scope (Parent_Type))
8442 then
8443 null;
8444
8445 else
8446 Set_Has_Private_Ancestor (Derived_Type);
8447 end if;
8448
8449 else
8450 Set_Has_Private_Ancestor
8451 (Derived_Type, Has_Private_Ancestor (Parent_Type));
8452 end if;
8453
8454 -- Before we start the previously documented transformations, here is
8455 -- little fix for size and alignment of tagged types. Normally when we
8456 -- derive type D from type P, we copy the size and alignment of P as the
8457 -- default for D, and in the absence of explicit representation clauses
8458 -- for D, the size and alignment are indeed the same as the parent.
8459
8460 -- But this is wrong for tagged types, since fields may be added, and
8461 -- the default size may need to be larger, and the default alignment may
8462 -- need to be larger.
8463
8464 -- We therefore reset the size and alignment fields in the tagged case.
8465 -- Note that the size and alignment will in any case be at least as
8466 -- large as the parent type (since the derived type has a copy of the
8467 -- parent type in the _parent field)
8468
8469 -- The type is also marked as being tagged here, which is needed when
8470 -- processing components with a self-referential anonymous access type
8471 -- in the call to Check_Anonymous_Access_Components below. Note that
8472 -- this flag is also set later on for completeness.
8473
8474 if Is_Tagged then
8475 Set_Is_Tagged_Type (Derived_Type);
8476 Init_Size_Align (Derived_Type);
8477 end if;
8478
8479 -- STEP 0a: figure out what kind of derived type declaration we have
8480
8481 if Private_Extension then
8482 Type_Def := N;
8483 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
8484 Set_Default_SSO (Derived_Type);
8485 Set_No_Reordering (Derived_Type, No_Component_Reordering);
8486
8487 else
8488 Type_Def := Type_Definition (N);
8489
8490 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8491 -- Parent_Base can be a private type or private extension. However,
8492 -- for tagged types with an extension the newly added fields are
8493 -- visible and hence the Derived_Type is always an E_Record_Type.
8494 -- (except that the parent may have its own private fields).
8495 -- For untagged types we preserve the Ekind of the Parent_Base.
8496
8497 if Present (Record_Extension_Part (Type_Def)) then
8498 Set_Ekind (Derived_Type, E_Record_Type);
8499 Set_Default_SSO (Derived_Type);
8500 Set_No_Reordering (Derived_Type, No_Component_Reordering);
8501
8502 -- Create internal access types for components with anonymous
8503 -- access types.
8504
8505 if Ada_Version >= Ada_2005 then
8506 Check_Anonymous_Access_Components
8507 (N, Derived_Type, Derived_Type,
8508 Component_List (Record_Extension_Part (Type_Def)));
8509 end if;
8510
8511 else
8512 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8513 end if;
8514 end if;
8515
8516 -- Indic can either be an N_Identifier if the subtype indication
8517 -- contains no constraint or an N_Subtype_Indication if the subtype
8518 -- indication has a constraint.
8519
8520 Indic := Subtype_Indication (Type_Def);
8521 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
8522
8523 -- Check that the type has visible discriminants. The type may be
8524 -- a private type with unknown discriminants whose full view has
8525 -- discriminants which are invisible.
8526
8527 if Constraint_Present then
8528 if not Has_Discriminants (Parent_Base)
8529 or else
8530 (Has_Unknown_Discriminants (Parent_Base)
8531 and then Is_Private_Type (Parent_Base))
8532 then
8533 Error_Msg_N
8534 ("invalid constraint: type has no discriminant",
8535 Constraint (Indic));
8536
8537 Constraint_Present := False;
8538 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8539
8540 elsif Is_Constrained (Parent_Type) then
8541 Error_Msg_N
8542 ("invalid constraint: parent type is already constrained",
8543 Constraint (Indic));
8544
8545 Constraint_Present := False;
8546 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8547 end if;
8548 end if;
8549
8550 -- STEP 0b: If needed, apply transformation given in point 5. above
8551
8552 if not Private_Extension
8553 and then Has_Discriminants (Parent_Type)
8554 and then not Discriminant_Specs
8555 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
8556 then
8557 -- First, we must analyze the constraint (see comment in point 5.)
8558 -- The constraint may come from the subtype indication of the full
8559 -- declaration.
8560
8561 if Constraint_Present then
8562 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
8563
8564 -- If there is no explicit constraint, there might be one that is
8565 -- inherited from a constrained parent type. In that case verify that
8566 -- it conforms to the constraint in the partial view. In perverse
8567 -- cases the parent subtypes of the partial and full view can have
8568 -- different constraints.
8569
8570 elsif Present (Stored_Constraint (Parent_Type)) then
8571 New_Discrs := Stored_Constraint (Parent_Type);
8572
8573 else
8574 New_Discrs := No_Elist;
8575 end if;
8576
8577 if Has_Discriminants (Derived_Type)
8578 and then Has_Private_Declaration (Derived_Type)
8579 and then Present (Discriminant_Constraint (Derived_Type))
8580 and then Present (New_Discrs)
8581 then
8582 -- Verify that constraints of the full view statically match
8583 -- those given in the partial view.
8584
8585 declare
8586 C1, C2 : Elmt_Id;
8587
8588 begin
8589 C1 := First_Elmt (New_Discrs);
8590 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
8591 while Present (C1) and then Present (C2) loop
8592 if Fully_Conformant_Expressions (Node (C1), Node (C2))
8593 or else
8594 (Is_OK_Static_Expression (Node (C1))
8595 and then Is_OK_Static_Expression (Node (C2))
8596 and then
8597 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
8598 then
8599 null;
8600
8601 else
8602 if Constraint_Present then
8603 Error_Msg_N
8604 ("constraint not conformant to previous declaration",
8605 Node (C1));
8606 else
8607 Error_Msg_N
8608 ("constraint of full view is incompatible "
8609 & "with partial view", N);
8610 end if;
8611 end if;
8612
8613 Next_Elmt (C1);
8614 Next_Elmt (C2);
8615 end loop;
8616 end;
8617 end if;
8618
8619 -- Insert and analyze the declaration for the unconstrained base type
8620
8621 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
8622
8623 New_Decl :=
8624 Make_Full_Type_Declaration (Loc,
8625 Defining_Identifier => New_Base,
8626 Type_Definition =>
8627 Make_Derived_Type_Definition (Loc,
8628 Abstract_Present => Abstract_Present (Type_Def),
8629 Limited_Present => Limited_Present (Type_Def),
8630 Subtype_Indication =>
8631 New_Occurrence_Of (Parent_Base, Loc),
8632 Record_Extension_Part =>
8633 Relocate_Node (Record_Extension_Part (Type_Def)),
8634 Interface_List => Interface_List (Type_Def)));
8635
8636 Set_Parent (New_Decl, Parent (N));
8637 Mark_Rewrite_Insertion (New_Decl);
8638 Insert_Before (N, New_Decl);
8639
8640 -- In the extension case, make sure ancestor is frozen appropriately
8641 -- (see also non-discriminated case below).
8642
8643 if Present (Record_Extension_Part (Type_Def))
8644 or else Is_Interface (Parent_Base)
8645 then
8646 Freeze_Before (New_Decl, Parent_Type);
8647 end if;
8648
8649 -- Note that this call passes False for the Derive_Subps parameter
8650 -- because subprogram derivation is deferred until after creating
8651 -- the subtype (see below).
8652
8653 Build_Derived_Type
8654 (New_Decl, Parent_Base, New_Base,
8655 Is_Completion => False, Derive_Subps => False);
8656
8657 -- ??? This needs re-examination to determine whether the
8658 -- above call can simply be replaced by a call to Analyze.
8659
8660 Set_Analyzed (New_Decl);
8661
8662 -- Insert and analyze the declaration for the constrained subtype
8663
8664 if Constraint_Present then
8665 New_Indic :=
8666 Make_Subtype_Indication (Loc,
8667 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8668 Constraint => Relocate_Node (Constraint (Indic)));
8669
8670 else
8671 declare
8672 Constr_List : constant List_Id := New_List;
8673 C : Elmt_Id;
8674 Expr : Node_Id;
8675
8676 begin
8677 C := First_Elmt (Discriminant_Constraint (Parent_Type));
8678 while Present (C) loop
8679 Expr := Node (C);
8680
8681 -- It is safe here to call New_Copy_Tree since we called
8682 -- Force_Evaluation on each constraint previously
8683 -- in Build_Discriminant_Constraints.
8684
8685 Append (New_Copy_Tree (Expr), To => Constr_List);
8686
8687 Next_Elmt (C);
8688 end loop;
8689
8690 New_Indic :=
8691 Make_Subtype_Indication (Loc,
8692 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8693 Constraint =>
8694 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
8695 end;
8696 end if;
8697
8698 Rewrite (N,
8699 Make_Subtype_Declaration (Loc,
8700 Defining_Identifier => Derived_Type,
8701 Subtype_Indication => New_Indic));
8702
8703 Analyze (N);
8704
8705 -- Derivation of subprograms must be delayed until the full subtype
8706 -- has been established, to ensure proper overriding of subprograms
8707 -- inherited by full types. If the derivations occurred as part of
8708 -- the call to Build_Derived_Type above, then the check for type
8709 -- conformance would fail because earlier primitive subprograms
8710 -- could still refer to the full type prior the change to the new
8711 -- subtype and hence would not match the new base type created here.
8712 -- Subprograms are not derived, however, when Derive_Subps is False
8713 -- (since otherwise there could be redundant derivations).
8714
8715 if Derive_Subps then
8716 Derive_Subprograms (Parent_Type, Derived_Type);
8717 end if;
8718
8719 -- For tagged types the Discriminant_Constraint of the new base itype
8720 -- is inherited from the first subtype so that no subtype conformance
8721 -- problem arise when the first subtype overrides primitive
8722 -- operations inherited by the implicit base type.
8723
8724 if Is_Tagged then
8725 Set_Discriminant_Constraint
8726 (New_Base, Discriminant_Constraint (Derived_Type));
8727 end if;
8728
8729 return;
8730 end if;
8731
8732 -- If we get here Derived_Type will have no discriminants or it will be
8733 -- a discriminated unconstrained base type.
8734
8735 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8736
8737 if Is_Tagged then
8738
8739 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8740 -- The declaration of a specific descendant of an interface type
8741 -- freezes the interface type (RM 13.14).
8742
8743 if not Private_Extension or else Is_Interface (Parent_Base) then
8744 Freeze_Before (N, Parent_Type);
8745 end if;
8746
8747 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8748 -- cannot be declared at a deeper level than its parent type is
8749 -- removed. The check on derivation within a generic body is also
8750 -- relaxed, but there's a restriction that a derived tagged type
8751 -- cannot be declared in a generic body if it's derived directly
8752 -- or indirectly from a formal type of that generic.
8753
8754 if Ada_Version >= Ada_2005 then
8755 if Present (Enclosing_Generic_Body (Derived_Type)) then
8756 declare
8757 Ancestor_Type : Entity_Id;
8758
8759 begin
8760 -- Check to see if any ancestor of the derived type is a
8761 -- formal type.
8762
8763 Ancestor_Type := Parent_Type;
8764 while not Is_Generic_Type (Ancestor_Type)
8765 and then Etype (Ancestor_Type) /= Ancestor_Type
8766 loop
8767 Ancestor_Type := Etype (Ancestor_Type);
8768 end loop;
8769
8770 -- If the derived type does have a formal type as an
8771 -- ancestor, then it's an error if the derived type is
8772 -- declared within the body of the generic unit that
8773 -- declares the formal type in its generic formal part. It's
8774 -- sufficient to check whether the ancestor type is declared
8775 -- inside the same generic body as the derived type (such as
8776 -- within a nested generic spec), in which case the
8777 -- derivation is legal. If the formal type is declared
8778 -- outside of that generic body, then it's guaranteed that
8779 -- the derived type is declared within the generic body of
8780 -- the generic unit declaring the formal type.
8781
8782 if Is_Generic_Type (Ancestor_Type)
8783 and then Enclosing_Generic_Body (Ancestor_Type) /=
8784 Enclosing_Generic_Body (Derived_Type)
8785 then
8786 Error_Msg_NE
8787 ("parent type of& must not be descendant of formal type"
8788 & " of an enclosing generic body",
8789 Indic, Derived_Type);
8790 end if;
8791 end;
8792 end if;
8793
8794 elsif Type_Access_Level (Derived_Type) /=
8795 Type_Access_Level (Parent_Type)
8796 and then not Is_Generic_Type (Derived_Type)
8797 then
8798 if Is_Controlled (Parent_Type) then
8799 Error_Msg_N
8800 ("controlled type must be declared at the library level",
8801 Indic);
8802 else
8803 Error_Msg_N
8804 ("type extension at deeper accessibility level than parent",
8805 Indic);
8806 end if;
8807
8808 else
8809 declare
8810 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
8811 begin
8812 if Present (GB)
8813 and then GB /= Enclosing_Generic_Body (Parent_Base)
8814 then
8815 Error_Msg_NE
8816 ("parent type of& must not be outside generic body"
8817 & " (RM 3.9.1(4))",
8818 Indic, Derived_Type);
8819 end if;
8820 end;
8821 end if;
8822 end if;
8823
8824 -- Ada 2005 (AI-251)
8825
8826 if Ada_Version >= Ada_2005 and then Is_Tagged then
8827
8828 -- "The declaration of a specific descendant of an interface type
8829 -- freezes the interface type" (RM 13.14).
8830
8831 declare
8832 Iface : Node_Id;
8833 begin
8834 if Is_Non_Empty_List (Interface_List (Type_Def)) then
8835 Iface := First (Interface_List (Type_Def));
8836 while Present (Iface) loop
8837 Freeze_Before (N, Etype (Iface));
8838 Next (Iface);
8839 end loop;
8840 end if;
8841 end;
8842 end if;
8843
8844 -- STEP 1b : preliminary cleanup of the full view of private types
8845
8846 -- If the type is already marked as having discriminants, then it's the
8847 -- completion of a private type or private extension and we need to
8848 -- retain the discriminants from the partial view if the current
8849 -- declaration has Discriminant_Specifications so that we can verify
8850 -- conformance. However, we must remove any existing components that
8851 -- were inherited from the parent (and attached in Copy_And_Swap)
8852 -- because the full type inherits all appropriate components anyway, and
8853 -- we do not want the partial view's components interfering.
8854
8855 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
8856 Discrim := First_Discriminant (Derived_Type);
8857 loop
8858 Last_Discrim := Discrim;
8859 Next_Discriminant (Discrim);
8860 exit when No (Discrim);
8861 end loop;
8862
8863 Set_Last_Entity (Derived_Type, Last_Discrim);
8864
8865 -- In all other cases wipe out the list of inherited components (even
8866 -- inherited discriminants), it will be properly rebuilt here.
8867
8868 else
8869 Set_First_Entity (Derived_Type, Empty);
8870 Set_Last_Entity (Derived_Type, Empty);
8871 end if;
8872
8873 -- STEP 1c: Initialize some flags for the Derived_Type
8874
8875 -- The following flags must be initialized here so that
8876 -- Process_Discriminants can check that discriminants of tagged types do
8877 -- not have a default initial value and that access discriminants are
8878 -- only specified for limited records. For completeness, these flags are
8879 -- also initialized along with all the other flags below.
8880
8881 -- AI-419: Limitedness is not inherited from an interface parent, so to
8882 -- be limited in that case the type must be explicitly declared as
8883 -- limited. However, task and protected interfaces are always limited.
8884
8885 if Limited_Present (Type_Def) then
8886 Set_Is_Limited_Record (Derived_Type);
8887
8888 elsif Is_Limited_Record (Parent_Type)
8889 or else (Present (Full_View (Parent_Type))
8890 and then Is_Limited_Record (Full_View (Parent_Type)))
8891 then
8892 if not Is_Interface (Parent_Type)
8893 or else Is_Synchronized_Interface (Parent_Type)
8894 or else Is_Protected_Interface (Parent_Type)
8895 or else Is_Task_Interface (Parent_Type)
8896 then
8897 Set_Is_Limited_Record (Derived_Type);
8898 end if;
8899 end if;
8900
8901 -- STEP 2a: process discriminants of derived type if any
8902
8903 Push_Scope (Derived_Type);
8904
8905 if Discriminant_Specs then
8906 Set_Has_Unknown_Discriminants (Derived_Type, False);
8907
8908 -- The following call initializes fields Has_Discriminants and
8909 -- Discriminant_Constraint, unless we are processing the completion
8910 -- of a private type declaration.
8911
8912 Check_Or_Process_Discriminants (N, Derived_Type);
8913
8914 -- For untagged types, the constraint on the Parent_Type must be
8915 -- present and is used to rename the discriminants.
8916
8917 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
8918 Error_Msg_N ("untagged parent must have discriminants", Indic);
8919
8920 elsif not Is_Tagged and then not Constraint_Present then
8921 Error_Msg_N
8922 ("discriminant constraint needed for derived untagged records",
8923 Indic);
8924
8925 -- Otherwise the parent subtype must be constrained unless we have a
8926 -- private extension.
8927
8928 elsif not Constraint_Present
8929 and then not Private_Extension
8930 and then not Is_Constrained (Parent_Type)
8931 then
8932 Error_Msg_N
8933 ("unconstrained type not allowed in this context", Indic);
8934
8935 elsif Constraint_Present then
8936 -- The following call sets the field Corresponding_Discriminant
8937 -- for the discriminants in the Derived_Type.
8938
8939 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
8940
8941 -- For untagged types all new discriminants must rename
8942 -- discriminants in the parent. For private extensions new
8943 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8944
8945 Discrim := First_Discriminant (Derived_Type);
8946 while Present (Discrim) loop
8947 if not Is_Tagged
8948 and then No (Corresponding_Discriminant (Discrim))
8949 then
8950 Error_Msg_N
8951 ("new discriminants must constrain old ones", Discrim);
8952
8953 elsif Private_Extension
8954 and then Present (Corresponding_Discriminant (Discrim))
8955 then
8956 Error_Msg_N
8957 ("only static constraints allowed for parent"
8958 & " discriminants in the partial view", Indic);
8959 exit;
8960 end if;
8961
8962 -- If a new discriminant is used in the constraint, then its
8963 -- subtype must be statically compatible with the parent
8964 -- discriminant's subtype (3.7(15)).
8965
8966 -- However, if the record contains an array constrained by
8967 -- the discriminant but with some different bound, the compiler
8968 -- tries to create a smaller range for the discriminant type.
8969 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8970 -- the discriminant type is a scalar type, the check must use
8971 -- the original discriminant type in the parent declaration.
8972
8973 declare
8974 Corr_Disc : constant Entity_Id :=
8975 Corresponding_Discriminant (Discrim);
8976 Disc_Type : constant Entity_Id := Etype (Discrim);
8977 Corr_Type : Entity_Id;
8978
8979 begin
8980 if Present (Corr_Disc) then
8981 if Is_Scalar_Type (Disc_Type) then
8982 Corr_Type :=
8983 Entity (Discriminant_Type (Parent (Corr_Disc)));
8984 else
8985 Corr_Type := Etype (Corr_Disc);
8986 end if;
8987
8988 if not
8989 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
8990 then
8991 Error_Msg_N
8992 ("subtype must be compatible "
8993 & "with parent discriminant",
8994 Discrim);
8995 end if;
8996 end if;
8997 end;
8998
8999 Next_Discriminant (Discrim);
9000 end loop;
9001
9002 -- Check whether the constraints of the full view statically
9003 -- match those imposed by the parent subtype [7.3(13)].
9004
9005 if Present (Stored_Constraint (Derived_Type)) then
9006 declare
9007 C1, C2 : Elmt_Id;
9008
9009 begin
9010 C1 := First_Elmt (Discs);
9011 C2 := First_Elmt (Stored_Constraint (Derived_Type));
9012 while Present (C1) and then Present (C2) loop
9013 if not
9014 Fully_Conformant_Expressions (Node (C1), Node (C2))
9015 then
9016 Error_Msg_N
9017 ("not conformant with previous declaration",
9018 Node (C1));
9019 end if;
9020
9021 Next_Elmt (C1);
9022 Next_Elmt (C2);
9023 end loop;
9024 end;
9025 end if;
9026 end if;
9027
9028 -- STEP 2b: No new discriminants, inherit discriminants if any
9029
9030 else
9031 if Private_Extension then
9032 Set_Has_Unknown_Discriminants
9033 (Derived_Type,
9034 Has_Unknown_Discriminants (Parent_Type)
9035 or else Unknown_Discriminants_Present (N));
9036
9037 -- The partial view of the parent may have unknown discriminants,
9038 -- but if the full view has discriminants and the parent type is
9039 -- in scope they must be inherited.
9040
9041 elsif Has_Unknown_Discriminants (Parent_Type)
9042 and then
9043 (not Has_Discriminants (Parent_Type)
9044 or else not In_Open_Scopes (Scope (Parent_Type)))
9045 then
9046 Set_Has_Unknown_Discriminants (Derived_Type);
9047 end if;
9048
9049 if not Has_Unknown_Discriminants (Derived_Type)
9050 and then not Has_Unknown_Discriminants (Parent_Base)
9051 and then Has_Discriminants (Parent_Type)
9052 then
9053 Inherit_Discrims := True;
9054 Set_Has_Discriminants
9055 (Derived_Type, True);
9056 Set_Discriminant_Constraint
9057 (Derived_Type, Discriminant_Constraint (Parent_Base));
9058 end if;
9059
9060 -- The following test is true for private types (remember
9061 -- transformation 5. is not applied to those) and in an error
9062 -- situation.
9063
9064 if Constraint_Present then
9065 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
9066 end if;
9067
9068 -- For now mark a new derived type as constrained only if it has no
9069 -- discriminants. At the end of Build_Derived_Record_Type we properly
9070 -- set this flag in the case of private extensions. See comments in
9071 -- point 9. just before body of Build_Derived_Record_Type.
9072
9073 Set_Is_Constrained
9074 (Derived_Type,
9075 not (Inherit_Discrims
9076 or else Has_Unknown_Discriminants (Derived_Type)));
9077 end if;
9078
9079 -- STEP 3: initialize fields of derived type
9080
9081 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
9082 Set_Stored_Constraint (Derived_Type, No_Elist);
9083
9084 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
9085 -- but cannot be interfaces
9086
9087 if not Private_Extension
9088 and then Ekind (Derived_Type) /= E_Private_Type
9089 and then Ekind (Derived_Type) /= E_Limited_Private_Type
9090 then
9091 if Interface_Present (Type_Def) then
9092 Analyze_Interface_Declaration (Derived_Type, Type_Def);
9093 end if;
9094
9095 Set_Interfaces (Derived_Type, No_Elist);
9096 end if;
9097
9098 -- Fields inherited from the Parent_Type
9099
9100 Set_Has_Specified_Layout
9101 (Derived_Type, Has_Specified_Layout (Parent_Type));
9102 Set_Is_Limited_Composite
9103 (Derived_Type, Is_Limited_Composite (Parent_Type));
9104 Set_Is_Private_Composite
9105 (Derived_Type, Is_Private_Composite (Parent_Type));
9106
9107 if Is_Tagged_Type (Parent_Type) then
9108 Set_No_Tagged_Streams_Pragma
9109 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9110 end if;
9111
9112 -- Fields inherited from the Parent_Base
9113
9114 Set_Has_Controlled_Component
9115 (Derived_Type, Has_Controlled_Component (Parent_Base));
9116 Set_Has_Non_Standard_Rep
9117 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
9118 Set_Has_Primitive_Operations
9119 (Derived_Type, Has_Primitive_Operations (Parent_Base));
9120
9121 -- Set fields for private derived types
9122
9123 if Is_Private_Type (Derived_Type) then
9124 Set_Depends_On_Private (Derived_Type, True);
9125 Set_Private_Dependents (Derived_Type, New_Elmt_List);
9126 end if;
9127
9128 -- Inherit fields for non-private types. If this is the completion of a
9129 -- derivation from a private type, the parent itself is private and the
9130 -- attributes come from its full view, which must be present.
9131
9132 if Is_Record_Type (Derived_Type) then
9133 declare
9134 Parent_Full : Entity_Id;
9135
9136 begin
9137 if Is_Private_Type (Parent_Base)
9138 and then not Is_Record_Type (Parent_Base)
9139 then
9140 Parent_Full := Full_View (Parent_Base);
9141 else
9142 Parent_Full := Parent_Base;
9143 end if;
9144
9145 Set_Component_Alignment
9146 (Derived_Type, Component_Alignment (Parent_Full));
9147 Set_C_Pass_By_Copy
9148 (Derived_Type, C_Pass_By_Copy (Parent_Full));
9149 Set_Has_Complex_Representation
9150 (Derived_Type, Has_Complex_Representation (Parent_Full));
9151
9152 -- For untagged types, inherit the layout by default to avoid
9153 -- costly changes of representation for type conversions.
9154
9155 if not Is_Tagged then
9156 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Full));
9157 Set_No_Reordering (Derived_Type, No_Reordering (Parent_Full));
9158 end if;
9159 end;
9160 end if;
9161
9162 -- Set fields for tagged types
9163
9164 if Is_Tagged then
9165 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
9166
9167 -- All tagged types defined in Ada.Finalization are controlled
9168
9169 if Chars (Scope (Derived_Type)) = Name_Finalization
9170 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
9171 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
9172 then
9173 Set_Is_Controlled (Derived_Type);
9174 else
9175 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
9176 end if;
9177
9178 -- Minor optimization: there is no need to generate the class-wide
9179 -- entity associated with an underlying record view.
9180
9181 if not Is_Underlying_Record_View (Derived_Type) then
9182 Make_Class_Wide_Type (Derived_Type);
9183 end if;
9184
9185 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
9186
9187 if Has_Discriminants (Derived_Type)
9188 and then Constraint_Present
9189 then
9190 Set_Stored_Constraint
9191 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
9192 end if;
9193
9194 if Ada_Version >= Ada_2005 then
9195 declare
9196 Ifaces_List : Elist_Id;
9197
9198 begin
9199 -- Checks rules 3.9.4 (13/2 and 14/2)
9200
9201 if Comes_From_Source (Derived_Type)
9202 and then not Is_Private_Type (Derived_Type)
9203 and then Is_Interface (Parent_Type)
9204 and then not Is_Interface (Derived_Type)
9205 then
9206 if Is_Task_Interface (Parent_Type) then
9207 Error_Msg_N
9208 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
9209 Derived_Type);
9210
9211 elsif Is_Protected_Interface (Parent_Type) then
9212 Error_Msg_N
9213 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
9214 Derived_Type);
9215 end if;
9216 end if;
9217
9218 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
9219
9220 Check_Interfaces (N, Type_Def);
9221
9222 -- Ada 2005 (AI-251): Collect the list of progenitors that are
9223 -- not already in the parents.
9224
9225 Collect_Interfaces
9226 (T => Derived_Type,
9227 Ifaces_List => Ifaces_List,
9228 Exclude_Parents => True);
9229
9230 Set_Interfaces (Derived_Type, Ifaces_List);
9231
9232 -- If the derived type is the anonymous type created for
9233 -- a declaration whose parent has a constraint, propagate
9234 -- the interface list to the source type. This must be done
9235 -- prior to the completion of the analysis of the source type
9236 -- because the components in the extension may contain current
9237 -- instances whose legality depends on some ancestor.
9238
9239 if Is_Itype (Derived_Type) then
9240 declare
9241 Def : constant Node_Id :=
9242 Associated_Node_For_Itype (Derived_Type);
9243 begin
9244 if Present (Def)
9245 and then Nkind (Def) = N_Full_Type_Declaration
9246 then
9247 Set_Interfaces
9248 (Defining_Identifier (Def), Ifaces_List);
9249 end if;
9250 end;
9251 end if;
9252
9253 -- A type extension is automatically Ghost when one of its
9254 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
9255 -- also inherited when the parent type is Ghost, but this is
9256 -- done in Build_Derived_Type as the mechanism also handles
9257 -- untagged derivations.
9258
9259 if Implements_Ghost_Interface (Derived_Type) then
9260 Set_Is_Ghost_Entity (Derived_Type);
9261 end if;
9262 end;
9263 end if;
9264 end if;
9265
9266 -- STEP 4: Inherit components from the parent base and constrain them.
9267 -- Apply the second transformation described in point 6. above.
9268
9269 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
9270 or else not Has_Discriminants (Parent_Type)
9271 or else not Is_Constrained (Parent_Type)
9272 then
9273 Constrs := Discs;
9274 else
9275 Constrs := Discriminant_Constraint (Parent_Type);
9276 end if;
9277
9278 Assoc_List :=
9279 Inherit_Components
9280 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
9281
9282 -- STEP 5a: Copy the parent record declaration for untagged types
9283
9284 Set_Has_Implicit_Dereference
9285 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
9286
9287 if not Is_Tagged then
9288
9289 -- Discriminant_Constraint (Derived_Type) has been properly
9290 -- constructed. Save it and temporarily set it to Empty because we
9291 -- do not want the call to New_Copy_Tree below to mess this list.
9292
9293 if Has_Discriminants (Derived_Type) then
9294 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
9295 Set_Discriminant_Constraint (Derived_Type, No_Elist);
9296 else
9297 Save_Discr_Constr := No_Elist;
9298 end if;
9299
9300 -- Save the Etype field of Derived_Type. It is correctly set now,
9301 -- but the call to New_Copy tree may remap it to point to itself,
9302 -- which is not what we want. Ditto for the Next_Entity field.
9303
9304 Save_Etype := Etype (Derived_Type);
9305 Save_Next_Entity := Next_Entity (Derived_Type);
9306
9307 -- Assoc_List maps all stored discriminants in the Parent_Base to
9308 -- stored discriminants in the Derived_Type. It is fundamental that
9309 -- no types or itypes with discriminants other than the stored
9310 -- discriminants appear in the entities declared inside
9311 -- Derived_Type, since the back end cannot deal with it.
9312
9313 New_Decl :=
9314 New_Copy_Tree
9315 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
9316
9317 -- Restore the fields saved prior to the New_Copy_Tree call
9318 -- and compute the stored constraint.
9319
9320 Set_Etype (Derived_Type, Save_Etype);
9321 Set_Next_Entity (Derived_Type, Save_Next_Entity);
9322
9323 if Has_Discriminants (Derived_Type) then
9324 Set_Discriminant_Constraint
9325 (Derived_Type, Save_Discr_Constr);
9326 Set_Stored_Constraint
9327 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
9328 Replace_Components (Derived_Type, New_Decl);
9329 end if;
9330
9331 -- Insert the new derived type declaration
9332
9333 Rewrite (N, New_Decl);
9334
9335 -- STEP 5b: Complete the processing for record extensions in generics
9336
9337 -- There is no completion for record extensions declared in the
9338 -- parameter part of a generic, so we need to complete processing for
9339 -- these generic record extensions here. The Record_Type_Definition call
9340 -- will change the Ekind of the components from E_Void to E_Component.
9341
9342 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
9343 Record_Type_Definition (Empty, Derived_Type);
9344
9345 -- STEP 5c: Process the record extension for non private tagged types
9346
9347 elsif not Private_Extension then
9348 Expand_Record_Extension (Derived_Type, Type_Def);
9349
9350 -- Note : previously in ASIS mode we set the Parent_Subtype of the
9351 -- derived type to propagate some semantic information. This led
9352 -- to other ASIS failures and has been removed.
9353
9354 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
9355 -- implemented interfaces if we are in expansion mode
9356
9357 if Expander_Active
9358 and then Has_Interfaces (Derived_Type)
9359 then
9360 Add_Interface_Tag_Components (N, Derived_Type);
9361 end if;
9362
9363 -- Analyze the record extension
9364
9365 Record_Type_Definition
9366 (Record_Extension_Part (Type_Def), Derived_Type);
9367 end if;
9368
9369 End_Scope;
9370
9371 -- Nothing else to do if there is an error in the derivation.
9372 -- An unusual case: the full view may be derived from a type in an
9373 -- instance, when the partial view was used illegally as an actual
9374 -- in that instance, leading to a circular definition.
9375
9376 if Etype (Derived_Type) = Any_Type
9377 or else Etype (Parent_Type) = Derived_Type
9378 then
9379 return;
9380 end if;
9381
9382 -- Set delayed freeze and then derive subprograms, we need to do
9383 -- this in this order so that derived subprograms inherit the
9384 -- derived freeze if necessary.
9385
9386 Set_Has_Delayed_Freeze (Derived_Type);
9387
9388 if Derive_Subps then
9389 Derive_Subprograms (Parent_Type, Derived_Type);
9390 end if;
9391
9392 -- If we have a private extension which defines a constrained derived
9393 -- type mark as constrained here after we have derived subprograms. See
9394 -- comment on point 9. just above the body of Build_Derived_Record_Type.
9395
9396 if Private_Extension and then Inherit_Discrims then
9397 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
9398 Set_Is_Constrained (Derived_Type, True);
9399 Set_Discriminant_Constraint (Derived_Type, Discs);
9400
9401 elsif Is_Constrained (Parent_Type) then
9402 Set_Is_Constrained
9403 (Derived_Type, True);
9404 Set_Discriminant_Constraint
9405 (Derived_Type, Discriminant_Constraint (Parent_Type));
9406 end if;
9407 end if;
9408
9409 -- Update the class-wide type, which shares the now-completed entity
9410 -- list with its specific type. In case of underlying record views,
9411 -- we do not generate the corresponding class wide entity.
9412
9413 if Is_Tagged
9414 and then not Is_Underlying_Record_View (Derived_Type)
9415 then
9416 Set_First_Entity
9417 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
9418 Set_Last_Entity
9419 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
9420 end if;
9421
9422 Check_Function_Writable_Actuals (N);
9423 end Build_Derived_Record_Type;
9424
9425 ------------------------
9426 -- Build_Derived_Type --
9427 ------------------------
9428
9429 procedure Build_Derived_Type
9430 (N : Node_Id;
9431 Parent_Type : Entity_Id;
9432 Derived_Type : Entity_Id;
9433 Is_Completion : Boolean;
9434 Derive_Subps : Boolean := True)
9435 is
9436 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
9437
9438 begin
9439 -- Set common attributes
9440
9441 Set_Scope (Derived_Type, Current_Scope);
9442
9443 Set_Etype (Derived_Type, Parent_Base);
9444 Set_Ekind (Derived_Type, Ekind (Parent_Base));
9445 Propagate_Concurrent_Flags (Derived_Type, Parent_Base);
9446
9447 Set_Size_Info (Derived_Type, Parent_Type);
9448 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
9449 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
9450 Set_Disable_Controlled (Derived_Type, Disable_Controlled (Parent_Type));
9451
9452 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
9453 Set_Is_Volatile (Derived_Type, Is_Volatile (Parent_Type));
9454
9455 if Is_Tagged_Type (Derived_Type) then
9456 Set_No_Tagged_Streams_Pragma
9457 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9458 end if;
9459
9460 -- If the parent has primitive routines, set the derived type link
9461
9462 if Has_Primitive_Operations (Parent_Type) then
9463 Set_Derived_Type_Link (Parent_Base, Derived_Type);
9464 end if;
9465
9466 -- If the parent type is a private subtype, the convention on the base
9467 -- type may be set in the private part, and not propagated to the
9468 -- subtype until later, so we obtain the convention from the base type.
9469
9470 Set_Convention (Derived_Type, Convention (Parent_Base));
9471
9472 -- Set SSO default for record or array type
9473
9474 if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type))
9475 and then Is_Base_Type (Derived_Type)
9476 then
9477 Set_Default_SSO (Derived_Type);
9478 end if;
9479
9480 -- A derived type inherits the Default_Initial_Condition pragma coming
9481 -- from any parent type within the derivation chain.
9482
9483 if Has_DIC (Parent_Type) then
9484 Set_Has_Inherited_DIC (Derived_Type);
9485 end if;
9486
9487 -- A derived type inherits any class-wide invariants coming from a
9488 -- parent type or an interface. Note that the invariant procedure of
9489 -- the parent type should not be inherited because the derived type may
9490 -- define invariants of its own.
9491
9492 if not Is_Interface (Derived_Type) then
9493 if Has_Inherited_Invariants (Parent_Type)
9494 or else Has_Inheritable_Invariants (Parent_Type)
9495 then
9496 Set_Has_Inherited_Invariants (Derived_Type);
9497
9498 elsif Is_Concurrent_Type (Derived_Type)
9499 or else Is_Tagged_Type (Derived_Type)
9500 then
9501 declare
9502 Iface : Entity_Id;
9503 Ifaces : Elist_Id;
9504 Iface_Elmt : Elmt_Id;
9505
9506 begin
9507 Collect_Interfaces
9508 (T => Derived_Type,
9509 Ifaces_List => Ifaces,
9510 Exclude_Parents => True);
9511
9512 if Present (Ifaces) then
9513 Iface_Elmt := First_Elmt (Ifaces);
9514 while Present (Iface_Elmt) loop
9515 Iface := Node (Iface_Elmt);
9516
9517 if Has_Inheritable_Invariants (Iface) then
9518 Set_Has_Inherited_Invariants (Derived_Type);
9519 exit;
9520 end if;
9521
9522 Next_Elmt (Iface_Elmt);
9523 end loop;
9524 end if;
9525 end;
9526 end if;
9527 end if;
9528
9529 -- We similarly inherit predicates. Note that for scalar derived types
9530 -- the predicate is inherited from the first subtype, and not from its
9531 -- (anonymous) base type.
9532
9533 if Has_Predicates (Parent_Type)
9534 or else Has_Predicates (First_Subtype (Parent_Type))
9535 then
9536 Set_Has_Predicates (Derived_Type);
9537 end if;
9538
9539 -- The derived type inherits the representation clauses of the parent
9540
9541 Inherit_Rep_Item_Chain (Derived_Type, Parent_Type);
9542
9543 -- If the parent type has delayed rep aspects, then mark the derived
9544 -- type as possibly inheriting a delayed rep aspect.
9545
9546 if Has_Delayed_Rep_Aspects (Parent_Type) then
9547 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
9548 end if;
9549
9550 -- A derived type becomes Ghost when its parent type is also Ghost
9551 -- (SPARK RM 6.9(9)). Note that the Ghost-related attributes are not
9552 -- directly inherited because the Ghost policy in effect may differ.
9553
9554 if Is_Ghost_Entity (Parent_Type) then
9555 Set_Is_Ghost_Entity (Derived_Type);
9556 end if;
9557
9558 -- Type dependent processing
9559
9560 case Ekind (Parent_Type) is
9561 when Numeric_Kind =>
9562 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
9563
9564 when Array_Kind =>
9565 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
9566
9567 when Class_Wide_Kind
9568 | E_Record_Subtype
9569 | E_Record_Type
9570 =>
9571 Build_Derived_Record_Type
9572 (N, Parent_Type, Derived_Type, Derive_Subps);
9573 return;
9574
9575 when Enumeration_Kind =>
9576 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
9577
9578 when Access_Kind =>
9579 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
9580
9581 when Incomplete_Or_Private_Kind =>
9582 Build_Derived_Private_Type
9583 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
9584
9585 -- For discriminated types, the derivation includes deriving
9586 -- primitive operations. For others it is done below.
9587
9588 if Is_Tagged_Type (Parent_Type)
9589 or else Has_Discriminants (Parent_Type)
9590 or else (Present (Full_View (Parent_Type))
9591 and then Has_Discriminants (Full_View (Parent_Type)))
9592 then
9593 return;
9594 end if;
9595
9596 when Concurrent_Kind =>
9597 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
9598
9599 when others =>
9600 raise Program_Error;
9601 end case;
9602
9603 -- Nothing more to do if some error occurred
9604
9605 if Etype (Derived_Type) = Any_Type then
9606 return;
9607 end if;
9608
9609 -- Set delayed freeze and then derive subprograms, we need to do this
9610 -- in this order so that derived subprograms inherit the derived freeze
9611 -- if necessary.
9612
9613 Set_Has_Delayed_Freeze (Derived_Type);
9614
9615 if Derive_Subps then
9616 Derive_Subprograms (Parent_Type, Derived_Type);
9617 end if;
9618
9619 Set_Has_Primitive_Operations
9620 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
9621 end Build_Derived_Type;
9622
9623 -----------------------
9624 -- Build_Discriminal --
9625 -----------------------
9626
9627 procedure Build_Discriminal (Discrim : Entity_Id) is
9628 D_Minal : Entity_Id;
9629 CR_Disc : Entity_Id;
9630
9631 begin
9632 -- A discriminal has the same name as the discriminant
9633
9634 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9635
9636 Set_Ekind (D_Minal, E_In_Parameter);
9637 Set_Mechanism (D_Minal, Default_Mechanism);
9638 Set_Etype (D_Minal, Etype (Discrim));
9639 Set_Scope (D_Minal, Current_Scope);
9640 Set_Parent (D_Minal, Parent (Discrim));
9641
9642 Set_Discriminal (Discrim, D_Minal);
9643 Set_Discriminal_Link (D_Minal, Discrim);
9644
9645 -- For task types, build at once the discriminants of the corresponding
9646 -- record, which are needed if discriminants are used in entry defaults
9647 -- and in family bounds.
9648
9649 if Is_Concurrent_Type (Current_Scope)
9650 or else
9651 Is_Limited_Type (Current_Scope)
9652 then
9653 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9654
9655 Set_Ekind (CR_Disc, E_In_Parameter);
9656 Set_Mechanism (CR_Disc, Default_Mechanism);
9657 Set_Etype (CR_Disc, Etype (Discrim));
9658 Set_Scope (CR_Disc, Current_Scope);
9659 Set_Discriminal_Link (CR_Disc, Discrim);
9660 Set_CR_Discriminant (Discrim, CR_Disc);
9661 end if;
9662 end Build_Discriminal;
9663
9664 ------------------------------------
9665 -- Build_Discriminant_Constraints --
9666 ------------------------------------
9667
9668 function Build_Discriminant_Constraints
9669 (T : Entity_Id;
9670 Def : Node_Id;
9671 Derived_Def : Boolean := False) return Elist_Id
9672 is
9673 C : constant Node_Id := Constraint (Def);
9674 Nb_Discr : constant Nat := Number_Discriminants (T);
9675
9676 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
9677 -- Saves the expression corresponding to a given discriminant in T
9678
9679 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
9680 -- Return the Position number within array Discr_Expr of a discriminant
9681 -- D within the discriminant list of the discriminated type T.
9682
9683 procedure Process_Discriminant_Expression
9684 (Expr : Node_Id;
9685 D : Entity_Id);
9686 -- If this is a discriminant constraint on a partial view, do not
9687 -- generate an overflow check on the discriminant expression. The check
9688 -- will be generated when constraining the full view. Otherwise the
9689 -- backend creates duplicate symbols for the temporaries corresponding
9690 -- to the expressions to be checked, causing spurious assembler errors.
9691
9692 ------------------
9693 -- Pos_Of_Discr --
9694 ------------------
9695
9696 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
9697 Disc : Entity_Id;
9698
9699 begin
9700 Disc := First_Discriminant (T);
9701 for J in Discr_Expr'Range loop
9702 if Disc = D then
9703 return J;
9704 end if;
9705
9706 Next_Discriminant (Disc);
9707 end loop;
9708
9709 -- Note: Since this function is called on discriminants that are
9710 -- known to belong to the discriminated type, falling through the
9711 -- loop with no match signals an internal compiler error.
9712
9713 raise Program_Error;
9714 end Pos_Of_Discr;
9715
9716 -------------------------------------
9717 -- Process_Discriminant_Expression --
9718 -------------------------------------
9719
9720 procedure Process_Discriminant_Expression
9721 (Expr : Node_Id;
9722 D : Entity_Id)
9723 is
9724 BDT : constant Entity_Id := Base_Type (Etype (D));
9725
9726 begin
9727 -- If this is a discriminant constraint on a partial view, do
9728 -- not generate an overflow on the discriminant expression. The
9729 -- check will be generated when constraining the full view.
9730
9731 if Is_Private_Type (T)
9732 and then Present (Full_View (T))
9733 then
9734 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
9735 else
9736 Analyze_And_Resolve (Expr, BDT);
9737 end if;
9738 end Process_Discriminant_Expression;
9739
9740 -- Declarations local to Build_Discriminant_Constraints
9741
9742 Discr : Entity_Id;
9743 E : Entity_Id;
9744 Elist : constant Elist_Id := New_Elmt_List;
9745
9746 Constr : Node_Id;
9747 Expr : Node_Id;
9748 Id : Node_Id;
9749 Position : Nat;
9750 Found : Boolean;
9751
9752 Discrim_Present : Boolean := False;
9753
9754 -- Start of processing for Build_Discriminant_Constraints
9755
9756 begin
9757 -- The following loop will process positional associations only.
9758 -- For a positional association, the (single) discriminant is
9759 -- implicitly specified by position, in textual order (RM 3.7.2).
9760
9761 Discr := First_Discriminant (T);
9762 Constr := First (Constraints (C));
9763 for D in Discr_Expr'Range loop
9764 exit when Nkind (Constr) = N_Discriminant_Association;
9765
9766 if No (Constr) then
9767 Error_Msg_N ("too few discriminants given in constraint", C);
9768 return New_Elmt_List;
9769
9770 elsif Nkind (Constr) = N_Range
9771 or else (Nkind (Constr) = N_Attribute_Reference
9772 and then Attribute_Name (Constr) = Name_Range)
9773 then
9774 Error_Msg_N
9775 ("a range is not a valid discriminant constraint", Constr);
9776 Discr_Expr (D) := Error;
9777
9778 else
9779 Process_Discriminant_Expression (Constr, Discr);
9780 Discr_Expr (D) := Constr;
9781 end if;
9782
9783 Next_Discriminant (Discr);
9784 Next (Constr);
9785 end loop;
9786
9787 if No (Discr) and then Present (Constr) then
9788 Error_Msg_N ("too many discriminants given in constraint", Constr);
9789 return New_Elmt_List;
9790 end if;
9791
9792 -- Named associations can be given in any order, but if both positional
9793 -- and named associations are used in the same discriminant constraint,
9794 -- then positional associations must occur first, at their normal
9795 -- position. Hence once a named association is used, the rest of the
9796 -- discriminant constraint must use only named associations.
9797
9798 while Present (Constr) loop
9799
9800 -- Positional association forbidden after a named association
9801
9802 if Nkind (Constr) /= N_Discriminant_Association then
9803 Error_Msg_N ("positional association follows named one", Constr);
9804 return New_Elmt_List;
9805
9806 -- Otherwise it is a named association
9807
9808 else
9809 -- E records the type of the discriminants in the named
9810 -- association. All the discriminants specified in the same name
9811 -- association must have the same type.
9812
9813 E := Empty;
9814
9815 -- Search the list of discriminants in T to see if the simple name
9816 -- given in the constraint matches any of them.
9817
9818 Id := First (Selector_Names (Constr));
9819 while Present (Id) loop
9820 Found := False;
9821
9822 -- If Original_Discriminant is present, we are processing a
9823 -- generic instantiation and this is an instance node. We need
9824 -- to find the name of the corresponding discriminant in the
9825 -- actual record type T and not the name of the discriminant in
9826 -- the generic formal. Example:
9827
9828 -- generic
9829 -- type G (D : int) is private;
9830 -- package P is
9831 -- subtype W is G (D => 1);
9832 -- end package;
9833 -- type Rec (X : int) is record ... end record;
9834 -- package Q is new P (G => Rec);
9835
9836 -- At the point of the instantiation, formal type G is Rec
9837 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9838 -- which really looks like "subtype W is Rec (D => 1);" at
9839 -- the point of instantiation, we want to find the discriminant
9840 -- that corresponds to D in Rec, i.e. X.
9841
9842 if Present (Original_Discriminant (Id))
9843 and then In_Instance
9844 then
9845 Discr := Find_Corresponding_Discriminant (Id, T);
9846 Found := True;
9847
9848 else
9849 Discr := First_Discriminant (T);
9850 while Present (Discr) loop
9851 if Chars (Discr) = Chars (Id) then
9852 Found := True;
9853 exit;
9854 end if;
9855
9856 Next_Discriminant (Discr);
9857 end loop;
9858
9859 if not Found then
9860 Error_Msg_N ("& does not match any discriminant", Id);
9861 return New_Elmt_List;
9862
9863 -- If the parent type is a generic formal, preserve the
9864 -- name of the discriminant for subsequent instances.
9865 -- see comment at the beginning of this if statement.
9866
9867 elsif Is_Generic_Type (Root_Type (T)) then
9868 Set_Original_Discriminant (Id, Discr);
9869 end if;
9870 end if;
9871
9872 Position := Pos_Of_Discr (T, Discr);
9873
9874 if Present (Discr_Expr (Position)) then
9875 Error_Msg_N ("duplicate constraint for discriminant&", Id);
9876
9877 else
9878 -- Each discriminant specified in the same named association
9879 -- must be associated with a separate copy of the
9880 -- corresponding expression.
9881
9882 if Present (Next (Id)) then
9883 Expr := New_Copy_Tree (Expression (Constr));
9884 Set_Parent (Expr, Parent (Expression (Constr)));
9885 else
9886 Expr := Expression (Constr);
9887 end if;
9888
9889 Discr_Expr (Position) := Expr;
9890 Process_Discriminant_Expression (Expr, Discr);
9891 end if;
9892
9893 -- A discriminant association with more than one discriminant
9894 -- name is only allowed if the named discriminants are all of
9895 -- the same type (RM 3.7.1(8)).
9896
9897 if E = Empty then
9898 E := Base_Type (Etype (Discr));
9899
9900 elsif Base_Type (Etype (Discr)) /= E then
9901 Error_Msg_N
9902 ("all discriminants in an association " &
9903 "must have the same type", Id);
9904 end if;
9905
9906 Next (Id);
9907 end loop;
9908 end if;
9909
9910 Next (Constr);
9911 end loop;
9912
9913 -- A discriminant constraint must provide exactly one value for each
9914 -- discriminant of the type (RM 3.7.1(8)).
9915
9916 for J in Discr_Expr'Range loop
9917 if No (Discr_Expr (J)) then
9918 Error_Msg_N ("too few discriminants given in constraint", C);
9919 return New_Elmt_List;
9920 end if;
9921 end loop;
9922
9923 -- Determine if there are discriminant expressions in the constraint
9924
9925 for J in Discr_Expr'Range loop
9926 if Denotes_Discriminant
9927 (Discr_Expr (J), Check_Concurrent => True)
9928 then
9929 Discrim_Present := True;
9930 end if;
9931 end loop;
9932
9933 -- Build an element list consisting of the expressions given in the
9934 -- discriminant constraint and apply the appropriate checks. The list
9935 -- is constructed after resolving any named discriminant associations
9936 -- and therefore the expressions appear in the textual order of the
9937 -- discriminants.
9938
9939 Discr := First_Discriminant (T);
9940 for J in Discr_Expr'Range loop
9941 if Discr_Expr (J) /= Error then
9942 Append_Elmt (Discr_Expr (J), Elist);
9943
9944 -- If any of the discriminant constraints is given by a
9945 -- discriminant and we are in a derived type declaration we
9946 -- have a discriminant renaming. Establish link between new
9947 -- and old discriminant. The new discriminant has an implicit
9948 -- dereference if the old one does.
9949
9950 if Denotes_Discriminant (Discr_Expr (J)) then
9951 if Derived_Def then
9952 declare
9953 New_Discr : constant Entity_Id := Entity (Discr_Expr (J));
9954
9955 begin
9956 Set_Corresponding_Discriminant (New_Discr, Discr);
9957 Set_Has_Implicit_Dereference (New_Discr,
9958 Has_Implicit_Dereference (Discr));
9959 end;
9960 end if;
9961
9962 -- Force the evaluation of non-discriminant expressions.
9963 -- If we have found a discriminant in the constraint 3.4(26)
9964 -- and 3.8(18) demand that no range checks are performed are
9965 -- after evaluation. If the constraint is for a component
9966 -- definition that has a per-object constraint, expressions are
9967 -- evaluated but not checked either. In all other cases perform
9968 -- a range check.
9969
9970 else
9971 if Discrim_Present then
9972 null;
9973
9974 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
9975 and then Has_Per_Object_Constraint
9976 (Defining_Identifier (Parent (Parent (Def))))
9977 then
9978 null;
9979
9980 elsif Is_Access_Type (Etype (Discr)) then
9981 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
9982
9983 else
9984 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
9985 end if;
9986
9987 Force_Evaluation (Discr_Expr (J));
9988 end if;
9989
9990 -- Check that the designated type of an access discriminant's
9991 -- expression is not a class-wide type unless the discriminant's
9992 -- designated type is also class-wide.
9993
9994 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
9995 and then not Is_Class_Wide_Type
9996 (Designated_Type (Etype (Discr)))
9997 and then Etype (Discr_Expr (J)) /= Any_Type
9998 and then Is_Class_Wide_Type
9999 (Designated_Type (Etype (Discr_Expr (J))))
10000 then
10001 Wrong_Type (Discr_Expr (J), Etype (Discr));
10002
10003 elsif Is_Access_Type (Etype (Discr))
10004 and then not Is_Access_Constant (Etype (Discr))
10005 and then Is_Access_Type (Etype (Discr_Expr (J)))
10006 and then Is_Access_Constant (Etype (Discr_Expr (J)))
10007 then
10008 Error_Msg_NE
10009 ("constraint for discriminant& must be access to variable",
10010 Def, Discr);
10011 end if;
10012 end if;
10013
10014 Next_Discriminant (Discr);
10015 end loop;
10016
10017 return Elist;
10018 end Build_Discriminant_Constraints;
10019
10020 ---------------------------------
10021 -- Build_Discriminated_Subtype --
10022 ---------------------------------
10023
10024 procedure Build_Discriminated_Subtype
10025 (T : Entity_Id;
10026 Def_Id : Entity_Id;
10027 Elist : Elist_Id;
10028 Related_Nod : Node_Id;
10029 For_Access : Boolean := False)
10030 is
10031 Has_Discrs : constant Boolean := Has_Discriminants (T);
10032 Constrained : constant Boolean :=
10033 (Has_Discrs
10034 and then not Is_Empty_Elmt_List (Elist)
10035 and then not Is_Class_Wide_Type (T))
10036 or else Is_Constrained (T);
10037
10038 begin
10039 if Ekind (T) = E_Record_Type then
10040 if For_Access then
10041 Set_Ekind (Def_Id, E_Private_Subtype);
10042 Set_Is_For_Access_Subtype (Def_Id, True);
10043 else
10044 Set_Ekind (Def_Id, E_Record_Subtype);
10045 end if;
10046
10047 -- Inherit preelaboration flag from base, for types for which it
10048 -- may have been set: records, private types, protected types.
10049
10050 Set_Known_To_Have_Preelab_Init
10051 (Def_Id, Known_To_Have_Preelab_Init (T));
10052
10053 elsif Ekind (T) = E_Task_Type then
10054 Set_Ekind (Def_Id, E_Task_Subtype);
10055
10056 elsif Ekind (T) = E_Protected_Type then
10057 Set_Ekind (Def_Id, E_Protected_Subtype);
10058 Set_Known_To_Have_Preelab_Init
10059 (Def_Id, Known_To_Have_Preelab_Init (T));
10060
10061 elsif Is_Private_Type (T) then
10062 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
10063 Set_Known_To_Have_Preelab_Init
10064 (Def_Id, Known_To_Have_Preelab_Init (T));
10065
10066 -- Private subtypes may have private dependents
10067
10068 Set_Private_Dependents (Def_Id, New_Elmt_List);
10069
10070 elsif Is_Class_Wide_Type (T) then
10071 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
10072
10073 else
10074 -- Incomplete type. Attach subtype to list of dependents, to be
10075 -- completed with full view of parent type, unless is it the
10076 -- designated subtype of a record component within an init_proc.
10077 -- This last case arises for a component of an access type whose
10078 -- designated type is incomplete (e.g. a Taft Amendment type).
10079 -- The designated subtype is within an inner scope, and needs no
10080 -- elaboration, because only the access type is needed in the
10081 -- initialization procedure.
10082
10083 if Ekind (T) = E_Incomplete_Type then
10084 Set_Ekind (Def_Id, E_Incomplete_Subtype);
10085 else
10086 Set_Ekind (Def_Id, Ekind (T));
10087 end if;
10088
10089 if For_Access and then Within_Init_Proc then
10090 null;
10091 else
10092 Append_Elmt (Def_Id, Private_Dependents (T));
10093 end if;
10094 end if;
10095
10096 Set_Etype (Def_Id, T);
10097 Init_Size_Align (Def_Id);
10098 Set_Has_Discriminants (Def_Id, Has_Discrs);
10099 Set_Is_Constrained (Def_Id, Constrained);
10100
10101 Set_First_Entity (Def_Id, First_Entity (T));
10102 Set_Last_Entity (Def_Id, Last_Entity (T));
10103 Set_Has_Implicit_Dereference
10104 (Def_Id, Has_Implicit_Dereference (T));
10105 Set_Has_Pragma_Unreferenced_Objects
10106 (Def_Id, Has_Pragma_Unreferenced_Objects (T));
10107
10108 -- If the subtype is the completion of a private declaration, there may
10109 -- have been representation clauses for the partial view, and they must
10110 -- be preserved. Build_Derived_Type chains the inherited clauses with
10111 -- the ones appearing on the extension. If this comes from a subtype
10112 -- declaration, all clauses are inherited.
10113
10114 if No (First_Rep_Item (Def_Id)) then
10115 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10116 end if;
10117
10118 if Is_Tagged_Type (T) then
10119 Set_Is_Tagged_Type (Def_Id);
10120 Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T));
10121 Make_Class_Wide_Type (Def_Id);
10122 end if;
10123
10124 Set_Stored_Constraint (Def_Id, No_Elist);
10125
10126 if Has_Discrs then
10127 Set_Discriminant_Constraint (Def_Id, Elist);
10128 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
10129 end if;
10130
10131 if Is_Tagged_Type (T) then
10132
10133 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
10134 -- concurrent record type (which has the list of primitive
10135 -- operations).
10136
10137 if Ada_Version >= Ada_2005
10138 and then Is_Concurrent_Type (T)
10139 then
10140 Set_Corresponding_Record_Type (Def_Id,
10141 Corresponding_Record_Type (T));
10142 else
10143 Set_Direct_Primitive_Operations (Def_Id,
10144 Direct_Primitive_Operations (T));
10145 end if;
10146
10147 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
10148 end if;
10149
10150 -- Subtypes introduced by component declarations do not need to be
10151 -- marked as delayed, and do not get freeze nodes, because the semantics
10152 -- verifies that the parents of the subtypes are frozen before the
10153 -- enclosing record is frozen.
10154
10155 if not Is_Type (Scope (Def_Id)) then
10156 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
10157
10158 if Is_Private_Type (T)
10159 and then Present (Full_View (T))
10160 then
10161 Conditional_Delay (Def_Id, Full_View (T));
10162 else
10163 Conditional_Delay (Def_Id, T);
10164 end if;
10165 end if;
10166
10167 if Is_Record_Type (T) then
10168 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
10169
10170 if Has_Discrs
10171 and then not Is_Empty_Elmt_List (Elist)
10172 and then not For_Access
10173 then
10174 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
10175 elsif not For_Access then
10176 Set_Cloned_Subtype (Def_Id, T);
10177 end if;
10178 end if;
10179 end Build_Discriminated_Subtype;
10180
10181 ---------------------------
10182 -- Build_Itype_Reference --
10183 ---------------------------
10184
10185 procedure Build_Itype_Reference
10186 (Ityp : Entity_Id;
10187 Nod : Node_Id)
10188 is
10189 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
10190 begin
10191
10192 -- Itype references are only created for use by the back-end
10193
10194 if Inside_A_Generic then
10195 return;
10196 else
10197 Set_Itype (IR, Ityp);
10198 Insert_After (Nod, IR);
10199 end if;
10200 end Build_Itype_Reference;
10201
10202 ------------------------
10203 -- Build_Scalar_Bound --
10204 ------------------------
10205
10206 function Build_Scalar_Bound
10207 (Bound : Node_Id;
10208 Par_T : Entity_Id;
10209 Der_T : Entity_Id) return Node_Id
10210 is
10211 New_Bound : Entity_Id;
10212
10213 begin
10214 -- Note: not clear why this is needed, how can the original bound
10215 -- be unanalyzed at this point? and if it is, what business do we
10216 -- have messing around with it? and why is the base type of the
10217 -- parent type the right type for the resolution. It probably is
10218 -- not. It is OK for the new bound we are creating, but not for
10219 -- the old one??? Still if it never happens, no problem.
10220
10221 Analyze_And_Resolve (Bound, Base_Type (Par_T));
10222
10223 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
10224 New_Bound := New_Copy (Bound);
10225 Set_Etype (New_Bound, Der_T);
10226 Set_Analyzed (New_Bound);
10227
10228 elsif Is_Entity_Name (Bound) then
10229 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
10230
10231 -- The following is almost certainly wrong. What business do we have
10232 -- relocating a node (Bound) that is presumably still attached to
10233 -- the tree elsewhere???
10234
10235 else
10236 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
10237 end if;
10238
10239 Set_Etype (New_Bound, Der_T);
10240 return New_Bound;
10241 end Build_Scalar_Bound;
10242
10243 --------------------------------
10244 -- Build_Underlying_Full_View --
10245 --------------------------------
10246
10247 procedure Build_Underlying_Full_View
10248 (N : Node_Id;
10249 Typ : Entity_Id;
10250 Par : Entity_Id)
10251 is
10252 Loc : constant Source_Ptr := Sloc (N);
10253 Subt : constant Entity_Id :=
10254 Make_Defining_Identifier
10255 (Loc, New_External_Name (Chars (Typ), 'S'));
10256
10257 Constr : Node_Id;
10258 Indic : Node_Id;
10259 C : Node_Id;
10260 Id : Node_Id;
10261
10262 procedure Set_Discriminant_Name (Id : Node_Id);
10263 -- If the derived type has discriminants, they may rename discriminants
10264 -- of the parent. When building the full view of the parent, we need to
10265 -- recover the names of the original discriminants if the constraint is
10266 -- given by named associations.
10267
10268 ---------------------------
10269 -- Set_Discriminant_Name --
10270 ---------------------------
10271
10272 procedure Set_Discriminant_Name (Id : Node_Id) is
10273 Disc : Entity_Id;
10274
10275 begin
10276 Set_Original_Discriminant (Id, Empty);
10277
10278 if Has_Discriminants (Typ) then
10279 Disc := First_Discriminant (Typ);
10280 while Present (Disc) loop
10281 if Chars (Disc) = Chars (Id)
10282 and then Present (Corresponding_Discriminant (Disc))
10283 then
10284 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
10285 end if;
10286 Next_Discriminant (Disc);
10287 end loop;
10288 end if;
10289 end Set_Discriminant_Name;
10290
10291 -- Start of processing for Build_Underlying_Full_View
10292
10293 begin
10294 if Nkind (N) = N_Full_Type_Declaration then
10295 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
10296
10297 elsif Nkind (N) = N_Subtype_Declaration then
10298 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
10299
10300 elsif Nkind (N) = N_Component_Declaration then
10301 Constr :=
10302 New_Copy_Tree
10303 (Constraint (Subtype_Indication (Component_Definition (N))));
10304
10305 else
10306 raise Program_Error;
10307 end if;
10308
10309 C := First (Constraints (Constr));
10310 while Present (C) loop
10311 if Nkind (C) = N_Discriminant_Association then
10312 Id := First (Selector_Names (C));
10313 while Present (Id) loop
10314 Set_Discriminant_Name (Id);
10315 Next (Id);
10316 end loop;
10317 end if;
10318
10319 Next (C);
10320 end loop;
10321
10322 Indic :=
10323 Make_Subtype_Declaration (Loc,
10324 Defining_Identifier => Subt,
10325 Subtype_Indication =>
10326 Make_Subtype_Indication (Loc,
10327 Subtype_Mark => New_Occurrence_Of (Par, Loc),
10328 Constraint => New_Copy_Tree (Constr)));
10329
10330 -- If this is a component subtype for an outer itype, it is not
10331 -- a list member, so simply set the parent link for analysis: if
10332 -- the enclosing type does not need to be in a declarative list,
10333 -- neither do the components.
10334
10335 if Is_List_Member (N)
10336 and then Nkind (N) /= N_Component_Declaration
10337 then
10338 Insert_Before (N, Indic);
10339 else
10340 Set_Parent (Indic, Parent (N));
10341 end if;
10342
10343 Analyze (Indic);
10344 Set_Underlying_Full_View (Typ, Full_View (Subt));
10345 Set_Is_Underlying_Full_View (Full_View (Subt));
10346 end Build_Underlying_Full_View;
10347
10348 -------------------------------
10349 -- Check_Abstract_Overriding --
10350 -------------------------------
10351
10352 procedure Check_Abstract_Overriding (T : Entity_Id) is
10353 Alias_Subp : Entity_Id;
10354 Elmt : Elmt_Id;
10355 Op_List : Elist_Id;
10356 Subp : Entity_Id;
10357 Type_Def : Node_Id;
10358
10359 procedure Check_Pragma_Implemented (Subp : Entity_Id);
10360 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
10361 -- which has pragma Implemented already set. Check whether Subp's entity
10362 -- kind conforms to the implementation kind of the overridden routine.
10363
10364 procedure Check_Pragma_Implemented
10365 (Subp : Entity_Id;
10366 Iface_Subp : Entity_Id);
10367 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
10368 -- Iface_Subp and both entities have pragma Implemented already set on
10369 -- them. Check whether the two implementation kinds are conforming.
10370
10371 procedure Inherit_Pragma_Implemented
10372 (Subp : Entity_Id;
10373 Iface_Subp : Entity_Id);
10374 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
10375 -- subprogram Iface_Subp which has been marked by pragma Implemented.
10376 -- Propagate the implementation kind of Iface_Subp to Subp.
10377
10378 ------------------------------
10379 -- Check_Pragma_Implemented --
10380 ------------------------------
10381
10382 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
10383 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
10384 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
10385 Subp_Alias : constant Entity_Id := Alias (Subp);
10386 Contr_Typ : Entity_Id;
10387 Impl_Subp : Entity_Id;
10388
10389 begin
10390 -- Subp must have an alias since it is a hidden entity used to link
10391 -- an interface subprogram to its overriding counterpart.
10392
10393 pragma Assert (Present (Subp_Alias));
10394
10395 -- Handle aliases to synchronized wrappers
10396
10397 Impl_Subp := Subp_Alias;
10398
10399 if Is_Primitive_Wrapper (Impl_Subp) then
10400 Impl_Subp := Wrapped_Entity (Impl_Subp);
10401 end if;
10402
10403 -- Extract the type of the controlling formal
10404
10405 Contr_Typ := Etype (First_Formal (Subp_Alias));
10406
10407 if Is_Concurrent_Record_Type (Contr_Typ) then
10408 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
10409 end if;
10410
10411 -- An interface subprogram whose implementation kind is By_Entry must
10412 -- be implemented by an entry.
10413
10414 if Impl_Kind = Name_By_Entry
10415 and then Ekind (Impl_Subp) /= E_Entry
10416 then
10417 Error_Msg_Node_2 := Iface_Alias;
10418 Error_Msg_NE
10419 ("type & must implement abstract subprogram & with an entry",
10420 Subp_Alias, Contr_Typ);
10421
10422 elsif Impl_Kind = Name_By_Protected_Procedure then
10423
10424 -- An interface subprogram whose implementation kind is By_
10425 -- Protected_Procedure cannot be implemented by a primitive
10426 -- procedure of a task type.
10427
10428 if Ekind (Contr_Typ) /= E_Protected_Type then
10429 Error_Msg_Node_2 := Contr_Typ;
10430 Error_Msg_NE
10431 ("interface subprogram & cannot be implemented by a " &
10432 "primitive procedure of task type &", Subp_Alias,
10433 Iface_Alias);
10434
10435 -- An interface subprogram whose implementation kind is By_
10436 -- Protected_Procedure must be implemented by a procedure.
10437
10438 elsif Ekind (Impl_Subp) /= E_Procedure then
10439 Error_Msg_Node_2 := Iface_Alias;
10440 Error_Msg_NE
10441 ("type & must implement abstract subprogram & with a " &
10442 "procedure", Subp_Alias, Contr_Typ);
10443
10444 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10445 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10446 then
10447 Error_Msg_Name_1 := Impl_Kind;
10448 Error_Msg_N
10449 ("overriding operation& must have synchronization%",
10450 Subp_Alias);
10451 end if;
10452
10453 -- If primitive has Optional synchronization, overriding operation
10454 -- must match if it has an explicit synchronization..
10455
10456 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10457 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10458 then
10459 Error_Msg_Name_1 := Impl_Kind;
10460 Error_Msg_N
10461 ("overriding operation& must have syncrhonization%",
10462 Subp_Alias);
10463 end if;
10464 end Check_Pragma_Implemented;
10465
10466 ------------------------------
10467 -- Check_Pragma_Implemented --
10468 ------------------------------
10469
10470 procedure Check_Pragma_Implemented
10471 (Subp : Entity_Id;
10472 Iface_Subp : Entity_Id)
10473 is
10474 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10475 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
10476
10477 begin
10478 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
10479 -- and overriding subprogram are different. In general this is an
10480 -- error except when the implementation kind of the overridden
10481 -- subprograms is By_Any or Optional.
10482
10483 if Iface_Kind /= Subp_Kind
10484 and then Iface_Kind /= Name_By_Any
10485 and then Iface_Kind /= Name_Optional
10486 then
10487 if Iface_Kind = Name_By_Entry then
10488 Error_Msg_N
10489 ("incompatible implementation kind, overridden subprogram " &
10490 "is marked By_Entry", Subp);
10491 else
10492 Error_Msg_N
10493 ("incompatible implementation kind, overridden subprogram " &
10494 "is marked By_Protected_Procedure", Subp);
10495 end if;
10496 end if;
10497 end Check_Pragma_Implemented;
10498
10499 --------------------------------
10500 -- Inherit_Pragma_Implemented --
10501 --------------------------------
10502
10503 procedure Inherit_Pragma_Implemented
10504 (Subp : Entity_Id;
10505 Iface_Subp : Entity_Id)
10506 is
10507 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10508 Loc : constant Source_Ptr := Sloc (Subp);
10509 Impl_Prag : Node_Id;
10510
10511 begin
10512 -- Since the implementation kind is stored as a representation item
10513 -- rather than a flag, create a pragma node.
10514
10515 Impl_Prag :=
10516 Make_Pragma (Loc,
10517 Chars => Name_Implemented,
10518 Pragma_Argument_Associations => New_List (
10519 Make_Pragma_Argument_Association (Loc,
10520 Expression => New_Occurrence_Of (Subp, Loc)),
10521
10522 Make_Pragma_Argument_Association (Loc,
10523 Expression => Make_Identifier (Loc, Iface_Kind))));
10524
10525 -- The pragma doesn't need to be analyzed because it is internally
10526 -- built. It is safe to directly register it as a rep item since we
10527 -- are only interested in the characters of the implementation kind.
10528
10529 Record_Rep_Item (Subp, Impl_Prag);
10530 end Inherit_Pragma_Implemented;
10531
10532 -- Start of processing for Check_Abstract_Overriding
10533
10534 begin
10535 Op_List := Primitive_Operations (T);
10536
10537 -- Loop to check primitive operations
10538
10539 Elmt := First_Elmt (Op_List);
10540 while Present (Elmt) loop
10541 Subp := Node (Elmt);
10542 Alias_Subp := Alias (Subp);
10543
10544 -- Inherited subprograms are identified by the fact that they do not
10545 -- come from source, and the associated source location is the
10546 -- location of the first subtype of the derived type.
10547
10548 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
10549 -- subprograms that "require overriding".
10550
10551 -- Special exception, do not complain about failure to override the
10552 -- stream routines _Input and _Output, as well as the primitive
10553 -- operations used in dispatching selects since we always provide
10554 -- automatic overridings for these subprograms.
10555
10556 -- The partial view of T may have been a private extension, for
10557 -- which inherited functions dispatching on result are abstract.
10558 -- If the full view is a null extension, there is no need for
10559 -- overriding in Ada 2005, but wrappers need to be built for them
10560 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
10561
10562 if Is_Null_Extension (T)
10563 and then Has_Controlling_Result (Subp)
10564 and then Ada_Version >= Ada_2005
10565 and then Present (Alias_Subp)
10566 and then not Comes_From_Source (Subp)
10567 and then not Is_Abstract_Subprogram (Alias_Subp)
10568 and then not Is_Access_Type (Etype (Subp))
10569 then
10570 null;
10571
10572 -- Ada 2005 (AI-251): Internal entities of interfaces need no
10573 -- processing because this check is done with the aliased
10574 -- entity
10575
10576 elsif Present (Interface_Alias (Subp)) then
10577 null;
10578
10579 elsif (Is_Abstract_Subprogram (Subp)
10580 or else Requires_Overriding (Subp)
10581 or else
10582 (Has_Controlling_Result (Subp)
10583 and then Present (Alias_Subp)
10584 and then not Comes_From_Source (Subp)
10585 and then Sloc (Subp) = Sloc (First_Subtype (T))))
10586 and then not Is_TSS (Subp, TSS_Stream_Input)
10587 and then not Is_TSS (Subp, TSS_Stream_Output)
10588 and then not Is_Abstract_Type (T)
10589 and then not Is_Predefined_Interface_Primitive (Subp)
10590
10591 -- Ada 2005 (AI-251): Do not consider hidden entities associated
10592 -- with abstract interface types because the check will be done
10593 -- with the aliased entity (otherwise we generate a duplicated
10594 -- error message).
10595
10596 and then not Present (Interface_Alias (Subp))
10597 then
10598 if Present (Alias_Subp) then
10599
10600 -- Only perform the check for a derived subprogram when the
10601 -- type has an explicit record extension. This avoids incorrect
10602 -- flagging of abstract subprograms for the case of a type
10603 -- without an extension that is derived from a formal type
10604 -- with a tagged actual (can occur within a private part).
10605
10606 -- Ada 2005 (AI-391): In the case of an inherited function with
10607 -- a controlling result of the type, the rule does not apply if
10608 -- the type is a null extension (unless the parent function
10609 -- itself is abstract, in which case the function must still be
10610 -- be overridden). The expander will generate an overriding
10611 -- wrapper function calling the parent subprogram (see
10612 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
10613
10614 Type_Def := Type_Definition (Parent (T));
10615
10616 if Nkind (Type_Def) = N_Derived_Type_Definition
10617 and then Present (Record_Extension_Part (Type_Def))
10618 and then
10619 (Ada_Version < Ada_2005
10620 or else not Is_Null_Extension (T)
10621 or else Ekind (Subp) = E_Procedure
10622 or else not Has_Controlling_Result (Subp)
10623 or else Is_Abstract_Subprogram (Alias_Subp)
10624 or else Requires_Overriding (Subp)
10625 or else Is_Access_Type (Etype (Subp)))
10626 then
10627 -- Avoid reporting error in case of abstract predefined
10628 -- primitive inherited from interface type because the
10629 -- body of internally generated predefined primitives
10630 -- of tagged types are generated later by Freeze_Type
10631
10632 if Is_Interface (Root_Type (T))
10633 and then Is_Abstract_Subprogram (Subp)
10634 and then Is_Predefined_Dispatching_Operation (Subp)
10635 and then not Comes_From_Source (Ultimate_Alias (Subp))
10636 then
10637 null;
10638
10639 -- A null extension is not obliged to override an inherited
10640 -- procedure subject to pragma Extensions_Visible with value
10641 -- False and at least one controlling OUT parameter
10642 -- (SPARK RM 6.1.7(6)).
10643
10644 elsif Is_Null_Extension (T)
10645 and then Is_EVF_Procedure (Subp)
10646 then
10647 null;
10648
10649 else
10650 Error_Msg_NE
10651 ("type must be declared abstract or & overridden",
10652 T, Subp);
10653
10654 -- Traverse the whole chain of aliased subprograms to
10655 -- complete the error notification. This is especially
10656 -- useful for traceability of the chain of entities when
10657 -- the subprogram corresponds with an interface
10658 -- subprogram (which may be defined in another package).
10659
10660 if Present (Alias_Subp) then
10661 declare
10662 E : Entity_Id;
10663
10664 begin
10665 E := Subp;
10666 while Present (Alias (E)) loop
10667
10668 -- Avoid reporting redundant errors on entities
10669 -- inherited from interfaces
10670
10671 if Sloc (E) /= Sloc (T) then
10672 Error_Msg_Sloc := Sloc (E);
10673 Error_Msg_NE
10674 ("\& has been inherited #", T, Subp);
10675 end if;
10676
10677 E := Alias (E);
10678 end loop;
10679
10680 Error_Msg_Sloc := Sloc (E);
10681
10682 -- AI05-0068: report if there is an overriding
10683 -- non-abstract subprogram that is invisible.
10684
10685 if Is_Hidden (E)
10686 and then not Is_Abstract_Subprogram (E)
10687 then
10688 Error_Msg_NE
10689 ("\& subprogram# is not visible",
10690 T, Subp);
10691
10692 -- Clarify the case where a non-null extension must
10693 -- override inherited procedure subject to pragma
10694 -- Extensions_Visible with value False and at least
10695 -- one controlling OUT param.
10696
10697 elsif Is_EVF_Procedure (E) then
10698 Error_Msg_NE
10699 ("\& # is subject to Extensions_Visible False",
10700 T, Subp);
10701
10702 else
10703 Error_Msg_NE
10704 ("\& has been inherited from subprogram #",
10705 T, Subp);
10706 end if;
10707 end;
10708 end if;
10709 end if;
10710
10711 -- Ada 2005 (AI-345): Protected or task type implementing
10712 -- abstract interfaces.
10713
10714 elsif Is_Concurrent_Record_Type (T)
10715 and then Present (Interfaces (T))
10716 then
10717 -- There is no need to check here RM 9.4(11.9/3) since we
10718 -- are processing the corresponding record type and the
10719 -- mode of the overriding subprograms was verified by
10720 -- Check_Conformance when the corresponding concurrent
10721 -- type declaration was analyzed.
10722
10723 Error_Msg_NE
10724 ("interface subprogram & must be overridden", T, Subp);
10725
10726 -- Examine primitive operations of synchronized type to find
10727 -- homonyms that have the wrong profile.
10728
10729 declare
10730 Prim : Entity_Id;
10731
10732 begin
10733 Prim := First_Entity (Corresponding_Concurrent_Type (T));
10734 while Present (Prim) loop
10735 if Chars (Prim) = Chars (Subp) then
10736 Error_Msg_NE
10737 ("profile is not type conformant with prefixed "
10738 & "view profile of inherited operation&",
10739 Prim, Subp);
10740 end if;
10741
10742 Next_Entity (Prim);
10743 end loop;
10744 end;
10745 end if;
10746
10747 else
10748 Error_Msg_Node_2 := T;
10749 Error_Msg_N
10750 ("abstract subprogram& not allowed for type&", Subp);
10751
10752 -- Also post unconditional warning on the type (unconditional
10753 -- so that if there are more than one of these cases, we get
10754 -- them all, and not just the first one).
10755
10756 Error_Msg_Node_2 := Subp;
10757 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
10758 end if;
10759
10760 -- A subprogram subject to pragma Extensions_Visible with value
10761 -- "True" cannot override a subprogram subject to the same pragma
10762 -- with value "False" (SPARK RM 6.1.7(5)).
10763
10764 elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True
10765 and then Present (Overridden_Operation (Subp))
10766 and then Extensions_Visible_Status (Overridden_Operation (Subp)) =
10767 Extensions_Visible_False
10768 then
10769 Error_Msg_Sloc := Sloc (Overridden_Operation (Subp));
10770 Error_Msg_N
10771 ("subprogram & with Extensions_Visible True cannot override "
10772 & "subprogram # with Extensions_Visible False", Subp);
10773 end if;
10774
10775 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10776
10777 -- Subp is an expander-generated procedure which maps an interface
10778 -- alias to a protected wrapper. The interface alias is flagged by
10779 -- pragma Implemented. Ensure that Subp is a procedure when the
10780 -- implementation kind is By_Protected_Procedure or an entry when
10781 -- By_Entry.
10782
10783 if Ada_Version >= Ada_2012
10784 and then Is_Hidden (Subp)
10785 and then Present (Interface_Alias (Subp))
10786 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
10787 then
10788 Check_Pragma_Implemented (Subp);
10789 end if;
10790
10791 -- Subp is an interface primitive which overrides another interface
10792 -- primitive marked with pragma Implemented.
10793
10794 if Ada_Version >= Ada_2012
10795 and then Present (Overridden_Operation (Subp))
10796 and then Has_Rep_Pragma
10797 (Overridden_Operation (Subp), Name_Implemented)
10798 then
10799 -- If the overriding routine is also marked by Implemented, check
10800 -- that the two implementation kinds are conforming.
10801
10802 if Has_Rep_Pragma (Subp, Name_Implemented) then
10803 Check_Pragma_Implemented
10804 (Subp => Subp,
10805 Iface_Subp => Overridden_Operation (Subp));
10806
10807 -- Otherwise the overriding routine inherits the implementation
10808 -- kind from the overridden subprogram.
10809
10810 else
10811 Inherit_Pragma_Implemented
10812 (Subp => Subp,
10813 Iface_Subp => Overridden_Operation (Subp));
10814 end if;
10815 end if;
10816
10817 -- If the operation is a wrapper for a synchronized primitive, it
10818 -- may be called indirectly through a dispatching select. We assume
10819 -- that it will be referenced elsewhere indirectly, and suppress
10820 -- warnings about an unused entity.
10821
10822 if Is_Primitive_Wrapper (Subp)
10823 and then Present (Wrapped_Entity (Subp))
10824 then
10825 Set_Referenced (Wrapped_Entity (Subp));
10826 end if;
10827
10828 Next_Elmt (Elmt);
10829 end loop;
10830 end Check_Abstract_Overriding;
10831
10832 ------------------------------------------------
10833 -- Check_Access_Discriminant_Requires_Limited --
10834 ------------------------------------------------
10835
10836 procedure Check_Access_Discriminant_Requires_Limited
10837 (D : Node_Id;
10838 Loc : Node_Id)
10839 is
10840 begin
10841 -- A discriminant_specification for an access discriminant shall appear
10842 -- only in the declaration for a task or protected type, or for a type
10843 -- with the reserved word 'limited' in its definition or in one of its
10844 -- ancestors (RM 3.7(10)).
10845
10846 -- AI-0063: The proper condition is that type must be immutably limited,
10847 -- or else be a partial view.
10848
10849 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
10850 if Is_Limited_View (Current_Scope)
10851 or else
10852 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
10853 and then Limited_Present (Parent (Current_Scope)))
10854 then
10855 null;
10856
10857 else
10858 Error_Msg_N
10859 ("access discriminants allowed only for limited types", Loc);
10860 end if;
10861 end if;
10862 end Check_Access_Discriminant_Requires_Limited;
10863
10864 -----------------------------------
10865 -- Check_Aliased_Component_Types --
10866 -----------------------------------
10867
10868 procedure Check_Aliased_Component_Types (T : Entity_Id) is
10869 C : Entity_Id;
10870
10871 begin
10872 -- ??? Also need to check components of record extensions, but not
10873 -- components of protected types (which are always limited).
10874
10875 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10876 -- types to be unconstrained. This is safe because it is illegal to
10877 -- create access subtypes to such types with explicit discriminant
10878 -- constraints.
10879
10880 if not Is_Limited_Type (T) then
10881 if Ekind (T) = E_Record_Type then
10882 C := First_Component (T);
10883 while Present (C) loop
10884 if Is_Aliased (C)
10885 and then Has_Discriminants (Etype (C))
10886 and then not Is_Constrained (Etype (C))
10887 and then not In_Instance_Body
10888 and then Ada_Version < Ada_2005
10889 then
10890 Error_Msg_N
10891 ("aliased component must be constrained (RM 3.6(11))",
10892 C);
10893 end if;
10894
10895 Next_Component (C);
10896 end loop;
10897
10898 elsif Ekind (T) = E_Array_Type then
10899 if Has_Aliased_Components (T)
10900 and then Has_Discriminants (Component_Type (T))
10901 and then not Is_Constrained (Component_Type (T))
10902 and then not In_Instance_Body
10903 and then Ada_Version < Ada_2005
10904 then
10905 Error_Msg_N
10906 ("aliased component type must be constrained (RM 3.6(11))",
10907 T);
10908 end if;
10909 end if;
10910 end if;
10911 end Check_Aliased_Component_Types;
10912
10913 ---------------------------------------
10914 -- Check_Anonymous_Access_Components --
10915 ---------------------------------------
10916
10917 procedure Check_Anonymous_Access_Components
10918 (Typ_Decl : Node_Id;
10919 Typ : Entity_Id;
10920 Prev : Entity_Id;
10921 Comp_List : Node_Id)
10922 is
10923 Loc : constant Source_Ptr := Sloc (Typ_Decl);
10924 Anon_Access : Entity_Id;
10925 Acc_Def : Node_Id;
10926 Comp : Node_Id;
10927 Comp_Def : Node_Id;
10928 Decl : Node_Id;
10929 Type_Def : Node_Id;
10930
10931 procedure Build_Incomplete_Type_Declaration;
10932 -- If the record type contains components that include an access to the
10933 -- current record, then create an incomplete type declaration for the
10934 -- record, to be used as the designated type of the anonymous access.
10935 -- This is done only once, and only if there is no previous partial
10936 -- view of the type.
10937
10938 function Designates_T (Subt : Node_Id) return Boolean;
10939 -- Check whether a node designates the enclosing record type, or 'Class
10940 -- of that type
10941
10942 function Mentions_T (Acc_Def : Node_Id) return Boolean;
10943 -- Check whether an access definition includes a reference to
10944 -- the enclosing record type. The reference can be a subtype mark
10945 -- in the access definition itself, a 'Class attribute reference, or
10946 -- recursively a reference appearing in a parameter specification
10947 -- or result definition of an access_to_subprogram definition.
10948
10949 --------------------------------------
10950 -- Build_Incomplete_Type_Declaration --
10951 --------------------------------------
10952
10953 procedure Build_Incomplete_Type_Declaration is
10954 Decl : Node_Id;
10955 Inc_T : Entity_Id;
10956 H : Entity_Id;
10957
10958 -- Is_Tagged indicates whether the type is tagged. It is tagged if
10959 -- it's "is new ... with record" or else "is tagged record ...".
10960
10961 Is_Tagged : constant Boolean :=
10962 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
10963 and then
10964 Present (Record_Extension_Part (Type_Definition (Typ_Decl))))
10965 or else
10966 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
10967 and then Tagged_Present (Type_Definition (Typ_Decl)));
10968
10969 begin
10970 -- If there is a previous partial view, no need to create a new one
10971 -- If the partial view, given by Prev, is incomplete, If Prev is
10972 -- a private declaration, full declaration is flagged accordingly.
10973
10974 if Prev /= Typ then
10975 if Is_Tagged then
10976 Make_Class_Wide_Type (Prev);
10977 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
10978 Set_Etype (Class_Wide_Type (Typ), Typ);
10979 end if;
10980
10981 return;
10982
10983 elsif Has_Private_Declaration (Typ) then
10984
10985 -- If we refer to T'Class inside T, and T is the completion of a
10986 -- private type, then make sure the class-wide type exists.
10987
10988 if Is_Tagged then
10989 Make_Class_Wide_Type (Typ);
10990 end if;
10991
10992 return;
10993
10994 -- If there was a previous anonymous access type, the incomplete
10995 -- type declaration will have been created already.
10996
10997 elsif Present (Current_Entity (Typ))
10998 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
10999 and then Full_View (Current_Entity (Typ)) = Typ
11000 then
11001 if Is_Tagged
11002 and then Comes_From_Source (Current_Entity (Typ))
11003 and then not Is_Tagged_Type (Current_Entity (Typ))
11004 then
11005 Make_Class_Wide_Type (Typ);
11006 Error_Msg_N
11007 ("incomplete view of tagged type should be declared tagged??",
11008 Parent (Current_Entity (Typ)));
11009 end if;
11010 return;
11011
11012 else
11013 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
11014 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
11015
11016 -- Type has already been inserted into the current scope. Remove
11017 -- it, and add incomplete declaration for type, so that subsequent
11018 -- anonymous access types can use it. The entity is unchained from
11019 -- the homonym list and from immediate visibility. After analysis,
11020 -- the entity in the incomplete declaration becomes immediately
11021 -- visible in the record declaration that follows.
11022
11023 H := Current_Entity (Typ);
11024
11025 if H = Typ then
11026 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
11027 else
11028 while Present (H)
11029 and then Homonym (H) /= Typ
11030 loop
11031 H := Homonym (Typ);
11032 end loop;
11033
11034 Set_Homonym (H, Homonym (Typ));
11035 end if;
11036
11037 Insert_Before (Typ_Decl, Decl);
11038 Analyze (Decl);
11039 Set_Full_View (Inc_T, Typ);
11040
11041 if Is_Tagged then
11042
11043 -- Create a common class-wide type for both views, and set the
11044 -- Etype of the class-wide type to the full view.
11045
11046 Make_Class_Wide_Type (Inc_T);
11047 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
11048 Set_Etype (Class_Wide_Type (Typ), Typ);
11049 end if;
11050 end if;
11051 end Build_Incomplete_Type_Declaration;
11052
11053 ------------------
11054 -- Designates_T --
11055 ------------------
11056
11057 function Designates_T (Subt : Node_Id) return Boolean is
11058 Type_Id : constant Name_Id := Chars (Typ);
11059
11060 function Names_T (Nam : Node_Id) return Boolean;
11061 -- The record type has not been introduced in the current scope
11062 -- yet, so we must examine the name of the type itself, either
11063 -- an identifier T, or an expanded name of the form P.T, where
11064 -- P denotes the current scope.
11065
11066 -------------
11067 -- Names_T --
11068 -------------
11069
11070 function Names_T (Nam : Node_Id) return Boolean is
11071 begin
11072 if Nkind (Nam) = N_Identifier then
11073 return Chars (Nam) = Type_Id;
11074
11075 elsif Nkind (Nam) = N_Selected_Component then
11076 if Chars (Selector_Name (Nam)) = Type_Id then
11077 if Nkind (Prefix (Nam)) = N_Identifier then
11078 return Chars (Prefix (Nam)) = Chars (Current_Scope);
11079
11080 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
11081 return Chars (Selector_Name (Prefix (Nam))) =
11082 Chars (Current_Scope);
11083 else
11084 return False;
11085 end if;
11086
11087 else
11088 return False;
11089 end if;
11090
11091 else
11092 return False;
11093 end if;
11094 end Names_T;
11095
11096 -- Start of processing for Designates_T
11097
11098 begin
11099 if Nkind (Subt) = N_Identifier then
11100 return Chars (Subt) = Type_Id;
11101
11102 -- Reference can be through an expanded name which has not been
11103 -- analyzed yet, and which designates enclosing scopes.
11104
11105 elsif Nkind (Subt) = N_Selected_Component then
11106 if Names_T (Subt) then
11107 return True;
11108
11109 -- Otherwise it must denote an entity that is already visible.
11110 -- The access definition may name a subtype of the enclosing
11111 -- type, if there is a previous incomplete declaration for it.
11112
11113 else
11114 Find_Selected_Component (Subt);
11115 return
11116 Is_Entity_Name (Subt)
11117 and then Scope (Entity (Subt)) = Current_Scope
11118 and then
11119 (Chars (Base_Type (Entity (Subt))) = Type_Id
11120 or else
11121 (Is_Class_Wide_Type (Entity (Subt))
11122 and then
11123 Chars (Etype (Base_Type (Entity (Subt)))) =
11124 Type_Id));
11125 end if;
11126
11127 -- A reference to the current type may appear as the prefix of
11128 -- a 'Class attribute.
11129
11130 elsif Nkind (Subt) = N_Attribute_Reference
11131 and then Attribute_Name (Subt) = Name_Class
11132 then
11133 return Names_T (Prefix (Subt));
11134
11135 else
11136 return False;
11137 end if;
11138 end Designates_T;
11139
11140 ----------------
11141 -- Mentions_T --
11142 ----------------
11143
11144 function Mentions_T (Acc_Def : Node_Id) return Boolean is
11145 Param_Spec : Node_Id;
11146
11147 Acc_Subprg : constant Node_Id :=
11148 Access_To_Subprogram_Definition (Acc_Def);
11149
11150 begin
11151 if No (Acc_Subprg) then
11152 return Designates_T (Subtype_Mark (Acc_Def));
11153 end if;
11154
11155 -- Component is an access_to_subprogram: examine its formals,
11156 -- and result definition in the case of an access_to_function.
11157
11158 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
11159 while Present (Param_Spec) loop
11160 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
11161 and then Mentions_T (Parameter_Type (Param_Spec))
11162 then
11163 return True;
11164
11165 elsif Designates_T (Parameter_Type (Param_Spec)) then
11166 return True;
11167 end if;
11168
11169 Next (Param_Spec);
11170 end loop;
11171
11172 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
11173 if Nkind (Result_Definition (Acc_Subprg)) =
11174 N_Access_Definition
11175 then
11176 return Mentions_T (Result_Definition (Acc_Subprg));
11177 else
11178 return Designates_T (Result_Definition (Acc_Subprg));
11179 end if;
11180 end if;
11181
11182 return False;
11183 end Mentions_T;
11184
11185 -- Start of processing for Check_Anonymous_Access_Components
11186
11187 begin
11188 if No (Comp_List) then
11189 return;
11190 end if;
11191
11192 Comp := First (Component_Items (Comp_List));
11193 while Present (Comp) loop
11194 if Nkind (Comp) = N_Component_Declaration
11195 and then Present
11196 (Access_Definition (Component_Definition (Comp)))
11197 and then
11198 Mentions_T (Access_Definition (Component_Definition (Comp)))
11199 then
11200 Comp_Def := Component_Definition (Comp);
11201 Acc_Def :=
11202 Access_To_Subprogram_Definition (Access_Definition (Comp_Def));
11203
11204 Build_Incomplete_Type_Declaration;
11205 Anon_Access := Make_Temporary (Loc, 'S');
11206
11207 -- Create a declaration for the anonymous access type: either
11208 -- an access_to_object or an access_to_subprogram.
11209
11210 if Present (Acc_Def) then
11211 if Nkind (Acc_Def) = N_Access_Function_Definition then
11212 Type_Def :=
11213 Make_Access_Function_Definition (Loc,
11214 Parameter_Specifications =>
11215 Parameter_Specifications (Acc_Def),
11216 Result_Definition => Result_Definition (Acc_Def));
11217 else
11218 Type_Def :=
11219 Make_Access_Procedure_Definition (Loc,
11220 Parameter_Specifications =>
11221 Parameter_Specifications (Acc_Def));
11222 end if;
11223
11224 else
11225 Type_Def :=
11226 Make_Access_To_Object_Definition (Loc,
11227 Subtype_Indication =>
11228 Relocate_Node
11229 (Subtype_Mark (Access_Definition (Comp_Def))));
11230
11231 Set_Constant_Present
11232 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
11233 Set_All_Present
11234 (Type_Def, All_Present (Access_Definition (Comp_Def)));
11235 end if;
11236
11237 Set_Null_Exclusion_Present
11238 (Type_Def,
11239 Null_Exclusion_Present (Access_Definition (Comp_Def)));
11240
11241 Decl :=
11242 Make_Full_Type_Declaration (Loc,
11243 Defining_Identifier => Anon_Access,
11244 Type_Definition => Type_Def);
11245
11246 Insert_Before (Typ_Decl, Decl);
11247 Analyze (Decl);
11248
11249 -- If an access to subprogram, create the extra formals
11250
11251 if Present (Acc_Def) then
11252 Create_Extra_Formals (Designated_Type (Anon_Access));
11253
11254 -- If an access to object, preserve entity of designated type,
11255 -- for ASIS use, before rewriting the component definition.
11256
11257 else
11258 declare
11259 Desig : Entity_Id;
11260
11261 begin
11262 Desig := Entity (Subtype_Indication (Type_Def));
11263
11264 -- If the access definition is to the current record,
11265 -- the visible entity at this point is an incomplete
11266 -- type. Retrieve the full view to simplify ASIS queries
11267
11268 if Ekind (Desig) = E_Incomplete_Type then
11269 Desig := Full_View (Desig);
11270 end if;
11271
11272 Set_Entity
11273 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
11274 end;
11275 end if;
11276
11277 Rewrite (Comp_Def,
11278 Make_Component_Definition (Loc,
11279 Subtype_Indication =>
11280 New_Occurrence_Of (Anon_Access, Loc)));
11281
11282 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
11283 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
11284 else
11285 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
11286 end if;
11287
11288 Set_Is_Local_Anonymous_Access (Anon_Access);
11289 end if;
11290
11291 Next (Comp);
11292 end loop;
11293
11294 if Present (Variant_Part (Comp_List)) then
11295 declare
11296 V : Node_Id;
11297 begin
11298 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
11299 while Present (V) loop
11300 Check_Anonymous_Access_Components
11301 (Typ_Decl, Typ, Prev, Component_List (V));
11302 Next_Non_Pragma (V);
11303 end loop;
11304 end;
11305 end if;
11306 end Check_Anonymous_Access_Components;
11307
11308 ----------------------
11309 -- Check_Completion --
11310 ----------------------
11311
11312 procedure Check_Completion (Body_Id : Node_Id := Empty) is
11313 E : Entity_Id;
11314
11315 procedure Post_Error;
11316 -- Post error message for lack of completion for entity E
11317
11318 ----------------
11319 -- Post_Error --
11320 ----------------
11321
11322 procedure Post_Error is
11323 procedure Missing_Body;
11324 -- Output missing body message
11325
11326 ------------------
11327 -- Missing_Body --
11328 ------------------
11329
11330 procedure Missing_Body is
11331 begin
11332 -- Spec is in same unit, so we can post on spec
11333
11334 if In_Same_Source_Unit (Body_Id, E) then
11335 Error_Msg_N ("missing body for &", E);
11336
11337 -- Spec is in a separate unit, so we have to post on the body
11338
11339 else
11340 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
11341 end if;
11342 end Missing_Body;
11343
11344 -- Start of processing for Post_Error
11345
11346 begin
11347 if not Comes_From_Source (E) then
11348 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
11349
11350 -- It may be an anonymous protected type created for a
11351 -- single variable. Post error on variable, if present.
11352
11353 declare
11354 Var : Entity_Id;
11355
11356 begin
11357 Var := First_Entity (Current_Scope);
11358 while Present (Var) loop
11359 exit when Etype (Var) = E
11360 and then Comes_From_Source (Var);
11361
11362 Next_Entity (Var);
11363 end loop;
11364
11365 if Present (Var) then
11366 E := Var;
11367 end if;
11368 end;
11369 end if;
11370 end if;
11371
11372 -- If a generated entity has no completion, then either previous
11373 -- semantic errors have disabled the expansion phase, or else we had
11374 -- missing subunits, or else we are compiling without expansion,
11375 -- or else something is very wrong.
11376
11377 if not Comes_From_Source (E) then
11378 pragma Assert
11379 (Serious_Errors_Detected > 0
11380 or else Configurable_Run_Time_Violations > 0
11381 or else Subunits_Missing
11382 or else not Expander_Active);
11383 return;
11384
11385 -- Here for source entity
11386
11387 else
11388 -- Here if no body to post the error message, so we post the error
11389 -- on the declaration that has no completion. This is not really
11390 -- the right place to post it, think about this later ???
11391
11392 if No (Body_Id) then
11393 if Is_Type (E) then
11394 Error_Msg_NE
11395 ("missing full declaration for }", Parent (E), E);
11396 else
11397 Error_Msg_NE ("missing body for &", Parent (E), E);
11398 end if;
11399
11400 -- Package body has no completion for a declaration that appears
11401 -- in the corresponding spec. Post error on the body, with a
11402 -- reference to the non-completed declaration.
11403
11404 else
11405 Error_Msg_Sloc := Sloc (E);
11406
11407 if Is_Type (E) then
11408 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
11409
11410 elsif Is_Overloadable (E)
11411 and then Current_Entity_In_Scope (E) /= E
11412 then
11413 -- It may be that the completion is mistyped and appears as
11414 -- a distinct overloading of the entity.
11415
11416 declare
11417 Candidate : constant Entity_Id :=
11418 Current_Entity_In_Scope (E);
11419 Decl : constant Node_Id :=
11420 Unit_Declaration_Node (Candidate);
11421
11422 begin
11423 if Is_Overloadable (Candidate)
11424 and then Ekind (Candidate) = Ekind (E)
11425 and then Nkind (Decl) = N_Subprogram_Body
11426 and then Acts_As_Spec (Decl)
11427 then
11428 Check_Type_Conformant (Candidate, E);
11429
11430 else
11431 Missing_Body;
11432 end if;
11433 end;
11434
11435 else
11436 Missing_Body;
11437 end if;
11438 end if;
11439 end if;
11440 end Post_Error;
11441
11442 -- Local variables
11443
11444 Pack_Id : constant Entity_Id := Current_Scope;
11445
11446 -- Start of processing for Check_Completion
11447
11448 begin
11449 E := First_Entity (Pack_Id);
11450 while Present (E) loop
11451 if Is_Intrinsic_Subprogram (E) then
11452 null;
11453
11454 -- The following situation requires special handling: a child unit
11455 -- that appears in the context clause of the body of its parent:
11456
11457 -- procedure Parent.Child (...);
11458
11459 -- with Parent.Child;
11460 -- package body Parent is
11461
11462 -- Here Parent.Child appears as a local entity, but should not be
11463 -- flagged as requiring completion, because it is a compilation
11464 -- unit.
11465
11466 -- Ignore missing completion for a subprogram that does not come from
11467 -- source (including the _Call primitive operation of RAS types,
11468 -- which has to have the flag Comes_From_Source for other purposes):
11469 -- we assume that the expander will provide the missing completion.
11470 -- In case of previous errors, other expansion actions that provide
11471 -- bodies for null procedures with not be invoked, so inhibit message
11472 -- in those cases.
11473
11474 -- Note that E_Operator is not in the list that follows, because
11475 -- this kind is reserved for predefined operators, that are
11476 -- intrinsic and do not need completion.
11477
11478 elsif Ekind_In (E, E_Function,
11479 E_Procedure,
11480 E_Generic_Function,
11481 E_Generic_Procedure)
11482 then
11483 if Has_Completion (E) then
11484 null;
11485
11486 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
11487 null;
11488
11489 elsif Is_Subprogram (E)
11490 and then (not Comes_From_Source (E)
11491 or else Chars (E) = Name_uCall)
11492 then
11493 null;
11494
11495 elsif
11496 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
11497 then
11498 null;
11499
11500 elsif Nkind (Parent (E)) = N_Procedure_Specification
11501 and then Null_Present (Parent (E))
11502 and then Serious_Errors_Detected > 0
11503 then
11504 null;
11505
11506 else
11507 Post_Error;
11508 end if;
11509
11510 elsif Is_Entry (E) then
11511 if not Has_Completion (E) and then
11512 (Ekind (Scope (E)) = E_Protected_Object
11513 or else Ekind (Scope (E)) = E_Protected_Type)
11514 then
11515 Post_Error;
11516 end if;
11517
11518 elsif Is_Package_Or_Generic_Package (E) then
11519 if Unit_Requires_Body (E) then
11520 if not Has_Completion (E)
11521 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
11522 N_Compilation_Unit
11523 then
11524 Post_Error;
11525 end if;
11526
11527 elsif not Is_Child_Unit (E) then
11528 May_Need_Implicit_Body (E);
11529 end if;
11530
11531 -- A formal incomplete type (Ada 2012) does not require a completion;
11532 -- other incomplete type declarations do.
11533
11534 elsif Ekind (E) = E_Incomplete_Type
11535 and then No (Underlying_Type (E))
11536 and then not Is_Generic_Type (E)
11537 then
11538 Post_Error;
11539
11540 elsif Ekind_In (E, E_Task_Type, E_Protected_Type)
11541 and then not Has_Completion (E)
11542 then
11543 Post_Error;
11544
11545 -- A single task declared in the current scope is a constant, verify
11546 -- that the body of its anonymous type is in the same scope. If the
11547 -- task is defined elsewhere, this may be a renaming declaration for
11548 -- which no completion is needed.
11549
11550 elsif Ekind (E) = E_Constant
11551 and then Ekind (Etype (E)) = E_Task_Type
11552 and then not Has_Completion (Etype (E))
11553 and then Scope (Etype (E)) = Current_Scope
11554 then
11555 Post_Error;
11556
11557 elsif Ekind (E) = E_Protected_Object
11558 and then not Has_Completion (Etype (E))
11559 then
11560 Post_Error;
11561
11562 elsif Ekind (E) = E_Record_Type then
11563 if Is_Tagged_Type (E) then
11564 Check_Abstract_Overriding (E);
11565 Check_Conventions (E);
11566 end if;
11567
11568 Check_Aliased_Component_Types (E);
11569
11570 elsif Ekind (E) = E_Array_Type then
11571 Check_Aliased_Component_Types (E);
11572
11573 end if;
11574
11575 Next_Entity (E);
11576 end loop;
11577 end Check_Completion;
11578
11579 ------------------------------------
11580 -- Check_CPP_Type_Has_No_Defaults --
11581 ------------------------------------
11582
11583 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
11584 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
11585 Clist : Node_Id;
11586 Comp : Node_Id;
11587
11588 begin
11589 -- Obtain the component list
11590
11591 if Nkind (Tdef) = N_Record_Definition then
11592 Clist := Component_List (Tdef);
11593 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
11594 Clist := Component_List (Record_Extension_Part (Tdef));
11595 end if;
11596
11597 -- Check all components to ensure no default expressions
11598
11599 if Present (Clist) then
11600 Comp := First (Component_Items (Clist));
11601 while Present (Comp) loop
11602 if Present (Expression (Comp)) then
11603 Error_Msg_N
11604 ("component of imported 'C'P'P type cannot have "
11605 & "default expression", Expression (Comp));
11606 end if;
11607
11608 Next (Comp);
11609 end loop;
11610 end if;
11611 end Check_CPP_Type_Has_No_Defaults;
11612
11613 ----------------------------
11614 -- Check_Delta_Expression --
11615 ----------------------------
11616
11617 procedure Check_Delta_Expression (E : Node_Id) is
11618 begin
11619 if not (Is_Real_Type (Etype (E))) then
11620 Wrong_Type (E, Any_Real);
11621
11622 elsif not Is_OK_Static_Expression (E) then
11623 Flag_Non_Static_Expr
11624 ("non-static expression used for delta value!", E);
11625
11626 elsif not UR_Is_Positive (Expr_Value_R (E)) then
11627 Error_Msg_N ("delta expression must be positive", E);
11628
11629 else
11630 return;
11631 end if;
11632
11633 -- If any of above errors occurred, then replace the incorrect
11634 -- expression by the real 0.1, which should prevent further errors.
11635
11636 Rewrite (E,
11637 Make_Real_Literal (Sloc (E), Ureal_Tenth));
11638 Analyze_And_Resolve (E, Standard_Float);
11639 end Check_Delta_Expression;
11640
11641 -----------------------------
11642 -- Check_Digits_Expression --
11643 -----------------------------
11644
11645 procedure Check_Digits_Expression (E : Node_Id) is
11646 begin
11647 if not (Is_Integer_Type (Etype (E))) then
11648 Wrong_Type (E, Any_Integer);
11649
11650 elsif not Is_OK_Static_Expression (E) then
11651 Flag_Non_Static_Expr
11652 ("non-static expression used for digits value!", E);
11653
11654 elsif Expr_Value (E) <= 0 then
11655 Error_Msg_N ("digits value must be greater than zero", E);
11656
11657 else
11658 return;
11659 end if;
11660
11661 -- If any of above errors occurred, then replace the incorrect
11662 -- expression by the integer 1, which should prevent further errors.
11663
11664 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
11665 Analyze_And_Resolve (E, Standard_Integer);
11666
11667 end Check_Digits_Expression;
11668
11669 --------------------------
11670 -- Check_Initialization --
11671 --------------------------
11672
11673 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
11674 begin
11675 -- Special processing for limited types
11676
11677 if Is_Limited_Type (T)
11678 and then not In_Instance
11679 and then not In_Inlined_Body
11680 then
11681 if not OK_For_Limited_Init (T, Exp) then
11682
11683 -- In GNAT mode, this is just a warning, to allow it to be evilly
11684 -- turned off. Otherwise it is a real error.
11685
11686 if GNAT_Mode then
11687 Error_Msg_N
11688 ("??cannot initialize entities of limited type!", Exp);
11689
11690 elsif Ada_Version < Ada_2005 then
11691
11692 -- The side effect removal machinery may generate illegal Ada
11693 -- code to avoid the usage of access types and 'reference in
11694 -- SPARK mode. Since this is legal code with respect to theorem
11695 -- proving, do not emit the error.
11696
11697 if GNATprove_Mode
11698 and then Nkind (Exp) = N_Function_Call
11699 and then Nkind (Parent (Exp)) = N_Object_Declaration
11700 and then not Comes_From_Source
11701 (Defining_Identifier (Parent (Exp)))
11702 then
11703 null;
11704
11705 else
11706 Error_Msg_N
11707 ("cannot initialize entities of limited type", Exp);
11708 Explain_Limited_Type (T, Exp);
11709 end if;
11710
11711 else
11712 -- Specialize error message according to kind of illegal
11713 -- initial expression.
11714
11715 if Nkind (Exp) = N_Type_Conversion
11716 and then Nkind (Expression (Exp)) = N_Function_Call
11717 then
11718 Error_Msg_N
11719 ("illegal context for call"
11720 & " to function with limited result", Exp);
11721
11722 else
11723 Error_Msg_N
11724 ("initialization of limited object requires aggregate "
11725 & "or function call", Exp);
11726 end if;
11727 end if;
11728 end if;
11729 end if;
11730
11731 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11732 -- set unless we can be sure that no range check is required.
11733
11734 if (GNATprove_Mode or not Expander_Active)
11735 and then Is_Scalar_Type (T)
11736 and then not Is_In_Range (Exp, T, Assume_Valid => True)
11737 then
11738 Set_Do_Range_Check (Exp);
11739 end if;
11740 end Check_Initialization;
11741
11742 ----------------------
11743 -- Check_Interfaces --
11744 ----------------------
11745
11746 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
11747 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
11748
11749 Iface : Node_Id;
11750 Iface_Def : Node_Id;
11751 Iface_Typ : Entity_Id;
11752 Parent_Node : Node_Id;
11753
11754 Is_Task : Boolean := False;
11755 -- Set True if parent type or any progenitor is a task interface
11756
11757 Is_Protected : Boolean := False;
11758 -- Set True if parent type or any progenitor is a protected interface
11759
11760 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
11761 -- Check that a progenitor is compatible with declaration. If an error
11762 -- message is output, it is posted on Error_Node.
11763
11764 ------------------
11765 -- Check_Ifaces --
11766 ------------------
11767
11768 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
11769 Iface_Id : constant Entity_Id :=
11770 Defining_Identifier (Parent (Iface_Def));
11771 Type_Def : Node_Id;
11772
11773 begin
11774 if Nkind (N) = N_Private_Extension_Declaration then
11775 Type_Def := N;
11776 else
11777 Type_Def := Type_Definition (N);
11778 end if;
11779
11780 if Is_Task_Interface (Iface_Id) then
11781 Is_Task := True;
11782
11783 elsif Is_Protected_Interface (Iface_Id) then
11784 Is_Protected := True;
11785 end if;
11786
11787 if Is_Synchronized_Interface (Iface_Id) then
11788
11789 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11790 -- extension derived from a synchronized interface must explicitly
11791 -- be declared synchronized, because the full view will be a
11792 -- synchronized type.
11793
11794 if Nkind (N) = N_Private_Extension_Declaration then
11795 if not Synchronized_Present (N) then
11796 Error_Msg_NE
11797 ("private extension of& must be explicitly synchronized",
11798 N, Iface_Id);
11799 end if;
11800
11801 -- However, by 3.9.4(16/2), a full type that is a record extension
11802 -- is never allowed to derive from a synchronized interface (note
11803 -- that interfaces must be excluded from this check, because those
11804 -- are represented by derived type definitions in some cases).
11805
11806 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11807 and then not Interface_Present (Type_Definition (N))
11808 then
11809 Error_Msg_N ("record extension cannot derive from synchronized "
11810 & "interface", Error_Node);
11811 end if;
11812 end if;
11813
11814 -- Check that the characteristics of the progenitor are compatible
11815 -- with the explicit qualifier in the declaration.
11816 -- The check only applies to qualifiers that come from source.
11817 -- Limited_Present also appears in the declaration of corresponding
11818 -- records, and the check does not apply to them.
11819
11820 if Limited_Present (Type_Def)
11821 and then not
11822 Is_Concurrent_Record_Type (Defining_Identifier (N))
11823 then
11824 if Is_Limited_Interface (Parent_Type)
11825 and then not Is_Limited_Interface (Iface_Id)
11826 then
11827 Error_Msg_NE
11828 ("progenitor & must be limited interface",
11829 Error_Node, Iface_Id);
11830
11831 elsif
11832 (Task_Present (Iface_Def)
11833 or else Protected_Present (Iface_Def)
11834 or else Synchronized_Present (Iface_Def))
11835 and then Nkind (N) /= N_Private_Extension_Declaration
11836 and then not Error_Posted (N)
11837 then
11838 Error_Msg_NE
11839 ("progenitor & must be limited interface",
11840 Error_Node, Iface_Id);
11841 end if;
11842
11843 -- Protected interfaces can only inherit from limited, synchronized
11844 -- or protected interfaces.
11845
11846 elsif Nkind (N) = N_Full_Type_Declaration
11847 and then Protected_Present (Type_Def)
11848 then
11849 if Limited_Present (Iface_Def)
11850 or else Synchronized_Present (Iface_Def)
11851 or else Protected_Present (Iface_Def)
11852 then
11853 null;
11854
11855 elsif Task_Present (Iface_Def) then
11856 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11857 & "from task interface", Error_Node);
11858
11859 else
11860 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11861 & "from non-limited interface", Error_Node);
11862 end if;
11863
11864 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11865 -- limited and synchronized.
11866
11867 elsif Synchronized_Present (Type_Def) then
11868 if Limited_Present (Iface_Def)
11869 or else Synchronized_Present (Iface_Def)
11870 then
11871 null;
11872
11873 elsif Protected_Present (Iface_Def)
11874 and then Nkind (N) /= N_Private_Extension_Declaration
11875 then
11876 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11877 & "from protected interface", Error_Node);
11878
11879 elsif Task_Present (Iface_Def)
11880 and then Nkind (N) /= N_Private_Extension_Declaration
11881 then
11882 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11883 & "from task interface", Error_Node);
11884
11885 elsif not Is_Limited_Interface (Iface_Id) then
11886 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11887 & "from non-limited interface", Error_Node);
11888 end if;
11889
11890 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
11891 -- synchronized or task interfaces.
11892
11893 elsif Nkind (N) = N_Full_Type_Declaration
11894 and then Task_Present (Type_Def)
11895 then
11896 if Limited_Present (Iface_Def)
11897 or else Synchronized_Present (Iface_Def)
11898 or else Task_Present (Iface_Def)
11899 then
11900 null;
11901
11902 elsif Protected_Present (Iface_Def) then
11903 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11904 & "protected interface", Error_Node);
11905
11906 else
11907 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11908 & "non-limited interface", Error_Node);
11909 end if;
11910 end if;
11911 end Check_Ifaces;
11912
11913 -- Start of processing for Check_Interfaces
11914
11915 begin
11916 if Is_Interface (Parent_Type) then
11917 if Is_Task_Interface (Parent_Type) then
11918 Is_Task := True;
11919
11920 elsif Is_Protected_Interface (Parent_Type) then
11921 Is_Protected := True;
11922 end if;
11923 end if;
11924
11925 if Nkind (N) = N_Private_Extension_Declaration then
11926
11927 -- Check that progenitors are compatible with declaration
11928
11929 Iface := First (Interface_List (Def));
11930 while Present (Iface) loop
11931 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11932
11933 Parent_Node := Parent (Base_Type (Iface_Typ));
11934 Iface_Def := Type_Definition (Parent_Node);
11935
11936 if not Is_Interface (Iface_Typ) then
11937 Diagnose_Interface (Iface, Iface_Typ);
11938 else
11939 Check_Ifaces (Iface_Def, Iface);
11940 end if;
11941
11942 Next (Iface);
11943 end loop;
11944
11945 if Is_Task and Is_Protected then
11946 Error_Msg_N
11947 ("type cannot derive from task and protected interface", N);
11948 end if;
11949
11950 return;
11951 end if;
11952
11953 -- Full type declaration of derived type.
11954 -- Check compatibility with parent if it is interface type
11955
11956 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11957 and then Is_Interface (Parent_Type)
11958 then
11959 Parent_Node := Parent (Parent_Type);
11960
11961 -- More detailed checks for interface varieties
11962
11963 Check_Ifaces
11964 (Iface_Def => Type_Definition (Parent_Node),
11965 Error_Node => Subtype_Indication (Type_Definition (N)));
11966 end if;
11967
11968 Iface := First (Interface_List (Def));
11969 while Present (Iface) loop
11970 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11971
11972 Parent_Node := Parent (Base_Type (Iface_Typ));
11973 Iface_Def := Type_Definition (Parent_Node);
11974
11975 if not Is_Interface (Iface_Typ) then
11976 Diagnose_Interface (Iface, Iface_Typ);
11977
11978 else
11979 -- "The declaration of a specific descendant of an interface
11980 -- type freezes the interface type" RM 13.14
11981
11982 Freeze_Before (N, Iface_Typ);
11983 Check_Ifaces (Iface_Def, Error_Node => Iface);
11984 end if;
11985
11986 Next (Iface);
11987 end loop;
11988
11989 if Is_Task and Is_Protected then
11990 Error_Msg_N
11991 ("type cannot derive from task and protected interface", N);
11992 end if;
11993 end Check_Interfaces;
11994
11995 ------------------------------------
11996 -- Check_Or_Process_Discriminants --
11997 ------------------------------------
11998
11999 -- If an incomplete or private type declaration was already given for the
12000 -- type, the discriminants may have already been processed if they were
12001 -- present on the incomplete declaration. In this case a full conformance
12002 -- check has been performed in Find_Type_Name, and we then recheck here
12003 -- some properties that can't be checked on the partial view alone.
12004 -- Otherwise we call Process_Discriminants.
12005
12006 procedure Check_Or_Process_Discriminants
12007 (N : Node_Id;
12008 T : Entity_Id;
12009 Prev : Entity_Id := Empty)
12010 is
12011 begin
12012 if Has_Discriminants (T) then
12013
12014 -- Discriminants are already set on T if they were already present
12015 -- on the partial view. Make them visible to component declarations.
12016
12017 declare
12018 D : Entity_Id;
12019 -- Discriminant on T (full view) referencing expr on partial view
12020
12021 Prev_D : Entity_Id;
12022 -- Entity of corresponding discriminant on partial view
12023
12024 New_D : Node_Id;
12025 -- Discriminant specification for full view, expression is
12026 -- the syntactic copy on full view (which has been checked for
12027 -- conformance with partial view), only used here to post error
12028 -- message.
12029
12030 begin
12031 D := First_Discriminant (T);
12032 New_D := First (Discriminant_Specifications (N));
12033 while Present (D) loop
12034 Prev_D := Current_Entity (D);
12035 Set_Current_Entity (D);
12036 Set_Is_Immediately_Visible (D);
12037 Set_Homonym (D, Prev_D);
12038
12039 -- Handle the case where there is an untagged partial view and
12040 -- the full view is tagged: must disallow discriminants with
12041 -- defaults, unless compiling for Ada 2012, which allows a
12042 -- limited tagged type to have defaulted discriminants (see
12043 -- AI05-0214). However, suppress error here if it was already
12044 -- reported on the default expression of the partial view.
12045
12046 if Is_Tagged_Type (T)
12047 and then Present (Expression (Parent (D)))
12048 and then (not Is_Limited_Type (Current_Scope)
12049 or else Ada_Version < Ada_2012)
12050 and then not Error_Posted (Expression (Parent (D)))
12051 then
12052 if Ada_Version >= Ada_2012 then
12053 Error_Msg_N
12054 ("discriminants of nonlimited tagged type cannot have "
12055 & "defaults",
12056 Expression (New_D));
12057 else
12058 Error_Msg_N
12059 ("discriminants of tagged type cannot have defaults",
12060 Expression (New_D));
12061 end if;
12062 end if;
12063
12064 -- Ada 2005 (AI-230): Access discriminant allowed in
12065 -- non-limited record types.
12066
12067 if Ada_Version < Ada_2005 then
12068
12069 -- This restriction gets applied to the full type here. It
12070 -- has already been applied earlier to the partial view.
12071
12072 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
12073 end if;
12074
12075 Next_Discriminant (D);
12076 Next (New_D);
12077 end loop;
12078 end;
12079
12080 elsif Present (Discriminant_Specifications (N)) then
12081 Process_Discriminants (N, Prev);
12082 end if;
12083 end Check_Or_Process_Discriminants;
12084
12085 ----------------------
12086 -- Check_Real_Bound --
12087 ----------------------
12088
12089 procedure Check_Real_Bound (Bound : Node_Id) is
12090 begin
12091 if not Is_Real_Type (Etype (Bound)) then
12092 Error_Msg_N
12093 ("bound in real type definition must be of real type", Bound);
12094
12095 elsif not Is_OK_Static_Expression (Bound) then
12096 Flag_Non_Static_Expr
12097 ("non-static expression used for real type bound!", Bound);
12098
12099 else
12100 return;
12101 end if;
12102
12103 Rewrite
12104 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
12105 Analyze (Bound);
12106 Resolve (Bound, Standard_Float);
12107 end Check_Real_Bound;
12108
12109 ------------------------------
12110 -- Complete_Private_Subtype --
12111 ------------------------------
12112
12113 procedure Complete_Private_Subtype
12114 (Priv : Entity_Id;
12115 Full : Entity_Id;
12116 Full_Base : Entity_Id;
12117 Related_Nod : Node_Id)
12118 is
12119 Save_Next_Entity : Entity_Id;
12120 Save_Homonym : Entity_Id;
12121
12122 begin
12123 -- Set semantic attributes for (implicit) private subtype completion.
12124 -- If the full type has no discriminants, then it is a copy of the
12125 -- full view of the base. Otherwise, it is a subtype of the base with
12126 -- a possible discriminant constraint. Save and restore the original
12127 -- Next_Entity field of full to ensure that the calls to Copy_Node do
12128 -- not corrupt the entity chain.
12129
12130 -- Note that the type of the full view is the same entity as the type
12131 -- of the partial view. In this fashion, the subtype has access to the
12132 -- correct view of the parent.
12133
12134 Save_Next_Entity := Next_Entity (Full);
12135 Save_Homonym := Homonym (Priv);
12136
12137 case Ekind (Full_Base) is
12138 when Class_Wide_Kind
12139 | Private_Kind
12140 | Protected_Kind
12141 | Task_Kind
12142 | E_Record_Subtype
12143 | E_Record_Type
12144 =>
12145 Copy_Node (Priv, Full);
12146
12147 Set_Has_Discriminants
12148 (Full, Has_Discriminants (Full_Base));
12149 Set_Has_Unknown_Discriminants
12150 (Full, Has_Unknown_Discriminants (Full_Base));
12151 Set_First_Entity (Full, First_Entity (Full_Base));
12152 Set_Last_Entity (Full, Last_Entity (Full_Base));
12153
12154 -- If the underlying base type is constrained, we know that the
12155 -- full view of the subtype is constrained as well (the converse
12156 -- is not necessarily true).
12157
12158 if Is_Constrained (Full_Base) then
12159 Set_Is_Constrained (Full);
12160 end if;
12161
12162 when others =>
12163 Copy_Node (Full_Base, Full);
12164
12165 Set_Chars (Full, Chars (Priv));
12166 Conditional_Delay (Full, Priv);
12167 Set_Sloc (Full, Sloc (Priv));
12168 end case;
12169
12170 Set_Next_Entity (Full, Save_Next_Entity);
12171 Set_Homonym (Full, Save_Homonym);
12172 Set_Associated_Node_For_Itype (Full, Related_Nod);
12173
12174 -- Set common attributes for all subtypes: kind, convention, etc.
12175
12176 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
12177 Set_Convention (Full, Convention (Full_Base));
12178
12179 -- The Etype of the full view is inconsistent. Gigi needs to see the
12180 -- structural full view, which is what the current scheme gives: the
12181 -- Etype of the full view is the etype of the full base. However, if the
12182 -- full base is a derived type, the full view then looks like a subtype
12183 -- of the parent, not a subtype of the full base. If instead we write:
12184
12185 -- Set_Etype (Full, Full_Base);
12186
12187 -- then we get inconsistencies in the front-end (confusion between
12188 -- views). Several outstanding bugs are related to this ???
12189
12190 Set_Is_First_Subtype (Full, False);
12191 Set_Scope (Full, Scope (Priv));
12192 Set_Size_Info (Full, Full_Base);
12193 Set_RM_Size (Full, RM_Size (Full_Base));
12194 Set_Is_Itype (Full);
12195
12196 -- A subtype of a private-type-without-discriminants, whose full-view
12197 -- has discriminants with default expressions, is not constrained.
12198
12199 if not Has_Discriminants (Priv) then
12200 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
12201
12202 if Has_Discriminants (Full_Base) then
12203 Set_Discriminant_Constraint
12204 (Full, Discriminant_Constraint (Full_Base));
12205
12206 -- The partial view may have been indefinite, the full view
12207 -- might not be.
12208
12209 Set_Has_Unknown_Discriminants
12210 (Full, Has_Unknown_Discriminants (Full_Base));
12211 end if;
12212 end if;
12213
12214 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
12215 Set_Depends_On_Private (Full, Has_Private_Component (Full));
12216
12217 -- Freeze the private subtype entity if its parent is delayed, and not
12218 -- already frozen. We skip this processing if the type is an anonymous
12219 -- subtype of a record component, or is the corresponding record of a
12220 -- protected type, since these are processed when the enclosing type
12221 -- is frozen. If the parent type is declared in a nested package then
12222 -- the freezing of the private and full views also happens later.
12223
12224 if not Is_Type (Scope (Full)) then
12225 if Is_Itype (Priv)
12226 and then In_Same_Source_Unit (Full, Full_Base)
12227 and then Scope (Full_Base) /= Scope (Full)
12228 then
12229 Set_Has_Delayed_Freeze (Full);
12230 Set_Has_Delayed_Freeze (Priv);
12231
12232 else
12233 Set_Has_Delayed_Freeze (Full,
12234 Has_Delayed_Freeze (Full_Base)
12235 and then not Is_Frozen (Full_Base));
12236 end if;
12237 end if;
12238
12239 Set_Freeze_Node (Full, Empty);
12240 Set_Is_Frozen (Full, False);
12241 Set_Full_View (Priv, Full);
12242
12243 if Has_Discriminants (Full) then
12244 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
12245 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
12246
12247 if Has_Unknown_Discriminants (Full) then
12248 Set_Discriminant_Constraint (Full, No_Elist);
12249 end if;
12250 end if;
12251
12252 if Ekind (Full_Base) = E_Record_Type
12253 and then Has_Discriminants (Full_Base)
12254 and then Has_Discriminants (Priv) -- might not, if errors
12255 and then not Has_Unknown_Discriminants (Priv)
12256 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
12257 then
12258 Create_Constrained_Components
12259 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
12260
12261 -- If the full base is itself derived from private, build a congruent
12262 -- subtype of its underlying type, for use by the back end. For a
12263 -- constrained record component, the declaration cannot be placed on
12264 -- the component list, but it must nevertheless be built an analyzed, to
12265 -- supply enough information for Gigi to compute the size of component.
12266
12267 elsif Ekind (Full_Base) in Private_Kind
12268 and then Is_Derived_Type (Full_Base)
12269 and then Has_Discriminants (Full_Base)
12270 and then (Ekind (Current_Scope) /= E_Record_Subtype)
12271 then
12272 if not Is_Itype (Priv)
12273 and then
12274 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
12275 then
12276 Build_Underlying_Full_View
12277 (Parent (Priv), Full, Etype (Full_Base));
12278
12279 elsif Nkind (Related_Nod) = N_Component_Declaration then
12280 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
12281 end if;
12282
12283 elsif Is_Record_Type (Full_Base) then
12284
12285 -- Show Full is simply a renaming of Full_Base
12286
12287 Set_Cloned_Subtype (Full, Full_Base);
12288 end if;
12289
12290 -- It is unsafe to share the bounds of a scalar type, because the Itype
12291 -- is elaborated on demand, and if a bound is non-static then different
12292 -- orders of elaboration in different units will lead to different
12293 -- external symbols.
12294
12295 if Is_Scalar_Type (Full_Base) then
12296 Set_Scalar_Range (Full,
12297 Make_Range (Sloc (Related_Nod),
12298 Low_Bound =>
12299 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
12300 High_Bound =>
12301 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
12302
12303 -- This completion inherits the bounds of the full parent, but if
12304 -- the parent is an unconstrained floating point type, so is the
12305 -- completion.
12306
12307 if Is_Floating_Point_Type (Full_Base) then
12308 Set_Includes_Infinities
12309 (Scalar_Range (Full), Has_Infinities (Full_Base));
12310 end if;
12311 end if;
12312
12313 -- ??? It seems that a lot of fields are missing that should be copied
12314 -- from Full_Base to Full. Here are some that are introduced in a
12315 -- non-disruptive way but a cleanup is necessary.
12316
12317 if Is_Tagged_Type (Full_Base) then
12318 Set_Is_Tagged_Type (Full);
12319 Set_Direct_Primitive_Operations
12320 (Full, Direct_Primitive_Operations (Full_Base));
12321 Set_No_Tagged_Streams_Pragma
12322 (Full, No_Tagged_Streams_Pragma (Full_Base));
12323
12324 -- Inherit class_wide type of full_base in case the partial view was
12325 -- not tagged. Otherwise it has already been created when the private
12326 -- subtype was analyzed.
12327
12328 if No (Class_Wide_Type (Full)) then
12329 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
12330 end if;
12331
12332 -- If this is a subtype of a protected or task type, constrain its
12333 -- corresponding record, unless this is a subtype without constraints,
12334 -- i.e. a simple renaming as with an actual subtype in an instance.
12335
12336 elsif Is_Concurrent_Type (Full_Base) then
12337 if Has_Discriminants (Full)
12338 and then Present (Corresponding_Record_Type (Full_Base))
12339 and then
12340 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
12341 then
12342 Set_Corresponding_Record_Type (Full,
12343 Constrain_Corresponding_Record
12344 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
12345
12346 else
12347 Set_Corresponding_Record_Type (Full,
12348 Corresponding_Record_Type (Full_Base));
12349 end if;
12350 end if;
12351
12352 -- Link rep item chain, and also setting of Has_Predicates from private
12353 -- subtype to full subtype, since we will need these on the full subtype
12354 -- to create the predicate function. Note that the full subtype may
12355 -- already have rep items, inherited from the full view of the base
12356 -- type, so we must be sure not to overwrite these entries.
12357
12358 declare
12359 Append : Boolean;
12360 Item : Node_Id;
12361 Next_Item : Node_Id;
12362 Priv_Item : Node_Id;
12363
12364 begin
12365 Item := First_Rep_Item (Full);
12366 Priv_Item := First_Rep_Item (Priv);
12367
12368 -- If no existing rep items on full type, we can just link directly
12369 -- to the list of items on the private type, if any exist.. Same if
12370 -- the rep items are only those inherited from the base
12371
12372 if (No (Item)
12373 or else Nkind (Item) /= N_Aspect_Specification
12374 or else Entity (Item) = Full_Base)
12375 and then Present (First_Rep_Item (Priv))
12376 then
12377 Set_First_Rep_Item (Full, Priv_Item);
12378
12379 -- Otherwise, search to the end of items currently linked to the full
12380 -- subtype and append the private items to the end. However, if Priv
12381 -- and Full already have the same list of rep items, then the append
12382 -- is not done, as that would create a circularity.
12383 --
12384 -- The partial view may have a predicate and the rep item lists of
12385 -- both views agree when inherited from the same ancestor. In that
12386 -- case, simply propagate the list from one view to the other.
12387 -- A more complex analysis needed here ???
12388
12389 elsif Present (Priv_Item)
12390 and then Item = Next_Rep_Item (Priv_Item)
12391 then
12392 Set_First_Rep_Item (Full, Priv_Item);
12393
12394 elsif Item /= Priv_Item then
12395 Append := True;
12396 loop
12397 Next_Item := Next_Rep_Item (Item);
12398 exit when No (Next_Item);
12399 Item := Next_Item;
12400
12401 -- If the private view has aspect specifications, the full view
12402 -- inherits them. Since these aspects may already have been
12403 -- attached to the full view during derivation, do not append
12404 -- them if already present.
12405
12406 if Item = First_Rep_Item (Priv) then
12407 Append := False;
12408 exit;
12409 end if;
12410 end loop;
12411
12412 -- And link the private type items at the end of the chain
12413
12414 if Append then
12415 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
12416 end if;
12417 end if;
12418 end;
12419
12420 -- Make sure Has_Predicates is set on full type if it is set on the
12421 -- private type. Note that it may already be set on the full type and
12422 -- if so, we don't want to unset it. Similarly, propagate information
12423 -- about delayed aspects, because the corresponding pragmas must be
12424 -- analyzed when one of the views is frozen. This last step is needed
12425 -- in particular when the full type is a scalar type for which an
12426 -- anonymous base type is constructed.
12427
12428 -- The predicate functions are generated either at the freeze point
12429 -- of the type or at the end of the visible part, and we must avoid
12430 -- generating them twice.
12431
12432 if Has_Predicates (Priv) then
12433 Set_Has_Predicates (Full);
12434
12435 if Present (Predicate_Function (Priv))
12436 and then No (Predicate_Function (Full))
12437 then
12438 Set_Predicate_Function (Full, Predicate_Function (Priv));
12439 end if;
12440 end if;
12441
12442 if Has_Delayed_Aspects (Priv) then
12443 Set_Has_Delayed_Aspects (Full);
12444 end if;
12445 end Complete_Private_Subtype;
12446
12447 ----------------------------
12448 -- Constant_Redeclaration --
12449 ----------------------------
12450
12451 procedure Constant_Redeclaration
12452 (Id : Entity_Id;
12453 N : Node_Id;
12454 T : out Entity_Id)
12455 is
12456 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
12457 Obj_Def : constant Node_Id := Object_Definition (N);
12458 New_T : Entity_Id;
12459
12460 procedure Check_Possible_Deferred_Completion
12461 (Prev_Id : Entity_Id;
12462 Prev_Obj_Def : Node_Id;
12463 Curr_Obj_Def : Node_Id);
12464 -- Determine whether the two object definitions describe the partial
12465 -- and the full view of a constrained deferred constant. Generate
12466 -- a subtype for the full view and verify that it statically matches
12467 -- the subtype of the partial view.
12468
12469 procedure Check_Recursive_Declaration (Typ : Entity_Id);
12470 -- If deferred constant is an access type initialized with an allocator,
12471 -- check whether there is an illegal recursion in the definition,
12472 -- through a default value of some record subcomponent. This is normally
12473 -- detected when generating init procs, but requires this additional
12474 -- mechanism when expansion is disabled.
12475
12476 ----------------------------------------
12477 -- Check_Possible_Deferred_Completion --
12478 ----------------------------------------
12479
12480 procedure Check_Possible_Deferred_Completion
12481 (Prev_Id : Entity_Id;
12482 Prev_Obj_Def : Node_Id;
12483 Curr_Obj_Def : Node_Id)
12484 is
12485 begin
12486 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
12487 and then Present (Constraint (Prev_Obj_Def))
12488 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
12489 and then Present (Constraint (Curr_Obj_Def))
12490 then
12491 declare
12492 Loc : constant Source_Ptr := Sloc (N);
12493 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
12494 Decl : constant Node_Id :=
12495 Make_Subtype_Declaration (Loc,
12496 Defining_Identifier => Def_Id,
12497 Subtype_Indication =>
12498 Relocate_Node (Curr_Obj_Def));
12499
12500 begin
12501 Insert_Before_And_Analyze (N, Decl);
12502 Set_Etype (Id, Def_Id);
12503
12504 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
12505 Error_Msg_Sloc := Sloc (Prev_Id);
12506 Error_Msg_N ("subtype does not statically match deferred "
12507 & "declaration #", N);
12508 end if;
12509 end;
12510 end if;
12511 end Check_Possible_Deferred_Completion;
12512
12513 ---------------------------------
12514 -- Check_Recursive_Declaration --
12515 ---------------------------------
12516
12517 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
12518 Comp : Entity_Id;
12519
12520 begin
12521 if Is_Record_Type (Typ) then
12522 Comp := First_Component (Typ);
12523 while Present (Comp) loop
12524 if Comes_From_Source (Comp) then
12525 if Present (Expression (Parent (Comp)))
12526 and then Is_Entity_Name (Expression (Parent (Comp)))
12527 and then Entity (Expression (Parent (Comp))) = Prev
12528 then
12529 Error_Msg_Sloc := Sloc (Parent (Comp));
12530 Error_Msg_NE
12531 ("illegal circularity with declaration for & #",
12532 N, Comp);
12533 return;
12534
12535 elsif Is_Record_Type (Etype (Comp)) then
12536 Check_Recursive_Declaration (Etype (Comp));
12537 end if;
12538 end if;
12539
12540 Next_Component (Comp);
12541 end loop;
12542 end if;
12543 end Check_Recursive_Declaration;
12544
12545 -- Start of processing for Constant_Redeclaration
12546
12547 begin
12548 if Nkind (Parent (Prev)) = N_Object_Declaration then
12549 if Nkind (Object_Definition
12550 (Parent (Prev))) = N_Subtype_Indication
12551 then
12552 -- Find type of new declaration. The constraints of the two
12553 -- views must match statically, but there is no point in
12554 -- creating an itype for the full view.
12555
12556 if Nkind (Obj_Def) = N_Subtype_Indication then
12557 Find_Type (Subtype_Mark (Obj_Def));
12558 New_T := Entity (Subtype_Mark (Obj_Def));
12559
12560 else
12561 Find_Type (Obj_Def);
12562 New_T := Entity (Obj_Def);
12563 end if;
12564
12565 T := Etype (Prev);
12566
12567 else
12568 -- The full view may impose a constraint, even if the partial
12569 -- view does not, so construct the subtype.
12570
12571 New_T := Find_Type_Of_Object (Obj_Def, N);
12572 T := New_T;
12573 end if;
12574
12575 else
12576 -- Current declaration is illegal, diagnosed below in Enter_Name
12577
12578 T := Empty;
12579 New_T := Any_Type;
12580 end if;
12581
12582 -- If previous full declaration or a renaming declaration exists, or if
12583 -- a homograph is present, let Enter_Name handle it, either with an
12584 -- error or with the removal of an overridden implicit subprogram.
12585 -- The previous one is a full declaration if it has an expression
12586 -- (which in the case of an aggregate is indicated by the Init flag).
12587
12588 if Ekind (Prev) /= E_Constant
12589 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
12590 or else Present (Expression (Parent (Prev)))
12591 or else Has_Init_Expression (Parent (Prev))
12592 or else Present (Full_View (Prev))
12593 then
12594 Enter_Name (Id);
12595
12596 -- Verify that types of both declarations match, or else that both types
12597 -- are anonymous access types whose designated subtypes statically match
12598 -- (as allowed in Ada 2005 by AI-385).
12599
12600 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
12601 and then
12602 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
12603 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
12604 or else Is_Access_Constant (Etype (New_T)) /=
12605 Is_Access_Constant (Etype (Prev))
12606 or else Can_Never_Be_Null (Etype (New_T)) /=
12607 Can_Never_Be_Null (Etype (Prev))
12608 or else Null_Exclusion_Present (Parent (Prev)) /=
12609 Null_Exclusion_Present (Parent (Id))
12610 or else not Subtypes_Statically_Match
12611 (Designated_Type (Etype (Prev)),
12612 Designated_Type (Etype (New_T))))
12613 then
12614 Error_Msg_Sloc := Sloc (Prev);
12615 Error_Msg_N ("type does not match declaration#", N);
12616 Set_Full_View (Prev, Id);
12617 Set_Etype (Id, Any_Type);
12618
12619 -- A deferred constant whose type is an anonymous array is always
12620 -- illegal (unless imported). A detailed error message might be
12621 -- helpful for Ada beginners.
12622
12623 if Nkind (Object_Definition (Parent (Prev)))
12624 = N_Constrained_Array_Definition
12625 and then Nkind (Object_Definition (N))
12626 = N_Constrained_Array_Definition
12627 then
12628 Error_Msg_N ("\each anonymous array is a distinct type", N);
12629 Error_Msg_N ("a deferred constant must have a named type",
12630 Object_Definition (Parent (Prev)));
12631 end if;
12632
12633 elsif
12634 Null_Exclusion_Present (Parent (Prev))
12635 and then not Null_Exclusion_Present (N)
12636 then
12637 Error_Msg_Sloc := Sloc (Prev);
12638 Error_Msg_N ("null-exclusion does not match declaration#", N);
12639 Set_Full_View (Prev, Id);
12640 Set_Etype (Id, Any_Type);
12641
12642 -- If so, process the full constant declaration
12643
12644 else
12645 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
12646 -- the deferred declaration is constrained, then the subtype defined
12647 -- by the subtype_indication in the full declaration shall match it
12648 -- statically.
12649
12650 Check_Possible_Deferred_Completion
12651 (Prev_Id => Prev,
12652 Prev_Obj_Def => Object_Definition (Parent (Prev)),
12653 Curr_Obj_Def => Obj_Def);
12654
12655 Set_Full_View (Prev, Id);
12656 Set_Is_Public (Id, Is_Public (Prev));
12657 Set_Is_Internal (Id);
12658 Append_Entity (Id, Current_Scope);
12659
12660 -- Check ALIASED present if present before (RM 7.4(7))
12661
12662 if Is_Aliased (Prev)
12663 and then not Aliased_Present (N)
12664 then
12665 Error_Msg_Sloc := Sloc (Prev);
12666 Error_Msg_N ("ALIASED required (see declaration #)", N);
12667 end if;
12668
12669 -- Check that placement is in private part and that the incomplete
12670 -- declaration appeared in the visible part.
12671
12672 if Ekind (Current_Scope) = E_Package
12673 and then not In_Private_Part (Current_Scope)
12674 then
12675 Error_Msg_Sloc := Sloc (Prev);
12676 Error_Msg_N
12677 ("full constant for declaration # must be in private part", N);
12678
12679 elsif Ekind (Current_Scope) = E_Package
12680 and then
12681 List_Containing (Parent (Prev)) /=
12682 Visible_Declarations (Package_Specification (Current_Scope))
12683 then
12684 Error_Msg_N
12685 ("deferred constant must be declared in visible part",
12686 Parent (Prev));
12687 end if;
12688
12689 if Is_Access_Type (T)
12690 and then Nkind (Expression (N)) = N_Allocator
12691 then
12692 Check_Recursive_Declaration (Designated_Type (T));
12693 end if;
12694
12695 -- A deferred constant is a visible entity. If type has invariants,
12696 -- verify that the initial value satisfies them.
12697
12698 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
12699 Insert_After (N,
12700 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
12701 end if;
12702 end if;
12703 end Constant_Redeclaration;
12704
12705 ----------------------
12706 -- Constrain_Access --
12707 ----------------------
12708
12709 procedure Constrain_Access
12710 (Def_Id : in out Entity_Id;
12711 S : Node_Id;
12712 Related_Nod : Node_Id)
12713 is
12714 T : constant Entity_Id := Entity (Subtype_Mark (S));
12715 Desig_Type : constant Entity_Id := Designated_Type (T);
12716 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
12717 Constraint_OK : Boolean := True;
12718
12719 begin
12720 if Is_Array_Type (Desig_Type) then
12721 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
12722
12723 elsif (Is_Record_Type (Desig_Type)
12724 or else Is_Incomplete_Or_Private_Type (Desig_Type))
12725 and then not Is_Constrained (Desig_Type)
12726 then
12727 -- ??? The following code is a temporary bypass to ignore a
12728 -- discriminant constraint on access type if it is constraining
12729 -- the current record. Avoid creating the implicit subtype of the
12730 -- record we are currently compiling since right now, we cannot
12731 -- handle these. For now, just return the access type itself.
12732
12733 if Desig_Type = Current_Scope
12734 and then No (Def_Id)
12735 then
12736 Set_Ekind (Desig_Subtype, E_Record_Subtype);
12737 Def_Id := Entity (Subtype_Mark (S));
12738
12739 -- This call added to ensure that the constraint is analyzed
12740 -- (needed for a B test). Note that we still return early from
12741 -- this procedure to avoid recursive processing. ???
12742
12743 Constrain_Discriminated_Type
12744 (Desig_Subtype, S, Related_Nod, For_Access => True);
12745 return;
12746 end if;
12747
12748 -- Enforce rule that the constraint is illegal if there is an
12749 -- unconstrained view of the designated type. This means that the
12750 -- partial view (either a private type declaration or a derivation
12751 -- from a private type) has no discriminants. (Defect Report
12752 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12753
12754 -- Rule updated for Ada 2005: The private type is said to have
12755 -- a constrained partial view, given that objects of the type
12756 -- can be declared. Furthermore, the rule applies to all access
12757 -- types, unlike the rule concerning default discriminants (see
12758 -- RM 3.7.1(7/3))
12759
12760 if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005)
12761 and then Has_Private_Declaration (Desig_Type)
12762 and then In_Open_Scopes (Scope (Desig_Type))
12763 and then Has_Discriminants (Desig_Type)
12764 then
12765 declare
12766 Pack : constant Node_Id :=
12767 Unit_Declaration_Node (Scope (Desig_Type));
12768 Decls : List_Id;
12769 Decl : Node_Id;
12770
12771 begin
12772 if Nkind (Pack) = N_Package_Declaration then
12773 Decls := Visible_Declarations (Specification (Pack));
12774 Decl := First (Decls);
12775 while Present (Decl) loop
12776 if (Nkind (Decl) = N_Private_Type_Declaration
12777 and then Chars (Defining_Identifier (Decl)) =
12778 Chars (Desig_Type))
12779
12780 or else
12781 (Nkind (Decl) = N_Full_Type_Declaration
12782 and then
12783 Chars (Defining_Identifier (Decl)) =
12784 Chars (Desig_Type)
12785 and then Is_Derived_Type (Desig_Type)
12786 and then
12787 Has_Private_Declaration (Etype (Desig_Type)))
12788 then
12789 if No (Discriminant_Specifications (Decl)) then
12790 Error_Msg_N
12791 ("cannot constrain access type if designated "
12792 & "type has constrained partial view", S);
12793 end if;
12794
12795 exit;
12796 end if;
12797
12798 Next (Decl);
12799 end loop;
12800 end if;
12801 end;
12802 end if;
12803
12804 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
12805 For_Access => True);
12806
12807 elsif Is_Concurrent_Type (Desig_Type)
12808 and then not Is_Constrained (Desig_Type)
12809 then
12810 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
12811
12812 else
12813 Error_Msg_N ("invalid constraint on access type", S);
12814
12815 -- We simply ignore an invalid constraint
12816
12817 Desig_Subtype := Desig_Type;
12818 Constraint_OK := False;
12819 end if;
12820
12821 if No (Def_Id) then
12822 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
12823 else
12824 Set_Ekind (Def_Id, E_Access_Subtype);
12825 end if;
12826
12827 if Constraint_OK then
12828 Set_Etype (Def_Id, Base_Type (T));
12829
12830 if Is_Private_Type (Desig_Type) then
12831 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
12832 end if;
12833 else
12834 Set_Etype (Def_Id, Any_Type);
12835 end if;
12836
12837 Set_Size_Info (Def_Id, T);
12838 Set_Is_Constrained (Def_Id, Constraint_OK);
12839 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
12840 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12841 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
12842
12843 Conditional_Delay (Def_Id, T);
12844
12845 -- AI-363 : Subtypes of general access types whose designated types have
12846 -- default discriminants are disallowed. In instances, the rule has to
12847 -- be checked against the actual, of which T is the subtype. In a
12848 -- generic body, the rule is checked assuming that the actual type has
12849 -- defaulted discriminants.
12850
12851 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
12852 if Ekind (Base_Type (T)) = E_General_Access_Type
12853 and then Has_Defaulted_Discriminants (Desig_Type)
12854 then
12855 if Ada_Version < Ada_2005 then
12856 Error_Msg_N
12857 ("access subtype of general access type would not " &
12858 "be allowed in Ada 2005?y?", S);
12859 else
12860 Error_Msg_N
12861 ("access subtype of general access type not allowed", S);
12862 end if;
12863
12864 Error_Msg_N ("\discriminants have defaults", S);
12865
12866 elsif Is_Access_Type (T)
12867 and then Is_Generic_Type (Desig_Type)
12868 and then Has_Discriminants (Desig_Type)
12869 and then In_Package_Body (Current_Scope)
12870 then
12871 if Ada_Version < Ada_2005 then
12872 Error_Msg_N
12873 ("access subtype would not be allowed in generic body "
12874 & "in Ada 2005?y?", S);
12875 else
12876 Error_Msg_N
12877 ("access subtype not allowed in generic body", S);
12878 end if;
12879
12880 Error_Msg_N
12881 ("\designated type is a discriminated formal", S);
12882 end if;
12883 end if;
12884 end Constrain_Access;
12885
12886 ---------------------
12887 -- Constrain_Array --
12888 ---------------------
12889
12890 procedure Constrain_Array
12891 (Def_Id : in out Entity_Id;
12892 SI : Node_Id;
12893 Related_Nod : Node_Id;
12894 Related_Id : Entity_Id;
12895 Suffix : Character)
12896 is
12897 C : constant Node_Id := Constraint (SI);
12898 Number_Of_Constraints : Nat := 0;
12899 Index : Node_Id;
12900 S, T : Entity_Id;
12901 Constraint_OK : Boolean := True;
12902
12903 begin
12904 T := Entity (Subtype_Mark (SI));
12905
12906 if Is_Access_Type (T) then
12907 T := Designated_Type (T);
12908 end if;
12909
12910 -- If an index constraint follows a subtype mark in a subtype indication
12911 -- then the type or subtype denoted by the subtype mark must not already
12912 -- impose an index constraint. The subtype mark must denote either an
12913 -- unconstrained array type or an access type whose designated type
12914 -- is such an array type... (RM 3.6.1)
12915
12916 if Is_Constrained (T) then
12917 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
12918 Constraint_OK := False;
12919
12920 else
12921 S := First (Constraints (C));
12922 while Present (S) loop
12923 Number_Of_Constraints := Number_Of_Constraints + 1;
12924 Next (S);
12925 end loop;
12926
12927 -- In either case, the index constraint must provide a discrete
12928 -- range for each index of the array type and the type of each
12929 -- discrete range must be the same as that of the corresponding
12930 -- index. (RM 3.6.1)
12931
12932 if Number_Of_Constraints /= Number_Dimensions (T) then
12933 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
12934 Constraint_OK := False;
12935
12936 else
12937 S := First (Constraints (C));
12938 Index := First_Index (T);
12939 Analyze (Index);
12940
12941 -- Apply constraints to each index type
12942
12943 for J in 1 .. Number_Of_Constraints loop
12944 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
12945 Next (Index);
12946 Next (S);
12947 end loop;
12948
12949 end if;
12950 end if;
12951
12952 if No (Def_Id) then
12953 Def_Id :=
12954 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
12955 Set_Parent (Def_Id, Related_Nod);
12956
12957 else
12958 Set_Ekind (Def_Id, E_Array_Subtype);
12959 end if;
12960
12961 Set_Size_Info (Def_Id, (T));
12962 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12963 Set_Etype (Def_Id, Base_Type (T));
12964
12965 if Constraint_OK then
12966 Set_First_Index (Def_Id, First (Constraints (C)));
12967 else
12968 Set_First_Index (Def_Id, First_Index (T));
12969 end if;
12970
12971 Set_Is_Constrained (Def_Id, True);
12972 Set_Is_Aliased (Def_Id, Is_Aliased (T));
12973 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12974
12975 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
12976 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
12977
12978 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
12979 -- We need to initialize the attribute because if Def_Id is previously
12980 -- analyzed through a limited_with clause, it will have the attributes
12981 -- of an incomplete type, one of which is an Elist that overlaps the
12982 -- Packed_Array_Impl_Type field.
12983
12984 Set_Packed_Array_Impl_Type (Def_Id, Empty);
12985
12986 -- Build a freeze node if parent still needs one. Also make sure that
12987 -- the Depends_On_Private status is set because the subtype will need
12988 -- reprocessing at the time the base type does, and also we must set a
12989 -- conditional delay.
12990
12991 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
12992 Conditional_Delay (Def_Id, T);
12993 end Constrain_Array;
12994
12995 ------------------------------
12996 -- Constrain_Component_Type --
12997 ------------------------------
12998
12999 function Constrain_Component_Type
13000 (Comp : Entity_Id;
13001 Constrained_Typ : Entity_Id;
13002 Related_Node : Node_Id;
13003 Typ : Entity_Id;
13004 Constraints : Elist_Id) return Entity_Id
13005 is
13006 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
13007 Compon_Type : constant Entity_Id := Etype (Comp);
13008
13009 function Build_Constrained_Array_Type
13010 (Old_Type : Entity_Id) return Entity_Id;
13011 -- If Old_Type is an array type, one of whose indexes is constrained
13012 -- by a discriminant, build an Itype whose constraint replaces the
13013 -- discriminant with its value in the constraint.
13014
13015 function Build_Constrained_Discriminated_Type
13016 (Old_Type : Entity_Id) return Entity_Id;
13017 -- Ditto for record components
13018
13019 function Build_Constrained_Access_Type
13020 (Old_Type : Entity_Id) return Entity_Id;
13021 -- Ditto for access types. Makes use of previous two functions, to
13022 -- constrain designated type.
13023
13024 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
13025 -- T is an array or discriminated type, C is a list of constraints
13026 -- that apply to T. This routine builds the constrained subtype.
13027
13028 function Is_Discriminant (Expr : Node_Id) return Boolean;
13029 -- Returns True if Expr is a discriminant
13030
13031 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
13032 -- Find the value of discriminant Discrim in Constraint
13033
13034 -----------------------------------
13035 -- Build_Constrained_Access_Type --
13036 -----------------------------------
13037
13038 function Build_Constrained_Access_Type
13039 (Old_Type : Entity_Id) return Entity_Id
13040 is
13041 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
13042 Itype : Entity_Id;
13043 Desig_Subtype : Entity_Id;
13044 Scop : Entity_Id;
13045
13046 begin
13047 -- if the original access type was not embedded in the enclosing
13048 -- type definition, there is no need to produce a new access
13049 -- subtype. In fact every access type with an explicit constraint
13050 -- generates an itype whose scope is the enclosing record.
13051
13052 if not Is_Type (Scope (Old_Type)) then
13053 return Old_Type;
13054
13055 elsif Is_Array_Type (Desig_Type) then
13056 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
13057
13058 elsif Has_Discriminants (Desig_Type) then
13059
13060 -- This may be an access type to an enclosing record type for
13061 -- which we are constructing the constrained components. Return
13062 -- the enclosing record subtype. This is not always correct,
13063 -- but avoids infinite recursion. ???
13064
13065 Desig_Subtype := Any_Type;
13066
13067 for J in reverse 0 .. Scope_Stack.Last loop
13068 Scop := Scope_Stack.Table (J).Entity;
13069
13070 if Is_Type (Scop)
13071 and then Base_Type (Scop) = Base_Type (Desig_Type)
13072 then
13073 Desig_Subtype := Scop;
13074 end if;
13075
13076 exit when not Is_Type (Scop);
13077 end loop;
13078
13079 if Desig_Subtype = Any_Type then
13080 Desig_Subtype :=
13081 Build_Constrained_Discriminated_Type (Desig_Type);
13082 end if;
13083
13084 else
13085 return Old_Type;
13086 end if;
13087
13088 if Desig_Subtype /= Desig_Type then
13089
13090 -- The Related_Node better be here or else we won't be able
13091 -- to attach new itypes to a node in the tree.
13092
13093 pragma Assert (Present (Related_Node));
13094
13095 Itype := Create_Itype (E_Access_Subtype, Related_Node);
13096
13097 Set_Etype (Itype, Base_Type (Old_Type));
13098 Set_Size_Info (Itype, (Old_Type));
13099 Set_Directly_Designated_Type (Itype, Desig_Subtype);
13100 Set_Depends_On_Private (Itype, Has_Private_Component
13101 (Old_Type));
13102 Set_Is_Access_Constant (Itype, Is_Access_Constant
13103 (Old_Type));
13104
13105 -- The new itype needs freezing when it depends on a not frozen
13106 -- type and the enclosing subtype needs freezing.
13107
13108 if Has_Delayed_Freeze (Constrained_Typ)
13109 and then not Is_Frozen (Constrained_Typ)
13110 then
13111 Conditional_Delay (Itype, Base_Type (Old_Type));
13112 end if;
13113
13114 return Itype;
13115
13116 else
13117 return Old_Type;
13118 end if;
13119 end Build_Constrained_Access_Type;
13120
13121 ----------------------------------
13122 -- Build_Constrained_Array_Type --
13123 ----------------------------------
13124
13125 function Build_Constrained_Array_Type
13126 (Old_Type : Entity_Id) return Entity_Id
13127 is
13128 Lo_Expr : Node_Id;
13129 Hi_Expr : Node_Id;
13130 Old_Index : Node_Id;
13131 Range_Node : Node_Id;
13132 Constr_List : List_Id;
13133
13134 Need_To_Create_Itype : Boolean := False;
13135
13136 begin
13137 Old_Index := First_Index (Old_Type);
13138 while Present (Old_Index) loop
13139 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
13140
13141 if Is_Discriminant (Lo_Expr)
13142 or else
13143 Is_Discriminant (Hi_Expr)
13144 then
13145 Need_To_Create_Itype := True;
13146 end if;
13147
13148 Next_Index (Old_Index);
13149 end loop;
13150
13151 if Need_To_Create_Itype then
13152 Constr_List := New_List;
13153
13154 Old_Index := First_Index (Old_Type);
13155 while Present (Old_Index) loop
13156 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
13157
13158 if Is_Discriminant (Lo_Expr) then
13159 Lo_Expr := Get_Discr_Value (Lo_Expr);
13160 end if;
13161
13162 if Is_Discriminant (Hi_Expr) then
13163 Hi_Expr := Get_Discr_Value (Hi_Expr);
13164 end if;
13165
13166 Range_Node :=
13167 Make_Range
13168 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
13169
13170 Append (Range_Node, To => Constr_List);
13171
13172 Next_Index (Old_Index);
13173 end loop;
13174
13175 return Build_Subtype (Old_Type, Constr_List);
13176
13177 else
13178 return Old_Type;
13179 end if;
13180 end Build_Constrained_Array_Type;
13181
13182 ------------------------------------------
13183 -- Build_Constrained_Discriminated_Type --
13184 ------------------------------------------
13185
13186 function Build_Constrained_Discriminated_Type
13187 (Old_Type : Entity_Id) return Entity_Id
13188 is
13189 Expr : Node_Id;
13190 Constr_List : List_Id;
13191 Old_Constraint : Elmt_Id;
13192
13193 Need_To_Create_Itype : Boolean := False;
13194
13195 begin
13196 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
13197 while Present (Old_Constraint) loop
13198 Expr := Node (Old_Constraint);
13199
13200 if Is_Discriminant (Expr) then
13201 Need_To_Create_Itype := True;
13202 end if;
13203
13204 Next_Elmt (Old_Constraint);
13205 end loop;
13206
13207 if Need_To_Create_Itype then
13208 Constr_List := New_List;
13209
13210 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
13211 while Present (Old_Constraint) loop
13212 Expr := Node (Old_Constraint);
13213
13214 if Is_Discriminant (Expr) then
13215 Expr := Get_Discr_Value (Expr);
13216 end if;
13217
13218 Append (New_Copy_Tree (Expr), To => Constr_List);
13219
13220 Next_Elmt (Old_Constraint);
13221 end loop;
13222
13223 return Build_Subtype (Old_Type, Constr_List);
13224
13225 else
13226 return Old_Type;
13227 end if;
13228 end Build_Constrained_Discriminated_Type;
13229
13230 -------------------
13231 -- Build_Subtype --
13232 -------------------
13233
13234 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
13235 Indic : Node_Id;
13236 Subtyp_Decl : Node_Id;
13237 Def_Id : Entity_Id;
13238 Btyp : Entity_Id := Base_Type (T);
13239
13240 begin
13241 -- The Related_Node better be here or else we won't be able to
13242 -- attach new itypes to a node in the tree.
13243
13244 pragma Assert (Present (Related_Node));
13245
13246 -- If the view of the component's type is incomplete or private
13247 -- with unknown discriminants, then the constraint must be applied
13248 -- to the full type.
13249
13250 if Has_Unknown_Discriminants (Btyp)
13251 and then Present (Underlying_Type (Btyp))
13252 then
13253 Btyp := Underlying_Type (Btyp);
13254 end if;
13255
13256 Indic :=
13257 Make_Subtype_Indication (Loc,
13258 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
13259 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
13260
13261 Def_Id := Create_Itype (Ekind (T), Related_Node);
13262
13263 Subtyp_Decl :=
13264 Make_Subtype_Declaration (Loc,
13265 Defining_Identifier => Def_Id,
13266 Subtype_Indication => Indic);
13267
13268 Set_Parent (Subtyp_Decl, Parent (Related_Node));
13269
13270 -- Itypes must be analyzed with checks off (see package Itypes)
13271
13272 Analyze (Subtyp_Decl, Suppress => All_Checks);
13273
13274 return Def_Id;
13275 end Build_Subtype;
13276
13277 ---------------------
13278 -- Get_Discr_Value --
13279 ---------------------
13280
13281 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
13282 D : Entity_Id;
13283 E : Elmt_Id;
13284
13285 begin
13286 -- The discriminant may be declared for the type, in which case we
13287 -- find it by iterating over the list of discriminants. If the
13288 -- discriminant is inherited from a parent type, it appears as the
13289 -- corresponding discriminant of the current type. This will be the
13290 -- case when constraining an inherited component whose constraint is
13291 -- given by a discriminant of the parent.
13292
13293 D := First_Discriminant (Typ);
13294 E := First_Elmt (Constraints);
13295
13296 while Present (D) loop
13297 if D = Entity (Discrim)
13298 or else D = CR_Discriminant (Entity (Discrim))
13299 or else Corresponding_Discriminant (D) = Entity (Discrim)
13300 then
13301 return Node (E);
13302 end if;
13303
13304 Next_Discriminant (D);
13305 Next_Elmt (E);
13306 end loop;
13307
13308 -- The Corresponding_Discriminant mechanism is incomplete, because
13309 -- the correspondence between new and old discriminants is not one
13310 -- to one: one new discriminant can constrain several old ones. In
13311 -- that case, scan sequentially the stored_constraint, the list of
13312 -- discriminants of the parents, and the constraints.
13313
13314 -- Previous code checked for the present of the Stored_Constraint
13315 -- list for the derived type, but did not use it at all. Should it
13316 -- be present when the component is a discriminated task type?
13317
13318 if Is_Derived_Type (Typ)
13319 and then Scope (Entity (Discrim)) = Etype (Typ)
13320 then
13321 D := First_Discriminant (Etype (Typ));
13322 E := First_Elmt (Constraints);
13323 while Present (D) loop
13324 if D = Entity (Discrim) then
13325 return Node (E);
13326 end if;
13327
13328 Next_Discriminant (D);
13329 Next_Elmt (E);
13330 end loop;
13331 end if;
13332
13333 -- Something is wrong if we did not find the value
13334
13335 raise Program_Error;
13336 end Get_Discr_Value;
13337
13338 ---------------------
13339 -- Is_Discriminant --
13340 ---------------------
13341
13342 function Is_Discriminant (Expr : Node_Id) return Boolean is
13343 Discrim_Scope : Entity_Id;
13344
13345 begin
13346 if Denotes_Discriminant (Expr) then
13347 Discrim_Scope := Scope (Entity (Expr));
13348
13349 -- Either we have a reference to one of Typ's discriminants,
13350
13351 pragma Assert (Discrim_Scope = Typ
13352
13353 -- or to the discriminants of the parent type, in the case
13354 -- of a derivation of a tagged type with variants.
13355
13356 or else Discrim_Scope = Etype (Typ)
13357 or else Full_View (Discrim_Scope) = Etype (Typ)
13358
13359 -- or same as above for the case where the discriminants
13360 -- were declared in Typ's private view.
13361
13362 or else (Is_Private_Type (Discrim_Scope)
13363 and then Chars (Discrim_Scope) = Chars (Typ))
13364
13365 -- or else we are deriving from the full view and the
13366 -- discriminant is declared in the private entity.
13367
13368 or else (Is_Private_Type (Typ)
13369 and then Chars (Discrim_Scope) = Chars (Typ))
13370
13371 -- Or we are constrained the corresponding record of a
13372 -- synchronized type that completes a private declaration.
13373
13374 or else (Is_Concurrent_Record_Type (Typ)
13375 and then
13376 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
13377
13378 -- or we have a class-wide type, in which case make sure the
13379 -- discriminant found belongs to the root type.
13380
13381 or else (Is_Class_Wide_Type (Typ)
13382 and then Etype (Typ) = Discrim_Scope));
13383
13384 return True;
13385 end if;
13386
13387 -- In all other cases we have something wrong
13388
13389 return False;
13390 end Is_Discriminant;
13391
13392 -- Start of processing for Constrain_Component_Type
13393
13394 begin
13395 if Nkind (Parent (Comp)) = N_Component_Declaration
13396 and then Comes_From_Source (Parent (Comp))
13397 and then Comes_From_Source
13398 (Subtype_Indication (Component_Definition (Parent (Comp))))
13399 and then
13400 Is_Entity_Name
13401 (Subtype_Indication (Component_Definition (Parent (Comp))))
13402 then
13403 return Compon_Type;
13404
13405 elsif Is_Array_Type (Compon_Type) then
13406 return Build_Constrained_Array_Type (Compon_Type);
13407
13408 elsif Has_Discriminants (Compon_Type) then
13409 return Build_Constrained_Discriminated_Type (Compon_Type);
13410
13411 elsif Is_Access_Type (Compon_Type) then
13412 return Build_Constrained_Access_Type (Compon_Type);
13413
13414 else
13415 return Compon_Type;
13416 end if;
13417 end Constrain_Component_Type;
13418
13419 --------------------------
13420 -- Constrain_Concurrent --
13421 --------------------------
13422
13423 -- For concurrent types, the associated record value type carries the same
13424 -- discriminants, so when we constrain a concurrent type, we must constrain
13425 -- the corresponding record type as well.
13426
13427 procedure Constrain_Concurrent
13428 (Def_Id : in out Entity_Id;
13429 SI : Node_Id;
13430 Related_Nod : Node_Id;
13431 Related_Id : Entity_Id;
13432 Suffix : Character)
13433 is
13434 -- Retrieve Base_Type to ensure getting to the concurrent type in the
13435 -- case of a private subtype (needed when only doing semantic analysis).
13436
13437 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
13438 T_Val : Entity_Id;
13439
13440 begin
13441 if Is_Access_Type (T_Ent) then
13442 T_Ent := Designated_Type (T_Ent);
13443 end if;
13444
13445 T_Val := Corresponding_Record_Type (T_Ent);
13446
13447 if Present (T_Val) then
13448
13449 if No (Def_Id) then
13450 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
13451
13452 -- Elaborate itype now, as it may be used in a subsequent
13453 -- synchronized operation in another scope.
13454
13455 if Nkind (Related_Nod) = N_Full_Type_Declaration then
13456 Build_Itype_Reference (Def_Id, Related_Nod);
13457 end if;
13458 end if;
13459
13460 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
13461
13462 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13463 Set_Corresponding_Record_Type (Def_Id,
13464 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
13465
13466 else
13467 -- If there is no associated record, expansion is disabled and this
13468 -- is a generic context. Create a subtype in any case, so that
13469 -- semantic analysis can proceed.
13470
13471 if No (Def_Id) then
13472 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
13473 end if;
13474
13475 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
13476 end if;
13477 end Constrain_Concurrent;
13478
13479 ------------------------------------
13480 -- Constrain_Corresponding_Record --
13481 ------------------------------------
13482
13483 function Constrain_Corresponding_Record
13484 (Prot_Subt : Entity_Id;
13485 Corr_Rec : Entity_Id;
13486 Related_Nod : Node_Id) return Entity_Id
13487 is
13488 T_Sub : constant Entity_Id :=
13489 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
13490
13491 begin
13492 Set_Etype (T_Sub, Corr_Rec);
13493 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
13494 Set_Is_Constrained (T_Sub, True);
13495 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
13496 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
13497
13498 if Has_Discriminants (Prot_Subt) then -- False only if errors.
13499 Set_Discriminant_Constraint
13500 (T_Sub, Discriminant_Constraint (Prot_Subt));
13501 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
13502 Create_Constrained_Components
13503 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
13504 end if;
13505
13506 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
13507
13508 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
13509 Conditional_Delay (T_Sub, Corr_Rec);
13510
13511 else
13512 -- This is a component subtype: it will be frozen in the context of
13513 -- the enclosing record's init_proc, so that discriminant references
13514 -- are resolved to discriminals. (Note: we used to skip freezing
13515 -- altogether in that case, which caused errors downstream for
13516 -- components of a bit packed array type).
13517
13518 Set_Has_Delayed_Freeze (T_Sub);
13519 end if;
13520
13521 return T_Sub;
13522 end Constrain_Corresponding_Record;
13523
13524 -----------------------
13525 -- Constrain_Decimal --
13526 -----------------------
13527
13528 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
13529 T : constant Entity_Id := Entity (Subtype_Mark (S));
13530 C : constant Node_Id := Constraint (S);
13531 Loc : constant Source_Ptr := Sloc (C);
13532 Range_Expr : Node_Id;
13533 Digits_Expr : Node_Id;
13534 Digits_Val : Uint;
13535 Bound_Val : Ureal;
13536
13537 begin
13538 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
13539
13540 if Nkind (C) = N_Range_Constraint then
13541 Range_Expr := Range_Expression (C);
13542 Digits_Val := Digits_Value (T);
13543
13544 else
13545 pragma Assert (Nkind (C) = N_Digits_Constraint);
13546
13547 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13548
13549 Digits_Expr := Digits_Expression (C);
13550 Analyze_And_Resolve (Digits_Expr, Any_Integer);
13551
13552 Check_Digits_Expression (Digits_Expr);
13553 Digits_Val := Expr_Value (Digits_Expr);
13554
13555 if Digits_Val > Digits_Value (T) then
13556 Error_Msg_N
13557 ("digits expression is incompatible with subtype", C);
13558 Digits_Val := Digits_Value (T);
13559 end if;
13560
13561 if Present (Range_Constraint (C)) then
13562 Range_Expr := Range_Expression (Range_Constraint (C));
13563 else
13564 Range_Expr := Empty;
13565 end if;
13566 end if;
13567
13568 Set_Etype (Def_Id, Base_Type (T));
13569 Set_Size_Info (Def_Id, (T));
13570 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13571 Set_Delta_Value (Def_Id, Delta_Value (T));
13572 Set_Scale_Value (Def_Id, Scale_Value (T));
13573 Set_Small_Value (Def_Id, Small_Value (T));
13574 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
13575 Set_Digits_Value (Def_Id, Digits_Val);
13576
13577 -- Manufacture range from given digits value if no range present
13578
13579 if No (Range_Expr) then
13580 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
13581 Range_Expr :=
13582 Make_Range (Loc,
13583 Low_Bound =>
13584 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
13585 High_Bound =>
13586 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
13587 end if;
13588
13589 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
13590 Set_Discrete_RM_Size (Def_Id);
13591
13592 -- Unconditionally delay the freeze, since we cannot set size
13593 -- information in all cases correctly until the freeze point.
13594
13595 Set_Has_Delayed_Freeze (Def_Id);
13596 end Constrain_Decimal;
13597
13598 ----------------------------------
13599 -- Constrain_Discriminated_Type --
13600 ----------------------------------
13601
13602 procedure Constrain_Discriminated_Type
13603 (Def_Id : Entity_Id;
13604 S : Node_Id;
13605 Related_Nod : Node_Id;
13606 For_Access : Boolean := False)
13607 is
13608 E : Entity_Id := Entity (Subtype_Mark (S));
13609 T : Entity_Id;
13610
13611 procedure Fixup_Bad_Constraint;
13612 -- Called after finding a bad constraint, and after having posted an
13613 -- appropriate error message. The goal is to leave type Def_Id in as
13614 -- reasonable state as possible.
13615
13616 --------------------------
13617 -- Fixup_Bad_Constraint --
13618 --------------------------
13619
13620 procedure Fixup_Bad_Constraint is
13621 begin
13622 -- Set a reasonable Ekind for the entity, including incomplete types.
13623
13624 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
13625
13626 -- Set Etype to the known type, to reduce chances of cascaded errors
13627
13628 Set_Etype (Def_Id, E);
13629 Set_Error_Posted (Def_Id);
13630 end Fixup_Bad_Constraint;
13631
13632 -- Local variables
13633
13634 C : Node_Id;
13635 Constr : Elist_Id := New_Elmt_List;
13636
13637 -- Start of processing for Constrain_Discriminated_Type
13638
13639 begin
13640 C := Constraint (S);
13641
13642 -- A discriminant constraint is only allowed in a subtype indication,
13643 -- after a subtype mark. This subtype mark must denote either a type
13644 -- with discriminants, or an access type whose designated type is a
13645 -- type with discriminants. A discriminant constraint specifies the
13646 -- values of these discriminants (RM 3.7.2(5)).
13647
13648 T := Base_Type (Entity (Subtype_Mark (S)));
13649
13650 if Is_Access_Type (T) then
13651 T := Designated_Type (T);
13652 end if;
13653
13654 -- In an instance it may be necessary to retrieve the full view of a
13655 -- type with unknown discriminants, or a full view with defaulted
13656 -- discriminants. In other contexts the constraint is illegal.
13657
13658 if In_Instance
13659 and then Is_Private_Type (T)
13660 and then Present (Full_View (T))
13661 and then
13662 (Has_Unknown_Discriminants (T)
13663 or else
13664 (not Has_Discriminants (T)
13665 and then Has_Discriminants (Full_View (T))
13666 and then Present (Discriminant_Default_Value
13667 (First_Discriminant (Full_View (T))))))
13668 then
13669 T := Full_View (T);
13670 E := Full_View (E);
13671 end if;
13672
13673 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal. Avoid
13674 -- generating an error for access-to-incomplete subtypes.
13675
13676 if Ada_Version >= Ada_2005
13677 and then Ekind (T) = E_Incomplete_Type
13678 and then Nkind (Parent (S)) = N_Subtype_Declaration
13679 and then not Is_Itype (Def_Id)
13680 then
13681 -- A little sanity check: emit an error message if the type has
13682 -- discriminants to begin with. Type T may be a regular incomplete
13683 -- type or imported via a limited with clause.
13684
13685 if Has_Discriminants (T)
13686 or else (From_Limited_With (T)
13687 and then Present (Non_Limited_View (T))
13688 and then Nkind (Parent (Non_Limited_View (T))) =
13689 N_Full_Type_Declaration
13690 and then Present (Discriminant_Specifications
13691 (Parent (Non_Limited_View (T)))))
13692 then
13693 Error_Msg_N
13694 ("(Ada 2005) incomplete subtype may not be constrained", C);
13695 else
13696 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13697 end if;
13698
13699 Fixup_Bad_Constraint;
13700 return;
13701
13702 -- Check that the type has visible discriminants. The type may be
13703 -- a private type with unknown discriminants whose full view has
13704 -- discriminants which are invisible.
13705
13706 elsif not Has_Discriminants (T)
13707 or else
13708 (Has_Unknown_Discriminants (T)
13709 and then Is_Private_Type (T))
13710 then
13711 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13712 Fixup_Bad_Constraint;
13713 return;
13714
13715 elsif Is_Constrained (E)
13716 or else (Ekind (E) = E_Class_Wide_Subtype
13717 and then Present (Discriminant_Constraint (E)))
13718 then
13719 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
13720 Fixup_Bad_Constraint;
13721 return;
13722 end if;
13723
13724 -- T may be an unconstrained subtype (e.g. a generic actual). Constraint
13725 -- applies to the base type.
13726
13727 T := Base_Type (T);
13728
13729 Constr := Build_Discriminant_Constraints (T, S);
13730
13731 -- If the list returned was empty we had an error in building the
13732 -- discriminant constraint. We have also already signalled an error
13733 -- in the incomplete type case
13734
13735 if Is_Empty_Elmt_List (Constr) then
13736 Fixup_Bad_Constraint;
13737 return;
13738 end if;
13739
13740 Build_Discriminated_Subtype (T, Def_Id, Constr, Related_Nod, For_Access);
13741 end Constrain_Discriminated_Type;
13742
13743 ---------------------------
13744 -- Constrain_Enumeration --
13745 ---------------------------
13746
13747 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
13748 T : constant Entity_Id := Entity (Subtype_Mark (S));
13749 C : constant Node_Id := Constraint (S);
13750
13751 begin
13752 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13753
13754 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
13755
13756 Set_Etype (Def_Id, Base_Type (T));
13757 Set_Size_Info (Def_Id, (T));
13758 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13759 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13760
13761 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13762
13763 Set_Discrete_RM_Size (Def_Id);
13764 end Constrain_Enumeration;
13765
13766 ----------------------
13767 -- Constrain_Float --
13768 ----------------------
13769
13770 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
13771 T : constant Entity_Id := Entity (Subtype_Mark (S));
13772 C : Node_Id;
13773 D : Node_Id;
13774 Rais : Node_Id;
13775
13776 begin
13777 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
13778
13779 Set_Etype (Def_Id, Base_Type (T));
13780 Set_Size_Info (Def_Id, (T));
13781 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13782
13783 -- Process the constraint
13784
13785 C := Constraint (S);
13786
13787 -- Digits constraint present
13788
13789 if Nkind (C) = N_Digits_Constraint then
13790
13791 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13792 Check_Restriction (No_Obsolescent_Features, C);
13793
13794 if Warn_On_Obsolescent_Feature then
13795 Error_Msg_N
13796 ("subtype digits constraint is an " &
13797 "obsolescent feature (RM J.3(8))?j?", C);
13798 end if;
13799
13800 D := Digits_Expression (C);
13801 Analyze_And_Resolve (D, Any_Integer);
13802 Check_Digits_Expression (D);
13803 Set_Digits_Value (Def_Id, Expr_Value (D));
13804
13805 -- Check that digits value is in range. Obviously we can do this
13806 -- at compile time, but it is strictly a runtime check, and of
13807 -- course there is an ACVC test that checks this.
13808
13809 if Digits_Value (Def_Id) > Digits_Value (T) then
13810 Error_Msg_Uint_1 := Digits_Value (T);
13811 Error_Msg_N ("??digits value is too large, maximum is ^", D);
13812 Rais :=
13813 Make_Raise_Constraint_Error (Sloc (D),
13814 Reason => CE_Range_Check_Failed);
13815 Insert_Action (Declaration_Node (Def_Id), Rais);
13816 end if;
13817
13818 C := Range_Constraint (C);
13819
13820 -- No digits constraint present
13821
13822 else
13823 Set_Digits_Value (Def_Id, Digits_Value (T));
13824 end if;
13825
13826 -- Range constraint present
13827
13828 if Nkind (C) = N_Range_Constraint then
13829 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13830
13831 -- No range constraint present
13832
13833 else
13834 pragma Assert (No (C));
13835 Set_Scalar_Range (Def_Id, Scalar_Range (T));
13836 end if;
13837
13838 Set_Is_Constrained (Def_Id);
13839 end Constrain_Float;
13840
13841 ---------------------
13842 -- Constrain_Index --
13843 ---------------------
13844
13845 procedure Constrain_Index
13846 (Index : Node_Id;
13847 S : Node_Id;
13848 Related_Nod : Node_Id;
13849 Related_Id : Entity_Id;
13850 Suffix : Character;
13851 Suffix_Index : Nat)
13852 is
13853 Def_Id : Entity_Id;
13854 R : Node_Id := Empty;
13855 T : constant Entity_Id := Etype (Index);
13856
13857 begin
13858 Def_Id :=
13859 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
13860 Set_Etype (Def_Id, Base_Type (T));
13861
13862 if Nkind (S) = N_Range
13863 or else
13864 (Nkind (S) = N_Attribute_Reference
13865 and then Attribute_Name (S) = Name_Range)
13866 then
13867 -- A Range attribute will be transformed into N_Range by Resolve
13868
13869 Analyze (S);
13870 Set_Etype (S, T);
13871 R := S;
13872
13873 Process_Range_Expr_In_Decl (R, T);
13874
13875 if not Error_Posted (S)
13876 and then
13877 (Nkind (S) /= N_Range
13878 or else not Covers (T, (Etype (Low_Bound (S))))
13879 or else not Covers (T, (Etype (High_Bound (S)))))
13880 then
13881 if Base_Type (T) /= Any_Type
13882 and then Etype (Low_Bound (S)) /= Any_Type
13883 and then Etype (High_Bound (S)) /= Any_Type
13884 then
13885 Error_Msg_N ("range expected", S);
13886 end if;
13887 end if;
13888
13889 elsif Nkind (S) = N_Subtype_Indication then
13890
13891 -- The parser has verified that this is a discrete indication
13892
13893 Resolve_Discrete_Subtype_Indication (S, T);
13894 Bad_Predicated_Subtype_Use
13895 ("subtype& has predicate, not allowed in index constraint",
13896 S, Entity (Subtype_Mark (S)));
13897
13898 R := Range_Expression (Constraint (S));
13899
13900 -- Capture values of bounds and generate temporaries for them if
13901 -- needed, since checks may cause duplication of the expressions
13902 -- which must not be reevaluated.
13903
13904 -- The forced evaluation removes side effects from expressions, which
13905 -- should occur also in GNATprove mode. Otherwise, we end up with
13906 -- unexpected insertions of actions at places where this is not
13907 -- supposed to occur, e.g. on default parameters of a call.
13908
13909 if Expander_Active or GNATprove_Mode then
13910 Force_Evaluation
13911 (Low_Bound (R), Related_Id => Def_Id, Is_Low_Bound => True);
13912 Force_Evaluation
13913 (High_Bound (R), Related_Id => Def_Id, Is_High_Bound => True);
13914 end if;
13915
13916 elsif Nkind (S) = N_Discriminant_Association then
13917
13918 -- Syntactically valid in subtype indication
13919
13920 Error_Msg_N ("invalid index constraint", S);
13921 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13922 return;
13923
13924 -- Subtype_Mark case, no anonymous subtypes to construct
13925
13926 else
13927 Analyze (S);
13928
13929 if Is_Entity_Name (S) then
13930 if not Is_Type (Entity (S)) then
13931 Error_Msg_N ("expect subtype mark for index constraint", S);
13932
13933 elsif Base_Type (Entity (S)) /= Base_Type (T) then
13934 Wrong_Type (S, Base_Type (T));
13935
13936 -- Check error of subtype with predicate in index constraint
13937
13938 else
13939 Bad_Predicated_Subtype_Use
13940 ("subtype& has predicate, not allowed in index constraint",
13941 S, Entity (S));
13942 end if;
13943
13944 return;
13945
13946 else
13947 Error_Msg_N ("invalid index constraint", S);
13948 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13949 return;
13950 end if;
13951 end if;
13952
13953 -- Complete construction of the Itype
13954
13955 if Is_Modular_Integer_Type (T) then
13956 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13957
13958 elsif Is_Integer_Type (T) then
13959 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13960
13961 else
13962 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13963 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13964 Set_First_Literal (Def_Id, First_Literal (T));
13965 end if;
13966
13967 Set_Size_Info (Def_Id, (T));
13968 Set_RM_Size (Def_Id, RM_Size (T));
13969 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13970
13971 Set_Scalar_Range (Def_Id, R);
13972
13973 Set_Etype (S, Def_Id);
13974 Set_Discrete_RM_Size (Def_Id);
13975 end Constrain_Index;
13976
13977 -----------------------
13978 -- Constrain_Integer --
13979 -----------------------
13980
13981 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
13982 T : constant Entity_Id := Entity (Subtype_Mark (S));
13983 C : constant Node_Id := Constraint (S);
13984
13985 begin
13986 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13987
13988 if Is_Modular_Integer_Type (T) then
13989 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13990 else
13991 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13992 end if;
13993
13994 Set_Etype (Def_Id, Base_Type (T));
13995 Set_Size_Info (Def_Id, (T));
13996 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13997 Set_Discrete_RM_Size (Def_Id);
13998 end Constrain_Integer;
13999
14000 ------------------------------
14001 -- Constrain_Ordinary_Fixed --
14002 ------------------------------
14003
14004 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
14005 T : constant Entity_Id := Entity (Subtype_Mark (S));
14006 C : Node_Id;
14007 D : Node_Id;
14008 Rais : Node_Id;
14009
14010 begin
14011 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
14012 Set_Etype (Def_Id, Base_Type (T));
14013 Set_Size_Info (Def_Id, (T));
14014 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14015 Set_Small_Value (Def_Id, Small_Value (T));
14016
14017 -- Process the constraint
14018
14019 C := Constraint (S);
14020
14021 -- Delta constraint present
14022
14023 if Nkind (C) = N_Delta_Constraint then
14024
14025 Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
14026 Check_Restriction (No_Obsolescent_Features, C);
14027
14028 if Warn_On_Obsolescent_Feature then
14029 Error_Msg_S
14030 ("subtype delta constraint is an " &
14031 "obsolescent feature (RM J.3(7))?j?");
14032 end if;
14033
14034 D := Delta_Expression (C);
14035 Analyze_And_Resolve (D, Any_Real);
14036 Check_Delta_Expression (D);
14037 Set_Delta_Value (Def_Id, Expr_Value_R (D));
14038
14039 -- Check that delta value is in range. Obviously we can do this
14040 -- at compile time, but it is strictly a runtime check, and of
14041 -- course there is an ACVC test that checks this.
14042
14043 if Delta_Value (Def_Id) < Delta_Value (T) then
14044 Error_Msg_N ("??delta value is too small", D);
14045 Rais :=
14046 Make_Raise_Constraint_Error (Sloc (D),
14047 Reason => CE_Range_Check_Failed);
14048 Insert_Action (Declaration_Node (Def_Id), Rais);
14049 end if;
14050
14051 C := Range_Constraint (C);
14052
14053 -- No delta constraint present
14054
14055 else
14056 Set_Delta_Value (Def_Id, Delta_Value (T));
14057 end if;
14058
14059 -- Range constraint present
14060
14061 if Nkind (C) = N_Range_Constraint then
14062 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14063
14064 -- No range constraint present
14065
14066 else
14067 pragma Assert (No (C));
14068 Set_Scalar_Range (Def_Id, Scalar_Range (T));
14069 end if;
14070
14071 Set_Discrete_RM_Size (Def_Id);
14072
14073 -- Unconditionally delay the freeze, since we cannot set size
14074 -- information in all cases correctly until the freeze point.
14075
14076 Set_Has_Delayed_Freeze (Def_Id);
14077 end Constrain_Ordinary_Fixed;
14078
14079 -----------------------
14080 -- Contain_Interface --
14081 -----------------------
14082
14083 function Contain_Interface
14084 (Iface : Entity_Id;
14085 Ifaces : Elist_Id) return Boolean
14086 is
14087 Iface_Elmt : Elmt_Id;
14088
14089 begin
14090 if Present (Ifaces) then
14091 Iface_Elmt := First_Elmt (Ifaces);
14092 while Present (Iface_Elmt) loop
14093 if Node (Iface_Elmt) = Iface then
14094 return True;
14095 end if;
14096
14097 Next_Elmt (Iface_Elmt);
14098 end loop;
14099 end if;
14100
14101 return False;
14102 end Contain_Interface;
14103
14104 ---------------------------
14105 -- Convert_Scalar_Bounds --
14106 ---------------------------
14107
14108 procedure Convert_Scalar_Bounds
14109 (N : Node_Id;
14110 Parent_Type : Entity_Id;
14111 Derived_Type : Entity_Id;
14112 Loc : Source_Ptr)
14113 is
14114 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
14115
14116 Lo : Node_Id;
14117 Hi : Node_Id;
14118 Rng : Node_Id;
14119
14120 begin
14121 -- Defend against previous errors
14122
14123 if No (Scalar_Range (Derived_Type)) then
14124 Check_Error_Detected;
14125 return;
14126 end if;
14127
14128 Lo := Build_Scalar_Bound
14129 (Type_Low_Bound (Derived_Type),
14130 Parent_Type, Implicit_Base);
14131
14132 Hi := Build_Scalar_Bound
14133 (Type_High_Bound (Derived_Type),
14134 Parent_Type, Implicit_Base);
14135
14136 Rng :=
14137 Make_Range (Loc,
14138 Low_Bound => Lo,
14139 High_Bound => Hi);
14140
14141 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
14142
14143 Set_Parent (Rng, N);
14144 Set_Scalar_Range (Derived_Type, Rng);
14145
14146 -- Analyze the bounds
14147
14148 Analyze_And_Resolve (Lo, Implicit_Base);
14149 Analyze_And_Resolve (Hi, Implicit_Base);
14150
14151 -- Analyze the range itself, except that we do not analyze it if
14152 -- the bounds are real literals, and we have a fixed-point type.
14153 -- The reason for this is that we delay setting the bounds in this
14154 -- case till we know the final Small and Size values (see circuit
14155 -- in Freeze.Freeze_Fixed_Point_Type for further details).
14156
14157 if Is_Fixed_Point_Type (Parent_Type)
14158 and then Nkind (Lo) = N_Real_Literal
14159 and then Nkind (Hi) = N_Real_Literal
14160 then
14161 return;
14162
14163 -- Here we do the analysis of the range
14164
14165 -- Note: we do this manually, since if we do a normal Analyze and
14166 -- Resolve call, there are problems with the conversions used for
14167 -- the derived type range.
14168
14169 else
14170 Set_Etype (Rng, Implicit_Base);
14171 Set_Analyzed (Rng, True);
14172 end if;
14173 end Convert_Scalar_Bounds;
14174
14175 -------------------
14176 -- Copy_And_Swap --
14177 -------------------
14178
14179 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
14180 begin
14181 -- Initialize new full declaration entity by copying the pertinent
14182 -- fields of the corresponding private declaration entity.
14183
14184 -- We temporarily set Ekind to a value appropriate for a type to
14185 -- avoid assert failures in Einfo from checking for setting type
14186 -- attributes on something that is not a type. Ekind (Priv) is an
14187 -- appropriate choice, since it allowed the attributes to be set
14188 -- in the first place. This Ekind value will be modified later.
14189
14190 Set_Ekind (Full, Ekind (Priv));
14191
14192 -- Also set Etype temporarily to Any_Type, again, in the absence
14193 -- of errors, it will be properly reset, and if there are errors,
14194 -- then we want a value of Any_Type to remain.
14195
14196 Set_Etype (Full, Any_Type);
14197
14198 -- Now start copying attributes
14199
14200 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
14201
14202 if Has_Discriminants (Full) then
14203 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
14204 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
14205 end if;
14206
14207 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
14208 Set_Homonym (Full, Homonym (Priv));
14209 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
14210 Set_Is_Public (Full, Is_Public (Priv));
14211 Set_Is_Pure (Full, Is_Pure (Priv));
14212 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
14213 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
14214 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
14215 Set_Has_Pragma_Unreferenced_Objects
14216 (Full, Has_Pragma_Unreferenced_Objects
14217 (Priv));
14218
14219 Conditional_Delay (Full, Priv);
14220
14221 if Is_Tagged_Type (Full) then
14222 Set_Direct_Primitive_Operations
14223 (Full, Direct_Primitive_Operations (Priv));
14224 Set_No_Tagged_Streams_Pragma
14225 (Full, No_Tagged_Streams_Pragma (Priv));
14226
14227 if Is_Base_Type (Priv) then
14228 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
14229 end if;
14230 end if;
14231
14232 Set_Is_Volatile (Full, Is_Volatile (Priv));
14233 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
14234 Set_Scope (Full, Scope (Priv));
14235 Set_Next_Entity (Full, Next_Entity (Priv));
14236 Set_First_Entity (Full, First_Entity (Priv));
14237 Set_Last_Entity (Full, Last_Entity (Priv));
14238
14239 -- If access types have been recorded for later handling, keep them in
14240 -- the full view so that they get handled when the full view freeze
14241 -- node is expanded.
14242
14243 if Present (Freeze_Node (Priv))
14244 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
14245 then
14246 Ensure_Freeze_Node (Full);
14247 Set_Access_Types_To_Process
14248 (Freeze_Node (Full),
14249 Access_Types_To_Process (Freeze_Node (Priv)));
14250 end if;
14251
14252 -- Swap the two entities. Now Private is the full type entity and Full
14253 -- is the private one. They will be swapped back at the end of the
14254 -- private part. This swapping ensures that the entity that is visible
14255 -- in the private part is the full declaration.
14256
14257 Exchange_Entities (Priv, Full);
14258 Append_Entity (Full, Scope (Full));
14259 end Copy_And_Swap;
14260
14261 -------------------------------------
14262 -- Copy_Array_Base_Type_Attributes --
14263 -------------------------------------
14264
14265 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
14266 begin
14267 Set_Component_Alignment (T1, Component_Alignment (T2));
14268 Set_Component_Type (T1, Component_Type (T2));
14269 Set_Component_Size (T1, Component_Size (T2));
14270 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
14271 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
14272 Propagate_Concurrent_Flags (T1, T2);
14273 Set_Is_Packed (T1, Is_Packed (T2));
14274 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
14275 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
14276 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
14277 end Copy_Array_Base_Type_Attributes;
14278
14279 -----------------------------------
14280 -- Copy_Array_Subtype_Attributes --
14281 -----------------------------------
14282
14283 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
14284 begin
14285 Set_Size_Info (T1, T2);
14286
14287 Set_First_Index (T1, First_Index (T2));
14288 Set_Is_Aliased (T1, Is_Aliased (T2));
14289 Set_Is_Volatile (T1, Is_Volatile (T2));
14290 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
14291 Set_Is_Constrained (T1, Is_Constrained (T2));
14292 Set_Depends_On_Private (T1, Has_Private_Component (T2));
14293 Inherit_Rep_Item_Chain (T1, T2);
14294 Set_Convention (T1, Convention (T2));
14295 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
14296 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
14297 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
14298 end Copy_Array_Subtype_Attributes;
14299
14300 -----------------------------------
14301 -- Create_Constrained_Components --
14302 -----------------------------------
14303
14304 procedure Create_Constrained_Components
14305 (Subt : Entity_Id;
14306 Decl_Node : Node_Id;
14307 Typ : Entity_Id;
14308 Constraints : Elist_Id)
14309 is
14310 Loc : constant Source_Ptr := Sloc (Subt);
14311 Comp_List : constant Elist_Id := New_Elmt_List;
14312 Parent_Type : constant Entity_Id := Etype (Typ);
14313 Assoc_List : constant List_Id := New_List;
14314 Discr_Val : Elmt_Id;
14315 Errors : Boolean;
14316 New_C : Entity_Id;
14317 Old_C : Entity_Id;
14318 Is_Static : Boolean := True;
14319
14320 procedure Collect_Fixed_Components (Typ : Entity_Id);
14321 -- Collect parent type components that do not appear in a variant part
14322
14323 procedure Create_All_Components;
14324 -- Iterate over Comp_List to create the components of the subtype
14325
14326 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
14327 -- Creates a new component from Old_Compon, copying all the fields from
14328 -- it, including its Etype, inserts the new component in the Subt entity
14329 -- chain and returns the new component.
14330
14331 function Is_Variant_Record (T : Entity_Id) return Boolean;
14332 -- If true, and discriminants are static, collect only components from
14333 -- variants selected by discriminant values.
14334
14335 ------------------------------
14336 -- Collect_Fixed_Components --
14337 ------------------------------
14338
14339 procedure Collect_Fixed_Components (Typ : Entity_Id) is
14340 begin
14341 -- Build association list for discriminants, and find components of the
14342 -- variant part selected by the values of the discriminants.
14343
14344 Old_C := First_Discriminant (Typ);
14345 Discr_Val := First_Elmt (Constraints);
14346 while Present (Old_C) loop
14347 Append_To (Assoc_List,
14348 Make_Component_Association (Loc,
14349 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
14350 Expression => New_Copy (Node (Discr_Val))));
14351
14352 Next_Elmt (Discr_Val);
14353 Next_Discriminant (Old_C);
14354 end loop;
14355
14356 -- The tag and the possible parent component are unconditionally in
14357 -- the subtype.
14358
14359 if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
14360 Old_C := First_Component (Typ);
14361 while Present (Old_C) loop
14362 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
14363 Append_Elmt (Old_C, Comp_List);
14364 end if;
14365
14366 Next_Component (Old_C);
14367 end loop;
14368 end if;
14369 end Collect_Fixed_Components;
14370
14371 ---------------------------
14372 -- Create_All_Components --
14373 ---------------------------
14374
14375 procedure Create_All_Components is
14376 Comp : Elmt_Id;
14377
14378 begin
14379 Comp := First_Elmt (Comp_List);
14380 while Present (Comp) loop
14381 Old_C := Node (Comp);
14382 New_C := Create_Component (Old_C);
14383
14384 Set_Etype
14385 (New_C,
14386 Constrain_Component_Type
14387 (Old_C, Subt, Decl_Node, Typ, Constraints));
14388 Set_Is_Public (New_C, Is_Public (Subt));
14389
14390 Next_Elmt (Comp);
14391 end loop;
14392 end Create_All_Components;
14393
14394 ----------------------
14395 -- Create_Component --
14396 ----------------------
14397
14398 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
14399 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
14400
14401 begin
14402 if Ekind (Old_Compon) = E_Discriminant
14403 and then Is_Completely_Hidden (Old_Compon)
14404 then
14405 -- This is a shadow discriminant created for a discriminant of
14406 -- the parent type, which needs to be present in the subtype.
14407 -- Give the shadow discriminant an internal name that cannot
14408 -- conflict with that of visible components.
14409
14410 Set_Chars (New_Compon, New_Internal_Name ('C'));
14411 end if;
14412
14413 -- Set the parent so we have a proper link for freezing etc. This is
14414 -- not a real parent pointer, since of course our parent does not own
14415 -- up to us and reference us, we are an illegitimate child of the
14416 -- original parent.
14417
14418 Set_Parent (New_Compon, Parent (Old_Compon));
14419
14420 -- If the old component's Esize was already determined and is a
14421 -- static value, then the new component simply inherits it. Otherwise
14422 -- the old component's size may require run-time determination, but
14423 -- the new component's size still might be statically determinable
14424 -- (if, for example it has a static constraint). In that case we want
14425 -- Layout_Type to recompute the component's size, so we reset its
14426 -- size and positional fields.
14427
14428 if Frontend_Layout_On_Target
14429 and then not Known_Static_Esize (Old_Compon)
14430 then
14431 Set_Esize (New_Compon, Uint_0);
14432 Init_Normalized_First_Bit (New_Compon);
14433 Init_Normalized_Position (New_Compon);
14434 Init_Normalized_Position_Max (New_Compon);
14435 end if;
14436
14437 -- We do not want this node marked as Comes_From_Source, since
14438 -- otherwise it would get first class status and a separate cross-
14439 -- reference line would be generated. Illegitimate children do not
14440 -- rate such recognition.
14441
14442 Set_Comes_From_Source (New_Compon, False);
14443
14444 -- But it is a real entity, and a birth certificate must be properly
14445 -- registered by entering it into the entity list.
14446
14447 Enter_Name (New_Compon);
14448
14449 return New_Compon;
14450 end Create_Component;
14451
14452 -----------------------
14453 -- Is_Variant_Record --
14454 -----------------------
14455
14456 function Is_Variant_Record (T : Entity_Id) return Boolean is
14457 begin
14458 return Nkind (Parent (T)) = N_Full_Type_Declaration
14459 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
14460 and then Present (Component_List (Type_Definition (Parent (T))))
14461 and then
14462 Present
14463 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
14464 end Is_Variant_Record;
14465
14466 -- Start of processing for Create_Constrained_Components
14467
14468 begin
14469 pragma Assert (Subt /= Base_Type (Subt));
14470 pragma Assert (Typ = Base_Type (Typ));
14471
14472 Set_First_Entity (Subt, Empty);
14473 Set_Last_Entity (Subt, Empty);
14474
14475 -- Check whether constraint is fully static, in which case we can
14476 -- optimize the list of components.
14477
14478 Discr_Val := First_Elmt (Constraints);
14479 while Present (Discr_Val) loop
14480 if not Is_OK_Static_Expression (Node (Discr_Val)) then
14481 Is_Static := False;
14482 exit;
14483 end if;
14484
14485 Next_Elmt (Discr_Val);
14486 end loop;
14487
14488 Set_Has_Static_Discriminants (Subt, Is_Static);
14489
14490 Push_Scope (Subt);
14491
14492 -- Inherit the discriminants of the parent type
14493
14494 Add_Discriminants : declare
14495 Num_Disc : Nat;
14496 Num_Gird : Nat;
14497
14498 begin
14499 Num_Disc := 0;
14500 Old_C := First_Discriminant (Typ);
14501
14502 while Present (Old_C) loop
14503 Num_Disc := Num_Disc + 1;
14504 New_C := Create_Component (Old_C);
14505 Set_Is_Public (New_C, Is_Public (Subt));
14506 Next_Discriminant (Old_C);
14507 end loop;
14508
14509 -- For an untagged derived subtype, the number of discriminants may
14510 -- be smaller than the number of inherited discriminants, because
14511 -- several of them may be renamed by a single new discriminant or
14512 -- constrained. In this case, add the hidden discriminants back into
14513 -- the subtype, because they need to be present if the optimizer of
14514 -- the GCC 4.x back-end decides to break apart assignments between
14515 -- objects using the parent view into member-wise assignments.
14516
14517 Num_Gird := 0;
14518
14519 if Is_Derived_Type (Typ)
14520 and then not Is_Tagged_Type (Typ)
14521 then
14522 Old_C := First_Stored_Discriminant (Typ);
14523
14524 while Present (Old_C) loop
14525 Num_Gird := Num_Gird + 1;
14526 Next_Stored_Discriminant (Old_C);
14527 end loop;
14528 end if;
14529
14530 if Num_Gird > Num_Disc then
14531
14532 -- Find out multiple uses of new discriminants, and add hidden
14533 -- components for the extra renamed discriminants. We recognize
14534 -- multiple uses through the Corresponding_Discriminant of a
14535 -- new discriminant: if it constrains several old discriminants,
14536 -- this field points to the last one in the parent type. The
14537 -- stored discriminants of the derived type have the same name
14538 -- as those of the parent.
14539
14540 declare
14541 Constr : Elmt_Id;
14542 New_Discr : Entity_Id;
14543 Old_Discr : Entity_Id;
14544
14545 begin
14546 Constr := First_Elmt (Stored_Constraint (Typ));
14547 Old_Discr := First_Stored_Discriminant (Typ);
14548 while Present (Constr) loop
14549 if Is_Entity_Name (Node (Constr))
14550 and then Ekind (Entity (Node (Constr))) = E_Discriminant
14551 then
14552 New_Discr := Entity (Node (Constr));
14553
14554 if Chars (Corresponding_Discriminant (New_Discr)) /=
14555 Chars (Old_Discr)
14556 then
14557 -- The new discriminant has been used to rename a
14558 -- subsequent old discriminant. Introduce a shadow
14559 -- component for the current old discriminant.
14560
14561 New_C := Create_Component (Old_Discr);
14562 Set_Original_Record_Component (New_C, Old_Discr);
14563 end if;
14564
14565 else
14566 -- The constraint has eliminated the old discriminant.
14567 -- Introduce a shadow component.
14568
14569 New_C := Create_Component (Old_Discr);
14570 Set_Original_Record_Component (New_C, Old_Discr);
14571 end if;
14572
14573 Next_Elmt (Constr);
14574 Next_Stored_Discriminant (Old_Discr);
14575 end loop;
14576 end;
14577 end if;
14578 end Add_Discriminants;
14579
14580 if Is_Static
14581 and then Is_Variant_Record (Typ)
14582 then
14583 Collect_Fixed_Components (Typ);
14584
14585 Gather_Components (
14586 Typ,
14587 Component_List (Type_Definition (Parent (Typ))),
14588 Governed_By => Assoc_List,
14589 Into => Comp_List,
14590 Report_Errors => Errors);
14591 pragma Assert (not Errors
14592 or else Serious_Errors_Detected > 0);
14593
14594 Create_All_Components;
14595
14596 -- If the subtype declaration is created for a tagged type derivation
14597 -- with constraints, we retrieve the record definition of the parent
14598 -- type to select the components of the proper variant.
14599
14600 elsif Is_Static
14601 and then Is_Tagged_Type (Typ)
14602 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
14603 and then
14604 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
14605 and then Is_Variant_Record (Parent_Type)
14606 then
14607 Collect_Fixed_Components (Typ);
14608
14609 Gather_Components
14610 (Typ,
14611 Component_List (Type_Definition (Parent (Parent_Type))),
14612 Governed_By => Assoc_List,
14613 Into => Comp_List,
14614 Report_Errors => Errors);
14615
14616 -- Note: previously there was a check at this point that no errors
14617 -- were detected. As a consequence of AI05-220 there may be an error
14618 -- if an inherited discriminant that controls a variant has a non-
14619 -- static constraint.
14620
14621 -- If the tagged derivation has a type extension, collect all the
14622 -- new components therein.
14623
14624 if Present (Record_Extension_Part (Type_Definition (Parent (Typ))))
14625 then
14626 Old_C := First_Component (Typ);
14627 while Present (Old_C) loop
14628 if Original_Record_Component (Old_C) = Old_C
14629 and then Chars (Old_C) /= Name_uTag
14630 and then Chars (Old_C) /= Name_uParent
14631 then
14632 Append_Elmt (Old_C, Comp_List);
14633 end if;
14634
14635 Next_Component (Old_C);
14636 end loop;
14637 end if;
14638
14639 Create_All_Components;
14640
14641 else
14642 -- If discriminants are not static, or if this is a multi-level type
14643 -- extension, we have to include all components of the parent type.
14644
14645 Old_C := First_Component (Typ);
14646 while Present (Old_C) loop
14647 New_C := Create_Component (Old_C);
14648
14649 Set_Etype
14650 (New_C,
14651 Constrain_Component_Type
14652 (Old_C, Subt, Decl_Node, Typ, Constraints));
14653 Set_Is_Public (New_C, Is_Public (Subt));
14654
14655 Next_Component (Old_C);
14656 end loop;
14657 end if;
14658
14659 End_Scope;
14660 end Create_Constrained_Components;
14661
14662 ------------------------------------------
14663 -- Decimal_Fixed_Point_Type_Declaration --
14664 ------------------------------------------
14665
14666 procedure Decimal_Fixed_Point_Type_Declaration
14667 (T : Entity_Id;
14668 Def : Node_Id)
14669 is
14670 Loc : constant Source_Ptr := Sloc (Def);
14671 Digs_Expr : constant Node_Id := Digits_Expression (Def);
14672 Delta_Expr : constant Node_Id := Delta_Expression (Def);
14673 Implicit_Base : Entity_Id;
14674 Digs_Val : Uint;
14675 Delta_Val : Ureal;
14676 Scale_Val : Uint;
14677 Bound_Val : Ureal;
14678
14679 begin
14680 Check_SPARK_05_Restriction
14681 ("decimal fixed point type is not allowed", Def);
14682 Check_Restriction (No_Fixed_Point, Def);
14683
14684 -- Create implicit base type
14685
14686 Implicit_Base :=
14687 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
14688 Set_Etype (Implicit_Base, Implicit_Base);
14689
14690 -- Analyze and process delta expression
14691
14692 Analyze_And_Resolve (Delta_Expr, Universal_Real);
14693
14694 Check_Delta_Expression (Delta_Expr);
14695 Delta_Val := Expr_Value_R (Delta_Expr);
14696
14697 -- Check delta is power of 10, and determine scale value from it
14698
14699 declare
14700 Val : Ureal;
14701
14702 begin
14703 Scale_Val := Uint_0;
14704 Val := Delta_Val;
14705
14706 if Val < Ureal_1 then
14707 while Val < Ureal_1 loop
14708 Val := Val * Ureal_10;
14709 Scale_Val := Scale_Val + 1;
14710 end loop;
14711
14712 if Scale_Val > 18 then
14713 Error_Msg_N ("scale exceeds maximum value of 18", Def);
14714 Scale_Val := UI_From_Int (+18);
14715 end if;
14716
14717 else
14718 while Val > Ureal_1 loop
14719 Val := Val / Ureal_10;
14720 Scale_Val := Scale_Val - 1;
14721 end loop;
14722
14723 if Scale_Val < -18 then
14724 Error_Msg_N ("scale is less than minimum value of -18", Def);
14725 Scale_Val := UI_From_Int (-18);
14726 end if;
14727 end if;
14728
14729 if Val /= Ureal_1 then
14730 Error_Msg_N ("delta expression must be a power of 10", Def);
14731 Delta_Val := Ureal_10 ** (-Scale_Val);
14732 end if;
14733 end;
14734
14735 -- Set delta, scale and small (small = delta for decimal type)
14736
14737 Set_Delta_Value (Implicit_Base, Delta_Val);
14738 Set_Scale_Value (Implicit_Base, Scale_Val);
14739 Set_Small_Value (Implicit_Base, Delta_Val);
14740
14741 -- Analyze and process digits expression
14742
14743 Analyze_And_Resolve (Digs_Expr, Any_Integer);
14744 Check_Digits_Expression (Digs_Expr);
14745 Digs_Val := Expr_Value (Digs_Expr);
14746
14747 if Digs_Val > 18 then
14748 Digs_Val := UI_From_Int (+18);
14749 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
14750 end if;
14751
14752 Set_Digits_Value (Implicit_Base, Digs_Val);
14753 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
14754
14755 -- Set range of base type from digits value for now. This will be
14756 -- expanded to represent the true underlying base range by Freeze.
14757
14758 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
14759
14760 -- Note: We leave size as zero for now, size will be set at freeze
14761 -- time. We have to do this for ordinary fixed-point, because the size
14762 -- depends on the specified small, and we might as well do the same for
14763 -- decimal fixed-point.
14764
14765 pragma Assert (Esize (Implicit_Base) = Uint_0);
14766
14767 -- If there are bounds given in the declaration use them as the
14768 -- bounds of the first named subtype.
14769
14770 if Present (Real_Range_Specification (Def)) then
14771 declare
14772 RRS : constant Node_Id := Real_Range_Specification (Def);
14773 Low : constant Node_Id := Low_Bound (RRS);
14774 High : constant Node_Id := High_Bound (RRS);
14775 Low_Val : Ureal;
14776 High_Val : Ureal;
14777
14778 begin
14779 Analyze_And_Resolve (Low, Any_Real);
14780 Analyze_And_Resolve (High, Any_Real);
14781 Check_Real_Bound (Low);
14782 Check_Real_Bound (High);
14783 Low_Val := Expr_Value_R (Low);
14784 High_Val := Expr_Value_R (High);
14785
14786 if Low_Val < (-Bound_Val) then
14787 Error_Msg_N
14788 ("range low bound too small for digits value", Low);
14789 Low_Val := -Bound_Val;
14790 end if;
14791
14792 if High_Val > Bound_Val then
14793 Error_Msg_N
14794 ("range high bound too large for digits value", High);
14795 High_Val := Bound_Val;
14796 end if;
14797
14798 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
14799 end;
14800
14801 -- If no explicit range, use range that corresponds to given
14802 -- digits value. This will end up as the final range for the
14803 -- first subtype.
14804
14805 else
14806 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
14807 end if;
14808
14809 -- Complete entity for first subtype. The inheritance of the rep item
14810 -- chain ensures that SPARK-related pragmas are not clobbered when the
14811 -- decimal fixed point type acts as a full view of a private type.
14812
14813 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
14814 Set_Etype (T, Implicit_Base);
14815 Set_Size_Info (T, Implicit_Base);
14816 Inherit_Rep_Item_Chain (T, Implicit_Base);
14817 Set_Digits_Value (T, Digs_Val);
14818 Set_Delta_Value (T, Delta_Val);
14819 Set_Small_Value (T, Delta_Val);
14820 Set_Scale_Value (T, Scale_Val);
14821 Set_Is_Constrained (T);
14822 end Decimal_Fixed_Point_Type_Declaration;
14823
14824 -----------------------------------
14825 -- Derive_Progenitor_Subprograms --
14826 -----------------------------------
14827
14828 procedure Derive_Progenitor_Subprograms
14829 (Parent_Type : Entity_Id;
14830 Tagged_Type : Entity_Id)
14831 is
14832 E : Entity_Id;
14833 Elmt : Elmt_Id;
14834 Iface : Entity_Id;
14835 Iface_Elmt : Elmt_Id;
14836 Iface_Subp : Entity_Id;
14837 New_Subp : Entity_Id := Empty;
14838 Prim_Elmt : Elmt_Id;
14839 Subp : Entity_Id;
14840 Typ : Entity_Id;
14841
14842 begin
14843 pragma Assert (Ada_Version >= Ada_2005
14844 and then Is_Record_Type (Tagged_Type)
14845 and then Is_Tagged_Type (Tagged_Type)
14846 and then Has_Interfaces (Tagged_Type));
14847
14848 -- Step 1: Transfer to the full-view primitives associated with the
14849 -- partial-view that cover interface primitives. Conceptually this
14850 -- work should be done later by Process_Full_View; done here to
14851 -- simplify its implementation at later stages. It can be safely
14852 -- done here because interfaces must be visible in the partial and
14853 -- private view (RM 7.3(7.3/2)).
14854
14855 -- Small optimization: This work is only required if the parent may
14856 -- have entities whose Alias attribute reference an interface primitive.
14857 -- Such a situation may occur if the parent is an abstract type and the
14858 -- primitive has not been yet overridden or if the parent is a generic
14859 -- formal type covering interfaces.
14860
14861 -- If the tagged type is not abstract, it cannot have abstract
14862 -- primitives (the only entities in the list of primitives of
14863 -- non-abstract tagged types that can reference abstract primitives
14864 -- through its Alias attribute are the internal entities that have
14865 -- attribute Interface_Alias, and these entities are generated later
14866 -- by Add_Internal_Interface_Entities).
14867
14868 if In_Private_Part (Current_Scope)
14869 and then (Is_Abstract_Type (Parent_Type)
14870 or else
14871 Is_Generic_Type (Parent_Type))
14872 then
14873 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
14874 while Present (Elmt) loop
14875 Subp := Node (Elmt);
14876
14877 -- At this stage it is not possible to have entities in the list
14878 -- of primitives that have attribute Interface_Alias.
14879
14880 pragma Assert (No (Interface_Alias (Subp)));
14881
14882 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
14883
14884 if Is_Interface (Typ) then
14885 E := Find_Primitive_Covering_Interface
14886 (Tagged_Type => Tagged_Type,
14887 Iface_Prim => Subp);
14888
14889 if Present (E)
14890 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
14891 then
14892 Replace_Elmt (Elmt, E);
14893 Remove_Homonym (Subp);
14894 end if;
14895 end if;
14896
14897 Next_Elmt (Elmt);
14898 end loop;
14899 end if;
14900
14901 -- Step 2: Add primitives of progenitors that are not implemented by
14902 -- parents of Tagged_Type.
14903
14904 if Present (Interfaces (Base_Type (Tagged_Type))) then
14905 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
14906 while Present (Iface_Elmt) loop
14907 Iface := Node (Iface_Elmt);
14908
14909 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
14910 while Present (Prim_Elmt) loop
14911 Iface_Subp := Node (Prim_Elmt);
14912
14913 -- Exclude derivation of predefined primitives except those
14914 -- that come from source, or are inherited from one that comes
14915 -- from source. Required to catch declarations of equality
14916 -- operators of interfaces. For example:
14917
14918 -- type Iface is interface;
14919 -- function "=" (Left, Right : Iface) return Boolean;
14920
14921 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
14922 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
14923 then
14924 E := Find_Primitive_Covering_Interface
14925 (Tagged_Type => Tagged_Type,
14926 Iface_Prim => Iface_Subp);
14927
14928 -- If not found we derive a new primitive leaving its alias
14929 -- attribute referencing the interface primitive.
14930
14931 if No (E) then
14932 Derive_Subprogram
14933 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14934
14935 -- Ada 2012 (AI05-0197): If the covering primitive's name
14936 -- differs from the name of the interface primitive then it
14937 -- is a private primitive inherited from a parent type. In
14938 -- such case, given that Tagged_Type covers the interface,
14939 -- the inherited private primitive becomes visible. For such
14940 -- purpose we add a new entity that renames the inherited
14941 -- private primitive.
14942
14943 elsif Chars (E) /= Chars (Iface_Subp) then
14944 pragma Assert (Has_Suffix (E, 'P'));
14945 Derive_Subprogram
14946 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14947 Set_Alias (New_Subp, E);
14948 Set_Is_Abstract_Subprogram (New_Subp,
14949 Is_Abstract_Subprogram (E));
14950
14951 -- Propagate to the full view interface entities associated
14952 -- with the partial view.
14953
14954 elsif In_Private_Part (Current_Scope)
14955 and then Present (Alias (E))
14956 and then Alias (E) = Iface_Subp
14957 and then
14958 List_Containing (Parent (E)) /=
14959 Private_Declarations
14960 (Specification
14961 (Unit_Declaration_Node (Current_Scope)))
14962 then
14963 Append_Elmt (E, Primitive_Operations (Tagged_Type));
14964 end if;
14965 end if;
14966
14967 Next_Elmt (Prim_Elmt);
14968 end loop;
14969
14970 Next_Elmt (Iface_Elmt);
14971 end loop;
14972 end if;
14973 end Derive_Progenitor_Subprograms;
14974
14975 -----------------------
14976 -- Derive_Subprogram --
14977 -----------------------
14978
14979 procedure Derive_Subprogram
14980 (New_Subp : out Entity_Id;
14981 Parent_Subp : Entity_Id;
14982 Derived_Type : Entity_Id;
14983 Parent_Type : Entity_Id;
14984 Actual_Subp : Entity_Id := Empty)
14985 is
14986 Formal : Entity_Id;
14987 -- Formal parameter of parent primitive operation
14988
14989 Formal_Of_Actual : Entity_Id;
14990 -- Formal parameter of actual operation, when the derivation is to
14991 -- create a renaming for a primitive operation of an actual in an
14992 -- instantiation.
14993
14994 New_Formal : Entity_Id;
14995 -- Formal of inherited operation
14996
14997 Visible_Subp : Entity_Id := Parent_Subp;
14998
14999 function Is_Private_Overriding return Boolean;
15000 -- If Subp is a private overriding of a visible operation, the inherited
15001 -- operation derives from the overridden op (even though its body is the
15002 -- overriding one) and the inherited operation is visible now. See
15003 -- sem_disp to see the full details of the handling of the overridden
15004 -- subprogram, which is removed from the list of primitive operations of
15005 -- the type. The overridden subprogram is saved locally in Visible_Subp,
15006 -- and used to diagnose abstract operations that need overriding in the
15007 -- derived type.
15008
15009 procedure Replace_Type (Id, New_Id : Entity_Id);
15010 -- When the type is an anonymous access type, create a new access type
15011 -- designating the derived type.
15012
15013 procedure Set_Derived_Name;
15014 -- This procedure sets the appropriate Chars name for New_Subp. This
15015 -- is normally just a copy of the parent name. An exception arises for
15016 -- type support subprograms, where the name is changed to reflect the
15017 -- name of the derived type, e.g. if type foo is derived from type bar,
15018 -- then a procedure barDA is derived with a name fooDA.
15019
15020 ---------------------------
15021 -- Is_Private_Overriding --
15022 ---------------------------
15023
15024 function Is_Private_Overriding return Boolean is
15025 Prev : Entity_Id;
15026
15027 begin
15028 -- If the parent is not a dispatching operation there is no
15029 -- need to investigate overridings
15030
15031 if not Is_Dispatching_Operation (Parent_Subp) then
15032 return False;
15033 end if;
15034
15035 -- The visible operation that is overridden is a homonym of the
15036 -- parent subprogram. We scan the homonym chain to find the one
15037 -- whose alias is the subprogram we are deriving.
15038
15039 Prev := Current_Entity (Parent_Subp);
15040 while Present (Prev) loop
15041 if Ekind (Prev) = Ekind (Parent_Subp)
15042 and then Alias (Prev) = Parent_Subp
15043 and then Scope (Parent_Subp) = Scope (Prev)
15044 and then not Is_Hidden (Prev)
15045 then
15046 Visible_Subp := Prev;
15047 return True;
15048 end if;
15049
15050 Prev := Homonym (Prev);
15051 end loop;
15052
15053 return False;
15054 end Is_Private_Overriding;
15055
15056 ------------------
15057 -- Replace_Type --
15058 ------------------
15059
15060 procedure Replace_Type (Id, New_Id : Entity_Id) is
15061 Id_Type : constant Entity_Id := Etype (Id);
15062 Acc_Type : Entity_Id;
15063 Par : constant Node_Id := Parent (Derived_Type);
15064
15065 begin
15066 -- When the type is an anonymous access type, create a new access
15067 -- type designating the derived type. This itype must be elaborated
15068 -- at the point of the derivation, not on subsequent calls that may
15069 -- be out of the proper scope for Gigi, so we insert a reference to
15070 -- it after the derivation.
15071
15072 if Ekind (Id_Type) = E_Anonymous_Access_Type then
15073 declare
15074 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
15075
15076 begin
15077 if Ekind (Desig_Typ) = E_Record_Type_With_Private
15078 and then Present (Full_View (Desig_Typ))
15079 and then not Is_Private_Type (Parent_Type)
15080 then
15081 Desig_Typ := Full_View (Desig_Typ);
15082 end if;
15083
15084 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
15085
15086 -- Ada 2005 (AI-251): Handle also derivations of abstract
15087 -- interface primitives.
15088
15089 or else (Is_Interface (Desig_Typ)
15090 and then not Is_Class_Wide_Type (Desig_Typ))
15091 then
15092 Acc_Type := New_Copy (Id_Type);
15093 Set_Etype (Acc_Type, Acc_Type);
15094 Set_Scope (Acc_Type, New_Subp);
15095
15096 -- Set size of anonymous access type. If we have an access
15097 -- to an unconstrained array, this is a fat pointer, so it
15098 -- is sizes at twice addtress size.
15099
15100 if Is_Array_Type (Desig_Typ)
15101 and then not Is_Constrained (Desig_Typ)
15102 then
15103 Init_Size (Acc_Type, 2 * System_Address_Size);
15104
15105 -- Other cases use a thin pointer
15106
15107 else
15108 Init_Size (Acc_Type, System_Address_Size);
15109 end if;
15110
15111 -- Set remaining characterstics of anonymous access type
15112
15113 Init_Alignment (Acc_Type);
15114 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
15115
15116 Set_Etype (New_Id, Acc_Type);
15117 Set_Scope (New_Id, New_Subp);
15118
15119 -- Create a reference to it
15120
15121 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
15122
15123 else
15124 Set_Etype (New_Id, Id_Type);
15125 end if;
15126 end;
15127
15128 -- In Ada2012, a formal may have an incomplete type but the type
15129 -- derivation that inherits the primitive follows the full view.
15130
15131 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
15132 or else
15133 (Ekind (Id_Type) = E_Record_Type_With_Private
15134 and then Present (Full_View (Id_Type))
15135 and then
15136 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
15137 or else
15138 (Ada_Version >= Ada_2012
15139 and then Ekind (Id_Type) = E_Incomplete_Type
15140 and then Full_View (Id_Type) = Parent_Type)
15141 then
15142 -- Constraint checks on formals are generated during expansion,
15143 -- based on the signature of the original subprogram. The bounds
15144 -- of the derived type are not relevant, and thus we can use
15145 -- the base type for the formals. However, the return type may be
15146 -- used in a context that requires that the proper static bounds
15147 -- be used (a case statement, for example) and for those cases
15148 -- we must use the derived type (first subtype), not its base.
15149
15150 -- If the derived_type_definition has no constraints, we know that
15151 -- the derived type has the same constraints as the first subtype
15152 -- of the parent, and we can also use it rather than its base,
15153 -- which can lead to more efficient code.
15154
15155 if Etype (Id) = Parent_Type then
15156 if Is_Scalar_Type (Parent_Type)
15157 and then
15158 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
15159 then
15160 Set_Etype (New_Id, Derived_Type);
15161
15162 elsif Nkind (Par) = N_Full_Type_Declaration
15163 and then
15164 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
15165 and then
15166 Is_Entity_Name
15167 (Subtype_Indication (Type_Definition (Par)))
15168 then
15169 Set_Etype (New_Id, Derived_Type);
15170
15171 else
15172 Set_Etype (New_Id, Base_Type (Derived_Type));
15173 end if;
15174
15175 else
15176 Set_Etype (New_Id, Base_Type (Derived_Type));
15177 end if;
15178
15179 else
15180 Set_Etype (New_Id, Etype (Id));
15181 end if;
15182 end Replace_Type;
15183
15184 ----------------------
15185 -- Set_Derived_Name --
15186 ----------------------
15187
15188 procedure Set_Derived_Name is
15189 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
15190 begin
15191 if Nm = TSS_Null then
15192 Set_Chars (New_Subp, Chars (Parent_Subp));
15193 else
15194 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
15195 end if;
15196 end Set_Derived_Name;
15197
15198 -- Start of processing for Derive_Subprogram
15199
15200 begin
15201 New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
15202 Set_Ekind (New_Subp, Ekind (Parent_Subp));
15203
15204 -- Check whether the inherited subprogram is a private operation that
15205 -- should be inherited but not yet made visible. Such subprograms can
15206 -- become visible at a later point (e.g., the private part of a public
15207 -- child unit) via Declare_Inherited_Private_Subprograms. If the
15208 -- following predicate is true, then this is not such a private
15209 -- operation and the subprogram simply inherits the name of the parent
15210 -- subprogram. Note the special check for the names of controlled
15211 -- operations, which are currently exempted from being inherited with
15212 -- a hidden name because they must be findable for generation of
15213 -- implicit run-time calls.
15214
15215 if not Is_Hidden (Parent_Subp)
15216 or else Is_Internal (Parent_Subp)
15217 or else Is_Private_Overriding
15218 or else Is_Internal_Name (Chars (Parent_Subp))
15219 or else (Is_Controlled (Parent_Type)
15220 and then Nam_In (Chars (Parent_Subp), Name_Adjust,
15221 Name_Finalize,
15222 Name_Initialize))
15223 then
15224 Set_Derived_Name;
15225
15226 -- An inherited dispatching equality will be overridden by an internally
15227 -- generated one, or by an explicit one, so preserve its name and thus
15228 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
15229 -- private operation it may become invisible if the full view has
15230 -- progenitors, and the dispatch table will be malformed.
15231 -- We check that the type is limited to handle the anomalous declaration
15232 -- of Limited_Controlled, which is derived from a non-limited type, and
15233 -- which is handled specially elsewhere as well.
15234
15235 elsif Chars (Parent_Subp) = Name_Op_Eq
15236 and then Is_Dispatching_Operation (Parent_Subp)
15237 and then Etype (Parent_Subp) = Standard_Boolean
15238 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
15239 and then
15240 Etype (First_Formal (Parent_Subp)) =
15241 Etype (Next_Formal (First_Formal (Parent_Subp)))
15242 then
15243 Set_Derived_Name;
15244
15245 -- If parent is hidden, this can be a regular derivation if the
15246 -- parent is immediately visible in a non-instantiating context,
15247 -- or if we are in the private part of an instance. This test
15248 -- should still be refined ???
15249
15250 -- The test for In_Instance_Not_Visible avoids inheriting the derived
15251 -- operation as a non-visible operation in cases where the parent
15252 -- subprogram might not be visible now, but was visible within the
15253 -- original generic, so it would be wrong to make the inherited
15254 -- subprogram non-visible now. (Not clear if this test is fully
15255 -- correct; are there any cases where we should declare the inherited
15256 -- operation as not visible to avoid it being overridden, e.g., when
15257 -- the parent type is a generic actual with private primitives ???)
15258
15259 -- (they should be treated the same as other private inherited
15260 -- subprograms, but it's not clear how to do this cleanly). ???
15261
15262 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15263 and then Is_Immediately_Visible (Parent_Subp)
15264 and then not In_Instance)
15265 or else In_Instance_Not_Visible
15266 then
15267 Set_Derived_Name;
15268
15269 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
15270 -- overrides an interface primitive because interface primitives
15271 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
15272
15273 elsif Ada_Version >= Ada_2005
15274 and then Is_Dispatching_Operation (Parent_Subp)
15275 and then Present (Covered_Interface_Op (Parent_Subp))
15276 then
15277 Set_Derived_Name;
15278
15279 -- Otherwise, the type is inheriting a private operation, so enter it
15280 -- with a special name so it can't be overridden.
15281
15282 else
15283 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
15284 end if;
15285
15286 Set_Parent (New_Subp, Parent (Derived_Type));
15287
15288 if Present (Actual_Subp) then
15289 Replace_Type (Actual_Subp, New_Subp);
15290 else
15291 Replace_Type (Parent_Subp, New_Subp);
15292 end if;
15293
15294 Conditional_Delay (New_Subp, Parent_Subp);
15295
15296 -- If we are creating a renaming for a primitive operation of an
15297 -- actual of a generic derived type, we must examine the signature
15298 -- of the actual primitive, not that of the generic formal, which for
15299 -- example may be an interface. However the name and initial value
15300 -- of the inherited operation are those of the formal primitive.
15301
15302 Formal := First_Formal (Parent_Subp);
15303
15304 if Present (Actual_Subp) then
15305 Formal_Of_Actual := First_Formal (Actual_Subp);
15306 else
15307 Formal_Of_Actual := Empty;
15308 end if;
15309
15310 while Present (Formal) loop
15311 New_Formal := New_Copy (Formal);
15312
15313 -- Normally we do not go copying parents, but in the case of
15314 -- formals, we need to link up to the declaration (which is the
15315 -- parameter specification), and it is fine to link up to the
15316 -- original formal's parameter specification in this case.
15317
15318 Set_Parent (New_Formal, Parent (Formal));
15319 Append_Entity (New_Formal, New_Subp);
15320
15321 if Present (Formal_Of_Actual) then
15322 Replace_Type (Formal_Of_Actual, New_Formal);
15323 Next_Formal (Formal_Of_Actual);
15324 else
15325 Replace_Type (Formal, New_Formal);
15326 end if;
15327
15328 Next_Formal (Formal);
15329 end loop;
15330
15331 -- If this derivation corresponds to a tagged generic actual, then
15332 -- primitive operations rename those of the actual. Otherwise the
15333 -- primitive operations rename those of the parent type, If the parent
15334 -- renames an intrinsic operator, so does the new subprogram. We except
15335 -- concatenation, which is always properly typed, and does not get
15336 -- expanded as other intrinsic operations.
15337
15338 if No (Actual_Subp) then
15339 if Is_Intrinsic_Subprogram (Parent_Subp) then
15340 Set_Is_Intrinsic_Subprogram (New_Subp);
15341
15342 if Present (Alias (Parent_Subp))
15343 and then Chars (Parent_Subp) /= Name_Op_Concat
15344 then
15345 Set_Alias (New_Subp, Alias (Parent_Subp));
15346 else
15347 Set_Alias (New_Subp, Parent_Subp);
15348 end if;
15349
15350 else
15351 Set_Alias (New_Subp, Parent_Subp);
15352 end if;
15353
15354 else
15355 Set_Alias (New_Subp, Actual_Subp);
15356 end if;
15357
15358 -- Derived subprograms of a tagged type must inherit the convention
15359 -- of the parent subprogram (a requirement of AI-117). Derived
15360 -- subprograms of untagged types simply get convention Ada by default.
15361
15362 -- If the derived type is a tagged generic formal type with unknown
15363 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
15364
15365 -- However, if the type is derived from a generic formal, the further
15366 -- inherited subprogram has the convention of the non-generic ancestor.
15367 -- Otherwise there would be no way to override the operation.
15368 -- (This is subject to forthcoming ARG discussions).
15369
15370 if Is_Tagged_Type (Derived_Type) then
15371 if Is_Generic_Type (Derived_Type)
15372 and then Has_Unknown_Discriminants (Derived_Type)
15373 then
15374 Set_Convention (New_Subp, Convention_Intrinsic);
15375
15376 else
15377 if Is_Generic_Type (Parent_Type)
15378 and then Has_Unknown_Discriminants (Parent_Type)
15379 then
15380 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
15381 else
15382 Set_Convention (New_Subp, Convention (Parent_Subp));
15383 end if;
15384 end if;
15385 end if;
15386
15387 -- Predefined controlled operations retain their name even if the parent
15388 -- is hidden (see above), but they are not primitive operations if the
15389 -- ancestor is not visible, for example if the parent is a private
15390 -- extension completed with a controlled extension. Note that a full
15391 -- type that is controlled can break privacy: the flag Is_Controlled is
15392 -- set on both views of the type.
15393
15394 if Is_Controlled (Parent_Type)
15395 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
15396 Name_Adjust,
15397 Name_Finalize)
15398 and then Is_Hidden (Parent_Subp)
15399 and then not Is_Visibly_Controlled (Parent_Type)
15400 then
15401 Set_Is_Hidden (New_Subp);
15402 end if;
15403
15404 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
15405 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
15406
15407 if Ekind (Parent_Subp) = E_Procedure then
15408 Set_Is_Valued_Procedure
15409 (New_Subp, Is_Valued_Procedure (Parent_Subp));
15410 else
15411 Set_Has_Controlling_Result
15412 (New_Subp, Has_Controlling_Result (Parent_Subp));
15413 end if;
15414
15415 -- No_Return must be inherited properly. If this is overridden in the
15416 -- case of a dispatching operation, then a check is made in Sem_Disp
15417 -- that the overriding operation is also No_Return (no such check is
15418 -- required for the case of non-dispatching operation.
15419
15420 Set_No_Return (New_Subp, No_Return (Parent_Subp));
15421
15422 -- A derived function with a controlling result is abstract. If the
15423 -- Derived_Type is a nonabstract formal generic derived type, then
15424 -- inherited operations are not abstract: the required check is done at
15425 -- instantiation time. If the derivation is for a generic actual, the
15426 -- function is not abstract unless the actual is.
15427
15428 if Is_Generic_Type (Derived_Type)
15429 and then not Is_Abstract_Type (Derived_Type)
15430 then
15431 null;
15432
15433 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
15434 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
15435
15436 -- A subprogram subject to pragma Extensions_Visible with value False
15437 -- requires overriding if the subprogram has at least one controlling
15438 -- OUT parameter (SPARK RM 6.1.7(6)).
15439
15440 elsif Ada_Version >= Ada_2005
15441 and then (Is_Abstract_Subprogram (Alias (New_Subp))
15442 or else (Is_Tagged_Type (Derived_Type)
15443 and then Etype (New_Subp) = Derived_Type
15444 and then not Is_Null_Extension (Derived_Type))
15445 or else (Is_Tagged_Type (Derived_Type)
15446 and then Ekind (Etype (New_Subp)) =
15447 E_Anonymous_Access_Type
15448 and then Designated_Type (Etype (New_Subp)) =
15449 Derived_Type
15450 and then not Is_Null_Extension (Derived_Type))
15451 or else (Comes_From_Source (Alias (New_Subp))
15452 and then Is_EVF_Procedure (Alias (New_Subp))))
15453 and then No (Actual_Subp)
15454 then
15455 if not Is_Tagged_Type (Derived_Type)
15456 or else Is_Abstract_Type (Derived_Type)
15457 or else Is_Abstract_Subprogram (Alias (New_Subp))
15458 then
15459 Set_Is_Abstract_Subprogram (New_Subp);
15460 else
15461 Set_Requires_Overriding (New_Subp);
15462 end if;
15463
15464 elsif Ada_Version < Ada_2005
15465 and then (Is_Abstract_Subprogram (Alias (New_Subp))
15466 or else (Is_Tagged_Type (Derived_Type)
15467 and then Etype (New_Subp) = Derived_Type
15468 and then No (Actual_Subp)))
15469 then
15470 Set_Is_Abstract_Subprogram (New_Subp);
15471
15472 -- AI05-0097 : an inherited operation that dispatches on result is
15473 -- abstract if the derived type is abstract, even if the parent type
15474 -- is concrete and the derived type is a null extension.
15475
15476 elsif Has_Controlling_Result (Alias (New_Subp))
15477 and then Is_Abstract_Type (Etype (New_Subp))
15478 then
15479 Set_Is_Abstract_Subprogram (New_Subp);
15480
15481 -- Finally, if the parent type is abstract we must verify that all
15482 -- inherited operations are either non-abstract or overridden, or that
15483 -- the derived type itself is abstract (this check is performed at the
15484 -- end of a package declaration, in Check_Abstract_Overriding). A
15485 -- private overriding in the parent type will not be visible in the
15486 -- derivation if we are not in an inner package or in a child unit of
15487 -- the parent type, in which case the abstractness of the inherited
15488 -- operation is carried to the new subprogram.
15489
15490 elsif Is_Abstract_Type (Parent_Type)
15491 and then not In_Open_Scopes (Scope (Parent_Type))
15492 and then Is_Private_Overriding
15493 and then Is_Abstract_Subprogram (Visible_Subp)
15494 then
15495 if No (Actual_Subp) then
15496 Set_Alias (New_Subp, Visible_Subp);
15497 Set_Is_Abstract_Subprogram (New_Subp, True);
15498
15499 else
15500 -- If this is a derivation for an instance of a formal derived
15501 -- type, abstractness comes from the primitive operation of the
15502 -- actual, not from the operation inherited from the ancestor.
15503
15504 Set_Is_Abstract_Subprogram
15505 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
15506 end if;
15507 end if;
15508
15509 New_Overloaded_Entity (New_Subp, Derived_Type);
15510
15511 -- Ada RM 6.1.1 (15): If a subprogram inherits nonconforming class-wide
15512 -- preconditions and the derived type is abstract, the derived operation
15513 -- is abstract as well if parent subprogram is not abstract or null.
15514
15515 if Is_Abstract_Type (Derived_Type)
15516 and then Has_Non_Trivial_Precondition (Parent_Subp)
15517 and then Present (Interfaces (Derived_Type))
15518 then
15519
15520 -- Add useful attributes of subprogram before the freeze point,
15521 -- in case freezing is delayed or there are previous errors.
15522
15523 Set_Is_Dispatching_Operation (New_Subp);
15524
15525 declare
15526 Iface_Prim : constant Entity_Id := Covered_Interface_Op (New_Subp);
15527
15528 begin
15529 if Present (Iface_Prim)
15530 and then Has_Non_Trivial_Precondition (Iface_Prim)
15531 then
15532 Set_Is_Abstract_Subprogram (New_Subp);
15533 end if;
15534 end;
15535 end if;
15536
15537 -- Check for case of a derived subprogram for the instantiation of a
15538 -- formal derived tagged type, if so mark the subprogram as dispatching
15539 -- and inherit the dispatching attributes of the actual subprogram. The
15540 -- derived subprogram is effectively renaming of the actual subprogram,
15541 -- so it needs to have the same attributes as the actual.
15542
15543 if Present (Actual_Subp)
15544 and then Is_Dispatching_Operation (Actual_Subp)
15545 then
15546 Set_Is_Dispatching_Operation (New_Subp);
15547
15548 if Present (DTC_Entity (Actual_Subp)) then
15549 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
15550 Set_DT_Position_Value (New_Subp, DT_Position (Actual_Subp));
15551 end if;
15552 end if;
15553
15554 -- Indicate that a derived subprogram does not require a body and that
15555 -- it does not require processing of default expressions.
15556
15557 Set_Has_Completion (New_Subp);
15558 Set_Default_Expressions_Processed (New_Subp);
15559
15560 if Ekind (New_Subp) = E_Function then
15561 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
15562 end if;
15563 end Derive_Subprogram;
15564
15565 ------------------------
15566 -- Derive_Subprograms --
15567 ------------------------
15568
15569 procedure Derive_Subprograms
15570 (Parent_Type : Entity_Id;
15571 Derived_Type : Entity_Id;
15572 Generic_Actual : Entity_Id := Empty)
15573 is
15574 Op_List : constant Elist_Id :=
15575 Collect_Primitive_Operations (Parent_Type);
15576
15577 function Check_Derived_Type return Boolean;
15578 -- Check that all the entities derived from Parent_Type are found in
15579 -- the list of primitives of Derived_Type exactly in the same order.
15580
15581 procedure Derive_Interface_Subprogram
15582 (New_Subp : out Entity_Id;
15583 Subp : Entity_Id;
15584 Actual_Subp : Entity_Id);
15585 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
15586 -- (which is an interface primitive). If Generic_Actual is present then
15587 -- Actual_Subp is the actual subprogram corresponding with the generic
15588 -- subprogram Subp.
15589
15590 ------------------------
15591 -- Check_Derived_Type --
15592 ------------------------
15593
15594 function Check_Derived_Type return Boolean is
15595 E : Entity_Id;
15596 Elmt : Elmt_Id;
15597 List : Elist_Id;
15598 New_Subp : Entity_Id;
15599 Op_Elmt : Elmt_Id;
15600 Subp : Entity_Id;
15601
15602 begin
15603 -- Traverse list of entities in the current scope searching for
15604 -- an incomplete type whose full-view is derived type.
15605
15606 E := First_Entity (Scope (Derived_Type));
15607 while Present (E) and then E /= Derived_Type loop
15608 if Ekind (E) = E_Incomplete_Type
15609 and then Present (Full_View (E))
15610 and then Full_View (E) = Derived_Type
15611 then
15612 -- Disable this test if Derived_Type completes an incomplete
15613 -- type because in such case more primitives can be added
15614 -- later to the list of primitives of Derived_Type by routine
15615 -- Process_Incomplete_Dependents
15616
15617 return True;
15618 end if;
15619
15620 E := Next_Entity (E);
15621 end loop;
15622
15623 List := Collect_Primitive_Operations (Derived_Type);
15624 Elmt := First_Elmt (List);
15625
15626 Op_Elmt := First_Elmt (Op_List);
15627 while Present (Op_Elmt) loop
15628 Subp := Node (Op_Elmt);
15629 New_Subp := Node (Elmt);
15630
15631 -- At this early stage Derived_Type has no entities with attribute
15632 -- Interface_Alias. In addition, such primitives are always
15633 -- located at the end of the list of primitives of Parent_Type.
15634 -- Therefore, if found we can safely stop processing pending
15635 -- entities.
15636
15637 exit when Present (Interface_Alias (Subp));
15638
15639 -- Handle hidden entities
15640
15641 if not Is_Predefined_Dispatching_Operation (Subp)
15642 and then Is_Hidden (Subp)
15643 then
15644 if Present (New_Subp)
15645 and then Primitive_Names_Match (Subp, New_Subp)
15646 then
15647 Next_Elmt (Elmt);
15648 end if;
15649
15650 else
15651 if not Present (New_Subp)
15652 or else Ekind (Subp) /= Ekind (New_Subp)
15653 or else not Primitive_Names_Match (Subp, New_Subp)
15654 then
15655 return False;
15656 end if;
15657
15658 Next_Elmt (Elmt);
15659 end if;
15660
15661 Next_Elmt (Op_Elmt);
15662 end loop;
15663
15664 return True;
15665 end Check_Derived_Type;
15666
15667 ---------------------------------
15668 -- Derive_Interface_Subprogram --
15669 ---------------------------------
15670
15671 procedure Derive_Interface_Subprogram
15672 (New_Subp : out Entity_Id;
15673 Subp : Entity_Id;
15674 Actual_Subp : Entity_Id)
15675 is
15676 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
15677 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
15678
15679 begin
15680 pragma Assert (Is_Interface (Iface_Type));
15681
15682 Derive_Subprogram
15683 (New_Subp => New_Subp,
15684 Parent_Subp => Iface_Subp,
15685 Derived_Type => Derived_Type,
15686 Parent_Type => Iface_Type,
15687 Actual_Subp => Actual_Subp);
15688
15689 -- Given that this new interface entity corresponds with a primitive
15690 -- of the parent that was not overridden we must leave it associated
15691 -- with its parent primitive to ensure that it will share the same
15692 -- dispatch table slot when overridden. We must set the Alias to Subp
15693 -- (instead of Iface_Subp), and we must fix Is_Abstract_Subprogram
15694 -- (in case we inherited Subp from Iface_Type via a nonabstract
15695 -- generic formal type).
15696
15697 if No (Actual_Subp) then
15698 Set_Alias (New_Subp, Subp);
15699
15700 declare
15701 T : Entity_Id := Find_Dispatching_Type (Subp);
15702 begin
15703 while Etype (T) /= T loop
15704 if Is_Generic_Type (T) and then not Is_Abstract_Type (T) then
15705 Set_Is_Abstract_Subprogram (New_Subp, False);
15706 exit;
15707 end if;
15708
15709 T := Etype (T);
15710 end loop;
15711 end;
15712
15713 -- For instantiations this is not needed since the previous call to
15714 -- Derive_Subprogram leaves the entity well decorated.
15715
15716 else
15717 pragma Assert (Alias (New_Subp) = Actual_Subp);
15718 null;
15719 end if;
15720 end Derive_Interface_Subprogram;
15721
15722 -- Local variables
15723
15724 Alias_Subp : Entity_Id;
15725 Act_List : Elist_Id;
15726 Act_Elmt : Elmt_Id;
15727 Act_Subp : Entity_Id := Empty;
15728 Elmt : Elmt_Id;
15729 Need_Search : Boolean := False;
15730 New_Subp : Entity_Id := Empty;
15731 Parent_Base : Entity_Id;
15732 Subp : Entity_Id;
15733
15734 -- Start of processing for Derive_Subprograms
15735
15736 begin
15737 if Ekind (Parent_Type) = E_Record_Type_With_Private
15738 and then Has_Discriminants (Parent_Type)
15739 and then Present (Full_View (Parent_Type))
15740 then
15741 Parent_Base := Full_View (Parent_Type);
15742 else
15743 Parent_Base := Parent_Type;
15744 end if;
15745
15746 if Present (Generic_Actual) then
15747 Act_List := Collect_Primitive_Operations (Generic_Actual);
15748 Act_Elmt := First_Elmt (Act_List);
15749 else
15750 Act_List := No_Elist;
15751 Act_Elmt := No_Elmt;
15752 end if;
15753
15754 -- Derive primitives inherited from the parent. Note that if the generic
15755 -- actual is present, this is not really a type derivation, it is a
15756 -- completion within an instance.
15757
15758 -- Case 1: Derived_Type does not implement interfaces
15759
15760 if not Is_Tagged_Type (Derived_Type)
15761 or else (not Has_Interfaces (Derived_Type)
15762 and then not (Present (Generic_Actual)
15763 and then Has_Interfaces (Generic_Actual)))
15764 then
15765 Elmt := First_Elmt (Op_List);
15766 while Present (Elmt) loop
15767 Subp := Node (Elmt);
15768
15769 -- Literals are derived earlier in the process of building the
15770 -- derived type, and are skipped here.
15771
15772 if Ekind (Subp) = E_Enumeration_Literal then
15773 null;
15774
15775 -- The actual is a direct descendant and the common primitive
15776 -- operations appear in the same order.
15777
15778 -- If the generic parent type is present, the derived type is an
15779 -- instance of a formal derived type, and within the instance its
15780 -- operations are those of the actual. We derive from the formal
15781 -- type but make the inherited operations aliases of the
15782 -- corresponding operations of the actual.
15783
15784 else
15785 pragma Assert (No (Node (Act_Elmt))
15786 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
15787 and then
15788 Type_Conformant
15789 (Subp, Node (Act_Elmt),
15790 Skip_Controlling_Formals => True)));
15791
15792 Derive_Subprogram
15793 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
15794
15795 if Present (Act_Elmt) then
15796 Next_Elmt (Act_Elmt);
15797 end if;
15798 end if;
15799
15800 Next_Elmt (Elmt);
15801 end loop;
15802
15803 -- Case 2: Derived_Type implements interfaces
15804
15805 else
15806 -- If the parent type has no predefined primitives we remove
15807 -- predefined primitives from the list of primitives of generic
15808 -- actual to simplify the complexity of this algorithm.
15809
15810 if Present (Generic_Actual) then
15811 declare
15812 Has_Predefined_Primitives : Boolean := False;
15813
15814 begin
15815 -- Check if the parent type has predefined primitives
15816
15817 Elmt := First_Elmt (Op_List);
15818 while Present (Elmt) loop
15819 Subp := Node (Elmt);
15820
15821 if Is_Predefined_Dispatching_Operation (Subp)
15822 and then not Comes_From_Source (Ultimate_Alias (Subp))
15823 then
15824 Has_Predefined_Primitives := True;
15825 exit;
15826 end if;
15827
15828 Next_Elmt (Elmt);
15829 end loop;
15830
15831 -- Remove predefined primitives of Generic_Actual. We must use
15832 -- an auxiliary list because in case of tagged types the value
15833 -- returned by Collect_Primitive_Operations is the value stored
15834 -- in its Primitive_Operations attribute (and we don't want to
15835 -- modify its current contents).
15836
15837 if not Has_Predefined_Primitives then
15838 declare
15839 Aux_List : constant Elist_Id := New_Elmt_List;
15840
15841 begin
15842 Elmt := First_Elmt (Act_List);
15843 while Present (Elmt) loop
15844 Subp := Node (Elmt);
15845
15846 if not Is_Predefined_Dispatching_Operation (Subp)
15847 or else Comes_From_Source (Subp)
15848 then
15849 Append_Elmt (Subp, Aux_List);
15850 end if;
15851
15852 Next_Elmt (Elmt);
15853 end loop;
15854
15855 Act_List := Aux_List;
15856 end;
15857 end if;
15858
15859 Act_Elmt := First_Elmt (Act_List);
15860 Act_Subp := Node (Act_Elmt);
15861 end;
15862 end if;
15863
15864 -- Stage 1: If the generic actual is not present we derive the
15865 -- primitives inherited from the parent type. If the generic parent
15866 -- type is present, the derived type is an instance of a formal
15867 -- derived type, and within the instance its operations are those of
15868 -- the actual. We derive from the formal type but make the inherited
15869 -- operations aliases of the corresponding operations of the actual.
15870
15871 Elmt := First_Elmt (Op_List);
15872 while Present (Elmt) loop
15873 Subp := Node (Elmt);
15874 Alias_Subp := Ultimate_Alias (Subp);
15875
15876 -- Do not derive internal entities of the parent that link
15877 -- interface primitives with their covering primitive. These
15878 -- entities will be added to this type when frozen.
15879
15880 if Present (Interface_Alias (Subp)) then
15881 goto Continue;
15882 end if;
15883
15884 -- If the generic actual is present find the corresponding
15885 -- operation in the generic actual. If the parent type is a
15886 -- direct ancestor of the derived type then, even if it is an
15887 -- interface, the operations are inherited from the primary
15888 -- dispatch table and are in the proper order. If we detect here
15889 -- that primitives are not in the same order we traverse the list
15890 -- of primitive operations of the actual to find the one that
15891 -- implements the interface primitive.
15892
15893 if Need_Search
15894 or else
15895 (Present (Generic_Actual)
15896 and then Present (Act_Subp)
15897 and then not
15898 (Primitive_Names_Match (Subp, Act_Subp)
15899 and then
15900 Type_Conformant (Subp, Act_Subp,
15901 Skip_Controlling_Formals => True)))
15902 then
15903 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
15904 Use_Full_View => True));
15905
15906 -- Remember that we need searching for all pending primitives
15907
15908 Need_Search := True;
15909
15910 -- Handle entities associated with interface primitives
15911
15912 if Present (Alias_Subp)
15913 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
15914 and then not Is_Predefined_Dispatching_Operation (Subp)
15915 then
15916 -- Search for the primitive in the homonym chain
15917
15918 Act_Subp :=
15919 Find_Primitive_Covering_Interface
15920 (Tagged_Type => Generic_Actual,
15921 Iface_Prim => Alias_Subp);
15922
15923 -- Previous search may not locate primitives covering
15924 -- interfaces defined in generics units or instantiations.
15925 -- (it fails if the covering primitive has formals whose
15926 -- type is also defined in generics or instantiations).
15927 -- In such case we search in the list of primitives of the
15928 -- generic actual for the internal entity that links the
15929 -- interface primitive and the covering primitive.
15930
15931 if No (Act_Subp)
15932 and then Is_Generic_Type (Parent_Type)
15933 then
15934 -- This code has been designed to handle only generic
15935 -- formals that implement interfaces that are defined
15936 -- in a generic unit or instantiation. If this code is
15937 -- needed for other cases we must review it because
15938 -- (given that it relies on Original_Location to locate
15939 -- the primitive of Generic_Actual that covers the
15940 -- interface) it could leave linked through attribute
15941 -- Alias entities of unrelated instantiations).
15942
15943 pragma Assert
15944 (Is_Generic_Unit
15945 (Scope (Find_Dispatching_Type (Alias_Subp)))
15946 or else
15947 Instantiation_Depth
15948 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
15949
15950 declare
15951 Iface_Prim_Loc : constant Source_Ptr :=
15952 Original_Location (Sloc (Alias_Subp));
15953
15954 Elmt : Elmt_Id;
15955 Prim : Entity_Id;
15956
15957 begin
15958 Elmt :=
15959 First_Elmt (Primitive_Operations (Generic_Actual));
15960
15961 Search : while Present (Elmt) loop
15962 Prim := Node (Elmt);
15963
15964 if Present (Interface_Alias (Prim))
15965 and then Original_Location
15966 (Sloc (Interface_Alias (Prim))) =
15967 Iface_Prim_Loc
15968 then
15969 Act_Subp := Alias (Prim);
15970 exit Search;
15971 end if;
15972
15973 Next_Elmt (Elmt);
15974 end loop Search;
15975 end;
15976 end if;
15977
15978 pragma Assert (Present (Act_Subp)
15979 or else Is_Abstract_Type (Generic_Actual)
15980 or else Serious_Errors_Detected > 0);
15981
15982 -- Handle predefined primitives plus the rest of user-defined
15983 -- primitives
15984
15985 else
15986 Act_Elmt := First_Elmt (Act_List);
15987 while Present (Act_Elmt) loop
15988 Act_Subp := Node (Act_Elmt);
15989
15990 exit when Primitive_Names_Match (Subp, Act_Subp)
15991 and then Type_Conformant
15992 (Subp, Act_Subp,
15993 Skip_Controlling_Formals => True)
15994 and then No (Interface_Alias (Act_Subp));
15995
15996 Next_Elmt (Act_Elmt);
15997 end loop;
15998
15999 if No (Act_Elmt) then
16000 Act_Subp := Empty;
16001 end if;
16002 end if;
16003 end if;
16004
16005 -- Case 1: If the parent is a limited interface then it has the
16006 -- predefined primitives of synchronized interfaces. However, the
16007 -- actual type may be a non-limited type and hence it does not
16008 -- have such primitives.
16009
16010 if Present (Generic_Actual)
16011 and then not Present (Act_Subp)
16012 and then Is_Limited_Interface (Parent_Base)
16013 and then Is_Predefined_Interface_Primitive (Subp)
16014 then
16015 null;
16016
16017 -- Case 2: Inherit entities associated with interfaces that were
16018 -- not covered by the parent type. We exclude here null interface
16019 -- primitives because they do not need special management.
16020
16021 -- We also exclude interface operations that are renamings. If the
16022 -- subprogram is an explicit renaming of an interface primitive,
16023 -- it is a regular primitive operation, and the presence of its
16024 -- alias is not relevant: it has to be derived like any other
16025 -- primitive.
16026
16027 elsif Present (Alias (Subp))
16028 and then Nkind (Unit_Declaration_Node (Subp)) /=
16029 N_Subprogram_Renaming_Declaration
16030 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
16031 and then not
16032 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
16033 and then Null_Present (Parent (Alias_Subp)))
16034 then
16035 -- If this is an abstract private type then we transfer the
16036 -- derivation of the interface primitive from the partial view
16037 -- to the full view. This is safe because all the interfaces
16038 -- must be visible in the partial view. Done to avoid adding
16039 -- a new interface derivation to the private part of the
16040 -- enclosing package; otherwise this new derivation would be
16041 -- decorated as hidden when the analysis of the enclosing
16042 -- package completes.
16043
16044 if Is_Abstract_Type (Derived_Type)
16045 and then In_Private_Part (Current_Scope)
16046 and then Has_Private_Declaration (Derived_Type)
16047 then
16048 declare
16049 Partial_View : Entity_Id;
16050 Elmt : Elmt_Id;
16051 Ent : Entity_Id;
16052
16053 begin
16054 Partial_View := First_Entity (Current_Scope);
16055 loop
16056 exit when No (Partial_View)
16057 or else (Has_Private_Declaration (Partial_View)
16058 and then
16059 Full_View (Partial_View) = Derived_Type);
16060
16061 Next_Entity (Partial_View);
16062 end loop;
16063
16064 -- If the partial view was not found then the source code
16065 -- has errors and the derivation is not needed.
16066
16067 if Present (Partial_View) then
16068 Elmt :=
16069 First_Elmt (Primitive_Operations (Partial_View));
16070 while Present (Elmt) loop
16071 Ent := Node (Elmt);
16072
16073 if Present (Alias (Ent))
16074 and then Ultimate_Alias (Ent) = Alias (Subp)
16075 then
16076 Append_Elmt
16077 (Ent, Primitive_Operations (Derived_Type));
16078 exit;
16079 end if;
16080
16081 Next_Elmt (Elmt);
16082 end loop;
16083
16084 -- If the interface primitive was not found in the
16085 -- partial view then this interface primitive was
16086 -- overridden. We add a derivation to activate in
16087 -- Derive_Progenitor_Subprograms the machinery to
16088 -- search for it.
16089
16090 if No (Elmt) then
16091 Derive_Interface_Subprogram
16092 (New_Subp => New_Subp,
16093 Subp => Subp,
16094 Actual_Subp => Act_Subp);
16095 end if;
16096 end if;
16097 end;
16098 else
16099 Derive_Interface_Subprogram
16100 (New_Subp => New_Subp,
16101 Subp => Subp,
16102 Actual_Subp => Act_Subp);
16103 end if;
16104
16105 -- Case 3: Common derivation
16106
16107 else
16108 Derive_Subprogram
16109 (New_Subp => New_Subp,
16110 Parent_Subp => Subp,
16111 Derived_Type => Derived_Type,
16112 Parent_Type => Parent_Base,
16113 Actual_Subp => Act_Subp);
16114 end if;
16115
16116 -- No need to update Act_Elm if we must search for the
16117 -- corresponding operation in the generic actual
16118
16119 if not Need_Search
16120 and then Present (Act_Elmt)
16121 then
16122 Next_Elmt (Act_Elmt);
16123 Act_Subp := Node (Act_Elmt);
16124 end if;
16125
16126 <<Continue>>
16127 Next_Elmt (Elmt);
16128 end loop;
16129
16130 -- Inherit additional operations from progenitors. If the derived
16131 -- type is a generic actual, there are not new primitive operations
16132 -- for the type because it has those of the actual, and therefore
16133 -- nothing needs to be done. The renamings generated above are not
16134 -- primitive operations, and their purpose is simply to make the
16135 -- proper operations visible within an instantiation.
16136
16137 if No (Generic_Actual) then
16138 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
16139 end if;
16140 end if;
16141
16142 -- Final check: Direct descendants must have their primitives in the
16143 -- same order. We exclude from this test untagged types and instances
16144 -- of formal derived types. We skip this test if we have already
16145 -- reported serious errors in the sources.
16146
16147 pragma Assert (not Is_Tagged_Type (Derived_Type)
16148 or else Present (Generic_Actual)
16149 or else Serious_Errors_Detected > 0
16150 or else Check_Derived_Type);
16151 end Derive_Subprograms;
16152
16153 --------------------------------
16154 -- Derived_Standard_Character --
16155 --------------------------------
16156
16157 procedure Derived_Standard_Character
16158 (N : Node_Id;
16159 Parent_Type : Entity_Id;
16160 Derived_Type : Entity_Id)
16161 is
16162 Loc : constant Source_Ptr := Sloc (N);
16163 Def : constant Node_Id := Type_Definition (N);
16164 Indic : constant Node_Id := Subtype_Indication (Def);
16165 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
16166 Implicit_Base : constant Entity_Id :=
16167 Create_Itype
16168 (E_Enumeration_Type, N, Derived_Type, 'B');
16169
16170 Lo : Node_Id;
16171 Hi : Node_Id;
16172
16173 begin
16174 Discard_Node (Process_Subtype (Indic, N));
16175
16176 Set_Etype (Implicit_Base, Parent_Base);
16177 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
16178 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
16179
16180 Set_Is_Character_Type (Implicit_Base, True);
16181 Set_Has_Delayed_Freeze (Implicit_Base);
16182
16183 -- The bounds of the implicit base are the bounds of the parent base.
16184 -- Note that their type is the parent base.
16185
16186 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
16187 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
16188
16189 Set_Scalar_Range (Implicit_Base,
16190 Make_Range (Loc,
16191 Low_Bound => Lo,
16192 High_Bound => Hi));
16193
16194 Conditional_Delay (Derived_Type, Parent_Type);
16195
16196 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
16197 Set_Etype (Derived_Type, Implicit_Base);
16198 Set_Size_Info (Derived_Type, Parent_Type);
16199
16200 if Unknown_RM_Size (Derived_Type) then
16201 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
16202 end if;
16203
16204 Set_Is_Character_Type (Derived_Type, True);
16205
16206 if Nkind (Indic) /= N_Subtype_Indication then
16207
16208 -- If no explicit constraint, the bounds are those
16209 -- of the parent type.
16210
16211 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
16212 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
16213 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
16214 end if;
16215
16216 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
16217
16218 -- Because the implicit base is used in the conversion of the bounds, we
16219 -- have to freeze it now. This is similar to what is done for numeric
16220 -- types, and it equally suspicious, but otherwise a non-static bound
16221 -- will have a reference to an unfrozen type, which is rejected by Gigi
16222 -- (???). This requires specific care for definition of stream
16223 -- attributes. For details, see comments at the end of
16224 -- Build_Derived_Numeric_Type.
16225
16226 Freeze_Before (N, Implicit_Base);
16227 end Derived_Standard_Character;
16228
16229 ------------------------------
16230 -- Derived_Type_Declaration --
16231 ------------------------------
16232
16233 procedure Derived_Type_Declaration
16234 (T : Entity_Id;
16235 N : Node_Id;
16236 Is_Completion : Boolean)
16237 is
16238 Parent_Type : Entity_Id;
16239
16240 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
16241 -- Check whether the parent type is a generic formal, or derives
16242 -- directly or indirectly from one.
16243
16244 function Find_Partial_View (T : Entity_Id) return Entity_Id;
16245 -- Return the partial view for a type entity T, when there is one
16246
16247 ------------------------
16248 -- Comes_From_Generic --
16249 ------------------------
16250
16251 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
16252 begin
16253 if Is_Generic_Type (Typ) then
16254 return True;
16255
16256 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
16257 return True;
16258
16259 elsif Is_Private_Type (Typ)
16260 and then Present (Full_View (Typ))
16261 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
16262 then
16263 return True;
16264
16265 elsif Is_Generic_Actual_Type (Typ) then
16266 return True;
16267
16268 else
16269 return False;
16270 end if;
16271 end Comes_From_Generic;
16272
16273 -----------------------
16274 -- Find_Partial_View --
16275 -----------------------
16276
16277 function Find_Partial_View (T : Entity_Id) return Entity_Id is
16278 Partial_View : Entity_Id;
16279
16280 begin
16281 -- Look for the associated private type declaration
16282
16283 Partial_View := First_Entity (Scope (T));
16284 loop
16285 exit when No (Partial_View)
16286 or else (Has_Private_Declaration (Partial_View)
16287 and then Full_View (Partial_View) = T);
16288
16289 Next_Entity (Partial_View);
16290 end loop;
16291
16292 return Partial_View;
16293 end Find_Partial_View;
16294
16295 -- Local variables
16296
16297 Def : constant Node_Id := Type_Definition (N);
16298 Iface_Def : Node_Id;
16299 Indic : constant Node_Id := Subtype_Indication (Def);
16300 Extension : constant Node_Id := Record_Extension_Part (Def);
16301 Parent_Node : Node_Id;
16302 Taggd : Boolean;
16303
16304 -- Start of processing for Derived_Type_Declaration
16305
16306 begin
16307 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
16308
16309 if SPARK_Mode = On
16310 and then Is_Tagged_Type (Parent_Type)
16311 then
16312 declare
16313 Partial_View : constant Entity_Id :=
16314 Find_Partial_View (Parent_Type);
16315
16316 begin
16317 -- If the partial view was not found then the parent type is not a
16318 -- private type. Otherwise check that the partial view is declared
16319 -- as tagged.
16320
16321 if Present (Partial_View)
16322 and then not Is_Tagged_Type (Partial_View)
16323 then
16324 Error_Msg_NE ("cannot derive from & declared as "
16325 & "untagged private (SPARK RM 3.4(1))",
16326 N, Partial_View);
16327 end if;
16328 end;
16329 end if;
16330
16331 -- Ada 2005 (AI-251): In case of interface derivation check that the
16332 -- parent is also an interface.
16333
16334 if Interface_Present (Def) then
16335 Check_SPARK_05_Restriction ("interface is not allowed", Def);
16336
16337 if not Is_Interface (Parent_Type) then
16338 Diagnose_Interface (Indic, Parent_Type);
16339
16340 else
16341 Parent_Node := Parent (Base_Type (Parent_Type));
16342 Iface_Def := Type_Definition (Parent_Node);
16343
16344 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
16345 -- other limited interfaces.
16346
16347 if Limited_Present (Def) then
16348 if Limited_Present (Iface_Def) then
16349 null;
16350
16351 elsif Protected_Present (Iface_Def) then
16352 Error_Msg_NE
16353 ("descendant of & must be declared as a protected "
16354 & "interface", N, Parent_Type);
16355
16356 elsif Synchronized_Present (Iface_Def) then
16357 Error_Msg_NE
16358 ("descendant of & must be declared as a synchronized "
16359 & "interface", N, Parent_Type);
16360
16361 elsif Task_Present (Iface_Def) then
16362 Error_Msg_NE
16363 ("descendant of & must be declared as a task interface",
16364 N, Parent_Type);
16365
16366 else
16367 Error_Msg_N
16368 ("(Ada 2005) limited interface cannot inherit from "
16369 & "non-limited interface", Indic);
16370 end if;
16371
16372 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
16373 -- from non-limited or limited interfaces.
16374
16375 elsif not Protected_Present (Def)
16376 and then not Synchronized_Present (Def)
16377 and then not Task_Present (Def)
16378 then
16379 if Limited_Present (Iface_Def) then
16380 null;
16381
16382 elsif Protected_Present (Iface_Def) then
16383 Error_Msg_NE
16384 ("descendant of & must be declared as a protected "
16385 & "interface", N, Parent_Type);
16386
16387 elsif Synchronized_Present (Iface_Def) then
16388 Error_Msg_NE
16389 ("descendant of & must be declared as a synchronized "
16390 & "interface", N, Parent_Type);
16391
16392 elsif Task_Present (Iface_Def) then
16393 Error_Msg_NE
16394 ("descendant of & must be declared as a task interface",
16395 N, Parent_Type);
16396 else
16397 null;
16398 end if;
16399 end if;
16400 end if;
16401 end if;
16402
16403 if Is_Tagged_Type (Parent_Type)
16404 and then Is_Concurrent_Type (Parent_Type)
16405 and then not Is_Interface (Parent_Type)
16406 then
16407 Error_Msg_N
16408 ("parent type of a record extension cannot be a synchronized "
16409 & "tagged type (RM 3.9.1 (3/1))", N);
16410 Set_Etype (T, Any_Type);
16411 return;
16412 end if;
16413
16414 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
16415 -- interfaces
16416
16417 if Is_Tagged_Type (Parent_Type)
16418 and then Is_Non_Empty_List (Interface_List (Def))
16419 then
16420 declare
16421 Intf : Node_Id;
16422 T : Entity_Id;
16423
16424 begin
16425 Intf := First (Interface_List (Def));
16426 while Present (Intf) loop
16427 T := Find_Type_Of_Subtype_Indic (Intf);
16428
16429 if not Is_Interface (T) then
16430 Diagnose_Interface (Intf, T);
16431
16432 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
16433 -- a limited type from having a nonlimited progenitor.
16434
16435 elsif (Limited_Present (Def)
16436 or else (not Is_Interface (Parent_Type)
16437 and then Is_Limited_Type (Parent_Type)))
16438 and then not Is_Limited_Interface (T)
16439 then
16440 Error_Msg_NE
16441 ("progenitor interface& of limited type must be limited",
16442 N, T);
16443 end if;
16444
16445 Next (Intf);
16446 end loop;
16447 end;
16448 end if;
16449
16450 if Parent_Type = Any_Type
16451 or else Etype (Parent_Type) = Any_Type
16452 or else (Is_Class_Wide_Type (Parent_Type)
16453 and then Etype (Parent_Type) = T)
16454 then
16455 -- If Parent_Type is undefined or illegal, make new type into a
16456 -- subtype of Any_Type, and set a few attributes to prevent cascaded
16457 -- errors. If this is a self-definition, emit error now.
16458
16459 if T = Parent_Type or else T = Etype (Parent_Type) then
16460 Error_Msg_N ("type cannot be used in its own definition", Indic);
16461 end if;
16462
16463 Set_Ekind (T, Ekind (Parent_Type));
16464 Set_Etype (T, Any_Type);
16465 Set_Scalar_Range (T, Scalar_Range (Any_Type));
16466
16467 if Is_Tagged_Type (T)
16468 and then Is_Record_Type (T)
16469 then
16470 Set_Direct_Primitive_Operations (T, New_Elmt_List);
16471 end if;
16472
16473 return;
16474 end if;
16475
16476 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
16477 -- an interface is special because the list of interfaces in the full
16478 -- view can be given in any order. For example:
16479
16480 -- type A is interface;
16481 -- type B is interface and A;
16482 -- type D is new B with private;
16483 -- private
16484 -- type D is new A and B with null record; -- 1 --
16485
16486 -- In this case we perform the following transformation of -1-:
16487
16488 -- type D is new B and A with null record;
16489
16490 -- If the parent of the full-view covers the parent of the partial-view
16491 -- we have two possible cases:
16492
16493 -- 1) They have the same parent
16494 -- 2) The parent of the full-view implements some further interfaces
16495
16496 -- In both cases we do not need to perform the transformation. In the
16497 -- first case the source program is correct and the transformation is
16498 -- not needed; in the second case the source program does not fulfill
16499 -- the no-hidden interfaces rule (AI-396) and the error will be reported
16500 -- later.
16501
16502 -- This transformation not only simplifies the rest of the analysis of
16503 -- this type declaration but also simplifies the correct generation of
16504 -- the object layout to the expander.
16505
16506 if In_Private_Part (Current_Scope)
16507 and then Is_Interface (Parent_Type)
16508 then
16509 declare
16510 Iface : Node_Id;
16511 Partial_View : Entity_Id;
16512 Partial_View_Parent : Entity_Id;
16513 New_Iface : Node_Id;
16514
16515 begin
16516 -- Look for the associated private type declaration
16517
16518 Partial_View := Find_Partial_View (T);
16519
16520 -- If the partial view was not found then the source code has
16521 -- errors and the transformation is not needed.
16522
16523 if Present (Partial_View) then
16524 Partial_View_Parent := Etype (Partial_View);
16525
16526 -- If the parent of the full-view covers the parent of the
16527 -- partial-view we have nothing else to do.
16528
16529 if Interface_Present_In_Ancestor
16530 (Parent_Type, Partial_View_Parent)
16531 then
16532 null;
16533
16534 -- Traverse the list of interfaces of the full-view to look
16535 -- for the parent of the partial-view and perform the tree
16536 -- transformation.
16537
16538 else
16539 Iface := First (Interface_List (Def));
16540 while Present (Iface) loop
16541 if Etype (Iface) = Etype (Partial_View) then
16542 Rewrite (Subtype_Indication (Def),
16543 New_Copy (Subtype_Indication
16544 (Parent (Partial_View))));
16545
16546 New_Iface :=
16547 Make_Identifier (Sloc (N), Chars (Parent_Type));
16548 Append (New_Iface, Interface_List (Def));
16549
16550 -- Analyze the transformed code
16551
16552 Derived_Type_Declaration (T, N, Is_Completion);
16553 return;
16554 end if;
16555
16556 Next (Iface);
16557 end loop;
16558 end if;
16559 end if;
16560 end;
16561 end if;
16562
16563 -- Only composite types other than array types are allowed to have
16564 -- discriminants.
16565
16566 if Present (Discriminant_Specifications (N)) then
16567 if (Is_Elementary_Type (Parent_Type)
16568 or else
16569 Is_Array_Type (Parent_Type))
16570 and then not Error_Posted (N)
16571 then
16572 Error_Msg_N
16573 ("elementary or array type cannot have discriminants",
16574 Defining_Identifier (First (Discriminant_Specifications (N))));
16575 Set_Has_Discriminants (T, False);
16576
16577 -- The type is allowed to have discriminants
16578
16579 else
16580 Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
16581 end if;
16582 end if;
16583
16584 -- In Ada 83, a derived type defined in a package specification cannot
16585 -- be used for further derivation until the end of its visible part.
16586 -- Note that derivation in the private part of the package is allowed.
16587
16588 if Ada_Version = Ada_83
16589 and then Is_Derived_Type (Parent_Type)
16590 and then In_Visible_Part (Scope (Parent_Type))
16591 then
16592 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
16593 Error_Msg_N
16594 ("(Ada 83): premature use of type for derivation", Indic);
16595 end if;
16596 end if;
16597
16598 -- Check for early use of incomplete or private type
16599
16600 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
16601 Error_Msg_N ("premature derivation of incomplete type", Indic);
16602 return;
16603
16604 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
16605 and then not Comes_From_Generic (Parent_Type))
16606 or else Has_Private_Component (Parent_Type)
16607 then
16608 -- The ancestor type of a formal type can be incomplete, in which
16609 -- case only the operations of the partial view are available in the
16610 -- generic. Subsequent checks may be required when the full view is
16611 -- analyzed to verify that a derivation from a tagged type has an
16612 -- extension.
16613
16614 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
16615 null;
16616
16617 elsif No (Underlying_Type (Parent_Type))
16618 or else Has_Private_Component (Parent_Type)
16619 then
16620 Error_Msg_N
16621 ("premature derivation of derived or private type", Indic);
16622
16623 -- Flag the type itself as being in error, this prevents some
16624 -- nasty problems with subsequent uses of the malformed type.
16625
16626 Set_Error_Posted (T);
16627
16628 -- Check that within the immediate scope of an untagged partial
16629 -- view it's illegal to derive from the partial view if the
16630 -- full view is tagged. (7.3(7))
16631
16632 -- We verify that the Parent_Type is a partial view by checking
16633 -- that it is not a Full_Type_Declaration (i.e. a private type or
16634 -- private extension declaration), to distinguish a partial view
16635 -- from a derivation from a private type which also appears as
16636 -- E_Private_Type. If the parent base type is not declared in an
16637 -- enclosing scope there is no need to check.
16638
16639 elsif Present (Full_View (Parent_Type))
16640 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
16641 and then not Is_Tagged_Type (Parent_Type)
16642 and then Is_Tagged_Type (Full_View (Parent_Type))
16643 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
16644 then
16645 Error_Msg_N
16646 ("premature derivation from type with tagged full view",
16647 Indic);
16648 end if;
16649 end if;
16650
16651 -- Check that form of derivation is appropriate
16652
16653 Taggd := Is_Tagged_Type (Parent_Type);
16654
16655 -- Set the parent type to the class-wide type's specific type in this
16656 -- case to prevent cascading errors
16657
16658 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
16659 Error_Msg_N ("parent type must not be a class-wide type", Indic);
16660 Set_Etype (T, Etype (Parent_Type));
16661 return;
16662 end if;
16663
16664 if Present (Extension) and then not Taggd then
16665 Error_Msg_N
16666 ("type derived from untagged type cannot have extension", Indic);
16667
16668 elsif No (Extension) and then Taggd then
16669
16670 -- If this declaration is within a private part (or body) of a
16671 -- generic instantiation then the derivation is allowed (the parent
16672 -- type can only appear tagged in this case if it's a generic actual
16673 -- type, since it would otherwise have been rejected in the analysis
16674 -- of the generic template).
16675
16676 if not Is_Generic_Actual_Type (Parent_Type)
16677 or else In_Visible_Part (Scope (Parent_Type))
16678 then
16679 if Is_Class_Wide_Type (Parent_Type) then
16680 Error_Msg_N
16681 ("parent type must not be a class-wide type", Indic);
16682
16683 -- Use specific type to prevent cascaded errors.
16684
16685 Parent_Type := Etype (Parent_Type);
16686
16687 else
16688 Error_Msg_N
16689 ("type derived from tagged type must have extension", Indic);
16690 end if;
16691 end if;
16692 end if;
16693
16694 -- AI-443: Synchronized formal derived types require a private
16695 -- extension. There is no point in checking the ancestor type or
16696 -- the progenitors since the construct is wrong to begin with.
16697
16698 if Ada_Version >= Ada_2005
16699 and then Is_Generic_Type (T)
16700 and then Present (Original_Node (N))
16701 then
16702 declare
16703 Decl : constant Node_Id := Original_Node (N);
16704
16705 begin
16706 if Nkind (Decl) = N_Formal_Type_Declaration
16707 and then Nkind (Formal_Type_Definition (Decl)) =
16708 N_Formal_Derived_Type_Definition
16709 and then Synchronized_Present (Formal_Type_Definition (Decl))
16710 and then No (Extension)
16711
16712 -- Avoid emitting a duplicate error message
16713
16714 and then not Error_Posted (Indic)
16715 then
16716 Error_Msg_N
16717 ("synchronized derived type must have extension", N);
16718 end if;
16719 end;
16720 end if;
16721
16722 if Null_Exclusion_Present (Def)
16723 and then not Is_Access_Type (Parent_Type)
16724 then
16725 Error_Msg_N ("null exclusion can only apply to an access type", N);
16726 end if;
16727
16728 -- Avoid deriving parent primitives of underlying record views
16729
16730 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
16731 Derive_Subps => not Is_Underlying_Record_View (T));
16732
16733 -- AI-419: The parent type of an explicitly limited derived type must
16734 -- be a limited type or a limited interface.
16735
16736 if Limited_Present (Def) then
16737 Set_Is_Limited_Record (T);
16738
16739 if Is_Interface (T) then
16740 Set_Is_Limited_Interface (T);
16741 end if;
16742
16743 if not Is_Limited_Type (Parent_Type)
16744 and then
16745 (not Is_Interface (Parent_Type)
16746 or else not Is_Limited_Interface (Parent_Type))
16747 then
16748 -- AI05-0096: a derivation in the private part of an instance is
16749 -- legal if the generic formal is untagged limited, and the actual
16750 -- is non-limited.
16751
16752 if Is_Generic_Actual_Type (Parent_Type)
16753 and then In_Private_Part (Current_Scope)
16754 and then
16755 not Is_Tagged_Type
16756 (Generic_Parent_Type (Parent (Parent_Type)))
16757 then
16758 null;
16759
16760 else
16761 Error_Msg_NE
16762 ("parent type& of limited type must be limited",
16763 N, Parent_Type);
16764 end if;
16765 end if;
16766 end if;
16767
16768 -- In SPARK, there are no derived type definitions other than type
16769 -- extensions of tagged record types.
16770
16771 if No (Extension) then
16772 Check_SPARK_05_Restriction
16773 ("derived type is not allowed", Original_Node (N));
16774 end if;
16775 end Derived_Type_Declaration;
16776
16777 ------------------------
16778 -- Diagnose_Interface --
16779 ------------------------
16780
16781 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
16782 begin
16783 if not Is_Interface (E) and then E /= Any_Type then
16784 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
16785 end if;
16786 end Diagnose_Interface;
16787
16788 ----------------------------------
16789 -- Enumeration_Type_Declaration --
16790 ----------------------------------
16791
16792 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16793 Ev : Uint;
16794 L : Node_Id;
16795 R_Node : Node_Id;
16796 B_Node : Node_Id;
16797
16798 begin
16799 -- Create identifier node representing lower bound
16800
16801 B_Node := New_Node (N_Identifier, Sloc (Def));
16802 L := First (Literals (Def));
16803 Set_Chars (B_Node, Chars (L));
16804 Set_Entity (B_Node, L);
16805 Set_Etype (B_Node, T);
16806 Set_Is_Static_Expression (B_Node, True);
16807
16808 R_Node := New_Node (N_Range, Sloc (Def));
16809 Set_Low_Bound (R_Node, B_Node);
16810
16811 Set_Ekind (T, E_Enumeration_Type);
16812 Set_First_Literal (T, L);
16813 Set_Etype (T, T);
16814 Set_Is_Constrained (T);
16815
16816 Ev := Uint_0;
16817
16818 -- Loop through literals of enumeration type setting pos and rep values
16819 -- except that if the Ekind is already set, then it means the literal
16820 -- was already constructed (case of a derived type declaration and we
16821 -- should not disturb the Pos and Rep values.
16822
16823 while Present (L) loop
16824 if Ekind (L) /= E_Enumeration_Literal then
16825 Set_Ekind (L, E_Enumeration_Literal);
16826 Set_Enumeration_Pos (L, Ev);
16827 Set_Enumeration_Rep (L, Ev);
16828 Set_Is_Known_Valid (L, True);
16829 end if;
16830
16831 Set_Etype (L, T);
16832 New_Overloaded_Entity (L);
16833 Generate_Definition (L);
16834 Set_Convention (L, Convention_Intrinsic);
16835
16836 -- Case of character literal
16837
16838 if Nkind (L) = N_Defining_Character_Literal then
16839 Set_Is_Character_Type (T, True);
16840
16841 -- Check violation of No_Wide_Characters
16842
16843 if Restriction_Check_Required (No_Wide_Characters) then
16844 Get_Name_String (Chars (L));
16845
16846 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
16847 Check_Restriction (No_Wide_Characters, L);
16848 end if;
16849 end if;
16850 end if;
16851
16852 Ev := Ev + 1;
16853 Next (L);
16854 end loop;
16855
16856 -- Now create a node representing upper bound
16857
16858 B_Node := New_Node (N_Identifier, Sloc (Def));
16859 Set_Chars (B_Node, Chars (Last (Literals (Def))));
16860 Set_Entity (B_Node, Last (Literals (Def)));
16861 Set_Etype (B_Node, T);
16862 Set_Is_Static_Expression (B_Node, True);
16863
16864 Set_High_Bound (R_Node, B_Node);
16865
16866 -- Initialize various fields of the type. Some of this information
16867 -- may be overwritten later through rep.clauses.
16868
16869 Set_Scalar_Range (T, R_Node);
16870 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
16871 Set_Enum_Esize (T);
16872 Set_Enum_Pos_To_Rep (T, Empty);
16873
16874 -- Set Discard_Names if configuration pragma set, or if there is
16875 -- a parameterless pragma in the current declarative region
16876
16877 if Global_Discard_Names or else Discard_Names (Scope (T)) then
16878 Set_Discard_Names (T);
16879 end if;
16880
16881 -- Process end label if there is one
16882
16883 if Present (Def) then
16884 Process_End_Label (Def, 'e', T);
16885 end if;
16886 end Enumeration_Type_Declaration;
16887
16888 ---------------------------------
16889 -- Expand_To_Stored_Constraint --
16890 ---------------------------------
16891
16892 function Expand_To_Stored_Constraint
16893 (Typ : Entity_Id;
16894 Constraint : Elist_Id) return Elist_Id
16895 is
16896 Explicitly_Discriminated_Type : Entity_Id;
16897 Expansion : Elist_Id;
16898 Discriminant : Entity_Id;
16899
16900 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
16901 -- Find the nearest type that actually specifies discriminants
16902
16903 ---------------------------------
16904 -- Type_With_Explicit_Discrims --
16905 ---------------------------------
16906
16907 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
16908 Typ : constant E := Base_Type (Id);
16909
16910 begin
16911 if Ekind (Typ) in Incomplete_Or_Private_Kind then
16912 if Present (Full_View (Typ)) then
16913 return Type_With_Explicit_Discrims (Full_View (Typ));
16914 end if;
16915
16916 else
16917 if Has_Discriminants (Typ) then
16918 return Typ;
16919 end if;
16920 end if;
16921
16922 if Etype (Typ) = Typ then
16923 return Empty;
16924 elsif Has_Discriminants (Typ) then
16925 return Typ;
16926 else
16927 return Type_With_Explicit_Discrims (Etype (Typ));
16928 end if;
16929
16930 end Type_With_Explicit_Discrims;
16931
16932 -- Start of processing for Expand_To_Stored_Constraint
16933
16934 begin
16935 if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then
16936 return No_Elist;
16937 end if;
16938
16939 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
16940
16941 if No (Explicitly_Discriminated_Type) then
16942 return No_Elist;
16943 end if;
16944
16945 Expansion := New_Elmt_List;
16946
16947 Discriminant :=
16948 First_Stored_Discriminant (Explicitly_Discriminated_Type);
16949 while Present (Discriminant) loop
16950 Append_Elmt
16951 (Get_Discriminant_Value
16952 (Discriminant, Explicitly_Discriminated_Type, Constraint),
16953 To => Expansion);
16954 Next_Stored_Discriminant (Discriminant);
16955 end loop;
16956
16957 return Expansion;
16958 end Expand_To_Stored_Constraint;
16959
16960 ---------------------------
16961 -- Find_Hidden_Interface --
16962 ---------------------------
16963
16964 function Find_Hidden_Interface
16965 (Src : Elist_Id;
16966 Dest : Elist_Id) return Entity_Id
16967 is
16968 Iface : Entity_Id;
16969 Iface_Elmt : Elmt_Id;
16970
16971 begin
16972 if Present (Src) and then Present (Dest) then
16973 Iface_Elmt := First_Elmt (Src);
16974 while Present (Iface_Elmt) loop
16975 Iface := Node (Iface_Elmt);
16976
16977 if Is_Interface (Iface)
16978 and then not Contain_Interface (Iface, Dest)
16979 then
16980 return Iface;
16981 end if;
16982
16983 Next_Elmt (Iface_Elmt);
16984 end loop;
16985 end if;
16986
16987 return Empty;
16988 end Find_Hidden_Interface;
16989
16990 --------------------
16991 -- Find_Type_Name --
16992 --------------------
16993
16994 function Find_Type_Name (N : Node_Id) return Entity_Id is
16995 Id : constant Entity_Id := Defining_Identifier (N);
16996 New_Id : Entity_Id;
16997 Prev : Entity_Id;
16998 Prev_Par : Node_Id;
16999
17000 procedure Check_Duplicate_Aspects;
17001 -- Check that aspects specified in a completion have not been specified
17002 -- already in the partial view.
17003
17004 procedure Tag_Mismatch;
17005 -- Diagnose a tagged partial view whose full view is untagged. We post
17006 -- the message on the full view, with a reference to the previous
17007 -- partial view. The partial view can be private or incomplete, and
17008 -- these are handled in a different manner, so we determine the position
17009 -- of the error message from the respective slocs of both.
17010
17011 -----------------------------
17012 -- Check_Duplicate_Aspects --
17013 -----------------------------
17014
17015 procedure Check_Duplicate_Aspects is
17016 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id;
17017 -- Return the corresponding aspect of the partial view which matches
17018 -- the aspect id of Asp. Return Empty is no such aspect exists.
17019
17020 -----------------------------
17021 -- Get_Partial_View_Aspect --
17022 -----------------------------
17023
17024 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id is
17025 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp);
17026 Prev_Asps : constant List_Id := Aspect_Specifications (Prev_Par);
17027 Prev_Asp : Node_Id;
17028
17029 begin
17030 if Present (Prev_Asps) then
17031 Prev_Asp := First (Prev_Asps);
17032 while Present (Prev_Asp) loop
17033 if Get_Aspect_Id (Prev_Asp) = Asp_Id then
17034 return Prev_Asp;
17035 end if;
17036
17037 Next (Prev_Asp);
17038 end loop;
17039 end if;
17040
17041 return Empty;
17042 end Get_Partial_View_Aspect;
17043
17044 -- Local variables
17045
17046 Full_Asps : constant List_Id := Aspect_Specifications (N);
17047 Full_Asp : Node_Id;
17048 Part_Asp : Node_Id;
17049
17050 -- Start of processing for Check_Duplicate_Aspects
17051
17052 begin
17053 if Present (Full_Asps) then
17054 Full_Asp := First (Full_Asps);
17055 while Present (Full_Asp) loop
17056 Part_Asp := Get_Partial_View_Aspect (Full_Asp);
17057
17058 -- An aspect and its class-wide counterpart are two distinct
17059 -- aspects and may apply to both views of an entity.
17060
17061 if Present (Part_Asp)
17062 and then Class_Present (Part_Asp) = Class_Present (Full_Asp)
17063 then
17064 Error_Msg_N
17065 ("aspect already specified in private declaration",
17066 Full_Asp);
17067
17068 Remove (Full_Asp);
17069 return;
17070 end if;
17071
17072 if Has_Discriminants (Prev)
17073 and then not Has_Unknown_Discriminants (Prev)
17074 and then Get_Aspect_Id (Full_Asp) =
17075 Aspect_Implicit_Dereference
17076 then
17077 Error_Msg_N
17078 ("cannot specify aspect if partial view has known "
17079 & "discriminants", Full_Asp);
17080 end if;
17081
17082 Next (Full_Asp);
17083 end loop;
17084 end if;
17085 end Check_Duplicate_Aspects;
17086
17087 ------------------
17088 -- Tag_Mismatch --
17089 ------------------
17090
17091 procedure Tag_Mismatch is
17092 begin
17093 if Sloc (Prev) < Sloc (Id) then
17094 if Ada_Version >= Ada_2012
17095 and then Nkind (N) = N_Private_Type_Declaration
17096 then
17097 Error_Msg_NE
17098 ("declaration of private } must be a tagged type ", Id, Prev);
17099 else
17100 Error_Msg_NE
17101 ("full declaration of } must be a tagged type ", Id, Prev);
17102 end if;
17103
17104 else
17105 if Ada_Version >= Ada_2012
17106 and then Nkind (N) = N_Private_Type_Declaration
17107 then
17108 Error_Msg_NE
17109 ("declaration of private } must be a tagged type ", Prev, Id);
17110 else
17111 Error_Msg_NE
17112 ("full declaration of } must be a tagged type ", Prev, Id);
17113 end if;
17114 end if;
17115 end Tag_Mismatch;
17116
17117 -- Start of processing for Find_Type_Name
17118
17119 begin
17120 -- Find incomplete declaration, if one was given
17121
17122 Prev := Current_Entity_In_Scope (Id);
17123
17124 -- New type declaration
17125
17126 if No (Prev) then
17127 Enter_Name (Id);
17128 return Id;
17129
17130 -- Previous declaration exists
17131
17132 else
17133 Prev_Par := Parent (Prev);
17134
17135 -- Error if not incomplete/private case except if previous
17136 -- declaration is implicit, etc. Enter_Name will emit error if
17137 -- appropriate.
17138
17139 if not Is_Incomplete_Or_Private_Type (Prev) then
17140 Enter_Name (Id);
17141 New_Id := Id;
17142
17143 -- Check invalid completion of private or incomplete type
17144
17145 elsif not Nkind_In (N, N_Full_Type_Declaration,
17146 N_Task_Type_Declaration,
17147 N_Protected_Type_Declaration)
17148 and then
17149 (Ada_Version < Ada_2012
17150 or else not Is_Incomplete_Type (Prev)
17151 or else not Nkind_In (N, N_Private_Type_Declaration,
17152 N_Private_Extension_Declaration))
17153 then
17154 -- Completion must be a full type declarations (RM 7.3(4))
17155
17156 Error_Msg_Sloc := Sloc (Prev);
17157 Error_Msg_NE ("invalid completion of }", Id, Prev);
17158
17159 -- Set scope of Id to avoid cascaded errors. Entity is never
17160 -- examined again, except when saving globals in generics.
17161
17162 Set_Scope (Id, Current_Scope);
17163 New_Id := Id;
17164
17165 -- If this is a repeated incomplete declaration, no further
17166 -- checks are possible.
17167
17168 if Nkind (N) = N_Incomplete_Type_Declaration then
17169 return Prev;
17170 end if;
17171
17172 -- Case of full declaration of incomplete type
17173
17174 elsif Ekind (Prev) = E_Incomplete_Type
17175 and then (Ada_Version < Ada_2012
17176 or else No (Full_View (Prev))
17177 or else not Is_Private_Type (Full_View (Prev)))
17178 then
17179 -- Indicate that the incomplete declaration has a matching full
17180 -- declaration. The defining occurrence of the incomplete
17181 -- declaration remains the visible one, and the procedure
17182 -- Get_Full_View dereferences it whenever the type is used.
17183
17184 if Present (Full_View (Prev)) then
17185 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
17186 end if;
17187
17188 Set_Full_View (Prev, Id);
17189 Append_Entity (Id, Current_Scope);
17190 Set_Is_Public (Id, Is_Public (Prev));
17191 Set_Is_Internal (Id);
17192 New_Id := Prev;
17193
17194 -- If the incomplete view is tagged, a class_wide type has been
17195 -- created already. Use it for the private type as well, in order
17196 -- to prevent multiple incompatible class-wide types that may be
17197 -- created for self-referential anonymous access components.
17198
17199 if Is_Tagged_Type (Prev)
17200 and then Present (Class_Wide_Type (Prev))
17201 then
17202 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
17203 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
17204
17205 -- Type of the class-wide type is the current Id. Previously
17206 -- this was not done for private declarations because of order-
17207 -- of-elaboration issues in the back end, but gigi now handles
17208 -- this properly.
17209
17210 Set_Etype (Class_Wide_Type (Id), Id);
17211 end if;
17212
17213 -- Case of full declaration of private type
17214
17215 else
17216 -- If the private type was a completion of an incomplete type then
17217 -- update Prev to reference the private type
17218
17219 if Ada_Version >= Ada_2012
17220 and then Ekind (Prev) = E_Incomplete_Type
17221 and then Present (Full_View (Prev))
17222 and then Is_Private_Type (Full_View (Prev))
17223 then
17224 Prev := Full_View (Prev);
17225 Prev_Par := Parent (Prev);
17226 end if;
17227
17228 if Nkind (N) = N_Full_Type_Declaration
17229 and then Nkind_In
17230 (Type_Definition (N), N_Record_Definition,
17231 N_Derived_Type_Definition)
17232 and then Interface_Present (Type_Definition (N))
17233 then
17234 Error_Msg_N
17235 ("completion of private type cannot be an interface", N);
17236 end if;
17237
17238 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
17239 if Etype (Prev) /= Prev then
17240
17241 -- Prev is a private subtype or a derived type, and needs
17242 -- no completion.
17243
17244 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
17245 New_Id := Id;
17246
17247 elsif Ekind (Prev) = E_Private_Type
17248 and then Nkind_In (N, N_Task_Type_Declaration,
17249 N_Protected_Type_Declaration)
17250 then
17251 Error_Msg_N
17252 ("completion of nonlimited type cannot be limited", N);
17253
17254 elsif Ekind (Prev) = E_Record_Type_With_Private
17255 and then Nkind_In (N, N_Task_Type_Declaration,
17256 N_Protected_Type_Declaration)
17257 then
17258 if not Is_Limited_Record (Prev) then
17259 Error_Msg_N
17260 ("completion of nonlimited type cannot be limited", N);
17261
17262 elsif No (Interface_List (N)) then
17263 Error_Msg_N
17264 ("completion of tagged private type must be tagged",
17265 N);
17266 end if;
17267 end if;
17268
17269 -- Ada 2005 (AI-251): Private extension declaration of a task
17270 -- type or a protected type. This case arises when covering
17271 -- interface types.
17272
17273 elsif Nkind_In (N, N_Task_Type_Declaration,
17274 N_Protected_Type_Declaration)
17275 then
17276 null;
17277
17278 elsif Nkind (N) /= N_Full_Type_Declaration
17279 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
17280 then
17281 Error_Msg_N
17282 ("full view of private extension must be an extension", N);
17283
17284 elsif not (Abstract_Present (Parent (Prev)))
17285 and then Abstract_Present (Type_Definition (N))
17286 then
17287 Error_Msg_N
17288 ("full view of non-abstract extension cannot be abstract", N);
17289 end if;
17290
17291 if not In_Private_Part (Current_Scope) then
17292 Error_Msg_N
17293 ("declaration of full view must appear in private part", N);
17294 end if;
17295
17296 if Ada_Version >= Ada_2012 then
17297 Check_Duplicate_Aspects;
17298 end if;
17299
17300 Copy_And_Swap (Prev, Id);
17301 Set_Has_Private_Declaration (Prev);
17302 Set_Has_Private_Declaration (Id);
17303
17304 -- AI12-0133: Indicate whether we have a partial view with
17305 -- unknown discriminants, in which case initialization of objects
17306 -- of the type do not receive an invariant check.
17307
17308 Set_Partial_View_Has_Unknown_Discr
17309 (Prev, Has_Unknown_Discriminants (Id));
17310
17311 -- Preserve aspect and iterator flags that may have been set on
17312 -- the partial view.
17313
17314 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
17315 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
17316
17317 -- If no error, propagate freeze_node from private to full view.
17318 -- It may have been generated for an early operational item.
17319
17320 if Present (Freeze_Node (Id))
17321 and then Serious_Errors_Detected = 0
17322 and then No (Full_View (Id))
17323 then
17324 Set_Freeze_Node (Prev, Freeze_Node (Id));
17325 Set_Freeze_Node (Id, Empty);
17326 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
17327 end if;
17328
17329 Set_Full_View (Id, Prev);
17330 New_Id := Prev;
17331 end if;
17332
17333 -- Verify that full declaration conforms to partial one
17334
17335 if Is_Incomplete_Or_Private_Type (Prev)
17336 and then Present (Discriminant_Specifications (Prev_Par))
17337 then
17338 if Present (Discriminant_Specifications (N)) then
17339 if Ekind (Prev) = E_Incomplete_Type then
17340 Check_Discriminant_Conformance (N, Prev, Prev);
17341 else
17342 Check_Discriminant_Conformance (N, Prev, Id);
17343 end if;
17344
17345 else
17346 Error_Msg_N
17347 ("missing discriminants in full type declaration", N);
17348
17349 -- To avoid cascaded errors on subsequent use, share the
17350 -- discriminants of the partial view.
17351
17352 Set_Discriminant_Specifications (N,
17353 Discriminant_Specifications (Prev_Par));
17354 end if;
17355 end if;
17356
17357 -- A prior untagged partial view can have an associated class-wide
17358 -- type due to use of the class attribute, and in this case the full
17359 -- type must also be tagged. This Ada 95 usage is deprecated in favor
17360 -- of incomplete tagged declarations, but we check for it.
17361
17362 if Is_Type (Prev)
17363 and then (Is_Tagged_Type (Prev)
17364 or else Present (Class_Wide_Type (Prev)))
17365 then
17366 -- Ada 2012 (AI05-0162): A private type may be the completion of
17367 -- an incomplete type.
17368
17369 if Ada_Version >= Ada_2012
17370 and then Is_Incomplete_Type (Prev)
17371 and then Nkind_In (N, N_Private_Type_Declaration,
17372 N_Private_Extension_Declaration)
17373 then
17374 -- No need to check private extensions since they are tagged
17375
17376 if Nkind (N) = N_Private_Type_Declaration
17377 and then not Tagged_Present (N)
17378 then
17379 Tag_Mismatch;
17380 end if;
17381
17382 -- The full declaration is either a tagged type (including
17383 -- a synchronized type that implements interfaces) or a
17384 -- type extension, otherwise this is an error.
17385
17386 elsif Nkind_In (N, N_Task_Type_Declaration,
17387 N_Protected_Type_Declaration)
17388 then
17389 if No (Interface_List (N)) and then not Error_Posted (N) then
17390 Tag_Mismatch;
17391 end if;
17392
17393 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
17394
17395 -- Indicate that the previous declaration (tagged incomplete
17396 -- or private declaration) requires the same on the full one.
17397
17398 if not Tagged_Present (Type_Definition (N)) then
17399 Tag_Mismatch;
17400 Set_Is_Tagged_Type (Id);
17401 end if;
17402
17403 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
17404 if No (Record_Extension_Part (Type_Definition (N))) then
17405 Error_Msg_NE
17406 ("full declaration of } must be a record extension",
17407 Prev, Id);
17408
17409 -- Set some attributes to produce a usable full view
17410
17411 Set_Is_Tagged_Type (Id);
17412 end if;
17413
17414 else
17415 Tag_Mismatch;
17416 end if;
17417 end if;
17418
17419 if Present (Prev)
17420 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
17421 and then Present (Premature_Use (Parent (Prev)))
17422 then
17423 Error_Msg_Sloc := Sloc (N);
17424 Error_Msg_N
17425 ("\full declaration #", Premature_Use (Parent (Prev)));
17426 end if;
17427
17428 return New_Id;
17429 end if;
17430 end Find_Type_Name;
17431
17432 -------------------------
17433 -- Find_Type_Of_Object --
17434 -------------------------
17435
17436 function Find_Type_Of_Object
17437 (Obj_Def : Node_Id;
17438 Related_Nod : Node_Id) return Entity_Id
17439 is
17440 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
17441 P : Node_Id := Parent (Obj_Def);
17442 T : Entity_Id;
17443 Nam : Name_Id;
17444
17445 begin
17446 -- If the parent is a component_definition node we climb to the
17447 -- component_declaration node
17448
17449 if Nkind (P) = N_Component_Definition then
17450 P := Parent (P);
17451 end if;
17452
17453 -- Case of an anonymous array subtype
17454
17455 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
17456 N_Unconstrained_Array_Definition)
17457 then
17458 T := Empty;
17459 Array_Type_Declaration (T, Obj_Def);
17460
17461 -- Create an explicit subtype whenever possible
17462
17463 elsif Nkind (P) /= N_Component_Declaration
17464 and then Def_Kind = N_Subtype_Indication
17465 then
17466 -- Base name of subtype on object name, which will be unique in
17467 -- the current scope.
17468
17469 -- If this is a duplicate declaration, return base type, to avoid
17470 -- generating duplicate anonymous types.
17471
17472 if Error_Posted (P) then
17473 Analyze (Subtype_Mark (Obj_Def));
17474 return Entity (Subtype_Mark (Obj_Def));
17475 end if;
17476
17477 Nam :=
17478 New_External_Name
17479 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
17480
17481 T := Make_Defining_Identifier (Sloc (P), Nam);
17482
17483 Insert_Action (Obj_Def,
17484 Make_Subtype_Declaration (Sloc (P),
17485 Defining_Identifier => T,
17486 Subtype_Indication => Relocate_Node (Obj_Def)));
17487
17488 -- This subtype may need freezing, and this will not be done
17489 -- automatically if the object declaration is not in declarative
17490 -- part. Since this is an object declaration, the type cannot always
17491 -- be frozen here. Deferred constants do not freeze their type
17492 -- (which often enough will be private).
17493
17494 if Nkind (P) = N_Object_Declaration
17495 and then Constant_Present (P)
17496 and then No (Expression (P))
17497 then
17498 null;
17499
17500 -- Here we freeze the base type of object type to catch premature use
17501 -- of discriminated private type without a full view.
17502
17503 else
17504 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
17505 end if;
17506
17507 -- Ada 2005 AI-406: the object definition in an object declaration
17508 -- can be an access definition.
17509
17510 elsif Def_Kind = N_Access_Definition then
17511 T := Access_Definition (Related_Nod, Obj_Def);
17512
17513 Set_Is_Local_Anonymous_Access
17514 (T,
17515 V => (Ada_Version < Ada_2012)
17516 or else (Nkind (P) /= N_Object_Declaration)
17517 or else Is_Library_Level_Entity (Defining_Identifier (P)));
17518
17519 -- Otherwise, the object definition is just a subtype_mark
17520
17521 else
17522 T := Process_Subtype (Obj_Def, Related_Nod);
17523
17524 -- If expansion is disabled an object definition that is an aggregate
17525 -- will not get expanded and may lead to scoping problems in the back
17526 -- end, if the object is referenced in an inner scope. In that case
17527 -- create an itype reference for the object definition now. This
17528 -- may be redundant in some cases, but harmless.
17529
17530 if Is_Itype (T)
17531 and then Nkind (Related_Nod) = N_Object_Declaration
17532 and then ASIS_Mode
17533 then
17534 Build_Itype_Reference (T, Related_Nod);
17535 end if;
17536 end if;
17537
17538 return T;
17539 end Find_Type_Of_Object;
17540
17541 --------------------------------
17542 -- Find_Type_Of_Subtype_Indic --
17543 --------------------------------
17544
17545 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
17546 Typ : Entity_Id;
17547
17548 begin
17549 -- Case of subtype mark with a constraint
17550
17551 if Nkind (S) = N_Subtype_Indication then
17552 Find_Type (Subtype_Mark (S));
17553 Typ := Entity (Subtype_Mark (S));
17554
17555 if not
17556 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
17557 then
17558 Error_Msg_N
17559 ("incorrect constraint for this kind of type", Constraint (S));
17560 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
17561 end if;
17562
17563 -- Otherwise we have a subtype mark without a constraint
17564
17565 elsif Error_Posted (S) then
17566 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
17567 return Any_Type;
17568
17569 else
17570 Find_Type (S);
17571 Typ := Entity (S);
17572 end if;
17573
17574 -- Check No_Wide_Characters restriction
17575
17576 Check_Wide_Character_Restriction (Typ, S);
17577
17578 return Typ;
17579 end Find_Type_Of_Subtype_Indic;
17580
17581 -------------------------------------
17582 -- Floating_Point_Type_Declaration --
17583 -------------------------------------
17584
17585 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
17586 Digs : constant Node_Id := Digits_Expression (Def);
17587 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
17588 Digs_Val : Uint;
17589 Base_Typ : Entity_Id;
17590 Implicit_Base : Entity_Id;
17591 Bound : Node_Id;
17592
17593 function Can_Derive_From (E : Entity_Id) return Boolean;
17594 -- Find if given digits value, and possibly a specified range, allows
17595 -- derivation from specified type
17596
17597 function Find_Base_Type return Entity_Id;
17598 -- Find a predefined base type that Def can derive from, or generate
17599 -- an error and substitute Long_Long_Float if none exists.
17600
17601 ---------------------
17602 -- Can_Derive_From --
17603 ---------------------
17604
17605 function Can_Derive_From (E : Entity_Id) return Boolean is
17606 Spec : constant Entity_Id := Real_Range_Specification (Def);
17607
17608 begin
17609 -- Check specified "digits" constraint
17610
17611 if Digs_Val > Digits_Value (E) then
17612 return False;
17613 end if;
17614
17615 -- Check for matching range, if specified
17616
17617 if Present (Spec) then
17618 if Expr_Value_R (Type_Low_Bound (E)) >
17619 Expr_Value_R (Low_Bound (Spec))
17620 then
17621 return False;
17622 end if;
17623
17624 if Expr_Value_R (Type_High_Bound (E)) <
17625 Expr_Value_R (High_Bound (Spec))
17626 then
17627 return False;
17628 end if;
17629 end if;
17630
17631 return True;
17632 end Can_Derive_From;
17633
17634 --------------------
17635 -- Find_Base_Type --
17636 --------------------
17637
17638 function Find_Base_Type return Entity_Id is
17639 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
17640
17641 begin
17642 -- Iterate over the predefined types in order, returning the first
17643 -- one that Def can derive from.
17644
17645 while Present (Choice) loop
17646 if Can_Derive_From (Node (Choice)) then
17647 return Node (Choice);
17648 end if;
17649
17650 Next_Elmt (Choice);
17651 end loop;
17652
17653 -- If we can't derive from any existing type, use Long_Long_Float
17654 -- and give appropriate message explaining the problem.
17655
17656 if Digs_Val > Max_Digs_Val then
17657 -- It might be the case that there is a type with the requested
17658 -- range, just not the combination of digits and range.
17659
17660 Error_Msg_N
17661 ("no predefined type has requested range and precision",
17662 Real_Range_Specification (Def));
17663
17664 else
17665 Error_Msg_N
17666 ("range too large for any predefined type",
17667 Real_Range_Specification (Def));
17668 end if;
17669
17670 return Standard_Long_Long_Float;
17671 end Find_Base_Type;
17672
17673 -- Start of processing for Floating_Point_Type_Declaration
17674
17675 begin
17676 Check_Restriction (No_Floating_Point, Def);
17677
17678 -- Create an implicit base type
17679
17680 Implicit_Base :=
17681 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
17682
17683 -- Analyze and verify digits value
17684
17685 Analyze_And_Resolve (Digs, Any_Integer);
17686 Check_Digits_Expression (Digs);
17687 Digs_Val := Expr_Value (Digs);
17688
17689 -- Process possible range spec and find correct type to derive from
17690
17691 Process_Real_Range_Specification (Def);
17692
17693 -- Check that requested number of digits is not too high.
17694
17695 if Digs_Val > Max_Digs_Val then
17696
17697 -- The check for Max_Base_Digits may be somewhat expensive, as it
17698 -- requires reading System, so only do it when necessary.
17699
17700 declare
17701 Max_Base_Digits : constant Uint :=
17702 Expr_Value
17703 (Expression
17704 (Parent (RTE (RE_Max_Base_Digits))));
17705
17706 begin
17707 if Digs_Val > Max_Base_Digits then
17708 Error_Msg_Uint_1 := Max_Base_Digits;
17709 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
17710
17711 elsif No (Real_Range_Specification (Def)) then
17712 Error_Msg_Uint_1 := Max_Digs_Val;
17713 Error_Msg_N ("types with more than ^ digits need range spec "
17714 & "(RM 3.5.7(6))", Digs);
17715 end if;
17716 end;
17717 end if;
17718
17719 -- Find a suitable type to derive from or complain and use a substitute
17720
17721 Base_Typ := Find_Base_Type;
17722
17723 -- If there are bounds given in the declaration use them as the bounds
17724 -- of the type, otherwise use the bounds of the predefined base type
17725 -- that was chosen based on the Digits value.
17726
17727 if Present (Real_Range_Specification (Def)) then
17728 Set_Scalar_Range (T, Real_Range_Specification (Def));
17729 Set_Is_Constrained (T);
17730
17731 -- The bounds of this range must be converted to machine numbers
17732 -- in accordance with RM 4.9(38).
17733
17734 Bound := Type_Low_Bound (T);
17735
17736 if Nkind (Bound) = N_Real_Literal then
17737 Set_Realval
17738 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17739 Set_Is_Machine_Number (Bound);
17740 end if;
17741
17742 Bound := Type_High_Bound (T);
17743
17744 if Nkind (Bound) = N_Real_Literal then
17745 Set_Realval
17746 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17747 Set_Is_Machine_Number (Bound);
17748 end if;
17749
17750 else
17751 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
17752 end if;
17753
17754 -- Complete definition of implicit base and declared first subtype. The
17755 -- inheritance of the rep item chain ensures that SPARK-related pragmas
17756 -- are not clobbered when the floating point type acts as a full view of
17757 -- a private type.
17758
17759 Set_Etype (Implicit_Base, Base_Typ);
17760 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
17761 Set_Size_Info (Implicit_Base, Base_Typ);
17762 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
17763 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
17764 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
17765 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
17766
17767 Set_Ekind (T, E_Floating_Point_Subtype);
17768 Set_Etype (T, Implicit_Base);
17769 Set_Size_Info (T, Implicit_Base);
17770 Set_RM_Size (T, RM_Size (Implicit_Base));
17771 Inherit_Rep_Item_Chain (T, Implicit_Base);
17772 Set_Digits_Value (T, Digs_Val);
17773 end Floating_Point_Type_Declaration;
17774
17775 ----------------------------
17776 -- Get_Discriminant_Value --
17777 ----------------------------
17778
17779 -- This is the situation:
17780
17781 -- There is a non-derived type
17782
17783 -- type T0 (Dx, Dy, Dz...)
17784
17785 -- There are zero or more levels of derivation, with each derivation
17786 -- either purely inheriting the discriminants, or defining its own.
17787
17788 -- type Ti is new Ti-1
17789 -- or
17790 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
17791 -- or
17792 -- subtype Ti is ...
17793
17794 -- The subtype issue is avoided by the use of Original_Record_Component,
17795 -- and the fact that derived subtypes also derive the constraints.
17796
17797 -- This chain leads back from
17798
17799 -- Typ_For_Constraint
17800
17801 -- Typ_For_Constraint has discriminants, and the value for each
17802 -- discriminant is given by its corresponding Elmt of Constraints.
17803
17804 -- Discriminant is some discriminant in this hierarchy
17805
17806 -- We need to return its value
17807
17808 -- We do this by recursively searching each level, and looking for
17809 -- Discriminant. Once we get to the bottom, we start backing up
17810 -- returning the value for it which may in turn be a discriminant
17811 -- further up, so on the backup we continue the substitution.
17812
17813 function Get_Discriminant_Value
17814 (Discriminant : Entity_Id;
17815 Typ_For_Constraint : Entity_Id;
17816 Constraint : Elist_Id) return Node_Id
17817 is
17818 function Root_Corresponding_Discriminant
17819 (Discr : Entity_Id) return Entity_Id;
17820 -- Given a discriminant, traverse the chain of inherited discriminants
17821 -- and return the topmost discriminant.
17822
17823 function Search_Derivation_Levels
17824 (Ti : Entity_Id;
17825 Discrim_Values : Elist_Id;
17826 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
17827 -- This is the routine that performs the recursive search of levels
17828 -- as described above.
17829
17830 -------------------------------------
17831 -- Root_Corresponding_Discriminant --
17832 -------------------------------------
17833
17834 function Root_Corresponding_Discriminant
17835 (Discr : Entity_Id) return Entity_Id
17836 is
17837 D : Entity_Id;
17838
17839 begin
17840 D := Discr;
17841 while Present (Corresponding_Discriminant (D)) loop
17842 D := Corresponding_Discriminant (D);
17843 end loop;
17844
17845 return D;
17846 end Root_Corresponding_Discriminant;
17847
17848 ------------------------------
17849 -- Search_Derivation_Levels --
17850 ------------------------------
17851
17852 function Search_Derivation_Levels
17853 (Ti : Entity_Id;
17854 Discrim_Values : Elist_Id;
17855 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
17856 is
17857 Assoc : Elmt_Id;
17858 Disc : Entity_Id;
17859 Result : Node_Or_Entity_Id;
17860 Result_Entity : Node_Id;
17861
17862 begin
17863 -- If inappropriate type, return Error, this happens only in
17864 -- cascaded error situations, and we want to avoid a blow up.
17865
17866 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
17867 return Error;
17868 end if;
17869
17870 -- Look deeper if possible. Use Stored_Constraints only for
17871 -- untagged types. For tagged types use the given constraint.
17872 -- This asymmetry needs explanation???
17873
17874 if not Stored_Discrim_Values
17875 and then Present (Stored_Constraint (Ti))
17876 and then not Is_Tagged_Type (Ti)
17877 then
17878 Result :=
17879 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
17880 else
17881 declare
17882 Td : constant Entity_Id := Etype (Ti);
17883
17884 begin
17885 if Td = Ti then
17886 Result := Discriminant;
17887
17888 else
17889 if Present (Stored_Constraint (Ti)) then
17890 Result :=
17891 Search_Derivation_Levels
17892 (Td, Stored_Constraint (Ti), True);
17893 else
17894 Result :=
17895 Search_Derivation_Levels
17896 (Td, Discrim_Values, Stored_Discrim_Values);
17897 end if;
17898 end if;
17899 end;
17900 end if;
17901
17902 -- Extra underlying places to search, if not found above. For
17903 -- concurrent types, the relevant discriminant appears in the
17904 -- corresponding record. For a type derived from a private type
17905 -- without discriminant, the full view inherits the discriminants
17906 -- of the full view of the parent.
17907
17908 if Result = Discriminant then
17909 if Is_Concurrent_Type (Ti)
17910 and then Present (Corresponding_Record_Type (Ti))
17911 then
17912 Result :=
17913 Search_Derivation_Levels (
17914 Corresponding_Record_Type (Ti),
17915 Discrim_Values,
17916 Stored_Discrim_Values);
17917
17918 elsif Is_Private_Type (Ti)
17919 and then not Has_Discriminants (Ti)
17920 and then Present (Full_View (Ti))
17921 and then Etype (Full_View (Ti)) /= Ti
17922 then
17923 Result :=
17924 Search_Derivation_Levels (
17925 Full_View (Ti),
17926 Discrim_Values,
17927 Stored_Discrim_Values);
17928 end if;
17929 end if;
17930
17931 -- If Result is not a (reference to a) discriminant, return it,
17932 -- otherwise set Result_Entity to the discriminant.
17933
17934 if Nkind (Result) = N_Defining_Identifier then
17935 pragma Assert (Result = Discriminant);
17936 Result_Entity := Result;
17937
17938 else
17939 if not Denotes_Discriminant (Result) then
17940 return Result;
17941 end if;
17942
17943 Result_Entity := Entity (Result);
17944 end if;
17945
17946 -- See if this level of derivation actually has discriminants because
17947 -- tagged derivations can add them, hence the lower levels need not
17948 -- have any.
17949
17950 if not Has_Discriminants (Ti) then
17951 return Result;
17952 end if;
17953
17954 -- Scan Ti's discriminants for Result_Entity, and return its
17955 -- corresponding value, if any.
17956
17957 Result_Entity := Original_Record_Component (Result_Entity);
17958
17959 Assoc := First_Elmt (Discrim_Values);
17960
17961 if Stored_Discrim_Values then
17962 Disc := First_Stored_Discriminant (Ti);
17963 else
17964 Disc := First_Discriminant (Ti);
17965 end if;
17966
17967 while Present (Disc) loop
17968
17969 -- If no further associations return the discriminant, value will
17970 -- be found on the second pass.
17971
17972 if No (Assoc) then
17973 return Result;
17974 end if;
17975
17976 if Original_Record_Component (Disc) = Result_Entity then
17977 return Node (Assoc);
17978 end if;
17979
17980 Next_Elmt (Assoc);
17981
17982 if Stored_Discrim_Values then
17983 Next_Stored_Discriminant (Disc);
17984 else
17985 Next_Discriminant (Disc);
17986 end if;
17987 end loop;
17988
17989 -- Could not find it
17990
17991 return Result;
17992 end Search_Derivation_Levels;
17993
17994 -- Local Variables
17995
17996 Result : Node_Or_Entity_Id;
17997
17998 -- Start of processing for Get_Discriminant_Value
17999
18000 begin
18001 -- ??? This routine is a gigantic mess and will be deleted. For the
18002 -- time being just test for the trivial case before calling recurse.
18003
18004 -- We are now celebrating the 20th anniversary of this comment!
18005
18006 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
18007 declare
18008 D : Entity_Id;
18009 E : Elmt_Id;
18010
18011 begin
18012 D := First_Discriminant (Typ_For_Constraint);
18013 E := First_Elmt (Constraint);
18014 while Present (D) loop
18015 if Chars (D) = Chars (Discriminant) then
18016 return Node (E);
18017 end if;
18018
18019 Next_Discriminant (D);
18020 Next_Elmt (E);
18021 end loop;
18022 end;
18023 end if;
18024
18025 Result := Search_Derivation_Levels
18026 (Typ_For_Constraint, Constraint, False);
18027
18028 -- ??? hack to disappear when this routine is gone
18029
18030 if Nkind (Result) = N_Defining_Identifier then
18031 declare
18032 D : Entity_Id;
18033 E : Elmt_Id;
18034
18035 begin
18036 D := First_Discriminant (Typ_For_Constraint);
18037 E := First_Elmt (Constraint);
18038 while Present (D) loop
18039 if Root_Corresponding_Discriminant (D) = Discriminant then
18040 return Node (E);
18041 end if;
18042
18043 Next_Discriminant (D);
18044 Next_Elmt (E);
18045 end loop;
18046 end;
18047 end if;
18048
18049 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
18050 return Result;
18051 end Get_Discriminant_Value;
18052
18053 --------------------------
18054 -- Has_Range_Constraint --
18055 --------------------------
18056
18057 function Has_Range_Constraint (N : Node_Id) return Boolean is
18058 C : constant Node_Id := Constraint (N);
18059
18060 begin
18061 if Nkind (C) = N_Range_Constraint then
18062 return True;
18063
18064 elsif Nkind (C) = N_Digits_Constraint then
18065 return
18066 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
18067 or else Present (Range_Constraint (C));
18068
18069 elsif Nkind (C) = N_Delta_Constraint then
18070 return Present (Range_Constraint (C));
18071
18072 else
18073 return False;
18074 end if;
18075 end Has_Range_Constraint;
18076
18077 ------------------------
18078 -- Inherit_Components --
18079 ------------------------
18080
18081 function Inherit_Components
18082 (N : Node_Id;
18083 Parent_Base : Entity_Id;
18084 Derived_Base : Entity_Id;
18085 Is_Tagged : Boolean;
18086 Inherit_Discr : Boolean;
18087 Discs : Elist_Id) return Elist_Id
18088 is
18089 Assoc_List : constant Elist_Id := New_Elmt_List;
18090
18091 procedure Inherit_Component
18092 (Old_C : Entity_Id;
18093 Plain_Discrim : Boolean := False;
18094 Stored_Discrim : Boolean := False);
18095 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
18096 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
18097 -- True, Old_C is a stored discriminant. If they are both false then
18098 -- Old_C is a regular component.
18099
18100 -----------------------
18101 -- Inherit_Component --
18102 -----------------------
18103
18104 procedure Inherit_Component
18105 (Old_C : Entity_Id;
18106 Plain_Discrim : Boolean := False;
18107 Stored_Discrim : Boolean := False)
18108 is
18109 procedure Set_Anonymous_Type (Id : Entity_Id);
18110 -- Id denotes the entity of an access discriminant or anonymous
18111 -- access component. Set the type of Id to either the same type of
18112 -- Old_C or create a new one depending on whether the parent and
18113 -- the child types are in the same scope.
18114
18115 ------------------------
18116 -- Set_Anonymous_Type --
18117 ------------------------
18118
18119 procedure Set_Anonymous_Type (Id : Entity_Id) is
18120 Old_Typ : constant Entity_Id := Etype (Old_C);
18121
18122 begin
18123 if Scope (Parent_Base) = Scope (Derived_Base) then
18124 Set_Etype (Id, Old_Typ);
18125
18126 -- The parent and the derived type are in two different scopes.
18127 -- Reuse the type of the original discriminant / component by
18128 -- copying it in order to preserve all attributes.
18129
18130 else
18131 declare
18132 Typ : constant Entity_Id := New_Copy (Old_Typ);
18133
18134 begin
18135 Set_Etype (Id, Typ);
18136
18137 -- Since we do not generate component declarations for
18138 -- inherited components, associate the itype with the
18139 -- derived type.
18140
18141 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
18142 Set_Scope (Typ, Derived_Base);
18143 end;
18144 end if;
18145 end Set_Anonymous_Type;
18146
18147 -- Local variables and constants
18148
18149 New_C : constant Entity_Id := New_Copy (Old_C);
18150
18151 Corr_Discrim : Entity_Id;
18152 Discrim : Entity_Id;
18153
18154 -- Start of processing for Inherit_Component
18155
18156 begin
18157 pragma Assert (not Is_Tagged or not Stored_Discrim);
18158
18159 Set_Parent (New_C, Parent (Old_C));
18160
18161 -- Regular discriminants and components must be inserted in the scope
18162 -- of the Derived_Base. Do it here.
18163
18164 if not Stored_Discrim then
18165 Enter_Name (New_C);
18166 end if;
18167
18168 -- For tagged types the Original_Record_Component must point to
18169 -- whatever this field was pointing to in the parent type. This has
18170 -- already been achieved by the call to New_Copy above.
18171
18172 if not Is_Tagged then
18173 Set_Original_Record_Component (New_C, New_C);
18174 Set_Corresponding_Record_Component (New_C, Old_C);
18175 end if;
18176
18177 -- Set the proper type of an access discriminant
18178
18179 if Ekind (New_C) = E_Discriminant
18180 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
18181 then
18182 Set_Anonymous_Type (New_C);
18183 end if;
18184
18185 -- If we have inherited a component then see if its Etype contains
18186 -- references to Parent_Base discriminants. In this case, replace
18187 -- these references with the constraints given in Discs. We do not
18188 -- do this for the partial view of private types because this is
18189 -- not needed (only the components of the full view will be used
18190 -- for code generation) and cause problem. We also avoid this
18191 -- transformation in some error situations.
18192
18193 if Ekind (New_C) = E_Component then
18194
18195 -- Set the proper type of an anonymous access component
18196
18197 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
18198 Set_Anonymous_Type (New_C);
18199
18200 elsif (Is_Private_Type (Derived_Base)
18201 and then not Is_Generic_Type (Derived_Base))
18202 or else (Is_Empty_Elmt_List (Discs)
18203 and then not Expander_Active)
18204 then
18205 Set_Etype (New_C, Etype (Old_C));
18206
18207 else
18208 -- The current component introduces a circularity of the
18209 -- following kind:
18210
18211 -- limited with Pack_2;
18212 -- package Pack_1 is
18213 -- type T_1 is tagged record
18214 -- Comp : access Pack_2.T_2;
18215 -- ...
18216 -- end record;
18217 -- end Pack_1;
18218
18219 -- with Pack_1;
18220 -- package Pack_2 is
18221 -- type T_2 is new Pack_1.T_1 with ...;
18222 -- end Pack_2;
18223
18224 Set_Etype
18225 (New_C,
18226 Constrain_Component_Type
18227 (Old_C, Derived_Base, N, Parent_Base, Discs));
18228 end if;
18229 end if;
18230
18231 -- In derived tagged types it is illegal to reference a non
18232 -- discriminant component in the parent type. To catch this, mark
18233 -- these components with an Ekind of E_Void. This will be reset in
18234 -- Record_Type_Definition after processing the record extension of
18235 -- the derived type.
18236
18237 -- If the declaration is a private extension, there is no further
18238 -- record extension to process, and the components retain their
18239 -- current kind, because they are visible at this point.
18240
18241 if Is_Tagged and then Ekind (New_C) = E_Component
18242 and then Nkind (N) /= N_Private_Extension_Declaration
18243 then
18244 Set_Ekind (New_C, E_Void);
18245 end if;
18246
18247 if Plain_Discrim then
18248 Set_Corresponding_Discriminant (New_C, Old_C);
18249 Build_Discriminal (New_C);
18250
18251 -- If we are explicitly inheriting a stored discriminant it will be
18252 -- completely hidden.
18253
18254 elsif Stored_Discrim then
18255 Set_Corresponding_Discriminant (New_C, Empty);
18256 Set_Discriminal (New_C, Empty);
18257 Set_Is_Completely_Hidden (New_C);
18258
18259 -- Set the Original_Record_Component of each discriminant in the
18260 -- derived base to point to the corresponding stored that we just
18261 -- created.
18262
18263 Discrim := First_Discriminant (Derived_Base);
18264 while Present (Discrim) loop
18265 Corr_Discrim := Corresponding_Discriminant (Discrim);
18266
18267 -- Corr_Discrim could be missing in an error situation
18268
18269 if Present (Corr_Discrim)
18270 and then Original_Record_Component (Corr_Discrim) = Old_C
18271 then
18272 Set_Original_Record_Component (Discrim, New_C);
18273 Set_Corresponding_Record_Component (Discrim, Empty);
18274 end if;
18275
18276 Next_Discriminant (Discrim);
18277 end loop;
18278
18279 Append_Entity (New_C, Derived_Base);
18280 end if;
18281
18282 if not Is_Tagged then
18283 Append_Elmt (Old_C, Assoc_List);
18284 Append_Elmt (New_C, Assoc_List);
18285 end if;
18286 end Inherit_Component;
18287
18288 -- Variables local to Inherit_Component
18289
18290 Loc : constant Source_Ptr := Sloc (N);
18291
18292 Parent_Discrim : Entity_Id;
18293 Stored_Discrim : Entity_Id;
18294 D : Entity_Id;
18295 Component : Entity_Id;
18296
18297 -- Start of processing for Inherit_Components
18298
18299 begin
18300 if not Is_Tagged then
18301 Append_Elmt (Parent_Base, Assoc_List);
18302 Append_Elmt (Derived_Base, Assoc_List);
18303 end if;
18304
18305 -- Inherit parent discriminants if needed
18306
18307 if Inherit_Discr then
18308 Parent_Discrim := First_Discriminant (Parent_Base);
18309 while Present (Parent_Discrim) loop
18310 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
18311 Next_Discriminant (Parent_Discrim);
18312 end loop;
18313 end if;
18314
18315 -- Create explicit stored discrims for untagged types when necessary
18316
18317 if not Has_Unknown_Discriminants (Derived_Base)
18318 and then Has_Discriminants (Parent_Base)
18319 and then not Is_Tagged
18320 and then
18321 (not Inherit_Discr
18322 or else First_Discriminant (Parent_Base) /=
18323 First_Stored_Discriminant (Parent_Base))
18324 then
18325 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
18326 while Present (Stored_Discrim) loop
18327 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
18328 Next_Stored_Discriminant (Stored_Discrim);
18329 end loop;
18330 end if;
18331
18332 -- See if we can apply the second transformation for derived types, as
18333 -- explained in point 6. in the comments above Build_Derived_Record_Type
18334 -- This is achieved by appending Derived_Base discriminants into Discs,
18335 -- which has the side effect of returning a non empty Discs list to the
18336 -- caller of Inherit_Components, which is what we want. This must be
18337 -- done for private derived types if there are explicit stored
18338 -- discriminants, to ensure that we can retrieve the values of the
18339 -- constraints provided in the ancestors.
18340
18341 if Inherit_Discr
18342 and then Is_Empty_Elmt_List (Discs)
18343 and then Present (First_Discriminant (Derived_Base))
18344 and then
18345 (not Is_Private_Type (Derived_Base)
18346 or else Is_Completely_Hidden
18347 (First_Stored_Discriminant (Derived_Base))
18348 or else Is_Generic_Type (Derived_Base))
18349 then
18350 D := First_Discriminant (Derived_Base);
18351 while Present (D) loop
18352 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
18353 Next_Discriminant (D);
18354 end loop;
18355 end if;
18356
18357 -- Finally, inherit non-discriminant components unless they are not
18358 -- visible because defined or inherited from the full view of the
18359 -- parent. Don't inherit the _parent field of the parent type.
18360
18361 Component := First_Entity (Parent_Base);
18362 while Present (Component) loop
18363
18364 -- Ada 2005 (AI-251): Do not inherit components associated with
18365 -- secondary tags of the parent.
18366
18367 if Ekind (Component) = E_Component
18368 and then Present (Related_Type (Component))
18369 then
18370 null;
18371
18372 elsif Ekind (Component) /= E_Component
18373 or else Chars (Component) = Name_uParent
18374 then
18375 null;
18376
18377 -- If the derived type is within the parent type's declarative
18378 -- region, then the components can still be inherited even though
18379 -- they aren't visible at this point. This can occur for cases
18380 -- such as within public child units where the components must
18381 -- become visible upon entering the child unit's private part.
18382
18383 elsif not Is_Visible_Component (Component)
18384 and then not In_Open_Scopes (Scope (Parent_Base))
18385 then
18386 null;
18387
18388 elsif Ekind_In (Derived_Base, E_Private_Type,
18389 E_Limited_Private_Type)
18390 then
18391 null;
18392
18393 else
18394 Inherit_Component (Component);
18395 end if;
18396
18397 Next_Entity (Component);
18398 end loop;
18399
18400 -- For tagged derived types, inherited discriminants cannot be used in
18401 -- component declarations of the record extension part. To achieve this
18402 -- we mark the inherited discriminants as not visible.
18403
18404 if Is_Tagged and then Inherit_Discr then
18405 D := First_Discriminant (Derived_Base);
18406 while Present (D) loop
18407 Set_Is_Immediately_Visible (D, False);
18408 Next_Discriminant (D);
18409 end loop;
18410 end if;
18411
18412 return Assoc_List;
18413 end Inherit_Components;
18414
18415 -----------------------------
18416 -- Inherit_Predicate_Flags --
18417 -----------------------------
18418
18419 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
18420 begin
18421 Set_Has_Predicates (Subt, Has_Predicates (Par));
18422 Set_Has_Static_Predicate_Aspect
18423 (Subt, Has_Static_Predicate_Aspect (Par));
18424 Set_Has_Dynamic_Predicate_Aspect
18425 (Subt, Has_Dynamic_Predicate_Aspect (Par));
18426 end Inherit_Predicate_Flags;
18427
18428 ----------------------
18429 -- Is_EVF_Procedure --
18430 ----------------------
18431
18432 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is
18433 Formal : Entity_Id;
18434
18435 begin
18436 -- Examine the formals of an Extensions_Visible False procedure looking
18437 -- for a controlling OUT parameter.
18438
18439 if Ekind (Subp) = E_Procedure
18440 and then Extensions_Visible_Status (Subp) = Extensions_Visible_False
18441 then
18442 Formal := First_Formal (Subp);
18443 while Present (Formal) loop
18444 if Ekind (Formal) = E_Out_Parameter
18445 and then Is_Controlling_Formal (Formal)
18446 then
18447 return True;
18448 end if;
18449
18450 Next_Formal (Formal);
18451 end loop;
18452 end if;
18453
18454 return False;
18455 end Is_EVF_Procedure;
18456
18457 -----------------------
18458 -- Is_Null_Extension --
18459 -----------------------
18460
18461 function Is_Null_Extension (T : Entity_Id) return Boolean is
18462 Type_Decl : constant Node_Id := Parent (Base_Type (T));
18463 Comp_List : Node_Id;
18464 Comp : Node_Id;
18465
18466 begin
18467 if Nkind (Type_Decl) /= N_Full_Type_Declaration
18468 or else not Is_Tagged_Type (T)
18469 or else Nkind (Type_Definition (Type_Decl)) /=
18470 N_Derived_Type_Definition
18471 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
18472 then
18473 return False;
18474 end if;
18475
18476 Comp_List :=
18477 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
18478
18479 if Present (Discriminant_Specifications (Type_Decl)) then
18480 return False;
18481
18482 elsif Present (Comp_List)
18483 and then Is_Non_Empty_List (Component_Items (Comp_List))
18484 then
18485 Comp := First (Component_Items (Comp_List));
18486
18487 -- Only user-defined components are relevant. The component list
18488 -- may also contain a parent component and internal components
18489 -- corresponding to secondary tags, but these do not determine
18490 -- whether this is a null extension.
18491
18492 while Present (Comp) loop
18493 if Comes_From_Source (Comp) then
18494 return False;
18495 end if;
18496
18497 Next (Comp);
18498 end loop;
18499
18500 return True;
18501
18502 else
18503 return True;
18504 end if;
18505 end Is_Null_Extension;
18506
18507 ------------------------------
18508 -- Is_Valid_Constraint_Kind --
18509 ------------------------------
18510
18511 function Is_Valid_Constraint_Kind
18512 (T_Kind : Type_Kind;
18513 Constraint_Kind : Node_Kind) return Boolean
18514 is
18515 begin
18516 case T_Kind is
18517 when Enumeration_Kind
18518 | Integer_Kind
18519 =>
18520 return Constraint_Kind = N_Range_Constraint;
18521
18522 when Decimal_Fixed_Point_Kind =>
18523 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
18524 N_Range_Constraint);
18525
18526 when Ordinary_Fixed_Point_Kind =>
18527 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
18528 N_Range_Constraint);
18529
18530 when Float_Kind =>
18531 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
18532 N_Range_Constraint);
18533
18534 when Access_Kind
18535 | Array_Kind
18536 | Class_Wide_Kind
18537 | Concurrent_Kind
18538 | Private_Kind
18539 | E_Incomplete_Type
18540 | E_Record_Subtype
18541 | E_Record_Type
18542 =>
18543 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
18544
18545 when others =>
18546 return True; -- Error will be detected later
18547 end case;
18548 end Is_Valid_Constraint_Kind;
18549
18550 --------------------------
18551 -- Is_Visible_Component --
18552 --------------------------
18553
18554 function Is_Visible_Component
18555 (C : Entity_Id;
18556 N : Node_Id := Empty) return Boolean
18557 is
18558 Original_Comp : Entity_Id := Empty;
18559 Original_Type : Entity_Id;
18560 Type_Scope : Entity_Id;
18561
18562 function Is_Local_Type (Typ : Entity_Id) return Boolean;
18563 -- Check whether parent type of inherited component is declared locally,
18564 -- possibly within a nested package or instance. The current scope is
18565 -- the derived record itself.
18566
18567 -------------------
18568 -- Is_Local_Type --
18569 -------------------
18570
18571 function Is_Local_Type (Typ : Entity_Id) return Boolean is
18572 Scop : Entity_Id;
18573
18574 begin
18575 Scop := Scope (Typ);
18576 while Present (Scop)
18577 and then Scop /= Standard_Standard
18578 loop
18579 if Scop = Scope (Current_Scope) then
18580 return True;
18581 end if;
18582
18583 Scop := Scope (Scop);
18584 end loop;
18585
18586 return False;
18587 end Is_Local_Type;
18588
18589 -- Start of processing for Is_Visible_Component
18590
18591 begin
18592 if Ekind_In (C, E_Component, E_Discriminant) then
18593 Original_Comp := Original_Record_Component (C);
18594 end if;
18595
18596 if No (Original_Comp) then
18597
18598 -- Premature usage, or previous error
18599
18600 return False;
18601
18602 else
18603 Original_Type := Scope (Original_Comp);
18604 Type_Scope := Scope (Base_Type (Scope (C)));
18605 end if;
18606
18607 -- This test only concerns tagged types
18608
18609 if not Is_Tagged_Type (Original_Type) then
18610 return True;
18611
18612 -- If it is _Parent or _Tag, there is no visibility issue
18613
18614 elsif not Comes_From_Source (Original_Comp) then
18615 return True;
18616
18617 -- Discriminants are visible unless the (private) type has unknown
18618 -- discriminants. If the discriminant reference is inserted for a
18619 -- discriminant check on a full view it is also visible.
18620
18621 elsif Ekind (Original_Comp) = E_Discriminant
18622 and then
18623 (not Has_Unknown_Discriminants (Original_Type)
18624 or else (Present (N)
18625 and then Nkind (N) = N_Selected_Component
18626 and then Nkind (Prefix (N)) = N_Type_Conversion
18627 and then not Comes_From_Source (Prefix (N))))
18628 then
18629 return True;
18630
18631 -- In the body of an instantiation, check the visibility of a component
18632 -- in case it has a homograph that is a primitive operation of a private
18633 -- type which was not visible in the generic unit.
18634
18635 -- Should Is_Prefixed_Call be propagated from template to instance???
18636
18637 elsif In_Instance_Body then
18638 if not Is_Tagged_Type (Original_Type)
18639 or else not Is_Private_Type (Original_Type)
18640 then
18641 return True;
18642
18643 else
18644 declare
18645 Subp_Elmt : Elmt_Id;
18646
18647 begin
18648 Subp_Elmt := First_Elmt (Primitive_Operations (Original_Type));
18649 while Present (Subp_Elmt) loop
18650
18651 -- The component is hidden by a primitive operation
18652
18653 if Chars (Node (Subp_Elmt)) = Chars (C) then
18654 return False;
18655 end if;
18656
18657 Next_Elmt (Subp_Elmt);
18658 end loop;
18659
18660 return True;
18661 end;
18662 end if;
18663
18664 -- If the component has been declared in an ancestor which is currently
18665 -- a private type, then it is not visible. The same applies if the
18666 -- component's containing type is not in an open scope and the original
18667 -- component's enclosing type is a visible full view of a private type
18668 -- (which can occur in cases where an attempt is being made to reference
18669 -- a component in a sibling package that is inherited from a visible
18670 -- component of a type in an ancestor package; the component in the
18671 -- sibling package should not be visible even though the component it
18672 -- inherited from is visible). This does not apply however in the case
18673 -- where the scope of the type is a private child unit, or when the
18674 -- parent comes from a local package in which the ancestor is currently
18675 -- visible. The latter suppression of visibility is needed for cases
18676 -- that are tested in B730006.
18677
18678 elsif Is_Private_Type (Original_Type)
18679 or else
18680 (not Is_Private_Descendant (Type_Scope)
18681 and then not In_Open_Scopes (Type_Scope)
18682 and then Has_Private_Declaration (Original_Type))
18683 then
18684 -- If the type derives from an entity in a formal package, there
18685 -- are no additional visible components.
18686
18687 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
18688 N_Formal_Package_Declaration
18689 then
18690 return False;
18691
18692 -- if we are not in the private part of the current package, there
18693 -- are no additional visible components.
18694
18695 elsif Ekind (Scope (Current_Scope)) = E_Package
18696 and then not In_Private_Part (Scope (Current_Scope))
18697 then
18698 return False;
18699 else
18700 return
18701 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
18702 and then In_Open_Scopes (Scope (Original_Type))
18703 and then Is_Local_Type (Type_Scope);
18704 end if;
18705
18706 -- There is another weird way in which a component may be invisible when
18707 -- the private and the full view are not derived from the same ancestor.
18708 -- Here is an example :
18709
18710 -- type A1 is tagged record F1 : integer; end record;
18711 -- type A2 is new A1 with record F2 : integer; end record;
18712 -- type T is new A1 with private;
18713 -- private
18714 -- type T is new A2 with null record;
18715
18716 -- In this case, the full view of T inherits F1 and F2 but the private
18717 -- view inherits only F1
18718
18719 else
18720 declare
18721 Ancestor : Entity_Id := Scope (C);
18722
18723 begin
18724 loop
18725 if Ancestor = Original_Type then
18726 return True;
18727
18728 -- The ancestor may have a partial view of the original type,
18729 -- but if the full view is in scope, as in a child body, the
18730 -- component is visible.
18731
18732 elsif In_Private_Part (Scope (Original_Type))
18733 and then Full_View (Ancestor) = Original_Type
18734 then
18735 return True;
18736
18737 elsif Ancestor = Etype (Ancestor) then
18738
18739 -- No further ancestors to examine
18740
18741 return False;
18742 end if;
18743
18744 Ancestor := Etype (Ancestor);
18745 end loop;
18746 end;
18747 end if;
18748 end Is_Visible_Component;
18749
18750 --------------------------
18751 -- Make_Class_Wide_Type --
18752 --------------------------
18753
18754 procedure Make_Class_Wide_Type (T : Entity_Id) is
18755 CW_Type : Entity_Id;
18756 CW_Name : Name_Id;
18757 Next_E : Entity_Id;
18758
18759 begin
18760 if Present (Class_Wide_Type (T)) then
18761
18762 -- The class-wide type is a partially decorated entity created for a
18763 -- unanalyzed tagged type referenced through a limited with clause.
18764 -- When the tagged type is analyzed, its class-wide type needs to be
18765 -- redecorated. Note that we reuse the entity created by Decorate_
18766 -- Tagged_Type in order to preserve all links.
18767
18768 if Materialize_Entity (Class_Wide_Type (T)) then
18769 CW_Type := Class_Wide_Type (T);
18770 Set_Materialize_Entity (CW_Type, False);
18771
18772 -- The class wide type can have been defined by the partial view, in
18773 -- which case everything is already done.
18774
18775 else
18776 return;
18777 end if;
18778
18779 -- Default case, we need to create a new class-wide type
18780
18781 else
18782 CW_Type :=
18783 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
18784 end if;
18785
18786 -- Inherit root type characteristics
18787
18788 CW_Name := Chars (CW_Type);
18789 Next_E := Next_Entity (CW_Type);
18790 Copy_Node (T, CW_Type);
18791 Set_Comes_From_Source (CW_Type, False);
18792 Set_Chars (CW_Type, CW_Name);
18793 Set_Parent (CW_Type, Parent (T));
18794 Set_Next_Entity (CW_Type, Next_E);
18795
18796 -- Ensure we have a new freeze node for the class-wide type. The partial
18797 -- view may have freeze action of its own, requiring a proper freeze
18798 -- node, and the same freeze node cannot be shared between the two
18799 -- types.
18800
18801 Set_Has_Delayed_Freeze (CW_Type);
18802 Set_Freeze_Node (CW_Type, Empty);
18803
18804 -- Customize the class-wide type: It has no prim. op., it cannot be
18805 -- abstract, its Etype points back to the specific root type, and it
18806 -- cannot have any invariants.
18807
18808 Set_Ekind (CW_Type, E_Class_Wide_Type);
18809 Set_Is_Tagged_Type (CW_Type, True);
18810 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
18811 Set_Is_Abstract_Type (CW_Type, False);
18812 Set_Is_Constrained (CW_Type, False);
18813 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
18814 Set_Default_SSO (CW_Type);
18815 Set_Has_Inheritable_Invariants (CW_Type, False);
18816 Set_Has_Inherited_Invariants (CW_Type, False);
18817 Set_Has_Own_Invariants (CW_Type, False);
18818
18819 if Ekind (T) = E_Class_Wide_Subtype then
18820 Set_Etype (CW_Type, Etype (Base_Type (T)));
18821 else
18822 Set_Etype (CW_Type, T);
18823 end if;
18824
18825 Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams);
18826
18827 -- If this is the class_wide type of a constrained subtype, it does
18828 -- not have discriminants.
18829
18830 Set_Has_Discriminants (CW_Type,
18831 Has_Discriminants (T) and then not Is_Constrained (T));
18832
18833 Set_Has_Unknown_Discriminants (CW_Type, True);
18834 Set_Class_Wide_Type (T, CW_Type);
18835 Set_Equivalent_Type (CW_Type, Empty);
18836
18837 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
18838
18839 Set_Class_Wide_Type (CW_Type, CW_Type);
18840 end Make_Class_Wide_Type;
18841
18842 ----------------
18843 -- Make_Index --
18844 ----------------
18845
18846 procedure Make_Index
18847 (N : Node_Id;
18848 Related_Nod : Node_Id;
18849 Related_Id : Entity_Id := Empty;
18850 Suffix_Index : Nat := 1;
18851 In_Iter_Schm : Boolean := False)
18852 is
18853 R : Node_Id;
18854 T : Entity_Id;
18855 Def_Id : Entity_Id := Empty;
18856 Found : Boolean := False;
18857
18858 begin
18859 -- For a discrete range used in a constrained array definition and
18860 -- defined by a range, an implicit conversion to the predefined type
18861 -- INTEGER is assumed if each bound is either a numeric literal, a named
18862 -- number, or an attribute, and the type of both bounds (prior to the
18863 -- implicit conversion) is the type universal_integer. Otherwise, both
18864 -- bounds must be of the same discrete type, other than universal
18865 -- integer; this type must be determinable independently of the
18866 -- context, but using the fact that the type must be discrete and that
18867 -- both bounds must have the same type.
18868
18869 -- Character literals also have a universal type in the absence of
18870 -- of additional context, and are resolved to Standard_Character.
18871
18872 if Nkind (N) = N_Range then
18873
18874 -- The index is given by a range constraint. The bounds are known
18875 -- to be of a consistent type.
18876
18877 if not Is_Overloaded (N) then
18878 T := Etype (N);
18879
18880 -- For universal bounds, choose the specific predefined type
18881
18882 if T = Universal_Integer then
18883 T := Standard_Integer;
18884
18885 elsif T = Any_Character then
18886 Ambiguous_Character (Low_Bound (N));
18887
18888 T := Standard_Character;
18889 end if;
18890
18891 -- The node may be overloaded because some user-defined operators
18892 -- are available, but if a universal interpretation exists it is
18893 -- also the selected one.
18894
18895 elsif Universal_Interpretation (N) = Universal_Integer then
18896 T := Standard_Integer;
18897
18898 else
18899 T := Any_Type;
18900
18901 declare
18902 Ind : Interp_Index;
18903 It : Interp;
18904
18905 begin
18906 Get_First_Interp (N, Ind, It);
18907 while Present (It.Typ) loop
18908 if Is_Discrete_Type (It.Typ) then
18909
18910 if Found
18911 and then not Covers (It.Typ, T)
18912 and then not Covers (T, It.Typ)
18913 then
18914 Error_Msg_N ("ambiguous bounds in discrete range", N);
18915 exit;
18916 else
18917 T := It.Typ;
18918 Found := True;
18919 end if;
18920 end if;
18921
18922 Get_Next_Interp (Ind, It);
18923 end loop;
18924
18925 if T = Any_Type then
18926 Error_Msg_N ("discrete type required for range", N);
18927 Set_Etype (N, Any_Type);
18928 return;
18929
18930 elsif T = Universal_Integer then
18931 T := Standard_Integer;
18932 end if;
18933 end;
18934 end if;
18935
18936 if not Is_Discrete_Type (T) then
18937 Error_Msg_N ("discrete type required for range", N);
18938 Set_Etype (N, Any_Type);
18939 return;
18940 end if;
18941
18942 if Nkind (Low_Bound (N)) = N_Attribute_Reference
18943 and then Attribute_Name (Low_Bound (N)) = Name_First
18944 and then Is_Entity_Name (Prefix (Low_Bound (N)))
18945 and then Is_Type (Entity (Prefix (Low_Bound (N))))
18946 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
18947 then
18948 -- The type of the index will be the type of the prefix, as long
18949 -- as the upper bound is 'Last of the same type.
18950
18951 Def_Id := Entity (Prefix (Low_Bound (N)));
18952
18953 if Nkind (High_Bound (N)) /= N_Attribute_Reference
18954 or else Attribute_Name (High_Bound (N)) /= Name_Last
18955 or else not Is_Entity_Name (Prefix (High_Bound (N)))
18956 or else Entity (Prefix (High_Bound (N))) /= Def_Id
18957 then
18958 Def_Id := Empty;
18959 end if;
18960 end if;
18961
18962 R := N;
18963 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
18964
18965 elsif Nkind (N) = N_Subtype_Indication then
18966
18967 -- The index is given by a subtype with a range constraint
18968
18969 T := Base_Type (Entity (Subtype_Mark (N)));
18970
18971 if not Is_Discrete_Type (T) then
18972 Error_Msg_N ("discrete type required for range", N);
18973 Set_Etype (N, Any_Type);
18974 return;
18975 end if;
18976
18977 R := Range_Expression (Constraint (N));
18978
18979 Resolve (R, T);
18980 Process_Range_Expr_In_Decl
18981 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
18982
18983 elsif Nkind (N) = N_Attribute_Reference then
18984
18985 -- Catch beginner's error (use of attribute other than 'Range)
18986
18987 if Attribute_Name (N) /= Name_Range then
18988 Error_Msg_N ("expect attribute ''Range", N);
18989 Set_Etype (N, Any_Type);
18990 return;
18991 end if;
18992
18993 -- If the node denotes the range of a type mark, that is also the
18994 -- resulting type, and we do not need to create an Itype for it.
18995
18996 if Is_Entity_Name (Prefix (N))
18997 and then Comes_From_Source (N)
18998 and then Is_Type (Entity (Prefix (N)))
18999 and then Is_Discrete_Type (Entity (Prefix (N)))
19000 then
19001 Def_Id := Entity (Prefix (N));
19002 end if;
19003
19004 Analyze_And_Resolve (N);
19005 T := Etype (N);
19006 R := N;
19007
19008 -- If none of the above, must be a subtype. We convert this to a
19009 -- range attribute reference because in the case of declared first
19010 -- named subtypes, the types in the range reference can be different
19011 -- from the type of the entity. A range attribute normalizes the
19012 -- reference and obtains the correct types for the bounds.
19013
19014 -- This transformation is in the nature of an expansion, is only
19015 -- done if expansion is active. In particular, it is not done on
19016 -- formal generic types, because we need to retain the name of the
19017 -- original index for instantiation purposes.
19018
19019 else
19020 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
19021 Error_Msg_N ("invalid subtype mark in discrete range ", N);
19022 Set_Etype (N, Any_Integer);
19023 return;
19024
19025 else
19026 -- The type mark may be that of an incomplete type. It is only
19027 -- now that we can get the full view, previous analysis does
19028 -- not look specifically for a type mark.
19029
19030 Set_Entity (N, Get_Full_View (Entity (N)));
19031 Set_Etype (N, Entity (N));
19032 Def_Id := Entity (N);
19033
19034 if not Is_Discrete_Type (Def_Id) then
19035 Error_Msg_N ("discrete type required for index", N);
19036 Set_Etype (N, Any_Type);
19037 return;
19038 end if;
19039 end if;
19040
19041 if Expander_Active then
19042 Rewrite (N,
19043 Make_Attribute_Reference (Sloc (N),
19044 Attribute_Name => Name_Range,
19045 Prefix => Relocate_Node (N)));
19046
19047 -- The original was a subtype mark that does not freeze. This
19048 -- means that the rewritten version must not freeze either.
19049
19050 Set_Must_Not_Freeze (N);
19051 Set_Must_Not_Freeze (Prefix (N));
19052 Analyze_And_Resolve (N);
19053 T := Etype (N);
19054 R := N;
19055
19056 -- If expander is inactive, type is legal, nothing else to construct
19057
19058 else
19059 return;
19060 end if;
19061 end if;
19062
19063 if not Is_Discrete_Type (T) then
19064 Error_Msg_N ("discrete type required for range", N);
19065 Set_Etype (N, Any_Type);
19066 return;
19067
19068 elsif T = Any_Type then
19069 Set_Etype (N, Any_Type);
19070 return;
19071 end if;
19072
19073 -- We will now create the appropriate Itype to describe the range, but
19074 -- first a check. If we originally had a subtype, then we just label
19075 -- the range with this subtype. Not only is there no need to construct
19076 -- a new subtype, but it is wrong to do so for two reasons:
19077
19078 -- 1. A legality concern, if we have a subtype, it must not freeze,
19079 -- and the Itype would cause freezing incorrectly
19080
19081 -- 2. An efficiency concern, if we created an Itype, it would not be
19082 -- recognized as the same type for the purposes of eliminating
19083 -- checks in some circumstances.
19084
19085 -- We signal this case by setting the subtype entity in Def_Id
19086
19087 if No (Def_Id) then
19088 Def_Id :=
19089 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
19090 Set_Etype (Def_Id, Base_Type (T));
19091
19092 if Is_Signed_Integer_Type (T) then
19093 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
19094
19095 elsif Is_Modular_Integer_Type (T) then
19096 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
19097
19098 else
19099 Set_Ekind (Def_Id, E_Enumeration_Subtype);
19100 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
19101 Set_First_Literal (Def_Id, First_Literal (T));
19102 end if;
19103
19104 Set_Size_Info (Def_Id, (T));
19105 Set_RM_Size (Def_Id, RM_Size (T));
19106 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
19107
19108 Set_Scalar_Range (Def_Id, R);
19109 Conditional_Delay (Def_Id, T);
19110
19111 if Nkind (N) = N_Subtype_Indication then
19112 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
19113 end if;
19114
19115 -- In the subtype indication case, if the immediate parent of the
19116 -- new subtype is non-static, then the subtype we create is non-
19117 -- static, even if its bounds are static.
19118
19119 if Nkind (N) = N_Subtype_Indication
19120 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
19121 then
19122 Set_Is_Non_Static_Subtype (Def_Id);
19123 end if;
19124 end if;
19125
19126 -- Final step is to label the index with this constructed type
19127
19128 Set_Etype (N, Def_Id);
19129 end Make_Index;
19130
19131 ------------------------------
19132 -- Modular_Type_Declaration --
19133 ------------------------------
19134
19135 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
19136 Mod_Expr : constant Node_Id := Expression (Def);
19137 M_Val : Uint;
19138
19139 procedure Set_Modular_Size (Bits : Int);
19140 -- Sets RM_Size to Bits, and Esize to normal word size above this
19141
19142 ----------------------
19143 -- Set_Modular_Size --
19144 ----------------------
19145
19146 procedure Set_Modular_Size (Bits : Int) is
19147 begin
19148 Set_RM_Size (T, UI_From_Int (Bits));
19149
19150 if Bits <= 8 then
19151 Init_Esize (T, 8);
19152
19153 elsif Bits <= 16 then
19154 Init_Esize (T, 16);
19155
19156 elsif Bits <= 32 then
19157 Init_Esize (T, 32);
19158
19159 else
19160 Init_Esize (T, System_Max_Binary_Modulus_Power);
19161 end if;
19162
19163 if not Non_Binary_Modulus (T) and then Esize (T) = RM_Size (T) then
19164 Set_Is_Known_Valid (T);
19165 end if;
19166 end Set_Modular_Size;
19167
19168 -- Start of processing for Modular_Type_Declaration
19169
19170 begin
19171 -- If the mod expression is (exactly) 2 * literal, where literal is
19172 -- 64 or less,then almost certainly the * was meant to be **. Warn.
19173
19174 if Warn_On_Suspicious_Modulus_Value
19175 and then Nkind (Mod_Expr) = N_Op_Multiply
19176 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
19177 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
19178 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
19179 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
19180 then
19181 Error_Msg_N
19182 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
19183 end if;
19184
19185 -- Proceed with analysis of mod expression
19186
19187 Analyze_And_Resolve (Mod_Expr, Any_Integer);
19188 Set_Etype (T, T);
19189 Set_Ekind (T, E_Modular_Integer_Type);
19190 Init_Alignment (T);
19191 Set_Is_Constrained (T);
19192
19193 if not Is_OK_Static_Expression (Mod_Expr) then
19194 Flag_Non_Static_Expr
19195 ("non-static expression used for modular type bound!", Mod_Expr);
19196 M_Val := 2 ** System_Max_Binary_Modulus_Power;
19197 else
19198 M_Val := Expr_Value (Mod_Expr);
19199 end if;
19200
19201 if M_Val < 1 then
19202 Error_Msg_N ("modulus value must be positive", Mod_Expr);
19203 M_Val := 2 ** System_Max_Binary_Modulus_Power;
19204 end if;
19205
19206 if M_Val > 2 ** Standard_Long_Integer_Size then
19207 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
19208 end if;
19209
19210 Set_Modulus (T, M_Val);
19211
19212 -- Create bounds for the modular type based on the modulus given in
19213 -- the type declaration and then analyze and resolve those bounds.
19214
19215 Set_Scalar_Range (T,
19216 Make_Range (Sloc (Mod_Expr),
19217 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
19218 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
19219
19220 -- Properly analyze the literals for the range. We do this manually
19221 -- because we can't go calling Resolve, since we are resolving these
19222 -- bounds with the type, and this type is certainly not complete yet.
19223
19224 Set_Etype (Low_Bound (Scalar_Range (T)), T);
19225 Set_Etype (High_Bound (Scalar_Range (T)), T);
19226 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
19227 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
19228
19229 -- Loop through powers of two to find number of bits required
19230
19231 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
19232
19233 -- Binary case
19234
19235 if M_Val = 2 ** Bits then
19236 Set_Modular_Size (Bits);
19237 return;
19238
19239 -- Nonbinary case
19240
19241 elsif M_Val < 2 ** Bits then
19242 Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
19243 Set_Non_Binary_Modulus (T);
19244
19245 if Bits > System_Max_Nonbinary_Modulus_Power then
19246 Error_Msg_Uint_1 :=
19247 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
19248 Error_Msg_F
19249 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
19250 Set_Modular_Size (System_Max_Binary_Modulus_Power);
19251 return;
19252
19253 else
19254 -- In the nonbinary case, set size as per RM 13.3(55)
19255
19256 Set_Modular_Size (Bits);
19257 return;
19258 end if;
19259 end if;
19260
19261 end loop;
19262
19263 -- If we fall through, then the size exceed System.Max_Binary_Modulus
19264 -- so we just signal an error and set the maximum size.
19265
19266 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
19267 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
19268
19269 Set_Modular_Size (System_Max_Binary_Modulus_Power);
19270 Init_Alignment (T);
19271
19272 end Modular_Type_Declaration;
19273
19274 --------------------------
19275 -- New_Concatenation_Op --
19276 --------------------------
19277
19278 procedure New_Concatenation_Op (Typ : Entity_Id) is
19279 Loc : constant Source_Ptr := Sloc (Typ);
19280 Op : Entity_Id;
19281
19282 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
19283 -- Create abbreviated declaration for the formal of a predefined
19284 -- Operator 'Op' of type 'Typ'
19285
19286 --------------------
19287 -- Make_Op_Formal --
19288 --------------------
19289
19290 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
19291 Formal : Entity_Id;
19292 begin
19293 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
19294 Set_Etype (Formal, Typ);
19295 Set_Mechanism (Formal, Default_Mechanism);
19296 return Formal;
19297 end Make_Op_Formal;
19298
19299 -- Start of processing for New_Concatenation_Op
19300
19301 begin
19302 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
19303
19304 Set_Ekind (Op, E_Operator);
19305 Set_Scope (Op, Current_Scope);
19306 Set_Etype (Op, Typ);
19307 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
19308 Set_Is_Immediately_Visible (Op);
19309 Set_Is_Intrinsic_Subprogram (Op);
19310 Set_Has_Completion (Op);
19311 Append_Entity (Op, Current_Scope);
19312
19313 Set_Name_Entity_Id (Name_Op_Concat, Op);
19314
19315 Append_Entity (Make_Op_Formal (Typ, Op), Op);
19316 Append_Entity (Make_Op_Formal (Typ, Op), Op);
19317 end New_Concatenation_Op;
19318
19319 -------------------------
19320 -- OK_For_Limited_Init --
19321 -------------------------
19322
19323 -- ???Check all calls of this, and compare the conditions under which it's
19324 -- called.
19325
19326 function OK_For_Limited_Init
19327 (Typ : Entity_Id;
19328 Exp : Node_Id) return Boolean
19329 is
19330 begin
19331 return Is_CPP_Constructor_Call (Exp)
19332 or else (Ada_Version >= Ada_2005
19333 and then not Debug_Flag_Dot_L
19334 and then OK_For_Limited_Init_In_05 (Typ, Exp));
19335 end OK_For_Limited_Init;
19336
19337 -------------------------------
19338 -- OK_For_Limited_Init_In_05 --
19339 -------------------------------
19340
19341 function OK_For_Limited_Init_In_05
19342 (Typ : Entity_Id;
19343 Exp : Node_Id) return Boolean
19344 is
19345 begin
19346 -- An object of a limited interface type can be initialized with any
19347 -- expression of a nonlimited descendant type. However this does not
19348 -- apply if this is a view conversion of some other expression. This
19349 -- is checked below.
19350
19351 if Is_Class_Wide_Type (Typ)
19352 and then Is_Limited_Interface (Typ)
19353 and then not Is_Limited_Type (Etype (Exp))
19354 and then Nkind (Exp) /= N_Type_Conversion
19355 then
19356 return True;
19357 end if;
19358
19359 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
19360 -- case of limited aggregates (including extension aggregates), and
19361 -- function calls. The function call may have been given in prefixed
19362 -- notation, in which case the original node is an indexed component.
19363 -- If the function is parameterless, the original node was an explicit
19364 -- dereference. The function may also be parameterless, in which case
19365 -- the source node is just an identifier.
19366
19367 -- A branch of a conditional expression may have been removed if the
19368 -- condition is statically known. This happens during expansion, and
19369 -- thus will not happen if previous errors were encountered. The check
19370 -- will have been performed on the chosen branch, which replaces the
19371 -- original conditional expression.
19372
19373 if No (Exp) then
19374 return True;
19375 end if;
19376
19377 case Nkind (Original_Node (Exp)) is
19378 when N_Aggregate
19379 | N_Extension_Aggregate
19380 | N_Function_Call
19381 | N_Op
19382 =>
19383 return True;
19384
19385 when N_Identifier =>
19386 return Present (Entity (Original_Node (Exp)))
19387 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
19388
19389 when N_Qualified_Expression =>
19390 return
19391 OK_For_Limited_Init_In_05
19392 (Typ, Expression (Original_Node (Exp)));
19393
19394 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
19395 -- with a function call, the expander has rewritten the call into an
19396 -- N_Type_Conversion node to force displacement of the pointer to
19397 -- reference the component containing the secondary dispatch table.
19398 -- Otherwise a type conversion is not a legal context.
19399 -- A return statement for a build-in-place function returning a
19400 -- synchronized type also introduces an unchecked conversion.
19401
19402 when N_Type_Conversion
19403 | N_Unchecked_Type_Conversion
19404 =>
19405 return not Comes_From_Source (Exp)
19406 and then
19407 OK_For_Limited_Init_In_05
19408 (Typ, Expression (Original_Node (Exp)));
19409
19410 when N_Explicit_Dereference
19411 | N_Indexed_Component
19412 | N_Selected_Component
19413 =>
19414 return Nkind (Exp) = N_Function_Call;
19415
19416 -- A use of 'Input is a function call, hence allowed. Normally the
19417 -- attribute will be changed to a call, but the attribute by itself
19418 -- can occur with -gnatc.
19419
19420 when N_Attribute_Reference =>
19421 return Attribute_Name (Original_Node (Exp)) = Name_Input;
19422
19423 -- "return raise ..." is OK
19424
19425 when N_Raise_Expression =>
19426 return True;
19427
19428 -- For a case expression, all dependent expressions must be legal
19429
19430 when N_Case_Expression =>
19431 declare
19432 Alt : Node_Id;
19433
19434 begin
19435 Alt := First (Alternatives (Original_Node (Exp)));
19436 while Present (Alt) loop
19437 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
19438 return False;
19439 end if;
19440
19441 Next (Alt);
19442 end loop;
19443
19444 return True;
19445 end;
19446
19447 -- For an if expression, all dependent expressions must be legal
19448
19449 when N_If_Expression =>
19450 declare
19451 Then_Expr : constant Node_Id :=
19452 Next (First (Expressions (Original_Node (Exp))));
19453 Else_Expr : constant Node_Id := Next (Then_Expr);
19454 begin
19455 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
19456 and then
19457 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
19458 end;
19459
19460 when others =>
19461 return False;
19462 end case;
19463 end OK_For_Limited_Init_In_05;
19464
19465 -------------------------------------------
19466 -- Ordinary_Fixed_Point_Type_Declaration --
19467 -------------------------------------------
19468
19469 procedure Ordinary_Fixed_Point_Type_Declaration
19470 (T : Entity_Id;
19471 Def : Node_Id)
19472 is
19473 Loc : constant Source_Ptr := Sloc (Def);
19474 Delta_Expr : constant Node_Id := Delta_Expression (Def);
19475 RRS : constant Node_Id := Real_Range_Specification (Def);
19476 Implicit_Base : Entity_Id;
19477 Delta_Val : Ureal;
19478 Small_Val : Ureal;
19479 Low_Val : Ureal;
19480 High_Val : Ureal;
19481
19482 begin
19483 Check_Restriction (No_Fixed_Point, Def);
19484
19485 -- Create implicit base type
19486
19487 Implicit_Base :=
19488 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
19489 Set_Etype (Implicit_Base, Implicit_Base);
19490
19491 -- Analyze and process delta expression
19492
19493 Analyze_And_Resolve (Delta_Expr, Any_Real);
19494
19495 Check_Delta_Expression (Delta_Expr);
19496 Delta_Val := Expr_Value_R (Delta_Expr);
19497
19498 Set_Delta_Value (Implicit_Base, Delta_Val);
19499
19500 -- Compute default small from given delta, which is the largest power
19501 -- of two that does not exceed the given delta value.
19502
19503 declare
19504 Tmp : Ureal;
19505 Scale : Int;
19506
19507 begin
19508 Tmp := Ureal_1;
19509 Scale := 0;
19510
19511 if Delta_Val < Ureal_1 then
19512 while Delta_Val < Tmp loop
19513 Tmp := Tmp / Ureal_2;
19514 Scale := Scale + 1;
19515 end loop;
19516
19517 else
19518 loop
19519 Tmp := Tmp * Ureal_2;
19520 exit when Tmp > Delta_Val;
19521 Scale := Scale - 1;
19522 end loop;
19523 end if;
19524
19525 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
19526 end;
19527
19528 Set_Small_Value (Implicit_Base, Small_Val);
19529
19530 -- If no range was given, set a dummy range
19531
19532 if RRS <= Empty_Or_Error then
19533 Low_Val := -Small_Val;
19534 High_Val := Small_Val;
19535
19536 -- Otherwise analyze and process given range
19537
19538 else
19539 declare
19540 Low : constant Node_Id := Low_Bound (RRS);
19541 High : constant Node_Id := High_Bound (RRS);
19542
19543 begin
19544 Analyze_And_Resolve (Low, Any_Real);
19545 Analyze_And_Resolve (High, Any_Real);
19546 Check_Real_Bound (Low);
19547 Check_Real_Bound (High);
19548
19549 -- Obtain and set the range
19550
19551 Low_Val := Expr_Value_R (Low);
19552 High_Val := Expr_Value_R (High);
19553
19554 if Low_Val > High_Val then
19555 Error_Msg_NE ("??fixed point type& has null range", Def, T);
19556 end if;
19557 end;
19558 end if;
19559
19560 -- The range for both the implicit base and the declared first subtype
19561 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
19562 -- set a temporary range in place. Note that the bounds of the base
19563 -- type will be widened to be symmetrical and to fill the available
19564 -- bits when the type is frozen.
19565
19566 -- We could do this with all discrete types, and probably should, but
19567 -- we absolutely have to do it for fixed-point, since the end-points
19568 -- of the range and the size are determined by the small value, which
19569 -- could be reset before the freeze point.
19570
19571 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
19572 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
19573
19574 -- Complete definition of first subtype. The inheritance of the rep item
19575 -- chain ensures that SPARK-related pragmas are not clobbered when the
19576 -- ordinary fixed point type acts as a full view of a private type.
19577
19578 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
19579 Set_Etype (T, Implicit_Base);
19580 Init_Size_Align (T);
19581 Inherit_Rep_Item_Chain (T, Implicit_Base);
19582 Set_Small_Value (T, Small_Val);
19583 Set_Delta_Value (T, Delta_Val);
19584 Set_Is_Constrained (T);
19585 end Ordinary_Fixed_Point_Type_Declaration;
19586
19587 ----------------------------------
19588 -- Preanalyze_Assert_Expression --
19589 ----------------------------------
19590
19591 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
19592 begin
19593 In_Assertion_Expr := In_Assertion_Expr + 1;
19594 Preanalyze_Spec_Expression (N, T);
19595 In_Assertion_Expr := In_Assertion_Expr - 1;
19596 end Preanalyze_Assert_Expression;
19597
19598 -----------------------------------
19599 -- Preanalyze_Default_Expression --
19600 -----------------------------------
19601
19602 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
19603 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
19604 begin
19605 In_Default_Expr := True;
19606 Preanalyze_Spec_Expression (N, T);
19607 In_Default_Expr := Save_In_Default_Expr;
19608 end Preanalyze_Default_Expression;
19609
19610 --------------------------------
19611 -- Preanalyze_Spec_Expression --
19612 --------------------------------
19613
19614 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
19615 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
19616 begin
19617 In_Spec_Expression := True;
19618 Preanalyze_And_Resolve (N, T);
19619 In_Spec_Expression := Save_In_Spec_Expression;
19620 end Preanalyze_Spec_Expression;
19621
19622 ----------------------------------------
19623 -- Prepare_Private_Subtype_Completion --
19624 ----------------------------------------
19625
19626 procedure Prepare_Private_Subtype_Completion
19627 (Id : Entity_Id;
19628 Related_Nod : Node_Id)
19629 is
19630 Id_B : constant Entity_Id := Base_Type (Id);
19631 Full_B : Entity_Id := Full_View (Id_B);
19632 Full : Entity_Id;
19633
19634 begin
19635 if Present (Full_B) then
19636
19637 -- Get to the underlying full view if necessary
19638
19639 if Is_Private_Type (Full_B)
19640 and then Present (Underlying_Full_View (Full_B))
19641 then
19642 Full_B := Underlying_Full_View (Full_B);
19643 end if;
19644
19645 -- The Base_Type is already completed, we can complete the subtype
19646 -- now. We have to create a new entity with the same name, Thus we
19647 -- can't use Create_Itype.
19648
19649 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
19650 Set_Is_Itype (Full);
19651 Set_Associated_Node_For_Itype (Full, Related_Nod);
19652 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
19653 end if;
19654
19655 -- The parent subtype may be private, but the base might not, in some
19656 -- nested instances. In that case, the subtype does not need to be
19657 -- exchanged. It would still be nice to make private subtypes and their
19658 -- bases consistent at all times ???
19659
19660 if Is_Private_Type (Id_B) then
19661 Append_Elmt (Id, Private_Dependents (Id_B));
19662 end if;
19663 end Prepare_Private_Subtype_Completion;
19664
19665 ---------------------------
19666 -- Process_Discriminants --
19667 ---------------------------
19668
19669 procedure Process_Discriminants
19670 (N : Node_Id;
19671 Prev : Entity_Id := Empty)
19672 is
19673 Elist : constant Elist_Id := New_Elmt_List;
19674 Id : Node_Id;
19675 Discr : Node_Id;
19676 Discr_Number : Uint;
19677 Discr_Type : Entity_Id;
19678 Default_Present : Boolean := False;
19679 Default_Not_Present : Boolean := False;
19680
19681 begin
19682 -- A composite type other than an array type can have discriminants.
19683 -- On entry, the current scope is the composite type.
19684
19685 -- The discriminants are initially entered into the scope of the type
19686 -- via Enter_Name with the default Ekind of E_Void to prevent premature
19687 -- use, as explained at the end of this procedure.
19688
19689 Discr := First (Discriminant_Specifications (N));
19690 while Present (Discr) loop
19691 Enter_Name (Defining_Identifier (Discr));
19692
19693 -- For navigation purposes we add a reference to the discriminant
19694 -- in the entity for the type. If the current declaration is a
19695 -- completion, place references on the partial view. Otherwise the
19696 -- type is the current scope.
19697
19698 if Present (Prev) then
19699
19700 -- The references go on the partial view, if present. If the
19701 -- partial view has discriminants, the references have been
19702 -- generated already.
19703
19704 if not Has_Discriminants (Prev) then
19705 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
19706 end if;
19707 else
19708 Generate_Reference
19709 (Current_Scope, Defining_Identifier (Discr), 'd');
19710 end if;
19711
19712 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
19713 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
19714
19715 -- Ada 2005 (AI-254)
19716
19717 if Present (Access_To_Subprogram_Definition
19718 (Discriminant_Type (Discr)))
19719 and then Protected_Present (Access_To_Subprogram_Definition
19720 (Discriminant_Type (Discr)))
19721 then
19722 Discr_Type :=
19723 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
19724 end if;
19725
19726 else
19727 Find_Type (Discriminant_Type (Discr));
19728 Discr_Type := Etype (Discriminant_Type (Discr));
19729
19730 if Error_Posted (Discriminant_Type (Discr)) then
19731 Discr_Type := Any_Type;
19732 end if;
19733 end if;
19734
19735 -- Handling of discriminants that are access types
19736
19737 if Is_Access_Type (Discr_Type) then
19738
19739 -- Ada 2005 (AI-230): Access discriminant allowed in non-
19740 -- limited record types
19741
19742 if Ada_Version < Ada_2005 then
19743 Check_Access_Discriminant_Requires_Limited
19744 (Discr, Discriminant_Type (Discr));
19745 end if;
19746
19747 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
19748 Error_Msg_N
19749 ("(Ada 83) access discriminant not allowed", Discr);
19750 end if;
19751
19752 -- If not access type, must be a discrete type
19753
19754 elsif not Is_Discrete_Type (Discr_Type) then
19755 Error_Msg_N
19756 ("discriminants must have a discrete or access type",
19757 Discriminant_Type (Discr));
19758 end if;
19759
19760 Set_Etype (Defining_Identifier (Discr), Discr_Type);
19761
19762 -- If a discriminant specification includes the assignment compound
19763 -- delimiter followed by an expression, the expression is the default
19764 -- expression of the discriminant; the default expression must be of
19765 -- the type of the discriminant. (RM 3.7.1) Since this expression is
19766 -- a default expression, we do the special preanalysis, since this
19767 -- expression does not freeze (see section "Handling of Default and
19768 -- Per-Object Expressions" in spec of package Sem).
19769
19770 if Present (Expression (Discr)) then
19771 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
19772
19773 -- Legaity checks
19774
19775 if Nkind (N) = N_Formal_Type_Declaration then
19776 Error_Msg_N
19777 ("discriminant defaults not allowed for formal type",
19778 Expression (Discr));
19779
19780 -- Flag an error for a tagged type with defaulted discriminants,
19781 -- excluding limited tagged types when compiling for Ada 2012
19782 -- (see AI05-0214).
19783
19784 elsif Is_Tagged_Type (Current_Scope)
19785 and then (not Is_Limited_Type (Current_Scope)
19786 or else Ada_Version < Ada_2012)
19787 and then Comes_From_Source (N)
19788 then
19789 -- Note: see similar test in Check_Or_Process_Discriminants, to
19790 -- handle the (illegal) case of the completion of an untagged
19791 -- view with discriminants with defaults by a tagged full view.
19792 -- We skip the check if Discr does not come from source, to
19793 -- account for the case of an untagged derived type providing
19794 -- defaults for a renamed discriminant from a private untagged
19795 -- ancestor with a tagged full view (ACATS B460006).
19796
19797 if Ada_Version >= Ada_2012 then
19798 Error_Msg_N
19799 ("discriminants of nonlimited tagged type cannot have"
19800 & " defaults",
19801 Expression (Discr));
19802 else
19803 Error_Msg_N
19804 ("discriminants of tagged type cannot have defaults",
19805 Expression (Discr));
19806 end if;
19807
19808 else
19809 Default_Present := True;
19810 Append_Elmt (Expression (Discr), Elist);
19811
19812 -- Tag the defining identifiers for the discriminants with
19813 -- their corresponding default expressions from the tree.
19814
19815 Set_Discriminant_Default_Value
19816 (Defining_Identifier (Discr), Expression (Discr));
19817 end if;
19818
19819 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
19820 -- gets set unless we can be sure that no range check is required.
19821
19822 if (GNATprove_Mode or not Expander_Active)
19823 and then not
19824 Is_In_Range
19825 (Expression (Discr), Discr_Type, Assume_Valid => True)
19826 then
19827 Set_Do_Range_Check (Expression (Discr));
19828 end if;
19829
19830 -- No default discriminant value given
19831
19832 else
19833 Default_Not_Present := True;
19834 end if;
19835
19836 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
19837 -- Discr_Type but with the null-exclusion attribute
19838
19839 if Ada_Version >= Ada_2005 then
19840
19841 -- Ada 2005 (AI-231): Static checks
19842
19843 if Can_Never_Be_Null (Discr_Type) then
19844 Null_Exclusion_Static_Checks (Discr);
19845
19846 elsif Is_Access_Type (Discr_Type)
19847 and then Null_Exclusion_Present (Discr)
19848
19849 -- No need to check itypes because in their case this check
19850 -- was done at their point of creation
19851
19852 and then not Is_Itype (Discr_Type)
19853 then
19854 if Can_Never_Be_Null (Discr_Type) then
19855 Error_Msg_NE
19856 ("`NOT NULL` not allowed (& already excludes null)",
19857 Discr,
19858 Discr_Type);
19859 end if;
19860
19861 Set_Etype (Defining_Identifier (Discr),
19862 Create_Null_Excluding_Itype
19863 (T => Discr_Type,
19864 Related_Nod => Discr));
19865
19866 -- Check for improper null exclusion if the type is otherwise
19867 -- legal for a discriminant.
19868
19869 elsif Null_Exclusion_Present (Discr)
19870 and then Is_Discrete_Type (Discr_Type)
19871 then
19872 Error_Msg_N
19873 ("null exclusion can only apply to an access type", Discr);
19874 end if;
19875
19876 -- Ada 2005 (AI-402): access discriminants of nonlimited types
19877 -- can't have defaults. Synchronized types, or types that are
19878 -- explicitly limited are fine, but special tests apply to derived
19879 -- types in generics: in a generic body we have to assume the
19880 -- worst, and therefore defaults are not allowed if the parent is
19881 -- a generic formal private type (see ACATS B370001).
19882
19883 if Is_Access_Type (Discr_Type) and then Default_Present then
19884 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
19885 or else Is_Limited_Record (Current_Scope)
19886 or else Is_Concurrent_Type (Current_Scope)
19887 or else Is_Concurrent_Record_Type (Current_Scope)
19888 or else Ekind (Current_Scope) = E_Limited_Private_Type
19889 then
19890 if not Is_Derived_Type (Current_Scope)
19891 or else not Is_Generic_Type (Etype (Current_Scope))
19892 or else not In_Package_Body (Scope (Etype (Current_Scope)))
19893 or else Limited_Present
19894 (Type_Definition (Parent (Current_Scope)))
19895 then
19896 null;
19897
19898 else
19899 Error_Msg_N
19900 ("access discriminants of nonlimited types cannot "
19901 & "have defaults", Expression (Discr));
19902 end if;
19903
19904 elsif Present (Expression (Discr)) then
19905 Error_Msg_N
19906 ("(Ada 2005) access discriminants of nonlimited types "
19907 & "cannot have defaults", Expression (Discr));
19908 end if;
19909 end if;
19910 end if;
19911
19912 -- A discriminant cannot be effectively volatile (SPARK RM 7.1.3(6)).
19913 -- This check is relevant only when SPARK_Mode is on as it is not a
19914 -- standard Ada legality rule.
19915
19916 if SPARK_Mode = On
19917 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
19918 then
19919 Error_Msg_N ("discriminant cannot be volatile", Discr);
19920 end if;
19921
19922 Next (Discr);
19923 end loop;
19924
19925 -- An element list consisting of the default expressions of the
19926 -- discriminants is constructed in the above loop and used to set
19927 -- the Discriminant_Constraint attribute for the type. If an object
19928 -- is declared of this (record or task) type without any explicit
19929 -- discriminant constraint given, this element list will form the
19930 -- actual parameters for the corresponding initialization procedure
19931 -- for the type.
19932
19933 Set_Discriminant_Constraint (Current_Scope, Elist);
19934 Set_Stored_Constraint (Current_Scope, No_Elist);
19935
19936 -- Default expressions must be provided either for all or for none
19937 -- of the discriminants of a discriminant part. (RM 3.7.1)
19938
19939 if Default_Present and then Default_Not_Present then
19940 Error_Msg_N
19941 ("incomplete specification of defaults for discriminants", N);
19942 end if;
19943
19944 -- The use of the name of a discriminant is not allowed in default
19945 -- expressions of a discriminant part if the specification of the
19946 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
19947
19948 -- To detect this, the discriminant names are entered initially with an
19949 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
19950 -- attempt to use a void entity (for example in an expression that is
19951 -- type-checked) produces the error message: premature usage. Now after
19952 -- completing the semantic analysis of the discriminant part, we can set
19953 -- the Ekind of all the discriminants appropriately.
19954
19955 Discr := First (Discriminant_Specifications (N));
19956 Discr_Number := Uint_1;
19957 while Present (Discr) loop
19958 Id := Defining_Identifier (Discr);
19959 Set_Ekind (Id, E_Discriminant);
19960 Init_Component_Location (Id);
19961 Init_Esize (Id);
19962 Set_Discriminant_Number (Id, Discr_Number);
19963
19964 -- Make sure this is always set, even in illegal programs
19965
19966 Set_Corresponding_Discriminant (Id, Empty);
19967
19968 -- Initialize the Original_Record_Component to the entity itself.
19969 -- Inherit_Components will propagate the right value to
19970 -- discriminants in derived record types.
19971
19972 Set_Original_Record_Component (Id, Id);
19973
19974 -- Create the discriminal for the discriminant
19975
19976 Build_Discriminal (Id);
19977
19978 Next (Discr);
19979 Discr_Number := Discr_Number + 1;
19980 end loop;
19981
19982 Set_Has_Discriminants (Current_Scope);
19983 end Process_Discriminants;
19984
19985 -----------------------
19986 -- Process_Full_View --
19987 -----------------------
19988
19989 -- WARNING: This routine manages Ghost regions. Return statements must be
19990 -- replaced by gotos which jump to the end of the routine and restore the
19991 -- Ghost mode.
19992
19993 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
19994 procedure Collect_Implemented_Interfaces
19995 (Typ : Entity_Id;
19996 Ifaces : Elist_Id);
19997 -- Ada 2005: Gather all the interfaces that Typ directly or
19998 -- inherently implements. Duplicate entries are not added to
19999 -- the list Ifaces.
20000
20001 ------------------------------------
20002 -- Collect_Implemented_Interfaces --
20003 ------------------------------------
20004
20005 procedure Collect_Implemented_Interfaces
20006 (Typ : Entity_Id;
20007 Ifaces : Elist_Id)
20008 is
20009 Iface : Entity_Id;
20010 Iface_Elmt : Elmt_Id;
20011
20012 begin
20013 -- Abstract interfaces are only associated with tagged record types
20014
20015 if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then
20016 return;
20017 end if;
20018
20019 -- Recursively climb to the ancestors
20020
20021 if Etype (Typ) /= Typ
20022
20023 -- Protect the frontend against wrong cyclic declarations like:
20024
20025 -- type B is new A with private;
20026 -- type C is new A with private;
20027 -- private
20028 -- type B is new C with null record;
20029 -- type C is new B with null record;
20030
20031 and then Etype (Typ) /= Priv_T
20032 and then Etype (Typ) /= Full_T
20033 then
20034 -- Keep separate the management of private type declarations
20035
20036 if Ekind (Typ) = E_Record_Type_With_Private then
20037
20038 -- Handle the following illegal usage:
20039 -- type Private_Type is tagged private;
20040 -- private
20041 -- type Private_Type is new Type_Implementing_Iface;
20042
20043 if Present (Full_View (Typ))
20044 and then Etype (Typ) /= Full_View (Typ)
20045 then
20046 if Is_Interface (Etype (Typ)) then
20047 Append_Unique_Elmt (Etype (Typ), Ifaces);
20048 end if;
20049
20050 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
20051 end if;
20052
20053 -- Non-private types
20054
20055 else
20056 if Is_Interface (Etype (Typ)) then
20057 Append_Unique_Elmt (Etype (Typ), Ifaces);
20058 end if;
20059
20060 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
20061 end if;
20062 end if;
20063
20064 -- Handle entities in the list of abstract interfaces
20065
20066 if Present (Interfaces (Typ)) then
20067 Iface_Elmt := First_Elmt (Interfaces (Typ));
20068 while Present (Iface_Elmt) loop
20069 Iface := Node (Iface_Elmt);
20070
20071 pragma Assert (Is_Interface (Iface));
20072
20073 if not Contain_Interface (Iface, Ifaces) then
20074 Append_Elmt (Iface, Ifaces);
20075 Collect_Implemented_Interfaces (Iface, Ifaces);
20076 end if;
20077
20078 Next_Elmt (Iface_Elmt);
20079 end loop;
20080 end if;
20081 end Collect_Implemented_Interfaces;
20082
20083 -- Local variables
20084
20085 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
20086
20087 Full_Indic : Node_Id;
20088 Full_Parent : Entity_Id;
20089 Priv_Parent : Entity_Id;
20090
20091 -- Start of processing for Process_Full_View
20092
20093 begin
20094 Mark_And_Set_Ghost_Completion (N, Priv_T);
20095
20096 -- First some sanity checks that must be done after semantic
20097 -- decoration of the full view and thus cannot be placed with other
20098 -- similar checks in Find_Type_Name
20099
20100 if not Is_Limited_Type (Priv_T)
20101 and then (Is_Limited_Type (Full_T)
20102 or else Is_Limited_Composite (Full_T))
20103 then
20104 if In_Instance then
20105 null;
20106 else
20107 Error_Msg_N
20108 ("completion of nonlimited type cannot be limited", Full_T);
20109 Explain_Limited_Type (Full_T, Full_T);
20110 end if;
20111
20112 elsif Is_Abstract_Type (Full_T)
20113 and then not Is_Abstract_Type (Priv_T)
20114 then
20115 Error_Msg_N
20116 ("completion of nonabstract type cannot be abstract", Full_T);
20117
20118 elsif Is_Tagged_Type (Priv_T)
20119 and then Is_Limited_Type (Priv_T)
20120 and then not Is_Limited_Type (Full_T)
20121 then
20122 -- If pragma CPP_Class was applied to the private declaration
20123 -- propagate the limitedness to the full-view
20124
20125 if Is_CPP_Class (Priv_T) then
20126 Set_Is_Limited_Record (Full_T);
20127
20128 -- GNAT allow its own definition of Limited_Controlled to disobey
20129 -- this rule in order in ease the implementation. This test is safe
20130 -- because Root_Controlled is defined in a child of System that
20131 -- normal programs are not supposed to use.
20132
20133 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
20134 Set_Is_Limited_Composite (Full_T);
20135 else
20136 Error_Msg_N
20137 ("completion of limited tagged type must be limited", Full_T);
20138 end if;
20139
20140 elsif Is_Generic_Type (Priv_T) then
20141 Error_Msg_N ("generic type cannot have a completion", Full_T);
20142 end if;
20143
20144 -- Check that ancestor interfaces of private and full views are
20145 -- consistent. We omit this check for synchronized types because
20146 -- they are performed on the corresponding record type when frozen.
20147
20148 if Ada_Version >= Ada_2005
20149 and then Is_Tagged_Type (Priv_T)
20150 and then Is_Tagged_Type (Full_T)
20151 and then not Is_Concurrent_Type (Full_T)
20152 then
20153 declare
20154 Iface : Entity_Id;
20155 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
20156 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
20157
20158 begin
20159 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
20160 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
20161
20162 -- Ada 2005 (AI-251): The partial view shall be a descendant of
20163 -- an interface type if and only if the full type is descendant
20164 -- of the interface type (AARM 7.3 (7.3/2)).
20165
20166 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
20167
20168 if Present (Iface) then
20169 Error_Msg_NE
20170 ("interface in partial view& not implemented by full type "
20171 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
20172 end if;
20173
20174 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
20175
20176 if Present (Iface) then
20177 Error_Msg_NE
20178 ("interface & not implemented by partial view "
20179 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
20180 end if;
20181 end;
20182 end if;
20183
20184 if Is_Tagged_Type (Priv_T)
20185 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20186 and then Is_Derived_Type (Full_T)
20187 then
20188 Priv_Parent := Etype (Priv_T);
20189
20190 -- The full view of a private extension may have been transformed
20191 -- into an unconstrained derived type declaration and a subtype
20192 -- declaration (see build_derived_record_type for details).
20193
20194 if Nkind (N) = N_Subtype_Declaration then
20195 Full_Indic := Subtype_Indication (N);
20196 Full_Parent := Etype (Base_Type (Full_T));
20197 else
20198 Full_Indic := Subtype_Indication (Type_Definition (N));
20199 Full_Parent := Etype (Full_T);
20200 end if;
20201
20202 -- Check that the parent type of the full type is a descendant of
20203 -- the ancestor subtype given in the private extension. If either
20204 -- entity has an Etype equal to Any_Type then we had some previous
20205 -- error situation [7.3(8)].
20206
20207 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
20208 goto Leave;
20209
20210 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
20211 -- any order. Therefore we don't have to check that its parent must
20212 -- be a descendant of the parent of the private type declaration.
20213
20214 elsif Is_Interface (Priv_Parent)
20215 and then Is_Interface (Full_Parent)
20216 then
20217 null;
20218
20219 -- Ada 2005 (AI-251): If the parent of the private type declaration
20220 -- is an interface there is no need to check that it is an ancestor
20221 -- of the associated full type declaration. The required tests for
20222 -- this case are performed by Build_Derived_Record_Type.
20223
20224 elsif not Is_Interface (Base_Type (Priv_Parent))
20225 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
20226 then
20227 Error_Msg_N
20228 ("parent of full type must descend from parent of private "
20229 & "extension", Full_Indic);
20230
20231 -- First check a formal restriction, and then proceed with checking
20232 -- Ada rules. Since the formal restriction is not a serious error, we
20233 -- don't prevent further error detection for this check, hence the
20234 -- ELSE.
20235
20236 else
20237 -- In formal mode, when completing a private extension the type
20238 -- named in the private part must be exactly the same as that
20239 -- named in the visible part.
20240
20241 if Priv_Parent /= Full_Parent then
20242 Error_Msg_Name_1 := Chars (Priv_Parent);
20243 Check_SPARK_05_Restriction ("% expected", Full_Indic);
20244 end if;
20245
20246 -- Check the rules of 7.3(10): if the private extension inherits
20247 -- known discriminants, then the full type must also inherit those
20248 -- discriminants from the same (ancestor) type, and the parent
20249 -- subtype of the full type must be constrained if and only if
20250 -- the ancestor subtype of the private extension is constrained.
20251
20252 if No (Discriminant_Specifications (Parent (Priv_T)))
20253 and then not Has_Unknown_Discriminants (Priv_T)
20254 and then Has_Discriminants (Base_Type (Priv_Parent))
20255 then
20256 declare
20257 Priv_Indic : constant Node_Id :=
20258 Subtype_Indication (Parent (Priv_T));
20259
20260 Priv_Constr : constant Boolean :=
20261 Is_Constrained (Priv_Parent)
20262 or else
20263 Nkind (Priv_Indic) = N_Subtype_Indication
20264 or else
20265 Is_Constrained (Entity (Priv_Indic));
20266
20267 Full_Constr : constant Boolean :=
20268 Is_Constrained (Full_Parent)
20269 or else
20270 Nkind (Full_Indic) = N_Subtype_Indication
20271 or else
20272 Is_Constrained (Entity (Full_Indic));
20273
20274 Priv_Discr : Entity_Id;
20275 Full_Discr : Entity_Id;
20276
20277 begin
20278 Priv_Discr := First_Discriminant (Priv_Parent);
20279 Full_Discr := First_Discriminant (Full_Parent);
20280 while Present (Priv_Discr) and then Present (Full_Discr) loop
20281 if Original_Record_Component (Priv_Discr) =
20282 Original_Record_Component (Full_Discr)
20283 or else
20284 Corresponding_Discriminant (Priv_Discr) =
20285 Corresponding_Discriminant (Full_Discr)
20286 then
20287 null;
20288 else
20289 exit;
20290 end if;
20291
20292 Next_Discriminant (Priv_Discr);
20293 Next_Discriminant (Full_Discr);
20294 end loop;
20295
20296 if Present (Priv_Discr) or else Present (Full_Discr) then
20297 Error_Msg_N
20298 ("full view must inherit discriminants of the parent "
20299 & "type used in the private extension", Full_Indic);
20300
20301 elsif Priv_Constr and then not Full_Constr then
20302 Error_Msg_N
20303 ("parent subtype of full type must be constrained",
20304 Full_Indic);
20305
20306 elsif Full_Constr and then not Priv_Constr then
20307 Error_Msg_N
20308 ("parent subtype of full type must be unconstrained",
20309 Full_Indic);
20310 end if;
20311 end;
20312
20313 -- Check the rules of 7.3(12): if a partial view has neither
20314 -- known or unknown discriminants, then the full type
20315 -- declaration shall define a definite subtype.
20316
20317 elsif not Has_Unknown_Discriminants (Priv_T)
20318 and then not Has_Discriminants (Priv_T)
20319 and then not Is_Constrained (Full_T)
20320 then
20321 Error_Msg_N
20322 ("full view must define a constrained type if partial view "
20323 & "has no discriminants", Full_T);
20324 end if;
20325
20326 -- ??????? Do we implement the following properly ?????
20327 -- If the ancestor subtype of a private extension has constrained
20328 -- discriminants, then the parent subtype of the full view shall
20329 -- impose a statically matching constraint on those discriminants
20330 -- [7.3(13)].
20331 end if;
20332
20333 else
20334 -- For untagged types, verify that a type without discriminants is
20335 -- not completed with an unconstrained type. A separate error message
20336 -- is produced if the full type has defaulted discriminants.
20337
20338 if Is_Definite_Subtype (Priv_T)
20339 and then not Is_Definite_Subtype (Full_T)
20340 then
20341 Error_Msg_Sloc := Sloc (Parent (Priv_T));
20342 Error_Msg_NE
20343 ("full view of& not compatible with declaration#",
20344 Full_T, Priv_T);
20345
20346 if not Is_Tagged_Type (Full_T) then
20347 Error_Msg_N
20348 ("\one is constrained, the other unconstrained", Full_T);
20349 end if;
20350 end if;
20351 end if;
20352
20353 -- AI-419: verify that the use of "limited" is consistent
20354
20355 declare
20356 Orig_Decl : constant Node_Id := Original_Node (N);
20357
20358 begin
20359 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20360 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
20361 and then Nkind
20362 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
20363 then
20364 if not Limited_Present (Parent (Priv_T))
20365 and then not Synchronized_Present (Parent (Priv_T))
20366 and then Limited_Present (Type_Definition (Orig_Decl))
20367 then
20368 Error_Msg_N
20369 ("full view of non-limited extension cannot be limited", N);
20370
20371 -- Conversely, if the partial view carries the limited keyword,
20372 -- the full view must as well, even if it may be redundant.
20373
20374 elsif Limited_Present (Parent (Priv_T))
20375 and then not Limited_Present (Type_Definition (Orig_Decl))
20376 then
20377 Error_Msg_N
20378 ("full view of limited extension must be explicitly limited",
20379 N);
20380 end if;
20381 end if;
20382 end;
20383
20384 -- Ada 2005 (AI-443): A synchronized private extension must be
20385 -- completed by a task or protected type.
20386
20387 if Ada_Version >= Ada_2005
20388 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20389 and then Synchronized_Present (Parent (Priv_T))
20390 and then not Is_Concurrent_Type (Full_T)
20391 then
20392 Error_Msg_N ("full view of synchronized extension must " &
20393 "be synchronized type", N);
20394 end if;
20395
20396 -- Ada 2005 AI-363: if the full view has discriminants with
20397 -- defaults, it is illegal to declare constrained access subtypes
20398 -- whose designated type is the current type. This allows objects
20399 -- of the type that are declared in the heap to be unconstrained.
20400
20401 if not Has_Unknown_Discriminants (Priv_T)
20402 and then not Has_Discriminants (Priv_T)
20403 and then Has_Discriminants (Full_T)
20404 and then
20405 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
20406 then
20407 Set_Has_Constrained_Partial_View (Full_T);
20408 Set_Has_Constrained_Partial_View (Priv_T);
20409 end if;
20410
20411 -- Create a full declaration for all its subtypes recorded in
20412 -- Private_Dependents and swap them similarly to the base type. These
20413 -- are subtypes that have been define before the full declaration of
20414 -- the private type. We also swap the entry in Private_Dependents list
20415 -- so we can properly restore the private view on exit from the scope.
20416
20417 declare
20418 Priv_Elmt : Elmt_Id;
20419 Priv_Scop : Entity_Id;
20420 Priv : Entity_Id;
20421 Full : Entity_Id;
20422
20423 begin
20424 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
20425 while Present (Priv_Elmt) loop
20426 Priv := Node (Priv_Elmt);
20427 Priv_Scop := Scope (Priv);
20428
20429 if Ekind_In (Priv, E_Private_Subtype,
20430 E_Limited_Private_Subtype,
20431 E_Record_Subtype_With_Private)
20432 then
20433 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
20434 Set_Is_Itype (Full);
20435 Set_Parent (Full, Parent (Priv));
20436 Set_Associated_Node_For_Itype (Full, N);
20437
20438 -- Now we need to complete the private subtype, but since the
20439 -- base type has already been swapped, we must also swap the
20440 -- subtypes (and thus, reverse the arguments in the call to
20441 -- Complete_Private_Subtype). Also note that we may need to
20442 -- re-establish the scope of the private subtype.
20443
20444 Copy_And_Swap (Priv, Full);
20445
20446 if not In_Open_Scopes (Priv_Scop) then
20447 Push_Scope (Priv_Scop);
20448
20449 else
20450 -- Reset Priv_Scop to Empty to indicate no scope was pushed
20451
20452 Priv_Scop := Empty;
20453 end if;
20454
20455 Complete_Private_Subtype (Full, Priv, Full_T, N);
20456
20457 if Present (Priv_Scop) then
20458 Pop_Scope;
20459 end if;
20460
20461 Replace_Elmt (Priv_Elmt, Full);
20462 end if;
20463
20464 Next_Elmt (Priv_Elmt);
20465 end loop;
20466 end;
20467
20468 -- If the private view was tagged, copy the new primitive operations
20469 -- from the private view to the full view.
20470
20471 if Is_Tagged_Type (Full_T) then
20472 declare
20473 Disp_Typ : Entity_Id;
20474 Full_List : Elist_Id;
20475 Prim : Entity_Id;
20476 Prim_Elmt : Elmt_Id;
20477 Priv_List : Elist_Id;
20478
20479 function Contains
20480 (E : Entity_Id;
20481 L : Elist_Id) return Boolean;
20482 -- Determine whether list L contains element E
20483
20484 --------------
20485 -- Contains --
20486 --------------
20487
20488 function Contains
20489 (E : Entity_Id;
20490 L : Elist_Id) return Boolean
20491 is
20492 List_Elmt : Elmt_Id;
20493
20494 begin
20495 List_Elmt := First_Elmt (L);
20496 while Present (List_Elmt) loop
20497 if Node (List_Elmt) = E then
20498 return True;
20499 end if;
20500
20501 Next_Elmt (List_Elmt);
20502 end loop;
20503
20504 return False;
20505 end Contains;
20506
20507 -- Start of processing
20508
20509 begin
20510 if Is_Tagged_Type (Priv_T) then
20511 Priv_List := Primitive_Operations (Priv_T);
20512 Prim_Elmt := First_Elmt (Priv_List);
20513
20514 -- In the case of a concurrent type completing a private tagged
20515 -- type, primitives may have been declared in between the two
20516 -- views. These subprograms need to be wrapped the same way
20517 -- entries and protected procedures are handled because they
20518 -- cannot be directly shared by the two views.
20519
20520 if Is_Concurrent_Type (Full_T) then
20521 declare
20522 Conc_Typ : constant Entity_Id :=
20523 Corresponding_Record_Type (Full_T);
20524 Curr_Nod : Node_Id := Parent (Conc_Typ);
20525 Wrap_Spec : Node_Id;
20526
20527 begin
20528 while Present (Prim_Elmt) loop
20529 Prim := Node (Prim_Elmt);
20530
20531 if Comes_From_Source (Prim)
20532 and then not Is_Abstract_Subprogram (Prim)
20533 then
20534 Wrap_Spec :=
20535 Make_Subprogram_Declaration (Sloc (Prim),
20536 Specification =>
20537 Build_Wrapper_Spec
20538 (Subp_Id => Prim,
20539 Obj_Typ => Conc_Typ,
20540 Formals =>
20541 Parameter_Specifications
20542 (Parent (Prim))));
20543
20544 Insert_After (Curr_Nod, Wrap_Spec);
20545 Curr_Nod := Wrap_Spec;
20546
20547 Analyze (Wrap_Spec);
20548
20549 -- Remove the wrapper from visibility to avoid
20550 -- spurious conflict with the wrapped entity.
20551
20552 Set_Is_Immediately_Visible
20553 (Defining_Entity (Specification (Wrap_Spec)),
20554 False);
20555 end if;
20556
20557 Next_Elmt (Prim_Elmt);
20558 end loop;
20559
20560 goto Leave;
20561 end;
20562
20563 -- For non-concurrent types, transfer explicit primitives, but
20564 -- omit those inherited from the parent of the private view
20565 -- since they will be re-inherited later on.
20566
20567 else
20568 Full_List := Primitive_Operations (Full_T);
20569
20570 while Present (Prim_Elmt) loop
20571 Prim := Node (Prim_Elmt);
20572
20573 if Comes_From_Source (Prim)
20574 and then not Contains (Prim, Full_List)
20575 then
20576 Append_Elmt (Prim, Full_List);
20577 end if;
20578
20579 Next_Elmt (Prim_Elmt);
20580 end loop;
20581 end if;
20582
20583 -- Untagged private view
20584
20585 else
20586 Full_List := Primitive_Operations (Full_T);
20587
20588 -- In this case the partial view is untagged, so here we locate
20589 -- all of the earlier primitives that need to be treated as
20590 -- dispatching (those that appear between the two views). Note
20591 -- that these additional operations must all be new operations
20592 -- (any earlier operations that override inherited operations
20593 -- of the full view will already have been inserted in the
20594 -- primitives list, marked by Check_Operation_From_Private_View
20595 -- as dispatching. Note that implicit "/=" operators are
20596 -- excluded from being added to the primitives list since they
20597 -- shouldn't be treated as dispatching (tagged "/=" is handled
20598 -- specially).
20599
20600 Prim := Next_Entity (Full_T);
20601 while Present (Prim) and then Prim /= Priv_T loop
20602 if Ekind_In (Prim, E_Procedure, E_Function) then
20603 Disp_Typ := Find_Dispatching_Type (Prim);
20604
20605 if Disp_Typ = Full_T
20606 and then (Chars (Prim) /= Name_Op_Ne
20607 or else Comes_From_Source (Prim))
20608 then
20609 Check_Controlling_Formals (Full_T, Prim);
20610
20611 if not Is_Dispatching_Operation (Prim) then
20612 Append_Elmt (Prim, Full_List);
20613 Set_Is_Dispatching_Operation (Prim, True);
20614 Set_DT_Position_Value (Prim, No_Uint);
20615 end if;
20616
20617 elsif Is_Dispatching_Operation (Prim)
20618 and then Disp_Typ /= Full_T
20619 then
20620
20621 -- Verify that it is not otherwise controlled by a
20622 -- formal or a return value of type T.
20623
20624 Check_Controlling_Formals (Disp_Typ, Prim);
20625 end if;
20626 end if;
20627
20628 Next_Entity (Prim);
20629 end loop;
20630 end if;
20631
20632 -- For the tagged case, the two views can share the same primitive
20633 -- operations list and the same class-wide type. Update attributes
20634 -- of the class-wide type which depend on the full declaration.
20635
20636 if Is_Tagged_Type (Priv_T) then
20637 Set_Direct_Primitive_Operations (Priv_T, Full_List);
20638 Set_Class_Wide_Type
20639 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
20640
20641 Propagate_Concurrent_Flags (Class_Wide_Type (Priv_T), Full_T);
20642 end if;
20643 end;
20644 end if;
20645
20646 -- Ada 2005 AI 161: Check preelaborable initialization consistency
20647
20648 if Known_To_Have_Preelab_Init (Priv_T) then
20649
20650 -- Case where there is a pragma Preelaborable_Initialization. We
20651 -- always allow this in predefined units, which is cheating a bit,
20652 -- but it means we don't have to struggle to meet the requirements in
20653 -- the RM for having Preelaborable Initialization. Otherwise we
20654 -- require that the type meets the RM rules. But we can't check that
20655 -- yet, because of the rule about overriding Initialize, so we simply
20656 -- set a flag that will be checked at freeze time.
20657
20658 if not In_Predefined_Unit (Full_T) then
20659 Set_Must_Have_Preelab_Init (Full_T);
20660 end if;
20661 end if;
20662
20663 -- If pragma CPP_Class was applied to the private type declaration,
20664 -- propagate it now to the full type declaration.
20665
20666 if Is_CPP_Class (Priv_T) then
20667 Set_Is_CPP_Class (Full_T);
20668 Set_Convention (Full_T, Convention_CPP);
20669
20670 -- Check that components of imported CPP types do not have default
20671 -- expressions.
20672
20673 Check_CPP_Type_Has_No_Defaults (Full_T);
20674 end if;
20675
20676 -- If the private view has user specified stream attributes, then so has
20677 -- the full view.
20678
20679 -- Why the test, how could these flags be already set in Full_T ???
20680
20681 if Has_Specified_Stream_Read (Priv_T) then
20682 Set_Has_Specified_Stream_Read (Full_T);
20683 end if;
20684
20685 if Has_Specified_Stream_Write (Priv_T) then
20686 Set_Has_Specified_Stream_Write (Full_T);
20687 end if;
20688
20689 if Has_Specified_Stream_Input (Priv_T) then
20690 Set_Has_Specified_Stream_Input (Full_T);
20691 end if;
20692
20693 if Has_Specified_Stream_Output (Priv_T) then
20694 Set_Has_Specified_Stream_Output (Full_T);
20695 end if;
20696
20697 -- Propagate Default_Initial_Condition-related attributes from the
20698 -- partial view to the full view and its base type.
20699
20700 Propagate_DIC_Attributes (Full_T, From_Typ => Priv_T);
20701 Propagate_DIC_Attributes (Base_Type (Full_T), From_Typ => Priv_T);
20702
20703 -- Propagate invariant-related attributes from the partial view to the
20704 -- full view and its base type.
20705
20706 Propagate_Invariant_Attributes (Full_T, From_Typ => Priv_T);
20707 Propagate_Invariant_Attributes (Base_Type (Full_T), From_Typ => Priv_T);
20708
20709 -- AI12-0041: Detect an attempt to inherit a class-wide type invariant
20710 -- in the full view without advertising the inheritance in the partial
20711 -- view. This can only occur when the partial view has no parent type
20712 -- and the full view has an interface as a parent. Any other scenarios
20713 -- are illegal because implemented interfaces must match between the
20714 -- two views.
20715
20716 if Is_Tagged_Type (Priv_T) and then Is_Tagged_Type (Full_T) then
20717 declare
20718 Full_Par : constant Entity_Id := Etype (Full_T);
20719 Priv_Par : constant Entity_Id := Etype (Priv_T);
20720
20721 begin
20722 if not Is_Interface (Priv_Par)
20723 and then Is_Interface (Full_Par)
20724 and then Has_Inheritable_Invariants (Full_Par)
20725 then
20726 Error_Msg_N
20727 ("hidden inheritance of class-wide type invariants not "
20728 & "allowed", N);
20729 end if;
20730 end;
20731 end if;
20732
20733 -- Propagate predicates to full type, and predicate function if already
20734 -- defined. It is not clear that this can actually happen? the partial
20735 -- view cannot be frozen yet, and the predicate function has not been
20736 -- built. Still it is a cheap check and seems safer to make it.
20737
20738 if Has_Predicates (Priv_T) then
20739 Set_Has_Predicates (Full_T);
20740
20741 if Present (Predicate_Function (Priv_T)) then
20742 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
20743 end if;
20744 end if;
20745
20746 <<Leave>>
20747 Restore_Ghost_Mode (Saved_GM);
20748 end Process_Full_View;
20749
20750 -----------------------------------
20751 -- Process_Incomplete_Dependents --
20752 -----------------------------------
20753
20754 procedure Process_Incomplete_Dependents
20755 (N : Node_Id;
20756 Full_T : Entity_Id;
20757 Inc_T : Entity_Id)
20758 is
20759 Inc_Elmt : Elmt_Id;
20760 Priv_Dep : Entity_Id;
20761 New_Subt : Entity_Id;
20762
20763 Disc_Constraint : Elist_Id;
20764
20765 begin
20766 if No (Private_Dependents (Inc_T)) then
20767 return;
20768 end if;
20769
20770 -- Itypes that may be generated by the completion of an incomplete
20771 -- subtype are not used by the back-end and not attached to the tree.
20772 -- They are created only for constraint-checking purposes.
20773
20774 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
20775 while Present (Inc_Elmt) loop
20776 Priv_Dep := Node (Inc_Elmt);
20777
20778 if Ekind (Priv_Dep) = E_Subprogram_Type then
20779
20780 -- An Access_To_Subprogram type may have a return type or a
20781 -- parameter type that is incomplete. Replace with the full view.
20782
20783 if Etype (Priv_Dep) = Inc_T then
20784 Set_Etype (Priv_Dep, Full_T);
20785 end if;
20786
20787 declare
20788 Formal : Entity_Id;
20789
20790 begin
20791 Formal := First_Formal (Priv_Dep);
20792 while Present (Formal) loop
20793 if Etype (Formal) = Inc_T then
20794 Set_Etype (Formal, Full_T);
20795 end if;
20796
20797 Next_Formal (Formal);
20798 end loop;
20799 end;
20800
20801 elsif Is_Overloadable (Priv_Dep) then
20802
20803 -- If a subprogram in the incomplete dependents list is primitive
20804 -- for a tagged full type then mark it as a dispatching operation,
20805 -- check whether it overrides an inherited subprogram, and check
20806 -- restrictions on its controlling formals. Note that a protected
20807 -- operation is never dispatching: only its wrapper operation
20808 -- (which has convention Ada) is.
20809
20810 if Is_Tagged_Type (Full_T)
20811 and then Is_Primitive (Priv_Dep)
20812 and then Convention (Priv_Dep) /= Convention_Protected
20813 then
20814 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
20815 Set_Is_Dispatching_Operation (Priv_Dep);
20816 Check_Controlling_Formals (Full_T, Priv_Dep);
20817 end if;
20818
20819 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
20820
20821 -- Can happen during processing of a body before the completion
20822 -- of a TA type. Ignore, because spec is also on dependent list.
20823
20824 return;
20825
20826 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
20827 -- corresponding subtype of the full view.
20828
20829 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype
20830 and then Comes_From_Source (Priv_Dep)
20831 then
20832 Set_Subtype_Indication
20833 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
20834 Set_Etype (Priv_Dep, Full_T);
20835 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
20836 Set_Analyzed (Parent (Priv_Dep), False);
20837
20838 -- Reanalyze the declaration, suppressing the call to Enter_Name
20839 -- to avoid duplicate names.
20840
20841 Analyze_Subtype_Declaration
20842 (N => Parent (Priv_Dep),
20843 Skip => True);
20844
20845 -- Dependent is a subtype
20846
20847 else
20848 -- We build a new subtype indication using the full view of the
20849 -- incomplete parent. The discriminant constraints have been
20850 -- elaborated already at the point of the subtype declaration.
20851
20852 New_Subt := Create_Itype (E_Void, N);
20853
20854 if Has_Discriminants (Full_T) then
20855 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
20856 else
20857 Disc_Constraint := No_Elist;
20858 end if;
20859
20860 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
20861 Set_Full_View (Priv_Dep, New_Subt);
20862 end if;
20863
20864 Next_Elmt (Inc_Elmt);
20865 end loop;
20866 end Process_Incomplete_Dependents;
20867
20868 --------------------------------
20869 -- Process_Range_Expr_In_Decl --
20870 --------------------------------
20871
20872 procedure Process_Range_Expr_In_Decl
20873 (R : Node_Id;
20874 T : Entity_Id;
20875 Subtyp : Entity_Id := Empty;
20876 Check_List : List_Id := Empty_List;
20877 R_Check_Off : Boolean := False;
20878 In_Iter_Schm : Boolean := False)
20879 is
20880 Lo, Hi : Node_Id;
20881 R_Checks : Check_Result;
20882 Insert_Node : Node_Id;
20883 Def_Id : Entity_Id;
20884
20885 begin
20886 Analyze_And_Resolve (R, Base_Type (T));
20887
20888 if Nkind (R) = N_Range then
20889
20890 -- In SPARK, all ranges should be static, with the exception of the
20891 -- discrete type definition of a loop parameter specification.
20892
20893 if not In_Iter_Schm
20894 and then not Is_OK_Static_Range (R)
20895 then
20896 Check_SPARK_05_Restriction ("range should be static", R);
20897 end if;
20898
20899 Lo := Low_Bound (R);
20900 Hi := High_Bound (R);
20901
20902 -- Validity checks on the range of a quantified expression are
20903 -- delayed until the construct is transformed into a loop.
20904
20905 if Nkind (Parent (R)) = N_Loop_Parameter_Specification
20906 and then Nkind (Parent (Parent (R))) = N_Quantified_Expression
20907 then
20908 null;
20909
20910 -- We need to ensure validity of the bounds here, because if we
20911 -- go ahead and do the expansion, then the expanded code will get
20912 -- analyzed with range checks suppressed and we miss the check.
20913
20914 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
20915 -- the temporaries generated by routine Remove_Side_Effects by means
20916 -- of validity checks must use the same names. When a range appears
20917 -- in the parent of a generic, the range is processed with checks
20918 -- disabled as part of the generic context and with checks enabled
20919 -- for code generation purposes. This leads to link issues as the
20920 -- generic contains references to xxx_FIRST/_LAST, but the inlined
20921 -- template sees the temporaries generated by Remove_Side_Effects.
20922
20923 else
20924 Validity_Check_Range (R, Subtyp);
20925 end if;
20926
20927 -- If there were errors in the declaration, try and patch up some
20928 -- common mistakes in the bounds. The cases handled are literals
20929 -- which are Integer where the expected type is Real and vice versa.
20930 -- These corrections allow the compilation process to proceed further
20931 -- along since some basic assumptions of the format of the bounds
20932 -- are guaranteed.
20933
20934 if Etype (R) = Any_Type then
20935 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
20936 Rewrite (Lo,
20937 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
20938
20939 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
20940 Rewrite (Hi,
20941 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
20942
20943 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
20944 Rewrite (Lo,
20945 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
20946
20947 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
20948 Rewrite (Hi,
20949 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
20950 end if;
20951
20952 Set_Etype (Lo, T);
20953 Set_Etype (Hi, T);
20954 end if;
20955
20956 -- If the bounds of the range have been mistakenly given as string
20957 -- literals (perhaps in place of character literals), then an error
20958 -- has already been reported, but we rewrite the string literal as a
20959 -- bound of the range's type to avoid blowups in later processing
20960 -- that looks at static values.
20961
20962 if Nkind (Lo) = N_String_Literal then
20963 Rewrite (Lo,
20964 Make_Attribute_Reference (Sloc (Lo),
20965 Prefix => New_Occurrence_Of (T, Sloc (Lo)),
20966 Attribute_Name => Name_First));
20967 Analyze_And_Resolve (Lo);
20968 end if;
20969
20970 if Nkind (Hi) = N_String_Literal then
20971 Rewrite (Hi,
20972 Make_Attribute_Reference (Sloc (Hi),
20973 Prefix => New_Occurrence_Of (T, Sloc (Hi)),
20974 Attribute_Name => Name_First));
20975 Analyze_And_Resolve (Hi);
20976 end if;
20977
20978 -- If bounds aren't scalar at this point then exit, avoiding
20979 -- problems with further processing of the range in this procedure.
20980
20981 if not Is_Scalar_Type (Etype (Lo)) then
20982 return;
20983 end if;
20984
20985 -- Resolve (actually Sem_Eval) has checked that the bounds are in
20986 -- then range of the base type. Here we check whether the bounds
20987 -- are in the range of the subtype itself. Note that if the bounds
20988 -- represent the null range the Constraint_Error exception should
20989 -- not be raised.
20990
20991 -- ??? The following code should be cleaned up as follows
20992
20993 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
20994 -- is done in the call to Range_Check (R, T); below
20995
20996 -- 2. The use of R_Check_Off should be investigated and possibly
20997 -- removed, this would clean up things a bit.
20998
20999 if Is_Null_Range (Lo, Hi) then
21000 null;
21001
21002 else
21003 -- Capture values of bounds and generate temporaries for them
21004 -- if needed, before applying checks, since checks may cause
21005 -- duplication of the expression without forcing evaluation.
21006
21007 -- The forced evaluation removes side effects from expressions,
21008 -- which should occur also in GNATprove mode. Otherwise, we end up
21009 -- with unexpected insertions of actions at places where this is
21010 -- not supposed to occur, e.g. on default parameters of a call.
21011
21012 if Expander_Active or GNATprove_Mode then
21013
21014 -- Call Force_Evaluation to create declarations as needed to
21015 -- deal with side effects, and also create typ_FIRST/LAST
21016 -- entities for bounds if we have a subtype name.
21017
21018 -- Note: we do this transformation even if expansion is not
21019 -- active if we are in GNATprove_Mode since the transformation
21020 -- is in general required to ensure that the resulting tree has
21021 -- proper Ada semantics.
21022
21023 Force_Evaluation
21024 (Lo, Related_Id => Subtyp, Is_Low_Bound => True);
21025 Force_Evaluation
21026 (Hi, Related_Id => Subtyp, Is_High_Bound => True);
21027 end if;
21028
21029 -- We use a flag here instead of suppressing checks on the type
21030 -- because the type we check against isn't necessarily the place
21031 -- where we put the check.
21032
21033 if not R_Check_Off then
21034 R_Checks := Get_Range_Checks (R, T);
21035
21036 -- Look up tree to find an appropriate insertion point. We
21037 -- can't just use insert_actions because later processing
21038 -- depends on the insertion node. Prior to Ada 2012 the
21039 -- insertion point could only be a declaration or a loop, but
21040 -- quantified expressions can appear within any context in an
21041 -- expression, and the insertion point can be any statement,
21042 -- pragma, or declaration.
21043
21044 Insert_Node := Parent (R);
21045 while Present (Insert_Node) loop
21046 exit when
21047 Nkind (Insert_Node) in N_Declaration
21048 and then
21049 not Nkind_In
21050 (Insert_Node, N_Component_Declaration,
21051 N_Loop_Parameter_Specification,
21052 N_Function_Specification,
21053 N_Procedure_Specification);
21054
21055 exit when Nkind (Insert_Node) in N_Later_Decl_Item
21056 or else Nkind (Insert_Node) in
21057 N_Statement_Other_Than_Procedure_Call
21058 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
21059 N_Pragma);
21060
21061 Insert_Node := Parent (Insert_Node);
21062 end loop;
21063
21064 -- Why would Type_Decl not be present??? Without this test,
21065 -- short regression tests fail.
21066
21067 if Present (Insert_Node) then
21068
21069 -- Case of loop statement. Verify that the range is part
21070 -- of the subtype indication of the iteration scheme.
21071
21072 if Nkind (Insert_Node) = N_Loop_Statement then
21073 declare
21074 Indic : Node_Id;
21075
21076 begin
21077 Indic := Parent (R);
21078 while Present (Indic)
21079 and then Nkind (Indic) /= N_Subtype_Indication
21080 loop
21081 Indic := Parent (Indic);
21082 end loop;
21083
21084 if Present (Indic) then
21085 Def_Id := Etype (Subtype_Mark (Indic));
21086
21087 Insert_Range_Checks
21088 (R_Checks,
21089 Insert_Node,
21090 Def_Id,
21091 Sloc (Insert_Node),
21092 R,
21093 Do_Before => True);
21094 end if;
21095 end;
21096
21097 -- Insertion before a declaration. If the declaration
21098 -- includes discriminants, the list of applicable checks
21099 -- is given by the caller.
21100
21101 elsif Nkind (Insert_Node) in N_Declaration then
21102 Def_Id := Defining_Identifier (Insert_Node);
21103
21104 if (Ekind (Def_Id) = E_Record_Type
21105 and then Depends_On_Discriminant (R))
21106 or else
21107 (Ekind (Def_Id) = E_Protected_Type
21108 and then Has_Discriminants (Def_Id))
21109 then
21110 Append_Range_Checks
21111 (R_Checks,
21112 Check_List, Def_Id, Sloc (Insert_Node), R);
21113
21114 else
21115 Insert_Range_Checks
21116 (R_Checks,
21117 Insert_Node, Def_Id, Sloc (Insert_Node), R);
21118
21119 end if;
21120
21121 -- Insertion before a statement. Range appears in the
21122 -- context of a quantified expression. Insertion will
21123 -- take place when expression is expanded.
21124
21125 else
21126 null;
21127 end if;
21128 end if;
21129 end if;
21130 end if;
21131
21132 -- Case of other than an explicit N_Range node
21133
21134 -- The forced evaluation removes side effects from expressions, which
21135 -- should occur also in GNATprove mode. Otherwise, we end up with
21136 -- unexpected insertions of actions at places where this is not
21137 -- supposed to occur, e.g. on default parameters of a call.
21138
21139 elsif Expander_Active or GNATprove_Mode then
21140 Get_Index_Bounds (R, Lo, Hi);
21141 Force_Evaluation (Lo);
21142 Force_Evaluation (Hi);
21143 end if;
21144 end Process_Range_Expr_In_Decl;
21145
21146 --------------------------------------
21147 -- Process_Real_Range_Specification --
21148 --------------------------------------
21149
21150 procedure Process_Real_Range_Specification (Def : Node_Id) is
21151 Spec : constant Node_Id := Real_Range_Specification (Def);
21152 Lo : Node_Id;
21153 Hi : Node_Id;
21154 Err : Boolean := False;
21155
21156 procedure Analyze_Bound (N : Node_Id);
21157 -- Analyze and check one bound
21158
21159 -------------------
21160 -- Analyze_Bound --
21161 -------------------
21162
21163 procedure Analyze_Bound (N : Node_Id) is
21164 begin
21165 Analyze_And_Resolve (N, Any_Real);
21166
21167 if not Is_OK_Static_Expression (N) then
21168 Flag_Non_Static_Expr
21169 ("bound in real type definition is not static!", N);
21170 Err := True;
21171 end if;
21172 end Analyze_Bound;
21173
21174 -- Start of processing for Process_Real_Range_Specification
21175
21176 begin
21177 if Present (Spec) then
21178 Lo := Low_Bound (Spec);
21179 Hi := High_Bound (Spec);
21180 Analyze_Bound (Lo);
21181 Analyze_Bound (Hi);
21182
21183 -- If error, clear away junk range specification
21184
21185 if Err then
21186 Set_Real_Range_Specification (Def, Empty);
21187 end if;
21188 end if;
21189 end Process_Real_Range_Specification;
21190
21191 ---------------------
21192 -- Process_Subtype --
21193 ---------------------
21194
21195 function Process_Subtype
21196 (S : Node_Id;
21197 Related_Nod : Node_Id;
21198 Related_Id : Entity_Id := Empty;
21199 Suffix : Character := ' ') return Entity_Id
21200 is
21201 P : Node_Id;
21202 Def_Id : Entity_Id;
21203 Error_Node : Node_Id;
21204 Full_View_Id : Entity_Id;
21205 Subtype_Mark_Id : Entity_Id;
21206
21207 May_Have_Null_Exclusion : Boolean;
21208
21209 procedure Check_Incomplete (T : Node_Id);
21210 -- Called to verify that an incomplete type is not used prematurely
21211
21212 ----------------------
21213 -- Check_Incomplete --
21214 ----------------------
21215
21216 procedure Check_Incomplete (T : Node_Id) is
21217 begin
21218 -- Ada 2005 (AI-412): Incomplete subtypes are legal
21219
21220 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
21221 and then
21222 not (Ada_Version >= Ada_2005
21223 and then
21224 (Nkind (Parent (T)) = N_Subtype_Declaration
21225 or else (Nkind (Parent (T)) = N_Subtype_Indication
21226 and then Nkind (Parent (Parent (T))) =
21227 N_Subtype_Declaration)))
21228 then
21229 Error_Msg_N ("invalid use of type before its full declaration", T);
21230 end if;
21231 end Check_Incomplete;
21232
21233 -- Start of processing for Process_Subtype
21234
21235 begin
21236 -- Case of no constraints present
21237
21238 if Nkind (S) /= N_Subtype_Indication then
21239 Find_Type (S);
21240 Check_Incomplete (S);
21241 P := Parent (S);
21242
21243 -- Ada 2005 (AI-231): Static check
21244
21245 if Ada_Version >= Ada_2005
21246 and then Present (P)
21247 and then Null_Exclusion_Present (P)
21248 and then Nkind (P) /= N_Access_To_Object_Definition
21249 and then not Is_Access_Type (Entity (S))
21250 then
21251 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
21252 end if;
21253
21254 -- The following is ugly, can't we have a range or even a flag???
21255
21256 May_Have_Null_Exclusion :=
21257 Nkind_In (P, N_Access_Definition,
21258 N_Access_Function_Definition,
21259 N_Access_Procedure_Definition,
21260 N_Access_To_Object_Definition,
21261 N_Allocator,
21262 N_Component_Definition)
21263 or else
21264 Nkind_In (P, N_Derived_Type_Definition,
21265 N_Discriminant_Specification,
21266 N_Formal_Object_Declaration,
21267 N_Object_Declaration,
21268 N_Object_Renaming_Declaration,
21269 N_Parameter_Specification,
21270 N_Subtype_Declaration);
21271
21272 -- Create an Itype that is a duplicate of Entity (S) but with the
21273 -- null-exclusion attribute.
21274
21275 if May_Have_Null_Exclusion
21276 and then Is_Access_Type (Entity (S))
21277 and then Null_Exclusion_Present (P)
21278
21279 -- No need to check the case of an access to object definition.
21280 -- It is correct to define double not-null pointers.
21281
21282 -- Example:
21283 -- type Not_Null_Int_Ptr is not null access Integer;
21284 -- type Acc is not null access Not_Null_Int_Ptr;
21285
21286 and then Nkind (P) /= N_Access_To_Object_Definition
21287 then
21288 if Can_Never_Be_Null (Entity (S)) then
21289 case Nkind (Related_Nod) is
21290 when N_Full_Type_Declaration =>
21291 if Nkind (Type_Definition (Related_Nod))
21292 in N_Array_Type_Definition
21293 then
21294 Error_Node :=
21295 Subtype_Indication
21296 (Component_Definition
21297 (Type_Definition (Related_Nod)));
21298 else
21299 Error_Node :=
21300 Subtype_Indication (Type_Definition (Related_Nod));
21301 end if;
21302
21303 when N_Subtype_Declaration =>
21304 Error_Node := Subtype_Indication (Related_Nod);
21305
21306 when N_Object_Declaration =>
21307 Error_Node := Object_Definition (Related_Nod);
21308
21309 when N_Component_Declaration =>
21310 Error_Node :=
21311 Subtype_Indication (Component_Definition (Related_Nod));
21312
21313 when N_Allocator =>
21314 Error_Node := Expression (Related_Nod);
21315
21316 when others =>
21317 pragma Assert (False);
21318 Error_Node := Related_Nod;
21319 end case;
21320
21321 Error_Msg_NE
21322 ("`NOT NULL` not allowed (& already excludes null)",
21323 Error_Node,
21324 Entity (S));
21325 end if;
21326
21327 Set_Etype (S,
21328 Create_Null_Excluding_Itype
21329 (T => Entity (S),
21330 Related_Nod => P));
21331 Set_Entity (S, Etype (S));
21332 end if;
21333
21334 return Entity (S);
21335
21336 -- Case of constraint present, so that we have an N_Subtype_Indication
21337 -- node (this node is created only if constraints are present).
21338
21339 else
21340 Find_Type (Subtype_Mark (S));
21341
21342 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
21343 and then not
21344 (Nkind (Parent (S)) = N_Subtype_Declaration
21345 and then Is_Itype (Defining_Identifier (Parent (S))))
21346 then
21347 Check_Incomplete (Subtype_Mark (S));
21348 end if;
21349
21350 P := Parent (S);
21351 Subtype_Mark_Id := Entity (Subtype_Mark (S));
21352
21353 -- Explicit subtype declaration case
21354
21355 if Nkind (P) = N_Subtype_Declaration then
21356 Def_Id := Defining_Identifier (P);
21357
21358 -- Explicit derived type definition case
21359
21360 elsif Nkind (P) = N_Derived_Type_Definition then
21361 Def_Id := Defining_Identifier (Parent (P));
21362
21363 -- Implicit case, the Def_Id must be created as an implicit type.
21364 -- The one exception arises in the case of concurrent types, array
21365 -- and access types, where other subsidiary implicit types may be
21366 -- created and must appear before the main implicit type. In these
21367 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
21368 -- has not yet been called to create Def_Id.
21369
21370 else
21371 if Is_Array_Type (Subtype_Mark_Id)
21372 or else Is_Concurrent_Type (Subtype_Mark_Id)
21373 or else Is_Access_Type (Subtype_Mark_Id)
21374 then
21375 Def_Id := Empty;
21376
21377 -- For the other cases, we create a new unattached Itype,
21378 -- and set the indication to ensure it gets attached later.
21379
21380 else
21381 Def_Id :=
21382 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
21383 end if;
21384 end if;
21385
21386 -- If the kind of constraint is invalid for this kind of type,
21387 -- then give an error, and then pretend no constraint was given.
21388
21389 if not Is_Valid_Constraint_Kind
21390 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
21391 then
21392 Error_Msg_N
21393 ("incorrect constraint for this kind of type", Constraint (S));
21394
21395 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
21396
21397 -- Set Ekind of orphan itype, to prevent cascaded errors
21398
21399 if Present (Def_Id) then
21400 Set_Ekind (Def_Id, Ekind (Any_Type));
21401 end if;
21402
21403 -- Make recursive call, having got rid of the bogus constraint
21404
21405 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
21406 end if;
21407
21408 -- Remaining processing depends on type. Select on Base_Type kind to
21409 -- ensure getting to the concrete type kind in the case of a private
21410 -- subtype (needed when only doing semantic analysis).
21411
21412 case Ekind (Base_Type (Subtype_Mark_Id)) is
21413 when Access_Kind =>
21414
21415 -- If this is a constraint on a class-wide type, discard it.
21416 -- There is currently no way to express a partial discriminant
21417 -- constraint on a type with unknown discriminants. This is
21418 -- a pathology that the ACATS wisely decides not to test.
21419
21420 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
21421 if Comes_From_Source (S) then
21422 Error_Msg_N
21423 ("constraint on class-wide type ignored??",
21424 Constraint (S));
21425 end if;
21426
21427 if Nkind (P) = N_Subtype_Declaration then
21428 Set_Subtype_Indication (P,
21429 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
21430 end if;
21431
21432 return Subtype_Mark_Id;
21433 end if;
21434
21435 Constrain_Access (Def_Id, S, Related_Nod);
21436
21437 if Expander_Active
21438 and then Is_Itype (Designated_Type (Def_Id))
21439 and then Nkind (Related_Nod) = N_Subtype_Declaration
21440 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
21441 then
21442 Build_Itype_Reference
21443 (Designated_Type (Def_Id), Related_Nod);
21444 end if;
21445
21446 when Array_Kind =>
21447 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
21448
21449 when Decimal_Fixed_Point_Kind =>
21450 Constrain_Decimal (Def_Id, S);
21451
21452 when Enumeration_Kind =>
21453 Constrain_Enumeration (Def_Id, S);
21454 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
21455
21456 when Ordinary_Fixed_Point_Kind =>
21457 Constrain_Ordinary_Fixed (Def_Id, S);
21458
21459 when Float_Kind =>
21460 Constrain_Float (Def_Id, S);
21461
21462 when Integer_Kind =>
21463 Constrain_Integer (Def_Id, S);
21464 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
21465
21466 when Class_Wide_Kind
21467 | E_Incomplete_Type
21468 | E_Record_Subtype
21469 | E_Record_Type
21470 =>
21471 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
21472
21473 if Ekind (Def_Id) = E_Incomplete_Type then
21474 Set_Private_Dependents (Def_Id, New_Elmt_List);
21475 end if;
21476
21477 when Private_Kind =>
21478 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
21479
21480 -- The base type may be private but Def_Id may be a full view
21481 -- in an instance.
21482
21483 if Is_Private_Type (Def_Id) then
21484 Set_Private_Dependents (Def_Id, New_Elmt_List);
21485 end if;
21486
21487 -- In case of an invalid constraint prevent further processing
21488 -- since the type constructed is missing expected fields.
21489
21490 if Etype (Def_Id) = Any_Type then
21491 return Def_Id;
21492 end if;
21493
21494 -- If the full view is that of a task with discriminants,
21495 -- we must constrain both the concurrent type and its
21496 -- corresponding record type. Otherwise we will just propagate
21497 -- the constraint to the full view, if available.
21498
21499 if Present (Full_View (Subtype_Mark_Id))
21500 and then Has_Discriminants (Subtype_Mark_Id)
21501 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
21502 then
21503 Full_View_Id :=
21504 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
21505
21506 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
21507 Constrain_Concurrent (Full_View_Id, S,
21508 Related_Nod, Related_Id, Suffix);
21509 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
21510 Set_Full_View (Def_Id, Full_View_Id);
21511
21512 -- Introduce an explicit reference to the private subtype,
21513 -- to prevent scope anomalies in gigi if first use appears
21514 -- in a nested context, e.g. a later function body.
21515 -- Should this be generated in other contexts than a full
21516 -- type declaration?
21517
21518 if Is_Itype (Def_Id)
21519 and then
21520 Nkind (Parent (P)) = N_Full_Type_Declaration
21521 then
21522 Build_Itype_Reference (Def_Id, Parent (P));
21523 end if;
21524
21525 else
21526 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
21527 end if;
21528
21529 when Concurrent_Kind =>
21530 Constrain_Concurrent (Def_Id, S,
21531 Related_Nod, Related_Id, Suffix);
21532
21533 when others =>
21534 Error_Msg_N ("invalid subtype mark in subtype indication", S);
21535 end case;
21536
21537 -- Size and Convention are always inherited from the base type
21538
21539 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
21540 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
21541
21542 return Def_Id;
21543 end if;
21544 end Process_Subtype;
21545
21546 -----------------------------
21547 -- Record_Type_Declaration --
21548 -----------------------------
21549
21550 procedure Record_Type_Declaration
21551 (T : Entity_Id;
21552 N : Node_Id;
21553 Prev : Entity_Id)
21554 is
21555 Def : constant Node_Id := Type_Definition (N);
21556 Is_Tagged : Boolean;
21557 Tag_Comp : Entity_Id;
21558
21559 begin
21560 -- These flags must be initialized before calling Process_Discriminants
21561 -- because this routine makes use of them.
21562
21563 Set_Ekind (T, E_Record_Type);
21564 Set_Etype (T, T);
21565 Init_Size_Align (T);
21566 Set_Interfaces (T, No_Elist);
21567 Set_Stored_Constraint (T, No_Elist);
21568 Set_Default_SSO (T);
21569 Set_No_Reordering (T, No_Component_Reordering);
21570
21571 -- Normal case
21572
21573 if Ada_Version < Ada_2005 or else not Interface_Present (Def) then
21574 if Limited_Present (Def) then
21575 Check_SPARK_05_Restriction ("limited is not allowed", N);
21576 end if;
21577
21578 if Abstract_Present (Def) then
21579 Check_SPARK_05_Restriction ("abstract is not allowed", N);
21580 end if;
21581
21582 -- The flag Is_Tagged_Type might have already been set by
21583 -- Find_Type_Name if it detected an error for declaration T. This
21584 -- arises in the case of private tagged types where the full view
21585 -- omits the word tagged.
21586
21587 Is_Tagged :=
21588 Tagged_Present (Def)
21589 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
21590
21591 Set_Is_Limited_Record (T, Limited_Present (Def));
21592
21593 if Is_Tagged then
21594 Set_Is_Tagged_Type (T, True);
21595 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
21596 end if;
21597
21598 -- Type is abstract if full declaration carries keyword, or if
21599 -- previous partial view did.
21600
21601 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
21602 or else Abstract_Present (Def));
21603
21604 else
21605 Check_SPARK_05_Restriction ("interface is not allowed", N);
21606
21607 Is_Tagged := True;
21608 Analyze_Interface_Declaration (T, Def);
21609
21610 if Present (Discriminant_Specifications (N)) then
21611 Error_Msg_N
21612 ("interface types cannot have discriminants",
21613 Defining_Identifier
21614 (First (Discriminant_Specifications (N))));
21615 end if;
21616 end if;
21617
21618 -- First pass: if there are self-referential access components,
21619 -- create the required anonymous access type declarations, and if
21620 -- need be an incomplete type declaration for T itself.
21621
21622 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
21623
21624 if Ada_Version >= Ada_2005
21625 and then Present (Interface_List (Def))
21626 then
21627 Check_Interfaces (N, Def);
21628
21629 declare
21630 Ifaces_List : Elist_Id;
21631
21632 begin
21633 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
21634 -- already in the parents.
21635
21636 Collect_Interfaces
21637 (T => T,
21638 Ifaces_List => Ifaces_List,
21639 Exclude_Parents => True);
21640
21641 Set_Interfaces (T, Ifaces_List);
21642 end;
21643 end if;
21644
21645 -- Records constitute a scope for the component declarations within.
21646 -- The scope is created prior to the processing of these declarations.
21647 -- Discriminants are processed first, so that they are visible when
21648 -- processing the other components. The Ekind of the record type itself
21649 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
21650
21651 -- Enter record scope
21652
21653 Push_Scope (T);
21654
21655 -- If an incomplete or private type declaration was already given for
21656 -- the type, then this scope already exists, and the discriminants have
21657 -- been declared within. We must verify that the full declaration
21658 -- matches the incomplete one.
21659
21660 Check_Or_Process_Discriminants (N, T, Prev);
21661
21662 Set_Is_Constrained (T, not Has_Discriminants (T));
21663 Set_Has_Delayed_Freeze (T, True);
21664
21665 -- For tagged types add a manually analyzed component corresponding
21666 -- to the component _tag, the corresponding piece of tree will be
21667 -- expanded as part of the freezing actions if it is not a CPP_Class.
21668
21669 if Is_Tagged then
21670
21671 -- Do not add the tag unless we are in expansion mode
21672
21673 if Expander_Active then
21674 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
21675 Enter_Name (Tag_Comp);
21676
21677 Set_Ekind (Tag_Comp, E_Component);
21678 Set_Is_Tag (Tag_Comp);
21679 Set_Is_Aliased (Tag_Comp);
21680 Set_Etype (Tag_Comp, RTE (RE_Tag));
21681 Set_DT_Entry_Count (Tag_Comp, No_Uint);
21682 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
21683 Init_Component_Location (Tag_Comp);
21684
21685 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
21686 -- implemented interfaces.
21687
21688 if Has_Interfaces (T) then
21689 Add_Interface_Tag_Components (N, T);
21690 end if;
21691 end if;
21692
21693 Make_Class_Wide_Type (T);
21694 Set_Direct_Primitive_Operations (T, New_Elmt_List);
21695 end if;
21696
21697 -- We must suppress range checks when processing record components in
21698 -- the presence of discriminants, since we don't want spurious checks to
21699 -- be generated during their analysis, but Suppress_Range_Checks flags
21700 -- must be reset the after processing the record definition.
21701
21702 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
21703 -- couldn't we just use the normal range check suppression method here.
21704 -- That would seem cleaner ???
21705
21706 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
21707 Set_Kill_Range_Checks (T, True);
21708 Record_Type_Definition (Def, Prev);
21709 Set_Kill_Range_Checks (T, False);
21710 else
21711 Record_Type_Definition (Def, Prev);
21712 end if;
21713
21714 -- Exit from record scope
21715
21716 End_Scope;
21717
21718 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
21719 -- the implemented interfaces and associate them an aliased entity.
21720
21721 if Is_Tagged
21722 and then not Is_Empty_List (Interface_List (Def))
21723 then
21724 Derive_Progenitor_Subprograms (T, T);
21725 end if;
21726
21727 Check_Function_Writable_Actuals (N);
21728 end Record_Type_Declaration;
21729
21730 ----------------------------
21731 -- Record_Type_Definition --
21732 ----------------------------
21733
21734 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
21735 Component : Entity_Id;
21736 Ctrl_Components : Boolean := False;
21737 Final_Storage_Only : Boolean;
21738 T : Entity_Id;
21739
21740 begin
21741 if Ekind (Prev_T) = E_Incomplete_Type then
21742 T := Full_View (Prev_T);
21743 else
21744 T := Prev_T;
21745 end if;
21746
21747 -- In SPARK, tagged types and type extensions may only be declared in
21748 -- the specification of library unit packages.
21749
21750 if Present (Def) and then Is_Tagged_Type (T) then
21751 declare
21752 Typ : Node_Id;
21753 Ctxt : Node_Id;
21754
21755 begin
21756 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
21757 Typ := Parent (Def);
21758 else
21759 pragma Assert
21760 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
21761 Typ := Parent (Parent (Def));
21762 end if;
21763
21764 Ctxt := Parent (Typ);
21765
21766 if Nkind (Ctxt) = N_Package_Body
21767 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
21768 then
21769 Check_SPARK_05_Restriction
21770 ("type should be defined in package specification", Typ);
21771
21772 elsif Nkind (Ctxt) /= N_Package_Specification
21773 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
21774 then
21775 Check_SPARK_05_Restriction
21776 ("type should be defined in library unit package", Typ);
21777 end if;
21778 end;
21779 end if;
21780
21781 Final_Storage_Only := not Is_Controlled_Active (T);
21782
21783 -- Ada 2005: Check whether an explicit Limited is present in a derived
21784 -- type declaration.
21785
21786 if Nkind (Parent (Def)) = N_Derived_Type_Definition
21787 and then Limited_Present (Parent (Def))
21788 then
21789 Set_Is_Limited_Record (T);
21790 end if;
21791
21792 -- If the component list of a record type is defined by the reserved
21793 -- word null and there is no discriminant part, then the record type has
21794 -- no components and all records of the type are null records (RM 3.7)
21795 -- This procedure is also called to process the extension part of a
21796 -- record extension, in which case the current scope may have inherited
21797 -- components.
21798
21799 if No (Def)
21800 or else No (Component_List (Def))
21801 or else Null_Present (Component_List (Def))
21802 then
21803 if not Is_Tagged_Type (T) then
21804 Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
21805 end if;
21806
21807 else
21808 Analyze_Declarations (Component_Items (Component_List (Def)));
21809
21810 if Present (Variant_Part (Component_List (Def))) then
21811 Check_SPARK_05_Restriction ("variant part is not allowed", Def);
21812 Analyze (Variant_Part (Component_List (Def)));
21813 end if;
21814 end if;
21815
21816 -- After completing the semantic analysis of the record definition,
21817 -- record components, both new and inherited, are accessible. Set their
21818 -- kind accordingly. Exclude malformed itypes from illegal declarations,
21819 -- whose Ekind may be void.
21820
21821 Component := First_Entity (Current_Scope);
21822 while Present (Component) loop
21823 if Ekind (Component) = E_Void
21824 and then not Is_Itype (Component)
21825 then
21826 Set_Ekind (Component, E_Component);
21827 Init_Component_Location (Component);
21828 end if;
21829
21830 Propagate_Concurrent_Flags (T, Etype (Component));
21831
21832 if Ekind (Component) /= E_Component then
21833 null;
21834
21835 -- Do not set Has_Controlled_Component on a class-wide equivalent
21836 -- type. See Make_CW_Equivalent_Type.
21837
21838 elsif not Is_Class_Wide_Equivalent_Type (T)
21839 and then (Has_Controlled_Component (Etype (Component))
21840 or else (Chars (Component) /= Name_uParent
21841 and then Is_Controlled_Active
21842 (Etype (Component))))
21843 then
21844 Set_Has_Controlled_Component (T, True);
21845 Final_Storage_Only :=
21846 Final_Storage_Only
21847 and then Finalize_Storage_Only (Etype (Component));
21848 Ctrl_Components := True;
21849 end if;
21850
21851 Next_Entity (Component);
21852 end loop;
21853
21854 -- A Type is Finalize_Storage_Only only if all its controlled components
21855 -- are also.
21856
21857 if Ctrl_Components then
21858 Set_Finalize_Storage_Only (T, Final_Storage_Only);
21859 end if;
21860
21861 -- Place reference to end record on the proper entity, which may
21862 -- be a partial view.
21863
21864 if Present (Def) then
21865 Process_End_Label (Def, 'e', Prev_T);
21866 end if;
21867 end Record_Type_Definition;
21868
21869 ------------------------
21870 -- Replace_Components --
21871 ------------------------
21872
21873 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
21874 function Process (N : Node_Id) return Traverse_Result;
21875
21876 -------------
21877 -- Process --
21878 -------------
21879
21880 function Process (N : Node_Id) return Traverse_Result is
21881 Comp : Entity_Id;
21882
21883 begin
21884 if Nkind (N) = N_Discriminant_Specification then
21885 Comp := First_Discriminant (Typ);
21886 while Present (Comp) loop
21887 if Chars (Comp) = Chars (Defining_Identifier (N)) then
21888 Set_Defining_Identifier (N, Comp);
21889 exit;
21890 end if;
21891
21892 Next_Discriminant (Comp);
21893 end loop;
21894
21895 elsif Nkind (N) = N_Component_Declaration then
21896 Comp := First_Component (Typ);
21897 while Present (Comp) loop
21898 if Chars (Comp) = Chars (Defining_Identifier (N)) then
21899 Set_Defining_Identifier (N, Comp);
21900 exit;
21901 end if;
21902
21903 Next_Component (Comp);
21904 end loop;
21905 end if;
21906
21907 return OK;
21908 end Process;
21909
21910 procedure Replace is new Traverse_Proc (Process);
21911
21912 -- Start of processing for Replace_Components
21913
21914 begin
21915 Replace (Decl);
21916 end Replace_Components;
21917
21918 -------------------------------
21919 -- Set_Completion_Referenced --
21920 -------------------------------
21921
21922 procedure Set_Completion_Referenced (E : Entity_Id) is
21923 begin
21924 -- If in main unit, mark entity that is a completion as referenced,
21925 -- warnings go on the partial view when needed.
21926
21927 if In_Extended_Main_Source_Unit (E) then
21928 Set_Referenced (E);
21929 end if;
21930 end Set_Completion_Referenced;
21931
21932 ---------------------
21933 -- Set_Default_SSO --
21934 ---------------------
21935
21936 procedure Set_Default_SSO (T : Entity_Id) is
21937 begin
21938 case Opt.Default_SSO is
21939 when ' ' =>
21940 null;
21941 when 'L' =>
21942 Set_SSO_Set_Low_By_Default (T, True);
21943 when 'H' =>
21944 Set_SSO_Set_High_By_Default (T, True);
21945 when others =>
21946 raise Program_Error;
21947 end case;
21948 end Set_Default_SSO;
21949
21950 ---------------------
21951 -- Set_Fixed_Range --
21952 ---------------------
21953
21954 -- The range for fixed-point types is complicated by the fact that we
21955 -- do not know the exact end points at the time of the declaration. This
21956 -- is true for three reasons:
21957
21958 -- A size clause may affect the fudging of the end-points.
21959 -- A small clause may affect the values of the end-points.
21960 -- We try to include the end-points if it does not affect the size.
21961
21962 -- This means that the actual end-points must be established at the
21963 -- point when the type is frozen. Meanwhile, we first narrow the range
21964 -- as permitted (so that it will fit if necessary in a small specified
21965 -- size), and then build a range subtree with these narrowed bounds.
21966 -- Set_Fixed_Range constructs the range from real literal values, and
21967 -- sets the range as the Scalar_Range of the given fixed-point type entity.
21968
21969 -- The parent of this range is set to point to the entity so that it is
21970 -- properly hooked into the tree (unlike normal Scalar_Range entries for
21971 -- other scalar types, which are just pointers to the range in the
21972 -- original tree, this would otherwise be an orphan).
21973
21974 -- The tree is left unanalyzed. When the type is frozen, the processing
21975 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
21976 -- analyzed, and uses this as an indication that it should complete
21977 -- work on the range (it will know the final small and size values).
21978
21979 procedure Set_Fixed_Range
21980 (E : Entity_Id;
21981 Loc : Source_Ptr;
21982 Lo : Ureal;
21983 Hi : Ureal)
21984 is
21985 S : constant Node_Id :=
21986 Make_Range (Loc,
21987 Low_Bound => Make_Real_Literal (Loc, Lo),
21988 High_Bound => Make_Real_Literal (Loc, Hi));
21989 begin
21990 Set_Scalar_Range (E, S);
21991 Set_Parent (S, E);
21992
21993 -- Before the freeze point, the bounds of a fixed point are universal
21994 -- and carry the corresponding type.
21995
21996 Set_Etype (Low_Bound (S), Universal_Real);
21997 Set_Etype (High_Bound (S), Universal_Real);
21998 end Set_Fixed_Range;
21999
22000 ----------------------------------
22001 -- Set_Scalar_Range_For_Subtype --
22002 ----------------------------------
22003
22004 procedure Set_Scalar_Range_For_Subtype
22005 (Def_Id : Entity_Id;
22006 R : Node_Id;
22007 Subt : Entity_Id)
22008 is
22009 Kind : constant Entity_Kind := Ekind (Def_Id);
22010
22011 begin
22012 -- Defend against previous error
22013
22014 if Nkind (R) = N_Error then
22015 return;
22016 end if;
22017
22018 Set_Scalar_Range (Def_Id, R);
22019
22020 -- We need to link the range into the tree before resolving it so
22021 -- that types that are referenced, including importantly the subtype
22022 -- itself, are properly frozen (Freeze_Expression requires that the
22023 -- expression be properly linked into the tree). Of course if it is
22024 -- already linked in, then we do not disturb the current link.
22025
22026 if No (Parent (R)) then
22027 Set_Parent (R, Def_Id);
22028 end if;
22029
22030 -- Reset the kind of the subtype during analysis of the range, to
22031 -- catch possible premature use in the bounds themselves.
22032
22033 Set_Ekind (Def_Id, E_Void);
22034 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
22035 Set_Ekind (Def_Id, Kind);
22036 end Set_Scalar_Range_For_Subtype;
22037
22038 --------------------------------------------------------
22039 -- Set_Stored_Constraint_From_Discriminant_Constraint --
22040 --------------------------------------------------------
22041
22042 procedure Set_Stored_Constraint_From_Discriminant_Constraint
22043 (E : Entity_Id)
22044 is
22045 begin
22046 -- Make sure set if encountered during Expand_To_Stored_Constraint
22047
22048 Set_Stored_Constraint (E, No_Elist);
22049
22050 -- Give it the right value
22051
22052 if Is_Constrained (E) and then Has_Discriminants (E) then
22053 Set_Stored_Constraint (E,
22054 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
22055 end if;
22056 end Set_Stored_Constraint_From_Discriminant_Constraint;
22057
22058 -------------------------------------
22059 -- Signed_Integer_Type_Declaration --
22060 -------------------------------------
22061
22062 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
22063 Implicit_Base : Entity_Id;
22064 Base_Typ : Entity_Id;
22065 Lo_Val : Uint;
22066 Hi_Val : Uint;
22067 Errs : Boolean := False;
22068 Lo : Node_Id;
22069 Hi : Node_Id;
22070
22071 function Can_Derive_From (E : Entity_Id) return Boolean;
22072 -- Determine whether given bounds allow derivation from specified type
22073
22074 procedure Check_Bound (Expr : Node_Id);
22075 -- Check bound to make sure it is integral and static. If not, post
22076 -- appropriate error message and set Errs flag
22077
22078 ---------------------
22079 -- Can_Derive_From --
22080 ---------------------
22081
22082 -- Note we check both bounds against both end values, to deal with
22083 -- strange types like ones with a range of 0 .. -12341234.
22084
22085 function Can_Derive_From (E : Entity_Id) return Boolean is
22086 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
22087 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
22088 begin
22089 return Lo <= Lo_Val and then Lo_Val <= Hi
22090 and then
22091 Lo <= Hi_Val and then Hi_Val <= Hi;
22092 end Can_Derive_From;
22093
22094 -----------------
22095 -- Check_Bound --
22096 -----------------
22097
22098 procedure Check_Bound (Expr : Node_Id) is
22099 begin
22100 -- If a range constraint is used as an integer type definition, each
22101 -- bound of the range must be defined by a static expression of some
22102 -- integer type, but the two bounds need not have the same integer
22103 -- type (Negative bounds are allowed.) (RM 3.5.4)
22104
22105 if not Is_Integer_Type (Etype (Expr)) then
22106 Error_Msg_N
22107 ("integer type definition bounds must be of integer type", Expr);
22108 Errs := True;
22109
22110 elsif not Is_OK_Static_Expression (Expr) then
22111 Flag_Non_Static_Expr
22112 ("non-static expression used for integer type bound!", Expr);
22113 Errs := True;
22114
22115 -- The bounds are folded into literals, and we set their type to be
22116 -- universal, to avoid typing difficulties: we cannot set the type
22117 -- of the literal to the new type, because this would be a forward
22118 -- reference for the back end, and if the original type is user-
22119 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
22120
22121 else
22122 if Is_Entity_Name (Expr) then
22123 Fold_Uint (Expr, Expr_Value (Expr), True);
22124 end if;
22125
22126 Set_Etype (Expr, Universal_Integer);
22127 end if;
22128 end Check_Bound;
22129
22130 -- Start of processing for Signed_Integer_Type_Declaration
22131
22132 begin
22133 -- Create an anonymous base type
22134
22135 Implicit_Base :=
22136 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
22137
22138 -- Analyze and check the bounds, they can be of any integer type
22139
22140 Lo := Low_Bound (Def);
22141 Hi := High_Bound (Def);
22142
22143 -- Arbitrarily use Integer as the type if either bound had an error
22144
22145 if Hi = Error or else Lo = Error then
22146 Base_Typ := Any_Integer;
22147 Set_Error_Posted (T, True);
22148
22149 -- Here both bounds are OK expressions
22150
22151 else
22152 Analyze_And_Resolve (Lo, Any_Integer);
22153 Analyze_And_Resolve (Hi, Any_Integer);
22154
22155 Check_Bound (Lo);
22156 Check_Bound (Hi);
22157
22158 if Errs then
22159 Hi := Type_High_Bound (Standard_Long_Long_Integer);
22160 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
22161 end if;
22162
22163 -- Find type to derive from
22164
22165 Lo_Val := Expr_Value (Lo);
22166 Hi_Val := Expr_Value (Hi);
22167
22168 if Can_Derive_From (Standard_Short_Short_Integer) then
22169 Base_Typ := Base_Type (Standard_Short_Short_Integer);
22170
22171 elsif Can_Derive_From (Standard_Short_Integer) then
22172 Base_Typ := Base_Type (Standard_Short_Integer);
22173
22174 elsif Can_Derive_From (Standard_Integer) then
22175 Base_Typ := Base_Type (Standard_Integer);
22176
22177 elsif Can_Derive_From (Standard_Long_Integer) then
22178 Base_Typ := Base_Type (Standard_Long_Integer);
22179
22180 elsif Can_Derive_From (Standard_Long_Long_Integer) then
22181 Check_Restriction (No_Long_Long_Integers, Def);
22182 Base_Typ := Base_Type (Standard_Long_Long_Integer);
22183
22184 else
22185 Base_Typ := Base_Type (Standard_Long_Long_Integer);
22186 Error_Msg_N ("integer type definition bounds out of range", Def);
22187 Hi := Type_High_Bound (Standard_Long_Long_Integer);
22188 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
22189 end if;
22190 end if;
22191
22192 -- Complete both implicit base and declared first subtype entities. The
22193 -- inheritance of the rep item chain ensures that SPARK-related pragmas
22194 -- are not clobbered when the signed integer type acts as a full view of
22195 -- a private type.
22196
22197 Set_Etype (Implicit_Base, Base_Typ);
22198 Set_Size_Info (Implicit_Base, Base_Typ);
22199 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
22200 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
22201 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
22202
22203 Set_Ekind (T, E_Signed_Integer_Subtype);
22204 Set_Etype (T, Implicit_Base);
22205 Set_Size_Info (T, Implicit_Base);
22206 Inherit_Rep_Item_Chain (T, Implicit_Base);
22207 Set_Scalar_Range (T, Def);
22208 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
22209 Set_Is_Constrained (T);
22210 end Signed_Integer_Type_Declaration;
22211
22212 end Sem_Ch3;