[Ada] Minor reformattings
[gcc.git] / gcc / ada / sem_ch3.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Elists; use Elists;
32 with Einfo; use Einfo;
33 with Errout; use Errout;
34 with Eval_Fat; use Eval_Fat;
35 with Exp_Ch3; use Exp_Ch3;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Disp; use Exp_Disp;
38 with Exp_Dist; use Exp_Dist;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Freeze; use Freeze;
42 with Ghost; use Ghost;
43 with Itypes; use Itypes;
44 with Layout; use Layout;
45 with Lib; use Lib;
46 with Lib.Xref; use Lib.Xref;
47 with Namet; use Namet;
48 with Nmake; use Nmake;
49 with Opt; use Opt;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Case; use Sem_Case;
56 with Sem_Cat; use Sem_Cat;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch7; use Sem_Ch7;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Dim; use Sem_Dim;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elab; use Sem_Elab;
65 with Sem_Elim; use Sem_Elim;
66 with Sem_Eval; use Sem_Eval;
67 with Sem_Mech; use Sem_Mech;
68 with Sem_Res; use Sem_Res;
69 with Sem_Smem; use Sem_Smem;
70 with Sem_Type; use Sem_Type;
71 with Sem_Util; use Sem_Util;
72 with Sem_Warn; use Sem_Warn;
73 with Stand; use Stand;
74 with Sinfo; use Sinfo;
75 with Sinput; use Sinput;
76 with Snames; use Snames;
77 with Targparm; use Targparm;
78 with Tbuild; use Tbuild;
79 with Ttypes; use Ttypes;
80 with Uintp; use Uintp;
81 with Urealp; use Urealp;
82
83 package body Sem_Ch3 is
84
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
88
89 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
92 -- record type.
93
94 procedure Build_Derived_Type
95 (N : Node_Id;
96 Parent_Type : Entity_Id;
97 Derived_Type : Entity_Id;
98 Is_Completion : Boolean;
99 Derive_Subps : Boolean := True);
100 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
101 -- the N_Full_Type_Declaration node containing the derived type definition.
102 -- Parent_Type is the entity for the parent type in the derived type
103 -- definition and Derived_Type the actual derived type. Is_Completion must
104 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
105 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
106 -- completion of a private type declaration. If Is_Completion is set to
107 -- True, N is the completion of a private type declaration and Derived_Type
108 -- is different from the defining identifier inside N (i.e. Derived_Type /=
109 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
110 -- subprograms should be derived. The only case where this parameter is
111 -- False is when Build_Derived_Type is recursively called to process an
112 -- implicit derived full type for a type derived from a private type (in
113 -- that case the subprograms must only be derived for the private view of
114 -- the type).
115 --
116 -- ??? These flags need a bit of re-examination and re-documentation:
117 -- ??? are they both necessary (both seem related to the recursion)?
118
119 procedure Build_Derived_Access_Type
120 (N : Node_Id;
121 Parent_Type : Entity_Id;
122 Derived_Type : Entity_Id);
123 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
124 -- create an implicit base if the parent type is constrained or if the
125 -- subtype indication has a constraint.
126
127 procedure Build_Derived_Array_Type
128 (N : Node_Id;
129 Parent_Type : Entity_Id;
130 Derived_Type : Entity_Id);
131 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
132 -- create an implicit base if the parent type is constrained or if the
133 -- subtype indication has a constraint.
134
135 procedure Build_Derived_Concurrent_Type
136 (N : Node_Id;
137 Parent_Type : Entity_Id;
138 Derived_Type : Entity_Id);
139 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
140 -- protected type, inherit entries and protected subprograms, check
141 -- legality of discriminant constraints if any.
142
143 procedure Build_Derived_Enumeration_Type
144 (N : Node_Id;
145 Parent_Type : Entity_Id;
146 Derived_Type : Entity_Id);
147 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
148 -- type, we must create a new list of literals. Types derived from
149 -- Character and [Wide_]Wide_Character are special-cased.
150
151 procedure Build_Derived_Numeric_Type
152 (N : Node_Id;
153 Parent_Type : Entity_Id;
154 Derived_Type : Entity_Id);
155 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
156 -- an anonymous base type, and propagate constraint to subtype if needed.
157
158 procedure Build_Derived_Private_Type
159 (N : Node_Id;
160 Parent_Type : Entity_Id;
161 Derived_Type : Entity_Id;
162 Is_Completion : Boolean;
163 Derive_Subps : Boolean := True);
164 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
165 -- because the parent may or may not have a completion, and the derivation
166 -- may itself be a completion.
167
168 procedure Build_Derived_Record_Type
169 (N : Node_Id;
170 Parent_Type : Entity_Id;
171 Derived_Type : Entity_Id;
172 Derive_Subps : Boolean := True);
173 -- Subsidiary procedure used for tagged and untagged record types
174 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
175 -- All parameters are as in Build_Derived_Type except that N, in
176 -- addition to being an N_Full_Type_Declaration node, can also be an
177 -- N_Private_Extension_Declaration node. See the definition of this routine
178 -- for much more info. Derive_Subps indicates whether subprograms should be
179 -- derived from the parent type. The only case where Derive_Subps is False
180 -- is for an implicit derived full type for a type derived from a private
181 -- type (see Build_Derived_Type).
182
183 procedure Build_Discriminal (Discrim : Entity_Id);
184 -- Create the discriminal corresponding to discriminant Discrim, that is
185 -- the parameter corresponding to Discrim to be used in initialization
186 -- procedures for the type where Discrim is a discriminant. Discriminals
187 -- are not used during semantic analysis, and are not fully defined
188 -- entities until expansion. Thus they are not given a scope until
189 -- initialization procedures are built.
190
191 function Build_Discriminant_Constraints
192 (T : Entity_Id;
193 Def : Node_Id;
194 Derived_Def : Boolean := False) return Elist_Id;
195 -- Validate discriminant constraints and return the list of the constraints
196 -- in order of discriminant declarations, where T is the discriminated
197 -- unconstrained type. Def is the N_Subtype_Indication node where the
198 -- discriminants constraints for T are specified. Derived_Def is True
199 -- when building the discriminant constraints in a derived type definition
200 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
201 -- type and Def is the constraint "(xxx)" on T and this routine sets the
202 -- Corresponding_Discriminant field of the discriminants in the derived
203 -- type D to point to the corresponding discriminants in the parent type T.
204
205 procedure Build_Discriminated_Subtype
206 (T : Entity_Id;
207 Def_Id : Entity_Id;
208 Elist : Elist_Id;
209 Related_Nod : Node_Id;
210 For_Access : Boolean := False);
211 -- Subsidiary procedure to Constrain_Discriminated_Type and to
212 -- Process_Incomplete_Dependents. Given
213 --
214 -- T (a possibly discriminated base type)
215 -- Def_Id (a very partially built subtype for T),
216 --
217 -- the call completes Def_Id to be the appropriate E_*_Subtype.
218 --
219 -- The Elist is the list of discriminant constraints if any (it is set
220 -- to No_Elist if T is not a discriminated type, and to an empty list if
221 -- T has discriminants but there are no discriminant constraints). The
222 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
223 -- The For_Access says whether or not this subtype is really constraining
224 -- an access type. That is its sole purpose is the designated type of an
225 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
226 -- is built to avoid freezing T when the access subtype is frozen.
227
228 function Build_Scalar_Bound
229 (Bound : Node_Id;
230 Par_T : Entity_Id;
231 Der_T : Entity_Id) return Node_Id;
232 -- The bounds of a derived scalar type are conversions of the bounds of
233 -- the parent type. Optimize the representation if the bounds are literals.
234 -- Needs a more complete spec--what are the parameters exactly, and what
235 -- exactly is the returned value, and how is Bound affected???
236
237 procedure Build_Underlying_Full_View
238 (N : Node_Id;
239 Typ : Entity_Id;
240 Par : Entity_Id);
241 -- If the completion of a private type is itself derived from a private
242 -- type, or if the full view of a private subtype is itself private, the
243 -- back-end has no way to compute the actual size of this type. We build
244 -- an internal subtype declaration of the proper parent type to convey
245 -- this information. This extra mechanism is needed because a full
246 -- view cannot itself have a full view (it would get clobbered during
247 -- view exchanges).
248
249 procedure Check_Access_Discriminant_Requires_Limited
250 (D : Node_Id;
251 Loc : Node_Id);
252 -- Check the restriction that the type to which an access discriminant
253 -- belongs must be a concurrent type or a descendant of a type with
254 -- the reserved word 'limited' in its declaration.
255
256 procedure Check_Anonymous_Access_Components
257 (Typ_Decl : Node_Id;
258 Typ : Entity_Id;
259 Prev : Entity_Id;
260 Comp_List : Node_Id);
261 -- Ada 2005 AI-382: an access component in a record definition can refer to
262 -- the enclosing record, in which case it denotes the type itself, and not
263 -- the current instance of the type. We create an anonymous access type for
264 -- the component, and flag it as an access to a component, so accessibility
265 -- checks are properly performed on it. The declaration of the access type
266 -- is placed ahead of that of the record to prevent order-of-elaboration
267 -- circularity issues in Gigi. We create an incomplete type for the record
268 -- declaration, which is the designated type of the anonymous access.
269
270 procedure Check_Delta_Expression (E : Node_Id);
271 -- Check that the expression represented by E is suitable for use as a
272 -- delta expression, i.e. it is of real type and is static.
273
274 procedure Check_Digits_Expression (E : Node_Id);
275 -- Check that the expression represented by E is suitable for use as a
276 -- digits expression, i.e. it is of integer type, positive and static.
277
278 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
279 -- Validate the initialization of an object declaration. T is the required
280 -- type, and Exp is the initialization expression.
281
282 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
283 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
284
285 procedure Check_Or_Process_Discriminants
286 (N : Node_Id;
287 T : Entity_Id;
288 Prev : Entity_Id := Empty);
289 -- If N is the full declaration of the completion T of an incomplete or
290 -- private type, check its discriminants (which are already known to be
291 -- conformant with those of the partial view, see Find_Type_Name),
292 -- otherwise process them. Prev is the entity of the partial declaration,
293 -- if any.
294
295 procedure Check_Real_Bound (Bound : Node_Id);
296 -- Check given bound for being of real type and static. If not, post an
297 -- appropriate message, and rewrite the bound with the real literal zero.
298
299 procedure Constant_Redeclaration
300 (Id : Entity_Id;
301 N : Node_Id;
302 T : out Entity_Id);
303 -- Various checks on legality of full declaration of deferred constant.
304 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
305 -- node. The caller has not yet set any attributes of this entity.
306
307 function Contain_Interface
308 (Iface : Entity_Id;
309 Ifaces : Elist_Id) return Boolean;
310 -- Ada 2005: Determine whether Iface is present in the list Ifaces
311
312 procedure Convert_Scalar_Bounds
313 (N : Node_Id;
314 Parent_Type : Entity_Id;
315 Derived_Type : Entity_Id;
316 Loc : Source_Ptr);
317 -- For derived scalar types, convert the bounds in the type definition to
318 -- the derived type, and complete their analysis. Given a constraint of the
319 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
320 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
321 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
322 -- subtype are conversions of those bounds to the derived_type, so that
323 -- their typing is consistent.
324
325 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
326 -- Copies attributes from array base type T2 to array base type T1. Copies
327 -- only attributes that apply to base types, but not subtypes.
328
329 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
330 -- Copies attributes from array subtype T2 to array subtype T1. Copies
331 -- attributes that apply to both subtypes and base types.
332
333 procedure Create_Constrained_Components
334 (Subt : Entity_Id;
335 Decl_Node : Node_Id;
336 Typ : Entity_Id;
337 Constraints : Elist_Id);
338 -- Build the list of entities for a constrained discriminated record
339 -- subtype. If a component depends on a discriminant, replace its subtype
340 -- using the discriminant values in the discriminant constraint. Subt
341 -- is the defining identifier for the subtype whose list of constrained
342 -- entities we will create. Decl_Node is the type declaration node where
343 -- we will attach all the itypes created. Typ is the base discriminated
344 -- type for the subtype Subt. Constraints is the list of discriminant
345 -- constraints for Typ.
346
347 function Constrain_Component_Type
348 (Comp : Entity_Id;
349 Constrained_Typ : Entity_Id;
350 Related_Node : Node_Id;
351 Typ : Entity_Id;
352 Constraints : Elist_Id) return Entity_Id;
353 -- Given a discriminated base type Typ, a list of discriminant constraints,
354 -- Constraints, for Typ and a component Comp of Typ, create and return the
355 -- type corresponding to Etype (Comp) where all discriminant references
356 -- are replaced with the corresponding constraint. If Etype (Comp) contains
357 -- no discriminant references then it is returned as-is. Constrained_Typ
358 -- is the final constrained subtype to which the constrained component
359 -- belongs. Related_Node is the node where we attach all created itypes.
360
361 procedure Constrain_Access
362 (Def_Id : in out Entity_Id;
363 S : Node_Id;
364 Related_Nod : Node_Id);
365 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
366 -- an anonymous type created for a subtype indication. In that case it is
367 -- created in the procedure and attached to Related_Nod.
368
369 procedure Constrain_Array
370 (Def_Id : in out Entity_Id;
371 SI : Node_Id;
372 Related_Nod : Node_Id;
373 Related_Id : Entity_Id;
374 Suffix : Character);
375 -- Apply a list of index constraints to an unconstrained array type. The
376 -- first parameter is the entity for the resulting subtype. A value of
377 -- Empty for Def_Id indicates that an implicit type must be created, but
378 -- creation is delayed (and must be done by this procedure) because other
379 -- subsidiary implicit types must be created first (which is why Def_Id
380 -- is an in/out parameter). The second parameter is a subtype indication
381 -- node for the constrained array to be created (e.g. something of the
382 -- form string (1 .. 10)). Related_Nod gives the place where this type
383 -- has to be inserted in the tree. The Related_Id and Suffix parameters
384 -- are used to build the associated Implicit type name.
385
386 procedure Constrain_Concurrent
387 (Def_Id : in out Entity_Id;
388 SI : Node_Id;
389 Related_Nod : Node_Id;
390 Related_Id : Entity_Id;
391 Suffix : Character);
392 -- Apply list of discriminant constraints to an unconstrained concurrent
393 -- type.
394 --
395 -- SI is the N_Subtype_Indication node containing the constraint and
396 -- the unconstrained type to constrain.
397 --
398 -- Def_Id is the entity for the resulting constrained subtype. A value
399 -- of Empty for Def_Id indicates that an implicit type must be created,
400 -- but creation is delayed (and must be done by this procedure) because
401 -- other subsidiary implicit types must be created first (which is why
402 -- Def_Id is an in/out parameter).
403 --
404 -- Related_Nod gives the place where this type has to be inserted
405 -- in the tree.
406 --
407 -- The last two arguments are used to create its external name if needed.
408
409 function Constrain_Corresponding_Record
410 (Prot_Subt : Entity_Id;
411 Corr_Rec : Entity_Id;
412 Related_Nod : Node_Id) return Entity_Id;
413 -- When constraining a protected type or task type with discriminants,
414 -- constrain the corresponding record with the same discriminant values.
415
416 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
417 -- Constrain a decimal fixed point type with a digits constraint and/or a
418 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
419
420 procedure Constrain_Discriminated_Type
421 (Def_Id : Entity_Id;
422 S : Node_Id;
423 Related_Nod : Node_Id;
424 For_Access : Boolean := False);
425 -- Process discriminant constraints of composite type. Verify that values
426 -- have been provided for all discriminants, that the original type is
427 -- unconstrained, and that the types of the supplied expressions match
428 -- the discriminant types. The first three parameters are like in routine
429 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
430 -- of For_Access.
431
432 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
433 -- Constrain an enumeration type with a range constraint. This is identical
434 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
435
436 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
437 -- Constrain a floating point type with either a digits constraint
438 -- and/or a range constraint, building a E_Floating_Point_Subtype.
439
440 procedure Constrain_Index
441 (Index : Node_Id;
442 S : Node_Id;
443 Related_Nod : Node_Id;
444 Related_Id : Entity_Id;
445 Suffix : Character;
446 Suffix_Index : Nat);
447 -- Process an index constraint S in a constrained array declaration. The
448 -- constraint can be a subtype name, or a range with or without an explicit
449 -- subtype mark. The index is the corresponding index of the unconstrained
450 -- array. The Related_Id and Suffix parameters are used to build the
451 -- associated Implicit type name.
452
453 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
454 -- Build subtype of a signed or modular integer type
455
456 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
457 -- Constrain an ordinary fixed point type with a range constraint, and
458 -- build an E_Ordinary_Fixed_Point_Subtype entity.
459
460 procedure Copy_And_Swap (Priv, Full : Entity_Id);
461 -- Copy the Priv entity into the entity of its full declaration then swap
462 -- the two entities in such a manner that the former private type is now
463 -- seen as a full type.
464
465 procedure Decimal_Fixed_Point_Type_Declaration
466 (T : Entity_Id;
467 Def : Node_Id);
468 -- Create a new decimal fixed point type, and apply the constraint to
469 -- obtain a subtype of this new type.
470
471 procedure Complete_Private_Subtype
472 (Priv : Entity_Id;
473 Full : Entity_Id;
474 Full_Base : Entity_Id;
475 Related_Nod : Node_Id);
476 -- Complete the implicit full view of a private subtype by setting the
477 -- appropriate semantic fields. If the full view of the parent is a record
478 -- type, build constrained components of subtype.
479
480 procedure Derive_Progenitor_Subprograms
481 (Parent_Type : Entity_Id;
482 Tagged_Type : Entity_Id);
483 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
484 -- operations of progenitors of Tagged_Type, and replace the subsidiary
485 -- subtypes with Tagged_Type, to build the specs of the inherited interface
486 -- primitives. The derived primitives are aliased to those of the
487 -- interface. This routine takes care also of transferring to the full view
488 -- subprograms associated with the partial view of Tagged_Type that cover
489 -- interface primitives.
490
491 procedure Derived_Standard_Character
492 (N : Node_Id;
493 Parent_Type : Entity_Id;
494 Derived_Type : Entity_Id);
495 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
496 -- derivations from types Standard.Character and Standard.Wide_Character.
497
498 procedure Derived_Type_Declaration
499 (T : Entity_Id;
500 N : Node_Id;
501 Is_Completion : Boolean);
502 -- Process a derived type declaration. Build_Derived_Type is invoked
503 -- to process the actual derived type definition. Parameters N and
504 -- Is_Completion have the same meaning as in Build_Derived_Type.
505 -- T is the N_Defining_Identifier for the entity defined in the
506 -- N_Full_Type_Declaration node N, that is T is the derived type.
507
508 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
509 -- Insert each literal in symbol table, as an overloadable identifier. Each
510 -- enumeration type is mapped into a sequence of integers, and each literal
511 -- is defined as a constant with integer value. If any of the literals are
512 -- character literals, the type is a character type, which means that
513 -- strings are legal aggregates for arrays of components of the type.
514
515 function Expand_To_Stored_Constraint
516 (Typ : Entity_Id;
517 Constraint : Elist_Id) return Elist_Id;
518 -- Given a constraint (i.e. a list of expressions) on the discriminants of
519 -- Typ, expand it into a constraint on the stored discriminants and return
520 -- the new list of expressions constraining the stored discriminants.
521
522 function Find_Type_Of_Object
523 (Obj_Def : Node_Id;
524 Related_Nod : Node_Id) return Entity_Id;
525 -- Get type entity for object referenced by Obj_Def, attaching the implicit
526 -- types generated to Related_Nod.
527
528 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
529 -- Create a new float and apply the constraint to obtain subtype of it
530
531 function Has_Range_Constraint (N : Node_Id) return Boolean;
532 -- Given an N_Subtype_Indication node N, return True if a range constraint
533 -- is present, either directly, or as part of a digits or delta constraint.
534 -- In addition, a digits constraint in the decimal case returns True, since
535 -- it establishes a default range if no explicit range is present.
536
537 function Inherit_Components
538 (N : Node_Id;
539 Parent_Base : Entity_Id;
540 Derived_Base : Entity_Id;
541 Is_Tagged : Boolean;
542 Inherit_Discr : Boolean;
543 Discs : Elist_Id) return Elist_Id;
544 -- Called from Build_Derived_Record_Type to inherit the components of
545 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
546 -- For more information on derived types and component inheritance please
547 -- consult the comment above the body of Build_Derived_Record_Type.
548 --
549 -- N is the original derived type declaration
550 --
551 -- Is_Tagged is set if we are dealing with tagged types
552 --
553 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
554 -- Parent_Base, otherwise no discriminants are inherited.
555 --
556 -- Discs gives the list of constraints that apply to Parent_Base in the
557 -- derived type declaration. If Discs is set to No_Elist, then we have
558 -- the following situation:
559 --
560 -- type Parent (D1..Dn : ..) is [tagged] record ...;
561 -- type Derived is new Parent [with ...];
562 --
563 -- which gets treated as
564 --
565 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
566 --
567 -- For untagged types the returned value is an association list. The list
568 -- starts from the association (Parent_Base => Derived_Base), and then it
569 -- contains a sequence of the associations of the form
570 --
571 -- (Old_Component => New_Component),
572 --
573 -- where Old_Component is the Entity_Id of a component in Parent_Base and
574 -- New_Component is the Entity_Id of the corresponding component in
575 -- Derived_Base. For untagged records, this association list is needed when
576 -- copying the record declaration for the derived base. In the tagged case
577 -- the value returned is irrelevant.
578
579 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
580 -- Propagate static and dynamic predicate flags from a parent to the
581 -- subtype in a subtype declaration with and without constraints.
582
583 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean;
584 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
585 -- Determine whether subprogram Subp is a procedure subject to pragma
586 -- Extensions_Visible with value False and has at least one controlling
587 -- parameter of mode OUT.
588
589 function Is_Valid_Constraint_Kind
590 (T_Kind : Type_Kind;
591 Constraint_Kind : Node_Kind) return Boolean;
592 -- Returns True if it is legal to apply the given kind of constraint to the
593 -- given kind of type (index constraint to an array type, for example).
594
595 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
596 -- Create new modular type. Verify that modulus is in bounds
597
598 procedure New_Concatenation_Op (Typ : Entity_Id);
599 -- Create an abbreviated declaration for an operator in order to
600 -- materialize concatenation on array types.
601
602 procedure Ordinary_Fixed_Point_Type_Declaration
603 (T : Entity_Id;
604 Def : Node_Id);
605 -- Create a new ordinary fixed point type, and apply the constraint to
606 -- obtain subtype of it.
607
608 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id);
609 -- Wrapper on Preanalyze_Spec_Expression for default expressions, so that
610 -- In_Default_Expr can be properly adjusted.
611
612 procedure Prepare_Private_Subtype_Completion
613 (Id : Entity_Id;
614 Related_Nod : Node_Id);
615 -- Id is a subtype of some private type. Creates the full declaration
616 -- associated with Id whenever possible, i.e. when the full declaration
617 -- of the base type is already known. Records each subtype into
618 -- Private_Dependents of the base type.
619
620 procedure Process_Incomplete_Dependents
621 (N : Node_Id;
622 Full_T : Entity_Id;
623 Inc_T : Entity_Id);
624 -- Process all entities that depend on an incomplete type. There include
625 -- subtypes, subprogram types that mention the incomplete type in their
626 -- profiles, and subprogram with access parameters that designate the
627 -- incomplete type.
628
629 -- Inc_T is the defining identifier of an incomplete type declaration, its
630 -- Ekind is E_Incomplete_Type.
631 --
632 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
633 --
634 -- Full_T is N's defining identifier.
635 --
636 -- Subtypes of incomplete types with discriminants are completed when the
637 -- parent type is. This is simpler than private subtypes, because they can
638 -- only appear in the same scope, and there is no need to exchange views.
639 -- Similarly, access_to_subprogram types may have a parameter or a return
640 -- type that is an incomplete type, and that must be replaced with the
641 -- full type.
642 --
643 -- If the full type is tagged, subprogram with access parameters that
644 -- designated the incomplete may be primitive operations of the full type,
645 -- and have to be processed accordingly.
646
647 procedure Process_Real_Range_Specification (Def : Node_Id);
648 -- Given the type definition for a real type, this procedure processes and
649 -- checks the real range specification of this type definition if one is
650 -- present. If errors are found, error messages are posted, and the
651 -- Real_Range_Specification of Def is reset to Empty.
652
653 procedure Record_Type_Declaration
654 (T : Entity_Id;
655 N : Node_Id;
656 Prev : Entity_Id);
657 -- Process a record type declaration (for both untagged and tagged
658 -- records). Parameters T and N are exactly like in procedure
659 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
660 -- for this routine. If this is the completion of an incomplete type
661 -- declaration, Prev is the entity of the incomplete declaration, used for
662 -- cross-referencing. Otherwise Prev = T.
663
664 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
665 -- This routine is used to process the actual record type definition (both
666 -- for untagged and tagged records). Def is a record type definition node.
667 -- This procedure analyzes the components in this record type definition.
668 -- Prev_T is the entity for the enclosing record type. It is provided so
669 -- that its Has_Task flag can be set if any of the component have Has_Task
670 -- set. If the declaration is the completion of an incomplete type
671 -- declaration, Prev_T is the original incomplete type, whose full view is
672 -- the record type.
673
674 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
675 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
676 -- build a copy of the declaration tree of the parent, and we create
677 -- independently the list of components for the derived type. Semantic
678 -- information uses the component entities, but record representation
679 -- clauses are validated on the declaration tree. This procedure replaces
680 -- discriminants and components in the declaration with those that have
681 -- been created by Inherit_Components.
682
683 procedure Set_Fixed_Range
684 (E : Entity_Id;
685 Loc : Source_Ptr;
686 Lo : Ureal;
687 Hi : Ureal);
688 -- Build a range node with the given bounds and set it as the Scalar_Range
689 -- of the given fixed-point type entity. Loc is the source location used
690 -- for the constructed range. See body for further details.
691
692 procedure Set_Scalar_Range_For_Subtype
693 (Def_Id : Entity_Id;
694 R : Node_Id;
695 Subt : Entity_Id);
696 -- This routine is used to set the scalar range field for a subtype given
697 -- Def_Id, the entity for the subtype, and R, the range expression for the
698 -- scalar range. Subt provides the parent subtype to be used to analyze,
699 -- resolve, and check the given range.
700
701 procedure Set_Default_SSO (T : Entity_Id);
702 -- T is the entity for an array or record being declared. This procedure
703 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
704 -- to the setting of Opt.Default_SSO.
705
706 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
707 -- Create a new signed integer entity, and apply the constraint to obtain
708 -- the required first named subtype of this type.
709
710 procedure Set_Stored_Constraint_From_Discriminant_Constraint
711 (E : Entity_Id);
712 -- E is some record type. This routine computes E's Stored_Constraint
713 -- from its Discriminant_Constraint.
714
715 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
716 -- Check that an entity in a list of progenitors is an interface,
717 -- emit error otherwise.
718
719 -----------------------
720 -- Access_Definition --
721 -----------------------
722
723 function Access_Definition
724 (Related_Nod : Node_Id;
725 N : Node_Id) return Entity_Id
726 is
727 Anon_Type : Entity_Id;
728 Anon_Scope : Entity_Id;
729 Desig_Type : Entity_Id;
730 Enclosing_Prot_Type : Entity_Id := Empty;
731
732 begin
733 Check_SPARK_05_Restriction ("access type is not allowed", N);
734
735 if Is_Entry (Current_Scope)
736 and then Is_Task_Type (Etype (Scope (Current_Scope)))
737 then
738 Error_Msg_N ("task entries cannot have access parameters", N);
739 return Empty;
740 end if;
741
742 -- Ada 2005: For an object declaration the corresponding anonymous
743 -- type is declared in the current scope.
744
745 -- If the access definition is the return type of another access to
746 -- function, scope is the current one, because it is the one of the
747 -- current type declaration, except for the pathological case below.
748
749 if Nkind_In (Related_Nod, N_Object_Declaration,
750 N_Access_Function_Definition)
751 then
752 Anon_Scope := Current_Scope;
753
754 -- A pathological case: function returning access functions that
755 -- return access functions, etc. Each anonymous access type created
756 -- is in the enclosing scope of the outermost function.
757
758 declare
759 Par : Node_Id;
760
761 begin
762 Par := Related_Nod;
763 while Nkind_In (Par, N_Access_Function_Definition,
764 N_Access_Definition)
765 loop
766 Par := Parent (Par);
767 end loop;
768
769 if Nkind (Par) = N_Function_Specification then
770 Anon_Scope := Scope (Defining_Entity (Par));
771 end if;
772 end;
773
774 -- For the anonymous function result case, retrieve the scope of the
775 -- function specification's associated entity rather than using the
776 -- current scope. The current scope will be the function itself if the
777 -- formal part is currently being analyzed, but will be the parent scope
778 -- in the case of a parameterless function, and we always want to use
779 -- the function's parent scope. Finally, if the function is a child
780 -- unit, we must traverse the tree to retrieve the proper entity.
781
782 elsif Nkind (Related_Nod) = N_Function_Specification
783 and then Nkind (Parent (N)) /= N_Parameter_Specification
784 then
785 -- If the current scope is a protected type, the anonymous access
786 -- is associated with one of the protected operations, and must
787 -- be available in the scope that encloses the protected declaration.
788 -- Otherwise the type is in the scope enclosing the subprogram.
789
790 -- If the function has formals, The return type of a subprogram
791 -- declaration is analyzed in the scope of the subprogram (see
792 -- Process_Formals) and thus the protected type, if present, is
793 -- the scope of the current function scope.
794
795 if Ekind (Current_Scope) = E_Protected_Type then
796 Enclosing_Prot_Type := Current_Scope;
797
798 elsif Ekind (Current_Scope) = E_Function
799 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
800 then
801 Enclosing_Prot_Type := Scope (Current_Scope);
802 end if;
803
804 if Present (Enclosing_Prot_Type) then
805 Anon_Scope := Scope (Enclosing_Prot_Type);
806
807 else
808 Anon_Scope := Scope (Defining_Entity (Related_Nod));
809 end if;
810
811 -- For an access type definition, if the current scope is a child
812 -- unit it is the scope of the type.
813
814 elsif Is_Compilation_Unit (Current_Scope) then
815 Anon_Scope := Current_Scope;
816
817 -- For access formals, access components, and access discriminants, the
818 -- scope is that of the enclosing declaration,
819
820 else
821 Anon_Scope := Scope (Current_Scope);
822 end if;
823
824 Anon_Type :=
825 Create_Itype
826 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
827
828 if All_Present (N)
829 and then Ada_Version >= Ada_2005
830 then
831 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
832 end if;
833
834 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
835 -- the corresponding semantic routine
836
837 if Present (Access_To_Subprogram_Definition (N)) then
838
839 -- Compiler runtime units are compiled in Ada 2005 mode when building
840 -- the runtime library but must also be compilable in Ada 95 mode
841 -- (when bootstrapping the compiler).
842
843 Check_Compiler_Unit ("anonymous access to subprogram", N);
844
845 Access_Subprogram_Declaration
846 (T_Name => Anon_Type,
847 T_Def => Access_To_Subprogram_Definition (N));
848
849 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
850 Set_Ekind
851 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
852 else
853 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
854 end if;
855
856 Set_Can_Use_Internal_Rep
857 (Anon_Type, not Always_Compatible_Rep_On_Target);
858
859 -- If the anonymous access is associated with a protected operation,
860 -- create a reference to it after the enclosing protected definition
861 -- because the itype will be used in the subsequent bodies.
862
863 -- If the anonymous access itself is protected, a full type
864 -- declaratiton will be created for it, so that the equivalent
865 -- record type can be constructed. For further details, see
866 -- Replace_Anonymous_Access_To_Protected-Subprogram.
867
868 if Ekind (Current_Scope) = E_Protected_Type
869 and then not Protected_Present (Access_To_Subprogram_Definition (N))
870 then
871 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
872 end if;
873
874 return Anon_Type;
875 end if;
876
877 Find_Type (Subtype_Mark (N));
878 Desig_Type := Entity (Subtype_Mark (N));
879
880 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
881 Set_Etype (Anon_Type, Anon_Type);
882
883 -- Make sure the anonymous access type has size and alignment fields
884 -- set, as required by gigi. This is necessary in the case of the
885 -- Task_Body_Procedure.
886
887 if not Has_Private_Component (Desig_Type) then
888 Layout_Type (Anon_Type);
889 end if;
890
891 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
892 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
893 -- the null value is allowed. In Ada 95 the null value is never allowed.
894
895 if Ada_Version >= Ada_2005 then
896 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
897 else
898 Set_Can_Never_Be_Null (Anon_Type, True);
899 end if;
900
901 -- The anonymous access type is as public as the discriminated type or
902 -- subprogram that defines it. It is imported (for back-end purposes)
903 -- if the designated type is.
904
905 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
906
907 -- Ada 2005 (AI-231): Propagate the access-constant attribute
908
909 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
910
911 -- The context is either a subprogram declaration, object declaration,
912 -- or an access discriminant, in a private or a full type declaration.
913 -- In the case of a subprogram, if the designated type is incomplete,
914 -- the operation will be a primitive operation of the full type, to be
915 -- updated subsequently. If the type is imported through a limited_with
916 -- clause, the subprogram is not a primitive operation of the type
917 -- (which is declared elsewhere in some other scope).
918
919 if Ekind (Desig_Type) = E_Incomplete_Type
920 and then not From_Limited_With (Desig_Type)
921 and then Is_Overloadable (Current_Scope)
922 then
923 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
924 Set_Has_Delayed_Freeze (Current_Scope);
925 end if;
926
927 -- Ada 2005: If the designated type is an interface that may contain
928 -- tasks, create a Master entity for the declaration. This must be done
929 -- before expansion of the full declaration, because the declaration may
930 -- include an expression that is an allocator, whose expansion needs the
931 -- proper Master for the created tasks.
932
933 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
934 then
935 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
936 then
937 Build_Class_Wide_Master (Anon_Type);
938
939 -- Similarly, if the type is an anonymous access that designates
940 -- tasks, create a master entity for it in the current context.
941
942 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
943 then
944 Build_Master_Entity (Defining_Identifier (Related_Nod));
945 Build_Master_Renaming (Anon_Type);
946 end if;
947 end if;
948
949 -- For a private component of a protected type, it is imperative that
950 -- the back-end elaborate the type immediately after the protected
951 -- declaration, because this type will be used in the declarations
952 -- created for the component within each protected body, so we must
953 -- create an itype reference for it now.
954
955 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
956 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
957
958 -- Similarly, if the access definition is the return result of a
959 -- function, create an itype reference for it because it will be used
960 -- within the function body. For a regular function that is not a
961 -- compilation unit, insert reference after the declaration. For a
962 -- protected operation, insert it after the enclosing protected type
963 -- declaration. In either case, do not create a reference for a type
964 -- obtained through a limited_with clause, because this would introduce
965 -- semantic dependencies.
966
967 -- Similarly, do not create a reference if the designated type is a
968 -- generic formal, because no use of it will reach the backend.
969
970 elsif Nkind (Related_Nod) = N_Function_Specification
971 and then not From_Limited_With (Desig_Type)
972 and then not Is_Generic_Type (Desig_Type)
973 then
974 if Present (Enclosing_Prot_Type) then
975 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
976
977 elsif Is_List_Member (Parent (Related_Nod))
978 and then Nkind (Parent (N)) /= N_Parameter_Specification
979 then
980 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
981 end if;
982
983 -- Finally, create an itype reference for an object declaration of an
984 -- anonymous access type. This is strictly necessary only for deferred
985 -- constants, but in any case will avoid out-of-scope problems in the
986 -- back-end.
987
988 elsif Nkind (Related_Nod) = N_Object_Declaration then
989 Build_Itype_Reference (Anon_Type, Related_Nod);
990 end if;
991
992 return Anon_Type;
993 end Access_Definition;
994
995 -----------------------------------
996 -- Access_Subprogram_Declaration --
997 -----------------------------------
998
999 procedure Access_Subprogram_Declaration
1000 (T_Name : Entity_Id;
1001 T_Def : Node_Id)
1002 is
1003 procedure Check_For_Premature_Usage (Def : Node_Id);
1004 -- Check that type T_Name is not used, directly or recursively, as a
1005 -- parameter or a return type in Def. Def is either a subtype, an
1006 -- access_definition, or an access_to_subprogram_definition.
1007
1008 -------------------------------
1009 -- Check_For_Premature_Usage --
1010 -------------------------------
1011
1012 procedure Check_For_Premature_Usage (Def : Node_Id) is
1013 Param : Node_Id;
1014
1015 begin
1016 -- Check for a subtype mark
1017
1018 if Nkind (Def) in N_Has_Etype then
1019 if Etype (Def) = T_Name then
1020 Error_Msg_N
1021 ("type& cannot be used before end of its declaration", Def);
1022 end if;
1023
1024 -- If this is not a subtype, then this is an access_definition
1025
1026 elsif Nkind (Def) = N_Access_Definition then
1027 if Present (Access_To_Subprogram_Definition (Def)) then
1028 Check_For_Premature_Usage
1029 (Access_To_Subprogram_Definition (Def));
1030 else
1031 Check_For_Premature_Usage (Subtype_Mark (Def));
1032 end if;
1033
1034 -- The only cases left are N_Access_Function_Definition and
1035 -- N_Access_Procedure_Definition.
1036
1037 else
1038 if Present (Parameter_Specifications (Def)) then
1039 Param := First (Parameter_Specifications (Def));
1040 while Present (Param) loop
1041 Check_For_Premature_Usage (Parameter_Type (Param));
1042 Param := Next (Param);
1043 end loop;
1044 end if;
1045
1046 if Nkind (Def) = N_Access_Function_Definition then
1047 Check_For_Premature_Usage (Result_Definition (Def));
1048 end if;
1049 end if;
1050 end Check_For_Premature_Usage;
1051
1052 -- Local variables
1053
1054 Formals : constant List_Id := Parameter_Specifications (T_Def);
1055 Formal : Entity_Id;
1056 D_Ityp : Node_Id;
1057 Desig_Type : constant Entity_Id :=
1058 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1059
1060 -- Start of processing for Access_Subprogram_Declaration
1061
1062 begin
1063 Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1064
1065 -- Associate the Itype node with the inner full-type declaration or
1066 -- subprogram spec or entry body. This is required to handle nested
1067 -- anonymous declarations. For example:
1068
1069 -- procedure P
1070 -- (X : access procedure
1071 -- (Y : access procedure
1072 -- (Z : access T)))
1073
1074 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1075 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1076 N_Private_Type_Declaration,
1077 N_Private_Extension_Declaration,
1078 N_Procedure_Specification,
1079 N_Function_Specification,
1080 N_Entry_Body)
1081
1082 or else
1083 Nkind_In (D_Ityp, N_Object_Declaration,
1084 N_Object_Renaming_Declaration,
1085 N_Formal_Object_Declaration,
1086 N_Formal_Type_Declaration,
1087 N_Task_Type_Declaration,
1088 N_Protected_Type_Declaration))
1089 loop
1090 D_Ityp := Parent (D_Ityp);
1091 pragma Assert (D_Ityp /= Empty);
1092 end loop;
1093
1094 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1095
1096 if Nkind_In (D_Ityp, N_Procedure_Specification,
1097 N_Function_Specification)
1098 then
1099 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1100
1101 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1102 N_Object_Declaration,
1103 N_Object_Renaming_Declaration,
1104 N_Formal_Type_Declaration)
1105 then
1106 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1107 end if;
1108
1109 if Nkind (T_Def) = N_Access_Function_Definition then
1110 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1111 declare
1112 Acc : constant Node_Id := Result_Definition (T_Def);
1113
1114 begin
1115 if Present (Access_To_Subprogram_Definition (Acc))
1116 and then
1117 Protected_Present (Access_To_Subprogram_Definition (Acc))
1118 then
1119 Set_Etype
1120 (Desig_Type,
1121 Replace_Anonymous_Access_To_Protected_Subprogram
1122 (T_Def));
1123
1124 else
1125 Set_Etype
1126 (Desig_Type,
1127 Access_Definition (T_Def, Result_Definition (T_Def)));
1128 end if;
1129 end;
1130
1131 else
1132 Analyze (Result_Definition (T_Def));
1133
1134 declare
1135 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1136
1137 begin
1138 -- If a null exclusion is imposed on the result type, then
1139 -- create a null-excluding itype (an access subtype) and use
1140 -- it as the function's Etype.
1141
1142 if Is_Access_Type (Typ)
1143 and then Null_Exclusion_In_Return_Present (T_Def)
1144 then
1145 Set_Etype (Desig_Type,
1146 Create_Null_Excluding_Itype
1147 (T => Typ,
1148 Related_Nod => T_Def,
1149 Scope_Id => Current_Scope));
1150
1151 else
1152 if From_Limited_With (Typ) then
1153
1154 -- AI05-151: Incomplete types are allowed in all basic
1155 -- declarations, including access to subprograms.
1156
1157 if Ada_Version >= Ada_2012 then
1158 null;
1159
1160 else
1161 Error_Msg_NE
1162 ("illegal use of incomplete type&",
1163 Result_Definition (T_Def), Typ);
1164 end if;
1165
1166 elsif Ekind (Current_Scope) = E_Package
1167 and then In_Private_Part (Current_Scope)
1168 then
1169 if Ekind (Typ) = E_Incomplete_Type then
1170 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1171
1172 elsif Is_Class_Wide_Type (Typ)
1173 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1174 then
1175 Append_Elmt
1176 (Desig_Type, Private_Dependents (Etype (Typ)));
1177 end if;
1178 end if;
1179
1180 Set_Etype (Desig_Type, Typ);
1181 end if;
1182 end;
1183 end if;
1184
1185 if not (Is_Type (Etype (Desig_Type))) then
1186 Error_Msg_N
1187 ("expect type in function specification",
1188 Result_Definition (T_Def));
1189 end if;
1190
1191 else
1192 Set_Etype (Desig_Type, Standard_Void_Type);
1193 end if;
1194
1195 if Present (Formals) then
1196 Push_Scope (Desig_Type);
1197
1198 -- Some special tests here. These special tests can be removed
1199 -- if and when Itypes always have proper parent pointers to their
1200 -- declarations???
1201
1202 -- Special test 1) Link defining_identifier of formals. Required by
1203 -- First_Formal to provide its functionality.
1204
1205 declare
1206 F : Node_Id;
1207
1208 begin
1209 F := First (Formals);
1210
1211 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1212 -- when it is part of an unconstrained type and subtype expansion
1213 -- is disabled. To avoid back-end problems with shared profiles,
1214 -- use previous subprogram type as the designated type, and then
1215 -- remove scope added above.
1216
1217 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1218 then
1219 Set_Etype (T_Name, T_Name);
1220 Init_Size_Align (T_Name);
1221 Set_Directly_Designated_Type (T_Name,
1222 Scope (Defining_Identifier (F)));
1223 End_Scope;
1224 return;
1225 end if;
1226
1227 while Present (F) loop
1228 if No (Parent (Defining_Identifier (F))) then
1229 Set_Parent (Defining_Identifier (F), F);
1230 end if;
1231
1232 Next (F);
1233 end loop;
1234 end;
1235
1236 Process_Formals (Formals, Parent (T_Def));
1237
1238 -- Special test 2) End_Scope requires that the parent pointer be set
1239 -- to something reasonable, but Itypes don't have parent pointers. So
1240 -- we set it and then unset it ???
1241
1242 Set_Parent (Desig_Type, T_Name);
1243 End_Scope;
1244 Set_Parent (Desig_Type, Empty);
1245 end if;
1246
1247 -- Check for premature usage of the type being defined
1248
1249 Check_For_Premature_Usage (T_Def);
1250
1251 -- The return type and/or any parameter type may be incomplete. Mark the
1252 -- subprogram_type as depending on the incomplete type, so that it can
1253 -- be updated when the full type declaration is seen. This only applies
1254 -- to incomplete types declared in some enclosing scope, not to limited
1255 -- views from other packages.
1256
1257 -- Prior to Ada 2012, access to functions can only have in_parameters.
1258
1259 if Present (Formals) then
1260 Formal := First_Formal (Desig_Type);
1261 while Present (Formal) loop
1262 if Ekind (Formal) /= E_In_Parameter
1263 and then Nkind (T_Def) = N_Access_Function_Definition
1264 and then Ada_Version < Ada_2012
1265 then
1266 Error_Msg_N ("functions can only have IN parameters", Formal);
1267 end if;
1268
1269 if Ekind (Etype (Formal)) = E_Incomplete_Type
1270 and then In_Open_Scopes (Scope (Etype (Formal)))
1271 then
1272 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1273 Set_Has_Delayed_Freeze (Desig_Type);
1274 end if;
1275
1276 Next_Formal (Formal);
1277 end loop;
1278 end if;
1279
1280 -- Check whether an indirect call without actuals may be possible. This
1281 -- is used when resolving calls whose result is then indexed.
1282
1283 May_Need_Actuals (Desig_Type);
1284
1285 -- If the return type is incomplete, this is legal as long as the type
1286 -- is declared in the current scope and will be completed in it (rather
1287 -- than being part of limited view).
1288
1289 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1290 and then not Has_Delayed_Freeze (Desig_Type)
1291 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1292 then
1293 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1294 Set_Has_Delayed_Freeze (Desig_Type);
1295 end if;
1296
1297 Check_Delayed_Subprogram (Desig_Type);
1298
1299 if Protected_Present (T_Def) then
1300 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1301 Set_Convention (Desig_Type, Convention_Protected);
1302 else
1303 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1304 end if;
1305
1306 Set_Can_Use_Internal_Rep (T_Name,
1307 not Always_Compatible_Rep_On_Target);
1308 Set_Etype (T_Name, T_Name);
1309 Init_Size_Align (T_Name);
1310 Set_Directly_Designated_Type (T_Name, Desig_Type);
1311
1312 -- If the access_to_subprogram is not declared at the library level,
1313 -- it can only point to subprograms that are at the same or deeper
1314 -- accessibility level. The corresponding subprogram type might
1315 -- require an activation record when compiling for C.
1316
1317 Set_Needs_Activation_Record (Desig_Type,
1318 not Is_Library_Level_Entity (T_Name));
1319
1320 Generate_Reference_To_Formals (T_Name);
1321
1322 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1323
1324 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1325
1326 Check_Restriction (No_Access_Subprograms, T_Def);
1327 end Access_Subprogram_Declaration;
1328
1329 ----------------------------
1330 -- Access_Type_Declaration --
1331 ----------------------------
1332
1333 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1334 P : constant Node_Id := Parent (Def);
1335 S : constant Node_Id := Subtype_Indication (Def);
1336
1337 Full_Desig : Entity_Id;
1338
1339 begin
1340 Check_SPARK_05_Restriction ("access type is not allowed", Def);
1341
1342 -- Check for permissible use of incomplete type
1343
1344 if Nkind (S) /= N_Subtype_Indication then
1345 Analyze (S);
1346
1347 if Present (Entity (S))
1348 and then Ekind (Root_Type (Entity (S))) = E_Incomplete_Type
1349 then
1350 Set_Directly_Designated_Type (T, Entity (S));
1351
1352 -- If the designated type is a limited view, we cannot tell if
1353 -- the full view contains tasks, and there is no way to handle
1354 -- that full view in a client. We create a master entity for the
1355 -- scope, which will be used when a client determines that one
1356 -- is needed.
1357
1358 if From_Limited_With (Entity (S))
1359 and then not Is_Class_Wide_Type (Entity (S))
1360 then
1361 Set_Ekind (T, E_Access_Type);
1362 Build_Master_Entity (T);
1363 Build_Master_Renaming (T);
1364 end if;
1365
1366 else
1367 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1368 end if;
1369
1370 -- If the access definition is of the form: ACCESS NOT NULL ..
1371 -- the subtype indication must be of an access type. Create
1372 -- a null-excluding subtype of it.
1373
1374 if Null_Excluding_Subtype (Def) then
1375 if not Is_Access_Type (Entity (S)) then
1376 Error_Msg_N ("null exclusion must apply to access type", Def);
1377
1378 else
1379 declare
1380 Loc : constant Source_Ptr := Sloc (S);
1381 Decl : Node_Id;
1382 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1383
1384 begin
1385 Decl :=
1386 Make_Subtype_Declaration (Loc,
1387 Defining_Identifier => Nam,
1388 Subtype_Indication =>
1389 New_Occurrence_Of (Entity (S), Loc));
1390 Set_Null_Exclusion_Present (Decl);
1391 Insert_Before (Parent (Def), Decl);
1392 Analyze (Decl);
1393 Set_Entity (S, Nam);
1394 end;
1395 end if;
1396 end if;
1397
1398 else
1399 Set_Directly_Designated_Type (T,
1400 Process_Subtype (S, P, T, 'P'));
1401 end if;
1402
1403 if All_Present (Def) or Constant_Present (Def) then
1404 Set_Ekind (T, E_General_Access_Type);
1405 else
1406 Set_Ekind (T, E_Access_Type);
1407 end if;
1408
1409 Full_Desig := Designated_Type (T);
1410
1411 if Base_Type (Full_Desig) = T then
1412 Error_Msg_N ("access type cannot designate itself", S);
1413
1414 -- In Ada 2005, the type may have a limited view through some unit in
1415 -- its own context, allowing the following circularity that cannot be
1416 -- detected earlier.
1417
1418 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1419 then
1420 Error_Msg_N
1421 ("access type cannot designate its own class-wide type", S);
1422
1423 -- Clean up indication of tagged status to prevent cascaded errors
1424
1425 Set_Is_Tagged_Type (T, False);
1426 end if;
1427
1428 Set_Etype (T, T);
1429
1430 -- If the type has appeared already in a with_type clause, it is frozen
1431 -- and the pointer size is already set. Else, initialize.
1432
1433 if not From_Limited_With (T) then
1434 Init_Size_Align (T);
1435 end if;
1436
1437 -- Note that Has_Task is always false, since the access type itself
1438 -- is not a task type. See Einfo for more description on this point.
1439 -- Exactly the same consideration applies to Has_Controlled_Component
1440 -- and to Has_Protected.
1441
1442 Set_Has_Task (T, False);
1443 Set_Has_Protected (T, False);
1444 Set_Has_Timing_Event (T, False);
1445 Set_Has_Controlled_Component (T, False);
1446
1447 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1448 -- problems where an incomplete view of this entity has been previously
1449 -- established by a limited with and an overlaid version of this field
1450 -- (Stored_Constraint) was initialized for the incomplete view.
1451
1452 -- This reset is performed in most cases except where the access type
1453 -- has been created for the purposes of allocating or deallocating a
1454 -- build-in-place object. Such access types have explicitly set pools
1455 -- and finalization masters.
1456
1457 if No (Associated_Storage_Pool (T)) then
1458 Set_Finalization_Master (T, Empty);
1459 end if;
1460
1461 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1462 -- attributes
1463
1464 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1465 Set_Is_Access_Constant (T, Constant_Present (Def));
1466 end Access_Type_Declaration;
1467
1468 ----------------------------------
1469 -- Add_Interface_Tag_Components --
1470 ----------------------------------
1471
1472 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1473 Loc : constant Source_Ptr := Sloc (N);
1474 L : List_Id;
1475 Last_Tag : Node_Id;
1476
1477 procedure Add_Tag (Iface : Entity_Id);
1478 -- Add tag for one of the progenitor interfaces
1479
1480 -------------
1481 -- Add_Tag --
1482 -------------
1483
1484 procedure Add_Tag (Iface : Entity_Id) is
1485 Decl : Node_Id;
1486 Def : Node_Id;
1487 Tag : Entity_Id;
1488 Offset : Entity_Id;
1489
1490 begin
1491 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1492
1493 -- This is a reasonable place to propagate predicates
1494
1495 if Has_Predicates (Iface) then
1496 Set_Has_Predicates (Typ);
1497 end if;
1498
1499 Def :=
1500 Make_Component_Definition (Loc,
1501 Aliased_Present => True,
1502 Subtype_Indication =>
1503 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1504
1505 Tag := Make_Temporary (Loc, 'V');
1506
1507 Decl :=
1508 Make_Component_Declaration (Loc,
1509 Defining_Identifier => Tag,
1510 Component_Definition => Def);
1511
1512 Analyze_Component_Declaration (Decl);
1513
1514 Set_Analyzed (Decl);
1515 Set_Ekind (Tag, E_Component);
1516 Set_Is_Tag (Tag);
1517 Set_Is_Aliased (Tag);
1518 Set_Related_Type (Tag, Iface);
1519 Init_Component_Location (Tag);
1520
1521 pragma Assert (Is_Frozen (Iface));
1522
1523 Set_DT_Entry_Count (Tag,
1524 DT_Entry_Count (First_Entity (Iface)));
1525
1526 if No (Last_Tag) then
1527 Prepend (Decl, L);
1528 else
1529 Insert_After (Last_Tag, Decl);
1530 end if;
1531
1532 Last_Tag := Decl;
1533
1534 -- If the ancestor has discriminants we need to give special support
1535 -- to store the offset_to_top value of the secondary dispatch tables.
1536 -- For this purpose we add a supplementary component just after the
1537 -- field that contains the tag associated with each secondary DT.
1538
1539 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1540 Def :=
1541 Make_Component_Definition (Loc,
1542 Subtype_Indication =>
1543 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1544
1545 Offset := Make_Temporary (Loc, 'V');
1546
1547 Decl :=
1548 Make_Component_Declaration (Loc,
1549 Defining_Identifier => Offset,
1550 Component_Definition => Def);
1551
1552 Analyze_Component_Declaration (Decl);
1553
1554 Set_Analyzed (Decl);
1555 Set_Ekind (Offset, E_Component);
1556 Set_Is_Aliased (Offset);
1557 Set_Related_Type (Offset, Iface);
1558 Init_Component_Location (Offset);
1559 Insert_After (Last_Tag, Decl);
1560 Last_Tag := Decl;
1561 end if;
1562 end Add_Tag;
1563
1564 -- Local variables
1565
1566 Elmt : Elmt_Id;
1567 Ext : Node_Id;
1568 Comp : Node_Id;
1569
1570 -- Start of processing for Add_Interface_Tag_Components
1571
1572 begin
1573 if not RTE_Available (RE_Interface_Tag) then
1574 Error_Msg
1575 ("(Ada 2005) interface types not supported by this run-time!",
1576 Sloc (N));
1577 return;
1578 end if;
1579
1580 if Ekind (Typ) /= E_Record_Type
1581 or else (Is_Concurrent_Record_Type (Typ)
1582 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1583 or else (not Is_Concurrent_Record_Type (Typ)
1584 and then No (Interfaces (Typ))
1585 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1586 then
1587 return;
1588 end if;
1589
1590 -- Find the current last tag
1591
1592 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1593 Ext := Record_Extension_Part (Type_Definition (N));
1594 else
1595 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1596 Ext := Type_Definition (N);
1597 end if;
1598
1599 Last_Tag := Empty;
1600
1601 if not (Present (Component_List (Ext))) then
1602 Set_Null_Present (Ext, False);
1603 L := New_List;
1604 Set_Component_List (Ext,
1605 Make_Component_List (Loc,
1606 Component_Items => L,
1607 Null_Present => False));
1608 else
1609 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1610 L := Component_Items
1611 (Component_List
1612 (Record_Extension_Part
1613 (Type_Definition (N))));
1614 else
1615 L := Component_Items
1616 (Component_List
1617 (Type_Definition (N)));
1618 end if;
1619
1620 -- Find the last tag component
1621
1622 Comp := First (L);
1623 while Present (Comp) loop
1624 if Nkind (Comp) = N_Component_Declaration
1625 and then Is_Tag (Defining_Identifier (Comp))
1626 then
1627 Last_Tag := Comp;
1628 end if;
1629
1630 Next (Comp);
1631 end loop;
1632 end if;
1633
1634 -- At this point L references the list of components and Last_Tag
1635 -- references the current last tag (if any). Now we add the tag
1636 -- corresponding with all the interfaces that are not implemented
1637 -- by the parent.
1638
1639 if Present (Interfaces (Typ)) then
1640 Elmt := First_Elmt (Interfaces (Typ));
1641 while Present (Elmt) loop
1642 Add_Tag (Node (Elmt));
1643 Next_Elmt (Elmt);
1644 end loop;
1645 end if;
1646 end Add_Interface_Tag_Components;
1647
1648 -------------------------------------
1649 -- Add_Internal_Interface_Entities --
1650 -------------------------------------
1651
1652 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1653 Elmt : Elmt_Id;
1654 Iface : Entity_Id;
1655 Iface_Elmt : Elmt_Id;
1656 Iface_Prim : Entity_Id;
1657 Ifaces_List : Elist_Id;
1658 New_Subp : Entity_Id := Empty;
1659 Prim : Entity_Id;
1660 Restore_Scope : Boolean := False;
1661
1662 begin
1663 pragma Assert (Ada_Version >= Ada_2005
1664 and then Is_Record_Type (Tagged_Type)
1665 and then Is_Tagged_Type (Tagged_Type)
1666 and then Has_Interfaces (Tagged_Type)
1667 and then not Is_Interface (Tagged_Type));
1668
1669 -- Ensure that the internal entities are added to the scope of the type
1670
1671 if Scope (Tagged_Type) /= Current_Scope then
1672 Push_Scope (Scope (Tagged_Type));
1673 Restore_Scope := True;
1674 end if;
1675
1676 Collect_Interfaces (Tagged_Type, Ifaces_List);
1677
1678 Iface_Elmt := First_Elmt (Ifaces_List);
1679 while Present (Iface_Elmt) loop
1680 Iface := Node (Iface_Elmt);
1681
1682 -- Originally we excluded here from this processing interfaces that
1683 -- are parents of Tagged_Type because their primitives are located
1684 -- in the primary dispatch table (and hence no auxiliary internal
1685 -- entities are required to handle secondary dispatch tables in such
1686 -- case). However, these auxiliary entities are also required to
1687 -- handle derivations of interfaces in formals of generics (see
1688 -- Derive_Subprograms).
1689
1690 Elmt := First_Elmt (Primitive_Operations (Iface));
1691 while Present (Elmt) loop
1692 Iface_Prim := Node (Elmt);
1693
1694 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1695 Prim :=
1696 Find_Primitive_Covering_Interface
1697 (Tagged_Type => Tagged_Type,
1698 Iface_Prim => Iface_Prim);
1699
1700 if No (Prim) and then Serious_Errors_Detected > 0 then
1701 goto Continue;
1702 end if;
1703
1704 pragma Assert (Present (Prim));
1705
1706 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1707 -- differs from the name of the interface primitive then it is
1708 -- a private primitive inherited from a parent type. In such
1709 -- case, given that Tagged_Type covers the interface, the
1710 -- inherited private primitive becomes visible. For such
1711 -- purpose we add a new entity that renames the inherited
1712 -- private primitive.
1713
1714 if Chars (Prim) /= Chars (Iface_Prim) then
1715 pragma Assert (Has_Suffix (Prim, 'P'));
1716 Derive_Subprogram
1717 (New_Subp => New_Subp,
1718 Parent_Subp => Iface_Prim,
1719 Derived_Type => Tagged_Type,
1720 Parent_Type => Iface);
1721 Set_Alias (New_Subp, Prim);
1722 Set_Is_Abstract_Subprogram
1723 (New_Subp, Is_Abstract_Subprogram (Prim));
1724 end if;
1725
1726 Derive_Subprogram
1727 (New_Subp => New_Subp,
1728 Parent_Subp => Iface_Prim,
1729 Derived_Type => Tagged_Type,
1730 Parent_Type => Iface);
1731
1732 declare
1733 Anc : Entity_Id;
1734 begin
1735 if Is_Inherited_Operation (Prim)
1736 and then Present (Alias (Prim))
1737 then
1738 Anc := Alias (Prim);
1739 else
1740 Anc := Overridden_Operation (Prim);
1741 end if;
1742
1743 -- Apply legality checks in RM 6.1.1 (10-13) concerning
1744 -- nonconforming preconditions in both an ancestor and
1745 -- a progenitor operation.
1746
1747 -- If the operation is a primitive wrapper it is an explicit
1748 -- (overriding) operqtion and all is fine.
1749
1750 if Present (Anc)
1751 and then Has_Non_Trivial_Precondition (Anc)
1752 and then Has_Non_Trivial_Precondition (Iface_Prim)
1753 then
1754 if Is_Abstract_Subprogram (Prim)
1755 or else
1756 (Ekind (Prim) = E_Procedure
1757 and then Nkind (Parent (Prim)) =
1758 N_Procedure_Specification
1759 and then Null_Present (Parent (Prim)))
1760 or else Is_Primitive_Wrapper (Prim)
1761 then
1762 null;
1763
1764 -- The operation is inherited and must be overridden
1765
1766 elsif not Comes_From_Source (Prim) then
1767 Error_Msg_NE
1768 ("&inherits non-conforming preconditions and must "
1769 & "be overridden (RM 6.1.1 (10-16)",
1770 Parent (Tagged_Type), Prim);
1771 end if;
1772 end if;
1773 end;
1774
1775 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1776 -- associated with interface types. These entities are
1777 -- only registered in the list of primitives of its
1778 -- corresponding tagged type because they are only used
1779 -- to fill the contents of the secondary dispatch tables.
1780 -- Therefore they are removed from the homonym chains.
1781
1782 Set_Is_Hidden (New_Subp);
1783 Set_Is_Internal (New_Subp);
1784 Set_Alias (New_Subp, Prim);
1785 Set_Is_Abstract_Subprogram
1786 (New_Subp, Is_Abstract_Subprogram (Prim));
1787 Set_Interface_Alias (New_Subp, Iface_Prim);
1788
1789 -- If the returned type is an interface then propagate it to
1790 -- the returned type. Needed by the thunk to generate the code
1791 -- which displaces "this" to reference the corresponding
1792 -- secondary dispatch table in the returned object.
1793
1794 if Is_Interface (Etype (Iface_Prim)) then
1795 Set_Etype (New_Subp, Etype (Iface_Prim));
1796 end if;
1797
1798 -- Internal entities associated with interface types are only
1799 -- registered in the list of primitives of the tagged type.
1800 -- They are only used to fill the contents of the secondary
1801 -- dispatch tables. Therefore they are not needed in the
1802 -- homonym chains.
1803
1804 Remove_Homonym (New_Subp);
1805
1806 -- Hidden entities associated with interfaces must have set
1807 -- the Has_Delay_Freeze attribute to ensure that, in case
1808 -- of locally defined tagged types (or compiling with static
1809 -- dispatch tables generation disabled) the corresponding
1810 -- entry of the secondary dispatch table is filled when such
1811 -- an entity is frozen. This is an expansion activity that must
1812 -- be suppressed for ASIS because it leads to gigi elaboration
1813 -- issues in annotate mode.
1814
1815 if not ASIS_Mode then
1816 Set_Has_Delayed_Freeze (New_Subp);
1817 end if;
1818 end if;
1819
1820 <<Continue>>
1821 Next_Elmt (Elmt);
1822 end loop;
1823
1824 Next_Elmt (Iface_Elmt);
1825 end loop;
1826
1827 if Restore_Scope then
1828 Pop_Scope;
1829 end if;
1830 end Add_Internal_Interface_Entities;
1831
1832 -----------------------------------
1833 -- Analyze_Component_Declaration --
1834 -----------------------------------
1835
1836 procedure Analyze_Component_Declaration (N : Node_Id) is
1837 Loc : constant Source_Ptr := Sloc (Component_Definition (N));
1838 Id : constant Entity_Id := Defining_Identifier (N);
1839 E : constant Node_Id := Expression (N);
1840 Typ : constant Node_Id :=
1841 Subtype_Indication (Component_Definition (N));
1842 T : Entity_Id;
1843 P : Entity_Id;
1844
1845 function Contains_POC (Constr : Node_Id) return Boolean;
1846 -- Determines whether a constraint uses the discriminant of a record
1847 -- type thus becoming a per-object constraint (POC).
1848
1849 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1850 -- Typ is the type of the current component, check whether this type is
1851 -- a limited type. Used to validate declaration against that of
1852 -- enclosing record.
1853
1854 ------------------
1855 -- Contains_POC --
1856 ------------------
1857
1858 function Contains_POC (Constr : Node_Id) return Boolean is
1859 begin
1860 -- Prevent cascaded errors
1861
1862 if Error_Posted (Constr) then
1863 return False;
1864 end if;
1865
1866 case Nkind (Constr) is
1867 when N_Attribute_Reference =>
1868 return Attribute_Name (Constr) = Name_Access
1869 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1870
1871 when N_Discriminant_Association =>
1872 return Denotes_Discriminant (Expression (Constr));
1873
1874 when N_Identifier =>
1875 return Denotes_Discriminant (Constr);
1876
1877 when N_Index_Or_Discriminant_Constraint =>
1878 declare
1879 IDC : Node_Id;
1880
1881 begin
1882 IDC := First (Constraints (Constr));
1883 while Present (IDC) loop
1884
1885 -- One per-object constraint is sufficient
1886
1887 if Contains_POC (IDC) then
1888 return True;
1889 end if;
1890
1891 Next (IDC);
1892 end loop;
1893
1894 return False;
1895 end;
1896
1897 when N_Range =>
1898 return Denotes_Discriminant (Low_Bound (Constr))
1899 or else
1900 Denotes_Discriminant (High_Bound (Constr));
1901
1902 when N_Range_Constraint =>
1903 return Denotes_Discriminant (Range_Expression (Constr));
1904
1905 when others =>
1906 return False;
1907 end case;
1908 end Contains_POC;
1909
1910 ----------------------
1911 -- Is_Known_Limited --
1912 ----------------------
1913
1914 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1915 P : constant Entity_Id := Etype (Typ);
1916 R : constant Entity_Id := Root_Type (Typ);
1917
1918 begin
1919 if Is_Limited_Record (Typ) then
1920 return True;
1921
1922 -- If the root type is limited (and not a limited interface) so is
1923 -- the current type.
1924
1925 elsif Is_Limited_Record (R)
1926 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1927 then
1928 return True;
1929
1930 -- Else the type may have a limited interface progenitor, but a
1931 -- limited record parent that is not an interface.
1932
1933 elsif R /= P
1934 and then Is_Limited_Record (P)
1935 and then not Is_Interface (P)
1936 then
1937 return True;
1938
1939 else
1940 return False;
1941 end if;
1942 end Is_Known_Limited;
1943
1944 -- Start of processing for Analyze_Component_Declaration
1945
1946 begin
1947 Generate_Definition (Id);
1948 Enter_Name (Id);
1949
1950 if Present (Typ) then
1951 T := Find_Type_Of_Object
1952 (Subtype_Indication (Component_Definition (N)), N);
1953
1954 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1955 Check_SPARK_05_Restriction ("subtype mark required", Typ);
1956 end if;
1957
1958 -- Ada 2005 (AI-230): Access Definition case
1959
1960 else
1961 pragma Assert (Present
1962 (Access_Definition (Component_Definition (N))));
1963
1964 T := Access_Definition
1965 (Related_Nod => N,
1966 N => Access_Definition (Component_Definition (N)));
1967 Set_Is_Local_Anonymous_Access (T);
1968
1969 -- Ada 2005 (AI-254)
1970
1971 if Present (Access_To_Subprogram_Definition
1972 (Access_Definition (Component_Definition (N))))
1973 and then Protected_Present (Access_To_Subprogram_Definition
1974 (Access_Definition
1975 (Component_Definition (N))))
1976 then
1977 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1978 end if;
1979 end if;
1980
1981 -- If the subtype is a constrained subtype of the enclosing record,
1982 -- (which must have a partial view) the back-end does not properly
1983 -- handle the recursion. Rewrite the component declaration with an
1984 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1985 -- the tree directly because side effects have already been removed from
1986 -- discriminant constraints.
1987
1988 if Ekind (T) = E_Access_Subtype
1989 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1990 and then Comes_From_Source (T)
1991 and then Nkind (Parent (T)) = N_Subtype_Declaration
1992 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1993 then
1994 Rewrite
1995 (Subtype_Indication (Component_Definition (N)),
1996 New_Copy_Tree (Subtype_Indication (Parent (T))));
1997 T := Find_Type_Of_Object
1998 (Subtype_Indication (Component_Definition (N)), N);
1999 end if;
2000
2001 -- If the component declaration includes a default expression, then we
2002 -- check that the component is not of a limited type (RM 3.7(5)),
2003 -- and do the special preanalysis of the expression (see section on
2004 -- "Handling of Default and Per-Object Expressions" in the spec of
2005 -- package Sem).
2006
2007 if Present (E) then
2008 Check_SPARK_05_Restriction ("default expression is not allowed", E);
2009 Preanalyze_Default_Expression (E, T);
2010 Check_Initialization (T, E);
2011
2012 if Ada_Version >= Ada_2005
2013 and then Ekind (T) = E_Anonymous_Access_Type
2014 and then Etype (E) /= Any_Type
2015 then
2016 -- Check RM 3.9.2(9): "if the expected type for an expression is
2017 -- an anonymous access-to-specific tagged type, then the object
2018 -- designated by the expression shall not be dynamically tagged
2019 -- unless it is a controlling operand in a call on a dispatching
2020 -- operation"
2021
2022 if Is_Tagged_Type (Directly_Designated_Type (T))
2023 and then
2024 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
2025 and then
2026 Ekind (Directly_Designated_Type (Etype (E))) =
2027 E_Class_Wide_Type
2028 then
2029 Error_Msg_N
2030 ("access to specific tagged type required (RM 3.9.2(9))", E);
2031 end if;
2032
2033 -- (Ada 2005: AI-230): Accessibility check for anonymous
2034 -- components
2035
2036 if Type_Access_Level (Etype (E)) >
2037 Deepest_Type_Access_Level (T)
2038 then
2039 Error_Msg_N
2040 ("expression has deeper access level than component " &
2041 "(RM 3.10.2 (12.2))", E);
2042 end if;
2043
2044 -- The initialization expression is a reference to an access
2045 -- discriminant. The type of the discriminant is always deeper
2046 -- than any access type.
2047
2048 if Ekind (Etype (E)) = E_Anonymous_Access_Type
2049 and then Is_Entity_Name (E)
2050 and then Ekind (Entity (E)) = E_In_Parameter
2051 and then Present (Discriminal_Link (Entity (E)))
2052 then
2053 Error_Msg_N
2054 ("discriminant has deeper accessibility level than target",
2055 E);
2056 end if;
2057 end if;
2058 end if;
2059
2060 -- The parent type may be a private view with unknown discriminants,
2061 -- and thus unconstrained. Regular components must be constrained.
2062
2063 if not Is_Definite_Subtype (T) and then Chars (Id) /= Name_uParent then
2064 if Is_Class_Wide_Type (T) then
2065 Error_Msg_N
2066 ("class-wide subtype with unknown discriminants" &
2067 " in component declaration",
2068 Subtype_Indication (Component_Definition (N)));
2069 else
2070 Error_Msg_N
2071 ("unconstrained subtype in component declaration",
2072 Subtype_Indication (Component_Definition (N)));
2073 end if;
2074
2075 -- Components cannot be abstract, except for the special case of
2076 -- the _Parent field (case of extending an abstract tagged type)
2077
2078 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2079 Error_Msg_N ("type of a component cannot be abstract", N);
2080 end if;
2081
2082 Set_Etype (Id, T);
2083 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2084
2085 -- The component declaration may have a per-object constraint, set
2086 -- the appropriate flag in the defining identifier of the subtype.
2087
2088 if Present (Subtype_Indication (Component_Definition (N))) then
2089 declare
2090 Sindic : constant Node_Id :=
2091 Subtype_Indication (Component_Definition (N));
2092 begin
2093 if Nkind (Sindic) = N_Subtype_Indication
2094 and then Present (Constraint (Sindic))
2095 and then Contains_POC (Constraint (Sindic))
2096 then
2097 Set_Has_Per_Object_Constraint (Id);
2098 end if;
2099 end;
2100 end if;
2101
2102 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2103 -- out some static checks.
2104
2105 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2106 Null_Exclusion_Static_Checks (N);
2107 end if;
2108
2109 -- If this component is private (or depends on a private type), flag the
2110 -- record type to indicate that some operations are not available.
2111
2112 P := Private_Component (T);
2113
2114 if Present (P) then
2115
2116 -- Check for circular definitions
2117
2118 if P = Any_Type then
2119 Set_Etype (Id, Any_Type);
2120
2121 -- There is a gap in the visibility of operations only if the
2122 -- component type is not defined in the scope of the record type.
2123
2124 elsif Scope (P) = Scope (Current_Scope) then
2125 null;
2126
2127 elsif Is_Limited_Type (P) then
2128 Set_Is_Limited_Composite (Current_Scope);
2129
2130 else
2131 Set_Is_Private_Composite (Current_Scope);
2132 end if;
2133 end if;
2134
2135 if P /= Any_Type
2136 and then Is_Limited_Type (T)
2137 and then Chars (Id) /= Name_uParent
2138 and then Is_Tagged_Type (Current_Scope)
2139 then
2140 if Is_Derived_Type (Current_Scope)
2141 and then not Is_Known_Limited (Current_Scope)
2142 then
2143 Error_Msg_N
2144 ("extension of nonlimited type cannot have limited components",
2145 N);
2146
2147 if Is_Interface (Root_Type (Current_Scope)) then
2148 Error_Msg_N
2149 ("\limitedness is not inherited from limited interface", N);
2150 Error_Msg_N ("\add LIMITED to type indication", N);
2151 end if;
2152
2153 Explain_Limited_Type (T, N);
2154 Set_Etype (Id, Any_Type);
2155 Set_Is_Limited_Composite (Current_Scope, False);
2156
2157 elsif not Is_Derived_Type (Current_Scope)
2158 and then not Is_Limited_Record (Current_Scope)
2159 and then not Is_Concurrent_Type (Current_Scope)
2160 then
2161 Error_Msg_N
2162 ("nonlimited tagged type cannot have limited components", N);
2163 Explain_Limited_Type (T, N);
2164 Set_Etype (Id, Any_Type);
2165 Set_Is_Limited_Composite (Current_Scope, False);
2166 end if;
2167 end if;
2168
2169 -- If the component is an unconstrained task or protected type with
2170 -- discriminants, the component and the enclosing record are limited
2171 -- and the component is constrained by its default values. Compute
2172 -- its actual subtype, else it may be allocated the maximum size by
2173 -- the backend, and possibly overflow.
2174
2175 if Is_Concurrent_Type (T)
2176 and then not Is_Constrained (T)
2177 and then Has_Discriminants (T)
2178 and then not Has_Discriminants (Current_Scope)
2179 then
2180 declare
2181 Act_T : constant Entity_Id := Build_Default_Subtype (T, N);
2182
2183 begin
2184 Set_Etype (Id, Act_T);
2185
2186 -- Rewrite component definition to use the constrained subtype
2187
2188 Rewrite (Component_Definition (N),
2189 Make_Component_Definition (Loc,
2190 Subtype_Indication => New_Occurrence_Of (Act_T, Loc)));
2191 end;
2192 end if;
2193
2194 Set_Original_Record_Component (Id, Id);
2195
2196 if Has_Aspects (N) then
2197 Analyze_Aspect_Specifications (N, Id);
2198 end if;
2199
2200 Analyze_Dimension (N);
2201 end Analyze_Component_Declaration;
2202
2203 --------------------------
2204 -- Analyze_Declarations --
2205 --------------------------
2206
2207 procedure Analyze_Declarations (L : List_Id) is
2208 Decl : Node_Id;
2209
2210 procedure Adjust_Decl;
2211 -- Adjust Decl not to include implicit label declarations, since these
2212 -- have strange Sloc values that result in elaboration check problems.
2213 -- (They have the sloc of the label as found in the source, and that
2214 -- is ahead of the current declarative part).
2215
2216 procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id);
2217 -- Create the subprogram bodies which verify the run-time semantics of
2218 -- the pragmas listed below for each elibigle type found in declarative
2219 -- list Decls. The pragmas are:
2220 --
2221 -- Default_Initial_Condition
2222 -- Invariant
2223 -- Type_Invariant
2224 --
2225 -- Context denotes the owner of the declarative list.
2226
2227 procedure Check_Entry_Contracts;
2228 -- Perform a preanalysis of the pre- and postconditions of an entry
2229 -- declaration. This must be done before full resolution and creation
2230 -- of the parameter block, etc. to catch illegal uses within the
2231 -- contract expression. Full analysis of the expression is done when
2232 -- the contract is processed.
2233
2234 function Contains_Lib_Incomplete_Type (Pkg : Entity_Id) return Boolean;
2235 -- Check if a nested package has entities within it that rely on library
2236 -- level private types where the full view has not been completed for
2237 -- the purposes of checking if it is acceptable to freeze an expression
2238 -- function at the point of declaration.
2239
2240 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2241 -- Determine whether Body_Decl denotes the body of a late controlled
2242 -- primitive (either Initialize, Adjust or Finalize). If this is the
2243 -- case, add a proper spec if the body lacks one. The spec is inserted
2244 -- before Body_Decl and immediately analyzed.
2245
2246 procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id);
2247 -- Spec_Id is the entity of a package that may define abstract states,
2248 -- and in the case of a child unit, whose ancestors may define abstract
2249 -- states. If the states have partial visible refinement, remove the
2250 -- partial visibility of each constituent at the end of the package
2251 -- spec and body declarations.
2252
2253 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2254 -- Spec_Id is the entity of a package that may define abstract states.
2255 -- If the states have visible refinement, remove the visibility of each
2256 -- constituent at the end of the package body declaration.
2257
2258 procedure Resolve_Aspects;
2259 -- Utility to resolve the expressions of aspects at the end of a list of
2260 -- declarations, or before a declaration that freezes previous entities,
2261 -- such as in a subprogram body.
2262
2263 -----------------
2264 -- Adjust_Decl --
2265 -----------------
2266
2267 procedure Adjust_Decl is
2268 begin
2269 while Present (Prev (Decl))
2270 and then Nkind (Decl) = N_Implicit_Label_Declaration
2271 loop
2272 Prev (Decl);
2273 end loop;
2274 end Adjust_Decl;
2275
2276 ----------------------------
2277 -- Build_Assertion_Bodies --
2278 ----------------------------
2279
2280 procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id) is
2281 procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id);
2282 -- Create the subprogram bodies which verify the run-time semantics
2283 -- of the pragmas listed below for type Typ. The pragmas are:
2284 --
2285 -- Default_Initial_Condition
2286 -- Invariant
2287 -- Type_Invariant
2288
2289 -------------------------------------
2290 -- Build_Assertion_Bodies_For_Type --
2291 -------------------------------------
2292
2293 procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id) is
2294 begin
2295 -- Preanalyze and resolve the Default_Initial_Condition assertion
2296 -- expression at the end of the declarations to catch any errors.
2297
2298 if Has_DIC (Typ) then
2299 Build_DIC_Procedure_Body (Typ);
2300 end if;
2301
2302 if Nkind (Context) = N_Package_Specification then
2303
2304 -- Preanalyze and resolve the class-wide invariants of an
2305 -- interface at the end of whichever declarative part has the
2306 -- interface type. Note that an interface may be declared in
2307 -- any non-package declarative part, but reaching the end of
2308 -- such a declarative part will always freeze the type and
2309 -- generate the invariant procedure (see Freeze_Type).
2310
2311 if Is_Interface (Typ) then
2312
2313 -- Interfaces are treated as the partial view of a private
2314 -- type, in order to achieve uniformity with the general
2315 -- case. As a result, an interface receives only a "partial"
2316 -- invariant procedure, which is never called.
2317
2318 if Has_Own_Invariants (Typ) then
2319 Build_Invariant_Procedure_Body
2320 (Typ => Typ,
2321 Partial_Invariant => True);
2322 end if;
2323
2324 -- Preanalyze and resolve the invariants of a private type
2325 -- at the end of the visible declarations to catch potential
2326 -- errors. Inherited class-wide invariants are not included
2327 -- because they have already been resolved.
2328
2329 elsif Decls = Visible_Declarations (Context)
2330 and then Ekind_In (Typ, E_Limited_Private_Type,
2331 E_Private_Type,
2332 E_Record_Type_With_Private)
2333 and then Has_Own_Invariants (Typ)
2334 then
2335 Build_Invariant_Procedure_Body
2336 (Typ => Typ,
2337 Partial_Invariant => True);
2338
2339 -- Preanalyze and resolve the invariants of a private type's
2340 -- full view at the end of the private declarations to catch
2341 -- potential errors.
2342
2343 elsif Decls = Private_Declarations (Context)
2344 and then not Is_Private_Type (Typ)
2345 and then Has_Private_Declaration (Typ)
2346 and then Has_Invariants (Typ)
2347 then
2348 Build_Invariant_Procedure_Body (Typ);
2349 end if;
2350 end if;
2351 end Build_Assertion_Bodies_For_Type;
2352
2353 -- Local variables
2354
2355 Decl : Node_Id;
2356 Decl_Id : Entity_Id;
2357
2358 -- Start of processing for Build_Assertion_Bodies
2359
2360 begin
2361 Decl := First (Decls);
2362 while Present (Decl) loop
2363 if Is_Declaration (Decl) then
2364 Decl_Id := Defining_Entity (Decl);
2365
2366 if Is_Type (Decl_Id) then
2367 Build_Assertion_Bodies_For_Type (Decl_Id);
2368 end if;
2369 end if;
2370
2371 Next (Decl);
2372 end loop;
2373 end Build_Assertion_Bodies;
2374
2375 ---------------------------
2376 -- Check_Entry_Contracts --
2377 ---------------------------
2378
2379 procedure Check_Entry_Contracts is
2380 ASN : Node_Id;
2381 Ent : Entity_Id;
2382 Exp : Node_Id;
2383
2384 begin
2385 Ent := First_Entity (Current_Scope);
2386 while Present (Ent) loop
2387
2388 -- This only concerns entries with pre/postconditions
2389
2390 if Ekind (Ent) = E_Entry
2391 and then Present (Contract (Ent))
2392 and then Present (Pre_Post_Conditions (Contract (Ent)))
2393 then
2394 ASN := Pre_Post_Conditions (Contract (Ent));
2395 Push_Scope (Ent);
2396 Install_Formals (Ent);
2397
2398 -- Pre/postconditions are rewritten as Check pragmas. Analysis
2399 -- is performed on a copy of the pragma expression, to prevent
2400 -- modifying the original expression.
2401
2402 while Present (ASN) loop
2403 if Nkind (ASN) = N_Pragma then
2404 Exp :=
2405 New_Copy_Tree
2406 (Expression
2407 (First (Pragma_Argument_Associations (ASN))));
2408 Set_Parent (Exp, ASN);
2409
2410 Preanalyze_Assert_Expression (Exp, Standard_Boolean);
2411 end if;
2412
2413 ASN := Next_Pragma (ASN);
2414 end loop;
2415
2416 End_Scope;
2417 end if;
2418
2419 Next_Entity (Ent);
2420 end loop;
2421 end Check_Entry_Contracts;
2422
2423 ----------------------------------
2424 -- Contains_Lib_Incomplete_Type --
2425 ----------------------------------
2426
2427 function Contains_Lib_Incomplete_Type (Pkg : Entity_Id) return Boolean is
2428 Curr : Entity_Id;
2429
2430 begin
2431 -- Avoid looking through scopes that do not meet the precondition of
2432 -- Pkg not being within a library unit spec.
2433
2434 if not Is_Compilation_Unit (Pkg)
2435 and then not Is_Generic_Instance (Pkg)
2436 and then not In_Package_Body (Enclosing_Lib_Unit_Entity (Pkg))
2437 then
2438 -- Loop through all entities in the current scope to identify
2439 -- an entity that depends on a private type.
2440
2441 Curr := First_Entity (Pkg);
2442 loop
2443 if Nkind (Curr) in N_Entity
2444 and then Depends_On_Private (Curr)
2445 then
2446 return True;
2447 end if;
2448
2449 exit when Last_Entity (Current_Scope) = Curr;
2450 Curr := Next_Entity (Curr);
2451 end loop;
2452 end if;
2453
2454 return False;
2455 end Contains_Lib_Incomplete_Type;
2456
2457 --------------------------------------
2458 -- Handle_Late_Controlled_Primitive --
2459 --------------------------------------
2460
2461 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2462 Body_Spec : constant Node_Id := Specification (Body_Decl);
2463 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2464 Loc : constant Source_Ptr := Sloc (Body_Id);
2465 Params : constant List_Id :=
2466 Parameter_Specifications (Body_Spec);
2467 Spec : Node_Id;
2468 Spec_Id : Entity_Id;
2469 Typ : Node_Id;
2470
2471 begin
2472 -- Consider only procedure bodies whose name matches one of the three
2473 -- controlled primitives.
2474
2475 if Nkind (Body_Spec) /= N_Procedure_Specification
2476 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2477 Name_Finalize,
2478 Name_Initialize)
2479 then
2480 return;
2481
2482 -- A controlled primitive must have exactly one formal which is not
2483 -- an anonymous access type.
2484
2485 elsif List_Length (Params) /= 1 then
2486 return;
2487 end if;
2488
2489 Typ := Parameter_Type (First (Params));
2490
2491 if Nkind (Typ) = N_Access_Definition then
2492 return;
2493 end if;
2494
2495 Find_Type (Typ);
2496
2497 -- The type of the formal must be derived from [Limited_]Controlled
2498
2499 if not Is_Controlled (Entity (Typ)) then
2500 return;
2501 end if;
2502
2503 -- Check whether a specification exists for this body. We do not
2504 -- analyze the spec of the body in full, because it will be analyzed
2505 -- again when the body is properly analyzed, and we cannot create
2506 -- duplicate entries in the formals chain. We look for an explicit
2507 -- specification because the body may be an overriding operation and
2508 -- an inherited spec may be present.
2509
2510 Spec_Id := Current_Entity (Body_Id);
2511
2512 while Present (Spec_Id) loop
2513 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure)
2514 and then Scope (Spec_Id) = Current_Scope
2515 and then Present (First_Formal (Spec_Id))
2516 and then No (Next_Formal (First_Formal (Spec_Id)))
2517 and then Etype (First_Formal (Spec_Id)) = Entity (Typ)
2518 and then Comes_From_Source (Spec_Id)
2519 then
2520 return;
2521 end if;
2522
2523 Spec_Id := Homonym (Spec_Id);
2524 end loop;
2525
2526 -- At this point the body is known to be a late controlled primitive.
2527 -- Generate a matching spec and insert it before the body. Note the
2528 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2529 -- tree in this case.
2530
2531 Spec := Copy_Separate_Tree (Body_Spec);
2532
2533 -- Ensure that the subprogram declaration does not inherit the null
2534 -- indicator from the body as we now have a proper spec/body pair.
2535
2536 Set_Null_Present (Spec, False);
2537
2538 -- Ensure that the freeze node is inserted after the declaration of
2539 -- the primitive since its expansion will freeze the primitive.
2540
2541 Decl := Make_Subprogram_Declaration (Loc, Specification => Spec);
2542
2543 Insert_Before_And_Analyze (Body_Decl, Decl);
2544 end Handle_Late_Controlled_Primitive;
2545
2546 ----------------------------------------
2547 -- Remove_Partial_Visible_Refinements --
2548 ----------------------------------------
2549
2550 procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id) is
2551 State_Elmt : Elmt_Id;
2552 begin
2553 if Present (Abstract_States (Spec_Id)) then
2554 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2555 while Present (State_Elmt) loop
2556 Set_Has_Partial_Visible_Refinement (Node (State_Elmt), False);
2557 Next_Elmt (State_Elmt);
2558 end loop;
2559 end if;
2560
2561 -- For a child unit, also hide the partial state refinement from
2562 -- ancestor packages.
2563
2564 if Is_Child_Unit (Spec_Id) then
2565 Remove_Partial_Visible_Refinements (Scope (Spec_Id));
2566 end if;
2567 end Remove_Partial_Visible_Refinements;
2568
2569 --------------------------------
2570 -- Remove_Visible_Refinements --
2571 --------------------------------
2572
2573 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2574 State_Elmt : Elmt_Id;
2575 begin
2576 if Present (Abstract_States (Spec_Id)) then
2577 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2578 while Present (State_Elmt) loop
2579 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2580 Next_Elmt (State_Elmt);
2581 end loop;
2582 end if;
2583 end Remove_Visible_Refinements;
2584
2585 ---------------------
2586 -- Resolve_Aspects --
2587 ---------------------
2588
2589 procedure Resolve_Aspects is
2590 E : Entity_Id;
2591
2592 begin
2593 E := First_Entity (Current_Scope);
2594 while Present (E) loop
2595 Resolve_Aspect_Expressions (E);
2596 Next_Entity (E);
2597 end loop;
2598 end Resolve_Aspects;
2599
2600 -- Local variables
2601
2602 Context : Node_Id := Empty;
2603 Freeze_From : Entity_Id := Empty;
2604 Next_Decl : Node_Id;
2605
2606 Body_Seen : Boolean := False;
2607 -- Flag set when the first body [stub] is encountered
2608
2609 -- Start of processing for Analyze_Declarations
2610
2611 begin
2612 if Restriction_Check_Required (SPARK_05) then
2613 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2614 end if;
2615
2616 Decl := First (L);
2617 while Present (Decl) loop
2618
2619 -- Package spec cannot contain a package declaration in SPARK
2620
2621 if Nkind (Decl) = N_Package_Declaration
2622 and then Nkind (Parent (L)) = N_Package_Specification
2623 then
2624 Check_SPARK_05_Restriction
2625 ("package specification cannot contain a package declaration",
2626 Decl);
2627 end if;
2628
2629 -- Complete analysis of declaration
2630
2631 Analyze (Decl);
2632 Next_Decl := Next (Decl);
2633
2634 if No (Freeze_From) then
2635 Freeze_From := First_Entity (Current_Scope);
2636 end if;
2637
2638 -- At the end of a declarative part, freeze remaining entities
2639 -- declared in it. The end of the visible declarations of package
2640 -- specification is not the end of a declarative part if private
2641 -- declarations are present. The end of a package declaration is a
2642 -- freezing point only if it a library package. A task definition or
2643 -- protected type definition is not a freeze point either. Finally,
2644 -- we do not freeze entities in generic scopes, because there is no
2645 -- code generated for them and freeze nodes will be generated for
2646 -- the instance.
2647
2648 -- The end of a package instantiation is not a freeze point, but
2649 -- for now we make it one, because the generic body is inserted
2650 -- (currently) immediately after. Generic instantiations will not
2651 -- be a freeze point once delayed freezing of bodies is implemented.
2652 -- (This is needed in any case for early instantiations ???).
2653
2654 if No (Next_Decl) then
2655 if Nkind (Parent (L)) = N_Component_List then
2656 null;
2657
2658 elsif Nkind_In (Parent (L), N_Protected_Definition,
2659 N_Task_Definition)
2660 then
2661 Check_Entry_Contracts;
2662
2663 elsif Nkind (Parent (L)) /= N_Package_Specification then
2664 if Nkind (Parent (L)) = N_Package_Body then
2665 Freeze_From := First_Entity (Current_Scope);
2666 end if;
2667
2668 -- There may have been several freezing points previously,
2669 -- for example object declarations or subprogram bodies, but
2670 -- at the end of a declarative part we check freezing from
2671 -- the beginning, even though entities may already be frozen,
2672 -- in order to perform visibility checks on delayed aspects.
2673
2674 Adjust_Decl;
2675
2676 -- If the current scope is a generic subprogram body. Skip the
2677 -- generic formal parameters that are not frozen here.
2678
2679 if Is_Subprogram (Current_Scope)
2680 and then Nkind (Unit_Declaration_Node (Current_Scope)) =
2681 N_Generic_Subprogram_Declaration
2682 and then Present (First_Entity (Current_Scope))
2683 then
2684 while Is_Generic_Formal (Freeze_From) loop
2685 Freeze_From := Next_Entity (Freeze_From);
2686 end loop;
2687
2688 Freeze_All (Freeze_From, Decl);
2689 Freeze_From := Last_Entity (Current_Scope);
2690
2691 else
2692 -- For declarations in a subprogram body there is no issue
2693 -- with name resolution in aspect specifications, but in
2694 -- ASIS mode we need to preanalyze aspect specifications
2695 -- that may otherwise only be analyzed during expansion
2696 -- (e.g. during generation of a related subprogram).
2697
2698 if ASIS_Mode then
2699 Resolve_Aspects;
2700 end if;
2701
2702 Freeze_All (First_Entity (Current_Scope), Decl);
2703 Freeze_From := Last_Entity (Current_Scope);
2704 end if;
2705
2706 -- Current scope is a package specification
2707
2708 elsif Scope (Current_Scope) /= Standard_Standard
2709 and then not Is_Child_Unit (Current_Scope)
2710 and then No (Generic_Parent (Parent (L)))
2711 then
2712 -- ARM rule 13.1.1(11/3): usage names in aspect definitions are
2713 -- resolved at the end of the immediately enclosing declaration
2714 -- list (AI05-0183-1).
2715
2716 Resolve_Aspects;
2717
2718 elsif L /= Visible_Declarations (Parent (L))
2719 or else No (Private_Declarations (Parent (L)))
2720 or else Is_Empty_List (Private_Declarations (Parent (L)))
2721 then
2722 Adjust_Decl;
2723
2724 -- End of a package declaration
2725
2726 -- In compilation mode the expansion of freeze node takes care
2727 -- of resolving expressions of all aspects in the list. In ASIS
2728 -- mode this must be done explicitly.
2729
2730 if ASIS_Mode
2731 and then Scope (Current_Scope) = Standard_Standard
2732 then
2733 Resolve_Aspects;
2734 end if;
2735
2736 -- This is a freeze point because it is the end of a
2737 -- compilation unit.
2738
2739 Freeze_All (First_Entity (Current_Scope), Decl);
2740 Freeze_From := Last_Entity (Current_Scope);
2741
2742 -- At the end of the visible declarations the expressions in
2743 -- aspects of all entities declared so far must be resolved.
2744 -- The entities themselves might be frozen later, and the
2745 -- generated pragmas and attribute definition clauses analyzed
2746 -- in full at that point, but name resolution must take place
2747 -- now.
2748 -- In addition to being the proper semantics, this is mandatory
2749 -- within generic units, because global name capture requires
2750 -- those expressions to be analyzed, given that the generated
2751 -- pragmas do not appear in the original generic tree.
2752
2753 elsif Serious_Errors_Detected = 0 then
2754 Resolve_Aspects;
2755 end if;
2756
2757 -- If next node is a body then freeze all types before the body.
2758 -- An exception occurs for some expander-generated bodies. If these
2759 -- are generated at places where in general language rules would not
2760 -- allow a freeze point, then we assume that the expander has
2761 -- explicitly checked that all required types are properly frozen,
2762 -- and we do not cause general freezing here. This special circuit
2763 -- is used when the encountered body is marked as having already
2764 -- been analyzed.
2765
2766 -- In all other cases (bodies that come from source, and expander
2767 -- generated bodies that have not been analyzed yet), freeze all
2768 -- types now. Note that in the latter case, the expander must take
2769 -- care to attach the bodies at a proper place in the tree so as to
2770 -- not cause unwanted freezing at that point.
2771
2772 -- It is also necessary to check for a case where both an expression
2773 -- function is used and the current scope depends on an incomplete
2774 -- private type from a library unit, otherwise premature freezing of
2775 -- the private type will occur.
2776
2777 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl)
2778 and then ((Nkind (Next_Decl) /= N_Subprogram_Body
2779 or else not Was_Expression_Function (Next_Decl))
2780 or else (not Is_Ignored_Ghost_Entity (Current_Scope)
2781 and then not Contains_Lib_Incomplete_Type
2782 (Current_Scope)))
2783 then
2784 -- When a controlled type is frozen, the expander generates stream
2785 -- and controlled-type support routines. If the freeze is caused
2786 -- by the stand-alone body of Initialize, Adjust, or Finalize, the
2787 -- expander will end up using the wrong version of these routines,
2788 -- as the body has not been processed yet. To remedy this, detect
2789 -- a late controlled primitive and create a proper spec for it.
2790 -- This ensures that the primitive will override its inherited
2791 -- counterpart before the freeze takes place.
2792
2793 -- If the declaration we just processed is a body, do not attempt
2794 -- to examine Next_Decl as the late primitive idiom can only apply
2795 -- to the first encountered body.
2796
2797 -- The spec of the late primitive is not generated in ASIS mode to
2798 -- ensure a consistent list of primitives that indicates the true
2799 -- semantic structure of the program (which is not relevant when
2800 -- generating executable code).
2801
2802 -- ??? A cleaner approach may be possible and/or this solution
2803 -- could be extended to general-purpose late primitives, TBD.
2804
2805 if not ASIS_Mode
2806 and then not Body_Seen
2807 and then not Is_Body (Decl)
2808 then
2809 Body_Seen := True;
2810
2811 if Nkind (Next_Decl) = N_Subprogram_Body then
2812 Handle_Late_Controlled_Primitive (Next_Decl);
2813 end if;
2814
2815 else
2816 -- In ASIS mode, if the next declaration is a body, complete
2817 -- the analysis of declarations so far.
2818
2819 Resolve_Aspects;
2820 end if;
2821
2822 Adjust_Decl;
2823
2824 -- The generated body of an expression function does not freeze,
2825 -- unless it is a completion, in which case only the expression
2826 -- itself freezes. This is handled when the body itself is
2827 -- analyzed (see Freeze_Expr_Types, sem_ch6.adb).
2828
2829 Freeze_All (Freeze_From, Decl);
2830 Freeze_From := Last_Entity (Current_Scope);
2831 end if;
2832
2833 Decl := Next_Decl;
2834 end loop;
2835
2836 -- Post-freezing actions
2837
2838 if Present (L) then
2839 Context := Parent (L);
2840
2841 -- Certain contract annocations have forward visibility semantics and
2842 -- must be analyzed after all declarative items have been processed.
2843 -- This timing ensures that entities referenced by such contracts are
2844 -- visible.
2845
2846 -- Analyze the contract of an immediately enclosing package spec or
2847 -- body first because other contracts may depend on its information.
2848
2849 if Nkind (Context) = N_Package_Body then
2850 Analyze_Package_Body_Contract (Defining_Entity (Context));
2851
2852 elsif Nkind (Context) = N_Package_Specification then
2853 Analyze_Package_Contract (Defining_Entity (Context));
2854 end if;
2855
2856 -- Analyze the contracts of various constructs in the declarative
2857 -- list.
2858
2859 Analyze_Contracts (L);
2860
2861 if Nkind (Context) = N_Package_Body then
2862
2863 -- Ensure that all abstract states and objects declared in the
2864 -- state space of a package body are utilized as constituents.
2865
2866 Check_Unused_Body_States (Defining_Entity (Context));
2867
2868 -- State refinements are visible up to the end of the package body
2869 -- declarations. Hide the state refinements from visibility to
2870 -- restore the original state conditions.
2871
2872 Remove_Visible_Refinements (Corresponding_Spec (Context));
2873 Remove_Partial_Visible_Refinements (Corresponding_Spec (Context));
2874
2875 elsif Nkind (Context) = N_Package_Specification then
2876
2877 -- Partial state refinements are visible up to the end of the
2878 -- package spec declarations. Hide the partial state refinements
2879 -- from visibility to restore the original state conditions.
2880
2881 Remove_Partial_Visible_Refinements (Defining_Entity (Context));
2882 end if;
2883
2884 -- Verify that all abstract states found in any package declared in
2885 -- the input declarative list have proper refinements. The check is
2886 -- performed only when the context denotes a block, entry, package,
2887 -- protected, subprogram, or task body (SPARK RM 7.2.2(3)).
2888
2889 Check_State_Refinements (Context);
2890
2891 -- Create the subprogram bodies which verify the run-time semantics
2892 -- of pragmas Default_Initial_Condition and [Type_]Invariant for all
2893 -- types within the current declarative list. This ensures that all
2894 -- assertion expressions are preanalyzed and resolved at the end of
2895 -- the declarative part. Note that the resolution happens even when
2896 -- freezing does not take place.
2897
2898 Build_Assertion_Bodies (L, Context);
2899 end if;
2900 end Analyze_Declarations;
2901
2902 -----------------------------------
2903 -- Analyze_Full_Type_Declaration --
2904 -----------------------------------
2905
2906 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2907 Def : constant Node_Id := Type_Definition (N);
2908 Def_Id : constant Entity_Id := Defining_Identifier (N);
2909 T : Entity_Id;
2910 Prev : Entity_Id;
2911
2912 Is_Remote : constant Boolean :=
2913 (Is_Remote_Types (Current_Scope)
2914 or else Is_Remote_Call_Interface (Current_Scope))
2915 and then not (In_Private_Part (Current_Scope)
2916 or else In_Package_Body (Current_Scope));
2917
2918 procedure Check_Nonoverridable_Aspects;
2919 -- Apply the rule in RM 13.1.1(18.4/4) on iterator aspects that cannot
2920 -- be overridden, and can only be confirmed on derivation.
2921
2922 procedure Check_Ops_From_Incomplete_Type;
2923 -- If there is a tagged incomplete partial view of the type, traverse
2924 -- the primitives of the incomplete view and change the type of any
2925 -- controlling formals and result to indicate the full view. The
2926 -- primitives will be added to the full type's primitive operations
2927 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2928 -- is called from Process_Incomplete_Dependents).
2929
2930 ----------------------------------
2931 -- Check_Nonoverridable_Aspects --
2932 ----------------------------------
2933
2934 procedure Check_Nonoverridable_Aspects is
2935 function Get_Aspect_Spec
2936 (Specs : List_Id;
2937 Aspect_Name : Name_Id) return Node_Id;
2938 -- Check whether a list of aspect specifications includes an entry
2939 -- for a specific aspect. The list is either that of a partial or
2940 -- a full view.
2941
2942 ---------------------
2943 -- Get_Aspect_Spec --
2944 ---------------------
2945
2946 function Get_Aspect_Spec
2947 (Specs : List_Id;
2948 Aspect_Name : Name_Id) return Node_Id
2949 is
2950 Spec : Node_Id;
2951
2952 begin
2953 Spec := First (Specs);
2954 while Present (Spec) loop
2955 if Chars (Identifier (Spec)) = Aspect_Name then
2956 return Spec;
2957 end if;
2958 Next (Spec);
2959 end loop;
2960
2961 return Empty;
2962 end Get_Aspect_Spec;
2963
2964 -- Local variables
2965
2966 Prev_Aspects : constant List_Id :=
2967 Aspect_Specifications (Parent (Def_Id));
2968 Par_Type : Entity_Id;
2969 Prev_Aspect : Node_Id;
2970
2971 -- Start of processing for Check_Nonoverridable_Aspects
2972
2973 begin
2974 -- Get parent type of derived type. Note that Prev is the entity in
2975 -- the partial declaration, but its contents are now those of full
2976 -- view, while Def_Id reflects the partial view.
2977
2978 if Is_Private_Type (Def_Id) then
2979 Par_Type := Etype (Full_View (Def_Id));
2980 else
2981 Par_Type := Etype (Def_Id);
2982 end if;
2983
2984 -- If there is an inherited Implicit_Dereference, verify that it is
2985 -- made explicit in the partial view.
2986
2987 if Has_Discriminants (Base_Type (Par_Type))
2988 and then Nkind (Parent (Prev)) = N_Full_Type_Declaration
2989 and then Present (Discriminant_Specifications (Parent (Prev)))
2990 and then Present (Get_Reference_Discriminant (Par_Type))
2991 then
2992 Prev_Aspect :=
2993 Get_Aspect_Spec (Prev_Aspects, Name_Implicit_Dereference);
2994
2995 if No (Prev_Aspect)
2996 and then Present
2997 (Discriminant_Specifications
2998 (Original_Node (Parent (Prev))))
2999 then
3000 Error_Msg_N
3001 ("type does not inherit implicit dereference", Prev);
3002
3003 else
3004 -- If one of the views has the aspect specified, verify that it
3005 -- is consistent with that of the parent.
3006
3007 declare
3008 Par_Discr : constant Entity_Id :=
3009 Get_Reference_Discriminant (Par_Type);
3010 Cur_Discr : constant Entity_Id :=
3011 Get_Reference_Discriminant (Prev);
3012
3013 begin
3014 if Corresponding_Discriminant (Cur_Discr) /= Par_Discr then
3015 Error_Msg_N ("aspect incosistent with that of parent", N);
3016 end if;
3017
3018 -- Check that specification in partial view matches the
3019 -- inherited aspect. Compare names directly because aspect
3020 -- expression may not be analyzed.
3021
3022 if Present (Prev_Aspect)
3023 and then Nkind (Expression (Prev_Aspect)) = N_Identifier
3024 and then Chars (Expression (Prev_Aspect)) /=
3025 Chars (Cur_Discr)
3026 then
3027 Error_Msg_N
3028 ("aspect incosistent with that of parent", N);
3029 end if;
3030 end;
3031 end if;
3032 end if;
3033
3034 -- TBD : other nonoverridable aspects.
3035 end Check_Nonoverridable_Aspects;
3036
3037 ------------------------------------
3038 -- Check_Ops_From_Incomplete_Type --
3039 ------------------------------------
3040
3041 procedure Check_Ops_From_Incomplete_Type is
3042 Elmt : Elmt_Id;
3043 Formal : Entity_Id;
3044 Op : Entity_Id;
3045
3046 begin
3047 if Prev /= T
3048 and then Ekind (Prev) = E_Incomplete_Type
3049 and then Is_Tagged_Type (Prev)
3050 and then Is_Tagged_Type (T)
3051 then
3052 Elmt := First_Elmt (Primitive_Operations (Prev));
3053 while Present (Elmt) loop
3054 Op := Node (Elmt);
3055
3056 Formal := First_Formal (Op);
3057 while Present (Formal) loop
3058 if Etype (Formal) = Prev then
3059 Set_Etype (Formal, T);
3060 end if;
3061
3062 Next_Formal (Formal);
3063 end loop;
3064
3065 if Etype (Op) = Prev then
3066 Set_Etype (Op, T);
3067 end if;
3068
3069 Next_Elmt (Elmt);
3070 end loop;
3071 end if;
3072 end Check_Ops_From_Incomplete_Type;
3073
3074 -- Start of processing for Analyze_Full_Type_Declaration
3075
3076 begin
3077 Prev := Find_Type_Name (N);
3078
3079 -- The full view, if present, now points to the current type. If there
3080 -- is an incomplete partial view, set a link to it, to simplify the
3081 -- retrieval of primitive operations of the type.
3082
3083 -- Ada 2005 (AI-50217): If the type was previously decorated when
3084 -- imported through a LIMITED WITH clause, it appears as incomplete
3085 -- but has no full view.
3086
3087 if Ekind (Prev) = E_Incomplete_Type
3088 and then Present (Full_View (Prev))
3089 then
3090 T := Full_View (Prev);
3091 Set_Incomplete_View (N, Parent (Prev));
3092 else
3093 T := Prev;
3094 end if;
3095
3096 Set_Is_Pure (T, Is_Pure (Current_Scope));
3097
3098 -- We set the flag Is_First_Subtype here. It is needed to set the
3099 -- corresponding flag for the Implicit class-wide-type created
3100 -- during tagged types processing.
3101
3102 Set_Is_First_Subtype (T, True);
3103
3104 -- Only composite types other than array types are allowed to have
3105 -- discriminants.
3106
3107 case Nkind (Def) is
3108
3109 -- For derived types, the rule will be checked once we've figured
3110 -- out the parent type.
3111
3112 when N_Derived_Type_Definition =>
3113 null;
3114
3115 -- For record types, discriminants are allowed, unless we are in
3116 -- SPARK.
3117
3118 when N_Record_Definition =>
3119 if Present (Discriminant_Specifications (N)) then
3120 Check_SPARK_05_Restriction
3121 ("discriminant type is not allowed",
3122 Defining_Identifier
3123 (First (Discriminant_Specifications (N))));
3124 end if;
3125
3126 when others =>
3127 if Present (Discriminant_Specifications (N)) then
3128 Error_Msg_N
3129 ("elementary or array type cannot have discriminants",
3130 Defining_Identifier
3131 (First (Discriminant_Specifications (N))));
3132 end if;
3133 end case;
3134
3135 -- Elaborate the type definition according to kind, and generate
3136 -- subsidiary (implicit) subtypes where needed. We skip this if it was
3137 -- already done (this happens during the reanalysis that follows a call
3138 -- to the high level optimizer).
3139
3140 if not Analyzed (T) then
3141 Set_Analyzed (T);
3142
3143 -- Set the SPARK mode from the current context
3144
3145 Set_SPARK_Pragma (T, SPARK_Mode_Pragma);
3146 Set_SPARK_Pragma_Inherited (T);
3147
3148 case Nkind (Def) is
3149 when N_Access_To_Subprogram_Definition =>
3150 Access_Subprogram_Declaration (T, Def);
3151
3152 -- If this is a remote access to subprogram, we must create the
3153 -- equivalent fat pointer type, and related subprograms.
3154
3155 if Is_Remote then
3156 Process_Remote_AST_Declaration (N);
3157 end if;
3158
3159 -- Validate categorization rule against access type declaration
3160 -- usually a violation in Pure unit, Shared_Passive unit.
3161
3162 Validate_Access_Type_Declaration (T, N);
3163
3164 when N_Access_To_Object_Definition =>
3165 Access_Type_Declaration (T, Def);
3166
3167 -- Validate categorization rule against access type declaration
3168 -- usually a violation in Pure unit, Shared_Passive unit.
3169
3170 Validate_Access_Type_Declaration (T, N);
3171
3172 -- If we are in a Remote_Call_Interface package and define a
3173 -- RACW, then calling stubs and specific stream attributes
3174 -- must be added.
3175
3176 if Is_Remote
3177 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
3178 then
3179 Add_RACW_Features (Def_Id);
3180 end if;
3181
3182 when N_Array_Type_Definition =>
3183 Array_Type_Declaration (T, Def);
3184
3185 when N_Derived_Type_Definition =>
3186 Derived_Type_Declaration (T, N, T /= Def_Id);
3187
3188 -- Inherit predicates from parent, and protect against illegal
3189 -- derivations.
3190
3191 if Is_Type (T) and then Has_Predicates (T) then
3192 Set_Has_Predicates (Def_Id);
3193 end if;
3194
3195 -- Save the scenario for examination by the ABE Processing
3196 -- phase.
3197
3198 Record_Elaboration_Scenario (N);
3199
3200 when N_Enumeration_Type_Definition =>
3201 Enumeration_Type_Declaration (T, Def);
3202
3203 when N_Floating_Point_Definition =>
3204 Floating_Point_Type_Declaration (T, Def);
3205
3206 when N_Decimal_Fixed_Point_Definition =>
3207 Decimal_Fixed_Point_Type_Declaration (T, Def);
3208
3209 when N_Ordinary_Fixed_Point_Definition =>
3210 Ordinary_Fixed_Point_Type_Declaration (T, Def);
3211
3212 when N_Signed_Integer_Type_Definition =>
3213 Signed_Integer_Type_Declaration (T, Def);
3214
3215 when N_Modular_Type_Definition =>
3216 Modular_Type_Declaration (T, Def);
3217
3218 when N_Record_Definition =>
3219 Record_Type_Declaration (T, N, Prev);
3220
3221 -- If declaration has a parse error, nothing to elaborate.
3222
3223 when N_Error =>
3224 null;
3225
3226 when others =>
3227 raise Program_Error;
3228 end case;
3229 end if;
3230
3231 if Etype (T) = Any_Type then
3232 return;
3233 end if;
3234
3235 -- Controlled type is not allowed in SPARK
3236
3237 if Is_Visibly_Controlled (T) then
3238 Check_SPARK_05_Restriction ("controlled type is not allowed", N);
3239 end if;
3240
3241 -- Some common processing for all types
3242
3243 Set_Depends_On_Private (T, Has_Private_Component (T));
3244 Check_Ops_From_Incomplete_Type;
3245
3246 -- Both the declared entity, and its anonymous base type if one was
3247 -- created, need freeze nodes allocated.
3248
3249 declare
3250 B : constant Entity_Id := Base_Type (T);
3251
3252 begin
3253 -- In the case where the base type differs from the first subtype, we
3254 -- pre-allocate a freeze node, and set the proper link to the first
3255 -- subtype. Freeze_Entity will use this preallocated freeze node when
3256 -- it freezes the entity.
3257
3258 -- This does not apply if the base type is a generic type, whose
3259 -- declaration is independent of the current derived definition.
3260
3261 if B /= T and then not Is_Generic_Type (B) then
3262 Ensure_Freeze_Node (B);
3263 Set_First_Subtype_Link (Freeze_Node (B), T);
3264 end if;
3265
3266 -- A type that is imported through a limited_with clause cannot
3267 -- generate any code, and thus need not be frozen. However, an access
3268 -- type with an imported designated type needs a finalization list,
3269 -- which may be referenced in some other package that has non-limited
3270 -- visibility on the designated type. Thus we must create the
3271 -- finalization list at the point the access type is frozen, to
3272 -- prevent unsatisfied references at link time.
3273
3274 if not From_Limited_With (T) or else Is_Access_Type (T) then
3275 Set_Has_Delayed_Freeze (T);
3276 end if;
3277 end;
3278
3279 -- Case where T is the full declaration of some private type which has
3280 -- been swapped in Defining_Identifier (N).
3281
3282 if T /= Def_Id and then Is_Private_Type (Def_Id) then
3283 Process_Full_View (N, T, Def_Id);
3284
3285 -- Record the reference. The form of this is a little strange, since
3286 -- the full declaration has been swapped in. So the first parameter
3287 -- here represents the entity to which a reference is made which is
3288 -- the "real" entity, i.e. the one swapped in, and the second
3289 -- parameter provides the reference location.
3290
3291 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
3292 -- since we don't want a complaint about the full type being an
3293 -- unwanted reference to the private type
3294
3295 declare
3296 B : constant Boolean := Has_Pragma_Unreferenced (T);
3297 begin
3298 Set_Has_Pragma_Unreferenced (T, False);
3299 Generate_Reference (T, T, 'c');
3300 Set_Has_Pragma_Unreferenced (T, B);
3301 end;
3302
3303 Set_Completion_Referenced (Def_Id);
3304
3305 -- For completion of incomplete type, process incomplete dependents
3306 -- and always mark the full type as referenced (it is the incomplete
3307 -- type that we get for any real reference).
3308
3309 elsif Ekind (Prev) = E_Incomplete_Type then
3310 Process_Incomplete_Dependents (N, T, Prev);
3311 Generate_Reference (Prev, Def_Id, 'c');
3312 Set_Completion_Referenced (Def_Id);
3313
3314 -- If not private type or incomplete type completion, this is a real
3315 -- definition of a new entity, so record it.
3316
3317 else
3318 Generate_Definition (Def_Id);
3319 end if;
3320
3321 -- Propagate any pending access types whose finalization masters need to
3322 -- be fully initialized from the partial to the full view. Guard against
3323 -- an illegal full view that remains unanalyzed.
3324
3325 if Is_Type (Def_Id) and then Is_Incomplete_Or_Private_Type (Prev) then
3326 Set_Pending_Access_Types (Def_Id, Pending_Access_Types (Prev));
3327 end if;
3328
3329 if Chars (Scope (Def_Id)) = Name_System
3330 and then Chars (Def_Id) = Name_Address
3331 and then In_Predefined_Unit (N)
3332 then
3333 Set_Is_Descendant_Of_Address (Def_Id);
3334 Set_Is_Descendant_Of_Address (Base_Type (Def_Id));
3335 Set_Is_Descendant_Of_Address (Prev);
3336 end if;
3337
3338 Set_Optimize_Alignment_Flags (Def_Id);
3339 Check_Eliminated (Def_Id);
3340
3341 -- If the declaration is a completion and aspects are present, apply
3342 -- them to the entity for the type which is currently the partial
3343 -- view, but which is the one that will be frozen.
3344
3345 if Has_Aspects (N) then
3346
3347 -- In most cases the partial view is a private type, and both views
3348 -- appear in different declarative parts. In the unusual case where
3349 -- the partial view is incomplete, perform the analysis on the
3350 -- full view, to prevent freezing anomalies with the corresponding
3351 -- class-wide type, which otherwise might be frozen before the
3352 -- dispatch table is built.
3353
3354 if Prev /= Def_Id
3355 and then Ekind (Prev) /= E_Incomplete_Type
3356 then
3357 Analyze_Aspect_Specifications (N, Prev);
3358
3359 -- Normal case
3360
3361 else
3362 Analyze_Aspect_Specifications (N, Def_Id);
3363 end if;
3364 end if;
3365
3366 if Is_Derived_Type (Prev)
3367 and then Def_Id /= Prev
3368 then
3369 Check_Nonoverridable_Aspects;
3370 end if;
3371 end Analyze_Full_Type_Declaration;
3372
3373 ----------------------------------
3374 -- Analyze_Incomplete_Type_Decl --
3375 ----------------------------------
3376
3377 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
3378 F : constant Boolean := Is_Pure (Current_Scope);
3379 T : Entity_Id;
3380
3381 begin
3382 Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
3383
3384 Generate_Definition (Defining_Identifier (N));
3385
3386 -- Process an incomplete declaration. The identifier must not have been
3387 -- declared already in the scope. However, an incomplete declaration may
3388 -- appear in the private part of a package, for a private type that has
3389 -- already been declared.
3390
3391 -- In this case, the discriminants (if any) must match
3392
3393 T := Find_Type_Name (N);
3394
3395 Set_Ekind (T, E_Incomplete_Type);
3396 Set_Etype (T, T);
3397 Set_Is_First_Subtype (T);
3398 Init_Size_Align (T);
3399
3400 -- Set the SPARK mode from the current context
3401
3402 Set_SPARK_Pragma (T, SPARK_Mode_Pragma);
3403 Set_SPARK_Pragma_Inherited (T);
3404
3405 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
3406 -- incomplete types.
3407
3408 if Tagged_Present (N) then
3409 Set_Is_Tagged_Type (T, True);
3410 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3411 Make_Class_Wide_Type (T);
3412 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3413 end if;
3414
3415 Set_Stored_Constraint (T, No_Elist);
3416
3417 if Present (Discriminant_Specifications (N)) then
3418 Push_Scope (T);
3419 Process_Discriminants (N);
3420 End_Scope;
3421 end if;
3422
3423 -- If the type has discriminants, nontrivial subtypes may be declared
3424 -- before the full view of the type. The full views of those subtypes
3425 -- will be built after the full view of the type.
3426
3427 Set_Private_Dependents (T, New_Elmt_List);
3428 Set_Is_Pure (T, F);
3429 end Analyze_Incomplete_Type_Decl;
3430
3431 -----------------------------------
3432 -- Analyze_Interface_Declaration --
3433 -----------------------------------
3434
3435 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
3436 CW : constant Entity_Id := Class_Wide_Type (T);
3437
3438 begin
3439 Set_Is_Tagged_Type (T);
3440 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3441
3442 Set_Is_Limited_Record (T, Limited_Present (Def)
3443 or else Task_Present (Def)
3444 or else Protected_Present (Def)
3445 or else Synchronized_Present (Def));
3446
3447 -- Type is abstract if full declaration carries keyword, or if previous
3448 -- partial view did.
3449
3450 Set_Is_Abstract_Type (T);
3451 Set_Is_Interface (T);
3452
3453 -- Type is a limited interface if it includes the keyword limited, task,
3454 -- protected, or synchronized.
3455
3456 Set_Is_Limited_Interface
3457 (T, Limited_Present (Def)
3458 or else Protected_Present (Def)
3459 or else Synchronized_Present (Def)
3460 or else Task_Present (Def));
3461
3462 Set_Interfaces (T, New_Elmt_List);
3463 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3464
3465 -- Complete the decoration of the class-wide entity if it was already
3466 -- built (i.e. during the creation of the limited view)
3467
3468 if Present (CW) then
3469 Set_Is_Interface (CW);
3470 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
3471 end if;
3472
3473 -- Check runtime support for synchronized interfaces
3474
3475 if (Is_Task_Interface (T)
3476 or else Is_Protected_Interface (T)
3477 or else Is_Synchronized_Interface (T))
3478 and then not RTE_Available (RE_Select_Specific_Data)
3479 then
3480 Error_Msg_CRT ("synchronized interfaces", T);
3481 end if;
3482 end Analyze_Interface_Declaration;
3483
3484 -----------------------------
3485 -- Analyze_Itype_Reference --
3486 -----------------------------
3487
3488 -- Nothing to do. This node is placed in the tree only for the benefit of
3489 -- back end processing, and has no effect on the semantic processing.
3490
3491 procedure Analyze_Itype_Reference (N : Node_Id) is
3492 begin
3493 pragma Assert (Is_Itype (Itype (N)));
3494 null;
3495 end Analyze_Itype_Reference;
3496
3497 --------------------------------
3498 -- Analyze_Number_Declaration --
3499 --------------------------------
3500
3501 procedure Analyze_Number_Declaration (N : Node_Id) is
3502 E : constant Node_Id := Expression (N);
3503 Id : constant Entity_Id := Defining_Identifier (N);
3504 Index : Interp_Index;
3505 It : Interp;
3506 T : Entity_Id;
3507
3508 begin
3509 Generate_Definition (Id);
3510 Enter_Name (Id);
3511
3512 -- This is an optimization of a common case of an integer literal
3513
3514 if Nkind (E) = N_Integer_Literal then
3515 Set_Is_Static_Expression (E, True);
3516 Set_Etype (E, Universal_Integer);
3517
3518 Set_Etype (Id, Universal_Integer);
3519 Set_Ekind (Id, E_Named_Integer);
3520 Set_Is_Frozen (Id, True);
3521 return;
3522 end if;
3523
3524 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3525
3526 -- Process expression, replacing error by integer zero, to avoid
3527 -- cascaded errors or aborts further along in the processing
3528
3529 -- Replace Error by integer zero, which seems least likely to cause
3530 -- cascaded errors.
3531
3532 if E = Error then
3533 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
3534 Set_Error_Posted (E);
3535 end if;
3536
3537 Analyze (E);
3538
3539 -- Verify that the expression is static and numeric. If
3540 -- the expression is overloaded, we apply the preference
3541 -- rule that favors root numeric types.
3542
3543 if not Is_Overloaded (E) then
3544 T := Etype (E);
3545 if Has_Dynamic_Predicate_Aspect (T) then
3546 Error_Msg_N
3547 ("subtype has dynamic predicate, "
3548 & "not allowed in number declaration", N);
3549 end if;
3550
3551 else
3552 T := Any_Type;
3553
3554 Get_First_Interp (E, Index, It);
3555 while Present (It.Typ) loop
3556 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
3557 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
3558 then
3559 if T = Any_Type then
3560 T := It.Typ;
3561
3562 elsif It.Typ = Universal_Real
3563 or else
3564 It.Typ = Universal_Integer
3565 then
3566 -- Choose universal interpretation over any other
3567
3568 T := It.Typ;
3569 exit;
3570 end if;
3571 end if;
3572
3573 Get_Next_Interp (Index, It);
3574 end loop;
3575 end if;
3576
3577 if Is_Integer_Type (T) then
3578 Resolve (E, T);
3579 Set_Etype (Id, Universal_Integer);
3580 Set_Ekind (Id, E_Named_Integer);
3581
3582 elsif Is_Real_Type (T) then
3583
3584 -- Because the real value is converted to universal_real, this is a
3585 -- legal context for a universal fixed expression.
3586
3587 if T = Universal_Fixed then
3588 declare
3589 Loc : constant Source_Ptr := Sloc (N);
3590 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3591 Subtype_Mark =>
3592 New_Occurrence_Of (Universal_Real, Loc),
3593 Expression => Relocate_Node (E));
3594
3595 begin
3596 Rewrite (E, Conv);
3597 Analyze (E);
3598 end;
3599
3600 elsif T = Any_Fixed then
3601 Error_Msg_N ("illegal context for mixed mode operation", E);
3602
3603 -- Expression is of the form : universal_fixed * integer. Try to
3604 -- resolve as universal_real.
3605
3606 T := Universal_Real;
3607 Set_Etype (E, T);
3608 end if;
3609
3610 Resolve (E, T);
3611 Set_Etype (Id, Universal_Real);
3612 Set_Ekind (Id, E_Named_Real);
3613
3614 else
3615 Wrong_Type (E, Any_Numeric);
3616 Resolve (E, T);
3617
3618 Set_Etype (Id, T);
3619 Set_Ekind (Id, E_Constant);
3620 Set_Never_Set_In_Source (Id, True);
3621 Set_Is_True_Constant (Id, True);
3622 return;
3623 end if;
3624
3625 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3626 Set_Etype (E, Etype (Id));
3627 end if;
3628
3629 if not Is_OK_Static_Expression (E) then
3630 Flag_Non_Static_Expr
3631 ("non-static expression used in number declaration!", E);
3632 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3633 Set_Etype (E, Any_Type);
3634 end if;
3635
3636 Analyze_Dimension (N);
3637 end Analyze_Number_Declaration;
3638
3639 --------------------------------
3640 -- Analyze_Object_Declaration --
3641 --------------------------------
3642
3643 -- WARNING: This routine manages Ghost regions. Return statements must be
3644 -- replaced by gotos which jump to the end of the routine and restore the
3645 -- Ghost mode.
3646
3647 procedure Analyze_Object_Declaration (N : Node_Id) is
3648 Loc : constant Source_Ptr := Sloc (N);
3649 Id : constant Entity_Id := Defining_Identifier (N);
3650 Act_T : Entity_Id;
3651 T : Entity_Id;
3652
3653 E : Node_Id := Expression (N);
3654 -- E is set to Expression (N) throughout this routine. When Expression
3655 -- (N) is modified, E is changed accordingly.
3656
3657 Prev_Entity : Entity_Id := Empty;
3658
3659 procedure Check_Dynamic_Object (Typ : Entity_Id);
3660 -- A library-level object with nonstatic discriminant constraints may
3661 -- require dynamic allocation. The declaration is illegal if the
3662 -- profile includes the restriction No_Implicit_Heap_Allocations.
3663
3664 procedure Check_For_Null_Excluding_Components
3665 (Obj_Typ : Entity_Id;
3666 Obj_Decl : Node_Id);
3667 -- Verify that each null-excluding component of object declaration
3668 -- Obj_Decl carrying type Obj_Typ has explicit initialization. Emit
3669 -- a compile-time warning if this is not the case.
3670
3671 function Count_Tasks (T : Entity_Id) return Uint;
3672 -- This function is called when a non-generic library level object of a
3673 -- task type is declared. Its function is to count the static number of
3674 -- tasks declared within the type (it is only called if Has_Task is set
3675 -- for T). As a side effect, if an array of tasks with nonstatic bounds
3676 -- or a variant record type is encountered, Check_Restriction is called
3677 -- indicating the count is unknown.
3678
3679 function Delayed_Aspect_Present return Boolean;
3680 -- If the declaration has an expression that is an aggregate, and it
3681 -- has aspects that require delayed analysis, the resolution of the
3682 -- aggregate must be deferred to the freeze point of the object. This
3683 -- special processing was created for address clauses, but it must
3684 -- also apply to Alignment. This must be done before the aspect
3685 -- specifications are analyzed because we must handle the aggregate
3686 -- before the analysis of the object declaration is complete.
3687
3688 -- Any other relevant delayed aspects on object declarations ???
3689
3690 --------------------------
3691 -- Check_Dynamic_Object --
3692 --------------------------
3693
3694 procedure Check_Dynamic_Object (Typ : Entity_Id) is
3695 Comp : Entity_Id;
3696 Obj_Type : Entity_Id;
3697
3698 begin
3699 Obj_Type := Typ;
3700
3701 if Is_Private_Type (Obj_Type)
3702 and then Present (Full_View (Obj_Type))
3703 then
3704 Obj_Type := Full_View (Obj_Type);
3705 end if;
3706
3707 if Known_Static_Esize (Obj_Type) then
3708 return;
3709 end if;
3710
3711 if Restriction_Active (No_Implicit_Heap_Allocations)
3712 and then Expander_Active
3713 and then Has_Discriminants (Obj_Type)
3714 then
3715 Comp := First_Component (Obj_Type);
3716 while Present (Comp) loop
3717 if Known_Static_Esize (Etype (Comp))
3718 or else Size_Known_At_Compile_Time (Etype (Comp))
3719 then
3720 null;
3721
3722 elsif not Discriminated_Size (Comp)
3723 and then Comes_From_Source (Comp)
3724 then
3725 Error_Msg_NE
3726 ("component& of non-static size will violate restriction "
3727 & "No_Implicit_Heap_Allocation?", N, Comp);
3728
3729 elsif Is_Record_Type (Etype (Comp)) then
3730 Check_Dynamic_Object (Etype (Comp));
3731 end if;
3732
3733 Next_Component (Comp);
3734 end loop;
3735 end if;
3736 end Check_Dynamic_Object;
3737
3738 -----------------------------------------
3739 -- Check_For_Null_Excluding_Components --
3740 -----------------------------------------
3741
3742 procedure Check_For_Null_Excluding_Components
3743 (Obj_Typ : Entity_Id;
3744 Obj_Decl : Node_Id)
3745 is
3746 procedure Check_Component
3747 (Comp_Typ : Entity_Id;
3748 Comp_Decl : Node_Id := Empty;
3749 Array_Comp : Boolean := False);
3750 -- Apply a compile-time null-exclusion check on a component denoted
3751 -- by its declaration Comp_Decl and type Comp_Typ, and all of its
3752 -- subcomponents (if any).
3753
3754 ---------------------
3755 -- Check_Component --
3756 ---------------------
3757
3758 procedure Check_Component
3759 (Comp_Typ : Entity_Id;
3760 Comp_Decl : Node_Id := Empty;
3761 Array_Comp : Boolean := False)
3762 is
3763 Comp : Entity_Id;
3764 T : Entity_Id;
3765
3766 begin
3767 -- Do not consider internally-generated components or those that
3768 -- are already initialized.
3769
3770 if Present (Comp_Decl)
3771 and then (not Comes_From_Source (Comp_Decl)
3772 or else Present (Expression (Comp_Decl)))
3773 then
3774 return;
3775 end if;
3776
3777 if Is_Incomplete_Or_Private_Type (Comp_Typ)
3778 and then Present (Full_View (Comp_Typ))
3779 then
3780 T := Full_View (Comp_Typ);
3781 else
3782 T := Comp_Typ;
3783 end if;
3784
3785 -- Verify a component of a null-excluding access type
3786
3787 if Is_Access_Type (T)
3788 and then Can_Never_Be_Null (T)
3789 then
3790 if Comp_Decl = Obj_Decl then
3791 Null_Exclusion_Static_Checks
3792 (N => Obj_Decl,
3793 Comp => Empty,
3794 Array_Comp => Array_Comp);
3795
3796 else
3797 Null_Exclusion_Static_Checks
3798 (N => Obj_Decl,
3799 Comp => Comp_Decl,
3800 Array_Comp => Array_Comp);
3801 end if;
3802
3803 -- Check array components
3804
3805 elsif Is_Array_Type (T) then
3806
3807 -- There is no suitable component when the object is of an
3808 -- array type. However, a namable component may appear at some
3809 -- point during the recursive inspection, but not at the top
3810 -- level. At the top level just indicate array component case.
3811
3812 if Comp_Decl = Obj_Decl then
3813 Check_Component (Component_Type (T), Array_Comp => True);
3814 else
3815 Check_Component (Component_Type (T), Comp_Decl);
3816 end if;
3817
3818 -- Verify all components of type T
3819
3820 -- Note: No checks are performed on types with discriminants due
3821 -- to complexities involving variants. ???
3822
3823 elsif (Is_Concurrent_Type (T)
3824 or else Is_Incomplete_Or_Private_Type (T)
3825 or else Is_Record_Type (T))
3826 and then not Has_Discriminants (T)
3827 then
3828 Comp := First_Component (T);
3829 while Present (Comp) loop
3830 Check_Component (Etype (Comp), Parent (Comp));
3831
3832 Comp := Next_Component (Comp);
3833 end loop;
3834 end if;
3835 end Check_Component;
3836
3837 -- Start processing for Check_For_Null_Excluding_Components
3838
3839 begin
3840 Check_Component (Obj_Typ, Obj_Decl);
3841 end Check_For_Null_Excluding_Components;
3842
3843 -----------------
3844 -- Count_Tasks --
3845 -----------------
3846
3847 function Count_Tasks (T : Entity_Id) return Uint is
3848 C : Entity_Id;
3849 X : Node_Id;
3850 V : Uint;
3851
3852 begin
3853 if Is_Task_Type (T) then
3854 return Uint_1;
3855
3856 elsif Is_Record_Type (T) then
3857 if Has_Discriminants (T) then
3858 Check_Restriction (Max_Tasks, N);
3859 return Uint_0;
3860
3861 else
3862 V := Uint_0;
3863 C := First_Component (T);
3864 while Present (C) loop
3865 V := V + Count_Tasks (Etype (C));
3866 Next_Component (C);
3867 end loop;
3868
3869 return V;
3870 end if;
3871
3872 elsif Is_Array_Type (T) then
3873 X := First_Index (T);
3874 V := Count_Tasks (Component_Type (T));
3875 while Present (X) loop
3876 C := Etype (X);
3877
3878 if not Is_OK_Static_Subtype (C) then
3879 Check_Restriction (Max_Tasks, N);
3880 return Uint_0;
3881 else
3882 V := V * (UI_Max (Uint_0,
3883 Expr_Value (Type_High_Bound (C)) -
3884 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3885 end if;
3886
3887 Next_Index (X);
3888 end loop;
3889
3890 return V;
3891
3892 else
3893 return Uint_0;
3894 end if;
3895 end Count_Tasks;
3896
3897 ----------------------------
3898 -- Delayed_Aspect_Present --
3899 ----------------------------
3900
3901 function Delayed_Aspect_Present return Boolean is
3902 A : Node_Id;
3903 A_Id : Aspect_Id;
3904
3905 begin
3906 if Present (Aspect_Specifications (N)) then
3907 A := First (Aspect_Specifications (N));
3908 A_Id := Get_Aspect_Id (Chars (Identifier (A)));
3909 while Present (A) loop
3910 if A_Id = Aspect_Alignment or else A_Id = Aspect_Address then
3911 return True;
3912 end if;
3913
3914 Next (A);
3915 end loop;
3916 end if;
3917
3918 return False;
3919 end Delayed_Aspect_Present;
3920
3921 -- Local variables
3922
3923 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
3924 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
3925 -- Save the Ghost-related attributes to restore on exit
3926
3927 Related_Id : Entity_Id;
3928
3929 -- Start of processing for Analyze_Object_Declaration
3930
3931 begin
3932 -- There are three kinds of implicit types generated by an
3933 -- object declaration:
3934
3935 -- 1. Those generated by the original Object Definition
3936
3937 -- 2. Those generated by the Expression
3938
3939 -- 3. Those used to constrain the Object Definition with the
3940 -- expression constraints when the definition is unconstrained.
3941
3942 -- They must be generated in this order to avoid order of elaboration
3943 -- issues. Thus the first step (after entering the name) is to analyze
3944 -- the object definition.
3945
3946 if Constant_Present (N) then
3947 Prev_Entity := Current_Entity_In_Scope (Id);
3948
3949 if Present (Prev_Entity)
3950 and then
3951 -- If the homograph is an implicit subprogram, it is overridden
3952 -- by the current declaration.
3953
3954 ((Is_Overloadable (Prev_Entity)
3955 and then Is_Inherited_Operation (Prev_Entity))
3956
3957 -- The current object is a discriminal generated for an entry
3958 -- family index. Even though the index is a constant, in this
3959 -- particular context there is no true constant redeclaration.
3960 -- Enter_Name will handle the visibility.
3961
3962 or else
3963 (Is_Discriminal (Id)
3964 and then Ekind (Discriminal_Link (Id)) =
3965 E_Entry_Index_Parameter)
3966
3967 -- The current object is the renaming for a generic declared
3968 -- within the instance.
3969
3970 or else
3971 (Ekind (Prev_Entity) = E_Package
3972 and then Nkind (Parent (Prev_Entity)) =
3973 N_Package_Renaming_Declaration
3974 and then not Comes_From_Source (Prev_Entity)
3975 and then
3976 Is_Generic_Instance (Renamed_Entity (Prev_Entity)))
3977
3978 -- The entity may be a homonym of a private component of the
3979 -- enclosing protected object, for which we create a local
3980 -- renaming declaration. The declaration is legal, even if
3981 -- useless when it just captures that component.
3982
3983 or else
3984 (Ekind (Scope (Current_Scope)) = E_Protected_Type
3985 and then Nkind (Parent (Prev_Entity)) =
3986 N_Object_Renaming_Declaration))
3987 then
3988 Prev_Entity := Empty;
3989 end if;
3990 end if;
3991
3992 if Present (Prev_Entity) then
3993
3994 -- The object declaration is Ghost when it completes a deferred Ghost
3995 -- constant.
3996
3997 Mark_And_Set_Ghost_Completion (N, Prev_Entity);
3998
3999 Constant_Redeclaration (Id, N, T);
4000
4001 Generate_Reference (Prev_Entity, Id, 'c');
4002 Set_Completion_Referenced (Id);
4003
4004 if Error_Posted (N) then
4005
4006 -- Type mismatch or illegal redeclaration; do not analyze
4007 -- expression to avoid cascaded errors.
4008
4009 T := Find_Type_Of_Object (Object_Definition (N), N);
4010 Set_Etype (Id, T);
4011 Set_Ekind (Id, E_Variable);
4012 goto Leave;
4013 end if;
4014
4015 -- In the normal case, enter identifier at the start to catch premature
4016 -- usage in the initialization expression.
4017
4018 else
4019 Generate_Definition (Id);
4020 Enter_Name (Id);
4021
4022 Mark_Coextensions (N, Object_Definition (N));
4023
4024 T := Find_Type_Of_Object (Object_Definition (N), N);
4025
4026 if Nkind (Object_Definition (N)) = N_Access_Definition
4027 and then Present
4028 (Access_To_Subprogram_Definition (Object_Definition (N)))
4029 and then Protected_Present
4030 (Access_To_Subprogram_Definition (Object_Definition (N)))
4031 then
4032 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
4033 end if;
4034
4035 if Error_Posted (Id) then
4036 Set_Etype (Id, T);
4037 Set_Ekind (Id, E_Variable);
4038 goto Leave;
4039 end if;
4040 end if;
4041
4042 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
4043 -- out some static checks.
4044
4045 if Ada_Version >= Ada_2005 then
4046
4047 -- In case of aggregates we must also take care of the correct
4048 -- initialization of nested aggregates bug this is done at the
4049 -- point of the analysis of the aggregate (see sem_aggr.adb) ???
4050
4051 if Can_Never_Be_Null (T) then
4052 if Present (Expression (N))
4053 and then Nkind (Expression (N)) = N_Aggregate
4054 then
4055 null;
4056
4057 else
4058 declare
4059 Save_Typ : constant Entity_Id := Etype (Id);
4060 begin
4061 Set_Etype (Id, T); -- Temp. decoration for static checks
4062 Null_Exclusion_Static_Checks (N);
4063 Set_Etype (Id, Save_Typ);
4064 end;
4065 end if;
4066
4067 -- We might be dealing with an object of a composite type containing
4068 -- null-excluding components without an aggregate, so we must verify
4069 -- that such components have default initialization.
4070
4071 else
4072 Check_For_Null_Excluding_Components (T, N);
4073 end if;
4074 end if;
4075
4076 -- Object is marked pure if it is in a pure scope
4077
4078 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4079
4080 -- If deferred constant, make sure context is appropriate. We detect
4081 -- a deferred constant as a constant declaration with no expression.
4082 -- A deferred constant can appear in a package body if its completion
4083 -- is by means of an interface pragma.
4084
4085 if Constant_Present (N) and then No (E) then
4086
4087 -- A deferred constant may appear in the declarative part of the
4088 -- following constructs:
4089
4090 -- blocks
4091 -- entry bodies
4092 -- extended return statements
4093 -- package specs
4094 -- package bodies
4095 -- subprogram bodies
4096 -- task bodies
4097
4098 -- When declared inside a package spec, a deferred constant must be
4099 -- completed by a full constant declaration or pragma Import. In all
4100 -- other cases, the only proper completion is pragma Import. Extended
4101 -- return statements are flagged as invalid contexts because they do
4102 -- not have a declarative part and so cannot accommodate the pragma.
4103
4104 if Ekind (Current_Scope) = E_Return_Statement then
4105 Error_Msg_N
4106 ("invalid context for deferred constant declaration (RM 7.4)",
4107 N);
4108 Error_Msg_N
4109 ("\declaration requires an initialization expression",
4110 N);
4111 Set_Constant_Present (N, False);
4112
4113 -- In Ada 83, deferred constant must be of private type
4114
4115 elsif not Is_Private_Type (T) then
4116 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
4117 Error_Msg_N
4118 ("(Ada 83) deferred constant must be private type", N);
4119 end if;
4120 end if;
4121
4122 -- If not a deferred constant, then the object declaration freezes
4123 -- its type, unless the object is of an anonymous type and has delayed
4124 -- aspects. In that case the type is frozen when the object itself is.
4125
4126 else
4127 Check_Fully_Declared (T, N);
4128
4129 if Has_Delayed_Aspects (Id)
4130 and then Is_Array_Type (T)
4131 and then Is_Itype (T)
4132 then
4133 Set_Has_Delayed_Freeze (T);
4134 else
4135 Freeze_Before (N, T);
4136 end if;
4137 end if;
4138
4139 -- If the object was created by a constrained array definition, then
4140 -- set the link in both the anonymous base type and anonymous subtype
4141 -- that are built to represent the array type to point to the object.
4142
4143 if Nkind (Object_Definition (Declaration_Node (Id))) =
4144 N_Constrained_Array_Definition
4145 then
4146 Set_Related_Array_Object (T, Id);
4147 Set_Related_Array_Object (Base_Type (T), Id);
4148 end if;
4149
4150 -- Special checks for protected objects not at library level
4151
4152 if Has_Protected (T) and then not Is_Library_Level_Entity (Id) then
4153 Check_Restriction (No_Local_Protected_Objects, Id);
4154
4155 -- Protected objects with interrupt handlers must be at library level
4156
4157 -- Ada 2005: This test is not needed (and the corresponding clause
4158 -- in the RM is removed) because accessibility checks are sufficient
4159 -- to make handlers not at the library level illegal.
4160
4161 -- AI05-0303: The AI is in fact a binding interpretation, and thus
4162 -- applies to the '95 version of the language as well.
4163
4164 if Is_Protected_Type (T)
4165 and then Has_Interrupt_Handler (T)
4166 and then Ada_Version < Ada_95
4167 then
4168 Error_Msg_N
4169 ("interrupt object can only be declared at library level", Id);
4170 end if;
4171 end if;
4172
4173 -- Check for violation of No_Local_Timing_Events
4174
4175 if Has_Timing_Event (T) and then not Is_Library_Level_Entity (Id) then
4176 Check_Restriction (No_Local_Timing_Events, Id);
4177 end if;
4178
4179 -- The actual subtype of the object is the nominal subtype, unless
4180 -- the nominal one is unconstrained and obtained from the expression.
4181
4182 Act_T := T;
4183
4184 -- These checks should be performed before the initialization expression
4185 -- is considered, so that the Object_Definition node is still the same
4186 -- as in source code.
4187
4188 -- In SPARK, the nominal subtype is always given by a subtype mark
4189 -- and must not be unconstrained. (The only exception to this is the
4190 -- acceptance of declarations of constants of type String.)
4191
4192 if not Nkind_In (Object_Definition (N), N_Expanded_Name, N_Identifier)
4193 then
4194 Check_SPARK_05_Restriction
4195 ("subtype mark required", Object_Definition (N));
4196
4197 elsif Is_Array_Type (T)
4198 and then not Is_Constrained (T)
4199 and then T /= Standard_String
4200 then
4201 Check_SPARK_05_Restriction
4202 ("subtype mark of constrained type expected",
4203 Object_Definition (N));
4204 end if;
4205
4206 if Is_Library_Level_Entity (Id) then
4207 Check_Dynamic_Object (T);
4208 end if;
4209
4210 -- There are no aliased objects in SPARK
4211
4212 if Aliased_Present (N) then
4213 Check_SPARK_05_Restriction ("aliased object is not allowed", N);
4214 end if;
4215
4216 -- Process initialization expression if present and not in error
4217
4218 if Present (E) and then E /= Error then
4219
4220 -- Generate an error in case of CPP class-wide object initialization.
4221 -- Required because otherwise the expansion of the class-wide
4222 -- assignment would try to use 'size to initialize the object
4223 -- (primitive that is not available in CPP tagged types).
4224
4225 if Is_Class_Wide_Type (Act_T)
4226 and then
4227 (Is_CPP_Class (Root_Type (Etype (Act_T)))
4228 or else
4229 (Present (Full_View (Root_Type (Etype (Act_T))))
4230 and then
4231 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
4232 then
4233 Error_Msg_N
4234 ("predefined assignment not available for 'C'P'P tagged types",
4235 E);
4236 end if;
4237
4238 Mark_Coextensions (N, E);
4239 Analyze (E);
4240
4241 -- In case of errors detected in the analysis of the expression,
4242 -- decorate it with the expected type to avoid cascaded errors
4243
4244 if No (Etype (E)) then
4245 Set_Etype (E, T);
4246 end if;
4247
4248 -- If an initialization expression is present, then we set the
4249 -- Is_True_Constant flag. It will be reset if this is a variable
4250 -- and it is indeed modified.
4251
4252 Set_Is_True_Constant (Id, True);
4253
4254 -- If we are analyzing a constant declaration, set its completion
4255 -- flag after analyzing and resolving the expression.
4256
4257 if Constant_Present (N) then
4258 Set_Has_Completion (Id);
4259 end if;
4260
4261 -- Set type and resolve (type may be overridden later on). Note:
4262 -- Ekind (Id) must still be E_Void at this point so that incorrect
4263 -- early usage within E is properly diagnosed.
4264
4265 Set_Etype (Id, T);
4266
4267 -- If the expression is an aggregate we must look ahead to detect
4268 -- the possible presence of an address clause, and defer resolution
4269 -- and expansion of the aggregate to the freeze point of the entity.
4270
4271 -- This is not always legal because the aggregate may contain other
4272 -- references that need freezing, e.g. references to other entities
4273 -- with address clauses. In any case, when compiling with -gnatI the
4274 -- presence of the address clause must be ignored.
4275
4276 if Comes_From_Source (N)
4277 and then Expander_Active
4278 and then Nkind (E) = N_Aggregate
4279 and then
4280 ((Present (Following_Address_Clause (N))
4281 and then not Ignore_Rep_Clauses)
4282 or else Delayed_Aspect_Present)
4283 then
4284 Set_Etype (E, T);
4285
4286 -- If the aggregate is limited it will be built in place, and its
4287 -- expansion is deferred until the object declaration is expanded.
4288
4289 if Is_Limited_Type (T) then
4290 Set_Expansion_Delayed (E);
4291 end if;
4292
4293 else
4294 -- If the expression is a formal that is a "subprogram pointer"
4295 -- this is illegal in accessibility terms (see RM 3.10.2 (13.1/2)
4296 -- and AARM 3.10.2 (13.b/2)). Add an explicit conversion to force
4297 -- the corresponding check, as is done for assignments.
4298
4299 if Is_Entity_Name (E)
4300 and then Present (Entity (E))
4301 and then Is_Formal (Entity (E))
4302 and then
4303 Ekind (Etype (Entity (E))) = E_Anonymous_Access_Subprogram_Type
4304 and then Ekind (T) /= E_Anonymous_Access_Subprogram_Type
4305 then
4306 Rewrite (E, Convert_To (T, Relocate_Node (E)));
4307 end if;
4308
4309 Resolve (E, T);
4310 end if;
4311
4312 -- No further action needed if E is a call to an inlined function
4313 -- which returns an unconstrained type and it has been expanded into
4314 -- a procedure call. In that case N has been replaced by an object
4315 -- declaration without initializing expression and it has been
4316 -- analyzed (see Expand_Inlined_Call).
4317
4318 if Back_End_Inlining
4319 and then Expander_Active
4320 and then Nkind (E) = N_Function_Call
4321 and then Nkind (Name (E)) in N_Has_Entity
4322 and then Is_Inlined (Entity (Name (E)))
4323 and then not Is_Constrained (Etype (E))
4324 and then Analyzed (N)
4325 and then No (Expression (N))
4326 then
4327 goto Leave;
4328 end if;
4329
4330 -- If E is null and has been replaced by an N_Raise_Constraint_Error
4331 -- node (which was marked already-analyzed), we need to set the type
4332 -- to something other than Any_Access in order to keep gigi happy.
4333
4334 if Etype (E) = Any_Access then
4335 Set_Etype (E, T);
4336 end if;
4337
4338 -- If the object is an access to variable, the initialization
4339 -- expression cannot be an access to constant.
4340
4341 if Is_Access_Type (T)
4342 and then not Is_Access_Constant (T)
4343 and then Is_Access_Type (Etype (E))
4344 and then Is_Access_Constant (Etype (E))
4345 then
4346 Error_Msg_N
4347 ("access to variable cannot be initialized with an "
4348 & "access-to-constant expression", E);
4349 end if;
4350
4351 if not Assignment_OK (N) then
4352 Check_Initialization (T, E);
4353 end if;
4354
4355 Check_Unset_Reference (E);
4356
4357 -- If this is a variable, then set current value. If this is a
4358 -- declared constant of a scalar type with a static expression,
4359 -- indicate that it is always valid.
4360
4361 if not Constant_Present (N) then
4362 if Compile_Time_Known_Value (E) then
4363 Set_Current_Value (Id, E);
4364 end if;
4365
4366 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
4367 Set_Is_Known_Valid (Id);
4368
4369 -- If it is a constant initialized with a valid nonstatic entity,
4370 -- the constant is known valid as well, and can inherit the subtype
4371 -- of the entity if it is a subtype of the given type. This info
4372 -- is preserved on the actual subtype of the constant.
4373
4374 elsif Is_Scalar_Type (T)
4375 and then Is_Entity_Name (E)
4376 and then Is_Known_Valid (Entity (E))
4377 and then In_Subrange_Of (Etype (Entity (E)), T)
4378 then
4379 Set_Is_Known_Valid (Id);
4380 Set_Ekind (Id, E_Constant);
4381 Set_Actual_Subtype (Id, Etype (Entity (E)));
4382 end if;
4383
4384 -- Deal with setting of null flags
4385
4386 if Is_Access_Type (T) then
4387 if Known_Non_Null (E) then
4388 Set_Is_Known_Non_Null (Id, True);
4389 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
4390 Set_Is_Known_Null (Id, True);
4391 end if;
4392 end if;
4393
4394 -- Check incorrect use of dynamically tagged expressions
4395
4396 if Is_Tagged_Type (T) then
4397 Check_Dynamically_Tagged_Expression
4398 (Expr => E,
4399 Typ => T,
4400 Related_Nod => N);
4401 end if;
4402
4403 Apply_Scalar_Range_Check (E, T);
4404 Apply_Static_Length_Check (E, T);
4405
4406 if Nkind (Original_Node (N)) = N_Object_Declaration
4407 and then Comes_From_Source (Original_Node (N))
4408
4409 -- Only call test if needed
4410
4411 and then Restriction_Check_Required (SPARK_05)
4412 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
4413 then
4414 Check_SPARK_05_Restriction
4415 ("initialization expression is not appropriate", E);
4416 end if;
4417
4418 -- A formal parameter of a specific tagged type whose related
4419 -- subprogram is subject to pragma Extensions_Visible with value
4420 -- "False" cannot be implicitly converted to a class-wide type by
4421 -- means of an initialization expression (SPARK RM 6.1.7(3)). Do
4422 -- not consider internally generated expressions.
4423
4424 if Is_Class_Wide_Type (T)
4425 and then Comes_From_Source (E)
4426 and then Is_EVF_Expression (E)
4427 then
4428 Error_Msg_N
4429 ("formal parameter cannot be implicitly converted to "
4430 & "class-wide type when Extensions_Visible is False", E);
4431 end if;
4432 end if;
4433
4434 -- If the No_Streams restriction is set, check that the type of the
4435 -- object is not, and does not contain, any subtype derived from
4436 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
4437 -- Has_Stream just for efficiency reasons. There is no point in
4438 -- spending time on a Has_Stream check if the restriction is not set.
4439
4440 if Restriction_Check_Required (No_Streams) then
4441 if Has_Stream (T) then
4442 Check_Restriction (No_Streams, N);
4443 end if;
4444 end if;
4445
4446 -- Deal with predicate check before we start to do major rewriting. It
4447 -- is OK to initialize and then check the initialized value, since the
4448 -- object goes out of scope if we get a predicate failure. Note that we
4449 -- do this in the analyzer and not the expander because the analyzer
4450 -- does some substantial rewriting in some cases.
4451
4452 -- We need a predicate check if the type has predicates that are not
4453 -- ignored, and if either there is an initializing expression, or for
4454 -- default initialization when we have at least one case of an explicit
4455 -- default initial value and then this is not an internal declaration
4456 -- whose initialization comes later (as for an aggregate expansion).
4457
4458 if not Suppress_Assignment_Checks (N)
4459 and then Present (Predicate_Function (T))
4460 and then not Predicates_Ignored (T)
4461 and then not No_Initialization (N)
4462 and then
4463 (Present (E)
4464 or else
4465 Is_Partially_Initialized_Type (T, Include_Implicit => False))
4466 then
4467 -- If the type has a static predicate and the expression is known at
4468 -- compile time, see if the expression satisfies the predicate.
4469
4470 if Present (E) then
4471 Check_Expression_Against_Static_Predicate (E, T);
4472 end if;
4473
4474 -- If the type is a null record and there is no explicit initial
4475 -- expression, no predicate check applies.
4476
4477 if No (E) and then Is_Null_Record_Type (T) then
4478 null;
4479
4480 -- Do not generate a predicate check if the initialization expression
4481 -- is a type conversion because the conversion has been subjected to
4482 -- the same check. This is a small optimization which avoid redundant
4483 -- checks.
4484
4485 elsif Present (E) and then Nkind (E) = N_Type_Conversion then
4486 null;
4487
4488 else
4489 Insert_After (N,
4490 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
4491 end if;
4492 end if;
4493
4494 -- Case of unconstrained type
4495
4496 if not Is_Definite_Subtype (T) then
4497
4498 -- In SPARK, a declaration of unconstrained type is allowed
4499 -- only for constants of type string.
4500
4501 if Is_String_Type (T) and then not Constant_Present (N) then
4502 Check_SPARK_05_Restriction
4503 ("declaration of object of unconstrained type not allowed", N);
4504 end if;
4505
4506 -- Nothing to do in deferred constant case
4507
4508 if Constant_Present (N) and then No (E) then
4509 null;
4510
4511 -- Case of no initialization present
4512
4513 elsif No (E) then
4514 if No_Initialization (N) then
4515 null;
4516
4517 elsif Is_Class_Wide_Type (T) then
4518 Error_Msg_N
4519 ("initialization required in class-wide declaration ", N);
4520
4521 else
4522 Error_Msg_N
4523 ("unconstrained subtype not allowed (need initialization)",
4524 Object_Definition (N));
4525
4526 if Is_Record_Type (T) and then Has_Discriminants (T) then
4527 Error_Msg_N
4528 ("\provide initial value or explicit discriminant values",
4529 Object_Definition (N));
4530
4531 Error_Msg_NE
4532 ("\or give default discriminant values for type&",
4533 Object_Definition (N), T);
4534
4535 elsif Is_Array_Type (T) then
4536 Error_Msg_N
4537 ("\provide initial value or explicit array bounds",
4538 Object_Definition (N));
4539 end if;
4540 end if;
4541
4542 -- Case of initialization present but in error. Set initial
4543 -- expression as absent (but do not make above complaints)
4544
4545 elsif E = Error then
4546 Set_Expression (N, Empty);
4547 E := Empty;
4548
4549 -- Case of initialization present
4550
4551 else
4552 -- Check restrictions in Ada 83
4553
4554 if not Constant_Present (N) then
4555
4556 -- Unconstrained variables not allowed in Ada 83 mode
4557
4558 if Ada_Version = Ada_83
4559 and then Comes_From_Source (Object_Definition (N))
4560 then
4561 Error_Msg_N
4562 ("(Ada 83) unconstrained variable not allowed",
4563 Object_Definition (N));
4564 end if;
4565 end if;
4566
4567 -- Now we constrain the variable from the initializing expression
4568
4569 -- If the expression is an aggregate, it has been expanded into
4570 -- individual assignments. Retrieve the actual type from the
4571 -- expanded construct.
4572
4573 if Is_Array_Type (T)
4574 and then No_Initialization (N)
4575 and then Nkind (Original_Node (E)) = N_Aggregate
4576 then
4577 Act_T := Etype (E);
4578
4579 -- In case of class-wide interface object declarations we delay
4580 -- the generation of the equivalent record type declarations until
4581 -- its expansion because there are cases in they are not required.
4582
4583 elsif Is_Interface (T) then
4584 null;
4585
4586 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
4587 -- we should prevent the generation of another Itype with the
4588 -- same name as the one already generated, or we end up with
4589 -- two identical types in GNATprove.
4590
4591 elsif GNATprove_Mode then
4592 null;
4593
4594 -- If the type is an unchecked union, no subtype can be built from
4595 -- the expression. Rewrite declaration as a renaming, which the
4596 -- back-end can handle properly. This is a rather unusual case,
4597 -- because most unchecked_union declarations have default values
4598 -- for discriminants and are thus not indefinite.
4599
4600 elsif Is_Unchecked_Union (T) then
4601 if Constant_Present (N) or else Nkind (E) = N_Function_Call then
4602 Set_Ekind (Id, E_Constant);
4603 else
4604 Set_Ekind (Id, E_Variable);
4605 end if;
4606
4607 Rewrite (N,
4608 Make_Object_Renaming_Declaration (Loc,
4609 Defining_Identifier => Id,
4610 Subtype_Mark => New_Occurrence_Of (T, Loc),
4611 Name => E));
4612
4613 Set_Renamed_Object (Id, E);
4614 Freeze_Before (N, T);
4615 Set_Is_Frozen (Id);
4616 goto Leave;
4617
4618 else
4619 -- Ensure that the generated subtype has a unique external name
4620 -- when the related object is public. This guarantees that the
4621 -- subtype and its bounds will not be affected by switches or
4622 -- pragmas that may offset the internal counter due to extra
4623 -- generated code.
4624
4625 if Is_Public (Id) then
4626 Related_Id := Id;
4627 else
4628 Related_Id := Empty;
4629 end if;
4630
4631 Expand_Subtype_From_Expr
4632 (N => N,
4633 Unc_Type => T,
4634 Subtype_Indic => Object_Definition (N),
4635 Exp => E,
4636 Related_Id => Related_Id);
4637
4638 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
4639 end if;
4640
4641 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
4642
4643 if Aliased_Present (N) then
4644 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4645 end if;
4646
4647 Freeze_Before (N, Act_T);
4648 Freeze_Before (N, T);
4649 end if;
4650
4651 elsif Is_Array_Type (T)
4652 and then No_Initialization (N)
4653 and then (Nkind (Original_Node (E)) = N_Aggregate
4654 or else (Nkind (Original_Node (E)) = N_Qualified_Expression
4655 and then Nkind (Original_Node (Expression
4656 (Original_Node (E)))) = N_Aggregate))
4657 then
4658 if not Is_Entity_Name (Object_Definition (N)) then
4659 Act_T := Etype (E);
4660 Check_Compile_Time_Size (Act_T);
4661
4662 if Aliased_Present (N) then
4663 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4664 end if;
4665 end if;
4666
4667 -- When the given object definition and the aggregate are specified
4668 -- independently, and their lengths might differ do a length check.
4669 -- This cannot happen if the aggregate is of the form (others =>...)
4670
4671 if not Is_Constrained (T) then
4672 null;
4673
4674 elsif Nkind (E) = N_Raise_Constraint_Error then
4675
4676 -- Aggregate is statically illegal. Place back in declaration
4677
4678 Set_Expression (N, E);
4679 Set_No_Initialization (N, False);
4680
4681 elsif T = Etype (E) then
4682 null;
4683
4684 elsif Nkind (E) = N_Aggregate
4685 and then Present (Component_Associations (E))
4686 and then Present (Choice_List (First (Component_Associations (E))))
4687 and then
4688 Nkind (First (Choice_List (First (Component_Associations (E))))) =
4689 N_Others_Choice
4690 then
4691 null;
4692
4693 else
4694 Apply_Length_Check (E, T);
4695 end if;
4696
4697 -- If the type is limited unconstrained with defaulted discriminants and
4698 -- there is no expression, then the object is constrained by the
4699 -- defaults, so it is worthwhile building the corresponding subtype.
4700
4701 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
4702 and then not Is_Constrained (T)
4703 and then Has_Discriminants (T)
4704 then
4705 if No (E) then
4706 Act_T := Build_Default_Subtype (T, N);
4707 else
4708 -- Ada 2005: A limited object may be initialized by means of an
4709 -- aggregate. If the type has default discriminants it has an
4710 -- unconstrained nominal type, Its actual subtype will be obtained
4711 -- from the aggregate, and not from the default discriminants.
4712
4713 Act_T := Etype (E);
4714 end if;
4715
4716 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
4717
4718 elsif Nkind (E) = N_Function_Call
4719 and then Constant_Present (N)
4720 and then Has_Unconstrained_Elements (Etype (E))
4721 then
4722 -- The back-end has problems with constants of a discriminated type
4723 -- with defaults, if the initial value is a function call. We
4724 -- generate an intermediate temporary that will receive a reference
4725 -- to the result of the call. The initialization expression then
4726 -- becomes a dereference of that temporary.
4727
4728 Remove_Side_Effects (E);
4729
4730 -- If this is a constant declaration of an unconstrained type and
4731 -- the initialization is an aggregate, we can use the subtype of the
4732 -- aggregate for the declared entity because it is immutable.
4733
4734 elsif not Is_Constrained (T)
4735 and then Has_Discriminants (T)
4736 and then Constant_Present (N)
4737 and then not Has_Unchecked_Union (T)
4738 and then Nkind (E) = N_Aggregate
4739 then
4740 Act_T := Etype (E);
4741 end if;
4742
4743 -- Check No_Wide_Characters restriction
4744
4745 Check_Wide_Character_Restriction (T, Object_Definition (N));
4746
4747 -- Indicate this is not set in source. Certainly true for constants, and
4748 -- true for variables so far (will be reset for a variable if and when
4749 -- we encounter a modification in the source).
4750
4751 Set_Never_Set_In_Source (Id);
4752
4753 -- Now establish the proper kind and type of the object
4754
4755 if Constant_Present (N) then
4756 Set_Ekind (Id, E_Constant);
4757 Set_Is_True_Constant (Id);
4758
4759 else
4760 Set_Ekind (Id, E_Variable);
4761
4762 -- A variable is set as shared passive if it appears in a shared
4763 -- passive package, and is at the outer level. This is not done for
4764 -- entities generated during expansion, because those are always
4765 -- manipulated locally.
4766
4767 if Is_Shared_Passive (Current_Scope)
4768 and then Is_Library_Level_Entity (Id)
4769 and then Comes_From_Source (Id)
4770 then
4771 Set_Is_Shared_Passive (Id);
4772 Check_Shared_Var (Id, T, N);
4773 end if;
4774
4775 -- Set Has_Initial_Value if initializing expression present. Note
4776 -- that if there is no initializing expression, we leave the state
4777 -- of this flag unchanged (usually it will be False, but notably in
4778 -- the case of exception choice variables, it will already be true).
4779
4780 if Present (E) then
4781 Set_Has_Initial_Value (Id);
4782 end if;
4783 end if;
4784
4785 -- Set the SPARK mode from the current context (may be overwritten later
4786 -- with explicit pragma).
4787
4788 Set_SPARK_Pragma (Id, SPARK_Mode_Pragma);
4789 Set_SPARK_Pragma_Inherited (Id);
4790
4791 -- Preserve relevant elaboration-related attributes of the context which
4792 -- are no longer available or very expensive to recompute once analysis,
4793 -- resolution, and expansion are over.
4794
4795 Mark_Elaboration_Attributes
4796 (N_Id => Id,
4797 Checks => True,
4798 Warnings => True);
4799
4800 -- Initialize alignment and size and capture alignment setting
4801
4802 Init_Alignment (Id);
4803 Init_Esize (Id);
4804 Set_Optimize_Alignment_Flags (Id);
4805
4806 -- Deal with aliased case
4807
4808 if Aliased_Present (N) then
4809 Set_Is_Aliased (Id);
4810
4811 -- If the object is aliased and the type is unconstrained with
4812 -- defaulted discriminants and there is no expression, then the
4813 -- object is constrained by the defaults, so it is worthwhile
4814 -- building the corresponding subtype.
4815
4816 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4817 -- unconstrained, then only establish an actual subtype if the
4818 -- nominal subtype is indefinite. In definite cases the object is
4819 -- unconstrained in Ada 2005.
4820
4821 if No (E)
4822 and then Is_Record_Type (T)
4823 and then not Is_Constrained (T)
4824 and then Has_Discriminants (T)
4825 and then (Ada_Version < Ada_2005
4826 or else not Is_Definite_Subtype (T))
4827 then
4828 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
4829 end if;
4830 end if;
4831
4832 -- Now we can set the type of the object
4833
4834 Set_Etype (Id, Act_T);
4835
4836 -- Non-constant object is marked to be treated as volatile if type is
4837 -- volatile and we clear the Current_Value setting that may have been
4838 -- set above. Doing so for constants isn't required and might interfere
4839 -- with possible uses of the object as a static expression in contexts
4840 -- incompatible with volatility (e.g. as a case-statement alternative).
4841
4842 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
4843 Set_Treat_As_Volatile (Id);
4844 Set_Current_Value (Id, Empty);
4845 end if;
4846
4847 -- Deal with controlled types
4848
4849 if Has_Controlled_Component (Etype (Id))
4850 or else Is_Controlled (Etype (Id))
4851 then
4852 if not Is_Library_Level_Entity (Id) then
4853 Check_Restriction (No_Nested_Finalization, N);
4854 else
4855 Validate_Controlled_Object (Id);
4856 end if;
4857 end if;
4858
4859 if Has_Task (Etype (Id)) then
4860 Check_Restriction (No_Tasking, N);
4861
4862 -- Deal with counting max tasks
4863
4864 -- Nothing to do if inside a generic
4865
4866 if Inside_A_Generic then
4867 null;
4868
4869 -- If library level entity, then count tasks
4870
4871 elsif Is_Library_Level_Entity (Id) then
4872 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4873
4874 -- If not library level entity, then indicate we don't know max
4875 -- tasks and also check task hierarchy restriction and blocking
4876 -- operation (since starting a task is definitely blocking).
4877
4878 else
4879 Check_Restriction (Max_Tasks, N);
4880 Check_Restriction (No_Task_Hierarchy, N);
4881 Check_Potentially_Blocking_Operation (N);
4882 end if;
4883
4884 -- A rather specialized test. If we see two tasks being declared
4885 -- of the same type in the same object declaration, and the task
4886 -- has an entry with an address clause, we know that program error
4887 -- will be raised at run time since we can't have two tasks with
4888 -- entries at the same address.
4889
4890 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4891 declare
4892 E : Entity_Id;
4893
4894 begin
4895 E := First_Entity (Etype (Id));
4896 while Present (E) loop
4897 if Ekind (E) = E_Entry
4898 and then Present (Get_Attribute_Definition_Clause
4899 (E, Attribute_Address))
4900 then
4901 Error_Msg_Warn := SPARK_Mode /= On;
4902 Error_Msg_N
4903 ("more than one task with same entry address<<", N);
4904 Error_Msg_N ("\Program_Error [<<", N);
4905 Insert_Action (N,
4906 Make_Raise_Program_Error (Loc,
4907 Reason => PE_Duplicated_Entry_Address));
4908 exit;
4909 end if;
4910
4911 Next_Entity (E);
4912 end loop;
4913 end;
4914 end if;
4915 end if;
4916
4917 -- Some simple constant-propagation: if the expression is a constant
4918 -- string initialized with a literal, share the literal. This avoids
4919 -- a run-time copy.
4920
4921 if Present (E)
4922 and then Is_Entity_Name (E)
4923 and then Ekind (Entity (E)) = E_Constant
4924 and then Base_Type (Etype (E)) = Standard_String
4925 then
4926 declare
4927 Val : constant Node_Id := Constant_Value (Entity (E));
4928 begin
4929 if Present (Val) and then Nkind (Val) = N_String_Literal then
4930 Rewrite (E, New_Copy (Val));
4931 end if;
4932 end;
4933 end if;
4934
4935 -- Another optimization: if the nominal subtype is unconstrained and
4936 -- the expression is a function call that returns an unconstrained
4937 -- type, rewrite the declaration as a renaming of the result of the
4938 -- call. The exceptions below are cases where the copy is expected,
4939 -- either by the back end (Aliased case) or by the semantics, as for
4940 -- initializing controlled types or copying tags for class-wide types.
4941
4942 if Present (E)
4943 and then Nkind (E) = N_Explicit_Dereference
4944 and then Nkind (Original_Node (E)) = N_Function_Call
4945 and then not Is_Library_Level_Entity (Id)
4946 and then not Is_Constrained (Underlying_Type (T))
4947 and then not Is_Aliased (Id)
4948 and then not Is_Class_Wide_Type (T)
4949 and then not Is_Controlled (T)
4950 and then not Has_Controlled_Component (Base_Type (T))
4951 and then Expander_Active
4952 then
4953 Rewrite (N,
4954 Make_Object_Renaming_Declaration (Loc,
4955 Defining_Identifier => Id,
4956 Access_Definition => Empty,
4957 Subtype_Mark => New_Occurrence_Of
4958 (Base_Type (Etype (Id)), Loc),
4959 Name => E));
4960
4961 Set_Renamed_Object (Id, E);
4962
4963 -- Force generation of debugging information for the constant and for
4964 -- the renamed function call.
4965
4966 Set_Debug_Info_Needed (Id);
4967 Set_Debug_Info_Needed (Entity (Prefix (E)));
4968 end if;
4969
4970 if Present (Prev_Entity)
4971 and then Is_Frozen (Prev_Entity)
4972 and then not Error_Posted (Id)
4973 then
4974 Error_Msg_N ("full constant declaration appears too late", N);
4975 end if;
4976
4977 Check_Eliminated (Id);
4978
4979 -- Deal with setting In_Private_Part flag if in private part
4980
4981 if Ekind (Scope (Id)) = E_Package
4982 and then In_Private_Part (Scope (Id))
4983 then
4984 Set_In_Private_Part (Id);
4985 end if;
4986
4987 <<Leave>>
4988 -- Initialize the refined state of a variable here because this is a
4989 -- common destination for legal and illegal object declarations.
4990
4991 if Ekind (Id) = E_Variable then
4992 Set_Encapsulating_State (Id, Empty);
4993 end if;
4994
4995 if Has_Aspects (N) then
4996 Analyze_Aspect_Specifications (N, Id);
4997 end if;
4998
4999 Analyze_Dimension (N);
5000
5001 -- Verify whether the object declaration introduces an illegal hidden
5002 -- state within a package subject to a null abstract state.
5003
5004 if Ekind (Id) = E_Variable then
5005 Check_No_Hidden_State (Id);
5006 end if;
5007
5008 Restore_Ghost_Region (Saved_GM, Saved_IGR);
5009 end Analyze_Object_Declaration;
5010
5011 ---------------------------
5012 -- Analyze_Others_Choice --
5013 ---------------------------
5014
5015 -- Nothing to do for the others choice node itself, the semantic analysis
5016 -- of the others choice will occur as part of the processing of the parent
5017
5018 procedure Analyze_Others_Choice (N : Node_Id) is
5019 pragma Warnings (Off, N);
5020 begin
5021 null;
5022 end Analyze_Others_Choice;
5023
5024 -------------------------------------------
5025 -- Analyze_Private_Extension_Declaration --
5026 -------------------------------------------
5027
5028 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
5029 Indic : constant Node_Id := Subtype_Indication (N);
5030 T : constant Entity_Id := Defining_Identifier (N);
5031 Iface : Entity_Id;
5032 Iface_Elmt : Elmt_Id;
5033 Parent_Base : Entity_Id;
5034 Parent_Type : Entity_Id;
5035
5036 begin
5037 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
5038
5039 if Is_Non_Empty_List (Interface_List (N)) then
5040 declare
5041 Intf : Node_Id;
5042 T : Entity_Id;
5043
5044 begin
5045 Intf := First (Interface_List (N));
5046 while Present (Intf) loop
5047 T := Find_Type_Of_Subtype_Indic (Intf);
5048
5049 Diagnose_Interface (Intf, T);
5050 Next (Intf);
5051 end loop;
5052 end;
5053 end if;
5054
5055 Generate_Definition (T);
5056
5057 -- For other than Ada 2012, just enter the name in the current scope
5058
5059 if Ada_Version < Ada_2012 then
5060 Enter_Name (T);
5061
5062 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
5063 -- case of private type that completes an incomplete type.
5064
5065 else
5066 declare
5067 Prev : Entity_Id;
5068
5069 begin
5070 Prev := Find_Type_Name (N);
5071
5072 pragma Assert (Prev = T
5073 or else (Ekind (Prev) = E_Incomplete_Type
5074 and then Present (Full_View (Prev))
5075 and then Full_View (Prev) = T));
5076 end;
5077 end if;
5078
5079 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
5080 Parent_Base := Base_Type (Parent_Type);
5081
5082 if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then
5083 Set_Ekind (T, Ekind (Parent_Type));
5084 Set_Etype (T, Any_Type);
5085 goto Leave;
5086
5087 elsif not Is_Tagged_Type (Parent_Type) then
5088 Error_Msg_N
5089 ("parent of type extension must be a tagged type ", Indic);
5090 goto Leave;
5091
5092 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
5093 Error_Msg_N ("premature derivation of incomplete type", Indic);
5094 goto Leave;
5095
5096 elsif Is_Concurrent_Type (Parent_Type) then
5097 Error_Msg_N
5098 ("parent type of a private extension cannot be a synchronized "
5099 & "tagged type (RM 3.9.1 (3/1))", N);
5100
5101 Set_Etype (T, Any_Type);
5102 Set_Ekind (T, E_Limited_Private_Type);
5103 Set_Private_Dependents (T, New_Elmt_List);
5104 Set_Error_Posted (T);
5105 goto Leave;
5106 end if;
5107
5108 -- Perhaps the parent type should be changed to the class-wide type's
5109 -- specific type in this case to prevent cascading errors ???
5110
5111 if Is_Class_Wide_Type (Parent_Type) then
5112 Error_Msg_N
5113 ("parent of type extension must not be a class-wide type", Indic);
5114 goto Leave;
5115 end if;
5116
5117 if (not Is_Package_Or_Generic_Package (Current_Scope)
5118 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
5119 or else In_Private_Part (Current_Scope)
5120 then
5121 Error_Msg_N ("invalid context for private extension", N);
5122 end if;
5123
5124 -- Set common attributes
5125
5126 Set_Is_Pure (T, Is_Pure (Current_Scope));
5127 Set_Scope (T, Current_Scope);
5128 Set_Ekind (T, E_Record_Type_With_Private);
5129 Init_Size_Align (T);
5130 Set_Default_SSO (T);
5131 Set_No_Reordering (T, No_Component_Reordering);
5132
5133 Set_Etype (T, Parent_Base);
5134 Propagate_Concurrent_Flags (T, Parent_Base);
5135
5136 Set_Convention (T, Convention (Parent_Type));
5137 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
5138 Set_Is_First_Subtype (T);
5139 Make_Class_Wide_Type (T);
5140
5141 -- Set the SPARK mode from the current context
5142
5143 Set_SPARK_Pragma (T, SPARK_Mode_Pragma);
5144 Set_SPARK_Pragma_Inherited (T);
5145
5146 if Unknown_Discriminants_Present (N) then
5147 Set_Discriminant_Constraint (T, No_Elist);
5148 end if;
5149
5150 Build_Derived_Record_Type (N, Parent_Type, T);
5151
5152 -- A private extension inherits the Default_Initial_Condition pragma
5153 -- coming from any parent type within the derivation chain.
5154
5155 if Has_DIC (Parent_Type) then
5156 Set_Has_Inherited_DIC (T);
5157 end if;
5158
5159 -- A private extension inherits any class-wide invariants coming from a
5160 -- parent type or an interface. Note that the invariant procedure of the
5161 -- parent type should not be inherited because the private extension may
5162 -- define invariants of its own.
5163
5164 if Has_Inherited_Invariants (Parent_Type)
5165 or else Has_Inheritable_Invariants (Parent_Type)
5166 then
5167 Set_Has_Inherited_Invariants (T);
5168
5169 elsif Present (Interfaces (T)) then
5170 Iface_Elmt := First_Elmt (Interfaces (T));
5171 while Present (Iface_Elmt) loop
5172 Iface := Node (Iface_Elmt);
5173
5174 if Has_Inheritable_Invariants (Iface) then
5175 Set_Has_Inherited_Invariants (T);
5176 exit;
5177 end if;
5178
5179 Next_Elmt (Iface_Elmt);
5180 end loop;
5181 end if;
5182
5183 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
5184 -- synchronized formal derived type.
5185
5186 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
5187 Set_Is_Limited_Record (T);
5188
5189 -- Formal derived type case
5190
5191 if Is_Generic_Type (T) then
5192
5193 -- The parent must be a tagged limited type or a synchronized
5194 -- interface.
5195
5196 if (not Is_Tagged_Type (Parent_Type)
5197 or else not Is_Limited_Type (Parent_Type))
5198 and then
5199 (not Is_Interface (Parent_Type)
5200 or else not Is_Synchronized_Interface (Parent_Type))
5201 then
5202 Error_Msg_NE
5203 ("parent type of & must be tagged limited or synchronized",
5204 N, T);
5205 end if;
5206
5207 -- The progenitors (if any) must be limited or synchronized
5208 -- interfaces.
5209
5210 if Present (Interfaces (T)) then
5211 Iface_Elmt := First_Elmt (Interfaces (T));
5212 while Present (Iface_Elmt) loop
5213 Iface := Node (Iface_Elmt);
5214
5215 if not Is_Limited_Interface (Iface)
5216 and then not Is_Synchronized_Interface (Iface)
5217 then
5218 Error_Msg_NE
5219 ("progenitor & must be limited or synchronized",
5220 N, Iface);
5221 end if;
5222
5223 Next_Elmt (Iface_Elmt);
5224 end loop;
5225 end if;
5226
5227 -- Regular derived extension, the parent must be a limited or
5228 -- synchronized interface.
5229
5230 else
5231 if not Is_Interface (Parent_Type)
5232 or else (not Is_Limited_Interface (Parent_Type)
5233 and then not Is_Synchronized_Interface (Parent_Type))
5234 then
5235 Error_Msg_NE
5236 ("parent type of & must be limited interface", N, T);
5237 end if;
5238 end if;
5239
5240 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
5241 -- extension with a synchronized parent must be explicitly declared
5242 -- synchronized, because the full view will be a synchronized type.
5243 -- This must be checked before the check for limited types below,
5244 -- to ensure that types declared limited are not allowed to extend
5245 -- synchronized interfaces.
5246
5247 elsif Is_Interface (Parent_Type)
5248 and then Is_Synchronized_Interface (Parent_Type)
5249 and then not Synchronized_Present (N)
5250 then
5251 Error_Msg_NE
5252 ("private extension of& must be explicitly synchronized",
5253 N, Parent_Type);
5254
5255 elsif Limited_Present (N) then
5256 Set_Is_Limited_Record (T);
5257
5258 if not Is_Limited_Type (Parent_Type)
5259 and then
5260 (not Is_Interface (Parent_Type)
5261 or else not Is_Limited_Interface (Parent_Type))
5262 then
5263 Error_Msg_NE ("parent type& of limited extension must be limited",
5264 N, Parent_Type);
5265 end if;
5266 end if;
5267
5268 -- Remember that its parent type has a private extension. Used to warn
5269 -- on public primitives of the parent type defined after its private
5270 -- extensions (see Check_Dispatching_Operation).
5271
5272 Set_Has_Private_Extension (Parent_Type);
5273
5274 <<Leave>>
5275 if Has_Aspects (N) then
5276 Analyze_Aspect_Specifications (N, T);
5277 end if;
5278 end Analyze_Private_Extension_Declaration;
5279
5280 ---------------------------------
5281 -- Analyze_Subtype_Declaration --
5282 ---------------------------------
5283
5284 procedure Analyze_Subtype_Declaration
5285 (N : Node_Id;
5286 Skip : Boolean := False)
5287 is
5288 Id : constant Entity_Id := Defining_Identifier (N);
5289 R_Checks : Check_Result;
5290 T : Entity_Id;
5291
5292 begin
5293 Generate_Definition (Id);
5294 Set_Is_Pure (Id, Is_Pure (Current_Scope));
5295 Init_Size_Align (Id);
5296
5297 -- The following guard condition on Enter_Name is to handle cases where
5298 -- the defining identifier has already been entered into the scope but
5299 -- the declaration as a whole needs to be analyzed.
5300
5301 -- This case in particular happens for derived enumeration types. The
5302 -- derived enumeration type is processed as an inserted enumeration type
5303 -- declaration followed by a rewritten subtype declaration. The defining
5304 -- identifier, however, is entered into the name scope very early in the
5305 -- processing of the original type declaration and therefore needs to be
5306 -- avoided here, when the created subtype declaration is analyzed. (See
5307 -- Build_Derived_Types)
5308
5309 -- This also happens when the full view of a private type is derived
5310 -- type with constraints. In this case the entity has been introduced
5311 -- in the private declaration.
5312
5313 -- Finally this happens in some complex cases when validity checks are
5314 -- enabled, where the same subtype declaration may be analyzed twice.
5315 -- This can happen if the subtype is created by the preanalysis of
5316 -- an attribute tht gives the range of a loop statement, and the loop
5317 -- itself appears within an if_statement that will be rewritten during
5318 -- expansion.
5319
5320 if Skip
5321 or else (Present (Etype (Id))
5322 and then (Is_Private_Type (Etype (Id))
5323 or else Is_Task_Type (Etype (Id))
5324 or else Is_Rewrite_Substitution (N)))
5325 then
5326 null;
5327
5328 elsif Current_Entity (Id) = Id then
5329 null;
5330
5331 else
5332 Enter_Name (Id);
5333 end if;
5334
5335 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
5336
5337 -- Class-wide equivalent types of records with unknown discriminants
5338 -- involve the generation of an itype which serves as the private view
5339 -- of a constrained record subtype. In such cases the base type of the
5340 -- current subtype we are processing is the private itype. Use the full
5341 -- of the private itype when decorating various attributes.
5342
5343 if Is_Itype (T)
5344 and then Is_Private_Type (T)
5345 and then Present (Full_View (T))
5346 then
5347 T := Full_View (T);
5348 end if;
5349
5350 -- Inherit common attributes
5351
5352 Set_Is_Volatile (Id, Is_Volatile (T));
5353 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
5354 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
5355 Set_Convention (Id, Convention (T));
5356
5357 -- If ancestor has predicates then so does the subtype, and in addition
5358 -- we must delay the freeze to properly arrange predicate inheritance.
5359
5360 -- The Ancestor_Type test is really unpleasant, there seem to be cases
5361 -- in which T = ID, so the above tests and assignments do nothing???
5362
5363 if Has_Predicates (T)
5364 or else (Present (Ancestor_Subtype (T))
5365 and then Has_Predicates (Ancestor_Subtype (T)))
5366 then
5367 Set_Has_Predicates (Id);
5368 Set_Has_Delayed_Freeze (Id);
5369
5370 -- Generated subtypes inherit the predicate function from the parent
5371 -- (no aspects to examine on the generated declaration).
5372
5373 if not Comes_From_Source (N) then
5374 Set_Ekind (Id, Ekind (T));
5375
5376 if Present (Predicate_Function (Id)) then
5377 null;
5378
5379 elsif Present (Predicate_Function (T)) then
5380 Set_Predicate_Function (Id, Predicate_Function (T));
5381
5382 elsif Present (Ancestor_Subtype (T))
5383 and then Present (Predicate_Function (Ancestor_Subtype (T)))
5384 then
5385 Set_Predicate_Function (Id,
5386 Predicate_Function (Ancestor_Subtype (T)));
5387 end if;
5388 end if;
5389 end if;
5390
5391 -- Subtype of Boolean cannot have a constraint in SPARK
5392
5393 if Is_Boolean_Type (T)
5394 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
5395 then
5396 Check_SPARK_05_Restriction
5397 ("subtype of Boolean cannot have constraint", N);
5398 end if;
5399
5400 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5401 declare
5402 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5403 One_Cstr : Node_Id;
5404 Low : Node_Id;
5405 High : Node_Id;
5406
5407 begin
5408 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
5409 One_Cstr := First (Constraints (Cstr));
5410 while Present (One_Cstr) loop
5411
5412 -- Index or discriminant constraint in SPARK must be a
5413 -- subtype mark.
5414
5415 if not
5416 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
5417 then
5418 Check_SPARK_05_Restriction
5419 ("subtype mark required", One_Cstr);
5420
5421 -- String subtype must have a lower bound of 1 in SPARK.
5422 -- Note that we do not need to test for the nonstatic case
5423 -- here, since that was already taken care of in
5424 -- Process_Range_Expr_In_Decl.
5425
5426 elsif Base_Type (T) = Standard_String then
5427 Get_Index_Bounds (One_Cstr, Low, High);
5428
5429 if Is_OK_Static_Expression (Low)
5430 and then Expr_Value (Low) /= 1
5431 then
5432 Check_SPARK_05_Restriction
5433 ("String subtype must have lower bound of 1", N);
5434 end if;
5435 end if;
5436
5437 Next (One_Cstr);
5438 end loop;
5439 end if;
5440 end;
5441 end if;
5442
5443 -- In the case where there is no constraint given in the subtype
5444 -- indication, Process_Subtype just returns the Subtype_Mark, so its
5445 -- semantic attributes must be established here.
5446
5447 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
5448 Set_Etype (Id, Base_Type (T));
5449
5450 -- Subtype of unconstrained array without constraint is not allowed
5451 -- in SPARK.
5452
5453 if Is_Array_Type (T) and then not Is_Constrained (T) then
5454 Check_SPARK_05_Restriction
5455 ("subtype of unconstrained array must have constraint", N);
5456 end if;
5457
5458 case Ekind (T) is
5459 when Array_Kind =>
5460 Set_Ekind (Id, E_Array_Subtype);
5461 Copy_Array_Subtype_Attributes (Id, T);
5462
5463 when Decimal_Fixed_Point_Kind =>
5464 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
5465 Set_Digits_Value (Id, Digits_Value (T));
5466 Set_Delta_Value (Id, Delta_Value (T));
5467 Set_Scale_Value (Id, Scale_Value (T));
5468 Set_Small_Value (Id, Small_Value (T));
5469 Set_Scalar_Range (Id, Scalar_Range (T));
5470 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
5471 Set_Is_Constrained (Id, Is_Constrained (T));
5472 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5473 Set_RM_Size (Id, RM_Size (T));
5474
5475 when Enumeration_Kind =>
5476 Set_Ekind (Id, E_Enumeration_Subtype);
5477 Set_First_Literal (Id, First_Literal (Base_Type (T)));
5478 Set_Scalar_Range (Id, Scalar_Range (T));
5479 Set_Is_Character_Type (Id, Is_Character_Type (T));
5480 Set_Is_Constrained (Id, Is_Constrained (T));
5481 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5482 Set_RM_Size (Id, RM_Size (T));
5483
5484 when Ordinary_Fixed_Point_Kind =>
5485 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
5486 Set_Scalar_Range (Id, Scalar_Range (T));
5487 Set_Small_Value (Id, Small_Value (T));
5488 Set_Delta_Value (Id, Delta_Value (T));
5489 Set_Is_Constrained (Id, Is_Constrained (T));
5490 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5491 Set_RM_Size (Id, RM_Size (T));
5492
5493 when Float_Kind =>
5494 Set_Ekind (Id, E_Floating_Point_Subtype);
5495 Set_Scalar_Range (Id, Scalar_Range (T));
5496 Set_Digits_Value (Id, Digits_Value (T));
5497 Set_Is_Constrained (Id, Is_Constrained (T));
5498
5499 -- If the floating point type has dimensions, these will be
5500 -- inherited subsequently when Analyze_Dimensions is called.
5501
5502 when Signed_Integer_Kind =>
5503 Set_Ekind (Id, E_Signed_Integer_Subtype);
5504 Set_Scalar_Range (Id, Scalar_Range (T));
5505 Set_Is_Constrained (Id, Is_Constrained (T));
5506 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5507 Set_RM_Size (Id, RM_Size (T));
5508
5509 when Modular_Integer_Kind =>
5510 Set_Ekind (Id, E_Modular_Integer_Subtype);
5511 Set_Scalar_Range (Id, Scalar_Range (T));
5512 Set_Is_Constrained (Id, Is_Constrained (T));
5513 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5514 Set_RM_Size (Id, RM_Size (T));
5515
5516 when Class_Wide_Kind =>
5517 Set_Ekind (Id, E_Class_Wide_Subtype);
5518 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5519 Set_Cloned_Subtype (Id, T);
5520 Set_Is_Tagged_Type (Id, True);
5521 Set_Has_Unknown_Discriminants
5522 (Id, True);
5523 Set_No_Tagged_Streams_Pragma
5524 (Id, No_Tagged_Streams_Pragma (T));
5525
5526 if Ekind (T) = E_Class_Wide_Subtype then
5527 Set_Equivalent_Type (Id, Equivalent_Type (T));
5528 end if;
5529
5530 when E_Record_Subtype
5531 | E_Record_Type
5532 =>
5533 Set_Ekind (Id, E_Record_Subtype);
5534
5535 if Ekind (T) = E_Record_Subtype
5536 and then Present (Cloned_Subtype (T))
5537 then
5538 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
5539 else
5540 Set_Cloned_Subtype (Id, T);
5541 end if;
5542
5543 Set_First_Entity (Id, First_Entity (T));
5544 Set_Last_Entity (Id, Last_Entity (T));
5545 Set_Has_Discriminants (Id, Has_Discriminants (T));
5546 Set_Is_Constrained (Id, Is_Constrained (T));
5547 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
5548 Set_Has_Implicit_Dereference
5549 (Id, Has_Implicit_Dereference (T));
5550 Set_Has_Unknown_Discriminants
5551 (Id, Has_Unknown_Discriminants (T));
5552
5553 if Has_Discriminants (T) then
5554 Set_Discriminant_Constraint
5555 (Id, Discriminant_Constraint (T));
5556 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5557
5558 elsif Has_Unknown_Discriminants (Id) then
5559 Set_Discriminant_Constraint (Id, No_Elist);
5560 end if;
5561
5562 if Is_Tagged_Type (T) then
5563 Set_Is_Tagged_Type (Id, True);
5564 Set_No_Tagged_Streams_Pragma
5565 (Id, No_Tagged_Streams_Pragma (T));
5566 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
5567 Set_Direct_Primitive_Operations
5568 (Id, Direct_Primitive_Operations (T));
5569 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5570
5571 if Is_Interface (T) then
5572 Set_Is_Interface (Id);
5573 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
5574 end if;
5575 end if;
5576
5577 when Private_Kind =>
5578 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5579 Set_Has_Discriminants (Id, Has_Discriminants (T));
5580 Set_Is_Constrained (Id, Is_Constrained (T));
5581 Set_First_Entity (Id, First_Entity (T));
5582 Set_Last_Entity (Id, Last_Entity (T));
5583 Set_Private_Dependents (Id, New_Elmt_List);
5584 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
5585 Set_Has_Implicit_Dereference
5586 (Id, Has_Implicit_Dereference (T));
5587 Set_Has_Unknown_Discriminants
5588 (Id, Has_Unknown_Discriminants (T));
5589 Set_Known_To_Have_Preelab_Init
5590 (Id, Known_To_Have_Preelab_Init (T));
5591
5592 if Is_Tagged_Type (T) then
5593 Set_Is_Tagged_Type (Id);
5594 Set_No_Tagged_Streams_Pragma (Id,
5595 No_Tagged_Streams_Pragma (T));
5596 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
5597 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5598 Set_Direct_Primitive_Operations (Id,
5599 Direct_Primitive_Operations (T));
5600 end if;
5601
5602 -- In general the attributes of the subtype of a private type
5603 -- are the attributes of the partial view of parent. However,
5604 -- the full view may be a discriminated type, and the subtype
5605 -- must share the discriminant constraint to generate correct
5606 -- calls to initialization procedures.
5607
5608 if Has_Discriminants (T) then
5609 Set_Discriminant_Constraint
5610 (Id, Discriminant_Constraint (T));
5611 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5612
5613 elsif Present (Full_View (T))
5614 and then Has_Discriminants (Full_View (T))
5615 then
5616 Set_Discriminant_Constraint
5617 (Id, Discriminant_Constraint (Full_View (T)));
5618 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5619
5620 -- This would seem semantically correct, but apparently
5621 -- generates spurious errors about missing components ???
5622
5623 -- Set_Has_Discriminants (Id);
5624 end if;
5625
5626 Prepare_Private_Subtype_Completion (Id, N);
5627
5628 -- If this is the subtype of a constrained private type with
5629 -- discriminants that has got a full view and we also have
5630 -- built a completion just above, show that the completion
5631 -- is a clone of the full view to the back-end.
5632
5633 if Has_Discriminants (T)
5634 and then not Has_Unknown_Discriminants (T)
5635 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
5636 and then Present (Full_View (T))
5637 and then Present (Full_View (Id))
5638 then
5639 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
5640 end if;
5641
5642 when Access_Kind =>
5643 Set_Ekind (Id, E_Access_Subtype);
5644 Set_Is_Constrained (Id, Is_Constrained (T));
5645 Set_Is_Access_Constant
5646 (Id, Is_Access_Constant (T));
5647 Set_Directly_Designated_Type
5648 (Id, Designated_Type (T));
5649 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
5650
5651 -- A Pure library_item must not contain the declaration of a
5652 -- named access type, except within a subprogram, generic
5653 -- subprogram, task unit, or protected unit, or if it has
5654 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
5655
5656 if Comes_From_Source (Id)
5657 and then In_Pure_Unit
5658 and then not In_Subprogram_Task_Protected_Unit
5659 and then not No_Pool_Assigned (Id)
5660 then
5661 Error_Msg_N
5662 ("named access types not allowed in pure unit", N);
5663 end if;
5664
5665 when Concurrent_Kind =>
5666 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5667 Set_Corresponding_Record_Type (Id,
5668 Corresponding_Record_Type (T));
5669 Set_First_Entity (Id, First_Entity (T));
5670 Set_First_Private_Entity (Id, First_Private_Entity (T));
5671 Set_Has_Discriminants (Id, Has_Discriminants (T));
5672 Set_Is_Constrained (Id, Is_Constrained (T));
5673 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5674 Set_Last_Entity (Id, Last_Entity (T));
5675
5676 if Is_Tagged_Type (T) then
5677 Set_No_Tagged_Streams_Pragma
5678 (Id, No_Tagged_Streams_Pragma (T));
5679 end if;
5680
5681 if Has_Discriminants (T) then
5682 Set_Discriminant_Constraint
5683 (Id, Discriminant_Constraint (T));
5684 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5685 end if;
5686
5687 when Incomplete_Kind =>
5688 if Ada_Version >= Ada_2005 then
5689
5690 -- In Ada 2005 an incomplete type can be explicitly tagged:
5691 -- propagate indication. Note that we also have to include
5692 -- subtypes for Ada 2012 extended use of incomplete types.
5693
5694 Set_Ekind (Id, E_Incomplete_Subtype);
5695 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5696 Set_Private_Dependents (Id, New_Elmt_List);
5697
5698 if Is_Tagged_Type (Id) then
5699 Set_No_Tagged_Streams_Pragma
5700 (Id, No_Tagged_Streams_Pragma (T));
5701 Set_Direct_Primitive_Operations (Id, New_Elmt_List);
5702 end if;
5703
5704 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
5705 -- incomplete type visible through a limited with clause.
5706
5707 if From_Limited_With (T)
5708 and then Present (Non_Limited_View (T))
5709 then
5710 Set_From_Limited_With (Id);
5711 Set_Non_Limited_View (Id, Non_Limited_View (T));
5712
5713 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5714 -- to the private dependents of the original incomplete
5715 -- type for future transformation.
5716
5717 else
5718 Append_Elmt (Id, Private_Dependents (T));
5719 end if;
5720
5721 -- If the subtype name denotes an incomplete type an error
5722 -- was already reported by Process_Subtype.
5723
5724 else
5725 Set_Etype (Id, Any_Type);
5726 end if;
5727
5728 when others =>
5729 raise Program_Error;
5730 end case;
5731
5732 -- If there is no constraint in the subtype indication, the
5733 -- declared entity inherits predicates from the parent.
5734
5735 Inherit_Predicate_Flags (Id, T);
5736 end if;
5737
5738 if Etype (Id) = Any_Type then
5739 goto Leave;
5740 end if;
5741
5742 -- Some common processing on all types
5743
5744 Set_Size_Info (Id, T);
5745 Set_First_Rep_Item (Id, First_Rep_Item (T));
5746
5747 -- If the parent type is a generic actual, so is the subtype. This may
5748 -- happen in a nested instance. Why Comes_From_Source test???
5749
5750 if not Comes_From_Source (N) then
5751 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
5752 end if;
5753
5754 -- If this is a subtype declaration for an actual in an instance,
5755 -- inherit static and dynamic predicates if any.
5756
5757 -- If declaration has no aspect specifications, inherit predicate
5758 -- info as well. Unclear how to handle the case of both specified
5759 -- and inherited predicates ??? Other inherited aspects, such as
5760 -- invariants, should be OK, but the combination with later pragmas
5761 -- may also require special merging.
5762
5763 if Has_Predicates (T)
5764 and then Present (Predicate_Function (T))
5765 and then
5766 ((In_Instance and then not Comes_From_Source (N))
5767 or else No (Aspect_Specifications (N)))
5768 then
5769 Set_Subprograms_For_Type (Id, Subprograms_For_Type (T));
5770
5771 if Has_Static_Predicate (T) then
5772 Set_Has_Static_Predicate (Id);
5773 Set_Static_Discrete_Predicate (Id, Static_Discrete_Predicate (T));
5774 end if;
5775 end if;
5776
5777 -- Remaining processing depends on characteristics of base type
5778
5779 T := Etype (Id);
5780
5781 Set_Is_Immediately_Visible (Id, True);
5782 Set_Depends_On_Private (Id, Has_Private_Component (T));
5783 Set_Is_Descendant_Of_Address (Id, Is_Descendant_Of_Address (T));
5784
5785 if Is_Interface (T) then
5786 Set_Is_Interface (Id);
5787 end if;
5788
5789 if Present (Generic_Parent_Type (N))
5790 and then
5791 (Nkind (Parent (Generic_Parent_Type (N))) /=
5792 N_Formal_Type_Declaration
5793 or else Nkind (Formal_Type_Definition
5794 (Parent (Generic_Parent_Type (N)))) /=
5795 N_Formal_Private_Type_Definition)
5796 then
5797 if Is_Tagged_Type (Id) then
5798
5799 -- If this is a generic actual subtype for a synchronized type,
5800 -- the primitive operations are those of the corresponding record
5801 -- for which there is a separate subtype declaration.
5802
5803 if Is_Concurrent_Type (Id) then
5804 null;
5805 elsif Is_Class_Wide_Type (Id) then
5806 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
5807 else
5808 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
5809 end if;
5810
5811 elsif Scope (Etype (Id)) /= Standard_Standard then
5812 Derive_Subprograms (Generic_Parent_Type (N), Id);
5813 end if;
5814 end if;
5815
5816 if Is_Private_Type (T) and then Present (Full_View (T)) then
5817 Conditional_Delay (Id, Full_View (T));
5818
5819 -- The subtypes of components or subcomponents of protected types
5820 -- do not need freeze nodes, which would otherwise appear in the
5821 -- wrong scope (before the freeze node for the protected type). The
5822 -- proper subtypes are those of the subcomponents of the corresponding
5823 -- record.
5824
5825 elsif Ekind (Scope (Id)) /= E_Protected_Type
5826 and then Present (Scope (Scope (Id))) -- error defense
5827 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
5828 then
5829 Conditional_Delay (Id, T);
5830 end if;
5831
5832 -- If we have a subtype of an incomplete type whose full type is a
5833 -- derived numeric type, we need to have a freeze node for the subtype.
5834 -- Otherwise gigi will complain while computing the (static) bounds of
5835 -- the subtype.
5836
5837 if Is_Itype (T)
5838 and then Is_Elementary_Type (Id)
5839 and then Etype (Id) /= Id
5840 then
5841 declare
5842 Partial : constant Entity_Id :=
5843 Incomplete_Or_Partial_View (First_Subtype (Id));
5844 begin
5845 if Present (Partial)
5846 and then Ekind (Partial) = E_Incomplete_Type
5847 then
5848 Set_Has_Delayed_Freeze (Id);
5849 end if;
5850 end;
5851 end if;
5852
5853 -- Check that Constraint_Error is raised for a scalar subtype indication
5854 -- when the lower or upper bound of a non-null range lies outside the
5855 -- range of the type mark.
5856
5857 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5858 if Is_Scalar_Type (Etype (Id))
5859 and then Scalar_Range (Id) /=
5860 Scalar_Range
5861 (Etype (Subtype_Mark (Subtype_Indication (N))))
5862 then
5863 Apply_Range_Check
5864 (Scalar_Range (Id),
5865 Etype (Subtype_Mark (Subtype_Indication (N))));
5866
5867 -- In the array case, check compatibility for each index
5868
5869 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
5870 then
5871 -- This really should be a subprogram that finds the indications
5872 -- to check???
5873
5874 declare
5875 Subt_Index : Node_Id := First_Index (Id);
5876 Target_Index : Node_Id :=
5877 First_Index (Etype
5878 (Subtype_Mark (Subtype_Indication (N))));
5879 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
5880
5881 begin
5882 while Present (Subt_Index) loop
5883 if ((Nkind (Subt_Index) = N_Identifier
5884 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
5885 or else Nkind (Subt_Index) = N_Subtype_Indication)
5886 and then
5887 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
5888 then
5889 declare
5890 Target_Typ : constant Entity_Id :=
5891 Etype (Target_Index);
5892 begin
5893 R_Checks :=
5894 Get_Range_Checks
5895 (Scalar_Range (Etype (Subt_Index)),
5896 Target_Typ,
5897 Etype (Subt_Index),
5898 Defining_Identifier (N));
5899
5900 -- Reset Has_Dynamic_Range_Check on the subtype to
5901 -- prevent elision of the index check due to a dynamic
5902 -- check generated for a preceding index (needed since
5903 -- Insert_Range_Checks tries to avoid generating
5904 -- redundant checks on a given declaration).
5905
5906 Set_Has_Dynamic_Range_Check (N, False);
5907
5908 Insert_Range_Checks
5909 (R_Checks,
5910 N,
5911 Target_Typ,
5912 Sloc (Defining_Identifier (N)));
5913
5914 -- Record whether this index involved a dynamic check
5915
5916 Has_Dyn_Chk :=
5917 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
5918 end;
5919 end if;
5920
5921 Next_Index (Subt_Index);
5922 Next_Index (Target_Index);
5923 end loop;
5924
5925 -- Finally, mark whether the subtype involves dynamic checks
5926
5927 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
5928 end;
5929 end if;
5930 end if;
5931
5932 Set_Optimize_Alignment_Flags (Id);
5933 Check_Eliminated (Id);
5934
5935 <<Leave>>
5936 if Has_Aspects (N) then
5937 Analyze_Aspect_Specifications (N, Id);
5938 end if;
5939
5940 Analyze_Dimension (N);
5941
5942 -- Check No_Dynamic_Sized_Objects restriction, which disallows subtype
5943 -- indications on composite types where the constraints are dynamic.
5944 -- Note that object declarations and aggregates generate implicit
5945 -- subtype declarations, which this covers. One special case is that the
5946 -- implicitly generated "=" for discriminated types includes an
5947 -- offending subtype declaration, which is harmless, so we ignore it
5948 -- here.
5949
5950 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5951 declare
5952 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5953 begin
5954 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint
5955 and then not (Is_Internal (Id)
5956 and then Is_TSS (Scope (Id),
5957 TSS_Composite_Equality))
5958 and then not Within_Init_Proc
5959 and then not All_Composite_Constraints_Static (Cstr)
5960 then
5961 Check_Restriction (No_Dynamic_Sized_Objects, Cstr);
5962 end if;
5963 end;
5964 end if;
5965 end Analyze_Subtype_Declaration;
5966
5967 --------------------------------
5968 -- Analyze_Subtype_Indication --
5969 --------------------------------
5970
5971 procedure Analyze_Subtype_Indication (N : Node_Id) is
5972 T : constant Entity_Id := Subtype_Mark (N);
5973 R : constant Node_Id := Range_Expression (Constraint (N));
5974
5975 begin
5976 Analyze (T);
5977
5978 if R /= Error then
5979 Analyze (R);
5980 Set_Etype (N, Etype (R));
5981 Resolve (R, Entity (T));
5982 else
5983 Set_Error_Posted (R);
5984 Set_Error_Posted (T);
5985 end if;
5986 end Analyze_Subtype_Indication;
5987
5988 --------------------------
5989 -- Analyze_Variant_Part --
5990 --------------------------
5991
5992 procedure Analyze_Variant_Part (N : Node_Id) is
5993 Discr_Name : Node_Id;
5994 Discr_Type : Entity_Id;
5995
5996 procedure Process_Variant (A : Node_Id);
5997 -- Analyze declarations for a single variant
5998
5999 package Analyze_Variant_Choices is
6000 new Generic_Analyze_Choices (Process_Variant);
6001 use Analyze_Variant_Choices;
6002
6003 ---------------------
6004 -- Process_Variant --
6005 ---------------------
6006
6007 procedure Process_Variant (A : Node_Id) is
6008 CL : constant Node_Id := Component_List (A);
6009 begin
6010 if not Null_Present (CL) then
6011 Analyze_Declarations (Component_Items (CL));
6012
6013 if Present (Variant_Part (CL)) then
6014 Analyze (Variant_Part (CL));
6015 end if;
6016 end if;
6017 end Process_Variant;
6018
6019 -- Start of processing for Analyze_Variant_Part
6020
6021 begin
6022 Discr_Name := Name (N);
6023 Analyze (Discr_Name);
6024
6025 -- If Discr_Name bad, get out (prevent cascaded errors)
6026
6027 if Etype (Discr_Name) = Any_Type then
6028 return;
6029 end if;
6030
6031 -- Check invalid discriminant in variant part
6032
6033 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
6034 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
6035 end if;
6036
6037 Discr_Type := Etype (Entity (Discr_Name));
6038
6039 if not Is_Discrete_Type (Discr_Type) then
6040 Error_Msg_N
6041 ("discriminant in a variant part must be of a discrete type",
6042 Name (N));
6043 return;
6044 end if;
6045
6046 -- Now analyze the choices, which also analyzes the declarations that
6047 -- are associated with each choice.
6048
6049 Analyze_Choices (Variants (N), Discr_Type);
6050
6051 -- Note: we used to instantiate and call Check_Choices here to check
6052 -- that the choices covered the discriminant, but it's too early to do
6053 -- that because of statically predicated subtypes, whose analysis may
6054 -- be deferred to their freeze point which may be as late as the freeze
6055 -- point of the containing record. So this call is now to be found in
6056 -- Freeze_Record_Declaration.
6057
6058 end Analyze_Variant_Part;
6059
6060 ----------------------------
6061 -- Array_Type_Declaration --
6062 ----------------------------
6063
6064 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
6065 Component_Def : constant Node_Id := Component_Definition (Def);
6066 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
6067 P : constant Node_Id := Parent (Def);
6068 Element_Type : Entity_Id;
6069 Implicit_Base : Entity_Id;
6070 Index : Node_Id;
6071 Nb_Index : Nat;
6072 Priv : Entity_Id;
6073 Related_Id : Entity_Id := Empty;
6074
6075 begin
6076 if Nkind (Def) = N_Constrained_Array_Definition then
6077 Index := First (Discrete_Subtype_Definitions (Def));
6078 else
6079 Index := First (Subtype_Marks (Def));
6080 end if;
6081
6082 -- Find proper names for the implicit types which may be public. In case
6083 -- of anonymous arrays we use the name of the first object of that type
6084 -- as prefix.
6085
6086 if No (T) then
6087 Related_Id := Defining_Identifier (P);
6088 else
6089 Related_Id := T;
6090 end if;
6091
6092 Nb_Index := 1;
6093 while Present (Index) loop
6094 Analyze (Index);
6095
6096 -- Test for odd case of trying to index a type by the type itself
6097
6098 if Is_Entity_Name (Index) and then Entity (Index) = T then
6099 Error_Msg_N ("type& cannot be indexed by itself", Index);
6100 Set_Entity (Index, Standard_Boolean);
6101 Set_Etype (Index, Standard_Boolean);
6102 end if;
6103
6104 -- Check SPARK restriction requiring a subtype mark
6105
6106 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
6107 Check_SPARK_05_Restriction ("subtype mark required", Index);
6108 end if;
6109
6110 -- Add a subtype declaration for each index of private array type
6111 -- declaration whose etype is also private. For example:
6112
6113 -- package Pkg is
6114 -- type Index is private;
6115 -- private
6116 -- type Table is array (Index) of ...
6117 -- end;
6118
6119 -- This is currently required by the expander for the internally
6120 -- generated equality subprogram of records with variant parts in
6121 -- which the etype of some component is such private type.
6122
6123 if Ekind (Current_Scope) = E_Package
6124 and then In_Private_Part (Current_Scope)
6125 and then Has_Private_Declaration (Etype (Index))
6126 then
6127 declare
6128 Loc : constant Source_Ptr := Sloc (Def);
6129 Decl : Entity_Id;
6130 New_E : Entity_Id;
6131
6132 begin
6133 New_E := Make_Temporary (Loc, 'T');
6134 Set_Is_Internal (New_E);
6135
6136 Decl :=
6137 Make_Subtype_Declaration (Loc,
6138 Defining_Identifier => New_E,
6139 Subtype_Indication =>
6140 New_Occurrence_Of (Etype (Index), Loc));
6141
6142 Insert_Before (Parent (Def), Decl);
6143 Analyze (Decl);
6144 Set_Etype (Index, New_E);
6145
6146 -- If the index is a range or a subtype indication it carries
6147 -- no entity. Example:
6148
6149 -- package Pkg is
6150 -- type T is private;
6151 -- private
6152 -- type T is new Natural;
6153 -- Table : array (T(1) .. T(10)) of Boolean;
6154 -- end Pkg;
6155
6156 -- Otherwise the type of the reference is its entity.
6157
6158 if Is_Entity_Name (Index) then
6159 Set_Entity (Index, New_E);
6160 end if;
6161 end;
6162 end if;
6163
6164 Make_Index (Index, P, Related_Id, Nb_Index);
6165
6166 -- Check error of subtype with predicate for index type
6167
6168 Bad_Predicated_Subtype_Use
6169 ("subtype& has predicate, not allowed as index subtype",
6170 Index, Etype (Index));
6171
6172 -- Move to next index
6173
6174 Next_Index (Index);
6175 Nb_Index := Nb_Index + 1;
6176 end loop;
6177
6178 -- Process subtype indication if one is present
6179
6180 if Present (Component_Typ) then
6181 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
6182
6183 Set_Etype (Component_Typ, Element_Type);
6184
6185 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
6186 Check_SPARK_05_Restriction
6187 ("subtype mark required", Component_Typ);
6188 end if;
6189
6190 -- Ada 2005 (AI-230): Access Definition case
6191
6192 else pragma Assert (Present (Access_Definition (Component_Def)));
6193
6194 -- Indicate that the anonymous access type is created by the
6195 -- array type declaration.
6196
6197 Element_Type := Access_Definition
6198 (Related_Nod => P,
6199 N => Access_Definition (Component_Def));
6200 Set_Is_Local_Anonymous_Access (Element_Type);
6201
6202 -- Propagate the parent. This field is needed if we have to generate
6203 -- the master_id associated with an anonymous access to task type
6204 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
6205
6206 Set_Parent (Element_Type, Parent (T));
6207
6208 -- Ada 2005 (AI-230): In case of components that are anonymous access
6209 -- types the level of accessibility depends on the enclosing type
6210 -- declaration
6211
6212 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
6213
6214 -- Ada 2005 (AI-254)
6215
6216 declare
6217 CD : constant Node_Id :=
6218 Access_To_Subprogram_Definition
6219 (Access_Definition (Component_Def));
6220 begin
6221 if Present (CD) and then Protected_Present (CD) then
6222 Element_Type :=
6223 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
6224 end if;
6225 end;
6226 end if;
6227
6228 -- Constrained array case
6229
6230 if No (T) then
6231 T := Create_Itype (E_Void, P, Related_Id, 'T');
6232 end if;
6233
6234 if Nkind (Def) = N_Constrained_Array_Definition then
6235
6236 -- Establish Implicit_Base as unconstrained base type
6237
6238 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
6239
6240 Set_Etype (Implicit_Base, Implicit_Base);
6241 Set_Scope (Implicit_Base, Current_Scope);
6242 Set_Has_Delayed_Freeze (Implicit_Base);
6243 Set_Default_SSO (Implicit_Base);
6244
6245 -- The constrained array type is a subtype of the unconstrained one
6246
6247 Set_Ekind (T, E_Array_Subtype);
6248 Init_Size_Align (T);
6249 Set_Etype (T, Implicit_Base);
6250 Set_Scope (T, Current_Scope);
6251 Set_Is_Constrained (T);
6252 Set_First_Index (T,
6253 First (Discrete_Subtype_Definitions (Def)));
6254 Set_Has_Delayed_Freeze (T);
6255
6256 -- Complete setup of implicit base type
6257
6258 Set_Component_Size (Implicit_Base, Uint_0);
6259 Set_Component_Type (Implicit_Base, Element_Type);
6260 Set_Finalize_Storage_Only
6261 (Implicit_Base,
6262 Finalize_Storage_Only (Element_Type));
6263 Set_First_Index (Implicit_Base, First_Index (T));
6264 Set_Has_Controlled_Component
6265 (Implicit_Base,
6266 Has_Controlled_Component (Element_Type)
6267 or else Is_Controlled (Element_Type));
6268 Set_Packed_Array_Impl_Type
6269 (Implicit_Base, Empty);
6270
6271 Propagate_Concurrent_Flags (Implicit_Base, Element_Type);
6272
6273 -- Unconstrained array case
6274
6275 else
6276 Set_Ekind (T, E_Array_Type);
6277 Init_Size_Align (T);
6278 Set_Etype (T, T);
6279 Set_Scope (T, Current_Scope);
6280 Set_Component_Size (T, Uint_0);
6281 Set_Is_Constrained (T, False);
6282 Set_First_Index (T, First (Subtype_Marks (Def)));
6283 Set_Has_Delayed_Freeze (T, True);
6284 Propagate_Concurrent_Flags (T, Element_Type);
6285 Set_Has_Controlled_Component (T, Has_Controlled_Component
6286 (Element_Type)
6287 or else
6288 Is_Controlled (Element_Type));
6289 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
6290 (Element_Type));
6291 Set_Default_SSO (T);
6292 end if;
6293
6294 -- Common attributes for both cases
6295
6296 Set_Component_Type (Base_Type (T), Element_Type);
6297 Set_Packed_Array_Impl_Type (T, Empty);
6298
6299 if Aliased_Present (Component_Definition (Def)) then
6300 Check_SPARK_05_Restriction
6301 ("aliased is not allowed", Component_Definition (Def));
6302 Set_Has_Aliased_Components (Etype (T));
6303 end if;
6304
6305 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
6306 -- array type to ensure that objects of this type are initialized.
6307
6308 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
6309 Set_Can_Never_Be_Null (T);
6310
6311 if Null_Exclusion_Present (Component_Definition (Def))
6312
6313 -- No need to check itypes because in their case this check was
6314 -- done at their point of creation
6315
6316 and then not Is_Itype (Element_Type)
6317 then
6318 Error_Msg_N
6319 ("`NOT NULL` not allowed (null already excluded)",
6320 Subtype_Indication (Component_Definition (Def)));
6321 end if;
6322 end if;
6323
6324 Priv := Private_Component (Element_Type);
6325
6326 if Present (Priv) then
6327
6328 -- Check for circular definitions
6329
6330 if Priv = Any_Type then
6331 Set_Component_Type (Etype (T), Any_Type);
6332
6333 -- There is a gap in the visibility of operations on the composite
6334 -- type only if the component type is defined in a different scope.
6335
6336 elsif Scope (Priv) = Current_Scope then
6337 null;
6338
6339 elsif Is_Limited_Type (Priv) then
6340 Set_Is_Limited_Composite (Etype (T));
6341 Set_Is_Limited_Composite (T);
6342 else
6343 Set_Is_Private_Composite (Etype (T));
6344 Set_Is_Private_Composite (T);
6345 end if;
6346 end if;
6347
6348 -- A syntax error in the declaration itself may lead to an empty index
6349 -- list, in which case do a minimal patch.
6350
6351 if No (First_Index (T)) then
6352 Error_Msg_N ("missing index definition in array type declaration", T);
6353
6354 declare
6355 Indexes : constant List_Id :=
6356 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
6357 begin
6358 Set_Discrete_Subtype_Definitions (Def, Indexes);
6359 Set_First_Index (T, First (Indexes));
6360 return;
6361 end;
6362 end if;
6363
6364 -- Create a concatenation operator for the new type. Internal array
6365 -- types created for packed entities do not need such, they are
6366 -- compatible with the user-defined type.
6367
6368 if Number_Dimensions (T) = 1
6369 and then not Is_Packed_Array_Impl_Type (T)
6370 then
6371 New_Concatenation_Op (T);
6372 end if;
6373
6374 -- In the case of an unconstrained array the parser has already verified
6375 -- that all the indexes are unconstrained but we still need to make sure
6376 -- that the element type is constrained.
6377
6378 if not Is_Definite_Subtype (Element_Type) then
6379 Error_Msg_N
6380 ("unconstrained element type in array declaration",
6381 Subtype_Indication (Component_Def));
6382
6383 elsif Is_Abstract_Type (Element_Type) then
6384 Error_Msg_N
6385 ("the type of a component cannot be abstract",
6386 Subtype_Indication (Component_Def));
6387 end if;
6388
6389 -- There may be an invariant declared for the component type, but
6390 -- the construction of the component invariant checking procedure
6391 -- takes place during expansion.
6392 end Array_Type_Declaration;
6393
6394 ------------------------------------------------------
6395 -- Replace_Anonymous_Access_To_Protected_Subprogram --
6396 ------------------------------------------------------
6397
6398 function Replace_Anonymous_Access_To_Protected_Subprogram
6399 (N : Node_Id) return Entity_Id
6400 is
6401 Loc : constant Source_Ptr := Sloc (N);
6402
6403 Curr_Scope : constant Scope_Stack_Entry :=
6404 Scope_Stack.Table (Scope_Stack.Last);
6405
6406 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
6407
6408 Acc : Node_Id;
6409 -- Access definition in declaration
6410
6411 Comp : Node_Id;
6412 -- Object definition or formal definition with an access definition
6413
6414 Decl : Node_Id;
6415 -- Declaration of anonymous access to subprogram type
6416
6417 Spec : Node_Id;
6418 -- Original specification in access to subprogram
6419
6420 P : Node_Id;
6421
6422 begin
6423 Set_Is_Internal (Anon);
6424
6425 case Nkind (N) is
6426 when N_Constrained_Array_Definition
6427 | N_Component_Declaration
6428 | N_Unconstrained_Array_Definition
6429 =>
6430 Comp := Component_Definition (N);
6431 Acc := Access_Definition (Comp);
6432
6433 when N_Discriminant_Specification =>
6434 Comp := Discriminant_Type (N);
6435 Acc := Comp;
6436
6437 when N_Parameter_Specification =>
6438 Comp := Parameter_Type (N);
6439 Acc := Comp;
6440
6441 when N_Access_Function_Definition =>
6442 Comp := Result_Definition (N);
6443 Acc := Comp;
6444
6445 when N_Object_Declaration =>
6446 Comp := Object_Definition (N);
6447 Acc := Comp;
6448
6449 when N_Function_Specification =>
6450 Comp := Result_Definition (N);
6451 Acc := Comp;
6452
6453 when others =>
6454 raise Program_Error;
6455 end case;
6456
6457 Spec := Access_To_Subprogram_Definition (Acc);
6458
6459 Decl :=
6460 Make_Full_Type_Declaration (Loc,
6461 Defining_Identifier => Anon,
6462 Type_Definition => Copy_Separate_Tree (Spec));
6463
6464 Mark_Rewrite_Insertion (Decl);
6465
6466 -- In ASIS mode, analyze the profile on the original node, because
6467 -- the separate copy does not provide enough links to recover the
6468 -- original tree. Analysis is limited to type annotations, within
6469 -- a temporary scope that serves as an anonymous subprogram to collect
6470 -- otherwise useless temporaries and itypes.
6471
6472 if ASIS_Mode then
6473 declare
6474 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
6475
6476 begin
6477 if Nkind (Spec) = N_Access_Function_Definition then
6478 Set_Ekind (Typ, E_Function);
6479 else
6480 Set_Ekind (Typ, E_Procedure);
6481 end if;
6482
6483 Set_Parent (Typ, N);
6484 Set_Scope (Typ, Current_Scope);
6485 Push_Scope (Typ);
6486
6487 -- Nothing to do if procedure is parameterless
6488
6489 if Present (Parameter_Specifications (Spec)) then
6490 Process_Formals (Parameter_Specifications (Spec), Spec);
6491 end if;
6492
6493 if Nkind (Spec) = N_Access_Function_Definition then
6494 declare
6495 Def : constant Node_Id := Result_Definition (Spec);
6496
6497 begin
6498 -- The result might itself be an anonymous access type, so
6499 -- have to recurse.
6500
6501 if Nkind (Def) = N_Access_Definition then
6502 if Present (Access_To_Subprogram_Definition (Def)) then
6503 Set_Etype
6504 (Def,
6505 Replace_Anonymous_Access_To_Protected_Subprogram
6506 (Spec));
6507 else
6508 Find_Type (Subtype_Mark (Def));
6509 end if;
6510
6511 else
6512 Find_Type (Def);
6513 end if;
6514 end;
6515 end if;
6516
6517 End_Scope;
6518 end;
6519 end if;
6520
6521 -- Insert the new declaration in the nearest enclosing scope. If the
6522 -- parent is a body and N is its return type, the declaration belongs
6523 -- in the enclosing scope. Likewise if N is the type of a parameter.
6524
6525 P := Parent (N);
6526
6527 if Nkind (N) = N_Function_Specification
6528 and then Nkind (P) = N_Subprogram_Body
6529 then
6530 P := Parent (P);
6531 elsif Nkind (N) = N_Parameter_Specification
6532 and then Nkind (P) in N_Subprogram_Specification
6533 and then Nkind (Parent (P)) = N_Subprogram_Body
6534 then
6535 P := Parent (Parent (P));
6536 end if;
6537
6538 while Present (P) and then not Has_Declarations (P) loop
6539 P := Parent (P);
6540 end loop;
6541
6542 pragma Assert (Present (P));
6543
6544 if Nkind (P) = N_Package_Specification then
6545 Prepend (Decl, Visible_Declarations (P));
6546 else
6547 Prepend (Decl, Declarations (P));
6548 end if;
6549
6550 -- Replace the anonymous type with an occurrence of the new declaration.
6551 -- In all cases the rewritten node does not have the null-exclusion
6552 -- attribute because (if present) it was already inherited by the
6553 -- anonymous entity (Anon). Thus, in case of components we do not
6554 -- inherit this attribute.
6555
6556 if Nkind (N) = N_Parameter_Specification then
6557 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6558 Set_Etype (Defining_Identifier (N), Anon);
6559 Set_Null_Exclusion_Present (N, False);
6560
6561 elsif Nkind (N) = N_Object_Declaration then
6562 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6563 Set_Etype (Defining_Identifier (N), Anon);
6564
6565 elsif Nkind (N) = N_Access_Function_Definition then
6566 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6567
6568 elsif Nkind (N) = N_Function_Specification then
6569 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6570 Set_Etype (Defining_Unit_Name (N), Anon);
6571
6572 else
6573 Rewrite (Comp,
6574 Make_Component_Definition (Loc,
6575 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
6576 end if;
6577
6578 Mark_Rewrite_Insertion (Comp);
6579
6580 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition)
6581 or else (Nkind (Parent (N)) = N_Full_Type_Declaration
6582 and then not Is_Type (Current_Scope))
6583 then
6584
6585 -- Declaration can be analyzed in the current scope.
6586
6587 Analyze (Decl);
6588
6589 else
6590 -- Temporarily remove the current scope (record or subprogram) from
6591 -- the stack to add the new declarations to the enclosing scope.
6592 -- The anonymous entity is an Itype with the proper attributes.
6593
6594 Scope_Stack.Decrement_Last;
6595 Analyze (Decl);
6596 Set_Is_Itype (Anon);
6597 Set_Associated_Node_For_Itype (Anon, N);
6598 Scope_Stack.Append (Curr_Scope);
6599 end if;
6600
6601 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
6602 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
6603 return Anon;
6604 end Replace_Anonymous_Access_To_Protected_Subprogram;
6605
6606 -------------------------------
6607 -- Build_Derived_Access_Type --
6608 -------------------------------
6609
6610 procedure Build_Derived_Access_Type
6611 (N : Node_Id;
6612 Parent_Type : Entity_Id;
6613 Derived_Type : Entity_Id)
6614 is
6615 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
6616
6617 Desig_Type : Entity_Id;
6618 Discr : Entity_Id;
6619 Discr_Con_Elist : Elist_Id;
6620 Discr_Con_El : Elmt_Id;
6621 Subt : Entity_Id;
6622
6623 begin
6624 -- Set the designated type so it is available in case this is an access
6625 -- to a self-referential type, e.g. a standard list type with a next
6626 -- pointer. Will be reset after subtype is built.
6627
6628 Set_Directly_Designated_Type
6629 (Derived_Type, Designated_Type (Parent_Type));
6630
6631 Subt := Process_Subtype (S, N);
6632
6633 if Nkind (S) /= N_Subtype_Indication
6634 and then Subt /= Base_Type (Subt)
6635 then
6636 Set_Ekind (Derived_Type, E_Access_Subtype);
6637 end if;
6638
6639 if Ekind (Derived_Type) = E_Access_Subtype then
6640 declare
6641 Pbase : constant Entity_Id := Base_Type (Parent_Type);
6642 Ibase : constant Entity_Id :=
6643 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
6644 Svg_Chars : constant Name_Id := Chars (Ibase);
6645 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
6646 Svg_Prev_E : constant Entity_Id := Prev_Entity (Ibase);
6647
6648 begin
6649 Copy_Node (Pbase, Ibase);
6650
6651 -- Restore Itype status after Copy_Node
6652
6653 Set_Is_Itype (Ibase);
6654 Set_Associated_Node_For_Itype (Ibase, N);
6655
6656 Set_Chars (Ibase, Svg_Chars);
6657 Set_Prev_Entity (Ibase, Svg_Prev_E);
6658 Set_Next_Entity (Ibase, Svg_Next_E);
6659 Set_Sloc (Ibase, Sloc (Derived_Type));
6660 Set_Scope (Ibase, Scope (Derived_Type));
6661 Set_Freeze_Node (Ibase, Empty);
6662 Set_Is_Frozen (Ibase, False);
6663 Set_Comes_From_Source (Ibase, False);
6664 Set_Is_First_Subtype (Ibase, False);
6665
6666 Set_Etype (Ibase, Pbase);
6667 Set_Etype (Derived_Type, Ibase);
6668 end;
6669 end if;
6670
6671 Set_Directly_Designated_Type
6672 (Derived_Type, Designated_Type (Subt));
6673
6674 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
6675 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
6676 Set_Size_Info (Derived_Type, Parent_Type);
6677 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
6678 Set_Depends_On_Private (Derived_Type,
6679 Has_Private_Component (Derived_Type));
6680 Conditional_Delay (Derived_Type, Subt);
6681
6682 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
6683 -- that it is not redundant.
6684
6685 if Null_Exclusion_Present (Type_Definition (N)) then
6686 Set_Can_Never_Be_Null (Derived_Type);
6687
6688 elsif Can_Never_Be_Null (Parent_Type) then
6689 Set_Can_Never_Be_Null (Derived_Type);
6690 end if;
6691
6692 -- Note: we do not copy the Storage_Size_Variable, since we always go to
6693 -- the root type for this information.
6694
6695 -- Apply range checks to discriminants for derived record case
6696 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
6697
6698 Desig_Type := Designated_Type (Derived_Type);
6699
6700 if Is_Composite_Type (Desig_Type)
6701 and then (not Is_Array_Type (Desig_Type))
6702 and then Has_Discriminants (Desig_Type)
6703 and then Base_Type (Desig_Type) /= Desig_Type
6704 then
6705 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
6706 Discr_Con_El := First_Elmt (Discr_Con_Elist);
6707
6708 Discr := First_Discriminant (Base_Type (Desig_Type));
6709 while Present (Discr_Con_El) loop
6710 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
6711 Next_Elmt (Discr_Con_El);
6712 Next_Discriminant (Discr);
6713 end loop;
6714 end if;
6715 end Build_Derived_Access_Type;
6716
6717 ------------------------------
6718 -- Build_Derived_Array_Type --
6719 ------------------------------
6720
6721 procedure Build_Derived_Array_Type
6722 (N : Node_Id;
6723 Parent_Type : Entity_Id;
6724 Derived_Type : Entity_Id)
6725 is
6726 Loc : constant Source_Ptr := Sloc (N);
6727 Tdef : constant Node_Id := Type_Definition (N);
6728 Indic : constant Node_Id := Subtype_Indication (Tdef);
6729 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6730 Implicit_Base : Entity_Id := Empty;
6731 New_Indic : Node_Id;
6732
6733 procedure Make_Implicit_Base;
6734 -- If the parent subtype is constrained, the derived type is a subtype
6735 -- of an implicit base type derived from the parent base.
6736
6737 ------------------------
6738 -- Make_Implicit_Base --
6739 ------------------------
6740
6741 procedure Make_Implicit_Base is
6742 begin
6743 Implicit_Base :=
6744 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6745
6746 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6747 Set_Etype (Implicit_Base, Parent_Base);
6748
6749 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
6750 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
6751
6752 Set_Has_Delayed_Freeze (Implicit_Base, True);
6753 end Make_Implicit_Base;
6754
6755 -- Start of processing for Build_Derived_Array_Type
6756
6757 begin
6758 if not Is_Constrained (Parent_Type) then
6759 if Nkind (Indic) /= N_Subtype_Indication then
6760 Set_Ekind (Derived_Type, E_Array_Type);
6761
6762 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6763 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
6764
6765 Set_Has_Delayed_Freeze (Derived_Type, True);
6766
6767 else
6768 Make_Implicit_Base;
6769 Set_Etype (Derived_Type, Implicit_Base);
6770
6771 New_Indic :=
6772 Make_Subtype_Declaration (Loc,
6773 Defining_Identifier => Derived_Type,
6774 Subtype_Indication =>
6775 Make_Subtype_Indication (Loc,
6776 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6777 Constraint => Constraint (Indic)));
6778
6779 Rewrite (N, New_Indic);
6780 Analyze (N);
6781 end if;
6782
6783 else
6784 if Nkind (Indic) /= N_Subtype_Indication then
6785 Make_Implicit_Base;
6786
6787 Set_Ekind (Derived_Type, Ekind (Parent_Type));
6788 Set_Etype (Derived_Type, Implicit_Base);
6789 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6790
6791 else
6792 Error_Msg_N ("illegal constraint on constrained type", Indic);
6793 end if;
6794 end if;
6795
6796 -- If parent type is not a derived type itself, and is declared in
6797 -- closed scope (e.g. a subprogram), then we must explicitly introduce
6798 -- the new type's concatenation operator since Derive_Subprograms
6799 -- will not inherit the parent's operator. If the parent type is
6800 -- unconstrained, the operator is of the unconstrained base type.
6801
6802 if Number_Dimensions (Parent_Type) = 1
6803 and then not Is_Limited_Type (Parent_Type)
6804 and then not Is_Derived_Type (Parent_Type)
6805 and then not Is_Package_Or_Generic_Package
6806 (Scope (Base_Type (Parent_Type)))
6807 then
6808 if not Is_Constrained (Parent_Type)
6809 and then Is_Constrained (Derived_Type)
6810 then
6811 New_Concatenation_Op (Implicit_Base);
6812 else
6813 New_Concatenation_Op (Derived_Type);
6814 end if;
6815 end if;
6816 end Build_Derived_Array_Type;
6817
6818 -----------------------------------
6819 -- Build_Derived_Concurrent_Type --
6820 -----------------------------------
6821
6822 procedure Build_Derived_Concurrent_Type
6823 (N : Node_Id;
6824 Parent_Type : Entity_Id;
6825 Derived_Type : Entity_Id)
6826 is
6827 Loc : constant Source_Ptr := Sloc (N);
6828
6829 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
6830 Corr_Decl : Node_Id;
6831 Corr_Decl_Needed : Boolean;
6832 -- If the derived type has fewer discriminants than its parent, the
6833 -- corresponding record is also a derived type, in order to account for
6834 -- the bound discriminants. We create a full type declaration for it in
6835 -- this case.
6836
6837 Constraint_Present : constant Boolean :=
6838 Nkind (Subtype_Indication (Type_Definition (N))) =
6839 N_Subtype_Indication;
6840
6841 D_Constraint : Node_Id;
6842 New_Constraint : Elist_Id := No_Elist;
6843 Old_Disc : Entity_Id;
6844 New_Disc : Entity_Id;
6845 New_N : Node_Id;
6846
6847 begin
6848 Set_Stored_Constraint (Derived_Type, No_Elist);
6849 Corr_Decl_Needed := False;
6850 Old_Disc := Empty;
6851
6852 if Present (Discriminant_Specifications (N))
6853 and then Constraint_Present
6854 then
6855 Old_Disc := First_Discriminant (Parent_Type);
6856 New_Disc := First (Discriminant_Specifications (N));
6857 while Present (New_Disc) and then Present (Old_Disc) loop
6858 Next_Discriminant (Old_Disc);
6859 Next (New_Disc);
6860 end loop;
6861 end if;
6862
6863 if Present (Old_Disc) and then Expander_Active then
6864
6865 -- The new type has fewer discriminants, so we need to create a new
6866 -- corresponding record, which is derived from the corresponding
6867 -- record of the parent, and has a stored constraint that captures
6868 -- the values of the discriminant constraints. The corresponding
6869 -- record is needed only if expander is active and code generation is
6870 -- enabled.
6871
6872 -- The type declaration for the derived corresponding record has the
6873 -- same discriminant part and constraints as the current declaration.
6874 -- Copy the unanalyzed tree to build declaration.
6875
6876 Corr_Decl_Needed := True;
6877 New_N := Copy_Separate_Tree (N);
6878
6879 Corr_Decl :=
6880 Make_Full_Type_Declaration (Loc,
6881 Defining_Identifier => Corr_Record,
6882 Discriminant_Specifications =>
6883 Discriminant_Specifications (New_N),
6884 Type_Definition =>
6885 Make_Derived_Type_Definition (Loc,
6886 Subtype_Indication =>
6887 Make_Subtype_Indication (Loc,
6888 Subtype_Mark =>
6889 New_Occurrence_Of
6890 (Corresponding_Record_Type (Parent_Type), Loc),
6891 Constraint =>
6892 Constraint
6893 (Subtype_Indication (Type_Definition (New_N))))));
6894 end if;
6895
6896 -- Copy Storage_Size and Relative_Deadline variables if task case
6897
6898 if Is_Task_Type (Parent_Type) then
6899 Set_Storage_Size_Variable (Derived_Type,
6900 Storage_Size_Variable (Parent_Type));
6901 Set_Relative_Deadline_Variable (Derived_Type,
6902 Relative_Deadline_Variable (Parent_Type));
6903 end if;
6904
6905 if Present (Discriminant_Specifications (N)) then
6906 Push_Scope (Derived_Type);
6907 Check_Or_Process_Discriminants (N, Derived_Type);
6908
6909 if Constraint_Present then
6910 New_Constraint :=
6911 Expand_To_Stored_Constraint
6912 (Parent_Type,
6913 Build_Discriminant_Constraints
6914 (Parent_Type,
6915 Subtype_Indication (Type_Definition (N)), True));
6916 end if;
6917
6918 End_Scope;
6919
6920 elsif Constraint_Present then
6921
6922 -- Build constrained subtype, copying the constraint, and derive
6923 -- from it to create a derived constrained type.
6924
6925 declare
6926 Loc : constant Source_Ptr := Sloc (N);
6927 Anon : constant Entity_Id :=
6928 Make_Defining_Identifier (Loc,
6929 Chars => New_External_Name (Chars (Derived_Type), 'T'));
6930 Decl : Node_Id;
6931
6932 begin
6933 Decl :=
6934 Make_Subtype_Declaration (Loc,
6935 Defining_Identifier => Anon,
6936 Subtype_Indication =>
6937 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
6938 Insert_Before (N, Decl);
6939 Analyze (Decl);
6940
6941 Rewrite (Subtype_Indication (Type_Definition (N)),
6942 New_Occurrence_Of (Anon, Loc));
6943 Set_Analyzed (Derived_Type, False);
6944 Analyze (N);
6945 return;
6946 end;
6947 end if;
6948
6949 -- By default, operations and private data are inherited from parent.
6950 -- However, in the presence of bound discriminants, a new corresponding
6951 -- record will be created, see below.
6952
6953 Set_Has_Discriminants
6954 (Derived_Type, Has_Discriminants (Parent_Type));
6955 Set_Corresponding_Record_Type
6956 (Derived_Type, Corresponding_Record_Type (Parent_Type));
6957
6958 -- Is_Constrained is set according the parent subtype, but is set to
6959 -- False if the derived type is declared with new discriminants.
6960
6961 Set_Is_Constrained
6962 (Derived_Type,
6963 (Is_Constrained (Parent_Type) or else Constraint_Present)
6964 and then not Present (Discriminant_Specifications (N)));
6965
6966 if Constraint_Present then
6967 if not Has_Discriminants (Parent_Type) then
6968 Error_Msg_N ("untagged parent must have discriminants", N);
6969
6970 elsif Present (Discriminant_Specifications (N)) then
6971
6972 -- Verify that new discriminants are used to constrain old ones
6973
6974 D_Constraint :=
6975 First
6976 (Constraints
6977 (Constraint (Subtype_Indication (Type_Definition (N)))));
6978
6979 Old_Disc := First_Discriminant (Parent_Type);
6980
6981 while Present (D_Constraint) loop
6982 if Nkind (D_Constraint) /= N_Discriminant_Association then
6983
6984 -- Positional constraint. If it is a reference to a new
6985 -- discriminant, it constrains the corresponding old one.
6986
6987 if Nkind (D_Constraint) = N_Identifier then
6988 New_Disc := First_Discriminant (Derived_Type);
6989 while Present (New_Disc) loop
6990 exit when Chars (New_Disc) = Chars (D_Constraint);
6991 Next_Discriminant (New_Disc);
6992 end loop;
6993
6994 if Present (New_Disc) then
6995 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
6996 end if;
6997 end if;
6998
6999 Next_Discriminant (Old_Disc);
7000
7001 -- if this is a named constraint, search by name for the old
7002 -- discriminants constrained by the new one.
7003
7004 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
7005
7006 -- Find new discriminant with that name
7007
7008 New_Disc := First_Discriminant (Derived_Type);
7009 while Present (New_Disc) loop
7010 exit when
7011 Chars (New_Disc) = Chars (Expression (D_Constraint));
7012 Next_Discriminant (New_Disc);
7013 end loop;
7014
7015 if Present (New_Disc) then
7016
7017 -- Verify that new discriminant renames some discriminant
7018 -- of the parent type, and associate the new discriminant
7019 -- with one or more old ones that it renames.
7020
7021 declare
7022 Selector : Node_Id;
7023
7024 begin
7025 Selector := First (Selector_Names (D_Constraint));
7026 while Present (Selector) loop
7027 Old_Disc := First_Discriminant (Parent_Type);
7028 while Present (Old_Disc) loop
7029 exit when Chars (Old_Disc) = Chars (Selector);
7030 Next_Discriminant (Old_Disc);
7031 end loop;
7032
7033 if Present (Old_Disc) then
7034 Set_Corresponding_Discriminant
7035 (New_Disc, Old_Disc);
7036 end if;
7037
7038 Next (Selector);
7039 end loop;
7040 end;
7041 end if;
7042 end if;
7043
7044 Next (D_Constraint);
7045 end loop;
7046
7047 New_Disc := First_Discriminant (Derived_Type);
7048 while Present (New_Disc) loop
7049 if No (Corresponding_Discriminant (New_Disc)) then
7050 Error_Msg_NE
7051 ("new discriminant& must constrain old one", N, New_Disc);
7052
7053 elsif not
7054 Subtypes_Statically_Compatible
7055 (Etype (New_Disc),
7056 Etype (Corresponding_Discriminant (New_Disc)))
7057 then
7058 Error_Msg_NE
7059 ("& not statically compatible with parent discriminant",
7060 N, New_Disc);
7061 end if;
7062
7063 Next_Discriminant (New_Disc);
7064 end loop;
7065 end if;
7066
7067 elsif Present (Discriminant_Specifications (N)) then
7068 Error_Msg_N
7069 ("missing discriminant constraint in untagged derivation", N);
7070 end if;
7071
7072 -- The entity chain of the derived type includes the new discriminants
7073 -- but shares operations with the parent.
7074
7075 if Present (Discriminant_Specifications (N)) then
7076 Old_Disc := First_Discriminant (Parent_Type);
7077 while Present (Old_Disc) loop
7078 if No (Next_Entity (Old_Disc))
7079 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
7080 then
7081 Link_Entities
7082 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
7083 exit;
7084 end if;
7085
7086 Next_Discriminant (Old_Disc);
7087 end loop;
7088
7089 else
7090 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
7091 if Has_Discriminants (Parent_Type) then
7092 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7093 Set_Discriminant_Constraint (
7094 Derived_Type, Discriminant_Constraint (Parent_Type));
7095 end if;
7096 end if;
7097
7098 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
7099
7100 Set_Has_Completion (Derived_Type);
7101
7102 if Corr_Decl_Needed then
7103 Set_Stored_Constraint (Derived_Type, New_Constraint);
7104 Insert_After (N, Corr_Decl);
7105 Analyze (Corr_Decl);
7106 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
7107 end if;
7108 end Build_Derived_Concurrent_Type;
7109
7110 ------------------------------------
7111 -- Build_Derived_Enumeration_Type --
7112 ------------------------------------
7113
7114 procedure Build_Derived_Enumeration_Type
7115 (N : Node_Id;
7116 Parent_Type : Entity_Id;
7117 Derived_Type : Entity_Id)
7118 is
7119 Loc : constant Source_Ptr := Sloc (N);
7120 Def : constant Node_Id := Type_Definition (N);
7121 Indic : constant Node_Id := Subtype_Indication (Def);
7122 Implicit_Base : Entity_Id;
7123 Literal : Entity_Id;
7124 New_Lit : Entity_Id;
7125 Literals_List : List_Id;
7126 Type_Decl : Node_Id;
7127 Hi, Lo : Node_Id;
7128 Rang_Expr : Node_Id;
7129
7130 begin
7131 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
7132 -- not have explicit literals lists we need to process types derived
7133 -- from them specially. This is handled by Derived_Standard_Character.
7134 -- If the parent type is a generic type, there are no literals either,
7135 -- and we construct the same skeletal representation as for the generic
7136 -- parent type.
7137
7138 if Is_Standard_Character_Type (Parent_Type) then
7139 Derived_Standard_Character (N, Parent_Type, Derived_Type);
7140
7141 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
7142 declare
7143 Lo : Node_Id;
7144 Hi : Node_Id;
7145
7146 begin
7147 if Nkind (Indic) /= N_Subtype_Indication then
7148 Lo :=
7149 Make_Attribute_Reference (Loc,
7150 Attribute_Name => Name_First,
7151 Prefix => New_Occurrence_Of (Derived_Type, Loc));
7152 Set_Etype (Lo, Derived_Type);
7153
7154 Hi :=
7155 Make_Attribute_Reference (Loc,
7156 Attribute_Name => Name_Last,
7157 Prefix => New_Occurrence_Of (Derived_Type, Loc));
7158 Set_Etype (Hi, Derived_Type);
7159
7160 Set_Scalar_Range (Derived_Type,
7161 Make_Range (Loc,
7162 Low_Bound => Lo,
7163 High_Bound => Hi));
7164 else
7165
7166 -- Analyze subtype indication and verify compatibility
7167 -- with parent type.
7168
7169 if Base_Type (Process_Subtype (Indic, N)) /=
7170 Base_Type (Parent_Type)
7171 then
7172 Error_Msg_N
7173 ("illegal constraint for formal discrete type", N);
7174 end if;
7175 end if;
7176 end;
7177
7178 else
7179 -- If a constraint is present, analyze the bounds to catch
7180 -- premature usage of the derived literals.
7181
7182 if Nkind (Indic) = N_Subtype_Indication
7183 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
7184 then
7185 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
7186 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
7187 end if;
7188
7189 -- Introduce an implicit base type for the derived type even if there
7190 -- is no constraint attached to it, since this seems closer to the
7191 -- Ada semantics. Build a full type declaration tree for the derived
7192 -- type using the implicit base type as the defining identifier. The
7193 -- build a subtype declaration tree which applies the constraint (if
7194 -- any) have it replace the derived type declaration.
7195
7196 Literal := First_Literal (Parent_Type);
7197 Literals_List := New_List;
7198 while Present (Literal)
7199 and then Ekind (Literal) = E_Enumeration_Literal
7200 loop
7201 -- Literals of the derived type have the same representation as
7202 -- those of the parent type, but this representation can be
7203 -- overridden by an explicit representation clause. Indicate
7204 -- that there is no explicit representation given yet. These
7205 -- derived literals are implicit operations of the new type,
7206 -- and can be overridden by explicit ones.
7207
7208 if Nkind (Literal) = N_Defining_Character_Literal then
7209 New_Lit :=
7210 Make_Defining_Character_Literal (Loc, Chars (Literal));
7211 else
7212 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
7213 end if;
7214
7215 Set_Ekind (New_Lit, E_Enumeration_Literal);
7216 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
7217 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
7218 Set_Enumeration_Rep_Expr (New_Lit, Empty);
7219 Set_Alias (New_Lit, Literal);
7220 Set_Is_Known_Valid (New_Lit, True);
7221
7222 Append (New_Lit, Literals_List);
7223 Next_Literal (Literal);
7224 end loop;
7225
7226 Implicit_Base :=
7227 Make_Defining_Identifier (Sloc (Derived_Type),
7228 Chars => New_External_Name (Chars (Derived_Type), 'B'));
7229
7230 -- Indicate the proper nature of the derived type. This must be done
7231 -- before analysis of the literals, to recognize cases when a literal
7232 -- may be hidden by a previous explicit function definition (cf.
7233 -- c83031a).
7234
7235 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
7236 Set_Etype (Derived_Type, Implicit_Base);
7237
7238 Type_Decl :=
7239 Make_Full_Type_Declaration (Loc,
7240 Defining_Identifier => Implicit_Base,
7241 Discriminant_Specifications => No_List,
7242 Type_Definition =>
7243 Make_Enumeration_Type_Definition (Loc, Literals_List));
7244
7245 Mark_Rewrite_Insertion (Type_Decl);
7246 Insert_Before (N, Type_Decl);
7247 Analyze (Type_Decl);
7248
7249 -- The anonymous base now has a full declaration, but this base
7250 -- is not a first subtype.
7251
7252 Set_Is_First_Subtype (Implicit_Base, False);
7253
7254 -- After the implicit base is analyzed its Etype needs to be changed
7255 -- to reflect the fact that it is derived from the parent type which
7256 -- was ignored during analysis. We also set the size at this point.
7257
7258 Set_Etype (Implicit_Base, Parent_Type);
7259
7260 Set_Size_Info (Implicit_Base, Parent_Type);
7261 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
7262 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
7263
7264 -- Copy other flags from parent type
7265
7266 Set_Has_Non_Standard_Rep
7267 (Implicit_Base, Has_Non_Standard_Rep
7268 (Parent_Type));
7269 Set_Has_Pragma_Ordered
7270 (Implicit_Base, Has_Pragma_Ordered
7271 (Parent_Type));
7272 Set_Has_Delayed_Freeze (Implicit_Base);
7273
7274 -- Process the subtype indication including a validation check on the
7275 -- constraint, if any. If a constraint is given, its bounds must be
7276 -- implicitly converted to the new type.
7277
7278 if Nkind (Indic) = N_Subtype_Indication then
7279 declare
7280 R : constant Node_Id :=
7281 Range_Expression (Constraint (Indic));
7282
7283 begin
7284 if Nkind (R) = N_Range then
7285 Hi := Build_Scalar_Bound
7286 (High_Bound (R), Parent_Type, Implicit_Base);
7287 Lo := Build_Scalar_Bound
7288 (Low_Bound (R), Parent_Type, Implicit_Base);
7289
7290 else
7291 -- Constraint is a Range attribute. Replace with explicit
7292 -- mention of the bounds of the prefix, which must be a
7293 -- subtype.
7294
7295 Analyze (Prefix (R));
7296 Hi :=
7297 Convert_To (Implicit_Base,
7298 Make_Attribute_Reference (Loc,
7299 Attribute_Name => Name_Last,
7300 Prefix =>
7301 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
7302
7303 Lo :=
7304 Convert_To (Implicit_Base,
7305 Make_Attribute_Reference (Loc,
7306 Attribute_Name => Name_First,
7307 Prefix =>
7308 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
7309 end if;
7310 end;
7311
7312 else
7313 Hi :=
7314 Build_Scalar_Bound
7315 (Type_High_Bound (Parent_Type),
7316 Parent_Type, Implicit_Base);
7317 Lo :=
7318 Build_Scalar_Bound
7319 (Type_Low_Bound (Parent_Type),
7320 Parent_Type, Implicit_Base);
7321 end if;
7322
7323 Rang_Expr :=
7324 Make_Range (Loc,
7325 Low_Bound => Lo,
7326 High_Bound => Hi);
7327
7328 -- If we constructed a default range for the case where no range
7329 -- was given, then the expressions in the range must not freeze
7330 -- since they do not correspond to expressions in the source.
7331 -- However, if the type inherits predicates the expressions will
7332 -- be elaborated earlier and must freeze.
7333
7334 if Nkind (Indic) /= N_Subtype_Indication
7335 and then not Has_Predicates (Derived_Type)
7336 then
7337 Set_Must_Not_Freeze (Lo);
7338 Set_Must_Not_Freeze (Hi);
7339 Set_Must_Not_Freeze (Rang_Expr);
7340 end if;
7341
7342 Rewrite (N,
7343 Make_Subtype_Declaration (Loc,
7344 Defining_Identifier => Derived_Type,
7345 Subtype_Indication =>
7346 Make_Subtype_Indication (Loc,
7347 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
7348 Constraint =>
7349 Make_Range_Constraint (Loc,
7350 Range_Expression => Rang_Expr))));
7351
7352 Analyze (N);
7353
7354 -- Propagate the aspects from the original type declaration to the
7355 -- declaration of the implicit base.
7356
7357 Move_Aspects (From => Original_Node (N), To => Type_Decl);
7358
7359 -- Apply a range check. Since this range expression doesn't have an
7360 -- Etype, we have to specifically pass the Source_Typ parameter. Is
7361 -- this right???
7362
7363 if Nkind (Indic) = N_Subtype_Indication then
7364 Apply_Range_Check
7365 (Range_Expression (Constraint (Indic)), Parent_Type,
7366 Source_Typ => Entity (Subtype_Mark (Indic)));
7367 end if;
7368 end if;
7369 end Build_Derived_Enumeration_Type;
7370
7371 --------------------------------
7372 -- Build_Derived_Numeric_Type --
7373 --------------------------------
7374
7375 procedure Build_Derived_Numeric_Type
7376 (N : Node_Id;
7377 Parent_Type : Entity_Id;
7378 Derived_Type : Entity_Id)
7379 is
7380 Loc : constant Source_Ptr := Sloc (N);
7381 Tdef : constant Node_Id := Type_Definition (N);
7382 Indic : constant Node_Id := Subtype_Indication (Tdef);
7383 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
7384 No_Constraint : constant Boolean := Nkind (Indic) /=
7385 N_Subtype_Indication;
7386 Implicit_Base : Entity_Id;
7387
7388 Lo : Node_Id;
7389 Hi : Node_Id;
7390
7391 begin
7392 -- Process the subtype indication including a validation check on
7393 -- the constraint if any.
7394
7395 Discard_Node (Process_Subtype (Indic, N));
7396
7397 -- Introduce an implicit base type for the derived type even if there
7398 -- is no constraint attached to it, since this seems closer to the Ada
7399 -- semantics.
7400
7401 Implicit_Base :=
7402 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
7403
7404 Set_Etype (Implicit_Base, Parent_Base);
7405 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
7406 Set_Size_Info (Implicit_Base, Parent_Base);
7407 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
7408 Set_Parent (Implicit_Base, Parent (Derived_Type));
7409 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
7410
7411 -- Set RM Size for discrete type or decimal fixed-point type
7412 -- Ordinary fixed-point is excluded, why???
7413
7414 if Is_Discrete_Type (Parent_Base)
7415 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
7416 then
7417 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
7418 end if;
7419
7420 Set_Has_Delayed_Freeze (Implicit_Base);
7421
7422 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
7423 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
7424
7425 Set_Scalar_Range (Implicit_Base,
7426 Make_Range (Loc,
7427 Low_Bound => Lo,
7428 High_Bound => Hi));
7429
7430 if Has_Infinities (Parent_Base) then
7431 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
7432 end if;
7433
7434 -- The Derived_Type, which is the entity of the declaration, is a
7435 -- subtype of the implicit base. Its Ekind is a subtype, even in the
7436 -- absence of an explicit constraint.
7437
7438 Set_Etype (Derived_Type, Implicit_Base);
7439
7440 -- If we did not have a constraint, then the Ekind is set from the
7441 -- parent type (otherwise Process_Subtype has set the bounds)
7442
7443 if No_Constraint then
7444 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
7445 end if;
7446
7447 -- If we did not have a range constraint, then set the range from the
7448 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
7449
7450 if No_Constraint or else not Has_Range_Constraint (Indic) then
7451 Set_Scalar_Range (Derived_Type,
7452 Make_Range (Loc,
7453 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
7454 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
7455 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7456
7457 if Has_Infinities (Parent_Type) then
7458 Set_Includes_Infinities (Scalar_Range (Derived_Type));
7459 end if;
7460
7461 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
7462 end if;
7463
7464 Set_Is_Descendant_Of_Address (Derived_Type,
7465 Is_Descendant_Of_Address (Parent_Type));
7466 Set_Is_Descendant_Of_Address (Implicit_Base,
7467 Is_Descendant_Of_Address (Parent_Type));
7468
7469 -- Set remaining type-specific fields, depending on numeric type
7470
7471 if Is_Modular_Integer_Type (Parent_Type) then
7472 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
7473
7474 Set_Non_Binary_Modulus
7475 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
7476
7477 Set_Is_Known_Valid
7478 (Implicit_Base, Is_Known_Valid (Parent_Base));
7479
7480 elsif Is_Floating_Point_Type (Parent_Type) then
7481
7482 -- Digits of base type is always copied from the digits value of
7483 -- the parent base type, but the digits of the derived type will
7484 -- already have been set if there was a constraint present.
7485
7486 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
7487 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
7488
7489 if No_Constraint then
7490 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
7491 end if;
7492
7493 elsif Is_Fixed_Point_Type (Parent_Type) then
7494
7495 -- Small of base type and derived type are always copied from the
7496 -- parent base type, since smalls never change. The delta of the
7497 -- base type is also copied from the parent base type. However the
7498 -- delta of the derived type will have been set already if a
7499 -- constraint was present.
7500
7501 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
7502 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
7503 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
7504
7505 if No_Constraint then
7506 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
7507 end if;
7508
7509 -- The scale and machine radix in the decimal case are always
7510 -- copied from the parent base type.
7511
7512 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
7513 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
7514 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
7515
7516 Set_Machine_Radix_10
7517 (Derived_Type, Machine_Radix_10 (Parent_Base));
7518 Set_Machine_Radix_10
7519 (Implicit_Base, Machine_Radix_10 (Parent_Base));
7520
7521 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
7522
7523 if No_Constraint then
7524 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
7525
7526 else
7527 -- the analysis of the subtype_indication sets the
7528 -- digits value of the derived type.
7529
7530 null;
7531 end if;
7532 end if;
7533 end if;
7534
7535 if Is_Integer_Type (Parent_Type) then
7536 Set_Has_Shift_Operator
7537 (Implicit_Base, Has_Shift_Operator (Parent_Type));
7538 end if;
7539
7540 -- The type of the bounds is that of the parent type, and they
7541 -- must be converted to the derived type.
7542
7543 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
7544
7545 -- The implicit_base should be frozen when the derived type is frozen,
7546 -- but note that it is used in the conversions of the bounds. For fixed
7547 -- types we delay the determination of the bounds until the proper
7548 -- freezing point. For other numeric types this is rejected by GCC, for
7549 -- reasons that are currently unclear (???), so we choose to freeze the
7550 -- implicit base now. In the case of integers and floating point types
7551 -- this is harmless because subsequent representation clauses cannot
7552 -- affect anything, but it is still baffling that we cannot use the
7553 -- same mechanism for all derived numeric types.
7554
7555 -- There is a further complication: actually some representation
7556 -- clauses can affect the implicit base type. For example, attribute
7557 -- definition clauses for stream-oriented attributes need to set the
7558 -- corresponding TSS entries on the base type, and this normally
7559 -- cannot be done after the base type is frozen, so the circuitry in
7560 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
7561 -- and not use Set_TSS in this case.
7562
7563 -- There are also consequences for the case of delayed representation
7564 -- aspects for some cases. For example, a Size aspect is delayed and
7565 -- should not be evaluated to the freeze point. This early freezing
7566 -- means that the size attribute evaluation happens too early???
7567
7568 if Is_Fixed_Point_Type (Parent_Type) then
7569 Conditional_Delay (Implicit_Base, Parent_Type);
7570 else
7571 Freeze_Before (N, Implicit_Base);
7572 end if;
7573 end Build_Derived_Numeric_Type;
7574
7575 --------------------------------
7576 -- Build_Derived_Private_Type --
7577 --------------------------------
7578
7579 procedure Build_Derived_Private_Type
7580 (N : Node_Id;
7581 Parent_Type : Entity_Id;
7582 Derived_Type : Entity_Id;
7583 Is_Completion : Boolean;
7584 Derive_Subps : Boolean := True)
7585 is
7586 Loc : constant Source_Ptr := Sloc (N);
7587 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
7588 Par_Scope : constant Entity_Id := Scope (Par_Base);
7589 Full_N : constant Node_Id := New_Copy_Tree (N);
7590 Full_Der : Entity_Id := New_Copy (Derived_Type);
7591 Full_P : Entity_Id;
7592
7593 procedure Build_Full_Derivation;
7594 -- Build full derivation, i.e. derive from the full view
7595
7596 procedure Copy_And_Build;
7597 -- Copy derived type declaration, replace parent with its full view,
7598 -- and build derivation
7599
7600 ---------------------------
7601 -- Build_Full_Derivation --
7602 ---------------------------
7603
7604 procedure Build_Full_Derivation is
7605 begin
7606 -- If parent scope is not open, install the declarations
7607
7608 if not In_Open_Scopes (Par_Scope) then
7609 Install_Private_Declarations (Par_Scope);
7610 Install_Visible_Declarations (Par_Scope);
7611 Copy_And_Build;
7612 Uninstall_Declarations (Par_Scope);
7613
7614 -- If parent scope is open and in another unit, and parent has a
7615 -- completion, then the derivation is taking place in the visible
7616 -- part of a child unit. In that case retrieve the full view of
7617 -- the parent momentarily.
7618
7619 elsif not In_Same_Source_Unit (N, Parent_Type) then
7620 Full_P := Full_View (Parent_Type);
7621 Exchange_Declarations (Parent_Type);
7622 Copy_And_Build;
7623 Exchange_Declarations (Full_P);
7624
7625 -- Otherwise it is a local derivation
7626
7627 else
7628 Copy_And_Build;
7629 end if;
7630 end Build_Full_Derivation;
7631
7632 --------------------
7633 -- Copy_And_Build --
7634 --------------------
7635
7636 procedure Copy_And_Build is
7637 Full_Parent : Entity_Id := Parent_Type;
7638
7639 begin
7640 -- If the parent is itself derived from another private type,
7641 -- installing the private declarations has not affected its
7642 -- privacy status, so use its own full view explicitly.
7643
7644 if Is_Private_Type (Full_Parent)
7645 and then Present (Full_View (Full_Parent))
7646 then
7647 Full_Parent := Full_View (Full_Parent);
7648 end if;
7649
7650 -- And its underlying full view if necessary
7651
7652 if Is_Private_Type (Full_Parent)
7653 and then Present (Underlying_Full_View (Full_Parent))
7654 then
7655 Full_Parent := Underlying_Full_View (Full_Parent);
7656 end if;
7657
7658 -- For record, access and most enumeration types, derivation from
7659 -- the full view requires a fully-fledged declaration. In the other
7660 -- cases, just use an itype.
7661
7662 if Ekind (Full_Parent) in Record_Kind
7663 or else Ekind (Full_Parent) in Access_Kind
7664 or else
7665 (Ekind (Full_Parent) in Enumeration_Kind
7666 and then not Is_Standard_Character_Type (Full_Parent)
7667 and then not Is_Generic_Type (Root_Type (Full_Parent)))
7668 then
7669 -- Copy and adjust declaration to provide a completion for what
7670 -- is originally a private declaration. Indicate that full view
7671 -- is internally generated.
7672
7673 Set_Comes_From_Source (Full_N, False);
7674 Set_Comes_From_Source (Full_Der, False);
7675 Set_Parent (Full_Der, Full_N);
7676 Set_Defining_Identifier (Full_N, Full_Der);
7677
7678 -- If there are no constraints, adjust the subtype mark
7679
7680 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
7681 N_Subtype_Indication
7682 then
7683 Set_Subtype_Indication
7684 (Type_Definition (Full_N),
7685 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
7686 end if;
7687
7688 Insert_After (N, Full_N);
7689
7690 -- Build full view of derived type from full view of parent which
7691 -- is now installed. Subprograms have been derived on the partial
7692 -- view, the completion does not derive them anew.
7693
7694 if Ekind (Full_Parent) in Record_Kind then
7695
7696 -- If parent type is tagged, the completion inherits the proper
7697 -- primitive operations.
7698
7699 if Is_Tagged_Type (Parent_Type) then
7700 Build_Derived_Record_Type
7701 (Full_N, Full_Parent, Full_Der, Derive_Subps);
7702 else
7703 Build_Derived_Record_Type
7704 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
7705 end if;
7706
7707 else
7708 Build_Derived_Type
7709 (Full_N, Full_Parent, Full_Der,
7710 Is_Completion => False, Derive_Subps => False);
7711 end if;
7712
7713 -- The full declaration has been introduced into the tree and
7714 -- processed in the step above. It should not be analyzed again
7715 -- (when encountered later in the current list of declarations)
7716 -- to prevent spurious name conflicts. The full entity remains
7717 -- invisible.
7718
7719 Set_Analyzed (Full_N);
7720
7721 else
7722 Full_Der :=
7723 Make_Defining_Identifier (Sloc (Derived_Type),
7724 Chars => Chars (Derived_Type));
7725 Set_Is_Itype (Full_Der);
7726 Set_Associated_Node_For_Itype (Full_Der, N);
7727 Set_Parent (Full_Der, N);
7728 Build_Derived_Type
7729 (N, Full_Parent, Full_Der,
7730 Is_Completion => False, Derive_Subps => False);
7731 end if;
7732
7733 Set_Has_Private_Declaration (Full_Der);
7734 Set_Has_Private_Declaration (Derived_Type);
7735
7736 Set_Scope (Full_Der, Scope (Derived_Type));
7737 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
7738 Set_Has_Size_Clause (Full_Der, False);
7739 Set_Has_Alignment_Clause (Full_Der, False);
7740 Set_Has_Delayed_Freeze (Full_Der);
7741 Set_Is_Frozen (Full_Der, False);
7742 Set_Freeze_Node (Full_Der, Empty);
7743 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
7744 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
7745
7746 -- The convention on the base type may be set in the private part
7747 -- and not propagated to the subtype until later, so we obtain the
7748 -- convention from the base type of the parent.
7749
7750 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
7751 end Copy_And_Build;
7752
7753 -- Start of processing for Build_Derived_Private_Type
7754
7755 begin
7756 if Is_Tagged_Type (Parent_Type) then
7757 Full_P := Full_View (Parent_Type);
7758
7759 -- A type extension of a type with unknown discriminants is an
7760 -- indefinite type that the back-end cannot handle directly.
7761 -- We treat it as a private type, and build a completion that is
7762 -- derived from the full view of the parent, and hopefully has
7763 -- known discriminants.
7764
7765 -- If the full view of the parent type has an underlying record view,
7766 -- use it to generate the underlying record view of this derived type
7767 -- (required for chains of derivations with unknown discriminants).
7768
7769 -- Minor optimization: we avoid the generation of useless underlying
7770 -- record view entities if the private type declaration has unknown
7771 -- discriminants but its corresponding full view has no
7772 -- discriminants.
7773
7774 if Has_Unknown_Discriminants (Parent_Type)
7775 and then Present (Full_P)
7776 and then (Has_Discriminants (Full_P)
7777 or else Present (Underlying_Record_View (Full_P)))
7778 and then not In_Open_Scopes (Par_Scope)
7779 and then Expander_Active
7780 then
7781 declare
7782 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
7783 New_Ext : constant Node_Id :=
7784 Copy_Separate_Tree
7785 (Record_Extension_Part (Type_Definition (N)));
7786 Decl : Node_Id;
7787
7788 begin
7789 Build_Derived_Record_Type
7790 (N, Parent_Type, Derived_Type, Derive_Subps);
7791
7792 -- Build anonymous completion, as a derivation from the full
7793 -- view of the parent. This is not a completion in the usual
7794 -- sense, because the current type is not private.
7795
7796 Decl :=
7797 Make_Full_Type_Declaration (Loc,
7798 Defining_Identifier => Full_Der,
7799 Type_Definition =>
7800 Make_Derived_Type_Definition (Loc,
7801 Subtype_Indication =>
7802 New_Copy_Tree
7803 (Subtype_Indication (Type_Definition (N))),
7804 Record_Extension_Part => New_Ext));
7805
7806 -- If the parent type has an underlying record view, use it
7807 -- here to build the new underlying record view.
7808
7809 if Present (Underlying_Record_View (Full_P)) then
7810 pragma Assert
7811 (Nkind (Subtype_Indication (Type_Definition (Decl)))
7812 = N_Identifier);
7813 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
7814 Underlying_Record_View (Full_P));
7815 end if;
7816
7817 Install_Private_Declarations (Par_Scope);
7818 Install_Visible_Declarations (Par_Scope);
7819 Insert_Before (N, Decl);
7820
7821 -- Mark entity as an underlying record view before analysis,
7822 -- to avoid generating the list of its primitive operations
7823 -- (which is not really required for this entity) and thus
7824 -- prevent spurious errors associated with missing overriding
7825 -- of abstract primitives (overridden only for Derived_Type).
7826
7827 Set_Ekind (Full_Der, E_Record_Type);
7828 Set_Is_Underlying_Record_View (Full_Der);
7829 Set_Default_SSO (Full_Der);
7830 Set_No_Reordering (Full_Der, No_Component_Reordering);
7831
7832 Analyze (Decl);
7833
7834 pragma Assert (Has_Discriminants (Full_Der)
7835 and then not Has_Unknown_Discriminants (Full_Der));
7836
7837 Uninstall_Declarations (Par_Scope);
7838
7839 -- Freeze the underlying record view, to prevent generation of
7840 -- useless dispatching information, which is simply shared with
7841 -- the real derived type.
7842
7843 Set_Is_Frozen (Full_Der);
7844
7845 -- If the derived type has access discriminants, create
7846 -- references to their anonymous types now, to prevent
7847 -- back-end problems when their first use is in generated
7848 -- bodies of primitives.
7849
7850 declare
7851 E : Entity_Id;
7852
7853 begin
7854 E := First_Entity (Full_Der);
7855
7856 while Present (E) loop
7857 if Ekind (E) = E_Discriminant
7858 and then Ekind (Etype (E)) = E_Anonymous_Access_Type
7859 then
7860 Build_Itype_Reference (Etype (E), Decl);
7861 end if;
7862
7863 Next_Entity (E);
7864 end loop;
7865 end;
7866
7867 -- Set up links between real entity and underlying record view
7868
7869 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
7870 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
7871 end;
7872
7873 -- If discriminants are known, build derived record
7874
7875 else
7876 Build_Derived_Record_Type
7877 (N, Parent_Type, Derived_Type, Derive_Subps);
7878 end if;
7879
7880 return;
7881
7882 elsif Has_Discriminants (Parent_Type) then
7883
7884 -- Build partial view of derived type from partial view of parent.
7885 -- This must be done before building the full derivation because the
7886 -- second derivation will modify the discriminants of the first and
7887 -- the discriminants are chained with the rest of the components in
7888 -- the full derivation.
7889
7890 Build_Derived_Record_Type
7891 (N, Parent_Type, Derived_Type, Derive_Subps);
7892
7893 -- Build the full derivation if this is not the anonymous derived
7894 -- base type created by Build_Derived_Record_Type in the constrained
7895 -- case (see point 5. of its head comment) since we build it for the
7896 -- derived subtype. And skip it for synchronized types altogether, as
7897 -- gigi does not use these types directly.
7898
7899 if Present (Full_View (Parent_Type))
7900 and then not Is_Itype (Derived_Type)
7901 and then not Is_Concurrent_Type (Full_View (Parent_Type))
7902 then
7903 declare
7904 Der_Base : constant Entity_Id := Base_Type (Derived_Type);
7905 Discr : Entity_Id;
7906 Last_Discr : Entity_Id;
7907
7908 begin
7909 -- If this is not a completion, construct the implicit full
7910 -- view by deriving from the full view of the parent type.
7911 -- But if this is a completion, the derived private type
7912 -- being built is a full view and the full derivation can
7913 -- only be its underlying full view.
7914
7915 Build_Full_Derivation;
7916
7917 if not Is_Completion then
7918 Set_Full_View (Derived_Type, Full_Der);
7919 else
7920 Set_Underlying_Full_View (Derived_Type, Full_Der);
7921 Set_Is_Underlying_Full_View (Full_Der);
7922 end if;
7923
7924 if not Is_Base_Type (Derived_Type) then
7925 Set_Full_View (Der_Base, Base_Type (Full_Der));
7926 end if;
7927
7928 -- Copy the discriminant list from full view to the partial
7929 -- view (base type and its subtype). Gigi requires that the
7930 -- partial and full views have the same discriminants.
7931
7932 -- Note that since the partial view points to discriminants
7933 -- in the full view, their scope will be that of the full
7934 -- view. This might cause some front end problems and need
7935 -- adjustment???
7936
7937 Discr := First_Discriminant (Base_Type (Full_Der));
7938 Set_First_Entity (Der_Base, Discr);
7939
7940 loop
7941 Last_Discr := Discr;
7942 Next_Discriminant (Discr);
7943 exit when No (Discr);
7944 end loop;
7945
7946 Set_Last_Entity (Der_Base, Last_Discr);
7947 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
7948 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
7949 end;
7950 end if;
7951
7952 elsif Present (Full_View (Parent_Type))
7953 and then Has_Discriminants (Full_View (Parent_Type))
7954 then
7955 if Has_Unknown_Discriminants (Parent_Type)
7956 and then Nkind (Subtype_Indication (Type_Definition (N))) =
7957 N_Subtype_Indication
7958 then
7959 Error_Msg_N
7960 ("cannot constrain type with unknown discriminants",
7961 Subtype_Indication (Type_Definition (N)));
7962 return;
7963 end if;
7964
7965 -- If this is not a completion, construct the implicit full view by
7966 -- deriving from the full view of the parent type. But if this is a
7967 -- completion, the derived private type being built is a full view
7968 -- and the full derivation can only be its underlying full view.
7969
7970 Build_Full_Derivation;
7971
7972 if not Is_Completion then
7973 Set_Full_View (Derived_Type, Full_Der);
7974 else
7975 Set_Underlying_Full_View (Derived_Type, Full_Der);
7976 Set_Is_Underlying_Full_View (Full_Der);
7977 end if;
7978
7979 -- In any case, the primitive operations are inherited from the
7980 -- parent type, not from the internal full view.
7981
7982 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
7983
7984 if Derive_Subps then
7985 Derive_Subprograms (Parent_Type, Derived_Type);
7986 end if;
7987
7988 Set_Stored_Constraint (Derived_Type, No_Elist);
7989 Set_Is_Constrained
7990 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
7991
7992 else
7993 -- Untagged type, No discriminants on either view
7994
7995 if Nkind (Subtype_Indication (Type_Definition (N))) =
7996 N_Subtype_Indication
7997 then
7998 Error_Msg_N
7999 ("illegal constraint on type without discriminants", N);
8000 end if;
8001
8002 if Present (Discriminant_Specifications (N))
8003 and then Present (Full_View (Parent_Type))
8004 and then not Is_Tagged_Type (Full_View (Parent_Type))
8005 then
8006 Error_Msg_N ("cannot add discriminants to untagged type", N);
8007 end if;
8008
8009 Set_Stored_Constraint (Derived_Type, No_Elist);
8010 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
8011
8012 Set_Is_Controlled_Active
8013 (Derived_Type, Is_Controlled_Active (Parent_Type));
8014
8015 Set_Disable_Controlled
8016 (Derived_Type, Disable_Controlled (Parent_Type));
8017
8018 Set_Has_Controlled_Component
8019 (Derived_Type, Has_Controlled_Component (Parent_Type));
8020
8021 -- Direct controlled types do not inherit Finalize_Storage_Only flag
8022
8023 if not Is_Controlled (Parent_Type) then
8024 Set_Finalize_Storage_Only
8025 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
8026 end if;
8027
8028 -- If this is not a completion, construct the implicit full view by
8029 -- deriving from the full view of the parent type.
8030
8031 -- ??? If the parent is untagged private and its completion is
8032 -- tagged, this mechanism will not work because we cannot derive from
8033 -- the tagged full view unless we have an extension.
8034
8035 if Present (Full_View (Parent_Type))
8036 and then not Is_Tagged_Type (Full_View (Parent_Type))
8037 and then not Is_Completion
8038 then
8039 Build_Full_Derivation;
8040 Set_Full_View (Derived_Type, Full_Der);
8041 end if;
8042 end if;
8043
8044 Set_Has_Unknown_Discriminants (Derived_Type,
8045 Has_Unknown_Discriminants (Parent_Type));
8046
8047 if Is_Private_Type (Derived_Type) then
8048 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8049 end if;
8050
8051 -- If the parent base type is in scope, add the derived type to its
8052 -- list of private dependents, because its full view may become
8053 -- visible subsequently (in a nested private part, a body, or in a
8054 -- further child unit).
8055
8056 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
8057 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
8058
8059 -- Check for unusual case where a type completed by a private
8060 -- derivation occurs within a package nested in a child unit, and
8061 -- the parent is declared in an ancestor.
8062
8063 if Is_Child_Unit (Scope (Current_Scope))
8064 and then Is_Completion
8065 and then In_Private_Part (Current_Scope)
8066 and then Scope (Parent_Type) /= Current_Scope
8067
8068 -- Note that if the parent has a completion in the private part,
8069 -- (which is itself a derivation from some other private type)
8070 -- it is that completion that is visible, there is no full view
8071 -- available, and no special processing is needed.
8072
8073 and then Present (Full_View (Parent_Type))
8074 then
8075 -- In this case, the full view of the parent type will become
8076 -- visible in the body of the enclosing child, and only then will
8077 -- the current type be possibly non-private. Build an underlying
8078 -- full view that will be installed when the enclosing child body
8079 -- is compiled.
8080
8081 if Present (Underlying_Full_View (Derived_Type)) then
8082 Full_Der := Underlying_Full_View (Derived_Type);
8083 else
8084 Build_Full_Derivation;
8085 Set_Underlying_Full_View (Derived_Type, Full_Der);
8086 Set_Is_Underlying_Full_View (Full_Der);
8087 end if;
8088
8089 -- The full view will be used to swap entities on entry/exit to
8090 -- the body, and must appear in the entity list for the package.
8091
8092 Append_Entity (Full_Der, Scope (Derived_Type));
8093 end if;
8094 end if;
8095 end Build_Derived_Private_Type;
8096
8097 -------------------------------
8098 -- Build_Derived_Record_Type --
8099 -------------------------------
8100
8101 -- 1. INTRODUCTION
8102
8103 -- Ideally we would like to use the same model of type derivation for
8104 -- tagged and untagged record types. Unfortunately this is not quite
8105 -- possible because the semantics of representation clauses is different
8106 -- for tagged and untagged records under inheritance. Consider the
8107 -- following:
8108
8109 -- type R (...) is [tagged] record ... end record;
8110 -- type T (...) is new R (...) [with ...];
8111
8112 -- The representation clauses for T can specify a completely different
8113 -- record layout from R's. Hence the same component can be placed in two
8114 -- very different positions in objects of type T and R. If R and T are
8115 -- tagged types, representation clauses for T can only specify the layout
8116 -- of non inherited components, thus components that are common in R and T
8117 -- have the same position in objects of type R and T.
8118
8119 -- This has two implications. The first is that the entire tree for R's
8120 -- declaration needs to be copied for T in the untagged case, so that T
8121 -- can be viewed as a record type of its own with its own representation
8122 -- clauses. The second implication is the way we handle discriminants.
8123 -- Specifically, in the untagged case we need a way to communicate to Gigi
8124 -- what are the real discriminants in the record, while for the semantics
8125 -- we need to consider those introduced by the user to rename the
8126 -- discriminants in the parent type. This is handled by introducing the
8127 -- notion of stored discriminants. See below for more.
8128
8129 -- Fortunately the way regular components are inherited can be handled in
8130 -- the same way in tagged and untagged types.
8131
8132 -- To complicate things a bit more the private view of a private extension
8133 -- cannot be handled in the same way as the full view (for one thing the
8134 -- semantic rules are somewhat different). We will explain what differs
8135 -- below.
8136
8137 -- 2. DISCRIMINANTS UNDER INHERITANCE
8138
8139 -- The semantic rules governing the discriminants of derived types are
8140 -- quite subtle.
8141
8142 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
8143 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
8144
8145 -- If parent type has discriminants, then the discriminants that are
8146 -- declared in the derived type are [3.4 (11)]:
8147
8148 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
8149 -- there is one;
8150
8151 -- o Otherwise, each discriminant of the parent type (implicitly declared
8152 -- in the same order with the same specifications). In this case, the
8153 -- discriminants are said to be "inherited", or if unknown in the parent
8154 -- are also unknown in the derived type.
8155
8156 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
8157
8158 -- o The parent subtype must be constrained;
8159
8160 -- o If the parent type is not a tagged type, then each discriminant of
8161 -- the derived type must be used in the constraint defining a parent
8162 -- subtype. [Implementation note: This ensures that the new discriminant
8163 -- can share storage with an existing discriminant.]
8164
8165 -- For the derived type each discriminant of the parent type is either
8166 -- inherited, constrained to equal some new discriminant of the derived
8167 -- type, or constrained to the value of an expression.
8168
8169 -- When inherited or constrained to equal some new discriminant, the
8170 -- parent discriminant and the discriminant of the derived type are said
8171 -- to "correspond".
8172
8173 -- If a discriminant of the parent type is constrained to a specific value
8174 -- in the derived type definition, then the discriminant is said to be
8175 -- "specified" by that derived type definition.
8176
8177 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
8178
8179 -- We have spoken about stored discriminants in point 1 (introduction)
8180 -- above. There are two sorts of stored discriminants: implicit and
8181 -- explicit. As long as the derived type inherits the same discriminants as
8182 -- the root record type, stored discriminants are the same as regular
8183 -- discriminants, and are said to be implicit. However, if any discriminant
8184 -- in the root type was renamed in the derived type, then the derived
8185 -- type will contain explicit stored discriminants. Explicit stored
8186 -- discriminants are discriminants in addition to the semantically visible
8187 -- discriminants defined for the derived type. Stored discriminants are
8188 -- used by Gigi to figure out what are the physical discriminants in
8189 -- objects of the derived type (see precise definition in einfo.ads).
8190 -- As an example, consider the following:
8191
8192 -- type R (D1, D2, D3 : Int) is record ... end record;
8193 -- type T1 is new R;
8194 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
8195 -- type T3 is new T2;
8196 -- type T4 (Y : Int) is new T3 (Y, 99);
8197
8198 -- The following table summarizes the discriminants and stored
8199 -- discriminants in R and T1 through T4:
8200
8201 -- Type Discrim Stored Discrim Comment
8202 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
8203 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
8204 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
8205 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
8206 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
8207
8208 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
8209 -- find the corresponding discriminant in the parent type, while
8210 -- Original_Record_Component (abbreviated ORC below) the actual physical
8211 -- component that is renamed. Finally the field Is_Completely_Hidden
8212 -- (abbreviated ICH below) is set for all explicit stored discriminants
8213 -- (see einfo.ads for more info). For the above example this gives:
8214
8215 -- Discrim CD ORC ICH
8216 -- ^^^^^^^ ^^ ^^^ ^^^
8217 -- D1 in R empty itself no
8218 -- D2 in R empty itself no
8219 -- D3 in R empty itself no
8220
8221 -- D1 in T1 D1 in R itself no
8222 -- D2 in T1 D2 in R itself no
8223 -- D3 in T1 D3 in R itself no
8224
8225 -- X1 in T2 D3 in T1 D3 in T2 no
8226 -- X2 in T2 D1 in T1 D1 in T2 no
8227 -- D1 in T2 empty itself yes
8228 -- D2 in T2 empty itself yes
8229 -- D3 in T2 empty itself yes
8230
8231 -- X1 in T3 X1 in T2 D3 in T3 no
8232 -- X2 in T3 X2 in T2 D1 in T3 no
8233 -- D1 in T3 empty itself yes
8234 -- D2 in T3 empty itself yes
8235 -- D3 in T3 empty itself yes
8236
8237 -- Y in T4 X1 in T3 D3 in T4 no
8238 -- D1 in T4 empty itself yes
8239 -- D2 in T4 empty itself yes
8240 -- D3 in T4 empty itself yes
8241
8242 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
8243
8244 -- Type derivation for tagged types is fairly straightforward. If no
8245 -- discriminants are specified by the derived type, these are inherited
8246 -- from the parent. No explicit stored discriminants are ever necessary.
8247 -- The only manipulation that is done to the tree is that of adding a
8248 -- _parent field with parent type and constrained to the same constraint
8249 -- specified for the parent in the derived type definition. For instance:
8250
8251 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
8252 -- type T1 is new R with null record;
8253 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
8254
8255 -- are changed into:
8256
8257 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
8258 -- _parent : R (D1, D2, D3);
8259 -- end record;
8260
8261 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
8262 -- _parent : T1 (X2, 88, X1);
8263 -- end record;
8264
8265 -- The discriminants actually present in R, T1 and T2 as well as their CD,
8266 -- ORC and ICH fields are:
8267
8268 -- Discrim CD ORC ICH
8269 -- ^^^^^^^ ^^ ^^^ ^^^
8270 -- D1 in R empty itself no
8271 -- D2 in R empty itself no
8272 -- D3 in R empty itself no
8273
8274 -- D1 in T1 D1 in R D1 in R no
8275 -- D2 in T1 D2 in R D2 in R no
8276 -- D3 in T1 D3 in R D3 in R no
8277
8278 -- X1 in T2 D3 in T1 D3 in R no
8279 -- X2 in T2 D1 in T1 D1 in R no
8280
8281 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
8282 --
8283 -- Regardless of whether we dealing with a tagged or untagged type
8284 -- we will transform all derived type declarations of the form
8285 --
8286 -- type T is new R (...) [with ...];
8287 -- or
8288 -- subtype S is R (...);
8289 -- type T is new S [with ...];
8290 -- into
8291 -- type BT is new R [with ...];
8292 -- subtype T is BT (...);
8293 --
8294 -- That is, the base derived type is constrained only if it has no
8295 -- discriminants. The reason for doing this is that GNAT's semantic model
8296 -- assumes that a base type with discriminants is unconstrained.
8297 --
8298 -- Note that, strictly speaking, the above transformation is not always
8299 -- correct. Consider for instance the following excerpt from ACVC b34011a:
8300 --
8301 -- procedure B34011A is
8302 -- type REC (D : integer := 0) is record
8303 -- I : Integer;
8304 -- end record;
8305
8306 -- package P is
8307 -- type T6 is new Rec;
8308 -- function F return T6;
8309 -- end P;
8310
8311 -- use P;
8312 -- package Q6 is
8313 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
8314 -- end Q6;
8315 --
8316 -- The definition of Q6.U is illegal. However transforming Q6.U into
8317
8318 -- type BaseU is new T6;
8319 -- subtype U is BaseU (Q6.F.I)
8320
8321 -- turns U into a legal subtype, which is incorrect. To avoid this problem
8322 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
8323 -- the transformation described above.
8324
8325 -- There is another instance where the above transformation is incorrect.
8326 -- Consider:
8327
8328 -- package Pack is
8329 -- type Base (D : Integer) is tagged null record;
8330 -- procedure P (X : Base);
8331
8332 -- type Der is new Base (2) with null record;
8333 -- procedure P (X : Der);
8334 -- end Pack;
8335
8336 -- Then the above transformation turns this into
8337
8338 -- type Der_Base is new Base with null record;
8339 -- -- procedure P (X : Base) is implicitly inherited here
8340 -- -- as procedure P (X : Der_Base).
8341
8342 -- subtype Der is Der_Base (2);
8343 -- procedure P (X : Der);
8344 -- -- The overriding of P (X : Der_Base) is illegal since we
8345 -- -- have a parameter conformance problem.
8346
8347 -- To get around this problem, after having semantically processed Der_Base
8348 -- and the rewritten subtype declaration for Der, we copy Der_Base field
8349 -- Discriminant_Constraint from Der so that when parameter conformance is
8350 -- checked when P is overridden, no semantic errors are flagged.
8351
8352 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
8353
8354 -- Regardless of whether we are dealing with a tagged or untagged type
8355 -- we will transform all derived type declarations of the form
8356
8357 -- type R (D1, .., Dn : ...) is [tagged] record ...;
8358 -- type T is new R [with ...];
8359 -- into
8360 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
8361
8362 -- The reason for such transformation is that it allows us to implement a
8363 -- very clean form of component inheritance as explained below.
8364
8365 -- Note that this transformation is not achieved by direct tree rewriting
8366 -- and manipulation, but rather by redoing the semantic actions that the
8367 -- above transformation will entail. This is done directly in routine
8368 -- Inherit_Components.
8369
8370 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
8371
8372 -- In both tagged and untagged derived types, regular non discriminant
8373 -- components are inherited in the derived type from the parent type. In
8374 -- the absence of discriminants component, inheritance is straightforward
8375 -- as components can simply be copied from the parent.
8376
8377 -- If the parent has discriminants, inheriting components constrained with
8378 -- these discriminants requires caution. Consider the following example:
8379
8380 -- type R (D1, D2 : Positive) is [tagged] record
8381 -- S : String (D1 .. D2);
8382 -- end record;
8383
8384 -- type T1 is new R [with null record];
8385 -- type T2 (X : positive) is new R (1, X) [with null record];
8386
8387 -- As explained in 6. above, T1 is rewritten as
8388 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
8389 -- which makes the treatment for T1 and T2 identical.
8390
8391 -- What we want when inheriting S, is that references to D1 and D2 in R are
8392 -- replaced with references to their correct constraints, i.e. D1 and D2 in
8393 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
8394 -- with either discriminant references in the derived type or expressions.
8395 -- This replacement is achieved as follows: before inheriting R's
8396 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
8397 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
8398 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
8399 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
8400 -- by String (1 .. X).
8401
8402 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
8403
8404 -- We explain here the rules governing private type extensions relevant to
8405 -- type derivation. These rules are explained on the following example:
8406
8407 -- type D [(...)] is new A [(...)] with private; <-- partial view
8408 -- type D [(...)] is new P [(...)] with null record; <-- full view
8409
8410 -- Type A is called the ancestor subtype of the private extension.
8411 -- Type P is the parent type of the full view of the private extension. It
8412 -- must be A or a type derived from A.
8413
8414 -- The rules concerning the discriminants of private type extensions are
8415 -- [7.3(10-13)]:
8416
8417 -- o If a private extension inherits known discriminants from the ancestor
8418 -- subtype, then the full view must also inherit its discriminants from
8419 -- the ancestor subtype and the parent subtype of the full view must be
8420 -- constrained if and only if the ancestor subtype is constrained.
8421
8422 -- o If a partial view has unknown discriminants, then the full view may
8423 -- define a definite or an indefinite subtype, with or without
8424 -- discriminants.
8425
8426 -- o If a partial view has neither known nor unknown discriminants, then
8427 -- the full view must define a definite subtype.
8428
8429 -- o If the ancestor subtype of a private extension has constrained
8430 -- discriminants, then the parent subtype of the full view must impose a
8431 -- statically matching constraint on those discriminants.
8432
8433 -- This means that only the following forms of private extensions are
8434 -- allowed:
8435
8436 -- type D is new A with private; <-- partial view
8437 -- type D is new P with null record; <-- full view
8438
8439 -- If A has no discriminants than P has no discriminants, otherwise P must
8440 -- inherit A's discriminants.
8441
8442 -- type D is new A (...) with private; <-- partial view
8443 -- type D is new P (:::) with null record; <-- full view
8444
8445 -- P must inherit A's discriminants and (...) and (:::) must statically
8446 -- match.
8447
8448 -- subtype A is R (...);
8449 -- type D is new A with private; <-- partial view
8450 -- type D is new P with null record; <-- full view
8451
8452 -- P must have inherited R's discriminants and must be derived from A or
8453 -- any of its subtypes.
8454
8455 -- type D (..) is new A with private; <-- partial view
8456 -- type D (..) is new P [(:::)] with null record; <-- full view
8457
8458 -- No specific constraints on P's discriminants or constraint (:::).
8459 -- Note that A can be unconstrained, but the parent subtype P must either
8460 -- be constrained or (:::) must be present.
8461
8462 -- type D (..) is new A [(...)] with private; <-- partial view
8463 -- type D (..) is new P [(:::)] with null record; <-- full view
8464
8465 -- P's constraints on A's discriminants must statically match those
8466 -- imposed by (...).
8467
8468 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
8469
8470 -- The full view of a private extension is handled exactly as described
8471 -- above. The model chose for the private view of a private extension is
8472 -- the same for what concerns discriminants (i.e. they receive the same
8473 -- treatment as in the tagged case). However, the private view of the
8474 -- private extension always inherits the components of the parent base,
8475 -- without replacing any discriminant reference. Strictly speaking this is
8476 -- incorrect. However, Gigi never uses this view to generate code so this
8477 -- is a purely semantic issue. In theory, a set of transformations similar
8478 -- to those given in 5. and 6. above could be applied to private views of
8479 -- private extensions to have the same model of component inheritance as
8480 -- for non private extensions. However, this is not done because it would
8481 -- further complicate private type processing. Semantically speaking, this
8482 -- leaves us in an uncomfortable situation. As an example consider:
8483
8484 -- package Pack is
8485 -- type R (D : integer) is tagged record
8486 -- S : String (1 .. D);
8487 -- end record;
8488 -- procedure P (X : R);
8489 -- type T is new R (1) with private;
8490 -- private
8491 -- type T is new R (1) with null record;
8492 -- end;
8493
8494 -- This is transformed into:
8495
8496 -- package Pack is
8497 -- type R (D : integer) is tagged record
8498 -- S : String (1 .. D);
8499 -- end record;
8500 -- procedure P (X : R);
8501 -- type T is new R (1) with private;
8502 -- private
8503 -- type BaseT is new R with null record;
8504 -- subtype T is BaseT (1);
8505 -- end;
8506
8507 -- (strictly speaking the above is incorrect Ada)
8508
8509 -- From the semantic standpoint the private view of private extension T
8510 -- should be flagged as constrained since one can clearly have
8511 --
8512 -- Obj : T;
8513 --
8514 -- in a unit withing Pack. However, when deriving subprograms for the
8515 -- private view of private extension T, T must be seen as unconstrained
8516 -- since T has discriminants (this is a constraint of the current
8517 -- subprogram derivation model). Thus, when processing the private view of
8518 -- a private extension such as T, we first mark T as unconstrained, we
8519 -- process it, we perform program derivation and just before returning from
8520 -- Build_Derived_Record_Type we mark T as constrained.
8521
8522 -- ??? Are there are other uncomfortable cases that we will have to
8523 -- deal with.
8524
8525 -- 10. RECORD_TYPE_WITH_PRIVATE complications
8526
8527 -- Types that are derived from a visible record type and have a private
8528 -- extension present other peculiarities. They behave mostly like private
8529 -- types, but if they have primitive operations defined, these will not
8530 -- have the proper signatures for further inheritance, because other
8531 -- primitive operations will use the implicit base that we define for
8532 -- private derivations below. This affect subprogram inheritance (see
8533 -- Derive_Subprograms for details). We also derive the implicit base from
8534 -- the base type of the full view, so that the implicit base is a record
8535 -- type and not another private type, This avoids infinite loops.
8536
8537 procedure Build_Derived_Record_Type
8538 (N : Node_Id;
8539 Parent_Type : Entity_Id;
8540 Derived_Type : Entity_Id;
8541 Derive_Subps : Boolean := True)
8542 is
8543 Discriminant_Specs : constant Boolean :=
8544 Present (Discriminant_Specifications (N));
8545 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
8546 Loc : constant Source_Ptr := Sloc (N);
8547 Private_Extension : constant Boolean :=
8548 Nkind (N) = N_Private_Extension_Declaration;
8549 Assoc_List : Elist_Id;
8550 Constraint_Present : Boolean;
8551 Constrs : Elist_Id;
8552 Discrim : Entity_Id;
8553 Indic : Node_Id;
8554 Inherit_Discrims : Boolean := False;
8555 Last_Discrim : Entity_Id;
8556 New_Base : Entity_Id;
8557 New_Decl : Node_Id;
8558 New_Discrs : Elist_Id;
8559 New_Indic : Node_Id;
8560 Parent_Base : Entity_Id;
8561 Save_Etype : Entity_Id;
8562 Save_Discr_Constr : Elist_Id;
8563 Save_Next_Entity : Entity_Id;
8564 Type_Def : Node_Id;
8565
8566 Discs : Elist_Id := New_Elmt_List;
8567 -- An empty Discs list means that there were no constraints in the
8568 -- subtype indication or that there was an error processing it.
8569
8570 begin
8571 if Ekind (Parent_Type) = E_Record_Type_With_Private
8572 and then Present (Full_View (Parent_Type))
8573 and then Has_Discriminants (Parent_Type)
8574 then
8575 Parent_Base := Base_Type (Full_View (Parent_Type));
8576 else
8577 Parent_Base := Base_Type (Parent_Type);
8578 end if;
8579
8580 -- AI05-0115: if this is a derivation from a private type in some
8581 -- other scope that may lead to invisible components for the derived
8582 -- type, mark it accordingly.
8583
8584 if Is_Private_Type (Parent_Type) then
8585 if Scope (Parent_Base) = Scope (Derived_Type) then
8586 null;
8587
8588 elsif In_Open_Scopes (Scope (Parent_Base))
8589 and then In_Private_Part (Scope (Parent_Base))
8590 then
8591 null;
8592
8593 else
8594 Set_Has_Private_Ancestor (Derived_Type);
8595 end if;
8596
8597 else
8598 Set_Has_Private_Ancestor
8599 (Derived_Type, Has_Private_Ancestor (Parent_Type));
8600 end if;
8601
8602 -- Before we start the previously documented transformations, here is
8603 -- little fix for size and alignment of tagged types. Normally when we
8604 -- derive type D from type P, we copy the size and alignment of P as the
8605 -- default for D, and in the absence of explicit representation clauses
8606 -- for D, the size and alignment are indeed the same as the parent.
8607
8608 -- But this is wrong for tagged types, since fields may be added, and
8609 -- the default size may need to be larger, and the default alignment may
8610 -- need to be larger.
8611
8612 -- We therefore reset the size and alignment fields in the tagged case.
8613 -- Note that the size and alignment will in any case be at least as
8614 -- large as the parent type (since the derived type has a copy of the
8615 -- parent type in the _parent field)
8616
8617 -- The type is also marked as being tagged here, which is needed when
8618 -- processing components with a self-referential anonymous access type
8619 -- in the call to Check_Anonymous_Access_Components below. Note that
8620 -- this flag is also set later on for completeness.
8621
8622 if Is_Tagged then
8623 Set_Is_Tagged_Type (Derived_Type);
8624 Init_Size_Align (Derived_Type);
8625 end if;
8626
8627 -- STEP 0a: figure out what kind of derived type declaration we have
8628
8629 if Private_Extension then
8630 Type_Def := N;
8631 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
8632 Set_Default_SSO (Derived_Type);
8633 Set_No_Reordering (Derived_Type, No_Component_Reordering);
8634
8635 else
8636 Type_Def := Type_Definition (N);
8637
8638 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8639 -- Parent_Base can be a private type or private extension. However,
8640 -- for tagged types with an extension the newly added fields are
8641 -- visible and hence the Derived_Type is always an E_Record_Type.
8642 -- (except that the parent may have its own private fields).
8643 -- For untagged types we preserve the Ekind of the Parent_Base.
8644
8645 if Present (Record_Extension_Part (Type_Def)) then
8646 Set_Ekind (Derived_Type, E_Record_Type);
8647 Set_Default_SSO (Derived_Type);
8648 Set_No_Reordering (Derived_Type, No_Component_Reordering);
8649
8650 -- Create internal access types for components with anonymous
8651 -- access types.
8652
8653 if Ada_Version >= Ada_2005 then
8654 Check_Anonymous_Access_Components
8655 (N, Derived_Type, Derived_Type,
8656 Component_List (Record_Extension_Part (Type_Def)));
8657 end if;
8658
8659 else
8660 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8661 end if;
8662 end if;
8663
8664 -- Indic can either be an N_Identifier if the subtype indication
8665 -- contains no constraint or an N_Subtype_Indication if the subtype
8666 -- indication has a constraint.
8667
8668 Indic := Subtype_Indication (Type_Def);
8669 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
8670
8671 -- Check that the type has visible discriminants. The type may be
8672 -- a private type with unknown discriminants whose full view has
8673 -- discriminants which are invisible.
8674
8675 if Constraint_Present then
8676 if not Has_Discriminants (Parent_Base)
8677 or else
8678 (Has_Unknown_Discriminants (Parent_Base)
8679 and then Is_Private_Type (Parent_Base))
8680 then
8681 Error_Msg_N
8682 ("invalid constraint: type has no discriminant",
8683 Constraint (Indic));
8684
8685 Constraint_Present := False;
8686 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8687
8688 elsif Is_Constrained (Parent_Type) then
8689 Error_Msg_N
8690 ("invalid constraint: parent type is already constrained",
8691 Constraint (Indic));
8692
8693 Constraint_Present := False;
8694 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8695 end if;
8696 end if;
8697
8698 -- STEP 0b: If needed, apply transformation given in point 5. above
8699
8700 if not Private_Extension
8701 and then Has_Discriminants (Parent_Type)
8702 and then not Discriminant_Specs
8703 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
8704 then
8705 -- First, we must analyze the constraint (see comment in point 5.)
8706 -- The constraint may come from the subtype indication of the full
8707 -- declaration.
8708
8709 if Constraint_Present then
8710 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
8711
8712 -- If there is no explicit constraint, there might be one that is
8713 -- inherited from a constrained parent type. In that case verify that
8714 -- it conforms to the constraint in the partial view. In perverse
8715 -- cases the parent subtypes of the partial and full view can have
8716 -- different constraints.
8717
8718 elsif Present (Stored_Constraint (Parent_Type)) then
8719 New_Discrs := Stored_Constraint (Parent_Type);
8720
8721 else
8722 New_Discrs := No_Elist;
8723 end if;
8724
8725 if Has_Discriminants (Derived_Type)
8726 and then Has_Private_Declaration (Derived_Type)
8727 and then Present (Discriminant_Constraint (Derived_Type))
8728 and then Present (New_Discrs)
8729 then
8730 -- Verify that constraints of the full view statically match
8731 -- those given in the partial view.
8732
8733 declare
8734 C1, C2 : Elmt_Id;
8735
8736 begin
8737 C1 := First_Elmt (New_Discrs);
8738 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
8739 while Present (C1) and then Present (C2) loop
8740 if Fully_Conformant_Expressions (Node (C1), Node (C2))
8741 or else
8742 (Is_OK_Static_Expression (Node (C1))
8743 and then Is_OK_Static_Expression (Node (C2))
8744 and then
8745 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
8746 then
8747 null;
8748
8749 else
8750 if Constraint_Present then
8751 Error_Msg_N
8752 ("constraint not conformant to previous declaration",
8753 Node (C1));
8754 else
8755 Error_Msg_N
8756 ("constraint of full view is incompatible "
8757 & "with partial view", N);
8758 end if;
8759 end if;
8760
8761 Next_Elmt (C1);
8762 Next_Elmt (C2);
8763 end loop;
8764 end;
8765 end if;
8766
8767 -- Insert and analyze the declaration for the unconstrained base type
8768
8769 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
8770
8771 New_Decl :=
8772 Make_Full_Type_Declaration (Loc,
8773 Defining_Identifier => New_Base,
8774 Type_Definition =>
8775 Make_Derived_Type_Definition (Loc,
8776 Abstract_Present => Abstract_Present (Type_Def),
8777 Limited_Present => Limited_Present (Type_Def),
8778 Subtype_Indication =>
8779 New_Occurrence_Of (Parent_Base, Loc),
8780 Record_Extension_Part =>
8781 Relocate_Node (Record_Extension_Part (Type_Def)),
8782 Interface_List => Interface_List (Type_Def)));
8783
8784 Set_Parent (New_Decl, Parent (N));
8785 Mark_Rewrite_Insertion (New_Decl);
8786 Insert_Before (N, New_Decl);
8787
8788 -- In the extension case, make sure ancestor is frozen appropriately
8789 -- (see also non-discriminated case below).
8790
8791 if Present (Record_Extension_Part (Type_Def))
8792 or else Is_Interface (Parent_Base)
8793 then
8794 Freeze_Before (New_Decl, Parent_Type);
8795 end if;
8796
8797 -- Note that this call passes False for the Derive_Subps parameter
8798 -- because subprogram derivation is deferred until after creating
8799 -- the subtype (see below).
8800
8801 Build_Derived_Type
8802 (New_Decl, Parent_Base, New_Base,
8803 Is_Completion => False, Derive_Subps => False);
8804
8805 -- ??? This needs re-examination to determine whether the
8806 -- above call can simply be replaced by a call to Analyze.
8807
8808 Set_Analyzed (New_Decl);
8809
8810 -- Insert and analyze the declaration for the constrained subtype
8811
8812 if Constraint_Present then
8813 New_Indic :=
8814 Make_Subtype_Indication (Loc,
8815 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8816 Constraint => Relocate_Node (Constraint (Indic)));
8817
8818 else
8819 declare
8820 Constr_List : constant List_Id := New_List;
8821 C : Elmt_Id;
8822 Expr : Node_Id;
8823
8824 begin
8825 C := First_Elmt (Discriminant_Constraint (Parent_Type));
8826 while Present (C) loop
8827 Expr := Node (C);
8828
8829 -- It is safe here to call New_Copy_Tree since we called
8830 -- Force_Evaluation on each constraint previously
8831 -- in Build_Discriminant_Constraints.
8832
8833 Append (New_Copy_Tree (Expr), To => Constr_List);
8834
8835 Next_Elmt (C);
8836 end loop;
8837
8838 New_Indic :=
8839 Make_Subtype_Indication (Loc,
8840 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8841 Constraint =>
8842 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
8843 end;
8844 end if;
8845
8846 Rewrite (N,
8847 Make_Subtype_Declaration (Loc,
8848 Defining_Identifier => Derived_Type,
8849 Subtype_Indication => New_Indic));
8850
8851 Analyze (N);
8852
8853 -- Derivation of subprograms must be delayed until the full subtype
8854 -- has been established, to ensure proper overriding of subprograms
8855 -- inherited by full types. If the derivations occurred as part of
8856 -- the call to Build_Derived_Type above, then the check for type
8857 -- conformance would fail because earlier primitive subprograms
8858 -- could still refer to the full type prior the change to the new
8859 -- subtype and hence would not match the new base type created here.
8860 -- Subprograms are not derived, however, when Derive_Subps is False
8861 -- (since otherwise there could be redundant derivations).
8862
8863 if Derive_Subps then
8864 Derive_Subprograms (Parent_Type, Derived_Type);
8865 end if;
8866
8867 -- For tagged types the Discriminant_Constraint of the new base itype
8868 -- is inherited from the first subtype so that no subtype conformance
8869 -- problem arise when the first subtype overrides primitive
8870 -- operations inherited by the implicit base type.
8871
8872 if Is_Tagged then
8873 Set_Discriminant_Constraint
8874 (New_Base, Discriminant_Constraint (Derived_Type));
8875 end if;
8876
8877 return;
8878 end if;
8879
8880 -- If we get here Derived_Type will have no discriminants or it will be
8881 -- a discriminated unconstrained base type.
8882
8883 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8884
8885 if Is_Tagged then
8886
8887 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8888 -- The declaration of a specific descendant of an interface type
8889 -- freezes the interface type (RM 13.14).
8890
8891 if not Private_Extension or else Is_Interface (Parent_Base) then
8892 Freeze_Before (N, Parent_Type);
8893 end if;
8894
8895 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8896 -- cannot be declared at a deeper level than its parent type is
8897 -- removed. The check on derivation within a generic body is also
8898 -- relaxed, but there's a restriction that a derived tagged type
8899 -- cannot be declared in a generic body if it's derived directly
8900 -- or indirectly from a formal type of that generic.
8901
8902 if Ada_Version >= Ada_2005 then
8903 if Present (Enclosing_Generic_Body (Derived_Type)) then
8904 declare
8905 Ancestor_Type : Entity_Id;
8906
8907 begin
8908 -- Check to see if any ancestor of the derived type is a
8909 -- formal type.
8910
8911 Ancestor_Type := Parent_Type;
8912 while not Is_Generic_Type (Ancestor_Type)
8913 and then Etype (Ancestor_Type) /= Ancestor_Type
8914 loop
8915 Ancestor_Type := Etype (Ancestor_Type);
8916 end loop;
8917
8918 -- If the derived type does have a formal type as an
8919 -- ancestor, then it's an error if the derived type is
8920 -- declared within the body of the generic unit that
8921 -- declares the formal type in its generic formal part. It's
8922 -- sufficient to check whether the ancestor type is declared
8923 -- inside the same generic body as the derived type (such as
8924 -- within a nested generic spec), in which case the
8925 -- derivation is legal. If the formal type is declared
8926 -- outside of that generic body, then it's guaranteed that
8927 -- the derived type is declared within the generic body of
8928 -- the generic unit declaring the formal type.
8929
8930 if Is_Generic_Type (Ancestor_Type)
8931 and then Enclosing_Generic_Body (Ancestor_Type) /=
8932 Enclosing_Generic_Body (Derived_Type)
8933 then
8934 Error_Msg_NE
8935 ("parent type of& must not be descendant of formal type"
8936 & " of an enclosing generic body",
8937 Indic, Derived_Type);
8938 end if;
8939 end;
8940 end if;
8941
8942 elsif Type_Access_Level (Derived_Type) /=
8943 Type_Access_Level (Parent_Type)
8944 and then not Is_Generic_Type (Derived_Type)
8945 then
8946 if Is_Controlled (Parent_Type) then
8947 Error_Msg_N
8948 ("controlled type must be declared at the library level",
8949 Indic);
8950 else
8951 Error_Msg_N
8952 ("type extension at deeper accessibility level than parent",
8953 Indic);
8954 end if;
8955
8956 else
8957 declare
8958 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
8959 begin
8960 if Present (GB)
8961 and then GB /= Enclosing_Generic_Body (Parent_Base)
8962 then
8963 Error_Msg_NE
8964 ("parent type of& must not be outside generic body"
8965 & " (RM 3.9.1(4))",
8966 Indic, Derived_Type);
8967 end if;
8968 end;
8969 end if;
8970 end if;
8971
8972 -- Ada 2005 (AI-251)
8973
8974 if Ada_Version >= Ada_2005 and then Is_Tagged then
8975
8976 -- "The declaration of a specific descendant of an interface type
8977 -- freezes the interface type" (RM 13.14).
8978
8979 declare
8980 Iface : Node_Id;
8981 begin
8982 if Is_Non_Empty_List (Interface_List (Type_Def)) then
8983 Iface := First (Interface_List (Type_Def));
8984 while Present (Iface) loop
8985 Freeze_Before (N, Etype (Iface));
8986 Next (Iface);
8987 end loop;
8988 end if;
8989 end;
8990 end if;
8991
8992 -- STEP 1b : preliminary cleanup of the full view of private types
8993
8994 -- If the type is already marked as having discriminants, then it's the
8995 -- completion of a private type or private extension and we need to
8996 -- retain the discriminants from the partial view if the current
8997 -- declaration has Discriminant_Specifications so that we can verify
8998 -- conformance. However, we must remove any existing components that
8999 -- were inherited from the parent (and attached in Copy_And_Swap)
9000 -- because the full type inherits all appropriate components anyway, and
9001 -- we do not want the partial view's components interfering.
9002
9003 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
9004 Discrim := First_Discriminant (Derived_Type);
9005 loop
9006 Last_Discrim := Discrim;
9007 Next_Discriminant (Discrim);
9008 exit when No (Discrim);
9009 end loop;
9010
9011 Set_Last_Entity (Derived_Type, Last_Discrim);
9012
9013 -- In all other cases wipe out the list of inherited components (even
9014 -- inherited discriminants), it will be properly rebuilt here.
9015
9016 else
9017 Set_First_Entity (Derived_Type, Empty);
9018 Set_Last_Entity (Derived_Type, Empty);
9019 end if;
9020
9021 -- STEP 1c: Initialize some flags for the Derived_Type
9022
9023 -- The following flags must be initialized here so that
9024 -- Process_Discriminants can check that discriminants of tagged types do
9025 -- not have a default initial value and that access discriminants are
9026 -- only specified for limited records. For completeness, these flags are
9027 -- also initialized along with all the other flags below.
9028
9029 -- AI-419: Limitedness is not inherited from an interface parent, so to
9030 -- be limited in that case the type must be explicitly declared as
9031 -- limited. However, task and protected interfaces are always limited.
9032
9033 if Limited_Present (Type_Def) then
9034 Set_Is_Limited_Record (Derived_Type);
9035
9036 elsif Is_Limited_Record (Parent_Type)
9037 or else (Present (Full_View (Parent_Type))
9038 and then Is_Limited_Record (Full_View (Parent_Type)))
9039 then
9040 if not Is_Interface (Parent_Type)
9041 or else Is_Synchronized_Interface (Parent_Type)
9042 or else Is_Protected_Interface (Parent_Type)
9043 or else Is_Task_Interface (Parent_Type)
9044 then
9045 Set_Is_Limited_Record (Derived_Type);
9046 end if;
9047 end if;
9048
9049 -- STEP 2a: process discriminants of derived type if any
9050
9051 Push_Scope (Derived_Type);
9052
9053 if Discriminant_Specs then
9054 Set_Has_Unknown_Discriminants (Derived_Type, False);
9055
9056 -- The following call initializes fields Has_Discriminants and
9057 -- Discriminant_Constraint, unless we are processing the completion
9058 -- of a private type declaration.
9059
9060 Check_Or_Process_Discriminants (N, Derived_Type);
9061
9062 -- For untagged types, the constraint on the Parent_Type must be
9063 -- present and is used to rename the discriminants.
9064
9065 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
9066 Error_Msg_N ("untagged parent must have discriminants", Indic);
9067
9068 elsif not Is_Tagged and then not Constraint_Present then
9069 Error_Msg_N
9070 ("discriminant constraint needed for derived untagged records",
9071 Indic);
9072
9073 -- Otherwise the parent subtype must be constrained unless we have a
9074 -- private extension.
9075
9076 elsif not Constraint_Present
9077 and then not Private_Extension
9078 and then not Is_Constrained (Parent_Type)
9079 then
9080 Error_Msg_N
9081 ("unconstrained type not allowed in this context", Indic);
9082
9083 elsif Constraint_Present then
9084 -- The following call sets the field Corresponding_Discriminant
9085 -- for the discriminants in the Derived_Type.
9086
9087 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
9088
9089 -- For untagged types all new discriminants must rename
9090 -- discriminants in the parent. For private extensions new
9091 -- discriminants cannot rename old ones (implied by [7.3(13)]).
9092
9093 Discrim := First_Discriminant (Derived_Type);
9094 while Present (Discrim) loop
9095 if not Is_Tagged
9096 and then No (Corresponding_Discriminant (Discrim))
9097 then
9098 Error_Msg_N
9099 ("new discriminants must constrain old ones", Discrim);
9100
9101 elsif Private_Extension
9102 and then Present (Corresponding_Discriminant (Discrim))
9103 then
9104 Error_Msg_N
9105 ("only static constraints allowed for parent"
9106 & " discriminants in the partial view", Indic);
9107 exit;
9108 end if;
9109
9110 -- If a new discriminant is used in the constraint, then its
9111 -- subtype must be statically compatible with the parent
9112 -- discriminant's subtype (3.7(15)).
9113
9114 -- However, if the record contains an array constrained by
9115 -- the discriminant but with some different bound, the compiler
9116 -- tries to create a smaller range for the discriminant type.
9117 -- (See exp_ch3.Adjust_Discriminants). In this case, where
9118 -- the discriminant type is a scalar type, the check must use
9119 -- the original discriminant type in the parent declaration.
9120
9121 declare
9122 Corr_Disc : constant Entity_Id :=
9123 Corresponding_Discriminant (Discrim);
9124 Disc_Type : constant Entity_Id := Etype (Discrim);
9125 Corr_Type : Entity_Id;
9126
9127 begin
9128 if Present (Corr_Disc) then
9129 if Is_Scalar_Type (Disc_Type) then
9130 Corr_Type :=
9131 Entity (Discriminant_Type (Parent (Corr_Disc)));
9132 else
9133 Corr_Type := Etype (Corr_Disc);
9134 end if;
9135
9136 if not
9137 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
9138 then
9139 Error_Msg_N
9140 ("subtype must be compatible "
9141 & "with parent discriminant",
9142 Discrim);
9143 end if;
9144 end if;
9145 end;
9146
9147 Next_Discriminant (Discrim);
9148 end loop;
9149
9150 -- Check whether the constraints of the full view statically
9151 -- match those imposed by the parent subtype [7.3(13)].
9152
9153 if Present (Stored_Constraint (Derived_Type)) then
9154 declare
9155 C1, C2 : Elmt_Id;
9156
9157 begin
9158 C1 := First_Elmt (Discs);
9159 C2 := First_Elmt (Stored_Constraint (Derived_Type));
9160 while Present (C1) and then Present (C2) loop
9161 if not
9162 Fully_Conformant_Expressions (Node (C1), Node (C2))
9163 then
9164 Error_Msg_N
9165 ("not conformant with previous declaration",
9166 Node (C1));
9167 end if;
9168
9169 Next_Elmt (C1);
9170 Next_Elmt (C2);
9171 end loop;
9172 end;
9173 end if;
9174 end if;
9175
9176 -- STEP 2b: No new discriminants, inherit discriminants if any
9177
9178 else
9179 if Private_Extension then
9180 Set_Has_Unknown_Discriminants
9181 (Derived_Type,
9182 Has_Unknown_Discriminants (Parent_Type)
9183 or else Unknown_Discriminants_Present (N));
9184
9185 -- The partial view of the parent may have unknown discriminants,
9186 -- but if the full view has discriminants and the parent type is
9187 -- in scope they must be inherited.
9188
9189 elsif Has_Unknown_Discriminants (Parent_Type)
9190 and then
9191 (not Has_Discriminants (Parent_Type)
9192 or else not In_Open_Scopes (Scope (Parent_Base)))
9193 then
9194 Set_Has_Unknown_Discriminants (Derived_Type);
9195 end if;
9196
9197 if not Has_Unknown_Discriminants (Derived_Type)
9198 and then not Has_Unknown_Discriminants (Parent_Base)
9199 and then Has_Discriminants (Parent_Type)
9200 then
9201 Inherit_Discrims := True;
9202 Set_Has_Discriminants
9203 (Derived_Type, True);
9204 Set_Discriminant_Constraint
9205 (Derived_Type, Discriminant_Constraint (Parent_Base));
9206 end if;
9207
9208 -- The following test is true for private types (remember
9209 -- transformation 5. is not applied to those) and in an error
9210 -- situation.
9211
9212 if Constraint_Present then
9213 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
9214 end if;
9215
9216 -- For now mark a new derived type as constrained only if it has no
9217 -- discriminants. At the end of Build_Derived_Record_Type we properly
9218 -- set this flag in the case of private extensions. See comments in
9219 -- point 9. just before body of Build_Derived_Record_Type.
9220
9221 Set_Is_Constrained
9222 (Derived_Type,
9223 not (Inherit_Discrims
9224 or else Has_Unknown_Discriminants (Derived_Type)));
9225 end if;
9226
9227 -- STEP 3: initialize fields of derived type
9228
9229 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
9230 Set_Stored_Constraint (Derived_Type, No_Elist);
9231
9232 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
9233 -- but cannot be interfaces
9234
9235 if not Private_Extension
9236 and then Ekind (Derived_Type) /= E_Private_Type
9237 and then Ekind (Derived_Type) /= E_Limited_Private_Type
9238 then
9239 if Interface_Present (Type_Def) then
9240 Analyze_Interface_Declaration (Derived_Type, Type_Def);
9241 end if;
9242
9243 Set_Interfaces (Derived_Type, No_Elist);
9244 end if;
9245
9246 -- Fields inherited from the Parent_Type
9247
9248 Set_Has_Specified_Layout
9249 (Derived_Type, Has_Specified_Layout (Parent_Type));
9250 Set_Is_Limited_Composite
9251 (Derived_Type, Is_Limited_Composite (Parent_Type));
9252 Set_Is_Private_Composite
9253 (Derived_Type, Is_Private_Composite (Parent_Type));
9254
9255 if Is_Tagged_Type (Parent_Type) then
9256 Set_No_Tagged_Streams_Pragma
9257 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9258 end if;
9259
9260 -- Fields inherited from the Parent_Base
9261
9262 Set_Has_Controlled_Component
9263 (Derived_Type, Has_Controlled_Component (Parent_Base));
9264 Set_Has_Non_Standard_Rep
9265 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
9266 Set_Has_Primitive_Operations
9267 (Derived_Type, Has_Primitive_Operations (Parent_Base));
9268
9269 -- Set fields for private derived types
9270
9271 if Is_Private_Type (Derived_Type) then
9272 Set_Depends_On_Private (Derived_Type, True);
9273 Set_Private_Dependents (Derived_Type, New_Elmt_List);
9274 end if;
9275
9276 -- Inherit fields for non-private types. If this is the completion of a
9277 -- derivation from a private type, the parent itself is private and the
9278 -- attributes come from its full view, which must be present.
9279
9280 if Is_Record_Type (Derived_Type) then
9281 declare
9282 Parent_Full : Entity_Id;
9283
9284 begin
9285 if Is_Private_Type (Parent_Base)
9286 and then not Is_Record_Type (Parent_Base)
9287 then
9288 Parent_Full := Full_View (Parent_Base);
9289 else
9290 Parent_Full := Parent_Base;
9291 end if;
9292
9293 Set_Component_Alignment
9294 (Derived_Type, Component_Alignment (Parent_Full));
9295 Set_C_Pass_By_Copy
9296 (Derived_Type, C_Pass_By_Copy (Parent_Full));
9297 Set_Has_Complex_Representation
9298 (Derived_Type, Has_Complex_Representation (Parent_Full));
9299
9300 -- For untagged types, inherit the layout by default to avoid
9301 -- costly changes of representation for type conversions.
9302
9303 if not Is_Tagged then
9304 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Full));
9305 Set_No_Reordering (Derived_Type, No_Reordering (Parent_Full));
9306 end if;
9307 end;
9308 end if;
9309
9310 -- Set fields for tagged types
9311
9312 if Is_Tagged then
9313 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
9314
9315 -- All tagged types defined in Ada.Finalization are controlled
9316
9317 if Chars (Scope (Derived_Type)) = Name_Finalization
9318 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
9319 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
9320 then
9321 Set_Is_Controlled_Active (Derived_Type);
9322 else
9323 Set_Is_Controlled_Active
9324 (Derived_Type, Is_Controlled_Active (Parent_Base));
9325 end if;
9326
9327 -- Minor optimization: there is no need to generate the class-wide
9328 -- entity associated with an underlying record view.
9329
9330 if not Is_Underlying_Record_View (Derived_Type) then
9331 Make_Class_Wide_Type (Derived_Type);
9332 end if;
9333
9334 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
9335
9336 if Has_Discriminants (Derived_Type)
9337 and then Constraint_Present
9338 then
9339 Set_Stored_Constraint
9340 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
9341 end if;
9342
9343 if Ada_Version >= Ada_2005 then
9344 declare
9345 Ifaces_List : Elist_Id;
9346
9347 begin
9348 -- Checks rules 3.9.4 (13/2 and 14/2)
9349
9350 if Comes_From_Source (Derived_Type)
9351 and then not Is_Private_Type (Derived_Type)
9352 and then Is_Interface (Parent_Type)
9353 and then not Is_Interface (Derived_Type)
9354 then
9355 if Is_Task_Interface (Parent_Type) then
9356 Error_Msg_N
9357 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
9358 Derived_Type);
9359
9360 elsif Is_Protected_Interface (Parent_Type) then
9361 Error_Msg_N
9362 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
9363 Derived_Type);
9364 end if;
9365 end if;
9366
9367 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
9368
9369 Check_Interfaces (N, Type_Def);
9370
9371 -- Ada 2005 (AI-251): Collect the list of progenitors that are
9372 -- not already in the parents.
9373
9374 Collect_Interfaces
9375 (T => Derived_Type,
9376 Ifaces_List => Ifaces_List,
9377 Exclude_Parents => True);
9378
9379 Set_Interfaces (Derived_Type, Ifaces_List);
9380
9381 -- If the derived type is the anonymous type created for
9382 -- a declaration whose parent has a constraint, propagate
9383 -- the interface list to the source type. This must be done
9384 -- prior to the completion of the analysis of the source type
9385 -- because the components in the extension may contain current
9386 -- instances whose legality depends on some ancestor.
9387
9388 if Is_Itype (Derived_Type) then
9389 declare
9390 Def : constant Node_Id :=
9391 Associated_Node_For_Itype (Derived_Type);
9392 begin
9393 if Present (Def)
9394 and then Nkind (Def) = N_Full_Type_Declaration
9395 then
9396 Set_Interfaces
9397 (Defining_Identifier (Def), Ifaces_List);
9398 end if;
9399 end;
9400 end if;
9401
9402 -- A type extension is automatically Ghost when one of its
9403 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
9404 -- also inherited when the parent type is Ghost, but this is
9405 -- done in Build_Derived_Type as the mechanism also handles
9406 -- untagged derivations.
9407
9408 if Implements_Ghost_Interface (Derived_Type) then
9409 Set_Is_Ghost_Entity (Derived_Type);
9410 end if;
9411 end;
9412 end if;
9413 end if;
9414
9415 -- STEP 4: Inherit components from the parent base and constrain them.
9416 -- Apply the second transformation described in point 6. above.
9417
9418 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
9419 or else not Has_Discriminants (Parent_Type)
9420 or else not Is_Constrained (Parent_Type)
9421 then
9422 Constrs := Discs;
9423 else
9424 Constrs := Discriminant_Constraint (Parent_Type);
9425 end if;
9426
9427 Assoc_List :=
9428 Inherit_Components
9429 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
9430
9431 -- STEP 5a: Copy the parent record declaration for untagged types
9432
9433 Set_Has_Implicit_Dereference
9434 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
9435
9436 if not Is_Tagged then
9437
9438 -- Discriminant_Constraint (Derived_Type) has been properly
9439 -- constructed. Save it and temporarily set it to Empty because we
9440 -- do not want the call to New_Copy_Tree below to mess this list.
9441
9442 if Has_Discriminants (Derived_Type) then
9443 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
9444 Set_Discriminant_Constraint (Derived_Type, No_Elist);
9445 else
9446 Save_Discr_Constr := No_Elist;
9447 end if;
9448
9449 -- Save the Etype field of Derived_Type. It is correctly set now,
9450 -- but the call to New_Copy tree may remap it to point to itself,
9451 -- which is not what we want. Ditto for the Next_Entity field.
9452
9453 Save_Etype := Etype (Derived_Type);
9454 Save_Next_Entity := Next_Entity (Derived_Type);
9455
9456 -- Assoc_List maps all stored discriminants in the Parent_Base to
9457 -- stored discriminants in the Derived_Type. It is fundamental that
9458 -- no types or itypes with discriminants other than the stored
9459 -- discriminants appear in the entities declared inside
9460 -- Derived_Type, since the back end cannot deal with it.
9461
9462 New_Decl :=
9463 New_Copy_Tree
9464 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
9465 Copy_Dimensions_Of_Components (Derived_Type);
9466
9467 -- Restore the fields saved prior to the New_Copy_Tree call
9468 -- and compute the stored constraint.
9469
9470 Set_Etype (Derived_Type, Save_Etype);
9471 Link_Entities (Derived_Type, Save_Next_Entity);
9472
9473 if Has_Discriminants (Derived_Type) then
9474 Set_Discriminant_Constraint
9475 (Derived_Type, Save_Discr_Constr);
9476 Set_Stored_Constraint
9477 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
9478
9479 Replace_Components (Derived_Type, New_Decl);
9480 end if;
9481
9482 -- Insert the new derived type declaration
9483
9484 Rewrite (N, New_Decl);
9485
9486 -- STEP 5b: Complete the processing for record extensions in generics
9487
9488 -- There is no completion for record extensions declared in the
9489 -- parameter part of a generic, so we need to complete processing for
9490 -- these generic record extensions here. The Record_Type_Definition call
9491 -- will change the Ekind of the components from E_Void to E_Component.
9492
9493 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
9494 Record_Type_Definition (Empty, Derived_Type);
9495
9496 -- STEP 5c: Process the record extension for non private tagged types
9497
9498 elsif not Private_Extension then
9499 Expand_Record_Extension (Derived_Type, Type_Def);
9500
9501 -- Note : previously in ASIS mode we set the Parent_Subtype of the
9502 -- derived type to propagate some semantic information. This led
9503 -- to other ASIS failures and has been removed.
9504
9505 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
9506 -- implemented interfaces if we are in expansion mode
9507
9508 if Expander_Active
9509 and then Has_Interfaces (Derived_Type)
9510 then
9511 Add_Interface_Tag_Components (N, Derived_Type);
9512 end if;
9513
9514 -- Analyze the record extension
9515
9516 Record_Type_Definition
9517 (Record_Extension_Part (Type_Def), Derived_Type);
9518 end if;
9519
9520 End_Scope;
9521
9522 -- Nothing else to do if there is an error in the derivation.
9523 -- An unusual case: the full view may be derived from a type in an
9524 -- instance, when the partial view was used illegally as an actual
9525 -- in that instance, leading to a circular definition.
9526
9527 if Etype (Derived_Type) = Any_Type
9528 or else Etype (Parent_Type) = Derived_Type
9529 then
9530 return;
9531 end if;
9532
9533 -- Set delayed freeze and then derive subprograms, we need to do
9534 -- this in this order so that derived subprograms inherit the
9535 -- derived freeze if necessary.
9536
9537 Set_Has_Delayed_Freeze (Derived_Type);
9538
9539 if Derive_Subps then
9540 Derive_Subprograms (Parent_Type, Derived_Type);
9541 end if;
9542
9543 -- If we have a private extension which defines a constrained derived
9544 -- type mark as constrained here after we have derived subprograms. See
9545 -- comment on point 9. just above the body of Build_Derived_Record_Type.
9546
9547 if Private_Extension and then Inherit_Discrims then
9548 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
9549 Set_Is_Constrained (Derived_Type, True);
9550 Set_Discriminant_Constraint (Derived_Type, Discs);
9551
9552 elsif Is_Constrained (Parent_Type) then
9553 Set_Is_Constrained
9554 (Derived_Type, True);
9555 Set_Discriminant_Constraint
9556 (Derived_Type, Discriminant_Constraint (Parent_Type));
9557 end if;
9558 end if;
9559
9560 -- Update the class-wide type, which shares the now-completed entity
9561 -- list with its specific type. In case of underlying record views,
9562 -- we do not generate the corresponding class wide entity.
9563
9564 if Is_Tagged
9565 and then not Is_Underlying_Record_View (Derived_Type)
9566 then
9567 Set_First_Entity
9568 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
9569 Set_Last_Entity
9570 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
9571 end if;
9572
9573 Check_Function_Writable_Actuals (N);
9574 end Build_Derived_Record_Type;
9575
9576 ------------------------
9577 -- Build_Derived_Type --
9578 ------------------------
9579
9580 procedure Build_Derived_Type
9581 (N : Node_Id;
9582 Parent_Type : Entity_Id;
9583 Derived_Type : Entity_Id;
9584 Is_Completion : Boolean;
9585 Derive_Subps : Boolean := True)
9586 is
9587 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
9588
9589 begin
9590 -- Set common attributes
9591
9592 Set_Scope (Derived_Type, Current_Scope);
9593 Set_Etype (Derived_Type, Parent_Base);
9594 Set_Ekind (Derived_Type, Ekind (Parent_Base));
9595 Propagate_Concurrent_Flags (Derived_Type, Parent_Base);
9596
9597 Set_Size_Info (Derived_Type, Parent_Type);
9598 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
9599
9600 Set_Is_Controlled_Active
9601 (Derived_Type, Is_Controlled_Active (Parent_Type));
9602
9603 Set_Disable_Controlled (Derived_Type, Disable_Controlled (Parent_Type));
9604 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
9605 Set_Is_Volatile (Derived_Type, Is_Volatile (Parent_Type));
9606
9607 if Is_Tagged_Type (Derived_Type) then
9608 Set_No_Tagged_Streams_Pragma
9609 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9610 end if;
9611
9612 -- If the parent has primitive routines, set the derived type link
9613
9614 if Has_Primitive_Operations (Parent_Type) then
9615 Set_Derived_Type_Link (Parent_Base, Derived_Type);
9616 end if;
9617
9618 -- If the parent type is a private subtype, the convention on the base
9619 -- type may be set in the private part, and not propagated to the
9620 -- subtype until later, so we obtain the convention from the base type.
9621
9622 Set_Convention (Derived_Type, Convention (Parent_Base));
9623
9624 -- Set SSO default for record or array type
9625
9626 if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type))
9627 and then Is_Base_Type (Derived_Type)
9628 then
9629 Set_Default_SSO (Derived_Type);
9630 end if;
9631
9632 -- A derived type inherits the Default_Initial_Condition pragma coming
9633 -- from any parent type within the derivation chain.
9634
9635 if Has_DIC (Parent_Type) then
9636 Set_Has_Inherited_DIC (Derived_Type);
9637 end if;
9638
9639 -- A derived type inherits any class-wide invariants coming from a
9640 -- parent type or an interface. Note that the invariant procedure of
9641 -- the parent type should not be inherited because the derived type may
9642 -- define invariants of its own.
9643
9644 if not Is_Interface (Derived_Type) then
9645 if Has_Inherited_Invariants (Parent_Type)
9646 or else Has_Inheritable_Invariants (Parent_Type)
9647 then
9648 Set_Has_Inherited_Invariants (Derived_Type);
9649
9650 elsif Is_Concurrent_Type (Derived_Type)
9651 or else Is_Tagged_Type (Derived_Type)
9652 then
9653 declare
9654 Iface : Entity_Id;
9655 Ifaces : Elist_Id;
9656 Iface_Elmt : Elmt_Id;
9657
9658 begin
9659 Collect_Interfaces
9660 (T => Derived_Type,
9661 Ifaces_List => Ifaces,
9662 Exclude_Parents => True);
9663
9664 if Present (Ifaces) then
9665 Iface_Elmt := First_Elmt (Ifaces);
9666 while Present (Iface_Elmt) loop
9667 Iface := Node (Iface_Elmt);
9668
9669 if Has_Inheritable_Invariants (Iface) then
9670 Set_Has_Inherited_Invariants (Derived_Type);
9671 exit;
9672 end if;
9673
9674 Next_Elmt (Iface_Elmt);
9675 end loop;
9676 end if;
9677 end;
9678 end if;
9679 end if;
9680
9681 -- We similarly inherit predicates. Note that for scalar derived types
9682 -- the predicate is inherited from the first subtype, and not from its
9683 -- (anonymous) base type.
9684
9685 if Has_Predicates (Parent_Type)
9686 or else Has_Predicates (First_Subtype (Parent_Type))
9687 then
9688 Set_Has_Predicates (Derived_Type);
9689 end if;
9690
9691 -- The derived type inherits representation clauses from the parent
9692 -- type, and from any interfaces.
9693
9694 Inherit_Rep_Item_Chain (Derived_Type, Parent_Type);
9695
9696 declare
9697 Iface : Node_Id := First (Abstract_Interface_List (Derived_Type));
9698 begin
9699 while Present (Iface) loop
9700 Inherit_Rep_Item_Chain (Derived_Type, Entity (Iface));
9701 Next (Iface);
9702 end loop;
9703 end;
9704
9705 -- If the parent type has delayed rep aspects, then mark the derived
9706 -- type as possibly inheriting a delayed rep aspect.
9707
9708 if Has_Delayed_Rep_Aspects (Parent_Type) then
9709 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
9710 end if;
9711
9712 -- A derived type becomes Ghost when its parent type is also Ghost
9713 -- (SPARK RM 6.9(9)). Note that the Ghost-related attributes are not
9714 -- directly inherited because the Ghost policy in effect may differ.
9715
9716 if Is_Ghost_Entity (Parent_Type) then
9717 Set_Is_Ghost_Entity (Derived_Type);
9718 end if;
9719
9720 -- Type dependent processing
9721
9722 case Ekind (Parent_Type) is
9723 when Numeric_Kind =>
9724 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
9725
9726 when Array_Kind =>
9727 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
9728
9729 when Class_Wide_Kind
9730 | E_Record_Subtype
9731 | E_Record_Type
9732 =>
9733 Build_Derived_Record_Type
9734 (N, Parent_Type, Derived_Type, Derive_Subps);
9735 return;
9736
9737 when Enumeration_Kind =>
9738 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
9739
9740 when Access_Kind =>
9741 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
9742
9743 when Incomplete_Or_Private_Kind =>
9744 Build_Derived_Private_Type
9745 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
9746
9747 -- For discriminated types, the derivation includes deriving
9748 -- primitive operations. For others it is done below.
9749
9750 if Is_Tagged_Type (Parent_Type)
9751 or else Has_Discriminants (Parent_Type)
9752 or else (Present (Full_View (Parent_Type))
9753 and then Has_Discriminants (Full_View (Parent_Type)))
9754 then
9755 return;
9756 end if;
9757
9758 when Concurrent_Kind =>
9759 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
9760
9761 when others =>
9762 raise Program_Error;
9763 end case;
9764
9765 -- Nothing more to do if some error occurred
9766
9767 if Etype (Derived_Type) = Any_Type then
9768 return;
9769 end if;
9770
9771 -- Set delayed freeze and then derive subprograms, we need to do this
9772 -- in this order so that derived subprograms inherit the derived freeze
9773 -- if necessary.
9774
9775 Set_Has_Delayed_Freeze (Derived_Type);
9776
9777 if Derive_Subps then
9778 Derive_Subprograms (Parent_Type, Derived_Type);
9779 end if;
9780
9781 Set_Has_Primitive_Operations
9782 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
9783 end Build_Derived_Type;
9784
9785 -----------------------
9786 -- Build_Discriminal --
9787 -----------------------
9788
9789 procedure Build_Discriminal (Discrim : Entity_Id) is
9790 D_Minal : Entity_Id;
9791 CR_Disc : Entity_Id;
9792
9793 begin
9794 -- A discriminal has the same name as the discriminant
9795
9796 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9797
9798 Set_Ekind (D_Minal, E_In_Parameter);
9799 Set_Mechanism (D_Minal, Default_Mechanism);
9800 Set_Etype (D_Minal, Etype (Discrim));
9801 Set_Scope (D_Minal, Current_Scope);
9802 Set_Parent (D_Minal, Parent (Discrim));
9803
9804 Set_Discriminal (Discrim, D_Minal);
9805 Set_Discriminal_Link (D_Minal, Discrim);
9806
9807 -- For task types, build at once the discriminants of the corresponding
9808 -- record, which are needed if discriminants are used in entry defaults
9809 -- and in family bounds.
9810
9811 if Is_Concurrent_Type (Current_Scope)
9812 or else
9813 Is_Limited_Type (Current_Scope)
9814 then
9815 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9816
9817 Set_Ekind (CR_Disc, E_In_Parameter);
9818 Set_Mechanism (CR_Disc, Default_Mechanism);
9819 Set_Etype (CR_Disc, Etype (Discrim));
9820 Set_Scope (CR_Disc, Current_Scope);
9821 Set_Discriminal_Link (CR_Disc, Discrim);
9822 Set_CR_Discriminant (Discrim, CR_Disc);
9823 end if;
9824 end Build_Discriminal;
9825
9826 ------------------------------------
9827 -- Build_Discriminant_Constraints --
9828 ------------------------------------
9829
9830 function Build_Discriminant_Constraints
9831 (T : Entity_Id;
9832 Def : Node_Id;
9833 Derived_Def : Boolean := False) return Elist_Id
9834 is
9835 C : constant Node_Id := Constraint (Def);
9836 Nb_Discr : constant Nat := Number_Discriminants (T);
9837
9838 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
9839 -- Saves the expression corresponding to a given discriminant in T
9840
9841 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
9842 -- Return the Position number within array Discr_Expr of a discriminant
9843 -- D within the discriminant list of the discriminated type T.
9844
9845 procedure Process_Discriminant_Expression
9846 (Expr : Node_Id;
9847 D : Entity_Id);
9848 -- If this is a discriminant constraint on a partial view, do not
9849 -- generate an overflow check on the discriminant expression. The check
9850 -- will be generated when constraining the full view. Otherwise the
9851 -- backend creates duplicate symbols for the temporaries corresponding
9852 -- to the expressions to be checked, causing spurious assembler errors.
9853
9854 ------------------
9855 -- Pos_Of_Discr --
9856 ------------------
9857
9858 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
9859 Disc : Entity_Id;
9860
9861 begin
9862 Disc := First_Discriminant (T);
9863 for J in Discr_Expr'Range loop
9864 if Disc = D then
9865 return J;
9866 end if;
9867
9868 Next_Discriminant (Disc);
9869 end loop;
9870
9871 -- Note: Since this function is called on discriminants that are
9872 -- known to belong to the discriminated type, falling through the
9873 -- loop with no match signals an internal compiler error.
9874
9875 raise Program_Error;
9876 end Pos_Of_Discr;
9877
9878 -------------------------------------
9879 -- Process_Discriminant_Expression --
9880 -------------------------------------
9881
9882 procedure Process_Discriminant_Expression
9883 (Expr : Node_Id;
9884 D : Entity_Id)
9885 is
9886 BDT : constant Entity_Id := Base_Type (Etype (D));
9887
9888 begin
9889 -- If this is a discriminant constraint on a partial view, do
9890 -- not generate an overflow on the discriminant expression. The
9891 -- check will be generated when constraining the full view.
9892
9893 if Is_Private_Type (T)
9894 and then Present (Full_View (T))
9895 then
9896 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
9897 else
9898 Analyze_And_Resolve (Expr, BDT);
9899 end if;
9900 end Process_Discriminant_Expression;
9901
9902 -- Declarations local to Build_Discriminant_Constraints
9903
9904 Discr : Entity_Id;
9905 E : Entity_Id;
9906 Elist : constant Elist_Id := New_Elmt_List;
9907
9908 Constr : Node_Id;
9909 Expr : Node_Id;
9910 Id : Node_Id;
9911 Position : Nat;
9912 Found : Boolean;
9913
9914 Discrim_Present : Boolean := False;
9915
9916 -- Start of processing for Build_Discriminant_Constraints
9917
9918 begin
9919 -- The following loop will process positional associations only.
9920 -- For a positional association, the (single) discriminant is
9921 -- implicitly specified by position, in textual order (RM 3.7.2).
9922
9923 Discr := First_Discriminant (T);
9924 Constr := First (Constraints (C));
9925 for D in Discr_Expr'Range loop
9926 exit when Nkind (Constr) = N_Discriminant_Association;
9927
9928 if No (Constr) then
9929 Error_Msg_N ("too few discriminants given in constraint", C);
9930 return New_Elmt_List;
9931
9932 elsif Nkind (Constr) = N_Range
9933 or else (Nkind (Constr) = N_Attribute_Reference
9934 and then Attribute_Name (Constr) = Name_Range)
9935 then
9936 Error_Msg_N
9937 ("a range is not a valid discriminant constraint", Constr);
9938 Discr_Expr (D) := Error;
9939
9940 elsif Nkind (Constr) = N_Subtype_Indication then
9941 Error_Msg_N
9942 ("a subtype indication is not a valid discriminant constraint",
9943 Constr);
9944 Discr_Expr (D) := Error;
9945
9946 else
9947 Process_Discriminant_Expression (Constr, Discr);
9948 Discr_Expr (D) := Constr;
9949 end if;
9950
9951 Next_Discriminant (Discr);
9952 Next (Constr);
9953 end loop;
9954
9955 if No (Discr) and then Present (Constr) then
9956 Error_Msg_N ("too many discriminants given in constraint", Constr);
9957 return New_Elmt_List;
9958 end if;
9959
9960 -- Named associations can be given in any order, but if both positional
9961 -- and named associations are used in the same discriminant constraint,
9962 -- then positional associations must occur first, at their normal
9963 -- position. Hence once a named association is used, the rest of the
9964 -- discriminant constraint must use only named associations.
9965
9966 while Present (Constr) loop
9967
9968 -- Positional association forbidden after a named association
9969
9970 if Nkind (Constr) /= N_Discriminant_Association then
9971 Error_Msg_N ("positional association follows named one", Constr);
9972 return New_Elmt_List;
9973
9974 -- Otherwise it is a named association
9975
9976 else
9977 -- E records the type of the discriminants in the named
9978 -- association. All the discriminants specified in the same name
9979 -- association must have the same type.
9980
9981 E := Empty;
9982
9983 -- Search the list of discriminants in T to see if the simple name
9984 -- given in the constraint matches any of them.
9985
9986 Id := First (Selector_Names (Constr));
9987 while Present (Id) loop
9988 Found := False;
9989
9990 -- If Original_Discriminant is present, we are processing a
9991 -- generic instantiation and this is an instance node. We need
9992 -- to find the name of the corresponding discriminant in the
9993 -- actual record type T and not the name of the discriminant in
9994 -- the generic formal. Example:
9995
9996 -- generic
9997 -- type G (D : int) is private;
9998 -- package P is
9999 -- subtype W is G (D => 1);
10000 -- end package;
10001 -- type Rec (X : int) is record ... end record;
10002 -- package Q is new P (G => Rec);
10003
10004 -- At the point of the instantiation, formal type G is Rec
10005 -- and therefore when reanalyzing "subtype W is G (D => 1);"
10006 -- which really looks like "subtype W is Rec (D => 1);" at
10007 -- the point of instantiation, we want to find the discriminant
10008 -- that corresponds to D in Rec, i.e. X.
10009
10010 if Present (Original_Discriminant (Id))
10011 and then In_Instance
10012 then
10013 Discr := Find_Corresponding_Discriminant (Id, T);
10014 Found := True;
10015
10016 else
10017 Discr := First_Discriminant (T);
10018 while Present (Discr) loop
10019 if Chars (Discr) = Chars (Id) then
10020 Found := True;
10021 exit;
10022 end if;
10023
10024 Next_Discriminant (Discr);
10025 end loop;
10026
10027 if not Found then
10028 Error_Msg_N ("& does not match any discriminant", Id);
10029 return New_Elmt_List;
10030
10031 -- If the parent type is a generic formal, preserve the
10032 -- name of the discriminant for subsequent instances.
10033 -- see comment at the beginning of this if statement.
10034
10035 elsif Is_Generic_Type (Root_Type (T)) then
10036 Set_Original_Discriminant (Id, Discr);
10037 end if;
10038 end if;
10039
10040 Position := Pos_Of_Discr (T, Discr);
10041
10042 if Present (Discr_Expr (Position)) then
10043 Error_Msg_N ("duplicate constraint for discriminant&", Id);
10044
10045 else
10046 -- Each discriminant specified in the same named association
10047 -- must be associated with a separate copy of the
10048 -- corresponding expression.
10049
10050 if Present (Next (Id)) then
10051 Expr := New_Copy_Tree (Expression (Constr));
10052 Set_Parent (Expr, Parent (Expression (Constr)));
10053 else
10054 Expr := Expression (Constr);
10055 end if;
10056
10057 Discr_Expr (Position) := Expr;
10058 Process_Discriminant_Expression (Expr, Discr);
10059 end if;
10060
10061 -- A discriminant association with more than one discriminant
10062 -- name is only allowed if the named discriminants are all of
10063 -- the same type (RM 3.7.1(8)).
10064
10065 if E = Empty then
10066 E := Base_Type (Etype (Discr));
10067
10068 elsif Base_Type (Etype (Discr)) /= E then
10069 Error_Msg_N
10070 ("all discriminants in an association " &
10071 "must have the same type", Id);
10072 end if;
10073
10074 Next (Id);
10075 end loop;
10076 end if;
10077
10078 Next (Constr);
10079 end loop;
10080
10081 -- A discriminant constraint must provide exactly one value for each
10082 -- discriminant of the type (RM 3.7.1(8)).
10083
10084 for J in Discr_Expr'Range loop
10085 if No (Discr_Expr (J)) then
10086 Error_Msg_N ("too few discriminants given in constraint", C);
10087 return New_Elmt_List;
10088 end if;
10089 end loop;
10090
10091 -- Determine if there are discriminant expressions in the constraint
10092
10093 for J in Discr_Expr'Range loop
10094 if Denotes_Discriminant
10095 (Discr_Expr (J), Check_Concurrent => True)
10096 then
10097 Discrim_Present := True;
10098 end if;
10099 end loop;
10100
10101 -- Build an element list consisting of the expressions given in the
10102 -- discriminant constraint and apply the appropriate checks. The list
10103 -- is constructed after resolving any named discriminant associations
10104 -- and therefore the expressions appear in the textual order of the
10105 -- discriminants.
10106
10107 Discr := First_Discriminant (T);
10108 for J in Discr_Expr'Range loop
10109 if Discr_Expr (J) /= Error then
10110 Append_Elmt (Discr_Expr (J), Elist);
10111
10112 -- If any of the discriminant constraints is given by a
10113 -- discriminant and we are in a derived type declaration we
10114 -- have a discriminant renaming. Establish link between new
10115 -- and old discriminant. The new discriminant has an implicit
10116 -- dereference if the old one does.
10117
10118 if Denotes_Discriminant (Discr_Expr (J)) then
10119 if Derived_Def then
10120 declare
10121 New_Discr : constant Entity_Id := Entity (Discr_Expr (J));
10122
10123 begin
10124 Set_Corresponding_Discriminant (New_Discr, Discr);
10125 Set_Has_Implicit_Dereference (New_Discr,
10126 Has_Implicit_Dereference (Discr));
10127 end;
10128 end if;
10129
10130 -- Force the evaluation of non-discriminant expressions.
10131 -- If we have found a discriminant in the constraint 3.4(26)
10132 -- and 3.8(18) demand that no range checks are performed are
10133 -- after evaluation. If the constraint is for a component
10134 -- definition that has a per-object constraint, expressions are
10135 -- evaluated but not checked either. In all other cases perform
10136 -- a range check.
10137
10138 else
10139 if Discrim_Present then
10140 null;
10141
10142 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
10143 and then Has_Per_Object_Constraint
10144 (Defining_Identifier (Parent (Parent (Def))))
10145 then
10146 null;
10147
10148 elsif Is_Access_Type (Etype (Discr)) then
10149 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
10150
10151 else
10152 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
10153 end if;
10154
10155 Force_Evaluation (Discr_Expr (J));
10156 end if;
10157
10158 -- Check that the designated type of an access discriminant's
10159 -- expression is not a class-wide type unless the discriminant's
10160 -- designated type is also class-wide.
10161
10162 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
10163 and then not Is_Class_Wide_Type
10164 (Designated_Type (Etype (Discr)))
10165 and then Etype (Discr_Expr (J)) /= Any_Type
10166 and then Is_Class_Wide_Type
10167 (Designated_Type (Etype (Discr_Expr (J))))
10168 then
10169 Wrong_Type (Discr_Expr (J), Etype (Discr));
10170
10171 elsif Is_Access_Type (Etype (Discr))
10172 and then not Is_Access_Constant (Etype (Discr))
10173 and then Is_Access_Type (Etype (Discr_Expr (J)))
10174 and then Is_Access_Constant (Etype (Discr_Expr (J)))
10175 then
10176 Error_Msg_NE
10177 ("constraint for discriminant& must be access to variable",
10178 Def, Discr);
10179 end if;
10180 end if;
10181
10182 Next_Discriminant (Discr);
10183 end loop;
10184
10185 return Elist;
10186 end Build_Discriminant_Constraints;
10187
10188 ---------------------------------
10189 -- Build_Discriminated_Subtype --
10190 ---------------------------------
10191
10192 procedure Build_Discriminated_Subtype
10193 (T : Entity_Id;
10194 Def_Id : Entity_Id;
10195 Elist : Elist_Id;
10196 Related_Nod : Node_Id;
10197 For_Access : Boolean := False)
10198 is
10199 Has_Discrs : constant Boolean := Has_Discriminants (T);
10200 Constrained : constant Boolean :=
10201 (Has_Discrs
10202 and then not Is_Empty_Elmt_List (Elist)
10203 and then not Is_Class_Wide_Type (T))
10204 or else Is_Constrained (T);
10205
10206 begin
10207 if Ekind (T) = E_Record_Type then
10208 if For_Access then
10209 Set_Ekind (Def_Id, E_Private_Subtype);
10210 Set_Is_For_Access_Subtype (Def_Id, True);
10211 else
10212 Set_Ekind (Def_Id, E_Record_Subtype);
10213 end if;
10214
10215 -- Inherit preelaboration flag from base, for types for which it
10216 -- may have been set: records, private types, protected types.
10217
10218 Set_Known_To_Have_Preelab_Init
10219 (Def_Id, Known_To_Have_Preelab_Init (T));
10220
10221 elsif Ekind (T) = E_Task_Type then
10222 Set_Ekind (Def_Id, E_Task_Subtype);
10223
10224 elsif Ekind (T) = E_Protected_Type then
10225 Set_Ekind (Def_Id, E_Protected_Subtype);
10226 Set_Known_To_Have_Preelab_Init
10227 (Def_Id, Known_To_Have_Preelab_Init (T));
10228
10229 elsif Is_Private_Type (T) then
10230 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
10231 Set_Known_To_Have_Preelab_Init
10232 (Def_Id, Known_To_Have_Preelab_Init (T));
10233
10234 -- Private subtypes may have private dependents
10235
10236 Set_Private_Dependents (Def_Id, New_Elmt_List);
10237
10238 elsif Is_Class_Wide_Type (T) then
10239 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
10240
10241 else
10242 -- Incomplete type. Attach subtype to list of dependents, to be
10243 -- completed with full view of parent type, unless is it the
10244 -- designated subtype of a record component within an init_proc.
10245 -- This last case arises for a component of an access type whose
10246 -- designated type is incomplete (e.g. a Taft Amendment type).
10247 -- The designated subtype is within an inner scope, and needs no
10248 -- elaboration, because only the access type is needed in the
10249 -- initialization procedure.
10250
10251 if Ekind (T) = E_Incomplete_Type then
10252 Set_Ekind (Def_Id, E_Incomplete_Subtype);
10253 else
10254 Set_Ekind (Def_Id, Ekind (T));
10255 end if;
10256
10257 if For_Access and then Within_Init_Proc then
10258 null;
10259 else
10260 Append_Elmt (Def_Id, Private_Dependents (T));
10261 end if;
10262 end if;
10263
10264 Set_Etype (Def_Id, T);
10265 Init_Size_Align (Def_Id);
10266 Set_Has_Discriminants (Def_Id, Has_Discrs);
10267 Set_Is_Constrained (Def_Id, Constrained);
10268
10269 Set_First_Entity (Def_Id, First_Entity (T));
10270 Set_Last_Entity (Def_Id, Last_Entity (T));
10271 Set_Has_Implicit_Dereference
10272 (Def_Id, Has_Implicit_Dereference (T));
10273 Set_Has_Pragma_Unreferenced_Objects
10274 (Def_Id, Has_Pragma_Unreferenced_Objects (T));
10275
10276 -- If the subtype is the completion of a private declaration, there may
10277 -- have been representation clauses for the partial view, and they must
10278 -- be preserved. Build_Derived_Type chains the inherited clauses with
10279 -- the ones appearing on the extension. If this comes from a subtype
10280 -- declaration, all clauses are inherited.
10281
10282 if No (First_Rep_Item (Def_Id)) then
10283 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10284 end if;
10285
10286 if Is_Tagged_Type (T) then
10287 Set_Is_Tagged_Type (Def_Id);
10288 Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T));
10289 Make_Class_Wide_Type (Def_Id);
10290 end if;
10291
10292 Set_Stored_Constraint (Def_Id, No_Elist);
10293
10294 if Has_Discrs then
10295 Set_Discriminant_Constraint (Def_Id, Elist);
10296 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
10297 end if;
10298
10299 if Is_Tagged_Type (T) then
10300
10301 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
10302 -- concurrent record type (which has the list of primitive
10303 -- operations).
10304
10305 if Ada_Version >= Ada_2005
10306 and then Is_Concurrent_Type (T)
10307 then
10308 Set_Corresponding_Record_Type (Def_Id,
10309 Corresponding_Record_Type (T));
10310 else
10311 Set_Direct_Primitive_Operations (Def_Id,
10312 Direct_Primitive_Operations (T));
10313 end if;
10314
10315 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
10316 end if;
10317
10318 -- Subtypes introduced by component declarations do not need to be
10319 -- marked as delayed, and do not get freeze nodes, because the semantics
10320 -- verifies that the parents of the subtypes are frozen before the
10321 -- enclosing record is frozen.
10322
10323 if not Is_Type (Scope (Def_Id)) then
10324 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
10325
10326 if Is_Private_Type (T)
10327 and then Present (Full_View (T))
10328 then
10329 Conditional_Delay (Def_Id, Full_View (T));
10330 else
10331 Conditional_Delay (Def_Id, T);
10332 end if;
10333 end if;
10334
10335 if Is_Record_Type (T) then
10336 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
10337
10338 if Has_Discrs
10339 and then not Is_Empty_Elmt_List (Elist)
10340 and then not For_Access
10341 then
10342 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
10343
10344 elsif not For_Access then
10345 Set_Cloned_Subtype (Def_Id, T);
10346 end if;
10347 end if;
10348 end Build_Discriminated_Subtype;
10349
10350 ---------------------------
10351 -- Build_Itype_Reference --
10352 ---------------------------
10353
10354 procedure Build_Itype_Reference
10355 (Ityp : Entity_Id;
10356 Nod : Node_Id)
10357 is
10358 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
10359 begin
10360
10361 -- Itype references are only created for use by the back-end
10362
10363 if Inside_A_Generic then
10364 return;
10365 else
10366 Set_Itype (IR, Ityp);
10367
10368 -- If Nod is a library unit entity, then Insert_After won't work,
10369 -- because Nod is not a member of any list. Therefore, we use
10370 -- Add_Global_Declaration in this case. This can happen if we have a
10371 -- build-in-place library function.
10372
10373 if (Nkind (Nod) in N_Entity and then Is_Compilation_Unit (Nod))
10374 or else
10375 (Nkind (Nod) = N_Defining_Program_Unit_Name
10376 and then Is_Compilation_Unit (Defining_Identifier (Nod)))
10377 then
10378 Add_Global_Declaration (IR);
10379 else
10380 Insert_After (Nod, IR);
10381 end if;
10382 end if;
10383 end Build_Itype_Reference;
10384
10385 ------------------------
10386 -- Build_Scalar_Bound --
10387 ------------------------
10388
10389 function Build_Scalar_Bound
10390 (Bound : Node_Id;
10391 Par_T : Entity_Id;
10392 Der_T : Entity_Id) return Node_Id
10393 is
10394 New_Bound : Entity_Id;
10395
10396 begin
10397 -- Note: not clear why this is needed, how can the original bound
10398 -- be unanalyzed at this point? and if it is, what business do we
10399 -- have messing around with it? and why is the base type of the
10400 -- parent type the right type for the resolution. It probably is
10401 -- not. It is OK for the new bound we are creating, but not for
10402 -- the old one??? Still if it never happens, no problem.
10403
10404 Analyze_And_Resolve (Bound, Base_Type (Par_T));
10405
10406 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
10407 New_Bound := New_Copy (Bound);
10408 Set_Etype (New_Bound, Der_T);
10409 Set_Analyzed (New_Bound);
10410
10411 elsif Is_Entity_Name (Bound) then
10412 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
10413
10414 -- The following is almost certainly wrong. What business do we have
10415 -- relocating a node (Bound) that is presumably still attached to
10416 -- the tree elsewhere???
10417
10418 else
10419 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
10420 end if;
10421
10422 Set_Etype (New_Bound, Der_T);
10423 return New_Bound;
10424 end Build_Scalar_Bound;
10425
10426 --------------------------------
10427 -- Build_Underlying_Full_View --
10428 --------------------------------
10429
10430 procedure Build_Underlying_Full_View
10431 (N : Node_Id;
10432 Typ : Entity_Id;
10433 Par : Entity_Id)
10434 is
10435 Loc : constant Source_Ptr := Sloc (N);
10436 Subt : constant Entity_Id :=
10437 Make_Defining_Identifier
10438 (Loc, New_External_Name (Chars (Typ), 'S'));
10439
10440 Constr : Node_Id;
10441 Indic : Node_Id;
10442 C : Node_Id;
10443 Id : Node_Id;
10444
10445 procedure Set_Discriminant_Name (Id : Node_Id);
10446 -- If the derived type has discriminants, they may rename discriminants
10447 -- of the parent. When building the full view of the parent, we need to
10448 -- recover the names of the original discriminants if the constraint is
10449 -- given by named associations.
10450
10451 ---------------------------
10452 -- Set_Discriminant_Name --
10453 ---------------------------
10454
10455 procedure Set_Discriminant_Name (Id : Node_Id) is
10456 Disc : Entity_Id;
10457
10458 begin
10459 Set_Original_Discriminant (Id, Empty);
10460
10461 if Has_Discriminants (Typ) then
10462 Disc := First_Discriminant (Typ);
10463 while Present (Disc) loop
10464 if Chars (Disc) = Chars (Id)
10465 and then Present (Corresponding_Discriminant (Disc))
10466 then
10467 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
10468 end if;
10469 Next_Discriminant (Disc);
10470 end loop;
10471 end if;
10472 end Set_Discriminant_Name;
10473
10474 -- Start of processing for Build_Underlying_Full_View
10475
10476 begin
10477 if Nkind (N) = N_Full_Type_Declaration then
10478 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
10479
10480 elsif Nkind (N) = N_Subtype_Declaration then
10481 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
10482
10483 elsif Nkind (N) = N_Component_Declaration then
10484 Constr :=
10485 New_Copy_Tree
10486 (Constraint (Subtype_Indication (Component_Definition (N))));
10487
10488 else
10489 raise Program_Error;
10490 end if;
10491
10492 C := First (Constraints (Constr));
10493 while Present (C) loop
10494 if Nkind (C) = N_Discriminant_Association then
10495 Id := First (Selector_Names (C));
10496 while Present (Id) loop
10497 Set_Discriminant_Name (Id);
10498 Next (Id);
10499 end loop;
10500 end if;
10501
10502 Next (C);
10503 end loop;
10504
10505 Indic :=
10506 Make_Subtype_Declaration (Loc,
10507 Defining_Identifier => Subt,
10508 Subtype_Indication =>
10509 Make_Subtype_Indication (Loc,
10510 Subtype_Mark => New_Occurrence_Of (Par, Loc),
10511 Constraint => New_Copy_Tree (Constr)));
10512
10513 -- If this is a component subtype for an outer itype, it is not
10514 -- a list member, so simply set the parent link for analysis: if
10515 -- the enclosing type does not need to be in a declarative list,
10516 -- neither do the components.
10517
10518 if Is_List_Member (N)
10519 and then Nkind (N) /= N_Component_Declaration
10520 then
10521 Insert_Before (N, Indic);
10522 else
10523 Set_Parent (Indic, Parent (N));
10524 end if;
10525
10526 Analyze (Indic);
10527 Set_Underlying_Full_View (Typ, Full_View (Subt));
10528 Set_Is_Underlying_Full_View (Full_View (Subt));
10529 end Build_Underlying_Full_View;
10530
10531 -------------------------------
10532 -- Check_Abstract_Overriding --
10533 -------------------------------
10534
10535 procedure Check_Abstract_Overriding (T : Entity_Id) is
10536 Alias_Subp : Entity_Id;
10537 Elmt : Elmt_Id;
10538 Op_List : Elist_Id;
10539 Subp : Entity_Id;
10540 Type_Def : Node_Id;
10541
10542 procedure Check_Pragma_Implemented (Subp : Entity_Id);
10543 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
10544 -- which has pragma Implemented already set. Check whether Subp's entity
10545 -- kind conforms to the implementation kind of the overridden routine.
10546
10547 procedure Check_Pragma_Implemented
10548 (Subp : Entity_Id;
10549 Iface_Subp : Entity_Id);
10550 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
10551 -- Iface_Subp and both entities have pragma Implemented already set on
10552 -- them. Check whether the two implementation kinds are conforming.
10553
10554 procedure Inherit_Pragma_Implemented
10555 (Subp : Entity_Id;
10556 Iface_Subp : Entity_Id);
10557 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
10558 -- subprogram Iface_Subp which has been marked by pragma Implemented.
10559 -- Propagate the implementation kind of Iface_Subp to Subp.
10560
10561 ------------------------------
10562 -- Check_Pragma_Implemented --
10563 ------------------------------
10564
10565 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
10566 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
10567 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
10568 Subp_Alias : constant Entity_Id := Alias (Subp);
10569 Contr_Typ : Entity_Id;
10570 Impl_Subp : Entity_Id;
10571
10572 begin
10573 -- Subp must have an alias since it is a hidden entity used to link
10574 -- an interface subprogram to its overriding counterpart.
10575
10576 pragma Assert (Present (Subp_Alias));
10577
10578 -- Handle aliases to synchronized wrappers
10579
10580 Impl_Subp := Subp_Alias;
10581
10582 if Is_Primitive_Wrapper (Impl_Subp) then
10583 Impl_Subp := Wrapped_Entity (Impl_Subp);
10584 end if;
10585
10586 -- Extract the type of the controlling formal
10587
10588 Contr_Typ := Etype (First_Formal (Subp_Alias));
10589
10590 if Is_Concurrent_Record_Type (Contr_Typ) then
10591 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
10592 end if;
10593
10594 -- An interface subprogram whose implementation kind is By_Entry must
10595 -- be implemented by an entry.
10596
10597 if Impl_Kind = Name_By_Entry
10598 and then Ekind (Impl_Subp) /= E_Entry
10599 then
10600 Error_Msg_Node_2 := Iface_Alias;
10601 Error_Msg_NE
10602 ("type & must implement abstract subprogram & with an entry",
10603 Subp_Alias, Contr_Typ);
10604
10605 elsif Impl_Kind = Name_By_Protected_Procedure then
10606
10607 -- An interface subprogram whose implementation kind is By_
10608 -- Protected_Procedure cannot be implemented by a primitive
10609 -- procedure of a task type.
10610
10611 if Ekind (Contr_Typ) /= E_Protected_Type then
10612 Error_Msg_Node_2 := Contr_Typ;
10613 Error_Msg_NE
10614 ("interface subprogram & cannot be implemented by a " &
10615 "primitive procedure of task type &", Subp_Alias,
10616 Iface_Alias);
10617
10618 -- An interface subprogram whose implementation kind is By_
10619 -- Protected_Procedure must be implemented by a procedure.
10620
10621 elsif Ekind (Impl_Subp) /= E_Procedure then
10622 Error_Msg_Node_2 := Iface_Alias;
10623 Error_Msg_NE
10624 ("type & must implement abstract subprogram & with a " &
10625 "procedure", Subp_Alias, Contr_Typ);
10626
10627 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10628 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10629 then
10630 Error_Msg_Name_1 := Impl_Kind;
10631 Error_Msg_N
10632 ("overriding operation& must have synchronization%",
10633 Subp_Alias);
10634 end if;
10635
10636 -- If primitive has Optional synchronization, overriding operation
10637 -- must match if it has an explicit synchronization..
10638
10639 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10640 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10641 then
10642 Error_Msg_Name_1 := Impl_Kind;
10643 Error_Msg_N
10644 ("overriding operation& must have syncrhonization%",
10645 Subp_Alias);
10646 end if;
10647 end Check_Pragma_Implemented;
10648
10649 ------------------------------
10650 -- Check_Pragma_Implemented --
10651 ------------------------------
10652
10653 procedure Check_Pragma_Implemented
10654 (Subp : Entity_Id;
10655 Iface_Subp : Entity_Id)
10656 is
10657 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10658 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
10659
10660 begin
10661 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
10662 -- and overriding subprogram are different. In general this is an
10663 -- error except when the implementation kind of the overridden
10664 -- subprograms is By_Any or Optional.
10665
10666 if Iface_Kind /= Subp_Kind
10667 and then Iface_Kind /= Name_By_Any
10668 and then Iface_Kind /= Name_Optional
10669 then
10670 if Iface_Kind = Name_By_Entry then
10671 Error_Msg_N
10672 ("incompatible implementation kind, overridden subprogram " &
10673 "is marked By_Entry", Subp);
10674 else
10675 Error_Msg_N
10676 ("incompatible implementation kind, overridden subprogram " &
10677 "is marked By_Protected_Procedure", Subp);
10678 end if;
10679 end if;
10680 end Check_Pragma_Implemented;
10681
10682 --------------------------------
10683 -- Inherit_Pragma_Implemented --
10684 --------------------------------
10685
10686 procedure Inherit_Pragma_Implemented
10687 (Subp : Entity_Id;
10688 Iface_Subp : Entity_Id)
10689 is
10690 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10691 Loc : constant Source_Ptr := Sloc (Subp);
10692 Impl_Prag : Node_Id;
10693
10694 begin
10695 -- Since the implementation kind is stored as a representation item
10696 -- rather than a flag, create a pragma node.
10697
10698 Impl_Prag :=
10699 Make_Pragma (Loc,
10700 Chars => Name_Implemented,
10701 Pragma_Argument_Associations => New_List (
10702 Make_Pragma_Argument_Association (Loc,
10703 Expression => New_Occurrence_Of (Subp, Loc)),
10704
10705 Make_Pragma_Argument_Association (Loc,
10706 Expression => Make_Identifier (Loc, Iface_Kind))));
10707
10708 -- The pragma doesn't need to be analyzed because it is internally
10709 -- built. It is safe to directly register it as a rep item since we
10710 -- are only interested in the characters of the implementation kind.
10711
10712 Record_Rep_Item (Subp, Impl_Prag);
10713 end Inherit_Pragma_Implemented;
10714
10715 -- Start of processing for Check_Abstract_Overriding
10716
10717 begin
10718 Op_List := Primitive_Operations (T);
10719
10720 -- Loop to check primitive operations
10721
10722 Elmt := First_Elmt (Op_List);
10723 while Present (Elmt) loop
10724 Subp := Node (Elmt);
10725 Alias_Subp := Alias (Subp);
10726
10727 -- Inherited subprograms are identified by the fact that they do not
10728 -- come from source, and the associated source location is the
10729 -- location of the first subtype of the derived type.
10730
10731 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
10732 -- subprograms that "require overriding".
10733
10734 -- Special exception, do not complain about failure to override the
10735 -- stream routines _Input and _Output, as well as the primitive
10736 -- operations used in dispatching selects since we always provide
10737 -- automatic overridings for these subprograms.
10738
10739 -- The partial view of T may have been a private extension, for
10740 -- which inherited functions dispatching on result are abstract.
10741 -- If the full view is a null extension, there is no need for
10742 -- overriding in Ada 2005, but wrappers need to be built for them
10743 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
10744
10745 if Is_Null_Extension (T)
10746 and then Has_Controlling_Result (Subp)
10747 and then Ada_Version >= Ada_2005
10748 and then Present (Alias_Subp)
10749 and then not Comes_From_Source (Subp)
10750 and then not Is_Abstract_Subprogram (Alias_Subp)
10751 and then not Is_Access_Type (Etype (Subp))
10752 then
10753 null;
10754
10755 -- Ada 2005 (AI-251): Internal entities of interfaces need no
10756 -- processing because this check is done with the aliased
10757 -- entity
10758
10759 elsif Present (Interface_Alias (Subp)) then
10760 null;
10761
10762 elsif (Is_Abstract_Subprogram (Subp)
10763 or else Requires_Overriding (Subp)
10764 or else
10765 (Has_Controlling_Result (Subp)
10766 and then Present (Alias_Subp)
10767 and then not Comes_From_Source (Subp)
10768 and then Sloc (Subp) = Sloc (First_Subtype (T))))
10769 and then not Is_TSS (Subp, TSS_Stream_Input)
10770 and then not Is_TSS (Subp, TSS_Stream_Output)
10771 and then not Is_Abstract_Type (T)
10772 and then not Is_Predefined_Interface_Primitive (Subp)
10773
10774 -- Ada 2005 (AI-251): Do not consider hidden entities associated
10775 -- with abstract interface types because the check will be done
10776 -- with the aliased entity (otherwise we generate a duplicated
10777 -- error message).
10778
10779 and then not Present (Interface_Alias (Subp))
10780 then
10781 if Present (Alias_Subp) then
10782
10783 -- Only perform the check for a derived subprogram when the
10784 -- type has an explicit record extension. This avoids incorrect
10785 -- flagging of abstract subprograms for the case of a type
10786 -- without an extension that is derived from a formal type
10787 -- with a tagged actual (can occur within a private part).
10788
10789 -- Ada 2005 (AI-391): In the case of an inherited function with
10790 -- a controlling result of the type, the rule does not apply if
10791 -- the type is a null extension (unless the parent function
10792 -- itself is abstract, in which case the function must still be
10793 -- be overridden). The expander will generate an overriding
10794 -- wrapper function calling the parent subprogram (see
10795 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
10796
10797 Type_Def := Type_Definition (Parent (T));
10798
10799 if Nkind (Type_Def) = N_Derived_Type_Definition
10800 and then Present (Record_Extension_Part (Type_Def))
10801 and then
10802 (Ada_Version < Ada_2005
10803 or else not Is_Null_Extension (T)
10804 or else Ekind (Subp) = E_Procedure
10805 or else not Has_Controlling_Result (Subp)
10806 or else Is_Abstract_Subprogram (Alias_Subp)
10807 or else Requires_Overriding (Subp)
10808 or else Is_Access_Type (Etype (Subp)))
10809 then
10810 -- Avoid reporting error in case of abstract predefined
10811 -- primitive inherited from interface type because the
10812 -- body of internally generated predefined primitives
10813 -- of tagged types are generated later by Freeze_Type
10814
10815 if Is_Interface (Root_Type (T))
10816 and then Is_Abstract_Subprogram (Subp)
10817 and then Is_Predefined_Dispatching_Operation (Subp)
10818 and then not Comes_From_Source (Ultimate_Alias (Subp))
10819 then
10820 null;
10821
10822 -- A null extension is not obliged to override an inherited
10823 -- procedure subject to pragma Extensions_Visible with value
10824 -- False and at least one controlling OUT parameter
10825 -- (SPARK RM 6.1.7(6)).
10826
10827 elsif Is_Null_Extension (T)
10828 and then Is_EVF_Procedure (Subp)
10829 then
10830 null;
10831
10832 else
10833 Error_Msg_NE
10834 ("type must be declared abstract or & overridden",
10835 T, Subp);
10836
10837 -- Traverse the whole chain of aliased subprograms to
10838 -- complete the error notification. This is especially
10839 -- useful for traceability of the chain of entities when
10840 -- the subprogram corresponds with an interface
10841 -- subprogram (which may be defined in another package).
10842
10843 if Present (Alias_Subp) then
10844 declare
10845 E : Entity_Id;
10846
10847 begin
10848 E := Subp;
10849 while Present (Alias (E)) loop
10850
10851 -- Avoid reporting redundant errors on entities
10852 -- inherited from interfaces
10853
10854 if Sloc (E) /= Sloc (T) then
10855 Error_Msg_Sloc := Sloc (E);
10856 Error_Msg_NE
10857 ("\& has been inherited #", T, Subp);
10858 end if;
10859
10860 E := Alias (E);
10861 end loop;
10862
10863 Error_Msg_Sloc := Sloc (E);
10864
10865 -- AI05-0068: report if there is an overriding
10866 -- non-abstract subprogram that is invisible.
10867
10868 if Is_Hidden (E)
10869 and then not Is_Abstract_Subprogram (E)
10870 then
10871 Error_Msg_NE
10872 ("\& subprogram# is not visible",
10873 T, Subp);
10874
10875 -- Clarify the case where a non-null extension must
10876 -- override inherited procedure subject to pragma
10877 -- Extensions_Visible with value False and at least
10878 -- one controlling OUT param.
10879
10880 elsif Is_EVF_Procedure (E) then
10881 Error_Msg_NE
10882 ("\& # is subject to Extensions_Visible False",
10883 T, Subp);
10884
10885 else
10886 Error_Msg_NE
10887 ("\& has been inherited from subprogram #",
10888 T, Subp);
10889 end if;
10890 end;
10891 end if;
10892 end if;
10893
10894 -- Ada 2005 (AI-345): Protected or task type implementing
10895 -- abstract interfaces.
10896
10897 elsif Is_Concurrent_Record_Type (T)
10898 and then Present (Interfaces (T))
10899 then
10900 -- There is no need to check here RM 9.4(11.9/3) since we
10901 -- are processing the corresponding record type and the
10902 -- mode of the overriding subprograms was verified by
10903 -- Check_Conformance when the corresponding concurrent
10904 -- type declaration was analyzed.
10905
10906 Error_Msg_NE
10907 ("interface subprogram & must be overridden", T, Subp);
10908
10909 -- Examine primitive operations of synchronized type to find
10910 -- homonyms that have the wrong profile.
10911
10912 declare
10913 Prim : Entity_Id;
10914
10915 begin
10916 Prim := First_Entity (Corresponding_Concurrent_Type (T));
10917 while Present (Prim) loop
10918 if Chars (Prim) = Chars (Subp) then
10919 Error_Msg_NE
10920 ("profile is not type conformant with prefixed "
10921 & "view profile of inherited operation&",
10922 Prim, Subp);
10923 end if;
10924
10925 Next_Entity (Prim);
10926 end loop;
10927 end;
10928 end if;
10929
10930 else
10931 Error_Msg_Node_2 := T;
10932 Error_Msg_N
10933 ("abstract subprogram& not allowed for type&", Subp);
10934
10935 -- Also post unconditional warning on the type (unconditional
10936 -- so that if there are more than one of these cases, we get
10937 -- them all, and not just the first one).
10938
10939 Error_Msg_Node_2 := Subp;
10940 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
10941 end if;
10942
10943 -- A subprogram subject to pragma Extensions_Visible with value
10944 -- "True" cannot override a subprogram subject to the same pragma
10945 -- with value "False" (SPARK RM 6.1.7(5)).
10946
10947 elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True
10948 and then Present (Overridden_Operation (Subp))
10949 and then Extensions_Visible_Status (Overridden_Operation (Subp)) =
10950 Extensions_Visible_False
10951 then
10952 Error_Msg_Sloc := Sloc (Overridden_Operation (Subp));
10953 Error_Msg_N
10954 ("subprogram & with Extensions_Visible True cannot override "
10955 & "subprogram # with Extensions_Visible False", Subp);
10956 end if;
10957
10958 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10959
10960 -- Subp is an expander-generated procedure which maps an interface
10961 -- alias to a protected wrapper. The interface alias is flagged by
10962 -- pragma Implemented. Ensure that Subp is a procedure when the
10963 -- implementation kind is By_Protected_Procedure or an entry when
10964 -- By_Entry.
10965
10966 if Ada_Version >= Ada_2012
10967 and then Is_Hidden (Subp)
10968 and then Present (Interface_Alias (Subp))
10969 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
10970 then
10971 Check_Pragma_Implemented (Subp);
10972 end if;
10973
10974 -- Subp is an interface primitive which overrides another interface
10975 -- primitive marked with pragma Implemented.
10976
10977 if Ada_Version >= Ada_2012
10978 and then Present (Overridden_Operation (Subp))
10979 and then Has_Rep_Pragma
10980 (Overridden_Operation (Subp), Name_Implemented)
10981 then
10982 -- If the overriding routine is also marked by Implemented, check
10983 -- that the two implementation kinds are conforming.
10984
10985 if Has_Rep_Pragma (Subp, Name_Implemented) then
10986 Check_Pragma_Implemented
10987 (Subp => Subp,
10988 Iface_Subp => Overridden_Operation (Subp));
10989
10990 -- Otherwise the overriding routine inherits the implementation
10991 -- kind from the overridden subprogram.
10992
10993 else
10994 Inherit_Pragma_Implemented
10995 (Subp => Subp,
10996 Iface_Subp => Overridden_Operation (Subp));
10997 end if;
10998 end if;
10999
11000 -- If the operation is a wrapper for a synchronized primitive, it
11001 -- may be called indirectly through a dispatching select. We assume
11002 -- that it will be referenced elsewhere indirectly, and suppress
11003 -- warnings about an unused entity.
11004
11005 if Is_Primitive_Wrapper (Subp)
11006 and then Present (Wrapped_Entity (Subp))
11007 then
11008 Set_Referenced (Wrapped_Entity (Subp));
11009 end if;
11010
11011 Next_Elmt (Elmt);
11012 end loop;
11013 end Check_Abstract_Overriding;
11014
11015 ------------------------------------------------
11016 -- Check_Access_Discriminant_Requires_Limited --
11017 ------------------------------------------------
11018
11019 procedure Check_Access_Discriminant_Requires_Limited
11020 (D : Node_Id;
11021 Loc : Node_Id)
11022 is
11023 begin
11024 -- A discriminant_specification for an access discriminant shall appear
11025 -- only in the declaration for a task or protected type, or for a type
11026 -- with the reserved word 'limited' in its definition or in one of its
11027 -- ancestors (RM 3.7(10)).
11028
11029 -- AI-0063: The proper condition is that type must be immutably limited,
11030 -- or else be a partial view.
11031
11032 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
11033 if Is_Limited_View (Current_Scope)
11034 or else
11035 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
11036 and then Limited_Present (Parent (Current_Scope)))
11037 then
11038 null;
11039
11040 else
11041 Error_Msg_N
11042 ("access discriminants allowed only for limited types", Loc);
11043 end if;
11044 end if;
11045 end Check_Access_Discriminant_Requires_Limited;
11046
11047 -----------------------------------
11048 -- Check_Aliased_Component_Types --
11049 -----------------------------------
11050
11051 procedure Check_Aliased_Component_Types (T : Entity_Id) is
11052 C : Entity_Id;
11053
11054 begin
11055 -- ??? Also need to check components of record extensions, but not
11056 -- components of protected types (which are always limited).
11057
11058 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
11059 -- types to be unconstrained. This is safe because it is illegal to
11060 -- create access subtypes to such types with explicit discriminant
11061 -- constraints.
11062
11063 if not Is_Limited_Type (T) then
11064 if Ekind (T) = E_Record_Type then
11065 C := First_Component (T);
11066 while Present (C) loop
11067 if Is_Aliased (C)
11068 and then Has_Discriminants (Etype (C))
11069 and then not Is_Constrained (Etype (C))
11070 and then not In_Instance_Body
11071 and then Ada_Version < Ada_2005
11072 then
11073 Error_Msg_N
11074 ("aliased component must be constrained (RM 3.6(11))",
11075 C);
11076 end if;
11077
11078 Next_Component (C);
11079 end loop;
11080
11081 elsif Ekind (T) = E_Array_Type then
11082 if Has_Aliased_Components (T)
11083 and then Has_Discriminants (Component_Type (T))
11084 and then not Is_Constrained (Component_Type (T))
11085 and then not In_Instance_Body
11086 and then Ada_Version < Ada_2005
11087 then
11088 Error_Msg_N
11089 ("aliased component type must be constrained (RM 3.6(11))",
11090 T);
11091 end if;
11092 end if;
11093 end if;
11094 end Check_Aliased_Component_Types;
11095
11096 ---------------------------------------
11097 -- Check_Anonymous_Access_Components --
11098 ---------------------------------------
11099
11100 procedure Check_Anonymous_Access_Components
11101 (Typ_Decl : Node_Id;
11102 Typ : Entity_Id;
11103 Prev : Entity_Id;
11104 Comp_List : Node_Id)
11105 is
11106 Loc : constant Source_Ptr := Sloc (Typ_Decl);
11107 Anon_Access : Entity_Id;
11108 Acc_Def : Node_Id;
11109 Comp : Node_Id;
11110 Comp_Def : Node_Id;
11111 Decl : Node_Id;
11112 Type_Def : Node_Id;
11113
11114 procedure Build_Incomplete_Type_Declaration;
11115 -- If the record type contains components that include an access to the
11116 -- current record, then create an incomplete type declaration for the
11117 -- record, to be used as the designated type of the anonymous access.
11118 -- This is done only once, and only if there is no previous partial
11119 -- view of the type.
11120
11121 function Designates_T (Subt : Node_Id) return Boolean;
11122 -- Check whether a node designates the enclosing record type, or 'Class
11123 -- of that type
11124
11125 function Mentions_T (Acc_Def : Node_Id) return Boolean;
11126 -- Check whether an access definition includes a reference to
11127 -- the enclosing record type. The reference can be a subtype mark
11128 -- in the access definition itself, a 'Class attribute reference, or
11129 -- recursively a reference appearing in a parameter specification
11130 -- or result definition of an access_to_subprogram definition.
11131
11132 --------------------------------------
11133 -- Build_Incomplete_Type_Declaration --
11134 --------------------------------------
11135
11136 procedure Build_Incomplete_Type_Declaration is
11137 Decl : Node_Id;
11138 Inc_T : Entity_Id;
11139 H : Entity_Id;
11140
11141 -- Is_Tagged indicates whether the type is tagged. It is tagged if
11142 -- it's "is new ... with record" or else "is tagged record ...".
11143
11144 Is_Tagged : constant Boolean :=
11145 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
11146 and then
11147 Present (Record_Extension_Part (Type_Definition (Typ_Decl))))
11148 or else
11149 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
11150 and then Tagged_Present (Type_Definition (Typ_Decl)));
11151
11152 begin
11153 -- If there is a previous partial view, no need to create a new one
11154 -- If the partial view, given by Prev, is incomplete, If Prev is
11155 -- a private declaration, full declaration is flagged accordingly.
11156
11157 if Prev /= Typ then
11158 if Is_Tagged then
11159 Make_Class_Wide_Type (Prev);
11160 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
11161 Set_Etype (Class_Wide_Type (Typ), Typ);
11162 end if;
11163
11164 return;
11165
11166 elsif Has_Private_Declaration (Typ) then
11167
11168 -- If we refer to T'Class inside T, and T is the completion of a
11169 -- private type, then make sure the class-wide type exists.
11170
11171 if Is_Tagged then
11172 Make_Class_Wide_Type (Typ);
11173 end if;
11174
11175 return;
11176
11177 -- If there was a previous anonymous access type, the incomplete
11178 -- type declaration will have been created already.
11179
11180 elsif Present (Current_Entity (Typ))
11181 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
11182 and then Full_View (Current_Entity (Typ)) = Typ
11183 then
11184 if Is_Tagged
11185 and then Comes_From_Source (Current_Entity (Typ))
11186 and then not Is_Tagged_Type (Current_Entity (Typ))
11187 then
11188 Make_Class_Wide_Type (Typ);
11189 Error_Msg_N
11190 ("incomplete view of tagged type should be declared tagged??",
11191 Parent (Current_Entity (Typ)));
11192 end if;
11193 return;
11194
11195 else
11196 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
11197 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
11198
11199 -- Type has already been inserted into the current scope. Remove
11200 -- it, and add incomplete declaration for type, so that subsequent
11201 -- anonymous access types can use it. The entity is unchained from
11202 -- the homonym list and from immediate visibility. After analysis,
11203 -- the entity in the incomplete declaration becomes immediately
11204 -- visible in the record declaration that follows.
11205
11206 H := Current_Entity (Typ);
11207
11208 if H = Typ then
11209 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
11210 else
11211 while Present (H)
11212 and then Homonym (H) /= Typ
11213 loop
11214 H := Homonym (Typ);
11215 end loop;
11216
11217 Set_Homonym (H, Homonym (Typ));
11218 end if;
11219
11220 Insert_Before (Typ_Decl, Decl);
11221 Analyze (Decl);
11222 Set_Full_View (Inc_T, Typ);
11223
11224 if Is_Tagged then
11225
11226 -- Create a common class-wide type for both views, and set the
11227 -- Etype of the class-wide type to the full view.
11228
11229 Make_Class_Wide_Type (Inc_T);
11230 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
11231 Set_Etype (Class_Wide_Type (Typ), Typ);
11232 end if;
11233 end if;
11234 end Build_Incomplete_Type_Declaration;
11235
11236 ------------------
11237 -- Designates_T --
11238 ------------------
11239
11240 function Designates_T (Subt : Node_Id) return Boolean is
11241 Type_Id : constant Name_Id := Chars (Typ);
11242
11243 function Names_T (Nam : Node_Id) return Boolean;
11244 -- The record type has not been introduced in the current scope
11245 -- yet, so we must examine the name of the type itself, either
11246 -- an identifier T, or an expanded name of the form P.T, where
11247 -- P denotes the current scope.
11248
11249 -------------
11250 -- Names_T --
11251 -------------
11252
11253 function Names_T (Nam : Node_Id) return Boolean is
11254 begin
11255 if Nkind (Nam) = N_Identifier then
11256 return Chars (Nam) = Type_Id;
11257
11258 elsif Nkind (Nam) = N_Selected_Component then
11259 if Chars (Selector_Name (Nam)) = Type_Id then
11260 if Nkind (Prefix (Nam)) = N_Identifier then
11261 return Chars (Prefix (Nam)) = Chars (Current_Scope);
11262
11263 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
11264 return Chars (Selector_Name (Prefix (Nam))) =
11265 Chars (Current_Scope);
11266 else
11267 return False;
11268 end if;
11269
11270 else
11271 return False;
11272 end if;
11273
11274 else
11275 return False;
11276 end if;
11277 end Names_T;
11278
11279 -- Start of processing for Designates_T
11280
11281 begin
11282 if Nkind (Subt) = N_Identifier then
11283 return Chars (Subt) = Type_Id;
11284
11285 -- Reference can be through an expanded name which has not been
11286 -- analyzed yet, and which designates enclosing scopes.
11287
11288 elsif Nkind (Subt) = N_Selected_Component then
11289 if Names_T (Subt) then
11290 return True;
11291
11292 -- Otherwise it must denote an entity that is already visible.
11293 -- The access definition may name a subtype of the enclosing
11294 -- type, if there is a previous incomplete declaration for it.
11295
11296 else
11297 Find_Selected_Component (Subt);
11298 return
11299 Is_Entity_Name (Subt)
11300 and then Scope (Entity (Subt)) = Current_Scope
11301 and then
11302 (Chars (Base_Type (Entity (Subt))) = Type_Id
11303 or else
11304 (Is_Class_Wide_Type (Entity (Subt))
11305 and then
11306 Chars (Etype (Base_Type (Entity (Subt)))) =
11307 Type_Id));
11308 end if;
11309
11310 -- A reference to the current type may appear as the prefix of
11311 -- a 'Class attribute.
11312
11313 elsif Nkind (Subt) = N_Attribute_Reference
11314 and then Attribute_Name (Subt) = Name_Class
11315 then
11316 return Names_T (Prefix (Subt));
11317
11318 else
11319 return False;
11320 end if;
11321 end Designates_T;
11322
11323 ----------------
11324 -- Mentions_T --
11325 ----------------
11326
11327 function Mentions_T (Acc_Def : Node_Id) return Boolean is
11328 Param_Spec : Node_Id;
11329
11330 Acc_Subprg : constant Node_Id :=
11331 Access_To_Subprogram_Definition (Acc_Def);
11332
11333 begin
11334 if No (Acc_Subprg) then
11335 return Designates_T (Subtype_Mark (Acc_Def));
11336 end if;
11337
11338 -- Component is an access_to_subprogram: examine its formals,
11339 -- and result definition in the case of an access_to_function.
11340
11341 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
11342 while Present (Param_Spec) loop
11343 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
11344 and then Mentions_T (Parameter_Type (Param_Spec))
11345 then
11346 return True;
11347
11348 elsif Designates_T (Parameter_Type (Param_Spec)) then
11349 return True;
11350 end if;
11351
11352 Next (Param_Spec);
11353 end loop;
11354
11355 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
11356 if Nkind (Result_Definition (Acc_Subprg)) =
11357 N_Access_Definition
11358 then
11359 return Mentions_T (Result_Definition (Acc_Subprg));
11360 else
11361 return Designates_T (Result_Definition (Acc_Subprg));
11362 end if;
11363 end if;
11364
11365 return False;
11366 end Mentions_T;
11367
11368 -- Start of processing for Check_Anonymous_Access_Components
11369
11370 begin
11371 if No (Comp_List) then
11372 return;
11373 end if;
11374
11375 Comp := First (Component_Items (Comp_List));
11376 while Present (Comp) loop
11377 if Nkind (Comp) = N_Component_Declaration
11378 and then Present
11379 (Access_Definition (Component_Definition (Comp)))
11380 and then
11381 Mentions_T (Access_Definition (Component_Definition (Comp)))
11382 then
11383 Comp_Def := Component_Definition (Comp);
11384 Acc_Def :=
11385 Access_To_Subprogram_Definition (Access_Definition (Comp_Def));
11386
11387 Build_Incomplete_Type_Declaration;
11388 Anon_Access := Make_Temporary (Loc, 'S');
11389
11390 -- Create a declaration for the anonymous access type: either
11391 -- an access_to_object or an access_to_subprogram.
11392
11393 if Present (Acc_Def) then
11394 if Nkind (Acc_Def) = N_Access_Function_Definition then
11395 Type_Def :=
11396 Make_Access_Function_Definition (Loc,
11397 Parameter_Specifications =>
11398 Parameter_Specifications (Acc_Def),
11399 Result_Definition => Result_Definition (Acc_Def));
11400 else
11401 Type_Def :=
11402 Make_Access_Procedure_Definition (Loc,
11403 Parameter_Specifications =>
11404 Parameter_Specifications (Acc_Def));
11405 end if;
11406
11407 else
11408 Type_Def :=
11409 Make_Access_To_Object_Definition (Loc,
11410 Subtype_Indication =>
11411 Relocate_Node
11412 (Subtype_Mark (Access_Definition (Comp_Def))));
11413
11414 Set_Constant_Present
11415 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
11416 Set_All_Present
11417 (Type_Def, All_Present (Access_Definition (Comp_Def)));
11418 end if;
11419
11420 Set_Null_Exclusion_Present
11421 (Type_Def,
11422 Null_Exclusion_Present (Access_Definition (Comp_Def)));
11423
11424 Decl :=
11425 Make_Full_Type_Declaration (Loc,
11426 Defining_Identifier => Anon_Access,
11427 Type_Definition => Type_Def);
11428
11429 Insert_Before (Typ_Decl, Decl);
11430 Analyze (Decl);
11431
11432 -- If an access to subprogram, create the extra formals
11433
11434 if Present (Acc_Def) then
11435 Create_Extra_Formals (Designated_Type (Anon_Access));
11436
11437 -- If an access to object, preserve entity of designated type,
11438 -- for ASIS use, before rewriting the component definition.
11439
11440 else
11441 declare
11442 Desig : Entity_Id;
11443
11444 begin
11445 Desig := Entity (Subtype_Indication (Type_Def));
11446
11447 -- If the access definition is to the current record,
11448 -- the visible entity at this point is an incomplete
11449 -- type. Retrieve the full view to simplify ASIS queries
11450
11451 if Ekind (Desig) = E_Incomplete_Type then
11452 Desig := Full_View (Desig);
11453 end if;
11454
11455 Set_Entity
11456 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
11457 end;
11458 end if;
11459
11460 Rewrite (Comp_Def,
11461 Make_Component_Definition (Loc,
11462 Subtype_Indication =>
11463 New_Occurrence_Of (Anon_Access, Loc)));
11464
11465 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
11466 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
11467 else
11468 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
11469 end if;
11470
11471 Set_Is_Local_Anonymous_Access (Anon_Access);
11472 end if;
11473
11474 Next (Comp);
11475 end loop;
11476
11477 if Present (Variant_Part (Comp_List)) then
11478 declare
11479 V : Node_Id;
11480 begin
11481 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
11482 while Present (V) loop
11483 Check_Anonymous_Access_Components
11484 (Typ_Decl, Typ, Prev, Component_List (V));
11485 Next_Non_Pragma (V);
11486 end loop;
11487 end;
11488 end if;
11489 end Check_Anonymous_Access_Components;
11490
11491 ----------------------
11492 -- Check_Completion --
11493 ----------------------
11494
11495 procedure Check_Completion (Body_Id : Node_Id := Empty) is
11496 E : Entity_Id;
11497
11498 procedure Post_Error;
11499 -- Post error message for lack of completion for entity E
11500
11501 ----------------
11502 -- Post_Error --
11503 ----------------
11504
11505 procedure Post_Error is
11506 procedure Missing_Body;
11507 -- Output missing body message
11508
11509 ------------------
11510 -- Missing_Body --
11511 ------------------
11512
11513 procedure Missing_Body is
11514 begin
11515 -- Spec is in same unit, so we can post on spec
11516
11517 if In_Same_Source_Unit (Body_Id, E) then
11518 Error_Msg_N ("missing body for &", E);
11519
11520 -- Spec is in a separate unit, so we have to post on the body
11521
11522 else
11523 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
11524 end if;
11525 end Missing_Body;
11526
11527 -- Start of processing for Post_Error
11528
11529 begin
11530 if not Comes_From_Source (E) then
11531 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
11532
11533 -- It may be an anonymous protected type created for a
11534 -- single variable. Post error on variable, if present.
11535
11536 declare
11537 Var : Entity_Id;
11538
11539 begin
11540 Var := First_Entity (Current_Scope);
11541 while Present (Var) loop
11542 exit when Etype (Var) = E
11543 and then Comes_From_Source (Var);
11544
11545 Next_Entity (Var);
11546 end loop;
11547
11548 if Present (Var) then
11549 E := Var;
11550 end if;
11551 end;
11552 end if;
11553 end if;
11554
11555 -- If a generated entity has no completion, then either previous
11556 -- semantic errors have disabled the expansion phase, or else we had
11557 -- missing subunits, or else we are compiling without expansion,
11558 -- or else something is very wrong.
11559
11560 if not Comes_From_Source (E) then
11561 pragma Assert
11562 (Serious_Errors_Detected > 0
11563 or else Configurable_Run_Time_Violations > 0
11564 or else Subunits_Missing
11565 or else not Expander_Active);
11566 return;
11567
11568 -- Here for source entity
11569
11570 else
11571 -- Here if no body to post the error message, so we post the error
11572 -- on the declaration that has no completion. This is not really
11573 -- the right place to post it, think about this later ???
11574
11575 if No (Body_Id) then
11576 if Is_Type (E) then
11577 Error_Msg_NE
11578 ("missing full declaration for }", Parent (E), E);
11579 else
11580 Error_Msg_NE ("missing body for &", Parent (E), E);
11581 end if;
11582
11583 -- Package body has no completion for a declaration that appears
11584 -- in the corresponding spec. Post error on the body, with a
11585 -- reference to the non-completed declaration.
11586
11587 else
11588 Error_Msg_Sloc := Sloc (E);
11589
11590 if Is_Type (E) then
11591 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
11592
11593 elsif Is_Overloadable (E)
11594 and then Current_Entity_In_Scope (E) /= E
11595 then
11596 -- It may be that the completion is mistyped and appears as
11597 -- a distinct overloading of the entity.
11598
11599 declare
11600 Candidate : constant Entity_Id :=
11601 Current_Entity_In_Scope (E);
11602 Decl : constant Node_Id :=
11603 Unit_Declaration_Node (Candidate);
11604
11605 begin
11606 if Is_Overloadable (Candidate)
11607 and then Ekind (Candidate) = Ekind (E)
11608 and then Nkind (Decl) = N_Subprogram_Body
11609 and then Acts_As_Spec (Decl)
11610 then
11611 Check_Type_Conformant (Candidate, E);
11612
11613 else
11614 Missing_Body;
11615 end if;
11616 end;
11617
11618 else
11619 Missing_Body;
11620 end if;
11621 end if;
11622 end if;
11623 end Post_Error;
11624
11625 -- Local variables
11626
11627 Pack_Id : constant Entity_Id := Current_Scope;
11628
11629 -- Start of processing for Check_Completion
11630
11631 begin
11632 E := First_Entity (Pack_Id);
11633 while Present (E) loop
11634 if Is_Intrinsic_Subprogram (E) then
11635 null;
11636
11637 -- The following situation requires special handling: a child unit
11638 -- that appears in the context clause of the body of its parent:
11639
11640 -- procedure Parent.Child (...);
11641
11642 -- with Parent.Child;
11643 -- package body Parent is
11644
11645 -- Here Parent.Child appears as a local entity, but should not be
11646 -- flagged as requiring completion, because it is a compilation
11647 -- unit.
11648
11649 -- Ignore missing completion for a subprogram that does not come from
11650 -- source (including the _Call primitive operation of RAS types,
11651 -- which has to have the flag Comes_From_Source for other purposes):
11652 -- we assume that the expander will provide the missing completion.
11653 -- In case of previous errors, other expansion actions that provide
11654 -- bodies for null procedures with not be invoked, so inhibit message
11655 -- in those cases.
11656
11657 -- Note that E_Operator is not in the list that follows, because
11658 -- this kind is reserved for predefined operators, that are
11659 -- intrinsic and do not need completion.
11660
11661 elsif Ekind_In (E, E_Function,
11662 E_Procedure,
11663 E_Generic_Function,
11664 E_Generic_Procedure)
11665 then
11666 if Has_Completion (E) then
11667 null;
11668
11669 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
11670 null;
11671
11672 elsif Is_Subprogram (E)
11673 and then (not Comes_From_Source (E)
11674 or else Chars (E) = Name_uCall)
11675 then
11676 null;
11677
11678 elsif
11679 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
11680 then
11681 null;
11682
11683 elsif Nkind (Parent (E)) = N_Procedure_Specification
11684 and then Null_Present (Parent (E))
11685 and then Serious_Errors_Detected > 0
11686 then
11687 null;
11688
11689 else
11690 Post_Error;
11691 end if;
11692
11693 elsif Is_Entry (E) then
11694 if not Has_Completion (E) and then
11695 (Ekind (Scope (E)) = E_Protected_Object
11696 or else Ekind (Scope (E)) = E_Protected_Type)
11697 then
11698 Post_Error;
11699 end if;
11700
11701 elsif Is_Package_Or_Generic_Package (E) then
11702 if Unit_Requires_Body (E) then
11703 if not Has_Completion (E)
11704 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
11705 N_Compilation_Unit
11706 then
11707 Post_Error;
11708 end if;
11709
11710 elsif not Is_Child_Unit (E) then
11711 May_Need_Implicit_Body (E);
11712 end if;
11713
11714 -- A formal incomplete type (Ada 2012) does not require a completion;
11715 -- other incomplete type declarations do.
11716
11717 elsif Ekind (E) = E_Incomplete_Type
11718 and then No (Underlying_Type (E))
11719 and then not Is_Generic_Type (E)
11720 then
11721 Post_Error;
11722
11723 elsif Ekind_In (E, E_Task_Type, E_Protected_Type)
11724 and then not Has_Completion (E)
11725 then
11726 Post_Error;
11727
11728 -- A single task declared in the current scope is a constant, verify
11729 -- that the body of its anonymous type is in the same scope. If the
11730 -- task is defined elsewhere, this may be a renaming declaration for
11731 -- which no completion is needed.
11732
11733 elsif Ekind (E) = E_Constant
11734 and then Ekind (Etype (E)) = E_Task_Type
11735 and then not Has_Completion (Etype (E))
11736 and then Scope (Etype (E)) = Current_Scope
11737 then
11738 Post_Error;
11739
11740 elsif Ekind (E) = E_Protected_Object
11741 and then not Has_Completion (Etype (E))
11742 then
11743 Post_Error;
11744
11745 elsif Ekind (E) = E_Record_Type then
11746 if Is_Tagged_Type (E) then
11747 Check_Abstract_Overriding (E);
11748 Check_Conventions (E);
11749 end if;
11750
11751 Check_Aliased_Component_Types (E);
11752
11753 elsif Ekind (E) = E_Array_Type then
11754 Check_Aliased_Component_Types (E);
11755
11756 end if;
11757
11758 Next_Entity (E);
11759 end loop;
11760 end Check_Completion;
11761
11762 ------------------------------------
11763 -- Check_CPP_Type_Has_No_Defaults --
11764 ------------------------------------
11765
11766 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
11767 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
11768 Clist : Node_Id;
11769 Comp : Node_Id;
11770
11771 begin
11772 -- Obtain the component list
11773
11774 if Nkind (Tdef) = N_Record_Definition then
11775 Clist := Component_List (Tdef);
11776 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
11777 Clist := Component_List (Record_Extension_Part (Tdef));
11778 end if;
11779
11780 -- Check all components to ensure no default expressions
11781
11782 if Present (Clist) then
11783 Comp := First (Component_Items (Clist));
11784 while Present (Comp) loop
11785 if Present (Expression (Comp)) then
11786 Error_Msg_N
11787 ("component of imported 'C'P'P type cannot have "
11788 & "default expression", Expression (Comp));
11789 end if;
11790
11791 Next (Comp);
11792 end loop;
11793 end if;
11794 end Check_CPP_Type_Has_No_Defaults;
11795
11796 ----------------------------
11797 -- Check_Delta_Expression --
11798 ----------------------------
11799
11800 procedure Check_Delta_Expression (E : Node_Id) is
11801 begin
11802 if not (Is_Real_Type (Etype (E))) then
11803 Wrong_Type (E, Any_Real);
11804
11805 elsif not Is_OK_Static_Expression (E) then
11806 Flag_Non_Static_Expr
11807 ("non-static expression used for delta value!", E);
11808
11809 elsif not UR_Is_Positive (Expr_Value_R (E)) then
11810 Error_Msg_N ("delta expression must be positive", E);
11811
11812 else
11813 return;
11814 end if;
11815
11816 -- If any of above errors occurred, then replace the incorrect
11817 -- expression by the real 0.1, which should prevent further errors.
11818
11819 Rewrite (E,
11820 Make_Real_Literal (Sloc (E), Ureal_Tenth));
11821 Analyze_And_Resolve (E, Standard_Float);
11822 end Check_Delta_Expression;
11823
11824 -----------------------------
11825 -- Check_Digits_Expression --
11826 -----------------------------
11827
11828 procedure Check_Digits_Expression (E : Node_Id) is
11829 begin
11830 if not (Is_Integer_Type (Etype (E))) then
11831 Wrong_Type (E, Any_Integer);
11832
11833 elsif not Is_OK_Static_Expression (E) then
11834 Flag_Non_Static_Expr
11835 ("non-static expression used for digits value!", E);
11836
11837 elsif Expr_Value (E) <= 0 then
11838 Error_Msg_N ("digits value must be greater than zero", E);
11839
11840 else
11841 return;
11842 end if;
11843
11844 -- If any of above errors occurred, then replace the incorrect
11845 -- expression by the integer 1, which should prevent further errors.
11846
11847 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
11848 Analyze_And_Resolve (E, Standard_Integer);
11849
11850 end Check_Digits_Expression;
11851
11852 --------------------------
11853 -- Check_Initialization --
11854 --------------------------
11855
11856 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
11857 begin
11858 -- Special processing for limited types
11859
11860 if Is_Limited_Type (T)
11861 and then not In_Instance
11862 and then not In_Inlined_Body
11863 then
11864 if not OK_For_Limited_Init (T, Exp) then
11865
11866 -- In GNAT mode, this is just a warning, to allow it to be evilly
11867 -- turned off. Otherwise it is a real error.
11868
11869 if GNAT_Mode then
11870 Error_Msg_N
11871 ("??cannot initialize entities of limited type!", Exp);
11872
11873 elsif Ada_Version < Ada_2005 then
11874
11875 -- The side effect removal machinery may generate illegal Ada
11876 -- code to avoid the usage of access types and 'reference in
11877 -- SPARK mode. Since this is legal code with respect to theorem
11878 -- proving, do not emit the error.
11879
11880 if GNATprove_Mode
11881 and then Nkind (Exp) = N_Function_Call
11882 and then Nkind (Parent (Exp)) = N_Object_Declaration
11883 and then not Comes_From_Source
11884 (Defining_Identifier (Parent (Exp)))
11885 then
11886 null;
11887
11888 else
11889 Error_Msg_N
11890 ("cannot initialize entities of limited type", Exp);
11891 Explain_Limited_Type (T, Exp);
11892 end if;
11893
11894 else
11895 -- Specialize error message according to kind of illegal
11896 -- initial expression.
11897
11898 if Nkind (Exp) = N_Type_Conversion
11899 and then Nkind (Expression (Exp)) = N_Function_Call
11900 then
11901 -- No error for internally-generated object declarations,
11902 -- which can come from build-in-place assignment statements.
11903
11904 if Nkind (Parent (Exp)) = N_Object_Declaration
11905 and then not Comes_From_Source
11906 (Defining_Identifier (Parent (Exp)))
11907 then
11908 null;
11909
11910 else
11911 Error_Msg_N
11912 ("illegal context for call to function with limited "
11913 & "result", Exp);
11914 end if;
11915
11916 else
11917 Error_Msg_N
11918 ("initialization of limited object requires aggregate or "
11919 & "function call", Exp);
11920 end if;
11921 end if;
11922 end if;
11923 end if;
11924
11925 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11926 -- set unless we can be sure that no range check is required.
11927
11928 if (GNATprove_Mode or not Expander_Active)
11929 and then Is_Scalar_Type (T)
11930 and then not Is_In_Range (Exp, T, Assume_Valid => True)
11931 then
11932 Set_Do_Range_Check (Exp);
11933 end if;
11934 end Check_Initialization;
11935
11936 ----------------------
11937 -- Check_Interfaces --
11938 ----------------------
11939
11940 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
11941 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
11942
11943 Iface : Node_Id;
11944 Iface_Def : Node_Id;
11945 Iface_Typ : Entity_Id;
11946 Parent_Node : Node_Id;
11947
11948 Is_Task : Boolean := False;
11949 -- Set True if parent type or any progenitor is a task interface
11950
11951 Is_Protected : Boolean := False;
11952 -- Set True if parent type or any progenitor is a protected interface
11953
11954 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
11955 -- Check that a progenitor is compatible with declaration. If an error
11956 -- message is output, it is posted on Error_Node.
11957
11958 ------------------
11959 -- Check_Ifaces --
11960 ------------------
11961
11962 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
11963 Iface_Id : constant Entity_Id :=
11964 Defining_Identifier (Parent (Iface_Def));
11965 Type_Def : Node_Id;
11966
11967 begin
11968 if Nkind (N) = N_Private_Extension_Declaration then
11969 Type_Def := N;
11970 else
11971 Type_Def := Type_Definition (N);
11972 end if;
11973
11974 if Is_Task_Interface (Iface_Id) then
11975 Is_Task := True;
11976
11977 elsif Is_Protected_Interface (Iface_Id) then
11978 Is_Protected := True;
11979 end if;
11980
11981 if Is_Synchronized_Interface (Iface_Id) then
11982
11983 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11984 -- extension derived from a synchronized interface must explicitly
11985 -- be declared synchronized, because the full view will be a
11986 -- synchronized type.
11987
11988 if Nkind (N) = N_Private_Extension_Declaration then
11989 if not Synchronized_Present (N) then
11990 Error_Msg_NE
11991 ("private extension of& must be explicitly synchronized",
11992 N, Iface_Id);
11993 end if;
11994
11995 -- However, by 3.9.4(16/2), a full type that is a record extension
11996 -- is never allowed to derive from a synchronized interface (note
11997 -- that interfaces must be excluded from this check, because those
11998 -- are represented by derived type definitions in some cases).
11999
12000 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
12001 and then not Interface_Present (Type_Definition (N))
12002 then
12003 Error_Msg_N ("record extension cannot derive from synchronized "
12004 & "interface", Error_Node);
12005 end if;
12006 end if;
12007
12008 -- Check that the characteristics of the progenitor are compatible
12009 -- with the explicit qualifier in the declaration.
12010 -- The check only applies to qualifiers that come from source.
12011 -- Limited_Present also appears in the declaration of corresponding
12012 -- records, and the check does not apply to them.
12013
12014 if Limited_Present (Type_Def)
12015 and then not
12016 Is_Concurrent_Record_Type (Defining_Identifier (N))
12017 then
12018 if Is_Limited_Interface (Parent_Type)
12019 and then not Is_Limited_Interface (Iface_Id)
12020 then
12021 Error_Msg_NE
12022 ("progenitor & must be limited interface",
12023 Error_Node, Iface_Id);
12024
12025 elsif
12026 (Task_Present (Iface_Def)
12027 or else Protected_Present (Iface_Def)
12028 or else Synchronized_Present (Iface_Def))
12029 and then Nkind (N) /= N_Private_Extension_Declaration
12030 and then not Error_Posted (N)
12031 then
12032 Error_Msg_NE
12033 ("progenitor & must be limited interface",
12034 Error_Node, Iface_Id);
12035 end if;
12036
12037 -- Protected interfaces can only inherit from limited, synchronized
12038 -- or protected interfaces.
12039
12040 elsif Nkind (N) = N_Full_Type_Declaration
12041 and then Protected_Present (Type_Def)
12042 then
12043 if Limited_Present (Iface_Def)
12044 or else Synchronized_Present (Iface_Def)
12045 or else Protected_Present (Iface_Def)
12046 then
12047 null;
12048
12049 elsif Task_Present (Iface_Def) then
12050 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
12051 & "from task interface", Error_Node);
12052
12053 else
12054 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
12055 & "from non-limited interface", Error_Node);
12056 end if;
12057
12058 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
12059 -- limited and synchronized.
12060
12061 elsif Synchronized_Present (Type_Def) then
12062 if Limited_Present (Iface_Def)
12063 or else Synchronized_Present (Iface_Def)
12064 then
12065 null;
12066
12067 elsif Protected_Present (Iface_Def)
12068 and then Nkind (N) /= N_Private_Extension_Declaration
12069 then
12070 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
12071 & "from protected interface", Error_Node);
12072
12073 elsif Task_Present (Iface_Def)
12074 and then Nkind (N) /= N_Private_Extension_Declaration
12075 then
12076 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
12077 & "from task interface", Error_Node);
12078
12079 elsif not Is_Limited_Interface (Iface_Id) then
12080 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
12081 & "from non-limited interface", Error_Node);
12082 end if;
12083
12084 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
12085 -- synchronized or task interfaces.
12086
12087 elsif Nkind (N) = N_Full_Type_Declaration
12088 and then Task_Present (Type_Def)
12089 then
12090 if Limited_Present (Iface_Def)
12091 or else Synchronized_Present (Iface_Def)
12092 or else Task_Present (Iface_Def)
12093 then
12094 null;
12095
12096 elsif Protected_Present (Iface_Def) then
12097 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
12098 & "protected interface", Error_Node);
12099
12100 else
12101 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
12102 & "non-limited interface", Error_Node);
12103 end if;
12104 end if;
12105 end Check_Ifaces;
12106
12107 -- Start of processing for Check_Interfaces
12108
12109 begin
12110 if Is_Interface (Parent_Type) then
12111 if Is_Task_Interface (Parent_Type) then
12112 Is_Task := True;
12113
12114 elsif Is_Protected_Interface (Parent_Type) then
12115 Is_Protected := True;
12116 end if;
12117 end if;
12118
12119 if Nkind (N) = N_Private_Extension_Declaration then
12120
12121 -- Check that progenitors are compatible with declaration
12122
12123 Iface := First (Interface_List (Def));
12124 while Present (Iface) loop
12125 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
12126
12127 Parent_Node := Parent (Base_Type (Iface_Typ));
12128 Iface_Def := Type_Definition (Parent_Node);
12129
12130 if not Is_Interface (Iface_Typ) then
12131 Diagnose_Interface (Iface, Iface_Typ);
12132 else
12133 Check_Ifaces (Iface_Def, Iface);
12134 end if;
12135
12136 Next (Iface);
12137 end loop;
12138
12139 if Is_Task and Is_Protected then
12140 Error_Msg_N
12141 ("type cannot derive from task and protected interface", N);
12142 end if;
12143
12144 return;
12145 end if;
12146
12147 -- Full type declaration of derived type.
12148 -- Check compatibility with parent if it is interface type
12149
12150 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
12151 and then Is_Interface (Parent_Type)
12152 then
12153 Parent_Node := Parent (Parent_Type);
12154
12155 -- More detailed checks for interface varieties
12156
12157 Check_Ifaces
12158 (Iface_Def => Type_Definition (Parent_Node),
12159 Error_Node => Subtype_Indication (Type_Definition (N)));
12160 end if;
12161
12162 Iface := First (Interface_List (Def));
12163 while Present (Iface) loop
12164 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
12165
12166 Parent_Node := Parent (Base_Type (Iface_Typ));
12167 Iface_Def := Type_Definition (Parent_Node);
12168
12169 if not Is_Interface (Iface_Typ) then
12170 Diagnose_Interface (Iface, Iface_Typ);
12171
12172 else
12173 -- "The declaration of a specific descendant of an interface
12174 -- type freezes the interface type" RM 13.14
12175
12176 Freeze_Before (N, Iface_Typ);
12177 Check_Ifaces (Iface_Def, Error_Node => Iface);
12178 end if;
12179
12180 Next (Iface);
12181 end loop;
12182
12183 if Is_Task and Is_Protected then
12184 Error_Msg_N
12185 ("type cannot derive from task and protected interface", N);
12186 end if;
12187 end Check_Interfaces;
12188
12189 ------------------------------------
12190 -- Check_Or_Process_Discriminants --
12191 ------------------------------------
12192
12193 -- If an incomplete or private type declaration was already given for the
12194 -- type, the discriminants may have already been processed if they were
12195 -- present on the incomplete declaration. In this case a full conformance
12196 -- check has been performed in Find_Type_Name, and we then recheck here
12197 -- some properties that can't be checked on the partial view alone.
12198 -- Otherwise we call Process_Discriminants.
12199
12200 procedure Check_Or_Process_Discriminants
12201 (N : Node_Id;
12202 T : Entity_Id;
12203 Prev : Entity_Id := Empty)
12204 is
12205 begin
12206 if Has_Discriminants (T) then
12207
12208 -- Discriminants are already set on T if they were already present
12209 -- on the partial view. Make them visible to component declarations.
12210
12211 declare
12212 D : Entity_Id;
12213 -- Discriminant on T (full view) referencing expr on partial view
12214
12215 Prev_D : Entity_Id;
12216 -- Entity of corresponding discriminant on partial view
12217
12218 New_D : Node_Id;
12219 -- Discriminant specification for full view, expression is
12220 -- the syntactic copy on full view (which has been checked for
12221 -- conformance with partial view), only used here to post error
12222 -- message.
12223
12224 begin
12225 D := First_Discriminant (T);
12226 New_D := First (Discriminant_Specifications (N));
12227 while Present (D) loop
12228 Prev_D := Current_Entity (D);
12229 Set_Current_Entity (D);
12230 Set_Is_Immediately_Visible (D);
12231 Set_Homonym (D, Prev_D);
12232
12233 -- Handle the case where there is an untagged partial view and
12234 -- the full view is tagged: must disallow discriminants with
12235 -- defaults, unless compiling for Ada 2012, which allows a
12236 -- limited tagged type to have defaulted discriminants (see
12237 -- AI05-0214). However, suppress error here if it was already
12238 -- reported on the default expression of the partial view.
12239
12240 if Is_Tagged_Type (T)
12241 and then Present (Expression (Parent (D)))
12242 and then (not Is_Limited_Type (Current_Scope)
12243 or else Ada_Version < Ada_2012)
12244 and then not Error_Posted (Expression (Parent (D)))
12245 then
12246 if Ada_Version >= Ada_2012 then
12247 Error_Msg_N
12248 ("discriminants of nonlimited tagged type cannot have "
12249 & "defaults",
12250 Expression (New_D));
12251 else
12252 Error_Msg_N
12253 ("discriminants of tagged type cannot have defaults",
12254 Expression (New_D));
12255 end if;
12256 end if;
12257
12258 -- Ada 2005 (AI-230): Access discriminant allowed in
12259 -- non-limited record types.
12260
12261 if Ada_Version < Ada_2005 then
12262
12263 -- This restriction gets applied to the full type here. It
12264 -- has already been applied earlier to the partial view.
12265
12266 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
12267 end if;
12268
12269 Next_Discriminant (D);
12270 Next (New_D);
12271 end loop;
12272 end;
12273
12274 elsif Present (Discriminant_Specifications (N)) then
12275 Process_Discriminants (N, Prev);
12276 end if;
12277 end Check_Or_Process_Discriminants;
12278
12279 ----------------------
12280 -- Check_Real_Bound --
12281 ----------------------
12282
12283 procedure Check_Real_Bound (Bound : Node_Id) is
12284 begin
12285 if not Is_Real_Type (Etype (Bound)) then
12286 Error_Msg_N
12287 ("bound in real type definition must be of real type", Bound);
12288
12289 elsif not Is_OK_Static_Expression (Bound) then
12290 Flag_Non_Static_Expr
12291 ("non-static expression used for real type bound!", Bound);
12292
12293 else
12294 return;
12295 end if;
12296
12297 Rewrite
12298 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
12299 Analyze (Bound);
12300 Resolve (Bound, Standard_Float);
12301 end Check_Real_Bound;
12302
12303 ------------------------------
12304 -- Complete_Private_Subtype --
12305 ------------------------------
12306
12307 procedure Complete_Private_Subtype
12308 (Priv : Entity_Id;
12309 Full : Entity_Id;
12310 Full_Base : Entity_Id;
12311 Related_Nod : Node_Id)
12312 is
12313 Save_Next_Entity : Entity_Id;
12314 Save_Homonym : Entity_Id;
12315
12316 begin
12317 -- Set semantic attributes for (implicit) private subtype completion.
12318 -- If the full type has no discriminants, then it is a copy of the
12319 -- full view of the base. Otherwise, it is a subtype of the base with
12320 -- a possible discriminant constraint. Save and restore the original
12321 -- Next_Entity field of full to ensure that the calls to Copy_Node do
12322 -- not corrupt the entity chain.
12323
12324 -- Note that the type of the full view is the same entity as the type
12325 -- of the partial view. In this fashion, the subtype has access to the
12326 -- correct view of the parent.
12327 -- The list below included access types, but this leads to several
12328 -- regressions. How should the base type of the full view be
12329 -- set consistently for subtypes completed by access types?
12330
12331 Save_Next_Entity := Next_Entity (Full);
12332 Save_Homonym := Homonym (Priv);
12333
12334 case Ekind (Full_Base) is
12335 when Class_Wide_Kind
12336 | Private_Kind
12337 | Protected_Kind
12338 | Task_Kind
12339 | E_Record_Subtype
12340 | E_Record_Type
12341 =>
12342 Copy_Node (Priv, Full);
12343
12344 Set_Has_Discriminants
12345 (Full, Has_Discriminants (Full_Base));
12346 Set_Has_Unknown_Discriminants
12347 (Full, Has_Unknown_Discriminants (Full_Base));
12348 Set_First_Entity (Full, First_Entity (Full_Base));
12349 Set_Last_Entity (Full, Last_Entity (Full_Base));
12350
12351 -- If the underlying base type is constrained, we know that the
12352 -- full view of the subtype is constrained as well (the converse
12353 -- is not necessarily true).
12354
12355 if Is_Constrained (Full_Base) then
12356 Set_Is_Constrained (Full);
12357 end if;
12358
12359 when others =>
12360 Copy_Node (Full_Base, Full);
12361
12362 Set_Chars (Full, Chars (Priv));
12363 Conditional_Delay (Full, Priv);
12364 Set_Sloc (Full, Sloc (Priv));
12365 end case;
12366
12367 Link_Entities (Full, Save_Next_Entity);
12368 Set_Homonym (Full, Save_Homonym);
12369 Set_Associated_Node_For_Itype (Full, Related_Nod);
12370
12371 -- Set common attributes for all subtypes: kind, convention, etc.
12372
12373 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
12374 Set_Convention (Full, Convention (Full_Base));
12375
12376 -- The Etype of the full view is inconsistent. Gigi needs to see the
12377 -- structural full view, which is what the current scheme gives: the
12378 -- Etype of the full view is the etype of the full base. However, if the
12379 -- full base is a derived type, the full view then looks like a subtype
12380 -- of the parent, not a subtype of the full base. If instead we write:
12381
12382 -- Set_Etype (Full, Full_Base);
12383
12384 -- then we get inconsistencies in the front-end (confusion between
12385 -- views). Several outstanding bugs are related to this ???
12386
12387 Set_Is_First_Subtype (Full, False);
12388 Set_Scope (Full, Scope (Priv));
12389 Set_Size_Info (Full, Full_Base);
12390 Set_RM_Size (Full, RM_Size (Full_Base));
12391 Set_Is_Itype (Full);
12392
12393 -- For the unusual case of a type with unknown discriminants whose
12394 -- completion is an array, use the proper full base.
12395
12396 if Is_Array_Type (Full_Base)
12397 and then Has_Unknown_Discriminants (Priv)
12398 then
12399 Set_Etype (Full, Full_Base);
12400 end if;
12401
12402 -- A subtype of a private-type-without-discriminants, whose full-view
12403 -- has discriminants with default expressions, is not constrained.
12404
12405 if not Has_Discriminants (Priv) then
12406 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
12407
12408 if Has_Discriminants (Full_Base) then
12409 Set_Discriminant_Constraint
12410 (Full, Discriminant_Constraint (Full_Base));
12411
12412 -- The partial view may have been indefinite, the full view
12413 -- might not be.
12414
12415 Set_Has_Unknown_Discriminants
12416 (Full, Has_Unknown_Discriminants (Full_Base));
12417 end if;
12418 end if;
12419
12420 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
12421 Set_Depends_On_Private (Full, Has_Private_Component (Full));
12422
12423 -- Freeze the private subtype entity if its parent is delayed, and not
12424 -- already frozen. We skip this processing if the type is an anonymous
12425 -- subtype of a record component, or is the corresponding record of a
12426 -- protected type, since these are processed when the enclosing type
12427 -- is frozen. If the parent type is declared in a nested package then
12428 -- the freezing of the private and full views also happens later.
12429
12430 if not Is_Type (Scope (Full)) then
12431 if Is_Itype (Priv)
12432 and then In_Same_Source_Unit (Full, Full_Base)
12433 and then Scope (Full_Base) /= Scope (Full)
12434 then
12435 Set_Has_Delayed_Freeze (Full);
12436 Set_Has_Delayed_Freeze (Priv);
12437
12438 else
12439 Set_Has_Delayed_Freeze (Full,
12440 Has_Delayed_Freeze (Full_Base)
12441 and then not Is_Frozen (Full_Base));
12442 end if;
12443 end if;
12444
12445 Set_Freeze_Node (Full, Empty);
12446 Set_Is_Frozen (Full, False);
12447 Set_Full_View (Priv, Full);
12448
12449 if Has_Discriminants (Full) then
12450 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
12451 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
12452
12453 if Has_Unknown_Discriminants (Full) then
12454 Set_Discriminant_Constraint (Full, No_Elist);
12455 end if;
12456 end if;
12457
12458 if Ekind (Full_Base) = E_Record_Type
12459 and then Has_Discriminants (Full_Base)
12460 and then Has_Discriminants (Priv) -- might not, if errors
12461 and then not Has_Unknown_Discriminants (Priv)
12462 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
12463 then
12464 Create_Constrained_Components
12465 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
12466
12467 -- If the full base is itself derived from private, build a congruent
12468 -- subtype of its underlying type, for use by the back end. For a
12469 -- constrained record component, the declaration cannot be placed on
12470 -- the component list, but it must nevertheless be built an analyzed, to
12471 -- supply enough information for Gigi to compute the size of component.
12472
12473 elsif Ekind (Full_Base) in Private_Kind
12474 and then Is_Derived_Type (Full_Base)
12475 and then Has_Discriminants (Full_Base)
12476 and then (Ekind (Current_Scope) /= E_Record_Subtype)
12477 then
12478 if not Is_Itype (Priv)
12479 and then
12480 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
12481 then
12482 Build_Underlying_Full_View
12483 (Parent (Priv), Full, Etype (Full_Base));
12484
12485 elsif Nkind (Related_Nod) = N_Component_Declaration then
12486 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
12487 end if;
12488
12489 elsif Is_Record_Type (Full_Base) then
12490
12491 -- Show Full is simply a renaming of Full_Base
12492
12493 Set_Cloned_Subtype (Full, Full_Base);
12494 end if;
12495
12496 -- It is unsafe to share the bounds of a scalar type, because the Itype
12497 -- is elaborated on demand, and if a bound is nonstatic, then different
12498 -- orders of elaboration in different units will lead to different
12499 -- external symbols.
12500
12501 if Is_Scalar_Type (Full_Base) then
12502 Set_Scalar_Range (Full,
12503 Make_Range (Sloc (Related_Nod),
12504 Low_Bound =>
12505 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
12506 High_Bound =>
12507 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
12508
12509 -- This completion inherits the bounds of the full parent, but if
12510 -- the parent is an unconstrained floating point type, so is the
12511 -- completion.
12512
12513 if Is_Floating_Point_Type (Full_Base) then
12514 Set_Includes_Infinities
12515 (Scalar_Range (Full), Has_Infinities (Full_Base));
12516 end if;
12517 end if;
12518
12519 -- ??? It seems that a lot of fields are missing that should be copied
12520 -- from Full_Base to Full. Here are some that are introduced in a
12521 -- non-disruptive way but a cleanup is necessary.
12522
12523 if Is_Tagged_Type (Full_Base) then
12524 Set_Is_Tagged_Type (Full);
12525 Set_Direct_Primitive_Operations
12526 (Full, Direct_Primitive_Operations (Full_Base));
12527 Set_No_Tagged_Streams_Pragma
12528 (Full, No_Tagged_Streams_Pragma (Full_Base));
12529
12530 -- Inherit class_wide type of full_base in case the partial view was
12531 -- not tagged. Otherwise it has already been created when the private
12532 -- subtype was analyzed.
12533
12534 if No (Class_Wide_Type (Full)) then
12535 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
12536 end if;
12537
12538 -- If this is a subtype of a protected or task type, constrain its
12539 -- corresponding record, unless this is a subtype without constraints,
12540 -- i.e. a simple renaming as with an actual subtype in an instance.
12541
12542 elsif Is_Concurrent_Type (Full_Base) then
12543 if Has_Discriminants (Full)
12544 and then Present (Corresponding_Record_Type (Full_Base))
12545 and then
12546 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
12547 then
12548 Set_Corresponding_Record_Type (Full,
12549 Constrain_Corresponding_Record
12550 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
12551
12552 else
12553 Set_Corresponding_Record_Type (Full,
12554 Corresponding_Record_Type (Full_Base));
12555 end if;
12556 end if;
12557
12558 -- Link rep item chain, and also setting of Has_Predicates from private
12559 -- subtype to full subtype, since we will need these on the full subtype
12560 -- to create the predicate function. Note that the full subtype may
12561 -- already have rep items, inherited from the full view of the base
12562 -- type, so we must be sure not to overwrite these entries.
12563
12564 declare
12565 Append : Boolean;
12566 Item : Node_Id;
12567 Next_Item : Node_Id;
12568 Priv_Item : Node_Id;
12569
12570 begin
12571 Item := First_Rep_Item (Full);
12572 Priv_Item := First_Rep_Item (Priv);
12573
12574 -- If no existing rep items on full type, we can just link directly
12575 -- to the list of items on the private type, if any exist.. Same if
12576 -- the rep items are only those inherited from the base
12577
12578 if (No (Item)
12579 or else Nkind (Item) /= N_Aspect_Specification
12580 or else Entity (Item) = Full_Base)
12581 and then Present (First_Rep_Item (Priv))
12582 then
12583 Set_First_Rep_Item (Full, Priv_Item);
12584
12585 -- Otherwise, search to the end of items currently linked to the full
12586 -- subtype and append the private items to the end. However, if Priv
12587 -- and Full already have the same list of rep items, then the append
12588 -- is not done, as that would create a circularity.
12589 --
12590 -- The partial view may have a predicate and the rep item lists of
12591 -- both views agree when inherited from the same ancestor. In that
12592 -- case, simply propagate the list from one view to the other.
12593 -- A more complex analysis needed here ???
12594
12595 elsif Present (Priv_Item)
12596 and then Item = Next_Rep_Item (Priv_Item)
12597 then
12598 Set_First_Rep_Item (Full, Priv_Item);
12599
12600 elsif Item /= Priv_Item then
12601 Append := True;
12602 loop
12603 Next_Item := Next_Rep_Item (Item);
12604 exit when No (Next_Item);
12605 Item := Next_Item;
12606
12607 -- If the private view has aspect specifications, the full view
12608 -- inherits them. Since these aspects may already have been
12609 -- attached to the full view during derivation, do not append
12610 -- them if already present.
12611
12612 if Item = First_Rep_Item (Priv) then
12613 Append := False;
12614 exit;
12615 end if;
12616 end loop;
12617
12618 -- And link the private type items at the end of the chain
12619
12620 if Append then
12621 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
12622 end if;
12623 end if;
12624 end;
12625
12626 -- Make sure Has_Predicates is set on full type if it is set on the
12627 -- private type. Note that it may already be set on the full type and
12628 -- if so, we don't want to unset it. Similarly, propagate information
12629 -- about delayed aspects, because the corresponding pragmas must be
12630 -- analyzed when one of the views is frozen. This last step is needed
12631 -- in particular when the full type is a scalar type for which an
12632 -- anonymous base type is constructed.
12633
12634 -- The predicate functions are generated either at the freeze point
12635 -- of the type or at the end of the visible part, and we must avoid
12636 -- generating them twice.
12637
12638 if Has_Predicates (Priv) then
12639 Set_Has_Predicates (Full);
12640
12641 if Present (Predicate_Function (Priv))
12642 and then No (Predicate_Function (Full))
12643 then
12644 Set_Predicate_Function (Full, Predicate_Function (Priv));
12645 end if;
12646 end if;
12647
12648 if Has_Delayed_Aspects (Priv) then
12649 Set_Has_Delayed_Aspects (Full);
12650 end if;
12651 end Complete_Private_Subtype;
12652
12653 ----------------------------
12654 -- Constant_Redeclaration --
12655 ----------------------------
12656
12657 procedure Constant_Redeclaration
12658 (Id : Entity_Id;
12659 N : Node_Id;
12660 T : out Entity_Id)
12661 is
12662 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
12663 Obj_Def : constant Node_Id := Object_Definition (N);
12664 New_T : Entity_Id;
12665
12666 procedure Check_Possible_Deferred_Completion
12667 (Prev_Id : Entity_Id;
12668 Prev_Obj_Def : Node_Id;
12669 Curr_Obj_Def : Node_Id);
12670 -- Determine whether the two object definitions describe the partial
12671 -- and the full view of a constrained deferred constant. Generate
12672 -- a subtype for the full view and verify that it statically matches
12673 -- the subtype of the partial view.
12674
12675 procedure Check_Recursive_Declaration (Typ : Entity_Id);
12676 -- If deferred constant is an access type initialized with an allocator,
12677 -- check whether there is an illegal recursion in the definition,
12678 -- through a default value of some record subcomponent. This is normally
12679 -- detected when generating init procs, but requires this additional
12680 -- mechanism when expansion is disabled.
12681
12682 ----------------------------------------
12683 -- Check_Possible_Deferred_Completion --
12684 ----------------------------------------
12685
12686 procedure Check_Possible_Deferred_Completion
12687 (Prev_Id : Entity_Id;
12688 Prev_Obj_Def : Node_Id;
12689 Curr_Obj_Def : Node_Id)
12690 is
12691 begin
12692 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
12693 and then Present (Constraint (Prev_Obj_Def))
12694 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
12695 and then Present (Constraint (Curr_Obj_Def))
12696 then
12697 declare
12698 Loc : constant Source_Ptr := Sloc (N);
12699 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
12700 Decl : constant Node_Id :=
12701 Make_Subtype_Declaration (Loc,
12702 Defining_Identifier => Def_Id,
12703 Subtype_Indication =>
12704 Relocate_Node (Curr_Obj_Def));
12705
12706 begin
12707 Insert_Before_And_Analyze (N, Decl);
12708 Set_Etype (Id, Def_Id);
12709
12710 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
12711 Error_Msg_Sloc := Sloc (Prev_Id);
12712 Error_Msg_N ("subtype does not statically match deferred "
12713 & "declaration #", N);
12714 end if;
12715 end;
12716 end if;
12717 end Check_Possible_Deferred_Completion;
12718
12719 ---------------------------------
12720 -- Check_Recursive_Declaration --
12721 ---------------------------------
12722
12723 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
12724 Comp : Entity_Id;
12725
12726 begin
12727 if Is_Record_Type (Typ) then
12728 Comp := First_Component (Typ);
12729 while Present (Comp) loop
12730 if Comes_From_Source (Comp) then
12731 if Present (Expression (Parent (Comp)))
12732 and then Is_Entity_Name (Expression (Parent (Comp)))
12733 and then Entity (Expression (Parent (Comp))) = Prev
12734 then
12735 Error_Msg_Sloc := Sloc (Parent (Comp));
12736 Error_Msg_NE
12737 ("illegal circularity with declaration for & #",
12738 N, Comp);
12739 return;
12740
12741 elsif Is_Record_Type (Etype (Comp)) then
12742 Check_Recursive_Declaration (Etype (Comp));
12743 end if;
12744 end if;
12745
12746 Next_Component (Comp);
12747 end loop;
12748 end if;
12749 end Check_Recursive_Declaration;
12750
12751 -- Start of processing for Constant_Redeclaration
12752
12753 begin
12754 if Nkind (Parent (Prev)) = N_Object_Declaration then
12755 if Nkind (Object_Definition
12756 (Parent (Prev))) = N_Subtype_Indication
12757 then
12758 -- Find type of new declaration. The constraints of the two
12759 -- views must match statically, but there is no point in
12760 -- creating an itype for the full view.
12761
12762 if Nkind (Obj_Def) = N_Subtype_Indication then
12763 Find_Type (Subtype_Mark (Obj_Def));
12764 New_T := Entity (Subtype_Mark (Obj_Def));
12765
12766 else
12767 Find_Type (Obj_Def);
12768 New_T := Entity (Obj_Def);
12769 end if;
12770
12771 T := Etype (Prev);
12772
12773 else
12774 -- The full view may impose a constraint, even if the partial
12775 -- view does not, so construct the subtype.
12776
12777 New_T := Find_Type_Of_Object (Obj_Def, N);
12778 T := New_T;
12779 end if;
12780
12781 else
12782 -- Current declaration is illegal, diagnosed below in Enter_Name
12783
12784 T := Empty;
12785 New_T := Any_Type;
12786 end if;
12787
12788 -- If previous full declaration or a renaming declaration exists, or if
12789 -- a homograph is present, let Enter_Name handle it, either with an
12790 -- error or with the removal of an overridden implicit subprogram.
12791 -- The previous one is a full declaration if it has an expression
12792 -- (which in the case of an aggregate is indicated by the Init flag).
12793
12794 if Ekind (Prev) /= E_Constant
12795 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
12796 or else Present (Expression (Parent (Prev)))
12797 or else Has_Init_Expression (Parent (Prev))
12798 or else Present (Full_View (Prev))
12799 then
12800 Enter_Name (Id);
12801
12802 -- Verify that types of both declarations match, or else that both types
12803 -- are anonymous access types whose designated subtypes statically match
12804 -- (as allowed in Ada 2005 by AI-385).
12805
12806 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
12807 and then
12808 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
12809 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
12810 or else Is_Access_Constant (Etype (New_T)) /=
12811 Is_Access_Constant (Etype (Prev))
12812 or else Can_Never_Be_Null (Etype (New_T)) /=
12813 Can_Never_Be_Null (Etype (Prev))
12814 or else Null_Exclusion_Present (Parent (Prev)) /=
12815 Null_Exclusion_Present (Parent (Id))
12816 or else not Subtypes_Statically_Match
12817 (Designated_Type (Etype (Prev)),
12818 Designated_Type (Etype (New_T))))
12819 then
12820 Error_Msg_Sloc := Sloc (Prev);
12821 Error_Msg_N ("type does not match declaration#", N);
12822 Set_Full_View (Prev, Id);
12823 Set_Etype (Id, Any_Type);
12824
12825 -- A deferred constant whose type is an anonymous array is always
12826 -- illegal (unless imported). A detailed error message might be
12827 -- helpful for Ada beginners.
12828
12829 if Nkind (Object_Definition (Parent (Prev)))
12830 = N_Constrained_Array_Definition
12831 and then Nkind (Object_Definition (N))
12832 = N_Constrained_Array_Definition
12833 then
12834 Error_Msg_N ("\each anonymous array is a distinct type", N);
12835 Error_Msg_N ("a deferred constant must have a named type",
12836 Object_Definition (Parent (Prev)));
12837 end if;
12838
12839 elsif
12840 Null_Exclusion_Present (Parent (Prev))
12841 and then not Null_Exclusion_Present (N)
12842 then
12843 Error_Msg_Sloc := Sloc (Prev);
12844 Error_Msg_N ("null-exclusion does not match declaration#", N);
12845 Set_Full_View (Prev, Id);
12846 Set_Etype (Id, Any_Type);
12847
12848 -- If so, process the full constant declaration
12849
12850 else
12851 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
12852 -- the deferred declaration is constrained, then the subtype defined
12853 -- by the subtype_indication in the full declaration shall match it
12854 -- statically.
12855
12856 Check_Possible_Deferred_Completion
12857 (Prev_Id => Prev,
12858 Prev_Obj_Def => Object_Definition (Parent (Prev)),
12859 Curr_Obj_Def => Obj_Def);
12860
12861 Set_Full_View (Prev, Id);
12862 Set_Is_Public (Id, Is_Public (Prev));
12863 Set_Is_Internal (Id);
12864 Append_Entity (Id, Current_Scope);
12865
12866 -- Check ALIASED present if present before (RM 7.4(7))
12867
12868 if Is_Aliased (Prev)
12869 and then not Aliased_Present (N)
12870 then
12871 Error_Msg_Sloc := Sloc (Prev);
12872 Error_Msg_N ("ALIASED required (see declaration #)", N);
12873 end if;
12874
12875 -- Check that placement is in private part and that the incomplete
12876 -- declaration appeared in the visible part.
12877
12878 if Ekind (Current_Scope) = E_Package
12879 and then not In_Private_Part (Current_Scope)
12880 then
12881 Error_Msg_Sloc := Sloc (Prev);
12882 Error_Msg_N
12883 ("full constant for declaration # must be in private part", N);
12884
12885 elsif Ekind (Current_Scope) = E_Package
12886 and then
12887 List_Containing (Parent (Prev)) /=
12888 Visible_Declarations (Package_Specification (Current_Scope))
12889 then
12890 Error_Msg_N
12891 ("deferred constant must be declared in visible part",
12892 Parent (Prev));
12893 end if;
12894
12895 if Is_Access_Type (T)
12896 and then Nkind (Expression (N)) = N_Allocator
12897 then
12898 Check_Recursive_Declaration (Designated_Type (T));
12899 end if;
12900
12901 -- A deferred constant is a visible entity. If type has invariants,
12902 -- verify that the initial value satisfies them. This is not done in
12903 -- GNATprove mode, as GNATprove handles invariant checks itself.
12904
12905 if Has_Invariants (T)
12906 and then Present (Invariant_Procedure (T))
12907 and then not GNATprove_Mode
12908 then
12909 Insert_After (N,
12910 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
12911 end if;
12912 end if;
12913 end Constant_Redeclaration;
12914
12915 ----------------------
12916 -- Constrain_Access --
12917 ----------------------
12918
12919 procedure Constrain_Access
12920 (Def_Id : in out Entity_Id;
12921 S : Node_Id;
12922 Related_Nod : Node_Id)
12923 is
12924 T : constant Entity_Id := Entity (Subtype_Mark (S));
12925 Desig_Type : constant Entity_Id := Designated_Type (T);
12926 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
12927 Constraint_OK : Boolean := True;
12928
12929 begin
12930 if Is_Array_Type (Desig_Type) then
12931 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
12932
12933 elsif (Is_Record_Type (Desig_Type)
12934 or else Is_Incomplete_Or_Private_Type (Desig_Type))
12935 and then not Is_Constrained (Desig_Type)
12936 then
12937 -- ??? The following code is a temporary bypass to ignore a
12938 -- discriminant constraint on access type if it is constraining
12939 -- the current record. Avoid creating the implicit subtype of the
12940 -- record we are currently compiling since right now, we cannot
12941 -- handle these. For now, just return the access type itself.
12942
12943 if Desig_Type = Current_Scope
12944 and then No (Def_Id)
12945 then
12946 Set_Ekind (Desig_Subtype, E_Record_Subtype);
12947 Def_Id := Entity (Subtype_Mark (S));
12948
12949 -- This call added to ensure that the constraint is analyzed
12950 -- (needed for a B test). Note that we still return early from
12951 -- this procedure to avoid recursive processing. ???
12952
12953 Constrain_Discriminated_Type
12954 (Desig_Subtype, S, Related_Nod, For_Access => True);
12955 return;
12956 end if;
12957
12958 -- Enforce rule that the constraint is illegal if there is an
12959 -- unconstrained view of the designated type. This means that the
12960 -- partial view (either a private type declaration or a derivation
12961 -- from a private type) has no discriminants. (Defect Report
12962 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12963
12964 -- Rule updated for Ada 2005: The private type is said to have
12965 -- a constrained partial view, given that objects of the type
12966 -- can be declared. Furthermore, the rule applies to all access
12967 -- types, unlike the rule concerning default discriminants (see
12968 -- RM 3.7.1(7/3))
12969
12970 if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005)
12971 and then Has_Private_Declaration (Desig_Type)
12972 and then In_Open_Scopes (Scope (Desig_Type))
12973 and then Has_Discriminants (Desig_Type)
12974 then
12975 declare
12976 Pack : constant Node_Id :=
12977 Unit_Declaration_Node (Scope (Desig_Type));
12978 Decls : List_Id;
12979 Decl : Node_Id;
12980
12981 begin
12982 if Nkind (Pack) = N_Package_Declaration then
12983 Decls := Visible_Declarations (Specification (Pack));
12984 Decl := First (Decls);
12985 while Present (Decl) loop
12986 if (Nkind (Decl) = N_Private_Type_Declaration
12987 and then Chars (Defining_Identifier (Decl)) =
12988 Chars (Desig_Type))
12989
12990 or else
12991 (Nkind (Decl) = N_Full_Type_Declaration
12992 and then
12993 Chars (Defining_Identifier (Decl)) =
12994 Chars (Desig_Type)
12995 and then Is_Derived_Type (Desig_Type)
12996 and then
12997 Has_Private_Declaration (Etype (Desig_Type)))
12998 then
12999 if No (Discriminant_Specifications (Decl)) then
13000 Error_Msg_N
13001 ("cannot constrain access type if designated "
13002 & "type has constrained partial view", S);
13003 end if;
13004
13005 exit;
13006 end if;
13007
13008 Next (Decl);
13009 end loop;
13010 end if;
13011 end;
13012 end if;
13013
13014 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
13015 For_Access => True);
13016
13017 elsif Is_Concurrent_Type (Desig_Type)
13018 and then not Is_Constrained (Desig_Type)
13019 then
13020 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
13021
13022 else
13023 Error_Msg_N ("invalid constraint on access type", S);
13024
13025 -- We simply ignore an invalid constraint
13026
13027 Desig_Subtype := Desig_Type;
13028 Constraint_OK := False;
13029 end if;
13030
13031 if No (Def_Id) then
13032 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
13033 else
13034 Set_Ekind (Def_Id, E_Access_Subtype);
13035 end if;
13036
13037 if Constraint_OK then
13038 Set_Etype (Def_Id, Base_Type (T));
13039
13040 if Is_Private_Type (Desig_Type) then
13041 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
13042 end if;
13043 else
13044 Set_Etype (Def_Id, Any_Type);
13045 end if;
13046
13047 Set_Size_Info (Def_Id, T);
13048 Set_Is_Constrained (Def_Id, Constraint_OK);
13049 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
13050 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13051 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
13052
13053 Conditional_Delay (Def_Id, T);
13054
13055 -- AI-363 : Subtypes of general access types whose designated types have
13056 -- default discriminants are disallowed. In instances, the rule has to
13057 -- be checked against the actual, of which T is the subtype. In a
13058 -- generic body, the rule is checked assuming that the actual type has
13059 -- defaulted discriminants.
13060
13061 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
13062 if Ekind (Base_Type (T)) = E_General_Access_Type
13063 and then Has_Defaulted_Discriminants (Desig_Type)
13064 then
13065 if Ada_Version < Ada_2005 then
13066 Error_Msg_N
13067 ("access subtype of general access type would not " &
13068 "be allowed in Ada 2005?y?", S);
13069 else
13070 Error_Msg_N
13071 ("access subtype of general access type not allowed", S);
13072 end if;
13073
13074 Error_Msg_N ("\discriminants have defaults", S);
13075
13076 elsif Is_Access_Type (T)
13077 and then Is_Generic_Type (Desig_Type)
13078 and then Has_Discriminants (Desig_Type)
13079 and then In_Package_Body (Current_Scope)
13080 then
13081 if Ada_Version < Ada_2005 then
13082 Error_Msg_N
13083 ("access subtype would not be allowed in generic body "
13084 & "in Ada 2005?y?", S);
13085 else
13086 Error_Msg_N
13087 ("access subtype not allowed in generic body", S);
13088 end if;
13089
13090 Error_Msg_N
13091 ("\designated type is a discriminated formal", S);
13092 end if;
13093 end if;
13094 end Constrain_Access;
13095
13096 ---------------------
13097 -- Constrain_Array --
13098 ---------------------
13099
13100 procedure Constrain_Array
13101 (Def_Id : in out Entity_Id;
13102 SI : Node_Id;
13103 Related_Nod : Node_Id;
13104 Related_Id : Entity_Id;
13105 Suffix : Character)
13106 is
13107 C : constant Node_Id := Constraint (SI);
13108 Number_Of_Constraints : Nat := 0;
13109 Index : Node_Id;
13110 S, T : Entity_Id;
13111 Constraint_OK : Boolean := True;
13112
13113 begin
13114 T := Entity (Subtype_Mark (SI));
13115
13116 if Is_Access_Type (T) then
13117 T := Designated_Type (T);
13118 end if;
13119
13120 -- If an index constraint follows a subtype mark in a subtype indication
13121 -- then the type or subtype denoted by the subtype mark must not already
13122 -- impose an index constraint. The subtype mark must denote either an
13123 -- unconstrained array type or an access type whose designated type
13124 -- is such an array type... (RM 3.6.1)
13125
13126 if Is_Constrained (T) then
13127 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
13128 Constraint_OK := False;
13129
13130 else
13131 S := First (Constraints (C));
13132 while Present (S) loop
13133 Number_Of_Constraints := Number_Of_Constraints + 1;
13134 Next (S);
13135 end loop;
13136
13137 -- In either case, the index constraint must provide a discrete
13138 -- range for each index of the array type and the type of each
13139 -- discrete range must be the same as that of the corresponding
13140 -- index. (RM 3.6.1)
13141
13142 if Number_Of_Constraints /= Number_Dimensions (T) then
13143 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
13144 Constraint_OK := False;
13145
13146 else
13147 S := First (Constraints (C));
13148 Index := First_Index (T);
13149 Analyze (Index);
13150
13151 -- Apply constraints to each index type
13152
13153 for J in 1 .. Number_Of_Constraints loop
13154 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
13155 Next (Index);
13156 Next (S);
13157 end loop;
13158
13159 end if;
13160 end if;
13161
13162 if No (Def_Id) then
13163 Def_Id :=
13164 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
13165 Set_Parent (Def_Id, Related_Nod);
13166
13167 else
13168 Set_Ekind (Def_Id, E_Array_Subtype);
13169 end if;
13170
13171 Set_Size_Info (Def_Id, (T));
13172 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13173 Set_Etype (Def_Id, Base_Type (T));
13174
13175 if Constraint_OK then
13176 Set_First_Index (Def_Id, First (Constraints (C)));
13177 else
13178 Set_First_Index (Def_Id, First_Index (T));
13179 end if;
13180
13181 Set_Is_Constrained (Def_Id, True);
13182 Set_Is_Aliased (Def_Id, Is_Aliased (T));
13183 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13184
13185 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
13186 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
13187
13188 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
13189 -- We need to initialize the attribute because if Def_Id is previously
13190 -- analyzed through a limited_with clause, it will have the attributes
13191 -- of an incomplete type, one of which is an Elist that overlaps the
13192 -- Packed_Array_Impl_Type field.
13193
13194 Set_Packed_Array_Impl_Type (Def_Id, Empty);
13195
13196 -- Build a freeze node if parent still needs one. Also make sure that
13197 -- the Depends_On_Private status is set because the subtype will need
13198 -- reprocessing at the time the base type does, and also we must set a
13199 -- conditional delay.
13200
13201 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
13202 Conditional_Delay (Def_Id, T);
13203 end Constrain_Array;
13204
13205 ------------------------------
13206 -- Constrain_Component_Type --
13207 ------------------------------
13208
13209 function Constrain_Component_Type
13210 (Comp : Entity_Id;
13211 Constrained_Typ : Entity_Id;
13212 Related_Node : Node_Id;
13213 Typ : Entity_Id;
13214 Constraints : Elist_Id) return Entity_Id
13215 is
13216 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
13217 Compon_Type : constant Entity_Id := Etype (Comp);
13218
13219 function Build_Constrained_Array_Type
13220 (Old_Type : Entity_Id) return Entity_Id;
13221 -- If Old_Type is an array type, one of whose indexes is constrained
13222 -- by a discriminant, build an Itype whose constraint replaces the
13223 -- discriminant with its value in the constraint.
13224
13225 function Build_Constrained_Discriminated_Type
13226 (Old_Type : Entity_Id) return Entity_Id;
13227 -- Ditto for record components
13228
13229 function Build_Constrained_Access_Type
13230 (Old_Type : Entity_Id) return Entity_Id;
13231 -- Ditto for access types. Makes use of previous two functions, to
13232 -- constrain designated type.
13233
13234 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
13235 -- T is an array or discriminated type, C is a list of constraints
13236 -- that apply to T. This routine builds the constrained subtype.
13237
13238 function Is_Discriminant (Expr : Node_Id) return Boolean;
13239 -- Returns True if Expr is a discriminant
13240
13241 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
13242 -- Find the value of discriminant Discrim in Constraint
13243
13244 -----------------------------------
13245 -- Build_Constrained_Access_Type --
13246 -----------------------------------
13247
13248 function Build_Constrained_Access_Type
13249 (Old_Type : Entity_Id) return Entity_Id
13250 is
13251 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
13252 Itype : Entity_Id;
13253 Desig_Subtype : Entity_Id;
13254 Scop : Entity_Id;
13255
13256 begin
13257 -- if the original access type was not embedded in the enclosing
13258 -- type definition, there is no need to produce a new access
13259 -- subtype. In fact every access type with an explicit constraint
13260 -- generates an itype whose scope is the enclosing record.
13261
13262 if not Is_Type (Scope (Old_Type)) then
13263 return Old_Type;
13264
13265 elsif Is_Array_Type (Desig_Type) then
13266 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
13267
13268 elsif Has_Discriminants (Desig_Type) then
13269
13270 -- This may be an access type to an enclosing record type for
13271 -- which we are constructing the constrained components. Return
13272 -- the enclosing record subtype. This is not always correct,
13273 -- but avoids infinite recursion. ???
13274
13275 Desig_Subtype := Any_Type;
13276
13277 for J in reverse 0 .. Scope_Stack.Last loop
13278 Scop := Scope_Stack.Table (J).Entity;
13279
13280 if Is_Type (Scop)
13281 and then Base_Type (Scop) = Base_Type (Desig_Type)
13282 then
13283 Desig_Subtype := Scop;
13284 end if;
13285
13286 exit when not Is_Type (Scop);
13287 end loop;
13288
13289 if Desig_Subtype = Any_Type then
13290 Desig_Subtype :=
13291 Build_Constrained_Discriminated_Type (Desig_Type);
13292 end if;
13293
13294 else
13295 return Old_Type;
13296 end if;
13297
13298 if Desig_Subtype /= Desig_Type then
13299
13300 -- The Related_Node better be here or else we won't be able
13301 -- to attach new itypes to a node in the tree.
13302
13303 pragma Assert (Present (Related_Node));
13304
13305 Itype := Create_Itype (E_Access_Subtype, Related_Node);
13306
13307 Set_Etype (Itype, Base_Type (Old_Type));
13308 Set_Size_Info (Itype, (Old_Type));
13309 Set_Directly_Designated_Type (Itype, Desig_Subtype);
13310 Set_Depends_On_Private (Itype, Has_Private_Component
13311 (Old_Type));
13312 Set_Is_Access_Constant (Itype, Is_Access_Constant
13313 (Old_Type));
13314
13315 -- The new itype needs freezing when it depends on a not frozen
13316 -- type and the enclosing subtype needs freezing.
13317
13318 if Has_Delayed_Freeze (Constrained_Typ)
13319 and then not Is_Frozen (Constrained_Typ)
13320 then
13321 Conditional_Delay (Itype, Base_Type (Old_Type));
13322 end if;
13323
13324 return Itype;
13325
13326 else
13327 return Old_Type;
13328 end if;
13329 end Build_Constrained_Access_Type;
13330
13331 ----------------------------------
13332 -- Build_Constrained_Array_Type --
13333 ----------------------------------
13334
13335 function Build_Constrained_Array_Type
13336 (Old_Type : Entity_Id) return Entity_Id
13337 is
13338 Lo_Expr : Node_Id;
13339 Hi_Expr : Node_Id;
13340 Old_Index : Node_Id;
13341 Range_Node : Node_Id;
13342 Constr_List : List_Id;
13343
13344 Need_To_Create_Itype : Boolean := False;
13345
13346 begin
13347 Old_Index := First_Index (Old_Type);
13348 while Present (Old_Index) loop
13349 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
13350
13351 if Is_Discriminant (Lo_Expr)
13352 or else
13353 Is_Discriminant (Hi_Expr)
13354 then
13355 Need_To_Create_Itype := True;
13356 end if;
13357
13358 Next_Index (Old_Index);
13359 end loop;
13360
13361 if Need_To_Create_Itype then
13362 Constr_List := New_List;
13363
13364 Old_Index := First_Index (Old_Type);
13365 while Present (Old_Index) loop
13366 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
13367
13368 if Is_Discriminant (Lo_Expr) then
13369 Lo_Expr := Get_Discr_Value (Lo_Expr);
13370 end if;
13371
13372 if Is_Discriminant (Hi_Expr) then
13373 Hi_Expr := Get_Discr_Value (Hi_Expr);
13374 end if;
13375
13376 Range_Node :=
13377 Make_Range
13378 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
13379
13380 Append (Range_Node, To => Constr_List);
13381
13382 Next_Index (Old_Index);
13383 end loop;
13384
13385 return Build_Subtype (Old_Type, Constr_List);
13386
13387 else
13388 return Old_Type;
13389 end if;
13390 end Build_Constrained_Array_Type;
13391
13392 ------------------------------------------
13393 -- Build_Constrained_Discriminated_Type --
13394 ------------------------------------------
13395
13396 function Build_Constrained_Discriminated_Type
13397 (Old_Type : Entity_Id) return Entity_Id
13398 is
13399 Expr : Node_Id;
13400 Constr_List : List_Id;
13401 Old_Constraint : Elmt_Id;
13402
13403 Need_To_Create_Itype : Boolean := False;
13404
13405 begin
13406 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
13407 while Present (Old_Constraint) loop
13408 Expr := Node (Old_Constraint);
13409
13410 if Is_Discriminant (Expr) then
13411 Need_To_Create_Itype := True;
13412 end if;
13413
13414 Next_Elmt (Old_Constraint);
13415 end loop;
13416
13417 if Need_To_Create_Itype then
13418 Constr_List := New_List;
13419
13420 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
13421 while Present (Old_Constraint) loop
13422 Expr := Node (Old_Constraint);
13423
13424 if Is_Discriminant (Expr) then
13425 Expr := Get_Discr_Value (Expr);
13426 end if;
13427
13428 Append (New_Copy_Tree (Expr), To => Constr_List);
13429
13430 Next_Elmt (Old_Constraint);
13431 end loop;
13432
13433 return Build_Subtype (Old_Type, Constr_List);
13434
13435 else
13436 return Old_Type;
13437 end if;
13438 end Build_Constrained_Discriminated_Type;
13439
13440 -------------------
13441 -- Build_Subtype --
13442 -------------------
13443
13444 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
13445 Indic : Node_Id;
13446 Subtyp_Decl : Node_Id;
13447 Def_Id : Entity_Id;
13448 Btyp : Entity_Id := Base_Type (T);
13449
13450 begin
13451 -- The Related_Node better be here or else we won't be able to
13452 -- attach new itypes to a node in the tree.
13453
13454 pragma Assert (Present (Related_Node));
13455
13456 -- If the view of the component's type is incomplete or private
13457 -- with unknown discriminants, then the constraint must be applied
13458 -- to the full type.
13459
13460 if Has_Unknown_Discriminants (Btyp)
13461 and then Present (Underlying_Type (Btyp))
13462 then
13463 Btyp := Underlying_Type (Btyp);
13464 end if;
13465
13466 Indic :=
13467 Make_Subtype_Indication (Loc,
13468 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
13469 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
13470
13471 Def_Id := Create_Itype (Ekind (T), Related_Node);
13472
13473 Subtyp_Decl :=
13474 Make_Subtype_Declaration (Loc,
13475 Defining_Identifier => Def_Id,
13476 Subtype_Indication => Indic);
13477
13478 Set_Parent (Subtyp_Decl, Parent (Related_Node));
13479
13480 -- Itypes must be analyzed with checks off (see package Itypes)
13481
13482 Analyze (Subtyp_Decl, Suppress => All_Checks);
13483
13484 if Is_Itype (Def_Id) and then Has_Predicates (T) then
13485 Inherit_Predicate_Flags (Def_Id, T);
13486
13487 -- Indicate where the predicate function may be found
13488
13489 if Is_Itype (T) then
13490 if Present (Predicate_Function (Def_Id)) then
13491 null;
13492
13493 elsif Present (Predicate_Function (T)) then
13494 Set_Predicate_Function (Def_Id, Predicate_Function (T));
13495
13496 else
13497 Set_Predicated_Parent (Def_Id, Predicated_Parent (T));
13498 end if;
13499
13500 elsif No (Predicate_Function (Def_Id)) then
13501 Set_Predicated_Parent (Def_Id, T);
13502 end if;
13503 end if;
13504
13505 return Def_Id;
13506 end Build_Subtype;
13507
13508 ---------------------
13509 -- Get_Discr_Value --
13510 ---------------------
13511
13512 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
13513 D : Entity_Id;
13514 E : Elmt_Id;
13515
13516 begin
13517 -- The discriminant may be declared for the type, in which case we
13518 -- find it by iterating over the list of discriminants. If the
13519 -- discriminant is inherited from a parent type, it appears as the
13520 -- corresponding discriminant of the current type. This will be the
13521 -- case when constraining an inherited component whose constraint is
13522 -- given by a discriminant of the parent.
13523
13524 D := First_Discriminant (Typ);
13525 E := First_Elmt (Constraints);
13526
13527 while Present (D) loop
13528 if D = Entity (Discrim)
13529 or else D = CR_Discriminant (Entity (Discrim))
13530 or else Corresponding_Discriminant (D) = Entity (Discrim)
13531 then
13532 return Node (E);
13533 end if;
13534
13535 Next_Discriminant (D);
13536 Next_Elmt (E);
13537 end loop;
13538
13539 -- The Corresponding_Discriminant mechanism is incomplete, because
13540 -- the correspondence between new and old discriminants is not one
13541 -- to one: one new discriminant can constrain several old ones. In
13542 -- that case, scan sequentially the stored_constraint, the list of
13543 -- discriminants of the parents, and the constraints.
13544
13545 -- Previous code checked for the present of the Stored_Constraint
13546 -- list for the derived type, but did not use it at all. Should it
13547 -- be present when the component is a discriminated task type?
13548
13549 if Is_Derived_Type (Typ)
13550 and then Scope (Entity (Discrim)) = Etype (Typ)
13551 then
13552 D := First_Discriminant (Etype (Typ));
13553 E := First_Elmt (Constraints);
13554 while Present (D) loop
13555 if D = Entity (Discrim) then
13556 return Node (E);
13557 end if;
13558
13559 Next_Discriminant (D);
13560 Next_Elmt (E);
13561 end loop;
13562 end if;
13563
13564 -- Something is wrong if we did not find the value
13565
13566 raise Program_Error;
13567 end Get_Discr_Value;
13568
13569 ---------------------
13570 -- Is_Discriminant --
13571 ---------------------
13572
13573 function Is_Discriminant (Expr : Node_Id) return Boolean is
13574 Discrim_Scope : Entity_Id;
13575
13576 begin
13577 if Denotes_Discriminant (Expr) then
13578 Discrim_Scope := Scope (Entity (Expr));
13579
13580 -- Either we have a reference to one of Typ's discriminants,
13581
13582 pragma Assert (Discrim_Scope = Typ
13583
13584 -- or to the discriminants of the parent type, in the case
13585 -- of a derivation of a tagged type with variants.
13586
13587 or else Discrim_Scope = Etype (Typ)
13588 or else Full_View (Discrim_Scope) = Etype (Typ)
13589
13590 -- or same as above for the case where the discriminants
13591 -- were declared in Typ's private view.
13592
13593 or else (Is_Private_Type (Discrim_Scope)
13594 and then Chars (Discrim_Scope) = Chars (Typ))
13595
13596 -- or else we are deriving from the full view and the
13597 -- discriminant is declared in the private entity.
13598
13599 or else (Is_Private_Type (Typ)
13600 and then Chars (Discrim_Scope) = Chars (Typ))
13601
13602 -- Or we are constrained the corresponding record of a
13603 -- synchronized type that completes a private declaration.
13604
13605 or else (Is_Concurrent_Record_Type (Typ)
13606 and then
13607 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
13608
13609 -- or we have a class-wide type, in which case make sure the
13610 -- discriminant found belongs to the root type.
13611
13612 or else (Is_Class_Wide_Type (Typ)
13613 and then Etype (Typ) = Discrim_Scope));
13614
13615 return True;
13616 end if;
13617
13618 -- In all other cases we have something wrong
13619
13620 return False;
13621 end Is_Discriminant;
13622
13623 -- Start of processing for Constrain_Component_Type
13624
13625 begin
13626 if Nkind (Parent (Comp)) = N_Component_Declaration
13627 and then Comes_From_Source (Parent (Comp))
13628 and then Comes_From_Source
13629 (Subtype_Indication (Component_Definition (Parent (Comp))))
13630 and then
13631 Is_Entity_Name
13632 (Subtype_Indication (Component_Definition (Parent (Comp))))
13633 then
13634 return Compon_Type;
13635
13636 elsif Is_Array_Type (Compon_Type) then
13637 return Build_Constrained_Array_Type (Compon_Type);
13638
13639 elsif Has_Discriminants (Compon_Type) then
13640 return Build_Constrained_Discriminated_Type (Compon_Type);
13641
13642 elsif Is_Access_Type (Compon_Type) then
13643 return Build_Constrained_Access_Type (Compon_Type);
13644
13645 else
13646 return Compon_Type;
13647 end if;
13648 end Constrain_Component_Type;
13649
13650 --------------------------
13651 -- Constrain_Concurrent --
13652 --------------------------
13653
13654 -- For concurrent types, the associated record value type carries the same
13655 -- discriminants, so when we constrain a concurrent type, we must constrain
13656 -- the corresponding record type as well.
13657
13658 procedure Constrain_Concurrent
13659 (Def_Id : in out Entity_Id;
13660 SI : Node_Id;
13661 Related_Nod : Node_Id;
13662 Related_Id : Entity_Id;
13663 Suffix : Character)
13664 is
13665 -- Retrieve Base_Type to ensure getting to the concurrent type in the
13666 -- case of a private subtype (needed when only doing semantic analysis).
13667
13668 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
13669 T_Val : Entity_Id;
13670
13671 begin
13672 if Is_Access_Type (T_Ent) then
13673 T_Ent := Designated_Type (T_Ent);
13674 end if;
13675
13676 T_Val := Corresponding_Record_Type (T_Ent);
13677
13678 if Present (T_Val) then
13679
13680 if No (Def_Id) then
13681 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
13682
13683 -- Elaborate itype now, as it may be used in a subsequent
13684 -- synchronized operation in another scope.
13685
13686 if Nkind (Related_Nod) = N_Full_Type_Declaration then
13687 Build_Itype_Reference (Def_Id, Related_Nod);
13688 end if;
13689 end if;
13690
13691 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
13692 Set_First_Private_Entity (Def_Id, First_Private_Entity (T_Ent));
13693
13694 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13695 Set_Corresponding_Record_Type (Def_Id,
13696 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
13697
13698 else
13699 -- If there is no associated record, expansion is disabled and this
13700 -- is a generic context. Create a subtype in any case, so that
13701 -- semantic analysis can proceed.
13702
13703 if No (Def_Id) then
13704 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
13705 end if;
13706
13707 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
13708 end if;
13709 end Constrain_Concurrent;
13710
13711 ------------------------------------
13712 -- Constrain_Corresponding_Record --
13713 ------------------------------------
13714
13715 function Constrain_Corresponding_Record
13716 (Prot_Subt : Entity_Id;
13717 Corr_Rec : Entity_Id;
13718 Related_Nod : Node_Id) return Entity_Id
13719 is
13720 T_Sub : constant Entity_Id :=
13721 Create_Itype
13722 (Ekind => E_Record_Subtype,
13723 Related_Nod => Related_Nod,
13724 Related_Id => Corr_Rec,
13725 Suffix => 'C',
13726 Suffix_Index => -1);
13727
13728 begin
13729 Set_Etype (T_Sub, Corr_Rec);
13730 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
13731 Set_Is_Constrained (T_Sub, True);
13732 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
13733 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
13734
13735 if Has_Discriminants (Prot_Subt) then -- False only if errors.
13736 Set_Discriminant_Constraint
13737 (T_Sub, Discriminant_Constraint (Prot_Subt));
13738 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
13739 Create_Constrained_Components
13740 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
13741 end if;
13742
13743 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
13744
13745 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
13746 Conditional_Delay (T_Sub, Corr_Rec);
13747
13748 else
13749 -- This is a component subtype: it will be frozen in the context of
13750 -- the enclosing record's init_proc, so that discriminant references
13751 -- are resolved to discriminals. (Note: we used to skip freezing
13752 -- altogether in that case, which caused errors downstream for
13753 -- components of a bit packed array type).
13754
13755 Set_Has_Delayed_Freeze (T_Sub);
13756 end if;
13757
13758 return T_Sub;
13759 end Constrain_Corresponding_Record;
13760
13761 -----------------------
13762 -- Constrain_Decimal --
13763 -----------------------
13764
13765 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
13766 T : constant Entity_Id := Entity (Subtype_Mark (S));
13767 C : constant Node_Id := Constraint (S);
13768 Loc : constant Source_Ptr := Sloc (C);
13769 Range_Expr : Node_Id;
13770 Digits_Expr : Node_Id;
13771 Digits_Val : Uint;
13772 Bound_Val : Ureal;
13773
13774 begin
13775 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
13776
13777 if Nkind (C) = N_Range_Constraint then
13778 Range_Expr := Range_Expression (C);
13779 Digits_Val := Digits_Value (T);
13780
13781 else
13782 pragma Assert (Nkind (C) = N_Digits_Constraint);
13783
13784 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13785
13786 Digits_Expr := Digits_Expression (C);
13787 Analyze_And_Resolve (Digits_Expr, Any_Integer);
13788
13789 Check_Digits_Expression (Digits_Expr);
13790 Digits_Val := Expr_Value (Digits_Expr);
13791
13792 if Digits_Val > Digits_Value (T) then
13793 Error_Msg_N
13794 ("digits expression is incompatible with subtype", C);
13795 Digits_Val := Digits_Value (T);
13796 end if;
13797
13798 if Present (Range_Constraint (C)) then
13799 Range_Expr := Range_Expression (Range_Constraint (C));
13800 else
13801 Range_Expr := Empty;
13802 end if;
13803 end if;
13804
13805 Set_Etype (Def_Id, Base_Type (T));
13806 Set_Size_Info (Def_Id, (T));
13807 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13808 Set_Delta_Value (Def_Id, Delta_Value (T));
13809 Set_Scale_Value (Def_Id, Scale_Value (T));
13810 Set_Small_Value (Def_Id, Small_Value (T));
13811 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
13812 Set_Digits_Value (Def_Id, Digits_Val);
13813
13814 -- Manufacture range from given digits value if no range present
13815
13816 if No (Range_Expr) then
13817 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
13818 Range_Expr :=
13819 Make_Range (Loc,
13820 Low_Bound =>
13821 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
13822 High_Bound =>
13823 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
13824 end if;
13825
13826 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
13827 Set_Discrete_RM_Size (Def_Id);
13828
13829 -- Unconditionally delay the freeze, since we cannot set size
13830 -- information in all cases correctly until the freeze point.
13831
13832 Set_Has_Delayed_Freeze (Def_Id);
13833 end Constrain_Decimal;
13834
13835 ----------------------------------
13836 -- Constrain_Discriminated_Type --
13837 ----------------------------------
13838
13839 procedure Constrain_Discriminated_Type
13840 (Def_Id : Entity_Id;
13841 S : Node_Id;
13842 Related_Nod : Node_Id;
13843 For_Access : Boolean := False)
13844 is
13845 E : Entity_Id := Entity (Subtype_Mark (S));
13846 T : Entity_Id;
13847
13848 procedure Fixup_Bad_Constraint;
13849 -- Called after finding a bad constraint, and after having posted an
13850 -- appropriate error message. The goal is to leave type Def_Id in as
13851 -- reasonable state as possible.
13852
13853 --------------------------
13854 -- Fixup_Bad_Constraint --
13855 --------------------------
13856
13857 procedure Fixup_Bad_Constraint is
13858 begin
13859 -- Set a reasonable Ekind for the entity, including incomplete types.
13860
13861 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
13862
13863 -- Set Etype to the known type, to reduce chances of cascaded errors
13864
13865 Set_Etype (Def_Id, E);
13866 Set_Error_Posted (Def_Id);
13867 end Fixup_Bad_Constraint;
13868
13869 -- Local variables
13870
13871 C : Node_Id;
13872 Constr : Elist_Id := New_Elmt_List;
13873
13874 -- Start of processing for Constrain_Discriminated_Type
13875
13876 begin
13877 C := Constraint (S);
13878
13879 -- A discriminant constraint is only allowed in a subtype indication,
13880 -- after a subtype mark. This subtype mark must denote either a type
13881 -- with discriminants, or an access type whose designated type is a
13882 -- type with discriminants. A discriminant constraint specifies the
13883 -- values of these discriminants (RM 3.7.2(5)).
13884
13885 T := Base_Type (Entity (Subtype_Mark (S)));
13886
13887 if Is_Access_Type (T) then
13888 T := Designated_Type (T);
13889 end if;
13890
13891 -- In an instance it may be necessary to retrieve the full view of a
13892 -- type with unknown discriminants, or a full view with defaulted
13893 -- discriminants. In other contexts the constraint is illegal.
13894
13895 if In_Instance
13896 and then Is_Private_Type (T)
13897 and then Present (Full_View (T))
13898 and then
13899 (Has_Unknown_Discriminants (T)
13900 or else
13901 (not Has_Discriminants (T)
13902 and then Has_Discriminants (Full_View (T))
13903 and then Present (Discriminant_Default_Value
13904 (First_Discriminant (Full_View (T))))))
13905 then
13906 T := Full_View (T);
13907 E := Full_View (E);
13908 end if;
13909
13910 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal. Avoid
13911 -- generating an error for access-to-incomplete subtypes.
13912
13913 if Ada_Version >= Ada_2005
13914 and then Ekind (T) = E_Incomplete_Type
13915 and then Nkind (Parent (S)) = N_Subtype_Declaration
13916 and then not Is_Itype (Def_Id)
13917 then
13918 -- A little sanity check: emit an error message if the type has
13919 -- discriminants to begin with. Type T may be a regular incomplete
13920 -- type or imported via a limited with clause.
13921
13922 if Has_Discriminants (T)
13923 or else (From_Limited_With (T)
13924 and then Present (Non_Limited_View (T))
13925 and then Nkind (Parent (Non_Limited_View (T))) =
13926 N_Full_Type_Declaration
13927 and then Present (Discriminant_Specifications
13928 (Parent (Non_Limited_View (T)))))
13929 then
13930 Error_Msg_N
13931 ("(Ada 2005) incomplete subtype may not be constrained", C);
13932 else
13933 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13934 end if;
13935
13936 Fixup_Bad_Constraint;
13937 return;
13938
13939 -- Check that the type has visible discriminants. The type may be
13940 -- a private type with unknown discriminants whose full view has
13941 -- discriminants which are invisible.
13942
13943 elsif not Has_Discriminants (T)
13944 or else
13945 (Has_Unknown_Discriminants (T)
13946 and then Is_Private_Type (T))
13947 then
13948 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13949 Fixup_Bad_Constraint;
13950 return;
13951
13952 elsif Is_Constrained (E)
13953 or else (Ekind (E) = E_Class_Wide_Subtype
13954 and then Present (Discriminant_Constraint (E)))
13955 then
13956 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
13957 Fixup_Bad_Constraint;
13958 return;
13959 end if;
13960
13961 -- T may be an unconstrained subtype (e.g. a generic actual). Constraint
13962 -- applies to the base type.
13963
13964 T := Base_Type (T);
13965
13966 Constr := Build_Discriminant_Constraints (T, S);
13967
13968 -- If the list returned was empty we had an error in building the
13969 -- discriminant constraint. We have also already signalled an error
13970 -- in the incomplete type case
13971
13972 if Is_Empty_Elmt_List (Constr) then
13973 Fixup_Bad_Constraint;
13974 return;
13975 end if;
13976
13977 Build_Discriminated_Subtype (T, Def_Id, Constr, Related_Nod, For_Access);
13978 end Constrain_Discriminated_Type;
13979
13980 ---------------------------
13981 -- Constrain_Enumeration --
13982 ---------------------------
13983
13984 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
13985 T : constant Entity_Id := Entity (Subtype_Mark (S));
13986 C : constant Node_Id := Constraint (S);
13987
13988 begin
13989 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13990
13991 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
13992
13993 Set_Etype (Def_Id, Base_Type (T));
13994 Set_Size_Info (Def_Id, (T));
13995 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13996 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13997
13998 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13999
14000 Set_Discrete_RM_Size (Def_Id);
14001 end Constrain_Enumeration;
14002
14003 ----------------------
14004 -- Constrain_Float --
14005 ----------------------
14006
14007 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
14008 T : constant Entity_Id := Entity (Subtype_Mark (S));
14009 C : Node_Id;
14010 D : Node_Id;
14011 Rais : Node_Id;
14012
14013 begin
14014 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
14015
14016 Set_Etype (Def_Id, Base_Type (T));
14017 Set_Size_Info (Def_Id, (T));
14018 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14019
14020 -- Process the constraint
14021
14022 C := Constraint (S);
14023
14024 -- Digits constraint present
14025
14026 if Nkind (C) = N_Digits_Constraint then
14027
14028 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
14029 Check_Restriction (No_Obsolescent_Features, C);
14030
14031 if Warn_On_Obsolescent_Feature then
14032 Error_Msg_N
14033 ("subtype digits constraint is an " &
14034 "obsolescent feature (RM J.3(8))?j?", C);
14035 end if;
14036
14037 D := Digits_Expression (C);
14038 Analyze_And_Resolve (D, Any_Integer);
14039 Check_Digits_Expression (D);
14040 Set_Digits_Value (Def_Id, Expr_Value (D));
14041
14042 -- Check that digits value is in range. Obviously we can do this
14043 -- at compile time, but it is strictly a runtime check, and of
14044 -- course there is an ACVC test that checks this.
14045
14046 if Digits_Value (Def_Id) > Digits_Value (T) then
14047 Error_Msg_Uint_1 := Digits_Value (T);
14048 Error_Msg_N ("??digits value is too large, maximum is ^", D);
14049 Rais :=
14050 Make_Raise_Constraint_Error (Sloc (D),
14051 Reason => CE_Range_Check_Failed);
14052 Insert_Action (Declaration_Node (Def_Id), Rais);
14053 end if;
14054
14055 C := Range_Constraint (C);
14056
14057 -- No digits constraint present
14058
14059 else
14060 Set_Digits_Value (Def_Id, Digits_Value (T));
14061 end if;
14062
14063 -- Range constraint present
14064
14065 if Nkind (C) = N_Range_Constraint then
14066 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14067
14068 -- No range constraint present
14069
14070 else
14071 pragma Assert (No (C));
14072 Set_Scalar_Range (Def_Id, Scalar_Range (T));
14073 end if;
14074
14075 Set_Is_Constrained (Def_Id);
14076 end Constrain_Float;
14077
14078 ---------------------
14079 -- Constrain_Index --
14080 ---------------------
14081
14082 procedure Constrain_Index
14083 (Index : Node_Id;
14084 S : Node_Id;
14085 Related_Nod : Node_Id;
14086 Related_Id : Entity_Id;
14087 Suffix : Character;
14088 Suffix_Index : Nat)
14089 is
14090 Def_Id : Entity_Id;
14091 R : Node_Id := Empty;
14092 T : constant Entity_Id := Etype (Index);
14093
14094 begin
14095 Def_Id :=
14096 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
14097 Set_Etype (Def_Id, Base_Type (T));
14098
14099 if Nkind (S) = N_Range
14100 or else
14101 (Nkind (S) = N_Attribute_Reference
14102 and then Attribute_Name (S) = Name_Range)
14103 then
14104 -- A Range attribute will be transformed into N_Range by Resolve
14105
14106 Analyze (S);
14107 Set_Etype (S, T);
14108 R := S;
14109
14110 Process_Range_Expr_In_Decl (R, T);
14111
14112 if not Error_Posted (S)
14113 and then
14114 (Nkind (S) /= N_Range
14115 or else not Covers (T, (Etype (Low_Bound (S))))
14116 or else not Covers (T, (Etype (High_Bound (S)))))
14117 then
14118 if Base_Type (T) /= Any_Type
14119 and then Etype (Low_Bound (S)) /= Any_Type
14120 and then Etype (High_Bound (S)) /= Any_Type
14121 then
14122 Error_Msg_N ("range expected", S);
14123 end if;
14124 end if;
14125
14126 elsif Nkind (S) = N_Subtype_Indication then
14127
14128 -- The parser has verified that this is a discrete indication
14129
14130 Resolve_Discrete_Subtype_Indication (S, T);
14131 Bad_Predicated_Subtype_Use
14132 ("subtype& has predicate, not allowed in index constraint",
14133 S, Entity (Subtype_Mark (S)));
14134
14135 R := Range_Expression (Constraint (S));
14136
14137 -- Capture values of bounds and generate temporaries for them if
14138 -- needed, since checks may cause duplication of the expressions
14139 -- which must not be reevaluated.
14140
14141 -- The forced evaluation removes side effects from expressions, which
14142 -- should occur also in GNATprove mode. Otherwise, we end up with
14143 -- unexpected insertions of actions at places where this is not
14144 -- supposed to occur, e.g. on default parameters of a call.
14145
14146 if Expander_Active or GNATprove_Mode then
14147 Force_Evaluation
14148 (Low_Bound (R), Related_Id => Def_Id, Is_Low_Bound => True);
14149 Force_Evaluation
14150 (High_Bound (R), Related_Id => Def_Id, Is_High_Bound => True);
14151 end if;
14152
14153 elsif Nkind (S) = N_Discriminant_Association then
14154
14155 -- Syntactically valid in subtype indication
14156
14157 Error_Msg_N ("invalid index constraint", S);
14158 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
14159 return;
14160
14161 -- Subtype_Mark case, no anonymous subtypes to construct
14162
14163 else
14164 Analyze (S);
14165
14166 if Is_Entity_Name (S) then
14167 if not Is_Type (Entity (S)) then
14168 Error_Msg_N ("expect subtype mark for index constraint", S);
14169
14170 elsif Base_Type (Entity (S)) /= Base_Type (T) then
14171 Wrong_Type (S, Base_Type (T));
14172
14173 -- Check error of subtype with predicate in index constraint
14174
14175 else
14176 Bad_Predicated_Subtype_Use
14177 ("subtype& has predicate, not allowed in index constraint",
14178 S, Entity (S));
14179 end if;
14180
14181 return;
14182
14183 else
14184 Error_Msg_N ("invalid index constraint", S);
14185 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
14186 return;
14187 end if;
14188 end if;
14189
14190 -- Complete construction of the Itype
14191
14192 if Is_Modular_Integer_Type (T) then
14193 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
14194
14195 elsif Is_Integer_Type (T) then
14196 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
14197
14198 else
14199 Set_Ekind (Def_Id, E_Enumeration_Subtype);
14200 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
14201 Set_First_Literal (Def_Id, First_Literal (T));
14202 end if;
14203
14204 Set_Size_Info (Def_Id, (T));
14205 Set_RM_Size (Def_Id, RM_Size (T));
14206 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14207
14208 Set_Scalar_Range (Def_Id, R);
14209
14210 Set_Etype (S, Def_Id);
14211 Set_Discrete_RM_Size (Def_Id);
14212 end Constrain_Index;
14213
14214 -----------------------
14215 -- Constrain_Integer --
14216 -----------------------
14217
14218 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
14219 T : constant Entity_Id := Entity (Subtype_Mark (S));
14220 C : constant Node_Id := Constraint (S);
14221
14222 begin
14223 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14224
14225 if Is_Modular_Integer_Type (T) then
14226 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
14227 else
14228 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
14229 end if;
14230
14231 Set_Etype (Def_Id, Base_Type (T));
14232 Set_Size_Info (Def_Id, (T));
14233 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14234 Set_Discrete_RM_Size (Def_Id);
14235 end Constrain_Integer;
14236
14237 ------------------------------
14238 -- Constrain_Ordinary_Fixed --
14239 ------------------------------
14240
14241 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
14242 T : constant Entity_Id := Entity (Subtype_Mark (S));
14243 C : Node_Id;
14244 D : Node_Id;
14245 Rais : Node_Id;
14246
14247 begin
14248 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
14249 Set_Etype (Def_Id, Base_Type (T));
14250 Set_Size_Info (Def_Id, (T));
14251 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14252 Set_Small_Value (Def_Id, Small_Value (T));
14253
14254 -- Process the constraint
14255
14256 C := Constraint (S);
14257
14258 -- Delta constraint present
14259
14260 if Nkind (C) = N_Delta_Constraint then
14261
14262 Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
14263 Check_Restriction (No_Obsolescent_Features, C);
14264
14265 if Warn_On_Obsolescent_Feature then
14266 Error_Msg_S
14267 ("subtype delta constraint is an " &
14268 "obsolescent feature (RM J.3(7))?j?");
14269 end if;
14270
14271 D := Delta_Expression (C);
14272 Analyze_And_Resolve (D, Any_Real);
14273 Check_Delta_Expression (D);
14274 Set_Delta_Value (Def_Id, Expr_Value_R (D));
14275
14276 -- Check that delta value is in range. Obviously we can do this
14277 -- at compile time, but it is strictly a runtime check, and of
14278 -- course there is an ACVC test that checks this.
14279
14280 if Delta_Value (Def_Id) < Delta_Value (T) then
14281 Error_Msg_N ("??delta value is too small", D);
14282 Rais :=
14283 Make_Raise_Constraint_Error (Sloc (D),
14284 Reason => CE_Range_Check_Failed);
14285 Insert_Action (Declaration_Node (Def_Id), Rais);
14286 end if;
14287
14288 C := Range_Constraint (C);
14289
14290 -- No delta constraint present
14291
14292 else
14293 Set_Delta_Value (Def_Id, Delta_Value (T));
14294 end if;
14295
14296 -- Range constraint present
14297
14298 if Nkind (C) = N_Range_Constraint then
14299 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14300
14301 -- No range constraint present
14302
14303 else
14304 pragma Assert (No (C));
14305 Set_Scalar_Range (Def_Id, Scalar_Range (T));
14306 end if;
14307
14308 Set_Discrete_RM_Size (Def_Id);
14309
14310 -- Unconditionally delay the freeze, since we cannot set size
14311 -- information in all cases correctly until the freeze point.
14312
14313 Set_Has_Delayed_Freeze (Def_Id);
14314 end Constrain_Ordinary_Fixed;
14315
14316 -----------------------
14317 -- Contain_Interface --
14318 -----------------------
14319
14320 function Contain_Interface
14321 (Iface : Entity_Id;
14322 Ifaces : Elist_Id) return Boolean
14323 is
14324 Iface_Elmt : Elmt_Id;
14325
14326 begin
14327 if Present (Ifaces) then
14328 Iface_Elmt := First_Elmt (Ifaces);
14329 while Present (Iface_Elmt) loop
14330 if Node (Iface_Elmt) = Iface then
14331 return True;
14332 end if;
14333
14334 Next_Elmt (Iface_Elmt);
14335 end loop;
14336 end if;
14337
14338 return False;
14339 end Contain_Interface;
14340
14341 ---------------------------
14342 -- Convert_Scalar_Bounds --
14343 ---------------------------
14344
14345 procedure Convert_Scalar_Bounds
14346 (N : Node_Id;
14347 Parent_Type : Entity_Id;
14348 Derived_Type : Entity_Id;
14349 Loc : Source_Ptr)
14350 is
14351 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
14352
14353 Lo : Node_Id;
14354 Hi : Node_Id;
14355 Rng : Node_Id;
14356
14357 begin
14358 -- Defend against previous errors
14359
14360 if No (Scalar_Range (Derived_Type)) then
14361 Check_Error_Detected;
14362 return;
14363 end if;
14364
14365 Lo := Build_Scalar_Bound
14366 (Type_Low_Bound (Derived_Type),
14367 Parent_Type, Implicit_Base);
14368
14369 Hi := Build_Scalar_Bound
14370 (Type_High_Bound (Derived_Type),
14371 Parent_Type, Implicit_Base);
14372
14373 Rng :=
14374 Make_Range (Loc,
14375 Low_Bound => Lo,
14376 High_Bound => Hi);
14377
14378 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
14379
14380 Set_Parent (Rng, N);
14381 Set_Scalar_Range (Derived_Type, Rng);
14382
14383 -- Analyze the bounds
14384
14385 Analyze_And_Resolve (Lo, Implicit_Base);
14386 Analyze_And_Resolve (Hi, Implicit_Base);
14387
14388 -- Analyze the range itself, except that we do not analyze it if
14389 -- the bounds are real literals, and we have a fixed-point type.
14390 -- The reason for this is that we delay setting the bounds in this
14391 -- case till we know the final Small and Size values (see circuit
14392 -- in Freeze.Freeze_Fixed_Point_Type for further details).
14393
14394 if Is_Fixed_Point_Type (Parent_Type)
14395 and then Nkind (Lo) = N_Real_Literal
14396 and then Nkind (Hi) = N_Real_Literal
14397 then
14398 return;
14399
14400 -- Here we do the analysis of the range
14401
14402 -- Note: we do this manually, since if we do a normal Analyze and
14403 -- Resolve call, there are problems with the conversions used for
14404 -- the derived type range.
14405
14406 else
14407 Set_Etype (Rng, Implicit_Base);
14408 Set_Analyzed (Rng, True);
14409 end if;
14410 end Convert_Scalar_Bounds;
14411
14412 -------------------
14413 -- Copy_And_Swap --
14414 -------------------
14415
14416 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
14417 begin
14418 -- Initialize new full declaration entity by copying the pertinent
14419 -- fields of the corresponding private declaration entity.
14420
14421 -- We temporarily set Ekind to a value appropriate for a type to
14422 -- avoid assert failures in Einfo from checking for setting type
14423 -- attributes on something that is not a type. Ekind (Priv) is an
14424 -- appropriate choice, since it allowed the attributes to be set
14425 -- in the first place. This Ekind value will be modified later.
14426
14427 Set_Ekind (Full, Ekind (Priv));
14428
14429 -- Also set Etype temporarily to Any_Type, again, in the absence
14430 -- of errors, it will be properly reset, and if there are errors,
14431 -- then we want a value of Any_Type to remain.
14432
14433 Set_Etype (Full, Any_Type);
14434
14435 -- Now start copying attributes
14436
14437 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
14438
14439 if Has_Discriminants (Full) then
14440 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
14441 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
14442 end if;
14443
14444 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
14445 Set_Homonym (Full, Homonym (Priv));
14446 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
14447 Set_Is_Public (Full, Is_Public (Priv));
14448 Set_Is_Pure (Full, Is_Pure (Priv));
14449 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
14450 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
14451 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
14452 Set_Has_Pragma_Unreferenced_Objects
14453 (Full, Has_Pragma_Unreferenced_Objects
14454 (Priv));
14455
14456 Conditional_Delay (Full, Priv);
14457
14458 if Is_Tagged_Type (Full) then
14459 Set_Direct_Primitive_Operations
14460 (Full, Direct_Primitive_Operations (Priv));
14461 Set_No_Tagged_Streams_Pragma
14462 (Full, No_Tagged_Streams_Pragma (Priv));
14463
14464 if Is_Base_Type (Priv) then
14465 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
14466 end if;
14467 end if;
14468
14469 Set_Is_Volatile (Full, Is_Volatile (Priv));
14470 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
14471 Set_Scope (Full, Scope (Priv));
14472 Set_Prev_Entity (Full, Prev_Entity (Priv));
14473 Set_Next_Entity (Full, Next_Entity (Priv));
14474 Set_First_Entity (Full, First_Entity (Priv));
14475 Set_Last_Entity (Full, Last_Entity (Priv));
14476
14477 -- If access types have been recorded for later handling, keep them in
14478 -- the full view so that they get handled when the full view freeze
14479 -- node is expanded.
14480
14481 if Present (Freeze_Node (Priv))
14482 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
14483 then
14484 Ensure_Freeze_Node (Full);
14485 Set_Access_Types_To_Process
14486 (Freeze_Node (Full),
14487 Access_Types_To_Process (Freeze_Node (Priv)));
14488 end if;
14489
14490 -- Swap the two entities. Now Private is the full type entity and Full
14491 -- is the private one. They will be swapped back at the end of the
14492 -- private part. This swapping ensures that the entity that is visible
14493 -- in the private part is the full declaration.
14494
14495 Exchange_Entities (Priv, Full);
14496 Append_Entity (Full, Scope (Full));
14497 end Copy_And_Swap;
14498
14499 -------------------------------------
14500 -- Copy_Array_Base_Type_Attributes --
14501 -------------------------------------
14502
14503 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
14504 begin
14505 Set_Component_Alignment (T1, Component_Alignment (T2));
14506 Set_Component_Type (T1, Component_Type (T2));
14507 Set_Component_Size (T1, Component_Size (T2));
14508 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
14509 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
14510 Propagate_Concurrent_Flags (T1, T2);
14511 Set_Is_Packed (T1, Is_Packed (T2));
14512 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
14513 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
14514 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
14515 end Copy_Array_Base_Type_Attributes;
14516
14517 -----------------------------------
14518 -- Copy_Array_Subtype_Attributes --
14519 -----------------------------------
14520
14521 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
14522 begin
14523 Set_Size_Info (T1, T2);
14524
14525 Set_First_Index (T1, First_Index (T2));
14526 Set_Is_Aliased (T1, Is_Aliased (T2));
14527 Set_Is_Volatile (T1, Is_Volatile (T2));
14528 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
14529 Set_Is_Constrained (T1, Is_Constrained (T2));
14530 Set_Depends_On_Private (T1, Has_Private_Component (T2));
14531 Inherit_Rep_Item_Chain (T1, T2);
14532 Set_Convention (T1, Convention (T2));
14533 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
14534 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
14535 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
14536 end Copy_Array_Subtype_Attributes;
14537
14538 -----------------------------------
14539 -- Create_Constrained_Components --
14540 -----------------------------------
14541
14542 procedure Create_Constrained_Components
14543 (Subt : Entity_Id;
14544 Decl_Node : Node_Id;
14545 Typ : Entity_Id;
14546 Constraints : Elist_Id)
14547 is
14548 Loc : constant Source_Ptr := Sloc (Subt);
14549 Comp_List : constant Elist_Id := New_Elmt_List;
14550 Parent_Type : constant Entity_Id := Etype (Typ);
14551 Assoc_List : constant List_Id := New_List;
14552 Discr_Val : Elmt_Id;
14553 Errors : Boolean;
14554 New_C : Entity_Id;
14555 Old_C : Entity_Id;
14556 Is_Static : Boolean := True;
14557
14558 procedure Collect_Fixed_Components (Typ : Entity_Id);
14559 -- Collect parent type components that do not appear in a variant part
14560
14561 procedure Create_All_Components;
14562 -- Iterate over Comp_List to create the components of the subtype
14563
14564 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
14565 -- Creates a new component from Old_Compon, copying all the fields from
14566 -- it, including its Etype, inserts the new component in the Subt entity
14567 -- chain and returns the new component.
14568
14569 function Is_Variant_Record (T : Entity_Id) return Boolean;
14570 -- If true, and discriminants are static, collect only components from
14571 -- variants selected by discriminant values.
14572
14573 ------------------------------
14574 -- Collect_Fixed_Components --
14575 ------------------------------
14576
14577 procedure Collect_Fixed_Components (Typ : Entity_Id) is
14578 begin
14579 -- Build association list for discriminants, and find components of the
14580 -- variant part selected by the values of the discriminants.
14581
14582 Old_C := First_Discriminant (Typ);
14583 Discr_Val := First_Elmt (Constraints);
14584 while Present (Old_C) loop
14585 Append_To (Assoc_List,
14586 Make_Component_Association (Loc,
14587 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
14588 Expression => New_Copy (Node (Discr_Val))));
14589
14590 Next_Elmt (Discr_Val);
14591 Next_Discriminant (Old_C);
14592 end loop;
14593
14594 -- The tag and the possible parent component are unconditionally in
14595 -- the subtype.
14596
14597 if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
14598 Old_C := First_Component (Typ);
14599 while Present (Old_C) loop
14600 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
14601 Append_Elmt (Old_C, Comp_List);
14602 end if;
14603
14604 Next_Component (Old_C);
14605 end loop;
14606 end if;
14607 end Collect_Fixed_Components;
14608
14609 ---------------------------
14610 -- Create_All_Components --
14611 ---------------------------
14612
14613 procedure Create_All_Components is
14614 Comp : Elmt_Id;
14615
14616 begin
14617 Comp := First_Elmt (Comp_List);
14618 while Present (Comp) loop
14619 Old_C := Node (Comp);
14620 New_C := Create_Component (Old_C);
14621
14622 Set_Etype
14623 (New_C,
14624 Constrain_Component_Type
14625 (Old_C, Subt, Decl_Node, Typ, Constraints));
14626 Set_Is_Public (New_C, Is_Public (Subt));
14627
14628 Next_Elmt (Comp);
14629 end loop;
14630 end Create_All_Components;
14631
14632 ----------------------
14633 -- Create_Component --
14634 ----------------------
14635
14636 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
14637 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
14638
14639 begin
14640 if Ekind (Old_Compon) = E_Discriminant
14641 and then Is_Completely_Hidden (Old_Compon)
14642 then
14643 -- This is a shadow discriminant created for a discriminant of
14644 -- the parent type, which needs to be present in the subtype.
14645 -- Give the shadow discriminant an internal name that cannot
14646 -- conflict with that of visible components.
14647
14648 Set_Chars (New_Compon, New_Internal_Name ('C'));
14649 end if;
14650
14651 -- Set the parent so we have a proper link for freezing etc. This is
14652 -- not a real parent pointer, since of course our parent does not own
14653 -- up to us and reference us, we are an illegitimate child of the
14654 -- original parent.
14655
14656 Set_Parent (New_Compon, Parent (Old_Compon));
14657
14658 -- We do not want this node marked as Comes_From_Source, since
14659 -- otherwise it would get first class status and a separate cross-
14660 -- reference line would be generated. Illegitimate children do not
14661 -- rate such recognition.
14662
14663 Set_Comes_From_Source (New_Compon, False);
14664
14665 -- But it is a real entity, and a birth certificate must be properly
14666 -- registered by entering it into the entity list, and setting its
14667 -- scope to the given subtype. This turns out to be useful for the
14668 -- LLVM code generator, but that scope is not used otherwise.
14669
14670 Enter_Name (New_Compon);
14671 Set_Scope (New_Compon, Subt);
14672
14673 return New_Compon;
14674 end Create_Component;
14675
14676 -----------------------
14677 -- Is_Variant_Record --
14678 -----------------------
14679
14680 function Is_Variant_Record (T : Entity_Id) return Boolean is
14681 begin
14682 return Nkind (Parent (T)) = N_Full_Type_Declaration
14683 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
14684 and then Present (Component_List (Type_Definition (Parent (T))))
14685 and then
14686 Present
14687 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
14688 end Is_Variant_Record;
14689
14690 -- Start of processing for Create_Constrained_Components
14691
14692 begin
14693 pragma Assert (Subt /= Base_Type (Subt));
14694 pragma Assert (Typ = Base_Type (Typ));
14695
14696 Set_First_Entity (Subt, Empty);
14697 Set_Last_Entity (Subt, Empty);
14698
14699 -- Check whether constraint is fully static, in which case we can
14700 -- optimize the list of components.
14701
14702 Discr_Val := First_Elmt (Constraints);
14703 while Present (Discr_Val) loop
14704 if not Is_OK_Static_Expression (Node (Discr_Val)) then
14705 Is_Static := False;
14706 exit;
14707 end if;
14708
14709 Next_Elmt (Discr_Val);
14710 end loop;
14711
14712 Set_Has_Static_Discriminants (Subt, Is_Static);
14713
14714 Push_Scope (Subt);
14715
14716 -- Inherit the discriminants of the parent type
14717
14718 Add_Discriminants : declare
14719 Num_Disc : Nat;
14720 Num_Gird : Nat;
14721
14722 begin
14723 Num_Disc := 0;
14724 Old_C := First_Discriminant (Typ);
14725
14726 while Present (Old_C) loop
14727 Num_Disc := Num_Disc + 1;
14728 New_C := Create_Component (Old_C);
14729 Set_Is_Public (New_C, Is_Public (Subt));
14730 Next_Discriminant (Old_C);
14731 end loop;
14732
14733 -- For an untagged derived subtype, the number of discriminants may
14734 -- be smaller than the number of inherited discriminants, because
14735 -- several of them may be renamed by a single new discriminant or
14736 -- constrained. In this case, add the hidden discriminants back into
14737 -- the subtype, because they need to be present if the optimizer of
14738 -- the GCC 4.x back-end decides to break apart assignments between
14739 -- objects using the parent view into member-wise assignments.
14740
14741 Num_Gird := 0;
14742
14743 if Is_Derived_Type (Typ)
14744 and then not Is_Tagged_Type (Typ)
14745 then
14746 Old_C := First_Stored_Discriminant (Typ);
14747
14748 while Present (Old_C) loop
14749 Num_Gird := Num_Gird + 1;
14750 Next_Stored_Discriminant (Old_C);
14751 end loop;
14752 end if;
14753
14754 if Num_Gird > Num_Disc then
14755
14756 -- Find out multiple uses of new discriminants, and add hidden
14757 -- components for the extra renamed discriminants. We recognize
14758 -- multiple uses through the Corresponding_Discriminant of a
14759 -- new discriminant: if it constrains several old discriminants,
14760 -- this field points to the last one in the parent type. The
14761 -- stored discriminants of the derived type have the same name
14762 -- as those of the parent.
14763
14764 declare
14765 Constr : Elmt_Id;
14766 New_Discr : Entity_Id;
14767 Old_Discr : Entity_Id;
14768
14769 begin
14770 Constr := First_Elmt (Stored_Constraint (Typ));
14771 Old_Discr := First_Stored_Discriminant (Typ);
14772 while Present (Constr) loop
14773 if Is_Entity_Name (Node (Constr))
14774 and then Ekind (Entity (Node (Constr))) = E_Discriminant
14775 then
14776 New_Discr := Entity (Node (Constr));
14777
14778 if Chars (Corresponding_Discriminant (New_Discr)) /=
14779 Chars (Old_Discr)
14780 then
14781 -- The new discriminant has been used to rename a
14782 -- subsequent old discriminant. Introduce a shadow
14783 -- component for the current old discriminant.
14784
14785 New_C := Create_Component (Old_Discr);
14786 Set_Original_Record_Component (New_C, Old_Discr);
14787 end if;
14788
14789 else
14790 -- The constraint has eliminated the old discriminant.
14791 -- Introduce a shadow component.
14792
14793 New_C := Create_Component (Old_Discr);
14794 Set_Original_Record_Component (New_C, Old_Discr);
14795 end if;
14796
14797 Next_Elmt (Constr);
14798 Next_Stored_Discriminant (Old_Discr);
14799 end loop;
14800 end;
14801 end if;
14802 end Add_Discriminants;
14803
14804 if Is_Static
14805 and then Is_Variant_Record (Typ)
14806 then
14807 Collect_Fixed_Components (Typ);
14808
14809 Gather_Components (
14810 Typ,
14811 Component_List (Type_Definition (Parent (Typ))),
14812 Governed_By => Assoc_List,
14813 Into => Comp_List,
14814 Report_Errors => Errors);
14815 pragma Assert (not Errors
14816 or else Serious_Errors_Detected > 0);
14817
14818 Create_All_Components;
14819
14820 -- If the subtype declaration is created for a tagged type derivation
14821 -- with constraints, we retrieve the record definition of the parent
14822 -- type to select the components of the proper variant.
14823
14824 elsif Is_Static
14825 and then Is_Tagged_Type (Typ)
14826 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
14827 and then
14828 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
14829 and then Is_Variant_Record (Parent_Type)
14830 then
14831 Collect_Fixed_Components (Typ);
14832
14833 Gather_Components
14834 (Typ,
14835 Component_List (Type_Definition (Parent (Parent_Type))),
14836 Governed_By => Assoc_List,
14837 Into => Comp_List,
14838 Report_Errors => Errors);
14839
14840 -- Note: previously there was a check at this point that no errors
14841 -- were detected. As a consequence of AI05-220 there may be an error
14842 -- if an inherited discriminant that controls a variant has a non-
14843 -- static constraint.
14844
14845 -- If the tagged derivation has a type extension, collect all the
14846 -- new components therein.
14847
14848 if Present (Record_Extension_Part (Type_Definition (Parent (Typ))))
14849 then
14850 Old_C := First_Component (Typ);
14851 while Present (Old_C) loop
14852 if Original_Record_Component (Old_C) = Old_C
14853 and then Chars (Old_C) /= Name_uTag
14854 and then Chars (Old_C) /= Name_uParent
14855 then
14856 Append_Elmt (Old_C, Comp_List);
14857 end if;
14858
14859 Next_Component (Old_C);
14860 end loop;
14861 end if;
14862
14863 Create_All_Components;
14864
14865 else
14866 -- If discriminants are not static, or if this is a multi-level type
14867 -- extension, we have to include all components of the parent type.
14868
14869 Old_C := First_Component (Typ);
14870 while Present (Old_C) loop
14871 New_C := Create_Component (Old_C);
14872
14873 Set_Etype
14874 (New_C,
14875 Constrain_Component_Type
14876 (Old_C, Subt, Decl_Node, Typ, Constraints));
14877 Set_Is_Public (New_C, Is_Public (Subt));
14878
14879 Next_Component (Old_C);
14880 end loop;
14881 end if;
14882
14883 End_Scope;
14884 end Create_Constrained_Components;
14885
14886 ------------------------------------------
14887 -- Decimal_Fixed_Point_Type_Declaration --
14888 ------------------------------------------
14889
14890 procedure Decimal_Fixed_Point_Type_Declaration
14891 (T : Entity_Id;
14892 Def : Node_Id)
14893 is
14894 Loc : constant Source_Ptr := Sloc (Def);
14895 Digs_Expr : constant Node_Id := Digits_Expression (Def);
14896 Delta_Expr : constant Node_Id := Delta_Expression (Def);
14897 Implicit_Base : Entity_Id;
14898 Digs_Val : Uint;
14899 Delta_Val : Ureal;
14900 Scale_Val : Uint;
14901 Bound_Val : Ureal;
14902
14903 begin
14904 Check_SPARK_05_Restriction
14905 ("decimal fixed point type is not allowed", Def);
14906 Check_Restriction (No_Fixed_Point, Def);
14907
14908 -- Create implicit base type
14909
14910 Implicit_Base :=
14911 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
14912 Set_Etype (Implicit_Base, Implicit_Base);
14913
14914 -- Analyze and process delta expression
14915
14916 Analyze_And_Resolve (Delta_Expr, Universal_Real);
14917
14918 Check_Delta_Expression (Delta_Expr);
14919 Delta_Val := Expr_Value_R (Delta_Expr);
14920
14921 -- Check delta is power of 10, and determine scale value from it
14922
14923 declare
14924 Val : Ureal;
14925
14926 begin
14927 Scale_Val := Uint_0;
14928 Val := Delta_Val;
14929
14930 if Val < Ureal_1 then
14931 while Val < Ureal_1 loop
14932 Val := Val * Ureal_10;
14933 Scale_Val := Scale_Val + 1;
14934 end loop;
14935
14936 if Scale_Val > 18 then
14937 Error_Msg_N ("scale exceeds maximum value of 18", Def);
14938 Scale_Val := UI_From_Int (+18);
14939 end if;
14940
14941 else
14942 while Val > Ureal_1 loop
14943 Val := Val / Ureal_10;
14944 Scale_Val := Scale_Val - 1;
14945 end loop;
14946
14947 if Scale_Val < -18 then
14948 Error_Msg_N ("scale is less than minimum value of -18", Def);
14949 Scale_Val := UI_From_Int (-18);
14950 end if;
14951 end if;
14952
14953 if Val /= Ureal_1 then
14954 Error_Msg_N ("delta expression must be a power of 10", Def);
14955 Delta_Val := Ureal_10 ** (-Scale_Val);
14956 end if;
14957 end;
14958
14959 -- Set delta, scale and small (small = delta for decimal type)
14960
14961 Set_Delta_Value (Implicit_Base, Delta_Val);
14962 Set_Scale_Value (Implicit_Base, Scale_Val);
14963 Set_Small_Value (Implicit_Base, Delta_Val);
14964
14965 -- Analyze and process digits expression
14966
14967 Analyze_And_Resolve (Digs_Expr, Any_Integer);
14968 Check_Digits_Expression (Digs_Expr);
14969 Digs_Val := Expr_Value (Digs_Expr);
14970
14971 if Digs_Val > 18 then
14972 Digs_Val := UI_From_Int (+18);
14973 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
14974 end if;
14975
14976 Set_Digits_Value (Implicit_Base, Digs_Val);
14977 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
14978
14979 -- Set range of base type from digits value for now. This will be
14980 -- expanded to represent the true underlying base range by Freeze.
14981
14982 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
14983
14984 -- Note: We leave size as zero for now, size will be set at freeze
14985 -- time. We have to do this for ordinary fixed-point, because the size
14986 -- depends on the specified small, and we might as well do the same for
14987 -- decimal fixed-point.
14988
14989 pragma Assert (Esize (Implicit_Base) = Uint_0);
14990
14991 -- If there are bounds given in the declaration use them as the
14992 -- bounds of the first named subtype.
14993
14994 if Present (Real_Range_Specification (Def)) then
14995 declare
14996 RRS : constant Node_Id := Real_Range_Specification (Def);
14997 Low : constant Node_Id := Low_Bound (RRS);
14998 High : constant Node_Id := High_Bound (RRS);
14999 Low_Val : Ureal;
15000 High_Val : Ureal;
15001
15002 begin
15003 Analyze_And_Resolve (Low, Any_Real);
15004 Analyze_And_Resolve (High, Any_Real);
15005 Check_Real_Bound (Low);
15006 Check_Real_Bound (High);
15007 Low_Val := Expr_Value_R (Low);
15008 High_Val := Expr_Value_R (High);
15009
15010 if Low_Val < (-Bound_Val) then
15011 Error_Msg_N
15012 ("range low bound too small for digits value", Low);
15013 Low_Val := -Bound_Val;
15014 end if;
15015
15016 if High_Val > Bound_Val then
15017 Error_Msg_N
15018 ("range high bound too large for digits value", High);
15019 High_Val := Bound_Val;
15020 end if;
15021
15022 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
15023 end;
15024
15025 -- If no explicit range, use range that corresponds to given
15026 -- digits value. This will end up as the final range for the
15027 -- first subtype.
15028
15029 else
15030 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
15031 end if;
15032
15033 -- Complete entity for first subtype. The inheritance of the rep item
15034 -- chain ensures that SPARK-related pragmas are not clobbered when the
15035 -- decimal fixed point type acts as a full view of a private type.
15036
15037 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
15038 Set_Etype (T, Implicit_Base);
15039 Set_Size_Info (T, Implicit_Base);
15040 Inherit_Rep_Item_Chain (T, Implicit_Base);
15041 Set_Digits_Value (T, Digs_Val);
15042 Set_Delta_Value (T, Delta_Val);
15043 Set_Small_Value (T, Delta_Val);
15044 Set_Scale_Value (T, Scale_Val);
15045 Set_Is_Constrained (T);
15046 end Decimal_Fixed_Point_Type_Declaration;
15047
15048 -----------------------------------
15049 -- Derive_Progenitor_Subprograms --
15050 -----------------------------------
15051
15052 procedure Derive_Progenitor_Subprograms
15053 (Parent_Type : Entity_Id;
15054 Tagged_Type : Entity_Id)
15055 is
15056 E : Entity_Id;
15057 Elmt : Elmt_Id;
15058 Iface : Entity_Id;
15059 Iface_Alias : Entity_Id;
15060 Iface_Elmt : Elmt_Id;
15061 Iface_Subp : Entity_Id;
15062 New_Subp : Entity_Id := Empty;
15063 Prim_Elmt : Elmt_Id;
15064 Subp : Entity_Id;
15065 Typ : Entity_Id;
15066
15067 begin
15068 pragma Assert (Ada_Version >= Ada_2005
15069 and then Is_Record_Type (Tagged_Type)
15070 and then Is_Tagged_Type (Tagged_Type)
15071 and then Has_Interfaces (Tagged_Type));
15072
15073 -- Step 1: Transfer to the full-view primitives associated with the
15074 -- partial-view that cover interface primitives. Conceptually this
15075 -- work should be done later by Process_Full_View; done here to
15076 -- simplify its implementation at later stages. It can be safely
15077 -- done here because interfaces must be visible in the partial and
15078 -- private view (RM 7.3(7.3/2)).
15079
15080 -- Small optimization: This work is only required if the parent may
15081 -- have entities whose Alias attribute reference an interface primitive.
15082 -- Such a situation may occur if the parent is an abstract type and the
15083 -- primitive has not been yet overridden or if the parent is a generic
15084 -- formal type covering interfaces.
15085
15086 -- If the tagged type is not abstract, it cannot have abstract
15087 -- primitives (the only entities in the list of primitives of
15088 -- non-abstract tagged types that can reference abstract primitives
15089 -- through its Alias attribute are the internal entities that have
15090 -- attribute Interface_Alias, and these entities are generated later
15091 -- by Add_Internal_Interface_Entities).
15092
15093 if In_Private_Part (Current_Scope)
15094 and then (Is_Abstract_Type (Parent_Type)
15095 or else
15096 Is_Generic_Type (Parent_Type))
15097 then
15098 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
15099 while Present (Elmt) loop
15100 Subp := Node (Elmt);
15101
15102 -- At this stage it is not possible to have entities in the list
15103 -- of primitives that have attribute Interface_Alias.
15104
15105 pragma Assert (No (Interface_Alias (Subp)));
15106
15107 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
15108
15109 if Is_Interface (Typ) then
15110 E := Find_Primitive_Covering_Interface
15111 (Tagged_Type => Tagged_Type,
15112 Iface_Prim => Subp);
15113
15114 if Present (E)
15115 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
15116 then
15117 Replace_Elmt (Elmt, E);
15118 Remove_Homonym (Subp);
15119 end if;
15120 end if;
15121
15122 Next_Elmt (Elmt);
15123 end loop;
15124 end if;
15125
15126 -- Step 2: Add primitives of progenitors that are not implemented by
15127 -- parents of Tagged_Type.
15128
15129 if Present (Interfaces (Base_Type (Tagged_Type))) then
15130 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
15131 while Present (Iface_Elmt) loop
15132 Iface := Node (Iface_Elmt);
15133
15134 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
15135 while Present (Prim_Elmt) loop
15136 Iface_Subp := Node (Prim_Elmt);
15137 Iface_Alias := Ultimate_Alias (Iface_Subp);
15138
15139 -- Exclude derivation of predefined primitives except those
15140 -- that come from source, or are inherited from one that comes
15141 -- from source. Required to catch declarations of equality
15142 -- operators of interfaces. For example:
15143
15144 -- type Iface is interface;
15145 -- function "=" (Left, Right : Iface) return Boolean;
15146
15147 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
15148 or else Comes_From_Source (Iface_Alias)
15149 then
15150 E :=
15151 Find_Primitive_Covering_Interface
15152 (Tagged_Type => Tagged_Type,
15153 Iface_Prim => Iface_Subp);
15154
15155 -- If not found we derive a new primitive leaving its alias
15156 -- attribute referencing the interface primitive.
15157
15158 if No (E) then
15159 Derive_Subprogram
15160 (New_Subp, Iface_Subp, Tagged_Type, Iface);
15161
15162 -- Ada 2012 (AI05-0197): If the covering primitive's name
15163 -- differs from the name of the interface primitive then it
15164 -- is a private primitive inherited from a parent type. In
15165 -- such case, given that Tagged_Type covers the interface,
15166 -- the inherited private primitive becomes visible. For such
15167 -- purpose we add a new entity that renames the inherited
15168 -- private primitive.
15169
15170 elsif Chars (E) /= Chars (Iface_Subp) then
15171 pragma Assert (Has_Suffix (E, 'P'));
15172 Derive_Subprogram
15173 (New_Subp, Iface_Subp, Tagged_Type, Iface);
15174 Set_Alias (New_Subp, E);
15175 Set_Is_Abstract_Subprogram (New_Subp,
15176 Is_Abstract_Subprogram (E));
15177
15178 -- Propagate to the full view interface entities associated
15179 -- with the partial view.
15180
15181 elsif In_Private_Part (Current_Scope)
15182 and then Present (Alias (E))
15183 and then Alias (E) = Iface_Subp
15184 and then
15185 List_Containing (Parent (E)) /=
15186 Private_Declarations
15187 (Specification
15188 (Unit_Declaration_Node (Current_Scope)))
15189 then
15190 Append_Elmt (E, Primitive_Operations (Tagged_Type));
15191 end if;
15192 end if;
15193
15194 Next_Elmt (Prim_Elmt);
15195 end loop;
15196
15197 Next_Elmt (Iface_Elmt);
15198 end loop;
15199 end if;
15200 end Derive_Progenitor_Subprograms;
15201
15202 -----------------------
15203 -- Derive_Subprogram --
15204 -----------------------
15205
15206 procedure Derive_Subprogram
15207 (New_Subp : out Entity_Id;
15208 Parent_Subp : Entity_Id;
15209 Derived_Type : Entity_Id;
15210 Parent_Type : Entity_Id;
15211 Actual_Subp : Entity_Id := Empty)
15212 is
15213 Formal : Entity_Id;
15214 -- Formal parameter of parent primitive operation
15215
15216 Formal_Of_Actual : Entity_Id;
15217 -- Formal parameter of actual operation, when the derivation is to
15218 -- create a renaming for a primitive operation of an actual in an
15219 -- instantiation.
15220
15221 New_Formal : Entity_Id;
15222 -- Formal of inherited operation
15223
15224 Visible_Subp : Entity_Id := Parent_Subp;
15225
15226 function Is_Private_Overriding return Boolean;
15227 -- If Subp is a private overriding of a visible operation, the inherited
15228 -- operation derives from the overridden op (even though its body is the
15229 -- overriding one) and the inherited operation is visible now. See
15230 -- sem_disp to see the full details of the handling of the overridden
15231 -- subprogram, which is removed from the list of primitive operations of
15232 -- the type. The overridden subprogram is saved locally in Visible_Subp,
15233 -- and used to diagnose abstract operations that need overriding in the
15234 -- derived type.
15235
15236 procedure Replace_Type (Id, New_Id : Entity_Id);
15237 -- When the type is an anonymous access type, create a new access type
15238 -- designating the derived type.
15239
15240 procedure Set_Derived_Name;
15241 -- This procedure sets the appropriate Chars name for New_Subp. This
15242 -- is normally just a copy of the parent name. An exception arises for
15243 -- type support subprograms, where the name is changed to reflect the
15244 -- name of the derived type, e.g. if type foo is derived from type bar,
15245 -- then a procedure barDA is derived with a name fooDA.
15246
15247 ---------------------------
15248 -- Is_Private_Overriding --
15249 ---------------------------
15250
15251 function Is_Private_Overriding return Boolean is
15252 Prev : Entity_Id;
15253
15254 begin
15255 -- If the parent is not a dispatching operation there is no
15256 -- need to investigate overridings
15257
15258 if not Is_Dispatching_Operation (Parent_Subp) then
15259 return False;
15260 end if;
15261
15262 -- The visible operation that is overridden is a homonym of the
15263 -- parent subprogram. We scan the homonym chain to find the one
15264 -- whose alias is the subprogram we are deriving.
15265
15266 Prev := Current_Entity (Parent_Subp);
15267 while Present (Prev) loop
15268 if Ekind (Prev) = Ekind (Parent_Subp)
15269 and then Alias (Prev) = Parent_Subp
15270 and then Scope (Parent_Subp) = Scope (Prev)
15271 and then not Is_Hidden (Prev)
15272 then
15273 Visible_Subp := Prev;
15274 return True;
15275 end if;
15276
15277 Prev := Homonym (Prev);
15278 end loop;
15279
15280 return False;
15281 end Is_Private_Overriding;
15282
15283 ------------------
15284 -- Replace_Type --
15285 ------------------
15286
15287 procedure Replace_Type (Id, New_Id : Entity_Id) is
15288 Id_Type : constant Entity_Id := Etype (Id);
15289 Acc_Type : Entity_Id;
15290 Par : constant Node_Id := Parent (Derived_Type);
15291
15292 begin
15293 -- When the type is an anonymous access type, create a new access
15294 -- type designating the derived type. This itype must be elaborated
15295 -- at the point of the derivation, not on subsequent calls that may
15296 -- be out of the proper scope for Gigi, so we insert a reference to
15297 -- it after the derivation.
15298
15299 if Ekind (Id_Type) = E_Anonymous_Access_Type then
15300 declare
15301 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
15302
15303 begin
15304 if Ekind (Desig_Typ) = E_Record_Type_With_Private
15305 and then Present (Full_View (Desig_Typ))
15306 and then not Is_Private_Type (Parent_Type)
15307 then
15308 Desig_Typ := Full_View (Desig_Typ);
15309 end if;
15310
15311 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
15312
15313 -- Ada 2005 (AI-251): Handle also derivations of abstract
15314 -- interface primitives.
15315
15316 or else (Is_Interface (Desig_Typ)
15317 and then not Is_Class_Wide_Type (Desig_Typ))
15318 then
15319 Acc_Type := New_Copy (Id_Type);
15320 Set_Etype (Acc_Type, Acc_Type);
15321 Set_Scope (Acc_Type, New_Subp);
15322
15323 -- Set size of anonymous access type. If we have an access
15324 -- to an unconstrained array, this is a fat pointer, so it
15325 -- is sizes at twice addtress size.
15326
15327 if Is_Array_Type (Desig_Typ)
15328 and then not Is_Constrained (Desig_Typ)
15329 then
15330 Init_Size (Acc_Type, 2 * System_Address_Size);
15331
15332 -- Other cases use a thin pointer
15333
15334 else
15335 Init_Size (Acc_Type, System_Address_Size);
15336 end if;
15337
15338 -- Set remaining characterstics of anonymous access type
15339
15340 Init_Alignment (Acc_Type);
15341 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
15342
15343 Set_Etype (New_Id, Acc_Type);
15344 Set_Scope (New_Id, New_Subp);
15345
15346 -- Create a reference to it
15347
15348 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
15349
15350 else
15351 Set_Etype (New_Id, Id_Type);
15352 end if;
15353 end;
15354
15355 -- In Ada2012, a formal may have an incomplete type but the type
15356 -- derivation that inherits the primitive follows the full view.
15357
15358 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
15359 or else
15360 (Ekind (Id_Type) = E_Record_Type_With_Private
15361 and then Present (Full_View (Id_Type))
15362 and then
15363 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
15364 or else
15365 (Ada_Version >= Ada_2012
15366 and then Ekind (Id_Type) = E_Incomplete_Type
15367 and then Full_View (Id_Type) = Parent_Type)
15368 then
15369 -- Constraint checks on formals are generated during expansion,
15370 -- based on the signature of the original subprogram. The bounds
15371 -- of the derived type are not relevant, and thus we can use
15372 -- the base type for the formals. However, the return type may be
15373 -- used in a context that requires that the proper static bounds
15374 -- be used (a case statement, for example) and for those cases
15375 -- we must use the derived type (first subtype), not its base.
15376
15377 -- If the derived_type_definition has no constraints, we know that
15378 -- the derived type has the same constraints as the first subtype
15379 -- of the parent, and we can also use it rather than its base,
15380 -- which can lead to more efficient code.
15381
15382 if Etype (Id) = Parent_Type then
15383 if Is_Scalar_Type (Parent_Type)
15384 and then
15385 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
15386 then
15387 Set_Etype (New_Id, Derived_Type);
15388
15389 elsif Nkind (Par) = N_Full_Type_Declaration
15390 and then
15391 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
15392 and then
15393 Is_Entity_Name
15394 (Subtype_Indication (Type_Definition (Par)))
15395 then
15396 Set_Etype (New_Id, Derived_Type);
15397
15398 else
15399 Set_Etype (New_Id, Base_Type (Derived_Type));
15400 end if;
15401
15402 else
15403 Set_Etype (New_Id, Base_Type (Derived_Type));
15404 end if;
15405
15406 else
15407 Set_Etype (New_Id, Etype (Id));
15408 end if;
15409 end Replace_Type;
15410
15411 ----------------------
15412 -- Set_Derived_Name --
15413 ----------------------
15414
15415 procedure Set_Derived_Name is
15416 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
15417 begin
15418 if Nm = TSS_Null then
15419 Set_Chars (New_Subp, Chars (Parent_Subp));
15420 else
15421 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
15422 end if;
15423 end Set_Derived_Name;
15424
15425 -- Start of processing for Derive_Subprogram
15426
15427 begin
15428 New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
15429 Set_Ekind (New_Subp, Ekind (Parent_Subp));
15430
15431 -- Check whether the inherited subprogram is a private operation that
15432 -- should be inherited but not yet made visible. Such subprograms can
15433 -- become visible at a later point (e.g., the private part of a public
15434 -- child unit) via Declare_Inherited_Private_Subprograms. If the
15435 -- following predicate is true, then this is not such a private
15436 -- operation and the subprogram simply inherits the name of the parent
15437 -- subprogram. Note the special check for the names of controlled
15438 -- operations, which are currently exempted from being inherited with
15439 -- a hidden name because they must be findable for generation of
15440 -- implicit run-time calls.
15441
15442 if not Is_Hidden (Parent_Subp)
15443 or else Is_Internal (Parent_Subp)
15444 or else Is_Private_Overriding
15445 or else Is_Internal_Name (Chars (Parent_Subp))
15446 or else (Is_Controlled (Parent_Type)
15447 and then Nam_In (Chars (Parent_Subp), Name_Adjust,
15448 Name_Finalize,
15449 Name_Initialize))
15450 then
15451 Set_Derived_Name;
15452
15453 -- An inherited dispatching equality will be overridden by an internally
15454 -- generated one, or by an explicit one, so preserve its name and thus
15455 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
15456 -- private operation it may become invisible if the full view has
15457 -- progenitors, and the dispatch table will be malformed.
15458 -- We check that the type is limited to handle the anomalous declaration
15459 -- of Limited_Controlled, which is derived from a non-limited type, and
15460 -- which is handled specially elsewhere as well.
15461
15462 elsif Chars (Parent_Subp) = Name_Op_Eq
15463 and then Is_Dispatching_Operation (Parent_Subp)
15464 and then Etype (Parent_Subp) = Standard_Boolean
15465 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
15466 and then
15467 Etype (First_Formal (Parent_Subp)) =
15468 Etype (Next_Formal (First_Formal (Parent_Subp)))
15469 then
15470 Set_Derived_Name;
15471
15472 -- If parent is hidden, this can be a regular derivation if the
15473 -- parent is immediately visible in a non-instantiating context,
15474 -- or if we are in the private part of an instance. This test
15475 -- should still be refined ???
15476
15477 -- The test for In_Instance_Not_Visible avoids inheriting the derived
15478 -- operation as a non-visible operation in cases where the parent
15479 -- subprogram might not be visible now, but was visible within the
15480 -- original generic, so it would be wrong to make the inherited
15481 -- subprogram non-visible now. (Not clear if this test is fully
15482 -- correct; are there any cases where we should declare the inherited
15483 -- operation as not visible to avoid it being overridden, e.g., when
15484 -- the parent type is a generic actual with private primitives ???)
15485
15486 -- (they should be treated the same as other private inherited
15487 -- subprograms, but it's not clear how to do this cleanly). ???
15488
15489 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15490 and then Is_Immediately_Visible (Parent_Subp)
15491 and then not In_Instance)
15492 or else In_Instance_Not_Visible
15493 then
15494 Set_Derived_Name;
15495
15496 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
15497 -- overrides an interface primitive because interface primitives
15498 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
15499
15500 elsif Ada_Version >= Ada_2005
15501 and then Is_Dispatching_Operation (Parent_Subp)
15502 and then Present (Covered_Interface_Op (Parent_Subp))
15503 then
15504 Set_Derived_Name;
15505
15506 -- Otherwise, the type is inheriting a private operation, so enter it
15507 -- with a special name so it can't be overridden.
15508
15509 else
15510 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
15511 end if;
15512
15513 Set_Parent (New_Subp, Parent (Derived_Type));
15514
15515 if Present (Actual_Subp) then
15516 Replace_Type (Actual_Subp, New_Subp);
15517 else
15518 Replace_Type (Parent_Subp, New_Subp);
15519 end if;
15520
15521 Conditional_Delay (New_Subp, Parent_Subp);
15522
15523 -- If we are creating a renaming for a primitive operation of an
15524 -- actual of a generic derived type, we must examine the signature
15525 -- of the actual primitive, not that of the generic formal, which for
15526 -- example may be an interface. However the name and initial value
15527 -- of the inherited operation are those of the formal primitive.
15528
15529 Formal := First_Formal (Parent_Subp);
15530
15531 if Present (Actual_Subp) then
15532 Formal_Of_Actual := First_Formal (Actual_Subp);
15533 else
15534 Formal_Of_Actual := Empty;
15535 end if;
15536
15537 while Present (Formal) loop
15538 New_Formal := New_Copy (Formal);
15539
15540 -- Normally we do not go copying parents, but in the case of
15541 -- formals, we need to link up to the declaration (which is the
15542 -- parameter specification), and it is fine to link up to the
15543 -- original formal's parameter specification in this case.
15544
15545 Set_Parent (New_Formal, Parent (Formal));
15546 Append_Entity (New_Formal, New_Subp);
15547
15548 if Present (Formal_Of_Actual) then
15549 Replace_Type (Formal_Of_Actual, New_Formal);
15550 Next_Formal (Formal_Of_Actual);
15551 else
15552 Replace_Type (Formal, New_Formal);
15553 end if;
15554
15555 Next_Formal (Formal);
15556 end loop;
15557
15558 -- If this derivation corresponds to a tagged generic actual, then
15559 -- primitive operations rename those of the actual. Otherwise the
15560 -- primitive operations rename those of the parent type, If the parent
15561 -- renames an intrinsic operator, so does the new subprogram. We except
15562 -- concatenation, which is always properly typed, and does not get
15563 -- expanded as other intrinsic operations.
15564
15565 if No (Actual_Subp) then
15566 if Is_Intrinsic_Subprogram (Parent_Subp) then
15567 Set_Is_Intrinsic_Subprogram (New_Subp);
15568
15569 if Present (Alias (Parent_Subp))
15570 and then Chars (Parent_Subp) /= Name_Op_Concat
15571 then
15572 Set_Alias (New_Subp, Alias (Parent_Subp));
15573 else
15574 Set_Alias (New_Subp, Parent_Subp);
15575 end if;
15576
15577 else
15578 Set_Alias (New_Subp, Parent_Subp);
15579 end if;
15580
15581 else
15582 Set_Alias (New_Subp, Actual_Subp);
15583 end if;
15584
15585 -- Derived subprograms of a tagged type must inherit the convention
15586 -- of the parent subprogram (a requirement of AI-117). Derived
15587 -- subprograms of untagged types simply get convention Ada by default.
15588
15589 -- If the derived type is a tagged generic formal type with unknown
15590 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
15591
15592 -- However, if the type is derived from a generic formal, the further
15593 -- inherited subprogram has the convention of the non-generic ancestor.
15594 -- Otherwise there would be no way to override the operation.
15595 -- (This is subject to forthcoming ARG discussions).
15596
15597 if Is_Tagged_Type (Derived_Type) then
15598 if Is_Generic_Type (Derived_Type)
15599 and then Has_Unknown_Discriminants (Derived_Type)
15600 then
15601 Set_Convention (New_Subp, Convention_Intrinsic);
15602
15603 else
15604 if Is_Generic_Type (Parent_Type)
15605 and then Has_Unknown_Discriminants (Parent_Type)
15606 then
15607 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
15608 else
15609 Set_Convention (New_Subp, Convention (Parent_Subp));
15610 end if;
15611 end if;
15612 end if;
15613
15614 -- Predefined controlled operations retain their name even if the parent
15615 -- is hidden (see above), but they are not primitive operations if the
15616 -- ancestor is not visible, for example if the parent is a private
15617 -- extension completed with a controlled extension. Note that a full
15618 -- type that is controlled can break privacy: the flag Is_Controlled is
15619 -- set on both views of the type.
15620
15621 if Is_Controlled (Parent_Type)
15622 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
15623 Name_Adjust,
15624 Name_Finalize)
15625 and then Is_Hidden (Parent_Subp)
15626 and then not Is_Visibly_Controlled (Parent_Type)
15627 then
15628 Set_Is_Hidden (New_Subp);
15629 end if;
15630
15631 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
15632 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
15633
15634 if Ekind (Parent_Subp) = E_Procedure then
15635 Set_Is_Valued_Procedure
15636 (New_Subp, Is_Valued_Procedure (Parent_Subp));
15637 else
15638 Set_Has_Controlling_Result
15639 (New_Subp, Has_Controlling_Result (Parent_Subp));
15640 end if;
15641
15642 -- No_Return must be inherited properly. If this is overridden in the
15643 -- case of a dispatching operation, then a check is made in Sem_Disp
15644 -- that the overriding operation is also No_Return (no such check is
15645 -- required for the case of non-dispatching operation.
15646
15647 Set_No_Return (New_Subp, No_Return (Parent_Subp));
15648
15649 -- A derived function with a controlling result is abstract. If the
15650 -- Derived_Type is a nonabstract formal generic derived type, then
15651 -- inherited operations are not abstract: the required check is done at
15652 -- instantiation time. If the derivation is for a generic actual, the
15653 -- function is not abstract unless the actual is.
15654
15655 if Is_Generic_Type (Derived_Type)
15656 and then not Is_Abstract_Type (Derived_Type)
15657 then
15658 null;
15659
15660 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
15661 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
15662
15663 -- A subprogram subject to pragma Extensions_Visible with value False
15664 -- requires overriding if the subprogram has at least one controlling
15665 -- OUT parameter (SPARK RM 6.1.7(6)).
15666
15667 elsif Ada_Version >= Ada_2005
15668 and then (Is_Abstract_Subprogram (Alias (New_Subp))
15669 or else (Is_Tagged_Type (Derived_Type)
15670 and then Etype (New_Subp) = Derived_Type
15671 and then not Is_Null_Extension (Derived_Type))
15672 or else (Is_Tagged_Type (Derived_Type)
15673 and then Ekind (Etype (New_Subp)) =
15674 E_Anonymous_Access_Type
15675 and then Designated_Type (Etype (New_Subp)) =
15676 Derived_Type
15677 and then not Is_Null_Extension (Derived_Type))
15678 or else (Comes_From_Source (Alias (New_Subp))
15679 and then Is_EVF_Procedure (Alias (New_Subp))))
15680 and then No (Actual_Subp)
15681 then
15682 if not Is_Tagged_Type (Derived_Type)
15683 or else Is_Abstract_Type (Derived_Type)
15684 or else Is_Abstract_Subprogram (Alias (New_Subp))
15685 then
15686 Set_Is_Abstract_Subprogram (New_Subp);
15687 else
15688 Set_Requires_Overriding (New_Subp);
15689 end if;
15690
15691 elsif Ada_Version < Ada_2005
15692 and then (Is_Abstract_Subprogram (Alias (New_Subp))
15693 or else (Is_Tagged_Type (Derived_Type)
15694 and then Etype (New_Subp) = Derived_Type
15695 and then No (Actual_Subp)))
15696 then
15697 Set_Is_Abstract_Subprogram (New_Subp);
15698
15699 -- AI05-0097 : an inherited operation that dispatches on result is
15700 -- abstract if the derived type is abstract, even if the parent type
15701 -- is concrete and the derived type is a null extension.
15702
15703 elsif Has_Controlling_Result (Alias (New_Subp))
15704 and then Is_Abstract_Type (Etype (New_Subp))
15705 then
15706 Set_Is_Abstract_Subprogram (New_Subp);
15707
15708 -- Finally, if the parent type is abstract we must verify that all
15709 -- inherited operations are either non-abstract or overridden, or that
15710 -- the derived type itself is abstract (this check is performed at the
15711 -- end of a package declaration, in Check_Abstract_Overriding). A
15712 -- private overriding in the parent type will not be visible in the
15713 -- derivation if we are not in an inner package or in a child unit of
15714 -- the parent type, in which case the abstractness of the inherited
15715 -- operation is carried to the new subprogram.
15716
15717 elsif Is_Abstract_Type (Parent_Type)
15718 and then not In_Open_Scopes (Scope (Parent_Type))
15719 and then Is_Private_Overriding
15720 and then Is_Abstract_Subprogram (Visible_Subp)
15721 then
15722 if No (Actual_Subp) then
15723 Set_Alias (New_Subp, Visible_Subp);
15724 Set_Is_Abstract_Subprogram (New_Subp, True);
15725
15726 else
15727 -- If this is a derivation for an instance of a formal derived
15728 -- type, abstractness comes from the primitive operation of the
15729 -- actual, not from the operation inherited from the ancestor.
15730
15731 Set_Is_Abstract_Subprogram
15732 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
15733 end if;
15734 end if;
15735
15736 New_Overloaded_Entity (New_Subp, Derived_Type);
15737
15738 -- Ada RM 6.1.1 (15): If a subprogram inherits nonconforming class-wide
15739 -- preconditions and the derived type is abstract, the derived operation
15740 -- is abstract as well if parent subprogram is not abstract or null.
15741
15742 if Is_Abstract_Type (Derived_Type)
15743 and then Has_Non_Trivial_Precondition (Parent_Subp)
15744 and then Present (Interfaces (Derived_Type))
15745 then
15746
15747 -- Add useful attributes of subprogram before the freeze point,
15748 -- in case freezing is delayed or there are previous errors.
15749
15750 Set_Is_Dispatching_Operation (New_Subp);
15751
15752 declare
15753 Iface_Prim : constant Entity_Id := Covered_Interface_Op (New_Subp);
15754
15755 begin
15756 if Present (Iface_Prim)
15757 and then Has_Non_Trivial_Precondition (Iface_Prim)
15758 then
15759 Set_Is_Abstract_Subprogram (New_Subp);
15760 end if;
15761 end;
15762 end if;
15763
15764 -- Check for case of a derived subprogram for the instantiation of a
15765 -- formal derived tagged type, if so mark the subprogram as dispatching
15766 -- and inherit the dispatching attributes of the actual subprogram. The
15767 -- derived subprogram is effectively renaming of the actual subprogram,
15768 -- so it needs to have the same attributes as the actual.
15769
15770 if Present (Actual_Subp)
15771 and then Is_Dispatching_Operation (Actual_Subp)
15772 then
15773 Set_Is_Dispatching_Operation (New_Subp);
15774
15775 if Present (DTC_Entity (Actual_Subp)) then
15776 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
15777 Set_DT_Position_Value (New_Subp, DT_Position (Actual_Subp));
15778 end if;
15779 end if;
15780
15781 -- Indicate that a derived subprogram does not require a body and that
15782 -- it does not require processing of default expressions.
15783
15784 Set_Has_Completion (New_Subp);
15785 Set_Default_Expressions_Processed (New_Subp);
15786
15787 if Ekind (New_Subp) = E_Function then
15788 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
15789 end if;
15790 end Derive_Subprogram;
15791
15792 ------------------------
15793 -- Derive_Subprograms --
15794 ------------------------
15795
15796 procedure Derive_Subprograms
15797 (Parent_Type : Entity_Id;
15798 Derived_Type : Entity_Id;
15799 Generic_Actual : Entity_Id := Empty)
15800 is
15801 Op_List : constant Elist_Id :=
15802 Collect_Primitive_Operations (Parent_Type);
15803
15804 function Check_Derived_Type return Boolean;
15805 -- Check that all the entities derived from Parent_Type are found in
15806 -- the list of primitives of Derived_Type exactly in the same order.
15807
15808 procedure Derive_Interface_Subprogram
15809 (New_Subp : out Entity_Id;
15810 Subp : Entity_Id;
15811 Actual_Subp : Entity_Id);
15812 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
15813 -- (which is an interface primitive). If Generic_Actual is present then
15814 -- Actual_Subp is the actual subprogram corresponding with the generic
15815 -- subprogram Subp.
15816
15817 ------------------------
15818 -- Check_Derived_Type --
15819 ------------------------
15820
15821 function Check_Derived_Type return Boolean is
15822 E : Entity_Id;
15823 Elmt : Elmt_Id;
15824 List : Elist_Id;
15825 New_Subp : Entity_Id;
15826 Op_Elmt : Elmt_Id;
15827 Subp : Entity_Id;
15828
15829 begin
15830 -- Traverse list of entities in the current scope searching for
15831 -- an incomplete type whose full-view is derived type.
15832
15833 E := First_Entity (Scope (Derived_Type));
15834 while Present (E) and then E /= Derived_Type loop
15835 if Ekind (E) = E_Incomplete_Type
15836 and then Present (Full_View (E))
15837 and then Full_View (E) = Derived_Type
15838 then
15839 -- Disable this test if Derived_Type completes an incomplete
15840 -- type because in such case more primitives can be added
15841 -- later to the list of primitives of Derived_Type by routine
15842 -- Process_Incomplete_Dependents
15843
15844 return True;
15845 end if;
15846
15847 E := Next_Entity (E);
15848 end loop;
15849
15850 List := Collect_Primitive_Operations (Derived_Type);
15851 Elmt := First_Elmt (List);
15852
15853 Op_Elmt := First_Elmt (Op_List);
15854 while Present (Op_Elmt) loop
15855 Subp := Node (Op_Elmt);
15856 New_Subp := Node (Elmt);
15857
15858 -- At this early stage Derived_Type has no entities with attribute
15859 -- Interface_Alias. In addition, such primitives are always
15860 -- located at the end of the list of primitives of Parent_Type.
15861 -- Therefore, if found we can safely stop processing pending
15862 -- entities.
15863
15864 exit when Present (Interface_Alias (Subp));
15865
15866 -- Handle hidden entities
15867
15868 if not Is_Predefined_Dispatching_Operation (Subp)
15869 and then Is_Hidden (Subp)
15870 then
15871 if Present (New_Subp)
15872 and then Primitive_Names_Match (Subp, New_Subp)
15873 then
15874 Next_Elmt (Elmt);
15875 end if;
15876
15877 else
15878 if not Present (New_Subp)
15879 or else Ekind (Subp) /= Ekind (New_Subp)
15880 or else not Primitive_Names_Match (Subp, New_Subp)
15881 then
15882 return False;
15883 end if;
15884
15885 Next_Elmt (Elmt);
15886 end if;
15887
15888 Next_Elmt (Op_Elmt);
15889 end loop;
15890
15891 return True;
15892 end Check_Derived_Type;
15893
15894 ---------------------------------
15895 -- Derive_Interface_Subprogram --
15896 ---------------------------------
15897
15898 procedure Derive_Interface_Subprogram
15899 (New_Subp : out Entity_Id;
15900 Subp : Entity_Id;
15901 Actual_Subp : Entity_Id)
15902 is
15903 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
15904 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
15905
15906 begin
15907 pragma Assert (Is_Interface (Iface_Type));
15908
15909 Derive_Subprogram
15910 (New_Subp => New_Subp,
15911 Parent_Subp => Iface_Subp,
15912 Derived_Type => Derived_Type,
15913 Parent_Type => Iface_Type,
15914 Actual_Subp => Actual_Subp);
15915
15916 -- Given that this new interface entity corresponds with a primitive
15917 -- of the parent that was not overridden we must leave it associated
15918 -- with its parent primitive to ensure that it will share the same
15919 -- dispatch table slot when overridden. We must set the Alias to Subp
15920 -- (instead of Iface_Subp), and we must fix Is_Abstract_Subprogram
15921 -- (in case we inherited Subp from Iface_Type via a nonabstract
15922 -- generic formal type).
15923
15924 if No (Actual_Subp) then
15925 Set_Alias (New_Subp, Subp);
15926
15927 declare
15928 T : Entity_Id := Find_Dispatching_Type (Subp);
15929 begin
15930 while Etype (T) /= T loop
15931 if Is_Generic_Type (T) and then not Is_Abstract_Type (T) then
15932 Set_Is_Abstract_Subprogram (New_Subp, False);
15933 exit;
15934 end if;
15935
15936 T := Etype (T);
15937 end loop;
15938 end;
15939
15940 -- For instantiations this is not needed since the previous call to
15941 -- Derive_Subprogram leaves the entity well decorated.
15942
15943 else
15944 pragma Assert (Alias (New_Subp) = Actual_Subp);
15945 null;
15946 end if;
15947 end Derive_Interface_Subprogram;
15948
15949 -- Local variables
15950
15951 Alias_Subp : Entity_Id;
15952 Act_List : Elist_Id;
15953 Act_Elmt : Elmt_Id;
15954 Act_Subp : Entity_Id := Empty;
15955 Elmt : Elmt_Id;
15956 Need_Search : Boolean := False;
15957 New_Subp : Entity_Id := Empty;
15958 Parent_Base : Entity_Id;
15959 Subp : Entity_Id;
15960
15961 -- Start of processing for Derive_Subprograms
15962
15963 begin
15964 if Ekind (Parent_Type) = E_Record_Type_With_Private
15965 and then Has_Discriminants (Parent_Type)
15966 and then Present (Full_View (Parent_Type))
15967 then
15968 Parent_Base := Full_View (Parent_Type);
15969 else
15970 Parent_Base := Parent_Type;
15971 end if;
15972
15973 if Present (Generic_Actual) then
15974 Act_List := Collect_Primitive_Operations (Generic_Actual);
15975 Act_Elmt := First_Elmt (Act_List);
15976 else
15977 Act_List := No_Elist;
15978 Act_Elmt := No_Elmt;
15979 end if;
15980
15981 -- Derive primitives inherited from the parent. Note that if the generic
15982 -- actual is present, this is not really a type derivation, it is a
15983 -- completion within an instance.
15984
15985 -- Case 1: Derived_Type does not implement interfaces
15986
15987 if not Is_Tagged_Type (Derived_Type)
15988 or else (not Has_Interfaces (Derived_Type)
15989 and then not (Present (Generic_Actual)
15990 and then Has_Interfaces (Generic_Actual)))
15991 then
15992 Elmt := First_Elmt (Op_List);
15993 while Present (Elmt) loop
15994 Subp := Node (Elmt);
15995
15996 -- Literals are derived earlier in the process of building the
15997 -- derived type, and are skipped here.
15998
15999 if Ekind (Subp) = E_Enumeration_Literal then
16000 null;
16001
16002 -- The actual is a direct descendant and the common primitive
16003 -- operations appear in the same order.
16004
16005 -- If the generic parent type is present, the derived type is an
16006 -- instance of a formal derived type, and within the instance its
16007 -- operations are those of the actual. We derive from the formal
16008 -- type but make the inherited operations aliases of the
16009 -- corresponding operations of the actual.
16010
16011 else
16012 pragma Assert (No (Node (Act_Elmt))
16013 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
16014 and then
16015 Type_Conformant
16016 (Subp, Node (Act_Elmt),
16017 Skip_Controlling_Formals => True)));
16018
16019 Derive_Subprogram
16020 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
16021
16022 if Present (Act_Elmt) then
16023 Next_Elmt (Act_Elmt);
16024 end if;
16025 end if;
16026
16027 Next_Elmt (Elmt);
16028 end loop;
16029
16030 -- Case 2: Derived_Type implements interfaces
16031
16032 else
16033 -- If the parent type has no predefined primitives we remove
16034 -- predefined primitives from the list of primitives of generic
16035 -- actual to simplify the complexity of this algorithm.
16036
16037 if Present (Generic_Actual) then
16038 declare
16039 Has_Predefined_Primitives : Boolean := False;
16040
16041 begin
16042 -- Check if the parent type has predefined primitives
16043
16044 Elmt := First_Elmt (Op_List);
16045 while Present (Elmt) loop
16046 Subp := Node (Elmt);
16047
16048 if Is_Predefined_Dispatching_Operation (Subp)
16049 and then not Comes_From_Source (Ultimate_Alias (Subp))
16050 then
16051 Has_Predefined_Primitives := True;
16052 exit;
16053 end if;
16054
16055 Next_Elmt (Elmt);
16056 end loop;
16057
16058 -- Remove predefined primitives of Generic_Actual. We must use
16059 -- an auxiliary list because in case of tagged types the value
16060 -- returned by Collect_Primitive_Operations is the value stored
16061 -- in its Primitive_Operations attribute (and we don't want to
16062 -- modify its current contents).
16063
16064 if not Has_Predefined_Primitives then
16065 declare
16066 Aux_List : constant Elist_Id := New_Elmt_List;
16067
16068 begin
16069 Elmt := First_Elmt (Act_List);
16070 while Present (Elmt) loop
16071 Subp := Node (Elmt);
16072
16073 if not Is_Predefined_Dispatching_Operation (Subp)
16074 or else Comes_From_Source (Subp)
16075 then
16076 Append_Elmt (Subp, Aux_List);
16077 end if;
16078
16079 Next_Elmt (Elmt);
16080 end loop;
16081
16082 Act_List := Aux_List;
16083 end;
16084 end if;
16085
16086 Act_Elmt := First_Elmt (Act_List);
16087 Act_Subp := Node (Act_Elmt);
16088 end;
16089 end if;
16090
16091 -- Stage 1: If the generic actual is not present we derive the
16092 -- primitives inherited from the parent type. If the generic parent
16093 -- type is present, the derived type is an instance of a formal
16094 -- derived type, and within the instance its operations are those of
16095 -- the actual. We derive from the formal type but make the inherited
16096 -- operations aliases of the corresponding operations of the actual.
16097
16098 Elmt := First_Elmt (Op_List);
16099 while Present (Elmt) loop
16100 Subp := Node (Elmt);
16101 Alias_Subp := Ultimate_Alias (Subp);
16102
16103 -- Do not derive internal entities of the parent that link
16104 -- interface primitives with their covering primitive. These
16105 -- entities will be added to this type when frozen.
16106
16107 if Present (Interface_Alias (Subp)) then
16108 goto Continue;
16109 end if;
16110
16111 -- If the generic actual is present find the corresponding
16112 -- operation in the generic actual. If the parent type is a
16113 -- direct ancestor of the derived type then, even if it is an
16114 -- interface, the operations are inherited from the primary
16115 -- dispatch table and are in the proper order. If we detect here
16116 -- that primitives are not in the same order we traverse the list
16117 -- of primitive operations of the actual to find the one that
16118 -- implements the interface primitive.
16119
16120 if Need_Search
16121 or else
16122 (Present (Generic_Actual)
16123 and then Present (Act_Subp)
16124 and then not
16125 (Primitive_Names_Match (Subp, Act_Subp)
16126 and then
16127 Type_Conformant (Subp, Act_Subp,
16128 Skip_Controlling_Formals => True)))
16129 then
16130 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
16131 Use_Full_View => True));
16132
16133 -- Remember that we need searching for all pending primitives
16134
16135 Need_Search := True;
16136
16137 -- Handle entities associated with interface primitives
16138
16139 if Present (Alias_Subp)
16140 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
16141 and then not Is_Predefined_Dispatching_Operation (Subp)
16142 then
16143 -- Search for the primitive in the homonym chain
16144
16145 Act_Subp :=
16146 Find_Primitive_Covering_Interface
16147 (Tagged_Type => Generic_Actual,
16148 Iface_Prim => Alias_Subp);
16149
16150 -- Previous search may not locate primitives covering
16151 -- interfaces defined in generics units or instantiations.
16152 -- (it fails if the covering primitive has formals whose
16153 -- type is also defined in generics or instantiations).
16154 -- In such case we search in the list of primitives of the
16155 -- generic actual for the internal entity that links the
16156 -- interface primitive and the covering primitive.
16157
16158 if No (Act_Subp)
16159 and then Is_Generic_Type (Parent_Type)
16160 then
16161 -- This code has been designed to handle only generic
16162 -- formals that implement interfaces that are defined
16163 -- in a generic unit or instantiation. If this code is
16164 -- needed for other cases we must review it because
16165 -- (given that it relies on Original_Location to locate
16166 -- the primitive of Generic_Actual that covers the
16167 -- interface) it could leave linked through attribute
16168 -- Alias entities of unrelated instantiations).
16169
16170 pragma Assert
16171 (Is_Generic_Unit
16172 (Scope (Find_Dispatching_Type (Alias_Subp)))
16173 or else
16174 Instantiation_Depth
16175 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
16176
16177 declare
16178 Iface_Prim_Loc : constant Source_Ptr :=
16179 Original_Location (Sloc (Alias_Subp));
16180
16181 Elmt : Elmt_Id;
16182 Prim : Entity_Id;
16183
16184 begin
16185 Elmt :=
16186 First_Elmt (Primitive_Operations (Generic_Actual));
16187
16188 Search : while Present (Elmt) loop
16189 Prim := Node (Elmt);
16190
16191 if Present (Interface_Alias (Prim))
16192 and then Original_Location
16193 (Sloc (Interface_Alias (Prim))) =
16194 Iface_Prim_Loc
16195 then
16196 Act_Subp := Alias (Prim);
16197 exit Search;
16198 end if;
16199
16200 Next_Elmt (Elmt);
16201 end loop Search;
16202 end;
16203 end if;
16204
16205 pragma Assert (Present (Act_Subp)
16206 or else Is_Abstract_Type (Generic_Actual)
16207 or else Serious_Errors_Detected > 0);
16208
16209 -- Handle predefined primitives plus the rest of user-defined
16210 -- primitives
16211
16212 else
16213 Act_Elmt := First_Elmt (Act_List);
16214 while Present (Act_Elmt) loop
16215 Act_Subp := Node (Act_Elmt);
16216
16217 exit when Primitive_Names_Match (Subp, Act_Subp)
16218 and then Type_Conformant
16219 (Subp, Act_Subp,
16220 Skip_Controlling_Formals => True)
16221 and then No (Interface_Alias (Act_Subp));
16222
16223 Next_Elmt (Act_Elmt);
16224 end loop;
16225
16226 if No (Act_Elmt) then
16227 Act_Subp := Empty;
16228 end if;
16229 end if;
16230 end if;
16231
16232 -- Case 1: If the parent is a limited interface then it has the
16233 -- predefined primitives of synchronized interfaces. However, the
16234 -- actual type may be a non-limited type and hence it does not
16235 -- have such primitives.
16236
16237 if Present (Generic_Actual)
16238 and then not Present (Act_Subp)
16239 and then Is_Limited_Interface (Parent_Base)
16240 and then Is_Predefined_Interface_Primitive (Subp)
16241 then
16242 null;
16243
16244 -- Case 2: Inherit entities associated with interfaces that were
16245 -- not covered by the parent type. We exclude here null interface
16246 -- primitives because they do not need special management.
16247
16248 -- We also exclude interface operations that are renamings. If the
16249 -- subprogram is an explicit renaming of an interface primitive,
16250 -- it is a regular primitive operation, and the presence of its
16251 -- alias is not relevant: it has to be derived like any other
16252 -- primitive.
16253
16254 elsif Present (Alias (Subp))
16255 and then Nkind (Unit_Declaration_Node (Subp)) /=
16256 N_Subprogram_Renaming_Declaration
16257 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
16258 and then not
16259 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
16260 and then Null_Present (Parent (Alias_Subp)))
16261 then
16262 -- If this is an abstract private type then we transfer the
16263 -- derivation of the interface primitive from the partial view
16264 -- to the full view. This is safe because all the interfaces
16265 -- must be visible in the partial view. Done to avoid adding
16266 -- a new interface derivation to the private part of the
16267 -- enclosing package; otherwise this new derivation would be
16268 -- decorated as hidden when the analysis of the enclosing
16269 -- package completes.
16270
16271 if Is_Abstract_Type (Derived_Type)
16272 and then In_Private_Part (Current_Scope)
16273 and then Has_Private_Declaration (Derived_Type)
16274 then
16275 declare
16276 Partial_View : Entity_Id;
16277 Elmt : Elmt_Id;
16278 Ent : Entity_Id;
16279
16280 begin
16281 Partial_View := First_Entity (Current_Scope);
16282 loop
16283 exit when No (Partial_View)
16284 or else (Has_Private_Declaration (Partial_View)
16285 and then
16286 Full_View (Partial_View) = Derived_Type);
16287
16288 Next_Entity (Partial_View);
16289 end loop;
16290
16291 -- If the partial view was not found then the source code
16292 -- has errors and the derivation is not needed.
16293
16294 if Present (Partial_View) then
16295 Elmt :=
16296 First_Elmt (Primitive_Operations (Partial_View));
16297 while Present (Elmt) loop
16298 Ent := Node (Elmt);
16299
16300 if Present (Alias (Ent))
16301 and then Ultimate_Alias (Ent) = Alias (Subp)
16302 then
16303 Append_Elmt
16304 (Ent, Primitive_Operations (Derived_Type));
16305 exit;
16306 end if;
16307
16308 Next_Elmt (Elmt);
16309 end loop;
16310
16311 -- If the interface primitive was not found in the
16312 -- partial view then this interface primitive was
16313 -- overridden. We add a derivation to activate in
16314 -- Derive_Progenitor_Subprograms the machinery to
16315 -- search for it.
16316
16317 if No (Elmt) then
16318 Derive_Interface_Subprogram
16319 (New_Subp => New_Subp,
16320 Subp => Subp,
16321 Actual_Subp => Act_Subp);
16322 end if;
16323 end if;
16324 end;
16325 else
16326 Derive_Interface_Subprogram
16327 (New_Subp => New_Subp,
16328 Subp => Subp,
16329 Actual_Subp => Act_Subp);
16330 end if;
16331
16332 -- Case 3: Common derivation
16333
16334 else
16335 Derive_Subprogram
16336 (New_Subp => New_Subp,
16337 Parent_Subp => Subp,
16338 Derived_Type => Derived_Type,
16339 Parent_Type => Parent_Base,
16340 Actual_Subp => Act_Subp);
16341 end if;
16342
16343 -- No need to update Act_Elm if we must search for the
16344 -- corresponding operation in the generic actual
16345
16346 if not Need_Search
16347 and then Present (Act_Elmt)
16348 then
16349 Next_Elmt (Act_Elmt);
16350 Act_Subp := Node (Act_Elmt);
16351 end if;
16352
16353 <<Continue>>
16354 Next_Elmt (Elmt);
16355 end loop;
16356
16357 -- Inherit additional operations from progenitors. If the derived
16358 -- type is a generic actual, there are not new primitive operations
16359 -- for the type because it has those of the actual, and therefore
16360 -- nothing needs to be done. The renamings generated above are not
16361 -- primitive operations, and their purpose is simply to make the
16362 -- proper operations visible within an instantiation.
16363
16364 if No (Generic_Actual) then
16365 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
16366 end if;
16367 end if;
16368
16369 -- Final check: Direct descendants must have their primitives in the
16370 -- same order. We exclude from this test untagged types and instances
16371 -- of formal derived types. We skip this test if we have already
16372 -- reported serious errors in the sources.
16373
16374 pragma Assert (not Is_Tagged_Type (Derived_Type)
16375 or else Present (Generic_Actual)
16376 or else Serious_Errors_Detected > 0
16377 or else Check_Derived_Type);
16378 end Derive_Subprograms;
16379
16380 --------------------------------
16381 -- Derived_Standard_Character --
16382 --------------------------------
16383
16384 procedure Derived_Standard_Character
16385 (N : Node_Id;
16386 Parent_Type : Entity_Id;
16387 Derived_Type : Entity_Id)
16388 is
16389 Loc : constant Source_Ptr := Sloc (N);
16390 Def : constant Node_Id := Type_Definition (N);
16391 Indic : constant Node_Id := Subtype_Indication (Def);
16392 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
16393 Implicit_Base : constant Entity_Id :=
16394 Create_Itype
16395 (E_Enumeration_Type, N, Derived_Type, 'B');
16396
16397 Lo : Node_Id;
16398 Hi : Node_Id;
16399
16400 begin
16401 Discard_Node (Process_Subtype (Indic, N));
16402
16403 Set_Etype (Implicit_Base, Parent_Base);
16404 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
16405 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
16406
16407 Set_Is_Character_Type (Implicit_Base, True);
16408 Set_Has_Delayed_Freeze (Implicit_Base);
16409
16410 -- The bounds of the implicit base are the bounds of the parent base.
16411 -- Note that their type is the parent base.
16412
16413 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
16414 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
16415
16416 Set_Scalar_Range (Implicit_Base,
16417 Make_Range (Loc,
16418 Low_Bound => Lo,
16419 High_Bound => Hi));
16420
16421 Conditional_Delay (Derived_Type, Parent_Type);
16422
16423 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
16424 Set_Etype (Derived_Type, Implicit_Base);
16425 Set_Size_Info (Derived_Type, Parent_Type);
16426
16427 if Unknown_RM_Size (Derived_Type) then
16428 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
16429 end if;
16430
16431 Set_Is_Character_Type (Derived_Type, True);
16432
16433 if Nkind (Indic) /= N_Subtype_Indication then
16434
16435 -- If no explicit constraint, the bounds are those
16436 -- of the parent type.
16437
16438 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
16439 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
16440 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
16441 end if;
16442
16443 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
16444
16445 -- Because the implicit base is used in the conversion of the bounds, we
16446 -- have to freeze it now. This is similar to what is done for numeric
16447 -- types, and it equally suspicious, but otherwise a nonstatic bound
16448 -- will have a reference to an unfrozen type, which is rejected by Gigi
16449 -- (???). This requires specific care for definition of stream
16450 -- attributes. For details, see comments at the end of
16451 -- Build_Derived_Numeric_Type.
16452
16453 Freeze_Before (N, Implicit_Base);
16454 end Derived_Standard_Character;
16455
16456 ------------------------------
16457 -- Derived_Type_Declaration --
16458 ------------------------------
16459
16460 procedure Derived_Type_Declaration
16461 (T : Entity_Id;
16462 N : Node_Id;
16463 Is_Completion : Boolean)
16464 is
16465 Parent_Type : Entity_Id;
16466
16467 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
16468 -- Check whether the parent type is a generic formal, or derives
16469 -- directly or indirectly from one.
16470
16471 ------------------------
16472 -- Comes_From_Generic --
16473 ------------------------
16474
16475 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
16476 begin
16477 if Is_Generic_Type (Typ) then
16478 return True;
16479
16480 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
16481 return True;
16482
16483 elsif Is_Private_Type (Typ)
16484 and then Present (Full_View (Typ))
16485 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
16486 then
16487 return True;
16488
16489 elsif Is_Generic_Actual_Type (Typ) then
16490 return True;
16491
16492 else
16493 return False;
16494 end if;
16495 end Comes_From_Generic;
16496
16497 -- Local variables
16498
16499 Def : constant Node_Id := Type_Definition (N);
16500 Iface_Def : Node_Id;
16501 Indic : constant Node_Id := Subtype_Indication (Def);
16502 Extension : constant Node_Id := Record_Extension_Part (Def);
16503 Parent_Node : Node_Id;
16504 Taggd : Boolean;
16505
16506 -- Start of processing for Derived_Type_Declaration
16507
16508 begin
16509 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
16510
16511 if SPARK_Mode = On
16512 and then Is_Tagged_Type (Parent_Type)
16513 then
16514 declare
16515 Partial_View : constant Entity_Id :=
16516 Incomplete_Or_Partial_View (Parent_Type);
16517
16518 begin
16519 -- If the partial view was not found then the parent type is not
16520 -- a private type. Otherwise check if the partial view is a tagged
16521 -- private type.
16522
16523 if Present (Partial_View)
16524 and then Is_Private_Type (Partial_View)
16525 and then not Is_Tagged_Type (Partial_View)
16526 then
16527 Error_Msg_NE
16528 ("cannot derive from & declared as untagged private "
16529 & "(SPARK RM 3.4(1))", N, Partial_View);
16530 end if;
16531 end;
16532 end if;
16533
16534 -- Ada 2005 (AI-251): In case of interface derivation check that the
16535 -- parent is also an interface.
16536
16537 if Interface_Present (Def) then
16538 Check_SPARK_05_Restriction ("interface is not allowed", Def);
16539
16540 if not Is_Interface (Parent_Type) then
16541 Diagnose_Interface (Indic, Parent_Type);
16542
16543 else
16544 Parent_Node := Parent (Base_Type (Parent_Type));
16545 Iface_Def := Type_Definition (Parent_Node);
16546
16547 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
16548 -- other limited interfaces.
16549
16550 if Limited_Present (Def) then
16551 if Limited_Present (Iface_Def) then
16552 null;
16553
16554 elsif Protected_Present (Iface_Def) then
16555 Error_Msg_NE
16556 ("descendant of & must be declared as a protected "
16557 & "interface", N, Parent_Type);
16558
16559 elsif Synchronized_Present (Iface_Def) then
16560 Error_Msg_NE
16561 ("descendant of & must be declared as a synchronized "
16562 & "interface", N, Parent_Type);
16563
16564 elsif Task_Present (Iface_Def) then
16565 Error_Msg_NE
16566 ("descendant of & must be declared as a task interface",
16567 N, Parent_Type);
16568
16569 else
16570 Error_Msg_N
16571 ("(Ada 2005) limited interface cannot inherit from "
16572 & "non-limited interface", Indic);
16573 end if;
16574
16575 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
16576 -- from non-limited or limited interfaces.
16577
16578 elsif not Protected_Present (Def)
16579 and then not Synchronized_Present (Def)
16580 and then not Task_Present (Def)
16581 then
16582 if Limited_Present (Iface_Def) then
16583 null;
16584
16585 elsif Protected_Present (Iface_Def) then
16586 Error_Msg_NE
16587 ("descendant of & must be declared as a protected "
16588 & "interface", N, Parent_Type);
16589
16590 elsif Synchronized_Present (Iface_Def) then
16591 Error_Msg_NE
16592 ("descendant of & must be declared as a synchronized "
16593 & "interface", N, Parent_Type);
16594
16595 elsif Task_Present (Iface_Def) then
16596 Error_Msg_NE
16597 ("descendant of & must be declared as a task interface",
16598 N, Parent_Type);
16599 else
16600 null;
16601 end if;
16602 end if;
16603 end if;
16604 end if;
16605
16606 if Is_Tagged_Type (Parent_Type)
16607 and then Is_Concurrent_Type (Parent_Type)
16608 and then not Is_Interface (Parent_Type)
16609 then
16610 Error_Msg_N
16611 ("parent type of a record extension cannot be a synchronized "
16612 & "tagged type (RM 3.9.1 (3/1))", N);
16613 Set_Etype (T, Any_Type);
16614 return;
16615 end if;
16616
16617 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
16618 -- interfaces
16619
16620 if Is_Tagged_Type (Parent_Type)
16621 and then Is_Non_Empty_List (Interface_List (Def))
16622 then
16623 declare
16624 Intf : Node_Id;
16625 T : Entity_Id;
16626
16627 begin
16628 Intf := First (Interface_List (Def));
16629 while Present (Intf) loop
16630 T := Find_Type_Of_Subtype_Indic (Intf);
16631
16632 if not Is_Interface (T) then
16633 Diagnose_Interface (Intf, T);
16634
16635 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
16636 -- a limited type from having a nonlimited progenitor.
16637
16638 elsif (Limited_Present (Def)
16639 or else (not Is_Interface (Parent_Type)
16640 and then Is_Limited_Type (Parent_Type)))
16641 and then not Is_Limited_Interface (T)
16642 then
16643 Error_Msg_NE
16644 ("progenitor interface& of limited type must be limited",
16645 N, T);
16646 end if;
16647
16648 Next (Intf);
16649 end loop;
16650 end;
16651 end if;
16652
16653 if Parent_Type = Any_Type
16654 or else Etype (Parent_Type) = Any_Type
16655 or else (Is_Class_Wide_Type (Parent_Type)
16656 and then Etype (Parent_Type) = T)
16657 then
16658 -- If Parent_Type is undefined or illegal, make new type into a
16659 -- subtype of Any_Type, and set a few attributes to prevent cascaded
16660 -- errors. If this is a self-definition, emit error now.
16661
16662 if T = Parent_Type or else T = Etype (Parent_Type) then
16663 Error_Msg_N ("type cannot be used in its own definition", Indic);
16664 end if;
16665
16666 Set_Ekind (T, Ekind (Parent_Type));
16667 Set_Etype (T, Any_Type);
16668 Set_Scalar_Range (T, Scalar_Range (Any_Type));
16669
16670 if Is_Tagged_Type (T)
16671 and then Is_Record_Type (T)
16672 then
16673 Set_Direct_Primitive_Operations (T, New_Elmt_List);
16674 end if;
16675
16676 return;
16677 end if;
16678
16679 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
16680 -- an interface is special because the list of interfaces in the full
16681 -- view can be given in any order. For example:
16682
16683 -- type A is interface;
16684 -- type B is interface and A;
16685 -- type D is new B with private;
16686 -- private
16687 -- type D is new A and B with null record; -- 1 --
16688
16689 -- In this case we perform the following transformation of -1-:
16690
16691 -- type D is new B and A with null record;
16692
16693 -- If the parent of the full-view covers the parent of the partial-view
16694 -- we have two possible cases:
16695
16696 -- 1) They have the same parent
16697 -- 2) The parent of the full-view implements some further interfaces
16698
16699 -- In both cases we do not need to perform the transformation. In the
16700 -- first case the source program is correct and the transformation is
16701 -- not needed; in the second case the source program does not fulfill
16702 -- the no-hidden interfaces rule (AI-396) and the error will be reported
16703 -- later.
16704
16705 -- This transformation not only simplifies the rest of the analysis of
16706 -- this type declaration but also simplifies the correct generation of
16707 -- the object layout to the expander.
16708
16709 if In_Private_Part (Current_Scope)
16710 and then Is_Interface (Parent_Type)
16711 then
16712 declare
16713 Iface : Node_Id;
16714 Partial_View : Entity_Id;
16715 Partial_View_Parent : Entity_Id;
16716 New_Iface : Node_Id;
16717
16718 begin
16719 -- Look for the associated private type declaration
16720
16721 Partial_View := Incomplete_Or_Partial_View (T);
16722
16723 -- If the partial view was not found then the source code has
16724 -- errors and the transformation is not needed.
16725
16726 if Present (Partial_View) then
16727 Partial_View_Parent := Etype (Partial_View);
16728
16729 -- If the parent of the full-view covers the parent of the
16730 -- partial-view we have nothing else to do.
16731
16732 if Interface_Present_In_Ancestor
16733 (Parent_Type, Partial_View_Parent)
16734 then
16735 null;
16736
16737 -- Traverse the list of interfaces of the full-view to look
16738 -- for the parent of the partial-view and perform the tree
16739 -- transformation.
16740
16741 else
16742 Iface := First (Interface_List (Def));
16743 while Present (Iface) loop
16744 if Etype (Iface) = Etype (Partial_View) then
16745 Rewrite (Subtype_Indication (Def),
16746 New_Copy (Subtype_Indication
16747 (Parent (Partial_View))));
16748
16749 New_Iface :=
16750 Make_Identifier (Sloc (N), Chars (Parent_Type));
16751 Append (New_Iface, Interface_List (Def));
16752
16753 -- Analyze the transformed code
16754
16755 Derived_Type_Declaration (T, N, Is_Completion);
16756 return;
16757 end if;
16758
16759 Next (Iface);
16760 end loop;
16761 end if;
16762 end if;
16763 end;
16764 end if;
16765
16766 -- Only composite types other than array types are allowed to have
16767 -- discriminants.
16768
16769 if Present (Discriminant_Specifications (N)) then
16770 if (Is_Elementary_Type (Parent_Type)
16771 or else
16772 Is_Array_Type (Parent_Type))
16773 and then not Error_Posted (N)
16774 then
16775 Error_Msg_N
16776 ("elementary or array type cannot have discriminants",
16777 Defining_Identifier (First (Discriminant_Specifications (N))));
16778
16779 -- Unset Has_Discriminants flag to prevent cascaded errors, but
16780 -- only if we are not already processing a malformed syntax tree.
16781
16782 if Is_Type (T) then
16783 Set_Has_Discriminants (T, False);
16784 end if;
16785
16786 -- The type is allowed to have discriminants
16787
16788 else
16789 Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
16790 end if;
16791 end if;
16792
16793 -- In Ada 83, a derived type defined in a package specification cannot
16794 -- be used for further derivation until the end of its visible part.
16795 -- Note that derivation in the private part of the package is allowed.
16796
16797 if Ada_Version = Ada_83
16798 and then Is_Derived_Type (Parent_Type)
16799 and then In_Visible_Part (Scope (Parent_Type))
16800 then
16801 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
16802 Error_Msg_N
16803 ("(Ada 83): premature use of type for derivation", Indic);
16804 end if;
16805 end if;
16806
16807 -- Check for early use of incomplete or private type
16808
16809 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
16810 Error_Msg_N ("premature derivation of incomplete type", Indic);
16811 return;
16812
16813 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
16814 and then not Comes_From_Generic (Parent_Type))
16815 or else Has_Private_Component (Parent_Type)
16816 then
16817 -- The ancestor type of a formal type can be incomplete, in which
16818 -- case only the operations of the partial view are available in the
16819 -- generic. Subsequent checks may be required when the full view is
16820 -- analyzed to verify that a derivation from a tagged type has an
16821 -- extension.
16822
16823 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
16824 null;
16825
16826 elsif No (Underlying_Type (Parent_Type))
16827 or else Has_Private_Component (Parent_Type)
16828 then
16829 Error_Msg_N
16830 ("premature derivation of derived or private type", Indic);
16831
16832 -- Flag the type itself as being in error, this prevents some
16833 -- nasty problems with subsequent uses of the malformed type.
16834
16835 Set_Error_Posted (T);
16836
16837 -- Check that within the immediate scope of an untagged partial
16838 -- view it's illegal to derive from the partial view if the
16839 -- full view is tagged. (7.3(7))
16840
16841 -- We verify that the Parent_Type is a partial view by checking
16842 -- that it is not a Full_Type_Declaration (i.e. a private type or
16843 -- private extension declaration), to distinguish a partial view
16844 -- from a derivation from a private type which also appears as
16845 -- E_Private_Type. If the parent base type is not declared in an
16846 -- enclosing scope there is no need to check.
16847
16848 elsif Present (Full_View (Parent_Type))
16849 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
16850 and then not Is_Tagged_Type (Parent_Type)
16851 and then Is_Tagged_Type (Full_View (Parent_Type))
16852 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
16853 then
16854 Error_Msg_N
16855 ("premature derivation from type with tagged full view",
16856 Indic);
16857 end if;
16858 end if;
16859
16860 -- Check that form of derivation is appropriate
16861
16862 Taggd := Is_Tagged_Type (Parent_Type);
16863
16864 -- Set the parent type to the class-wide type's specific type in this
16865 -- case to prevent cascading errors
16866
16867 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
16868 Error_Msg_N ("parent type must not be a class-wide type", Indic);
16869 Set_Etype (T, Etype (Parent_Type));
16870 return;
16871 end if;
16872
16873 if Present (Extension) and then not Taggd then
16874 Error_Msg_N
16875 ("type derived from untagged type cannot have extension", Indic);
16876
16877 elsif No (Extension) and then Taggd then
16878
16879 -- If this declaration is within a private part (or body) of a
16880 -- generic instantiation then the derivation is allowed (the parent
16881 -- type can only appear tagged in this case if it's a generic actual
16882 -- type, since it would otherwise have been rejected in the analysis
16883 -- of the generic template).
16884
16885 if not Is_Generic_Actual_Type (Parent_Type)
16886 or else In_Visible_Part (Scope (Parent_Type))
16887 then
16888 if Is_Class_Wide_Type (Parent_Type) then
16889 Error_Msg_N
16890 ("parent type must not be a class-wide type", Indic);
16891
16892 -- Use specific type to prevent cascaded errors.
16893
16894 Parent_Type := Etype (Parent_Type);
16895
16896 else
16897 Error_Msg_N
16898 ("type derived from tagged type must have extension", Indic);
16899 end if;
16900 end if;
16901 end if;
16902
16903 -- AI-443: Synchronized formal derived types require a private
16904 -- extension. There is no point in checking the ancestor type or
16905 -- the progenitors since the construct is wrong to begin with.
16906
16907 if Ada_Version >= Ada_2005
16908 and then Is_Generic_Type (T)
16909 and then Present (Original_Node (N))
16910 then
16911 declare
16912 Decl : constant Node_Id := Original_Node (N);
16913
16914 begin
16915 if Nkind (Decl) = N_Formal_Type_Declaration
16916 and then Nkind (Formal_Type_Definition (Decl)) =
16917 N_Formal_Derived_Type_Definition
16918 and then Synchronized_Present (Formal_Type_Definition (Decl))
16919 and then No (Extension)
16920
16921 -- Avoid emitting a duplicate error message
16922
16923 and then not Error_Posted (Indic)
16924 then
16925 Error_Msg_N
16926 ("synchronized derived type must have extension", N);
16927 end if;
16928 end;
16929 end if;
16930
16931 if Null_Exclusion_Present (Def)
16932 and then not Is_Access_Type (Parent_Type)
16933 then
16934 Error_Msg_N ("null exclusion can only apply to an access type", N);
16935 end if;
16936
16937 -- Avoid deriving parent primitives of underlying record views
16938
16939 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
16940 Derive_Subps => not Is_Underlying_Record_View (T));
16941
16942 -- AI-419: The parent type of an explicitly limited derived type must
16943 -- be a limited type or a limited interface.
16944
16945 if Limited_Present (Def) then
16946 Set_Is_Limited_Record (T);
16947
16948 if Is_Interface (T) then
16949 Set_Is_Limited_Interface (T);
16950 end if;
16951
16952 if not Is_Limited_Type (Parent_Type)
16953 and then
16954 (not Is_Interface (Parent_Type)
16955 or else not Is_Limited_Interface (Parent_Type))
16956 then
16957 -- AI05-0096: a derivation in the private part of an instance is
16958 -- legal if the generic formal is untagged limited, and the actual
16959 -- is non-limited.
16960
16961 if Is_Generic_Actual_Type (Parent_Type)
16962 and then In_Private_Part (Current_Scope)
16963 and then
16964 not Is_Tagged_Type
16965 (Generic_Parent_Type (Parent (Parent_Type)))
16966 then
16967 null;
16968
16969 else
16970 Error_Msg_NE
16971 ("parent type& of limited type must be limited",
16972 N, Parent_Type);
16973 end if;
16974 end if;
16975 end if;
16976
16977 -- In SPARK, there are no derived type definitions other than type
16978 -- extensions of tagged record types.
16979
16980 if No (Extension) then
16981 Check_SPARK_05_Restriction
16982 ("derived type is not allowed", Original_Node (N));
16983 end if;
16984 end Derived_Type_Declaration;
16985
16986 ------------------------
16987 -- Diagnose_Interface --
16988 ------------------------
16989
16990 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
16991 begin
16992 if not Is_Interface (E) and then E /= Any_Type then
16993 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
16994 end if;
16995 end Diagnose_Interface;
16996
16997 ----------------------------------
16998 -- Enumeration_Type_Declaration --
16999 ----------------------------------
17000
17001 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
17002 Ev : Uint;
17003 L : Node_Id;
17004 R_Node : Node_Id;
17005 B_Node : Node_Id;
17006
17007 begin
17008 -- Create identifier node representing lower bound
17009
17010 B_Node := New_Node (N_Identifier, Sloc (Def));
17011 L := First (Literals (Def));
17012 Set_Chars (B_Node, Chars (L));
17013 Set_Entity (B_Node, L);
17014 Set_Etype (B_Node, T);
17015 Set_Is_Static_Expression (B_Node, True);
17016
17017 R_Node := New_Node (N_Range, Sloc (Def));
17018 Set_Low_Bound (R_Node, B_Node);
17019
17020 Set_Ekind (T, E_Enumeration_Type);
17021 Set_First_Literal (T, L);
17022 Set_Etype (T, T);
17023 Set_Is_Constrained (T);
17024
17025 Ev := Uint_0;
17026
17027 -- Loop through literals of enumeration type setting pos and rep values
17028 -- except that if the Ekind is already set, then it means the literal
17029 -- was already constructed (case of a derived type declaration and we
17030 -- should not disturb the Pos and Rep values.
17031
17032 while Present (L) loop
17033 if Ekind (L) /= E_Enumeration_Literal then
17034 Set_Ekind (L, E_Enumeration_Literal);
17035 Set_Enumeration_Pos (L, Ev);
17036 Set_Enumeration_Rep (L, Ev);
17037 Set_Is_Known_Valid (L, True);
17038 end if;
17039
17040 Set_Etype (L, T);
17041 New_Overloaded_Entity (L);
17042 Generate_Definition (L);
17043 Set_Convention (L, Convention_Intrinsic);
17044
17045 -- Case of character literal
17046
17047 if Nkind (L) = N_Defining_Character_Literal then
17048 Set_Is_Character_Type (T, True);
17049
17050 -- Check violation of No_Wide_Characters
17051
17052 if Restriction_Check_Required (No_Wide_Characters) then
17053 Get_Name_String (Chars (L));
17054
17055 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
17056 Check_Restriction (No_Wide_Characters, L);
17057 end if;
17058 end if;
17059 end if;
17060
17061 Ev := Ev + 1;
17062 Next (L);
17063 end loop;
17064
17065 -- Now create a node representing upper bound
17066
17067 B_Node := New_Node (N_Identifier, Sloc (Def));
17068 Set_Chars (B_Node, Chars (Last (Literals (Def))));
17069 Set_Entity (B_Node, Last (Literals (Def)));
17070 Set_Etype (B_Node, T);
17071 Set_Is_Static_Expression (B_Node, True);
17072
17073 Set_High_Bound (R_Node, B_Node);
17074
17075 -- Initialize various fields of the type. Some of this information
17076 -- may be overwritten later through rep.clauses.
17077
17078 Set_Scalar_Range (T, R_Node);
17079 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
17080 Set_Enum_Esize (T);
17081 Set_Enum_Pos_To_Rep (T, Empty);
17082
17083 -- Set Discard_Names if configuration pragma set, or if there is
17084 -- a parameterless pragma in the current declarative region
17085
17086 if Global_Discard_Names or else Discard_Names (Scope (T)) then
17087 Set_Discard_Names (T);
17088 end if;
17089
17090 -- Process end label if there is one
17091
17092 if Present (Def) then
17093 Process_End_Label (Def, 'e', T);
17094 end if;
17095 end Enumeration_Type_Declaration;
17096
17097 ---------------------------------
17098 -- Expand_To_Stored_Constraint --
17099 ---------------------------------
17100
17101 function Expand_To_Stored_Constraint
17102 (Typ : Entity_Id;
17103 Constraint : Elist_Id) return Elist_Id
17104 is
17105 Explicitly_Discriminated_Type : Entity_Id;
17106 Expansion : Elist_Id;
17107 Discriminant : Entity_Id;
17108
17109 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
17110 -- Find the nearest type that actually specifies discriminants
17111
17112 ---------------------------------
17113 -- Type_With_Explicit_Discrims --
17114 ---------------------------------
17115
17116 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
17117 Typ : constant E := Base_Type (Id);
17118
17119 begin
17120 if Ekind (Typ) in Incomplete_Or_Private_Kind then
17121 if Present (Full_View (Typ)) then
17122 return Type_With_Explicit_Discrims (Full_View (Typ));
17123 end if;
17124
17125 else
17126 if Has_Discriminants (Typ) then
17127 return Typ;
17128 end if;
17129 end if;
17130
17131 if Etype (Typ) = Typ then
17132 return Empty;
17133 elsif Has_Discriminants (Typ) then
17134 return Typ;
17135 else
17136 return Type_With_Explicit_Discrims (Etype (Typ));
17137 end if;
17138
17139 end Type_With_Explicit_Discrims;
17140
17141 -- Start of processing for Expand_To_Stored_Constraint
17142
17143 begin
17144 if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then
17145 return No_Elist;
17146 end if;
17147
17148 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
17149
17150 if No (Explicitly_Discriminated_Type) then
17151 return No_Elist;
17152 end if;
17153
17154 Expansion := New_Elmt_List;
17155
17156 Discriminant :=
17157 First_Stored_Discriminant (Explicitly_Discriminated_Type);
17158 while Present (Discriminant) loop
17159 Append_Elmt
17160 (Get_Discriminant_Value
17161 (Discriminant, Explicitly_Discriminated_Type, Constraint),
17162 To => Expansion);
17163 Next_Stored_Discriminant (Discriminant);
17164 end loop;
17165
17166 return Expansion;
17167 end Expand_To_Stored_Constraint;
17168
17169 ---------------------------
17170 -- Find_Hidden_Interface --
17171 ---------------------------
17172
17173 function Find_Hidden_Interface
17174 (Src : Elist_Id;
17175 Dest : Elist_Id) return Entity_Id
17176 is
17177 Iface : Entity_Id;
17178 Iface_Elmt : Elmt_Id;
17179
17180 begin
17181 if Present (Src) and then Present (Dest) then
17182 Iface_Elmt := First_Elmt (Src);
17183 while Present (Iface_Elmt) loop
17184 Iface := Node (Iface_Elmt);
17185
17186 if Is_Interface (Iface)
17187 and then not Contain_Interface (Iface, Dest)
17188 then
17189 return Iface;
17190 end if;
17191
17192 Next_Elmt (Iface_Elmt);
17193 end loop;
17194 end if;
17195
17196 return Empty;
17197 end Find_Hidden_Interface;
17198
17199 --------------------
17200 -- Find_Type_Name --
17201 --------------------
17202
17203 function Find_Type_Name (N : Node_Id) return Entity_Id is
17204 Id : constant Entity_Id := Defining_Identifier (N);
17205 New_Id : Entity_Id;
17206 Prev : Entity_Id;
17207 Prev_Par : Node_Id;
17208
17209 procedure Check_Duplicate_Aspects;
17210 -- Check that aspects specified in a completion have not been specified
17211 -- already in the partial view.
17212
17213 procedure Tag_Mismatch;
17214 -- Diagnose a tagged partial view whose full view is untagged. We post
17215 -- the message on the full view, with a reference to the previous
17216 -- partial view. The partial view can be private or incomplete, and
17217 -- these are handled in a different manner, so we determine the position
17218 -- of the error message from the respective slocs of both.
17219
17220 -----------------------------
17221 -- Check_Duplicate_Aspects --
17222 -----------------------------
17223
17224 procedure Check_Duplicate_Aspects is
17225 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id;
17226 -- Return the corresponding aspect of the partial view which matches
17227 -- the aspect id of Asp. Return Empty is no such aspect exists.
17228
17229 -----------------------------
17230 -- Get_Partial_View_Aspect --
17231 -----------------------------
17232
17233 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id is
17234 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp);
17235 Prev_Asps : constant List_Id := Aspect_Specifications (Prev_Par);
17236 Prev_Asp : Node_Id;
17237
17238 begin
17239 if Present (Prev_Asps) then
17240 Prev_Asp := First (Prev_Asps);
17241 while Present (Prev_Asp) loop
17242 if Get_Aspect_Id (Prev_Asp) = Asp_Id then
17243 return Prev_Asp;
17244 end if;
17245
17246 Next (Prev_Asp);
17247 end loop;
17248 end if;
17249
17250 return Empty;
17251 end Get_Partial_View_Aspect;
17252
17253 -- Local variables
17254
17255 Full_Asps : constant List_Id := Aspect_Specifications (N);
17256 Full_Asp : Node_Id;
17257 Part_Asp : Node_Id;
17258
17259 -- Start of processing for Check_Duplicate_Aspects
17260
17261 begin
17262 if Present (Full_Asps) then
17263 Full_Asp := First (Full_Asps);
17264 while Present (Full_Asp) loop
17265 Part_Asp := Get_Partial_View_Aspect (Full_Asp);
17266
17267 -- An aspect and its class-wide counterpart are two distinct
17268 -- aspects and may apply to both views of an entity.
17269
17270 if Present (Part_Asp)
17271 and then Class_Present (Part_Asp) = Class_Present (Full_Asp)
17272 then
17273 Error_Msg_N
17274 ("aspect already specified in private declaration",
17275 Full_Asp);
17276
17277 Remove (Full_Asp);
17278 return;
17279 end if;
17280
17281 if Has_Discriminants (Prev)
17282 and then not Has_Unknown_Discriminants (Prev)
17283 and then Get_Aspect_Id (Full_Asp) =
17284 Aspect_Implicit_Dereference
17285 then
17286 Error_Msg_N
17287 ("cannot specify aspect if partial view has known "
17288 & "discriminants", Full_Asp);
17289 end if;
17290
17291 Next (Full_Asp);
17292 end loop;
17293 end if;
17294 end Check_Duplicate_Aspects;
17295
17296 ------------------
17297 -- Tag_Mismatch --
17298 ------------------
17299
17300 procedure Tag_Mismatch is
17301 begin
17302 if Sloc (Prev) < Sloc (Id) then
17303 if Ada_Version >= Ada_2012
17304 and then Nkind (N) = N_Private_Type_Declaration
17305 then
17306 Error_Msg_NE
17307 ("declaration of private } must be a tagged type ", Id, Prev);
17308 else
17309 Error_Msg_NE
17310 ("full declaration of } must be a tagged type ", Id, Prev);
17311 end if;
17312
17313 else
17314 if Ada_Version >= Ada_2012
17315 and then Nkind (N) = N_Private_Type_Declaration
17316 then
17317 Error_Msg_NE
17318 ("declaration of private } must be a tagged type ", Prev, Id);
17319 else
17320 Error_Msg_NE
17321 ("full declaration of } must be a tagged type ", Prev, Id);
17322 end if;
17323 end if;
17324 end Tag_Mismatch;
17325
17326 -- Start of processing for Find_Type_Name
17327
17328 begin
17329 -- Find incomplete declaration, if one was given
17330
17331 Prev := Current_Entity_In_Scope (Id);
17332
17333 -- New type declaration
17334
17335 if No (Prev) then
17336 Enter_Name (Id);
17337 return Id;
17338
17339 -- Previous declaration exists
17340
17341 else
17342 Prev_Par := Parent (Prev);
17343
17344 -- Error if not incomplete/private case except if previous
17345 -- declaration is implicit, etc. Enter_Name will emit error if
17346 -- appropriate.
17347
17348 if not Is_Incomplete_Or_Private_Type (Prev) then
17349 Enter_Name (Id);
17350 New_Id := Id;
17351
17352 -- Check invalid completion of private or incomplete type
17353
17354 elsif not Nkind_In (N, N_Full_Type_Declaration,
17355 N_Task_Type_Declaration,
17356 N_Protected_Type_Declaration)
17357 and then
17358 (Ada_Version < Ada_2012
17359 or else not Is_Incomplete_Type (Prev)
17360 or else not Nkind_In (N, N_Private_Type_Declaration,
17361 N_Private_Extension_Declaration))
17362 then
17363 -- Completion must be a full type declarations (RM 7.3(4))
17364
17365 Error_Msg_Sloc := Sloc (Prev);
17366 Error_Msg_NE ("invalid completion of }", Id, Prev);
17367
17368 -- Set scope of Id to avoid cascaded errors. Entity is never
17369 -- examined again, except when saving globals in generics.
17370
17371 Set_Scope (Id, Current_Scope);
17372 New_Id := Id;
17373
17374 -- If this is a repeated incomplete declaration, no further
17375 -- checks are possible.
17376
17377 if Nkind (N) = N_Incomplete_Type_Declaration then
17378 return Prev;
17379 end if;
17380
17381 -- Case of full declaration of incomplete type
17382
17383 elsif Ekind (Prev) = E_Incomplete_Type
17384 and then (Ada_Version < Ada_2012
17385 or else No (Full_View (Prev))
17386 or else not Is_Private_Type (Full_View (Prev)))
17387 then
17388 -- Indicate that the incomplete declaration has a matching full
17389 -- declaration. The defining occurrence of the incomplete
17390 -- declaration remains the visible one, and the procedure
17391 -- Get_Full_View dereferences it whenever the type is used.
17392
17393 if Present (Full_View (Prev)) then
17394 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
17395 end if;
17396
17397 Set_Full_View (Prev, Id);
17398 Append_Entity (Id, Current_Scope);
17399 Set_Is_Public (Id, Is_Public (Prev));
17400 Set_Is_Internal (Id);
17401 New_Id := Prev;
17402
17403 -- If the incomplete view is tagged, a class_wide type has been
17404 -- created already. Use it for the private type as well, in order
17405 -- to prevent multiple incompatible class-wide types that may be
17406 -- created for self-referential anonymous access components.
17407
17408 if Is_Tagged_Type (Prev)
17409 and then Present (Class_Wide_Type (Prev))
17410 then
17411 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
17412 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
17413
17414 -- Type of the class-wide type is the current Id. Previously
17415 -- this was not done for private declarations because of order-
17416 -- of-elaboration issues in the back end, but gigi now handles
17417 -- this properly.
17418
17419 Set_Etype (Class_Wide_Type (Id), Id);
17420 end if;
17421
17422 -- Case of full declaration of private type
17423
17424 else
17425 -- If the private type was a completion of an incomplete type then
17426 -- update Prev to reference the private type
17427
17428 if Ada_Version >= Ada_2012
17429 and then Ekind (Prev) = E_Incomplete_Type
17430 and then Present (Full_View (Prev))
17431 and then Is_Private_Type (Full_View (Prev))
17432 then
17433 Prev := Full_View (Prev);
17434 Prev_Par := Parent (Prev);
17435 end if;
17436
17437 if Nkind (N) = N_Full_Type_Declaration
17438 and then Nkind_In
17439 (Type_Definition (N), N_Record_Definition,
17440 N_Derived_Type_Definition)
17441 and then Interface_Present (Type_Definition (N))
17442 then
17443 Error_Msg_N
17444 ("completion of private type cannot be an interface", N);
17445 end if;
17446
17447 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
17448 if Etype (Prev) /= Prev then
17449
17450 -- Prev is a private subtype or a derived type, and needs
17451 -- no completion.
17452
17453 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
17454 New_Id := Id;
17455
17456 elsif Ekind (Prev) = E_Private_Type
17457 and then Nkind_In (N, N_Task_Type_Declaration,
17458 N_Protected_Type_Declaration)
17459 then
17460 Error_Msg_N
17461 ("completion of nonlimited type cannot be limited", N);
17462
17463 elsif Ekind (Prev) = E_Record_Type_With_Private
17464 and then Nkind_In (N, N_Task_Type_Declaration,
17465 N_Protected_Type_Declaration)
17466 then
17467 if not Is_Limited_Record (Prev) then
17468 Error_Msg_N
17469 ("completion of nonlimited type cannot be limited", N);
17470
17471 elsif No (Interface_List (N)) then
17472 Error_Msg_N
17473 ("completion of tagged private type must be tagged",
17474 N);
17475 end if;
17476 end if;
17477
17478 -- Ada 2005 (AI-251): Private extension declaration of a task
17479 -- type or a protected type. This case arises when covering
17480 -- interface types.
17481
17482 elsif Nkind_In (N, N_Task_Type_Declaration,
17483 N_Protected_Type_Declaration)
17484 then
17485 null;
17486
17487 elsif Nkind (N) /= N_Full_Type_Declaration
17488 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
17489 then
17490 Error_Msg_N
17491 ("full view of private extension must be an extension", N);
17492
17493 elsif not (Abstract_Present (Parent (Prev)))
17494 and then Abstract_Present (Type_Definition (N))
17495 then
17496 Error_Msg_N
17497 ("full view of non-abstract extension cannot be abstract", N);
17498 end if;
17499
17500 if not In_Private_Part (Current_Scope) then
17501 Error_Msg_N
17502 ("declaration of full view must appear in private part", N);
17503 end if;
17504
17505 if Ada_Version >= Ada_2012 then
17506 Check_Duplicate_Aspects;
17507 end if;
17508
17509 Copy_And_Swap (Prev, Id);
17510 Set_Has_Private_Declaration (Prev);
17511 Set_Has_Private_Declaration (Id);
17512
17513 -- AI12-0133: Indicate whether we have a partial view with
17514 -- unknown discriminants, in which case initialization of objects
17515 -- of the type do not receive an invariant check.
17516
17517 Set_Partial_View_Has_Unknown_Discr
17518 (Prev, Has_Unknown_Discriminants (Id));
17519
17520 -- Preserve aspect and iterator flags that may have been set on
17521 -- the partial view.
17522
17523 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
17524 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
17525
17526 -- If no error, propagate freeze_node from private to full view.
17527 -- It may have been generated for an early operational item.
17528
17529 if Present (Freeze_Node (Id))
17530 and then Serious_Errors_Detected = 0
17531 and then No (Full_View (Id))
17532 then
17533 Set_Freeze_Node (Prev, Freeze_Node (Id));
17534 Set_Freeze_Node (Id, Empty);
17535 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
17536 end if;
17537
17538 Set_Full_View (Id, Prev);
17539 New_Id := Prev;
17540 end if;
17541
17542 -- Verify that full declaration conforms to partial one
17543
17544 if Is_Incomplete_Or_Private_Type (Prev)
17545 and then Present (Discriminant_Specifications (Prev_Par))
17546 then
17547 if Present (Discriminant_Specifications (N)) then
17548 if Ekind (Prev) = E_Incomplete_Type then
17549 Check_Discriminant_Conformance (N, Prev, Prev);
17550 else
17551 Check_Discriminant_Conformance (N, Prev, Id);
17552 end if;
17553
17554 else
17555 Error_Msg_N
17556 ("missing discriminants in full type declaration", N);
17557
17558 -- To avoid cascaded errors on subsequent use, share the
17559 -- discriminants of the partial view.
17560
17561 Set_Discriminant_Specifications (N,
17562 Discriminant_Specifications (Prev_Par));
17563 end if;
17564 end if;
17565
17566 -- A prior untagged partial view can have an associated class-wide
17567 -- type due to use of the class attribute, and in this case the full
17568 -- type must also be tagged. This Ada 95 usage is deprecated in favor
17569 -- of incomplete tagged declarations, but we check for it.
17570
17571 if Is_Type (Prev)
17572 and then (Is_Tagged_Type (Prev)
17573 or else Present (Class_Wide_Type (Prev)))
17574 then
17575 -- Ada 2012 (AI05-0162): A private type may be the completion of
17576 -- an incomplete type.
17577
17578 if Ada_Version >= Ada_2012
17579 and then Is_Incomplete_Type (Prev)
17580 and then Nkind_In (N, N_Private_Type_Declaration,
17581 N_Private_Extension_Declaration)
17582 then
17583 -- No need to check private extensions since they are tagged
17584
17585 if Nkind (N) = N_Private_Type_Declaration
17586 and then not Tagged_Present (N)
17587 then
17588 Tag_Mismatch;
17589 end if;
17590
17591 -- The full declaration is either a tagged type (including
17592 -- a synchronized type that implements interfaces) or a
17593 -- type extension, otherwise this is an error.
17594
17595 elsif Nkind_In (N, N_Task_Type_Declaration,
17596 N_Protected_Type_Declaration)
17597 then
17598 if No (Interface_List (N)) and then not Error_Posted (N) then
17599 Tag_Mismatch;
17600 end if;
17601
17602 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
17603
17604 -- Indicate that the previous declaration (tagged incomplete
17605 -- or private declaration) requires the same on the full one.
17606
17607 if not Tagged_Present (Type_Definition (N)) then
17608 Tag_Mismatch;
17609 Set_Is_Tagged_Type (Id);
17610 end if;
17611
17612 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
17613 if No (Record_Extension_Part (Type_Definition (N))) then
17614 Error_Msg_NE
17615 ("full declaration of } must be a record extension",
17616 Prev, Id);
17617
17618 -- Set some attributes to produce a usable full view
17619
17620 Set_Is_Tagged_Type (Id);
17621 end if;
17622
17623 else
17624 Tag_Mismatch;
17625 end if;
17626 end if;
17627
17628 if Present (Prev)
17629 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
17630 and then Present (Premature_Use (Parent (Prev)))
17631 then
17632 Error_Msg_Sloc := Sloc (N);
17633 Error_Msg_N
17634 ("\full declaration #", Premature_Use (Parent (Prev)));
17635 end if;
17636
17637 return New_Id;
17638 end if;
17639 end Find_Type_Name;
17640
17641 -------------------------
17642 -- Find_Type_Of_Object --
17643 -------------------------
17644
17645 function Find_Type_Of_Object
17646 (Obj_Def : Node_Id;
17647 Related_Nod : Node_Id) return Entity_Id
17648 is
17649 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
17650 P : Node_Id := Parent (Obj_Def);
17651 T : Entity_Id;
17652 Nam : Name_Id;
17653
17654 begin
17655 -- If the parent is a component_definition node we climb to the
17656 -- component_declaration node
17657
17658 if Nkind (P) = N_Component_Definition then
17659 P := Parent (P);
17660 end if;
17661
17662 -- Case of an anonymous array subtype
17663
17664 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
17665 N_Unconstrained_Array_Definition)
17666 then
17667 T := Empty;
17668 Array_Type_Declaration (T, Obj_Def);
17669
17670 -- Create an explicit subtype whenever possible
17671
17672 elsif Nkind (P) /= N_Component_Declaration
17673 and then Def_Kind = N_Subtype_Indication
17674 then
17675 -- Base name of subtype on object name, which will be unique in
17676 -- the current scope.
17677
17678 -- If this is a duplicate declaration, return base type, to avoid
17679 -- generating duplicate anonymous types.
17680
17681 if Error_Posted (P) then
17682 Analyze (Subtype_Mark (Obj_Def));
17683 return Entity (Subtype_Mark (Obj_Def));
17684 end if;
17685
17686 Nam :=
17687 New_External_Name
17688 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
17689
17690 T := Make_Defining_Identifier (Sloc (P), Nam);
17691
17692 Insert_Action (Obj_Def,
17693 Make_Subtype_Declaration (Sloc (P),
17694 Defining_Identifier => T,
17695 Subtype_Indication => Relocate_Node (Obj_Def)));
17696
17697 -- This subtype may need freezing, and this will not be done
17698 -- automatically if the object declaration is not in declarative
17699 -- part. Since this is an object declaration, the type cannot always
17700 -- be frozen here. Deferred constants do not freeze their type
17701 -- (which often enough will be private).
17702
17703 if Nkind (P) = N_Object_Declaration
17704 and then Constant_Present (P)
17705 and then No (Expression (P))
17706 then
17707 null;
17708
17709 -- Here we freeze the base type of object type to catch premature use
17710 -- of discriminated private type without a full view.
17711
17712 else
17713 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
17714 end if;
17715
17716 -- Ada 2005 AI-406: the object definition in an object declaration
17717 -- can be an access definition.
17718
17719 elsif Def_Kind = N_Access_Definition then
17720 T := Access_Definition (Related_Nod, Obj_Def);
17721
17722 Set_Is_Local_Anonymous_Access
17723 (T,
17724 V => (Ada_Version < Ada_2012)
17725 or else (Nkind (P) /= N_Object_Declaration)
17726 or else Is_Library_Level_Entity (Defining_Identifier (P)));
17727
17728 -- Otherwise, the object definition is just a subtype_mark
17729
17730 else
17731 T := Process_Subtype (Obj_Def, Related_Nod);
17732
17733 -- If expansion is disabled an object definition that is an aggregate
17734 -- will not get expanded and may lead to scoping problems in the back
17735 -- end, if the object is referenced in an inner scope. In that case
17736 -- create an itype reference for the object definition now. This
17737 -- may be redundant in some cases, but harmless.
17738
17739 if Is_Itype (T)
17740 and then Nkind (Related_Nod) = N_Object_Declaration
17741 and then ASIS_Mode
17742 then
17743 Build_Itype_Reference (T, Related_Nod);
17744 end if;
17745 end if;
17746
17747 return T;
17748 end Find_Type_Of_Object;
17749
17750 --------------------------------
17751 -- Find_Type_Of_Subtype_Indic --
17752 --------------------------------
17753
17754 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
17755 Typ : Entity_Id;
17756
17757 begin
17758 -- Case of subtype mark with a constraint
17759
17760 if Nkind (S) = N_Subtype_Indication then
17761 Find_Type (Subtype_Mark (S));
17762 Typ := Entity (Subtype_Mark (S));
17763
17764 if not
17765 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
17766 then
17767 Error_Msg_N
17768 ("incorrect constraint for this kind of type", Constraint (S));
17769 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
17770 end if;
17771
17772 -- Otherwise we have a subtype mark without a constraint
17773
17774 elsif Error_Posted (S) then
17775 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
17776 return Any_Type;
17777
17778 else
17779 Find_Type (S);
17780 Typ := Entity (S);
17781 end if;
17782
17783 -- Check No_Wide_Characters restriction
17784
17785 Check_Wide_Character_Restriction (Typ, S);
17786
17787 return Typ;
17788 end Find_Type_Of_Subtype_Indic;
17789
17790 -------------------------------------
17791 -- Floating_Point_Type_Declaration --
17792 -------------------------------------
17793
17794 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
17795 Digs : constant Node_Id := Digits_Expression (Def);
17796 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
17797 Digs_Val : Uint;
17798 Base_Typ : Entity_Id;
17799 Implicit_Base : Entity_Id;
17800 Bound : Node_Id;
17801
17802 function Can_Derive_From (E : Entity_Id) return Boolean;
17803 -- Find if given digits value, and possibly a specified range, allows
17804 -- derivation from specified type
17805
17806 function Find_Base_Type return Entity_Id;
17807 -- Find a predefined base type that Def can derive from, or generate
17808 -- an error and substitute Long_Long_Float if none exists.
17809
17810 ---------------------
17811 -- Can_Derive_From --
17812 ---------------------
17813
17814 function Can_Derive_From (E : Entity_Id) return Boolean is
17815 Spec : constant Entity_Id := Real_Range_Specification (Def);
17816
17817 begin
17818 -- Check specified "digits" constraint
17819
17820 if Digs_Val > Digits_Value (E) then
17821 return False;
17822 end if;
17823
17824 -- Check for matching range, if specified
17825
17826 if Present (Spec) then
17827 if Expr_Value_R (Type_Low_Bound (E)) >
17828 Expr_Value_R (Low_Bound (Spec))
17829 then
17830 return False;
17831 end if;
17832
17833 if Expr_Value_R (Type_High_Bound (E)) <
17834 Expr_Value_R (High_Bound (Spec))
17835 then
17836 return False;
17837 end if;
17838 end if;
17839
17840 return True;
17841 end Can_Derive_From;
17842
17843 --------------------
17844 -- Find_Base_Type --
17845 --------------------
17846
17847 function Find_Base_Type return Entity_Id is
17848 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
17849
17850 begin
17851 -- Iterate over the predefined types in order, returning the first
17852 -- one that Def can derive from.
17853
17854 while Present (Choice) loop
17855 if Can_Derive_From (Node (Choice)) then
17856 return Node (Choice);
17857 end if;
17858
17859 Next_Elmt (Choice);
17860 end loop;
17861
17862 -- If we can't derive from any existing type, use Long_Long_Float
17863 -- and give appropriate message explaining the problem.
17864
17865 if Digs_Val > Max_Digs_Val then
17866 -- It might be the case that there is a type with the requested
17867 -- range, just not the combination of digits and range.
17868
17869 Error_Msg_N
17870 ("no predefined type has requested range and precision",
17871 Real_Range_Specification (Def));
17872
17873 else
17874 Error_Msg_N
17875 ("range too large for any predefined type",
17876 Real_Range_Specification (Def));
17877 end if;
17878
17879 return Standard_Long_Long_Float;
17880 end Find_Base_Type;
17881
17882 -- Start of processing for Floating_Point_Type_Declaration
17883
17884 begin
17885 Check_Restriction (No_Floating_Point, Def);
17886
17887 -- Create an implicit base type
17888
17889 Implicit_Base :=
17890 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
17891
17892 -- Analyze and verify digits value
17893
17894 Analyze_And_Resolve (Digs, Any_Integer);
17895 Check_Digits_Expression (Digs);
17896 Digs_Val := Expr_Value (Digs);
17897
17898 -- Process possible range spec and find correct type to derive from
17899
17900 Process_Real_Range_Specification (Def);
17901
17902 -- Check that requested number of digits is not too high.
17903
17904 if Digs_Val > Max_Digs_Val then
17905
17906 -- The check for Max_Base_Digits may be somewhat expensive, as it
17907 -- requires reading System, so only do it when necessary.
17908
17909 declare
17910 Max_Base_Digits : constant Uint :=
17911 Expr_Value
17912 (Expression
17913 (Parent (RTE (RE_Max_Base_Digits))));
17914
17915 begin
17916 if Digs_Val > Max_Base_Digits then
17917 Error_Msg_Uint_1 := Max_Base_Digits;
17918 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
17919
17920 elsif No (Real_Range_Specification (Def)) then
17921 Error_Msg_Uint_1 := Max_Digs_Val;
17922 Error_Msg_N ("types with more than ^ digits need range spec "
17923 & "(RM 3.5.7(6))", Digs);
17924 end if;
17925 end;
17926 end if;
17927
17928 -- Find a suitable type to derive from or complain and use a substitute
17929
17930 Base_Typ := Find_Base_Type;
17931
17932 -- If there are bounds given in the declaration use them as the bounds
17933 -- of the type, otherwise use the bounds of the predefined base type
17934 -- that was chosen based on the Digits value.
17935
17936 if Present (Real_Range_Specification (Def)) then
17937 Set_Scalar_Range (T, Real_Range_Specification (Def));
17938 Set_Is_Constrained (T);
17939
17940 -- The bounds of this range must be converted to machine numbers
17941 -- in accordance with RM 4.9(38).
17942
17943 Bound := Type_Low_Bound (T);
17944
17945 if Nkind (Bound) = N_Real_Literal then
17946 Set_Realval
17947 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17948 Set_Is_Machine_Number (Bound);
17949 end if;
17950
17951 Bound := Type_High_Bound (T);
17952
17953 if Nkind (Bound) = N_Real_Literal then
17954 Set_Realval
17955 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17956 Set_Is_Machine_Number (Bound);
17957 end if;
17958
17959 else
17960 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
17961 end if;
17962
17963 -- Complete definition of implicit base and declared first subtype. The
17964 -- inheritance of the rep item chain ensures that SPARK-related pragmas
17965 -- are not clobbered when the floating point type acts as a full view of
17966 -- a private type.
17967
17968 Set_Etype (Implicit_Base, Base_Typ);
17969 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
17970 Set_Size_Info (Implicit_Base, Base_Typ);
17971 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
17972 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
17973 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
17974 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
17975
17976 Set_Ekind (T, E_Floating_Point_Subtype);
17977 Set_Etype (T, Implicit_Base);
17978 Set_Size_Info (T, Implicit_Base);
17979 Set_RM_Size (T, RM_Size (Implicit_Base));
17980 Inherit_Rep_Item_Chain (T, Implicit_Base);
17981 Set_Digits_Value (T, Digs_Val);
17982 end Floating_Point_Type_Declaration;
17983
17984 ----------------------------
17985 -- Get_Discriminant_Value --
17986 ----------------------------
17987
17988 -- This is the situation:
17989
17990 -- There is a non-derived type
17991
17992 -- type T0 (Dx, Dy, Dz...)
17993
17994 -- There are zero or more levels of derivation, with each derivation
17995 -- either purely inheriting the discriminants, or defining its own.
17996
17997 -- type Ti is new Ti-1
17998 -- or
17999 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
18000 -- or
18001 -- subtype Ti is ...
18002
18003 -- The subtype issue is avoided by the use of Original_Record_Component,
18004 -- and the fact that derived subtypes also derive the constraints.
18005
18006 -- This chain leads back from
18007
18008 -- Typ_For_Constraint
18009
18010 -- Typ_For_Constraint has discriminants, and the value for each
18011 -- discriminant is given by its corresponding Elmt of Constraints.
18012
18013 -- Discriminant is some discriminant in this hierarchy
18014
18015 -- We need to return its value
18016
18017 -- We do this by recursively searching each level, and looking for
18018 -- Discriminant. Once we get to the bottom, we start backing up
18019 -- returning the value for it which may in turn be a discriminant
18020 -- further up, so on the backup we continue the substitution.
18021
18022 function Get_Discriminant_Value
18023 (Discriminant : Entity_Id;
18024 Typ_For_Constraint : Entity_Id;
18025 Constraint : Elist_Id) return Node_Id
18026 is
18027 function Root_Corresponding_Discriminant
18028 (Discr : Entity_Id) return Entity_Id;
18029 -- Given a discriminant, traverse the chain of inherited discriminants
18030 -- and return the topmost discriminant.
18031
18032 function Search_Derivation_Levels
18033 (Ti : Entity_Id;
18034 Discrim_Values : Elist_Id;
18035 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
18036 -- This is the routine that performs the recursive search of levels
18037 -- as described above.
18038
18039 -------------------------------------
18040 -- Root_Corresponding_Discriminant --
18041 -------------------------------------
18042
18043 function Root_Corresponding_Discriminant
18044 (Discr : Entity_Id) return Entity_Id
18045 is
18046 D : Entity_Id;
18047
18048 begin
18049 D := Discr;
18050 while Present (Corresponding_Discriminant (D)) loop
18051 D := Corresponding_Discriminant (D);
18052 end loop;
18053
18054 return D;
18055 end Root_Corresponding_Discriminant;
18056
18057 ------------------------------
18058 -- Search_Derivation_Levels --
18059 ------------------------------
18060
18061 function Search_Derivation_Levels
18062 (Ti : Entity_Id;
18063 Discrim_Values : Elist_Id;
18064 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
18065 is
18066 Assoc : Elmt_Id;
18067 Disc : Entity_Id;
18068 Result : Node_Or_Entity_Id;
18069 Result_Entity : Node_Id;
18070
18071 begin
18072 -- If inappropriate type, return Error, this happens only in
18073 -- cascaded error situations, and we want to avoid a blow up.
18074
18075 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
18076 return Error;
18077 end if;
18078
18079 -- Look deeper if possible. Use Stored_Constraints only for
18080 -- untagged types. For tagged types use the given constraint.
18081 -- This asymmetry needs explanation???
18082
18083 if not Stored_Discrim_Values
18084 and then Present (Stored_Constraint (Ti))
18085 and then not Is_Tagged_Type (Ti)
18086 then
18087 Result :=
18088 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
18089
18090 else
18091 declare
18092 Td : Entity_Id := Etype (Ti);
18093
18094 begin
18095 -- If the parent type is private, the full view may include
18096 -- renamed discriminants, and it is those stored values that
18097 -- may be needed (the partial view never has more information
18098 -- than the full view).
18099
18100 if Is_Private_Type (Td) and then Present (Full_View (Td)) then
18101 Td := Full_View (Td);
18102 end if;
18103
18104 if Td = Ti then
18105 Result := Discriminant;
18106
18107 else
18108 if Present (Stored_Constraint (Ti)) then
18109 Result :=
18110 Search_Derivation_Levels
18111 (Td, Stored_Constraint (Ti), True);
18112 else
18113 Result :=
18114 Search_Derivation_Levels
18115 (Td, Discrim_Values, Stored_Discrim_Values);
18116 end if;
18117 end if;
18118 end;
18119 end if;
18120
18121 -- Extra underlying places to search, if not found above. For
18122 -- concurrent types, the relevant discriminant appears in the
18123 -- corresponding record. For a type derived from a private type
18124 -- without discriminant, the full view inherits the discriminants
18125 -- of the full view of the parent.
18126
18127 if Result = Discriminant then
18128 if Is_Concurrent_Type (Ti)
18129 and then Present (Corresponding_Record_Type (Ti))
18130 then
18131 Result :=
18132 Search_Derivation_Levels (
18133 Corresponding_Record_Type (Ti),
18134 Discrim_Values,
18135 Stored_Discrim_Values);
18136
18137 elsif Is_Private_Type (Ti)
18138 and then not Has_Discriminants (Ti)
18139 and then Present (Full_View (Ti))
18140 and then Etype (Full_View (Ti)) /= Ti
18141 then
18142 Result :=
18143 Search_Derivation_Levels (
18144 Full_View (Ti),
18145 Discrim_Values,
18146 Stored_Discrim_Values);
18147 end if;
18148 end if;
18149
18150 -- If Result is not a (reference to a) discriminant, return it,
18151 -- otherwise set Result_Entity to the discriminant.
18152
18153 if Nkind (Result) = N_Defining_Identifier then
18154 pragma Assert (Result = Discriminant);
18155 Result_Entity := Result;
18156
18157 else
18158 if not Denotes_Discriminant (Result) then
18159 return Result;
18160 end if;
18161
18162 Result_Entity := Entity (Result);
18163 end if;
18164
18165 -- See if this level of derivation actually has discriminants because
18166 -- tagged derivations can add them, hence the lower levels need not
18167 -- have any.
18168
18169 if not Has_Discriminants (Ti) then
18170 return Result;
18171 end if;
18172
18173 -- Scan Ti's discriminants for Result_Entity, and return its
18174 -- corresponding value, if any.
18175
18176 Result_Entity := Original_Record_Component (Result_Entity);
18177
18178 Assoc := First_Elmt (Discrim_Values);
18179
18180 if Stored_Discrim_Values then
18181 Disc := First_Stored_Discriminant (Ti);
18182 else
18183 Disc := First_Discriminant (Ti);
18184 end if;
18185
18186 while Present (Disc) loop
18187
18188 -- If no further associations return the discriminant, value will
18189 -- be found on the second pass.
18190
18191 if No (Assoc) then
18192 return Result;
18193 end if;
18194
18195 if Original_Record_Component (Disc) = Result_Entity then
18196 return Node (Assoc);
18197 end if;
18198
18199 Next_Elmt (Assoc);
18200
18201 if Stored_Discrim_Values then
18202 Next_Stored_Discriminant (Disc);
18203 else
18204 Next_Discriminant (Disc);
18205 end if;
18206 end loop;
18207
18208 -- Could not find it
18209
18210 return Result;
18211 end Search_Derivation_Levels;
18212
18213 -- Local Variables
18214
18215 Result : Node_Or_Entity_Id;
18216
18217 -- Start of processing for Get_Discriminant_Value
18218
18219 begin
18220 -- ??? This routine is a gigantic mess and will be deleted. For the
18221 -- time being just test for the trivial case before calling recurse.
18222
18223 -- We are now celebrating the 20th anniversary of this comment!
18224
18225 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
18226 declare
18227 D : Entity_Id;
18228 E : Elmt_Id;
18229
18230 begin
18231 D := First_Discriminant (Typ_For_Constraint);
18232 E := First_Elmt (Constraint);
18233 while Present (D) loop
18234 if Chars (D) = Chars (Discriminant) then
18235 return Node (E);
18236 end if;
18237
18238 Next_Discriminant (D);
18239 Next_Elmt (E);
18240 end loop;
18241 end;
18242 end if;
18243
18244 Result := Search_Derivation_Levels
18245 (Typ_For_Constraint, Constraint, False);
18246
18247 -- ??? hack to disappear when this routine is gone
18248
18249 if Nkind (Result) = N_Defining_Identifier then
18250 declare
18251 D : Entity_Id;
18252 E : Elmt_Id;
18253
18254 begin
18255 D := First_Discriminant (Typ_For_Constraint);
18256 E := First_Elmt (Constraint);
18257 while Present (D) loop
18258 if Root_Corresponding_Discriminant (D) = Discriminant then
18259 return Node (E);
18260 end if;
18261
18262 Next_Discriminant (D);
18263 Next_Elmt (E);
18264 end loop;
18265 end;
18266 end if;
18267
18268 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
18269 return Result;
18270 end Get_Discriminant_Value;
18271
18272 --------------------------
18273 -- Has_Range_Constraint --
18274 --------------------------
18275
18276 function Has_Range_Constraint (N : Node_Id) return Boolean is
18277 C : constant Node_Id := Constraint (N);
18278
18279 begin
18280 if Nkind (C) = N_Range_Constraint then
18281 return True;
18282
18283 elsif Nkind (C) = N_Digits_Constraint then
18284 return
18285 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
18286 or else Present (Range_Constraint (C));
18287
18288 elsif Nkind (C) = N_Delta_Constraint then
18289 return Present (Range_Constraint (C));
18290
18291 else
18292 return False;
18293 end if;
18294 end Has_Range_Constraint;
18295
18296 ------------------------
18297 -- Inherit_Components --
18298 ------------------------
18299
18300 function Inherit_Components
18301 (N : Node_Id;
18302 Parent_Base : Entity_Id;
18303 Derived_Base : Entity_Id;
18304 Is_Tagged : Boolean;
18305 Inherit_Discr : Boolean;
18306 Discs : Elist_Id) return Elist_Id
18307 is
18308 Assoc_List : constant Elist_Id := New_Elmt_List;
18309
18310 procedure Inherit_Component
18311 (Old_C : Entity_Id;
18312 Plain_Discrim : Boolean := False;
18313 Stored_Discrim : Boolean := False);
18314 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
18315 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
18316 -- True, Old_C is a stored discriminant. If they are both false then
18317 -- Old_C is a regular component.
18318
18319 -----------------------
18320 -- Inherit_Component --
18321 -----------------------
18322
18323 procedure Inherit_Component
18324 (Old_C : Entity_Id;
18325 Plain_Discrim : Boolean := False;
18326 Stored_Discrim : Boolean := False)
18327 is
18328 procedure Set_Anonymous_Type (Id : Entity_Id);
18329 -- Id denotes the entity of an access discriminant or anonymous
18330 -- access component. Set the type of Id to either the same type of
18331 -- Old_C or create a new one depending on whether the parent and
18332 -- the child types are in the same scope.
18333
18334 ------------------------
18335 -- Set_Anonymous_Type --
18336 ------------------------
18337
18338 procedure Set_Anonymous_Type (Id : Entity_Id) is
18339 Old_Typ : constant Entity_Id := Etype (Old_C);
18340
18341 begin
18342 if Scope (Parent_Base) = Scope (Derived_Base) then
18343 Set_Etype (Id, Old_Typ);
18344
18345 -- The parent and the derived type are in two different scopes.
18346 -- Reuse the type of the original discriminant / component by
18347 -- copying it in order to preserve all attributes.
18348
18349 else
18350 declare
18351 Typ : constant Entity_Id := New_Copy (Old_Typ);
18352
18353 begin
18354 Set_Etype (Id, Typ);
18355
18356 -- Since we do not generate component declarations for
18357 -- inherited components, associate the itype with the
18358 -- derived type.
18359
18360 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
18361 Set_Scope (Typ, Derived_Base);
18362 end;
18363 end if;
18364 end Set_Anonymous_Type;
18365
18366 -- Local variables and constants
18367
18368 New_C : constant Entity_Id := New_Copy (Old_C);
18369
18370 Corr_Discrim : Entity_Id;
18371 Discrim : Entity_Id;
18372
18373 -- Start of processing for Inherit_Component
18374
18375 begin
18376 pragma Assert (not Is_Tagged or not Stored_Discrim);
18377
18378 Set_Parent (New_C, Parent (Old_C));
18379
18380 -- Regular discriminants and components must be inserted in the scope
18381 -- of the Derived_Base. Do it here.
18382
18383 if not Stored_Discrim then
18384 Enter_Name (New_C);
18385 end if;
18386
18387 -- For tagged types the Original_Record_Component must point to
18388 -- whatever this field was pointing to in the parent type. This has
18389 -- already been achieved by the call to New_Copy above.
18390
18391 if not Is_Tagged then
18392 Set_Original_Record_Component (New_C, New_C);
18393 Set_Corresponding_Record_Component (New_C, Old_C);
18394 end if;
18395
18396 -- Set the proper type of an access discriminant
18397
18398 if Ekind (New_C) = E_Discriminant
18399 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
18400 then
18401 Set_Anonymous_Type (New_C);
18402 end if;
18403
18404 -- If we have inherited a component then see if its Etype contains
18405 -- references to Parent_Base discriminants. In this case, replace
18406 -- these references with the constraints given in Discs. We do not
18407 -- do this for the partial view of private types because this is
18408 -- not needed (only the components of the full view will be used
18409 -- for code generation) and cause problem. We also avoid this
18410 -- transformation in some error situations.
18411
18412 if Ekind (New_C) = E_Component then
18413
18414 -- Set the proper type of an anonymous access component
18415
18416 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
18417 Set_Anonymous_Type (New_C);
18418
18419 elsif (Is_Private_Type (Derived_Base)
18420 and then not Is_Generic_Type (Derived_Base))
18421 or else (Is_Empty_Elmt_List (Discs)
18422 and then not Expander_Active)
18423 then
18424 Set_Etype (New_C, Etype (Old_C));
18425
18426 else
18427 -- The current component introduces a circularity of the
18428 -- following kind:
18429
18430 -- limited with Pack_2;
18431 -- package Pack_1 is
18432 -- type T_1 is tagged record
18433 -- Comp : access Pack_2.T_2;
18434 -- ...
18435 -- end record;
18436 -- end Pack_1;
18437
18438 -- with Pack_1;
18439 -- package Pack_2 is
18440 -- type T_2 is new Pack_1.T_1 with ...;
18441 -- end Pack_2;
18442
18443 Set_Etype
18444 (New_C,
18445 Constrain_Component_Type
18446 (Old_C, Derived_Base, N, Parent_Base, Discs));
18447 end if;
18448 end if;
18449
18450 -- In derived tagged types it is illegal to reference a non
18451 -- discriminant component in the parent type. To catch this, mark
18452 -- these components with an Ekind of E_Void. This will be reset in
18453 -- Record_Type_Definition after processing the record extension of
18454 -- the derived type.
18455
18456 -- If the declaration is a private extension, there is no further
18457 -- record extension to process, and the components retain their
18458 -- current kind, because they are visible at this point.
18459
18460 if Is_Tagged and then Ekind (New_C) = E_Component
18461 and then Nkind (N) /= N_Private_Extension_Declaration
18462 then
18463 Set_Ekind (New_C, E_Void);
18464 end if;
18465
18466 if Plain_Discrim then
18467 Set_Corresponding_Discriminant (New_C, Old_C);
18468 Build_Discriminal (New_C);
18469
18470 -- If we are explicitly inheriting a stored discriminant it will be
18471 -- completely hidden.
18472
18473 elsif Stored_Discrim then
18474 Set_Corresponding_Discriminant (New_C, Empty);
18475 Set_Discriminal (New_C, Empty);
18476 Set_Is_Completely_Hidden (New_C);
18477
18478 -- Set the Original_Record_Component of each discriminant in the
18479 -- derived base to point to the corresponding stored that we just
18480 -- created.
18481
18482 Discrim := First_Discriminant (Derived_Base);
18483 while Present (Discrim) loop
18484 Corr_Discrim := Corresponding_Discriminant (Discrim);
18485
18486 -- Corr_Discrim could be missing in an error situation
18487
18488 if Present (Corr_Discrim)
18489 and then Original_Record_Component (Corr_Discrim) = Old_C
18490 then
18491 Set_Original_Record_Component (Discrim, New_C);
18492 Set_Corresponding_Record_Component (Discrim, Empty);
18493 end if;
18494
18495 Next_Discriminant (Discrim);
18496 end loop;
18497
18498 Append_Entity (New_C, Derived_Base);
18499 end if;
18500
18501 if not Is_Tagged then
18502 Append_Elmt (Old_C, Assoc_List);
18503 Append_Elmt (New_C, Assoc_List);
18504 end if;
18505 end Inherit_Component;
18506
18507 -- Variables local to Inherit_Component
18508
18509 Loc : constant Source_Ptr := Sloc (N);
18510
18511 Parent_Discrim : Entity_Id;
18512 Stored_Discrim : Entity_Id;
18513 D : Entity_Id;
18514 Component : Entity_Id;
18515
18516 -- Start of processing for Inherit_Components
18517
18518 begin
18519 if not Is_Tagged then
18520 Append_Elmt (Parent_Base, Assoc_List);
18521 Append_Elmt (Derived_Base, Assoc_List);
18522 end if;
18523
18524 -- Inherit parent discriminants if needed
18525
18526 if Inherit_Discr then
18527 Parent_Discrim := First_Discriminant (Parent_Base);
18528 while Present (Parent_Discrim) loop
18529 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
18530 Next_Discriminant (Parent_Discrim);
18531 end loop;
18532 end if;
18533
18534 -- Create explicit stored discrims for untagged types when necessary
18535
18536 if not Has_Unknown_Discriminants (Derived_Base)
18537 and then Has_Discriminants (Parent_Base)
18538 and then not Is_Tagged
18539 and then
18540 (not Inherit_Discr
18541 or else First_Discriminant (Parent_Base) /=
18542 First_Stored_Discriminant (Parent_Base))
18543 then
18544 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
18545 while Present (Stored_Discrim) loop
18546 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
18547 Next_Stored_Discriminant (Stored_Discrim);
18548 end loop;
18549 end if;
18550
18551 -- See if we can apply the second transformation for derived types, as
18552 -- explained in point 6. in the comments above Build_Derived_Record_Type
18553 -- This is achieved by appending Derived_Base discriminants into Discs,
18554 -- which has the side effect of returning a non empty Discs list to the
18555 -- caller of Inherit_Components, which is what we want. This must be
18556 -- done for private derived types if there are explicit stored
18557 -- discriminants, to ensure that we can retrieve the values of the
18558 -- constraints provided in the ancestors.
18559
18560 if Inherit_Discr
18561 and then Is_Empty_Elmt_List (Discs)
18562 and then Present (First_Discriminant (Derived_Base))
18563 and then
18564 (not Is_Private_Type (Derived_Base)
18565 or else Is_Completely_Hidden
18566 (First_Stored_Discriminant (Derived_Base))
18567 or else Is_Generic_Type (Derived_Base))
18568 then
18569 D := First_Discriminant (Derived_Base);
18570 while Present (D) loop
18571 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
18572 Next_Discriminant (D);
18573 end loop;
18574 end if;
18575
18576 -- Finally, inherit non-discriminant components unless they are not
18577 -- visible because defined or inherited from the full view of the
18578 -- parent. Don't inherit the _parent field of the parent type.
18579
18580 Component := First_Entity (Parent_Base);
18581 while Present (Component) loop
18582
18583 -- Ada 2005 (AI-251): Do not inherit components associated with
18584 -- secondary tags of the parent.
18585
18586 if Ekind (Component) = E_Component
18587 and then Present (Related_Type (Component))
18588 then
18589 null;
18590
18591 elsif Ekind (Component) /= E_Component
18592 or else Chars (Component) = Name_uParent
18593 then
18594 null;
18595
18596 -- If the derived type is within the parent type's declarative
18597 -- region, then the components can still be inherited even though
18598 -- they aren't visible at this point. This can occur for cases
18599 -- such as within public child units where the components must
18600 -- become visible upon entering the child unit's private part.
18601
18602 elsif not Is_Visible_Component (Component)
18603 and then not In_Open_Scopes (Scope (Parent_Base))
18604 then
18605 null;
18606
18607 elsif Ekind_In (Derived_Base, E_Private_Type,
18608 E_Limited_Private_Type)
18609 then
18610 null;
18611
18612 else
18613 Inherit_Component (Component);
18614 end if;
18615
18616 Next_Entity (Component);
18617 end loop;
18618
18619 -- For tagged derived types, inherited discriminants cannot be used in
18620 -- component declarations of the record extension part. To achieve this
18621 -- we mark the inherited discriminants as not visible.
18622
18623 if Is_Tagged and then Inherit_Discr then
18624 D := First_Discriminant (Derived_Base);
18625 while Present (D) loop
18626 Set_Is_Immediately_Visible (D, False);
18627 Next_Discriminant (D);
18628 end loop;
18629 end if;
18630
18631 return Assoc_List;
18632 end Inherit_Components;
18633
18634 -----------------------------
18635 -- Inherit_Predicate_Flags --
18636 -----------------------------
18637
18638 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
18639 begin
18640 if Present (Predicate_Function (Subt)) then
18641 return;
18642 end if;
18643
18644 Set_Has_Predicates (Subt, Has_Predicates (Par));
18645 Set_Has_Static_Predicate_Aspect
18646 (Subt, Has_Static_Predicate_Aspect (Par));
18647 Set_Has_Dynamic_Predicate_Aspect
18648 (Subt, Has_Dynamic_Predicate_Aspect (Par));
18649
18650 -- A named subtype does not inherit the predicate function of its
18651 -- parent but an itype declared for a loop index needs the discrete
18652 -- predicate information of its parent to execute the loop properly.
18653 -- A non-discrete type may has a static predicate (for example True)
18654 -- but has no static_discrete_predicate.
18655
18656 if Is_Itype (Subt) and then Present (Predicate_Function (Par)) then
18657 Set_Subprograms_For_Type (Subt, Subprograms_For_Type (Par));
18658
18659 if Has_Static_Predicate (Par) and then Is_Discrete_Type (Par) then
18660 Set_Static_Discrete_Predicate
18661 (Subt, Static_Discrete_Predicate (Par));
18662 end if;
18663 end if;
18664 end Inherit_Predicate_Flags;
18665
18666 ----------------------
18667 -- Is_EVF_Procedure --
18668 ----------------------
18669
18670 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is
18671 Formal : Entity_Id;
18672
18673 begin
18674 -- Examine the formals of an Extensions_Visible False procedure looking
18675 -- for a controlling OUT parameter.
18676
18677 if Ekind (Subp) = E_Procedure
18678 and then Extensions_Visible_Status (Subp) = Extensions_Visible_False
18679 then
18680 Formal := First_Formal (Subp);
18681 while Present (Formal) loop
18682 if Ekind (Formal) = E_Out_Parameter
18683 and then Is_Controlling_Formal (Formal)
18684 then
18685 return True;
18686 end if;
18687
18688 Next_Formal (Formal);
18689 end loop;
18690 end if;
18691
18692 return False;
18693 end Is_EVF_Procedure;
18694
18695 -----------------------
18696 -- Is_Null_Extension --
18697 -----------------------
18698
18699 function Is_Null_Extension (T : Entity_Id) return Boolean is
18700 Type_Decl : constant Node_Id := Parent (Base_Type (T));
18701 Comp_List : Node_Id;
18702 Comp : Node_Id;
18703
18704 begin
18705 if Nkind (Type_Decl) /= N_Full_Type_Declaration
18706 or else not Is_Tagged_Type (T)
18707 or else Nkind (Type_Definition (Type_Decl)) /=
18708 N_Derived_Type_Definition
18709 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
18710 then
18711 return False;
18712 end if;
18713
18714 Comp_List :=
18715 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
18716
18717 if Present (Discriminant_Specifications (Type_Decl)) then
18718 return False;
18719
18720 elsif Present (Comp_List)
18721 and then Is_Non_Empty_List (Component_Items (Comp_List))
18722 then
18723 Comp := First (Component_Items (Comp_List));
18724
18725 -- Only user-defined components are relevant. The component list
18726 -- may also contain a parent component and internal components
18727 -- corresponding to secondary tags, but these do not determine
18728 -- whether this is a null extension.
18729
18730 while Present (Comp) loop
18731 if Comes_From_Source (Comp) then
18732 return False;
18733 end if;
18734
18735 Next (Comp);
18736 end loop;
18737
18738 return True;
18739
18740 else
18741 return True;
18742 end if;
18743 end Is_Null_Extension;
18744
18745 ------------------------------
18746 -- Is_Valid_Constraint_Kind --
18747 ------------------------------
18748
18749 function Is_Valid_Constraint_Kind
18750 (T_Kind : Type_Kind;
18751 Constraint_Kind : Node_Kind) return Boolean
18752 is
18753 begin
18754 case T_Kind is
18755 when Enumeration_Kind
18756 | Integer_Kind
18757 =>
18758 return Constraint_Kind = N_Range_Constraint;
18759
18760 when Decimal_Fixed_Point_Kind =>
18761 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
18762 N_Range_Constraint);
18763
18764 when Ordinary_Fixed_Point_Kind =>
18765 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
18766 N_Range_Constraint);
18767
18768 when Float_Kind =>
18769 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
18770 N_Range_Constraint);
18771
18772 when Access_Kind
18773 | Array_Kind
18774 | Class_Wide_Kind
18775 | Concurrent_Kind
18776 | Private_Kind
18777 | E_Incomplete_Type
18778 | E_Record_Subtype
18779 | E_Record_Type
18780 =>
18781 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
18782
18783 when others =>
18784 return True; -- Error will be detected later
18785 end case;
18786 end Is_Valid_Constraint_Kind;
18787
18788 --------------------------
18789 -- Is_Visible_Component --
18790 --------------------------
18791
18792 function Is_Visible_Component
18793 (C : Entity_Id;
18794 N : Node_Id := Empty) return Boolean
18795 is
18796 Original_Comp : Entity_Id := Empty;
18797 Original_Type : Entity_Id;
18798 Type_Scope : Entity_Id;
18799
18800 function Is_Local_Type (Typ : Entity_Id) return Boolean;
18801 -- Check whether parent type of inherited component is declared locally,
18802 -- possibly within a nested package or instance. The current scope is
18803 -- the derived record itself.
18804
18805 -------------------
18806 -- Is_Local_Type --
18807 -------------------
18808
18809 function Is_Local_Type (Typ : Entity_Id) return Boolean is
18810 Scop : Entity_Id;
18811
18812 begin
18813 Scop := Scope (Typ);
18814 while Present (Scop)
18815 and then Scop /= Standard_Standard
18816 loop
18817 if Scop = Scope (Current_Scope) then
18818 return True;
18819 end if;
18820
18821 Scop := Scope (Scop);
18822 end loop;
18823
18824 return False;
18825 end Is_Local_Type;
18826
18827 -- Start of processing for Is_Visible_Component
18828
18829 begin
18830 if Ekind_In (C, E_Component, E_Discriminant) then
18831 Original_Comp := Original_Record_Component (C);
18832 end if;
18833
18834 if No (Original_Comp) then
18835
18836 -- Premature usage, or previous error
18837
18838 return False;
18839
18840 else
18841 Original_Type := Scope (Original_Comp);
18842 Type_Scope := Scope (Base_Type (Scope (C)));
18843 end if;
18844
18845 -- This test only concerns tagged types
18846
18847 if not Is_Tagged_Type (Original_Type) then
18848
18849 -- Check if this is a renamed discriminant (hidden either by the
18850 -- derived type or by some ancestor), unless we are analyzing code
18851 -- generated by the expander since it may reference such components
18852 -- (for example see the expansion of Deep_Adjust).
18853
18854 if Ekind (C) = E_Discriminant and then Present (N) then
18855 return
18856 not Comes_From_Source (N)
18857 or else not Is_Completely_Hidden (C);
18858 else
18859 return True;
18860 end if;
18861
18862 -- If it is _Parent or _Tag, there is no visibility issue
18863
18864 elsif not Comes_From_Source (Original_Comp) then
18865 return True;
18866
18867 -- Discriminants are visible unless the (private) type has unknown
18868 -- discriminants. If the discriminant reference is inserted for a
18869 -- discriminant check on a full view it is also visible.
18870
18871 elsif Ekind (Original_Comp) = E_Discriminant
18872 and then
18873 (not Has_Unknown_Discriminants (Original_Type)
18874 or else (Present (N)
18875 and then Nkind (N) = N_Selected_Component
18876 and then Nkind (Prefix (N)) = N_Type_Conversion
18877 and then not Comes_From_Source (Prefix (N))))
18878 then
18879 return True;
18880
18881 -- In the body of an instantiation, check the visibility of a component
18882 -- in case it has a homograph that is a primitive operation of a private
18883 -- type which was not visible in the generic unit.
18884
18885 -- Should Is_Prefixed_Call be propagated from template to instance???
18886
18887 elsif In_Instance_Body then
18888 if not Is_Tagged_Type (Original_Type)
18889 or else not Is_Private_Type (Original_Type)
18890 then
18891 return True;
18892
18893 else
18894 declare
18895 Subp_Elmt : Elmt_Id;
18896
18897 begin
18898 Subp_Elmt := First_Elmt (Primitive_Operations (Original_Type));
18899 while Present (Subp_Elmt) loop
18900
18901 -- The component is hidden by a primitive operation
18902
18903 if Chars (Node (Subp_Elmt)) = Chars (C) then
18904 return False;
18905 end if;
18906
18907 Next_Elmt (Subp_Elmt);
18908 end loop;
18909
18910 return True;
18911 end;
18912 end if;
18913
18914 -- If the component has been declared in an ancestor which is currently
18915 -- a private type, then it is not visible. The same applies if the
18916 -- component's containing type is not in an open scope and the original
18917 -- component's enclosing type is a visible full view of a private type
18918 -- (which can occur in cases where an attempt is being made to reference
18919 -- a component in a sibling package that is inherited from a visible
18920 -- component of a type in an ancestor package; the component in the
18921 -- sibling package should not be visible even though the component it
18922 -- inherited from is visible). This does not apply however in the case
18923 -- where the scope of the type is a private child unit, or when the
18924 -- parent comes from a local package in which the ancestor is currently
18925 -- visible. The latter suppression of visibility is needed for cases
18926 -- that are tested in B730006.
18927
18928 elsif Is_Private_Type (Original_Type)
18929 or else
18930 (not Is_Private_Descendant (Type_Scope)
18931 and then not In_Open_Scopes (Type_Scope)
18932 and then Has_Private_Declaration (Original_Type))
18933 then
18934 -- If the type derives from an entity in a formal package, there
18935 -- are no additional visible components.
18936
18937 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
18938 N_Formal_Package_Declaration
18939 then
18940 return False;
18941
18942 -- if we are not in the private part of the current package, there
18943 -- are no additional visible components.
18944
18945 elsif Ekind (Scope (Current_Scope)) = E_Package
18946 and then not In_Private_Part (Scope (Current_Scope))
18947 then
18948 return False;
18949 else
18950 return
18951 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
18952 and then In_Open_Scopes (Scope (Original_Type))
18953 and then Is_Local_Type (Type_Scope);
18954 end if;
18955
18956 -- There is another weird way in which a component may be invisible when
18957 -- the private and the full view are not derived from the same ancestor.
18958 -- Here is an example :
18959
18960 -- type A1 is tagged record F1 : integer; end record;
18961 -- type A2 is new A1 with record F2 : integer; end record;
18962 -- type T is new A1 with private;
18963 -- private
18964 -- type T is new A2 with null record;
18965
18966 -- In this case, the full view of T inherits F1 and F2 but the private
18967 -- view inherits only F1
18968
18969 else
18970 declare
18971 Ancestor : Entity_Id := Scope (C);
18972
18973 begin
18974 loop
18975 if Ancestor = Original_Type then
18976 return True;
18977
18978 -- The ancestor may have a partial view of the original type,
18979 -- but if the full view is in scope, as in a child body, the
18980 -- component is visible.
18981
18982 elsif In_Private_Part (Scope (Original_Type))
18983 and then Full_View (Ancestor) = Original_Type
18984 then
18985 return True;
18986
18987 elsif Ancestor = Etype (Ancestor) then
18988
18989 -- No further ancestors to examine
18990
18991 return False;
18992 end if;
18993
18994 Ancestor := Etype (Ancestor);
18995 end loop;
18996 end;
18997 end if;
18998 end Is_Visible_Component;
18999
19000 --------------------------
19001 -- Make_Class_Wide_Type --
19002 --------------------------
19003
19004 procedure Make_Class_Wide_Type (T : Entity_Id) is
19005 CW_Type : Entity_Id;
19006 CW_Name : Name_Id;
19007 Next_E : Entity_Id;
19008 Prev_E : Entity_Id;
19009
19010 begin
19011 if Present (Class_Wide_Type (T)) then
19012
19013 -- The class-wide type is a partially decorated entity created for a
19014 -- unanalyzed tagged type referenced through a limited with clause.
19015 -- When the tagged type is analyzed, its class-wide type needs to be
19016 -- redecorated. Note that we reuse the entity created by Decorate_
19017 -- Tagged_Type in order to preserve all links.
19018
19019 if Materialize_Entity (Class_Wide_Type (T)) then
19020 CW_Type := Class_Wide_Type (T);
19021 Set_Materialize_Entity (CW_Type, False);
19022
19023 -- The class wide type can have been defined by the partial view, in
19024 -- which case everything is already done.
19025
19026 else
19027 return;
19028 end if;
19029
19030 -- Default case, we need to create a new class-wide type
19031
19032 else
19033 CW_Type :=
19034 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
19035 end if;
19036
19037 -- Inherit root type characteristics
19038
19039 CW_Name := Chars (CW_Type);
19040 Next_E := Next_Entity (CW_Type);
19041 Prev_E := Prev_Entity (CW_Type);
19042 Copy_Node (T, CW_Type);
19043 Set_Comes_From_Source (CW_Type, False);
19044 Set_Chars (CW_Type, CW_Name);
19045 Set_Parent (CW_Type, Parent (T));
19046 Set_Prev_Entity (CW_Type, Prev_E);
19047 Set_Next_Entity (CW_Type, Next_E);
19048
19049 -- Ensure we have a new freeze node for the class-wide type. The partial
19050 -- view may have freeze action of its own, requiring a proper freeze
19051 -- node, and the same freeze node cannot be shared between the two
19052 -- types.
19053
19054 Set_Has_Delayed_Freeze (CW_Type);
19055 Set_Freeze_Node (CW_Type, Empty);
19056
19057 -- Customize the class-wide type: It has no prim. op., it cannot be
19058 -- abstract, its Etype points back to the specific root type, and it
19059 -- cannot have any invariants.
19060
19061 Set_Ekind (CW_Type, E_Class_Wide_Type);
19062 Set_Is_Tagged_Type (CW_Type, True);
19063 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
19064 Set_Is_Abstract_Type (CW_Type, False);
19065 Set_Is_Constrained (CW_Type, False);
19066 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
19067 Set_Default_SSO (CW_Type);
19068 Set_Has_Inheritable_Invariants (CW_Type, False);
19069 Set_Has_Inherited_Invariants (CW_Type, False);
19070 Set_Has_Own_Invariants (CW_Type, False);
19071
19072 if Ekind (T) = E_Class_Wide_Subtype then
19073 Set_Etype (CW_Type, Etype (Base_Type (T)));
19074 else
19075 Set_Etype (CW_Type, T);
19076 end if;
19077
19078 Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams);
19079
19080 -- If this is the class_wide type of a constrained subtype, it does
19081 -- not have discriminants.
19082
19083 Set_Has_Discriminants (CW_Type,
19084 Has_Discriminants (T) and then not Is_Constrained (T));
19085
19086 Set_Has_Unknown_Discriminants (CW_Type, True);
19087 Set_Class_Wide_Type (T, CW_Type);
19088 Set_Equivalent_Type (CW_Type, Empty);
19089
19090 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
19091
19092 Set_Class_Wide_Type (CW_Type, CW_Type);
19093 end Make_Class_Wide_Type;
19094
19095 ----------------
19096 -- Make_Index --
19097 ----------------
19098
19099 procedure Make_Index
19100 (N : Node_Id;
19101 Related_Nod : Node_Id;
19102 Related_Id : Entity_Id := Empty;
19103 Suffix_Index : Nat := 1;
19104 In_Iter_Schm : Boolean := False)
19105 is
19106 R : Node_Id;
19107 T : Entity_Id;
19108 Def_Id : Entity_Id := Empty;
19109 Found : Boolean := False;
19110
19111 begin
19112 -- For a discrete range used in a constrained array definition and
19113 -- defined by a range, an implicit conversion to the predefined type
19114 -- INTEGER is assumed if each bound is either a numeric literal, a named
19115 -- number, or an attribute, and the type of both bounds (prior to the
19116 -- implicit conversion) is the type universal_integer. Otherwise, both
19117 -- bounds must be of the same discrete type, other than universal
19118 -- integer; this type must be determinable independently of the
19119 -- context, but using the fact that the type must be discrete and that
19120 -- both bounds must have the same type.
19121
19122 -- Character literals also have a universal type in the absence of
19123 -- of additional context, and are resolved to Standard_Character.
19124
19125 if Nkind (N) = N_Range then
19126
19127 -- The index is given by a range constraint. The bounds are known
19128 -- to be of a consistent type.
19129
19130 if not Is_Overloaded (N) then
19131 T := Etype (N);
19132
19133 -- For universal bounds, choose the specific predefined type
19134
19135 if T = Universal_Integer then
19136 T := Standard_Integer;
19137
19138 elsif T = Any_Character then
19139 Ambiguous_Character (Low_Bound (N));
19140
19141 T := Standard_Character;
19142 end if;
19143
19144 -- The node may be overloaded because some user-defined operators
19145 -- are available, but if a universal interpretation exists it is
19146 -- also the selected one.
19147
19148 elsif Universal_Interpretation (N) = Universal_Integer then
19149 T := Standard_Integer;
19150
19151 else
19152 T := Any_Type;
19153
19154 declare
19155 Ind : Interp_Index;
19156 It : Interp;
19157
19158 begin
19159 Get_First_Interp (N, Ind, It);
19160 while Present (It.Typ) loop
19161 if Is_Discrete_Type (It.Typ) then
19162
19163 if Found
19164 and then not Covers (It.Typ, T)
19165 and then not Covers (T, It.Typ)
19166 then
19167 Error_Msg_N ("ambiguous bounds in discrete range", N);
19168 exit;
19169 else
19170 T := It.Typ;
19171 Found := True;
19172 end if;
19173 end if;
19174
19175 Get_Next_Interp (Ind, It);
19176 end loop;
19177
19178 if T = Any_Type then
19179 Error_Msg_N ("discrete type required for range", N);
19180 Set_Etype (N, Any_Type);
19181 return;
19182
19183 elsif T = Universal_Integer then
19184 T := Standard_Integer;
19185 end if;
19186 end;
19187 end if;
19188
19189 if not Is_Discrete_Type (T) then
19190 Error_Msg_N ("discrete type required for range", N);
19191 Set_Etype (N, Any_Type);
19192 return;
19193 end if;
19194
19195 if Nkind (Low_Bound (N)) = N_Attribute_Reference
19196 and then Attribute_Name (Low_Bound (N)) = Name_First
19197 and then Is_Entity_Name (Prefix (Low_Bound (N)))
19198 and then Is_Type (Entity (Prefix (Low_Bound (N))))
19199 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
19200 then
19201 -- The type of the index will be the type of the prefix, as long
19202 -- as the upper bound is 'Last of the same type.
19203
19204 Def_Id := Entity (Prefix (Low_Bound (N)));
19205
19206 if Nkind (High_Bound (N)) /= N_Attribute_Reference
19207 or else Attribute_Name (High_Bound (N)) /= Name_Last
19208 or else not Is_Entity_Name (Prefix (High_Bound (N)))
19209 or else Entity (Prefix (High_Bound (N))) /= Def_Id
19210 then
19211 Def_Id := Empty;
19212 end if;
19213 end if;
19214
19215 R := N;
19216 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
19217
19218 elsif Nkind (N) = N_Subtype_Indication then
19219
19220 -- The index is given by a subtype with a range constraint
19221
19222 T := Base_Type (Entity (Subtype_Mark (N)));
19223
19224 if not Is_Discrete_Type (T) then
19225 Error_Msg_N ("discrete type required for range", N);
19226 Set_Etype (N, Any_Type);
19227 return;
19228 end if;
19229
19230 R := Range_Expression (Constraint (N));
19231
19232 Resolve (R, T);
19233 Process_Range_Expr_In_Decl
19234 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
19235
19236 elsif Nkind (N) = N_Attribute_Reference then
19237
19238 -- Catch beginner's error (use of attribute other than 'Range)
19239
19240 if Attribute_Name (N) /= Name_Range then
19241 Error_Msg_N ("expect attribute ''Range", N);
19242 Set_Etype (N, Any_Type);
19243 return;
19244 end if;
19245
19246 -- If the node denotes the range of a type mark, that is also the
19247 -- resulting type, and we do not need to create an Itype for it.
19248
19249 if Is_Entity_Name (Prefix (N))
19250 and then Comes_From_Source (N)
19251 and then Is_Type (Entity (Prefix (N)))
19252 and then Is_Discrete_Type (Entity (Prefix (N)))
19253 then
19254 Def_Id := Entity (Prefix (N));
19255 end if;
19256
19257 Analyze_And_Resolve (N);
19258 T := Etype (N);
19259 R := N;
19260
19261 -- If none of the above, must be a subtype. We convert this to a
19262 -- range attribute reference because in the case of declared first
19263 -- named subtypes, the types in the range reference can be different
19264 -- from the type of the entity. A range attribute normalizes the
19265 -- reference and obtains the correct types for the bounds.
19266
19267 -- This transformation is in the nature of an expansion, is only
19268 -- done if expansion is active. In particular, it is not done on
19269 -- formal generic types, because we need to retain the name of the
19270 -- original index for instantiation purposes.
19271
19272 else
19273 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
19274 Error_Msg_N ("invalid subtype mark in discrete range ", N);
19275 Set_Etype (N, Any_Integer);
19276 return;
19277
19278 else
19279 -- The type mark may be that of an incomplete type. It is only
19280 -- now that we can get the full view, previous analysis does
19281 -- not look specifically for a type mark.
19282
19283 Set_Entity (N, Get_Full_View (Entity (N)));
19284 Set_Etype (N, Entity (N));
19285 Def_Id := Entity (N);
19286
19287 if not Is_Discrete_Type (Def_Id) then
19288 Error_Msg_N ("discrete type required for index", N);
19289 Set_Etype (N, Any_Type);
19290 return;
19291 end if;
19292 end if;
19293
19294 if Expander_Active then
19295 Rewrite (N,
19296 Make_Attribute_Reference (Sloc (N),
19297 Attribute_Name => Name_Range,
19298 Prefix => Relocate_Node (N)));
19299
19300 -- The original was a subtype mark that does not freeze. This
19301 -- means that the rewritten version must not freeze either.
19302
19303 Set_Must_Not_Freeze (N);
19304 Set_Must_Not_Freeze (Prefix (N));
19305 Analyze_And_Resolve (N);
19306 T := Etype (N);
19307 R := N;
19308
19309 -- If expander is inactive, type is legal, nothing else to construct
19310
19311 else
19312 return;
19313 end if;
19314 end if;
19315
19316 if not Is_Discrete_Type (T) then
19317 Error_Msg_N ("discrete type required for range", N);
19318 Set_Etype (N, Any_Type);
19319 return;
19320
19321 elsif T = Any_Type then
19322 Set_Etype (N, Any_Type);
19323 return;
19324 end if;
19325
19326 -- We will now create the appropriate Itype to describe the range, but
19327 -- first a check. If we originally had a subtype, then we just label
19328 -- the range with this subtype. Not only is there no need to construct
19329 -- a new subtype, but it is wrong to do so for two reasons:
19330
19331 -- 1. A legality concern, if we have a subtype, it must not freeze,
19332 -- and the Itype would cause freezing incorrectly
19333
19334 -- 2. An efficiency concern, if we created an Itype, it would not be
19335 -- recognized as the same type for the purposes of eliminating
19336 -- checks in some circumstances.
19337
19338 -- We signal this case by setting the subtype entity in Def_Id
19339
19340 if No (Def_Id) then
19341 Def_Id :=
19342 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
19343 Set_Etype (Def_Id, Base_Type (T));
19344
19345 if Is_Signed_Integer_Type (T) then
19346 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
19347
19348 elsif Is_Modular_Integer_Type (T) then
19349 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
19350
19351 else
19352 Set_Ekind (Def_Id, E_Enumeration_Subtype);
19353 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
19354 Set_First_Literal (Def_Id, First_Literal (T));
19355 end if;
19356
19357 Set_Size_Info (Def_Id, (T));
19358 Set_RM_Size (Def_Id, RM_Size (T));
19359 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
19360
19361 Set_Scalar_Range (Def_Id, R);
19362 Conditional_Delay (Def_Id, T);
19363
19364 if Nkind (N) = N_Subtype_Indication then
19365 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
19366 end if;
19367
19368 -- In the subtype indication case, if the immediate parent of the
19369 -- new subtype is nonstatic, then the subtype we create is nonstatic,
19370 -- even if its bounds are static.
19371
19372 if Nkind (N) = N_Subtype_Indication
19373 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
19374 then
19375 Set_Is_Non_Static_Subtype (Def_Id);
19376 end if;
19377 end if;
19378
19379 -- Final step is to label the index with this constructed type
19380
19381 Set_Etype (N, Def_Id);
19382 end Make_Index;
19383
19384 ------------------------------
19385 -- Modular_Type_Declaration --
19386 ------------------------------
19387
19388 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
19389 Mod_Expr : constant Node_Id := Expression (Def);
19390 M_Val : Uint;
19391
19392 procedure Set_Modular_Size (Bits : Int);
19393 -- Sets RM_Size to Bits, and Esize to normal word size above this
19394
19395 ----------------------
19396 -- Set_Modular_Size --
19397 ----------------------
19398
19399 procedure Set_Modular_Size (Bits : Int) is
19400 begin
19401 Set_RM_Size (T, UI_From_Int (Bits));
19402
19403 if Bits <= 8 then
19404 Init_Esize (T, 8);
19405
19406 elsif Bits <= 16 then
19407 Init_Esize (T, 16);
19408
19409 elsif Bits <= 32 then
19410 Init_Esize (T, 32);
19411
19412 else
19413 Init_Esize (T, System_Max_Binary_Modulus_Power);
19414 end if;
19415
19416 if not Non_Binary_Modulus (T) and then Esize (T) = RM_Size (T) then
19417 Set_Is_Known_Valid (T);
19418 end if;
19419 end Set_Modular_Size;
19420
19421 -- Start of processing for Modular_Type_Declaration
19422
19423 begin
19424 -- If the mod expression is (exactly) 2 * literal, where literal is
19425 -- 64 or less,then almost certainly the * was meant to be **. Warn.
19426
19427 if Warn_On_Suspicious_Modulus_Value
19428 and then Nkind (Mod_Expr) = N_Op_Multiply
19429 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
19430 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
19431 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
19432 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
19433 then
19434 Error_Msg_N
19435 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
19436 end if;
19437
19438 -- Proceed with analysis of mod expression
19439
19440 Analyze_And_Resolve (Mod_Expr, Any_Integer);
19441 Set_Etype (T, T);
19442 Set_Ekind (T, E_Modular_Integer_Type);
19443 Init_Alignment (T);
19444 Set_Is_Constrained (T);
19445
19446 if not Is_OK_Static_Expression (Mod_Expr) then
19447 Flag_Non_Static_Expr
19448 ("non-static expression used for modular type bound!", Mod_Expr);
19449 M_Val := 2 ** System_Max_Binary_Modulus_Power;
19450 else
19451 M_Val := Expr_Value (Mod_Expr);
19452 end if;
19453
19454 if M_Val < 1 then
19455 Error_Msg_N ("modulus value must be positive", Mod_Expr);
19456 M_Val := 2 ** System_Max_Binary_Modulus_Power;
19457 end if;
19458
19459 if M_Val > 2 ** Standard_Long_Integer_Size then
19460 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
19461 end if;
19462
19463 Set_Modulus (T, M_Val);
19464
19465 -- Create bounds for the modular type based on the modulus given in
19466 -- the type declaration and then analyze and resolve those bounds.
19467
19468 Set_Scalar_Range (T,
19469 Make_Range (Sloc (Mod_Expr),
19470 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
19471 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
19472
19473 -- Properly analyze the literals for the range. We do this manually
19474 -- because we can't go calling Resolve, since we are resolving these
19475 -- bounds with the type, and this type is certainly not complete yet.
19476
19477 Set_Etype (Low_Bound (Scalar_Range (T)), T);
19478 Set_Etype (High_Bound (Scalar_Range (T)), T);
19479 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
19480 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
19481
19482 -- Loop through powers of two to find number of bits required
19483
19484 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
19485
19486 -- Binary case
19487
19488 if M_Val = 2 ** Bits then
19489 Set_Modular_Size (Bits);
19490 return;
19491
19492 -- Nonbinary case
19493
19494 elsif M_Val < 2 ** Bits then
19495 Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
19496 Set_Non_Binary_Modulus (T);
19497
19498 if Bits > System_Max_Nonbinary_Modulus_Power then
19499 Error_Msg_Uint_1 :=
19500 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
19501 Error_Msg_F
19502 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
19503 Set_Modular_Size (System_Max_Binary_Modulus_Power);
19504 return;
19505
19506 else
19507 -- In the nonbinary case, set size as per RM 13.3(55)
19508
19509 Set_Modular_Size (Bits);
19510 return;
19511 end if;
19512 end if;
19513
19514 end loop;
19515
19516 -- If we fall through, then the size exceed System.Max_Binary_Modulus
19517 -- so we just signal an error and set the maximum size.
19518
19519 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
19520 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
19521
19522 Set_Modular_Size (System_Max_Binary_Modulus_Power);
19523 Init_Alignment (T);
19524
19525 end Modular_Type_Declaration;
19526
19527 --------------------------
19528 -- New_Concatenation_Op --
19529 --------------------------
19530
19531 procedure New_Concatenation_Op (Typ : Entity_Id) is
19532 Loc : constant Source_Ptr := Sloc (Typ);
19533 Op : Entity_Id;
19534
19535 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
19536 -- Create abbreviated declaration for the formal of a predefined
19537 -- Operator 'Op' of type 'Typ'
19538
19539 --------------------
19540 -- Make_Op_Formal --
19541 --------------------
19542
19543 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
19544 Formal : Entity_Id;
19545 begin
19546 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
19547 Set_Etype (Formal, Typ);
19548 Set_Mechanism (Formal, Default_Mechanism);
19549 return Formal;
19550 end Make_Op_Formal;
19551
19552 -- Start of processing for New_Concatenation_Op
19553
19554 begin
19555 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
19556
19557 Set_Ekind (Op, E_Operator);
19558 Set_Scope (Op, Current_Scope);
19559 Set_Etype (Op, Typ);
19560 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
19561 Set_Is_Immediately_Visible (Op);
19562 Set_Is_Intrinsic_Subprogram (Op);
19563 Set_Has_Completion (Op);
19564 Append_Entity (Op, Current_Scope);
19565
19566 Set_Name_Entity_Id (Name_Op_Concat, Op);
19567
19568 Append_Entity (Make_Op_Formal (Typ, Op), Op);
19569 Append_Entity (Make_Op_Formal (Typ, Op), Op);
19570 end New_Concatenation_Op;
19571
19572 -------------------------
19573 -- OK_For_Limited_Init --
19574 -------------------------
19575
19576 -- ???Check all calls of this, and compare the conditions under which it's
19577 -- called.
19578
19579 function OK_For_Limited_Init
19580 (Typ : Entity_Id;
19581 Exp : Node_Id) return Boolean
19582 is
19583 begin
19584 return Is_CPP_Constructor_Call (Exp)
19585 or else (Ada_Version >= Ada_2005
19586 and then not Debug_Flag_Dot_L
19587 and then OK_For_Limited_Init_In_05 (Typ, Exp));
19588 end OK_For_Limited_Init;
19589
19590 -------------------------------
19591 -- OK_For_Limited_Init_In_05 --
19592 -------------------------------
19593
19594 function OK_For_Limited_Init_In_05
19595 (Typ : Entity_Id;
19596 Exp : Node_Id) return Boolean
19597 is
19598 begin
19599 -- An object of a limited interface type can be initialized with any
19600 -- expression of a nonlimited descendant type. However this does not
19601 -- apply if this is a view conversion of some other expression. This
19602 -- is checked below.
19603
19604 if Is_Class_Wide_Type (Typ)
19605 and then Is_Limited_Interface (Typ)
19606 and then not Is_Limited_Type (Etype (Exp))
19607 and then Nkind (Exp) /= N_Type_Conversion
19608 then
19609 return True;
19610 end if;
19611
19612 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
19613 -- case of limited aggregates (including extension aggregates), and
19614 -- function calls. The function call may have been given in prefixed
19615 -- notation, in which case the original node is an indexed component.
19616 -- If the function is parameterless, the original node was an explicit
19617 -- dereference. The function may also be parameterless, in which case
19618 -- the source node is just an identifier.
19619
19620 -- A branch of a conditional expression may have been removed if the
19621 -- condition is statically known. This happens during expansion, and
19622 -- thus will not happen if previous errors were encountered. The check
19623 -- will have been performed on the chosen branch, which replaces the
19624 -- original conditional expression.
19625
19626 if No (Exp) then
19627 return True;
19628 end if;
19629
19630 case Nkind (Original_Node (Exp)) is
19631 when N_Aggregate
19632 | N_Extension_Aggregate
19633 | N_Function_Call
19634 | N_Op
19635 =>
19636 return True;
19637
19638 when N_Identifier =>
19639 return Present (Entity (Original_Node (Exp)))
19640 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
19641
19642 when N_Qualified_Expression =>
19643 return
19644 OK_For_Limited_Init_In_05
19645 (Typ, Expression (Original_Node (Exp)));
19646
19647 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
19648 -- with a function call, the expander has rewritten the call into an
19649 -- N_Type_Conversion node to force displacement of the pointer to
19650 -- reference the component containing the secondary dispatch table.
19651 -- Otherwise a type conversion is not a legal context.
19652 -- A return statement for a build-in-place function returning a
19653 -- synchronized type also introduces an unchecked conversion.
19654
19655 when N_Type_Conversion
19656 | N_Unchecked_Type_Conversion
19657 =>
19658 return not Comes_From_Source (Exp)
19659 and then
19660 OK_For_Limited_Init_In_05
19661 (Typ, Expression (Original_Node (Exp)));
19662
19663 when N_Explicit_Dereference
19664 | N_Indexed_Component
19665 | N_Selected_Component
19666 =>
19667 return Nkind (Exp) = N_Function_Call;
19668
19669 -- A use of 'Input is a function call, hence allowed. Normally the
19670 -- attribute will be changed to a call, but the attribute by itself
19671 -- can occur with -gnatc.
19672
19673 when N_Attribute_Reference =>
19674 return Attribute_Name (Original_Node (Exp)) = Name_Input;
19675
19676 -- "return raise ..." is OK
19677
19678 when N_Raise_Expression =>
19679 return True;
19680
19681 -- For a case expression, all dependent expressions must be legal
19682
19683 when N_Case_Expression =>
19684 declare
19685 Alt : Node_Id;
19686
19687 begin
19688 Alt := First (Alternatives (Original_Node (Exp)));
19689 while Present (Alt) loop
19690 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
19691 return False;
19692 end if;
19693
19694 Next (Alt);
19695 end loop;
19696
19697 return True;
19698 end;
19699
19700 -- For an if expression, all dependent expressions must be legal
19701
19702 when N_If_Expression =>
19703 declare
19704 Then_Expr : constant Node_Id :=
19705 Next (First (Expressions (Original_Node (Exp))));
19706 Else_Expr : constant Node_Id := Next (Then_Expr);
19707 begin
19708 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
19709 and then
19710 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
19711 end;
19712
19713 when others =>
19714 return False;
19715 end case;
19716 end OK_For_Limited_Init_In_05;
19717
19718 -------------------------------------------
19719 -- Ordinary_Fixed_Point_Type_Declaration --
19720 -------------------------------------------
19721
19722 procedure Ordinary_Fixed_Point_Type_Declaration
19723 (T : Entity_Id;
19724 Def : Node_Id)
19725 is
19726 Loc : constant Source_Ptr := Sloc (Def);
19727 Delta_Expr : constant Node_Id := Delta_Expression (Def);
19728 RRS : constant Node_Id := Real_Range_Specification (Def);
19729 Implicit_Base : Entity_Id;
19730 Delta_Val : Ureal;
19731 Small_Val : Ureal;
19732 Low_Val : Ureal;
19733 High_Val : Ureal;
19734
19735 begin
19736 Check_Restriction (No_Fixed_Point, Def);
19737
19738 -- Create implicit base type
19739
19740 Implicit_Base :=
19741 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
19742 Set_Etype (Implicit_Base, Implicit_Base);
19743
19744 -- Analyze and process delta expression
19745
19746 Analyze_And_Resolve (Delta_Expr, Any_Real);
19747
19748 Check_Delta_Expression (Delta_Expr);
19749 Delta_Val := Expr_Value_R (Delta_Expr);
19750
19751 Set_Delta_Value (Implicit_Base, Delta_Val);
19752
19753 -- Compute default small from given delta, which is the largest power
19754 -- of two that does not exceed the given delta value.
19755
19756 declare
19757 Tmp : Ureal;
19758 Scale : Int;
19759
19760 begin
19761 Tmp := Ureal_1;
19762 Scale := 0;
19763
19764 if Delta_Val < Ureal_1 then
19765 while Delta_Val < Tmp loop
19766 Tmp := Tmp / Ureal_2;
19767 Scale := Scale + 1;
19768 end loop;
19769
19770 else
19771 loop
19772 Tmp := Tmp * Ureal_2;
19773 exit when Tmp > Delta_Val;
19774 Scale := Scale - 1;
19775 end loop;
19776 end if;
19777
19778 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
19779 end;
19780
19781 Set_Small_Value (Implicit_Base, Small_Val);
19782
19783 -- If no range was given, set a dummy range
19784
19785 if RRS <= Empty_Or_Error then
19786 Low_Val := -Small_Val;
19787 High_Val := Small_Val;
19788
19789 -- Otherwise analyze and process given range
19790
19791 else
19792 declare
19793 Low : constant Node_Id := Low_Bound (RRS);
19794 High : constant Node_Id := High_Bound (RRS);
19795
19796 begin
19797 Analyze_And_Resolve (Low, Any_Real);
19798 Analyze_And_Resolve (High, Any_Real);
19799 Check_Real_Bound (Low);
19800 Check_Real_Bound (High);
19801
19802 -- Obtain and set the range
19803
19804 Low_Val := Expr_Value_R (Low);
19805 High_Val := Expr_Value_R (High);
19806
19807 if Low_Val > High_Val then
19808 Error_Msg_NE ("??fixed point type& has null range", Def, T);
19809 end if;
19810 end;
19811 end if;
19812
19813 -- The range for both the implicit base and the declared first subtype
19814 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
19815 -- set a temporary range in place. Note that the bounds of the base
19816 -- type will be widened to be symmetrical and to fill the available
19817 -- bits when the type is frozen.
19818
19819 -- We could do this with all discrete types, and probably should, but
19820 -- we absolutely have to do it for fixed-point, since the end-points
19821 -- of the range and the size are determined by the small value, which
19822 -- could be reset before the freeze point.
19823
19824 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
19825 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
19826
19827 -- Complete definition of first subtype. The inheritance of the rep item
19828 -- chain ensures that SPARK-related pragmas are not clobbered when the
19829 -- ordinary fixed point type acts as a full view of a private type.
19830
19831 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
19832 Set_Etype (T, Implicit_Base);
19833 Init_Size_Align (T);
19834 Inherit_Rep_Item_Chain (T, Implicit_Base);
19835 Set_Small_Value (T, Small_Val);
19836 Set_Delta_Value (T, Delta_Val);
19837 Set_Is_Constrained (T);
19838 end Ordinary_Fixed_Point_Type_Declaration;
19839
19840 ----------------------------------
19841 -- Preanalyze_Assert_Expression --
19842 ----------------------------------
19843
19844 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
19845 begin
19846 In_Assertion_Expr := In_Assertion_Expr + 1;
19847 Preanalyze_Spec_Expression (N, T);
19848 In_Assertion_Expr := In_Assertion_Expr - 1;
19849 end Preanalyze_Assert_Expression;
19850
19851 -----------------------------------
19852 -- Preanalyze_Default_Expression --
19853 -----------------------------------
19854
19855 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
19856 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
19857 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
19858
19859 begin
19860 In_Default_Expr := True;
19861 In_Spec_Expression := True;
19862
19863 Preanalyze_With_Freezing_And_Resolve (N, T);
19864
19865 In_Default_Expr := Save_In_Default_Expr;
19866 In_Spec_Expression := Save_In_Spec_Expression;
19867 end Preanalyze_Default_Expression;
19868
19869 --------------------------------
19870 -- Preanalyze_Spec_Expression --
19871 --------------------------------
19872
19873 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
19874 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
19875 begin
19876 In_Spec_Expression := True;
19877 Preanalyze_And_Resolve (N, T);
19878 In_Spec_Expression := Save_In_Spec_Expression;
19879 end Preanalyze_Spec_Expression;
19880
19881 ----------------------------------------
19882 -- Prepare_Private_Subtype_Completion --
19883 ----------------------------------------
19884
19885 procedure Prepare_Private_Subtype_Completion
19886 (Id : Entity_Id;
19887 Related_Nod : Node_Id)
19888 is
19889 Id_B : constant Entity_Id := Base_Type (Id);
19890 Full_B : Entity_Id := Full_View (Id_B);
19891 Full : Entity_Id;
19892
19893 begin
19894 if Present (Full_B) then
19895
19896 -- Get to the underlying full view if necessary
19897
19898 if Is_Private_Type (Full_B)
19899 and then Present (Underlying_Full_View (Full_B))
19900 then
19901 Full_B := Underlying_Full_View (Full_B);
19902 end if;
19903
19904 -- The Base_Type is already completed, we can complete the subtype
19905 -- now. We have to create a new entity with the same name, Thus we
19906 -- can't use Create_Itype.
19907
19908 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
19909 Set_Is_Itype (Full);
19910 Set_Associated_Node_For_Itype (Full, Related_Nod);
19911 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
19912 end if;
19913
19914 -- The parent subtype may be private, but the base might not, in some
19915 -- nested instances. In that case, the subtype does not need to be
19916 -- exchanged. It would still be nice to make private subtypes and their
19917 -- bases consistent at all times ???
19918
19919 if Is_Private_Type (Id_B) then
19920 Append_Elmt (Id, Private_Dependents (Id_B));
19921 end if;
19922 end Prepare_Private_Subtype_Completion;
19923
19924 ---------------------------
19925 -- Process_Discriminants --
19926 ---------------------------
19927
19928 procedure Process_Discriminants
19929 (N : Node_Id;
19930 Prev : Entity_Id := Empty)
19931 is
19932 Elist : constant Elist_Id := New_Elmt_List;
19933 Id : Node_Id;
19934 Discr : Node_Id;
19935 Discr_Number : Uint;
19936 Discr_Type : Entity_Id;
19937 Default_Present : Boolean := False;
19938 Default_Not_Present : Boolean := False;
19939
19940 begin
19941 -- A composite type other than an array type can have discriminants.
19942 -- On entry, the current scope is the composite type.
19943
19944 -- The discriminants are initially entered into the scope of the type
19945 -- via Enter_Name with the default Ekind of E_Void to prevent premature
19946 -- use, as explained at the end of this procedure.
19947
19948 Discr := First (Discriminant_Specifications (N));
19949 while Present (Discr) loop
19950 Enter_Name (Defining_Identifier (Discr));
19951
19952 -- For navigation purposes we add a reference to the discriminant
19953 -- in the entity for the type. If the current declaration is a
19954 -- completion, place references on the partial view. Otherwise the
19955 -- type is the current scope.
19956
19957 if Present (Prev) then
19958
19959 -- The references go on the partial view, if present. If the
19960 -- partial view has discriminants, the references have been
19961 -- generated already.
19962
19963 if not Has_Discriminants (Prev) then
19964 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
19965 end if;
19966 else
19967 Generate_Reference
19968 (Current_Scope, Defining_Identifier (Discr), 'd');
19969 end if;
19970
19971 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
19972 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
19973
19974 -- Ada 2005 (AI-254)
19975
19976 if Present (Access_To_Subprogram_Definition
19977 (Discriminant_Type (Discr)))
19978 and then Protected_Present (Access_To_Subprogram_Definition
19979 (Discriminant_Type (Discr)))
19980 then
19981 Discr_Type :=
19982 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
19983 end if;
19984
19985 else
19986 Find_Type (Discriminant_Type (Discr));
19987 Discr_Type := Etype (Discriminant_Type (Discr));
19988
19989 if Error_Posted (Discriminant_Type (Discr)) then
19990 Discr_Type := Any_Type;
19991 end if;
19992 end if;
19993
19994 -- Handling of discriminants that are access types
19995
19996 if Is_Access_Type (Discr_Type) then
19997
19998 -- Ada 2005 (AI-230): Access discriminant allowed in non-
19999 -- limited record types
20000
20001 if Ada_Version < Ada_2005 then
20002 Check_Access_Discriminant_Requires_Limited
20003 (Discr, Discriminant_Type (Discr));
20004 end if;
20005
20006 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
20007 Error_Msg_N
20008 ("(Ada 83) access discriminant not allowed", Discr);
20009 end if;
20010
20011 -- If not access type, must be a discrete type
20012
20013 elsif not Is_Discrete_Type (Discr_Type) then
20014 Error_Msg_N
20015 ("discriminants must have a discrete or access type",
20016 Discriminant_Type (Discr));
20017 end if;
20018
20019 Set_Etype (Defining_Identifier (Discr), Discr_Type);
20020
20021 -- If a discriminant specification includes the assignment compound
20022 -- delimiter followed by an expression, the expression is the default
20023 -- expression of the discriminant; the default expression must be of
20024 -- the type of the discriminant. (RM 3.7.1) Since this expression is
20025 -- a default expression, we do the special preanalysis, since this
20026 -- expression does not freeze (see section "Handling of Default and
20027 -- Per-Object Expressions" in spec of package Sem).
20028
20029 if Present (Expression (Discr)) then
20030 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
20031
20032 -- Legaity checks
20033
20034 if Nkind (N) = N_Formal_Type_Declaration then
20035 Error_Msg_N
20036 ("discriminant defaults not allowed for formal type",
20037 Expression (Discr));
20038
20039 -- Flag an error for a tagged type with defaulted discriminants,
20040 -- excluding limited tagged types when compiling for Ada 2012
20041 -- (see AI05-0214).
20042
20043 elsif Is_Tagged_Type (Current_Scope)
20044 and then (not Is_Limited_Type (Current_Scope)
20045 or else Ada_Version < Ada_2012)
20046 and then Comes_From_Source (N)
20047 then
20048 -- Note: see similar test in Check_Or_Process_Discriminants, to
20049 -- handle the (illegal) case of the completion of an untagged
20050 -- view with discriminants with defaults by a tagged full view.
20051 -- We skip the check if Discr does not come from source, to
20052 -- account for the case of an untagged derived type providing
20053 -- defaults for a renamed discriminant from a private untagged
20054 -- ancestor with a tagged full view (ACATS B460006).
20055
20056 if Ada_Version >= Ada_2012 then
20057 Error_Msg_N
20058 ("discriminants of nonlimited tagged type cannot have"
20059 & " defaults",
20060 Expression (Discr));
20061 else
20062 Error_Msg_N
20063 ("discriminants of tagged type cannot have defaults",
20064 Expression (Discr));
20065 end if;
20066
20067 else
20068 Default_Present := True;
20069 Append_Elmt (Expression (Discr), Elist);
20070
20071 -- Tag the defining identifiers for the discriminants with
20072 -- their corresponding default expressions from the tree.
20073
20074 Set_Discriminant_Default_Value
20075 (Defining_Identifier (Discr), Expression (Discr));
20076 end if;
20077
20078 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
20079 -- gets set unless we can be sure that no range check is required.
20080
20081 if (GNATprove_Mode or not Expander_Active)
20082 and then not
20083 Is_In_Range
20084 (Expression (Discr), Discr_Type, Assume_Valid => True)
20085 then
20086 Set_Do_Range_Check (Expression (Discr));
20087 end if;
20088
20089 -- No default discriminant value given
20090
20091 else
20092 Default_Not_Present := True;
20093 end if;
20094
20095 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
20096 -- Discr_Type but with the null-exclusion attribute
20097
20098 if Ada_Version >= Ada_2005 then
20099
20100 -- Ada 2005 (AI-231): Static checks
20101
20102 if Can_Never_Be_Null (Discr_Type) then
20103 Null_Exclusion_Static_Checks (Discr);
20104
20105 elsif Is_Access_Type (Discr_Type)
20106 and then Null_Exclusion_Present (Discr)
20107
20108 -- No need to check itypes because in their case this check
20109 -- was done at their point of creation
20110
20111 and then not Is_Itype (Discr_Type)
20112 then
20113 if Can_Never_Be_Null (Discr_Type) then
20114 Error_Msg_NE
20115 ("`NOT NULL` not allowed (& already excludes null)",
20116 Discr,
20117 Discr_Type);
20118 end if;
20119
20120 Set_Etype (Defining_Identifier (Discr),
20121 Create_Null_Excluding_Itype
20122 (T => Discr_Type,
20123 Related_Nod => Discr));
20124
20125 -- Check for improper null exclusion if the type is otherwise
20126 -- legal for a discriminant.
20127
20128 elsif Null_Exclusion_Present (Discr)
20129 and then Is_Discrete_Type (Discr_Type)
20130 then
20131 Error_Msg_N
20132 ("null exclusion can only apply to an access type", Discr);
20133 end if;
20134
20135 -- Ada 2005 (AI-402): access discriminants of nonlimited types
20136 -- can't have defaults. Synchronized types, or types that are
20137 -- explicitly limited are fine, but special tests apply to derived
20138 -- types in generics: in a generic body we have to assume the
20139 -- worst, and therefore defaults are not allowed if the parent is
20140 -- a generic formal private type (see ACATS B370001).
20141
20142 if Is_Access_Type (Discr_Type) and then Default_Present then
20143 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
20144 or else Is_Limited_Record (Current_Scope)
20145 or else Is_Concurrent_Type (Current_Scope)
20146 or else Is_Concurrent_Record_Type (Current_Scope)
20147 or else Ekind (Current_Scope) = E_Limited_Private_Type
20148 then
20149 if not Is_Derived_Type (Current_Scope)
20150 or else not Is_Generic_Type (Etype (Current_Scope))
20151 or else not In_Package_Body (Scope (Etype (Current_Scope)))
20152 or else Limited_Present
20153 (Type_Definition (Parent (Current_Scope)))
20154 then
20155 null;
20156
20157 else
20158 Error_Msg_N
20159 ("access discriminants of nonlimited types cannot "
20160 & "have defaults", Expression (Discr));
20161 end if;
20162
20163 elsif Present (Expression (Discr)) then
20164 Error_Msg_N
20165 ("(Ada 2005) access discriminants of nonlimited types "
20166 & "cannot have defaults", Expression (Discr));
20167 end if;
20168 end if;
20169 end if;
20170
20171 -- A discriminant cannot be effectively volatile (SPARK RM 7.1.3(4)).
20172 -- This check is relevant only when SPARK_Mode is on as it is not a
20173 -- standard Ada legality rule.
20174
20175 if SPARK_Mode = On
20176 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
20177 then
20178 Error_Msg_N ("discriminant cannot be volatile", Discr);
20179 end if;
20180
20181 Next (Discr);
20182 end loop;
20183
20184 -- An element list consisting of the default expressions of the
20185 -- discriminants is constructed in the above loop and used to set
20186 -- the Discriminant_Constraint attribute for the type. If an object
20187 -- is declared of this (record or task) type without any explicit
20188 -- discriminant constraint given, this element list will form the
20189 -- actual parameters for the corresponding initialization procedure
20190 -- for the type.
20191
20192 Set_Discriminant_Constraint (Current_Scope, Elist);
20193 Set_Stored_Constraint (Current_Scope, No_Elist);
20194
20195 -- Default expressions must be provided either for all or for none
20196 -- of the discriminants of a discriminant part. (RM 3.7.1)
20197
20198 if Default_Present and then Default_Not_Present then
20199 Error_Msg_N
20200 ("incomplete specification of defaults for discriminants", N);
20201 end if;
20202
20203 -- The use of the name of a discriminant is not allowed in default
20204 -- expressions of a discriminant part if the specification of the
20205 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
20206
20207 -- To detect this, the discriminant names are entered initially with an
20208 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
20209 -- attempt to use a void entity (for example in an expression that is
20210 -- type-checked) produces the error message: premature usage. Now after
20211 -- completing the semantic analysis of the discriminant part, we can set
20212 -- the Ekind of all the discriminants appropriately.
20213
20214 Discr := First (Discriminant_Specifications (N));
20215 Discr_Number := Uint_1;
20216 while Present (Discr) loop
20217 Id := Defining_Identifier (Discr);
20218 Set_Ekind (Id, E_Discriminant);
20219 Init_Component_Location (Id);
20220 Init_Esize (Id);
20221 Set_Discriminant_Number (Id, Discr_Number);
20222
20223 -- Make sure this is always set, even in illegal programs
20224
20225 Set_Corresponding_Discriminant (Id, Empty);
20226
20227 -- Initialize the Original_Record_Component to the entity itself.
20228 -- Inherit_Components will propagate the right value to
20229 -- discriminants in derived record types.
20230
20231 Set_Original_Record_Component (Id, Id);
20232
20233 -- Create the discriminal for the discriminant
20234
20235 Build_Discriminal (Id);
20236
20237 Next (Discr);
20238 Discr_Number := Discr_Number + 1;
20239 end loop;
20240
20241 Set_Has_Discriminants (Current_Scope);
20242 end Process_Discriminants;
20243
20244 -----------------------
20245 -- Process_Full_View --
20246 -----------------------
20247
20248 -- WARNING: This routine manages Ghost regions. Return statements must be
20249 -- replaced by gotos which jump to the end of the routine and restore the
20250 -- Ghost mode.
20251
20252 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
20253 procedure Collect_Implemented_Interfaces
20254 (Typ : Entity_Id;
20255 Ifaces : Elist_Id);
20256 -- Ada 2005: Gather all the interfaces that Typ directly or
20257 -- inherently implements. Duplicate entries are not added to
20258 -- the list Ifaces.
20259
20260 ------------------------------------
20261 -- Collect_Implemented_Interfaces --
20262 ------------------------------------
20263
20264 procedure Collect_Implemented_Interfaces
20265 (Typ : Entity_Id;
20266 Ifaces : Elist_Id)
20267 is
20268 Iface : Entity_Id;
20269 Iface_Elmt : Elmt_Id;
20270
20271 begin
20272 -- Abstract interfaces are only associated with tagged record types
20273
20274 if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then
20275 return;
20276 end if;
20277
20278 -- Recursively climb to the ancestors
20279
20280 if Etype (Typ) /= Typ
20281
20282 -- Protect the frontend against wrong cyclic declarations like:
20283
20284 -- type B is new A with private;
20285 -- type C is new A with private;
20286 -- private
20287 -- type B is new C with null record;
20288 -- type C is new B with null record;
20289
20290 and then Etype (Typ) /= Priv_T
20291 and then Etype (Typ) /= Full_T
20292 then
20293 -- Keep separate the management of private type declarations
20294
20295 if Ekind (Typ) = E_Record_Type_With_Private then
20296
20297 -- Handle the following illegal usage:
20298 -- type Private_Type is tagged private;
20299 -- private
20300 -- type Private_Type is new Type_Implementing_Iface;
20301
20302 if Present (Full_View (Typ))
20303 and then Etype (Typ) /= Full_View (Typ)
20304 then
20305 if Is_Interface (Etype (Typ)) then
20306 Append_Unique_Elmt (Etype (Typ), Ifaces);
20307 end if;
20308
20309 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
20310 end if;
20311
20312 -- Non-private types
20313
20314 else
20315 if Is_Interface (Etype (Typ)) then
20316 Append_Unique_Elmt (Etype (Typ), Ifaces);
20317 end if;
20318
20319 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
20320 end if;
20321 end if;
20322
20323 -- Handle entities in the list of abstract interfaces
20324
20325 if Present (Interfaces (Typ)) then
20326 Iface_Elmt := First_Elmt (Interfaces (Typ));
20327 while Present (Iface_Elmt) loop
20328 Iface := Node (Iface_Elmt);
20329
20330 pragma Assert (Is_Interface (Iface));
20331
20332 if not Contain_Interface (Iface, Ifaces) then
20333 Append_Elmt (Iface, Ifaces);
20334 Collect_Implemented_Interfaces (Iface, Ifaces);
20335 end if;
20336
20337 Next_Elmt (Iface_Elmt);
20338 end loop;
20339 end if;
20340 end Collect_Implemented_Interfaces;
20341
20342 -- Local variables
20343
20344 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
20345 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
20346 -- Save the Ghost-related attributes to restore on exit
20347
20348 Full_Indic : Node_Id;
20349 Full_Parent : Entity_Id;
20350 Priv_Parent : Entity_Id;
20351
20352 -- Start of processing for Process_Full_View
20353
20354 begin
20355 Mark_And_Set_Ghost_Completion (N, Priv_T);
20356
20357 -- First some sanity checks that must be done after semantic
20358 -- decoration of the full view and thus cannot be placed with other
20359 -- similar checks in Find_Type_Name
20360
20361 if not Is_Limited_Type (Priv_T)
20362 and then (Is_Limited_Type (Full_T)
20363 or else Is_Limited_Composite (Full_T))
20364 then
20365 if In_Instance then
20366 null;
20367 else
20368 Error_Msg_N
20369 ("completion of nonlimited type cannot be limited", Full_T);
20370 Explain_Limited_Type (Full_T, Full_T);
20371 end if;
20372
20373 elsif Is_Abstract_Type (Full_T)
20374 and then not Is_Abstract_Type (Priv_T)
20375 then
20376 Error_Msg_N
20377 ("completion of nonabstract type cannot be abstract", Full_T);
20378
20379 elsif Is_Tagged_Type (Priv_T)
20380 and then Is_Limited_Type (Priv_T)
20381 and then not Is_Limited_Type (Full_T)
20382 then
20383 -- If pragma CPP_Class was applied to the private declaration
20384 -- propagate the limitedness to the full-view
20385
20386 if Is_CPP_Class (Priv_T) then
20387 Set_Is_Limited_Record (Full_T);
20388
20389 -- GNAT allow its own definition of Limited_Controlled to disobey
20390 -- this rule in order in ease the implementation. This test is safe
20391 -- because Root_Controlled is defined in a child of System that
20392 -- normal programs are not supposed to use.
20393
20394 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
20395 Set_Is_Limited_Composite (Full_T);
20396 else
20397 Error_Msg_N
20398 ("completion of limited tagged type must be limited", Full_T);
20399 end if;
20400
20401 elsif Is_Generic_Type (Priv_T) then
20402 Error_Msg_N ("generic type cannot have a completion", Full_T);
20403 end if;
20404
20405 -- Check that ancestor interfaces of private and full views are
20406 -- consistent. We omit this check for synchronized types because
20407 -- they are performed on the corresponding record type when frozen.
20408
20409 if Ada_Version >= Ada_2005
20410 and then Is_Tagged_Type (Priv_T)
20411 and then Is_Tagged_Type (Full_T)
20412 and then not Is_Concurrent_Type (Full_T)
20413 then
20414 declare
20415 Iface : Entity_Id;
20416 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
20417 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
20418
20419 begin
20420 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
20421 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
20422
20423 -- Ada 2005 (AI-251): The partial view shall be a descendant of
20424 -- an interface type if and only if the full type is descendant
20425 -- of the interface type (AARM 7.3 (7.3/2)).
20426
20427 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
20428
20429 if Present (Iface) then
20430 Error_Msg_NE
20431 ("interface in partial view& not implemented by full type "
20432 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
20433 end if;
20434
20435 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
20436
20437 if Present (Iface) then
20438 Error_Msg_NE
20439 ("interface & not implemented by partial view "
20440 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
20441 end if;
20442 end;
20443 end if;
20444
20445 if Is_Tagged_Type (Priv_T)
20446 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20447 and then Is_Derived_Type (Full_T)
20448 then
20449 Priv_Parent := Etype (Priv_T);
20450
20451 -- The full view of a private extension may have been transformed
20452 -- into an unconstrained derived type declaration and a subtype
20453 -- declaration (see build_derived_record_type for details).
20454
20455 if Nkind (N) = N_Subtype_Declaration then
20456 Full_Indic := Subtype_Indication (N);
20457 Full_Parent := Etype (Base_Type (Full_T));
20458 else
20459 Full_Indic := Subtype_Indication (Type_Definition (N));
20460 Full_Parent := Etype (Full_T);
20461 end if;
20462
20463 -- Check that the parent type of the full type is a descendant of
20464 -- the ancestor subtype given in the private extension. If either
20465 -- entity has an Etype equal to Any_Type then we had some previous
20466 -- error situation [7.3(8)].
20467
20468 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
20469 goto Leave;
20470
20471 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
20472 -- any order. Therefore we don't have to check that its parent must
20473 -- be a descendant of the parent of the private type declaration.
20474
20475 elsif Is_Interface (Priv_Parent)
20476 and then Is_Interface (Full_Parent)
20477 then
20478 null;
20479
20480 -- Ada 2005 (AI-251): If the parent of the private type declaration
20481 -- is an interface there is no need to check that it is an ancestor
20482 -- of the associated full type declaration. The required tests for
20483 -- this case are performed by Build_Derived_Record_Type.
20484
20485 elsif not Is_Interface (Base_Type (Priv_Parent))
20486 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
20487 then
20488 Error_Msg_N
20489 ("parent of full type must descend from parent of private "
20490 & "extension", Full_Indic);
20491
20492 -- First check a formal restriction, and then proceed with checking
20493 -- Ada rules. Since the formal restriction is not a serious error, we
20494 -- don't prevent further error detection for this check, hence the
20495 -- ELSE.
20496
20497 else
20498 -- In formal mode, when completing a private extension the type
20499 -- named in the private part must be exactly the same as that
20500 -- named in the visible part.
20501
20502 if Priv_Parent /= Full_Parent then
20503 Error_Msg_Name_1 := Chars (Priv_Parent);
20504 Check_SPARK_05_Restriction ("% expected", Full_Indic);
20505 end if;
20506
20507 -- Check the rules of 7.3(10): if the private extension inherits
20508 -- known discriminants, then the full type must also inherit those
20509 -- discriminants from the same (ancestor) type, and the parent
20510 -- subtype of the full type must be constrained if and only if
20511 -- the ancestor subtype of the private extension is constrained.
20512
20513 if No (Discriminant_Specifications (Parent (Priv_T)))
20514 and then not Has_Unknown_Discriminants (Priv_T)
20515 and then Has_Discriminants (Base_Type (Priv_Parent))
20516 then
20517 declare
20518 Priv_Indic : constant Node_Id :=
20519 Subtype_Indication (Parent (Priv_T));
20520
20521 Priv_Constr : constant Boolean :=
20522 Is_Constrained (Priv_Parent)
20523 or else
20524 Nkind (Priv_Indic) = N_Subtype_Indication
20525 or else
20526 Is_Constrained (Entity (Priv_Indic));
20527
20528 Full_Constr : constant Boolean :=
20529 Is_Constrained (Full_Parent)
20530 or else
20531 Nkind (Full_Indic) = N_Subtype_Indication
20532 or else
20533 Is_Constrained (Entity (Full_Indic));
20534
20535 Priv_Discr : Entity_Id;
20536 Full_Discr : Entity_Id;
20537
20538 begin
20539 Priv_Discr := First_Discriminant (Priv_Parent);
20540 Full_Discr := First_Discriminant (Full_Parent);
20541 while Present (Priv_Discr) and then Present (Full_Discr) loop
20542 if Original_Record_Component (Priv_Discr) =
20543 Original_Record_Component (Full_Discr)
20544 or else
20545 Corresponding_Discriminant (Priv_Discr) =
20546 Corresponding_Discriminant (Full_Discr)
20547 then
20548 null;
20549 else
20550 exit;
20551 end if;
20552
20553 Next_Discriminant (Priv_Discr);
20554 Next_Discriminant (Full_Discr);
20555 end loop;
20556
20557 if Present (Priv_Discr) or else Present (Full_Discr) then
20558 Error_Msg_N
20559 ("full view must inherit discriminants of the parent "
20560 & "type used in the private extension", Full_Indic);
20561
20562 elsif Priv_Constr and then not Full_Constr then
20563 Error_Msg_N
20564 ("parent subtype of full type must be constrained",
20565 Full_Indic);
20566
20567 elsif Full_Constr and then not Priv_Constr then
20568 Error_Msg_N
20569 ("parent subtype of full type must be unconstrained",
20570 Full_Indic);
20571 end if;
20572 end;
20573
20574 -- Check the rules of 7.3(12): if a partial view has neither
20575 -- known or unknown discriminants, then the full type
20576 -- declaration shall define a definite subtype.
20577
20578 elsif not Has_Unknown_Discriminants (Priv_T)
20579 and then not Has_Discriminants (Priv_T)
20580 and then not Is_Constrained (Full_T)
20581 then
20582 Error_Msg_N
20583 ("full view must define a constrained type if partial view "
20584 & "has no discriminants", Full_T);
20585 end if;
20586
20587 -- ??????? Do we implement the following properly ?????
20588 -- If the ancestor subtype of a private extension has constrained
20589 -- discriminants, then the parent subtype of the full view shall
20590 -- impose a statically matching constraint on those discriminants
20591 -- [7.3(13)].
20592 end if;
20593
20594 else
20595 -- For untagged types, verify that a type without discriminants is
20596 -- not completed with an unconstrained type. A separate error message
20597 -- is produced if the full type has defaulted discriminants.
20598
20599 if Is_Definite_Subtype (Priv_T)
20600 and then not Is_Definite_Subtype (Full_T)
20601 then
20602 Error_Msg_Sloc := Sloc (Parent (Priv_T));
20603 Error_Msg_NE
20604 ("full view of& not compatible with declaration#",
20605 Full_T, Priv_T);
20606
20607 if not Is_Tagged_Type (Full_T) then
20608 Error_Msg_N
20609 ("\one is constrained, the other unconstrained", Full_T);
20610 end if;
20611 end if;
20612 end if;
20613
20614 -- AI-419: verify that the use of "limited" is consistent
20615
20616 declare
20617 Orig_Decl : constant Node_Id := Original_Node (N);
20618
20619 begin
20620 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20621 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
20622 and then Nkind
20623 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
20624 then
20625 if not Limited_Present (Parent (Priv_T))
20626 and then not Synchronized_Present (Parent (Priv_T))
20627 and then Limited_Present (Type_Definition (Orig_Decl))
20628 then
20629 Error_Msg_N
20630 ("full view of non-limited extension cannot be limited", N);
20631
20632 -- Conversely, if the partial view carries the limited keyword,
20633 -- the full view must as well, even if it may be redundant.
20634
20635 elsif Limited_Present (Parent (Priv_T))
20636 and then not Limited_Present (Type_Definition (Orig_Decl))
20637 then
20638 Error_Msg_N
20639 ("full view of limited extension must be explicitly limited",
20640 N);
20641 end if;
20642 end if;
20643 end;
20644
20645 -- Ada 2005 (AI-443): A synchronized private extension must be
20646 -- completed by a task or protected type.
20647
20648 if Ada_Version >= Ada_2005
20649 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20650 and then Synchronized_Present (Parent (Priv_T))
20651 and then not Is_Concurrent_Type (Full_T)
20652 then
20653 Error_Msg_N ("full view of synchronized extension must " &
20654 "be synchronized type", N);
20655 end if;
20656
20657 -- Ada 2005 AI-363: if the full view has discriminants with
20658 -- defaults, it is illegal to declare constrained access subtypes
20659 -- whose designated type is the current type. This allows objects
20660 -- of the type that are declared in the heap to be unconstrained.
20661
20662 if not Has_Unknown_Discriminants (Priv_T)
20663 and then not Has_Discriminants (Priv_T)
20664 and then Has_Discriminants (Full_T)
20665 and then
20666 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
20667 then
20668 Set_Has_Constrained_Partial_View (Full_T);
20669 Set_Has_Constrained_Partial_View (Priv_T);
20670 end if;
20671
20672 -- Create a full declaration for all its subtypes recorded in
20673 -- Private_Dependents and swap them similarly to the base type. These
20674 -- are subtypes that have been define before the full declaration of
20675 -- the private type. We also swap the entry in Private_Dependents list
20676 -- so we can properly restore the private view on exit from the scope.
20677
20678 declare
20679 Priv_Elmt : Elmt_Id;
20680 Priv_Scop : Entity_Id;
20681 Priv : Entity_Id;
20682 Full : Entity_Id;
20683
20684 begin
20685 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
20686 while Present (Priv_Elmt) loop
20687 Priv := Node (Priv_Elmt);
20688 Priv_Scop := Scope (Priv);
20689
20690 if Ekind_In (Priv, E_Private_Subtype,
20691 E_Limited_Private_Subtype,
20692 E_Record_Subtype_With_Private)
20693 then
20694 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
20695 Set_Is_Itype (Full);
20696 Set_Parent (Full, Parent (Priv));
20697 Set_Associated_Node_For_Itype (Full, N);
20698
20699 -- Now we need to complete the private subtype, but since the
20700 -- base type has already been swapped, we must also swap the
20701 -- subtypes (and thus, reverse the arguments in the call to
20702 -- Complete_Private_Subtype). Also note that we may need to
20703 -- re-establish the scope of the private subtype.
20704
20705 Copy_And_Swap (Priv, Full);
20706
20707 if not In_Open_Scopes (Priv_Scop) then
20708 Push_Scope (Priv_Scop);
20709
20710 else
20711 -- Reset Priv_Scop to Empty to indicate no scope was pushed
20712
20713 Priv_Scop := Empty;
20714 end if;
20715
20716 Complete_Private_Subtype (Full, Priv, Full_T, N);
20717
20718 if Present (Priv_Scop) then
20719 Pop_Scope;
20720 end if;
20721
20722 Replace_Elmt (Priv_Elmt, Full);
20723 end if;
20724
20725 Next_Elmt (Priv_Elmt);
20726 end loop;
20727 end;
20728
20729 -- If the private view was tagged, copy the new primitive operations
20730 -- from the private view to the full view.
20731
20732 if Is_Tagged_Type (Full_T) then
20733 declare
20734 Disp_Typ : Entity_Id;
20735 Full_List : Elist_Id;
20736 Prim : Entity_Id;
20737 Prim_Elmt : Elmt_Id;
20738 Priv_List : Elist_Id;
20739
20740 function Contains
20741 (E : Entity_Id;
20742 L : Elist_Id) return Boolean;
20743 -- Determine whether list L contains element E
20744
20745 --------------
20746 -- Contains --
20747 --------------
20748
20749 function Contains
20750 (E : Entity_Id;
20751 L : Elist_Id) return Boolean
20752 is
20753 List_Elmt : Elmt_Id;
20754
20755 begin
20756 List_Elmt := First_Elmt (L);
20757 while Present (List_Elmt) loop
20758 if Node (List_Elmt) = E then
20759 return True;
20760 end if;
20761
20762 Next_Elmt (List_Elmt);
20763 end loop;
20764
20765 return False;
20766 end Contains;
20767
20768 -- Start of processing
20769
20770 begin
20771 if Is_Tagged_Type (Priv_T) then
20772 Priv_List := Primitive_Operations (Priv_T);
20773 Prim_Elmt := First_Elmt (Priv_List);
20774
20775 -- In the case of a concurrent type completing a private tagged
20776 -- type, primitives may have been declared in between the two
20777 -- views. These subprograms need to be wrapped the same way
20778 -- entries and protected procedures are handled because they
20779 -- cannot be directly shared by the two views.
20780
20781 if Is_Concurrent_Type (Full_T) then
20782 declare
20783 Conc_Typ : constant Entity_Id :=
20784 Corresponding_Record_Type (Full_T);
20785 Curr_Nod : Node_Id := Parent (Conc_Typ);
20786 Wrap_Spec : Node_Id;
20787
20788 begin
20789 while Present (Prim_Elmt) loop
20790 Prim := Node (Prim_Elmt);
20791
20792 if Comes_From_Source (Prim)
20793 and then not Is_Abstract_Subprogram (Prim)
20794 then
20795 Wrap_Spec :=
20796 Make_Subprogram_Declaration (Sloc (Prim),
20797 Specification =>
20798 Build_Wrapper_Spec
20799 (Subp_Id => Prim,
20800 Obj_Typ => Conc_Typ,
20801 Formals =>
20802 Parameter_Specifications
20803 (Parent (Prim))));
20804
20805 Insert_After (Curr_Nod, Wrap_Spec);
20806 Curr_Nod := Wrap_Spec;
20807
20808 Analyze (Wrap_Spec);
20809
20810 -- Remove the wrapper from visibility to avoid
20811 -- spurious conflict with the wrapped entity.
20812
20813 Set_Is_Immediately_Visible
20814 (Defining_Entity (Specification (Wrap_Spec)),
20815 False);
20816 end if;
20817
20818 Next_Elmt (Prim_Elmt);
20819 end loop;
20820
20821 goto Leave;
20822 end;
20823
20824 -- For non-concurrent types, transfer explicit primitives, but
20825 -- omit those inherited from the parent of the private view
20826 -- since they will be re-inherited later on.
20827
20828 else
20829 Full_List := Primitive_Operations (Full_T);
20830 while Present (Prim_Elmt) loop
20831 Prim := Node (Prim_Elmt);
20832
20833 if Comes_From_Source (Prim)
20834 and then not Contains (Prim, Full_List)
20835 then
20836 Append_Elmt (Prim, Full_List);
20837 end if;
20838
20839 Next_Elmt (Prim_Elmt);
20840 end loop;
20841 end if;
20842
20843 -- Untagged private view
20844
20845 else
20846 Full_List := Primitive_Operations (Full_T);
20847
20848 -- In this case the partial view is untagged, so here we locate
20849 -- all of the earlier primitives that need to be treated as
20850 -- dispatching (those that appear between the two views). Note
20851 -- that these additional operations must all be new operations
20852 -- (any earlier operations that override inherited operations
20853 -- of the full view will already have been inserted in the
20854 -- primitives list, marked by Check_Operation_From_Private_View
20855 -- as dispatching. Note that implicit "/=" operators are
20856 -- excluded from being added to the primitives list since they
20857 -- shouldn't be treated as dispatching (tagged "/=" is handled
20858 -- specially).
20859
20860 Prim := Next_Entity (Full_T);
20861 while Present (Prim) and then Prim /= Priv_T loop
20862 if Ekind_In (Prim, E_Procedure, E_Function) then
20863 Disp_Typ := Find_Dispatching_Type (Prim);
20864
20865 if Disp_Typ = Full_T
20866 and then (Chars (Prim) /= Name_Op_Ne
20867 or else Comes_From_Source (Prim))
20868 then
20869 Check_Controlling_Formals (Full_T, Prim);
20870
20871 if Is_Suitable_Primitive (Prim)
20872 and then not Is_Dispatching_Operation (Prim)
20873 then
20874 Append_Elmt (Prim, Full_List);
20875 Set_Is_Dispatching_Operation (Prim);
20876 Set_DT_Position_Value (Prim, No_Uint);
20877 end if;
20878
20879 elsif Is_Dispatching_Operation (Prim)
20880 and then Disp_Typ /= Full_T
20881 then
20882 -- Verify that it is not otherwise controlled by a
20883 -- formal or a return value of type T.
20884
20885 Check_Controlling_Formals (Disp_Typ, Prim);
20886 end if;
20887 end if;
20888
20889 Next_Entity (Prim);
20890 end loop;
20891 end if;
20892
20893 -- For the tagged case, the two views can share the same primitive
20894 -- operations list and the same class-wide type. Update attributes
20895 -- of the class-wide type which depend on the full declaration.
20896
20897 if Is_Tagged_Type (Priv_T) then
20898 Set_Direct_Primitive_Operations (Priv_T, Full_List);
20899 Set_Class_Wide_Type
20900 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
20901
20902 Propagate_Concurrent_Flags (Class_Wide_Type (Priv_T), Full_T);
20903 end if;
20904 end;
20905 end if;
20906
20907 -- Ada 2005 AI 161: Check preelaborable initialization consistency
20908
20909 if Known_To_Have_Preelab_Init (Priv_T) then
20910
20911 -- Case where there is a pragma Preelaborable_Initialization. We
20912 -- always allow this in predefined units, which is cheating a bit,
20913 -- but it means we don't have to struggle to meet the requirements in
20914 -- the RM for having Preelaborable Initialization. Otherwise we
20915 -- require that the type meets the RM rules. But we can't check that
20916 -- yet, because of the rule about overriding Initialize, so we simply
20917 -- set a flag that will be checked at freeze time.
20918
20919 if not In_Predefined_Unit (Full_T) then
20920 Set_Must_Have_Preelab_Init (Full_T);
20921 end if;
20922 end if;
20923
20924 -- If pragma CPP_Class was applied to the private type declaration,
20925 -- propagate it now to the full type declaration.
20926
20927 if Is_CPP_Class (Priv_T) then
20928 Set_Is_CPP_Class (Full_T);
20929 Set_Convention (Full_T, Convention_CPP);
20930
20931 -- Check that components of imported CPP types do not have default
20932 -- expressions.
20933
20934 Check_CPP_Type_Has_No_Defaults (Full_T);
20935 end if;
20936
20937 -- If the private view has user specified stream attributes, then so has
20938 -- the full view.
20939
20940 -- Why the test, how could these flags be already set in Full_T ???
20941
20942 if Has_Specified_Stream_Read (Priv_T) then
20943 Set_Has_Specified_Stream_Read (Full_T);
20944 end if;
20945
20946 if Has_Specified_Stream_Write (Priv_T) then
20947 Set_Has_Specified_Stream_Write (Full_T);
20948 end if;
20949
20950 if Has_Specified_Stream_Input (Priv_T) then
20951 Set_Has_Specified_Stream_Input (Full_T);
20952 end if;
20953
20954 if Has_Specified_Stream_Output (Priv_T) then
20955 Set_Has_Specified_Stream_Output (Full_T);
20956 end if;
20957
20958 -- Propagate Default_Initial_Condition-related attributes from the
20959 -- partial view to the full view and its base type.
20960
20961 Propagate_DIC_Attributes (Full_T, From_Typ => Priv_T);
20962 Propagate_DIC_Attributes (Base_Type (Full_T), From_Typ => Priv_T);
20963
20964 -- Propagate invariant-related attributes from the partial view to the
20965 -- full view and its base type.
20966
20967 Propagate_Invariant_Attributes (Full_T, From_Typ => Priv_T);
20968 Propagate_Invariant_Attributes (Base_Type (Full_T), From_Typ => Priv_T);
20969
20970 -- AI12-0041: Detect an attempt to inherit a class-wide type invariant
20971 -- in the full view without advertising the inheritance in the partial
20972 -- view. This can only occur when the partial view has no parent type
20973 -- and the full view has an interface as a parent. Any other scenarios
20974 -- are illegal because implemented interfaces must match between the
20975 -- two views.
20976
20977 if Is_Tagged_Type (Priv_T) and then Is_Tagged_Type (Full_T) then
20978 declare
20979 Full_Par : constant Entity_Id := Etype (Full_T);
20980 Priv_Par : constant Entity_Id := Etype (Priv_T);
20981
20982 begin
20983 if not Is_Interface (Priv_Par)
20984 and then Is_Interface (Full_Par)
20985 and then Has_Inheritable_Invariants (Full_Par)
20986 then
20987 Error_Msg_N
20988 ("hidden inheritance of class-wide type invariants not "
20989 & "allowed", N);
20990 end if;
20991 end;
20992 end if;
20993
20994 -- Propagate predicates to full type, and predicate function if already
20995 -- defined. It is not clear that this can actually happen? the partial
20996 -- view cannot be frozen yet, and the predicate function has not been
20997 -- built. Still it is a cheap check and seems safer to make it.
20998
20999 if Has_Predicates (Priv_T) then
21000 Set_Has_Predicates (Full_T);
21001
21002 if Present (Predicate_Function (Priv_T)) then
21003 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
21004 end if;
21005 end if;
21006
21007 <<Leave>>
21008 Restore_Ghost_Region (Saved_GM, Saved_IGR);
21009 end Process_Full_View;
21010
21011 -----------------------------------
21012 -- Process_Incomplete_Dependents --
21013 -----------------------------------
21014
21015 procedure Process_Incomplete_Dependents
21016 (N : Node_Id;
21017 Full_T : Entity_Id;
21018 Inc_T : Entity_Id)
21019 is
21020 Inc_Elmt : Elmt_Id;
21021 Priv_Dep : Entity_Id;
21022 New_Subt : Entity_Id;
21023
21024 Disc_Constraint : Elist_Id;
21025
21026 begin
21027 if No (Private_Dependents (Inc_T)) then
21028 return;
21029 end if;
21030
21031 -- Itypes that may be generated by the completion of an incomplete
21032 -- subtype are not used by the back-end and not attached to the tree.
21033 -- They are created only for constraint-checking purposes.
21034
21035 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
21036 while Present (Inc_Elmt) loop
21037 Priv_Dep := Node (Inc_Elmt);
21038
21039 if Ekind (Priv_Dep) = E_Subprogram_Type then
21040
21041 -- An Access_To_Subprogram type may have a return type or a
21042 -- parameter type that is incomplete. Replace with the full view.
21043
21044 if Etype (Priv_Dep) = Inc_T then
21045 Set_Etype (Priv_Dep, Full_T);
21046 end if;
21047
21048 declare
21049 Formal : Entity_Id;
21050
21051 begin
21052 Formal := First_Formal (Priv_Dep);
21053 while Present (Formal) loop
21054 if Etype (Formal) = Inc_T then
21055 Set_Etype (Formal, Full_T);
21056 end if;
21057
21058 Next_Formal (Formal);
21059 end loop;
21060 end;
21061
21062 elsif Is_Overloadable (Priv_Dep) then
21063
21064 -- If a subprogram in the incomplete dependents list is primitive
21065 -- for a tagged full type then mark it as a dispatching operation,
21066 -- check whether it overrides an inherited subprogram, and check
21067 -- restrictions on its controlling formals. Note that a protected
21068 -- operation is never dispatching: only its wrapper operation
21069 -- (which has convention Ada) is.
21070
21071 if Is_Tagged_Type (Full_T)
21072 and then Is_Primitive (Priv_Dep)
21073 and then Convention (Priv_Dep) /= Convention_Protected
21074 then
21075 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
21076 Set_Is_Dispatching_Operation (Priv_Dep);
21077 Check_Controlling_Formals (Full_T, Priv_Dep);
21078 end if;
21079
21080 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
21081
21082 -- Can happen during processing of a body before the completion
21083 -- of a TA type. Ignore, because spec is also on dependent list.
21084
21085 return;
21086
21087 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
21088 -- corresponding subtype of the full view.
21089
21090 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype
21091 and then Comes_From_Source (Priv_Dep)
21092 then
21093 Set_Subtype_Indication
21094 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
21095 Set_Etype (Priv_Dep, Full_T);
21096 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
21097 Set_Analyzed (Parent (Priv_Dep), False);
21098
21099 -- Reanalyze the declaration, suppressing the call to Enter_Name
21100 -- to avoid duplicate names.
21101
21102 Analyze_Subtype_Declaration
21103 (N => Parent (Priv_Dep),
21104 Skip => True);
21105
21106 -- Dependent is a subtype
21107
21108 else
21109 -- We build a new subtype indication using the full view of the
21110 -- incomplete parent. The discriminant constraints have been
21111 -- elaborated already at the point of the subtype declaration.
21112
21113 New_Subt := Create_Itype (E_Void, N);
21114
21115 if Has_Discriminants (Full_T) then
21116 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
21117 else
21118 Disc_Constraint := No_Elist;
21119 end if;
21120
21121 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
21122 Set_Full_View (Priv_Dep, New_Subt);
21123 end if;
21124
21125 Next_Elmt (Inc_Elmt);
21126 end loop;
21127 end Process_Incomplete_Dependents;
21128
21129 --------------------------------
21130 -- Process_Range_Expr_In_Decl --
21131 --------------------------------
21132
21133 procedure Process_Range_Expr_In_Decl
21134 (R : Node_Id;
21135 T : Entity_Id;
21136 Subtyp : Entity_Id := Empty;
21137 Check_List : List_Id := Empty_List;
21138 R_Check_Off : Boolean := False;
21139 In_Iter_Schm : Boolean := False)
21140 is
21141 Lo, Hi : Node_Id;
21142 R_Checks : Check_Result;
21143 Insert_Node : Node_Id;
21144 Def_Id : Entity_Id;
21145
21146 begin
21147 Analyze_And_Resolve (R, Base_Type (T));
21148
21149 if Nkind (R) = N_Range then
21150
21151 -- In SPARK, all ranges should be static, with the exception of the
21152 -- discrete type definition of a loop parameter specification.
21153
21154 if not In_Iter_Schm
21155 and then not Is_OK_Static_Range (R)
21156 then
21157 Check_SPARK_05_Restriction ("range should be static", R);
21158 end if;
21159
21160 Lo := Low_Bound (R);
21161 Hi := High_Bound (R);
21162
21163 -- Validity checks on the range of a quantified expression are
21164 -- delayed until the construct is transformed into a loop.
21165
21166 if Nkind (Parent (R)) = N_Loop_Parameter_Specification
21167 and then Nkind (Parent (Parent (R))) = N_Quantified_Expression
21168 then
21169 null;
21170
21171 -- We need to ensure validity of the bounds here, because if we
21172 -- go ahead and do the expansion, then the expanded code will get
21173 -- analyzed with range checks suppressed and we miss the check.
21174
21175 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
21176 -- the temporaries generated by routine Remove_Side_Effects by means
21177 -- of validity checks must use the same names. When a range appears
21178 -- in the parent of a generic, the range is processed with checks
21179 -- disabled as part of the generic context and with checks enabled
21180 -- for code generation purposes. This leads to link issues as the
21181 -- generic contains references to xxx_FIRST/_LAST, but the inlined
21182 -- template sees the temporaries generated by Remove_Side_Effects.
21183
21184 else
21185 Validity_Check_Range (R, Subtyp);
21186 end if;
21187
21188 -- If there were errors in the declaration, try and patch up some
21189 -- common mistakes in the bounds. The cases handled are literals
21190 -- which are Integer where the expected type is Real and vice versa.
21191 -- These corrections allow the compilation process to proceed further
21192 -- along since some basic assumptions of the format of the bounds
21193 -- are guaranteed.
21194
21195 if Etype (R) = Any_Type then
21196 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
21197 Rewrite (Lo,
21198 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
21199
21200 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
21201 Rewrite (Hi,
21202 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
21203
21204 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
21205 Rewrite (Lo,
21206 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
21207
21208 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
21209 Rewrite (Hi,
21210 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
21211 end if;
21212
21213 Set_Etype (Lo, T);
21214 Set_Etype (Hi, T);
21215 end if;
21216
21217 -- If the bounds of the range have been mistakenly given as string
21218 -- literals (perhaps in place of character literals), then an error
21219 -- has already been reported, but we rewrite the string literal as a
21220 -- bound of the range's type to avoid blowups in later processing
21221 -- that looks at static values.
21222
21223 if Nkind (Lo) = N_String_Literal then
21224 Rewrite (Lo,
21225 Make_Attribute_Reference (Sloc (Lo),
21226 Prefix => New_Occurrence_Of (T, Sloc (Lo)),
21227 Attribute_Name => Name_First));
21228 Analyze_And_Resolve (Lo);
21229 end if;
21230
21231 if Nkind (Hi) = N_String_Literal then
21232 Rewrite (Hi,
21233 Make_Attribute_Reference (Sloc (Hi),
21234 Prefix => New_Occurrence_Of (T, Sloc (Hi)),
21235 Attribute_Name => Name_First));
21236 Analyze_And_Resolve (Hi);
21237 end if;
21238
21239 -- If bounds aren't scalar at this point then exit, avoiding
21240 -- problems with further processing of the range in this procedure.
21241
21242 if not Is_Scalar_Type (Etype (Lo)) then
21243 return;
21244 end if;
21245
21246 -- Resolve (actually Sem_Eval) has checked that the bounds are in
21247 -- then range of the base type. Here we check whether the bounds
21248 -- are in the range of the subtype itself. Note that if the bounds
21249 -- represent the null range the Constraint_Error exception should
21250 -- not be raised.
21251
21252 -- ??? The following code should be cleaned up as follows
21253
21254 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
21255 -- is done in the call to Range_Check (R, T); below
21256
21257 -- 2. The use of R_Check_Off should be investigated and possibly
21258 -- removed, this would clean up things a bit.
21259
21260 if Is_Null_Range (Lo, Hi) then
21261 null;
21262
21263 else
21264 -- Capture values of bounds and generate temporaries for them
21265 -- if needed, before applying checks, since checks may cause
21266 -- duplication of the expression without forcing evaluation.
21267
21268 -- The forced evaluation removes side effects from expressions,
21269 -- which should occur also in GNATprove mode. Otherwise, we end up
21270 -- with unexpected insertions of actions at places where this is
21271 -- not supposed to occur, e.g. on default parameters of a call.
21272
21273 if Expander_Active or GNATprove_Mode then
21274
21275 -- Call Force_Evaluation to create declarations as needed to
21276 -- deal with side effects, and also create typ_FIRST/LAST
21277 -- entities for bounds if we have a subtype name.
21278
21279 -- Note: we do this transformation even if expansion is not
21280 -- active if we are in GNATprove_Mode since the transformation
21281 -- is in general required to ensure that the resulting tree has
21282 -- proper Ada semantics.
21283
21284 Force_Evaluation
21285 (Lo, Related_Id => Subtyp, Is_Low_Bound => True);
21286 Force_Evaluation
21287 (Hi, Related_Id => Subtyp, Is_High_Bound => True);
21288 end if;
21289
21290 -- We use a flag here instead of suppressing checks on the type
21291 -- because the type we check against isn't necessarily the place
21292 -- where we put the check.
21293
21294 if not R_Check_Off then
21295 R_Checks := Get_Range_Checks (R, T);
21296
21297 -- Look up tree to find an appropriate insertion point. We
21298 -- can't just use insert_actions because later processing
21299 -- depends on the insertion node. Prior to Ada 2012 the
21300 -- insertion point could only be a declaration or a loop, but
21301 -- quantified expressions can appear within any context in an
21302 -- expression, and the insertion point can be any statement,
21303 -- pragma, or declaration.
21304
21305 Insert_Node := Parent (R);
21306 while Present (Insert_Node) loop
21307 exit when
21308 Nkind (Insert_Node) in N_Declaration
21309 and then
21310 not Nkind_In
21311 (Insert_Node, N_Component_Declaration,
21312 N_Loop_Parameter_Specification,
21313 N_Function_Specification,
21314 N_Procedure_Specification);
21315
21316 exit when Nkind (Insert_Node) in N_Later_Decl_Item
21317 or else Nkind (Insert_Node) in
21318 N_Statement_Other_Than_Procedure_Call
21319 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
21320 N_Pragma);
21321
21322 Insert_Node := Parent (Insert_Node);
21323 end loop;
21324
21325 -- Why would Type_Decl not be present??? Without this test,
21326 -- short regression tests fail.
21327
21328 if Present (Insert_Node) then
21329
21330 -- Case of loop statement. Verify that the range is part
21331 -- of the subtype indication of the iteration scheme.
21332
21333 if Nkind (Insert_Node) = N_Loop_Statement then
21334 declare
21335 Indic : Node_Id;
21336
21337 begin
21338 Indic := Parent (R);
21339 while Present (Indic)
21340 and then Nkind (Indic) /= N_Subtype_Indication
21341 loop
21342 Indic := Parent (Indic);
21343 end loop;
21344
21345 if Present (Indic) then
21346 Def_Id := Etype (Subtype_Mark (Indic));
21347
21348 Insert_Range_Checks
21349 (R_Checks,
21350 Insert_Node,
21351 Def_Id,
21352 Sloc (Insert_Node),
21353 R,
21354 Do_Before => True);
21355 end if;
21356 end;
21357
21358 -- Insertion before a declaration. If the declaration
21359 -- includes discriminants, the list of applicable checks
21360 -- is given by the caller.
21361
21362 elsif Nkind (Insert_Node) in N_Declaration then
21363 Def_Id := Defining_Identifier (Insert_Node);
21364
21365 if (Ekind (Def_Id) = E_Record_Type
21366 and then Depends_On_Discriminant (R))
21367 or else
21368 (Ekind (Def_Id) = E_Protected_Type
21369 and then Has_Discriminants (Def_Id))
21370 then
21371 Append_Range_Checks
21372 (R_Checks,
21373 Check_List, Def_Id, Sloc (Insert_Node), R);
21374
21375 else
21376 Insert_Range_Checks
21377 (R_Checks,
21378 Insert_Node, Def_Id, Sloc (Insert_Node), R);
21379
21380 end if;
21381
21382 -- Insertion before a statement. Range appears in the
21383 -- context of a quantified expression. Insertion will
21384 -- take place when expression is expanded.
21385
21386 else
21387 null;
21388 end if;
21389 end if;
21390 end if;
21391 end if;
21392
21393 -- Case of other than an explicit N_Range node
21394
21395 -- The forced evaluation removes side effects from expressions, which
21396 -- should occur also in GNATprove mode. Otherwise, we end up with
21397 -- unexpected insertions of actions at places where this is not
21398 -- supposed to occur, e.g. on default parameters of a call.
21399
21400 elsif Expander_Active or GNATprove_Mode then
21401 Get_Index_Bounds (R, Lo, Hi);
21402 Force_Evaluation (Lo);
21403 Force_Evaluation (Hi);
21404 end if;
21405 end Process_Range_Expr_In_Decl;
21406
21407 --------------------------------------
21408 -- Process_Real_Range_Specification --
21409 --------------------------------------
21410
21411 procedure Process_Real_Range_Specification (Def : Node_Id) is
21412 Spec : constant Node_Id := Real_Range_Specification (Def);
21413 Lo : Node_Id;
21414 Hi : Node_Id;
21415 Err : Boolean := False;
21416
21417 procedure Analyze_Bound (N : Node_Id);
21418 -- Analyze and check one bound
21419
21420 -------------------
21421 -- Analyze_Bound --
21422 -------------------
21423
21424 procedure Analyze_Bound (N : Node_Id) is
21425 begin
21426 Analyze_And_Resolve (N, Any_Real);
21427
21428 if not Is_OK_Static_Expression (N) then
21429 Flag_Non_Static_Expr
21430 ("bound in real type definition is not static!", N);
21431 Err := True;
21432 end if;
21433 end Analyze_Bound;
21434
21435 -- Start of processing for Process_Real_Range_Specification
21436
21437 begin
21438 if Present (Spec) then
21439 Lo := Low_Bound (Spec);
21440 Hi := High_Bound (Spec);
21441 Analyze_Bound (Lo);
21442 Analyze_Bound (Hi);
21443
21444 -- If error, clear away junk range specification
21445
21446 if Err then
21447 Set_Real_Range_Specification (Def, Empty);
21448 end if;
21449 end if;
21450 end Process_Real_Range_Specification;
21451
21452 ---------------------
21453 -- Process_Subtype --
21454 ---------------------
21455
21456 function Process_Subtype
21457 (S : Node_Id;
21458 Related_Nod : Node_Id;
21459 Related_Id : Entity_Id := Empty;
21460 Suffix : Character := ' ') return Entity_Id
21461 is
21462 P : Node_Id;
21463 Def_Id : Entity_Id;
21464 Error_Node : Node_Id;
21465 Full_View_Id : Entity_Id;
21466 Subtype_Mark_Id : Entity_Id;
21467
21468 May_Have_Null_Exclusion : Boolean;
21469
21470 procedure Check_Incomplete (T : Node_Id);
21471 -- Called to verify that an incomplete type is not used prematurely
21472
21473 ----------------------
21474 -- Check_Incomplete --
21475 ----------------------
21476
21477 procedure Check_Incomplete (T : Node_Id) is
21478 begin
21479 -- Ada 2005 (AI-412): Incomplete subtypes are legal
21480
21481 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
21482 and then
21483 not (Ada_Version >= Ada_2005
21484 and then
21485 (Nkind (Parent (T)) = N_Subtype_Declaration
21486 or else (Nkind (Parent (T)) = N_Subtype_Indication
21487 and then Nkind (Parent (Parent (T))) =
21488 N_Subtype_Declaration)))
21489 then
21490 Error_Msg_N ("invalid use of type before its full declaration", T);
21491 end if;
21492 end Check_Incomplete;
21493
21494 -- Start of processing for Process_Subtype
21495
21496 begin
21497 -- Case of no constraints present
21498
21499 if Nkind (S) /= N_Subtype_Indication then
21500 Find_Type (S);
21501
21502 -- No way to proceed if the subtype indication is malformed. This
21503 -- will happen for example when the subtype indication in an object
21504 -- declaration is missing altogether and the expression is analyzed
21505 -- as if it were that indication.
21506
21507 if not Is_Entity_Name (S) then
21508 return Any_Type;
21509 end if;
21510
21511 Check_Incomplete (S);
21512 P := Parent (S);
21513
21514 -- Ada 2005 (AI-231): Static check
21515
21516 if Ada_Version >= Ada_2005
21517 and then Present (P)
21518 and then Null_Exclusion_Present (P)
21519 and then Nkind (P) /= N_Access_To_Object_Definition
21520 and then not Is_Access_Type (Entity (S))
21521 then
21522 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
21523 end if;
21524
21525 -- The following is ugly, can't we have a range or even a flag???
21526
21527 May_Have_Null_Exclusion :=
21528 Nkind_In (P, N_Access_Definition,
21529 N_Access_Function_Definition,
21530 N_Access_Procedure_Definition,
21531 N_Access_To_Object_Definition,
21532 N_Allocator,
21533 N_Component_Definition)
21534 or else
21535 Nkind_In (P, N_Derived_Type_Definition,
21536 N_Discriminant_Specification,
21537 N_Formal_Object_Declaration,
21538 N_Object_Declaration,
21539 N_Object_Renaming_Declaration,
21540 N_Parameter_Specification,
21541 N_Subtype_Declaration);
21542
21543 -- Create an Itype that is a duplicate of Entity (S) but with the
21544 -- null-exclusion attribute.
21545
21546 if May_Have_Null_Exclusion
21547 and then Is_Access_Type (Entity (S))
21548 and then Null_Exclusion_Present (P)
21549
21550 -- No need to check the case of an access to object definition.
21551 -- It is correct to define double not-null pointers.
21552
21553 -- Example:
21554 -- type Not_Null_Int_Ptr is not null access Integer;
21555 -- type Acc is not null access Not_Null_Int_Ptr;
21556
21557 and then Nkind (P) /= N_Access_To_Object_Definition
21558 then
21559 if Can_Never_Be_Null (Entity (S)) then
21560 case Nkind (Related_Nod) is
21561 when N_Full_Type_Declaration =>
21562 if Nkind (Type_Definition (Related_Nod))
21563 in N_Array_Type_Definition
21564 then
21565 Error_Node :=
21566 Subtype_Indication
21567 (Component_Definition
21568 (Type_Definition (Related_Nod)));
21569 else
21570 Error_Node :=
21571 Subtype_Indication (Type_Definition (Related_Nod));
21572 end if;
21573
21574 when N_Subtype_Declaration =>
21575 Error_Node := Subtype_Indication (Related_Nod);
21576
21577 when N_Object_Declaration =>
21578 Error_Node := Object_Definition (Related_Nod);
21579
21580 when N_Component_Declaration =>
21581 Error_Node :=
21582 Subtype_Indication (Component_Definition (Related_Nod));
21583
21584 when N_Allocator =>
21585 Error_Node := Expression (Related_Nod);
21586
21587 when others =>
21588 pragma Assert (False);
21589 Error_Node := Related_Nod;
21590 end case;
21591
21592 Error_Msg_NE
21593 ("`NOT NULL` not allowed (& already excludes null)",
21594 Error_Node,
21595 Entity (S));
21596 end if;
21597
21598 Set_Etype (S,
21599 Create_Null_Excluding_Itype
21600 (T => Entity (S),
21601 Related_Nod => P));
21602 Set_Entity (S, Etype (S));
21603 end if;
21604
21605 return Entity (S);
21606
21607 -- Case of constraint present, so that we have an N_Subtype_Indication
21608 -- node (this node is created only if constraints are present).
21609
21610 else
21611 Find_Type (Subtype_Mark (S));
21612
21613 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
21614 and then not
21615 (Nkind (Parent (S)) = N_Subtype_Declaration
21616 and then Is_Itype (Defining_Identifier (Parent (S))))
21617 then
21618 Check_Incomplete (Subtype_Mark (S));
21619 end if;
21620
21621 P := Parent (S);
21622 Subtype_Mark_Id := Entity (Subtype_Mark (S));
21623
21624 -- Explicit subtype declaration case
21625
21626 if Nkind (P) = N_Subtype_Declaration then
21627 Def_Id := Defining_Identifier (P);
21628
21629 -- Explicit derived type definition case
21630
21631 elsif Nkind (P) = N_Derived_Type_Definition then
21632 Def_Id := Defining_Identifier (Parent (P));
21633
21634 -- Implicit case, the Def_Id must be created as an implicit type.
21635 -- The one exception arises in the case of concurrent types, array
21636 -- and access types, where other subsidiary implicit types may be
21637 -- created and must appear before the main implicit type. In these
21638 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
21639 -- has not yet been called to create Def_Id.
21640
21641 else
21642 if Is_Array_Type (Subtype_Mark_Id)
21643 or else Is_Concurrent_Type (Subtype_Mark_Id)
21644 or else Is_Access_Type (Subtype_Mark_Id)
21645 then
21646 Def_Id := Empty;
21647
21648 -- For the other cases, we create a new unattached Itype,
21649 -- and set the indication to ensure it gets attached later.
21650
21651 else
21652 Def_Id :=
21653 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
21654 end if;
21655 end if;
21656
21657 -- If the kind of constraint is invalid for this kind of type,
21658 -- then give an error, and then pretend no constraint was given.
21659
21660 if not Is_Valid_Constraint_Kind
21661 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
21662 then
21663 Error_Msg_N
21664 ("incorrect constraint for this kind of type", Constraint (S));
21665
21666 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
21667
21668 -- Set Ekind of orphan itype, to prevent cascaded errors
21669
21670 if Present (Def_Id) then
21671 Set_Ekind (Def_Id, Ekind (Any_Type));
21672 end if;
21673
21674 -- Make recursive call, having got rid of the bogus constraint
21675
21676 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
21677 end if;
21678
21679 -- Remaining processing depends on type. Select on Base_Type kind to
21680 -- ensure getting to the concrete type kind in the case of a private
21681 -- subtype (needed when only doing semantic analysis).
21682
21683 case Ekind (Base_Type (Subtype_Mark_Id)) is
21684 when Access_Kind =>
21685
21686 -- If this is a constraint on a class-wide type, discard it.
21687 -- There is currently no way to express a partial discriminant
21688 -- constraint on a type with unknown discriminants. This is
21689 -- a pathology that the ACATS wisely decides not to test.
21690
21691 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
21692 if Comes_From_Source (S) then
21693 Error_Msg_N
21694 ("constraint on class-wide type ignored??",
21695 Constraint (S));
21696 end if;
21697
21698 if Nkind (P) = N_Subtype_Declaration then
21699 Set_Subtype_Indication (P,
21700 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
21701 end if;
21702
21703 return Subtype_Mark_Id;
21704 end if;
21705
21706 Constrain_Access (Def_Id, S, Related_Nod);
21707
21708 if Expander_Active
21709 and then Is_Itype (Designated_Type (Def_Id))
21710 and then Nkind (Related_Nod) = N_Subtype_Declaration
21711 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
21712 then
21713 Build_Itype_Reference
21714 (Designated_Type (Def_Id), Related_Nod);
21715 end if;
21716
21717 when Array_Kind =>
21718 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
21719
21720 when Decimal_Fixed_Point_Kind =>
21721 Constrain_Decimal (Def_Id, S);
21722
21723 when Enumeration_Kind =>
21724 Constrain_Enumeration (Def_Id, S);
21725
21726 when Ordinary_Fixed_Point_Kind =>
21727 Constrain_Ordinary_Fixed (Def_Id, S);
21728
21729 when Float_Kind =>
21730 Constrain_Float (Def_Id, S);
21731
21732 when Integer_Kind =>
21733 Constrain_Integer (Def_Id, S);
21734
21735 when Class_Wide_Kind
21736 | E_Incomplete_Type
21737 | E_Record_Subtype
21738 | E_Record_Type
21739 =>
21740 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
21741
21742 if Ekind (Def_Id) = E_Incomplete_Type then
21743 Set_Private_Dependents (Def_Id, New_Elmt_List);
21744 end if;
21745
21746 when Private_Kind =>
21747
21748 -- A private type with unknown discriminants may be completed
21749 -- by an unconstrained array type.
21750
21751 if Has_Unknown_Discriminants (Subtype_Mark_Id)
21752 and then Present (Full_View (Subtype_Mark_Id))
21753 and then Is_Array_Type (Full_View (Subtype_Mark_Id))
21754 then
21755 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
21756
21757 -- ... but more commonly is completed by a discriminated record
21758 -- type.
21759
21760 else
21761 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
21762 end if;
21763
21764 -- The base type may be private but Def_Id may be a full view
21765 -- in an instance.
21766
21767 if Is_Private_Type (Def_Id) then
21768 Set_Private_Dependents (Def_Id, New_Elmt_List);
21769 end if;
21770
21771 -- In case of an invalid constraint prevent further processing
21772 -- since the type constructed is missing expected fields.
21773
21774 if Etype (Def_Id) = Any_Type then
21775 return Def_Id;
21776 end if;
21777
21778 -- If the full view is that of a task with discriminants,
21779 -- we must constrain both the concurrent type and its
21780 -- corresponding record type. Otherwise we will just propagate
21781 -- the constraint to the full view, if available.
21782
21783 if Present (Full_View (Subtype_Mark_Id))
21784 and then Has_Discriminants (Subtype_Mark_Id)
21785 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
21786 then
21787 Full_View_Id :=
21788 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
21789
21790 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
21791 Constrain_Concurrent (Full_View_Id, S,
21792 Related_Nod, Related_Id, Suffix);
21793 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
21794 Set_Full_View (Def_Id, Full_View_Id);
21795
21796 -- Introduce an explicit reference to the private subtype,
21797 -- to prevent scope anomalies in gigi if first use appears
21798 -- in a nested context, e.g. a later function body.
21799 -- Should this be generated in other contexts than a full
21800 -- type declaration?
21801
21802 if Is_Itype (Def_Id)
21803 and then
21804 Nkind (Parent (P)) = N_Full_Type_Declaration
21805 then
21806 Build_Itype_Reference (Def_Id, Parent (P));
21807 end if;
21808
21809 else
21810 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
21811 end if;
21812
21813 when Concurrent_Kind =>
21814 Constrain_Concurrent (Def_Id, S,
21815 Related_Nod, Related_Id, Suffix);
21816
21817 when others =>
21818 Error_Msg_N ("invalid subtype mark in subtype indication", S);
21819 end case;
21820
21821 -- Size, Alignment, Representation aspects and Convention are always
21822 -- inherited from the base type.
21823
21824 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
21825 Set_Rep_Info (Def_Id, (Subtype_Mark_Id));
21826 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
21827
21828 -- The anonymous subtype created for the subtype indication
21829 -- inherits the predicates of the parent.
21830
21831 if Has_Predicates (Subtype_Mark_Id) then
21832 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
21833
21834 -- Indicate where the predicate function may be found
21835
21836 if No (Predicate_Function (Def_Id)) and then Is_Itype (Def_Id) then
21837 Set_Predicated_Parent (Def_Id, Subtype_Mark_Id);
21838 end if;
21839 end if;
21840
21841 return Def_Id;
21842 end if;
21843 end Process_Subtype;
21844
21845 -----------------------------
21846 -- Record_Type_Declaration --
21847 -----------------------------
21848
21849 procedure Record_Type_Declaration
21850 (T : Entity_Id;
21851 N : Node_Id;
21852 Prev : Entity_Id)
21853 is
21854 Def : constant Node_Id := Type_Definition (N);
21855 Is_Tagged : Boolean;
21856 Tag_Comp : Entity_Id;
21857
21858 begin
21859 -- These flags must be initialized before calling Process_Discriminants
21860 -- because this routine makes use of them.
21861
21862 Set_Ekind (T, E_Record_Type);
21863 Set_Etype (T, T);
21864 Init_Size_Align (T);
21865 Set_Interfaces (T, No_Elist);
21866 Set_Stored_Constraint (T, No_Elist);
21867 Set_Default_SSO (T);
21868 Set_No_Reordering (T, No_Component_Reordering);
21869
21870 -- Normal case
21871
21872 if Ada_Version < Ada_2005 or else not Interface_Present (Def) then
21873 if Limited_Present (Def) then
21874 Check_SPARK_05_Restriction ("limited is not allowed", N);
21875 end if;
21876
21877 if Abstract_Present (Def) then
21878 Check_SPARK_05_Restriction ("abstract is not allowed", N);
21879 end if;
21880
21881 -- The flag Is_Tagged_Type might have already been set by
21882 -- Find_Type_Name if it detected an error for declaration T. This
21883 -- arises in the case of private tagged types where the full view
21884 -- omits the word tagged.
21885
21886 Is_Tagged :=
21887 Tagged_Present (Def)
21888 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
21889
21890 Set_Is_Limited_Record (T, Limited_Present (Def));
21891
21892 if Is_Tagged then
21893 Set_Is_Tagged_Type (T, True);
21894 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
21895 end if;
21896
21897 -- Type is abstract if full declaration carries keyword, or if
21898 -- previous partial view did.
21899
21900 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
21901 or else Abstract_Present (Def));
21902
21903 else
21904 Check_SPARK_05_Restriction ("interface is not allowed", N);
21905
21906 Is_Tagged := True;
21907 Analyze_Interface_Declaration (T, Def);
21908
21909 if Present (Discriminant_Specifications (N)) then
21910 Error_Msg_N
21911 ("interface types cannot have discriminants",
21912 Defining_Identifier
21913 (First (Discriminant_Specifications (N))));
21914 end if;
21915 end if;
21916
21917 -- First pass: if there are self-referential access components,
21918 -- create the required anonymous access type declarations, and if
21919 -- need be an incomplete type declaration for T itself.
21920
21921 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
21922
21923 if Ada_Version >= Ada_2005
21924 and then Present (Interface_List (Def))
21925 then
21926 Check_Interfaces (N, Def);
21927
21928 declare
21929 Ifaces_List : Elist_Id;
21930
21931 begin
21932 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
21933 -- already in the parents.
21934
21935 Collect_Interfaces
21936 (T => T,
21937 Ifaces_List => Ifaces_List,
21938 Exclude_Parents => True);
21939
21940 Set_Interfaces (T, Ifaces_List);
21941 end;
21942 end if;
21943
21944 -- Records constitute a scope for the component declarations within.
21945 -- The scope is created prior to the processing of these declarations.
21946 -- Discriminants are processed first, so that they are visible when
21947 -- processing the other components. The Ekind of the record type itself
21948 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
21949
21950 -- Enter record scope
21951
21952 Push_Scope (T);
21953
21954 -- If an incomplete or private type declaration was already given for
21955 -- the type, then this scope already exists, and the discriminants have
21956 -- been declared within. We must verify that the full declaration
21957 -- matches the incomplete one.
21958
21959 Check_Or_Process_Discriminants (N, T, Prev);
21960
21961 Set_Is_Constrained (T, not Has_Discriminants (T));
21962 Set_Has_Delayed_Freeze (T, True);
21963
21964 -- For tagged types add a manually analyzed component corresponding
21965 -- to the component _tag, the corresponding piece of tree will be
21966 -- expanded as part of the freezing actions if it is not a CPP_Class.
21967
21968 if Is_Tagged then
21969
21970 -- Do not add the tag unless we are in expansion mode
21971
21972 if Expander_Active then
21973 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
21974 Enter_Name (Tag_Comp);
21975
21976 Set_Ekind (Tag_Comp, E_Component);
21977 Set_Is_Tag (Tag_Comp);
21978 Set_Is_Aliased (Tag_Comp);
21979 Set_Etype (Tag_Comp, RTE (RE_Tag));
21980 Set_DT_Entry_Count (Tag_Comp, No_Uint);
21981 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
21982 Init_Component_Location (Tag_Comp);
21983
21984 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
21985 -- implemented interfaces.
21986
21987 if Has_Interfaces (T) then
21988 Add_Interface_Tag_Components (N, T);
21989 end if;
21990 end if;
21991
21992 Make_Class_Wide_Type (T);
21993 Set_Direct_Primitive_Operations (T, New_Elmt_List);
21994 end if;
21995
21996 -- We must suppress range checks when processing record components in
21997 -- the presence of discriminants, since we don't want spurious checks to
21998 -- be generated during their analysis, but Suppress_Range_Checks flags
21999 -- must be reset the after processing the record definition.
22000
22001 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
22002 -- couldn't we just use the normal range check suppression method here.
22003 -- That would seem cleaner ???
22004
22005 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
22006 Set_Kill_Range_Checks (T, True);
22007 Record_Type_Definition (Def, Prev);
22008 Set_Kill_Range_Checks (T, False);
22009 else
22010 Record_Type_Definition (Def, Prev);
22011 end if;
22012
22013 -- Exit from record scope
22014
22015 End_Scope;
22016
22017 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
22018 -- the implemented interfaces and associate them an aliased entity.
22019
22020 if Is_Tagged
22021 and then not Is_Empty_List (Interface_List (Def))
22022 then
22023 Derive_Progenitor_Subprograms (T, T);
22024 end if;
22025
22026 Check_Function_Writable_Actuals (N);
22027 end Record_Type_Declaration;
22028
22029 ----------------------------
22030 -- Record_Type_Definition --
22031 ----------------------------
22032
22033 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
22034 Component : Entity_Id;
22035 Ctrl_Components : Boolean := False;
22036 Final_Storage_Only : Boolean;
22037 T : Entity_Id;
22038
22039 begin
22040 if Ekind (Prev_T) = E_Incomplete_Type then
22041 T := Full_View (Prev_T);
22042 else
22043 T := Prev_T;
22044 end if;
22045
22046 -- In SPARK, tagged types and type extensions may only be declared in
22047 -- the specification of library unit packages.
22048
22049 if Present (Def) and then Is_Tagged_Type (T) then
22050 declare
22051 Typ : Node_Id;
22052 Ctxt : Node_Id;
22053
22054 begin
22055 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
22056 Typ := Parent (Def);
22057 else
22058 pragma Assert
22059 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
22060 Typ := Parent (Parent (Def));
22061 end if;
22062
22063 Ctxt := Parent (Typ);
22064
22065 if Nkind (Ctxt) = N_Package_Body
22066 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
22067 then
22068 Check_SPARK_05_Restriction
22069 ("type should be defined in package specification", Typ);
22070
22071 elsif Nkind (Ctxt) /= N_Package_Specification
22072 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
22073 then
22074 Check_SPARK_05_Restriction
22075 ("type should be defined in library unit package", Typ);
22076 end if;
22077 end;
22078 end if;
22079
22080 Final_Storage_Only := not Is_Controlled (T);
22081
22082 -- Ada 2005: Check whether an explicit Limited is present in a derived
22083 -- type declaration.
22084
22085 if Nkind (Parent (Def)) = N_Derived_Type_Definition
22086 and then Limited_Present (Parent (Def))
22087 then
22088 Set_Is_Limited_Record (T);
22089 end if;
22090
22091 -- If the component list of a record type is defined by the reserved
22092 -- word null and there is no discriminant part, then the record type has
22093 -- no components and all records of the type are null records (RM 3.7)
22094 -- This procedure is also called to process the extension part of a
22095 -- record extension, in which case the current scope may have inherited
22096 -- components.
22097
22098 if No (Def)
22099 or else No (Component_List (Def))
22100 or else Null_Present (Component_List (Def))
22101 then
22102 if not Is_Tagged_Type (T) then
22103 Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
22104 end if;
22105
22106 else
22107 Analyze_Declarations (Component_Items (Component_List (Def)));
22108
22109 if Present (Variant_Part (Component_List (Def))) then
22110 Check_SPARK_05_Restriction ("variant part is not allowed", Def);
22111 Analyze (Variant_Part (Component_List (Def)));
22112 end if;
22113 end if;
22114
22115 -- After completing the semantic analysis of the record definition,
22116 -- record components, both new and inherited, are accessible. Set their
22117 -- kind accordingly. Exclude malformed itypes from illegal declarations,
22118 -- whose Ekind may be void.
22119
22120 Component := First_Entity (Current_Scope);
22121 while Present (Component) loop
22122 if Ekind (Component) = E_Void
22123 and then not Is_Itype (Component)
22124 then
22125 Set_Ekind (Component, E_Component);
22126 Init_Component_Location (Component);
22127 end if;
22128
22129 Propagate_Concurrent_Flags (T, Etype (Component));
22130
22131 if Ekind (Component) /= E_Component then
22132 null;
22133
22134 -- Do not set Has_Controlled_Component on a class-wide equivalent
22135 -- type. See Make_CW_Equivalent_Type.
22136
22137 elsif not Is_Class_Wide_Equivalent_Type (T)
22138 and then (Has_Controlled_Component (Etype (Component))
22139 or else (Chars (Component) /= Name_uParent
22140 and then Is_Controlled (Etype (Component))))
22141 then
22142 Set_Has_Controlled_Component (T, True);
22143 Final_Storage_Only :=
22144 Final_Storage_Only
22145 and then Finalize_Storage_Only (Etype (Component));
22146 Ctrl_Components := True;
22147 end if;
22148
22149 Next_Entity (Component);
22150 end loop;
22151
22152 -- A Type is Finalize_Storage_Only only if all its controlled components
22153 -- are also.
22154
22155 if Ctrl_Components then
22156 Set_Finalize_Storage_Only (T, Final_Storage_Only);
22157 end if;
22158
22159 -- Place reference to end record on the proper entity, which may
22160 -- be a partial view.
22161
22162 if Present (Def) then
22163 Process_End_Label (Def, 'e', Prev_T);
22164 end if;
22165 end Record_Type_Definition;
22166
22167 ------------------------
22168 -- Replace_Components --
22169 ------------------------
22170
22171 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
22172 function Process (N : Node_Id) return Traverse_Result;
22173
22174 -------------
22175 -- Process --
22176 -------------
22177
22178 function Process (N : Node_Id) return Traverse_Result is
22179 Comp : Entity_Id;
22180
22181 begin
22182 if Nkind (N) = N_Discriminant_Specification then
22183 Comp := First_Discriminant (Typ);
22184 while Present (Comp) loop
22185 if Chars (Comp) = Chars (Defining_Identifier (N)) then
22186 Set_Defining_Identifier (N, Comp);
22187 exit;
22188 end if;
22189
22190 Next_Discriminant (Comp);
22191 end loop;
22192
22193 elsif Nkind (N) = N_Variant_Part then
22194 Comp := First_Discriminant (Typ);
22195 while Present (Comp) loop
22196 if Chars (Comp) = Chars (Name (N)) then
22197 Set_Entity (Name (N), Comp);
22198 exit;
22199 end if;
22200
22201 Next_Discriminant (Comp);
22202 end loop;
22203
22204 elsif Nkind (N) = N_Component_Declaration then
22205 Comp := First_Component (Typ);
22206 while Present (Comp) loop
22207 if Chars (Comp) = Chars (Defining_Identifier (N)) then
22208 Set_Defining_Identifier (N, Comp);
22209 exit;
22210 end if;
22211
22212 Next_Component (Comp);
22213 end loop;
22214 end if;
22215
22216 return OK;
22217 end Process;
22218
22219 procedure Replace is new Traverse_Proc (Process);
22220
22221 -- Start of processing for Replace_Components
22222
22223 begin
22224 Replace (Decl);
22225 end Replace_Components;
22226
22227 -------------------------------
22228 -- Set_Completion_Referenced --
22229 -------------------------------
22230
22231 procedure Set_Completion_Referenced (E : Entity_Id) is
22232 begin
22233 -- If in main unit, mark entity that is a completion as referenced,
22234 -- warnings go on the partial view when needed.
22235
22236 if In_Extended_Main_Source_Unit (E) then
22237 Set_Referenced (E);
22238 end if;
22239 end Set_Completion_Referenced;
22240
22241 ---------------------
22242 -- Set_Default_SSO --
22243 ---------------------
22244
22245 procedure Set_Default_SSO (T : Entity_Id) is
22246 begin
22247 case Opt.Default_SSO is
22248 when ' ' =>
22249 null;
22250 when 'L' =>
22251 Set_SSO_Set_Low_By_Default (T, True);
22252 when 'H' =>
22253 Set_SSO_Set_High_By_Default (T, True);
22254 when others =>
22255 raise Program_Error;
22256 end case;
22257 end Set_Default_SSO;
22258
22259 ---------------------
22260 -- Set_Fixed_Range --
22261 ---------------------
22262
22263 -- The range for fixed-point types is complicated by the fact that we
22264 -- do not know the exact end points at the time of the declaration. This
22265 -- is true for three reasons:
22266
22267 -- A size clause may affect the fudging of the end-points.
22268 -- A small clause may affect the values of the end-points.
22269 -- We try to include the end-points if it does not affect the size.
22270
22271 -- This means that the actual end-points must be established at the
22272 -- point when the type is frozen. Meanwhile, we first narrow the range
22273 -- as permitted (so that it will fit if necessary in a small specified
22274 -- size), and then build a range subtree with these narrowed bounds.
22275 -- Set_Fixed_Range constructs the range from real literal values, and
22276 -- sets the range as the Scalar_Range of the given fixed-point type entity.
22277
22278 -- The parent of this range is set to point to the entity so that it is
22279 -- properly hooked into the tree (unlike normal Scalar_Range entries for
22280 -- other scalar types, which are just pointers to the range in the
22281 -- original tree, this would otherwise be an orphan).
22282
22283 -- The tree is left unanalyzed. When the type is frozen, the processing
22284 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
22285 -- analyzed, and uses this as an indication that it should complete
22286 -- work on the range (it will know the final small and size values).
22287
22288 procedure Set_Fixed_Range
22289 (E : Entity_Id;
22290 Loc : Source_Ptr;
22291 Lo : Ureal;
22292 Hi : Ureal)
22293 is
22294 S : constant Node_Id :=
22295 Make_Range (Loc,
22296 Low_Bound => Make_Real_Literal (Loc, Lo),
22297 High_Bound => Make_Real_Literal (Loc, Hi));
22298 begin
22299 Set_Scalar_Range (E, S);
22300 Set_Parent (S, E);
22301
22302 -- Before the freeze point, the bounds of a fixed point are universal
22303 -- and carry the corresponding type.
22304
22305 Set_Etype (Low_Bound (S), Universal_Real);
22306 Set_Etype (High_Bound (S), Universal_Real);
22307 end Set_Fixed_Range;
22308
22309 ----------------------------------
22310 -- Set_Scalar_Range_For_Subtype --
22311 ----------------------------------
22312
22313 procedure Set_Scalar_Range_For_Subtype
22314 (Def_Id : Entity_Id;
22315 R : Node_Id;
22316 Subt : Entity_Id)
22317 is
22318 Kind : constant Entity_Kind := Ekind (Def_Id);
22319
22320 begin
22321 -- Defend against previous error
22322
22323 if Nkind (R) = N_Error then
22324 return;
22325 end if;
22326
22327 Set_Scalar_Range (Def_Id, R);
22328
22329 -- We need to link the range into the tree before resolving it so
22330 -- that types that are referenced, including importantly the subtype
22331 -- itself, are properly frozen (Freeze_Expression requires that the
22332 -- expression be properly linked into the tree). Of course if it is
22333 -- already linked in, then we do not disturb the current link.
22334
22335 if No (Parent (R)) then
22336 Set_Parent (R, Def_Id);
22337 end if;
22338
22339 -- Reset the kind of the subtype during analysis of the range, to
22340 -- catch possible premature use in the bounds themselves.
22341
22342 Set_Ekind (Def_Id, E_Void);
22343 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
22344 Set_Ekind (Def_Id, Kind);
22345 end Set_Scalar_Range_For_Subtype;
22346
22347 --------------------------------------------------------
22348 -- Set_Stored_Constraint_From_Discriminant_Constraint --
22349 --------------------------------------------------------
22350
22351 procedure Set_Stored_Constraint_From_Discriminant_Constraint
22352 (E : Entity_Id)
22353 is
22354 begin
22355 -- Make sure set if encountered during Expand_To_Stored_Constraint
22356
22357 Set_Stored_Constraint (E, No_Elist);
22358
22359 -- Give it the right value
22360
22361 if Is_Constrained (E) and then Has_Discriminants (E) then
22362 Set_Stored_Constraint (E,
22363 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
22364 end if;
22365 end Set_Stored_Constraint_From_Discriminant_Constraint;
22366
22367 -------------------------------------
22368 -- Signed_Integer_Type_Declaration --
22369 -------------------------------------
22370
22371 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
22372 Implicit_Base : Entity_Id;
22373 Base_Typ : Entity_Id;
22374 Lo_Val : Uint;
22375 Hi_Val : Uint;
22376 Errs : Boolean := False;
22377 Lo : Node_Id;
22378 Hi : Node_Id;
22379
22380 function Can_Derive_From (E : Entity_Id) return Boolean;
22381 -- Determine whether given bounds allow derivation from specified type
22382
22383 procedure Check_Bound (Expr : Node_Id);
22384 -- Check bound to make sure it is integral and static. If not, post
22385 -- appropriate error message and set Errs flag
22386
22387 ---------------------
22388 -- Can_Derive_From --
22389 ---------------------
22390
22391 -- Note we check both bounds against both end values, to deal with
22392 -- strange types like ones with a range of 0 .. -12341234.
22393
22394 function Can_Derive_From (E : Entity_Id) return Boolean is
22395 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
22396 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
22397 begin
22398 return Lo <= Lo_Val and then Lo_Val <= Hi
22399 and then
22400 Lo <= Hi_Val and then Hi_Val <= Hi;
22401 end Can_Derive_From;
22402
22403 -----------------
22404 -- Check_Bound --
22405 -----------------
22406
22407 procedure Check_Bound (Expr : Node_Id) is
22408 begin
22409 -- If a range constraint is used as an integer type definition, each
22410 -- bound of the range must be defined by a static expression of some
22411 -- integer type, but the two bounds need not have the same integer
22412 -- type (Negative bounds are allowed.) (RM 3.5.4)
22413
22414 if not Is_Integer_Type (Etype (Expr)) then
22415 Error_Msg_N
22416 ("integer type definition bounds must be of integer type", Expr);
22417 Errs := True;
22418
22419 elsif not Is_OK_Static_Expression (Expr) then
22420 Flag_Non_Static_Expr
22421 ("non-static expression used for integer type bound!", Expr);
22422 Errs := True;
22423
22424 -- The bounds are folded into literals, and we set their type to be
22425 -- universal, to avoid typing difficulties: we cannot set the type
22426 -- of the literal to the new type, because this would be a forward
22427 -- reference for the back end, and if the original type is user-
22428 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
22429
22430 else
22431 if Is_Entity_Name (Expr) then
22432 Fold_Uint (Expr, Expr_Value (Expr), True);
22433 end if;
22434
22435 Set_Etype (Expr, Universal_Integer);
22436 end if;
22437 end Check_Bound;
22438
22439 -- Start of processing for Signed_Integer_Type_Declaration
22440
22441 begin
22442 -- Create an anonymous base type
22443
22444 Implicit_Base :=
22445 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
22446
22447 -- Analyze and check the bounds, they can be of any integer type
22448
22449 Lo := Low_Bound (Def);
22450 Hi := High_Bound (Def);
22451
22452 -- Arbitrarily use Integer as the type if either bound had an error
22453
22454 if Hi = Error or else Lo = Error then
22455 Base_Typ := Any_Integer;
22456 Set_Error_Posted (T, True);
22457
22458 -- Here both bounds are OK expressions
22459
22460 else
22461 Analyze_And_Resolve (Lo, Any_Integer);
22462 Analyze_And_Resolve (Hi, Any_Integer);
22463
22464 Check_Bound (Lo);
22465 Check_Bound (Hi);
22466
22467 if Errs then
22468 Hi := Type_High_Bound (Standard_Long_Long_Integer);
22469 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
22470 end if;
22471
22472 -- Find type to derive from
22473
22474 Lo_Val := Expr_Value (Lo);
22475 Hi_Val := Expr_Value (Hi);
22476
22477 if Can_Derive_From (Standard_Short_Short_Integer) then
22478 Base_Typ := Base_Type (Standard_Short_Short_Integer);
22479
22480 elsif Can_Derive_From (Standard_Short_Integer) then
22481 Base_Typ := Base_Type (Standard_Short_Integer);
22482
22483 elsif Can_Derive_From (Standard_Integer) then
22484 Base_Typ := Base_Type (Standard_Integer);
22485
22486 elsif Can_Derive_From (Standard_Long_Integer) then
22487 Base_Typ := Base_Type (Standard_Long_Integer);
22488
22489 elsif Can_Derive_From (Standard_Long_Long_Integer) then
22490 Check_Restriction (No_Long_Long_Integers, Def);
22491 Base_Typ := Base_Type (Standard_Long_Long_Integer);
22492
22493 else
22494 Base_Typ := Base_Type (Standard_Long_Long_Integer);
22495 Error_Msg_N ("integer type definition bounds out of range", Def);
22496 Hi := Type_High_Bound (Standard_Long_Long_Integer);
22497 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
22498 end if;
22499 end if;
22500
22501 -- Complete both implicit base and declared first subtype entities. The
22502 -- inheritance of the rep item chain ensures that SPARK-related pragmas
22503 -- are not clobbered when the signed integer type acts as a full view of
22504 -- a private type.
22505
22506 Set_Etype (Implicit_Base, Base_Typ);
22507 Set_Size_Info (Implicit_Base, Base_Typ);
22508 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
22509 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
22510 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
22511
22512 Set_Ekind (T, E_Signed_Integer_Subtype);
22513 Set_Etype (T, Implicit_Base);
22514 Set_Size_Info (T, Implicit_Base);
22515 Inherit_Rep_Item_Chain (T, Implicit_Base);
22516 Set_Scalar_Range (T, Def);
22517 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
22518 Set_Is_Constrained (T);
22519 end Signed_Integer_Type_Declaration;
22520
22521 end Sem_Ch3;