[Ada] Missing error on non-limited derived type with limited component
[gcc.git] / gcc / ada / sem_ch3.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Elists; use Elists;
32 with Einfo; use Einfo;
33 with Errout; use Errout;
34 with Eval_Fat; use Eval_Fat;
35 with Exp_Ch3; use Exp_Ch3;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Disp; use Exp_Disp;
38 with Exp_Dist; use Exp_Dist;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Freeze; use Freeze;
42 with Ghost; use Ghost;
43 with Itypes; use Itypes;
44 with Layout; use Layout;
45 with Lib; use Lib;
46 with Lib.Xref; use Lib.Xref;
47 with Namet; use Namet;
48 with Nmake; use Nmake;
49 with Opt; use Opt;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Case; use Sem_Case;
56 with Sem_Cat; use Sem_Cat;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch7; use Sem_Ch7;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Dim; use Sem_Dim;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elab; use Sem_Elab;
65 with Sem_Elim; use Sem_Elim;
66 with Sem_Eval; use Sem_Eval;
67 with Sem_Mech; use Sem_Mech;
68 with Sem_Res; use Sem_Res;
69 with Sem_Smem; use Sem_Smem;
70 with Sem_Type; use Sem_Type;
71 with Sem_Util; use Sem_Util;
72 with Sem_Warn; use Sem_Warn;
73 with Stand; use Stand;
74 with Sinfo; use Sinfo;
75 with Sinput; use Sinput;
76 with Snames; use Snames;
77 with Targparm; use Targparm;
78 with Tbuild; use Tbuild;
79 with Ttypes; use Ttypes;
80 with Uintp; use Uintp;
81 with Urealp; use Urealp;
82
83 package body Sem_Ch3 is
84
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
88
89 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
92 -- record type.
93
94 procedure Build_Derived_Type
95 (N : Node_Id;
96 Parent_Type : Entity_Id;
97 Derived_Type : Entity_Id;
98 Is_Completion : Boolean;
99 Derive_Subps : Boolean := True);
100 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
101 -- the N_Full_Type_Declaration node containing the derived type definition.
102 -- Parent_Type is the entity for the parent type in the derived type
103 -- definition and Derived_Type the actual derived type. Is_Completion must
104 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
105 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
106 -- completion of a private type declaration. If Is_Completion is set to
107 -- True, N is the completion of a private type declaration and Derived_Type
108 -- is different from the defining identifier inside N (i.e. Derived_Type /=
109 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
110 -- subprograms should be derived. The only case where this parameter is
111 -- False is when Build_Derived_Type is recursively called to process an
112 -- implicit derived full type for a type derived from a private type (in
113 -- that case the subprograms must only be derived for the private view of
114 -- the type).
115 --
116 -- ??? These flags need a bit of re-examination and re-documentation:
117 -- ??? are they both necessary (both seem related to the recursion)?
118
119 procedure Build_Derived_Access_Type
120 (N : Node_Id;
121 Parent_Type : Entity_Id;
122 Derived_Type : Entity_Id);
123 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
124 -- create an implicit base if the parent type is constrained or if the
125 -- subtype indication has a constraint.
126
127 procedure Build_Derived_Array_Type
128 (N : Node_Id;
129 Parent_Type : Entity_Id;
130 Derived_Type : Entity_Id);
131 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
132 -- create an implicit base if the parent type is constrained or if the
133 -- subtype indication has a constraint.
134
135 procedure Build_Derived_Concurrent_Type
136 (N : Node_Id;
137 Parent_Type : Entity_Id;
138 Derived_Type : Entity_Id);
139 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
140 -- protected type, inherit entries and protected subprograms, check
141 -- legality of discriminant constraints if any.
142
143 procedure Build_Derived_Enumeration_Type
144 (N : Node_Id;
145 Parent_Type : Entity_Id;
146 Derived_Type : Entity_Id);
147 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
148 -- type, we must create a new list of literals. Types derived from
149 -- Character and [Wide_]Wide_Character are special-cased.
150
151 procedure Build_Derived_Numeric_Type
152 (N : Node_Id;
153 Parent_Type : Entity_Id;
154 Derived_Type : Entity_Id);
155 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
156 -- an anonymous base type, and propagate constraint to subtype if needed.
157
158 procedure Build_Derived_Private_Type
159 (N : Node_Id;
160 Parent_Type : Entity_Id;
161 Derived_Type : Entity_Id;
162 Is_Completion : Boolean;
163 Derive_Subps : Boolean := True);
164 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
165 -- because the parent may or may not have a completion, and the derivation
166 -- may itself be a completion.
167
168 procedure Build_Derived_Record_Type
169 (N : Node_Id;
170 Parent_Type : Entity_Id;
171 Derived_Type : Entity_Id;
172 Derive_Subps : Boolean := True);
173 -- Subsidiary procedure used for tagged and untagged record types
174 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
175 -- All parameters are as in Build_Derived_Type except that N, in
176 -- addition to being an N_Full_Type_Declaration node, can also be an
177 -- N_Private_Extension_Declaration node. See the definition of this routine
178 -- for much more info. Derive_Subps indicates whether subprograms should be
179 -- derived from the parent type. The only case where Derive_Subps is False
180 -- is for an implicit derived full type for a type derived from a private
181 -- type (see Build_Derived_Type).
182
183 procedure Build_Discriminal (Discrim : Entity_Id);
184 -- Create the discriminal corresponding to discriminant Discrim, that is
185 -- the parameter corresponding to Discrim to be used in initialization
186 -- procedures for the type where Discrim is a discriminant. Discriminals
187 -- are not used during semantic analysis, and are not fully defined
188 -- entities until expansion. Thus they are not given a scope until
189 -- initialization procedures are built.
190
191 function Build_Discriminant_Constraints
192 (T : Entity_Id;
193 Def : Node_Id;
194 Derived_Def : Boolean := False) return Elist_Id;
195 -- Validate discriminant constraints and return the list of the constraints
196 -- in order of discriminant declarations, where T is the discriminated
197 -- unconstrained type. Def is the N_Subtype_Indication node where the
198 -- discriminants constraints for T are specified. Derived_Def is True
199 -- when building the discriminant constraints in a derived type definition
200 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
201 -- type and Def is the constraint "(xxx)" on T and this routine sets the
202 -- Corresponding_Discriminant field of the discriminants in the derived
203 -- type D to point to the corresponding discriminants in the parent type T.
204
205 procedure Build_Discriminated_Subtype
206 (T : Entity_Id;
207 Def_Id : Entity_Id;
208 Elist : Elist_Id;
209 Related_Nod : Node_Id;
210 For_Access : Boolean := False);
211 -- Subsidiary procedure to Constrain_Discriminated_Type and to
212 -- Process_Incomplete_Dependents. Given
213 --
214 -- T (a possibly discriminated base type)
215 -- Def_Id (a very partially built subtype for T),
216 --
217 -- the call completes Def_Id to be the appropriate E_*_Subtype.
218 --
219 -- The Elist is the list of discriminant constraints if any (it is set
220 -- to No_Elist if T is not a discriminated type, and to an empty list if
221 -- T has discriminants but there are no discriminant constraints). The
222 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
223 -- The For_Access says whether or not this subtype is really constraining
224 -- an access type. That is its sole purpose is the designated type of an
225 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
226 -- is built to avoid freezing T when the access subtype is frozen.
227
228 function Build_Scalar_Bound
229 (Bound : Node_Id;
230 Par_T : Entity_Id;
231 Der_T : Entity_Id) return Node_Id;
232 -- The bounds of a derived scalar type are conversions of the bounds of
233 -- the parent type. Optimize the representation if the bounds are literals.
234 -- Needs a more complete spec--what are the parameters exactly, and what
235 -- exactly is the returned value, and how is Bound affected???
236
237 procedure Build_Underlying_Full_View
238 (N : Node_Id;
239 Typ : Entity_Id;
240 Par : Entity_Id);
241 -- If the completion of a private type is itself derived from a private
242 -- type, or if the full view of a private subtype is itself private, the
243 -- back-end has no way to compute the actual size of this type. We build
244 -- an internal subtype declaration of the proper parent type to convey
245 -- this information. This extra mechanism is needed because a full
246 -- view cannot itself have a full view (it would get clobbered during
247 -- view exchanges).
248
249 procedure Check_Access_Discriminant_Requires_Limited
250 (D : Node_Id;
251 Loc : Node_Id);
252 -- Check the restriction that the type to which an access discriminant
253 -- belongs must be a concurrent type or a descendant of a type with
254 -- the reserved word 'limited' in its declaration.
255
256 procedure Check_Anonymous_Access_Components
257 (Typ_Decl : Node_Id;
258 Typ : Entity_Id;
259 Prev : Entity_Id;
260 Comp_List : Node_Id);
261 -- Ada 2005 AI-382: an access component in a record definition can refer to
262 -- the enclosing record, in which case it denotes the type itself, and not
263 -- the current instance of the type. We create an anonymous access type for
264 -- the component, and flag it as an access to a component, so accessibility
265 -- checks are properly performed on it. The declaration of the access type
266 -- is placed ahead of that of the record to prevent order-of-elaboration
267 -- circularity issues in Gigi. We create an incomplete type for the record
268 -- declaration, which is the designated type of the anonymous access.
269
270 procedure Check_Delta_Expression (E : Node_Id);
271 -- Check that the expression represented by E is suitable for use as a
272 -- delta expression, i.e. it is of real type and is static.
273
274 procedure Check_Digits_Expression (E : Node_Id);
275 -- Check that the expression represented by E is suitable for use as a
276 -- digits expression, i.e. it is of integer type, positive and static.
277
278 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
279 -- Validate the initialization of an object declaration. T is the required
280 -- type, and Exp is the initialization expression.
281
282 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
283 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
284
285 procedure Check_Or_Process_Discriminants
286 (N : Node_Id;
287 T : Entity_Id;
288 Prev : Entity_Id := Empty);
289 -- If N is the full declaration of the completion T of an incomplete or
290 -- private type, check its discriminants (which are already known to be
291 -- conformant with those of the partial view, see Find_Type_Name),
292 -- otherwise process them. Prev is the entity of the partial declaration,
293 -- if any.
294
295 procedure Check_Real_Bound (Bound : Node_Id);
296 -- Check given bound for being of real type and static. If not, post an
297 -- appropriate message, and rewrite the bound with the real literal zero.
298
299 procedure Constant_Redeclaration
300 (Id : Entity_Id;
301 N : Node_Id;
302 T : out Entity_Id);
303 -- Various checks on legality of full declaration of deferred constant.
304 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
305 -- node. The caller has not yet set any attributes of this entity.
306
307 function Contain_Interface
308 (Iface : Entity_Id;
309 Ifaces : Elist_Id) return Boolean;
310 -- Ada 2005: Determine whether Iface is present in the list Ifaces
311
312 procedure Convert_Scalar_Bounds
313 (N : Node_Id;
314 Parent_Type : Entity_Id;
315 Derived_Type : Entity_Id;
316 Loc : Source_Ptr);
317 -- For derived scalar types, convert the bounds in the type definition to
318 -- the derived type, and complete their analysis. Given a constraint of the
319 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
320 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
321 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
322 -- subtype are conversions of those bounds to the derived_type, so that
323 -- their typing is consistent.
324
325 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
326 -- Copies attributes from array base type T2 to array base type T1. Copies
327 -- only attributes that apply to base types, but not subtypes.
328
329 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
330 -- Copies attributes from array subtype T2 to array subtype T1. Copies
331 -- attributes that apply to both subtypes and base types.
332
333 procedure Create_Constrained_Components
334 (Subt : Entity_Id;
335 Decl_Node : Node_Id;
336 Typ : Entity_Id;
337 Constraints : Elist_Id);
338 -- Build the list of entities for a constrained discriminated record
339 -- subtype. If a component depends on a discriminant, replace its subtype
340 -- using the discriminant values in the discriminant constraint. Subt
341 -- is the defining identifier for the subtype whose list of constrained
342 -- entities we will create. Decl_Node is the type declaration node where
343 -- we will attach all the itypes created. Typ is the base discriminated
344 -- type for the subtype Subt. Constraints is the list of discriminant
345 -- constraints for Typ.
346
347 function Constrain_Component_Type
348 (Comp : Entity_Id;
349 Constrained_Typ : Entity_Id;
350 Related_Node : Node_Id;
351 Typ : Entity_Id;
352 Constraints : Elist_Id) return Entity_Id;
353 -- Given a discriminated base type Typ, a list of discriminant constraints,
354 -- Constraints, for Typ and a component Comp of Typ, create and return the
355 -- type corresponding to Etype (Comp) where all discriminant references
356 -- are replaced with the corresponding constraint. If Etype (Comp) contains
357 -- no discriminant references then it is returned as-is. Constrained_Typ
358 -- is the final constrained subtype to which the constrained component
359 -- belongs. Related_Node is the node where we attach all created itypes.
360
361 procedure Constrain_Access
362 (Def_Id : in out Entity_Id;
363 S : Node_Id;
364 Related_Nod : Node_Id);
365 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
366 -- an anonymous type created for a subtype indication. In that case it is
367 -- created in the procedure and attached to Related_Nod.
368
369 procedure Constrain_Array
370 (Def_Id : in out Entity_Id;
371 SI : Node_Id;
372 Related_Nod : Node_Id;
373 Related_Id : Entity_Id;
374 Suffix : Character);
375 -- Apply a list of index constraints to an unconstrained array type. The
376 -- first parameter is the entity for the resulting subtype. A value of
377 -- Empty for Def_Id indicates that an implicit type must be created, but
378 -- creation is delayed (and must be done by this procedure) because other
379 -- subsidiary implicit types must be created first (which is why Def_Id
380 -- is an in/out parameter). The second parameter is a subtype indication
381 -- node for the constrained array to be created (e.g. something of the
382 -- form string (1 .. 10)). Related_Nod gives the place where this type
383 -- has to be inserted in the tree. The Related_Id and Suffix parameters
384 -- are used to build the associated Implicit type name.
385
386 procedure Constrain_Concurrent
387 (Def_Id : in out Entity_Id;
388 SI : Node_Id;
389 Related_Nod : Node_Id;
390 Related_Id : Entity_Id;
391 Suffix : Character);
392 -- Apply list of discriminant constraints to an unconstrained concurrent
393 -- type.
394 --
395 -- SI is the N_Subtype_Indication node containing the constraint and
396 -- the unconstrained type to constrain.
397 --
398 -- Def_Id is the entity for the resulting constrained subtype. A value
399 -- of Empty for Def_Id indicates that an implicit type must be created,
400 -- but creation is delayed (and must be done by this procedure) because
401 -- other subsidiary implicit types must be created first (which is why
402 -- Def_Id is an in/out parameter).
403 --
404 -- Related_Nod gives the place where this type has to be inserted
405 -- in the tree.
406 --
407 -- The last two arguments are used to create its external name if needed.
408
409 function Constrain_Corresponding_Record
410 (Prot_Subt : Entity_Id;
411 Corr_Rec : Entity_Id;
412 Related_Nod : Node_Id) return Entity_Id;
413 -- When constraining a protected type or task type with discriminants,
414 -- constrain the corresponding record with the same discriminant values.
415
416 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
417 -- Constrain a decimal fixed point type with a digits constraint and/or a
418 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
419
420 procedure Constrain_Discriminated_Type
421 (Def_Id : Entity_Id;
422 S : Node_Id;
423 Related_Nod : Node_Id;
424 For_Access : Boolean := False);
425 -- Process discriminant constraints of composite type. Verify that values
426 -- have been provided for all discriminants, that the original type is
427 -- unconstrained, and that the types of the supplied expressions match
428 -- the discriminant types. The first three parameters are like in routine
429 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
430 -- of For_Access.
431
432 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
433 -- Constrain an enumeration type with a range constraint. This is identical
434 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
435
436 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
437 -- Constrain a floating point type with either a digits constraint
438 -- and/or a range constraint, building a E_Floating_Point_Subtype.
439
440 procedure Constrain_Index
441 (Index : Node_Id;
442 S : Node_Id;
443 Related_Nod : Node_Id;
444 Related_Id : Entity_Id;
445 Suffix : Character;
446 Suffix_Index : Nat);
447 -- Process an index constraint S in a constrained array declaration. The
448 -- constraint can be a subtype name, or a range with or without an explicit
449 -- subtype mark. The index is the corresponding index of the unconstrained
450 -- array. The Related_Id and Suffix parameters are used to build the
451 -- associated Implicit type name.
452
453 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
454 -- Build subtype of a signed or modular integer type
455
456 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
457 -- Constrain an ordinary fixed point type with a range constraint, and
458 -- build an E_Ordinary_Fixed_Point_Subtype entity.
459
460 procedure Copy_And_Swap (Priv, Full : Entity_Id);
461 -- Copy the Priv entity into the entity of its full declaration then swap
462 -- the two entities in such a manner that the former private type is now
463 -- seen as a full type.
464
465 procedure Decimal_Fixed_Point_Type_Declaration
466 (T : Entity_Id;
467 Def : Node_Id);
468 -- Create a new decimal fixed point type, and apply the constraint to
469 -- obtain a subtype of this new type.
470
471 procedure Complete_Private_Subtype
472 (Priv : Entity_Id;
473 Full : Entity_Id;
474 Full_Base : Entity_Id;
475 Related_Nod : Node_Id);
476 -- Complete the implicit full view of a private subtype by setting the
477 -- appropriate semantic fields. If the full view of the parent is a record
478 -- type, build constrained components of subtype.
479
480 procedure Derive_Progenitor_Subprograms
481 (Parent_Type : Entity_Id;
482 Tagged_Type : Entity_Id);
483 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
484 -- operations of progenitors of Tagged_Type, and replace the subsidiary
485 -- subtypes with Tagged_Type, to build the specs of the inherited interface
486 -- primitives. The derived primitives are aliased to those of the
487 -- interface. This routine takes care also of transferring to the full view
488 -- subprograms associated with the partial view of Tagged_Type that cover
489 -- interface primitives.
490
491 procedure Derived_Standard_Character
492 (N : Node_Id;
493 Parent_Type : Entity_Id;
494 Derived_Type : Entity_Id);
495 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
496 -- derivations from types Standard.Character and Standard.Wide_Character.
497
498 procedure Derived_Type_Declaration
499 (T : Entity_Id;
500 N : Node_Id;
501 Is_Completion : Boolean);
502 -- Process a derived type declaration. Build_Derived_Type is invoked
503 -- to process the actual derived type definition. Parameters N and
504 -- Is_Completion have the same meaning as in Build_Derived_Type.
505 -- T is the N_Defining_Identifier for the entity defined in the
506 -- N_Full_Type_Declaration node N, that is T is the derived type.
507
508 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
509 -- Insert each literal in symbol table, as an overloadable identifier. Each
510 -- enumeration type is mapped into a sequence of integers, and each literal
511 -- is defined as a constant with integer value. If any of the literals are
512 -- character literals, the type is a character type, which means that
513 -- strings are legal aggregates for arrays of components of the type.
514
515 function Expand_To_Stored_Constraint
516 (Typ : Entity_Id;
517 Constraint : Elist_Id) return Elist_Id;
518 -- Given a constraint (i.e. a list of expressions) on the discriminants of
519 -- Typ, expand it into a constraint on the stored discriminants and return
520 -- the new list of expressions constraining the stored discriminants.
521
522 function Find_Type_Of_Object
523 (Obj_Def : Node_Id;
524 Related_Nod : Node_Id) return Entity_Id;
525 -- Get type entity for object referenced by Obj_Def, attaching the implicit
526 -- types generated to Related_Nod.
527
528 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
529 -- Create a new float and apply the constraint to obtain subtype of it
530
531 function Has_Range_Constraint (N : Node_Id) return Boolean;
532 -- Given an N_Subtype_Indication node N, return True if a range constraint
533 -- is present, either directly, or as part of a digits or delta constraint.
534 -- In addition, a digits constraint in the decimal case returns True, since
535 -- it establishes a default range if no explicit range is present.
536
537 function Inherit_Components
538 (N : Node_Id;
539 Parent_Base : Entity_Id;
540 Derived_Base : Entity_Id;
541 Is_Tagged : Boolean;
542 Inherit_Discr : Boolean;
543 Discs : Elist_Id) return Elist_Id;
544 -- Called from Build_Derived_Record_Type to inherit the components of
545 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
546 -- For more information on derived types and component inheritance please
547 -- consult the comment above the body of Build_Derived_Record_Type.
548 --
549 -- N is the original derived type declaration
550 --
551 -- Is_Tagged is set if we are dealing with tagged types
552 --
553 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
554 -- Parent_Base, otherwise no discriminants are inherited.
555 --
556 -- Discs gives the list of constraints that apply to Parent_Base in the
557 -- derived type declaration. If Discs is set to No_Elist, then we have
558 -- the following situation:
559 --
560 -- type Parent (D1..Dn : ..) is [tagged] record ...;
561 -- type Derived is new Parent [with ...];
562 --
563 -- which gets treated as
564 --
565 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
566 --
567 -- For untagged types the returned value is an association list. The list
568 -- starts from the association (Parent_Base => Derived_Base), and then it
569 -- contains a sequence of the associations of the form
570 --
571 -- (Old_Component => New_Component),
572 --
573 -- where Old_Component is the Entity_Id of a component in Parent_Base and
574 -- New_Component is the Entity_Id of the corresponding component in
575 -- Derived_Base. For untagged records, this association list is needed when
576 -- copying the record declaration for the derived base. In the tagged case
577 -- the value returned is irrelevant.
578
579 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
580 -- Propagate static and dynamic predicate flags from a parent to the
581 -- subtype in a subtype declaration with and without constraints.
582
583 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean;
584 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
585 -- Determine whether subprogram Subp is a procedure subject to pragma
586 -- Extensions_Visible with value False and has at least one controlling
587 -- parameter of mode OUT.
588
589 function Is_Valid_Constraint_Kind
590 (T_Kind : Type_Kind;
591 Constraint_Kind : Node_Kind) return Boolean;
592 -- Returns True if it is legal to apply the given kind of constraint to the
593 -- given kind of type (index constraint to an array type, for example).
594
595 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
596 -- Create new modular type. Verify that modulus is in bounds
597
598 procedure New_Concatenation_Op (Typ : Entity_Id);
599 -- Create an abbreviated declaration for an operator in order to
600 -- materialize concatenation on array types.
601
602 procedure Ordinary_Fixed_Point_Type_Declaration
603 (T : Entity_Id;
604 Def : Node_Id);
605 -- Create a new ordinary fixed point type, and apply the constraint to
606 -- obtain subtype of it.
607
608 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id);
609 -- Wrapper on Preanalyze_Spec_Expression for default expressions, so that
610 -- In_Default_Expr can be properly adjusted.
611
612 procedure Prepare_Private_Subtype_Completion
613 (Id : Entity_Id;
614 Related_Nod : Node_Id);
615 -- Id is a subtype of some private type. Creates the full declaration
616 -- associated with Id whenever possible, i.e. when the full declaration
617 -- of the base type is already known. Records each subtype into
618 -- Private_Dependents of the base type.
619
620 procedure Process_Incomplete_Dependents
621 (N : Node_Id;
622 Full_T : Entity_Id;
623 Inc_T : Entity_Id);
624 -- Process all entities that depend on an incomplete type. There include
625 -- subtypes, subprogram types that mention the incomplete type in their
626 -- profiles, and subprogram with access parameters that designate the
627 -- incomplete type.
628
629 -- Inc_T is the defining identifier of an incomplete type declaration, its
630 -- Ekind is E_Incomplete_Type.
631 --
632 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
633 --
634 -- Full_T is N's defining identifier.
635 --
636 -- Subtypes of incomplete types with discriminants are completed when the
637 -- parent type is. This is simpler than private subtypes, because they can
638 -- only appear in the same scope, and there is no need to exchange views.
639 -- Similarly, access_to_subprogram types may have a parameter or a return
640 -- type that is an incomplete type, and that must be replaced with the
641 -- full type.
642 --
643 -- If the full type is tagged, subprogram with access parameters that
644 -- designated the incomplete may be primitive operations of the full type,
645 -- and have to be processed accordingly.
646
647 procedure Process_Real_Range_Specification (Def : Node_Id);
648 -- Given the type definition for a real type, this procedure processes and
649 -- checks the real range specification of this type definition if one is
650 -- present. If errors are found, error messages are posted, and the
651 -- Real_Range_Specification of Def is reset to Empty.
652
653 procedure Record_Type_Declaration
654 (T : Entity_Id;
655 N : Node_Id;
656 Prev : Entity_Id);
657 -- Process a record type declaration (for both untagged and tagged
658 -- records). Parameters T and N are exactly like in procedure
659 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
660 -- for this routine. If this is the completion of an incomplete type
661 -- declaration, Prev is the entity of the incomplete declaration, used for
662 -- cross-referencing. Otherwise Prev = T.
663
664 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
665 -- This routine is used to process the actual record type definition (both
666 -- for untagged and tagged records). Def is a record type definition node.
667 -- This procedure analyzes the components in this record type definition.
668 -- Prev_T is the entity for the enclosing record type. It is provided so
669 -- that its Has_Task flag can be set if any of the component have Has_Task
670 -- set. If the declaration is the completion of an incomplete type
671 -- declaration, Prev_T is the original incomplete type, whose full view is
672 -- the record type.
673
674 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
675 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
676 -- build a copy of the declaration tree of the parent, and we create
677 -- independently the list of components for the derived type. Semantic
678 -- information uses the component entities, but record representation
679 -- clauses are validated on the declaration tree. This procedure replaces
680 -- discriminants and components in the declaration with those that have
681 -- been created by Inherit_Components.
682
683 procedure Set_Fixed_Range
684 (E : Entity_Id;
685 Loc : Source_Ptr;
686 Lo : Ureal;
687 Hi : Ureal);
688 -- Build a range node with the given bounds and set it as the Scalar_Range
689 -- of the given fixed-point type entity. Loc is the source location used
690 -- for the constructed range. See body for further details.
691
692 procedure Set_Scalar_Range_For_Subtype
693 (Def_Id : Entity_Id;
694 R : Node_Id;
695 Subt : Entity_Id);
696 -- This routine is used to set the scalar range field for a subtype given
697 -- Def_Id, the entity for the subtype, and R, the range expression for the
698 -- scalar range. Subt provides the parent subtype to be used to analyze,
699 -- resolve, and check the given range.
700
701 procedure Set_Default_SSO (T : Entity_Id);
702 -- T is the entity for an array or record being declared. This procedure
703 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
704 -- to the setting of Opt.Default_SSO.
705
706 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
707 -- Create a new signed integer entity, and apply the constraint to obtain
708 -- the required first named subtype of this type.
709
710 procedure Set_Stored_Constraint_From_Discriminant_Constraint
711 (E : Entity_Id);
712 -- E is some record type. This routine computes E's Stored_Constraint
713 -- from its Discriminant_Constraint.
714
715 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
716 -- Check that an entity in a list of progenitors is an interface,
717 -- emit error otherwise.
718
719 -----------------------
720 -- Access_Definition --
721 -----------------------
722
723 function Access_Definition
724 (Related_Nod : Node_Id;
725 N : Node_Id) return Entity_Id
726 is
727 Anon_Type : Entity_Id;
728 Anon_Scope : Entity_Id;
729 Desig_Type : Entity_Id;
730 Enclosing_Prot_Type : Entity_Id := Empty;
731
732 begin
733 Check_SPARK_05_Restriction ("access type is not allowed", N);
734
735 if Is_Entry (Current_Scope)
736 and then Is_Task_Type (Etype (Scope (Current_Scope)))
737 then
738 Error_Msg_N ("task entries cannot have access parameters", N);
739 return Empty;
740 end if;
741
742 -- Ada 2005: For an object declaration the corresponding anonymous
743 -- type is declared in the current scope.
744
745 -- If the access definition is the return type of another access to
746 -- function, scope is the current one, because it is the one of the
747 -- current type declaration, except for the pathological case below.
748
749 if Nkind_In (Related_Nod, N_Object_Declaration,
750 N_Access_Function_Definition)
751 then
752 Anon_Scope := Current_Scope;
753
754 -- A pathological case: function returning access functions that
755 -- return access functions, etc. Each anonymous access type created
756 -- is in the enclosing scope of the outermost function.
757
758 declare
759 Par : Node_Id;
760
761 begin
762 Par := Related_Nod;
763 while Nkind_In (Par, N_Access_Function_Definition,
764 N_Access_Definition)
765 loop
766 Par := Parent (Par);
767 end loop;
768
769 if Nkind (Par) = N_Function_Specification then
770 Anon_Scope := Scope (Defining_Entity (Par));
771 end if;
772 end;
773
774 -- For the anonymous function result case, retrieve the scope of the
775 -- function specification's associated entity rather than using the
776 -- current scope. The current scope will be the function itself if the
777 -- formal part is currently being analyzed, but will be the parent scope
778 -- in the case of a parameterless function, and we always want to use
779 -- the function's parent scope. Finally, if the function is a child
780 -- unit, we must traverse the tree to retrieve the proper entity.
781
782 elsif Nkind (Related_Nod) = N_Function_Specification
783 and then Nkind (Parent (N)) /= N_Parameter_Specification
784 then
785 -- If the current scope is a protected type, the anonymous access
786 -- is associated with one of the protected operations, and must
787 -- be available in the scope that encloses the protected declaration.
788 -- Otherwise the type is in the scope enclosing the subprogram.
789
790 -- If the function has formals, The return type of a subprogram
791 -- declaration is analyzed in the scope of the subprogram (see
792 -- Process_Formals) and thus the protected type, if present, is
793 -- the scope of the current function scope.
794
795 if Ekind (Current_Scope) = E_Protected_Type then
796 Enclosing_Prot_Type := Current_Scope;
797
798 elsif Ekind (Current_Scope) = E_Function
799 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
800 then
801 Enclosing_Prot_Type := Scope (Current_Scope);
802 end if;
803
804 if Present (Enclosing_Prot_Type) then
805 Anon_Scope := Scope (Enclosing_Prot_Type);
806
807 else
808 Anon_Scope := Scope (Defining_Entity (Related_Nod));
809 end if;
810
811 -- For an access type definition, if the current scope is a child
812 -- unit it is the scope of the type.
813
814 elsif Is_Compilation_Unit (Current_Scope) then
815 Anon_Scope := Current_Scope;
816
817 -- For access formals, access components, and access discriminants, the
818 -- scope is that of the enclosing declaration,
819
820 else
821 Anon_Scope := Scope (Current_Scope);
822 end if;
823
824 Anon_Type :=
825 Create_Itype
826 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
827
828 if All_Present (N)
829 and then Ada_Version >= Ada_2005
830 then
831 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
832 end if;
833
834 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
835 -- the corresponding semantic routine
836
837 if Present (Access_To_Subprogram_Definition (N)) then
838
839 -- Compiler runtime units are compiled in Ada 2005 mode when building
840 -- the runtime library but must also be compilable in Ada 95 mode
841 -- (when bootstrapping the compiler).
842
843 Check_Compiler_Unit ("anonymous access to subprogram", N);
844
845 Access_Subprogram_Declaration
846 (T_Name => Anon_Type,
847 T_Def => Access_To_Subprogram_Definition (N));
848
849 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
850 Set_Ekind
851 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
852 else
853 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
854 end if;
855
856 Set_Can_Use_Internal_Rep
857 (Anon_Type, not Always_Compatible_Rep_On_Target);
858
859 -- If the anonymous access is associated with a protected operation,
860 -- create a reference to it after the enclosing protected definition
861 -- because the itype will be used in the subsequent bodies.
862
863 -- If the anonymous access itself is protected, a full type
864 -- declaratiton will be created for it, so that the equivalent
865 -- record type can be constructed. For further details, see
866 -- Replace_Anonymous_Access_To_Protected-Subprogram.
867
868 if Ekind (Current_Scope) = E_Protected_Type
869 and then not Protected_Present (Access_To_Subprogram_Definition (N))
870 then
871 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
872 end if;
873
874 return Anon_Type;
875 end if;
876
877 Find_Type (Subtype_Mark (N));
878 Desig_Type := Entity (Subtype_Mark (N));
879
880 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
881 Set_Etype (Anon_Type, Anon_Type);
882
883 -- Make sure the anonymous access type has size and alignment fields
884 -- set, as required by gigi. This is necessary in the case of the
885 -- Task_Body_Procedure.
886
887 if not Has_Private_Component (Desig_Type) then
888 Layout_Type (Anon_Type);
889 end if;
890
891 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
892 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
893 -- the null value is allowed. In Ada 95 the null value is never allowed.
894
895 if Ada_Version >= Ada_2005 then
896 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
897 else
898 Set_Can_Never_Be_Null (Anon_Type, True);
899 end if;
900
901 -- The anonymous access type is as public as the discriminated type or
902 -- subprogram that defines it. It is imported (for back-end purposes)
903 -- if the designated type is.
904
905 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
906
907 -- Ada 2005 (AI-231): Propagate the access-constant attribute
908
909 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
910
911 -- The context is either a subprogram declaration, object declaration,
912 -- or an access discriminant, in a private or a full type declaration.
913 -- In the case of a subprogram, if the designated type is incomplete,
914 -- the operation will be a primitive operation of the full type, to be
915 -- updated subsequently. If the type is imported through a limited_with
916 -- clause, the subprogram is not a primitive operation of the type
917 -- (which is declared elsewhere in some other scope).
918
919 if Ekind (Desig_Type) = E_Incomplete_Type
920 and then not From_Limited_With (Desig_Type)
921 and then Is_Overloadable (Current_Scope)
922 then
923 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
924 Set_Has_Delayed_Freeze (Current_Scope);
925 end if;
926
927 -- Ada 2005: If the designated type is an interface that may contain
928 -- tasks, create a Master entity for the declaration. This must be done
929 -- before expansion of the full declaration, because the declaration may
930 -- include an expression that is an allocator, whose expansion needs the
931 -- proper Master for the created tasks.
932
933 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
934 then
935 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
936 then
937 Build_Class_Wide_Master (Anon_Type);
938
939 -- Similarly, if the type is an anonymous access that designates
940 -- tasks, create a master entity for it in the current context.
941
942 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
943 then
944 Build_Master_Entity (Defining_Identifier (Related_Nod));
945 Build_Master_Renaming (Anon_Type);
946 end if;
947 end if;
948
949 -- For a private component of a protected type, it is imperative that
950 -- the back-end elaborate the type immediately after the protected
951 -- declaration, because this type will be used in the declarations
952 -- created for the component within each protected body, so we must
953 -- create an itype reference for it now.
954
955 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
956 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
957
958 -- Similarly, if the access definition is the return result of a
959 -- function, create an itype reference for it because it will be used
960 -- within the function body. For a regular function that is not a
961 -- compilation unit, insert reference after the declaration. For a
962 -- protected operation, insert it after the enclosing protected type
963 -- declaration. In either case, do not create a reference for a type
964 -- obtained through a limited_with clause, because this would introduce
965 -- semantic dependencies.
966
967 -- Similarly, do not create a reference if the designated type is a
968 -- generic formal, because no use of it will reach the backend.
969
970 elsif Nkind (Related_Nod) = N_Function_Specification
971 and then not From_Limited_With (Desig_Type)
972 and then not Is_Generic_Type (Desig_Type)
973 then
974 if Present (Enclosing_Prot_Type) then
975 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
976
977 elsif Is_List_Member (Parent (Related_Nod))
978 and then Nkind (Parent (N)) /= N_Parameter_Specification
979 then
980 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
981 end if;
982
983 -- Finally, create an itype reference for an object declaration of an
984 -- anonymous access type. This is strictly necessary only for deferred
985 -- constants, but in any case will avoid out-of-scope problems in the
986 -- back-end.
987
988 elsif Nkind (Related_Nod) = N_Object_Declaration then
989 Build_Itype_Reference (Anon_Type, Related_Nod);
990 end if;
991
992 return Anon_Type;
993 end Access_Definition;
994
995 -----------------------------------
996 -- Access_Subprogram_Declaration --
997 -----------------------------------
998
999 procedure Access_Subprogram_Declaration
1000 (T_Name : Entity_Id;
1001 T_Def : Node_Id)
1002 is
1003 procedure Check_For_Premature_Usage (Def : Node_Id);
1004 -- Check that type T_Name is not used, directly or recursively, as a
1005 -- parameter or a return type in Def. Def is either a subtype, an
1006 -- access_definition, or an access_to_subprogram_definition.
1007
1008 -------------------------------
1009 -- Check_For_Premature_Usage --
1010 -------------------------------
1011
1012 procedure Check_For_Premature_Usage (Def : Node_Id) is
1013 Param : Node_Id;
1014
1015 begin
1016 -- Check for a subtype mark
1017
1018 if Nkind (Def) in N_Has_Etype then
1019 if Etype (Def) = T_Name then
1020 Error_Msg_N
1021 ("type& cannot be used before end of its declaration", Def);
1022 end if;
1023
1024 -- If this is not a subtype, then this is an access_definition
1025
1026 elsif Nkind (Def) = N_Access_Definition then
1027 if Present (Access_To_Subprogram_Definition (Def)) then
1028 Check_For_Premature_Usage
1029 (Access_To_Subprogram_Definition (Def));
1030 else
1031 Check_For_Premature_Usage (Subtype_Mark (Def));
1032 end if;
1033
1034 -- The only cases left are N_Access_Function_Definition and
1035 -- N_Access_Procedure_Definition.
1036
1037 else
1038 if Present (Parameter_Specifications (Def)) then
1039 Param := First (Parameter_Specifications (Def));
1040 while Present (Param) loop
1041 Check_For_Premature_Usage (Parameter_Type (Param));
1042 Param := Next (Param);
1043 end loop;
1044 end if;
1045
1046 if Nkind (Def) = N_Access_Function_Definition then
1047 Check_For_Premature_Usage (Result_Definition (Def));
1048 end if;
1049 end if;
1050 end Check_For_Premature_Usage;
1051
1052 -- Local variables
1053
1054 Formals : constant List_Id := Parameter_Specifications (T_Def);
1055 Formal : Entity_Id;
1056 D_Ityp : Node_Id;
1057 Desig_Type : constant Entity_Id :=
1058 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1059
1060 -- Start of processing for Access_Subprogram_Declaration
1061
1062 begin
1063 Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1064
1065 -- Associate the Itype node with the inner full-type declaration or
1066 -- subprogram spec or entry body. This is required to handle nested
1067 -- anonymous declarations. For example:
1068
1069 -- procedure P
1070 -- (X : access procedure
1071 -- (Y : access procedure
1072 -- (Z : access T)))
1073
1074 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1075 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1076 N_Private_Type_Declaration,
1077 N_Private_Extension_Declaration,
1078 N_Procedure_Specification,
1079 N_Function_Specification,
1080 N_Entry_Body)
1081
1082 or else
1083 Nkind_In (D_Ityp, N_Object_Declaration,
1084 N_Object_Renaming_Declaration,
1085 N_Formal_Object_Declaration,
1086 N_Formal_Type_Declaration,
1087 N_Task_Type_Declaration,
1088 N_Protected_Type_Declaration))
1089 loop
1090 D_Ityp := Parent (D_Ityp);
1091 pragma Assert (D_Ityp /= Empty);
1092 end loop;
1093
1094 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1095
1096 if Nkind_In (D_Ityp, N_Procedure_Specification,
1097 N_Function_Specification)
1098 then
1099 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1100
1101 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1102 N_Object_Declaration,
1103 N_Object_Renaming_Declaration,
1104 N_Formal_Type_Declaration)
1105 then
1106 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1107 end if;
1108
1109 if Nkind (T_Def) = N_Access_Function_Definition then
1110 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1111 declare
1112 Acc : constant Node_Id := Result_Definition (T_Def);
1113
1114 begin
1115 if Present (Access_To_Subprogram_Definition (Acc))
1116 and then
1117 Protected_Present (Access_To_Subprogram_Definition (Acc))
1118 then
1119 Set_Etype
1120 (Desig_Type,
1121 Replace_Anonymous_Access_To_Protected_Subprogram
1122 (T_Def));
1123
1124 else
1125 Set_Etype
1126 (Desig_Type,
1127 Access_Definition (T_Def, Result_Definition (T_Def)));
1128 end if;
1129 end;
1130
1131 else
1132 Analyze (Result_Definition (T_Def));
1133
1134 declare
1135 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1136
1137 begin
1138 -- If a null exclusion is imposed on the result type, then
1139 -- create a null-excluding itype (an access subtype) and use
1140 -- it as the function's Etype.
1141
1142 if Is_Access_Type (Typ)
1143 and then Null_Exclusion_In_Return_Present (T_Def)
1144 then
1145 Set_Etype (Desig_Type,
1146 Create_Null_Excluding_Itype
1147 (T => Typ,
1148 Related_Nod => T_Def,
1149 Scope_Id => Current_Scope));
1150
1151 else
1152 if From_Limited_With (Typ) then
1153
1154 -- AI05-151: Incomplete types are allowed in all basic
1155 -- declarations, including access to subprograms.
1156
1157 if Ada_Version >= Ada_2012 then
1158 null;
1159
1160 else
1161 Error_Msg_NE
1162 ("illegal use of incomplete type&",
1163 Result_Definition (T_Def), Typ);
1164 end if;
1165
1166 elsif Ekind (Current_Scope) = E_Package
1167 and then In_Private_Part (Current_Scope)
1168 then
1169 if Ekind (Typ) = E_Incomplete_Type then
1170 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1171
1172 elsif Is_Class_Wide_Type (Typ)
1173 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1174 then
1175 Append_Elmt
1176 (Desig_Type, Private_Dependents (Etype (Typ)));
1177 end if;
1178 end if;
1179
1180 Set_Etype (Desig_Type, Typ);
1181 end if;
1182 end;
1183 end if;
1184
1185 if not (Is_Type (Etype (Desig_Type))) then
1186 Error_Msg_N
1187 ("expect type in function specification",
1188 Result_Definition (T_Def));
1189 end if;
1190
1191 else
1192 Set_Etype (Desig_Type, Standard_Void_Type);
1193 end if;
1194
1195 if Present (Formals) then
1196 Push_Scope (Desig_Type);
1197
1198 -- Some special tests here. These special tests can be removed
1199 -- if and when Itypes always have proper parent pointers to their
1200 -- declarations???
1201
1202 -- Special test 1) Link defining_identifier of formals. Required by
1203 -- First_Formal to provide its functionality.
1204
1205 declare
1206 F : Node_Id;
1207
1208 begin
1209 F := First (Formals);
1210
1211 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1212 -- when it is part of an unconstrained type and subtype expansion
1213 -- is disabled. To avoid back-end problems with shared profiles,
1214 -- use previous subprogram type as the designated type, and then
1215 -- remove scope added above.
1216
1217 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1218 then
1219 Set_Etype (T_Name, T_Name);
1220 Init_Size_Align (T_Name);
1221 Set_Directly_Designated_Type (T_Name,
1222 Scope (Defining_Identifier (F)));
1223 End_Scope;
1224 return;
1225 end if;
1226
1227 while Present (F) loop
1228 if No (Parent (Defining_Identifier (F))) then
1229 Set_Parent (Defining_Identifier (F), F);
1230 end if;
1231
1232 Next (F);
1233 end loop;
1234 end;
1235
1236 Process_Formals (Formals, Parent (T_Def));
1237
1238 -- Special test 2) End_Scope requires that the parent pointer be set
1239 -- to something reasonable, but Itypes don't have parent pointers. So
1240 -- we set it and then unset it ???
1241
1242 Set_Parent (Desig_Type, T_Name);
1243 End_Scope;
1244 Set_Parent (Desig_Type, Empty);
1245 end if;
1246
1247 -- Check for premature usage of the type being defined
1248
1249 Check_For_Premature_Usage (T_Def);
1250
1251 -- The return type and/or any parameter type may be incomplete. Mark the
1252 -- subprogram_type as depending on the incomplete type, so that it can
1253 -- be updated when the full type declaration is seen. This only applies
1254 -- to incomplete types declared in some enclosing scope, not to limited
1255 -- views from other packages.
1256
1257 -- Prior to Ada 2012, access to functions can only have in_parameters.
1258
1259 if Present (Formals) then
1260 Formal := First_Formal (Desig_Type);
1261 while Present (Formal) loop
1262 if Ekind (Formal) /= E_In_Parameter
1263 and then Nkind (T_Def) = N_Access_Function_Definition
1264 and then Ada_Version < Ada_2012
1265 then
1266 Error_Msg_N ("functions can only have IN parameters", Formal);
1267 end if;
1268
1269 if Ekind (Etype (Formal)) = E_Incomplete_Type
1270 and then In_Open_Scopes (Scope (Etype (Formal)))
1271 then
1272 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1273 Set_Has_Delayed_Freeze (Desig_Type);
1274 end if;
1275
1276 Next_Formal (Formal);
1277 end loop;
1278 end if;
1279
1280 -- Check whether an indirect call without actuals may be possible. This
1281 -- is used when resolving calls whose result is then indexed.
1282
1283 May_Need_Actuals (Desig_Type);
1284
1285 -- If the return type is incomplete, this is legal as long as the type
1286 -- is declared in the current scope and will be completed in it (rather
1287 -- than being part of limited view).
1288
1289 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1290 and then not Has_Delayed_Freeze (Desig_Type)
1291 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1292 then
1293 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1294 Set_Has_Delayed_Freeze (Desig_Type);
1295 end if;
1296
1297 Check_Delayed_Subprogram (Desig_Type);
1298
1299 if Protected_Present (T_Def) then
1300 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1301 Set_Convention (Desig_Type, Convention_Protected);
1302 else
1303 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1304 end if;
1305
1306 Set_Can_Use_Internal_Rep (T_Name,
1307 not Always_Compatible_Rep_On_Target);
1308 Set_Etype (T_Name, T_Name);
1309 Init_Size_Align (T_Name);
1310 Set_Directly_Designated_Type (T_Name, Desig_Type);
1311
1312 -- If the access_to_subprogram is not declared at the library level,
1313 -- it can only point to subprograms that are at the same or deeper
1314 -- accessibility level. The corresponding subprogram type might
1315 -- require an activation record when compiling for C.
1316
1317 Set_Needs_Activation_Record (Desig_Type,
1318 not Is_Library_Level_Entity (T_Name));
1319
1320 Generate_Reference_To_Formals (T_Name);
1321
1322 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1323
1324 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1325
1326 Check_Restriction (No_Access_Subprograms, T_Def);
1327 end Access_Subprogram_Declaration;
1328
1329 ----------------------------
1330 -- Access_Type_Declaration --
1331 ----------------------------
1332
1333 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1334 P : constant Node_Id := Parent (Def);
1335 S : constant Node_Id := Subtype_Indication (Def);
1336
1337 Full_Desig : Entity_Id;
1338
1339 begin
1340 Check_SPARK_05_Restriction ("access type is not allowed", Def);
1341
1342 -- Check for permissible use of incomplete type
1343
1344 if Nkind (S) /= N_Subtype_Indication then
1345 Analyze (S);
1346
1347 if Present (Entity (S))
1348 and then Ekind (Root_Type (Entity (S))) = E_Incomplete_Type
1349 then
1350 Set_Directly_Designated_Type (T, Entity (S));
1351
1352 -- If the designated type is a limited view, we cannot tell if
1353 -- the full view contains tasks, and there is no way to handle
1354 -- that full view in a client. We create a master entity for the
1355 -- scope, which will be used when a client determines that one
1356 -- is needed.
1357
1358 if From_Limited_With (Entity (S))
1359 and then not Is_Class_Wide_Type (Entity (S))
1360 then
1361 Set_Ekind (T, E_Access_Type);
1362 Build_Master_Entity (T);
1363 Build_Master_Renaming (T);
1364 end if;
1365
1366 else
1367 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1368 end if;
1369
1370 -- If the access definition is of the form: ACCESS NOT NULL ..
1371 -- the subtype indication must be of an access type. Create
1372 -- a null-excluding subtype of it.
1373
1374 if Null_Excluding_Subtype (Def) then
1375 if not Is_Access_Type (Entity (S)) then
1376 Error_Msg_N ("null exclusion must apply to access type", Def);
1377
1378 else
1379 declare
1380 Loc : constant Source_Ptr := Sloc (S);
1381 Decl : Node_Id;
1382 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1383
1384 begin
1385 Decl :=
1386 Make_Subtype_Declaration (Loc,
1387 Defining_Identifier => Nam,
1388 Subtype_Indication =>
1389 New_Occurrence_Of (Entity (S), Loc));
1390 Set_Null_Exclusion_Present (Decl);
1391 Insert_Before (Parent (Def), Decl);
1392 Analyze (Decl);
1393 Set_Entity (S, Nam);
1394 end;
1395 end if;
1396 end if;
1397
1398 else
1399 Set_Directly_Designated_Type (T,
1400 Process_Subtype (S, P, T, 'P'));
1401 end if;
1402
1403 if All_Present (Def) or Constant_Present (Def) then
1404 Set_Ekind (T, E_General_Access_Type);
1405 else
1406 Set_Ekind (T, E_Access_Type);
1407 end if;
1408
1409 Full_Desig := Designated_Type (T);
1410
1411 if Base_Type (Full_Desig) = T then
1412 Error_Msg_N ("access type cannot designate itself", S);
1413
1414 -- In Ada 2005, the type may have a limited view through some unit in
1415 -- its own context, allowing the following circularity that cannot be
1416 -- detected earlier.
1417
1418 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1419 then
1420 Error_Msg_N
1421 ("access type cannot designate its own class-wide type", S);
1422
1423 -- Clean up indication of tagged status to prevent cascaded errors
1424
1425 Set_Is_Tagged_Type (T, False);
1426 end if;
1427
1428 Set_Etype (T, T);
1429
1430 -- If the type has appeared already in a with_type clause, it is frozen
1431 -- and the pointer size is already set. Else, initialize.
1432
1433 if not From_Limited_With (T) then
1434 Init_Size_Align (T);
1435 end if;
1436
1437 -- Note that Has_Task is always false, since the access type itself
1438 -- is not a task type. See Einfo for more description on this point.
1439 -- Exactly the same consideration applies to Has_Controlled_Component
1440 -- and to Has_Protected.
1441
1442 Set_Has_Task (T, False);
1443 Set_Has_Protected (T, False);
1444 Set_Has_Timing_Event (T, False);
1445 Set_Has_Controlled_Component (T, False);
1446
1447 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1448 -- problems where an incomplete view of this entity has been previously
1449 -- established by a limited with and an overlaid version of this field
1450 -- (Stored_Constraint) was initialized for the incomplete view.
1451
1452 -- This reset is performed in most cases except where the access type
1453 -- has been created for the purposes of allocating or deallocating a
1454 -- build-in-place object. Such access types have explicitly set pools
1455 -- and finalization masters.
1456
1457 if No (Associated_Storage_Pool (T)) then
1458 Set_Finalization_Master (T, Empty);
1459 end if;
1460
1461 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1462 -- attributes
1463
1464 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1465 Set_Is_Access_Constant (T, Constant_Present (Def));
1466 end Access_Type_Declaration;
1467
1468 ----------------------------------
1469 -- Add_Interface_Tag_Components --
1470 ----------------------------------
1471
1472 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1473 Loc : constant Source_Ptr := Sloc (N);
1474 L : List_Id;
1475 Last_Tag : Node_Id;
1476
1477 procedure Add_Tag (Iface : Entity_Id);
1478 -- Add tag for one of the progenitor interfaces
1479
1480 -------------
1481 -- Add_Tag --
1482 -------------
1483
1484 procedure Add_Tag (Iface : Entity_Id) is
1485 Decl : Node_Id;
1486 Def : Node_Id;
1487 Tag : Entity_Id;
1488 Offset : Entity_Id;
1489
1490 begin
1491 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1492
1493 -- This is a reasonable place to propagate predicates
1494
1495 if Has_Predicates (Iface) then
1496 Set_Has_Predicates (Typ);
1497 end if;
1498
1499 Def :=
1500 Make_Component_Definition (Loc,
1501 Aliased_Present => True,
1502 Subtype_Indication =>
1503 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1504
1505 Tag := Make_Temporary (Loc, 'V');
1506
1507 Decl :=
1508 Make_Component_Declaration (Loc,
1509 Defining_Identifier => Tag,
1510 Component_Definition => Def);
1511
1512 Analyze_Component_Declaration (Decl);
1513
1514 Set_Analyzed (Decl);
1515 Set_Ekind (Tag, E_Component);
1516 Set_Is_Tag (Tag);
1517 Set_Is_Aliased (Tag);
1518 Set_Related_Type (Tag, Iface);
1519 Init_Component_Location (Tag);
1520
1521 pragma Assert (Is_Frozen (Iface));
1522
1523 Set_DT_Entry_Count (Tag,
1524 DT_Entry_Count (First_Entity (Iface)));
1525
1526 if No (Last_Tag) then
1527 Prepend (Decl, L);
1528 else
1529 Insert_After (Last_Tag, Decl);
1530 end if;
1531
1532 Last_Tag := Decl;
1533
1534 -- If the ancestor has discriminants we need to give special support
1535 -- to store the offset_to_top value of the secondary dispatch tables.
1536 -- For this purpose we add a supplementary component just after the
1537 -- field that contains the tag associated with each secondary DT.
1538
1539 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1540 Def :=
1541 Make_Component_Definition (Loc,
1542 Subtype_Indication =>
1543 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1544
1545 Offset := Make_Temporary (Loc, 'V');
1546
1547 Decl :=
1548 Make_Component_Declaration (Loc,
1549 Defining_Identifier => Offset,
1550 Component_Definition => Def);
1551
1552 Analyze_Component_Declaration (Decl);
1553
1554 Set_Analyzed (Decl);
1555 Set_Ekind (Offset, E_Component);
1556 Set_Is_Aliased (Offset);
1557 Set_Related_Type (Offset, Iface);
1558 Init_Component_Location (Offset);
1559 Insert_After (Last_Tag, Decl);
1560 Last_Tag := Decl;
1561 end if;
1562 end Add_Tag;
1563
1564 -- Local variables
1565
1566 Elmt : Elmt_Id;
1567 Ext : Node_Id;
1568 Comp : Node_Id;
1569
1570 -- Start of processing for Add_Interface_Tag_Components
1571
1572 begin
1573 if not RTE_Available (RE_Interface_Tag) then
1574 Error_Msg
1575 ("(Ada 2005) interface types not supported by this run-time!",
1576 Sloc (N));
1577 return;
1578 end if;
1579
1580 if Ekind (Typ) /= E_Record_Type
1581 or else (Is_Concurrent_Record_Type (Typ)
1582 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1583 or else (not Is_Concurrent_Record_Type (Typ)
1584 and then No (Interfaces (Typ))
1585 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1586 then
1587 return;
1588 end if;
1589
1590 -- Find the current last tag
1591
1592 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1593 Ext := Record_Extension_Part (Type_Definition (N));
1594 else
1595 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1596 Ext := Type_Definition (N);
1597 end if;
1598
1599 Last_Tag := Empty;
1600
1601 if not (Present (Component_List (Ext))) then
1602 Set_Null_Present (Ext, False);
1603 L := New_List;
1604 Set_Component_List (Ext,
1605 Make_Component_List (Loc,
1606 Component_Items => L,
1607 Null_Present => False));
1608 else
1609 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1610 L := Component_Items
1611 (Component_List
1612 (Record_Extension_Part
1613 (Type_Definition (N))));
1614 else
1615 L := Component_Items
1616 (Component_List
1617 (Type_Definition (N)));
1618 end if;
1619
1620 -- Find the last tag component
1621
1622 Comp := First (L);
1623 while Present (Comp) loop
1624 if Nkind (Comp) = N_Component_Declaration
1625 and then Is_Tag (Defining_Identifier (Comp))
1626 then
1627 Last_Tag := Comp;
1628 end if;
1629
1630 Next (Comp);
1631 end loop;
1632 end if;
1633
1634 -- At this point L references the list of components and Last_Tag
1635 -- references the current last tag (if any). Now we add the tag
1636 -- corresponding with all the interfaces that are not implemented
1637 -- by the parent.
1638
1639 if Present (Interfaces (Typ)) then
1640 Elmt := First_Elmt (Interfaces (Typ));
1641 while Present (Elmt) loop
1642 Add_Tag (Node (Elmt));
1643 Next_Elmt (Elmt);
1644 end loop;
1645 end if;
1646 end Add_Interface_Tag_Components;
1647
1648 -------------------------------------
1649 -- Add_Internal_Interface_Entities --
1650 -------------------------------------
1651
1652 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1653 Elmt : Elmt_Id;
1654 Iface : Entity_Id;
1655 Iface_Elmt : Elmt_Id;
1656 Iface_Prim : Entity_Id;
1657 Ifaces_List : Elist_Id;
1658 New_Subp : Entity_Id := Empty;
1659 Prim : Entity_Id;
1660 Restore_Scope : Boolean := False;
1661
1662 begin
1663 pragma Assert (Ada_Version >= Ada_2005
1664 and then Is_Record_Type (Tagged_Type)
1665 and then Is_Tagged_Type (Tagged_Type)
1666 and then Has_Interfaces (Tagged_Type)
1667 and then not Is_Interface (Tagged_Type));
1668
1669 -- Ensure that the internal entities are added to the scope of the type
1670
1671 if Scope (Tagged_Type) /= Current_Scope then
1672 Push_Scope (Scope (Tagged_Type));
1673 Restore_Scope := True;
1674 end if;
1675
1676 Collect_Interfaces (Tagged_Type, Ifaces_List);
1677
1678 Iface_Elmt := First_Elmt (Ifaces_List);
1679 while Present (Iface_Elmt) loop
1680 Iface := Node (Iface_Elmt);
1681
1682 -- Originally we excluded here from this processing interfaces that
1683 -- are parents of Tagged_Type because their primitives are located
1684 -- in the primary dispatch table (and hence no auxiliary internal
1685 -- entities are required to handle secondary dispatch tables in such
1686 -- case). However, these auxiliary entities are also required to
1687 -- handle derivations of interfaces in formals of generics (see
1688 -- Derive_Subprograms).
1689
1690 Elmt := First_Elmt (Primitive_Operations (Iface));
1691 while Present (Elmt) loop
1692 Iface_Prim := Node (Elmt);
1693
1694 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1695 Prim :=
1696 Find_Primitive_Covering_Interface
1697 (Tagged_Type => Tagged_Type,
1698 Iface_Prim => Iface_Prim);
1699
1700 if No (Prim) and then Serious_Errors_Detected > 0 then
1701 goto Continue;
1702 end if;
1703
1704 pragma Assert (Present (Prim));
1705
1706 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1707 -- differs from the name of the interface primitive then it is
1708 -- a private primitive inherited from a parent type. In such
1709 -- case, given that Tagged_Type covers the interface, the
1710 -- inherited private primitive becomes visible. For such
1711 -- purpose we add a new entity that renames the inherited
1712 -- private primitive.
1713
1714 if Chars (Prim) /= Chars (Iface_Prim) then
1715 pragma Assert (Has_Suffix (Prim, 'P'));
1716 Derive_Subprogram
1717 (New_Subp => New_Subp,
1718 Parent_Subp => Iface_Prim,
1719 Derived_Type => Tagged_Type,
1720 Parent_Type => Iface);
1721 Set_Alias (New_Subp, Prim);
1722 Set_Is_Abstract_Subprogram
1723 (New_Subp, Is_Abstract_Subprogram (Prim));
1724 end if;
1725
1726 Derive_Subprogram
1727 (New_Subp => New_Subp,
1728 Parent_Subp => Iface_Prim,
1729 Derived_Type => Tagged_Type,
1730 Parent_Type => Iface);
1731
1732 declare
1733 Anc : Entity_Id;
1734 begin
1735 if Is_Inherited_Operation (Prim)
1736 and then Present (Alias (Prim))
1737 then
1738 Anc := Alias (Prim);
1739 else
1740 Anc := Overridden_Operation (Prim);
1741 end if;
1742
1743 -- Apply legality checks in RM 6.1.1 (10-13) concerning
1744 -- nonconforming preconditions in both an ancestor and
1745 -- a progenitor operation.
1746
1747 -- If the operation is a primitive wrapper it is an explicit
1748 -- (overriding) operqtion and all is fine.
1749
1750 if Present (Anc)
1751 and then Has_Non_Trivial_Precondition (Anc)
1752 and then Has_Non_Trivial_Precondition (Iface_Prim)
1753 then
1754 if Is_Abstract_Subprogram (Prim)
1755 or else
1756 (Ekind (Prim) = E_Procedure
1757 and then Nkind (Parent (Prim)) =
1758 N_Procedure_Specification
1759 and then Null_Present (Parent (Prim)))
1760 or else Is_Primitive_Wrapper (Prim)
1761 then
1762 null;
1763
1764 -- The operation is inherited and must be overridden
1765
1766 elsif not Comes_From_Source (Prim) then
1767 Error_Msg_NE
1768 ("&inherits non-conforming preconditions and must "
1769 & "be overridden (RM 6.1.1 (10-16)",
1770 Parent (Tagged_Type), Prim);
1771 end if;
1772 end if;
1773 end;
1774
1775 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1776 -- associated with interface types. These entities are
1777 -- only registered in the list of primitives of its
1778 -- corresponding tagged type because they are only used
1779 -- to fill the contents of the secondary dispatch tables.
1780 -- Therefore they are removed from the homonym chains.
1781
1782 Set_Is_Hidden (New_Subp);
1783 Set_Is_Internal (New_Subp);
1784 Set_Alias (New_Subp, Prim);
1785 Set_Is_Abstract_Subprogram
1786 (New_Subp, Is_Abstract_Subprogram (Prim));
1787 Set_Interface_Alias (New_Subp, Iface_Prim);
1788
1789 -- If the returned type is an interface then propagate it to
1790 -- the returned type. Needed by the thunk to generate the code
1791 -- which displaces "this" to reference the corresponding
1792 -- secondary dispatch table in the returned object.
1793
1794 if Is_Interface (Etype (Iface_Prim)) then
1795 Set_Etype (New_Subp, Etype (Iface_Prim));
1796 end if;
1797
1798 -- Internal entities associated with interface types are only
1799 -- registered in the list of primitives of the tagged type.
1800 -- They are only used to fill the contents of the secondary
1801 -- dispatch tables. Therefore they are not needed in the
1802 -- homonym chains.
1803
1804 Remove_Homonym (New_Subp);
1805
1806 -- Hidden entities associated with interfaces must have set
1807 -- the Has_Delay_Freeze attribute to ensure that, in case
1808 -- of locally defined tagged types (or compiling with static
1809 -- dispatch tables generation disabled) the corresponding
1810 -- entry of the secondary dispatch table is filled when such
1811 -- an entity is frozen. This is an expansion activity that must
1812 -- be suppressed for ASIS because it leads to gigi elaboration
1813 -- issues in annotate mode.
1814
1815 if not ASIS_Mode then
1816 Set_Has_Delayed_Freeze (New_Subp);
1817 end if;
1818 end if;
1819
1820 <<Continue>>
1821 Next_Elmt (Elmt);
1822 end loop;
1823
1824 Next_Elmt (Iface_Elmt);
1825 end loop;
1826
1827 if Restore_Scope then
1828 Pop_Scope;
1829 end if;
1830 end Add_Internal_Interface_Entities;
1831
1832 -----------------------------------
1833 -- Analyze_Component_Declaration --
1834 -----------------------------------
1835
1836 procedure Analyze_Component_Declaration (N : Node_Id) is
1837 Loc : constant Source_Ptr := Sloc (Component_Definition (N));
1838 Id : constant Entity_Id := Defining_Identifier (N);
1839 E : constant Node_Id := Expression (N);
1840 Typ : constant Node_Id :=
1841 Subtype_Indication (Component_Definition (N));
1842 T : Entity_Id;
1843 P : Entity_Id;
1844
1845 function Contains_POC (Constr : Node_Id) return Boolean;
1846 -- Determines whether a constraint uses the discriminant of a record
1847 -- type thus becoming a per-object constraint (POC).
1848
1849 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1850 -- Typ is the type of the current component, check whether this type is
1851 -- a limited type. Used to validate declaration against that of
1852 -- enclosing record.
1853
1854 ------------------
1855 -- Contains_POC --
1856 ------------------
1857
1858 function Contains_POC (Constr : Node_Id) return Boolean is
1859 begin
1860 -- Prevent cascaded errors
1861
1862 if Error_Posted (Constr) then
1863 return False;
1864 end if;
1865
1866 case Nkind (Constr) is
1867 when N_Attribute_Reference =>
1868 return Attribute_Name (Constr) = Name_Access
1869 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1870
1871 when N_Discriminant_Association =>
1872 return Denotes_Discriminant (Expression (Constr));
1873
1874 when N_Identifier =>
1875 return Denotes_Discriminant (Constr);
1876
1877 when N_Index_Or_Discriminant_Constraint =>
1878 declare
1879 IDC : Node_Id;
1880
1881 begin
1882 IDC := First (Constraints (Constr));
1883 while Present (IDC) loop
1884
1885 -- One per-object constraint is sufficient
1886
1887 if Contains_POC (IDC) then
1888 return True;
1889 end if;
1890
1891 Next (IDC);
1892 end loop;
1893
1894 return False;
1895 end;
1896
1897 when N_Range =>
1898 return Denotes_Discriminant (Low_Bound (Constr))
1899 or else
1900 Denotes_Discriminant (High_Bound (Constr));
1901
1902 when N_Range_Constraint =>
1903 return Denotes_Discriminant (Range_Expression (Constr));
1904
1905 when others =>
1906 return False;
1907 end case;
1908 end Contains_POC;
1909
1910 ----------------------
1911 -- Is_Known_Limited --
1912 ----------------------
1913
1914 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1915 P : constant Entity_Id := Etype (Typ);
1916 R : constant Entity_Id := Root_Type (Typ);
1917
1918 begin
1919 if Is_Limited_Record (Typ) then
1920 return True;
1921
1922 -- If the root type is limited (and not a limited interface)
1923 -- so is the current type
1924
1925 elsif Is_Limited_Record (R)
1926 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1927 then
1928 return True;
1929
1930 -- Else the type may have a limited interface progenitor, but a
1931 -- limited record parent that is not an interface.
1932
1933 elsif R /= P
1934 and then Is_Limited_Record (P)
1935 and then not Is_Interface (P)
1936 then
1937 return True;
1938
1939 else
1940 return False;
1941 end if;
1942 end Is_Known_Limited;
1943
1944 -- Start of processing for Analyze_Component_Declaration
1945
1946 begin
1947 Generate_Definition (Id);
1948 Enter_Name (Id);
1949
1950 if Present (Typ) then
1951 T := Find_Type_Of_Object
1952 (Subtype_Indication (Component_Definition (N)), N);
1953
1954 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1955 Check_SPARK_05_Restriction ("subtype mark required", Typ);
1956 end if;
1957
1958 -- Ada 2005 (AI-230): Access Definition case
1959
1960 else
1961 pragma Assert (Present
1962 (Access_Definition (Component_Definition (N))));
1963
1964 T := Access_Definition
1965 (Related_Nod => N,
1966 N => Access_Definition (Component_Definition (N)));
1967 Set_Is_Local_Anonymous_Access (T);
1968
1969 -- Ada 2005 (AI-254)
1970
1971 if Present (Access_To_Subprogram_Definition
1972 (Access_Definition (Component_Definition (N))))
1973 and then Protected_Present (Access_To_Subprogram_Definition
1974 (Access_Definition
1975 (Component_Definition (N))))
1976 then
1977 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1978 end if;
1979 end if;
1980
1981 -- If the subtype is a constrained subtype of the enclosing record,
1982 -- (which must have a partial view) the back-end does not properly
1983 -- handle the recursion. Rewrite the component declaration with an
1984 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1985 -- the tree directly because side effects have already been removed from
1986 -- discriminant constraints.
1987
1988 if Ekind (T) = E_Access_Subtype
1989 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1990 and then Comes_From_Source (T)
1991 and then Nkind (Parent (T)) = N_Subtype_Declaration
1992 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1993 then
1994 Rewrite
1995 (Subtype_Indication (Component_Definition (N)),
1996 New_Copy_Tree (Subtype_Indication (Parent (T))));
1997 T := Find_Type_Of_Object
1998 (Subtype_Indication (Component_Definition (N)), N);
1999 end if;
2000
2001 -- If the component declaration includes a default expression, then we
2002 -- check that the component is not of a limited type (RM 3.7(5)),
2003 -- and do the special preanalysis of the expression (see section on
2004 -- "Handling of Default and Per-Object Expressions" in the spec of
2005 -- package Sem).
2006
2007 if Present (E) then
2008 Check_SPARK_05_Restriction ("default expression is not allowed", E);
2009 Preanalyze_Default_Expression (E, T);
2010 Check_Initialization (T, E);
2011
2012 if Ada_Version >= Ada_2005
2013 and then Ekind (T) = E_Anonymous_Access_Type
2014 and then Etype (E) /= Any_Type
2015 then
2016 -- Check RM 3.9.2(9): "if the expected type for an expression is
2017 -- an anonymous access-to-specific tagged type, then the object
2018 -- designated by the expression shall not be dynamically tagged
2019 -- unless it is a controlling operand in a call on a dispatching
2020 -- operation"
2021
2022 if Is_Tagged_Type (Directly_Designated_Type (T))
2023 and then
2024 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
2025 and then
2026 Ekind (Directly_Designated_Type (Etype (E))) =
2027 E_Class_Wide_Type
2028 then
2029 Error_Msg_N
2030 ("access to specific tagged type required (RM 3.9.2(9))", E);
2031 end if;
2032
2033 -- (Ada 2005: AI-230): Accessibility check for anonymous
2034 -- components
2035
2036 if Type_Access_Level (Etype (E)) >
2037 Deepest_Type_Access_Level (T)
2038 then
2039 Error_Msg_N
2040 ("expression has deeper access level than component " &
2041 "(RM 3.10.2 (12.2))", E);
2042 end if;
2043
2044 -- The initialization expression is a reference to an access
2045 -- discriminant. The type of the discriminant is always deeper
2046 -- than any access type.
2047
2048 if Ekind (Etype (E)) = E_Anonymous_Access_Type
2049 and then Is_Entity_Name (E)
2050 and then Ekind (Entity (E)) = E_In_Parameter
2051 and then Present (Discriminal_Link (Entity (E)))
2052 then
2053 Error_Msg_N
2054 ("discriminant has deeper accessibility level than target",
2055 E);
2056 end if;
2057 end if;
2058 end if;
2059
2060 -- The parent type may be a private view with unknown discriminants,
2061 -- and thus unconstrained. Regular components must be constrained.
2062
2063 if not Is_Definite_Subtype (T) and then Chars (Id) /= Name_uParent then
2064 if Is_Class_Wide_Type (T) then
2065 Error_Msg_N
2066 ("class-wide subtype with unknown discriminants" &
2067 " in component declaration",
2068 Subtype_Indication (Component_Definition (N)));
2069 else
2070 Error_Msg_N
2071 ("unconstrained subtype in component declaration",
2072 Subtype_Indication (Component_Definition (N)));
2073 end if;
2074
2075 -- Components cannot be abstract, except for the special case of
2076 -- the _Parent field (case of extending an abstract tagged type)
2077
2078 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2079 Error_Msg_N ("type of a component cannot be abstract", N);
2080 end if;
2081
2082 Set_Etype (Id, T);
2083 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2084
2085 -- The component declaration may have a per-object constraint, set
2086 -- the appropriate flag in the defining identifier of the subtype.
2087
2088 if Present (Subtype_Indication (Component_Definition (N))) then
2089 declare
2090 Sindic : constant Node_Id :=
2091 Subtype_Indication (Component_Definition (N));
2092 begin
2093 if Nkind (Sindic) = N_Subtype_Indication
2094 and then Present (Constraint (Sindic))
2095 and then Contains_POC (Constraint (Sindic))
2096 then
2097 Set_Has_Per_Object_Constraint (Id);
2098 end if;
2099 end;
2100 end if;
2101
2102 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2103 -- out some static checks.
2104
2105 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2106 Null_Exclusion_Static_Checks (N);
2107 end if;
2108
2109 -- If this component is private (or depends on a private type), flag the
2110 -- record type to indicate that some operations are not available.
2111
2112 P := Private_Component (T);
2113
2114 if Present (P) then
2115
2116 -- Check for circular definitions
2117
2118 if P = Any_Type then
2119 Set_Etype (Id, Any_Type);
2120
2121 -- There is a gap in the visibility of operations only if the
2122 -- component type is not defined in the scope of the record type.
2123
2124 elsif Scope (P) = Scope (Current_Scope) then
2125 null;
2126
2127 elsif Is_Limited_Type (P) then
2128 Set_Is_Limited_Composite (Current_Scope);
2129
2130 else
2131 Set_Is_Private_Composite (Current_Scope);
2132 end if;
2133 end if;
2134
2135 if P /= Any_Type
2136 and then Is_Limited_Type (T)
2137 and then Chars (Id) /= Name_uParent
2138 and then Is_Tagged_Type (Current_Scope)
2139 then
2140 if Is_Derived_Type (Current_Scope)
2141 and then not Is_Known_Limited (Current_Scope)
2142 then
2143 Error_Msg_N
2144 ("extension of nonlimited type cannot have limited components",
2145 N);
2146
2147 if Is_Interface (Root_Type (Current_Scope)) then
2148 Error_Msg_N
2149 ("\limitedness is not inherited from limited interface", N);
2150 Error_Msg_N ("\add LIMITED to type indication", N);
2151 end if;
2152
2153 Explain_Limited_Type (T, N);
2154 Set_Etype (Id, Any_Type);
2155 Set_Is_Limited_Composite (Current_Scope, False);
2156
2157 elsif not Is_Derived_Type (Current_Scope)
2158 and then not Is_Limited_Record (Current_Scope)
2159 and then not Is_Concurrent_Type (Current_Scope)
2160 then
2161 Error_Msg_N
2162 ("nonlimited tagged type cannot have limited components", N);
2163 Explain_Limited_Type (T, N);
2164 Set_Etype (Id, Any_Type);
2165 Set_Is_Limited_Composite (Current_Scope, False);
2166 end if;
2167 end if;
2168
2169 -- If the component is an unconstrained task or protected type with
2170 -- discriminants, the component and the enclosing record are limited
2171 -- and the component is constrained by its default values. Compute
2172 -- its actual subtype, else it may be allocated the maximum size by
2173 -- the backend, and possibly overflow.
2174
2175 if Is_Concurrent_Type (T)
2176 and then not Is_Constrained (T)
2177 and then Has_Discriminants (T)
2178 and then not Has_Discriminants (Current_Scope)
2179 then
2180 declare
2181 Act_T : constant Entity_Id := Build_Default_Subtype (T, N);
2182
2183 begin
2184 Set_Etype (Id, Act_T);
2185
2186 -- Rewrite component definition to use the constrained subtype
2187
2188 Rewrite (Component_Definition (N),
2189 Make_Component_Definition (Loc,
2190 Subtype_Indication => New_Occurrence_Of (Act_T, Loc)));
2191 end;
2192 end if;
2193
2194 Set_Original_Record_Component (Id, Id);
2195
2196 if Has_Aspects (N) then
2197 Analyze_Aspect_Specifications (N, Id);
2198 end if;
2199
2200 Analyze_Dimension (N);
2201 end Analyze_Component_Declaration;
2202
2203 --------------------------
2204 -- Analyze_Declarations --
2205 --------------------------
2206
2207 procedure Analyze_Declarations (L : List_Id) is
2208 Decl : Node_Id;
2209
2210 procedure Adjust_Decl;
2211 -- Adjust Decl not to include implicit label declarations, since these
2212 -- have strange Sloc values that result in elaboration check problems.
2213 -- (They have the sloc of the label as found in the source, and that
2214 -- is ahead of the current declarative part).
2215
2216 procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id);
2217 -- Create the subprogram bodies which verify the run-time semantics of
2218 -- the pragmas listed below for each elibigle type found in declarative
2219 -- list Decls. The pragmas are:
2220 --
2221 -- Default_Initial_Condition
2222 -- Invariant
2223 -- Type_Invariant
2224 --
2225 -- Context denotes the owner of the declarative list.
2226
2227 procedure Check_Entry_Contracts;
2228 -- Perform a preanalysis of the pre- and postconditions of an entry
2229 -- declaration. This must be done before full resolution and creation
2230 -- of the parameter block, etc. to catch illegal uses within the
2231 -- contract expression. Full analysis of the expression is done when
2232 -- the contract is processed.
2233
2234 function Contains_Lib_Incomplete_Type (Pkg : Entity_Id) return Boolean;
2235 -- Check if a nested package has entities within it that rely on library
2236 -- level private types where the full view has not been completed for
2237 -- the purposes of checking if it is acceptable to freeze an expression
2238 -- function at the point of declaration.
2239
2240 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2241 -- Determine whether Body_Decl denotes the body of a late controlled
2242 -- primitive (either Initialize, Adjust or Finalize). If this is the
2243 -- case, add a proper spec if the body lacks one. The spec is inserted
2244 -- before Body_Decl and immediately analyzed.
2245
2246 procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id);
2247 -- Spec_Id is the entity of a package that may define abstract states,
2248 -- and in the case of a child unit, whose ancestors may define abstract
2249 -- states. If the states have partial visible refinement, remove the
2250 -- partial visibility of each constituent at the end of the package
2251 -- spec and body declarations.
2252
2253 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2254 -- Spec_Id is the entity of a package that may define abstract states.
2255 -- If the states have visible refinement, remove the visibility of each
2256 -- constituent at the end of the package body declaration.
2257
2258 procedure Resolve_Aspects;
2259 -- Utility to resolve the expressions of aspects at the end of a list of
2260 -- declarations, or before a declaration that freezes previous entities,
2261 -- such as in a subprogram body.
2262
2263 -----------------
2264 -- Adjust_Decl --
2265 -----------------
2266
2267 procedure Adjust_Decl is
2268 begin
2269 while Present (Prev (Decl))
2270 and then Nkind (Decl) = N_Implicit_Label_Declaration
2271 loop
2272 Prev (Decl);
2273 end loop;
2274 end Adjust_Decl;
2275
2276 ----------------------------
2277 -- Build_Assertion_Bodies --
2278 ----------------------------
2279
2280 procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id) is
2281 procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id);
2282 -- Create the subprogram bodies which verify the run-time semantics
2283 -- of the pragmas listed below for type Typ. The pragmas are:
2284 --
2285 -- Default_Initial_Condition
2286 -- Invariant
2287 -- Type_Invariant
2288
2289 -------------------------------------
2290 -- Build_Assertion_Bodies_For_Type --
2291 -------------------------------------
2292
2293 procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id) is
2294 begin
2295 -- Preanalyze and resolve the Default_Initial_Condition assertion
2296 -- expression at the end of the declarations to catch any errors.
2297
2298 if Has_DIC (Typ) then
2299 Build_DIC_Procedure_Body (Typ);
2300 end if;
2301
2302 if Nkind (Context) = N_Package_Specification then
2303
2304 -- Preanalyze and resolve the class-wide invariants of an
2305 -- interface at the end of whichever declarative part has the
2306 -- interface type. Note that an interface may be declared in
2307 -- any non-package declarative part, but reaching the end of
2308 -- such a declarative part will always freeze the type and
2309 -- generate the invariant procedure (see Freeze_Type).
2310
2311 if Is_Interface (Typ) then
2312
2313 -- Interfaces are treated as the partial view of a private
2314 -- type, in order to achieve uniformity with the general
2315 -- case. As a result, an interface receives only a "partial"
2316 -- invariant procedure, which is never called.
2317
2318 if Has_Own_Invariants (Typ) then
2319 Build_Invariant_Procedure_Body
2320 (Typ => Typ,
2321 Partial_Invariant => True);
2322 end if;
2323
2324 -- Preanalyze and resolve the invariants of a private type
2325 -- at the end of the visible declarations to catch potential
2326 -- errors. Inherited class-wide invariants are not included
2327 -- because they have already been resolved.
2328
2329 elsif Decls = Visible_Declarations (Context)
2330 and then Ekind_In (Typ, E_Limited_Private_Type,
2331 E_Private_Type,
2332 E_Record_Type_With_Private)
2333 and then Has_Own_Invariants (Typ)
2334 then
2335 Build_Invariant_Procedure_Body
2336 (Typ => Typ,
2337 Partial_Invariant => True);
2338
2339 -- Preanalyze and resolve the invariants of a private type's
2340 -- full view at the end of the private declarations to catch
2341 -- potential errors.
2342
2343 elsif Decls = Private_Declarations (Context)
2344 and then not Is_Private_Type (Typ)
2345 and then Has_Private_Declaration (Typ)
2346 and then Has_Invariants (Typ)
2347 then
2348 Build_Invariant_Procedure_Body (Typ);
2349 end if;
2350 end if;
2351 end Build_Assertion_Bodies_For_Type;
2352
2353 -- Local variables
2354
2355 Decl : Node_Id;
2356 Decl_Id : Entity_Id;
2357
2358 -- Start of processing for Build_Assertion_Bodies
2359
2360 begin
2361 Decl := First (Decls);
2362 while Present (Decl) loop
2363 if Is_Declaration (Decl) then
2364 Decl_Id := Defining_Entity (Decl);
2365
2366 if Is_Type (Decl_Id) then
2367 Build_Assertion_Bodies_For_Type (Decl_Id);
2368 end if;
2369 end if;
2370
2371 Next (Decl);
2372 end loop;
2373 end Build_Assertion_Bodies;
2374
2375 ---------------------------
2376 -- Check_Entry_Contracts --
2377 ---------------------------
2378
2379 procedure Check_Entry_Contracts is
2380 ASN : Node_Id;
2381 Ent : Entity_Id;
2382 Exp : Node_Id;
2383
2384 begin
2385 Ent := First_Entity (Current_Scope);
2386 while Present (Ent) loop
2387
2388 -- This only concerns entries with pre/postconditions
2389
2390 if Ekind (Ent) = E_Entry
2391 and then Present (Contract (Ent))
2392 and then Present (Pre_Post_Conditions (Contract (Ent)))
2393 then
2394 ASN := Pre_Post_Conditions (Contract (Ent));
2395 Push_Scope (Ent);
2396 Install_Formals (Ent);
2397
2398 -- Pre/postconditions are rewritten as Check pragmas. Analysis
2399 -- is performed on a copy of the pragma expression, to prevent
2400 -- modifying the original expression.
2401
2402 while Present (ASN) loop
2403 if Nkind (ASN) = N_Pragma then
2404 Exp :=
2405 New_Copy_Tree
2406 (Expression
2407 (First (Pragma_Argument_Associations (ASN))));
2408 Set_Parent (Exp, ASN);
2409
2410 Preanalyze_Assert_Expression (Exp, Standard_Boolean);
2411 end if;
2412
2413 ASN := Next_Pragma (ASN);
2414 end loop;
2415
2416 End_Scope;
2417 end if;
2418
2419 Next_Entity (Ent);
2420 end loop;
2421 end Check_Entry_Contracts;
2422
2423 ----------------------------------
2424 -- Contains_Lib_Incomplete_Type --
2425 ----------------------------------
2426
2427 function Contains_Lib_Incomplete_Type (Pkg : Entity_Id) return Boolean is
2428 Curr : Entity_Id;
2429
2430 begin
2431 -- Avoid looking through scopes that do not meet the precondition of
2432 -- Pkg not being within a library unit spec.
2433
2434 if not Is_Compilation_Unit (Pkg)
2435 and then not Is_Generic_Instance (Pkg)
2436 and then not In_Package_Body (Enclosing_Lib_Unit_Entity (Pkg))
2437 then
2438 -- Loop through all entities in the current scope to identify
2439 -- an entity that depends on a private type.
2440
2441 Curr := First_Entity (Pkg);
2442 loop
2443 if Nkind (Curr) in N_Entity
2444 and then Depends_On_Private (Curr)
2445 then
2446 return True;
2447 end if;
2448
2449 exit when Last_Entity (Current_Scope) = Curr;
2450 Curr := Next_Entity (Curr);
2451 end loop;
2452 end if;
2453
2454 return False;
2455 end Contains_Lib_Incomplete_Type;
2456
2457 --------------------------------------
2458 -- Handle_Late_Controlled_Primitive --
2459 --------------------------------------
2460
2461 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2462 Body_Spec : constant Node_Id := Specification (Body_Decl);
2463 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2464 Loc : constant Source_Ptr := Sloc (Body_Id);
2465 Params : constant List_Id :=
2466 Parameter_Specifications (Body_Spec);
2467 Spec : Node_Id;
2468 Spec_Id : Entity_Id;
2469 Typ : Node_Id;
2470
2471 begin
2472 -- Consider only procedure bodies whose name matches one of the three
2473 -- controlled primitives.
2474
2475 if Nkind (Body_Spec) /= N_Procedure_Specification
2476 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2477 Name_Finalize,
2478 Name_Initialize)
2479 then
2480 return;
2481
2482 -- A controlled primitive must have exactly one formal which is not
2483 -- an anonymous access type.
2484
2485 elsif List_Length (Params) /= 1 then
2486 return;
2487 end if;
2488
2489 Typ := Parameter_Type (First (Params));
2490
2491 if Nkind (Typ) = N_Access_Definition then
2492 return;
2493 end if;
2494
2495 Find_Type (Typ);
2496
2497 -- The type of the formal must be derived from [Limited_]Controlled
2498
2499 if not Is_Controlled (Entity (Typ)) then
2500 return;
2501 end if;
2502
2503 -- Check whether a specification exists for this body. We do not
2504 -- analyze the spec of the body in full, because it will be analyzed
2505 -- again when the body is properly analyzed, and we cannot create
2506 -- duplicate entries in the formals chain. We look for an explicit
2507 -- specification because the body may be an overriding operation and
2508 -- an inherited spec may be present.
2509
2510 Spec_Id := Current_Entity (Body_Id);
2511
2512 while Present (Spec_Id) loop
2513 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure)
2514 and then Scope (Spec_Id) = Current_Scope
2515 and then Present (First_Formal (Spec_Id))
2516 and then No (Next_Formal (First_Formal (Spec_Id)))
2517 and then Etype (First_Formal (Spec_Id)) = Entity (Typ)
2518 and then Comes_From_Source (Spec_Id)
2519 then
2520 return;
2521 end if;
2522
2523 Spec_Id := Homonym (Spec_Id);
2524 end loop;
2525
2526 -- At this point the body is known to be a late controlled primitive.
2527 -- Generate a matching spec and insert it before the body. Note the
2528 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2529 -- tree in this case.
2530
2531 Spec := Copy_Separate_Tree (Body_Spec);
2532
2533 -- Ensure that the subprogram declaration does not inherit the null
2534 -- indicator from the body as we now have a proper spec/body pair.
2535
2536 Set_Null_Present (Spec, False);
2537
2538 -- Ensure that the freeze node is inserted after the declaration of
2539 -- the primitive since its expansion will freeze the primitive.
2540
2541 Decl := Make_Subprogram_Declaration (Loc, Specification => Spec);
2542
2543 Insert_Before_And_Analyze (Body_Decl, Decl);
2544 end Handle_Late_Controlled_Primitive;
2545
2546 ----------------------------------------
2547 -- Remove_Partial_Visible_Refinements --
2548 ----------------------------------------
2549
2550 procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id) is
2551 State_Elmt : Elmt_Id;
2552 begin
2553 if Present (Abstract_States (Spec_Id)) then
2554 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2555 while Present (State_Elmt) loop
2556 Set_Has_Partial_Visible_Refinement (Node (State_Elmt), False);
2557 Next_Elmt (State_Elmt);
2558 end loop;
2559 end if;
2560
2561 -- For a child unit, also hide the partial state refinement from
2562 -- ancestor packages.
2563
2564 if Is_Child_Unit (Spec_Id) then
2565 Remove_Partial_Visible_Refinements (Scope (Spec_Id));
2566 end if;
2567 end Remove_Partial_Visible_Refinements;
2568
2569 --------------------------------
2570 -- Remove_Visible_Refinements --
2571 --------------------------------
2572
2573 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2574 State_Elmt : Elmt_Id;
2575 begin
2576 if Present (Abstract_States (Spec_Id)) then
2577 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2578 while Present (State_Elmt) loop
2579 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2580 Next_Elmt (State_Elmt);
2581 end loop;
2582 end if;
2583 end Remove_Visible_Refinements;
2584
2585 ---------------------
2586 -- Resolve_Aspects --
2587 ---------------------
2588
2589 procedure Resolve_Aspects is
2590 E : Entity_Id;
2591
2592 begin
2593 E := First_Entity (Current_Scope);
2594 while Present (E) loop
2595 Resolve_Aspect_Expressions (E);
2596 Next_Entity (E);
2597 end loop;
2598 end Resolve_Aspects;
2599
2600 -- Local variables
2601
2602 Context : Node_Id := Empty;
2603 Freeze_From : Entity_Id := Empty;
2604 Next_Decl : Node_Id;
2605
2606 Body_Seen : Boolean := False;
2607 -- Flag set when the first body [stub] is encountered
2608
2609 -- Start of processing for Analyze_Declarations
2610
2611 begin
2612 if Restriction_Check_Required (SPARK_05) then
2613 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2614 end if;
2615
2616 Decl := First (L);
2617 while Present (Decl) loop
2618
2619 -- Package spec cannot contain a package declaration in SPARK
2620
2621 if Nkind (Decl) = N_Package_Declaration
2622 and then Nkind (Parent (L)) = N_Package_Specification
2623 then
2624 Check_SPARK_05_Restriction
2625 ("package specification cannot contain a package declaration",
2626 Decl);
2627 end if;
2628
2629 -- Complete analysis of declaration
2630
2631 Analyze (Decl);
2632 Next_Decl := Next (Decl);
2633
2634 if No (Freeze_From) then
2635 Freeze_From := First_Entity (Current_Scope);
2636 end if;
2637
2638 -- At the end of a declarative part, freeze remaining entities
2639 -- declared in it. The end of the visible declarations of package
2640 -- specification is not the end of a declarative part if private
2641 -- declarations are present. The end of a package declaration is a
2642 -- freezing point only if it a library package. A task definition or
2643 -- protected type definition is not a freeze point either. Finally,
2644 -- we do not freeze entities in generic scopes, because there is no
2645 -- code generated for them and freeze nodes will be generated for
2646 -- the instance.
2647
2648 -- The end of a package instantiation is not a freeze point, but
2649 -- for now we make it one, because the generic body is inserted
2650 -- (currently) immediately after. Generic instantiations will not
2651 -- be a freeze point once delayed freezing of bodies is implemented.
2652 -- (This is needed in any case for early instantiations ???).
2653
2654 if No (Next_Decl) then
2655 if Nkind (Parent (L)) = N_Component_List then
2656 null;
2657
2658 elsif Nkind_In (Parent (L), N_Protected_Definition,
2659 N_Task_Definition)
2660 then
2661 Check_Entry_Contracts;
2662
2663 elsif Nkind (Parent (L)) /= N_Package_Specification then
2664 if Nkind (Parent (L)) = N_Package_Body then
2665 Freeze_From := First_Entity (Current_Scope);
2666 end if;
2667
2668 -- There may have been several freezing points previously,
2669 -- for example object declarations or subprogram bodies, but
2670 -- at the end of a declarative part we check freezing from
2671 -- the beginning, even though entities may already be frozen,
2672 -- in order to perform visibility checks on delayed aspects.
2673
2674 Adjust_Decl;
2675
2676 -- If the current scope is a generic subprogram body. Skip the
2677 -- generic formal parameters that are not frozen here.
2678
2679 if Is_Subprogram (Current_Scope)
2680 and then Nkind (Unit_Declaration_Node (Current_Scope)) =
2681 N_Generic_Subprogram_Declaration
2682 and then Present (First_Entity (Current_Scope))
2683 then
2684 while Is_Generic_Formal (Freeze_From) loop
2685 Freeze_From := Next_Entity (Freeze_From);
2686 end loop;
2687
2688 Freeze_All (Freeze_From, Decl);
2689 Freeze_From := Last_Entity (Current_Scope);
2690
2691 else
2692 -- For declarations in a subprogram body there is no issue
2693 -- with name resolution in aspect specifications, but in
2694 -- ASIS mode we need to preanalyze aspect specifications
2695 -- that may otherwise only be analyzed during expansion
2696 -- (e.g. during generation of a related subprogram).
2697
2698 if ASIS_Mode then
2699 Resolve_Aspects;
2700 end if;
2701
2702 Freeze_All (First_Entity (Current_Scope), Decl);
2703 Freeze_From := Last_Entity (Current_Scope);
2704 end if;
2705
2706 -- Current scope is a package specification
2707
2708 elsif Scope (Current_Scope) /= Standard_Standard
2709 and then not Is_Child_Unit (Current_Scope)
2710 and then No (Generic_Parent (Parent (L)))
2711 then
2712 -- ARM rule 13.1.1(11/3): usage names in aspect definitions are
2713 -- resolved at the end of the immediately enclosing declaration
2714 -- list (AI05-0183-1).
2715
2716 Resolve_Aspects;
2717
2718 elsif L /= Visible_Declarations (Parent (L))
2719 or else No (Private_Declarations (Parent (L)))
2720 or else Is_Empty_List (Private_Declarations (Parent (L)))
2721 then
2722 Adjust_Decl;
2723
2724 -- End of a package declaration
2725
2726 -- In compilation mode the expansion of freeze node takes care
2727 -- of resolving expressions of all aspects in the list. In ASIS
2728 -- mode this must be done explicitly.
2729
2730 if ASIS_Mode
2731 and then Scope (Current_Scope) = Standard_Standard
2732 then
2733 Resolve_Aspects;
2734 end if;
2735
2736 -- This is a freeze point because it is the end of a
2737 -- compilation unit.
2738
2739 Freeze_All (First_Entity (Current_Scope), Decl);
2740 Freeze_From := Last_Entity (Current_Scope);
2741
2742 -- At the end of the visible declarations the expressions in
2743 -- aspects of all entities declared so far must be resolved.
2744 -- The entities themselves might be frozen later, and the
2745 -- generated pragmas and attribute definition clauses analyzed
2746 -- in full at that point, but name resolution must take place
2747 -- now.
2748 -- In addition to being the proper semantics, this is mandatory
2749 -- within generic units, because global name capture requires
2750 -- those expressions to be analyzed, given that the generated
2751 -- pragmas do not appear in the original generic tree.
2752
2753 elsif Serious_Errors_Detected = 0 then
2754 Resolve_Aspects;
2755 end if;
2756
2757 -- If next node is a body then freeze all types before the body.
2758 -- An exception occurs for some expander-generated bodies. If these
2759 -- are generated at places where in general language rules would not
2760 -- allow a freeze point, then we assume that the expander has
2761 -- explicitly checked that all required types are properly frozen,
2762 -- and we do not cause general freezing here. This special circuit
2763 -- is used when the encountered body is marked as having already
2764 -- been analyzed.
2765
2766 -- In all other cases (bodies that come from source, and expander
2767 -- generated bodies that have not been analyzed yet), freeze all
2768 -- types now. Note that in the latter case, the expander must take
2769 -- care to attach the bodies at a proper place in the tree so as to
2770 -- not cause unwanted freezing at that point.
2771
2772 -- It is also necessary to check for a case where both an expression
2773 -- function is used and the current scope depends on an incomplete
2774 -- private type from a library unit, otherwise premature freezing of
2775 -- the private type will occur.
2776
2777 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl)
2778 and then ((Nkind (Next_Decl) /= N_Subprogram_Body
2779 or else not Was_Expression_Function (Next_Decl))
2780 or else (not Is_Ignored_Ghost_Entity (Current_Scope)
2781 and then not Contains_Lib_Incomplete_Type
2782 (Current_Scope)))
2783 then
2784 -- When a controlled type is frozen, the expander generates stream
2785 -- and controlled-type support routines. If the freeze is caused
2786 -- by the stand-alone body of Initialize, Adjust, or Finalize, the
2787 -- expander will end up using the wrong version of these routines,
2788 -- as the body has not been processed yet. To remedy this, detect
2789 -- a late controlled primitive and create a proper spec for it.
2790 -- This ensures that the primitive will override its inherited
2791 -- counterpart before the freeze takes place.
2792
2793 -- If the declaration we just processed is a body, do not attempt
2794 -- to examine Next_Decl as the late primitive idiom can only apply
2795 -- to the first encountered body.
2796
2797 -- The spec of the late primitive is not generated in ASIS mode to
2798 -- ensure a consistent list of primitives that indicates the true
2799 -- semantic structure of the program (which is not relevant when
2800 -- generating executable code).
2801
2802 -- ??? A cleaner approach may be possible and/or this solution
2803 -- could be extended to general-purpose late primitives, TBD.
2804
2805 if not ASIS_Mode
2806 and then not Body_Seen
2807 and then not Is_Body (Decl)
2808 then
2809 Body_Seen := True;
2810
2811 if Nkind (Next_Decl) = N_Subprogram_Body then
2812 Handle_Late_Controlled_Primitive (Next_Decl);
2813 end if;
2814
2815 else
2816 -- In ASIS mode, if the next declaration is a body, complete
2817 -- the analysis of declarations so far.
2818
2819 Resolve_Aspects;
2820 end if;
2821
2822 Adjust_Decl;
2823
2824 -- The generated body of an expression function does not freeze,
2825 -- unless it is a completion, in which case only the expression
2826 -- itself freezes. This is handled when the body itself is
2827 -- analyzed (see Freeze_Expr_Types, sem_ch6.adb).
2828
2829 Freeze_All (Freeze_From, Decl);
2830 Freeze_From := Last_Entity (Current_Scope);
2831 end if;
2832
2833 Decl := Next_Decl;
2834 end loop;
2835
2836 -- Post-freezing actions
2837
2838 if Present (L) then
2839 Context := Parent (L);
2840
2841 -- Certain contract annocations have forward visibility semantics and
2842 -- must be analyzed after all declarative items have been processed.
2843 -- This timing ensures that entities referenced by such contracts are
2844 -- visible.
2845
2846 -- Analyze the contract of an immediately enclosing package spec or
2847 -- body first because other contracts may depend on its information.
2848
2849 if Nkind (Context) = N_Package_Body then
2850 Analyze_Package_Body_Contract (Defining_Entity (Context));
2851
2852 elsif Nkind (Context) = N_Package_Specification then
2853 Analyze_Package_Contract (Defining_Entity (Context));
2854 end if;
2855
2856 -- Analyze the contracts of various constructs in the declarative
2857 -- list.
2858
2859 Analyze_Contracts (L);
2860
2861 if Nkind (Context) = N_Package_Body then
2862
2863 -- Ensure that all abstract states and objects declared in the
2864 -- state space of a package body are utilized as constituents.
2865
2866 Check_Unused_Body_States (Defining_Entity (Context));
2867
2868 -- State refinements are visible up to the end of the package body
2869 -- declarations. Hide the state refinements from visibility to
2870 -- restore the original state conditions.
2871
2872 Remove_Visible_Refinements (Corresponding_Spec (Context));
2873 Remove_Partial_Visible_Refinements (Corresponding_Spec (Context));
2874
2875 elsif Nkind (Context) = N_Package_Specification then
2876
2877 -- Partial state refinements are visible up to the end of the
2878 -- package spec declarations. Hide the partial state refinements
2879 -- from visibility to restore the original state conditions.
2880
2881 Remove_Partial_Visible_Refinements (Defining_Entity (Context));
2882 end if;
2883
2884 -- Verify that all abstract states found in any package declared in
2885 -- the input declarative list have proper refinements. The check is
2886 -- performed only when the context denotes a block, entry, package,
2887 -- protected, subprogram, or task body (SPARK RM 7.2.2(3)).
2888
2889 Check_State_Refinements (Context);
2890
2891 -- Create the subprogram bodies which verify the run-time semantics
2892 -- of pragmas Default_Initial_Condition and [Type_]Invariant for all
2893 -- types within the current declarative list. This ensures that all
2894 -- assertion expressions are preanalyzed and resolved at the end of
2895 -- the declarative part. Note that the resolution happens even when
2896 -- freezing does not take place.
2897
2898 Build_Assertion_Bodies (L, Context);
2899 end if;
2900 end Analyze_Declarations;
2901
2902 -----------------------------------
2903 -- Analyze_Full_Type_Declaration --
2904 -----------------------------------
2905
2906 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2907 Def : constant Node_Id := Type_Definition (N);
2908 Def_Id : constant Entity_Id := Defining_Identifier (N);
2909 T : Entity_Id;
2910 Prev : Entity_Id;
2911
2912 Is_Remote : constant Boolean :=
2913 (Is_Remote_Types (Current_Scope)
2914 or else Is_Remote_Call_Interface (Current_Scope))
2915 and then not (In_Private_Part (Current_Scope)
2916 or else In_Package_Body (Current_Scope));
2917
2918 procedure Check_Nonoverridable_Aspects;
2919 -- Apply the rule in RM 13.1.1(18.4/4) on iterator aspects that cannot
2920 -- be overridden, and can only be confirmed on derivation.
2921
2922 procedure Check_Ops_From_Incomplete_Type;
2923 -- If there is a tagged incomplete partial view of the type, traverse
2924 -- the primitives of the incomplete view and change the type of any
2925 -- controlling formals and result to indicate the full view. The
2926 -- primitives will be added to the full type's primitive operations
2927 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2928 -- is called from Process_Incomplete_Dependents).
2929
2930 ----------------------------------
2931 -- Check_Nonoverridable_Aspects --
2932 ----------------------------------
2933
2934 procedure Check_Nonoverridable_Aspects is
2935 function Get_Aspect_Spec
2936 (Specs : List_Id;
2937 Aspect_Name : Name_Id) return Node_Id;
2938 -- Check whether a list of aspect specifications includes an entry
2939 -- for a specific aspect. The list is either that of a partial or
2940 -- a full view.
2941
2942 ---------------------
2943 -- Get_Aspect_Spec --
2944 ---------------------
2945
2946 function Get_Aspect_Spec
2947 (Specs : List_Id;
2948 Aspect_Name : Name_Id) return Node_Id
2949 is
2950 Spec : Node_Id;
2951
2952 begin
2953 Spec := First (Specs);
2954 while Present (Spec) loop
2955 if Chars (Identifier (Spec)) = Aspect_Name then
2956 return Spec;
2957 end if;
2958 Next (Spec);
2959 end loop;
2960
2961 return Empty;
2962 end Get_Aspect_Spec;
2963
2964 -- Local variables
2965
2966 Prev_Aspects : constant List_Id :=
2967 Aspect_Specifications (Parent (Def_Id));
2968 Par_Type : Entity_Id;
2969 Prev_Aspect : Node_Id;
2970
2971 -- Start of processing for Check_Nonoverridable_Aspects
2972
2973 begin
2974 -- Get parent type of derived type. Note that Prev is the entity in
2975 -- the partial declaration, but its contents are now those of full
2976 -- view, while Def_Id reflects the partial view.
2977
2978 if Is_Private_Type (Def_Id) then
2979 Par_Type := Etype (Full_View (Def_Id));
2980 else
2981 Par_Type := Etype (Def_Id);
2982 end if;
2983
2984 -- If there is an inherited Implicit_Dereference, verify that it is
2985 -- made explicit in the partial view.
2986
2987 if Has_Discriminants (Base_Type (Par_Type))
2988 and then Nkind (Parent (Prev)) = N_Full_Type_Declaration
2989 and then Present (Discriminant_Specifications (Parent (Prev)))
2990 and then Present (Get_Reference_Discriminant (Par_Type))
2991 then
2992 Prev_Aspect :=
2993 Get_Aspect_Spec (Prev_Aspects, Name_Implicit_Dereference);
2994
2995 if No (Prev_Aspect)
2996 and then Present
2997 (Discriminant_Specifications
2998 (Original_Node (Parent (Prev))))
2999 then
3000 Error_Msg_N
3001 ("type does not inherit implicit dereference", Prev);
3002
3003 else
3004 -- If one of the views has the aspect specified, verify that it
3005 -- is consistent with that of the parent.
3006
3007 declare
3008 Par_Discr : constant Entity_Id :=
3009 Get_Reference_Discriminant (Par_Type);
3010 Cur_Discr : constant Entity_Id :=
3011 Get_Reference_Discriminant (Prev);
3012
3013 begin
3014 if Corresponding_Discriminant (Cur_Discr) /= Par_Discr then
3015 Error_Msg_N ("aspect incosistent with that of parent", N);
3016 end if;
3017
3018 -- Check that specification in partial view matches the
3019 -- inherited aspect. Compare names directly because aspect
3020 -- expression may not be analyzed.
3021
3022 if Present (Prev_Aspect)
3023 and then Nkind (Expression (Prev_Aspect)) = N_Identifier
3024 and then Chars (Expression (Prev_Aspect)) /=
3025 Chars (Cur_Discr)
3026 then
3027 Error_Msg_N
3028 ("aspect incosistent with that of parent", N);
3029 end if;
3030 end;
3031 end if;
3032 end if;
3033
3034 -- TBD : other nonoverridable aspects.
3035 end Check_Nonoverridable_Aspects;
3036
3037 ------------------------------------
3038 -- Check_Ops_From_Incomplete_Type --
3039 ------------------------------------
3040
3041 procedure Check_Ops_From_Incomplete_Type is
3042 Elmt : Elmt_Id;
3043 Formal : Entity_Id;
3044 Op : Entity_Id;
3045
3046 begin
3047 if Prev /= T
3048 and then Ekind (Prev) = E_Incomplete_Type
3049 and then Is_Tagged_Type (Prev)
3050 and then Is_Tagged_Type (T)
3051 then
3052 Elmt := First_Elmt (Primitive_Operations (Prev));
3053 while Present (Elmt) loop
3054 Op := Node (Elmt);
3055
3056 Formal := First_Formal (Op);
3057 while Present (Formal) loop
3058 if Etype (Formal) = Prev then
3059 Set_Etype (Formal, T);
3060 end if;
3061
3062 Next_Formal (Formal);
3063 end loop;
3064
3065 if Etype (Op) = Prev then
3066 Set_Etype (Op, T);
3067 end if;
3068
3069 Next_Elmt (Elmt);
3070 end loop;
3071 end if;
3072 end Check_Ops_From_Incomplete_Type;
3073
3074 -- Start of processing for Analyze_Full_Type_Declaration
3075
3076 begin
3077 Prev := Find_Type_Name (N);
3078
3079 -- The full view, if present, now points to the current type. If there
3080 -- is an incomplete partial view, set a link to it, to simplify the
3081 -- retrieval of primitive operations of the type.
3082
3083 -- Ada 2005 (AI-50217): If the type was previously decorated when
3084 -- imported through a LIMITED WITH clause, it appears as incomplete
3085 -- but has no full view.
3086
3087 if Ekind (Prev) = E_Incomplete_Type
3088 and then Present (Full_View (Prev))
3089 then
3090 T := Full_View (Prev);
3091 Set_Incomplete_View (N, Parent (Prev));
3092 else
3093 T := Prev;
3094 end if;
3095
3096 Set_Is_Pure (T, Is_Pure (Current_Scope));
3097
3098 -- We set the flag Is_First_Subtype here. It is needed to set the
3099 -- corresponding flag for the Implicit class-wide-type created
3100 -- during tagged types processing.
3101
3102 Set_Is_First_Subtype (T, True);
3103
3104 -- Only composite types other than array types are allowed to have
3105 -- discriminants.
3106
3107 case Nkind (Def) is
3108
3109 -- For derived types, the rule will be checked once we've figured
3110 -- out the parent type.
3111
3112 when N_Derived_Type_Definition =>
3113 null;
3114
3115 -- For record types, discriminants are allowed, unless we are in
3116 -- SPARK.
3117
3118 when N_Record_Definition =>
3119 if Present (Discriminant_Specifications (N)) then
3120 Check_SPARK_05_Restriction
3121 ("discriminant type is not allowed",
3122 Defining_Identifier
3123 (First (Discriminant_Specifications (N))));
3124 end if;
3125
3126 when others =>
3127 if Present (Discriminant_Specifications (N)) then
3128 Error_Msg_N
3129 ("elementary or array type cannot have discriminants",
3130 Defining_Identifier
3131 (First (Discriminant_Specifications (N))));
3132 end if;
3133 end case;
3134
3135 -- Elaborate the type definition according to kind, and generate
3136 -- subsidiary (implicit) subtypes where needed. We skip this if it was
3137 -- already done (this happens during the reanalysis that follows a call
3138 -- to the high level optimizer).
3139
3140 if not Analyzed (T) then
3141 Set_Analyzed (T);
3142
3143 -- Set the SPARK mode from the current context
3144
3145 Set_SPARK_Pragma (T, SPARK_Mode_Pragma);
3146 Set_SPARK_Pragma_Inherited (T);
3147
3148 case Nkind (Def) is
3149 when N_Access_To_Subprogram_Definition =>
3150 Access_Subprogram_Declaration (T, Def);
3151
3152 -- If this is a remote access to subprogram, we must create the
3153 -- equivalent fat pointer type, and related subprograms.
3154
3155 if Is_Remote then
3156 Process_Remote_AST_Declaration (N);
3157 end if;
3158
3159 -- Validate categorization rule against access type declaration
3160 -- usually a violation in Pure unit, Shared_Passive unit.
3161
3162 Validate_Access_Type_Declaration (T, N);
3163
3164 when N_Access_To_Object_Definition =>
3165 Access_Type_Declaration (T, Def);
3166
3167 -- Validate categorization rule against access type declaration
3168 -- usually a violation in Pure unit, Shared_Passive unit.
3169
3170 Validate_Access_Type_Declaration (T, N);
3171
3172 -- If we are in a Remote_Call_Interface package and define a
3173 -- RACW, then calling stubs and specific stream attributes
3174 -- must be added.
3175
3176 if Is_Remote
3177 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
3178 then
3179 Add_RACW_Features (Def_Id);
3180 end if;
3181
3182 when N_Array_Type_Definition =>
3183 Array_Type_Declaration (T, Def);
3184
3185 when N_Derived_Type_Definition =>
3186 Derived_Type_Declaration (T, N, T /= Def_Id);
3187
3188 -- Inherit predicates from parent, and protect against illegal
3189 -- derivations.
3190
3191 if Is_Type (T) and then Has_Predicates (T) then
3192 Set_Has_Predicates (Def_Id);
3193 end if;
3194
3195 -- Save the scenario for examination by the ABE Processing
3196 -- phase.
3197
3198 Record_Elaboration_Scenario (N);
3199
3200 when N_Enumeration_Type_Definition =>
3201 Enumeration_Type_Declaration (T, Def);
3202
3203 when N_Floating_Point_Definition =>
3204 Floating_Point_Type_Declaration (T, Def);
3205
3206 when N_Decimal_Fixed_Point_Definition =>
3207 Decimal_Fixed_Point_Type_Declaration (T, Def);
3208
3209 when N_Ordinary_Fixed_Point_Definition =>
3210 Ordinary_Fixed_Point_Type_Declaration (T, Def);
3211
3212 when N_Signed_Integer_Type_Definition =>
3213 Signed_Integer_Type_Declaration (T, Def);
3214
3215 when N_Modular_Type_Definition =>
3216 Modular_Type_Declaration (T, Def);
3217
3218 when N_Record_Definition =>
3219 Record_Type_Declaration (T, N, Prev);
3220
3221 -- If declaration has a parse error, nothing to elaborate.
3222
3223 when N_Error =>
3224 null;
3225
3226 when others =>
3227 raise Program_Error;
3228 end case;
3229 end if;
3230
3231 if Etype (T) = Any_Type then
3232 return;
3233 end if;
3234
3235 -- Controlled type is not allowed in SPARK
3236
3237 if Is_Visibly_Controlled (T) then
3238 Check_SPARK_05_Restriction ("controlled type is not allowed", N);
3239 end if;
3240
3241 -- Some common processing for all types
3242
3243 Set_Depends_On_Private (T, Has_Private_Component (T));
3244 Check_Ops_From_Incomplete_Type;
3245
3246 -- Both the declared entity, and its anonymous base type if one was
3247 -- created, need freeze nodes allocated.
3248
3249 declare
3250 B : constant Entity_Id := Base_Type (T);
3251
3252 begin
3253 -- In the case where the base type differs from the first subtype, we
3254 -- pre-allocate a freeze node, and set the proper link to the first
3255 -- subtype. Freeze_Entity will use this preallocated freeze node when
3256 -- it freezes the entity.
3257
3258 -- This does not apply if the base type is a generic type, whose
3259 -- declaration is independent of the current derived definition.
3260
3261 if B /= T and then not Is_Generic_Type (B) then
3262 Ensure_Freeze_Node (B);
3263 Set_First_Subtype_Link (Freeze_Node (B), T);
3264 end if;
3265
3266 -- A type that is imported through a limited_with clause cannot
3267 -- generate any code, and thus need not be frozen. However, an access
3268 -- type with an imported designated type needs a finalization list,
3269 -- which may be referenced in some other package that has non-limited
3270 -- visibility on the designated type. Thus we must create the
3271 -- finalization list at the point the access type is frozen, to
3272 -- prevent unsatisfied references at link time.
3273
3274 if not From_Limited_With (T) or else Is_Access_Type (T) then
3275 Set_Has_Delayed_Freeze (T);
3276 end if;
3277 end;
3278
3279 -- Case where T is the full declaration of some private type which has
3280 -- been swapped in Defining_Identifier (N).
3281
3282 if T /= Def_Id and then Is_Private_Type (Def_Id) then
3283 Process_Full_View (N, T, Def_Id);
3284
3285 -- Record the reference. The form of this is a little strange, since
3286 -- the full declaration has been swapped in. So the first parameter
3287 -- here represents the entity to which a reference is made which is
3288 -- the "real" entity, i.e. the one swapped in, and the second
3289 -- parameter provides the reference location.
3290
3291 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
3292 -- since we don't want a complaint about the full type being an
3293 -- unwanted reference to the private type
3294
3295 declare
3296 B : constant Boolean := Has_Pragma_Unreferenced (T);
3297 begin
3298 Set_Has_Pragma_Unreferenced (T, False);
3299 Generate_Reference (T, T, 'c');
3300 Set_Has_Pragma_Unreferenced (T, B);
3301 end;
3302
3303 Set_Completion_Referenced (Def_Id);
3304
3305 -- For completion of incomplete type, process incomplete dependents
3306 -- and always mark the full type as referenced (it is the incomplete
3307 -- type that we get for any real reference).
3308
3309 elsif Ekind (Prev) = E_Incomplete_Type then
3310 Process_Incomplete_Dependents (N, T, Prev);
3311 Generate_Reference (Prev, Def_Id, 'c');
3312 Set_Completion_Referenced (Def_Id);
3313
3314 -- If not private type or incomplete type completion, this is a real
3315 -- definition of a new entity, so record it.
3316
3317 else
3318 Generate_Definition (Def_Id);
3319 end if;
3320
3321 -- Propagate any pending access types whose finalization masters need to
3322 -- be fully initialized from the partial to the full view. Guard against
3323 -- an illegal full view that remains unanalyzed.
3324
3325 if Is_Type (Def_Id) and then Is_Incomplete_Or_Private_Type (Prev) then
3326 Set_Pending_Access_Types (Def_Id, Pending_Access_Types (Prev));
3327 end if;
3328
3329 if Chars (Scope (Def_Id)) = Name_System
3330 and then Chars (Def_Id) = Name_Address
3331 and then In_Predefined_Unit (N)
3332 then
3333 Set_Is_Descendant_Of_Address (Def_Id);
3334 Set_Is_Descendant_Of_Address (Base_Type (Def_Id));
3335 Set_Is_Descendant_Of_Address (Prev);
3336 end if;
3337
3338 Set_Optimize_Alignment_Flags (Def_Id);
3339 Check_Eliminated (Def_Id);
3340
3341 -- If the declaration is a completion and aspects are present, apply
3342 -- them to the entity for the type which is currently the partial
3343 -- view, but which is the one that will be frozen.
3344
3345 if Has_Aspects (N) then
3346
3347 -- In most cases the partial view is a private type, and both views
3348 -- appear in different declarative parts. In the unusual case where
3349 -- the partial view is incomplete, perform the analysis on the
3350 -- full view, to prevent freezing anomalies with the corresponding
3351 -- class-wide type, which otherwise might be frozen before the
3352 -- dispatch table is built.
3353
3354 if Prev /= Def_Id
3355 and then Ekind (Prev) /= E_Incomplete_Type
3356 then
3357 Analyze_Aspect_Specifications (N, Prev);
3358
3359 -- Normal case
3360
3361 else
3362 Analyze_Aspect_Specifications (N, Def_Id);
3363 end if;
3364 end if;
3365
3366 if Is_Derived_Type (Prev)
3367 and then Def_Id /= Prev
3368 then
3369 Check_Nonoverridable_Aspects;
3370 end if;
3371 end Analyze_Full_Type_Declaration;
3372
3373 ----------------------------------
3374 -- Analyze_Incomplete_Type_Decl --
3375 ----------------------------------
3376
3377 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
3378 F : constant Boolean := Is_Pure (Current_Scope);
3379 T : Entity_Id;
3380
3381 begin
3382 Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
3383
3384 Generate_Definition (Defining_Identifier (N));
3385
3386 -- Process an incomplete declaration. The identifier must not have been
3387 -- declared already in the scope. However, an incomplete declaration may
3388 -- appear in the private part of a package, for a private type that has
3389 -- already been declared.
3390
3391 -- In this case, the discriminants (if any) must match
3392
3393 T := Find_Type_Name (N);
3394
3395 Set_Ekind (T, E_Incomplete_Type);
3396 Set_Etype (T, T);
3397 Set_Is_First_Subtype (T);
3398 Init_Size_Align (T);
3399
3400 -- Set the SPARK mode from the current context
3401
3402 Set_SPARK_Pragma (T, SPARK_Mode_Pragma);
3403 Set_SPARK_Pragma_Inherited (T);
3404
3405 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
3406 -- incomplete types.
3407
3408 if Tagged_Present (N) then
3409 Set_Is_Tagged_Type (T, True);
3410 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3411 Make_Class_Wide_Type (T);
3412 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3413 end if;
3414
3415 Set_Stored_Constraint (T, No_Elist);
3416
3417 if Present (Discriminant_Specifications (N)) then
3418 Push_Scope (T);
3419 Process_Discriminants (N);
3420 End_Scope;
3421 end if;
3422
3423 -- If the type has discriminants, nontrivial subtypes may be declared
3424 -- before the full view of the type. The full views of those subtypes
3425 -- will be built after the full view of the type.
3426
3427 Set_Private_Dependents (T, New_Elmt_List);
3428 Set_Is_Pure (T, F);
3429 end Analyze_Incomplete_Type_Decl;
3430
3431 -----------------------------------
3432 -- Analyze_Interface_Declaration --
3433 -----------------------------------
3434
3435 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
3436 CW : constant Entity_Id := Class_Wide_Type (T);
3437
3438 begin
3439 Set_Is_Tagged_Type (T);
3440 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3441
3442 Set_Is_Limited_Record (T, Limited_Present (Def)
3443 or else Task_Present (Def)
3444 or else Protected_Present (Def)
3445 or else Synchronized_Present (Def));
3446
3447 -- Type is abstract if full declaration carries keyword, or if previous
3448 -- partial view did.
3449
3450 Set_Is_Abstract_Type (T);
3451 Set_Is_Interface (T);
3452
3453 -- Type is a limited interface if it includes the keyword limited, task,
3454 -- protected, or synchronized.
3455
3456 Set_Is_Limited_Interface
3457 (T, Limited_Present (Def)
3458 or else Protected_Present (Def)
3459 or else Synchronized_Present (Def)
3460 or else Task_Present (Def));
3461
3462 Set_Interfaces (T, New_Elmt_List);
3463 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3464
3465 -- Complete the decoration of the class-wide entity if it was already
3466 -- built (i.e. during the creation of the limited view)
3467
3468 if Present (CW) then
3469 Set_Is_Interface (CW);
3470 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
3471 end if;
3472
3473 -- Check runtime support for synchronized interfaces
3474
3475 if (Is_Task_Interface (T)
3476 or else Is_Protected_Interface (T)
3477 or else Is_Synchronized_Interface (T))
3478 and then not RTE_Available (RE_Select_Specific_Data)
3479 then
3480 Error_Msg_CRT ("synchronized interfaces", T);
3481 end if;
3482 end Analyze_Interface_Declaration;
3483
3484 -----------------------------
3485 -- Analyze_Itype_Reference --
3486 -----------------------------
3487
3488 -- Nothing to do. This node is placed in the tree only for the benefit of
3489 -- back end processing, and has no effect on the semantic processing.
3490
3491 procedure Analyze_Itype_Reference (N : Node_Id) is
3492 begin
3493 pragma Assert (Is_Itype (Itype (N)));
3494 null;
3495 end Analyze_Itype_Reference;
3496
3497 --------------------------------
3498 -- Analyze_Number_Declaration --
3499 --------------------------------
3500
3501 procedure Analyze_Number_Declaration (N : Node_Id) is
3502 E : constant Node_Id := Expression (N);
3503 Id : constant Entity_Id := Defining_Identifier (N);
3504 Index : Interp_Index;
3505 It : Interp;
3506 T : Entity_Id;
3507
3508 begin
3509 Generate_Definition (Id);
3510 Enter_Name (Id);
3511
3512 -- This is an optimization of a common case of an integer literal
3513
3514 if Nkind (E) = N_Integer_Literal then
3515 Set_Is_Static_Expression (E, True);
3516 Set_Etype (E, Universal_Integer);
3517
3518 Set_Etype (Id, Universal_Integer);
3519 Set_Ekind (Id, E_Named_Integer);
3520 Set_Is_Frozen (Id, True);
3521 return;
3522 end if;
3523
3524 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3525
3526 -- Process expression, replacing error by integer zero, to avoid
3527 -- cascaded errors or aborts further along in the processing
3528
3529 -- Replace Error by integer zero, which seems least likely to cause
3530 -- cascaded errors.
3531
3532 if E = Error then
3533 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
3534 Set_Error_Posted (E);
3535 end if;
3536
3537 Analyze (E);
3538
3539 -- Verify that the expression is static and numeric. If
3540 -- the expression is overloaded, we apply the preference
3541 -- rule that favors root numeric types.
3542
3543 if not Is_Overloaded (E) then
3544 T := Etype (E);
3545 if Has_Dynamic_Predicate_Aspect (T) then
3546 Error_Msg_N
3547 ("subtype has dynamic predicate, "
3548 & "not allowed in number declaration", N);
3549 end if;
3550
3551 else
3552 T := Any_Type;
3553
3554 Get_First_Interp (E, Index, It);
3555 while Present (It.Typ) loop
3556 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
3557 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
3558 then
3559 if T = Any_Type then
3560 T := It.Typ;
3561
3562 elsif It.Typ = Universal_Real
3563 or else
3564 It.Typ = Universal_Integer
3565 then
3566 -- Choose universal interpretation over any other
3567
3568 T := It.Typ;
3569 exit;
3570 end if;
3571 end if;
3572
3573 Get_Next_Interp (Index, It);
3574 end loop;
3575 end if;
3576
3577 if Is_Integer_Type (T) then
3578 Resolve (E, T);
3579 Set_Etype (Id, Universal_Integer);
3580 Set_Ekind (Id, E_Named_Integer);
3581
3582 elsif Is_Real_Type (T) then
3583
3584 -- Because the real value is converted to universal_real, this is a
3585 -- legal context for a universal fixed expression.
3586
3587 if T = Universal_Fixed then
3588 declare
3589 Loc : constant Source_Ptr := Sloc (N);
3590 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3591 Subtype_Mark =>
3592 New_Occurrence_Of (Universal_Real, Loc),
3593 Expression => Relocate_Node (E));
3594
3595 begin
3596 Rewrite (E, Conv);
3597 Analyze (E);
3598 end;
3599
3600 elsif T = Any_Fixed then
3601 Error_Msg_N ("illegal context for mixed mode operation", E);
3602
3603 -- Expression is of the form : universal_fixed * integer. Try to
3604 -- resolve as universal_real.
3605
3606 T := Universal_Real;
3607 Set_Etype (E, T);
3608 end if;
3609
3610 Resolve (E, T);
3611 Set_Etype (Id, Universal_Real);
3612 Set_Ekind (Id, E_Named_Real);
3613
3614 else
3615 Wrong_Type (E, Any_Numeric);
3616 Resolve (E, T);
3617
3618 Set_Etype (Id, T);
3619 Set_Ekind (Id, E_Constant);
3620 Set_Never_Set_In_Source (Id, True);
3621 Set_Is_True_Constant (Id, True);
3622 return;
3623 end if;
3624
3625 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3626 Set_Etype (E, Etype (Id));
3627 end if;
3628
3629 if not Is_OK_Static_Expression (E) then
3630 Flag_Non_Static_Expr
3631 ("non-static expression used in number declaration!", E);
3632 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3633 Set_Etype (E, Any_Type);
3634 end if;
3635
3636 Analyze_Dimension (N);
3637 end Analyze_Number_Declaration;
3638
3639 --------------------------------
3640 -- Analyze_Object_Declaration --
3641 --------------------------------
3642
3643 -- WARNING: This routine manages Ghost regions. Return statements must be
3644 -- replaced by gotos which jump to the end of the routine and restore the
3645 -- Ghost mode.
3646
3647 procedure Analyze_Object_Declaration (N : Node_Id) is
3648 Loc : constant Source_Ptr := Sloc (N);
3649 Id : constant Entity_Id := Defining_Identifier (N);
3650 Act_T : Entity_Id;
3651 T : Entity_Id;
3652
3653 E : Node_Id := Expression (N);
3654 -- E is set to Expression (N) throughout this routine. When Expression
3655 -- (N) is modified, E is changed accordingly.
3656
3657 Prev_Entity : Entity_Id := Empty;
3658
3659 procedure Check_Dynamic_Object (Typ : Entity_Id);
3660 -- A library-level object with non-static discriminant constraints may
3661 -- require dynamic allocation. The declaration is illegal if the
3662 -- profile includes the restriction No_Implicit_Heap_Allocations.
3663
3664 procedure Check_For_Null_Excluding_Components
3665 (Obj_Typ : Entity_Id;
3666 Obj_Decl : Node_Id);
3667 -- Verify that each null-excluding component of object declaration
3668 -- Obj_Decl carrying type Obj_Typ has explicit initialization. Emit
3669 -- a compile-time warning if this is not the case.
3670
3671 function Count_Tasks (T : Entity_Id) return Uint;
3672 -- This function is called when a non-generic library level object of a
3673 -- task type is declared. Its function is to count the static number of
3674 -- tasks declared within the type (it is only called if Has_Task is set
3675 -- for T). As a side effect, if an array of tasks with non-static bounds
3676 -- or a variant record type is encountered, Check_Restriction is called
3677 -- indicating the count is unknown.
3678
3679 function Delayed_Aspect_Present return Boolean;
3680 -- If the declaration has an expression that is an aggregate, and it
3681 -- has aspects that require delayed analysis, the resolution of the
3682 -- aggregate must be deferred to the freeze point of the object. This
3683 -- special processing was created for address clauses, but it must
3684 -- also apply to Alignment. This must be done before the aspect
3685 -- specifications are analyzed because we must handle the aggregate
3686 -- before the analysis of the object declaration is complete.
3687
3688 -- Any other relevant delayed aspects on object declarations ???
3689
3690 --------------------------
3691 -- Check_Dynamic_Object --
3692 --------------------------
3693
3694 procedure Check_Dynamic_Object (Typ : Entity_Id) is
3695 Comp : Entity_Id;
3696 Obj_Type : Entity_Id;
3697
3698 begin
3699 Obj_Type := Typ;
3700
3701 if Is_Private_Type (Obj_Type)
3702 and then Present (Full_View (Obj_Type))
3703 then
3704 Obj_Type := Full_View (Obj_Type);
3705 end if;
3706
3707 if Known_Static_Esize (Obj_Type) then
3708 return;
3709 end if;
3710
3711 if Restriction_Active (No_Implicit_Heap_Allocations)
3712 and then Expander_Active
3713 and then Has_Discriminants (Obj_Type)
3714 then
3715 Comp := First_Component (Obj_Type);
3716 while Present (Comp) loop
3717 if Known_Static_Esize (Etype (Comp))
3718 or else Size_Known_At_Compile_Time (Etype (Comp))
3719 then
3720 null;
3721
3722 elsif not Discriminated_Size (Comp)
3723 and then Comes_From_Source (Comp)
3724 then
3725 Error_Msg_NE
3726 ("component& of non-static size will violate restriction "
3727 & "No_Implicit_Heap_Allocation?", N, Comp);
3728
3729 elsif Is_Record_Type (Etype (Comp)) then
3730 Check_Dynamic_Object (Etype (Comp));
3731 end if;
3732
3733 Next_Component (Comp);
3734 end loop;
3735 end if;
3736 end Check_Dynamic_Object;
3737
3738 -----------------------------------------
3739 -- Check_For_Null_Excluding_Components --
3740 -----------------------------------------
3741
3742 procedure Check_For_Null_Excluding_Components
3743 (Obj_Typ : Entity_Id;
3744 Obj_Decl : Node_Id)
3745 is
3746 procedure Check_Component
3747 (Comp_Typ : Entity_Id;
3748 Comp_Decl : Node_Id := Empty;
3749 Array_Comp : Boolean := False);
3750 -- Apply a compile-time null-exclusion check on a component denoted
3751 -- by its declaration Comp_Decl and type Comp_Typ, and all of its
3752 -- subcomponents (if any).
3753
3754 ---------------------
3755 -- Check_Component --
3756 ---------------------
3757
3758 procedure Check_Component
3759 (Comp_Typ : Entity_Id;
3760 Comp_Decl : Node_Id := Empty;
3761 Array_Comp : Boolean := False)
3762 is
3763 Comp : Entity_Id;
3764 T : Entity_Id;
3765
3766 begin
3767 -- Do not consider internally-generated components or those that
3768 -- are already initialized.
3769
3770 if Present (Comp_Decl)
3771 and then (not Comes_From_Source (Comp_Decl)
3772 or else Present (Expression (Comp_Decl)))
3773 then
3774 return;
3775 end if;
3776
3777 if Is_Incomplete_Or_Private_Type (Comp_Typ)
3778 and then Present (Full_View (Comp_Typ))
3779 then
3780 T := Full_View (Comp_Typ);
3781 else
3782 T := Comp_Typ;
3783 end if;
3784
3785 -- Verify a component of a null-excluding access type
3786
3787 if Is_Access_Type (T)
3788 and then Can_Never_Be_Null (T)
3789 then
3790 if Comp_Decl = Obj_Decl then
3791 Null_Exclusion_Static_Checks
3792 (N => Obj_Decl,
3793 Comp => Empty,
3794 Array_Comp => Array_Comp);
3795
3796 else
3797 Null_Exclusion_Static_Checks
3798 (N => Obj_Decl,
3799 Comp => Comp_Decl,
3800 Array_Comp => Array_Comp);
3801 end if;
3802
3803 -- Check array components
3804
3805 elsif Is_Array_Type (T) then
3806
3807 -- There is no suitable component when the object is of an
3808 -- array type. However, a namable component may appear at some
3809 -- point during the recursive inspection, but not at the top
3810 -- level. At the top level just indicate array component case.
3811
3812 if Comp_Decl = Obj_Decl then
3813 Check_Component (Component_Type (T), Array_Comp => True);
3814 else
3815 Check_Component (Component_Type (T), Comp_Decl);
3816 end if;
3817
3818 -- Verify all components of type T
3819
3820 -- Note: No checks are performed on types with discriminants due
3821 -- to complexities involving variants. ???
3822
3823 elsif (Is_Concurrent_Type (T)
3824 or else Is_Incomplete_Or_Private_Type (T)
3825 or else Is_Record_Type (T))
3826 and then not Has_Discriminants (T)
3827 then
3828 Comp := First_Component (T);
3829 while Present (Comp) loop
3830 Check_Component (Etype (Comp), Parent (Comp));
3831
3832 Comp := Next_Component (Comp);
3833 end loop;
3834 end if;
3835 end Check_Component;
3836
3837 -- Start processing for Check_For_Null_Excluding_Components
3838
3839 begin
3840 Check_Component (Obj_Typ, Obj_Decl);
3841 end Check_For_Null_Excluding_Components;
3842
3843 -----------------
3844 -- Count_Tasks --
3845 -----------------
3846
3847 function Count_Tasks (T : Entity_Id) return Uint is
3848 C : Entity_Id;
3849 X : Node_Id;
3850 V : Uint;
3851
3852 begin
3853 if Is_Task_Type (T) then
3854 return Uint_1;
3855
3856 elsif Is_Record_Type (T) then
3857 if Has_Discriminants (T) then
3858 Check_Restriction (Max_Tasks, N);
3859 return Uint_0;
3860
3861 else
3862 V := Uint_0;
3863 C := First_Component (T);
3864 while Present (C) loop
3865 V := V + Count_Tasks (Etype (C));
3866 Next_Component (C);
3867 end loop;
3868
3869 return V;
3870 end if;
3871
3872 elsif Is_Array_Type (T) then
3873 X := First_Index (T);
3874 V := Count_Tasks (Component_Type (T));
3875 while Present (X) loop
3876 C := Etype (X);
3877
3878 if not Is_OK_Static_Subtype (C) then
3879 Check_Restriction (Max_Tasks, N);
3880 return Uint_0;
3881 else
3882 V := V * (UI_Max (Uint_0,
3883 Expr_Value (Type_High_Bound (C)) -
3884 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3885 end if;
3886
3887 Next_Index (X);
3888 end loop;
3889
3890 return V;
3891
3892 else
3893 return Uint_0;
3894 end if;
3895 end Count_Tasks;
3896
3897 ----------------------------
3898 -- Delayed_Aspect_Present --
3899 ----------------------------
3900
3901 function Delayed_Aspect_Present return Boolean is
3902 A : Node_Id;
3903 A_Id : Aspect_Id;
3904
3905 begin
3906 if Present (Aspect_Specifications (N)) then
3907 A := First (Aspect_Specifications (N));
3908 A_Id := Get_Aspect_Id (Chars (Identifier (A)));
3909 while Present (A) loop
3910 if A_Id = Aspect_Alignment or else A_Id = Aspect_Address then
3911 return True;
3912 end if;
3913
3914 Next (A);
3915 end loop;
3916 end if;
3917
3918 return False;
3919 end Delayed_Aspect_Present;
3920
3921 -- Local variables
3922
3923 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
3924 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
3925 -- Save the Ghost-related attributes to restore on exit
3926
3927 Related_Id : Entity_Id;
3928
3929 -- Start of processing for Analyze_Object_Declaration
3930
3931 begin
3932 -- There are three kinds of implicit types generated by an
3933 -- object declaration:
3934
3935 -- 1. Those generated by the original Object Definition
3936
3937 -- 2. Those generated by the Expression
3938
3939 -- 3. Those used to constrain the Object Definition with the
3940 -- expression constraints when the definition is unconstrained.
3941
3942 -- They must be generated in this order to avoid order of elaboration
3943 -- issues. Thus the first step (after entering the name) is to analyze
3944 -- the object definition.
3945
3946 if Constant_Present (N) then
3947 Prev_Entity := Current_Entity_In_Scope (Id);
3948
3949 if Present (Prev_Entity)
3950 and then
3951 -- If the homograph is an implicit subprogram, it is overridden
3952 -- by the current declaration.
3953
3954 ((Is_Overloadable (Prev_Entity)
3955 and then Is_Inherited_Operation (Prev_Entity))
3956
3957 -- The current object is a discriminal generated for an entry
3958 -- family index. Even though the index is a constant, in this
3959 -- particular context there is no true constant redeclaration.
3960 -- Enter_Name will handle the visibility.
3961
3962 or else
3963 (Is_Discriminal (Id)
3964 and then Ekind (Discriminal_Link (Id)) =
3965 E_Entry_Index_Parameter)
3966
3967 -- The current object is the renaming for a generic declared
3968 -- within the instance.
3969
3970 or else
3971 (Ekind (Prev_Entity) = E_Package
3972 and then Nkind (Parent (Prev_Entity)) =
3973 N_Package_Renaming_Declaration
3974 and then not Comes_From_Source (Prev_Entity)
3975 and then
3976 Is_Generic_Instance (Renamed_Entity (Prev_Entity)))
3977
3978 -- The entity may be a homonym of a private component of the
3979 -- enclosing protected object, for which we create a local
3980 -- renaming declaration. The declaration is legal, even if
3981 -- useless when it just captures that component.
3982
3983 or else
3984 (Ekind (Scope (Current_Scope)) = E_Protected_Type
3985 and then Nkind (Parent (Prev_Entity)) =
3986 N_Object_Renaming_Declaration))
3987 then
3988 Prev_Entity := Empty;
3989 end if;
3990 end if;
3991
3992 if Present (Prev_Entity) then
3993
3994 -- The object declaration is Ghost when it completes a deferred Ghost
3995 -- constant.
3996
3997 Mark_And_Set_Ghost_Completion (N, Prev_Entity);
3998
3999 Constant_Redeclaration (Id, N, T);
4000
4001 Generate_Reference (Prev_Entity, Id, 'c');
4002 Set_Completion_Referenced (Id);
4003
4004 if Error_Posted (N) then
4005
4006 -- Type mismatch or illegal redeclaration; do not analyze
4007 -- expression to avoid cascaded errors.
4008
4009 T := Find_Type_Of_Object (Object_Definition (N), N);
4010 Set_Etype (Id, T);
4011 Set_Ekind (Id, E_Variable);
4012 goto Leave;
4013 end if;
4014
4015 -- In the normal case, enter identifier at the start to catch premature
4016 -- usage in the initialization expression.
4017
4018 else
4019 Generate_Definition (Id);
4020 Enter_Name (Id);
4021
4022 Mark_Coextensions (N, Object_Definition (N));
4023
4024 T := Find_Type_Of_Object (Object_Definition (N), N);
4025
4026 if Nkind (Object_Definition (N)) = N_Access_Definition
4027 and then Present
4028 (Access_To_Subprogram_Definition (Object_Definition (N)))
4029 and then Protected_Present
4030 (Access_To_Subprogram_Definition (Object_Definition (N)))
4031 then
4032 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
4033 end if;
4034
4035 if Error_Posted (Id) then
4036 Set_Etype (Id, T);
4037 Set_Ekind (Id, E_Variable);
4038 goto Leave;
4039 end if;
4040 end if;
4041
4042 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
4043 -- out some static checks.
4044
4045 if Ada_Version >= Ada_2005 then
4046
4047 -- In case of aggregates we must also take care of the correct
4048 -- initialization of nested aggregates bug this is done at the
4049 -- point of the analysis of the aggregate (see sem_aggr.adb) ???
4050
4051 if Can_Never_Be_Null (T) then
4052 if Present (Expression (N))
4053 and then Nkind (Expression (N)) = N_Aggregate
4054 then
4055 null;
4056
4057 else
4058 declare
4059 Save_Typ : constant Entity_Id := Etype (Id);
4060 begin
4061 Set_Etype (Id, T); -- Temp. decoration for static checks
4062 Null_Exclusion_Static_Checks (N);
4063 Set_Etype (Id, Save_Typ);
4064 end;
4065 end if;
4066
4067 -- We might be dealing with an object of a composite type containing
4068 -- null-excluding components without an aggregate, so we must verify
4069 -- that such components have default initialization.
4070
4071 else
4072 Check_For_Null_Excluding_Components (T, N);
4073 end if;
4074 end if;
4075
4076 -- Object is marked pure if it is in a pure scope
4077
4078 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4079
4080 -- If deferred constant, make sure context is appropriate. We detect
4081 -- a deferred constant as a constant declaration with no expression.
4082 -- A deferred constant can appear in a package body if its completion
4083 -- is by means of an interface pragma.
4084
4085 if Constant_Present (N) and then No (E) then
4086
4087 -- A deferred constant may appear in the declarative part of the
4088 -- following constructs:
4089
4090 -- blocks
4091 -- entry bodies
4092 -- extended return statements
4093 -- package specs
4094 -- package bodies
4095 -- subprogram bodies
4096 -- task bodies
4097
4098 -- When declared inside a package spec, a deferred constant must be
4099 -- completed by a full constant declaration or pragma Import. In all
4100 -- other cases, the only proper completion is pragma Import. Extended
4101 -- return statements are flagged as invalid contexts because they do
4102 -- not have a declarative part and so cannot accommodate the pragma.
4103
4104 if Ekind (Current_Scope) = E_Return_Statement then
4105 Error_Msg_N
4106 ("invalid context for deferred constant declaration (RM 7.4)",
4107 N);
4108 Error_Msg_N
4109 ("\declaration requires an initialization expression",
4110 N);
4111 Set_Constant_Present (N, False);
4112
4113 -- In Ada 83, deferred constant must be of private type
4114
4115 elsif not Is_Private_Type (T) then
4116 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
4117 Error_Msg_N
4118 ("(Ada 83) deferred constant must be private type", N);
4119 end if;
4120 end if;
4121
4122 -- If not a deferred constant, then the object declaration freezes
4123 -- its type, unless the object is of an anonymous type and has delayed
4124 -- aspects. In that case the type is frozen when the object itself is.
4125
4126 else
4127 Check_Fully_Declared (T, N);
4128
4129 if Has_Delayed_Aspects (Id)
4130 and then Is_Array_Type (T)
4131 and then Is_Itype (T)
4132 then
4133 Set_Has_Delayed_Freeze (T);
4134 else
4135 Freeze_Before (N, T);
4136 end if;
4137 end if;
4138
4139 -- If the object was created by a constrained array definition, then
4140 -- set the link in both the anonymous base type and anonymous subtype
4141 -- that are built to represent the array type to point to the object.
4142
4143 if Nkind (Object_Definition (Declaration_Node (Id))) =
4144 N_Constrained_Array_Definition
4145 then
4146 Set_Related_Array_Object (T, Id);
4147 Set_Related_Array_Object (Base_Type (T), Id);
4148 end if;
4149
4150 -- Special checks for protected objects not at library level
4151
4152 if Has_Protected (T) and then not Is_Library_Level_Entity (Id) then
4153 Check_Restriction (No_Local_Protected_Objects, Id);
4154
4155 -- Protected objects with interrupt handlers must be at library level
4156
4157 -- Ada 2005: This test is not needed (and the corresponding clause
4158 -- in the RM is removed) because accessibility checks are sufficient
4159 -- to make handlers not at the library level illegal.
4160
4161 -- AI05-0303: The AI is in fact a binding interpretation, and thus
4162 -- applies to the '95 version of the language as well.
4163
4164 if Is_Protected_Type (T)
4165 and then Has_Interrupt_Handler (T)
4166 and then Ada_Version < Ada_95
4167 then
4168 Error_Msg_N
4169 ("interrupt object can only be declared at library level", Id);
4170 end if;
4171 end if;
4172
4173 -- Check for violation of No_Local_Timing_Events
4174
4175 if Has_Timing_Event (T) and then not Is_Library_Level_Entity (Id) then
4176 Check_Restriction (No_Local_Timing_Events, Id);
4177 end if;
4178
4179 -- The actual subtype of the object is the nominal subtype, unless
4180 -- the nominal one is unconstrained and obtained from the expression.
4181
4182 Act_T := T;
4183
4184 -- These checks should be performed before the initialization expression
4185 -- is considered, so that the Object_Definition node is still the same
4186 -- as in source code.
4187
4188 -- In SPARK, the nominal subtype is always given by a subtype mark
4189 -- and must not be unconstrained. (The only exception to this is the
4190 -- acceptance of declarations of constants of type String.)
4191
4192 if not Nkind_In (Object_Definition (N), N_Expanded_Name, N_Identifier)
4193 then
4194 Check_SPARK_05_Restriction
4195 ("subtype mark required", Object_Definition (N));
4196
4197 elsif Is_Array_Type (T)
4198 and then not Is_Constrained (T)
4199 and then T /= Standard_String
4200 then
4201 Check_SPARK_05_Restriction
4202 ("subtype mark of constrained type expected",
4203 Object_Definition (N));
4204 end if;
4205
4206 if Is_Library_Level_Entity (Id) then
4207 Check_Dynamic_Object (T);
4208 end if;
4209
4210 -- There are no aliased objects in SPARK
4211
4212 if Aliased_Present (N) then
4213 Check_SPARK_05_Restriction ("aliased object is not allowed", N);
4214 end if;
4215
4216 -- Process initialization expression if present and not in error
4217
4218 if Present (E) and then E /= Error then
4219
4220 -- Generate an error in case of CPP class-wide object initialization.
4221 -- Required because otherwise the expansion of the class-wide
4222 -- assignment would try to use 'size to initialize the object
4223 -- (primitive that is not available in CPP tagged types).
4224
4225 if Is_Class_Wide_Type (Act_T)
4226 and then
4227 (Is_CPP_Class (Root_Type (Etype (Act_T)))
4228 or else
4229 (Present (Full_View (Root_Type (Etype (Act_T))))
4230 and then
4231 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
4232 then
4233 Error_Msg_N
4234 ("predefined assignment not available for 'C'P'P tagged types",
4235 E);
4236 end if;
4237
4238 Mark_Coextensions (N, E);
4239 Analyze (E);
4240
4241 -- In case of errors detected in the analysis of the expression,
4242 -- decorate it with the expected type to avoid cascaded errors
4243
4244 if No (Etype (E)) then
4245 Set_Etype (E, T);
4246 end if;
4247
4248 -- If an initialization expression is present, then we set the
4249 -- Is_True_Constant flag. It will be reset if this is a variable
4250 -- and it is indeed modified.
4251
4252 Set_Is_True_Constant (Id, True);
4253
4254 -- If we are analyzing a constant declaration, set its completion
4255 -- flag after analyzing and resolving the expression.
4256
4257 if Constant_Present (N) then
4258 Set_Has_Completion (Id);
4259 end if;
4260
4261 -- Set type and resolve (type may be overridden later on). Note:
4262 -- Ekind (Id) must still be E_Void at this point so that incorrect
4263 -- early usage within E is properly diagnosed.
4264
4265 Set_Etype (Id, T);
4266
4267 -- If the expression is an aggregate we must look ahead to detect
4268 -- the possible presence of an address clause, and defer resolution
4269 -- and expansion of the aggregate to the freeze point of the entity.
4270
4271 -- This is not always legal because the aggregate may contain other
4272 -- references that need freezing, e.g. references to other entities
4273 -- with address clauses. In any case, when compiling with -gnatI the
4274 -- presence of the address clause must be ignored.
4275
4276 if Comes_From_Source (N)
4277 and then Expander_Active
4278 and then Nkind (E) = N_Aggregate
4279 and then
4280 ((Present (Following_Address_Clause (N))
4281 and then not Ignore_Rep_Clauses)
4282 or else Delayed_Aspect_Present)
4283 then
4284 Set_Etype (E, T);
4285
4286 else
4287
4288 -- If the expression is a formal that is a "subprogram pointer"
4289 -- this is illegal in accessibility terms. Add an explicit
4290 -- conversion to force the corresponding check, as is done for
4291 -- assignments.
4292
4293 if Comes_From_Source (N)
4294 and then Is_Entity_Name (E)
4295 and then Present (Entity (E))
4296 and then Is_Formal (Entity (E))
4297 and then
4298 Ekind (Etype (Entity (E))) = E_Anonymous_Access_Subprogram_Type
4299 and then Ekind (T) /= E_Anonymous_Access_Subprogram_Type
4300 then
4301 Rewrite (E, Convert_To (T, Relocate_Node (E)));
4302 end if;
4303
4304 Resolve (E, T);
4305 end if;
4306
4307 -- No further action needed if E is a call to an inlined function
4308 -- which returns an unconstrained type and it has been expanded into
4309 -- a procedure call. In that case N has been replaced by an object
4310 -- declaration without initializing expression and it has been
4311 -- analyzed (see Expand_Inlined_Call).
4312
4313 if Back_End_Inlining
4314 and then Expander_Active
4315 and then Nkind (E) = N_Function_Call
4316 and then Nkind (Name (E)) in N_Has_Entity
4317 and then Is_Inlined (Entity (Name (E)))
4318 and then not Is_Constrained (Etype (E))
4319 and then Analyzed (N)
4320 and then No (Expression (N))
4321 then
4322 goto Leave;
4323 end if;
4324
4325 -- If E is null and has been replaced by an N_Raise_Constraint_Error
4326 -- node (which was marked already-analyzed), we need to set the type
4327 -- to something other than Any_Access in order to keep gigi happy.
4328
4329 if Etype (E) = Any_Access then
4330 Set_Etype (E, T);
4331 end if;
4332
4333 -- If the object is an access to variable, the initialization
4334 -- expression cannot be an access to constant.
4335
4336 if Is_Access_Type (T)
4337 and then not Is_Access_Constant (T)
4338 and then Is_Access_Type (Etype (E))
4339 and then Is_Access_Constant (Etype (E))
4340 then
4341 Error_Msg_N
4342 ("access to variable cannot be initialized with an "
4343 & "access-to-constant expression", E);
4344 end if;
4345
4346 if not Assignment_OK (N) then
4347 Check_Initialization (T, E);
4348 end if;
4349
4350 Check_Unset_Reference (E);
4351
4352 -- If this is a variable, then set current value. If this is a
4353 -- declared constant of a scalar type with a static expression,
4354 -- indicate that it is always valid.
4355
4356 if not Constant_Present (N) then
4357 if Compile_Time_Known_Value (E) then
4358 Set_Current_Value (Id, E);
4359 end if;
4360
4361 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
4362 Set_Is_Known_Valid (Id);
4363 end if;
4364
4365 -- Deal with setting of null flags
4366
4367 if Is_Access_Type (T) then
4368 if Known_Non_Null (E) then
4369 Set_Is_Known_Non_Null (Id, True);
4370 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
4371 Set_Is_Known_Null (Id, True);
4372 end if;
4373 end if;
4374
4375 -- Check incorrect use of dynamically tagged expressions
4376
4377 if Is_Tagged_Type (T) then
4378 Check_Dynamically_Tagged_Expression
4379 (Expr => E,
4380 Typ => T,
4381 Related_Nod => N);
4382 end if;
4383
4384 Apply_Scalar_Range_Check (E, T);
4385 Apply_Static_Length_Check (E, T);
4386
4387 if Nkind (Original_Node (N)) = N_Object_Declaration
4388 and then Comes_From_Source (Original_Node (N))
4389
4390 -- Only call test if needed
4391
4392 and then Restriction_Check_Required (SPARK_05)
4393 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
4394 then
4395 Check_SPARK_05_Restriction
4396 ("initialization expression is not appropriate", E);
4397 end if;
4398
4399 -- A formal parameter of a specific tagged type whose related
4400 -- subprogram is subject to pragma Extensions_Visible with value
4401 -- "False" cannot be implicitly converted to a class-wide type by
4402 -- means of an initialization expression (SPARK RM 6.1.7(3)). Do
4403 -- not consider internally generated expressions.
4404
4405 if Is_Class_Wide_Type (T)
4406 and then Comes_From_Source (E)
4407 and then Is_EVF_Expression (E)
4408 then
4409 Error_Msg_N
4410 ("formal parameter cannot be implicitly converted to "
4411 & "class-wide type when Extensions_Visible is False", E);
4412 end if;
4413 end if;
4414
4415 -- If the No_Streams restriction is set, check that the type of the
4416 -- object is not, and does not contain, any subtype derived from
4417 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
4418 -- Has_Stream just for efficiency reasons. There is no point in
4419 -- spending time on a Has_Stream check if the restriction is not set.
4420
4421 if Restriction_Check_Required (No_Streams) then
4422 if Has_Stream (T) then
4423 Check_Restriction (No_Streams, N);
4424 end if;
4425 end if;
4426
4427 -- Deal with predicate check before we start to do major rewriting. It
4428 -- is OK to initialize and then check the initialized value, since the
4429 -- object goes out of scope if we get a predicate failure. Note that we
4430 -- do this in the analyzer and not the expander because the analyzer
4431 -- does some substantial rewriting in some cases.
4432
4433 -- We need a predicate check if the type has predicates that are not
4434 -- ignored, and if either there is an initializing expression, or for
4435 -- default initialization when we have at least one case of an explicit
4436 -- default initial value and then this is not an internal declaration
4437 -- whose initialization comes later (as for an aggregate expansion).
4438
4439 if not Suppress_Assignment_Checks (N)
4440 and then Present (Predicate_Function (T))
4441 and then not Predicates_Ignored (T)
4442 and then not No_Initialization (N)
4443 and then
4444 (Present (E)
4445 or else
4446 Is_Partially_Initialized_Type (T, Include_Implicit => False))
4447 then
4448 -- If the type has a static predicate and the expression is known at
4449 -- compile time, see if the expression satisfies the predicate.
4450
4451 if Present (E) then
4452 Check_Expression_Against_Static_Predicate (E, T);
4453 end if;
4454
4455 -- If the type is a null record and there is no explicit initial
4456 -- expression, no predicate check applies.
4457
4458 if No (E) and then Is_Null_Record_Type (T) then
4459 null;
4460
4461 -- Do not generate a predicate check if the initialization expression
4462 -- is a type conversion because the conversion has been subjected to
4463 -- the same check. This is a small optimization which avoid redundant
4464 -- checks.
4465
4466 elsif Present (E) and then Nkind (E) = N_Type_Conversion then
4467 null;
4468
4469 else
4470 Insert_After (N,
4471 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
4472 end if;
4473 end if;
4474
4475 -- Case of unconstrained type
4476
4477 if not Is_Definite_Subtype (T) then
4478
4479 -- In SPARK, a declaration of unconstrained type is allowed
4480 -- only for constants of type string.
4481
4482 if Is_String_Type (T) and then not Constant_Present (N) then
4483 Check_SPARK_05_Restriction
4484 ("declaration of object of unconstrained type not allowed", N);
4485 end if;
4486
4487 -- Nothing to do in deferred constant case
4488
4489 if Constant_Present (N) and then No (E) then
4490 null;
4491
4492 -- Case of no initialization present
4493
4494 elsif No (E) then
4495 if No_Initialization (N) then
4496 null;
4497
4498 elsif Is_Class_Wide_Type (T) then
4499 Error_Msg_N
4500 ("initialization required in class-wide declaration ", N);
4501
4502 else
4503 Error_Msg_N
4504 ("unconstrained subtype not allowed (need initialization)",
4505 Object_Definition (N));
4506
4507 if Is_Record_Type (T) and then Has_Discriminants (T) then
4508 Error_Msg_N
4509 ("\provide initial value or explicit discriminant values",
4510 Object_Definition (N));
4511
4512 Error_Msg_NE
4513 ("\or give default discriminant values for type&",
4514 Object_Definition (N), T);
4515
4516 elsif Is_Array_Type (T) then
4517 Error_Msg_N
4518 ("\provide initial value or explicit array bounds",
4519 Object_Definition (N));
4520 end if;
4521 end if;
4522
4523 -- Case of initialization present but in error. Set initial
4524 -- expression as absent (but do not make above complaints)
4525
4526 elsif E = Error then
4527 Set_Expression (N, Empty);
4528 E := Empty;
4529
4530 -- Case of initialization present
4531
4532 else
4533 -- Check restrictions in Ada 83
4534
4535 if not Constant_Present (N) then
4536
4537 -- Unconstrained variables not allowed in Ada 83 mode
4538
4539 if Ada_Version = Ada_83
4540 and then Comes_From_Source (Object_Definition (N))
4541 then
4542 Error_Msg_N
4543 ("(Ada 83) unconstrained variable not allowed",
4544 Object_Definition (N));
4545 end if;
4546 end if;
4547
4548 -- Now we constrain the variable from the initializing expression
4549
4550 -- If the expression is an aggregate, it has been expanded into
4551 -- individual assignments. Retrieve the actual type from the
4552 -- expanded construct.
4553
4554 if Is_Array_Type (T)
4555 and then No_Initialization (N)
4556 and then Nkind (Original_Node (E)) = N_Aggregate
4557 then
4558 Act_T := Etype (E);
4559
4560 -- In case of class-wide interface object declarations we delay
4561 -- the generation of the equivalent record type declarations until
4562 -- its expansion because there are cases in they are not required.
4563
4564 elsif Is_Interface (T) then
4565 null;
4566
4567 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
4568 -- we should prevent the generation of another Itype with the
4569 -- same name as the one already generated, or we end up with
4570 -- two identical types in GNATprove.
4571
4572 elsif GNATprove_Mode then
4573 null;
4574
4575 -- If the type is an unchecked union, no subtype can be built from
4576 -- the expression. Rewrite declaration as a renaming, which the
4577 -- back-end can handle properly. This is a rather unusual case,
4578 -- because most unchecked_union declarations have default values
4579 -- for discriminants and are thus not indefinite.
4580
4581 elsif Is_Unchecked_Union (T) then
4582 if Constant_Present (N) or else Nkind (E) = N_Function_Call then
4583 Set_Ekind (Id, E_Constant);
4584 else
4585 Set_Ekind (Id, E_Variable);
4586 end if;
4587
4588 Rewrite (N,
4589 Make_Object_Renaming_Declaration (Loc,
4590 Defining_Identifier => Id,
4591 Subtype_Mark => New_Occurrence_Of (T, Loc),
4592 Name => E));
4593
4594 Set_Renamed_Object (Id, E);
4595 Freeze_Before (N, T);
4596 Set_Is_Frozen (Id);
4597 goto Leave;
4598
4599 else
4600 -- Ensure that the generated subtype has a unique external name
4601 -- when the related object is public. This guarantees that the
4602 -- subtype and its bounds will not be affected by switches or
4603 -- pragmas that may offset the internal counter due to extra
4604 -- generated code.
4605
4606 if Is_Public (Id) then
4607 Related_Id := Id;
4608 else
4609 Related_Id := Empty;
4610 end if;
4611
4612 Expand_Subtype_From_Expr
4613 (N => N,
4614 Unc_Type => T,
4615 Subtype_Indic => Object_Definition (N),
4616 Exp => E,
4617 Related_Id => Related_Id);
4618
4619 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
4620 end if;
4621
4622 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
4623
4624 if Aliased_Present (N) then
4625 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4626 end if;
4627
4628 Freeze_Before (N, Act_T);
4629 Freeze_Before (N, T);
4630 end if;
4631
4632 elsif Is_Array_Type (T)
4633 and then No_Initialization (N)
4634 and then (Nkind (Original_Node (E)) = N_Aggregate
4635 or else (Nkind (Original_Node (E)) = N_Qualified_Expression
4636 and then Nkind (Original_Node (Expression
4637 (Original_Node (E)))) = N_Aggregate))
4638 then
4639 if not Is_Entity_Name (Object_Definition (N)) then
4640 Act_T := Etype (E);
4641 Check_Compile_Time_Size (Act_T);
4642
4643 if Aliased_Present (N) then
4644 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4645 end if;
4646 end if;
4647
4648 -- When the given object definition and the aggregate are specified
4649 -- independently, and their lengths might differ do a length check.
4650 -- This cannot happen if the aggregate is of the form (others =>...)
4651
4652 if not Is_Constrained (T) then
4653 null;
4654
4655 elsif Nkind (E) = N_Raise_Constraint_Error then
4656
4657 -- Aggregate is statically illegal. Place back in declaration
4658
4659 Set_Expression (N, E);
4660 Set_No_Initialization (N, False);
4661
4662 elsif T = Etype (E) then
4663 null;
4664
4665 elsif Nkind (E) = N_Aggregate
4666 and then Present (Component_Associations (E))
4667 and then Present (Choice_List (First (Component_Associations (E))))
4668 and then
4669 Nkind (First (Choice_List (First (Component_Associations (E))))) =
4670 N_Others_Choice
4671 then
4672 null;
4673
4674 else
4675 Apply_Length_Check (E, T);
4676 end if;
4677
4678 -- If the type is limited unconstrained with defaulted discriminants and
4679 -- there is no expression, then the object is constrained by the
4680 -- defaults, so it is worthwhile building the corresponding subtype.
4681
4682 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
4683 and then not Is_Constrained (T)
4684 and then Has_Discriminants (T)
4685 then
4686 if No (E) then
4687 Act_T := Build_Default_Subtype (T, N);
4688 else
4689 -- Ada 2005: A limited object may be initialized by means of an
4690 -- aggregate. If the type has default discriminants it has an
4691 -- unconstrained nominal type, Its actual subtype will be obtained
4692 -- from the aggregate, and not from the default discriminants.
4693
4694 Act_T := Etype (E);
4695 end if;
4696
4697 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
4698
4699 elsif Nkind (E) = N_Function_Call
4700 and then Constant_Present (N)
4701 and then Has_Unconstrained_Elements (Etype (E))
4702 then
4703 -- The back-end has problems with constants of a discriminated type
4704 -- with defaults, if the initial value is a function call. We
4705 -- generate an intermediate temporary that will receive a reference
4706 -- to the result of the call. The initialization expression then
4707 -- becomes a dereference of that temporary.
4708
4709 Remove_Side_Effects (E);
4710
4711 -- If this is a constant declaration of an unconstrained type and
4712 -- the initialization is an aggregate, we can use the subtype of the
4713 -- aggregate for the declared entity because it is immutable.
4714
4715 elsif not Is_Constrained (T)
4716 and then Has_Discriminants (T)
4717 and then Constant_Present (N)
4718 and then not Has_Unchecked_Union (T)
4719 and then Nkind (E) = N_Aggregate
4720 then
4721 Act_T := Etype (E);
4722 end if;
4723
4724 -- Check No_Wide_Characters restriction
4725
4726 Check_Wide_Character_Restriction (T, Object_Definition (N));
4727
4728 -- Indicate this is not set in source. Certainly true for constants, and
4729 -- true for variables so far (will be reset for a variable if and when
4730 -- we encounter a modification in the source).
4731
4732 Set_Never_Set_In_Source (Id);
4733
4734 -- Now establish the proper kind and type of the object
4735
4736 if Constant_Present (N) then
4737 Set_Ekind (Id, E_Constant);
4738 Set_Is_True_Constant (Id);
4739
4740 else
4741 Set_Ekind (Id, E_Variable);
4742
4743 -- A variable is set as shared passive if it appears in a shared
4744 -- passive package, and is at the outer level. This is not done for
4745 -- entities generated during expansion, because those are always
4746 -- manipulated locally.
4747
4748 if Is_Shared_Passive (Current_Scope)
4749 and then Is_Library_Level_Entity (Id)
4750 and then Comes_From_Source (Id)
4751 then
4752 Set_Is_Shared_Passive (Id);
4753 Check_Shared_Var (Id, T, N);
4754 end if;
4755
4756 -- Set Has_Initial_Value if initializing expression present. Note
4757 -- that if there is no initializing expression, we leave the state
4758 -- of this flag unchanged (usually it will be False, but notably in
4759 -- the case of exception choice variables, it will already be true).
4760
4761 if Present (E) then
4762 Set_Has_Initial_Value (Id);
4763 end if;
4764 end if;
4765
4766 -- Set the SPARK mode from the current context (may be overwritten later
4767 -- with explicit pragma).
4768
4769 Set_SPARK_Pragma (Id, SPARK_Mode_Pragma);
4770 Set_SPARK_Pragma_Inherited (Id);
4771
4772 -- Preserve relevant elaboration-related attributes of the context which
4773 -- are no longer available or very expensive to recompute once analysis,
4774 -- resolution, and expansion are over.
4775
4776 Mark_Elaboration_Attributes
4777 (N_Id => Id,
4778 Checks => True,
4779 Warnings => True);
4780
4781 -- Initialize alignment and size and capture alignment setting
4782
4783 Init_Alignment (Id);
4784 Init_Esize (Id);
4785 Set_Optimize_Alignment_Flags (Id);
4786
4787 -- Deal with aliased case
4788
4789 if Aliased_Present (N) then
4790 Set_Is_Aliased (Id);
4791
4792 -- If the object is aliased and the type is unconstrained with
4793 -- defaulted discriminants and there is no expression, then the
4794 -- object is constrained by the defaults, so it is worthwhile
4795 -- building the corresponding subtype.
4796
4797 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4798 -- unconstrained, then only establish an actual subtype if the
4799 -- nominal subtype is indefinite. In definite cases the object is
4800 -- unconstrained in Ada 2005.
4801
4802 if No (E)
4803 and then Is_Record_Type (T)
4804 and then not Is_Constrained (T)
4805 and then Has_Discriminants (T)
4806 and then (Ada_Version < Ada_2005
4807 or else not Is_Definite_Subtype (T))
4808 then
4809 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
4810 end if;
4811 end if;
4812
4813 -- Now we can set the type of the object
4814
4815 Set_Etype (Id, Act_T);
4816
4817 -- Non-constant object is marked to be treated as volatile if type is
4818 -- volatile and we clear the Current_Value setting that may have been
4819 -- set above. Doing so for constants isn't required and might interfere
4820 -- with possible uses of the object as a static expression in contexts
4821 -- incompatible with volatility (e.g. as a case-statement alternative).
4822
4823 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
4824 Set_Treat_As_Volatile (Id);
4825 Set_Current_Value (Id, Empty);
4826 end if;
4827
4828 -- Deal with controlled types
4829
4830 if Has_Controlled_Component (Etype (Id))
4831 or else Is_Controlled (Etype (Id))
4832 then
4833 if not Is_Library_Level_Entity (Id) then
4834 Check_Restriction (No_Nested_Finalization, N);
4835 else
4836 Validate_Controlled_Object (Id);
4837 end if;
4838 end if;
4839
4840 if Has_Task (Etype (Id)) then
4841 Check_Restriction (No_Tasking, N);
4842
4843 -- Deal with counting max tasks
4844
4845 -- Nothing to do if inside a generic
4846
4847 if Inside_A_Generic then
4848 null;
4849
4850 -- If library level entity, then count tasks
4851
4852 elsif Is_Library_Level_Entity (Id) then
4853 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4854
4855 -- If not library level entity, then indicate we don't know max
4856 -- tasks and also check task hierarchy restriction and blocking
4857 -- operation (since starting a task is definitely blocking).
4858
4859 else
4860 Check_Restriction (Max_Tasks, N);
4861 Check_Restriction (No_Task_Hierarchy, N);
4862 Check_Potentially_Blocking_Operation (N);
4863 end if;
4864
4865 -- A rather specialized test. If we see two tasks being declared
4866 -- of the same type in the same object declaration, and the task
4867 -- has an entry with an address clause, we know that program error
4868 -- will be raised at run time since we can't have two tasks with
4869 -- entries at the same address.
4870
4871 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4872 declare
4873 E : Entity_Id;
4874
4875 begin
4876 E := First_Entity (Etype (Id));
4877 while Present (E) loop
4878 if Ekind (E) = E_Entry
4879 and then Present (Get_Attribute_Definition_Clause
4880 (E, Attribute_Address))
4881 then
4882 Error_Msg_Warn := SPARK_Mode /= On;
4883 Error_Msg_N
4884 ("more than one task with same entry address<<", N);
4885 Error_Msg_N ("\Program_Error [<<", N);
4886 Insert_Action (N,
4887 Make_Raise_Program_Error (Loc,
4888 Reason => PE_Duplicated_Entry_Address));
4889 exit;
4890 end if;
4891
4892 Next_Entity (E);
4893 end loop;
4894 end;
4895 end if;
4896 end if;
4897
4898 -- Some simple constant-propagation: if the expression is a constant
4899 -- string initialized with a literal, share the literal. This avoids
4900 -- a run-time copy.
4901
4902 if Present (E)
4903 and then Is_Entity_Name (E)
4904 and then Ekind (Entity (E)) = E_Constant
4905 and then Base_Type (Etype (E)) = Standard_String
4906 then
4907 declare
4908 Val : constant Node_Id := Constant_Value (Entity (E));
4909 begin
4910 if Present (Val) and then Nkind (Val) = N_String_Literal then
4911 Rewrite (E, New_Copy (Val));
4912 end if;
4913 end;
4914 end if;
4915
4916 -- Another optimization: if the nominal subtype is unconstrained and
4917 -- the expression is a function call that returns an unconstrained
4918 -- type, rewrite the declaration as a renaming of the result of the
4919 -- call. The exceptions below are cases where the copy is expected,
4920 -- either by the back end (Aliased case) or by the semantics, as for
4921 -- initializing controlled types or copying tags for class-wide types.
4922
4923 if Present (E)
4924 and then Nkind (E) = N_Explicit_Dereference
4925 and then Nkind (Original_Node (E)) = N_Function_Call
4926 and then not Is_Library_Level_Entity (Id)
4927 and then not Is_Constrained (Underlying_Type (T))
4928 and then not Is_Aliased (Id)
4929 and then not Is_Class_Wide_Type (T)
4930 and then not Is_Controlled (T)
4931 and then not Has_Controlled_Component (Base_Type (T))
4932 and then Expander_Active
4933 then
4934 Rewrite (N,
4935 Make_Object_Renaming_Declaration (Loc,
4936 Defining_Identifier => Id,
4937 Access_Definition => Empty,
4938 Subtype_Mark => New_Occurrence_Of
4939 (Base_Type (Etype (Id)), Loc),
4940 Name => E));
4941
4942 Set_Renamed_Object (Id, E);
4943
4944 -- Force generation of debugging information for the constant and for
4945 -- the renamed function call.
4946
4947 Set_Debug_Info_Needed (Id);
4948 Set_Debug_Info_Needed (Entity (Prefix (E)));
4949 end if;
4950
4951 if Present (Prev_Entity)
4952 and then Is_Frozen (Prev_Entity)
4953 and then not Error_Posted (Id)
4954 then
4955 Error_Msg_N ("full constant declaration appears too late", N);
4956 end if;
4957
4958 Check_Eliminated (Id);
4959
4960 -- Deal with setting In_Private_Part flag if in private part
4961
4962 if Ekind (Scope (Id)) = E_Package
4963 and then In_Private_Part (Scope (Id))
4964 then
4965 Set_In_Private_Part (Id);
4966 end if;
4967
4968 <<Leave>>
4969 -- Initialize the refined state of a variable here because this is a
4970 -- common destination for legal and illegal object declarations.
4971
4972 if Ekind (Id) = E_Variable then
4973 Set_Encapsulating_State (Id, Empty);
4974 end if;
4975
4976 if Has_Aspects (N) then
4977 Analyze_Aspect_Specifications (N, Id);
4978 end if;
4979
4980 Analyze_Dimension (N);
4981
4982 -- Verify whether the object declaration introduces an illegal hidden
4983 -- state within a package subject to a null abstract state.
4984
4985 if Ekind (Id) = E_Variable then
4986 Check_No_Hidden_State (Id);
4987 end if;
4988
4989 Restore_Ghost_Region (Saved_GM, Saved_IGR);
4990 end Analyze_Object_Declaration;
4991
4992 ---------------------------
4993 -- Analyze_Others_Choice --
4994 ---------------------------
4995
4996 -- Nothing to do for the others choice node itself, the semantic analysis
4997 -- of the others choice will occur as part of the processing of the parent
4998
4999 procedure Analyze_Others_Choice (N : Node_Id) is
5000 pragma Warnings (Off, N);
5001 begin
5002 null;
5003 end Analyze_Others_Choice;
5004
5005 -------------------------------------------
5006 -- Analyze_Private_Extension_Declaration --
5007 -------------------------------------------
5008
5009 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
5010 Indic : constant Node_Id := Subtype_Indication (N);
5011 T : constant Entity_Id := Defining_Identifier (N);
5012 Iface : Entity_Id;
5013 Iface_Elmt : Elmt_Id;
5014 Parent_Base : Entity_Id;
5015 Parent_Type : Entity_Id;
5016
5017 begin
5018 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
5019
5020 if Is_Non_Empty_List (Interface_List (N)) then
5021 declare
5022 Intf : Node_Id;
5023 T : Entity_Id;
5024
5025 begin
5026 Intf := First (Interface_List (N));
5027 while Present (Intf) loop
5028 T := Find_Type_Of_Subtype_Indic (Intf);
5029
5030 Diagnose_Interface (Intf, T);
5031 Next (Intf);
5032 end loop;
5033 end;
5034 end if;
5035
5036 Generate_Definition (T);
5037
5038 -- For other than Ada 2012, just enter the name in the current scope
5039
5040 if Ada_Version < Ada_2012 then
5041 Enter_Name (T);
5042
5043 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
5044 -- case of private type that completes an incomplete type.
5045
5046 else
5047 declare
5048 Prev : Entity_Id;
5049
5050 begin
5051 Prev := Find_Type_Name (N);
5052
5053 pragma Assert (Prev = T
5054 or else (Ekind (Prev) = E_Incomplete_Type
5055 and then Present (Full_View (Prev))
5056 and then Full_View (Prev) = T));
5057 end;
5058 end if;
5059
5060 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
5061 Parent_Base := Base_Type (Parent_Type);
5062
5063 if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then
5064 Set_Ekind (T, Ekind (Parent_Type));
5065 Set_Etype (T, Any_Type);
5066 goto Leave;
5067
5068 elsif not Is_Tagged_Type (Parent_Type) then
5069 Error_Msg_N
5070 ("parent of type extension must be a tagged type ", Indic);
5071 goto Leave;
5072
5073 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
5074 Error_Msg_N ("premature derivation of incomplete type", Indic);
5075 goto Leave;
5076
5077 elsif Is_Concurrent_Type (Parent_Type) then
5078 Error_Msg_N
5079 ("parent type of a private extension cannot be a synchronized "
5080 & "tagged type (RM 3.9.1 (3/1))", N);
5081
5082 Set_Etype (T, Any_Type);
5083 Set_Ekind (T, E_Limited_Private_Type);
5084 Set_Private_Dependents (T, New_Elmt_List);
5085 Set_Error_Posted (T);
5086 goto Leave;
5087 end if;
5088
5089 -- Perhaps the parent type should be changed to the class-wide type's
5090 -- specific type in this case to prevent cascading errors ???
5091
5092 if Is_Class_Wide_Type (Parent_Type) then
5093 Error_Msg_N
5094 ("parent of type extension must not be a class-wide type", Indic);
5095 goto Leave;
5096 end if;
5097
5098 if (not Is_Package_Or_Generic_Package (Current_Scope)
5099 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
5100 or else In_Private_Part (Current_Scope)
5101 then
5102 Error_Msg_N ("invalid context for private extension", N);
5103 end if;
5104
5105 -- Set common attributes
5106
5107 Set_Is_Pure (T, Is_Pure (Current_Scope));
5108 Set_Scope (T, Current_Scope);
5109 Set_Ekind (T, E_Record_Type_With_Private);
5110 Init_Size_Align (T);
5111 Set_Default_SSO (T);
5112 Set_No_Reordering (T, No_Component_Reordering);
5113
5114 Set_Etype (T, Parent_Base);
5115 Propagate_Concurrent_Flags (T, Parent_Base);
5116
5117 Set_Convention (T, Convention (Parent_Type));
5118 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
5119 Set_Is_First_Subtype (T);
5120 Make_Class_Wide_Type (T);
5121
5122 -- Set the SPARK mode from the current context
5123
5124 Set_SPARK_Pragma (T, SPARK_Mode_Pragma);
5125 Set_SPARK_Pragma_Inherited (T);
5126
5127 if Unknown_Discriminants_Present (N) then
5128 Set_Discriminant_Constraint (T, No_Elist);
5129 end if;
5130
5131 Build_Derived_Record_Type (N, Parent_Type, T);
5132
5133 -- A private extension inherits the Default_Initial_Condition pragma
5134 -- coming from any parent type within the derivation chain.
5135
5136 if Has_DIC (Parent_Type) then
5137 Set_Has_Inherited_DIC (T);
5138 end if;
5139
5140 -- A private extension inherits any class-wide invariants coming from a
5141 -- parent type or an interface. Note that the invariant procedure of the
5142 -- parent type should not be inherited because the private extension may
5143 -- define invariants of its own.
5144
5145 if Has_Inherited_Invariants (Parent_Type)
5146 or else Has_Inheritable_Invariants (Parent_Type)
5147 then
5148 Set_Has_Inherited_Invariants (T);
5149
5150 elsif Present (Interfaces (T)) then
5151 Iface_Elmt := First_Elmt (Interfaces (T));
5152 while Present (Iface_Elmt) loop
5153 Iface := Node (Iface_Elmt);
5154
5155 if Has_Inheritable_Invariants (Iface) then
5156 Set_Has_Inherited_Invariants (T);
5157 exit;
5158 end if;
5159
5160 Next_Elmt (Iface_Elmt);
5161 end loop;
5162 end if;
5163
5164 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
5165 -- synchronized formal derived type.
5166
5167 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
5168 Set_Is_Limited_Record (T);
5169
5170 -- Formal derived type case
5171
5172 if Is_Generic_Type (T) then
5173
5174 -- The parent must be a tagged limited type or a synchronized
5175 -- interface.
5176
5177 if (not Is_Tagged_Type (Parent_Type)
5178 or else not Is_Limited_Type (Parent_Type))
5179 and then
5180 (not Is_Interface (Parent_Type)
5181 or else not Is_Synchronized_Interface (Parent_Type))
5182 then
5183 Error_Msg_NE
5184 ("parent type of & must be tagged limited or synchronized",
5185 N, T);
5186 end if;
5187
5188 -- The progenitors (if any) must be limited or synchronized
5189 -- interfaces.
5190
5191 if Present (Interfaces (T)) then
5192 Iface_Elmt := First_Elmt (Interfaces (T));
5193 while Present (Iface_Elmt) loop
5194 Iface := Node (Iface_Elmt);
5195
5196 if not Is_Limited_Interface (Iface)
5197 and then not Is_Synchronized_Interface (Iface)
5198 then
5199 Error_Msg_NE
5200 ("progenitor & must be limited or synchronized",
5201 N, Iface);
5202 end if;
5203
5204 Next_Elmt (Iface_Elmt);
5205 end loop;
5206 end if;
5207
5208 -- Regular derived extension, the parent must be a limited or
5209 -- synchronized interface.
5210
5211 else
5212 if not Is_Interface (Parent_Type)
5213 or else (not Is_Limited_Interface (Parent_Type)
5214 and then not Is_Synchronized_Interface (Parent_Type))
5215 then
5216 Error_Msg_NE
5217 ("parent type of & must be limited interface", N, T);
5218 end if;
5219 end if;
5220
5221 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
5222 -- extension with a synchronized parent must be explicitly declared
5223 -- synchronized, because the full view will be a synchronized type.
5224 -- This must be checked before the check for limited types below,
5225 -- to ensure that types declared limited are not allowed to extend
5226 -- synchronized interfaces.
5227
5228 elsif Is_Interface (Parent_Type)
5229 and then Is_Synchronized_Interface (Parent_Type)
5230 and then not Synchronized_Present (N)
5231 then
5232 Error_Msg_NE
5233 ("private extension of& must be explicitly synchronized",
5234 N, Parent_Type);
5235
5236 elsif Limited_Present (N) then
5237 Set_Is_Limited_Record (T);
5238
5239 if not Is_Limited_Type (Parent_Type)
5240 and then
5241 (not Is_Interface (Parent_Type)
5242 or else not Is_Limited_Interface (Parent_Type))
5243 then
5244 Error_Msg_NE ("parent type& of limited extension must be limited",
5245 N, Parent_Type);
5246 end if;
5247 end if;
5248
5249 -- Remember that its parent type has a private extension. Used to warn
5250 -- on public primitives of the parent type defined after its private
5251 -- extensions (see Check_Dispatching_Operation).
5252
5253 Set_Has_Private_Extension (Parent_Type);
5254
5255 <<Leave>>
5256 if Has_Aspects (N) then
5257 Analyze_Aspect_Specifications (N, T);
5258 end if;
5259 end Analyze_Private_Extension_Declaration;
5260
5261 ---------------------------------
5262 -- Analyze_Subtype_Declaration --
5263 ---------------------------------
5264
5265 procedure Analyze_Subtype_Declaration
5266 (N : Node_Id;
5267 Skip : Boolean := False)
5268 is
5269 Id : constant Entity_Id := Defining_Identifier (N);
5270 R_Checks : Check_Result;
5271 T : Entity_Id;
5272
5273 begin
5274 Generate_Definition (Id);
5275 Set_Is_Pure (Id, Is_Pure (Current_Scope));
5276 Init_Size_Align (Id);
5277
5278 -- The following guard condition on Enter_Name is to handle cases where
5279 -- the defining identifier has already been entered into the scope but
5280 -- the declaration as a whole needs to be analyzed.
5281
5282 -- This case in particular happens for derived enumeration types. The
5283 -- derived enumeration type is processed as an inserted enumeration type
5284 -- declaration followed by a rewritten subtype declaration. The defining
5285 -- identifier, however, is entered into the name scope very early in the
5286 -- processing of the original type declaration and therefore needs to be
5287 -- avoided here, when the created subtype declaration is analyzed. (See
5288 -- Build_Derived_Types)
5289
5290 -- This also happens when the full view of a private type is derived
5291 -- type with constraints. In this case the entity has been introduced
5292 -- in the private declaration.
5293
5294 -- Finally this happens in some complex cases when validity checks are
5295 -- enabled, where the same subtype declaration may be analyzed twice.
5296 -- This can happen if the subtype is created by the preanalysis of
5297 -- an attribute tht gives the range of a loop statement, and the loop
5298 -- itself appears within an if_statement that will be rewritten during
5299 -- expansion.
5300
5301 if Skip
5302 or else (Present (Etype (Id))
5303 and then (Is_Private_Type (Etype (Id))
5304 or else Is_Task_Type (Etype (Id))
5305 or else Is_Rewrite_Substitution (N)))
5306 then
5307 null;
5308
5309 elsif Current_Entity (Id) = Id then
5310 null;
5311
5312 else
5313 Enter_Name (Id);
5314 end if;
5315
5316 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
5317
5318 -- Class-wide equivalent types of records with unknown discriminants
5319 -- involve the generation of an itype which serves as the private view
5320 -- of a constrained record subtype. In such cases the base type of the
5321 -- current subtype we are processing is the private itype. Use the full
5322 -- of the private itype when decorating various attributes.
5323
5324 if Is_Itype (T)
5325 and then Is_Private_Type (T)
5326 and then Present (Full_View (T))
5327 then
5328 T := Full_View (T);
5329 end if;
5330
5331 -- Inherit common attributes
5332
5333 Set_Is_Volatile (Id, Is_Volatile (T));
5334 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
5335 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
5336 Set_Convention (Id, Convention (T));
5337
5338 -- If ancestor has predicates then so does the subtype, and in addition
5339 -- we must delay the freeze to properly arrange predicate inheritance.
5340
5341 -- The Ancestor_Type test is really unpleasant, there seem to be cases
5342 -- in which T = ID, so the above tests and assignments do nothing???
5343
5344 if Has_Predicates (T)
5345 or else (Present (Ancestor_Subtype (T))
5346 and then Has_Predicates (Ancestor_Subtype (T)))
5347 then
5348 Set_Has_Predicates (Id);
5349 Set_Has_Delayed_Freeze (Id);
5350
5351 -- Generated subtypes inherit the predicate function from the parent
5352 -- (no aspects to examine on the generated declaration).
5353
5354 if not Comes_From_Source (N) then
5355 Set_Ekind (Id, Ekind (T));
5356
5357 if Present (Predicate_Function (Id)) then
5358 null;
5359
5360 elsif Present (Predicate_Function (T)) then
5361 Set_Predicate_Function (Id, Predicate_Function (T));
5362
5363 elsif Present (Ancestor_Subtype (T))
5364 and then Present (Predicate_Function (Ancestor_Subtype (T)))
5365 then
5366 Set_Predicate_Function (Id,
5367 Predicate_Function (Ancestor_Subtype (T)));
5368 end if;
5369 end if;
5370 end if;
5371
5372 -- Subtype of Boolean cannot have a constraint in SPARK
5373
5374 if Is_Boolean_Type (T)
5375 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
5376 then
5377 Check_SPARK_05_Restriction
5378 ("subtype of Boolean cannot have constraint", N);
5379 end if;
5380
5381 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5382 declare
5383 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5384 One_Cstr : Node_Id;
5385 Low : Node_Id;
5386 High : Node_Id;
5387
5388 begin
5389 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
5390 One_Cstr := First (Constraints (Cstr));
5391 while Present (One_Cstr) loop
5392
5393 -- Index or discriminant constraint in SPARK must be a
5394 -- subtype mark.
5395
5396 if not
5397 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
5398 then
5399 Check_SPARK_05_Restriction
5400 ("subtype mark required", One_Cstr);
5401
5402 -- String subtype must have a lower bound of 1 in SPARK.
5403 -- Note that we do not need to test for the non-static case
5404 -- here, since that was already taken care of in
5405 -- Process_Range_Expr_In_Decl.
5406
5407 elsif Base_Type (T) = Standard_String then
5408 Get_Index_Bounds (One_Cstr, Low, High);
5409
5410 if Is_OK_Static_Expression (Low)
5411 and then Expr_Value (Low) /= 1
5412 then
5413 Check_SPARK_05_Restriction
5414 ("String subtype must have lower bound of 1", N);
5415 end if;
5416 end if;
5417
5418 Next (One_Cstr);
5419 end loop;
5420 end if;
5421 end;
5422 end if;
5423
5424 -- In the case where there is no constraint given in the subtype
5425 -- indication, Process_Subtype just returns the Subtype_Mark, so its
5426 -- semantic attributes must be established here.
5427
5428 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
5429 Set_Etype (Id, Base_Type (T));
5430
5431 -- Subtype of unconstrained array without constraint is not allowed
5432 -- in SPARK.
5433
5434 if Is_Array_Type (T) and then not Is_Constrained (T) then
5435 Check_SPARK_05_Restriction
5436 ("subtype of unconstrained array must have constraint", N);
5437 end if;
5438
5439 case Ekind (T) is
5440 when Array_Kind =>
5441 Set_Ekind (Id, E_Array_Subtype);
5442 Copy_Array_Subtype_Attributes (Id, T);
5443
5444 when Decimal_Fixed_Point_Kind =>
5445 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
5446 Set_Digits_Value (Id, Digits_Value (T));
5447 Set_Delta_Value (Id, Delta_Value (T));
5448 Set_Scale_Value (Id, Scale_Value (T));
5449 Set_Small_Value (Id, Small_Value (T));
5450 Set_Scalar_Range (Id, Scalar_Range (T));
5451 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
5452 Set_Is_Constrained (Id, Is_Constrained (T));
5453 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5454 Set_RM_Size (Id, RM_Size (T));
5455
5456 when Enumeration_Kind =>
5457 Set_Ekind (Id, E_Enumeration_Subtype);
5458 Set_First_Literal (Id, First_Literal (Base_Type (T)));
5459 Set_Scalar_Range (Id, Scalar_Range (T));
5460 Set_Is_Character_Type (Id, Is_Character_Type (T));
5461 Set_Is_Constrained (Id, Is_Constrained (T));
5462 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5463 Set_RM_Size (Id, RM_Size (T));
5464
5465 when Ordinary_Fixed_Point_Kind =>
5466 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
5467 Set_Scalar_Range (Id, Scalar_Range (T));
5468 Set_Small_Value (Id, Small_Value (T));
5469 Set_Delta_Value (Id, Delta_Value (T));
5470 Set_Is_Constrained (Id, Is_Constrained (T));
5471 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5472 Set_RM_Size (Id, RM_Size (T));
5473
5474 when Float_Kind =>
5475 Set_Ekind (Id, E_Floating_Point_Subtype);
5476 Set_Scalar_Range (Id, Scalar_Range (T));
5477 Set_Digits_Value (Id, Digits_Value (T));
5478 Set_Is_Constrained (Id, Is_Constrained (T));
5479
5480 -- If the floating point type has dimensions, these will be
5481 -- inherited subsequently when Analyze_Dimensions is called.
5482
5483 when Signed_Integer_Kind =>
5484 Set_Ekind (Id, E_Signed_Integer_Subtype);
5485 Set_Scalar_Range (Id, Scalar_Range (T));
5486 Set_Is_Constrained (Id, Is_Constrained (T));
5487 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5488 Set_RM_Size (Id, RM_Size (T));
5489
5490 when Modular_Integer_Kind =>
5491 Set_Ekind (Id, E_Modular_Integer_Subtype);
5492 Set_Scalar_Range (Id, Scalar_Range (T));
5493 Set_Is_Constrained (Id, Is_Constrained (T));
5494 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5495 Set_RM_Size (Id, RM_Size (T));
5496
5497 when Class_Wide_Kind =>
5498 Set_Ekind (Id, E_Class_Wide_Subtype);
5499 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5500 Set_Cloned_Subtype (Id, T);
5501 Set_Is_Tagged_Type (Id, True);
5502 Set_Has_Unknown_Discriminants
5503 (Id, True);
5504 Set_No_Tagged_Streams_Pragma
5505 (Id, No_Tagged_Streams_Pragma (T));
5506
5507 if Ekind (T) = E_Class_Wide_Subtype then
5508 Set_Equivalent_Type (Id, Equivalent_Type (T));
5509 end if;
5510
5511 when E_Record_Subtype
5512 | E_Record_Type
5513 =>
5514 Set_Ekind (Id, E_Record_Subtype);
5515
5516 if Ekind (T) = E_Record_Subtype
5517 and then Present (Cloned_Subtype (T))
5518 then
5519 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
5520 else
5521 Set_Cloned_Subtype (Id, T);
5522 end if;
5523
5524 Set_First_Entity (Id, First_Entity (T));
5525 Set_Last_Entity (Id, Last_Entity (T));
5526 Set_Has_Discriminants (Id, Has_Discriminants (T));
5527 Set_Is_Constrained (Id, Is_Constrained (T));
5528 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
5529 Set_Has_Implicit_Dereference
5530 (Id, Has_Implicit_Dereference (T));
5531 Set_Has_Unknown_Discriminants
5532 (Id, Has_Unknown_Discriminants (T));
5533
5534 if Has_Discriminants (T) then
5535 Set_Discriminant_Constraint
5536 (Id, Discriminant_Constraint (T));
5537 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5538
5539 elsif Has_Unknown_Discriminants (Id) then
5540 Set_Discriminant_Constraint (Id, No_Elist);
5541 end if;
5542
5543 if Is_Tagged_Type (T) then
5544 Set_Is_Tagged_Type (Id, True);
5545 Set_No_Tagged_Streams_Pragma
5546 (Id, No_Tagged_Streams_Pragma (T));
5547 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
5548 Set_Direct_Primitive_Operations
5549 (Id, Direct_Primitive_Operations (T));
5550 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5551
5552 if Is_Interface (T) then
5553 Set_Is_Interface (Id);
5554 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
5555 end if;
5556 end if;
5557
5558 when Private_Kind =>
5559 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5560 Set_Has_Discriminants (Id, Has_Discriminants (T));
5561 Set_Is_Constrained (Id, Is_Constrained (T));
5562 Set_First_Entity (Id, First_Entity (T));
5563 Set_Last_Entity (Id, Last_Entity (T));
5564 Set_Private_Dependents (Id, New_Elmt_List);
5565 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
5566 Set_Has_Implicit_Dereference
5567 (Id, Has_Implicit_Dereference (T));
5568 Set_Has_Unknown_Discriminants
5569 (Id, Has_Unknown_Discriminants (T));
5570 Set_Known_To_Have_Preelab_Init
5571 (Id, Known_To_Have_Preelab_Init (T));
5572
5573 if Is_Tagged_Type (T) then
5574 Set_Is_Tagged_Type (Id);
5575 Set_No_Tagged_Streams_Pragma (Id,
5576 No_Tagged_Streams_Pragma (T));
5577 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
5578 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5579 Set_Direct_Primitive_Operations (Id,
5580 Direct_Primitive_Operations (T));
5581 end if;
5582
5583 -- In general the attributes of the subtype of a private type
5584 -- are the attributes of the partial view of parent. However,
5585 -- the full view may be a discriminated type, and the subtype
5586 -- must share the discriminant constraint to generate correct
5587 -- calls to initialization procedures.
5588
5589 if Has_Discriminants (T) then
5590 Set_Discriminant_Constraint
5591 (Id, Discriminant_Constraint (T));
5592 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5593
5594 elsif Present (Full_View (T))
5595 and then Has_Discriminants (Full_View (T))
5596 then
5597 Set_Discriminant_Constraint
5598 (Id, Discriminant_Constraint (Full_View (T)));
5599 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5600
5601 -- This would seem semantically correct, but apparently
5602 -- generates spurious errors about missing components ???
5603
5604 -- Set_Has_Discriminants (Id);
5605 end if;
5606
5607 Prepare_Private_Subtype_Completion (Id, N);
5608
5609 -- If this is the subtype of a constrained private type with
5610 -- discriminants that has got a full view and we also have
5611 -- built a completion just above, show that the completion
5612 -- is a clone of the full view to the back-end.
5613
5614 if Has_Discriminants (T)
5615 and then not Has_Unknown_Discriminants (T)
5616 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
5617 and then Present (Full_View (T))
5618 and then Present (Full_View (Id))
5619 then
5620 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
5621 end if;
5622
5623 when Access_Kind =>
5624 Set_Ekind (Id, E_Access_Subtype);
5625 Set_Is_Constrained (Id, Is_Constrained (T));
5626 Set_Is_Access_Constant
5627 (Id, Is_Access_Constant (T));
5628 Set_Directly_Designated_Type
5629 (Id, Designated_Type (T));
5630 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
5631
5632 -- A Pure library_item must not contain the declaration of a
5633 -- named access type, except within a subprogram, generic
5634 -- subprogram, task unit, or protected unit, or if it has
5635 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
5636
5637 if Comes_From_Source (Id)
5638 and then In_Pure_Unit
5639 and then not In_Subprogram_Task_Protected_Unit
5640 and then not No_Pool_Assigned (Id)
5641 then
5642 Error_Msg_N
5643 ("named access types not allowed in pure unit", N);
5644 end if;
5645
5646 when Concurrent_Kind =>
5647 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5648 Set_Corresponding_Record_Type (Id,
5649 Corresponding_Record_Type (T));
5650 Set_First_Entity (Id, First_Entity (T));
5651 Set_First_Private_Entity (Id, First_Private_Entity (T));
5652 Set_Has_Discriminants (Id, Has_Discriminants (T));
5653 Set_Is_Constrained (Id, Is_Constrained (T));
5654 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5655 Set_Last_Entity (Id, Last_Entity (T));
5656
5657 if Is_Tagged_Type (T) then
5658 Set_No_Tagged_Streams_Pragma
5659 (Id, No_Tagged_Streams_Pragma (T));
5660 end if;
5661
5662 if Has_Discriminants (T) then
5663 Set_Discriminant_Constraint
5664 (Id, Discriminant_Constraint (T));
5665 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5666 end if;
5667
5668 when Incomplete_Kind =>
5669 if Ada_Version >= Ada_2005 then
5670
5671 -- In Ada 2005 an incomplete type can be explicitly tagged:
5672 -- propagate indication. Note that we also have to include
5673 -- subtypes for Ada 2012 extended use of incomplete types.
5674
5675 Set_Ekind (Id, E_Incomplete_Subtype);
5676 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5677 Set_Private_Dependents (Id, New_Elmt_List);
5678
5679 if Is_Tagged_Type (Id) then
5680 Set_No_Tagged_Streams_Pragma
5681 (Id, No_Tagged_Streams_Pragma (T));
5682 Set_Direct_Primitive_Operations (Id, New_Elmt_List);
5683 end if;
5684
5685 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
5686 -- incomplete type visible through a limited with clause.
5687
5688 if From_Limited_With (T)
5689 and then Present (Non_Limited_View (T))
5690 then
5691 Set_From_Limited_With (Id);
5692 Set_Non_Limited_View (Id, Non_Limited_View (T));
5693
5694 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5695 -- to the private dependents of the original incomplete
5696 -- type for future transformation.
5697
5698 else
5699 Append_Elmt (Id, Private_Dependents (T));
5700 end if;
5701
5702 -- If the subtype name denotes an incomplete type an error
5703 -- was already reported by Process_Subtype.
5704
5705 else
5706 Set_Etype (Id, Any_Type);
5707 end if;
5708
5709 when others =>
5710 raise Program_Error;
5711 end case;
5712
5713 -- If there is no constraint in the subtype indication, the
5714 -- declared entity inherits predicates from the parent.
5715
5716 Inherit_Predicate_Flags (Id, T);
5717 end if;
5718
5719 if Etype (Id) = Any_Type then
5720 goto Leave;
5721 end if;
5722
5723 -- Some common processing on all types
5724
5725 Set_Size_Info (Id, T);
5726 Set_First_Rep_Item (Id, First_Rep_Item (T));
5727
5728 -- If the parent type is a generic actual, so is the subtype. This may
5729 -- happen in a nested instance. Why Comes_From_Source test???
5730
5731 if not Comes_From_Source (N) then
5732 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
5733 end if;
5734
5735 -- If this is a subtype declaration for an actual in an instance,
5736 -- inherit static and dynamic predicates if any.
5737
5738 -- If declaration has no aspect specifications, inherit predicate
5739 -- info as well. Unclear how to handle the case of both specified
5740 -- and inherited predicates ??? Other inherited aspects, such as
5741 -- invariants, should be OK, but the combination with later pragmas
5742 -- may also require special merging.
5743
5744 if Has_Predicates (T)
5745 and then Present (Predicate_Function (T))
5746 and then
5747 ((In_Instance and then not Comes_From_Source (N))
5748 or else No (Aspect_Specifications (N)))
5749 then
5750 Set_Subprograms_For_Type (Id, Subprograms_For_Type (T));
5751
5752 if Has_Static_Predicate (T) then
5753 Set_Has_Static_Predicate (Id);
5754 Set_Static_Discrete_Predicate (Id, Static_Discrete_Predicate (T));
5755 end if;
5756 end if;
5757
5758 -- Remaining processing depends on characteristics of base type
5759
5760 T := Etype (Id);
5761
5762 Set_Is_Immediately_Visible (Id, True);
5763 Set_Depends_On_Private (Id, Has_Private_Component (T));
5764 Set_Is_Descendant_Of_Address (Id, Is_Descendant_Of_Address (T));
5765
5766 if Is_Interface (T) then
5767 Set_Is_Interface (Id);
5768 end if;
5769
5770 if Present (Generic_Parent_Type (N))
5771 and then
5772 (Nkind (Parent (Generic_Parent_Type (N))) /=
5773 N_Formal_Type_Declaration
5774 or else Nkind (Formal_Type_Definition
5775 (Parent (Generic_Parent_Type (N)))) /=
5776 N_Formal_Private_Type_Definition)
5777 then
5778 if Is_Tagged_Type (Id) then
5779
5780 -- If this is a generic actual subtype for a synchronized type,
5781 -- the primitive operations are those of the corresponding record
5782 -- for which there is a separate subtype declaration.
5783
5784 if Is_Concurrent_Type (Id) then
5785 null;
5786 elsif Is_Class_Wide_Type (Id) then
5787 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
5788 else
5789 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
5790 end if;
5791
5792 elsif Scope (Etype (Id)) /= Standard_Standard then
5793 Derive_Subprograms (Generic_Parent_Type (N), Id);
5794 end if;
5795 end if;
5796
5797 if Is_Private_Type (T) and then Present (Full_View (T)) then
5798 Conditional_Delay (Id, Full_View (T));
5799
5800 -- The subtypes of components or subcomponents of protected types
5801 -- do not need freeze nodes, which would otherwise appear in the
5802 -- wrong scope (before the freeze node for the protected type). The
5803 -- proper subtypes are those of the subcomponents of the corresponding
5804 -- record.
5805
5806 elsif Ekind (Scope (Id)) /= E_Protected_Type
5807 and then Present (Scope (Scope (Id))) -- error defense
5808 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
5809 then
5810 Conditional_Delay (Id, T);
5811 end if;
5812
5813 -- If we have a subtype of an incomplete type whose full type is a
5814 -- derived numeric type, we need to have a freeze node for the subtype.
5815 -- Otherwise gigi will complain while computing the (static) bounds of
5816 -- the subtype.
5817
5818 if Is_Itype (T)
5819 and then Is_Elementary_Type (Id)
5820 and then Etype (Id) /= Id
5821 then
5822 declare
5823 Partial : constant Entity_Id :=
5824 Incomplete_Or_Partial_View (First_Subtype (Id));
5825 begin
5826 if Present (Partial)
5827 and then Ekind (Partial) = E_Incomplete_Type
5828 then
5829 Set_Has_Delayed_Freeze (Id);
5830 end if;
5831 end;
5832 end if;
5833
5834 -- Check that Constraint_Error is raised for a scalar subtype indication
5835 -- when the lower or upper bound of a non-null range lies outside the
5836 -- range of the type mark.
5837
5838 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5839 if Is_Scalar_Type (Etype (Id))
5840 and then Scalar_Range (Id) /=
5841 Scalar_Range
5842 (Etype (Subtype_Mark (Subtype_Indication (N))))
5843 then
5844 Apply_Range_Check
5845 (Scalar_Range (Id),
5846 Etype (Subtype_Mark (Subtype_Indication (N))));
5847
5848 -- In the array case, check compatibility for each index
5849
5850 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
5851 then
5852 -- This really should be a subprogram that finds the indications
5853 -- to check???
5854
5855 declare
5856 Subt_Index : Node_Id := First_Index (Id);
5857 Target_Index : Node_Id :=
5858 First_Index (Etype
5859 (Subtype_Mark (Subtype_Indication (N))));
5860 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
5861
5862 begin
5863 while Present (Subt_Index) loop
5864 if ((Nkind (Subt_Index) = N_Identifier
5865 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
5866 or else Nkind (Subt_Index) = N_Subtype_Indication)
5867 and then
5868 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
5869 then
5870 declare
5871 Target_Typ : constant Entity_Id :=
5872 Etype (Target_Index);
5873 begin
5874 R_Checks :=
5875 Get_Range_Checks
5876 (Scalar_Range (Etype (Subt_Index)),
5877 Target_Typ,
5878 Etype (Subt_Index),
5879 Defining_Identifier (N));
5880
5881 -- Reset Has_Dynamic_Range_Check on the subtype to
5882 -- prevent elision of the index check due to a dynamic
5883 -- check generated for a preceding index (needed since
5884 -- Insert_Range_Checks tries to avoid generating
5885 -- redundant checks on a given declaration).
5886
5887 Set_Has_Dynamic_Range_Check (N, False);
5888
5889 Insert_Range_Checks
5890 (R_Checks,
5891 N,
5892 Target_Typ,
5893 Sloc (Defining_Identifier (N)));
5894
5895 -- Record whether this index involved a dynamic check
5896
5897 Has_Dyn_Chk :=
5898 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
5899 end;
5900 end if;
5901
5902 Next_Index (Subt_Index);
5903 Next_Index (Target_Index);
5904 end loop;
5905
5906 -- Finally, mark whether the subtype involves dynamic checks
5907
5908 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
5909 end;
5910 end if;
5911 end if;
5912
5913 Set_Optimize_Alignment_Flags (Id);
5914 Check_Eliminated (Id);
5915
5916 <<Leave>>
5917 if Has_Aspects (N) then
5918 Analyze_Aspect_Specifications (N, Id);
5919 end if;
5920
5921 Analyze_Dimension (N);
5922
5923 -- Check No_Dynamic_Sized_Objects restriction, which disallows subtype
5924 -- indications on composite types where the constraints are dynamic.
5925 -- Note that object declarations and aggregates generate implicit
5926 -- subtype declarations, which this covers. One special case is that the
5927 -- implicitly generated "=" for discriminated types includes an
5928 -- offending subtype declaration, which is harmless, so we ignore it
5929 -- here.
5930
5931 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5932 declare
5933 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5934 begin
5935 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint
5936 and then not (Is_Internal (Id)
5937 and then Is_TSS (Scope (Id),
5938 TSS_Composite_Equality))
5939 and then not Within_Init_Proc
5940 and then not All_Composite_Constraints_Static (Cstr)
5941 then
5942 Check_Restriction (No_Dynamic_Sized_Objects, Cstr);
5943 end if;
5944 end;
5945 end if;
5946 end Analyze_Subtype_Declaration;
5947
5948 --------------------------------
5949 -- Analyze_Subtype_Indication --
5950 --------------------------------
5951
5952 procedure Analyze_Subtype_Indication (N : Node_Id) is
5953 T : constant Entity_Id := Subtype_Mark (N);
5954 R : constant Node_Id := Range_Expression (Constraint (N));
5955
5956 begin
5957 Analyze (T);
5958
5959 if R /= Error then
5960 Analyze (R);
5961 Set_Etype (N, Etype (R));
5962 Resolve (R, Entity (T));
5963 else
5964 Set_Error_Posted (R);
5965 Set_Error_Posted (T);
5966 end if;
5967 end Analyze_Subtype_Indication;
5968
5969 --------------------------
5970 -- Analyze_Variant_Part --
5971 --------------------------
5972
5973 procedure Analyze_Variant_Part (N : Node_Id) is
5974 Discr_Name : Node_Id;
5975 Discr_Type : Entity_Id;
5976
5977 procedure Process_Variant (A : Node_Id);
5978 -- Analyze declarations for a single variant
5979
5980 package Analyze_Variant_Choices is
5981 new Generic_Analyze_Choices (Process_Variant);
5982 use Analyze_Variant_Choices;
5983
5984 ---------------------
5985 -- Process_Variant --
5986 ---------------------
5987
5988 procedure Process_Variant (A : Node_Id) is
5989 CL : constant Node_Id := Component_List (A);
5990 begin
5991 if not Null_Present (CL) then
5992 Analyze_Declarations (Component_Items (CL));
5993
5994 if Present (Variant_Part (CL)) then
5995 Analyze (Variant_Part (CL));
5996 end if;
5997 end if;
5998 end Process_Variant;
5999
6000 -- Start of processing for Analyze_Variant_Part
6001
6002 begin
6003 Discr_Name := Name (N);
6004 Analyze (Discr_Name);
6005
6006 -- If Discr_Name bad, get out (prevent cascaded errors)
6007
6008 if Etype (Discr_Name) = Any_Type then
6009 return;
6010 end if;
6011
6012 -- Check invalid discriminant in variant part
6013
6014 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
6015 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
6016 end if;
6017
6018 Discr_Type := Etype (Entity (Discr_Name));
6019
6020 if not Is_Discrete_Type (Discr_Type) then
6021 Error_Msg_N
6022 ("discriminant in a variant part must be of a discrete type",
6023 Name (N));
6024 return;
6025 end if;
6026
6027 -- Now analyze the choices, which also analyzes the declarations that
6028 -- are associated with each choice.
6029
6030 Analyze_Choices (Variants (N), Discr_Type);
6031
6032 -- Note: we used to instantiate and call Check_Choices here to check
6033 -- that the choices covered the discriminant, but it's too early to do
6034 -- that because of statically predicated subtypes, whose analysis may
6035 -- be deferred to their freeze point which may be as late as the freeze
6036 -- point of the containing record. So this call is now to be found in
6037 -- Freeze_Record_Declaration.
6038
6039 end Analyze_Variant_Part;
6040
6041 ----------------------------
6042 -- Array_Type_Declaration --
6043 ----------------------------
6044
6045 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
6046 Component_Def : constant Node_Id := Component_Definition (Def);
6047 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
6048 P : constant Node_Id := Parent (Def);
6049 Element_Type : Entity_Id;
6050 Implicit_Base : Entity_Id;
6051 Index : Node_Id;
6052 Nb_Index : Nat;
6053 Priv : Entity_Id;
6054 Related_Id : Entity_Id := Empty;
6055
6056 begin
6057 if Nkind (Def) = N_Constrained_Array_Definition then
6058 Index := First (Discrete_Subtype_Definitions (Def));
6059 else
6060 Index := First (Subtype_Marks (Def));
6061 end if;
6062
6063 -- Find proper names for the implicit types which may be public. In case
6064 -- of anonymous arrays we use the name of the first object of that type
6065 -- as prefix.
6066
6067 if No (T) then
6068 Related_Id := Defining_Identifier (P);
6069 else
6070 Related_Id := T;
6071 end if;
6072
6073 Nb_Index := 1;
6074 while Present (Index) loop
6075 Analyze (Index);
6076
6077 -- Test for odd case of trying to index a type by the type itself
6078
6079 if Is_Entity_Name (Index) and then Entity (Index) = T then
6080 Error_Msg_N ("type& cannot be indexed by itself", Index);
6081 Set_Entity (Index, Standard_Boolean);
6082 Set_Etype (Index, Standard_Boolean);
6083 end if;
6084
6085 -- Check SPARK restriction requiring a subtype mark
6086
6087 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
6088 Check_SPARK_05_Restriction ("subtype mark required", Index);
6089 end if;
6090
6091 -- Add a subtype declaration for each index of private array type
6092 -- declaration whose etype is also private. For example:
6093
6094 -- package Pkg is
6095 -- type Index is private;
6096 -- private
6097 -- type Table is array (Index) of ...
6098 -- end;
6099
6100 -- This is currently required by the expander for the internally
6101 -- generated equality subprogram of records with variant parts in
6102 -- which the etype of some component is such private type.
6103
6104 if Ekind (Current_Scope) = E_Package
6105 and then In_Private_Part (Current_Scope)
6106 and then Has_Private_Declaration (Etype (Index))
6107 then
6108 declare
6109 Loc : constant Source_Ptr := Sloc (Def);
6110 Decl : Entity_Id;
6111 New_E : Entity_Id;
6112
6113 begin
6114 New_E := Make_Temporary (Loc, 'T');
6115 Set_Is_Internal (New_E);
6116
6117 Decl :=
6118 Make_Subtype_Declaration (Loc,
6119 Defining_Identifier => New_E,
6120 Subtype_Indication =>
6121 New_Occurrence_Of (Etype (Index), Loc));
6122
6123 Insert_Before (Parent (Def), Decl);
6124 Analyze (Decl);
6125 Set_Etype (Index, New_E);
6126
6127 -- If the index is a range or a subtype indication it carries
6128 -- no entity. Example:
6129
6130 -- package Pkg is
6131 -- type T is private;
6132 -- private
6133 -- type T is new Natural;
6134 -- Table : array (T(1) .. T(10)) of Boolean;
6135 -- end Pkg;
6136
6137 -- Otherwise the type of the reference is its entity.
6138
6139 if Is_Entity_Name (Index) then
6140 Set_Entity (Index, New_E);
6141 end if;
6142 end;
6143 end if;
6144
6145 Make_Index (Index, P, Related_Id, Nb_Index);
6146
6147 -- Check error of subtype with predicate for index type
6148
6149 Bad_Predicated_Subtype_Use
6150 ("subtype& has predicate, not allowed as index subtype",
6151 Index, Etype (Index));
6152
6153 -- Move to next index
6154
6155 Next_Index (Index);
6156 Nb_Index := Nb_Index + 1;
6157 end loop;
6158
6159 -- Process subtype indication if one is present
6160
6161 if Present (Component_Typ) then
6162 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
6163
6164 Set_Etype (Component_Typ, Element_Type);
6165
6166 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
6167 Check_SPARK_05_Restriction
6168 ("subtype mark required", Component_Typ);
6169 end if;
6170
6171 -- Ada 2005 (AI-230): Access Definition case
6172
6173 else pragma Assert (Present (Access_Definition (Component_Def)));
6174
6175 -- Indicate that the anonymous access type is created by the
6176 -- array type declaration.
6177
6178 Element_Type := Access_Definition
6179 (Related_Nod => P,
6180 N => Access_Definition (Component_Def));
6181 Set_Is_Local_Anonymous_Access (Element_Type);
6182
6183 -- Propagate the parent. This field is needed if we have to generate
6184 -- the master_id associated with an anonymous access to task type
6185 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
6186
6187 Set_Parent (Element_Type, Parent (T));
6188
6189 -- Ada 2005 (AI-230): In case of components that are anonymous access
6190 -- types the level of accessibility depends on the enclosing type
6191 -- declaration
6192
6193 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
6194
6195 -- Ada 2005 (AI-254)
6196
6197 declare
6198 CD : constant Node_Id :=
6199 Access_To_Subprogram_Definition
6200 (Access_Definition (Component_Def));
6201 begin
6202 if Present (CD) and then Protected_Present (CD) then
6203 Element_Type :=
6204 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
6205 end if;
6206 end;
6207 end if;
6208
6209 -- Constrained array case
6210
6211 if No (T) then
6212 T := Create_Itype (E_Void, P, Related_Id, 'T');
6213 end if;
6214
6215 if Nkind (Def) = N_Constrained_Array_Definition then
6216
6217 -- Establish Implicit_Base as unconstrained base type
6218
6219 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
6220
6221 Set_Etype (Implicit_Base, Implicit_Base);
6222 Set_Scope (Implicit_Base, Current_Scope);
6223 Set_Has_Delayed_Freeze (Implicit_Base);
6224 Set_Default_SSO (Implicit_Base);
6225
6226 -- The constrained array type is a subtype of the unconstrained one
6227
6228 Set_Ekind (T, E_Array_Subtype);
6229 Init_Size_Align (T);
6230 Set_Etype (T, Implicit_Base);
6231 Set_Scope (T, Current_Scope);
6232 Set_Is_Constrained (T);
6233 Set_First_Index (T,
6234 First (Discrete_Subtype_Definitions (Def)));
6235 Set_Has_Delayed_Freeze (T);
6236
6237 -- Complete setup of implicit base type
6238
6239 Set_Component_Size (Implicit_Base, Uint_0);
6240 Set_Component_Type (Implicit_Base, Element_Type);
6241 Set_Finalize_Storage_Only
6242 (Implicit_Base,
6243 Finalize_Storage_Only (Element_Type));
6244 Set_First_Index (Implicit_Base, First_Index (T));
6245 Set_Has_Controlled_Component
6246 (Implicit_Base,
6247 Has_Controlled_Component (Element_Type)
6248 or else Is_Controlled (Element_Type));
6249 Set_Packed_Array_Impl_Type
6250 (Implicit_Base, Empty);
6251
6252 Propagate_Concurrent_Flags (Implicit_Base, Element_Type);
6253
6254 -- Unconstrained array case
6255
6256 else
6257 Set_Ekind (T, E_Array_Type);
6258 Init_Size_Align (T);
6259 Set_Etype (T, T);
6260 Set_Scope (T, Current_Scope);
6261 Set_Component_Size (T, Uint_0);
6262 Set_Is_Constrained (T, False);
6263 Set_First_Index (T, First (Subtype_Marks (Def)));
6264 Set_Has_Delayed_Freeze (T, True);
6265 Propagate_Concurrent_Flags (T, Element_Type);
6266 Set_Has_Controlled_Component (T, Has_Controlled_Component
6267 (Element_Type)
6268 or else
6269 Is_Controlled (Element_Type));
6270 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
6271 (Element_Type));
6272 Set_Default_SSO (T);
6273 end if;
6274
6275 -- Common attributes for both cases
6276
6277 Set_Component_Type (Base_Type (T), Element_Type);
6278 Set_Packed_Array_Impl_Type (T, Empty);
6279
6280 if Aliased_Present (Component_Definition (Def)) then
6281 Check_SPARK_05_Restriction
6282 ("aliased is not allowed", Component_Definition (Def));
6283 Set_Has_Aliased_Components (Etype (T));
6284 end if;
6285
6286 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
6287 -- array type to ensure that objects of this type are initialized.
6288
6289 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
6290 Set_Can_Never_Be_Null (T);
6291
6292 if Null_Exclusion_Present (Component_Definition (Def))
6293
6294 -- No need to check itypes because in their case this check was
6295 -- done at their point of creation
6296
6297 and then not Is_Itype (Element_Type)
6298 then
6299 Error_Msg_N
6300 ("`NOT NULL` not allowed (null already excluded)",
6301 Subtype_Indication (Component_Definition (Def)));
6302 end if;
6303 end if;
6304
6305 Priv := Private_Component (Element_Type);
6306
6307 if Present (Priv) then
6308
6309 -- Check for circular definitions
6310
6311 if Priv = Any_Type then
6312 Set_Component_Type (Etype (T), Any_Type);
6313
6314 -- There is a gap in the visibility of operations on the composite
6315 -- type only if the component type is defined in a different scope.
6316
6317 elsif Scope (Priv) = Current_Scope then
6318 null;
6319
6320 elsif Is_Limited_Type (Priv) then
6321 Set_Is_Limited_Composite (Etype (T));
6322 Set_Is_Limited_Composite (T);
6323 else
6324 Set_Is_Private_Composite (Etype (T));
6325 Set_Is_Private_Composite (T);
6326 end if;
6327 end if;
6328
6329 -- A syntax error in the declaration itself may lead to an empty index
6330 -- list, in which case do a minimal patch.
6331
6332 if No (First_Index (T)) then
6333 Error_Msg_N ("missing index definition in array type declaration", T);
6334
6335 declare
6336 Indexes : constant List_Id :=
6337 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
6338 begin
6339 Set_Discrete_Subtype_Definitions (Def, Indexes);
6340 Set_First_Index (T, First (Indexes));
6341 return;
6342 end;
6343 end if;
6344
6345 -- Create a concatenation operator for the new type. Internal array
6346 -- types created for packed entities do not need such, they are
6347 -- compatible with the user-defined type.
6348
6349 if Number_Dimensions (T) = 1
6350 and then not Is_Packed_Array_Impl_Type (T)
6351 then
6352 New_Concatenation_Op (T);
6353 end if;
6354
6355 -- In the case of an unconstrained array the parser has already verified
6356 -- that all the indexes are unconstrained but we still need to make sure
6357 -- that the element type is constrained.
6358
6359 if not Is_Definite_Subtype (Element_Type) then
6360 Error_Msg_N
6361 ("unconstrained element type in array declaration",
6362 Subtype_Indication (Component_Def));
6363
6364 elsif Is_Abstract_Type (Element_Type) then
6365 Error_Msg_N
6366 ("the type of a component cannot be abstract",
6367 Subtype_Indication (Component_Def));
6368 end if;
6369
6370 -- There may be an invariant declared for the component type, but
6371 -- the construction of the component invariant checking procedure
6372 -- takes place during expansion.
6373 end Array_Type_Declaration;
6374
6375 ------------------------------------------------------
6376 -- Replace_Anonymous_Access_To_Protected_Subprogram --
6377 ------------------------------------------------------
6378
6379 function Replace_Anonymous_Access_To_Protected_Subprogram
6380 (N : Node_Id) return Entity_Id
6381 is
6382 Loc : constant Source_Ptr := Sloc (N);
6383
6384 Curr_Scope : constant Scope_Stack_Entry :=
6385 Scope_Stack.Table (Scope_Stack.Last);
6386
6387 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
6388
6389 Acc : Node_Id;
6390 -- Access definition in declaration
6391
6392 Comp : Node_Id;
6393 -- Object definition or formal definition with an access definition
6394
6395 Decl : Node_Id;
6396 -- Declaration of anonymous access to subprogram type
6397
6398 Spec : Node_Id;
6399 -- Original specification in access to subprogram
6400
6401 P : Node_Id;
6402
6403 begin
6404 Set_Is_Internal (Anon);
6405
6406 case Nkind (N) is
6407 when N_Constrained_Array_Definition
6408 | N_Component_Declaration
6409 | N_Unconstrained_Array_Definition
6410 =>
6411 Comp := Component_Definition (N);
6412 Acc := Access_Definition (Comp);
6413
6414 when N_Discriminant_Specification =>
6415 Comp := Discriminant_Type (N);
6416 Acc := Comp;
6417
6418 when N_Parameter_Specification =>
6419 Comp := Parameter_Type (N);
6420 Acc := Comp;
6421
6422 when N_Access_Function_Definition =>
6423 Comp := Result_Definition (N);
6424 Acc := Comp;
6425
6426 when N_Object_Declaration =>
6427 Comp := Object_Definition (N);
6428 Acc := Comp;
6429
6430 when N_Function_Specification =>
6431 Comp := Result_Definition (N);
6432 Acc := Comp;
6433
6434 when others =>
6435 raise Program_Error;
6436 end case;
6437
6438 Spec := Access_To_Subprogram_Definition (Acc);
6439
6440 Decl :=
6441 Make_Full_Type_Declaration (Loc,
6442 Defining_Identifier => Anon,
6443 Type_Definition => Copy_Separate_Tree (Spec));
6444
6445 Mark_Rewrite_Insertion (Decl);
6446
6447 -- In ASIS mode, analyze the profile on the original node, because
6448 -- the separate copy does not provide enough links to recover the
6449 -- original tree. Analysis is limited to type annotations, within
6450 -- a temporary scope that serves as an anonymous subprogram to collect
6451 -- otherwise useless temporaries and itypes.
6452
6453 if ASIS_Mode then
6454 declare
6455 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
6456
6457 begin
6458 if Nkind (Spec) = N_Access_Function_Definition then
6459 Set_Ekind (Typ, E_Function);
6460 else
6461 Set_Ekind (Typ, E_Procedure);
6462 end if;
6463
6464 Set_Parent (Typ, N);
6465 Set_Scope (Typ, Current_Scope);
6466 Push_Scope (Typ);
6467
6468 -- Nothing to do if procedure is parameterless
6469
6470 if Present (Parameter_Specifications (Spec)) then
6471 Process_Formals (Parameter_Specifications (Spec), Spec);
6472 end if;
6473
6474 if Nkind (Spec) = N_Access_Function_Definition then
6475 declare
6476 Def : constant Node_Id := Result_Definition (Spec);
6477
6478 begin
6479 -- The result might itself be an anonymous access type, so
6480 -- have to recurse.
6481
6482 if Nkind (Def) = N_Access_Definition then
6483 if Present (Access_To_Subprogram_Definition (Def)) then
6484 Set_Etype
6485 (Def,
6486 Replace_Anonymous_Access_To_Protected_Subprogram
6487 (Spec));
6488 else
6489 Find_Type (Subtype_Mark (Def));
6490 end if;
6491
6492 else
6493 Find_Type (Def);
6494 end if;
6495 end;
6496 end if;
6497
6498 End_Scope;
6499 end;
6500 end if;
6501
6502 -- Insert the new declaration in the nearest enclosing scope. If the
6503 -- parent is a body and N is its return type, the declaration belongs
6504 -- in the enclosing scope. Likewise if N is the type of a parameter.
6505
6506 P := Parent (N);
6507
6508 if Nkind (N) = N_Function_Specification
6509 and then Nkind (P) = N_Subprogram_Body
6510 then
6511 P := Parent (P);
6512 elsif Nkind (N) = N_Parameter_Specification
6513 and then Nkind (P) in N_Subprogram_Specification
6514 and then Nkind (Parent (P)) = N_Subprogram_Body
6515 then
6516 P := Parent (Parent (P));
6517 end if;
6518
6519 while Present (P) and then not Has_Declarations (P) loop
6520 P := Parent (P);
6521 end loop;
6522
6523 pragma Assert (Present (P));
6524
6525 if Nkind (P) = N_Package_Specification then
6526 Prepend (Decl, Visible_Declarations (P));
6527 else
6528 Prepend (Decl, Declarations (P));
6529 end if;
6530
6531 -- Replace the anonymous type with an occurrence of the new declaration.
6532 -- In all cases the rewritten node does not have the null-exclusion
6533 -- attribute because (if present) it was already inherited by the
6534 -- anonymous entity (Anon). Thus, in case of components we do not
6535 -- inherit this attribute.
6536
6537 if Nkind (N) = N_Parameter_Specification then
6538 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6539 Set_Etype (Defining_Identifier (N), Anon);
6540 Set_Null_Exclusion_Present (N, False);
6541
6542 elsif Nkind (N) = N_Object_Declaration then
6543 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6544 Set_Etype (Defining_Identifier (N), Anon);
6545
6546 elsif Nkind (N) = N_Access_Function_Definition then
6547 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6548
6549 elsif Nkind (N) = N_Function_Specification then
6550 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6551 Set_Etype (Defining_Unit_Name (N), Anon);
6552
6553 else
6554 Rewrite (Comp,
6555 Make_Component_Definition (Loc,
6556 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
6557 end if;
6558
6559 Mark_Rewrite_Insertion (Comp);
6560
6561 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition)
6562 or else (Nkind (Parent (N)) = N_Full_Type_Declaration
6563 and then not Is_Type (Current_Scope))
6564 then
6565
6566 -- Declaration can be analyzed in the current scope.
6567
6568 Analyze (Decl);
6569
6570 else
6571 -- Temporarily remove the current scope (record or subprogram) from
6572 -- the stack to add the new declarations to the enclosing scope.
6573 -- The anonymous entity is an Itype with the proper attributes.
6574
6575 Scope_Stack.Decrement_Last;
6576 Analyze (Decl);
6577 Set_Is_Itype (Anon);
6578 Set_Associated_Node_For_Itype (Anon, N);
6579 Scope_Stack.Append (Curr_Scope);
6580 end if;
6581
6582 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
6583 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
6584 return Anon;
6585 end Replace_Anonymous_Access_To_Protected_Subprogram;
6586
6587 -------------------------------
6588 -- Build_Derived_Access_Type --
6589 -------------------------------
6590
6591 procedure Build_Derived_Access_Type
6592 (N : Node_Id;
6593 Parent_Type : Entity_Id;
6594 Derived_Type : Entity_Id)
6595 is
6596 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
6597
6598 Desig_Type : Entity_Id;
6599 Discr : Entity_Id;
6600 Discr_Con_Elist : Elist_Id;
6601 Discr_Con_El : Elmt_Id;
6602 Subt : Entity_Id;
6603
6604 begin
6605 -- Set the designated type so it is available in case this is an access
6606 -- to a self-referential type, e.g. a standard list type with a next
6607 -- pointer. Will be reset after subtype is built.
6608
6609 Set_Directly_Designated_Type
6610 (Derived_Type, Designated_Type (Parent_Type));
6611
6612 Subt := Process_Subtype (S, N);
6613
6614 if Nkind (S) /= N_Subtype_Indication
6615 and then Subt /= Base_Type (Subt)
6616 then
6617 Set_Ekind (Derived_Type, E_Access_Subtype);
6618 end if;
6619
6620 if Ekind (Derived_Type) = E_Access_Subtype then
6621 declare
6622 Pbase : constant Entity_Id := Base_Type (Parent_Type);
6623 Ibase : constant Entity_Id :=
6624 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
6625 Svg_Chars : constant Name_Id := Chars (Ibase);
6626 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
6627 Svg_Prev_E : constant Entity_Id := Prev_Entity (Ibase);
6628
6629 begin
6630 Copy_Node (Pbase, Ibase);
6631
6632 -- Restore Itype status after Copy_Node
6633
6634 Set_Is_Itype (Ibase);
6635 Set_Associated_Node_For_Itype (Ibase, N);
6636
6637 Set_Chars (Ibase, Svg_Chars);
6638 Set_Prev_Entity (Ibase, Svg_Prev_E);
6639 Set_Next_Entity (Ibase, Svg_Next_E);
6640 Set_Sloc (Ibase, Sloc (Derived_Type));
6641 Set_Scope (Ibase, Scope (Derived_Type));
6642 Set_Freeze_Node (Ibase, Empty);
6643 Set_Is_Frozen (Ibase, False);
6644 Set_Comes_From_Source (Ibase, False);
6645 Set_Is_First_Subtype (Ibase, False);
6646
6647 Set_Etype (Ibase, Pbase);
6648 Set_Etype (Derived_Type, Ibase);
6649 end;
6650 end if;
6651
6652 Set_Directly_Designated_Type
6653 (Derived_Type, Designated_Type (Subt));
6654
6655 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
6656 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
6657 Set_Size_Info (Derived_Type, Parent_Type);
6658 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
6659 Set_Depends_On_Private (Derived_Type,
6660 Has_Private_Component (Derived_Type));
6661 Conditional_Delay (Derived_Type, Subt);
6662
6663 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
6664 -- that it is not redundant.
6665
6666 if Null_Exclusion_Present (Type_Definition (N)) then
6667 Set_Can_Never_Be_Null (Derived_Type);
6668
6669 elsif Can_Never_Be_Null (Parent_Type) then
6670 Set_Can_Never_Be_Null (Derived_Type);
6671 end if;
6672
6673 -- Note: we do not copy the Storage_Size_Variable, since we always go to
6674 -- the root type for this information.
6675
6676 -- Apply range checks to discriminants for derived record case
6677 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
6678
6679 Desig_Type := Designated_Type (Derived_Type);
6680
6681 if Is_Composite_Type (Desig_Type)
6682 and then (not Is_Array_Type (Desig_Type))
6683 and then Has_Discriminants (Desig_Type)
6684 and then Base_Type (Desig_Type) /= Desig_Type
6685 then
6686 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
6687 Discr_Con_El := First_Elmt (Discr_Con_Elist);
6688
6689 Discr := First_Discriminant (Base_Type (Desig_Type));
6690 while Present (Discr_Con_El) loop
6691 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
6692 Next_Elmt (Discr_Con_El);
6693 Next_Discriminant (Discr);
6694 end loop;
6695 end if;
6696 end Build_Derived_Access_Type;
6697
6698 ------------------------------
6699 -- Build_Derived_Array_Type --
6700 ------------------------------
6701
6702 procedure Build_Derived_Array_Type
6703 (N : Node_Id;
6704 Parent_Type : Entity_Id;
6705 Derived_Type : Entity_Id)
6706 is
6707 Loc : constant Source_Ptr := Sloc (N);
6708 Tdef : constant Node_Id := Type_Definition (N);
6709 Indic : constant Node_Id := Subtype_Indication (Tdef);
6710 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6711 Implicit_Base : Entity_Id := Empty;
6712 New_Indic : Node_Id;
6713
6714 procedure Make_Implicit_Base;
6715 -- If the parent subtype is constrained, the derived type is a subtype
6716 -- of an implicit base type derived from the parent base.
6717
6718 ------------------------
6719 -- Make_Implicit_Base --
6720 ------------------------
6721
6722 procedure Make_Implicit_Base is
6723 begin
6724 Implicit_Base :=
6725 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6726
6727 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6728 Set_Etype (Implicit_Base, Parent_Base);
6729
6730 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
6731 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
6732
6733 Set_Has_Delayed_Freeze (Implicit_Base, True);
6734 end Make_Implicit_Base;
6735
6736 -- Start of processing for Build_Derived_Array_Type
6737
6738 begin
6739 if not Is_Constrained (Parent_Type) then
6740 if Nkind (Indic) /= N_Subtype_Indication then
6741 Set_Ekind (Derived_Type, E_Array_Type);
6742
6743 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6744 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
6745
6746 Set_Has_Delayed_Freeze (Derived_Type, True);
6747
6748 else
6749 Make_Implicit_Base;
6750 Set_Etype (Derived_Type, Implicit_Base);
6751
6752 New_Indic :=
6753 Make_Subtype_Declaration (Loc,
6754 Defining_Identifier => Derived_Type,
6755 Subtype_Indication =>
6756 Make_Subtype_Indication (Loc,
6757 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6758 Constraint => Constraint (Indic)));
6759
6760 Rewrite (N, New_Indic);
6761 Analyze (N);
6762 end if;
6763
6764 else
6765 if Nkind (Indic) /= N_Subtype_Indication then
6766 Make_Implicit_Base;
6767
6768 Set_Ekind (Derived_Type, Ekind (Parent_Type));
6769 Set_Etype (Derived_Type, Implicit_Base);
6770 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6771
6772 else
6773 Error_Msg_N ("illegal constraint on constrained type", Indic);
6774 end if;
6775 end if;
6776
6777 -- If parent type is not a derived type itself, and is declared in
6778 -- closed scope (e.g. a subprogram), then we must explicitly introduce
6779 -- the new type's concatenation operator since Derive_Subprograms
6780 -- will not inherit the parent's operator. If the parent type is
6781 -- unconstrained, the operator is of the unconstrained base type.
6782
6783 if Number_Dimensions (Parent_Type) = 1
6784 and then not Is_Limited_Type (Parent_Type)
6785 and then not Is_Derived_Type (Parent_Type)
6786 and then not Is_Package_Or_Generic_Package
6787 (Scope (Base_Type (Parent_Type)))
6788 then
6789 if not Is_Constrained (Parent_Type)
6790 and then Is_Constrained (Derived_Type)
6791 then
6792 New_Concatenation_Op (Implicit_Base);
6793 else
6794 New_Concatenation_Op (Derived_Type);
6795 end if;
6796 end if;
6797 end Build_Derived_Array_Type;
6798
6799 -----------------------------------
6800 -- Build_Derived_Concurrent_Type --
6801 -----------------------------------
6802
6803 procedure Build_Derived_Concurrent_Type
6804 (N : Node_Id;
6805 Parent_Type : Entity_Id;
6806 Derived_Type : Entity_Id)
6807 is
6808 Loc : constant Source_Ptr := Sloc (N);
6809
6810 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
6811 Corr_Decl : Node_Id;
6812 Corr_Decl_Needed : Boolean;
6813 -- If the derived type has fewer discriminants than its parent, the
6814 -- corresponding record is also a derived type, in order to account for
6815 -- the bound discriminants. We create a full type declaration for it in
6816 -- this case.
6817
6818 Constraint_Present : constant Boolean :=
6819 Nkind (Subtype_Indication (Type_Definition (N))) =
6820 N_Subtype_Indication;
6821
6822 D_Constraint : Node_Id;
6823 New_Constraint : Elist_Id := No_Elist;
6824 Old_Disc : Entity_Id;
6825 New_Disc : Entity_Id;
6826 New_N : Node_Id;
6827
6828 begin
6829 Set_Stored_Constraint (Derived_Type, No_Elist);
6830 Corr_Decl_Needed := False;
6831 Old_Disc := Empty;
6832
6833 if Present (Discriminant_Specifications (N))
6834 and then Constraint_Present
6835 then
6836 Old_Disc := First_Discriminant (Parent_Type);
6837 New_Disc := First (Discriminant_Specifications (N));
6838 while Present (New_Disc) and then Present (Old_Disc) loop
6839 Next_Discriminant (Old_Disc);
6840 Next (New_Disc);
6841 end loop;
6842 end if;
6843
6844 if Present (Old_Disc) and then Expander_Active then
6845
6846 -- The new type has fewer discriminants, so we need to create a new
6847 -- corresponding record, which is derived from the corresponding
6848 -- record of the parent, and has a stored constraint that captures
6849 -- the values of the discriminant constraints. The corresponding
6850 -- record is needed only if expander is active and code generation is
6851 -- enabled.
6852
6853 -- The type declaration for the derived corresponding record has the
6854 -- same discriminant part and constraints as the current declaration.
6855 -- Copy the unanalyzed tree to build declaration.
6856
6857 Corr_Decl_Needed := True;
6858 New_N := Copy_Separate_Tree (N);
6859
6860 Corr_Decl :=
6861 Make_Full_Type_Declaration (Loc,
6862 Defining_Identifier => Corr_Record,
6863 Discriminant_Specifications =>
6864 Discriminant_Specifications (New_N),
6865 Type_Definition =>
6866 Make_Derived_Type_Definition (Loc,
6867 Subtype_Indication =>
6868 Make_Subtype_Indication (Loc,
6869 Subtype_Mark =>
6870 New_Occurrence_Of
6871 (Corresponding_Record_Type (Parent_Type), Loc),
6872 Constraint =>
6873 Constraint
6874 (Subtype_Indication (Type_Definition (New_N))))));
6875 end if;
6876
6877 -- Copy Storage_Size and Relative_Deadline variables if task case
6878
6879 if Is_Task_Type (Parent_Type) then
6880 Set_Storage_Size_Variable (Derived_Type,
6881 Storage_Size_Variable (Parent_Type));
6882 Set_Relative_Deadline_Variable (Derived_Type,
6883 Relative_Deadline_Variable (Parent_Type));
6884 end if;
6885
6886 if Present (Discriminant_Specifications (N)) then
6887 Push_Scope (Derived_Type);
6888 Check_Or_Process_Discriminants (N, Derived_Type);
6889
6890 if Constraint_Present then
6891 New_Constraint :=
6892 Expand_To_Stored_Constraint
6893 (Parent_Type,
6894 Build_Discriminant_Constraints
6895 (Parent_Type,
6896 Subtype_Indication (Type_Definition (N)), True));
6897 end if;
6898
6899 End_Scope;
6900
6901 elsif Constraint_Present then
6902
6903 -- Build constrained subtype, copying the constraint, and derive
6904 -- from it to create a derived constrained type.
6905
6906 declare
6907 Loc : constant Source_Ptr := Sloc (N);
6908 Anon : constant Entity_Id :=
6909 Make_Defining_Identifier (Loc,
6910 Chars => New_External_Name (Chars (Derived_Type), 'T'));
6911 Decl : Node_Id;
6912
6913 begin
6914 Decl :=
6915 Make_Subtype_Declaration (Loc,
6916 Defining_Identifier => Anon,
6917 Subtype_Indication =>
6918 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
6919 Insert_Before (N, Decl);
6920 Analyze (Decl);
6921
6922 Rewrite (Subtype_Indication (Type_Definition (N)),
6923 New_Occurrence_Of (Anon, Loc));
6924 Set_Analyzed (Derived_Type, False);
6925 Analyze (N);
6926 return;
6927 end;
6928 end if;
6929
6930 -- By default, operations and private data are inherited from parent.
6931 -- However, in the presence of bound discriminants, a new corresponding
6932 -- record will be created, see below.
6933
6934 Set_Has_Discriminants
6935 (Derived_Type, Has_Discriminants (Parent_Type));
6936 Set_Corresponding_Record_Type
6937 (Derived_Type, Corresponding_Record_Type (Parent_Type));
6938
6939 -- Is_Constrained is set according the parent subtype, but is set to
6940 -- False if the derived type is declared with new discriminants.
6941
6942 Set_Is_Constrained
6943 (Derived_Type,
6944 (Is_Constrained (Parent_Type) or else Constraint_Present)
6945 and then not Present (Discriminant_Specifications (N)));
6946
6947 if Constraint_Present then
6948 if not Has_Discriminants (Parent_Type) then
6949 Error_Msg_N ("untagged parent must have discriminants", N);
6950
6951 elsif Present (Discriminant_Specifications (N)) then
6952
6953 -- Verify that new discriminants are used to constrain old ones
6954
6955 D_Constraint :=
6956 First
6957 (Constraints
6958 (Constraint (Subtype_Indication (Type_Definition (N)))));
6959
6960 Old_Disc := First_Discriminant (Parent_Type);
6961
6962 while Present (D_Constraint) loop
6963 if Nkind (D_Constraint) /= N_Discriminant_Association then
6964
6965 -- Positional constraint. If it is a reference to a new
6966 -- discriminant, it constrains the corresponding old one.
6967
6968 if Nkind (D_Constraint) = N_Identifier then
6969 New_Disc := First_Discriminant (Derived_Type);
6970 while Present (New_Disc) loop
6971 exit when Chars (New_Disc) = Chars (D_Constraint);
6972 Next_Discriminant (New_Disc);
6973 end loop;
6974
6975 if Present (New_Disc) then
6976 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
6977 end if;
6978 end if;
6979
6980 Next_Discriminant (Old_Disc);
6981
6982 -- if this is a named constraint, search by name for the old
6983 -- discriminants constrained by the new one.
6984
6985 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
6986
6987 -- Find new discriminant with that name
6988
6989 New_Disc := First_Discriminant (Derived_Type);
6990 while Present (New_Disc) loop
6991 exit when
6992 Chars (New_Disc) = Chars (Expression (D_Constraint));
6993 Next_Discriminant (New_Disc);
6994 end loop;
6995
6996 if Present (New_Disc) then
6997
6998 -- Verify that new discriminant renames some discriminant
6999 -- of the parent type, and associate the new discriminant
7000 -- with one or more old ones that it renames.
7001
7002 declare
7003 Selector : Node_Id;
7004
7005 begin
7006 Selector := First (Selector_Names (D_Constraint));
7007 while Present (Selector) loop
7008 Old_Disc := First_Discriminant (Parent_Type);
7009 while Present (Old_Disc) loop
7010 exit when Chars (Old_Disc) = Chars (Selector);
7011 Next_Discriminant (Old_Disc);
7012 end loop;
7013
7014 if Present (Old_Disc) then
7015 Set_Corresponding_Discriminant
7016 (New_Disc, Old_Disc);
7017 end if;
7018
7019 Next (Selector);
7020 end loop;
7021 end;
7022 end if;
7023 end if;
7024
7025 Next (D_Constraint);
7026 end loop;
7027
7028 New_Disc := First_Discriminant (Derived_Type);
7029 while Present (New_Disc) loop
7030 if No (Corresponding_Discriminant (New_Disc)) then
7031 Error_Msg_NE
7032 ("new discriminant& must constrain old one", N, New_Disc);
7033
7034 elsif not
7035 Subtypes_Statically_Compatible
7036 (Etype (New_Disc),
7037 Etype (Corresponding_Discriminant (New_Disc)))
7038 then
7039 Error_Msg_NE
7040 ("& not statically compatible with parent discriminant",
7041 N, New_Disc);
7042 end if;
7043
7044 Next_Discriminant (New_Disc);
7045 end loop;
7046 end if;
7047
7048 elsif Present (Discriminant_Specifications (N)) then
7049 Error_Msg_N
7050 ("missing discriminant constraint in untagged derivation", N);
7051 end if;
7052
7053 -- The entity chain of the derived type includes the new discriminants
7054 -- but shares operations with the parent.
7055
7056 if Present (Discriminant_Specifications (N)) then
7057 Old_Disc := First_Discriminant (Parent_Type);
7058 while Present (Old_Disc) loop
7059 if No (Next_Entity (Old_Disc))
7060 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
7061 then
7062 Link_Entities
7063 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
7064 exit;
7065 end if;
7066
7067 Next_Discriminant (Old_Disc);
7068 end loop;
7069
7070 else
7071 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
7072 if Has_Discriminants (Parent_Type) then
7073 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7074 Set_Discriminant_Constraint (
7075 Derived_Type, Discriminant_Constraint (Parent_Type));
7076 end if;
7077 end if;
7078
7079 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
7080
7081 Set_Has_Completion (Derived_Type);
7082
7083 if Corr_Decl_Needed then
7084 Set_Stored_Constraint (Derived_Type, New_Constraint);
7085 Insert_After (N, Corr_Decl);
7086 Analyze (Corr_Decl);
7087 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
7088 end if;
7089 end Build_Derived_Concurrent_Type;
7090
7091 ------------------------------------
7092 -- Build_Derived_Enumeration_Type --
7093 ------------------------------------
7094
7095 procedure Build_Derived_Enumeration_Type
7096 (N : Node_Id;
7097 Parent_Type : Entity_Id;
7098 Derived_Type : Entity_Id)
7099 is
7100 Loc : constant Source_Ptr := Sloc (N);
7101 Def : constant Node_Id := Type_Definition (N);
7102 Indic : constant Node_Id := Subtype_Indication (Def);
7103 Implicit_Base : Entity_Id;
7104 Literal : Entity_Id;
7105 New_Lit : Entity_Id;
7106 Literals_List : List_Id;
7107 Type_Decl : Node_Id;
7108 Hi, Lo : Node_Id;
7109 Rang_Expr : Node_Id;
7110
7111 begin
7112 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
7113 -- not have explicit literals lists we need to process types derived
7114 -- from them specially. This is handled by Derived_Standard_Character.
7115 -- If the parent type is a generic type, there are no literals either,
7116 -- and we construct the same skeletal representation as for the generic
7117 -- parent type.
7118
7119 if Is_Standard_Character_Type (Parent_Type) then
7120 Derived_Standard_Character (N, Parent_Type, Derived_Type);
7121
7122 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
7123 declare
7124 Lo : Node_Id;
7125 Hi : Node_Id;
7126
7127 begin
7128 if Nkind (Indic) /= N_Subtype_Indication then
7129 Lo :=
7130 Make_Attribute_Reference (Loc,
7131 Attribute_Name => Name_First,
7132 Prefix => New_Occurrence_Of (Derived_Type, Loc));
7133 Set_Etype (Lo, Derived_Type);
7134
7135 Hi :=
7136 Make_Attribute_Reference (Loc,
7137 Attribute_Name => Name_Last,
7138 Prefix => New_Occurrence_Of (Derived_Type, Loc));
7139 Set_Etype (Hi, Derived_Type);
7140
7141 Set_Scalar_Range (Derived_Type,
7142 Make_Range (Loc,
7143 Low_Bound => Lo,
7144 High_Bound => Hi));
7145 else
7146
7147 -- Analyze subtype indication and verify compatibility
7148 -- with parent type.
7149
7150 if Base_Type (Process_Subtype (Indic, N)) /=
7151 Base_Type (Parent_Type)
7152 then
7153 Error_Msg_N
7154 ("illegal constraint for formal discrete type", N);
7155 end if;
7156 end if;
7157 end;
7158
7159 else
7160 -- If a constraint is present, analyze the bounds to catch
7161 -- premature usage of the derived literals.
7162
7163 if Nkind (Indic) = N_Subtype_Indication
7164 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
7165 then
7166 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
7167 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
7168 end if;
7169
7170 -- Introduce an implicit base type for the derived type even if there
7171 -- is no constraint attached to it, since this seems closer to the
7172 -- Ada semantics. Build a full type declaration tree for the derived
7173 -- type using the implicit base type as the defining identifier. The
7174 -- build a subtype declaration tree which applies the constraint (if
7175 -- any) have it replace the derived type declaration.
7176
7177 Literal := First_Literal (Parent_Type);
7178 Literals_List := New_List;
7179 while Present (Literal)
7180 and then Ekind (Literal) = E_Enumeration_Literal
7181 loop
7182 -- Literals of the derived type have the same representation as
7183 -- those of the parent type, but this representation can be
7184 -- overridden by an explicit representation clause. Indicate
7185 -- that there is no explicit representation given yet. These
7186 -- derived literals are implicit operations of the new type,
7187 -- and can be overridden by explicit ones.
7188
7189 if Nkind (Literal) = N_Defining_Character_Literal then
7190 New_Lit :=
7191 Make_Defining_Character_Literal (Loc, Chars (Literal));
7192 else
7193 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
7194 end if;
7195
7196 Set_Ekind (New_Lit, E_Enumeration_Literal);
7197 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
7198 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
7199 Set_Enumeration_Rep_Expr (New_Lit, Empty);
7200 Set_Alias (New_Lit, Literal);
7201 Set_Is_Known_Valid (New_Lit, True);
7202
7203 Append (New_Lit, Literals_List);
7204 Next_Literal (Literal);
7205 end loop;
7206
7207 Implicit_Base :=
7208 Make_Defining_Identifier (Sloc (Derived_Type),
7209 Chars => New_External_Name (Chars (Derived_Type), 'B'));
7210
7211 -- Indicate the proper nature of the derived type. This must be done
7212 -- before analysis of the literals, to recognize cases when a literal
7213 -- may be hidden by a previous explicit function definition (cf.
7214 -- c83031a).
7215
7216 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
7217 Set_Etype (Derived_Type, Implicit_Base);
7218
7219 Type_Decl :=
7220 Make_Full_Type_Declaration (Loc,
7221 Defining_Identifier => Implicit_Base,
7222 Discriminant_Specifications => No_List,
7223 Type_Definition =>
7224 Make_Enumeration_Type_Definition (Loc, Literals_List));
7225
7226 Mark_Rewrite_Insertion (Type_Decl);
7227 Insert_Before (N, Type_Decl);
7228 Analyze (Type_Decl);
7229
7230 -- The anonymous base now has a full declaration, but this base
7231 -- is not a first subtype.
7232
7233 Set_Is_First_Subtype (Implicit_Base, False);
7234
7235 -- After the implicit base is analyzed its Etype needs to be changed
7236 -- to reflect the fact that it is derived from the parent type which
7237 -- was ignored during analysis. We also set the size at this point.
7238
7239 Set_Etype (Implicit_Base, Parent_Type);
7240
7241 Set_Size_Info (Implicit_Base, Parent_Type);
7242 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
7243 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
7244
7245 -- Copy other flags from parent type
7246
7247 Set_Has_Non_Standard_Rep
7248 (Implicit_Base, Has_Non_Standard_Rep
7249 (Parent_Type));
7250 Set_Has_Pragma_Ordered
7251 (Implicit_Base, Has_Pragma_Ordered
7252 (Parent_Type));
7253 Set_Has_Delayed_Freeze (Implicit_Base);
7254
7255 -- Process the subtype indication including a validation check on the
7256 -- constraint, if any. If a constraint is given, its bounds must be
7257 -- implicitly converted to the new type.
7258
7259 if Nkind (Indic) = N_Subtype_Indication then
7260 declare
7261 R : constant Node_Id :=
7262 Range_Expression (Constraint (Indic));
7263
7264 begin
7265 if Nkind (R) = N_Range then
7266 Hi := Build_Scalar_Bound
7267 (High_Bound (R), Parent_Type, Implicit_Base);
7268 Lo := Build_Scalar_Bound
7269 (Low_Bound (R), Parent_Type, Implicit_Base);
7270
7271 else
7272 -- Constraint is a Range attribute. Replace with explicit
7273 -- mention of the bounds of the prefix, which must be a
7274 -- subtype.
7275
7276 Analyze (Prefix (R));
7277 Hi :=
7278 Convert_To (Implicit_Base,
7279 Make_Attribute_Reference (Loc,
7280 Attribute_Name => Name_Last,
7281 Prefix =>
7282 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
7283
7284 Lo :=
7285 Convert_To (Implicit_Base,
7286 Make_Attribute_Reference (Loc,
7287 Attribute_Name => Name_First,
7288 Prefix =>
7289 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
7290 end if;
7291 end;
7292
7293 else
7294 Hi :=
7295 Build_Scalar_Bound
7296 (Type_High_Bound (Parent_Type),
7297 Parent_Type, Implicit_Base);
7298 Lo :=
7299 Build_Scalar_Bound
7300 (Type_Low_Bound (Parent_Type),
7301 Parent_Type, Implicit_Base);
7302 end if;
7303
7304 Rang_Expr :=
7305 Make_Range (Loc,
7306 Low_Bound => Lo,
7307 High_Bound => Hi);
7308
7309 -- If we constructed a default range for the case where no range
7310 -- was given, then the expressions in the range must not freeze
7311 -- since they do not correspond to expressions in the source.
7312 -- However, if the type inherits predicates the expressions will
7313 -- be elaborated earlier and must freeze.
7314
7315 if Nkind (Indic) /= N_Subtype_Indication
7316 and then not Has_Predicates (Derived_Type)
7317 then
7318 Set_Must_Not_Freeze (Lo);
7319 Set_Must_Not_Freeze (Hi);
7320 Set_Must_Not_Freeze (Rang_Expr);
7321 end if;
7322
7323 Rewrite (N,
7324 Make_Subtype_Declaration (Loc,
7325 Defining_Identifier => Derived_Type,
7326 Subtype_Indication =>
7327 Make_Subtype_Indication (Loc,
7328 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
7329 Constraint =>
7330 Make_Range_Constraint (Loc,
7331 Range_Expression => Rang_Expr))));
7332
7333 Analyze (N);
7334
7335 -- Propagate the aspects from the original type declaration to the
7336 -- declaration of the implicit base.
7337
7338 Move_Aspects (From => Original_Node (N), To => Type_Decl);
7339
7340 -- Apply a range check. Since this range expression doesn't have an
7341 -- Etype, we have to specifically pass the Source_Typ parameter. Is
7342 -- this right???
7343
7344 if Nkind (Indic) = N_Subtype_Indication then
7345 Apply_Range_Check
7346 (Range_Expression (Constraint (Indic)), Parent_Type,
7347 Source_Typ => Entity (Subtype_Mark (Indic)));
7348 end if;
7349 end if;
7350 end Build_Derived_Enumeration_Type;
7351
7352 --------------------------------
7353 -- Build_Derived_Numeric_Type --
7354 --------------------------------
7355
7356 procedure Build_Derived_Numeric_Type
7357 (N : Node_Id;
7358 Parent_Type : Entity_Id;
7359 Derived_Type : Entity_Id)
7360 is
7361 Loc : constant Source_Ptr := Sloc (N);
7362 Tdef : constant Node_Id := Type_Definition (N);
7363 Indic : constant Node_Id := Subtype_Indication (Tdef);
7364 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
7365 No_Constraint : constant Boolean := Nkind (Indic) /=
7366 N_Subtype_Indication;
7367 Implicit_Base : Entity_Id;
7368
7369 Lo : Node_Id;
7370 Hi : Node_Id;
7371
7372 begin
7373 -- Process the subtype indication including a validation check on
7374 -- the constraint if any.
7375
7376 Discard_Node (Process_Subtype (Indic, N));
7377
7378 -- Introduce an implicit base type for the derived type even if there
7379 -- is no constraint attached to it, since this seems closer to the Ada
7380 -- semantics.
7381
7382 Implicit_Base :=
7383 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
7384
7385 Set_Etype (Implicit_Base, Parent_Base);
7386 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
7387 Set_Size_Info (Implicit_Base, Parent_Base);
7388 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
7389 Set_Parent (Implicit_Base, Parent (Derived_Type));
7390 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
7391
7392 -- Set RM Size for discrete type or decimal fixed-point type
7393 -- Ordinary fixed-point is excluded, why???
7394
7395 if Is_Discrete_Type (Parent_Base)
7396 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
7397 then
7398 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
7399 end if;
7400
7401 Set_Has_Delayed_Freeze (Implicit_Base);
7402
7403 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
7404 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
7405
7406 Set_Scalar_Range (Implicit_Base,
7407 Make_Range (Loc,
7408 Low_Bound => Lo,
7409 High_Bound => Hi));
7410
7411 if Has_Infinities (Parent_Base) then
7412 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
7413 end if;
7414
7415 -- The Derived_Type, which is the entity of the declaration, is a
7416 -- subtype of the implicit base. Its Ekind is a subtype, even in the
7417 -- absence of an explicit constraint.
7418
7419 Set_Etype (Derived_Type, Implicit_Base);
7420
7421 -- If we did not have a constraint, then the Ekind is set from the
7422 -- parent type (otherwise Process_Subtype has set the bounds)
7423
7424 if No_Constraint then
7425 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
7426 end if;
7427
7428 -- If we did not have a range constraint, then set the range from the
7429 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
7430
7431 if No_Constraint or else not Has_Range_Constraint (Indic) then
7432 Set_Scalar_Range (Derived_Type,
7433 Make_Range (Loc,
7434 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
7435 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
7436 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7437
7438 if Has_Infinities (Parent_Type) then
7439 Set_Includes_Infinities (Scalar_Range (Derived_Type));
7440 end if;
7441
7442 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
7443 end if;
7444
7445 Set_Is_Descendant_Of_Address (Derived_Type,
7446 Is_Descendant_Of_Address (Parent_Type));
7447 Set_Is_Descendant_Of_Address (Implicit_Base,
7448 Is_Descendant_Of_Address (Parent_Type));
7449
7450 -- Set remaining type-specific fields, depending on numeric type
7451
7452 if Is_Modular_Integer_Type (Parent_Type) then
7453 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
7454
7455 Set_Non_Binary_Modulus
7456 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
7457
7458 Set_Is_Known_Valid
7459 (Implicit_Base, Is_Known_Valid (Parent_Base));
7460
7461 elsif Is_Floating_Point_Type (Parent_Type) then
7462
7463 -- Digits of base type is always copied from the digits value of
7464 -- the parent base type, but the digits of the derived type will
7465 -- already have been set if there was a constraint present.
7466
7467 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
7468 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
7469
7470 if No_Constraint then
7471 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
7472 end if;
7473
7474 elsif Is_Fixed_Point_Type (Parent_Type) then
7475
7476 -- Small of base type and derived type are always copied from the
7477 -- parent base type, since smalls never change. The delta of the
7478 -- base type is also copied from the parent base type. However the
7479 -- delta of the derived type will have been set already if a
7480 -- constraint was present.
7481
7482 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
7483 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
7484 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
7485
7486 if No_Constraint then
7487 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
7488 end if;
7489
7490 -- The scale and machine radix in the decimal case are always
7491 -- copied from the parent base type.
7492
7493 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
7494 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
7495 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
7496
7497 Set_Machine_Radix_10
7498 (Derived_Type, Machine_Radix_10 (Parent_Base));
7499 Set_Machine_Radix_10
7500 (Implicit_Base, Machine_Radix_10 (Parent_Base));
7501
7502 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
7503
7504 if No_Constraint then
7505 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
7506
7507 else
7508 -- the analysis of the subtype_indication sets the
7509 -- digits value of the derived type.
7510
7511 null;
7512 end if;
7513 end if;
7514 end if;
7515
7516 if Is_Integer_Type (Parent_Type) then
7517 Set_Has_Shift_Operator
7518 (Implicit_Base, Has_Shift_Operator (Parent_Type));
7519 end if;
7520
7521 -- The type of the bounds is that of the parent type, and they
7522 -- must be converted to the derived type.
7523
7524 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
7525
7526 -- The implicit_base should be frozen when the derived type is frozen,
7527 -- but note that it is used in the conversions of the bounds. For fixed
7528 -- types we delay the determination of the bounds until the proper
7529 -- freezing point. For other numeric types this is rejected by GCC, for
7530 -- reasons that are currently unclear (???), so we choose to freeze the
7531 -- implicit base now. In the case of integers and floating point types
7532 -- this is harmless because subsequent representation clauses cannot
7533 -- affect anything, but it is still baffling that we cannot use the
7534 -- same mechanism for all derived numeric types.
7535
7536 -- There is a further complication: actually some representation
7537 -- clauses can affect the implicit base type. For example, attribute
7538 -- definition clauses for stream-oriented attributes need to set the
7539 -- corresponding TSS entries on the base type, and this normally
7540 -- cannot be done after the base type is frozen, so the circuitry in
7541 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
7542 -- and not use Set_TSS in this case.
7543
7544 -- There are also consequences for the case of delayed representation
7545 -- aspects for some cases. For example, a Size aspect is delayed and
7546 -- should not be evaluated to the freeze point. This early freezing
7547 -- means that the size attribute evaluation happens too early???
7548
7549 if Is_Fixed_Point_Type (Parent_Type) then
7550 Conditional_Delay (Implicit_Base, Parent_Type);
7551 else
7552 Freeze_Before (N, Implicit_Base);
7553 end if;
7554 end Build_Derived_Numeric_Type;
7555
7556 --------------------------------
7557 -- Build_Derived_Private_Type --
7558 --------------------------------
7559
7560 procedure Build_Derived_Private_Type
7561 (N : Node_Id;
7562 Parent_Type : Entity_Id;
7563 Derived_Type : Entity_Id;
7564 Is_Completion : Boolean;
7565 Derive_Subps : Boolean := True)
7566 is
7567 Loc : constant Source_Ptr := Sloc (N);
7568 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
7569 Par_Scope : constant Entity_Id := Scope (Par_Base);
7570 Full_N : constant Node_Id := New_Copy_Tree (N);
7571 Full_Der : Entity_Id := New_Copy (Derived_Type);
7572 Full_P : Entity_Id;
7573
7574 procedure Build_Full_Derivation;
7575 -- Build full derivation, i.e. derive from the full view
7576
7577 procedure Copy_And_Build;
7578 -- Copy derived type declaration, replace parent with its full view,
7579 -- and build derivation
7580
7581 ---------------------------
7582 -- Build_Full_Derivation --
7583 ---------------------------
7584
7585 procedure Build_Full_Derivation is
7586 begin
7587 -- If parent scope is not open, install the declarations
7588
7589 if not In_Open_Scopes (Par_Scope) then
7590 Install_Private_Declarations (Par_Scope);
7591 Install_Visible_Declarations (Par_Scope);
7592 Copy_And_Build;
7593 Uninstall_Declarations (Par_Scope);
7594
7595 -- If parent scope is open and in another unit, and parent has a
7596 -- completion, then the derivation is taking place in the visible
7597 -- part of a child unit. In that case retrieve the full view of
7598 -- the parent momentarily.
7599
7600 elsif not In_Same_Source_Unit (N, Parent_Type) then
7601 Full_P := Full_View (Parent_Type);
7602 Exchange_Declarations (Parent_Type);
7603 Copy_And_Build;
7604 Exchange_Declarations (Full_P);
7605
7606 -- Otherwise it is a local derivation
7607
7608 else
7609 Copy_And_Build;
7610 end if;
7611 end Build_Full_Derivation;
7612
7613 --------------------
7614 -- Copy_And_Build --
7615 --------------------
7616
7617 procedure Copy_And_Build is
7618 Full_Parent : Entity_Id := Parent_Type;
7619
7620 begin
7621 -- If the parent is itself derived from another private type,
7622 -- installing the private declarations has not affected its
7623 -- privacy status, so use its own full view explicitly.
7624
7625 if Is_Private_Type (Full_Parent)
7626 and then Present (Full_View (Full_Parent))
7627 then
7628 Full_Parent := Full_View (Full_Parent);
7629 end if;
7630
7631 -- And its underlying full view if necessary
7632
7633 if Is_Private_Type (Full_Parent)
7634 and then Present (Underlying_Full_View (Full_Parent))
7635 then
7636 Full_Parent := Underlying_Full_View (Full_Parent);
7637 end if;
7638
7639 -- For record, access and most enumeration types, derivation from
7640 -- the full view requires a fully-fledged declaration. In the other
7641 -- cases, just use an itype.
7642
7643 if Ekind (Full_Parent) in Record_Kind
7644 or else Ekind (Full_Parent) in Access_Kind
7645 or else
7646 (Ekind (Full_Parent) in Enumeration_Kind
7647 and then not Is_Standard_Character_Type (Full_Parent)
7648 and then not Is_Generic_Type (Root_Type (Full_Parent)))
7649 then
7650 -- Copy and adjust declaration to provide a completion for what
7651 -- is originally a private declaration. Indicate that full view
7652 -- is internally generated.
7653
7654 Set_Comes_From_Source (Full_N, False);
7655 Set_Comes_From_Source (Full_Der, False);
7656 Set_Parent (Full_Der, Full_N);
7657 Set_Defining_Identifier (Full_N, Full_Der);
7658
7659 -- If there are no constraints, adjust the subtype mark
7660
7661 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
7662 N_Subtype_Indication
7663 then
7664 Set_Subtype_Indication
7665 (Type_Definition (Full_N),
7666 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
7667 end if;
7668
7669 Insert_After (N, Full_N);
7670
7671 -- Build full view of derived type from full view of parent which
7672 -- is now installed. Subprograms have been derived on the partial
7673 -- view, the completion does not derive them anew.
7674
7675 if Ekind (Full_Parent) in Record_Kind then
7676
7677 -- If parent type is tagged, the completion inherits the proper
7678 -- primitive operations.
7679
7680 if Is_Tagged_Type (Parent_Type) then
7681 Build_Derived_Record_Type
7682 (Full_N, Full_Parent, Full_Der, Derive_Subps);
7683 else
7684 Build_Derived_Record_Type
7685 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
7686 end if;
7687
7688 else
7689 Build_Derived_Type
7690 (Full_N, Full_Parent, Full_Der,
7691 Is_Completion => False, Derive_Subps => False);
7692 end if;
7693
7694 -- The full declaration has been introduced into the tree and
7695 -- processed in the step above. It should not be analyzed again
7696 -- (when encountered later in the current list of declarations)
7697 -- to prevent spurious name conflicts. The full entity remains
7698 -- invisible.
7699
7700 Set_Analyzed (Full_N);
7701
7702 else
7703 Full_Der :=
7704 Make_Defining_Identifier (Sloc (Derived_Type),
7705 Chars => Chars (Derived_Type));
7706 Set_Is_Itype (Full_Der);
7707 Set_Associated_Node_For_Itype (Full_Der, N);
7708 Set_Parent (Full_Der, N);
7709 Build_Derived_Type
7710 (N, Full_Parent, Full_Der,
7711 Is_Completion => False, Derive_Subps => False);
7712 end if;
7713
7714 Set_Has_Private_Declaration (Full_Der);
7715 Set_Has_Private_Declaration (Derived_Type);
7716
7717 Set_Scope (Full_Der, Scope (Derived_Type));
7718 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
7719 Set_Has_Size_Clause (Full_Der, False);
7720 Set_Has_Alignment_Clause (Full_Der, False);
7721 Set_Has_Delayed_Freeze (Full_Der);
7722 Set_Is_Frozen (Full_Der, False);
7723 Set_Freeze_Node (Full_Der, Empty);
7724 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
7725 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
7726
7727 -- The convention on the base type may be set in the private part
7728 -- and not propagated to the subtype until later, so we obtain the
7729 -- convention from the base type of the parent.
7730
7731 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
7732 end Copy_And_Build;
7733
7734 -- Start of processing for Build_Derived_Private_Type
7735
7736 begin
7737 if Is_Tagged_Type (Parent_Type) then
7738 Full_P := Full_View (Parent_Type);
7739
7740 -- A type extension of a type with unknown discriminants is an
7741 -- indefinite type that the back-end cannot handle directly.
7742 -- We treat it as a private type, and build a completion that is
7743 -- derived from the full view of the parent, and hopefully has
7744 -- known discriminants.
7745
7746 -- If the full view of the parent type has an underlying record view,
7747 -- use it to generate the underlying record view of this derived type
7748 -- (required for chains of derivations with unknown discriminants).
7749
7750 -- Minor optimization: we avoid the generation of useless underlying
7751 -- record view entities if the private type declaration has unknown
7752 -- discriminants but its corresponding full view has no
7753 -- discriminants.
7754
7755 if Has_Unknown_Discriminants (Parent_Type)
7756 and then Present (Full_P)
7757 and then (Has_Discriminants (Full_P)
7758 or else Present (Underlying_Record_View (Full_P)))
7759 and then not In_Open_Scopes (Par_Scope)
7760 and then Expander_Active
7761 then
7762 declare
7763 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
7764 New_Ext : constant Node_Id :=
7765 Copy_Separate_Tree
7766 (Record_Extension_Part (Type_Definition (N)));
7767 Decl : Node_Id;
7768
7769 begin
7770 Build_Derived_Record_Type
7771 (N, Parent_Type, Derived_Type, Derive_Subps);
7772
7773 -- Build anonymous completion, as a derivation from the full
7774 -- view of the parent. This is not a completion in the usual
7775 -- sense, because the current type is not private.
7776
7777 Decl :=
7778 Make_Full_Type_Declaration (Loc,
7779 Defining_Identifier => Full_Der,
7780 Type_Definition =>
7781 Make_Derived_Type_Definition (Loc,
7782 Subtype_Indication =>
7783 New_Copy_Tree
7784 (Subtype_Indication (Type_Definition (N))),
7785 Record_Extension_Part => New_Ext));
7786
7787 -- If the parent type has an underlying record view, use it
7788 -- here to build the new underlying record view.
7789
7790 if Present (Underlying_Record_View (Full_P)) then
7791 pragma Assert
7792 (Nkind (Subtype_Indication (Type_Definition (Decl)))
7793 = N_Identifier);
7794 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
7795 Underlying_Record_View (Full_P));
7796 end if;
7797
7798 Install_Private_Declarations (Par_Scope);
7799 Install_Visible_Declarations (Par_Scope);
7800 Insert_Before (N, Decl);
7801
7802 -- Mark entity as an underlying record view before analysis,
7803 -- to avoid generating the list of its primitive operations
7804 -- (which is not really required for this entity) and thus
7805 -- prevent spurious errors associated with missing overriding
7806 -- of abstract primitives (overridden only for Derived_Type).
7807
7808 Set_Ekind (Full_Der, E_Record_Type);
7809 Set_Is_Underlying_Record_View (Full_Der);
7810 Set_Default_SSO (Full_Der);
7811 Set_No_Reordering (Full_Der, No_Component_Reordering);
7812
7813 Analyze (Decl);
7814
7815 pragma Assert (Has_Discriminants (Full_Der)
7816 and then not Has_Unknown_Discriminants (Full_Der));
7817
7818 Uninstall_Declarations (Par_Scope);
7819
7820 -- Freeze the underlying record view, to prevent generation of
7821 -- useless dispatching information, which is simply shared with
7822 -- the real derived type.
7823
7824 Set_Is_Frozen (Full_Der);
7825
7826 -- If the derived type has access discriminants, create
7827 -- references to their anonymous types now, to prevent
7828 -- back-end problems when their first use is in generated
7829 -- bodies of primitives.
7830
7831 declare
7832 E : Entity_Id;
7833
7834 begin
7835 E := First_Entity (Full_Der);
7836
7837 while Present (E) loop
7838 if Ekind (E) = E_Discriminant
7839 and then Ekind (Etype (E)) = E_Anonymous_Access_Type
7840 then
7841 Build_Itype_Reference (Etype (E), Decl);
7842 end if;
7843
7844 Next_Entity (E);
7845 end loop;
7846 end;
7847
7848 -- Set up links between real entity and underlying record view
7849
7850 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
7851 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
7852 end;
7853
7854 -- If discriminants are known, build derived record
7855
7856 else
7857 Build_Derived_Record_Type
7858 (N, Parent_Type, Derived_Type, Derive_Subps);
7859 end if;
7860
7861 return;
7862
7863 elsif Has_Discriminants (Parent_Type) then
7864
7865 -- Build partial view of derived type from partial view of parent.
7866 -- This must be done before building the full derivation because the
7867 -- second derivation will modify the discriminants of the first and
7868 -- the discriminants are chained with the rest of the components in
7869 -- the full derivation.
7870
7871 Build_Derived_Record_Type
7872 (N, Parent_Type, Derived_Type, Derive_Subps);
7873
7874 -- Build the full derivation if this is not the anonymous derived
7875 -- base type created by Build_Derived_Record_Type in the constrained
7876 -- case (see point 5. of its head comment) since we build it for the
7877 -- derived subtype. And skip it for synchronized types altogether, as
7878 -- gigi does not use these types directly.
7879
7880 if Present (Full_View (Parent_Type))
7881 and then not Is_Itype (Derived_Type)
7882 and then not Is_Concurrent_Type (Full_View (Parent_Type))
7883 then
7884 declare
7885 Der_Base : constant Entity_Id := Base_Type (Derived_Type);
7886 Discr : Entity_Id;
7887 Last_Discr : Entity_Id;
7888
7889 begin
7890 -- If this is not a completion, construct the implicit full
7891 -- view by deriving from the full view of the parent type.
7892 -- But if this is a completion, the derived private type
7893 -- being built is a full view and the full derivation can
7894 -- only be its underlying full view.
7895
7896 Build_Full_Derivation;
7897
7898 if not Is_Completion then
7899 Set_Full_View (Derived_Type, Full_Der);
7900 else
7901 Set_Underlying_Full_View (Derived_Type, Full_Der);
7902 Set_Is_Underlying_Full_View (Full_Der);
7903 end if;
7904
7905 if not Is_Base_Type (Derived_Type) then
7906 Set_Full_View (Der_Base, Base_Type (Full_Der));
7907 end if;
7908
7909 -- Copy the discriminant list from full view to the partial
7910 -- view (base type and its subtype). Gigi requires that the
7911 -- partial and full views have the same discriminants.
7912
7913 -- Note that since the partial view points to discriminants
7914 -- in the full view, their scope will be that of the full
7915 -- view. This might cause some front end problems and need
7916 -- adjustment???
7917
7918 Discr := First_Discriminant (Base_Type (Full_Der));
7919 Set_First_Entity (Der_Base, Discr);
7920
7921 loop
7922 Last_Discr := Discr;
7923 Next_Discriminant (Discr);
7924 exit when No (Discr);
7925 end loop;
7926
7927 Set_Last_Entity (Der_Base, Last_Discr);
7928 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
7929 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
7930 end;
7931 end if;
7932
7933 elsif Present (Full_View (Parent_Type))
7934 and then Has_Discriminants (Full_View (Parent_Type))
7935 then
7936 if Has_Unknown_Discriminants (Parent_Type)
7937 and then Nkind (Subtype_Indication (Type_Definition (N))) =
7938 N_Subtype_Indication
7939 then
7940 Error_Msg_N
7941 ("cannot constrain type with unknown discriminants",
7942 Subtype_Indication (Type_Definition (N)));
7943 return;
7944 end if;
7945
7946 -- If this is not a completion, construct the implicit full view by
7947 -- deriving from the full view of the parent type. But if this is a
7948 -- completion, the derived private type being built is a full view
7949 -- and the full derivation can only be its underlying full view.
7950
7951 Build_Full_Derivation;
7952
7953 if not Is_Completion then
7954 Set_Full_View (Derived_Type, Full_Der);
7955 else
7956 Set_Underlying_Full_View (Derived_Type, Full_Der);
7957 Set_Is_Underlying_Full_View (Full_Der);
7958 end if;
7959
7960 -- In any case, the primitive operations are inherited from the
7961 -- parent type, not from the internal full view.
7962
7963 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
7964
7965 if Derive_Subps then
7966 Derive_Subprograms (Parent_Type, Derived_Type);
7967 end if;
7968
7969 Set_Stored_Constraint (Derived_Type, No_Elist);
7970 Set_Is_Constrained
7971 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
7972
7973 else
7974 -- Untagged type, No discriminants on either view
7975
7976 if Nkind (Subtype_Indication (Type_Definition (N))) =
7977 N_Subtype_Indication
7978 then
7979 Error_Msg_N
7980 ("illegal constraint on type without discriminants", N);
7981 end if;
7982
7983 if Present (Discriminant_Specifications (N))
7984 and then Present (Full_View (Parent_Type))
7985 and then not Is_Tagged_Type (Full_View (Parent_Type))
7986 then
7987 Error_Msg_N ("cannot add discriminants to untagged type", N);
7988 end if;
7989
7990 Set_Stored_Constraint (Derived_Type, No_Elist);
7991 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7992
7993 Set_Is_Controlled_Active
7994 (Derived_Type, Is_Controlled_Active (Parent_Type));
7995
7996 Set_Disable_Controlled
7997 (Derived_Type, Disable_Controlled (Parent_Type));
7998
7999 Set_Has_Controlled_Component
8000 (Derived_Type, Has_Controlled_Component (Parent_Type));
8001
8002 -- Direct controlled types do not inherit Finalize_Storage_Only flag
8003
8004 if not Is_Controlled (Parent_Type) then
8005 Set_Finalize_Storage_Only
8006 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
8007 end if;
8008
8009 -- If this is not a completion, construct the implicit full view by
8010 -- deriving from the full view of the parent type.
8011
8012 -- ??? If the parent is untagged private and its completion is
8013 -- tagged, this mechanism will not work because we cannot derive from
8014 -- the tagged full view unless we have an extension.
8015
8016 if Present (Full_View (Parent_Type))
8017 and then not Is_Tagged_Type (Full_View (Parent_Type))
8018 and then not Is_Completion
8019 then
8020 Build_Full_Derivation;
8021 Set_Full_View (Derived_Type, Full_Der);
8022 end if;
8023 end if;
8024
8025 Set_Has_Unknown_Discriminants (Derived_Type,
8026 Has_Unknown_Discriminants (Parent_Type));
8027
8028 if Is_Private_Type (Derived_Type) then
8029 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8030 end if;
8031
8032 -- If the parent base type is in scope, add the derived type to its
8033 -- list of private dependents, because its full view may become
8034 -- visible subsequently (in a nested private part, a body, or in a
8035 -- further child unit).
8036
8037 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
8038 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
8039
8040 -- Check for unusual case where a type completed by a private
8041 -- derivation occurs within a package nested in a child unit, and
8042 -- the parent is declared in an ancestor.
8043
8044 if Is_Child_Unit (Scope (Current_Scope))
8045 and then Is_Completion
8046 and then In_Private_Part (Current_Scope)
8047 and then Scope (Parent_Type) /= Current_Scope
8048
8049 -- Note that if the parent has a completion in the private part,
8050 -- (which is itself a derivation from some other private type)
8051 -- it is that completion that is visible, there is no full view
8052 -- available, and no special processing is needed.
8053
8054 and then Present (Full_View (Parent_Type))
8055 then
8056 -- In this case, the full view of the parent type will become
8057 -- visible in the body of the enclosing child, and only then will
8058 -- the current type be possibly non-private. Build an underlying
8059 -- full view that will be installed when the enclosing child body
8060 -- is compiled.
8061
8062 if Present (Underlying_Full_View (Derived_Type)) then
8063 Full_Der := Underlying_Full_View (Derived_Type);
8064 else
8065 Build_Full_Derivation;
8066 Set_Underlying_Full_View (Derived_Type, Full_Der);
8067 Set_Is_Underlying_Full_View (Full_Der);
8068 end if;
8069
8070 -- The full view will be used to swap entities on entry/exit to
8071 -- the body, and must appear in the entity list for the package.
8072
8073 Append_Entity (Full_Der, Scope (Derived_Type));
8074 end if;
8075 end if;
8076 end Build_Derived_Private_Type;
8077
8078 -------------------------------
8079 -- Build_Derived_Record_Type --
8080 -------------------------------
8081
8082 -- 1. INTRODUCTION
8083
8084 -- Ideally we would like to use the same model of type derivation for
8085 -- tagged and untagged record types. Unfortunately this is not quite
8086 -- possible because the semantics of representation clauses is different
8087 -- for tagged and untagged records under inheritance. Consider the
8088 -- following:
8089
8090 -- type R (...) is [tagged] record ... end record;
8091 -- type T (...) is new R (...) [with ...];
8092
8093 -- The representation clauses for T can specify a completely different
8094 -- record layout from R's. Hence the same component can be placed in two
8095 -- very different positions in objects of type T and R. If R and T are
8096 -- tagged types, representation clauses for T can only specify the layout
8097 -- of non inherited components, thus components that are common in R and T
8098 -- have the same position in objects of type R and T.
8099
8100 -- This has two implications. The first is that the entire tree for R's
8101 -- declaration needs to be copied for T in the untagged case, so that T
8102 -- can be viewed as a record type of its own with its own representation
8103 -- clauses. The second implication is the way we handle discriminants.
8104 -- Specifically, in the untagged case we need a way to communicate to Gigi
8105 -- what are the real discriminants in the record, while for the semantics
8106 -- we need to consider those introduced by the user to rename the
8107 -- discriminants in the parent type. This is handled by introducing the
8108 -- notion of stored discriminants. See below for more.
8109
8110 -- Fortunately the way regular components are inherited can be handled in
8111 -- the same way in tagged and untagged types.
8112
8113 -- To complicate things a bit more the private view of a private extension
8114 -- cannot be handled in the same way as the full view (for one thing the
8115 -- semantic rules are somewhat different). We will explain what differs
8116 -- below.
8117
8118 -- 2. DISCRIMINANTS UNDER INHERITANCE
8119
8120 -- The semantic rules governing the discriminants of derived types are
8121 -- quite subtle.
8122
8123 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
8124 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
8125
8126 -- If parent type has discriminants, then the discriminants that are
8127 -- declared in the derived type are [3.4 (11)]:
8128
8129 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
8130 -- there is one;
8131
8132 -- o Otherwise, each discriminant of the parent type (implicitly declared
8133 -- in the same order with the same specifications). In this case, the
8134 -- discriminants are said to be "inherited", or if unknown in the parent
8135 -- are also unknown in the derived type.
8136
8137 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
8138
8139 -- o The parent subtype must be constrained;
8140
8141 -- o If the parent type is not a tagged type, then each discriminant of
8142 -- the derived type must be used in the constraint defining a parent
8143 -- subtype. [Implementation note: This ensures that the new discriminant
8144 -- can share storage with an existing discriminant.]
8145
8146 -- For the derived type each discriminant of the parent type is either
8147 -- inherited, constrained to equal some new discriminant of the derived
8148 -- type, or constrained to the value of an expression.
8149
8150 -- When inherited or constrained to equal some new discriminant, the
8151 -- parent discriminant and the discriminant of the derived type are said
8152 -- to "correspond".
8153
8154 -- If a discriminant of the parent type is constrained to a specific value
8155 -- in the derived type definition, then the discriminant is said to be
8156 -- "specified" by that derived type definition.
8157
8158 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
8159
8160 -- We have spoken about stored discriminants in point 1 (introduction)
8161 -- above. There are two sorts of stored discriminants: implicit and
8162 -- explicit. As long as the derived type inherits the same discriminants as
8163 -- the root record type, stored discriminants are the same as regular
8164 -- discriminants, and are said to be implicit. However, if any discriminant
8165 -- in the root type was renamed in the derived type, then the derived
8166 -- type will contain explicit stored discriminants. Explicit stored
8167 -- discriminants are discriminants in addition to the semantically visible
8168 -- discriminants defined for the derived type. Stored discriminants are
8169 -- used by Gigi to figure out what are the physical discriminants in
8170 -- objects of the derived type (see precise definition in einfo.ads).
8171 -- As an example, consider the following:
8172
8173 -- type R (D1, D2, D3 : Int) is record ... end record;
8174 -- type T1 is new R;
8175 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
8176 -- type T3 is new T2;
8177 -- type T4 (Y : Int) is new T3 (Y, 99);
8178
8179 -- The following table summarizes the discriminants and stored
8180 -- discriminants in R and T1 through T4:
8181
8182 -- Type Discrim Stored Discrim Comment
8183 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
8184 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
8185 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
8186 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
8187 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
8188
8189 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
8190 -- find the corresponding discriminant in the parent type, while
8191 -- Original_Record_Component (abbreviated ORC below) the actual physical
8192 -- component that is renamed. Finally the field Is_Completely_Hidden
8193 -- (abbreviated ICH below) is set for all explicit stored discriminants
8194 -- (see einfo.ads for more info). For the above example this gives:
8195
8196 -- Discrim CD ORC ICH
8197 -- ^^^^^^^ ^^ ^^^ ^^^
8198 -- D1 in R empty itself no
8199 -- D2 in R empty itself no
8200 -- D3 in R empty itself no
8201
8202 -- D1 in T1 D1 in R itself no
8203 -- D2 in T1 D2 in R itself no
8204 -- D3 in T1 D3 in R itself no
8205
8206 -- X1 in T2 D3 in T1 D3 in T2 no
8207 -- X2 in T2 D1 in T1 D1 in T2 no
8208 -- D1 in T2 empty itself yes
8209 -- D2 in T2 empty itself yes
8210 -- D3 in T2 empty itself yes
8211
8212 -- X1 in T3 X1 in T2 D3 in T3 no
8213 -- X2 in T3 X2 in T2 D1 in T3 no
8214 -- D1 in T3 empty itself yes
8215 -- D2 in T3 empty itself yes
8216 -- D3 in T3 empty itself yes
8217
8218 -- Y in T4 X1 in T3 D3 in T4 no
8219 -- D1 in T4 empty itself yes
8220 -- D2 in T4 empty itself yes
8221 -- D3 in T4 empty itself yes
8222
8223 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
8224
8225 -- Type derivation for tagged types is fairly straightforward. If no
8226 -- discriminants are specified by the derived type, these are inherited
8227 -- from the parent. No explicit stored discriminants are ever necessary.
8228 -- The only manipulation that is done to the tree is that of adding a
8229 -- _parent field with parent type and constrained to the same constraint
8230 -- specified for the parent in the derived type definition. For instance:
8231
8232 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
8233 -- type T1 is new R with null record;
8234 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
8235
8236 -- are changed into:
8237
8238 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
8239 -- _parent : R (D1, D2, D3);
8240 -- end record;
8241
8242 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
8243 -- _parent : T1 (X2, 88, X1);
8244 -- end record;
8245
8246 -- The discriminants actually present in R, T1 and T2 as well as their CD,
8247 -- ORC and ICH fields are:
8248
8249 -- Discrim CD ORC ICH
8250 -- ^^^^^^^ ^^ ^^^ ^^^
8251 -- D1 in R empty itself no
8252 -- D2 in R empty itself no
8253 -- D3 in R empty itself no
8254
8255 -- D1 in T1 D1 in R D1 in R no
8256 -- D2 in T1 D2 in R D2 in R no
8257 -- D3 in T1 D3 in R D3 in R no
8258
8259 -- X1 in T2 D3 in T1 D3 in R no
8260 -- X2 in T2 D1 in T1 D1 in R no
8261
8262 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
8263 --
8264 -- Regardless of whether we dealing with a tagged or untagged type
8265 -- we will transform all derived type declarations of the form
8266 --
8267 -- type T is new R (...) [with ...];
8268 -- or
8269 -- subtype S is R (...);
8270 -- type T is new S [with ...];
8271 -- into
8272 -- type BT is new R [with ...];
8273 -- subtype T is BT (...);
8274 --
8275 -- That is, the base derived type is constrained only if it has no
8276 -- discriminants. The reason for doing this is that GNAT's semantic model
8277 -- assumes that a base type with discriminants is unconstrained.
8278 --
8279 -- Note that, strictly speaking, the above transformation is not always
8280 -- correct. Consider for instance the following excerpt from ACVC b34011a:
8281 --
8282 -- procedure B34011A is
8283 -- type REC (D : integer := 0) is record
8284 -- I : Integer;
8285 -- end record;
8286
8287 -- package P is
8288 -- type T6 is new Rec;
8289 -- function F return T6;
8290 -- end P;
8291
8292 -- use P;
8293 -- package Q6 is
8294 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
8295 -- end Q6;
8296 --
8297 -- The definition of Q6.U is illegal. However transforming Q6.U into
8298
8299 -- type BaseU is new T6;
8300 -- subtype U is BaseU (Q6.F.I)
8301
8302 -- turns U into a legal subtype, which is incorrect. To avoid this problem
8303 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
8304 -- the transformation described above.
8305
8306 -- There is another instance where the above transformation is incorrect.
8307 -- Consider:
8308
8309 -- package Pack is
8310 -- type Base (D : Integer) is tagged null record;
8311 -- procedure P (X : Base);
8312
8313 -- type Der is new Base (2) with null record;
8314 -- procedure P (X : Der);
8315 -- end Pack;
8316
8317 -- Then the above transformation turns this into
8318
8319 -- type Der_Base is new Base with null record;
8320 -- -- procedure P (X : Base) is implicitly inherited here
8321 -- -- as procedure P (X : Der_Base).
8322
8323 -- subtype Der is Der_Base (2);
8324 -- procedure P (X : Der);
8325 -- -- The overriding of P (X : Der_Base) is illegal since we
8326 -- -- have a parameter conformance problem.
8327
8328 -- To get around this problem, after having semantically processed Der_Base
8329 -- and the rewritten subtype declaration for Der, we copy Der_Base field
8330 -- Discriminant_Constraint from Der so that when parameter conformance is
8331 -- checked when P is overridden, no semantic errors are flagged.
8332
8333 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
8334
8335 -- Regardless of whether we are dealing with a tagged or untagged type
8336 -- we will transform all derived type declarations of the form
8337
8338 -- type R (D1, .., Dn : ...) is [tagged] record ...;
8339 -- type T is new R [with ...];
8340 -- into
8341 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
8342
8343 -- The reason for such transformation is that it allows us to implement a
8344 -- very clean form of component inheritance as explained below.
8345
8346 -- Note that this transformation is not achieved by direct tree rewriting
8347 -- and manipulation, but rather by redoing the semantic actions that the
8348 -- above transformation will entail. This is done directly in routine
8349 -- Inherit_Components.
8350
8351 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
8352
8353 -- In both tagged and untagged derived types, regular non discriminant
8354 -- components are inherited in the derived type from the parent type. In
8355 -- the absence of discriminants component, inheritance is straightforward
8356 -- as components can simply be copied from the parent.
8357
8358 -- If the parent has discriminants, inheriting components constrained with
8359 -- these discriminants requires caution. Consider the following example:
8360
8361 -- type R (D1, D2 : Positive) is [tagged] record
8362 -- S : String (D1 .. D2);
8363 -- end record;
8364
8365 -- type T1 is new R [with null record];
8366 -- type T2 (X : positive) is new R (1, X) [with null record];
8367
8368 -- As explained in 6. above, T1 is rewritten as
8369 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
8370 -- which makes the treatment for T1 and T2 identical.
8371
8372 -- What we want when inheriting S, is that references to D1 and D2 in R are
8373 -- replaced with references to their correct constraints, i.e. D1 and D2 in
8374 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
8375 -- with either discriminant references in the derived type or expressions.
8376 -- This replacement is achieved as follows: before inheriting R's
8377 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
8378 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
8379 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
8380 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
8381 -- by String (1 .. X).
8382
8383 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
8384
8385 -- We explain here the rules governing private type extensions relevant to
8386 -- type derivation. These rules are explained on the following example:
8387
8388 -- type D [(...)] is new A [(...)] with private; <-- partial view
8389 -- type D [(...)] is new P [(...)] with null record; <-- full view
8390
8391 -- Type A is called the ancestor subtype of the private extension.
8392 -- Type P is the parent type of the full view of the private extension. It
8393 -- must be A or a type derived from A.
8394
8395 -- The rules concerning the discriminants of private type extensions are
8396 -- [7.3(10-13)]:
8397
8398 -- o If a private extension inherits known discriminants from the ancestor
8399 -- subtype, then the full view must also inherit its discriminants from
8400 -- the ancestor subtype and the parent subtype of the full view must be
8401 -- constrained if and only if the ancestor subtype is constrained.
8402
8403 -- o If a partial view has unknown discriminants, then the full view may
8404 -- define a definite or an indefinite subtype, with or without
8405 -- discriminants.
8406
8407 -- o If a partial view has neither known nor unknown discriminants, then
8408 -- the full view must define a definite subtype.
8409
8410 -- o If the ancestor subtype of a private extension has constrained
8411 -- discriminants, then the parent subtype of the full view must impose a
8412 -- statically matching constraint on those discriminants.
8413
8414 -- This means that only the following forms of private extensions are
8415 -- allowed:
8416
8417 -- type D is new A with private; <-- partial view
8418 -- type D is new P with null record; <-- full view
8419
8420 -- If A has no discriminants than P has no discriminants, otherwise P must
8421 -- inherit A's discriminants.
8422
8423 -- type D is new A (...) with private; <-- partial view
8424 -- type D is new P (:::) with null record; <-- full view
8425
8426 -- P must inherit A's discriminants and (...) and (:::) must statically
8427 -- match.
8428
8429 -- subtype A is R (...);
8430 -- type D is new A with private; <-- partial view
8431 -- type D is new P with null record; <-- full view
8432
8433 -- P must have inherited R's discriminants and must be derived from A or
8434 -- any of its subtypes.
8435
8436 -- type D (..) is new A with private; <-- partial view
8437 -- type D (..) is new P [(:::)] with null record; <-- full view
8438
8439 -- No specific constraints on P's discriminants or constraint (:::).
8440 -- Note that A can be unconstrained, but the parent subtype P must either
8441 -- be constrained or (:::) must be present.
8442
8443 -- type D (..) is new A [(...)] with private; <-- partial view
8444 -- type D (..) is new P [(:::)] with null record; <-- full view
8445
8446 -- P's constraints on A's discriminants must statically match those
8447 -- imposed by (...).
8448
8449 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
8450
8451 -- The full view of a private extension is handled exactly as described
8452 -- above. The model chose for the private view of a private extension is
8453 -- the same for what concerns discriminants (i.e. they receive the same
8454 -- treatment as in the tagged case). However, the private view of the
8455 -- private extension always inherits the components of the parent base,
8456 -- without replacing any discriminant reference. Strictly speaking this is
8457 -- incorrect. However, Gigi never uses this view to generate code so this
8458 -- is a purely semantic issue. In theory, a set of transformations similar
8459 -- to those given in 5. and 6. above could be applied to private views of
8460 -- private extensions to have the same model of component inheritance as
8461 -- for non private extensions. However, this is not done because it would
8462 -- further complicate private type processing. Semantically speaking, this
8463 -- leaves us in an uncomfortable situation. As an example consider:
8464
8465 -- package Pack is
8466 -- type R (D : integer) is tagged record
8467 -- S : String (1 .. D);
8468 -- end record;
8469 -- procedure P (X : R);
8470 -- type T is new R (1) with private;
8471 -- private
8472 -- type T is new R (1) with null record;
8473 -- end;
8474
8475 -- This is transformed into:
8476
8477 -- package Pack is
8478 -- type R (D : integer) is tagged record
8479 -- S : String (1 .. D);
8480 -- end record;
8481 -- procedure P (X : R);
8482 -- type T is new R (1) with private;
8483 -- private
8484 -- type BaseT is new R with null record;
8485 -- subtype T is BaseT (1);
8486 -- end;
8487
8488 -- (strictly speaking the above is incorrect Ada)
8489
8490 -- From the semantic standpoint the private view of private extension T
8491 -- should be flagged as constrained since one can clearly have
8492 --
8493 -- Obj : T;
8494 --
8495 -- in a unit withing Pack. However, when deriving subprograms for the
8496 -- private view of private extension T, T must be seen as unconstrained
8497 -- since T has discriminants (this is a constraint of the current
8498 -- subprogram derivation model). Thus, when processing the private view of
8499 -- a private extension such as T, we first mark T as unconstrained, we
8500 -- process it, we perform program derivation and just before returning from
8501 -- Build_Derived_Record_Type we mark T as constrained.
8502
8503 -- ??? Are there are other uncomfortable cases that we will have to
8504 -- deal with.
8505
8506 -- 10. RECORD_TYPE_WITH_PRIVATE complications
8507
8508 -- Types that are derived from a visible record type and have a private
8509 -- extension present other peculiarities. They behave mostly like private
8510 -- types, but if they have primitive operations defined, these will not
8511 -- have the proper signatures for further inheritance, because other
8512 -- primitive operations will use the implicit base that we define for
8513 -- private derivations below. This affect subprogram inheritance (see
8514 -- Derive_Subprograms for details). We also derive the implicit base from
8515 -- the base type of the full view, so that the implicit base is a record
8516 -- type and not another private type, This avoids infinite loops.
8517
8518 procedure Build_Derived_Record_Type
8519 (N : Node_Id;
8520 Parent_Type : Entity_Id;
8521 Derived_Type : Entity_Id;
8522 Derive_Subps : Boolean := True)
8523 is
8524 Discriminant_Specs : constant Boolean :=
8525 Present (Discriminant_Specifications (N));
8526 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
8527 Loc : constant Source_Ptr := Sloc (N);
8528 Private_Extension : constant Boolean :=
8529 Nkind (N) = N_Private_Extension_Declaration;
8530 Assoc_List : Elist_Id;
8531 Constraint_Present : Boolean;
8532 Constrs : Elist_Id;
8533 Discrim : Entity_Id;
8534 Indic : Node_Id;
8535 Inherit_Discrims : Boolean := False;
8536 Last_Discrim : Entity_Id;
8537 New_Base : Entity_Id;
8538 New_Decl : Node_Id;
8539 New_Discrs : Elist_Id;
8540 New_Indic : Node_Id;
8541 Parent_Base : Entity_Id;
8542 Save_Etype : Entity_Id;
8543 Save_Discr_Constr : Elist_Id;
8544 Save_Next_Entity : Entity_Id;
8545 Type_Def : Node_Id;
8546
8547 Discs : Elist_Id := New_Elmt_List;
8548 -- An empty Discs list means that there were no constraints in the
8549 -- subtype indication or that there was an error processing it.
8550
8551 begin
8552 if Ekind (Parent_Type) = E_Record_Type_With_Private
8553 and then Present (Full_View (Parent_Type))
8554 and then Has_Discriminants (Parent_Type)
8555 then
8556 Parent_Base := Base_Type (Full_View (Parent_Type));
8557 else
8558 Parent_Base := Base_Type (Parent_Type);
8559 end if;
8560
8561 -- AI05-0115: if this is a derivation from a private type in some
8562 -- other scope that may lead to invisible components for the derived
8563 -- type, mark it accordingly.
8564
8565 if Is_Private_Type (Parent_Type) then
8566 if Scope (Parent_Base) = Scope (Derived_Type) then
8567 null;
8568
8569 elsif In_Open_Scopes (Scope (Parent_Base))
8570 and then In_Private_Part (Scope (Parent_Base))
8571 then
8572 null;
8573
8574 else
8575 Set_Has_Private_Ancestor (Derived_Type);
8576 end if;
8577
8578 else
8579 Set_Has_Private_Ancestor
8580 (Derived_Type, Has_Private_Ancestor (Parent_Type));
8581 end if;
8582
8583 -- Before we start the previously documented transformations, here is
8584 -- little fix for size and alignment of tagged types. Normally when we
8585 -- derive type D from type P, we copy the size and alignment of P as the
8586 -- default for D, and in the absence of explicit representation clauses
8587 -- for D, the size and alignment are indeed the same as the parent.
8588
8589 -- But this is wrong for tagged types, since fields may be added, and
8590 -- the default size may need to be larger, and the default alignment may
8591 -- need to be larger.
8592
8593 -- We therefore reset the size and alignment fields in the tagged case.
8594 -- Note that the size and alignment will in any case be at least as
8595 -- large as the parent type (since the derived type has a copy of the
8596 -- parent type in the _parent field)
8597
8598 -- The type is also marked as being tagged here, which is needed when
8599 -- processing components with a self-referential anonymous access type
8600 -- in the call to Check_Anonymous_Access_Components below. Note that
8601 -- this flag is also set later on for completeness.
8602
8603 if Is_Tagged then
8604 Set_Is_Tagged_Type (Derived_Type);
8605 Init_Size_Align (Derived_Type);
8606 end if;
8607
8608 -- STEP 0a: figure out what kind of derived type declaration we have
8609
8610 if Private_Extension then
8611 Type_Def := N;
8612 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
8613 Set_Default_SSO (Derived_Type);
8614 Set_No_Reordering (Derived_Type, No_Component_Reordering);
8615
8616 else
8617 Type_Def := Type_Definition (N);
8618
8619 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8620 -- Parent_Base can be a private type or private extension. However,
8621 -- for tagged types with an extension the newly added fields are
8622 -- visible and hence the Derived_Type is always an E_Record_Type.
8623 -- (except that the parent may have its own private fields).
8624 -- For untagged types we preserve the Ekind of the Parent_Base.
8625
8626 if Present (Record_Extension_Part (Type_Def)) then
8627 Set_Ekind (Derived_Type, E_Record_Type);
8628 Set_Default_SSO (Derived_Type);
8629 Set_No_Reordering (Derived_Type, No_Component_Reordering);
8630
8631 -- Create internal access types for components with anonymous
8632 -- access types.
8633
8634 if Ada_Version >= Ada_2005 then
8635 Check_Anonymous_Access_Components
8636 (N, Derived_Type, Derived_Type,
8637 Component_List (Record_Extension_Part (Type_Def)));
8638 end if;
8639
8640 else
8641 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8642 end if;
8643 end if;
8644
8645 -- Indic can either be an N_Identifier if the subtype indication
8646 -- contains no constraint or an N_Subtype_Indication if the subtype
8647 -- indication has a constraint.
8648
8649 Indic := Subtype_Indication (Type_Def);
8650 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
8651
8652 -- Check that the type has visible discriminants. The type may be
8653 -- a private type with unknown discriminants whose full view has
8654 -- discriminants which are invisible.
8655
8656 if Constraint_Present then
8657 if not Has_Discriminants (Parent_Base)
8658 or else
8659 (Has_Unknown_Discriminants (Parent_Base)
8660 and then Is_Private_Type (Parent_Base))
8661 then
8662 Error_Msg_N
8663 ("invalid constraint: type has no discriminant",
8664 Constraint (Indic));
8665
8666 Constraint_Present := False;
8667 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8668
8669 elsif Is_Constrained (Parent_Type) then
8670 Error_Msg_N
8671 ("invalid constraint: parent type is already constrained",
8672 Constraint (Indic));
8673
8674 Constraint_Present := False;
8675 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8676 end if;
8677 end if;
8678
8679 -- STEP 0b: If needed, apply transformation given in point 5. above
8680
8681 if not Private_Extension
8682 and then Has_Discriminants (Parent_Type)
8683 and then not Discriminant_Specs
8684 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
8685 then
8686 -- First, we must analyze the constraint (see comment in point 5.)
8687 -- The constraint may come from the subtype indication of the full
8688 -- declaration.
8689
8690 if Constraint_Present then
8691 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
8692
8693 -- If there is no explicit constraint, there might be one that is
8694 -- inherited from a constrained parent type. In that case verify that
8695 -- it conforms to the constraint in the partial view. In perverse
8696 -- cases the parent subtypes of the partial and full view can have
8697 -- different constraints.
8698
8699 elsif Present (Stored_Constraint (Parent_Type)) then
8700 New_Discrs := Stored_Constraint (Parent_Type);
8701
8702 else
8703 New_Discrs := No_Elist;
8704 end if;
8705
8706 if Has_Discriminants (Derived_Type)
8707 and then Has_Private_Declaration (Derived_Type)
8708 and then Present (Discriminant_Constraint (Derived_Type))
8709 and then Present (New_Discrs)
8710 then
8711 -- Verify that constraints of the full view statically match
8712 -- those given in the partial view.
8713
8714 declare
8715 C1, C2 : Elmt_Id;
8716
8717 begin
8718 C1 := First_Elmt (New_Discrs);
8719 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
8720 while Present (C1) and then Present (C2) loop
8721 if Fully_Conformant_Expressions (Node (C1), Node (C2))
8722 or else
8723 (Is_OK_Static_Expression (Node (C1))
8724 and then Is_OK_Static_Expression (Node (C2))
8725 and then
8726 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
8727 then
8728 null;
8729
8730 else
8731 if Constraint_Present then
8732 Error_Msg_N
8733 ("constraint not conformant to previous declaration",
8734 Node (C1));
8735 else
8736 Error_Msg_N
8737 ("constraint of full view is incompatible "
8738 & "with partial view", N);
8739 end if;
8740 end if;
8741
8742 Next_Elmt (C1);
8743 Next_Elmt (C2);
8744 end loop;
8745 end;
8746 end if;
8747
8748 -- Insert and analyze the declaration for the unconstrained base type
8749
8750 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
8751
8752 New_Decl :=
8753 Make_Full_Type_Declaration (Loc,
8754 Defining_Identifier => New_Base,
8755 Type_Definition =>
8756 Make_Derived_Type_Definition (Loc,
8757 Abstract_Present => Abstract_Present (Type_Def),
8758 Limited_Present => Limited_Present (Type_Def),
8759 Subtype_Indication =>
8760 New_Occurrence_Of (Parent_Base, Loc),
8761 Record_Extension_Part =>
8762 Relocate_Node (Record_Extension_Part (Type_Def)),
8763 Interface_List => Interface_List (Type_Def)));
8764
8765 Set_Parent (New_Decl, Parent (N));
8766 Mark_Rewrite_Insertion (New_Decl);
8767 Insert_Before (N, New_Decl);
8768
8769 -- In the extension case, make sure ancestor is frozen appropriately
8770 -- (see also non-discriminated case below).
8771
8772 if Present (Record_Extension_Part (Type_Def))
8773 or else Is_Interface (Parent_Base)
8774 then
8775 Freeze_Before (New_Decl, Parent_Type);
8776 end if;
8777
8778 -- Note that this call passes False for the Derive_Subps parameter
8779 -- because subprogram derivation is deferred until after creating
8780 -- the subtype (see below).
8781
8782 Build_Derived_Type
8783 (New_Decl, Parent_Base, New_Base,
8784 Is_Completion => False, Derive_Subps => False);
8785
8786 -- ??? This needs re-examination to determine whether the
8787 -- above call can simply be replaced by a call to Analyze.
8788
8789 Set_Analyzed (New_Decl);
8790
8791 -- Insert and analyze the declaration for the constrained subtype
8792
8793 if Constraint_Present then
8794 New_Indic :=
8795 Make_Subtype_Indication (Loc,
8796 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8797 Constraint => Relocate_Node (Constraint (Indic)));
8798
8799 else
8800 declare
8801 Constr_List : constant List_Id := New_List;
8802 C : Elmt_Id;
8803 Expr : Node_Id;
8804
8805 begin
8806 C := First_Elmt (Discriminant_Constraint (Parent_Type));
8807 while Present (C) loop
8808 Expr := Node (C);
8809
8810 -- It is safe here to call New_Copy_Tree since we called
8811 -- Force_Evaluation on each constraint previously
8812 -- in Build_Discriminant_Constraints.
8813
8814 Append (New_Copy_Tree (Expr), To => Constr_List);
8815
8816 Next_Elmt (C);
8817 end loop;
8818
8819 New_Indic :=
8820 Make_Subtype_Indication (Loc,
8821 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8822 Constraint =>
8823 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
8824 end;
8825 end if;
8826
8827 Rewrite (N,
8828 Make_Subtype_Declaration (Loc,
8829 Defining_Identifier => Derived_Type,
8830 Subtype_Indication => New_Indic));
8831
8832 Analyze (N);
8833
8834 -- Derivation of subprograms must be delayed until the full subtype
8835 -- has been established, to ensure proper overriding of subprograms
8836 -- inherited by full types. If the derivations occurred as part of
8837 -- the call to Build_Derived_Type above, then the check for type
8838 -- conformance would fail because earlier primitive subprograms
8839 -- could still refer to the full type prior the change to the new
8840 -- subtype and hence would not match the new base type created here.
8841 -- Subprograms are not derived, however, when Derive_Subps is False
8842 -- (since otherwise there could be redundant derivations).
8843
8844 if Derive_Subps then
8845 Derive_Subprograms (Parent_Type, Derived_Type);
8846 end if;
8847
8848 -- For tagged types the Discriminant_Constraint of the new base itype
8849 -- is inherited from the first subtype so that no subtype conformance
8850 -- problem arise when the first subtype overrides primitive
8851 -- operations inherited by the implicit base type.
8852
8853 if Is_Tagged then
8854 Set_Discriminant_Constraint
8855 (New_Base, Discriminant_Constraint (Derived_Type));
8856 end if;
8857
8858 return;
8859 end if;
8860
8861 -- If we get here Derived_Type will have no discriminants or it will be
8862 -- a discriminated unconstrained base type.
8863
8864 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8865
8866 if Is_Tagged then
8867
8868 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8869 -- The declaration of a specific descendant of an interface type
8870 -- freezes the interface type (RM 13.14).
8871
8872 if not Private_Extension or else Is_Interface (Parent_Base) then
8873 Freeze_Before (N, Parent_Type);
8874 end if;
8875
8876 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8877 -- cannot be declared at a deeper level than its parent type is
8878 -- removed. The check on derivation within a generic body is also
8879 -- relaxed, but there's a restriction that a derived tagged type
8880 -- cannot be declared in a generic body if it's derived directly
8881 -- or indirectly from a formal type of that generic.
8882
8883 if Ada_Version >= Ada_2005 then
8884 if Present (Enclosing_Generic_Body (Derived_Type)) then
8885 declare
8886 Ancestor_Type : Entity_Id;
8887
8888 begin
8889 -- Check to see if any ancestor of the derived type is a
8890 -- formal type.
8891
8892 Ancestor_Type := Parent_Type;
8893 while not Is_Generic_Type (Ancestor_Type)
8894 and then Etype (Ancestor_Type) /= Ancestor_Type
8895 loop
8896 Ancestor_Type := Etype (Ancestor_Type);
8897 end loop;
8898
8899 -- If the derived type does have a formal type as an
8900 -- ancestor, then it's an error if the derived type is
8901 -- declared within the body of the generic unit that
8902 -- declares the formal type in its generic formal part. It's
8903 -- sufficient to check whether the ancestor type is declared
8904 -- inside the same generic body as the derived type (such as
8905 -- within a nested generic spec), in which case the
8906 -- derivation is legal. If the formal type is declared
8907 -- outside of that generic body, then it's guaranteed that
8908 -- the derived type is declared within the generic body of
8909 -- the generic unit declaring the formal type.
8910
8911 if Is_Generic_Type (Ancestor_Type)
8912 and then Enclosing_Generic_Body (Ancestor_Type) /=
8913 Enclosing_Generic_Body (Derived_Type)
8914 then
8915 Error_Msg_NE
8916 ("parent type of& must not be descendant of formal type"
8917 & " of an enclosing generic body",
8918 Indic, Derived_Type);
8919 end if;
8920 end;
8921 end if;
8922
8923 elsif Type_Access_Level (Derived_Type) /=
8924 Type_Access_Level (Parent_Type)
8925 and then not Is_Generic_Type (Derived_Type)
8926 then
8927 if Is_Controlled (Parent_Type) then
8928 Error_Msg_N
8929 ("controlled type must be declared at the library level",
8930 Indic);
8931 else
8932 Error_Msg_N
8933 ("type extension at deeper accessibility level than parent",
8934 Indic);
8935 end if;
8936
8937 else
8938 declare
8939 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
8940 begin
8941 if Present (GB)
8942 and then GB /= Enclosing_Generic_Body (Parent_Base)
8943 then
8944 Error_Msg_NE
8945 ("parent type of& must not be outside generic body"
8946 & " (RM 3.9.1(4))",
8947 Indic, Derived_Type);
8948 end if;
8949 end;
8950 end if;
8951 end if;
8952
8953 -- Ada 2005 (AI-251)
8954
8955 if Ada_Version >= Ada_2005 and then Is_Tagged then
8956
8957 -- "The declaration of a specific descendant of an interface type
8958 -- freezes the interface type" (RM 13.14).
8959
8960 declare
8961 Iface : Node_Id;
8962 begin
8963 if Is_Non_Empty_List (Interface_List (Type_Def)) then
8964 Iface := First (Interface_List (Type_Def));
8965 while Present (Iface) loop
8966 Freeze_Before (N, Etype (Iface));
8967 Next (Iface);
8968 end loop;
8969 end if;
8970 end;
8971 end if;
8972
8973 -- STEP 1b : preliminary cleanup of the full view of private types
8974
8975 -- If the type is already marked as having discriminants, then it's the
8976 -- completion of a private type or private extension and we need to
8977 -- retain the discriminants from the partial view if the current
8978 -- declaration has Discriminant_Specifications so that we can verify
8979 -- conformance. However, we must remove any existing components that
8980 -- were inherited from the parent (and attached in Copy_And_Swap)
8981 -- because the full type inherits all appropriate components anyway, and
8982 -- we do not want the partial view's components interfering.
8983
8984 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
8985 Discrim := First_Discriminant (Derived_Type);
8986 loop
8987 Last_Discrim := Discrim;
8988 Next_Discriminant (Discrim);
8989 exit when No (Discrim);
8990 end loop;
8991
8992 Set_Last_Entity (Derived_Type, Last_Discrim);
8993
8994 -- In all other cases wipe out the list of inherited components (even
8995 -- inherited discriminants), it will be properly rebuilt here.
8996
8997 else
8998 Set_First_Entity (Derived_Type, Empty);
8999 Set_Last_Entity (Derived_Type, Empty);
9000 end if;
9001
9002 -- STEP 1c: Initialize some flags for the Derived_Type
9003
9004 -- The following flags must be initialized here so that
9005 -- Process_Discriminants can check that discriminants of tagged types do
9006 -- not have a default initial value and that access discriminants are
9007 -- only specified for limited records. For completeness, these flags are
9008 -- also initialized along with all the other flags below.
9009
9010 -- AI-419: Limitedness is not inherited from an interface parent, so to
9011 -- be limited in that case the type must be explicitly declared as
9012 -- limited. However, task and protected interfaces are always limited.
9013
9014 if Limited_Present (Type_Def) then
9015 Set_Is_Limited_Record (Derived_Type);
9016
9017 elsif Is_Limited_Record (Parent_Type)
9018 or else (Present (Full_View (Parent_Type))
9019 and then Is_Limited_Record (Full_View (Parent_Type)))
9020 then
9021 if not Is_Interface (Parent_Type)
9022 or else Is_Synchronized_Interface (Parent_Type)
9023 or else Is_Protected_Interface (Parent_Type)
9024 or else Is_Task_Interface (Parent_Type)
9025 then
9026 Set_Is_Limited_Record (Derived_Type);
9027 end if;
9028 end if;
9029
9030 -- STEP 2a: process discriminants of derived type if any
9031
9032 Push_Scope (Derived_Type);
9033
9034 if Discriminant_Specs then
9035 Set_Has_Unknown_Discriminants (Derived_Type, False);
9036
9037 -- The following call initializes fields Has_Discriminants and
9038 -- Discriminant_Constraint, unless we are processing the completion
9039 -- of a private type declaration.
9040
9041 Check_Or_Process_Discriminants (N, Derived_Type);
9042
9043 -- For untagged types, the constraint on the Parent_Type must be
9044 -- present and is used to rename the discriminants.
9045
9046 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
9047 Error_Msg_N ("untagged parent must have discriminants", Indic);
9048
9049 elsif not Is_Tagged and then not Constraint_Present then
9050 Error_Msg_N
9051 ("discriminant constraint needed for derived untagged records",
9052 Indic);
9053
9054 -- Otherwise the parent subtype must be constrained unless we have a
9055 -- private extension.
9056
9057 elsif not Constraint_Present
9058 and then not Private_Extension
9059 and then not Is_Constrained (Parent_Type)
9060 then
9061 Error_Msg_N
9062 ("unconstrained type not allowed in this context", Indic);
9063
9064 elsif Constraint_Present then
9065 -- The following call sets the field Corresponding_Discriminant
9066 -- for the discriminants in the Derived_Type.
9067
9068 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
9069
9070 -- For untagged types all new discriminants must rename
9071 -- discriminants in the parent. For private extensions new
9072 -- discriminants cannot rename old ones (implied by [7.3(13)]).
9073
9074 Discrim := First_Discriminant (Derived_Type);
9075 while Present (Discrim) loop
9076 if not Is_Tagged
9077 and then No (Corresponding_Discriminant (Discrim))
9078 then
9079 Error_Msg_N
9080 ("new discriminants must constrain old ones", Discrim);
9081
9082 elsif Private_Extension
9083 and then Present (Corresponding_Discriminant (Discrim))
9084 then
9085 Error_Msg_N
9086 ("only static constraints allowed for parent"
9087 & " discriminants in the partial view", Indic);
9088 exit;
9089 end if;
9090
9091 -- If a new discriminant is used in the constraint, then its
9092 -- subtype must be statically compatible with the parent
9093 -- discriminant's subtype (3.7(15)).
9094
9095 -- However, if the record contains an array constrained by
9096 -- the discriminant but with some different bound, the compiler
9097 -- tries to create a smaller range for the discriminant type.
9098 -- (See exp_ch3.Adjust_Discriminants). In this case, where
9099 -- the discriminant type is a scalar type, the check must use
9100 -- the original discriminant type in the parent declaration.
9101
9102 declare
9103 Corr_Disc : constant Entity_Id :=
9104 Corresponding_Discriminant (Discrim);
9105 Disc_Type : constant Entity_Id := Etype (Discrim);
9106 Corr_Type : Entity_Id;
9107
9108 begin
9109 if Present (Corr_Disc) then
9110 if Is_Scalar_Type (Disc_Type) then
9111 Corr_Type :=
9112 Entity (Discriminant_Type (Parent (Corr_Disc)));
9113 else
9114 Corr_Type := Etype (Corr_Disc);
9115 end if;
9116
9117 if not
9118 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
9119 then
9120 Error_Msg_N
9121 ("subtype must be compatible "
9122 & "with parent discriminant",
9123 Discrim);
9124 end if;
9125 end if;
9126 end;
9127
9128 Next_Discriminant (Discrim);
9129 end loop;
9130
9131 -- Check whether the constraints of the full view statically
9132 -- match those imposed by the parent subtype [7.3(13)].
9133
9134 if Present (Stored_Constraint (Derived_Type)) then
9135 declare
9136 C1, C2 : Elmt_Id;
9137
9138 begin
9139 C1 := First_Elmt (Discs);
9140 C2 := First_Elmt (Stored_Constraint (Derived_Type));
9141 while Present (C1) and then Present (C2) loop
9142 if not
9143 Fully_Conformant_Expressions (Node (C1), Node (C2))
9144 then
9145 Error_Msg_N
9146 ("not conformant with previous declaration",
9147 Node (C1));
9148 end if;
9149
9150 Next_Elmt (C1);
9151 Next_Elmt (C2);
9152 end loop;
9153 end;
9154 end if;
9155 end if;
9156
9157 -- STEP 2b: No new discriminants, inherit discriminants if any
9158
9159 else
9160 if Private_Extension then
9161 Set_Has_Unknown_Discriminants
9162 (Derived_Type,
9163 Has_Unknown_Discriminants (Parent_Type)
9164 or else Unknown_Discriminants_Present (N));
9165
9166 -- The partial view of the parent may have unknown discriminants,
9167 -- but if the full view has discriminants and the parent type is
9168 -- in scope they must be inherited.
9169
9170 elsif Has_Unknown_Discriminants (Parent_Type)
9171 and then
9172 (not Has_Discriminants (Parent_Type)
9173 or else not In_Open_Scopes (Scope (Parent_Base)))
9174 then
9175 Set_Has_Unknown_Discriminants (Derived_Type);
9176 end if;
9177
9178 if not Has_Unknown_Discriminants (Derived_Type)
9179 and then not Has_Unknown_Discriminants (Parent_Base)
9180 and then Has_Discriminants (Parent_Type)
9181 then
9182 Inherit_Discrims := True;
9183 Set_Has_Discriminants
9184 (Derived_Type, True);
9185 Set_Discriminant_Constraint
9186 (Derived_Type, Discriminant_Constraint (Parent_Base));
9187 end if;
9188
9189 -- The following test is true for private types (remember
9190 -- transformation 5. is not applied to those) and in an error
9191 -- situation.
9192
9193 if Constraint_Present then
9194 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
9195 end if;
9196
9197 -- For now mark a new derived type as constrained only if it has no
9198 -- discriminants. At the end of Build_Derived_Record_Type we properly
9199 -- set this flag in the case of private extensions. See comments in
9200 -- point 9. just before body of Build_Derived_Record_Type.
9201
9202 Set_Is_Constrained
9203 (Derived_Type,
9204 not (Inherit_Discrims
9205 or else Has_Unknown_Discriminants (Derived_Type)));
9206 end if;
9207
9208 -- STEP 3: initialize fields of derived type
9209
9210 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
9211 Set_Stored_Constraint (Derived_Type, No_Elist);
9212
9213 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
9214 -- but cannot be interfaces
9215
9216 if not Private_Extension
9217 and then Ekind (Derived_Type) /= E_Private_Type
9218 and then Ekind (Derived_Type) /= E_Limited_Private_Type
9219 then
9220 if Interface_Present (Type_Def) then
9221 Analyze_Interface_Declaration (Derived_Type, Type_Def);
9222 end if;
9223
9224 Set_Interfaces (Derived_Type, No_Elist);
9225 end if;
9226
9227 -- Fields inherited from the Parent_Type
9228
9229 Set_Has_Specified_Layout
9230 (Derived_Type, Has_Specified_Layout (Parent_Type));
9231 Set_Is_Limited_Composite
9232 (Derived_Type, Is_Limited_Composite (Parent_Type));
9233 Set_Is_Private_Composite
9234 (Derived_Type, Is_Private_Composite (Parent_Type));
9235
9236 if Is_Tagged_Type (Parent_Type) then
9237 Set_No_Tagged_Streams_Pragma
9238 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9239 end if;
9240
9241 -- Fields inherited from the Parent_Base
9242
9243 Set_Has_Controlled_Component
9244 (Derived_Type, Has_Controlled_Component (Parent_Base));
9245 Set_Has_Non_Standard_Rep
9246 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
9247 Set_Has_Primitive_Operations
9248 (Derived_Type, Has_Primitive_Operations (Parent_Base));
9249
9250 -- Set fields for private derived types
9251
9252 if Is_Private_Type (Derived_Type) then
9253 Set_Depends_On_Private (Derived_Type, True);
9254 Set_Private_Dependents (Derived_Type, New_Elmt_List);
9255 end if;
9256
9257 -- Inherit fields for non-private types. If this is the completion of a
9258 -- derivation from a private type, the parent itself is private and the
9259 -- attributes come from its full view, which must be present.
9260
9261 if Is_Record_Type (Derived_Type) then
9262 declare
9263 Parent_Full : Entity_Id;
9264
9265 begin
9266 if Is_Private_Type (Parent_Base)
9267 and then not Is_Record_Type (Parent_Base)
9268 then
9269 Parent_Full := Full_View (Parent_Base);
9270 else
9271 Parent_Full := Parent_Base;
9272 end if;
9273
9274 Set_Component_Alignment
9275 (Derived_Type, Component_Alignment (Parent_Full));
9276 Set_C_Pass_By_Copy
9277 (Derived_Type, C_Pass_By_Copy (Parent_Full));
9278 Set_Has_Complex_Representation
9279 (Derived_Type, Has_Complex_Representation (Parent_Full));
9280
9281 -- For untagged types, inherit the layout by default to avoid
9282 -- costly changes of representation for type conversions.
9283
9284 if not Is_Tagged then
9285 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Full));
9286 Set_No_Reordering (Derived_Type, No_Reordering (Parent_Full));
9287 end if;
9288 end;
9289 end if;
9290
9291 -- Set fields for tagged types
9292
9293 if Is_Tagged then
9294 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
9295
9296 -- All tagged types defined in Ada.Finalization are controlled
9297
9298 if Chars (Scope (Derived_Type)) = Name_Finalization
9299 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
9300 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
9301 then
9302 Set_Is_Controlled_Active (Derived_Type);
9303 else
9304 Set_Is_Controlled_Active
9305 (Derived_Type, Is_Controlled_Active (Parent_Base));
9306 end if;
9307
9308 -- Minor optimization: there is no need to generate the class-wide
9309 -- entity associated with an underlying record view.
9310
9311 if not Is_Underlying_Record_View (Derived_Type) then
9312 Make_Class_Wide_Type (Derived_Type);
9313 end if;
9314
9315 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
9316
9317 if Has_Discriminants (Derived_Type)
9318 and then Constraint_Present
9319 then
9320 Set_Stored_Constraint
9321 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
9322 end if;
9323
9324 if Ada_Version >= Ada_2005 then
9325 declare
9326 Ifaces_List : Elist_Id;
9327
9328 begin
9329 -- Checks rules 3.9.4 (13/2 and 14/2)
9330
9331 if Comes_From_Source (Derived_Type)
9332 and then not Is_Private_Type (Derived_Type)
9333 and then Is_Interface (Parent_Type)
9334 and then not Is_Interface (Derived_Type)
9335 then
9336 if Is_Task_Interface (Parent_Type) then
9337 Error_Msg_N
9338 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
9339 Derived_Type);
9340
9341 elsif Is_Protected_Interface (Parent_Type) then
9342 Error_Msg_N
9343 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
9344 Derived_Type);
9345 end if;
9346 end if;
9347
9348 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
9349
9350 Check_Interfaces (N, Type_Def);
9351
9352 -- Ada 2005 (AI-251): Collect the list of progenitors that are
9353 -- not already in the parents.
9354
9355 Collect_Interfaces
9356 (T => Derived_Type,
9357 Ifaces_List => Ifaces_List,
9358 Exclude_Parents => True);
9359
9360 Set_Interfaces (Derived_Type, Ifaces_List);
9361
9362 -- If the derived type is the anonymous type created for
9363 -- a declaration whose parent has a constraint, propagate
9364 -- the interface list to the source type. This must be done
9365 -- prior to the completion of the analysis of the source type
9366 -- because the components in the extension may contain current
9367 -- instances whose legality depends on some ancestor.
9368
9369 if Is_Itype (Derived_Type) then
9370 declare
9371 Def : constant Node_Id :=
9372 Associated_Node_For_Itype (Derived_Type);
9373 begin
9374 if Present (Def)
9375 and then Nkind (Def) = N_Full_Type_Declaration
9376 then
9377 Set_Interfaces
9378 (Defining_Identifier (Def), Ifaces_List);
9379 end if;
9380 end;
9381 end if;
9382
9383 -- A type extension is automatically Ghost when one of its
9384 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
9385 -- also inherited when the parent type is Ghost, but this is
9386 -- done in Build_Derived_Type as the mechanism also handles
9387 -- untagged derivations.
9388
9389 if Implements_Ghost_Interface (Derived_Type) then
9390 Set_Is_Ghost_Entity (Derived_Type);
9391 end if;
9392 end;
9393 end if;
9394 end if;
9395
9396 -- STEP 4: Inherit components from the parent base and constrain them.
9397 -- Apply the second transformation described in point 6. above.
9398
9399 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
9400 or else not Has_Discriminants (Parent_Type)
9401 or else not Is_Constrained (Parent_Type)
9402 then
9403 Constrs := Discs;
9404 else
9405 Constrs := Discriminant_Constraint (Parent_Type);
9406 end if;
9407
9408 Assoc_List :=
9409 Inherit_Components
9410 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
9411
9412 -- STEP 5a: Copy the parent record declaration for untagged types
9413
9414 Set_Has_Implicit_Dereference
9415 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
9416
9417 if not Is_Tagged then
9418
9419 -- Discriminant_Constraint (Derived_Type) has been properly
9420 -- constructed. Save it and temporarily set it to Empty because we
9421 -- do not want the call to New_Copy_Tree below to mess this list.
9422
9423 if Has_Discriminants (Derived_Type) then
9424 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
9425 Set_Discriminant_Constraint (Derived_Type, No_Elist);
9426 else
9427 Save_Discr_Constr := No_Elist;
9428 end if;
9429
9430 -- Save the Etype field of Derived_Type. It is correctly set now,
9431 -- but the call to New_Copy tree may remap it to point to itself,
9432 -- which is not what we want. Ditto for the Next_Entity field.
9433
9434 Save_Etype := Etype (Derived_Type);
9435 Save_Next_Entity := Next_Entity (Derived_Type);
9436
9437 -- Assoc_List maps all stored discriminants in the Parent_Base to
9438 -- stored discriminants in the Derived_Type. It is fundamental that
9439 -- no types or itypes with discriminants other than the stored
9440 -- discriminants appear in the entities declared inside
9441 -- Derived_Type, since the back end cannot deal with it.
9442
9443 New_Decl :=
9444 New_Copy_Tree
9445 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
9446 Copy_Dimensions_Of_Components (Derived_Type);
9447
9448 -- Restore the fields saved prior to the New_Copy_Tree call
9449 -- and compute the stored constraint.
9450
9451 Set_Etype (Derived_Type, Save_Etype);
9452 Link_Entities (Derived_Type, Save_Next_Entity);
9453
9454 if Has_Discriminants (Derived_Type) then
9455 Set_Discriminant_Constraint
9456 (Derived_Type, Save_Discr_Constr);
9457 Set_Stored_Constraint
9458 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
9459
9460 Replace_Components (Derived_Type, New_Decl);
9461 end if;
9462
9463 -- Insert the new derived type declaration
9464
9465 Rewrite (N, New_Decl);
9466
9467 -- STEP 5b: Complete the processing for record extensions in generics
9468
9469 -- There is no completion for record extensions declared in the
9470 -- parameter part of a generic, so we need to complete processing for
9471 -- these generic record extensions here. The Record_Type_Definition call
9472 -- will change the Ekind of the components from E_Void to E_Component.
9473
9474 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
9475 Record_Type_Definition (Empty, Derived_Type);
9476
9477 -- STEP 5c: Process the record extension for non private tagged types
9478
9479 elsif not Private_Extension then
9480 Expand_Record_Extension (Derived_Type, Type_Def);
9481
9482 -- Note : previously in ASIS mode we set the Parent_Subtype of the
9483 -- derived type to propagate some semantic information. This led
9484 -- to other ASIS failures and has been removed.
9485
9486 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
9487 -- implemented interfaces if we are in expansion mode
9488
9489 if Expander_Active
9490 and then Has_Interfaces (Derived_Type)
9491 then
9492 Add_Interface_Tag_Components (N, Derived_Type);
9493 end if;
9494
9495 -- Analyze the record extension
9496
9497 Record_Type_Definition
9498 (Record_Extension_Part (Type_Def), Derived_Type);
9499 end if;
9500
9501 End_Scope;
9502
9503 -- Nothing else to do if there is an error in the derivation.
9504 -- An unusual case: the full view may be derived from a type in an
9505 -- instance, when the partial view was used illegally as an actual
9506 -- in that instance, leading to a circular definition.
9507
9508 if Etype (Derived_Type) = Any_Type
9509 or else Etype (Parent_Type) = Derived_Type
9510 then
9511 return;
9512 end if;
9513
9514 -- Set delayed freeze and then derive subprograms, we need to do
9515 -- this in this order so that derived subprograms inherit the
9516 -- derived freeze if necessary.
9517
9518 Set_Has_Delayed_Freeze (Derived_Type);
9519
9520 if Derive_Subps then
9521 Derive_Subprograms (Parent_Type, Derived_Type);
9522 end if;
9523
9524 -- If we have a private extension which defines a constrained derived
9525 -- type mark as constrained here after we have derived subprograms. See
9526 -- comment on point 9. just above the body of Build_Derived_Record_Type.
9527
9528 if Private_Extension and then Inherit_Discrims then
9529 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
9530 Set_Is_Constrained (Derived_Type, True);
9531 Set_Discriminant_Constraint (Derived_Type, Discs);
9532
9533 elsif Is_Constrained (Parent_Type) then
9534 Set_Is_Constrained
9535 (Derived_Type, True);
9536 Set_Discriminant_Constraint
9537 (Derived_Type, Discriminant_Constraint (Parent_Type));
9538 end if;
9539 end if;
9540
9541 -- Update the class-wide type, which shares the now-completed entity
9542 -- list with its specific type. In case of underlying record views,
9543 -- we do not generate the corresponding class wide entity.
9544
9545 if Is_Tagged
9546 and then not Is_Underlying_Record_View (Derived_Type)
9547 then
9548 Set_First_Entity
9549 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
9550 Set_Last_Entity
9551 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
9552 end if;
9553
9554 Check_Function_Writable_Actuals (N);
9555 end Build_Derived_Record_Type;
9556
9557 ------------------------
9558 -- Build_Derived_Type --
9559 ------------------------
9560
9561 procedure Build_Derived_Type
9562 (N : Node_Id;
9563 Parent_Type : Entity_Id;
9564 Derived_Type : Entity_Id;
9565 Is_Completion : Boolean;
9566 Derive_Subps : Boolean := True)
9567 is
9568 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
9569
9570 begin
9571 -- Set common attributes
9572
9573 Set_Scope (Derived_Type, Current_Scope);
9574 Set_Etype (Derived_Type, Parent_Base);
9575 Set_Ekind (Derived_Type, Ekind (Parent_Base));
9576 Propagate_Concurrent_Flags (Derived_Type, Parent_Base);
9577
9578 Set_Size_Info (Derived_Type, Parent_Type);
9579 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
9580
9581 Set_Is_Controlled_Active
9582 (Derived_Type, Is_Controlled_Active (Parent_Type));
9583
9584 Set_Disable_Controlled (Derived_Type, Disable_Controlled (Parent_Type));
9585 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
9586 Set_Is_Volatile (Derived_Type, Is_Volatile (Parent_Type));
9587
9588 if Is_Tagged_Type (Derived_Type) then
9589 Set_No_Tagged_Streams_Pragma
9590 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9591 end if;
9592
9593 -- If the parent has primitive routines, set the derived type link
9594
9595 if Has_Primitive_Operations (Parent_Type) then
9596 Set_Derived_Type_Link (Parent_Base, Derived_Type);
9597 end if;
9598
9599 -- If the parent type is a private subtype, the convention on the base
9600 -- type may be set in the private part, and not propagated to the
9601 -- subtype until later, so we obtain the convention from the base type.
9602
9603 Set_Convention (Derived_Type, Convention (Parent_Base));
9604
9605 -- Set SSO default for record or array type
9606
9607 if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type))
9608 and then Is_Base_Type (Derived_Type)
9609 then
9610 Set_Default_SSO (Derived_Type);
9611 end if;
9612
9613 -- A derived type inherits the Default_Initial_Condition pragma coming
9614 -- from any parent type within the derivation chain.
9615
9616 if Has_DIC (Parent_Type) then
9617 Set_Has_Inherited_DIC (Derived_Type);
9618 end if;
9619
9620 -- A derived type inherits any class-wide invariants coming from a
9621 -- parent type or an interface. Note that the invariant procedure of
9622 -- the parent type should not be inherited because the derived type may
9623 -- define invariants of its own.
9624
9625 if not Is_Interface (Derived_Type) then
9626 if Has_Inherited_Invariants (Parent_Type)
9627 or else Has_Inheritable_Invariants (Parent_Type)
9628 then
9629 Set_Has_Inherited_Invariants (Derived_Type);
9630
9631 elsif Is_Concurrent_Type (Derived_Type)
9632 or else Is_Tagged_Type (Derived_Type)
9633 then
9634 declare
9635 Iface : Entity_Id;
9636 Ifaces : Elist_Id;
9637 Iface_Elmt : Elmt_Id;
9638
9639 begin
9640 Collect_Interfaces
9641 (T => Derived_Type,
9642 Ifaces_List => Ifaces,
9643 Exclude_Parents => True);
9644
9645 if Present (Ifaces) then
9646 Iface_Elmt := First_Elmt (Ifaces);
9647 while Present (Iface_Elmt) loop
9648 Iface := Node (Iface_Elmt);
9649
9650 if Has_Inheritable_Invariants (Iface) then
9651 Set_Has_Inherited_Invariants (Derived_Type);
9652 exit;
9653 end if;
9654
9655 Next_Elmt (Iface_Elmt);
9656 end loop;
9657 end if;
9658 end;
9659 end if;
9660 end if;
9661
9662 -- We similarly inherit predicates. Note that for scalar derived types
9663 -- the predicate is inherited from the first subtype, and not from its
9664 -- (anonymous) base type.
9665
9666 if Has_Predicates (Parent_Type)
9667 or else Has_Predicates (First_Subtype (Parent_Type))
9668 then
9669 Set_Has_Predicates (Derived_Type);
9670 end if;
9671
9672 -- The derived type inherits representation clauses from the parent
9673 -- type, and from any interfaces.
9674
9675 Inherit_Rep_Item_Chain (Derived_Type, Parent_Type);
9676
9677 declare
9678 Iface : Node_Id := First (Abstract_Interface_List (Derived_Type));
9679 begin
9680 while Present (Iface) loop
9681 Inherit_Rep_Item_Chain (Derived_Type, Entity (Iface));
9682 Next (Iface);
9683 end loop;
9684 end;
9685
9686 -- If the parent type has delayed rep aspects, then mark the derived
9687 -- type as possibly inheriting a delayed rep aspect.
9688
9689 if Has_Delayed_Rep_Aspects (Parent_Type) then
9690 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
9691 end if;
9692
9693 -- A derived type becomes Ghost when its parent type is also Ghost
9694 -- (SPARK RM 6.9(9)). Note that the Ghost-related attributes are not
9695 -- directly inherited because the Ghost policy in effect may differ.
9696
9697 if Is_Ghost_Entity (Parent_Type) then
9698 Set_Is_Ghost_Entity (Derived_Type);
9699 end if;
9700
9701 -- Type dependent processing
9702
9703 case Ekind (Parent_Type) is
9704 when Numeric_Kind =>
9705 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
9706
9707 when Array_Kind =>
9708 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
9709
9710 when Class_Wide_Kind
9711 | E_Record_Subtype
9712 | E_Record_Type
9713 =>
9714 Build_Derived_Record_Type
9715 (N, Parent_Type, Derived_Type, Derive_Subps);
9716 return;
9717
9718 when Enumeration_Kind =>
9719 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
9720
9721 when Access_Kind =>
9722 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
9723
9724 when Incomplete_Or_Private_Kind =>
9725 Build_Derived_Private_Type
9726 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
9727
9728 -- For discriminated types, the derivation includes deriving
9729 -- primitive operations. For others it is done below.
9730
9731 if Is_Tagged_Type (Parent_Type)
9732 or else Has_Discriminants (Parent_Type)
9733 or else (Present (Full_View (Parent_Type))
9734 and then Has_Discriminants (Full_View (Parent_Type)))
9735 then
9736 return;
9737 end if;
9738
9739 when Concurrent_Kind =>
9740 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
9741
9742 when others =>
9743 raise Program_Error;
9744 end case;
9745
9746 -- Nothing more to do if some error occurred
9747
9748 if Etype (Derived_Type) = Any_Type then
9749 return;
9750 end if;
9751
9752 -- Set delayed freeze and then derive subprograms, we need to do this
9753 -- in this order so that derived subprograms inherit the derived freeze
9754 -- if necessary.
9755
9756 Set_Has_Delayed_Freeze (Derived_Type);
9757
9758 if Derive_Subps then
9759 Derive_Subprograms (Parent_Type, Derived_Type);
9760 end if;
9761
9762 Set_Has_Primitive_Operations
9763 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
9764 end Build_Derived_Type;
9765
9766 -----------------------
9767 -- Build_Discriminal --
9768 -----------------------
9769
9770 procedure Build_Discriminal (Discrim : Entity_Id) is
9771 D_Minal : Entity_Id;
9772 CR_Disc : Entity_Id;
9773
9774 begin
9775 -- A discriminal has the same name as the discriminant
9776
9777 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9778
9779 Set_Ekind (D_Minal, E_In_Parameter);
9780 Set_Mechanism (D_Minal, Default_Mechanism);
9781 Set_Etype (D_Minal, Etype (Discrim));
9782 Set_Scope (D_Minal, Current_Scope);
9783 Set_Parent (D_Minal, Parent (Discrim));
9784
9785 Set_Discriminal (Discrim, D_Minal);
9786 Set_Discriminal_Link (D_Minal, Discrim);
9787
9788 -- For task types, build at once the discriminants of the corresponding
9789 -- record, which are needed if discriminants are used in entry defaults
9790 -- and in family bounds.
9791
9792 if Is_Concurrent_Type (Current_Scope)
9793 or else
9794 Is_Limited_Type (Current_Scope)
9795 then
9796 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9797
9798 Set_Ekind (CR_Disc, E_In_Parameter);
9799 Set_Mechanism (CR_Disc, Default_Mechanism);
9800 Set_Etype (CR_Disc, Etype (Discrim));
9801 Set_Scope (CR_Disc, Current_Scope);
9802 Set_Discriminal_Link (CR_Disc, Discrim);
9803 Set_CR_Discriminant (Discrim, CR_Disc);
9804 end if;
9805 end Build_Discriminal;
9806
9807 ------------------------------------
9808 -- Build_Discriminant_Constraints --
9809 ------------------------------------
9810
9811 function Build_Discriminant_Constraints
9812 (T : Entity_Id;
9813 Def : Node_Id;
9814 Derived_Def : Boolean := False) return Elist_Id
9815 is
9816 C : constant Node_Id := Constraint (Def);
9817 Nb_Discr : constant Nat := Number_Discriminants (T);
9818
9819 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
9820 -- Saves the expression corresponding to a given discriminant in T
9821
9822 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
9823 -- Return the Position number within array Discr_Expr of a discriminant
9824 -- D within the discriminant list of the discriminated type T.
9825
9826 procedure Process_Discriminant_Expression
9827 (Expr : Node_Id;
9828 D : Entity_Id);
9829 -- If this is a discriminant constraint on a partial view, do not
9830 -- generate an overflow check on the discriminant expression. The check
9831 -- will be generated when constraining the full view. Otherwise the
9832 -- backend creates duplicate symbols for the temporaries corresponding
9833 -- to the expressions to be checked, causing spurious assembler errors.
9834
9835 ------------------
9836 -- Pos_Of_Discr --
9837 ------------------
9838
9839 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
9840 Disc : Entity_Id;
9841
9842 begin
9843 Disc := First_Discriminant (T);
9844 for J in Discr_Expr'Range loop
9845 if Disc = D then
9846 return J;
9847 end if;
9848
9849 Next_Discriminant (Disc);
9850 end loop;
9851
9852 -- Note: Since this function is called on discriminants that are
9853 -- known to belong to the discriminated type, falling through the
9854 -- loop with no match signals an internal compiler error.
9855
9856 raise Program_Error;
9857 end Pos_Of_Discr;
9858
9859 -------------------------------------
9860 -- Process_Discriminant_Expression --
9861 -------------------------------------
9862
9863 procedure Process_Discriminant_Expression
9864 (Expr : Node_Id;
9865 D : Entity_Id)
9866 is
9867 BDT : constant Entity_Id := Base_Type (Etype (D));
9868
9869 begin
9870 -- If this is a discriminant constraint on a partial view, do
9871 -- not generate an overflow on the discriminant expression. The
9872 -- check will be generated when constraining the full view.
9873
9874 if Is_Private_Type (T)
9875 and then Present (Full_View (T))
9876 then
9877 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
9878 else
9879 Analyze_And_Resolve (Expr, BDT);
9880 end if;
9881 end Process_Discriminant_Expression;
9882
9883 -- Declarations local to Build_Discriminant_Constraints
9884
9885 Discr : Entity_Id;
9886 E : Entity_Id;
9887 Elist : constant Elist_Id := New_Elmt_List;
9888
9889 Constr : Node_Id;
9890 Expr : Node_Id;
9891 Id : Node_Id;
9892 Position : Nat;
9893 Found : Boolean;
9894
9895 Discrim_Present : Boolean := False;
9896
9897 -- Start of processing for Build_Discriminant_Constraints
9898
9899 begin
9900 -- The following loop will process positional associations only.
9901 -- For a positional association, the (single) discriminant is
9902 -- implicitly specified by position, in textual order (RM 3.7.2).
9903
9904 Discr := First_Discriminant (T);
9905 Constr := First (Constraints (C));
9906 for D in Discr_Expr'Range loop
9907 exit when Nkind (Constr) = N_Discriminant_Association;
9908
9909 if No (Constr) then
9910 Error_Msg_N ("too few discriminants given in constraint", C);
9911 return New_Elmt_List;
9912
9913 elsif Nkind (Constr) = N_Range
9914 or else (Nkind (Constr) = N_Attribute_Reference
9915 and then Attribute_Name (Constr) = Name_Range)
9916 then
9917 Error_Msg_N
9918 ("a range is not a valid discriminant constraint", Constr);
9919 Discr_Expr (D) := Error;
9920
9921 elsif Nkind (Constr) = N_Subtype_Indication then
9922 Error_Msg_N
9923 ("a subtype indication is not a valid discriminant constraint",
9924 Constr);
9925 Discr_Expr (D) := Error;
9926
9927 else
9928 Process_Discriminant_Expression (Constr, Discr);
9929 Discr_Expr (D) := Constr;
9930 end if;
9931
9932 Next_Discriminant (Discr);
9933 Next (Constr);
9934 end loop;
9935
9936 if No (Discr) and then Present (Constr) then
9937 Error_Msg_N ("too many discriminants given in constraint", Constr);
9938 return New_Elmt_List;
9939 end if;
9940
9941 -- Named associations can be given in any order, but if both positional
9942 -- and named associations are used in the same discriminant constraint,
9943 -- then positional associations must occur first, at their normal
9944 -- position. Hence once a named association is used, the rest of the
9945 -- discriminant constraint must use only named associations.
9946
9947 while Present (Constr) loop
9948
9949 -- Positional association forbidden after a named association
9950
9951 if Nkind (Constr) /= N_Discriminant_Association then
9952 Error_Msg_N ("positional association follows named one", Constr);
9953 return New_Elmt_List;
9954
9955 -- Otherwise it is a named association
9956
9957 else
9958 -- E records the type of the discriminants in the named
9959 -- association. All the discriminants specified in the same name
9960 -- association must have the same type.
9961
9962 E := Empty;
9963
9964 -- Search the list of discriminants in T to see if the simple name
9965 -- given in the constraint matches any of them.
9966
9967 Id := First (Selector_Names (Constr));
9968 while Present (Id) loop
9969 Found := False;
9970
9971 -- If Original_Discriminant is present, we are processing a
9972 -- generic instantiation and this is an instance node. We need
9973 -- to find the name of the corresponding discriminant in the
9974 -- actual record type T and not the name of the discriminant in
9975 -- the generic formal. Example:
9976
9977 -- generic
9978 -- type G (D : int) is private;
9979 -- package P is
9980 -- subtype W is G (D => 1);
9981 -- end package;
9982 -- type Rec (X : int) is record ... end record;
9983 -- package Q is new P (G => Rec);
9984
9985 -- At the point of the instantiation, formal type G is Rec
9986 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9987 -- which really looks like "subtype W is Rec (D => 1);" at
9988 -- the point of instantiation, we want to find the discriminant
9989 -- that corresponds to D in Rec, i.e. X.
9990
9991 if Present (Original_Discriminant (Id))
9992 and then In_Instance
9993 then
9994 Discr := Find_Corresponding_Discriminant (Id, T);
9995 Found := True;
9996
9997 else
9998 Discr := First_Discriminant (T);
9999 while Present (Discr) loop
10000 if Chars (Discr) = Chars (Id) then
10001 Found := True;
10002 exit;
10003 end if;
10004
10005 Next_Discriminant (Discr);
10006 end loop;
10007
10008 if not Found then
10009 Error_Msg_N ("& does not match any discriminant", Id);
10010 return New_Elmt_List;
10011
10012 -- If the parent type is a generic formal, preserve the
10013 -- name of the discriminant for subsequent instances.
10014 -- see comment at the beginning of this if statement.
10015
10016 elsif Is_Generic_Type (Root_Type (T)) then
10017 Set_Original_Discriminant (Id, Discr);
10018 end if;
10019 end if;
10020
10021 Position := Pos_Of_Discr (T, Discr);
10022
10023 if Present (Discr_Expr (Position)) then
10024 Error_Msg_N ("duplicate constraint for discriminant&", Id);
10025
10026 else
10027 -- Each discriminant specified in the same named association
10028 -- must be associated with a separate copy of the
10029 -- corresponding expression.
10030
10031 if Present (Next (Id)) then
10032 Expr := New_Copy_Tree (Expression (Constr));
10033 Set_Parent (Expr, Parent (Expression (Constr)));
10034 else
10035 Expr := Expression (Constr);
10036 end if;
10037
10038 Discr_Expr (Position) := Expr;
10039 Process_Discriminant_Expression (Expr, Discr);
10040 end if;
10041
10042 -- A discriminant association with more than one discriminant
10043 -- name is only allowed if the named discriminants are all of
10044 -- the same type (RM 3.7.1(8)).
10045
10046 if E = Empty then
10047 E := Base_Type (Etype (Discr));
10048
10049 elsif Base_Type (Etype (Discr)) /= E then
10050 Error_Msg_N
10051 ("all discriminants in an association " &
10052 "must have the same type", Id);
10053 end if;
10054
10055 Next (Id);
10056 end loop;
10057 end if;
10058
10059 Next (Constr);
10060 end loop;
10061
10062 -- A discriminant constraint must provide exactly one value for each
10063 -- discriminant of the type (RM 3.7.1(8)).
10064
10065 for J in Discr_Expr'Range loop
10066 if No (Discr_Expr (J)) then
10067 Error_Msg_N ("too few discriminants given in constraint", C);
10068 return New_Elmt_List;
10069 end if;
10070 end loop;
10071
10072 -- Determine if there are discriminant expressions in the constraint
10073
10074 for J in Discr_Expr'Range loop
10075 if Denotes_Discriminant
10076 (Discr_Expr (J), Check_Concurrent => True)
10077 then
10078 Discrim_Present := True;
10079 end if;
10080 end loop;
10081
10082 -- Build an element list consisting of the expressions given in the
10083 -- discriminant constraint and apply the appropriate checks. The list
10084 -- is constructed after resolving any named discriminant associations
10085 -- and therefore the expressions appear in the textual order of the
10086 -- discriminants.
10087
10088 Discr := First_Discriminant (T);
10089 for J in Discr_Expr'Range loop
10090 if Discr_Expr (J) /= Error then
10091 Append_Elmt (Discr_Expr (J), Elist);
10092
10093 -- If any of the discriminant constraints is given by a
10094 -- discriminant and we are in a derived type declaration we
10095 -- have a discriminant renaming. Establish link between new
10096 -- and old discriminant. The new discriminant has an implicit
10097 -- dereference if the old one does.
10098
10099 if Denotes_Discriminant (Discr_Expr (J)) then
10100 if Derived_Def then
10101 declare
10102 New_Discr : constant Entity_Id := Entity (Discr_Expr (J));
10103
10104 begin
10105 Set_Corresponding_Discriminant (New_Discr, Discr);
10106 Set_Has_Implicit_Dereference (New_Discr,
10107 Has_Implicit_Dereference (Discr));
10108 end;
10109 end if;
10110
10111 -- Force the evaluation of non-discriminant expressions.
10112 -- If we have found a discriminant in the constraint 3.4(26)
10113 -- and 3.8(18) demand that no range checks are performed are
10114 -- after evaluation. If the constraint is for a component
10115 -- definition that has a per-object constraint, expressions are
10116 -- evaluated but not checked either. In all other cases perform
10117 -- a range check.
10118
10119 else
10120 if Discrim_Present then
10121 null;
10122
10123 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
10124 and then Has_Per_Object_Constraint
10125 (Defining_Identifier (Parent (Parent (Def))))
10126 then
10127 null;
10128
10129 elsif Is_Access_Type (Etype (Discr)) then
10130 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
10131
10132 else
10133 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
10134 end if;
10135
10136 Force_Evaluation (Discr_Expr (J));
10137 end if;
10138
10139 -- Check that the designated type of an access discriminant's
10140 -- expression is not a class-wide type unless the discriminant's
10141 -- designated type is also class-wide.
10142
10143 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
10144 and then not Is_Class_Wide_Type
10145 (Designated_Type (Etype (Discr)))
10146 and then Etype (Discr_Expr (J)) /= Any_Type
10147 and then Is_Class_Wide_Type
10148 (Designated_Type (Etype (Discr_Expr (J))))
10149 then
10150 Wrong_Type (Discr_Expr (J), Etype (Discr));
10151
10152 elsif Is_Access_Type (Etype (Discr))
10153 and then not Is_Access_Constant (Etype (Discr))
10154 and then Is_Access_Type (Etype (Discr_Expr (J)))
10155 and then Is_Access_Constant (Etype (Discr_Expr (J)))
10156 then
10157 Error_Msg_NE
10158 ("constraint for discriminant& must be access to variable",
10159 Def, Discr);
10160 end if;
10161 end if;
10162
10163 Next_Discriminant (Discr);
10164 end loop;
10165
10166 return Elist;
10167 end Build_Discriminant_Constraints;
10168
10169 ---------------------------------
10170 -- Build_Discriminated_Subtype --
10171 ---------------------------------
10172
10173 procedure Build_Discriminated_Subtype
10174 (T : Entity_Id;
10175 Def_Id : Entity_Id;
10176 Elist : Elist_Id;
10177 Related_Nod : Node_Id;
10178 For_Access : Boolean := False)
10179 is
10180 Has_Discrs : constant Boolean := Has_Discriminants (T);
10181 Constrained : constant Boolean :=
10182 (Has_Discrs
10183 and then not Is_Empty_Elmt_List (Elist)
10184 and then not Is_Class_Wide_Type (T))
10185 or else Is_Constrained (T);
10186
10187 begin
10188 if Ekind (T) = E_Record_Type then
10189 if For_Access then
10190 Set_Ekind (Def_Id, E_Private_Subtype);
10191 Set_Is_For_Access_Subtype (Def_Id, True);
10192 else
10193 Set_Ekind (Def_Id, E_Record_Subtype);
10194 end if;
10195
10196 -- Inherit preelaboration flag from base, for types for which it
10197 -- may have been set: records, private types, protected types.
10198
10199 Set_Known_To_Have_Preelab_Init
10200 (Def_Id, Known_To_Have_Preelab_Init (T));
10201
10202 elsif Ekind (T) = E_Task_Type then
10203 Set_Ekind (Def_Id, E_Task_Subtype);
10204
10205 elsif Ekind (T) = E_Protected_Type then
10206 Set_Ekind (Def_Id, E_Protected_Subtype);
10207 Set_Known_To_Have_Preelab_Init
10208 (Def_Id, Known_To_Have_Preelab_Init (T));
10209
10210 elsif Is_Private_Type (T) then
10211 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
10212 Set_Known_To_Have_Preelab_Init
10213 (Def_Id, Known_To_Have_Preelab_Init (T));
10214
10215 -- Private subtypes may have private dependents
10216
10217 Set_Private_Dependents (Def_Id, New_Elmt_List);
10218
10219 elsif Is_Class_Wide_Type (T) then
10220 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
10221
10222 else
10223 -- Incomplete type. Attach subtype to list of dependents, to be
10224 -- completed with full view of parent type, unless is it the
10225 -- designated subtype of a record component within an init_proc.
10226 -- This last case arises for a component of an access type whose
10227 -- designated type is incomplete (e.g. a Taft Amendment type).
10228 -- The designated subtype is within an inner scope, and needs no
10229 -- elaboration, because only the access type is needed in the
10230 -- initialization procedure.
10231
10232 if Ekind (T) = E_Incomplete_Type then
10233 Set_Ekind (Def_Id, E_Incomplete_Subtype);
10234 else
10235 Set_Ekind (Def_Id, Ekind (T));
10236 end if;
10237
10238 if For_Access and then Within_Init_Proc then
10239 null;
10240 else
10241 Append_Elmt (Def_Id, Private_Dependents (T));
10242 end if;
10243 end if;
10244
10245 Set_Etype (Def_Id, T);
10246 Init_Size_Align (Def_Id);
10247 Set_Has_Discriminants (Def_Id, Has_Discrs);
10248 Set_Is_Constrained (Def_Id, Constrained);
10249
10250 Set_First_Entity (Def_Id, First_Entity (T));
10251 Set_Last_Entity (Def_Id, Last_Entity (T));
10252 Set_Has_Implicit_Dereference
10253 (Def_Id, Has_Implicit_Dereference (T));
10254 Set_Has_Pragma_Unreferenced_Objects
10255 (Def_Id, Has_Pragma_Unreferenced_Objects (T));
10256
10257 -- If the subtype is the completion of a private declaration, there may
10258 -- have been representation clauses for the partial view, and they must
10259 -- be preserved. Build_Derived_Type chains the inherited clauses with
10260 -- the ones appearing on the extension. If this comes from a subtype
10261 -- declaration, all clauses are inherited.
10262
10263 if No (First_Rep_Item (Def_Id)) then
10264 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10265 end if;
10266
10267 if Is_Tagged_Type (T) then
10268 Set_Is_Tagged_Type (Def_Id);
10269 Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T));
10270 Make_Class_Wide_Type (Def_Id);
10271 end if;
10272
10273 Set_Stored_Constraint (Def_Id, No_Elist);
10274
10275 if Has_Discrs then
10276 Set_Discriminant_Constraint (Def_Id, Elist);
10277 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
10278 end if;
10279
10280 if Is_Tagged_Type (T) then
10281
10282 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
10283 -- concurrent record type (which has the list of primitive
10284 -- operations).
10285
10286 if Ada_Version >= Ada_2005
10287 and then Is_Concurrent_Type (T)
10288 then
10289 Set_Corresponding_Record_Type (Def_Id,
10290 Corresponding_Record_Type (T));
10291 else
10292 Set_Direct_Primitive_Operations (Def_Id,
10293 Direct_Primitive_Operations (T));
10294 end if;
10295
10296 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
10297 end if;
10298
10299 -- Subtypes introduced by component declarations do not need to be
10300 -- marked as delayed, and do not get freeze nodes, because the semantics
10301 -- verifies that the parents of the subtypes are frozen before the
10302 -- enclosing record is frozen.
10303
10304 if not Is_Type (Scope (Def_Id)) then
10305 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
10306
10307 if Is_Private_Type (T)
10308 and then Present (Full_View (T))
10309 then
10310 Conditional_Delay (Def_Id, Full_View (T));
10311 else
10312 Conditional_Delay (Def_Id, T);
10313 end if;
10314 end if;
10315
10316 if Is_Record_Type (T) then
10317 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
10318
10319 if Has_Discrs
10320 and then not Is_Empty_Elmt_List (Elist)
10321 and then not For_Access
10322 then
10323 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
10324
10325 elsif not For_Access then
10326 Set_Cloned_Subtype (Def_Id, T);
10327 end if;
10328 end if;
10329 end Build_Discriminated_Subtype;
10330
10331 ---------------------------
10332 -- Build_Itype_Reference --
10333 ---------------------------
10334
10335 procedure Build_Itype_Reference
10336 (Ityp : Entity_Id;
10337 Nod : Node_Id)
10338 is
10339 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
10340 begin
10341
10342 -- Itype references are only created for use by the back-end
10343
10344 if Inside_A_Generic then
10345 return;
10346 else
10347 Set_Itype (IR, Ityp);
10348
10349 -- If Nod is a library unit entity, then Insert_After won't work,
10350 -- because Nod is not a member of any list. Therefore, we use
10351 -- Add_Global_Declaration in this case. This can happen if we have a
10352 -- build-in-place library function.
10353
10354 if (Nkind (Nod) in N_Entity and then Is_Compilation_Unit (Nod))
10355 or else
10356 (Nkind (Nod) = N_Defining_Program_Unit_Name
10357 and then Is_Compilation_Unit (Defining_Identifier (Nod)))
10358 then
10359 Add_Global_Declaration (IR);
10360 else
10361 Insert_After (Nod, IR);
10362 end if;
10363 end if;
10364 end Build_Itype_Reference;
10365
10366 ------------------------
10367 -- Build_Scalar_Bound --
10368 ------------------------
10369
10370 function Build_Scalar_Bound
10371 (Bound : Node_Id;
10372 Par_T : Entity_Id;
10373 Der_T : Entity_Id) return Node_Id
10374 is
10375 New_Bound : Entity_Id;
10376
10377 begin
10378 -- Note: not clear why this is needed, how can the original bound
10379 -- be unanalyzed at this point? and if it is, what business do we
10380 -- have messing around with it? and why is the base type of the
10381 -- parent type the right type for the resolution. It probably is
10382 -- not. It is OK for the new bound we are creating, but not for
10383 -- the old one??? Still if it never happens, no problem.
10384
10385 Analyze_And_Resolve (Bound, Base_Type (Par_T));
10386
10387 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
10388 New_Bound := New_Copy (Bound);
10389 Set_Etype (New_Bound, Der_T);
10390 Set_Analyzed (New_Bound);
10391
10392 elsif Is_Entity_Name (Bound) then
10393 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
10394
10395 -- The following is almost certainly wrong. What business do we have
10396 -- relocating a node (Bound) that is presumably still attached to
10397 -- the tree elsewhere???
10398
10399 else
10400 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
10401 end if;
10402
10403 Set_Etype (New_Bound, Der_T);
10404 return New_Bound;
10405 end Build_Scalar_Bound;
10406
10407 --------------------------------
10408 -- Build_Underlying_Full_View --
10409 --------------------------------
10410
10411 procedure Build_Underlying_Full_View
10412 (N : Node_Id;
10413 Typ : Entity_Id;
10414 Par : Entity_Id)
10415 is
10416 Loc : constant Source_Ptr := Sloc (N);
10417 Subt : constant Entity_Id :=
10418 Make_Defining_Identifier
10419 (Loc, New_External_Name (Chars (Typ), 'S'));
10420
10421 Constr : Node_Id;
10422 Indic : Node_Id;
10423 C : Node_Id;
10424 Id : Node_Id;
10425
10426 procedure Set_Discriminant_Name (Id : Node_Id);
10427 -- If the derived type has discriminants, they may rename discriminants
10428 -- of the parent. When building the full view of the parent, we need to
10429 -- recover the names of the original discriminants if the constraint is
10430 -- given by named associations.
10431
10432 ---------------------------
10433 -- Set_Discriminant_Name --
10434 ---------------------------
10435
10436 procedure Set_Discriminant_Name (Id : Node_Id) is
10437 Disc : Entity_Id;
10438
10439 begin
10440 Set_Original_Discriminant (Id, Empty);
10441
10442 if Has_Discriminants (Typ) then
10443 Disc := First_Discriminant (Typ);
10444 while Present (Disc) loop
10445 if Chars (Disc) = Chars (Id)
10446 and then Present (Corresponding_Discriminant (Disc))
10447 then
10448 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
10449 end if;
10450 Next_Discriminant (Disc);
10451 end loop;
10452 end if;
10453 end Set_Discriminant_Name;
10454
10455 -- Start of processing for Build_Underlying_Full_View
10456
10457 begin
10458 if Nkind (N) = N_Full_Type_Declaration then
10459 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
10460
10461 elsif Nkind (N) = N_Subtype_Declaration then
10462 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
10463
10464 elsif Nkind (N) = N_Component_Declaration then
10465 Constr :=
10466 New_Copy_Tree
10467 (Constraint (Subtype_Indication (Component_Definition (N))));
10468
10469 else
10470 raise Program_Error;
10471 end if;
10472
10473 C := First (Constraints (Constr));
10474 while Present (C) loop
10475 if Nkind (C) = N_Discriminant_Association then
10476 Id := First (Selector_Names (C));
10477 while Present (Id) loop
10478 Set_Discriminant_Name (Id);
10479 Next (Id);
10480 end loop;
10481 end if;
10482
10483 Next (C);
10484 end loop;
10485
10486 Indic :=
10487 Make_Subtype_Declaration (Loc,
10488 Defining_Identifier => Subt,
10489 Subtype_Indication =>
10490 Make_Subtype_Indication (Loc,
10491 Subtype_Mark => New_Occurrence_Of (Par, Loc),
10492 Constraint => New_Copy_Tree (Constr)));
10493
10494 -- If this is a component subtype for an outer itype, it is not
10495 -- a list member, so simply set the parent link for analysis: if
10496 -- the enclosing type does not need to be in a declarative list,
10497 -- neither do the components.
10498
10499 if Is_List_Member (N)
10500 and then Nkind (N) /= N_Component_Declaration
10501 then
10502 Insert_Before (N, Indic);
10503 else
10504 Set_Parent (Indic, Parent (N));
10505 end if;
10506
10507 Analyze (Indic);
10508 Set_Underlying_Full_View (Typ, Full_View (Subt));
10509 Set_Is_Underlying_Full_View (Full_View (Subt));
10510 end Build_Underlying_Full_View;
10511
10512 -------------------------------
10513 -- Check_Abstract_Overriding --
10514 -------------------------------
10515
10516 procedure Check_Abstract_Overriding (T : Entity_Id) is
10517 Alias_Subp : Entity_Id;
10518 Elmt : Elmt_Id;
10519 Op_List : Elist_Id;
10520 Subp : Entity_Id;
10521 Type_Def : Node_Id;
10522
10523 procedure Check_Pragma_Implemented (Subp : Entity_Id);
10524 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
10525 -- which has pragma Implemented already set. Check whether Subp's entity
10526 -- kind conforms to the implementation kind of the overridden routine.
10527
10528 procedure Check_Pragma_Implemented
10529 (Subp : Entity_Id;
10530 Iface_Subp : Entity_Id);
10531 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
10532 -- Iface_Subp and both entities have pragma Implemented already set on
10533 -- them. Check whether the two implementation kinds are conforming.
10534
10535 procedure Inherit_Pragma_Implemented
10536 (Subp : Entity_Id;
10537 Iface_Subp : Entity_Id);
10538 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
10539 -- subprogram Iface_Subp which has been marked by pragma Implemented.
10540 -- Propagate the implementation kind of Iface_Subp to Subp.
10541
10542 ------------------------------
10543 -- Check_Pragma_Implemented --
10544 ------------------------------
10545
10546 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
10547 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
10548 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
10549 Subp_Alias : constant Entity_Id := Alias (Subp);
10550 Contr_Typ : Entity_Id;
10551 Impl_Subp : Entity_Id;
10552
10553 begin
10554 -- Subp must have an alias since it is a hidden entity used to link
10555 -- an interface subprogram to its overriding counterpart.
10556
10557 pragma Assert (Present (Subp_Alias));
10558
10559 -- Handle aliases to synchronized wrappers
10560
10561 Impl_Subp := Subp_Alias;
10562
10563 if Is_Primitive_Wrapper (Impl_Subp) then
10564 Impl_Subp := Wrapped_Entity (Impl_Subp);
10565 end if;
10566
10567 -- Extract the type of the controlling formal
10568
10569 Contr_Typ := Etype (First_Formal (Subp_Alias));
10570
10571 if Is_Concurrent_Record_Type (Contr_Typ) then
10572 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
10573 end if;
10574
10575 -- An interface subprogram whose implementation kind is By_Entry must
10576 -- be implemented by an entry.
10577
10578 if Impl_Kind = Name_By_Entry
10579 and then Ekind (Impl_Subp) /= E_Entry
10580 then
10581 Error_Msg_Node_2 := Iface_Alias;
10582 Error_Msg_NE
10583 ("type & must implement abstract subprogram & with an entry",
10584 Subp_Alias, Contr_Typ);
10585
10586 elsif Impl_Kind = Name_By_Protected_Procedure then
10587
10588 -- An interface subprogram whose implementation kind is By_
10589 -- Protected_Procedure cannot be implemented by a primitive
10590 -- procedure of a task type.
10591
10592 if Ekind (Contr_Typ) /= E_Protected_Type then
10593 Error_Msg_Node_2 := Contr_Typ;
10594 Error_Msg_NE
10595 ("interface subprogram & cannot be implemented by a " &
10596 "primitive procedure of task type &", Subp_Alias,
10597 Iface_Alias);
10598
10599 -- An interface subprogram whose implementation kind is By_
10600 -- Protected_Procedure must be implemented by a procedure.
10601
10602 elsif Ekind (Impl_Subp) /= E_Procedure then
10603 Error_Msg_Node_2 := Iface_Alias;
10604 Error_Msg_NE
10605 ("type & must implement abstract subprogram & with a " &
10606 "procedure", Subp_Alias, Contr_Typ);
10607
10608 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10609 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10610 then
10611 Error_Msg_Name_1 := Impl_Kind;
10612 Error_Msg_N
10613 ("overriding operation& must have synchronization%",
10614 Subp_Alias);
10615 end if;
10616
10617 -- If primitive has Optional synchronization, overriding operation
10618 -- must match if it has an explicit synchronization..
10619
10620 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10621 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10622 then
10623 Error_Msg_Name_1 := Impl_Kind;
10624 Error_Msg_N
10625 ("overriding operation& must have syncrhonization%",
10626 Subp_Alias);
10627 end if;
10628 end Check_Pragma_Implemented;
10629
10630 ------------------------------
10631 -- Check_Pragma_Implemented --
10632 ------------------------------
10633
10634 procedure Check_Pragma_Implemented
10635 (Subp : Entity_Id;
10636 Iface_Subp : Entity_Id)
10637 is
10638 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10639 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
10640
10641 begin
10642 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
10643 -- and overriding subprogram are different. In general this is an
10644 -- error except when the implementation kind of the overridden
10645 -- subprograms is By_Any or Optional.
10646
10647 if Iface_Kind /= Subp_Kind
10648 and then Iface_Kind /= Name_By_Any
10649 and then Iface_Kind /= Name_Optional
10650 then
10651 if Iface_Kind = Name_By_Entry then
10652 Error_Msg_N
10653 ("incompatible implementation kind, overridden subprogram " &
10654 "is marked By_Entry", Subp);
10655 else
10656 Error_Msg_N
10657 ("incompatible implementation kind, overridden subprogram " &
10658 "is marked By_Protected_Procedure", Subp);
10659 end if;
10660 end if;
10661 end Check_Pragma_Implemented;
10662
10663 --------------------------------
10664 -- Inherit_Pragma_Implemented --
10665 --------------------------------
10666
10667 procedure Inherit_Pragma_Implemented
10668 (Subp : Entity_Id;
10669 Iface_Subp : Entity_Id)
10670 is
10671 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10672 Loc : constant Source_Ptr := Sloc (Subp);
10673 Impl_Prag : Node_Id;
10674
10675 begin
10676 -- Since the implementation kind is stored as a representation item
10677 -- rather than a flag, create a pragma node.
10678
10679 Impl_Prag :=
10680 Make_Pragma (Loc,
10681 Chars => Name_Implemented,
10682 Pragma_Argument_Associations => New_List (
10683 Make_Pragma_Argument_Association (Loc,
10684 Expression => New_Occurrence_Of (Subp, Loc)),
10685
10686 Make_Pragma_Argument_Association (Loc,
10687 Expression => Make_Identifier (Loc, Iface_Kind))));
10688
10689 -- The pragma doesn't need to be analyzed because it is internally
10690 -- built. It is safe to directly register it as a rep item since we
10691 -- are only interested in the characters of the implementation kind.
10692
10693 Record_Rep_Item (Subp, Impl_Prag);
10694 end Inherit_Pragma_Implemented;
10695
10696 -- Start of processing for Check_Abstract_Overriding
10697
10698 begin
10699 Op_List := Primitive_Operations (T);
10700
10701 -- Loop to check primitive operations
10702
10703 Elmt := First_Elmt (Op_List);
10704 while Present (Elmt) loop
10705 Subp := Node (Elmt);
10706 Alias_Subp := Alias (Subp);
10707
10708 -- Inherited subprograms are identified by the fact that they do not
10709 -- come from source, and the associated source location is the
10710 -- location of the first subtype of the derived type.
10711
10712 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
10713 -- subprograms that "require overriding".
10714
10715 -- Special exception, do not complain about failure to override the
10716 -- stream routines _Input and _Output, as well as the primitive
10717 -- operations used in dispatching selects since we always provide
10718 -- automatic overridings for these subprograms.
10719
10720 -- The partial view of T may have been a private extension, for
10721 -- which inherited functions dispatching on result are abstract.
10722 -- If the full view is a null extension, there is no need for
10723 -- overriding in Ada 2005, but wrappers need to be built for them
10724 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
10725
10726 if Is_Null_Extension (T)
10727 and then Has_Controlling_Result (Subp)
10728 and then Ada_Version >= Ada_2005
10729 and then Present (Alias_Subp)
10730 and then not Comes_From_Source (Subp)
10731 and then not Is_Abstract_Subprogram (Alias_Subp)
10732 and then not Is_Access_Type (Etype (Subp))
10733 then
10734 null;
10735
10736 -- Ada 2005 (AI-251): Internal entities of interfaces need no
10737 -- processing because this check is done with the aliased
10738 -- entity
10739
10740 elsif Present (Interface_Alias (Subp)) then
10741 null;
10742
10743 elsif (Is_Abstract_Subprogram (Subp)
10744 or else Requires_Overriding (Subp)
10745 or else
10746 (Has_Controlling_Result (Subp)
10747 and then Present (Alias_Subp)
10748 and then not Comes_From_Source (Subp)
10749 and then Sloc (Subp) = Sloc (First_Subtype (T))))
10750 and then not Is_TSS (Subp, TSS_Stream_Input)
10751 and then not Is_TSS (Subp, TSS_Stream_Output)
10752 and then not Is_Abstract_Type (T)
10753 and then not Is_Predefined_Interface_Primitive (Subp)
10754
10755 -- Ada 2005 (AI-251): Do not consider hidden entities associated
10756 -- with abstract interface types because the check will be done
10757 -- with the aliased entity (otherwise we generate a duplicated
10758 -- error message).
10759
10760 and then not Present (Interface_Alias (Subp))
10761 then
10762 if Present (Alias_Subp) then
10763
10764 -- Only perform the check for a derived subprogram when the
10765 -- type has an explicit record extension. This avoids incorrect
10766 -- flagging of abstract subprograms for the case of a type
10767 -- without an extension that is derived from a formal type
10768 -- with a tagged actual (can occur within a private part).
10769
10770 -- Ada 2005 (AI-391): In the case of an inherited function with
10771 -- a controlling result of the type, the rule does not apply if
10772 -- the type is a null extension (unless the parent function
10773 -- itself is abstract, in which case the function must still be
10774 -- be overridden). The expander will generate an overriding
10775 -- wrapper function calling the parent subprogram (see
10776 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
10777
10778 Type_Def := Type_Definition (Parent (T));
10779
10780 if Nkind (Type_Def) = N_Derived_Type_Definition
10781 and then Present (Record_Extension_Part (Type_Def))
10782 and then
10783 (Ada_Version < Ada_2005
10784 or else not Is_Null_Extension (T)
10785 or else Ekind (Subp) = E_Procedure
10786 or else not Has_Controlling_Result (Subp)
10787 or else Is_Abstract_Subprogram (Alias_Subp)
10788 or else Requires_Overriding (Subp)
10789 or else Is_Access_Type (Etype (Subp)))
10790 then
10791 -- Avoid reporting error in case of abstract predefined
10792 -- primitive inherited from interface type because the
10793 -- body of internally generated predefined primitives
10794 -- of tagged types are generated later by Freeze_Type
10795
10796 if Is_Interface (Root_Type (T))
10797 and then Is_Abstract_Subprogram (Subp)
10798 and then Is_Predefined_Dispatching_Operation (Subp)
10799 and then not Comes_From_Source (Ultimate_Alias (Subp))
10800 then
10801 null;
10802
10803 -- A null extension is not obliged to override an inherited
10804 -- procedure subject to pragma Extensions_Visible with value
10805 -- False and at least one controlling OUT parameter
10806 -- (SPARK RM 6.1.7(6)).
10807
10808 elsif Is_Null_Extension (T)
10809 and then Is_EVF_Procedure (Subp)
10810 then
10811 null;
10812
10813 else
10814 Error_Msg_NE
10815 ("type must be declared abstract or & overridden",
10816 T, Subp);
10817
10818 -- Traverse the whole chain of aliased subprograms to
10819 -- complete the error notification. This is especially
10820 -- useful for traceability of the chain of entities when
10821 -- the subprogram corresponds with an interface
10822 -- subprogram (which may be defined in another package).
10823
10824 if Present (Alias_Subp) then
10825 declare
10826 E : Entity_Id;
10827
10828 begin
10829 E := Subp;
10830 while Present (Alias (E)) loop
10831
10832 -- Avoid reporting redundant errors on entities
10833 -- inherited from interfaces
10834
10835 if Sloc (E) /= Sloc (T) then
10836 Error_Msg_Sloc := Sloc (E);
10837 Error_Msg_NE
10838 ("\& has been inherited #", T, Subp);
10839 end if;
10840
10841 E := Alias (E);
10842 end loop;
10843
10844 Error_Msg_Sloc := Sloc (E);
10845
10846 -- AI05-0068: report if there is an overriding
10847 -- non-abstract subprogram that is invisible.
10848
10849 if Is_Hidden (E)
10850 and then not Is_Abstract_Subprogram (E)
10851 then
10852 Error_Msg_NE
10853 ("\& subprogram# is not visible",
10854 T, Subp);
10855
10856 -- Clarify the case where a non-null extension must
10857 -- override inherited procedure subject to pragma
10858 -- Extensions_Visible with value False and at least
10859 -- one controlling OUT param.
10860
10861 elsif Is_EVF_Procedure (E) then
10862 Error_Msg_NE
10863 ("\& # is subject to Extensions_Visible False",
10864 T, Subp);
10865
10866 else
10867 Error_Msg_NE
10868 ("\& has been inherited from subprogram #",
10869 T, Subp);
10870 end if;
10871 end;
10872 end if;
10873 end if;
10874
10875 -- Ada 2005 (AI-345): Protected or task type implementing
10876 -- abstract interfaces.
10877
10878 elsif Is_Concurrent_Record_Type (T)
10879 and then Present (Interfaces (T))
10880 then
10881 -- There is no need to check here RM 9.4(11.9/3) since we
10882 -- are processing the corresponding record type and the
10883 -- mode of the overriding subprograms was verified by
10884 -- Check_Conformance when the corresponding concurrent
10885 -- type declaration was analyzed.
10886
10887 Error_Msg_NE
10888 ("interface subprogram & must be overridden", T, Subp);
10889
10890 -- Examine primitive operations of synchronized type to find
10891 -- homonyms that have the wrong profile.
10892
10893 declare
10894 Prim : Entity_Id;
10895
10896 begin
10897 Prim := First_Entity (Corresponding_Concurrent_Type (T));
10898 while Present (Prim) loop
10899 if Chars (Prim) = Chars (Subp) then
10900 Error_Msg_NE
10901 ("profile is not type conformant with prefixed "
10902 & "view profile of inherited operation&",
10903 Prim, Subp);
10904 end if;
10905
10906 Next_Entity (Prim);
10907 end loop;
10908 end;
10909 end if;
10910
10911 else
10912 Error_Msg_Node_2 := T;
10913 Error_Msg_N
10914 ("abstract subprogram& not allowed for type&", Subp);
10915
10916 -- Also post unconditional warning on the type (unconditional
10917 -- so that if there are more than one of these cases, we get
10918 -- them all, and not just the first one).
10919
10920 Error_Msg_Node_2 := Subp;
10921 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
10922 end if;
10923
10924 -- A subprogram subject to pragma Extensions_Visible with value
10925 -- "True" cannot override a subprogram subject to the same pragma
10926 -- with value "False" (SPARK RM 6.1.7(5)).
10927
10928 elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True
10929 and then Present (Overridden_Operation (Subp))
10930 and then Extensions_Visible_Status (Overridden_Operation (Subp)) =
10931 Extensions_Visible_False
10932 then
10933 Error_Msg_Sloc := Sloc (Overridden_Operation (Subp));
10934 Error_Msg_N
10935 ("subprogram & with Extensions_Visible True cannot override "
10936 & "subprogram # with Extensions_Visible False", Subp);
10937 end if;
10938
10939 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10940
10941 -- Subp is an expander-generated procedure which maps an interface
10942 -- alias to a protected wrapper. The interface alias is flagged by
10943 -- pragma Implemented. Ensure that Subp is a procedure when the
10944 -- implementation kind is By_Protected_Procedure or an entry when
10945 -- By_Entry.
10946
10947 if Ada_Version >= Ada_2012
10948 and then Is_Hidden (Subp)
10949 and then Present (Interface_Alias (Subp))
10950 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
10951 then
10952 Check_Pragma_Implemented (Subp);
10953 end if;
10954
10955 -- Subp is an interface primitive which overrides another interface
10956 -- primitive marked with pragma Implemented.
10957
10958 if Ada_Version >= Ada_2012
10959 and then Present (Overridden_Operation (Subp))
10960 and then Has_Rep_Pragma
10961 (Overridden_Operation (Subp), Name_Implemented)
10962 then
10963 -- If the overriding routine is also marked by Implemented, check
10964 -- that the two implementation kinds are conforming.
10965
10966 if Has_Rep_Pragma (Subp, Name_Implemented) then
10967 Check_Pragma_Implemented
10968 (Subp => Subp,
10969 Iface_Subp => Overridden_Operation (Subp));
10970
10971 -- Otherwise the overriding routine inherits the implementation
10972 -- kind from the overridden subprogram.
10973
10974 else
10975 Inherit_Pragma_Implemented
10976 (Subp => Subp,
10977 Iface_Subp => Overridden_Operation (Subp));
10978 end if;
10979 end if;
10980
10981 -- If the operation is a wrapper for a synchronized primitive, it
10982 -- may be called indirectly through a dispatching select. We assume
10983 -- that it will be referenced elsewhere indirectly, and suppress
10984 -- warnings about an unused entity.
10985
10986 if Is_Primitive_Wrapper (Subp)
10987 and then Present (Wrapped_Entity (Subp))
10988 then
10989 Set_Referenced (Wrapped_Entity (Subp));
10990 end if;
10991
10992 Next_Elmt (Elmt);
10993 end loop;
10994 end Check_Abstract_Overriding;
10995
10996 ------------------------------------------------
10997 -- Check_Access_Discriminant_Requires_Limited --
10998 ------------------------------------------------
10999
11000 procedure Check_Access_Discriminant_Requires_Limited
11001 (D : Node_Id;
11002 Loc : Node_Id)
11003 is
11004 begin
11005 -- A discriminant_specification for an access discriminant shall appear
11006 -- only in the declaration for a task or protected type, or for a type
11007 -- with the reserved word 'limited' in its definition or in one of its
11008 -- ancestors (RM 3.7(10)).
11009
11010 -- AI-0063: The proper condition is that type must be immutably limited,
11011 -- or else be a partial view.
11012
11013 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
11014 if Is_Limited_View (Current_Scope)
11015 or else
11016 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
11017 and then Limited_Present (Parent (Current_Scope)))
11018 then
11019 null;
11020
11021 else
11022 Error_Msg_N
11023 ("access discriminants allowed only for limited types", Loc);
11024 end if;
11025 end if;
11026 end Check_Access_Discriminant_Requires_Limited;
11027
11028 -----------------------------------
11029 -- Check_Aliased_Component_Types --
11030 -----------------------------------
11031
11032 procedure Check_Aliased_Component_Types (T : Entity_Id) is
11033 C : Entity_Id;
11034
11035 begin
11036 -- ??? Also need to check components of record extensions, but not
11037 -- components of protected types (which are always limited).
11038
11039 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
11040 -- types to be unconstrained. This is safe because it is illegal to
11041 -- create access subtypes to such types with explicit discriminant
11042 -- constraints.
11043
11044 if not Is_Limited_Type (T) then
11045 if Ekind (T) = E_Record_Type then
11046 C := First_Component (T);
11047 while Present (C) loop
11048 if Is_Aliased (C)
11049 and then Has_Discriminants (Etype (C))
11050 and then not Is_Constrained (Etype (C))
11051 and then not In_Instance_Body
11052 and then Ada_Version < Ada_2005
11053 then
11054 Error_Msg_N
11055 ("aliased component must be constrained (RM 3.6(11))",
11056 C);
11057 end if;
11058
11059 Next_Component (C);
11060 end loop;
11061
11062 elsif Ekind (T) = E_Array_Type then
11063 if Has_Aliased_Components (T)
11064 and then Has_Discriminants (Component_Type (T))
11065 and then not Is_Constrained (Component_Type (T))
11066 and then not In_Instance_Body
11067 and then Ada_Version < Ada_2005
11068 then
11069 Error_Msg_N
11070 ("aliased component type must be constrained (RM 3.6(11))",
11071 T);
11072 end if;
11073 end if;
11074 end if;
11075 end Check_Aliased_Component_Types;
11076
11077 ---------------------------------------
11078 -- Check_Anonymous_Access_Components --
11079 ---------------------------------------
11080
11081 procedure Check_Anonymous_Access_Components
11082 (Typ_Decl : Node_Id;
11083 Typ : Entity_Id;
11084 Prev : Entity_Id;
11085 Comp_List : Node_Id)
11086 is
11087 Loc : constant Source_Ptr := Sloc (Typ_Decl);
11088 Anon_Access : Entity_Id;
11089 Acc_Def : Node_Id;
11090 Comp : Node_Id;
11091 Comp_Def : Node_Id;
11092 Decl : Node_Id;
11093 Type_Def : Node_Id;
11094
11095 procedure Build_Incomplete_Type_Declaration;
11096 -- If the record type contains components that include an access to the
11097 -- current record, then create an incomplete type declaration for the
11098 -- record, to be used as the designated type of the anonymous access.
11099 -- This is done only once, and only if there is no previous partial
11100 -- view of the type.
11101
11102 function Designates_T (Subt : Node_Id) return Boolean;
11103 -- Check whether a node designates the enclosing record type, or 'Class
11104 -- of that type
11105
11106 function Mentions_T (Acc_Def : Node_Id) return Boolean;
11107 -- Check whether an access definition includes a reference to
11108 -- the enclosing record type. The reference can be a subtype mark
11109 -- in the access definition itself, a 'Class attribute reference, or
11110 -- recursively a reference appearing in a parameter specification
11111 -- or result definition of an access_to_subprogram definition.
11112
11113 --------------------------------------
11114 -- Build_Incomplete_Type_Declaration --
11115 --------------------------------------
11116
11117 procedure Build_Incomplete_Type_Declaration is
11118 Decl : Node_Id;
11119 Inc_T : Entity_Id;
11120 H : Entity_Id;
11121
11122 -- Is_Tagged indicates whether the type is tagged. It is tagged if
11123 -- it's "is new ... with record" or else "is tagged record ...".
11124
11125 Is_Tagged : constant Boolean :=
11126 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
11127 and then
11128 Present (Record_Extension_Part (Type_Definition (Typ_Decl))))
11129 or else
11130 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
11131 and then Tagged_Present (Type_Definition (Typ_Decl)));
11132
11133 begin
11134 -- If there is a previous partial view, no need to create a new one
11135 -- If the partial view, given by Prev, is incomplete, If Prev is
11136 -- a private declaration, full declaration is flagged accordingly.
11137
11138 if Prev /= Typ then
11139 if Is_Tagged then
11140 Make_Class_Wide_Type (Prev);
11141 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
11142 Set_Etype (Class_Wide_Type (Typ), Typ);
11143 end if;
11144
11145 return;
11146
11147 elsif Has_Private_Declaration (Typ) then
11148
11149 -- If we refer to T'Class inside T, and T is the completion of a
11150 -- private type, then make sure the class-wide type exists.
11151
11152 if Is_Tagged then
11153 Make_Class_Wide_Type (Typ);
11154 end if;
11155
11156 return;
11157
11158 -- If there was a previous anonymous access type, the incomplete
11159 -- type declaration will have been created already.
11160
11161 elsif Present (Current_Entity (Typ))
11162 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
11163 and then Full_View (Current_Entity (Typ)) = Typ
11164 then
11165 if Is_Tagged
11166 and then Comes_From_Source (Current_Entity (Typ))
11167 and then not Is_Tagged_Type (Current_Entity (Typ))
11168 then
11169 Make_Class_Wide_Type (Typ);
11170 Error_Msg_N
11171 ("incomplete view of tagged type should be declared tagged??",
11172 Parent (Current_Entity (Typ)));
11173 end if;
11174 return;
11175
11176 else
11177 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
11178 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
11179
11180 -- Type has already been inserted into the current scope. Remove
11181 -- it, and add incomplete declaration for type, so that subsequent
11182 -- anonymous access types can use it. The entity is unchained from
11183 -- the homonym list and from immediate visibility. After analysis,
11184 -- the entity in the incomplete declaration becomes immediately
11185 -- visible in the record declaration that follows.
11186
11187 H := Current_Entity (Typ);
11188
11189 if H = Typ then
11190 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
11191 else
11192 while Present (H)
11193 and then Homonym (H) /= Typ
11194 loop
11195 H := Homonym (Typ);
11196 end loop;
11197
11198 Set_Homonym (H, Homonym (Typ));
11199 end if;
11200
11201 Insert_Before (Typ_Decl, Decl);
11202 Analyze (Decl);
11203 Set_Full_View (Inc_T, Typ);
11204
11205 if Is_Tagged then
11206
11207 -- Create a common class-wide type for both views, and set the
11208 -- Etype of the class-wide type to the full view.
11209
11210 Make_Class_Wide_Type (Inc_T);
11211 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
11212 Set_Etype (Class_Wide_Type (Typ), Typ);
11213 end if;
11214 end if;
11215 end Build_Incomplete_Type_Declaration;
11216
11217 ------------------
11218 -- Designates_T --
11219 ------------------
11220
11221 function Designates_T (Subt : Node_Id) return Boolean is
11222 Type_Id : constant Name_Id := Chars (Typ);
11223
11224 function Names_T (Nam : Node_Id) return Boolean;
11225 -- The record type has not been introduced in the current scope
11226 -- yet, so we must examine the name of the type itself, either
11227 -- an identifier T, or an expanded name of the form P.T, where
11228 -- P denotes the current scope.
11229
11230 -------------
11231 -- Names_T --
11232 -------------
11233
11234 function Names_T (Nam : Node_Id) return Boolean is
11235 begin
11236 if Nkind (Nam) = N_Identifier then
11237 return Chars (Nam) = Type_Id;
11238
11239 elsif Nkind (Nam) = N_Selected_Component then
11240 if Chars (Selector_Name (Nam)) = Type_Id then
11241 if Nkind (Prefix (Nam)) = N_Identifier then
11242 return Chars (Prefix (Nam)) = Chars (Current_Scope);
11243
11244 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
11245 return Chars (Selector_Name (Prefix (Nam))) =
11246 Chars (Current_Scope);
11247 else
11248 return False;
11249 end if;
11250
11251 else
11252 return False;
11253 end if;
11254
11255 else
11256 return False;
11257 end if;
11258 end Names_T;
11259
11260 -- Start of processing for Designates_T
11261
11262 begin
11263 if Nkind (Subt) = N_Identifier then
11264 return Chars (Subt) = Type_Id;
11265
11266 -- Reference can be through an expanded name which has not been
11267 -- analyzed yet, and which designates enclosing scopes.
11268
11269 elsif Nkind (Subt) = N_Selected_Component then
11270 if Names_T (Subt) then
11271 return True;
11272
11273 -- Otherwise it must denote an entity that is already visible.
11274 -- The access definition may name a subtype of the enclosing
11275 -- type, if there is a previous incomplete declaration for it.
11276
11277 else
11278 Find_Selected_Component (Subt);
11279 return
11280 Is_Entity_Name (Subt)
11281 and then Scope (Entity (Subt)) = Current_Scope
11282 and then
11283 (Chars (Base_Type (Entity (Subt))) = Type_Id
11284 or else
11285 (Is_Class_Wide_Type (Entity (Subt))
11286 and then
11287 Chars (Etype (Base_Type (Entity (Subt)))) =
11288 Type_Id));
11289 end if;
11290
11291 -- A reference to the current type may appear as the prefix of
11292 -- a 'Class attribute.
11293
11294 elsif Nkind (Subt) = N_Attribute_Reference
11295 and then Attribute_Name (Subt) = Name_Class
11296 then
11297 return Names_T (Prefix (Subt));
11298
11299 else
11300 return False;
11301 end if;
11302 end Designates_T;
11303
11304 ----------------
11305 -- Mentions_T --
11306 ----------------
11307
11308 function Mentions_T (Acc_Def : Node_Id) return Boolean is
11309 Param_Spec : Node_Id;
11310
11311 Acc_Subprg : constant Node_Id :=
11312 Access_To_Subprogram_Definition (Acc_Def);
11313
11314 begin
11315 if No (Acc_Subprg) then
11316 return Designates_T (Subtype_Mark (Acc_Def));
11317 end if;
11318
11319 -- Component is an access_to_subprogram: examine its formals,
11320 -- and result definition in the case of an access_to_function.
11321
11322 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
11323 while Present (Param_Spec) loop
11324 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
11325 and then Mentions_T (Parameter_Type (Param_Spec))
11326 then
11327 return True;
11328
11329 elsif Designates_T (Parameter_Type (Param_Spec)) then
11330 return True;
11331 end if;
11332
11333 Next (Param_Spec);
11334 end loop;
11335
11336 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
11337 if Nkind (Result_Definition (Acc_Subprg)) =
11338 N_Access_Definition
11339 then
11340 return Mentions_T (Result_Definition (Acc_Subprg));
11341 else
11342 return Designates_T (Result_Definition (Acc_Subprg));
11343 end if;
11344 end if;
11345
11346 return False;
11347 end Mentions_T;
11348
11349 -- Start of processing for Check_Anonymous_Access_Components
11350
11351 begin
11352 if No (Comp_List) then
11353 return;
11354 end if;
11355
11356 Comp := First (Component_Items (Comp_List));
11357 while Present (Comp) loop
11358 if Nkind (Comp) = N_Component_Declaration
11359 and then Present
11360 (Access_Definition (Component_Definition (Comp)))
11361 and then
11362 Mentions_T (Access_Definition (Component_Definition (Comp)))
11363 then
11364 Comp_Def := Component_Definition (Comp);
11365 Acc_Def :=
11366 Access_To_Subprogram_Definition (Access_Definition (Comp_Def));
11367
11368 Build_Incomplete_Type_Declaration;
11369 Anon_Access := Make_Temporary (Loc, 'S');
11370
11371 -- Create a declaration for the anonymous access type: either
11372 -- an access_to_object or an access_to_subprogram.
11373
11374 if Present (Acc_Def) then
11375 if Nkind (Acc_Def) = N_Access_Function_Definition then
11376 Type_Def :=
11377 Make_Access_Function_Definition (Loc,
11378 Parameter_Specifications =>
11379 Parameter_Specifications (Acc_Def),
11380 Result_Definition => Result_Definition (Acc_Def));
11381 else
11382 Type_Def :=
11383 Make_Access_Procedure_Definition (Loc,
11384 Parameter_Specifications =>
11385 Parameter_Specifications (Acc_Def));
11386 end if;
11387
11388 else
11389 Type_Def :=
11390 Make_Access_To_Object_Definition (Loc,
11391 Subtype_Indication =>
11392 Relocate_Node
11393 (Subtype_Mark (Access_Definition (Comp_Def))));
11394
11395 Set_Constant_Present
11396 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
11397 Set_All_Present
11398 (Type_Def, All_Present (Access_Definition (Comp_Def)));
11399 end if;
11400
11401 Set_Null_Exclusion_Present
11402 (Type_Def,
11403 Null_Exclusion_Present (Access_Definition (Comp_Def)));
11404
11405 Decl :=
11406 Make_Full_Type_Declaration (Loc,
11407 Defining_Identifier => Anon_Access,
11408 Type_Definition => Type_Def);
11409
11410 Insert_Before (Typ_Decl, Decl);
11411 Analyze (Decl);
11412
11413 -- If an access to subprogram, create the extra formals
11414
11415 if Present (Acc_Def) then
11416 Create_Extra_Formals (Designated_Type (Anon_Access));
11417
11418 -- If an access to object, preserve entity of designated type,
11419 -- for ASIS use, before rewriting the component definition.
11420
11421 else
11422 declare
11423 Desig : Entity_Id;
11424
11425 begin
11426 Desig := Entity (Subtype_Indication (Type_Def));
11427
11428 -- If the access definition is to the current record,
11429 -- the visible entity at this point is an incomplete
11430 -- type. Retrieve the full view to simplify ASIS queries
11431
11432 if Ekind (Desig) = E_Incomplete_Type then
11433 Desig := Full_View (Desig);
11434 end if;
11435
11436 Set_Entity
11437 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
11438 end;
11439 end if;
11440
11441 Rewrite (Comp_Def,
11442 Make_Component_Definition (Loc,
11443 Subtype_Indication =>
11444 New_Occurrence_Of (Anon_Access, Loc)));
11445
11446 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
11447 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
11448 else
11449 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
11450 end if;
11451
11452 Set_Is_Local_Anonymous_Access (Anon_Access);
11453 end if;
11454
11455 Next (Comp);
11456 end loop;
11457
11458 if Present (Variant_Part (Comp_List)) then
11459 declare
11460 V : Node_Id;
11461 begin
11462 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
11463 while Present (V) loop
11464 Check_Anonymous_Access_Components
11465 (Typ_Decl, Typ, Prev, Component_List (V));
11466 Next_Non_Pragma (V);
11467 end loop;
11468 end;
11469 end if;
11470 end Check_Anonymous_Access_Components;
11471
11472 ----------------------
11473 -- Check_Completion --
11474 ----------------------
11475
11476 procedure Check_Completion (Body_Id : Node_Id := Empty) is
11477 E : Entity_Id;
11478
11479 procedure Post_Error;
11480 -- Post error message for lack of completion for entity E
11481
11482 ----------------
11483 -- Post_Error --
11484 ----------------
11485
11486 procedure Post_Error is
11487 procedure Missing_Body;
11488 -- Output missing body message
11489
11490 ------------------
11491 -- Missing_Body --
11492 ------------------
11493
11494 procedure Missing_Body is
11495 begin
11496 -- Spec is in same unit, so we can post on spec
11497
11498 if In_Same_Source_Unit (Body_Id, E) then
11499 Error_Msg_N ("missing body for &", E);
11500
11501 -- Spec is in a separate unit, so we have to post on the body
11502
11503 else
11504 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
11505 end if;
11506 end Missing_Body;
11507
11508 -- Start of processing for Post_Error
11509
11510 begin
11511 if not Comes_From_Source (E) then
11512 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
11513
11514 -- It may be an anonymous protected type created for a
11515 -- single variable. Post error on variable, if present.
11516
11517 declare
11518 Var : Entity_Id;
11519
11520 begin
11521 Var := First_Entity (Current_Scope);
11522 while Present (Var) loop
11523 exit when Etype (Var) = E
11524 and then Comes_From_Source (Var);
11525
11526 Next_Entity (Var);
11527 end loop;
11528
11529 if Present (Var) then
11530 E := Var;
11531 end if;
11532 end;
11533 end if;
11534 end if;
11535
11536 -- If a generated entity has no completion, then either previous
11537 -- semantic errors have disabled the expansion phase, or else we had
11538 -- missing subunits, or else we are compiling without expansion,
11539 -- or else something is very wrong.
11540
11541 if not Comes_From_Source (E) then
11542 pragma Assert
11543 (Serious_Errors_Detected > 0
11544 or else Configurable_Run_Time_Violations > 0
11545 or else Subunits_Missing
11546 or else not Expander_Active);
11547 return;
11548
11549 -- Here for source entity
11550
11551 else
11552 -- Here if no body to post the error message, so we post the error
11553 -- on the declaration that has no completion. This is not really
11554 -- the right place to post it, think about this later ???
11555
11556 if No (Body_Id) then
11557 if Is_Type (E) then
11558 Error_Msg_NE
11559 ("missing full declaration for }", Parent (E), E);
11560 else
11561 Error_Msg_NE ("missing body for &", Parent (E), E);
11562 end if;
11563
11564 -- Package body has no completion for a declaration that appears
11565 -- in the corresponding spec. Post error on the body, with a
11566 -- reference to the non-completed declaration.
11567
11568 else
11569 Error_Msg_Sloc := Sloc (E);
11570
11571 if Is_Type (E) then
11572 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
11573
11574 elsif Is_Overloadable (E)
11575 and then Current_Entity_In_Scope (E) /= E
11576 then
11577 -- It may be that the completion is mistyped and appears as
11578 -- a distinct overloading of the entity.
11579
11580 declare
11581 Candidate : constant Entity_Id :=
11582 Current_Entity_In_Scope (E);
11583 Decl : constant Node_Id :=
11584 Unit_Declaration_Node (Candidate);
11585
11586 begin
11587 if Is_Overloadable (Candidate)
11588 and then Ekind (Candidate) = Ekind (E)
11589 and then Nkind (Decl) = N_Subprogram_Body
11590 and then Acts_As_Spec (Decl)
11591 then
11592 Check_Type_Conformant (Candidate, E);
11593
11594 else
11595 Missing_Body;
11596 end if;
11597 end;
11598
11599 else
11600 Missing_Body;
11601 end if;
11602 end if;
11603 end if;
11604 end Post_Error;
11605
11606 -- Local variables
11607
11608 Pack_Id : constant Entity_Id := Current_Scope;
11609
11610 -- Start of processing for Check_Completion
11611
11612 begin
11613 E := First_Entity (Pack_Id);
11614 while Present (E) loop
11615 if Is_Intrinsic_Subprogram (E) then
11616 null;
11617
11618 -- The following situation requires special handling: a child unit
11619 -- that appears in the context clause of the body of its parent:
11620
11621 -- procedure Parent.Child (...);
11622
11623 -- with Parent.Child;
11624 -- package body Parent is
11625
11626 -- Here Parent.Child appears as a local entity, but should not be
11627 -- flagged as requiring completion, because it is a compilation
11628 -- unit.
11629
11630 -- Ignore missing completion for a subprogram that does not come from
11631 -- source (including the _Call primitive operation of RAS types,
11632 -- which has to have the flag Comes_From_Source for other purposes):
11633 -- we assume that the expander will provide the missing completion.
11634 -- In case of previous errors, other expansion actions that provide
11635 -- bodies for null procedures with not be invoked, so inhibit message
11636 -- in those cases.
11637
11638 -- Note that E_Operator is not in the list that follows, because
11639 -- this kind is reserved for predefined operators, that are
11640 -- intrinsic and do not need completion.
11641
11642 elsif Ekind_In (E, E_Function,
11643 E_Procedure,
11644 E_Generic_Function,
11645 E_Generic_Procedure)
11646 then
11647 if Has_Completion (E) then
11648 null;
11649
11650 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
11651 null;
11652
11653 elsif Is_Subprogram (E)
11654 and then (not Comes_From_Source (E)
11655 or else Chars (E) = Name_uCall)
11656 then
11657 null;
11658
11659 elsif
11660 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
11661 then
11662 null;
11663
11664 elsif Nkind (Parent (E)) = N_Procedure_Specification
11665 and then Null_Present (Parent (E))
11666 and then Serious_Errors_Detected > 0
11667 then
11668 null;
11669
11670 else
11671 Post_Error;
11672 end if;
11673
11674 elsif Is_Entry (E) then
11675 if not Has_Completion (E) and then
11676 (Ekind (Scope (E)) = E_Protected_Object
11677 or else Ekind (Scope (E)) = E_Protected_Type)
11678 then
11679 Post_Error;
11680 end if;
11681
11682 elsif Is_Package_Or_Generic_Package (E) then
11683 if Unit_Requires_Body (E) then
11684 if not Has_Completion (E)
11685 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
11686 N_Compilation_Unit
11687 then
11688 Post_Error;
11689 end if;
11690
11691 elsif not Is_Child_Unit (E) then
11692 May_Need_Implicit_Body (E);
11693 end if;
11694
11695 -- A formal incomplete type (Ada 2012) does not require a completion;
11696 -- other incomplete type declarations do.
11697
11698 elsif Ekind (E) = E_Incomplete_Type
11699 and then No (Underlying_Type (E))
11700 and then not Is_Generic_Type (E)
11701 then
11702 Post_Error;
11703
11704 elsif Ekind_In (E, E_Task_Type, E_Protected_Type)
11705 and then not Has_Completion (E)
11706 then
11707 Post_Error;
11708
11709 -- A single task declared in the current scope is a constant, verify
11710 -- that the body of its anonymous type is in the same scope. If the
11711 -- task is defined elsewhere, this may be a renaming declaration for
11712 -- which no completion is needed.
11713
11714 elsif Ekind (E) = E_Constant
11715 and then Ekind (Etype (E)) = E_Task_Type
11716 and then not Has_Completion (Etype (E))
11717 and then Scope (Etype (E)) = Current_Scope
11718 then
11719 Post_Error;
11720
11721 elsif Ekind (E) = E_Protected_Object
11722 and then not Has_Completion (Etype (E))
11723 then
11724 Post_Error;
11725
11726 elsif Ekind (E) = E_Record_Type then
11727 if Is_Tagged_Type (E) then
11728 Check_Abstract_Overriding (E);
11729 Check_Conventions (E);
11730 end if;
11731
11732 Check_Aliased_Component_Types (E);
11733
11734 elsif Ekind (E) = E_Array_Type then
11735 Check_Aliased_Component_Types (E);
11736
11737 end if;
11738
11739 Next_Entity (E);
11740 end loop;
11741 end Check_Completion;
11742
11743 ------------------------------------
11744 -- Check_CPP_Type_Has_No_Defaults --
11745 ------------------------------------
11746
11747 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
11748 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
11749 Clist : Node_Id;
11750 Comp : Node_Id;
11751
11752 begin
11753 -- Obtain the component list
11754
11755 if Nkind (Tdef) = N_Record_Definition then
11756 Clist := Component_List (Tdef);
11757 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
11758 Clist := Component_List (Record_Extension_Part (Tdef));
11759 end if;
11760
11761 -- Check all components to ensure no default expressions
11762
11763 if Present (Clist) then
11764 Comp := First (Component_Items (Clist));
11765 while Present (Comp) loop
11766 if Present (Expression (Comp)) then
11767 Error_Msg_N
11768 ("component of imported 'C'P'P type cannot have "
11769 & "default expression", Expression (Comp));
11770 end if;
11771
11772 Next (Comp);
11773 end loop;
11774 end if;
11775 end Check_CPP_Type_Has_No_Defaults;
11776
11777 ----------------------------
11778 -- Check_Delta_Expression --
11779 ----------------------------
11780
11781 procedure Check_Delta_Expression (E : Node_Id) is
11782 begin
11783 if not (Is_Real_Type (Etype (E))) then
11784 Wrong_Type (E, Any_Real);
11785
11786 elsif not Is_OK_Static_Expression (E) then
11787 Flag_Non_Static_Expr
11788 ("non-static expression used for delta value!", E);
11789
11790 elsif not UR_Is_Positive (Expr_Value_R (E)) then
11791 Error_Msg_N ("delta expression must be positive", E);
11792
11793 else
11794 return;
11795 end if;
11796
11797 -- If any of above errors occurred, then replace the incorrect
11798 -- expression by the real 0.1, which should prevent further errors.
11799
11800 Rewrite (E,
11801 Make_Real_Literal (Sloc (E), Ureal_Tenth));
11802 Analyze_And_Resolve (E, Standard_Float);
11803 end Check_Delta_Expression;
11804
11805 -----------------------------
11806 -- Check_Digits_Expression --
11807 -----------------------------
11808
11809 procedure Check_Digits_Expression (E : Node_Id) is
11810 begin
11811 if not (Is_Integer_Type (Etype (E))) then
11812 Wrong_Type (E, Any_Integer);
11813
11814 elsif not Is_OK_Static_Expression (E) then
11815 Flag_Non_Static_Expr
11816 ("non-static expression used for digits value!", E);
11817
11818 elsif Expr_Value (E) <= 0 then
11819 Error_Msg_N ("digits value must be greater than zero", E);
11820
11821 else
11822 return;
11823 end if;
11824
11825 -- If any of above errors occurred, then replace the incorrect
11826 -- expression by the integer 1, which should prevent further errors.
11827
11828 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
11829 Analyze_And_Resolve (E, Standard_Integer);
11830
11831 end Check_Digits_Expression;
11832
11833 --------------------------
11834 -- Check_Initialization --
11835 --------------------------
11836
11837 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
11838 begin
11839 -- Special processing for limited types
11840
11841 if Is_Limited_Type (T)
11842 and then not In_Instance
11843 and then not In_Inlined_Body
11844 then
11845 if not OK_For_Limited_Init (T, Exp) then
11846
11847 -- In GNAT mode, this is just a warning, to allow it to be evilly
11848 -- turned off. Otherwise it is a real error.
11849
11850 if GNAT_Mode then
11851 Error_Msg_N
11852 ("??cannot initialize entities of limited type!", Exp);
11853
11854 elsif Ada_Version < Ada_2005 then
11855
11856 -- The side effect removal machinery may generate illegal Ada
11857 -- code to avoid the usage of access types and 'reference in
11858 -- SPARK mode. Since this is legal code with respect to theorem
11859 -- proving, do not emit the error.
11860
11861 if GNATprove_Mode
11862 and then Nkind (Exp) = N_Function_Call
11863 and then Nkind (Parent (Exp)) = N_Object_Declaration
11864 and then not Comes_From_Source
11865 (Defining_Identifier (Parent (Exp)))
11866 then
11867 null;
11868
11869 else
11870 Error_Msg_N
11871 ("cannot initialize entities of limited type", Exp);
11872 Explain_Limited_Type (T, Exp);
11873 end if;
11874
11875 else
11876 -- Specialize error message according to kind of illegal
11877 -- initial expression.
11878
11879 if Nkind (Exp) = N_Type_Conversion
11880 and then Nkind (Expression (Exp)) = N_Function_Call
11881 then
11882 -- No error for internally-generated object declarations,
11883 -- which can come from build-in-place assignment statements.
11884
11885 if Nkind (Parent (Exp)) = N_Object_Declaration
11886 and then not Comes_From_Source
11887 (Defining_Identifier (Parent (Exp)))
11888 then
11889 null;
11890
11891 else
11892 Error_Msg_N
11893 ("illegal context for call to function with limited "
11894 & "result", Exp);
11895 end if;
11896
11897 else
11898 Error_Msg_N
11899 ("initialization of limited object requires aggregate or "
11900 & "function call", Exp);
11901 end if;
11902 end if;
11903 end if;
11904 end if;
11905
11906 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11907 -- set unless we can be sure that no range check is required.
11908
11909 if (GNATprove_Mode or not Expander_Active)
11910 and then Is_Scalar_Type (T)
11911 and then not Is_In_Range (Exp, T, Assume_Valid => True)
11912 then
11913 Set_Do_Range_Check (Exp);
11914 end if;
11915 end Check_Initialization;
11916
11917 ----------------------
11918 -- Check_Interfaces --
11919 ----------------------
11920
11921 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
11922 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
11923
11924 Iface : Node_Id;
11925 Iface_Def : Node_Id;
11926 Iface_Typ : Entity_Id;
11927 Parent_Node : Node_Id;
11928
11929 Is_Task : Boolean := False;
11930 -- Set True if parent type or any progenitor is a task interface
11931
11932 Is_Protected : Boolean := False;
11933 -- Set True if parent type or any progenitor is a protected interface
11934
11935 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
11936 -- Check that a progenitor is compatible with declaration. If an error
11937 -- message is output, it is posted on Error_Node.
11938
11939 ------------------
11940 -- Check_Ifaces --
11941 ------------------
11942
11943 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
11944 Iface_Id : constant Entity_Id :=
11945 Defining_Identifier (Parent (Iface_Def));
11946 Type_Def : Node_Id;
11947
11948 begin
11949 if Nkind (N) = N_Private_Extension_Declaration then
11950 Type_Def := N;
11951 else
11952 Type_Def := Type_Definition (N);
11953 end if;
11954
11955 if Is_Task_Interface (Iface_Id) then
11956 Is_Task := True;
11957
11958 elsif Is_Protected_Interface (Iface_Id) then
11959 Is_Protected := True;
11960 end if;
11961
11962 if Is_Synchronized_Interface (Iface_Id) then
11963
11964 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11965 -- extension derived from a synchronized interface must explicitly
11966 -- be declared synchronized, because the full view will be a
11967 -- synchronized type.
11968
11969 if Nkind (N) = N_Private_Extension_Declaration then
11970 if not Synchronized_Present (N) then
11971 Error_Msg_NE
11972 ("private extension of& must be explicitly synchronized",
11973 N, Iface_Id);
11974 end if;
11975
11976 -- However, by 3.9.4(16/2), a full type that is a record extension
11977 -- is never allowed to derive from a synchronized interface (note
11978 -- that interfaces must be excluded from this check, because those
11979 -- are represented by derived type definitions in some cases).
11980
11981 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11982 and then not Interface_Present (Type_Definition (N))
11983 then
11984 Error_Msg_N ("record extension cannot derive from synchronized "
11985 & "interface", Error_Node);
11986 end if;
11987 end if;
11988
11989 -- Check that the characteristics of the progenitor are compatible
11990 -- with the explicit qualifier in the declaration.
11991 -- The check only applies to qualifiers that come from source.
11992 -- Limited_Present also appears in the declaration of corresponding
11993 -- records, and the check does not apply to them.
11994
11995 if Limited_Present (Type_Def)
11996 and then not
11997 Is_Concurrent_Record_Type (Defining_Identifier (N))
11998 then
11999 if Is_Limited_Interface (Parent_Type)
12000 and then not Is_Limited_Interface (Iface_Id)
12001 then
12002 Error_Msg_NE
12003 ("progenitor & must be limited interface",
12004 Error_Node, Iface_Id);
12005
12006 elsif
12007 (Task_Present (Iface_Def)
12008 or else Protected_Present (Iface_Def)
12009 or else Synchronized_Present (Iface_Def))
12010 and then Nkind (N) /= N_Private_Extension_Declaration
12011 and then not Error_Posted (N)
12012 then
12013 Error_Msg_NE
12014 ("progenitor & must be limited interface",
12015 Error_Node, Iface_Id);
12016 end if;
12017
12018 -- Protected interfaces can only inherit from limited, synchronized
12019 -- or protected interfaces.
12020
12021 elsif Nkind (N) = N_Full_Type_Declaration
12022 and then Protected_Present (Type_Def)
12023 then
12024 if Limited_Present (Iface_Def)
12025 or else Synchronized_Present (Iface_Def)
12026 or else Protected_Present (Iface_Def)
12027 then
12028 null;
12029
12030 elsif Task_Present (Iface_Def) then
12031 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
12032 & "from task interface", Error_Node);
12033
12034 else
12035 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
12036 & "from non-limited interface", Error_Node);
12037 end if;
12038
12039 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
12040 -- limited and synchronized.
12041
12042 elsif Synchronized_Present (Type_Def) then
12043 if Limited_Present (Iface_Def)
12044 or else Synchronized_Present (Iface_Def)
12045 then
12046 null;
12047
12048 elsif Protected_Present (Iface_Def)
12049 and then Nkind (N) /= N_Private_Extension_Declaration
12050 then
12051 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
12052 & "from protected interface", Error_Node);
12053
12054 elsif Task_Present (Iface_Def)
12055 and then Nkind (N) /= N_Private_Extension_Declaration
12056 then
12057 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
12058 & "from task interface", Error_Node);
12059
12060 elsif not Is_Limited_Interface (Iface_Id) then
12061 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
12062 & "from non-limited interface", Error_Node);
12063 end if;
12064
12065 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
12066 -- synchronized or task interfaces.
12067
12068 elsif Nkind (N) = N_Full_Type_Declaration
12069 and then Task_Present (Type_Def)
12070 then
12071 if Limited_Present (Iface_Def)
12072 or else Synchronized_Present (Iface_Def)
12073 or else Task_Present (Iface_Def)
12074 then
12075 null;
12076
12077 elsif Protected_Present (Iface_Def) then
12078 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
12079 & "protected interface", Error_Node);
12080
12081 else
12082 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
12083 & "non-limited interface", Error_Node);
12084 end if;
12085 end if;
12086 end Check_Ifaces;
12087
12088 -- Start of processing for Check_Interfaces
12089
12090 begin
12091 if Is_Interface (Parent_Type) then
12092 if Is_Task_Interface (Parent_Type) then
12093 Is_Task := True;
12094
12095 elsif Is_Protected_Interface (Parent_Type) then
12096 Is_Protected := True;
12097 end if;
12098 end if;
12099
12100 if Nkind (N) = N_Private_Extension_Declaration then
12101
12102 -- Check that progenitors are compatible with declaration
12103
12104 Iface := First (Interface_List (Def));
12105 while Present (Iface) loop
12106 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
12107
12108 Parent_Node := Parent (Base_Type (Iface_Typ));
12109 Iface_Def := Type_Definition (Parent_Node);
12110
12111 if not Is_Interface (Iface_Typ) then
12112 Diagnose_Interface (Iface, Iface_Typ);
12113 else
12114 Check_Ifaces (Iface_Def, Iface);
12115 end if;
12116
12117 Next (Iface);
12118 end loop;
12119
12120 if Is_Task and Is_Protected then
12121 Error_Msg_N
12122 ("type cannot derive from task and protected interface", N);
12123 end if;
12124
12125 return;
12126 end if;
12127
12128 -- Full type declaration of derived type.
12129 -- Check compatibility with parent if it is interface type
12130
12131 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
12132 and then Is_Interface (Parent_Type)
12133 then
12134 Parent_Node := Parent (Parent_Type);
12135
12136 -- More detailed checks for interface varieties
12137
12138 Check_Ifaces
12139 (Iface_Def => Type_Definition (Parent_Node),
12140 Error_Node => Subtype_Indication (Type_Definition (N)));
12141 end if;
12142
12143 Iface := First (Interface_List (Def));
12144 while Present (Iface) loop
12145 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
12146
12147 Parent_Node := Parent (Base_Type (Iface_Typ));
12148 Iface_Def := Type_Definition (Parent_Node);
12149
12150 if not Is_Interface (Iface_Typ) then
12151 Diagnose_Interface (Iface, Iface_Typ);
12152
12153 else
12154 -- "The declaration of a specific descendant of an interface
12155 -- type freezes the interface type" RM 13.14
12156
12157 Freeze_Before (N, Iface_Typ);
12158 Check_Ifaces (Iface_Def, Error_Node => Iface);
12159 end if;
12160
12161 Next (Iface);
12162 end loop;
12163
12164 if Is_Task and Is_Protected then
12165 Error_Msg_N
12166 ("type cannot derive from task and protected interface", N);
12167 end if;
12168 end Check_Interfaces;
12169
12170 ------------------------------------
12171 -- Check_Or_Process_Discriminants --
12172 ------------------------------------
12173
12174 -- If an incomplete or private type declaration was already given for the
12175 -- type, the discriminants may have already been processed if they were
12176 -- present on the incomplete declaration. In this case a full conformance
12177 -- check has been performed in Find_Type_Name, and we then recheck here
12178 -- some properties that can't be checked on the partial view alone.
12179 -- Otherwise we call Process_Discriminants.
12180
12181 procedure Check_Or_Process_Discriminants
12182 (N : Node_Id;
12183 T : Entity_Id;
12184 Prev : Entity_Id := Empty)
12185 is
12186 begin
12187 if Has_Discriminants (T) then
12188
12189 -- Discriminants are already set on T if they were already present
12190 -- on the partial view. Make them visible to component declarations.
12191
12192 declare
12193 D : Entity_Id;
12194 -- Discriminant on T (full view) referencing expr on partial view
12195
12196 Prev_D : Entity_Id;
12197 -- Entity of corresponding discriminant on partial view
12198
12199 New_D : Node_Id;
12200 -- Discriminant specification for full view, expression is
12201 -- the syntactic copy on full view (which has been checked for
12202 -- conformance with partial view), only used here to post error
12203 -- message.
12204
12205 begin
12206 D := First_Discriminant (T);
12207 New_D := First (Discriminant_Specifications (N));
12208 while Present (D) loop
12209 Prev_D := Current_Entity (D);
12210 Set_Current_Entity (D);
12211 Set_Is_Immediately_Visible (D);
12212 Set_Homonym (D, Prev_D);
12213
12214 -- Handle the case where there is an untagged partial view and
12215 -- the full view is tagged: must disallow discriminants with
12216 -- defaults, unless compiling for Ada 2012, which allows a
12217 -- limited tagged type to have defaulted discriminants (see
12218 -- AI05-0214). However, suppress error here if it was already
12219 -- reported on the default expression of the partial view.
12220
12221 if Is_Tagged_Type (T)
12222 and then Present (Expression (Parent (D)))
12223 and then (not Is_Limited_Type (Current_Scope)
12224 or else Ada_Version < Ada_2012)
12225 and then not Error_Posted (Expression (Parent (D)))
12226 then
12227 if Ada_Version >= Ada_2012 then
12228 Error_Msg_N
12229 ("discriminants of nonlimited tagged type cannot have "
12230 & "defaults",
12231 Expression (New_D));
12232 else
12233 Error_Msg_N
12234 ("discriminants of tagged type cannot have defaults",
12235 Expression (New_D));
12236 end if;
12237 end if;
12238
12239 -- Ada 2005 (AI-230): Access discriminant allowed in
12240 -- non-limited record types.
12241
12242 if Ada_Version < Ada_2005 then
12243
12244 -- This restriction gets applied to the full type here. It
12245 -- has already been applied earlier to the partial view.
12246
12247 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
12248 end if;
12249
12250 Next_Discriminant (D);
12251 Next (New_D);
12252 end loop;
12253 end;
12254
12255 elsif Present (Discriminant_Specifications (N)) then
12256 Process_Discriminants (N, Prev);
12257 end if;
12258 end Check_Or_Process_Discriminants;
12259
12260 ----------------------
12261 -- Check_Real_Bound --
12262 ----------------------
12263
12264 procedure Check_Real_Bound (Bound : Node_Id) is
12265 begin
12266 if not Is_Real_Type (Etype (Bound)) then
12267 Error_Msg_N
12268 ("bound in real type definition must be of real type", Bound);
12269
12270 elsif not Is_OK_Static_Expression (Bound) then
12271 Flag_Non_Static_Expr
12272 ("non-static expression used for real type bound!", Bound);
12273
12274 else
12275 return;
12276 end if;
12277
12278 Rewrite
12279 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
12280 Analyze (Bound);
12281 Resolve (Bound, Standard_Float);
12282 end Check_Real_Bound;
12283
12284 ------------------------------
12285 -- Complete_Private_Subtype --
12286 ------------------------------
12287
12288 procedure Complete_Private_Subtype
12289 (Priv : Entity_Id;
12290 Full : Entity_Id;
12291 Full_Base : Entity_Id;
12292 Related_Nod : Node_Id)
12293 is
12294 Save_Next_Entity : Entity_Id;
12295 Save_Homonym : Entity_Id;
12296
12297 begin
12298 -- Set semantic attributes for (implicit) private subtype completion.
12299 -- If the full type has no discriminants, then it is a copy of the
12300 -- full view of the base. Otherwise, it is a subtype of the base with
12301 -- a possible discriminant constraint. Save and restore the original
12302 -- Next_Entity field of full to ensure that the calls to Copy_Node do
12303 -- not corrupt the entity chain.
12304
12305 -- Note that the type of the full view is the same entity as the type
12306 -- of the partial view. In this fashion, the subtype has access to the
12307 -- correct view of the parent.
12308
12309 Save_Next_Entity := Next_Entity (Full);
12310 Save_Homonym := Homonym (Priv);
12311
12312 case Ekind (Full_Base) is
12313 when Class_Wide_Kind
12314 | Private_Kind
12315 | Protected_Kind
12316 | Task_Kind
12317 | E_Record_Subtype
12318 | E_Record_Type
12319 =>
12320 Copy_Node (Priv, Full);
12321
12322 Set_Has_Discriminants
12323 (Full, Has_Discriminants (Full_Base));
12324 Set_Has_Unknown_Discriminants
12325 (Full, Has_Unknown_Discriminants (Full_Base));
12326 Set_First_Entity (Full, First_Entity (Full_Base));
12327 Set_Last_Entity (Full, Last_Entity (Full_Base));
12328
12329 -- If the underlying base type is constrained, we know that the
12330 -- full view of the subtype is constrained as well (the converse
12331 -- is not necessarily true).
12332
12333 if Is_Constrained (Full_Base) then
12334 Set_Is_Constrained (Full);
12335 end if;
12336
12337 when others =>
12338 Copy_Node (Full_Base, Full);
12339
12340 Set_Chars (Full, Chars (Priv));
12341 Conditional_Delay (Full, Priv);
12342 Set_Sloc (Full, Sloc (Priv));
12343 end case;
12344
12345 Link_Entities (Full, Save_Next_Entity);
12346 Set_Homonym (Full, Save_Homonym);
12347 Set_Associated_Node_For_Itype (Full, Related_Nod);
12348
12349 -- Set common attributes for all subtypes: kind, convention, etc.
12350
12351 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
12352 Set_Convention (Full, Convention (Full_Base));
12353
12354 -- The Etype of the full view is inconsistent. Gigi needs to see the
12355 -- structural full view, which is what the current scheme gives: the
12356 -- Etype of the full view is the etype of the full base. However, if the
12357 -- full base is a derived type, the full view then looks like a subtype
12358 -- of the parent, not a subtype of the full base. If instead we write:
12359
12360 -- Set_Etype (Full, Full_Base);
12361
12362 -- then we get inconsistencies in the front-end (confusion between
12363 -- views). Several outstanding bugs are related to this ???
12364
12365 Set_Is_First_Subtype (Full, False);
12366 Set_Scope (Full, Scope (Priv));
12367 Set_Size_Info (Full, Full_Base);
12368 Set_RM_Size (Full, RM_Size (Full_Base));
12369 Set_Is_Itype (Full);
12370
12371 -- For the unusual case of a type with unknown discriminants whose
12372 -- completion is an array, use the proper full base.
12373
12374 if Is_Array_Type (Full_Base)
12375 and then Has_Unknown_Discriminants (Priv)
12376 then
12377 Set_Etype (Full, Full_Base);
12378 end if;
12379
12380 -- A subtype of a private-type-without-discriminants, whose full-view
12381 -- has discriminants with default expressions, is not constrained.
12382
12383 if not Has_Discriminants (Priv) then
12384 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
12385
12386 if Has_Discriminants (Full_Base) then
12387 Set_Discriminant_Constraint
12388 (Full, Discriminant_Constraint (Full_Base));
12389
12390 -- The partial view may have been indefinite, the full view
12391 -- might not be.
12392
12393 Set_Has_Unknown_Discriminants
12394 (Full, Has_Unknown_Discriminants (Full_Base));
12395 end if;
12396 end if;
12397
12398 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
12399 Set_Depends_On_Private (Full, Has_Private_Component (Full));
12400
12401 -- Freeze the private subtype entity if its parent is delayed, and not
12402 -- already frozen. We skip this processing if the type is an anonymous
12403 -- subtype of a record component, or is the corresponding record of a
12404 -- protected type, since these are processed when the enclosing type
12405 -- is frozen. If the parent type is declared in a nested package then
12406 -- the freezing of the private and full views also happens later.
12407
12408 if not Is_Type (Scope (Full)) then
12409 if Is_Itype (Priv)
12410 and then In_Same_Source_Unit (Full, Full_Base)
12411 and then Scope (Full_Base) /= Scope (Full)
12412 then
12413 Set_Has_Delayed_Freeze (Full);
12414 Set_Has_Delayed_Freeze (Priv);
12415
12416 else
12417 Set_Has_Delayed_Freeze (Full,
12418 Has_Delayed_Freeze (Full_Base)
12419 and then not Is_Frozen (Full_Base));
12420 end if;
12421 end if;
12422
12423 Set_Freeze_Node (Full, Empty);
12424 Set_Is_Frozen (Full, False);
12425 Set_Full_View (Priv, Full);
12426
12427 if Has_Discriminants (Full) then
12428 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
12429 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
12430
12431 if Has_Unknown_Discriminants (Full) then
12432 Set_Discriminant_Constraint (Full, No_Elist);
12433 end if;
12434 end if;
12435
12436 if Ekind (Full_Base) = E_Record_Type
12437 and then Has_Discriminants (Full_Base)
12438 and then Has_Discriminants (Priv) -- might not, if errors
12439 and then not Has_Unknown_Discriminants (Priv)
12440 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
12441 then
12442 Create_Constrained_Components
12443 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
12444
12445 -- If the full base is itself derived from private, build a congruent
12446 -- subtype of its underlying type, for use by the back end. For a
12447 -- constrained record component, the declaration cannot be placed on
12448 -- the component list, but it must nevertheless be built an analyzed, to
12449 -- supply enough information for Gigi to compute the size of component.
12450
12451 elsif Ekind (Full_Base) in Private_Kind
12452 and then Is_Derived_Type (Full_Base)
12453 and then Has_Discriminants (Full_Base)
12454 and then (Ekind (Current_Scope) /= E_Record_Subtype)
12455 then
12456 if not Is_Itype (Priv)
12457 and then
12458 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
12459 then
12460 Build_Underlying_Full_View
12461 (Parent (Priv), Full, Etype (Full_Base));
12462
12463 elsif Nkind (Related_Nod) = N_Component_Declaration then
12464 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
12465 end if;
12466
12467 elsif Is_Record_Type (Full_Base) then
12468
12469 -- Show Full is simply a renaming of Full_Base
12470
12471 Set_Cloned_Subtype (Full, Full_Base);
12472 end if;
12473
12474 -- It is unsafe to share the bounds of a scalar type, because the Itype
12475 -- is elaborated on demand, and if a bound is non-static then different
12476 -- orders of elaboration in different units will lead to different
12477 -- external symbols.
12478
12479 if Is_Scalar_Type (Full_Base) then
12480 Set_Scalar_Range (Full,
12481 Make_Range (Sloc (Related_Nod),
12482 Low_Bound =>
12483 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
12484 High_Bound =>
12485 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
12486
12487 -- This completion inherits the bounds of the full parent, but if
12488 -- the parent is an unconstrained floating point type, so is the
12489 -- completion.
12490
12491 if Is_Floating_Point_Type (Full_Base) then
12492 Set_Includes_Infinities
12493 (Scalar_Range (Full), Has_Infinities (Full_Base));
12494 end if;
12495 end if;
12496
12497 -- ??? It seems that a lot of fields are missing that should be copied
12498 -- from Full_Base to Full. Here are some that are introduced in a
12499 -- non-disruptive way but a cleanup is necessary.
12500
12501 if Is_Tagged_Type (Full_Base) then
12502 Set_Is_Tagged_Type (Full);
12503 Set_Direct_Primitive_Operations
12504 (Full, Direct_Primitive_Operations (Full_Base));
12505 Set_No_Tagged_Streams_Pragma
12506 (Full, No_Tagged_Streams_Pragma (Full_Base));
12507
12508 -- Inherit class_wide type of full_base in case the partial view was
12509 -- not tagged. Otherwise it has already been created when the private
12510 -- subtype was analyzed.
12511
12512 if No (Class_Wide_Type (Full)) then
12513 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
12514 end if;
12515
12516 -- If this is a subtype of a protected or task type, constrain its
12517 -- corresponding record, unless this is a subtype without constraints,
12518 -- i.e. a simple renaming as with an actual subtype in an instance.
12519
12520 elsif Is_Concurrent_Type (Full_Base) then
12521 if Has_Discriminants (Full)
12522 and then Present (Corresponding_Record_Type (Full_Base))
12523 and then
12524 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
12525 then
12526 Set_Corresponding_Record_Type (Full,
12527 Constrain_Corresponding_Record
12528 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
12529
12530 else
12531 Set_Corresponding_Record_Type (Full,
12532 Corresponding_Record_Type (Full_Base));
12533 end if;
12534 end if;
12535
12536 -- Link rep item chain, and also setting of Has_Predicates from private
12537 -- subtype to full subtype, since we will need these on the full subtype
12538 -- to create the predicate function. Note that the full subtype may
12539 -- already have rep items, inherited from the full view of the base
12540 -- type, so we must be sure not to overwrite these entries.
12541
12542 declare
12543 Append : Boolean;
12544 Item : Node_Id;
12545 Next_Item : Node_Id;
12546 Priv_Item : Node_Id;
12547
12548 begin
12549 Item := First_Rep_Item (Full);
12550 Priv_Item := First_Rep_Item (Priv);
12551
12552 -- If no existing rep items on full type, we can just link directly
12553 -- to the list of items on the private type, if any exist.. Same if
12554 -- the rep items are only those inherited from the base
12555
12556 if (No (Item)
12557 or else Nkind (Item) /= N_Aspect_Specification
12558 or else Entity (Item) = Full_Base)
12559 and then Present (First_Rep_Item (Priv))
12560 then
12561 Set_First_Rep_Item (Full, Priv_Item);
12562
12563 -- Otherwise, search to the end of items currently linked to the full
12564 -- subtype and append the private items to the end. However, if Priv
12565 -- and Full already have the same list of rep items, then the append
12566 -- is not done, as that would create a circularity.
12567 --
12568 -- The partial view may have a predicate and the rep item lists of
12569 -- both views agree when inherited from the same ancestor. In that
12570 -- case, simply propagate the list from one view to the other.
12571 -- A more complex analysis needed here ???
12572
12573 elsif Present (Priv_Item)
12574 and then Item = Next_Rep_Item (Priv_Item)
12575 then
12576 Set_First_Rep_Item (Full, Priv_Item);
12577
12578 elsif Item /= Priv_Item then
12579 Append := True;
12580 loop
12581 Next_Item := Next_Rep_Item (Item);
12582 exit when No (Next_Item);
12583 Item := Next_Item;
12584
12585 -- If the private view has aspect specifications, the full view
12586 -- inherits them. Since these aspects may already have been
12587 -- attached to the full view during derivation, do not append
12588 -- them if already present.
12589
12590 if Item = First_Rep_Item (Priv) then
12591 Append := False;
12592 exit;
12593 end if;
12594 end loop;
12595
12596 -- And link the private type items at the end of the chain
12597
12598 if Append then
12599 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
12600 end if;
12601 end if;
12602 end;
12603
12604 -- Make sure Has_Predicates is set on full type if it is set on the
12605 -- private type. Note that it may already be set on the full type and
12606 -- if so, we don't want to unset it. Similarly, propagate information
12607 -- about delayed aspects, because the corresponding pragmas must be
12608 -- analyzed when one of the views is frozen. This last step is needed
12609 -- in particular when the full type is a scalar type for which an
12610 -- anonymous base type is constructed.
12611
12612 -- The predicate functions are generated either at the freeze point
12613 -- of the type or at the end of the visible part, and we must avoid
12614 -- generating them twice.
12615
12616 if Has_Predicates (Priv) then
12617 Set_Has_Predicates (Full);
12618
12619 if Present (Predicate_Function (Priv))
12620 and then No (Predicate_Function (Full))
12621 then
12622 Set_Predicate_Function (Full, Predicate_Function (Priv));
12623 end if;
12624 end if;
12625
12626 if Has_Delayed_Aspects (Priv) then
12627 Set_Has_Delayed_Aspects (Full);
12628 end if;
12629 end Complete_Private_Subtype;
12630
12631 ----------------------------
12632 -- Constant_Redeclaration --
12633 ----------------------------
12634
12635 procedure Constant_Redeclaration
12636 (Id : Entity_Id;
12637 N : Node_Id;
12638 T : out Entity_Id)
12639 is
12640 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
12641 Obj_Def : constant Node_Id := Object_Definition (N);
12642 New_T : Entity_Id;
12643
12644 procedure Check_Possible_Deferred_Completion
12645 (Prev_Id : Entity_Id;
12646 Prev_Obj_Def : Node_Id;
12647 Curr_Obj_Def : Node_Id);
12648 -- Determine whether the two object definitions describe the partial
12649 -- and the full view of a constrained deferred constant. Generate
12650 -- a subtype for the full view and verify that it statically matches
12651 -- the subtype of the partial view.
12652
12653 procedure Check_Recursive_Declaration (Typ : Entity_Id);
12654 -- If deferred constant is an access type initialized with an allocator,
12655 -- check whether there is an illegal recursion in the definition,
12656 -- through a default value of some record subcomponent. This is normally
12657 -- detected when generating init procs, but requires this additional
12658 -- mechanism when expansion is disabled.
12659
12660 ----------------------------------------
12661 -- Check_Possible_Deferred_Completion --
12662 ----------------------------------------
12663
12664 procedure Check_Possible_Deferred_Completion
12665 (Prev_Id : Entity_Id;
12666 Prev_Obj_Def : Node_Id;
12667 Curr_Obj_Def : Node_Id)
12668 is
12669 begin
12670 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
12671 and then Present (Constraint (Prev_Obj_Def))
12672 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
12673 and then Present (Constraint (Curr_Obj_Def))
12674 then
12675 declare
12676 Loc : constant Source_Ptr := Sloc (N);
12677 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
12678 Decl : constant Node_Id :=
12679 Make_Subtype_Declaration (Loc,
12680 Defining_Identifier => Def_Id,
12681 Subtype_Indication =>
12682 Relocate_Node (Curr_Obj_Def));
12683
12684 begin
12685 Insert_Before_And_Analyze (N, Decl);
12686 Set_Etype (Id, Def_Id);
12687
12688 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
12689 Error_Msg_Sloc := Sloc (Prev_Id);
12690 Error_Msg_N ("subtype does not statically match deferred "
12691 & "declaration #", N);
12692 end if;
12693 end;
12694 end if;
12695 end Check_Possible_Deferred_Completion;
12696
12697 ---------------------------------
12698 -- Check_Recursive_Declaration --
12699 ---------------------------------
12700
12701 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
12702 Comp : Entity_Id;
12703
12704 begin
12705 if Is_Record_Type (Typ) then
12706 Comp := First_Component (Typ);
12707 while Present (Comp) loop
12708 if Comes_From_Source (Comp) then
12709 if Present (Expression (Parent (Comp)))
12710 and then Is_Entity_Name (Expression (Parent (Comp)))
12711 and then Entity (Expression (Parent (Comp))) = Prev
12712 then
12713 Error_Msg_Sloc := Sloc (Parent (Comp));
12714 Error_Msg_NE
12715 ("illegal circularity with declaration for & #",
12716 N, Comp);
12717 return;
12718
12719 elsif Is_Record_Type (Etype (Comp)) then
12720 Check_Recursive_Declaration (Etype (Comp));
12721 end if;
12722 end if;
12723
12724 Next_Component (Comp);
12725 end loop;
12726 end if;
12727 end Check_Recursive_Declaration;
12728
12729 -- Start of processing for Constant_Redeclaration
12730
12731 begin
12732 if Nkind (Parent (Prev)) = N_Object_Declaration then
12733 if Nkind (Object_Definition
12734 (Parent (Prev))) = N_Subtype_Indication
12735 then
12736 -- Find type of new declaration. The constraints of the two
12737 -- views must match statically, but there is no point in
12738 -- creating an itype for the full view.
12739
12740 if Nkind (Obj_Def) = N_Subtype_Indication then
12741 Find_Type (Subtype_Mark (Obj_Def));
12742 New_T := Entity (Subtype_Mark (Obj_Def));
12743
12744 else
12745 Find_Type (Obj_Def);
12746 New_T := Entity (Obj_Def);
12747 end if;
12748
12749 T := Etype (Prev);
12750
12751 else
12752 -- The full view may impose a constraint, even if the partial
12753 -- view does not, so construct the subtype.
12754
12755 New_T := Find_Type_Of_Object (Obj_Def, N);
12756 T := New_T;
12757 end if;
12758
12759 else
12760 -- Current declaration is illegal, diagnosed below in Enter_Name
12761
12762 T := Empty;
12763 New_T := Any_Type;
12764 end if;
12765
12766 -- If previous full declaration or a renaming declaration exists, or if
12767 -- a homograph is present, let Enter_Name handle it, either with an
12768 -- error or with the removal of an overridden implicit subprogram.
12769 -- The previous one is a full declaration if it has an expression
12770 -- (which in the case of an aggregate is indicated by the Init flag).
12771
12772 if Ekind (Prev) /= E_Constant
12773 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
12774 or else Present (Expression (Parent (Prev)))
12775 or else Has_Init_Expression (Parent (Prev))
12776 or else Present (Full_View (Prev))
12777 then
12778 Enter_Name (Id);
12779
12780 -- Verify that types of both declarations match, or else that both types
12781 -- are anonymous access types whose designated subtypes statically match
12782 -- (as allowed in Ada 2005 by AI-385).
12783
12784 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
12785 and then
12786 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
12787 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
12788 or else Is_Access_Constant (Etype (New_T)) /=
12789 Is_Access_Constant (Etype (Prev))
12790 or else Can_Never_Be_Null (Etype (New_T)) /=
12791 Can_Never_Be_Null (Etype (Prev))
12792 or else Null_Exclusion_Present (Parent (Prev)) /=
12793 Null_Exclusion_Present (Parent (Id))
12794 or else not Subtypes_Statically_Match
12795 (Designated_Type (Etype (Prev)),
12796 Designated_Type (Etype (New_T))))
12797 then
12798 Error_Msg_Sloc := Sloc (Prev);
12799 Error_Msg_N ("type does not match declaration#", N);
12800 Set_Full_View (Prev, Id);
12801 Set_Etype (Id, Any_Type);
12802
12803 -- A deferred constant whose type is an anonymous array is always
12804 -- illegal (unless imported). A detailed error message might be
12805 -- helpful for Ada beginners.
12806
12807 if Nkind (Object_Definition (Parent (Prev)))
12808 = N_Constrained_Array_Definition
12809 and then Nkind (Object_Definition (N))
12810 = N_Constrained_Array_Definition
12811 then
12812 Error_Msg_N ("\each anonymous array is a distinct type", N);
12813 Error_Msg_N ("a deferred constant must have a named type",
12814 Object_Definition (Parent (Prev)));
12815 end if;
12816
12817 elsif
12818 Null_Exclusion_Present (Parent (Prev))
12819 and then not Null_Exclusion_Present (N)
12820 then
12821 Error_Msg_Sloc := Sloc (Prev);
12822 Error_Msg_N ("null-exclusion does not match declaration#", N);
12823 Set_Full_View (Prev, Id);
12824 Set_Etype (Id, Any_Type);
12825
12826 -- If so, process the full constant declaration
12827
12828 else
12829 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
12830 -- the deferred declaration is constrained, then the subtype defined
12831 -- by the subtype_indication in the full declaration shall match it
12832 -- statically.
12833
12834 Check_Possible_Deferred_Completion
12835 (Prev_Id => Prev,
12836 Prev_Obj_Def => Object_Definition (Parent (Prev)),
12837 Curr_Obj_Def => Obj_Def);
12838
12839 Set_Full_View (Prev, Id);
12840 Set_Is_Public (Id, Is_Public (Prev));
12841 Set_Is_Internal (Id);
12842 Append_Entity (Id, Current_Scope);
12843
12844 -- Check ALIASED present if present before (RM 7.4(7))
12845
12846 if Is_Aliased (Prev)
12847 and then not Aliased_Present (N)
12848 then
12849 Error_Msg_Sloc := Sloc (Prev);
12850 Error_Msg_N ("ALIASED required (see declaration #)", N);
12851 end if;
12852
12853 -- Check that placement is in private part and that the incomplete
12854 -- declaration appeared in the visible part.
12855
12856 if Ekind (Current_Scope) = E_Package
12857 and then not In_Private_Part (Current_Scope)
12858 then
12859 Error_Msg_Sloc := Sloc (Prev);
12860 Error_Msg_N
12861 ("full constant for declaration # must be in private part", N);
12862
12863 elsif Ekind (Current_Scope) = E_Package
12864 and then
12865 List_Containing (Parent (Prev)) /=
12866 Visible_Declarations (Package_Specification (Current_Scope))
12867 then
12868 Error_Msg_N
12869 ("deferred constant must be declared in visible part",
12870 Parent (Prev));
12871 end if;
12872
12873 if Is_Access_Type (T)
12874 and then Nkind (Expression (N)) = N_Allocator
12875 then
12876 Check_Recursive_Declaration (Designated_Type (T));
12877 end if;
12878
12879 -- A deferred constant is a visible entity. If type has invariants,
12880 -- verify that the initial value satisfies them. This is not done in
12881 -- GNATprove mode, as GNATprove handles invariant checks itself.
12882
12883 if Has_Invariants (T)
12884 and then Present (Invariant_Procedure (T))
12885 and then not GNATprove_Mode
12886 then
12887 Insert_After (N,
12888 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
12889 end if;
12890 end if;
12891 end Constant_Redeclaration;
12892
12893 ----------------------
12894 -- Constrain_Access --
12895 ----------------------
12896
12897 procedure Constrain_Access
12898 (Def_Id : in out Entity_Id;
12899 S : Node_Id;
12900 Related_Nod : Node_Id)
12901 is
12902 T : constant Entity_Id := Entity (Subtype_Mark (S));
12903 Desig_Type : constant Entity_Id := Designated_Type (T);
12904 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
12905 Constraint_OK : Boolean := True;
12906
12907 begin
12908 if Is_Array_Type (Desig_Type) then
12909 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
12910
12911 elsif (Is_Record_Type (Desig_Type)
12912 or else Is_Incomplete_Or_Private_Type (Desig_Type))
12913 and then not Is_Constrained (Desig_Type)
12914 then
12915 -- ??? The following code is a temporary bypass to ignore a
12916 -- discriminant constraint on access type if it is constraining
12917 -- the current record. Avoid creating the implicit subtype of the
12918 -- record we are currently compiling since right now, we cannot
12919 -- handle these. For now, just return the access type itself.
12920
12921 if Desig_Type = Current_Scope
12922 and then No (Def_Id)
12923 then
12924 Set_Ekind (Desig_Subtype, E_Record_Subtype);
12925 Def_Id := Entity (Subtype_Mark (S));
12926
12927 -- This call added to ensure that the constraint is analyzed
12928 -- (needed for a B test). Note that we still return early from
12929 -- this procedure to avoid recursive processing. ???
12930
12931 Constrain_Discriminated_Type
12932 (Desig_Subtype, S, Related_Nod, For_Access => True);
12933 return;
12934 end if;
12935
12936 -- Enforce rule that the constraint is illegal if there is an
12937 -- unconstrained view of the designated type. This means that the
12938 -- partial view (either a private type declaration or a derivation
12939 -- from a private type) has no discriminants. (Defect Report
12940 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12941
12942 -- Rule updated for Ada 2005: The private type is said to have
12943 -- a constrained partial view, given that objects of the type
12944 -- can be declared. Furthermore, the rule applies to all access
12945 -- types, unlike the rule concerning default discriminants (see
12946 -- RM 3.7.1(7/3))
12947
12948 if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005)
12949 and then Has_Private_Declaration (Desig_Type)
12950 and then In_Open_Scopes (Scope (Desig_Type))
12951 and then Has_Discriminants (Desig_Type)
12952 then
12953 declare
12954 Pack : constant Node_Id :=
12955 Unit_Declaration_Node (Scope (Desig_Type));
12956 Decls : List_Id;
12957 Decl : Node_Id;
12958
12959 begin
12960 if Nkind (Pack) = N_Package_Declaration then
12961 Decls := Visible_Declarations (Specification (Pack));
12962 Decl := First (Decls);
12963 while Present (Decl) loop
12964 if (Nkind (Decl) = N_Private_Type_Declaration
12965 and then Chars (Defining_Identifier (Decl)) =
12966 Chars (Desig_Type))
12967
12968 or else
12969 (Nkind (Decl) = N_Full_Type_Declaration
12970 and then
12971 Chars (Defining_Identifier (Decl)) =
12972 Chars (Desig_Type)
12973 and then Is_Derived_Type (Desig_Type)
12974 and then
12975 Has_Private_Declaration (Etype (Desig_Type)))
12976 then
12977 if No (Discriminant_Specifications (Decl)) then
12978 Error_Msg_N
12979 ("cannot constrain access type if designated "
12980 & "type has constrained partial view", S);
12981 end if;
12982
12983 exit;
12984 end if;
12985
12986 Next (Decl);
12987 end loop;
12988 end if;
12989 end;
12990 end if;
12991
12992 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
12993 For_Access => True);
12994
12995 elsif Is_Concurrent_Type (Desig_Type)
12996 and then not Is_Constrained (Desig_Type)
12997 then
12998 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
12999
13000 else
13001 Error_Msg_N ("invalid constraint on access type", S);
13002
13003 -- We simply ignore an invalid constraint
13004
13005 Desig_Subtype := Desig_Type;
13006 Constraint_OK := False;
13007 end if;
13008
13009 if No (Def_Id) then
13010 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
13011 else
13012 Set_Ekind (Def_Id, E_Access_Subtype);
13013 end if;
13014
13015 if Constraint_OK then
13016 Set_Etype (Def_Id, Base_Type (T));
13017
13018 if Is_Private_Type (Desig_Type) then
13019 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
13020 end if;
13021 else
13022 Set_Etype (Def_Id, Any_Type);
13023 end if;
13024
13025 Set_Size_Info (Def_Id, T);
13026 Set_Is_Constrained (Def_Id, Constraint_OK);
13027 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
13028 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13029 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
13030
13031 Conditional_Delay (Def_Id, T);
13032
13033 -- AI-363 : Subtypes of general access types whose designated types have
13034 -- default discriminants are disallowed. In instances, the rule has to
13035 -- be checked against the actual, of which T is the subtype. In a
13036 -- generic body, the rule is checked assuming that the actual type has
13037 -- defaulted discriminants.
13038
13039 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
13040 if Ekind (Base_Type (T)) = E_General_Access_Type
13041 and then Has_Defaulted_Discriminants (Desig_Type)
13042 then
13043 if Ada_Version < Ada_2005 then
13044 Error_Msg_N
13045 ("access subtype of general access type would not " &
13046 "be allowed in Ada 2005?y?", S);
13047 else
13048 Error_Msg_N
13049 ("access subtype of general access type not allowed", S);
13050 end if;
13051
13052 Error_Msg_N ("\discriminants have defaults", S);
13053
13054 elsif Is_Access_Type (T)
13055 and then Is_Generic_Type (Desig_Type)
13056 and then Has_Discriminants (Desig_Type)
13057 and then In_Package_Body (Current_Scope)
13058 then
13059 if Ada_Version < Ada_2005 then
13060 Error_Msg_N
13061 ("access subtype would not be allowed in generic body "
13062 & "in Ada 2005?y?", S);
13063 else
13064 Error_Msg_N
13065 ("access subtype not allowed in generic body", S);
13066 end if;
13067
13068 Error_Msg_N
13069 ("\designated type is a discriminated formal", S);
13070 end if;
13071 end if;
13072 end Constrain_Access;
13073
13074 ---------------------
13075 -- Constrain_Array --
13076 ---------------------
13077
13078 procedure Constrain_Array
13079 (Def_Id : in out Entity_Id;
13080 SI : Node_Id;
13081 Related_Nod : Node_Id;
13082 Related_Id : Entity_Id;
13083 Suffix : Character)
13084 is
13085 C : constant Node_Id := Constraint (SI);
13086 Number_Of_Constraints : Nat := 0;
13087 Index : Node_Id;
13088 S, T : Entity_Id;
13089 Constraint_OK : Boolean := True;
13090
13091 begin
13092 T := Entity (Subtype_Mark (SI));
13093
13094 if Is_Access_Type (T) then
13095 T := Designated_Type (T);
13096 end if;
13097
13098 -- If an index constraint follows a subtype mark in a subtype indication
13099 -- then the type or subtype denoted by the subtype mark must not already
13100 -- impose an index constraint. The subtype mark must denote either an
13101 -- unconstrained array type or an access type whose designated type
13102 -- is such an array type... (RM 3.6.1)
13103
13104 if Is_Constrained (T) then
13105 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
13106 Constraint_OK := False;
13107
13108 else
13109 S := First (Constraints (C));
13110 while Present (S) loop
13111 Number_Of_Constraints := Number_Of_Constraints + 1;
13112 Next (S);
13113 end loop;
13114
13115 -- In either case, the index constraint must provide a discrete
13116 -- range for each index of the array type and the type of each
13117 -- discrete range must be the same as that of the corresponding
13118 -- index. (RM 3.6.1)
13119
13120 if Number_Of_Constraints /= Number_Dimensions (T) then
13121 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
13122 Constraint_OK := False;
13123
13124 else
13125 S := First (Constraints (C));
13126 Index := First_Index (T);
13127 Analyze (Index);
13128
13129 -- Apply constraints to each index type
13130
13131 for J in 1 .. Number_Of_Constraints loop
13132 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
13133 Next (Index);
13134 Next (S);
13135 end loop;
13136
13137 end if;
13138 end if;
13139
13140 if No (Def_Id) then
13141 Def_Id :=
13142 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
13143 Set_Parent (Def_Id, Related_Nod);
13144
13145 else
13146 Set_Ekind (Def_Id, E_Array_Subtype);
13147 end if;
13148
13149 Set_Size_Info (Def_Id, (T));
13150 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13151 Set_Etype (Def_Id, Base_Type (T));
13152
13153 if Constraint_OK then
13154 Set_First_Index (Def_Id, First (Constraints (C)));
13155 else
13156 Set_First_Index (Def_Id, First_Index (T));
13157 end if;
13158
13159 Set_Is_Constrained (Def_Id, True);
13160 Set_Is_Aliased (Def_Id, Is_Aliased (T));
13161 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13162
13163 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
13164 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
13165
13166 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
13167 -- We need to initialize the attribute because if Def_Id is previously
13168 -- analyzed through a limited_with clause, it will have the attributes
13169 -- of an incomplete type, one of which is an Elist that overlaps the
13170 -- Packed_Array_Impl_Type field.
13171
13172 Set_Packed_Array_Impl_Type (Def_Id, Empty);
13173
13174 -- Build a freeze node if parent still needs one. Also make sure that
13175 -- the Depends_On_Private status is set because the subtype will need
13176 -- reprocessing at the time the base type does, and also we must set a
13177 -- conditional delay.
13178
13179 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
13180 Conditional_Delay (Def_Id, T);
13181 end Constrain_Array;
13182
13183 ------------------------------
13184 -- Constrain_Component_Type --
13185 ------------------------------
13186
13187 function Constrain_Component_Type
13188 (Comp : Entity_Id;
13189 Constrained_Typ : Entity_Id;
13190 Related_Node : Node_Id;
13191 Typ : Entity_Id;
13192 Constraints : Elist_Id) return Entity_Id
13193 is
13194 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
13195 Compon_Type : constant Entity_Id := Etype (Comp);
13196
13197 function Build_Constrained_Array_Type
13198 (Old_Type : Entity_Id) return Entity_Id;
13199 -- If Old_Type is an array type, one of whose indexes is constrained
13200 -- by a discriminant, build an Itype whose constraint replaces the
13201 -- discriminant with its value in the constraint.
13202
13203 function Build_Constrained_Discriminated_Type
13204 (Old_Type : Entity_Id) return Entity_Id;
13205 -- Ditto for record components
13206
13207 function Build_Constrained_Access_Type
13208 (Old_Type : Entity_Id) return Entity_Id;
13209 -- Ditto for access types. Makes use of previous two functions, to
13210 -- constrain designated type.
13211
13212 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
13213 -- T is an array or discriminated type, C is a list of constraints
13214 -- that apply to T. This routine builds the constrained subtype.
13215
13216 function Is_Discriminant (Expr : Node_Id) return Boolean;
13217 -- Returns True if Expr is a discriminant
13218
13219 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
13220 -- Find the value of discriminant Discrim in Constraint
13221
13222 -----------------------------------
13223 -- Build_Constrained_Access_Type --
13224 -----------------------------------
13225
13226 function Build_Constrained_Access_Type
13227 (Old_Type : Entity_Id) return Entity_Id
13228 is
13229 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
13230 Itype : Entity_Id;
13231 Desig_Subtype : Entity_Id;
13232 Scop : Entity_Id;
13233
13234 begin
13235 -- if the original access type was not embedded in the enclosing
13236 -- type definition, there is no need to produce a new access
13237 -- subtype. In fact every access type with an explicit constraint
13238 -- generates an itype whose scope is the enclosing record.
13239
13240 if not Is_Type (Scope (Old_Type)) then
13241 return Old_Type;
13242
13243 elsif Is_Array_Type (Desig_Type) then
13244 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
13245
13246 elsif Has_Discriminants (Desig_Type) then
13247
13248 -- This may be an access type to an enclosing record type for
13249 -- which we are constructing the constrained components. Return
13250 -- the enclosing record subtype. This is not always correct,
13251 -- but avoids infinite recursion. ???
13252
13253 Desig_Subtype := Any_Type;
13254
13255 for J in reverse 0 .. Scope_Stack.Last loop
13256 Scop := Scope_Stack.Table (J).Entity;
13257
13258 if Is_Type (Scop)
13259 and then Base_Type (Scop) = Base_Type (Desig_Type)
13260 then
13261 Desig_Subtype := Scop;
13262 end if;
13263
13264 exit when not Is_Type (Scop);
13265 end loop;
13266
13267 if Desig_Subtype = Any_Type then
13268 Desig_Subtype :=
13269 Build_Constrained_Discriminated_Type (Desig_Type);
13270 end if;
13271
13272 else
13273 return Old_Type;
13274 end if;
13275
13276 if Desig_Subtype /= Desig_Type then
13277
13278 -- The Related_Node better be here or else we won't be able
13279 -- to attach new itypes to a node in the tree.
13280
13281 pragma Assert (Present (Related_Node));
13282
13283 Itype := Create_Itype (E_Access_Subtype, Related_Node);
13284
13285 Set_Etype (Itype, Base_Type (Old_Type));
13286 Set_Size_Info (Itype, (Old_Type));
13287 Set_Directly_Designated_Type (Itype, Desig_Subtype);
13288 Set_Depends_On_Private (Itype, Has_Private_Component
13289 (Old_Type));
13290 Set_Is_Access_Constant (Itype, Is_Access_Constant
13291 (Old_Type));
13292
13293 -- The new itype needs freezing when it depends on a not frozen
13294 -- type and the enclosing subtype needs freezing.
13295
13296 if Has_Delayed_Freeze (Constrained_Typ)
13297 and then not Is_Frozen (Constrained_Typ)
13298 then
13299 Conditional_Delay (Itype, Base_Type (Old_Type));
13300 end if;
13301
13302 return Itype;
13303
13304 else
13305 return Old_Type;
13306 end if;
13307 end Build_Constrained_Access_Type;
13308
13309 ----------------------------------
13310 -- Build_Constrained_Array_Type --
13311 ----------------------------------
13312
13313 function Build_Constrained_Array_Type
13314 (Old_Type : Entity_Id) return Entity_Id
13315 is
13316 Lo_Expr : Node_Id;
13317 Hi_Expr : Node_Id;
13318 Old_Index : Node_Id;
13319 Range_Node : Node_Id;
13320 Constr_List : List_Id;
13321
13322 Need_To_Create_Itype : Boolean := False;
13323
13324 begin
13325 Old_Index := First_Index (Old_Type);
13326 while Present (Old_Index) loop
13327 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
13328
13329 if Is_Discriminant (Lo_Expr)
13330 or else
13331 Is_Discriminant (Hi_Expr)
13332 then
13333 Need_To_Create_Itype := True;
13334 end if;
13335
13336 Next_Index (Old_Index);
13337 end loop;
13338
13339 if Need_To_Create_Itype then
13340 Constr_List := New_List;
13341
13342 Old_Index := First_Index (Old_Type);
13343 while Present (Old_Index) loop
13344 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
13345
13346 if Is_Discriminant (Lo_Expr) then
13347 Lo_Expr := Get_Discr_Value (Lo_Expr);
13348 end if;
13349
13350 if Is_Discriminant (Hi_Expr) then
13351 Hi_Expr := Get_Discr_Value (Hi_Expr);
13352 end if;
13353
13354 Range_Node :=
13355 Make_Range
13356 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
13357
13358 Append (Range_Node, To => Constr_List);
13359
13360 Next_Index (Old_Index);
13361 end loop;
13362
13363 return Build_Subtype (Old_Type, Constr_List);
13364
13365 else
13366 return Old_Type;
13367 end if;
13368 end Build_Constrained_Array_Type;
13369
13370 ------------------------------------------
13371 -- Build_Constrained_Discriminated_Type --
13372 ------------------------------------------
13373
13374 function Build_Constrained_Discriminated_Type
13375 (Old_Type : Entity_Id) return Entity_Id
13376 is
13377 Expr : Node_Id;
13378 Constr_List : List_Id;
13379 Old_Constraint : Elmt_Id;
13380
13381 Need_To_Create_Itype : Boolean := False;
13382
13383 begin
13384 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
13385 while Present (Old_Constraint) loop
13386 Expr := Node (Old_Constraint);
13387
13388 if Is_Discriminant (Expr) then
13389 Need_To_Create_Itype := True;
13390 end if;
13391
13392 Next_Elmt (Old_Constraint);
13393 end loop;
13394
13395 if Need_To_Create_Itype then
13396 Constr_List := New_List;
13397
13398 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
13399 while Present (Old_Constraint) loop
13400 Expr := Node (Old_Constraint);
13401
13402 if Is_Discriminant (Expr) then
13403 Expr := Get_Discr_Value (Expr);
13404 end if;
13405
13406 Append (New_Copy_Tree (Expr), To => Constr_List);
13407
13408 Next_Elmt (Old_Constraint);
13409 end loop;
13410
13411 return Build_Subtype (Old_Type, Constr_List);
13412
13413 else
13414 return Old_Type;
13415 end if;
13416 end Build_Constrained_Discriminated_Type;
13417
13418 -------------------
13419 -- Build_Subtype --
13420 -------------------
13421
13422 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
13423 Indic : Node_Id;
13424 Subtyp_Decl : Node_Id;
13425 Def_Id : Entity_Id;
13426 Btyp : Entity_Id := Base_Type (T);
13427
13428 begin
13429 -- The Related_Node better be here or else we won't be able to
13430 -- attach new itypes to a node in the tree.
13431
13432 pragma Assert (Present (Related_Node));
13433
13434 -- If the view of the component's type is incomplete or private
13435 -- with unknown discriminants, then the constraint must be applied
13436 -- to the full type.
13437
13438 if Has_Unknown_Discriminants (Btyp)
13439 and then Present (Underlying_Type (Btyp))
13440 then
13441 Btyp := Underlying_Type (Btyp);
13442 end if;
13443
13444 Indic :=
13445 Make_Subtype_Indication (Loc,
13446 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
13447 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
13448
13449 Def_Id := Create_Itype (Ekind (T), Related_Node);
13450
13451 Subtyp_Decl :=
13452 Make_Subtype_Declaration (Loc,
13453 Defining_Identifier => Def_Id,
13454 Subtype_Indication => Indic);
13455
13456 Set_Parent (Subtyp_Decl, Parent (Related_Node));
13457
13458 -- Itypes must be analyzed with checks off (see package Itypes)
13459
13460 Analyze (Subtyp_Decl, Suppress => All_Checks);
13461
13462 if Is_Itype (Def_Id) and then Has_Predicates (T) then
13463 Inherit_Predicate_Flags (Def_Id, T);
13464
13465 -- Indicate where the predicate function may be found
13466
13467 if Is_Itype (T) then
13468 if Present (Predicate_Function (Def_Id)) then
13469 null;
13470
13471 elsif Present (Predicate_Function (T)) then
13472 Set_Predicate_Function (Def_Id, Predicate_Function (T));
13473
13474 else
13475 Set_Predicated_Parent (Def_Id, Predicated_Parent (T));
13476 end if;
13477
13478 elsif No (Predicate_Function (Def_Id)) then
13479 Set_Predicated_Parent (Def_Id, T);
13480 end if;
13481 end if;
13482
13483 return Def_Id;
13484 end Build_Subtype;
13485
13486 ---------------------
13487 -- Get_Discr_Value --
13488 ---------------------
13489
13490 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
13491 D : Entity_Id;
13492 E : Elmt_Id;
13493
13494 begin
13495 -- The discriminant may be declared for the type, in which case we
13496 -- find it by iterating over the list of discriminants. If the
13497 -- discriminant is inherited from a parent type, it appears as the
13498 -- corresponding discriminant of the current type. This will be the
13499 -- case when constraining an inherited component whose constraint is
13500 -- given by a discriminant of the parent.
13501
13502 D := First_Discriminant (Typ);
13503 E := First_Elmt (Constraints);
13504
13505 while Present (D) loop
13506 if D = Entity (Discrim)
13507 or else D = CR_Discriminant (Entity (Discrim))
13508 or else Corresponding_Discriminant (D) = Entity (Discrim)
13509 then
13510 return Node (E);
13511 end if;
13512
13513 Next_Discriminant (D);
13514 Next_Elmt (E);
13515 end loop;
13516
13517 -- The Corresponding_Discriminant mechanism is incomplete, because
13518 -- the correspondence between new and old discriminants is not one
13519 -- to one: one new discriminant can constrain several old ones. In
13520 -- that case, scan sequentially the stored_constraint, the list of
13521 -- discriminants of the parents, and the constraints.
13522
13523 -- Previous code checked for the present of the Stored_Constraint
13524 -- list for the derived type, but did not use it at all. Should it
13525 -- be present when the component is a discriminated task type?
13526
13527 if Is_Derived_Type (Typ)
13528 and then Scope (Entity (Discrim)) = Etype (Typ)
13529 then
13530 D := First_Discriminant (Etype (Typ));
13531 E := First_Elmt (Constraints);
13532 while Present (D) loop
13533 if D = Entity (Discrim) then
13534 return Node (E);
13535 end if;
13536
13537 Next_Discriminant (D);
13538 Next_Elmt (E);
13539 end loop;
13540 end if;
13541
13542 -- Something is wrong if we did not find the value
13543
13544 raise Program_Error;
13545 end Get_Discr_Value;
13546
13547 ---------------------
13548 -- Is_Discriminant --
13549 ---------------------
13550
13551 function Is_Discriminant (Expr : Node_Id) return Boolean is
13552 Discrim_Scope : Entity_Id;
13553
13554 begin
13555 if Denotes_Discriminant (Expr) then
13556 Discrim_Scope := Scope (Entity (Expr));
13557
13558 -- Either we have a reference to one of Typ's discriminants,
13559
13560 pragma Assert (Discrim_Scope = Typ
13561
13562 -- or to the discriminants of the parent type, in the case
13563 -- of a derivation of a tagged type with variants.
13564
13565 or else Discrim_Scope = Etype (Typ)
13566 or else Full_View (Discrim_Scope) = Etype (Typ)
13567
13568 -- or same as above for the case where the discriminants
13569 -- were declared in Typ's private view.
13570
13571 or else (Is_Private_Type (Discrim_Scope)
13572 and then Chars (Discrim_Scope) = Chars (Typ))
13573
13574 -- or else we are deriving from the full view and the
13575 -- discriminant is declared in the private entity.
13576
13577 or else (Is_Private_Type (Typ)
13578 and then Chars (Discrim_Scope) = Chars (Typ))
13579
13580 -- Or we are constrained the corresponding record of a
13581 -- synchronized type that completes a private declaration.
13582
13583 or else (Is_Concurrent_Record_Type (Typ)
13584 and then
13585 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
13586
13587 -- or we have a class-wide type, in which case make sure the
13588 -- discriminant found belongs to the root type.
13589
13590 or else (Is_Class_Wide_Type (Typ)
13591 and then Etype (Typ) = Discrim_Scope));
13592
13593 return True;
13594 end if;
13595
13596 -- In all other cases we have something wrong
13597
13598 return False;
13599 end Is_Discriminant;
13600
13601 -- Start of processing for Constrain_Component_Type
13602
13603 begin
13604 if Nkind (Parent (Comp)) = N_Component_Declaration
13605 and then Comes_From_Source (Parent (Comp))
13606 and then Comes_From_Source
13607 (Subtype_Indication (Component_Definition (Parent (Comp))))
13608 and then
13609 Is_Entity_Name
13610 (Subtype_Indication (Component_Definition (Parent (Comp))))
13611 then
13612 return Compon_Type;
13613
13614 elsif Is_Array_Type (Compon_Type) then
13615 return Build_Constrained_Array_Type (Compon_Type);
13616
13617 elsif Has_Discriminants (Compon_Type) then
13618 return Build_Constrained_Discriminated_Type (Compon_Type);
13619
13620 elsif Is_Access_Type (Compon_Type) then
13621 return Build_Constrained_Access_Type (Compon_Type);
13622
13623 else
13624 return Compon_Type;
13625 end if;
13626 end Constrain_Component_Type;
13627
13628 --------------------------
13629 -- Constrain_Concurrent --
13630 --------------------------
13631
13632 -- For concurrent types, the associated record value type carries the same
13633 -- discriminants, so when we constrain a concurrent type, we must constrain
13634 -- the corresponding record type as well.
13635
13636 procedure Constrain_Concurrent
13637 (Def_Id : in out Entity_Id;
13638 SI : Node_Id;
13639 Related_Nod : Node_Id;
13640 Related_Id : Entity_Id;
13641 Suffix : Character)
13642 is
13643 -- Retrieve Base_Type to ensure getting to the concurrent type in the
13644 -- case of a private subtype (needed when only doing semantic analysis).
13645
13646 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
13647 T_Val : Entity_Id;
13648
13649 begin
13650 if Is_Access_Type (T_Ent) then
13651 T_Ent := Designated_Type (T_Ent);
13652 end if;
13653
13654 T_Val := Corresponding_Record_Type (T_Ent);
13655
13656 if Present (T_Val) then
13657
13658 if No (Def_Id) then
13659 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
13660
13661 -- Elaborate itype now, as it may be used in a subsequent
13662 -- synchronized operation in another scope.
13663
13664 if Nkind (Related_Nod) = N_Full_Type_Declaration then
13665 Build_Itype_Reference (Def_Id, Related_Nod);
13666 end if;
13667 end if;
13668
13669 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
13670 Set_First_Private_Entity (Def_Id, First_Private_Entity (T_Ent));
13671
13672 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13673 Set_Corresponding_Record_Type (Def_Id,
13674 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
13675
13676 else
13677 -- If there is no associated record, expansion is disabled and this
13678 -- is a generic context. Create a subtype in any case, so that
13679 -- semantic analysis can proceed.
13680
13681 if No (Def_Id) then
13682 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
13683 end if;
13684
13685 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
13686 end if;
13687 end Constrain_Concurrent;
13688
13689 ------------------------------------
13690 -- Constrain_Corresponding_Record --
13691 ------------------------------------
13692
13693 function Constrain_Corresponding_Record
13694 (Prot_Subt : Entity_Id;
13695 Corr_Rec : Entity_Id;
13696 Related_Nod : Node_Id) return Entity_Id
13697 is
13698 T_Sub : constant Entity_Id :=
13699 Create_Itype
13700 (Ekind => E_Record_Subtype,
13701 Related_Nod => Related_Nod,
13702 Related_Id => Corr_Rec,
13703 Suffix => 'C',
13704 Suffix_Index => -1);
13705
13706 begin
13707 Set_Etype (T_Sub, Corr_Rec);
13708 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
13709 Set_Is_Constrained (T_Sub, True);
13710 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
13711 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
13712
13713 if Has_Discriminants (Prot_Subt) then -- False only if errors.
13714 Set_Discriminant_Constraint
13715 (T_Sub, Discriminant_Constraint (Prot_Subt));
13716 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
13717 Create_Constrained_Components
13718 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
13719 end if;
13720
13721 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
13722
13723 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
13724 Conditional_Delay (T_Sub, Corr_Rec);
13725
13726 else
13727 -- This is a component subtype: it will be frozen in the context of
13728 -- the enclosing record's init_proc, so that discriminant references
13729 -- are resolved to discriminals. (Note: we used to skip freezing
13730 -- altogether in that case, which caused errors downstream for
13731 -- components of a bit packed array type).
13732
13733 Set_Has_Delayed_Freeze (T_Sub);
13734 end if;
13735
13736 return T_Sub;
13737 end Constrain_Corresponding_Record;
13738
13739 -----------------------
13740 -- Constrain_Decimal --
13741 -----------------------
13742
13743 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
13744 T : constant Entity_Id := Entity (Subtype_Mark (S));
13745 C : constant Node_Id := Constraint (S);
13746 Loc : constant Source_Ptr := Sloc (C);
13747 Range_Expr : Node_Id;
13748 Digits_Expr : Node_Id;
13749 Digits_Val : Uint;
13750 Bound_Val : Ureal;
13751
13752 begin
13753 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
13754
13755 if Nkind (C) = N_Range_Constraint then
13756 Range_Expr := Range_Expression (C);
13757 Digits_Val := Digits_Value (T);
13758
13759 else
13760 pragma Assert (Nkind (C) = N_Digits_Constraint);
13761
13762 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13763
13764 Digits_Expr := Digits_Expression (C);
13765 Analyze_And_Resolve (Digits_Expr, Any_Integer);
13766
13767 Check_Digits_Expression (Digits_Expr);
13768 Digits_Val := Expr_Value (Digits_Expr);
13769
13770 if Digits_Val > Digits_Value (T) then
13771 Error_Msg_N
13772 ("digits expression is incompatible with subtype", C);
13773 Digits_Val := Digits_Value (T);
13774 end if;
13775
13776 if Present (Range_Constraint (C)) then
13777 Range_Expr := Range_Expression (Range_Constraint (C));
13778 else
13779 Range_Expr := Empty;
13780 end if;
13781 end if;
13782
13783 Set_Etype (Def_Id, Base_Type (T));
13784 Set_Size_Info (Def_Id, (T));
13785 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13786 Set_Delta_Value (Def_Id, Delta_Value (T));
13787 Set_Scale_Value (Def_Id, Scale_Value (T));
13788 Set_Small_Value (Def_Id, Small_Value (T));
13789 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
13790 Set_Digits_Value (Def_Id, Digits_Val);
13791
13792 -- Manufacture range from given digits value if no range present
13793
13794 if No (Range_Expr) then
13795 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
13796 Range_Expr :=
13797 Make_Range (Loc,
13798 Low_Bound =>
13799 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
13800 High_Bound =>
13801 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
13802 end if;
13803
13804 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
13805 Set_Discrete_RM_Size (Def_Id);
13806
13807 -- Unconditionally delay the freeze, since we cannot set size
13808 -- information in all cases correctly until the freeze point.
13809
13810 Set_Has_Delayed_Freeze (Def_Id);
13811 end Constrain_Decimal;
13812
13813 ----------------------------------
13814 -- Constrain_Discriminated_Type --
13815 ----------------------------------
13816
13817 procedure Constrain_Discriminated_Type
13818 (Def_Id : Entity_Id;
13819 S : Node_Id;
13820 Related_Nod : Node_Id;
13821 For_Access : Boolean := False)
13822 is
13823 E : Entity_Id := Entity (Subtype_Mark (S));
13824 T : Entity_Id;
13825
13826 procedure Fixup_Bad_Constraint;
13827 -- Called after finding a bad constraint, and after having posted an
13828 -- appropriate error message. The goal is to leave type Def_Id in as
13829 -- reasonable state as possible.
13830
13831 --------------------------
13832 -- Fixup_Bad_Constraint --
13833 --------------------------
13834
13835 procedure Fixup_Bad_Constraint is
13836 begin
13837 -- Set a reasonable Ekind for the entity, including incomplete types.
13838
13839 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
13840
13841 -- Set Etype to the known type, to reduce chances of cascaded errors
13842
13843 Set_Etype (Def_Id, E);
13844 Set_Error_Posted (Def_Id);
13845 end Fixup_Bad_Constraint;
13846
13847 -- Local variables
13848
13849 C : Node_Id;
13850 Constr : Elist_Id := New_Elmt_List;
13851
13852 -- Start of processing for Constrain_Discriminated_Type
13853
13854 begin
13855 C := Constraint (S);
13856
13857 -- A discriminant constraint is only allowed in a subtype indication,
13858 -- after a subtype mark. This subtype mark must denote either a type
13859 -- with discriminants, or an access type whose designated type is a
13860 -- type with discriminants. A discriminant constraint specifies the
13861 -- values of these discriminants (RM 3.7.2(5)).
13862
13863 T := Base_Type (Entity (Subtype_Mark (S)));
13864
13865 if Is_Access_Type (T) then
13866 T := Designated_Type (T);
13867 end if;
13868
13869 -- In an instance it may be necessary to retrieve the full view of a
13870 -- type with unknown discriminants, or a full view with defaulted
13871 -- discriminants. In other contexts the constraint is illegal.
13872
13873 if In_Instance
13874 and then Is_Private_Type (T)
13875 and then Present (Full_View (T))
13876 and then
13877 (Has_Unknown_Discriminants (T)
13878 or else
13879 (not Has_Discriminants (T)
13880 and then Has_Discriminants (Full_View (T))
13881 and then Present (Discriminant_Default_Value
13882 (First_Discriminant (Full_View (T))))))
13883 then
13884 T := Full_View (T);
13885 E := Full_View (E);
13886 end if;
13887
13888 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal. Avoid
13889 -- generating an error for access-to-incomplete subtypes.
13890
13891 if Ada_Version >= Ada_2005
13892 and then Ekind (T) = E_Incomplete_Type
13893 and then Nkind (Parent (S)) = N_Subtype_Declaration
13894 and then not Is_Itype (Def_Id)
13895 then
13896 -- A little sanity check: emit an error message if the type has
13897 -- discriminants to begin with. Type T may be a regular incomplete
13898 -- type or imported via a limited with clause.
13899
13900 if Has_Discriminants (T)
13901 or else (From_Limited_With (T)
13902 and then Present (Non_Limited_View (T))
13903 and then Nkind (Parent (Non_Limited_View (T))) =
13904 N_Full_Type_Declaration
13905 and then Present (Discriminant_Specifications
13906 (Parent (Non_Limited_View (T)))))
13907 then
13908 Error_Msg_N
13909 ("(Ada 2005) incomplete subtype may not be constrained", C);
13910 else
13911 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13912 end if;
13913
13914 Fixup_Bad_Constraint;
13915 return;
13916
13917 -- Check that the type has visible discriminants. The type may be
13918 -- a private type with unknown discriminants whose full view has
13919 -- discriminants which are invisible.
13920
13921 elsif not Has_Discriminants (T)
13922 or else
13923 (Has_Unknown_Discriminants (T)
13924 and then Is_Private_Type (T))
13925 then
13926 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13927 Fixup_Bad_Constraint;
13928 return;
13929
13930 elsif Is_Constrained (E)
13931 or else (Ekind (E) = E_Class_Wide_Subtype
13932 and then Present (Discriminant_Constraint (E)))
13933 then
13934 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
13935 Fixup_Bad_Constraint;
13936 return;
13937 end if;
13938
13939 -- T may be an unconstrained subtype (e.g. a generic actual). Constraint
13940 -- applies to the base type.
13941
13942 T := Base_Type (T);
13943
13944 Constr := Build_Discriminant_Constraints (T, S);
13945
13946 -- If the list returned was empty we had an error in building the
13947 -- discriminant constraint. We have also already signalled an error
13948 -- in the incomplete type case
13949
13950 if Is_Empty_Elmt_List (Constr) then
13951 Fixup_Bad_Constraint;
13952 return;
13953 end if;
13954
13955 Build_Discriminated_Subtype (T, Def_Id, Constr, Related_Nod, For_Access);
13956 end Constrain_Discriminated_Type;
13957
13958 ---------------------------
13959 -- Constrain_Enumeration --
13960 ---------------------------
13961
13962 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
13963 T : constant Entity_Id := Entity (Subtype_Mark (S));
13964 C : constant Node_Id := Constraint (S);
13965
13966 begin
13967 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13968
13969 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
13970
13971 Set_Etype (Def_Id, Base_Type (T));
13972 Set_Size_Info (Def_Id, (T));
13973 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13974 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13975
13976 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13977
13978 Set_Discrete_RM_Size (Def_Id);
13979 end Constrain_Enumeration;
13980
13981 ----------------------
13982 -- Constrain_Float --
13983 ----------------------
13984
13985 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
13986 T : constant Entity_Id := Entity (Subtype_Mark (S));
13987 C : Node_Id;
13988 D : Node_Id;
13989 Rais : Node_Id;
13990
13991 begin
13992 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
13993
13994 Set_Etype (Def_Id, Base_Type (T));
13995 Set_Size_Info (Def_Id, (T));
13996 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13997
13998 -- Process the constraint
13999
14000 C := Constraint (S);
14001
14002 -- Digits constraint present
14003
14004 if Nkind (C) = N_Digits_Constraint then
14005
14006 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
14007 Check_Restriction (No_Obsolescent_Features, C);
14008
14009 if Warn_On_Obsolescent_Feature then
14010 Error_Msg_N
14011 ("subtype digits constraint is an " &
14012 "obsolescent feature (RM J.3(8))?j?", C);
14013 end if;
14014
14015 D := Digits_Expression (C);
14016 Analyze_And_Resolve (D, Any_Integer);
14017 Check_Digits_Expression (D);
14018 Set_Digits_Value (Def_Id, Expr_Value (D));
14019
14020 -- Check that digits value is in range. Obviously we can do this
14021 -- at compile time, but it is strictly a runtime check, and of
14022 -- course there is an ACVC test that checks this.
14023
14024 if Digits_Value (Def_Id) > Digits_Value (T) then
14025 Error_Msg_Uint_1 := Digits_Value (T);
14026 Error_Msg_N ("??digits value is too large, maximum is ^", D);
14027 Rais :=
14028 Make_Raise_Constraint_Error (Sloc (D),
14029 Reason => CE_Range_Check_Failed);
14030 Insert_Action (Declaration_Node (Def_Id), Rais);
14031 end if;
14032
14033 C := Range_Constraint (C);
14034
14035 -- No digits constraint present
14036
14037 else
14038 Set_Digits_Value (Def_Id, Digits_Value (T));
14039 end if;
14040
14041 -- Range constraint present
14042
14043 if Nkind (C) = N_Range_Constraint then
14044 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14045
14046 -- No range constraint present
14047
14048 else
14049 pragma Assert (No (C));
14050 Set_Scalar_Range (Def_Id, Scalar_Range (T));
14051 end if;
14052
14053 Set_Is_Constrained (Def_Id);
14054 end Constrain_Float;
14055
14056 ---------------------
14057 -- Constrain_Index --
14058 ---------------------
14059
14060 procedure Constrain_Index
14061 (Index : Node_Id;
14062 S : Node_Id;
14063 Related_Nod : Node_Id;
14064 Related_Id : Entity_Id;
14065 Suffix : Character;
14066 Suffix_Index : Nat)
14067 is
14068 Def_Id : Entity_Id;
14069 R : Node_Id := Empty;
14070 T : constant Entity_Id := Etype (Index);
14071
14072 begin
14073 Def_Id :=
14074 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
14075 Set_Etype (Def_Id, Base_Type (T));
14076
14077 if Nkind (S) = N_Range
14078 or else
14079 (Nkind (S) = N_Attribute_Reference
14080 and then Attribute_Name (S) = Name_Range)
14081 then
14082 -- A Range attribute will be transformed into N_Range by Resolve
14083
14084 Analyze (S);
14085 Set_Etype (S, T);
14086 R := S;
14087
14088 Process_Range_Expr_In_Decl (R, T);
14089
14090 if not Error_Posted (S)
14091 and then
14092 (Nkind (S) /= N_Range
14093 or else not Covers (T, (Etype (Low_Bound (S))))
14094 or else not Covers (T, (Etype (High_Bound (S)))))
14095 then
14096 if Base_Type (T) /= Any_Type
14097 and then Etype (Low_Bound (S)) /= Any_Type
14098 and then Etype (High_Bound (S)) /= Any_Type
14099 then
14100 Error_Msg_N ("range expected", S);
14101 end if;
14102 end if;
14103
14104 elsif Nkind (S) = N_Subtype_Indication then
14105
14106 -- The parser has verified that this is a discrete indication
14107
14108 Resolve_Discrete_Subtype_Indication (S, T);
14109 Bad_Predicated_Subtype_Use
14110 ("subtype& has predicate, not allowed in index constraint",
14111 S, Entity (Subtype_Mark (S)));
14112
14113 R := Range_Expression (Constraint (S));
14114
14115 -- Capture values of bounds and generate temporaries for them if
14116 -- needed, since checks may cause duplication of the expressions
14117 -- which must not be reevaluated.
14118
14119 -- The forced evaluation removes side effects from expressions, which
14120 -- should occur also in GNATprove mode. Otherwise, we end up with
14121 -- unexpected insertions of actions at places where this is not
14122 -- supposed to occur, e.g. on default parameters of a call.
14123
14124 if Expander_Active or GNATprove_Mode then
14125 Force_Evaluation
14126 (Low_Bound (R), Related_Id => Def_Id, Is_Low_Bound => True);
14127 Force_Evaluation
14128 (High_Bound (R), Related_Id => Def_Id, Is_High_Bound => True);
14129 end if;
14130
14131 elsif Nkind (S) = N_Discriminant_Association then
14132
14133 -- Syntactically valid in subtype indication
14134
14135 Error_Msg_N ("invalid index constraint", S);
14136 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
14137 return;
14138
14139 -- Subtype_Mark case, no anonymous subtypes to construct
14140
14141 else
14142 Analyze (S);
14143
14144 if Is_Entity_Name (S) then
14145 if not Is_Type (Entity (S)) then
14146 Error_Msg_N ("expect subtype mark for index constraint", S);
14147
14148 elsif Base_Type (Entity (S)) /= Base_Type (T) then
14149 Wrong_Type (S, Base_Type (T));
14150
14151 -- Check error of subtype with predicate in index constraint
14152
14153 else
14154 Bad_Predicated_Subtype_Use
14155 ("subtype& has predicate, not allowed in index constraint",
14156 S, Entity (S));
14157 end if;
14158
14159 return;
14160
14161 else
14162 Error_Msg_N ("invalid index constraint", S);
14163 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
14164 return;
14165 end if;
14166 end if;
14167
14168 -- Complete construction of the Itype
14169
14170 if Is_Modular_Integer_Type (T) then
14171 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
14172
14173 elsif Is_Integer_Type (T) then
14174 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
14175
14176 else
14177 Set_Ekind (Def_Id, E_Enumeration_Subtype);
14178 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
14179 Set_First_Literal (Def_Id, First_Literal (T));
14180 end if;
14181
14182 Set_Size_Info (Def_Id, (T));
14183 Set_RM_Size (Def_Id, RM_Size (T));
14184 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14185
14186 Set_Scalar_Range (Def_Id, R);
14187
14188 Set_Etype (S, Def_Id);
14189 Set_Discrete_RM_Size (Def_Id);
14190 end Constrain_Index;
14191
14192 -----------------------
14193 -- Constrain_Integer --
14194 -----------------------
14195
14196 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
14197 T : constant Entity_Id := Entity (Subtype_Mark (S));
14198 C : constant Node_Id := Constraint (S);
14199
14200 begin
14201 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14202
14203 if Is_Modular_Integer_Type (T) then
14204 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
14205 else
14206 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
14207 end if;
14208
14209 Set_Etype (Def_Id, Base_Type (T));
14210 Set_Size_Info (Def_Id, (T));
14211 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14212 Set_Discrete_RM_Size (Def_Id);
14213 end Constrain_Integer;
14214
14215 ------------------------------
14216 -- Constrain_Ordinary_Fixed --
14217 ------------------------------
14218
14219 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
14220 T : constant Entity_Id := Entity (Subtype_Mark (S));
14221 C : Node_Id;
14222 D : Node_Id;
14223 Rais : Node_Id;
14224
14225 begin
14226 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
14227 Set_Etype (Def_Id, Base_Type (T));
14228 Set_Size_Info (Def_Id, (T));
14229 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14230 Set_Small_Value (Def_Id, Small_Value (T));
14231
14232 -- Process the constraint
14233
14234 C := Constraint (S);
14235
14236 -- Delta constraint present
14237
14238 if Nkind (C) = N_Delta_Constraint then
14239
14240 Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
14241 Check_Restriction (No_Obsolescent_Features, C);
14242
14243 if Warn_On_Obsolescent_Feature then
14244 Error_Msg_S
14245 ("subtype delta constraint is an " &
14246 "obsolescent feature (RM J.3(7))?j?");
14247 end if;
14248
14249 D := Delta_Expression (C);
14250 Analyze_And_Resolve (D, Any_Real);
14251 Check_Delta_Expression (D);
14252 Set_Delta_Value (Def_Id, Expr_Value_R (D));
14253
14254 -- Check that delta value is in range. Obviously we can do this
14255 -- at compile time, but it is strictly a runtime check, and of
14256 -- course there is an ACVC test that checks this.
14257
14258 if Delta_Value (Def_Id) < Delta_Value (T) then
14259 Error_Msg_N ("??delta value is too small", D);
14260 Rais :=
14261 Make_Raise_Constraint_Error (Sloc (D),
14262 Reason => CE_Range_Check_Failed);
14263 Insert_Action (Declaration_Node (Def_Id), Rais);
14264 end if;
14265
14266 C := Range_Constraint (C);
14267
14268 -- No delta constraint present
14269
14270 else
14271 Set_Delta_Value (Def_Id, Delta_Value (T));
14272 end if;
14273
14274 -- Range constraint present
14275
14276 if Nkind (C) = N_Range_Constraint then
14277 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14278
14279 -- No range constraint present
14280
14281 else
14282 pragma Assert (No (C));
14283 Set_Scalar_Range (Def_Id, Scalar_Range (T));
14284 end if;
14285
14286 Set_Discrete_RM_Size (Def_Id);
14287
14288 -- Unconditionally delay the freeze, since we cannot set size
14289 -- information in all cases correctly until the freeze point.
14290
14291 Set_Has_Delayed_Freeze (Def_Id);
14292 end Constrain_Ordinary_Fixed;
14293
14294 -----------------------
14295 -- Contain_Interface --
14296 -----------------------
14297
14298 function Contain_Interface
14299 (Iface : Entity_Id;
14300 Ifaces : Elist_Id) return Boolean
14301 is
14302 Iface_Elmt : Elmt_Id;
14303
14304 begin
14305 if Present (Ifaces) then
14306 Iface_Elmt := First_Elmt (Ifaces);
14307 while Present (Iface_Elmt) loop
14308 if Node (Iface_Elmt) = Iface then
14309 return True;
14310 end if;
14311
14312 Next_Elmt (Iface_Elmt);
14313 end loop;
14314 end if;
14315
14316 return False;
14317 end Contain_Interface;
14318
14319 ---------------------------
14320 -- Convert_Scalar_Bounds --
14321 ---------------------------
14322
14323 procedure Convert_Scalar_Bounds
14324 (N : Node_Id;
14325 Parent_Type : Entity_Id;
14326 Derived_Type : Entity_Id;
14327 Loc : Source_Ptr)
14328 is
14329 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
14330
14331 Lo : Node_Id;
14332 Hi : Node_Id;
14333 Rng : Node_Id;
14334
14335 begin
14336 -- Defend against previous errors
14337
14338 if No (Scalar_Range (Derived_Type)) then
14339 Check_Error_Detected;
14340 return;
14341 end if;
14342
14343 Lo := Build_Scalar_Bound
14344 (Type_Low_Bound (Derived_Type),
14345 Parent_Type, Implicit_Base);
14346
14347 Hi := Build_Scalar_Bound
14348 (Type_High_Bound (Derived_Type),
14349 Parent_Type, Implicit_Base);
14350
14351 Rng :=
14352 Make_Range (Loc,
14353 Low_Bound => Lo,
14354 High_Bound => Hi);
14355
14356 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
14357
14358 Set_Parent (Rng, N);
14359 Set_Scalar_Range (Derived_Type, Rng);
14360
14361 -- Analyze the bounds
14362
14363 Analyze_And_Resolve (Lo, Implicit_Base);
14364 Analyze_And_Resolve (Hi, Implicit_Base);
14365
14366 -- Analyze the range itself, except that we do not analyze it if
14367 -- the bounds are real literals, and we have a fixed-point type.
14368 -- The reason for this is that we delay setting the bounds in this
14369 -- case till we know the final Small and Size values (see circuit
14370 -- in Freeze.Freeze_Fixed_Point_Type for further details).
14371
14372 if Is_Fixed_Point_Type (Parent_Type)
14373 and then Nkind (Lo) = N_Real_Literal
14374 and then Nkind (Hi) = N_Real_Literal
14375 then
14376 return;
14377
14378 -- Here we do the analysis of the range
14379
14380 -- Note: we do this manually, since if we do a normal Analyze and
14381 -- Resolve call, there are problems with the conversions used for
14382 -- the derived type range.
14383
14384 else
14385 Set_Etype (Rng, Implicit_Base);
14386 Set_Analyzed (Rng, True);
14387 end if;
14388 end Convert_Scalar_Bounds;
14389
14390 -------------------
14391 -- Copy_And_Swap --
14392 -------------------
14393
14394 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
14395 begin
14396 -- Initialize new full declaration entity by copying the pertinent
14397 -- fields of the corresponding private declaration entity.
14398
14399 -- We temporarily set Ekind to a value appropriate for a type to
14400 -- avoid assert failures in Einfo from checking for setting type
14401 -- attributes on something that is not a type. Ekind (Priv) is an
14402 -- appropriate choice, since it allowed the attributes to be set
14403 -- in the first place. This Ekind value will be modified later.
14404
14405 Set_Ekind (Full, Ekind (Priv));
14406
14407 -- Also set Etype temporarily to Any_Type, again, in the absence
14408 -- of errors, it will be properly reset, and if there are errors,
14409 -- then we want a value of Any_Type to remain.
14410
14411 Set_Etype (Full, Any_Type);
14412
14413 -- Now start copying attributes
14414
14415 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
14416
14417 if Has_Discriminants (Full) then
14418 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
14419 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
14420 end if;
14421
14422 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
14423 Set_Homonym (Full, Homonym (Priv));
14424 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
14425 Set_Is_Public (Full, Is_Public (Priv));
14426 Set_Is_Pure (Full, Is_Pure (Priv));
14427 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
14428 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
14429 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
14430 Set_Has_Pragma_Unreferenced_Objects
14431 (Full, Has_Pragma_Unreferenced_Objects
14432 (Priv));
14433
14434 Conditional_Delay (Full, Priv);
14435
14436 if Is_Tagged_Type (Full) then
14437 Set_Direct_Primitive_Operations
14438 (Full, Direct_Primitive_Operations (Priv));
14439 Set_No_Tagged_Streams_Pragma
14440 (Full, No_Tagged_Streams_Pragma (Priv));
14441
14442 if Is_Base_Type (Priv) then
14443 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
14444 end if;
14445 end if;
14446
14447 Set_Is_Volatile (Full, Is_Volatile (Priv));
14448 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
14449 Set_Scope (Full, Scope (Priv));
14450 Set_Prev_Entity (Full, Prev_Entity (Priv));
14451 Set_Next_Entity (Full, Next_Entity (Priv));
14452 Set_First_Entity (Full, First_Entity (Priv));
14453 Set_Last_Entity (Full, Last_Entity (Priv));
14454
14455 -- If access types have been recorded for later handling, keep them in
14456 -- the full view so that they get handled when the full view freeze
14457 -- node is expanded.
14458
14459 if Present (Freeze_Node (Priv))
14460 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
14461 then
14462 Ensure_Freeze_Node (Full);
14463 Set_Access_Types_To_Process
14464 (Freeze_Node (Full),
14465 Access_Types_To_Process (Freeze_Node (Priv)));
14466 end if;
14467
14468 -- Swap the two entities. Now Private is the full type entity and Full
14469 -- is the private one. They will be swapped back at the end of the
14470 -- private part. This swapping ensures that the entity that is visible
14471 -- in the private part is the full declaration.
14472
14473 Exchange_Entities (Priv, Full);
14474 Append_Entity (Full, Scope (Full));
14475 end Copy_And_Swap;
14476
14477 -------------------------------------
14478 -- Copy_Array_Base_Type_Attributes --
14479 -------------------------------------
14480
14481 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
14482 begin
14483 Set_Component_Alignment (T1, Component_Alignment (T2));
14484 Set_Component_Type (T1, Component_Type (T2));
14485 Set_Component_Size (T1, Component_Size (T2));
14486 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
14487 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
14488 Propagate_Concurrent_Flags (T1, T2);
14489 Set_Is_Packed (T1, Is_Packed (T2));
14490 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
14491 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
14492 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
14493 end Copy_Array_Base_Type_Attributes;
14494
14495 -----------------------------------
14496 -- Copy_Array_Subtype_Attributes --
14497 -----------------------------------
14498
14499 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
14500 begin
14501 Set_Size_Info (T1, T2);
14502
14503 Set_First_Index (T1, First_Index (T2));
14504 Set_Is_Aliased (T1, Is_Aliased (T2));
14505 Set_Is_Volatile (T1, Is_Volatile (T2));
14506 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
14507 Set_Is_Constrained (T1, Is_Constrained (T2));
14508 Set_Depends_On_Private (T1, Has_Private_Component (T2));
14509 Inherit_Rep_Item_Chain (T1, T2);
14510 Set_Convention (T1, Convention (T2));
14511 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
14512 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
14513 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
14514 end Copy_Array_Subtype_Attributes;
14515
14516 -----------------------------------
14517 -- Create_Constrained_Components --
14518 -----------------------------------
14519
14520 procedure Create_Constrained_Components
14521 (Subt : Entity_Id;
14522 Decl_Node : Node_Id;
14523 Typ : Entity_Id;
14524 Constraints : Elist_Id)
14525 is
14526 Loc : constant Source_Ptr := Sloc (Subt);
14527 Comp_List : constant Elist_Id := New_Elmt_List;
14528 Parent_Type : constant Entity_Id := Etype (Typ);
14529 Assoc_List : constant List_Id := New_List;
14530 Discr_Val : Elmt_Id;
14531 Errors : Boolean;
14532 New_C : Entity_Id;
14533 Old_C : Entity_Id;
14534 Is_Static : Boolean := True;
14535
14536 procedure Collect_Fixed_Components (Typ : Entity_Id);
14537 -- Collect parent type components that do not appear in a variant part
14538
14539 procedure Create_All_Components;
14540 -- Iterate over Comp_List to create the components of the subtype
14541
14542 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
14543 -- Creates a new component from Old_Compon, copying all the fields from
14544 -- it, including its Etype, inserts the new component in the Subt entity
14545 -- chain and returns the new component.
14546
14547 function Is_Variant_Record (T : Entity_Id) return Boolean;
14548 -- If true, and discriminants are static, collect only components from
14549 -- variants selected by discriminant values.
14550
14551 ------------------------------
14552 -- Collect_Fixed_Components --
14553 ------------------------------
14554
14555 procedure Collect_Fixed_Components (Typ : Entity_Id) is
14556 begin
14557 -- Build association list for discriminants, and find components of the
14558 -- variant part selected by the values of the discriminants.
14559
14560 Old_C := First_Discriminant (Typ);
14561 Discr_Val := First_Elmt (Constraints);
14562 while Present (Old_C) loop
14563 Append_To (Assoc_List,
14564 Make_Component_Association (Loc,
14565 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
14566 Expression => New_Copy (Node (Discr_Val))));
14567
14568 Next_Elmt (Discr_Val);
14569 Next_Discriminant (Old_C);
14570 end loop;
14571
14572 -- The tag and the possible parent component are unconditionally in
14573 -- the subtype.
14574
14575 if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
14576 Old_C := First_Component (Typ);
14577 while Present (Old_C) loop
14578 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
14579 Append_Elmt (Old_C, Comp_List);
14580 end if;
14581
14582 Next_Component (Old_C);
14583 end loop;
14584 end if;
14585 end Collect_Fixed_Components;
14586
14587 ---------------------------
14588 -- Create_All_Components --
14589 ---------------------------
14590
14591 procedure Create_All_Components is
14592 Comp : Elmt_Id;
14593
14594 begin
14595 Comp := First_Elmt (Comp_List);
14596 while Present (Comp) loop
14597 Old_C := Node (Comp);
14598 New_C := Create_Component (Old_C);
14599
14600 Set_Etype
14601 (New_C,
14602 Constrain_Component_Type
14603 (Old_C, Subt, Decl_Node, Typ, Constraints));
14604 Set_Is_Public (New_C, Is_Public (Subt));
14605
14606 Next_Elmt (Comp);
14607 end loop;
14608 end Create_All_Components;
14609
14610 ----------------------
14611 -- Create_Component --
14612 ----------------------
14613
14614 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
14615 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
14616
14617 begin
14618 if Ekind (Old_Compon) = E_Discriminant
14619 and then Is_Completely_Hidden (Old_Compon)
14620 then
14621 -- This is a shadow discriminant created for a discriminant of
14622 -- the parent type, which needs to be present in the subtype.
14623 -- Give the shadow discriminant an internal name that cannot
14624 -- conflict with that of visible components.
14625
14626 Set_Chars (New_Compon, New_Internal_Name ('C'));
14627 end if;
14628
14629 -- Set the parent so we have a proper link for freezing etc. This is
14630 -- not a real parent pointer, since of course our parent does not own
14631 -- up to us and reference us, we are an illegitimate child of the
14632 -- original parent.
14633
14634 Set_Parent (New_Compon, Parent (Old_Compon));
14635
14636 -- We do not want this node marked as Comes_From_Source, since
14637 -- otherwise it would get first class status and a separate cross-
14638 -- reference line would be generated. Illegitimate children do not
14639 -- rate such recognition.
14640
14641 Set_Comes_From_Source (New_Compon, False);
14642
14643 -- But it is a real entity, and a birth certificate must be properly
14644 -- registered by entering it into the entity list, and setting its
14645 -- scope to the given subtype. This turns out to be useful for the
14646 -- LLVM code generator, but that scope is not used otherwise.
14647
14648 Enter_Name (New_Compon);
14649 Set_Scope (New_Compon, Subt);
14650
14651 return New_Compon;
14652 end Create_Component;
14653
14654 -----------------------
14655 -- Is_Variant_Record --
14656 -----------------------
14657
14658 function Is_Variant_Record (T : Entity_Id) return Boolean is
14659 begin
14660 return Nkind (Parent (T)) = N_Full_Type_Declaration
14661 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
14662 and then Present (Component_List (Type_Definition (Parent (T))))
14663 and then
14664 Present
14665 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
14666 end Is_Variant_Record;
14667
14668 -- Start of processing for Create_Constrained_Components
14669
14670 begin
14671 pragma Assert (Subt /= Base_Type (Subt));
14672 pragma Assert (Typ = Base_Type (Typ));
14673
14674 Set_First_Entity (Subt, Empty);
14675 Set_Last_Entity (Subt, Empty);
14676
14677 -- Check whether constraint is fully static, in which case we can
14678 -- optimize the list of components.
14679
14680 Discr_Val := First_Elmt (Constraints);
14681 while Present (Discr_Val) loop
14682 if not Is_OK_Static_Expression (Node (Discr_Val)) then
14683 Is_Static := False;
14684 exit;
14685 end if;
14686
14687 Next_Elmt (Discr_Val);
14688 end loop;
14689
14690 Set_Has_Static_Discriminants (Subt, Is_Static);
14691
14692 Push_Scope (Subt);
14693
14694 -- Inherit the discriminants of the parent type
14695
14696 Add_Discriminants : declare
14697 Num_Disc : Nat;
14698 Num_Gird : Nat;
14699
14700 begin
14701 Num_Disc := 0;
14702 Old_C := First_Discriminant (Typ);
14703
14704 while Present (Old_C) loop
14705 Num_Disc := Num_Disc + 1;
14706 New_C := Create_Component (Old_C);
14707 Set_Is_Public (New_C, Is_Public (Subt));
14708 Next_Discriminant (Old_C);
14709 end loop;
14710
14711 -- For an untagged derived subtype, the number of discriminants may
14712 -- be smaller than the number of inherited discriminants, because
14713 -- several of them may be renamed by a single new discriminant or
14714 -- constrained. In this case, add the hidden discriminants back into
14715 -- the subtype, because they need to be present if the optimizer of
14716 -- the GCC 4.x back-end decides to break apart assignments between
14717 -- objects using the parent view into member-wise assignments.
14718
14719 Num_Gird := 0;
14720
14721 if Is_Derived_Type (Typ)
14722 and then not Is_Tagged_Type (Typ)
14723 then
14724 Old_C := First_Stored_Discriminant (Typ);
14725
14726 while Present (Old_C) loop
14727 Num_Gird := Num_Gird + 1;
14728 Next_Stored_Discriminant (Old_C);
14729 end loop;
14730 end if;
14731
14732 if Num_Gird > Num_Disc then
14733
14734 -- Find out multiple uses of new discriminants, and add hidden
14735 -- components for the extra renamed discriminants. We recognize
14736 -- multiple uses through the Corresponding_Discriminant of a
14737 -- new discriminant: if it constrains several old discriminants,
14738 -- this field points to the last one in the parent type. The
14739 -- stored discriminants of the derived type have the same name
14740 -- as those of the parent.
14741
14742 declare
14743 Constr : Elmt_Id;
14744 New_Discr : Entity_Id;
14745 Old_Discr : Entity_Id;
14746
14747 begin
14748 Constr := First_Elmt (Stored_Constraint (Typ));
14749 Old_Discr := First_Stored_Discriminant (Typ);
14750 while Present (Constr) loop
14751 if Is_Entity_Name (Node (Constr))
14752 and then Ekind (Entity (Node (Constr))) = E_Discriminant
14753 then
14754 New_Discr := Entity (Node (Constr));
14755
14756 if Chars (Corresponding_Discriminant (New_Discr)) /=
14757 Chars (Old_Discr)
14758 then
14759 -- The new discriminant has been used to rename a
14760 -- subsequent old discriminant. Introduce a shadow
14761 -- component for the current old discriminant.
14762
14763 New_C := Create_Component (Old_Discr);
14764 Set_Original_Record_Component (New_C, Old_Discr);
14765 end if;
14766
14767 else
14768 -- The constraint has eliminated the old discriminant.
14769 -- Introduce a shadow component.
14770
14771 New_C := Create_Component (Old_Discr);
14772 Set_Original_Record_Component (New_C, Old_Discr);
14773 end if;
14774
14775 Next_Elmt (Constr);
14776 Next_Stored_Discriminant (Old_Discr);
14777 end loop;
14778 end;
14779 end if;
14780 end Add_Discriminants;
14781
14782 if Is_Static
14783 and then Is_Variant_Record (Typ)
14784 then
14785 Collect_Fixed_Components (Typ);
14786
14787 Gather_Components (
14788 Typ,
14789 Component_List (Type_Definition (Parent (Typ))),
14790 Governed_By => Assoc_List,
14791 Into => Comp_List,
14792 Report_Errors => Errors);
14793 pragma Assert (not Errors
14794 or else Serious_Errors_Detected > 0);
14795
14796 Create_All_Components;
14797
14798 -- If the subtype declaration is created for a tagged type derivation
14799 -- with constraints, we retrieve the record definition of the parent
14800 -- type to select the components of the proper variant.
14801
14802 elsif Is_Static
14803 and then Is_Tagged_Type (Typ)
14804 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
14805 and then
14806 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
14807 and then Is_Variant_Record (Parent_Type)
14808 then
14809 Collect_Fixed_Components (Typ);
14810
14811 Gather_Components
14812 (Typ,
14813 Component_List (Type_Definition (Parent (Parent_Type))),
14814 Governed_By => Assoc_List,
14815 Into => Comp_List,
14816 Report_Errors => Errors);
14817
14818 -- Note: previously there was a check at this point that no errors
14819 -- were detected. As a consequence of AI05-220 there may be an error
14820 -- if an inherited discriminant that controls a variant has a non-
14821 -- static constraint.
14822
14823 -- If the tagged derivation has a type extension, collect all the
14824 -- new components therein.
14825
14826 if Present (Record_Extension_Part (Type_Definition (Parent (Typ))))
14827 then
14828 Old_C := First_Component (Typ);
14829 while Present (Old_C) loop
14830 if Original_Record_Component (Old_C) = Old_C
14831 and then Chars (Old_C) /= Name_uTag
14832 and then Chars (Old_C) /= Name_uParent
14833 then
14834 Append_Elmt (Old_C, Comp_List);
14835 end if;
14836
14837 Next_Component (Old_C);
14838 end loop;
14839 end if;
14840
14841 Create_All_Components;
14842
14843 else
14844 -- If discriminants are not static, or if this is a multi-level type
14845 -- extension, we have to include all components of the parent type.
14846
14847 Old_C := First_Component (Typ);
14848 while Present (Old_C) loop
14849 New_C := Create_Component (Old_C);
14850
14851 Set_Etype
14852 (New_C,
14853 Constrain_Component_Type
14854 (Old_C, Subt, Decl_Node, Typ, Constraints));
14855 Set_Is_Public (New_C, Is_Public (Subt));
14856
14857 Next_Component (Old_C);
14858 end loop;
14859 end if;
14860
14861 End_Scope;
14862 end Create_Constrained_Components;
14863
14864 ------------------------------------------
14865 -- Decimal_Fixed_Point_Type_Declaration --
14866 ------------------------------------------
14867
14868 procedure Decimal_Fixed_Point_Type_Declaration
14869 (T : Entity_Id;
14870 Def : Node_Id)
14871 is
14872 Loc : constant Source_Ptr := Sloc (Def);
14873 Digs_Expr : constant Node_Id := Digits_Expression (Def);
14874 Delta_Expr : constant Node_Id := Delta_Expression (Def);
14875 Implicit_Base : Entity_Id;
14876 Digs_Val : Uint;
14877 Delta_Val : Ureal;
14878 Scale_Val : Uint;
14879 Bound_Val : Ureal;
14880
14881 begin
14882 Check_SPARK_05_Restriction
14883 ("decimal fixed point type is not allowed", Def);
14884 Check_Restriction (No_Fixed_Point, Def);
14885
14886 -- Create implicit base type
14887
14888 Implicit_Base :=
14889 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
14890 Set_Etype (Implicit_Base, Implicit_Base);
14891
14892 -- Analyze and process delta expression
14893
14894 Analyze_And_Resolve (Delta_Expr, Universal_Real);
14895
14896 Check_Delta_Expression (Delta_Expr);
14897 Delta_Val := Expr_Value_R (Delta_Expr);
14898
14899 -- Check delta is power of 10, and determine scale value from it
14900
14901 declare
14902 Val : Ureal;
14903
14904 begin
14905 Scale_Val := Uint_0;
14906 Val := Delta_Val;
14907
14908 if Val < Ureal_1 then
14909 while Val < Ureal_1 loop
14910 Val := Val * Ureal_10;
14911 Scale_Val := Scale_Val + 1;
14912 end loop;
14913
14914 if Scale_Val > 18 then
14915 Error_Msg_N ("scale exceeds maximum value of 18", Def);
14916 Scale_Val := UI_From_Int (+18);
14917 end if;
14918
14919 else
14920 while Val > Ureal_1 loop
14921 Val := Val / Ureal_10;
14922 Scale_Val := Scale_Val - 1;
14923 end loop;
14924
14925 if Scale_Val < -18 then
14926 Error_Msg_N ("scale is less than minimum value of -18", Def);
14927 Scale_Val := UI_From_Int (-18);
14928 end if;
14929 end if;
14930
14931 if Val /= Ureal_1 then
14932 Error_Msg_N ("delta expression must be a power of 10", Def);
14933 Delta_Val := Ureal_10 ** (-Scale_Val);
14934 end if;
14935 end;
14936
14937 -- Set delta, scale and small (small = delta for decimal type)
14938
14939 Set_Delta_Value (Implicit_Base, Delta_Val);
14940 Set_Scale_Value (Implicit_Base, Scale_Val);
14941 Set_Small_Value (Implicit_Base, Delta_Val);
14942
14943 -- Analyze and process digits expression
14944
14945 Analyze_And_Resolve (Digs_Expr, Any_Integer);
14946 Check_Digits_Expression (Digs_Expr);
14947 Digs_Val := Expr_Value (Digs_Expr);
14948
14949 if Digs_Val > 18 then
14950 Digs_Val := UI_From_Int (+18);
14951 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
14952 end if;
14953
14954 Set_Digits_Value (Implicit_Base, Digs_Val);
14955 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
14956
14957 -- Set range of base type from digits value for now. This will be
14958 -- expanded to represent the true underlying base range by Freeze.
14959
14960 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
14961
14962 -- Note: We leave size as zero for now, size will be set at freeze
14963 -- time. We have to do this for ordinary fixed-point, because the size
14964 -- depends on the specified small, and we might as well do the same for
14965 -- decimal fixed-point.
14966
14967 pragma Assert (Esize (Implicit_Base) = Uint_0);
14968
14969 -- If there are bounds given in the declaration use them as the
14970 -- bounds of the first named subtype.
14971
14972 if Present (Real_Range_Specification (Def)) then
14973 declare
14974 RRS : constant Node_Id := Real_Range_Specification (Def);
14975 Low : constant Node_Id := Low_Bound (RRS);
14976 High : constant Node_Id := High_Bound (RRS);
14977 Low_Val : Ureal;
14978 High_Val : Ureal;
14979
14980 begin
14981 Analyze_And_Resolve (Low, Any_Real);
14982 Analyze_And_Resolve (High, Any_Real);
14983 Check_Real_Bound (Low);
14984 Check_Real_Bound (High);
14985 Low_Val := Expr_Value_R (Low);
14986 High_Val := Expr_Value_R (High);
14987
14988 if Low_Val < (-Bound_Val) then
14989 Error_Msg_N
14990 ("range low bound too small for digits value", Low);
14991 Low_Val := -Bound_Val;
14992 end if;
14993
14994 if High_Val > Bound_Val then
14995 Error_Msg_N
14996 ("range high bound too large for digits value", High);
14997 High_Val := Bound_Val;
14998 end if;
14999
15000 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
15001 end;
15002
15003 -- If no explicit range, use range that corresponds to given
15004 -- digits value. This will end up as the final range for the
15005 -- first subtype.
15006
15007 else
15008 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
15009 end if;
15010
15011 -- Complete entity for first subtype. The inheritance of the rep item
15012 -- chain ensures that SPARK-related pragmas are not clobbered when the
15013 -- decimal fixed point type acts as a full view of a private type.
15014
15015 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
15016 Set_Etype (T, Implicit_Base);
15017 Set_Size_Info (T, Implicit_Base);
15018 Inherit_Rep_Item_Chain (T, Implicit_Base);
15019 Set_Digits_Value (T, Digs_Val);
15020 Set_Delta_Value (T, Delta_Val);
15021 Set_Small_Value (T, Delta_Val);
15022 Set_Scale_Value (T, Scale_Val);
15023 Set_Is_Constrained (T);
15024 end Decimal_Fixed_Point_Type_Declaration;
15025
15026 -----------------------------------
15027 -- Derive_Progenitor_Subprograms --
15028 -----------------------------------
15029
15030 procedure Derive_Progenitor_Subprograms
15031 (Parent_Type : Entity_Id;
15032 Tagged_Type : Entity_Id)
15033 is
15034 E : Entity_Id;
15035 Elmt : Elmt_Id;
15036 Iface : Entity_Id;
15037 Iface_Alias : Entity_Id;
15038 Iface_Elmt : Elmt_Id;
15039 Iface_Subp : Entity_Id;
15040 New_Subp : Entity_Id := Empty;
15041 Prim_Elmt : Elmt_Id;
15042 Subp : Entity_Id;
15043 Typ : Entity_Id;
15044
15045 begin
15046 pragma Assert (Ada_Version >= Ada_2005
15047 and then Is_Record_Type (Tagged_Type)
15048 and then Is_Tagged_Type (Tagged_Type)
15049 and then Has_Interfaces (Tagged_Type));
15050
15051 -- Step 1: Transfer to the full-view primitives associated with the
15052 -- partial-view that cover interface primitives. Conceptually this
15053 -- work should be done later by Process_Full_View; done here to
15054 -- simplify its implementation at later stages. It can be safely
15055 -- done here because interfaces must be visible in the partial and
15056 -- private view (RM 7.3(7.3/2)).
15057
15058 -- Small optimization: This work is only required if the parent may
15059 -- have entities whose Alias attribute reference an interface primitive.
15060 -- Such a situation may occur if the parent is an abstract type and the
15061 -- primitive has not been yet overridden or if the parent is a generic
15062 -- formal type covering interfaces.
15063
15064 -- If the tagged type is not abstract, it cannot have abstract
15065 -- primitives (the only entities in the list of primitives of
15066 -- non-abstract tagged types that can reference abstract primitives
15067 -- through its Alias attribute are the internal entities that have
15068 -- attribute Interface_Alias, and these entities are generated later
15069 -- by Add_Internal_Interface_Entities).
15070
15071 if In_Private_Part (Current_Scope)
15072 and then (Is_Abstract_Type (Parent_Type)
15073 or else
15074 Is_Generic_Type (Parent_Type))
15075 then
15076 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
15077 while Present (Elmt) loop
15078 Subp := Node (Elmt);
15079
15080 -- At this stage it is not possible to have entities in the list
15081 -- of primitives that have attribute Interface_Alias.
15082
15083 pragma Assert (No (Interface_Alias (Subp)));
15084
15085 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
15086
15087 if Is_Interface (Typ) then
15088 E := Find_Primitive_Covering_Interface
15089 (Tagged_Type => Tagged_Type,
15090 Iface_Prim => Subp);
15091
15092 if Present (E)
15093 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
15094 then
15095 Replace_Elmt (Elmt, E);
15096 Remove_Homonym (Subp);
15097 end if;
15098 end if;
15099
15100 Next_Elmt (Elmt);
15101 end loop;
15102 end if;
15103
15104 -- Step 2: Add primitives of progenitors that are not implemented by
15105 -- parents of Tagged_Type.
15106
15107 if Present (Interfaces (Base_Type (Tagged_Type))) then
15108 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
15109 while Present (Iface_Elmt) loop
15110 Iface := Node (Iface_Elmt);
15111
15112 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
15113 while Present (Prim_Elmt) loop
15114 Iface_Subp := Node (Prim_Elmt);
15115 Iface_Alias := Ultimate_Alias (Iface_Subp);
15116
15117 -- Exclude derivation of predefined primitives except those
15118 -- that come from source, or are inherited from one that comes
15119 -- from source. Required to catch declarations of equality
15120 -- operators of interfaces. For example:
15121
15122 -- type Iface is interface;
15123 -- function "=" (Left, Right : Iface) return Boolean;
15124
15125 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
15126 or else Comes_From_Source (Iface_Alias)
15127 then
15128 E :=
15129 Find_Primitive_Covering_Interface
15130 (Tagged_Type => Tagged_Type,
15131 Iface_Prim => Iface_Subp);
15132
15133 -- If not found we derive a new primitive leaving its alias
15134 -- attribute referencing the interface primitive.
15135
15136 if No (E) then
15137 Derive_Subprogram
15138 (New_Subp, Iface_Subp, Tagged_Type, Iface);
15139
15140 -- Ada 2012 (AI05-0197): If the covering primitive's name
15141 -- differs from the name of the interface primitive then it
15142 -- is a private primitive inherited from a parent type. In
15143 -- such case, given that Tagged_Type covers the interface,
15144 -- the inherited private primitive becomes visible. For such
15145 -- purpose we add a new entity that renames the inherited
15146 -- private primitive.
15147
15148 elsif Chars (E) /= Chars (Iface_Subp) then
15149 pragma Assert (Has_Suffix (E, 'P'));
15150 Derive_Subprogram
15151 (New_Subp, Iface_Subp, Tagged_Type, Iface);
15152 Set_Alias (New_Subp, E);
15153 Set_Is_Abstract_Subprogram (New_Subp,
15154 Is_Abstract_Subprogram (E));
15155
15156 -- Propagate to the full view interface entities associated
15157 -- with the partial view.
15158
15159 elsif In_Private_Part (Current_Scope)
15160 and then Present (Alias (E))
15161 and then Alias (E) = Iface_Subp
15162 and then
15163 List_Containing (Parent (E)) /=
15164 Private_Declarations
15165 (Specification
15166 (Unit_Declaration_Node (Current_Scope)))
15167 then
15168 Append_Elmt (E, Primitive_Operations (Tagged_Type));
15169 end if;
15170 end if;
15171
15172 Next_Elmt (Prim_Elmt);
15173 end loop;
15174
15175 Next_Elmt (Iface_Elmt);
15176 end loop;
15177 end if;
15178 end Derive_Progenitor_Subprograms;
15179
15180 -----------------------
15181 -- Derive_Subprogram --
15182 -----------------------
15183
15184 procedure Derive_Subprogram
15185 (New_Subp : out Entity_Id;
15186 Parent_Subp : Entity_Id;
15187 Derived_Type : Entity_Id;
15188 Parent_Type : Entity_Id;
15189 Actual_Subp : Entity_Id := Empty)
15190 is
15191 Formal : Entity_Id;
15192 -- Formal parameter of parent primitive operation
15193
15194 Formal_Of_Actual : Entity_Id;
15195 -- Formal parameter of actual operation, when the derivation is to
15196 -- create a renaming for a primitive operation of an actual in an
15197 -- instantiation.
15198
15199 New_Formal : Entity_Id;
15200 -- Formal of inherited operation
15201
15202 Visible_Subp : Entity_Id := Parent_Subp;
15203
15204 function Is_Private_Overriding return Boolean;
15205 -- If Subp is a private overriding of a visible operation, the inherited
15206 -- operation derives from the overridden op (even though its body is the
15207 -- overriding one) and the inherited operation is visible now. See
15208 -- sem_disp to see the full details of the handling of the overridden
15209 -- subprogram, which is removed from the list of primitive operations of
15210 -- the type. The overridden subprogram is saved locally in Visible_Subp,
15211 -- and used to diagnose abstract operations that need overriding in the
15212 -- derived type.
15213
15214 procedure Replace_Type (Id, New_Id : Entity_Id);
15215 -- When the type is an anonymous access type, create a new access type
15216 -- designating the derived type.
15217
15218 procedure Set_Derived_Name;
15219 -- This procedure sets the appropriate Chars name for New_Subp. This
15220 -- is normally just a copy of the parent name. An exception arises for
15221 -- type support subprograms, where the name is changed to reflect the
15222 -- name of the derived type, e.g. if type foo is derived from type bar,
15223 -- then a procedure barDA is derived with a name fooDA.
15224
15225 ---------------------------
15226 -- Is_Private_Overriding --
15227 ---------------------------
15228
15229 function Is_Private_Overriding return Boolean is
15230 Prev : Entity_Id;
15231
15232 begin
15233 -- If the parent is not a dispatching operation there is no
15234 -- need to investigate overridings
15235
15236 if not Is_Dispatching_Operation (Parent_Subp) then
15237 return False;
15238 end if;
15239
15240 -- The visible operation that is overridden is a homonym of the
15241 -- parent subprogram. We scan the homonym chain to find the one
15242 -- whose alias is the subprogram we are deriving.
15243
15244 Prev := Current_Entity (Parent_Subp);
15245 while Present (Prev) loop
15246 if Ekind (Prev) = Ekind (Parent_Subp)
15247 and then Alias (Prev) = Parent_Subp
15248 and then Scope (Parent_Subp) = Scope (Prev)
15249 and then not Is_Hidden (Prev)
15250 then
15251 Visible_Subp := Prev;
15252 return True;
15253 end if;
15254
15255 Prev := Homonym (Prev);
15256 end loop;
15257
15258 return False;
15259 end Is_Private_Overriding;
15260
15261 ------------------
15262 -- Replace_Type --
15263 ------------------
15264
15265 procedure Replace_Type (Id, New_Id : Entity_Id) is
15266 Id_Type : constant Entity_Id := Etype (Id);
15267 Acc_Type : Entity_Id;
15268 Par : constant Node_Id := Parent (Derived_Type);
15269
15270 begin
15271 -- When the type is an anonymous access type, create a new access
15272 -- type designating the derived type. This itype must be elaborated
15273 -- at the point of the derivation, not on subsequent calls that may
15274 -- be out of the proper scope for Gigi, so we insert a reference to
15275 -- it after the derivation.
15276
15277 if Ekind (Id_Type) = E_Anonymous_Access_Type then
15278 declare
15279 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
15280
15281 begin
15282 if Ekind (Desig_Typ) = E_Record_Type_With_Private
15283 and then Present (Full_View (Desig_Typ))
15284 and then not Is_Private_Type (Parent_Type)
15285 then
15286 Desig_Typ := Full_View (Desig_Typ);
15287 end if;
15288
15289 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
15290
15291 -- Ada 2005 (AI-251): Handle also derivations of abstract
15292 -- interface primitives.
15293
15294 or else (Is_Interface (Desig_Typ)
15295 and then not Is_Class_Wide_Type (Desig_Typ))
15296 then
15297 Acc_Type := New_Copy (Id_Type);
15298 Set_Etype (Acc_Type, Acc_Type);
15299 Set_Scope (Acc_Type, New_Subp);
15300
15301 -- Set size of anonymous access type. If we have an access
15302 -- to an unconstrained array, this is a fat pointer, so it
15303 -- is sizes at twice addtress size.
15304
15305 if Is_Array_Type (Desig_Typ)
15306 and then not Is_Constrained (Desig_Typ)
15307 then
15308 Init_Size (Acc_Type, 2 * System_Address_Size);
15309
15310 -- Other cases use a thin pointer
15311
15312 else
15313 Init_Size (Acc_Type, System_Address_Size);
15314 end if;
15315
15316 -- Set remaining characterstics of anonymous access type
15317
15318 Init_Alignment (Acc_Type);
15319 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
15320
15321 Set_Etype (New_Id, Acc_Type);
15322 Set_Scope (New_Id, New_Subp);
15323
15324 -- Create a reference to it
15325
15326 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
15327
15328 else
15329 Set_Etype (New_Id, Id_Type);
15330 end if;
15331 end;
15332
15333 -- In Ada2012, a formal may have an incomplete type but the type
15334 -- derivation that inherits the primitive follows the full view.
15335
15336 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
15337 or else
15338 (Ekind (Id_Type) = E_Record_Type_With_Private
15339 and then Present (Full_View (Id_Type))
15340 and then
15341 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
15342 or else
15343 (Ada_Version >= Ada_2012
15344 and then Ekind (Id_Type) = E_Incomplete_Type
15345 and then Full_View (Id_Type) = Parent_Type)
15346 then
15347 -- Constraint checks on formals are generated during expansion,
15348 -- based on the signature of the original subprogram. The bounds
15349 -- of the derived type are not relevant, and thus we can use
15350 -- the base type for the formals. However, the return type may be
15351 -- used in a context that requires that the proper static bounds
15352 -- be used (a case statement, for example) and for those cases
15353 -- we must use the derived type (first subtype), not its base.
15354
15355 -- If the derived_type_definition has no constraints, we know that
15356 -- the derived type has the same constraints as the first subtype
15357 -- of the parent, and we can also use it rather than its base,
15358 -- which can lead to more efficient code.
15359
15360 if Etype (Id) = Parent_Type then
15361 if Is_Scalar_Type (Parent_Type)
15362 and then
15363 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
15364 then
15365 Set_Etype (New_Id, Derived_Type);
15366
15367 elsif Nkind (Par) = N_Full_Type_Declaration
15368 and then
15369 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
15370 and then
15371 Is_Entity_Name
15372 (Subtype_Indication (Type_Definition (Par)))
15373 then
15374 Set_Etype (New_Id, Derived_Type);
15375
15376 else
15377 Set_Etype (New_Id, Base_Type (Derived_Type));
15378 end if;
15379
15380 else
15381 Set_Etype (New_Id, Base_Type (Derived_Type));
15382 end if;
15383
15384 else
15385 Set_Etype (New_Id, Etype (Id));
15386 end if;
15387 end Replace_Type;
15388
15389 ----------------------
15390 -- Set_Derived_Name --
15391 ----------------------
15392
15393 procedure Set_Derived_Name is
15394 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
15395 begin
15396 if Nm = TSS_Null then
15397 Set_Chars (New_Subp, Chars (Parent_Subp));
15398 else
15399 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
15400 end if;
15401 end Set_Derived_Name;
15402
15403 -- Start of processing for Derive_Subprogram
15404
15405 begin
15406 New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
15407 Set_Ekind (New_Subp, Ekind (Parent_Subp));
15408
15409 -- Check whether the inherited subprogram is a private operation that
15410 -- should be inherited but not yet made visible. Such subprograms can
15411 -- become visible at a later point (e.g., the private part of a public
15412 -- child unit) via Declare_Inherited_Private_Subprograms. If the
15413 -- following predicate is true, then this is not such a private
15414 -- operation and the subprogram simply inherits the name of the parent
15415 -- subprogram. Note the special check for the names of controlled
15416 -- operations, which are currently exempted from being inherited with
15417 -- a hidden name because they must be findable for generation of
15418 -- implicit run-time calls.
15419
15420 if not Is_Hidden (Parent_Subp)
15421 or else Is_Internal (Parent_Subp)
15422 or else Is_Private_Overriding
15423 or else Is_Internal_Name (Chars (Parent_Subp))
15424 or else (Is_Controlled (Parent_Type)
15425 and then Nam_In (Chars (Parent_Subp), Name_Adjust,
15426 Name_Finalize,
15427 Name_Initialize))
15428 then
15429 Set_Derived_Name;
15430
15431 -- An inherited dispatching equality will be overridden by an internally
15432 -- generated one, or by an explicit one, so preserve its name and thus
15433 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
15434 -- private operation it may become invisible if the full view has
15435 -- progenitors, and the dispatch table will be malformed.
15436 -- We check that the type is limited to handle the anomalous declaration
15437 -- of Limited_Controlled, which is derived from a non-limited type, and
15438 -- which is handled specially elsewhere as well.
15439
15440 elsif Chars (Parent_Subp) = Name_Op_Eq
15441 and then Is_Dispatching_Operation (Parent_Subp)
15442 and then Etype (Parent_Subp) = Standard_Boolean
15443 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
15444 and then
15445 Etype (First_Formal (Parent_Subp)) =
15446 Etype (Next_Formal (First_Formal (Parent_Subp)))
15447 then
15448 Set_Derived_Name;
15449
15450 -- If parent is hidden, this can be a regular derivation if the
15451 -- parent is immediately visible in a non-instantiating context,
15452 -- or if we are in the private part of an instance. This test
15453 -- should still be refined ???
15454
15455 -- The test for In_Instance_Not_Visible avoids inheriting the derived
15456 -- operation as a non-visible operation in cases where the parent
15457 -- subprogram might not be visible now, but was visible within the
15458 -- original generic, so it would be wrong to make the inherited
15459 -- subprogram non-visible now. (Not clear if this test is fully
15460 -- correct; are there any cases where we should declare the inherited
15461 -- operation as not visible to avoid it being overridden, e.g., when
15462 -- the parent type is a generic actual with private primitives ???)
15463
15464 -- (they should be treated the same as other private inherited
15465 -- subprograms, but it's not clear how to do this cleanly). ???
15466
15467 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15468 and then Is_Immediately_Visible (Parent_Subp)
15469 and then not In_Instance)
15470 or else In_Instance_Not_Visible
15471 then
15472 Set_Derived_Name;
15473
15474 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
15475 -- overrides an interface primitive because interface primitives
15476 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
15477
15478 elsif Ada_Version >= Ada_2005
15479 and then Is_Dispatching_Operation (Parent_Subp)
15480 and then Present (Covered_Interface_Op (Parent_Subp))
15481 then
15482 Set_Derived_Name;
15483
15484 -- Otherwise, the type is inheriting a private operation, so enter it
15485 -- with a special name so it can't be overridden.
15486
15487 else
15488 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
15489 end if;
15490
15491 Set_Parent (New_Subp, Parent (Derived_Type));
15492
15493 if Present (Actual_Subp) then
15494 Replace_Type (Actual_Subp, New_Subp);
15495 else
15496 Replace_Type (Parent_Subp, New_Subp);
15497 end if;
15498
15499 Conditional_Delay (New_Subp, Parent_Subp);
15500
15501 -- If we are creating a renaming for a primitive operation of an
15502 -- actual of a generic derived type, we must examine the signature
15503 -- of the actual primitive, not that of the generic formal, which for
15504 -- example may be an interface. However the name and initial value
15505 -- of the inherited operation are those of the formal primitive.
15506
15507 Formal := First_Formal (Parent_Subp);
15508
15509 if Present (Actual_Subp) then
15510 Formal_Of_Actual := First_Formal (Actual_Subp);
15511 else
15512 Formal_Of_Actual := Empty;
15513 end if;
15514
15515 while Present (Formal) loop
15516 New_Formal := New_Copy (Formal);
15517
15518 -- Normally we do not go copying parents, but in the case of
15519 -- formals, we need to link up to the declaration (which is the
15520 -- parameter specification), and it is fine to link up to the
15521 -- original formal's parameter specification in this case.
15522
15523 Set_Parent (New_Formal, Parent (Formal));
15524 Append_Entity (New_Formal, New_Subp);
15525
15526 if Present (Formal_Of_Actual) then
15527 Replace_Type (Formal_Of_Actual, New_Formal);
15528 Next_Formal (Formal_Of_Actual);
15529 else
15530 Replace_Type (Formal, New_Formal);
15531 end if;
15532
15533 Next_Formal (Formal);
15534 end loop;
15535
15536 -- If this derivation corresponds to a tagged generic actual, then
15537 -- primitive operations rename those of the actual. Otherwise the
15538 -- primitive operations rename those of the parent type, If the parent
15539 -- renames an intrinsic operator, so does the new subprogram. We except
15540 -- concatenation, which is always properly typed, and does not get
15541 -- expanded as other intrinsic operations.
15542
15543 if No (Actual_Subp) then
15544 if Is_Intrinsic_Subprogram (Parent_Subp) then
15545 Set_Is_Intrinsic_Subprogram (New_Subp);
15546
15547 if Present (Alias (Parent_Subp))
15548 and then Chars (Parent_Subp) /= Name_Op_Concat
15549 then
15550 Set_Alias (New_Subp, Alias (Parent_Subp));
15551 else
15552 Set_Alias (New_Subp, Parent_Subp);
15553 end if;
15554
15555 else
15556 Set_Alias (New_Subp, Parent_Subp);
15557 end if;
15558
15559 else
15560 Set_Alias (New_Subp, Actual_Subp);
15561 end if;
15562
15563 -- Derived subprograms of a tagged type must inherit the convention
15564 -- of the parent subprogram (a requirement of AI-117). Derived
15565 -- subprograms of untagged types simply get convention Ada by default.
15566
15567 -- If the derived type is a tagged generic formal type with unknown
15568 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
15569
15570 -- However, if the type is derived from a generic formal, the further
15571 -- inherited subprogram has the convention of the non-generic ancestor.
15572 -- Otherwise there would be no way to override the operation.
15573 -- (This is subject to forthcoming ARG discussions).
15574
15575 if Is_Tagged_Type (Derived_Type) then
15576 if Is_Generic_Type (Derived_Type)
15577 and then Has_Unknown_Discriminants (Derived_Type)
15578 then
15579 Set_Convention (New_Subp, Convention_Intrinsic);
15580
15581 else
15582 if Is_Generic_Type (Parent_Type)
15583 and then Has_Unknown_Discriminants (Parent_Type)
15584 then
15585 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
15586 else
15587 Set_Convention (New_Subp, Convention (Parent_Subp));
15588 end if;
15589 end if;
15590 end if;
15591
15592 -- Predefined controlled operations retain their name even if the parent
15593 -- is hidden (see above), but they are not primitive operations if the
15594 -- ancestor is not visible, for example if the parent is a private
15595 -- extension completed with a controlled extension. Note that a full
15596 -- type that is controlled can break privacy: the flag Is_Controlled is
15597 -- set on both views of the type.
15598
15599 if Is_Controlled (Parent_Type)
15600 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
15601 Name_Adjust,
15602 Name_Finalize)
15603 and then Is_Hidden (Parent_Subp)
15604 and then not Is_Visibly_Controlled (Parent_Type)
15605 then
15606 Set_Is_Hidden (New_Subp);
15607 end if;
15608
15609 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
15610 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
15611
15612 if Ekind (Parent_Subp) = E_Procedure then
15613 Set_Is_Valued_Procedure
15614 (New_Subp, Is_Valued_Procedure (Parent_Subp));
15615 else
15616 Set_Has_Controlling_Result
15617 (New_Subp, Has_Controlling_Result (Parent_Subp));
15618 end if;
15619
15620 -- No_Return must be inherited properly. If this is overridden in the
15621 -- case of a dispatching operation, then a check is made in Sem_Disp
15622 -- that the overriding operation is also No_Return (no such check is
15623 -- required for the case of non-dispatching operation.
15624
15625 Set_No_Return (New_Subp, No_Return (Parent_Subp));
15626
15627 -- A derived function with a controlling result is abstract. If the
15628 -- Derived_Type is a nonabstract formal generic derived type, then
15629 -- inherited operations are not abstract: the required check is done at
15630 -- instantiation time. If the derivation is for a generic actual, the
15631 -- function is not abstract unless the actual is.
15632
15633 if Is_Generic_Type (Derived_Type)
15634 and then not Is_Abstract_Type (Derived_Type)
15635 then
15636 null;
15637
15638 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
15639 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
15640
15641 -- A subprogram subject to pragma Extensions_Visible with value False
15642 -- requires overriding if the subprogram has at least one controlling
15643 -- OUT parameter (SPARK RM 6.1.7(6)).
15644
15645 elsif Ada_Version >= Ada_2005
15646 and then (Is_Abstract_Subprogram (Alias (New_Subp))
15647 or else (Is_Tagged_Type (Derived_Type)
15648 and then Etype (New_Subp) = Derived_Type
15649 and then not Is_Null_Extension (Derived_Type))
15650 or else (Is_Tagged_Type (Derived_Type)
15651 and then Ekind (Etype (New_Subp)) =
15652 E_Anonymous_Access_Type
15653 and then Designated_Type (Etype (New_Subp)) =
15654 Derived_Type
15655 and then not Is_Null_Extension (Derived_Type))
15656 or else (Comes_From_Source (Alias (New_Subp))
15657 and then Is_EVF_Procedure (Alias (New_Subp))))
15658 and then No (Actual_Subp)
15659 then
15660 if not Is_Tagged_Type (Derived_Type)
15661 or else Is_Abstract_Type (Derived_Type)
15662 or else Is_Abstract_Subprogram (Alias (New_Subp))
15663 then
15664 Set_Is_Abstract_Subprogram (New_Subp);
15665 else
15666 Set_Requires_Overriding (New_Subp);
15667 end if;
15668
15669 elsif Ada_Version < Ada_2005
15670 and then (Is_Abstract_Subprogram (Alias (New_Subp))
15671 or else (Is_Tagged_Type (Derived_Type)
15672 and then Etype (New_Subp) = Derived_Type
15673 and then No (Actual_Subp)))
15674 then
15675 Set_Is_Abstract_Subprogram (New_Subp);
15676
15677 -- AI05-0097 : an inherited operation that dispatches on result is
15678 -- abstract if the derived type is abstract, even if the parent type
15679 -- is concrete and the derived type is a null extension.
15680
15681 elsif Has_Controlling_Result (Alias (New_Subp))
15682 and then Is_Abstract_Type (Etype (New_Subp))
15683 then
15684 Set_Is_Abstract_Subprogram (New_Subp);
15685
15686 -- Finally, if the parent type is abstract we must verify that all
15687 -- inherited operations are either non-abstract or overridden, or that
15688 -- the derived type itself is abstract (this check is performed at the
15689 -- end of a package declaration, in Check_Abstract_Overriding). A
15690 -- private overriding in the parent type will not be visible in the
15691 -- derivation if we are not in an inner package or in a child unit of
15692 -- the parent type, in which case the abstractness of the inherited
15693 -- operation is carried to the new subprogram.
15694
15695 elsif Is_Abstract_Type (Parent_Type)
15696 and then not In_Open_Scopes (Scope (Parent_Type))
15697 and then Is_Private_Overriding
15698 and then Is_Abstract_Subprogram (Visible_Subp)
15699 then
15700 if No (Actual_Subp) then
15701 Set_Alias (New_Subp, Visible_Subp);
15702 Set_Is_Abstract_Subprogram (New_Subp, True);
15703
15704 else
15705 -- If this is a derivation for an instance of a formal derived
15706 -- type, abstractness comes from the primitive operation of the
15707 -- actual, not from the operation inherited from the ancestor.
15708
15709 Set_Is_Abstract_Subprogram
15710 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
15711 end if;
15712 end if;
15713
15714 New_Overloaded_Entity (New_Subp, Derived_Type);
15715
15716 -- Ada RM 6.1.1 (15): If a subprogram inherits nonconforming class-wide
15717 -- preconditions and the derived type is abstract, the derived operation
15718 -- is abstract as well if parent subprogram is not abstract or null.
15719
15720 if Is_Abstract_Type (Derived_Type)
15721 and then Has_Non_Trivial_Precondition (Parent_Subp)
15722 and then Present (Interfaces (Derived_Type))
15723 then
15724
15725 -- Add useful attributes of subprogram before the freeze point,
15726 -- in case freezing is delayed or there are previous errors.
15727
15728 Set_Is_Dispatching_Operation (New_Subp);
15729
15730 declare
15731 Iface_Prim : constant Entity_Id := Covered_Interface_Op (New_Subp);
15732
15733 begin
15734 if Present (Iface_Prim)
15735 and then Has_Non_Trivial_Precondition (Iface_Prim)
15736 then
15737 Set_Is_Abstract_Subprogram (New_Subp);
15738 end if;
15739 end;
15740 end if;
15741
15742 -- Check for case of a derived subprogram for the instantiation of a
15743 -- formal derived tagged type, if so mark the subprogram as dispatching
15744 -- and inherit the dispatching attributes of the actual subprogram. The
15745 -- derived subprogram is effectively renaming of the actual subprogram,
15746 -- so it needs to have the same attributes as the actual.
15747
15748 if Present (Actual_Subp)
15749 and then Is_Dispatching_Operation (Actual_Subp)
15750 then
15751 Set_Is_Dispatching_Operation (New_Subp);
15752
15753 if Present (DTC_Entity (Actual_Subp)) then
15754 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
15755 Set_DT_Position_Value (New_Subp, DT_Position (Actual_Subp));
15756 end if;
15757 end if;
15758
15759 -- Indicate that a derived subprogram does not require a body and that
15760 -- it does not require processing of default expressions.
15761
15762 Set_Has_Completion (New_Subp);
15763 Set_Default_Expressions_Processed (New_Subp);
15764
15765 if Ekind (New_Subp) = E_Function then
15766 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
15767 end if;
15768 end Derive_Subprogram;
15769
15770 ------------------------
15771 -- Derive_Subprograms --
15772 ------------------------
15773
15774 procedure Derive_Subprograms
15775 (Parent_Type : Entity_Id;
15776 Derived_Type : Entity_Id;
15777 Generic_Actual : Entity_Id := Empty)
15778 is
15779 Op_List : constant Elist_Id :=
15780 Collect_Primitive_Operations (Parent_Type);
15781
15782 function Check_Derived_Type return Boolean;
15783 -- Check that all the entities derived from Parent_Type are found in
15784 -- the list of primitives of Derived_Type exactly in the same order.
15785
15786 procedure Derive_Interface_Subprogram
15787 (New_Subp : out Entity_Id;
15788 Subp : Entity_Id;
15789 Actual_Subp : Entity_Id);
15790 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
15791 -- (which is an interface primitive). If Generic_Actual is present then
15792 -- Actual_Subp is the actual subprogram corresponding with the generic
15793 -- subprogram Subp.
15794
15795 ------------------------
15796 -- Check_Derived_Type --
15797 ------------------------
15798
15799 function Check_Derived_Type return Boolean is
15800 E : Entity_Id;
15801 Elmt : Elmt_Id;
15802 List : Elist_Id;
15803 New_Subp : Entity_Id;
15804 Op_Elmt : Elmt_Id;
15805 Subp : Entity_Id;
15806
15807 begin
15808 -- Traverse list of entities in the current scope searching for
15809 -- an incomplete type whose full-view is derived type.
15810
15811 E := First_Entity (Scope (Derived_Type));
15812 while Present (E) and then E /= Derived_Type loop
15813 if Ekind (E) = E_Incomplete_Type
15814 and then Present (Full_View (E))
15815 and then Full_View (E) = Derived_Type
15816 then
15817 -- Disable this test if Derived_Type completes an incomplete
15818 -- type because in such case more primitives can be added
15819 -- later to the list of primitives of Derived_Type by routine
15820 -- Process_Incomplete_Dependents
15821
15822 return True;
15823 end if;
15824
15825 E := Next_Entity (E);
15826 end loop;
15827
15828 List := Collect_Primitive_Operations (Derived_Type);
15829 Elmt := First_Elmt (List);
15830
15831 Op_Elmt := First_Elmt (Op_List);
15832 while Present (Op_Elmt) loop
15833 Subp := Node (Op_Elmt);
15834 New_Subp := Node (Elmt);
15835
15836 -- At this early stage Derived_Type has no entities with attribute
15837 -- Interface_Alias. In addition, such primitives are always
15838 -- located at the end of the list of primitives of Parent_Type.
15839 -- Therefore, if found we can safely stop processing pending
15840 -- entities.
15841
15842 exit when Present (Interface_Alias (Subp));
15843
15844 -- Handle hidden entities
15845
15846 if not Is_Predefined_Dispatching_Operation (Subp)
15847 and then Is_Hidden (Subp)
15848 then
15849 if Present (New_Subp)
15850 and then Primitive_Names_Match (Subp, New_Subp)
15851 then
15852 Next_Elmt (Elmt);
15853 end if;
15854
15855 else
15856 if not Present (New_Subp)
15857 or else Ekind (Subp) /= Ekind (New_Subp)
15858 or else not Primitive_Names_Match (Subp, New_Subp)
15859 then
15860 return False;
15861 end if;
15862
15863 Next_Elmt (Elmt);
15864 end if;
15865
15866 Next_Elmt (Op_Elmt);
15867 end loop;
15868
15869 return True;
15870 end Check_Derived_Type;
15871
15872 ---------------------------------
15873 -- Derive_Interface_Subprogram --
15874 ---------------------------------
15875
15876 procedure Derive_Interface_Subprogram
15877 (New_Subp : out Entity_Id;
15878 Subp : Entity_Id;
15879 Actual_Subp : Entity_Id)
15880 is
15881 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
15882 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
15883
15884 begin
15885 pragma Assert (Is_Interface (Iface_Type));
15886
15887 Derive_Subprogram
15888 (New_Subp => New_Subp,
15889 Parent_Subp => Iface_Subp,
15890 Derived_Type => Derived_Type,
15891 Parent_Type => Iface_Type,
15892 Actual_Subp => Actual_Subp);
15893
15894 -- Given that this new interface entity corresponds with a primitive
15895 -- of the parent that was not overridden we must leave it associated
15896 -- with its parent primitive to ensure that it will share the same
15897 -- dispatch table slot when overridden. We must set the Alias to Subp
15898 -- (instead of Iface_Subp), and we must fix Is_Abstract_Subprogram
15899 -- (in case we inherited Subp from Iface_Type via a nonabstract
15900 -- generic formal type).
15901
15902 if No (Actual_Subp) then
15903 Set_Alias (New_Subp, Subp);
15904
15905 declare
15906 T : Entity_Id := Find_Dispatching_Type (Subp);
15907 begin
15908 while Etype (T) /= T loop
15909 if Is_Generic_Type (T) and then not Is_Abstract_Type (T) then
15910 Set_Is_Abstract_Subprogram (New_Subp, False);
15911 exit;
15912 end if;
15913
15914 T := Etype (T);
15915 end loop;
15916 end;
15917
15918 -- For instantiations this is not needed since the previous call to
15919 -- Derive_Subprogram leaves the entity well decorated.
15920
15921 else
15922 pragma Assert (Alias (New_Subp) = Actual_Subp);
15923 null;
15924 end if;
15925 end Derive_Interface_Subprogram;
15926
15927 -- Local variables
15928
15929 Alias_Subp : Entity_Id;
15930 Act_List : Elist_Id;
15931 Act_Elmt : Elmt_Id;
15932 Act_Subp : Entity_Id := Empty;
15933 Elmt : Elmt_Id;
15934 Need_Search : Boolean := False;
15935 New_Subp : Entity_Id := Empty;
15936 Parent_Base : Entity_Id;
15937 Subp : Entity_Id;
15938
15939 -- Start of processing for Derive_Subprograms
15940
15941 begin
15942 if Ekind (Parent_Type) = E_Record_Type_With_Private
15943 and then Has_Discriminants (Parent_Type)
15944 and then Present (Full_View (Parent_Type))
15945 then
15946 Parent_Base := Full_View (Parent_Type);
15947 else
15948 Parent_Base := Parent_Type;
15949 end if;
15950
15951 if Present (Generic_Actual) then
15952 Act_List := Collect_Primitive_Operations (Generic_Actual);
15953 Act_Elmt := First_Elmt (Act_List);
15954 else
15955 Act_List := No_Elist;
15956 Act_Elmt := No_Elmt;
15957 end if;
15958
15959 -- Derive primitives inherited from the parent. Note that if the generic
15960 -- actual is present, this is not really a type derivation, it is a
15961 -- completion within an instance.
15962
15963 -- Case 1: Derived_Type does not implement interfaces
15964
15965 if not Is_Tagged_Type (Derived_Type)
15966 or else (not Has_Interfaces (Derived_Type)
15967 and then not (Present (Generic_Actual)
15968 and then Has_Interfaces (Generic_Actual)))
15969 then
15970 Elmt := First_Elmt (Op_List);
15971 while Present (Elmt) loop
15972 Subp := Node (Elmt);
15973
15974 -- Literals are derived earlier in the process of building the
15975 -- derived type, and are skipped here.
15976
15977 if Ekind (Subp) = E_Enumeration_Literal then
15978 null;
15979
15980 -- The actual is a direct descendant and the common primitive
15981 -- operations appear in the same order.
15982
15983 -- If the generic parent type is present, the derived type is an
15984 -- instance of a formal derived type, and within the instance its
15985 -- operations are those of the actual. We derive from the formal
15986 -- type but make the inherited operations aliases of the
15987 -- corresponding operations of the actual.
15988
15989 else
15990 pragma Assert (No (Node (Act_Elmt))
15991 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
15992 and then
15993 Type_Conformant
15994 (Subp, Node (Act_Elmt),
15995 Skip_Controlling_Formals => True)));
15996
15997 Derive_Subprogram
15998 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
15999
16000 if Present (Act_Elmt) then
16001 Next_Elmt (Act_Elmt);
16002 end if;
16003 end if;
16004
16005 Next_Elmt (Elmt);
16006 end loop;
16007
16008 -- Case 2: Derived_Type implements interfaces
16009
16010 else
16011 -- If the parent type has no predefined primitives we remove
16012 -- predefined primitives from the list of primitives of generic
16013 -- actual to simplify the complexity of this algorithm.
16014
16015 if Present (Generic_Actual) then
16016 declare
16017 Has_Predefined_Primitives : Boolean := False;
16018
16019 begin
16020 -- Check if the parent type has predefined primitives
16021
16022 Elmt := First_Elmt (Op_List);
16023 while Present (Elmt) loop
16024 Subp := Node (Elmt);
16025
16026 if Is_Predefined_Dispatching_Operation (Subp)
16027 and then not Comes_From_Source (Ultimate_Alias (Subp))
16028 then
16029 Has_Predefined_Primitives := True;
16030 exit;
16031 end if;
16032
16033 Next_Elmt (Elmt);
16034 end loop;
16035
16036 -- Remove predefined primitives of Generic_Actual. We must use
16037 -- an auxiliary list because in case of tagged types the value
16038 -- returned by Collect_Primitive_Operations is the value stored
16039 -- in its Primitive_Operations attribute (and we don't want to
16040 -- modify its current contents).
16041
16042 if not Has_Predefined_Primitives then
16043 declare
16044 Aux_List : constant Elist_Id := New_Elmt_List;
16045
16046 begin
16047 Elmt := First_Elmt (Act_List);
16048 while Present (Elmt) loop
16049 Subp := Node (Elmt);
16050
16051 if not Is_Predefined_Dispatching_Operation (Subp)
16052 or else Comes_From_Source (Subp)
16053 then
16054 Append_Elmt (Subp, Aux_List);
16055 end if;
16056
16057 Next_Elmt (Elmt);
16058 end loop;
16059
16060 Act_List := Aux_List;
16061 end;
16062 end if;
16063
16064 Act_Elmt := First_Elmt (Act_List);
16065 Act_Subp := Node (Act_Elmt);
16066 end;
16067 end if;
16068
16069 -- Stage 1: If the generic actual is not present we derive the
16070 -- primitives inherited from the parent type. If the generic parent
16071 -- type is present, the derived type is an instance of a formal
16072 -- derived type, and within the instance its operations are those of
16073 -- the actual. We derive from the formal type but make the inherited
16074 -- operations aliases of the corresponding operations of the actual.
16075
16076 Elmt := First_Elmt (Op_List);
16077 while Present (Elmt) loop
16078 Subp := Node (Elmt);
16079 Alias_Subp := Ultimate_Alias (Subp);
16080
16081 -- Do not derive internal entities of the parent that link
16082 -- interface primitives with their covering primitive. These
16083 -- entities will be added to this type when frozen.
16084
16085 if Present (Interface_Alias (Subp)) then
16086 goto Continue;
16087 end if;
16088
16089 -- If the generic actual is present find the corresponding
16090 -- operation in the generic actual. If the parent type is a
16091 -- direct ancestor of the derived type then, even if it is an
16092 -- interface, the operations are inherited from the primary
16093 -- dispatch table and are in the proper order. If we detect here
16094 -- that primitives are not in the same order we traverse the list
16095 -- of primitive operations of the actual to find the one that
16096 -- implements the interface primitive.
16097
16098 if Need_Search
16099 or else
16100 (Present (Generic_Actual)
16101 and then Present (Act_Subp)
16102 and then not
16103 (Primitive_Names_Match (Subp, Act_Subp)
16104 and then
16105 Type_Conformant (Subp, Act_Subp,
16106 Skip_Controlling_Formals => True)))
16107 then
16108 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
16109 Use_Full_View => True));
16110
16111 -- Remember that we need searching for all pending primitives
16112
16113 Need_Search := True;
16114
16115 -- Handle entities associated with interface primitives
16116
16117 if Present (Alias_Subp)
16118 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
16119 and then not Is_Predefined_Dispatching_Operation (Subp)
16120 then
16121 -- Search for the primitive in the homonym chain
16122
16123 Act_Subp :=
16124 Find_Primitive_Covering_Interface
16125 (Tagged_Type => Generic_Actual,
16126 Iface_Prim => Alias_Subp);
16127
16128 -- Previous search may not locate primitives covering
16129 -- interfaces defined in generics units or instantiations.
16130 -- (it fails if the covering primitive has formals whose
16131 -- type is also defined in generics or instantiations).
16132 -- In such case we search in the list of primitives of the
16133 -- generic actual for the internal entity that links the
16134 -- interface primitive and the covering primitive.
16135
16136 if No (Act_Subp)
16137 and then Is_Generic_Type (Parent_Type)
16138 then
16139 -- This code has been designed to handle only generic
16140 -- formals that implement interfaces that are defined
16141 -- in a generic unit or instantiation. If this code is
16142 -- needed for other cases we must review it because
16143 -- (given that it relies on Original_Location to locate
16144 -- the primitive of Generic_Actual that covers the
16145 -- interface) it could leave linked through attribute
16146 -- Alias entities of unrelated instantiations).
16147
16148 pragma Assert
16149 (Is_Generic_Unit
16150 (Scope (Find_Dispatching_Type (Alias_Subp)))
16151 or else
16152 Instantiation_Depth
16153 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
16154
16155 declare
16156 Iface_Prim_Loc : constant Source_Ptr :=
16157 Original_Location (Sloc (Alias_Subp));
16158
16159 Elmt : Elmt_Id;
16160 Prim : Entity_Id;
16161
16162 begin
16163 Elmt :=
16164 First_Elmt (Primitive_Operations (Generic_Actual));
16165
16166 Search : while Present (Elmt) loop
16167 Prim := Node (Elmt);
16168
16169 if Present (Interface_Alias (Prim))
16170 and then Original_Location
16171 (Sloc (Interface_Alias (Prim))) =
16172 Iface_Prim_Loc
16173 then
16174 Act_Subp := Alias (Prim);
16175 exit Search;
16176 end if;
16177
16178 Next_Elmt (Elmt);
16179 end loop Search;
16180 end;
16181 end if;
16182
16183 pragma Assert (Present (Act_Subp)
16184 or else Is_Abstract_Type (Generic_Actual)
16185 or else Serious_Errors_Detected > 0);
16186
16187 -- Handle predefined primitives plus the rest of user-defined
16188 -- primitives
16189
16190 else
16191 Act_Elmt := First_Elmt (Act_List);
16192 while Present (Act_Elmt) loop
16193 Act_Subp := Node (Act_Elmt);
16194
16195 exit when Primitive_Names_Match (Subp, Act_Subp)
16196 and then Type_Conformant
16197 (Subp, Act_Subp,
16198 Skip_Controlling_Formals => True)
16199 and then No (Interface_Alias (Act_Subp));
16200
16201 Next_Elmt (Act_Elmt);
16202 end loop;
16203
16204 if No (Act_Elmt) then
16205 Act_Subp := Empty;
16206 end if;
16207 end if;
16208 end if;
16209
16210 -- Case 1: If the parent is a limited interface then it has the
16211 -- predefined primitives of synchronized interfaces. However, the
16212 -- actual type may be a non-limited type and hence it does not
16213 -- have such primitives.
16214
16215 if Present (Generic_Actual)
16216 and then not Present (Act_Subp)
16217 and then Is_Limited_Interface (Parent_Base)
16218 and then Is_Predefined_Interface_Primitive (Subp)
16219 then
16220 null;
16221
16222 -- Case 2: Inherit entities associated with interfaces that were
16223 -- not covered by the parent type. We exclude here null interface
16224 -- primitives because they do not need special management.
16225
16226 -- We also exclude interface operations that are renamings. If the
16227 -- subprogram is an explicit renaming of an interface primitive,
16228 -- it is a regular primitive operation, and the presence of its
16229 -- alias is not relevant: it has to be derived like any other
16230 -- primitive.
16231
16232 elsif Present (Alias (Subp))
16233 and then Nkind (Unit_Declaration_Node (Subp)) /=
16234 N_Subprogram_Renaming_Declaration
16235 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
16236 and then not
16237 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
16238 and then Null_Present (Parent (Alias_Subp)))
16239 then
16240 -- If this is an abstract private type then we transfer the
16241 -- derivation of the interface primitive from the partial view
16242 -- to the full view. This is safe because all the interfaces
16243 -- must be visible in the partial view. Done to avoid adding
16244 -- a new interface derivation to the private part of the
16245 -- enclosing package; otherwise this new derivation would be
16246 -- decorated as hidden when the analysis of the enclosing
16247 -- package completes.
16248
16249 if Is_Abstract_Type (Derived_Type)
16250 and then In_Private_Part (Current_Scope)
16251 and then Has_Private_Declaration (Derived_Type)
16252 then
16253 declare
16254 Partial_View : Entity_Id;
16255 Elmt : Elmt_Id;
16256 Ent : Entity_Id;
16257
16258 begin
16259 Partial_View := First_Entity (Current_Scope);
16260 loop
16261 exit when No (Partial_View)
16262 or else (Has_Private_Declaration (Partial_View)
16263 and then
16264 Full_View (Partial_View) = Derived_Type);
16265
16266 Next_Entity (Partial_View);
16267 end loop;
16268
16269 -- If the partial view was not found then the source code
16270 -- has errors and the derivation is not needed.
16271
16272 if Present (Partial_View) then
16273 Elmt :=
16274 First_Elmt (Primitive_Operations (Partial_View));
16275 while Present (Elmt) loop
16276 Ent := Node (Elmt);
16277
16278 if Present (Alias (Ent))
16279 and then Ultimate_Alias (Ent) = Alias (Subp)
16280 then
16281 Append_Elmt
16282 (Ent, Primitive_Operations (Derived_Type));
16283 exit;
16284 end if;
16285
16286 Next_Elmt (Elmt);
16287 end loop;
16288
16289 -- If the interface primitive was not found in the
16290 -- partial view then this interface primitive was
16291 -- overridden. We add a derivation to activate in
16292 -- Derive_Progenitor_Subprograms the machinery to
16293 -- search for it.
16294
16295 if No (Elmt) then
16296 Derive_Interface_Subprogram
16297 (New_Subp => New_Subp,
16298 Subp => Subp,
16299 Actual_Subp => Act_Subp);
16300 end if;
16301 end if;
16302 end;
16303 else
16304 Derive_Interface_Subprogram
16305 (New_Subp => New_Subp,
16306 Subp => Subp,
16307 Actual_Subp => Act_Subp);
16308 end if;
16309
16310 -- Case 3: Common derivation
16311
16312 else
16313 Derive_Subprogram
16314 (New_Subp => New_Subp,
16315 Parent_Subp => Subp,
16316 Derived_Type => Derived_Type,
16317 Parent_Type => Parent_Base,
16318 Actual_Subp => Act_Subp);
16319 end if;
16320
16321 -- No need to update Act_Elm if we must search for the
16322 -- corresponding operation in the generic actual
16323
16324 if not Need_Search
16325 and then Present (Act_Elmt)
16326 then
16327 Next_Elmt (Act_Elmt);
16328 Act_Subp := Node (Act_Elmt);
16329 end if;
16330
16331 <<Continue>>
16332 Next_Elmt (Elmt);
16333 end loop;
16334
16335 -- Inherit additional operations from progenitors. If the derived
16336 -- type is a generic actual, there are not new primitive operations
16337 -- for the type because it has those of the actual, and therefore
16338 -- nothing needs to be done. The renamings generated above are not
16339 -- primitive operations, and their purpose is simply to make the
16340 -- proper operations visible within an instantiation.
16341
16342 if No (Generic_Actual) then
16343 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
16344 end if;
16345 end if;
16346
16347 -- Final check: Direct descendants must have their primitives in the
16348 -- same order. We exclude from this test untagged types and instances
16349 -- of formal derived types. We skip this test if we have already
16350 -- reported serious errors in the sources.
16351
16352 pragma Assert (not Is_Tagged_Type (Derived_Type)
16353 or else Present (Generic_Actual)
16354 or else Serious_Errors_Detected > 0
16355 or else Check_Derived_Type);
16356 end Derive_Subprograms;
16357
16358 --------------------------------
16359 -- Derived_Standard_Character --
16360 --------------------------------
16361
16362 procedure Derived_Standard_Character
16363 (N : Node_Id;
16364 Parent_Type : Entity_Id;
16365 Derived_Type : Entity_Id)
16366 is
16367 Loc : constant Source_Ptr := Sloc (N);
16368 Def : constant Node_Id := Type_Definition (N);
16369 Indic : constant Node_Id := Subtype_Indication (Def);
16370 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
16371 Implicit_Base : constant Entity_Id :=
16372 Create_Itype
16373 (E_Enumeration_Type, N, Derived_Type, 'B');
16374
16375 Lo : Node_Id;
16376 Hi : Node_Id;
16377
16378 begin
16379 Discard_Node (Process_Subtype (Indic, N));
16380
16381 Set_Etype (Implicit_Base, Parent_Base);
16382 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
16383 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
16384
16385 Set_Is_Character_Type (Implicit_Base, True);
16386 Set_Has_Delayed_Freeze (Implicit_Base);
16387
16388 -- The bounds of the implicit base are the bounds of the parent base.
16389 -- Note that their type is the parent base.
16390
16391 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
16392 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
16393
16394 Set_Scalar_Range (Implicit_Base,
16395 Make_Range (Loc,
16396 Low_Bound => Lo,
16397 High_Bound => Hi));
16398
16399 Conditional_Delay (Derived_Type, Parent_Type);
16400
16401 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
16402 Set_Etype (Derived_Type, Implicit_Base);
16403 Set_Size_Info (Derived_Type, Parent_Type);
16404
16405 if Unknown_RM_Size (Derived_Type) then
16406 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
16407 end if;
16408
16409 Set_Is_Character_Type (Derived_Type, True);
16410
16411 if Nkind (Indic) /= N_Subtype_Indication then
16412
16413 -- If no explicit constraint, the bounds are those
16414 -- of the parent type.
16415
16416 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
16417 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
16418 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
16419 end if;
16420
16421 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
16422
16423 -- Because the implicit base is used in the conversion of the bounds, we
16424 -- have to freeze it now. This is similar to what is done for numeric
16425 -- types, and it equally suspicious, but otherwise a non-static bound
16426 -- will have a reference to an unfrozen type, which is rejected by Gigi
16427 -- (???). This requires specific care for definition of stream
16428 -- attributes. For details, see comments at the end of
16429 -- Build_Derived_Numeric_Type.
16430
16431 Freeze_Before (N, Implicit_Base);
16432 end Derived_Standard_Character;
16433
16434 ------------------------------
16435 -- Derived_Type_Declaration --
16436 ------------------------------
16437
16438 procedure Derived_Type_Declaration
16439 (T : Entity_Id;
16440 N : Node_Id;
16441 Is_Completion : Boolean)
16442 is
16443 Parent_Type : Entity_Id;
16444
16445 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
16446 -- Check whether the parent type is a generic formal, or derives
16447 -- directly or indirectly from one.
16448
16449 ------------------------
16450 -- Comes_From_Generic --
16451 ------------------------
16452
16453 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
16454 begin
16455 if Is_Generic_Type (Typ) then
16456 return True;
16457
16458 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
16459 return True;
16460
16461 elsif Is_Private_Type (Typ)
16462 and then Present (Full_View (Typ))
16463 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
16464 then
16465 return True;
16466
16467 elsif Is_Generic_Actual_Type (Typ) then
16468 return True;
16469
16470 else
16471 return False;
16472 end if;
16473 end Comes_From_Generic;
16474
16475 -- Local variables
16476
16477 Def : constant Node_Id := Type_Definition (N);
16478 Iface_Def : Node_Id;
16479 Indic : constant Node_Id := Subtype_Indication (Def);
16480 Extension : constant Node_Id := Record_Extension_Part (Def);
16481 Parent_Node : Node_Id;
16482 Taggd : Boolean;
16483
16484 -- Start of processing for Derived_Type_Declaration
16485
16486 begin
16487 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
16488
16489 if SPARK_Mode = On
16490 and then Is_Tagged_Type (Parent_Type)
16491 then
16492 declare
16493 Partial_View : constant Entity_Id :=
16494 Incomplete_Or_Partial_View (Parent_Type);
16495
16496 begin
16497 -- If the partial view was not found then the parent type is not
16498 -- a private type. Otherwise check if the partial view is a tagged
16499 -- private type.
16500
16501 if Present (Partial_View)
16502 and then Is_Private_Type (Partial_View)
16503 and then not Is_Tagged_Type (Partial_View)
16504 then
16505 Error_Msg_NE
16506 ("cannot derive from & declared as untagged private "
16507 & "(SPARK RM 3.4(1))", N, Partial_View);
16508 end if;
16509 end;
16510 end if;
16511
16512 -- Ada 2005 (AI-251): In case of interface derivation check that the
16513 -- parent is also an interface.
16514
16515 if Interface_Present (Def) then
16516 Check_SPARK_05_Restriction ("interface is not allowed", Def);
16517
16518 if not Is_Interface (Parent_Type) then
16519 Diagnose_Interface (Indic, Parent_Type);
16520
16521 else
16522 Parent_Node := Parent (Base_Type (Parent_Type));
16523 Iface_Def := Type_Definition (Parent_Node);
16524
16525 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
16526 -- other limited interfaces.
16527
16528 if Limited_Present (Def) then
16529 if Limited_Present (Iface_Def) then
16530 null;
16531
16532 elsif Protected_Present (Iface_Def) then
16533 Error_Msg_NE
16534 ("descendant of & must be declared as a protected "
16535 & "interface", N, Parent_Type);
16536
16537 elsif Synchronized_Present (Iface_Def) then
16538 Error_Msg_NE
16539 ("descendant of & must be declared as a synchronized "
16540 & "interface", N, Parent_Type);
16541
16542 elsif Task_Present (Iface_Def) then
16543 Error_Msg_NE
16544 ("descendant of & must be declared as a task interface",
16545 N, Parent_Type);
16546
16547 else
16548 Error_Msg_N
16549 ("(Ada 2005) limited interface cannot inherit from "
16550 & "non-limited interface", Indic);
16551 end if;
16552
16553 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
16554 -- from non-limited or limited interfaces.
16555
16556 elsif not Protected_Present (Def)
16557 and then not Synchronized_Present (Def)
16558 and then not Task_Present (Def)
16559 then
16560 if Limited_Present (Iface_Def) then
16561 null;
16562
16563 elsif Protected_Present (Iface_Def) then
16564 Error_Msg_NE
16565 ("descendant of & must be declared as a protected "
16566 & "interface", N, Parent_Type);
16567
16568 elsif Synchronized_Present (Iface_Def) then
16569 Error_Msg_NE
16570 ("descendant of & must be declared as a synchronized "
16571 & "interface", N, Parent_Type);
16572
16573 elsif Task_Present (Iface_Def) then
16574 Error_Msg_NE
16575 ("descendant of & must be declared as a task interface",
16576 N, Parent_Type);
16577 else
16578 null;
16579 end if;
16580 end if;
16581 end if;
16582 end if;
16583
16584 if Is_Tagged_Type (Parent_Type)
16585 and then Is_Concurrent_Type (Parent_Type)
16586 and then not Is_Interface (Parent_Type)
16587 then
16588 Error_Msg_N
16589 ("parent type of a record extension cannot be a synchronized "
16590 & "tagged type (RM 3.9.1 (3/1))", N);
16591 Set_Etype (T, Any_Type);
16592 return;
16593 end if;
16594
16595 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
16596 -- interfaces
16597
16598 if Is_Tagged_Type (Parent_Type)
16599 and then Is_Non_Empty_List (Interface_List (Def))
16600 then
16601 declare
16602 Intf : Node_Id;
16603 T : Entity_Id;
16604
16605 begin
16606 Intf := First (Interface_List (Def));
16607 while Present (Intf) loop
16608 T := Find_Type_Of_Subtype_Indic (Intf);
16609
16610 if not Is_Interface (T) then
16611 Diagnose_Interface (Intf, T);
16612
16613 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
16614 -- a limited type from having a nonlimited progenitor.
16615
16616 elsif (Limited_Present (Def)
16617 or else (not Is_Interface (Parent_Type)
16618 and then Is_Limited_Type (Parent_Type)))
16619 and then not Is_Limited_Interface (T)
16620 then
16621 Error_Msg_NE
16622 ("progenitor interface& of limited type must be limited",
16623 N, T);
16624 end if;
16625
16626 Next (Intf);
16627 end loop;
16628 end;
16629 end if;
16630
16631 if Parent_Type = Any_Type
16632 or else Etype (Parent_Type) = Any_Type
16633 or else (Is_Class_Wide_Type (Parent_Type)
16634 and then Etype (Parent_Type) = T)
16635 then
16636 -- If Parent_Type is undefined or illegal, make new type into a
16637 -- subtype of Any_Type, and set a few attributes to prevent cascaded
16638 -- errors. If this is a self-definition, emit error now.
16639
16640 if T = Parent_Type or else T = Etype (Parent_Type) then
16641 Error_Msg_N ("type cannot be used in its own definition", Indic);
16642 end if;
16643
16644 Set_Ekind (T, Ekind (Parent_Type));
16645 Set_Etype (T, Any_Type);
16646 Set_Scalar_Range (T, Scalar_Range (Any_Type));
16647
16648 if Is_Tagged_Type (T)
16649 and then Is_Record_Type (T)
16650 then
16651 Set_Direct_Primitive_Operations (T, New_Elmt_List);
16652 end if;
16653
16654 return;
16655 end if;
16656
16657 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
16658 -- an interface is special because the list of interfaces in the full
16659 -- view can be given in any order. For example:
16660
16661 -- type A is interface;
16662 -- type B is interface and A;
16663 -- type D is new B with private;
16664 -- private
16665 -- type D is new A and B with null record; -- 1 --
16666
16667 -- In this case we perform the following transformation of -1-:
16668
16669 -- type D is new B and A with null record;
16670
16671 -- If the parent of the full-view covers the parent of the partial-view
16672 -- we have two possible cases:
16673
16674 -- 1) They have the same parent
16675 -- 2) The parent of the full-view implements some further interfaces
16676
16677 -- In both cases we do not need to perform the transformation. In the
16678 -- first case the source program is correct and the transformation is
16679 -- not needed; in the second case the source program does not fulfill
16680 -- the no-hidden interfaces rule (AI-396) and the error will be reported
16681 -- later.
16682
16683 -- This transformation not only simplifies the rest of the analysis of
16684 -- this type declaration but also simplifies the correct generation of
16685 -- the object layout to the expander.
16686
16687 if In_Private_Part (Current_Scope)
16688 and then Is_Interface (Parent_Type)
16689 then
16690 declare
16691 Iface : Node_Id;
16692 Partial_View : Entity_Id;
16693 Partial_View_Parent : Entity_Id;
16694 New_Iface : Node_Id;
16695
16696 begin
16697 -- Look for the associated private type declaration
16698
16699 Partial_View := Incomplete_Or_Partial_View (T);
16700
16701 -- If the partial view was not found then the source code has
16702 -- errors and the transformation is not needed.
16703
16704 if Present (Partial_View) then
16705 Partial_View_Parent := Etype (Partial_View);
16706
16707 -- If the parent of the full-view covers the parent of the
16708 -- partial-view we have nothing else to do.
16709
16710 if Interface_Present_In_Ancestor
16711 (Parent_Type, Partial_View_Parent)
16712 then
16713 null;
16714
16715 -- Traverse the list of interfaces of the full-view to look
16716 -- for the parent of the partial-view and perform the tree
16717 -- transformation.
16718
16719 else
16720 Iface := First (Interface_List (Def));
16721 while Present (Iface) loop
16722 if Etype (Iface) = Etype (Partial_View) then
16723 Rewrite (Subtype_Indication (Def),
16724 New_Copy (Subtype_Indication
16725 (Parent (Partial_View))));
16726
16727 New_Iface :=
16728 Make_Identifier (Sloc (N), Chars (Parent_Type));
16729 Append (New_Iface, Interface_List (Def));
16730
16731 -- Analyze the transformed code
16732
16733 Derived_Type_Declaration (T, N, Is_Completion);
16734 return;
16735 end if;
16736
16737 Next (Iface);
16738 end loop;
16739 end if;
16740 end if;
16741 end;
16742 end if;
16743
16744 -- Only composite types other than array types are allowed to have
16745 -- discriminants.
16746
16747 if Present (Discriminant_Specifications (N)) then
16748 if (Is_Elementary_Type (Parent_Type)
16749 or else
16750 Is_Array_Type (Parent_Type))
16751 and then not Error_Posted (N)
16752 then
16753 Error_Msg_N
16754 ("elementary or array type cannot have discriminants",
16755 Defining_Identifier (First (Discriminant_Specifications (N))));
16756
16757 -- Unset Has_Discriminants flag to prevent cascaded errors, but
16758 -- only if we are not already processing a malformed syntax tree.
16759
16760 if Is_Type (T) then
16761 Set_Has_Discriminants (T, False);
16762 end if;
16763
16764 -- The type is allowed to have discriminants
16765
16766 else
16767 Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
16768 end if;
16769 end if;
16770
16771 -- In Ada 83, a derived type defined in a package specification cannot
16772 -- be used for further derivation until the end of its visible part.
16773 -- Note that derivation in the private part of the package is allowed.
16774
16775 if Ada_Version = Ada_83
16776 and then Is_Derived_Type (Parent_Type)
16777 and then In_Visible_Part (Scope (Parent_Type))
16778 then
16779 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
16780 Error_Msg_N
16781 ("(Ada 83): premature use of type for derivation", Indic);
16782 end if;
16783 end if;
16784
16785 -- Check for early use of incomplete or private type
16786
16787 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
16788 Error_Msg_N ("premature derivation of incomplete type", Indic);
16789 return;
16790
16791 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
16792 and then not Comes_From_Generic (Parent_Type))
16793 or else Has_Private_Component (Parent_Type)
16794 then
16795 -- The ancestor type of a formal type can be incomplete, in which
16796 -- case only the operations of the partial view are available in the
16797 -- generic. Subsequent checks may be required when the full view is
16798 -- analyzed to verify that a derivation from a tagged type has an
16799 -- extension.
16800
16801 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
16802 null;
16803
16804 elsif No (Underlying_Type (Parent_Type))
16805 or else Has_Private_Component (Parent_Type)
16806 then
16807 Error_Msg_N
16808 ("premature derivation of derived or private type", Indic);
16809
16810 -- Flag the type itself as being in error, this prevents some
16811 -- nasty problems with subsequent uses of the malformed type.
16812
16813 Set_Error_Posted (T);
16814
16815 -- Check that within the immediate scope of an untagged partial
16816 -- view it's illegal to derive from the partial view if the
16817 -- full view is tagged. (7.3(7))
16818
16819 -- We verify that the Parent_Type is a partial view by checking
16820 -- that it is not a Full_Type_Declaration (i.e. a private type or
16821 -- private extension declaration), to distinguish a partial view
16822 -- from a derivation from a private type which also appears as
16823 -- E_Private_Type. If the parent base type is not declared in an
16824 -- enclosing scope there is no need to check.
16825
16826 elsif Present (Full_View (Parent_Type))
16827 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
16828 and then not Is_Tagged_Type (Parent_Type)
16829 and then Is_Tagged_Type (Full_View (Parent_Type))
16830 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
16831 then
16832 Error_Msg_N
16833 ("premature derivation from type with tagged full view",
16834 Indic);
16835 end if;
16836 end if;
16837
16838 -- Check that form of derivation is appropriate
16839
16840 Taggd := Is_Tagged_Type (Parent_Type);
16841
16842 -- Set the parent type to the class-wide type's specific type in this
16843 -- case to prevent cascading errors
16844
16845 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
16846 Error_Msg_N ("parent type must not be a class-wide type", Indic);
16847 Set_Etype (T, Etype (Parent_Type));
16848 return;
16849 end if;
16850
16851 if Present (Extension) and then not Taggd then
16852 Error_Msg_N
16853 ("type derived from untagged type cannot have extension", Indic);
16854
16855 elsif No (Extension) and then Taggd then
16856
16857 -- If this declaration is within a private part (or body) of a
16858 -- generic instantiation then the derivation is allowed (the parent
16859 -- type can only appear tagged in this case if it's a generic actual
16860 -- type, since it would otherwise have been rejected in the analysis
16861 -- of the generic template).
16862
16863 if not Is_Generic_Actual_Type (Parent_Type)
16864 or else In_Visible_Part (Scope (Parent_Type))
16865 then
16866 if Is_Class_Wide_Type (Parent_Type) then
16867 Error_Msg_N
16868 ("parent type must not be a class-wide type", Indic);
16869
16870 -- Use specific type to prevent cascaded errors.
16871
16872 Parent_Type := Etype (Parent_Type);
16873
16874 else
16875 Error_Msg_N
16876 ("type derived from tagged type must have extension", Indic);
16877 end if;
16878 end if;
16879 end if;
16880
16881 -- AI-443: Synchronized formal derived types require a private
16882 -- extension. There is no point in checking the ancestor type or
16883 -- the progenitors since the construct is wrong to begin with.
16884
16885 if Ada_Version >= Ada_2005
16886 and then Is_Generic_Type (T)
16887 and then Present (Original_Node (N))
16888 then
16889 declare
16890 Decl : constant Node_Id := Original_Node (N);
16891
16892 begin
16893 if Nkind (Decl) = N_Formal_Type_Declaration
16894 and then Nkind (Formal_Type_Definition (Decl)) =
16895 N_Formal_Derived_Type_Definition
16896 and then Synchronized_Present (Formal_Type_Definition (Decl))
16897 and then No (Extension)
16898
16899 -- Avoid emitting a duplicate error message
16900
16901 and then not Error_Posted (Indic)
16902 then
16903 Error_Msg_N
16904 ("synchronized derived type must have extension", N);
16905 end if;
16906 end;
16907 end if;
16908
16909 if Null_Exclusion_Present (Def)
16910 and then not Is_Access_Type (Parent_Type)
16911 then
16912 Error_Msg_N ("null exclusion can only apply to an access type", N);
16913 end if;
16914
16915 -- Avoid deriving parent primitives of underlying record views
16916
16917 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
16918 Derive_Subps => not Is_Underlying_Record_View (T));
16919
16920 -- AI-419: The parent type of an explicitly limited derived type must
16921 -- be a limited type or a limited interface.
16922
16923 if Limited_Present (Def) then
16924 Set_Is_Limited_Record (T);
16925
16926 if Is_Interface (T) then
16927 Set_Is_Limited_Interface (T);
16928 end if;
16929
16930 if not Is_Limited_Type (Parent_Type)
16931 and then
16932 (not Is_Interface (Parent_Type)
16933 or else not Is_Limited_Interface (Parent_Type))
16934 then
16935 -- AI05-0096: a derivation in the private part of an instance is
16936 -- legal if the generic formal is untagged limited, and the actual
16937 -- is non-limited.
16938
16939 if Is_Generic_Actual_Type (Parent_Type)
16940 and then In_Private_Part (Current_Scope)
16941 and then
16942 not Is_Tagged_Type
16943 (Generic_Parent_Type (Parent (Parent_Type)))
16944 then
16945 null;
16946
16947 else
16948 Error_Msg_NE
16949 ("parent type& of limited type must be limited",
16950 N, Parent_Type);
16951 end if;
16952 end if;
16953 end if;
16954
16955 -- In SPARK, there are no derived type definitions other than type
16956 -- extensions of tagged record types.
16957
16958 if No (Extension) then
16959 Check_SPARK_05_Restriction
16960 ("derived type is not allowed", Original_Node (N));
16961 end if;
16962 end Derived_Type_Declaration;
16963
16964 ------------------------
16965 -- Diagnose_Interface --
16966 ------------------------
16967
16968 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
16969 begin
16970 if not Is_Interface (E) and then E /= Any_Type then
16971 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
16972 end if;
16973 end Diagnose_Interface;
16974
16975 ----------------------------------
16976 -- Enumeration_Type_Declaration --
16977 ----------------------------------
16978
16979 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16980 Ev : Uint;
16981 L : Node_Id;
16982 R_Node : Node_Id;
16983 B_Node : Node_Id;
16984
16985 begin
16986 -- Create identifier node representing lower bound
16987
16988 B_Node := New_Node (N_Identifier, Sloc (Def));
16989 L := First (Literals (Def));
16990 Set_Chars (B_Node, Chars (L));
16991 Set_Entity (B_Node, L);
16992 Set_Etype (B_Node, T);
16993 Set_Is_Static_Expression (B_Node, True);
16994
16995 R_Node := New_Node (N_Range, Sloc (Def));
16996 Set_Low_Bound (R_Node, B_Node);
16997
16998 Set_Ekind (T, E_Enumeration_Type);
16999 Set_First_Literal (T, L);
17000 Set_Etype (T, T);
17001 Set_Is_Constrained (T);
17002
17003 Ev := Uint_0;
17004
17005 -- Loop through literals of enumeration type setting pos and rep values
17006 -- except that if the Ekind is already set, then it means the literal
17007 -- was already constructed (case of a derived type declaration and we
17008 -- should not disturb the Pos and Rep values.
17009
17010 while Present (L) loop
17011 if Ekind (L) /= E_Enumeration_Literal then
17012 Set_Ekind (L, E_Enumeration_Literal);
17013 Set_Enumeration_Pos (L, Ev);
17014 Set_Enumeration_Rep (L, Ev);
17015 Set_Is_Known_Valid (L, True);
17016 end if;
17017
17018 Set_Etype (L, T);
17019 New_Overloaded_Entity (L);
17020 Generate_Definition (L);
17021 Set_Convention (L, Convention_Intrinsic);
17022
17023 -- Case of character literal
17024
17025 if Nkind (L) = N_Defining_Character_Literal then
17026 Set_Is_Character_Type (T, True);
17027
17028 -- Check violation of No_Wide_Characters
17029
17030 if Restriction_Check_Required (No_Wide_Characters) then
17031 Get_Name_String (Chars (L));
17032
17033 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
17034 Check_Restriction (No_Wide_Characters, L);
17035 end if;
17036 end if;
17037 end if;
17038
17039 Ev := Ev + 1;
17040 Next (L);
17041 end loop;
17042
17043 -- Now create a node representing upper bound
17044
17045 B_Node := New_Node (N_Identifier, Sloc (Def));
17046 Set_Chars (B_Node, Chars (Last (Literals (Def))));
17047 Set_Entity (B_Node, Last (Literals (Def)));
17048 Set_Etype (B_Node, T);
17049 Set_Is_Static_Expression (B_Node, True);
17050
17051 Set_High_Bound (R_Node, B_Node);
17052
17053 -- Initialize various fields of the type. Some of this information
17054 -- may be overwritten later through rep.clauses.
17055
17056 Set_Scalar_Range (T, R_Node);
17057 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
17058 Set_Enum_Esize (T);
17059 Set_Enum_Pos_To_Rep (T, Empty);
17060
17061 -- Set Discard_Names if configuration pragma set, or if there is
17062 -- a parameterless pragma in the current declarative region
17063
17064 if Global_Discard_Names or else Discard_Names (Scope (T)) then
17065 Set_Discard_Names (T);
17066 end if;
17067
17068 -- Process end label if there is one
17069
17070 if Present (Def) then
17071 Process_End_Label (Def, 'e', T);
17072 end if;
17073 end Enumeration_Type_Declaration;
17074
17075 ---------------------------------
17076 -- Expand_To_Stored_Constraint --
17077 ---------------------------------
17078
17079 function Expand_To_Stored_Constraint
17080 (Typ : Entity_Id;
17081 Constraint : Elist_Id) return Elist_Id
17082 is
17083 Explicitly_Discriminated_Type : Entity_Id;
17084 Expansion : Elist_Id;
17085 Discriminant : Entity_Id;
17086
17087 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
17088 -- Find the nearest type that actually specifies discriminants
17089
17090 ---------------------------------
17091 -- Type_With_Explicit_Discrims --
17092 ---------------------------------
17093
17094 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
17095 Typ : constant E := Base_Type (Id);
17096
17097 begin
17098 if Ekind (Typ) in Incomplete_Or_Private_Kind then
17099 if Present (Full_View (Typ)) then
17100 return Type_With_Explicit_Discrims (Full_View (Typ));
17101 end if;
17102
17103 else
17104 if Has_Discriminants (Typ) then
17105 return Typ;
17106 end if;
17107 end if;
17108
17109 if Etype (Typ) = Typ then
17110 return Empty;
17111 elsif Has_Discriminants (Typ) then
17112 return Typ;
17113 else
17114 return Type_With_Explicit_Discrims (Etype (Typ));
17115 end if;
17116
17117 end Type_With_Explicit_Discrims;
17118
17119 -- Start of processing for Expand_To_Stored_Constraint
17120
17121 begin
17122 if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then
17123 return No_Elist;
17124 end if;
17125
17126 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
17127
17128 if No (Explicitly_Discriminated_Type) then
17129 return No_Elist;
17130 end if;
17131
17132 Expansion := New_Elmt_List;
17133
17134 Discriminant :=
17135 First_Stored_Discriminant (Explicitly_Discriminated_Type);
17136 while Present (Discriminant) loop
17137 Append_Elmt
17138 (Get_Discriminant_Value
17139 (Discriminant, Explicitly_Discriminated_Type, Constraint),
17140 To => Expansion);
17141 Next_Stored_Discriminant (Discriminant);
17142 end loop;
17143
17144 return Expansion;
17145 end Expand_To_Stored_Constraint;
17146
17147 ---------------------------
17148 -- Find_Hidden_Interface --
17149 ---------------------------
17150
17151 function Find_Hidden_Interface
17152 (Src : Elist_Id;
17153 Dest : Elist_Id) return Entity_Id
17154 is
17155 Iface : Entity_Id;
17156 Iface_Elmt : Elmt_Id;
17157
17158 begin
17159 if Present (Src) and then Present (Dest) then
17160 Iface_Elmt := First_Elmt (Src);
17161 while Present (Iface_Elmt) loop
17162 Iface := Node (Iface_Elmt);
17163
17164 if Is_Interface (Iface)
17165 and then not Contain_Interface (Iface, Dest)
17166 then
17167 return Iface;
17168 end if;
17169
17170 Next_Elmt (Iface_Elmt);
17171 end loop;
17172 end if;
17173
17174 return Empty;
17175 end Find_Hidden_Interface;
17176
17177 --------------------
17178 -- Find_Type_Name --
17179 --------------------
17180
17181 function Find_Type_Name (N : Node_Id) return Entity_Id is
17182 Id : constant Entity_Id := Defining_Identifier (N);
17183 New_Id : Entity_Id;
17184 Prev : Entity_Id;
17185 Prev_Par : Node_Id;
17186
17187 procedure Check_Duplicate_Aspects;
17188 -- Check that aspects specified in a completion have not been specified
17189 -- already in the partial view.
17190
17191 procedure Tag_Mismatch;
17192 -- Diagnose a tagged partial view whose full view is untagged. We post
17193 -- the message on the full view, with a reference to the previous
17194 -- partial view. The partial view can be private or incomplete, and
17195 -- these are handled in a different manner, so we determine the position
17196 -- of the error message from the respective slocs of both.
17197
17198 -----------------------------
17199 -- Check_Duplicate_Aspects --
17200 -----------------------------
17201
17202 procedure Check_Duplicate_Aspects is
17203 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id;
17204 -- Return the corresponding aspect of the partial view which matches
17205 -- the aspect id of Asp. Return Empty is no such aspect exists.
17206
17207 -----------------------------
17208 -- Get_Partial_View_Aspect --
17209 -----------------------------
17210
17211 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id is
17212 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp);
17213 Prev_Asps : constant List_Id := Aspect_Specifications (Prev_Par);
17214 Prev_Asp : Node_Id;
17215
17216 begin
17217 if Present (Prev_Asps) then
17218 Prev_Asp := First (Prev_Asps);
17219 while Present (Prev_Asp) loop
17220 if Get_Aspect_Id (Prev_Asp) = Asp_Id then
17221 return Prev_Asp;
17222 end if;
17223
17224 Next (Prev_Asp);
17225 end loop;
17226 end if;
17227
17228 return Empty;
17229 end Get_Partial_View_Aspect;
17230
17231 -- Local variables
17232
17233 Full_Asps : constant List_Id := Aspect_Specifications (N);
17234 Full_Asp : Node_Id;
17235 Part_Asp : Node_Id;
17236
17237 -- Start of processing for Check_Duplicate_Aspects
17238
17239 begin
17240 if Present (Full_Asps) then
17241 Full_Asp := First (Full_Asps);
17242 while Present (Full_Asp) loop
17243 Part_Asp := Get_Partial_View_Aspect (Full_Asp);
17244
17245 -- An aspect and its class-wide counterpart are two distinct
17246 -- aspects and may apply to both views of an entity.
17247
17248 if Present (Part_Asp)
17249 and then Class_Present (Part_Asp) = Class_Present (Full_Asp)
17250 then
17251 Error_Msg_N
17252 ("aspect already specified in private declaration",
17253 Full_Asp);
17254
17255 Remove (Full_Asp);
17256 return;
17257 end if;
17258
17259 if Has_Discriminants (Prev)
17260 and then not Has_Unknown_Discriminants (Prev)
17261 and then Get_Aspect_Id (Full_Asp) =
17262 Aspect_Implicit_Dereference
17263 then
17264 Error_Msg_N
17265 ("cannot specify aspect if partial view has known "
17266 & "discriminants", Full_Asp);
17267 end if;
17268
17269 Next (Full_Asp);
17270 end loop;
17271 end if;
17272 end Check_Duplicate_Aspects;
17273
17274 ------------------
17275 -- Tag_Mismatch --
17276 ------------------
17277
17278 procedure Tag_Mismatch is
17279 begin
17280 if Sloc (Prev) < Sloc (Id) then
17281 if Ada_Version >= Ada_2012
17282 and then Nkind (N) = N_Private_Type_Declaration
17283 then
17284 Error_Msg_NE
17285 ("declaration of private } must be a tagged type ", Id, Prev);
17286 else
17287 Error_Msg_NE
17288 ("full declaration of } must be a tagged type ", Id, Prev);
17289 end if;
17290
17291 else
17292 if Ada_Version >= Ada_2012
17293 and then Nkind (N) = N_Private_Type_Declaration
17294 then
17295 Error_Msg_NE
17296 ("declaration of private } must be a tagged type ", Prev, Id);
17297 else
17298 Error_Msg_NE
17299 ("full declaration of } must be a tagged type ", Prev, Id);
17300 end if;
17301 end if;
17302 end Tag_Mismatch;
17303
17304 -- Start of processing for Find_Type_Name
17305
17306 begin
17307 -- Find incomplete declaration, if one was given
17308
17309 Prev := Current_Entity_In_Scope (Id);
17310
17311 -- New type declaration
17312
17313 if No (Prev) then
17314 Enter_Name (Id);
17315 return Id;
17316
17317 -- Previous declaration exists
17318
17319 else
17320 Prev_Par := Parent (Prev);
17321
17322 -- Error if not incomplete/private case except if previous
17323 -- declaration is implicit, etc. Enter_Name will emit error if
17324 -- appropriate.
17325
17326 if not Is_Incomplete_Or_Private_Type (Prev) then
17327 Enter_Name (Id);
17328 New_Id := Id;
17329
17330 -- Check invalid completion of private or incomplete type
17331
17332 elsif not Nkind_In (N, N_Full_Type_Declaration,
17333 N_Task_Type_Declaration,
17334 N_Protected_Type_Declaration)
17335 and then
17336 (Ada_Version < Ada_2012
17337 or else not Is_Incomplete_Type (Prev)
17338 or else not Nkind_In (N, N_Private_Type_Declaration,
17339 N_Private_Extension_Declaration))
17340 then
17341 -- Completion must be a full type declarations (RM 7.3(4))
17342
17343 Error_Msg_Sloc := Sloc (Prev);
17344 Error_Msg_NE ("invalid completion of }", Id, Prev);
17345
17346 -- Set scope of Id to avoid cascaded errors. Entity is never
17347 -- examined again, except when saving globals in generics.
17348
17349 Set_Scope (Id, Current_Scope);
17350 New_Id := Id;
17351
17352 -- If this is a repeated incomplete declaration, no further
17353 -- checks are possible.
17354
17355 if Nkind (N) = N_Incomplete_Type_Declaration then
17356 return Prev;
17357 end if;
17358
17359 -- Case of full declaration of incomplete type
17360
17361 elsif Ekind (Prev) = E_Incomplete_Type
17362 and then (Ada_Version < Ada_2012
17363 or else No (Full_View (Prev))
17364 or else not Is_Private_Type (Full_View (Prev)))
17365 then
17366 -- Indicate that the incomplete declaration has a matching full
17367 -- declaration. The defining occurrence of the incomplete
17368 -- declaration remains the visible one, and the procedure
17369 -- Get_Full_View dereferences it whenever the type is used.
17370
17371 if Present (Full_View (Prev)) then
17372 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
17373 end if;
17374
17375 Set_Full_View (Prev, Id);
17376 Append_Entity (Id, Current_Scope);
17377 Set_Is_Public (Id, Is_Public (Prev));
17378 Set_Is_Internal (Id);
17379 New_Id := Prev;
17380
17381 -- If the incomplete view is tagged, a class_wide type has been
17382 -- created already. Use it for the private type as well, in order
17383 -- to prevent multiple incompatible class-wide types that may be
17384 -- created for self-referential anonymous access components.
17385
17386 if Is_Tagged_Type (Prev)
17387 and then Present (Class_Wide_Type (Prev))
17388 then
17389 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
17390 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
17391
17392 -- Type of the class-wide type is the current Id. Previously
17393 -- this was not done for private declarations because of order-
17394 -- of-elaboration issues in the back end, but gigi now handles
17395 -- this properly.
17396
17397 Set_Etype (Class_Wide_Type (Id), Id);
17398 end if;
17399
17400 -- Case of full declaration of private type
17401
17402 else
17403 -- If the private type was a completion of an incomplete type then
17404 -- update Prev to reference the private type
17405
17406 if Ada_Version >= Ada_2012
17407 and then Ekind (Prev) = E_Incomplete_Type
17408 and then Present (Full_View (Prev))
17409 and then Is_Private_Type (Full_View (Prev))
17410 then
17411 Prev := Full_View (Prev);
17412 Prev_Par := Parent (Prev);
17413 end if;
17414
17415 if Nkind (N) = N_Full_Type_Declaration
17416 and then Nkind_In
17417 (Type_Definition (N), N_Record_Definition,
17418 N_Derived_Type_Definition)
17419 and then Interface_Present (Type_Definition (N))
17420 then
17421 Error_Msg_N
17422 ("completion of private type cannot be an interface", N);
17423 end if;
17424
17425 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
17426 if Etype (Prev) /= Prev then
17427
17428 -- Prev is a private subtype or a derived type, and needs
17429 -- no completion.
17430
17431 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
17432 New_Id := Id;
17433
17434 elsif Ekind (Prev) = E_Private_Type
17435 and then Nkind_In (N, N_Task_Type_Declaration,
17436 N_Protected_Type_Declaration)
17437 then
17438 Error_Msg_N
17439 ("completion of nonlimited type cannot be limited", N);
17440
17441 elsif Ekind (Prev) = E_Record_Type_With_Private
17442 and then Nkind_In (N, N_Task_Type_Declaration,
17443 N_Protected_Type_Declaration)
17444 then
17445 if not Is_Limited_Record (Prev) then
17446 Error_Msg_N
17447 ("completion of nonlimited type cannot be limited", N);
17448
17449 elsif No (Interface_List (N)) then
17450 Error_Msg_N
17451 ("completion of tagged private type must be tagged",
17452 N);
17453 end if;
17454 end if;
17455
17456 -- Ada 2005 (AI-251): Private extension declaration of a task
17457 -- type or a protected type. This case arises when covering
17458 -- interface types.
17459
17460 elsif Nkind_In (N, N_Task_Type_Declaration,
17461 N_Protected_Type_Declaration)
17462 then
17463 null;
17464
17465 elsif Nkind (N) /= N_Full_Type_Declaration
17466 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
17467 then
17468 Error_Msg_N
17469 ("full view of private extension must be an extension", N);
17470
17471 elsif not (Abstract_Present (Parent (Prev)))
17472 and then Abstract_Present (Type_Definition (N))
17473 then
17474 Error_Msg_N
17475 ("full view of non-abstract extension cannot be abstract", N);
17476 end if;
17477
17478 if not In_Private_Part (Current_Scope) then
17479 Error_Msg_N
17480 ("declaration of full view must appear in private part", N);
17481 end if;
17482
17483 if Ada_Version >= Ada_2012 then
17484 Check_Duplicate_Aspects;
17485 end if;
17486
17487 Copy_And_Swap (Prev, Id);
17488 Set_Has_Private_Declaration (Prev);
17489 Set_Has_Private_Declaration (Id);
17490
17491 -- AI12-0133: Indicate whether we have a partial view with
17492 -- unknown discriminants, in which case initialization of objects
17493 -- of the type do not receive an invariant check.
17494
17495 Set_Partial_View_Has_Unknown_Discr
17496 (Prev, Has_Unknown_Discriminants (Id));
17497
17498 -- Preserve aspect and iterator flags that may have been set on
17499 -- the partial view.
17500
17501 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
17502 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
17503
17504 -- If no error, propagate freeze_node from private to full view.
17505 -- It may have been generated for an early operational item.
17506
17507 if Present (Freeze_Node (Id))
17508 and then Serious_Errors_Detected = 0
17509 and then No (Full_View (Id))
17510 then
17511 Set_Freeze_Node (Prev, Freeze_Node (Id));
17512 Set_Freeze_Node (Id, Empty);
17513 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
17514 end if;
17515
17516 Set_Full_View (Id, Prev);
17517 New_Id := Prev;
17518 end if;
17519
17520 -- Verify that full declaration conforms to partial one
17521
17522 if Is_Incomplete_Or_Private_Type (Prev)
17523 and then Present (Discriminant_Specifications (Prev_Par))
17524 then
17525 if Present (Discriminant_Specifications (N)) then
17526 if Ekind (Prev) = E_Incomplete_Type then
17527 Check_Discriminant_Conformance (N, Prev, Prev);
17528 else
17529 Check_Discriminant_Conformance (N, Prev, Id);
17530 end if;
17531
17532 else
17533 Error_Msg_N
17534 ("missing discriminants in full type declaration", N);
17535
17536 -- To avoid cascaded errors on subsequent use, share the
17537 -- discriminants of the partial view.
17538
17539 Set_Discriminant_Specifications (N,
17540 Discriminant_Specifications (Prev_Par));
17541 end if;
17542 end if;
17543
17544 -- A prior untagged partial view can have an associated class-wide
17545 -- type due to use of the class attribute, and in this case the full
17546 -- type must also be tagged. This Ada 95 usage is deprecated in favor
17547 -- of incomplete tagged declarations, but we check for it.
17548
17549 if Is_Type (Prev)
17550 and then (Is_Tagged_Type (Prev)
17551 or else Present (Class_Wide_Type (Prev)))
17552 then
17553 -- Ada 2012 (AI05-0162): A private type may be the completion of
17554 -- an incomplete type.
17555
17556 if Ada_Version >= Ada_2012
17557 and then Is_Incomplete_Type (Prev)
17558 and then Nkind_In (N, N_Private_Type_Declaration,
17559 N_Private_Extension_Declaration)
17560 then
17561 -- No need to check private extensions since they are tagged
17562
17563 if Nkind (N) = N_Private_Type_Declaration
17564 and then not Tagged_Present (N)
17565 then
17566 Tag_Mismatch;
17567 end if;
17568
17569 -- The full declaration is either a tagged type (including
17570 -- a synchronized type that implements interfaces) or a
17571 -- type extension, otherwise this is an error.
17572
17573 elsif Nkind_In (N, N_Task_Type_Declaration,
17574 N_Protected_Type_Declaration)
17575 then
17576 if No (Interface_List (N)) and then not Error_Posted (N) then
17577 Tag_Mismatch;
17578 end if;
17579
17580 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
17581
17582 -- Indicate that the previous declaration (tagged incomplete
17583 -- or private declaration) requires the same on the full one.
17584
17585 if not Tagged_Present (Type_Definition (N)) then
17586 Tag_Mismatch;
17587 Set_Is_Tagged_Type (Id);
17588 end if;
17589
17590 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
17591 if No (Record_Extension_Part (Type_Definition (N))) then
17592 Error_Msg_NE
17593 ("full declaration of } must be a record extension",
17594 Prev, Id);
17595
17596 -- Set some attributes to produce a usable full view
17597
17598 Set_Is_Tagged_Type (Id);
17599 end if;
17600
17601 else
17602 Tag_Mismatch;
17603 end if;
17604 end if;
17605
17606 if Present (Prev)
17607 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
17608 and then Present (Premature_Use (Parent (Prev)))
17609 then
17610 Error_Msg_Sloc := Sloc (N);
17611 Error_Msg_N
17612 ("\full declaration #", Premature_Use (Parent (Prev)));
17613 end if;
17614
17615 return New_Id;
17616 end if;
17617 end Find_Type_Name;
17618
17619 -------------------------
17620 -- Find_Type_Of_Object --
17621 -------------------------
17622
17623 function Find_Type_Of_Object
17624 (Obj_Def : Node_Id;
17625 Related_Nod : Node_Id) return Entity_Id
17626 is
17627 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
17628 P : Node_Id := Parent (Obj_Def);
17629 T : Entity_Id;
17630 Nam : Name_Id;
17631
17632 begin
17633 -- If the parent is a component_definition node we climb to the
17634 -- component_declaration node
17635
17636 if Nkind (P) = N_Component_Definition then
17637 P := Parent (P);
17638 end if;
17639
17640 -- Case of an anonymous array subtype
17641
17642 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
17643 N_Unconstrained_Array_Definition)
17644 then
17645 T := Empty;
17646 Array_Type_Declaration (T, Obj_Def);
17647
17648 -- Create an explicit subtype whenever possible
17649
17650 elsif Nkind (P) /= N_Component_Declaration
17651 and then Def_Kind = N_Subtype_Indication
17652 then
17653 -- Base name of subtype on object name, which will be unique in
17654 -- the current scope.
17655
17656 -- If this is a duplicate declaration, return base type, to avoid
17657 -- generating duplicate anonymous types.
17658
17659 if Error_Posted (P) then
17660 Analyze (Subtype_Mark (Obj_Def));
17661 return Entity (Subtype_Mark (Obj_Def));
17662 end if;
17663
17664 Nam :=
17665 New_External_Name
17666 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
17667
17668 T := Make_Defining_Identifier (Sloc (P), Nam);
17669
17670 Insert_Action (Obj_Def,
17671 Make_Subtype_Declaration (Sloc (P),
17672 Defining_Identifier => T,
17673 Subtype_Indication => Relocate_Node (Obj_Def)));
17674
17675 -- This subtype may need freezing, and this will not be done
17676 -- automatically if the object declaration is not in declarative
17677 -- part. Since this is an object declaration, the type cannot always
17678 -- be frozen here. Deferred constants do not freeze their type
17679 -- (which often enough will be private).
17680
17681 if Nkind (P) = N_Object_Declaration
17682 and then Constant_Present (P)
17683 and then No (Expression (P))
17684 then
17685 null;
17686
17687 -- Here we freeze the base type of object type to catch premature use
17688 -- of discriminated private type without a full view.
17689
17690 else
17691 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
17692 end if;
17693
17694 -- Ada 2005 AI-406: the object definition in an object declaration
17695 -- can be an access definition.
17696
17697 elsif Def_Kind = N_Access_Definition then
17698 T := Access_Definition (Related_Nod, Obj_Def);
17699
17700 Set_Is_Local_Anonymous_Access
17701 (T,
17702 V => (Ada_Version < Ada_2012)
17703 or else (Nkind (P) /= N_Object_Declaration)
17704 or else Is_Library_Level_Entity (Defining_Identifier (P)));
17705
17706 -- Otherwise, the object definition is just a subtype_mark
17707
17708 else
17709 T := Process_Subtype (Obj_Def, Related_Nod);
17710
17711 -- If expansion is disabled an object definition that is an aggregate
17712 -- will not get expanded and may lead to scoping problems in the back
17713 -- end, if the object is referenced in an inner scope. In that case
17714 -- create an itype reference for the object definition now. This
17715 -- may be redundant in some cases, but harmless.
17716
17717 if Is_Itype (T)
17718 and then Nkind (Related_Nod) = N_Object_Declaration
17719 and then ASIS_Mode
17720 then
17721 Build_Itype_Reference (T, Related_Nod);
17722 end if;
17723 end if;
17724
17725 return T;
17726 end Find_Type_Of_Object;
17727
17728 --------------------------------
17729 -- Find_Type_Of_Subtype_Indic --
17730 --------------------------------
17731
17732 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
17733 Typ : Entity_Id;
17734
17735 begin
17736 -- Case of subtype mark with a constraint
17737
17738 if Nkind (S) = N_Subtype_Indication then
17739 Find_Type (Subtype_Mark (S));
17740 Typ := Entity (Subtype_Mark (S));
17741
17742 if not
17743 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
17744 then
17745 Error_Msg_N
17746 ("incorrect constraint for this kind of type", Constraint (S));
17747 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
17748 end if;
17749
17750 -- Otherwise we have a subtype mark without a constraint
17751
17752 elsif Error_Posted (S) then
17753 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
17754 return Any_Type;
17755
17756 else
17757 Find_Type (S);
17758 Typ := Entity (S);
17759 end if;
17760
17761 -- Check No_Wide_Characters restriction
17762
17763 Check_Wide_Character_Restriction (Typ, S);
17764
17765 return Typ;
17766 end Find_Type_Of_Subtype_Indic;
17767
17768 -------------------------------------
17769 -- Floating_Point_Type_Declaration --
17770 -------------------------------------
17771
17772 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
17773 Digs : constant Node_Id := Digits_Expression (Def);
17774 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
17775 Digs_Val : Uint;
17776 Base_Typ : Entity_Id;
17777 Implicit_Base : Entity_Id;
17778 Bound : Node_Id;
17779
17780 function Can_Derive_From (E : Entity_Id) return Boolean;
17781 -- Find if given digits value, and possibly a specified range, allows
17782 -- derivation from specified type
17783
17784 function Find_Base_Type return Entity_Id;
17785 -- Find a predefined base type that Def can derive from, or generate
17786 -- an error and substitute Long_Long_Float if none exists.
17787
17788 ---------------------
17789 -- Can_Derive_From --
17790 ---------------------
17791
17792 function Can_Derive_From (E : Entity_Id) return Boolean is
17793 Spec : constant Entity_Id := Real_Range_Specification (Def);
17794
17795 begin
17796 -- Check specified "digits" constraint
17797
17798 if Digs_Val > Digits_Value (E) then
17799 return False;
17800 end if;
17801
17802 -- Check for matching range, if specified
17803
17804 if Present (Spec) then
17805 if Expr_Value_R (Type_Low_Bound (E)) >
17806 Expr_Value_R (Low_Bound (Spec))
17807 then
17808 return False;
17809 end if;
17810
17811 if Expr_Value_R (Type_High_Bound (E)) <
17812 Expr_Value_R (High_Bound (Spec))
17813 then
17814 return False;
17815 end if;
17816 end if;
17817
17818 return True;
17819 end Can_Derive_From;
17820
17821 --------------------
17822 -- Find_Base_Type --
17823 --------------------
17824
17825 function Find_Base_Type return Entity_Id is
17826 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
17827
17828 begin
17829 -- Iterate over the predefined types in order, returning the first
17830 -- one that Def can derive from.
17831
17832 while Present (Choice) loop
17833 if Can_Derive_From (Node (Choice)) then
17834 return Node (Choice);
17835 end if;
17836
17837 Next_Elmt (Choice);
17838 end loop;
17839
17840 -- If we can't derive from any existing type, use Long_Long_Float
17841 -- and give appropriate message explaining the problem.
17842
17843 if Digs_Val > Max_Digs_Val then
17844 -- It might be the case that there is a type with the requested
17845 -- range, just not the combination of digits and range.
17846
17847 Error_Msg_N
17848 ("no predefined type has requested range and precision",
17849 Real_Range_Specification (Def));
17850
17851 else
17852 Error_Msg_N
17853 ("range too large for any predefined type",
17854 Real_Range_Specification (Def));
17855 end if;
17856
17857 return Standard_Long_Long_Float;
17858 end Find_Base_Type;
17859
17860 -- Start of processing for Floating_Point_Type_Declaration
17861
17862 begin
17863 Check_Restriction (No_Floating_Point, Def);
17864
17865 -- Create an implicit base type
17866
17867 Implicit_Base :=
17868 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
17869
17870 -- Analyze and verify digits value
17871
17872 Analyze_And_Resolve (Digs, Any_Integer);
17873 Check_Digits_Expression (Digs);
17874 Digs_Val := Expr_Value (Digs);
17875
17876 -- Process possible range spec and find correct type to derive from
17877
17878 Process_Real_Range_Specification (Def);
17879
17880 -- Check that requested number of digits is not too high.
17881
17882 if Digs_Val > Max_Digs_Val then
17883
17884 -- The check for Max_Base_Digits may be somewhat expensive, as it
17885 -- requires reading System, so only do it when necessary.
17886
17887 declare
17888 Max_Base_Digits : constant Uint :=
17889 Expr_Value
17890 (Expression
17891 (Parent (RTE (RE_Max_Base_Digits))));
17892
17893 begin
17894 if Digs_Val > Max_Base_Digits then
17895 Error_Msg_Uint_1 := Max_Base_Digits;
17896 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
17897
17898 elsif No (Real_Range_Specification (Def)) then
17899 Error_Msg_Uint_1 := Max_Digs_Val;
17900 Error_Msg_N ("types with more than ^ digits need range spec "
17901 & "(RM 3.5.7(6))", Digs);
17902 end if;
17903 end;
17904 end if;
17905
17906 -- Find a suitable type to derive from or complain and use a substitute
17907
17908 Base_Typ := Find_Base_Type;
17909
17910 -- If there are bounds given in the declaration use them as the bounds
17911 -- of the type, otherwise use the bounds of the predefined base type
17912 -- that was chosen based on the Digits value.
17913
17914 if Present (Real_Range_Specification (Def)) then
17915 Set_Scalar_Range (T, Real_Range_Specification (Def));
17916 Set_Is_Constrained (T);
17917
17918 -- The bounds of this range must be converted to machine numbers
17919 -- in accordance with RM 4.9(38).
17920
17921 Bound := Type_Low_Bound (T);
17922
17923 if Nkind (Bound) = N_Real_Literal then
17924 Set_Realval
17925 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17926 Set_Is_Machine_Number (Bound);
17927 end if;
17928
17929 Bound := Type_High_Bound (T);
17930
17931 if Nkind (Bound) = N_Real_Literal then
17932 Set_Realval
17933 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17934 Set_Is_Machine_Number (Bound);
17935 end if;
17936
17937 else
17938 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
17939 end if;
17940
17941 -- Complete definition of implicit base and declared first subtype. The
17942 -- inheritance of the rep item chain ensures that SPARK-related pragmas
17943 -- are not clobbered when the floating point type acts as a full view of
17944 -- a private type.
17945
17946 Set_Etype (Implicit_Base, Base_Typ);
17947 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
17948 Set_Size_Info (Implicit_Base, Base_Typ);
17949 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
17950 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
17951 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
17952 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
17953
17954 Set_Ekind (T, E_Floating_Point_Subtype);
17955 Set_Etype (T, Implicit_Base);
17956 Set_Size_Info (T, Implicit_Base);
17957 Set_RM_Size (T, RM_Size (Implicit_Base));
17958 Inherit_Rep_Item_Chain (T, Implicit_Base);
17959 Set_Digits_Value (T, Digs_Val);
17960 end Floating_Point_Type_Declaration;
17961
17962 ----------------------------
17963 -- Get_Discriminant_Value --
17964 ----------------------------
17965
17966 -- This is the situation:
17967
17968 -- There is a non-derived type
17969
17970 -- type T0 (Dx, Dy, Dz...)
17971
17972 -- There are zero or more levels of derivation, with each derivation
17973 -- either purely inheriting the discriminants, or defining its own.
17974
17975 -- type Ti is new Ti-1
17976 -- or
17977 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
17978 -- or
17979 -- subtype Ti is ...
17980
17981 -- The subtype issue is avoided by the use of Original_Record_Component,
17982 -- and the fact that derived subtypes also derive the constraints.
17983
17984 -- This chain leads back from
17985
17986 -- Typ_For_Constraint
17987
17988 -- Typ_For_Constraint has discriminants, and the value for each
17989 -- discriminant is given by its corresponding Elmt of Constraints.
17990
17991 -- Discriminant is some discriminant in this hierarchy
17992
17993 -- We need to return its value
17994
17995 -- We do this by recursively searching each level, and looking for
17996 -- Discriminant. Once we get to the bottom, we start backing up
17997 -- returning the value for it which may in turn be a discriminant
17998 -- further up, so on the backup we continue the substitution.
17999
18000 function Get_Discriminant_Value
18001 (Discriminant : Entity_Id;
18002 Typ_For_Constraint : Entity_Id;
18003 Constraint : Elist_Id) return Node_Id
18004 is
18005 function Root_Corresponding_Discriminant
18006 (Discr : Entity_Id) return Entity_Id;
18007 -- Given a discriminant, traverse the chain of inherited discriminants
18008 -- and return the topmost discriminant.
18009
18010 function Search_Derivation_Levels
18011 (Ti : Entity_Id;
18012 Discrim_Values : Elist_Id;
18013 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
18014 -- This is the routine that performs the recursive search of levels
18015 -- as described above.
18016
18017 -------------------------------------
18018 -- Root_Corresponding_Discriminant --
18019 -------------------------------------
18020
18021 function Root_Corresponding_Discriminant
18022 (Discr : Entity_Id) return Entity_Id
18023 is
18024 D : Entity_Id;
18025
18026 begin
18027 D := Discr;
18028 while Present (Corresponding_Discriminant (D)) loop
18029 D := Corresponding_Discriminant (D);
18030 end loop;
18031
18032 return D;
18033 end Root_Corresponding_Discriminant;
18034
18035 ------------------------------
18036 -- Search_Derivation_Levels --
18037 ------------------------------
18038
18039 function Search_Derivation_Levels
18040 (Ti : Entity_Id;
18041 Discrim_Values : Elist_Id;
18042 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
18043 is
18044 Assoc : Elmt_Id;
18045 Disc : Entity_Id;
18046 Result : Node_Or_Entity_Id;
18047 Result_Entity : Node_Id;
18048
18049 begin
18050 -- If inappropriate type, return Error, this happens only in
18051 -- cascaded error situations, and we want to avoid a blow up.
18052
18053 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
18054 return Error;
18055 end if;
18056
18057 -- Look deeper if possible. Use Stored_Constraints only for
18058 -- untagged types. For tagged types use the given constraint.
18059 -- This asymmetry needs explanation???
18060
18061 if not Stored_Discrim_Values
18062 and then Present (Stored_Constraint (Ti))
18063 and then not Is_Tagged_Type (Ti)
18064 then
18065 Result :=
18066 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
18067
18068 else
18069 declare
18070 Td : Entity_Id := Etype (Ti);
18071
18072 begin
18073 -- If the parent type is private, the full view may include
18074 -- renamed discriminants, and it is those stored values that
18075 -- may be needed (the partial view never has more information
18076 -- than the full view).
18077
18078 if Is_Private_Type (Td) and then Present (Full_View (Td)) then
18079 Td := Full_View (Td);
18080 end if;
18081
18082 if Td = Ti then
18083 Result := Discriminant;
18084
18085 else
18086 if Present (Stored_Constraint (Ti)) then
18087 Result :=
18088 Search_Derivation_Levels
18089 (Td, Stored_Constraint (Ti), True);
18090 else
18091 Result :=
18092 Search_Derivation_Levels
18093 (Td, Discrim_Values, Stored_Discrim_Values);
18094 end if;
18095 end if;
18096 end;
18097 end if;
18098
18099 -- Extra underlying places to search, if not found above. For
18100 -- concurrent types, the relevant discriminant appears in the
18101 -- corresponding record. For a type derived from a private type
18102 -- without discriminant, the full view inherits the discriminants
18103 -- of the full view of the parent.
18104
18105 if Result = Discriminant then
18106 if Is_Concurrent_Type (Ti)
18107 and then Present (Corresponding_Record_Type (Ti))
18108 then
18109 Result :=
18110 Search_Derivation_Levels (
18111 Corresponding_Record_Type (Ti),
18112 Discrim_Values,
18113 Stored_Discrim_Values);
18114
18115 elsif Is_Private_Type (Ti)
18116 and then not Has_Discriminants (Ti)
18117 and then Present (Full_View (Ti))
18118 and then Etype (Full_View (Ti)) /= Ti
18119 then
18120 Result :=
18121 Search_Derivation_Levels (
18122 Full_View (Ti),
18123 Discrim_Values,
18124 Stored_Discrim_Values);
18125 end if;
18126 end if;
18127
18128 -- If Result is not a (reference to a) discriminant, return it,
18129 -- otherwise set Result_Entity to the discriminant.
18130
18131 if Nkind (Result) = N_Defining_Identifier then
18132 pragma Assert (Result = Discriminant);
18133 Result_Entity := Result;
18134
18135 else
18136 if not Denotes_Discriminant (Result) then
18137 return Result;
18138 end if;
18139
18140 Result_Entity := Entity (Result);
18141 end if;
18142
18143 -- See if this level of derivation actually has discriminants because
18144 -- tagged derivations can add them, hence the lower levels need not
18145 -- have any.
18146
18147 if not Has_Discriminants (Ti) then
18148 return Result;
18149 end if;
18150
18151 -- Scan Ti's discriminants for Result_Entity, and return its
18152 -- corresponding value, if any.
18153
18154 Result_Entity := Original_Record_Component (Result_Entity);
18155
18156 Assoc := First_Elmt (Discrim_Values);
18157
18158 if Stored_Discrim_Values then
18159 Disc := First_Stored_Discriminant (Ti);
18160 else
18161 Disc := First_Discriminant (Ti);
18162 end if;
18163
18164 while Present (Disc) loop
18165
18166 -- If no further associations return the discriminant, value will
18167 -- be found on the second pass.
18168
18169 if No (Assoc) then
18170 return Result;
18171 end if;
18172
18173 if Original_Record_Component (Disc) = Result_Entity then
18174 return Node (Assoc);
18175 end if;
18176
18177 Next_Elmt (Assoc);
18178
18179 if Stored_Discrim_Values then
18180 Next_Stored_Discriminant (Disc);
18181 else
18182 Next_Discriminant (Disc);
18183 end if;
18184 end loop;
18185
18186 -- Could not find it
18187
18188 return Result;
18189 end Search_Derivation_Levels;
18190
18191 -- Local Variables
18192
18193 Result : Node_Or_Entity_Id;
18194
18195 -- Start of processing for Get_Discriminant_Value
18196
18197 begin
18198 -- ??? This routine is a gigantic mess and will be deleted. For the
18199 -- time being just test for the trivial case before calling recurse.
18200
18201 -- We are now celebrating the 20th anniversary of this comment!
18202
18203 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
18204 declare
18205 D : Entity_Id;
18206 E : Elmt_Id;
18207
18208 begin
18209 D := First_Discriminant (Typ_For_Constraint);
18210 E := First_Elmt (Constraint);
18211 while Present (D) loop
18212 if Chars (D) = Chars (Discriminant) then
18213 return Node (E);
18214 end if;
18215
18216 Next_Discriminant (D);
18217 Next_Elmt (E);
18218 end loop;
18219 end;
18220 end if;
18221
18222 Result := Search_Derivation_Levels
18223 (Typ_For_Constraint, Constraint, False);
18224
18225 -- ??? hack to disappear when this routine is gone
18226
18227 if Nkind (Result) = N_Defining_Identifier then
18228 declare
18229 D : Entity_Id;
18230 E : Elmt_Id;
18231
18232 begin
18233 D := First_Discriminant (Typ_For_Constraint);
18234 E := First_Elmt (Constraint);
18235 while Present (D) loop
18236 if Root_Corresponding_Discriminant (D) = Discriminant then
18237 return Node (E);
18238 end if;
18239
18240 Next_Discriminant (D);
18241 Next_Elmt (E);
18242 end loop;
18243 end;
18244 end if;
18245
18246 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
18247 return Result;
18248 end Get_Discriminant_Value;
18249
18250 --------------------------
18251 -- Has_Range_Constraint --
18252 --------------------------
18253
18254 function Has_Range_Constraint (N : Node_Id) return Boolean is
18255 C : constant Node_Id := Constraint (N);
18256
18257 begin
18258 if Nkind (C) = N_Range_Constraint then
18259 return True;
18260
18261 elsif Nkind (C) = N_Digits_Constraint then
18262 return
18263 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
18264 or else Present (Range_Constraint (C));
18265
18266 elsif Nkind (C) = N_Delta_Constraint then
18267 return Present (Range_Constraint (C));
18268
18269 else
18270 return False;
18271 end if;
18272 end Has_Range_Constraint;
18273
18274 ------------------------
18275 -- Inherit_Components --
18276 ------------------------
18277
18278 function Inherit_Components
18279 (N : Node_Id;
18280 Parent_Base : Entity_Id;
18281 Derived_Base : Entity_Id;
18282 Is_Tagged : Boolean;
18283 Inherit_Discr : Boolean;
18284 Discs : Elist_Id) return Elist_Id
18285 is
18286 Assoc_List : constant Elist_Id := New_Elmt_List;
18287
18288 procedure Inherit_Component
18289 (Old_C : Entity_Id;
18290 Plain_Discrim : Boolean := False;
18291 Stored_Discrim : Boolean := False);
18292 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
18293 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
18294 -- True, Old_C is a stored discriminant. If they are both false then
18295 -- Old_C is a regular component.
18296
18297 -----------------------
18298 -- Inherit_Component --
18299 -----------------------
18300
18301 procedure Inherit_Component
18302 (Old_C : Entity_Id;
18303 Plain_Discrim : Boolean := False;
18304 Stored_Discrim : Boolean := False)
18305 is
18306 procedure Set_Anonymous_Type (Id : Entity_Id);
18307 -- Id denotes the entity of an access discriminant or anonymous
18308 -- access component. Set the type of Id to either the same type of
18309 -- Old_C or create a new one depending on whether the parent and
18310 -- the child types are in the same scope.
18311
18312 ------------------------
18313 -- Set_Anonymous_Type --
18314 ------------------------
18315
18316 procedure Set_Anonymous_Type (Id : Entity_Id) is
18317 Old_Typ : constant Entity_Id := Etype (Old_C);
18318
18319 begin
18320 if Scope (Parent_Base) = Scope (Derived_Base) then
18321 Set_Etype (Id, Old_Typ);
18322
18323 -- The parent and the derived type are in two different scopes.
18324 -- Reuse the type of the original discriminant / component by
18325 -- copying it in order to preserve all attributes.
18326
18327 else
18328 declare
18329 Typ : constant Entity_Id := New_Copy (Old_Typ);
18330
18331 begin
18332 Set_Etype (Id, Typ);
18333
18334 -- Since we do not generate component declarations for
18335 -- inherited components, associate the itype with the
18336 -- derived type.
18337
18338 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
18339 Set_Scope (Typ, Derived_Base);
18340 end;
18341 end if;
18342 end Set_Anonymous_Type;
18343
18344 -- Local variables and constants
18345
18346 New_C : constant Entity_Id := New_Copy (Old_C);
18347
18348 Corr_Discrim : Entity_Id;
18349 Discrim : Entity_Id;
18350
18351 -- Start of processing for Inherit_Component
18352
18353 begin
18354 pragma Assert (not Is_Tagged or not Stored_Discrim);
18355
18356 Set_Parent (New_C, Parent (Old_C));
18357
18358 -- Regular discriminants and components must be inserted in the scope
18359 -- of the Derived_Base. Do it here.
18360
18361 if not Stored_Discrim then
18362 Enter_Name (New_C);
18363 end if;
18364
18365 -- For tagged types the Original_Record_Component must point to
18366 -- whatever this field was pointing to in the parent type. This has
18367 -- already been achieved by the call to New_Copy above.
18368
18369 if not Is_Tagged then
18370 Set_Original_Record_Component (New_C, New_C);
18371 Set_Corresponding_Record_Component (New_C, Old_C);
18372 end if;
18373
18374 -- Set the proper type of an access discriminant
18375
18376 if Ekind (New_C) = E_Discriminant
18377 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
18378 then
18379 Set_Anonymous_Type (New_C);
18380 end if;
18381
18382 -- If we have inherited a component then see if its Etype contains
18383 -- references to Parent_Base discriminants. In this case, replace
18384 -- these references with the constraints given in Discs. We do not
18385 -- do this for the partial view of private types because this is
18386 -- not needed (only the components of the full view will be used
18387 -- for code generation) and cause problem. We also avoid this
18388 -- transformation in some error situations.
18389
18390 if Ekind (New_C) = E_Component then
18391
18392 -- Set the proper type of an anonymous access component
18393
18394 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
18395 Set_Anonymous_Type (New_C);
18396
18397 elsif (Is_Private_Type (Derived_Base)
18398 and then not Is_Generic_Type (Derived_Base))
18399 or else (Is_Empty_Elmt_List (Discs)
18400 and then not Expander_Active)
18401 then
18402 Set_Etype (New_C, Etype (Old_C));
18403
18404 else
18405 -- The current component introduces a circularity of the
18406 -- following kind:
18407
18408 -- limited with Pack_2;
18409 -- package Pack_1 is
18410 -- type T_1 is tagged record
18411 -- Comp : access Pack_2.T_2;
18412 -- ...
18413 -- end record;
18414 -- end Pack_1;
18415
18416 -- with Pack_1;
18417 -- package Pack_2 is
18418 -- type T_2 is new Pack_1.T_1 with ...;
18419 -- end Pack_2;
18420
18421 Set_Etype
18422 (New_C,
18423 Constrain_Component_Type
18424 (Old_C, Derived_Base, N, Parent_Base, Discs));
18425 end if;
18426 end if;
18427
18428 -- In derived tagged types it is illegal to reference a non
18429 -- discriminant component in the parent type. To catch this, mark
18430 -- these components with an Ekind of E_Void. This will be reset in
18431 -- Record_Type_Definition after processing the record extension of
18432 -- the derived type.
18433
18434 -- If the declaration is a private extension, there is no further
18435 -- record extension to process, and the components retain their
18436 -- current kind, because they are visible at this point.
18437
18438 if Is_Tagged and then Ekind (New_C) = E_Component
18439 and then Nkind (N) /= N_Private_Extension_Declaration
18440 then
18441 Set_Ekind (New_C, E_Void);
18442 end if;
18443
18444 if Plain_Discrim then
18445 Set_Corresponding_Discriminant (New_C, Old_C);
18446 Build_Discriminal (New_C);
18447
18448 -- If we are explicitly inheriting a stored discriminant it will be
18449 -- completely hidden.
18450
18451 elsif Stored_Discrim then
18452 Set_Corresponding_Discriminant (New_C, Empty);
18453 Set_Discriminal (New_C, Empty);
18454 Set_Is_Completely_Hidden (New_C);
18455
18456 -- Set the Original_Record_Component of each discriminant in the
18457 -- derived base to point to the corresponding stored that we just
18458 -- created.
18459
18460 Discrim := First_Discriminant (Derived_Base);
18461 while Present (Discrim) loop
18462 Corr_Discrim := Corresponding_Discriminant (Discrim);
18463
18464 -- Corr_Discrim could be missing in an error situation
18465
18466 if Present (Corr_Discrim)
18467 and then Original_Record_Component (Corr_Discrim) = Old_C
18468 then
18469 Set_Original_Record_Component (Discrim, New_C);
18470 Set_Corresponding_Record_Component (Discrim, Empty);
18471 end if;
18472
18473 Next_Discriminant (Discrim);
18474 end loop;
18475
18476 Append_Entity (New_C, Derived_Base);
18477 end if;
18478
18479 if not Is_Tagged then
18480 Append_Elmt (Old_C, Assoc_List);
18481 Append_Elmt (New_C, Assoc_List);
18482 end if;
18483 end Inherit_Component;
18484
18485 -- Variables local to Inherit_Component
18486
18487 Loc : constant Source_Ptr := Sloc (N);
18488
18489 Parent_Discrim : Entity_Id;
18490 Stored_Discrim : Entity_Id;
18491 D : Entity_Id;
18492 Component : Entity_Id;
18493
18494 -- Start of processing for Inherit_Components
18495
18496 begin
18497 if not Is_Tagged then
18498 Append_Elmt (Parent_Base, Assoc_List);
18499 Append_Elmt (Derived_Base, Assoc_List);
18500 end if;
18501
18502 -- Inherit parent discriminants if needed
18503
18504 if Inherit_Discr then
18505 Parent_Discrim := First_Discriminant (Parent_Base);
18506 while Present (Parent_Discrim) loop
18507 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
18508 Next_Discriminant (Parent_Discrim);
18509 end loop;
18510 end if;
18511
18512 -- Create explicit stored discrims for untagged types when necessary
18513
18514 if not Has_Unknown_Discriminants (Derived_Base)
18515 and then Has_Discriminants (Parent_Base)
18516 and then not Is_Tagged
18517 and then
18518 (not Inherit_Discr
18519 or else First_Discriminant (Parent_Base) /=
18520 First_Stored_Discriminant (Parent_Base))
18521 then
18522 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
18523 while Present (Stored_Discrim) loop
18524 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
18525 Next_Stored_Discriminant (Stored_Discrim);
18526 end loop;
18527 end if;
18528
18529 -- See if we can apply the second transformation for derived types, as
18530 -- explained in point 6. in the comments above Build_Derived_Record_Type
18531 -- This is achieved by appending Derived_Base discriminants into Discs,
18532 -- which has the side effect of returning a non empty Discs list to the
18533 -- caller of Inherit_Components, which is what we want. This must be
18534 -- done for private derived types if there are explicit stored
18535 -- discriminants, to ensure that we can retrieve the values of the
18536 -- constraints provided in the ancestors.
18537
18538 if Inherit_Discr
18539 and then Is_Empty_Elmt_List (Discs)
18540 and then Present (First_Discriminant (Derived_Base))
18541 and then
18542 (not Is_Private_Type (Derived_Base)
18543 or else Is_Completely_Hidden
18544 (First_Stored_Discriminant (Derived_Base))
18545 or else Is_Generic_Type (Derived_Base))
18546 then
18547 D := First_Discriminant (Derived_Base);
18548 while Present (D) loop
18549 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
18550 Next_Discriminant (D);
18551 end loop;
18552 end if;
18553
18554 -- Finally, inherit non-discriminant components unless they are not
18555 -- visible because defined or inherited from the full view of the
18556 -- parent. Don't inherit the _parent field of the parent type.
18557
18558 Component := First_Entity (Parent_Base);
18559 while Present (Component) loop
18560
18561 -- Ada 2005 (AI-251): Do not inherit components associated with
18562 -- secondary tags of the parent.
18563
18564 if Ekind (Component) = E_Component
18565 and then Present (Related_Type (Component))
18566 then
18567 null;
18568
18569 elsif Ekind (Component) /= E_Component
18570 or else Chars (Component) = Name_uParent
18571 then
18572 null;
18573
18574 -- If the derived type is within the parent type's declarative
18575 -- region, then the components can still be inherited even though
18576 -- they aren't visible at this point. This can occur for cases
18577 -- such as within public child units where the components must
18578 -- become visible upon entering the child unit's private part.
18579
18580 elsif not Is_Visible_Component (Component)
18581 and then not In_Open_Scopes (Scope (Parent_Base))
18582 then
18583 null;
18584
18585 elsif Ekind_In (Derived_Base, E_Private_Type,
18586 E_Limited_Private_Type)
18587 then
18588 null;
18589
18590 else
18591 Inherit_Component (Component);
18592 end if;
18593
18594 Next_Entity (Component);
18595 end loop;
18596
18597 -- For tagged derived types, inherited discriminants cannot be used in
18598 -- component declarations of the record extension part. To achieve this
18599 -- we mark the inherited discriminants as not visible.
18600
18601 if Is_Tagged and then Inherit_Discr then
18602 D := First_Discriminant (Derived_Base);
18603 while Present (D) loop
18604 Set_Is_Immediately_Visible (D, False);
18605 Next_Discriminant (D);
18606 end loop;
18607 end if;
18608
18609 return Assoc_List;
18610 end Inherit_Components;
18611
18612 -----------------------------
18613 -- Inherit_Predicate_Flags --
18614 -----------------------------
18615
18616 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
18617 begin
18618 if Present (Predicate_Function (Subt)) then
18619 return;
18620 end if;
18621
18622 Set_Has_Predicates (Subt, Has_Predicates (Par));
18623 Set_Has_Static_Predicate_Aspect
18624 (Subt, Has_Static_Predicate_Aspect (Par));
18625 Set_Has_Dynamic_Predicate_Aspect
18626 (Subt, Has_Dynamic_Predicate_Aspect (Par));
18627
18628 -- A named subtype does not inherit the predicate function of its
18629 -- parent but an itype declared for a loop index needs the discrete
18630 -- predicate information of its parent to execute the loop properly.
18631 -- A non-discrete type may has a static predicate (for example True)
18632 -- but has no static_discrete_predicate.
18633
18634 if Is_Itype (Subt) and then Present (Predicate_Function (Par)) then
18635 Set_Subprograms_For_Type (Subt, Subprograms_For_Type (Par));
18636
18637 if Has_Static_Predicate (Par) and then Is_Discrete_Type (Par) then
18638 Set_Static_Discrete_Predicate
18639 (Subt, Static_Discrete_Predicate (Par));
18640 end if;
18641 end if;
18642 end Inherit_Predicate_Flags;
18643
18644 ----------------------
18645 -- Is_EVF_Procedure --
18646 ----------------------
18647
18648 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is
18649 Formal : Entity_Id;
18650
18651 begin
18652 -- Examine the formals of an Extensions_Visible False procedure looking
18653 -- for a controlling OUT parameter.
18654
18655 if Ekind (Subp) = E_Procedure
18656 and then Extensions_Visible_Status (Subp) = Extensions_Visible_False
18657 then
18658 Formal := First_Formal (Subp);
18659 while Present (Formal) loop
18660 if Ekind (Formal) = E_Out_Parameter
18661 and then Is_Controlling_Formal (Formal)
18662 then
18663 return True;
18664 end if;
18665
18666 Next_Formal (Formal);
18667 end loop;
18668 end if;
18669
18670 return False;
18671 end Is_EVF_Procedure;
18672
18673 -----------------------
18674 -- Is_Null_Extension --
18675 -----------------------
18676
18677 function Is_Null_Extension (T : Entity_Id) return Boolean is
18678 Type_Decl : constant Node_Id := Parent (Base_Type (T));
18679 Comp_List : Node_Id;
18680 Comp : Node_Id;
18681
18682 begin
18683 if Nkind (Type_Decl) /= N_Full_Type_Declaration
18684 or else not Is_Tagged_Type (T)
18685 or else Nkind (Type_Definition (Type_Decl)) /=
18686 N_Derived_Type_Definition
18687 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
18688 then
18689 return False;
18690 end if;
18691
18692 Comp_List :=
18693 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
18694
18695 if Present (Discriminant_Specifications (Type_Decl)) then
18696 return False;
18697
18698 elsif Present (Comp_List)
18699 and then Is_Non_Empty_List (Component_Items (Comp_List))
18700 then
18701 Comp := First (Component_Items (Comp_List));
18702
18703 -- Only user-defined components are relevant. The component list
18704 -- may also contain a parent component and internal components
18705 -- corresponding to secondary tags, but these do not determine
18706 -- whether this is a null extension.
18707
18708 while Present (Comp) loop
18709 if Comes_From_Source (Comp) then
18710 return False;
18711 end if;
18712
18713 Next (Comp);
18714 end loop;
18715
18716 return True;
18717
18718 else
18719 return True;
18720 end if;
18721 end Is_Null_Extension;
18722
18723 ------------------------------
18724 -- Is_Valid_Constraint_Kind --
18725 ------------------------------
18726
18727 function Is_Valid_Constraint_Kind
18728 (T_Kind : Type_Kind;
18729 Constraint_Kind : Node_Kind) return Boolean
18730 is
18731 begin
18732 case T_Kind is
18733 when Enumeration_Kind
18734 | Integer_Kind
18735 =>
18736 return Constraint_Kind = N_Range_Constraint;
18737
18738 when Decimal_Fixed_Point_Kind =>
18739 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
18740 N_Range_Constraint);
18741
18742 when Ordinary_Fixed_Point_Kind =>
18743 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
18744 N_Range_Constraint);
18745
18746 when Float_Kind =>
18747 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
18748 N_Range_Constraint);
18749
18750 when Access_Kind
18751 | Array_Kind
18752 | Class_Wide_Kind
18753 | Concurrent_Kind
18754 | Private_Kind
18755 | E_Incomplete_Type
18756 | E_Record_Subtype
18757 | E_Record_Type
18758 =>
18759 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
18760
18761 when others =>
18762 return True; -- Error will be detected later
18763 end case;
18764 end Is_Valid_Constraint_Kind;
18765
18766 --------------------------
18767 -- Is_Visible_Component --
18768 --------------------------
18769
18770 function Is_Visible_Component
18771 (C : Entity_Id;
18772 N : Node_Id := Empty) return Boolean
18773 is
18774 Original_Comp : Entity_Id := Empty;
18775 Original_Type : Entity_Id;
18776 Type_Scope : Entity_Id;
18777
18778 function Is_Local_Type (Typ : Entity_Id) return Boolean;
18779 -- Check whether parent type of inherited component is declared locally,
18780 -- possibly within a nested package or instance. The current scope is
18781 -- the derived record itself.
18782
18783 -------------------
18784 -- Is_Local_Type --
18785 -------------------
18786
18787 function Is_Local_Type (Typ : Entity_Id) return Boolean is
18788 Scop : Entity_Id;
18789
18790 begin
18791 Scop := Scope (Typ);
18792 while Present (Scop)
18793 and then Scop /= Standard_Standard
18794 loop
18795 if Scop = Scope (Current_Scope) then
18796 return True;
18797 end if;
18798
18799 Scop := Scope (Scop);
18800 end loop;
18801
18802 return False;
18803 end Is_Local_Type;
18804
18805 -- Start of processing for Is_Visible_Component
18806
18807 begin
18808 if Ekind_In (C, E_Component, E_Discriminant) then
18809 Original_Comp := Original_Record_Component (C);
18810 end if;
18811
18812 if No (Original_Comp) then
18813
18814 -- Premature usage, or previous error
18815
18816 return False;
18817
18818 else
18819 Original_Type := Scope (Original_Comp);
18820 Type_Scope := Scope (Base_Type (Scope (C)));
18821 end if;
18822
18823 -- This test only concerns tagged types
18824
18825 if not Is_Tagged_Type (Original_Type) then
18826
18827 -- Check if this is a renamed discriminant (hidden either by the
18828 -- derived type or by some ancestor), unless we are analyzing code
18829 -- generated by the expander since it may reference such components
18830 -- (for example see the expansion of Deep_Adjust).
18831
18832 if Ekind (C) = E_Discriminant and then Present (N) then
18833 return
18834 not Comes_From_Source (N)
18835 or else not Is_Completely_Hidden (C);
18836 else
18837 return True;
18838 end if;
18839
18840 -- If it is _Parent or _Tag, there is no visibility issue
18841
18842 elsif not Comes_From_Source (Original_Comp) then
18843 return True;
18844
18845 -- Discriminants are visible unless the (private) type has unknown
18846 -- discriminants. If the discriminant reference is inserted for a
18847 -- discriminant check on a full view it is also visible.
18848
18849 elsif Ekind (Original_Comp) = E_Discriminant
18850 and then
18851 (not Has_Unknown_Discriminants (Original_Type)
18852 or else (Present (N)
18853 and then Nkind (N) = N_Selected_Component
18854 and then Nkind (Prefix (N)) = N_Type_Conversion
18855 and then not Comes_From_Source (Prefix (N))))
18856 then
18857 return True;
18858
18859 -- In the body of an instantiation, check the visibility of a component
18860 -- in case it has a homograph that is a primitive operation of a private
18861 -- type which was not visible in the generic unit.
18862
18863 -- Should Is_Prefixed_Call be propagated from template to instance???
18864
18865 elsif In_Instance_Body then
18866 if not Is_Tagged_Type (Original_Type)
18867 or else not Is_Private_Type (Original_Type)
18868 then
18869 return True;
18870
18871 else
18872 declare
18873 Subp_Elmt : Elmt_Id;
18874
18875 begin
18876 Subp_Elmt := First_Elmt (Primitive_Operations (Original_Type));
18877 while Present (Subp_Elmt) loop
18878
18879 -- The component is hidden by a primitive operation
18880
18881 if Chars (Node (Subp_Elmt)) = Chars (C) then
18882 return False;
18883 end if;
18884
18885 Next_Elmt (Subp_Elmt);
18886 end loop;
18887
18888 return True;
18889 end;
18890 end if;
18891
18892 -- If the component has been declared in an ancestor which is currently
18893 -- a private type, then it is not visible. The same applies if the
18894 -- component's containing type is not in an open scope and the original
18895 -- component's enclosing type is a visible full view of a private type
18896 -- (which can occur in cases where an attempt is being made to reference
18897 -- a component in a sibling package that is inherited from a visible
18898 -- component of a type in an ancestor package; the component in the
18899 -- sibling package should not be visible even though the component it
18900 -- inherited from is visible). This does not apply however in the case
18901 -- where the scope of the type is a private child unit, or when the
18902 -- parent comes from a local package in which the ancestor is currently
18903 -- visible. The latter suppression of visibility is needed for cases
18904 -- that are tested in B730006.
18905
18906 elsif Is_Private_Type (Original_Type)
18907 or else
18908 (not Is_Private_Descendant (Type_Scope)
18909 and then not In_Open_Scopes (Type_Scope)
18910 and then Has_Private_Declaration (Original_Type))
18911 then
18912 -- If the type derives from an entity in a formal package, there
18913 -- are no additional visible components.
18914
18915 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
18916 N_Formal_Package_Declaration
18917 then
18918 return False;
18919
18920 -- if we are not in the private part of the current package, there
18921 -- are no additional visible components.
18922
18923 elsif Ekind (Scope (Current_Scope)) = E_Package
18924 and then not In_Private_Part (Scope (Current_Scope))
18925 then
18926 return False;
18927 else
18928 return
18929 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
18930 and then In_Open_Scopes (Scope (Original_Type))
18931 and then Is_Local_Type (Type_Scope);
18932 end if;
18933
18934 -- There is another weird way in which a component may be invisible when
18935 -- the private and the full view are not derived from the same ancestor.
18936 -- Here is an example :
18937
18938 -- type A1 is tagged record F1 : integer; end record;
18939 -- type A2 is new A1 with record F2 : integer; end record;
18940 -- type T is new A1 with private;
18941 -- private
18942 -- type T is new A2 with null record;
18943
18944 -- In this case, the full view of T inherits F1 and F2 but the private
18945 -- view inherits only F1
18946
18947 else
18948 declare
18949 Ancestor : Entity_Id := Scope (C);
18950
18951 begin
18952 loop
18953 if Ancestor = Original_Type then
18954 return True;
18955
18956 -- The ancestor may have a partial view of the original type,
18957 -- but if the full view is in scope, as in a child body, the
18958 -- component is visible.
18959
18960 elsif In_Private_Part (Scope (Original_Type))
18961 and then Full_View (Ancestor) = Original_Type
18962 then
18963 return True;
18964
18965 elsif Ancestor = Etype (Ancestor) then
18966
18967 -- No further ancestors to examine
18968
18969 return False;
18970 end if;
18971
18972 Ancestor := Etype (Ancestor);
18973 end loop;
18974 end;
18975 end if;
18976 end Is_Visible_Component;
18977
18978 --------------------------
18979 -- Make_Class_Wide_Type --
18980 --------------------------
18981
18982 procedure Make_Class_Wide_Type (T : Entity_Id) is
18983 CW_Type : Entity_Id;
18984 CW_Name : Name_Id;
18985 Next_E : Entity_Id;
18986 Prev_E : Entity_Id;
18987
18988 begin
18989 if Present (Class_Wide_Type (T)) then
18990
18991 -- The class-wide type is a partially decorated entity created for a
18992 -- unanalyzed tagged type referenced through a limited with clause.
18993 -- When the tagged type is analyzed, its class-wide type needs to be
18994 -- redecorated. Note that we reuse the entity created by Decorate_
18995 -- Tagged_Type in order to preserve all links.
18996
18997 if Materialize_Entity (Class_Wide_Type (T)) then
18998 CW_Type := Class_Wide_Type (T);
18999 Set_Materialize_Entity (CW_Type, False);
19000
19001 -- The class wide type can have been defined by the partial view, in
19002 -- which case everything is already done.
19003
19004 else
19005 return;
19006 end if;
19007
19008 -- Default case, we need to create a new class-wide type
19009
19010 else
19011 CW_Type :=
19012 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
19013 end if;
19014
19015 -- Inherit root type characteristics
19016
19017 CW_Name := Chars (CW_Type);
19018 Next_E := Next_Entity (CW_Type);
19019 Prev_E := Prev_Entity (CW_Type);
19020 Copy_Node (T, CW_Type);
19021 Set_Comes_From_Source (CW_Type, False);
19022 Set_Chars (CW_Type, CW_Name);
19023 Set_Parent (CW_Type, Parent (T));
19024 Set_Prev_Entity (CW_Type, Prev_E);
19025 Set_Next_Entity (CW_Type, Next_E);
19026
19027 -- Ensure we have a new freeze node for the class-wide type. The partial
19028 -- view may have freeze action of its own, requiring a proper freeze
19029 -- node, and the same freeze node cannot be shared between the two
19030 -- types.
19031
19032 Set_Has_Delayed_Freeze (CW_Type);
19033 Set_Freeze_Node (CW_Type, Empty);
19034
19035 -- Customize the class-wide type: It has no prim. op., it cannot be
19036 -- abstract, its Etype points back to the specific root type, and it
19037 -- cannot have any invariants.
19038
19039 Set_Ekind (CW_Type, E_Class_Wide_Type);
19040 Set_Is_Tagged_Type (CW_Type, True);
19041 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
19042 Set_Is_Abstract_Type (CW_Type, False);
19043 Set_Is_Constrained (CW_Type, False);
19044 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
19045 Set_Default_SSO (CW_Type);
19046 Set_Has_Inheritable_Invariants (CW_Type, False);
19047 Set_Has_Inherited_Invariants (CW_Type, False);
19048 Set_Has_Own_Invariants (CW_Type, False);
19049
19050 if Ekind (T) = E_Class_Wide_Subtype then
19051 Set_Etype (CW_Type, Etype (Base_Type (T)));
19052 else
19053 Set_Etype (CW_Type, T);
19054 end if;
19055
19056 Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams);
19057
19058 -- If this is the class_wide type of a constrained subtype, it does
19059 -- not have discriminants.
19060
19061 Set_Has_Discriminants (CW_Type,
19062 Has_Discriminants (T) and then not Is_Constrained (T));
19063
19064 Set_Has_Unknown_Discriminants (CW_Type, True);
19065 Set_Class_Wide_Type (T, CW_Type);
19066 Set_Equivalent_Type (CW_Type, Empty);
19067
19068 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
19069
19070 Set_Class_Wide_Type (CW_Type, CW_Type);
19071 end Make_Class_Wide_Type;
19072
19073 ----------------
19074 -- Make_Index --
19075 ----------------
19076
19077 procedure Make_Index
19078 (N : Node_Id;
19079 Related_Nod : Node_Id;
19080 Related_Id : Entity_Id := Empty;
19081 Suffix_Index : Nat := 1;
19082 In_Iter_Schm : Boolean := False)
19083 is
19084 R : Node_Id;
19085 T : Entity_Id;
19086 Def_Id : Entity_Id := Empty;
19087 Found : Boolean := False;
19088
19089 begin
19090 -- For a discrete range used in a constrained array definition and
19091 -- defined by a range, an implicit conversion to the predefined type
19092 -- INTEGER is assumed if each bound is either a numeric literal, a named
19093 -- number, or an attribute, and the type of both bounds (prior to the
19094 -- implicit conversion) is the type universal_integer. Otherwise, both
19095 -- bounds must be of the same discrete type, other than universal
19096 -- integer; this type must be determinable independently of the
19097 -- context, but using the fact that the type must be discrete and that
19098 -- both bounds must have the same type.
19099
19100 -- Character literals also have a universal type in the absence of
19101 -- of additional context, and are resolved to Standard_Character.
19102
19103 if Nkind (N) = N_Range then
19104
19105 -- The index is given by a range constraint. The bounds are known
19106 -- to be of a consistent type.
19107
19108 if not Is_Overloaded (N) then
19109 T := Etype (N);
19110
19111 -- For universal bounds, choose the specific predefined type
19112
19113 if T = Universal_Integer then
19114 T := Standard_Integer;
19115
19116 elsif T = Any_Character then
19117 Ambiguous_Character (Low_Bound (N));
19118
19119 T := Standard_Character;
19120 end if;
19121
19122 -- The node may be overloaded because some user-defined operators
19123 -- are available, but if a universal interpretation exists it is
19124 -- also the selected one.
19125
19126 elsif Universal_Interpretation (N) = Universal_Integer then
19127 T := Standard_Integer;
19128
19129 else
19130 T := Any_Type;
19131
19132 declare
19133 Ind : Interp_Index;
19134 It : Interp;
19135
19136 begin
19137 Get_First_Interp (N, Ind, It);
19138 while Present (It.Typ) loop
19139 if Is_Discrete_Type (It.Typ) then
19140
19141 if Found
19142 and then not Covers (It.Typ, T)
19143 and then not Covers (T, It.Typ)
19144 then
19145 Error_Msg_N ("ambiguous bounds in discrete range", N);
19146 exit;
19147 else
19148 T := It.Typ;
19149 Found := True;
19150 end if;
19151 end if;
19152
19153 Get_Next_Interp (Ind, It);
19154 end loop;
19155
19156 if T = Any_Type then
19157 Error_Msg_N ("discrete type required for range", N);
19158 Set_Etype (N, Any_Type);
19159 return;
19160
19161 elsif T = Universal_Integer then
19162 T := Standard_Integer;
19163 end if;
19164 end;
19165 end if;
19166
19167 if not Is_Discrete_Type (T) then
19168 Error_Msg_N ("discrete type required for range", N);
19169 Set_Etype (N, Any_Type);
19170 return;
19171 end if;
19172
19173 if Nkind (Low_Bound (N)) = N_Attribute_Reference
19174 and then Attribute_Name (Low_Bound (N)) = Name_First
19175 and then Is_Entity_Name (Prefix (Low_Bound (N)))
19176 and then Is_Type (Entity (Prefix (Low_Bound (N))))
19177 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
19178 then
19179 -- The type of the index will be the type of the prefix, as long
19180 -- as the upper bound is 'Last of the same type.
19181
19182 Def_Id := Entity (Prefix (Low_Bound (N)));
19183
19184 if Nkind (High_Bound (N)) /= N_Attribute_Reference
19185 or else Attribute_Name (High_Bound (N)) /= Name_Last
19186 or else not Is_Entity_Name (Prefix (High_Bound (N)))
19187 or else Entity (Prefix (High_Bound (N))) /= Def_Id
19188 then
19189 Def_Id := Empty;
19190 end if;
19191 end if;
19192
19193 R := N;
19194 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
19195
19196 elsif Nkind (N) = N_Subtype_Indication then
19197
19198 -- The index is given by a subtype with a range constraint
19199
19200 T := Base_Type (Entity (Subtype_Mark (N)));
19201
19202 if not Is_Discrete_Type (T) then
19203 Error_Msg_N ("discrete type required for range", N);
19204 Set_Etype (N, Any_Type);
19205 return;
19206 end if;
19207
19208 R := Range_Expression (Constraint (N));
19209
19210 Resolve (R, T);
19211 Process_Range_Expr_In_Decl
19212 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
19213
19214 elsif Nkind (N) = N_Attribute_Reference then
19215
19216 -- Catch beginner's error (use of attribute other than 'Range)
19217
19218 if Attribute_Name (N) /= Name_Range then
19219 Error_Msg_N ("expect attribute ''Range", N);
19220 Set_Etype (N, Any_Type);
19221 return;
19222 end if;
19223
19224 -- If the node denotes the range of a type mark, that is also the
19225 -- resulting type, and we do not need to create an Itype for it.
19226
19227 if Is_Entity_Name (Prefix (N))
19228 and then Comes_From_Source (N)
19229 and then Is_Type (Entity (Prefix (N)))
19230 and then Is_Discrete_Type (Entity (Prefix (N)))
19231 then
19232 Def_Id := Entity (Prefix (N));
19233 end if;
19234
19235 Analyze_And_Resolve (N);
19236 T := Etype (N);
19237 R := N;
19238
19239 -- If none of the above, must be a subtype. We convert this to a
19240 -- range attribute reference because in the case of declared first
19241 -- named subtypes, the types in the range reference can be different
19242 -- from the type of the entity. A range attribute normalizes the
19243 -- reference and obtains the correct types for the bounds.
19244
19245 -- This transformation is in the nature of an expansion, is only
19246 -- done if expansion is active. In particular, it is not done on
19247 -- formal generic types, because we need to retain the name of the
19248 -- original index for instantiation purposes.
19249
19250 else
19251 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
19252 Error_Msg_N ("invalid subtype mark in discrete range ", N);
19253 Set_Etype (N, Any_Integer);
19254 return;
19255
19256 else
19257 -- The type mark may be that of an incomplete type. It is only
19258 -- now that we can get the full view, previous analysis does
19259 -- not look specifically for a type mark.
19260
19261 Set_Entity (N, Get_Full_View (Entity (N)));
19262 Set_Etype (N, Entity (N));
19263 Def_Id := Entity (N);
19264
19265 if not Is_Discrete_Type (Def_Id) then
19266 Error_Msg_N ("discrete type required for index", N);
19267 Set_Etype (N, Any_Type);
19268 return;
19269 end if;
19270 end if;
19271
19272 if Expander_Active then
19273 Rewrite (N,
19274 Make_Attribute_Reference (Sloc (N),
19275 Attribute_Name => Name_Range,
19276 Prefix => Relocate_Node (N)));
19277
19278 -- The original was a subtype mark that does not freeze. This
19279 -- means that the rewritten version must not freeze either.
19280
19281 Set_Must_Not_Freeze (N);
19282 Set_Must_Not_Freeze (Prefix (N));
19283 Analyze_And_Resolve (N);
19284 T := Etype (N);
19285 R := N;
19286
19287 -- If expander is inactive, type is legal, nothing else to construct
19288
19289 else
19290 return;
19291 end if;
19292 end if;
19293
19294 if not Is_Discrete_Type (T) then
19295 Error_Msg_N ("discrete type required for range", N);
19296 Set_Etype (N, Any_Type);
19297 return;
19298
19299 elsif T = Any_Type then
19300 Set_Etype (N, Any_Type);
19301 return;
19302 end if;
19303
19304 -- We will now create the appropriate Itype to describe the range, but
19305 -- first a check. If we originally had a subtype, then we just label
19306 -- the range with this subtype. Not only is there no need to construct
19307 -- a new subtype, but it is wrong to do so for two reasons:
19308
19309 -- 1. A legality concern, if we have a subtype, it must not freeze,
19310 -- and the Itype would cause freezing incorrectly
19311
19312 -- 2. An efficiency concern, if we created an Itype, it would not be
19313 -- recognized as the same type for the purposes of eliminating
19314 -- checks in some circumstances.
19315
19316 -- We signal this case by setting the subtype entity in Def_Id
19317
19318 if No (Def_Id) then
19319 Def_Id :=
19320 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
19321 Set_Etype (Def_Id, Base_Type (T));
19322
19323 if Is_Signed_Integer_Type (T) then
19324 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
19325
19326 elsif Is_Modular_Integer_Type (T) then
19327 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
19328
19329 else
19330 Set_Ekind (Def_Id, E_Enumeration_Subtype);
19331 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
19332 Set_First_Literal (Def_Id, First_Literal (T));
19333 end if;
19334
19335 Set_Size_Info (Def_Id, (T));
19336 Set_RM_Size (Def_Id, RM_Size (T));
19337 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
19338
19339 Set_Scalar_Range (Def_Id, R);
19340 Conditional_Delay (Def_Id, T);
19341
19342 if Nkind (N) = N_Subtype_Indication then
19343 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
19344 end if;
19345
19346 -- In the subtype indication case, if the immediate parent of the
19347 -- new subtype is non-static, then the subtype we create is non-
19348 -- static, even if its bounds are static.
19349
19350 if Nkind (N) = N_Subtype_Indication
19351 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
19352 then
19353 Set_Is_Non_Static_Subtype (Def_Id);
19354 end if;
19355 end if;
19356
19357 -- Final step is to label the index with this constructed type
19358
19359 Set_Etype (N, Def_Id);
19360 end Make_Index;
19361
19362 ------------------------------
19363 -- Modular_Type_Declaration --
19364 ------------------------------
19365
19366 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
19367 Mod_Expr : constant Node_Id := Expression (Def);
19368 M_Val : Uint;
19369
19370 procedure Set_Modular_Size (Bits : Int);
19371 -- Sets RM_Size to Bits, and Esize to normal word size above this
19372
19373 ----------------------
19374 -- Set_Modular_Size --
19375 ----------------------
19376
19377 procedure Set_Modular_Size (Bits : Int) is
19378 begin
19379 Set_RM_Size (T, UI_From_Int (Bits));
19380
19381 if Bits <= 8 then
19382 Init_Esize (T, 8);
19383
19384 elsif Bits <= 16 then
19385 Init_Esize (T, 16);
19386
19387 elsif Bits <= 32 then
19388 Init_Esize (T, 32);
19389
19390 else
19391 Init_Esize (T, System_Max_Binary_Modulus_Power);
19392 end if;
19393
19394 if not Non_Binary_Modulus (T) and then Esize (T) = RM_Size (T) then
19395 Set_Is_Known_Valid (T);
19396 end if;
19397 end Set_Modular_Size;
19398
19399 -- Start of processing for Modular_Type_Declaration
19400
19401 begin
19402 -- If the mod expression is (exactly) 2 * literal, where literal is
19403 -- 64 or less,then almost certainly the * was meant to be **. Warn.
19404
19405 if Warn_On_Suspicious_Modulus_Value
19406 and then Nkind (Mod_Expr) = N_Op_Multiply
19407 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
19408 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
19409 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
19410 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
19411 then
19412 Error_Msg_N
19413 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
19414 end if;
19415
19416 -- Proceed with analysis of mod expression
19417
19418 Analyze_And_Resolve (Mod_Expr, Any_Integer);
19419 Set_Etype (T, T);
19420 Set_Ekind (T, E_Modular_Integer_Type);
19421 Init_Alignment (T);
19422 Set_Is_Constrained (T);
19423
19424 if not Is_OK_Static_Expression (Mod_Expr) then
19425 Flag_Non_Static_Expr
19426 ("non-static expression used for modular type bound!", Mod_Expr);
19427 M_Val := 2 ** System_Max_Binary_Modulus_Power;
19428 else
19429 M_Val := Expr_Value (Mod_Expr);
19430 end if;
19431
19432 if M_Val < 1 then
19433 Error_Msg_N ("modulus value must be positive", Mod_Expr);
19434 M_Val := 2 ** System_Max_Binary_Modulus_Power;
19435 end if;
19436
19437 if M_Val > 2 ** Standard_Long_Integer_Size then
19438 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
19439 end if;
19440
19441 Set_Modulus (T, M_Val);
19442
19443 -- Create bounds for the modular type based on the modulus given in
19444 -- the type declaration and then analyze and resolve those bounds.
19445
19446 Set_Scalar_Range (T,
19447 Make_Range (Sloc (Mod_Expr),
19448 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
19449 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
19450
19451 -- Properly analyze the literals for the range. We do this manually
19452 -- because we can't go calling Resolve, since we are resolving these
19453 -- bounds with the type, and this type is certainly not complete yet.
19454
19455 Set_Etype (Low_Bound (Scalar_Range (T)), T);
19456 Set_Etype (High_Bound (Scalar_Range (T)), T);
19457 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
19458 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
19459
19460 -- Loop through powers of two to find number of bits required
19461
19462 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
19463
19464 -- Binary case
19465
19466 if M_Val = 2 ** Bits then
19467 Set_Modular_Size (Bits);
19468 return;
19469
19470 -- Nonbinary case
19471
19472 elsif M_Val < 2 ** Bits then
19473 Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
19474 Set_Non_Binary_Modulus (T);
19475
19476 if Bits > System_Max_Nonbinary_Modulus_Power then
19477 Error_Msg_Uint_1 :=
19478 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
19479 Error_Msg_F
19480 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
19481 Set_Modular_Size (System_Max_Binary_Modulus_Power);
19482 return;
19483
19484 else
19485 -- In the nonbinary case, set size as per RM 13.3(55)
19486
19487 Set_Modular_Size (Bits);
19488 return;
19489 end if;
19490 end if;
19491
19492 end loop;
19493
19494 -- If we fall through, then the size exceed System.Max_Binary_Modulus
19495 -- so we just signal an error and set the maximum size.
19496
19497 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
19498 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
19499
19500 Set_Modular_Size (System_Max_Binary_Modulus_Power);
19501 Init_Alignment (T);
19502
19503 end Modular_Type_Declaration;
19504
19505 --------------------------
19506 -- New_Concatenation_Op --
19507 --------------------------
19508
19509 procedure New_Concatenation_Op (Typ : Entity_Id) is
19510 Loc : constant Source_Ptr := Sloc (Typ);
19511 Op : Entity_Id;
19512
19513 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
19514 -- Create abbreviated declaration for the formal of a predefined
19515 -- Operator 'Op' of type 'Typ'
19516
19517 --------------------
19518 -- Make_Op_Formal --
19519 --------------------
19520
19521 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
19522 Formal : Entity_Id;
19523 begin
19524 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
19525 Set_Etype (Formal, Typ);
19526 Set_Mechanism (Formal, Default_Mechanism);
19527 return Formal;
19528 end Make_Op_Formal;
19529
19530 -- Start of processing for New_Concatenation_Op
19531
19532 begin
19533 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
19534
19535 Set_Ekind (Op, E_Operator);
19536 Set_Scope (Op, Current_Scope);
19537 Set_Etype (Op, Typ);
19538 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
19539 Set_Is_Immediately_Visible (Op);
19540 Set_Is_Intrinsic_Subprogram (Op);
19541 Set_Has_Completion (Op);
19542 Append_Entity (Op, Current_Scope);
19543
19544 Set_Name_Entity_Id (Name_Op_Concat, Op);
19545
19546 Append_Entity (Make_Op_Formal (Typ, Op), Op);
19547 Append_Entity (Make_Op_Formal (Typ, Op), Op);
19548 end New_Concatenation_Op;
19549
19550 -------------------------
19551 -- OK_For_Limited_Init --
19552 -------------------------
19553
19554 -- ???Check all calls of this, and compare the conditions under which it's
19555 -- called.
19556
19557 function OK_For_Limited_Init
19558 (Typ : Entity_Id;
19559 Exp : Node_Id) return Boolean
19560 is
19561 begin
19562 return Is_CPP_Constructor_Call (Exp)
19563 or else (Ada_Version >= Ada_2005
19564 and then not Debug_Flag_Dot_L
19565 and then OK_For_Limited_Init_In_05 (Typ, Exp));
19566 end OK_For_Limited_Init;
19567
19568 -------------------------------
19569 -- OK_For_Limited_Init_In_05 --
19570 -------------------------------
19571
19572 function OK_For_Limited_Init_In_05
19573 (Typ : Entity_Id;
19574 Exp : Node_Id) return Boolean
19575 is
19576 begin
19577 -- An object of a limited interface type can be initialized with any
19578 -- expression of a nonlimited descendant type. However this does not
19579 -- apply if this is a view conversion of some other expression. This
19580 -- is checked below.
19581
19582 if Is_Class_Wide_Type (Typ)
19583 and then Is_Limited_Interface (Typ)
19584 and then not Is_Limited_Type (Etype (Exp))
19585 and then Nkind (Exp) /= N_Type_Conversion
19586 then
19587 return True;
19588 end if;
19589
19590 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
19591 -- case of limited aggregates (including extension aggregates), and
19592 -- function calls. The function call may have been given in prefixed
19593 -- notation, in which case the original node is an indexed component.
19594 -- If the function is parameterless, the original node was an explicit
19595 -- dereference. The function may also be parameterless, in which case
19596 -- the source node is just an identifier.
19597
19598 -- A branch of a conditional expression may have been removed if the
19599 -- condition is statically known. This happens during expansion, and
19600 -- thus will not happen if previous errors were encountered. The check
19601 -- will have been performed on the chosen branch, which replaces the
19602 -- original conditional expression.
19603
19604 if No (Exp) then
19605 return True;
19606 end if;
19607
19608 case Nkind (Original_Node (Exp)) is
19609 when N_Aggregate
19610 | N_Extension_Aggregate
19611 | N_Function_Call
19612 | N_Op
19613 =>
19614 return True;
19615
19616 when N_Identifier =>
19617 return Present (Entity (Original_Node (Exp)))
19618 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
19619
19620 when N_Qualified_Expression =>
19621 return
19622 OK_For_Limited_Init_In_05
19623 (Typ, Expression (Original_Node (Exp)));
19624
19625 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
19626 -- with a function call, the expander has rewritten the call into an
19627 -- N_Type_Conversion node to force displacement of the pointer to
19628 -- reference the component containing the secondary dispatch table.
19629 -- Otherwise a type conversion is not a legal context.
19630 -- A return statement for a build-in-place function returning a
19631 -- synchronized type also introduces an unchecked conversion.
19632
19633 when N_Type_Conversion
19634 | N_Unchecked_Type_Conversion
19635 =>
19636 return not Comes_From_Source (Exp)
19637 and then
19638 OK_For_Limited_Init_In_05
19639 (Typ, Expression (Original_Node (Exp)));
19640
19641 when N_Explicit_Dereference
19642 | N_Indexed_Component
19643 | N_Selected_Component
19644 =>
19645 return Nkind (Exp) = N_Function_Call;
19646
19647 -- A use of 'Input is a function call, hence allowed. Normally the
19648 -- attribute will be changed to a call, but the attribute by itself
19649 -- can occur with -gnatc.
19650
19651 when N_Attribute_Reference =>
19652 return Attribute_Name (Original_Node (Exp)) = Name_Input;
19653
19654 -- "return raise ..." is OK
19655
19656 when N_Raise_Expression =>
19657 return True;
19658
19659 -- For a case expression, all dependent expressions must be legal
19660
19661 when N_Case_Expression =>
19662 declare
19663 Alt : Node_Id;
19664
19665 begin
19666 Alt := First (Alternatives (Original_Node (Exp)));
19667 while Present (Alt) loop
19668 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
19669 return False;
19670 end if;
19671
19672 Next (Alt);
19673 end loop;
19674
19675 return True;
19676 end;
19677
19678 -- For an if expression, all dependent expressions must be legal
19679
19680 when N_If_Expression =>
19681 declare
19682 Then_Expr : constant Node_Id :=
19683 Next (First (Expressions (Original_Node (Exp))));
19684 Else_Expr : constant Node_Id := Next (Then_Expr);
19685 begin
19686 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
19687 and then
19688 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
19689 end;
19690
19691 when others =>
19692 return False;
19693 end case;
19694 end OK_For_Limited_Init_In_05;
19695
19696 -------------------------------------------
19697 -- Ordinary_Fixed_Point_Type_Declaration --
19698 -------------------------------------------
19699
19700 procedure Ordinary_Fixed_Point_Type_Declaration
19701 (T : Entity_Id;
19702 Def : Node_Id)
19703 is
19704 Loc : constant Source_Ptr := Sloc (Def);
19705 Delta_Expr : constant Node_Id := Delta_Expression (Def);
19706 RRS : constant Node_Id := Real_Range_Specification (Def);
19707 Implicit_Base : Entity_Id;
19708 Delta_Val : Ureal;
19709 Small_Val : Ureal;
19710 Low_Val : Ureal;
19711 High_Val : Ureal;
19712
19713 begin
19714 Check_Restriction (No_Fixed_Point, Def);
19715
19716 -- Create implicit base type
19717
19718 Implicit_Base :=
19719 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
19720 Set_Etype (Implicit_Base, Implicit_Base);
19721
19722 -- Analyze and process delta expression
19723
19724 Analyze_And_Resolve (Delta_Expr, Any_Real);
19725
19726 Check_Delta_Expression (Delta_Expr);
19727 Delta_Val := Expr_Value_R (Delta_Expr);
19728
19729 Set_Delta_Value (Implicit_Base, Delta_Val);
19730
19731 -- Compute default small from given delta, which is the largest power
19732 -- of two that does not exceed the given delta value.
19733
19734 declare
19735 Tmp : Ureal;
19736 Scale : Int;
19737
19738 begin
19739 Tmp := Ureal_1;
19740 Scale := 0;
19741
19742 if Delta_Val < Ureal_1 then
19743 while Delta_Val < Tmp loop
19744 Tmp := Tmp / Ureal_2;
19745 Scale := Scale + 1;
19746 end loop;
19747
19748 else
19749 loop
19750 Tmp := Tmp * Ureal_2;
19751 exit when Tmp > Delta_Val;
19752 Scale := Scale - 1;
19753 end loop;
19754 end if;
19755
19756 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
19757 end;
19758
19759 Set_Small_Value (Implicit_Base, Small_Val);
19760
19761 -- If no range was given, set a dummy range
19762
19763 if RRS <= Empty_Or_Error then
19764 Low_Val := -Small_Val;
19765 High_Val := Small_Val;
19766
19767 -- Otherwise analyze and process given range
19768
19769 else
19770 declare
19771 Low : constant Node_Id := Low_Bound (RRS);
19772 High : constant Node_Id := High_Bound (RRS);
19773
19774 begin
19775 Analyze_And_Resolve (Low, Any_Real);
19776 Analyze_And_Resolve (High, Any_Real);
19777 Check_Real_Bound (Low);
19778 Check_Real_Bound (High);
19779
19780 -- Obtain and set the range
19781
19782 Low_Val := Expr_Value_R (Low);
19783 High_Val := Expr_Value_R (High);
19784
19785 if Low_Val > High_Val then
19786 Error_Msg_NE ("??fixed point type& has null range", Def, T);
19787 end if;
19788 end;
19789 end if;
19790
19791 -- The range for both the implicit base and the declared first subtype
19792 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
19793 -- set a temporary range in place. Note that the bounds of the base
19794 -- type will be widened to be symmetrical and to fill the available
19795 -- bits when the type is frozen.
19796
19797 -- We could do this with all discrete types, and probably should, but
19798 -- we absolutely have to do it for fixed-point, since the end-points
19799 -- of the range and the size are determined by the small value, which
19800 -- could be reset before the freeze point.
19801
19802 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
19803 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
19804
19805 -- Complete definition of first subtype. The inheritance of the rep item
19806 -- chain ensures that SPARK-related pragmas are not clobbered when the
19807 -- ordinary fixed point type acts as a full view of a private type.
19808
19809 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
19810 Set_Etype (T, Implicit_Base);
19811 Init_Size_Align (T);
19812 Inherit_Rep_Item_Chain (T, Implicit_Base);
19813 Set_Small_Value (T, Small_Val);
19814 Set_Delta_Value (T, Delta_Val);
19815 Set_Is_Constrained (T);
19816 end Ordinary_Fixed_Point_Type_Declaration;
19817
19818 ----------------------------------
19819 -- Preanalyze_Assert_Expression --
19820 ----------------------------------
19821
19822 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
19823 begin
19824 In_Assertion_Expr := In_Assertion_Expr + 1;
19825 Preanalyze_Spec_Expression (N, T);
19826 In_Assertion_Expr := In_Assertion_Expr - 1;
19827 end Preanalyze_Assert_Expression;
19828
19829 -----------------------------------
19830 -- Preanalyze_Default_Expression --
19831 -----------------------------------
19832
19833 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
19834 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
19835 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
19836
19837 begin
19838 In_Default_Expr := True;
19839 In_Spec_Expression := True;
19840
19841 Preanalyze_With_Freezing_And_Resolve (N, T);
19842
19843 In_Default_Expr := Save_In_Default_Expr;
19844 In_Spec_Expression := Save_In_Spec_Expression;
19845 end Preanalyze_Default_Expression;
19846
19847 --------------------------------
19848 -- Preanalyze_Spec_Expression --
19849 --------------------------------
19850
19851 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
19852 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
19853 begin
19854 In_Spec_Expression := True;
19855 Preanalyze_And_Resolve (N, T);
19856 In_Spec_Expression := Save_In_Spec_Expression;
19857 end Preanalyze_Spec_Expression;
19858
19859 ----------------------------------------
19860 -- Prepare_Private_Subtype_Completion --
19861 ----------------------------------------
19862
19863 procedure Prepare_Private_Subtype_Completion
19864 (Id : Entity_Id;
19865 Related_Nod : Node_Id)
19866 is
19867 Id_B : constant Entity_Id := Base_Type (Id);
19868 Full_B : Entity_Id := Full_View (Id_B);
19869 Full : Entity_Id;
19870
19871 begin
19872 if Present (Full_B) then
19873
19874 -- Get to the underlying full view if necessary
19875
19876 if Is_Private_Type (Full_B)
19877 and then Present (Underlying_Full_View (Full_B))
19878 then
19879 Full_B := Underlying_Full_View (Full_B);
19880 end if;
19881
19882 -- The Base_Type is already completed, we can complete the subtype
19883 -- now. We have to create a new entity with the same name, Thus we
19884 -- can't use Create_Itype.
19885
19886 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
19887 Set_Is_Itype (Full);
19888 Set_Associated_Node_For_Itype (Full, Related_Nod);
19889 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
19890 end if;
19891
19892 -- The parent subtype may be private, but the base might not, in some
19893 -- nested instances. In that case, the subtype does not need to be
19894 -- exchanged. It would still be nice to make private subtypes and their
19895 -- bases consistent at all times ???
19896
19897 if Is_Private_Type (Id_B) then
19898 Append_Elmt (Id, Private_Dependents (Id_B));
19899 end if;
19900 end Prepare_Private_Subtype_Completion;
19901
19902 ---------------------------
19903 -- Process_Discriminants --
19904 ---------------------------
19905
19906 procedure Process_Discriminants
19907 (N : Node_Id;
19908 Prev : Entity_Id := Empty)
19909 is
19910 Elist : constant Elist_Id := New_Elmt_List;
19911 Id : Node_Id;
19912 Discr : Node_Id;
19913 Discr_Number : Uint;
19914 Discr_Type : Entity_Id;
19915 Default_Present : Boolean := False;
19916 Default_Not_Present : Boolean := False;
19917
19918 begin
19919 -- A composite type other than an array type can have discriminants.
19920 -- On entry, the current scope is the composite type.
19921
19922 -- The discriminants are initially entered into the scope of the type
19923 -- via Enter_Name with the default Ekind of E_Void to prevent premature
19924 -- use, as explained at the end of this procedure.
19925
19926 Discr := First (Discriminant_Specifications (N));
19927 while Present (Discr) loop
19928 Enter_Name (Defining_Identifier (Discr));
19929
19930 -- For navigation purposes we add a reference to the discriminant
19931 -- in the entity for the type. If the current declaration is a
19932 -- completion, place references on the partial view. Otherwise the
19933 -- type is the current scope.
19934
19935 if Present (Prev) then
19936
19937 -- The references go on the partial view, if present. If the
19938 -- partial view has discriminants, the references have been
19939 -- generated already.
19940
19941 if not Has_Discriminants (Prev) then
19942 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
19943 end if;
19944 else
19945 Generate_Reference
19946 (Current_Scope, Defining_Identifier (Discr), 'd');
19947 end if;
19948
19949 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
19950 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
19951
19952 -- Ada 2005 (AI-254)
19953
19954 if Present (Access_To_Subprogram_Definition
19955 (Discriminant_Type (Discr)))
19956 and then Protected_Present (Access_To_Subprogram_Definition
19957 (Discriminant_Type (Discr)))
19958 then
19959 Discr_Type :=
19960 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
19961 end if;
19962
19963 else
19964 Find_Type (Discriminant_Type (Discr));
19965 Discr_Type := Etype (Discriminant_Type (Discr));
19966
19967 if Error_Posted (Discriminant_Type (Discr)) then
19968 Discr_Type := Any_Type;
19969 end if;
19970 end if;
19971
19972 -- Handling of discriminants that are access types
19973
19974 if Is_Access_Type (Discr_Type) then
19975
19976 -- Ada 2005 (AI-230): Access discriminant allowed in non-
19977 -- limited record types
19978
19979 if Ada_Version < Ada_2005 then
19980 Check_Access_Discriminant_Requires_Limited
19981 (Discr, Discriminant_Type (Discr));
19982 end if;
19983
19984 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
19985 Error_Msg_N
19986 ("(Ada 83) access discriminant not allowed", Discr);
19987 end if;
19988
19989 -- If not access type, must be a discrete type
19990
19991 elsif not Is_Discrete_Type (Discr_Type) then
19992 Error_Msg_N
19993 ("discriminants must have a discrete or access type",
19994 Discriminant_Type (Discr));
19995 end if;
19996
19997 Set_Etype (Defining_Identifier (Discr), Discr_Type);
19998
19999 -- If a discriminant specification includes the assignment compound
20000 -- delimiter followed by an expression, the expression is the default
20001 -- expression of the discriminant; the default expression must be of
20002 -- the type of the discriminant. (RM 3.7.1) Since this expression is
20003 -- a default expression, we do the special preanalysis, since this
20004 -- expression does not freeze (see section "Handling of Default and
20005 -- Per-Object Expressions" in spec of package Sem).
20006
20007 if Present (Expression (Discr)) then
20008 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
20009
20010 -- Legaity checks
20011
20012 if Nkind (N) = N_Formal_Type_Declaration then
20013 Error_Msg_N
20014 ("discriminant defaults not allowed for formal type",
20015 Expression (Discr));
20016
20017 -- Flag an error for a tagged type with defaulted discriminants,
20018 -- excluding limited tagged types when compiling for Ada 2012
20019 -- (see AI05-0214).
20020
20021 elsif Is_Tagged_Type (Current_Scope)
20022 and then (not Is_Limited_Type (Current_Scope)
20023 or else Ada_Version < Ada_2012)
20024 and then Comes_From_Source (N)
20025 then
20026 -- Note: see similar test in Check_Or_Process_Discriminants, to
20027 -- handle the (illegal) case of the completion of an untagged
20028 -- view with discriminants with defaults by a tagged full view.
20029 -- We skip the check if Discr does not come from source, to
20030 -- account for the case of an untagged derived type providing
20031 -- defaults for a renamed discriminant from a private untagged
20032 -- ancestor with a tagged full view (ACATS B460006).
20033
20034 if Ada_Version >= Ada_2012 then
20035 Error_Msg_N
20036 ("discriminants of nonlimited tagged type cannot have"
20037 & " defaults",
20038 Expression (Discr));
20039 else
20040 Error_Msg_N
20041 ("discriminants of tagged type cannot have defaults",
20042 Expression (Discr));
20043 end if;
20044
20045 else
20046 Default_Present := True;
20047 Append_Elmt (Expression (Discr), Elist);
20048
20049 -- Tag the defining identifiers for the discriminants with
20050 -- their corresponding default expressions from the tree.
20051
20052 Set_Discriminant_Default_Value
20053 (Defining_Identifier (Discr), Expression (Discr));
20054 end if;
20055
20056 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
20057 -- gets set unless we can be sure that no range check is required.
20058
20059 if (GNATprove_Mode or not Expander_Active)
20060 and then not
20061 Is_In_Range
20062 (Expression (Discr), Discr_Type, Assume_Valid => True)
20063 then
20064 Set_Do_Range_Check (Expression (Discr));
20065 end if;
20066
20067 -- No default discriminant value given
20068
20069 else
20070 Default_Not_Present := True;
20071 end if;
20072
20073 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
20074 -- Discr_Type but with the null-exclusion attribute
20075
20076 if Ada_Version >= Ada_2005 then
20077
20078 -- Ada 2005 (AI-231): Static checks
20079
20080 if Can_Never_Be_Null (Discr_Type) then
20081 Null_Exclusion_Static_Checks (Discr);
20082
20083 elsif Is_Access_Type (Discr_Type)
20084 and then Null_Exclusion_Present (Discr)
20085
20086 -- No need to check itypes because in their case this check
20087 -- was done at their point of creation
20088
20089 and then not Is_Itype (Discr_Type)
20090 then
20091 if Can_Never_Be_Null (Discr_Type) then
20092 Error_Msg_NE
20093 ("`NOT NULL` not allowed (& already excludes null)",
20094 Discr,
20095 Discr_Type);
20096 end if;
20097
20098 Set_Etype (Defining_Identifier (Discr),
20099 Create_Null_Excluding_Itype
20100 (T => Discr_Type,
20101 Related_Nod => Discr));
20102
20103 -- Check for improper null exclusion if the type is otherwise
20104 -- legal for a discriminant.
20105
20106 elsif Null_Exclusion_Present (Discr)
20107 and then Is_Discrete_Type (Discr_Type)
20108 then
20109 Error_Msg_N
20110 ("null exclusion can only apply to an access type", Discr);
20111 end if;
20112
20113 -- Ada 2005 (AI-402): access discriminants of nonlimited types
20114 -- can't have defaults. Synchronized types, or types that are
20115 -- explicitly limited are fine, but special tests apply to derived
20116 -- types in generics: in a generic body we have to assume the
20117 -- worst, and therefore defaults are not allowed if the parent is
20118 -- a generic formal private type (see ACATS B370001).
20119
20120 if Is_Access_Type (Discr_Type) and then Default_Present then
20121 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
20122 or else Is_Limited_Record (Current_Scope)
20123 or else Is_Concurrent_Type (Current_Scope)
20124 or else Is_Concurrent_Record_Type (Current_Scope)
20125 or else Ekind (Current_Scope) = E_Limited_Private_Type
20126 then
20127 if not Is_Derived_Type (Current_Scope)
20128 or else not Is_Generic_Type (Etype (Current_Scope))
20129 or else not In_Package_Body (Scope (Etype (Current_Scope)))
20130 or else Limited_Present
20131 (Type_Definition (Parent (Current_Scope)))
20132 then
20133 null;
20134
20135 else
20136 Error_Msg_N
20137 ("access discriminants of nonlimited types cannot "
20138 & "have defaults", Expression (Discr));
20139 end if;
20140
20141 elsif Present (Expression (Discr)) then
20142 Error_Msg_N
20143 ("(Ada 2005) access discriminants of nonlimited types "
20144 & "cannot have defaults", Expression (Discr));
20145 end if;
20146 end if;
20147 end if;
20148
20149 -- A discriminant cannot be effectively volatile (SPARK RM 7.1.3(4)).
20150 -- This check is relevant only when SPARK_Mode is on as it is not a
20151 -- standard Ada legality rule.
20152
20153 if SPARK_Mode = On
20154 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
20155 then
20156 Error_Msg_N ("discriminant cannot be volatile", Discr);
20157 end if;
20158
20159 Next (Discr);
20160 end loop;
20161
20162 -- An element list consisting of the default expressions of the
20163 -- discriminants is constructed in the above loop and used to set
20164 -- the Discriminant_Constraint attribute for the type. If an object
20165 -- is declared of this (record or task) type without any explicit
20166 -- discriminant constraint given, this element list will form the
20167 -- actual parameters for the corresponding initialization procedure
20168 -- for the type.
20169
20170 Set_Discriminant_Constraint (Current_Scope, Elist);
20171 Set_Stored_Constraint (Current_Scope, No_Elist);
20172
20173 -- Default expressions must be provided either for all or for none
20174 -- of the discriminants of a discriminant part. (RM 3.7.1)
20175
20176 if Default_Present and then Default_Not_Present then
20177 Error_Msg_N
20178 ("incomplete specification of defaults for discriminants", N);
20179 end if;
20180
20181 -- The use of the name of a discriminant is not allowed in default
20182 -- expressions of a discriminant part if the specification of the
20183 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
20184
20185 -- To detect this, the discriminant names are entered initially with an
20186 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
20187 -- attempt to use a void entity (for example in an expression that is
20188 -- type-checked) produces the error message: premature usage. Now after
20189 -- completing the semantic analysis of the discriminant part, we can set
20190 -- the Ekind of all the discriminants appropriately.
20191
20192 Discr := First (Discriminant_Specifications (N));
20193 Discr_Number := Uint_1;
20194 while Present (Discr) loop
20195 Id := Defining_Identifier (Discr);
20196 Set_Ekind (Id, E_Discriminant);
20197 Init_Component_Location (Id);
20198 Init_Esize (Id);
20199 Set_Discriminant_Number (Id, Discr_Number);
20200
20201 -- Make sure this is always set, even in illegal programs
20202
20203 Set_Corresponding_Discriminant (Id, Empty);
20204
20205 -- Initialize the Original_Record_Component to the entity itself.
20206 -- Inherit_Components will propagate the right value to
20207 -- discriminants in derived record types.
20208
20209 Set_Original_Record_Component (Id, Id);
20210
20211 -- Create the discriminal for the discriminant
20212
20213 Build_Discriminal (Id);
20214
20215 Next (Discr);
20216 Discr_Number := Discr_Number + 1;
20217 end loop;
20218
20219 Set_Has_Discriminants (Current_Scope);
20220 end Process_Discriminants;
20221
20222 -----------------------
20223 -- Process_Full_View --
20224 -----------------------
20225
20226 -- WARNING: This routine manages Ghost regions. Return statements must be
20227 -- replaced by gotos which jump to the end of the routine and restore the
20228 -- Ghost mode.
20229
20230 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
20231 procedure Collect_Implemented_Interfaces
20232 (Typ : Entity_Id;
20233 Ifaces : Elist_Id);
20234 -- Ada 2005: Gather all the interfaces that Typ directly or
20235 -- inherently implements. Duplicate entries are not added to
20236 -- the list Ifaces.
20237
20238 ------------------------------------
20239 -- Collect_Implemented_Interfaces --
20240 ------------------------------------
20241
20242 procedure Collect_Implemented_Interfaces
20243 (Typ : Entity_Id;
20244 Ifaces : Elist_Id)
20245 is
20246 Iface : Entity_Id;
20247 Iface_Elmt : Elmt_Id;
20248
20249 begin
20250 -- Abstract interfaces are only associated with tagged record types
20251
20252 if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then
20253 return;
20254 end if;
20255
20256 -- Recursively climb to the ancestors
20257
20258 if Etype (Typ) /= Typ
20259
20260 -- Protect the frontend against wrong cyclic declarations like:
20261
20262 -- type B is new A with private;
20263 -- type C is new A with private;
20264 -- private
20265 -- type B is new C with null record;
20266 -- type C is new B with null record;
20267
20268 and then Etype (Typ) /= Priv_T
20269 and then Etype (Typ) /= Full_T
20270 then
20271 -- Keep separate the management of private type declarations
20272
20273 if Ekind (Typ) = E_Record_Type_With_Private then
20274
20275 -- Handle the following illegal usage:
20276 -- type Private_Type is tagged private;
20277 -- private
20278 -- type Private_Type is new Type_Implementing_Iface;
20279
20280 if Present (Full_View (Typ))
20281 and then Etype (Typ) /= Full_View (Typ)
20282 then
20283 if Is_Interface (Etype (Typ)) then
20284 Append_Unique_Elmt (Etype (Typ), Ifaces);
20285 end if;
20286
20287 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
20288 end if;
20289
20290 -- Non-private types
20291
20292 else
20293 if Is_Interface (Etype (Typ)) then
20294 Append_Unique_Elmt (Etype (Typ), Ifaces);
20295 end if;
20296
20297 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
20298 end if;
20299 end if;
20300
20301 -- Handle entities in the list of abstract interfaces
20302
20303 if Present (Interfaces (Typ)) then
20304 Iface_Elmt := First_Elmt (Interfaces (Typ));
20305 while Present (Iface_Elmt) loop
20306 Iface := Node (Iface_Elmt);
20307
20308 pragma Assert (Is_Interface (Iface));
20309
20310 if not Contain_Interface (Iface, Ifaces) then
20311 Append_Elmt (Iface, Ifaces);
20312 Collect_Implemented_Interfaces (Iface, Ifaces);
20313 end if;
20314
20315 Next_Elmt (Iface_Elmt);
20316 end loop;
20317 end if;
20318 end Collect_Implemented_Interfaces;
20319
20320 -- Local variables
20321
20322 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
20323 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
20324 -- Save the Ghost-related attributes to restore on exit
20325
20326 Full_Indic : Node_Id;
20327 Full_Parent : Entity_Id;
20328 Priv_Parent : Entity_Id;
20329
20330 -- Start of processing for Process_Full_View
20331
20332 begin
20333 Mark_And_Set_Ghost_Completion (N, Priv_T);
20334
20335 -- First some sanity checks that must be done after semantic
20336 -- decoration of the full view and thus cannot be placed with other
20337 -- similar checks in Find_Type_Name
20338
20339 if not Is_Limited_Type (Priv_T)
20340 and then (Is_Limited_Type (Full_T)
20341 or else Is_Limited_Composite (Full_T))
20342 then
20343 if In_Instance then
20344 null;
20345 else
20346 Error_Msg_N
20347 ("completion of nonlimited type cannot be limited", Full_T);
20348 Explain_Limited_Type (Full_T, Full_T);
20349 end if;
20350
20351 elsif Is_Abstract_Type (Full_T)
20352 and then not Is_Abstract_Type (Priv_T)
20353 then
20354 Error_Msg_N
20355 ("completion of nonabstract type cannot be abstract", Full_T);
20356
20357 elsif Is_Tagged_Type (Priv_T)
20358 and then Is_Limited_Type (Priv_T)
20359 and then not Is_Limited_Type (Full_T)
20360 then
20361 -- If pragma CPP_Class was applied to the private declaration
20362 -- propagate the limitedness to the full-view
20363
20364 if Is_CPP_Class (Priv_T) then
20365 Set_Is_Limited_Record (Full_T);
20366
20367 -- GNAT allow its own definition of Limited_Controlled to disobey
20368 -- this rule in order in ease the implementation. This test is safe
20369 -- because Root_Controlled is defined in a child of System that
20370 -- normal programs are not supposed to use.
20371
20372 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
20373 Set_Is_Limited_Composite (Full_T);
20374 else
20375 Error_Msg_N
20376 ("completion of limited tagged type must be limited", Full_T);
20377 end if;
20378
20379 elsif Is_Generic_Type (Priv_T) then
20380 Error_Msg_N ("generic type cannot have a completion", Full_T);
20381 end if;
20382
20383 -- Check that ancestor interfaces of private and full views are
20384 -- consistent. We omit this check for synchronized types because
20385 -- they are performed on the corresponding record type when frozen.
20386
20387 if Ada_Version >= Ada_2005
20388 and then Is_Tagged_Type (Priv_T)
20389 and then Is_Tagged_Type (Full_T)
20390 and then not Is_Concurrent_Type (Full_T)
20391 then
20392 declare
20393 Iface : Entity_Id;
20394 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
20395 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
20396
20397 begin
20398 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
20399 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
20400
20401 -- Ada 2005 (AI-251): The partial view shall be a descendant of
20402 -- an interface type if and only if the full type is descendant
20403 -- of the interface type (AARM 7.3 (7.3/2)).
20404
20405 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
20406
20407 if Present (Iface) then
20408 Error_Msg_NE
20409 ("interface in partial view& not implemented by full type "
20410 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
20411 end if;
20412
20413 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
20414
20415 if Present (Iface) then
20416 Error_Msg_NE
20417 ("interface & not implemented by partial view "
20418 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
20419 end if;
20420 end;
20421 end if;
20422
20423 if Is_Tagged_Type (Priv_T)
20424 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20425 and then Is_Derived_Type (Full_T)
20426 then
20427 Priv_Parent := Etype (Priv_T);
20428
20429 -- The full view of a private extension may have been transformed
20430 -- into an unconstrained derived type declaration and a subtype
20431 -- declaration (see build_derived_record_type for details).
20432
20433 if Nkind (N) = N_Subtype_Declaration then
20434 Full_Indic := Subtype_Indication (N);
20435 Full_Parent := Etype (Base_Type (Full_T));
20436 else
20437 Full_Indic := Subtype_Indication (Type_Definition (N));
20438 Full_Parent := Etype (Full_T);
20439 end if;
20440
20441 -- Check that the parent type of the full type is a descendant of
20442 -- the ancestor subtype given in the private extension. If either
20443 -- entity has an Etype equal to Any_Type then we had some previous
20444 -- error situation [7.3(8)].
20445
20446 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
20447 goto Leave;
20448
20449 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
20450 -- any order. Therefore we don't have to check that its parent must
20451 -- be a descendant of the parent of the private type declaration.
20452
20453 elsif Is_Interface (Priv_Parent)
20454 and then Is_Interface (Full_Parent)
20455 then
20456 null;
20457
20458 -- Ada 2005 (AI-251): If the parent of the private type declaration
20459 -- is an interface there is no need to check that it is an ancestor
20460 -- of the associated full type declaration. The required tests for
20461 -- this case are performed by Build_Derived_Record_Type.
20462
20463 elsif not Is_Interface (Base_Type (Priv_Parent))
20464 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
20465 then
20466 Error_Msg_N
20467 ("parent of full type must descend from parent of private "
20468 & "extension", Full_Indic);
20469
20470 -- First check a formal restriction, and then proceed with checking
20471 -- Ada rules. Since the formal restriction is not a serious error, we
20472 -- don't prevent further error detection for this check, hence the
20473 -- ELSE.
20474
20475 else
20476 -- In formal mode, when completing a private extension the type
20477 -- named in the private part must be exactly the same as that
20478 -- named in the visible part.
20479
20480 if Priv_Parent /= Full_Parent then
20481 Error_Msg_Name_1 := Chars (Priv_Parent);
20482 Check_SPARK_05_Restriction ("% expected", Full_Indic);
20483 end if;
20484
20485 -- Check the rules of 7.3(10): if the private extension inherits
20486 -- known discriminants, then the full type must also inherit those
20487 -- discriminants from the same (ancestor) type, and the parent
20488 -- subtype of the full type must be constrained if and only if
20489 -- the ancestor subtype of the private extension is constrained.
20490
20491 if No (Discriminant_Specifications (Parent (Priv_T)))
20492 and then not Has_Unknown_Discriminants (Priv_T)
20493 and then Has_Discriminants (Base_Type (Priv_Parent))
20494 then
20495 declare
20496 Priv_Indic : constant Node_Id :=
20497 Subtype_Indication (Parent (Priv_T));
20498
20499 Priv_Constr : constant Boolean :=
20500 Is_Constrained (Priv_Parent)
20501 or else
20502 Nkind (Priv_Indic) = N_Subtype_Indication
20503 or else
20504 Is_Constrained (Entity (Priv_Indic));
20505
20506 Full_Constr : constant Boolean :=
20507 Is_Constrained (Full_Parent)
20508 or else
20509 Nkind (Full_Indic) = N_Subtype_Indication
20510 or else
20511 Is_Constrained (Entity (Full_Indic));
20512
20513 Priv_Discr : Entity_Id;
20514 Full_Discr : Entity_Id;
20515
20516 begin
20517 Priv_Discr := First_Discriminant (Priv_Parent);
20518 Full_Discr := First_Discriminant (Full_Parent);
20519 while Present (Priv_Discr) and then Present (Full_Discr) loop
20520 if Original_Record_Component (Priv_Discr) =
20521 Original_Record_Component (Full_Discr)
20522 or else
20523 Corresponding_Discriminant (Priv_Discr) =
20524 Corresponding_Discriminant (Full_Discr)
20525 then
20526 null;
20527 else
20528 exit;
20529 end if;
20530
20531 Next_Discriminant (Priv_Discr);
20532 Next_Discriminant (Full_Discr);
20533 end loop;
20534
20535 if Present (Priv_Discr) or else Present (Full_Discr) then
20536 Error_Msg_N
20537 ("full view must inherit discriminants of the parent "
20538 & "type used in the private extension", Full_Indic);
20539
20540 elsif Priv_Constr and then not Full_Constr then
20541 Error_Msg_N
20542 ("parent subtype of full type must be constrained",
20543 Full_Indic);
20544
20545 elsif Full_Constr and then not Priv_Constr then
20546 Error_Msg_N
20547 ("parent subtype of full type must be unconstrained",
20548 Full_Indic);
20549 end if;
20550 end;
20551
20552 -- Check the rules of 7.3(12): if a partial view has neither
20553 -- known or unknown discriminants, then the full type
20554 -- declaration shall define a definite subtype.
20555
20556 elsif not Has_Unknown_Discriminants (Priv_T)
20557 and then not Has_Discriminants (Priv_T)
20558 and then not Is_Constrained (Full_T)
20559 then
20560 Error_Msg_N
20561 ("full view must define a constrained type if partial view "
20562 & "has no discriminants", Full_T);
20563 end if;
20564
20565 -- ??????? Do we implement the following properly ?????
20566 -- If the ancestor subtype of a private extension has constrained
20567 -- discriminants, then the parent subtype of the full view shall
20568 -- impose a statically matching constraint on those discriminants
20569 -- [7.3(13)].
20570 end if;
20571
20572 else
20573 -- For untagged types, verify that a type without discriminants is
20574 -- not completed with an unconstrained type. A separate error message
20575 -- is produced if the full type has defaulted discriminants.
20576
20577 if Is_Definite_Subtype (Priv_T)
20578 and then not Is_Definite_Subtype (Full_T)
20579 then
20580 Error_Msg_Sloc := Sloc (Parent (Priv_T));
20581 Error_Msg_NE
20582 ("full view of& not compatible with declaration#",
20583 Full_T, Priv_T);
20584
20585 if not Is_Tagged_Type (Full_T) then
20586 Error_Msg_N
20587 ("\one is constrained, the other unconstrained", Full_T);
20588 end if;
20589 end if;
20590 end if;
20591
20592 -- AI-419: verify that the use of "limited" is consistent
20593
20594 declare
20595 Orig_Decl : constant Node_Id := Original_Node (N);
20596
20597 begin
20598 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20599 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
20600 and then Nkind
20601 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
20602 then
20603 if not Limited_Present (Parent (Priv_T))
20604 and then not Synchronized_Present (Parent (Priv_T))
20605 and then Limited_Present (Type_Definition (Orig_Decl))
20606 then
20607 Error_Msg_N
20608 ("full view of non-limited extension cannot be limited", N);
20609
20610 -- Conversely, if the partial view carries the limited keyword,
20611 -- the full view must as well, even if it may be redundant.
20612
20613 elsif Limited_Present (Parent (Priv_T))
20614 and then not Limited_Present (Type_Definition (Orig_Decl))
20615 then
20616 Error_Msg_N
20617 ("full view of limited extension must be explicitly limited",
20618 N);
20619 end if;
20620 end if;
20621 end;
20622
20623 -- Ada 2005 (AI-443): A synchronized private extension must be
20624 -- completed by a task or protected type.
20625
20626 if Ada_Version >= Ada_2005
20627 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20628 and then Synchronized_Present (Parent (Priv_T))
20629 and then not Is_Concurrent_Type (Full_T)
20630 then
20631 Error_Msg_N ("full view of synchronized extension must " &
20632 "be synchronized type", N);
20633 end if;
20634
20635 -- Ada 2005 AI-363: if the full view has discriminants with
20636 -- defaults, it is illegal to declare constrained access subtypes
20637 -- whose designated type is the current type. This allows objects
20638 -- of the type that are declared in the heap to be unconstrained.
20639
20640 if not Has_Unknown_Discriminants (Priv_T)
20641 and then not Has_Discriminants (Priv_T)
20642 and then Has_Discriminants (Full_T)
20643 and then
20644 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
20645 then
20646 Set_Has_Constrained_Partial_View (Full_T);
20647 Set_Has_Constrained_Partial_View (Priv_T);
20648 end if;
20649
20650 -- Create a full declaration for all its subtypes recorded in
20651 -- Private_Dependents and swap them similarly to the base type. These
20652 -- are subtypes that have been define before the full declaration of
20653 -- the private type. We also swap the entry in Private_Dependents list
20654 -- so we can properly restore the private view on exit from the scope.
20655
20656 declare
20657 Priv_Elmt : Elmt_Id;
20658 Priv_Scop : Entity_Id;
20659 Priv : Entity_Id;
20660 Full : Entity_Id;
20661
20662 begin
20663 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
20664 while Present (Priv_Elmt) loop
20665 Priv := Node (Priv_Elmt);
20666 Priv_Scop := Scope (Priv);
20667
20668 if Ekind_In (Priv, E_Private_Subtype,
20669 E_Limited_Private_Subtype,
20670 E_Record_Subtype_With_Private)
20671 then
20672 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
20673 Set_Is_Itype (Full);
20674 Set_Parent (Full, Parent (Priv));
20675 Set_Associated_Node_For_Itype (Full, N);
20676
20677 -- Now we need to complete the private subtype, but since the
20678 -- base type has already been swapped, we must also swap the
20679 -- subtypes (and thus, reverse the arguments in the call to
20680 -- Complete_Private_Subtype). Also note that we may need to
20681 -- re-establish the scope of the private subtype.
20682
20683 Copy_And_Swap (Priv, Full);
20684
20685 if not In_Open_Scopes (Priv_Scop) then
20686 Push_Scope (Priv_Scop);
20687
20688 else
20689 -- Reset Priv_Scop to Empty to indicate no scope was pushed
20690
20691 Priv_Scop := Empty;
20692 end if;
20693
20694 Complete_Private_Subtype (Full, Priv, Full_T, N);
20695
20696 if Present (Priv_Scop) then
20697 Pop_Scope;
20698 end if;
20699
20700 Replace_Elmt (Priv_Elmt, Full);
20701 end if;
20702
20703 Next_Elmt (Priv_Elmt);
20704 end loop;
20705 end;
20706
20707 -- If the private view was tagged, copy the new primitive operations
20708 -- from the private view to the full view.
20709
20710 if Is_Tagged_Type (Full_T) then
20711 declare
20712 Disp_Typ : Entity_Id;
20713 Full_List : Elist_Id;
20714 Prim : Entity_Id;
20715 Prim_Elmt : Elmt_Id;
20716 Priv_List : Elist_Id;
20717
20718 function Contains
20719 (E : Entity_Id;
20720 L : Elist_Id) return Boolean;
20721 -- Determine whether list L contains element E
20722
20723 --------------
20724 -- Contains --
20725 --------------
20726
20727 function Contains
20728 (E : Entity_Id;
20729 L : Elist_Id) return Boolean
20730 is
20731 List_Elmt : Elmt_Id;
20732
20733 begin
20734 List_Elmt := First_Elmt (L);
20735 while Present (List_Elmt) loop
20736 if Node (List_Elmt) = E then
20737 return True;
20738 end if;
20739
20740 Next_Elmt (List_Elmt);
20741 end loop;
20742
20743 return False;
20744 end Contains;
20745
20746 -- Start of processing
20747
20748 begin
20749 if Is_Tagged_Type (Priv_T) then
20750 Priv_List := Primitive_Operations (Priv_T);
20751 Prim_Elmt := First_Elmt (Priv_List);
20752
20753 -- In the case of a concurrent type completing a private tagged
20754 -- type, primitives may have been declared in between the two
20755 -- views. These subprograms need to be wrapped the same way
20756 -- entries and protected procedures are handled because they
20757 -- cannot be directly shared by the two views.
20758
20759 if Is_Concurrent_Type (Full_T) then
20760 declare
20761 Conc_Typ : constant Entity_Id :=
20762 Corresponding_Record_Type (Full_T);
20763 Curr_Nod : Node_Id := Parent (Conc_Typ);
20764 Wrap_Spec : Node_Id;
20765
20766 begin
20767 while Present (Prim_Elmt) loop
20768 Prim := Node (Prim_Elmt);
20769
20770 if Comes_From_Source (Prim)
20771 and then not Is_Abstract_Subprogram (Prim)
20772 then
20773 Wrap_Spec :=
20774 Make_Subprogram_Declaration (Sloc (Prim),
20775 Specification =>
20776 Build_Wrapper_Spec
20777 (Subp_Id => Prim,
20778 Obj_Typ => Conc_Typ,
20779 Formals =>
20780 Parameter_Specifications
20781 (Parent (Prim))));
20782
20783 Insert_After (Curr_Nod, Wrap_Spec);
20784 Curr_Nod := Wrap_Spec;
20785
20786 Analyze (Wrap_Spec);
20787
20788 -- Remove the wrapper from visibility to avoid
20789 -- spurious conflict with the wrapped entity.
20790
20791 Set_Is_Immediately_Visible
20792 (Defining_Entity (Specification (Wrap_Spec)),
20793 False);
20794 end if;
20795
20796 Next_Elmt (Prim_Elmt);
20797 end loop;
20798
20799 goto Leave;
20800 end;
20801
20802 -- For non-concurrent types, transfer explicit primitives, but
20803 -- omit those inherited from the parent of the private view
20804 -- since they will be re-inherited later on.
20805
20806 else
20807 Full_List := Primitive_Operations (Full_T);
20808 while Present (Prim_Elmt) loop
20809 Prim := Node (Prim_Elmt);
20810
20811 if Comes_From_Source (Prim)
20812 and then not Contains (Prim, Full_List)
20813 then
20814 Append_Elmt (Prim, Full_List);
20815 end if;
20816
20817 Next_Elmt (Prim_Elmt);
20818 end loop;
20819 end if;
20820
20821 -- Untagged private view
20822
20823 else
20824 Full_List := Primitive_Operations (Full_T);
20825
20826 -- In this case the partial view is untagged, so here we locate
20827 -- all of the earlier primitives that need to be treated as
20828 -- dispatching (those that appear between the two views). Note
20829 -- that these additional operations must all be new operations
20830 -- (any earlier operations that override inherited operations
20831 -- of the full view will already have been inserted in the
20832 -- primitives list, marked by Check_Operation_From_Private_View
20833 -- as dispatching. Note that implicit "/=" operators are
20834 -- excluded from being added to the primitives list since they
20835 -- shouldn't be treated as dispatching (tagged "/=" is handled
20836 -- specially).
20837
20838 Prim := Next_Entity (Full_T);
20839 while Present (Prim) and then Prim /= Priv_T loop
20840 if Ekind_In (Prim, E_Procedure, E_Function) then
20841 Disp_Typ := Find_Dispatching_Type (Prim);
20842
20843 if Disp_Typ = Full_T
20844 and then (Chars (Prim) /= Name_Op_Ne
20845 or else Comes_From_Source (Prim))
20846 then
20847 Check_Controlling_Formals (Full_T, Prim);
20848
20849 if Is_Suitable_Primitive (Prim)
20850 and then not Is_Dispatching_Operation (Prim)
20851 then
20852 Append_Elmt (Prim, Full_List);
20853 Set_Is_Dispatching_Operation (Prim);
20854 Set_DT_Position_Value (Prim, No_Uint);
20855 end if;
20856
20857 elsif Is_Dispatching_Operation (Prim)
20858 and then Disp_Typ /= Full_T
20859 then
20860 -- Verify that it is not otherwise controlled by a
20861 -- formal or a return value of type T.
20862
20863 Check_Controlling_Formals (Disp_Typ, Prim);
20864 end if;
20865 end if;
20866
20867 Next_Entity (Prim);
20868 end loop;
20869 end if;
20870
20871 -- For the tagged case, the two views can share the same primitive
20872 -- operations list and the same class-wide type. Update attributes
20873 -- of the class-wide type which depend on the full declaration.
20874
20875 if Is_Tagged_Type (Priv_T) then
20876 Set_Direct_Primitive_Operations (Priv_T, Full_List);
20877 Set_Class_Wide_Type
20878 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
20879
20880 Propagate_Concurrent_Flags (Class_Wide_Type (Priv_T), Full_T);
20881 end if;
20882 end;
20883 end if;
20884
20885 -- Ada 2005 AI 161: Check preelaborable initialization consistency
20886
20887 if Known_To_Have_Preelab_Init (Priv_T) then
20888
20889 -- Case where there is a pragma Preelaborable_Initialization. We
20890 -- always allow this in predefined units, which is cheating a bit,
20891 -- but it means we don't have to struggle to meet the requirements in
20892 -- the RM for having Preelaborable Initialization. Otherwise we
20893 -- require that the type meets the RM rules. But we can't check that
20894 -- yet, because of the rule about overriding Initialize, so we simply
20895 -- set a flag that will be checked at freeze time.
20896
20897 if not In_Predefined_Unit (Full_T) then
20898 Set_Must_Have_Preelab_Init (Full_T);
20899 end if;
20900 end if;
20901
20902 -- If pragma CPP_Class was applied to the private type declaration,
20903 -- propagate it now to the full type declaration.
20904
20905 if Is_CPP_Class (Priv_T) then
20906 Set_Is_CPP_Class (Full_T);
20907 Set_Convention (Full_T, Convention_CPP);
20908
20909 -- Check that components of imported CPP types do not have default
20910 -- expressions.
20911
20912 Check_CPP_Type_Has_No_Defaults (Full_T);
20913 end if;
20914
20915 -- If the private view has user specified stream attributes, then so has
20916 -- the full view.
20917
20918 -- Why the test, how could these flags be already set in Full_T ???
20919
20920 if Has_Specified_Stream_Read (Priv_T) then
20921 Set_Has_Specified_Stream_Read (Full_T);
20922 end if;
20923
20924 if Has_Specified_Stream_Write (Priv_T) then
20925 Set_Has_Specified_Stream_Write (Full_T);
20926 end if;
20927
20928 if Has_Specified_Stream_Input (Priv_T) then
20929 Set_Has_Specified_Stream_Input (Full_T);
20930 end if;
20931
20932 if Has_Specified_Stream_Output (Priv_T) then
20933 Set_Has_Specified_Stream_Output (Full_T);
20934 end if;
20935
20936 -- Propagate Default_Initial_Condition-related attributes from the
20937 -- partial view to the full view and its base type.
20938
20939 Propagate_DIC_Attributes (Full_T, From_Typ => Priv_T);
20940 Propagate_DIC_Attributes (Base_Type (Full_T), From_Typ => Priv_T);
20941
20942 -- Propagate invariant-related attributes from the partial view to the
20943 -- full view and its base type.
20944
20945 Propagate_Invariant_Attributes (Full_T, From_Typ => Priv_T);
20946 Propagate_Invariant_Attributes (Base_Type (Full_T), From_Typ => Priv_T);
20947
20948 -- AI12-0041: Detect an attempt to inherit a class-wide type invariant
20949 -- in the full view without advertising the inheritance in the partial
20950 -- view. This can only occur when the partial view has no parent type
20951 -- and the full view has an interface as a parent. Any other scenarios
20952 -- are illegal because implemented interfaces must match between the
20953 -- two views.
20954
20955 if Is_Tagged_Type (Priv_T) and then Is_Tagged_Type (Full_T) then
20956 declare
20957 Full_Par : constant Entity_Id := Etype (Full_T);
20958 Priv_Par : constant Entity_Id := Etype (Priv_T);
20959
20960 begin
20961 if not Is_Interface (Priv_Par)
20962 and then Is_Interface (Full_Par)
20963 and then Has_Inheritable_Invariants (Full_Par)
20964 then
20965 Error_Msg_N
20966 ("hidden inheritance of class-wide type invariants not "
20967 & "allowed", N);
20968 end if;
20969 end;
20970 end if;
20971
20972 -- Propagate predicates to full type, and predicate function if already
20973 -- defined. It is not clear that this can actually happen? the partial
20974 -- view cannot be frozen yet, and the predicate function has not been
20975 -- built. Still it is a cheap check and seems safer to make it.
20976
20977 if Has_Predicates (Priv_T) then
20978 Set_Has_Predicates (Full_T);
20979
20980 if Present (Predicate_Function (Priv_T)) then
20981 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
20982 end if;
20983 end if;
20984
20985 <<Leave>>
20986 Restore_Ghost_Region (Saved_GM, Saved_IGR);
20987 end Process_Full_View;
20988
20989 -----------------------------------
20990 -- Process_Incomplete_Dependents --
20991 -----------------------------------
20992
20993 procedure Process_Incomplete_Dependents
20994 (N : Node_Id;
20995 Full_T : Entity_Id;
20996 Inc_T : Entity_Id)
20997 is
20998 Inc_Elmt : Elmt_Id;
20999 Priv_Dep : Entity_Id;
21000 New_Subt : Entity_Id;
21001
21002 Disc_Constraint : Elist_Id;
21003
21004 begin
21005 if No (Private_Dependents (Inc_T)) then
21006 return;
21007 end if;
21008
21009 -- Itypes that may be generated by the completion of an incomplete
21010 -- subtype are not used by the back-end and not attached to the tree.
21011 -- They are created only for constraint-checking purposes.
21012
21013 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
21014 while Present (Inc_Elmt) loop
21015 Priv_Dep := Node (Inc_Elmt);
21016
21017 if Ekind (Priv_Dep) = E_Subprogram_Type then
21018
21019 -- An Access_To_Subprogram type may have a return type or a
21020 -- parameter type that is incomplete. Replace with the full view.
21021
21022 if Etype (Priv_Dep) = Inc_T then
21023 Set_Etype (Priv_Dep, Full_T);
21024 end if;
21025
21026 declare
21027 Formal : Entity_Id;
21028
21029 begin
21030 Formal := First_Formal (Priv_Dep);
21031 while Present (Formal) loop
21032 if Etype (Formal) = Inc_T then
21033 Set_Etype (Formal, Full_T);
21034 end if;
21035
21036 Next_Formal (Formal);
21037 end loop;
21038 end;
21039
21040 elsif Is_Overloadable (Priv_Dep) then
21041
21042 -- If a subprogram in the incomplete dependents list is primitive
21043 -- for a tagged full type then mark it as a dispatching operation,
21044 -- check whether it overrides an inherited subprogram, and check
21045 -- restrictions on its controlling formals. Note that a protected
21046 -- operation is never dispatching: only its wrapper operation
21047 -- (which has convention Ada) is.
21048
21049 if Is_Tagged_Type (Full_T)
21050 and then Is_Primitive (Priv_Dep)
21051 and then Convention (Priv_Dep) /= Convention_Protected
21052 then
21053 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
21054 Set_Is_Dispatching_Operation (Priv_Dep);
21055 Check_Controlling_Formals (Full_T, Priv_Dep);
21056 end if;
21057
21058 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
21059
21060 -- Can happen during processing of a body before the completion
21061 -- of a TA type. Ignore, because spec is also on dependent list.
21062
21063 return;
21064
21065 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
21066 -- corresponding subtype of the full view.
21067
21068 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype
21069 and then Comes_From_Source (Priv_Dep)
21070 then
21071 Set_Subtype_Indication
21072 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
21073 Set_Etype (Priv_Dep, Full_T);
21074 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
21075 Set_Analyzed (Parent (Priv_Dep), False);
21076
21077 -- Reanalyze the declaration, suppressing the call to Enter_Name
21078 -- to avoid duplicate names.
21079
21080 Analyze_Subtype_Declaration
21081 (N => Parent (Priv_Dep),
21082 Skip => True);
21083
21084 -- Dependent is a subtype
21085
21086 else
21087 -- We build a new subtype indication using the full view of the
21088 -- incomplete parent. The discriminant constraints have been
21089 -- elaborated already at the point of the subtype declaration.
21090
21091 New_Subt := Create_Itype (E_Void, N);
21092
21093 if Has_Discriminants (Full_T) then
21094 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
21095 else
21096 Disc_Constraint := No_Elist;
21097 end if;
21098
21099 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
21100 Set_Full_View (Priv_Dep, New_Subt);
21101 end if;
21102
21103 Next_Elmt (Inc_Elmt);
21104 end loop;
21105 end Process_Incomplete_Dependents;
21106
21107 --------------------------------
21108 -- Process_Range_Expr_In_Decl --
21109 --------------------------------
21110
21111 procedure Process_Range_Expr_In_Decl
21112 (R : Node_Id;
21113 T : Entity_Id;
21114 Subtyp : Entity_Id := Empty;
21115 Check_List : List_Id := Empty_List;
21116 R_Check_Off : Boolean := False;
21117 In_Iter_Schm : Boolean := False)
21118 is
21119 Lo, Hi : Node_Id;
21120 R_Checks : Check_Result;
21121 Insert_Node : Node_Id;
21122 Def_Id : Entity_Id;
21123
21124 begin
21125 Analyze_And_Resolve (R, Base_Type (T));
21126
21127 if Nkind (R) = N_Range then
21128
21129 -- In SPARK, all ranges should be static, with the exception of the
21130 -- discrete type definition of a loop parameter specification.
21131
21132 if not In_Iter_Schm
21133 and then not Is_OK_Static_Range (R)
21134 then
21135 Check_SPARK_05_Restriction ("range should be static", R);
21136 end if;
21137
21138 Lo := Low_Bound (R);
21139 Hi := High_Bound (R);
21140
21141 -- Validity checks on the range of a quantified expression are
21142 -- delayed until the construct is transformed into a loop.
21143
21144 if Nkind (Parent (R)) = N_Loop_Parameter_Specification
21145 and then Nkind (Parent (Parent (R))) = N_Quantified_Expression
21146 then
21147 null;
21148
21149 -- We need to ensure validity of the bounds here, because if we
21150 -- go ahead and do the expansion, then the expanded code will get
21151 -- analyzed with range checks suppressed and we miss the check.
21152
21153 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
21154 -- the temporaries generated by routine Remove_Side_Effects by means
21155 -- of validity checks must use the same names. When a range appears
21156 -- in the parent of a generic, the range is processed with checks
21157 -- disabled as part of the generic context and with checks enabled
21158 -- for code generation purposes. This leads to link issues as the
21159 -- generic contains references to xxx_FIRST/_LAST, but the inlined
21160 -- template sees the temporaries generated by Remove_Side_Effects.
21161
21162 else
21163 Validity_Check_Range (R, Subtyp);
21164 end if;
21165
21166 -- If there were errors in the declaration, try and patch up some
21167 -- common mistakes in the bounds. The cases handled are literals
21168 -- which are Integer where the expected type is Real and vice versa.
21169 -- These corrections allow the compilation process to proceed further
21170 -- along since some basic assumptions of the format of the bounds
21171 -- are guaranteed.
21172
21173 if Etype (R) = Any_Type then
21174 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
21175 Rewrite (Lo,
21176 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
21177
21178 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
21179 Rewrite (Hi,
21180 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
21181
21182 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
21183 Rewrite (Lo,
21184 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
21185
21186 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
21187 Rewrite (Hi,
21188 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
21189 end if;
21190
21191 Set_Etype (Lo, T);
21192 Set_Etype (Hi, T);
21193 end if;
21194
21195 -- If the bounds of the range have been mistakenly given as string
21196 -- literals (perhaps in place of character literals), then an error
21197 -- has already been reported, but we rewrite the string literal as a
21198 -- bound of the range's type to avoid blowups in later processing
21199 -- that looks at static values.
21200
21201 if Nkind (Lo) = N_String_Literal then
21202 Rewrite (Lo,
21203 Make_Attribute_Reference (Sloc (Lo),
21204 Prefix => New_Occurrence_Of (T, Sloc (Lo)),
21205 Attribute_Name => Name_First));
21206 Analyze_And_Resolve (Lo);
21207 end if;
21208
21209 if Nkind (Hi) = N_String_Literal then
21210 Rewrite (Hi,
21211 Make_Attribute_Reference (Sloc (Hi),
21212 Prefix => New_Occurrence_Of (T, Sloc (Hi)),
21213 Attribute_Name => Name_First));
21214 Analyze_And_Resolve (Hi);
21215 end if;
21216
21217 -- If bounds aren't scalar at this point then exit, avoiding
21218 -- problems with further processing of the range in this procedure.
21219
21220 if not Is_Scalar_Type (Etype (Lo)) then
21221 return;
21222 end if;
21223
21224 -- Resolve (actually Sem_Eval) has checked that the bounds are in
21225 -- then range of the base type. Here we check whether the bounds
21226 -- are in the range of the subtype itself. Note that if the bounds
21227 -- represent the null range the Constraint_Error exception should
21228 -- not be raised.
21229
21230 -- ??? The following code should be cleaned up as follows
21231
21232 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
21233 -- is done in the call to Range_Check (R, T); below
21234
21235 -- 2. The use of R_Check_Off should be investigated and possibly
21236 -- removed, this would clean up things a bit.
21237
21238 if Is_Null_Range (Lo, Hi) then
21239 null;
21240
21241 else
21242 -- Capture values of bounds and generate temporaries for them
21243 -- if needed, before applying checks, since checks may cause
21244 -- duplication of the expression without forcing evaluation.
21245
21246 -- The forced evaluation removes side effects from expressions,
21247 -- which should occur also in GNATprove mode. Otherwise, we end up
21248 -- with unexpected insertions of actions at places where this is
21249 -- not supposed to occur, e.g. on default parameters of a call.
21250
21251 if Expander_Active or GNATprove_Mode then
21252
21253 -- Call Force_Evaluation to create declarations as needed to
21254 -- deal with side effects, and also create typ_FIRST/LAST
21255 -- entities for bounds if we have a subtype name.
21256
21257 -- Note: we do this transformation even if expansion is not
21258 -- active if we are in GNATprove_Mode since the transformation
21259 -- is in general required to ensure that the resulting tree has
21260 -- proper Ada semantics.
21261
21262 Force_Evaluation
21263 (Lo, Related_Id => Subtyp, Is_Low_Bound => True);
21264 Force_Evaluation
21265 (Hi, Related_Id => Subtyp, Is_High_Bound => True);
21266 end if;
21267
21268 -- We use a flag here instead of suppressing checks on the type
21269 -- because the type we check against isn't necessarily the place
21270 -- where we put the check.
21271
21272 if not R_Check_Off then
21273 R_Checks := Get_Range_Checks (R, T);
21274
21275 -- Look up tree to find an appropriate insertion point. We
21276 -- can't just use insert_actions because later processing
21277 -- depends on the insertion node. Prior to Ada 2012 the
21278 -- insertion point could only be a declaration or a loop, but
21279 -- quantified expressions can appear within any context in an
21280 -- expression, and the insertion point can be any statement,
21281 -- pragma, or declaration.
21282
21283 Insert_Node := Parent (R);
21284 while Present (Insert_Node) loop
21285 exit when
21286 Nkind (Insert_Node) in N_Declaration
21287 and then
21288 not Nkind_In
21289 (Insert_Node, N_Component_Declaration,
21290 N_Loop_Parameter_Specification,
21291 N_Function_Specification,
21292 N_Procedure_Specification);
21293
21294 exit when Nkind (Insert_Node) in N_Later_Decl_Item
21295 or else Nkind (Insert_Node) in
21296 N_Statement_Other_Than_Procedure_Call
21297 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
21298 N_Pragma);
21299
21300 Insert_Node := Parent (Insert_Node);
21301 end loop;
21302
21303 -- Why would Type_Decl not be present??? Without this test,
21304 -- short regression tests fail.
21305
21306 if Present (Insert_Node) then
21307
21308 -- Case of loop statement. Verify that the range is part
21309 -- of the subtype indication of the iteration scheme.
21310
21311 if Nkind (Insert_Node) = N_Loop_Statement then
21312 declare
21313 Indic : Node_Id;
21314
21315 begin
21316 Indic := Parent (R);
21317 while Present (Indic)
21318 and then Nkind (Indic) /= N_Subtype_Indication
21319 loop
21320 Indic := Parent (Indic);
21321 end loop;
21322
21323 if Present (Indic) then
21324 Def_Id := Etype (Subtype_Mark (Indic));
21325
21326 Insert_Range_Checks
21327 (R_Checks,
21328 Insert_Node,
21329 Def_Id,
21330 Sloc (Insert_Node),
21331 R,
21332 Do_Before => True);
21333 end if;
21334 end;
21335
21336 -- Insertion before a declaration. If the declaration
21337 -- includes discriminants, the list of applicable checks
21338 -- is given by the caller.
21339
21340 elsif Nkind (Insert_Node) in N_Declaration then
21341 Def_Id := Defining_Identifier (Insert_Node);
21342
21343 if (Ekind (Def_Id) = E_Record_Type
21344 and then Depends_On_Discriminant (R))
21345 or else
21346 (Ekind (Def_Id) = E_Protected_Type
21347 and then Has_Discriminants (Def_Id))
21348 then
21349 Append_Range_Checks
21350 (R_Checks,
21351 Check_List, Def_Id, Sloc (Insert_Node), R);
21352
21353 else
21354 Insert_Range_Checks
21355 (R_Checks,
21356 Insert_Node, Def_Id, Sloc (Insert_Node), R);
21357
21358 end if;
21359
21360 -- Insertion before a statement. Range appears in the
21361 -- context of a quantified expression. Insertion will
21362 -- take place when expression is expanded.
21363
21364 else
21365 null;
21366 end if;
21367 end if;
21368 end if;
21369 end if;
21370
21371 -- Case of other than an explicit N_Range node
21372
21373 -- The forced evaluation removes side effects from expressions, which
21374 -- should occur also in GNATprove mode. Otherwise, we end up with
21375 -- unexpected insertions of actions at places where this is not
21376 -- supposed to occur, e.g. on default parameters of a call.
21377
21378 elsif Expander_Active or GNATprove_Mode then
21379 Get_Index_Bounds (R, Lo, Hi);
21380 Force_Evaluation (Lo);
21381 Force_Evaluation (Hi);
21382 end if;
21383 end Process_Range_Expr_In_Decl;
21384
21385 --------------------------------------
21386 -- Process_Real_Range_Specification --
21387 --------------------------------------
21388
21389 procedure Process_Real_Range_Specification (Def : Node_Id) is
21390 Spec : constant Node_Id := Real_Range_Specification (Def);
21391 Lo : Node_Id;
21392 Hi : Node_Id;
21393 Err : Boolean := False;
21394
21395 procedure Analyze_Bound (N : Node_Id);
21396 -- Analyze and check one bound
21397
21398 -------------------
21399 -- Analyze_Bound --
21400 -------------------
21401
21402 procedure Analyze_Bound (N : Node_Id) is
21403 begin
21404 Analyze_And_Resolve (N, Any_Real);
21405
21406 if not Is_OK_Static_Expression (N) then
21407 Flag_Non_Static_Expr
21408 ("bound in real type definition is not static!", N);
21409 Err := True;
21410 end if;
21411 end Analyze_Bound;
21412
21413 -- Start of processing for Process_Real_Range_Specification
21414
21415 begin
21416 if Present (Spec) then
21417 Lo := Low_Bound (Spec);
21418 Hi := High_Bound (Spec);
21419 Analyze_Bound (Lo);
21420 Analyze_Bound (Hi);
21421
21422 -- If error, clear away junk range specification
21423
21424 if Err then
21425 Set_Real_Range_Specification (Def, Empty);
21426 end if;
21427 end if;
21428 end Process_Real_Range_Specification;
21429
21430 ---------------------
21431 -- Process_Subtype --
21432 ---------------------
21433
21434 function Process_Subtype
21435 (S : Node_Id;
21436 Related_Nod : Node_Id;
21437 Related_Id : Entity_Id := Empty;
21438 Suffix : Character := ' ') return Entity_Id
21439 is
21440 P : Node_Id;
21441 Def_Id : Entity_Id;
21442 Error_Node : Node_Id;
21443 Full_View_Id : Entity_Id;
21444 Subtype_Mark_Id : Entity_Id;
21445
21446 May_Have_Null_Exclusion : Boolean;
21447
21448 procedure Check_Incomplete (T : Node_Id);
21449 -- Called to verify that an incomplete type is not used prematurely
21450
21451 ----------------------
21452 -- Check_Incomplete --
21453 ----------------------
21454
21455 procedure Check_Incomplete (T : Node_Id) is
21456 begin
21457 -- Ada 2005 (AI-412): Incomplete subtypes are legal
21458
21459 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
21460 and then
21461 not (Ada_Version >= Ada_2005
21462 and then
21463 (Nkind (Parent (T)) = N_Subtype_Declaration
21464 or else (Nkind (Parent (T)) = N_Subtype_Indication
21465 and then Nkind (Parent (Parent (T))) =
21466 N_Subtype_Declaration)))
21467 then
21468 Error_Msg_N ("invalid use of type before its full declaration", T);
21469 end if;
21470 end Check_Incomplete;
21471
21472 -- Start of processing for Process_Subtype
21473
21474 begin
21475 -- Case of no constraints present
21476
21477 if Nkind (S) /= N_Subtype_Indication then
21478 Find_Type (S);
21479
21480 -- No way to proceed if the subtype indication is malformed. This
21481 -- will happen for example when the subtype indication in an object
21482 -- declaration is missing altogether and the expression is analyzed
21483 -- as if it were that indication.
21484
21485 if not Is_Entity_Name (S) then
21486 return Any_Type;
21487 end if;
21488
21489 Check_Incomplete (S);
21490 P := Parent (S);
21491
21492 -- Ada 2005 (AI-231): Static check
21493
21494 if Ada_Version >= Ada_2005
21495 and then Present (P)
21496 and then Null_Exclusion_Present (P)
21497 and then Nkind (P) /= N_Access_To_Object_Definition
21498 and then not Is_Access_Type (Entity (S))
21499 then
21500 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
21501 end if;
21502
21503 -- The following is ugly, can't we have a range or even a flag???
21504
21505 May_Have_Null_Exclusion :=
21506 Nkind_In (P, N_Access_Definition,
21507 N_Access_Function_Definition,
21508 N_Access_Procedure_Definition,
21509 N_Access_To_Object_Definition,
21510 N_Allocator,
21511 N_Component_Definition)
21512 or else
21513 Nkind_In (P, N_Derived_Type_Definition,
21514 N_Discriminant_Specification,
21515 N_Formal_Object_Declaration,
21516 N_Object_Declaration,
21517 N_Object_Renaming_Declaration,
21518 N_Parameter_Specification,
21519 N_Subtype_Declaration);
21520
21521 -- Create an Itype that is a duplicate of Entity (S) but with the
21522 -- null-exclusion attribute.
21523
21524 if May_Have_Null_Exclusion
21525 and then Is_Access_Type (Entity (S))
21526 and then Null_Exclusion_Present (P)
21527
21528 -- No need to check the case of an access to object definition.
21529 -- It is correct to define double not-null pointers.
21530
21531 -- Example:
21532 -- type Not_Null_Int_Ptr is not null access Integer;
21533 -- type Acc is not null access Not_Null_Int_Ptr;
21534
21535 and then Nkind (P) /= N_Access_To_Object_Definition
21536 then
21537 if Can_Never_Be_Null (Entity (S)) then
21538 case Nkind (Related_Nod) is
21539 when N_Full_Type_Declaration =>
21540 if Nkind (Type_Definition (Related_Nod))
21541 in N_Array_Type_Definition
21542 then
21543 Error_Node :=
21544 Subtype_Indication
21545 (Component_Definition
21546 (Type_Definition (Related_Nod)));
21547 else
21548 Error_Node :=
21549 Subtype_Indication (Type_Definition (Related_Nod));
21550 end if;
21551
21552 when N_Subtype_Declaration =>
21553 Error_Node := Subtype_Indication (Related_Nod);
21554
21555 when N_Object_Declaration =>
21556 Error_Node := Object_Definition (Related_Nod);
21557
21558 when N_Component_Declaration =>
21559 Error_Node :=
21560 Subtype_Indication (Component_Definition (Related_Nod));
21561
21562 when N_Allocator =>
21563 Error_Node := Expression (Related_Nod);
21564
21565 when others =>
21566 pragma Assert (False);
21567 Error_Node := Related_Nod;
21568 end case;
21569
21570 Error_Msg_NE
21571 ("`NOT NULL` not allowed (& already excludes null)",
21572 Error_Node,
21573 Entity (S));
21574 end if;
21575
21576 Set_Etype (S,
21577 Create_Null_Excluding_Itype
21578 (T => Entity (S),
21579 Related_Nod => P));
21580 Set_Entity (S, Etype (S));
21581 end if;
21582
21583 return Entity (S);
21584
21585 -- Case of constraint present, so that we have an N_Subtype_Indication
21586 -- node (this node is created only if constraints are present).
21587
21588 else
21589 Find_Type (Subtype_Mark (S));
21590
21591 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
21592 and then not
21593 (Nkind (Parent (S)) = N_Subtype_Declaration
21594 and then Is_Itype (Defining_Identifier (Parent (S))))
21595 then
21596 Check_Incomplete (Subtype_Mark (S));
21597 end if;
21598
21599 P := Parent (S);
21600 Subtype_Mark_Id := Entity (Subtype_Mark (S));
21601
21602 -- Explicit subtype declaration case
21603
21604 if Nkind (P) = N_Subtype_Declaration then
21605 Def_Id := Defining_Identifier (P);
21606
21607 -- Explicit derived type definition case
21608
21609 elsif Nkind (P) = N_Derived_Type_Definition then
21610 Def_Id := Defining_Identifier (Parent (P));
21611
21612 -- Implicit case, the Def_Id must be created as an implicit type.
21613 -- The one exception arises in the case of concurrent types, array
21614 -- and access types, where other subsidiary implicit types may be
21615 -- created and must appear before the main implicit type. In these
21616 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
21617 -- has not yet been called to create Def_Id.
21618
21619 else
21620 if Is_Array_Type (Subtype_Mark_Id)
21621 or else Is_Concurrent_Type (Subtype_Mark_Id)
21622 or else Is_Access_Type (Subtype_Mark_Id)
21623 then
21624 Def_Id := Empty;
21625
21626 -- For the other cases, we create a new unattached Itype,
21627 -- and set the indication to ensure it gets attached later.
21628
21629 else
21630 Def_Id :=
21631 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
21632 end if;
21633 end if;
21634
21635 -- If the kind of constraint is invalid for this kind of type,
21636 -- then give an error, and then pretend no constraint was given.
21637
21638 if not Is_Valid_Constraint_Kind
21639 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
21640 then
21641 Error_Msg_N
21642 ("incorrect constraint for this kind of type", Constraint (S));
21643
21644 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
21645
21646 -- Set Ekind of orphan itype, to prevent cascaded errors
21647
21648 if Present (Def_Id) then
21649 Set_Ekind (Def_Id, Ekind (Any_Type));
21650 end if;
21651
21652 -- Make recursive call, having got rid of the bogus constraint
21653
21654 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
21655 end if;
21656
21657 -- Remaining processing depends on type. Select on Base_Type kind to
21658 -- ensure getting to the concrete type kind in the case of a private
21659 -- subtype (needed when only doing semantic analysis).
21660
21661 case Ekind (Base_Type (Subtype_Mark_Id)) is
21662 when Access_Kind =>
21663
21664 -- If this is a constraint on a class-wide type, discard it.
21665 -- There is currently no way to express a partial discriminant
21666 -- constraint on a type with unknown discriminants. This is
21667 -- a pathology that the ACATS wisely decides not to test.
21668
21669 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
21670 if Comes_From_Source (S) then
21671 Error_Msg_N
21672 ("constraint on class-wide type ignored??",
21673 Constraint (S));
21674 end if;
21675
21676 if Nkind (P) = N_Subtype_Declaration then
21677 Set_Subtype_Indication (P,
21678 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
21679 end if;
21680
21681 return Subtype_Mark_Id;
21682 end if;
21683
21684 Constrain_Access (Def_Id, S, Related_Nod);
21685
21686 if Expander_Active
21687 and then Is_Itype (Designated_Type (Def_Id))
21688 and then Nkind (Related_Nod) = N_Subtype_Declaration
21689 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
21690 then
21691 Build_Itype_Reference
21692 (Designated_Type (Def_Id), Related_Nod);
21693 end if;
21694
21695 when Array_Kind =>
21696 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
21697
21698 when Decimal_Fixed_Point_Kind =>
21699 Constrain_Decimal (Def_Id, S);
21700
21701 when Enumeration_Kind =>
21702 Constrain_Enumeration (Def_Id, S);
21703
21704 when Ordinary_Fixed_Point_Kind =>
21705 Constrain_Ordinary_Fixed (Def_Id, S);
21706
21707 when Float_Kind =>
21708 Constrain_Float (Def_Id, S);
21709
21710 when Integer_Kind =>
21711 Constrain_Integer (Def_Id, S);
21712
21713 when Class_Wide_Kind
21714 | E_Incomplete_Type
21715 | E_Record_Subtype
21716 | E_Record_Type
21717 =>
21718 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
21719
21720 if Ekind (Def_Id) = E_Incomplete_Type then
21721 Set_Private_Dependents (Def_Id, New_Elmt_List);
21722 end if;
21723
21724 when Private_Kind =>
21725
21726 -- A private type with unknown discriminants may be completed
21727 -- by an unconstrained array type.
21728
21729 if Has_Unknown_Discriminants (Subtype_Mark_Id)
21730 and then Present (Full_View (Subtype_Mark_Id))
21731 and then Is_Array_Type (Full_View (Subtype_Mark_Id))
21732 then
21733 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
21734
21735 -- ... but more commonly is completed by a discriminated record
21736 -- type.
21737
21738 else
21739 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
21740 end if;
21741
21742 -- The base type may be private but Def_Id may be a full view
21743 -- in an instance.
21744
21745 if Is_Private_Type (Def_Id) then
21746 Set_Private_Dependents (Def_Id, New_Elmt_List);
21747 end if;
21748
21749 -- In case of an invalid constraint prevent further processing
21750 -- since the type constructed is missing expected fields.
21751
21752 if Etype (Def_Id) = Any_Type then
21753 return Def_Id;
21754 end if;
21755
21756 -- If the full view is that of a task with discriminants,
21757 -- we must constrain both the concurrent type and its
21758 -- corresponding record type. Otherwise we will just propagate
21759 -- the constraint to the full view, if available.
21760
21761 if Present (Full_View (Subtype_Mark_Id))
21762 and then Has_Discriminants (Subtype_Mark_Id)
21763 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
21764 then
21765 Full_View_Id :=
21766 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
21767
21768 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
21769 Constrain_Concurrent (Full_View_Id, S,
21770 Related_Nod, Related_Id, Suffix);
21771 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
21772 Set_Full_View (Def_Id, Full_View_Id);
21773
21774 -- Introduce an explicit reference to the private subtype,
21775 -- to prevent scope anomalies in gigi if first use appears
21776 -- in a nested context, e.g. a later function body.
21777 -- Should this be generated in other contexts than a full
21778 -- type declaration?
21779
21780 if Is_Itype (Def_Id)
21781 and then
21782 Nkind (Parent (P)) = N_Full_Type_Declaration
21783 then
21784 Build_Itype_Reference (Def_Id, Parent (P));
21785 end if;
21786
21787 else
21788 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
21789 end if;
21790
21791 when Concurrent_Kind =>
21792 Constrain_Concurrent (Def_Id, S,
21793 Related_Nod, Related_Id, Suffix);
21794
21795 when others =>
21796 Error_Msg_N ("invalid subtype mark in subtype indication", S);
21797 end case;
21798
21799 -- Size, Alignment, Representation aspects and Convention are always
21800 -- inherited from the base type.
21801
21802 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
21803 Set_Rep_Info (Def_Id, (Subtype_Mark_Id));
21804 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
21805
21806 -- The anonymous subtype created for the subtype indication
21807 -- inherits the predicates of the parent.
21808
21809 if Has_Predicates (Subtype_Mark_Id) then
21810 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
21811
21812 -- Indicate where the predicate function may be found
21813
21814 if No (Predicate_Function (Def_Id)) and then Is_Itype (Def_Id) then
21815 Set_Predicated_Parent (Def_Id, Subtype_Mark_Id);
21816 end if;
21817 end if;
21818
21819 return Def_Id;
21820 end if;
21821 end Process_Subtype;
21822
21823 -----------------------------
21824 -- Record_Type_Declaration --
21825 -----------------------------
21826
21827 procedure Record_Type_Declaration
21828 (T : Entity_Id;
21829 N : Node_Id;
21830 Prev : Entity_Id)
21831 is
21832 Def : constant Node_Id := Type_Definition (N);
21833 Is_Tagged : Boolean;
21834 Tag_Comp : Entity_Id;
21835
21836 begin
21837 -- These flags must be initialized before calling Process_Discriminants
21838 -- because this routine makes use of them.
21839
21840 Set_Ekind (T, E_Record_Type);
21841 Set_Etype (T, T);
21842 Init_Size_Align (T);
21843 Set_Interfaces (T, No_Elist);
21844 Set_Stored_Constraint (T, No_Elist);
21845 Set_Default_SSO (T);
21846 Set_No_Reordering (T, No_Component_Reordering);
21847
21848 -- Normal case
21849
21850 if Ada_Version < Ada_2005 or else not Interface_Present (Def) then
21851 if Limited_Present (Def) then
21852 Check_SPARK_05_Restriction ("limited is not allowed", N);
21853 end if;
21854
21855 if Abstract_Present (Def) then
21856 Check_SPARK_05_Restriction ("abstract is not allowed", N);
21857 end if;
21858
21859 -- The flag Is_Tagged_Type might have already been set by
21860 -- Find_Type_Name if it detected an error for declaration T. This
21861 -- arises in the case of private tagged types where the full view
21862 -- omits the word tagged.
21863
21864 Is_Tagged :=
21865 Tagged_Present (Def)
21866 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
21867
21868 Set_Is_Limited_Record (T, Limited_Present (Def));
21869
21870 if Is_Tagged then
21871 Set_Is_Tagged_Type (T, True);
21872 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
21873 end if;
21874
21875 -- Type is abstract if full declaration carries keyword, or if
21876 -- previous partial view did.
21877
21878 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
21879 or else Abstract_Present (Def));
21880
21881 else
21882 Check_SPARK_05_Restriction ("interface is not allowed", N);
21883
21884 Is_Tagged := True;
21885 Analyze_Interface_Declaration (T, Def);
21886
21887 if Present (Discriminant_Specifications (N)) then
21888 Error_Msg_N
21889 ("interface types cannot have discriminants",
21890 Defining_Identifier
21891 (First (Discriminant_Specifications (N))));
21892 end if;
21893 end if;
21894
21895 -- First pass: if there are self-referential access components,
21896 -- create the required anonymous access type declarations, and if
21897 -- need be an incomplete type declaration for T itself.
21898
21899 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
21900
21901 if Ada_Version >= Ada_2005
21902 and then Present (Interface_List (Def))
21903 then
21904 Check_Interfaces (N, Def);
21905
21906 declare
21907 Ifaces_List : Elist_Id;
21908
21909 begin
21910 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
21911 -- already in the parents.
21912
21913 Collect_Interfaces
21914 (T => T,
21915 Ifaces_List => Ifaces_List,
21916 Exclude_Parents => True);
21917
21918 Set_Interfaces (T, Ifaces_List);
21919 end;
21920 end if;
21921
21922 -- Records constitute a scope for the component declarations within.
21923 -- The scope is created prior to the processing of these declarations.
21924 -- Discriminants are processed first, so that they are visible when
21925 -- processing the other components. The Ekind of the record type itself
21926 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
21927
21928 -- Enter record scope
21929
21930 Push_Scope (T);
21931
21932 -- If an incomplete or private type declaration was already given for
21933 -- the type, then this scope already exists, and the discriminants have
21934 -- been declared within. We must verify that the full declaration
21935 -- matches the incomplete one.
21936
21937 Check_Or_Process_Discriminants (N, T, Prev);
21938
21939 Set_Is_Constrained (T, not Has_Discriminants (T));
21940 Set_Has_Delayed_Freeze (T, True);
21941
21942 -- For tagged types add a manually analyzed component corresponding
21943 -- to the component _tag, the corresponding piece of tree will be
21944 -- expanded as part of the freezing actions if it is not a CPP_Class.
21945
21946 if Is_Tagged then
21947
21948 -- Do not add the tag unless we are in expansion mode
21949
21950 if Expander_Active then
21951 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
21952 Enter_Name (Tag_Comp);
21953
21954 Set_Ekind (Tag_Comp, E_Component);
21955 Set_Is_Tag (Tag_Comp);
21956 Set_Is_Aliased (Tag_Comp);
21957 Set_Etype (Tag_Comp, RTE (RE_Tag));
21958 Set_DT_Entry_Count (Tag_Comp, No_Uint);
21959 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
21960 Init_Component_Location (Tag_Comp);
21961
21962 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
21963 -- implemented interfaces.
21964
21965 if Has_Interfaces (T) then
21966 Add_Interface_Tag_Components (N, T);
21967 end if;
21968 end if;
21969
21970 Make_Class_Wide_Type (T);
21971 Set_Direct_Primitive_Operations (T, New_Elmt_List);
21972 end if;
21973
21974 -- We must suppress range checks when processing record components in
21975 -- the presence of discriminants, since we don't want spurious checks to
21976 -- be generated during their analysis, but Suppress_Range_Checks flags
21977 -- must be reset the after processing the record definition.
21978
21979 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
21980 -- couldn't we just use the normal range check suppression method here.
21981 -- That would seem cleaner ???
21982
21983 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
21984 Set_Kill_Range_Checks (T, True);
21985 Record_Type_Definition (Def, Prev);
21986 Set_Kill_Range_Checks (T, False);
21987 else
21988 Record_Type_Definition (Def, Prev);
21989 end if;
21990
21991 -- Exit from record scope
21992
21993 End_Scope;
21994
21995 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
21996 -- the implemented interfaces and associate them an aliased entity.
21997
21998 if Is_Tagged
21999 and then not Is_Empty_List (Interface_List (Def))
22000 then
22001 Derive_Progenitor_Subprograms (T, T);
22002 end if;
22003
22004 Check_Function_Writable_Actuals (N);
22005 end Record_Type_Declaration;
22006
22007 ----------------------------
22008 -- Record_Type_Definition --
22009 ----------------------------
22010
22011 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
22012 Component : Entity_Id;
22013 Ctrl_Components : Boolean := False;
22014 Final_Storage_Only : Boolean;
22015 T : Entity_Id;
22016
22017 begin
22018 if Ekind (Prev_T) = E_Incomplete_Type then
22019 T := Full_View (Prev_T);
22020 else
22021 T := Prev_T;
22022 end if;
22023
22024 -- In SPARK, tagged types and type extensions may only be declared in
22025 -- the specification of library unit packages.
22026
22027 if Present (Def) and then Is_Tagged_Type (T) then
22028 declare
22029 Typ : Node_Id;
22030 Ctxt : Node_Id;
22031
22032 begin
22033 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
22034 Typ := Parent (Def);
22035 else
22036 pragma Assert
22037 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
22038 Typ := Parent (Parent (Def));
22039 end if;
22040
22041 Ctxt := Parent (Typ);
22042
22043 if Nkind (Ctxt) = N_Package_Body
22044 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
22045 then
22046 Check_SPARK_05_Restriction
22047 ("type should be defined in package specification", Typ);
22048
22049 elsif Nkind (Ctxt) /= N_Package_Specification
22050 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
22051 then
22052 Check_SPARK_05_Restriction
22053 ("type should be defined in library unit package", Typ);
22054 end if;
22055 end;
22056 end if;
22057
22058 Final_Storage_Only := not Is_Controlled (T);
22059
22060 -- Ada 2005: Check whether an explicit Limited is present in a derived
22061 -- type declaration.
22062
22063 if Nkind (Parent (Def)) = N_Derived_Type_Definition
22064 and then Limited_Present (Parent (Def))
22065 then
22066 Set_Is_Limited_Record (T);
22067 end if;
22068
22069 -- If the component list of a record type is defined by the reserved
22070 -- word null and there is no discriminant part, then the record type has
22071 -- no components and all records of the type are null records (RM 3.7)
22072 -- This procedure is also called to process the extension part of a
22073 -- record extension, in which case the current scope may have inherited
22074 -- components.
22075
22076 if No (Def)
22077 or else No (Component_List (Def))
22078 or else Null_Present (Component_List (Def))
22079 then
22080 if not Is_Tagged_Type (T) then
22081 Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
22082 end if;
22083
22084 else
22085 Analyze_Declarations (Component_Items (Component_List (Def)));
22086
22087 if Present (Variant_Part (Component_List (Def))) then
22088 Check_SPARK_05_Restriction ("variant part is not allowed", Def);
22089 Analyze (Variant_Part (Component_List (Def)));
22090 end if;
22091 end if;
22092
22093 -- After completing the semantic analysis of the record definition,
22094 -- record components, both new and inherited, are accessible. Set their
22095 -- kind accordingly. Exclude malformed itypes from illegal declarations,
22096 -- whose Ekind may be void.
22097
22098 Component := First_Entity (Current_Scope);
22099 while Present (Component) loop
22100 if Ekind (Component) = E_Void
22101 and then not Is_Itype (Component)
22102 then
22103 Set_Ekind (Component, E_Component);
22104 Init_Component_Location (Component);
22105 end if;
22106
22107 Propagate_Concurrent_Flags (T, Etype (Component));
22108
22109 if Ekind (Component) /= E_Component then
22110 null;
22111
22112 -- Do not set Has_Controlled_Component on a class-wide equivalent
22113 -- type. See Make_CW_Equivalent_Type.
22114
22115 elsif not Is_Class_Wide_Equivalent_Type (T)
22116 and then (Has_Controlled_Component (Etype (Component))
22117 or else (Chars (Component) /= Name_uParent
22118 and then Is_Controlled (Etype (Component))))
22119 then
22120 Set_Has_Controlled_Component (T, True);
22121 Final_Storage_Only :=
22122 Final_Storage_Only
22123 and then Finalize_Storage_Only (Etype (Component));
22124 Ctrl_Components := True;
22125 end if;
22126
22127 Next_Entity (Component);
22128 end loop;
22129
22130 -- A Type is Finalize_Storage_Only only if all its controlled components
22131 -- are also.
22132
22133 if Ctrl_Components then
22134 Set_Finalize_Storage_Only (T, Final_Storage_Only);
22135 end if;
22136
22137 -- Place reference to end record on the proper entity, which may
22138 -- be a partial view.
22139
22140 if Present (Def) then
22141 Process_End_Label (Def, 'e', Prev_T);
22142 end if;
22143 end Record_Type_Definition;
22144
22145 ------------------------
22146 -- Replace_Components --
22147 ------------------------
22148
22149 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
22150 function Process (N : Node_Id) return Traverse_Result;
22151
22152 -------------
22153 -- Process --
22154 -------------
22155
22156 function Process (N : Node_Id) return Traverse_Result is
22157 Comp : Entity_Id;
22158
22159 begin
22160 if Nkind (N) = N_Discriminant_Specification then
22161 Comp := First_Discriminant (Typ);
22162 while Present (Comp) loop
22163 if Chars (Comp) = Chars (Defining_Identifier (N)) then
22164 Set_Defining_Identifier (N, Comp);
22165 exit;
22166 end if;
22167
22168 Next_Discriminant (Comp);
22169 end loop;
22170
22171 elsif Nkind (N) = N_Variant_Part then
22172 Comp := First_Discriminant (Typ);
22173 while Present (Comp) loop
22174 if Chars (Comp) = Chars (Name (N)) then
22175 Set_Entity (Name (N), Comp);
22176 exit;
22177 end if;
22178
22179 Next_Discriminant (Comp);
22180 end loop;
22181
22182 elsif Nkind (N) = N_Component_Declaration then
22183 Comp := First_Component (Typ);
22184 while Present (Comp) loop
22185 if Chars (Comp) = Chars (Defining_Identifier (N)) then
22186 Set_Defining_Identifier (N, Comp);
22187 exit;
22188 end if;
22189
22190 Next_Component (Comp);
22191 end loop;
22192 end if;
22193
22194 return OK;
22195 end Process;
22196
22197 procedure Replace is new Traverse_Proc (Process);
22198
22199 -- Start of processing for Replace_Components
22200
22201 begin
22202 Replace (Decl);
22203 end Replace_Components;
22204
22205 -------------------------------
22206 -- Set_Completion_Referenced --
22207 -------------------------------
22208
22209 procedure Set_Completion_Referenced (E : Entity_Id) is
22210 begin
22211 -- If in main unit, mark entity that is a completion as referenced,
22212 -- warnings go on the partial view when needed.
22213
22214 if In_Extended_Main_Source_Unit (E) then
22215 Set_Referenced (E);
22216 end if;
22217 end Set_Completion_Referenced;
22218
22219 ---------------------
22220 -- Set_Default_SSO --
22221 ---------------------
22222
22223 procedure Set_Default_SSO (T : Entity_Id) is
22224 begin
22225 case Opt.Default_SSO is
22226 when ' ' =>
22227 null;
22228 when 'L' =>
22229 Set_SSO_Set_Low_By_Default (T, True);
22230 when 'H' =>
22231 Set_SSO_Set_High_By_Default (T, True);
22232 when others =>
22233 raise Program_Error;
22234 end case;
22235 end Set_Default_SSO;
22236
22237 ---------------------
22238 -- Set_Fixed_Range --
22239 ---------------------
22240
22241 -- The range for fixed-point types is complicated by the fact that we
22242 -- do not know the exact end points at the time of the declaration. This
22243 -- is true for three reasons:
22244
22245 -- A size clause may affect the fudging of the end-points.
22246 -- A small clause may affect the values of the end-points.
22247 -- We try to include the end-points if it does not affect the size.
22248
22249 -- This means that the actual end-points must be established at the
22250 -- point when the type is frozen. Meanwhile, we first narrow the range
22251 -- as permitted (so that it will fit if necessary in a small specified
22252 -- size), and then build a range subtree with these narrowed bounds.
22253 -- Set_Fixed_Range constructs the range from real literal values, and
22254 -- sets the range as the Scalar_Range of the given fixed-point type entity.
22255
22256 -- The parent of this range is set to point to the entity so that it is
22257 -- properly hooked into the tree (unlike normal Scalar_Range entries for
22258 -- other scalar types, which are just pointers to the range in the
22259 -- original tree, this would otherwise be an orphan).
22260
22261 -- The tree is left unanalyzed. When the type is frozen, the processing
22262 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
22263 -- analyzed, and uses this as an indication that it should complete
22264 -- work on the range (it will know the final small and size values).
22265
22266 procedure Set_Fixed_Range
22267 (E : Entity_Id;
22268 Loc : Source_Ptr;
22269 Lo : Ureal;
22270 Hi : Ureal)
22271 is
22272 S : constant Node_Id :=
22273 Make_Range (Loc,
22274 Low_Bound => Make_Real_Literal (Loc, Lo),
22275 High_Bound => Make_Real_Literal (Loc, Hi));
22276 begin
22277 Set_Scalar_Range (E, S);
22278 Set_Parent (S, E);
22279
22280 -- Before the freeze point, the bounds of a fixed point are universal
22281 -- and carry the corresponding type.
22282
22283 Set_Etype (Low_Bound (S), Universal_Real);
22284 Set_Etype (High_Bound (S), Universal_Real);
22285 end Set_Fixed_Range;
22286
22287 ----------------------------------
22288 -- Set_Scalar_Range_For_Subtype --
22289 ----------------------------------
22290
22291 procedure Set_Scalar_Range_For_Subtype
22292 (Def_Id : Entity_Id;
22293 R : Node_Id;
22294 Subt : Entity_Id)
22295 is
22296 Kind : constant Entity_Kind := Ekind (Def_Id);
22297
22298 begin
22299 -- Defend against previous error
22300
22301 if Nkind (R) = N_Error then
22302 return;
22303 end if;
22304
22305 Set_Scalar_Range (Def_Id, R);
22306
22307 -- We need to link the range into the tree before resolving it so
22308 -- that types that are referenced, including importantly the subtype
22309 -- itself, are properly frozen (Freeze_Expression requires that the
22310 -- expression be properly linked into the tree). Of course if it is
22311 -- already linked in, then we do not disturb the current link.
22312
22313 if No (Parent (R)) then
22314 Set_Parent (R, Def_Id);
22315 end if;
22316
22317 -- Reset the kind of the subtype during analysis of the range, to
22318 -- catch possible premature use in the bounds themselves.
22319
22320 Set_Ekind (Def_Id, E_Void);
22321 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
22322 Set_Ekind (Def_Id, Kind);
22323 end Set_Scalar_Range_For_Subtype;
22324
22325 --------------------------------------------------------
22326 -- Set_Stored_Constraint_From_Discriminant_Constraint --
22327 --------------------------------------------------------
22328
22329 procedure Set_Stored_Constraint_From_Discriminant_Constraint
22330 (E : Entity_Id)
22331 is
22332 begin
22333 -- Make sure set if encountered during Expand_To_Stored_Constraint
22334
22335 Set_Stored_Constraint (E, No_Elist);
22336
22337 -- Give it the right value
22338
22339 if Is_Constrained (E) and then Has_Discriminants (E) then
22340 Set_Stored_Constraint (E,
22341 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
22342 end if;
22343 end Set_Stored_Constraint_From_Discriminant_Constraint;
22344
22345 -------------------------------------
22346 -- Signed_Integer_Type_Declaration --
22347 -------------------------------------
22348
22349 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
22350 Implicit_Base : Entity_Id;
22351 Base_Typ : Entity_Id;
22352 Lo_Val : Uint;
22353 Hi_Val : Uint;
22354 Errs : Boolean := False;
22355 Lo : Node_Id;
22356 Hi : Node_Id;
22357
22358 function Can_Derive_From (E : Entity_Id) return Boolean;
22359 -- Determine whether given bounds allow derivation from specified type
22360
22361 procedure Check_Bound (Expr : Node_Id);
22362 -- Check bound to make sure it is integral and static. If not, post
22363 -- appropriate error message and set Errs flag
22364
22365 ---------------------
22366 -- Can_Derive_From --
22367 ---------------------
22368
22369 -- Note we check both bounds against both end values, to deal with
22370 -- strange types like ones with a range of 0 .. -12341234.
22371
22372 function Can_Derive_From (E : Entity_Id) return Boolean is
22373 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
22374 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
22375 begin
22376 return Lo <= Lo_Val and then Lo_Val <= Hi
22377 and then
22378 Lo <= Hi_Val and then Hi_Val <= Hi;
22379 end Can_Derive_From;
22380
22381 -----------------
22382 -- Check_Bound --
22383 -----------------
22384
22385 procedure Check_Bound (Expr : Node_Id) is
22386 begin
22387 -- If a range constraint is used as an integer type definition, each
22388 -- bound of the range must be defined by a static expression of some
22389 -- integer type, but the two bounds need not have the same integer
22390 -- type (Negative bounds are allowed.) (RM 3.5.4)
22391
22392 if not Is_Integer_Type (Etype (Expr)) then
22393 Error_Msg_N
22394 ("integer type definition bounds must be of integer type", Expr);
22395 Errs := True;
22396
22397 elsif not Is_OK_Static_Expression (Expr) then
22398 Flag_Non_Static_Expr
22399 ("non-static expression used for integer type bound!", Expr);
22400 Errs := True;
22401
22402 -- The bounds are folded into literals, and we set their type to be
22403 -- universal, to avoid typing difficulties: we cannot set the type
22404 -- of the literal to the new type, because this would be a forward
22405 -- reference for the back end, and if the original type is user-
22406 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
22407
22408 else
22409 if Is_Entity_Name (Expr) then
22410 Fold_Uint (Expr, Expr_Value (Expr), True);
22411 end if;
22412
22413 Set_Etype (Expr, Universal_Integer);
22414 end if;
22415 end Check_Bound;
22416
22417 -- Start of processing for Signed_Integer_Type_Declaration
22418
22419 begin
22420 -- Create an anonymous base type
22421
22422 Implicit_Base :=
22423 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
22424
22425 -- Analyze and check the bounds, they can be of any integer type
22426
22427 Lo := Low_Bound (Def);
22428 Hi := High_Bound (Def);
22429
22430 -- Arbitrarily use Integer as the type if either bound had an error
22431
22432 if Hi = Error or else Lo = Error then
22433 Base_Typ := Any_Integer;
22434 Set_Error_Posted (T, True);
22435
22436 -- Here both bounds are OK expressions
22437
22438 else
22439 Analyze_And_Resolve (Lo, Any_Integer);
22440 Analyze_And_Resolve (Hi, Any_Integer);
22441
22442 Check_Bound (Lo);
22443 Check_Bound (Hi);
22444
22445 if Errs then
22446 Hi := Type_High_Bound (Standard_Long_Long_Integer);
22447 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
22448 end if;
22449
22450 -- Find type to derive from
22451
22452 Lo_Val := Expr_Value (Lo);
22453 Hi_Val := Expr_Value (Hi);
22454
22455 if Can_Derive_From (Standard_Short_Short_Integer) then
22456 Base_Typ := Base_Type (Standard_Short_Short_Integer);
22457
22458 elsif Can_Derive_From (Standard_Short_Integer) then
22459 Base_Typ := Base_Type (Standard_Short_Integer);
22460
22461 elsif Can_Derive_From (Standard_Integer) then
22462 Base_Typ := Base_Type (Standard_Integer);
22463
22464 elsif Can_Derive_From (Standard_Long_Integer) then
22465 Base_Typ := Base_Type (Standard_Long_Integer);
22466
22467 elsif Can_Derive_From (Standard_Long_Long_Integer) then
22468 Check_Restriction (No_Long_Long_Integers, Def);
22469 Base_Typ := Base_Type (Standard_Long_Long_Integer);
22470
22471 else
22472 Base_Typ := Base_Type (Standard_Long_Long_Integer);
22473 Error_Msg_N ("integer type definition bounds out of range", Def);
22474 Hi := Type_High_Bound (Standard_Long_Long_Integer);
22475 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
22476 end if;
22477 end if;
22478
22479 -- Complete both implicit base and declared first subtype entities. The
22480 -- inheritance of the rep item chain ensures that SPARK-related pragmas
22481 -- are not clobbered when the signed integer type acts as a full view of
22482 -- a private type.
22483
22484 Set_Etype (Implicit_Base, Base_Typ);
22485 Set_Size_Info (Implicit_Base, Base_Typ);
22486 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
22487 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
22488 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
22489
22490 Set_Ekind (T, E_Signed_Integer_Subtype);
22491 Set_Etype (T, Implicit_Base);
22492 Set_Size_Info (T, Implicit_Base);
22493 Inherit_Rep_Item_Chain (T, Implicit_Base);
22494 Set_Scalar_Range (T, Def);
22495 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
22496 Set_Is_Constrained (T);
22497 end Signed_Integer_Type_Declaration;
22498
22499 end Sem_Ch3;