[Ada] Fix crash on formal containers
[gcc.git] / gcc / ada / sem_ch3.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Elists; use Elists;
32 with Einfo; use Einfo;
33 with Errout; use Errout;
34 with Eval_Fat; use Eval_Fat;
35 with Exp_Ch3; use Exp_Ch3;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Disp; use Exp_Disp;
38 with Exp_Dist; use Exp_Dist;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Freeze; use Freeze;
42 with Ghost; use Ghost;
43 with Itypes; use Itypes;
44 with Layout; use Layout;
45 with Lib; use Lib;
46 with Lib.Xref; use Lib.Xref;
47 with Namet; use Namet;
48 with Nmake; use Nmake;
49 with Opt; use Opt;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Case; use Sem_Case;
56 with Sem_Cat; use Sem_Cat;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch7; use Sem_Ch7;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Dim; use Sem_Dim;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elab; use Sem_Elab;
65 with Sem_Elim; use Sem_Elim;
66 with Sem_Eval; use Sem_Eval;
67 with Sem_Mech; use Sem_Mech;
68 with Sem_Res; use Sem_Res;
69 with Sem_Smem; use Sem_Smem;
70 with Sem_Type; use Sem_Type;
71 with Sem_Util; use Sem_Util;
72 with Sem_Warn; use Sem_Warn;
73 with Stand; use Stand;
74 with Sinfo; use Sinfo;
75 with Sinput; use Sinput;
76 with Snames; use Snames;
77 with Targparm; use Targparm;
78 with Tbuild; use Tbuild;
79 with Ttypes; use Ttypes;
80 with Uintp; use Uintp;
81 with Urealp; use Urealp;
82
83 package body Sem_Ch3 is
84
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
88
89 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
92 -- record type.
93
94 procedure Build_Derived_Type
95 (N : Node_Id;
96 Parent_Type : Entity_Id;
97 Derived_Type : Entity_Id;
98 Is_Completion : Boolean;
99 Derive_Subps : Boolean := True);
100 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
101 -- the N_Full_Type_Declaration node containing the derived type definition.
102 -- Parent_Type is the entity for the parent type in the derived type
103 -- definition and Derived_Type the actual derived type. Is_Completion must
104 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
105 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
106 -- completion of a private type declaration. If Is_Completion is set to
107 -- True, N is the completion of a private type declaration and Derived_Type
108 -- is different from the defining identifier inside N (i.e. Derived_Type /=
109 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
110 -- subprograms should be derived. The only case where this parameter is
111 -- False is when Build_Derived_Type is recursively called to process an
112 -- implicit derived full type for a type derived from a private type (in
113 -- that case the subprograms must only be derived for the private view of
114 -- the type).
115 --
116 -- ??? These flags need a bit of re-examination and re-documentation:
117 -- ??? are they both necessary (both seem related to the recursion)?
118
119 procedure Build_Derived_Access_Type
120 (N : Node_Id;
121 Parent_Type : Entity_Id;
122 Derived_Type : Entity_Id);
123 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
124 -- create an implicit base if the parent type is constrained or if the
125 -- subtype indication has a constraint.
126
127 procedure Build_Derived_Array_Type
128 (N : Node_Id;
129 Parent_Type : Entity_Id;
130 Derived_Type : Entity_Id);
131 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
132 -- create an implicit base if the parent type is constrained or if the
133 -- subtype indication has a constraint.
134
135 procedure Build_Derived_Concurrent_Type
136 (N : Node_Id;
137 Parent_Type : Entity_Id;
138 Derived_Type : Entity_Id);
139 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
140 -- protected type, inherit entries and protected subprograms, check
141 -- legality of discriminant constraints if any.
142
143 procedure Build_Derived_Enumeration_Type
144 (N : Node_Id;
145 Parent_Type : Entity_Id;
146 Derived_Type : Entity_Id);
147 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
148 -- type, we must create a new list of literals. Types derived from
149 -- Character and [Wide_]Wide_Character are special-cased.
150
151 procedure Build_Derived_Numeric_Type
152 (N : Node_Id;
153 Parent_Type : Entity_Id;
154 Derived_Type : Entity_Id);
155 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
156 -- an anonymous base type, and propagate constraint to subtype if needed.
157
158 procedure Build_Derived_Private_Type
159 (N : Node_Id;
160 Parent_Type : Entity_Id;
161 Derived_Type : Entity_Id;
162 Is_Completion : Boolean;
163 Derive_Subps : Boolean := True);
164 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
165 -- because the parent may or may not have a completion, and the derivation
166 -- may itself be a completion.
167
168 procedure Build_Derived_Record_Type
169 (N : Node_Id;
170 Parent_Type : Entity_Id;
171 Derived_Type : Entity_Id;
172 Derive_Subps : Boolean := True);
173 -- Subsidiary procedure used for tagged and untagged record types
174 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
175 -- All parameters are as in Build_Derived_Type except that N, in
176 -- addition to being an N_Full_Type_Declaration node, can also be an
177 -- N_Private_Extension_Declaration node. See the definition of this routine
178 -- for much more info. Derive_Subps indicates whether subprograms should be
179 -- derived from the parent type. The only case where Derive_Subps is False
180 -- is for an implicit derived full type for a type derived from a private
181 -- type (see Build_Derived_Type).
182
183 procedure Build_Discriminal (Discrim : Entity_Id);
184 -- Create the discriminal corresponding to discriminant Discrim, that is
185 -- the parameter corresponding to Discrim to be used in initialization
186 -- procedures for the type where Discrim is a discriminant. Discriminals
187 -- are not used during semantic analysis, and are not fully defined
188 -- entities until expansion. Thus they are not given a scope until
189 -- initialization procedures are built.
190
191 function Build_Discriminant_Constraints
192 (T : Entity_Id;
193 Def : Node_Id;
194 Derived_Def : Boolean := False) return Elist_Id;
195 -- Validate discriminant constraints and return the list of the constraints
196 -- in order of discriminant declarations, where T is the discriminated
197 -- unconstrained type. Def is the N_Subtype_Indication node where the
198 -- discriminants constraints for T are specified. Derived_Def is True
199 -- when building the discriminant constraints in a derived type definition
200 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
201 -- type and Def is the constraint "(xxx)" on T and this routine sets the
202 -- Corresponding_Discriminant field of the discriminants in the derived
203 -- type D to point to the corresponding discriminants in the parent type T.
204
205 procedure Build_Discriminated_Subtype
206 (T : Entity_Id;
207 Def_Id : Entity_Id;
208 Elist : Elist_Id;
209 Related_Nod : Node_Id;
210 For_Access : Boolean := False);
211 -- Subsidiary procedure to Constrain_Discriminated_Type and to
212 -- Process_Incomplete_Dependents. Given
213 --
214 -- T (a possibly discriminated base type)
215 -- Def_Id (a very partially built subtype for T),
216 --
217 -- the call completes Def_Id to be the appropriate E_*_Subtype.
218 --
219 -- The Elist is the list of discriminant constraints if any (it is set
220 -- to No_Elist if T is not a discriminated type, and to an empty list if
221 -- T has discriminants but there are no discriminant constraints). The
222 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
223 -- The For_Access says whether or not this subtype is really constraining
224 -- an access type. That is its sole purpose is the designated type of an
225 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
226 -- is built to avoid freezing T when the access subtype is frozen.
227
228 function Build_Scalar_Bound
229 (Bound : Node_Id;
230 Par_T : Entity_Id;
231 Der_T : Entity_Id) return Node_Id;
232 -- The bounds of a derived scalar type are conversions of the bounds of
233 -- the parent type. Optimize the representation if the bounds are literals.
234 -- Needs a more complete spec--what are the parameters exactly, and what
235 -- exactly is the returned value, and how is Bound affected???
236
237 procedure Build_Underlying_Full_View
238 (N : Node_Id;
239 Typ : Entity_Id;
240 Par : Entity_Id);
241 -- If the completion of a private type is itself derived from a private
242 -- type, or if the full view of a private subtype is itself private, the
243 -- back-end has no way to compute the actual size of this type. We build
244 -- an internal subtype declaration of the proper parent type to convey
245 -- this information. This extra mechanism is needed because a full
246 -- view cannot itself have a full view (it would get clobbered during
247 -- view exchanges).
248
249 procedure Check_Access_Discriminant_Requires_Limited
250 (D : Node_Id;
251 Loc : Node_Id);
252 -- Check the restriction that the type to which an access discriminant
253 -- belongs must be a concurrent type or a descendant of a type with
254 -- the reserved word 'limited' in its declaration.
255
256 procedure Check_Anonymous_Access_Components
257 (Typ_Decl : Node_Id;
258 Typ : Entity_Id;
259 Prev : Entity_Id;
260 Comp_List : Node_Id);
261 -- Ada 2005 AI-382: an access component in a record definition can refer to
262 -- the enclosing record, in which case it denotes the type itself, and not
263 -- the current instance of the type. We create an anonymous access type for
264 -- the component, and flag it as an access to a component, so accessibility
265 -- checks are properly performed on it. The declaration of the access type
266 -- is placed ahead of that of the record to prevent order-of-elaboration
267 -- circularity issues in Gigi. We create an incomplete type for the record
268 -- declaration, which is the designated type of the anonymous access.
269
270 procedure Check_Delta_Expression (E : Node_Id);
271 -- Check that the expression represented by E is suitable for use as a
272 -- delta expression, i.e. it is of real type and is static.
273
274 procedure Check_Digits_Expression (E : Node_Id);
275 -- Check that the expression represented by E is suitable for use as a
276 -- digits expression, i.e. it is of integer type, positive and static.
277
278 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
279 -- Validate the initialization of an object declaration. T is the required
280 -- type, and Exp is the initialization expression.
281
282 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
283 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
284
285 procedure Check_Or_Process_Discriminants
286 (N : Node_Id;
287 T : Entity_Id;
288 Prev : Entity_Id := Empty);
289 -- If N is the full declaration of the completion T of an incomplete or
290 -- private type, check its discriminants (which are already known to be
291 -- conformant with those of the partial view, see Find_Type_Name),
292 -- otherwise process them. Prev is the entity of the partial declaration,
293 -- if any.
294
295 procedure Check_Real_Bound (Bound : Node_Id);
296 -- Check given bound for being of real type and static. If not, post an
297 -- appropriate message, and rewrite the bound with the real literal zero.
298
299 procedure Constant_Redeclaration
300 (Id : Entity_Id;
301 N : Node_Id;
302 T : out Entity_Id);
303 -- Various checks on legality of full declaration of deferred constant.
304 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
305 -- node. The caller has not yet set any attributes of this entity.
306
307 function Contain_Interface
308 (Iface : Entity_Id;
309 Ifaces : Elist_Id) return Boolean;
310 -- Ada 2005: Determine whether Iface is present in the list Ifaces
311
312 procedure Convert_Scalar_Bounds
313 (N : Node_Id;
314 Parent_Type : Entity_Id;
315 Derived_Type : Entity_Id;
316 Loc : Source_Ptr);
317 -- For derived scalar types, convert the bounds in the type definition to
318 -- the derived type, and complete their analysis. Given a constraint of the
319 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
320 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
321 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
322 -- subtype are conversions of those bounds to the derived_type, so that
323 -- their typing is consistent.
324
325 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
326 -- Copies attributes from array base type T2 to array base type T1. Copies
327 -- only attributes that apply to base types, but not subtypes.
328
329 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
330 -- Copies attributes from array subtype T2 to array subtype T1. Copies
331 -- attributes that apply to both subtypes and base types.
332
333 procedure Create_Constrained_Components
334 (Subt : Entity_Id;
335 Decl_Node : Node_Id;
336 Typ : Entity_Id;
337 Constraints : Elist_Id);
338 -- Build the list of entities for a constrained discriminated record
339 -- subtype. If a component depends on a discriminant, replace its subtype
340 -- using the discriminant values in the discriminant constraint. Subt
341 -- is the defining identifier for the subtype whose list of constrained
342 -- entities we will create. Decl_Node is the type declaration node where
343 -- we will attach all the itypes created. Typ is the base discriminated
344 -- type for the subtype Subt. Constraints is the list of discriminant
345 -- constraints for Typ.
346
347 function Constrain_Component_Type
348 (Comp : Entity_Id;
349 Constrained_Typ : Entity_Id;
350 Related_Node : Node_Id;
351 Typ : Entity_Id;
352 Constraints : Elist_Id) return Entity_Id;
353 -- Given a discriminated base type Typ, a list of discriminant constraints,
354 -- Constraints, for Typ and a component Comp of Typ, create and return the
355 -- type corresponding to Etype (Comp) where all discriminant references
356 -- are replaced with the corresponding constraint. If Etype (Comp) contains
357 -- no discriminant references then it is returned as-is. Constrained_Typ
358 -- is the final constrained subtype to which the constrained component
359 -- belongs. Related_Node is the node where we attach all created itypes.
360
361 procedure Constrain_Access
362 (Def_Id : in out Entity_Id;
363 S : Node_Id;
364 Related_Nod : Node_Id);
365 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
366 -- an anonymous type created for a subtype indication. In that case it is
367 -- created in the procedure and attached to Related_Nod.
368
369 procedure Constrain_Array
370 (Def_Id : in out Entity_Id;
371 SI : Node_Id;
372 Related_Nod : Node_Id;
373 Related_Id : Entity_Id;
374 Suffix : Character);
375 -- Apply a list of index constraints to an unconstrained array type. The
376 -- first parameter is the entity for the resulting subtype. A value of
377 -- Empty for Def_Id indicates that an implicit type must be created, but
378 -- creation is delayed (and must be done by this procedure) because other
379 -- subsidiary implicit types must be created first (which is why Def_Id
380 -- is an in/out parameter). The second parameter is a subtype indication
381 -- node for the constrained array to be created (e.g. something of the
382 -- form string (1 .. 10)). Related_Nod gives the place where this type
383 -- has to be inserted in the tree. The Related_Id and Suffix parameters
384 -- are used to build the associated Implicit type name.
385
386 procedure Constrain_Concurrent
387 (Def_Id : in out Entity_Id;
388 SI : Node_Id;
389 Related_Nod : Node_Id;
390 Related_Id : Entity_Id;
391 Suffix : Character);
392 -- Apply list of discriminant constraints to an unconstrained concurrent
393 -- type.
394 --
395 -- SI is the N_Subtype_Indication node containing the constraint and
396 -- the unconstrained type to constrain.
397 --
398 -- Def_Id is the entity for the resulting constrained subtype. A value
399 -- of Empty for Def_Id indicates that an implicit type must be created,
400 -- but creation is delayed (and must be done by this procedure) because
401 -- other subsidiary implicit types must be created first (which is why
402 -- Def_Id is an in/out parameter).
403 --
404 -- Related_Nod gives the place where this type has to be inserted
405 -- in the tree.
406 --
407 -- The last two arguments are used to create its external name if needed.
408
409 function Constrain_Corresponding_Record
410 (Prot_Subt : Entity_Id;
411 Corr_Rec : Entity_Id;
412 Related_Nod : Node_Id) return Entity_Id;
413 -- When constraining a protected type or task type with discriminants,
414 -- constrain the corresponding record with the same discriminant values.
415
416 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
417 -- Constrain a decimal fixed point type with a digits constraint and/or a
418 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
419
420 procedure Constrain_Discriminated_Type
421 (Def_Id : Entity_Id;
422 S : Node_Id;
423 Related_Nod : Node_Id;
424 For_Access : Boolean := False);
425 -- Process discriminant constraints of composite type. Verify that values
426 -- have been provided for all discriminants, that the original type is
427 -- unconstrained, and that the types of the supplied expressions match
428 -- the discriminant types. The first three parameters are like in routine
429 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
430 -- of For_Access.
431
432 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
433 -- Constrain an enumeration type with a range constraint. This is identical
434 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
435
436 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
437 -- Constrain a floating point type with either a digits constraint
438 -- and/or a range constraint, building a E_Floating_Point_Subtype.
439
440 procedure Constrain_Index
441 (Index : Node_Id;
442 S : Node_Id;
443 Related_Nod : Node_Id;
444 Related_Id : Entity_Id;
445 Suffix : Character;
446 Suffix_Index : Nat);
447 -- Process an index constraint S in a constrained array declaration. The
448 -- constraint can be a subtype name, or a range with or without an explicit
449 -- subtype mark. The index is the corresponding index of the unconstrained
450 -- array. The Related_Id and Suffix parameters are used to build the
451 -- associated Implicit type name.
452
453 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
454 -- Build subtype of a signed or modular integer type
455
456 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
457 -- Constrain an ordinary fixed point type with a range constraint, and
458 -- build an E_Ordinary_Fixed_Point_Subtype entity.
459
460 procedure Copy_And_Swap (Priv, Full : Entity_Id);
461 -- Copy the Priv entity into the entity of its full declaration then swap
462 -- the two entities in such a manner that the former private type is now
463 -- seen as a full type.
464
465 procedure Decimal_Fixed_Point_Type_Declaration
466 (T : Entity_Id;
467 Def : Node_Id);
468 -- Create a new decimal fixed point type, and apply the constraint to
469 -- obtain a subtype of this new type.
470
471 procedure Complete_Private_Subtype
472 (Priv : Entity_Id;
473 Full : Entity_Id;
474 Full_Base : Entity_Id;
475 Related_Nod : Node_Id);
476 -- Complete the implicit full view of a private subtype by setting the
477 -- appropriate semantic fields. If the full view of the parent is a record
478 -- type, build constrained components of subtype.
479
480 procedure Derive_Progenitor_Subprograms
481 (Parent_Type : Entity_Id;
482 Tagged_Type : Entity_Id);
483 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
484 -- operations of progenitors of Tagged_Type, and replace the subsidiary
485 -- subtypes with Tagged_Type, to build the specs of the inherited interface
486 -- primitives. The derived primitives are aliased to those of the
487 -- interface. This routine takes care also of transferring to the full view
488 -- subprograms associated with the partial view of Tagged_Type that cover
489 -- interface primitives.
490
491 procedure Derived_Standard_Character
492 (N : Node_Id;
493 Parent_Type : Entity_Id;
494 Derived_Type : Entity_Id);
495 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
496 -- derivations from types Standard.Character and Standard.Wide_Character.
497
498 procedure Derived_Type_Declaration
499 (T : Entity_Id;
500 N : Node_Id;
501 Is_Completion : Boolean);
502 -- Process a derived type declaration. Build_Derived_Type is invoked
503 -- to process the actual derived type definition. Parameters N and
504 -- Is_Completion have the same meaning as in Build_Derived_Type.
505 -- T is the N_Defining_Identifier for the entity defined in the
506 -- N_Full_Type_Declaration node N, that is T is the derived type.
507
508 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
509 -- Insert each literal in symbol table, as an overloadable identifier. Each
510 -- enumeration type is mapped into a sequence of integers, and each literal
511 -- is defined as a constant with integer value. If any of the literals are
512 -- character literals, the type is a character type, which means that
513 -- strings are legal aggregates for arrays of components of the type.
514
515 function Expand_To_Stored_Constraint
516 (Typ : Entity_Id;
517 Constraint : Elist_Id) return Elist_Id;
518 -- Given a constraint (i.e. a list of expressions) on the discriminants of
519 -- Typ, expand it into a constraint on the stored discriminants and return
520 -- the new list of expressions constraining the stored discriminants.
521
522 function Find_Type_Of_Object
523 (Obj_Def : Node_Id;
524 Related_Nod : Node_Id) return Entity_Id;
525 -- Get type entity for object referenced by Obj_Def, attaching the implicit
526 -- types generated to Related_Nod.
527
528 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
529 -- Create a new float and apply the constraint to obtain subtype of it
530
531 function Has_Range_Constraint (N : Node_Id) return Boolean;
532 -- Given an N_Subtype_Indication node N, return True if a range constraint
533 -- is present, either directly, or as part of a digits or delta constraint.
534 -- In addition, a digits constraint in the decimal case returns True, since
535 -- it establishes a default range if no explicit range is present.
536
537 function Inherit_Components
538 (N : Node_Id;
539 Parent_Base : Entity_Id;
540 Derived_Base : Entity_Id;
541 Is_Tagged : Boolean;
542 Inherit_Discr : Boolean;
543 Discs : Elist_Id) return Elist_Id;
544 -- Called from Build_Derived_Record_Type to inherit the components of
545 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
546 -- For more information on derived types and component inheritance please
547 -- consult the comment above the body of Build_Derived_Record_Type.
548 --
549 -- N is the original derived type declaration
550 --
551 -- Is_Tagged is set if we are dealing with tagged types
552 --
553 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
554 -- Parent_Base, otherwise no discriminants are inherited.
555 --
556 -- Discs gives the list of constraints that apply to Parent_Base in the
557 -- derived type declaration. If Discs is set to No_Elist, then we have
558 -- the following situation:
559 --
560 -- type Parent (D1..Dn : ..) is [tagged] record ...;
561 -- type Derived is new Parent [with ...];
562 --
563 -- which gets treated as
564 --
565 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
566 --
567 -- For untagged types the returned value is an association list. The list
568 -- starts from the association (Parent_Base => Derived_Base), and then it
569 -- contains a sequence of the associations of the form
570 --
571 -- (Old_Component => New_Component),
572 --
573 -- where Old_Component is the Entity_Id of a component in Parent_Base and
574 -- New_Component is the Entity_Id of the corresponding component in
575 -- Derived_Base. For untagged records, this association list is needed when
576 -- copying the record declaration for the derived base. In the tagged case
577 -- the value returned is irrelevant.
578
579 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
580 -- Propagate static and dynamic predicate flags from a parent to the
581 -- subtype in a subtype declaration with and without constraints.
582
583 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean;
584 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
585 -- Determine whether subprogram Subp is a procedure subject to pragma
586 -- Extensions_Visible with value False and has at least one controlling
587 -- parameter of mode OUT.
588
589 function Is_Valid_Constraint_Kind
590 (T_Kind : Type_Kind;
591 Constraint_Kind : Node_Kind) return Boolean;
592 -- Returns True if it is legal to apply the given kind of constraint to the
593 -- given kind of type (index constraint to an array type, for example).
594
595 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
596 -- Create new modular type. Verify that modulus is in bounds
597
598 procedure New_Concatenation_Op (Typ : Entity_Id);
599 -- Create an abbreviated declaration for an operator in order to
600 -- materialize concatenation on array types.
601
602 procedure Ordinary_Fixed_Point_Type_Declaration
603 (T : Entity_Id;
604 Def : Node_Id);
605 -- Create a new ordinary fixed point type, and apply the constraint to
606 -- obtain subtype of it.
607
608 procedure Prepare_Private_Subtype_Completion
609 (Id : Entity_Id;
610 Related_Nod : Node_Id);
611 -- Id is a subtype of some private type. Creates the full declaration
612 -- associated with Id whenever possible, i.e. when the full declaration
613 -- of the base type is already known. Records each subtype into
614 -- Private_Dependents of the base type.
615
616 procedure Process_Incomplete_Dependents
617 (N : Node_Id;
618 Full_T : Entity_Id;
619 Inc_T : Entity_Id);
620 -- Process all entities that depend on an incomplete type. There include
621 -- subtypes, subprogram types that mention the incomplete type in their
622 -- profiles, and subprogram with access parameters that designate the
623 -- incomplete type.
624
625 -- Inc_T is the defining identifier of an incomplete type declaration, its
626 -- Ekind is E_Incomplete_Type.
627 --
628 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
629 --
630 -- Full_T is N's defining identifier.
631 --
632 -- Subtypes of incomplete types with discriminants are completed when the
633 -- parent type is. This is simpler than private subtypes, because they can
634 -- only appear in the same scope, and there is no need to exchange views.
635 -- Similarly, access_to_subprogram types may have a parameter or a return
636 -- type that is an incomplete type, and that must be replaced with the
637 -- full type.
638 --
639 -- If the full type is tagged, subprogram with access parameters that
640 -- designated the incomplete may be primitive operations of the full type,
641 -- and have to be processed accordingly.
642
643 procedure Process_Real_Range_Specification (Def : Node_Id);
644 -- Given the type definition for a real type, this procedure processes and
645 -- checks the real range specification of this type definition if one is
646 -- present. If errors are found, error messages are posted, and the
647 -- Real_Range_Specification of Def is reset to Empty.
648
649 procedure Record_Type_Declaration
650 (T : Entity_Id;
651 N : Node_Id;
652 Prev : Entity_Id);
653 -- Process a record type declaration (for both untagged and tagged
654 -- records). Parameters T and N are exactly like in procedure
655 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
656 -- for this routine. If this is the completion of an incomplete type
657 -- declaration, Prev is the entity of the incomplete declaration, used for
658 -- cross-referencing. Otherwise Prev = T.
659
660 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
661 -- This routine is used to process the actual record type definition (both
662 -- for untagged and tagged records). Def is a record type definition node.
663 -- This procedure analyzes the components in this record type definition.
664 -- Prev_T is the entity for the enclosing record type. It is provided so
665 -- that its Has_Task flag can be set if any of the component have Has_Task
666 -- set. If the declaration is the completion of an incomplete type
667 -- declaration, Prev_T is the original incomplete type, whose full view is
668 -- the record type.
669
670 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
671 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
672 -- build a copy of the declaration tree of the parent, and we create
673 -- independently the list of components for the derived type. Semantic
674 -- information uses the component entities, but record representation
675 -- clauses are validated on the declaration tree. This procedure replaces
676 -- discriminants and components in the declaration with those that have
677 -- been created by Inherit_Components.
678
679 procedure Set_Fixed_Range
680 (E : Entity_Id;
681 Loc : Source_Ptr;
682 Lo : Ureal;
683 Hi : Ureal);
684 -- Build a range node with the given bounds and set it as the Scalar_Range
685 -- of the given fixed-point type entity. Loc is the source location used
686 -- for the constructed range. See body for further details.
687
688 procedure Set_Scalar_Range_For_Subtype
689 (Def_Id : Entity_Id;
690 R : Node_Id;
691 Subt : Entity_Id);
692 -- This routine is used to set the scalar range field for a subtype given
693 -- Def_Id, the entity for the subtype, and R, the range expression for the
694 -- scalar range. Subt provides the parent subtype to be used to analyze,
695 -- resolve, and check the given range.
696
697 procedure Set_Default_SSO (T : Entity_Id);
698 -- T is the entity for an array or record being declared. This procedure
699 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
700 -- to the setting of Opt.Default_SSO.
701
702 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
703 -- Create a new signed integer entity, and apply the constraint to obtain
704 -- the required first named subtype of this type.
705
706 procedure Set_Stored_Constraint_From_Discriminant_Constraint
707 (E : Entity_Id);
708 -- E is some record type. This routine computes E's Stored_Constraint
709 -- from its Discriminant_Constraint.
710
711 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
712 -- Check that an entity in a list of progenitors is an interface,
713 -- emit error otherwise.
714
715 -----------------------
716 -- Access_Definition --
717 -----------------------
718
719 function Access_Definition
720 (Related_Nod : Node_Id;
721 N : Node_Id) return Entity_Id
722 is
723 Anon_Type : Entity_Id;
724 Anon_Scope : Entity_Id;
725 Desig_Type : Entity_Id;
726 Enclosing_Prot_Type : Entity_Id := Empty;
727
728 begin
729 Check_SPARK_05_Restriction ("access type is not allowed", N);
730
731 if Is_Entry (Current_Scope)
732 and then Is_Task_Type (Etype (Scope (Current_Scope)))
733 then
734 Error_Msg_N ("task entries cannot have access parameters", N);
735 return Empty;
736 end if;
737
738 -- Ada 2005: For an object declaration the corresponding anonymous
739 -- type is declared in the current scope.
740
741 -- If the access definition is the return type of another access to
742 -- function, scope is the current one, because it is the one of the
743 -- current type declaration, except for the pathological case below.
744
745 if Nkind_In (Related_Nod, N_Object_Declaration,
746 N_Access_Function_Definition)
747 then
748 Anon_Scope := Current_Scope;
749
750 -- A pathological case: function returning access functions that
751 -- return access functions, etc. Each anonymous access type created
752 -- is in the enclosing scope of the outermost function.
753
754 declare
755 Par : Node_Id;
756
757 begin
758 Par := Related_Nod;
759 while Nkind_In (Par, N_Access_Function_Definition,
760 N_Access_Definition)
761 loop
762 Par := Parent (Par);
763 end loop;
764
765 if Nkind (Par) = N_Function_Specification then
766 Anon_Scope := Scope (Defining_Entity (Par));
767 end if;
768 end;
769
770 -- For the anonymous function result case, retrieve the scope of the
771 -- function specification's associated entity rather than using the
772 -- current scope. The current scope will be the function itself if the
773 -- formal part is currently being analyzed, but will be the parent scope
774 -- in the case of a parameterless function, and we always want to use
775 -- the function's parent scope. Finally, if the function is a child
776 -- unit, we must traverse the tree to retrieve the proper entity.
777
778 elsif Nkind (Related_Nod) = N_Function_Specification
779 and then Nkind (Parent (N)) /= N_Parameter_Specification
780 then
781 -- If the current scope is a protected type, the anonymous access
782 -- is associated with one of the protected operations, and must
783 -- be available in the scope that encloses the protected declaration.
784 -- Otherwise the type is in the scope enclosing the subprogram.
785
786 -- If the function has formals, The return type of a subprogram
787 -- declaration is analyzed in the scope of the subprogram (see
788 -- Process_Formals) and thus the protected type, if present, is
789 -- the scope of the current function scope.
790
791 if Ekind (Current_Scope) = E_Protected_Type then
792 Enclosing_Prot_Type := Current_Scope;
793
794 elsif Ekind (Current_Scope) = E_Function
795 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
796 then
797 Enclosing_Prot_Type := Scope (Current_Scope);
798 end if;
799
800 if Present (Enclosing_Prot_Type) then
801 Anon_Scope := Scope (Enclosing_Prot_Type);
802
803 else
804 Anon_Scope := Scope (Defining_Entity (Related_Nod));
805 end if;
806
807 -- For an access type definition, if the current scope is a child
808 -- unit it is the scope of the type.
809
810 elsif Is_Compilation_Unit (Current_Scope) then
811 Anon_Scope := Current_Scope;
812
813 -- For access formals, access components, and access discriminants, the
814 -- scope is that of the enclosing declaration,
815
816 else
817 Anon_Scope := Scope (Current_Scope);
818 end if;
819
820 Anon_Type :=
821 Create_Itype
822 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
823
824 if All_Present (N)
825 and then Ada_Version >= Ada_2005
826 then
827 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
828 end if;
829
830 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
831 -- the corresponding semantic routine
832
833 if Present (Access_To_Subprogram_Definition (N)) then
834
835 -- Compiler runtime units are compiled in Ada 2005 mode when building
836 -- the runtime library but must also be compilable in Ada 95 mode
837 -- (when bootstrapping the compiler).
838
839 Check_Compiler_Unit ("anonymous access to subprogram", N);
840
841 Access_Subprogram_Declaration
842 (T_Name => Anon_Type,
843 T_Def => Access_To_Subprogram_Definition (N));
844
845 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
846 Set_Ekind
847 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
848 else
849 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
850 end if;
851
852 Set_Can_Use_Internal_Rep
853 (Anon_Type, not Always_Compatible_Rep_On_Target);
854
855 -- If the anonymous access is associated with a protected operation,
856 -- create a reference to it after the enclosing protected definition
857 -- because the itype will be used in the subsequent bodies.
858
859 -- If the anonymous access itself is protected, a full type
860 -- declaratiton will be created for it, so that the equivalent
861 -- record type can be constructed. For further details, see
862 -- Replace_Anonymous_Access_To_Protected-Subprogram.
863
864 if Ekind (Current_Scope) = E_Protected_Type
865 and then not Protected_Present (Access_To_Subprogram_Definition (N))
866 then
867 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
868 end if;
869
870 return Anon_Type;
871 end if;
872
873 Find_Type (Subtype_Mark (N));
874 Desig_Type := Entity (Subtype_Mark (N));
875
876 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
877 Set_Etype (Anon_Type, Anon_Type);
878
879 -- Make sure the anonymous access type has size and alignment fields
880 -- set, as required by gigi. This is necessary in the case of the
881 -- Task_Body_Procedure.
882
883 if not Has_Private_Component (Desig_Type) then
884 Layout_Type (Anon_Type);
885 end if;
886
887 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
888 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
889 -- the null value is allowed. In Ada 95 the null value is never allowed.
890
891 if Ada_Version >= Ada_2005 then
892 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
893 else
894 Set_Can_Never_Be_Null (Anon_Type, True);
895 end if;
896
897 -- The anonymous access type is as public as the discriminated type or
898 -- subprogram that defines it. It is imported (for back-end purposes)
899 -- if the designated type is.
900
901 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
902
903 -- Ada 2005 (AI-231): Propagate the access-constant attribute
904
905 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
906
907 -- The context is either a subprogram declaration, object declaration,
908 -- or an access discriminant, in a private or a full type declaration.
909 -- In the case of a subprogram, if the designated type is incomplete,
910 -- the operation will be a primitive operation of the full type, to be
911 -- updated subsequently. If the type is imported through a limited_with
912 -- clause, the subprogram is not a primitive operation of the type
913 -- (which is declared elsewhere in some other scope).
914
915 if Ekind (Desig_Type) = E_Incomplete_Type
916 and then not From_Limited_With (Desig_Type)
917 and then Is_Overloadable (Current_Scope)
918 then
919 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
920 Set_Has_Delayed_Freeze (Current_Scope);
921 end if;
922
923 -- Ada 2005: If the designated type is an interface that may contain
924 -- tasks, create a Master entity for the declaration. This must be done
925 -- before expansion of the full declaration, because the declaration may
926 -- include an expression that is an allocator, whose expansion needs the
927 -- proper Master for the created tasks.
928
929 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
930 then
931 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
932 then
933 Build_Class_Wide_Master (Anon_Type);
934
935 -- Similarly, if the type is an anonymous access that designates
936 -- tasks, create a master entity for it in the current context.
937
938 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
939 then
940 Build_Master_Entity (Defining_Identifier (Related_Nod));
941 Build_Master_Renaming (Anon_Type);
942 end if;
943 end if;
944
945 -- For a private component of a protected type, it is imperative that
946 -- the back-end elaborate the type immediately after the protected
947 -- declaration, because this type will be used in the declarations
948 -- created for the component within each protected body, so we must
949 -- create an itype reference for it now.
950
951 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
952 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
953
954 -- Similarly, if the access definition is the return result of a
955 -- function, create an itype reference for it because it will be used
956 -- within the function body. For a regular function that is not a
957 -- compilation unit, insert reference after the declaration. For a
958 -- protected operation, insert it after the enclosing protected type
959 -- declaration. In either case, do not create a reference for a type
960 -- obtained through a limited_with clause, because this would introduce
961 -- semantic dependencies.
962
963 -- Similarly, do not create a reference if the designated type is a
964 -- generic formal, because no use of it will reach the backend.
965
966 elsif Nkind (Related_Nod) = N_Function_Specification
967 and then not From_Limited_With (Desig_Type)
968 and then not Is_Generic_Type (Desig_Type)
969 then
970 if Present (Enclosing_Prot_Type) then
971 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
972
973 elsif Is_List_Member (Parent (Related_Nod))
974 and then Nkind (Parent (N)) /= N_Parameter_Specification
975 then
976 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
977 end if;
978
979 -- Finally, create an itype reference for an object declaration of an
980 -- anonymous access type. This is strictly necessary only for deferred
981 -- constants, but in any case will avoid out-of-scope problems in the
982 -- back-end.
983
984 elsif Nkind (Related_Nod) = N_Object_Declaration then
985 Build_Itype_Reference (Anon_Type, Related_Nod);
986 end if;
987
988 return Anon_Type;
989 end Access_Definition;
990
991 -----------------------------------
992 -- Access_Subprogram_Declaration --
993 -----------------------------------
994
995 procedure Access_Subprogram_Declaration
996 (T_Name : Entity_Id;
997 T_Def : Node_Id)
998 is
999 procedure Check_For_Premature_Usage (Def : Node_Id);
1000 -- Check that type T_Name is not used, directly or recursively, as a
1001 -- parameter or a return type in Def. Def is either a subtype, an
1002 -- access_definition, or an access_to_subprogram_definition.
1003
1004 -------------------------------
1005 -- Check_For_Premature_Usage --
1006 -------------------------------
1007
1008 procedure Check_For_Premature_Usage (Def : Node_Id) is
1009 Param : Node_Id;
1010
1011 begin
1012 -- Check for a subtype mark
1013
1014 if Nkind (Def) in N_Has_Etype then
1015 if Etype (Def) = T_Name then
1016 Error_Msg_N
1017 ("type& cannot be used before end of its declaration", Def);
1018 end if;
1019
1020 -- If this is not a subtype, then this is an access_definition
1021
1022 elsif Nkind (Def) = N_Access_Definition then
1023 if Present (Access_To_Subprogram_Definition (Def)) then
1024 Check_For_Premature_Usage
1025 (Access_To_Subprogram_Definition (Def));
1026 else
1027 Check_For_Premature_Usage (Subtype_Mark (Def));
1028 end if;
1029
1030 -- The only cases left are N_Access_Function_Definition and
1031 -- N_Access_Procedure_Definition.
1032
1033 else
1034 if Present (Parameter_Specifications (Def)) then
1035 Param := First (Parameter_Specifications (Def));
1036 while Present (Param) loop
1037 Check_For_Premature_Usage (Parameter_Type (Param));
1038 Param := Next (Param);
1039 end loop;
1040 end if;
1041
1042 if Nkind (Def) = N_Access_Function_Definition then
1043 Check_For_Premature_Usage (Result_Definition (Def));
1044 end if;
1045 end if;
1046 end Check_For_Premature_Usage;
1047
1048 -- Local variables
1049
1050 Formals : constant List_Id := Parameter_Specifications (T_Def);
1051 Formal : Entity_Id;
1052 D_Ityp : Node_Id;
1053 Desig_Type : constant Entity_Id :=
1054 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1055
1056 -- Start of processing for Access_Subprogram_Declaration
1057
1058 begin
1059 Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1060
1061 -- Associate the Itype node with the inner full-type declaration or
1062 -- subprogram spec or entry body. This is required to handle nested
1063 -- anonymous declarations. For example:
1064
1065 -- procedure P
1066 -- (X : access procedure
1067 -- (Y : access procedure
1068 -- (Z : access T)))
1069
1070 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1071 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1072 N_Private_Type_Declaration,
1073 N_Private_Extension_Declaration,
1074 N_Procedure_Specification,
1075 N_Function_Specification,
1076 N_Entry_Body)
1077
1078 or else
1079 Nkind_In (D_Ityp, N_Object_Declaration,
1080 N_Object_Renaming_Declaration,
1081 N_Formal_Object_Declaration,
1082 N_Formal_Type_Declaration,
1083 N_Task_Type_Declaration,
1084 N_Protected_Type_Declaration))
1085 loop
1086 D_Ityp := Parent (D_Ityp);
1087 pragma Assert (D_Ityp /= Empty);
1088 end loop;
1089
1090 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1091
1092 if Nkind_In (D_Ityp, N_Procedure_Specification,
1093 N_Function_Specification)
1094 then
1095 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1096
1097 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1098 N_Object_Declaration,
1099 N_Object_Renaming_Declaration,
1100 N_Formal_Type_Declaration)
1101 then
1102 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1103 end if;
1104
1105 if Nkind (T_Def) = N_Access_Function_Definition then
1106 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1107 declare
1108 Acc : constant Node_Id := Result_Definition (T_Def);
1109
1110 begin
1111 if Present (Access_To_Subprogram_Definition (Acc))
1112 and then
1113 Protected_Present (Access_To_Subprogram_Definition (Acc))
1114 then
1115 Set_Etype
1116 (Desig_Type,
1117 Replace_Anonymous_Access_To_Protected_Subprogram
1118 (T_Def));
1119
1120 else
1121 Set_Etype
1122 (Desig_Type,
1123 Access_Definition (T_Def, Result_Definition (T_Def)));
1124 end if;
1125 end;
1126
1127 else
1128 Analyze (Result_Definition (T_Def));
1129
1130 declare
1131 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1132
1133 begin
1134 -- If a null exclusion is imposed on the result type, then
1135 -- create a null-excluding itype (an access subtype) and use
1136 -- it as the function's Etype.
1137
1138 if Is_Access_Type (Typ)
1139 and then Null_Exclusion_In_Return_Present (T_Def)
1140 then
1141 Set_Etype (Desig_Type,
1142 Create_Null_Excluding_Itype
1143 (T => Typ,
1144 Related_Nod => T_Def,
1145 Scope_Id => Current_Scope));
1146
1147 else
1148 if From_Limited_With (Typ) then
1149
1150 -- AI05-151: Incomplete types are allowed in all basic
1151 -- declarations, including access to subprograms.
1152
1153 if Ada_Version >= Ada_2012 then
1154 null;
1155
1156 else
1157 Error_Msg_NE
1158 ("illegal use of incomplete type&",
1159 Result_Definition (T_Def), Typ);
1160 end if;
1161
1162 elsif Ekind (Current_Scope) = E_Package
1163 and then In_Private_Part (Current_Scope)
1164 then
1165 if Ekind (Typ) = E_Incomplete_Type then
1166 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1167
1168 elsif Is_Class_Wide_Type (Typ)
1169 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1170 then
1171 Append_Elmt
1172 (Desig_Type, Private_Dependents (Etype (Typ)));
1173 end if;
1174 end if;
1175
1176 Set_Etype (Desig_Type, Typ);
1177 end if;
1178 end;
1179 end if;
1180
1181 if not (Is_Type (Etype (Desig_Type))) then
1182 Error_Msg_N
1183 ("expect type in function specification",
1184 Result_Definition (T_Def));
1185 end if;
1186
1187 else
1188 Set_Etype (Desig_Type, Standard_Void_Type);
1189 end if;
1190
1191 if Present (Formals) then
1192 Push_Scope (Desig_Type);
1193
1194 -- Some special tests here. These special tests can be removed
1195 -- if and when Itypes always have proper parent pointers to their
1196 -- declarations???
1197
1198 -- Special test 1) Link defining_identifier of formals. Required by
1199 -- First_Formal to provide its functionality.
1200
1201 declare
1202 F : Node_Id;
1203
1204 begin
1205 F := First (Formals);
1206
1207 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1208 -- when it is part of an unconstrained type and subtype expansion
1209 -- is disabled. To avoid back-end problems with shared profiles,
1210 -- use previous subprogram type as the designated type, and then
1211 -- remove scope added above.
1212
1213 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1214 then
1215 Set_Etype (T_Name, T_Name);
1216 Init_Size_Align (T_Name);
1217 Set_Directly_Designated_Type (T_Name,
1218 Scope (Defining_Identifier (F)));
1219 End_Scope;
1220 return;
1221 end if;
1222
1223 while Present (F) loop
1224 if No (Parent (Defining_Identifier (F))) then
1225 Set_Parent (Defining_Identifier (F), F);
1226 end if;
1227
1228 Next (F);
1229 end loop;
1230 end;
1231
1232 Process_Formals (Formals, Parent (T_Def));
1233
1234 -- Special test 2) End_Scope requires that the parent pointer be set
1235 -- to something reasonable, but Itypes don't have parent pointers. So
1236 -- we set it and then unset it ???
1237
1238 Set_Parent (Desig_Type, T_Name);
1239 End_Scope;
1240 Set_Parent (Desig_Type, Empty);
1241 end if;
1242
1243 -- Check for premature usage of the type being defined
1244
1245 Check_For_Premature_Usage (T_Def);
1246
1247 -- The return type and/or any parameter type may be incomplete. Mark the
1248 -- subprogram_type as depending on the incomplete type, so that it can
1249 -- be updated when the full type declaration is seen. This only applies
1250 -- to incomplete types declared in some enclosing scope, not to limited
1251 -- views from other packages.
1252
1253 -- Prior to Ada 2012, access to functions can only have in_parameters.
1254
1255 if Present (Formals) then
1256 Formal := First_Formal (Desig_Type);
1257 while Present (Formal) loop
1258 if Ekind (Formal) /= E_In_Parameter
1259 and then Nkind (T_Def) = N_Access_Function_Definition
1260 and then Ada_Version < Ada_2012
1261 then
1262 Error_Msg_N ("functions can only have IN parameters", Formal);
1263 end if;
1264
1265 if Ekind (Etype (Formal)) = E_Incomplete_Type
1266 and then In_Open_Scopes (Scope (Etype (Formal)))
1267 then
1268 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1269 Set_Has_Delayed_Freeze (Desig_Type);
1270 end if;
1271
1272 Next_Formal (Formal);
1273 end loop;
1274 end if;
1275
1276 -- Check whether an indirect call without actuals may be possible. This
1277 -- is used when resolving calls whose result is then indexed.
1278
1279 May_Need_Actuals (Desig_Type);
1280
1281 -- If the return type is incomplete, this is legal as long as the type
1282 -- is declared in the current scope and will be completed in it (rather
1283 -- than being part of limited view).
1284
1285 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1286 and then not Has_Delayed_Freeze (Desig_Type)
1287 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1288 then
1289 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1290 Set_Has_Delayed_Freeze (Desig_Type);
1291 end if;
1292
1293 Check_Delayed_Subprogram (Desig_Type);
1294
1295 if Protected_Present (T_Def) then
1296 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1297 Set_Convention (Desig_Type, Convention_Protected);
1298 else
1299 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1300 end if;
1301
1302 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1303
1304 Set_Etype (T_Name, T_Name);
1305 Init_Size_Align (T_Name);
1306 Set_Directly_Designated_Type (T_Name, Desig_Type);
1307
1308 Generate_Reference_To_Formals (T_Name);
1309
1310 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1311
1312 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1313
1314 Check_Restriction (No_Access_Subprograms, T_Def);
1315 end Access_Subprogram_Declaration;
1316
1317 ----------------------------
1318 -- Access_Type_Declaration --
1319 ----------------------------
1320
1321 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1322 P : constant Node_Id := Parent (Def);
1323 S : constant Node_Id := Subtype_Indication (Def);
1324
1325 Full_Desig : Entity_Id;
1326
1327 begin
1328 Check_SPARK_05_Restriction ("access type is not allowed", Def);
1329
1330 -- Check for permissible use of incomplete type
1331
1332 if Nkind (S) /= N_Subtype_Indication then
1333 Analyze (S);
1334
1335 if Present (Entity (S))
1336 and then Ekind (Root_Type (Entity (S))) = E_Incomplete_Type
1337 then
1338 Set_Directly_Designated_Type (T, Entity (S));
1339
1340 -- If the designated type is a limited view, we cannot tell if
1341 -- the full view contains tasks, and there is no way to handle
1342 -- that full view in a client. We create a master entity for the
1343 -- scope, which will be used when a client determines that one
1344 -- is needed.
1345
1346 if From_Limited_With (Entity (S))
1347 and then not Is_Class_Wide_Type (Entity (S))
1348 then
1349 Set_Ekind (T, E_Access_Type);
1350 Build_Master_Entity (T);
1351 Build_Master_Renaming (T);
1352 end if;
1353
1354 else
1355 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1356 end if;
1357
1358 -- If the access definition is of the form: ACCESS NOT NULL ..
1359 -- the subtype indication must be of an access type. Create
1360 -- a null-excluding subtype of it.
1361
1362 if Null_Excluding_Subtype (Def) then
1363 if not Is_Access_Type (Entity (S)) then
1364 Error_Msg_N ("null exclusion must apply to access type", Def);
1365
1366 else
1367 declare
1368 Loc : constant Source_Ptr := Sloc (S);
1369 Decl : Node_Id;
1370 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1371
1372 begin
1373 Decl :=
1374 Make_Subtype_Declaration (Loc,
1375 Defining_Identifier => Nam,
1376 Subtype_Indication =>
1377 New_Occurrence_Of (Entity (S), Loc));
1378 Set_Null_Exclusion_Present (Decl);
1379 Insert_Before (Parent (Def), Decl);
1380 Analyze (Decl);
1381 Set_Entity (S, Nam);
1382 end;
1383 end if;
1384 end if;
1385
1386 else
1387 Set_Directly_Designated_Type (T,
1388 Process_Subtype (S, P, T, 'P'));
1389 end if;
1390
1391 if All_Present (Def) or Constant_Present (Def) then
1392 Set_Ekind (T, E_General_Access_Type);
1393 else
1394 Set_Ekind (T, E_Access_Type);
1395 end if;
1396
1397 Full_Desig := Designated_Type (T);
1398
1399 if Base_Type (Full_Desig) = T then
1400 Error_Msg_N ("access type cannot designate itself", S);
1401
1402 -- In Ada 2005, the type may have a limited view through some unit in
1403 -- its own context, allowing the following circularity that cannot be
1404 -- detected earlier.
1405
1406 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1407 then
1408 Error_Msg_N
1409 ("access type cannot designate its own class-wide type", S);
1410
1411 -- Clean up indication of tagged status to prevent cascaded errors
1412
1413 Set_Is_Tagged_Type (T, False);
1414 end if;
1415
1416 Set_Etype (T, T);
1417
1418 -- If the type has appeared already in a with_type clause, it is frozen
1419 -- and the pointer size is already set. Else, initialize.
1420
1421 if not From_Limited_With (T) then
1422 Init_Size_Align (T);
1423 end if;
1424
1425 -- Note that Has_Task is always false, since the access type itself
1426 -- is not a task type. See Einfo for more description on this point.
1427 -- Exactly the same consideration applies to Has_Controlled_Component
1428 -- and to Has_Protected.
1429
1430 Set_Has_Task (T, False);
1431 Set_Has_Protected (T, False);
1432 Set_Has_Timing_Event (T, False);
1433 Set_Has_Controlled_Component (T, False);
1434
1435 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1436 -- problems where an incomplete view of this entity has been previously
1437 -- established by a limited with and an overlaid version of this field
1438 -- (Stored_Constraint) was initialized for the incomplete view.
1439
1440 -- This reset is performed in most cases except where the access type
1441 -- has been created for the purposes of allocating or deallocating a
1442 -- build-in-place object. Such access types have explicitly set pools
1443 -- and finalization masters.
1444
1445 if No (Associated_Storage_Pool (T)) then
1446 Set_Finalization_Master (T, Empty);
1447 end if;
1448
1449 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1450 -- attributes
1451
1452 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1453 Set_Is_Access_Constant (T, Constant_Present (Def));
1454 end Access_Type_Declaration;
1455
1456 ----------------------------------
1457 -- Add_Interface_Tag_Components --
1458 ----------------------------------
1459
1460 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1461 Loc : constant Source_Ptr := Sloc (N);
1462 L : List_Id;
1463 Last_Tag : Node_Id;
1464
1465 procedure Add_Tag (Iface : Entity_Id);
1466 -- Add tag for one of the progenitor interfaces
1467
1468 -------------
1469 -- Add_Tag --
1470 -------------
1471
1472 procedure Add_Tag (Iface : Entity_Id) is
1473 Decl : Node_Id;
1474 Def : Node_Id;
1475 Tag : Entity_Id;
1476 Offset : Entity_Id;
1477
1478 begin
1479 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1480
1481 -- This is a reasonable place to propagate predicates
1482
1483 if Has_Predicates (Iface) then
1484 Set_Has_Predicates (Typ);
1485 end if;
1486
1487 Def :=
1488 Make_Component_Definition (Loc,
1489 Aliased_Present => True,
1490 Subtype_Indication =>
1491 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1492
1493 Tag := Make_Temporary (Loc, 'V');
1494
1495 Decl :=
1496 Make_Component_Declaration (Loc,
1497 Defining_Identifier => Tag,
1498 Component_Definition => Def);
1499
1500 Analyze_Component_Declaration (Decl);
1501
1502 Set_Analyzed (Decl);
1503 Set_Ekind (Tag, E_Component);
1504 Set_Is_Tag (Tag);
1505 Set_Is_Aliased (Tag);
1506 Set_Related_Type (Tag, Iface);
1507 Init_Component_Location (Tag);
1508
1509 pragma Assert (Is_Frozen (Iface));
1510
1511 Set_DT_Entry_Count (Tag,
1512 DT_Entry_Count (First_Entity (Iface)));
1513
1514 if No (Last_Tag) then
1515 Prepend (Decl, L);
1516 else
1517 Insert_After (Last_Tag, Decl);
1518 end if;
1519
1520 Last_Tag := Decl;
1521
1522 -- If the ancestor has discriminants we need to give special support
1523 -- to store the offset_to_top value of the secondary dispatch tables.
1524 -- For this purpose we add a supplementary component just after the
1525 -- field that contains the tag associated with each secondary DT.
1526
1527 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1528 Def :=
1529 Make_Component_Definition (Loc,
1530 Subtype_Indication =>
1531 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1532
1533 Offset := Make_Temporary (Loc, 'V');
1534
1535 Decl :=
1536 Make_Component_Declaration (Loc,
1537 Defining_Identifier => Offset,
1538 Component_Definition => Def);
1539
1540 Analyze_Component_Declaration (Decl);
1541
1542 Set_Analyzed (Decl);
1543 Set_Ekind (Offset, E_Component);
1544 Set_Is_Aliased (Offset);
1545 Set_Related_Type (Offset, Iface);
1546 Init_Component_Location (Offset);
1547 Insert_After (Last_Tag, Decl);
1548 Last_Tag := Decl;
1549 end if;
1550 end Add_Tag;
1551
1552 -- Local variables
1553
1554 Elmt : Elmt_Id;
1555 Ext : Node_Id;
1556 Comp : Node_Id;
1557
1558 -- Start of processing for Add_Interface_Tag_Components
1559
1560 begin
1561 if not RTE_Available (RE_Interface_Tag) then
1562 Error_Msg
1563 ("(Ada 2005) interface types not supported by this run-time!",
1564 Sloc (N));
1565 return;
1566 end if;
1567
1568 if Ekind (Typ) /= E_Record_Type
1569 or else (Is_Concurrent_Record_Type (Typ)
1570 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1571 or else (not Is_Concurrent_Record_Type (Typ)
1572 and then No (Interfaces (Typ))
1573 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1574 then
1575 return;
1576 end if;
1577
1578 -- Find the current last tag
1579
1580 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1581 Ext := Record_Extension_Part (Type_Definition (N));
1582 else
1583 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1584 Ext := Type_Definition (N);
1585 end if;
1586
1587 Last_Tag := Empty;
1588
1589 if not (Present (Component_List (Ext))) then
1590 Set_Null_Present (Ext, False);
1591 L := New_List;
1592 Set_Component_List (Ext,
1593 Make_Component_List (Loc,
1594 Component_Items => L,
1595 Null_Present => False));
1596 else
1597 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1598 L := Component_Items
1599 (Component_List
1600 (Record_Extension_Part
1601 (Type_Definition (N))));
1602 else
1603 L := Component_Items
1604 (Component_List
1605 (Type_Definition (N)));
1606 end if;
1607
1608 -- Find the last tag component
1609
1610 Comp := First (L);
1611 while Present (Comp) loop
1612 if Nkind (Comp) = N_Component_Declaration
1613 and then Is_Tag (Defining_Identifier (Comp))
1614 then
1615 Last_Tag := Comp;
1616 end if;
1617
1618 Next (Comp);
1619 end loop;
1620 end if;
1621
1622 -- At this point L references the list of components and Last_Tag
1623 -- references the current last tag (if any). Now we add the tag
1624 -- corresponding with all the interfaces that are not implemented
1625 -- by the parent.
1626
1627 if Present (Interfaces (Typ)) then
1628 Elmt := First_Elmt (Interfaces (Typ));
1629 while Present (Elmt) loop
1630 Add_Tag (Node (Elmt));
1631 Next_Elmt (Elmt);
1632 end loop;
1633 end if;
1634 end Add_Interface_Tag_Components;
1635
1636 -------------------------------------
1637 -- Add_Internal_Interface_Entities --
1638 -------------------------------------
1639
1640 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1641 Elmt : Elmt_Id;
1642 Iface : Entity_Id;
1643 Iface_Elmt : Elmt_Id;
1644 Iface_Prim : Entity_Id;
1645 Ifaces_List : Elist_Id;
1646 New_Subp : Entity_Id := Empty;
1647 Prim : Entity_Id;
1648 Restore_Scope : Boolean := False;
1649
1650 begin
1651 pragma Assert (Ada_Version >= Ada_2005
1652 and then Is_Record_Type (Tagged_Type)
1653 and then Is_Tagged_Type (Tagged_Type)
1654 and then Has_Interfaces (Tagged_Type)
1655 and then not Is_Interface (Tagged_Type));
1656
1657 -- Ensure that the internal entities are added to the scope of the type
1658
1659 if Scope (Tagged_Type) /= Current_Scope then
1660 Push_Scope (Scope (Tagged_Type));
1661 Restore_Scope := True;
1662 end if;
1663
1664 Collect_Interfaces (Tagged_Type, Ifaces_List);
1665
1666 Iface_Elmt := First_Elmt (Ifaces_List);
1667 while Present (Iface_Elmt) loop
1668 Iface := Node (Iface_Elmt);
1669
1670 -- Originally we excluded here from this processing interfaces that
1671 -- are parents of Tagged_Type because their primitives are located
1672 -- in the primary dispatch table (and hence no auxiliary internal
1673 -- entities are required to handle secondary dispatch tables in such
1674 -- case). However, these auxiliary entities are also required to
1675 -- handle derivations of interfaces in formals of generics (see
1676 -- Derive_Subprograms).
1677
1678 Elmt := First_Elmt (Primitive_Operations (Iface));
1679 while Present (Elmt) loop
1680 Iface_Prim := Node (Elmt);
1681
1682 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1683 Prim :=
1684 Find_Primitive_Covering_Interface
1685 (Tagged_Type => Tagged_Type,
1686 Iface_Prim => Iface_Prim);
1687
1688 if No (Prim) and then Serious_Errors_Detected > 0 then
1689 goto Continue;
1690 end if;
1691
1692 pragma Assert (Present (Prim));
1693
1694 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1695 -- differs from the name of the interface primitive then it is
1696 -- a private primitive inherited from a parent type. In such
1697 -- case, given that Tagged_Type covers the interface, the
1698 -- inherited private primitive becomes visible. For such
1699 -- purpose we add a new entity that renames the inherited
1700 -- private primitive.
1701
1702 if Chars (Prim) /= Chars (Iface_Prim) then
1703 pragma Assert (Has_Suffix (Prim, 'P'));
1704 Derive_Subprogram
1705 (New_Subp => New_Subp,
1706 Parent_Subp => Iface_Prim,
1707 Derived_Type => Tagged_Type,
1708 Parent_Type => Iface);
1709 Set_Alias (New_Subp, Prim);
1710 Set_Is_Abstract_Subprogram
1711 (New_Subp, Is_Abstract_Subprogram (Prim));
1712 end if;
1713
1714 Derive_Subprogram
1715 (New_Subp => New_Subp,
1716 Parent_Subp => Iface_Prim,
1717 Derived_Type => Tagged_Type,
1718 Parent_Type => Iface);
1719
1720 declare
1721 Anc : Entity_Id;
1722 begin
1723 if Is_Inherited_Operation (Prim)
1724 and then Present (Alias (Prim))
1725 then
1726 Anc := Alias (Prim);
1727 else
1728 Anc := Overridden_Operation (Prim);
1729 end if;
1730
1731 -- Apply legality checks in RM 6.1.1 (10-13) concerning
1732 -- nonconforming preconditions in both an ancestor and
1733 -- a progenitor operation.
1734
1735 -- If the operation is a primitive wrapper it is an explicit
1736 -- (overriding) operqtion and all is fine.
1737
1738 if Present (Anc)
1739 and then Has_Non_Trivial_Precondition (Anc)
1740 and then Has_Non_Trivial_Precondition (Iface_Prim)
1741 then
1742 if Is_Abstract_Subprogram (Prim)
1743 or else
1744 (Ekind (Prim) = E_Procedure
1745 and then Nkind (Parent (Prim)) =
1746 N_Procedure_Specification
1747 and then Null_Present (Parent (Prim)))
1748 or else Is_Primitive_Wrapper (Prim)
1749 then
1750 null;
1751
1752 -- The operation is inherited and must be overridden
1753
1754 elsif not Comes_From_Source (Prim) then
1755 Error_Msg_NE
1756 ("&inherits non-conforming preconditions and must "
1757 & "be overridden (RM 6.1.1 (10-16)",
1758 Parent (Tagged_Type), Prim);
1759 end if;
1760 end if;
1761 end;
1762
1763 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1764 -- associated with interface types. These entities are
1765 -- only registered in the list of primitives of its
1766 -- corresponding tagged type because they are only used
1767 -- to fill the contents of the secondary dispatch tables.
1768 -- Therefore they are removed from the homonym chains.
1769
1770 Set_Is_Hidden (New_Subp);
1771 Set_Is_Internal (New_Subp);
1772 Set_Alias (New_Subp, Prim);
1773 Set_Is_Abstract_Subprogram
1774 (New_Subp, Is_Abstract_Subprogram (Prim));
1775 Set_Interface_Alias (New_Subp, Iface_Prim);
1776
1777 -- If the returned type is an interface then propagate it to
1778 -- the returned type. Needed by the thunk to generate the code
1779 -- which displaces "this" to reference the corresponding
1780 -- secondary dispatch table in the returned object.
1781
1782 if Is_Interface (Etype (Iface_Prim)) then
1783 Set_Etype (New_Subp, Etype (Iface_Prim));
1784 end if;
1785
1786 -- Internal entities associated with interface types are only
1787 -- registered in the list of primitives of the tagged type.
1788 -- They are only used to fill the contents of the secondary
1789 -- dispatch tables. Therefore they are not needed in the
1790 -- homonym chains.
1791
1792 Remove_Homonym (New_Subp);
1793
1794 -- Hidden entities associated with interfaces must have set
1795 -- the Has_Delay_Freeze attribute to ensure that, in case
1796 -- of locally defined tagged types (or compiling with static
1797 -- dispatch tables generation disabled) the corresponding
1798 -- entry of the secondary dispatch table is filled when such
1799 -- an entity is frozen. This is an expansion activity that must
1800 -- be suppressed for ASIS because it leads to gigi elaboration
1801 -- issues in annotate mode.
1802
1803 if not ASIS_Mode then
1804 Set_Has_Delayed_Freeze (New_Subp);
1805 end if;
1806 end if;
1807
1808 <<Continue>>
1809 Next_Elmt (Elmt);
1810 end loop;
1811
1812 Next_Elmt (Iface_Elmt);
1813 end loop;
1814
1815 if Restore_Scope then
1816 Pop_Scope;
1817 end if;
1818 end Add_Internal_Interface_Entities;
1819
1820 -----------------------------------
1821 -- Analyze_Component_Declaration --
1822 -----------------------------------
1823
1824 procedure Analyze_Component_Declaration (N : Node_Id) is
1825 Loc : constant Source_Ptr := Sloc (Component_Definition (N));
1826 Id : constant Entity_Id := Defining_Identifier (N);
1827 E : constant Node_Id := Expression (N);
1828 Typ : constant Node_Id :=
1829 Subtype_Indication (Component_Definition (N));
1830 T : Entity_Id;
1831 P : Entity_Id;
1832
1833 function Contains_POC (Constr : Node_Id) return Boolean;
1834 -- Determines whether a constraint uses the discriminant of a record
1835 -- type thus becoming a per-object constraint (POC).
1836
1837 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1838 -- Typ is the type of the current component, check whether this type is
1839 -- a limited type. Used to validate declaration against that of
1840 -- enclosing record.
1841
1842 ------------------
1843 -- Contains_POC --
1844 ------------------
1845
1846 function Contains_POC (Constr : Node_Id) return Boolean is
1847 begin
1848 -- Prevent cascaded errors
1849
1850 if Error_Posted (Constr) then
1851 return False;
1852 end if;
1853
1854 case Nkind (Constr) is
1855 when N_Attribute_Reference =>
1856 return Attribute_Name (Constr) = Name_Access
1857 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1858
1859 when N_Discriminant_Association =>
1860 return Denotes_Discriminant (Expression (Constr));
1861
1862 when N_Identifier =>
1863 return Denotes_Discriminant (Constr);
1864
1865 when N_Index_Or_Discriminant_Constraint =>
1866 declare
1867 IDC : Node_Id;
1868
1869 begin
1870 IDC := First (Constraints (Constr));
1871 while Present (IDC) loop
1872
1873 -- One per-object constraint is sufficient
1874
1875 if Contains_POC (IDC) then
1876 return True;
1877 end if;
1878
1879 Next (IDC);
1880 end loop;
1881
1882 return False;
1883 end;
1884
1885 when N_Range =>
1886 return Denotes_Discriminant (Low_Bound (Constr))
1887 or else
1888 Denotes_Discriminant (High_Bound (Constr));
1889
1890 when N_Range_Constraint =>
1891 return Denotes_Discriminant (Range_Expression (Constr));
1892
1893 when others =>
1894 return False;
1895 end case;
1896 end Contains_POC;
1897
1898 ----------------------
1899 -- Is_Known_Limited --
1900 ----------------------
1901
1902 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1903 P : constant Entity_Id := Etype (Typ);
1904 R : constant Entity_Id := Root_Type (Typ);
1905
1906 begin
1907 if Is_Limited_Record (Typ) then
1908 return True;
1909
1910 -- If the root type is limited (and not a limited interface)
1911 -- so is the current type
1912
1913 elsif Is_Limited_Record (R)
1914 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1915 then
1916 return True;
1917
1918 -- Else the type may have a limited interface progenitor, but a
1919 -- limited record parent.
1920
1921 elsif R /= P and then Is_Limited_Record (P) then
1922 return True;
1923
1924 else
1925 return False;
1926 end if;
1927 end Is_Known_Limited;
1928
1929 -- Start of processing for Analyze_Component_Declaration
1930
1931 begin
1932 Generate_Definition (Id);
1933 Enter_Name (Id);
1934
1935 if Present (Typ) then
1936 T := Find_Type_Of_Object
1937 (Subtype_Indication (Component_Definition (N)), N);
1938
1939 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1940 Check_SPARK_05_Restriction ("subtype mark required", Typ);
1941 end if;
1942
1943 -- Ada 2005 (AI-230): Access Definition case
1944
1945 else
1946 pragma Assert (Present
1947 (Access_Definition (Component_Definition (N))));
1948
1949 T := Access_Definition
1950 (Related_Nod => N,
1951 N => Access_Definition (Component_Definition (N)));
1952 Set_Is_Local_Anonymous_Access (T);
1953
1954 -- Ada 2005 (AI-254)
1955
1956 if Present (Access_To_Subprogram_Definition
1957 (Access_Definition (Component_Definition (N))))
1958 and then Protected_Present (Access_To_Subprogram_Definition
1959 (Access_Definition
1960 (Component_Definition (N))))
1961 then
1962 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1963 end if;
1964 end if;
1965
1966 -- If the subtype is a constrained subtype of the enclosing record,
1967 -- (which must have a partial view) the back-end does not properly
1968 -- handle the recursion. Rewrite the component declaration with an
1969 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1970 -- the tree directly because side effects have already been removed from
1971 -- discriminant constraints.
1972
1973 if Ekind (T) = E_Access_Subtype
1974 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1975 and then Comes_From_Source (T)
1976 and then Nkind (Parent (T)) = N_Subtype_Declaration
1977 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1978 then
1979 Rewrite
1980 (Subtype_Indication (Component_Definition (N)),
1981 New_Copy_Tree (Subtype_Indication (Parent (T))));
1982 T := Find_Type_Of_Object
1983 (Subtype_Indication (Component_Definition (N)), N);
1984 end if;
1985
1986 -- If the component declaration includes a default expression, then we
1987 -- check that the component is not of a limited type (RM 3.7(5)),
1988 -- and do the special preanalysis of the expression (see section on
1989 -- "Handling of Default and Per-Object Expressions" in the spec of
1990 -- package Sem).
1991
1992 if Present (E) then
1993 Check_SPARK_05_Restriction ("default expression is not allowed", E);
1994 Preanalyze_Default_Expression (E, T);
1995 Check_Initialization (T, E);
1996
1997 if Ada_Version >= Ada_2005
1998 and then Ekind (T) = E_Anonymous_Access_Type
1999 and then Etype (E) /= Any_Type
2000 then
2001 -- Check RM 3.9.2(9): "if the expected type for an expression is
2002 -- an anonymous access-to-specific tagged type, then the object
2003 -- designated by the expression shall not be dynamically tagged
2004 -- unless it is a controlling operand in a call on a dispatching
2005 -- operation"
2006
2007 if Is_Tagged_Type (Directly_Designated_Type (T))
2008 and then
2009 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
2010 and then
2011 Ekind (Directly_Designated_Type (Etype (E))) =
2012 E_Class_Wide_Type
2013 then
2014 Error_Msg_N
2015 ("access to specific tagged type required (RM 3.9.2(9))", E);
2016 end if;
2017
2018 -- (Ada 2005: AI-230): Accessibility check for anonymous
2019 -- components
2020
2021 if Type_Access_Level (Etype (E)) >
2022 Deepest_Type_Access_Level (T)
2023 then
2024 Error_Msg_N
2025 ("expression has deeper access level than component " &
2026 "(RM 3.10.2 (12.2))", E);
2027 end if;
2028
2029 -- The initialization expression is a reference to an access
2030 -- discriminant. The type of the discriminant is always deeper
2031 -- than any access type.
2032
2033 if Ekind (Etype (E)) = E_Anonymous_Access_Type
2034 and then Is_Entity_Name (E)
2035 and then Ekind (Entity (E)) = E_In_Parameter
2036 and then Present (Discriminal_Link (Entity (E)))
2037 then
2038 Error_Msg_N
2039 ("discriminant has deeper accessibility level than target",
2040 E);
2041 end if;
2042 end if;
2043 end if;
2044
2045 -- The parent type may be a private view with unknown discriminants,
2046 -- and thus unconstrained. Regular components must be constrained.
2047
2048 if not Is_Definite_Subtype (T) and then Chars (Id) /= Name_uParent then
2049 if Is_Class_Wide_Type (T) then
2050 Error_Msg_N
2051 ("class-wide subtype with unknown discriminants" &
2052 " in component declaration",
2053 Subtype_Indication (Component_Definition (N)));
2054 else
2055 Error_Msg_N
2056 ("unconstrained subtype in component declaration",
2057 Subtype_Indication (Component_Definition (N)));
2058 end if;
2059
2060 -- Components cannot be abstract, except for the special case of
2061 -- the _Parent field (case of extending an abstract tagged type)
2062
2063 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2064 Error_Msg_N ("type of a component cannot be abstract", N);
2065 end if;
2066
2067 Set_Etype (Id, T);
2068 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2069
2070 -- The component declaration may have a per-object constraint, set
2071 -- the appropriate flag in the defining identifier of the subtype.
2072
2073 if Present (Subtype_Indication (Component_Definition (N))) then
2074 declare
2075 Sindic : constant Node_Id :=
2076 Subtype_Indication (Component_Definition (N));
2077 begin
2078 if Nkind (Sindic) = N_Subtype_Indication
2079 and then Present (Constraint (Sindic))
2080 and then Contains_POC (Constraint (Sindic))
2081 then
2082 Set_Has_Per_Object_Constraint (Id);
2083 end if;
2084 end;
2085 end if;
2086
2087 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2088 -- out some static checks.
2089
2090 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2091 Null_Exclusion_Static_Checks (N);
2092 end if;
2093
2094 -- If this component is private (or depends on a private type), flag the
2095 -- record type to indicate that some operations are not available.
2096
2097 P := Private_Component (T);
2098
2099 if Present (P) then
2100
2101 -- Check for circular definitions
2102
2103 if P = Any_Type then
2104 Set_Etype (Id, Any_Type);
2105
2106 -- There is a gap in the visibility of operations only if the
2107 -- component type is not defined in the scope of the record type.
2108
2109 elsif Scope (P) = Scope (Current_Scope) then
2110 null;
2111
2112 elsif Is_Limited_Type (P) then
2113 Set_Is_Limited_Composite (Current_Scope);
2114
2115 else
2116 Set_Is_Private_Composite (Current_Scope);
2117 end if;
2118 end if;
2119
2120 if P /= Any_Type
2121 and then Is_Limited_Type (T)
2122 and then Chars (Id) /= Name_uParent
2123 and then Is_Tagged_Type (Current_Scope)
2124 then
2125 if Is_Derived_Type (Current_Scope)
2126 and then not Is_Known_Limited (Current_Scope)
2127 then
2128 Error_Msg_N
2129 ("extension of nonlimited type cannot have limited components",
2130 N);
2131
2132 if Is_Interface (Root_Type (Current_Scope)) then
2133 Error_Msg_N
2134 ("\limitedness is not inherited from limited interface", N);
2135 Error_Msg_N ("\add LIMITED to type indication", N);
2136 end if;
2137
2138 Explain_Limited_Type (T, N);
2139 Set_Etype (Id, Any_Type);
2140 Set_Is_Limited_Composite (Current_Scope, False);
2141
2142 elsif not Is_Derived_Type (Current_Scope)
2143 and then not Is_Limited_Record (Current_Scope)
2144 and then not Is_Concurrent_Type (Current_Scope)
2145 then
2146 Error_Msg_N
2147 ("nonlimited tagged type cannot have limited components", N);
2148 Explain_Limited_Type (T, N);
2149 Set_Etype (Id, Any_Type);
2150 Set_Is_Limited_Composite (Current_Scope, False);
2151 end if;
2152 end if;
2153
2154 -- If the component is an unconstrained task or protected type with
2155 -- discriminants, the component and the enclosing record are limited
2156 -- and the component is constrained by its default values. Compute
2157 -- its actual subtype, else it may be allocated the maximum size by
2158 -- the backend, and possibly overflow.
2159
2160 if Is_Concurrent_Type (T)
2161 and then not Is_Constrained (T)
2162 and then Has_Discriminants (T)
2163 and then not Has_Discriminants (Current_Scope)
2164 then
2165 declare
2166 Act_T : constant Entity_Id := Build_Default_Subtype (T, N);
2167
2168 begin
2169 Set_Etype (Id, Act_T);
2170
2171 -- Rewrite component definition to use the constrained subtype
2172
2173 Rewrite (Component_Definition (N),
2174 Make_Component_Definition (Loc,
2175 Subtype_Indication => New_Occurrence_Of (Act_T, Loc)));
2176 end;
2177 end if;
2178
2179 Set_Original_Record_Component (Id, Id);
2180
2181 if Has_Aspects (N) then
2182 Analyze_Aspect_Specifications (N, Id);
2183 end if;
2184
2185 Analyze_Dimension (N);
2186 end Analyze_Component_Declaration;
2187
2188 --------------------------
2189 -- Analyze_Declarations --
2190 --------------------------
2191
2192 procedure Analyze_Declarations (L : List_Id) is
2193 Decl : Node_Id;
2194
2195 procedure Adjust_Decl;
2196 -- Adjust Decl not to include implicit label declarations, since these
2197 -- have strange Sloc values that result in elaboration check problems.
2198 -- (They have the sloc of the label as found in the source, and that
2199 -- is ahead of the current declarative part).
2200
2201 procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id);
2202 -- Create the subprogram bodies which verify the run-time semantics of
2203 -- the pragmas listed below for each elibigle type found in declarative
2204 -- list Decls. The pragmas are:
2205 --
2206 -- Default_Initial_Condition
2207 -- Invariant
2208 -- Type_Invariant
2209 --
2210 -- Context denotes the owner of the declarative list.
2211
2212 procedure Check_Entry_Contracts;
2213 -- Perform a pre-analysis of the pre- and postconditions of an entry
2214 -- declaration. This must be done before full resolution and creation
2215 -- of the parameter block, etc. to catch illegal uses within the
2216 -- contract expression. Full analysis of the expression is done when
2217 -- the contract is processed.
2218
2219 function Contains_Lib_Incomplete_Type (Pkg : Entity_Id) return Boolean;
2220 -- Check if a nested package has entities within it that rely on library
2221 -- level private types where the full view has not been completed for
2222 -- the purposes of checking if it is acceptable to freeze an expression
2223 -- function at the point of declaration.
2224
2225 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2226 -- Determine whether Body_Decl denotes the body of a late controlled
2227 -- primitive (either Initialize, Adjust or Finalize). If this is the
2228 -- case, add a proper spec if the body lacks one. The spec is inserted
2229 -- before Body_Decl and immediately analyzed.
2230
2231 procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id);
2232 -- Spec_Id is the entity of a package that may define abstract states,
2233 -- and in the case of a child unit, whose ancestors may define abstract
2234 -- states. If the states have partial visible refinement, remove the
2235 -- partial visibility of each constituent at the end of the package
2236 -- spec and body declarations.
2237
2238 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2239 -- Spec_Id is the entity of a package that may define abstract states.
2240 -- If the states have visible refinement, remove the visibility of each
2241 -- constituent at the end of the package body declaration.
2242
2243 procedure Resolve_Aspects;
2244 -- Utility to resolve the expressions of aspects at the end of a list of
2245 -- declarations, or before a declaration that freezes previous entities,
2246 -- such as in a subprogram body.
2247
2248 -----------------
2249 -- Adjust_Decl --
2250 -----------------
2251
2252 procedure Adjust_Decl is
2253 begin
2254 while Present (Prev (Decl))
2255 and then Nkind (Decl) = N_Implicit_Label_Declaration
2256 loop
2257 Prev (Decl);
2258 end loop;
2259 end Adjust_Decl;
2260
2261 ----------------------------
2262 -- Build_Assertion_Bodies --
2263 ----------------------------
2264
2265 procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id) is
2266 procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id);
2267 -- Create the subprogram bodies which verify the run-time semantics
2268 -- of the pragmas listed below for type Typ. The pragmas are:
2269 --
2270 -- Default_Initial_Condition
2271 -- Invariant
2272 -- Type_Invariant
2273
2274 -------------------------------------
2275 -- Build_Assertion_Bodies_For_Type --
2276 -------------------------------------
2277
2278 procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id) is
2279 begin
2280 -- Preanalyze and resolve the Default_Initial_Condition assertion
2281 -- expression at the end of the declarations to catch any errors.
2282
2283 if Has_DIC (Typ) then
2284 Build_DIC_Procedure_Body (Typ);
2285 end if;
2286
2287 if Nkind (Context) = N_Package_Specification then
2288
2289 -- Preanalyze and resolve the class-wide invariants of an
2290 -- interface at the end of whichever declarative part has the
2291 -- interface type. Note that an interface may be declared in
2292 -- any non-package declarative part, but reaching the end of
2293 -- such a declarative part will always freeze the type and
2294 -- generate the invariant procedure (see Freeze_Type).
2295
2296 if Is_Interface (Typ) then
2297
2298 -- Interfaces are treated as the partial view of a private
2299 -- type, in order to achieve uniformity with the general
2300 -- case. As a result, an interface receives only a "partial"
2301 -- invariant procedure, which is never called.
2302
2303 if Has_Own_Invariants (Typ) then
2304 Build_Invariant_Procedure_Body
2305 (Typ => Typ,
2306 Partial_Invariant => True);
2307 end if;
2308
2309 -- Preanalyze and resolve the invariants of a private type
2310 -- at the end of the visible declarations to catch potential
2311 -- errors. Inherited class-wide invariants are not included
2312 -- because they have already been resolved.
2313
2314 elsif Decls = Visible_Declarations (Context)
2315 and then Ekind_In (Typ, E_Limited_Private_Type,
2316 E_Private_Type,
2317 E_Record_Type_With_Private)
2318 and then Has_Own_Invariants (Typ)
2319 then
2320 Build_Invariant_Procedure_Body
2321 (Typ => Typ,
2322 Partial_Invariant => True);
2323
2324 -- Preanalyze and resolve the invariants of a private type's
2325 -- full view at the end of the private declarations to catch
2326 -- potential errors.
2327
2328 elsif Decls = Private_Declarations (Context)
2329 and then not Is_Private_Type (Typ)
2330 and then Has_Private_Declaration (Typ)
2331 and then Has_Invariants (Typ)
2332 then
2333 Build_Invariant_Procedure_Body (Typ);
2334 end if;
2335 end if;
2336 end Build_Assertion_Bodies_For_Type;
2337
2338 -- Local variables
2339
2340 Decl : Node_Id;
2341 Decl_Id : Entity_Id;
2342
2343 -- Start of processing for Build_Assertion_Bodies
2344
2345 begin
2346 Decl := First (Decls);
2347 while Present (Decl) loop
2348 if Is_Declaration (Decl) then
2349 Decl_Id := Defining_Entity (Decl);
2350
2351 if Is_Type (Decl_Id) then
2352 Build_Assertion_Bodies_For_Type (Decl_Id);
2353 end if;
2354 end if;
2355
2356 Next (Decl);
2357 end loop;
2358 end Build_Assertion_Bodies;
2359
2360 ---------------------------
2361 -- Check_Entry_Contracts --
2362 ---------------------------
2363
2364 procedure Check_Entry_Contracts is
2365 ASN : Node_Id;
2366 Ent : Entity_Id;
2367 Exp : Node_Id;
2368
2369 begin
2370 Ent := First_Entity (Current_Scope);
2371 while Present (Ent) loop
2372
2373 -- This only concerns entries with pre/postconditions
2374
2375 if Ekind (Ent) = E_Entry
2376 and then Present (Contract (Ent))
2377 and then Present (Pre_Post_Conditions (Contract (Ent)))
2378 then
2379 ASN := Pre_Post_Conditions (Contract (Ent));
2380 Push_Scope (Ent);
2381 Install_Formals (Ent);
2382
2383 -- Pre/postconditions are rewritten as Check pragmas. Analysis
2384 -- is performed on a copy of the pragma expression, to prevent
2385 -- modifying the original expression.
2386
2387 while Present (ASN) loop
2388 if Nkind (ASN) = N_Pragma then
2389 Exp :=
2390 New_Copy_Tree
2391 (Expression
2392 (First (Pragma_Argument_Associations (ASN))));
2393 Set_Parent (Exp, ASN);
2394
2395 Preanalyze_Assert_Expression (Exp, Standard_Boolean);
2396 end if;
2397
2398 ASN := Next_Pragma (ASN);
2399 end loop;
2400
2401 End_Scope;
2402 end if;
2403
2404 Next_Entity (Ent);
2405 end loop;
2406 end Check_Entry_Contracts;
2407
2408 ----------------------------------
2409 -- Contains_Lib_Incomplete_Type --
2410 ----------------------------------
2411
2412 function Contains_Lib_Incomplete_Type (Pkg : Entity_Id) return Boolean is
2413 Curr : Entity_Id;
2414
2415 begin
2416 -- Avoid looking through scopes that do not meet the precondition of
2417 -- Pkg not being within a library unit spec.
2418
2419 if not Is_Compilation_Unit (Pkg)
2420 and then not Is_Generic_Instance (Pkg)
2421 and then not In_Package_Body (Enclosing_Lib_Unit_Entity (Pkg))
2422 then
2423 -- Loop through all entities in the current scope to identify
2424 -- an entity that depends on a private type.
2425
2426 Curr := First_Entity (Pkg);
2427 loop
2428 if Nkind (Curr) in N_Entity
2429 and then Depends_On_Private (Curr)
2430 then
2431 return True;
2432 end if;
2433
2434 exit when Last_Entity (Current_Scope) = Curr;
2435 Curr := Next_Entity (Curr);
2436 end loop;
2437 end if;
2438
2439 return False;
2440 end Contains_Lib_Incomplete_Type;
2441
2442 --------------------------------------
2443 -- Handle_Late_Controlled_Primitive --
2444 --------------------------------------
2445
2446 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2447 Body_Spec : constant Node_Id := Specification (Body_Decl);
2448 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2449 Loc : constant Source_Ptr := Sloc (Body_Id);
2450 Params : constant List_Id :=
2451 Parameter_Specifications (Body_Spec);
2452 Spec : Node_Id;
2453 Spec_Id : Entity_Id;
2454 Typ : Node_Id;
2455
2456 begin
2457 -- Consider only procedure bodies whose name matches one of the three
2458 -- controlled primitives.
2459
2460 if Nkind (Body_Spec) /= N_Procedure_Specification
2461 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2462 Name_Finalize,
2463 Name_Initialize)
2464 then
2465 return;
2466
2467 -- A controlled primitive must have exactly one formal which is not
2468 -- an anonymous access type.
2469
2470 elsif List_Length (Params) /= 1 then
2471 return;
2472 end if;
2473
2474 Typ := Parameter_Type (First (Params));
2475
2476 if Nkind (Typ) = N_Access_Definition then
2477 return;
2478 end if;
2479
2480 Find_Type (Typ);
2481
2482 -- The type of the formal must be derived from [Limited_]Controlled
2483
2484 if not Is_Controlled (Entity (Typ)) then
2485 return;
2486 end if;
2487
2488 -- Check whether a specification exists for this body. We do not
2489 -- analyze the spec of the body in full, because it will be analyzed
2490 -- again when the body is properly analyzed, and we cannot create
2491 -- duplicate entries in the formals chain. We look for an explicit
2492 -- specification because the body may be an overriding operation and
2493 -- an inherited spec may be present.
2494
2495 Spec_Id := Current_Entity (Body_Id);
2496
2497 while Present (Spec_Id) loop
2498 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure)
2499 and then Scope (Spec_Id) = Current_Scope
2500 and then Present (First_Formal (Spec_Id))
2501 and then No (Next_Formal (First_Formal (Spec_Id)))
2502 and then Etype (First_Formal (Spec_Id)) = Entity (Typ)
2503 and then Comes_From_Source (Spec_Id)
2504 then
2505 return;
2506 end if;
2507
2508 Spec_Id := Homonym (Spec_Id);
2509 end loop;
2510
2511 -- At this point the body is known to be a late controlled primitive.
2512 -- Generate a matching spec and insert it before the body. Note the
2513 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2514 -- tree in this case.
2515
2516 Spec := Copy_Separate_Tree (Body_Spec);
2517
2518 -- Ensure that the subprogram declaration does not inherit the null
2519 -- indicator from the body as we now have a proper spec/body pair.
2520
2521 Set_Null_Present (Spec, False);
2522
2523 -- Ensure that the freeze node is inserted after the declaration of
2524 -- the primitive since its expansion will freeze the primitive.
2525
2526 Decl := Make_Subprogram_Declaration (Loc, Specification => Spec);
2527
2528 Insert_Before_And_Analyze (Body_Decl, Decl);
2529 end Handle_Late_Controlled_Primitive;
2530
2531 ----------------------------------------
2532 -- Remove_Partial_Visible_Refinements --
2533 ----------------------------------------
2534
2535 procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id) is
2536 State_Elmt : Elmt_Id;
2537 begin
2538 if Present (Abstract_States (Spec_Id)) then
2539 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2540 while Present (State_Elmt) loop
2541 Set_Has_Partial_Visible_Refinement (Node (State_Elmt), False);
2542 Next_Elmt (State_Elmt);
2543 end loop;
2544 end if;
2545
2546 -- For a child unit, also hide the partial state refinement from
2547 -- ancestor packages.
2548
2549 if Is_Child_Unit (Spec_Id) then
2550 Remove_Partial_Visible_Refinements (Scope (Spec_Id));
2551 end if;
2552 end Remove_Partial_Visible_Refinements;
2553
2554 --------------------------------
2555 -- Remove_Visible_Refinements --
2556 --------------------------------
2557
2558 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2559 State_Elmt : Elmt_Id;
2560 begin
2561 if Present (Abstract_States (Spec_Id)) then
2562 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2563 while Present (State_Elmt) loop
2564 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2565 Next_Elmt (State_Elmt);
2566 end loop;
2567 end if;
2568 end Remove_Visible_Refinements;
2569
2570 ---------------------
2571 -- Resolve_Aspects --
2572 ---------------------
2573
2574 procedure Resolve_Aspects is
2575 E : Entity_Id;
2576
2577 begin
2578 E := First_Entity (Current_Scope);
2579 while Present (E) loop
2580 Resolve_Aspect_Expressions (E);
2581 Next_Entity (E);
2582 end loop;
2583 end Resolve_Aspects;
2584
2585 -- Local variables
2586
2587 Context : Node_Id := Empty;
2588 Freeze_From : Entity_Id := Empty;
2589 Next_Decl : Node_Id;
2590
2591 Body_Seen : Boolean := False;
2592 -- Flag set when the first body [stub] is encountered
2593
2594 -- Start of processing for Analyze_Declarations
2595
2596 begin
2597 if Restriction_Check_Required (SPARK_05) then
2598 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2599 end if;
2600
2601 Decl := First (L);
2602 while Present (Decl) loop
2603
2604 -- Package spec cannot contain a package declaration in SPARK
2605
2606 if Nkind (Decl) = N_Package_Declaration
2607 and then Nkind (Parent (L)) = N_Package_Specification
2608 then
2609 Check_SPARK_05_Restriction
2610 ("package specification cannot contain a package declaration",
2611 Decl);
2612 end if;
2613
2614 -- Complete analysis of declaration
2615
2616 Analyze (Decl);
2617 Next_Decl := Next (Decl);
2618
2619 if No (Freeze_From) then
2620 Freeze_From := First_Entity (Current_Scope);
2621 end if;
2622
2623 -- At the end of a declarative part, freeze remaining entities
2624 -- declared in it. The end of the visible declarations of package
2625 -- specification is not the end of a declarative part if private
2626 -- declarations are present. The end of a package declaration is a
2627 -- freezing point only if it a library package. A task definition or
2628 -- protected type definition is not a freeze point either. Finally,
2629 -- we do not freeze entities in generic scopes, because there is no
2630 -- code generated for them and freeze nodes will be generated for
2631 -- the instance.
2632
2633 -- The end of a package instantiation is not a freeze point, but
2634 -- for now we make it one, because the generic body is inserted
2635 -- (currently) immediately after. Generic instantiations will not
2636 -- be a freeze point once delayed freezing of bodies is implemented.
2637 -- (This is needed in any case for early instantiations ???).
2638
2639 if No (Next_Decl) then
2640 if Nkind (Parent (L)) = N_Component_List then
2641 null;
2642
2643 elsif Nkind_In (Parent (L), N_Protected_Definition,
2644 N_Task_Definition)
2645 then
2646 Check_Entry_Contracts;
2647
2648 elsif Nkind (Parent (L)) /= N_Package_Specification then
2649 if Nkind (Parent (L)) = N_Package_Body then
2650 Freeze_From := First_Entity (Current_Scope);
2651 end if;
2652
2653 -- There may have been several freezing points previously,
2654 -- for example object declarations or subprogram bodies, but
2655 -- at the end of a declarative part we check freezing from
2656 -- the beginning, even though entities may already be frozen,
2657 -- in order to perform visibility checks on delayed aspects.
2658
2659 Adjust_Decl;
2660
2661 -- If the current scope is a generic subprogram body. Skip the
2662 -- generic formal parameters that are not frozen here.
2663
2664 if Is_Subprogram (Current_Scope)
2665 and then Nkind (Unit_Declaration_Node (Current_Scope)) =
2666 N_Generic_Subprogram_Declaration
2667 and then Present (First_Entity (Current_Scope))
2668 then
2669 while Is_Generic_Formal (Freeze_From) loop
2670 Freeze_From := Next_Entity (Freeze_From);
2671 end loop;
2672
2673 Freeze_All (Freeze_From, Decl);
2674 Freeze_From := Last_Entity (Current_Scope);
2675
2676 else
2677 -- For declarations in a subprogram body there is no issue
2678 -- with name resolution in aspect specifications, but in
2679 -- ASIS mode we need to preanalyze aspect specifications
2680 -- that may otherwise only be analyzed during expansion
2681 -- (e.g. during generation of a related subprogram).
2682
2683 if ASIS_Mode then
2684 Resolve_Aspects;
2685 end if;
2686
2687 Freeze_All (First_Entity (Current_Scope), Decl);
2688 Freeze_From := Last_Entity (Current_Scope);
2689 end if;
2690
2691 -- Current scope is a package specification
2692
2693 elsif Scope (Current_Scope) /= Standard_Standard
2694 and then not Is_Child_Unit (Current_Scope)
2695 and then No (Generic_Parent (Parent (L)))
2696 then
2697 -- ARM rule 13.1.1(11/3): usage names in aspect definitions are
2698 -- resolved at the end of the immediately enclosing declaration
2699 -- list (AI05-0183-1).
2700
2701 Resolve_Aspects;
2702
2703 elsif L /= Visible_Declarations (Parent (L))
2704 or else No (Private_Declarations (Parent (L)))
2705 or else Is_Empty_List (Private_Declarations (Parent (L)))
2706 then
2707 Adjust_Decl;
2708
2709 -- End of a package declaration
2710
2711 -- In compilation mode the expansion of freeze node takes care
2712 -- of resolving expressions of all aspects in the list. In ASIS
2713 -- mode this must be done explicitly.
2714
2715 if ASIS_Mode
2716 and then Scope (Current_Scope) = Standard_Standard
2717 then
2718 Resolve_Aspects;
2719 end if;
2720
2721 -- This is a freeze point because it is the end of a
2722 -- compilation unit.
2723
2724 Freeze_All (First_Entity (Current_Scope), Decl);
2725 Freeze_From := Last_Entity (Current_Scope);
2726
2727 -- At the end of the visible declarations the expressions in
2728 -- aspects of all entities declared so far must be resolved.
2729 -- The entities themselves might be frozen later, and the
2730 -- generated pragmas and attribute definition clauses analyzed
2731 -- in full at that point, but name resolution must take place
2732 -- now.
2733 -- In addition to being the proper semantics, this is mandatory
2734 -- within generic units, because global name capture requires
2735 -- those expressions to be analyzed, given that the generated
2736 -- pragmas do not appear in the original generic tree.
2737
2738 elsif Serious_Errors_Detected = 0 then
2739 Resolve_Aspects;
2740 end if;
2741
2742 -- If next node is a body then freeze all types before the body.
2743 -- An exception occurs for some expander-generated bodies. If these
2744 -- are generated at places where in general language rules would not
2745 -- allow a freeze point, then we assume that the expander has
2746 -- explicitly checked that all required types are properly frozen,
2747 -- and we do not cause general freezing here. This special circuit
2748 -- is used when the encountered body is marked as having already
2749 -- been analyzed.
2750
2751 -- In all other cases (bodies that come from source, and expander
2752 -- generated bodies that have not been analyzed yet), freeze all
2753 -- types now. Note that in the latter case, the expander must take
2754 -- care to attach the bodies at a proper place in the tree so as to
2755 -- not cause unwanted freezing at that point.
2756
2757 -- It is also necessary to check for a case where both an expression
2758 -- function is used and the current scope depends on an incomplete
2759 -- private type from a library unit, otherwise premature freezing of
2760 -- the private type will occur.
2761
2762 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl)
2763 and then ((Nkind (Next_Decl) /= N_Subprogram_Body
2764 or else not Was_Expression_Function (Next_Decl))
2765 or else (not Is_Ignored_Ghost_Entity (Current_Scope)
2766 and then not Contains_Lib_Incomplete_Type
2767 (Current_Scope)))
2768 then
2769 -- When a controlled type is frozen, the expander generates stream
2770 -- and controlled-type support routines. If the freeze is caused
2771 -- by the stand-alone body of Initialize, Adjust, or Finalize, the
2772 -- expander will end up using the wrong version of these routines,
2773 -- as the body has not been processed yet. To remedy this, detect
2774 -- a late controlled primitive and create a proper spec for it.
2775 -- This ensures that the primitive will override its inherited
2776 -- counterpart before the freeze takes place.
2777
2778 -- If the declaration we just processed is a body, do not attempt
2779 -- to examine Next_Decl as the late primitive idiom can only apply
2780 -- to the first encountered body.
2781
2782 -- The spec of the late primitive is not generated in ASIS mode to
2783 -- ensure a consistent list of primitives that indicates the true
2784 -- semantic structure of the program (which is not relevant when
2785 -- generating executable code).
2786
2787 -- ??? A cleaner approach may be possible and/or this solution
2788 -- could be extended to general-purpose late primitives, TBD.
2789
2790 if not ASIS_Mode
2791 and then not Body_Seen
2792 and then not Is_Body (Decl)
2793 then
2794 Body_Seen := True;
2795
2796 if Nkind (Next_Decl) = N_Subprogram_Body then
2797 Handle_Late_Controlled_Primitive (Next_Decl);
2798 end if;
2799
2800 else
2801 -- In ASIS mode, if the next declaration is a body, complete
2802 -- the analysis of declarations so far.
2803
2804 Resolve_Aspects;
2805 end if;
2806
2807 Adjust_Decl;
2808
2809 -- The generated body of an expression function does not freeze,
2810 -- unless it is a completion, in which case only the expression
2811 -- itself freezes. This is handled when the body itself is
2812 -- analyzed (see Freeze_Expr_Types, sem_ch6.adb).
2813
2814 Freeze_All (Freeze_From, Decl);
2815 Freeze_From := Last_Entity (Current_Scope);
2816 end if;
2817
2818 Decl := Next_Decl;
2819 end loop;
2820
2821 -- Post-freezing actions
2822
2823 if Present (L) then
2824 Context := Parent (L);
2825
2826 -- Certain contract annocations have forward visibility semantics and
2827 -- must be analyzed after all declarative items have been processed.
2828 -- This timing ensures that entities referenced by such contracts are
2829 -- visible.
2830
2831 -- Analyze the contract of an immediately enclosing package spec or
2832 -- body first because other contracts may depend on its information.
2833
2834 if Nkind (Context) = N_Package_Body then
2835 Analyze_Package_Body_Contract (Defining_Entity (Context));
2836
2837 elsif Nkind (Context) = N_Package_Specification then
2838 Analyze_Package_Contract (Defining_Entity (Context));
2839 end if;
2840
2841 -- Analyze the contracts of various constructs in the declarative
2842 -- list.
2843
2844 Analyze_Contracts (L);
2845
2846 if Nkind (Context) = N_Package_Body then
2847
2848 -- Ensure that all abstract states and objects declared in the
2849 -- state space of a package body are utilized as constituents.
2850
2851 Check_Unused_Body_States (Defining_Entity (Context));
2852
2853 -- State refinements are visible up to the end of the package body
2854 -- declarations. Hide the state refinements from visibility to
2855 -- restore the original state conditions.
2856
2857 Remove_Visible_Refinements (Corresponding_Spec (Context));
2858 Remove_Partial_Visible_Refinements (Corresponding_Spec (Context));
2859
2860 elsif Nkind (Context) = N_Package_Specification then
2861
2862 -- Partial state refinements are visible up to the end of the
2863 -- package spec declarations. Hide the partial state refinements
2864 -- from visibility to restore the original state conditions.
2865
2866 Remove_Partial_Visible_Refinements (Defining_Entity (Context));
2867 end if;
2868
2869 -- Verify that all abstract states found in any package declared in
2870 -- the input declarative list have proper refinements. The check is
2871 -- performed only when the context denotes a block, entry, package,
2872 -- protected, subprogram, or task body (SPARK RM 7.2.2(3)).
2873
2874 Check_State_Refinements (Context);
2875
2876 -- Create the subprogram bodies which verify the run-time semantics
2877 -- of pragmas Default_Initial_Condition and [Type_]Invariant for all
2878 -- types within the current declarative list. This ensures that all
2879 -- assertion expressions are preanalyzed and resolved at the end of
2880 -- the declarative part. Note that the resolution happens even when
2881 -- freezing does not take place.
2882
2883 Build_Assertion_Bodies (L, Context);
2884 end if;
2885 end Analyze_Declarations;
2886
2887 -----------------------------------
2888 -- Analyze_Full_Type_Declaration --
2889 -----------------------------------
2890
2891 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2892 Def : constant Node_Id := Type_Definition (N);
2893 Def_Id : constant Entity_Id := Defining_Identifier (N);
2894 T : Entity_Id;
2895 Prev : Entity_Id;
2896
2897 Is_Remote : constant Boolean :=
2898 (Is_Remote_Types (Current_Scope)
2899 or else Is_Remote_Call_Interface (Current_Scope))
2900 and then not (In_Private_Part (Current_Scope)
2901 or else In_Package_Body (Current_Scope));
2902
2903 procedure Check_Nonoverridable_Aspects;
2904 -- Apply the rule in RM 13.1.1(18.4/4) on iterator aspects that cannot
2905 -- be overridden, and can only be confirmed on derivation.
2906
2907 procedure Check_Ops_From_Incomplete_Type;
2908 -- If there is a tagged incomplete partial view of the type, traverse
2909 -- the primitives of the incomplete view and change the type of any
2910 -- controlling formals and result to indicate the full view. The
2911 -- primitives will be added to the full type's primitive operations
2912 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2913 -- is called from Process_Incomplete_Dependents).
2914
2915 ----------------------------------
2916 -- Check_Nonoverridable_Aspects --
2917 ----------------------------------
2918
2919 procedure Check_Nonoverridable_Aspects is
2920 function Get_Aspect_Spec
2921 (Specs : List_Id;
2922 Aspect_Name : Name_Id) return Node_Id;
2923 -- Check whether a list of aspect specifications includes an entry
2924 -- for a specific aspect. The list is either that of a partial or
2925 -- a full view.
2926
2927 ---------------------
2928 -- Get_Aspect_Spec --
2929 ---------------------
2930
2931 function Get_Aspect_Spec
2932 (Specs : List_Id;
2933 Aspect_Name : Name_Id) return Node_Id
2934 is
2935 Spec : Node_Id;
2936
2937 begin
2938 Spec := First (Specs);
2939 while Present (Spec) loop
2940 if Chars (Identifier (Spec)) = Aspect_Name then
2941 return Spec;
2942 end if;
2943 Next (Spec);
2944 end loop;
2945
2946 return Empty;
2947 end Get_Aspect_Spec;
2948
2949 -- Local variables
2950
2951 Prev_Aspects : constant List_Id :=
2952 Aspect_Specifications (Parent (Def_Id));
2953 Par_Type : Entity_Id;
2954 Prev_Aspect : Node_Id;
2955
2956 -- Start of processing for Check_Nonoverridable_Aspects
2957
2958 begin
2959 -- Get parent type of derived type. Note that Prev is the entity in
2960 -- the partial declaration, but its contents are now those of full
2961 -- view, while Def_Id reflects the partial view.
2962
2963 if Is_Private_Type (Def_Id) then
2964 Par_Type := Etype (Full_View (Def_Id));
2965 else
2966 Par_Type := Etype (Def_Id);
2967 end if;
2968
2969 -- If there is an inherited Implicit_Dereference, verify that it is
2970 -- made explicit in the partial view.
2971
2972 if Has_Discriminants (Base_Type (Par_Type))
2973 and then Nkind (Parent (Prev)) = N_Full_Type_Declaration
2974 and then Present (Discriminant_Specifications (Parent (Prev)))
2975 and then Present (Get_Reference_Discriminant (Par_Type))
2976 then
2977 Prev_Aspect :=
2978 Get_Aspect_Spec (Prev_Aspects, Name_Implicit_Dereference);
2979
2980 if No (Prev_Aspect)
2981 and then Present
2982 (Discriminant_Specifications
2983 (Original_Node (Parent (Prev))))
2984 then
2985 Error_Msg_N
2986 ("type does not inherit implicit dereference", Prev);
2987
2988 else
2989 -- If one of the views has the aspect specified, verify that it
2990 -- is consistent with that of the parent.
2991
2992 declare
2993 Par_Discr : constant Entity_Id :=
2994 Get_Reference_Discriminant (Par_Type);
2995 Cur_Discr : constant Entity_Id :=
2996 Get_Reference_Discriminant (Prev);
2997
2998 begin
2999 if Corresponding_Discriminant (Cur_Discr) /= Par_Discr then
3000 Error_Msg_N ("aspect incosistent with that of parent", N);
3001 end if;
3002
3003 -- Check that specification in partial view matches the
3004 -- inherited aspect. Compare names directly because aspect
3005 -- expression may not be analyzed.
3006
3007 if Present (Prev_Aspect)
3008 and then Nkind (Expression (Prev_Aspect)) = N_Identifier
3009 and then Chars (Expression (Prev_Aspect)) /=
3010 Chars (Cur_Discr)
3011 then
3012 Error_Msg_N
3013 ("aspect incosistent with that of parent", N);
3014 end if;
3015 end;
3016 end if;
3017 end if;
3018
3019 -- TBD : other nonoverridable aspects.
3020 end Check_Nonoverridable_Aspects;
3021
3022 ------------------------------------
3023 -- Check_Ops_From_Incomplete_Type --
3024 ------------------------------------
3025
3026 procedure Check_Ops_From_Incomplete_Type is
3027 Elmt : Elmt_Id;
3028 Formal : Entity_Id;
3029 Op : Entity_Id;
3030
3031 begin
3032 if Prev /= T
3033 and then Ekind (Prev) = E_Incomplete_Type
3034 and then Is_Tagged_Type (Prev)
3035 and then Is_Tagged_Type (T)
3036 then
3037 Elmt := First_Elmt (Primitive_Operations (Prev));
3038 while Present (Elmt) loop
3039 Op := Node (Elmt);
3040
3041 Formal := First_Formal (Op);
3042 while Present (Formal) loop
3043 if Etype (Formal) = Prev then
3044 Set_Etype (Formal, T);
3045 end if;
3046
3047 Next_Formal (Formal);
3048 end loop;
3049
3050 if Etype (Op) = Prev then
3051 Set_Etype (Op, T);
3052 end if;
3053
3054 Next_Elmt (Elmt);
3055 end loop;
3056 end if;
3057 end Check_Ops_From_Incomplete_Type;
3058
3059 -- Start of processing for Analyze_Full_Type_Declaration
3060
3061 begin
3062 Prev := Find_Type_Name (N);
3063
3064 -- The full view, if present, now points to the current type. If there
3065 -- is an incomplete partial view, set a link to it, to simplify the
3066 -- retrieval of primitive operations of the type.
3067
3068 -- Ada 2005 (AI-50217): If the type was previously decorated when
3069 -- imported through a LIMITED WITH clause, it appears as incomplete
3070 -- but has no full view.
3071
3072 if Ekind (Prev) = E_Incomplete_Type
3073 and then Present (Full_View (Prev))
3074 then
3075 T := Full_View (Prev);
3076 Set_Incomplete_View (N, Parent (Prev));
3077 else
3078 T := Prev;
3079 end if;
3080
3081 Set_Is_Pure (T, Is_Pure (Current_Scope));
3082
3083 -- We set the flag Is_First_Subtype here. It is needed to set the
3084 -- corresponding flag for the Implicit class-wide-type created
3085 -- during tagged types processing.
3086
3087 Set_Is_First_Subtype (T, True);
3088
3089 -- Only composite types other than array types are allowed to have
3090 -- discriminants.
3091
3092 case Nkind (Def) is
3093
3094 -- For derived types, the rule will be checked once we've figured
3095 -- out the parent type.
3096
3097 when N_Derived_Type_Definition =>
3098 null;
3099
3100 -- For record types, discriminants are allowed, unless we are in
3101 -- SPARK.
3102
3103 when N_Record_Definition =>
3104 if Present (Discriminant_Specifications (N)) then
3105 Check_SPARK_05_Restriction
3106 ("discriminant type is not allowed",
3107 Defining_Identifier
3108 (First (Discriminant_Specifications (N))));
3109 end if;
3110
3111 when others =>
3112 if Present (Discriminant_Specifications (N)) then
3113 Error_Msg_N
3114 ("elementary or array type cannot have discriminants",
3115 Defining_Identifier
3116 (First (Discriminant_Specifications (N))));
3117 end if;
3118 end case;
3119
3120 -- Elaborate the type definition according to kind, and generate
3121 -- subsidiary (implicit) subtypes where needed. We skip this if it was
3122 -- already done (this happens during the reanalysis that follows a call
3123 -- to the high level optimizer).
3124
3125 if not Analyzed (T) then
3126 Set_Analyzed (T);
3127
3128 -- Set the SPARK mode from the current context
3129
3130 Set_SPARK_Pragma (T, SPARK_Mode_Pragma);
3131 Set_SPARK_Pragma_Inherited (T);
3132
3133 case Nkind (Def) is
3134 when N_Access_To_Subprogram_Definition =>
3135 Access_Subprogram_Declaration (T, Def);
3136
3137 -- If this is a remote access to subprogram, we must create the
3138 -- equivalent fat pointer type, and related subprograms.
3139
3140 if Is_Remote then
3141 Process_Remote_AST_Declaration (N);
3142 end if;
3143
3144 -- Validate categorization rule against access type declaration
3145 -- usually a violation in Pure unit, Shared_Passive unit.
3146
3147 Validate_Access_Type_Declaration (T, N);
3148
3149 when N_Access_To_Object_Definition =>
3150 Access_Type_Declaration (T, Def);
3151
3152 -- Validate categorization rule against access type declaration
3153 -- usually a violation in Pure unit, Shared_Passive unit.
3154
3155 Validate_Access_Type_Declaration (T, N);
3156
3157 -- If we are in a Remote_Call_Interface package and define a
3158 -- RACW, then calling stubs and specific stream attributes
3159 -- must be added.
3160
3161 if Is_Remote
3162 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
3163 then
3164 Add_RACW_Features (Def_Id);
3165 end if;
3166
3167 when N_Array_Type_Definition =>
3168 Array_Type_Declaration (T, Def);
3169
3170 when N_Derived_Type_Definition =>
3171 Derived_Type_Declaration (T, N, T /= Def_Id);
3172
3173 -- Inherit predicates from parent, and protect against illegal
3174 -- derivations.
3175
3176 if Is_Type (T) and then Has_Predicates (T) then
3177 Set_Has_Predicates (Def_Id);
3178 end if;
3179
3180 -- Save the scenario for examination by the ABE Processing
3181 -- phase.
3182
3183 Record_Elaboration_Scenario (N);
3184
3185 when N_Enumeration_Type_Definition =>
3186 Enumeration_Type_Declaration (T, Def);
3187
3188 when N_Floating_Point_Definition =>
3189 Floating_Point_Type_Declaration (T, Def);
3190
3191 when N_Decimal_Fixed_Point_Definition =>
3192 Decimal_Fixed_Point_Type_Declaration (T, Def);
3193
3194 when N_Ordinary_Fixed_Point_Definition =>
3195 Ordinary_Fixed_Point_Type_Declaration (T, Def);
3196
3197 when N_Signed_Integer_Type_Definition =>
3198 Signed_Integer_Type_Declaration (T, Def);
3199
3200 when N_Modular_Type_Definition =>
3201 Modular_Type_Declaration (T, Def);
3202
3203 when N_Record_Definition =>
3204 Record_Type_Declaration (T, N, Prev);
3205
3206 -- If declaration has a parse error, nothing to elaborate.
3207
3208 when N_Error =>
3209 null;
3210
3211 when others =>
3212 raise Program_Error;
3213 end case;
3214 end if;
3215
3216 if Etype (T) = Any_Type then
3217 return;
3218 end if;
3219
3220 -- Controlled type is not allowed in SPARK
3221
3222 if Is_Visibly_Controlled (T) then
3223 Check_SPARK_05_Restriction ("controlled type is not allowed", N);
3224 end if;
3225
3226 -- Some common processing for all types
3227
3228 Set_Depends_On_Private (T, Has_Private_Component (T));
3229 Check_Ops_From_Incomplete_Type;
3230
3231 -- Both the declared entity, and its anonymous base type if one was
3232 -- created, need freeze nodes allocated.
3233
3234 declare
3235 B : constant Entity_Id := Base_Type (T);
3236
3237 begin
3238 -- In the case where the base type differs from the first subtype, we
3239 -- pre-allocate a freeze node, and set the proper link to the first
3240 -- subtype. Freeze_Entity will use this preallocated freeze node when
3241 -- it freezes the entity.
3242
3243 -- This does not apply if the base type is a generic type, whose
3244 -- declaration is independent of the current derived definition.
3245
3246 if B /= T and then not Is_Generic_Type (B) then
3247 Ensure_Freeze_Node (B);
3248 Set_First_Subtype_Link (Freeze_Node (B), T);
3249 end if;
3250
3251 -- A type that is imported through a limited_with clause cannot
3252 -- generate any code, and thus need not be frozen. However, an access
3253 -- type with an imported designated type needs a finalization list,
3254 -- which may be referenced in some other package that has non-limited
3255 -- visibility on the designated type. Thus we must create the
3256 -- finalization list at the point the access type is frozen, to
3257 -- prevent unsatisfied references at link time.
3258
3259 if not From_Limited_With (T) or else Is_Access_Type (T) then
3260 Set_Has_Delayed_Freeze (T);
3261 end if;
3262 end;
3263
3264 -- Case where T is the full declaration of some private type which has
3265 -- been swapped in Defining_Identifier (N).
3266
3267 if T /= Def_Id and then Is_Private_Type (Def_Id) then
3268 Process_Full_View (N, T, Def_Id);
3269
3270 -- Record the reference. The form of this is a little strange, since
3271 -- the full declaration has been swapped in. So the first parameter
3272 -- here represents the entity to which a reference is made which is
3273 -- the "real" entity, i.e. the one swapped in, and the second
3274 -- parameter provides the reference location.
3275
3276 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
3277 -- since we don't want a complaint about the full type being an
3278 -- unwanted reference to the private type
3279
3280 declare
3281 B : constant Boolean := Has_Pragma_Unreferenced (T);
3282 begin
3283 Set_Has_Pragma_Unreferenced (T, False);
3284 Generate_Reference (T, T, 'c');
3285 Set_Has_Pragma_Unreferenced (T, B);
3286 end;
3287
3288 Set_Completion_Referenced (Def_Id);
3289
3290 -- For completion of incomplete type, process incomplete dependents
3291 -- and always mark the full type as referenced (it is the incomplete
3292 -- type that we get for any real reference).
3293
3294 elsif Ekind (Prev) = E_Incomplete_Type then
3295 Process_Incomplete_Dependents (N, T, Prev);
3296 Generate_Reference (Prev, Def_Id, 'c');
3297 Set_Completion_Referenced (Def_Id);
3298
3299 -- If not private type or incomplete type completion, this is a real
3300 -- definition of a new entity, so record it.
3301
3302 else
3303 Generate_Definition (Def_Id);
3304 end if;
3305
3306 -- Propagate any pending access types whose finalization masters need to
3307 -- be fully initialized from the partial to the full view. Guard against
3308 -- an illegal full view that remains unanalyzed.
3309
3310 if Is_Type (Def_Id) and then Is_Incomplete_Or_Private_Type (Prev) then
3311 Set_Pending_Access_Types (Def_Id, Pending_Access_Types (Prev));
3312 end if;
3313
3314 if Chars (Scope (Def_Id)) = Name_System
3315 and then Chars (Def_Id) = Name_Address
3316 and then In_Predefined_Unit (N)
3317 then
3318 Set_Is_Descendant_Of_Address (Def_Id);
3319 Set_Is_Descendant_Of_Address (Base_Type (Def_Id));
3320 Set_Is_Descendant_Of_Address (Prev);
3321 end if;
3322
3323 Set_Optimize_Alignment_Flags (Def_Id);
3324 Check_Eliminated (Def_Id);
3325
3326 -- If the declaration is a completion and aspects are present, apply
3327 -- them to the entity for the type which is currently the partial
3328 -- view, but which is the one that will be frozen.
3329
3330 if Has_Aspects (N) then
3331
3332 -- In most cases the partial view is a private type, and both views
3333 -- appear in different declarative parts. In the unusual case where
3334 -- the partial view is incomplete, perform the analysis on the
3335 -- full view, to prevent freezing anomalies with the corresponding
3336 -- class-wide type, which otherwise might be frozen before the
3337 -- dispatch table is built.
3338
3339 if Prev /= Def_Id
3340 and then Ekind (Prev) /= E_Incomplete_Type
3341 then
3342 Analyze_Aspect_Specifications (N, Prev);
3343
3344 -- Normal case
3345
3346 else
3347 Analyze_Aspect_Specifications (N, Def_Id);
3348 end if;
3349 end if;
3350
3351 if Is_Derived_Type (Prev)
3352 and then Def_Id /= Prev
3353 then
3354 Check_Nonoverridable_Aspects;
3355 end if;
3356 end Analyze_Full_Type_Declaration;
3357
3358 ----------------------------------
3359 -- Analyze_Incomplete_Type_Decl --
3360 ----------------------------------
3361
3362 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
3363 F : constant Boolean := Is_Pure (Current_Scope);
3364 T : Entity_Id;
3365
3366 begin
3367 Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
3368
3369 Generate_Definition (Defining_Identifier (N));
3370
3371 -- Process an incomplete declaration. The identifier must not have been
3372 -- declared already in the scope. However, an incomplete declaration may
3373 -- appear in the private part of a package, for a private type that has
3374 -- already been declared.
3375
3376 -- In this case, the discriminants (if any) must match
3377
3378 T := Find_Type_Name (N);
3379
3380 Set_Ekind (T, E_Incomplete_Type);
3381 Set_Etype (T, T);
3382 Set_Is_First_Subtype (T);
3383 Init_Size_Align (T);
3384
3385 -- Set the SPARK mode from the current context
3386
3387 Set_SPARK_Pragma (T, SPARK_Mode_Pragma);
3388 Set_SPARK_Pragma_Inherited (T);
3389
3390 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
3391 -- incomplete types.
3392
3393 if Tagged_Present (N) then
3394 Set_Is_Tagged_Type (T, True);
3395 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3396 Make_Class_Wide_Type (T);
3397 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3398 end if;
3399
3400 Set_Stored_Constraint (T, No_Elist);
3401
3402 if Present (Discriminant_Specifications (N)) then
3403 Push_Scope (T);
3404 Process_Discriminants (N);
3405 End_Scope;
3406 end if;
3407
3408 -- If the type has discriminants, nontrivial subtypes may be declared
3409 -- before the full view of the type. The full views of those subtypes
3410 -- will be built after the full view of the type.
3411
3412 Set_Private_Dependents (T, New_Elmt_List);
3413 Set_Is_Pure (T, F);
3414 end Analyze_Incomplete_Type_Decl;
3415
3416 -----------------------------------
3417 -- Analyze_Interface_Declaration --
3418 -----------------------------------
3419
3420 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
3421 CW : constant Entity_Id := Class_Wide_Type (T);
3422
3423 begin
3424 Set_Is_Tagged_Type (T);
3425 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3426
3427 Set_Is_Limited_Record (T, Limited_Present (Def)
3428 or else Task_Present (Def)
3429 or else Protected_Present (Def)
3430 or else Synchronized_Present (Def));
3431
3432 -- Type is abstract if full declaration carries keyword, or if previous
3433 -- partial view did.
3434
3435 Set_Is_Abstract_Type (T);
3436 Set_Is_Interface (T);
3437
3438 -- Type is a limited interface if it includes the keyword limited, task,
3439 -- protected, or synchronized.
3440
3441 Set_Is_Limited_Interface
3442 (T, Limited_Present (Def)
3443 or else Protected_Present (Def)
3444 or else Synchronized_Present (Def)
3445 or else Task_Present (Def));
3446
3447 Set_Interfaces (T, New_Elmt_List);
3448 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3449
3450 -- Complete the decoration of the class-wide entity if it was already
3451 -- built (i.e. during the creation of the limited view)
3452
3453 if Present (CW) then
3454 Set_Is_Interface (CW);
3455 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
3456 end if;
3457
3458 -- Check runtime support for synchronized interfaces
3459
3460 if (Is_Task_Interface (T)
3461 or else Is_Protected_Interface (T)
3462 or else Is_Synchronized_Interface (T))
3463 and then not RTE_Available (RE_Select_Specific_Data)
3464 then
3465 Error_Msg_CRT ("synchronized interfaces", T);
3466 end if;
3467 end Analyze_Interface_Declaration;
3468
3469 -----------------------------
3470 -- Analyze_Itype_Reference --
3471 -----------------------------
3472
3473 -- Nothing to do. This node is placed in the tree only for the benefit of
3474 -- back end processing, and has no effect on the semantic processing.
3475
3476 procedure Analyze_Itype_Reference (N : Node_Id) is
3477 begin
3478 pragma Assert (Is_Itype (Itype (N)));
3479 null;
3480 end Analyze_Itype_Reference;
3481
3482 --------------------------------
3483 -- Analyze_Number_Declaration --
3484 --------------------------------
3485
3486 procedure Analyze_Number_Declaration (N : Node_Id) is
3487 E : constant Node_Id := Expression (N);
3488 Id : constant Entity_Id := Defining_Identifier (N);
3489 Index : Interp_Index;
3490 It : Interp;
3491 T : Entity_Id;
3492
3493 begin
3494 Generate_Definition (Id);
3495 Enter_Name (Id);
3496
3497 -- This is an optimization of a common case of an integer literal
3498
3499 if Nkind (E) = N_Integer_Literal then
3500 Set_Is_Static_Expression (E, True);
3501 Set_Etype (E, Universal_Integer);
3502
3503 Set_Etype (Id, Universal_Integer);
3504 Set_Ekind (Id, E_Named_Integer);
3505 Set_Is_Frozen (Id, True);
3506 return;
3507 end if;
3508
3509 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3510
3511 -- Process expression, replacing error by integer zero, to avoid
3512 -- cascaded errors or aborts further along in the processing
3513
3514 -- Replace Error by integer zero, which seems least likely to cause
3515 -- cascaded errors.
3516
3517 if E = Error then
3518 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
3519 Set_Error_Posted (E);
3520 end if;
3521
3522 Analyze (E);
3523
3524 -- Verify that the expression is static and numeric. If
3525 -- the expression is overloaded, we apply the preference
3526 -- rule that favors root numeric types.
3527
3528 if not Is_Overloaded (E) then
3529 T := Etype (E);
3530 if Has_Dynamic_Predicate_Aspect (T) then
3531 Error_Msg_N
3532 ("subtype has dynamic predicate, "
3533 & "not allowed in number declaration", N);
3534 end if;
3535
3536 else
3537 T := Any_Type;
3538
3539 Get_First_Interp (E, Index, It);
3540 while Present (It.Typ) loop
3541 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
3542 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
3543 then
3544 if T = Any_Type then
3545 T := It.Typ;
3546
3547 elsif It.Typ = Universal_Real
3548 or else
3549 It.Typ = Universal_Integer
3550 then
3551 -- Choose universal interpretation over any other
3552
3553 T := It.Typ;
3554 exit;
3555 end if;
3556 end if;
3557
3558 Get_Next_Interp (Index, It);
3559 end loop;
3560 end if;
3561
3562 if Is_Integer_Type (T) then
3563 Resolve (E, T);
3564 Set_Etype (Id, Universal_Integer);
3565 Set_Ekind (Id, E_Named_Integer);
3566
3567 elsif Is_Real_Type (T) then
3568
3569 -- Because the real value is converted to universal_real, this is a
3570 -- legal context for a universal fixed expression.
3571
3572 if T = Universal_Fixed then
3573 declare
3574 Loc : constant Source_Ptr := Sloc (N);
3575 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3576 Subtype_Mark =>
3577 New_Occurrence_Of (Universal_Real, Loc),
3578 Expression => Relocate_Node (E));
3579
3580 begin
3581 Rewrite (E, Conv);
3582 Analyze (E);
3583 end;
3584
3585 elsif T = Any_Fixed then
3586 Error_Msg_N ("illegal context for mixed mode operation", E);
3587
3588 -- Expression is of the form : universal_fixed * integer. Try to
3589 -- resolve as universal_real.
3590
3591 T := Universal_Real;
3592 Set_Etype (E, T);
3593 end if;
3594
3595 Resolve (E, T);
3596 Set_Etype (Id, Universal_Real);
3597 Set_Ekind (Id, E_Named_Real);
3598
3599 else
3600 Wrong_Type (E, Any_Numeric);
3601 Resolve (E, T);
3602
3603 Set_Etype (Id, T);
3604 Set_Ekind (Id, E_Constant);
3605 Set_Never_Set_In_Source (Id, True);
3606 Set_Is_True_Constant (Id, True);
3607 return;
3608 end if;
3609
3610 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3611 Set_Etype (E, Etype (Id));
3612 end if;
3613
3614 if not Is_OK_Static_Expression (E) then
3615 Flag_Non_Static_Expr
3616 ("non-static expression used in number declaration!", E);
3617 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3618 Set_Etype (E, Any_Type);
3619 end if;
3620
3621 Analyze_Dimension (N);
3622 end Analyze_Number_Declaration;
3623
3624 --------------------------------
3625 -- Analyze_Object_Declaration --
3626 --------------------------------
3627
3628 -- WARNING: This routine manages Ghost regions. Return statements must be
3629 -- replaced by gotos which jump to the end of the routine and restore the
3630 -- Ghost mode.
3631
3632 procedure Analyze_Object_Declaration (N : Node_Id) is
3633 Loc : constant Source_Ptr := Sloc (N);
3634 Id : constant Entity_Id := Defining_Identifier (N);
3635 Act_T : Entity_Id;
3636 T : Entity_Id;
3637
3638 E : Node_Id := Expression (N);
3639 -- E is set to Expression (N) throughout this routine. When Expression
3640 -- (N) is modified, E is changed accordingly.
3641
3642 Prev_Entity : Entity_Id := Empty;
3643
3644 procedure Check_Dynamic_Object (Typ : Entity_Id);
3645 -- A library-level object with non-static discriminant constraints may
3646 -- require dynamic allocation. The declaration is illegal if the
3647 -- profile includes the restriction No_Implicit_Heap_Allocations.
3648
3649 procedure Check_For_Null_Excluding_Components
3650 (Obj_Typ : Entity_Id;
3651 Obj_Decl : Node_Id);
3652 -- Verify that each null-excluding component of object declaration
3653 -- Obj_Decl carrying type Obj_Typ has explicit initialization. Emit
3654 -- a compile-time warning if this is not the case.
3655
3656 function Count_Tasks (T : Entity_Id) return Uint;
3657 -- This function is called when a non-generic library level object of a
3658 -- task type is declared. Its function is to count the static number of
3659 -- tasks declared within the type (it is only called if Has_Task is set
3660 -- for T). As a side effect, if an array of tasks with non-static bounds
3661 -- or a variant record type is encountered, Check_Restriction is called
3662 -- indicating the count is unknown.
3663
3664 function Delayed_Aspect_Present return Boolean;
3665 -- If the declaration has an expression that is an aggregate, and it
3666 -- has aspects that require delayed analysis, the resolution of the
3667 -- aggregate must be deferred to the freeze point of the object. This
3668 -- special processing was created for address clauses, but it must
3669 -- also apply to Alignment. This must be done before the aspect
3670 -- specifications are analyzed because we must handle the aggregate
3671 -- before the analysis of the object declaration is complete.
3672
3673 -- Any other relevant delayed aspects on object declarations ???
3674
3675 --------------------------
3676 -- Check_Dynamic_Object --
3677 --------------------------
3678
3679 procedure Check_Dynamic_Object (Typ : Entity_Id) is
3680 Comp : Entity_Id;
3681 Obj_Type : Entity_Id;
3682
3683 begin
3684 Obj_Type := Typ;
3685
3686 if Is_Private_Type (Obj_Type)
3687 and then Present (Full_View (Obj_Type))
3688 then
3689 Obj_Type := Full_View (Obj_Type);
3690 end if;
3691
3692 if Known_Static_Esize (Obj_Type) then
3693 return;
3694 end if;
3695
3696 if Restriction_Active (No_Implicit_Heap_Allocations)
3697 and then Expander_Active
3698 and then Has_Discriminants (Obj_Type)
3699 then
3700 Comp := First_Component (Obj_Type);
3701 while Present (Comp) loop
3702 if Known_Static_Esize (Etype (Comp))
3703 or else Size_Known_At_Compile_Time (Etype (Comp))
3704 then
3705 null;
3706
3707 elsif not Discriminated_Size (Comp)
3708 and then Comes_From_Source (Comp)
3709 then
3710 Error_Msg_NE
3711 ("component& of non-static size will violate restriction "
3712 & "No_Implicit_Heap_Allocation?", N, Comp);
3713
3714 elsif Is_Record_Type (Etype (Comp)) then
3715 Check_Dynamic_Object (Etype (Comp));
3716 end if;
3717
3718 Next_Component (Comp);
3719 end loop;
3720 end if;
3721 end Check_Dynamic_Object;
3722
3723 -----------------------------------------
3724 -- Check_For_Null_Excluding_Components --
3725 -----------------------------------------
3726
3727 procedure Check_For_Null_Excluding_Components
3728 (Obj_Typ : Entity_Id;
3729 Obj_Decl : Node_Id)
3730 is
3731 procedure Check_Component
3732 (Comp_Typ : Entity_Id;
3733 Comp_Decl : Node_Id := Empty;
3734 Array_Comp : Boolean := False);
3735 -- Apply a compile-time null-exclusion check on a component denoted
3736 -- by its declaration Comp_Decl and type Comp_Typ, and all of its
3737 -- subcomponents (if any).
3738
3739 ---------------------
3740 -- Check_Component --
3741 ---------------------
3742
3743 procedure Check_Component
3744 (Comp_Typ : Entity_Id;
3745 Comp_Decl : Node_Id := Empty;
3746 Array_Comp : Boolean := False)
3747 is
3748 Comp : Entity_Id;
3749 T : Entity_Id;
3750
3751 begin
3752 -- Do not consider internally-generated components or those that
3753 -- are already initialized.
3754
3755 if Present (Comp_Decl)
3756 and then (not Comes_From_Source (Comp_Decl)
3757 or else Present (Expression (Comp_Decl)))
3758 then
3759 return;
3760 end if;
3761
3762 if Is_Incomplete_Or_Private_Type (Comp_Typ)
3763 and then Present (Full_View (Comp_Typ))
3764 then
3765 T := Full_View (Comp_Typ);
3766 else
3767 T := Comp_Typ;
3768 end if;
3769
3770 -- Verify a component of a null-excluding access type
3771
3772 if Is_Access_Type (T)
3773 and then Can_Never_Be_Null (T)
3774 then
3775 if Comp_Decl = Obj_Decl then
3776 Null_Exclusion_Static_Checks
3777 (N => Obj_Decl,
3778 Comp => Empty,
3779 Array_Comp => Array_Comp);
3780
3781 else
3782 Null_Exclusion_Static_Checks
3783 (N => Obj_Decl,
3784 Comp => Comp_Decl,
3785 Array_Comp => Array_Comp);
3786 end if;
3787
3788 -- Check array components
3789
3790 elsif Is_Array_Type (T) then
3791
3792 -- There is no suitable component when the object is of an
3793 -- array type. However, a namable component may appear at some
3794 -- point during the recursive inspection, but not at the top
3795 -- level. At the top level just indicate array component case.
3796
3797 if Comp_Decl = Obj_Decl then
3798 Check_Component (Component_Type (T), Array_Comp => True);
3799 else
3800 Check_Component (Component_Type (T), Comp_Decl);
3801 end if;
3802
3803 -- Verify all components of type T
3804
3805 -- Note: No checks are performed on types with discriminants due
3806 -- to complexities involving variants. ???
3807
3808 elsif (Is_Concurrent_Type (T)
3809 or else Is_Incomplete_Or_Private_Type (T)
3810 or else Is_Record_Type (T))
3811 and then not Has_Discriminants (T)
3812 then
3813 Comp := First_Component (T);
3814 while Present (Comp) loop
3815 Check_Component (Etype (Comp), Parent (Comp));
3816
3817 Comp := Next_Component (Comp);
3818 end loop;
3819 end if;
3820 end Check_Component;
3821
3822 -- Start processing for Check_For_Null_Excluding_Components
3823
3824 begin
3825 Check_Component (Obj_Typ, Obj_Decl);
3826 end Check_For_Null_Excluding_Components;
3827
3828 -----------------
3829 -- Count_Tasks --
3830 -----------------
3831
3832 function Count_Tasks (T : Entity_Id) return Uint is
3833 C : Entity_Id;
3834 X : Node_Id;
3835 V : Uint;
3836
3837 begin
3838 if Is_Task_Type (T) then
3839 return Uint_1;
3840
3841 elsif Is_Record_Type (T) then
3842 if Has_Discriminants (T) then
3843 Check_Restriction (Max_Tasks, N);
3844 return Uint_0;
3845
3846 else
3847 V := Uint_0;
3848 C := First_Component (T);
3849 while Present (C) loop
3850 V := V + Count_Tasks (Etype (C));
3851 Next_Component (C);
3852 end loop;
3853
3854 return V;
3855 end if;
3856
3857 elsif Is_Array_Type (T) then
3858 X := First_Index (T);
3859 V := Count_Tasks (Component_Type (T));
3860 while Present (X) loop
3861 C := Etype (X);
3862
3863 if not Is_OK_Static_Subtype (C) then
3864 Check_Restriction (Max_Tasks, N);
3865 return Uint_0;
3866 else
3867 V := V * (UI_Max (Uint_0,
3868 Expr_Value (Type_High_Bound (C)) -
3869 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3870 end if;
3871
3872 Next_Index (X);
3873 end loop;
3874
3875 return V;
3876
3877 else
3878 return Uint_0;
3879 end if;
3880 end Count_Tasks;
3881
3882 ----------------------------
3883 -- Delayed_Aspect_Present --
3884 ----------------------------
3885
3886 function Delayed_Aspect_Present return Boolean is
3887 A : Node_Id;
3888 A_Id : Aspect_Id;
3889
3890 begin
3891 if Present (Aspect_Specifications (N)) then
3892 A := First (Aspect_Specifications (N));
3893 A_Id := Get_Aspect_Id (Chars (Identifier (A)));
3894 while Present (A) loop
3895 if A_Id = Aspect_Alignment or else A_Id = Aspect_Address then
3896 return True;
3897 end if;
3898
3899 Next (A);
3900 end loop;
3901 end if;
3902
3903 return False;
3904 end Delayed_Aspect_Present;
3905
3906 -- Local variables
3907
3908 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
3909 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
3910 -- Save the Ghost-related attributes to restore on exit
3911
3912 Related_Id : Entity_Id;
3913
3914 -- Start of processing for Analyze_Object_Declaration
3915
3916 begin
3917 -- There are three kinds of implicit types generated by an
3918 -- object declaration:
3919
3920 -- 1. Those generated by the original Object Definition
3921
3922 -- 2. Those generated by the Expression
3923
3924 -- 3. Those used to constrain the Object Definition with the
3925 -- expression constraints when the definition is unconstrained.
3926
3927 -- They must be generated in this order to avoid order of elaboration
3928 -- issues. Thus the first step (after entering the name) is to analyze
3929 -- the object definition.
3930
3931 if Constant_Present (N) then
3932 Prev_Entity := Current_Entity_In_Scope (Id);
3933
3934 if Present (Prev_Entity)
3935 and then
3936 -- If the homograph is an implicit subprogram, it is overridden
3937 -- by the current declaration.
3938
3939 ((Is_Overloadable (Prev_Entity)
3940 and then Is_Inherited_Operation (Prev_Entity))
3941
3942 -- The current object is a discriminal generated for an entry
3943 -- family index. Even though the index is a constant, in this
3944 -- particular context there is no true constant redeclaration.
3945 -- Enter_Name will handle the visibility.
3946
3947 or else
3948 (Is_Discriminal (Id)
3949 and then Ekind (Discriminal_Link (Id)) =
3950 E_Entry_Index_Parameter)
3951
3952 -- The current object is the renaming for a generic declared
3953 -- within the instance.
3954
3955 or else
3956 (Ekind (Prev_Entity) = E_Package
3957 and then Nkind (Parent (Prev_Entity)) =
3958 N_Package_Renaming_Declaration
3959 and then not Comes_From_Source (Prev_Entity)
3960 and then
3961 Is_Generic_Instance (Renamed_Entity (Prev_Entity)))
3962
3963 -- The entity may be a homonym of a private component of the
3964 -- enclosing protected object, for which we create a local
3965 -- renaming declaration. The declaration is legal, even if
3966 -- useless when it just captures that component.
3967
3968 or else
3969 (Ekind (Scope (Current_Scope)) = E_Protected_Type
3970 and then Nkind (Parent (Prev_Entity)) =
3971 N_Object_Renaming_Declaration))
3972 then
3973 Prev_Entity := Empty;
3974 end if;
3975 end if;
3976
3977 if Present (Prev_Entity) then
3978
3979 -- The object declaration is Ghost when it completes a deferred Ghost
3980 -- constant.
3981
3982 Mark_And_Set_Ghost_Completion (N, Prev_Entity);
3983
3984 Constant_Redeclaration (Id, N, T);
3985
3986 Generate_Reference (Prev_Entity, Id, 'c');
3987 Set_Completion_Referenced (Id);
3988
3989 if Error_Posted (N) then
3990
3991 -- Type mismatch or illegal redeclaration; do not analyze
3992 -- expression to avoid cascaded errors.
3993
3994 T := Find_Type_Of_Object (Object_Definition (N), N);
3995 Set_Etype (Id, T);
3996 Set_Ekind (Id, E_Variable);
3997 goto Leave;
3998 end if;
3999
4000 -- In the normal case, enter identifier at the start to catch premature
4001 -- usage in the initialization expression.
4002
4003 else
4004 Generate_Definition (Id);
4005 Enter_Name (Id);
4006
4007 Mark_Coextensions (N, Object_Definition (N));
4008
4009 T := Find_Type_Of_Object (Object_Definition (N), N);
4010
4011 if Nkind (Object_Definition (N)) = N_Access_Definition
4012 and then Present
4013 (Access_To_Subprogram_Definition (Object_Definition (N)))
4014 and then Protected_Present
4015 (Access_To_Subprogram_Definition (Object_Definition (N)))
4016 then
4017 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
4018 end if;
4019
4020 if Error_Posted (Id) then
4021 Set_Etype (Id, T);
4022 Set_Ekind (Id, E_Variable);
4023 goto Leave;
4024 end if;
4025 end if;
4026
4027 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
4028 -- out some static checks.
4029
4030 if Ada_Version >= Ada_2005 then
4031
4032 -- In case of aggregates we must also take care of the correct
4033 -- initialization of nested aggregates bug this is done at the
4034 -- point of the analysis of the aggregate (see sem_aggr.adb) ???
4035
4036 if Can_Never_Be_Null (T) then
4037 if Present (Expression (N))
4038 and then Nkind (Expression (N)) = N_Aggregate
4039 then
4040 null;
4041
4042 else
4043 declare
4044 Save_Typ : constant Entity_Id := Etype (Id);
4045 begin
4046 Set_Etype (Id, T); -- Temp. decoration for static checks
4047 Null_Exclusion_Static_Checks (N);
4048 Set_Etype (Id, Save_Typ);
4049 end;
4050 end if;
4051
4052 -- We might be dealing with an object of a composite type containing
4053 -- null-excluding components without an aggregate, so we must verify
4054 -- that such components have default initialization.
4055
4056 else
4057 Check_For_Null_Excluding_Components (T, N);
4058 end if;
4059 end if;
4060
4061 -- Object is marked pure if it is in a pure scope
4062
4063 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4064
4065 -- If deferred constant, make sure context is appropriate. We detect
4066 -- a deferred constant as a constant declaration with no expression.
4067 -- A deferred constant can appear in a package body if its completion
4068 -- is by means of an interface pragma.
4069
4070 if Constant_Present (N) and then No (E) then
4071
4072 -- A deferred constant may appear in the declarative part of the
4073 -- following constructs:
4074
4075 -- blocks
4076 -- entry bodies
4077 -- extended return statements
4078 -- package specs
4079 -- package bodies
4080 -- subprogram bodies
4081 -- task bodies
4082
4083 -- When declared inside a package spec, a deferred constant must be
4084 -- completed by a full constant declaration or pragma Import. In all
4085 -- other cases, the only proper completion is pragma Import. Extended
4086 -- return statements are flagged as invalid contexts because they do
4087 -- not have a declarative part and so cannot accommodate the pragma.
4088
4089 if Ekind (Current_Scope) = E_Return_Statement then
4090 Error_Msg_N
4091 ("invalid context for deferred constant declaration (RM 7.4)",
4092 N);
4093 Error_Msg_N
4094 ("\declaration requires an initialization expression",
4095 N);
4096 Set_Constant_Present (N, False);
4097
4098 -- In Ada 83, deferred constant must be of private type
4099
4100 elsif not Is_Private_Type (T) then
4101 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
4102 Error_Msg_N
4103 ("(Ada 83) deferred constant must be private type", N);
4104 end if;
4105 end if;
4106
4107 -- If not a deferred constant, then the object declaration freezes
4108 -- its type, unless the object is of an anonymous type and has delayed
4109 -- aspects. In that case the type is frozen when the object itself is.
4110
4111 else
4112 Check_Fully_Declared (T, N);
4113
4114 if Has_Delayed_Aspects (Id)
4115 and then Is_Array_Type (T)
4116 and then Is_Itype (T)
4117 then
4118 Set_Has_Delayed_Freeze (T);
4119 else
4120 Freeze_Before (N, T);
4121 end if;
4122 end if;
4123
4124 -- If the object was created by a constrained array definition, then
4125 -- set the link in both the anonymous base type and anonymous subtype
4126 -- that are built to represent the array type to point to the object.
4127
4128 if Nkind (Object_Definition (Declaration_Node (Id))) =
4129 N_Constrained_Array_Definition
4130 then
4131 Set_Related_Array_Object (T, Id);
4132 Set_Related_Array_Object (Base_Type (T), Id);
4133 end if;
4134
4135 -- Special checks for protected objects not at library level
4136
4137 if Has_Protected (T) and then not Is_Library_Level_Entity (Id) then
4138 Check_Restriction (No_Local_Protected_Objects, Id);
4139
4140 -- Protected objects with interrupt handlers must be at library level
4141
4142 -- Ada 2005: This test is not needed (and the corresponding clause
4143 -- in the RM is removed) because accessibility checks are sufficient
4144 -- to make handlers not at the library level illegal.
4145
4146 -- AI05-0303: The AI is in fact a binding interpretation, and thus
4147 -- applies to the '95 version of the language as well.
4148
4149 if Is_Protected_Type (T)
4150 and then Has_Interrupt_Handler (T)
4151 and then Ada_Version < Ada_95
4152 then
4153 Error_Msg_N
4154 ("interrupt object can only be declared at library level", Id);
4155 end if;
4156 end if;
4157
4158 -- Check for violation of No_Local_Timing_Events
4159
4160 if Has_Timing_Event (T) and then not Is_Library_Level_Entity (Id) then
4161 Check_Restriction (No_Local_Timing_Events, Id);
4162 end if;
4163
4164 -- The actual subtype of the object is the nominal subtype, unless
4165 -- the nominal one is unconstrained and obtained from the expression.
4166
4167 Act_T := T;
4168
4169 -- These checks should be performed before the initialization expression
4170 -- is considered, so that the Object_Definition node is still the same
4171 -- as in source code.
4172
4173 -- In SPARK, the nominal subtype is always given by a subtype mark
4174 -- and must not be unconstrained. (The only exception to this is the
4175 -- acceptance of declarations of constants of type String.)
4176
4177 if not Nkind_In (Object_Definition (N), N_Expanded_Name, N_Identifier)
4178 then
4179 Check_SPARK_05_Restriction
4180 ("subtype mark required", Object_Definition (N));
4181
4182 elsif Is_Array_Type (T)
4183 and then not Is_Constrained (T)
4184 and then T /= Standard_String
4185 then
4186 Check_SPARK_05_Restriction
4187 ("subtype mark of constrained type expected",
4188 Object_Definition (N));
4189 end if;
4190
4191 if Is_Library_Level_Entity (Id) then
4192 Check_Dynamic_Object (T);
4193 end if;
4194
4195 -- There are no aliased objects in SPARK
4196
4197 if Aliased_Present (N) then
4198 Check_SPARK_05_Restriction ("aliased object is not allowed", N);
4199 end if;
4200
4201 -- Process initialization expression if present and not in error
4202
4203 if Present (E) and then E /= Error then
4204
4205 -- Generate an error in case of CPP class-wide object initialization.
4206 -- Required because otherwise the expansion of the class-wide
4207 -- assignment would try to use 'size to initialize the object
4208 -- (primitive that is not available in CPP tagged types).
4209
4210 if Is_Class_Wide_Type (Act_T)
4211 and then
4212 (Is_CPP_Class (Root_Type (Etype (Act_T)))
4213 or else
4214 (Present (Full_View (Root_Type (Etype (Act_T))))
4215 and then
4216 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
4217 then
4218 Error_Msg_N
4219 ("predefined assignment not available for 'C'P'P tagged types",
4220 E);
4221 end if;
4222
4223 Mark_Coextensions (N, E);
4224 Analyze (E);
4225
4226 -- In case of errors detected in the analysis of the expression,
4227 -- decorate it with the expected type to avoid cascaded errors
4228
4229 if No (Etype (E)) then
4230 Set_Etype (E, T);
4231 end if;
4232
4233 -- If an initialization expression is present, then we set the
4234 -- Is_True_Constant flag. It will be reset if this is a variable
4235 -- and it is indeed modified.
4236
4237 Set_Is_True_Constant (Id, True);
4238
4239 -- If we are analyzing a constant declaration, set its completion
4240 -- flag after analyzing and resolving the expression.
4241
4242 if Constant_Present (N) then
4243 Set_Has_Completion (Id);
4244 end if;
4245
4246 -- Set type and resolve (type may be overridden later on). Note:
4247 -- Ekind (Id) must still be E_Void at this point so that incorrect
4248 -- early usage within E is properly diagnosed.
4249
4250 Set_Etype (Id, T);
4251
4252 -- If the expression is an aggregate we must look ahead to detect
4253 -- the possible presence of an address clause, and defer resolution
4254 -- and expansion of the aggregate to the freeze point of the entity.
4255
4256 -- This is not always legal because the aggregate may contain other
4257 -- references that need freezing, e.g. references to other entities
4258 -- with address clauses. In any case, when compiling with -gnatI the
4259 -- presence of the address clause must be ignored.
4260
4261 if Comes_From_Source (N)
4262 and then Expander_Active
4263 and then Nkind (E) = N_Aggregate
4264 and then
4265 ((Present (Following_Address_Clause (N))
4266 and then not Ignore_Rep_Clauses)
4267 or else Delayed_Aspect_Present)
4268 then
4269 Set_Etype (E, T);
4270
4271 else
4272
4273 -- If the expression is a formal that is a "subprogram pointer"
4274 -- this is illegal in accessibility terms. Add an explicit
4275 -- conversion to force the corresponding check, as is done for
4276 -- assignments.
4277
4278 if Comes_From_Source (N)
4279 and then Is_Entity_Name (E)
4280 and then Present (Entity (E))
4281 and then Is_Formal (Entity (E))
4282 and then
4283 Ekind (Etype (Entity (E))) = E_Anonymous_Access_Subprogram_Type
4284 and then Ekind (T) /= E_Anonymous_Access_Subprogram_Type
4285 then
4286 Rewrite (E, Convert_To (T, Relocate_Node (E)));
4287 end if;
4288
4289 Resolve (E, T);
4290 end if;
4291
4292 -- No further action needed if E is a call to an inlined function
4293 -- which returns an unconstrained type and it has been expanded into
4294 -- a procedure call. In that case N has been replaced by an object
4295 -- declaration without initializing expression and it has been
4296 -- analyzed (see Expand_Inlined_Call).
4297
4298 if Back_End_Inlining
4299 and then Expander_Active
4300 and then Nkind (E) = N_Function_Call
4301 and then Nkind (Name (E)) in N_Has_Entity
4302 and then Is_Inlined (Entity (Name (E)))
4303 and then not Is_Constrained (Etype (E))
4304 and then Analyzed (N)
4305 and then No (Expression (N))
4306 then
4307 goto Leave;
4308 end if;
4309
4310 -- If E is null and has been replaced by an N_Raise_Constraint_Error
4311 -- node (which was marked already-analyzed), we need to set the type
4312 -- to something other than Any_Access in order to keep gigi happy.
4313
4314 if Etype (E) = Any_Access then
4315 Set_Etype (E, T);
4316 end if;
4317
4318 -- If the object is an access to variable, the initialization
4319 -- expression cannot be an access to constant.
4320
4321 if Is_Access_Type (T)
4322 and then not Is_Access_Constant (T)
4323 and then Is_Access_Type (Etype (E))
4324 and then Is_Access_Constant (Etype (E))
4325 then
4326 Error_Msg_N
4327 ("access to variable cannot be initialized with an "
4328 & "access-to-constant expression", E);
4329 end if;
4330
4331 if not Assignment_OK (N) then
4332 Check_Initialization (T, E);
4333 end if;
4334
4335 Check_Unset_Reference (E);
4336
4337 -- If this is a variable, then set current value. If this is a
4338 -- declared constant of a scalar type with a static expression,
4339 -- indicate that it is always valid.
4340
4341 if not Constant_Present (N) then
4342 if Compile_Time_Known_Value (E) then
4343 Set_Current_Value (Id, E);
4344 end if;
4345
4346 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
4347 Set_Is_Known_Valid (Id);
4348 end if;
4349
4350 -- Deal with setting of null flags
4351
4352 if Is_Access_Type (T) then
4353 if Known_Non_Null (E) then
4354 Set_Is_Known_Non_Null (Id, True);
4355 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
4356 Set_Is_Known_Null (Id, True);
4357 end if;
4358 end if;
4359
4360 -- Check incorrect use of dynamically tagged expressions
4361
4362 if Is_Tagged_Type (T) then
4363 Check_Dynamically_Tagged_Expression
4364 (Expr => E,
4365 Typ => T,
4366 Related_Nod => N);
4367 end if;
4368
4369 Apply_Scalar_Range_Check (E, T);
4370 Apply_Static_Length_Check (E, T);
4371
4372 if Nkind (Original_Node (N)) = N_Object_Declaration
4373 and then Comes_From_Source (Original_Node (N))
4374
4375 -- Only call test if needed
4376
4377 and then Restriction_Check_Required (SPARK_05)
4378 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
4379 then
4380 Check_SPARK_05_Restriction
4381 ("initialization expression is not appropriate", E);
4382 end if;
4383
4384 -- A formal parameter of a specific tagged type whose related
4385 -- subprogram is subject to pragma Extensions_Visible with value
4386 -- "False" cannot be implicitly converted to a class-wide type by
4387 -- means of an initialization expression (SPARK RM 6.1.7(3)). Do
4388 -- not consider internally generated expressions.
4389
4390 if Is_Class_Wide_Type (T)
4391 and then Comes_From_Source (E)
4392 and then Is_EVF_Expression (E)
4393 then
4394 Error_Msg_N
4395 ("formal parameter cannot be implicitly converted to "
4396 & "class-wide type when Extensions_Visible is False", E);
4397 end if;
4398 end if;
4399
4400 -- If the No_Streams restriction is set, check that the type of the
4401 -- object is not, and does not contain, any subtype derived from
4402 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
4403 -- Has_Stream just for efficiency reasons. There is no point in
4404 -- spending time on a Has_Stream check if the restriction is not set.
4405
4406 if Restriction_Check_Required (No_Streams) then
4407 if Has_Stream (T) then
4408 Check_Restriction (No_Streams, N);
4409 end if;
4410 end if;
4411
4412 -- Deal with predicate check before we start to do major rewriting. It
4413 -- is OK to initialize and then check the initialized value, since the
4414 -- object goes out of scope if we get a predicate failure. Note that we
4415 -- do this in the analyzer and not the expander because the analyzer
4416 -- does some substantial rewriting in some cases.
4417
4418 -- We need a predicate check if the type has predicates that are not
4419 -- ignored, and if either there is an initializing expression, or for
4420 -- default initialization when we have at least one case of an explicit
4421 -- default initial value and then this is not an internal declaration
4422 -- whose initialization comes later (as for an aggregate expansion).
4423
4424 if not Suppress_Assignment_Checks (N)
4425 and then Present (Predicate_Function (T))
4426 and then not Predicates_Ignored (T)
4427 and then not No_Initialization (N)
4428 and then
4429 (Present (E)
4430 or else
4431 Is_Partially_Initialized_Type (T, Include_Implicit => False))
4432 then
4433 -- If the type has a static predicate and the expression is known at
4434 -- compile time, see if the expression satisfies the predicate.
4435
4436 if Present (E) then
4437 Check_Expression_Against_Static_Predicate (E, T);
4438 end if;
4439
4440 -- If the type is a null record and there is no explicit initial
4441 -- expression, no predicate check applies.
4442
4443 if No (E) and then Is_Null_Record_Type (T) then
4444 null;
4445
4446 -- Do not generate a predicate check if the initialization expression
4447 -- is a type conversion because the conversion has been subjected to
4448 -- the same check. This is a small optimization which avoid redundant
4449 -- checks.
4450
4451 elsif Present (E) and then Nkind (E) = N_Type_Conversion then
4452 null;
4453
4454 else
4455 Insert_After (N,
4456 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
4457 end if;
4458 end if;
4459
4460 -- Case of unconstrained type
4461
4462 if not Is_Definite_Subtype (T) then
4463
4464 -- In SPARK, a declaration of unconstrained type is allowed
4465 -- only for constants of type string.
4466
4467 if Is_String_Type (T) and then not Constant_Present (N) then
4468 Check_SPARK_05_Restriction
4469 ("declaration of object of unconstrained type not allowed", N);
4470 end if;
4471
4472 -- Nothing to do in deferred constant case
4473
4474 if Constant_Present (N) and then No (E) then
4475 null;
4476
4477 -- Case of no initialization present
4478
4479 elsif No (E) then
4480 if No_Initialization (N) then
4481 null;
4482
4483 elsif Is_Class_Wide_Type (T) then
4484 Error_Msg_N
4485 ("initialization required in class-wide declaration ", N);
4486
4487 else
4488 Error_Msg_N
4489 ("unconstrained subtype not allowed (need initialization)",
4490 Object_Definition (N));
4491
4492 if Is_Record_Type (T) and then Has_Discriminants (T) then
4493 Error_Msg_N
4494 ("\provide initial value or explicit discriminant values",
4495 Object_Definition (N));
4496
4497 Error_Msg_NE
4498 ("\or give default discriminant values for type&",
4499 Object_Definition (N), T);
4500
4501 elsif Is_Array_Type (T) then
4502 Error_Msg_N
4503 ("\provide initial value or explicit array bounds",
4504 Object_Definition (N));
4505 end if;
4506 end if;
4507
4508 -- Case of initialization present but in error. Set initial
4509 -- expression as absent (but do not make above complaints)
4510
4511 elsif E = Error then
4512 Set_Expression (N, Empty);
4513 E := Empty;
4514
4515 -- Case of initialization present
4516
4517 else
4518 -- Check restrictions in Ada 83
4519
4520 if not Constant_Present (N) then
4521
4522 -- Unconstrained variables not allowed in Ada 83 mode
4523
4524 if Ada_Version = Ada_83
4525 and then Comes_From_Source (Object_Definition (N))
4526 then
4527 Error_Msg_N
4528 ("(Ada 83) unconstrained variable not allowed",
4529 Object_Definition (N));
4530 end if;
4531 end if;
4532
4533 -- Now we constrain the variable from the initializing expression
4534
4535 -- If the expression is an aggregate, it has been expanded into
4536 -- individual assignments. Retrieve the actual type from the
4537 -- expanded construct.
4538
4539 if Is_Array_Type (T)
4540 and then No_Initialization (N)
4541 and then Nkind (Original_Node (E)) = N_Aggregate
4542 then
4543 Act_T := Etype (E);
4544
4545 -- In case of class-wide interface object declarations we delay
4546 -- the generation of the equivalent record type declarations until
4547 -- its expansion because there are cases in they are not required.
4548
4549 elsif Is_Interface (T) then
4550 null;
4551
4552 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
4553 -- we should prevent the generation of another Itype with the
4554 -- same name as the one already generated, or we end up with
4555 -- two identical types in GNATprove.
4556
4557 elsif GNATprove_Mode then
4558 null;
4559
4560 -- If the type is an unchecked union, no subtype can be built from
4561 -- the expression. Rewrite declaration as a renaming, which the
4562 -- back-end can handle properly. This is a rather unusual case,
4563 -- because most unchecked_union declarations have default values
4564 -- for discriminants and are thus not indefinite.
4565
4566 elsif Is_Unchecked_Union (T) then
4567 if Constant_Present (N) or else Nkind (E) = N_Function_Call then
4568 Set_Ekind (Id, E_Constant);
4569 else
4570 Set_Ekind (Id, E_Variable);
4571 end if;
4572
4573 Rewrite (N,
4574 Make_Object_Renaming_Declaration (Loc,
4575 Defining_Identifier => Id,
4576 Subtype_Mark => New_Occurrence_Of (T, Loc),
4577 Name => E));
4578
4579 Set_Renamed_Object (Id, E);
4580 Freeze_Before (N, T);
4581 Set_Is_Frozen (Id);
4582 goto Leave;
4583
4584 else
4585 -- Ensure that the generated subtype has a unique external name
4586 -- when the related object is public. This guarantees that the
4587 -- subtype and its bounds will not be affected by switches or
4588 -- pragmas that may offset the internal counter due to extra
4589 -- generated code.
4590
4591 if Is_Public (Id) then
4592 Related_Id := Id;
4593 else
4594 Related_Id := Empty;
4595 end if;
4596
4597 Expand_Subtype_From_Expr
4598 (N => N,
4599 Unc_Type => T,
4600 Subtype_Indic => Object_Definition (N),
4601 Exp => E,
4602 Related_Id => Related_Id);
4603
4604 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
4605 end if;
4606
4607 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
4608
4609 if Aliased_Present (N) then
4610 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4611 end if;
4612
4613 Freeze_Before (N, Act_T);
4614 Freeze_Before (N, T);
4615 end if;
4616
4617 elsif Is_Array_Type (T)
4618 and then No_Initialization (N)
4619 and then (Nkind (Original_Node (E)) = N_Aggregate
4620 or else (Nkind (Original_Node (E)) = N_Qualified_Expression
4621 and then Nkind (Original_Node (Expression
4622 (Original_Node (E)))) = N_Aggregate))
4623 then
4624 if not Is_Entity_Name (Object_Definition (N)) then
4625 Act_T := Etype (E);
4626 Check_Compile_Time_Size (Act_T);
4627
4628 if Aliased_Present (N) then
4629 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4630 end if;
4631 end if;
4632
4633 -- When the given object definition and the aggregate are specified
4634 -- independently, and their lengths might differ do a length check.
4635 -- This cannot happen if the aggregate is of the form (others =>...)
4636
4637 if not Is_Constrained (T) then
4638 null;
4639
4640 elsif Nkind (E) = N_Raise_Constraint_Error then
4641
4642 -- Aggregate is statically illegal. Place back in declaration
4643
4644 Set_Expression (N, E);
4645 Set_No_Initialization (N, False);
4646
4647 elsif T = Etype (E) then
4648 null;
4649
4650 elsif Nkind (E) = N_Aggregate
4651 and then Present (Component_Associations (E))
4652 and then Present (Choice_List (First (Component_Associations (E))))
4653 and then
4654 Nkind (First (Choice_List (First (Component_Associations (E))))) =
4655 N_Others_Choice
4656 then
4657 null;
4658
4659 else
4660 Apply_Length_Check (E, T);
4661 end if;
4662
4663 -- If the type is limited unconstrained with defaulted discriminants and
4664 -- there is no expression, then the object is constrained by the
4665 -- defaults, so it is worthwhile building the corresponding subtype.
4666
4667 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
4668 and then not Is_Constrained (T)
4669 and then Has_Discriminants (T)
4670 then
4671 if No (E) then
4672 Act_T := Build_Default_Subtype (T, N);
4673 else
4674 -- Ada 2005: A limited object may be initialized by means of an
4675 -- aggregate. If the type has default discriminants it has an
4676 -- unconstrained nominal type, Its actual subtype will be obtained
4677 -- from the aggregate, and not from the default discriminants.
4678
4679 Act_T := Etype (E);
4680 end if;
4681
4682 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
4683
4684 elsif Nkind (E) = N_Function_Call
4685 and then Constant_Present (N)
4686 and then Has_Unconstrained_Elements (Etype (E))
4687 then
4688 -- The back-end has problems with constants of a discriminated type
4689 -- with defaults, if the initial value is a function call. We
4690 -- generate an intermediate temporary that will receive a reference
4691 -- to the result of the call. The initialization expression then
4692 -- becomes a dereference of that temporary.
4693
4694 Remove_Side_Effects (E);
4695
4696 -- If this is a constant declaration of an unconstrained type and
4697 -- the initialization is an aggregate, we can use the subtype of the
4698 -- aggregate for the declared entity because it is immutable.
4699
4700 elsif not Is_Constrained (T)
4701 and then Has_Discriminants (T)
4702 and then Constant_Present (N)
4703 and then not Has_Unchecked_Union (T)
4704 and then Nkind (E) = N_Aggregate
4705 then
4706 Act_T := Etype (E);
4707 end if;
4708
4709 -- Check No_Wide_Characters restriction
4710
4711 Check_Wide_Character_Restriction (T, Object_Definition (N));
4712
4713 -- Indicate this is not set in source. Certainly true for constants, and
4714 -- true for variables so far (will be reset for a variable if and when
4715 -- we encounter a modification in the source).
4716
4717 Set_Never_Set_In_Source (Id);
4718
4719 -- Now establish the proper kind and type of the object
4720
4721 if Constant_Present (N) then
4722 Set_Ekind (Id, E_Constant);
4723 Set_Is_True_Constant (Id);
4724
4725 else
4726 Set_Ekind (Id, E_Variable);
4727
4728 -- A variable is set as shared passive if it appears in a shared
4729 -- passive package, and is at the outer level. This is not done for
4730 -- entities generated during expansion, because those are always
4731 -- manipulated locally.
4732
4733 if Is_Shared_Passive (Current_Scope)
4734 and then Is_Library_Level_Entity (Id)
4735 and then Comes_From_Source (Id)
4736 then
4737 Set_Is_Shared_Passive (Id);
4738 Check_Shared_Var (Id, T, N);
4739 end if;
4740
4741 -- Set Has_Initial_Value if initializing expression present. Note
4742 -- that if there is no initializing expression, we leave the state
4743 -- of this flag unchanged (usually it will be False, but notably in
4744 -- the case of exception choice variables, it will already be true).
4745
4746 if Present (E) then
4747 Set_Has_Initial_Value (Id);
4748 end if;
4749 end if;
4750
4751 -- Set the SPARK mode from the current context (may be overwritten later
4752 -- with explicit pragma).
4753
4754 Set_SPARK_Pragma (Id, SPARK_Mode_Pragma);
4755 Set_SPARK_Pragma_Inherited (Id);
4756
4757 -- Preserve relevant elaboration-related attributes of the context which
4758 -- are no longer available or very expensive to recompute once analysis,
4759 -- resolution, and expansion are over.
4760
4761 Mark_Elaboration_Attributes
4762 (N_Id => Id,
4763 Checks => True,
4764 Warnings => True);
4765
4766 -- Initialize alignment and size and capture alignment setting
4767
4768 Init_Alignment (Id);
4769 Init_Esize (Id);
4770 Set_Optimize_Alignment_Flags (Id);
4771
4772 -- Deal with aliased case
4773
4774 if Aliased_Present (N) then
4775 Set_Is_Aliased (Id);
4776
4777 -- If the object is aliased and the type is unconstrained with
4778 -- defaulted discriminants and there is no expression, then the
4779 -- object is constrained by the defaults, so it is worthwhile
4780 -- building the corresponding subtype.
4781
4782 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4783 -- unconstrained, then only establish an actual subtype if the
4784 -- nominal subtype is indefinite. In definite cases the object is
4785 -- unconstrained in Ada 2005.
4786
4787 if No (E)
4788 and then Is_Record_Type (T)
4789 and then not Is_Constrained (T)
4790 and then Has_Discriminants (T)
4791 and then (Ada_Version < Ada_2005
4792 or else not Is_Definite_Subtype (T))
4793 then
4794 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
4795 end if;
4796 end if;
4797
4798 -- Now we can set the type of the object
4799
4800 Set_Etype (Id, Act_T);
4801
4802 -- Non-constant object is marked to be treated as volatile if type is
4803 -- volatile and we clear the Current_Value setting that may have been
4804 -- set above. Doing so for constants isn't required and might interfere
4805 -- with possible uses of the object as a static expression in contexts
4806 -- incompatible with volatility (e.g. as a case-statement alternative).
4807
4808 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
4809 Set_Treat_As_Volatile (Id);
4810 Set_Current_Value (Id, Empty);
4811 end if;
4812
4813 -- Deal with controlled types
4814
4815 if Has_Controlled_Component (Etype (Id))
4816 or else Is_Controlled (Etype (Id))
4817 then
4818 if not Is_Library_Level_Entity (Id) then
4819 Check_Restriction (No_Nested_Finalization, N);
4820 else
4821 Validate_Controlled_Object (Id);
4822 end if;
4823 end if;
4824
4825 if Has_Task (Etype (Id)) then
4826 Check_Restriction (No_Tasking, N);
4827
4828 -- Deal with counting max tasks
4829
4830 -- Nothing to do if inside a generic
4831
4832 if Inside_A_Generic then
4833 null;
4834
4835 -- If library level entity, then count tasks
4836
4837 elsif Is_Library_Level_Entity (Id) then
4838 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4839
4840 -- If not library level entity, then indicate we don't know max
4841 -- tasks and also check task hierarchy restriction and blocking
4842 -- operation (since starting a task is definitely blocking).
4843
4844 else
4845 Check_Restriction (Max_Tasks, N);
4846 Check_Restriction (No_Task_Hierarchy, N);
4847 Check_Potentially_Blocking_Operation (N);
4848 end if;
4849
4850 -- A rather specialized test. If we see two tasks being declared
4851 -- of the same type in the same object declaration, and the task
4852 -- has an entry with an address clause, we know that program error
4853 -- will be raised at run time since we can't have two tasks with
4854 -- entries at the same address.
4855
4856 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4857 declare
4858 E : Entity_Id;
4859
4860 begin
4861 E := First_Entity (Etype (Id));
4862 while Present (E) loop
4863 if Ekind (E) = E_Entry
4864 and then Present (Get_Attribute_Definition_Clause
4865 (E, Attribute_Address))
4866 then
4867 Error_Msg_Warn := SPARK_Mode /= On;
4868 Error_Msg_N
4869 ("more than one task with same entry address<<", N);
4870 Error_Msg_N ("\Program_Error [<<", N);
4871 Insert_Action (N,
4872 Make_Raise_Program_Error (Loc,
4873 Reason => PE_Duplicated_Entry_Address));
4874 exit;
4875 end if;
4876
4877 Next_Entity (E);
4878 end loop;
4879 end;
4880 end if;
4881 end if;
4882
4883 -- Some simple constant-propagation: if the expression is a constant
4884 -- string initialized with a literal, share the literal. This avoids
4885 -- a run-time copy.
4886
4887 if Present (E)
4888 and then Is_Entity_Name (E)
4889 and then Ekind (Entity (E)) = E_Constant
4890 and then Base_Type (Etype (E)) = Standard_String
4891 then
4892 declare
4893 Val : constant Node_Id := Constant_Value (Entity (E));
4894 begin
4895 if Present (Val) and then Nkind (Val) = N_String_Literal then
4896 Rewrite (E, New_Copy (Val));
4897 end if;
4898 end;
4899 end if;
4900
4901 -- Another optimization: if the nominal subtype is unconstrained and
4902 -- the expression is a function call that returns an unconstrained
4903 -- type, rewrite the declaration as a renaming of the result of the
4904 -- call. The exceptions below are cases where the copy is expected,
4905 -- either by the back end (Aliased case) or by the semantics, as for
4906 -- initializing controlled types or copying tags for class-wide types.
4907
4908 if Present (E)
4909 and then Nkind (E) = N_Explicit_Dereference
4910 and then Nkind (Original_Node (E)) = N_Function_Call
4911 and then not Is_Library_Level_Entity (Id)
4912 and then not Is_Constrained (Underlying_Type (T))
4913 and then not Is_Aliased (Id)
4914 and then not Is_Class_Wide_Type (T)
4915 and then not Is_Controlled (T)
4916 and then not Has_Controlled_Component (Base_Type (T))
4917 and then Expander_Active
4918 then
4919 Rewrite (N,
4920 Make_Object_Renaming_Declaration (Loc,
4921 Defining_Identifier => Id,
4922 Access_Definition => Empty,
4923 Subtype_Mark => New_Occurrence_Of
4924 (Base_Type (Etype (Id)), Loc),
4925 Name => E));
4926
4927 Set_Renamed_Object (Id, E);
4928
4929 -- Force generation of debugging information for the constant and for
4930 -- the renamed function call.
4931
4932 Set_Debug_Info_Needed (Id);
4933 Set_Debug_Info_Needed (Entity (Prefix (E)));
4934 end if;
4935
4936 if Present (Prev_Entity)
4937 and then Is_Frozen (Prev_Entity)
4938 and then not Error_Posted (Id)
4939 then
4940 Error_Msg_N ("full constant declaration appears too late", N);
4941 end if;
4942
4943 Check_Eliminated (Id);
4944
4945 -- Deal with setting In_Private_Part flag if in private part
4946
4947 if Ekind (Scope (Id)) = E_Package
4948 and then In_Private_Part (Scope (Id))
4949 then
4950 Set_In_Private_Part (Id);
4951 end if;
4952
4953 <<Leave>>
4954 -- Initialize the refined state of a variable here because this is a
4955 -- common destination for legal and illegal object declarations.
4956
4957 if Ekind (Id) = E_Variable then
4958 Set_Encapsulating_State (Id, Empty);
4959 end if;
4960
4961 if Has_Aspects (N) then
4962 Analyze_Aspect_Specifications (N, Id);
4963 end if;
4964
4965 Analyze_Dimension (N);
4966
4967 -- Verify whether the object declaration introduces an illegal hidden
4968 -- state within a package subject to a null abstract state.
4969
4970 if Ekind (Id) = E_Variable then
4971 Check_No_Hidden_State (Id);
4972 end if;
4973
4974 Restore_Ghost_Region (Saved_GM, Saved_IGR);
4975 end Analyze_Object_Declaration;
4976
4977 ---------------------------
4978 -- Analyze_Others_Choice --
4979 ---------------------------
4980
4981 -- Nothing to do for the others choice node itself, the semantic analysis
4982 -- of the others choice will occur as part of the processing of the parent
4983
4984 procedure Analyze_Others_Choice (N : Node_Id) is
4985 pragma Warnings (Off, N);
4986 begin
4987 null;
4988 end Analyze_Others_Choice;
4989
4990 -------------------------------------------
4991 -- Analyze_Private_Extension_Declaration --
4992 -------------------------------------------
4993
4994 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4995 Indic : constant Node_Id := Subtype_Indication (N);
4996 T : constant Entity_Id := Defining_Identifier (N);
4997 Iface : Entity_Id;
4998 Iface_Elmt : Elmt_Id;
4999 Parent_Base : Entity_Id;
5000 Parent_Type : Entity_Id;
5001
5002 begin
5003 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
5004
5005 if Is_Non_Empty_List (Interface_List (N)) then
5006 declare
5007 Intf : Node_Id;
5008 T : Entity_Id;
5009
5010 begin
5011 Intf := First (Interface_List (N));
5012 while Present (Intf) loop
5013 T := Find_Type_Of_Subtype_Indic (Intf);
5014
5015 Diagnose_Interface (Intf, T);
5016 Next (Intf);
5017 end loop;
5018 end;
5019 end if;
5020
5021 Generate_Definition (T);
5022
5023 -- For other than Ada 2012, just enter the name in the current scope
5024
5025 if Ada_Version < Ada_2012 then
5026 Enter_Name (T);
5027
5028 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
5029 -- case of private type that completes an incomplete type.
5030
5031 else
5032 declare
5033 Prev : Entity_Id;
5034
5035 begin
5036 Prev := Find_Type_Name (N);
5037
5038 pragma Assert (Prev = T
5039 or else (Ekind (Prev) = E_Incomplete_Type
5040 and then Present (Full_View (Prev))
5041 and then Full_View (Prev) = T));
5042 end;
5043 end if;
5044
5045 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
5046 Parent_Base := Base_Type (Parent_Type);
5047
5048 if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then
5049 Set_Ekind (T, Ekind (Parent_Type));
5050 Set_Etype (T, Any_Type);
5051 goto Leave;
5052
5053 elsif not Is_Tagged_Type (Parent_Type) then
5054 Error_Msg_N
5055 ("parent of type extension must be a tagged type ", Indic);
5056 goto Leave;
5057
5058 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
5059 Error_Msg_N ("premature derivation of incomplete type", Indic);
5060 goto Leave;
5061
5062 elsif Is_Concurrent_Type (Parent_Type) then
5063 Error_Msg_N
5064 ("parent type of a private extension cannot be a synchronized "
5065 & "tagged type (RM 3.9.1 (3/1))", N);
5066
5067 Set_Etype (T, Any_Type);
5068 Set_Ekind (T, E_Limited_Private_Type);
5069 Set_Private_Dependents (T, New_Elmt_List);
5070 Set_Error_Posted (T);
5071 goto Leave;
5072 end if;
5073
5074 -- Perhaps the parent type should be changed to the class-wide type's
5075 -- specific type in this case to prevent cascading errors ???
5076
5077 if Is_Class_Wide_Type (Parent_Type) then
5078 Error_Msg_N
5079 ("parent of type extension must not be a class-wide type", Indic);
5080 goto Leave;
5081 end if;
5082
5083 if (not Is_Package_Or_Generic_Package (Current_Scope)
5084 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
5085 or else In_Private_Part (Current_Scope)
5086 then
5087 Error_Msg_N ("invalid context for private extension", N);
5088 end if;
5089
5090 -- Set common attributes
5091
5092 Set_Is_Pure (T, Is_Pure (Current_Scope));
5093 Set_Scope (T, Current_Scope);
5094 Set_Ekind (T, E_Record_Type_With_Private);
5095 Init_Size_Align (T);
5096 Set_Default_SSO (T);
5097 Set_No_Reordering (T, No_Component_Reordering);
5098
5099 Set_Etype (T, Parent_Base);
5100 Propagate_Concurrent_Flags (T, Parent_Base);
5101
5102 Set_Convention (T, Convention (Parent_Type));
5103 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
5104 Set_Is_First_Subtype (T);
5105 Make_Class_Wide_Type (T);
5106
5107 -- Set the SPARK mode from the current context
5108
5109 Set_SPARK_Pragma (T, SPARK_Mode_Pragma);
5110 Set_SPARK_Pragma_Inherited (T);
5111
5112 if Unknown_Discriminants_Present (N) then
5113 Set_Discriminant_Constraint (T, No_Elist);
5114 end if;
5115
5116 Build_Derived_Record_Type (N, Parent_Type, T);
5117
5118 -- A private extension inherits the Default_Initial_Condition pragma
5119 -- coming from any parent type within the derivation chain.
5120
5121 if Has_DIC (Parent_Type) then
5122 Set_Has_Inherited_DIC (T);
5123 end if;
5124
5125 -- A private extension inherits any class-wide invariants coming from a
5126 -- parent type or an interface. Note that the invariant procedure of the
5127 -- parent type should not be inherited because the private extension may
5128 -- define invariants of its own.
5129
5130 if Has_Inherited_Invariants (Parent_Type)
5131 or else Has_Inheritable_Invariants (Parent_Type)
5132 then
5133 Set_Has_Inherited_Invariants (T);
5134
5135 elsif Present (Interfaces (T)) then
5136 Iface_Elmt := First_Elmt (Interfaces (T));
5137 while Present (Iface_Elmt) loop
5138 Iface := Node (Iface_Elmt);
5139
5140 if Has_Inheritable_Invariants (Iface) then
5141 Set_Has_Inherited_Invariants (T);
5142 exit;
5143 end if;
5144
5145 Next_Elmt (Iface_Elmt);
5146 end loop;
5147 end if;
5148
5149 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
5150 -- synchronized formal derived type.
5151
5152 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
5153 Set_Is_Limited_Record (T);
5154
5155 -- Formal derived type case
5156
5157 if Is_Generic_Type (T) then
5158
5159 -- The parent must be a tagged limited type or a synchronized
5160 -- interface.
5161
5162 if (not Is_Tagged_Type (Parent_Type)
5163 or else not Is_Limited_Type (Parent_Type))
5164 and then
5165 (not Is_Interface (Parent_Type)
5166 or else not Is_Synchronized_Interface (Parent_Type))
5167 then
5168 Error_Msg_NE
5169 ("parent type of & must be tagged limited or synchronized",
5170 N, T);
5171 end if;
5172
5173 -- The progenitors (if any) must be limited or synchronized
5174 -- interfaces.
5175
5176 if Present (Interfaces (T)) then
5177 Iface_Elmt := First_Elmt (Interfaces (T));
5178 while Present (Iface_Elmt) loop
5179 Iface := Node (Iface_Elmt);
5180
5181 if not Is_Limited_Interface (Iface)
5182 and then not Is_Synchronized_Interface (Iface)
5183 then
5184 Error_Msg_NE
5185 ("progenitor & must be limited or synchronized",
5186 N, Iface);
5187 end if;
5188
5189 Next_Elmt (Iface_Elmt);
5190 end loop;
5191 end if;
5192
5193 -- Regular derived extension, the parent must be a limited or
5194 -- synchronized interface.
5195
5196 else
5197 if not Is_Interface (Parent_Type)
5198 or else (not Is_Limited_Interface (Parent_Type)
5199 and then not Is_Synchronized_Interface (Parent_Type))
5200 then
5201 Error_Msg_NE
5202 ("parent type of & must be limited interface", N, T);
5203 end if;
5204 end if;
5205
5206 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
5207 -- extension with a synchronized parent must be explicitly declared
5208 -- synchronized, because the full view will be a synchronized type.
5209 -- This must be checked before the check for limited types below,
5210 -- to ensure that types declared limited are not allowed to extend
5211 -- synchronized interfaces.
5212
5213 elsif Is_Interface (Parent_Type)
5214 and then Is_Synchronized_Interface (Parent_Type)
5215 and then not Synchronized_Present (N)
5216 then
5217 Error_Msg_NE
5218 ("private extension of& must be explicitly synchronized",
5219 N, Parent_Type);
5220
5221 elsif Limited_Present (N) then
5222 Set_Is_Limited_Record (T);
5223
5224 if not Is_Limited_Type (Parent_Type)
5225 and then
5226 (not Is_Interface (Parent_Type)
5227 or else not Is_Limited_Interface (Parent_Type))
5228 then
5229 Error_Msg_NE ("parent type& of limited extension must be limited",
5230 N, Parent_Type);
5231 end if;
5232 end if;
5233
5234 -- Remember that its parent type has a private extension. Used to warn
5235 -- on public primitives of the parent type defined after its private
5236 -- extensions (see Check_Dispatching_Operation).
5237
5238 Set_Has_Private_Extension (Parent_Type);
5239
5240 <<Leave>>
5241 if Has_Aspects (N) then
5242 Analyze_Aspect_Specifications (N, T);
5243 end if;
5244 end Analyze_Private_Extension_Declaration;
5245
5246 ---------------------------------
5247 -- Analyze_Subtype_Declaration --
5248 ---------------------------------
5249
5250 procedure Analyze_Subtype_Declaration
5251 (N : Node_Id;
5252 Skip : Boolean := False)
5253 is
5254 Id : constant Entity_Id := Defining_Identifier (N);
5255 R_Checks : Check_Result;
5256 T : Entity_Id;
5257
5258 begin
5259 Generate_Definition (Id);
5260 Set_Is_Pure (Id, Is_Pure (Current_Scope));
5261 Init_Size_Align (Id);
5262
5263 -- The following guard condition on Enter_Name is to handle cases where
5264 -- the defining identifier has already been entered into the scope but
5265 -- the declaration as a whole needs to be analyzed.
5266
5267 -- This case in particular happens for derived enumeration types. The
5268 -- derived enumeration type is processed as an inserted enumeration type
5269 -- declaration followed by a rewritten subtype declaration. The defining
5270 -- identifier, however, is entered into the name scope very early in the
5271 -- processing of the original type declaration and therefore needs to be
5272 -- avoided here, when the created subtype declaration is analyzed. (See
5273 -- Build_Derived_Types)
5274
5275 -- This also happens when the full view of a private type is derived
5276 -- type with constraints. In this case the entity has been introduced
5277 -- in the private declaration.
5278
5279 -- Finally this happens in some complex cases when validity checks are
5280 -- enabled, where the same subtype declaration may be analyzed twice.
5281 -- This can happen if the subtype is created by the pre-analysis of
5282 -- an attribute tht gives the range of a loop statement, and the loop
5283 -- itself appears within an if_statement that will be rewritten during
5284 -- expansion.
5285
5286 if Skip
5287 or else (Present (Etype (Id))
5288 and then (Is_Private_Type (Etype (Id))
5289 or else Is_Task_Type (Etype (Id))
5290 or else Is_Rewrite_Substitution (N)))
5291 then
5292 null;
5293
5294 elsif Current_Entity (Id) = Id then
5295 null;
5296
5297 else
5298 Enter_Name (Id);
5299 end if;
5300
5301 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
5302
5303 -- Class-wide equivalent types of records with unknown discriminants
5304 -- involve the generation of an itype which serves as the private view
5305 -- of a constrained record subtype. In such cases the base type of the
5306 -- current subtype we are processing is the private itype. Use the full
5307 -- of the private itype when decorating various attributes.
5308
5309 if Is_Itype (T)
5310 and then Is_Private_Type (T)
5311 and then Present (Full_View (T))
5312 then
5313 T := Full_View (T);
5314 end if;
5315
5316 -- Inherit common attributes
5317
5318 Set_Is_Volatile (Id, Is_Volatile (T));
5319 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
5320 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
5321 Set_Convention (Id, Convention (T));
5322
5323 -- If ancestor has predicates then so does the subtype, and in addition
5324 -- we must delay the freeze to properly arrange predicate inheritance.
5325
5326 -- The Ancestor_Type test is really unpleasant, there seem to be cases
5327 -- in which T = ID, so the above tests and assignments do nothing???
5328
5329 if Has_Predicates (T)
5330 or else (Present (Ancestor_Subtype (T))
5331 and then Has_Predicates (Ancestor_Subtype (T)))
5332 then
5333 Set_Has_Predicates (Id);
5334 Set_Has_Delayed_Freeze (Id);
5335
5336 -- Generated subtypes inherit the predicate function from the parent
5337 -- (no aspects to examine on the generated declaration).
5338
5339 if not Comes_From_Source (N) then
5340 Set_Ekind (Id, Ekind (T));
5341
5342 if Present (Predicate_Function (Id)) then
5343 null;
5344
5345 elsif Present (Predicate_Function (T)) then
5346 Set_Predicate_Function (Id, Predicate_Function (T));
5347
5348 elsif Present (Ancestor_Subtype (T))
5349 and then Present (Predicate_Function (Ancestor_Subtype (T)))
5350 then
5351 Set_Predicate_Function (Id,
5352 Predicate_Function (Ancestor_Subtype (T)));
5353 end if;
5354 end if;
5355 end if;
5356
5357 -- Subtype of Boolean cannot have a constraint in SPARK
5358
5359 if Is_Boolean_Type (T)
5360 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
5361 then
5362 Check_SPARK_05_Restriction
5363 ("subtype of Boolean cannot have constraint", N);
5364 end if;
5365
5366 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5367 declare
5368 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5369 One_Cstr : Node_Id;
5370 Low : Node_Id;
5371 High : Node_Id;
5372
5373 begin
5374 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
5375 One_Cstr := First (Constraints (Cstr));
5376 while Present (One_Cstr) loop
5377
5378 -- Index or discriminant constraint in SPARK must be a
5379 -- subtype mark.
5380
5381 if not
5382 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
5383 then
5384 Check_SPARK_05_Restriction
5385 ("subtype mark required", One_Cstr);
5386
5387 -- String subtype must have a lower bound of 1 in SPARK.
5388 -- Note that we do not need to test for the non-static case
5389 -- here, since that was already taken care of in
5390 -- Process_Range_Expr_In_Decl.
5391
5392 elsif Base_Type (T) = Standard_String then
5393 Get_Index_Bounds (One_Cstr, Low, High);
5394
5395 if Is_OK_Static_Expression (Low)
5396 and then Expr_Value (Low) /= 1
5397 then
5398 Check_SPARK_05_Restriction
5399 ("String subtype must have lower bound of 1", N);
5400 end if;
5401 end if;
5402
5403 Next (One_Cstr);
5404 end loop;
5405 end if;
5406 end;
5407 end if;
5408
5409 -- In the case where there is no constraint given in the subtype
5410 -- indication, Process_Subtype just returns the Subtype_Mark, so its
5411 -- semantic attributes must be established here.
5412
5413 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
5414 Set_Etype (Id, Base_Type (T));
5415
5416 -- Subtype of unconstrained array without constraint is not allowed
5417 -- in SPARK.
5418
5419 if Is_Array_Type (T) and then not Is_Constrained (T) then
5420 Check_SPARK_05_Restriction
5421 ("subtype of unconstrained array must have constraint", N);
5422 end if;
5423
5424 case Ekind (T) is
5425 when Array_Kind =>
5426 Set_Ekind (Id, E_Array_Subtype);
5427 Copy_Array_Subtype_Attributes (Id, T);
5428
5429 when Decimal_Fixed_Point_Kind =>
5430 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
5431 Set_Digits_Value (Id, Digits_Value (T));
5432 Set_Delta_Value (Id, Delta_Value (T));
5433 Set_Scale_Value (Id, Scale_Value (T));
5434 Set_Small_Value (Id, Small_Value (T));
5435 Set_Scalar_Range (Id, Scalar_Range (T));
5436 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
5437 Set_Is_Constrained (Id, Is_Constrained (T));
5438 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5439 Set_RM_Size (Id, RM_Size (T));
5440
5441 when Enumeration_Kind =>
5442 Set_Ekind (Id, E_Enumeration_Subtype);
5443 Set_First_Literal (Id, First_Literal (Base_Type (T)));
5444 Set_Scalar_Range (Id, Scalar_Range (T));
5445 Set_Is_Character_Type (Id, Is_Character_Type (T));
5446 Set_Is_Constrained (Id, Is_Constrained (T));
5447 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5448 Set_RM_Size (Id, RM_Size (T));
5449
5450 when Ordinary_Fixed_Point_Kind =>
5451 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
5452 Set_Scalar_Range (Id, Scalar_Range (T));
5453 Set_Small_Value (Id, Small_Value (T));
5454 Set_Delta_Value (Id, Delta_Value (T));
5455 Set_Is_Constrained (Id, Is_Constrained (T));
5456 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5457 Set_RM_Size (Id, RM_Size (T));
5458
5459 when Float_Kind =>
5460 Set_Ekind (Id, E_Floating_Point_Subtype);
5461 Set_Scalar_Range (Id, Scalar_Range (T));
5462 Set_Digits_Value (Id, Digits_Value (T));
5463 Set_Is_Constrained (Id, Is_Constrained (T));
5464
5465 -- If the floating point type has dimensions, these will be
5466 -- inherited subsequently when Analyze_Dimensions is called.
5467
5468 when Signed_Integer_Kind =>
5469 Set_Ekind (Id, E_Signed_Integer_Subtype);
5470 Set_Scalar_Range (Id, Scalar_Range (T));
5471 Set_Is_Constrained (Id, Is_Constrained (T));
5472 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5473 Set_RM_Size (Id, RM_Size (T));
5474
5475 when Modular_Integer_Kind =>
5476 Set_Ekind (Id, E_Modular_Integer_Subtype);
5477 Set_Scalar_Range (Id, Scalar_Range (T));
5478 Set_Is_Constrained (Id, Is_Constrained (T));
5479 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5480 Set_RM_Size (Id, RM_Size (T));
5481
5482 when Class_Wide_Kind =>
5483 Set_Ekind (Id, E_Class_Wide_Subtype);
5484 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5485 Set_Cloned_Subtype (Id, T);
5486 Set_Is_Tagged_Type (Id, True);
5487 Set_Has_Unknown_Discriminants
5488 (Id, True);
5489 Set_No_Tagged_Streams_Pragma
5490 (Id, No_Tagged_Streams_Pragma (T));
5491
5492 if Ekind (T) = E_Class_Wide_Subtype then
5493 Set_Equivalent_Type (Id, Equivalent_Type (T));
5494 end if;
5495
5496 when E_Record_Subtype
5497 | E_Record_Type
5498 =>
5499 Set_Ekind (Id, E_Record_Subtype);
5500
5501 if Ekind (T) = E_Record_Subtype
5502 and then Present (Cloned_Subtype (T))
5503 then
5504 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
5505 else
5506 Set_Cloned_Subtype (Id, T);
5507 end if;
5508
5509 Set_First_Entity (Id, First_Entity (T));
5510 Set_Last_Entity (Id, Last_Entity (T));
5511 Set_Has_Discriminants (Id, Has_Discriminants (T));
5512 Set_Is_Constrained (Id, Is_Constrained (T));
5513 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
5514 Set_Has_Implicit_Dereference
5515 (Id, Has_Implicit_Dereference (T));
5516 Set_Has_Unknown_Discriminants
5517 (Id, Has_Unknown_Discriminants (T));
5518
5519 if Has_Discriminants (T) then
5520 Set_Discriminant_Constraint
5521 (Id, Discriminant_Constraint (T));
5522 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5523
5524 elsif Has_Unknown_Discriminants (Id) then
5525 Set_Discriminant_Constraint (Id, No_Elist);
5526 end if;
5527
5528 if Is_Tagged_Type (T) then
5529 Set_Is_Tagged_Type (Id, True);
5530 Set_No_Tagged_Streams_Pragma
5531 (Id, No_Tagged_Streams_Pragma (T));
5532 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
5533 Set_Direct_Primitive_Operations
5534 (Id, Direct_Primitive_Operations (T));
5535 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5536
5537 if Is_Interface (T) then
5538 Set_Is_Interface (Id);
5539 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
5540 end if;
5541 end if;
5542
5543 when Private_Kind =>
5544 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5545 Set_Has_Discriminants (Id, Has_Discriminants (T));
5546 Set_Is_Constrained (Id, Is_Constrained (T));
5547 Set_First_Entity (Id, First_Entity (T));
5548 Set_Last_Entity (Id, Last_Entity (T));
5549 Set_Private_Dependents (Id, New_Elmt_List);
5550 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
5551 Set_Has_Implicit_Dereference
5552 (Id, Has_Implicit_Dereference (T));
5553 Set_Has_Unknown_Discriminants
5554 (Id, Has_Unknown_Discriminants (T));
5555 Set_Known_To_Have_Preelab_Init
5556 (Id, Known_To_Have_Preelab_Init (T));
5557
5558 if Is_Tagged_Type (T) then
5559 Set_Is_Tagged_Type (Id);
5560 Set_No_Tagged_Streams_Pragma (Id,
5561 No_Tagged_Streams_Pragma (T));
5562 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
5563 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5564 Set_Direct_Primitive_Operations (Id,
5565 Direct_Primitive_Operations (T));
5566 end if;
5567
5568 -- In general the attributes of the subtype of a private type
5569 -- are the attributes of the partial view of parent. However,
5570 -- the full view may be a discriminated type, and the subtype
5571 -- must share the discriminant constraint to generate correct
5572 -- calls to initialization procedures.
5573
5574 if Has_Discriminants (T) then
5575 Set_Discriminant_Constraint
5576 (Id, Discriminant_Constraint (T));
5577 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5578
5579 elsif Present (Full_View (T))
5580 and then Has_Discriminants (Full_View (T))
5581 then
5582 Set_Discriminant_Constraint
5583 (Id, Discriminant_Constraint (Full_View (T)));
5584 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5585
5586 -- This would seem semantically correct, but apparently
5587 -- generates spurious errors about missing components ???
5588
5589 -- Set_Has_Discriminants (Id);
5590 end if;
5591
5592 Prepare_Private_Subtype_Completion (Id, N);
5593
5594 -- If this is the subtype of a constrained private type with
5595 -- discriminants that has got a full view and we also have
5596 -- built a completion just above, show that the completion
5597 -- is a clone of the full view to the back-end.
5598
5599 if Has_Discriminants (T)
5600 and then not Has_Unknown_Discriminants (T)
5601 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
5602 and then Present (Full_View (T))
5603 and then Present (Full_View (Id))
5604 then
5605 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
5606 end if;
5607
5608 when Access_Kind =>
5609 Set_Ekind (Id, E_Access_Subtype);
5610 Set_Is_Constrained (Id, Is_Constrained (T));
5611 Set_Is_Access_Constant
5612 (Id, Is_Access_Constant (T));
5613 Set_Directly_Designated_Type
5614 (Id, Designated_Type (T));
5615 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
5616
5617 -- A Pure library_item must not contain the declaration of a
5618 -- named access type, except within a subprogram, generic
5619 -- subprogram, task unit, or protected unit, or if it has
5620 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
5621
5622 if Comes_From_Source (Id)
5623 and then In_Pure_Unit
5624 and then not In_Subprogram_Task_Protected_Unit
5625 and then not No_Pool_Assigned (Id)
5626 then
5627 Error_Msg_N
5628 ("named access types not allowed in pure unit", N);
5629 end if;
5630
5631 when Concurrent_Kind =>
5632 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5633 Set_Corresponding_Record_Type (Id,
5634 Corresponding_Record_Type (T));
5635 Set_First_Entity (Id, First_Entity (T));
5636 Set_First_Private_Entity (Id, First_Private_Entity (T));
5637 Set_Has_Discriminants (Id, Has_Discriminants (T));
5638 Set_Is_Constrained (Id, Is_Constrained (T));
5639 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5640 Set_Last_Entity (Id, Last_Entity (T));
5641
5642 if Is_Tagged_Type (T) then
5643 Set_No_Tagged_Streams_Pragma
5644 (Id, No_Tagged_Streams_Pragma (T));
5645 end if;
5646
5647 if Has_Discriminants (T) then
5648 Set_Discriminant_Constraint
5649 (Id, Discriminant_Constraint (T));
5650 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5651 end if;
5652
5653 when Incomplete_Kind =>
5654 if Ada_Version >= Ada_2005 then
5655
5656 -- In Ada 2005 an incomplete type can be explicitly tagged:
5657 -- propagate indication. Note that we also have to include
5658 -- subtypes for Ada 2012 extended use of incomplete types.
5659
5660 Set_Ekind (Id, E_Incomplete_Subtype);
5661 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5662 Set_Private_Dependents (Id, New_Elmt_List);
5663
5664 if Is_Tagged_Type (Id) then
5665 Set_No_Tagged_Streams_Pragma
5666 (Id, No_Tagged_Streams_Pragma (T));
5667 Set_Direct_Primitive_Operations (Id, New_Elmt_List);
5668 end if;
5669
5670 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
5671 -- incomplete type visible through a limited with clause.
5672
5673 if From_Limited_With (T)
5674 and then Present (Non_Limited_View (T))
5675 then
5676 Set_From_Limited_With (Id);
5677 Set_Non_Limited_View (Id, Non_Limited_View (T));
5678
5679 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5680 -- to the private dependents of the original incomplete
5681 -- type for future transformation.
5682
5683 else
5684 Append_Elmt (Id, Private_Dependents (T));
5685 end if;
5686
5687 -- If the subtype name denotes an incomplete type an error
5688 -- was already reported by Process_Subtype.
5689
5690 else
5691 Set_Etype (Id, Any_Type);
5692 end if;
5693
5694 when others =>
5695 raise Program_Error;
5696 end case;
5697
5698 -- If there is no constraint in the subtype indication, the
5699 -- declared entity inherits predicates from the parent.
5700
5701 Inherit_Predicate_Flags (Id, T);
5702 end if;
5703
5704 if Etype (Id) = Any_Type then
5705 goto Leave;
5706 end if;
5707
5708 -- Some common processing on all types
5709
5710 Set_Size_Info (Id, T);
5711 Set_First_Rep_Item (Id, First_Rep_Item (T));
5712
5713 -- If the parent type is a generic actual, so is the subtype. This may
5714 -- happen in a nested instance. Why Comes_From_Source test???
5715
5716 if not Comes_From_Source (N) then
5717 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
5718 end if;
5719
5720 -- If this is a subtype declaration for an actual in an instance,
5721 -- inherit static and dynamic predicates if any.
5722
5723 -- If declaration has no aspect specifications, inherit predicate
5724 -- info as well. Unclear how to handle the case of both specified
5725 -- and inherited predicates ??? Other inherited aspects, such as
5726 -- invariants, should be OK, but the combination with later pragmas
5727 -- may also require special merging.
5728
5729 if Has_Predicates (T)
5730 and then Present (Predicate_Function (T))
5731 and then
5732 ((In_Instance and then not Comes_From_Source (N))
5733 or else No (Aspect_Specifications (N)))
5734 then
5735 Set_Subprograms_For_Type (Id, Subprograms_For_Type (T));
5736
5737 if Has_Static_Predicate (T) then
5738 Set_Has_Static_Predicate (Id);
5739 Set_Static_Discrete_Predicate (Id, Static_Discrete_Predicate (T));
5740 end if;
5741 end if;
5742
5743 -- Remaining processing depends on characteristics of base type
5744
5745 T := Etype (Id);
5746
5747 Set_Is_Immediately_Visible (Id, True);
5748 Set_Depends_On_Private (Id, Has_Private_Component (T));
5749 Set_Is_Descendant_Of_Address (Id, Is_Descendant_Of_Address (T));
5750
5751 if Is_Interface (T) then
5752 Set_Is_Interface (Id);
5753 end if;
5754
5755 if Present (Generic_Parent_Type (N))
5756 and then
5757 (Nkind (Parent (Generic_Parent_Type (N))) /=
5758 N_Formal_Type_Declaration
5759 or else Nkind (Formal_Type_Definition
5760 (Parent (Generic_Parent_Type (N)))) /=
5761 N_Formal_Private_Type_Definition)
5762 then
5763 if Is_Tagged_Type (Id) then
5764
5765 -- If this is a generic actual subtype for a synchronized type,
5766 -- the primitive operations are those of the corresponding record
5767 -- for which there is a separate subtype declaration.
5768
5769 if Is_Concurrent_Type (Id) then
5770 null;
5771 elsif Is_Class_Wide_Type (Id) then
5772 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
5773 else
5774 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
5775 end if;
5776
5777 elsif Scope (Etype (Id)) /= Standard_Standard then
5778 Derive_Subprograms (Generic_Parent_Type (N), Id);
5779 end if;
5780 end if;
5781
5782 if Is_Private_Type (T) and then Present (Full_View (T)) then
5783 Conditional_Delay (Id, Full_View (T));
5784
5785 -- The subtypes of components or subcomponents of protected types
5786 -- do not need freeze nodes, which would otherwise appear in the
5787 -- wrong scope (before the freeze node for the protected type). The
5788 -- proper subtypes are those of the subcomponents of the corresponding
5789 -- record.
5790
5791 elsif Ekind (Scope (Id)) /= E_Protected_Type
5792 and then Present (Scope (Scope (Id))) -- error defense
5793 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
5794 then
5795 Conditional_Delay (Id, T);
5796 end if;
5797
5798 -- If we have a subtype of an incomplete type whose full type is a
5799 -- derived numeric type, we need to have a freeze node for the subtype.
5800 -- Otherwise gigi will complain while computing the (static) bounds of
5801 -- the subtype.
5802
5803 if Is_Itype (T)
5804 and then Is_Elementary_Type (Id)
5805 and then Etype (Id) /= Id
5806 then
5807 declare
5808 Partial : constant Entity_Id :=
5809 Incomplete_Or_Partial_View (First_Subtype (Id));
5810 begin
5811 if Present (Partial)
5812 and then Ekind (Partial) = E_Incomplete_Type
5813 then
5814 Set_Has_Delayed_Freeze (Id);
5815 end if;
5816 end;
5817 end if;
5818
5819 -- Check that Constraint_Error is raised for a scalar subtype indication
5820 -- when the lower or upper bound of a non-null range lies outside the
5821 -- range of the type mark.
5822
5823 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5824 if Is_Scalar_Type (Etype (Id))
5825 and then Scalar_Range (Id) /=
5826 Scalar_Range
5827 (Etype (Subtype_Mark (Subtype_Indication (N))))
5828 then
5829 Apply_Range_Check
5830 (Scalar_Range (Id),
5831 Etype (Subtype_Mark (Subtype_Indication (N))));
5832
5833 -- In the array case, check compatibility for each index
5834
5835 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
5836 then
5837 -- This really should be a subprogram that finds the indications
5838 -- to check???
5839
5840 declare
5841 Subt_Index : Node_Id := First_Index (Id);
5842 Target_Index : Node_Id :=
5843 First_Index (Etype
5844 (Subtype_Mark (Subtype_Indication (N))));
5845 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
5846
5847 begin
5848 while Present (Subt_Index) loop
5849 if ((Nkind (Subt_Index) = N_Identifier
5850 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
5851 or else Nkind (Subt_Index) = N_Subtype_Indication)
5852 and then
5853 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
5854 then
5855 declare
5856 Target_Typ : constant Entity_Id :=
5857 Etype (Target_Index);
5858 begin
5859 R_Checks :=
5860 Get_Range_Checks
5861 (Scalar_Range (Etype (Subt_Index)),
5862 Target_Typ,
5863 Etype (Subt_Index),
5864 Defining_Identifier (N));
5865
5866 -- Reset Has_Dynamic_Range_Check on the subtype to
5867 -- prevent elision of the index check due to a dynamic
5868 -- check generated for a preceding index (needed since
5869 -- Insert_Range_Checks tries to avoid generating
5870 -- redundant checks on a given declaration).
5871
5872 Set_Has_Dynamic_Range_Check (N, False);
5873
5874 Insert_Range_Checks
5875 (R_Checks,
5876 N,
5877 Target_Typ,
5878 Sloc (Defining_Identifier (N)));
5879
5880 -- Record whether this index involved a dynamic check
5881
5882 Has_Dyn_Chk :=
5883 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
5884 end;
5885 end if;
5886
5887 Next_Index (Subt_Index);
5888 Next_Index (Target_Index);
5889 end loop;
5890
5891 -- Finally, mark whether the subtype involves dynamic checks
5892
5893 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
5894 end;
5895 end if;
5896 end if;
5897
5898 Set_Optimize_Alignment_Flags (Id);
5899 Check_Eliminated (Id);
5900
5901 <<Leave>>
5902 if Has_Aspects (N) then
5903 Analyze_Aspect_Specifications (N, Id);
5904 end if;
5905
5906 Analyze_Dimension (N);
5907
5908 -- Check No_Dynamic_Sized_Objects restriction, which disallows subtype
5909 -- indications on composite types where the constraints are dynamic.
5910 -- Note that object declarations and aggregates generate implicit
5911 -- subtype declarations, which this covers. One special case is that the
5912 -- implicitly generated "=" for discriminated types includes an
5913 -- offending subtype declaration, which is harmless, so we ignore it
5914 -- here.
5915
5916 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5917 declare
5918 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5919 begin
5920 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint
5921 and then not (Is_Internal (Id)
5922 and then Is_TSS (Scope (Id),
5923 TSS_Composite_Equality))
5924 and then not Within_Init_Proc
5925 and then not All_Composite_Constraints_Static (Cstr)
5926 then
5927 Check_Restriction (No_Dynamic_Sized_Objects, Cstr);
5928 end if;
5929 end;
5930 end if;
5931 end Analyze_Subtype_Declaration;
5932
5933 --------------------------------
5934 -- Analyze_Subtype_Indication --
5935 --------------------------------
5936
5937 procedure Analyze_Subtype_Indication (N : Node_Id) is
5938 T : constant Entity_Id := Subtype_Mark (N);
5939 R : constant Node_Id := Range_Expression (Constraint (N));
5940
5941 begin
5942 Analyze (T);
5943
5944 if R /= Error then
5945 Analyze (R);
5946 Set_Etype (N, Etype (R));
5947 Resolve (R, Entity (T));
5948 else
5949 Set_Error_Posted (R);
5950 Set_Error_Posted (T);
5951 end if;
5952 end Analyze_Subtype_Indication;
5953
5954 --------------------------
5955 -- Analyze_Variant_Part --
5956 --------------------------
5957
5958 procedure Analyze_Variant_Part (N : Node_Id) is
5959 Discr_Name : Node_Id;
5960 Discr_Type : Entity_Id;
5961
5962 procedure Process_Variant (A : Node_Id);
5963 -- Analyze declarations for a single variant
5964
5965 package Analyze_Variant_Choices is
5966 new Generic_Analyze_Choices (Process_Variant);
5967 use Analyze_Variant_Choices;
5968
5969 ---------------------
5970 -- Process_Variant --
5971 ---------------------
5972
5973 procedure Process_Variant (A : Node_Id) is
5974 CL : constant Node_Id := Component_List (A);
5975 begin
5976 if not Null_Present (CL) then
5977 Analyze_Declarations (Component_Items (CL));
5978
5979 if Present (Variant_Part (CL)) then
5980 Analyze (Variant_Part (CL));
5981 end if;
5982 end if;
5983 end Process_Variant;
5984
5985 -- Start of processing for Analyze_Variant_Part
5986
5987 begin
5988 Discr_Name := Name (N);
5989 Analyze (Discr_Name);
5990
5991 -- If Discr_Name bad, get out (prevent cascaded errors)
5992
5993 if Etype (Discr_Name) = Any_Type then
5994 return;
5995 end if;
5996
5997 -- Check invalid discriminant in variant part
5998
5999 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
6000 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
6001 end if;
6002
6003 Discr_Type := Etype (Entity (Discr_Name));
6004
6005 if not Is_Discrete_Type (Discr_Type) then
6006 Error_Msg_N
6007 ("discriminant in a variant part must be of a discrete type",
6008 Name (N));
6009 return;
6010 end if;
6011
6012 -- Now analyze the choices, which also analyzes the declarations that
6013 -- are associated with each choice.
6014
6015 Analyze_Choices (Variants (N), Discr_Type);
6016
6017 -- Note: we used to instantiate and call Check_Choices here to check
6018 -- that the choices covered the discriminant, but it's too early to do
6019 -- that because of statically predicated subtypes, whose analysis may
6020 -- be deferred to their freeze point which may be as late as the freeze
6021 -- point of the containing record. So this call is now to be found in
6022 -- Freeze_Record_Declaration.
6023
6024 end Analyze_Variant_Part;
6025
6026 ----------------------------
6027 -- Array_Type_Declaration --
6028 ----------------------------
6029
6030 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
6031 Component_Def : constant Node_Id := Component_Definition (Def);
6032 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
6033 P : constant Node_Id := Parent (Def);
6034 Element_Type : Entity_Id;
6035 Implicit_Base : Entity_Id;
6036 Index : Node_Id;
6037 Nb_Index : Nat;
6038 Priv : Entity_Id;
6039 Related_Id : Entity_Id := Empty;
6040
6041 begin
6042 if Nkind (Def) = N_Constrained_Array_Definition then
6043 Index := First (Discrete_Subtype_Definitions (Def));
6044 else
6045 Index := First (Subtype_Marks (Def));
6046 end if;
6047
6048 -- Find proper names for the implicit types which may be public. In case
6049 -- of anonymous arrays we use the name of the first object of that type
6050 -- as prefix.
6051
6052 if No (T) then
6053 Related_Id := Defining_Identifier (P);
6054 else
6055 Related_Id := T;
6056 end if;
6057
6058 Nb_Index := 1;
6059 while Present (Index) loop
6060 Analyze (Index);
6061
6062 -- Test for odd case of trying to index a type by the type itself
6063
6064 if Is_Entity_Name (Index) and then Entity (Index) = T then
6065 Error_Msg_N ("type& cannot be indexed by itself", Index);
6066 Set_Entity (Index, Standard_Boolean);
6067 Set_Etype (Index, Standard_Boolean);
6068 end if;
6069
6070 -- Check SPARK restriction requiring a subtype mark
6071
6072 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
6073 Check_SPARK_05_Restriction ("subtype mark required", Index);
6074 end if;
6075
6076 -- Add a subtype declaration for each index of private array type
6077 -- declaration whose etype is also private. For example:
6078
6079 -- package Pkg is
6080 -- type Index is private;
6081 -- private
6082 -- type Table is array (Index) of ...
6083 -- end;
6084
6085 -- This is currently required by the expander for the internally
6086 -- generated equality subprogram of records with variant parts in
6087 -- which the etype of some component is such private type.
6088
6089 if Ekind (Current_Scope) = E_Package
6090 and then In_Private_Part (Current_Scope)
6091 and then Has_Private_Declaration (Etype (Index))
6092 then
6093 declare
6094 Loc : constant Source_Ptr := Sloc (Def);
6095 Decl : Entity_Id;
6096 New_E : Entity_Id;
6097
6098 begin
6099 New_E := Make_Temporary (Loc, 'T');
6100 Set_Is_Internal (New_E);
6101
6102 Decl :=
6103 Make_Subtype_Declaration (Loc,
6104 Defining_Identifier => New_E,
6105 Subtype_Indication =>
6106 New_Occurrence_Of (Etype (Index), Loc));
6107
6108 Insert_Before (Parent (Def), Decl);
6109 Analyze (Decl);
6110 Set_Etype (Index, New_E);
6111
6112 -- If the index is a range or a subtype indication it carries
6113 -- no entity. Example:
6114
6115 -- package Pkg is
6116 -- type T is private;
6117 -- private
6118 -- type T is new Natural;
6119 -- Table : array (T(1) .. T(10)) of Boolean;
6120 -- end Pkg;
6121
6122 -- Otherwise the type of the reference is its entity.
6123
6124 if Is_Entity_Name (Index) then
6125 Set_Entity (Index, New_E);
6126 end if;
6127 end;
6128 end if;
6129
6130 Make_Index (Index, P, Related_Id, Nb_Index);
6131
6132 -- Check error of subtype with predicate for index type
6133
6134 Bad_Predicated_Subtype_Use
6135 ("subtype& has predicate, not allowed as index subtype",
6136 Index, Etype (Index));
6137
6138 -- Move to next index
6139
6140 Next_Index (Index);
6141 Nb_Index := Nb_Index + 1;
6142 end loop;
6143
6144 -- Process subtype indication if one is present
6145
6146 if Present (Component_Typ) then
6147 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
6148
6149 Set_Etype (Component_Typ, Element_Type);
6150
6151 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
6152 Check_SPARK_05_Restriction
6153 ("subtype mark required", Component_Typ);
6154 end if;
6155
6156 -- Ada 2005 (AI-230): Access Definition case
6157
6158 else pragma Assert (Present (Access_Definition (Component_Def)));
6159
6160 -- Indicate that the anonymous access type is created by the
6161 -- array type declaration.
6162
6163 Element_Type := Access_Definition
6164 (Related_Nod => P,
6165 N => Access_Definition (Component_Def));
6166 Set_Is_Local_Anonymous_Access (Element_Type);
6167
6168 -- Propagate the parent. This field is needed if we have to generate
6169 -- the master_id associated with an anonymous access to task type
6170 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
6171
6172 Set_Parent (Element_Type, Parent (T));
6173
6174 -- Ada 2005 (AI-230): In case of components that are anonymous access
6175 -- types the level of accessibility depends on the enclosing type
6176 -- declaration
6177
6178 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
6179
6180 -- Ada 2005 (AI-254)
6181
6182 declare
6183 CD : constant Node_Id :=
6184 Access_To_Subprogram_Definition
6185 (Access_Definition (Component_Def));
6186 begin
6187 if Present (CD) and then Protected_Present (CD) then
6188 Element_Type :=
6189 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
6190 end if;
6191 end;
6192 end if;
6193
6194 -- Constrained array case
6195
6196 if No (T) then
6197 T := Create_Itype (E_Void, P, Related_Id, 'T');
6198 end if;
6199
6200 if Nkind (Def) = N_Constrained_Array_Definition then
6201
6202 -- Establish Implicit_Base as unconstrained base type
6203
6204 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
6205
6206 Set_Etype (Implicit_Base, Implicit_Base);
6207 Set_Scope (Implicit_Base, Current_Scope);
6208 Set_Has_Delayed_Freeze (Implicit_Base);
6209 Set_Default_SSO (Implicit_Base);
6210
6211 -- The constrained array type is a subtype of the unconstrained one
6212
6213 Set_Ekind (T, E_Array_Subtype);
6214 Init_Size_Align (T);
6215 Set_Etype (T, Implicit_Base);
6216 Set_Scope (T, Current_Scope);
6217 Set_Is_Constrained (T);
6218 Set_First_Index (T,
6219 First (Discrete_Subtype_Definitions (Def)));
6220 Set_Has_Delayed_Freeze (T);
6221
6222 -- Complete setup of implicit base type
6223
6224 Set_Component_Size (Implicit_Base, Uint_0);
6225 Set_Component_Type (Implicit_Base, Element_Type);
6226 Set_Finalize_Storage_Only
6227 (Implicit_Base,
6228 Finalize_Storage_Only (Element_Type));
6229 Set_First_Index (Implicit_Base, First_Index (T));
6230 Set_Has_Controlled_Component
6231 (Implicit_Base,
6232 Has_Controlled_Component (Element_Type)
6233 or else Is_Controlled (Element_Type));
6234 Set_Packed_Array_Impl_Type
6235 (Implicit_Base, Empty);
6236
6237 Propagate_Concurrent_Flags (Implicit_Base, Element_Type);
6238
6239 -- Unconstrained array case
6240
6241 else
6242 Set_Ekind (T, E_Array_Type);
6243 Init_Size_Align (T);
6244 Set_Etype (T, T);
6245 Set_Scope (T, Current_Scope);
6246 Set_Component_Size (T, Uint_0);
6247 Set_Is_Constrained (T, False);
6248 Set_First_Index (T, First (Subtype_Marks (Def)));
6249 Set_Has_Delayed_Freeze (T, True);
6250 Propagate_Concurrent_Flags (T, Element_Type);
6251 Set_Has_Controlled_Component (T, Has_Controlled_Component
6252 (Element_Type)
6253 or else
6254 Is_Controlled (Element_Type));
6255 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
6256 (Element_Type));
6257 Set_Default_SSO (T);
6258 end if;
6259
6260 -- Common attributes for both cases
6261
6262 Set_Component_Type (Base_Type (T), Element_Type);
6263 Set_Packed_Array_Impl_Type (T, Empty);
6264
6265 if Aliased_Present (Component_Definition (Def)) then
6266 Check_SPARK_05_Restriction
6267 ("aliased is not allowed", Component_Definition (Def));
6268 Set_Has_Aliased_Components (Etype (T));
6269 end if;
6270
6271 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
6272 -- array type to ensure that objects of this type are initialized.
6273
6274 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
6275 Set_Can_Never_Be_Null (T);
6276
6277 if Null_Exclusion_Present (Component_Definition (Def))
6278
6279 -- No need to check itypes because in their case this check was
6280 -- done at their point of creation
6281
6282 and then not Is_Itype (Element_Type)
6283 then
6284 Error_Msg_N
6285 ("`NOT NULL` not allowed (null already excluded)",
6286 Subtype_Indication (Component_Definition (Def)));
6287 end if;
6288 end if;
6289
6290 Priv := Private_Component (Element_Type);
6291
6292 if Present (Priv) then
6293
6294 -- Check for circular definitions
6295
6296 if Priv = Any_Type then
6297 Set_Component_Type (Etype (T), Any_Type);
6298
6299 -- There is a gap in the visibility of operations on the composite
6300 -- type only if the component type is defined in a different scope.
6301
6302 elsif Scope (Priv) = Current_Scope then
6303 null;
6304
6305 elsif Is_Limited_Type (Priv) then
6306 Set_Is_Limited_Composite (Etype (T));
6307 Set_Is_Limited_Composite (T);
6308 else
6309 Set_Is_Private_Composite (Etype (T));
6310 Set_Is_Private_Composite (T);
6311 end if;
6312 end if;
6313
6314 -- A syntax error in the declaration itself may lead to an empty index
6315 -- list, in which case do a minimal patch.
6316
6317 if No (First_Index (T)) then
6318 Error_Msg_N ("missing index definition in array type declaration", T);
6319
6320 declare
6321 Indexes : constant List_Id :=
6322 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
6323 begin
6324 Set_Discrete_Subtype_Definitions (Def, Indexes);
6325 Set_First_Index (T, First (Indexes));
6326 return;
6327 end;
6328 end if;
6329
6330 -- Create a concatenation operator for the new type. Internal array
6331 -- types created for packed entities do not need such, they are
6332 -- compatible with the user-defined type.
6333
6334 if Number_Dimensions (T) = 1
6335 and then not Is_Packed_Array_Impl_Type (T)
6336 then
6337 New_Concatenation_Op (T);
6338 end if;
6339
6340 -- In the case of an unconstrained array the parser has already verified
6341 -- that all the indexes are unconstrained but we still need to make sure
6342 -- that the element type is constrained.
6343
6344 if not Is_Definite_Subtype (Element_Type) then
6345 Error_Msg_N
6346 ("unconstrained element type in array declaration",
6347 Subtype_Indication (Component_Def));
6348
6349 elsif Is_Abstract_Type (Element_Type) then
6350 Error_Msg_N
6351 ("the type of a component cannot be abstract",
6352 Subtype_Indication (Component_Def));
6353 end if;
6354
6355 -- There may be an invariant declared for the component type, but
6356 -- the construction of the component invariant checking procedure
6357 -- takes place during expansion.
6358 end Array_Type_Declaration;
6359
6360 ------------------------------------------------------
6361 -- Replace_Anonymous_Access_To_Protected_Subprogram --
6362 ------------------------------------------------------
6363
6364 function Replace_Anonymous_Access_To_Protected_Subprogram
6365 (N : Node_Id) return Entity_Id
6366 is
6367 Loc : constant Source_Ptr := Sloc (N);
6368
6369 Curr_Scope : constant Scope_Stack_Entry :=
6370 Scope_Stack.Table (Scope_Stack.Last);
6371
6372 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
6373
6374 Acc : Node_Id;
6375 -- Access definition in declaration
6376
6377 Comp : Node_Id;
6378 -- Object definition or formal definition with an access definition
6379
6380 Decl : Node_Id;
6381 -- Declaration of anonymous access to subprogram type
6382
6383 Spec : Node_Id;
6384 -- Original specification in access to subprogram
6385
6386 P : Node_Id;
6387
6388 begin
6389 Set_Is_Internal (Anon);
6390
6391 case Nkind (N) is
6392 when N_Constrained_Array_Definition
6393 | N_Component_Declaration
6394 | N_Unconstrained_Array_Definition
6395 =>
6396 Comp := Component_Definition (N);
6397 Acc := Access_Definition (Comp);
6398
6399 when N_Discriminant_Specification =>
6400 Comp := Discriminant_Type (N);
6401 Acc := Comp;
6402
6403 when N_Parameter_Specification =>
6404 Comp := Parameter_Type (N);
6405 Acc := Comp;
6406
6407 when N_Access_Function_Definition =>
6408 Comp := Result_Definition (N);
6409 Acc := Comp;
6410
6411 when N_Object_Declaration =>
6412 Comp := Object_Definition (N);
6413 Acc := Comp;
6414
6415 when N_Function_Specification =>
6416 Comp := Result_Definition (N);
6417 Acc := Comp;
6418
6419 when others =>
6420 raise Program_Error;
6421 end case;
6422
6423 Spec := Access_To_Subprogram_Definition (Acc);
6424
6425 Decl :=
6426 Make_Full_Type_Declaration (Loc,
6427 Defining_Identifier => Anon,
6428 Type_Definition => Copy_Separate_Tree (Spec));
6429
6430 Mark_Rewrite_Insertion (Decl);
6431
6432 -- In ASIS mode, analyze the profile on the original node, because
6433 -- the separate copy does not provide enough links to recover the
6434 -- original tree. Analysis is limited to type annotations, within
6435 -- a temporary scope that serves as an anonymous subprogram to collect
6436 -- otherwise useless temporaries and itypes.
6437
6438 if ASIS_Mode then
6439 declare
6440 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
6441
6442 begin
6443 if Nkind (Spec) = N_Access_Function_Definition then
6444 Set_Ekind (Typ, E_Function);
6445 else
6446 Set_Ekind (Typ, E_Procedure);
6447 end if;
6448
6449 Set_Parent (Typ, N);
6450 Set_Scope (Typ, Current_Scope);
6451 Push_Scope (Typ);
6452
6453 -- Nothing to do if procedure is parameterless
6454
6455 if Present (Parameter_Specifications (Spec)) then
6456 Process_Formals (Parameter_Specifications (Spec), Spec);
6457 end if;
6458
6459 if Nkind (Spec) = N_Access_Function_Definition then
6460 declare
6461 Def : constant Node_Id := Result_Definition (Spec);
6462
6463 begin
6464 -- The result might itself be an anonymous access type, so
6465 -- have to recurse.
6466
6467 if Nkind (Def) = N_Access_Definition then
6468 if Present (Access_To_Subprogram_Definition (Def)) then
6469 Set_Etype
6470 (Def,
6471 Replace_Anonymous_Access_To_Protected_Subprogram
6472 (Spec));
6473 else
6474 Find_Type (Subtype_Mark (Def));
6475 end if;
6476
6477 else
6478 Find_Type (Def);
6479 end if;
6480 end;
6481 end if;
6482
6483 End_Scope;
6484 end;
6485 end if;
6486
6487 -- Insert the new declaration in the nearest enclosing scope. If the
6488 -- parent is a body and N is its return type, the declaration belongs
6489 -- in the enclosing scope. Likewise if N is the type of a parameter.
6490
6491 P := Parent (N);
6492
6493 if Nkind (N) = N_Function_Specification
6494 and then Nkind (P) = N_Subprogram_Body
6495 then
6496 P := Parent (P);
6497 elsif Nkind (N) = N_Parameter_Specification
6498 and then Nkind (P) in N_Subprogram_Specification
6499 and then Nkind (Parent (P)) = N_Subprogram_Body
6500 then
6501 P := Parent (Parent (P));
6502 end if;
6503
6504 while Present (P) and then not Has_Declarations (P) loop
6505 P := Parent (P);
6506 end loop;
6507
6508 pragma Assert (Present (P));
6509
6510 if Nkind (P) = N_Package_Specification then
6511 Prepend (Decl, Visible_Declarations (P));
6512 else
6513 Prepend (Decl, Declarations (P));
6514 end if;
6515
6516 -- Replace the anonymous type with an occurrence of the new declaration.
6517 -- In all cases the rewritten node does not have the null-exclusion
6518 -- attribute because (if present) it was already inherited by the
6519 -- anonymous entity (Anon). Thus, in case of components we do not
6520 -- inherit this attribute.
6521
6522 if Nkind (N) = N_Parameter_Specification then
6523 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6524 Set_Etype (Defining_Identifier (N), Anon);
6525 Set_Null_Exclusion_Present (N, False);
6526
6527 elsif Nkind (N) = N_Object_Declaration then
6528 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6529 Set_Etype (Defining_Identifier (N), Anon);
6530
6531 elsif Nkind (N) = N_Access_Function_Definition then
6532 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6533
6534 elsif Nkind (N) = N_Function_Specification then
6535 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6536 Set_Etype (Defining_Unit_Name (N), Anon);
6537
6538 else
6539 Rewrite (Comp,
6540 Make_Component_Definition (Loc,
6541 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
6542 end if;
6543
6544 Mark_Rewrite_Insertion (Comp);
6545
6546 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition)
6547 or else (Nkind (Parent (N)) = N_Full_Type_Declaration
6548 and then not Is_Type (Current_Scope))
6549 then
6550
6551 -- Declaration can be analyzed in the current scope.
6552
6553 Analyze (Decl);
6554
6555 else
6556 -- Temporarily remove the current scope (record or subprogram) from
6557 -- the stack to add the new declarations to the enclosing scope.
6558 -- The anonymous entity is an Itype with the proper attributes.
6559
6560 Scope_Stack.Decrement_Last;
6561 Analyze (Decl);
6562 Set_Is_Itype (Anon);
6563 Set_Associated_Node_For_Itype (Anon, N);
6564 Scope_Stack.Append (Curr_Scope);
6565 end if;
6566
6567 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
6568 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
6569 return Anon;
6570 end Replace_Anonymous_Access_To_Protected_Subprogram;
6571
6572 -------------------------------
6573 -- Build_Derived_Access_Type --
6574 -------------------------------
6575
6576 procedure Build_Derived_Access_Type
6577 (N : Node_Id;
6578 Parent_Type : Entity_Id;
6579 Derived_Type : Entity_Id)
6580 is
6581 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
6582
6583 Desig_Type : Entity_Id;
6584 Discr : Entity_Id;
6585 Discr_Con_Elist : Elist_Id;
6586 Discr_Con_El : Elmt_Id;
6587 Subt : Entity_Id;
6588
6589 begin
6590 -- Set the designated type so it is available in case this is an access
6591 -- to a self-referential type, e.g. a standard list type with a next
6592 -- pointer. Will be reset after subtype is built.
6593
6594 Set_Directly_Designated_Type
6595 (Derived_Type, Designated_Type (Parent_Type));
6596
6597 Subt := Process_Subtype (S, N);
6598
6599 if Nkind (S) /= N_Subtype_Indication
6600 and then Subt /= Base_Type (Subt)
6601 then
6602 Set_Ekind (Derived_Type, E_Access_Subtype);
6603 end if;
6604
6605 if Ekind (Derived_Type) = E_Access_Subtype then
6606 declare
6607 Pbase : constant Entity_Id := Base_Type (Parent_Type);
6608 Ibase : constant Entity_Id :=
6609 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
6610 Svg_Chars : constant Name_Id := Chars (Ibase);
6611 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
6612
6613 begin
6614 Copy_Node (Pbase, Ibase);
6615
6616 -- Restore Itype status after Copy_Node
6617
6618 Set_Is_Itype (Ibase);
6619 Set_Associated_Node_For_Itype (Ibase, N);
6620
6621 Set_Chars (Ibase, Svg_Chars);
6622 Set_Next_Entity (Ibase, Svg_Next_E);
6623 Set_Sloc (Ibase, Sloc (Derived_Type));
6624 Set_Scope (Ibase, Scope (Derived_Type));
6625 Set_Freeze_Node (Ibase, Empty);
6626 Set_Is_Frozen (Ibase, False);
6627 Set_Comes_From_Source (Ibase, False);
6628 Set_Is_First_Subtype (Ibase, False);
6629
6630 Set_Etype (Ibase, Pbase);
6631 Set_Etype (Derived_Type, Ibase);
6632 end;
6633 end if;
6634
6635 Set_Directly_Designated_Type
6636 (Derived_Type, Designated_Type (Subt));
6637
6638 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
6639 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
6640 Set_Size_Info (Derived_Type, Parent_Type);
6641 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
6642 Set_Depends_On_Private (Derived_Type,
6643 Has_Private_Component (Derived_Type));
6644 Conditional_Delay (Derived_Type, Subt);
6645
6646 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
6647 -- that it is not redundant.
6648
6649 if Null_Exclusion_Present (Type_Definition (N)) then
6650 Set_Can_Never_Be_Null (Derived_Type);
6651
6652 elsif Can_Never_Be_Null (Parent_Type) then
6653 Set_Can_Never_Be_Null (Derived_Type);
6654 end if;
6655
6656 -- Note: we do not copy the Storage_Size_Variable, since we always go to
6657 -- the root type for this information.
6658
6659 -- Apply range checks to discriminants for derived record case
6660 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
6661
6662 Desig_Type := Designated_Type (Derived_Type);
6663
6664 if Is_Composite_Type (Desig_Type)
6665 and then (not Is_Array_Type (Desig_Type))
6666 and then Has_Discriminants (Desig_Type)
6667 and then Base_Type (Desig_Type) /= Desig_Type
6668 then
6669 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
6670 Discr_Con_El := First_Elmt (Discr_Con_Elist);
6671
6672 Discr := First_Discriminant (Base_Type (Desig_Type));
6673 while Present (Discr_Con_El) loop
6674 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
6675 Next_Elmt (Discr_Con_El);
6676 Next_Discriminant (Discr);
6677 end loop;
6678 end if;
6679 end Build_Derived_Access_Type;
6680
6681 ------------------------------
6682 -- Build_Derived_Array_Type --
6683 ------------------------------
6684
6685 procedure Build_Derived_Array_Type
6686 (N : Node_Id;
6687 Parent_Type : Entity_Id;
6688 Derived_Type : Entity_Id)
6689 is
6690 Loc : constant Source_Ptr := Sloc (N);
6691 Tdef : constant Node_Id := Type_Definition (N);
6692 Indic : constant Node_Id := Subtype_Indication (Tdef);
6693 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6694 Implicit_Base : Entity_Id := Empty;
6695 New_Indic : Node_Id;
6696
6697 procedure Make_Implicit_Base;
6698 -- If the parent subtype is constrained, the derived type is a subtype
6699 -- of an implicit base type derived from the parent base.
6700
6701 ------------------------
6702 -- Make_Implicit_Base --
6703 ------------------------
6704
6705 procedure Make_Implicit_Base is
6706 begin
6707 Implicit_Base :=
6708 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6709
6710 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6711 Set_Etype (Implicit_Base, Parent_Base);
6712
6713 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
6714 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
6715
6716 Set_Has_Delayed_Freeze (Implicit_Base, True);
6717 end Make_Implicit_Base;
6718
6719 -- Start of processing for Build_Derived_Array_Type
6720
6721 begin
6722 if not Is_Constrained (Parent_Type) then
6723 if Nkind (Indic) /= N_Subtype_Indication then
6724 Set_Ekind (Derived_Type, E_Array_Type);
6725
6726 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6727 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
6728
6729 Set_Has_Delayed_Freeze (Derived_Type, True);
6730
6731 else
6732 Make_Implicit_Base;
6733 Set_Etype (Derived_Type, Implicit_Base);
6734
6735 New_Indic :=
6736 Make_Subtype_Declaration (Loc,
6737 Defining_Identifier => Derived_Type,
6738 Subtype_Indication =>
6739 Make_Subtype_Indication (Loc,
6740 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6741 Constraint => Constraint (Indic)));
6742
6743 Rewrite (N, New_Indic);
6744 Analyze (N);
6745 end if;
6746
6747 else
6748 if Nkind (Indic) /= N_Subtype_Indication then
6749 Make_Implicit_Base;
6750
6751 Set_Ekind (Derived_Type, Ekind (Parent_Type));
6752 Set_Etype (Derived_Type, Implicit_Base);
6753 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6754
6755 else
6756 Error_Msg_N ("illegal constraint on constrained type", Indic);
6757 end if;
6758 end if;
6759
6760 -- If parent type is not a derived type itself, and is declared in
6761 -- closed scope (e.g. a subprogram), then we must explicitly introduce
6762 -- the new type's concatenation operator since Derive_Subprograms
6763 -- will not inherit the parent's operator. If the parent type is
6764 -- unconstrained, the operator is of the unconstrained base type.
6765
6766 if Number_Dimensions (Parent_Type) = 1
6767 and then not Is_Limited_Type (Parent_Type)
6768 and then not Is_Derived_Type (Parent_Type)
6769 and then not Is_Package_Or_Generic_Package
6770 (Scope (Base_Type (Parent_Type)))
6771 then
6772 if not Is_Constrained (Parent_Type)
6773 and then Is_Constrained (Derived_Type)
6774 then
6775 New_Concatenation_Op (Implicit_Base);
6776 else
6777 New_Concatenation_Op (Derived_Type);
6778 end if;
6779 end if;
6780 end Build_Derived_Array_Type;
6781
6782 -----------------------------------
6783 -- Build_Derived_Concurrent_Type --
6784 -----------------------------------
6785
6786 procedure Build_Derived_Concurrent_Type
6787 (N : Node_Id;
6788 Parent_Type : Entity_Id;
6789 Derived_Type : Entity_Id)
6790 is
6791 Loc : constant Source_Ptr := Sloc (N);
6792
6793 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
6794 Corr_Decl : Node_Id;
6795 Corr_Decl_Needed : Boolean;
6796 -- If the derived type has fewer discriminants than its parent, the
6797 -- corresponding record is also a derived type, in order to account for
6798 -- the bound discriminants. We create a full type declaration for it in
6799 -- this case.
6800
6801 Constraint_Present : constant Boolean :=
6802 Nkind (Subtype_Indication (Type_Definition (N))) =
6803 N_Subtype_Indication;
6804
6805 D_Constraint : Node_Id;
6806 New_Constraint : Elist_Id := No_Elist;
6807 Old_Disc : Entity_Id;
6808 New_Disc : Entity_Id;
6809 New_N : Node_Id;
6810
6811 begin
6812 Set_Stored_Constraint (Derived_Type, No_Elist);
6813 Corr_Decl_Needed := False;
6814 Old_Disc := Empty;
6815
6816 if Present (Discriminant_Specifications (N))
6817 and then Constraint_Present
6818 then
6819 Old_Disc := First_Discriminant (Parent_Type);
6820 New_Disc := First (Discriminant_Specifications (N));
6821 while Present (New_Disc) and then Present (Old_Disc) loop
6822 Next_Discriminant (Old_Disc);
6823 Next (New_Disc);
6824 end loop;
6825 end if;
6826
6827 if Present (Old_Disc) and then Expander_Active then
6828
6829 -- The new type has fewer discriminants, so we need to create a new
6830 -- corresponding record, which is derived from the corresponding
6831 -- record of the parent, and has a stored constraint that captures
6832 -- the values of the discriminant constraints. The corresponding
6833 -- record is needed only if expander is active and code generation is
6834 -- enabled.
6835
6836 -- The type declaration for the derived corresponding record has the
6837 -- same discriminant part and constraints as the current declaration.
6838 -- Copy the unanalyzed tree to build declaration.
6839
6840 Corr_Decl_Needed := True;
6841 New_N := Copy_Separate_Tree (N);
6842
6843 Corr_Decl :=
6844 Make_Full_Type_Declaration (Loc,
6845 Defining_Identifier => Corr_Record,
6846 Discriminant_Specifications =>
6847 Discriminant_Specifications (New_N),
6848 Type_Definition =>
6849 Make_Derived_Type_Definition (Loc,
6850 Subtype_Indication =>
6851 Make_Subtype_Indication (Loc,
6852 Subtype_Mark =>
6853 New_Occurrence_Of
6854 (Corresponding_Record_Type (Parent_Type), Loc),
6855 Constraint =>
6856 Constraint
6857 (Subtype_Indication (Type_Definition (New_N))))));
6858 end if;
6859
6860 -- Copy Storage_Size and Relative_Deadline variables if task case
6861
6862 if Is_Task_Type (Parent_Type) then
6863 Set_Storage_Size_Variable (Derived_Type,
6864 Storage_Size_Variable (Parent_Type));
6865 Set_Relative_Deadline_Variable (Derived_Type,
6866 Relative_Deadline_Variable (Parent_Type));
6867 end if;
6868
6869 if Present (Discriminant_Specifications (N)) then
6870 Push_Scope (Derived_Type);
6871 Check_Or_Process_Discriminants (N, Derived_Type);
6872
6873 if Constraint_Present then
6874 New_Constraint :=
6875 Expand_To_Stored_Constraint
6876 (Parent_Type,
6877 Build_Discriminant_Constraints
6878 (Parent_Type,
6879 Subtype_Indication (Type_Definition (N)), True));
6880 end if;
6881
6882 End_Scope;
6883
6884 elsif Constraint_Present then
6885
6886 -- Build constrained subtype, copying the constraint, and derive
6887 -- from it to create a derived constrained type.
6888
6889 declare
6890 Loc : constant Source_Ptr := Sloc (N);
6891 Anon : constant Entity_Id :=
6892 Make_Defining_Identifier (Loc,
6893 Chars => New_External_Name (Chars (Derived_Type), 'T'));
6894 Decl : Node_Id;
6895
6896 begin
6897 Decl :=
6898 Make_Subtype_Declaration (Loc,
6899 Defining_Identifier => Anon,
6900 Subtype_Indication =>
6901 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
6902 Insert_Before (N, Decl);
6903 Analyze (Decl);
6904
6905 Rewrite (Subtype_Indication (Type_Definition (N)),
6906 New_Occurrence_Of (Anon, Loc));
6907 Set_Analyzed (Derived_Type, False);
6908 Analyze (N);
6909 return;
6910 end;
6911 end if;
6912
6913 -- By default, operations and private data are inherited from parent.
6914 -- However, in the presence of bound discriminants, a new corresponding
6915 -- record will be created, see below.
6916
6917 Set_Has_Discriminants
6918 (Derived_Type, Has_Discriminants (Parent_Type));
6919 Set_Corresponding_Record_Type
6920 (Derived_Type, Corresponding_Record_Type (Parent_Type));
6921
6922 -- Is_Constrained is set according the parent subtype, but is set to
6923 -- False if the derived type is declared with new discriminants.
6924
6925 Set_Is_Constrained
6926 (Derived_Type,
6927 (Is_Constrained (Parent_Type) or else Constraint_Present)
6928 and then not Present (Discriminant_Specifications (N)));
6929
6930 if Constraint_Present then
6931 if not Has_Discriminants (Parent_Type) then
6932 Error_Msg_N ("untagged parent must have discriminants", N);
6933
6934 elsif Present (Discriminant_Specifications (N)) then
6935
6936 -- Verify that new discriminants are used to constrain old ones
6937
6938 D_Constraint :=
6939 First
6940 (Constraints
6941 (Constraint (Subtype_Indication (Type_Definition (N)))));
6942
6943 Old_Disc := First_Discriminant (Parent_Type);
6944
6945 while Present (D_Constraint) loop
6946 if Nkind (D_Constraint) /= N_Discriminant_Association then
6947
6948 -- Positional constraint. If it is a reference to a new
6949 -- discriminant, it constrains the corresponding old one.
6950
6951 if Nkind (D_Constraint) = N_Identifier then
6952 New_Disc := First_Discriminant (Derived_Type);
6953 while Present (New_Disc) loop
6954 exit when Chars (New_Disc) = Chars (D_Constraint);
6955 Next_Discriminant (New_Disc);
6956 end loop;
6957
6958 if Present (New_Disc) then
6959 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
6960 end if;
6961 end if;
6962
6963 Next_Discriminant (Old_Disc);
6964
6965 -- if this is a named constraint, search by name for the old
6966 -- discriminants constrained by the new one.
6967
6968 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
6969
6970 -- Find new discriminant with that name
6971
6972 New_Disc := First_Discriminant (Derived_Type);
6973 while Present (New_Disc) loop
6974 exit when
6975 Chars (New_Disc) = Chars (Expression (D_Constraint));
6976 Next_Discriminant (New_Disc);
6977 end loop;
6978
6979 if Present (New_Disc) then
6980
6981 -- Verify that new discriminant renames some discriminant
6982 -- of the parent type, and associate the new discriminant
6983 -- with one or more old ones that it renames.
6984
6985 declare
6986 Selector : Node_Id;
6987
6988 begin
6989 Selector := First (Selector_Names (D_Constraint));
6990 while Present (Selector) loop
6991 Old_Disc := First_Discriminant (Parent_Type);
6992 while Present (Old_Disc) loop
6993 exit when Chars (Old_Disc) = Chars (Selector);
6994 Next_Discriminant (Old_Disc);
6995 end loop;
6996
6997 if Present (Old_Disc) then
6998 Set_Corresponding_Discriminant
6999 (New_Disc, Old_Disc);
7000 end if;
7001
7002 Next (Selector);
7003 end loop;
7004 end;
7005 end if;
7006 end if;
7007
7008 Next (D_Constraint);
7009 end loop;
7010
7011 New_Disc := First_Discriminant (Derived_Type);
7012 while Present (New_Disc) loop
7013 if No (Corresponding_Discriminant (New_Disc)) then
7014 Error_Msg_NE
7015 ("new discriminant& must constrain old one", N, New_Disc);
7016
7017 elsif not
7018 Subtypes_Statically_Compatible
7019 (Etype (New_Disc),
7020 Etype (Corresponding_Discriminant (New_Disc)))
7021 then
7022 Error_Msg_NE
7023 ("& not statically compatible with parent discriminant",
7024 N, New_Disc);
7025 end if;
7026
7027 Next_Discriminant (New_Disc);
7028 end loop;
7029 end if;
7030
7031 elsif Present (Discriminant_Specifications (N)) then
7032 Error_Msg_N
7033 ("missing discriminant constraint in untagged derivation", N);
7034 end if;
7035
7036 -- The entity chain of the derived type includes the new discriminants
7037 -- but shares operations with the parent.
7038
7039 if Present (Discriminant_Specifications (N)) then
7040 Old_Disc := First_Discriminant (Parent_Type);
7041 while Present (Old_Disc) loop
7042 if No (Next_Entity (Old_Disc))
7043 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
7044 then
7045 Set_Next_Entity
7046 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
7047 exit;
7048 end if;
7049
7050 Next_Discriminant (Old_Disc);
7051 end loop;
7052
7053 else
7054 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
7055 if Has_Discriminants (Parent_Type) then
7056 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7057 Set_Discriminant_Constraint (
7058 Derived_Type, Discriminant_Constraint (Parent_Type));
7059 end if;
7060 end if;
7061
7062 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
7063
7064 Set_Has_Completion (Derived_Type);
7065
7066 if Corr_Decl_Needed then
7067 Set_Stored_Constraint (Derived_Type, New_Constraint);
7068 Insert_After (N, Corr_Decl);
7069 Analyze (Corr_Decl);
7070 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
7071 end if;
7072 end Build_Derived_Concurrent_Type;
7073
7074 ------------------------------------
7075 -- Build_Derived_Enumeration_Type --
7076 ------------------------------------
7077
7078 procedure Build_Derived_Enumeration_Type
7079 (N : Node_Id;
7080 Parent_Type : Entity_Id;
7081 Derived_Type : Entity_Id)
7082 is
7083 Loc : constant Source_Ptr := Sloc (N);
7084 Def : constant Node_Id := Type_Definition (N);
7085 Indic : constant Node_Id := Subtype_Indication (Def);
7086 Implicit_Base : Entity_Id;
7087 Literal : Entity_Id;
7088 New_Lit : Entity_Id;
7089 Literals_List : List_Id;
7090 Type_Decl : Node_Id;
7091 Hi, Lo : Node_Id;
7092 Rang_Expr : Node_Id;
7093
7094 begin
7095 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
7096 -- not have explicit literals lists we need to process types derived
7097 -- from them specially. This is handled by Derived_Standard_Character.
7098 -- If the parent type is a generic type, there are no literals either,
7099 -- and we construct the same skeletal representation as for the generic
7100 -- parent type.
7101
7102 if Is_Standard_Character_Type (Parent_Type) then
7103 Derived_Standard_Character (N, Parent_Type, Derived_Type);
7104
7105 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
7106 declare
7107 Lo : Node_Id;
7108 Hi : Node_Id;
7109
7110 begin
7111 if Nkind (Indic) /= N_Subtype_Indication then
7112 Lo :=
7113 Make_Attribute_Reference (Loc,
7114 Attribute_Name => Name_First,
7115 Prefix => New_Occurrence_Of (Derived_Type, Loc));
7116 Set_Etype (Lo, Derived_Type);
7117
7118 Hi :=
7119 Make_Attribute_Reference (Loc,
7120 Attribute_Name => Name_Last,
7121 Prefix => New_Occurrence_Of (Derived_Type, Loc));
7122 Set_Etype (Hi, Derived_Type);
7123
7124 Set_Scalar_Range (Derived_Type,
7125 Make_Range (Loc,
7126 Low_Bound => Lo,
7127 High_Bound => Hi));
7128 else
7129
7130 -- Analyze subtype indication and verify compatibility
7131 -- with parent type.
7132
7133 if Base_Type (Process_Subtype (Indic, N)) /=
7134 Base_Type (Parent_Type)
7135 then
7136 Error_Msg_N
7137 ("illegal constraint for formal discrete type", N);
7138 end if;
7139 end if;
7140 end;
7141
7142 else
7143 -- If a constraint is present, analyze the bounds to catch
7144 -- premature usage of the derived literals.
7145
7146 if Nkind (Indic) = N_Subtype_Indication
7147 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
7148 then
7149 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
7150 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
7151 end if;
7152
7153 -- Introduce an implicit base type for the derived type even if there
7154 -- is no constraint attached to it, since this seems closer to the
7155 -- Ada semantics. Build a full type declaration tree for the derived
7156 -- type using the implicit base type as the defining identifier. The
7157 -- build a subtype declaration tree which applies the constraint (if
7158 -- any) have it replace the derived type declaration.
7159
7160 Literal := First_Literal (Parent_Type);
7161 Literals_List := New_List;
7162 while Present (Literal)
7163 and then Ekind (Literal) = E_Enumeration_Literal
7164 loop
7165 -- Literals of the derived type have the same representation as
7166 -- those of the parent type, but this representation can be
7167 -- overridden by an explicit representation clause. Indicate
7168 -- that there is no explicit representation given yet. These
7169 -- derived literals are implicit operations of the new type,
7170 -- and can be overridden by explicit ones.
7171
7172 if Nkind (Literal) = N_Defining_Character_Literal then
7173 New_Lit :=
7174 Make_Defining_Character_Literal (Loc, Chars (Literal));
7175 else
7176 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
7177 end if;
7178
7179 Set_Ekind (New_Lit, E_Enumeration_Literal);
7180 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
7181 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
7182 Set_Enumeration_Rep_Expr (New_Lit, Empty);
7183 Set_Alias (New_Lit, Literal);
7184 Set_Is_Known_Valid (New_Lit, True);
7185
7186 Append (New_Lit, Literals_List);
7187 Next_Literal (Literal);
7188 end loop;
7189
7190 Implicit_Base :=
7191 Make_Defining_Identifier (Sloc (Derived_Type),
7192 Chars => New_External_Name (Chars (Derived_Type), 'B'));
7193
7194 -- Indicate the proper nature of the derived type. This must be done
7195 -- before analysis of the literals, to recognize cases when a literal
7196 -- may be hidden by a previous explicit function definition (cf.
7197 -- c83031a).
7198
7199 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
7200 Set_Etype (Derived_Type, Implicit_Base);
7201
7202 Type_Decl :=
7203 Make_Full_Type_Declaration (Loc,
7204 Defining_Identifier => Implicit_Base,
7205 Discriminant_Specifications => No_List,
7206 Type_Definition =>
7207 Make_Enumeration_Type_Definition (Loc, Literals_List));
7208
7209 Mark_Rewrite_Insertion (Type_Decl);
7210 Insert_Before (N, Type_Decl);
7211 Analyze (Type_Decl);
7212
7213 -- The anonymous base now has a full declaration, but this base
7214 -- is not a first subtype.
7215
7216 Set_Is_First_Subtype (Implicit_Base, False);
7217
7218 -- After the implicit base is analyzed its Etype needs to be changed
7219 -- to reflect the fact that it is derived from the parent type which
7220 -- was ignored during analysis. We also set the size at this point.
7221
7222 Set_Etype (Implicit_Base, Parent_Type);
7223
7224 Set_Size_Info (Implicit_Base, Parent_Type);
7225 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
7226 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
7227
7228 -- Copy other flags from parent type
7229
7230 Set_Has_Non_Standard_Rep
7231 (Implicit_Base, Has_Non_Standard_Rep
7232 (Parent_Type));
7233 Set_Has_Pragma_Ordered
7234 (Implicit_Base, Has_Pragma_Ordered
7235 (Parent_Type));
7236 Set_Has_Delayed_Freeze (Implicit_Base);
7237
7238 -- Process the subtype indication including a validation check on the
7239 -- constraint, if any. If a constraint is given, its bounds must be
7240 -- implicitly converted to the new type.
7241
7242 if Nkind (Indic) = N_Subtype_Indication then
7243 declare
7244 R : constant Node_Id :=
7245 Range_Expression (Constraint (Indic));
7246
7247 begin
7248 if Nkind (R) = N_Range then
7249 Hi := Build_Scalar_Bound
7250 (High_Bound (R), Parent_Type, Implicit_Base);
7251 Lo := Build_Scalar_Bound
7252 (Low_Bound (R), Parent_Type, Implicit_Base);
7253
7254 else
7255 -- Constraint is a Range attribute. Replace with explicit
7256 -- mention of the bounds of the prefix, which must be a
7257 -- subtype.
7258
7259 Analyze (Prefix (R));
7260 Hi :=
7261 Convert_To (Implicit_Base,
7262 Make_Attribute_Reference (Loc,
7263 Attribute_Name => Name_Last,
7264 Prefix =>
7265 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
7266
7267 Lo :=
7268 Convert_To (Implicit_Base,
7269 Make_Attribute_Reference (Loc,
7270 Attribute_Name => Name_First,
7271 Prefix =>
7272 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
7273 end if;
7274 end;
7275
7276 else
7277 Hi :=
7278 Build_Scalar_Bound
7279 (Type_High_Bound (Parent_Type),
7280 Parent_Type, Implicit_Base);
7281 Lo :=
7282 Build_Scalar_Bound
7283 (Type_Low_Bound (Parent_Type),
7284 Parent_Type, Implicit_Base);
7285 end if;
7286
7287 Rang_Expr :=
7288 Make_Range (Loc,
7289 Low_Bound => Lo,
7290 High_Bound => Hi);
7291
7292 -- If we constructed a default range for the case where no range
7293 -- was given, then the expressions in the range must not freeze
7294 -- since they do not correspond to expressions in the source.
7295 -- However, if the type inherits predicates the expressions will
7296 -- be elaborated earlier and must freeze.
7297
7298 if Nkind (Indic) /= N_Subtype_Indication
7299 and then not Has_Predicates (Derived_Type)
7300 then
7301 Set_Must_Not_Freeze (Lo);
7302 Set_Must_Not_Freeze (Hi);
7303 Set_Must_Not_Freeze (Rang_Expr);
7304 end if;
7305
7306 Rewrite (N,
7307 Make_Subtype_Declaration (Loc,
7308 Defining_Identifier => Derived_Type,
7309 Subtype_Indication =>
7310 Make_Subtype_Indication (Loc,
7311 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
7312 Constraint =>
7313 Make_Range_Constraint (Loc,
7314 Range_Expression => Rang_Expr))));
7315
7316 Analyze (N);
7317
7318 -- Propagate the aspects from the original type declaration to the
7319 -- declaration of the implicit base.
7320
7321 Move_Aspects (From => Original_Node (N), To => Type_Decl);
7322
7323 -- Apply a range check. Since this range expression doesn't have an
7324 -- Etype, we have to specifically pass the Source_Typ parameter. Is
7325 -- this right???
7326
7327 if Nkind (Indic) = N_Subtype_Indication then
7328 Apply_Range_Check
7329 (Range_Expression (Constraint (Indic)), Parent_Type,
7330 Source_Typ => Entity (Subtype_Mark (Indic)));
7331 end if;
7332 end if;
7333 end Build_Derived_Enumeration_Type;
7334
7335 --------------------------------
7336 -- Build_Derived_Numeric_Type --
7337 --------------------------------
7338
7339 procedure Build_Derived_Numeric_Type
7340 (N : Node_Id;
7341 Parent_Type : Entity_Id;
7342 Derived_Type : Entity_Id)
7343 is
7344 Loc : constant Source_Ptr := Sloc (N);
7345 Tdef : constant Node_Id := Type_Definition (N);
7346 Indic : constant Node_Id := Subtype_Indication (Tdef);
7347 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
7348 No_Constraint : constant Boolean := Nkind (Indic) /=
7349 N_Subtype_Indication;
7350 Implicit_Base : Entity_Id;
7351
7352 Lo : Node_Id;
7353 Hi : Node_Id;
7354
7355 begin
7356 -- Process the subtype indication including a validation check on
7357 -- the constraint if any.
7358
7359 Discard_Node (Process_Subtype (Indic, N));
7360
7361 -- Introduce an implicit base type for the derived type even if there
7362 -- is no constraint attached to it, since this seems closer to the Ada
7363 -- semantics.
7364
7365 Implicit_Base :=
7366 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
7367
7368 Set_Etype (Implicit_Base, Parent_Base);
7369 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
7370 Set_Size_Info (Implicit_Base, Parent_Base);
7371 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
7372 Set_Parent (Implicit_Base, Parent (Derived_Type));
7373 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
7374
7375 -- Set RM Size for discrete type or decimal fixed-point type
7376 -- Ordinary fixed-point is excluded, why???
7377
7378 if Is_Discrete_Type (Parent_Base)
7379 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
7380 then
7381 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
7382 end if;
7383
7384 Set_Has_Delayed_Freeze (Implicit_Base);
7385
7386 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
7387 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
7388
7389 Set_Scalar_Range (Implicit_Base,
7390 Make_Range (Loc,
7391 Low_Bound => Lo,
7392 High_Bound => Hi));
7393
7394 if Has_Infinities (Parent_Base) then
7395 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
7396 end if;
7397
7398 -- The Derived_Type, which is the entity of the declaration, is a
7399 -- subtype of the implicit base. Its Ekind is a subtype, even in the
7400 -- absence of an explicit constraint.
7401
7402 Set_Etype (Derived_Type, Implicit_Base);
7403
7404 -- If we did not have a constraint, then the Ekind is set from the
7405 -- parent type (otherwise Process_Subtype has set the bounds)
7406
7407 if No_Constraint then
7408 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
7409 end if;
7410
7411 -- If we did not have a range constraint, then set the range from the
7412 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
7413
7414 if No_Constraint or else not Has_Range_Constraint (Indic) then
7415 Set_Scalar_Range (Derived_Type,
7416 Make_Range (Loc,
7417 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
7418 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
7419 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7420
7421 if Has_Infinities (Parent_Type) then
7422 Set_Includes_Infinities (Scalar_Range (Derived_Type));
7423 end if;
7424
7425 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
7426 end if;
7427
7428 Set_Is_Descendant_Of_Address (Derived_Type,
7429 Is_Descendant_Of_Address (Parent_Type));
7430 Set_Is_Descendant_Of_Address (Implicit_Base,
7431 Is_Descendant_Of_Address (Parent_Type));
7432
7433 -- Set remaining type-specific fields, depending on numeric type
7434
7435 if Is_Modular_Integer_Type (Parent_Type) then
7436 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
7437
7438 Set_Non_Binary_Modulus
7439 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
7440
7441 Set_Is_Known_Valid
7442 (Implicit_Base, Is_Known_Valid (Parent_Base));
7443
7444 elsif Is_Floating_Point_Type (Parent_Type) then
7445
7446 -- Digits of base type is always copied from the digits value of
7447 -- the parent base type, but the digits of the derived type will
7448 -- already have been set if there was a constraint present.
7449
7450 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
7451 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
7452
7453 if No_Constraint then
7454 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
7455 end if;
7456
7457 elsif Is_Fixed_Point_Type (Parent_Type) then
7458
7459 -- Small of base type and derived type are always copied from the
7460 -- parent base type, since smalls never change. The delta of the
7461 -- base type is also copied from the parent base type. However the
7462 -- delta of the derived type will have been set already if a
7463 -- constraint was present.
7464
7465 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
7466 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
7467 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
7468
7469 if No_Constraint then
7470 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
7471 end if;
7472
7473 -- The scale and machine radix in the decimal case are always
7474 -- copied from the parent base type.
7475
7476 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
7477 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
7478 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
7479
7480 Set_Machine_Radix_10
7481 (Derived_Type, Machine_Radix_10 (Parent_Base));
7482 Set_Machine_Radix_10
7483 (Implicit_Base, Machine_Radix_10 (Parent_Base));
7484
7485 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
7486
7487 if No_Constraint then
7488 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
7489
7490 else
7491 -- the analysis of the subtype_indication sets the
7492 -- digits value of the derived type.
7493
7494 null;
7495 end if;
7496 end if;
7497 end if;
7498
7499 if Is_Integer_Type (Parent_Type) then
7500 Set_Has_Shift_Operator
7501 (Implicit_Base, Has_Shift_Operator (Parent_Type));
7502 end if;
7503
7504 -- The type of the bounds is that of the parent type, and they
7505 -- must be converted to the derived type.
7506
7507 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
7508
7509 -- The implicit_base should be frozen when the derived type is frozen,
7510 -- but note that it is used in the conversions of the bounds. For fixed
7511 -- types we delay the determination of the bounds until the proper
7512 -- freezing point. For other numeric types this is rejected by GCC, for
7513 -- reasons that are currently unclear (???), so we choose to freeze the
7514 -- implicit base now. In the case of integers and floating point types
7515 -- this is harmless because subsequent representation clauses cannot
7516 -- affect anything, but it is still baffling that we cannot use the
7517 -- same mechanism for all derived numeric types.
7518
7519 -- There is a further complication: actually some representation
7520 -- clauses can affect the implicit base type. For example, attribute
7521 -- definition clauses for stream-oriented attributes need to set the
7522 -- corresponding TSS entries on the base type, and this normally
7523 -- cannot be done after the base type is frozen, so the circuitry in
7524 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
7525 -- and not use Set_TSS in this case.
7526
7527 -- There are also consequences for the case of delayed representation
7528 -- aspects for some cases. For example, a Size aspect is delayed and
7529 -- should not be evaluated to the freeze point. This early freezing
7530 -- means that the size attribute evaluation happens too early???
7531
7532 if Is_Fixed_Point_Type (Parent_Type) then
7533 Conditional_Delay (Implicit_Base, Parent_Type);
7534 else
7535 Freeze_Before (N, Implicit_Base);
7536 end if;
7537 end Build_Derived_Numeric_Type;
7538
7539 --------------------------------
7540 -- Build_Derived_Private_Type --
7541 --------------------------------
7542
7543 procedure Build_Derived_Private_Type
7544 (N : Node_Id;
7545 Parent_Type : Entity_Id;
7546 Derived_Type : Entity_Id;
7547 Is_Completion : Boolean;
7548 Derive_Subps : Boolean := True)
7549 is
7550 Loc : constant Source_Ptr := Sloc (N);
7551 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
7552 Par_Scope : constant Entity_Id := Scope (Par_Base);
7553 Full_N : constant Node_Id := New_Copy_Tree (N);
7554 Full_Der : Entity_Id := New_Copy (Derived_Type);
7555 Full_P : Entity_Id;
7556
7557 procedure Build_Full_Derivation;
7558 -- Build full derivation, i.e. derive from the full view
7559
7560 procedure Copy_And_Build;
7561 -- Copy derived type declaration, replace parent with its full view,
7562 -- and build derivation
7563
7564 ---------------------------
7565 -- Build_Full_Derivation --
7566 ---------------------------
7567
7568 procedure Build_Full_Derivation is
7569 begin
7570 -- If parent scope is not open, install the declarations
7571
7572 if not In_Open_Scopes (Par_Scope) then
7573 Install_Private_Declarations (Par_Scope);
7574 Install_Visible_Declarations (Par_Scope);
7575 Copy_And_Build;
7576 Uninstall_Declarations (Par_Scope);
7577
7578 -- If parent scope is open and in another unit, and parent has a
7579 -- completion, then the derivation is taking place in the visible
7580 -- part of a child unit. In that case retrieve the full view of
7581 -- the parent momentarily.
7582
7583 elsif not In_Same_Source_Unit (N, Parent_Type) then
7584 Full_P := Full_View (Parent_Type);
7585 Exchange_Declarations (Parent_Type);
7586 Copy_And_Build;
7587 Exchange_Declarations (Full_P);
7588
7589 -- Otherwise it is a local derivation
7590
7591 else
7592 Copy_And_Build;
7593 end if;
7594 end Build_Full_Derivation;
7595
7596 --------------------
7597 -- Copy_And_Build --
7598 --------------------
7599
7600 procedure Copy_And_Build is
7601 Full_Parent : Entity_Id := Parent_Type;
7602
7603 begin
7604 -- If the parent is itself derived from another private type,
7605 -- installing the private declarations has not affected its
7606 -- privacy status, so use its own full view explicitly.
7607
7608 if Is_Private_Type (Full_Parent)
7609 and then Present (Full_View (Full_Parent))
7610 then
7611 Full_Parent := Full_View (Full_Parent);
7612 end if;
7613
7614 -- And its underlying full view if necessary
7615
7616 if Is_Private_Type (Full_Parent)
7617 and then Present (Underlying_Full_View (Full_Parent))
7618 then
7619 Full_Parent := Underlying_Full_View (Full_Parent);
7620 end if;
7621
7622 -- For record, access and most enumeration types, derivation from
7623 -- the full view requires a fully-fledged declaration. In the other
7624 -- cases, just use an itype.
7625
7626 if Ekind (Full_Parent) in Record_Kind
7627 or else Ekind (Full_Parent) in Access_Kind
7628 or else
7629 (Ekind (Full_Parent) in Enumeration_Kind
7630 and then not Is_Standard_Character_Type (Full_Parent)
7631 and then not Is_Generic_Type (Root_Type (Full_Parent)))
7632 then
7633 -- Copy and adjust declaration to provide a completion for what
7634 -- is originally a private declaration. Indicate that full view
7635 -- is internally generated.
7636
7637 Set_Comes_From_Source (Full_N, False);
7638 Set_Comes_From_Source (Full_Der, False);
7639 Set_Parent (Full_Der, Full_N);
7640 Set_Defining_Identifier (Full_N, Full_Der);
7641
7642 -- If there are no constraints, adjust the subtype mark
7643
7644 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
7645 N_Subtype_Indication
7646 then
7647 Set_Subtype_Indication
7648 (Type_Definition (Full_N),
7649 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
7650 end if;
7651
7652 Insert_After (N, Full_N);
7653
7654 -- Build full view of derived type from full view of parent which
7655 -- is now installed. Subprograms have been derived on the partial
7656 -- view, the completion does not derive them anew.
7657
7658 if Ekind (Full_Parent) in Record_Kind then
7659
7660 -- If parent type is tagged, the completion inherits the proper
7661 -- primitive operations.
7662
7663 if Is_Tagged_Type (Parent_Type) then
7664 Build_Derived_Record_Type
7665 (Full_N, Full_Parent, Full_Der, Derive_Subps);
7666 else
7667 Build_Derived_Record_Type
7668 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
7669 end if;
7670
7671 else
7672 Build_Derived_Type
7673 (Full_N, Full_Parent, Full_Der,
7674 Is_Completion => False, Derive_Subps => False);
7675 end if;
7676
7677 -- The full declaration has been introduced into the tree and
7678 -- processed in the step above. It should not be analyzed again
7679 -- (when encountered later in the current list of declarations)
7680 -- to prevent spurious name conflicts. The full entity remains
7681 -- invisible.
7682
7683 Set_Analyzed (Full_N);
7684
7685 else
7686 Full_Der :=
7687 Make_Defining_Identifier (Sloc (Derived_Type),
7688 Chars => Chars (Derived_Type));
7689 Set_Is_Itype (Full_Der);
7690 Set_Associated_Node_For_Itype (Full_Der, N);
7691 Set_Parent (Full_Der, N);
7692 Build_Derived_Type
7693 (N, Full_Parent, Full_Der,
7694 Is_Completion => False, Derive_Subps => False);
7695 end if;
7696
7697 Set_Has_Private_Declaration (Full_Der);
7698 Set_Has_Private_Declaration (Derived_Type);
7699
7700 Set_Scope (Full_Der, Scope (Derived_Type));
7701 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
7702 Set_Has_Size_Clause (Full_Der, False);
7703 Set_Has_Alignment_Clause (Full_Der, False);
7704 Set_Has_Delayed_Freeze (Full_Der);
7705 Set_Is_Frozen (Full_Der, False);
7706 Set_Freeze_Node (Full_Der, Empty);
7707 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
7708 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
7709
7710 -- The convention on the base type may be set in the private part
7711 -- and not propagated to the subtype until later, so we obtain the
7712 -- convention from the base type of the parent.
7713
7714 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
7715 end Copy_And_Build;
7716
7717 -- Start of processing for Build_Derived_Private_Type
7718
7719 begin
7720 if Is_Tagged_Type (Parent_Type) then
7721 Full_P := Full_View (Parent_Type);
7722
7723 -- A type extension of a type with unknown discriminants is an
7724 -- indefinite type that the back-end cannot handle directly.
7725 -- We treat it as a private type, and build a completion that is
7726 -- derived from the full view of the parent, and hopefully has
7727 -- known discriminants.
7728
7729 -- If the full view of the parent type has an underlying record view,
7730 -- use it to generate the underlying record view of this derived type
7731 -- (required for chains of derivations with unknown discriminants).
7732
7733 -- Minor optimization: we avoid the generation of useless underlying
7734 -- record view entities if the private type declaration has unknown
7735 -- discriminants but its corresponding full view has no
7736 -- discriminants.
7737
7738 if Has_Unknown_Discriminants (Parent_Type)
7739 and then Present (Full_P)
7740 and then (Has_Discriminants (Full_P)
7741 or else Present (Underlying_Record_View (Full_P)))
7742 and then not In_Open_Scopes (Par_Scope)
7743 and then Expander_Active
7744 then
7745 declare
7746 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
7747 New_Ext : constant Node_Id :=
7748 Copy_Separate_Tree
7749 (Record_Extension_Part (Type_Definition (N)));
7750 Decl : Node_Id;
7751
7752 begin
7753 Build_Derived_Record_Type
7754 (N, Parent_Type, Derived_Type, Derive_Subps);
7755
7756 -- Build anonymous completion, as a derivation from the full
7757 -- view of the parent. This is not a completion in the usual
7758 -- sense, because the current type is not private.
7759
7760 Decl :=
7761 Make_Full_Type_Declaration (Loc,
7762 Defining_Identifier => Full_Der,
7763 Type_Definition =>
7764 Make_Derived_Type_Definition (Loc,
7765 Subtype_Indication =>
7766 New_Copy_Tree
7767 (Subtype_Indication (Type_Definition (N))),
7768 Record_Extension_Part => New_Ext));
7769
7770 -- If the parent type has an underlying record view, use it
7771 -- here to build the new underlying record view.
7772
7773 if Present (Underlying_Record_View (Full_P)) then
7774 pragma Assert
7775 (Nkind (Subtype_Indication (Type_Definition (Decl)))
7776 = N_Identifier);
7777 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
7778 Underlying_Record_View (Full_P));
7779 end if;
7780
7781 Install_Private_Declarations (Par_Scope);
7782 Install_Visible_Declarations (Par_Scope);
7783 Insert_Before (N, Decl);
7784
7785 -- Mark entity as an underlying record view before analysis,
7786 -- to avoid generating the list of its primitive operations
7787 -- (which is not really required for this entity) and thus
7788 -- prevent spurious errors associated with missing overriding
7789 -- of abstract primitives (overridden only for Derived_Type).
7790
7791 Set_Ekind (Full_Der, E_Record_Type);
7792 Set_Is_Underlying_Record_View (Full_Der);
7793 Set_Default_SSO (Full_Der);
7794 Set_No_Reordering (Full_Der, No_Component_Reordering);
7795
7796 Analyze (Decl);
7797
7798 pragma Assert (Has_Discriminants (Full_Der)
7799 and then not Has_Unknown_Discriminants (Full_Der));
7800
7801 Uninstall_Declarations (Par_Scope);
7802
7803 -- Freeze the underlying record view, to prevent generation of
7804 -- useless dispatching information, which is simply shared with
7805 -- the real derived type.
7806
7807 Set_Is_Frozen (Full_Der);
7808
7809 -- If the derived type has access discriminants, create
7810 -- references to their anonymous types now, to prevent
7811 -- back-end problems when their first use is in generated
7812 -- bodies of primitives.
7813
7814 declare
7815 E : Entity_Id;
7816
7817 begin
7818 E := First_Entity (Full_Der);
7819
7820 while Present (E) loop
7821 if Ekind (E) = E_Discriminant
7822 and then Ekind (Etype (E)) = E_Anonymous_Access_Type
7823 then
7824 Build_Itype_Reference (Etype (E), Decl);
7825 end if;
7826
7827 Next_Entity (E);
7828 end loop;
7829 end;
7830
7831 -- Set up links between real entity and underlying record view
7832
7833 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
7834 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
7835 end;
7836
7837 -- If discriminants are known, build derived record
7838
7839 else
7840 Build_Derived_Record_Type
7841 (N, Parent_Type, Derived_Type, Derive_Subps);
7842 end if;
7843
7844 return;
7845
7846 elsif Has_Discriminants (Parent_Type) then
7847
7848 -- Build partial view of derived type from partial view of parent.
7849 -- This must be done before building the full derivation because the
7850 -- second derivation will modify the discriminants of the first and
7851 -- the discriminants are chained with the rest of the components in
7852 -- the full derivation.
7853
7854 Build_Derived_Record_Type
7855 (N, Parent_Type, Derived_Type, Derive_Subps);
7856
7857 -- Build the full derivation if this is not the anonymous derived
7858 -- base type created by Build_Derived_Record_Type in the constrained
7859 -- case (see point 5. of its head comment) since we build it for the
7860 -- derived subtype. And skip it for synchronized types altogether, as
7861 -- gigi does not use these types directly.
7862
7863 if Present (Full_View (Parent_Type))
7864 and then not Is_Itype (Derived_Type)
7865 and then not (Is_Concurrent_Type (Full_View (Parent_Type)))
7866 then
7867 declare
7868 Der_Base : constant Entity_Id := Base_Type (Derived_Type);
7869 Discr : Entity_Id;
7870 Last_Discr : Entity_Id;
7871
7872 begin
7873 -- If this is not a completion, construct the implicit full
7874 -- view by deriving from the full view of the parent type.
7875 -- But if this is a completion, the derived private type
7876 -- being built is a full view and the full derivation can
7877 -- only be its underlying full view.
7878
7879 Build_Full_Derivation;
7880
7881 if not Is_Completion then
7882 Set_Full_View (Derived_Type, Full_Der);
7883 else
7884 Set_Underlying_Full_View (Derived_Type, Full_Der);
7885 Set_Is_Underlying_Full_View (Full_Der);
7886 end if;
7887
7888 if not Is_Base_Type (Derived_Type) then
7889 Set_Full_View (Der_Base, Base_Type (Full_Der));
7890 end if;
7891
7892 -- Copy the discriminant list from full view to the partial
7893 -- view (base type and its subtype). Gigi requires that the
7894 -- partial and full views have the same discriminants.
7895
7896 -- Note that since the partial view points to discriminants
7897 -- in the full view, their scope will be that of the full
7898 -- view. This might cause some front end problems and need
7899 -- adjustment???
7900
7901 Discr := First_Discriminant (Base_Type (Full_Der));
7902 Set_First_Entity (Der_Base, Discr);
7903
7904 loop
7905 Last_Discr := Discr;
7906 Next_Discriminant (Discr);
7907 exit when No (Discr);
7908 end loop;
7909
7910 Set_Last_Entity (Der_Base, Last_Discr);
7911 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
7912 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
7913 end;
7914 end if;
7915
7916 elsif Present (Full_View (Parent_Type))
7917 and then Has_Discriminants (Full_View (Parent_Type))
7918 then
7919 if Has_Unknown_Discriminants (Parent_Type)
7920 and then Nkind (Subtype_Indication (Type_Definition (N))) =
7921 N_Subtype_Indication
7922 then
7923 Error_Msg_N
7924 ("cannot constrain type with unknown discriminants",
7925 Subtype_Indication (Type_Definition (N)));
7926 return;
7927 end if;
7928
7929 -- If this is not a completion, construct the implicit full view by
7930 -- deriving from the full view of the parent type. But if this is a
7931 -- completion, the derived private type being built is a full view
7932 -- and the full derivation can only be its underlying full view.
7933
7934 Build_Full_Derivation;
7935
7936 if not Is_Completion then
7937 Set_Full_View (Derived_Type, Full_Der);
7938 else
7939 Set_Underlying_Full_View (Derived_Type, Full_Der);
7940 Set_Is_Underlying_Full_View (Full_Der);
7941 end if;
7942
7943 -- In any case, the primitive operations are inherited from the
7944 -- parent type, not from the internal full view.
7945
7946 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
7947
7948 if Derive_Subps then
7949 Derive_Subprograms (Parent_Type, Derived_Type);
7950 end if;
7951
7952 Set_Stored_Constraint (Derived_Type, No_Elist);
7953 Set_Is_Constrained
7954 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
7955
7956 else
7957 -- Untagged type, No discriminants on either view
7958
7959 if Nkind (Subtype_Indication (Type_Definition (N))) =
7960 N_Subtype_Indication
7961 then
7962 Error_Msg_N
7963 ("illegal constraint on type without discriminants", N);
7964 end if;
7965
7966 if Present (Discriminant_Specifications (N))
7967 and then Present (Full_View (Parent_Type))
7968 and then not Is_Tagged_Type (Full_View (Parent_Type))
7969 then
7970 Error_Msg_N ("cannot add discriminants to untagged type", N);
7971 end if;
7972
7973 Set_Stored_Constraint (Derived_Type, No_Elist);
7974 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7975
7976 Set_Is_Controlled_Active
7977 (Derived_Type, Is_Controlled_Active (Parent_Type));
7978
7979 Set_Disable_Controlled
7980 (Derived_Type, Disable_Controlled (Parent_Type));
7981
7982 Set_Has_Controlled_Component
7983 (Derived_Type, Has_Controlled_Component (Parent_Type));
7984
7985 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7986
7987 if not Is_Controlled (Parent_Type) then
7988 Set_Finalize_Storage_Only
7989 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
7990 end if;
7991
7992 -- If this is not a completion, construct the implicit full view by
7993 -- deriving from the full view of the parent type.
7994
7995 -- ??? If the parent is untagged private and its completion is
7996 -- tagged, this mechanism will not work because we cannot derive from
7997 -- the tagged full view unless we have an extension.
7998
7999 if Present (Full_View (Parent_Type))
8000 and then not Is_Tagged_Type (Full_View (Parent_Type))
8001 and then not Is_Completion
8002 then
8003 Build_Full_Derivation;
8004 Set_Full_View (Derived_Type, Full_Der);
8005 end if;
8006 end if;
8007
8008 Set_Has_Unknown_Discriminants (Derived_Type,
8009 Has_Unknown_Discriminants (Parent_Type));
8010
8011 if Is_Private_Type (Derived_Type) then
8012 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8013 end if;
8014
8015 -- If the parent base type is in scope, add the derived type to its
8016 -- list of private dependents, because its full view may become
8017 -- visible subsequently (in a nested private part, a body, or in a
8018 -- further child unit).
8019
8020 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
8021 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
8022
8023 -- Check for unusual case where a type completed by a private
8024 -- derivation occurs within a package nested in a child unit, and
8025 -- the parent is declared in an ancestor.
8026
8027 if Is_Child_Unit (Scope (Current_Scope))
8028 and then Is_Completion
8029 and then In_Private_Part (Current_Scope)
8030 and then Scope (Parent_Type) /= Current_Scope
8031
8032 -- Note that if the parent has a completion in the private part,
8033 -- (which is itself a derivation from some other private type)
8034 -- it is that completion that is visible, there is no full view
8035 -- available, and no special processing is needed.
8036
8037 and then Present (Full_View (Parent_Type))
8038 then
8039 -- In this case, the full view of the parent type will become
8040 -- visible in the body of the enclosing child, and only then will
8041 -- the current type be possibly non-private. Build an underlying
8042 -- full view that will be installed when the enclosing child body
8043 -- is compiled.
8044
8045 if Present (Underlying_Full_View (Derived_Type)) then
8046 Full_Der := Underlying_Full_View (Derived_Type);
8047 else
8048 Build_Full_Derivation;
8049 Set_Underlying_Full_View (Derived_Type, Full_Der);
8050 Set_Is_Underlying_Full_View (Full_Der);
8051 end if;
8052
8053 -- The full view will be used to swap entities on entry/exit to
8054 -- the body, and must appear in the entity list for the package.
8055
8056 Append_Entity (Full_Der, Scope (Derived_Type));
8057 end if;
8058 end if;
8059 end Build_Derived_Private_Type;
8060
8061 -------------------------------
8062 -- Build_Derived_Record_Type --
8063 -------------------------------
8064
8065 -- 1. INTRODUCTION
8066
8067 -- Ideally we would like to use the same model of type derivation for
8068 -- tagged and untagged record types. Unfortunately this is not quite
8069 -- possible because the semantics of representation clauses is different
8070 -- for tagged and untagged records under inheritance. Consider the
8071 -- following:
8072
8073 -- type R (...) is [tagged] record ... end record;
8074 -- type T (...) is new R (...) [with ...];
8075
8076 -- The representation clauses for T can specify a completely different
8077 -- record layout from R's. Hence the same component can be placed in two
8078 -- very different positions in objects of type T and R. If R and T are
8079 -- tagged types, representation clauses for T can only specify the layout
8080 -- of non inherited components, thus components that are common in R and T
8081 -- have the same position in objects of type R and T.
8082
8083 -- This has two implications. The first is that the entire tree for R's
8084 -- declaration needs to be copied for T in the untagged case, so that T
8085 -- can be viewed as a record type of its own with its own representation
8086 -- clauses. The second implication is the way we handle discriminants.
8087 -- Specifically, in the untagged case we need a way to communicate to Gigi
8088 -- what are the real discriminants in the record, while for the semantics
8089 -- we need to consider those introduced by the user to rename the
8090 -- discriminants in the parent type. This is handled by introducing the
8091 -- notion of stored discriminants. See below for more.
8092
8093 -- Fortunately the way regular components are inherited can be handled in
8094 -- the same way in tagged and untagged types.
8095
8096 -- To complicate things a bit more the private view of a private extension
8097 -- cannot be handled in the same way as the full view (for one thing the
8098 -- semantic rules are somewhat different). We will explain what differs
8099 -- below.
8100
8101 -- 2. DISCRIMINANTS UNDER INHERITANCE
8102
8103 -- The semantic rules governing the discriminants of derived types are
8104 -- quite subtle.
8105
8106 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
8107 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
8108
8109 -- If parent type has discriminants, then the discriminants that are
8110 -- declared in the derived type are [3.4 (11)]:
8111
8112 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
8113 -- there is one;
8114
8115 -- o Otherwise, each discriminant of the parent type (implicitly declared
8116 -- in the same order with the same specifications). In this case, the
8117 -- discriminants are said to be "inherited", or if unknown in the parent
8118 -- are also unknown in the derived type.
8119
8120 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
8121
8122 -- o The parent subtype must be constrained;
8123
8124 -- o If the parent type is not a tagged type, then each discriminant of
8125 -- the derived type must be used in the constraint defining a parent
8126 -- subtype. [Implementation note: This ensures that the new discriminant
8127 -- can share storage with an existing discriminant.]
8128
8129 -- For the derived type each discriminant of the parent type is either
8130 -- inherited, constrained to equal some new discriminant of the derived
8131 -- type, or constrained to the value of an expression.
8132
8133 -- When inherited or constrained to equal some new discriminant, the
8134 -- parent discriminant and the discriminant of the derived type are said
8135 -- to "correspond".
8136
8137 -- If a discriminant of the parent type is constrained to a specific value
8138 -- in the derived type definition, then the discriminant is said to be
8139 -- "specified" by that derived type definition.
8140
8141 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
8142
8143 -- We have spoken about stored discriminants in point 1 (introduction)
8144 -- above. There are two sorts of stored discriminants: implicit and
8145 -- explicit. As long as the derived type inherits the same discriminants as
8146 -- the root record type, stored discriminants are the same as regular
8147 -- discriminants, and are said to be implicit. However, if any discriminant
8148 -- in the root type was renamed in the derived type, then the derived
8149 -- type will contain explicit stored discriminants. Explicit stored
8150 -- discriminants are discriminants in addition to the semantically visible
8151 -- discriminants defined for the derived type. Stored discriminants are
8152 -- used by Gigi to figure out what are the physical discriminants in
8153 -- objects of the derived type (see precise definition in einfo.ads).
8154 -- As an example, consider the following:
8155
8156 -- type R (D1, D2, D3 : Int) is record ... end record;
8157 -- type T1 is new R;
8158 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
8159 -- type T3 is new T2;
8160 -- type T4 (Y : Int) is new T3 (Y, 99);
8161
8162 -- The following table summarizes the discriminants and stored
8163 -- discriminants in R and T1 through T4:
8164
8165 -- Type Discrim Stored Discrim Comment
8166 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
8167 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
8168 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
8169 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
8170 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
8171
8172 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
8173 -- find the corresponding discriminant in the parent type, while
8174 -- Original_Record_Component (abbreviated ORC below) the actual physical
8175 -- component that is renamed. Finally the field Is_Completely_Hidden
8176 -- (abbreviated ICH below) is set for all explicit stored discriminants
8177 -- (see einfo.ads for more info). For the above example this gives:
8178
8179 -- Discrim CD ORC ICH
8180 -- ^^^^^^^ ^^ ^^^ ^^^
8181 -- D1 in R empty itself no
8182 -- D2 in R empty itself no
8183 -- D3 in R empty itself no
8184
8185 -- D1 in T1 D1 in R itself no
8186 -- D2 in T1 D2 in R itself no
8187 -- D3 in T1 D3 in R itself no
8188
8189 -- X1 in T2 D3 in T1 D3 in T2 no
8190 -- X2 in T2 D1 in T1 D1 in T2 no
8191 -- D1 in T2 empty itself yes
8192 -- D2 in T2 empty itself yes
8193 -- D3 in T2 empty itself yes
8194
8195 -- X1 in T3 X1 in T2 D3 in T3 no
8196 -- X2 in T3 X2 in T2 D1 in T3 no
8197 -- D1 in T3 empty itself yes
8198 -- D2 in T3 empty itself yes
8199 -- D3 in T3 empty itself yes
8200
8201 -- Y in T4 X1 in T3 D3 in T4 no
8202 -- D1 in T4 empty itself yes
8203 -- D2 in T4 empty itself yes
8204 -- D3 in T4 empty itself yes
8205
8206 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
8207
8208 -- Type derivation for tagged types is fairly straightforward. If no
8209 -- discriminants are specified by the derived type, these are inherited
8210 -- from the parent. No explicit stored discriminants are ever necessary.
8211 -- The only manipulation that is done to the tree is that of adding a
8212 -- _parent field with parent type and constrained to the same constraint
8213 -- specified for the parent in the derived type definition. For instance:
8214
8215 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
8216 -- type T1 is new R with null record;
8217 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
8218
8219 -- are changed into:
8220
8221 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
8222 -- _parent : R (D1, D2, D3);
8223 -- end record;
8224
8225 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
8226 -- _parent : T1 (X2, 88, X1);
8227 -- end record;
8228
8229 -- The discriminants actually present in R, T1 and T2 as well as their CD,
8230 -- ORC and ICH fields are:
8231
8232 -- Discrim CD ORC ICH
8233 -- ^^^^^^^ ^^ ^^^ ^^^
8234 -- D1 in R empty itself no
8235 -- D2 in R empty itself no
8236 -- D3 in R empty itself no
8237
8238 -- D1 in T1 D1 in R D1 in R no
8239 -- D2 in T1 D2 in R D2 in R no
8240 -- D3 in T1 D3 in R D3 in R no
8241
8242 -- X1 in T2 D3 in T1 D3 in R no
8243 -- X2 in T2 D1 in T1 D1 in R no
8244
8245 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
8246 --
8247 -- Regardless of whether we dealing with a tagged or untagged type
8248 -- we will transform all derived type declarations of the form
8249 --
8250 -- type T is new R (...) [with ...];
8251 -- or
8252 -- subtype S is R (...);
8253 -- type T is new S [with ...];
8254 -- into
8255 -- type BT is new R [with ...];
8256 -- subtype T is BT (...);
8257 --
8258 -- That is, the base derived type is constrained only if it has no
8259 -- discriminants. The reason for doing this is that GNAT's semantic model
8260 -- assumes that a base type with discriminants is unconstrained.
8261 --
8262 -- Note that, strictly speaking, the above transformation is not always
8263 -- correct. Consider for instance the following excerpt from ACVC b34011a:
8264 --
8265 -- procedure B34011A is
8266 -- type REC (D : integer := 0) is record
8267 -- I : Integer;
8268 -- end record;
8269
8270 -- package P is
8271 -- type T6 is new Rec;
8272 -- function F return T6;
8273 -- end P;
8274
8275 -- use P;
8276 -- package Q6 is
8277 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
8278 -- end Q6;
8279 --
8280 -- The definition of Q6.U is illegal. However transforming Q6.U into
8281
8282 -- type BaseU is new T6;
8283 -- subtype U is BaseU (Q6.F.I)
8284
8285 -- turns U into a legal subtype, which is incorrect. To avoid this problem
8286 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
8287 -- the transformation described above.
8288
8289 -- There is another instance where the above transformation is incorrect.
8290 -- Consider:
8291
8292 -- package Pack is
8293 -- type Base (D : Integer) is tagged null record;
8294 -- procedure P (X : Base);
8295
8296 -- type Der is new Base (2) with null record;
8297 -- procedure P (X : Der);
8298 -- end Pack;
8299
8300 -- Then the above transformation turns this into
8301
8302 -- type Der_Base is new Base with null record;
8303 -- -- procedure P (X : Base) is implicitly inherited here
8304 -- -- as procedure P (X : Der_Base).
8305
8306 -- subtype Der is Der_Base (2);
8307 -- procedure P (X : Der);
8308 -- -- The overriding of P (X : Der_Base) is illegal since we
8309 -- -- have a parameter conformance problem.
8310
8311 -- To get around this problem, after having semantically processed Der_Base
8312 -- and the rewritten subtype declaration for Der, we copy Der_Base field
8313 -- Discriminant_Constraint from Der so that when parameter conformance is
8314 -- checked when P is overridden, no semantic errors are flagged.
8315
8316 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
8317
8318 -- Regardless of whether we are dealing with a tagged or untagged type
8319 -- we will transform all derived type declarations of the form
8320
8321 -- type R (D1, .., Dn : ...) is [tagged] record ...;
8322 -- type T is new R [with ...];
8323 -- into
8324 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
8325
8326 -- The reason for such transformation is that it allows us to implement a
8327 -- very clean form of component inheritance as explained below.
8328
8329 -- Note that this transformation is not achieved by direct tree rewriting
8330 -- and manipulation, but rather by redoing the semantic actions that the
8331 -- above transformation will entail. This is done directly in routine
8332 -- Inherit_Components.
8333
8334 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
8335
8336 -- In both tagged and untagged derived types, regular non discriminant
8337 -- components are inherited in the derived type from the parent type. In
8338 -- the absence of discriminants component, inheritance is straightforward
8339 -- as components can simply be copied from the parent.
8340
8341 -- If the parent has discriminants, inheriting components constrained with
8342 -- these discriminants requires caution. Consider the following example:
8343
8344 -- type R (D1, D2 : Positive) is [tagged] record
8345 -- S : String (D1 .. D2);
8346 -- end record;
8347
8348 -- type T1 is new R [with null record];
8349 -- type T2 (X : positive) is new R (1, X) [with null record];
8350
8351 -- As explained in 6. above, T1 is rewritten as
8352 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
8353 -- which makes the treatment for T1 and T2 identical.
8354
8355 -- What we want when inheriting S, is that references to D1 and D2 in R are
8356 -- replaced with references to their correct constraints, i.e. D1 and D2 in
8357 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
8358 -- with either discriminant references in the derived type or expressions.
8359 -- This replacement is achieved as follows: before inheriting R's
8360 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
8361 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
8362 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
8363 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
8364 -- by String (1 .. X).
8365
8366 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
8367
8368 -- We explain here the rules governing private type extensions relevant to
8369 -- type derivation. These rules are explained on the following example:
8370
8371 -- type D [(...)] is new A [(...)] with private; <-- partial view
8372 -- type D [(...)] is new P [(...)] with null record; <-- full view
8373
8374 -- Type A is called the ancestor subtype of the private extension.
8375 -- Type P is the parent type of the full view of the private extension. It
8376 -- must be A or a type derived from A.
8377
8378 -- The rules concerning the discriminants of private type extensions are
8379 -- [7.3(10-13)]:
8380
8381 -- o If a private extension inherits known discriminants from the ancestor
8382 -- subtype, then the full view must also inherit its discriminants from
8383 -- the ancestor subtype and the parent subtype of the full view must be
8384 -- constrained if and only if the ancestor subtype is constrained.
8385
8386 -- o If a partial view has unknown discriminants, then the full view may
8387 -- define a definite or an indefinite subtype, with or without
8388 -- discriminants.
8389
8390 -- o If a partial view has neither known nor unknown discriminants, then
8391 -- the full view must define a definite subtype.
8392
8393 -- o If the ancestor subtype of a private extension has constrained
8394 -- discriminants, then the parent subtype of the full view must impose a
8395 -- statically matching constraint on those discriminants.
8396
8397 -- This means that only the following forms of private extensions are
8398 -- allowed:
8399
8400 -- type D is new A with private; <-- partial view
8401 -- type D is new P with null record; <-- full view
8402
8403 -- If A has no discriminants than P has no discriminants, otherwise P must
8404 -- inherit A's discriminants.
8405
8406 -- type D is new A (...) with private; <-- partial view
8407 -- type D is new P (:::) with null record; <-- full view
8408
8409 -- P must inherit A's discriminants and (...) and (:::) must statically
8410 -- match.
8411
8412 -- subtype A is R (...);
8413 -- type D is new A with private; <-- partial view
8414 -- type D is new P with null record; <-- full view
8415
8416 -- P must have inherited R's discriminants and must be derived from A or
8417 -- any of its subtypes.
8418
8419 -- type D (..) is new A with private; <-- partial view
8420 -- type D (..) is new P [(:::)] with null record; <-- full view
8421
8422 -- No specific constraints on P's discriminants or constraint (:::).
8423 -- Note that A can be unconstrained, but the parent subtype P must either
8424 -- be constrained or (:::) must be present.
8425
8426 -- type D (..) is new A [(...)] with private; <-- partial view
8427 -- type D (..) is new P [(:::)] with null record; <-- full view
8428
8429 -- P's constraints on A's discriminants must statically match those
8430 -- imposed by (...).
8431
8432 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
8433
8434 -- The full view of a private extension is handled exactly as described
8435 -- above. The model chose for the private view of a private extension is
8436 -- the same for what concerns discriminants (i.e. they receive the same
8437 -- treatment as in the tagged case). However, the private view of the
8438 -- private extension always inherits the components of the parent base,
8439 -- without replacing any discriminant reference. Strictly speaking this is
8440 -- incorrect. However, Gigi never uses this view to generate code so this
8441 -- is a purely semantic issue. In theory, a set of transformations similar
8442 -- to those given in 5. and 6. above could be applied to private views of
8443 -- private extensions to have the same model of component inheritance as
8444 -- for non private extensions. However, this is not done because it would
8445 -- further complicate private type processing. Semantically speaking, this
8446 -- leaves us in an uncomfortable situation. As an example consider:
8447
8448 -- package Pack is
8449 -- type R (D : integer) is tagged record
8450 -- S : String (1 .. D);
8451 -- end record;
8452 -- procedure P (X : R);
8453 -- type T is new R (1) with private;
8454 -- private
8455 -- type T is new R (1) with null record;
8456 -- end;
8457
8458 -- This is transformed into:
8459
8460 -- package Pack is
8461 -- type R (D : integer) is tagged record
8462 -- S : String (1 .. D);
8463 -- end record;
8464 -- procedure P (X : R);
8465 -- type T is new R (1) with private;
8466 -- private
8467 -- type BaseT is new R with null record;
8468 -- subtype T is BaseT (1);
8469 -- end;
8470
8471 -- (strictly speaking the above is incorrect Ada)
8472
8473 -- From the semantic standpoint the private view of private extension T
8474 -- should be flagged as constrained since one can clearly have
8475 --
8476 -- Obj : T;
8477 --
8478 -- in a unit withing Pack. However, when deriving subprograms for the
8479 -- private view of private extension T, T must be seen as unconstrained
8480 -- since T has discriminants (this is a constraint of the current
8481 -- subprogram derivation model). Thus, when processing the private view of
8482 -- a private extension such as T, we first mark T as unconstrained, we
8483 -- process it, we perform program derivation and just before returning from
8484 -- Build_Derived_Record_Type we mark T as constrained.
8485
8486 -- ??? Are there are other uncomfortable cases that we will have to
8487 -- deal with.
8488
8489 -- 10. RECORD_TYPE_WITH_PRIVATE complications
8490
8491 -- Types that are derived from a visible record type and have a private
8492 -- extension present other peculiarities. They behave mostly like private
8493 -- types, but if they have primitive operations defined, these will not
8494 -- have the proper signatures for further inheritance, because other
8495 -- primitive operations will use the implicit base that we define for
8496 -- private derivations below. This affect subprogram inheritance (see
8497 -- Derive_Subprograms for details). We also derive the implicit base from
8498 -- the base type of the full view, so that the implicit base is a record
8499 -- type and not another private type, This avoids infinite loops.
8500
8501 procedure Build_Derived_Record_Type
8502 (N : Node_Id;
8503 Parent_Type : Entity_Id;
8504 Derived_Type : Entity_Id;
8505 Derive_Subps : Boolean := True)
8506 is
8507 Discriminant_Specs : constant Boolean :=
8508 Present (Discriminant_Specifications (N));
8509 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
8510 Loc : constant Source_Ptr := Sloc (N);
8511 Private_Extension : constant Boolean :=
8512 Nkind (N) = N_Private_Extension_Declaration;
8513 Assoc_List : Elist_Id;
8514 Constraint_Present : Boolean;
8515 Constrs : Elist_Id;
8516 Discrim : Entity_Id;
8517 Indic : Node_Id;
8518 Inherit_Discrims : Boolean := False;
8519 Last_Discrim : Entity_Id;
8520 New_Base : Entity_Id;
8521 New_Decl : Node_Id;
8522 New_Discrs : Elist_Id;
8523 New_Indic : Node_Id;
8524 Parent_Base : Entity_Id;
8525 Save_Etype : Entity_Id;
8526 Save_Discr_Constr : Elist_Id;
8527 Save_Next_Entity : Entity_Id;
8528 Type_Def : Node_Id;
8529
8530 Discs : Elist_Id := New_Elmt_List;
8531 -- An empty Discs list means that there were no constraints in the
8532 -- subtype indication or that there was an error processing it.
8533
8534 begin
8535 if Ekind (Parent_Type) = E_Record_Type_With_Private
8536 and then Present (Full_View (Parent_Type))
8537 and then Has_Discriminants (Parent_Type)
8538 then
8539 Parent_Base := Base_Type (Full_View (Parent_Type));
8540 else
8541 Parent_Base := Base_Type (Parent_Type);
8542 end if;
8543
8544 -- AI05-0115: if this is a derivation from a private type in some
8545 -- other scope that may lead to invisible components for the derived
8546 -- type, mark it accordingly.
8547
8548 if Is_Private_Type (Parent_Type) then
8549 if Scope (Parent_Base) = Scope (Derived_Type) then
8550 null;
8551
8552 elsif In_Open_Scopes (Scope (Parent_Base))
8553 and then In_Private_Part (Scope (Parent_Base))
8554 then
8555 null;
8556
8557 else
8558 Set_Has_Private_Ancestor (Derived_Type);
8559 end if;
8560
8561 else
8562 Set_Has_Private_Ancestor
8563 (Derived_Type, Has_Private_Ancestor (Parent_Type));
8564 end if;
8565
8566 -- Before we start the previously documented transformations, here is
8567 -- little fix for size and alignment of tagged types. Normally when we
8568 -- derive type D from type P, we copy the size and alignment of P as the
8569 -- default for D, and in the absence of explicit representation clauses
8570 -- for D, the size and alignment are indeed the same as the parent.
8571
8572 -- But this is wrong for tagged types, since fields may be added, and
8573 -- the default size may need to be larger, and the default alignment may
8574 -- need to be larger.
8575
8576 -- We therefore reset the size and alignment fields in the tagged case.
8577 -- Note that the size and alignment will in any case be at least as
8578 -- large as the parent type (since the derived type has a copy of the
8579 -- parent type in the _parent field)
8580
8581 -- The type is also marked as being tagged here, which is needed when
8582 -- processing components with a self-referential anonymous access type
8583 -- in the call to Check_Anonymous_Access_Components below. Note that
8584 -- this flag is also set later on for completeness.
8585
8586 if Is_Tagged then
8587 Set_Is_Tagged_Type (Derived_Type);
8588 Init_Size_Align (Derived_Type);
8589 end if;
8590
8591 -- STEP 0a: figure out what kind of derived type declaration we have
8592
8593 if Private_Extension then
8594 Type_Def := N;
8595 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
8596 Set_Default_SSO (Derived_Type);
8597 Set_No_Reordering (Derived_Type, No_Component_Reordering);
8598
8599 else
8600 Type_Def := Type_Definition (N);
8601
8602 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8603 -- Parent_Base can be a private type or private extension. However,
8604 -- for tagged types with an extension the newly added fields are
8605 -- visible and hence the Derived_Type is always an E_Record_Type.
8606 -- (except that the parent may have its own private fields).
8607 -- For untagged types we preserve the Ekind of the Parent_Base.
8608
8609 if Present (Record_Extension_Part (Type_Def)) then
8610 Set_Ekind (Derived_Type, E_Record_Type);
8611 Set_Default_SSO (Derived_Type);
8612 Set_No_Reordering (Derived_Type, No_Component_Reordering);
8613
8614 -- Create internal access types for components with anonymous
8615 -- access types.
8616
8617 if Ada_Version >= Ada_2005 then
8618 Check_Anonymous_Access_Components
8619 (N, Derived_Type, Derived_Type,
8620 Component_List (Record_Extension_Part (Type_Def)));
8621 end if;
8622
8623 else
8624 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8625 end if;
8626 end if;
8627
8628 -- Indic can either be an N_Identifier if the subtype indication
8629 -- contains no constraint or an N_Subtype_Indication if the subtype
8630 -- indication has a constraint.
8631
8632 Indic := Subtype_Indication (Type_Def);
8633 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
8634
8635 -- Check that the type has visible discriminants. The type may be
8636 -- a private type with unknown discriminants whose full view has
8637 -- discriminants which are invisible.
8638
8639 if Constraint_Present then
8640 if not Has_Discriminants (Parent_Base)
8641 or else
8642 (Has_Unknown_Discriminants (Parent_Base)
8643 and then Is_Private_Type (Parent_Base))
8644 then
8645 Error_Msg_N
8646 ("invalid constraint: type has no discriminant",
8647 Constraint (Indic));
8648
8649 Constraint_Present := False;
8650 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8651
8652 elsif Is_Constrained (Parent_Type) then
8653 Error_Msg_N
8654 ("invalid constraint: parent type is already constrained",
8655 Constraint (Indic));
8656
8657 Constraint_Present := False;
8658 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8659 end if;
8660 end if;
8661
8662 -- STEP 0b: If needed, apply transformation given in point 5. above
8663
8664 if not Private_Extension
8665 and then Has_Discriminants (Parent_Type)
8666 and then not Discriminant_Specs
8667 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
8668 then
8669 -- First, we must analyze the constraint (see comment in point 5.)
8670 -- The constraint may come from the subtype indication of the full
8671 -- declaration.
8672
8673 if Constraint_Present then
8674 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
8675
8676 -- If there is no explicit constraint, there might be one that is
8677 -- inherited from a constrained parent type. In that case verify that
8678 -- it conforms to the constraint in the partial view. In perverse
8679 -- cases the parent subtypes of the partial and full view can have
8680 -- different constraints.
8681
8682 elsif Present (Stored_Constraint (Parent_Type)) then
8683 New_Discrs := Stored_Constraint (Parent_Type);
8684
8685 else
8686 New_Discrs := No_Elist;
8687 end if;
8688
8689 if Has_Discriminants (Derived_Type)
8690 and then Has_Private_Declaration (Derived_Type)
8691 and then Present (Discriminant_Constraint (Derived_Type))
8692 and then Present (New_Discrs)
8693 then
8694 -- Verify that constraints of the full view statically match
8695 -- those given in the partial view.
8696
8697 declare
8698 C1, C2 : Elmt_Id;
8699
8700 begin
8701 C1 := First_Elmt (New_Discrs);
8702 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
8703 while Present (C1) and then Present (C2) loop
8704 if Fully_Conformant_Expressions (Node (C1), Node (C2))
8705 or else
8706 (Is_OK_Static_Expression (Node (C1))
8707 and then Is_OK_Static_Expression (Node (C2))
8708 and then
8709 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
8710 then
8711 null;
8712
8713 else
8714 if Constraint_Present then
8715 Error_Msg_N
8716 ("constraint not conformant to previous declaration",
8717 Node (C1));
8718 else
8719 Error_Msg_N
8720 ("constraint of full view is incompatible "
8721 & "with partial view", N);
8722 end if;
8723 end if;
8724
8725 Next_Elmt (C1);
8726 Next_Elmt (C2);
8727 end loop;
8728 end;
8729 end if;
8730
8731 -- Insert and analyze the declaration for the unconstrained base type
8732
8733 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
8734
8735 New_Decl :=
8736 Make_Full_Type_Declaration (Loc,
8737 Defining_Identifier => New_Base,
8738 Type_Definition =>
8739 Make_Derived_Type_Definition (Loc,
8740 Abstract_Present => Abstract_Present (Type_Def),
8741 Limited_Present => Limited_Present (Type_Def),
8742 Subtype_Indication =>
8743 New_Occurrence_Of (Parent_Base, Loc),
8744 Record_Extension_Part =>
8745 Relocate_Node (Record_Extension_Part (Type_Def)),
8746 Interface_List => Interface_List (Type_Def)));
8747
8748 Set_Parent (New_Decl, Parent (N));
8749 Mark_Rewrite_Insertion (New_Decl);
8750 Insert_Before (N, New_Decl);
8751
8752 -- In the extension case, make sure ancestor is frozen appropriately
8753 -- (see also non-discriminated case below).
8754
8755 if Present (Record_Extension_Part (Type_Def))
8756 or else Is_Interface (Parent_Base)
8757 then
8758 Freeze_Before (New_Decl, Parent_Type);
8759 end if;
8760
8761 -- Note that this call passes False for the Derive_Subps parameter
8762 -- because subprogram derivation is deferred until after creating
8763 -- the subtype (see below).
8764
8765 Build_Derived_Type
8766 (New_Decl, Parent_Base, New_Base,
8767 Is_Completion => False, Derive_Subps => False);
8768
8769 -- ??? This needs re-examination to determine whether the
8770 -- above call can simply be replaced by a call to Analyze.
8771
8772 Set_Analyzed (New_Decl);
8773
8774 -- Insert and analyze the declaration for the constrained subtype
8775
8776 if Constraint_Present then
8777 New_Indic :=
8778 Make_Subtype_Indication (Loc,
8779 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8780 Constraint => Relocate_Node (Constraint (Indic)));
8781
8782 else
8783 declare
8784 Constr_List : constant List_Id := New_List;
8785 C : Elmt_Id;
8786 Expr : Node_Id;
8787
8788 begin
8789 C := First_Elmt (Discriminant_Constraint (Parent_Type));
8790 while Present (C) loop
8791 Expr := Node (C);
8792
8793 -- It is safe here to call New_Copy_Tree since we called
8794 -- Force_Evaluation on each constraint previously
8795 -- in Build_Discriminant_Constraints.
8796
8797 Append (New_Copy_Tree (Expr), To => Constr_List);
8798
8799 Next_Elmt (C);
8800 end loop;
8801
8802 New_Indic :=
8803 Make_Subtype_Indication (Loc,
8804 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8805 Constraint =>
8806 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
8807 end;
8808 end if;
8809
8810 Rewrite (N,
8811 Make_Subtype_Declaration (Loc,
8812 Defining_Identifier => Derived_Type,
8813 Subtype_Indication => New_Indic));
8814
8815 Analyze (N);
8816
8817 -- Derivation of subprograms must be delayed until the full subtype
8818 -- has been established, to ensure proper overriding of subprograms
8819 -- inherited by full types. If the derivations occurred as part of
8820 -- the call to Build_Derived_Type above, then the check for type
8821 -- conformance would fail because earlier primitive subprograms
8822 -- could still refer to the full type prior the change to the new
8823 -- subtype and hence would not match the new base type created here.
8824 -- Subprograms are not derived, however, when Derive_Subps is False
8825 -- (since otherwise there could be redundant derivations).
8826
8827 if Derive_Subps then
8828 Derive_Subprograms (Parent_Type, Derived_Type);
8829 end if;
8830
8831 -- For tagged types the Discriminant_Constraint of the new base itype
8832 -- is inherited from the first subtype so that no subtype conformance
8833 -- problem arise when the first subtype overrides primitive
8834 -- operations inherited by the implicit base type.
8835
8836 if Is_Tagged then
8837 Set_Discriminant_Constraint
8838 (New_Base, Discriminant_Constraint (Derived_Type));
8839 end if;
8840
8841 return;
8842 end if;
8843
8844 -- If we get here Derived_Type will have no discriminants or it will be
8845 -- a discriminated unconstrained base type.
8846
8847 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8848
8849 if Is_Tagged then
8850
8851 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8852 -- The declaration of a specific descendant of an interface type
8853 -- freezes the interface type (RM 13.14).
8854
8855 if not Private_Extension or else Is_Interface (Parent_Base) then
8856 Freeze_Before (N, Parent_Type);
8857 end if;
8858
8859 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8860 -- cannot be declared at a deeper level than its parent type is
8861 -- removed. The check on derivation within a generic body is also
8862 -- relaxed, but there's a restriction that a derived tagged type
8863 -- cannot be declared in a generic body if it's derived directly
8864 -- or indirectly from a formal type of that generic.
8865
8866 if Ada_Version >= Ada_2005 then
8867 if Present (Enclosing_Generic_Body (Derived_Type)) then
8868 declare
8869 Ancestor_Type : Entity_Id;
8870
8871 begin
8872 -- Check to see if any ancestor of the derived type is a
8873 -- formal type.
8874
8875 Ancestor_Type := Parent_Type;
8876 while not Is_Generic_Type (Ancestor_Type)
8877 and then Etype (Ancestor_Type) /= Ancestor_Type
8878 loop
8879 Ancestor_Type := Etype (Ancestor_Type);
8880 end loop;
8881
8882 -- If the derived type does have a formal type as an
8883 -- ancestor, then it's an error if the derived type is
8884 -- declared within the body of the generic unit that
8885 -- declares the formal type in its generic formal part. It's
8886 -- sufficient to check whether the ancestor type is declared
8887 -- inside the same generic body as the derived type (such as
8888 -- within a nested generic spec), in which case the
8889 -- derivation is legal. If the formal type is declared
8890 -- outside of that generic body, then it's guaranteed that
8891 -- the derived type is declared within the generic body of
8892 -- the generic unit declaring the formal type.
8893
8894 if Is_Generic_Type (Ancestor_Type)
8895 and then Enclosing_Generic_Body (Ancestor_Type) /=
8896 Enclosing_Generic_Body (Derived_Type)
8897 then
8898 Error_Msg_NE
8899 ("parent type of& must not be descendant of formal type"
8900 & " of an enclosing generic body",
8901 Indic, Derived_Type);
8902 end if;
8903 end;
8904 end if;
8905
8906 elsif Type_Access_Level (Derived_Type) /=
8907 Type_Access_Level (Parent_Type)
8908 and then not Is_Generic_Type (Derived_Type)
8909 then
8910 if Is_Controlled (Parent_Type) then
8911 Error_Msg_N
8912 ("controlled type must be declared at the library level",
8913 Indic);
8914 else
8915 Error_Msg_N
8916 ("type extension at deeper accessibility level than parent",
8917 Indic);
8918 end if;
8919
8920 else
8921 declare
8922 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
8923 begin
8924 if Present (GB)
8925 and then GB /= Enclosing_Generic_Body (Parent_Base)
8926 then
8927 Error_Msg_NE
8928 ("parent type of& must not be outside generic body"
8929 & " (RM 3.9.1(4))",
8930 Indic, Derived_Type);
8931 end if;
8932 end;
8933 end if;
8934 end if;
8935
8936 -- Ada 2005 (AI-251)
8937
8938 if Ada_Version >= Ada_2005 and then Is_Tagged then
8939
8940 -- "The declaration of a specific descendant of an interface type
8941 -- freezes the interface type" (RM 13.14).
8942
8943 declare
8944 Iface : Node_Id;
8945 begin
8946 if Is_Non_Empty_List (Interface_List (Type_Def)) then
8947 Iface := First (Interface_List (Type_Def));
8948 while Present (Iface) loop
8949 Freeze_Before (N, Etype (Iface));
8950 Next (Iface);
8951 end loop;
8952 end if;
8953 end;
8954 end if;
8955
8956 -- STEP 1b : preliminary cleanup of the full view of private types
8957
8958 -- If the type is already marked as having discriminants, then it's the
8959 -- completion of a private type or private extension and we need to
8960 -- retain the discriminants from the partial view if the current
8961 -- declaration has Discriminant_Specifications so that we can verify
8962 -- conformance. However, we must remove any existing components that
8963 -- were inherited from the parent (and attached in Copy_And_Swap)
8964 -- because the full type inherits all appropriate components anyway, and
8965 -- we do not want the partial view's components interfering.
8966
8967 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
8968 Discrim := First_Discriminant (Derived_Type);
8969 loop
8970 Last_Discrim := Discrim;
8971 Next_Discriminant (Discrim);
8972 exit when No (Discrim);
8973 end loop;
8974
8975 Set_Last_Entity (Derived_Type, Last_Discrim);
8976
8977 -- In all other cases wipe out the list of inherited components (even
8978 -- inherited discriminants), it will be properly rebuilt here.
8979
8980 else
8981 Set_First_Entity (Derived_Type, Empty);
8982 Set_Last_Entity (Derived_Type, Empty);
8983 end if;
8984
8985 -- STEP 1c: Initialize some flags for the Derived_Type
8986
8987 -- The following flags must be initialized here so that
8988 -- Process_Discriminants can check that discriminants of tagged types do
8989 -- not have a default initial value and that access discriminants are
8990 -- only specified for limited records. For completeness, these flags are
8991 -- also initialized along with all the other flags below.
8992
8993 -- AI-419: Limitedness is not inherited from an interface parent, so to
8994 -- be limited in that case the type must be explicitly declared as
8995 -- limited. However, task and protected interfaces are always limited.
8996
8997 if Limited_Present (Type_Def) then
8998 Set_Is_Limited_Record (Derived_Type);
8999
9000 elsif Is_Limited_Record (Parent_Type)
9001 or else (Present (Full_View (Parent_Type))
9002 and then Is_Limited_Record (Full_View (Parent_Type)))
9003 then
9004 if not Is_Interface (Parent_Type)
9005 or else Is_Synchronized_Interface (Parent_Type)
9006 or else Is_Protected_Interface (Parent_Type)
9007 or else Is_Task_Interface (Parent_Type)
9008 then
9009 Set_Is_Limited_Record (Derived_Type);
9010 end if;
9011 end if;
9012
9013 -- STEP 2a: process discriminants of derived type if any
9014
9015 Push_Scope (Derived_Type);
9016
9017 if Discriminant_Specs then
9018 Set_Has_Unknown_Discriminants (Derived_Type, False);
9019
9020 -- The following call initializes fields Has_Discriminants and
9021 -- Discriminant_Constraint, unless we are processing the completion
9022 -- of a private type declaration.
9023
9024 Check_Or_Process_Discriminants (N, Derived_Type);
9025
9026 -- For untagged types, the constraint on the Parent_Type must be
9027 -- present and is used to rename the discriminants.
9028
9029 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
9030 Error_Msg_N ("untagged parent must have discriminants", Indic);
9031
9032 elsif not Is_Tagged and then not Constraint_Present then
9033 Error_Msg_N
9034 ("discriminant constraint needed for derived untagged records",
9035 Indic);
9036
9037 -- Otherwise the parent subtype must be constrained unless we have a
9038 -- private extension.
9039
9040 elsif not Constraint_Present
9041 and then not Private_Extension
9042 and then not Is_Constrained (Parent_Type)
9043 then
9044 Error_Msg_N
9045 ("unconstrained type not allowed in this context", Indic);
9046
9047 elsif Constraint_Present then
9048 -- The following call sets the field Corresponding_Discriminant
9049 -- for the discriminants in the Derived_Type.
9050
9051 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
9052
9053 -- For untagged types all new discriminants must rename
9054 -- discriminants in the parent. For private extensions new
9055 -- discriminants cannot rename old ones (implied by [7.3(13)]).
9056
9057 Discrim := First_Discriminant (Derived_Type);
9058 while Present (Discrim) loop
9059 if not Is_Tagged
9060 and then No (Corresponding_Discriminant (Discrim))
9061 then
9062 Error_Msg_N
9063 ("new discriminants must constrain old ones", Discrim);
9064
9065 elsif Private_Extension
9066 and then Present (Corresponding_Discriminant (Discrim))
9067 then
9068 Error_Msg_N
9069 ("only static constraints allowed for parent"
9070 & " discriminants in the partial view", Indic);
9071 exit;
9072 end if;
9073
9074 -- If a new discriminant is used in the constraint, then its
9075 -- subtype must be statically compatible with the parent
9076 -- discriminant's subtype (3.7(15)).
9077
9078 -- However, if the record contains an array constrained by
9079 -- the discriminant but with some different bound, the compiler
9080 -- tries to create a smaller range for the discriminant type.
9081 -- (See exp_ch3.Adjust_Discriminants). In this case, where
9082 -- the discriminant type is a scalar type, the check must use
9083 -- the original discriminant type in the parent declaration.
9084
9085 declare
9086 Corr_Disc : constant Entity_Id :=
9087 Corresponding_Discriminant (Discrim);
9088 Disc_Type : constant Entity_Id := Etype (Discrim);
9089 Corr_Type : Entity_Id;
9090
9091 begin
9092 if Present (Corr_Disc) then
9093 if Is_Scalar_Type (Disc_Type) then
9094 Corr_Type :=
9095 Entity (Discriminant_Type (Parent (Corr_Disc)));
9096 else
9097 Corr_Type := Etype (Corr_Disc);
9098 end if;
9099
9100 if not
9101 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
9102 then
9103 Error_Msg_N
9104 ("subtype must be compatible "
9105 & "with parent discriminant",
9106 Discrim);
9107 end if;
9108 end if;
9109 end;
9110
9111 Next_Discriminant (Discrim);
9112 end loop;
9113
9114 -- Check whether the constraints of the full view statically
9115 -- match those imposed by the parent subtype [7.3(13)].
9116
9117 if Present (Stored_Constraint (Derived_Type)) then
9118 declare
9119 C1, C2 : Elmt_Id;
9120
9121 begin
9122 C1 := First_Elmt (Discs);
9123 C2 := First_Elmt (Stored_Constraint (Derived_Type));
9124 while Present (C1) and then Present (C2) loop
9125 if not
9126 Fully_Conformant_Expressions (Node (C1), Node (C2))
9127 then
9128 Error_Msg_N
9129 ("not conformant with previous declaration",
9130 Node (C1));
9131 end if;
9132
9133 Next_Elmt (C1);
9134 Next_Elmt (C2);
9135 end loop;
9136 end;
9137 end if;
9138 end if;
9139
9140 -- STEP 2b: No new discriminants, inherit discriminants if any
9141
9142 else
9143 if Private_Extension then
9144 Set_Has_Unknown_Discriminants
9145 (Derived_Type,
9146 Has_Unknown_Discriminants (Parent_Type)
9147 or else Unknown_Discriminants_Present (N));
9148
9149 -- The partial view of the parent may have unknown discriminants,
9150 -- but if the full view has discriminants and the parent type is
9151 -- in scope they must be inherited.
9152
9153 elsif Has_Unknown_Discriminants (Parent_Type)
9154 and then
9155 (not Has_Discriminants (Parent_Type)
9156 or else not In_Open_Scopes (Scope (Parent_Base)))
9157 then
9158 Set_Has_Unknown_Discriminants (Derived_Type);
9159 end if;
9160
9161 if not Has_Unknown_Discriminants (Derived_Type)
9162 and then not Has_Unknown_Discriminants (Parent_Base)
9163 and then Has_Discriminants (Parent_Type)
9164 then
9165 Inherit_Discrims := True;
9166 Set_Has_Discriminants
9167 (Derived_Type, True);
9168 Set_Discriminant_Constraint
9169 (Derived_Type, Discriminant_Constraint (Parent_Base));
9170 end if;
9171
9172 -- The following test is true for private types (remember
9173 -- transformation 5. is not applied to those) and in an error
9174 -- situation.
9175
9176 if Constraint_Present then
9177 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
9178 end if;
9179
9180 -- For now mark a new derived type as constrained only if it has no
9181 -- discriminants. At the end of Build_Derived_Record_Type we properly
9182 -- set this flag in the case of private extensions. See comments in
9183 -- point 9. just before body of Build_Derived_Record_Type.
9184
9185 Set_Is_Constrained
9186 (Derived_Type,
9187 not (Inherit_Discrims
9188 or else Has_Unknown_Discriminants (Derived_Type)));
9189 end if;
9190
9191 -- STEP 3: initialize fields of derived type
9192
9193 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
9194 Set_Stored_Constraint (Derived_Type, No_Elist);
9195
9196 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
9197 -- but cannot be interfaces
9198
9199 if not Private_Extension
9200 and then Ekind (Derived_Type) /= E_Private_Type
9201 and then Ekind (Derived_Type) /= E_Limited_Private_Type
9202 then
9203 if Interface_Present (Type_Def) then
9204 Analyze_Interface_Declaration (Derived_Type, Type_Def);
9205 end if;
9206
9207 Set_Interfaces (Derived_Type, No_Elist);
9208 end if;
9209
9210 -- Fields inherited from the Parent_Type
9211
9212 Set_Has_Specified_Layout
9213 (Derived_Type, Has_Specified_Layout (Parent_Type));
9214 Set_Is_Limited_Composite
9215 (Derived_Type, Is_Limited_Composite (Parent_Type));
9216 Set_Is_Private_Composite
9217 (Derived_Type, Is_Private_Composite (Parent_Type));
9218
9219 if Is_Tagged_Type (Parent_Type) then
9220 Set_No_Tagged_Streams_Pragma
9221 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9222 end if;
9223
9224 -- Fields inherited from the Parent_Base
9225
9226 Set_Has_Controlled_Component
9227 (Derived_Type, Has_Controlled_Component (Parent_Base));
9228 Set_Has_Non_Standard_Rep
9229 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
9230 Set_Has_Primitive_Operations
9231 (Derived_Type, Has_Primitive_Operations (Parent_Base));
9232
9233 -- Set fields for private derived types
9234
9235 if Is_Private_Type (Derived_Type) then
9236 Set_Depends_On_Private (Derived_Type, True);
9237 Set_Private_Dependents (Derived_Type, New_Elmt_List);
9238 end if;
9239
9240 -- Inherit fields for non-private types. If this is the completion of a
9241 -- derivation from a private type, the parent itself is private and the
9242 -- attributes come from its full view, which must be present.
9243
9244 if Is_Record_Type (Derived_Type) then
9245 declare
9246 Parent_Full : Entity_Id;
9247
9248 begin
9249 if Is_Private_Type (Parent_Base)
9250 and then not Is_Record_Type (Parent_Base)
9251 then
9252 Parent_Full := Full_View (Parent_Base);
9253 else
9254 Parent_Full := Parent_Base;
9255 end if;
9256
9257 Set_Component_Alignment
9258 (Derived_Type, Component_Alignment (Parent_Full));
9259 Set_C_Pass_By_Copy
9260 (Derived_Type, C_Pass_By_Copy (Parent_Full));
9261 Set_Has_Complex_Representation
9262 (Derived_Type, Has_Complex_Representation (Parent_Full));
9263
9264 -- For untagged types, inherit the layout by default to avoid
9265 -- costly changes of representation for type conversions.
9266
9267 if not Is_Tagged then
9268 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Full));
9269 Set_No_Reordering (Derived_Type, No_Reordering (Parent_Full));
9270 end if;
9271 end;
9272 end if;
9273
9274 -- Set fields for tagged types
9275
9276 if Is_Tagged then
9277 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
9278
9279 -- All tagged types defined in Ada.Finalization are controlled
9280
9281 if Chars (Scope (Derived_Type)) = Name_Finalization
9282 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
9283 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
9284 then
9285 Set_Is_Controlled_Active (Derived_Type);
9286 else
9287 Set_Is_Controlled_Active
9288 (Derived_Type, Is_Controlled_Active (Parent_Base));
9289 end if;
9290
9291 -- Minor optimization: there is no need to generate the class-wide
9292 -- entity associated with an underlying record view.
9293
9294 if not Is_Underlying_Record_View (Derived_Type) then
9295 Make_Class_Wide_Type (Derived_Type);
9296 end if;
9297
9298 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
9299
9300 if Has_Discriminants (Derived_Type)
9301 and then Constraint_Present
9302 then
9303 Set_Stored_Constraint
9304 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
9305 end if;
9306
9307 if Ada_Version >= Ada_2005 then
9308 declare
9309 Ifaces_List : Elist_Id;
9310
9311 begin
9312 -- Checks rules 3.9.4 (13/2 and 14/2)
9313
9314 if Comes_From_Source (Derived_Type)
9315 and then not Is_Private_Type (Derived_Type)
9316 and then Is_Interface (Parent_Type)
9317 and then not Is_Interface (Derived_Type)
9318 then
9319 if Is_Task_Interface (Parent_Type) then
9320 Error_Msg_N
9321 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
9322 Derived_Type);
9323
9324 elsif Is_Protected_Interface (Parent_Type) then
9325 Error_Msg_N
9326 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
9327 Derived_Type);
9328 end if;
9329 end if;
9330
9331 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
9332
9333 Check_Interfaces (N, Type_Def);
9334
9335 -- Ada 2005 (AI-251): Collect the list of progenitors that are
9336 -- not already in the parents.
9337
9338 Collect_Interfaces
9339 (T => Derived_Type,
9340 Ifaces_List => Ifaces_List,
9341 Exclude_Parents => True);
9342
9343 Set_Interfaces (Derived_Type, Ifaces_List);
9344
9345 -- If the derived type is the anonymous type created for
9346 -- a declaration whose parent has a constraint, propagate
9347 -- the interface list to the source type. This must be done
9348 -- prior to the completion of the analysis of the source type
9349 -- because the components in the extension may contain current
9350 -- instances whose legality depends on some ancestor.
9351
9352 if Is_Itype (Derived_Type) then
9353 declare
9354 Def : constant Node_Id :=
9355 Associated_Node_For_Itype (Derived_Type);
9356 begin
9357 if Present (Def)
9358 and then Nkind (Def) = N_Full_Type_Declaration
9359 then
9360 Set_Interfaces
9361 (Defining_Identifier (Def), Ifaces_List);
9362 end if;
9363 end;
9364 end if;
9365
9366 -- A type extension is automatically Ghost when one of its
9367 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
9368 -- also inherited when the parent type is Ghost, but this is
9369 -- done in Build_Derived_Type as the mechanism also handles
9370 -- untagged derivations.
9371
9372 if Implements_Ghost_Interface (Derived_Type) then
9373 Set_Is_Ghost_Entity (Derived_Type);
9374 end if;
9375 end;
9376 end if;
9377 end if;
9378
9379 -- STEP 4: Inherit components from the parent base and constrain them.
9380 -- Apply the second transformation described in point 6. above.
9381
9382 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
9383 or else not Has_Discriminants (Parent_Type)
9384 or else not Is_Constrained (Parent_Type)
9385 then
9386 Constrs := Discs;
9387 else
9388 Constrs := Discriminant_Constraint (Parent_Type);
9389 end if;
9390
9391 Assoc_List :=
9392 Inherit_Components
9393 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
9394
9395 -- STEP 5a: Copy the parent record declaration for untagged types
9396
9397 Set_Has_Implicit_Dereference
9398 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
9399
9400 if not Is_Tagged then
9401
9402 -- Discriminant_Constraint (Derived_Type) has been properly
9403 -- constructed. Save it and temporarily set it to Empty because we
9404 -- do not want the call to New_Copy_Tree below to mess this list.
9405
9406 if Has_Discriminants (Derived_Type) then
9407 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
9408 Set_Discriminant_Constraint (Derived_Type, No_Elist);
9409 else
9410 Save_Discr_Constr := No_Elist;
9411 end if;
9412
9413 -- Save the Etype field of Derived_Type. It is correctly set now,
9414 -- but the call to New_Copy tree may remap it to point to itself,
9415 -- which is not what we want. Ditto for the Next_Entity field.
9416
9417 Save_Etype := Etype (Derived_Type);
9418 Save_Next_Entity := Next_Entity (Derived_Type);
9419
9420 -- Assoc_List maps all stored discriminants in the Parent_Base to
9421 -- stored discriminants in the Derived_Type. It is fundamental that
9422 -- no types or itypes with discriminants other than the stored
9423 -- discriminants appear in the entities declared inside
9424 -- Derived_Type, since the back end cannot deal with it.
9425
9426 New_Decl :=
9427 New_Copy_Tree
9428 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
9429 Copy_Dimensions_Of_Components (Derived_Type);
9430
9431 -- Restore the fields saved prior to the New_Copy_Tree call
9432 -- and compute the stored constraint.
9433
9434 Set_Etype (Derived_Type, Save_Etype);
9435 Set_Next_Entity (Derived_Type, Save_Next_Entity);
9436
9437 if Has_Discriminants (Derived_Type) then
9438 Set_Discriminant_Constraint
9439 (Derived_Type, Save_Discr_Constr);
9440 Set_Stored_Constraint
9441 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
9442 Replace_Components (Derived_Type, New_Decl);
9443 end if;
9444
9445 -- Insert the new derived type declaration
9446
9447 Rewrite (N, New_Decl);
9448
9449 -- STEP 5b: Complete the processing for record extensions in generics
9450
9451 -- There is no completion for record extensions declared in the
9452 -- parameter part of a generic, so we need to complete processing for
9453 -- these generic record extensions here. The Record_Type_Definition call
9454 -- will change the Ekind of the components from E_Void to E_Component.
9455
9456 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
9457 Record_Type_Definition (Empty, Derived_Type);
9458
9459 -- STEP 5c: Process the record extension for non private tagged types
9460
9461 elsif not Private_Extension then
9462 Expand_Record_Extension (Derived_Type, Type_Def);
9463
9464 -- Note : previously in ASIS mode we set the Parent_Subtype of the
9465 -- derived type to propagate some semantic information. This led
9466 -- to other ASIS failures and has been removed.
9467
9468 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
9469 -- implemented interfaces if we are in expansion mode
9470
9471 if Expander_Active
9472 and then Has_Interfaces (Derived_Type)
9473 then
9474 Add_Interface_Tag_Components (N, Derived_Type);
9475 end if;
9476
9477 -- Analyze the record extension
9478
9479 Record_Type_Definition
9480 (Record_Extension_Part (Type_Def), Derived_Type);
9481 end if;
9482
9483 End_Scope;
9484
9485 -- Nothing else to do if there is an error in the derivation.
9486 -- An unusual case: the full view may be derived from a type in an
9487 -- instance, when the partial view was used illegally as an actual
9488 -- in that instance, leading to a circular definition.
9489
9490 if Etype (Derived_Type) = Any_Type
9491 or else Etype (Parent_Type) = Derived_Type
9492 then
9493 return;
9494 end if;
9495
9496 -- Set delayed freeze and then derive subprograms, we need to do
9497 -- this in this order so that derived subprograms inherit the
9498 -- derived freeze if necessary.
9499
9500 Set_Has_Delayed_Freeze (Derived_Type);
9501
9502 if Derive_Subps then
9503 Derive_Subprograms (Parent_Type, Derived_Type);
9504 end if;
9505
9506 -- If we have a private extension which defines a constrained derived
9507 -- type mark as constrained here after we have derived subprograms. See
9508 -- comment on point 9. just above the body of Build_Derived_Record_Type.
9509
9510 if Private_Extension and then Inherit_Discrims then
9511 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
9512 Set_Is_Constrained (Derived_Type, True);
9513 Set_Discriminant_Constraint (Derived_Type, Discs);
9514
9515 elsif Is_Constrained (Parent_Type) then
9516 Set_Is_Constrained
9517 (Derived_Type, True);
9518 Set_Discriminant_Constraint
9519 (Derived_Type, Discriminant_Constraint (Parent_Type));
9520 end if;
9521 end if;
9522
9523 -- Update the class-wide type, which shares the now-completed entity
9524 -- list with its specific type. In case of underlying record views,
9525 -- we do not generate the corresponding class wide entity.
9526
9527 if Is_Tagged
9528 and then not Is_Underlying_Record_View (Derived_Type)
9529 then
9530 Set_First_Entity
9531 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
9532 Set_Last_Entity
9533 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
9534 end if;
9535
9536 Check_Function_Writable_Actuals (N);
9537 end Build_Derived_Record_Type;
9538
9539 ------------------------
9540 -- Build_Derived_Type --
9541 ------------------------
9542
9543 procedure Build_Derived_Type
9544 (N : Node_Id;
9545 Parent_Type : Entity_Id;
9546 Derived_Type : Entity_Id;
9547 Is_Completion : Boolean;
9548 Derive_Subps : Boolean := True)
9549 is
9550 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
9551
9552 begin
9553 -- Set common attributes
9554
9555 Set_Scope (Derived_Type, Current_Scope);
9556 Set_Etype (Derived_Type, Parent_Base);
9557 Set_Ekind (Derived_Type, Ekind (Parent_Base));
9558 Propagate_Concurrent_Flags (Derived_Type, Parent_Base);
9559
9560 Set_Size_Info (Derived_Type, Parent_Type);
9561 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
9562
9563 Set_Is_Controlled_Active
9564 (Derived_Type, Is_Controlled_Active (Parent_Type));
9565
9566 Set_Disable_Controlled (Derived_Type, Disable_Controlled (Parent_Type));
9567 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
9568 Set_Is_Volatile (Derived_Type, Is_Volatile (Parent_Type));
9569
9570 if Is_Tagged_Type (Derived_Type) then
9571 Set_No_Tagged_Streams_Pragma
9572 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9573 end if;
9574
9575 -- If the parent has primitive routines, set the derived type link
9576
9577 if Has_Primitive_Operations (Parent_Type) then
9578 Set_Derived_Type_Link (Parent_Base, Derived_Type);
9579 end if;
9580
9581 -- If the parent type is a private subtype, the convention on the base
9582 -- type may be set in the private part, and not propagated to the
9583 -- subtype until later, so we obtain the convention from the base type.
9584
9585 Set_Convention (Derived_Type, Convention (Parent_Base));
9586
9587 -- Set SSO default for record or array type
9588
9589 if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type))
9590 and then Is_Base_Type (Derived_Type)
9591 then
9592 Set_Default_SSO (Derived_Type);
9593 end if;
9594
9595 -- A derived type inherits the Default_Initial_Condition pragma coming
9596 -- from any parent type within the derivation chain.
9597
9598 if Has_DIC (Parent_Type) then
9599 Set_Has_Inherited_DIC (Derived_Type);
9600 end if;
9601
9602 -- A derived type inherits any class-wide invariants coming from a
9603 -- parent type or an interface. Note that the invariant procedure of
9604 -- the parent type should not be inherited because the derived type may
9605 -- define invariants of its own.
9606
9607 if not Is_Interface (Derived_Type) then
9608 if Has_Inherited_Invariants (Parent_Type)
9609 or else Has_Inheritable_Invariants (Parent_Type)
9610 then
9611 Set_Has_Inherited_Invariants (Derived_Type);
9612
9613 elsif Is_Concurrent_Type (Derived_Type)
9614 or else Is_Tagged_Type (Derived_Type)
9615 then
9616 declare
9617 Iface : Entity_Id;
9618 Ifaces : Elist_Id;
9619 Iface_Elmt : Elmt_Id;
9620
9621 begin
9622 Collect_Interfaces
9623 (T => Derived_Type,
9624 Ifaces_List => Ifaces,
9625 Exclude_Parents => True);
9626
9627 if Present (Ifaces) then
9628 Iface_Elmt := First_Elmt (Ifaces);
9629 while Present (Iface_Elmt) loop
9630 Iface := Node (Iface_Elmt);
9631
9632 if Has_Inheritable_Invariants (Iface) then
9633 Set_Has_Inherited_Invariants (Derived_Type);
9634 exit;
9635 end if;
9636
9637 Next_Elmt (Iface_Elmt);
9638 end loop;
9639 end if;
9640 end;
9641 end if;
9642 end if;
9643
9644 -- We similarly inherit predicates. Note that for scalar derived types
9645 -- the predicate is inherited from the first subtype, and not from its
9646 -- (anonymous) base type.
9647
9648 if Has_Predicates (Parent_Type)
9649 or else Has_Predicates (First_Subtype (Parent_Type))
9650 then
9651 Set_Has_Predicates (Derived_Type);
9652 end if;
9653
9654 -- The derived type inherits representation clauses from the parent
9655 -- type, and from any interfaces.
9656
9657 Inherit_Rep_Item_Chain (Derived_Type, Parent_Type);
9658
9659 declare
9660 Iface : Node_Id := First (Abstract_Interface_List (Derived_Type));
9661 begin
9662 while Present (Iface) loop
9663 Inherit_Rep_Item_Chain (Derived_Type, Entity (Iface));
9664 Next (Iface);
9665 end loop;
9666 end;
9667
9668 -- If the parent type has delayed rep aspects, then mark the derived
9669 -- type as possibly inheriting a delayed rep aspect.
9670
9671 if Has_Delayed_Rep_Aspects (Parent_Type) then
9672 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
9673 end if;
9674
9675 -- A derived type becomes Ghost when its parent type is also Ghost
9676 -- (SPARK RM 6.9(9)). Note that the Ghost-related attributes are not
9677 -- directly inherited because the Ghost policy in effect may differ.
9678
9679 if Is_Ghost_Entity (Parent_Type) then
9680 Set_Is_Ghost_Entity (Derived_Type);
9681 end if;
9682
9683 -- Type dependent processing
9684
9685 case Ekind (Parent_Type) is
9686 when Numeric_Kind =>
9687 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
9688
9689 when Array_Kind =>
9690 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
9691
9692 when Class_Wide_Kind
9693 | E_Record_Subtype
9694 | E_Record_Type
9695 =>
9696 Build_Derived_Record_Type
9697 (N, Parent_Type, Derived_Type, Derive_Subps);
9698 return;
9699
9700 when Enumeration_Kind =>
9701 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
9702
9703 when Access_Kind =>
9704 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
9705
9706 when Incomplete_Or_Private_Kind =>
9707 Build_Derived_Private_Type
9708 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
9709
9710 -- For discriminated types, the derivation includes deriving
9711 -- primitive operations. For others it is done below.
9712
9713 if Is_Tagged_Type (Parent_Type)
9714 or else Has_Discriminants (Parent_Type)
9715 or else (Present (Full_View (Parent_Type))
9716 and then Has_Discriminants (Full_View (Parent_Type)))
9717 then
9718 return;
9719 end if;
9720
9721 when Concurrent_Kind =>
9722 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
9723
9724 when others =>
9725 raise Program_Error;
9726 end case;
9727
9728 -- Nothing more to do if some error occurred
9729
9730 if Etype (Derived_Type) = Any_Type then
9731 return;
9732 end if;
9733
9734 -- Set delayed freeze and then derive subprograms, we need to do this
9735 -- in this order so that derived subprograms inherit the derived freeze
9736 -- if necessary.
9737
9738 Set_Has_Delayed_Freeze (Derived_Type);
9739
9740 if Derive_Subps then
9741 Derive_Subprograms (Parent_Type, Derived_Type);
9742 end if;
9743
9744 Set_Has_Primitive_Operations
9745 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
9746 end Build_Derived_Type;
9747
9748 -----------------------
9749 -- Build_Discriminal --
9750 -----------------------
9751
9752 procedure Build_Discriminal (Discrim : Entity_Id) is
9753 D_Minal : Entity_Id;
9754 CR_Disc : Entity_Id;
9755
9756 begin
9757 -- A discriminal has the same name as the discriminant
9758
9759 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9760
9761 Set_Ekind (D_Minal, E_In_Parameter);
9762 Set_Mechanism (D_Minal, Default_Mechanism);
9763 Set_Etype (D_Minal, Etype (Discrim));
9764 Set_Scope (D_Minal, Current_Scope);
9765 Set_Parent (D_Minal, Parent (Discrim));
9766
9767 Set_Discriminal (Discrim, D_Minal);
9768 Set_Discriminal_Link (D_Minal, Discrim);
9769
9770 -- For task types, build at once the discriminants of the corresponding
9771 -- record, which are needed if discriminants are used in entry defaults
9772 -- and in family bounds.
9773
9774 if Is_Concurrent_Type (Current_Scope)
9775 or else
9776 Is_Limited_Type (Current_Scope)
9777 then
9778 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9779
9780 Set_Ekind (CR_Disc, E_In_Parameter);
9781 Set_Mechanism (CR_Disc, Default_Mechanism);
9782 Set_Etype (CR_Disc, Etype (Discrim));
9783 Set_Scope (CR_Disc, Current_Scope);
9784 Set_Discriminal_Link (CR_Disc, Discrim);
9785 Set_CR_Discriminant (Discrim, CR_Disc);
9786 end if;
9787 end Build_Discriminal;
9788
9789 ------------------------------------
9790 -- Build_Discriminant_Constraints --
9791 ------------------------------------
9792
9793 function Build_Discriminant_Constraints
9794 (T : Entity_Id;
9795 Def : Node_Id;
9796 Derived_Def : Boolean := False) return Elist_Id
9797 is
9798 C : constant Node_Id := Constraint (Def);
9799 Nb_Discr : constant Nat := Number_Discriminants (T);
9800
9801 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
9802 -- Saves the expression corresponding to a given discriminant in T
9803
9804 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
9805 -- Return the Position number within array Discr_Expr of a discriminant
9806 -- D within the discriminant list of the discriminated type T.
9807
9808 procedure Process_Discriminant_Expression
9809 (Expr : Node_Id;
9810 D : Entity_Id);
9811 -- If this is a discriminant constraint on a partial view, do not
9812 -- generate an overflow check on the discriminant expression. The check
9813 -- will be generated when constraining the full view. Otherwise the
9814 -- backend creates duplicate symbols for the temporaries corresponding
9815 -- to the expressions to be checked, causing spurious assembler errors.
9816
9817 ------------------
9818 -- Pos_Of_Discr --
9819 ------------------
9820
9821 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
9822 Disc : Entity_Id;
9823
9824 begin
9825 Disc := First_Discriminant (T);
9826 for J in Discr_Expr'Range loop
9827 if Disc = D then
9828 return J;
9829 end if;
9830
9831 Next_Discriminant (Disc);
9832 end loop;
9833
9834 -- Note: Since this function is called on discriminants that are
9835 -- known to belong to the discriminated type, falling through the
9836 -- loop with no match signals an internal compiler error.
9837
9838 raise Program_Error;
9839 end Pos_Of_Discr;
9840
9841 -------------------------------------
9842 -- Process_Discriminant_Expression --
9843 -------------------------------------
9844
9845 procedure Process_Discriminant_Expression
9846 (Expr : Node_Id;
9847 D : Entity_Id)
9848 is
9849 BDT : constant Entity_Id := Base_Type (Etype (D));
9850
9851 begin
9852 -- If this is a discriminant constraint on a partial view, do
9853 -- not generate an overflow on the discriminant expression. The
9854 -- check will be generated when constraining the full view.
9855
9856 if Is_Private_Type (T)
9857 and then Present (Full_View (T))
9858 then
9859 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
9860 else
9861 Analyze_And_Resolve (Expr, BDT);
9862 end if;
9863 end Process_Discriminant_Expression;
9864
9865 -- Declarations local to Build_Discriminant_Constraints
9866
9867 Discr : Entity_Id;
9868 E : Entity_Id;
9869 Elist : constant Elist_Id := New_Elmt_List;
9870
9871 Constr : Node_Id;
9872 Expr : Node_Id;
9873 Id : Node_Id;
9874 Position : Nat;
9875 Found : Boolean;
9876
9877 Discrim_Present : Boolean := False;
9878
9879 -- Start of processing for Build_Discriminant_Constraints
9880
9881 begin
9882 -- The following loop will process positional associations only.
9883 -- For a positional association, the (single) discriminant is
9884 -- implicitly specified by position, in textual order (RM 3.7.2).
9885
9886 Discr := First_Discriminant (T);
9887 Constr := First (Constraints (C));
9888 for D in Discr_Expr'Range loop
9889 exit when Nkind (Constr) = N_Discriminant_Association;
9890
9891 if No (Constr) then
9892 Error_Msg_N ("too few discriminants given in constraint", C);
9893 return New_Elmt_List;
9894
9895 elsif Nkind (Constr) = N_Range
9896 or else (Nkind (Constr) = N_Attribute_Reference
9897 and then Attribute_Name (Constr) = Name_Range)
9898 then
9899 Error_Msg_N
9900 ("a range is not a valid discriminant constraint", Constr);
9901 Discr_Expr (D) := Error;
9902
9903 elsif Nkind (Constr) = N_Subtype_Indication then
9904 Error_Msg_N
9905 ("a subtype indication is not a valid discriminant constraint",
9906 Constr);
9907 Discr_Expr (D) := Error;
9908
9909 else
9910 Process_Discriminant_Expression (Constr, Discr);
9911 Discr_Expr (D) := Constr;
9912 end if;
9913
9914 Next_Discriminant (Discr);
9915 Next (Constr);
9916 end loop;
9917
9918 if No (Discr) and then Present (Constr) then
9919 Error_Msg_N ("too many discriminants given in constraint", Constr);
9920 return New_Elmt_List;
9921 end if;
9922
9923 -- Named associations can be given in any order, but if both positional
9924 -- and named associations are used in the same discriminant constraint,
9925 -- then positional associations must occur first, at their normal
9926 -- position. Hence once a named association is used, the rest of the
9927 -- discriminant constraint must use only named associations.
9928
9929 while Present (Constr) loop
9930
9931 -- Positional association forbidden after a named association
9932
9933 if Nkind (Constr) /= N_Discriminant_Association then
9934 Error_Msg_N ("positional association follows named one", Constr);
9935 return New_Elmt_List;
9936
9937 -- Otherwise it is a named association
9938
9939 else
9940 -- E records the type of the discriminants in the named
9941 -- association. All the discriminants specified in the same name
9942 -- association must have the same type.
9943
9944 E := Empty;
9945
9946 -- Search the list of discriminants in T to see if the simple name
9947 -- given in the constraint matches any of them.
9948
9949 Id := First (Selector_Names (Constr));
9950 while Present (Id) loop
9951 Found := False;
9952
9953 -- If Original_Discriminant is present, we are processing a
9954 -- generic instantiation and this is an instance node. We need
9955 -- to find the name of the corresponding discriminant in the
9956 -- actual record type T and not the name of the discriminant in
9957 -- the generic formal. Example:
9958
9959 -- generic
9960 -- type G (D : int) is private;
9961 -- package P is
9962 -- subtype W is G (D => 1);
9963 -- end package;
9964 -- type Rec (X : int) is record ... end record;
9965 -- package Q is new P (G => Rec);
9966
9967 -- At the point of the instantiation, formal type G is Rec
9968 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9969 -- which really looks like "subtype W is Rec (D => 1);" at
9970 -- the point of instantiation, we want to find the discriminant
9971 -- that corresponds to D in Rec, i.e. X.
9972
9973 if Present (Original_Discriminant (Id))
9974 and then In_Instance
9975 then
9976 Discr := Find_Corresponding_Discriminant (Id, T);
9977 Found := True;
9978
9979 else
9980 Discr := First_Discriminant (T);
9981 while Present (Discr) loop
9982 if Chars (Discr) = Chars (Id) then
9983 Found := True;
9984 exit;
9985 end if;
9986
9987 Next_Discriminant (Discr);
9988 end loop;
9989
9990 if not Found then
9991 Error_Msg_N ("& does not match any discriminant", Id);
9992 return New_Elmt_List;
9993
9994 -- If the parent type is a generic formal, preserve the
9995 -- name of the discriminant for subsequent instances.
9996 -- see comment at the beginning of this if statement.
9997
9998 elsif Is_Generic_Type (Root_Type (T)) then
9999 Set_Original_Discriminant (Id, Discr);
10000 end if;
10001 end if;
10002
10003 Position := Pos_Of_Discr (T, Discr);
10004
10005 if Present (Discr_Expr (Position)) then
10006 Error_Msg_N ("duplicate constraint for discriminant&", Id);
10007
10008 else
10009 -- Each discriminant specified in the same named association
10010 -- must be associated with a separate copy of the
10011 -- corresponding expression.
10012
10013 if Present (Next (Id)) then
10014 Expr := New_Copy_Tree (Expression (Constr));
10015 Set_Parent (Expr, Parent (Expression (Constr)));
10016 else
10017 Expr := Expression (Constr);
10018 end if;
10019
10020 Discr_Expr (Position) := Expr;
10021 Process_Discriminant_Expression (Expr, Discr);
10022 end if;
10023
10024 -- A discriminant association with more than one discriminant
10025 -- name is only allowed if the named discriminants are all of
10026 -- the same type (RM 3.7.1(8)).
10027
10028 if E = Empty then
10029 E := Base_Type (Etype (Discr));
10030
10031 elsif Base_Type (Etype (Discr)) /= E then
10032 Error_Msg_N
10033 ("all discriminants in an association " &
10034 "must have the same type", Id);
10035 end if;
10036
10037 Next (Id);
10038 end loop;
10039 end if;
10040
10041 Next (Constr);
10042 end loop;
10043
10044 -- A discriminant constraint must provide exactly one value for each
10045 -- discriminant of the type (RM 3.7.1(8)).
10046
10047 for J in Discr_Expr'Range loop
10048 if No (Discr_Expr (J)) then
10049 Error_Msg_N ("too few discriminants given in constraint", C);
10050 return New_Elmt_List;
10051 end if;
10052 end loop;
10053
10054 -- Determine if there are discriminant expressions in the constraint
10055
10056 for J in Discr_Expr'Range loop
10057 if Denotes_Discriminant
10058 (Discr_Expr (J), Check_Concurrent => True)
10059 then
10060 Discrim_Present := True;
10061 end if;
10062 end loop;
10063
10064 -- Build an element list consisting of the expressions given in the
10065 -- discriminant constraint and apply the appropriate checks. The list
10066 -- is constructed after resolving any named discriminant associations
10067 -- and therefore the expressions appear in the textual order of the
10068 -- discriminants.
10069
10070 Discr := First_Discriminant (T);
10071 for J in Discr_Expr'Range loop
10072 if Discr_Expr (J) /= Error then
10073 Append_Elmt (Discr_Expr (J), Elist);
10074
10075 -- If any of the discriminant constraints is given by a
10076 -- discriminant and we are in a derived type declaration we
10077 -- have a discriminant renaming. Establish link between new
10078 -- and old discriminant. The new discriminant has an implicit
10079 -- dereference if the old one does.
10080
10081 if Denotes_Discriminant (Discr_Expr (J)) then
10082 if Derived_Def then
10083 declare
10084 New_Discr : constant Entity_Id := Entity (Discr_Expr (J));
10085
10086 begin
10087 Set_Corresponding_Discriminant (New_Discr, Discr);
10088 Set_Has_Implicit_Dereference (New_Discr,
10089 Has_Implicit_Dereference (Discr));
10090 end;
10091 end if;
10092
10093 -- Force the evaluation of non-discriminant expressions.
10094 -- If we have found a discriminant in the constraint 3.4(26)
10095 -- and 3.8(18) demand that no range checks are performed are
10096 -- after evaluation. If the constraint is for a component
10097 -- definition that has a per-object constraint, expressions are
10098 -- evaluated but not checked either. In all other cases perform
10099 -- a range check.
10100
10101 else
10102 if Discrim_Present then
10103 null;
10104
10105 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
10106 and then Has_Per_Object_Constraint
10107 (Defining_Identifier (Parent (Parent (Def))))
10108 then
10109 null;
10110
10111 elsif Is_Access_Type (Etype (Discr)) then
10112 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
10113
10114 else
10115 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
10116 end if;
10117
10118 Force_Evaluation (Discr_Expr (J));
10119 end if;
10120
10121 -- Check that the designated type of an access discriminant's
10122 -- expression is not a class-wide type unless the discriminant's
10123 -- designated type is also class-wide.
10124
10125 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
10126 and then not Is_Class_Wide_Type
10127 (Designated_Type (Etype (Discr)))
10128 and then Etype (Discr_Expr (J)) /= Any_Type
10129 and then Is_Class_Wide_Type
10130 (Designated_Type (Etype (Discr_Expr (J))))
10131 then
10132 Wrong_Type (Discr_Expr (J), Etype (Discr));
10133
10134 elsif Is_Access_Type (Etype (Discr))
10135 and then not Is_Access_Constant (Etype (Discr))
10136 and then Is_Access_Type (Etype (Discr_Expr (J)))
10137 and then Is_Access_Constant (Etype (Discr_Expr (J)))
10138 then
10139 Error_Msg_NE
10140 ("constraint for discriminant& must be access to variable",
10141 Def, Discr);
10142 end if;
10143 end if;
10144
10145 Next_Discriminant (Discr);
10146 end loop;
10147
10148 return Elist;
10149 end Build_Discriminant_Constraints;
10150
10151 ---------------------------------
10152 -- Build_Discriminated_Subtype --
10153 ---------------------------------
10154
10155 procedure Build_Discriminated_Subtype
10156 (T : Entity_Id;
10157 Def_Id : Entity_Id;
10158 Elist : Elist_Id;
10159 Related_Nod : Node_Id;
10160 For_Access : Boolean := False)
10161 is
10162 Has_Discrs : constant Boolean := Has_Discriminants (T);
10163 Constrained : constant Boolean :=
10164 (Has_Discrs
10165 and then not Is_Empty_Elmt_List (Elist)
10166 and then not Is_Class_Wide_Type (T))
10167 or else Is_Constrained (T);
10168
10169 begin
10170 if Ekind (T) = E_Record_Type then
10171 if For_Access then
10172 Set_Ekind (Def_Id, E_Private_Subtype);
10173 Set_Is_For_Access_Subtype (Def_Id, True);
10174 else
10175 Set_Ekind (Def_Id, E_Record_Subtype);
10176 end if;
10177
10178 -- Inherit preelaboration flag from base, for types for which it
10179 -- may have been set: records, private types, protected types.
10180
10181 Set_Known_To_Have_Preelab_Init
10182 (Def_Id, Known_To_Have_Preelab_Init (T));
10183
10184 elsif Ekind (T) = E_Task_Type then
10185 Set_Ekind (Def_Id, E_Task_Subtype);
10186
10187 elsif Ekind (T) = E_Protected_Type then
10188 Set_Ekind (Def_Id, E_Protected_Subtype);
10189 Set_Known_To_Have_Preelab_Init
10190 (Def_Id, Known_To_Have_Preelab_Init (T));
10191
10192 elsif Is_Private_Type (T) then
10193 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
10194 Set_Known_To_Have_Preelab_Init
10195 (Def_Id, Known_To_Have_Preelab_Init (T));
10196
10197 -- Private subtypes may have private dependents
10198
10199 Set_Private_Dependents (Def_Id, New_Elmt_List);
10200
10201 elsif Is_Class_Wide_Type (T) then
10202 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
10203
10204 else
10205 -- Incomplete type. Attach subtype to list of dependents, to be
10206 -- completed with full view of parent type, unless is it the
10207 -- designated subtype of a record component within an init_proc.
10208 -- This last case arises for a component of an access type whose
10209 -- designated type is incomplete (e.g. a Taft Amendment type).
10210 -- The designated subtype is within an inner scope, and needs no
10211 -- elaboration, because only the access type is needed in the
10212 -- initialization procedure.
10213
10214 if Ekind (T) = E_Incomplete_Type then
10215 Set_Ekind (Def_Id, E_Incomplete_Subtype);
10216 else
10217 Set_Ekind (Def_Id, Ekind (T));
10218 end if;
10219
10220 if For_Access and then Within_Init_Proc then
10221 null;
10222 else
10223 Append_Elmt (Def_Id, Private_Dependents (T));
10224 end if;
10225 end if;
10226
10227 Set_Etype (Def_Id, T);
10228 Init_Size_Align (Def_Id);
10229 Set_Has_Discriminants (Def_Id, Has_Discrs);
10230 Set_Is_Constrained (Def_Id, Constrained);
10231
10232 Set_First_Entity (Def_Id, First_Entity (T));
10233 Set_Last_Entity (Def_Id, Last_Entity (T));
10234 Set_Has_Implicit_Dereference
10235 (Def_Id, Has_Implicit_Dereference (T));
10236 Set_Has_Pragma_Unreferenced_Objects
10237 (Def_Id, Has_Pragma_Unreferenced_Objects (T));
10238
10239 -- If the subtype is the completion of a private declaration, there may
10240 -- have been representation clauses for the partial view, and they must
10241 -- be preserved. Build_Derived_Type chains the inherited clauses with
10242 -- the ones appearing on the extension. If this comes from a subtype
10243 -- declaration, all clauses are inherited.
10244
10245 if No (First_Rep_Item (Def_Id)) then
10246 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10247 end if;
10248
10249 if Is_Tagged_Type (T) then
10250 Set_Is_Tagged_Type (Def_Id);
10251 Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T));
10252 Make_Class_Wide_Type (Def_Id);
10253 end if;
10254
10255 Set_Stored_Constraint (Def_Id, No_Elist);
10256
10257 if Has_Discrs then
10258 Set_Discriminant_Constraint (Def_Id, Elist);
10259 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
10260 end if;
10261
10262 if Is_Tagged_Type (T) then
10263
10264 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
10265 -- concurrent record type (which has the list of primitive
10266 -- operations).
10267
10268 if Ada_Version >= Ada_2005
10269 and then Is_Concurrent_Type (T)
10270 then
10271 Set_Corresponding_Record_Type (Def_Id,
10272 Corresponding_Record_Type (T));
10273 else
10274 Set_Direct_Primitive_Operations (Def_Id,
10275 Direct_Primitive_Operations (T));
10276 end if;
10277
10278 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
10279 end if;
10280
10281 -- Subtypes introduced by component declarations do not need to be
10282 -- marked as delayed, and do not get freeze nodes, because the semantics
10283 -- verifies that the parents of the subtypes are frozen before the
10284 -- enclosing record is frozen.
10285
10286 if not Is_Type (Scope (Def_Id)) then
10287 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
10288
10289 if Is_Private_Type (T)
10290 and then Present (Full_View (T))
10291 then
10292 Conditional_Delay (Def_Id, Full_View (T));
10293 else
10294 Conditional_Delay (Def_Id, T);
10295 end if;
10296 end if;
10297
10298 if Is_Record_Type (T) then
10299 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
10300
10301 if Has_Discrs
10302 and then not Is_Empty_Elmt_List (Elist)
10303 and then not For_Access
10304 then
10305 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
10306
10307 elsif not For_Access then
10308 Set_Cloned_Subtype (Def_Id, T);
10309 end if;
10310 end if;
10311 end Build_Discriminated_Subtype;
10312
10313 ---------------------------
10314 -- Build_Itype_Reference --
10315 ---------------------------
10316
10317 procedure Build_Itype_Reference
10318 (Ityp : Entity_Id;
10319 Nod : Node_Id)
10320 is
10321 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
10322 begin
10323
10324 -- Itype references are only created for use by the back-end
10325
10326 if Inside_A_Generic then
10327 return;
10328 else
10329 Set_Itype (IR, Ityp);
10330
10331 -- If Nod is a library unit entity, then Insert_After won't work,
10332 -- because Nod is not a member of any list. Therefore, we use
10333 -- Add_Global_Declaration in this case. This can happen if we have a
10334 -- build-in-place library function.
10335
10336 if (Nkind (Nod) in N_Entity and then Is_Compilation_Unit (Nod))
10337 or else
10338 (Nkind (Nod) = N_Defining_Program_Unit_Name
10339 and then Is_Compilation_Unit (Defining_Identifier (Nod)))
10340 then
10341 Add_Global_Declaration (IR);
10342 else
10343 Insert_After (Nod, IR);
10344 end if;
10345 end if;
10346 end Build_Itype_Reference;
10347
10348 ------------------------
10349 -- Build_Scalar_Bound --
10350 ------------------------
10351
10352 function Build_Scalar_Bound
10353 (Bound : Node_Id;
10354 Par_T : Entity_Id;
10355 Der_T : Entity_Id) return Node_Id
10356 is
10357 New_Bound : Entity_Id;
10358
10359 begin
10360 -- Note: not clear why this is needed, how can the original bound
10361 -- be unanalyzed at this point? and if it is, what business do we
10362 -- have messing around with it? and why is the base type of the
10363 -- parent type the right type for the resolution. It probably is
10364 -- not. It is OK for the new bound we are creating, but not for
10365 -- the old one??? Still if it never happens, no problem.
10366
10367 Analyze_And_Resolve (Bound, Base_Type (Par_T));
10368
10369 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
10370 New_Bound := New_Copy (Bound);
10371 Set_Etype (New_Bound, Der_T);
10372 Set_Analyzed (New_Bound);
10373
10374 elsif Is_Entity_Name (Bound) then
10375 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
10376
10377 -- The following is almost certainly wrong. What business do we have
10378 -- relocating a node (Bound) that is presumably still attached to
10379 -- the tree elsewhere???
10380
10381 else
10382 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
10383 end if;
10384
10385 Set_Etype (New_Bound, Der_T);
10386 return New_Bound;
10387 end Build_Scalar_Bound;
10388
10389 --------------------------------
10390 -- Build_Underlying_Full_View --
10391 --------------------------------
10392
10393 procedure Build_Underlying_Full_View
10394 (N : Node_Id;
10395 Typ : Entity_Id;
10396 Par : Entity_Id)
10397 is
10398 Loc : constant Source_Ptr := Sloc (N);
10399 Subt : constant Entity_Id :=
10400 Make_Defining_Identifier
10401 (Loc, New_External_Name (Chars (Typ), 'S'));
10402
10403 Constr : Node_Id;
10404 Indic : Node_Id;
10405 C : Node_Id;
10406 Id : Node_Id;
10407
10408 procedure Set_Discriminant_Name (Id : Node_Id);
10409 -- If the derived type has discriminants, they may rename discriminants
10410 -- of the parent. When building the full view of the parent, we need to
10411 -- recover the names of the original discriminants if the constraint is
10412 -- given by named associations.
10413
10414 ---------------------------
10415 -- Set_Discriminant_Name --
10416 ---------------------------
10417
10418 procedure Set_Discriminant_Name (Id : Node_Id) is
10419 Disc : Entity_Id;
10420
10421 begin
10422 Set_Original_Discriminant (Id, Empty);
10423
10424 if Has_Discriminants (Typ) then
10425 Disc := First_Discriminant (Typ);
10426 while Present (Disc) loop
10427 if Chars (Disc) = Chars (Id)
10428 and then Present (Corresponding_Discriminant (Disc))
10429 then
10430 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
10431 end if;
10432 Next_Discriminant (Disc);
10433 end loop;
10434 end if;
10435 end Set_Discriminant_Name;
10436
10437 -- Start of processing for Build_Underlying_Full_View
10438
10439 begin
10440 if Nkind (N) = N_Full_Type_Declaration then
10441 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
10442
10443 elsif Nkind (N) = N_Subtype_Declaration then
10444 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
10445
10446 elsif Nkind (N) = N_Component_Declaration then
10447 Constr :=
10448 New_Copy_Tree
10449 (Constraint (Subtype_Indication (Component_Definition (N))));
10450
10451 else
10452 raise Program_Error;
10453 end if;
10454
10455 C := First (Constraints (Constr));
10456 while Present (C) loop
10457 if Nkind (C) = N_Discriminant_Association then
10458 Id := First (Selector_Names (C));
10459 while Present (Id) loop
10460 Set_Discriminant_Name (Id);
10461 Next (Id);
10462 end loop;
10463 end if;
10464
10465 Next (C);
10466 end loop;
10467
10468 Indic :=
10469 Make_Subtype_Declaration (Loc,
10470 Defining_Identifier => Subt,
10471 Subtype_Indication =>
10472 Make_Subtype_Indication (Loc,
10473 Subtype_Mark => New_Occurrence_Of (Par, Loc),
10474 Constraint => New_Copy_Tree (Constr)));
10475
10476 -- If this is a component subtype for an outer itype, it is not
10477 -- a list member, so simply set the parent link for analysis: if
10478 -- the enclosing type does not need to be in a declarative list,
10479 -- neither do the components.
10480
10481 if Is_List_Member (N)
10482 and then Nkind (N) /= N_Component_Declaration
10483 then
10484 Insert_Before (N, Indic);
10485 else
10486 Set_Parent (Indic, Parent (N));
10487 end if;
10488
10489 Analyze (Indic);
10490 Set_Underlying_Full_View (Typ, Full_View (Subt));
10491 Set_Is_Underlying_Full_View (Full_View (Subt));
10492 end Build_Underlying_Full_View;
10493
10494 -------------------------------
10495 -- Check_Abstract_Overriding --
10496 -------------------------------
10497
10498 procedure Check_Abstract_Overriding (T : Entity_Id) is
10499 Alias_Subp : Entity_Id;
10500 Elmt : Elmt_Id;
10501 Op_List : Elist_Id;
10502 Subp : Entity_Id;
10503 Type_Def : Node_Id;
10504
10505 procedure Check_Pragma_Implemented (Subp : Entity_Id);
10506 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
10507 -- which has pragma Implemented already set. Check whether Subp's entity
10508 -- kind conforms to the implementation kind of the overridden routine.
10509
10510 procedure Check_Pragma_Implemented
10511 (Subp : Entity_Id;
10512 Iface_Subp : Entity_Id);
10513 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
10514 -- Iface_Subp and both entities have pragma Implemented already set on
10515 -- them. Check whether the two implementation kinds are conforming.
10516
10517 procedure Inherit_Pragma_Implemented
10518 (Subp : Entity_Id;
10519 Iface_Subp : Entity_Id);
10520 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
10521 -- subprogram Iface_Subp which has been marked by pragma Implemented.
10522 -- Propagate the implementation kind of Iface_Subp to Subp.
10523
10524 ------------------------------
10525 -- Check_Pragma_Implemented --
10526 ------------------------------
10527
10528 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
10529 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
10530 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
10531 Subp_Alias : constant Entity_Id := Alias (Subp);
10532 Contr_Typ : Entity_Id;
10533 Impl_Subp : Entity_Id;
10534
10535 begin
10536 -- Subp must have an alias since it is a hidden entity used to link
10537 -- an interface subprogram to its overriding counterpart.
10538
10539 pragma Assert (Present (Subp_Alias));
10540
10541 -- Handle aliases to synchronized wrappers
10542
10543 Impl_Subp := Subp_Alias;
10544
10545 if Is_Primitive_Wrapper (Impl_Subp) then
10546 Impl_Subp := Wrapped_Entity (Impl_Subp);
10547 end if;
10548
10549 -- Extract the type of the controlling formal
10550
10551 Contr_Typ := Etype (First_Formal (Subp_Alias));
10552
10553 if Is_Concurrent_Record_Type (Contr_Typ) then
10554 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
10555 end if;
10556
10557 -- An interface subprogram whose implementation kind is By_Entry must
10558 -- be implemented by an entry.
10559
10560 if Impl_Kind = Name_By_Entry
10561 and then Ekind (Impl_Subp) /= E_Entry
10562 then
10563 Error_Msg_Node_2 := Iface_Alias;
10564 Error_Msg_NE
10565 ("type & must implement abstract subprogram & with an entry",
10566 Subp_Alias, Contr_Typ);
10567
10568 elsif Impl_Kind = Name_By_Protected_Procedure then
10569
10570 -- An interface subprogram whose implementation kind is By_
10571 -- Protected_Procedure cannot be implemented by a primitive
10572 -- procedure of a task type.
10573
10574 if Ekind (Contr_Typ) /= E_Protected_Type then
10575 Error_Msg_Node_2 := Contr_Typ;
10576 Error_Msg_NE
10577 ("interface subprogram & cannot be implemented by a " &
10578 "primitive procedure of task type &", Subp_Alias,
10579 Iface_Alias);
10580
10581 -- An interface subprogram whose implementation kind is By_
10582 -- Protected_Procedure must be implemented by a procedure.
10583
10584 elsif Ekind (Impl_Subp) /= E_Procedure then
10585 Error_Msg_Node_2 := Iface_Alias;
10586 Error_Msg_NE
10587 ("type & must implement abstract subprogram & with a " &
10588 "procedure", Subp_Alias, Contr_Typ);
10589
10590 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10591 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10592 then
10593 Error_Msg_Name_1 := Impl_Kind;
10594 Error_Msg_N
10595 ("overriding operation& must have synchronization%",
10596 Subp_Alias);
10597 end if;
10598
10599 -- If primitive has Optional synchronization, overriding operation
10600 -- must match if it has an explicit synchronization..
10601
10602 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10603 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10604 then
10605 Error_Msg_Name_1 := Impl_Kind;
10606 Error_Msg_N
10607 ("overriding operation& must have syncrhonization%",
10608 Subp_Alias);
10609 end if;
10610 end Check_Pragma_Implemented;
10611
10612 ------------------------------
10613 -- Check_Pragma_Implemented --
10614 ------------------------------
10615
10616 procedure Check_Pragma_Implemented
10617 (Subp : Entity_Id;
10618 Iface_Subp : Entity_Id)
10619 is
10620 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10621 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
10622
10623 begin
10624 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
10625 -- and overriding subprogram are different. In general this is an
10626 -- error except when the implementation kind of the overridden
10627 -- subprograms is By_Any or Optional.
10628
10629 if Iface_Kind /= Subp_Kind
10630 and then Iface_Kind /= Name_By_Any
10631 and then Iface_Kind /= Name_Optional
10632 then
10633 if Iface_Kind = Name_By_Entry then
10634 Error_Msg_N
10635 ("incompatible implementation kind, overridden subprogram " &
10636 "is marked By_Entry", Subp);
10637 else
10638 Error_Msg_N
10639 ("incompatible implementation kind, overridden subprogram " &
10640 "is marked By_Protected_Procedure", Subp);
10641 end if;
10642 end if;
10643 end Check_Pragma_Implemented;
10644
10645 --------------------------------
10646 -- Inherit_Pragma_Implemented --
10647 --------------------------------
10648
10649 procedure Inherit_Pragma_Implemented
10650 (Subp : Entity_Id;
10651 Iface_Subp : Entity_Id)
10652 is
10653 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10654 Loc : constant Source_Ptr := Sloc (Subp);
10655 Impl_Prag : Node_Id;
10656
10657 begin
10658 -- Since the implementation kind is stored as a representation item
10659 -- rather than a flag, create a pragma node.
10660
10661 Impl_Prag :=
10662 Make_Pragma (Loc,
10663 Chars => Name_Implemented,
10664 Pragma_Argument_Associations => New_List (
10665 Make_Pragma_Argument_Association (Loc,
10666 Expression => New_Occurrence_Of (Subp, Loc)),
10667
10668 Make_Pragma_Argument_Association (Loc,
10669 Expression => Make_Identifier (Loc, Iface_Kind))));
10670
10671 -- The pragma doesn't need to be analyzed because it is internally
10672 -- built. It is safe to directly register it as a rep item since we
10673 -- are only interested in the characters of the implementation kind.
10674
10675 Record_Rep_Item (Subp, Impl_Prag);
10676 end Inherit_Pragma_Implemented;
10677
10678 -- Start of processing for Check_Abstract_Overriding
10679
10680 begin
10681 Op_List := Primitive_Operations (T);
10682
10683 -- Loop to check primitive operations
10684
10685 Elmt := First_Elmt (Op_List);
10686 while Present (Elmt) loop
10687 Subp := Node (Elmt);
10688 Alias_Subp := Alias (Subp);
10689
10690 -- Inherited subprograms are identified by the fact that they do not
10691 -- come from source, and the associated source location is the
10692 -- location of the first subtype of the derived type.
10693
10694 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
10695 -- subprograms that "require overriding".
10696
10697 -- Special exception, do not complain about failure to override the
10698 -- stream routines _Input and _Output, as well as the primitive
10699 -- operations used in dispatching selects since we always provide
10700 -- automatic overridings for these subprograms.
10701
10702 -- The partial view of T may have been a private extension, for
10703 -- which inherited functions dispatching on result are abstract.
10704 -- If the full view is a null extension, there is no need for
10705 -- overriding in Ada 2005, but wrappers need to be built for them
10706 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
10707
10708 if Is_Null_Extension (T)
10709 and then Has_Controlling_Result (Subp)
10710 and then Ada_Version >= Ada_2005
10711 and then Present (Alias_Subp)
10712 and then not Comes_From_Source (Subp)
10713 and then not Is_Abstract_Subprogram (Alias_Subp)
10714 and then not Is_Access_Type (Etype (Subp))
10715 then
10716 null;
10717
10718 -- Ada 2005 (AI-251): Internal entities of interfaces need no
10719 -- processing because this check is done with the aliased
10720 -- entity
10721
10722 elsif Present (Interface_Alias (Subp)) then
10723 null;
10724
10725 elsif (Is_Abstract_Subprogram (Subp)
10726 or else Requires_Overriding (Subp)
10727 or else
10728 (Has_Controlling_Result (Subp)
10729 and then Present (Alias_Subp)
10730 and then not Comes_From_Source (Subp)
10731 and then Sloc (Subp) = Sloc (First_Subtype (T))))
10732 and then not Is_TSS (Subp, TSS_Stream_Input)
10733 and then not Is_TSS (Subp, TSS_Stream_Output)
10734 and then not Is_Abstract_Type (T)
10735 and then not Is_Predefined_Interface_Primitive (Subp)
10736
10737 -- Ada 2005 (AI-251): Do not consider hidden entities associated
10738 -- with abstract interface types because the check will be done
10739 -- with the aliased entity (otherwise we generate a duplicated
10740 -- error message).
10741
10742 and then not Present (Interface_Alias (Subp))
10743 then
10744 if Present (Alias_Subp) then
10745
10746 -- Only perform the check for a derived subprogram when the
10747 -- type has an explicit record extension. This avoids incorrect
10748 -- flagging of abstract subprograms for the case of a type
10749 -- without an extension that is derived from a formal type
10750 -- with a tagged actual (can occur within a private part).
10751
10752 -- Ada 2005 (AI-391): In the case of an inherited function with
10753 -- a controlling result of the type, the rule does not apply if
10754 -- the type is a null extension (unless the parent function
10755 -- itself is abstract, in which case the function must still be
10756 -- be overridden). The expander will generate an overriding
10757 -- wrapper function calling the parent subprogram (see
10758 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
10759
10760 Type_Def := Type_Definition (Parent (T));
10761
10762 if Nkind (Type_Def) = N_Derived_Type_Definition
10763 and then Present (Record_Extension_Part (Type_Def))
10764 and then
10765 (Ada_Version < Ada_2005
10766 or else not Is_Null_Extension (T)
10767 or else Ekind (Subp) = E_Procedure
10768 or else not Has_Controlling_Result (Subp)
10769 or else Is_Abstract_Subprogram (Alias_Subp)
10770 or else Requires_Overriding (Subp)
10771 or else Is_Access_Type (Etype (Subp)))
10772 then
10773 -- Avoid reporting error in case of abstract predefined
10774 -- primitive inherited from interface type because the
10775 -- body of internally generated predefined primitives
10776 -- of tagged types are generated later by Freeze_Type
10777
10778 if Is_Interface (Root_Type (T))
10779 and then Is_Abstract_Subprogram (Subp)
10780 and then Is_Predefined_Dispatching_Operation (Subp)
10781 and then not Comes_From_Source (Ultimate_Alias (Subp))
10782 then
10783 null;
10784
10785 -- A null extension is not obliged to override an inherited
10786 -- procedure subject to pragma Extensions_Visible with value
10787 -- False and at least one controlling OUT parameter
10788 -- (SPARK RM 6.1.7(6)).
10789
10790 elsif Is_Null_Extension (T)
10791 and then Is_EVF_Procedure (Subp)
10792 then
10793 null;
10794
10795 else
10796 Error_Msg_NE
10797 ("type must be declared abstract or & overridden",
10798 T, Subp);
10799
10800 -- Traverse the whole chain of aliased subprograms to
10801 -- complete the error notification. This is especially
10802 -- useful for traceability of the chain of entities when
10803 -- the subprogram corresponds with an interface
10804 -- subprogram (which may be defined in another package).
10805
10806 if Present (Alias_Subp) then
10807 declare
10808 E : Entity_Id;
10809
10810 begin
10811 E := Subp;
10812 while Present (Alias (E)) loop
10813
10814 -- Avoid reporting redundant errors on entities
10815 -- inherited from interfaces
10816
10817 if Sloc (E) /= Sloc (T) then
10818 Error_Msg_Sloc := Sloc (E);
10819 Error_Msg_NE
10820 ("\& has been inherited #", T, Subp);
10821 end if;
10822
10823 E := Alias (E);
10824 end loop;
10825
10826 Error_Msg_Sloc := Sloc (E);
10827
10828 -- AI05-0068: report if there is an overriding
10829 -- non-abstract subprogram that is invisible.
10830
10831 if Is_Hidden (E)
10832 and then not Is_Abstract_Subprogram (E)
10833 then
10834 Error_Msg_NE
10835 ("\& subprogram# is not visible",
10836 T, Subp);
10837
10838 -- Clarify the case where a non-null extension must
10839 -- override inherited procedure subject to pragma
10840 -- Extensions_Visible with value False and at least
10841 -- one controlling OUT param.
10842
10843 elsif Is_EVF_Procedure (E) then
10844 Error_Msg_NE
10845 ("\& # is subject to Extensions_Visible False",
10846 T, Subp);
10847
10848 else
10849 Error_Msg_NE
10850 ("\& has been inherited from subprogram #",
10851 T, Subp);
10852 end if;
10853 end;
10854 end if;
10855 end if;
10856
10857 -- Ada 2005 (AI-345): Protected or task type implementing
10858 -- abstract interfaces.
10859
10860 elsif Is_Concurrent_Record_Type (T)
10861 and then Present (Interfaces (T))
10862 then
10863 -- There is no need to check here RM 9.4(11.9/3) since we
10864 -- are processing the corresponding record type and the
10865 -- mode of the overriding subprograms was verified by
10866 -- Check_Conformance when the corresponding concurrent
10867 -- type declaration was analyzed.
10868
10869 Error_Msg_NE
10870 ("interface subprogram & must be overridden", T, Subp);
10871
10872 -- Examine primitive operations of synchronized type to find
10873 -- homonyms that have the wrong profile.
10874
10875 declare
10876 Prim : Entity_Id;
10877
10878 begin
10879 Prim := First_Entity (Corresponding_Concurrent_Type (T));
10880 while Present (Prim) loop
10881 if Chars (Prim) = Chars (Subp) then
10882 Error_Msg_NE
10883 ("profile is not type conformant with prefixed "
10884 & "view profile of inherited operation&",
10885 Prim, Subp);
10886 end if;
10887
10888 Next_Entity (Prim);
10889 end loop;
10890 end;
10891 end if;
10892
10893 else
10894 Error_Msg_Node_2 := T;
10895 Error_Msg_N
10896 ("abstract subprogram& not allowed for type&", Subp);
10897
10898 -- Also post unconditional warning on the type (unconditional
10899 -- so that if there are more than one of these cases, we get
10900 -- them all, and not just the first one).
10901
10902 Error_Msg_Node_2 := Subp;
10903 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
10904 end if;
10905
10906 -- A subprogram subject to pragma Extensions_Visible with value
10907 -- "True" cannot override a subprogram subject to the same pragma
10908 -- with value "False" (SPARK RM 6.1.7(5)).
10909
10910 elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True
10911 and then Present (Overridden_Operation (Subp))
10912 and then Extensions_Visible_Status (Overridden_Operation (Subp)) =
10913 Extensions_Visible_False
10914 then
10915 Error_Msg_Sloc := Sloc (Overridden_Operation (Subp));
10916 Error_Msg_N
10917 ("subprogram & with Extensions_Visible True cannot override "
10918 & "subprogram # with Extensions_Visible False", Subp);
10919 end if;
10920
10921 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10922
10923 -- Subp is an expander-generated procedure which maps an interface
10924 -- alias to a protected wrapper. The interface alias is flagged by
10925 -- pragma Implemented. Ensure that Subp is a procedure when the
10926 -- implementation kind is By_Protected_Procedure or an entry when
10927 -- By_Entry.
10928
10929 if Ada_Version >= Ada_2012
10930 and then Is_Hidden (Subp)
10931 and then Present (Interface_Alias (Subp))
10932 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
10933 then
10934 Check_Pragma_Implemented (Subp);
10935 end if;
10936
10937 -- Subp is an interface primitive which overrides another interface
10938 -- primitive marked with pragma Implemented.
10939
10940 if Ada_Version >= Ada_2012
10941 and then Present (Overridden_Operation (Subp))
10942 and then Has_Rep_Pragma
10943 (Overridden_Operation (Subp), Name_Implemented)
10944 then
10945 -- If the overriding routine is also marked by Implemented, check
10946 -- that the two implementation kinds are conforming.
10947
10948 if Has_Rep_Pragma (Subp, Name_Implemented) then
10949 Check_Pragma_Implemented
10950 (Subp => Subp,
10951 Iface_Subp => Overridden_Operation (Subp));
10952
10953 -- Otherwise the overriding routine inherits the implementation
10954 -- kind from the overridden subprogram.
10955
10956 else
10957 Inherit_Pragma_Implemented
10958 (Subp => Subp,
10959 Iface_Subp => Overridden_Operation (Subp));
10960 end if;
10961 end if;
10962
10963 -- If the operation is a wrapper for a synchronized primitive, it
10964 -- may be called indirectly through a dispatching select. We assume
10965 -- that it will be referenced elsewhere indirectly, and suppress
10966 -- warnings about an unused entity.
10967
10968 if Is_Primitive_Wrapper (Subp)
10969 and then Present (Wrapped_Entity (Subp))
10970 then
10971 Set_Referenced (Wrapped_Entity (Subp));
10972 end if;
10973
10974 Next_Elmt (Elmt);
10975 end loop;
10976 end Check_Abstract_Overriding;
10977
10978 ------------------------------------------------
10979 -- Check_Access_Discriminant_Requires_Limited --
10980 ------------------------------------------------
10981
10982 procedure Check_Access_Discriminant_Requires_Limited
10983 (D : Node_Id;
10984 Loc : Node_Id)
10985 is
10986 begin
10987 -- A discriminant_specification for an access discriminant shall appear
10988 -- only in the declaration for a task or protected type, or for a type
10989 -- with the reserved word 'limited' in its definition or in one of its
10990 -- ancestors (RM 3.7(10)).
10991
10992 -- AI-0063: The proper condition is that type must be immutably limited,
10993 -- or else be a partial view.
10994
10995 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
10996 if Is_Limited_View (Current_Scope)
10997 or else
10998 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
10999 and then Limited_Present (Parent (Current_Scope)))
11000 then
11001 null;
11002
11003 else
11004 Error_Msg_N
11005 ("access discriminants allowed only for limited types", Loc);
11006 end if;
11007 end if;
11008 end Check_Access_Discriminant_Requires_Limited;
11009
11010 -----------------------------------
11011 -- Check_Aliased_Component_Types --
11012 -----------------------------------
11013
11014 procedure Check_Aliased_Component_Types (T : Entity_Id) is
11015 C : Entity_Id;
11016
11017 begin
11018 -- ??? Also need to check components of record extensions, but not
11019 -- components of protected types (which are always limited).
11020
11021 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
11022 -- types to be unconstrained. This is safe because it is illegal to
11023 -- create access subtypes to such types with explicit discriminant
11024 -- constraints.
11025
11026 if not Is_Limited_Type (T) then
11027 if Ekind (T) = E_Record_Type then
11028 C := First_Component (T);
11029 while Present (C) loop
11030 if Is_Aliased (C)
11031 and then Has_Discriminants (Etype (C))
11032 and then not Is_Constrained (Etype (C))
11033 and then not In_Instance_Body
11034 and then Ada_Version < Ada_2005
11035 then
11036 Error_Msg_N
11037 ("aliased component must be constrained (RM 3.6(11))",
11038 C);
11039 end if;
11040
11041 Next_Component (C);
11042 end loop;
11043
11044 elsif Ekind (T) = E_Array_Type then
11045 if Has_Aliased_Components (T)
11046 and then Has_Discriminants (Component_Type (T))
11047 and then not Is_Constrained (Component_Type (T))
11048 and then not In_Instance_Body
11049 and then Ada_Version < Ada_2005
11050 then
11051 Error_Msg_N
11052 ("aliased component type must be constrained (RM 3.6(11))",
11053 T);
11054 end if;
11055 end if;
11056 end if;
11057 end Check_Aliased_Component_Types;
11058
11059 ---------------------------------------
11060 -- Check_Anonymous_Access_Components --
11061 ---------------------------------------
11062
11063 procedure Check_Anonymous_Access_Components
11064 (Typ_Decl : Node_Id;
11065 Typ : Entity_Id;
11066 Prev : Entity_Id;
11067 Comp_List : Node_Id)
11068 is
11069 Loc : constant Source_Ptr := Sloc (Typ_Decl);
11070 Anon_Access : Entity_Id;
11071 Acc_Def : Node_Id;
11072 Comp : Node_Id;
11073 Comp_Def : Node_Id;
11074 Decl : Node_Id;
11075 Type_Def : Node_Id;
11076
11077 procedure Build_Incomplete_Type_Declaration;
11078 -- If the record type contains components that include an access to the
11079 -- current record, then create an incomplete type declaration for the
11080 -- record, to be used as the designated type of the anonymous access.
11081 -- This is done only once, and only if there is no previous partial
11082 -- view of the type.
11083
11084 function Designates_T (Subt : Node_Id) return Boolean;
11085 -- Check whether a node designates the enclosing record type, or 'Class
11086 -- of that type
11087
11088 function Mentions_T (Acc_Def : Node_Id) return Boolean;
11089 -- Check whether an access definition includes a reference to
11090 -- the enclosing record type. The reference can be a subtype mark
11091 -- in the access definition itself, a 'Class attribute reference, or
11092 -- recursively a reference appearing in a parameter specification
11093 -- or result definition of an access_to_subprogram definition.
11094
11095 --------------------------------------
11096 -- Build_Incomplete_Type_Declaration --
11097 --------------------------------------
11098
11099 procedure Build_Incomplete_Type_Declaration is
11100 Decl : Node_Id;
11101 Inc_T : Entity_Id;
11102 H : Entity_Id;
11103
11104 -- Is_Tagged indicates whether the type is tagged. It is tagged if
11105 -- it's "is new ... with record" or else "is tagged record ...".
11106
11107 Is_Tagged : constant Boolean :=
11108 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
11109 and then
11110 Present (Record_Extension_Part (Type_Definition (Typ_Decl))))
11111 or else
11112 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
11113 and then Tagged_Present (Type_Definition (Typ_Decl)));
11114
11115 begin
11116 -- If there is a previous partial view, no need to create a new one
11117 -- If the partial view, given by Prev, is incomplete, If Prev is
11118 -- a private declaration, full declaration is flagged accordingly.
11119
11120 if Prev /= Typ then
11121 if Is_Tagged then
11122 Make_Class_Wide_Type (Prev);
11123 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
11124 Set_Etype (Class_Wide_Type (Typ), Typ);
11125 end if;
11126
11127 return;
11128
11129 elsif Has_Private_Declaration (Typ) then
11130
11131 -- If we refer to T'Class inside T, and T is the completion of a
11132 -- private type, then make sure the class-wide type exists.
11133
11134 if Is_Tagged then
11135 Make_Class_Wide_Type (Typ);
11136 end if;
11137
11138 return;
11139
11140 -- If there was a previous anonymous access type, the incomplete
11141 -- type declaration will have been created already.
11142
11143 elsif Present (Current_Entity (Typ))
11144 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
11145 and then Full_View (Current_Entity (Typ)) = Typ
11146 then
11147 if Is_Tagged
11148 and then Comes_From_Source (Current_Entity (Typ))
11149 and then not Is_Tagged_Type (Current_Entity (Typ))
11150 then
11151 Make_Class_Wide_Type (Typ);
11152 Error_Msg_N
11153 ("incomplete view of tagged type should be declared tagged??",
11154 Parent (Current_Entity (Typ)));
11155 end if;
11156 return;
11157
11158 else
11159 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
11160 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
11161
11162 -- Type has already been inserted into the current scope. Remove
11163 -- it, and add incomplete declaration for type, so that subsequent
11164 -- anonymous access types can use it. The entity is unchained from
11165 -- the homonym list and from immediate visibility. After analysis,
11166 -- the entity in the incomplete declaration becomes immediately
11167 -- visible in the record declaration that follows.
11168
11169 H := Current_Entity (Typ);
11170
11171 if H = Typ then
11172 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
11173 else
11174 while Present (H)
11175 and then Homonym (H) /= Typ
11176 loop
11177 H := Homonym (Typ);
11178 end loop;
11179
11180 Set_Homonym (H, Homonym (Typ));
11181 end if;
11182
11183 Insert_Before (Typ_Decl, Decl);
11184 Analyze (Decl);
11185 Set_Full_View (Inc_T, Typ);
11186
11187 if Is_Tagged then
11188
11189 -- Create a common class-wide type for both views, and set the
11190 -- Etype of the class-wide type to the full view.
11191
11192 Make_Class_Wide_Type (Inc_T);
11193 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
11194 Set_Etype (Class_Wide_Type (Typ), Typ);
11195 end if;
11196 end if;
11197 end Build_Incomplete_Type_Declaration;
11198
11199 ------------------
11200 -- Designates_T --
11201 ------------------
11202
11203 function Designates_T (Subt : Node_Id) return Boolean is
11204 Type_Id : constant Name_Id := Chars (Typ);
11205
11206 function Names_T (Nam : Node_Id) return Boolean;
11207 -- The record type has not been introduced in the current scope
11208 -- yet, so we must examine the name of the type itself, either
11209 -- an identifier T, or an expanded name of the form P.T, where
11210 -- P denotes the current scope.
11211
11212 -------------
11213 -- Names_T --
11214 -------------
11215
11216 function Names_T (Nam : Node_Id) return Boolean is
11217 begin
11218 if Nkind (Nam) = N_Identifier then
11219 return Chars (Nam) = Type_Id;
11220
11221 elsif Nkind (Nam) = N_Selected_Component then
11222 if Chars (Selector_Name (Nam)) = Type_Id then
11223 if Nkind (Prefix (Nam)) = N_Identifier then
11224 return Chars (Prefix (Nam)) = Chars (Current_Scope);
11225
11226 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
11227 return Chars (Selector_Name (Prefix (Nam))) =
11228 Chars (Current_Scope);
11229 else
11230 return False;
11231 end if;
11232
11233 else
11234 return False;
11235 end if;
11236
11237 else
11238 return False;
11239 end if;
11240 end Names_T;
11241
11242 -- Start of processing for Designates_T
11243
11244 begin
11245 if Nkind (Subt) = N_Identifier then
11246 return Chars (Subt) = Type_Id;
11247
11248 -- Reference can be through an expanded name which has not been
11249 -- analyzed yet, and which designates enclosing scopes.
11250
11251 elsif Nkind (Subt) = N_Selected_Component then
11252 if Names_T (Subt) then
11253 return True;
11254
11255 -- Otherwise it must denote an entity that is already visible.
11256 -- The access definition may name a subtype of the enclosing
11257 -- type, if there is a previous incomplete declaration for it.
11258
11259 else
11260 Find_Selected_Component (Subt);
11261 return
11262 Is_Entity_Name (Subt)
11263 and then Scope (Entity (Subt)) = Current_Scope
11264 and then
11265 (Chars (Base_Type (Entity (Subt))) = Type_Id
11266 or else
11267 (Is_Class_Wide_Type (Entity (Subt))
11268 and then
11269 Chars (Etype (Base_Type (Entity (Subt)))) =
11270 Type_Id));
11271 end if;
11272
11273 -- A reference to the current type may appear as the prefix of
11274 -- a 'Class attribute.
11275
11276 elsif Nkind (Subt) = N_Attribute_Reference
11277 and then Attribute_Name (Subt) = Name_Class
11278 then
11279 return Names_T (Prefix (Subt));
11280
11281 else
11282 return False;
11283 end if;
11284 end Designates_T;
11285
11286 ----------------
11287 -- Mentions_T --
11288 ----------------
11289
11290 function Mentions_T (Acc_Def : Node_Id) return Boolean is
11291 Param_Spec : Node_Id;
11292
11293 Acc_Subprg : constant Node_Id :=
11294 Access_To_Subprogram_Definition (Acc_Def);
11295
11296 begin
11297 if No (Acc_Subprg) then
11298 return Designates_T (Subtype_Mark (Acc_Def));
11299 end if;
11300
11301 -- Component is an access_to_subprogram: examine its formals,
11302 -- and result definition in the case of an access_to_function.
11303
11304 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
11305 while Present (Param_Spec) loop
11306 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
11307 and then Mentions_T (Parameter_Type (Param_Spec))
11308 then
11309 return True;
11310
11311 elsif Designates_T (Parameter_Type (Param_Spec)) then
11312 return True;
11313 end if;
11314
11315 Next (Param_Spec);
11316 end loop;
11317
11318 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
11319 if Nkind (Result_Definition (Acc_Subprg)) =
11320 N_Access_Definition
11321 then
11322 return Mentions_T (Result_Definition (Acc_Subprg));
11323 else
11324 return Designates_T (Result_Definition (Acc_Subprg));
11325 end if;
11326 end if;
11327
11328 return False;
11329 end Mentions_T;
11330
11331 -- Start of processing for Check_Anonymous_Access_Components
11332
11333 begin
11334 if No (Comp_List) then
11335 return;
11336 end if;
11337
11338 Comp := First (Component_Items (Comp_List));
11339 while Present (Comp) loop
11340 if Nkind (Comp) = N_Component_Declaration
11341 and then Present
11342 (Access_Definition (Component_Definition (Comp)))
11343 and then
11344 Mentions_T (Access_Definition (Component_Definition (Comp)))
11345 then
11346 Comp_Def := Component_Definition (Comp);
11347 Acc_Def :=
11348 Access_To_Subprogram_Definition (Access_Definition (Comp_Def));
11349
11350 Build_Incomplete_Type_Declaration;
11351 Anon_Access := Make_Temporary (Loc, 'S');
11352
11353 -- Create a declaration for the anonymous access type: either
11354 -- an access_to_object or an access_to_subprogram.
11355
11356 if Present (Acc_Def) then
11357 if Nkind (Acc_Def) = N_Access_Function_Definition then
11358 Type_Def :=
11359 Make_Access_Function_Definition (Loc,
11360 Parameter_Specifications =>
11361 Parameter_Specifications (Acc_Def),
11362 Result_Definition => Result_Definition (Acc_Def));
11363 else
11364 Type_Def :=
11365 Make_Access_Procedure_Definition (Loc,
11366 Parameter_Specifications =>
11367 Parameter_Specifications (Acc_Def));
11368 end if;
11369
11370 else
11371 Type_Def :=
11372 Make_Access_To_Object_Definition (Loc,
11373 Subtype_Indication =>
11374 Relocate_Node
11375 (Subtype_Mark (Access_Definition (Comp_Def))));
11376
11377 Set_Constant_Present
11378 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
11379 Set_All_Present
11380 (Type_Def, All_Present (Access_Definition (Comp_Def)));
11381 end if;
11382
11383 Set_Null_Exclusion_Present
11384 (Type_Def,
11385 Null_Exclusion_Present (Access_Definition (Comp_Def)));
11386
11387 Decl :=
11388 Make_Full_Type_Declaration (Loc,
11389 Defining_Identifier => Anon_Access,
11390 Type_Definition => Type_Def);
11391
11392 Insert_Before (Typ_Decl, Decl);
11393 Analyze (Decl);
11394
11395 -- If an access to subprogram, create the extra formals
11396
11397 if Present (Acc_Def) then
11398 Create_Extra_Formals (Designated_Type (Anon_Access));
11399
11400 -- If an access to object, preserve entity of designated type,
11401 -- for ASIS use, before rewriting the component definition.
11402
11403 else
11404 declare
11405 Desig : Entity_Id;
11406
11407 begin
11408 Desig := Entity (Subtype_Indication (Type_Def));
11409
11410 -- If the access definition is to the current record,
11411 -- the visible entity at this point is an incomplete
11412 -- type. Retrieve the full view to simplify ASIS queries
11413
11414 if Ekind (Desig) = E_Incomplete_Type then
11415 Desig := Full_View (Desig);
11416 end if;
11417
11418 Set_Entity
11419 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
11420 end;
11421 end if;
11422
11423 Rewrite (Comp_Def,
11424 Make_Component_Definition (Loc,
11425 Subtype_Indication =>
11426 New_Occurrence_Of (Anon_Access, Loc)));
11427
11428 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
11429 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
11430 else
11431 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
11432 end if;
11433
11434 Set_Is_Local_Anonymous_Access (Anon_Access);
11435 end if;
11436
11437 Next (Comp);
11438 end loop;
11439
11440 if Present (Variant_Part (Comp_List)) then
11441 declare
11442 V : Node_Id;
11443 begin
11444 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
11445 while Present (V) loop
11446 Check_Anonymous_Access_Components
11447 (Typ_Decl, Typ, Prev, Component_List (V));
11448 Next_Non_Pragma (V);
11449 end loop;
11450 end;
11451 end if;
11452 end Check_Anonymous_Access_Components;
11453
11454 ----------------------
11455 -- Check_Completion --
11456 ----------------------
11457
11458 procedure Check_Completion (Body_Id : Node_Id := Empty) is
11459 E : Entity_Id;
11460
11461 procedure Post_Error;
11462 -- Post error message for lack of completion for entity E
11463
11464 ----------------
11465 -- Post_Error --
11466 ----------------
11467
11468 procedure Post_Error is
11469 procedure Missing_Body;
11470 -- Output missing body message
11471
11472 ------------------
11473 -- Missing_Body --
11474 ------------------
11475
11476 procedure Missing_Body is
11477 begin
11478 -- Spec is in same unit, so we can post on spec
11479
11480 if In_Same_Source_Unit (Body_Id, E) then
11481 Error_Msg_N ("missing body for &", E);
11482
11483 -- Spec is in a separate unit, so we have to post on the body
11484
11485 else
11486 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
11487 end if;
11488 end Missing_Body;
11489
11490 -- Start of processing for Post_Error
11491
11492 begin
11493 if not Comes_From_Source (E) then
11494 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
11495
11496 -- It may be an anonymous protected type created for a
11497 -- single variable. Post error on variable, if present.
11498
11499 declare
11500 Var : Entity_Id;
11501
11502 begin
11503 Var := First_Entity (Current_Scope);
11504 while Present (Var) loop
11505 exit when Etype (Var) = E
11506 and then Comes_From_Source (Var);
11507
11508 Next_Entity (Var);
11509 end loop;
11510
11511 if Present (Var) then
11512 E := Var;
11513 end if;
11514 end;
11515 end if;
11516 end if;
11517
11518 -- If a generated entity has no completion, then either previous
11519 -- semantic errors have disabled the expansion phase, or else we had
11520 -- missing subunits, or else we are compiling without expansion,
11521 -- or else something is very wrong.
11522
11523 if not Comes_From_Source (E) then
11524 pragma Assert
11525 (Serious_Errors_Detected > 0
11526 or else Configurable_Run_Time_Violations > 0
11527 or else Subunits_Missing
11528 or else not Expander_Active);
11529 return;
11530
11531 -- Here for source entity
11532
11533 else
11534 -- Here if no body to post the error message, so we post the error
11535 -- on the declaration that has no completion. This is not really
11536 -- the right place to post it, think about this later ???
11537
11538 if No (Body_Id) then
11539 if Is_Type (E) then
11540 Error_Msg_NE
11541 ("missing full declaration for }", Parent (E), E);
11542 else
11543 Error_Msg_NE ("missing body for &", Parent (E), E);
11544 end if;
11545
11546 -- Package body has no completion for a declaration that appears
11547 -- in the corresponding spec. Post error on the body, with a
11548 -- reference to the non-completed declaration.
11549
11550 else
11551 Error_Msg_Sloc := Sloc (E);
11552
11553 if Is_Type (E) then
11554 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
11555
11556 elsif Is_Overloadable (E)
11557 and then Current_Entity_In_Scope (E) /= E
11558 then
11559 -- It may be that the completion is mistyped and appears as
11560 -- a distinct overloading of the entity.
11561
11562 declare
11563 Candidate : constant Entity_Id :=
11564 Current_Entity_In_Scope (E);
11565 Decl : constant Node_Id :=
11566 Unit_Declaration_Node (Candidate);
11567
11568 begin
11569 if Is_Overloadable (Candidate)
11570 and then Ekind (Candidate) = Ekind (E)
11571 and then Nkind (Decl) = N_Subprogram_Body
11572 and then Acts_As_Spec (Decl)
11573 then
11574 Check_Type_Conformant (Candidate, E);
11575
11576 else
11577 Missing_Body;
11578 end if;
11579 end;
11580
11581 else
11582 Missing_Body;
11583 end if;
11584 end if;
11585 end if;
11586 end Post_Error;
11587
11588 -- Local variables
11589
11590 Pack_Id : constant Entity_Id := Current_Scope;
11591
11592 -- Start of processing for Check_Completion
11593
11594 begin
11595 E := First_Entity (Pack_Id);
11596 while Present (E) loop
11597 if Is_Intrinsic_Subprogram (E) then
11598 null;
11599
11600 -- The following situation requires special handling: a child unit
11601 -- that appears in the context clause of the body of its parent:
11602
11603 -- procedure Parent.Child (...);
11604
11605 -- with Parent.Child;
11606 -- package body Parent is
11607
11608 -- Here Parent.Child appears as a local entity, but should not be
11609 -- flagged as requiring completion, because it is a compilation
11610 -- unit.
11611
11612 -- Ignore missing completion for a subprogram that does not come from
11613 -- source (including the _Call primitive operation of RAS types,
11614 -- which has to have the flag Comes_From_Source for other purposes):
11615 -- we assume that the expander will provide the missing completion.
11616 -- In case of previous errors, other expansion actions that provide
11617 -- bodies for null procedures with not be invoked, so inhibit message
11618 -- in those cases.
11619
11620 -- Note that E_Operator is not in the list that follows, because
11621 -- this kind is reserved for predefined operators, that are
11622 -- intrinsic and do not need completion.
11623
11624 elsif Ekind_In (E, E_Function,
11625 E_Procedure,
11626 E_Generic_Function,
11627 E_Generic_Procedure)
11628 then
11629 if Has_Completion (E) then
11630 null;
11631
11632 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
11633 null;
11634
11635 elsif Is_Subprogram (E)
11636 and then (not Comes_From_Source (E)
11637 or else Chars (E) = Name_uCall)
11638 then
11639 null;
11640
11641 elsif
11642 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
11643 then
11644 null;
11645
11646 elsif Nkind (Parent (E)) = N_Procedure_Specification
11647 and then Null_Present (Parent (E))
11648 and then Serious_Errors_Detected > 0
11649 then
11650 null;
11651
11652 else
11653 Post_Error;
11654 end if;
11655
11656 elsif Is_Entry (E) then
11657 if not Has_Completion (E) and then
11658 (Ekind (Scope (E)) = E_Protected_Object
11659 or else Ekind (Scope (E)) = E_Protected_Type)
11660 then
11661 Post_Error;
11662 end if;
11663
11664 elsif Is_Package_Or_Generic_Package (E) then
11665 if Unit_Requires_Body (E) then
11666 if not Has_Completion (E)
11667 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
11668 N_Compilation_Unit
11669 then
11670 Post_Error;
11671 end if;
11672
11673 elsif not Is_Child_Unit (E) then
11674 May_Need_Implicit_Body (E);
11675 end if;
11676
11677 -- A formal incomplete type (Ada 2012) does not require a completion;
11678 -- other incomplete type declarations do.
11679
11680 elsif Ekind (E) = E_Incomplete_Type
11681 and then No (Underlying_Type (E))
11682 and then not Is_Generic_Type (E)
11683 then
11684 Post_Error;
11685
11686 elsif Ekind_In (E, E_Task_Type, E_Protected_Type)
11687 and then not Has_Completion (E)
11688 then
11689 Post_Error;
11690
11691 -- A single task declared in the current scope is a constant, verify
11692 -- that the body of its anonymous type is in the same scope. If the
11693 -- task is defined elsewhere, this may be a renaming declaration for
11694 -- which no completion is needed.
11695
11696 elsif Ekind (E) = E_Constant
11697 and then Ekind (Etype (E)) = E_Task_Type
11698 and then not Has_Completion (Etype (E))
11699 and then Scope (Etype (E)) = Current_Scope
11700 then
11701 Post_Error;
11702
11703 elsif Ekind (E) = E_Protected_Object
11704 and then not Has_Completion (Etype (E))
11705 then
11706 Post_Error;
11707
11708 elsif Ekind (E) = E_Record_Type then
11709 if Is_Tagged_Type (E) then
11710 Check_Abstract_Overriding (E);
11711 Check_Conventions (E);
11712 end if;
11713
11714 Check_Aliased_Component_Types (E);
11715
11716 elsif Ekind (E) = E_Array_Type then
11717 Check_Aliased_Component_Types (E);
11718
11719 end if;
11720
11721 Next_Entity (E);
11722 end loop;
11723 end Check_Completion;
11724
11725 ------------------------------------
11726 -- Check_CPP_Type_Has_No_Defaults --
11727 ------------------------------------
11728
11729 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
11730 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
11731 Clist : Node_Id;
11732 Comp : Node_Id;
11733
11734 begin
11735 -- Obtain the component list
11736
11737 if Nkind (Tdef) = N_Record_Definition then
11738 Clist := Component_List (Tdef);
11739 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
11740 Clist := Component_List (Record_Extension_Part (Tdef));
11741 end if;
11742
11743 -- Check all components to ensure no default expressions
11744
11745 if Present (Clist) then
11746 Comp := First (Component_Items (Clist));
11747 while Present (Comp) loop
11748 if Present (Expression (Comp)) then
11749 Error_Msg_N
11750 ("component of imported 'C'P'P type cannot have "
11751 & "default expression", Expression (Comp));
11752 end if;
11753
11754 Next (Comp);
11755 end loop;
11756 end if;
11757 end Check_CPP_Type_Has_No_Defaults;
11758
11759 ----------------------------
11760 -- Check_Delta_Expression --
11761 ----------------------------
11762
11763 procedure Check_Delta_Expression (E : Node_Id) is
11764 begin
11765 if not (Is_Real_Type (Etype (E))) then
11766 Wrong_Type (E, Any_Real);
11767
11768 elsif not Is_OK_Static_Expression (E) then
11769 Flag_Non_Static_Expr
11770 ("non-static expression used for delta value!", E);
11771
11772 elsif not UR_Is_Positive (Expr_Value_R (E)) then
11773 Error_Msg_N ("delta expression must be positive", E);
11774
11775 else
11776 return;
11777 end if;
11778
11779 -- If any of above errors occurred, then replace the incorrect
11780 -- expression by the real 0.1, which should prevent further errors.
11781
11782 Rewrite (E,
11783 Make_Real_Literal (Sloc (E), Ureal_Tenth));
11784 Analyze_And_Resolve (E, Standard_Float);
11785 end Check_Delta_Expression;
11786
11787 -----------------------------
11788 -- Check_Digits_Expression --
11789 -----------------------------
11790
11791 procedure Check_Digits_Expression (E : Node_Id) is
11792 begin
11793 if not (Is_Integer_Type (Etype (E))) then
11794 Wrong_Type (E, Any_Integer);
11795
11796 elsif not Is_OK_Static_Expression (E) then
11797 Flag_Non_Static_Expr
11798 ("non-static expression used for digits value!", E);
11799
11800 elsif Expr_Value (E) <= 0 then
11801 Error_Msg_N ("digits value must be greater than zero", E);
11802
11803 else
11804 return;
11805 end if;
11806
11807 -- If any of above errors occurred, then replace the incorrect
11808 -- expression by the integer 1, which should prevent further errors.
11809
11810 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
11811 Analyze_And_Resolve (E, Standard_Integer);
11812
11813 end Check_Digits_Expression;
11814
11815 --------------------------
11816 -- Check_Initialization --
11817 --------------------------
11818
11819 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
11820 begin
11821 -- Special processing for limited types
11822
11823 if Is_Limited_Type (T)
11824 and then not In_Instance
11825 and then not In_Inlined_Body
11826 then
11827 if not OK_For_Limited_Init (T, Exp) then
11828
11829 -- In GNAT mode, this is just a warning, to allow it to be evilly
11830 -- turned off. Otherwise it is a real error.
11831
11832 if GNAT_Mode then
11833 Error_Msg_N
11834 ("??cannot initialize entities of limited type!", Exp);
11835
11836 elsif Ada_Version < Ada_2005 then
11837
11838 -- The side effect removal machinery may generate illegal Ada
11839 -- code to avoid the usage of access types and 'reference in
11840 -- SPARK mode. Since this is legal code with respect to theorem
11841 -- proving, do not emit the error.
11842
11843 if GNATprove_Mode
11844 and then Nkind (Exp) = N_Function_Call
11845 and then Nkind (Parent (Exp)) = N_Object_Declaration
11846 and then not Comes_From_Source
11847 (Defining_Identifier (Parent (Exp)))
11848 then
11849 null;
11850
11851 else
11852 Error_Msg_N
11853 ("cannot initialize entities of limited type", Exp);
11854 Explain_Limited_Type (T, Exp);
11855 end if;
11856
11857 else
11858 -- Specialize error message according to kind of illegal
11859 -- initial expression.
11860
11861 if Nkind (Exp) = N_Type_Conversion
11862 and then Nkind (Expression (Exp)) = N_Function_Call
11863 then
11864 -- No error for internally-generated object declarations,
11865 -- which can come from build-in-place assignment statements.
11866
11867 if Nkind (Parent (Exp)) = N_Object_Declaration
11868 and then not Comes_From_Source
11869 (Defining_Identifier (Parent (Exp)))
11870 then
11871 null;
11872
11873 else
11874 Error_Msg_N
11875 ("illegal context for call to function with limited "
11876 & "result", Exp);
11877 end if;
11878
11879 else
11880 Error_Msg_N
11881 ("initialization of limited object requires aggregate or "
11882 & "function call", Exp);
11883 end if;
11884 end if;
11885 end if;
11886 end if;
11887
11888 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11889 -- set unless we can be sure that no range check is required.
11890
11891 if (GNATprove_Mode or not Expander_Active)
11892 and then Is_Scalar_Type (T)
11893 and then not Is_In_Range (Exp, T, Assume_Valid => True)
11894 then
11895 Set_Do_Range_Check (Exp);
11896 end if;
11897 end Check_Initialization;
11898
11899 ----------------------
11900 -- Check_Interfaces --
11901 ----------------------
11902
11903 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
11904 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
11905
11906 Iface : Node_Id;
11907 Iface_Def : Node_Id;
11908 Iface_Typ : Entity_Id;
11909 Parent_Node : Node_Id;
11910
11911 Is_Task : Boolean := False;
11912 -- Set True if parent type or any progenitor is a task interface
11913
11914 Is_Protected : Boolean := False;
11915 -- Set True if parent type or any progenitor is a protected interface
11916
11917 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
11918 -- Check that a progenitor is compatible with declaration. If an error
11919 -- message is output, it is posted on Error_Node.
11920
11921 ------------------
11922 -- Check_Ifaces --
11923 ------------------
11924
11925 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
11926 Iface_Id : constant Entity_Id :=
11927 Defining_Identifier (Parent (Iface_Def));
11928 Type_Def : Node_Id;
11929
11930 begin
11931 if Nkind (N) = N_Private_Extension_Declaration then
11932 Type_Def := N;
11933 else
11934 Type_Def := Type_Definition (N);
11935 end if;
11936
11937 if Is_Task_Interface (Iface_Id) then
11938 Is_Task := True;
11939
11940 elsif Is_Protected_Interface (Iface_Id) then
11941 Is_Protected := True;
11942 end if;
11943
11944 if Is_Synchronized_Interface (Iface_Id) then
11945
11946 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11947 -- extension derived from a synchronized interface must explicitly
11948 -- be declared synchronized, because the full view will be a
11949 -- synchronized type.
11950
11951 if Nkind (N) = N_Private_Extension_Declaration then
11952 if not Synchronized_Present (N) then
11953 Error_Msg_NE
11954 ("private extension of& must be explicitly synchronized",
11955 N, Iface_Id);
11956 end if;
11957
11958 -- However, by 3.9.4(16/2), a full type that is a record extension
11959 -- is never allowed to derive from a synchronized interface (note
11960 -- that interfaces must be excluded from this check, because those
11961 -- are represented by derived type definitions in some cases).
11962
11963 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11964 and then not Interface_Present (Type_Definition (N))
11965 then
11966 Error_Msg_N ("record extension cannot derive from synchronized "
11967 & "interface", Error_Node);
11968 end if;
11969 end if;
11970
11971 -- Check that the characteristics of the progenitor are compatible
11972 -- with the explicit qualifier in the declaration.
11973 -- The check only applies to qualifiers that come from source.
11974 -- Limited_Present also appears in the declaration of corresponding
11975 -- records, and the check does not apply to them.
11976
11977 if Limited_Present (Type_Def)
11978 and then not
11979 Is_Concurrent_Record_Type (Defining_Identifier (N))
11980 then
11981 if Is_Limited_Interface (Parent_Type)
11982 and then not Is_Limited_Interface (Iface_Id)
11983 then
11984 Error_Msg_NE
11985 ("progenitor & must be limited interface",
11986 Error_Node, Iface_Id);
11987
11988 elsif
11989 (Task_Present (Iface_Def)
11990 or else Protected_Present (Iface_Def)
11991 or else Synchronized_Present (Iface_Def))
11992 and then Nkind (N) /= N_Private_Extension_Declaration
11993 and then not Error_Posted (N)
11994 then
11995 Error_Msg_NE
11996 ("progenitor & must be limited interface",
11997 Error_Node, Iface_Id);
11998 end if;
11999
12000 -- Protected interfaces can only inherit from limited, synchronized
12001 -- or protected interfaces.
12002
12003 elsif Nkind (N) = N_Full_Type_Declaration
12004 and then Protected_Present (Type_Def)
12005 then
12006 if Limited_Present (Iface_Def)
12007 or else Synchronized_Present (Iface_Def)
12008 or else Protected_Present (Iface_Def)
12009 then
12010 null;
12011
12012 elsif Task_Present (Iface_Def) then
12013 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
12014 & "from task interface", Error_Node);
12015
12016 else
12017 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
12018 & "from non-limited interface", Error_Node);
12019 end if;
12020
12021 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
12022 -- limited and synchronized.
12023
12024 elsif Synchronized_Present (Type_Def) then
12025 if Limited_Present (Iface_Def)
12026 or else Synchronized_Present (Iface_Def)
12027 then
12028 null;
12029
12030 elsif Protected_Present (Iface_Def)
12031 and then Nkind (N) /= N_Private_Extension_Declaration
12032 then
12033 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
12034 & "from protected interface", Error_Node);
12035
12036 elsif Task_Present (Iface_Def)
12037 and then Nkind (N) /= N_Private_Extension_Declaration
12038 then
12039 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
12040 & "from task interface", Error_Node);
12041
12042 elsif not Is_Limited_Interface (Iface_Id) then
12043 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
12044 & "from non-limited interface", Error_Node);
12045 end if;
12046
12047 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
12048 -- synchronized or task interfaces.
12049
12050 elsif Nkind (N) = N_Full_Type_Declaration
12051 and then Task_Present (Type_Def)
12052 then
12053 if Limited_Present (Iface_Def)
12054 or else Synchronized_Present (Iface_Def)
12055 or else Task_Present (Iface_Def)
12056 then
12057 null;
12058
12059 elsif Protected_Present (Iface_Def) then
12060 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
12061 & "protected interface", Error_Node);
12062
12063 else
12064 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
12065 & "non-limited interface", Error_Node);
12066 end if;
12067 end if;
12068 end Check_Ifaces;
12069
12070 -- Start of processing for Check_Interfaces
12071
12072 begin
12073 if Is_Interface (Parent_Type) then
12074 if Is_Task_Interface (Parent_Type) then
12075 Is_Task := True;
12076
12077 elsif Is_Protected_Interface (Parent_Type) then
12078 Is_Protected := True;
12079 end if;
12080 end if;
12081
12082 if Nkind (N) = N_Private_Extension_Declaration then
12083
12084 -- Check that progenitors are compatible with declaration
12085
12086 Iface := First (Interface_List (Def));
12087 while Present (Iface) loop
12088 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
12089
12090 Parent_Node := Parent (Base_Type (Iface_Typ));
12091 Iface_Def := Type_Definition (Parent_Node);
12092
12093 if not Is_Interface (Iface_Typ) then
12094 Diagnose_Interface (Iface, Iface_Typ);
12095 else
12096 Check_Ifaces (Iface_Def, Iface);
12097 end if;
12098
12099 Next (Iface);
12100 end loop;
12101
12102 if Is_Task and Is_Protected then
12103 Error_Msg_N
12104 ("type cannot derive from task and protected interface", N);
12105 end if;
12106
12107 return;
12108 end if;
12109
12110 -- Full type declaration of derived type.
12111 -- Check compatibility with parent if it is interface type
12112
12113 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
12114 and then Is_Interface (Parent_Type)
12115 then
12116 Parent_Node := Parent (Parent_Type);
12117
12118 -- More detailed checks for interface varieties
12119
12120 Check_Ifaces
12121 (Iface_Def => Type_Definition (Parent_Node),
12122 Error_Node => Subtype_Indication (Type_Definition (N)));
12123 end if;
12124
12125 Iface := First (Interface_List (Def));
12126 while Present (Iface) loop
12127 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
12128
12129 Parent_Node := Parent (Base_Type (Iface_Typ));
12130 Iface_Def := Type_Definition (Parent_Node);
12131
12132 if not Is_Interface (Iface_Typ) then
12133 Diagnose_Interface (Iface, Iface_Typ);
12134
12135 else
12136 -- "The declaration of a specific descendant of an interface
12137 -- type freezes the interface type" RM 13.14
12138
12139 Freeze_Before (N, Iface_Typ);
12140 Check_Ifaces (Iface_Def, Error_Node => Iface);
12141 end if;
12142
12143 Next (Iface);
12144 end loop;
12145
12146 if Is_Task and Is_Protected then
12147 Error_Msg_N
12148 ("type cannot derive from task and protected interface", N);
12149 end if;
12150 end Check_Interfaces;
12151
12152 ------------------------------------
12153 -- Check_Or_Process_Discriminants --
12154 ------------------------------------
12155
12156 -- If an incomplete or private type declaration was already given for the
12157 -- type, the discriminants may have already been processed if they were
12158 -- present on the incomplete declaration. In this case a full conformance
12159 -- check has been performed in Find_Type_Name, and we then recheck here
12160 -- some properties that can't be checked on the partial view alone.
12161 -- Otherwise we call Process_Discriminants.
12162
12163 procedure Check_Or_Process_Discriminants
12164 (N : Node_Id;
12165 T : Entity_Id;
12166 Prev : Entity_Id := Empty)
12167 is
12168 begin
12169 if Has_Discriminants (T) then
12170
12171 -- Discriminants are already set on T if they were already present
12172 -- on the partial view. Make them visible to component declarations.
12173
12174 declare
12175 D : Entity_Id;
12176 -- Discriminant on T (full view) referencing expr on partial view
12177
12178 Prev_D : Entity_Id;
12179 -- Entity of corresponding discriminant on partial view
12180
12181 New_D : Node_Id;
12182 -- Discriminant specification for full view, expression is
12183 -- the syntactic copy on full view (which has been checked for
12184 -- conformance with partial view), only used here to post error
12185 -- message.
12186
12187 begin
12188 D := First_Discriminant (T);
12189 New_D := First (Discriminant_Specifications (N));
12190 while Present (D) loop
12191 Prev_D := Current_Entity (D);
12192 Set_Current_Entity (D);
12193 Set_Is_Immediately_Visible (D);
12194 Set_Homonym (D, Prev_D);
12195
12196 -- Handle the case where there is an untagged partial view and
12197 -- the full view is tagged: must disallow discriminants with
12198 -- defaults, unless compiling for Ada 2012, which allows a
12199 -- limited tagged type to have defaulted discriminants (see
12200 -- AI05-0214). However, suppress error here if it was already
12201 -- reported on the default expression of the partial view.
12202
12203 if Is_Tagged_Type (T)
12204 and then Present (Expression (Parent (D)))
12205 and then (not Is_Limited_Type (Current_Scope)
12206 or else Ada_Version < Ada_2012)
12207 and then not Error_Posted (Expression (Parent (D)))
12208 then
12209 if Ada_Version >= Ada_2012 then
12210 Error_Msg_N
12211 ("discriminants of nonlimited tagged type cannot have "
12212 & "defaults",
12213 Expression (New_D));
12214 else
12215 Error_Msg_N
12216 ("discriminants of tagged type cannot have defaults",
12217 Expression (New_D));
12218 end if;
12219 end if;
12220
12221 -- Ada 2005 (AI-230): Access discriminant allowed in
12222 -- non-limited record types.
12223
12224 if Ada_Version < Ada_2005 then
12225
12226 -- This restriction gets applied to the full type here. It
12227 -- has already been applied earlier to the partial view.
12228
12229 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
12230 end if;
12231
12232 Next_Discriminant (D);
12233 Next (New_D);
12234 end loop;
12235 end;
12236
12237 elsif Present (Discriminant_Specifications (N)) then
12238 Process_Discriminants (N, Prev);
12239 end if;
12240 end Check_Or_Process_Discriminants;
12241
12242 ----------------------
12243 -- Check_Real_Bound --
12244 ----------------------
12245
12246 procedure Check_Real_Bound (Bound : Node_Id) is
12247 begin
12248 if not Is_Real_Type (Etype (Bound)) then
12249 Error_Msg_N
12250 ("bound in real type definition must be of real type", Bound);
12251
12252 elsif not Is_OK_Static_Expression (Bound) then
12253 Flag_Non_Static_Expr
12254 ("non-static expression used for real type bound!", Bound);
12255
12256 else
12257 return;
12258 end if;
12259
12260 Rewrite
12261 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
12262 Analyze (Bound);
12263 Resolve (Bound, Standard_Float);
12264 end Check_Real_Bound;
12265
12266 ------------------------------
12267 -- Complete_Private_Subtype --
12268 ------------------------------
12269
12270 procedure Complete_Private_Subtype
12271 (Priv : Entity_Id;
12272 Full : Entity_Id;
12273 Full_Base : Entity_Id;
12274 Related_Nod : Node_Id)
12275 is
12276 Save_Next_Entity : Entity_Id;
12277 Save_Homonym : Entity_Id;
12278
12279 begin
12280 -- Set semantic attributes for (implicit) private subtype completion.
12281 -- If the full type has no discriminants, then it is a copy of the
12282 -- full view of the base. Otherwise, it is a subtype of the base with
12283 -- a possible discriminant constraint. Save and restore the original
12284 -- Next_Entity field of full to ensure that the calls to Copy_Node do
12285 -- not corrupt the entity chain.
12286
12287 -- Note that the type of the full view is the same entity as the type
12288 -- of the partial view. In this fashion, the subtype has access to the
12289 -- correct view of the parent.
12290
12291 Save_Next_Entity := Next_Entity (Full);
12292 Save_Homonym := Homonym (Priv);
12293
12294 case Ekind (Full_Base) is
12295 when Class_Wide_Kind
12296 | Private_Kind
12297 | Protected_Kind
12298 | Task_Kind
12299 | E_Record_Subtype
12300 | E_Record_Type
12301 =>
12302 Copy_Node (Priv, Full);
12303
12304 Set_Has_Discriminants
12305 (Full, Has_Discriminants (Full_Base));
12306 Set_Has_Unknown_Discriminants
12307 (Full, Has_Unknown_Discriminants (Full_Base));
12308 Set_First_Entity (Full, First_Entity (Full_Base));
12309 Set_Last_Entity (Full, Last_Entity (Full_Base));
12310
12311 -- If the underlying base type is constrained, we know that the
12312 -- full view of the subtype is constrained as well (the converse
12313 -- is not necessarily true).
12314
12315 if Is_Constrained (Full_Base) then
12316 Set_Is_Constrained (Full);
12317 end if;
12318
12319 when others =>
12320 Copy_Node (Full_Base, Full);
12321
12322 Set_Chars (Full, Chars (Priv));
12323 Conditional_Delay (Full, Priv);
12324 Set_Sloc (Full, Sloc (Priv));
12325 end case;
12326
12327 Set_Next_Entity (Full, Save_Next_Entity);
12328 Set_Homonym (Full, Save_Homonym);
12329 Set_Associated_Node_For_Itype (Full, Related_Nod);
12330
12331 -- Set common attributes for all subtypes: kind, convention, etc.
12332
12333 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
12334 Set_Convention (Full, Convention (Full_Base));
12335
12336 -- The Etype of the full view is inconsistent. Gigi needs to see the
12337 -- structural full view, which is what the current scheme gives: the
12338 -- Etype of the full view is the etype of the full base. However, if the
12339 -- full base is a derived type, the full view then looks like a subtype
12340 -- of the parent, not a subtype of the full base. If instead we write:
12341
12342 -- Set_Etype (Full, Full_Base);
12343
12344 -- then we get inconsistencies in the front-end (confusion between
12345 -- views). Several outstanding bugs are related to this ???
12346
12347 Set_Is_First_Subtype (Full, False);
12348 Set_Scope (Full, Scope (Priv));
12349 Set_Size_Info (Full, Full_Base);
12350 Set_RM_Size (Full, RM_Size (Full_Base));
12351 Set_Is_Itype (Full);
12352
12353 -- For the unusual case of a type with unknown discriminants whose
12354 -- completion is an array, use the proper full base.
12355
12356 if Is_Array_Type (Full_Base)
12357 and then Has_Unknown_Discriminants (Priv)
12358 then
12359 Set_Etype (Full, Full_Base);
12360 end if;
12361
12362 -- A subtype of a private-type-without-discriminants, whose full-view
12363 -- has discriminants with default expressions, is not constrained.
12364
12365 if not Has_Discriminants (Priv) then
12366 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
12367
12368 if Has_Discriminants (Full_Base) then
12369 Set_Discriminant_Constraint
12370 (Full, Discriminant_Constraint (Full_Base));
12371
12372 -- The partial view may have been indefinite, the full view
12373 -- might not be.
12374
12375 Set_Has_Unknown_Discriminants
12376 (Full, Has_Unknown_Discriminants (Full_Base));
12377 end if;
12378 end if;
12379
12380 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
12381 Set_Depends_On_Private (Full, Has_Private_Component (Full));
12382
12383 -- Freeze the private subtype entity if its parent is delayed, and not
12384 -- already frozen. We skip this processing if the type is an anonymous
12385 -- subtype of a record component, or is the corresponding record of a
12386 -- protected type, since these are processed when the enclosing type
12387 -- is frozen. If the parent type is declared in a nested package then
12388 -- the freezing of the private and full views also happens later.
12389
12390 if not Is_Type (Scope (Full)) then
12391 if Is_Itype (Priv)
12392 and then In_Same_Source_Unit (Full, Full_Base)
12393 and then Scope (Full_Base) /= Scope (Full)
12394 then
12395 Set_Has_Delayed_Freeze (Full);
12396 Set_Has_Delayed_Freeze (Priv);
12397
12398 else
12399 Set_Has_Delayed_Freeze (Full,
12400 Has_Delayed_Freeze (Full_Base)
12401 and then not Is_Frozen (Full_Base));
12402 end if;
12403 end if;
12404
12405 Set_Freeze_Node (Full, Empty);
12406 Set_Is_Frozen (Full, False);
12407 Set_Full_View (Priv, Full);
12408
12409 if Has_Discriminants (Full) then
12410 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
12411 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
12412
12413 if Has_Unknown_Discriminants (Full) then
12414 Set_Discriminant_Constraint (Full, No_Elist);
12415 end if;
12416 end if;
12417
12418 if Ekind (Full_Base) = E_Record_Type
12419 and then Has_Discriminants (Full_Base)
12420 and then Has_Discriminants (Priv) -- might not, if errors
12421 and then not Has_Unknown_Discriminants (Priv)
12422 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
12423 then
12424 Create_Constrained_Components
12425 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
12426
12427 -- If the full base is itself derived from private, build a congruent
12428 -- subtype of its underlying type, for use by the back end. For a
12429 -- constrained record component, the declaration cannot be placed on
12430 -- the component list, but it must nevertheless be built an analyzed, to
12431 -- supply enough information for Gigi to compute the size of component.
12432
12433 elsif Ekind (Full_Base) in Private_Kind
12434 and then Is_Derived_Type (Full_Base)
12435 and then Has_Discriminants (Full_Base)
12436 and then (Ekind (Current_Scope) /= E_Record_Subtype)
12437 then
12438 if not Is_Itype (Priv)
12439 and then
12440 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
12441 then
12442 Build_Underlying_Full_View
12443 (Parent (Priv), Full, Etype (Full_Base));
12444
12445 elsif Nkind (Related_Nod) = N_Component_Declaration then
12446 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
12447 end if;
12448
12449 elsif Is_Record_Type (Full_Base) then
12450
12451 -- Show Full is simply a renaming of Full_Base
12452
12453 Set_Cloned_Subtype (Full, Full_Base);
12454 end if;
12455
12456 -- It is unsafe to share the bounds of a scalar type, because the Itype
12457 -- is elaborated on demand, and if a bound is non-static then different
12458 -- orders of elaboration in different units will lead to different
12459 -- external symbols.
12460
12461 if Is_Scalar_Type (Full_Base) then
12462 Set_Scalar_Range (Full,
12463 Make_Range (Sloc (Related_Nod),
12464 Low_Bound =>
12465 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
12466 High_Bound =>
12467 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
12468
12469 -- This completion inherits the bounds of the full parent, but if
12470 -- the parent is an unconstrained floating point type, so is the
12471 -- completion.
12472
12473 if Is_Floating_Point_Type (Full_Base) then
12474 Set_Includes_Infinities
12475 (Scalar_Range (Full), Has_Infinities (Full_Base));
12476 end if;
12477 end if;
12478
12479 -- ??? It seems that a lot of fields are missing that should be copied
12480 -- from Full_Base to Full. Here are some that are introduced in a
12481 -- non-disruptive way but a cleanup is necessary.
12482
12483 if Is_Tagged_Type (Full_Base) then
12484 Set_Is_Tagged_Type (Full);
12485 Set_Direct_Primitive_Operations
12486 (Full, Direct_Primitive_Operations (Full_Base));
12487 Set_No_Tagged_Streams_Pragma
12488 (Full, No_Tagged_Streams_Pragma (Full_Base));
12489
12490 -- Inherit class_wide type of full_base in case the partial view was
12491 -- not tagged. Otherwise it has already been created when the private
12492 -- subtype was analyzed.
12493
12494 if No (Class_Wide_Type (Full)) then
12495 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
12496 end if;
12497
12498 -- If this is a subtype of a protected or task type, constrain its
12499 -- corresponding record, unless this is a subtype without constraints,
12500 -- i.e. a simple renaming as with an actual subtype in an instance.
12501
12502 elsif Is_Concurrent_Type (Full_Base) then
12503 if Has_Discriminants (Full)
12504 and then Present (Corresponding_Record_Type (Full_Base))
12505 and then
12506 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
12507 then
12508 Set_Corresponding_Record_Type (Full,
12509 Constrain_Corresponding_Record
12510 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
12511
12512 else
12513 Set_Corresponding_Record_Type (Full,
12514 Corresponding_Record_Type (Full_Base));
12515 end if;
12516 end if;
12517
12518 -- Link rep item chain, and also setting of Has_Predicates from private
12519 -- subtype to full subtype, since we will need these on the full subtype
12520 -- to create the predicate function. Note that the full subtype may
12521 -- already have rep items, inherited from the full view of the base
12522 -- type, so we must be sure not to overwrite these entries.
12523
12524 declare
12525 Append : Boolean;
12526 Item : Node_Id;
12527 Next_Item : Node_Id;
12528 Priv_Item : Node_Id;
12529
12530 begin
12531 Item := First_Rep_Item (Full);
12532 Priv_Item := First_Rep_Item (Priv);
12533
12534 -- If no existing rep items on full type, we can just link directly
12535 -- to the list of items on the private type, if any exist.. Same if
12536 -- the rep items are only those inherited from the base
12537
12538 if (No (Item)
12539 or else Nkind (Item) /= N_Aspect_Specification
12540 or else Entity (Item) = Full_Base)
12541 and then Present (First_Rep_Item (Priv))
12542 then
12543 Set_First_Rep_Item (Full, Priv_Item);
12544
12545 -- Otherwise, search to the end of items currently linked to the full
12546 -- subtype and append the private items to the end. However, if Priv
12547 -- and Full already have the same list of rep items, then the append
12548 -- is not done, as that would create a circularity.
12549 --
12550 -- The partial view may have a predicate and the rep item lists of
12551 -- both views agree when inherited from the same ancestor. In that
12552 -- case, simply propagate the list from one view to the other.
12553 -- A more complex analysis needed here ???
12554
12555 elsif Present (Priv_Item)
12556 and then Item = Next_Rep_Item (Priv_Item)
12557 then
12558 Set_First_Rep_Item (Full, Priv_Item);
12559
12560 elsif Item /= Priv_Item then
12561 Append := True;
12562 loop
12563 Next_Item := Next_Rep_Item (Item);
12564 exit when No (Next_Item);
12565 Item := Next_Item;
12566
12567 -- If the private view has aspect specifications, the full view
12568 -- inherits them. Since these aspects may already have been
12569 -- attached to the full view during derivation, do not append
12570 -- them if already present.
12571
12572 if Item = First_Rep_Item (Priv) then
12573 Append := False;
12574 exit;
12575 end if;
12576 end loop;
12577
12578 -- And link the private type items at the end of the chain
12579
12580 if Append then
12581 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
12582 end if;
12583 end if;
12584 end;
12585
12586 -- Make sure Has_Predicates is set on full type if it is set on the
12587 -- private type. Note that it may already be set on the full type and
12588 -- if so, we don't want to unset it. Similarly, propagate information
12589 -- about delayed aspects, because the corresponding pragmas must be
12590 -- analyzed when one of the views is frozen. This last step is needed
12591 -- in particular when the full type is a scalar type for which an
12592 -- anonymous base type is constructed.
12593
12594 -- The predicate functions are generated either at the freeze point
12595 -- of the type or at the end of the visible part, and we must avoid
12596 -- generating them twice.
12597
12598 if Has_Predicates (Priv) then
12599 Set_Has_Predicates (Full);
12600
12601 if Present (Predicate_Function (Priv))
12602 and then No (Predicate_Function (Full))
12603 then
12604 Set_Predicate_Function (Full, Predicate_Function (Priv));
12605 end if;
12606 end if;
12607
12608 if Has_Delayed_Aspects (Priv) then
12609 Set_Has_Delayed_Aspects (Full);
12610 end if;
12611 end Complete_Private_Subtype;
12612
12613 ----------------------------
12614 -- Constant_Redeclaration --
12615 ----------------------------
12616
12617 procedure Constant_Redeclaration
12618 (Id : Entity_Id;
12619 N : Node_Id;
12620 T : out Entity_Id)
12621 is
12622 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
12623 Obj_Def : constant Node_Id := Object_Definition (N);
12624 New_T : Entity_Id;
12625
12626 procedure Check_Possible_Deferred_Completion
12627 (Prev_Id : Entity_Id;
12628 Prev_Obj_Def : Node_Id;
12629 Curr_Obj_Def : Node_Id);
12630 -- Determine whether the two object definitions describe the partial
12631 -- and the full view of a constrained deferred constant. Generate
12632 -- a subtype for the full view and verify that it statically matches
12633 -- the subtype of the partial view.
12634
12635 procedure Check_Recursive_Declaration (Typ : Entity_Id);
12636 -- If deferred constant is an access type initialized with an allocator,
12637 -- check whether there is an illegal recursion in the definition,
12638 -- through a default value of some record subcomponent. This is normally
12639 -- detected when generating init procs, but requires this additional
12640 -- mechanism when expansion is disabled.
12641
12642 ----------------------------------------
12643 -- Check_Possible_Deferred_Completion --
12644 ----------------------------------------
12645
12646 procedure Check_Possible_Deferred_Completion
12647 (Prev_Id : Entity_Id;
12648 Prev_Obj_Def : Node_Id;
12649 Curr_Obj_Def : Node_Id)
12650 is
12651 begin
12652 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
12653 and then Present (Constraint (Prev_Obj_Def))
12654 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
12655 and then Present (Constraint (Curr_Obj_Def))
12656 then
12657 declare
12658 Loc : constant Source_Ptr := Sloc (N);
12659 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
12660 Decl : constant Node_Id :=
12661 Make_Subtype_Declaration (Loc,
12662 Defining_Identifier => Def_Id,
12663 Subtype_Indication =>
12664 Relocate_Node (Curr_Obj_Def));
12665
12666 begin
12667 Insert_Before_And_Analyze (N, Decl);
12668 Set_Etype (Id, Def_Id);
12669
12670 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
12671 Error_Msg_Sloc := Sloc (Prev_Id);
12672 Error_Msg_N ("subtype does not statically match deferred "
12673 & "declaration #", N);
12674 end if;
12675 end;
12676 end if;
12677 end Check_Possible_Deferred_Completion;
12678
12679 ---------------------------------
12680 -- Check_Recursive_Declaration --
12681 ---------------------------------
12682
12683 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
12684 Comp : Entity_Id;
12685
12686 begin
12687 if Is_Record_Type (Typ) then
12688 Comp := First_Component (Typ);
12689 while Present (Comp) loop
12690 if Comes_From_Source (Comp) then
12691 if Present (Expression (Parent (Comp)))
12692 and then Is_Entity_Name (Expression (Parent (Comp)))
12693 and then Entity (Expression (Parent (Comp))) = Prev
12694 then
12695 Error_Msg_Sloc := Sloc (Parent (Comp));
12696 Error_Msg_NE
12697 ("illegal circularity with declaration for & #",
12698 N, Comp);
12699 return;
12700
12701 elsif Is_Record_Type (Etype (Comp)) then
12702 Check_Recursive_Declaration (Etype (Comp));
12703 end if;
12704 end if;
12705
12706 Next_Component (Comp);
12707 end loop;
12708 end if;
12709 end Check_Recursive_Declaration;
12710
12711 -- Start of processing for Constant_Redeclaration
12712
12713 begin
12714 if Nkind (Parent (Prev)) = N_Object_Declaration then
12715 if Nkind (Object_Definition
12716 (Parent (Prev))) = N_Subtype_Indication
12717 then
12718 -- Find type of new declaration. The constraints of the two
12719 -- views must match statically, but there is no point in
12720 -- creating an itype for the full view.
12721
12722 if Nkind (Obj_Def) = N_Subtype_Indication then
12723 Find_Type (Subtype_Mark (Obj_Def));
12724 New_T := Entity (Subtype_Mark (Obj_Def));
12725
12726 else
12727 Find_Type (Obj_Def);
12728 New_T := Entity (Obj_Def);
12729 end if;
12730
12731 T := Etype (Prev);
12732
12733 else
12734 -- The full view may impose a constraint, even if the partial
12735 -- view does not, so construct the subtype.
12736
12737 New_T := Find_Type_Of_Object (Obj_Def, N);
12738 T := New_T;
12739 end if;
12740
12741 else
12742 -- Current declaration is illegal, diagnosed below in Enter_Name
12743
12744 T := Empty;
12745 New_T := Any_Type;
12746 end if;
12747
12748 -- If previous full declaration or a renaming declaration exists, or if
12749 -- a homograph is present, let Enter_Name handle it, either with an
12750 -- error or with the removal of an overridden implicit subprogram.
12751 -- The previous one is a full declaration if it has an expression
12752 -- (which in the case of an aggregate is indicated by the Init flag).
12753
12754 if Ekind (Prev) /= E_Constant
12755 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
12756 or else Present (Expression (Parent (Prev)))
12757 or else Has_Init_Expression (Parent (Prev))
12758 or else Present (Full_View (Prev))
12759 then
12760 Enter_Name (Id);
12761
12762 -- Verify that types of both declarations match, or else that both types
12763 -- are anonymous access types whose designated subtypes statically match
12764 -- (as allowed in Ada 2005 by AI-385).
12765
12766 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
12767 and then
12768 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
12769 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
12770 or else Is_Access_Constant (Etype (New_T)) /=
12771 Is_Access_Constant (Etype (Prev))
12772 or else Can_Never_Be_Null (Etype (New_T)) /=
12773 Can_Never_Be_Null (Etype (Prev))
12774 or else Null_Exclusion_Present (Parent (Prev)) /=
12775 Null_Exclusion_Present (Parent (Id))
12776 or else not Subtypes_Statically_Match
12777 (Designated_Type (Etype (Prev)),
12778 Designated_Type (Etype (New_T))))
12779 then
12780 Error_Msg_Sloc := Sloc (Prev);
12781 Error_Msg_N ("type does not match declaration#", N);
12782 Set_Full_View (Prev, Id);
12783 Set_Etype (Id, Any_Type);
12784
12785 -- A deferred constant whose type is an anonymous array is always
12786 -- illegal (unless imported). A detailed error message might be
12787 -- helpful for Ada beginners.
12788
12789 if Nkind (Object_Definition (Parent (Prev)))
12790 = N_Constrained_Array_Definition
12791 and then Nkind (Object_Definition (N))
12792 = N_Constrained_Array_Definition
12793 then
12794 Error_Msg_N ("\each anonymous array is a distinct type", N);
12795 Error_Msg_N ("a deferred constant must have a named type",
12796 Object_Definition (Parent (Prev)));
12797 end if;
12798
12799 elsif
12800 Null_Exclusion_Present (Parent (Prev))
12801 and then not Null_Exclusion_Present (N)
12802 then
12803 Error_Msg_Sloc := Sloc (Prev);
12804 Error_Msg_N ("null-exclusion does not match declaration#", N);
12805 Set_Full_View (Prev, Id);
12806 Set_Etype (Id, Any_Type);
12807
12808 -- If so, process the full constant declaration
12809
12810 else
12811 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
12812 -- the deferred declaration is constrained, then the subtype defined
12813 -- by the subtype_indication in the full declaration shall match it
12814 -- statically.
12815
12816 Check_Possible_Deferred_Completion
12817 (Prev_Id => Prev,
12818 Prev_Obj_Def => Object_Definition (Parent (Prev)),
12819 Curr_Obj_Def => Obj_Def);
12820
12821 Set_Full_View (Prev, Id);
12822 Set_Is_Public (Id, Is_Public (Prev));
12823 Set_Is_Internal (Id);
12824 Append_Entity (Id, Current_Scope);
12825
12826 -- Check ALIASED present if present before (RM 7.4(7))
12827
12828 if Is_Aliased (Prev)
12829 and then not Aliased_Present (N)
12830 then
12831 Error_Msg_Sloc := Sloc (Prev);
12832 Error_Msg_N ("ALIASED required (see declaration #)", N);
12833 end if;
12834
12835 -- Check that placement is in private part and that the incomplete
12836 -- declaration appeared in the visible part.
12837
12838 if Ekind (Current_Scope) = E_Package
12839 and then not In_Private_Part (Current_Scope)
12840 then
12841 Error_Msg_Sloc := Sloc (Prev);
12842 Error_Msg_N
12843 ("full constant for declaration # must be in private part", N);
12844
12845 elsif Ekind (Current_Scope) = E_Package
12846 and then
12847 List_Containing (Parent (Prev)) /=
12848 Visible_Declarations (Package_Specification (Current_Scope))
12849 then
12850 Error_Msg_N
12851 ("deferred constant must be declared in visible part",
12852 Parent (Prev));
12853 end if;
12854
12855 if Is_Access_Type (T)
12856 and then Nkind (Expression (N)) = N_Allocator
12857 then
12858 Check_Recursive_Declaration (Designated_Type (T));
12859 end if;
12860
12861 -- A deferred constant is a visible entity. If type has invariants,
12862 -- verify that the initial value satisfies them. This is not done in
12863 -- GNATprove mode, as GNATprove handles invariant checks itself.
12864
12865 if Has_Invariants (T)
12866 and then Present (Invariant_Procedure (T))
12867 and then not GNATprove_Mode
12868 then
12869 Insert_After (N,
12870 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
12871 end if;
12872 end if;
12873 end Constant_Redeclaration;
12874
12875 ----------------------
12876 -- Constrain_Access --
12877 ----------------------
12878
12879 procedure Constrain_Access
12880 (Def_Id : in out Entity_Id;
12881 S : Node_Id;
12882 Related_Nod : Node_Id)
12883 is
12884 T : constant Entity_Id := Entity (Subtype_Mark (S));
12885 Desig_Type : constant Entity_Id := Designated_Type (T);
12886 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
12887 Constraint_OK : Boolean := True;
12888
12889 begin
12890 if Is_Array_Type (Desig_Type) then
12891 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
12892
12893 elsif (Is_Record_Type (Desig_Type)
12894 or else Is_Incomplete_Or_Private_Type (Desig_Type))
12895 and then not Is_Constrained (Desig_Type)
12896 then
12897 -- ??? The following code is a temporary bypass to ignore a
12898 -- discriminant constraint on access type if it is constraining
12899 -- the current record. Avoid creating the implicit subtype of the
12900 -- record we are currently compiling since right now, we cannot
12901 -- handle these. For now, just return the access type itself.
12902
12903 if Desig_Type = Current_Scope
12904 and then No (Def_Id)
12905 then
12906 Set_Ekind (Desig_Subtype, E_Record_Subtype);
12907 Def_Id := Entity (Subtype_Mark (S));
12908
12909 -- This call added to ensure that the constraint is analyzed
12910 -- (needed for a B test). Note that we still return early from
12911 -- this procedure to avoid recursive processing. ???
12912
12913 Constrain_Discriminated_Type
12914 (Desig_Subtype, S, Related_Nod, For_Access => True);
12915 return;
12916 end if;
12917
12918 -- Enforce rule that the constraint is illegal if there is an
12919 -- unconstrained view of the designated type. This means that the
12920 -- partial view (either a private type declaration or a derivation
12921 -- from a private type) has no discriminants. (Defect Report
12922 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12923
12924 -- Rule updated for Ada 2005: The private type is said to have
12925 -- a constrained partial view, given that objects of the type
12926 -- can be declared. Furthermore, the rule applies to all access
12927 -- types, unlike the rule concerning default discriminants (see
12928 -- RM 3.7.1(7/3))
12929
12930 if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005)
12931 and then Has_Private_Declaration (Desig_Type)
12932 and then In_Open_Scopes (Scope (Desig_Type))
12933 and then Has_Discriminants (Desig_Type)
12934 then
12935 declare
12936 Pack : constant Node_Id :=
12937 Unit_Declaration_Node (Scope (Desig_Type));
12938 Decls : List_Id;
12939 Decl : Node_Id;
12940
12941 begin
12942 if Nkind (Pack) = N_Package_Declaration then
12943 Decls := Visible_Declarations (Specification (Pack));
12944 Decl := First (Decls);
12945 while Present (Decl) loop
12946 if (Nkind (Decl) = N_Private_Type_Declaration
12947 and then Chars (Defining_Identifier (Decl)) =
12948 Chars (Desig_Type))
12949
12950 or else
12951 (Nkind (Decl) = N_Full_Type_Declaration
12952 and then
12953 Chars (Defining_Identifier (Decl)) =
12954 Chars (Desig_Type)
12955 and then Is_Derived_Type (Desig_Type)
12956 and then
12957 Has_Private_Declaration (Etype (Desig_Type)))
12958 then
12959 if No (Discriminant_Specifications (Decl)) then
12960 Error_Msg_N
12961 ("cannot constrain access type if designated "
12962 & "type has constrained partial view", S);
12963 end if;
12964
12965 exit;
12966 end if;
12967
12968 Next (Decl);
12969 end loop;
12970 end if;
12971 end;
12972 end if;
12973
12974 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
12975 For_Access => True);
12976
12977 elsif Is_Concurrent_Type (Desig_Type)
12978 and then not Is_Constrained (Desig_Type)
12979 then
12980 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
12981
12982 else
12983 Error_Msg_N ("invalid constraint on access type", S);
12984
12985 -- We simply ignore an invalid constraint
12986
12987 Desig_Subtype := Desig_Type;
12988 Constraint_OK := False;
12989 end if;
12990
12991 if No (Def_Id) then
12992 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
12993 else
12994 Set_Ekind (Def_Id, E_Access_Subtype);
12995 end if;
12996
12997 if Constraint_OK then
12998 Set_Etype (Def_Id, Base_Type (T));
12999
13000 if Is_Private_Type (Desig_Type) then
13001 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
13002 end if;
13003 else
13004 Set_Etype (Def_Id, Any_Type);
13005 end if;
13006
13007 Set_Size_Info (Def_Id, T);
13008 Set_Is_Constrained (Def_Id, Constraint_OK);
13009 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
13010 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13011 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
13012
13013 Conditional_Delay (Def_Id, T);
13014
13015 -- AI-363 : Subtypes of general access types whose designated types have
13016 -- default discriminants are disallowed. In instances, the rule has to
13017 -- be checked against the actual, of which T is the subtype. In a
13018 -- generic body, the rule is checked assuming that the actual type has
13019 -- defaulted discriminants.
13020
13021 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
13022 if Ekind (Base_Type (T)) = E_General_Access_Type
13023 and then Has_Defaulted_Discriminants (Desig_Type)
13024 then
13025 if Ada_Version < Ada_2005 then
13026 Error_Msg_N
13027 ("access subtype of general access type would not " &
13028 "be allowed in Ada 2005?y?", S);
13029 else
13030 Error_Msg_N
13031 ("access subtype of general access type not allowed", S);
13032 end if;
13033
13034 Error_Msg_N ("\discriminants have defaults", S);
13035
13036 elsif Is_Access_Type (T)
13037 and then Is_Generic_Type (Desig_Type)
13038 and then Has_Discriminants (Desig_Type)
13039 and then In_Package_Body (Current_Scope)
13040 then
13041 if Ada_Version < Ada_2005 then
13042 Error_Msg_N
13043 ("access subtype would not be allowed in generic body "
13044 & "in Ada 2005?y?", S);
13045 else
13046 Error_Msg_N
13047 ("access subtype not allowed in generic body", S);
13048 end if;
13049
13050 Error_Msg_N
13051 ("\designated type is a discriminated formal", S);
13052 end if;
13053 end if;
13054 end Constrain_Access;
13055
13056 ---------------------
13057 -- Constrain_Array --
13058 ---------------------
13059
13060 procedure Constrain_Array
13061 (Def_Id : in out Entity_Id;
13062 SI : Node_Id;
13063 Related_Nod : Node_Id;
13064 Related_Id : Entity_Id;
13065 Suffix : Character)
13066 is
13067 C : constant Node_Id := Constraint (SI);
13068 Number_Of_Constraints : Nat := 0;
13069 Index : Node_Id;
13070 S, T : Entity_Id;
13071 Constraint_OK : Boolean := True;
13072
13073 begin
13074 T := Entity (Subtype_Mark (SI));
13075
13076 if Is_Access_Type (T) then
13077 T := Designated_Type (T);
13078 end if;
13079
13080 -- If an index constraint follows a subtype mark in a subtype indication
13081 -- then the type or subtype denoted by the subtype mark must not already
13082 -- impose an index constraint. The subtype mark must denote either an
13083 -- unconstrained array type or an access type whose designated type
13084 -- is such an array type... (RM 3.6.1)
13085
13086 if Is_Constrained (T) then
13087 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
13088 Constraint_OK := False;
13089
13090 else
13091 S := First (Constraints (C));
13092 while Present (S) loop
13093 Number_Of_Constraints := Number_Of_Constraints + 1;
13094 Next (S);
13095 end loop;
13096
13097 -- In either case, the index constraint must provide a discrete
13098 -- range for each index of the array type and the type of each
13099 -- discrete range must be the same as that of the corresponding
13100 -- index. (RM 3.6.1)
13101
13102 if Number_Of_Constraints /= Number_Dimensions (T) then
13103 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
13104 Constraint_OK := False;
13105
13106 else
13107 S := First (Constraints (C));
13108 Index := First_Index (T);
13109 Analyze (Index);
13110
13111 -- Apply constraints to each index type
13112
13113 for J in 1 .. Number_Of_Constraints loop
13114 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
13115 Next (Index);
13116 Next (S);
13117 end loop;
13118
13119 end if;
13120 end if;
13121
13122 if No (Def_Id) then
13123 Def_Id :=
13124 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
13125 Set_Parent (Def_Id, Related_Nod);
13126
13127 else
13128 Set_Ekind (Def_Id, E_Array_Subtype);
13129 end if;
13130
13131 Set_Size_Info (Def_Id, (T));
13132 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13133 Set_Etype (Def_Id, Base_Type (T));
13134
13135 if Constraint_OK then
13136 Set_First_Index (Def_Id, First (Constraints (C)));
13137 else
13138 Set_First_Index (Def_Id, First_Index (T));
13139 end if;
13140
13141 Set_Is_Constrained (Def_Id, True);
13142 Set_Is_Aliased (Def_Id, Is_Aliased (T));
13143 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13144
13145 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
13146 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
13147
13148 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
13149 -- We need to initialize the attribute because if Def_Id is previously
13150 -- analyzed through a limited_with clause, it will have the attributes
13151 -- of an incomplete type, one of which is an Elist that overlaps the
13152 -- Packed_Array_Impl_Type field.
13153
13154 Set_Packed_Array_Impl_Type (Def_Id, Empty);
13155
13156 -- Build a freeze node if parent still needs one. Also make sure that
13157 -- the Depends_On_Private status is set because the subtype will need
13158 -- reprocessing at the time the base type does, and also we must set a
13159 -- conditional delay.
13160
13161 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
13162 Conditional_Delay (Def_Id, T);
13163 end Constrain_Array;
13164
13165 ------------------------------
13166 -- Constrain_Component_Type --
13167 ------------------------------
13168
13169 function Constrain_Component_Type
13170 (Comp : Entity_Id;
13171 Constrained_Typ : Entity_Id;
13172 Related_Node : Node_Id;
13173 Typ : Entity_Id;
13174 Constraints : Elist_Id) return Entity_Id
13175 is
13176 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
13177 Compon_Type : constant Entity_Id := Etype (Comp);
13178
13179 function Build_Constrained_Array_Type
13180 (Old_Type : Entity_Id) return Entity_Id;
13181 -- If Old_Type is an array type, one of whose indexes is constrained
13182 -- by a discriminant, build an Itype whose constraint replaces the
13183 -- discriminant with its value in the constraint.
13184
13185 function Build_Constrained_Discriminated_Type
13186 (Old_Type : Entity_Id) return Entity_Id;
13187 -- Ditto for record components
13188
13189 function Build_Constrained_Access_Type
13190 (Old_Type : Entity_Id) return Entity_Id;
13191 -- Ditto for access types. Makes use of previous two functions, to
13192 -- constrain designated type.
13193
13194 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
13195 -- T is an array or discriminated type, C is a list of constraints
13196 -- that apply to T. This routine builds the constrained subtype.
13197
13198 function Is_Discriminant (Expr : Node_Id) return Boolean;
13199 -- Returns True if Expr is a discriminant
13200
13201 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
13202 -- Find the value of discriminant Discrim in Constraint
13203
13204 -----------------------------------
13205 -- Build_Constrained_Access_Type --
13206 -----------------------------------
13207
13208 function Build_Constrained_Access_Type
13209 (Old_Type : Entity_Id) return Entity_Id
13210 is
13211 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
13212 Itype : Entity_Id;
13213 Desig_Subtype : Entity_Id;
13214 Scop : Entity_Id;
13215
13216 begin
13217 -- if the original access type was not embedded in the enclosing
13218 -- type definition, there is no need to produce a new access
13219 -- subtype. In fact every access type with an explicit constraint
13220 -- generates an itype whose scope is the enclosing record.
13221
13222 if not Is_Type (Scope (Old_Type)) then
13223 return Old_Type;
13224
13225 elsif Is_Array_Type (Desig_Type) then
13226 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
13227
13228 elsif Has_Discriminants (Desig_Type) then
13229
13230 -- This may be an access type to an enclosing record type for
13231 -- which we are constructing the constrained components. Return
13232 -- the enclosing record subtype. This is not always correct,
13233 -- but avoids infinite recursion. ???
13234
13235 Desig_Subtype := Any_Type;
13236
13237 for J in reverse 0 .. Scope_Stack.Last loop
13238 Scop := Scope_Stack.Table (J).Entity;
13239
13240 if Is_Type (Scop)
13241 and then Base_Type (Scop) = Base_Type (Desig_Type)
13242 then
13243 Desig_Subtype := Scop;
13244 end if;
13245
13246 exit when not Is_Type (Scop);
13247 end loop;
13248
13249 if Desig_Subtype = Any_Type then
13250 Desig_Subtype :=
13251 Build_Constrained_Discriminated_Type (Desig_Type);
13252 end if;
13253
13254 else
13255 return Old_Type;
13256 end if;
13257
13258 if Desig_Subtype /= Desig_Type then
13259
13260 -- The Related_Node better be here or else we won't be able
13261 -- to attach new itypes to a node in the tree.
13262
13263 pragma Assert (Present (Related_Node));
13264
13265 Itype := Create_Itype (E_Access_Subtype, Related_Node);
13266
13267 Set_Etype (Itype, Base_Type (Old_Type));
13268 Set_Size_Info (Itype, (Old_Type));
13269 Set_Directly_Designated_Type (Itype, Desig_Subtype);
13270 Set_Depends_On_Private (Itype, Has_Private_Component
13271 (Old_Type));
13272 Set_Is_Access_Constant (Itype, Is_Access_Constant
13273 (Old_Type));
13274
13275 -- The new itype needs freezing when it depends on a not frozen
13276 -- type and the enclosing subtype needs freezing.
13277
13278 if Has_Delayed_Freeze (Constrained_Typ)
13279 and then not Is_Frozen (Constrained_Typ)
13280 then
13281 Conditional_Delay (Itype, Base_Type (Old_Type));
13282 end if;
13283
13284 return Itype;
13285
13286 else
13287 return Old_Type;
13288 end if;
13289 end Build_Constrained_Access_Type;
13290
13291 ----------------------------------
13292 -- Build_Constrained_Array_Type --
13293 ----------------------------------
13294
13295 function Build_Constrained_Array_Type
13296 (Old_Type : Entity_Id) return Entity_Id
13297 is
13298 Lo_Expr : Node_Id;
13299 Hi_Expr : Node_Id;
13300 Old_Index : Node_Id;
13301 Range_Node : Node_Id;
13302 Constr_List : List_Id;
13303
13304 Need_To_Create_Itype : Boolean := False;
13305
13306 begin
13307 Old_Index := First_Index (Old_Type);
13308 while Present (Old_Index) loop
13309 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
13310
13311 if Is_Discriminant (Lo_Expr)
13312 or else
13313 Is_Discriminant (Hi_Expr)
13314 then
13315 Need_To_Create_Itype := True;
13316 end if;
13317
13318 Next_Index (Old_Index);
13319 end loop;
13320
13321 if Need_To_Create_Itype then
13322 Constr_List := New_List;
13323
13324 Old_Index := First_Index (Old_Type);
13325 while Present (Old_Index) loop
13326 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
13327
13328 if Is_Discriminant (Lo_Expr) then
13329 Lo_Expr := Get_Discr_Value (Lo_Expr);
13330 end if;
13331
13332 if Is_Discriminant (Hi_Expr) then
13333 Hi_Expr := Get_Discr_Value (Hi_Expr);
13334 end if;
13335
13336 Range_Node :=
13337 Make_Range
13338 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
13339
13340 Append (Range_Node, To => Constr_List);
13341
13342 Next_Index (Old_Index);
13343 end loop;
13344
13345 return Build_Subtype (Old_Type, Constr_List);
13346
13347 else
13348 return Old_Type;
13349 end if;
13350 end Build_Constrained_Array_Type;
13351
13352 ------------------------------------------
13353 -- Build_Constrained_Discriminated_Type --
13354 ------------------------------------------
13355
13356 function Build_Constrained_Discriminated_Type
13357 (Old_Type : Entity_Id) return Entity_Id
13358 is
13359 Expr : Node_Id;
13360 Constr_List : List_Id;
13361 Old_Constraint : Elmt_Id;
13362
13363 Need_To_Create_Itype : Boolean := False;
13364
13365 begin
13366 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
13367 while Present (Old_Constraint) loop
13368 Expr := Node (Old_Constraint);
13369
13370 if Is_Discriminant (Expr) then
13371 Need_To_Create_Itype := True;
13372 end if;
13373
13374 Next_Elmt (Old_Constraint);
13375 end loop;
13376
13377 if Need_To_Create_Itype then
13378 Constr_List := New_List;
13379
13380 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
13381 while Present (Old_Constraint) loop
13382 Expr := Node (Old_Constraint);
13383
13384 if Is_Discriminant (Expr) then
13385 Expr := Get_Discr_Value (Expr);
13386 end if;
13387
13388 Append (New_Copy_Tree (Expr), To => Constr_List);
13389
13390 Next_Elmt (Old_Constraint);
13391 end loop;
13392
13393 return Build_Subtype (Old_Type, Constr_List);
13394
13395 else
13396 return Old_Type;
13397 end if;
13398 end Build_Constrained_Discriminated_Type;
13399
13400 -------------------
13401 -- Build_Subtype --
13402 -------------------
13403
13404 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
13405 Indic : Node_Id;
13406 Subtyp_Decl : Node_Id;
13407 Def_Id : Entity_Id;
13408 Btyp : Entity_Id := Base_Type (T);
13409
13410 begin
13411 -- The Related_Node better be here or else we won't be able to
13412 -- attach new itypes to a node in the tree.
13413
13414 pragma Assert (Present (Related_Node));
13415
13416 -- If the view of the component's type is incomplete or private
13417 -- with unknown discriminants, then the constraint must be applied
13418 -- to the full type.
13419
13420 if Has_Unknown_Discriminants (Btyp)
13421 and then Present (Underlying_Type (Btyp))
13422 then
13423 Btyp := Underlying_Type (Btyp);
13424 end if;
13425
13426 Indic :=
13427 Make_Subtype_Indication (Loc,
13428 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
13429 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
13430
13431 Def_Id := Create_Itype (Ekind (T), Related_Node);
13432
13433 Subtyp_Decl :=
13434 Make_Subtype_Declaration (Loc,
13435 Defining_Identifier => Def_Id,
13436 Subtype_Indication => Indic);
13437
13438 Set_Parent (Subtyp_Decl, Parent (Related_Node));
13439
13440 -- Itypes must be analyzed with checks off (see package Itypes)
13441
13442 Analyze (Subtyp_Decl, Suppress => All_Checks);
13443
13444 if Is_Itype (Def_Id) and then Has_Predicates (T) then
13445 Inherit_Predicate_Flags (Def_Id, T);
13446
13447 -- Indicate where the predicate function may be found.
13448
13449 if Is_Itype (T) then
13450 if Present (Predicate_Function (Def_Id)) then
13451 null;
13452
13453 elsif Present (Predicate_Function (T)) then
13454 Set_Predicate_Function (Def_Id, Predicate_Function (T));
13455
13456 else
13457 Set_Predicated_Parent (Def_Id, Predicated_Parent (T));
13458 end if;
13459
13460 elsif No (Predicate_Function (Def_Id)) then
13461 Set_Predicated_Parent (Def_Id, T);
13462 end if;
13463 end if;
13464
13465 return Def_Id;
13466 end Build_Subtype;
13467
13468 ---------------------
13469 -- Get_Discr_Value --
13470 ---------------------
13471
13472 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
13473 D : Entity_Id;
13474 E : Elmt_Id;
13475
13476 begin
13477 -- The discriminant may be declared for the type, in which case we
13478 -- find it by iterating over the list of discriminants. If the
13479 -- discriminant is inherited from a parent type, it appears as the
13480 -- corresponding discriminant of the current type. This will be the
13481 -- case when constraining an inherited component whose constraint is
13482 -- given by a discriminant of the parent.
13483
13484 D := First_Discriminant (Typ);
13485 E := First_Elmt (Constraints);
13486
13487 while Present (D) loop
13488 if D = Entity (Discrim)
13489 or else D = CR_Discriminant (Entity (Discrim))
13490 or else Corresponding_Discriminant (D) = Entity (Discrim)
13491 then
13492 return Node (E);
13493 end if;
13494
13495 Next_Discriminant (D);
13496 Next_Elmt (E);
13497 end loop;
13498
13499 -- The Corresponding_Discriminant mechanism is incomplete, because
13500 -- the correspondence between new and old discriminants is not one
13501 -- to one: one new discriminant can constrain several old ones. In
13502 -- that case, scan sequentially the stored_constraint, the list of
13503 -- discriminants of the parents, and the constraints.
13504
13505 -- Previous code checked for the present of the Stored_Constraint
13506 -- list for the derived type, but did not use it at all. Should it
13507 -- be present when the component is a discriminated task type?
13508
13509 if Is_Derived_Type (Typ)
13510 and then Scope (Entity (Discrim)) = Etype (Typ)
13511 then
13512 D := First_Discriminant (Etype (Typ));
13513 E := First_Elmt (Constraints);
13514 while Present (D) loop
13515 if D = Entity (Discrim) then
13516 return Node (E);
13517 end if;
13518
13519 Next_Discriminant (D);
13520 Next_Elmt (E);
13521 end loop;
13522 end if;
13523
13524 -- Something is wrong if we did not find the value
13525
13526 raise Program_Error;
13527 end Get_Discr_Value;
13528
13529 ---------------------
13530 -- Is_Discriminant --
13531 ---------------------
13532
13533 function Is_Discriminant (Expr : Node_Id) return Boolean is
13534 Discrim_Scope : Entity_Id;
13535
13536 begin
13537 if Denotes_Discriminant (Expr) then
13538 Discrim_Scope := Scope (Entity (Expr));
13539
13540 -- Either we have a reference to one of Typ's discriminants,
13541
13542 pragma Assert (Discrim_Scope = Typ
13543
13544 -- or to the discriminants of the parent type, in the case
13545 -- of a derivation of a tagged type with variants.
13546
13547 or else Discrim_Scope = Etype (Typ)
13548 or else Full_View (Discrim_Scope) = Etype (Typ)
13549
13550 -- or same as above for the case where the discriminants
13551 -- were declared in Typ's private view.
13552
13553 or else (Is_Private_Type (Discrim_Scope)
13554 and then Chars (Discrim_Scope) = Chars (Typ))
13555
13556 -- or else we are deriving from the full view and the
13557 -- discriminant is declared in the private entity.
13558
13559 or else (Is_Private_Type (Typ)
13560 and then Chars (Discrim_Scope) = Chars (Typ))
13561
13562 -- Or we are constrained the corresponding record of a
13563 -- synchronized type that completes a private declaration.
13564
13565 or else (Is_Concurrent_Record_Type (Typ)
13566 and then
13567 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
13568
13569 -- or we have a class-wide type, in which case make sure the
13570 -- discriminant found belongs to the root type.
13571
13572 or else (Is_Class_Wide_Type (Typ)
13573 and then Etype (Typ) = Discrim_Scope));
13574
13575 return True;
13576 end if;
13577
13578 -- In all other cases we have something wrong
13579
13580 return False;
13581 end Is_Discriminant;
13582
13583 -- Start of processing for Constrain_Component_Type
13584
13585 begin
13586 if Nkind (Parent (Comp)) = N_Component_Declaration
13587 and then Comes_From_Source (Parent (Comp))
13588 and then Comes_From_Source
13589 (Subtype_Indication (Component_Definition (Parent (Comp))))
13590 and then
13591 Is_Entity_Name
13592 (Subtype_Indication (Component_Definition (Parent (Comp))))
13593 then
13594 return Compon_Type;
13595
13596 elsif Is_Array_Type (Compon_Type) then
13597 return Build_Constrained_Array_Type (Compon_Type);
13598
13599 elsif Has_Discriminants (Compon_Type) then
13600 return Build_Constrained_Discriminated_Type (Compon_Type);
13601
13602 elsif Is_Access_Type (Compon_Type) then
13603 return Build_Constrained_Access_Type (Compon_Type);
13604
13605 else
13606 return Compon_Type;
13607 end if;
13608 end Constrain_Component_Type;
13609
13610 --------------------------
13611 -- Constrain_Concurrent --
13612 --------------------------
13613
13614 -- For concurrent types, the associated record value type carries the same
13615 -- discriminants, so when we constrain a concurrent type, we must constrain
13616 -- the corresponding record type as well.
13617
13618 procedure Constrain_Concurrent
13619 (Def_Id : in out Entity_Id;
13620 SI : Node_Id;
13621 Related_Nod : Node_Id;
13622 Related_Id : Entity_Id;
13623 Suffix : Character)
13624 is
13625 -- Retrieve Base_Type to ensure getting to the concurrent type in the
13626 -- case of a private subtype (needed when only doing semantic analysis).
13627
13628 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
13629 T_Val : Entity_Id;
13630
13631 begin
13632 if Is_Access_Type (T_Ent) then
13633 T_Ent := Designated_Type (T_Ent);
13634 end if;
13635
13636 T_Val := Corresponding_Record_Type (T_Ent);
13637
13638 if Present (T_Val) then
13639
13640 if No (Def_Id) then
13641 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
13642
13643 -- Elaborate itype now, as it may be used in a subsequent
13644 -- synchronized operation in another scope.
13645
13646 if Nkind (Related_Nod) = N_Full_Type_Declaration then
13647 Build_Itype_Reference (Def_Id, Related_Nod);
13648 end if;
13649 end if;
13650
13651 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
13652 Set_First_Private_Entity (Def_Id, First_Private_Entity (T_Ent));
13653
13654 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13655 Set_Corresponding_Record_Type (Def_Id,
13656 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
13657
13658 else
13659 -- If there is no associated record, expansion is disabled and this
13660 -- is a generic context. Create a subtype in any case, so that
13661 -- semantic analysis can proceed.
13662
13663 if No (Def_Id) then
13664 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
13665 end if;
13666
13667 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
13668 end if;
13669 end Constrain_Concurrent;
13670
13671 ------------------------------------
13672 -- Constrain_Corresponding_Record --
13673 ------------------------------------
13674
13675 function Constrain_Corresponding_Record
13676 (Prot_Subt : Entity_Id;
13677 Corr_Rec : Entity_Id;
13678 Related_Nod : Node_Id) return Entity_Id
13679 is
13680 T_Sub : constant Entity_Id :=
13681 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
13682
13683 begin
13684 Set_Etype (T_Sub, Corr_Rec);
13685 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
13686 Set_Is_Constrained (T_Sub, True);
13687 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
13688 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
13689
13690 if Has_Discriminants (Prot_Subt) then -- False only if errors.
13691 Set_Discriminant_Constraint
13692 (T_Sub, Discriminant_Constraint (Prot_Subt));
13693 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
13694 Create_Constrained_Components
13695 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
13696 end if;
13697
13698 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
13699
13700 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
13701 Conditional_Delay (T_Sub, Corr_Rec);
13702
13703 else
13704 -- This is a component subtype: it will be frozen in the context of
13705 -- the enclosing record's init_proc, so that discriminant references
13706 -- are resolved to discriminals. (Note: we used to skip freezing
13707 -- altogether in that case, which caused errors downstream for
13708 -- components of a bit packed array type).
13709
13710 Set_Has_Delayed_Freeze (T_Sub);
13711 end if;
13712
13713 return T_Sub;
13714 end Constrain_Corresponding_Record;
13715
13716 -----------------------
13717 -- Constrain_Decimal --
13718 -----------------------
13719
13720 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
13721 T : constant Entity_Id := Entity (Subtype_Mark (S));
13722 C : constant Node_Id := Constraint (S);
13723 Loc : constant Source_Ptr := Sloc (C);
13724 Range_Expr : Node_Id;
13725 Digits_Expr : Node_Id;
13726 Digits_Val : Uint;
13727 Bound_Val : Ureal;
13728
13729 begin
13730 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
13731
13732 if Nkind (C) = N_Range_Constraint then
13733 Range_Expr := Range_Expression (C);
13734 Digits_Val := Digits_Value (T);
13735
13736 else
13737 pragma Assert (Nkind (C) = N_Digits_Constraint);
13738
13739 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13740
13741 Digits_Expr := Digits_Expression (C);
13742 Analyze_And_Resolve (Digits_Expr, Any_Integer);
13743
13744 Check_Digits_Expression (Digits_Expr);
13745 Digits_Val := Expr_Value (Digits_Expr);
13746
13747 if Digits_Val > Digits_Value (T) then
13748 Error_Msg_N
13749 ("digits expression is incompatible with subtype", C);
13750 Digits_Val := Digits_Value (T);
13751 end if;
13752
13753 if Present (Range_Constraint (C)) then
13754 Range_Expr := Range_Expression (Range_Constraint (C));
13755 else
13756 Range_Expr := Empty;
13757 end if;
13758 end if;
13759
13760 Set_Etype (Def_Id, Base_Type (T));
13761 Set_Size_Info (Def_Id, (T));
13762 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13763 Set_Delta_Value (Def_Id, Delta_Value (T));
13764 Set_Scale_Value (Def_Id, Scale_Value (T));
13765 Set_Small_Value (Def_Id, Small_Value (T));
13766 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
13767 Set_Digits_Value (Def_Id, Digits_Val);
13768
13769 -- Manufacture range from given digits value if no range present
13770
13771 if No (Range_Expr) then
13772 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
13773 Range_Expr :=
13774 Make_Range (Loc,
13775 Low_Bound =>
13776 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
13777 High_Bound =>
13778 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
13779 end if;
13780
13781 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
13782 Set_Discrete_RM_Size (Def_Id);
13783
13784 -- Unconditionally delay the freeze, since we cannot set size
13785 -- information in all cases correctly until the freeze point.
13786
13787 Set_Has_Delayed_Freeze (Def_Id);
13788 end Constrain_Decimal;
13789
13790 ----------------------------------
13791 -- Constrain_Discriminated_Type --
13792 ----------------------------------
13793
13794 procedure Constrain_Discriminated_Type
13795 (Def_Id : Entity_Id;
13796 S : Node_Id;
13797 Related_Nod : Node_Id;
13798 For_Access : Boolean := False)
13799 is
13800 E : Entity_Id := Entity (Subtype_Mark (S));
13801 T : Entity_Id;
13802
13803 procedure Fixup_Bad_Constraint;
13804 -- Called after finding a bad constraint, and after having posted an
13805 -- appropriate error message. The goal is to leave type Def_Id in as
13806 -- reasonable state as possible.
13807
13808 --------------------------
13809 -- Fixup_Bad_Constraint --
13810 --------------------------
13811
13812 procedure Fixup_Bad_Constraint is
13813 begin
13814 -- Set a reasonable Ekind for the entity, including incomplete types.
13815
13816 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
13817
13818 -- Set Etype to the known type, to reduce chances of cascaded errors
13819
13820 Set_Etype (Def_Id, E);
13821 Set_Error_Posted (Def_Id);
13822 end Fixup_Bad_Constraint;
13823
13824 -- Local variables
13825
13826 C : Node_Id;
13827 Constr : Elist_Id := New_Elmt_List;
13828
13829 -- Start of processing for Constrain_Discriminated_Type
13830
13831 begin
13832 C := Constraint (S);
13833
13834 -- A discriminant constraint is only allowed in a subtype indication,
13835 -- after a subtype mark. This subtype mark must denote either a type
13836 -- with discriminants, or an access type whose designated type is a
13837 -- type with discriminants. A discriminant constraint specifies the
13838 -- values of these discriminants (RM 3.7.2(5)).
13839
13840 T := Base_Type (Entity (Subtype_Mark (S)));
13841
13842 if Is_Access_Type (T) then
13843 T := Designated_Type (T);
13844 end if;
13845
13846 -- In an instance it may be necessary to retrieve the full view of a
13847 -- type with unknown discriminants, or a full view with defaulted
13848 -- discriminants. In other contexts the constraint is illegal.
13849
13850 if In_Instance
13851 and then Is_Private_Type (T)
13852 and then Present (Full_View (T))
13853 and then
13854 (Has_Unknown_Discriminants (T)
13855 or else
13856 (not Has_Discriminants (T)
13857 and then Has_Discriminants (Full_View (T))
13858 and then Present (Discriminant_Default_Value
13859 (First_Discriminant (Full_View (T))))))
13860 then
13861 T := Full_View (T);
13862 E := Full_View (E);
13863 end if;
13864
13865 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal. Avoid
13866 -- generating an error for access-to-incomplete subtypes.
13867
13868 if Ada_Version >= Ada_2005
13869 and then Ekind (T) = E_Incomplete_Type
13870 and then Nkind (Parent (S)) = N_Subtype_Declaration
13871 and then not Is_Itype (Def_Id)
13872 then
13873 -- A little sanity check: emit an error message if the type has
13874 -- discriminants to begin with. Type T may be a regular incomplete
13875 -- type or imported via a limited with clause.
13876
13877 if Has_Discriminants (T)
13878 or else (From_Limited_With (T)
13879 and then Present (Non_Limited_View (T))
13880 and then Nkind (Parent (Non_Limited_View (T))) =
13881 N_Full_Type_Declaration
13882 and then Present (Discriminant_Specifications
13883 (Parent (Non_Limited_View (T)))))
13884 then
13885 Error_Msg_N
13886 ("(Ada 2005) incomplete subtype may not be constrained", C);
13887 else
13888 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13889 end if;
13890
13891 Fixup_Bad_Constraint;
13892 return;
13893
13894 -- Check that the type has visible discriminants. The type may be
13895 -- a private type with unknown discriminants whose full view has
13896 -- discriminants which are invisible.
13897
13898 elsif not Has_Discriminants (T)
13899 or else
13900 (Has_Unknown_Discriminants (T)
13901 and then Is_Private_Type (T))
13902 then
13903 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13904 Fixup_Bad_Constraint;
13905 return;
13906
13907 elsif Is_Constrained (E)
13908 or else (Ekind (E) = E_Class_Wide_Subtype
13909 and then Present (Discriminant_Constraint (E)))
13910 then
13911 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
13912 Fixup_Bad_Constraint;
13913 return;
13914 end if;
13915
13916 -- T may be an unconstrained subtype (e.g. a generic actual). Constraint
13917 -- applies to the base type.
13918
13919 T := Base_Type (T);
13920
13921 Constr := Build_Discriminant_Constraints (T, S);
13922
13923 -- If the list returned was empty we had an error in building the
13924 -- discriminant constraint. We have also already signalled an error
13925 -- in the incomplete type case
13926
13927 if Is_Empty_Elmt_List (Constr) then
13928 Fixup_Bad_Constraint;
13929 return;
13930 end if;
13931
13932 Build_Discriminated_Subtype (T, Def_Id, Constr, Related_Nod, For_Access);
13933 end Constrain_Discriminated_Type;
13934
13935 ---------------------------
13936 -- Constrain_Enumeration --
13937 ---------------------------
13938
13939 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
13940 T : constant Entity_Id := Entity (Subtype_Mark (S));
13941 C : constant Node_Id := Constraint (S);
13942
13943 begin
13944 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13945
13946 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
13947
13948 Set_Etype (Def_Id, Base_Type (T));
13949 Set_Size_Info (Def_Id, (T));
13950 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13951 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13952
13953 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13954
13955 Set_Discrete_RM_Size (Def_Id);
13956 end Constrain_Enumeration;
13957
13958 ----------------------
13959 -- Constrain_Float --
13960 ----------------------
13961
13962 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
13963 T : constant Entity_Id := Entity (Subtype_Mark (S));
13964 C : Node_Id;
13965 D : Node_Id;
13966 Rais : Node_Id;
13967
13968 begin
13969 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
13970
13971 Set_Etype (Def_Id, Base_Type (T));
13972 Set_Size_Info (Def_Id, (T));
13973 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13974
13975 -- Process the constraint
13976
13977 C := Constraint (S);
13978
13979 -- Digits constraint present
13980
13981 if Nkind (C) = N_Digits_Constraint then
13982
13983 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13984 Check_Restriction (No_Obsolescent_Features, C);
13985
13986 if Warn_On_Obsolescent_Feature then
13987 Error_Msg_N
13988 ("subtype digits constraint is an " &
13989 "obsolescent feature (RM J.3(8))?j?", C);
13990 end if;
13991
13992 D := Digits_Expression (C);
13993 Analyze_And_Resolve (D, Any_Integer);
13994 Check_Digits_Expression (D);
13995 Set_Digits_Value (Def_Id, Expr_Value (D));
13996
13997 -- Check that digits value is in range. Obviously we can do this
13998 -- at compile time, but it is strictly a runtime check, and of
13999 -- course there is an ACVC test that checks this.
14000
14001 if Digits_Value (Def_Id) > Digits_Value (T) then
14002 Error_Msg_Uint_1 := Digits_Value (T);
14003 Error_Msg_N ("??digits value is too large, maximum is ^", D);
14004 Rais :=
14005 Make_Raise_Constraint_Error (Sloc (D),
14006 Reason => CE_Range_Check_Failed);
14007 Insert_Action (Declaration_Node (Def_Id), Rais);
14008 end if;
14009
14010 C := Range_Constraint (C);
14011
14012 -- No digits constraint present
14013
14014 else
14015 Set_Digits_Value (Def_Id, Digits_Value (T));
14016 end if;
14017
14018 -- Range constraint present
14019
14020 if Nkind (C) = N_Range_Constraint then
14021 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14022
14023 -- No range constraint present
14024
14025 else
14026 pragma Assert (No (C));
14027 Set_Scalar_Range (Def_Id, Scalar_Range (T));
14028 end if;
14029
14030 Set_Is_Constrained (Def_Id);
14031 end Constrain_Float;
14032
14033 ---------------------
14034 -- Constrain_Index --
14035 ---------------------
14036
14037 procedure Constrain_Index
14038 (Index : Node_Id;
14039 S : Node_Id;
14040 Related_Nod : Node_Id;
14041 Related_Id : Entity_Id;
14042 Suffix : Character;
14043 Suffix_Index : Nat)
14044 is
14045 Def_Id : Entity_Id;
14046 R : Node_Id := Empty;
14047 T : constant Entity_Id := Etype (Index);
14048
14049 begin
14050 Def_Id :=
14051 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
14052 Set_Etype (Def_Id, Base_Type (T));
14053
14054 if Nkind (S) = N_Range
14055 or else
14056 (Nkind (S) = N_Attribute_Reference
14057 and then Attribute_Name (S) = Name_Range)
14058 then
14059 -- A Range attribute will be transformed into N_Range by Resolve
14060
14061 Analyze (S);
14062 Set_Etype (S, T);
14063 R := S;
14064
14065 Process_Range_Expr_In_Decl (R, T);
14066
14067 if not Error_Posted (S)
14068 and then
14069 (Nkind (S) /= N_Range
14070 or else not Covers (T, (Etype (Low_Bound (S))))
14071 or else not Covers (T, (Etype (High_Bound (S)))))
14072 then
14073 if Base_Type (T) /= Any_Type
14074 and then Etype (Low_Bound (S)) /= Any_Type
14075 and then Etype (High_Bound (S)) /= Any_Type
14076 then
14077 Error_Msg_N ("range expected", S);
14078 end if;
14079 end if;
14080
14081 elsif Nkind (S) = N_Subtype_Indication then
14082
14083 -- The parser has verified that this is a discrete indication
14084
14085 Resolve_Discrete_Subtype_Indication (S, T);
14086 Bad_Predicated_Subtype_Use
14087 ("subtype& has predicate, not allowed in index constraint",
14088 S, Entity (Subtype_Mark (S)));
14089
14090 R := Range_Expression (Constraint (S));
14091
14092 -- Capture values of bounds and generate temporaries for them if
14093 -- needed, since checks may cause duplication of the expressions
14094 -- which must not be reevaluated.
14095
14096 -- The forced evaluation removes side effects from expressions, which
14097 -- should occur also in GNATprove mode. Otherwise, we end up with
14098 -- unexpected insertions of actions at places where this is not
14099 -- supposed to occur, e.g. on default parameters of a call.
14100
14101 if Expander_Active or GNATprove_Mode then
14102 Force_Evaluation
14103 (Low_Bound (R), Related_Id => Def_Id, Is_Low_Bound => True);
14104 Force_Evaluation
14105 (High_Bound (R), Related_Id => Def_Id, Is_High_Bound => True);
14106 end if;
14107
14108 elsif Nkind (S) = N_Discriminant_Association then
14109
14110 -- Syntactically valid in subtype indication
14111
14112 Error_Msg_N ("invalid index constraint", S);
14113 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
14114 return;
14115
14116 -- Subtype_Mark case, no anonymous subtypes to construct
14117
14118 else
14119 Analyze (S);
14120
14121 if Is_Entity_Name (S) then
14122 if not Is_Type (Entity (S)) then
14123 Error_Msg_N ("expect subtype mark for index constraint", S);
14124
14125 elsif Base_Type (Entity (S)) /= Base_Type (T) then
14126 Wrong_Type (S, Base_Type (T));
14127
14128 -- Check error of subtype with predicate in index constraint
14129
14130 else
14131 Bad_Predicated_Subtype_Use
14132 ("subtype& has predicate, not allowed in index constraint",
14133 S, Entity (S));
14134 end if;
14135
14136 return;
14137
14138 else
14139 Error_Msg_N ("invalid index constraint", S);
14140 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
14141 return;
14142 end if;
14143 end if;
14144
14145 -- Complete construction of the Itype
14146
14147 if Is_Modular_Integer_Type (T) then
14148 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
14149
14150 elsif Is_Integer_Type (T) then
14151 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
14152
14153 else
14154 Set_Ekind (Def_Id, E_Enumeration_Subtype);
14155 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
14156 Set_First_Literal (Def_Id, First_Literal (T));
14157 end if;
14158
14159 Set_Size_Info (Def_Id, (T));
14160 Set_RM_Size (Def_Id, RM_Size (T));
14161 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14162
14163 Set_Scalar_Range (Def_Id, R);
14164
14165 Set_Etype (S, Def_Id);
14166 Set_Discrete_RM_Size (Def_Id);
14167 end Constrain_Index;
14168
14169 -----------------------
14170 -- Constrain_Integer --
14171 -----------------------
14172
14173 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
14174 T : constant Entity_Id := Entity (Subtype_Mark (S));
14175 C : constant Node_Id := Constraint (S);
14176
14177 begin
14178 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14179
14180 if Is_Modular_Integer_Type (T) then
14181 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
14182 else
14183 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
14184 end if;
14185
14186 Set_Etype (Def_Id, Base_Type (T));
14187 Set_Size_Info (Def_Id, (T));
14188 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14189 Set_Discrete_RM_Size (Def_Id);
14190 end Constrain_Integer;
14191
14192 ------------------------------
14193 -- Constrain_Ordinary_Fixed --
14194 ------------------------------
14195
14196 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
14197 T : constant Entity_Id := Entity (Subtype_Mark (S));
14198 C : Node_Id;
14199 D : Node_Id;
14200 Rais : Node_Id;
14201
14202 begin
14203 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
14204 Set_Etype (Def_Id, Base_Type (T));
14205 Set_Size_Info (Def_Id, (T));
14206 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14207 Set_Small_Value (Def_Id, Small_Value (T));
14208
14209 -- Process the constraint
14210
14211 C := Constraint (S);
14212
14213 -- Delta constraint present
14214
14215 if Nkind (C) = N_Delta_Constraint then
14216
14217 Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
14218 Check_Restriction (No_Obsolescent_Features, C);
14219
14220 if Warn_On_Obsolescent_Feature then
14221 Error_Msg_S
14222 ("subtype delta constraint is an " &
14223 "obsolescent feature (RM J.3(7))?j?");
14224 end if;
14225
14226 D := Delta_Expression (C);
14227 Analyze_And_Resolve (D, Any_Real);
14228 Check_Delta_Expression (D);
14229 Set_Delta_Value (Def_Id, Expr_Value_R (D));
14230
14231 -- Check that delta value is in range. Obviously we can do this
14232 -- at compile time, but it is strictly a runtime check, and of
14233 -- course there is an ACVC test that checks this.
14234
14235 if Delta_Value (Def_Id) < Delta_Value (T) then
14236 Error_Msg_N ("??delta value is too small", D);
14237 Rais :=
14238 Make_Raise_Constraint_Error (Sloc (D),
14239 Reason => CE_Range_Check_Failed);
14240 Insert_Action (Declaration_Node (Def_Id), Rais);
14241 end if;
14242
14243 C := Range_Constraint (C);
14244
14245 -- No delta constraint present
14246
14247 else
14248 Set_Delta_Value (Def_Id, Delta_Value (T));
14249 end if;
14250
14251 -- Range constraint present
14252
14253 if Nkind (C) = N_Range_Constraint then
14254 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14255
14256 -- No range constraint present
14257
14258 else
14259 pragma Assert (No (C));
14260 Set_Scalar_Range (Def_Id, Scalar_Range (T));
14261 end if;
14262
14263 Set_Discrete_RM_Size (Def_Id);
14264
14265 -- Unconditionally delay the freeze, since we cannot set size
14266 -- information in all cases correctly until the freeze point.
14267
14268 Set_Has_Delayed_Freeze (Def_Id);
14269 end Constrain_Ordinary_Fixed;
14270
14271 -----------------------
14272 -- Contain_Interface --
14273 -----------------------
14274
14275 function Contain_Interface
14276 (Iface : Entity_Id;
14277 Ifaces : Elist_Id) return Boolean
14278 is
14279 Iface_Elmt : Elmt_Id;
14280
14281 begin
14282 if Present (Ifaces) then
14283 Iface_Elmt := First_Elmt (Ifaces);
14284 while Present (Iface_Elmt) loop
14285 if Node (Iface_Elmt) = Iface then
14286 return True;
14287 end if;
14288
14289 Next_Elmt (Iface_Elmt);
14290 end loop;
14291 end if;
14292
14293 return False;
14294 end Contain_Interface;
14295
14296 ---------------------------
14297 -- Convert_Scalar_Bounds --
14298 ---------------------------
14299
14300 procedure Convert_Scalar_Bounds
14301 (N : Node_Id;
14302 Parent_Type : Entity_Id;
14303 Derived_Type : Entity_Id;
14304 Loc : Source_Ptr)
14305 is
14306 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
14307
14308 Lo : Node_Id;
14309 Hi : Node_Id;
14310 Rng : Node_Id;
14311
14312 begin
14313 -- Defend against previous errors
14314
14315 if No (Scalar_Range (Derived_Type)) then
14316 Check_Error_Detected;
14317 return;
14318 end if;
14319
14320 Lo := Build_Scalar_Bound
14321 (Type_Low_Bound (Derived_Type),
14322 Parent_Type, Implicit_Base);
14323
14324 Hi := Build_Scalar_Bound
14325 (Type_High_Bound (Derived_Type),
14326 Parent_Type, Implicit_Base);
14327
14328 Rng :=
14329 Make_Range (Loc,
14330 Low_Bound => Lo,
14331 High_Bound => Hi);
14332
14333 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
14334
14335 Set_Parent (Rng, N);
14336 Set_Scalar_Range (Derived_Type, Rng);
14337
14338 -- Analyze the bounds
14339
14340 Analyze_And_Resolve (Lo, Implicit_Base);
14341 Analyze_And_Resolve (Hi, Implicit_Base);
14342
14343 -- Analyze the range itself, except that we do not analyze it if
14344 -- the bounds are real literals, and we have a fixed-point type.
14345 -- The reason for this is that we delay setting the bounds in this
14346 -- case till we know the final Small and Size values (see circuit
14347 -- in Freeze.Freeze_Fixed_Point_Type for further details).
14348
14349 if Is_Fixed_Point_Type (Parent_Type)
14350 and then Nkind (Lo) = N_Real_Literal
14351 and then Nkind (Hi) = N_Real_Literal
14352 then
14353 return;
14354
14355 -- Here we do the analysis of the range
14356
14357 -- Note: we do this manually, since if we do a normal Analyze and
14358 -- Resolve call, there are problems with the conversions used for
14359 -- the derived type range.
14360
14361 else
14362 Set_Etype (Rng, Implicit_Base);
14363 Set_Analyzed (Rng, True);
14364 end if;
14365 end Convert_Scalar_Bounds;
14366
14367 -------------------
14368 -- Copy_And_Swap --
14369 -------------------
14370
14371 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
14372 begin
14373 -- Initialize new full declaration entity by copying the pertinent
14374 -- fields of the corresponding private declaration entity.
14375
14376 -- We temporarily set Ekind to a value appropriate for a type to
14377 -- avoid assert failures in Einfo from checking for setting type
14378 -- attributes on something that is not a type. Ekind (Priv) is an
14379 -- appropriate choice, since it allowed the attributes to be set
14380 -- in the first place. This Ekind value will be modified later.
14381
14382 Set_Ekind (Full, Ekind (Priv));
14383
14384 -- Also set Etype temporarily to Any_Type, again, in the absence
14385 -- of errors, it will be properly reset, and if there are errors,
14386 -- then we want a value of Any_Type to remain.
14387
14388 Set_Etype (Full, Any_Type);
14389
14390 -- Now start copying attributes
14391
14392 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
14393
14394 if Has_Discriminants (Full) then
14395 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
14396 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
14397 end if;
14398
14399 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
14400 Set_Homonym (Full, Homonym (Priv));
14401 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
14402 Set_Is_Public (Full, Is_Public (Priv));
14403 Set_Is_Pure (Full, Is_Pure (Priv));
14404 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
14405 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
14406 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
14407 Set_Has_Pragma_Unreferenced_Objects
14408 (Full, Has_Pragma_Unreferenced_Objects
14409 (Priv));
14410
14411 Conditional_Delay (Full, Priv);
14412
14413 if Is_Tagged_Type (Full) then
14414 Set_Direct_Primitive_Operations
14415 (Full, Direct_Primitive_Operations (Priv));
14416 Set_No_Tagged_Streams_Pragma
14417 (Full, No_Tagged_Streams_Pragma (Priv));
14418
14419 if Is_Base_Type (Priv) then
14420 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
14421 end if;
14422 end if;
14423
14424 Set_Is_Volatile (Full, Is_Volatile (Priv));
14425 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
14426 Set_Scope (Full, Scope (Priv));
14427 Set_Next_Entity (Full, Next_Entity (Priv));
14428 Set_First_Entity (Full, First_Entity (Priv));
14429 Set_Last_Entity (Full, Last_Entity (Priv));
14430
14431 -- If access types have been recorded for later handling, keep them in
14432 -- the full view so that they get handled when the full view freeze
14433 -- node is expanded.
14434
14435 if Present (Freeze_Node (Priv))
14436 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
14437 then
14438 Ensure_Freeze_Node (Full);
14439 Set_Access_Types_To_Process
14440 (Freeze_Node (Full),
14441 Access_Types_To_Process (Freeze_Node (Priv)));
14442 end if;
14443
14444 -- Swap the two entities. Now Private is the full type entity and Full
14445 -- is the private one. They will be swapped back at the end of the
14446 -- private part. This swapping ensures that the entity that is visible
14447 -- in the private part is the full declaration.
14448
14449 Exchange_Entities (Priv, Full);
14450 Append_Entity (Full, Scope (Full));
14451 end Copy_And_Swap;
14452
14453 -------------------------------------
14454 -- Copy_Array_Base_Type_Attributes --
14455 -------------------------------------
14456
14457 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
14458 begin
14459 Set_Component_Alignment (T1, Component_Alignment (T2));
14460 Set_Component_Type (T1, Component_Type (T2));
14461 Set_Component_Size (T1, Component_Size (T2));
14462 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
14463 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
14464 Propagate_Concurrent_Flags (T1, T2);
14465 Set_Is_Packed (T1, Is_Packed (T2));
14466 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
14467 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
14468 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
14469 end Copy_Array_Base_Type_Attributes;
14470
14471 -----------------------------------
14472 -- Copy_Array_Subtype_Attributes --
14473 -----------------------------------
14474
14475 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
14476 begin
14477 Set_Size_Info (T1, T2);
14478
14479 Set_First_Index (T1, First_Index (T2));
14480 Set_Is_Aliased (T1, Is_Aliased (T2));
14481 Set_Is_Volatile (T1, Is_Volatile (T2));
14482 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
14483 Set_Is_Constrained (T1, Is_Constrained (T2));
14484 Set_Depends_On_Private (T1, Has_Private_Component (T2));
14485 Inherit_Rep_Item_Chain (T1, T2);
14486 Set_Convention (T1, Convention (T2));
14487 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
14488 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
14489 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
14490 end Copy_Array_Subtype_Attributes;
14491
14492 -----------------------------------
14493 -- Create_Constrained_Components --
14494 -----------------------------------
14495
14496 procedure Create_Constrained_Components
14497 (Subt : Entity_Id;
14498 Decl_Node : Node_Id;
14499 Typ : Entity_Id;
14500 Constraints : Elist_Id)
14501 is
14502 Loc : constant Source_Ptr := Sloc (Subt);
14503 Comp_List : constant Elist_Id := New_Elmt_List;
14504 Parent_Type : constant Entity_Id := Etype (Typ);
14505 Assoc_List : constant List_Id := New_List;
14506 Discr_Val : Elmt_Id;
14507 Errors : Boolean;
14508 New_C : Entity_Id;
14509 Old_C : Entity_Id;
14510 Is_Static : Boolean := True;
14511
14512 procedure Collect_Fixed_Components (Typ : Entity_Id);
14513 -- Collect parent type components that do not appear in a variant part
14514
14515 procedure Create_All_Components;
14516 -- Iterate over Comp_List to create the components of the subtype
14517
14518 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
14519 -- Creates a new component from Old_Compon, copying all the fields from
14520 -- it, including its Etype, inserts the new component in the Subt entity
14521 -- chain and returns the new component.
14522
14523 function Is_Variant_Record (T : Entity_Id) return Boolean;
14524 -- If true, and discriminants are static, collect only components from
14525 -- variants selected by discriminant values.
14526
14527 ------------------------------
14528 -- Collect_Fixed_Components --
14529 ------------------------------
14530
14531 procedure Collect_Fixed_Components (Typ : Entity_Id) is
14532 begin
14533 -- Build association list for discriminants, and find components of the
14534 -- variant part selected by the values of the discriminants.
14535
14536 Old_C := First_Discriminant (Typ);
14537 Discr_Val := First_Elmt (Constraints);
14538 while Present (Old_C) loop
14539 Append_To (Assoc_List,
14540 Make_Component_Association (Loc,
14541 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
14542 Expression => New_Copy (Node (Discr_Val))));
14543
14544 Next_Elmt (Discr_Val);
14545 Next_Discriminant (Old_C);
14546 end loop;
14547
14548 -- The tag and the possible parent component are unconditionally in
14549 -- the subtype.
14550
14551 if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
14552 Old_C := First_Component (Typ);
14553 while Present (Old_C) loop
14554 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
14555 Append_Elmt (Old_C, Comp_List);
14556 end if;
14557
14558 Next_Component (Old_C);
14559 end loop;
14560 end if;
14561 end Collect_Fixed_Components;
14562
14563 ---------------------------
14564 -- Create_All_Components --
14565 ---------------------------
14566
14567 procedure Create_All_Components is
14568 Comp : Elmt_Id;
14569
14570 begin
14571 Comp := First_Elmt (Comp_List);
14572 while Present (Comp) loop
14573 Old_C := Node (Comp);
14574 New_C := Create_Component (Old_C);
14575
14576 Set_Etype
14577 (New_C,
14578 Constrain_Component_Type
14579 (Old_C, Subt, Decl_Node, Typ, Constraints));
14580 Set_Is_Public (New_C, Is_Public (Subt));
14581
14582 Next_Elmt (Comp);
14583 end loop;
14584 end Create_All_Components;
14585
14586 ----------------------
14587 -- Create_Component --
14588 ----------------------
14589
14590 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
14591 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
14592
14593 begin
14594 if Ekind (Old_Compon) = E_Discriminant
14595 and then Is_Completely_Hidden (Old_Compon)
14596 then
14597 -- This is a shadow discriminant created for a discriminant of
14598 -- the parent type, which needs to be present in the subtype.
14599 -- Give the shadow discriminant an internal name that cannot
14600 -- conflict with that of visible components.
14601
14602 Set_Chars (New_Compon, New_Internal_Name ('C'));
14603 end if;
14604
14605 -- Set the parent so we have a proper link for freezing etc. This is
14606 -- not a real parent pointer, since of course our parent does not own
14607 -- up to us and reference us, we are an illegitimate child of the
14608 -- original parent.
14609
14610 Set_Parent (New_Compon, Parent (Old_Compon));
14611
14612 -- We do not want this node marked as Comes_From_Source, since
14613 -- otherwise it would get first class status and a separate cross-
14614 -- reference line would be generated. Illegitimate children do not
14615 -- rate such recognition.
14616
14617 Set_Comes_From_Source (New_Compon, False);
14618
14619 -- But it is a real entity, and a birth certificate must be properly
14620 -- registered by entering it into the entity list.
14621
14622 Enter_Name (New_Compon);
14623
14624 return New_Compon;
14625 end Create_Component;
14626
14627 -----------------------
14628 -- Is_Variant_Record --
14629 -----------------------
14630
14631 function Is_Variant_Record (T : Entity_Id) return Boolean is
14632 begin
14633 return Nkind (Parent (T)) = N_Full_Type_Declaration
14634 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
14635 and then Present (Component_List (Type_Definition (Parent (T))))
14636 and then
14637 Present
14638 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
14639 end Is_Variant_Record;
14640
14641 -- Start of processing for Create_Constrained_Components
14642
14643 begin
14644 pragma Assert (Subt /= Base_Type (Subt));
14645 pragma Assert (Typ = Base_Type (Typ));
14646
14647 Set_First_Entity (Subt, Empty);
14648 Set_Last_Entity (Subt, Empty);
14649
14650 -- Check whether constraint is fully static, in which case we can
14651 -- optimize the list of components.
14652
14653 Discr_Val := First_Elmt (Constraints);
14654 while Present (Discr_Val) loop
14655 if not Is_OK_Static_Expression (Node (Discr_Val)) then
14656 Is_Static := False;
14657 exit;
14658 end if;
14659
14660 Next_Elmt (Discr_Val);
14661 end loop;
14662
14663 Set_Has_Static_Discriminants (Subt, Is_Static);
14664
14665 Push_Scope (Subt);
14666
14667 -- Inherit the discriminants of the parent type
14668
14669 Add_Discriminants : declare
14670 Num_Disc : Nat;
14671 Num_Gird : Nat;
14672
14673 begin
14674 Num_Disc := 0;
14675 Old_C := First_Discriminant (Typ);
14676
14677 while Present (Old_C) loop
14678 Num_Disc := Num_Disc + 1;
14679 New_C := Create_Component (Old_C);
14680 Set_Is_Public (New_C, Is_Public (Subt));
14681 Next_Discriminant (Old_C);
14682 end loop;
14683
14684 -- For an untagged derived subtype, the number of discriminants may
14685 -- be smaller than the number of inherited discriminants, because
14686 -- several of them may be renamed by a single new discriminant or
14687 -- constrained. In this case, add the hidden discriminants back into
14688 -- the subtype, because they need to be present if the optimizer of
14689 -- the GCC 4.x back-end decides to break apart assignments between
14690 -- objects using the parent view into member-wise assignments.
14691
14692 Num_Gird := 0;
14693
14694 if Is_Derived_Type (Typ)
14695 and then not Is_Tagged_Type (Typ)
14696 then
14697 Old_C := First_Stored_Discriminant (Typ);
14698
14699 while Present (Old_C) loop
14700 Num_Gird := Num_Gird + 1;
14701 Next_Stored_Discriminant (Old_C);
14702 end loop;
14703 end if;
14704
14705 if Num_Gird > Num_Disc then
14706
14707 -- Find out multiple uses of new discriminants, and add hidden
14708 -- components for the extra renamed discriminants. We recognize
14709 -- multiple uses through the Corresponding_Discriminant of a
14710 -- new discriminant: if it constrains several old discriminants,
14711 -- this field points to the last one in the parent type. The
14712 -- stored discriminants of the derived type have the same name
14713 -- as those of the parent.
14714
14715 declare
14716 Constr : Elmt_Id;
14717 New_Discr : Entity_Id;
14718 Old_Discr : Entity_Id;
14719
14720 begin
14721 Constr := First_Elmt (Stored_Constraint (Typ));
14722 Old_Discr := First_Stored_Discriminant (Typ);
14723 while Present (Constr) loop
14724 if Is_Entity_Name (Node (Constr))
14725 and then Ekind (Entity (Node (Constr))) = E_Discriminant
14726 then
14727 New_Discr := Entity (Node (Constr));
14728
14729 if Chars (Corresponding_Discriminant (New_Discr)) /=
14730 Chars (Old_Discr)
14731 then
14732 -- The new discriminant has been used to rename a
14733 -- subsequent old discriminant. Introduce a shadow
14734 -- component for the current old discriminant.
14735
14736 New_C := Create_Component (Old_Discr);
14737 Set_Original_Record_Component (New_C, Old_Discr);
14738 end if;
14739
14740 else
14741 -- The constraint has eliminated the old discriminant.
14742 -- Introduce a shadow component.
14743
14744 New_C := Create_Component (Old_Discr);
14745 Set_Original_Record_Component (New_C, Old_Discr);
14746 end if;
14747
14748 Next_Elmt (Constr);
14749 Next_Stored_Discriminant (Old_Discr);
14750 end loop;
14751 end;
14752 end if;
14753 end Add_Discriminants;
14754
14755 if Is_Static
14756 and then Is_Variant_Record (Typ)
14757 then
14758 Collect_Fixed_Components (Typ);
14759
14760 Gather_Components (
14761 Typ,
14762 Component_List (Type_Definition (Parent (Typ))),
14763 Governed_By => Assoc_List,
14764 Into => Comp_List,
14765 Report_Errors => Errors);
14766 pragma Assert (not Errors
14767 or else Serious_Errors_Detected > 0);
14768
14769 Create_All_Components;
14770
14771 -- If the subtype declaration is created for a tagged type derivation
14772 -- with constraints, we retrieve the record definition of the parent
14773 -- type to select the components of the proper variant.
14774
14775 elsif Is_Static
14776 and then Is_Tagged_Type (Typ)
14777 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
14778 and then
14779 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
14780 and then Is_Variant_Record (Parent_Type)
14781 then
14782 Collect_Fixed_Components (Typ);
14783
14784 Gather_Components
14785 (Typ,
14786 Component_List (Type_Definition (Parent (Parent_Type))),
14787 Governed_By => Assoc_List,
14788 Into => Comp_List,
14789 Report_Errors => Errors);
14790
14791 -- Note: previously there was a check at this point that no errors
14792 -- were detected. As a consequence of AI05-220 there may be an error
14793 -- if an inherited discriminant that controls a variant has a non-
14794 -- static constraint.
14795
14796 -- If the tagged derivation has a type extension, collect all the
14797 -- new components therein.
14798
14799 if Present (Record_Extension_Part (Type_Definition (Parent (Typ))))
14800 then
14801 Old_C := First_Component (Typ);
14802 while Present (Old_C) loop
14803 if Original_Record_Component (Old_C) = Old_C
14804 and then Chars (Old_C) /= Name_uTag
14805 and then Chars (Old_C) /= Name_uParent
14806 then
14807 Append_Elmt (Old_C, Comp_List);
14808 end if;
14809
14810 Next_Component (Old_C);
14811 end loop;
14812 end if;
14813
14814 Create_All_Components;
14815
14816 else
14817 -- If discriminants are not static, or if this is a multi-level type
14818 -- extension, we have to include all components of the parent type.
14819
14820 Old_C := First_Component (Typ);
14821 while Present (Old_C) loop
14822 New_C := Create_Component (Old_C);
14823
14824 Set_Etype
14825 (New_C,
14826 Constrain_Component_Type
14827 (Old_C, Subt, Decl_Node, Typ, Constraints));
14828 Set_Is_Public (New_C, Is_Public (Subt));
14829
14830 Next_Component (Old_C);
14831 end loop;
14832 end if;
14833
14834 End_Scope;
14835 end Create_Constrained_Components;
14836
14837 ------------------------------------------
14838 -- Decimal_Fixed_Point_Type_Declaration --
14839 ------------------------------------------
14840
14841 procedure Decimal_Fixed_Point_Type_Declaration
14842 (T : Entity_Id;
14843 Def : Node_Id)
14844 is
14845 Loc : constant Source_Ptr := Sloc (Def);
14846 Digs_Expr : constant Node_Id := Digits_Expression (Def);
14847 Delta_Expr : constant Node_Id := Delta_Expression (Def);
14848 Implicit_Base : Entity_Id;
14849 Digs_Val : Uint;
14850 Delta_Val : Ureal;
14851 Scale_Val : Uint;
14852 Bound_Val : Ureal;
14853
14854 begin
14855 Check_SPARK_05_Restriction
14856 ("decimal fixed point type is not allowed", Def);
14857 Check_Restriction (No_Fixed_Point, Def);
14858
14859 -- Create implicit base type
14860
14861 Implicit_Base :=
14862 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
14863 Set_Etype (Implicit_Base, Implicit_Base);
14864
14865 -- Analyze and process delta expression
14866
14867 Analyze_And_Resolve (Delta_Expr, Universal_Real);
14868
14869 Check_Delta_Expression (Delta_Expr);
14870 Delta_Val := Expr_Value_R (Delta_Expr);
14871
14872 -- Check delta is power of 10, and determine scale value from it
14873
14874 declare
14875 Val : Ureal;
14876
14877 begin
14878 Scale_Val := Uint_0;
14879 Val := Delta_Val;
14880
14881 if Val < Ureal_1 then
14882 while Val < Ureal_1 loop
14883 Val := Val * Ureal_10;
14884 Scale_Val := Scale_Val + 1;
14885 end loop;
14886
14887 if Scale_Val > 18 then
14888 Error_Msg_N ("scale exceeds maximum value of 18", Def);
14889 Scale_Val := UI_From_Int (+18);
14890 end if;
14891
14892 else
14893 while Val > Ureal_1 loop
14894 Val := Val / Ureal_10;
14895 Scale_Val := Scale_Val - 1;
14896 end loop;
14897
14898 if Scale_Val < -18 then
14899 Error_Msg_N ("scale is less than minimum value of -18", Def);
14900 Scale_Val := UI_From_Int (-18);
14901 end if;
14902 end if;
14903
14904 if Val /= Ureal_1 then
14905 Error_Msg_N ("delta expression must be a power of 10", Def);
14906 Delta_Val := Ureal_10 ** (-Scale_Val);
14907 end if;
14908 end;
14909
14910 -- Set delta, scale and small (small = delta for decimal type)
14911
14912 Set_Delta_Value (Implicit_Base, Delta_Val);
14913 Set_Scale_Value (Implicit_Base, Scale_Val);
14914 Set_Small_Value (Implicit_Base, Delta_Val);
14915
14916 -- Analyze and process digits expression
14917
14918 Analyze_And_Resolve (Digs_Expr, Any_Integer);
14919 Check_Digits_Expression (Digs_Expr);
14920 Digs_Val := Expr_Value (Digs_Expr);
14921
14922 if Digs_Val > 18 then
14923 Digs_Val := UI_From_Int (+18);
14924 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
14925 end if;
14926
14927 Set_Digits_Value (Implicit_Base, Digs_Val);
14928 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
14929
14930 -- Set range of base type from digits value for now. This will be
14931 -- expanded to represent the true underlying base range by Freeze.
14932
14933 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
14934
14935 -- Note: We leave size as zero for now, size will be set at freeze
14936 -- time. We have to do this for ordinary fixed-point, because the size
14937 -- depends on the specified small, and we might as well do the same for
14938 -- decimal fixed-point.
14939
14940 pragma Assert (Esize (Implicit_Base) = Uint_0);
14941
14942 -- If there are bounds given in the declaration use them as the
14943 -- bounds of the first named subtype.
14944
14945 if Present (Real_Range_Specification (Def)) then
14946 declare
14947 RRS : constant Node_Id := Real_Range_Specification (Def);
14948 Low : constant Node_Id := Low_Bound (RRS);
14949 High : constant Node_Id := High_Bound (RRS);
14950 Low_Val : Ureal;
14951 High_Val : Ureal;
14952
14953 begin
14954 Analyze_And_Resolve (Low, Any_Real);
14955 Analyze_And_Resolve (High, Any_Real);
14956 Check_Real_Bound (Low);
14957 Check_Real_Bound (High);
14958 Low_Val := Expr_Value_R (Low);
14959 High_Val := Expr_Value_R (High);
14960
14961 if Low_Val < (-Bound_Val) then
14962 Error_Msg_N
14963 ("range low bound too small for digits value", Low);
14964 Low_Val := -Bound_Val;
14965 end if;
14966
14967 if High_Val > Bound_Val then
14968 Error_Msg_N
14969 ("range high bound too large for digits value", High);
14970 High_Val := Bound_Val;
14971 end if;
14972
14973 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
14974 end;
14975
14976 -- If no explicit range, use range that corresponds to given
14977 -- digits value. This will end up as the final range for the
14978 -- first subtype.
14979
14980 else
14981 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
14982 end if;
14983
14984 -- Complete entity for first subtype. The inheritance of the rep item
14985 -- chain ensures that SPARK-related pragmas are not clobbered when the
14986 -- decimal fixed point type acts as a full view of a private type.
14987
14988 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
14989 Set_Etype (T, Implicit_Base);
14990 Set_Size_Info (T, Implicit_Base);
14991 Inherit_Rep_Item_Chain (T, Implicit_Base);
14992 Set_Digits_Value (T, Digs_Val);
14993 Set_Delta_Value (T, Delta_Val);
14994 Set_Small_Value (T, Delta_Val);
14995 Set_Scale_Value (T, Scale_Val);
14996 Set_Is_Constrained (T);
14997 end Decimal_Fixed_Point_Type_Declaration;
14998
14999 -----------------------------------
15000 -- Derive_Progenitor_Subprograms --
15001 -----------------------------------
15002
15003 procedure Derive_Progenitor_Subprograms
15004 (Parent_Type : Entity_Id;
15005 Tagged_Type : Entity_Id)
15006 is
15007 E : Entity_Id;
15008 Elmt : Elmt_Id;
15009 Iface : Entity_Id;
15010 Iface_Alias : Entity_Id;
15011 Iface_Elmt : Elmt_Id;
15012 Iface_Subp : Entity_Id;
15013 New_Subp : Entity_Id := Empty;
15014 Prim_Elmt : Elmt_Id;
15015 Subp : Entity_Id;
15016 Typ : Entity_Id;
15017
15018 begin
15019 pragma Assert (Ada_Version >= Ada_2005
15020 and then Is_Record_Type (Tagged_Type)
15021 and then Is_Tagged_Type (Tagged_Type)
15022 and then Has_Interfaces (Tagged_Type));
15023
15024 -- Step 1: Transfer to the full-view primitives associated with the
15025 -- partial-view that cover interface primitives. Conceptually this
15026 -- work should be done later by Process_Full_View; done here to
15027 -- simplify its implementation at later stages. It can be safely
15028 -- done here because interfaces must be visible in the partial and
15029 -- private view (RM 7.3(7.3/2)).
15030
15031 -- Small optimization: This work is only required if the parent may
15032 -- have entities whose Alias attribute reference an interface primitive.
15033 -- Such a situation may occur if the parent is an abstract type and the
15034 -- primitive has not been yet overridden or if the parent is a generic
15035 -- formal type covering interfaces.
15036
15037 -- If the tagged type is not abstract, it cannot have abstract
15038 -- primitives (the only entities in the list of primitives of
15039 -- non-abstract tagged types that can reference abstract primitives
15040 -- through its Alias attribute are the internal entities that have
15041 -- attribute Interface_Alias, and these entities are generated later
15042 -- by Add_Internal_Interface_Entities).
15043
15044 if In_Private_Part (Current_Scope)
15045 and then (Is_Abstract_Type (Parent_Type)
15046 or else
15047 Is_Generic_Type (Parent_Type))
15048 then
15049 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
15050 while Present (Elmt) loop
15051 Subp := Node (Elmt);
15052
15053 -- At this stage it is not possible to have entities in the list
15054 -- of primitives that have attribute Interface_Alias.
15055
15056 pragma Assert (No (Interface_Alias (Subp)));
15057
15058 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
15059
15060 if Is_Interface (Typ) then
15061 E := Find_Primitive_Covering_Interface
15062 (Tagged_Type => Tagged_Type,
15063 Iface_Prim => Subp);
15064
15065 if Present (E)
15066 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
15067 then
15068 Replace_Elmt (Elmt, E);
15069 Remove_Homonym (Subp);
15070 end if;
15071 end if;
15072
15073 Next_Elmt (Elmt);
15074 end loop;
15075 end if;
15076
15077 -- Step 2: Add primitives of progenitors that are not implemented by
15078 -- parents of Tagged_Type.
15079
15080 if Present (Interfaces (Base_Type (Tagged_Type))) then
15081 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
15082 while Present (Iface_Elmt) loop
15083 Iface := Node (Iface_Elmt);
15084
15085 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
15086 while Present (Prim_Elmt) loop
15087 Iface_Subp := Node (Prim_Elmt);
15088 Iface_Alias := Ultimate_Alias (Iface_Subp);
15089
15090 -- Exclude derivation of predefined primitives except those
15091 -- that come from source, or are inherited from one that comes
15092 -- from source. Required to catch declarations of equality
15093 -- operators of interfaces. For example:
15094
15095 -- type Iface is interface;
15096 -- function "=" (Left, Right : Iface) return Boolean;
15097
15098 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
15099 or else Comes_From_Source (Iface_Alias)
15100 then
15101 E :=
15102 Find_Primitive_Covering_Interface
15103 (Tagged_Type => Tagged_Type,
15104 Iface_Prim => Iface_Subp);
15105
15106 -- If not found we derive a new primitive leaving its alias
15107 -- attribute referencing the interface primitive.
15108
15109 if No (E) then
15110 Derive_Subprogram
15111 (New_Subp, Iface_Subp, Tagged_Type, Iface);
15112
15113 -- Ada 2012 (AI05-0197): If the covering primitive's name
15114 -- differs from the name of the interface primitive then it
15115 -- is a private primitive inherited from a parent type. In
15116 -- such case, given that Tagged_Type covers the interface,
15117 -- the inherited private primitive becomes visible. For such
15118 -- purpose we add a new entity that renames the inherited
15119 -- private primitive.
15120
15121 elsif Chars (E) /= Chars (Iface_Subp) then
15122 pragma Assert (Has_Suffix (E, 'P'));
15123 Derive_Subprogram
15124 (New_Subp, Iface_Subp, Tagged_Type, Iface);
15125 Set_Alias (New_Subp, E);
15126 Set_Is_Abstract_Subprogram (New_Subp,
15127 Is_Abstract_Subprogram (E));
15128
15129 -- Propagate to the full view interface entities associated
15130 -- with the partial view.
15131
15132 elsif In_Private_Part (Current_Scope)
15133 and then Present (Alias (E))
15134 and then Alias (E) = Iface_Subp
15135 and then
15136 List_Containing (Parent (E)) /=
15137 Private_Declarations
15138 (Specification
15139 (Unit_Declaration_Node (Current_Scope)))
15140 then
15141 Append_Elmt (E, Primitive_Operations (Tagged_Type));
15142 end if;
15143 end if;
15144
15145 Next_Elmt (Prim_Elmt);
15146 end loop;
15147
15148 Next_Elmt (Iface_Elmt);
15149 end loop;
15150 end if;
15151 end Derive_Progenitor_Subprograms;
15152
15153 -----------------------
15154 -- Derive_Subprogram --
15155 -----------------------
15156
15157 procedure Derive_Subprogram
15158 (New_Subp : out Entity_Id;
15159 Parent_Subp : Entity_Id;
15160 Derived_Type : Entity_Id;
15161 Parent_Type : Entity_Id;
15162 Actual_Subp : Entity_Id := Empty)
15163 is
15164 Formal : Entity_Id;
15165 -- Formal parameter of parent primitive operation
15166
15167 Formal_Of_Actual : Entity_Id;
15168 -- Formal parameter of actual operation, when the derivation is to
15169 -- create a renaming for a primitive operation of an actual in an
15170 -- instantiation.
15171
15172 New_Formal : Entity_Id;
15173 -- Formal of inherited operation
15174
15175 Visible_Subp : Entity_Id := Parent_Subp;
15176
15177 function Is_Private_Overriding return Boolean;
15178 -- If Subp is a private overriding of a visible operation, the inherited
15179 -- operation derives from the overridden op (even though its body is the
15180 -- overriding one) and the inherited operation is visible now. See
15181 -- sem_disp to see the full details of the handling of the overridden
15182 -- subprogram, which is removed from the list of primitive operations of
15183 -- the type. The overridden subprogram is saved locally in Visible_Subp,
15184 -- and used to diagnose abstract operations that need overriding in the
15185 -- derived type.
15186
15187 procedure Replace_Type (Id, New_Id : Entity_Id);
15188 -- When the type is an anonymous access type, create a new access type
15189 -- designating the derived type.
15190
15191 procedure Set_Derived_Name;
15192 -- This procedure sets the appropriate Chars name for New_Subp. This
15193 -- is normally just a copy of the parent name. An exception arises for
15194 -- type support subprograms, where the name is changed to reflect the
15195 -- name of the derived type, e.g. if type foo is derived from type bar,
15196 -- then a procedure barDA is derived with a name fooDA.
15197
15198 ---------------------------
15199 -- Is_Private_Overriding --
15200 ---------------------------
15201
15202 function Is_Private_Overriding return Boolean is
15203 Prev : Entity_Id;
15204
15205 begin
15206 -- If the parent is not a dispatching operation there is no
15207 -- need to investigate overridings
15208
15209 if not Is_Dispatching_Operation (Parent_Subp) then
15210 return False;
15211 end if;
15212
15213 -- The visible operation that is overridden is a homonym of the
15214 -- parent subprogram. We scan the homonym chain to find the one
15215 -- whose alias is the subprogram we are deriving.
15216
15217 Prev := Current_Entity (Parent_Subp);
15218 while Present (Prev) loop
15219 if Ekind (Prev) = Ekind (Parent_Subp)
15220 and then Alias (Prev) = Parent_Subp
15221 and then Scope (Parent_Subp) = Scope (Prev)
15222 and then not Is_Hidden (Prev)
15223 then
15224 Visible_Subp := Prev;
15225 return True;
15226 end if;
15227
15228 Prev := Homonym (Prev);
15229 end loop;
15230
15231 return False;
15232 end Is_Private_Overriding;
15233
15234 ------------------
15235 -- Replace_Type --
15236 ------------------
15237
15238 procedure Replace_Type (Id, New_Id : Entity_Id) is
15239 Id_Type : constant Entity_Id := Etype (Id);
15240 Acc_Type : Entity_Id;
15241 Par : constant Node_Id := Parent (Derived_Type);
15242
15243 begin
15244 -- When the type is an anonymous access type, create a new access
15245 -- type designating the derived type. This itype must be elaborated
15246 -- at the point of the derivation, not on subsequent calls that may
15247 -- be out of the proper scope for Gigi, so we insert a reference to
15248 -- it after the derivation.
15249
15250 if Ekind (Id_Type) = E_Anonymous_Access_Type then
15251 declare
15252 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
15253
15254 begin
15255 if Ekind (Desig_Typ) = E_Record_Type_With_Private
15256 and then Present (Full_View (Desig_Typ))
15257 and then not Is_Private_Type (Parent_Type)
15258 then
15259 Desig_Typ := Full_View (Desig_Typ);
15260 end if;
15261
15262 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
15263
15264 -- Ada 2005 (AI-251): Handle also derivations of abstract
15265 -- interface primitives.
15266
15267 or else (Is_Interface (Desig_Typ)
15268 and then not Is_Class_Wide_Type (Desig_Typ))
15269 then
15270 Acc_Type := New_Copy (Id_Type);
15271 Set_Etype (Acc_Type, Acc_Type);
15272 Set_Scope (Acc_Type, New_Subp);
15273
15274 -- Set size of anonymous access type. If we have an access
15275 -- to an unconstrained array, this is a fat pointer, so it
15276 -- is sizes at twice addtress size.
15277
15278 if Is_Array_Type (Desig_Typ)
15279 and then not Is_Constrained (Desig_Typ)
15280 then
15281 Init_Size (Acc_Type, 2 * System_Address_Size);
15282
15283 -- Other cases use a thin pointer
15284
15285 else
15286 Init_Size (Acc_Type, System_Address_Size);
15287 end if;
15288
15289 -- Set remaining characterstics of anonymous access type
15290
15291 Init_Alignment (Acc_Type);
15292 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
15293
15294 Set_Etype (New_Id, Acc_Type);
15295 Set_Scope (New_Id, New_Subp);
15296
15297 -- Create a reference to it
15298
15299 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
15300
15301 else
15302 Set_Etype (New_Id, Id_Type);
15303 end if;
15304 end;
15305
15306 -- In Ada2012, a formal may have an incomplete type but the type
15307 -- derivation that inherits the primitive follows the full view.
15308
15309 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
15310 or else
15311 (Ekind (Id_Type) = E_Record_Type_With_Private
15312 and then Present (Full_View (Id_Type))
15313 and then
15314 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
15315 or else
15316 (Ada_Version >= Ada_2012
15317 and then Ekind (Id_Type) = E_Incomplete_Type
15318 and then Full_View (Id_Type) = Parent_Type)
15319 then
15320 -- Constraint checks on formals are generated during expansion,
15321 -- based on the signature of the original subprogram. The bounds
15322 -- of the derived type are not relevant, and thus we can use
15323 -- the base type for the formals. However, the return type may be
15324 -- used in a context that requires that the proper static bounds
15325 -- be used (a case statement, for example) and for those cases
15326 -- we must use the derived type (first subtype), not its base.
15327
15328 -- If the derived_type_definition has no constraints, we know that
15329 -- the derived type has the same constraints as the first subtype
15330 -- of the parent, and we can also use it rather than its base,
15331 -- which can lead to more efficient code.
15332
15333 if Etype (Id) = Parent_Type then
15334 if Is_Scalar_Type (Parent_Type)
15335 and then
15336 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
15337 then
15338 Set_Etype (New_Id, Derived_Type);
15339
15340 elsif Nkind (Par) = N_Full_Type_Declaration
15341 and then
15342 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
15343 and then
15344 Is_Entity_Name
15345 (Subtype_Indication (Type_Definition (Par)))
15346 then
15347 Set_Etype (New_Id, Derived_Type);
15348
15349 else
15350 Set_Etype (New_Id, Base_Type (Derived_Type));
15351 end if;
15352
15353 else
15354 Set_Etype (New_Id, Base_Type (Derived_Type));
15355 end if;
15356
15357 else
15358 Set_Etype (New_Id, Etype (Id));
15359 end if;
15360 end Replace_Type;
15361
15362 ----------------------
15363 -- Set_Derived_Name --
15364 ----------------------
15365
15366 procedure Set_Derived_Name is
15367 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
15368 begin
15369 if Nm = TSS_Null then
15370 Set_Chars (New_Subp, Chars (Parent_Subp));
15371 else
15372 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
15373 end if;
15374 end Set_Derived_Name;
15375
15376 -- Start of processing for Derive_Subprogram
15377
15378 begin
15379 New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
15380 Set_Ekind (New_Subp, Ekind (Parent_Subp));
15381
15382 -- Check whether the inherited subprogram is a private operation that
15383 -- should be inherited but not yet made visible. Such subprograms can
15384 -- become visible at a later point (e.g., the private part of a public
15385 -- child unit) via Declare_Inherited_Private_Subprograms. If the
15386 -- following predicate is true, then this is not such a private
15387 -- operation and the subprogram simply inherits the name of the parent
15388 -- subprogram. Note the special check for the names of controlled
15389 -- operations, which are currently exempted from being inherited with
15390 -- a hidden name because they must be findable for generation of
15391 -- implicit run-time calls.
15392
15393 if not Is_Hidden (Parent_Subp)
15394 or else Is_Internal (Parent_Subp)
15395 or else Is_Private_Overriding
15396 or else Is_Internal_Name (Chars (Parent_Subp))
15397 or else (Is_Controlled (Parent_Type)
15398 and then Nam_In (Chars (Parent_Subp), Name_Adjust,
15399 Name_Finalize,
15400 Name_Initialize))
15401 then
15402 Set_Derived_Name;
15403
15404 -- An inherited dispatching equality will be overridden by an internally
15405 -- generated one, or by an explicit one, so preserve its name and thus
15406 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
15407 -- private operation it may become invisible if the full view has
15408 -- progenitors, and the dispatch table will be malformed.
15409 -- We check that the type is limited to handle the anomalous declaration
15410 -- of Limited_Controlled, which is derived from a non-limited type, and
15411 -- which is handled specially elsewhere as well.
15412
15413 elsif Chars (Parent_Subp) = Name_Op_Eq
15414 and then Is_Dispatching_Operation (Parent_Subp)
15415 and then Etype (Parent_Subp) = Standard_Boolean
15416 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
15417 and then
15418 Etype (First_Formal (Parent_Subp)) =
15419 Etype (Next_Formal (First_Formal (Parent_Subp)))
15420 then
15421 Set_Derived_Name;
15422
15423 -- If parent is hidden, this can be a regular derivation if the
15424 -- parent is immediately visible in a non-instantiating context,
15425 -- or if we are in the private part of an instance. This test
15426 -- should still be refined ???
15427
15428 -- The test for In_Instance_Not_Visible avoids inheriting the derived
15429 -- operation as a non-visible operation in cases where the parent
15430 -- subprogram might not be visible now, but was visible within the
15431 -- original generic, so it would be wrong to make the inherited
15432 -- subprogram non-visible now. (Not clear if this test is fully
15433 -- correct; are there any cases where we should declare the inherited
15434 -- operation as not visible to avoid it being overridden, e.g., when
15435 -- the parent type is a generic actual with private primitives ???)
15436
15437 -- (they should be treated the same as other private inherited
15438 -- subprograms, but it's not clear how to do this cleanly). ???
15439
15440 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15441 and then Is_Immediately_Visible (Parent_Subp)
15442 and then not In_Instance)
15443 or else In_Instance_Not_Visible
15444 then
15445 Set_Derived_Name;
15446
15447 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
15448 -- overrides an interface primitive because interface primitives
15449 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
15450
15451 elsif Ada_Version >= Ada_2005
15452 and then Is_Dispatching_Operation (Parent_Subp)
15453 and then Present (Covered_Interface_Op (Parent_Subp))
15454 then
15455 Set_Derived_Name;
15456
15457 -- Otherwise, the type is inheriting a private operation, so enter it
15458 -- with a special name so it can't be overridden.
15459
15460 else
15461 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
15462 end if;
15463
15464 Set_Parent (New_Subp, Parent (Derived_Type));
15465
15466 if Present (Actual_Subp) then
15467 Replace_Type (Actual_Subp, New_Subp);
15468 else
15469 Replace_Type (Parent_Subp, New_Subp);
15470 end if;
15471
15472 Conditional_Delay (New_Subp, Parent_Subp);
15473
15474 -- If we are creating a renaming for a primitive operation of an
15475 -- actual of a generic derived type, we must examine the signature
15476 -- of the actual primitive, not that of the generic formal, which for
15477 -- example may be an interface. However the name and initial value
15478 -- of the inherited operation are those of the formal primitive.
15479
15480 Formal := First_Formal (Parent_Subp);
15481
15482 if Present (Actual_Subp) then
15483 Formal_Of_Actual := First_Formal (Actual_Subp);
15484 else
15485 Formal_Of_Actual := Empty;
15486 end if;
15487
15488 while Present (Formal) loop
15489 New_Formal := New_Copy (Formal);
15490
15491 -- Normally we do not go copying parents, but in the case of
15492 -- formals, we need to link up to the declaration (which is the
15493 -- parameter specification), and it is fine to link up to the
15494 -- original formal's parameter specification in this case.
15495
15496 Set_Parent (New_Formal, Parent (Formal));
15497 Append_Entity (New_Formal, New_Subp);
15498
15499 if Present (Formal_Of_Actual) then
15500 Replace_Type (Formal_Of_Actual, New_Formal);
15501 Next_Formal (Formal_Of_Actual);
15502 else
15503 Replace_Type (Formal, New_Formal);
15504 end if;
15505
15506 Next_Formal (Formal);
15507 end loop;
15508
15509 -- If this derivation corresponds to a tagged generic actual, then
15510 -- primitive operations rename those of the actual. Otherwise the
15511 -- primitive operations rename those of the parent type, If the parent
15512 -- renames an intrinsic operator, so does the new subprogram. We except
15513 -- concatenation, which is always properly typed, and does not get
15514 -- expanded as other intrinsic operations.
15515
15516 if No (Actual_Subp) then
15517 if Is_Intrinsic_Subprogram (Parent_Subp) then
15518 Set_Is_Intrinsic_Subprogram (New_Subp);
15519
15520 if Present (Alias (Parent_Subp))
15521 and then Chars (Parent_Subp) /= Name_Op_Concat
15522 then
15523 Set_Alias (New_Subp, Alias (Parent_Subp));
15524 else
15525 Set_Alias (New_Subp, Parent_Subp);
15526 end if;
15527
15528 else
15529 Set_Alias (New_Subp, Parent_Subp);
15530 end if;
15531
15532 else
15533 Set_Alias (New_Subp, Actual_Subp);
15534 end if;
15535
15536 -- Derived subprograms of a tagged type must inherit the convention
15537 -- of the parent subprogram (a requirement of AI-117). Derived
15538 -- subprograms of untagged types simply get convention Ada by default.
15539
15540 -- If the derived type is a tagged generic formal type with unknown
15541 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
15542
15543 -- However, if the type is derived from a generic formal, the further
15544 -- inherited subprogram has the convention of the non-generic ancestor.
15545 -- Otherwise there would be no way to override the operation.
15546 -- (This is subject to forthcoming ARG discussions).
15547
15548 if Is_Tagged_Type (Derived_Type) then
15549 if Is_Generic_Type (Derived_Type)
15550 and then Has_Unknown_Discriminants (Derived_Type)
15551 then
15552 Set_Convention (New_Subp, Convention_Intrinsic);
15553
15554 else
15555 if Is_Generic_Type (Parent_Type)
15556 and then Has_Unknown_Discriminants (Parent_Type)
15557 then
15558 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
15559 else
15560 Set_Convention (New_Subp, Convention (Parent_Subp));
15561 end if;
15562 end if;
15563 end if;
15564
15565 -- Predefined controlled operations retain their name even if the parent
15566 -- is hidden (see above), but they are not primitive operations if the
15567 -- ancestor is not visible, for example if the parent is a private
15568 -- extension completed with a controlled extension. Note that a full
15569 -- type that is controlled can break privacy: the flag Is_Controlled is
15570 -- set on both views of the type.
15571
15572 if Is_Controlled (Parent_Type)
15573 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
15574 Name_Adjust,
15575 Name_Finalize)
15576 and then Is_Hidden (Parent_Subp)
15577 and then not Is_Visibly_Controlled (Parent_Type)
15578 then
15579 Set_Is_Hidden (New_Subp);
15580 end if;
15581
15582 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
15583 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
15584
15585 if Ekind (Parent_Subp) = E_Procedure then
15586 Set_Is_Valued_Procedure
15587 (New_Subp, Is_Valued_Procedure (Parent_Subp));
15588 else
15589 Set_Has_Controlling_Result
15590 (New_Subp, Has_Controlling_Result (Parent_Subp));
15591 end if;
15592
15593 -- No_Return must be inherited properly. If this is overridden in the
15594 -- case of a dispatching operation, then a check is made in Sem_Disp
15595 -- that the overriding operation is also No_Return (no such check is
15596 -- required for the case of non-dispatching operation.
15597
15598 Set_No_Return (New_Subp, No_Return (Parent_Subp));
15599
15600 -- A derived function with a controlling result is abstract. If the
15601 -- Derived_Type is a nonabstract formal generic derived type, then
15602 -- inherited operations are not abstract: the required check is done at
15603 -- instantiation time. If the derivation is for a generic actual, the
15604 -- function is not abstract unless the actual is.
15605
15606 if Is_Generic_Type (Derived_Type)
15607 and then not Is_Abstract_Type (Derived_Type)
15608 then
15609 null;
15610
15611 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
15612 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
15613
15614 -- A subprogram subject to pragma Extensions_Visible with value False
15615 -- requires overriding if the subprogram has at least one controlling
15616 -- OUT parameter (SPARK RM 6.1.7(6)).
15617
15618 elsif Ada_Version >= Ada_2005
15619 and then (Is_Abstract_Subprogram (Alias (New_Subp))
15620 or else (Is_Tagged_Type (Derived_Type)
15621 and then Etype (New_Subp) = Derived_Type
15622 and then not Is_Null_Extension (Derived_Type))
15623 or else (Is_Tagged_Type (Derived_Type)
15624 and then Ekind (Etype (New_Subp)) =
15625 E_Anonymous_Access_Type
15626 and then Designated_Type (Etype (New_Subp)) =
15627 Derived_Type
15628 and then not Is_Null_Extension (Derived_Type))
15629 or else (Comes_From_Source (Alias (New_Subp))
15630 and then Is_EVF_Procedure (Alias (New_Subp))))
15631 and then No (Actual_Subp)
15632 then
15633 if not Is_Tagged_Type (Derived_Type)
15634 or else Is_Abstract_Type (Derived_Type)
15635 or else Is_Abstract_Subprogram (Alias (New_Subp))
15636 then
15637 Set_Is_Abstract_Subprogram (New_Subp);
15638 else
15639 Set_Requires_Overriding (New_Subp);
15640 end if;
15641
15642 elsif Ada_Version < Ada_2005
15643 and then (Is_Abstract_Subprogram (Alias (New_Subp))
15644 or else (Is_Tagged_Type (Derived_Type)
15645 and then Etype (New_Subp) = Derived_Type
15646 and then No (Actual_Subp)))
15647 then
15648 Set_Is_Abstract_Subprogram (New_Subp);
15649
15650 -- AI05-0097 : an inherited operation that dispatches on result is
15651 -- abstract if the derived type is abstract, even if the parent type
15652 -- is concrete and the derived type is a null extension.
15653
15654 elsif Has_Controlling_Result (Alias (New_Subp))
15655 and then Is_Abstract_Type (Etype (New_Subp))
15656 then
15657 Set_Is_Abstract_Subprogram (New_Subp);
15658
15659 -- Finally, if the parent type is abstract we must verify that all
15660 -- inherited operations are either non-abstract or overridden, or that
15661 -- the derived type itself is abstract (this check is performed at the
15662 -- end of a package declaration, in Check_Abstract_Overriding). A
15663 -- private overriding in the parent type will not be visible in the
15664 -- derivation if we are not in an inner package or in a child unit of
15665 -- the parent type, in which case the abstractness of the inherited
15666 -- operation is carried to the new subprogram.
15667
15668 elsif Is_Abstract_Type (Parent_Type)
15669 and then not In_Open_Scopes (Scope (Parent_Type))
15670 and then Is_Private_Overriding
15671 and then Is_Abstract_Subprogram (Visible_Subp)
15672 then
15673 if No (Actual_Subp) then
15674 Set_Alias (New_Subp, Visible_Subp);
15675 Set_Is_Abstract_Subprogram (New_Subp, True);
15676
15677 else
15678 -- If this is a derivation for an instance of a formal derived
15679 -- type, abstractness comes from the primitive operation of the
15680 -- actual, not from the operation inherited from the ancestor.
15681
15682 Set_Is_Abstract_Subprogram
15683 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
15684 end if;
15685 end if;
15686
15687 New_Overloaded_Entity (New_Subp, Derived_Type);
15688
15689 -- Ada RM 6.1.1 (15): If a subprogram inherits nonconforming class-wide
15690 -- preconditions and the derived type is abstract, the derived operation
15691 -- is abstract as well if parent subprogram is not abstract or null.
15692
15693 if Is_Abstract_Type (Derived_Type)
15694 and then Has_Non_Trivial_Precondition (Parent_Subp)
15695 and then Present (Interfaces (Derived_Type))
15696 then
15697
15698 -- Add useful attributes of subprogram before the freeze point,
15699 -- in case freezing is delayed or there are previous errors.
15700
15701 Set_Is_Dispatching_Operation (New_Subp);
15702
15703 declare
15704 Iface_Prim : constant Entity_Id := Covered_Interface_Op (New_Subp);
15705
15706 begin
15707 if Present (Iface_Prim)
15708 and then Has_Non_Trivial_Precondition (Iface_Prim)
15709 then
15710 Set_Is_Abstract_Subprogram (New_Subp);
15711 end if;
15712 end;
15713 end if;
15714
15715 -- Check for case of a derived subprogram for the instantiation of a
15716 -- formal derived tagged type, if so mark the subprogram as dispatching
15717 -- and inherit the dispatching attributes of the actual subprogram. The
15718 -- derived subprogram is effectively renaming of the actual subprogram,
15719 -- so it needs to have the same attributes as the actual.
15720
15721 if Present (Actual_Subp)
15722 and then Is_Dispatching_Operation (Actual_Subp)
15723 then
15724 Set_Is_Dispatching_Operation (New_Subp);
15725
15726 if Present (DTC_Entity (Actual_Subp)) then
15727 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
15728 Set_DT_Position_Value (New_Subp, DT_Position (Actual_Subp));
15729 end if;
15730 end if;
15731
15732 -- Indicate that a derived subprogram does not require a body and that
15733 -- it does not require processing of default expressions.
15734
15735 Set_Has_Completion (New_Subp);
15736 Set_Default_Expressions_Processed (New_Subp);
15737
15738 if Ekind (New_Subp) = E_Function then
15739 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
15740 end if;
15741 end Derive_Subprogram;
15742
15743 ------------------------
15744 -- Derive_Subprograms --
15745 ------------------------
15746
15747 procedure Derive_Subprograms
15748 (Parent_Type : Entity_Id;
15749 Derived_Type : Entity_Id;
15750 Generic_Actual : Entity_Id := Empty)
15751 is
15752 Op_List : constant Elist_Id :=
15753 Collect_Primitive_Operations (Parent_Type);
15754
15755 function Check_Derived_Type return Boolean;
15756 -- Check that all the entities derived from Parent_Type are found in
15757 -- the list of primitives of Derived_Type exactly in the same order.
15758
15759 procedure Derive_Interface_Subprogram
15760 (New_Subp : out Entity_Id;
15761 Subp : Entity_Id;
15762 Actual_Subp : Entity_Id);
15763 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
15764 -- (which is an interface primitive). If Generic_Actual is present then
15765 -- Actual_Subp is the actual subprogram corresponding with the generic
15766 -- subprogram Subp.
15767
15768 ------------------------
15769 -- Check_Derived_Type --
15770 ------------------------
15771
15772 function Check_Derived_Type return Boolean is
15773 E : Entity_Id;
15774 Elmt : Elmt_Id;
15775 List : Elist_Id;
15776 New_Subp : Entity_Id;
15777 Op_Elmt : Elmt_Id;
15778 Subp : Entity_Id;
15779
15780 begin
15781 -- Traverse list of entities in the current scope searching for
15782 -- an incomplete type whose full-view is derived type.
15783
15784 E := First_Entity (Scope (Derived_Type));
15785 while Present (E) and then E /= Derived_Type loop
15786 if Ekind (E) = E_Incomplete_Type
15787 and then Present (Full_View (E))
15788 and then Full_View (E) = Derived_Type
15789 then
15790 -- Disable this test if Derived_Type completes an incomplete
15791 -- type because in such case more primitives can be added
15792 -- later to the list of primitives of Derived_Type by routine
15793 -- Process_Incomplete_Dependents
15794
15795 return True;
15796 end if;
15797
15798 E := Next_Entity (E);
15799 end loop;
15800
15801 List := Collect_Primitive_Operations (Derived_Type);
15802 Elmt := First_Elmt (List);
15803
15804 Op_Elmt := First_Elmt (Op_List);
15805 while Present (Op_Elmt) loop
15806 Subp := Node (Op_Elmt);
15807 New_Subp := Node (Elmt);
15808
15809 -- At this early stage Derived_Type has no entities with attribute
15810 -- Interface_Alias. In addition, such primitives are always
15811 -- located at the end of the list of primitives of Parent_Type.
15812 -- Therefore, if found we can safely stop processing pending
15813 -- entities.
15814
15815 exit when Present (Interface_Alias (Subp));
15816
15817 -- Handle hidden entities
15818
15819 if not Is_Predefined_Dispatching_Operation (Subp)
15820 and then Is_Hidden (Subp)
15821 then
15822 if Present (New_Subp)
15823 and then Primitive_Names_Match (Subp, New_Subp)
15824 then
15825 Next_Elmt (Elmt);
15826 end if;
15827
15828 else
15829 if not Present (New_Subp)
15830 or else Ekind (Subp) /= Ekind (New_Subp)
15831 or else not Primitive_Names_Match (Subp, New_Subp)
15832 then
15833 return False;
15834 end if;
15835
15836 Next_Elmt (Elmt);
15837 end if;
15838
15839 Next_Elmt (Op_Elmt);
15840 end loop;
15841
15842 return True;
15843 end Check_Derived_Type;
15844
15845 ---------------------------------
15846 -- Derive_Interface_Subprogram --
15847 ---------------------------------
15848
15849 procedure Derive_Interface_Subprogram
15850 (New_Subp : out Entity_Id;
15851 Subp : Entity_Id;
15852 Actual_Subp : Entity_Id)
15853 is
15854 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
15855 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
15856
15857 begin
15858 pragma Assert (Is_Interface (Iface_Type));
15859
15860 Derive_Subprogram
15861 (New_Subp => New_Subp,
15862 Parent_Subp => Iface_Subp,
15863 Derived_Type => Derived_Type,
15864 Parent_Type => Iface_Type,
15865 Actual_Subp => Actual_Subp);
15866
15867 -- Given that this new interface entity corresponds with a primitive
15868 -- of the parent that was not overridden we must leave it associated
15869 -- with its parent primitive to ensure that it will share the same
15870 -- dispatch table slot when overridden. We must set the Alias to Subp
15871 -- (instead of Iface_Subp), and we must fix Is_Abstract_Subprogram
15872 -- (in case we inherited Subp from Iface_Type via a nonabstract
15873 -- generic formal type).
15874
15875 if No (Actual_Subp) then
15876 Set_Alias (New_Subp, Subp);
15877
15878 declare
15879 T : Entity_Id := Find_Dispatching_Type (Subp);
15880 begin
15881 while Etype (T) /= T loop
15882 if Is_Generic_Type (T) and then not Is_Abstract_Type (T) then
15883 Set_Is_Abstract_Subprogram (New_Subp, False);
15884 exit;
15885 end if;
15886
15887 T := Etype (T);
15888 end loop;
15889 end;
15890
15891 -- For instantiations this is not needed since the previous call to
15892 -- Derive_Subprogram leaves the entity well decorated.
15893
15894 else
15895 pragma Assert (Alias (New_Subp) = Actual_Subp);
15896 null;
15897 end if;
15898 end Derive_Interface_Subprogram;
15899
15900 -- Local variables
15901
15902 Alias_Subp : Entity_Id;
15903 Act_List : Elist_Id;
15904 Act_Elmt : Elmt_Id;
15905 Act_Subp : Entity_Id := Empty;
15906 Elmt : Elmt_Id;
15907 Need_Search : Boolean := False;
15908 New_Subp : Entity_Id := Empty;
15909 Parent_Base : Entity_Id;
15910 Subp : Entity_Id;
15911
15912 -- Start of processing for Derive_Subprograms
15913
15914 begin
15915 if Ekind (Parent_Type) = E_Record_Type_With_Private
15916 and then Has_Discriminants (Parent_Type)
15917 and then Present (Full_View (Parent_Type))
15918 then
15919 Parent_Base := Full_View (Parent_Type);
15920 else
15921 Parent_Base := Parent_Type;
15922 end if;
15923
15924 if Present (Generic_Actual) then
15925 Act_List := Collect_Primitive_Operations (Generic_Actual);
15926 Act_Elmt := First_Elmt (Act_List);
15927 else
15928 Act_List := No_Elist;
15929 Act_Elmt := No_Elmt;
15930 end if;
15931
15932 -- Derive primitives inherited from the parent. Note that if the generic
15933 -- actual is present, this is not really a type derivation, it is a
15934 -- completion within an instance.
15935
15936 -- Case 1: Derived_Type does not implement interfaces
15937
15938 if not Is_Tagged_Type (Derived_Type)
15939 or else (not Has_Interfaces (Derived_Type)
15940 and then not (Present (Generic_Actual)
15941 and then Has_Interfaces (Generic_Actual)))
15942 then
15943 Elmt := First_Elmt (Op_List);
15944 while Present (Elmt) loop
15945 Subp := Node (Elmt);
15946
15947 -- Literals are derived earlier in the process of building the
15948 -- derived type, and are skipped here.
15949
15950 if Ekind (Subp) = E_Enumeration_Literal then
15951 null;
15952
15953 -- The actual is a direct descendant and the common primitive
15954 -- operations appear in the same order.
15955
15956 -- If the generic parent type is present, the derived type is an
15957 -- instance of a formal derived type, and within the instance its
15958 -- operations are those of the actual. We derive from the formal
15959 -- type but make the inherited operations aliases of the
15960 -- corresponding operations of the actual.
15961
15962 else
15963 pragma Assert (No (Node (Act_Elmt))
15964 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
15965 and then
15966 Type_Conformant
15967 (Subp, Node (Act_Elmt),
15968 Skip_Controlling_Formals => True)));
15969
15970 Derive_Subprogram
15971 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
15972
15973 if Present (Act_Elmt) then
15974 Next_Elmt (Act_Elmt);
15975 end if;
15976 end if;
15977
15978 Next_Elmt (Elmt);
15979 end loop;
15980
15981 -- Case 2: Derived_Type implements interfaces
15982
15983 else
15984 -- If the parent type has no predefined primitives we remove
15985 -- predefined primitives from the list of primitives of generic
15986 -- actual to simplify the complexity of this algorithm.
15987
15988 if Present (Generic_Actual) then
15989 declare
15990 Has_Predefined_Primitives : Boolean := False;
15991
15992 begin
15993 -- Check if the parent type has predefined primitives
15994
15995 Elmt := First_Elmt (Op_List);
15996 while Present (Elmt) loop
15997 Subp := Node (Elmt);
15998
15999 if Is_Predefined_Dispatching_Operation (Subp)
16000 and then not Comes_From_Source (Ultimate_Alias (Subp))
16001 then
16002 Has_Predefined_Primitives := True;
16003 exit;
16004 end if;
16005
16006 Next_Elmt (Elmt);
16007 end loop;
16008
16009 -- Remove predefined primitives of Generic_Actual. We must use
16010 -- an auxiliary list because in case of tagged types the value
16011 -- returned by Collect_Primitive_Operations is the value stored
16012 -- in its Primitive_Operations attribute (and we don't want to
16013 -- modify its current contents).
16014
16015 if not Has_Predefined_Primitives then
16016 declare
16017 Aux_List : constant Elist_Id := New_Elmt_List;
16018
16019 begin
16020 Elmt := First_Elmt (Act_List);
16021 while Present (Elmt) loop
16022 Subp := Node (Elmt);
16023
16024 if not Is_Predefined_Dispatching_Operation (Subp)
16025 or else Comes_From_Source (Subp)
16026 then
16027 Append_Elmt (Subp, Aux_List);
16028 end if;
16029
16030 Next_Elmt (Elmt);
16031 end loop;
16032
16033 Act_List := Aux_List;
16034 end;
16035 end if;
16036
16037 Act_Elmt := First_Elmt (Act_List);
16038 Act_Subp := Node (Act_Elmt);
16039 end;
16040 end if;
16041
16042 -- Stage 1: If the generic actual is not present we derive the
16043 -- primitives inherited from the parent type. If the generic parent
16044 -- type is present, the derived type is an instance of a formal
16045 -- derived type, and within the instance its operations are those of
16046 -- the actual. We derive from the formal type but make the inherited
16047 -- operations aliases of the corresponding operations of the actual.
16048
16049 Elmt := First_Elmt (Op_List);
16050 while Present (Elmt) loop
16051 Subp := Node (Elmt);
16052 Alias_Subp := Ultimate_Alias (Subp);
16053
16054 -- Do not derive internal entities of the parent that link
16055 -- interface primitives with their covering primitive. These
16056 -- entities will be added to this type when frozen.
16057
16058 if Present (Interface_Alias (Subp)) then
16059 goto Continue;
16060 end if;
16061
16062 -- If the generic actual is present find the corresponding
16063 -- operation in the generic actual. If the parent type is a
16064 -- direct ancestor of the derived type then, even if it is an
16065 -- interface, the operations are inherited from the primary
16066 -- dispatch table and are in the proper order. If we detect here
16067 -- that primitives are not in the same order we traverse the list
16068 -- of primitive operations of the actual to find the one that
16069 -- implements the interface primitive.
16070
16071 if Need_Search
16072 or else
16073 (Present (Generic_Actual)
16074 and then Present (Act_Subp)
16075 and then not
16076 (Primitive_Names_Match (Subp, Act_Subp)
16077 and then
16078 Type_Conformant (Subp, Act_Subp,
16079 Skip_Controlling_Formals => True)))
16080 then
16081 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
16082 Use_Full_View => True));
16083
16084 -- Remember that we need searching for all pending primitives
16085
16086 Need_Search := True;
16087
16088 -- Handle entities associated with interface primitives
16089
16090 if Present (Alias_Subp)
16091 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
16092 and then not Is_Predefined_Dispatching_Operation (Subp)
16093 then
16094 -- Search for the primitive in the homonym chain
16095
16096 Act_Subp :=
16097 Find_Primitive_Covering_Interface
16098 (Tagged_Type => Generic_Actual,
16099 Iface_Prim => Alias_Subp);
16100
16101 -- Previous search may not locate primitives covering
16102 -- interfaces defined in generics units or instantiations.
16103 -- (it fails if the covering primitive has formals whose
16104 -- type is also defined in generics or instantiations).
16105 -- In such case we search in the list of primitives of the
16106 -- generic actual for the internal entity that links the
16107 -- interface primitive and the covering primitive.
16108
16109 if No (Act_Subp)
16110 and then Is_Generic_Type (Parent_Type)
16111 then
16112 -- This code has been designed to handle only generic
16113 -- formals that implement interfaces that are defined
16114 -- in a generic unit or instantiation. If this code is
16115 -- needed for other cases we must review it because
16116 -- (given that it relies on Original_Location to locate
16117 -- the primitive of Generic_Actual that covers the
16118 -- interface) it could leave linked through attribute
16119 -- Alias entities of unrelated instantiations).
16120
16121 pragma Assert
16122 (Is_Generic_Unit
16123 (Scope (Find_Dispatching_Type (Alias_Subp)))
16124 or else
16125 Instantiation_Depth
16126 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
16127
16128 declare
16129 Iface_Prim_Loc : constant Source_Ptr :=
16130 Original_Location (Sloc (Alias_Subp));
16131
16132 Elmt : Elmt_Id;
16133 Prim : Entity_Id;
16134
16135 begin
16136 Elmt :=
16137 First_Elmt (Primitive_Operations (Generic_Actual));
16138
16139 Search : while Present (Elmt) loop
16140 Prim := Node (Elmt);
16141
16142 if Present (Interface_Alias (Prim))
16143 and then Original_Location
16144 (Sloc (Interface_Alias (Prim))) =
16145 Iface_Prim_Loc
16146 then
16147 Act_Subp := Alias (Prim);
16148 exit Search;
16149 end if;
16150
16151 Next_Elmt (Elmt);
16152 end loop Search;
16153 end;
16154 end if;
16155
16156 pragma Assert (Present (Act_Subp)
16157 or else Is_Abstract_Type (Generic_Actual)
16158 or else Serious_Errors_Detected > 0);
16159
16160 -- Handle predefined primitives plus the rest of user-defined
16161 -- primitives
16162
16163 else
16164 Act_Elmt := First_Elmt (Act_List);
16165 while Present (Act_Elmt) loop
16166 Act_Subp := Node (Act_Elmt);
16167
16168 exit when Primitive_Names_Match (Subp, Act_Subp)
16169 and then Type_Conformant
16170 (Subp, Act_Subp,
16171 Skip_Controlling_Formals => True)
16172 and then No (Interface_Alias (Act_Subp));
16173
16174 Next_Elmt (Act_Elmt);
16175 end loop;
16176
16177 if No (Act_Elmt) then
16178 Act_Subp := Empty;
16179 end if;
16180 end if;
16181 end if;
16182
16183 -- Case 1: If the parent is a limited interface then it has the
16184 -- predefined primitives of synchronized interfaces. However, the
16185 -- actual type may be a non-limited type and hence it does not
16186 -- have such primitives.
16187
16188 if Present (Generic_Actual)
16189 and then not Present (Act_Subp)
16190 and then Is_Limited_Interface (Parent_Base)
16191 and then Is_Predefined_Interface_Primitive (Subp)
16192 then
16193 null;
16194
16195 -- Case 2: Inherit entities associated with interfaces that were
16196 -- not covered by the parent type. We exclude here null interface
16197 -- primitives because they do not need special management.
16198
16199 -- We also exclude interface operations that are renamings. If the
16200 -- subprogram is an explicit renaming of an interface primitive,
16201 -- it is a regular primitive operation, and the presence of its
16202 -- alias is not relevant: it has to be derived like any other
16203 -- primitive.
16204
16205 elsif Present (Alias (Subp))
16206 and then Nkind (Unit_Declaration_Node (Subp)) /=
16207 N_Subprogram_Renaming_Declaration
16208 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
16209 and then not
16210 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
16211 and then Null_Present (Parent (Alias_Subp)))
16212 then
16213 -- If this is an abstract private type then we transfer the
16214 -- derivation of the interface primitive from the partial view
16215 -- to the full view. This is safe because all the interfaces
16216 -- must be visible in the partial view. Done to avoid adding
16217 -- a new interface derivation to the private part of the
16218 -- enclosing package; otherwise this new derivation would be
16219 -- decorated as hidden when the analysis of the enclosing
16220 -- package completes.
16221
16222 if Is_Abstract_Type (Derived_Type)
16223 and then In_Private_Part (Current_Scope)
16224 and then Has_Private_Declaration (Derived_Type)
16225 then
16226 declare
16227 Partial_View : Entity_Id;
16228 Elmt : Elmt_Id;
16229 Ent : Entity_Id;
16230
16231 begin
16232 Partial_View := First_Entity (Current_Scope);
16233 loop
16234 exit when No (Partial_View)
16235 or else (Has_Private_Declaration (Partial_View)
16236 and then
16237 Full_View (Partial_View) = Derived_Type);
16238
16239 Next_Entity (Partial_View);
16240 end loop;
16241
16242 -- If the partial view was not found then the source code
16243 -- has errors and the derivation is not needed.
16244
16245 if Present (Partial_View) then
16246 Elmt :=
16247 First_Elmt (Primitive_Operations (Partial_View));
16248 while Present (Elmt) loop
16249 Ent := Node (Elmt);
16250
16251 if Present (Alias (Ent))
16252 and then Ultimate_Alias (Ent) = Alias (Subp)
16253 then
16254 Append_Elmt
16255 (Ent, Primitive_Operations (Derived_Type));
16256 exit;
16257 end if;
16258
16259 Next_Elmt (Elmt);
16260 end loop;
16261
16262 -- If the interface primitive was not found in the
16263 -- partial view then this interface primitive was
16264 -- overridden. We add a derivation to activate in
16265 -- Derive_Progenitor_Subprograms the machinery to
16266 -- search for it.
16267
16268 if No (Elmt) then
16269 Derive_Interface_Subprogram
16270 (New_Subp => New_Subp,
16271 Subp => Subp,
16272 Actual_Subp => Act_Subp);
16273 end if;
16274 end if;
16275 end;
16276 else
16277 Derive_Interface_Subprogram
16278 (New_Subp => New_Subp,
16279 Subp => Subp,
16280 Actual_Subp => Act_Subp);
16281 end if;
16282
16283 -- Case 3: Common derivation
16284
16285 else
16286 Derive_Subprogram
16287 (New_Subp => New_Subp,
16288 Parent_Subp => Subp,
16289 Derived_Type => Derived_Type,
16290 Parent_Type => Parent_Base,
16291 Actual_Subp => Act_Subp);
16292 end if;
16293
16294 -- No need to update Act_Elm if we must search for the
16295 -- corresponding operation in the generic actual
16296
16297 if not Need_Search
16298 and then Present (Act_Elmt)
16299 then
16300 Next_Elmt (Act_Elmt);
16301 Act_Subp := Node (Act_Elmt);
16302 end if;
16303
16304 <<Continue>>
16305 Next_Elmt (Elmt);
16306 end loop;
16307
16308 -- Inherit additional operations from progenitors. If the derived
16309 -- type is a generic actual, there are not new primitive operations
16310 -- for the type because it has those of the actual, and therefore
16311 -- nothing needs to be done. The renamings generated above are not
16312 -- primitive operations, and their purpose is simply to make the
16313 -- proper operations visible within an instantiation.
16314
16315 if No (Generic_Actual) then
16316 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
16317 end if;
16318 end if;
16319
16320 -- Final check: Direct descendants must have their primitives in the
16321 -- same order. We exclude from this test untagged types and instances
16322 -- of formal derived types. We skip this test if we have already
16323 -- reported serious errors in the sources.
16324
16325 pragma Assert (not Is_Tagged_Type (Derived_Type)
16326 or else Present (Generic_Actual)
16327 or else Serious_Errors_Detected > 0
16328 or else Check_Derived_Type);
16329 end Derive_Subprograms;
16330
16331 --------------------------------
16332 -- Derived_Standard_Character --
16333 --------------------------------
16334
16335 procedure Derived_Standard_Character
16336 (N : Node_Id;
16337 Parent_Type : Entity_Id;
16338 Derived_Type : Entity_Id)
16339 is
16340 Loc : constant Source_Ptr := Sloc (N);
16341 Def : constant Node_Id := Type_Definition (N);
16342 Indic : constant Node_Id := Subtype_Indication (Def);
16343 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
16344 Implicit_Base : constant Entity_Id :=
16345 Create_Itype
16346 (E_Enumeration_Type, N, Derived_Type, 'B');
16347
16348 Lo : Node_Id;
16349 Hi : Node_Id;
16350
16351 begin
16352 Discard_Node (Process_Subtype (Indic, N));
16353
16354 Set_Etype (Implicit_Base, Parent_Base);
16355 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
16356 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
16357
16358 Set_Is_Character_Type (Implicit_Base, True);
16359 Set_Has_Delayed_Freeze (Implicit_Base);
16360
16361 -- The bounds of the implicit base are the bounds of the parent base.
16362 -- Note that their type is the parent base.
16363
16364 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
16365 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
16366
16367 Set_Scalar_Range (Implicit_Base,
16368 Make_Range (Loc,
16369 Low_Bound => Lo,
16370 High_Bound => Hi));
16371
16372 Conditional_Delay (Derived_Type, Parent_Type);
16373
16374 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
16375 Set_Etype (Derived_Type, Implicit_Base);
16376 Set_Size_Info (Derived_Type, Parent_Type);
16377
16378 if Unknown_RM_Size (Derived_Type) then
16379 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
16380 end if;
16381
16382 Set_Is_Character_Type (Derived_Type, True);
16383
16384 if Nkind (Indic) /= N_Subtype_Indication then
16385
16386 -- If no explicit constraint, the bounds are those
16387 -- of the parent type.
16388
16389 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
16390 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
16391 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
16392 end if;
16393
16394 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
16395
16396 -- Because the implicit base is used in the conversion of the bounds, we
16397 -- have to freeze it now. This is similar to what is done for numeric
16398 -- types, and it equally suspicious, but otherwise a non-static bound
16399 -- will have a reference to an unfrozen type, which is rejected by Gigi
16400 -- (???). This requires specific care for definition of stream
16401 -- attributes. For details, see comments at the end of
16402 -- Build_Derived_Numeric_Type.
16403
16404 Freeze_Before (N, Implicit_Base);
16405 end Derived_Standard_Character;
16406
16407 ------------------------------
16408 -- Derived_Type_Declaration --
16409 ------------------------------
16410
16411 procedure Derived_Type_Declaration
16412 (T : Entity_Id;
16413 N : Node_Id;
16414 Is_Completion : Boolean)
16415 is
16416 Parent_Type : Entity_Id;
16417
16418 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
16419 -- Check whether the parent type is a generic formal, or derives
16420 -- directly or indirectly from one.
16421
16422 ------------------------
16423 -- Comes_From_Generic --
16424 ------------------------
16425
16426 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
16427 begin
16428 if Is_Generic_Type (Typ) then
16429 return True;
16430
16431 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
16432 return True;
16433
16434 elsif Is_Private_Type (Typ)
16435 and then Present (Full_View (Typ))
16436 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
16437 then
16438 return True;
16439
16440 elsif Is_Generic_Actual_Type (Typ) then
16441 return True;
16442
16443 else
16444 return False;
16445 end if;
16446 end Comes_From_Generic;
16447
16448 -- Local variables
16449
16450 Def : constant Node_Id := Type_Definition (N);
16451 Iface_Def : Node_Id;
16452 Indic : constant Node_Id := Subtype_Indication (Def);
16453 Extension : constant Node_Id := Record_Extension_Part (Def);
16454 Parent_Node : Node_Id;
16455 Taggd : Boolean;
16456
16457 -- Start of processing for Derived_Type_Declaration
16458
16459 begin
16460 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
16461
16462 if SPARK_Mode = On
16463 and then Is_Tagged_Type (Parent_Type)
16464 then
16465 declare
16466 Partial_View : constant Entity_Id :=
16467 Incomplete_Or_Partial_View (Parent_Type);
16468
16469 begin
16470 -- If the partial view was not found then the parent type is not
16471 -- a private type. Otherwise check if the partial view is a tagged
16472 -- private type.
16473
16474 if Present (Partial_View)
16475 and then Is_Private_Type (Partial_View)
16476 and then not Is_Tagged_Type (Partial_View)
16477 then
16478 Error_Msg_NE
16479 ("cannot derive from & declared as untagged private "
16480 & "(SPARK RM 3.4(1))", N, Partial_View);
16481 end if;
16482 end;
16483 end if;
16484
16485 -- Ada 2005 (AI-251): In case of interface derivation check that the
16486 -- parent is also an interface.
16487
16488 if Interface_Present (Def) then
16489 Check_SPARK_05_Restriction ("interface is not allowed", Def);
16490
16491 if not Is_Interface (Parent_Type) then
16492 Diagnose_Interface (Indic, Parent_Type);
16493
16494 else
16495 Parent_Node := Parent (Base_Type (Parent_Type));
16496 Iface_Def := Type_Definition (Parent_Node);
16497
16498 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
16499 -- other limited interfaces.
16500
16501 if Limited_Present (Def) then
16502 if Limited_Present (Iface_Def) then
16503 null;
16504
16505 elsif Protected_Present (Iface_Def) then
16506 Error_Msg_NE
16507 ("descendant of & must be declared as a protected "
16508 & "interface", N, Parent_Type);
16509
16510 elsif Synchronized_Present (Iface_Def) then
16511 Error_Msg_NE
16512 ("descendant of & must be declared as a synchronized "
16513 & "interface", N, Parent_Type);
16514
16515 elsif Task_Present (Iface_Def) then
16516 Error_Msg_NE
16517 ("descendant of & must be declared as a task interface",
16518 N, Parent_Type);
16519
16520 else
16521 Error_Msg_N
16522 ("(Ada 2005) limited interface cannot inherit from "
16523 & "non-limited interface", Indic);
16524 end if;
16525
16526 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
16527 -- from non-limited or limited interfaces.
16528
16529 elsif not Protected_Present (Def)
16530 and then not Synchronized_Present (Def)
16531 and then not Task_Present (Def)
16532 then
16533 if Limited_Present (Iface_Def) then
16534 null;
16535
16536 elsif Protected_Present (Iface_Def) then
16537 Error_Msg_NE
16538 ("descendant of & must be declared as a protected "
16539 & "interface", N, Parent_Type);
16540
16541 elsif Synchronized_Present (Iface_Def) then
16542 Error_Msg_NE
16543 ("descendant of & must be declared as a synchronized "
16544 & "interface", N, Parent_Type);
16545
16546 elsif Task_Present (Iface_Def) then
16547 Error_Msg_NE
16548 ("descendant of & must be declared as a task interface",
16549 N, Parent_Type);
16550 else
16551 null;
16552 end if;
16553 end if;
16554 end if;
16555 end if;
16556
16557 if Is_Tagged_Type (Parent_Type)
16558 and then Is_Concurrent_Type (Parent_Type)
16559 and then not Is_Interface (Parent_Type)
16560 then
16561 Error_Msg_N
16562 ("parent type of a record extension cannot be a synchronized "
16563 & "tagged type (RM 3.9.1 (3/1))", N);
16564 Set_Etype (T, Any_Type);
16565 return;
16566 end if;
16567
16568 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
16569 -- interfaces
16570
16571 if Is_Tagged_Type (Parent_Type)
16572 and then Is_Non_Empty_List (Interface_List (Def))
16573 then
16574 declare
16575 Intf : Node_Id;
16576 T : Entity_Id;
16577
16578 begin
16579 Intf := First (Interface_List (Def));
16580 while Present (Intf) loop
16581 T := Find_Type_Of_Subtype_Indic (Intf);
16582
16583 if not Is_Interface (T) then
16584 Diagnose_Interface (Intf, T);
16585
16586 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
16587 -- a limited type from having a nonlimited progenitor.
16588
16589 elsif (Limited_Present (Def)
16590 or else (not Is_Interface (Parent_Type)
16591 and then Is_Limited_Type (Parent_Type)))
16592 and then not Is_Limited_Interface (T)
16593 then
16594 Error_Msg_NE
16595 ("progenitor interface& of limited type must be limited",
16596 N, T);
16597 end if;
16598
16599 Next (Intf);
16600 end loop;
16601 end;
16602 end if;
16603
16604 if Parent_Type = Any_Type
16605 or else Etype (Parent_Type) = Any_Type
16606 or else (Is_Class_Wide_Type (Parent_Type)
16607 and then Etype (Parent_Type) = T)
16608 then
16609 -- If Parent_Type is undefined or illegal, make new type into a
16610 -- subtype of Any_Type, and set a few attributes to prevent cascaded
16611 -- errors. If this is a self-definition, emit error now.
16612
16613 if T = Parent_Type or else T = Etype (Parent_Type) then
16614 Error_Msg_N ("type cannot be used in its own definition", Indic);
16615 end if;
16616
16617 Set_Ekind (T, Ekind (Parent_Type));
16618 Set_Etype (T, Any_Type);
16619 Set_Scalar_Range (T, Scalar_Range (Any_Type));
16620
16621 if Is_Tagged_Type (T)
16622 and then Is_Record_Type (T)
16623 then
16624 Set_Direct_Primitive_Operations (T, New_Elmt_List);
16625 end if;
16626
16627 return;
16628 end if;
16629
16630 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
16631 -- an interface is special because the list of interfaces in the full
16632 -- view can be given in any order. For example:
16633
16634 -- type A is interface;
16635 -- type B is interface and A;
16636 -- type D is new B with private;
16637 -- private
16638 -- type D is new A and B with null record; -- 1 --
16639
16640 -- In this case we perform the following transformation of -1-:
16641
16642 -- type D is new B and A with null record;
16643
16644 -- If the parent of the full-view covers the parent of the partial-view
16645 -- we have two possible cases:
16646
16647 -- 1) They have the same parent
16648 -- 2) The parent of the full-view implements some further interfaces
16649
16650 -- In both cases we do not need to perform the transformation. In the
16651 -- first case the source program is correct and the transformation is
16652 -- not needed; in the second case the source program does not fulfill
16653 -- the no-hidden interfaces rule (AI-396) and the error will be reported
16654 -- later.
16655
16656 -- This transformation not only simplifies the rest of the analysis of
16657 -- this type declaration but also simplifies the correct generation of
16658 -- the object layout to the expander.
16659
16660 if In_Private_Part (Current_Scope)
16661 and then Is_Interface (Parent_Type)
16662 then
16663 declare
16664 Iface : Node_Id;
16665 Partial_View : Entity_Id;
16666 Partial_View_Parent : Entity_Id;
16667 New_Iface : Node_Id;
16668
16669 begin
16670 -- Look for the associated private type declaration
16671
16672 Partial_View := Incomplete_Or_Partial_View (T);
16673
16674 -- If the partial view was not found then the source code has
16675 -- errors and the transformation is not needed.
16676
16677 if Present (Partial_View) then
16678 Partial_View_Parent := Etype (Partial_View);
16679
16680 -- If the parent of the full-view covers the parent of the
16681 -- partial-view we have nothing else to do.
16682
16683 if Interface_Present_In_Ancestor
16684 (Parent_Type, Partial_View_Parent)
16685 then
16686 null;
16687
16688 -- Traverse the list of interfaces of the full-view to look
16689 -- for the parent of the partial-view and perform the tree
16690 -- transformation.
16691
16692 else
16693 Iface := First (Interface_List (Def));
16694 while Present (Iface) loop
16695 if Etype (Iface) = Etype (Partial_View) then
16696 Rewrite (Subtype_Indication (Def),
16697 New_Copy (Subtype_Indication
16698 (Parent (Partial_View))));
16699
16700 New_Iface :=
16701 Make_Identifier (Sloc (N), Chars (Parent_Type));
16702 Append (New_Iface, Interface_List (Def));
16703
16704 -- Analyze the transformed code
16705
16706 Derived_Type_Declaration (T, N, Is_Completion);
16707 return;
16708 end if;
16709
16710 Next (Iface);
16711 end loop;
16712 end if;
16713 end if;
16714 end;
16715 end if;
16716
16717 -- Only composite types other than array types are allowed to have
16718 -- discriminants.
16719
16720 if Present (Discriminant_Specifications (N)) then
16721 if (Is_Elementary_Type (Parent_Type)
16722 or else
16723 Is_Array_Type (Parent_Type))
16724 and then not Error_Posted (N)
16725 then
16726 Error_Msg_N
16727 ("elementary or array type cannot have discriminants",
16728 Defining_Identifier (First (Discriminant_Specifications (N))));
16729
16730 -- Unset Has_Discriminants flag to prevent cascaded errors, but
16731 -- only if we are not already processing a malformed syntax tree.
16732
16733 if Is_Type (T) then
16734 Set_Has_Discriminants (T, False);
16735 end if;
16736
16737 -- The type is allowed to have discriminants
16738
16739 else
16740 Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
16741 end if;
16742 end if;
16743
16744 -- In Ada 83, a derived type defined in a package specification cannot
16745 -- be used for further derivation until the end of its visible part.
16746 -- Note that derivation in the private part of the package is allowed.
16747
16748 if Ada_Version = Ada_83
16749 and then Is_Derived_Type (Parent_Type)
16750 and then In_Visible_Part (Scope (Parent_Type))
16751 then
16752 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
16753 Error_Msg_N
16754 ("(Ada 83): premature use of type for derivation", Indic);
16755 end if;
16756 end if;
16757
16758 -- Check for early use of incomplete or private type
16759
16760 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
16761 Error_Msg_N ("premature derivation of incomplete type", Indic);
16762 return;
16763
16764 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
16765 and then not Comes_From_Generic (Parent_Type))
16766 or else Has_Private_Component (Parent_Type)
16767 then
16768 -- The ancestor type of a formal type can be incomplete, in which
16769 -- case only the operations of the partial view are available in the
16770 -- generic. Subsequent checks may be required when the full view is
16771 -- analyzed to verify that a derivation from a tagged type has an
16772 -- extension.
16773
16774 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
16775 null;
16776
16777 elsif No (Underlying_Type (Parent_Type))
16778 or else Has_Private_Component (Parent_Type)
16779 then
16780 Error_Msg_N
16781 ("premature derivation of derived or private type", Indic);
16782
16783 -- Flag the type itself as being in error, this prevents some
16784 -- nasty problems with subsequent uses of the malformed type.
16785
16786 Set_Error_Posted (T);
16787
16788 -- Check that within the immediate scope of an untagged partial
16789 -- view it's illegal to derive from the partial view if the
16790 -- full view is tagged. (7.3(7))
16791
16792 -- We verify that the Parent_Type is a partial view by checking
16793 -- that it is not a Full_Type_Declaration (i.e. a private type or
16794 -- private extension declaration), to distinguish a partial view
16795 -- from a derivation from a private type which also appears as
16796 -- E_Private_Type. If the parent base type is not declared in an
16797 -- enclosing scope there is no need to check.
16798
16799 elsif Present (Full_View (Parent_Type))
16800 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
16801 and then not Is_Tagged_Type (Parent_Type)
16802 and then Is_Tagged_Type (Full_View (Parent_Type))
16803 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
16804 then
16805 Error_Msg_N
16806 ("premature derivation from type with tagged full view",
16807 Indic);
16808 end if;
16809 end if;
16810
16811 -- Check that form of derivation is appropriate
16812
16813 Taggd := Is_Tagged_Type (Parent_Type);
16814
16815 -- Set the parent type to the class-wide type's specific type in this
16816 -- case to prevent cascading errors
16817
16818 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
16819 Error_Msg_N ("parent type must not be a class-wide type", Indic);
16820 Set_Etype (T, Etype (Parent_Type));
16821 return;
16822 end if;
16823
16824 if Present (Extension) and then not Taggd then
16825 Error_Msg_N
16826 ("type derived from untagged type cannot have extension", Indic);
16827
16828 elsif No (Extension) and then Taggd then
16829
16830 -- If this declaration is within a private part (or body) of a
16831 -- generic instantiation then the derivation is allowed (the parent
16832 -- type can only appear tagged in this case if it's a generic actual
16833 -- type, since it would otherwise have been rejected in the analysis
16834 -- of the generic template).
16835
16836 if not Is_Generic_Actual_Type (Parent_Type)
16837 or else In_Visible_Part (Scope (Parent_Type))
16838 then
16839 if Is_Class_Wide_Type (Parent_Type) then
16840 Error_Msg_N
16841 ("parent type must not be a class-wide type", Indic);
16842
16843 -- Use specific type to prevent cascaded errors.
16844
16845 Parent_Type := Etype (Parent_Type);
16846
16847 else
16848 Error_Msg_N
16849 ("type derived from tagged type must have extension", Indic);
16850 end if;
16851 end if;
16852 end if;
16853
16854 -- AI-443: Synchronized formal derived types require a private
16855 -- extension. There is no point in checking the ancestor type or
16856 -- the progenitors since the construct is wrong to begin with.
16857
16858 if Ada_Version >= Ada_2005
16859 and then Is_Generic_Type (T)
16860 and then Present (Original_Node (N))
16861 then
16862 declare
16863 Decl : constant Node_Id := Original_Node (N);
16864
16865 begin
16866 if Nkind (Decl) = N_Formal_Type_Declaration
16867 and then Nkind (Formal_Type_Definition (Decl)) =
16868 N_Formal_Derived_Type_Definition
16869 and then Synchronized_Present (Formal_Type_Definition (Decl))
16870 and then No (Extension)
16871
16872 -- Avoid emitting a duplicate error message
16873
16874 and then not Error_Posted (Indic)
16875 then
16876 Error_Msg_N
16877 ("synchronized derived type must have extension", N);
16878 end if;
16879 end;
16880 end if;
16881
16882 if Null_Exclusion_Present (Def)
16883 and then not Is_Access_Type (Parent_Type)
16884 then
16885 Error_Msg_N ("null exclusion can only apply to an access type", N);
16886 end if;
16887
16888 -- Avoid deriving parent primitives of underlying record views
16889
16890 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
16891 Derive_Subps => not Is_Underlying_Record_View (T));
16892
16893 -- AI-419: The parent type of an explicitly limited derived type must
16894 -- be a limited type or a limited interface.
16895
16896 if Limited_Present (Def) then
16897 Set_Is_Limited_Record (T);
16898
16899 if Is_Interface (T) then
16900 Set_Is_Limited_Interface (T);
16901 end if;
16902
16903 if not Is_Limited_Type (Parent_Type)
16904 and then
16905 (not Is_Interface (Parent_Type)
16906 or else not Is_Limited_Interface (Parent_Type))
16907 then
16908 -- AI05-0096: a derivation in the private part of an instance is
16909 -- legal if the generic formal is untagged limited, and the actual
16910 -- is non-limited.
16911
16912 if Is_Generic_Actual_Type (Parent_Type)
16913 and then In_Private_Part (Current_Scope)
16914 and then
16915 not Is_Tagged_Type
16916 (Generic_Parent_Type (Parent (Parent_Type)))
16917 then
16918 null;
16919
16920 else
16921 Error_Msg_NE
16922 ("parent type& of limited type must be limited",
16923 N, Parent_Type);
16924 end if;
16925 end if;
16926 end if;
16927
16928 -- In SPARK, there are no derived type definitions other than type
16929 -- extensions of tagged record types.
16930
16931 if No (Extension) then
16932 Check_SPARK_05_Restriction
16933 ("derived type is not allowed", Original_Node (N));
16934 end if;
16935 end Derived_Type_Declaration;
16936
16937 ------------------------
16938 -- Diagnose_Interface --
16939 ------------------------
16940
16941 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
16942 begin
16943 if not Is_Interface (E) and then E /= Any_Type then
16944 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
16945 end if;
16946 end Diagnose_Interface;
16947
16948 ----------------------------------
16949 -- Enumeration_Type_Declaration --
16950 ----------------------------------
16951
16952 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16953 Ev : Uint;
16954 L : Node_Id;
16955 R_Node : Node_Id;
16956 B_Node : Node_Id;
16957
16958 begin
16959 -- Create identifier node representing lower bound
16960
16961 B_Node := New_Node (N_Identifier, Sloc (Def));
16962 L := First (Literals (Def));
16963 Set_Chars (B_Node, Chars (L));
16964 Set_Entity (B_Node, L);
16965 Set_Etype (B_Node, T);
16966 Set_Is_Static_Expression (B_Node, True);
16967
16968 R_Node := New_Node (N_Range, Sloc (Def));
16969 Set_Low_Bound (R_Node, B_Node);
16970
16971 Set_Ekind (T, E_Enumeration_Type);
16972 Set_First_Literal (T, L);
16973 Set_Etype (T, T);
16974 Set_Is_Constrained (T);
16975
16976 Ev := Uint_0;
16977
16978 -- Loop through literals of enumeration type setting pos and rep values
16979 -- except that if the Ekind is already set, then it means the literal
16980 -- was already constructed (case of a derived type declaration and we
16981 -- should not disturb the Pos and Rep values.
16982
16983 while Present (L) loop
16984 if Ekind (L) /= E_Enumeration_Literal then
16985 Set_Ekind (L, E_Enumeration_Literal);
16986 Set_Enumeration_Pos (L, Ev);
16987 Set_Enumeration_Rep (L, Ev);
16988 Set_Is_Known_Valid (L, True);
16989 end if;
16990
16991 Set_Etype (L, T);
16992 New_Overloaded_Entity (L);
16993 Generate_Definition (L);
16994 Set_Convention (L, Convention_Intrinsic);
16995
16996 -- Case of character literal
16997
16998 if Nkind (L) = N_Defining_Character_Literal then
16999 Set_Is_Character_Type (T, True);
17000
17001 -- Check violation of No_Wide_Characters
17002
17003 if Restriction_Check_Required (No_Wide_Characters) then
17004 Get_Name_String (Chars (L));
17005
17006 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
17007 Check_Restriction (No_Wide_Characters, L);
17008 end if;
17009 end if;
17010 end if;
17011
17012 Ev := Ev + 1;
17013 Next (L);
17014 end loop;
17015
17016 -- Now create a node representing upper bound
17017
17018 B_Node := New_Node (N_Identifier, Sloc (Def));
17019 Set_Chars (B_Node, Chars (Last (Literals (Def))));
17020 Set_Entity (B_Node, Last (Literals (Def)));
17021 Set_Etype (B_Node, T);
17022 Set_Is_Static_Expression (B_Node, True);
17023
17024 Set_High_Bound (R_Node, B_Node);
17025
17026 -- Initialize various fields of the type. Some of this information
17027 -- may be overwritten later through rep.clauses.
17028
17029 Set_Scalar_Range (T, R_Node);
17030 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
17031 Set_Enum_Esize (T);
17032 Set_Enum_Pos_To_Rep (T, Empty);
17033
17034 -- Set Discard_Names if configuration pragma set, or if there is
17035 -- a parameterless pragma in the current declarative region
17036
17037 if Global_Discard_Names or else Discard_Names (Scope (T)) then
17038 Set_Discard_Names (T);
17039 end if;
17040
17041 -- Process end label if there is one
17042
17043 if Present (Def) then
17044 Process_End_Label (Def, 'e', T);
17045 end if;
17046 end Enumeration_Type_Declaration;
17047
17048 ---------------------------------
17049 -- Expand_To_Stored_Constraint --
17050 ---------------------------------
17051
17052 function Expand_To_Stored_Constraint
17053 (Typ : Entity_Id;
17054 Constraint : Elist_Id) return Elist_Id
17055 is
17056 Explicitly_Discriminated_Type : Entity_Id;
17057 Expansion : Elist_Id;
17058 Discriminant : Entity_Id;
17059
17060 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
17061 -- Find the nearest type that actually specifies discriminants
17062
17063 ---------------------------------
17064 -- Type_With_Explicit_Discrims --
17065 ---------------------------------
17066
17067 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
17068 Typ : constant E := Base_Type (Id);
17069
17070 begin
17071 if Ekind (Typ) in Incomplete_Or_Private_Kind then
17072 if Present (Full_View (Typ)) then
17073 return Type_With_Explicit_Discrims (Full_View (Typ));
17074 end if;
17075
17076 else
17077 if Has_Discriminants (Typ) then
17078 return Typ;
17079 end if;
17080 end if;
17081
17082 if Etype (Typ) = Typ then
17083 return Empty;
17084 elsif Has_Discriminants (Typ) then
17085 return Typ;
17086 else
17087 return Type_With_Explicit_Discrims (Etype (Typ));
17088 end if;
17089
17090 end Type_With_Explicit_Discrims;
17091
17092 -- Start of processing for Expand_To_Stored_Constraint
17093
17094 begin
17095 if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then
17096 return No_Elist;
17097 end if;
17098
17099 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
17100
17101 if No (Explicitly_Discriminated_Type) then
17102 return No_Elist;
17103 end if;
17104
17105 Expansion := New_Elmt_List;
17106
17107 Discriminant :=
17108 First_Stored_Discriminant (Explicitly_Discriminated_Type);
17109 while Present (Discriminant) loop
17110 Append_Elmt
17111 (Get_Discriminant_Value
17112 (Discriminant, Explicitly_Discriminated_Type, Constraint),
17113 To => Expansion);
17114 Next_Stored_Discriminant (Discriminant);
17115 end loop;
17116
17117 return Expansion;
17118 end Expand_To_Stored_Constraint;
17119
17120 ---------------------------
17121 -- Find_Hidden_Interface --
17122 ---------------------------
17123
17124 function Find_Hidden_Interface
17125 (Src : Elist_Id;
17126 Dest : Elist_Id) return Entity_Id
17127 is
17128 Iface : Entity_Id;
17129 Iface_Elmt : Elmt_Id;
17130
17131 begin
17132 if Present (Src) and then Present (Dest) then
17133 Iface_Elmt := First_Elmt (Src);
17134 while Present (Iface_Elmt) loop
17135 Iface := Node (Iface_Elmt);
17136
17137 if Is_Interface (Iface)
17138 and then not Contain_Interface (Iface, Dest)
17139 then
17140 return Iface;
17141 end if;
17142
17143 Next_Elmt (Iface_Elmt);
17144 end loop;
17145 end if;
17146
17147 return Empty;
17148 end Find_Hidden_Interface;
17149
17150 --------------------
17151 -- Find_Type_Name --
17152 --------------------
17153
17154 function Find_Type_Name (N : Node_Id) return Entity_Id is
17155 Id : constant Entity_Id := Defining_Identifier (N);
17156 New_Id : Entity_Id;
17157 Prev : Entity_Id;
17158 Prev_Par : Node_Id;
17159
17160 procedure Check_Duplicate_Aspects;
17161 -- Check that aspects specified in a completion have not been specified
17162 -- already in the partial view.
17163
17164 procedure Tag_Mismatch;
17165 -- Diagnose a tagged partial view whose full view is untagged. We post
17166 -- the message on the full view, with a reference to the previous
17167 -- partial view. The partial view can be private or incomplete, and
17168 -- these are handled in a different manner, so we determine the position
17169 -- of the error message from the respective slocs of both.
17170
17171 -----------------------------
17172 -- Check_Duplicate_Aspects --
17173 -----------------------------
17174
17175 procedure Check_Duplicate_Aspects is
17176 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id;
17177 -- Return the corresponding aspect of the partial view which matches
17178 -- the aspect id of Asp. Return Empty is no such aspect exists.
17179
17180 -----------------------------
17181 -- Get_Partial_View_Aspect --
17182 -----------------------------
17183
17184 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id is
17185 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp);
17186 Prev_Asps : constant List_Id := Aspect_Specifications (Prev_Par);
17187 Prev_Asp : Node_Id;
17188
17189 begin
17190 if Present (Prev_Asps) then
17191 Prev_Asp := First (Prev_Asps);
17192 while Present (Prev_Asp) loop
17193 if Get_Aspect_Id (Prev_Asp) = Asp_Id then
17194 return Prev_Asp;
17195 end if;
17196
17197 Next (Prev_Asp);
17198 end loop;
17199 end if;
17200
17201 return Empty;
17202 end Get_Partial_View_Aspect;
17203
17204 -- Local variables
17205
17206 Full_Asps : constant List_Id := Aspect_Specifications (N);
17207 Full_Asp : Node_Id;
17208 Part_Asp : Node_Id;
17209
17210 -- Start of processing for Check_Duplicate_Aspects
17211
17212 begin
17213 if Present (Full_Asps) then
17214 Full_Asp := First (Full_Asps);
17215 while Present (Full_Asp) loop
17216 Part_Asp := Get_Partial_View_Aspect (Full_Asp);
17217
17218 -- An aspect and its class-wide counterpart are two distinct
17219 -- aspects and may apply to both views of an entity.
17220
17221 if Present (Part_Asp)
17222 and then Class_Present (Part_Asp) = Class_Present (Full_Asp)
17223 then
17224 Error_Msg_N
17225 ("aspect already specified in private declaration",
17226 Full_Asp);
17227
17228 Remove (Full_Asp);
17229 return;
17230 end if;
17231
17232 if Has_Discriminants (Prev)
17233 and then not Has_Unknown_Discriminants (Prev)
17234 and then Get_Aspect_Id (Full_Asp) =
17235 Aspect_Implicit_Dereference
17236 then
17237 Error_Msg_N
17238 ("cannot specify aspect if partial view has known "
17239 & "discriminants", Full_Asp);
17240 end if;
17241
17242 Next (Full_Asp);
17243 end loop;
17244 end if;
17245 end Check_Duplicate_Aspects;
17246
17247 ------------------
17248 -- Tag_Mismatch --
17249 ------------------
17250
17251 procedure Tag_Mismatch is
17252 begin
17253 if Sloc (Prev) < Sloc (Id) then
17254 if Ada_Version >= Ada_2012
17255 and then Nkind (N) = N_Private_Type_Declaration
17256 then
17257 Error_Msg_NE
17258 ("declaration of private } must be a tagged type ", Id, Prev);
17259 else
17260 Error_Msg_NE
17261 ("full declaration of } must be a tagged type ", Id, Prev);
17262 end if;
17263
17264 else
17265 if Ada_Version >= Ada_2012
17266 and then Nkind (N) = N_Private_Type_Declaration
17267 then
17268 Error_Msg_NE
17269 ("declaration of private } must be a tagged type ", Prev, Id);
17270 else
17271 Error_Msg_NE
17272 ("full declaration of } must be a tagged type ", Prev, Id);
17273 end if;
17274 end if;
17275 end Tag_Mismatch;
17276
17277 -- Start of processing for Find_Type_Name
17278
17279 begin
17280 -- Find incomplete declaration, if one was given
17281
17282 Prev := Current_Entity_In_Scope (Id);
17283
17284 -- New type declaration
17285
17286 if No (Prev) then
17287 Enter_Name (Id);
17288 return Id;
17289
17290 -- Previous declaration exists
17291
17292 else
17293 Prev_Par := Parent (Prev);
17294
17295 -- Error if not incomplete/private case except if previous
17296 -- declaration is implicit, etc. Enter_Name will emit error if
17297 -- appropriate.
17298
17299 if not Is_Incomplete_Or_Private_Type (Prev) then
17300 Enter_Name (Id);
17301 New_Id := Id;
17302
17303 -- Check invalid completion of private or incomplete type
17304
17305 elsif not Nkind_In (N, N_Full_Type_Declaration,
17306 N_Task_Type_Declaration,
17307 N_Protected_Type_Declaration)
17308 and then
17309 (Ada_Version < Ada_2012
17310 or else not Is_Incomplete_Type (Prev)
17311 or else not Nkind_In (N, N_Private_Type_Declaration,
17312 N_Private_Extension_Declaration))
17313 then
17314 -- Completion must be a full type declarations (RM 7.3(4))
17315
17316 Error_Msg_Sloc := Sloc (Prev);
17317 Error_Msg_NE ("invalid completion of }", Id, Prev);
17318
17319 -- Set scope of Id to avoid cascaded errors. Entity is never
17320 -- examined again, except when saving globals in generics.
17321
17322 Set_Scope (Id, Current_Scope);
17323 New_Id := Id;
17324
17325 -- If this is a repeated incomplete declaration, no further
17326 -- checks are possible.
17327
17328 if Nkind (N) = N_Incomplete_Type_Declaration then
17329 return Prev;
17330 end if;
17331
17332 -- Case of full declaration of incomplete type
17333
17334 elsif Ekind (Prev) = E_Incomplete_Type
17335 and then (Ada_Version < Ada_2012
17336 or else No (Full_View (Prev))
17337 or else not Is_Private_Type (Full_View (Prev)))
17338 then
17339 -- Indicate that the incomplete declaration has a matching full
17340 -- declaration. The defining occurrence of the incomplete
17341 -- declaration remains the visible one, and the procedure
17342 -- Get_Full_View dereferences it whenever the type is used.
17343
17344 if Present (Full_View (Prev)) then
17345 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
17346 end if;
17347
17348 Set_Full_View (Prev, Id);
17349 Append_Entity (Id, Current_Scope);
17350 Set_Is_Public (Id, Is_Public (Prev));
17351 Set_Is_Internal (Id);
17352 New_Id := Prev;
17353
17354 -- If the incomplete view is tagged, a class_wide type has been
17355 -- created already. Use it for the private type as well, in order
17356 -- to prevent multiple incompatible class-wide types that may be
17357 -- created for self-referential anonymous access components.
17358
17359 if Is_Tagged_Type (Prev)
17360 and then Present (Class_Wide_Type (Prev))
17361 then
17362 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
17363 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
17364
17365 -- Type of the class-wide type is the current Id. Previously
17366 -- this was not done for private declarations because of order-
17367 -- of-elaboration issues in the back end, but gigi now handles
17368 -- this properly.
17369
17370 Set_Etype (Class_Wide_Type (Id), Id);
17371 end if;
17372
17373 -- Case of full declaration of private type
17374
17375 else
17376 -- If the private type was a completion of an incomplete type then
17377 -- update Prev to reference the private type
17378
17379 if Ada_Version >= Ada_2012
17380 and then Ekind (Prev) = E_Incomplete_Type
17381 and then Present (Full_View (Prev))
17382 and then Is_Private_Type (Full_View (Prev))
17383 then
17384 Prev := Full_View (Prev);
17385 Prev_Par := Parent (Prev);
17386 end if;
17387
17388 if Nkind (N) = N_Full_Type_Declaration
17389 and then Nkind_In
17390 (Type_Definition (N), N_Record_Definition,
17391 N_Derived_Type_Definition)
17392 and then Interface_Present (Type_Definition (N))
17393 then
17394 Error_Msg_N
17395 ("completion of private type cannot be an interface", N);
17396 end if;
17397
17398 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
17399 if Etype (Prev) /= Prev then
17400
17401 -- Prev is a private subtype or a derived type, and needs
17402 -- no completion.
17403
17404 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
17405 New_Id := Id;
17406
17407 elsif Ekind (Prev) = E_Private_Type
17408 and then Nkind_In (N, N_Task_Type_Declaration,
17409 N_Protected_Type_Declaration)
17410 then
17411 Error_Msg_N
17412 ("completion of nonlimited type cannot be limited", N);
17413
17414 elsif Ekind (Prev) = E_Record_Type_With_Private
17415 and then Nkind_In (N, N_Task_Type_Declaration,
17416 N_Protected_Type_Declaration)
17417 then
17418 if not Is_Limited_Record (Prev) then
17419 Error_Msg_N
17420 ("completion of nonlimited type cannot be limited", N);
17421
17422 elsif No (Interface_List (N)) then
17423 Error_Msg_N
17424 ("completion of tagged private type must be tagged",
17425 N);
17426 end if;
17427 end if;
17428
17429 -- Ada 2005 (AI-251): Private extension declaration of a task
17430 -- type or a protected type. This case arises when covering
17431 -- interface types.
17432
17433 elsif Nkind_In (N, N_Task_Type_Declaration,
17434 N_Protected_Type_Declaration)
17435 then
17436 null;
17437
17438 elsif Nkind (N) /= N_Full_Type_Declaration
17439 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
17440 then
17441 Error_Msg_N
17442 ("full view of private extension must be an extension", N);
17443
17444 elsif not (Abstract_Present (Parent (Prev)))
17445 and then Abstract_Present (Type_Definition (N))
17446 then
17447 Error_Msg_N
17448 ("full view of non-abstract extension cannot be abstract", N);
17449 end if;
17450
17451 if not In_Private_Part (Current_Scope) then
17452 Error_Msg_N
17453 ("declaration of full view must appear in private part", N);
17454 end if;
17455
17456 if Ada_Version >= Ada_2012 then
17457 Check_Duplicate_Aspects;
17458 end if;
17459
17460 Copy_And_Swap (Prev, Id);
17461 Set_Has_Private_Declaration (Prev);
17462 Set_Has_Private_Declaration (Id);
17463
17464 -- AI12-0133: Indicate whether we have a partial view with
17465 -- unknown discriminants, in which case initialization of objects
17466 -- of the type do not receive an invariant check.
17467
17468 Set_Partial_View_Has_Unknown_Discr
17469 (Prev, Has_Unknown_Discriminants (Id));
17470
17471 -- Preserve aspect and iterator flags that may have been set on
17472 -- the partial view.
17473
17474 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
17475 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
17476
17477 -- If no error, propagate freeze_node from private to full view.
17478 -- It may have been generated for an early operational item.
17479
17480 if Present (Freeze_Node (Id))
17481 and then Serious_Errors_Detected = 0
17482 and then No (Full_View (Id))
17483 then
17484 Set_Freeze_Node (Prev, Freeze_Node (Id));
17485 Set_Freeze_Node (Id, Empty);
17486 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
17487 end if;
17488
17489 Set_Full_View (Id, Prev);
17490 New_Id := Prev;
17491 end if;
17492
17493 -- Verify that full declaration conforms to partial one
17494
17495 if Is_Incomplete_Or_Private_Type (Prev)
17496 and then Present (Discriminant_Specifications (Prev_Par))
17497 then
17498 if Present (Discriminant_Specifications (N)) then
17499 if Ekind (Prev) = E_Incomplete_Type then
17500 Check_Discriminant_Conformance (N, Prev, Prev);
17501 else
17502 Check_Discriminant_Conformance (N, Prev, Id);
17503 end if;
17504
17505 else
17506 Error_Msg_N
17507 ("missing discriminants in full type declaration", N);
17508
17509 -- To avoid cascaded errors on subsequent use, share the
17510 -- discriminants of the partial view.
17511
17512 Set_Discriminant_Specifications (N,
17513 Discriminant_Specifications (Prev_Par));
17514 end if;
17515 end if;
17516
17517 -- A prior untagged partial view can have an associated class-wide
17518 -- type due to use of the class attribute, and in this case the full
17519 -- type must also be tagged. This Ada 95 usage is deprecated in favor
17520 -- of incomplete tagged declarations, but we check for it.
17521
17522 if Is_Type (Prev)
17523 and then (Is_Tagged_Type (Prev)
17524 or else Present (Class_Wide_Type (Prev)))
17525 then
17526 -- Ada 2012 (AI05-0162): A private type may be the completion of
17527 -- an incomplete type.
17528
17529 if Ada_Version >= Ada_2012
17530 and then Is_Incomplete_Type (Prev)
17531 and then Nkind_In (N, N_Private_Type_Declaration,
17532 N_Private_Extension_Declaration)
17533 then
17534 -- No need to check private extensions since they are tagged
17535
17536 if Nkind (N) = N_Private_Type_Declaration
17537 and then not Tagged_Present (N)
17538 then
17539 Tag_Mismatch;
17540 end if;
17541
17542 -- The full declaration is either a tagged type (including
17543 -- a synchronized type that implements interfaces) or a
17544 -- type extension, otherwise this is an error.
17545
17546 elsif Nkind_In (N, N_Task_Type_Declaration,
17547 N_Protected_Type_Declaration)
17548 then
17549 if No (Interface_List (N)) and then not Error_Posted (N) then
17550 Tag_Mismatch;
17551 end if;
17552
17553 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
17554
17555 -- Indicate that the previous declaration (tagged incomplete
17556 -- or private declaration) requires the same on the full one.
17557
17558 if not Tagged_Present (Type_Definition (N)) then
17559 Tag_Mismatch;
17560 Set_Is_Tagged_Type (Id);
17561 end if;
17562
17563 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
17564 if No (Record_Extension_Part (Type_Definition (N))) then
17565 Error_Msg_NE
17566 ("full declaration of } must be a record extension",
17567 Prev, Id);
17568
17569 -- Set some attributes to produce a usable full view
17570
17571 Set_Is_Tagged_Type (Id);
17572 end if;
17573
17574 else
17575 Tag_Mismatch;
17576 end if;
17577 end if;
17578
17579 if Present (Prev)
17580 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
17581 and then Present (Premature_Use (Parent (Prev)))
17582 then
17583 Error_Msg_Sloc := Sloc (N);
17584 Error_Msg_N
17585 ("\full declaration #", Premature_Use (Parent (Prev)));
17586 end if;
17587
17588 return New_Id;
17589 end if;
17590 end Find_Type_Name;
17591
17592 -------------------------
17593 -- Find_Type_Of_Object --
17594 -------------------------
17595
17596 function Find_Type_Of_Object
17597 (Obj_Def : Node_Id;
17598 Related_Nod : Node_Id) return Entity_Id
17599 is
17600 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
17601 P : Node_Id := Parent (Obj_Def);
17602 T : Entity_Id;
17603 Nam : Name_Id;
17604
17605 begin
17606 -- If the parent is a component_definition node we climb to the
17607 -- component_declaration node
17608
17609 if Nkind (P) = N_Component_Definition then
17610 P := Parent (P);
17611 end if;
17612
17613 -- Case of an anonymous array subtype
17614
17615 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
17616 N_Unconstrained_Array_Definition)
17617 then
17618 T := Empty;
17619 Array_Type_Declaration (T, Obj_Def);
17620
17621 -- Create an explicit subtype whenever possible
17622
17623 elsif Nkind (P) /= N_Component_Declaration
17624 and then Def_Kind = N_Subtype_Indication
17625 then
17626 -- Base name of subtype on object name, which will be unique in
17627 -- the current scope.
17628
17629 -- If this is a duplicate declaration, return base type, to avoid
17630 -- generating duplicate anonymous types.
17631
17632 if Error_Posted (P) then
17633 Analyze (Subtype_Mark (Obj_Def));
17634 return Entity (Subtype_Mark (Obj_Def));
17635 end if;
17636
17637 Nam :=
17638 New_External_Name
17639 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
17640
17641 T := Make_Defining_Identifier (Sloc (P), Nam);
17642
17643 Insert_Action (Obj_Def,
17644 Make_Subtype_Declaration (Sloc (P),
17645 Defining_Identifier => T,
17646 Subtype_Indication => Relocate_Node (Obj_Def)));
17647
17648 -- This subtype may need freezing, and this will not be done
17649 -- automatically if the object declaration is not in declarative
17650 -- part. Since this is an object declaration, the type cannot always
17651 -- be frozen here. Deferred constants do not freeze their type
17652 -- (which often enough will be private).
17653
17654 if Nkind (P) = N_Object_Declaration
17655 and then Constant_Present (P)
17656 and then No (Expression (P))
17657 then
17658 null;
17659
17660 -- Here we freeze the base type of object type to catch premature use
17661 -- of discriminated private type without a full view.
17662
17663 else
17664 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
17665 end if;
17666
17667 -- Ada 2005 AI-406: the object definition in an object declaration
17668 -- can be an access definition.
17669
17670 elsif Def_Kind = N_Access_Definition then
17671 T := Access_Definition (Related_Nod, Obj_Def);
17672
17673 Set_Is_Local_Anonymous_Access
17674 (T,
17675 V => (Ada_Version < Ada_2012)
17676 or else (Nkind (P) /= N_Object_Declaration)
17677 or else Is_Library_Level_Entity (Defining_Identifier (P)));
17678
17679 -- Otherwise, the object definition is just a subtype_mark
17680
17681 else
17682 T := Process_Subtype (Obj_Def, Related_Nod);
17683
17684 -- If expansion is disabled an object definition that is an aggregate
17685 -- will not get expanded and may lead to scoping problems in the back
17686 -- end, if the object is referenced in an inner scope. In that case
17687 -- create an itype reference for the object definition now. This
17688 -- may be redundant in some cases, but harmless.
17689
17690 if Is_Itype (T)
17691 and then Nkind (Related_Nod) = N_Object_Declaration
17692 and then ASIS_Mode
17693 then
17694 Build_Itype_Reference (T, Related_Nod);
17695 end if;
17696 end if;
17697
17698 return T;
17699 end Find_Type_Of_Object;
17700
17701 --------------------------------
17702 -- Find_Type_Of_Subtype_Indic --
17703 --------------------------------
17704
17705 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
17706 Typ : Entity_Id;
17707
17708 begin
17709 -- Case of subtype mark with a constraint
17710
17711 if Nkind (S) = N_Subtype_Indication then
17712 Find_Type (Subtype_Mark (S));
17713 Typ := Entity (Subtype_Mark (S));
17714
17715 if not
17716 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
17717 then
17718 Error_Msg_N
17719 ("incorrect constraint for this kind of type", Constraint (S));
17720 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
17721 end if;
17722
17723 -- Otherwise we have a subtype mark without a constraint
17724
17725 elsif Error_Posted (S) then
17726 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
17727 return Any_Type;
17728
17729 else
17730 Find_Type (S);
17731 Typ := Entity (S);
17732 end if;
17733
17734 -- Check No_Wide_Characters restriction
17735
17736 Check_Wide_Character_Restriction (Typ, S);
17737
17738 return Typ;
17739 end Find_Type_Of_Subtype_Indic;
17740
17741 -------------------------------------
17742 -- Floating_Point_Type_Declaration --
17743 -------------------------------------
17744
17745 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
17746 Digs : constant Node_Id := Digits_Expression (Def);
17747 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
17748 Digs_Val : Uint;
17749 Base_Typ : Entity_Id;
17750 Implicit_Base : Entity_Id;
17751 Bound : Node_Id;
17752
17753 function Can_Derive_From (E : Entity_Id) return Boolean;
17754 -- Find if given digits value, and possibly a specified range, allows
17755 -- derivation from specified type
17756
17757 function Find_Base_Type return Entity_Id;
17758 -- Find a predefined base type that Def can derive from, or generate
17759 -- an error and substitute Long_Long_Float if none exists.
17760
17761 ---------------------
17762 -- Can_Derive_From --
17763 ---------------------
17764
17765 function Can_Derive_From (E : Entity_Id) return Boolean is
17766 Spec : constant Entity_Id := Real_Range_Specification (Def);
17767
17768 begin
17769 -- Check specified "digits" constraint
17770
17771 if Digs_Val > Digits_Value (E) then
17772 return False;
17773 end if;
17774
17775 -- Check for matching range, if specified
17776
17777 if Present (Spec) then
17778 if Expr_Value_R (Type_Low_Bound (E)) >
17779 Expr_Value_R (Low_Bound (Spec))
17780 then
17781 return False;
17782 end if;
17783
17784 if Expr_Value_R (Type_High_Bound (E)) <
17785 Expr_Value_R (High_Bound (Spec))
17786 then
17787 return False;
17788 end if;
17789 end if;
17790
17791 return True;
17792 end Can_Derive_From;
17793
17794 --------------------
17795 -- Find_Base_Type --
17796 --------------------
17797
17798 function Find_Base_Type return Entity_Id is
17799 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
17800
17801 begin
17802 -- Iterate over the predefined types in order, returning the first
17803 -- one that Def can derive from.
17804
17805 while Present (Choice) loop
17806 if Can_Derive_From (Node (Choice)) then
17807 return Node (Choice);
17808 end if;
17809
17810 Next_Elmt (Choice);
17811 end loop;
17812
17813 -- If we can't derive from any existing type, use Long_Long_Float
17814 -- and give appropriate message explaining the problem.
17815
17816 if Digs_Val > Max_Digs_Val then
17817 -- It might be the case that there is a type with the requested
17818 -- range, just not the combination of digits and range.
17819
17820 Error_Msg_N
17821 ("no predefined type has requested range and precision",
17822 Real_Range_Specification (Def));
17823
17824 else
17825 Error_Msg_N
17826 ("range too large for any predefined type",
17827 Real_Range_Specification (Def));
17828 end if;
17829
17830 return Standard_Long_Long_Float;
17831 end Find_Base_Type;
17832
17833 -- Start of processing for Floating_Point_Type_Declaration
17834
17835 begin
17836 Check_Restriction (No_Floating_Point, Def);
17837
17838 -- Create an implicit base type
17839
17840 Implicit_Base :=
17841 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
17842
17843 -- Analyze and verify digits value
17844
17845 Analyze_And_Resolve (Digs, Any_Integer);
17846 Check_Digits_Expression (Digs);
17847 Digs_Val := Expr_Value (Digs);
17848
17849 -- Process possible range spec and find correct type to derive from
17850
17851 Process_Real_Range_Specification (Def);
17852
17853 -- Check that requested number of digits is not too high.
17854
17855 if Digs_Val > Max_Digs_Val then
17856
17857 -- The check for Max_Base_Digits may be somewhat expensive, as it
17858 -- requires reading System, so only do it when necessary.
17859
17860 declare
17861 Max_Base_Digits : constant Uint :=
17862 Expr_Value
17863 (Expression
17864 (Parent (RTE (RE_Max_Base_Digits))));
17865
17866 begin
17867 if Digs_Val > Max_Base_Digits then
17868 Error_Msg_Uint_1 := Max_Base_Digits;
17869 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
17870
17871 elsif No (Real_Range_Specification (Def)) then
17872 Error_Msg_Uint_1 := Max_Digs_Val;
17873 Error_Msg_N ("types with more than ^ digits need range spec "
17874 & "(RM 3.5.7(6))", Digs);
17875 end if;
17876 end;
17877 end if;
17878
17879 -- Find a suitable type to derive from or complain and use a substitute
17880
17881 Base_Typ := Find_Base_Type;
17882
17883 -- If there are bounds given in the declaration use them as the bounds
17884 -- of the type, otherwise use the bounds of the predefined base type
17885 -- that was chosen based on the Digits value.
17886
17887 if Present (Real_Range_Specification (Def)) then
17888 Set_Scalar_Range (T, Real_Range_Specification (Def));
17889 Set_Is_Constrained (T);
17890
17891 -- The bounds of this range must be converted to machine numbers
17892 -- in accordance with RM 4.9(38).
17893
17894 Bound := Type_Low_Bound (T);
17895
17896 if Nkind (Bound) = N_Real_Literal then
17897 Set_Realval
17898 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17899 Set_Is_Machine_Number (Bound);
17900 end if;
17901
17902 Bound := Type_High_Bound (T);
17903
17904 if Nkind (Bound) = N_Real_Literal then
17905 Set_Realval
17906 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17907 Set_Is_Machine_Number (Bound);
17908 end if;
17909
17910 else
17911 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
17912 end if;
17913
17914 -- Complete definition of implicit base and declared first subtype. The
17915 -- inheritance of the rep item chain ensures that SPARK-related pragmas
17916 -- are not clobbered when the floating point type acts as a full view of
17917 -- a private type.
17918
17919 Set_Etype (Implicit_Base, Base_Typ);
17920 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
17921 Set_Size_Info (Implicit_Base, Base_Typ);
17922 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
17923 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
17924 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
17925 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
17926
17927 Set_Ekind (T, E_Floating_Point_Subtype);
17928 Set_Etype (T, Implicit_Base);
17929 Set_Size_Info (T, Implicit_Base);
17930 Set_RM_Size (T, RM_Size (Implicit_Base));
17931 Inherit_Rep_Item_Chain (T, Implicit_Base);
17932 Set_Digits_Value (T, Digs_Val);
17933 end Floating_Point_Type_Declaration;
17934
17935 ----------------------------
17936 -- Get_Discriminant_Value --
17937 ----------------------------
17938
17939 -- This is the situation:
17940
17941 -- There is a non-derived type
17942
17943 -- type T0 (Dx, Dy, Dz...)
17944
17945 -- There are zero or more levels of derivation, with each derivation
17946 -- either purely inheriting the discriminants, or defining its own.
17947
17948 -- type Ti is new Ti-1
17949 -- or
17950 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
17951 -- or
17952 -- subtype Ti is ...
17953
17954 -- The subtype issue is avoided by the use of Original_Record_Component,
17955 -- and the fact that derived subtypes also derive the constraints.
17956
17957 -- This chain leads back from
17958
17959 -- Typ_For_Constraint
17960
17961 -- Typ_For_Constraint has discriminants, and the value for each
17962 -- discriminant is given by its corresponding Elmt of Constraints.
17963
17964 -- Discriminant is some discriminant in this hierarchy
17965
17966 -- We need to return its value
17967
17968 -- We do this by recursively searching each level, and looking for
17969 -- Discriminant. Once we get to the bottom, we start backing up
17970 -- returning the value for it which may in turn be a discriminant
17971 -- further up, so on the backup we continue the substitution.
17972
17973 function Get_Discriminant_Value
17974 (Discriminant : Entity_Id;
17975 Typ_For_Constraint : Entity_Id;
17976 Constraint : Elist_Id) return Node_Id
17977 is
17978 function Root_Corresponding_Discriminant
17979 (Discr : Entity_Id) return Entity_Id;
17980 -- Given a discriminant, traverse the chain of inherited discriminants
17981 -- and return the topmost discriminant.
17982
17983 function Search_Derivation_Levels
17984 (Ti : Entity_Id;
17985 Discrim_Values : Elist_Id;
17986 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
17987 -- This is the routine that performs the recursive search of levels
17988 -- as described above.
17989
17990 -------------------------------------
17991 -- Root_Corresponding_Discriminant --
17992 -------------------------------------
17993
17994 function Root_Corresponding_Discriminant
17995 (Discr : Entity_Id) return Entity_Id
17996 is
17997 D : Entity_Id;
17998
17999 begin
18000 D := Discr;
18001 while Present (Corresponding_Discriminant (D)) loop
18002 D := Corresponding_Discriminant (D);
18003 end loop;
18004
18005 return D;
18006 end Root_Corresponding_Discriminant;
18007
18008 ------------------------------
18009 -- Search_Derivation_Levels --
18010 ------------------------------
18011
18012 function Search_Derivation_Levels
18013 (Ti : Entity_Id;
18014 Discrim_Values : Elist_Id;
18015 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
18016 is
18017 Assoc : Elmt_Id;
18018 Disc : Entity_Id;
18019 Result : Node_Or_Entity_Id;
18020 Result_Entity : Node_Id;
18021
18022 begin
18023 -- If inappropriate type, return Error, this happens only in
18024 -- cascaded error situations, and we want to avoid a blow up.
18025
18026 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
18027 return Error;
18028 end if;
18029
18030 -- Look deeper if possible. Use Stored_Constraints only for
18031 -- untagged types. For tagged types use the given constraint.
18032 -- This asymmetry needs explanation???
18033
18034 if not Stored_Discrim_Values
18035 and then Present (Stored_Constraint (Ti))
18036 and then not Is_Tagged_Type (Ti)
18037 then
18038 Result :=
18039 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
18040
18041 else
18042 declare
18043 Td : Entity_Id := Etype (Ti);
18044
18045 begin
18046 -- If the parent type is private, the full view may include
18047 -- renamed discriminants, and it is those stored values that
18048 -- may be needed (the partial view never has more information
18049 -- than the full view).
18050
18051 if Is_Private_Type (Td) and then Present (Full_View (Td)) then
18052 Td := Full_View (Td);
18053 end if;
18054
18055 if Td = Ti then
18056 Result := Discriminant;
18057
18058 else
18059 if Present (Stored_Constraint (Ti)) then
18060 Result :=
18061 Search_Derivation_Levels
18062 (Td, Stored_Constraint (Ti), True);
18063 else
18064 Result :=
18065 Search_Derivation_Levels
18066 (Td, Discrim_Values, Stored_Discrim_Values);
18067 end if;
18068 end if;
18069 end;
18070 end if;
18071
18072 -- Extra underlying places to search, if not found above. For
18073 -- concurrent types, the relevant discriminant appears in the
18074 -- corresponding record. For a type derived from a private type
18075 -- without discriminant, the full view inherits the discriminants
18076 -- of the full view of the parent.
18077
18078 if Result = Discriminant then
18079 if Is_Concurrent_Type (Ti)
18080 and then Present (Corresponding_Record_Type (Ti))
18081 then
18082 Result :=
18083 Search_Derivation_Levels (
18084 Corresponding_Record_Type (Ti),
18085 Discrim_Values,
18086 Stored_Discrim_Values);
18087
18088 elsif Is_Private_Type (Ti)
18089 and then not Has_Discriminants (Ti)
18090 and then Present (Full_View (Ti))
18091 and then Etype (Full_View (Ti)) /= Ti
18092 then
18093 Result :=
18094 Search_Derivation_Levels (
18095 Full_View (Ti),
18096 Discrim_Values,
18097 Stored_Discrim_Values);
18098 end if;
18099 end if;
18100
18101 -- If Result is not a (reference to a) discriminant, return it,
18102 -- otherwise set Result_Entity to the discriminant.
18103
18104 if Nkind (Result) = N_Defining_Identifier then
18105 pragma Assert (Result = Discriminant);
18106 Result_Entity := Result;
18107
18108 else
18109 if not Denotes_Discriminant (Result) then
18110 return Result;
18111 end if;
18112
18113 Result_Entity := Entity (Result);
18114 end if;
18115
18116 -- See if this level of derivation actually has discriminants because
18117 -- tagged derivations can add them, hence the lower levels need not
18118 -- have any.
18119
18120 if not Has_Discriminants (Ti) then
18121 return Result;
18122 end if;
18123
18124 -- Scan Ti's discriminants for Result_Entity, and return its
18125 -- corresponding value, if any.
18126
18127 Result_Entity := Original_Record_Component (Result_Entity);
18128
18129 Assoc := First_Elmt (Discrim_Values);
18130
18131 if Stored_Discrim_Values then
18132 Disc := First_Stored_Discriminant (Ti);
18133 else
18134 Disc := First_Discriminant (Ti);
18135 end if;
18136
18137 while Present (Disc) loop
18138
18139 -- If no further associations return the discriminant, value will
18140 -- be found on the second pass.
18141
18142 if No (Assoc) then
18143 return Result;
18144 end if;
18145
18146 if Original_Record_Component (Disc) = Result_Entity then
18147 return Node (Assoc);
18148 end if;
18149
18150 Next_Elmt (Assoc);
18151
18152 if Stored_Discrim_Values then
18153 Next_Stored_Discriminant (Disc);
18154 else
18155 Next_Discriminant (Disc);
18156 end if;
18157 end loop;
18158
18159 -- Could not find it
18160
18161 return Result;
18162 end Search_Derivation_Levels;
18163
18164 -- Local Variables
18165
18166 Result : Node_Or_Entity_Id;
18167
18168 -- Start of processing for Get_Discriminant_Value
18169
18170 begin
18171 -- ??? This routine is a gigantic mess and will be deleted. For the
18172 -- time being just test for the trivial case before calling recurse.
18173
18174 -- We are now celebrating the 20th anniversary of this comment!
18175
18176 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
18177 declare
18178 D : Entity_Id;
18179 E : Elmt_Id;
18180
18181 begin
18182 D := First_Discriminant (Typ_For_Constraint);
18183 E := First_Elmt (Constraint);
18184 while Present (D) loop
18185 if Chars (D) = Chars (Discriminant) then
18186 return Node (E);
18187 end if;
18188
18189 Next_Discriminant (D);
18190 Next_Elmt (E);
18191 end loop;
18192 end;
18193 end if;
18194
18195 Result := Search_Derivation_Levels
18196 (Typ_For_Constraint, Constraint, False);
18197
18198 -- ??? hack to disappear when this routine is gone
18199
18200 if Nkind (Result) = N_Defining_Identifier then
18201 declare
18202 D : Entity_Id;
18203 E : Elmt_Id;
18204
18205 begin
18206 D := First_Discriminant (Typ_For_Constraint);
18207 E := First_Elmt (Constraint);
18208 while Present (D) loop
18209 if Root_Corresponding_Discriminant (D) = Discriminant then
18210 return Node (E);
18211 end if;
18212
18213 Next_Discriminant (D);
18214 Next_Elmt (E);
18215 end loop;
18216 end;
18217 end if;
18218
18219 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
18220 return Result;
18221 end Get_Discriminant_Value;
18222
18223 --------------------------
18224 -- Has_Range_Constraint --
18225 --------------------------
18226
18227 function Has_Range_Constraint (N : Node_Id) return Boolean is
18228 C : constant Node_Id := Constraint (N);
18229
18230 begin
18231 if Nkind (C) = N_Range_Constraint then
18232 return True;
18233
18234 elsif Nkind (C) = N_Digits_Constraint then
18235 return
18236 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
18237 or else Present (Range_Constraint (C));
18238
18239 elsif Nkind (C) = N_Delta_Constraint then
18240 return Present (Range_Constraint (C));
18241
18242 else
18243 return False;
18244 end if;
18245 end Has_Range_Constraint;
18246
18247 ------------------------
18248 -- Inherit_Components --
18249 ------------------------
18250
18251 function Inherit_Components
18252 (N : Node_Id;
18253 Parent_Base : Entity_Id;
18254 Derived_Base : Entity_Id;
18255 Is_Tagged : Boolean;
18256 Inherit_Discr : Boolean;
18257 Discs : Elist_Id) return Elist_Id
18258 is
18259 Assoc_List : constant Elist_Id := New_Elmt_List;
18260
18261 procedure Inherit_Component
18262 (Old_C : Entity_Id;
18263 Plain_Discrim : Boolean := False;
18264 Stored_Discrim : Boolean := False);
18265 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
18266 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
18267 -- True, Old_C is a stored discriminant. If they are both false then
18268 -- Old_C is a regular component.
18269
18270 -----------------------
18271 -- Inherit_Component --
18272 -----------------------
18273
18274 procedure Inherit_Component
18275 (Old_C : Entity_Id;
18276 Plain_Discrim : Boolean := False;
18277 Stored_Discrim : Boolean := False)
18278 is
18279 procedure Set_Anonymous_Type (Id : Entity_Id);
18280 -- Id denotes the entity of an access discriminant or anonymous
18281 -- access component. Set the type of Id to either the same type of
18282 -- Old_C or create a new one depending on whether the parent and
18283 -- the child types are in the same scope.
18284
18285 ------------------------
18286 -- Set_Anonymous_Type --
18287 ------------------------
18288
18289 procedure Set_Anonymous_Type (Id : Entity_Id) is
18290 Old_Typ : constant Entity_Id := Etype (Old_C);
18291
18292 begin
18293 if Scope (Parent_Base) = Scope (Derived_Base) then
18294 Set_Etype (Id, Old_Typ);
18295
18296 -- The parent and the derived type are in two different scopes.
18297 -- Reuse the type of the original discriminant / component by
18298 -- copying it in order to preserve all attributes.
18299
18300 else
18301 declare
18302 Typ : constant Entity_Id := New_Copy (Old_Typ);
18303
18304 begin
18305 Set_Etype (Id, Typ);
18306
18307 -- Since we do not generate component declarations for
18308 -- inherited components, associate the itype with the
18309 -- derived type.
18310
18311 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
18312 Set_Scope (Typ, Derived_Base);
18313 end;
18314 end if;
18315 end Set_Anonymous_Type;
18316
18317 -- Local variables and constants
18318
18319 New_C : constant Entity_Id := New_Copy (Old_C);
18320
18321 Corr_Discrim : Entity_Id;
18322 Discrim : Entity_Id;
18323
18324 -- Start of processing for Inherit_Component
18325
18326 begin
18327 pragma Assert (not Is_Tagged or not Stored_Discrim);
18328
18329 Set_Parent (New_C, Parent (Old_C));
18330
18331 -- Regular discriminants and components must be inserted in the scope
18332 -- of the Derived_Base. Do it here.
18333
18334 if not Stored_Discrim then
18335 Enter_Name (New_C);
18336 end if;
18337
18338 -- For tagged types the Original_Record_Component must point to
18339 -- whatever this field was pointing to in the parent type. This has
18340 -- already been achieved by the call to New_Copy above.
18341
18342 if not Is_Tagged then
18343 Set_Original_Record_Component (New_C, New_C);
18344 Set_Corresponding_Record_Component (New_C, Old_C);
18345 end if;
18346
18347 -- Set the proper type of an access discriminant
18348
18349 if Ekind (New_C) = E_Discriminant
18350 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
18351 then
18352 Set_Anonymous_Type (New_C);
18353 end if;
18354
18355 -- If we have inherited a component then see if its Etype contains
18356 -- references to Parent_Base discriminants. In this case, replace
18357 -- these references with the constraints given in Discs. We do not
18358 -- do this for the partial view of private types because this is
18359 -- not needed (only the components of the full view will be used
18360 -- for code generation) and cause problem. We also avoid this
18361 -- transformation in some error situations.
18362
18363 if Ekind (New_C) = E_Component then
18364
18365 -- Set the proper type of an anonymous access component
18366
18367 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
18368 Set_Anonymous_Type (New_C);
18369
18370 elsif (Is_Private_Type (Derived_Base)
18371 and then not Is_Generic_Type (Derived_Base))
18372 or else (Is_Empty_Elmt_List (Discs)
18373 and then not Expander_Active)
18374 then
18375 Set_Etype (New_C, Etype (Old_C));
18376
18377 else
18378 -- The current component introduces a circularity of the
18379 -- following kind:
18380
18381 -- limited with Pack_2;
18382 -- package Pack_1 is
18383 -- type T_1 is tagged record
18384 -- Comp : access Pack_2.T_2;
18385 -- ...
18386 -- end record;
18387 -- end Pack_1;
18388
18389 -- with Pack_1;
18390 -- package Pack_2 is
18391 -- type T_2 is new Pack_1.T_1 with ...;
18392 -- end Pack_2;
18393
18394 Set_Etype
18395 (New_C,
18396 Constrain_Component_Type
18397 (Old_C, Derived_Base, N, Parent_Base, Discs));
18398 end if;
18399 end if;
18400
18401 -- In derived tagged types it is illegal to reference a non
18402 -- discriminant component in the parent type. To catch this, mark
18403 -- these components with an Ekind of E_Void. This will be reset in
18404 -- Record_Type_Definition after processing the record extension of
18405 -- the derived type.
18406
18407 -- If the declaration is a private extension, there is no further
18408 -- record extension to process, and the components retain their
18409 -- current kind, because they are visible at this point.
18410
18411 if Is_Tagged and then Ekind (New_C) = E_Component
18412 and then Nkind (N) /= N_Private_Extension_Declaration
18413 then
18414 Set_Ekind (New_C, E_Void);
18415 end if;
18416
18417 if Plain_Discrim then
18418 Set_Corresponding_Discriminant (New_C, Old_C);
18419 Build_Discriminal (New_C);
18420
18421 -- If we are explicitly inheriting a stored discriminant it will be
18422 -- completely hidden.
18423
18424 elsif Stored_Discrim then
18425 Set_Corresponding_Discriminant (New_C, Empty);
18426 Set_Discriminal (New_C, Empty);
18427 Set_Is_Completely_Hidden (New_C);
18428
18429 -- Set the Original_Record_Component of each discriminant in the
18430 -- derived base to point to the corresponding stored that we just
18431 -- created.
18432
18433 Discrim := First_Discriminant (Derived_Base);
18434 while Present (Discrim) loop
18435 Corr_Discrim := Corresponding_Discriminant (Discrim);
18436
18437 -- Corr_Discrim could be missing in an error situation
18438
18439 if Present (Corr_Discrim)
18440 and then Original_Record_Component (Corr_Discrim) = Old_C
18441 then
18442 Set_Original_Record_Component (Discrim, New_C);
18443 Set_Corresponding_Record_Component (Discrim, Empty);
18444 end if;
18445
18446 Next_Discriminant (Discrim);
18447 end loop;
18448
18449 Append_Entity (New_C, Derived_Base);
18450 end if;
18451
18452 if not Is_Tagged then
18453 Append_Elmt (Old_C, Assoc_List);
18454 Append_Elmt (New_C, Assoc_List);
18455 end if;
18456 end Inherit_Component;
18457
18458 -- Variables local to Inherit_Component
18459
18460 Loc : constant Source_Ptr := Sloc (N);
18461
18462 Parent_Discrim : Entity_Id;
18463 Stored_Discrim : Entity_Id;
18464 D : Entity_Id;
18465 Component : Entity_Id;
18466
18467 -- Start of processing for Inherit_Components
18468
18469 begin
18470 if not Is_Tagged then
18471 Append_Elmt (Parent_Base, Assoc_List);
18472 Append_Elmt (Derived_Base, Assoc_List);
18473 end if;
18474
18475 -- Inherit parent discriminants if needed
18476
18477 if Inherit_Discr then
18478 Parent_Discrim := First_Discriminant (Parent_Base);
18479 while Present (Parent_Discrim) loop
18480 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
18481 Next_Discriminant (Parent_Discrim);
18482 end loop;
18483 end if;
18484
18485 -- Create explicit stored discrims for untagged types when necessary
18486
18487 if not Has_Unknown_Discriminants (Derived_Base)
18488 and then Has_Discriminants (Parent_Base)
18489 and then not Is_Tagged
18490 and then
18491 (not Inherit_Discr
18492 or else First_Discriminant (Parent_Base) /=
18493 First_Stored_Discriminant (Parent_Base))
18494 then
18495 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
18496 while Present (Stored_Discrim) loop
18497 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
18498 Next_Stored_Discriminant (Stored_Discrim);
18499 end loop;
18500 end if;
18501
18502 -- See if we can apply the second transformation for derived types, as
18503 -- explained in point 6. in the comments above Build_Derived_Record_Type
18504 -- This is achieved by appending Derived_Base discriminants into Discs,
18505 -- which has the side effect of returning a non empty Discs list to the
18506 -- caller of Inherit_Components, which is what we want. This must be
18507 -- done for private derived types if there are explicit stored
18508 -- discriminants, to ensure that we can retrieve the values of the
18509 -- constraints provided in the ancestors.
18510
18511 if Inherit_Discr
18512 and then Is_Empty_Elmt_List (Discs)
18513 and then Present (First_Discriminant (Derived_Base))
18514 and then
18515 (not Is_Private_Type (Derived_Base)
18516 or else Is_Completely_Hidden
18517 (First_Stored_Discriminant (Derived_Base))
18518 or else Is_Generic_Type (Derived_Base))
18519 then
18520 D := First_Discriminant (Derived_Base);
18521 while Present (D) loop
18522 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
18523 Next_Discriminant (D);
18524 end loop;
18525 end if;
18526
18527 -- Finally, inherit non-discriminant components unless they are not
18528 -- visible because defined or inherited from the full view of the
18529 -- parent. Don't inherit the _parent field of the parent type.
18530
18531 Component := First_Entity (Parent_Base);
18532 while Present (Component) loop
18533
18534 -- Ada 2005 (AI-251): Do not inherit components associated with
18535 -- secondary tags of the parent.
18536
18537 if Ekind (Component) = E_Component
18538 and then Present (Related_Type (Component))
18539 then
18540 null;
18541
18542 elsif Ekind (Component) /= E_Component
18543 or else Chars (Component) = Name_uParent
18544 then
18545 null;
18546
18547 -- If the derived type is within the parent type's declarative
18548 -- region, then the components can still be inherited even though
18549 -- they aren't visible at this point. This can occur for cases
18550 -- such as within public child units where the components must
18551 -- become visible upon entering the child unit's private part.
18552
18553 elsif not Is_Visible_Component (Component)
18554 and then not In_Open_Scopes (Scope (Parent_Base))
18555 then
18556 null;
18557
18558 elsif Ekind_In (Derived_Base, E_Private_Type,
18559 E_Limited_Private_Type)
18560 then
18561 null;
18562
18563 else
18564 Inherit_Component (Component);
18565 end if;
18566
18567 Next_Entity (Component);
18568 end loop;
18569
18570 -- For tagged derived types, inherited discriminants cannot be used in
18571 -- component declarations of the record extension part. To achieve this
18572 -- we mark the inherited discriminants as not visible.
18573
18574 if Is_Tagged and then Inherit_Discr then
18575 D := First_Discriminant (Derived_Base);
18576 while Present (D) loop
18577 Set_Is_Immediately_Visible (D, False);
18578 Next_Discriminant (D);
18579 end loop;
18580 end if;
18581
18582 return Assoc_List;
18583 end Inherit_Components;
18584
18585 -----------------------------
18586 -- Inherit_Predicate_Flags --
18587 -----------------------------
18588
18589 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
18590 begin
18591 if Present (Predicate_Function (Subt)) then
18592 return;
18593 end if;
18594
18595 Set_Has_Predicates (Subt, Has_Predicates (Par));
18596 Set_Has_Static_Predicate_Aspect
18597 (Subt, Has_Static_Predicate_Aspect (Par));
18598 Set_Has_Dynamic_Predicate_Aspect
18599 (Subt, Has_Dynamic_Predicate_Aspect (Par));
18600
18601 -- A named subtype does not inherit the predicate function of its
18602 -- parent but an itype declared for a loop index needs the discrete
18603 -- predicate information of its parent to execute the loop properly.
18604
18605 if Is_Itype (Subt) and then Present (Predicate_Function (Par)) then
18606 Set_Subprograms_For_Type (Subt, Subprograms_For_Type (Par));
18607
18608 if Has_Static_Predicate (Par) then
18609 Set_Static_Discrete_Predicate
18610 (Subt, Static_Discrete_Predicate (Par));
18611 end if;
18612 end if;
18613 end Inherit_Predicate_Flags;
18614
18615 ----------------------
18616 -- Is_EVF_Procedure --
18617 ----------------------
18618
18619 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is
18620 Formal : Entity_Id;
18621
18622 begin
18623 -- Examine the formals of an Extensions_Visible False procedure looking
18624 -- for a controlling OUT parameter.
18625
18626 if Ekind (Subp) = E_Procedure
18627 and then Extensions_Visible_Status (Subp) = Extensions_Visible_False
18628 then
18629 Formal := First_Formal (Subp);
18630 while Present (Formal) loop
18631 if Ekind (Formal) = E_Out_Parameter
18632 and then Is_Controlling_Formal (Formal)
18633 then
18634 return True;
18635 end if;
18636
18637 Next_Formal (Formal);
18638 end loop;
18639 end if;
18640
18641 return False;
18642 end Is_EVF_Procedure;
18643
18644 -----------------------
18645 -- Is_Null_Extension --
18646 -----------------------
18647
18648 function Is_Null_Extension (T : Entity_Id) return Boolean is
18649 Type_Decl : constant Node_Id := Parent (Base_Type (T));
18650 Comp_List : Node_Id;
18651 Comp : Node_Id;
18652
18653 begin
18654 if Nkind (Type_Decl) /= N_Full_Type_Declaration
18655 or else not Is_Tagged_Type (T)
18656 or else Nkind (Type_Definition (Type_Decl)) /=
18657 N_Derived_Type_Definition
18658 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
18659 then
18660 return False;
18661 end if;
18662
18663 Comp_List :=
18664 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
18665
18666 if Present (Discriminant_Specifications (Type_Decl)) then
18667 return False;
18668
18669 elsif Present (Comp_List)
18670 and then Is_Non_Empty_List (Component_Items (Comp_List))
18671 then
18672 Comp := First (Component_Items (Comp_List));
18673
18674 -- Only user-defined components are relevant. The component list
18675 -- may also contain a parent component and internal components
18676 -- corresponding to secondary tags, but these do not determine
18677 -- whether this is a null extension.
18678
18679 while Present (Comp) loop
18680 if Comes_From_Source (Comp) then
18681 return False;
18682 end if;
18683
18684 Next (Comp);
18685 end loop;
18686
18687 return True;
18688
18689 else
18690 return True;
18691 end if;
18692 end Is_Null_Extension;
18693
18694 ------------------------------
18695 -- Is_Valid_Constraint_Kind --
18696 ------------------------------
18697
18698 function Is_Valid_Constraint_Kind
18699 (T_Kind : Type_Kind;
18700 Constraint_Kind : Node_Kind) return Boolean
18701 is
18702 begin
18703 case T_Kind is
18704 when Enumeration_Kind
18705 | Integer_Kind
18706 =>
18707 return Constraint_Kind = N_Range_Constraint;
18708
18709 when Decimal_Fixed_Point_Kind =>
18710 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
18711 N_Range_Constraint);
18712
18713 when Ordinary_Fixed_Point_Kind =>
18714 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
18715 N_Range_Constraint);
18716
18717 when Float_Kind =>
18718 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
18719 N_Range_Constraint);
18720
18721 when Access_Kind
18722 | Array_Kind
18723 | Class_Wide_Kind
18724 | Concurrent_Kind
18725 | Private_Kind
18726 | E_Incomplete_Type
18727 | E_Record_Subtype
18728 | E_Record_Type
18729 =>
18730 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
18731
18732 when others =>
18733 return True; -- Error will be detected later
18734 end case;
18735 end Is_Valid_Constraint_Kind;
18736
18737 --------------------------
18738 -- Is_Visible_Component --
18739 --------------------------
18740
18741 function Is_Visible_Component
18742 (C : Entity_Id;
18743 N : Node_Id := Empty) return Boolean
18744 is
18745 Original_Comp : Entity_Id := Empty;
18746 Original_Type : Entity_Id;
18747 Type_Scope : Entity_Id;
18748
18749 function Is_Local_Type (Typ : Entity_Id) return Boolean;
18750 -- Check whether parent type of inherited component is declared locally,
18751 -- possibly within a nested package or instance. The current scope is
18752 -- the derived record itself.
18753
18754 -------------------
18755 -- Is_Local_Type --
18756 -------------------
18757
18758 function Is_Local_Type (Typ : Entity_Id) return Boolean is
18759 Scop : Entity_Id;
18760
18761 begin
18762 Scop := Scope (Typ);
18763 while Present (Scop)
18764 and then Scop /= Standard_Standard
18765 loop
18766 if Scop = Scope (Current_Scope) then
18767 return True;
18768 end if;
18769
18770 Scop := Scope (Scop);
18771 end loop;
18772
18773 return False;
18774 end Is_Local_Type;
18775
18776 -- Start of processing for Is_Visible_Component
18777
18778 begin
18779 if Ekind_In (C, E_Component, E_Discriminant) then
18780 Original_Comp := Original_Record_Component (C);
18781 end if;
18782
18783 if No (Original_Comp) then
18784
18785 -- Premature usage, or previous error
18786
18787 return False;
18788
18789 else
18790 Original_Type := Scope (Original_Comp);
18791 Type_Scope := Scope (Base_Type (Scope (C)));
18792 end if;
18793
18794 -- This test only concerns tagged types
18795
18796 if not Is_Tagged_Type (Original_Type) then
18797 return True;
18798
18799 -- If it is _Parent or _Tag, there is no visibility issue
18800
18801 elsif not Comes_From_Source (Original_Comp) then
18802 return True;
18803
18804 -- Discriminants are visible unless the (private) type has unknown
18805 -- discriminants. If the discriminant reference is inserted for a
18806 -- discriminant check on a full view it is also visible.
18807
18808 elsif Ekind (Original_Comp) = E_Discriminant
18809 and then
18810 (not Has_Unknown_Discriminants (Original_Type)
18811 or else (Present (N)
18812 and then Nkind (N) = N_Selected_Component
18813 and then Nkind (Prefix (N)) = N_Type_Conversion
18814 and then not Comes_From_Source (Prefix (N))))
18815 then
18816 return True;
18817
18818 -- In the body of an instantiation, check the visibility of a component
18819 -- in case it has a homograph that is a primitive operation of a private
18820 -- type which was not visible in the generic unit.
18821
18822 -- Should Is_Prefixed_Call be propagated from template to instance???
18823
18824 elsif In_Instance_Body then
18825 if not Is_Tagged_Type (Original_Type)
18826 or else not Is_Private_Type (Original_Type)
18827 then
18828 return True;
18829
18830 else
18831 declare
18832 Subp_Elmt : Elmt_Id;
18833
18834 begin
18835 Subp_Elmt := First_Elmt (Primitive_Operations (Original_Type));
18836 while Present (Subp_Elmt) loop
18837
18838 -- The component is hidden by a primitive operation
18839
18840 if Chars (Node (Subp_Elmt)) = Chars (C) then
18841 return False;
18842 end if;
18843
18844 Next_Elmt (Subp_Elmt);
18845 end loop;
18846
18847 return True;
18848 end;
18849 end if;
18850
18851 -- If the component has been declared in an ancestor which is currently
18852 -- a private type, then it is not visible. The same applies if the
18853 -- component's containing type is not in an open scope and the original
18854 -- component's enclosing type is a visible full view of a private type
18855 -- (which can occur in cases where an attempt is being made to reference
18856 -- a component in a sibling package that is inherited from a visible
18857 -- component of a type in an ancestor package; the component in the
18858 -- sibling package should not be visible even though the component it
18859 -- inherited from is visible). This does not apply however in the case
18860 -- where the scope of the type is a private child unit, or when the
18861 -- parent comes from a local package in which the ancestor is currently
18862 -- visible. The latter suppression of visibility is needed for cases
18863 -- that are tested in B730006.
18864
18865 elsif Is_Private_Type (Original_Type)
18866 or else
18867 (not Is_Private_Descendant (Type_Scope)
18868 and then not In_Open_Scopes (Type_Scope)
18869 and then Has_Private_Declaration (Original_Type))
18870 then
18871 -- If the type derives from an entity in a formal package, there
18872 -- are no additional visible components.
18873
18874 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
18875 N_Formal_Package_Declaration
18876 then
18877 return False;
18878
18879 -- if we are not in the private part of the current package, there
18880 -- are no additional visible components.
18881
18882 elsif Ekind (Scope (Current_Scope)) = E_Package
18883 and then not In_Private_Part (Scope (Current_Scope))
18884 then
18885 return False;
18886 else
18887 return
18888 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
18889 and then In_Open_Scopes (Scope (Original_Type))
18890 and then Is_Local_Type (Type_Scope);
18891 end if;
18892
18893 -- There is another weird way in which a component may be invisible when
18894 -- the private and the full view are not derived from the same ancestor.
18895 -- Here is an example :
18896
18897 -- type A1 is tagged record F1 : integer; end record;
18898 -- type A2 is new A1 with record F2 : integer; end record;
18899 -- type T is new A1 with private;
18900 -- private
18901 -- type T is new A2 with null record;
18902
18903 -- In this case, the full view of T inherits F1 and F2 but the private
18904 -- view inherits only F1
18905
18906 else
18907 declare
18908 Ancestor : Entity_Id := Scope (C);
18909
18910 begin
18911 loop
18912 if Ancestor = Original_Type then
18913 return True;
18914
18915 -- The ancestor may have a partial view of the original type,
18916 -- but if the full view is in scope, as in a child body, the
18917 -- component is visible.
18918
18919 elsif In_Private_Part (Scope (Original_Type))
18920 and then Full_View (Ancestor) = Original_Type
18921 then
18922 return True;
18923
18924 elsif Ancestor = Etype (Ancestor) then
18925
18926 -- No further ancestors to examine
18927
18928 return False;
18929 end if;
18930
18931 Ancestor := Etype (Ancestor);
18932 end loop;
18933 end;
18934 end if;
18935 end Is_Visible_Component;
18936
18937 --------------------------
18938 -- Make_Class_Wide_Type --
18939 --------------------------
18940
18941 procedure Make_Class_Wide_Type (T : Entity_Id) is
18942 CW_Type : Entity_Id;
18943 CW_Name : Name_Id;
18944 Next_E : Entity_Id;
18945
18946 begin
18947 if Present (Class_Wide_Type (T)) then
18948
18949 -- The class-wide type is a partially decorated entity created for a
18950 -- unanalyzed tagged type referenced through a limited with clause.
18951 -- When the tagged type is analyzed, its class-wide type needs to be
18952 -- redecorated. Note that we reuse the entity created by Decorate_
18953 -- Tagged_Type in order to preserve all links.
18954
18955 if Materialize_Entity (Class_Wide_Type (T)) then
18956 CW_Type := Class_Wide_Type (T);
18957 Set_Materialize_Entity (CW_Type, False);
18958
18959 -- The class wide type can have been defined by the partial view, in
18960 -- which case everything is already done.
18961
18962 else
18963 return;
18964 end if;
18965
18966 -- Default case, we need to create a new class-wide type
18967
18968 else
18969 CW_Type :=
18970 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
18971 end if;
18972
18973 -- Inherit root type characteristics
18974
18975 CW_Name := Chars (CW_Type);
18976 Next_E := Next_Entity (CW_Type);
18977 Copy_Node (T, CW_Type);
18978 Set_Comes_From_Source (CW_Type, False);
18979 Set_Chars (CW_Type, CW_Name);
18980 Set_Parent (CW_Type, Parent (T));
18981 Set_Next_Entity (CW_Type, Next_E);
18982
18983 -- Ensure we have a new freeze node for the class-wide type. The partial
18984 -- view may have freeze action of its own, requiring a proper freeze
18985 -- node, and the same freeze node cannot be shared between the two
18986 -- types.
18987
18988 Set_Has_Delayed_Freeze (CW_Type);
18989 Set_Freeze_Node (CW_Type, Empty);
18990
18991 -- Customize the class-wide type: It has no prim. op., it cannot be
18992 -- abstract, its Etype points back to the specific root type, and it
18993 -- cannot have any invariants.
18994
18995 Set_Ekind (CW_Type, E_Class_Wide_Type);
18996 Set_Is_Tagged_Type (CW_Type, True);
18997 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
18998 Set_Is_Abstract_Type (CW_Type, False);
18999 Set_Is_Constrained (CW_Type, False);
19000 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
19001 Set_Default_SSO (CW_Type);
19002 Set_Has_Inheritable_Invariants (CW_Type, False);
19003 Set_Has_Inherited_Invariants (CW_Type, False);
19004 Set_Has_Own_Invariants (CW_Type, False);
19005
19006 if Ekind (T) = E_Class_Wide_Subtype then
19007 Set_Etype (CW_Type, Etype (Base_Type (T)));
19008 else
19009 Set_Etype (CW_Type, T);
19010 end if;
19011
19012 Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams);
19013
19014 -- If this is the class_wide type of a constrained subtype, it does
19015 -- not have discriminants.
19016
19017 Set_Has_Discriminants (CW_Type,
19018 Has_Discriminants (T) and then not Is_Constrained (T));
19019
19020 Set_Has_Unknown_Discriminants (CW_Type, True);
19021 Set_Class_Wide_Type (T, CW_Type);
19022 Set_Equivalent_Type (CW_Type, Empty);
19023
19024 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
19025
19026 Set_Class_Wide_Type (CW_Type, CW_Type);
19027 end Make_Class_Wide_Type;
19028
19029 ----------------
19030 -- Make_Index --
19031 ----------------
19032
19033 procedure Make_Index
19034 (N : Node_Id;
19035 Related_Nod : Node_Id;
19036 Related_Id : Entity_Id := Empty;
19037 Suffix_Index : Nat := 1;
19038 In_Iter_Schm : Boolean := False)
19039 is
19040 R : Node_Id;
19041 T : Entity_Id;
19042 Def_Id : Entity_Id := Empty;
19043 Found : Boolean := False;
19044
19045 begin
19046 -- For a discrete range used in a constrained array definition and
19047 -- defined by a range, an implicit conversion to the predefined type
19048 -- INTEGER is assumed if each bound is either a numeric literal, a named
19049 -- number, or an attribute, and the type of both bounds (prior to the
19050 -- implicit conversion) is the type universal_integer. Otherwise, both
19051 -- bounds must be of the same discrete type, other than universal
19052 -- integer; this type must be determinable independently of the
19053 -- context, but using the fact that the type must be discrete and that
19054 -- both bounds must have the same type.
19055
19056 -- Character literals also have a universal type in the absence of
19057 -- of additional context, and are resolved to Standard_Character.
19058
19059 if Nkind (N) = N_Range then
19060
19061 -- The index is given by a range constraint. The bounds are known
19062 -- to be of a consistent type.
19063
19064 if not Is_Overloaded (N) then
19065 T := Etype (N);
19066
19067 -- For universal bounds, choose the specific predefined type
19068
19069 if T = Universal_Integer then
19070 T := Standard_Integer;
19071
19072 elsif T = Any_Character then
19073 Ambiguous_Character (Low_Bound (N));
19074
19075 T := Standard_Character;
19076 end if;
19077
19078 -- The node may be overloaded because some user-defined operators
19079 -- are available, but if a universal interpretation exists it is
19080 -- also the selected one.
19081
19082 elsif Universal_Interpretation (N) = Universal_Integer then
19083 T := Standard_Integer;
19084
19085 else
19086 T := Any_Type;
19087
19088 declare
19089 Ind : Interp_Index;
19090 It : Interp;
19091
19092 begin
19093 Get_First_Interp (N, Ind, It);
19094 while Present (It.Typ) loop
19095 if Is_Discrete_Type (It.Typ) then
19096
19097 if Found
19098 and then not Covers (It.Typ, T)
19099 and then not Covers (T, It.Typ)
19100 then
19101 Error_Msg_N ("ambiguous bounds in discrete range", N);
19102 exit;
19103 else
19104 T := It.Typ;
19105 Found := True;
19106 end if;
19107 end if;
19108
19109 Get_Next_Interp (Ind, It);
19110 end loop;
19111
19112 if T = Any_Type then
19113 Error_Msg_N ("discrete type required for range", N);
19114 Set_Etype (N, Any_Type);
19115 return;
19116
19117 elsif T = Universal_Integer then
19118 T := Standard_Integer;
19119 end if;
19120 end;
19121 end if;
19122
19123 if not Is_Discrete_Type (T) then
19124 Error_Msg_N ("discrete type required for range", N);
19125 Set_Etype (N, Any_Type);
19126 return;
19127 end if;
19128
19129 if Nkind (Low_Bound (N)) = N_Attribute_Reference
19130 and then Attribute_Name (Low_Bound (N)) = Name_First
19131 and then Is_Entity_Name (Prefix (Low_Bound (N)))
19132 and then Is_Type (Entity (Prefix (Low_Bound (N))))
19133 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
19134 then
19135 -- The type of the index will be the type of the prefix, as long
19136 -- as the upper bound is 'Last of the same type.
19137
19138 Def_Id := Entity (Prefix (Low_Bound (N)));
19139
19140 if Nkind (High_Bound (N)) /= N_Attribute_Reference
19141 or else Attribute_Name (High_Bound (N)) /= Name_Last
19142 or else not Is_Entity_Name (Prefix (High_Bound (N)))
19143 or else Entity (Prefix (High_Bound (N))) /= Def_Id
19144 then
19145 Def_Id := Empty;
19146 end if;
19147 end if;
19148
19149 R := N;
19150 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
19151
19152 elsif Nkind (N) = N_Subtype_Indication then
19153
19154 -- The index is given by a subtype with a range constraint
19155
19156 T := Base_Type (Entity (Subtype_Mark (N)));
19157
19158 if not Is_Discrete_Type (T) then
19159 Error_Msg_N ("discrete type required for range", N);
19160 Set_Etype (N, Any_Type);
19161 return;
19162 end if;
19163
19164 R := Range_Expression (Constraint (N));
19165
19166 Resolve (R, T);
19167 Process_Range_Expr_In_Decl
19168 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
19169
19170 elsif Nkind (N) = N_Attribute_Reference then
19171
19172 -- Catch beginner's error (use of attribute other than 'Range)
19173
19174 if Attribute_Name (N) /= Name_Range then
19175 Error_Msg_N ("expect attribute ''Range", N);
19176 Set_Etype (N, Any_Type);
19177 return;
19178 end if;
19179
19180 -- If the node denotes the range of a type mark, that is also the
19181 -- resulting type, and we do not need to create an Itype for it.
19182
19183 if Is_Entity_Name (Prefix (N))
19184 and then Comes_From_Source (N)
19185 and then Is_Type (Entity (Prefix (N)))
19186 and then Is_Discrete_Type (Entity (Prefix (N)))
19187 then
19188 Def_Id := Entity (Prefix (N));
19189 end if;
19190
19191 Analyze_And_Resolve (N);
19192 T := Etype (N);
19193 R := N;
19194
19195 -- If none of the above, must be a subtype. We convert this to a
19196 -- range attribute reference because in the case of declared first
19197 -- named subtypes, the types in the range reference can be different
19198 -- from the type of the entity. A range attribute normalizes the
19199 -- reference and obtains the correct types for the bounds.
19200
19201 -- This transformation is in the nature of an expansion, is only
19202 -- done if expansion is active. In particular, it is not done on
19203 -- formal generic types, because we need to retain the name of the
19204 -- original index for instantiation purposes.
19205
19206 else
19207 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
19208 Error_Msg_N ("invalid subtype mark in discrete range ", N);
19209 Set_Etype (N, Any_Integer);
19210 return;
19211
19212 else
19213 -- The type mark may be that of an incomplete type. It is only
19214 -- now that we can get the full view, previous analysis does
19215 -- not look specifically for a type mark.
19216
19217 Set_Entity (N, Get_Full_View (Entity (N)));
19218 Set_Etype (N, Entity (N));
19219 Def_Id := Entity (N);
19220
19221 if not Is_Discrete_Type (Def_Id) then
19222 Error_Msg_N ("discrete type required for index", N);
19223 Set_Etype (N, Any_Type);
19224 return;
19225 end if;
19226 end if;
19227
19228 if Expander_Active then
19229 Rewrite (N,
19230 Make_Attribute_Reference (Sloc (N),
19231 Attribute_Name => Name_Range,
19232 Prefix => Relocate_Node (N)));
19233
19234 -- The original was a subtype mark that does not freeze. This
19235 -- means that the rewritten version must not freeze either.
19236
19237 Set_Must_Not_Freeze (N);
19238 Set_Must_Not_Freeze (Prefix (N));
19239 Analyze_And_Resolve (N);
19240 T := Etype (N);
19241 R := N;
19242
19243 -- If expander is inactive, type is legal, nothing else to construct
19244
19245 else
19246 return;
19247 end if;
19248 end if;
19249
19250 if not Is_Discrete_Type (T) then
19251 Error_Msg_N ("discrete type required for range", N);
19252 Set_Etype (N, Any_Type);
19253 return;
19254
19255 elsif T = Any_Type then
19256 Set_Etype (N, Any_Type);
19257 return;
19258 end if;
19259
19260 -- We will now create the appropriate Itype to describe the range, but
19261 -- first a check. If we originally had a subtype, then we just label
19262 -- the range with this subtype. Not only is there no need to construct
19263 -- a new subtype, but it is wrong to do so for two reasons:
19264
19265 -- 1. A legality concern, if we have a subtype, it must not freeze,
19266 -- and the Itype would cause freezing incorrectly
19267
19268 -- 2. An efficiency concern, if we created an Itype, it would not be
19269 -- recognized as the same type for the purposes of eliminating
19270 -- checks in some circumstances.
19271
19272 -- We signal this case by setting the subtype entity in Def_Id
19273
19274 if No (Def_Id) then
19275 Def_Id :=
19276 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
19277 Set_Etype (Def_Id, Base_Type (T));
19278
19279 if Is_Signed_Integer_Type (T) then
19280 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
19281
19282 elsif Is_Modular_Integer_Type (T) then
19283 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
19284
19285 else
19286 Set_Ekind (Def_Id, E_Enumeration_Subtype);
19287 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
19288 Set_First_Literal (Def_Id, First_Literal (T));
19289 end if;
19290
19291 Set_Size_Info (Def_Id, (T));
19292 Set_RM_Size (Def_Id, RM_Size (T));
19293 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
19294
19295 Set_Scalar_Range (Def_Id, R);
19296 Conditional_Delay (Def_Id, T);
19297
19298 if Nkind (N) = N_Subtype_Indication then
19299 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
19300 end if;
19301
19302 -- In the subtype indication case, if the immediate parent of the
19303 -- new subtype is non-static, then the subtype we create is non-
19304 -- static, even if its bounds are static.
19305
19306 if Nkind (N) = N_Subtype_Indication
19307 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
19308 then
19309 Set_Is_Non_Static_Subtype (Def_Id);
19310 end if;
19311 end if;
19312
19313 -- Final step is to label the index with this constructed type
19314
19315 Set_Etype (N, Def_Id);
19316 end Make_Index;
19317
19318 ------------------------------
19319 -- Modular_Type_Declaration --
19320 ------------------------------
19321
19322 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
19323 Mod_Expr : constant Node_Id := Expression (Def);
19324 M_Val : Uint;
19325
19326 procedure Set_Modular_Size (Bits : Int);
19327 -- Sets RM_Size to Bits, and Esize to normal word size above this
19328
19329 ----------------------
19330 -- Set_Modular_Size --
19331 ----------------------
19332
19333 procedure Set_Modular_Size (Bits : Int) is
19334 begin
19335 Set_RM_Size (T, UI_From_Int (Bits));
19336
19337 if Bits <= 8 then
19338 Init_Esize (T, 8);
19339
19340 elsif Bits <= 16 then
19341 Init_Esize (T, 16);
19342
19343 elsif Bits <= 32 then
19344 Init_Esize (T, 32);
19345
19346 else
19347 Init_Esize (T, System_Max_Binary_Modulus_Power);
19348 end if;
19349
19350 if not Non_Binary_Modulus (T) and then Esize (T) = RM_Size (T) then
19351 Set_Is_Known_Valid (T);
19352 end if;
19353 end Set_Modular_Size;
19354
19355 -- Start of processing for Modular_Type_Declaration
19356
19357 begin
19358 -- If the mod expression is (exactly) 2 * literal, where literal is
19359 -- 64 or less,then almost certainly the * was meant to be **. Warn.
19360
19361 if Warn_On_Suspicious_Modulus_Value
19362 and then Nkind (Mod_Expr) = N_Op_Multiply
19363 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
19364 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
19365 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
19366 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
19367 then
19368 Error_Msg_N
19369 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
19370 end if;
19371
19372 -- Proceed with analysis of mod expression
19373
19374 Analyze_And_Resolve (Mod_Expr, Any_Integer);
19375 Set_Etype (T, T);
19376 Set_Ekind (T, E_Modular_Integer_Type);
19377 Init_Alignment (T);
19378 Set_Is_Constrained (T);
19379
19380 if not Is_OK_Static_Expression (Mod_Expr) then
19381 Flag_Non_Static_Expr
19382 ("non-static expression used for modular type bound!", Mod_Expr);
19383 M_Val := 2 ** System_Max_Binary_Modulus_Power;
19384 else
19385 M_Val := Expr_Value (Mod_Expr);
19386 end if;
19387
19388 if M_Val < 1 then
19389 Error_Msg_N ("modulus value must be positive", Mod_Expr);
19390 M_Val := 2 ** System_Max_Binary_Modulus_Power;
19391 end if;
19392
19393 if M_Val > 2 ** Standard_Long_Integer_Size then
19394 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
19395 end if;
19396
19397 Set_Modulus (T, M_Val);
19398
19399 -- Create bounds for the modular type based on the modulus given in
19400 -- the type declaration and then analyze and resolve those bounds.
19401
19402 Set_Scalar_Range (T,
19403 Make_Range (Sloc (Mod_Expr),
19404 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
19405 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
19406
19407 -- Properly analyze the literals for the range. We do this manually
19408 -- because we can't go calling Resolve, since we are resolving these
19409 -- bounds with the type, and this type is certainly not complete yet.
19410
19411 Set_Etype (Low_Bound (Scalar_Range (T)), T);
19412 Set_Etype (High_Bound (Scalar_Range (T)), T);
19413 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
19414 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
19415
19416 -- Loop through powers of two to find number of bits required
19417
19418 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
19419
19420 -- Binary case
19421
19422 if M_Val = 2 ** Bits then
19423 Set_Modular_Size (Bits);
19424 return;
19425
19426 -- Nonbinary case
19427
19428 elsif M_Val < 2 ** Bits then
19429 Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
19430 Set_Non_Binary_Modulus (T);
19431
19432 if Bits > System_Max_Nonbinary_Modulus_Power then
19433 Error_Msg_Uint_1 :=
19434 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
19435 Error_Msg_F
19436 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
19437 Set_Modular_Size (System_Max_Binary_Modulus_Power);
19438 return;
19439
19440 else
19441 -- In the nonbinary case, set size as per RM 13.3(55)
19442
19443 Set_Modular_Size (Bits);
19444 return;
19445 end if;
19446 end if;
19447
19448 end loop;
19449
19450 -- If we fall through, then the size exceed System.Max_Binary_Modulus
19451 -- so we just signal an error and set the maximum size.
19452
19453 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
19454 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
19455
19456 Set_Modular_Size (System_Max_Binary_Modulus_Power);
19457 Init_Alignment (T);
19458
19459 end Modular_Type_Declaration;
19460
19461 --------------------------
19462 -- New_Concatenation_Op --
19463 --------------------------
19464
19465 procedure New_Concatenation_Op (Typ : Entity_Id) is
19466 Loc : constant Source_Ptr := Sloc (Typ);
19467 Op : Entity_Id;
19468
19469 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
19470 -- Create abbreviated declaration for the formal of a predefined
19471 -- Operator 'Op' of type 'Typ'
19472
19473 --------------------
19474 -- Make_Op_Formal --
19475 --------------------
19476
19477 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
19478 Formal : Entity_Id;
19479 begin
19480 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
19481 Set_Etype (Formal, Typ);
19482 Set_Mechanism (Formal, Default_Mechanism);
19483 return Formal;
19484 end Make_Op_Formal;
19485
19486 -- Start of processing for New_Concatenation_Op
19487
19488 begin
19489 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
19490
19491 Set_Ekind (Op, E_Operator);
19492 Set_Scope (Op, Current_Scope);
19493 Set_Etype (Op, Typ);
19494 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
19495 Set_Is_Immediately_Visible (Op);
19496 Set_Is_Intrinsic_Subprogram (Op);
19497 Set_Has_Completion (Op);
19498 Append_Entity (Op, Current_Scope);
19499
19500 Set_Name_Entity_Id (Name_Op_Concat, Op);
19501
19502 Append_Entity (Make_Op_Formal (Typ, Op), Op);
19503 Append_Entity (Make_Op_Formal (Typ, Op), Op);
19504 end New_Concatenation_Op;
19505
19506 -------------------------
19507 -- OK_For_Limited_Init --
19508 -------------------------
19509
19510 -- ???Check all calls of this, and compare the conditions under which it's
19511 -- called.
19512
19513 function OK_For_Limited_Init
19514 (Typ : Entity_Id;
19515 Exp : Node_Id) return Boolean
19516 is
19517 begin
19518 return Is_CPP_Constructor_Call (Exp)
19519 or else (Ada_Version >= Ada_2005
19520 and then not Debug_Flag_Dot_L
19521 and then OK_For_Limited_Init_In_05 (Typ, Exp));
19522 end OK_For_Limited_Init;
19523
19524 -------------------------------
19525 -- OK_For_Limited_Init_In_05 --
19526 -------------------------------
19527
19528 function OK_For_Limited_Init_In_05
19529 (Typ : Entity_Id;
19530 Exp : Node_Id) return Boolean
19531 is
19532 begin
19533 -- An object of a limited interface type can be initialized with any
19534 -- expression of a nonlimited descendant type. However this does not
19535 -- apply if this is a view conversion of some other expression. This
19536 -- is checked below.
19537
19538 if Is_Class_Wide_Type (Typ)
19539 and then Is_Limited_Interface (Typ)
19540 and then not Is_Limited_Type (Etype (Exp))
19541 and then Nkind (Exp) /= N_Type_Conversion
19542 then
19543 return True;
19544 end if;
19545
19546 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
19547 -- case of limited aggregates (including extension aggregates), and
19548 -- function calls. The function call may have been given in prefixed
19549 -- notation, in which case the original node is an indexed component.
19550 -- If the function is parameterless, the original node was an explicit
19551 -- dereference. The function may also be parameterless, in which case
19552 -- the source node is just an identifier.
19553
19554 -- A branch of a conditional expression may have been removed if the
19555 -- condition is statically known. This happens during expansion, and
19556 -- thus will not happen if previous errors were encountered. The check
19557 -- will have been performed on the chosen branch, which replaces the
19558 -- original conditional expression.
19559
19560 if No (Exp) then
19561 return True;
19562 end if;
19563
19564 case Nkind (Original_Node (Exp)) is
19565 when N_Aggregate
19566 | N_Extension_Aggregate
19567 | N_Function_Call
19568 | N_Op
19569 =>
19570 return True;
19571
19572 when N_Identifier =>
19573 return Present (Entity (Original_Node (Exp)))
19574 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
19575
19576 when N_Qualified_Expression =>
19577 return
19578 OK_For_Limited_Init_In_05
19579 (Typ, Expression (Original_Node (Exp)));
19580
19581 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
19582 -- with a function call, the expander has rewritten the call into an
19583 -- N_Type_Conversion node to force displacement of the pointer to
19584 -- reference the component containing the secondary dispatch table.
19585 -- Otherwise a type conversion is not a legal context.
19586 -- A return statement for a build-in-place function returning a
19587 -- synchronized type also introduces an unchecked conversion.
19588
19589 when N_Type_Conversion
19590 | N_Unchecked_Type_Conversion
19591 =>
19592 return not Comes_From_Source (Exp)
19593 and then
19594 OK_For_Limited_Init_In_05
19595 (Typ, Expression (Original_Node (Exp)));
19596
19597 when N_Explicit_Dereference
19598 | N_Indexed_Component
19599 | N_Selected_Component
19600 =>
19601 return Nkind (Exp) = N_Function_Call;
19602
19603 -- A use of 'Input is a function call, hence allowed. Normally the
19604 -- attribute will be changed to a call, but the attribute by itself
19605 -- can occur with -gnatc.
19606
19607 when N_Attribute_Reference =>
19608 return Attribute_Name (Original_Node (Exp)) = Name_Input;
19609
19610 -- "return raise ..." is OK
19611
19612 when N_Raise_Expression =>
19613 return True;
19614
19615 -- For a case expression, all dependent expressions must be legal
19616
19617 when N_Case_Expression =>
19618 declare
19619 Alt : Node_Id;
19620
19621 begin
19622 Alt := First (Alternatives (Original_Node (Exp)));
19623 while Present (Alt) loop
19624 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
19625 return False;
19626 end if;
19627
19628 Next (Alt);
19629 end loop;
19630
19631 return True;
19632 end;
19633
19634 -- For an if expression, all dependent expressions must be legal
19635
19636 when N_If_Expression =>
19637 declare
19638 Then_Expr : constant Node_Id :=
19639 Next (First (Expressions (Original_Node (Exp))));
19640 Else_Expr : constant Node_Id := Next (Then_Expr);
19641 begin
19642 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
19643 and then
19644 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
19645 end;
19646
19647 when others =>
19648 return False;
19649 end case;
19650 end OK_For_Limited_Init_In_05;
19651
19652 -------------------------------------------
19653 -- Ordinary_Fixed_Point_Type_Declaration --
19654 -------------------------------------------
19655
19656 procedure Ordinary_Fixed_Point_Type_Declaration
19657 (T : Entity_Id;
19658 Def : Node_Id)
19659 is
19660 Loc : constant Source_Ptr := Sloc (Def);
19661 Delta_Expr : constant Node_Id := Delta_Expression (Def);
19662 RRS : constant Node_Id := Real_Range_Specification (Def);
19663 Implicit_Base : Entity_Id;
19664 Delta_Val : Ureal;
19665 Small_Val : Ureal;
19666 Low_Val : Ureal;
19667 High_Val : Ureal;
19668
19669 begin
19670 Check_Restriction (No_Fixed_Point, Def);
19671
19672 -- Create implicit base type
19673
19674 Implicit_Base :=
19675 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
19676 Set_Etype (Implicit_Base, Implicit_Base);
19677
19678 -- Analyze and process delta expression
19679
19680 Analyze_And_Resolve (Delta_Expr, Any_Real);
19681
19682 Check_Delta_Expression (Delta_Expr);
19683 Delta_Val := Expr_Value_R (Delta_Expr);
19684
19685 Set_Delta_Value (Implicit_Base, Delta_Val);
19686
19687 -- Compute default small from given delta, which is the largest power
19688 -- of two that does not exceed the given delta value.
19689
19690 declare
19691 Tmp : Ureal;
19692 Scale : Int;
19693
19694 begin
19695 Tmp := Ureal_1;
19696 Scale := 0;
19697
19698 if Delta_Val < Ureal_1 then
19699 while Delta_Val < Tmp loop
19700 Tmp := Tmp / Ureal_2;
19701 Scale := Scale + 1;
19702 end loop;
19703
19704 else
19705 loop
19706 Tmp := Tmp * Ureal_2;
19707 exit when Tmp > Delta_Val;
19708 Scale := Scale - 1;
19709 end loop;
19710 end if;
19711
19712 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
19713 end;
19714
19715 Set_Small_Value (Implicit_Base, Small_Val);
19716
19717 -- If no range was given, set a dummy range
19718
19719 if RRS <= Empty_Or_Error then
19720 Low_Val := -Small_Val;
19721 High_Val := Small_Val;
19722
19723 -- Otherwise analyze and process given range
19724
19725 else
19726 declare
19727 Low : constant Node_Id := Low_Bound (RRS);
19728 High : constant Node_Id := High_Bound (RRS);
19729
19730 begin
19731 Analyze_And_Resolve (Low, Any_Real);
19732 Analyze_And_Resolve (High, Any_Real);
19733 Check_Real_Bound (Low);
19734 Check_Real_Bound (High);
19735
19736 -- Obtain and set the range
19737
19738 Low_Val := Expr_Value_R (Low);
19739 High_Val := Expr_Value_R (High);
19740
19741 if Low_Val > High_Val then
19742 Error_Msg_NE ("??fixed point type& has null range", Def, T);
19743 end if;
19744 end;
19745 end if;
19746
19747 -- The range for both the implicit base and the declared first subtype
19748 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
19749 -- set a temporary range in place. Note that the bounds of the base
19750 -- type will be widened to be symmetrical and to fill the available
19751 -- bits when the type is frozen.
19752
19753 -- We could do this with all discrete types, and probably should, but
19754 -- we absolutely have to do it for fixed-point, since the end-points
19755 -- of the range and the size are determined by the small value, which
19756 -- could be reset before the freeze point.
19757
19758 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
19759 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
19760
19761 -- Complete definition of first subtype. The inheritance of the rep item
19762 -- chain ensures that SPARK-related pragmas are not clobbered when the
19763 -- ordinary fixed point type acts as a full view of a private type.
19764
19765 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
19766 Set_Etype (T, Implicit_Base);
19767 Init_Size_Align (T);
19768 Inherit_Rep_Item_Chain (T, Implicit_Base);
19769 Set_Small_Value (T, Small_Val);
19770 Set_Delta_Value (T, Delta_Val);
19771 Set_Is_Constrained (T);
19772 end Ordinary_Fixed_Point_Type_Declaration;
19773
19774 ----------------------------------
19775 -- Preanalyze_Assert_Expression --
19776 ----------------------------------
19777
19778 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
19779 begin
19780 In_Assertion_Expr := In_Assertion_Expr + 1;
19781 Preanalyze_Spec_Expression (N, T);
19782 In_Assertion_Expr := In_Assertion_Expr - 1;
19783 end Preanalyze_Assert_Expression;
19784
19785 -----------------------------------
19786 -- Preanalyze_Default_Expression --
19787 -----------------------------------
19788
19789 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
19790 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
19791 begin
19792 In_Default_Expr := True;
19793 Preanalyze_Spec_Expression (N, T);
19794 In_Default_Expr := Save_In_Default_Expr;
19795 end Preanalyze_Default_Expression;
19796
19797 --------------------------------
19798 -- Preanalyze_Spec_Expression --
19799 --------------------------------
19800
19801 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
19802 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
19803 begin
19804 In_Spec_Expression := True;
19805 Preanalyze_And_Resolve (N, T);
19806 In_Spec_Expression := Save_In_Spec_Expression;
19807 end Preanalyze_Spec_Expression;
19808
19809 ----------------------------------------
19810 -- Prepare_Private_Subtype_Completion --
19811 ----------------------------------------
19812
19813 procedure Prepare_Private_Subtype_Completion
19814 (Id : Entity_Id;
19815 Related_Nod : Node_Id)
19816 is
19817 Id_B : constant Entity_Id := Base_Type (Id);
19818 Full_B : Entity_Id := Full_View (Id_B);
19819 Full : Entity_Id;
19820
19821 begin
19822 if Present (Full_B) then
19823
19824 -- Get to the underlying full view if necessary
19825
19826 if Is_Private_Type (Full_B)
19827 and then Present (Underlying_Full_View (Full_B))
19828 then
19829 Full_B := Underlying_Full_View (Full_B);
19830 end if;
19831
19832 -- The Base_Type is already completed, we can complete the subtype
19833 -- now. We have to create a new entity with the same name, Thus we
19834 -- can't use Create_Itype.
19835
19836 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
19837 Set_Is_Itype (Full);
19838 Set_Associated_Node_For_Itype (Full, Related_Nod);
19839 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
19840 end if;
19841
19842 -- The parent subtype may be private, but the base might not, in some
19843 -- nested instances. In that case, the subtype does not need to be
19844 -- exchanged. It would still be nice to make private subtypes and their
19845 -- bases consistent at all times ???
19846
19847 if Is_Private_Type (Id_B) then
19848 Append_Elmt (Id, Private_Dependents (Id_B));
19849 end if;
19850 end Prepare_Private_Subtype_Completion;
19851
19852 ---------------------------
19853 -- Process_Discriminants --
19854 ---------------------------
19855
19856 procedure Process_Discriminants
19857 (N : Node_Id;
19858 Prev : Entity_Id := Empty)
19859 is
19860 Elist : constant Elist_Id := New_Elmt_List;
19861 Id : Node_Id;
19862 Discr : Node_Id;
19863 Discr_Number : Uint;
19864 Discr_Type : Entity_Id;
19865 Default_Present : Boolean := False;
19866 Default_Not_Present : Boolean := False;
19867
19868 begin
19869 -- A composite type other than an array type can have discriminants.
19870 -- On entry, the current scope is the composite type.
19871
19872 -- The discriminants are initially entered into the scope of the type
19873 -- via Enter_Name with the default Ekind of E_Void to prevent premature
19874 -- use, as explained at the end of this procedure.
19875
19876 Discr := First (Discriminant_Specifications (N));
19877 while Present (Discr) loop
19878 Enter_Name (Defining_Identifier (Discr));
19879
19880 -- For navigation purposes we add a reference to the discriminant
19881 -- in the entity for the type. If the current declaration is a
19882 -- completion, place references on the partial view. Otherwise the
19883 -- type is the current scope.
19884
19885 if Present (Prev) then
19886
19887 -- The references go on the partial view, if present. If the
19888 -- partial view has discriminants, the references have been
19889 -- generated already.
19890
19891 if not Has_Discriminants (Prev) then
19892 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
19893 end if;
19894 else
19895 Generate_Reference
19896 (Current_Scope, Defining_Identifier (Discr), 'd');
19897 end if;
19898
19899 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
19900 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
19901
19902 -- Ada 2005 (AI-254)
19903
19904 if Present (Access_To_Subprogram_Definition
19905 (Discriminant_Type (Discr)))
19906 and then Protected_Present (Access_To_Subprogram_Definition
19907 (Discriminant_Type (Discr)))
19908 then
19909 Discr_Type :=
19910 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
19911 end if;
19912
19913 else
19914 Find_Type (Discriminant_Type (Discr));
19915 Discr_Type := Etype (Discriminant_Type (Discr));
19916
19917 if Error_Posted (Discriminant_Type (Discr)) then
19918 Discr_Type := Any_Type;
19919 end if;
19920 end if;
19921
19922 -- Handling of discriminants that are access types
19923
19924 if Is_Access_Type (Discr_Type) then
19925
19926 -- Ada 2005 (AI-230): Access discriminant allowed in non-
19927 -- limited record types
19928
19929 if Ada_Version < Ada_2005 then
19930 Check_Access_Discriminant_Requires_Limited
19931 (Discr, Discriminant_Type (Discr));
19932 end if;
19933
19934 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
19935 Error_Msg_N
19936 ("(Ada 83) access discriminant not allowed", Discr);
19937 end if;
19938
19939 -- If not access type, must be a discrete type
19940
19941 elsif not Is_Discrete_Type (Discr_Type) then
19942 Error_Msg_N
19943 ("discriminants must have a discrete or access type",
19944 Discriminant_Type (Discr));
19945 end if;
19946
19947 Set_Etype (Defining_Identifier (Discr), Discr_Type);
19948
19949 -- If a discriminant specification includes the assignment compound
19950 -- delimiter followed by an expression, the expression is the default
19951 -- expression of the discriminant; the default expression must be of
19952 -- the type of the discriminant. (RM 3.7.1) Since this expression is
19953 -- a default expression, we do the special preanalysis, since this
19954 -- expression does not freeze (see section "Handling of Default and
19955 -- Per-Object Expressions" in spec of package Sem).
19956
19957 if Present (Expression (Discr)) then
19958 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
19959
19960 -- Legaity checks
19961
19962 if Nkind (N) = N_Formal_Type_Declaration then
19963 Error_Msg_N
19964 ("discriminant defaults not allowed for formal type",
19965 Expression (Discr));
19966
19967 -- Flag an error for a tagged type with defaulted discriminants,
19968 -- excluding limited tagged types when compiling for Ada 2012
19969 -- (see AI05-0214).
19970
19971 elsif Is_Tagged_Type (Current_Scope)
19972 and then (not Is_Limited_Type (Current_Scope)
19973 or else Ada_Version < Ada_2012)
19974 and then Comes_From_Source (N)
19975 then
19976 -- Note: see similar test in Check_Or_Process_Discriminants, to
19977 -- handle the (illegal) case of the completion of an untagged
19978 -- view with discriminants with defaults by a tagged full view.
19979 -- We skip the check if Discr does not come from source, to
19980 -- account for the case of an untagged derived type providing
19981 -- defaults for a renamed discriminant from a private untagged
19982 -- ancestor with a tagged full view (ACATS B460006).
19983
19984 if Ada_Version >= Ada_2012 then
19985 Error_Msg_N
19986 ("discriminants of nonlimited tagged type cannot have"
19987 & " defaults",
19988 Expression (Discr));
19989 else
19990 Error_Msg_N
19991 ("discriminants of tagged type cannot have defaults",
19992 Expression (Discr));
19993 end if;
19994
19995 else
19996 Default_Present := True;
19997 Append_Elmt (Expression (Discr), Elist);
19998
19999 -- Tag the defining identifiers for the discriminants with
20000 -- their corresponding default expressions from the tree.
20001
20002 Set_Discriminant_Default_Value
20003 (Defining_Identifier (Discr), Expression (Discr));
20004 end if;
20005
20006 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
20007 -- gets set unless we can be sure that no range check is required.
20008
20009 if (GNATprove_Mode or not Expander_Active)
20010 and then not
20011 Is_In_Range
20012 (Expression (Discr), Discr_Type, Assume_Valid => True)
20013 then
20014 Set_Do_Range_Check (Expression (Discr));
20015 end if;
20016
20017 -- No default discriminant value given
20018
20019 else
20020 Default_Not_Present := True;
20021 end if;
20022
20023 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
20024 -- Discr_Type but with the null-exclusion attribute
20025
20026 if Ada_Version >= Ada_2005 then
20027
20028 -- Ada 2005 (AI-231): Static checks
20029
20030 if Can_Never_Be_Null (Discr_Type) then
20031 Null_Exclusion_Static_Checks (Discr);
20032
20033 elsif Is_Access_Type (Discr_Type)
20034 and then Null_Exclusion_Present (Discr)
20035
20036 -- No need to check itypes because in their case this check
20037 -- was done at their point of creation
20038
20039 and then not Is_Itype (Discr_Type)
20040 then
20041 if Can_Never_Be_Null (Discr_Type) then
20042 Error_Msg_NE
20043 ("`NOT NULL` not allowed (& already excludes null)",
20044 Discr,
20045 Discr_Type);
20046 end if;
20047
20048 Set_Etype (Defining_Identifier (Discr),
20049 Create_Null_Excluding_Itype
20050 (T => Discr_Type,
20051 Related_Nod => Discr));
20052
20053 -- Check for improper null exclusion if the type is otherwise
20054 -- legal for a discriminant.
20055
20056 elsif Null_Exclusion_Present (Discr)
20057 and then Is_Discrete_Type (Discr_Type)
20058 then
20059 Error_Msg_N
20060 ("null exclusion can only apply to an access type", Discr);
20061 end if;
20062
20063 -- Ada 2005 (AI-402): access discriminants of nonlimited types
20064 -- can't have defaults. Synchronized types, or types that are
20065 -- explicitly limited are fine, but special tests apply to derived
20066 -- types in generics: in a generic body we have to assume the
20067 -- worst, and therefore defaults are not allowed if the parent is
20068 -- a generic formal private type (see ACATS B370001).
20069
20070 if Is_Access_Type (Discr_Type) and then Default_Present then
20071 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
20072 or else Is_Limited_Record (Current_Scope)
20073 or else Is_Concurrent_Type (Current_Scope)
20074 or else Is_Concurrent_Record_Type (Current_Scope)
20075 or else Ekind (Current_Scope) = E_Limited_Private_Type
20076 then
20077 if not Is_Derived_Type (Current_Scope)
20078 or else not Is_Generic_Type (Etype (Current_Scope))
20079 or else not In_Package_Body (Scope (Etype (Current_Scope)))
20080 or else Limited_Present
20081 (Type_Definition (Parent (Current_Scope)))
20082 then
20083 null;
20084
20085 else
20086 Error_Msg_N
20087 ("access discriminants of nonlimited types cannot "
20088 & "have defaults", Expression (Discr));
20089 end if;
20090
20091 elsif Present (Expression (Discr)) then
20092 Error_Msg_N
20093 ("(Ada 2005) access discriminants of nonlimited types "
20094 & "cannot have defaults", Expression (Discr));
20095 end if;
20096 end if;
20097 end if;
20098
20099 -- A discriminant cannot be effectively volatile (SPARK RM 7.1.3(6)).
20100 -- This check is relevant only when SPARK_Mode is on as it is not a
20101 -- standard Ada legality rule.
20102
20103 if SPARK_Mode = On
20104 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
20105 then
20106 Error_Msg_N ("discriminant cannot be volatile", Discr);
20107 end if;
20108
20109 Next (Discr);
20110 end loop;
20111
20112 -- An element list consisting of the default expressions of the
20113 -- discriminants is constructed in the above loop and used to set
20114 -- the Discriminant_Constraint attribute for the type. If an object
20115 -- is declared of this (record or task) type without any explicit
20116 -- discriminant constraint given, this element list will form the
20117 -- actual parameters for the corresponding initialization procedure
20118 -- for the type.
20119
20120 Set_Discriminant_Constraint (Current_Scope, Elist);
20121 Set_Stored_Constraint (Current_Scope, No_Elist);
20122
20123 -- Default expressions must be provided either for all or for none
20124 -- of the discriminants of a discriminant part. (RM 3.7.1)
20125
20126 if Default_Present and then Default_Not_Present then
20127 Error_Msg_N
20128 ("incomplete specification of defaults for discriminants", N);
20129 end if;
20130
20131 -- The use of the name of a discriminant is not allowed in default
20132 -- expressions of a discriminant part if the specification of the
20133 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
20134
20135 -- To detect this, the discriminant names are entered initially with an
20136 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
20137 -- attempt to use a void entity (for example in an expression that is
20138 -- type-checked) produces the error message: premature usage. Now after
20139 -- completing the semantic analysis of the discriminant part, we can set
20140 -- the Ekind of all the discriminants appropriately.
20141
20142 Discr := First (Discriminant_Specifications (N));
20143 Discr_Number := Uint_1;
20144 while Present (Discr) loop
20145 Id := Defining_Identifier (Discr);
20146 Set_Ekind (Id, E_Discriminant);
20147 Init_Component_Location (Id);
20148 Init_Esize (Id);
20149 Set_Discriminant_Number (Id, Discr_Number);
20150
20151 -- Make sure this is always set, even in illegal programs
20152
20153 Set_Corresponding_Discriminant (Id, Empty);
20154
20155 -- Initialize the Original_Record_Component to the entity itself.
20156 -- Inherit_Components will propagate the right value to
20157 -- discriminants in derived record types.
20158
20159 Set_Original_Record_Component (Id, Id);
20160
20161 -- Create the discriminal for the discriminant
20162
20163 Build_Discriminal (Id);
20164
20165 Next (Discr);
20166 Discr_Number := Discr_Number + 1;
20167 end loop;
20168
20169 Set_Has_Discriminants (Current_Scope);
20170 end Process_Discriminants;
20171
20172 -----------------------
20173 -- Process_Full_View --
20174 -----------------------
20175
20176 -- WARNING: This routine manages Ghost regions. Return statements must be
20177 -- replaced by gotos which jump to the end of the routine and restore the
20178 -- Ghost mode.
20179
20180 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
20181 procedure Collect_Implemented_Interfaces
20182 (Typ : Entity_Id;
20183 Ifaces : Elist_Id);
20184 -- Ada 2005: Gather all the interfaces that Typ directly or
20185 -- inherently implements. Duplicate entries are not added to
20186 -- the list Ifaces.
20187
20188 ------------------------------------
20189 -- Collect_Implemented_Interfaces --
20190 ------------------------------------
20191
20192 procedure Collect_Implemented_Interfaces
20193 (Typ : Entity_Id;
20194 Ifaces : Elist_Id)
20195 is
20196 Iface : Entity_Id;
20197 Iface_Elmt : Elmt_Id;
20198
20199 begin
20200 -- Abstract interfaces are only associated with tagged record types
20201
20202 if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then
20203 return;
20204 end if;
20205
20206 -- Recursively climb to the ancestors
20207
20208 if Etype (Typ) /= Typ
20209
20210 -- Protect the frontend against wrong cyclic declarations like:
20211
20212 -- type B is new A with private;
20213 -- type C is new A with private;
20214 -- private
20215 -- type B is new C with null record;
20216 -- type C is new B with null record;
20217
20218 and then Etype (Typ) /= Priv_T
20219 and then Etype (Typ) /= Full_T
20220 then
20221 -- Keep separate the management of private type declarations
20222
20223 if Ekind (Typ) = E_Record_Type_With_Private then
20224
20225 -- Handle the following illegal usage:
20226 -- type Private_Type is tagged private;
20227 -- private
20228 -- type Private_Type is new Type_Implementing_Iface;
20229
20230 if Present (Full_View (Typ))
20231 and then Etype (Typ) /= Full_View (Typ)
20232 then
20233 if Is_Interface (Etype (Typ)) then
20234 Append_Unique_Elmt (Etype (Typ), Ifaces);
20235 end if;
20236
20237 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
20238 end if;
20239
20240 -- Non-private types
20241
20242 else
20243 if Is_Interface (Etype (Typ)) then
20244 Append_Unique_Elmt (Etype (Typ), Ifaces);
20245 end if;
20246
20247 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
20248 end if;
20249 end if;
20250
20251 -- Handle entities in the list of abstract interfaces
20252
20253 if Present (Interfaces (Typ)) then
20254 Iface_Elmt := First_Elmt (Interfaces (Typ));
20255 while Present (Iface_Elmt) loop
20256 Iface := Node (Iface_Elmt);
20257
20258 pragma Assert (Is_Interface (Iface));
20259
20260 if not Contain_Interface (Iface, Ifaces) then
20261 Append_Elmt (Iface, Ifaces);
20262 Collect_Implemented_Interfaces (Iface, Ifaces);
20263 end if;
20264
20265 Next_Elmt (Iface_Elmt);
20266 end loop;
20267 end if;
20268 end Collect_Implemented_Interfaces;
20269
20270 -- Local variables
20271
20272 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
20273 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
20274 -- Save the Ghost-related attributes to restore on exit
20275
20276 Full_Indic : Node_Id;
20277 Full_Parent : Entity_Id;
20278 Priv_Parent : Entity_Id;
20279
20280 -- Start of processing for Process_Full_View
20281
20282 begin
20283 Mark_And_Set_Ghost_Completion (N, Priv_T);
20284
20285 -- First some sanity checks that must be done after semantic
20286 -- decoration of the full view and thus cannot be placed with other
20287 -- similar checks in Find_Type_Name
20288
20289 if not Is_Limited_Type (Priv_T)
20290 and then (Is_Limited_Type (Full_T)
20291 or else Is_Limited_Composite (Full_T))
20292 then
20293 if In_Instance then
20294 null;
20295 else
20296 Error_Msg_N
20297 ("completion of nonlimited type cannot be limited", Full_T);
20298 Explain_Limited_Type (Full_T, Full_T);
20299 end if;
20300
20301 elsif Is_Abstract_Type (Full_T)
20302 and then not Is_Abstract_Type (Priv_T)
20303 then
20304 Error_Msg_N
20305 ("completion of nonabstract type cannot be abstract", Full_T);
20306
20307 elsif Is_Tagged_Type (Priv_T)
20308 and then Is_Limited_Type (Priv_T)
20309 and then not Is_Limited_Type (Full_T)
20310 then
20311 -- If pragma CPP_Class was applied to the private declaration
20312 -- propagate the limitedness to the full-view
20313
20314 if Is_CPP_Class (Priv_T) then
20315 Set_Is_Limited_Record (Full_T);
20316
20317 -- GNAT allow its own definition of Limited_Controlled to disobey
20318 -- this rule in order in ease the implementation. This test is safe
20319 -- because Root_Controlled is defined in a child of System that
20320 -- normal programs are not supposed to use.
20321
20322 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
20323 Set_Is_Limited_Composite (Full_T);
20324 else
20325 Error_Msg_N
20326 ("completion of limited tagged type must be limited", Full_T);
20327 end if;
20328
20329 elsif Is_Generic_Type (Priv_T) then
20330 Error_Msg_N ("generic type cannot have a completion", Full_T);
20331 end if;
20332
20333 -- Check that ancestor interfaces of private and full views are
20334 -- consistent. We omit this check for synchronized types because
20335 -- they are performed on the corresponding record type when frozen.
20336
20337 if Ada_Version >= Ada_2005
20338 and then Is_Tagged_Type (Priv_T)
20339 and then Is_Tagged_Type (Full_T)
20340 and then not Is_Concurrent_Type (Full_T)
20341 then
20342 declare
20343 Iface : Entity_Id;
20344 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
20345 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
20346
20347 begin
20348 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
20349 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
20350
20351 -- Ada 2005 (AI-251): The partial view shall be a descendant of
20352 -- an interface type if and only if the full type is descendant
20353 -- of the interface type (AARM 7.3 (7.3/2)).
20354
20355 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
20356
20357 if Present (Iface) then
20358 Error_Msg_NE
20359 ("interface in partial view& not implemented by full type "
20360 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
20361 end if;
20362
20363 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
20364
20365 if Present (Iface) then
20366 Error_Msg_NE
20367 ("interface & not implemented by partial view "
20368 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
20369 end if;
20370 end;
20371 end if;
20372
20373 if Is_Tagged_Type (Priv_T)
20374 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20375 and then Is_Derived_Type (Full_T)
20376 then
20377 Priv_Parent := Etype (Priv_T);
20378
20379 -- The full view of a private extension may have been transformed
20380 -- into an unconstrained derived type declaration and a subtype
20381 -- declaration (see build_derived_record_type for details).
20382
20383 if Nkind (N) = N_Subtype_Declaration then
20384 Full_Indic := Subtype_Indication (N);
20385 Full_Parent := Etype (Base_Type (Full_T));
20386 else
20387 Full_Indic := Subtype_Indication (Type_Definition (N));
20388 Full_Parent := Etype (Full_T);
20389 end if;
20390
20391 -- Check that the parent type of the full type is a descendant of
20392 -- the ancestor subtype given in the private extension. If either
20393 -- entity has an Etype equal to Any_Type then we had some previous
20394 -- error situation [7.3(8)].
20395
20396 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
20397 goto Leave;
20398
20399 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
20400 -- any order. Therefore we don't have to check that its parent must
20401 -- be a descendant of the parent of the private type declaration.
20402
20403 elsif Is_Interface (Priv_Parent)
20404 and then Is_Interface (Full_Parent)
20405 then
20406 null;
20407
20408 -- Ada 2005 (AI-251): If the parent of the private type declaration
20409 -- is an interface there is no need to check that it is an ancestor
20410 -- of the associated full type declaration. The required tests for
20411 -- this case are performed by Build_Derived_Record_Type.
20412
20413 elsif not Is_Interface (Base_Type (Priv_Parent))
20414 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
20415 then
20416 Error_Msg_N
20417 ("parent of full type must descend from parent of private "
20418 & "extension", Full_Indic);
20419
20420 -- First check a formal restriction, and then proceed with checking
20421 -- Ada rules. Since the formal restriction is not a serious error, we
20422 -- don't prevent further error detection for this check, hence the
20423 -- ELSE.
20424
20425 else
20426 -- In formal mode, when completing a private extension the type
20427 -- named in the private part must be exactly the same as that
20428 -- named in the visible part.
20429
20430 if Priv_Parent /= Full_Parent then
20431 Error_Msg_Name_1 := Chars (Priv_Parent);
20432 Check_SPARK_05_Restriction ("% expected", Full_Indic);
20433 end if;
20434
20435 -- Check the rules of 7.3(10): if the private extension inherits
20436 -- known discriminants, then the full type must also inherit those
20437 -- discriminants from the same (ancestor) type, and the parent
20438 -- subtype of the full type must be constrained if and only if
20439 -- the ancestor subtype of the private extension is constrained.
20440
20441 if No (Discriminant_Specifications (Parent (Priv_T)))
20442 and then not Has_Unknown_Discriminants (Priv_T)
20443 and then Has_Discriminants (Base_Type (Priv_Parent))
20444 then
20445 declare
20446 Priv_Indic : constant Node_Id :=
20447 Subtype_Indication (Parent (Priv_T));
20448
20449 Priv_Constr : constant Boolean :=
20450 Is_Constrained (Priv_Parent)
20451 or else
20452 Nkind (Priv_Indic) = N_Subtype_Indication
20453 or else
20454 Is_Constrained (Entity (Priv_Indic));
20455
20456 Full_Constr : constant Boolean :=
20457 Is_Constrained (Full_Parent)
20458 or else
20459 Nkind (Full_Indic) = N_Subtype_Indication
20460 or else
20461 Is_Constrained (Entity (Full_Indic));
20462
20463 Priv_Discr : Entity_Id;
20464 Full_Discr : Entity_Id;
20465
20466 begin
20467 Priv_Discr := First_Discriminant (Priv_Parent);
20468 Full_Discr := First_Discriminant (Full_Parent);
20469 while Present (Priv_Discr) and then Present (Full_Discr) loop
20470 if Original_Record_Component (Priv_Discr) =
20471 Original_Record_Component (Full_Discr)
20472 or else
20473 Corresponding_Discriminant (Priv_Discr) =
20474 Corresponding_Discriminant (Full_Discr)
20475 then
20476 null;
20477 else
20478 exit;
20479 end if;
20480
20481 Next_Discriminant (Priv_Discr);
20482 Next_Discriminant (Full_Discr);
20483 end loop;
20484
20485 if Present (Priv_Discr) or else Present (Full_Discr) then
20486 Error_Msg_N
20487 ("full view must inherit discriminants of the parent "
20488 & "type used in the private extension", Full_Indic);
20489
20490 elsif Priv_Constr and then not Full_Constr then
20491 Error_Msg_N
20492 ("parent subtype of full type must be constrained",
20493 Full_Indic);
20494
20495 elsif Full_Constr and then not Priv_Constr then
20496 Error_Msg_N
20497 ("parent subtype of full type must be unconstrained",
20498 Full_Indic);
20499 end if;
20500 end;
20501
20502 -- Check the rules of 7.3(12): if a partial view has neither
20503 -- known or unknown discriminants, then the full type
20504 -- declaration shall define a definite subtype.
20505
20506 elsif not Has_Unknown_Discriminants (Priv_T)
20507 and then not Has_Discriminants (Priv_T)
20508 and then not Is_Constrained (Full_T)
20509 then
20510 Error_Msg_N
20511 ("full view must define a constrained type if partial view "
20512 & "has no discriminants", Full_T);
20513 end if;
20514
20515 -- ??????? Do we implement the following properly ?????
20516 -- If the ancestor subtype of a private extension has constrained
20517 -- discriminants, then the parent subtype of the full view shall
20518 -- impose a statically matching constraint on those discriminants
20519 -- [7.3(13)].
20520 end if;
20521
20522 else
20523 -- For untagged types, verify that a type without discriminants is
20524 -- not completed with an unconstrained type. A separate error message
20525 -- is produced if the full type has defaulted discriminants.
20526
20527 if Is_Definite_Subtype (Priv_T)
20528 and then not Is_Definite_Subtype (Full_T)
20529 then
20530 Error_Msg_Sloc := Sloc (Parent (Priv_T));
20531 Error_Msg_NE
20532 ("full view of& not compatible with declaration#",
20533 Full_T, Priv_T);
20534
20535 if not Is_Tagged_Type (Full_T) then
20536 Error_Msg_N
20537 ("\one is constrained, the other unconstrained", Full_T);
20538 end if;
20539 end if;
20540 end if;
20541
20542 -- AI-419: verify that the use of "limited" is consistent
20543
20544 declare
20545 Orig_Decl : constant Node_Id := Original_Node (N);
20546
20547 begin
20548 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20549 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
20550 and then Nkind
20551 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
20552 then
20553 if not Limited_Present (Parent (Priv_T))
20554 and then not Synchronized_Present (Parent (Priv_T))
20555 and then Limited_Present (Type_Definition (Orig_Decl))
20556 then
20557 Error_Msg_N
20558 ("full view of non-limited extension cannot be limited", N);
20559
20560 -- Conversely, if the partial view carries the limited keyword,
20561 -- the full view must as well, even if it may be redundant.
20562
20563 elsif Limited_Present (Parent (Priv_T))
20564 and then not Limited_Present (Type_Definition (Orig_Decl))
20565 then
20566 Error_Msg_N
20567 ("full view of limited extension must be explicitly limited",
20568 N);
20569 end if;
20570 end if;
20571 end;
20572
20573 -- Ada 2005 (AI-443): A synchronized private extension must be
20574 -- completed by a task or protected type.
20575
20576 if Ada_Version >= Ada_2005
20577 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20578 and then Synchronized_Present (Parent (Priv_T))
20579 and then not Is_Concurrent_Type (Full_T)
20580 then
20581 Error_Msg_N ("full view of synchronized extension must " &
20582 "be synchronized type", N);
20583 end if;
20584
20585 -- Ada 2005 AI-363: if the full view has discriminants with
20586 -- defaults, it is illegal to declare constrained access subtypes
20587 -- whose designated type is the current type. This allows objects
20588 -- of the type that are declared in the heap to be unconstrained.
20589
20590 if not Has_Unknown_Discriminants (Priv_T)
20591 and then not Has_Discriminants (Priv_T)
20592 and then Has_Discriminants (Full_T)
20593 and then
20594 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
20595 then
20596 Set_Has_Constrained_Partial_View (Full_T);
20597 Set_Has_Constrained_Partial_View (Priv_T);
20598 end if;
20599
20600 -- Create a full declaration for all its subtypes recorded in
20601 -- Private_Dependents and swap them similarly to the base type. These
20602 -- are subtypes that have been define before the full declaration of
20603 -- the private type. We also swap the entry in Private_Dependents list
20604 -- so we can properly restore the private view on exit from the scope.
20605
20606 declare
20607 Priv_Elmt : Elmt_Id;
20608 Priv_Scop : Entity_Id;
20609 Priv : Entity_Id;
20610 Full : Entity_Id;
20611
20612 begin
20613 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
20614 while Present (Priv_Elmt) loop
20615 Priv := Node (Priv_Elmt);
20616 Priv_Scop := Scope (Priv);
20617
20618 if Ekind_In (Priv, E_Private_Subtype,
20619 E_Limited_Private_Subtype,
20620 E_Record_Subtype_With_Private)
20621 then
20622 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
20623 Set_Is_Itype (Full);
20624 Set_Parent (Full, Parent (Priv));
20625 Set_Associated_Node_For_Itype (Full, N);
20626
20627 -- Now we need to complete the private subtype, but since the
20628 -- base type has already been swapped, we must also swap the
20629 -- subtypes (and thus, reverse the arguments in the call to
20630 -- Complete_Private_Subtype). Also note that we may need to
20631 -- re-establish the scope of the private subtype.
20632
20633 Copy_And_Swap (Priv, Full);
20634
20635 if not In_Open_Scopes (Priv_Scop) then
20636 Push_Scope (Priv_Scop);
20637
20638 else
20639 -- Reset Priv_Scop to Empty to indicate no scope was pushed
20640
20641 Priv_Scop := Empty;
20642 end if;
20643
20644 Complete_Private_Subtype (Full, Priv, Full_T, N);
20645
20646 if Present (Priv_Scop) then
20647 Pop_Scope;
20648 end if;
20649
20650 Replace_Elmt (Priv_Elmt, Full);
20651 end if;
20652
20653 Next_Elmt (Priv_Elmt);
20654 end loop;
20655 end;
20656
20657 -- If the private view was tagged, copy the new primitive operations
20658 -- from the private view to the full view.
20659
20660 if Is_Tagged_Type (Full_T) then
20661 declare
20662 Disp_Typ : Entity_Id;
20663 Full_List : Elist_Id;
20664 Prim : Entity_Id;
20665 Prim_Elmt : Elmt_Id;
20666 Priv_List : Elist_Id;
20667
20668 function Contains
20669 (E : Entity_Id;
20670 L : Elist_Id) return Boolean;
20671 -- Determine whether list L contains element E
20672
20673 --------------
20674 -- Contains --
20675 --------------
20676
20677 function Contains
20678 (E : Entity_Id;
20679 L : Elist_Id) return Boolean
20680 is
20681 List_Elmt : Elmt_Id;
20682
20683 begin
20684 List_Elmt := First_Elmt (L);
20685 while Present (List_Elmt) loop
20686 if Node (List_Elmt) = E then
20687 return True;
20688 end if;
20689
20690 Next_Elmt (List_Elmt);
20691 end loop;
20692
20693 return False;
20694 end Contains;
20695
20696 -- Start of processing
20697
20698 begin
20699 if Is_Tagged_Type (Priv_T) then
20700 Priv_List := Primitive_Operations (Priv_T);
20701 Prim_Elmt := First_Elmt (Priv_List);
20702
20703 -- In the case of a concurrent type completing a private tagged
20704 -- type, primitives may have been declared in between the two
20705 -- views. These subprograms need to be wrapped the same way
20706 -- entries and protected procedures are handled because they
20707 -- cannot be directly shared by the two views.
20708
20709 if Is_Concurrent_Type (Full_T) then
20710 declare
20711 Conc_Typ : constant Entity_Id :=
20712 Corresponding_Record_Type (Full_T);
20713 Curr_Nod : Node_Id := Parent (Conc_Typ);
20714 Wrap_Spec : Node_Id;
20715
20716 begin
20717 while Present (Prim_Elmt) loop
20718 Prim := Node (Prim_Elmt);
20719
20720 if Comes_From_Source (Prim)
20721 and then not Is_Abstract_Subprogram (Prim)
20722 then
20723 Wrap_Spec :=
20724 Make_Subprogram_Declaration (Sloc (Prim),
20725 Specification =>
20726 Build_Wrapper_Spec
20727 (Subp_Id => Prim,
20728 Obj_Typ => Conc_Typ,
20729 Formals =>
20730 Parameter_Specifications
20731 (Parent (Prim))));
20732
20733 Insert_After (Curr_Nod, Wrap_Spec);
20734 Curr_Nod := Wrap_Spec;
20735
20736 Analyze (Wrap_Spec);
20737
20738 -- Remove the wrapper from visibility to avoid
20739 -- spurious conflict with the wrapped entity.
20740
20741 Set_Is_Immediately_Visible
20742 (Defining_Entity (Specification (Wrap_Spec)),
20743 False);
20744 end if;
20745
20746 Next_Elmt (Prim_Elmt);
20747 end loop;
20748
20749 goto Leave;
20750 end;
20751
20752 -- For non-concurrent types, transfer explicit primitives, but
20753 -- omit those inherited from the parent of the private view
20754 -- since they will be re-inherited later on.
20755
20756 else
20757 Full_List := Primitive_Operations (Full_T);
20758 while Present (Prim_Elmt) loop
20759 Prim := Node (Prim_Elmt);
20760
20761 if Comes_From_Source (Prim)
20762 and then not Contains (Prim, Full_List)
20763 then
20764 Append_Elmt (Prim, Full_List);
20765 end if;
20766
20767 Next_Elmt (Prim_Elmt);
20768 end loop;
20769 end if;
20770
20771 -- Untagged private view
20772
20773 else
20774 Full_List := Primitive_Operations (Full_T);
20775
20776 -- In this case the partial view is untagged, so here we locate
20777 -- all of the earlier primitives that need to be treated as
20778 -- dispatching (those that appear between the two views). Note
20779 -- that these additional operations must all be new operations
20780 -- (any earlier operations that override inherited operations
20781 -- of the full view will already have been inserted in the
20782 -- primitives list, marked by Check_Operation_From_Private_View
20783 -- as dispatching. Note that implicit "/=" operators are
20784 -- excluded from being added to the primitives list since they
20785 -- shouldn't be treated as dispatching (tagged "/=" is handled
20786 -- specially).
20787
20788 Prim := Next_Entity (Full_T);
20789 while Present (Prim) and then Prim /= Priv_T loop
20790 if Ekind_In (Prim, E_Procedure, E_Function) then
20791 Disp_Typ := Find_Dispatching_Type (Prim);
20792
20793 if Disp_Typ = Full_T
20794 and then (Chars (Prim) /= Name_Op_Ne
20795 or else Comes_From_Source (Prim))
20796 then
20797 Check_Controlling_Formals (Full_T, Prim);
20798
20799 if Is_Suitable_Primitive (Prim)
20800 and then not Is_Dispatching_Operation (Prim)
20801 then
20802 Append_Elmt (Prim, Full_List);
20803 Set_Is_Dispatching_Operation (Prim);
20804 Set_DT_Position_Value (Prim, No_Uint);
20805 end if;
20806
20807 elsif Is_Dispatching_Operation (Prim)
20808 and then Disp_Typ /= Full_T
20809 then
20810 -- Verify that it is not otherwise controlled by a
20811 -- formal or a return value of type T.
20812
20813 Check_Controlling_Formals (Disp_Typ, Prim);
20814 end if;
20815 end if;
20816
20817 Next_Entity (Prim);
20818 end loop;
20819 end if;
20820
20821 -- For the tagged case, the two views can share the same primitive
20822 -- operations list and the same class-wide type. Update attributes
20823 -- of the class-wide type which depend on the full declaration.
20824
20825 if Is_Tagged_Type (Priv_T) then
20826 Set_Direct_Primitive_Operations (Priv_T, Full_List);
20827 Set_Class_Wide_Type
20828 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
20829
20830 Propagate_Concurrent_Flags (Class_Wide_Type (Priv_T), Full_T);
20831 end if;
20832 end;
20833 end if;
20834
20835 -- Ada 2005 AI 161: Check preelaborable initialization consistency
20836
20837 if Known_To_Have_Preelab_Init (Priv_T) then
20838
20839 -- Case where there is a pragma Preelaborable_Initialization. We
20840 -- always allow this in predefined units, which is cheating a bit,
20841 -- but it means we don't have to struggle to meet the requirements in
20842 -- the RM for having Preelaborable Initialization. Otherwise we
20843 -- require that the type meets the RM rules. But we can't check that
20844 -- yet, because of the rule about overriding Initialize, so we simply
20845 -- set a flag that will be checked at freeze time.
20846
20847 if not In_Predefined_Unit (Full_T) then
20848 Set_Must_Have_Preelab_Init (Full_T);
20849 end if;
20850 end if;
20851
20852 -- If pragma CPP_Class was applied to the private type declaration,
20853 -- propagate it now to the full type declaration.
20854
20855 if Is_CPP_Class (Priv_T) then
20856 Set_Is_CPP_Class (Full_T);
20857 Set_Convention (Full_T, Convention_CPP);
20858
20859 -- Check that components of imported CPP types do not have default
20860 -- expressions.
20861
20862 Check_CPP_Type_Has_No_Defaults (Full_T);
20863 end if;
20864
20865 -- If the private view has user specified stream attributes, then so has
20866 -- the full view.
20867
20868 -- Why the test, how could these flags be already set in Full_T ???
20869
20870 if Has_Specified_Stream_Read (Priv_T) then
20871 Set_Has_Specified_Stream_Read (Full_T);
20872 end if;
20873
20874 if Has_Specified_Stream_Write (Priv_T) then
20875 Set_Has_Specified_Stream_Write (Full_T);
20876 end if;
20877
20878 if Has_Specified_Stream_Input (Priv_T) then
20879 Set_Has_Specified_Stream_Input (Full_T);
20880 end if;
20881
20882 if Has_Specified_Stream_Output (Priv_T) then
20883 Set_Has_Specified_Stream_Output (Full_T);
20884 end if;
20885
20886 -- Propagate Default_Initial_Condition-related attributes from the
20887 -- partial view to the full view and its base type.
20888
20889 Propagate_DIC_Attributes (Full_T, From_Typ => Priv_T);
20890 Propagate_DIC_Attributes (Base_Type (Full_T), From_Typ => Priv_T);
20891
20892 -- Propagate invariant-related attributes from the partial view to the
20893 -- full view and its base type.
20894
20895 Propagate_Invariant_Attributes (Full_T, From_Typ => Priv_T);
20896 Propagate_Invariant_Attributes (Base_Type (Full_T), From_Typ => Priv_T);
20897
20898 -- AI12-0041: Detect an attempt to inherit a class-wide type invariant
20899 -- in the full view without advertising the inheritance in the partial
20900 -- view. This can only occur when the partial view has no parent type
20901 -- and the full view has an interface as a parent. Any other scenarios
20902 -- are illegal because implemented interfaces must match between the
20903 -- two views.
20904
20905 if Is_Tagged_Type (Priv_T) and then Is_Tagged_Type (Full_T) then
20906 declare
20907 Full_Par : constant Entity_Id := Etype (Full_T);
20908 Priv_Par : constant Entity_Id := Etype (Priv_T);
20909
20910 begin
20911 if not Is_Interface (Priv_Par)
20912 and then Is_Interface (Full_Par)
20913 and then Has_Inheritable_Invariants (Full_Par)
20914 then
20915 Error_Msg_N
20916 ("hidden inheritance of class-wide type invariants not "
20917 & "allowed", N);
20918 end if;
20919 end;
20920 end if;
20921
20922 -- Propagate predicates to full type, and predicate function if already
20923 -- defined. It is not clear that this can actually happen? the partial
20924 -- view cannot be frozen yet, and the predicate function has not been
20925 -- built. Still it is a cheap check and seems safer to make it.
20926
20927 if Has_Predicates (Priv_T) then
20928 Set_Has_Predicates (Full_T);
20929
20930 if Present (Predicate_Function (Priv_T)) then
20931 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
20932 end if;
20933 end if;
20934
20935 <<Leave>>
20936 Restore_Ghost_Region (Saved_GM, Saved_IGR);
20937 end Process_Full_View;
20938
20939 -----------------------------------
20940 -- Process_Incomplete_Dependents --
20941 -----------------------------------
20942
20943 procedure Process_Incomplete_Dependents
20944 (N : Node_Id;
20945 Full_T : Entity_Id;
20946 Inc_T : Entity_Id)
20947 is
20948 Inc_Elmt : Elmt_Id;
20949 Priv_Dep : Entity_Id;
20950 New_Subt : Entity_Id;
20951
20952 Disc_Constraint : Elist_Id;
20953
20954 begin
20955 if No (Private_Dependents (Inc_T)) then
20956 return;
20957 end if;
20958
20959 -- Itypes that may be generated by the completion of an incomplete
20960 -- subtype are not used by the back-end and not attached to the tree.
20961 -- They are created only for constraint-checking purposes.
20962
20963 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
20964 while Present (Inc_Elmt) loop
20965 Priv_Dep := Node (Inc_Elmt);
20966
20967 if Ekind (Priv_Dep) = E_Subprogram_Type then
20968
20969 -- An Access_To_Subprogram type may have a return type or a
20970 -- parameter type that is incomplete. Replace with the full view.
20971
20972 if Etype (Priv_Dep) = Inc_T then
20973 Set_Etype (Priv_Dep, Full_T);
20974 end if;
20975
20976 declare
20977 Formal : Entity_Id;
20978
20979 begin
20980 Formal := First_Formal (Priv_Dep);
20981 while Present (Formal) loop
20982 if Etype (Formal) = Inc_T then
20983 Set_Etype (Formal, Full_T);
20984 end if;
20985
20986 Next_Formal (Formal);
20987 end loop;
20988 end;
20989
20990 elsif Is_Overloadable (Priv_Dep) then
20991
20992 -- If a subprogram in the incomplete dependents list is primitive
20993 -- for a tagged full type then mark it as a dispatching operation,
20994 -- check whether it overrides an inherited subprogram, and check
20995 -- restrictions on its controlling formals. Note that a protected
20996 -- operation is never dispatching: only its wrapper operation
20997 -- (which has convention Ada) is.
20998
20999 if Is_Tagged_Type (Full_T)
21000 and then Is_Primitive (Priv_Dep)
21001 and then Convention (Priv_Dep) /= Convention_Protected
21002 then
21003 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
21004 Set_Is_Dispatching_Operation (Priv_Dep);
21005 Check_Controlling_Formals (Full_T, Priv_Dep);
21006 end if;
21007
21008 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
21009
21010 -- Can happen during processing of a body before the completion
21011 -- of a TA type. Ignore, because spec is also on dependent list.
21012
21013 return;
21014
21015 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
21016 -- corresponding subtype of the full view.
21017
21018 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype
21019 and then Comes_From_Source (Priv_Dep)
21020 then
21021 Set_Subtype_Indication
21022 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
21023 Set_Etype (Priv_Dep, Full_T);
21024 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
21025 Set_Analyzed (Parent (Priv_Dep), False);
21026
21027 -- Reanalyze the declaration, suppressing the call to Enter_Name
21028 -- to avoid duplicate names.
21029
21030 Analyze_Subtype_Declaration
21031 (N => Parent (Priv_Dep),
21032 Skip => True);
21033
21034 -- Dependent is a subtype
21035
21036 else
21037 -- We build a new subtype indication using the full view of the
21038 -- incomplete parent. The discriminant constraints have been
21039 -- elaborated already at the point of the subtype declaration.
21040
21041 New_Subt := Create_Itype (E_Void, N);
21042
21043 if Has_Discriminants (Full_T) then
21044 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
21045 else
21046 Disc_Constraint := No_Elist;
21047 end if;
21048
21049 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
21050 Set_Full_View (Priv_Dep, New_Subt);
21051 end if;
21052
21053 Next_Elmt (Inc_Elmt);
21054 end loop;
21055 end Process_Incomplete_Dependents;
21056
21057 --------------------------------
21058 -- Process_Range_Expr_In_Decl --
21059 --------------------------------
21060
21061 procedure Process_Range_Expr_In_Decl
21062 (R : Node_Id;
21063 T : Entity_Id;
21064 Subtyp : Entity_Id := Empty;
21065 Check_List : List_Id := Empty_List;
21066 R_Check_Off : Boolean := False;
21067 In_Iter_Schm : Boolean := False)
21068 is
21069 Lo, Hi : Node_Id;
21070 R_Checks : Check_Result;
21071 Insert_Node : Node_Id;
21072 Def_Id : Entity_Id;
21073
21074 begin
21075 Analyze_And_Resolve (R, Base_Type (T));
21076
21077 if Nkind (R) = N_Range then
21078
21079 -- In SPARK, all ranges should be static, with the exception of the
21080 -- discrete type definition of a loop parameter specification.
21081
21082 if not In_Iter_Schm
21083 and then not Is_OK_Static_Range (R)
21084 then
21085 Check_SPARK_05_Restriction ("range should be static", R);
21086 end if;
21087
21088 Lo := Low_Bound (R);
21089 Hi := High_Bound (R);
21090
21091 -- Validity checks on the range of a quantified expression are
21092 -- delayed until the construct is transformed into a loop.
21093
21094 if Nkind (Parent (R)) = N_Loop_Parameter_Specification
21095 and then Nkind (Parent (Parent (R))) = N_Quantified_Expression
21096 then
21097 null;
21098
21099 -- We need to ensure validity of the bounds here, because if we
21100 -- go ahead and do the expansion, then the expanded code will get
21101 -- analyzed with range checks suppressed and we miss the check.
21102
21103 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
21104 -- the temporaries generated by routine Remove_Side_Effects by means
21105 -- of validity checks must use the same names. When a range appears
21106 -- in the parent of a generic, the range is processed with checks
21107 -- disabled as part of the generic context and with checks enabled
21108 -- for code generation purposes. This leads to link issues as the
21109 -- generic contains references to xxx_FIRST/_LAST, but the inlined
21110 -- template sees the temporaries generated by Remove_Side_Effects.
21111
21112 else
21113 Validity_Check_Range (R, Subtyp);
21114 end if;
21115
21116 -- If there were errors in the declaration, try and patch up some
21117 -- common mistakes in the bounds. The cases handled are literals
21118 -- which are Integer where the expected type is Real and vice versa.
21119 -- These corrections allow the compilation process to proceed further
21120 -- along since some basic assumptions of the format of the bounds
21121 -- are guaranteed.
21122
21123 if Etype (R) = Any_Type then
21124 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
21125 Rewrite (Lo,
21126 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
21127
21128 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
21129 Rewrite (Hi,
21130 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
21131
21132 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
21133 Rewrite (Lo,
21134 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
21135
21136 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
21137 Rewrite (Hi,
21138 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
21139 end if;
21140
21141 Set_Etype (Lo, T);
21142 Set_Etype (Hi, T);
21143 end if;
21144
21145 -- If the bounds of the range have been mistakenly given as string
21146 -- literals (perhaps in place of character literals), then an error
21147 -- has already been reported, but we rewrite the string literal as a
21148 -- bound of the range's type to avoid blowups in later processing
21149 -- that looks at static values.
21150
21151 if Nkind (Lo) = N_String_Literal then
21152 Rewrite (Lo,
21153 Make_Attribute_Reference (Sloc (Lo),
21154 Prefix => New_Occurrence_Of (T, Sloc (Lo)),
21155 Attribute_Name => Name_First));
21156 Analyze_And_Resolve (Lo);
21157 end if;
21158
21159 if Nkind (Hi) = N_String_Literal then
21160 Rewrite (Hi,
21161 Make_Attribute_Reference (Sloc (Hi),
21162 Prefix => New_Occurrence_Of (T, Sloc (Hi)),
21163 Attribute_Name => Name_First));
21164 Analyze_And_Resolve (Hi);
21165 end if;
21166
21167 -- If bounds aren't scalar at this point then exit, avoiding
21168 -- problems with further processing of the range in this procedure.
21169
21170 if not Is_Scalar_Type (Etype (Lo)) then
21171 return;
21172 end if;
21173
21174 -- Resolve (actually Sem_Eval) has checked that the bounds are in
21175 -- then range of the base type. Here we check whether the bounds
21176 -- are in the range of the subtype itself. Note that if the bounds
21177 -- represent the null range the Constraint_Error exception should
21178 -- not be raised.
21179
21180 -- ??? The following code should be cleaned up as follows
21181
21182 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
21183 -- is done in the call to Range_Check (R, T); below
21184
21185 -- 2. The use of R_Check_Off should be investigated and possibly
21186 -- removed, this would clean up things a bit.
21187
21188 if Is_Null_Range (Lo, Hi) then
21189 null;
21190
21191 else
21192 -- Capture values of bounds and generate temporaries for them
21193 -- if needed, before applying checks, since checks may cause
21194 -- duplication of the expression without forcing evaluation.
21195
21196 -- The forced evaluation removes side effects from expressions,
21197 -- which should occur also in GNATprove mode. Otherwise, we end up
21198 -- with unexpected insertions of actions at places where this is
21199 -- not supposed to occur, e.g. on default parameters of a call.
21200
21201 if Expander_Active or GNATprove_Mode then
21202
21203 -- Call Force_Evaluation to create declarations as needed to
21204 -- deal with side effects, and also create typ_FIRST/LAST
21205 -- entities for bounds if we have a subtype name.
21206
21207 -- Note: we do this transformation even if expansion is not
21208 -- active if we are in GNATprove_Mode since the transformation
21209 -- is in general required to ensure that the resulting tree has
21210 -- proper Ada semantics.
21211
21212 Force_Evaluation
21213 (Lo, Related_Id => Subtyp, Is_Low_Bound => True);
21214 Force_Evaluation
21215 (Hi, Related_Id => Subtyp, Is_High_Bound => True);
21216 end if;
21217
21218 -- We use a flag here instead of suppressing checks on the type
21219 -- because the type we check against isn't necessarily the place
21220 -- where we put the check.
21221
21222 if not R_Check_Off then
21223 R_Checks := Get_Range_Checks (R, T);
21224
21225 -- Look up tree to find an appropriate insertion point. We
21226 -- can't just use insert_actions because later processing
21227 -- depends on the insertion node. Prior to Ada 2012 the
21228 -- insertion point could only be a declaration or a loop, but
21229 -- quantified expressions can appear within any context in an
21230 -- expression, and the insertion point can be any statement,
21231 -- pragma, or declaration.
21232
21233 Insert_Node := Parent (R);
21234 while Present (Insert_Node) loop
21235 exit when
21236 Nkind (Insert_Node) in N_Declaration
21237 and then
21238 not Nkind_In
21239 (Insert_Node, N_Component_Declaration,
21240 N_Loop_Parameter_Specification,
21241 N_Function_Specification,
21242 N_Procedure_Specification);
21243
21244 exit when Nkind (Insert_Node) in N_Later_Decl_Item
21245 or else Nkind (Insert_Node) in
21246 N_Statement_Other_Than_Procedure_Call
21247 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
21248 N_Pragma);
21249
21250 Insert_Node := Parent (Insert_Node);
21251 end loop;
21252
21253 -- Why would Type_Decl not be present??? Without this test,
21254 -- short regression tests fail.
21255
21256 if Present (Insert_Node) then
21257
21258 -- Case of loop statement. Verify that the range is part
21259 -- of the subtype indication of the iteration scheme.
21260
21261 if Nkind (Insert_Node) = N_Loop_Statement then
21262 declare
21263 Indic : Node_Id;
21264
21265 begin
21266 Indic := Parent (R);
21267 while Present (Indic)
21268 and then Nkind (Indic) /= N_Subtype_Indication
21269 loop
21270 Indic := Parent (Indic);
21271 end loop;
21272
21273 if Present (Indic) then
21274 Def_Id := Etype (Subtype_Mark (Indic));
21275
21276 Insert_Range_Checks
21277 (R_Checks,
21278 Insert_Node,
21279 Def_Id,
21280 Sloc (Insert_Node),
21281 R,
21282 Do_Before => True);
21283 end if;
21284 end;
21285
21286 -- Insertion before a declaration. If the declaration
21287 -- includes discriminants, the list of applicable checks
21288 -- is given by the caller.
21289
21290 elsif Nkind (Insert_Node) in N_Declaration then
21291 Def_Id := Defining_Identifier (Insert_Node);
21292
21293 if (Ekind (Def_Id) = E_Record_Type
21294 and then Depends_On_Discriminant (R))
21295 or else
21296 (Ekind (Def_Id) = E_Protected_Type
21297 and then Has_Discriminants (Def_Id))
21298 then
21299 Append_Range_Checks
21300 (R_Checks,
21301 Check_List, Def_Id, Sloc (Insert_Node), R);
21302
21303 else
21304 Insert_Range_Checks
21305 (R_Checks,
21306 Insert_Node, Def_Id, Sloc (Insert_Node), R);
21307
21308 end if;
21309
21310 -- Insertion before a statement. Range appears in the
21311 -- context of a quantified expression. Insertion will
21312 -- take place when expression is expanded.
21313
21314 else
21315 null;
21316 end if;
21317 end if;
21318 end if;
21319 end if;
21320
21321 -- Case of other than an explicit N_Range node
21322
21323 -- The forced evaluation removes side effects from expressions, which
21324 -- should occur also in GNATprove mode. Otherwise, we end up with
21325 -- unexpected insertions of actions at places where this is not
21326 -- supposed to occur, e.g. on default parameters of a call.
21327
21328 elsif Expander_Active or GNATprove_Mode then
21329 Get_Index_Bounds (R, Lo, Hi);
21330 Force_Evaluation (Lo);
21331 Force_Evaluation (Hi);
21332 end if;
21333 end Process_Range_Expr_In_Decl;
21334
21335 --------------------------------------
21336 -- Process_Real_Range_Specification --
21337 --------------------------------------
21338
21339 procedure Process_Real_Range_Specification (Def : Node_Id) is
21340 Spec : constant Node_Id := Real_Range_Specification (Def);
21341 Lo : Node_Id;
21342 Hi : Node_Id;
21343 Err : Boolean := False;
21344
21345 procedure Analyze_Bound (N : Node_Id);
21346 -- Analyze and check one bound
21347
21348 -------------------
21349 -- Analyze_Bound --
21350 -------------------
21351
21352 procedure Analyze_Bound (N : Node_Id) is
21353 begin
21354 Analyze_And_Resolve (N, Any_Real);
21355
21356 if not Is_OK_Static_Expression (N) then
21357 Flag_Non_Static_Expr
21358 ("bound in real type definition is not static!", N);
21359 Err := True;
21360 end if;
21361 end Analyze_Bound;
21362
21363 -- Start of processing for Process_Real_Range_Specification
21364
21365 begin
21366 if Present (Spec) then
21367 Lo := Low_Bound (Spec);
21368 Hi := High_Bound (Spec);
21369 Analyze_Bound (Lo);
21370 Analyze_Bound (Hi);
21371
21372 -- If error, clear away junk range specification
21373
21374 if Err then
21375 Set_Real_Range_Specification (Def, Empty);
21376 end if;
21377 end if;
21378 end Process_Real_Range_Specification;
21379
21380 ---------------------
21381 -- Process_Subtype --
21382 ---------------------
21383
21384 function Process_Subtype
21385 (S : Node_Id;
21386 Related_Nod : Node_Id;
21387 Related_Id : Entity_Id := Empty;
21388 Suffix : Character := ' ') return Entity_Id
21389 is
21390 P : Node_Id;
21391 Def_Id : Entity_Id;
21392 Error_Node : Node_Id;
21393 Full_View_Id : Entity_Id;
21394 Subtype_Mark_Id : Entity_Id;
21395
21396 May_Have_Null_Exclusion : Boolean;
21397
21398 procedure Check_Incomplete (T : Node_Id);
21399 -- Called to verify that an incomplete type is not used prematurely
21400
21401 ----------------------
21402 -- Check_Incomplete --
21403 ----------------------
21404
21405 procedure Check_Incomplete (T : Node_Id) is
21406 begin
21407 -- Ada 2005 (AI-412): Incomplete subtypes are legal
21408
21409 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
21410 and then
21411 not (Ada_Version >= Ada_2005
21412 and then
21413 (Nkind (Parent (T)) = N_Subtype_Declaration
21414 or else (Nkind (Parent (T)) = N_Subtype_Indication
21415 and then Nkind (Parent (Parent (T))) =
21416 N_Subtype_Declaration)))
21417 then
21418 Error_Msg_N ("invalid use of type before its full declaration", T);
21419 end if;
21420 end Check_Incomplete;
21421
21422 -- Start of processing for Process_Subtype
21423
21424 begin
21425 -- Case of no constraints present
21426
21427 if Nkind (S) /= N_Subtype_Indication then
21428 Find_Type (S);
21429
21430 -- No way to proceed if the subtype indication is malformed. This
21431 -- will happen for example when the subtype indication in an object
21432 -- declaration is missing altogether and the expression is analyzed
21433 -- as if it were that indication.
21434
21435 if not Is_Entity_Name (S) then
21436 return Any_Type;
21437 end if;
21438
21439 Check_Incomplete (S);
21440 P := Parent (S);
21441
21442 -- Ada 2005 (AI-231): Static check
21443
21444 if Ada_Version >= Ada_2005
21445 and then Present (P)
21446 and then Null_Exclusion_Present (P)
21447 and then Nkind (P) /= N_Access_To_Object_Definition
21448 and then not Is_Access_Type (Entity (S))
21449 then
21450 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
21451 end if;
21452
21453 -- The following is ugly, can't we have a range or even a flag???
21454
21455 May_Have_Null_Exclusion :=
21456 Nkind_In (P, N_Access_Definition,
21457 N_Access_Function_Definition,
21458 N_Access_Procedure_Definition,
21459 N_Access_To_Object_Definition,
21460 N_Allocator,
21461 N_Component_Definition)
21462 or else
21463 Nkind_In (P, N_Derived_Type_Definition,
21464 N_Discriminant_Specification,
21465 N_Formal_Object_Declaration,
21466 N_Object_Declaration,
21467 N_Object_Renaming_Declaration,
21468 N_Parameter_Specification,
21469 N_Subtype_Declaration);
21470
21471 -- Create an Itype that is a duplicate of Entity (S) but with the
21472 -- null-exclusion attribute.
21473
21474 if May_Have_Null_Exclusion
21475 and then Is_Access_Type (Entity (S))
21476 and then Null_Exclusion_Present (P)
21477
21478 -- No need to check the case of an access to object definition.
21479 -- It is correct to define double not-null pointers.
21480
21481 -- Example:
21482 -- type Not_Null_Int_Ptr is not null access Integer;
21483 -- type Acc is not null access Not_Null_Int_Ptr;
21484
21485 and then Nkind (P) /= N_Access_To_Object_Definition
21486 then
21487 if Can_Never_Be_Null (Entity (S)) then
21488 case Nkind (Related_Nod) is
21489 when N_Full_Type_Declaration =>
21490 if Nkind (Type_Definition (Related_Nod))
21491 in N_Array_Type_Definition
21492 then
21493 Error_Node :=
21494 Subtype_Indication
21495 (Component_Definition
21496 (Type_Definition (Related_Nod)));
21497 else
21498 Error_Node :=
21499 Subtype_Indication (Type_Definition (Related_Nod));
21500 end if;
21501
21502 when N_Subtype_Declaration =>
21503 Error_Node := Subtype_Indication (Related_Nod);
21504
21505 when N_Object_Declaration =>
21506 Error_Node := Object_Definition (Related_Nod);
21507
21508 when N_Component_Declaration =>
21509 Error_Node :=
21510 Subtype_Indication (Component_Definition (Related_Nod));
21511
21512 when N_Allocator =>
21513 Error_Node := Expression (Related_Nod);
21514
21515 when others =>
21516 pragma Assert (False);
21517 Error_Node := Related_Nod;
21518 end case;
21519
21520 Error_Msg_NE
21521 ("`NOT NULL` not allowed (& already excludes null)",
21522 Error_Node,
21523 Entity (S));
21524 end if;
21525
21526 Set_Etype (S,
21527 Create_Null_Excluding_Itype
21528 (T => Entity (S),
21529 Related_Nod => P));
21530 Set_Entity (S, Etype (S));
21531 end if;
21532
21533 return Entity (S);
21534
21535 -- Case of constraint present, so that we have an N_Subtype_Indication
21536 -- node (this node is created only if constraints are present).
21537
21538 else
21539 Find_Type (Subtype_Mark (S));
21540
21541 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
21542 and then not
21543 (Nkind (Parent (S)) = N_Subtype_Declaration
21544 and then Is_Itype (Defining_Identifier (Parent (S))))
21545 then
21546 Check_Incomplete (Subtype_Mark (S));
21547 end if;
21548
21549 P := Parent (S);
21550 Subtype_Mark_Id := Entity (Subtype_Mark (S));
21551
21552 -- Explicit subtype declaration case
21553
21554 if Nkind (P) = N_Subtype_Declaration then
21555 Def_Id := Defining_Identifier (P);
21556
21557 -- Explicit derived type definition case
21558
21559 elsif Nkind (P) = N_Derived_Type_Definition then
21560 Def_Id := Defining_Identifier (Parent (P));
21561
21562 -- Implicit case, the Def_Id must be created as an implicit type.
21563 -- The one exception arises in the case of concurrent types, array
21564 -- and access types, where other subsidiary implicit types may be
21565 -- created and must appear before the main implicit type. In these
21566 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
21567 -- has not yet been called to create Def_Id.
21568
21569 else
21570 if Is_Array_Type (Subtype_Mark_Id)
21571 or else Is_Concurrent_Type (Subtype_Mark_Id)
21572 or else Is_Access_Type (Subtype_Mark_Id)
21573 then
21574 Def_Id := Empty;
21575
21576 -- For the other cases, we create a new unattached Itype,
21577 -- and set the indication to ensure it gets attached later.
21578
21579 else
21580 Def_Id :=
21581 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
21582 end if;
21583 end if;
21584
21585 -- If the kind of constraint is invalid for this kind of type,
21586 -- then give an error, and then pretend no constraint was given.
21587
21588 if not Is_Valid_Constraint_Kind
21589 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
21590 then
21591 Error_Msg_N
21592 ("incorrect constraint for this kind of type", Constraint (S));
21593
21594 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
21595
21596 -- Set Ekind of orphan itype, to prevent cascaded errors
21597
21598 if Present (Def_Id) then
21599 Set_Ekind (Def_Id, Ekind (Any_Type));
21600 end if;
21601
21602 -- Make recursive call, having got rid of the bogus constraint
21603
21604 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
21605 end if;
21606
21607 -- Remaining processing depends on type. Select on Base_Type kind to
21608 -- ensure getting to the concrete type kind in the case of a private
21609 -- subtype (needed when only doing semantic analysis).
21610
21611 case Ekind (Base_Type (Subtype_Mark_Id)) is
21612 when Access_Kind =>
21613
21614 -- If this is a constraint on a class-wide type, discard it.
21615 -- There is currently no way to express a partial discriminant
21616 -- constraint on a type with unknown discriminants. This is
21617 -- a pathology that the ACATS wisely decides not to test.
21618
21619 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
21620 if Comes_From_Source (S) then
21621 Error_Msg_N
21622 ("constraint on class-wide type ignored??",
21623 Constraint (S));
21624 end if;
21625
21626 if Nkind (P) = N_Subtype_Declaration then
21627 Set_Subtype_Indication (P,
21628 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
21629 end if;
21630
21631 return Subtype_Mark_Id;
21632 end if;
21633
21634 Constrain_Access (Def_Id, S, Related_Nod);
21635
21636 if Expander_Active
21637 and then Is_Itype (Designated_Type (Def_Id))
21638 and then Nkind (Related_Nod) = N_Subtype_Declaration
21639 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
21640 then
21641 Build_Itype_Reference
21642 (Designated_Type (Def_Id), Related_Nod);
21643 end if;
21644
21645 when Array_Kind =>
21646 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
21647
21648 when Decimal_Fixed_Point_Kind =>
21649 Constrain_Decimal (Def_Id, S);
21650
21651 when Enumeration_Kind =>
21652 Constrain_Enumeration (Def_Id, S);
21653
21654 when Ordinary_Fixed_Point_Kind =>
21655 Constrain_Ordinary_Fixed (Def_Id, S);
21656
21657 when Float_Kind =>
21658 Constrain_Float (Def_Id, S);
21659
21660 when Integer_Kind =>
21661 Constrain_Integer (Def_Id, S);
21662
21663 when Class_Wide_Kind
21664 | E_Incomplete_Type
21665 | E_Record_Subtype
21666 | E_Record_Type
21667 =>
21668 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
21669
21670 if Ekind (Def_Id) = E_Incomplete_Type then
21671 Set_Private_Dependents (Def_Id, New_Elmt_List);
21672 end if;
21673
21674 when Private_Kind =>
21675
21676 -- A private type with unknown discriminants may be completed
21677 -- by an unconstrained array type.
21678
21679 if Has_Unknown_Discriminants (Subtype_Mark_Id)
21680 and then Present (Full_View (Subtype_Mark_Id))
21681 and then Is_Array_Type (Full_View (Subtype_Mark_Id))
21682 then
21683 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
21684
21685 -- ... but more commonly is completed by a discriminated record
21686 -- type.
21687
21688 else
21689 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
21690 end if;
21691
21692 -- The base type may be private but Def_Id may be a full view
21693 -- in an instance.
21694
21695 if Is_Private_Type (Def_Id) then
21696 Set_Private_Dependents (Def_Id, New_Elmt_List);
21697 end if;
21698
21699 -- In case of an invalid constraint prevent further processing
21700 -- since the type constructed is missing expected fields.
21701
21702 if Etype (Def_Id) = Any_Type then
21703 return Def_Id;
21704 end if;
21705
21706 -- If the full view is that of a task with discriminants,
21707 -- we must constrain both the concurrent type and its
21708 -- corresponding record type. Otherwise we will just propagate
21709 -- the constraint to the full view, if available.
21710
21711 if Present (Full_View (Subtype_Mark_Id))
21712 and then Has_Discriminants (Subtype_Mark_Id)
21713 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
21714 then
21715 Full_View_Id :=
21716 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
21717
21718 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
21719 Constrain_Concurrent (Full_View_Id, S,
21720 Related_Nod, Related_Id, Suffix);
21721 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
21722 Set_Full_View (Def_Id, Full_View_Id);
21723
21724 -- Introduce an explicit reference to the private subtype,
21725 -- to prevent scope anomalies in gigi if first use appears
21726 -- in a nested context, e.g. a later function body.
21727 -- Should this be generated in other contexts than a full
21728 -- type declaration?
21729
21730 if Is_Itype (Def_Id)
21731 and then
21732 Nkind (Parent (P)) = N_Full_Type_Declaration
21733 then
21734 Build_Itype_Reference (Def_Id, Parent (P));
21735 end if;
21736
21737 else
21738 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
21739 end if;
21740
21741 when Concurrent_Kind =>
21742 Constrain_Concurrent (Def_Id, S,
21743 Related_Nod, Related_Id, Suffix);
21744
21745 when others =>
21746 Error_Msg_N ("invalid subtype mark in subtype indication", S);
21747 end case;
21748
21749 -- Size, Alignment, Representation aspects and Convention are always
21750 -- inherited from the base type.
21751
21752 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
21753 Set_Rep_Info (Def_Id, (Subtype_Mark_Id));
21754 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
21755
21756 -- The anonymous subtype created for the subtype indication
21757 -- inherits the predicates of the parent.
21758
21759 if Has_Predicates (Subtype_Mark_Id) then
21760 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
21761
21762 -- Indicate where the predicate function may be found.
21763
21764 if No (Predicate_Function (Def_Id)) then
21765 Set_Predicated_Parent (Def_Id, Subtype_Mark_Id);
21766 end if;
21767 end if;
21768
21769 return Def_Id;
21770 end if;
21771 end Process_Subtype;
21772
21773 -----------------------------
21774 -- Record_Type_Declaration --
21775 -----------------------------
21776
21777 procedure Record_Type_Declaration
21778 (T : Entity_Id;
21779 N : Node_Id;
21780 Prev : Entity_Id)
21781 is
21782 Def : constant Node_Id := Type_Definition (N);
21783 Is_Tagged : Boolean;
21784 Tag_Comp : Entity_Id;
21785
21786 begin
21787 -- These flags must be initialized before calling Process_Discriminants
21788 -- because this routine makes use of them.
21789
21790 Set_Ekind (T, E_Record_Type);
21791 Set_Etype (T, T);
21792 Init_Size_Align (T);
21793 Set_Interfaces (T, No_Elist);
21794 Set_Stored_Constraint (T, No_Elist);
21795 Set_Default_SSO (T);
21796 Set_No_Reordering (T, No_Component_Reordering);
21797
21798 -- Normal case
21799
21800 if Ada_Version < Ada_2005 or else not Interface_Present (Def) then
21801 if Limited_Present (Def) then
21802 Check_SPARK_05_Restriction ("limited is not allowed", N);
21803 end if;
21804
21805 if Abstract_Present (Def) then
21806 Check_SPARK_05_Restriction ("abstract is not allowed", N);
21807 end if;
21808
21809 -- The flag Is_Tagged_Type might have already been set by
21810 -- Find_Type_Name if it detected an error for declaration T. This
21811 -- arises in the case of private tagged types where the full view
21812 -- omits the word tagged.
21813
21814 Is_Tagged :=
21815 Tagged_Present (Def)
21816 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
21817
21818 Set_Is_Limited_Record (T, Limited_Present (Def));
21819
21820 if Is_Tagged then
21821 Set_Is_Tagged_Type (T, True);
21822 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
21823 end if;
21824
21825 -- Type is abstract if full declaration carries keyword, or if
21826 -- previous partial view did.
21827
21828 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
21829 or else Abstract_Present (Def));
21830
21831 else
21832 Check_SPARK_05_Restriction ("interface is not allowed", N);
21833
21834 Is_Tagged := True;
21835 Analyze_Interface_Declaration (T, Def);
21836
21837 if Present (Discriminant_Specifications (N)) then
21838 Error_Msg_N
21839 ("interface types cannot have discriminants",
21840 Defining_Identifier
21841 (First (Discriminant_Specifications (N))));
21842 end if;
21843 end if;
21844
21845 -- First pass: if there are self-referential access components,
21846 -- create the required anonymous access type declarations, and if
21847 -- need be an incomplete type declaration for T itself.
21848
21849 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
21850
21851 if Ada_Version >= Ada_2005
21852 and then Present (Interface_List (Def))
21853 then
21854 Check_Interfaces (N, Def);
21855
21856 declare
21857 Ifaces_List : Elist_Id;
21858
21859 begin
21860 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
21861 -- already in the parents.
21862
21863 Collect_Interfaces
21864 (T => T,
21865 Ifaces_List => Ifaces_List,
21866 Exclude_Parents => True);
21867
21868 Set_Interfaces (T, Ifaces_List);
21869 end;
21870 end if;
21871
21872 -- Records constitute a scope for the component declarations within.
21873 -- The scope is created prior to the processing of these declarations.
21874 -- Discriminants are processed first, so that they are visible when
21875 -- processing the other components. The Ekind of the record type itself
21876 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
21877
21878 -- Enter record scope
21879
21880 Push_Scope (T);
21881
21882 -- If an incomplete or private type declaration was already given for
21883 -- the type, then this scope already exists, and the discriminants have
21884 -- been declared within. We must verify that the full declaration
21885 -- matches the incomplete one.
21886
21887 Check_Or_Process_Discriminants (N, T, Prev);
21888
21889 Set_Is_Constrained (T, not Has_Discriminants (T));
21890 Set_Has_Delayed_Freeze (T, True);
21891
21892 -- For tagged types add a manually analyzed component corresponding
21893 -- to the component _tag, the corresponding piece of tree will be
21894 -- expanded as part of the freezing actions if it is not a CPP_Class.
21895
21896 if Is_Tagged then
21897
21898 -- Do not add the tag unless we are in expansion mode
21899
21900 if Expander_Active then
21901 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
21902 Enter_Name (Tag_Comp);
21903
21904 Set_Ekind (Tag_Comp, E_Component);
21905 Set_Is_Tag (Tag_Comp);
21906 Set_Is_Aliased (Tag_Comp);
21907 Set_Etype (Tag_Comp, RTE (RE_Tag));
21908 Set_DT_Entry_Count (Tag_Comp, No_Uint);
21909 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
21910 Init_Component_Location (Tag_Comp);
21911
21912 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
21913 -- implemented interfaces.
21914
21915 if Has_Interfaces (T) then
21916 Add_Interface_Tag_Components (N, T);
21917 end if;
21918 end if;
21919
21920 Make_Class_Wide_Type (T);
21921 Set_Direct_Primitive_Operations (T, New_Elmt_List);
21922 end if;
21923
21924 -- We must suppress range checks when processing record components in
21925 -- the presence of discriminants, since we don't want spurious checks to
21926 -- be generated during their analysis, but Suppress_Range_Checks flags
21927 -- must be reset the after processing the record definition.
21928
21929 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
21930 -- couldn't we just use the normal range check suppression method here.
21931 -- That would seem cleaner ???
21932
21933 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
21934 Set_Kill_Range_Checks (T, True);
21935 Record_Type_Definition (Def, Prev);
21936 Set_Kill_Range_Checks (T, False);
21937 else
21938 Record_Type_Definition (Def, Prev);
21939 end if;
21940
21941 -- Exit from record scope
21942
21943 End_Scope;
21944
21945 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
21946 -- the implemented interfaces and associate them an aliased entity.
21947
21948 if Is_Tagged
21949 and then not Is_Empty_List (Interface_List (Def))
21950 then
21951 Derive_Progenitor_Subprograms (T, T);
21952 end if;
21953
21954 Check_Function_Writable_Actuals (N);
21955 end Record_Type_Declaration;
21956
21957 ----------------------------
21958 -- Record_Type_Definition --
21959 ----------------------------
21960
21961 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
21962 Component : Entity_Id;
21963 Ctrl_Components : Boolean := False;
21964 Final_Storage_Only : Boolean;
21965 T : Entity_Id;
21966
21967 begin
21968 if Ekind (Prev_T) = E_Incomplete_Type then
21969 T := Full_View (Prev_T);
21970 else
21971 T := Prev_T;
21972 end if;
21973
21974 -- In SPARK, tagged types and type extensions may only be declared in
21975 -- the specification of library unit packages.
21976
21977 if Present (Def) and then Is_Tagged_Type (T) then
21978 declare
21979 Typ : Node_Id;
21980 Ctxt : Node_Id;
21981
21982 begin
21983 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
21984 Typ := Parent (Def);
21985 else
21986 pragma Assert
21987 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
21988 Typ := Parent (Parent (Def));
21989 end if;
21990
21991 Ctxt := Parent (Typ);
21992
21993 if Nkind (Ctxt) = N_Package_Body
21994 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
21995 then
21996 Check_SPARK_05_Restriction
21997 ("type should be defined in package specification", Typ);
21998
21999 elsif Nkind (Ctxt) /= N_Package_Specification
22000 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
22001 then
22002 Check_SPARK_05_Restriction
22003 ("type should be defined in library unit package", Typ);
22004 end if;
22005 end;
22006 end if;
22007
22008 Final_Storage_Only := not Is_Controlled (T);
22009
22010 -- Ada 2005: Check whether an explicit Limited is present in a derived
22011 -- type declaration.
22012
22013 if Nkind (Parent (Def)) = N_Derived_Type_Definition
22014 and then Limited_Present (Parent (Def))
22015 then
22016 Set_Is_Limited_Record (T);
22017 end if;
22018
22019 -- If the component list of a record type is defined by the reserved
22020 -- word null and there is no discriminant part, then the record type has
22021 -- no components and all records of the type are null records (RM 3.7)
22022 -- This procedure is also called to process the extension part of a
22023 -- record extension, in which case the current scope may have inherited
22024 -- components.
22025
22026 if No (Def)
22027 or else No (Component_List (Def))
22028 or else Null_Present (Component_List (Def))
22029 then
22030 if not Is_Tagged_Type (T) then
22031 Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
22032 end if;
22033
22034 else
22035 Analyze_Declarations (Component_Items (Component_List (Def)));
22036
22037 if Present (Variant_Part (Component_List (Def))) then
22038 Check_SPARK_05_Restriction ("variant part is not allowed", Def);
22039 Analyze (Variant_Part (Component_List (Def)));
22040 end if;
22041 end if;
22042
22043 -- After completing the semantic analysis of the record definition,
22044 -- record components, both new and inherited, are accessible. Set their
22045 -- kind accordingly. Exclude malformed itypes from illegal declarations,
22046 -- whose Ekind may be void.
22047
22048 Component := First_Entity (Current_Scope);
22049 while Present (Component) loop
22050 if Ekind (Component) = E_Void
22051 and then not Is_Itype (Component)
22052 then
22053 Set_Ekind (Component, E_Component);
22054 Init_Component_Location (Component);
22055 end if;
22056
22057 Propagate_Concurrent_Flags (T, Etype (Component));
22058
22059 if Ekind (Component) /= E_Component then
22060 null;
22061
22062 -- Do not set Has_Controlled_Component on a class-wide equivalent
22063 -- type. See Make_CW_Equivalent_Type.
22064
22065 elsif not Is_Class_Wide_Equivalent_Type (T)
22066 and then (Has_Controlled_Component (Etype (Component))
22067 or else (Chars (Component) /= Name_uParent
22068 and then Is_Controlled (Etype (Component))))
22069 then
22070 Set_Has_Controlled_Component (T, True);
22071 Final_Storage_Only :=
22072 Final_Storage_Only
22073 and then Finalize_Storage_Only (Etype (Component));
22074 Ctrl_Components := True;
22075 end if;
22076
22077 Next_Entity (Component);
22078 end loop;
22079
22080 -- A Type is Finalize_Storage_Only only if all its controlled components
22081 -- are also.
22082
22083 if Ctrl_Components then
22084 Set_Finalize_Storage_Only (T, Final_Storage_Only);
22085 end if;
22086
22087 -- Place reference to end record on the proper entity, which may
22088 -- be a partial view.
22089
22090 if Present (Def) then
22091 Process_End_Label (Def, 'e', Prev_T);
22092 end if;
22093 end Record_Type_Definition;
22094
22095 ------------------------
22096 -- Replace_Components --
22097 ------------------------
22098
22099 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
22100 function Process (N : Node_Id) return Traverse_Result;
22101
22102 -------------
22103 -- Process --
22104 -------------
22105
22106 function Process (N : Node_Id) return Traverse_Result is
22107 Comp : Entity_Id;
22108
22109 begin
22110 if Nkind (N) = N_Discriminant_Specification then
22111 Comp := First_Discriminant (Typ);
22112 while Present (Comp) loop
22113 if Chars (Comp) = Chars (Defining_Identifier (N)) then
22114 Set_Defining_Identifier (N, Comp);
22115 exit;
22116 end if;
22117
22118 Next_Discriminant (Comp);
22119 end loop;
22120
22121 elsif Nkind (N) = N_Variant_Part then
22122 Comp := First_Discriminant (Typ);
22123 while Present (Comp) loop
22124 if Chars (Comp) = Chars (Name (N)) then
22125 Set_Entity (Name (N), Comp);
22126 exit;
22127 end if;
22128
22129 Next_Discriminant (Comp);
22130 end loop;
22131
22132 elsif Nkind (N) = N_Component_Declaration then
22133 Comp := First_Component (Typ);
22134 while Present (Comp) loop
22135 if Chars (Comp) = Chars (Defining_Identifier (N)) then
22136 Set_Defining_Identifier (N, Comp);
22137 exit;
22138 end if;
22139
22140 Next_Component (Comp);
22141 end loop;
22142 end if;
22143
22144 return OK;
22145 end Process;
22146
22147 procedure Replace is new Traverse_Proc (Process);
22148
22149 -- Start of processing for Replace_Components
22150
22151 begin
22152 Replace (Decl);
22153 end Replace_Components;
22154
22155 -------------------------------
22156 -- Set_Completion_Referenced --
22157 -------------------------------
22158
22159 procedure Set_Completion_Referenced (E : Entity_Id) is
22160 begin
22161 -- If in main unit, mark entity that is a completion as referenced,
22162 -- warnings go on the partial view when needed.
22163
22164 if In_Extended_Main_Source_Unit (E) then
22165 Set_Referenced (E);
22166 end if;
22167 end Set_Completion_Referenced;
22168
22169 ---------------------
22170 -- Set_Default_SSO --
22171 ---------------------
22172
22173 procedure Set_Default_SSO (T : Entity_Id) is
22174 begin
22175 case Opt.Default_SSO is
22176 when ' ' =>
22177 null;
22178 when 'L' =>
22179 Set_SSO_Set_Low_By_Default (T, True);
22180 when 'H' =>
22181 Set_SSO_Set_High_By_Default (T, True);
22182 when others =>
22183 raise Program_Error;
22184 end case;
22185 end Set_Default_SSO;
22186
22187 ---------------------
22188 -- Set_Fixed_Range --
22189 ---------------------
22190
22191 -- The range for fixed-point types is complicated by the fact that we
22192 -- do not know the exact end points at the time of the declaration. This
22193 -- is true for three reasons:
22194
22195 -- A size clause may affect the fudging of the end-points.
22196 -- A small clause may affect the values of the end-points.
22197 -- We try to include the end-points if it does not affect the size.
22198
22199 -- This means that the actual end-points must be established at the
22200 -- point when the type is frozen. Meanwhile, we first narrow the range
22201 -- as permitted (so that it will fit if necessary in a small specified
22202 -- size), and then build a range subtree with these narrowed bounds.
22203 -- Set_Fixed_Range constructs the range from real literal values, and
22204 -- sets the range as the Scalar_Range of the given fixed-point type entity.
22205
22206 -- The parent of this range is set to point to the entity so that it is
22207 -- properly hooked into the tree (unlike normal Scalar_Range entries for
22208 -- other scalar types, which are just pointers to the range in the
22209 -- original tree, this would otherwise be an orphan).
22210
22211 -- The tree is left unanalyzed. When the type is frozen, the processing
22212 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
22213 -- analyzed, and uses this as an indication that it should complete
22214 -- work on the range (it will know the final small and size values).
22215
22216 procedure Set_Fixed_Range
22217 (E : Entity_Id;
22218 Loc : Source_Ptr;
22219 Lo : Ureal;
22220 Hi : Ureal)
22221 is
22222 S : constant Node_Id :=
22223 Make_Range (Loc,
22224 Low_Bound => Make_Real_Literal (Loc, Lo),
22225 High_Bound => Make_Real_Literal (Loc, Hi));
22226 begin
22227 Set_Scalar_Range (E, S);
22228 Set_Parent (S, E);
22229
22230 -- Before the freeze point, the bounds of a fixed point are universal
22231 -- and carry the corresponding type.
22232
22233 Set_Etype (Low_Bound (S), Universal_Real);
22234 Set_Etype (High_Bound (S), Universal_Real);
22235 end Set_Fixed_Range;
22236
22237 ----------------------------------
22238 -- Set_Scalar_Range_For_Subtype --
22239 ----------------------------------
22240
22241 procedure Set_Scalar_Range_For_Subtype
22242 (Def_Id : Entity_Id;
22243 R : Node_Id;
22244 Subt : Entity_Id)
22245 is
22246 Kind : constant Entity_Kind := Ekind (Def_Id);
22247
22248 begin
22249 -- Defend against previous error
22250
22251 if Nkind (R) = N_Error then
22252 return;
22253 end if;
22254
22255 Set_Scalar_Range (Def_Id, R);
22256
22257 -- We need to link the range into the tree before resolving it so
22258 -- that types that are referenced, including importantly the subtype
22259 -- itself, are properly frozen (Freeze_Expression requires that the
22260 -- expression be properly linked into the tree). Of course if it is
22261 -- already linked in, then we do not disturb the current link.
22262
22263 if No (Parent (R)) then
22264 Set_Parent (R, Def_Id);
22265 end if;
22266
22267 -- Reset the kind of the subtype during analysis of the range, to
22268 -- catch possible premature use in the bounds themselves.
22269
22270 Set_Ekind (Def_Id, E_Void);
22271 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
22272 Set_Ekind (Def_Id, Kind);
22273 end Set_Scalar_Range_For_Subtype;
22274
22275 --------------------------------------------------------
22276 -- Set_Stored_Constraint_From_Discriminant_Constraint --
22277 --------------------------------------------------------
22278
22279 procedure Set_Stored_Constraint_From_Discriminant_Constraint
22280 (E : Entity_Id)
22281 is
22282 begin
22283 -- Make sure set if encountered during Expand_To_Stored_Constraint
22284
22285 Set_Stored_Constraint (E, No_Elist);
22286
22287 -- Give it the right value
22288
22289 if Is_Constrained (E) and then Has_Discriminants (E) then
22290 Set_Stored_Constraint (E,
22291 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
22292 end if;
22293 end Set_Stored_Constraint_From_Discriminant_Constraint;
22294
22295 -------------------------------------
22296 -- Signed_Integer_Type_Declaration --
22297 -------------------------------------
22298
22299 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
22300 Implicit_Base : Entity_Id;
22301 Base_Typ : Entity_Id;
22302 Lo_Val : Uint;
22303 Hi_Val : Uint;
22304 Errs : Boolean := False;
22305 Lo : Node_Id;
22306 Hi : Node_Id;
22307
22308 function Can_Derive_From (E : Entity_Id) return Boolean;
22309 -- Determine whether given bounds allow derivation from specified type
22310
22311 procedure Check_Bound (Expr : Node_Id);
22312 -- Check bound to make sure it is integral and static. If not, post
22313 -- appropriate error message and set Errs flag
22314
22315 ---------------------
22316 -- Can_Derive_From --
22317 ---------------------
22318
22319 -- Note we check both bounds against both end values, to deal with
22320 -- strange types like ones with a range of 0 .. -12341234.
22321
22322 function Can_Derive_From (E : Entity_Id) return Boolean is
22323 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
22324 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
22325 begin
22326 return Lo <= Lo_Val and then Lo_Val <= Hi
22327 and then
22328 Lo <= Hi_Val and then Hi_Val <= Hi;
22329 end Can_Derive_From;
22330
22331 -----------------
22332 -- Check_Bound --
22333 -----------------
22334
22335 procedure Check_Bound (Expr : Node_Id) is
22336 begin
22337 -- If a range constraint is used as an integer type definition, each
22338 -- bound of the range must be defined by a static expression of some
22339 -- integer type, but the two bounds need not have the same integer
22340 -- type (Negative bounds are allowed.) (RM 3.5.4)
22341
22342 if not Is_Integer_Type (Etype (Expr)) then
22343 Error_Msg_N
22344 ("integer type definition bounds must be of integer type", Expr);
22345 Errs := True;
22346
22347 elsif not Is_OK_Static_Expression (Expr) then
22348 Flag_Non_Static_Expr
22349 ("non-static expression used for integer type bound!", Expr);
22350 Errs := True;
22351
22352 -- The bounds are folded into literals, and we set their type to be
22353 -- universal, to avoid typing difficulties: we cannot set the type
22354 -- of the literal to the new type, because this would be a forward
22355 -- reference for the back end, and if the original type is user-
22356 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
22357
22358 else
22359 if Is_Entity_Name (Expr) then
22360 Fold_Uint (Expr, Expr_Value (Expr), True);
22361 end if;
22362
22363 Set_Etype (Expr, Universal_Integer);
22364 end if;
22365 end Check_Bound;
22366
22367 -- Start of processing for Signed_Integer_Type_Declaration
22368
22369 begin
22370 -- Create an anonymous base type
22371
22372 Implicit_Base :=
22373 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
22374
22375 -- Analyze and check the bounds, they can be of any integer type
22376
22377 Lo := Low_Bound (Def);
22378 Hi := High_Bound (Def);
22379
22380 -- Arbitrarily use Integer as the type if either bound had an error
22381
22382 if Hi = Error or else Lo = Error then
22383 Base_Typ := Any_Integer;
22384 Set_Error_Posted (T, True);
22385
22386 -- Here both bounds are OK expressions
22387
22388 else
22389 Analyze_And_Resolve (Lo, Any_Integer);
22390 Analyze_And_Resolve (Hi, Any_Integer);
22391
22392 Check_Bound (Lo);
22393 Check_Bound (Hi);
22394
22395 if Errs then
22396 Hi := Type_High_Bound (Standard_Long_Long_Integer);
22397 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
22398 end if;
22399
22400 -- Find type to derive from
22401
22402 Lo_Val := Expr_Value (Lo);
22403 Hi_Val := Expr_Value (Hi);
22404
22405 if Can_Derive_From (Standard_Short_Short_Integer) then
22406 Base_Typ := Base_Type (Standard_Short_Short_Integer);
22407
22408 elsif Can_Derive_From (Standard_Short_Integer) then
22409 Base_Typ := Base_Type (Standard_Short_Integer);
22410
22411 elsif Can_Derive_From (Standard_Integer) then
22412 Base_Typ := Base_Type (Standard_Integer);
22413
22414 elsif Can_Derive_From (Standard_Long_Integer) then
22415 Base_Typ := Base_Type (Standard_Long_Integer);
22416
22417 elsif Can_Derive_From (Standard_Long_Long_Integer) then
22418 Check_Restriction (No_Long_Long_Integers, Def);
22419 Base_Typ := Base_Type (Standard_Long_Long_Integer);
22420
22421 else
22422 Base_Typ := Base_Type (Standard_Long_Long_Integer);
22423 Error_Msg_N ("integer type definition bounds out of range", Def);
22424 Hi := Type_High_Bound (Standard_Long_Long_Integer);
22425 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
22426 end if;
22427 end if;
22428
22429 -- Complete both implicit base and declared first subtype entities. The
22430 -- inheritance of the rep item chain ensures that SPARK-related pragmas
22431 -- are not clobbered when the signed integer type acts as a full view of
22432 -- a private type.
22433
22434 Set_Etype (Implicit_Base, Base_Typ);
22435 Set_Size_Info (Implicit_Base, Base_Typ);
22436 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
22437 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
22438 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
22439
22440 Set_Ekind (T, E_Signed_Integer_Subtype);
22441 Set_Etype (T, Implicit_Base);
22442 Set_Size_Info (T, Implicit_Base);
22443 Inherit_Rep_Item_Chain (T, Implicit_Base);
22444 Set_Scalar_Range (T, Def);
22445 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
22446 Set_Is_Constrained (T);
22447 end Signed_Integer_Type_Declaration;
22448
22449 end Sem_Ch3;