[multiple changes]
[gcc.git] / gcc / ada / sem_ch3.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Elists; use Elists;
31 with Einfo; use Einfo;
32 with Errout; use Errout;
33 with Eval_Fat; use Eval_Fat;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Dist; use Exp_Dist;
38 with Exp_Tss; use Exp_Tss;
39 with Exp_Util; use Exp_Util;
40 with Fname; use Fname;
41 with Freeze; use Freeze;
42 with Itypes; use Itypes;
43 with Layout; use Layout;
44 with Lib; use Lib;
45 with Lib.Xref; use Lib.Xref;
46 with Namet; use Namet;
47 with Nmake; use Nmake;
48 with Opt; use Opt;
49 with Restrict; use Restrict;
50 with Rident; use Rident;
51 with Rtsfind; use Rtsfind;
52 with Sem; use Sem;
53 with Sem_Aux; use Sem_Aux;
54 with Sem_Case; use Sem_Case;
55 with Sem_Cat; use Sem_Cat;
56 with Sem_Ch6; use Sem_Ch6;
57 with Sem_Ch7; use Sem_Ch7;
58 with Sem_Ch8; use Sem_Ch8;
59 with Sem_Ch10; use Sem_Ch10;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Dim; use Sem_Dim;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elim; use Sem_Elim;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Mech; use Sem_Mech;
67 with Sem_Prag; use Sem_Prag;
68 with Sem_Res; use Sem_Res;
69 with Sem_Smem; use Sem_Smem;
70 with Sem_Type; use Sem_Type;
71 with Sem_Util; use Sem_Util;
72 with Sem_Warn; use Sem_Warn;
73 with Stand; use Stand;
74 with Sinfo; use Sinfo;
75 with Sinput; use Sinput;
76 with Snames; use Snames;
77 with Targparm; use Targparm;
78 with Tbuild; use Tbuild;
79 with Ttypes; use Ttypes;
80 with Uintp; use Uintp;
81 with Urealp; use Urealp;
82
83 package body Sem_Ch3 is
84
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
88
89 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
92 -- record type.
93
94 procedure Analyze_Object_Contract (Obj_Id : Entity_Id);
95 -- Analyze all delayed pragmas chained on the contract of object Obj_Id as
96 -- if they appeared at the end of the declarative region. The pragmas to be
97 -- considered are:
98 -- Async_Readers
99 -- Async_Writers
100 -- Effective_Reads
101 -- Effective_Writes
102 -- Part_Of
103
104 procedure Build_Derived_Type
105 (N : Node_Id;
106 Parent_Type : Entity_Id;
107 Derived_Type : Entity_Id;
108 Is_Completion : Boolean;
109 Derive_Subps : Boolean := True);
110 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
111 -- the N_Full_Type_Declaration node containing the derived type definition.
112 -- Parent_Type is the entity for the parent type in the derived type
113 -- definition and Derived_Type the actual derived type. Is_Completion must
114 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
115 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
116 -- completion of a private type declaration. If Is_Completion is set to
117 -- True, N is the completion of a private type declaration and Derived_Type
118 -- is different from the defining identifier inside N (i.e. Derived_Type /=
119 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
120 -- subprograms should be derived. The only case where this parameter is
121 -- False is when Build_Derived_Type is recursively called to process an
122 -- implicit derived full type for a type derived from a private type (in
123 -- that case the subprograms must only be derived for the private view of
124 -- the type).
125 --
126 -- ??? These flags need a bit of re-examination and re-documentation:
127 -- ??? are they both necessary (both seem related to the recursion)?
128
129 procedure Build_Derived_Access_Type
130 (N : Node_Id;
131 Parent_Type : Entity_Id;
132 Derived_Type : Entity_Id);
133 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
134 -- create an implicit base if the parent type is constrained or if the
135 -- subtype indication has a constraint.
136
137 procedure Build_Derived_Array_Type
138 (N : Node_Id;
139 Parent_Type : Entity_Id;
140 Derived_Type : Entity_Id);
141 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
142 -- create an implicit base if the parent type is constrained or if the
143 -- subtype indication has a constraint.
144
145 procedure Build_Derived_Concurrent_Type
146 (N : Node_Id;
147 Parent_Type : Entity_Id;
148 Derived_Type : Entity_Id);
149 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
150 -- protected type, inherit entries and protected subprograms, check
151 -- legality of discriminant constraints if any.
152
153 procedure Build_Derived_Enumeration_Type
154 (N : Node_Id;
155 Parent_Type : Entity_Id;
156 Derived_Type : Entity_Id);
157 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
158 -- type, we must create a new list of literals. Types derived from
159 -- Character and [Wide_]Wide_Character are special-cased.
160
161 procedure Build_Derived_Numeric_Type
162 (N : Node_Id;
163 Parent_Type : Entity_Id;
164 Derived_Type : Entity_Id);
165 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
166 -- an anonymous base type, and propagate constraint to subtype if needed.
167
168 procedure Build_Derived_Private_Type
169 (N : Node_Id;
170 Parent_Type : Entity_Id;
171 Derived_Type : Entity_Id;
172 Is_Completion : Boolean;
173 Derive_Subps : Boolean := True);
174 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
175 -- because the parent may or may not have a completion, and the derivation
176 -- may itself be a completion.
177
178 procedure Build_Derived_Record_Type
179 (N : Node_Id;
180 Parent_Type : Entity_Id;
181 Derived_Type : Entity_Id;
182 Derive_Subps : Boolean := True);
183 -- Subsidiary procedure used for tagged and untagged record types
184 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
185 -- All parameters are as in Build_Derived_Type except that N, in
186 -- addition to being an N_Full_Type_Declaration node, can also be an
187 -- N_Private_Extension_Declaration node. See the definition of this routine
188 -- for much more info. Derive_Subps indicates whether subprograms should be
189 -- derived from the parent type. The only case where Derive_Subps is False
190 -- is for an implicit derived full type for a type derived from a private
191 -- type (see Build_Derived_Type).
192
193 procedure Build_Discriminal (Discrim : Entity_Id);
194 -- Create the discriminal corresponding to discriminant Discrim, that is
195 -- the parameter corresponding to Discrim to be used in initialization
196 -- procedures for the type where Discrim is a discriminant. Discriminals
197 -- are not used during semantic analysis, and are not fully defined
198 -- entities until expansion. Thus they are not given a scope until
199 -- initialization procedures are built.
200
201 function Build_Discriminant_Constraints
202 (T : Entity_Id;
203 Def : Node_Id;
204 Derived_Def : Boolean := False) return Elist_Id;
205 -- Validate discriminant constraints and return the list of the constraints
206 -- in order of discriminant declarations, where T is the discriminated
207 -- unconstrained type. Def is the N_Subtype_Indication node where the
208 -- discriminants constraints for T are specified. Derived_Def is True
209 -- when building the discriminant constraints in a derived type definition
210 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
211 -- type and Def is the constraint "(xxx)" on T and this routine sets the
212 -- Corresponding_Discriminant field of the discriminants in the derived
213 -- type D to point to the corresponding discriminants in the parent type T.
214
215 procedure Build_Discriminated_Subtype
216 (T : Entity_Id;
217 Def_Id : Entity_Id;
218 Elist : Elist_Id;
219 Related_Nod : Node_Id;
220 For_Access : Boolean := False);
221 -- Subsidiary procedure to Constrain_Discriminated_Type and to
222 -- Process_Incomplete_Dependents. Given
223 --
224 -- T (a possibly discriminated base type)
225 -- Def_Id (a very partially built subtype for T),
226 --
227 -- the call completes Def_Id to be the appropriate E_*_Subtype.
228 --
229 -- The Elist is the list of discriminant constraints if any (it is set
230 -- to No_Elist if T is not a discriminated type, and to an empty list if
231 -- T has discriminants but there are no discriminant constraints). The
232 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
233 -- The For_Access says whether or not this subtype is really constraining
234 -- an access type. That is its sole purpose is the designated type of an
235 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
236 -- is built to avoid freezing T when the access subtype is frozen.
237
238 function Build_Scalar_Bound
239 (Bound : Node_Id;
240 Par_T : Entity_Id;
241 Der_T : Entity_Id) return Node_Id;
242 -- The bounds of a derived scalar type are conversions of the bounds of
243 -- the parent type. Optimize the representation if the bounds are literals.
244 -- Needs a more complete spec--what are the parameters exactly, and what
245 -- exactly is the returned value, and how is Bound affected???
246
247 procedure Build_Underlying_Full_View
248 (N : Node_Id;
249 Typ : Entity_Id;
250 Par : Entity_Id);
251 -- If the completion of a private type is itself derived from a private
252 -- type, or if the full view of a private subtype is itself private, the
253 -- back-end has no way to compute the actual size of this type. We build
254 -- an internal subtype declaration of the proper parent type to convey
255 -- this information. This extra mechanism is needed because a full
256 -- view cannot itself have a full view (it would get clobbered during
257 -- view exchanges).
258
259 procedure Check_Access_Discriminant_Requires_Limited
260 (D : Node_Id;
261 Loc : Node_Id);
262 -- Check the restriction that the type to which an access discriminant
263 -- belongs must be a concurrent type or a descendant of a type with
264 -- the reserved word 'limited' in its declaration.
265
266 procedure Check_Anonymous_Access_Components
267 (Typ_Decl : Node_Id;
268 Typ : Entity_Id;
269 Prev : Entity_Id;
270 Comp_List : Node_Id);
271 -- Ada 2005 AI-382: an access component in a record definition can refer to
272 -- the enclosing record, in which case it denotes the type itself, and not
273 -- the current instance of the type. We create an anonymous access type for
274 -- the component, and flag it as an access to a component, so accessibility
275 -- checks are properly performed on it. The declaration of the access type
276 -- is placed ahead of that of the record to prevent order-of-elaboration
277 -- circularity issues in Gigi. We create an incomplete type for the record
278 -- declaration, which is the designated type of the anonymous access.
279
280 procedure Check_Delta_Expression (E : Node_Id);
281 -- Check that the expression represented by E is suitable for use as a
282 -- delta expression, i.e. it is of real type and is static.
283
284 procedure Check_Digits_Expression (E : Node_Id);
285 -- Check that the expression represented by E is suitable for use as a
286 -- digits expression, i.e. it is of integer type, positive and static.
287
288 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
289 -- Validate the initialization of an object declaration. T is the required
290 -- type, and Exp is the initialization expression.
291
292 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
293 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
294
295 procedure Check_Or_Process_Discriminants
296 (N : Node_Id;
297 T : Entity_Id;
298 Prev : Entity_Id := Empty);
299 -- If N is the full declaration of the completion T of an incomplete or
300 -- private type, check its discriminants (which are already known to be
301 -- conformant with those of the partial view, see Find_Type_Name),
302 -- otherwise process them. Prev is the entity of the partial declaration,
303 -- if any.
304
305 procedure Check_Real_Bound (Bound : Node_Id);
306 -- Check given bound for being of real type and static. If not, post an
307 -- appropriate message, and rewrite the bound with the real literal zero.
308
309 procedure Constant_Redeclaration
310 (Id : Entity_Id;
311 N : Node_Id;
312 T : out Entity_Id);
313 -- Various checks on legality of full declaration of deferred constant.
314 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
315 -- node. The caller has not yet set any attributes of this entity.
316
317 function Contain_Interface
318 (Iface : Entity_Id;
319 Ifaces : Elist_Id) return Boolean;
320 -- Ada 2005: Determine whether Iface is present in the list Ifaces
321
322 procedure Convert_Scalar_Bounds
323 (N : Node_Id;
324 Parent_Type : Entity_Id;
325 Derived_Type : Entity_Id;
326 Loc : Source_Ptr);
327 -- For derived scalar types, convert the bounds in the type definition to
328 -- the derived type, and complete their analysis. Given a constraint of the
329 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
330 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
331 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
332 -- subtype are conversions of those bounds to the derived_type, so that
333 -- their typing is consistent.
334
335 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
336 -- Copies attributes from array base type T2 to array base type T1. Copies
337 -- only attributes that apply to base types, but not subtypes.
338
339 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
340 -- Copies attributes from array subtype T2 to array subtype T1. Copies
341 -- attributes that apply to both subtypes and base types.
342
343 procedure Create_Constrained_Components
344 (Subt : Entity_Id;
345 Decl_Node : Node_Id;
346 Typ : Entity_Id;
347 Constraints : Elist_Id);
348 -- Build the list of entities for a constrained discriminated record
349 -- subtype. If a component depends on a discriminant, replace its subtype
350 -- using the discriminant values in the discriminant constraint. Subt
351 -- is the defining identifier for the subtype whose list of constrained
352 -- entities we will create. Decl_Node is the type declaration node where
353 -- we will attach all the itypes created. Typ is the base discriminated
354 -- type for the subtype Subt. Constraints is the list of discriminant
355 -- constraints for Typ.
356
357 function Constrain_Component_Type
358 (Comp : Entity_Id;
359 Constrained_Typ : Entity_Id;
360 Related_Node : Node_Id;
361 Typ : Entity_Id;
362 Constraints : Elist_Id) return Entity_Id;
363 -- Given a discriminated base type Typ, a list of discriminant constraints,
364 -- Constraints, for Typ and a component Comp of Typ, create and return the
365 -- type corresponding to Etype (Comp) where all discriminant references
366 -- are replaced with the corresponding constraint. If Etype (Comp) contains
367 -- no discriminant references then it is returned as-is. Constrained_Typ
368 -- is the final constrained subtype to which the constrained component
369 -- belongs. Related_Node is the node where we attach all created itypes.
370
371 procedure Constrain_Access
372 (Def_Id : in out Entity_Id;
373 S : Node_Id;
374 Related_Nod : Node_Id);
375 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
376 -- an anonymous type created for a subtype indication. In that case it is
377 -- created in the procedure and attached to Related_Nod.
378
379 procedure Constrain_Array
380 (Def_Id : in out Entity_Id;
381 SI : Node_Id;
382 Related_Nod : Node_Id;
383 Related_Id : Entity_Id;
384 Suffix : Character);
385 -- Apply a list of index constraints to an unconstrained array type. The
386 -- first parameter is the entity for the resulting subtype. A value of
387 -- Empty for Def_Id indicates that an implicit type must be created, but
388 -- creation is delayed (and must be done by this procedure) because other
389 -- subsidiary implicit types must be created first (which is why Def_Id
390 -- is an in/out parameter). The second parameter is a subtype indication
391 -- node for the constrained array to be created (e.g. something of the
392 -- form string (1 .. 10)). Related_Nod gives the place where this type
393 -- has to be inserted in the tree. The Related_Id and Suffix parameters
394 -- are used to build the associated Implicit type name.
395
396 procedure Constrain_Concurrent
397 (Def_Id : in out Entity_Id;
398 SI : Node_Id;
399 Related_Nod : Node_Id;
400 Related_Id : Entity_Id;
401 Suffix : Character);
402 -- Apply list of discriminant constraints to an unconstrained concurrent
403 -- type.
404 --
405 -- SI is the N_Subtype_Indication node containing the constraint and
406 -- the unconstrained type to constrain.
407 --
408 -- Def_Id is the entity for the resulting constrained subtype. A value
409 -- of Empty for Def_Id indicates that an implicit type must be created,
410 -- but creation is delayed (and must be done by this procedure) because
411 -- other subsidiary implicit types must be created first (which is why
412 -- Def_Id is an in/out parameter).
413 --
414 -- Related_Nod gives the place where this type has to be inserted
415 -- in the tree.
416 --
417 -- The last two arguments are used to create its external name if needed.
418
419 function Constrain_Corresponding_Record
420 (Prot_Subt : Entity_Id;
421 Corr_Rec : Entity_Id;
422 Related_Nod : Node_Id) return Entity_Id;
423 -- When constraining a protected type or task type with discriminants,
424 -- constrain the corresponding record with the same discriminant values.
425
426 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
427 -- Constrain a decimal fixed point type with a digits constraint and/or a
428 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
429
430 procedure Constrain_Discriminated_Type
431 (Def_Id : Entity_Id;
432 S : Node_Id;
433 Related_Nod : Node_Id;
434 For_Access : Boolean := False);
435 -- Process discriminant constraints of composite type. Verify that values
436 -- have been provided for all discriminants, that the original type is
437 -- unconstrained, and that the types of the supplied expressions match
438 -- the discriminant types. The first three parameters are like in routine
439 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
440 -- of For_Access.
441
442 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
443 -- Constrain an enumeration type with a range constraint. This is identical
444 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
445
446 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
447 -- Constrain a floating point type with either a digits constraint
448 -- and/or a range constraint, building a E_Floating_Point_Subtype.
449
450 procedure Constrain_Index
451 (Index : Node_Id;
452 S : Node_Id;
453 Related_Nod : Node_Id;
454 Related_Id : Entity_Id;
455 Suffix : Character;
456 Suffix_Index : Nat);
457 -- Process an index constraint S in a constrained array declaration. The
458 -- constraint can be a subtype name, or a range with or without an explicit
459 -- subtype mark. The index is the corresponding index of the unconstrained
460 -- array. The Related_Id and Suffix parameters are used to build the
461 -- associated Implicit type name.
462
463 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
464 -- Build subtype of a signed or modular integer type
465
466 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
467 -- Constrain an ordinary fixed point type with a range constraint, and
468 -- build an E_Ordinary_Fixed_Point_Subtype entity.
469
470 procedure Copy_And_Swap (Priv, Full : Entity_Id);
471 -- Copy the Priv entity into the entity of its full declaration then swap
472 -- the two entities in such a manner that the former private type is now
473 -- seen as a full type.
474
475 procedure Decimal_Fixed_Point_Type_Declaration
476 (T : Entity_Id;
477 Def : Node_Id);
478 -- Create a new decimal fixed point type, and apply the constraint to
479 -- obtain a subtype of this new type.
480
481 procedure Complete_Private_Subtype
482 (Priv : Entity_Id;
483 Full : Entity_Id;
484 Full_Base : Entity_Id;
485 Related_Nod : Node_Id);
486 -- Complete the implicit full view of a private subtype by setting the
487 -- appropriate semantic fields. If the full view of the parent is a record
488 -- type, build constrained components of subtype.
489
490 procedure Derive_Progenitor_Subprograms
491 (Parent_Type : Entity_Id;
492 Tagged_Type : Entity_Id);
493 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
494 -- operations of progenitors of Tagged_Type, and replace the subsidiary
495 -- subtypes with Tagged_Type, to build the specs of the inherited interface
496 -- primitives. The derived primitives are aliased to those of the
497 -- interface. This routine takes care also of transferring to the full view
498 -- subprograms associated with the partial view of Tagged_Type that cover
499 -- interface primitives.
500
501 procedure Derived_Standard_Character
502 (N : Node_Id;
503 Parent_Type : Entity_Id;
504 Derived_Type : Entity_Id);
505 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
506 -- derivations from types Standard.Character and Standard.Wide_Character.
507
508 procedure Derived_Type_Declaration
509 (T : Entity_Id;
510 N : Node_Id;
511 Is_Completion : Boolean);
512 -- Process a derived type declaration. Build_Derived_Type is invoked
513 -- to process the actual derived type definition. Parameters N and
514 -- Is_Completion have the same meaning as in Build_Derived_Type.
515 -- T is the N_Defining_Identifier for the entity defined in the
516 -- N_Full_Type_Declaration node N, that is T is the derived type.
517
518 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
519 -- Insert each literal in symbol table, as an overloadable identifier. Each
520 -- enumeration type is mapped into a sequence of integers, and each literal
521 -- is defined as a constant with integer value. If any of the literals are
522 -- character literals, the type is a character type, which means that
523 -- strings are legal aggregates for arrays of components of the type.
524
525 function Expand_To_Stored_Constraint
526 (Typ : Entity_Id;
527 Constraint : Elist_Id) return Elist_Id;
528 -- Given a constraint (i.e. a list of expressions) on the discriminants of
529 -- Typ, expand it into a constraint on the stored discriminants and return
530 -- the new list of expressions constraining the stored discriminants.
531
532 function Find_Type_Of_Object
533 (Obj_Def : Node_Id;
534 Related_Nod : Node_Id) return Entity_Id;
535 -- Get type entity for object referenced by Obj_Def, attaching the
536 -- implicit types generated to Related_Nod
537
538 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
539 -- Create a new float and apply the constraint to obtain subtype of it
540
541 function Has_Range_Constraint (N : Node_Id) return Boolean;
542 -- Given an N_Subtype_Indication node N, return True if a range constraint
543 -- is present, either directly, or as part of a digits or delta constraint.
544 -- In addition, a digits constraint in the decimal case returns True, since
545 -- it establishes a default range if no explicit range is present.
546
547 function Inherit_Components
548 (N : Node_Id;
549 Parent_Base : Entity_Id;
550 Derived_Base : Entity_Id;
551 Is_Tagged : Boolean;
552 Inherit_Discr : Boolean;
553 Discs : Elist_Id) return Elist_Id;
554 -- Called from Build_Derived_Record_Type to inherit the components of
555 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
556 -- For more information on derived types and component inheritance please
557 -- consult the comment above the body of Build_Derived_Record_Type.
558 --
559 -- N is the original derived type declaration
560 --
561 -- Is_Tagged is set if we are dealing with tagged types
562 --
563 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
564 -- Parent_Base, otherwise no discriminants are inherited.
565 --
566 -- Discs gives the list of constraints that apply to Parent_Base in the
567 -- derived type declaration. If Discs is set to No_Elist, then we have
568 -- the following situation:
569 --
570 -- type Parent (D1..Dn : ..) is [tagged] record ...;
571 -- type Derived is new Parent [with ...];
572 --
573 -- which gets treated as
574 --
575 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
576 --
577 -- For untagged types the returned value is an association list. The list
578 -- starts from the association (Parent_Base => Derived_Base), and then it
579 -- contains a sequence of the associations of the form
580 --
581 -- (Old_Component => New_Component),
582 --
583 -- where Old_Component is the Entity_Id of a component in Parent_Base and
584 -- New_Component is the Entity_Id of the corresponding component in
585 -- Derived_Base. For untagged records, this association list is needed when
586 -- copying the record declaration for the derived base. In the tagged case
587 -- the value returned is irrelevant.
588
589 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
590 -- Propagate static and dynamic predicate flags from a parent to the
591 -- subtype in a subtype declaration with and without constraints.
592
593 function Is_Valid_Constraint_Kind
594 (T_Kind : Type_Kind;
595 Constraint_Kind : Node_Kind) return Boolean;
596 -- Returns True if it is legal to apply the given kind of constraint to the
597 -- given kind of type (index constraint to an array type, for example).
598
599 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
600 -- Create new modular type. Verify that modulus is in bounds
601
602 procedure New_Concatenation_Op (Typ : Entity_Id);
603 -- Create an abbreviated declaration for an operator in order to
604 -- materialize concatenation on array types.
605
606 procedure Ordinary_Fixed_Point_Type_Declaration
607 (T : Entity_Id;
608 Def : Node_Id);
609 -- Create a new ordinary fixed point type, and apply the constraint to
610 -- obtain subtype of it.
611
612 procedure Prepare_Private_Subtype_Completion
613 (Id : Entity_Id;
614 Related_Nod : Node_Id);
615 -- Id is a subtype of some private type. Creates the full declaration
616 -- associated with Id whenever possible, i.e. when the full declaration
617 -- of the base type is already known. Records each subtype into
618 -- Private_Dependents of the base type.
619
620 procedure Process_Incomplete_Dependents
621 (N : Node_Id;
622 Full_T : Entity_Id;
623 Inc_T : Entity_Id);
624 -- Process all entities that depend on an incomplete type. There include
625 -- subtypes, subprogram types that mention the incomplete type in their
626 -- profiles, and subprogram with access parameters that designate the
627 -- incomplete type.
628
629 -- Inc_T is the defining identifier of an incomplete type declaration, its
630 -- Ekind is E_Incomplete_Type.
631 --
632 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
633 --
634 -- Full_T is N's defining identifier.
635 --
636 -- Subtypes of incomplete types with discriminants are completed when the
637 -- parent type is. This is simpler than private subtypes, because they can
638 -- only appear in the same scope, and there is no need to exchange views.
639 -- Similarly, access_to_subprogram types may have a parameter or a return
640 -- type that is an incomplete type, and that must be replaced with the
641 -- full type.
642 --
643 -- If the full type is tagged, subprogram with access parameters that
644 -- designated the incomplete may be primitive operations of the full type,
645 -- and have to be processed accordingly.
646
647 procedure Process_Real_Range_Specification (Def : Node_Id);
648 -- Given the type definition for a real type, this procedure processes and
649 -- checks the real range specification of this type definition if one is
650 -- present. If errors are found, error messages are posted, and the
651 -- Real_Range_Specification of Def is reset to Empty.
652
653 procedure Propagate_Default_Init_Cond_Attributes
654 (From_Typ : Entity_Id;
655 To_Typ : Entity_Id;
656 Parent_To_Derivation : Boolean := False;
657 Private_To_Full_View : Boolean := False);
658 -- Subsidiary to routines Build_Derived_Type and Process_Full_View. Inherit
659 -- all attributes related to pragma Default_Initial_Condition from From_Typ
660 -- to To_Typ. Flag Parent_To_Derivation should be set when the context is
661 -- the creation of a derived type. Flag Private_To_Full_View should be set
662 -- when processing both views of a private type.
663
664 procedure Record_Type_Declaration
665 (T : Entity_Id;
666 N : Node_Id;
667 Prev : Entity_Id);
668 -- Process a record type declaration (for both untagged and tagged
669 -- records). Parameters T and N are exactly like in procedure
670 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
671 -- for this routine. If this is the completion of an incomplete type
672 -- declaration, Prev is the entity of the incomplete declaration, used for
673 -- cross-referencing. Otherwise Prev = T.
674
675 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
676 -- This routine is used to process the actual record type definition (both
677 -- for untagged and tagged records). Def is a record type definition node.
678 -- This procedure analyzes the components in this record type definition.
679 -- Prev_T is the entity for the enclosing record type. It is provided so
680 -- that its Has_Task flag can be set if any of the component have Has_Task
681 -- set. If the declaration is the completion of an incomplete type
682 -- declaration, Prev_T is the original incomplete type, whose full view is
683 -- the record type.
684
685 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
686 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
687 -- build a copy of the declaration tree of the parent, and we create
688 -- independently the list of components for the derived type. Semantic
689 -- information uses the component entities, but record representation
690 -- clauses are validated on the declaration tree. This procedure replaces
691 -- discriminants and components in the declaration with those that have
692 -- been created by Inherit_Components.
693
694 procedure Set_Fixed_Range
695 (E : Entity_Id;
696 Loc : Source_Ptr;
697 Lo : Ureal;
698 Hi : Ureal);
699 -- Build a range node with the given bounds and set it as the Scalar_Range
700 -- of the given fixed-point type entity. Loc is the source location used
701 -- for the constructed range. See body for further details.
702
703 procedure Set_Scalar_Range_For_Subtype
704 (Def_Id : Entity_Id;
705 R : Node_Id;
706 Subt : Entity_Id);
707 -- This routine is used to set the scalar range field for a subtype given
708 -- Def_Id, the entity for the subtype, and R, the range expression for the
709 -- scalar range. Subt provides the parent subtype to be used to analyze,
710 -- resolve, and check the given range.
711
712 procedure Set_Default_SSO (T : Entity_Id);
713 -- T is the entity for an array or record being declared. This procedure
714 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
715 -- to the setting of Opt.Default_SSO.
716
717 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
718 -- Create a new signed integer entity, and apply the constraint to obtain
719 -- the required first named subtype of this type.
720
721 procedure Set_Stored_Constraint_From_Discriminant_Constraint
722 (E : Entity_Id);
723 -- E is some record type. This routine computes E's Stored_Constraint
724 -- from its Discriminant_Constraint.
725
726 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
727 -- Check that an entity in a list of progenitors is an interface,
728 -- emit error otherwise.
729
730 -----------------------
731 -- Access_Definition --
732 -----------------------
733
734 function Access_Definition
735 (Related_Nod : Node_Id;
736 N : Node_Id) return Entity_Id
737 is
738 Anon_Type : Entity_Id;
739 Anon_Scope : Entity_Id;
740 Desig_Type : Entity_Id;
741 Enclosing_Prot_Type : Entity_Id := Empty;
742
743 begin
744 Check_SPARK_05_Restriction ("access type is not allowed", N);
745
746 if Is_Entry (Current_Scope)
747 and then Is_Task_Type (Etype (Scope (Current_Scope)))
748 then
749 Error_Msg_N ("task entries cannot have access parameters", N);
750 return Empty;
751 end if;
752
753 -- Ada 2005: For an object declaration the corresponding anonymous
754 -- type is declared in the current scope.
755
756 -- If the access definition is the return type of another access to
757 -- function, scope is the current one, because it is the one of the
758 -- current type declaration, except for the pathological case below.
759
760 if Nkind_In (Related_Nod, N_Object_Declaration,
761 N_Access_Function_Definition)
762 then
763 Anon_Scope := Current_Scope;
764
765 -- A pathological case: function returning access functions that
766 -- return access functions, etc. Each anonymous access type created
767 -- is in the enclosing scope of the outermost function.
768
769 declare
770 Par : Node_Id;
771
772 begin
773 Par := Related_Nod;
774 while Nkind_In (Par, N_Access_Function_Definition,
775 N_Access_Definition)
776 loop
777 Par := Parent (Par);
778 end loop;
779
780 if Nkind (Par) = N_Function_Specification then
781 Anon_Scope := Scope (Defining_Entity (Par));
782 end if;
783 end;
784
785 -- For the anonymous function result case, retrieve the scope of the
786 -- function specification's associated entity rather than using the
787 -- current scope. The current scope will be the function itself if the
788 -- formal part is currently being analyzed, but will be the parent scope
789 -- in the case of a parameterless function, and we always want to use
790 -- the function's parent scope. Finally, if the function is a child
791 -- unit, we must traverse the tree to retrieve the proper entity.
792
793 elsif Nkind (Related_Nod) = N_Function_Specification
794 and then Nkind (Parent (N)) /= N_Parameter_Specification
795 then
796 -- If the current scope is a protected type, the anonymous access
797 -- is associated with one of the protected operations, and must
798 -- be available in the scope that encloses the protected declaration.
799 -- Otherwise the type is in the scope enclosing the subprogram.
800
801 -- If the function has formals, The return type of a subprogram
802 -- declaration is analyzed in the scope of the subprogram (see
803 -- Process_Formals) and thus the protected type, if present, is
804 -- the scope of the current function scope.
805
806 if Ekind (Current_Scope) = E_Protected_Type then
807 Enclosing_Prot_Type := Current_Scope;
808
809 elsif Ekind (Current_Scope) = E_Function
810 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
811 then
812 Enclosing_Prot_Type := Scope (Current_Scope);
813 end if;
814
815 if Present (Enclosing_Prot_Type) then
816 Anon_Scope := Scope (Enclosing_Prot_Type);
817
818 else
819 Anon_Scope := Scope (Defining_Entity (Related_Nod));
820 end if;
821
822 -- For an access type definition, if the current scope is a child
823 -- unit it is the scope of the type.
824
825 elsif Is_Compilation_Unit (Current_Scope) then
826 Anon_Scope := Current_Scope;
827
828 -- For access formals, access components, and access discriminants, the
829 -- scope is that of the enclosing declaration,
830
831 else
832 Anon_Scope := Scope (Current_Scope);
833 end if;
834
835 Anon_Type :=
836 Create_Itype
837 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
838
839 if All_Present (N)
840 and then Ada_Version >= Ada_2005
841 then
842 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
843 end if;
844
845 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
846 -- the corresponding semantic routine
847
848 if Present (Access_To_Subprogram_Definition (N)) then
849
850 -- Compiler runtime units are compiled in Ada 2005 mode when building
851 -- the runtime library but must also be compilable in Ada 95 mode
852 -- (when bootstrapping the compiler).
853
854 Check_Compiler_Unit ("anonymous access to subprogram", N);
855
856 Access_Subprogram_Declaration
857 (T_Name => Anon_Type,
858 T_Def => Access_To_Subprogram_Definition (N));
859
860 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
861 Set_Ekind
862 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
863 else
864 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
865 end if;
866
867 Set_Can_Use_Internal_Rep
868 (Anon_Type, not Always_Compatible_Rep_On_Target);
869
870 -- If the anonymous access is associated with a protected operation,
871 -- create a reference to it after the enclosing protected definition
872 -- because the itype will be used in the subsequent bodies.
873
874 if Ekind (Current_Scope) = E_Protected_Type then
875 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
876 end if;
877
878 return Anon_Type;
879 end if;
880
881 Find_Type (Subtype_Mark (N));
882 Desig_Type := Entity (Subtype_Mark (N));
883
884 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
885 Set_Etype (Anon_Type, Anon_Type);
886
887 -- Make sure the anonymous access type has size and alignment fields
888 -- set, as required by gigi. This is necessary in the case of the
889 -- Task_Body_Procedure.
890
891 if not Has_Private_Component (Desig_Type) then
892 Layout_Type (Anon_Type);
893 end if;
894
895 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
896 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
897 -- the null value is allowed. In Ada 95 the null value is never allowed.
898
899 if Ada_Version >= Ada_2005 then
900 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
901 else
902 Set_Can_Never_Be_Null (Anon_Type, True);
903 end if;
904
905 -- The anonymous access type is as public as the discriminated type or
906 -- subprogram that defines it. It is imported (for back-end purposes)
907 -- if the designated type is.
908
909 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
910
911 -- Ada 2005 (AI-231): Propagate the access-constant attribute
912
913 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
914
915 -- The context is either a subprogram declaration, object declaration,
916 -- or an access discriminant, in a private or a full type declaration.
917 -- In the case of a subprogram, if the designated type is incomplete,
918 -- the operation will be a primitive operation of the full type, to be
919 -- updated subsequently. If the type is imported through a limited_with
920 -- clause, the subprogram is not a primitive operation of the type
921 -- (which is declared elsewhere in some other scope).
922
923 if Ekind (Desig_Type) = E_Incomplete_Type
924 and then not From_Limited_With (Desig_Type)
925 and then Is_Overloadable (Current_Scope)
926 then
927 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
928 Set_Has_Delayed_Freeze (Current_Scope);
929 end if;
930
931 -- Ada 2005: If the designated type is an interface that may contain
932 -- tasks, create a Master entity for the declaration. This must be done
933 -- before expansion of the full declaration, because the declaration may
934 -- include an expression that is an allocator, whose expansion needs the
935 -- proper Master for the created tasks.
936
937 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
938 then
939 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
940 then
941 Build_Class_Wide_Master (Anon_Type);
942
943 -- Similarly, if the type is an anonymous access that designates
944 -- tasks, create a master entity for it in the current context.
945
946 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
947 then
948 Build_Master_Entity (Defining_Identifier (Related_Nod));
949 Build_Master_Renaming (Anon_Type);
950 end if;
951 end if;
952
953 -- For a private component of a protected type, it is imperative that
954 -- the back-end elaborate the type immediately after the protected
955 -- declaration, because this type will be used in the declarations
956 -- created for the component within each protected body, so we must
957 -- create an itype reference for it now.
958
959 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
960 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
961
962 -- Similarly, if the access definition is the return result of a
963 -- function, create an itype reference for it because it will be used
964 -- within the function body. For a regular function that is not a
965 -- compilation unit, insert reference after the declaration. For a
966 -- protected operation, insert it after the enclosing protected type
967 -- declaration. In either case, do not create a reference for a type
968 -- obtained through a limited_with clause, because this would introduce
969 -- semantic dependencies.
970
971 -- Similarly, do not create a reference if the designated type is a
972 -- generic formal, because no use of it will reach the backend.
973
974 elsif Nkind (Related_Nod) = N_Function_Specification
975 and then not From_Limited_With (Desig_Type)
976 and then not Is_Generic_Type (Desig_Type)
977 then
978 if Present (Enclosing_Prot_Type) then
979 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
980
981 elsif Is_List_Member (Parent (Related_Nod))
982 and then Nkind (Parent (N)) /= N_Parameter_Specification
983 then
984 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
985 end if;
986
987 -- Finally, create an itype reference for an object declaration of an
988 -- anonymous access type. This is strictly necessary only for deferred
989 -- constants, but in any case will avoid out-of-scope problems in the
990 -- back-end.
991
992 elsif Nkind (Related_Nod) = N_Object_Declaration then
993 Build_Itype_Reference (Anon_Type, Related_Nod);
994 end if;
995
996 return Anon_Type;
997 end Access_Definition;
998
999 -----------------------------------
1000 -- Access_Subprogram_Declaration --
1001 -----------------------------------
1002
1003 procedure Access_Subprogram_Declaration
1004 (T_Name : Entity_Id;
1005 T_Def : Node_Id)
1006 is
1007 procedure Check_For_Premature_Usage (Def : Node_Id);
1008 -- Check that type T_Name is not used, directly or recursively, as a
1009 -- parameter or a return type in Def. Def is either a subtype, an
1010 -- access_definition, or an access_to_subprogram_definition.
1011
1012 -------------------------------
1013 -- Check_For_Premature_Usage --
1014 -------------------------------
1015
1016 procedure Check_For_Premature_Usage (Def : Node_Id) is
1017 Param : Node_Id;
1018
1019 begin
1020 -- Check for a subtype mark
1021
1022 if Nkind (Def) in N_Has_Etype then
1023 if Etype (Def) = T_Name then
1024 Error_Msg_N
1025 ("type& cannot be used before end of its declaration", Def);
1026 end if;
1027
1028 -- If this is not a subtype, then this is an access_definition
1029
1030 elsif Nkind (Def) = N_Access_Definition then
1031 if Present (Access_To_Subprogram_Definition (Def)) then
1032 Check_For_Premature_Usage
1033 (Access_To_Subprogram_Definition (Def));
1034 else
1035 Check_For_Premature_Usage (Subtype_Mark (Def));
1036 end if;
1037
1038 -- The only cases left are N_Access_Function_Definition and
1039 -- N_Access_Procedure_Definition.
1040
1041 else
1042 if Present (Parameter_Specifications (Def)) then
1043 Param := First (Parameter_Specifications (Def));
1044 while Present (Param) loop
1045 Check_For_Premature_Usage (Parameter_Type (Param));
1046 Param := Next (Param);
1047 end loop;
1048 end if;
1049
1050 if Nkind (Def) = N_Access_Function_Definition then
1051 Check_For_Premature_Usage (Result_Definition (Def));
1052 end if;
1053 end if;
1054 end Check_For_Premature_Usage;
1055
1056 -- Local variables
1057
1058 Formals : constant List_Id := Parameter_Specifications (T_Def);
1059 Formal : Entity_Id;
1060 D_Ityp : Node_Id;
1061 Desig_Type : constant Entity_Id :=
1062 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1063
1064 -- Start of processing for Access_Subprogram_Declaration
1065
1066 begin
1067 Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1068
1069 -- Associate the Itype node with the inner full-type declaration or
1070 -- subprogram spec or entry body. This is required to handle nested
1071 -- anonymous declarations. For example:
1072
1073 -- procedure P
1074 -- (X : access procedure
1075 -- (Y : access procedure
1076 -- (Z : access T)))
1077
1078 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1079 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1080 N_Private_Type_Declaration,
1081 N_Private_Extension_Declaration,
1082 N_Procedure_Specification,
1083 N_Function_Specification,
1084 N_Entry_Body)
1085
1086 or else
1087 Nkind_In (D_Ityp, N_Object_Declaration,
1088 N_Object_Renaming_Declaration,
1089 N_Formal_Object_Declaration,
1090 N_Formal_Type_Declaration,
1091 N_Task_Type_Declaration,
1092 N_Protected_Type_Declaration))
1093 loop
1094 D_Ityp := Parent (D_Ityp);
1095 pragma Assert (D_Ityp /= Empty);
1096 end loop;
1097
1098 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1099
1100 if Nkind_In (D_Ityp, N_Procedure_Specification,
1101 N_Function_Specification)
1102 then
1103 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1104
1105 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1106 N_Object_Declaration,
1107 N_Object_Renaming_Declaration,
1108 N_Formal_Type_Declaration)
1109 then
1110 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1111 end if;
1112
1113 if Nkind (T_Def) = N_Access_Function_Definition then
1114 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1115 declare
1116 Acc : constant Node_Id := Result_Definition (T_Def);
1117
1118 begin
1119 if Present (Access_To_Subprogram_Definition (Acc))
1120 and then
1121 Protected_Present (Access_To_Subprogram_Definition (Acc))
1122 then
1123 Set_Etype
1124 (Desig_Type,
1125 Replace_Anonymous_Access_To_Protected_Subprogram
1126 (T_Def));
1127
1128 else
1129 Set_Etype
1130 (Desig_Type,
1131 Access_Definition (T_Def, Result_Definition (T_Def)));
1132 end if;
1133 end;
1134
1135 else
1136 Analyze (Result_Definition (T_Def));
1137
1138 declare
1139 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1140
1141 begin
1142 -- If a null exclusion is imposed on the result type, then
1143 -- create a null-excluding itype (an access subtype) and use
1144 -- it as the function's Etype.
1145
1146 if Is_Access_Type (Typ)
1147 and then Null_Exclusion_In_Return_Present (T_Def)
1148 then
1149 Set_Etype (Desig_Type,
1150 Create_Null_Excluding_Itype
1151 (T => Typ,
1152 Related_Nod => T_Def,
1153 Scope_Id => Current_Scope));
1154
1155 else
1156 if From_Limited_With (Typ) then
1157
1158 -- AI05-151: Incomplete types are allowed in all basic
1159 -- declarations, including access to subprograms.
1160
1161 if Ada_Version >= Ada_2012 then
1162 null;
1163
1164 else
1165 Error_Msg_NE
1166 ("illegal use of incomplete type&",
1167 Result_Definition (T_Def), Typ);
1168 end if;
1169
1170 elsif Ekind (Current_Scope) = E_Package
1171 and then In_Private_Part (Current_Scope)
1172 then
1173 if Ekind (Typ) = E_Incomplete_Type then
1174 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1175
1176 elsif Is_Class_Wide_Type (Typ)
1177 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1178 then
1179 Append_Elmt
1180 (Desig_Type, Private_Dependents (Etype (Typ)));
1181 end if;
1182 end if;
1183
1184 Set_Etype (Desig_Type, Typ);
1185 end if;
1186 end;
1187 end if;
1188
1189 if not (Is_Type (Etype (Desig_Type))) then
1190 Error_Msg_N
1191 ("expect type in function specification",
1192 Result_Definition (T_Def));
1193 end if;
1194
1195 else
1196 Set_Etype (Desig_Type, Standard_Void_Type);
1197 end if;
1198
1199 if Present (Formals) then
1200 Push_Scope (Desig_Type);
1201
1202 -- Some special tests here. These special tests can be removed
1203 -- if and when Itypes always have proper parent pointers to their
1204 -- declarations???
1205
1206 -- Special test 1) Link defining_identifier of formals. Required by
1207 -- First_Formal to provide its functionality.
1208
1209 declare
1210 F : Node_Id;
1211
1212 begin
1213 F := First (Formals);
1214
1215 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1216 -- when it is part of an unconstrained type and subtype expansion
1217 -- is disabled. To avoid back-end problems with shared profiles,
1218 -- use previous subprogram type as the designated type, and then
1219 -- remove scope added above.
1220
1221 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1222 then
1223 Set_Etype (T_Name, T_Name);
1224 Init_Size_Align (T_Name);
1225 Set_Directly_Designated_Type (T_Name,
1226 Scope (Defining_Identifier (F)));
1227 End_Scope;
1228 return;
1229 end if;
1230
1231 while Present (F) loop
1232 if No (Parent (Defining_Identifier (F))) then
1233 Set_Parent (Defining_Identifier (F), F);
1234 end if;
1235
1236 Next (F);
1237 end loop;
1238 end;
1239
1240 Process_Formals (Formals, Parent (T_Def));
1241
1242 -- Special test 2) End_Scope requires that the parent pointer be set
1243 -- to something reasonable, but Itypes don't have parent pointers. So
1244 -- we set it and then unset it ???
1245
1246 Set_Parent (Desig_Type, T_Name);
1247 End_Scope;
1248 Set_Parent (Desig_Type, Empty);
1249 end if;
1250
1251 -- Check for premature usage of the type being defined
1252
1253 Check_For_Premature_Usage (T_Def);
1254
1255 -- The return type and/or any parameter type may be incomplete. Mark the
1256 -- subprogram_type as depending on the incomplete type, so that it can
1257 -- be updated when the full type declaration is seen. This only applies
1258 -- to incomplete types declared in some enclosing scope, not to limited
1259 -- views from other packages.
1260
1261 -- Prior to Ada 2012, access to functions can only have in_parameters.
1262
1263 if Present (Formals) then
1264 Formal := First_Formal (Desig_Type);
1265 while Present (Formal) loop
1266 if Ekind (Formal) /= E_In_Parameter
1267 and then Nkind (T_Def) = N_Access_Function_Definition
1268 and then Ada_Version < Ada_2012
1269 then
1270 Error_Msg_N ("functions can only have IN parameters", Formal);
1271 end if;
1272
1273 if Ekind (Etype (Formal)) = E_Incomplete_Type
1274 and then In_Open_Scopes (Scope (Etype (Formal)))
1275 then
1276 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1277 Set_Has_Delayed_Freeze (Desig_Type);
1278 end if;
1279
1280 Next_Formal (Formal);
1281 end loop;
1282 end if;
1283
1284 -- Check whether an indirect call without actuals may be possible. This
1285 -- is used when resolving calls whose result is then indexed.
1286
1287 May_Need_Actuals (Desig_Type);
1288
1289 -- If the return type is incomplete, this is legal as long as the type
1290 -- is declared in the current scope and will be completed in it (rather
1291 -- than being part of limited view).
1292
1293 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1294 and then not Has_Delayed_Freeze (Desig_Type)
1295 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1296 then
1297 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1298 Set_Has_Delayed_Freeze (Desig_Type);
1299 end if;
1300
1301 Check_Delayed_Subprogram (Desig_Type);
1302
1303 if Protected_Present (T_Def) then
1304 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1305 Set_Convention (Desig_Type, Convention_Protected);
1306 else
1307 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1308 end if;
1309
1310 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1311
1312 Set_Etype (T_Name, T_Name);
1313 Init_Size_Align (T_Name);
1314 Set_Directly_Designated_Type (T_Name, Desig_Type);
1315
1316 Generate_Reference_To_Formals (T_Name);
1317
1318 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1319
1320 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1321
1322 Check_Restriction (No_Access_Subprograms, T_Def);
1323 end Access_Subprogram_Declaration;
1324
1325 ----------------------------
1326 -- Access_Type_Declaration --
1327 ----------------------------
1328
1329 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1330 P : constant Node_Id := Parent (Def);
1331 S : constant Node_Id := Subtype_Indication (Def);
1332
1333 Full_Desig : Entity_Id;
1334
1335 begin
1336 Check_SPARK_05_Restriction ("access type is not allowed", Def);
1337
1338 -- Check for permissible use of incomplete type
1339
1340 if Nkind (S) /= N_Subtype_Indication then
1341 Analyze (S);
1342
1343 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1344 Set_Directly_Designated_Type (T, Entity (S));
1345
1346 -- If the designated type is a limited view, we cannot tell if
1347 -- the full view contains tasks, and there is no way to handle
1348 -- that full view in a client. We create a master entity for the
1349 -- scope, which will be used when a client determines that one
1350 -- is needed.
1351
1352 if From_Limited_With (Entity (S))
1353 and then not Is_Class_Wide_Type (Entity (S))
1354 then
1355 Set_Ekind (T, E_Access_Type);
1356 Build_Master_Entity (T);
1357 Build_Master_Renaming (T);
1358 end if;
1359
1360 else
1361 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1362 end if;
1363
1364 -- If the access definition is of the form: ACCESS NOT NULL ..
1365 -- the subtype indication must be of an access type. Create
1366 -- a null-excluding subtype of it.
1367
1368 if Null_Excluding_Subtype (Def) then
1369 if not Is_Access_Type (Entity (S)) then
1370 Error_Msg_N ("null exclusion must apply to access type", Def);
1371
1372 else
1373 declare
1374 Loc : constant Source_Ptr := Sloc (S);
1375 Decl : Node_Id;
1376 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1377
1378 begin
1379 Decl :=
1380 Make_Subtype_Declaration (Loc,
1381 Defining_Identifier => Nam,
1382 Subtype_Indication =>
1383 New_Occurrence_Of (Entity (S), Loc));
1384 Set_Null_Exclusion_Present (Decl);
1385 Insert_Before (Parent (Def), Decl);
1386 Analyze (Decl);
1387 Set_Entity (S, Nam);
1388 end;
1389 end if;
1390 end if;
1391
1392 else
1393 Set_Directly_Designated_Type (T,
1394 Process_Subtype (S, P, T, 'P'));
1395 end if;
1396
1397 if All_Present (Def) or Constant_Present (Def) then
1398 Set_Ekind (T, E_General_Access_Type);
1399 else
1400 Set_Ekind (T, E_Access_Type);
1401 end if;
1402
1403 Full_Desig := Designated_Type (T);
1404
1405 if Base_Type (Full_Desig) = T then
1406 Error_Msg_N ("access type cannot designate itself", S);
1407
1408 -- In Ada 2005, the type may have a limited view through some unit in
1409 -- its own context, allowing the following circularity that cannot be
1410 -- detected earlier.
1411
1412 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1413 then
1414 Error_Msg_N
1415 ("access type cannot designate its own classwide type", S);
1416
1417 -- Clean up indication of tagged status to prevent cascaded errors
1418
1419 Set_Is_Tagged_Type (T, False);
1420 end if;
1421
1422 Set_Etype (T, T);
1423
1424 -- If the type has appeared already in a with_type clause, it is frozen
1425 -- and the pointer size is already set. Else, initialize.
1426
1427 if not From_Limited_With (T) then
1428 Init_Size_Align (T);
1429 end if;
1430
1431 -- Note that Has_Task is always false, since the access type itself
1432 -- is not a task type. See Einfo for more description on this point.
1433 -- Exactly the same consideration applies to Has_Controlled_Component
1434 -- and to Has_Protected.
1435
1436 Set_Has_Task (T, False);
1437 Set_Has_Controlled_Component (T, False);
1438 Set_Has_Protected (T, False);
1439
1440 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1441 -- problems where an incomplete view of this entity has been previously
1442 -- established by a limited with and an overlaid version of this field
1443 -- (Stored_Constraint) was initialized for the incomplete view.
1444
1445 -- This reset is performed in most cases except where the access type
1446 -- has been created for the purposes of allocating or deallocating a
1447 -- build-in-place object. Such access types have explicitly set pools
1448 -- and finalization masters.
1449
1450 if No (Associated_Storage_Pool (T)) then
1451 Set_Finalization_Master (T, Empty);
1452 end if;
1453
1454 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1455 -- attributes
1456
1457 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1458 Set_Is_Access_Constant (T, Constant_Present (Def));
1459 end Access_Type_Declaration;
1460
1461 ----------------------------------
1462 -- Add_Interface_Tag_Components --
1463 ----------------------------------
1464
1465 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1466 Loc : constant Source_Ptr := Sloc (N);
1467 L : List_Id;
1468 Last_Tag : Node_Id;
1469
1470 procedure Add_Tag (Iface : Entity_Id);
1471 -- Add tag for one of the progenitor interfaces
1472
1473 -------------
1474 -- Add_Tag --
1475 -------------
1476
1477 procedure Add_Tag (Iface : Entity_Id) is
1478 Decl : Node_Id;
1479 Def : Node_Id;
1480 Tag : Entity_Id;
1481 Offset : Entity_Id;
1482
1483 begin
1484 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1485
1486 -- This is a reasonable place to propagate predicates
1487
1488 if Has_Predicates (Iface) then
1489 Set_Has_Predicates (Typ);
1490 end if;
1491
1492 Def :=
1493 Make_Component_Definition (Loc,
1494 Aliased_Present => True,
1495 Subtype_Indication =>
1496 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1497
1498 Tag := Make_Temporary (Loc, 'V');
1499
1500 Decl :=
1501 Make_Component_Declaration (Loc,
1502 Defining_Identifier => Tag,
1503 Component_Definition => Def);
1504
1505 Analyze_Component_Declaration (Decl);
1506
1507 Set_Analyzed (Decl);
1508 Set_Ekind (Tag, E_Component);
1509 Set_Is_Tag (Tag);
1510 Set_Is_Aliased (Tag);
1511 Set_Related_Type (Tag, Iface);
1512 Init_Component_Location (Tag);
1513
1514 pragma Assert (Is_Frozen (Iface));
1515
1516 Set_DT_Entry_Count (Tag,
1517 DT_Entry_Count (First_Entity (Iface)));
1518
1519 if No (Last_Tag) then
1520 Prepend (Decl, L);
1521 else
1522 Insert_After (Last_Tag, Decl);
1523 end if;
1524
1525 Last_Tag := Decl;
1526
1527 -- If the ancestor has discriminants we need to give special support
1528 -- to store the offset_to_top value of the secondary dispatch tables.
1529 -- For this purpose we add a supplementary component just after the
1530 -- field that contains the tag associated with each secondary DT.
1531
1532 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1533 Def :=
1534 Make_Component_Definition (Loc,
1535 Subtype_Indication =>
1536 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1537
1538 Offset := Make_Temporary (Loc, 'V');
1539
1540 Decl :=
1541 Make_Component_Declaration (Loc,
1542 Defining_Identifier => Offset,
1543 Component_Definition => Def);
1544
1545 Analyze_Component_Declaration (Decl);
1546
1547 Set_Analyzed (Decl);
1548 Set_Ekind (Offset, E_Component);
1549 Set_Is_Aliased (Offset);
1550 Set_Related_Type (Offset, Iface);
1551 Init_Component_Location (Offset);
1552 Insert_After (Last_Tag, Decl);
1553 Last_Tag := Decl;
1554 end if;
1555 end Add_Tag;
1556
1557 -- Local variables
1558
1559 Elmt : Elmt_Id;
1560 Ext : Node_Id;
1561 Comp : Node_Id;
1562
1563 -- Start of processing for Add_Interface_Tag_Components
1564
1565 begin
1566 if not RTE_Available (RE_Interface_Tag) then
1567 Error_Msg
1568 ("(Ada 2005) interface types not supported by this run-time!",
1569 Sloc (N));
1570 return;
1571 end if;
1572
1573 if Ekind (Typ) /= E_Record_Type
1574 or else (Is_Concurrent_Record_Type (Typ)
1575 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1576 or else (not Is_Concurrent_Record_Type (Typ)
1577 and then No (Interfaces (Typ))
1578 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1579 then
1580 return;
1581 end if;
1582
1583 -- Find the current last tag
1584
1585 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1586 Ext := Record_Extension_Part (Type_Definition (N));
1587 else
1588 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1589 Ext := Type_Definition (N);
1590 end if;
1591
1592 Last_Tag := Empty;
1593
1594 if not (Present (Component_List (Ext))) then
1595 Set_Null_Present (Ext, False);
1596 L := New_List;
1597 Set_Component_List (Ext,
1598 Make_Component_List (Loc,
1599 Component_Items => L,
1600 Null_Present => False));
1601 else
1602 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1603 L := Component_Items
1604 (Component_List
1605 (Record_Extension_Part
1606 (Type_Definition (N))));
1607 else
1608 L := Component_Items
1609 (Component_List
1610 (Type_Definition (N)));
1611 end if;
1612
1613 -- Find the last tag component
1614
1615 Comp := First (L);
1616 while Present (Comp) loop
1617 if Nkind (Comp) = N_Component_Declaration
1618 and then Is_Tag (Defining_Identifier (Comp))
1619 then
1620 Last_Tag := Comp;
1621 end if;
1622
1623 Next (Comp);
1624 end loop;
1625 end if;
1626
1627 -- At this point L references the list of components and Last_Tag
1628 -- references the current last tag (if any). Now we add the tag
1629 -- corresponding with all the interfaces that are not implemented
1630 -- by the parent.
1631
1632 if Present (Interfaces (Typ)) then
1633 Elmt := First_Elmt (Interfaces (Typ));
1634 while Present (Elmt) loop
1635 Add_Tag (Node (Elmt));
1636 Next_Elmt (Elmt);
1637 end loop;
1638 end if;
1639 end Add_Interface_Tag_Components;
1640
1641 -------------------------------------
1642 -- Add_Internal_Interface_Entities --
1643 -------------------------------------
1644
1645 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1646 Elmt : Elmt_Id;
1647 Iface : Entity_Id;
1648 Iface_Elmt : Elmt_Id;
1649 Iface_Prim : Entity_Id;
1650 Ifaces_List : Elist_Id;
1651 New_Subp : Entity_Id := Empty;
1652 Prim : Entity_Id;
1653 Restore_Scope : Boolean := False;
1654
1655 begin
1656 pragma Assert (Ada_Version >= Ada_2005
1657 and then Is_Record_Type (Tagged_Type)
1658 and then Is_Tagged_Type (Tagged_Type)
1659 and then Has_Interfaces (Tagged_Type)
1660 and then not Is_Interface (Tagged_Type));
1661
1662 -- Ensure that the internal entities are added to the scope of the type
1663
1664 if Scope (Tagged_Type) /= Current_Scope then
1665 Push_Scope (Scope (Tagged_Type));
1666 Restore_Scope := True;
1667 end if;
1668
1669 Collect_Interfaces (Tagged_Type, Ifaces_List);
1670
1671 Iface_Elmt := First_Elmt (Ifaces_List);
1672 while Present (Iface_Elmt) loop
1673 Iface := Node (Iface_Elmt);
1674
1675 -- Originally we excluded here from this processing interfaces that
1676 -- are parents of Tagged_Type because their primitives are located
1677 -- in the primary dispatch table (and hence no auxiliary internal
1678 -- entities are required to handle secondary dispatch tables in such
1679 -- case). However, these auxiliary entities are also required to
1680 -- handle derivations of interfaces in formals of generics (see
1681 -- Derive_Subprograms).
1682
1683 Elmt := First_Elmt (Primitive_Operations (Iface));
1684 while Present (Elmt) loop
1685 Iface_Prim := Node (Elmt);
1686
1687 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1688 Prim :=
1689 Find_Primitive_Covering_Interface
1690 (Tagged_Type => Tagged_Type,
1691 Iface_Prim => Iface_Prim);
1692
1693 if No (Prim) and then Serious_Errors_Detected > 0 then
1694 goto Continue;
1695 end if;
1696
1697 pragma Assert (Present (Prim));
1698
1699 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1700 -- differs from the name of the interface primitive then it is
1701 -- a private primitive inherited from a parent type. In such
1702 -- case, given that Tagged_Type covers the interface, the
1703 -- inherited private primitive becomes visible. For such
1704 -- purpose we add a new entity that renames the inherited
1705 -- private primitive.
1706
1707 if Chars (Prim) /= Chars (Iface_Prim) then
1708 pragma Assert (Has_Suffix (Prim, 'P'));
1709 Derive_Subprogram
1710 (New_Subp => New_Subp,
1711 Parent_Subp => Iface_Prim,
1712 Derived_Type => Tagged_Type,
1713 Parent_Type => Iface);
1714 Set_Alias (New_Subp, Prim);
1715 Set_Is_Abstract_Subprogram
1716 (New_Subp, Is_Abstract_Subprogram (Prim));
1717 end if;
1718
1719 Derive_Subprogram
1720 (New_Subp => New_Subp,
1721 Parent_Subp => Iface_Prim,
1722 Derived_Type => Tagged_Type,
1723 Parent_Type => Iface);
1724
1725 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1726 -- associated with interface types. These entities are
1727 -- only registered in the list of primitives of its
1728 -- corresponding tagged type because they are only used
1729 -- to fill the contents of the secondary dispatch tables.
1730 -- Therefore they are removed from the homonym chains.
1731
1732 Set_Is_Hidden (New_Subp);
1733 Set_Is_Internal (New_Subp);
1734 Set_Alias (New_Subp, Prim);
1735 Set_Is_Abstract_Subprogram
1736 (New_Subp, Is_Abstract_Subprogram (Prim));
1737 Set_Interface_Alias (New_Subp, Iface_Prim);
1738
1739 -- If the returned type is an interface then propagate it to
1740 -- the returned type. Needed by the thunk to generate the code
1741 -- which displaces "this" to reference the corresponding
1742 -- secondary dispatch table in the returned object.
1743
1744 if Is_Interface (Etype (Iface_Prim)) then
1745 Set_Etype (New_Subp, Etype (Iface_Prim));
1746 end if;
1747
1748 -- Internal entities associated with interface types are
1749 -- only registered in the list of primitives of the tagged
1750 -- type. They are only used to fill the contents of the
1751 -- secondary dispatch tables. Therefore they are not needed
1752 -- in the homonym chains.
1753
1754 Remove_Homonym (New_Subp);
1755
1756 -- Hidden entities associated with interfaces must have set
1757 -- the Has_Delay_Freeze attribute to ensure that, in case of
1758 -- locally defined tagged types (or compiling with static
1759 -- dispatch tables generation disabled) the corresponding
1760 -- entry of the secondary dispatch table is filled when
1761 -- such an entity is frozen.
1762
1763 Set_Has_Delayed_Freeze (New_Subp);
1764 end if;
1765
1766 <<Continue>>
1767 Next_Elmt (Elmt);
1768 end loop;
1769
1770 Next_Elmt (Iface_Elmt);
1771 end loop;
1772
1773 if Restore_Scope then
1774 Pop_Scope;
1775 end if;
1776 end Add_Internal_Interface_Entities;
1777
1778 -----------------------------------
1779 -- Analyze_Component_Declaration --
1780 -----------------------------------
1781
1782 procedure Analyze_Component_Declaration (N : Node_Id) is
1783 Id : constant Entity_Id := Defining_Identifier (N);
1784 E : constant Node_Id := Expression (N);
1785 Typ : constant Node_Id :=
1786 Subtype_Indication (Component_Definition (N));
1787 T : Entity_Id;
1788 P : Entity_Id;
1789
1790 function Contains_POC (Constr : Node_Id) return Boolean;
1791 -- Determines whether a constraint uses the discriminant of a record
1792 -- type thus becoming a per-object constraint (POC).
1793
1794 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1795 -- Typ is the type of the current component, check whether this type is
1796 -- a limited type. Used to validate declaration against that of
1797 -- enclosing record.
1798
1799 ------------------
1800 -- Contains_POC --
1801 ------------------
1802
1803 function Contains_POC (Constr : Node_Id) return Boolean is
1804 begin
1805 -- Prevent cascaded errors
1806
1807 if Error_Posted (Constr) then
1808 return False;
1809 end if;
1810
1811 case Nkind (Constr) is
1812 when N_Attribute_Reference =>
1813 return Attribute_Name (Constr) = Name_Access
1814 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1815
1816 when N_Discriminant_Association =>
1817 return Denotes_Discriminant (Expression (Constr));
1818
1819 when N_Identifier =>
1820 return Denotes_Discriminant (Constr);
1821
1822 when N_Index_Or_Discriminant_Constraint =>
1823 declare
1824 IDC : Node_Id;
1825
1826 begin
1827 IDC := First (Constraints (Constr));
1828 while Present (IDC) loop
1829
1830 -- One per-object constraint is sufficient
1831
1832 if Contains_POC (IDC) then
1833 return True;
1834 end if;
1835
1836 Next (IDC);
1837 end loop;
1838
1839 return False;
1840 end;
1841
1842 when N_Range =>
1843 return Denotes_Discriminant (Low_Bound (Constr))
1844 or else
1845 Denotes_Discriminant (High_Bound (Constr));
1846
1847 when N_Range_Constraint =>
1848 return Denotes_Discriminant (Range_Expression (Constr));
1849
1850 when others =>
1851 return False;
1852
1853 end case;
1854 end Contains_POC;
1855
1856 ----------------------
1857 -- Is_Known_Limited --
1858 ----------------------
1859
1860 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1861 P : constant Entity_Id := Etype (Typ);
1862 R : constant Entity_Id := Root_Type (Typ);
1863
1864 begin
1865 if Is_Limited_Record (Typ) then
1866 return True;
1867
1868 -- If the root type is limited (and not a limited interface)
1869 -- so is the current type
1870
1871 elsif Is_Limited_Record (R)
1872 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1873 then
1874 return True;
1875
1876 -- Else the type may have a limited interface progenitor, but a
1877 -- limited record parent.
1878
1879 elsif R /= P and then Is_Limited_Record (P) then
1880 return True;
1881
1882 else
1883 return False;
1884 end if;
1885 end Is_Known_Limited;
1886
1887 -- Start of processing for Analyze_Component_Declaration
1888
1889 begin
1890 Generate_Definition (Id);
1891 Enter_Name (Id);
1892
1893 if Present (Typ) then
1894 T := Find_Type_Of_Object
1895 (Subtype_Indication (Component_Definition (N)), N);
1896
1897 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1898 Check_SPARK_05_Restriction ("subtype mark required", Typ);
1899 end if;
1900
1901 -- Ada 2005 (AI-230): Access Definition case
1902
1903 else
1904 pragma Assert (Present
1905 (Access_Definition (Component_Definition (N))));
1906
1907 T := Access_Definition
1908 (Related_Nod => N,
1909 N => Access_Definition (Component_Definition (N)));
1910 Set_Is_Local_Anonymous_Access (T);
1911
1912 -- Ada 2005 (AI-254)
1913
1914 if Present (Access_To_Subprogram_Definition
1915 (Access_Definition (Component_Definition (N))))
1916 and then Protected_Present (Access_To_Subprogram_Definition
1917 (Access_Definition
1918 (Component_Definition (N))))
1919 then
1920 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1921 end if;
1922 end if;
1923
1924 -- If the subtype is a constrained subtype of the enclosing record,
1925 -- (which must have a partial view) the back-end does not properly
1926 -- handle the recursion. Rewrite the component declaration with an
1927 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1928 -- the tree directly because side effects have already been removed from
1929 -- discriminant constraints.
1930
1931 if Ekind (T) = E_Access_Subtype
1932 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1933 and then Comes_From_Source (T)
1934 and then Nkind (Parent (T)) = N_Subtype_Declaration
1935 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1936 then
1937 Rewrite
1938 (Subtype_Indication (Component_Definition (N)),
1939 New_Copy_Tree (Subtype_Indication (Parent (T))));
1940 T := Find_Type_Of_Object
1941 (Subtype_Indication (Component_Definition (N)), N);
1942 end if;
1943
1944 -- If the component declaration includes a default expression, then we
1945 -- check that the component is not of a limited type (RM 3.7(5)),
1946 -- and do the special preanalysis of the expression (see section on
1947 -- "Handling of Default and Per-Object Expressions" in the spec of
1948 -- package Sem).
1949
1950 if Present (E) then
1951 Check_SPARK_05_Restriction ("default expression is not allowed", E);
1952 Preanalyze_Default_Expression (E, T);
1953 Check_Initialization (T, E);
1954
1955 if Ada_Version >= Ada_2005
1956 and then Ekind (T) = E_Anonymous_Access_Type
1957 and then Etype (E) /= Any_Type
1958 then
1959 -- Check RM 3.9.2(9): "if the expected type for an expression is
1960 -- an anonymous access-to-specific tagged type, then the object
1961 -- designated by the expression shall not be dynamically tagged
1962 -- unless it is a controlling operand in a call on a dispatching
1963 -- operation"
1964
1965 if Is_Tagged_Type (Directly_Designated_Type (T))
1966 and then
1967 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1968 and then
1969 Ekind (Directly_Designated_Type (Etype (E))) =
1970 E_Class_Wide_Type
1971 then
1972 Error_Msg_N
1973 ("access to specific tagged type required (RM 3.9.2(9))", E);
1974 end if;
1975
1976 -- (Ada 2005: AI-230): Accessibility check for anonymous
1977 -- components
1978
1979 if Type_Access_Level (Etype (E)) >
1980 Deepest_Type_Access_Level (T)
1981 then
1982 Error_Msg_N
1983 ("expression has deeper access level than component " &
1984 "(RM 3.10.2 (12.2))", E);
1985 end if;
1986
1987 -- The initialization expression is a reference to an access
1988 -- discriminant. The type of the discriminant is always deeper
1989 -- than any access type.
1990
1991 if Ekind (Etype (E)) = E_Anonymous_Access_Type
1992 and then Is_Entity_Name (E)
1993 and then Ekind (Entity (E)) = E_In_Parameter
1994 and then Present (Discriminal_Link (Entity (E)))
1995 then
1996 Error_Msg_N
1997 ("discriminant has deeper accessibility level than target",
1998 E);
1999 end if;
2000 end if;
2001 end if;
2002
2003 -- The parent type may be a private view with unknown discriminants,
2004 -- and thus unconstrained. Regular components must be constrained.
2005
2006 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
2007 if Is_Class_Wide_Type (T) then
2008 Error_Msg_N
2009 ("class-wide subtype with unknown discriminants" &
2010 " in component declaration",
2011 Subtype_Indication (Component_Definition (N)));
2012 else
2013 Error_Msg_N
2014 ("unconstrained subtype in component declaration",
2015 Subtype_Indication (Component_Definition (N)));
2016 end if;
2017
2018 -- Components cannot be abstract, except for the special case of
2019 -- the _Parent field (case of extending an abstract tagged type)
2020
2021 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2022 Error_Msg_N ("type of a component cannot be abstract", N);
2023 end if;
2024
2025 Set_Etype (Id, T);
2026 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2027
2028 -- The component declaration may have a per-object constraint, set
2029 -- the appropriate flag in the defining identifier of the subtype.
2030
2031 if Present (Subtype_Indication (Component_Definition (N))) then
2032 declare
2033 Sindic : constant Node_Id :=
2034 Subtype_Indication (Component_Definition (N));
2035 begin
2036 if Nkind (Sindic) = N_Subtype_Indication
2037 and then Present (Constraint (Sindic))
2038 and then Contains_POC (Constraint (Sindic))
2039 then
2040 Set_Has_Per_Object_Constraint (Id);
2041 end if;
2042 end;
2043 end if;
2044
2045 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2046 -- out some static checks.
2047
2048 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2049 Null_Exclusion_Static_Checks (N);
2050 end if;
2051
2052 -- If this component is private (or depends on a private type), flag the
2053 -- record type to indicate that some operations are not available.
2054
2055 P := Private_Component (T);
2056
2057 if Present (P) then
2058
2059 -- Check for circular definitions
2060
2061 if P = Any_Type then
2062 Set_Etype (Id, Any_Type);
2063
2064 -- There is a gap in the visibility of operations only if the
2065 -- component type is not defined in the scope of the record type.
2066
2067 elsif Scope (P) = Scope (Current_Scope) then
2068 null;
2069
2070 elsif Is_Limited_Type (P) then
2071 Set_Is_Limited_Composite (Current_Scope);
2072
2073 else
2074 Set_Is_Private_Composite (Current_Scope);
2075 end if;
2076 end if;
2077
2078 if P /= Any_Type
2079 and then Is_Limited_Type (T)
2080 and then Chars (Id) /= Name_uParent
2081 and then Is_Tagged_Type (Current_Scope)
2082 then
2083 if Is_Derived_Type (Current_Scope)
2084 and then not Is_Known_Limited (Current_Scope)
2085 then
2086 Error_Msg_N
2087 ("extension of nonlimited type cannot have limited components",
2088 N);
2089
2090 if Is_Interface (Root_Type (Current_Scope)) then
2091 Error_Msg_N
2092 ("\limitedness is not inherited from limited interface", N);
2093 Error_Msg_N ("\add LIMITED to type indication", N);
2094 end if;
2095
2096 Explain_Limited_Type (T, N);
2097 Set_Etype (Id, Any_Type);
2098 Set_Is_Limited_Composite (Current_Scope, False);
2099
2100 elsif not Is_Derived_Type (Current_Scope)
2101 and then not Is_Limited_Record (Current_Scope)
2102 and then not Is_Concurrent_Type (Current_Scope)
2103 then
2104 Error_Msg_N
2105 ("nonlimited tagged type cannot have limited components", N);
2106 Explain_Limited_Type (T, N);
2107 Set_Etype (Id, Any_Type);
2108 Set_Is_Limited_Composite (Current_Scope, False);
2109 end if;
2110 end if;
2111
2112 Set_Original_Record_Component (Id, Id);
2113
2114 if Has_Aspects (N) then
2115 Analyze_Aspect_Specifications (N, Id);
2116 end if;
2117
2118 Analyze_Dimension (N);
2119 end Analyze_Component_Declaration;
2120
2121 --------------------------
2122 -- Analyze_Declarations --
2123 --------------------------
2124
2125 procedure Analyze_Declarations (L : List_Id) is
2126 Decl : Node_Id;
2127
2128 procedure Adjust_Decl;
2129 -- Adjust Decl not to include implicit label declarations, since these
2130 -- have strange Sloc values that result in elaboration check problems.
2131 -- (They have the sloc of the label as found in the source, and that
2132 -- is ahead of the current declarative part).
2133
2134 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2135 -- Determine whether Body_Decl denotes the body of a late controlled
2136 -- primitive (either Initialize, Adjust or Finalize). If this is the
2137 -- case, add a proper spec if the body lacks one. The spec is inserted
2138 -- before Body_Decl and immedately analyzed.
2139
2140 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2141 -- Spec_Id is the entity of a package that may define abstract states.
2142 -- If the states have visible refinement, remove the visibility of each
2143 -- constituent at the end of the package body declarations.
2144
2145 -----------------
2146 -- Adjust_Decl --
2147 -----------------
2148
2149 procedure Adjust_Decl is
2150 begin
2151 while Present (Prev (Decl))
2152 and then Nkind (Decl) = N_Implicit_Label_Declaration
2153 loop
2154 Prev (Decl);
2155 end loop;
2156 end Adjust_Decl;
2157
2158 --------------------------------------
2159 -- Handle_Late_Controlled_Primitive --
2160 --------------------------------------
2161
2162 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2163 Body_Spec : constant Node_Id := Specification (Body_Decl);
2164 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2165 Loc : constant Source_Ptr := Sloc (Body_Id);
2166 Params : constant List_Id :=
2167 Parameter_Specifications (Body_Spec);
2168 Spec : Node_Id;
2169 Spec_Id : Entity_Id;
2170 Typ : Node_Id;
2171
2172 begin
2173 -- Consider only procedure bodies whose name matches one of the three
2174 -- controlled primitives.
2175
2176 if Nkind (Body_Spec) /= N_Procedure_Specification
2177 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2178 Name_Finalize,
2179 Name_Initialize)
2180 then
2181 return;
2182
2183 -- A controlled primitive must have exactly one formal which is not
2184 -- an anonymous access type.
2185
2186 elsif List_Length (Params) /= 1 then
2187 return;
2188 end if;
2189
2190 Typ := Parameter_Type (First (Params));
2191
2192 if Nkind (Typ) = N_Access_Definition then
2193 return;
2194 end if;
2195
2196 Find_Type (Typ);
2197
2198 -- The type of the formal must be derived from [Limited_]Controlled
2199
2200 if not Is_Controlled (Entity (Typ)) then
2201 return;
2202 end if;
2203
2204 -- Check whether a specification exists for this body. We do not
2205 -- analyze the spec of the body in full, because it will be analyzed
2206 -- again when the body is properly analyzed, and we cannot create
2207 -- duplicate entries in the formals chain. We look for an explicit
2208 -- specification because the body may be an overriding operation and
2209 -- an inherited spec may be present.
2210
2211 Spec_Id := Current_Entity (Body_Id);
2212
2213 while Present (Spec_Id) loop
2214 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure)
2215 and then Scope (Spec_Id) = Current_Scope
2216 and then Present (First_Formal (Spec_Id))
2217 and then No (Next_Formal (First_Formal (Spec_Id)))
2218 and then Etype (First_Formal (Spec_Id)) = Entity (Typ)
2219 and then Comes_From_Source (Spec_Id)
2220 then
2221 return;
2222 end if;
2223
2224 Spec_Id := Homonym (Spec_Id);
2225 end loop;
2226
2227 -- At this point the body is known to be a late controlled primitive.
2228 -- Generate a matching spec and insert it before the body. Note the
2229 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2230 -- tree in this case.
2231
2232 Spec := Copy_Separate_Tree (Body_Spec);
2233
2234 -- Ensure that the subprogram declaration does not inherit the null
2235 -- indicator from the body as we now have a proper spec/body pair.
2236
2237 Set_Null_Present (Spec, False);
2238
2239 Insert_Before_And_Analyze (Body_Decl,
2240 Make_Subprogram_Declaration (Loc, Specification => Spec));
2241 end Handle_Late_Controlled_Primitive;
2242
2243 --------------------------------
2244 -- Remove_Visible_Refinements --
2245 --------------------------------
2246
2247 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2248 State_Elmt : Elmt_Id;
2249 begin
2250 if Present (Abstract_States (Spec_Id)) then
2251 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2252 while Present (State_Elmt) loop
2253 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2254 Next_Elmt (State_Elmt);
2255 end loop;
2256 end if;
2257 end Remove_Visible_Refinements;
2258
2259 -- Local variables
2260
2261 Context : Node_Id;
2262 Freeze_From : Entity_Id := Empty;
2263 Next_Decl : Node_Id;
2264 Spec_Id : Entity_Id;
2265
2266 Body_Seen : Boolean := False;
2267 -- Flag set when the first body [stub] is encountered
2268
2269 In_Package_Body : Boolean := False;
2270 -- Flag set when the current declaration list belongs to a package body
2271
2272 -- Start of processing for Analyze_Declarations
2273
2274 begin
2275 if Restriction_Check_Required (SPARK_05) then
2276 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2277 end if;
2278
2279 Decl := First (L);
2280 while Present (Decl) loop
2281
2282 -- Package spec cannot contain a package declaration in SPARK
2283
2284 if Nkind (Decl) = N_Package_Declaration
2285 and then Nkind (Parent (L)) = N_Package_Specification
2286 then
2287 Check_SPARK_05_Restriction
2288 ("package specification cannot contain a package declaration",
2289 Decl);
2290 end if;
2291
2292 -- Complete analysis of declaration
2293
2294 Analyze (Decl);
2295 Next_Decl := Next (Decl);
2296
2297 if No (Freeze_From) then
2298 Freeze_From := First_Entity (Current_Scope);
2299 end if;
2300
2301 -- At the end of a declarative part, freeze remaining entities
2302 -- declared in it. The end of the visible declarations of package
2303 -- specification is not the end of a declarative part if private
2304 -- declarations are present. The end of a package declaration is a
2305 -- freezing point only if it a library package. A task definition or
2306 -- protected type definition is not a freeze point either. Finally,
2307 -- we do not freeze entities in generic scopes, because there is no
2308 -- code generated for them and freeze nodes will be generated for
2309 -- the instance.
2310
2311 -- The end of a package instantiation is not a freeze point, but
2312 -- for now we make it one, because the generic body is inserted
2313 -- (currently) immediately after. Generic instantiations will not
2314 -- be a freeze point once delayed freezing of bodies is implemented.
2315 -- (This is needed in any case for early instantiations ???).
2316
2317 if No (Next_Decl) then
2318 if Nkind_In (Parent (L), N_Component_List,
2319 N_Task_Definition,
2320 N_Protected_Definition)
2321 then
2322 null;
2323
2324 elsif Nkind (Parent (L)) /= N_Package_Specification then
2325 if Nkind (Parent (L)) = N_Package_Body then
2326 Freeze_From := First_Entity (Current_Scope);
2327 end if;
2328
2329 -- There may have been several freezing points previously,
2330 -- for example object declarations or subprogram bodies, but
2331 -- at the end of a declarative part we check freezing from
2332 -- the beginning, even though entities may already be frozen,
2333 -- in order to perform visibility checks on delayed aspects.
2334
2335 Adjust_Decl;
2336 Freeze_All (First_Entity (Current_Scope), Decl);
2337 Freeze_From := Last_Entity (Current_Scope);
2338
2339 elsif Scope (Current_Scope) /= Standard_Standard
2340 and then not Is_Child_Unit (Current_Scope)
2341 and then No (Generic_Parent (Parent (L)))
2342 then
2343 null;
2344
2345 elsif L /= Visible_Declarations (Parent (L))
2346 or else No (Private_Declarations (Parent (L)))
2347 or else Is_Empty_List (Private_Declarations (Parent (L)))
2348 then
2349 Adjust_Decl;
2350 Freeze_All (First_Entity (Current_Scope), Decl);
2351 Freeze_From := Last_Entity (Current_Scope);
2352 end if;
2353
2354 -- If next node is a body then freeze all types before the body.
2355 -- An exception occurs for some expander-generated bodies. If these
2356 -- are generated at places where in general language rules would not
2357 -- allow a freeze point, then we assume that the expander has
2358 -- explicitly checked that all required types are properly frozen,
2359 -- and we do not cause general freezing here. This special circuit
2360 -- is used when the encountered body is marked as having already
2361 -- been analyzed.
2362
2363 -- In all other cases (bodies that come from source, and expander
2364 -- generated bodies that have not been analyzed yet), freeze all
2365 -- types now. Note that in the latter case, the expander must take
2366 -- care to attach the bodies at a proper place in the tree so as to
2367 -- not cause unwanted freezing at that point.
2368
2369 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl) then
2370
2371 -- When a controlled type is frozen, the expander generates stream
2372 -- and controlled type support routines. If the freeze is caused
2373 -- by the stand alone body of Initialize, Adjust and Finalize, the
2374 -- expander will end up using the wrong version of these routines
2375 -- as the body has not been processed yet. To remedy this, detect
2376 -- a late controlled primitive and create a proper spec for it.
2377 -- This ensures that the primitive will override its inherited
2378 -- counterpart before the freeze takes place.
2379
2380 -- If the declaration we just processed is a body, do not attempt
2381 -- to examine Next_Decl as the late primitive idiom can only apply
2382 -- to the first encountered body.
2383
2384 -- The spec of the late primitive is not generated in ASIS mode to
2385 -- ensure a consistent list of primitives that indicates the true
2386 -- semantic structure of the program (which is not relevant when
2387 -- generating executable code.
2388
2389 -- ??? a cleaner approach may be possible and/or this solution
2390 -- could be extended to general-purpose late primitives, TBD.
2391
2392 if not ASIS_Mode and then not Body_Seen and then not Is_Body (Decl)
2393 then
2394 Body_Seen := True;
2395
2396 if Nkind (Next_Decl) = N_Subprogram_Body then
2397 Handle_Late_Controlled_Primitive (Next_Decl);
2398 end if;
2399 end if;
2400
2401 Adjust_Decl;
2402 Freeze_All (Freeze_From, Decl);
2403 Freeze_From := Last_Entity (Current_Scope);
2404 end if;
2405
2406 Decl := Next_Decl;
2407 end loop;
2408
2409 -- Analyze the contracts of packages and their bodies
2410
2411 if Present (L) then
2412 Context := Parent (L);
2413
2414 if Nkind (Context) = N_Package_Specification then
2415
2416 -- When a package has private declarations, its contract must be
2417 -- analyzed at the end of the said declarations. This way both the
2418 -- analysis and freeze actions are properly synchronized in case
2419 -- of private type use within the contract.
2420
2421 if L = Private_Declarations (Context) then
2422 Analyze_Package_Contract (Defining_Entity (Context));
2423
2424 -- Build the bodies of the default initial condition procedures
2425 -- for all types subject to pragma Default_Initial_Condition.
2426 -- From a purely Ada stand point, this is a freezing activity,
2427 -- however freezing is not available under GNATprove_Mode. To
2428 -- accomodate both scenarios, the bodies are build at the end
2429 -- of private declaration analysis.
2430
2431 Build_Default_Init_Cond_Procedure_Bodies (L);
2432
2433 -- Otherwise the contract is analyzed at the end of the visible
2434 -- declarations.
2435
2436 elsif L = Visible_Declarations (Context)
2437 and then No (Private_Declarations (Context))
2438 then
2439 Analyze_Package_Contract (Defining_Entity (Context));
2440 end if;
2441
2442 elsif Nkind (Context) = N_Package_Body then
2443 In_Package_Body := True;
2444 Spec_Id := Corresponding_Spec (Context);
2445
2446 Analyze_Package_Body_Contract (Defining_Entity (Context));
2447 end if;
2448 end if;
2449
2450 -- Analyze the contracts of subprogram declarations, subprogram bodies
2451 -- and variables now due to the delayed visibility requirements of their
2452 -- aspects.
2453
2454 Decl := First (L);
2455 while Present (Decl) loop
2456 if Nkind (Decl) = N_Object_Declaration then
2457 Analyze_Object_Contract (Defining_Entity (Decl));
2458
2459 elsif Nkind_In (Decl, N_Abstract_Subprogram_Declaration,
2460 N_Subprogram_Declaration)
2461 then
2462 Analyze_Subprogram_Contract (Defining_Entity (Decl));
2463
2464 elsif Nkind (Decl) = N_Subprogram_Body then
2465 Analyze_Subprogram_Body_Contract (Defining_Entity (Decl));
2466
2467 elsif Nkind (Decl) = N_Subprogram_Body_Stub then
2468 Analyze_Subprogram_Body_Stub_Contract (Defining_Entity (Decl));
2469 end if;
2470
2471 Next (Decl);
2472 end loop;
2473
2474 -- State refinements are visible upto the end the of the package body
2475 -- declarations. Hide the refinements from visibility to restore the
2476 -- original state conditions.
2477
2478 if In_Package_Body then
2479 Remove_Visible_Refinements (Spec_Id);
2480 end if;
2481 end Analyze_Declarations;
2482
2483 -----------------------------------
2484 -- Analyze_Full_Type_Declaration --
2485 -----------------------------------
2486
2487 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2488 Def : constant Node_Id := Type_Definition (N);
2489 Def_Id : constant Entity_Id := Defining_Identifier (N);
2490 T : Entity_Id;
2491 Prev : Entity_Id;
2492
2493 Is_Remote : constant Boolean :=
2494 (Is_Remote_Types (Current_Scope)
2495 or else Is_Remote_Call_Interface (Current_Scope))
2496 and then not (In_Private_Part (Current_Scope)
2497 or else In_Package_Body (Current_Scope));
2498
2499 procedure Check_Ops_From_Incomplete_Type;
2500 -- If there is a tagged incomplete partial view of the type, traverse
2501 -- the primitives of the incomplete view and change the type of any
2502 -- controlling formals and result to indicate the full view. The
2503 -- primitives will be added to the full type's primitive operations
2504 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2505 -- is called from Process_Incomplete_Dependents).
2506
2507 ------------------------------------
2508 -- Check_Ops_From_Incomplete_Type --
2509 ------------------------------------
2510
2511 procedure Check_Ops_From_Incomplete_Type is
2512 Elmt : Elmt_Id;
2513 Formal : Entity_Id;
2514 Op : Entity_Id;
2515
2516 begin
2517 if Prev /= T
2518 and then Ekind (Prev) = E_Incomplete_Type
2519 and then Is_Tagged_Type (Prev)
2520 and then Is_Tagged_Type (T)
2521 then
2522 Elmt := First_Elmt (Primitive_Operations (Prev));
2523 while Present (Elmt) loop
2524 Op := Node (Elmt);
2525
2526 Formal := First_Formal (Op);
2527 while Present (Formal) loop
2528 if Etype (Formal) = Prev then
2529 Set_Etype (Formal, T);
2530 end if;
2531
2532 Next_Formal (Formal);
2533 end loop;
2534
2535 if Etype (Op) = Prev then
2536 Set_Etype (Op, T);
2537 end if;
2538
2539 Next_Elmt (Elmt);
2540 end loop;
2541 end if;
2542 end Check_Ops_From_Incomplete_Type;
2543
2544 -- Start of processing for Analyze_Full_Type_Declaration
2545
2546 begin
2547 Prev := Find_Type_Name (N);
2548
2549 -- The full view, if present, now points to the current type
2550 -- If there is an incomplete partial view, set a link to it, to
2551 -- simplify the retrieval of primitive operations of the type.
2552
2553 -- Ada 2005 (AI-50217): If the type was previously decorated when
2554 -- imported through a LIMITED WITH clause, it appears as incomplete
2555 -- but has no full view.
2556
2557 if Ekind (Prev) = E_Incomplete_Type
2558 and then Present (Full_View (Prev))
2559 then
2560 T := Full_View (Prev);
2561 Set_Incomplete_View (N, Parent (Prev));
2562 else
2563 T := Prev;
2564 end if;
2565
2566 Set_Is_Pure (T, Is_Pure (Current_Scope));
2567
2568 -- We set the flag Is_First_Subtype here. It is needed to set the
2569 -- corresponding flag for the Implicit class-wide-type created
2570 -- during tagged types processing.
2571
2572 Set_Is_First_Subtype (T, True);
2573
2574 -- Only composite types other than array types are allowed to have
2575 -- discriminants.
2576
2577 case Nkind (Def) is
2578
2579 -- For derived types, the rule will be checked once we've figured
2580 -- out the parent type.
2581
2582 when N_Derived_Type_Definition =>
2583 null;
2584
2585 -- For record types, discriminants are allowed, unless we are in
2586 -- SPARK.
2587
2588 when N_Record_Definition =>
2589 if Present (Discriminant_Specifications (N)) then
2590 Check_SPARK_05_Restriction
2591 ("discriminant type is not allowed",
2592 Defining_Identifier
2593 (First (Discriminant_Specifications (N))));
2594 end if;
2595
2596 when others =>
2597 if Present (Discriminant_Specifications (N)) then
2598 Error_Msg_N
2599 ("elementary or array type cannot have discriminants",
2600 Defining_Identifier
2601 (First (Discriminant_Specifications (N))));
2602 end if;
2603 end case;
2604
2605 -- Elaborate the type definition according to kind, and generate
2606 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2607 -- already done (this happens during the reanalysis that follows a call
2608 -- to the high level optimizer).
2609
2610 if not Analyzed (T) then
2611 Set_Analyzed (T);
2612
2613 case Nkind (Def) is
2614
2615 when N_Access_To_Subprogram_Definition =>
2616 Access_Subprogram_Declaration (T, Def);
2617
2618 -- If this is a remote access to subprogram, we must create the
2619 -- equivalent fat pointer type, and related subprograms.
2620
2621 if Is_Remote then
2622 Process_Remote_AST_Declaration (N);
2623 end if;
2624
2625 -- Validate categorization rule against access type declaration
2626 -- usually a violation in Pure unit, Shared_Passive unit.
2627
2628 Validate_Access_Type_Declaration (T, N);
2629
2630 when N_Access_To_Object_Definition =>
2631 Access_Type_Declaration (T, Def);
2632
2633 -- Validate categorization rule against access type declaration
2634 -- usually a violation in Pure unit, Shared_Passive unit.
2635
2636 Validate_Access_Type_Declaration (T, N);
2637
2638 -- If we are in a Remote_Call_Interface package and define a
2639 -- RACW, then calling stubs and specific stream attributes
2640 -- must be added.
2641
2642 if Is_Remote
2643 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2644 then
2645 Add_RACW_Features (Def_Id);
2646 end if;
2647
2648 -- Set no strict aliasing flag if config pragma seen
2649
2650 if Opt.No_Strict_Aliasing then
2651 Set_No_Strict_Aliasing (Base_Type (Def_Id));
2652 end if;
2653
2654 when N_Array_Type_Definition =>
2655 Array_Type_Declaration (T, Def);
2656
2657 when N_Derived_Type_Definition =>
2658 Derived_Type_Declaration (T, N, T /= Def_Id);
2659
2660 when N_Enumeration_Type_Definition =>
2661 Enumeration_Type_Declaration (T, Def);
2662
2663 when N_Floating_Point_Definition =>
2664 Floating_Point_Type_Declaration (T, Def);
2665
2666 when N_Decimal_Fixed_Point_Definition =>
2667 Decimal_Fixed_Point_Type_Declaration (T, Def);
2668
2669 when N_Ordinary_Fixed_Point_Definition =>
2670 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2671
2672 when N_Signed_Integer_Type_Definition =>
2673 Signed_Integer_Type_Declaration (T, Def);
2674
2675 when N_Modular_Type_Definition =>
2676 Modular_Type_Declaration (T, Def);
2677
2678 when N_Record_Definition =>
2679 Record_Type_Declaration (T, N, Prev);
2680
2681 -- If declaration has a parse error, nothing to elaborate.
2682
2683 when N_Error =>
2684 null;
2685
2686 when others =>
2687 raise Program_Error;
2688
2689 end case;
2690 end if;
2691
2692 if Etype (T) = Any_Type then
2693 return;
2694 end if;
2695
2696 -- Controlled type is not allowed in SPARK
2697
2698 if Is_Visibly_Controlled (T) then
2699 Check_SPARK_05_Restriction ("controlled type is not allowed", N);
2700 end if;
2701
2702 -- Some common processing for all types
2703
2704 Set_Depends_On_Private (T, Has_Private_Component (T));
2705 Check_Ops_From_Incomplete_Type;
2706
2707 -- Both the declared entity, and its anonymous base type if one
2708 -- was created, need freeze nodes allocated.
2709
2710 declare
2711 B : constant Entity_Id := Base_Type (T);
2712
2713 begin
2714 -- In the case where the base type differs from the first subtype, we
2715 -- pre-allocate a freeze node, and set the proper link to the first
2716 -- subtype. Freeze_Entity will use this preallocated freeze node when
2717 -- it freezes the entity.
2718
2719 -- This does not apply if the base type is a generic type, whose
2720 -- declaration is independent of the current derived definition.
2721
2722 if B /= T and then not Is_Generic_Type (B) then
2723 Ensure_Freeze_Node (B);
2724 Set_First_Subtype_Link (Freeze_Node (B), T);
2725 end if;
2726
2727 -- A type that is imported through a limited_with clause cannot
2728 -- generate any code, and thus need not be frozen. However, an access
2729 -- type with an imported designated type needs a finalization list,
2730 -- which may be referenced in some other package that has non-limited
2731 -- visibility on the designated type. Thus we must create the
2732 -- finalization list at the point the access type is frozen, to
2733 -- prevent unsatisfied references at link time.
2734
2735 if not From_Limited_With (T) or else Is_Access_Type (T) then
2736 Set_Has_Delayed_Freeze (T);
2737 end if;
2738 end;
2739
2740 -- Case where T is the full declaration of some private type which has
2741 -- been swapped in Defining_Identifier (N).
2742
2743 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2744 Process_Full_View (N, T, Def_Id);
2745
2746 -- Record the reference. The form of this is a little strange, since
2747 -- the full declaration has been swapped in. So the first parameter
2748 -- here represents the entity to which a reference is made which is
2749 -- the "real" entity, i.e. the one swapped in, and the second
2750 -- parameter provides the reference location.
2751
2752 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2753 -- since we don't want a complaint about the full type being an
2754 -- unwanted reference to the private type
2755
2756 declare
2757 B : constant Boolean := Has_Pragma_Unreferenced (T);
2758 begin
2759 Set_Has_Pragma_Unreferenced (T, False);
2760 Generate_Reference (T, T, 'c');
2761 Set_Has_Pragma_Unreferenced (T, B);
2762 end;
2763
2764 Set_Completion_Referenced (Def_Id);
2765
2766 -- For completion of incomplete type, process incomplete dependents
2767 -- and always mark the full type as referenced (it is the incomplete
2768 -- type that we get for any real reference).
2769
2770 elsif Ekind (Prev) = E_Incomplete_Type then
2771 Process_Incomplete_Dependents (N, T, Prev);
2772 Generate_Reference (Prev, Def_Id, 'c');
2773 Set_Completion_Referenced (Def_Id);
2774
2775 -- If not private type or incomplete type completion, this is a real
2776 -- definition of a new entity, so record it.
2777
2778 else
2779 Generate_Definition (Def_Id);
2780 end if;
2781
2782 if Chars (Scope (Def_Id)) = Name_System
2783 and then Chars (Def_Id) = Name_Address
2784 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
2785 then
2786 Set_Is_Descendent_Of_Address (Def_Id);
2787 Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
2788 Set_Is_Descendent_Of_Address (Prev);
2789 end if;
2790
2791 Set_Optimize_Alignment_Flags (Def_Id);
2792 Check_Eliminated (Def_Id);
2793
2794 -- If the declaration is a completion and aspects are present, apply
2795 -- them to the entity for the type which is currently the partial
2796 -- view, but which is the one that will be frozen.
2797
2798 if Has_Aspects (N) then
2799
2800 -- In most cases the partial view is a private type, and both views
2801 -- appear in different declarative parts. In the unusual case where
2802 -- the partial view is incomplete, perform the analysis on the
2803 -- full view, to prevent freezing anomalies with the corresponding
2804 -- class-wide type, which otherwise might be frozen before the
2805 -- dispatch table is built.
2806
2807 if Prev /= Def_Id
2808 and then Ekind (Prev) /= E_Incomplete_Type
2809 then
2810 Analyze_Aspect_Specifications (N, Prev);
2811
2812 -- Normal case
2813
2814 else
2815 Analyze_Aspect_Specifications (N, Def_Id);
2816 end if;
2817 end if;
2818 end Analyze_Full_Type_Declaration;
2819
2820 ----------------------------------
2821 -- Analyze_Incomplete_Type_Decl --
2822 ----------------------------------
2823
2824 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
2825 F : constant Boolean := Is_Pure (Current_Scope);
2826 T : Entity_Id;
2827
2828 begin
2829 Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
2830
2831 Generate_Definition (Defining_Identifier (N));
2832
2833 -- Process an incomplete declaration. The identifier must not have been
2834 -- declared already in the scope. However, an incomplete declaration may
2835 -- appear in the private part of a package, for a private type that has
2836 -- already been declared.
2837
2838 -- In this case, the discriminants (if any) must match
2839
2840 T := Find_Type_Name (N);
2841
2842 Set_Ekind (T, E_Incomplete_Type);
2843 Init_Size_Align (T);
2844 Set_Is_First_Subtype (T, True);
2845 Set_Etype (T, T);
2846
2847 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2848 -- incomplete types.
2849
2850 if Tagged_Present (N) then
2851 Set_Is_Tagged_Type (T, True);
2852 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
2853 Make_Class_Wide_Type (T);
2854 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2855 end if;
2856
2857 Push_Scope (T);
2858
2859 Set_Stored_Constraint (T, No_Elist);
2860
2861 if Present (Discriminant_Specifications (N)) then
2862 Process_Discriminants (N);
2863 end if;
2864
2865 End_Scope;
2866
2867 -- If the type has discriminants, non-trivial subtypes may be
2868 -- declared before the full view of the type. The full views of those
2869 -- subtypes will be built after the full view of the type.
2870
2871 Set_Private_Dependents (T, New_Elmt_List);
2872 Set_Is_Pure (T, F);
2873 end Analyze_Incomplete_Type_Decl;
2874
2875 -----------------------------------
2876 -- Analyze_Interface_Declaration --
2877 -----------------------------------
2878
2879 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
2880 CW : constant Entity_Id := Class_Wide_Type (T);
2881
2882 begin
2883 Set_Is_Tagged_Type (T);
2884 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
2885
2886 Set_Is_Limited_Record (T, Limited_Present (Def)
2887 or else Task_Present (Def)
2888 or else Protected_Present (Def)
2889 or else Synchronized_Present (Def));
2890
2891 -- Type is abstract if full declaration carries keyword, or if previous
2892 -- partial view did.
2893
2894 Set_Is_Abstract_Type (T);
2895 Set_Is_Interface (T);
2896
2897 -- Type is a limited interface if it includes the keyword limited, task,
2898 -- protected, or synchronized.
2899
2900 Set_Is_Limited_Interface
2901 (T, Limited_Present (Def)
2902 or else Protected_Present (Def)
2903 or else Synchronized_Present (Def)
2904 or else Task_Present (Def));
2905
2906 Set_Interfaces (T, New_Elmt_List);
2907 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2908
2909 -- Complete the decoration of the class-wide entity if it was already
2910 -- built (i.e. during the creation of the limited view)
2911
2912 if Present (CW) then
2913 Set_Is_Interface (CW);
2914 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
2915 end if;
2916
2917 -- Check runtime support for synchronized interfaces
2918
2919 if VM_Target = No_VM
2920 and then (Is_Task_Interface (T)
2921 or else Is_Protected_Interface (T)
2922 or else Is_Synchronized_Interface (T))
2923 and then not RTE_Available (RE_Select_Specific_Data)
2924 then
2925 Error_Msg_CRT ("synchronized interfaces", T);
2926 end if;
2927 end Analyze_Interface_Declaration;
2928
2929 -----------------------------
2930 -- Analyze_Itype_Reference --
2931 -----------------------------
2932
2933 -- Nothing to do. This node is placed in the tree only for the benefit of
2934 -- back end processing, and has no effect on the semantic processing.
2935
2936 procedure Analyze_Itype_Reference (N : Node_Id) is
2937 begin
2938 pragma Assert (Is_Itype (Itype (N)));
2939 null;
2940 end Analyze_Itype_Reference;
2941
2942 --------------------------------
2943 -- Analyze_Number_Declaration --
2944 --------------------------------
2945
2946 procedure Analyze_Number_Declaration (N : Node_Id) is
2947 Id : constant Entity_Id := Defining_Identifier (N);
2948 E : constant Node_Id := Expression (N);
2949 T : Entity_Id;
2950 Index : Interp_Index;
2951 It : Interp;
2952
2953 begin
2954 Generate_Definition (Id);
2955 Enter_Name (Id);
2956
2957 -- This is an optimization of a common case of an integer literal
2958
2959 if Nkind (E) = N_Integer_Literal then
2960 Set_Is_Static_Expression (E, True);
2961 Set_Etype (E, Universal_Integer);
2962
2963 Set_Etype (Id, Universal_Integer);
2964 Set_Ekind (Id, E_Named_Integer);
2965 Set_Is_Frozen (Id, True);
2966 return;
2967 end if;
2968
2969 Set_Is_Pure (Id, Is_Pure (Current_Scope));
2970
2971 -- Process expression, replacing error by integer zero, to avoid
2972 -- cascaded errors or aborts further along in the processing
2973
2974 -- Replace Error by integer zero, which seems least likely to cause
2975 -- cascaded errors.
2976
2977 if E = Error then
2978 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
2979 Set_Error_Posted (E);
2980 end if;
2981
2982 Analyze (E);
2983
2984 -- Verify that the expression is static and numeric. If
2985 -- the expression is overloaded, we apply the preference
2986 -- rule that favors root numeric types.
2987
2988 if not Is_Overloaded (E) then
2989 T := Etype (E);
2990 if Has_Dynamic_Predicate_Aspect (T) then
2991 Error_Msg_N
2992 ("subtype has dynamic predicate, "
2993 & "not allowed in number declaration", N);
2994 end if;
2995
2996 else
2997 T := Any_Type;
2998
2999 Get_First_Interp (E, Index, It);
3000 while Present (It.Typ) loop
3001 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
3002 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
3003 then
3004 if T = Any_Type then
3005 T := It.Typ;
3006
3007 elsif It.Typ = Universal_Real
3008 or else
3009 It.Typ = Universal_Integer
3010 then
3011 -- Choose universal interpretation over any other
3012
3013 T := It.Typ;
3014 exit;
3015 end if;
3016 end if;
3017
3018 Get_Next_Interp (Index, It);
3019 end loop;
3020 end if;
3021
3022 if Is_Integer_Type (T) then
3023 Resolve (E, T);
3024 Set_Etype (Id, Universal_Integer);
3025 Set_Ekind (Id, E_Named_Integer);
3026
3027 elsif Is_Real_Type (T) then
3028
3029 -- Because the real value is converted to universal_real, this is a
3030 -- legal context for a universal fixed expression.
3031
3032 if T = Universal_Fixed then
3033 declare
3034 Loc : constant Source_Ptr := Sloc (N);
3035 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3036 Subtype_Mark =>
3037 New_Occurrence_Of (Universal_Real, Loc),
3038 Expression => Relocate_Node (E));
3039
3040 begin
3041 Rewrite (E, Conv);
3042 Analyze (E);
3043 end;
3044
3045 elsif T = Any_Fixed then
3046 Error_Msg_N ("illegal context for mixed mode operation", E);
3047
3048 -- Expression is of the form : universal_fixed * integer. Try to
3049 -- resolve as universal_real.
3050
3051 T := Universal_Real;
3052 Set_Etype (E, T);
3053 end if;
3054
3055 Resolve (E, T);
3056 Set_Etype (Id, Universal_Real);
3057 Set_Ekind (Id, E_Named_Real);
3058
3059 else
3060 Wrong_Type (E, Any_Numeric);
3061 Resolve (E, T);
3062
3063 Set_Etype (Id, T);
3064 Set_Ekind (Id, E_Constant);
3065 Set_Never_Set_In_Source (Id, True);
3066 Set_Is_True_Constant (Id, True);
3067 return;
3068 end if;
3069
3070 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3071 Set_Etype (E, Etype (Id));
3072 end if;
3073
3074 if not Is_OK_Static_Expression (E) then
3075 Flag_Non_Static_Expr
3076 ("non-static expression used in number declaration!", E);
3077 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3078 Set_Etype (E, Any_Type);
3079 end if;
3080 end Analyze_Number_Declaration;
3081
3082 -----------------------------
3083 -- Analyze_Object_Contract --
3084 -----------------------------
3085
3086 procedure Analyze_Object_Contract (Obj_Id : Entity_Id) is
3087 Obj_Typ : constant Entity_Id := Etype (Obj_Id);
3088 AR_Val : Boolean := False;
3089 AW_Val : Boolean := False;
3090 ER_Val : Boolean := False;
3091 EW_Val : Boolean := False;
3092 Prag : Node_Id;
3093 Seen : Boolean := False;
3094
3095 begin
3096 if Ekind (Obj_Id) = E_Constant then
3097
3098 -- A constant cannot be effectively volatile. This check is only
3099 -- relevant with SPARK_Mode on as it is not a standard Ada legality
3100 -- rule. Do not flag internally-generated constants that map generic
3101 -- formals to actuals in instantiations (SPARK RM 7.1.3(6)).
3102
3103 if SPARK_Mode = On
3104 and then Is_Effectively_Volatile (Obj_Id)
3105 and then No (Corresponding_Generic_Association (Parent (Obj_Id)))
3106 then
3107 Error_Msg_N ("constant cannot be volatile", Obj_Id);
3108 end if;
3109
3110 -- The loop parameter in an element iterator over a formal container
3111 -- is declared with an object declaration but no contracts apply.
3112
3113 elsif Ekind (Obj_Id) = E_Loop_Parameter then
3114 null;
3115
3116 else pragma Assert (Ekind (Obj_Id) = E_Variable);
3117
3118 -- The following checks are only relevant when SPARK_Mode is on as
3119 -- they are not standard Ada legality rules. Internally generated
3120 -- temporaries are ignored.
3121
3122 if SPARK_Mode = On and then Comes_From_Source (Obj_Id) then
3123 if Is_Effectively_Volatile (Obj_Id) then
3124
3125 -- The declaration of an effectively volatile object must
3126 -- appear at the library level (SPARK RM 7.1.3(7), C.6(6)).
3127
3128 if not Is_Library_Level_Entity (Obj_Id) then
3129 Error_Msg_N
3130 ("volatile variable & must be declared at library level",
3131 Obj_Id);
3132
3133 -- An object of a discriminated type cannot be effectively
3134 -- volatile (SPARK RM C.6(4)).
3135
3136 elsif Has_Discriminants (Obj_Typ) then
3137 Error_Msg_N
3138 ("discriminated object & cannot be volatile", Obj_Id);
3139
3140 -- An object of a tagged type cannot be effectively volatile
3141 -- (SPARK RM C.6(5)).
3142
3143 elsif Is_Tagged_Type (Obj_Typ) then
3144 Error_Msg_N ("tagged object & cannot be volatile", Obj_Id);
3145 end if;
3146
3147 -- The object is not effectively volatile
3148
3149 else
3150 -- A non-effectively volatile object cannot have effectively
3151 -- volatile components (SPARK RM 7.1.3(7)).
3152
3153 if not Is_Effectively_Volatile (Obj_Id)
3154 and then Has_Volatile_Component (Obj_Typ)
3155 then
3156 Error_Msg_N
3157 ("non-volatile object & cannot have volatile components",
3158 Obj_Id);
3159 end if;
3160 end if;
3161 end if;
3162
3163 -- Analyze all external properties
3164
3165 Prag := Get_Pragma (Obj_Id, Pragma_Async_Readers);
3166
3167 if Present (Prag) then
3168 Analyze_External_Property_In_Decl_Part (Prag, AR_Val);
3169 Seen := True;
3170 end if;
3171
3172 Prag := Get_Pragma (Obj_Id, Pragma_Async_Writers);
3173
3174 if Present (Prag) then
3175 Analyze_External_Property_In_Decl_Part (Prag, AW_Val);
3176 Seen := True;
3177 end if;
3178
3179 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Reads);
3180
3181 if Present (Prag) then
3182 Analyze_External_Property_In_Decl_Part (Prag, ER_Val);
3183 Seen := True;
3184 end if;
3185
3186 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Writes);
3187
3188 if Present (Prag) then
3189 Analyze_External_Property_In_Decl_Part (Prag, EW_Val);
3190 Seen := True;
3191 end if;
3192
3193 -- Verify the mutual interaction of the various external properties
3194
3195 if Seen then
3196 Check_External_Properties (Obj_Id, AR_Val, AW_Val, ER_Val, EW_Val);
3197 end if;
3198
3199 -- Check whether the lack of indicator Part_Of agrees with the
3200 -- placement of the variable with respect to the state space.
3201
3202 Prag := Get_Pragma (Obj_Id, Pragma_Part_Of);
3203
3204 if No (Prag) then
3205 Check_Missing_Part_Of (Obj_Id);
3206 end if;
3207 end if;
3208 end Analyze_Object_Contract;
3209
3210 --------------------------------
3211 -- Analyze_Object_Declaration --
3212 --------------------------------
3213
3214 procedure Analyze_Object_Declaration (N : Node_Id) is
3215 Loc : constant Source_Ptr := Sloc (N);
3216 Id : constant Entity_Id := Defining_Identifier (N);
3217 T : Entity_Id;
3218 Act_T : Entity_Id;
3219
3220 E : Node_Id := Expression (N);
3221 -- E is set to Expression (N) throughout this routine. When
3222 -- Expression (N) is modified, E is changed accordingly.
3223
3224 Prev_Entity : Entity_Id := Empty;
3225
3226 function Count_Tasks (T : Entity_Id) return Uint;
3227 -- This function is called when a non-generic library level object of a
3228 -- task type is declared. Its function is to count the static number of
3229 -- tasks declared within the type (it is only called if Has_Tasks is set
3230 -- for T). As a side effect, if an array of tasks with non-static bounds
3231 -- or a variant record type is encountered, Check_Restrictions is called
3232 -- indicating the count is unknown.
3233
3234 -----------------
3235 -- Count_Tasks --
3236 -----------------
3237
3238 function Count_Tasks (T : Entity_Id) return Uint is
3239 C : Entity_Id;
3240 X : Node_Id;
3241 V : Uint;
3242
3243 begin
3244 if Is_Task_Type (T) then
3245 return Uint_1;
3246
3247 elsif Is_Record_Type (T) then
3248 if Has_Discriminants (T) then
3249 Check_Restriction (Max_Tasks, N);
3250 return Uint_0;
3251
3252 else
3253 V := Uint_0;
3254 C := First_Component (T);
3255 while Present (C) loop
3256 V := V + Count_Tasks (Etype (C));
3257 Next_Component (C);
3258 end loop;
3259
3260 return V;
3261 end if;
3262
3263 elsif Is_Array_Type (T) then
3264 X := First_Index (T);
3265 V := Count_Tasks (Component_Type (T));
3266 while Present (X) loop
3267 C := Etype (X);
3268
3269 if not Is_OK_Static_Subtype (C) then
3270 Check_Restriction (Max_Tasks, N);
3271 return Uint_0;
3272 else
3273 V := V * (UI_Max (Uint_0,
3274 Expr_Value (Type_High_Bound (C)) -
3275 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3276 end if;
3277
3278 Next_Index (X);
3279 end loop;
3280
3281 return V;
3282
3283 else
3284 return Uint_0;
3285 end if;
3286 end Count_Tasks;
3287
3288 -- Start of processing for Analyze_Object_Declaration
3289
3290 begin
3291 -- There are three kinds of implicit types generated by an
3292 -- object declaration:
3293
3294 -- 1. Those generated by the original Object Definition
3295
3296 -- 2. Those generated by the Expression
3297
3298 -- 3. Those used to constrain the Object Definition with the
3299 -- expression constraints when the definition is unconstrained.
3300
3301 -- They must be generated in this order to avoid order of elaboration
3302 -- issues. Thus the first step (after entering the name) is to analyze
3303 -- the object definition.
3304
3305 if Constant_Present (N) then
3306 Prev_Entity := Current_Entity_In_Scope (Id);
3307
3308 if Present (Prev_Entity)
3309 and then
3310 -- If the homograph is an implicit subprogram, it is overridden
3311 -- by the current declaration.
3312
3313 ((Is_Overloadable (Prev_Entity)
3314 and then Is_Inherited_Operation (Prev_Entity))
3315
3316 -- The current object is a discriminal generated for an entry
3317 -- family index. Even though the index is a constant, in this
3318 -- particular context there is no true constant redeclaration.
3319 -- Enter_Name will handle the visibility.
3320
3321 or else
3322 (Is_Discriminal (Id)
3323 and then Ekind (Discriminal_Link (Id)) =
3324 E_Entry_Index_Parameter)
3325
3326 -- The current object is the renaming for a generic declared
3327 -- within the instance.
3328
3329 or else
3330 (Ekind (Prev_Entity) = E_Package
3331 and then Nkind (Parent (Prev_Entity)) =
3332 N_Package_Renaming_Declaration
3333 and then not Comes_From_Source (Prev_Entity)
3334 and then
3335 Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
3336 then
3337 Prev_Entity := Empty;
3338 end if;
3339 end if;
3340
3341 if Present (Prev_Entity) then
3342 Constant_Redeclaration (Id, N, T);
3343
3344 Generate_Reference (Prev_Entity, Id, 'c');
3345 Set_Completion_Referenced (Id);
3346
3347 if Error_Posted (N) then
3348
3349 -- Type mismatch or illegal redeclaration, Do not analyze
3350 -- expression to avoid cascaded errors.
3351
3352 T := Find_Type_Of_Object (Object_Definition (N), N);
3353 Set_Etype (Id, T);
3354 Set_Ekind (Id, E_Variable);
3355 goto Leave;
3356 end if;
3357
3358 -- In the normal case, enter identifier at the start to catch premature
3359 -- usage in the initialization expression.
3360
3361 else
3362 Generate_Definition (Id);
3363 Enter_Name (Id);
3364
3365 Mark_Coextensions (N, Object_Definition (N));
3366
3367 T := Find_Type_Of_Object (Object_Definition (N), N);
3368
3369 if Nkind (Object_Definition (N)) = N_Access_Definition
3370 and then Present
3371 (Access_To_Subprogram_Definition (Object_Definition (N)))
3372 and then Protected_Present
3373 (Access_To_Subprogram_Definition (Object_Definition (N)))
3374 then
3375 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3376 end if;
3377
3378 if Error_Posted (Id) then
3379 Set_Etype (Id, T);
3380 Set_Ekind (Id, E_Variable);
3381 goto Leave;
3382 end if;
3383 end if;
3384
3385 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3386 -- out some static checks
3387
3388 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
3389
3390 -- In case of aggregates we must also take care of the correct
3391 -- initialization of nested aggregates bug this is done at the
3392 -- point of the analysis of the aggregate (see sem_aggr.adb).
3393
3394 if Present (Expression (N))
3395 and then Nkind (Expression (N)) = N_Aggregate
3396 then
3397 null;
3398
3399 else
3400 declare
3401 Save_Typ : constant Entity_Id := Etype (Id);
3402 begin
3403 Set_Etype (Id, T); -- Temp. decoration for static checks
3404 Null_Exclusion_Static_Checks (N);
3405 Set_Etype (Id, Save_Typ);
3406 end;
3407 end if;
3408 end if;
3409
3410 -- Object is marked pure if it is in a pure scope
3411
3412 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3413
3414 -- If deferred constant, make sure context is appropriate. We detect
3415 -- a deferred constant as a constant declaration with no expression.
3416 -- A deferred constant can appear in a package body if its completion
3417 -- is by means of an interface pragma.
3418
3419 if Constant_Present (N) and then No (E) then
3420
3421 -- A deferred constant may appear in the declarative part of the
3422 -- following constructs:
3423
3424 -- blocks
3425 -- entry bodies
3426 -- extended return statements
3427 -- package specs
3428 -- package bodies
3429 -- subprogram bodies
3430 -- task bodies
3431
3432 -- When declared inside a package spec, a deferred constant must be
3433 -- completed by a full constant declaration or pragma Import. In all
3434 -- other cases, the only proper completion is pragma Import. Extended
3435 -- return statements are flagged as invalid contexts because they do
3436 -- not have a declarative part and so cannot accommodate the pragma.
3437
3438 if Ekind (Current_Scope) = E_Return_Statement then
3439 Error_Msg_N
3440 ("invalid context for deferred constant declaration (RM 7.4)",
3441 N);
3442 Error_Msg_N
3443 ("\declaration requires an initialization expression",
3444 N);
3445 Set_Constant_Present (N, False);
3446
3447 -- In Ada 83, deferred constant must be of private type
3448
3449 elsif not Is_Private_Type (T) then
3450 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3451 Error_Msg_N
3452 ("(Ada 83) deferred constant must be private type", N);
3453 end if;
3454 end if;
3455
3456 -- If not a deferred constant, then the object declaration freezes
3457 -- its type, unless the object is of an anonymous type and has delayed
3458 -- aspects. In that case the type is frozen when the object itself is.
3459
3460 else
3461 Check_Fully_Declared (T, N);
3462
3463 if Has_Delayed_Aspects (Id)
3464 and then Is_Array_Type (T)
3465 and then Is_Itype (T)
3466 then
3467 Set_Has_Delayed_Freeze (T);
3468 else
3469 Freeze_Before (N, T);
3470 end if;
3471 end if;
3472
3473 -- If the object was created by a constrained array definition, then
3474 -- set the link in both the anonymous base type and anonymous subtype
3475 -- that are built to represent the array type to point to the object.
3476
3477 if Nkind (Object_Definition (Declaration_Node (Id))) =
3478 N_Constrained_Array_Definition
3479 then
3480 Set_Related_Array_Object (T, Id);
3481 Set_Related_Array_Object (Base_Type (T), Id);
3482 end if;
3483
3484 -- Special checks for protected objects not at library level
3485
3486 if Is_Protected_Type (T)
3487 and then not Is_Library_Level_Entity (Id)
3488 then
3489 Check_Restriction (No_Local_Protected_Objects, Id);
3490
3491 -- Protected objects with interrupt handlers must be at library level
3492
3493 -- Ada 2005: This test is not needed (and the corresponding clause
3494 -- in the RM is removed) because accessibility checks are sufficient
3495 -- to make handlers not at the library level illegal.
3496
3497 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3498 -- applies to the '95 version of the language as well.
3499
3500 if Has_Interrupt_Handler (T) and then Ada_Version < Ada_95 then
3501 Error_Msg_N
3502 ("interrupt object can only be declared at library level", Id);
3503 end if;
3504 end if;
3505
3506 -- The actual subtype of the object is the nominal subtype, unless
3507 -- the nominal one is unconstrained and obtained from the expression.
3508
3509 Act_T := T;
3510
3511 -- These checks should be performed before the initialization expression
3512 -- is considered, so that the Object_Definition node is still the same
3513 -- as in source code.
3514
3515 -- In SPARK, the nominal subtype is always given by a subtype mark
3516 -- and must not be unconstrained. (The only exception to this is the
3517 -- acceptance of declarations of constants of type String.)
3518
3519 if not
3520 Nkind_In (Object_Definition (N), N_Identifier, N_Expanded_Name)
3521 then
3522 Check_SPARK_05_Restriction
3523 ("subtype mark required", Object_Definition (N));
3524
3525 elsif Is_Array_Type (T)
3526 and then not Is_Constrained (T)
3527 and then T /= Standard_String
3528 then
3529 Check_SPARK_05_Restriction
3530 ("subtype mark of constrained type expected",
3531 Object_Definition (N));
3532 end if;
3533
3534 -- There are no aliased objects in SPARK
3535
3536 if Aliased_Present (N) then
3537 Check_SPARK_05_Restriction ("aliased object is not allowed", N);
3538 end if;
3539
3540 -- Process initialization expression if present and not in error
3541
3542 if Present (E) and then E /= Error then
3543
3544 -- Generate an error in case of CPP class-wide object initialization.
3545 -- Required because otherwise the expansion of the class-wide
3546 -- assignment would try to use 'size to initialize the object
3547 -- (primitive that is not available in CPP tagged types).
3548
3549 if Is_Class_Wide_Type (Act_T)
3550 and then
3551 (Is_CPP_Class (Root_Type (Etype (Act_T)))
3552 or else
3553 (Present (Full_View (Root_Type (Etype (Act_T))))
3554 and then
3555 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
3556 then
3557 Error_Msg_N
3558 ("predefined assignment not available for 'C'P'P tagged types",
3559 E);
3560 end if;
3561
3562 Mark_Coextensions (N, E);
3563 Analyze (E);
3564
3565 -- In case of errors detected in the analysis of the expression,
3566 -- decorate it with the expected type to avoid cascaded errors
3567
3568 if No (Etype (E)) then
3569 Set_Etype (E, T);
3570 end if;
3571
3572 -- If an initialization expression is present, then we set the
3573 -- Is_True_Constant flag. It will be reset if this is a variable
3574 -- and it is indeed modified.
3575
3576 Set_Is_True_Constant (Id, True);
3577
3578 -- If we are analyzing a constant declaration, set its completion
3579 -- flag after analyzing and resolving the expression.
3580
3581 if Constant_Present (N) then
3582 Set_Has_Completion (Id);
3583 end if;
3584
3585 -- Set type and resolve (type may be overridden later on). Note:
3586 -- Ekind (Id) must still be E_Void at this point so that incorrect
3587 -- early usage within E is properly diagnosed.
3588
3589 Set_Etype (Id, T);
3590
3591 -- If the expression is an aggregate we must look ahead to detect
3592 -- the possible presence of an address clause, and defer resolution
3593 -- and expansion of the aggregate to the freeze point of the entity.
3594
3595 if Comes_From_Source (N)
3596 and then Expander_Active
3597 and then Has_Following_Address_Clause (N)
3598 and then Nkind (E) = N_Aggregate
3599 then
3600 Set_Etype (E, T);
3601
3602 else
3603 Resolve (E, T);
3604 end if;
3605
3606 -- No further action needed if E is a call to an inlined function
3607 -- which returns an unconstrained type and it has been expanded into
3608 -- a procedure call. In that case N has been replaced by an object
3609 -- declaration without initializing expression and it has been
3610 -- analyzed (see Expand_Inlined_Call).
3611
3612 if Back_End_Inlining
3613 and then Expander_Active
3614 and then Nkind (E) = N_Function_Call
3615 and then Nkind (Name (E)) in N_Has_Entity
3616 and then Is_Inlined (Entity (Name (E)))
3617 and then not Is_Constrained (Etype (E))
3618 and then Analyzed (N)
3619 and then No (Expression (N))
3620 then
3621 return;
3622 end if;
3623
3624 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3625 -- node (which was marked already-analyzed), we need to set the type
3626 -- to something other than Any_Access in order to keep gigi happy.
3627
3628 if Etype (E) = Any_Access then
3629 Set_Etype (E, T);
3630 end if;
3631
3632 -- If the object is an access to variable, the initialization
3633 -- expression cannot be an access to constant.
3634
3635 if Is_Access_Type (T)
3636 and then not Is_Access_Constant (T)
3637 and then Is_Access_Type (Etype (E))
3638 and then Is_Access_Constant (Etype (E))
3639 then
3640 Error_Msg_N
3641 ("access to variable cannot be initialized "
3642 & "with an access-to-constant expression", E);
3643 end if;
3644
3645 if not Assignment_OK (N) then
3646 Check_Initialization (T, E);
3647 end if;
3648
3649 Check_Unset_Reference (E);
3650
3651 -- If this is a variable, then set current value. If this is a
3652 -- declared constant of a scalar type with a static expression,
3653 -- indicate that it is always valid.
3654
3655 if not Constant_Present (N) then
3656 if Compile_Time_Known_Value (E) then
3657 Set_Current_Value (Id, E);
3658 end if;
3659
3660 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
3661 Set_Is_Known_Valid (Id);
3662 end if;
3663
3664 -- Deal with setting of null flags
3665
3666 if Is_Access_Type (T) then
3667 if Known_Non_Null (E) then
3668 Set_Is_Known_Non_Null (Id, True);
3669 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
3670 Set_Is_Known_Null (Id, True);
3671 end if;
3672 end if;
3673
3674 -- Check incorrect use of dynamically tagged expressions
3675
3676 if Is_Tagged_Type (T) then
3677 Check_Dynamically_Tagged_Expression
3678 (Expr => E,
3679 Typ => T,
3680 Related_Nod => N);
3681 end if;
3682
3683 Apply_Scalar_Range_Check (E, T);
3684 Apply_Static_Length_Check (E, T);
3685
3686 if Nkind (Original_Node (N)) = N_Object_Declaration
3687 and then Comes_From_Source (Original_Node (N))
3688
3689 -- Only call test if needed
3690
3691 and then Restriction_Check_Required (SPARK_05)
3692 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
3693 then
3694 Check_SPARK_05_Restriction
3695 ("initialization expression is not appropriate", E);
3696 end if;
3697 end if;
3698
3699 -- If the No_Streams restriction is set, check that the type of the
3700 -- object is not, and does not contain, any subtype derived from
3701 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3702 -- Has_Stream just for efficiency reasons. There is no point in
3703 -- spending time on a Has_Stream check if the restriction is not set.
3704
3705 if Restriction_Check_Required (No_Streams) then
3706 if Has_Stream (T) then
3707 Check_Restriction (No_Streams, N);
3708 end if;
3709 end if;
3710
3711 -- Deal with predicate check before we start to do major rewriting. It
3712 -- is OK to initialize and then check the initialized value, since the
3713 -- object goes out of scope if we get a predicate failure. Note that we
3714 -- do this in the analyzer and not the expander because the analyzer
3715 -- does some substantial rewriting in some cases.
3716
3717 -- We need a predicate check if the type has predicates, and if either
3718 -- there is an initializing expression, or for default initialization
3719 -- when we have at least one case of an explicit default initial value
3720 -- and then this is not an internal declaration whose initialization
3721 -- comes later (as for an aggregate expansion).
3722
3723 if not Suppress_Assignment_Checks (N)
3724 and then Present (Predicate_Function (T))
3725 and then not No_Initialization (N)
3726 and then
3727 (Present (E)
3728 or else
3729 Is_Partially_Initialized_Type (T, Include_Implicit => False))
3730 then
3731 -- If the type has a static predicate and the expression is known at
3732 -- compile time, see if the expression satisfies the predicate.
3733
3734 if Present (E) then
3735 Check_Expression_Against_Static_Predicate (E, T);
3736 end if;
3737
3738 Insert_After (N,
3739 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
3740 end if;
3741
3742 -- Case of unconstrained type
3743
3744 if Is_Indefinite_Subtype (T) then
3745
3746 -- In SPARK, a declaration of unconstrained type is allowed
3747 -- only for constants of type string.
3748
3749 if Is_String_Type (T) and then not Constant_Present (N) then
3750 Check_SPARK_05_Restriction
3751 ("declaration of object of unconstrained type not allowed", N);
3752 end if;
3753
3754 -- Nothing to do in deferred constant case
3755
3756 if Constant_Present (N) and then No (E) then
3757 null;
3758
3759 -- Case of no initialization present
3760
3761 elsif No (E) then
3762 if No_Initialization (N) then
3763 null;
3764
3765 elsif Is_Class_Wide_Type (T) then
3766 Error_Msg_N
3767 ("initialization required in class-wide declaration ", N);
3768
3769 else
3770 Error_Msg_N
3771 ("unconstrained subtype not allowed (need initialization)",
3772 Object_Definition (N));
3773
3774 if Is_Record_Type (T) and then Has_Discriminants (T) then
3775 Error_Msg_N
3776 ("\provide initial value or explicit discriminant values",
3777 Object_Definition (N));
3778
3779 Error_Msg_NE
3780 ("\or give default discriminant values for type&",
3781 Object_Definition (N), T);
3782
3783 elsif Is_Array_Type (T) then
3784 Error_Msg_N
3785 ("\provide initial value or explicit array bounds",
3786 Object_Definition (N));
3787 end if;
3788 end if;
3789
3790 -- Case of initialization present but in error. Set initial
3791 -- expression as absent (but do not make above complaints)
3792
3793 elsif E = Error then
3794 Set_Expression (N, Empty);
3795 E := Empty;
3796
3797 -- Case of initialization present
3798
3799 else
3800 -- Check restrictions in Ada 83
3801
3802 if not Constant_Present (N) then
3803
3804 -- Unconstrained variables not allowed in Ada 83 mode
3805
3806 if Ada_Version = Ada_83
3807 and then Comes_From_Source (Object_Definition (N))
3808 then
3809 Error_Msg_N
3810 ("(Ada 83) unconstrained variable not allowed",
3811 Object_Definition (N));
3812 end if;
3813 end if;
3814
3815 -- Now we constrain the variable from the initializing expression
3816
3817 -- If the expression is an aggregate, it has been expanded into
3818 -- individual assignments. Retrieve the actual type from the
3819 -- expanded construct.
3820
3821 if Is_Array_Type (T)
3822 and then No_Initialization (N)
3823 and then Nkind (Original_Node (E)) = N_Aggregate
3824 then
3825 Act_T := Etype (E);
3826
3827 -- In case of class-wide interface object declarations we delay
3828 -- the generation of the equivalent record type declarations until
3829 -- its expansion because there are cases in they are not required.
3830
3831 elsif Is_Interface (T) then
3832 null;
3833
3834 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
3835 -- we should prevent the generation of another Itype with the
3836 -- same name as the one already generated, or we end up with
3837 -- two identical types in GNATprove.
3838
3839 elsif GNATprove_Mode then
3840 null;
3841
3842 -- If the type is an unchecked union, no subtype can be built from
3843 -- the expression. Rewrite declaration as a renaming, which the
3844 -- back-end can handle properly. This is a rather unusual case,
3845 -- because most unchecked_union declarations have default values
3846 -- for discriminants and are thus not indefinite.
3847
3848 elsif Is_Unchecked_Union (T) then
3849 if Constant_Present (N) or else Nkind (E) = N_Function_Call then
3850 Set_Ekind (Id, E_Constant);
3851 else
3852 Set_Ekind (Id, E_Variable);
3853 end if;
3854
3855 Rewrite (N,
3856 Make_Object_Renaming_Declaration (Loc,
3857 Defining_Identifier => Id,
3858 Subtype_Mark => New_Occurrence_Of (T, Loc),
3859 Name => E));
3860
3861 Set_Renamed_Object (Id, E);
3862 Freeze_Before (N, T);
3863 Set_Is_Frozen (Id);
3864 return;
3865
3866 else
3867 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
3868 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
3869 end if;
3870
3871 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
3872
3873 if Aliased_Present (N) then
3874 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3875 end if;
3876
3877 Freeze_Before (N, Act_T);
3878 Freeze_Before (N, T);
3879 end if;
3880
3881 elsif Is_Array_Type (T)
3882 and then No_Initialization (N)
3883 and then Nkind (Original_Node (E)) = N_Aggregate
3884 then
3885 if not Is_Entity_Name (Object_Definition (N)) then
3886 Act_T := Etype (E);
3887 Check_Compile_Time_Size (Act_T);
3888
3889 if Aliased_Present (N) then
3890 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3891 end if;
3892 end if;
3893
3894 -- When the given object definition and the aggregate are specified
3895 -- independently, and their lengths might differ do a length check.
3896 -- This cannot happen if the aggregate is of the form (others =>...)
3897
3898 if not Is_Constrained (T) then
3899 null;
3900
3901 elsif Nkind (E) = N_Raise_Constraint_Error then
3902
3903 -- Aggregate is statically illegal. Place back in declaration
3904
3905 Set_Expression (N, E);
3906 Set_No_Initialization (N, False);
3907
3908 elsif T = Etype (E) then
3909 null;
3910
3911 elsif Nkind (E) = N_Aggregate
3912 and then Present (Component_Associations (E))
3913 and then Present (Choices (First (Component_Associations (E))))
3914 and then Nkind (First
3915 (Choices (First (Component_Associations (E))))) = N_Others_Choice
3916 then
3917 null;
3918
3919 else
3920 Apply_Length_Check (E, T);
3921 end if;
3922
3923 -- If the type is limited unconstrained with defaulted discriminants and
3924 -- there is no expression, then the object is constrained by the
3925 -- defaults, so it is worthwhile building the corresponding subtype.
3926
3927 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
3928 and then not Is_Constrained (T)
3929 and then Has_Discriminants (T)
3930 then
3931 if No (E) then
3932 Act_T := Build_Default_Subtype (T, N);
3933 else
3934 -- Ada 2005: A limited object may be initialized by means of an
3935 -- aggregate. If the type has default discriminants it has an
3936 -- unconstrained nominal type, Its actual subtype will be obtained
3937 -- from the aggregate, and not from the default discriminants.
3938
3939 Act_T := Etype (E);
3940 end if;
3941
3942 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
3943
3944 elsif Nkind (E) = N_Function_Call
3945 and then Constant_Present (N)
3946 and then Has_Unconstrained_Elements (Etype (E))
3947 then
3948 -- The back-end has problems with constants of a discriminated type
3949 -- with defaults, if the initial value is a function call. We
3950 -- generate an intermediate temporary that will receive a reference
3951 -- to the result of the call. The initialization expression then
3952 -- becomes a dereference of that temporary.
3953
3954 Remove_Side_Effects (E);
3955
3956 -- If this is a constant declaration of an unconstrained type and
3957 -- the initialization is an aggregate, we can use the subtype of the
3958 -- aggregate for the declared entity because it is immutable.
3959
3960 elsif not Is_Constrained (T)
3961 and then Has_Discriminants (T)
3962 and then Constant_Present (N)
3963 and then not Has_Unchecked_Union (T)
3964 and then Nkind (E) = N_Aggregate
3965 then
3966 Act_T := Etype (E);
3967 end if;
3968
3969 -- Check No_Wide_Characters restriction
3970
3971 Check_Wide_Character_Restriction (T, Object_Definition (N));
3972
3973 -- Indicate this is not set in source. Certainly true for constants, and
3974 -- true for variables so far (will be reset for a variable if and when
3975 -- we encounter a modification in the source).
3976
3977 Set_Never_Set_In_Source (Id, True);
3978
3979 -- Now establish the proper kind and type of the object
3980
3981 if Constant_Present (N) then
3982 Set_Ekind (Id, E_Constant);
3983 Set_Is_True_Constant (Id);
3984
3985 else
3986 Set_Ekind (Id, E_Variable);
3987
3988 -- A variable is set as shared passive if it appears in a shared
3989 -- passive package, and is at the outer level. This is not done for
3990 -- entities generated during expansion, because those are always
3991 -- manipulated locally.
3992
3993 if Is_Shared_Passive (Current_Scope)
3994 and then Is_Library_Level_Entity (Id)
3995 and then Comes_From_Source (Id)
3996 then
3997 Set_Is_Shared_Passive (Id);
3998 Check_Shared_Var (Id, T, N);
3999 end if;
4000
4001 -- Set Has_Initial_Value if initializing expression present. Note
4002 -- that if there is no initializing expression, we leave the state
4003 -- of this flag unchanged (usually it will be False, but notably in
4004 -- the case of exception choice variables, it will already be true).
4005
4006 if Present (E) then
4007 Set_Has_Initial_Value (Id, True);
4008 end if;
4009
4010 Set_Contract (Id, Make_Contract (Sloc (Id)));
4011 end if;
4012
4013 -- Initialize alignment and size and capture alignment setting
4014
4015 Init_Alignment (Id);
4016 Init_Esize (Id);
4017 Set_Optimize_Alignment_Flags (Id);
4018
4019 -- Deal with aliased case
4020
4021 if Aliased_Present (N) then
4022 Set_Is_Aliased (Id);
4023
4024 -- If the object is aliased and the type is unconstrained with
4025 -- defaulted discriminants and there is no expression, then the
4026 -- object is constrained by the defaults, so it is worthwhile
4027 -- building the corresponding subtype.
4028
4029 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4030 -- unconstrained, then only establish an actual subtype if the
4031 -- nominal subtype is indefinite. In definite cases the object is
4032 -- unconstrained in Ada 2005.
4033
4034 if No (E)
4035 and then Is_Record_Type (T)
4036 and then not Is_Constrained (T)
4037 and then Has_Discriminants (T)
4038 and then (Ada_Version < Ada_2005 or else Is_Indefinite_Subtype (T))
4039 then
4040 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
4041 end if;
4042 end if;
4043
4044 -- Now we can set the type of the object
4045
4046 Set_Etype (Id, Act_T);
4047
4048 -- Non-constant object is marked to be treated as volatile if type is
4049 -- volatile and we clear the Current_Value setting that may have been
4050 -- set above. Doing so for constants isn't required and might interfere
4051 -- with possible uses of the object as a static expression in contexts
4052 -- incompatible with volatility (e.g. as a case-statement alternative).
4053
4054 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
4055 Set_Treat_As_Volatile (Id);
4056 Set_Current_Value (Id, Empty);
4057 end if;
4058
4059 -- Deal with controlled types
4060
4061 if Has_Controlled_Component (Etype (Id))
4062 or else Is_Controlled (Etype (Id))
4063 then
4064 if not Is_Library_Level_Entity (Id) then
4065 Check_Restriction (No_Nested_Finalization, N);
4066 else
4067 Validate_Controlled_Object (Id);
4068 end if;
4069 end if;
4070
4071 if Has_Task (Etype (Id)) then
4072 Check_Restriction (No_Tasking, N);
4073
4074 -- Deal with counting max tasks
4075
4076 -- Nothing to do if inside a generic
4077
4078 if Inside_A_Generic then
4079 null;
4080
4081 -- If library level entity, then count tasks
4082
4083 elsif Is_Library_Level_Entity (Id) then
4084 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4085
4086 -- If not library level entity, then indicate we don't know max
4087 -- tasks and also check task hierarchy restriction and blocking
4088 -- operation (since starting a task is definitely blocking).
4089
4090 else
4091 Check_Restriction (Max_Tasks, N);
4092 Check_Restriction (No_Task_Hierarchy, N);
4093 Check_Potentially_Blocking_Operation (N);
4094 end if;
4095
4096 -- A rather specialized test. If we see two tasks being declared
4097 -- of the same type in the same object declaration, and the task
4098 -- has an entry with an address clause, we know that program error
4099 -- will be raised at run time since we can't have two tasks with
4100 -- entries at the same address.
4101
4102 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4103 declare
4104 E : Entity_Id;
4105
4106 begin
4107 E := First_Entity (Etype (Id));
4108 while Present (E) loop
4109 if Ekind (E) = E_Entry
4110 and then Present (Get_Attribute_Definition_Clause
4111 (E, Attribute_Address))
4112 then
4113 Error_Msg_Warn := SPARK_Mode /= On;
4114 Error_Msg_N
4115 ("more than one task with same entry address<<", N);
4116 Error_Msg_N ("\Program_Error [<<", N);
4117 Insert_Action (N,
4118 Make_Raise_Program_Error (Loc,
4119 Reason => PE_Duplicated_Entry_Address));
4120 exit;
4121 end if;
4122
4123 Next_Entity (E);
4124 end loop;
4125 end;
4126 end if;
4127 end if;
4128
4129 -- Some simple constant-propagation: if the expression is a constant
4130 -- string initialized with a literal, share the literal. This avoids
4131 -- a run-time copy.
4132
4133 if Present (E)
4134 and then Is_Entity_Name (E)
4135 and then Ekind (Entity (E)) = E_Constant
4136 and then Base_Type (Etype (E)) = Standard_String
4137 then
4138 declare
4139 Val : constant Node_Id := Constant_Value (Entity (E));
4140 begin
4141 if Present (Val) and then Nkind (Val) = N_String_Literal then
4142 Rewrite (E, New_Copy (Val));
4143 end if;
4144 end;
4145 end if;
4146
4147 -- Another optimization: if the nominal subtype is unconstrained and
4148 -- the expression is a function call that returns an unconstrained
4149 -- type, rewrite the declaration as a renaming of the result of the
4150 -- call. The exceptions below are cases where the copy is expected,
4151 -- either by the back end (Aliased case) or by the semantics, as for
4152 -- initializing controlled types or copying tags for classwide types.
4153
4154 if Present (E)
4155 and then Nkind (E) = N_Explicit_Dereference
4156 and then Nkind (Original_Node (E)) = N_Function_Call
4157 and then not Is_Library_Level_Entity (Id)
4158 and then not Is_Constrained (Underlying_Type (T))
4159 and then not Is_Aliased (Id)
4160 and then not Is_Class_Wide_Type (T)
4161 and then not Is_Controlled (T)
4162 and then not Has_Controlled_Component (Base_Type (T))
4163 and then Expander_Active
4164 then
4165 Rewrite (N,
4166 Make_Object_Renaming_Declaration (Loc,
4167 Defining_Identifier => Id,
4168 Access_Definition => Empty,
4169 Subtype_Mark => New_Occurrence_Of
4170 (Base_Type (Etype (Id)), Loc),
4171 Name => E));
4172
4173 Set_Renamed_Object (Id, E);
4174
4175 -- Force generation of debugging information for the constant and for
4176 -- the renamed function call.
4177
4178 Set_Debug_Info_Needed (Id);
4179 Set_Debug_Info_Needed (Entity (Prefix (E)));
4180 end if;
4181
4182 if Present (Prev_Entity)
4183 and then Is_Frozen (Prev_Entity)
4184 and then not Error_Posted (Id)
4185 then
4186 Error_Msg_N ("full constant declaration appears too late", N);
4187 end if;
4188
4189 Check_Eliminated (Id);
4190
4191 -- Deal with setting In_Private_Part flag if in private part
4192
4193 if Ekind (Scope (Id)) = E_Package and then In_Private_Part (Scope (Id))
4194 then
4195 Set_In_Private_Part (Id);
4196 end if;
4197
4198 -- Check for violation of No_Local_Timing_Events
4199
4200 if Restriction_Check_Required (No_Local_Timing_Events)
4201 and then not Is_Library_Level_Entity (Id)
4202 and then Is_RTE (Etype (Id), RE_Timing_Event)
4203 then
4204 Check_Restriction (No_Local_Timing_Events, N);
4205 end if;
4206
4207 <<Leave>>
4208 -- Initialize the refined state of a variable here because this is a
4209 -- common destination for legal and illegal object declarations.
4210
4211 if Ekind (Id) = E_Variable then
4212 Set_Encapsulating_State (Id, Empty);
4213 end if;
4214
4215 if Has_Aspects (N) then
4216 Analyze_Aspect_Specifications (N, Id);
4217 end if;
4218
4219 Analyze_Dimension (N);
4220
4221 -- Verify whether the object declaration introduces an illegal hidden
4222 -- state within a package subject to a null abstract state.
4223
4224 if Ekind (Id) = E_Variable then
4225 Check_No_Hidden_State (Id);
4226 end if;
4227 end Analyze_Object_Declaration;
4228
4229 ---------------------------
4230 -- Analyze_Others_Choice --
4231 ---------------------------
4232
4233 -- Nothing to do for the others choice node itself, the semantic analysis
4234 -- of the others choice will occur as part of the processing of the parent
4235
4236 procedure Analyze_Others_Choice (N : Node_Id) is
4237 pragma Warnings (Off, N);
4238 begin
4239 null;
4240 end Analyze_Others_Choice;
4241
4242 -------------------------------------------
4243 -- Analyze_Private_Extension_Declaration --
4244 -------------------------------------------
4245
4246 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4247 T : constant Entity_Id := Defining_Identifier (N);
4248 Indic : constant Node_Id := Subtype_Indication (N);
4249 Parent_Type : Entity_Id;
4250 Parent_Base : Entity_Id;
4251
4252 begin
4253 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4254
4255 if Is_Non_Empty_List (Interface_List (N)) then
4256 declare
4257 Intf : Node_Id;
4258 T : Entity_Id;
4259
4260 begin
4261 Intf := First (Interface_List (N));
4262 while Present (Intf) loop
4263 T := Find_Type_Of_Subtype_Indic (Intf);
4264
4265 Diagnose_Interface (Intf, T);
4266 Next (Intf);
4267 end loop;
4268 end;
4269 end if;
4270
4271 Generate_Definition (T);
4272
4273 -- For other than Ada 2012, just enter the name in the current scope
4274
4275 if Ada_Version < Ada_2012 then
4276 Enter_Name (T);
4277
4278 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4279 -- case of private type that completes an incomplete type.
4280
4281 else
4282 declare
4283 Prev : Entity_Id;
4284
4285 begin
4286 Prev := Find_Type_Name (N);
4287
4288 pragma Assert (Prev = T
4289 or else (Ekind (Prev) = E_Incomplete_Type
4290 and then Present (Full_View (Prev))
4291 and then Full_View (Prev) = T));
4292 end;
4293 end if;
4294
4295 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
4296 Parent_Base := Base_Type (Parent_Type);
4297
4298 if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then
4299 Set_Ekind (T, Ekind (Parent_Type));
4300 Set_Etype (T, Any_Type);
4301 goto Leave;
4302
4303 elsif not Is_Tagged_Type (Parent_Type) then
4304 Error_Msg_N
4305 ("parent of type extension must be a tagged type ", Indic);
4306 goto Leave;
4307
4308 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
4309 Error_Msg_N ("premature derivation of incomplete type", Indic);
4310 goto Leave;
4311
4312 elsif Is_Concurrent_Type (Parent_Type) then
4313 Error_Msg_N
4314 ("parent type of a private extension cannot be "
4315 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
4316
4317 Set_Etype (T, Any_Type);
4318 Set_Ekind (T, E_Limited_Private_Type);
4319 Set_Private_Dependents (T, New_Elmt_List);
4320 Set_Error_Posted (T);
4321 goto Leave;
4322 end if;
4323
4324 -- Perhaps the parent type should be changed to the class-wide type's
4325 -- specific type in this case to prevent cascading errors ???
4326
4327 if Is_Class_Wide_Type (Parent_Type) then
4328 Error_Msg_N
4329 ("parent of type extension must not be a class-wide type", Indic);
4330 goto Leave;
4331 end if;
4332
4333 if (not Is_Package_Or_Generic_Package (Current_Scope)
4334 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
4335 or else In_Private_Part (Current_Scope)
4336
4337 then
4338 Error_Msg_N ("invalid context for private extension", N);
4339 end if;
4340
4341 -- Set common attributes
4342
4343 Set_Is_Pure (T, Is_Pure (Current_Scope));
4344 Set_Scope (T, Current_Scope);
4345 Set_Ekind (T, E_Record_Type_With_Private);
4346 Init_Size_Align (T);
4347 Set_Default_SSO (T);
4348
4349 Set_Etype (T, Parent_Base);
4350 Set_Has_Task (T, Has_Task (Parent_Base));
4351 Set_Has_Protected (T, Has_Task (Parent_Base));
4352
4353 Set_Convention (T, Convention (Parent_Type));
4354 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
4355 Set_Is_First_Subtype (T);
4356 Make_Class_Wide_Type (T);
4357
4358 if Unknown_Discriminants_Present (N) then
4359 Set_Discriminant_Constraint (T, No_Elist);
4360 end if;
4361
4362 Build_Derived_Record_Type (N, Parent_Type, T);
4363
4364 -- Propagate inherited invariant information. The new type has
4365 -- invariants, if the parent type has inheritable invariants,
4366 -- and these invariants can in turn be inherited.
4367
4368 if Has_Inheritable_Invariants (Parent_Type) then
4369 Set_Has_Inheritable_Invariants (T);
4370 Set_Has_Invariants (T);
4371 end if;
4372
4373 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4374 -- synchronized formal derived type.
4375
4376 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
4377 Set_Is_Limited_Record (T);
4378
4379 -- Formal derived type case
4380
4381 if Is_Generic_Type (T) then
4382
4383 -- The parent must be a tagged limited type or a synchronized
4384 -- interface.
4385
4386 if (not Is_Tagged_Type (Parent_Type)
4387 or else not Is_Limited_Type (Parent_Type))
4388 and then
4389 (not Is_Interface (Parent_Type)
4390 or else not Is_Synchronized_Interface (Parent_Type))
4391 then
4392 Error_Msg_NE ("parent type of & must be tagged limited " &
4393 "or synchronized", N, T);
4394 end if;
4395
4396 -- The progenitors (if any) must be limited or synchronized
4397 -- interfaces.
4398
4399 if Present (Interfaces (T)) then
4400 declare
4401 Iface : Entity_Id;
4402 Iface_Elmt : Elmt_Id;
4403
4404 begin
4405 Iface_Elmt := First_Elmt (Interfaces (T));
4406 while Present (Iface_Elmt) loop
4407 Iface := Node (Iface_Elmt);
4408
4409 if not Is_Limited_Interface (Iface)
4410 and then not Is_Synchronized_Interface (Iface)
4411 then
4412 Error_Msg_NE ("progenitor & must be limited " &
4413 "or synchronized", N, Iface);
4414 end if;
4415
4416 Next_Elmt (Iface_Elmt);
4417 end loop;
4418 end;
4419 end if;
4420
4421 -- Regular derived extension, the parent must be a limited or
4422 -- synchronized interface.
4423
4424 else
4425 if not Is_Interface (Parent_Type)
4426 or else (not Is_Limited_Interface (Parent_Type)
4427 and then not Is_Synchronized_Interface (Parent_Type))
4428 then
4429 Error_Msg_NE
4430 ("parent type of & must be limited interface", N, T);
4431 end if;
4432 end if;
4433
4434 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4435 -- extension with a synchronized parent must be explicitly declared
4436 -- synchronized, because the full view will be a synchronized type.
4437 -- This must be checked before the check for limited types below,
4438 -- to ensure that types declared limited are not allowed to extend
4439 -- synchronized interfaces.
4440
4441 elsif Is_Interface (Parent_Type)
4442 and then Is_Synchronized_Interface (Parent_Type)
4443 and then not Synchronized_Present (N)
4444 then
4445 Error_Msg_NE
4446 ("private extension of& must be explicitly synchronized",
4447 N, Parent_Type);
4448
4449 elsif Limited_Present (N) then
4450 Set_Is_Limited_Record (T);
4451
4452 if not Is_Limited_Type (Parent_Type)
4453 and then
4454 (not Is_Interface (Parent_Type)
4455 or else not Is_Limited_Interface (Parent_Type))
4456 then
4457 Error_Msg_NE ("parent type& of limited extension must be limited",
4458 N, Parent_Type);
4459 end if;
4460 end if;
4461
4462 <<Leave>>
4463 if Has_Aspects (N) then
4464 Analyze_Aspect_Specifications (N, T);
4465 end if;
4466 end Analyze_Private_Extension_Declaration;
4467
4468 ---------------------------------
4469 -- Analyze_Subtype_Declaration --
4470 ---------------------------------
4471
4472 procedure Analyze_Subtype_Declaration
4473 (N : Node_Id;
4474 Skip : Boolean := False)
4475 is
4476 Id : constant Entity_Id := Defining_Identifier (N);
4477 T : Entity_Id;
4478 R_Checks : Check_Result;
4479
4480 begin
4481 Generate_Definition (Id);
4482 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4483 Init_Size_Align (Id);
4484
4485 -- The following guard condition on Enter_Name is to handle cases where
4486 -- the defining identifier has already been entered into the scope but
4487 -- the declaration as a whole needs to be analyzed.
4488
4489 -- This case in particular happens for derived enumeration types. The
4490 -- derived enumeration type is processed as an inserted enumeration type
4491 -- declaration followed by a rewritten subtype declaration. The defining
4492 -- identifier, however, is entered into the name scope very early in the
4493 -- processing of the original type declaration and therefore needs to be
4494 -- avoided here, when the created subtype declaration is analyzed. (See
4495 -- Build_Derived_Types)
4496
4497 -- This also happens when the full view of a private type is derived
4498 -- type with constraints. In this case the entity has been introduced
4499 -- in the private declaration.
4500
4501 -- Finally this happens in some complex cases when validity checks are
4502 -- enabled, where the same subtype declaration may be analyzed twice.
4503 -- This can happen if the subtype is created by the pre-analysis of
4504 -- an attribute tht gives the range of a loop statement, and the loop
4505 -- itself appears within an if_statement that will be rewritten during
4506 -- expansion.
4507
4508 if Skip
4509 or else (Present (Etype (Id))
4510 and then (Is_Private_Type (Etype (Id))
4511 or else Is_Task_Type (Etype (Id))
4512 or else Is_Rewrite_Substitution (N)))
4513 then
4514 null;
4515
4516 elsif Current_Entity (Id) = Id then
4517 null;
4518
4519 else
4520 Enter_Name (Id);
4521 end if;
4522
4523 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
4524
4525 -- Class-wide equivalent types of records with unknown discriminants
4526 -- involve the generation of an itype which serves as the private view
4527 -- of a constrained record subtype. In such cases the base type of the
4528 -- current subtype we are processing is the private itype. Use the full
4529 -- of the private itype when decorating various attributes.
4530
4531 if Is_Itype (T)
4532 and then Is_Private_Type (T)
4533 and then Present (Full_View (T))
4534 then
4535 T := Full_View (T);
4536 end if;
4537
4538 -- Inherit common attributes
4539
4540 Set_Is_Volatile (Id, Is_Volatile (T));
4541 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
4542 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
4543 Set_Convention (Id, Convention (T));
4544
4545 -- If ancestor has predicates then so does the subtype, and in addition
4546 -- we must delay the freeze to properly arrange predicate inheritance.
4547
4548 -- The Ancestor_Type test is really unpleasant, there seem to be cases
4549 -- in which T = ID, so the above tests and assignments do nothing???
4550
4551 if Has_Predicates (T)
4552 or else (Present (Ancestor_Subtype (T))
4553 and then Has_Predicates (Ancestor_Subtype (T)))
4554 then
4555 Set_Has_Predicates (Id);
4556 Set_Has_Delayed_Freeze (Id);
4557 end if;
4558
4559 -- Subtype of Boolean cannot have a constraint in SPARK
4560
4561 if Is_Boolean_Type (T)
4562 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
4563 then
4564 Check_SPARK_05_Restriction
4565 ("subtype of Boolean cannot have constraint", N);
4566 end if;
4567
4568 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4569 declare
4570 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
4571 One_Cstr : Node_Id;
4572 Low : Node_Id;
4573 High : Node_Id;
4574
4575 begin
4576 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
4577 One_Cstr := First (Constraints (Cstr));
4578 while Present (One_Cstr) loop
4579
4580 -- Index or discriminant constraint in SPARK must be a
4581 -- subtype mark.
4582
4583 if not
4584 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
4585 then
4586 Check_SPARK_05_Restriction
4587 ("subtype mark required", One_Cstr);
4588
4589 -- String subtype must have a lower bound of 1 in SPARK.
4590 -- Note that we do not need to test for the non-static case
4591 -- here, since that was already taken care of in
4592 -- Process_Range_Expr_In_Decl.
4593
4594 elsif Base_Type (T) = Standard_String then
4595 Get_Index_Bounds (One_Cstr, Low, High);
4596
4597 if Is_OK_Static_Expression (Low)
4598 and then Expr_Value (Low) /= 1
4599 then
4600 Check_SPARK_05_Restriction
4601 ("String subtype must have lower bound of 1", N);
4602 end if;
4603 end if;
4604
4605 Next (One_Cstr);
4606 end loop;
4607 end if;
4608 end;
4609 end if;
4610
4611 -- In the case where there is no constraint given in the subtype
4612 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4613 -- semantic attributes must be established here.
4614
4615 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
4616 Set_Etype (Id, Base_Type (T));
4617
4618 -- Subtype of unconstrained array without constraint is not allowed
4619 -- in SPARK.
4620
4621 if Is_Array_Type (T) and then not Is_Constrained (T) then
4622 Check_SPARK_05_Restriction
4623 ("subtype of unconstrained array must have constraint", N);
4624 end if;
4625
4626 case Ekind (T) is
4627 when Array_Kind =>
4628 Set_Ekind (Id, E_Array_Subtype);
4629 Copy_Array_Subtype_Attributes (Id, T);
4630
4631 when Decimal_Fixed_Point_Kind =>
4632 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
4633 Set_Digits_Value (Id, Digits_Value (T));
4634 Set_Delta_Value (Id, Delta_Value (T));
4635 Set_Scale_Value (Id, Scale_Value (T));
4636 Set_Small_Value (Id, Small_Value (T));
4637 Set_Scalar_Range (Id, Scalar_Range (T));
4638 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
4639 Set_Is_Constrained (Id, Is_Constrained (T));
4640 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4641 Set_RM_Size (Id, RM_Size (T));
4642
4643 when Enumeration_Kind =>
4644 Set_Ekind (Id, E_Enumeration_Subtype);
4645 Set_First_Literal (Id, First_Literal (Base_Type (T)));
4646 Set_Scalar_Range (Id, Scalar_Range (T));
4647 Set_Is_Character_Type (Id, Is_Character_Type (T));
4648 Set_Is_Constrained (Id, Is_Constrained (T));
4649 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4650 Set_RM_Size (Id, RM_Size (T));
4651 Inherit_Predicate_Flags (Id, T);
4652
4653 when Ordinary_Fixed_Point_Kind =>
4654 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
4655 Set_Scalar_Range (Id, Scalar_Range (T));
4656 Set_Small_Value (Id, Small_Value (T));
4657 Set_Delta_Value (Id, Delta_Value (T));
4658 Set_Is_Constrained (Id, Is_Constrained (T));
4659 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4660 Set_RM_Size (Id, RM_Size (T));
4661
4662 when Float_Kind =>
4663 Set_Ekind (Id, E_Floating_Point_Subtype);
4664 Set_Scalar_Range (Id, Scalar_Range (T));
4665 Set_Digits_Value (Id, Digits_Value (T));
4666 Set_Is_Constrained (Id, Is_Constrained (T));
4667
4668 when Signed_Integer_Kind =>
4669 Set_Ekind (Id, E_Signed_Integer_Subtype);
4670 Set_Scalar_Range (Id, Scalar_Range (T));
4671 Set_Is_Constrained (Id, Is_Constrained (T));
4672 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4673 Set_RM_Size (Id, RM_Size (T));
4674 Inherit_Predicate_Flags (Id, T);
4675
4676 when Modular_Integer_Kind =>
4677 Set_Ekind (Id, E_Modular_Integer_Subtype);
4678 Set_Scalar_Range (Id, Scalar_Range (T));
4679 Set_Is_Constrained (Id, Is_Constrained (T));
4680 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4681 Set_RM_Size (Id, RM_Size (T));
4682 Inherit_Predicate_Flags (Id, T);
4683
4684 when Class_Wide_Kind =>
4685 Set_Ekind (Id, E_Class_Wide_Subtype);
4686 Set_First_Entity (Id, First_Entity (T));
4687 Set_Last_Entity (Id, Last_Entity (T));
4688 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4689 Set_Cloned_Subtype (Id, T);
4690 Set_Is_Tagged_Type (Id, True);
4691 Set_Has_Unknown_Discriminants
4692 (Id, True);
4693 Set_No_Tagged_Streams_Pragma
4694 (Id, No_Tagged_Streams_Pragma (T));
4695
4696 if Ekind (T) = E_Class_Wide_Subtype then
4697 Set_Equivalent_Type (Id, Equivalent_Type (T));
4698 end if;
4699
4700 when E_Record_Type | E_Record_Subtype =>
4701 Set_Ekind (Id, E_Record_Subtype);
4702
4703 if Ekind (T) = E_Record_Subtype
4704 and then Present (Cloned_Subtype (T))
4705 then
4706 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
4707 else
4708 Set_Cloned_Subtype (Id, T);
4709 end if;
4710
4711 Set_First_Entity (Id, First_Entity (T));
4712 Set_Last_Entity (Id, Last_Entity (T));
4713 Set_Has_Discriminants (Id, Has_Discriminants (T));
4714 Set_Is_Constrained (Id, Is_Constrained (T));
4715 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4716 Set_Has_Implicit_Dereference
4717 (Id, Has_Implicit_Dereference (T));
4718 Set_Has_Unknown_Discriminants
4719 (Id, Has_Unknown_Discriminants (T));
4720
4721 if Has_Discriminants (T) then
4722 Set_Discriminant_Constraint
4723 (Id, Discriminant_Constraint (T));
4724 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4725
4726 elsif Has_Unknown_Discriminants (Id) then
4727 Set_Discriminant_Constraint (Id, No_Elist);
4728 end if;
4729
4730 if Is_Tagged_Type (T) then
4731 Set_Is_Tagged_Type (Id, True);
4732 Set_No_Tagged_Streams_Pragma
4733 (Id, No_Tagged_Streams_Pragma (T));
4734 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4735 Set_Direct_Primitive_Operations
4736 (Id, Direct_Primitive_Operations (T));
4737 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4738
4739 if Is_Interface (T) then
4740 Set_Is_Interface (Id);
4741 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
4742 end if;
4743 end if;
4744
4745 when Private_Kind =>
4746 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4747 Set_Has_Discriminants (Id, Has_Discriminants (T));
4748 Set_Is_Constrained (Id, Is_Constrained (T));
4749 Set_First_Entity (Id, First_Entity (T));
4750 Set_Last_Entity (Id, Last_Entity (T));
4751 Set_Private_Dependents (Id, New_Elmt_List);
4752 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4753 Set_Has_Implicit_Dereference
4754 (Id, Has_Implicit_Dereference (T));
4755 Set_Has_Unknown_Discriminants
4756 (Id, Has_Unknown_Discriminants (T));
4757 Set_Known_To_Have_Preelab_Init
4758 (Id, Known_To_Have_Preelab_Init (T));
4759
4760 if Is_Tagged_Type (T) then
4761 Set_Is_Tagged_Type (Id);
4762 Set_No_Tagged_Streams_Pragma (Id,
4763 No_Tagged_Streams_Pragma (T));
4764 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4765 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4766 Set_Direct_Primitive_Operations (Id,
4767 Direct_Primitive_Operations (T));
4768 end if;
4769
4770 -- In general the attributes of the subtype of a private type
4771 -- are the attributes of the partial view of parent. However,
4772 -- the full view may be a discriminated type, and the subtype
4773 -- must share the discriminant constraint to generate correct
4774 -- calls to initialization procedures.
4775
4776 if Has_Discriminants (T) then
4777 Set_Discriminant_Constraint
4778 (Id, Discriminant_Constraint (T));
4779 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4780
4781 elsif Present (Full_View (T))
4782 and then Has_Discriminants (Full_View (T))
4783 then
4784 Set_Discriminant_Constraint
4785 (Id, Discriminant_Constraint (Full_View (T)));
4786 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4787
4788 -- This would seem semantically correct, but apparently
4789 -- generates spurious errors about missing components ???
4790
4791 -- Set_Has_Discriminants (Id);
4792 end if;
4793
4794 Prepare_Private_Subtype_Completion (Id, N);
4795
4796 -- If this is the subtype of a constrained private type with
4797 -- discriminants that has got a full view and we also have
4798 -- built a completion just above, show that the completion
4799 -- is a clone of the full view to the back-end.
4800
4801 if Has_Discriminants (T)
4802 and then not Has_Unknown_Discriminants (T)
4803 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
4804 and then Present (Full_View (T))
4805 and then Present (Full_View (Id))
4806 then
4807 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
4808 end if;
4809
4810 when Access_Kind =>
4811 Set_Ekind (Id, E_Access_Subtype);
4812 Set_Is_Constrained (Id, Is_Constrained (T));
4813 Set_Is_Access_Constant
4814 (Id, Is_Access_Constant (T));
4815 Set_Directly_Designated_Type
4816 (Id, Designated_Type (T));
4817 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
4818
4819 -- A Pure library_item must not contain the declaration of a
4820 -- named access type, except within a subprogram, generic
4821 -- subprogram, task unit, or protected unit, or if it has
4822 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4823
4824 if Comes_From_Source (Id)
4825 and then In_Pure_Unit
4826 and then not In_Subprogram_Task_Protected_Unit
4827 and then not No_Pool_Assigned (Id)
4828 then
4829 Error_Msg_N
4830 ("named access types not allowed in pure unit", N);
4831 end if;
4832
4833 when Concurrent_Kind =>
4834 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4835 Set_Corresponding_Record_Type (Id,
4836 Corresponding_Record_Type (T));
4837 Set_First_Entity (Id, First_Entity (T));
4838 Set_First_Private_Entity (Id, First_Private_Entity (T));
4839 Set_Has_Discriminants (Id, Has_Discriminants (T));
4840 Set_Is_Constrained (Id, Is_Constrained (T));
4841 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4842 Set_Last_Entity (Id, Last_Entity (T));
4843
4844 if Is_Tagged_Type (T) then
4845 Set_No_Tagged_Streams_Pragma
4846 (Id, No_Tagged_Streams_Pragma (T));
4847 end if;
4848
4849 if Has_Discriminants (T) then
4850 Set_Discriminant_Constraint (Id,
4851 Discriminant_Constraint (T));
4852 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4853 end if;
4854
4855 when E_Incomplete_Type =>
4856 if Ada_Version >= Ada_2005 then
4857
4858 -- In Ada 2005 an incomplete type can be explicitly tagged:
4859 -- propagate indication.
4860
4861 Set_Ekind (Id, E_Incomplete_Subtype);
4862 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4863 Set_Private_Dependents (Id, New_Elmt_List);
4864
4865 if Is_Tagged_Type (Id) then
4866 Set_No_Tagged_Streams_Pragma
4867 (Id, No_Tagged_Streams_Pragma (T));
4868 end if;
4869
4870 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
4871 -- incomplete type visible through a limited with clause.
4872
4873 if From_Limited_With (T)
4874 and then Present (Non_Limited_View (T))
4875 then
4876 Set_From_Limited_With (Id);
4877 Set_Non_Limited_View (Id, Non_Limited_View (T));
4878
4879 -- Ada 2005 (AI-412): Add the regular incomplete subtype
4880 -- to the private dependents of the original incomplete
4881 -- type for future transformation.
4882
4883 else
4884 Append_Elmt (Id, Private_Dependents (T));
4885 end if;
4886
4887 -- If the subtype name denotes an incomplete type an error
4888 -- was already reported by Process_Subtype.
4889
4890 else
4891 Set_Etype (Id, Any_Type);
4892 end if;
4893
4894 when others =>
4895 raise Program_Error;
4896 end case;
4897 end if;
4898
4899 if Etype (Id) = Any_Type then
4900 goto Leave;
4901 end if;
4902
4903 -- Some common processing on all types
4904
4905 Set_Size_Info (Id, T);
4906 Set_First_Rep_Item (Id, First_Rep_Item (T));
4907
4908 -- If the parent type is a generic actual, so is the subtype. This may
4909 -- happen in a nested instance. Why Comes_From_Source test???
4910
4911 if not Comes_From_Source (N) then
4912 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
4913 end if;
4914
4915 T := Etype (Id);
4916
4917 Set_Is_Immediately_Visible (Id, True);
4918 Set_Depends_On_Private (Id, Has_Private_Component (T));
4919 Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
4920
4921 if Is_Interface (T) then
4922 Set_Is_Interface (Id);
4923 end if;
4924
4925 if Present (Generic_Parent_Type (N))
4926 and then
4927 (Nkind (Parent (Generic_Parent_Type (N))) /=
4928 N_Formal_Type_Declaration
4929 or else Nkind (Formal_Type_Definition
4930 (Parent (Generic_Parent_Type (N)))) /=
4931 N_Formal_Private_Type_Definition)
4932 then
4933 if Is_Tagged_Type (Id) then
4934
4935 -- If this is a generic actual subtype for a synchronized type,
4936 -- the primitive operations are those of the corresponding record
4937 -- for which there is a separate subtype declaration.
4938
4939 if Is_Concurrent_Type (Id) then
4940 null;
4941 elsif Is_Class_Wide_Type (Id) then
4942 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
4943 else
4944 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
4945 end if;
4946
4947 elsif Scope (Etype (Id)) /= Standard_Standard then
4948 Derive_Subprograms (Generic_Parent_Type (N), Id);
4949 end if;
4950 end if;
4951
4952 if Is_Private_Type (T) and then Present (Full_View (T)) then
4953 Conditional_Delay (Id, Full_View (T));
4954
4955 -- The subtypes of components or subcomponents of protected types
4956 -- do not need freeze nodes, which would otherwise appear in the
4957 -- wrong scope (before the freeze node for the protected type). The
4958 -- proper subtypes are those of the subcomponents of the corresponding
4959 -- record.
4960
4961 elsif Ekind (Scope (Id)) /= E_Protected_Type
4962 and then Present (Scope (Scope (Id))) -- error defense
4963 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
4964 then
4965 Conditional_Delay (Id, T);
4966 end if;
4967
4968 -- Check that Constraint_Error is raised for a scalar subtype indication
4969 -- when the lower or upper bound of a non-null range lies outside the
4970 -- range of the type mark.
4971
4972 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4973 if Is_Scalar_Type (Etype (Id))
4974 and then Scalar_Range (Id) /=
4975 Scalar_Range (Etype (Subtype_Mark
4976 (Subtype_Indication (N))))
4977 then
4978 Apply_Range_Check
4979 (Scalar_Range (Id),
4980 Etype (Subtype_Mark (Subtype_Indication (N))));
4981
4982 -- In the array case, check compatibility for each index
4983
4984 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
4985 then
4986 -- This really should be a subprogram that finds the indications
4987 -- to check???
4988
4989 declare
4990 Subt_Index : Node_Id := First_Index (Id);
4991 Target_Index : Node_Id :=
4992 First_Index (Etype
4993 (Subtype_Mark (Subtype_Indication (N))));
4994 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
4995
4996 begin
4997 while Present (Subt_Index) loop
4998 if ((Nkind (Subt_Index) = N_Identifier
4999 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
5000 or else Nkind (Subt_Index) = N_Subtype_Indication)
5001 and then
5002 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
5003 then
5004 declare
5005 Target_Typ : constant Entity_Id :=
5006 Etype (Target_Index);
5007 begin
5008 R_Checks :=
5009 Get_Range_Checks
5010 (Scalar_Range (Etype (Subt_Index)),
5011 Target_Typ,
5012 Etype (Subt_Index),
5013 Defining_Identifier (N));
5014
5015 -- Reset Has_Dynamic_Range_Check on the subtype to
5016 -- prevent elision of the index check due to a dynamic
5017 -- check generated for a preceding index (needed since
5018 -- Insert_Range_Checks tries to avoid generating
5019 -- redundant checks on a given declaration).
5020
5021 Set_Has_Dynamic_Range_Check (N, False);
5022
5023 Insert_Range_Checks
5024 (R_Checks,
5025 N,
5026 Target_Typ,
5027 Sloc (Defining_Identifier (N)));
5028
5029 -- Record whether this index involved a dynamic check
5030
5031 Has_Dyn_Chk :=
5032 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
5033 end;
5034 end if;
5035
5036 Next_Index (Subt_Index);
5037 Next_Index (Target_Index);
5038 end loop;
5039
5040 -- Finally, mark whether the subtype involves dynamic checks
5041
5042 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
5043 end;
5044 end if;
5045 end if;
5046
5047 -- A type invariant applies to any subtype in its scope, in particular
5048 -- to a generic actual.
5049
5050 if Has_Invariants (T) and then In_Open_Scopes (Scope (T)) then
5051 Set_Has_Invariants (Id);
5052 Set_Invariant_Procedure (Id, Invariant_Procedure (T));
5053 end if;
5054
5055 -- Make sure that generic actual types are properly frozen. The subtype
5056 -- is marked as a generic actual type when the enclosing instance is
5057 -- analyzed, so here we identify the subtype from the tree structure.
5058
5059 if Expander_Active
5060 and then Is_Generic_Actual_Type (Id)
5061 and then In_Instance
5062 and then not Comes_From_Source (N)
5063 and then Nkind (Subtype_Indication (N)) /= N_Subtype_Indication
5064 and then Is_Frozen (T)
5065 then
5066 Freeze_Before (N, Id);
5067 end if;
5068
5069 Set_Optimize_Alignment_Flags (Id);
5070 Check_Eliminated (Id);
5071
5072 <<Leave>>
5073 if Has_Aspects (N) then
5074 Analyze_Aspect_Specifications (N, Id);
5075 end if;
5076
5077 Analyze_Dimension (N);
5078 end Analyze_Subtype_Declaration;
5079
5080 --------------------------------
5081 -- Analyze_Subtype_Indication --
5082 --------------------------------
5083
5084 procedure Analyze_Subtype_Indication (N : Node_Id) is
5085 T : constant Entity_Id := Subtype_Mark (N);
5086 R : constant Node_Id := Range_Expression (Constraint (N));
5087
5088 begin
5089 Analyze (T);
5090
5091 if R /= Error then
5092 Analyze (R);
5093 Set_Etype (N, Etype (R));
5094 Resolve (R, Entity (T));
5095 else
5096 Set_Error_Posted (R);
5097 Set_Error_Posted (T);
5098 end if;
5099 end Analyze_Subtype_Indication;
5100
5101 --------------------------
5102 -- Analyze_Variant_Part --
5103 --------------------------
5104
5105 procedure Analyze_Variant_Part (N : Node_Id) is
5106 Discr_Name : Node_Id;
5107 Discr_Type : Entity_Id;
5108
5109 procedure Process_Variant (A : Node_Id);
5110 -- Analyze declarations for a single variant
5111
5112 package Analyze_Variant_Choices is
5113 new Generic_Analyze_Choices (Process_Variant);
5114 use Analyze_Variant_Choices;
5115
5116 ---------------------
5117 -- Process_Variant --
5118 ---------------------
5119
5120 procedure Process_Variant (A : Node_Id) is
5121 CL : constant Node_Id := Component_List (A);
5122 begin
5123 if not Null_Present (CL) then
5124 Analyze_Declarations (Component_Items (CL));
5125
5126 if Present (Variant_Part (CL)) then
5127 Analyze (Variant_Part (CL));
5128 end if;
5129 end if;
5130 end Process_Variant;
5131
5132 -- Start of processing for Analyze_Variant_Part
5133
5134 begin
5135 Discr_Name := Name (N);
5136 Analyze (Discr_Name);
5137
5138 -- If Discr_Name bad, get out (prevent cascaded errors)
5139
5140 if Etype (Discr_Name) = Any_Type then
5141 return;
5142 end if;
5143
5144 -- Check invalid discriminant in variant part
5145
5146 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
5147 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
5148 end if;
5149
5150 Discr_Type := Etype (Entity (Discr_Name));
5151
5152 if not Is_Discrete_Type (Discr_Type) then
5153 Error_Msg_N
5154 ("discriminant in a variant part must be of a discrete type",
5155 Name (N));
5156 return;
5157 end if;
5158
5159 -- Now analyze the choices, which also analyzes the declarations that
5160 -- are associated with each choice.
5161
5162 Analyze_Choices (Variants (N), Discr_Type);
5163
5164 -- Note: we used to instantiate and call Check_Choices here to check
5165 -- that the choices covered the discriminant, but it's too early to do
5166 -- that because of statically predicated subtypes, whose analysis may
5167 -- be deferred to their freeze point which may be as late as the freeze
5168 -- point of the containing record. So this call is now to be found in
5169 -- Freeze_Record_Declaration.
5170
5171 end Analyze_Variant_Part;
5172
5173 ----------------------------
5174 -- Array_Type_Declaration --
5175 ----------------------------
5176
5177 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
5178 Component_Def : constant Node_Id := Component_Definition (Def);
5179 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
5180 Element_Type : Entity_Id;
5181 Implicit_Base : Entity_Id;
5182 Index : Node_Id;
5183 Related_Id : Entity_Id := Empty;
5184 Nb_Index : Nat;
5185 P : constant Node_Id := Parent (Def);
5186 Priv : Entity_Id;
5187
5188 begin
5189 if Nkind (Def) = N_Constrained_Array_Definition then
5190 Index := First (Discrete_Subtype_Definitions (Def));
5191 else
5192 Index := First (Subtype_Marks (Def));
5193 end if;
5194
5195 -- Find proper names for the implicit types which may be public. In case
5196 -- of anonymous arrays we use the name of the first object of that type
5197 -- as prefix.
5198
5199 if No (T) then
5200 Related_Id := Defining_Identifier (P);
5201 else
5202 Related_Id := T;
5203 end if;
5204
5205 Nb_Index := 1;
5206 while Present (Index) loop
5207 Analyze (Index);
5208
5209 -- Test for odd case of trying to index a type by the type itself
5210
5211 if Is_Entity_Name (Index) and then Entity (Index) = T then
5212 Error_Msg_N ("type& cannot be indexed by itself", Index);
5213 Set_Entity (Index, Standard_Boolean);
5214 Set_Etype (Index, Standard_Boolean);
5215 end if;
5216
5217 -- Check SPARK restriction requiring a subtype mark
5218
5219 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
5220 Check_SPARK_05_Restriction ("subtype mark required", Index);
5221 end if;
5222
5223 -- Add a subtype declaration for each index of private array type
5224 -- declaration whose etype is also private. For example:
5225
5226 -- package Pkg is
5227 -- type Index is private;
5228 -- private
5229 -- type Table is array (Index) of ...
5230 -- end;
5231
5232 -- This is currently required by the expander for the internally
5233 -- generated equality subprogram of records with variant parts in
5234 -- which the etype of some component is such private type.
5235
5236 if Ekind (Current_Scope) = E_Package
5237 and then In_Private_Part (Current_Scope)
5238 and then Has_Private_Declaration (Etype (Index))
5239 then
5240 declare
5241 Loc : constant Source_Ptr := Sloc (Def);
5242 New_E : Entity_Id;
5243 Decl : Entity_Id;
5244
5245 begin
5246 New_E := Make_Temporary (Loc, 'T');
5247 Set_Is_Internal (New_E);
5248
5249 Decl :=
5250 Make_Subtype_Declaration (Loc,
5251 Defining_Identifier => New_E,
5252 Subtype_Indication =>
5253 New_Occurrence_Of (Etype (Index), Loc));
5254
5255 Insert_Before (Parent (Def), Decl);
5256 Analyze (Decl);
5257 Set_Etype (Index, New_E);
5258
5259 -- If the index is a range the Entity attribute is not
5260 -- available. Example:
5261
5262 -- package Pkg is
5263 -- type T is private;
5264 -- private
5265 -- type T is new Natural;
5266 -- Table : array (T(1) .. T(10)) of Boolean;
5267 -- end Pkg;
5268
5269 if Nkind (Index) /= N_Range then
5270 Set_Entity (Index, New_E);
5271 end if;
5272 end;
5273 end if;
5274
5275 Make_Index (Index, P, Related_Id, Nb_Index);
5276
5277 -- Check error of subtype with predicate for index type
5278
5279 Bad_Predicated_Subtype_Use
5280 ("subtype& has predicate, not allowed as index subtype",
5281 Index, Etype (Index));
5282
5283 -- Move to next index
5284
5285 Next_Index (Index);
5286 Nb_Index := Nb_Index + 1;
5287 end loop;
5288
5289 -- Process subtype indication if one is present
5290
5291 if Present (Component_Typ) then
5292 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
5293
5294 Set_Etype (Component_Typ, Element_Type);
5295
5296 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
5297 Check_SPARK_05_Restriction
5298 ("subtype mark required", Component_Typ);
5299 end if;
5300
5301 -- Ada 2005 (AI-230): Access Definition case
5302
5303 else pragma Assert (Present (Access_Definition (Component_Def)));
5304
5305 -- Indicate that the anonymous access type is created by the
5306 -- array type declaration.
5307
5308 Element_Type := Access_Definition
5309 (Related_Nod => P,
5310 N => Access_Definition (Component_Def));
5311 Set_Is_Local_Anonymous_Access (Element_Type);
5312
5313 -- Propagate the parent. This field is needed if we have to generate
5314 -- the master_id associated with an anonymous access to task type
5315 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5316
5317 Set_Parent (Element_Type, Parent (T));
5318
5319 -- Ada 2005 (AI-230): In case of components that are anonymous access
5320 -- types the level of accessibility depends on the enclosing type
5321 -- declaration
5322
5323 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
5324
5325 -- Ada 2005 (AI-254)
5326
5327 declare
5328 CD : constant Node_Id :=
5329 Access_To_Subprogram_Definition
5330 (Access_Definition (Component_Def));
5331 begin
5332 if Present (CD) and then Protected_Present (CD) then
5333 Element_Type :=
5334 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
5335 end if;
5336 end;
5337 end if;
5338
5339 -- Constrained array case
5340
5341 if No (T) then
5342 T := Create_Itype (E_Void, P, Related_Id, 'T');
5343 end if;
5344
5345 if Nkind (Def) = N_Constrained_Array_Definition then
5346
5347 -- Establish Implicit_Base as unconstrained base type
5348
5349 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
5350
5351 Set_Etype (Implicit_Base, Implicit_Base);
5352 Set_Scope (Implicit_Base, Current_Scope);
5353 Set_Has_Delayed_Freeze (Implicit_Base);
5354 Set_Default_SSO (Implicit_Base);
5355
5356 -- The constrained array type is a subtype of the unconstrained one
5357
5358 Set_Ekind (T, E_Array_Subtype);
5359 Init_Size_Align (T);
5360 Set_Etype (T, Implicit_Base);
5361 Set_Scope (T, Current_Scope);
5362 Set_Is_Constrained (T, True);
5363 Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
5364 Set_Has_Delayed_Freeze (T);
5365
5366 -- Complete setup of implicit base type
5367
5368 Set_First_Index (Implicit_Base, First_Index (T));
5369 Set_Component_Type (Implicit_Base, Element_Type);
5370 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
5371 Set_Has_Protected (Implicit_Base, Has_Protected (Element_Type));
5372 Set_Component_Size (Implicit_Base, Uint_0);
5373 Set_Packed_Array_Impl_Type (Implicit_Base, Empty);
5374 Set_Has_Controlled_Component
5375 (Implicit_Base,
5376 Has_Controlled_Component (Element_Type)
5377 or else Is_Controlled (Element_Type));
5378 Set_Finalize_Storage_Only
5379 (Implicit_Base, Finalize_Storage_Only
5380 (Element_Type));
5381
5382 -- Unconstrained array case
5383
5384 else
5385 Set_Ekind (T, E_Array_Type);
5386 Init_Size_Align (T);
5387 Set_Etype (T, T);
5388 Set_Scope (T, Current_Scope);
5389 Set_Component_Size (T, Uint_0);
5390 Set_Is_Constrained (T, False);
5391 Set_First_Index (T, First (Subtype_Marks (Def)));
5392 Set_Has_Delayed_Freeze (T, True);
5393 Set_Has_Task (T, Has_Task (Element_Type));
5394 Set_Has_Protected (T, Has_Protected (Element_Type));
5395 Set_Has_Controlled_Component (T, Has_Controlled_Component
5396 (Element_Type)
5397 or else
5398 Is_Controlled (Element_Type));
5399 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
5400 (Element_Type));
5401 Set_Default_SSO (T);
5402 end if;
5403
5404 -- Common attributes for both cases
5405
5406 Set_Component_Type (Base_Type (T), Element_Type);
5407 Set_Packed_Array_Impl_Type (T, Empty);
5408
5409 if Aliased_Present (Component_Definition (Def)) then
5410 Check_SPARK_05_Restriction
5411 ("aliased is not allowed", Component_Definition (Def));
5412 Set_Has_Aliased_Components (Etype (T));
5413 end if;
5414
5415 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5416 -- array type to ensure that objects of this type are initialized.
5417
5418 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
5419 Set_Can_Never_Be_Null (T);
5420
5421 if Null_Exclusion_Present (Component_Definition (Def))
5422
5423 -- No need to check itypes because in their case this check was
5424 -- done at their point of creation
5425
5426 and then not Is_Itype (Element_Type)
5427 then
5428 Error_Msg_N
5429 ("`NOT NULL` not allowed (null already excluded)",
5430 Subtype_Indication (Component_Definition (Def)));
5431 end if;
5432 end if;
5433
5434 Priv := Private_Component (Element_Type);
5435
5436 if Present (Priv) then
5437
5438 -- Check for circular definitions
5439
5440 if Priv = Any_Type then
5441 Set_Component_Type (Etype (T), Any_Type);
5442
5443 -- There is a gap in the visibility of operations on the composite
5444 -- type only if the component type is defined in a different scope.
5445
5446 elsif Scope (Priv) = Current_Scope then
5447 null;
5448
5449 elsif Is_Limited_Type (Priv) then
5450 Set_Is_Limited_Composite (Etype (T));
5451 Set_Is_Limited_Composite (T);
5452 else
5453 Set_Is_Private_Composite (Etype (T));
5454 Set_Is_Private_Composite (T);
5455 end if;
5456 end if;
5457
5458 -- A syntax error in the declaration itself may lead to an empty index
5459 -- list, in which case do a minimal patch.
5460
5461 if No (First_Index (T)) then
5462 Error_Msg_N ("missing index definition in array type declaration", T);
5463
5464 declare
5465 Indexes : constant List_Id :=
5466 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
5467 begin
5468 Set_Discrete_Subtype_Definitions (Def, Indexes);
5469 Set_First_Index (T, First (Indexes));
5470 return;
5471 end;
5472 end if;
5473
5474 -- Create a concatenation operator for the new type. Internal array
5475 -- types created for packed entities do not need such, they are
5476 -- compatible with the user-defined type.
5477
5478 if Number_Dimensions (T) = 1
5479 and then not Is_Packed_Array_Impl_Type (T)
5480 then
5481 New_Concatenation_Op (T);
5482 end if;
5483
5484 -- In the case of an unconstrained array the parser has already verified
5485 -- that all the indexes are unconstrained but we still need to make sure
5486 -- that the element type is constrained.
5487
5488 if Is_Indefinite_Subtype (Element_Type) then
5489 Error_Msg_N
5490 ("unconstrained element type in array declaration",
5491 Subtype_Indication (Component_Def));
5492
5493 elsif Is_Abstract_Type (Element_Type) then
5494 Error_Msg_N
5495 ("the type of a component cannot be abstract",
5496 Subtype_Indication (Component_Def));
5497 end if;
5498
5499 -- There may be an invariant declared for the component type, but
5500 -- the construction of the component invariant checking procedure
5501 -- takes place during expansion.
5502 end Array_Type_Declaration;
5503
5504 ------------------------------------------------------
5505 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5506 ------------------------------------------------------
5507
5508 function Replace_Anonymous_Access_To_Protected_Subprogram
5509 (N : Node_Id) return Entity_Id
5510 is
5511 Loc : constant Source_Ptr := Sloc (N);
5512
5513 Curr_Scope : constant Scope_Stack_Entry :=
5514 Scope_Stack.Table (Scope_Stack.Last);
5515
5516 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
5517
5518 Acc : Node_Id;
5519 -- Access definition in declaration
5520
5521 Comp : Node_Id;
5522 -- Object definition or formal definition with an access definition
5523
5524 Decl : Node_Id;
5525 -- Declaration of anonymous access to subprogram type
5526
5527 Spec : Node_Id;
5528 -- Original specification in access to subprogram
5529
5530 P : Node_Id;
5531
5532 begin
5533 Set_Is_Internal (Anon);
5534
5535 case Nkind (N) is
5536 when N_Component_Declaration |
5537 N_Unconstrained_Array_Definition |
5538 N_Constrained_Array_Definition =>
5539 Comp := Component_Definition (N);
5540 Acc := Access_Definition (Comp);
5541
5542 when N_Discriminant_Specification =>
5543 Comp := Discriminant_Type (N);
5544 Acc := Comp;
5545
5546 when N_Parameter_Specification =>
5547 Comp := Parameter_Type (N);
5548 Acc := Comp;
5549
5550 when N_Access_Function_Definition =>
5551 Comp := Result_Definition (N);
5552 Acc := Comp;
5553
5554 when N_Object_Declaration =>
5555 Comp := Object_Definition (N);
5556 Acc := Comp;
5557
5558 when N_Function_Specification =>
5559 Comp := Result_Definition (N);
5560 Acc := Comp;
5561
5562 when others =>
5563 raise Program_Error;
5564 end case;
5565
5566 Spec := Access_To_Subprogram_Definition (Acc);
5567
5568 Decl :=
5569 Make_Full_Type_Declaration (Loc,
5570 Defining_Identifier => Anon,
5571 Type_Definition => Copy_Separate_Tree (Spec));
5572
5573 Mark_Rewrite_Insertion (Decl);
5574
5575 -- In ASIS mode, analyze the profile on the original node, because
5576 -- the separate copy does not provide enough links to recover the
5577 -- original tree. Analysis is limited to type annotations, within
5578 -- a temporary scope that serves as an anonymous subprogram to collect
5579 -- otherwise useless temporaries and itypes.
5580
5581 if ASIS_Mode then
5582 declare
5583 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
5584
5585 begin
5586 if Nkind (Spec) = N_Access_Function_Definition then
5587 Set_Ekind (Typ, E_Function);
5588 else
5589 Set_Ekind (Typ, E_Procedure);
5590 end if;
5591
5592 Set_Parent (Typ, N);
5593 Set_Scope (Typ, Current_Scope);
5594 Push_Scope (Typ);
5595
5596 Process_Formals (Parameter_Specifications (Spec), Spec);
5597
5598 if Nkind (Spec) = N_Access_Function_Definition then
5599 declare
5600 Def : constant Node_Id := Result_Definition (Spec);
5601
5602 begin
5603 -- The result might itself be an anonymous access type, so
5604 -- have to recurse.
5605
5606 if Nkind (Def) = N_Access_Definition then
5607 if Present (Access_To_Subprogram_Definition (Def)) then
5608 Set_Etype
5609 (Def,
5610 Replace_Anonymous_Access_To_Protected_Subprogram
5611 (Spec));
5612 else
5613 Find_Type (Subtype_Mark (Def));
5614 end if;
5615
5616 else
5617 Find_Type (Def);
5618 end if;
5619 end;
5620 end if;
5621
5622 End_Scope;
5623 end;
5624 end if;
5625
5626 -- Insert the new declaration in the nearest enclosing scope. If the
5627 -- node is a body and N is its return type, the declaration belongs in
5628 -- the enclosing scope.
5629
5630 P := Parent (N);
5631
5632 if Nkind (P) = N_Subprogram_Body
5633 and then Nkind (N) = N_Function_Specification
5634 then
5635 P := Parent (P);
5636 end if;
5637
5638 while Present (P) and then not Has_Declarations (P) loop
5639 P := Parent (P);
5640 end loop;
5641
5642 pragma Assert (Present (P));
5643
5644 if Nkind (P) = N_Package_Specification then
5645 Prepend (Decl, Visible_Declarations (P));
5646 else
5647 Prepend (Decl, Declarations (P));
5648 end if;
5649
5650 -- Replace the anonymous type with an occurrence of the new declaration.
5651 -- In all cases the rewritten node does not have the null-exclusion
5652 -- attribute because (if present) it was already inherited by the
5653 -- anonymous entity (Anon). Thus, in case of components we do not
5654 -- inherit this attribute.
5655
5656 if Nkind (N) = N_Parameter_Specification then
5657 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5658 Set_Etype (Defining_Identifier (N), Anon);
5659 Set_Null_Exclusion_Present (N, False);
5660
5661 elsif Nkind (N) = N_Object_Declaration then
5662 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5663 Set_Etype (Defining_Identifier (N), Anon);
5664
5665 elsif Nkind (N) = N_Access_Function_Definition then
5666 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5667
5668 elsif Nkind (N) = N_Function_Specification then
5669 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5670 Set_Etype (Defining_Unit_Name (N), Anon);
5671
5672 else
5673 Rewrite (Comp,
5674 Make_Component_Definition (Loc,
5675 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
5676 end if;
5677
5678 Mark_Rewrite_Insertion (Comp);
5679
5680 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition) then
5681 Analyze (Decl);
5682
5683 else
5684 -- Temporarily remove the current scope (record or subprogram) from
5685 -- the stack to add the new declarations to the enclosing scope.
5686
5687 Scope_Stack.Decrement_Last;
5688 Analyze (Decl);
5689 Set_Is_Itype (Anon);
5690 Scope_Stack.Append (Curr_Scope);
5691 end if;
5692
5693 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
5694 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
5695 return Anon;
5696 end Replace_Anonymous_Access_To_Protected_Subprogram;
5697
5698 -------------------------------
5699 -- Build_Derived_Access_Type --
5700 -------------------------------
5701
5702 procedure Build_Derived_Access_Type
5703 (N : Node_Id;
5704 Parent_Type : Entity_Id;
5705 Derived_Type : Entity_Id)
5706 is
5707 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
5708
5709 Desig_Type : Entity_Id;
5710 Discr : Entity_Id;
5711 Discr_Con_Elist : Elist_Id;
5712 Discr_Con_El : Elmt_Id;
5713 Subt : Entity_Id;
5714
5715 begin
5716 -- Set the designated type so it is available in case this is an access
5717 -- to a self-referential type, e.g. a standard list type with a next
5718 -- pointer. Will be reset after subtype is built.
5719
5720 Set_Directly_Designated_Type
5721 (Derived_Type, Designated_Type (Parent_Type));
5722
5723 Subt := Process_Subtype (S, N);
5724
5725 if Nkind (S) /= N_Subtype_Indication
5726 and then Subt /= Base_Type (Subt)
5727 then
5728 Set_Ekind (Derived_Type, E_Access_Subtype);
5729 end if;
5730
5731 if Ekind (Derived_Type) = E_Access_Subtype then
5732 declare
5733 Pbase : constant Entity_Id := Base_Type (Parent_Type);
5734 Ibase : constant Entity_Id :=
5735 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
5736 Svg_Chars : constant Name_Id := Chars (Ibase);
5737 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
5738
5739 begin
5740 Copy_Node (Pbase, Ibase);
5741
5742 Set_Chars (Ibase, Svg_Chars);
5743 Set_Next_Entity (Ibase, Svg_Next_E);
5744 Set_Sloc (Ibase, Sloc (Derived_Type));
5745 Set_Scope (Ibase, Scope (Derived_Type));
5746 Set_Freeze_Node (Ibase, Empty);
5747 Set_Is_Frozen (Ibase, False);
5748 Set_Comes_From_Source (Ibase, False);
5749 Set_Is_First_Subtype (Ibase, False);
5750
5751 Set_Etype (Ibase, Pbase);
5752 Set_Etype (Derived_Type, Ibase);
5753 end;
5754 end if;
5755
5756 Set_Directly_Designated_Type
5757 (Derived_Type, Designated_Type (Subt));
5758
5759 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
5760 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
5761 Set_Size_Info (Derived_Type, Parent_Type);
5762 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5763 Set_Depends_On_Private (Derived_Type,
5764 Has_Private_Component (Derived_Type));
5765 Conditional_Delay (Derived_Type, Subt);
5766
5767 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5768 -- that it is not redundant.
5769
5770 if Null_Exclusion_Present (Type_Definition (N)) then
5771 Set_Can_Never_Be_Null (Derived_Type);
5772
5773 -- What is with the "AND THEN FALSE" here ???
5774
5775 if Can_Never_Be_Null (Parent_Type)
5776 and then False
5777 then
5778 Error_Msg_NE
5779 ("`NOT NULL` not allowed (& already excludes null)",
5780 N, Parent_Type);
5781 end if;
5782
5783 elsif Can_Never_Be_Null (Parent_Type) then
5784 Set_Can_Never_Be_Null (Derived_Type);
5785 end if;
5786
5787 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5788 -- the root type for this information.
5789
5790 -- Apply range checks to discriminants for derived record case
5791 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5792
5793 Desig_Type := Designated_Type (Derived_Type);
5794 if Is_Composite_Type (Desig_Type)
5795 and then (not Is_Array_Type (Desig_Type))
5796 and then Has_Discriminants (Desig_Type)
5797 and then Base_Type (Desig_Type) /= Desig_Type
5798 then
5799 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
5800 Discr_Con_El := First_Elmt (Discr_Con_Elist);
5801
5802 Discr := First_Discriminant (Base_Type (Desig_Type));
5803 while Present (Discr_Con_El) loop
5804 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
5805 Next_Elmt (Discr_Con_El);
5806 Next_Discriminant (Discr);
5807 end loop;
5808 end if;
5809 end Build_Derived_Access_Type;
5810
5811 ------------------------------
5812 -- Build_Derived_Array_Type --
5813 ------------------------------
5814
5815 procedure Build_Derived_Array_Type
5816 (N : Node_Id;
5817 Parent_Type : Entity_Id;
5818 Derived_Type : Entity_Id)
5819 is
5820 Loc : constant Source_Ptr := Sloc (N);
5821 Tdef : constant Node_Id := Type_Definition (N);
5822 Indic : constant Node_Id := Subtype_Indication (Tdef);
5823 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
5824 Implicit_Base : Entity_Id;
5825 New_Indic : Node_Id;
5826
5827 procedure Make_Implicit_Base;
5828 -- If the parent subtype is constrained, the derived type is a subtype
5829 -- of an implicit base type derived from the parent base.
5830
5831 ------------------------
5832 -- Make_Implicit_Base --
5833 ------------------------
5834
5835 procedure Make_Implicit_Base is
5836 begin
5837 Implicit_Base :=
5838 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
5839
5840 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
5841 Set_Etype (Implicit_Base, Parent_Base);
5842
5843 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
5844 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
5845
5846 Set_Has_Delayed_Freeze (Implicit_Base, True);
5847 end Make_Implicit_Base;
5848
5849 -- Start of processing for Build_Derived_Array_Type
5850
5851 begin
5852 if not Is_Constrained (Parent_Type) then
5853 if Nkind (Indic) /= N_Subtype_Indication then
5854 Set_Ekind (Derived_Type, E_Array_Type);
5855
5856 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5857 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
5858
5859 Set_Has_Delayed_Freeze (Derived_Type, True);
5860
5861 else
5862 Make_Implicit_Base;
5863 Set_Etype (Derived_Type, Implicit_Base);
5864
5865 New_Indic :=
5866 Make_Subtype_Declaration (Loc,
5867 Defining_Identifier => Derived_Type,
5868 Subtype_Indication =>
5869 Make_Subtype_Indication (Loc,
5870 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
5871 Constraint => Constraint (Indic)));
5872
5873 Rewrite (N, New_Indic);
5874 Analyze (N);
5875 end if;
5876
5877 else
5878 if Nkind (Indic) /= N_Subtype_Indication then
5879 Make_Implicit_Base;
5880
5881 Set_Ekind (Derived_Type, Ekind (Parent_Type));
5882 Set_Etype (Derived_Type, Implicit_Base);
5883 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5884
5885 else
5886 Error_Msg_N ("illegal constraint on constrained type", Indic);
5887 end if;
5888 end if;
5889
5890 -- If parent type is not a derived type itself, and is declared in
5891 -- closed scope (e.g. a subprogram), then we must explicitly introduce
5892 -- the new type's concatenation operator since Derive_Subprograms
5893 -- will not inherit the parent's operator. If the parent type is
5894 -- unconstrained, the operator is of the unconstrained base type.
5895
5896 if Number_Dimensions (Parent_Type) = 1
5897 and then not Is_Limited_Type (Parent_Type)
5898 and then not Is_Derived_Type (Parent_Type)
5899 and then not Is_Package_Or_Generic_Package
5900 (Scope (Base_Type (Parent_Type)))
5901 then
5902 if not Is_Constrained (Parent_Type)
5903 and then Is_Constrained (Derived_Type)
5904 then
5905 New_Concatenation_Op (Implicit_Base);
5906 else
5907 New_Concatenation_Op (Derived_Type);
5908 end if;
5909 end if;
5910 end Build_Derived_Array_Type;
5911
5912 -----------------------------------
5913 -- Build_Derived_Concurrent_Type --
5914 -----------------------------------
5915
5916 procedure Build_Derived_Concurrent_Type
5917 (N : Node_Id;
5918 Parent_Type : Entity_Id;
5919 Derived_Type : Entity_Id)
5920 is
5921 Loc : constant Source_Ptr := Sloc (N);
5922
5923 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
5924 Corr_Decl : Node_Id;
5925 Corr_Decl_Needed : Boolean;
5926 -- If the derived type has fewer discriminants than its parent, the
5927 -- corresponding record is also a derived type, in order to account for
5928 -- the bound discriminants. We create a full type declaration for it in
5929 -- this case.
5930
5931 Constraint_Present : constant Boolean :=
5932 Nkind (Subtype_Indication (Type_Definition (N))) =
5933 N_Subtype_Indication;
5934
5935 D_Constraint : Node_Id;
5936 New_Constraint : Elist_Id;
5937 Old_Disc : Entity_Id;
5938 New_Disc : Entity_Id;
5939 New_N : Node_Id;
5940
5941 begin
5942 Set_Stored_Constraint (Derived_Type, No_Elist);
5943 Corr_Decl_Needed := False;
5944 Old_Disc := Empty;
5945
5946 if Present (Discriminant_Specifications (N))
5947 and then Constraint_Present
5948 then
5949 Old_Disc := First_Discriminant (Parent_Type);
5950 New_Disc := First (Discriminant_Specifications (N));
5951 while Present (New_Disc) and then Present (Old_Disc) loop
5952 Next_Discriminant (Old_Disc);
5953 Next (New_Disc);
5954 end loop;
5955 end if;
5956
5957 if Present (Old_Disc) and then Expander_Active then
5958
5959 -- The new type has fewer discriminants, so we need to create a new
5960 -- corresponding record, which is derived from the corresponding
5961 -- record of the parent, and has a stored constraint that captures
5962 -- the values of the discriminant constraints. The corresponding
5963 -- record is needed only if expander is active and code generation is
5964 -- enabled.
5965
5966 -- The type declaration for the derived corresponding record has the
5967 -- same discriminant part and constraints as the current declaration.
5968 -- Copy the unanalyzed tree to build declaration.
5969
5970 Corr_Decl_Needed := True;
5971 New_N := Copy_Separate_Tree (N);
5972
5973 Corr_Decl :=
5974 Make_Full_Type_Declaration (Loc,
5975 Defining_Identifier => Corr_Record,
5976 Discriminant_Specifications =>
5977 Discriminant_Specifications (New_N),
5978 Type_Definition =>
5979 Make_Derived_Type_Definition (Loc,
5980 Subtype_Indication =>
5981 Make_Subtype_Indication (Loc,
5982 Subtype_Mark =>
5983 New_Occurrence_Of
5984 (Corresponding_Record_Type (Parent_Type), Loc),
5985 Constraint =>
5986 Constraint
5987 (Subtype_Indication (Type_Definition (New_N))))));
5988 end if;
5989
5990 -- Copy Storage_Size and Relative_Deadline variables if task case
5991
5992 if Is_Task_Type (Parent_Type) then
5993 Set_Storage_Size_Variable (Derived_Type,
5994 Storage_Size_Variable (Parent_Type));
5995 Set_Relative_Deadline_Variable (Derived_Type,
5996 Relative_Deadline_Variable (Parent_Type));
5997 end if;
5998
5999 if Present (Discriminant_Specifications (N)) then
6000 Push_Scope (Derived_Type);
6001 Check_Or_Process_Discriminants (N, Derived_Type);
6002
6003 if Constraint_Present then
6004 New_Constraint :=
6005 Expand_To_Stored_Constraint
6006 (Parent_Type,
6007 Build_Discriminant_Constraints
6008 (Parent_Type,
6009 Subtype_Indication (Type_Definition (N)), True));
6010 end if;
6011
6012 End_Scope;
6013
6014 elsif Constraint_Present then
6015
6016 -- Build constrained subtype, copying the constraint, and derive
6017 -- from it to create a derived constrained type.
6018
6019 declare
6020 Loc : constant Source_Ptr := Sloc (N);
6021 Anon : constant Entity_Id :=
6022 Make_Defining_Identifier (Loc,
6023 Chars => New_External_Name (Chars (Derived_Type), 'T'));
6024 Decl : Node_Id;
6025
6026 begin
6027 Decl :=
6028 Make_Subtype_Declaration (Loc,
6029 Defining_Identifier => Anon,
6030 Subtype_Indication =>
6031 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
6032 Insert_Before (N, Decl);
6033 Analyze (Decl);
6034
6035 Rewrite (Subtype_Indication (Type_Definition (N)),
6036 New_Occurrence_Of (Anon, Loc));
6037 Set_Analyzed (Derived_Type, False);
6038 Analyze (N);
6039 return;
6040 end;
6041 end if;
6042
6043 -- By default, operations and private data are inherited from parent.
6044 -- However, in the presence of bound discriminants, a new corresponding
6045 -- record will be created, see below.
6046
6047 Set_Has_Discriminants
6048 (Derived_Type, Has_Discriminants (Parent_Type));
6049 Set_Corresponding_Record_Type
6050 (Derived_Type, Corresponding_Record_Type (Parent_Type));
6051
6052 -- Is_Constrained is set according the parent subtype, but is set to
6053 -- False if the derived type is declared with new discriminants.
6054
6055 Set_Is_Constrained
6056 (Derived_Type,
6057 (Is_Constrained (Parent_Type) or else Constraint_Present)
6058 and then not Present (Discriminant_Specifications (N)));
6059
6060 if Constraint_Present then
6061 if not Has_Discriminants (Parent_Type) then
6062 Error_Msg_N ("untagged parent must have discriminants", N);
6063
6064 elsif Present (Discriminant_Specifications (N)) then
6065
6066 -- Verify that new discriminants are used to constrain old ones
6067
6068 D_Constraint :=
6069 First
6070 (Constraints
6071 (Constraint (Subtype_Indication (Type_Definition (N)))));
6072
6073 Old_Disc := First_Discriminant (Parent_Type);
6074
6075 while Present (D_Constraint) loop
6076 if Nkind (D_Constraint) /= N_Discriminant_Association then
6077
6078 -- Positional constraint. If it is a reference to a new
6079 -- discriminant, it constrains the corresponding old one.
6080
6081 if Nkind (D_Constraint) = N_Identifier then
6082 New_Disc := First_Discriminant (Derived_Type);
6083 while Present (New_Disc) loop
6084 exit when Chars (New_Disc) = Chars (D_Constraint);
6085 Next_Discriminant (New_Disc);
6086 end loop;
6087
6088 if Present (New_Disc) then
6089 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
6090 end if;
6091 end if;
6092
6093 Next_Discriminant (Old_Disc);
6094
6095 -- if this is a named constraint, search by name for the old
6096 -- discriminants constrained by the new one.
6097
6098 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
6099
6100 -- Find new discriminant with that name
6101
6102 New_Disc := First_Discriminant (Derived_Type);
6103 while Present (New_Disc) loop
6104 exit when
6105 Chars (New_Disc) = Chars (Expression (D_Constraint));
6106 Next_Discriminant (New_Disc);
6107 end loop;
6108
6109 if Present (New_Disc) then
6110
6111 -- Verify that new discriminant renames some discriminant
6112 -- of the parent type, and associate the new discriminant
6113 -- with one or more old ones that it renames.
6114
6115 declare
6116 Selector : Node_Id;
6117
6118 begin
6119 Selector := First (Selector_Names (D_Constraint));
6120 while Present (Selector) loop
6121 Old_Disc := First_Discriminant (Parent_Type);
6122 while Present (Old_Disc) loop
6123 exit when Chars (Old_Disc) = Chars (Selector);
6124 Next_Discriminant (Old_Disc);
6125 end loop;
6126
6127 if Present (Old_Disc) then
6128 Set_Corresponding_Discriminant
6129 (New_Disc, Old_Disc);
6130 end if;
6131
6132 Next (Selector);
6133 end loop;
6134 end;
6135 end if;
6136 end if;
6137
6138 Next (D_Constraint);
6139 end loop;
6140
6141 New_Disc := First_Discriminant (Derived_Type);
6142 while Present (New_Disc) loop
6143 if No (Corresponding_Discriminant (New_Disc)) then
6144 Error_Msg_NE
6145 ("new discriminant& must constrain old one", N, New_Disc);
6146
6147 elsif not
6148 Subtypes_Statically_Compatible
6149 (Etype (New_Disc),
6150 Etype (Corresponding_Discriminant (New_Disc)))
6151 then
6152 Error_Msg_NE
6153 ("& not statically compatible with parent discriminant",
6154 N, New_Disc);
6155 end if;
6156
6157 Next_Discriminant (New_Disc);
6158 end loop;
6159 end if;
6160
6161 elsif Present (Discriminant_Specifications (N)) then
6162 Error_Msg_N
6163 ("missing discriminant constraint in untagged derivation", N);
6164 end if;
6165
6166 -- The entity chain of the derived type includes the new discriminants
6167 -- but shares operations with the parent.
6168
6169 if Present (Discriminant_Specifications (N)) then
6170 Old_Disc := First_Discriminant (Parent_Type);
6171 while Present (Old_Disc) loop
6172 if No (Next_Entity (Old_Disc))
6173 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
6174 then
6175 Set_Next_Entity
6176 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
6177 exit;
6178 end if;
6179
6180 Next_Discriminant (Old_Disc);
6181 end loop;
6182
6183 else
6184 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
6185 if Has_Discriminants (Parent_Type) then
6186 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6187 Set_Discriminant_Constraint (
6188 Derived_Type, Discriminant_Constraint (Parent_Type));
6189 end if;
6190 end if;
6191
6192 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
6193
6194 Set_Has_Completion (Derived_Type);
6195
6196 if Corr_Decl_Needed then
6197 Set_Stored_Constraint (Derived_Type, New_Constraint);
6198 Insert_After (N, Corr_Decl);
6199 Analyze (Corr_Decl);
6200 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
6201 end if;
6202 end Build_Derived_Concurrent_Type;
6203
6204 ------------------------------------
6205 -- Build_Derived_Enumeration_Type --
6206 ------------------------------------
6207
6208 procedure Build_Derived_Enumeration_Type
6209 (N : Node_Id;
6210 Parent_Type : Entity_Id;
6211 Derived_Type : Entity_Id)
6212 is
6213 Loc : constant Source_Ptr := Sloc (N);
6214 Def : constant Node_Id := Type_Definition (N);
6215 Indic : constant Node_Id := Subtype_Indication (Def);
6216 Implicit_Base : Entity_Id;
6217 Literal : Entity_Id;
6218 New_Lit : Entity_Id;
6219 Literals_List : List_Id;
6220 Type_Decl : Node_Id;
6221 Hi, Lo : Node_Id;
6222 Rang_Expr : Node_Id;
6223
6224 begin
6225 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6226 -- not have explicit literals lists we need to process types derived
6227 -- from them specially. This is handled by Derived_Standard_Character.
6228 -- If the parent type is a generic type, there are no literals either,
6229 -- and we construct the same skeletal representation as for the generic
6230 -- parent type.
6231
6232 if Is_Standard_Character_Type (Parent_Type) then
6233 Derived_Standard_Character (N, Parent_Type, Derived_Type);
6234
6235 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
6236 declare
6237 Lo : Node_Id;
6238 Hi : Node_Id;
6239
6240 begin
6241 if Nkind (Indic) /= N_Subtype_Indication then
6242 Lo :=
6243 Make_Attribute_Reference (Loc,
6244 Attribute_Name => Name_First,
6245 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6246 Set_Etype (Lo, Derived_Type);
6247
6248 Hi :=
6249 Make_Attribute_Reference (Loc,
6250 Attribute_Name => Name_Last,
6251 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6252 Set_Etype (Hi, Derived_Type);
6253
6254 Set_Scalar_Range (Derived_Type,
6255 Make_Range (Loc,
6256 Low_Bound => Lo,
6257 High_Bound => Hi));
6258 else
6259
6260 -- Analyze subtype indication and verify compatibility
6261 -- with parent type.
6262
6263 if Base_Type (Process_Subtype (Indic, N)) /=
6264 Base_Type (Parent_Type)
6265 then
6266 Error_Msg_N
6267 ("illegal constraint for formal discrete type", N);
6268 end if;
6269 end if;
6270 end;
6271
6272 else
6273 -- If a constraint is present, analyze the bounds to catch
6274 -- premature usage of the derived literals.
6275
6276 if Nkind (Indic) = N_Subtype_Indication
6277 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
6278 then
6279 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
6280 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
6281 end if;
6282
6283 -- Introduce an implicit base type for the derived type even if there
6284 -- is no constraint attached to it, since this seems closer to the
6285 -- Ada semantics. Build a full type declaration tree for the derived
6286 -- type using the implicit base type as the defining identifier. The
6287 -- build a subtype declaration tree which applies the constraint (if
6288 -- any) have it replace the derived type declaration.
6289
6290 Literal := First_Literal (Parent_Type);
6291 Literals_List := New_List;
6292 while Present (Literal)
6293 and then Ekind (Literal) = E_Enumeration_Literal
6294 loop
6295 -- Literals of the derived type have the same representation as
6296 -- those of the parent type, but this representation can be
6297 -- overridden by an explicit representation clause. Indicate
6298 -- that there is no explicit representation given yet. These
6299 -- derived literals are implicit operations of the new type,
6300 -- and can be overridden by explicit ones.
6301
6302 if Nkind (Literal) = N_Defining_Character_Literal then
6303 New_Lit :=
6304 Make_Defining_Character_Literal (Loc, Chars (Literal));
6305 else
6306 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
6307 end if;
6308
6309 Set_Ekind (New_Lit, E_Enumeration_Literal);
6310 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
6311 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
6312 Set_Enumeration_Rep_Expr (New_Lit, Empty);
6313 Set_Alias (New_Lit, Literal);
6314 Set_Is_Known_Valid (New_Lit, True);
6315
6316 Append (New_Lit, Literals_List);
6317 Next_Literal (Literal);
6318 end loop;
6319
6320 Implicit_Base :=
6321 Make_Defining_Identifier (Sloc (Derived_Type),
6322 Chars => New_External_Name (Chars (Derived_Type), 'B'));
6323
6324 -- Indicate the proper nature of the derived type. This must be done
6325 -- before analysis of the literals, to recognize cases when a literal
6326 -- may be hidden by a previous explicit function definition (cf.
6327 -- c83031a).
6328
6329 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
6330 Set_Etype (Derived_Type, Implicit_Base);
6331
6332 Type_Decl :=
6333 Make_Full_Type_Declaration (Loc,
6334 Defining_Identifier => Implicit_Base,
6335 Discriminant_Specifications => No_List,
6336 Type_Definition =>
6337 Make_Enumeration_Type_Definition (Loc, Literals_List));
6338
6339 Mark_Rewrite_Insertion (Type_Decl);
6340 Insert_Before (N, Type_Decl);
6341 Analyze (Type_Decl);
6342
6343 -- After the implicit base is analyzed its Etype needs to be changed
6344 -- to reflect the fact that it is derived from the parent type which
6345 -- was ignored during analysis. We also set the size at this point.
6346
6347 Set_Etype (Implicit_Base, Parent_Type);
6348
6349 Set_Size_Info (Implicit_Base, Parent_Type);
6350 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
6351 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
6352
6353 -- Copy other flags from parent type
6354
6355 Set_Has_Non_Standard_Rep
6356 (Implicit_Base, Has_Non_Standard_Rep
6357 (Parent_Type));
6358 Set_Has_Pragma_Ordered
6359 (Implicit_Base, Has_Pragma_Ordered
6360 (Parent_Type));
6361 Set_Has_Delayed_Freeze (Implicit_Base);
6362
6363 -- Process the subtype indication including a validation check on the
6364 -- constraint, if any. If a constraint is given, its bounds must be
6365 -- implicitly converted to the new type.
6366
6367 if Nkind (Indic) = N_Subtype_Indication then
6368 declare
6369 R : constant Node_Id :=
6370 Range_Expression (Constraint (Indic));
6371
6372 begin
6373 if Nkind (R) = N_Range then
6374 Hi := Build_Scalar_Bound
6375 (High_Bound (R), Parent_Type, Implicit_Base);
6376 Lo := Build_Scalar_Bound
6377 (Low_Bound (R), Parent_Type, Implicit_Base);
6378
6379 else
6380 -- Constraint is a Range attribute. Replace with explicit
6381 -- mention of the bounds of the prefix, which must be a
6382 -- subtype.
6383
6384 Analyze (Prefix (R));
6385 Hi :=
6386 Convert_To (Implicit_Base,
6387 Make_Attribute_Reference (Loc,
6388 Attribute_Name => Name_Last,
6389 Prefix =>
6390 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6391
6392 Lo :=
6393 Convert_To (Implicit_Base,
6394 Make_Attribute_Reference (Loc,
6395 Attribute_Name => Name_First,
6396 Prefix =>
6397 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6398 end if;
6399 end;
6400
6401 else
6402 Hi :=
6403 Build_Scalar_Bound
6404 (Type_High_Bound (Parent_Type),
6405 Parent_Type, Implicit_Base);
6406 Lo :=
6407 Build_Scalar_Bound
6408 (Type_Low_Bound (Parent_Type),
6409 Parent_Type, Implicit_Base);
6410 end if;
6411
6412 Rang_Expr :=
6413 Make_Range (Loc,
6414 Low_Bound => Lo,
6415 High_Bound => Hi);
6416
6417 -- If we constructed a default range for the case where no range
6418 -- was given, then the expressions in the range must not freeze
6419 -- since they do not correspond to expressions in the source.
6420
6421 if Nkind (Indic) /= N_Subtype_Indication then
6422 Set_Must_Not_Freeze (Lo);
6423 Set_Must_Not_Freeze (Hi);
6424 Set_Must_Not_Freeze (Rang_Expr);
6425 end if;
6426
6427 Rewrite (N,
6428 Make_Subtype_Declaration (Loc,
6429 Defining_Identifier => Derived_Type,
6430 Subtype_Indication =>
6431 Make_Subtype_Indication (Loc,
6432 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6433 Constraint =>
6434 Make_Range_Constraint (Loc,
6435 Range_Expression => Rang_Expr))));
6436
6437 Analyze (N);
6438
6439 -- Propagate the aspects from the original type declaration to the
6440 -- declaration of the implicit base.
6441
6442 Move_Aspects (From => Original_Node (N), To => Type_Decl);
6443
6444 -- Apply a range check. Since this range expression doesn't have an
6445 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6446 -- this right???
6447
6448 if Nkind (Indic) = N_Subtype_Indication then
6449 Apply_Range_Check
6450 (Range_Expression (Constraint (Indic)), Parent_Type,
6451 Source_Typ => Entity (Subtype_Mark (Indic)));
6452 end if;
6453 end if;
6454 end Build_Derived_Enumeration_Type;
6455
6456 --------------------------------
6457 -- Build_Derived_Numeric_Type --
6458 --------------------------------
6459
6460 procedure Build_Derived_Numeric_Type
6461 (N : Node_Id;
6462 Parent_Type : Entity_Id;
6463 Derived_Type : Entity_Id)
6464 is
6465 Loc : constant Source_Ptr := Sloc (N);
6466 Tdef : constant Node_Id := Type_Definition (N);
6467 Indic : constant Node_Id := Subtype_Indication (Tdef);
6468 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6469 No_Constraint : constant Boolean := Nkind (Indic) /=
6470 N_Subtype_Indication;
6471 Implicit_Base : Entity_Id;
6472
6473 Lo : Node_Id;
6474 Hi : Node_Id;
6475
6476 begin
6477 -- Process the subtype indication including a validation check on
6478 -- the constraint if any.
6479
6480 Discard_Node (Process_Subtype (Indic, N));
6481
6482 -- Introduce an implicit base type for the derived type even if there
6483 -- is no constraint attached to it, since this seems closer to the Ada
6484 -- semantics.
6485
6486 Implicit_Base :=
6487 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6488
6489 Set_Etype (Implicit_Base, Parent_Base);
6490 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6491 Set_Size_Info (Implicit_Base, Parent_Base);
6492 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
6493 Set_Parent (Implicit_Base, Parent (Derived_Type));
6494 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
6495
6496 -- Set RM Size for discrete type or decimal fixed-point type
6497 -- Ordinary fixed-point is excluded, why???
6498
6499 if Is_Discrete_Type (Parent_Base)
6500 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
6501 then
6502 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
6503 end if;
6504
6505 Set_Has_Delayed_Freeze (Implicit_Base);
6506
6507 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
6508 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
6509
6510 Set_Scalar_Range (Implicit_Base,
6511 Make_Range (Loc,
6512 Low_Bound => Lo,
6513 High_Bound => Hi));
6514
6515 if Has_Infinities (Parent_Base) then
6516 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
6517 end if;
6518
6519 -- The Derived_Type, which is the entity of the declaration, is a
6520 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6521 -- absence of an explicit constraint.
6522
6523 Set_Etype (Derived_Type, Implicit_Base);
6524
6525 -- If we did not have a constraint, then the Ekind is set from the
6526 -- parent type (otherwise Process_Subtype has set the bounds)
6527
6528 if No_Constraint then
6529 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
6530 end if;
6531
6532 -- If we did not have a range constraint, then set the range from the
6533 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6534
6535 if No_Constraint or else not Has_Range_Constraint (Indic) then
6536 Set_Scalar_Range (Derived_Type,
6537 Make_Range (Loc,
6538 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
6539 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
6540 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6541
6542 if Has_Infinities (Parent_Type) then
6543 Set_Includes_Infinities (Scalar_Range (Derived_Type));
6544 end if;
6545
6546 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
6547 end if;
6548
6549 Set_Is_Descendent_Of_Address (Derived_Type,
6550 Is_Descendent_Of_Address (Parent_Type));
6551 Set_Is_Descendent_Of_Address (Implicit_Base,
6552 Is_Descendent_Of_Address (Parent_Type));
6553
6554 -- Set remaining type-specific fields, depending on numeric type
6555
6556 if Is_Modular_Integer_Type (Parent_Type) then
6557 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
6558
6559 Set_Non_Binary_Modulus
6560 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
6561
6562 Set_Is_Known_Valid
6563 (Implicit_Base, Is_Known_Valid (Parent_Base));
6564
6565 elsif Is_Floating_Point_Type (Parent_Type) then
6566
6567 -- Digits of base type is always copied from the digits value of
6568 -- the parent base type, but the digits of the derived type will
6569 -- already have been set if there was a constraint present.
6570
6571 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6572 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
6573
6574 if No_Constraint then
6575 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
6576 end if;
6577
6578 elsif Is_Fixed_Point_Type (Parent_Type) then
6579
6580 -- Small of base type and derived type are always copied from the
6581 -- parent base type, since smalls never change. The delta of the
6582 -- base type is also copied from the parent base type. However the
6583 -- delta of the derived type will have been set already if a
6584 -- constraint was present.
6585
6586 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
6587 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
6588 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
6589
6590 if No_Constraint then
6591 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
6592 end if;
6593
6594 -- The scale and machine radix in the decimal case are always
6595 -- copied from the parent base type.
6596
6597 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
6598 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
6599 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
6600
6601 Set_Machine_Radix_10
6602 (Derived_Type, Machine_Radix_10 (Parent_Base));
6603 Set_Machine_Radix_10
6604 (Implicit_Base, Machine_Radix_10 (Parent_Base));
6605
6606 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6607
6608 if No_Constraint then
6609 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
6610
6611 else
6612 -- the analysis of the subtype_indication sets the
6613 -- digits value of the derived type.
6614
6615 null;
6616 end if;
6617 end if;
6618 end if;
6619
6620 if Is_Integer_Type (Parent_Type) then
6621 Set_Has_Shift_Operator
6622 (Implicit_Base, Has_Shift_Operator (Parent_Type));
6623 end if;
6624
6625 -- The type of the bounds is that of the parent type, and they
6626 -- must be converted to the derived type.
6627
6628 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
6629
6630 -- The implicit_base should be frozen when the derived type is frozen,
6631 -- but note that it is used in the conversions of the bounds. For fixed
6632 -- types we delay the determination of the bounds until the proper
6633 -- freezing point. For other numeric types this is rejected by GCC, for
6634 -- reasons that are currently unclear (???), so we choose to freeze the
6635 -- implicit base now. In the case of integers and floating point types
6636 -- this is harmless because subsequent representation clauses cannot
6637 -- affect anything, but it is still baffling that we cannot use the
6638 -- same mechanism for all derived numeric types.
6639
6640 -- There is a further complication: actually some representation
6641 -- clauses can affect the implicit base type. For example, attribute
6642 -- definition clauses for stream-oriented attributes need to set the
6643 -- corresponding TSS entries on the base type, and this normally
6644 -- cannot be done after the base type is frozen, so the circuitry in
6645 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6646 -- and not use Set_TSS in this case.
6647
6648 -- There are also consequences for the case of delayed representation
6649 -- aspects for some cases. For example, a Size aspect is delayed and
6650 -- should not be evaluated to the freeze point. This early freezing
6651 -- means that the size attribute evaluation happens too early???
6652
6653 if Is_Fixed_Point_Type (Parent_Type) then
6654 Conditional_Delay (Implicit_Base, Parent_Type);
6655 else
6656 Freeze_Before (N, Implicit_Base);
6657 end if;
6658 end Build_Derived_Numeric_Type;
6659
6660 --------------------------------
6661 -- Build_Derived_Private_Type --
6662 --------------------------------
6663
6664 procedure Build_Derived_Private_Type
6665 (N : Node_Id;
6666 Parent_Type : Entity_Id;
6667 Derived_Type : Entity_Id;
6668 Is_Completion : Boolean;
6669 Derive_Subps : Boolean := True)
6670 is
6671 Loc : constant Source_Ptr := Sloc (N);
6672 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
6673 Par_Scope : constant Entity_Id := Scope (Par_Base);
6674 Full_N : constant Node_Id := New_Copy_Tree (N);
6675 Full_Der : Entity_Id := New_Copy (Derived_Type);
6676 Full_P : Entity_Id;
6677
6678 procedure Build_Full_Derivation;
6679 -- Build full derivation, i.e. derive from the full view
6680
6681 procedure Copy_And_Build;
6682 -- Copy derived type declaration, replace parent with its full view,
6683 -- and build derivation
6684
6685 ---------------------------
6686 -- Build_Full_Derivation --
6687 ---------------------------
6688
6689 procedure Build_Full_Derivation is
6690 begin
6691 -- If parent scope is not open, install the declarations
6692
6693 if not In_Open_Scopes (Par_Scope) then
6694 Install_Private_Declarations (Par_Scope);
6695 Install_Visible_Declarations (Par_Scope);
6696 Copy_And_Build;
6697 Uninstall_Declarations (Par_Scope);
6698
6699 -- If parent scope is open and in another unit, and parent has a
6700 -- completion, then the derivation is taking place in the visible
6701 -- part of a child unit. In that case retrieve the full view of
6702 -- the parent momentarily.
6703
6704 elsif not In_Same_Source_Unit (N, Parent_Type) then
6705 Full_P := Full_View (Parent_Type);
6706 Exchange_Declarations (Parent_Type);
6707 Copy_And_Build;
6708 Exchange_Declarations (Full_P);
6709
6710 -- Otherwise it is a local derivation
6711
6712 else
6713 Copy_And_Build;
6714 end if;
6715 end Build_Full_Derivation;
6716
6717 --------------------
6718 -- Copy_And_Build --
6719 --------------------
6720
6721 procedure Copy_And_Build is
6722 Full_Parent : Entity_Id := Parent_Type;
6723
6724 begin
6725 -- If the parent is itself derived from another private type,
6726 -- installing the private declarations has not affected its
6727 -- privacy status, so use its own full view explicitly.
6728
6729 if Is_Private_Type (Full_Parent)
6730 and then Present (Full_View (Full_Parent))
6731 then
6732 Full_Parent := Full_View (Full_Parent);
6733 end if;
6734
6735 -- And its underlying full view if necessary
6736
6737 if Is_Private_Type (Full_Parent)
6738 and then Present (Underlying_Full_View (Full_Parent))
6739 then
6740 Full_Parent := Underlying_Full_View (Full_Parent);
6741 end if;
6742
6743 -- For record, access and most enumeration types, derivation from
6744 -- the full view requires a fully-fledged declaration. In the other
6745 -- cases, just use an itype.
6746
6747 if Ekind (Full_Parent) in Record_Kind
6748 or else Ekind (Full_Parent) in Access_Kind
6749 or else
6750 (Ekind (Full_Parent) in Enumeration_Kind
6751 and then not Is_Standard_Character_Type (Full_Parent)
6752 and then not Is_Generic_Type (Root_Type (Full_Parent)))
6753 then
6754 -- Copy and adjust declaration to provide a completion for what
6755 -- is originally a private declaration. Indicate that full view
6756 -- is internally generated.
6757
6758 Set_Comes_From_Source (Full_N, False);
6759 Set_Comes_From_Source (Full_Der, False);
6760 Set_Parent (Full_Der, Full_N);
6761 Set_Defining_Identifier (Full_N, Full_Der);
6762
6763 -- If there are no constraints, adjust the subtype mark
6764
6765 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
6766 N_Subtype_Indication
6767 then
6768 Set_Subtype_Indication
6769 (Type_Definition (Full_N),
6770 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
6771 end if;
6772
6773 Insert_After (N, Full_N);
6774
6775 -- Build full view of derived type from full view of parent which
6776 -- is now installed. Subprograms have been derived on the partial
6777 -- view, the completion does not derive them anew.
6778
6779 if Ekind (Full_Parent) in Record_Kind then
6780
6781 -- If parent type is tagged, the completion inherits the proper
6782 -- primitive operations.
6783
6784 if Is_Tagged_Type (Parent_Type) then
6785 Build_Derived_Record_Type
6786 (Full_N, Full_Parent, Full_Der, Derive_Subps);
6787 else
6788 Build_Derived_Record_Type
6789 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
6790 end if;
6791
6792 else
6793 Build_Derived_Type
6794 (Full_N, Full_Parent, Full_Der,
6795 Is_Completion => False, Derive_Subps => False);
6796 end if;
6797
6798 -- The full declaration has been introduced into the tree and
6799 -- processed in the step above. It should not be analyzed again
6800 -- (when encountered later in the current list of declarations)
6801 -- to prevent spurious name conflicts. The full entity remains
6802 -- invisible.
6803
6804 Set_Analyzed (Full_N);
6805
6806 else
6807 Full_Der :=
6808 Make_Defining_Identifier (Sloc (Derived_Type),
6809 Chars => Chars (Derived_Type));
6810 Set_Is_Itype (Full_Der);
6811 Set_Associated_Node_For_Itype (Full_Der, N);
6812 Set_Parent (Full_Der, N);
6813 Build_Derived_Type
6814 (N, Full_Parent, Full_Der,
6815 Is_Completion => False, Derive_Subps => False);
6816 end if;
6817
6818 Set_Has_Private_Declaration (Full_Der);
6819 Set_Has_Private_Declaration (Derived_Type);
6820
6821 Set_Scope (Full_Der, Scope (Derived_Type));
6822 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
6823 Set_Has_Size_Clause (Full_Der, False);
6824 Set_Has_Alignment_Clause (Full_Der, False);
6825 Set_Has_Delayed_Freeze (Full_Der);
6826 Set_Is_Frozen (Full_Der, False);
6827 Set_Freeze_Node (Full_Der, Empty);
6828 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
6829 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
6830
6831 -- The convention on the base type may be set in the private part
6832 -- and not propagated to the subtype until later, so we obtain the
6833 -- convention from the base type of the parent.
6834
6835 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
6836 end Copy_And_Build;
6837
6838 -- Start of processing for Build_Derived_Private_Type
6839
6840 begin
6841 if Is_Tagged_Type (Parent_Type) then
6842 Full_P := Full_View (Parent_Type);
6843
6844 -- A type extension of a type with unknown discriminants is an
6845 -- indefinite type that the back-end cannot handle directly.
6846 -- We treat it as a private type, and build a completion that is
6847 -- derived from the full view of the parent, and hopefully has
6848 -- known discriminants.
6849
6850 -- If the full view of the parent type has an underlying record view,
6851 -- use it to generate the underlying record view of this derived type
6852 -- (required for chains of derivations with unknown discriminants).
6853
6854 -- Minor optimization: we avoid the generation of useless underlying
6855 -- record view entities if the private type declaration has unknown
6856 -- discriminants but its corresponding full view has no
6857 -- discriminants.
6858
6859 if Has_Unknown_Discriminants (Parent_Type)
6860 and then Present (Full_P)
6861 and then (Has_Discriminants (Full_P)
6862 or else Present (Underlying_Record_View (Full_P)))
6863 and then not In_Open_Scopes (Par_Scope)
6864 and then Expander_Active
6865 then
6866 declare
6867 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
6868 New_Ext : constant Node_Id :=
6869 Copy_Separate_Tree
6870 (Record_Extension_Part (Type_Definition (N)));
6871 Decl : Node_Id;
6872
6873 begin
6874 Build_Derived_Record_Type
6875 (N, Parent_Type, Derived_Type, Derive_Subps);
6876
6877 -- Build anonymous completion, as a derivation from the full
6878 -- view of the parent. This is not a completion in the usual
6879 -- sense, because the current type is not private.
6880
6881 Decl :=
6882 Make_Full_Type_Declaration (Loc,
6883 Defining_Identifier => Full_Der,
6884 Type_Definition =>
6885 Make_Derived_Type_Definition (Loc,
6886 Subtype_Indication =>
6887 New_Copy_Tree
6888 (Subtype_Indication (Type_Definition (N))),
6889 Record_Extension_Part => New_Ext));
6890
6891 -- If the parent type has an underlying record view, use it
6892 -- here to build the new underlying record view.
6893
6894 if Present (Underlying_Record_View (Full_P)) then
6895 pragma Assert
6896 (Nkind (Subtype_Indication (Type_Definition (Decl)))
6897 = N_Identifier);
6898 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
6899 Underlying_Record_View (Full_P));
6900 end if;
6901
6902 Install_Private_Declarations (Par_Scope);
6903 Install_Visible_Declarations (Par_Scope);
6904 Insert_Before (N, Decl);
6905
6906 -- Mark entity as an underlying record view before analysis,
6907 -- to avoid generating the list of its primitive operations
6908 -- (which is not really required for this entity) and thus
6909 -- prevent spurious errors associated with missing overriding
6910 -- of abstract primitives (overridden only for Derived_Type).
6911
6912 Set_Ekind (Full_Der, E_Record_Type);
6913 Set_Is_Underlying_Record_View (Full_Der);
6914 Set_Default_SSO (Full_Der);
6915
6916 Analyze (Decl);
6917
6918 pragma Assert (Has_Discriminants (Full_Der)
6919 and then not Has_Unknown_Discriminants (Full_Der));
6920
6921 Uninstall_Declarations (Par_Scope);
6922
6923 -- Freeze the underlying record view, to prevent generation of
6924 -- useless dispatching information, which is simply shared with
6925 -- the real derived type.
6926
6927 Set_Is_Frozen (Full_Der);
6928
6929 -- Set up links between real entity and underlying record view
6930
6931 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
6932 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
6933 end;
6934
6935 -- If discriminants are known, build derived record
6936
6937 else
6938 Build_Derived_Record_Type
6939 (N, Parent_Type, Derived_Type, Derive_Subps);
6940 end if;
6941
6942 return;
6943
6944 elsif Has_Discriminants (Parent_Type) then
6945
6946 -- Build partial view of derived type from partial view of parent.
6947 -- This must be done before building the full derivation because the
6948 -- second derivation will modify the discriminants of the first and
6949 -- the discriminants are chained with the rest of the components in
6950 -- the full derivation.
6951
6952 Build_Derived_Record_Type
6953 (N, Parent_Type, Derived_Type, Derive_Subps);
6954
6955 -- Build the full derivation if this is not the anonymous derived
6956 -- base type created by Build_Derived_Record_Type in the constrained
6957 -- case (see point 5. of its head comment) since we build it for the
6958 -- derived subtype. And skip it for protected types altogether, as
6959 -- gigi does not use these types directly.
6960
6961 if Present (Full_View (Parent_Type))
6962 and then not Is_Itype (Derived_Type)
6963 and then not (Ekind (Full_View (Parent_Type)) in Protected_Kind)
6964 then
6965 declare
6966 Der_Base : constant Entity_Id := Base_Type (Derived_Type);
6967 Discr : Entity_Id;
6968 Last_Discr : Entity_Id;
6969
6970 begin
6971 -- If this is not a completion, construct the implicit full
6972 -- view by deriving from the full view of the parent type.
6973 -- But if this is a completion, the derived private type
6974 -- being built is a full view and the full derivation can
6975 -- only be its underlying full view.
6976
6977 Build_Full_Derivation;
6978
6979 if not Is_Completion then
6980 Set_Full_View (Derived_Type, Full_Der);
6981 else
6982 Set_Underlying_Full_View (Derived_Type, Full_Der);
6983 end if;
6984
6985 if not Is_Base_Type (Derived_Type) then
6986 Set_Full_View (Der_Base, Base_Type (Full_Der));
6987 end if;
6988
6989 -- Copy the discriminant list from full view to the partial
6990 -- view (base type and its subtype). Gigi requires that the
6991 -- partial and full views have the same discriminants.
6992
6993 -- Note that since the partial view points to discriminants
6994 -- in the full view, their scope will be that of the full
6995 -- view. This might cause some front end problems and need
6996 -- adjustment???
6997
6998 Discr := First_Discriminant (Base_Type (Full_Der));
6999 Set_First_Entity (Der_Base, Discr);
7000
7001 loop
7002 Last_Discr := Discr;
7003 Next_Discriminant (Discr);
7004 exit when No (Discr);
7005 end loop;
7006
7007 Set_Last_Entity (Der_Base, Last_Discr);
7008 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
7009 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
7010
7011 Set_Stored_Constraint
7012 (Full_Der, Stored_Constraint (Derived_Type));
7013 end;
7014 end if;
7015
7016 elsif Present (Full_View (Parent_Type))
7017 and then Has_Discriminants (Full_View (Parent_Type))
7018 then
7019 if Has_Unknown_Discriminants (Parent_Type)
7020 and then Nkind (Subtype_Indication (Type_Definition (N))) =
7021 N_Subtype_Indication
7022 then
7023 Error_Msg_N
7024 ("cannot constrain type with unknown discriminants",
7025 Subtype_Indication (Type_Definition (N)));
7026 return;
7027 end if;
7028
7029 -- If this is not a completion, construct the implicit full view by
7030 -- deriving from the full view of the parent type. But if this is a
7031 -- completion, the derived private type being built is a full view
7032 -- and the full derivation can only be its underlying full view.
7033
7034 Build_Full_Derivation;
7035
7036 if not Is_Completion then
7037 Set_Full_View (Derived_Type, Full_Der);
7038 else
7039 Set_Underlying_Full_View (Derived_Type, Full_Der);
7040 end if;
7041
7042 -- In any case, the primitive operations are inherited from the
7043 -- parent type, not from the internal full view.
7044
7045 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
7046
7047 if Derive_Subps then
7048 Derive_Subprograms (Parent_Type, Derived_Type);
7049 end if;
7050
7051 Set_Stored_Constraint (Derived_Type, No_Elist);
7052 Set_Is_Constrained
7053 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
7054
7055 else
7056 -- Untagged type, No discriminants on either view
7057
7058 if Nkind (Subtype_Indication (Type_Definition (N))) =
7059 N_Subtype_Indication
7060 then
7061 Error_Msg_N
7062 ("illegal constraint on type without discriminants", N);
7063 end if;
7064
7065 if Present (Discriminant_Specifications (N))
7066 and then Present (Full_View (Parent_Type))
7067 and then not Is_Tagged_Type (Full_View (Parent_Type))
7068 then
7069 Error_Msg_N ("cannot add discriminants to untagged type", N);
7070 end if;
7071
7072 Set_Stored_Constraint (Derived_Type, No_Elist);
7073 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7074 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
7075 Set_Has_Controlled_Component
7076 (Derived_Type, Has_Controlled_Component
7077 (Parent_Type));
7078
7079 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7080
7081 if not Is_Controlled (Parent_Type) then
7082 Set_Finalize_Storage_Only
7083 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
7084 end if;
7085
7086 -- If this is not a completion, construct the implicit full view by
7087 -- deriving from the full view of the parent type.
7088
7089 -- ??? If the parent is untagged private and its completion is
7090 -- tagged, this mechanism will not work because we cannot derive from
7091 -- the tagged full view unless we have an extension.
7092
7093 if Present (Full_View (Parent_Type))
7094 and then not Is_Tagged_Type (Full_View (Parent_Type))
7095 and then not Is_Completion
7096 then
7097 Build_Full_Derivation;
7098 Set_Full_View (Derived_Type, Full_Der);
7099 end if;
7100 end if;
7101
7102 Set_Has_Unknown_Discriminants (Derived_Type,
7103 Has_Unknown_Discriminants (Parent_Type));
7104
7105 if Is_Private_Type (Derived_Type) then
7106 Set_Private_Dependents (Derived_Type, New_Elmt_List);
7107 end if;
7108
7109 -- If the parent base type is in scope, add the derived type to its
7110 -- list of private dependents, because its full view may become
7111 -- visible subsequently (in a nested private part, a body, or in a
7112 -- further child unit).
7113
7114 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
7115 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
7116
7117 -- Check for unusual case where a type completed by a private
7118 -- derivation occurs within a package nested in a child unit, and
7119 -- the parent is declared in an ancestor.
7120
7121 if Is_Child_Unit (Scope (Current_Scope))
7122 and then Is_Completion
7123 and then In_Private_Part (Current_Scope)
7124 and then Scope (Parent_Type) /= Current_Scope
7125
7126 -- Note that if the parent has a completion in the private part,
7127 -- (which is itself a derivation from some other private type)
7128 -- it is that completion that is visible, there is no full view
7129 -- available, and no special processing is needed.
7130
7131 and then Present (Full_View (Parent_Type))
7132 then
7133 -- In this case, the full view of the parent type will become
7134 -- visible in the body of the enclosing child, and only then will
7135 -- the current type be possibly non-private. Build an underlying
7136 -- full view that will be installed when the enclosing child body
7137 -- is compiled.
7138
7139 if Present (Underlying_Full_View (Derived_Type)) then
7140 Full_Der := Underlying_Full_View (Derived_Type);
7141 else
7142 Build_Full_Derivation;
7143 Set_Underlying_Full_View (Derived_Type, Full_Der);
7144 end if;
7145
7146 -- The full view will be used to swap entities on entry/exit to
7147 -- the body, and must appear in the entity list for the package.
7148
7149 Append_Entity (Full_Der, Scope (Derived_Type));
7150 end if;
7151 end if;
7152 end Build_Derived_Private_Type;
7153
7154 -------------------------------
7155 -- Build_Derived_Record_Type --
7156 -------------------------------
7157
7158 -- 1. INTRODUCTION
7159
7160 -- Ideally we would like to use the same model of type derivation for
7161 -- tagged and untagged record types. Unfortunately this is not quite
7162 -- possible because the semantics of representation clauses is different
7163 -- for tagged and untagged records under inheritance. Consider the
7164 -- following:
7165
7166 -- type R (...) is [tagged] record ... end record;
7167 -- type T (...) is new R (...) [with ...];
7168
7169 -- The representation clauses for T can specify a completely different
7170 -- record layout from R's. Hence the same component can be placed in two
7171 -- very different positions in objects of type T and R. If R and T are
7172 -- tagged types, representation clauses for T can only specify the layout
7173 -- of non inherited components, thus components that are common in R and T
7174 -- have the same position in objects of type R and T.
7175
7176 -- This has two implications. The first is that the entire tree for R's
7177 -- declaration needs to be copied for T in the untagged case, so that T
7178 -- can be viewed as a record type of its own with its own representation
7179 -- clauses. The second implication is the way we handle discriminants.
7180 -- Specifically, in the untagged case we need a way to communicate to Gigi
7181 -- what are the real discriminants in the record, while for the semantics
7182 -- we need to consider those introduced by the user to rename the
7183 -- discriminants in the parent type. This is handled by introducing the
7184 -- notion of stored discriminants. See below for more.
7185
7186 -- Fortunately the way regular components are inherited can be handled in
7187 -- the same way in tagged and untagged types.
7188
7189 -- To complicate things a bit more the private view of a private extension
7190 -- cannot be handled in the same way as the full view (for one thing the
7191 -- semantic rules are somewhat different). We will explain what differs
7192 -- below.
7193
7194 -- 2. DISCRIMINANTS UNDER INHERITANCE
7195
7196 -- The semantic rules governing the discriminants of derived types are
7197 -- quite subtle.
7198
7199 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7200 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7201
7202 -- If parent type has discriminants, then the discriminants that are
7203 -- declared in the derived type are [3.4 (11)]:
7204
7205 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7206 -- there is one;
7207
7208 -- o Otherwise, each discriminant of the parent type (implicitly declared
7209 -- in the same order with the same specifications). In this case, the
7210 -- discriminants are said to be "inherited", or if unknown in the parent
7211 -- are also unknown in the derived type.
7212
7213 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7214
7215 -- o The parent subtype must be constrained;
7216
7217 -- o If the parent type is not a tagged type, then each discriminant of
7218 -- the derived type must be used in the constraint defining a parent
7219 -- subtype. [Implementation note: This ensures that the new discriminant
7220 -- can share storage with an existing discriminant.]
7221
7222 -- For the derived type each discriminant of the parent type is either
7223 -- inherited, constrained to equal some new discriminant of the derived
7224 -- type, or constrained to the value of an expression.
7225
7226 -- When inherited or constrained to equal some new discriminant, the
7227 -- parent discriminant and the discriminant of the derived type are said
7228 -- to "correspond".
7229
7230 -- If a discriminant of the parent type is constrained to a specific value
7231 -- in the derived type definition, then the discriminant is said to be
7232 -- "specified" by that derived type definition.
7233
7234 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7235
7236 -- We have spoken about stored discriminants in point 1 (introduction)
7237 -- above. There are two sort of stored discriminants: implicit and
7238 -- explicit. As long as the derived type inherits the same discriminants as
7239 -- the root record type, stored discriminants are the same as regular
7240 -- discriminants, and are said to be implicit. However, if any discriminant
7241 -- in the root type was renamed in the derived type, then the derived
7242 -- type will contain explicit stored discriminants. Explicit stored
7243 -- discriminants are discriminants in addition to the semantically visible
7244 -- discriminants defined for the derived type. Stored discriminants are
7245 -- used by Gigi to figure out what are the physical discriminants in
7246 -- objects of the derived type (see precise definition in einfo.ads).
7247 -- As an example, consider the following:
7248
7249 -- type R (D1, D2, D3 : Int) is record ... end record;
7250 -- type T1 is new R;
7251 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7252 -- type T3 is new T2;
7253 -- type T4 (Y : Int) is new T3 (Y, 99);
7254
7255 -- The following table summarizes the discriminants and stored
7256 -- discriminants in R and T1 through T4.
7257
7258 -- Type Discrim Stored Discrim Comment
7259 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7260 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7261 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7262 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7263 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7264
7265 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7266 -- find the corresponding discriminant in the parent type, while
7267 -- Original_Record_Component (abbreviated ORC below), the actual physical
7268 -- component that is renamed. Finally the field Is_Completely_Hidden
7269 -- (abbreviated ICH below) is set for all explicit stored discriminants
7270 -- (see einfo.ads for more info). For the above example this gives:
7271
7272 -- Discrim CD ORC ICH
7273 -- ^^^^^^^ ^^ ^^^ ^^^
7274 -- D1 in R empty itself no
7275 -- D2 in R empty itself no
7276 -- D3 in R empty itself no
7277
7278 -- D1 in T1 D1 in R itself no
7279 -- D2 in T1 D2 in R itself no
7280 -- D3 in T1 D3 in R itself no
7281
7282 -- X1 in T2 D3 in T1 D3 in T2 no
7283 -- X2 in T2 D1 in T1 D1 in T2 no
7284 -- D1 in T2 empty itself yes
7285 -- D2 in T2 empty itself yes
7286 -- D3 in T2 empty itself yes
7287
7288 -- X1 in T3 X1 in T2 D3 in T3 no
7289 -- X2 in T3 X2 in T2 D1 in T3 no
7290 -- D1 in T3 empty itself yes
7291 -- D2 in T3 empty itself yes
7292 -- D3 in T3 empty itself yes
7293
7294 -- Y in T4 X1 in T3 D3 in T3 no
7295 -- D1 in T3 empty itself yes
7296 -- D2 in T3 empty itself yes
7297 -- D3 in T3 empty itself yes
7298
7299 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7300
7301 -- Type derivation for tagged types is fairly straightforward. If no
7302 -- discriminants are specified by the derived type, these are inherited
7303 -- from the parent. No explicit stored discriminants are ever necessary.
7304 -- The only manipulation that is done to the tree is that of adding a
7305 -- _parent field with parent type and constrained to the same constraint
7306 -- specified for the parent in the derived type definition. For instance:
7307
7308 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7309 -- type T1 is new R with null record;
7310 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7311
7312 -- are changed into:
7313
7314 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7315 -- _parent : R (D1, D2, D3);
7316 -- end record;
7317
7318 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7319 -- _parent : T1 (X2, 88, X1);
7320 -- end record;
7321
7322 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7323 -- ORC and ICH fields are:
7324
7325 -- Discrim CD ORC ICH
7326 -- ^^^^^^^ ^^ ^^^ ^^^
7327 -- D1 in R empty itself no
7328 -- D2 in R empty itself no
7329 -- D3 in R empty itself no
7330
7331 -- D1 in T1 D1 in R D1 in R no
7332 -- D2 in T1 D2 in R D2 in R no
7333 -- D3 in T1 D3 in R D3 in R no
7334
7335 -- X1 in T2 D3 in T1 D3 in R no
7336 -- X2 in T2 D1 in T1 D1 in R no
7337
7338 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7339 --
7340 -- Regardless of whether we dealing with a tagged or untagged type
7341 -- we will transform all derived type declarations of the form
7342 --
7343 -- type T is new R (...) [with ...];
7344 -- or
7345 -- subtype S is R (...);
7346 -- type T is new S [with ...];
7347 -- into
7348 -- type BT is new R [with ...];
7349 -- subtype T is BT (...);
7350 --
7351 -- That is, the base derived type is constrained only if it has no
7352 -- discriminants. The reason for doing this is that GNAT's semantic model
7353 -- assumes that a base type with discriminants is unconstrained.
7354 --
7355 -- Note that, strictly speaking, the above transformation is not always
7356 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7357 --
7358 -- procedure B34011A is
7359 -- type REC (D : integer := 0) is record
7360 -- I : Integer;
7361 -- end record;
7362
7363 -- package P is
7364 -- type T6 is new Rec;
7365 -- function F return T6;
7366 -- end P;
7367
7368 -- use P;
7369 -- package Q6 is
7370 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7371 -- end Q6;
7372 --
7373 -- The definition of Q6.U is illegal. However transforming Q6.U into
7374
7375 -- type BaseU is new T6;
7376 -- subtype U is BaseU (Q6.F.I)
7377
7378 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7379 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7380 -- the transformation described above.
7381
7382 -- There is another instance where the above transformation is incorrect.
7383 -- Consider:
7384
7385 -- package Pack is
7386 -- type Base (D : Integer) is tagged null record;
7387 -- procedure P (X : Base);
7388
7389 -- type Der is new Base (2) with null record;
7390 -- procedure P (X : Der);
7391 -- end Pack;
7392
7393 -- Then the above transformation turns this into
7394
7395 -- type Der_Base is new Base with null record;
7396 -- -- procedure P (X : Base) is implicitly inherited here
7397 -- -- as procedure P (X : Der_Base).
7398
7399 -- subtype Der is Der_Base (2);
7400 -- procedure P (X : Der);
7401 -- -- The overriding of P (X : Der_Base) is illegal since we
7402 -- -- have a parameter conformance problem.
7403
7404 -- To get around this problem, after having semantically processed Der_Base
7405 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7406 -- Discriminant_Constraint from Der so that when parameter conformance is
7407 -- checked when P is overridden, no semantic errors are flagged.
7408
7409 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7410
7411 -- Regardless of whether we are dealing with a tagged or untagged type
7412 -- we will transform all derived type declarations of the form
7413
7414 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7415 -- type T is new R [with ...];
7416 -- into
7417 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7418
7419 -- The reason for such transformation is that it allows us to implement a
7420 -- very clean form of component inheritance as explained below.
7421
7422 -- Note that this transformation is not achieved by direct tree rewriting
7423 -- and manipulation, but rather by redoing the semantic actions that the
7424 -- above transformation will entail. This is done directly in routine
7425 -- Inherit_Components.
7426
7427 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7428
7429 -- In both tagged and untagged derived types, regular non discriminant
7430 -- components are inherited in the derived type from the parent type. In
7431 -- the absence of discriminants component, inheritance is straightforward
7432 -- as components can simply be copied from the parent.
7433
7434 -- If the parent has discriminants, inheriting components constrained with
7435 -- these discriminants requires caution. Consider the following example:
7436
7437 -- type R (D1, D2 : Positive) is [tagged] record
7438 -- S : String (D1 .. D2);
7439 -- end record;
7440
7441 -- type T1 is new R [with null record];
7442 -- type T2 (X : positive) is new R (1, X) [with null record];
7443
7444 -- As explained in 6. above, T1 is rewritten as
7445 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7446 -- which makes the treatment for T1 and T2 identical.
7447
7448 -- What we want when inheriting S, is that references to D1 and D2 in R are
7449 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7450 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7451 -- with either discriminant references in the derived type or expressions.
7452 -- This replacement is achieved as follows: before inheriting R's
7453 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7454 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7455 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7456 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7457 -- by String (1 .. X).
7458
7459 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7460
7461 -- We explain here the rules governing private type extensions relevant to
7462 -- type derivation. These rules are explained on the following example:
7463
7464 -- type D [(...)] is new A [(...)] with private; <-- partial view
7465 -- type D [(...)] is new P [(...)] with null record; <-- full view
7466
7467 -- Type A is called the ancestor subtype of the private extension.
7468 -- Type P is the parent type of the full view of the private extension. It
7469 -- must be A or a type derived from A.
7470
7471 -- The rules concerning the discriminants of private type extensions are
7472 -- [7.3(10-13)]:
7473
7474 -- o If a private extension inherits known discriminants from the ancestor
7475 -- subtype, then the full view must also inherit its discriminants from
7476 -- the ancestor subtype and the parent subtype of the full view must be
7477 -- constrained if and only if the ancestor subtype is constrained.
7478
7479 -- o If a partial view has unknown discriminants, then the full view may
7480 -- define a definite or an indefinite subtype, with or without
7481 -- discriminants.
7482
7483 -- o If a partial view has neither known nor unknown discriminants, then
7484 -- the full view must define a definite subtype.
7485
7486 -- o If the ancestor subtype of a private extension has constrained
7487 -- discriminants, then the parent subtype of the full view must impose a
7488 -- statically matching constraint on those discriminants.
7489
7490 -- This means that only the following forms of private extensions are
7491 -- allowed:
7492
7493 -- type D is new A with private; <-- partial view
7494 -- type D is new P with null record; <-- full view
7495
7496 -- If A has no discriminants than P has no discriminants, otherwise P must
7497 -- inherit A's discriminants.
7498
7499 -- type D is new A (...) with private; <-- partial view
7500 -- type D is new P (:::) with null record; <-- full view
7501
7502 -- P must inherit A's discriminants and (...) and (:::) must statically
7503 -- match.
7504
7505 -- subtype A is R (...);
7506 -- type D is new A with private; <-- partial view
7507 -- type D is new P with null record; <-- full view
7508
7509 -- P must have inherited R's discriminants and must be derived from A or
7510 -- any of its subtypes.
7511
7512 -- type D (..) is new A with private; <-- partial view
7513 -- type D (..) is new P [(:::)] with null record; <-- full view
7514
7515 -- No specific constraints on P's discriminants or constraint (:::).
7516 -- Note that A can be unconstrained, but the parent subtype P must either
7517 -- be constrained or (:::) must be present.
7518
7519 -- type D (..) is new A [(...)] with private; <-- partial view
7520 -- type D (..) is new P [(:::)] with null record; <-- full view
7521
7522 -- P's constraints on A's discriminants must statically match those
7523 -- imposed by (...).
7524
7525 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7526
7527 -- The full view of a private extension is handled exactly as described
7528 -- above. The model chose for the private view of a private extension is
7529 -- the same for what concerns discriminants (i.e. they receive the same
7530 -- treatment as in the tagged case). However, the private view of the
7531 -- private extension always inherits the components of the parent base,
7532 -- without replacing any discriminant reference. Strictly speaking this is
7533 -- incorrect. However, Gigi never uses this view to generate code so this
7534 -- is a purely semantic issue. In theory, a set of transformations similar
7535 -- to those given in 5. and 6. above could be applied to private views of
7536 -- private extensions to have the same model of component inheritance as
7537 -- for non private extensions. However, this is not done because it would
7538 -- further complicate private type processing. Semantically speaking, this
7539 -- leaves us in an uncomfortable situation. As an example consider:
7540
7541 -- package Pack is
7542 -- type R (D : integer) is tagged record
7543 -- S : String (1 .. D);
7544 -- end record;
7545 -- procedure P (X : R);
7546 -- type T is new R (1) with private;
7547 -- private
7548 -- type T is new R (1) with null record;
7549 -- end;
7550
7551 -- This is transformed into:
7552
7553 -- package Pack is
7554 -- type R (D : integer) is tagged record
7555 -- S : String (1 .. D);
7556 -- end record;
7557 -- procedure P (X : R);
7558 -- type T is new R (1) with private;
7559 -- private
7560 -- type BaseT is new R with null record;
7561 -- subtype T is BaseT (1);
7562 -- end;
7563
7564 -- (strictly speaking the above is incorrect Ada)
7565
7566 -- From the semantic standpoint the private view of private extension T
7567 -- should be flagged as constrained since one can clearly have
7568 --
7569 -- Obj : T;
7570 --
7571 -- in a unit withing Pack. However, when deriving subprograms for the
7572 -- private view of private extension T, T must be seen as unconstrained
7573 -- since T has discriminants (this is a constraint of the current
7574 -- subprogram derivation model). Thus, when processing the private view of
7575 -- a private extension such as T, we first mark T as unconstrained, we
7576 -- process it, we perform program derivation and just before returning from
7577 -- Build_Derived_Record_Type we mark T as constrained.
7578
7579 -- ??? Are there are other uncomfortable cases that we will have to
7580 -- deal with.
7581
7582 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7583
7584 -- Types that are derived from a visible record type and have a private
7585 -- extension present other peculiarities. They behave mostly like private
7586 -- types, but if they have primitive operations defined, these will not
7587 -- have the proper signatures for further inheritance, because other
7588 -- primitive operations will use the implicit base that we define for
7589 -- private derivations below. This affect subprogram inheritance (see
7590 -- Derive_Subprograms for details). We also derive the implicit base from
7591 -- the base type of the full view, so that the implicit base is a record
7592 -- type and not another private type, This avoids infinite loops.
7593
7594 procedure Build_Derived_Record_Type
7595 (N : Node_Id;
7596 Parent_Type : Entity_Id;
7597 Derived_Type : Entity_Id;
7598 Derive_Subps : Boolean := True)
7599 is
7600 Discriminant_Specs : constant Boolean :=
7601 Present (Discriminant_Specifications (N));
7602 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
7603 Loc : constant Source_Ptr := Sloc (N);
7604 Private_Extension : constant Boolean :=
7605 Nkind (N) = N_Private_Extension_Declaration;
7606 Assoc_List : Elist_Id;
7607 Constraint_Present : Boolean;
7608 Constrs : Elist_Id;
7609 Discrim : Entity_Id;
7610 Indic : Node_Id;
7611 Inherit_Discrims : Boolean := False;
7612 Last_Discrim : Entity_Id;
7613 New_Base : Entity_Id;
7614 New_Decl : Node_Id;
7615 New_Discrs : Elist_Id;
7616 New_Indic : Node_Id;
7617 Parent_Base : Entity_Id;
7618 Save_Etype : Entity_Id;
7619 Save_Discr_Constr : Elist_Id;
7620 Save_Next_Entity : Entity_Id;
7621 Type_Def : Node_Id;
7622
7623 Discs : Elist_Id := New_Elmt_List;
7624 -- An empty Discs list means that there were no constraints in the
7625 -- subtype indication or that there was an error processing it.
7626
7627 begin
7628 if Ekind (Parent_Type) = E_Record_Type_With_Private
7629 and then Present (Full_View (Parent_Type))
7630 and then Has_Discriminants (Parent_Type)
7631 then
7632 Parent_Base := Base_Type (Full_View (Parent_Type));
7633 else
7634 Parent_Base := Base_Type (Parent_Type);
7635 end if;
7636
7637 -- AI05-0115 : if this is a derivation from a private type in some
7638 -- other scope that may lead to invisible components for the derived
7639 -- type, mark it accordingly.
7640
7641 if Is_Private_Type (Parent_Type) then
7642 if Scope (Parent_Type) = Scope (Derived_Type) then
7643 null;
7644
7645 elsif In_Open_Scopes (Scope (Parent_Type))
7646 and then In_Private_Part (Scope (Parent_Type))
7647 then
7648 null;
7649
7650 else
7651 Set_Has_Private_Ancestor (Derived_Type);
7652 end if;
7653
7654 else
7655 Set_Has_Private_Ancestor
7656 (Derived_Type, Has_Private_Ancestor (Parent_Type));
7657 end if;
7658
7659 -- Before we start the previously documented transformations, here is
7660 -- little fix for size and alignment of tagged types. Normally when we
7661 -- derive type D from type P, we copy the size and alignment of P as the
7662 -- default for D, and in the absence of explicit representation clauses
7663 -- for D, the size and alignment are indeed the same as the parent.
7664
7665 -- But this is wrong for tagged types, since fields may be added, and
7666 -- the default size may need to be larger, and the default alignment may
7667 -- need to be larger.
7668
7669 -- We therefore reset the size and alignment fields in the tagged case.
7670 -- Note that the size and alignment will in any case be at least as
7671 -- large as the parent type (since the derived type has a copy of the
7672 -- parent type in the _parent field)
7673
7674 -- The type is also marked as being tagged here, which is needed when
7675 -- processing components with a self-referential anonymous access type
7676 -- in the call to Check_Anonymous_Access_Components below. Note that
7677 -- this flag is also set later on for completeness.
7678
7679 if Is_Tagged then
7680 Set_Is_Tagged_Type (Derived_Type);
7681 Init_Size_Align (Derived_Type);
7682 end if;
7683
7684 -- STEP 0a: figure out what kind of derived type declaration we have
7685
7686 if Private_Extension then
7687 Type_Def := N;
7688 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
7689 Set_Default_SSO (Derived_Type);
7690
7691 else
7692 Type_Def := Type_Definition (N);
7693
7694 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7695 -- Parent_Base can be a private type or private extension. However,
7696 -- for tagged types with an extension the newly added fields are
7697 -- visible and hence the Derived_Type is always an E_Record_Type.
7698 -- (except that the parent may have its own private fields).
7699 -- For untagged types we preserve the Ekind of the Parent_Base.
7700
7701 if Present (Record_Extension_Part (Type_Def)) then
7702 Set_Ekind (Derived_Type, E_Record_Type);
7703 Set_Default_SSO (Derived_Type);
7704
7705 -- Create internal access types for components with anonymous
7706 -- access types.
7707
7708 if Ada_Version >= Ada_2005 then
7709 Check_Anonymous_Access_Components
7710 (N, Derived_Type, Derived_Type,
7711 Component_List (Record_Extension_Part (Type_Def)));
7712 end if;
7713
7714 else
7715 Set_Ekind (Derived_Type, Ekind (Parent_Base));
7716 end if;
7717 end if;
7718
7719 -- Indic can either be an N_Identifier if the subtype indication
7720 -- contains no constraint or an N_Subtype_Indication if the subtype
7721 -- indication has a constraint.
7722
7723 Indic := Subtype_Indication (Type_Def);
7724 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
7725
7726 -- Check that the type has visible discriminants. The type may be
7727 -- a private type with unknown discriminants whose full view has
7728 -- discriminants which are invisible.
7729
7730 if Constraint_Present then
7731 if not Has_Discriminants (Parent_Base)
7732 or else
7733 (Has_Unknown_Discriminants (Parent_Base)
7734 and then Is_Private_Type (Parent_Base))
7735 then
7736 Error_Msg_N
7737 ("invalid constraint: type has no discriminant",
7738 Constraint (Indic));
7739
7740 Constraint_Present := False;
7741 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7742
7743 elsif Is_Constrained (Parent_Type) then
7744 Error_Msg_N
7745 ("invalid constraint: parent type is already constrained",
7746 Constraint (Indic));
7747
7748 Constraint_Present := False;
7749 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7750 end if;
7751 end if;
7752
7753 -- STEP 0b: If needed, apply transformation given in point 5. above
7754
7755 if not Private_Extension
7756 and then Has_Discriminants (Parent_Type)
7757 and then not Discriminant_Specs
7758 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
7759 then
7760 -- First, we must analyze the constraint (see comment in point 5.)
7761 -- The constraint may come from the subtype indication of the full
7762 -- declaration.
7763
7764 if Constraint_Present then
7765 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
7766
7767 -- If there is no explicit constraint, there might be one that is
7768 -- inherited from a constrained parent type. In that case verify that
7769 -- it conforms to the constraint in the partial view. In perverse
7770 -- cases the parent subtypes of the partial and full view can have
7771 -- different constraints.
7772
7773 elsif Present (Stored_Constraint (Parent_Type)) then
7774 New_Discrs := Stored_Constraint (Parent_Type);
7775
7776 else
7777 New_Discrs := No_Elist;
7778 end if;
7779
7780 if Has_Discriminants (Derived_Type)
7781 and then Has_Private_Declaration (Derived_Type)
7782 and then Present (Discriminant_Constraint (Derived_Type))
7783 and then Present (New_Discrs)
7784 then
7785 -- Verify that constraints of the full view statically match
7786 -- those given in the partial view.
7787
7788 declare
7789 C1, C2 : Elmt_Id;
7790
7791 begin
7792 C1 := First_Elmt (New_Discrs);
7793 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
7794 while Present (C1) and then Present (C2) loop
7795 if Fully_Conformant_Expressions (Node (C1), Node (C2))
7796 or else
7797 (Is_OK_Static_Expression (Node (C1))
7798 and then Is_OK_Static_Expression (Node (C2))
7799 and then
7800 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
7801 then
7802 null;
7803
7804 else
7805 if Constraint_Present then
7806 Error_Msg_N
7807 ("constraint not conformant to previous declaration",
7808 Node (C1));
7809 else
7810 Error_Msg_N
7811 ("constraint of full view is incompatible "
7812 & "with partial view", N);
7813 end if;
7814 end if;
7815
7816 Next_Elmt (C1);
7817 Next_Elmt (C2);
7818 end loop;
7819 end;
7820 end if;
7821
7822 -- Insert and analyze the declaration for the unconstrained base type
7823
7824 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
7825
7826 New_Decl :=
7827 Make_Full_Type_Declaration (Loc,
7828 Defining_Identifier => New_Base,
7829 Type_Definition =>
7830 Make_Derived_Type_Definition (Loc,
7831 Abstract_Present => Abstract_Present (Type_Def),
7832 Limited_Present => Limited_Present (Type_Def),
7833 Subtype_Indication =>
7834 New_Occurrence_Of (Parent_Base, Loc),
7835 Record_Extension_Part =>
7836 Relocate_Node (Record_Extension_Part (Type_Def)),
7837 Interface_List => Interface_List (Type_Def)));
7838
7839 Set_Parent (New_Decl, Parent (N));
7840 Mark_Rewrite_Insertion (New_Decl);
7841 Insert_Before (N, New_Decl);
7842
7843 -- In the extension case, make sure ancestor is frozen appropriately
7844 -- (see also non-discriminated case below).
7845
7846 if Present (Record_Extension_Part (Type_Def))
7847 or else Is_Interface (Parent_Base)
7848 then
7849 Freeze_Before (New_Decl, Parent_Type);
7850 end if;
7851
7852 -- Note that this call passes False for the Derive_Subps parameter
7853 -- because subprogram derivation is deferred until after creating
7854 -- the subtype (see below).
7855
7856 Build_Derived_Type
7857 (New_Decl, Parent_Base, New_Base,
7858 Is_Completion => False, Derive_Subps => False);
7859
7860 -- ??? This needs re-examination to determine whether the
7861 -- above call can simply be replaced by a call to Analyze.
7862
7863 Set_Analyzed (New_Decl);
7864
7865 -- Insert and analyze the declaration for the constrained subtype
7866
7867 if Constraint_Present then
7868 New_Indic :=
7869 Make_Subtype_Indication (Loc,
7870 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7871 Constraint => Relocate_Node (Constraint (Indic)));
7872
7873 else
7874 declare
7875 Constr_List : constant List_Id := New_List;
7876 C : Elmt_Id;
7877 Expr : Node_Id;
7878
7879 begin
7880 C := First_Elmt (Discriminant_Constraint (Parent_Type));
7881 while Present (C) loop
7882 Expr := Node (C);
7883
7884 -- It is safe here to call New_Copy_Tree since
7885 -- Force_Evaluation was called on each constraint in
7886 -- Build_Discriminant_Constraints.
7887
7888 Append (New_Copy_Tree (Expr), To => Constr_List);
7889
7890 Next_Elmt (C);
7891 end loop;
7892
7893 New_Indic :=
7894 Make_Subtype_Indication (Loc,
7895 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7896 Constraint =>
7897 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
7898 end;
7899 end if;
7900
7901 Rewrite (N,
7902 Make_Subtype_Declaration (Loc,
7903 Defining_Identifier => Derived_Type,
7904 Subtype_Indication => New_Indic));
7905
7906 Analyze (N);
7907
7908 -- Derivation of subprograms must be delayed until the full subtype
7909 -- has been established, to ensure proper overriding of subprograms
7910 -- inherited by full types. If the derivations occurred as part of
7911 -- the call to Build_Derived_Type above, then the check for type
7912 -- conformance would fail because earlier primitive subprograms
7913 -- could still refer to the full type prior the change to the new
7914 -- subtype and hence would not match the new base type created here.
7915 -- Subprograms are not derived, however, when Derive_Subps is False
7916 -- (since otherwise there could be redundant derivations).
7917
7918 if Derive_Subps then
7919 Derive_Subprograms (Parent_Type, Derived_Type);
7920 end if;
7921
7922 -- For tagged types the Discriminant_Constraint of the new base itype
7923 -- is inherited from the first subtype so that no subtype conformance
7924 -- problem arise when the first subtype overrides primitive
7925 -- operations inherited by the implicit base type.
7926
7927 if Is_Tagged then
7928 Set_Discriminant_Constraint
7929 (New_Base, Discriminant_Constraint (Derived_Type));
7930 end if;
7931
7932 return;
7933 end if;
7934
7935 -- If we get here Derived_Type will have no discriminants or it will be
7936 -- a discriminated unconstrained base type.
7937
7938 -- STEP 1a: perform preliminary actions/checks for derived tagged types
7939
7940 if Is_Tagged then
7941
7942 -- The parent type is frozen for non-private extensions (RM 13.14(7))
7943 -- The declaration of a specific descendant of an interface type
7944 -- freezes the interface type (RM 13.14).
7945
7946 if not Private_Extension or else Is_Interface (Parent_Base) then
7947 Freeze_Before (N, Parent_Type);
7948 end if;
7949
7950 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
7951 -- cannot be declared at a deeper level than its parent type is
7952 -- removed. The check on derivation within a generic body is also
7953 -- relaxed, but there's a restriction that a derived tagged type
7954 -- cannot be declared in a generic body if it's derived directly
7955 -- or indirectly from a formal type of that generic.
7956
7957 if Ada_Version >= Ada_2005 then
7958 if Present (Enclosing_Generic_Body (Derived_Type)) then
7959 declare
7960 Ancestor_Type : Entity_Id;
7961
7962 begin
7963 -- Check to see if any ancestor of the derived type is a
7964 -- formal type.
7965
7966 Ancestor_Type := Parent_Type;
7967 while not Is_Generic_Type (Ancestor_Type)
7968 and then Etype (Ancestor_Type) /= Ancestor_Type
7969 loop
7970 Ancestor_Type := Etype (Ancestor_Type);
7971 end loop;
7972
7973 -- If the derived type does have a formal type as an
7974 -- ancestor, then it's an error if the derived type is
7975 -- declared within the body of the generic unit that
7976 -- declares the formal type in its generic formal part. It's
7977 -- sufficient to check whether the ancestor type is declared
7978 -- inside the same generic body as the derived type (such as
7979 -- within a nested generic spec), in which case the
7980 -- derivation is legal. If the formal type is declared
7981 -- outside of that generic body, then it's guaranteed that
7982 -- the derived type is declared within the generic body of
7983 -- the generic unit declaring the formal type.
7984
7985 if Is_Generic_Type (Ancestor_Type)
7986 and then Enclosing_Generic_Body (Ancestor_Type) /=
7987 Enclosing_Generic_Body (Derived_Type)
7988 then
7989 Error_Msg_NE
7990 ("parent type of& must not be descendant of formal type"
7991 & " of an enclosing generic body",
7992 Indic, Derived_Type);
7993 end if;
7994 end;
7995 end if;
7996
7997 elsif Type_Access_Level (Derived_Type) /=
7998 Type_Access_Level (Parent_Type)
7999 and then not Is_Generic_Type (Derived_Type)
8000 then
8001 if Is_Controlled (Parent_Type) then
8002 Error_Msg_N
8003 ("controlled type must be declared at the library level",
8004 Indic);
8005 else
8006 Error_Msg_N
8007 ("type extension at deeper accessibility level than parent",
8008 Indic);
8009 end if;
8010
8011 else
8012 declare
8013 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
8014 begin
8015 if Present (GB)
8016 and then GB /= Enclosing_Generic_Body (Parent_Base)
8017 then
8018 Error_Msg_NE
8019 ("parent type of& must not be outside generic body"
8020 & " (RM 3.9.1(4))",
8021 Indic, Derived_Type);
8022 end if;
8023 end;
8024 end if;
8025 end if;
8026
8027 -- Ada 2005 (AI-251)
8028
8029 if Ada_Version >= Ada_2005 and then Is_Tagged then
8030
8031 -- "The declaration of a specific descendant of an interface type
8032 -- freezes the interface type" (RM 13.14).
8033
8034 declare
8035 Iface : Node_Id;
8036 begin
8037 if Is_Non_Empty_List (Interface_List (Type_Def)) then
8038 Iface := First (Interface_List (Type_Def));
8039 while Present (Iface) loop
8040 Freeze_Before (N, Etype (Iface));
8041 Next (Iface);
8042 end loop;
8043 end if;
8044 end;
8045 end if;
8046
8047 -- STEP 1b : preliminary cleanup of the full view of private types
8048
8049 -- If the type is already marked as having discriminants, then it's the
8050 -- completion of a private type or private extension and we need to
8051 -- retain the discriminants from the partial view if the current
8052 -- declaration has Discriminant_Specifications so that we can verify
8053 -- conformance. However, we must remove any existing components that
8054 -- were inherited from the parent (and attached in Copy_And_Swap)
8055 -- because the full type inherits all appropriate components anyway, and
8056 -- we do not want the partial view's components interfering.
8057
8058 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
8059 Discrim := First_Discriminant (Derived_Type);
8060 loop
8061 Last_Discrim := Discrim;
8062 Next_Discriminant (Discrim);
8063 exit when No (Discrim);
8064 end loop;
8065
8066 Set_Last_Entity (Derived_Type, Last_Discrim);
8067
8068 -- In all other cases wipe out the list of inherited components (even
8069 -- inherited discriminants), it will be properly rebuilt here.
8070
8071 else
8072 Set_First_Entity (Derived_Type, Empty);
8073 Set_Last_Entity (Derived_Type, Empty);
8074 end if;
8075
8076 -- STEP 1c: Initialize some flags for the Derived_Type
8077
8078 -- The following flags must be initialized here so that
8079 -- Process_Discriminants can check that discriminants of tagged types do
8080 -- not have a default initial value and that access discriminants are
8081 -- only specified for limited records. For completeness, these flags are
8082 -- also initialized along with all the other flags below.
8083
8084 -- AI-419: Limitedness is not inherited from an interface parent, so to
8085 -- be limited in that case the type must be explicitly declared as
8086 -- limited. However, task and protected interfaces are always limited.
8087
8088 if Limited_Present (Type_Def) then
8089 Set_Is_Limited_Record (Derived_Type);
8090
8091 elsif Is_Limited_Record (Parent_Type)
8092 or else (Present (Full_View (Parent_Type))
8093 and then Is_Limited_Record (Full_View (Parent_Type)))
8094 then
8095 if not Is_Interface (Parent_Type)
8096 or else Is_Synchronized_Interface (Parent_Type)
8097 or else Is_Protected_Interface (Parent_Type)
8098 or else Is_Task_Interface (Parent_Type)
8099 then
8100 Set_Is_Limited_Record (Derived_Type);
8101 end if;
8102 end if;
8103
8104 -- STEP 2a: process discriminants of derived type if any
8105
8106 Push_Scope (Derived_Type);
8107
8108 if Discriminant_Specs then
8109 Set_Has_Unknown_Discriminants (Derived_Type, False);
8110
8111 -- The following call initializes fields Has_Discriminants and
8112 -- Discriminant_Constraint, unless we are processing the completion
8113 -- of a private type declaration.
8114
8115 Check_Or_Process_Discriminants (N, Derived_Type);
8116
8117 -- For untagged types, the constraint on the Parent_Type must be
8118 -- present and is used to rename the discriminants.
8119
8120 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
8121 Error_Msg_N ("untagged parent must have discriminants", Indic);
8122
8123 elsif not Is_Tagged and then not Constraint_Present then
8124 Error_Msg_N
8125 ("discriminant constraint needed for derived untagged records",
8126 Indic);
8127
8128 -- Otherwise the parent subtype must be constrained unless we have a
8129 -- private extension.
8130
8131 elsif not Constraint_Present
8132 and then not Private_Extension
8133 and then not Is_Constrained (Parent_Type)
8134 then
8135 Error_Msg_N
8136 ("unconstrained type not allowed in this context", Indic);
8137
8138 elsif Constraint_Present then
8139 -- The following call sets the field Corresponding_Discriminant
8140 -- for the discriminants in the Derived_Type.
8141
8142 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
8143
8144 -- For untagged types all new discriminants must rename
8145 -- discriminants in the parent. For private extensions new
8146 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8147
8148 Discrim := First_Discriminant (Derived_Type);
8149 while Present (Discrim) loop
8150 if not Is_Tagged
8151 and then No (Corresponding_Discriminant (Discrim))
8152 then
8153 Error_Msg_N
8154 ("new discriminants must constrain old ones", Discrim);
8155
8156 elsif Private_Extension
8157 and then Present (Corresponding_Discriminant (Discrim))
8158 then
8159 Error_Msg_N
8160 ("only static constraints allowed for parent"
8161 & " discriminants in the partial view", Indic);
8162 exit;
8163 end if;
8164
8165 -- If a new discriminant is used in the constraint, then its
8166 -- subtype must be statically compatible with the parent
8167 -- discriminant's subtype (3.7(15)).
8168
8169 -- However, if the record contains an array constrained by
8170 -- the discriminant but with some different bound, the compiler
8171 -- attemps to create a smaller range for the discriminant type.
8172 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8173 -- the discriminant type is a scalar type, the check must use
8174 -- the original discriminant type in the parent declaration.
8175
8176 declare
8177 Corr_Disc : constant Entity_Id :=
8178 Corresponding_Discriminant (Discrim);
8179 Disc_Type : constant Entity_Id := Etype (Discrim);
8180 Corr_Type : Entity_Id;
8181
8182 begin
8183 if Present (Corr_Disc) then
8184 if Is_Scalar_Type (Disc_Type) then
8185 Corr_Type :=
8186 Entity (Discriminant_Type (Parent (Corr_Disc)));
8187 else
8188 Corr_Type := Etype (Corr_Disc);
8189 end if;
8190
8191 if not
8192 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
8193 then
8194 Error_Msg_N
8195 ("subtype must be compatible "
8196 & "with parent discriminant",
8197 Discrim);
8198 end if;
8199 end if;
8200 end;
8201
8202 Next_Discriminant (Discrim);
8203 end loop;
8204
8205 -- Check whether the constraints of the full view statically
8206 -- match those imposed by the parent subtype [7.3(13)].
8207
8208 if Present (Stored_Constraint (Derived_Type)) then
8209 declare
8210 C1, C2 : Elmt_Id;
8211
8212 begin
8213 C1 := First_Elmt (Discs);
8214 C2 := First_Elmt (Stored_Constraint (Derived_Type));
8215 while Present (C1) and then Present (C2) loop
8216 if not
8217 Fully_Conformant_Expressions (Node (C1), Node (C2))
8218 then
8219 Error_Msg_N
8220 ("not conformant with previous declaration",
8221 Node (C1));
8222 end if;
8223
8224 Next_Elmt (C1);
8225 Next_Elmt (C2);
8226 end loop;
8227 end;
8228 end if;
8229 end if;
8230
8231 -- STEP 2b: No new discriminants, inherit discriminants if any
8232
8233 else
8234 if Private_Extension then
8235 Set_Has_Unknown_Discriminants
8236 (Derived_Type,
8237 Has_Unknown_Discriminants (Parent_Type)
8238 or else Unknown_Discriminants_Present (N));
8239
8240 -- The partial view of the parent may have unknown discriminants,
8241 -- but if the full view has discriminants and the parent type is
8242 -- in scope they must be inherited.
8243
8244 elsif Has_Unknown_Discriminants (Parent_Type)
8245 and then
8246 (not Has_Discriminants (Parent_Type)
8247 or else not In_Open_Scopes (Scope (Parent_Type)))
8248 then
8249 Set_Has_Unknown_Discriminants (Derived_Type);
8250 end if;
8251
8252 if not Has_Unknown_Discriminants (Derived_Type)
8253 and then not Has_Unknown_Discriminants (Parent_Base)
8254 and then Has_Discriminants (Parent_Type)
8255 then
8256 Inherit_Discrims := True;
8257 Set_Has_Discriminants
8258 (Derived_Type, True);
8259 Set_Discriminant_Constraint
8260 (Derived_Type, Discriminant_Constraint (Parent_Base));
8261 end if;
8262
8263 -- The following test is true for private types (remember
8264 -- transformation 5. is not applied to those) and in an error
8265 -- situation.
8266
8267 if Constraint_Present then
8268 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
8269 end if;
8270
8271 -- For now mark a new derived type as constrained only if it has no
8272 -- discriminants. At the end of Build_Derived_Record_Type we properly
8273 -- set this flag in the case of private extensions. See comments in
8274 -- point 9. just before body of Build_Derived_Record_Type.
8275
8276 Set_Is_Constrained
8277 (Derived_Type,
8278 not (Inherit_Discrims
8279 or else Has_Unknown_Discriminants (Derived_Type)));
8280 end if;
8281
8282 -- STEP 3: initialize fields of derived type
8283
8284 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
8285 Set_Stored_Constraint (Derived_Type, No_Elist);
8286
8287 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8288 -- but cannot be interfaces
8289
8290 if not Private_Extension
8291 and then Ekind (Derived_Type) /= E_Private_Type
8292 and then Ekind (Derived_Type) /= E_Limited_Private_Type
8293 then
8294 if Interface_Present (Type_Def) then
8295 Analyze_Interface_Declaration (Derived_Type, Type_Def);
8296 end if;
8297
8298 Set_Interfaces (Derived_Type, No_Elist);
8299 end if;
8300
8301 -- Fields inherited from the Parent_Type
8302
8303 Set_Has_Specified_Layout
8304 (Derived_Type, Has_Specified_Layout (Parent_Type));
8305 Set_Is_Limited_Composite
8306 (Derived_Type, Is_Limited_Composite (Parent_Type));
8307 Set_Is_Private_Composite
8308 (Derived_Type, Is_Private_Composite (Parent_Type));
8309
8310 if Is_Tagged_Type (Parent_Type) then
8311 Set_No_Tagged_Streams_Pragma
8312 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
8313 end if;
8314
8315 -- Fields inherited from the Parent_Base
8316
8317 Set_Has_Controlled_Component
8318 (Derived_Type, Has_Controlled_Component (Parent_Base));
8319 Set_Has_Non_Standard_Rep
8320 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8321 Set_Has_Primitive_Operations
8322 (Derived_Type, Has_Primitive_Operations (Parent_Base));
8323
8324 -- Fields inherited from the Parent_Base in the non-private case
8325
8326 if Ekind (Derived_Type) = E_Record_Type then
8327 Set_Has_Complex_Representation
8328 (Derived_Type, Has_Complex_Representation (Parent_Base));
8329 end if;
8330
8331 -- Fields inherited from the Parent_Base for record types
8332
8333 if Is_Record_Type (Derived_Type) then
8334 declare
8335 Parent_Full : Entity_Id;
8336
8337 begin
8338 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8339 -- Parent_Base can be a private type or private extension. Go
8340 -- to the full view here to get the E_Record_Type specific flags.
8341
8342 if Present (Full_View (Parent_Base)) then
8343 Parent_Full := Full_View (Parent_Base);
8344 else
8345 Parent_Full := Parent_Base;
8346 end if;
8347
8348 Set_OK_To_Reorder_Components
8349 (Derived_Type, OK_To_Reorder_Components (Parent_Full));
8350 end;
8351 end if;
8352
8353 -- Set fields for private derived types
8354
8355 if Is_Private_Type (Derived_Type) then
8356 Set_Depends_On_Private (Derived_Type, True);
8357 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8358
8359 -- Inherit fields from non private record types. If this is the
8360 -- completion of a derivation from a private type, the parent itself
8361 -- is private, and the attributes come from its full view, which must
8362 -- be present.
8363
8364 else
8365 if Is_Private_Type (Parent_Base)
8366 and then not Is_Record_Type (Parent_Base)
8367 then
8368 Set_Component_Alignment
8369 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
8370 Set_C_Pass_By_Copy
8371 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
8372 else
8373 Set_Component_Alignment
8374 (Derived_Type, Component_Alignment (Parent_Base));
8375 Set_C_Pass_By_Copy
8376 (Derived_Type, C_Pass_By_Copy (Parent_Base));
8377 end if;
8378 end if;
8379
8380 -- Set fields for tagged types
8381
8382 if Is_Tagged then
8383 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
8384
8385 -- All tagged types defined in Ada.Finalization are controlled
8386
8387 if Chars (Scope (Derived_Type)) = Name_Finalization
8388 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
8389 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
8390 then
8391 Set_Is_Controlled (Derived_Type);
8392 else
8393 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
8394 end if;
8395
8396 -- Minor optimization: there is no need to generate the class-wide
8397 -- entity associated with an underlying record view.
8398
8399 if not Is_Underlying_Record_View (Derived_Type) then
8400 Make_Class_Wide_Type (Derived_Type);
8401 end if;
8402
8403 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
8404
8405 if Has_Discriminants (Derived_Type)
8406 and then Constraint_Present
8407 then
8408 Set_Stored_Constraint
8409 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
8410 end if;
8411
8412 if Ada_Version >= Ada_2005 then
8413 declare
8414 Ifaces_List : Elist_Id;
8415
8416 begin
8417 -- Checks rules 3.9.4 (13/2 and 14/2)
8418
8419 if Comes_From_Source (Derived_Type)
8420 and then not Is_Private_Type (Derived_Type)
8421 and then Is_Interface (Parent_Type)
8422 and then not Is_Interface (Derived_Type)
8423 then
8424 if Is_Task_Interface (Parent_Type) then
8425 Error_Msg_N
8426 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8427 Derived_Type);
8428
8429 elsif Is_Protected_Interface (Parent_Type) then
8430 Error_Msg_N
8431 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8432 Derived_Type);
8433 end if;
8434 end if;
8435
8436 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8437
8438 Check_Interfaces (N, Type_Def);
8439
8440 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8441 -- not already in the parents.
8442
8443 Collect_Interfaces
8444 (T => Derived_Type,
8445 Ifaces_List => Ifaces_List,
8446 Exclude_Parents => True);
8447
8448 Set_Interfaces (Derived_Type, Ifaces_List);
8449
8450 -- If the derived type is the anonymous type created for
8451 -- a declaration whose parent has a constraint, propagate
8452 -- the interface list to the source type. This must be done
8453 -- prior to the completion of the analysis of the source type
8454 -- because the components in the extension may contain current
8455 -- instances whose legality depends on some ancestor.
8456
8457 if Is_Itype (Derived_Type) then
8458 declare
8459 Def : constant Node_Id :=
8460 Associated_Node_For_Itype (Derived_Type);
8461 begin
8462 if Present (Def)
8463 and then Nkind (Def) = N_Full_Type_Declaration
8464 then
8465 Set_Interfaces
8466 (Defining_Identifier (Def), Ifaces_List);
8467 end if;
8468 end;
8469 end if;
8470 end;
8471 end if;
8472
8473 else
8474 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
8475 Set_Has_Non_Standard_Rep
8476 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8477 end if;
8478
8479 -- STEP 4: Inherit components from the parent base and constrain them.
8480 -- Apply the second transformation described in point 6. above.
8481
8482 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
8483 or else not Has_Discriminants (Parent_Type)
8484 or else not Is_Constrained (Parent_Type)
8485 then
8486 Constrs := Discs;
8487 else
8488 Constrs := Discriminant_Constraint (Parent_Type);
8489 end if;
8490
8491 Assoc_List :=
8492 Inherit_Components
8493 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
8494
8495 -- STEP 5a: Copy the parent record declaration for untagged types
8496
8497 if not Is_Tagged then
8498
8499 -- Discriminant_Constraint (Derived_Type) has been properly
8500 -- constructed. Save it and temporarily set it to Empty because we
8501 -- do not want the call to New_Copy_Tree below to mess this list.
8502
8503 if Has_Discriminants (Derived_Type) then
8504 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
8505 Set_Discriminant_Constraint (Derived_Type, No_Elist);
8506 else
8507 Save_Discr_Constr := No_Elist;
8508 end if;
8509
8510 -- Save the Etype field of Derived_Type. It is correctly set now,
8511 -- but the call to New_Copy tree may remap it to point to itself,
8512 -- which is not what we want. Ditto for the Next_Entity field.
8513
8514 Save_Etype := Etype (Derived_Type);
8515 Save_Next_Entity := Next_Entity (Derived_Type);
8516
8517 -- Assoc_List maps all stored discriminants in the Parent_Base to
8518 -- stored discriminants in the Derived_Type. It is fundamental that
8519 -- no types or itypes with discriminants other than the stored
8520 -- discriminants appear in the entities declared inside
8521 -- Derived_Type, since the back end cannot deal with it.
8522
8523 New_Decl :=
8524 New_Copy_Tree
8525 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
8526
8527 -- Restore the fields saved prior to the New_Copy_Tree call
8528 -- and compute the stored constraint.
8529
8530 Set_Etype (Derived_Type, Save_Etype);
8531 Set_Next_Entity (Derived_Type, Save_Next_Entity);
8532
8533 if Has_Discriminants (Derived_Type) then
8534 Set_Discriminant_Constraint
8535 (Derived_Type, Save_Discr_Constr);
8536 Set_Stored_Constraint
8537 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
8538 Replace_Components (Derived_Type, New_Decl);
8539 Set_Has_Implicit_Dereference
8540 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
8541 end if;
8542
8543 -- Insert the new derived type declaration
8544
8545 Rewrite (N, New_Decl);
8546
8547 -- STEP 5b: Complete the processing for record extensions in generics
8548
8549 -- There is no completion for record extensions declared in the
8550 -- parameter part of a generic, so we need to complete processing for
8551 -- these generic record extensions here. The Record_Type_Definition call
8552 -- will change the Ekind of the components from E_Void to E_Component.
8553
8554 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
8555 Record_Type_Definition (Empty, Derived_Type);
8556
8557 -- STEP 5c: Process the record extension for non private tagged types
8558
8559 elsif not Private_Extension then
8560 Expand_Record_Extension (Derived_Type, Type_Def);
8561
8562 -- Note : previously in ASIS mode we set the Parent_Subtype of the
8563 -- derived type to propagate some semantic information. This led
8564 -- to other ASIS failures and has been removed.
8565
8566 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8567 -- implemented interfaces if we are in expansion mode
8568
8569 if Expander_Active
8570 and then Has_Interfaces (Derived_Type)
8571 then
8572 Add_Interface_Tag_Components (N, Derived_Type);
8573 end if;
8574
8575 -- Analyze the record extension
8576
8577 Record_Type_Definition
8578 (Record_Extension_Part (Type_Def), Derived_Type);
8579 end if;
8580
8581 End_Scope;
8582
8583 -- Nothing else to do if there is an error in the derivation.
8584 -- An unusual case: the full view may be derived from a type in an
8585 -- instance, when the partial view was used illegally as an actual
8586 -- in that instance, leading to a circular definition.
8587
8588 if Etype (Derived_Type) = Any_Type
8589 or else Etype (Parent_Type) = Derived_Type
8590 then
8591 return;
8592 end if;
8593
8594 -- Set delayed freeze and then derive subprograms, we need to do
8595 -- this in this order so that derived subprograms inherit the
8596 -- derived freeze if necessary.
8597
8598 Set_Has_Delayed_Freeze (Derived_Type);
8599
8600 if Derive_Subps then
8601 Derive_Subprograms (Parent_Type, Derived_Type);
8602 end if;
8603
8604 -- If we have a private extension which defines a constrained derived
8605 -- type mark as constrained here after we have derived subprograms. See
8606 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8607
8608 if Private_Extension and then Inherit_Discrims then
8609 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
8610 Set_Is_Constrained (Derived_Type, True);
8611 Set_Discriminant_Constraint (Derived_Type, Discs);
8612
8613 elsif Is_Constrained (Parent_Type) then
8614 Set_Is_Constrained
8615 (Derived_Type, True);
8616 Set_Discriminant_Constraint
8617 (Derived_Type, Discriminant_Constraint (Parent_Type));
8618 end if;
8619 end if;
8620
8621 -- Update the class-wide type, which shares the now-completed entity
8622 -- list with its specific type. In case of underlying record views,
8623 -- we do not generate the corresponding class wide entity.
8624
8625 if Is_Tagged
8626 and then not Is_Underlying_Record_View (Derived_Type)
8627 then
8628 Set_First_Entity
8629 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
8630 Set_Last_Entity
8631 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
8632 end if;
8633
8634 Check_Function_Writable_Actuals (N);
8635 end Build_Derived_Record_Type;
8636
8637 ------------------------
8638 -- Build_Derived_Type --
8639 ------------------------
8640
8641 procedure Build_Derived_Type
8642 (N : Node_Id;
8643 Parent_Type : Entity_Id;
8644 Derived_Type : Entity_Id;
8645 Is_Completion : Boolean;
8646 Derive_Subps : Boolean := True)
8647 is
8648 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
8649
8650 begin
8651 -- Set common attributes
8652
8653 Set_Scope (Derived_Type, Current_Scope);
8654
8655 Set_Etype (Derived_Type, Parent_Base);
8656 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8657 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
8658 Set_Has_Protected (Derived_Type, Has_Protected (Parent_Base));
8659
8660 Set_Size_Info (Derived_Type, Parent_Type);
8661 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
8662 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
8663 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
8664
8665 if Is_Tagged_Type (Derived_Type) then
8666 Set_No_Tagged_Streams_Pragma
8667 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
8668 end if;
8669
8670 -- If the parent has primitive routines, set the derived type link
8671
8672 if Has_Primitive_Operations (Parent_Type) then
8673 Set_Derived_Type_Link (Parent_Base, Derived_Type);
8674 end if;
8675
8676 -- If the parent type is a private subtype, the convention on the base
8677 -- type may be set in the private part, and not propagated to the
8678 -- subtype until later, so we obtain the convention from the base type.
8679
8680 Set_Convention (Derived_Type, Convention (Parent_Base));
8681
8682 -- Set SSO default for record or array type
8683
8684 if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type))
8685 and then Is_Base_Type (Derived_Type)
8686 then
8687 Set_Default_SSO (Derived_Type);
8688 end if;
8689
8690 -- Propagate invariant information. The new type has invariants if
8691 -- they are inherited from the parent type, and these invariants can
8692 -- be further inherited, so both flags are set.
8693
8694 -- We similarly inherit predicates
8695
8696 if Has_Predicates (Parent_Type) then
8697 Set_Has_Predicates (Derived_Type);
8698 end if;
8699
8700 -- The derived type inherits the representation clauses of the parent.
8701 -- However, for a private type that is completed by a derivation, there
8702 -- may be operation attributes that have been specified already (stream
8703 -- attributes and External_Tag) and those must be provided. Finally, if
8704 -- the partial view is a private extension, the representation items of
8705 -- the parent have been inherited already, and should not be chained
8706 -- twice to the derived type.
8707
8708 -- Historic note: The guard below used to check whether the parent type
8709 -- is tagged. This is no longer needed because an untagged derived type
8710 -- may carry rep items of its own as a result of certain SPARK pragmas.
8711 -- With the old guard in place, the rep items of the derived type were
8712 -- clobbered.
8713
8714 if Present (First_Rep_Item (Derived_Type)) then
8715 declare
8716 Par_Item : constant Node_Id := First_Rep_Item (Parent_Type);
8717 Inherited : Boolean := False;
8718 Item : Node_Id;
8719 Last_Item : Node_Id;
8720
8721 begin
8722 -- Inspect the rep item chain of the derived type and perform the
8723 -- following two functions:
8724 -- 1) Determine whether the derived type already inherited the
8725 -- rep items of the parent type.
8726 -- 2) Find the last rep item of the derived type
8727
8728 Item := First_Rep_Item (Derived_Type);
8729 Last_Item := Item;
8730 while Present (Item) loop
8731 if Item = Par_Item then
8732 Inherited := True;
8733 exit;
8734 end if;
8735
8736 Last_Item := Item;
8737 Item := Next_Rep_Item (Item);
8738 end loop;
8739
8740 -- Nothing to do if the derived type already inherited the rep
8741 -- items from the parent type, otherwise append the parent rep
8742 -- item chain to that of the derived type.
8743
8744 if not Inherited then
8745 Set_Next_Rep_Item (Last_Item, Par_Item);
8746 end if;
8747 end;
8748
8749 -- Otherwise the derived type lacks rep items and directly inherits the
8750 -- rep items of the parent type.
8751
8752 else
8753 Set_First_Rep_Item (Derived_Type, First_Rep_Item (Parent_Type));
8754 end if;
8755
8756 -- Propagate the attributes related to pragma Default_Initial_Condition
8757 -- from the parent type to the private extension. A derived type always
8758 -- inherits the default initial condition flag from the parent type. If
8759 -- the derived type carries its own Default_Initial_Condition pragma,
8760 -- the flag is later reset in Analyze_Pragma. Note that both flags are
8761 -- mutually exclusive.
8762
8763 Propagate_Default_Init_Cond_Attributes
8764 (From_Typ => Parent_Type,
8765 To_Typ => Derived_Type,
8766 Parent_To_Derivation => True);
8767
8768 -- If the parent type has delayed rep aspects, then mark the derived
8769 -- type as possibly inheriting a delayed rep aspect.
8770
8771 if Has_Delayed_Rep_Aspects (Parent_Type) then
8772 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
8773 end if;
8774
8775 -- Type dependent processing
8776
8777 case Ekind (Parent_Type) is
8778 when Numeric_Kind =>
8779 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
8780
8781 when Array_Kind =>
8782 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
8783
8784 when E_Record_Type
8785 | E_Record_Subtype
8786 | Class_Wide_Kind =>
8787 Build_Derived_Record_Type
8788 (N, Parent_Type, Derived_Type, Derive_Subps);
8789 return;
8790
8791 when Enumeration_Kind =>
8792 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
8793
8794 when Access_Kind =>
8795 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
8796
8797 when Incomplete_Or_Private_Kind =>
8798 Build_Derived_Private_Type
8799 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
8800
8801 -- For discriminated types, the derivation includes deriving
8802 -- primitive operations. For others it is done below.
8803
8804 if Is_Tagged_Type (Parent_Type)
8805 or else Has_Discriminants (Parent_Type)
8806 or else (Present (Full_View (Parent_Type))
8807 and then Has_Discriminants (Full_View (Parent_Type)))
8808 then
8809 return;
8810 end if;
8811
8812 when Concurrent_Kind =>
8813 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
8814
8815 when others =>
8816 raise Program_Error;
8817 end case;
8818
8819 -- Nothing more to do if some error occurred
8820
8821 if Etype (Derived_Type) = Any_Type then
8822 return;
8823 end if;
8824
8825 -- Set delayed freeze and then derive subprograms, we need to do this
8826 -- in this order so that derived subprograms inherit the derived freeze
8827 -- if necessary.
8828
8829 Set_Has_Delayed_Freeze (Derived_Type);
8830
8831 if Derive_Subps then
8832 Derive_Subprograms (Parent_Type, Derived_Type);
8833 end if;
8834
8835 Set_Has_Primitive_Operations
8836 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
8837 end Build_Derived_Type;
8838
8839 -----------------------
8840 -- Build_Discriminal --
8841 -----------------------
8842
8843 procedure Build_Discriminal (Discrim : Entity_Id) is
8844 D_Minal : Entity_Id;
8845 CR_Disc : Entity_Id;
8846
8847 begin
8848 -- A discriminal has the same name as the discriminant
8849
8850 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8851
8852 Set_Ekind (D_Minal, E_In_Parameter);
8853 Set_Mechanism (D_Minal, Default_Mechanism);
8854 Set_Etype (D_Minal, Etype (Discrim));
8855 Set_Scope (D_Minal, Current_Scope);
8856
8857 Set_Discriminal (Discrim, D_Minal);
8858 Set_Discriminal_Link (D_Minal, Discrim);
8859
8860 -- For task types, build at once the discriminants of the corresponding
8861 -- record, which are needed if discriminants are used in entry defaults
8862 -- and in family bounds.
8863
8864 if Is_Concurrent_Type (Current_Scope)
8865 or else
8866 Is_Limited_Type (Current_Scope)
8867 then
8868 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8869
8870 Set_Ekind (CR_Disc, E_In_Parameter);
8871 Set_Mechanism (CR_Disc, Default_Mechanism);
8872 Set_Etype (CR_Disc, Etype (Discrim));
8873 Set_Scope (CR_Disc, Current_Scope);
8874 Set_Discriminal_Link (CR_Disc, Discrim);
8875 Set_CR_Discriminant (Discrim, CR_Disc);
8876 end if;
8877 end Build_Discriminal;
8878
8879 ------------------------------------
8880 -- Build_Discriminant_Constraints --
8881 ------------------------------------
8882
8883 function Build_Discriminant_Constraints
8884 (T : Entity_Id;
8885 Def : Node_Id;
8886 Derived_Def : Boolean := False) return Elist_Id
8887 is
8888 C : constant Node_Id := Constraint (Def);
8889 Nb_Discr : constant Nat := Number_Discriminants (T);
8890
8891 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
8892 -- Saves the expression corresponding to a given discriminant in T
8893
8894 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
8895 -- Return the Position number within array Discr_Expr of a discriminant
8896 -- D within the discriminant list of the discriminated type T.
8897
8898 procedure Process_Discriminant_Expression
8899 (Expr : Node_Id;
8900 D : Entity_Id);
8901 -- If this is a discriminant constraint on a partial view, do not
8902 -- generate an overflow check on the discriminant expression. The check
8903 -- will be generated when constraining the full view. Otherwise the
8904 -- backend creates duplicate symbols for the temporaries corresponding
8905 -- to the expressions to be checked, causing spurious assembler errors.
8906
8907 ------------------
8908 -- Pos_Of_Discr --
8909 ------------------
8910
8911 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
8912 Disc : Entity_Id;
8913
8914 begin
8915 Disc := First_Discriminant (T);
8916 for J in Discr_Expr'Range loop
8917 if Disc = D then
8918 return J;
8919 end if;
8920
8921 Next_Discriminant (Disc);
8922 end loop;
8923
8924 -- Note: Since this function is called on discriminants that are
8925 -- known to belong to the discriminated type, falling through the
8926 -- loop with no match signals an internal compiler error.
8927
8928 raise Program_Error;
8929 end Pos_Of_Discr;
8930
8931 -------------------------------------
8932 -- Process_Discriminant_Expression --
8933 -------------------------------------
8934
8935 procedure Process_Discriminant_Expression
8936 (Expr : Node_Id;
8937 D : Entity_Id)
8938 is
8939 BDT : constant Entity_Id := Base_Type (Etype (D));
8940
8941 begin
8942 -- If this is a discriminant constraint on a partial view, do
8943 -- not generate an overflow on the discriminant expression. The
8944 -- check will be generated when constraining the full view.
8945
8946 if Is_Private_Type (T)
8947 and then Present (Full_View (T))
8948 then
8949 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
8950 else
8951 Analyze_And_Resolve (Expr, BDT);
8952 end if;
8953 end Process_Discriminant_Expression;
8954
8955 -- Declarations local to Build_Discriminant_Constraints
8956
8957 Discr : Entity_Id;
8958 E : Entity_Id;
8959 Elist : constant Elist_Id := New_Elmt_List;
8960
8961 Constr : Node_Id;
8962 Expr : Node_Id;
8963 Id : Node_Id;
8964 Position : Nat;
8965 Found : Boolean;
8966
8967 Discrim_Present : Boolean := False;
8968
8969 -- Start of processing for Build_Discriminant_Constraints
8970
8971 begin
8972 -- The following loop will process positional associations only.
8973 -- For a positional association, the (single) discriminant is
8974 -- implicitly specified by position, in textual order (RM 3.7.2).
8975
8976 Discr := First_Discriminant (T);
8977 Constr := First (Constraints (C));
8978 for D in Discr_Expr'Range loop
8979 exit when Nkind (Constr) = N_Discriminant_Association;
8980
8981 if No (Constr) then
8982 Error_Msg_N ("too few discriminants given in constraint", C);
8983 return New_Elmt_List;
8984
8985 elsif Nkind (Constr) = N_Range
8986 or else (Nkind (Constr) = N_Attribute_Reference
8987 and then Attribute_Name (Constr) = Name_Range)
8988 then
8989 Error_Msg_N
8990 ("a range is not a valid discriminant constraint", Constr);
8991 Discr_Expr (D) := Error;
8992
8993 else
8994 Process_Discriminant_Expression (Constr, Discr);
8995 Discr_Expr (D) := Constr;
8996 end if;
8997
8998 Next_Discriminant (Discr);
8999 Next (Constr);
9000 end loop;
9001
9002 if No (Discr) and then Present (Constr) then
9003 Error_Msg_N ("too many discriminants given in constraint", Constr);
9004 return New_Elmt_List;
9005 end if;
9006
9007 -- Named associations can be given in any order, but if both positional
9008 -- and named associations are used in the same discriminant constraint,
9009 -- then positional associations must occur first, at their normal
9010 -- position. Hence once a named association is used, the rest of the
9011 -- discriminant constraint must use only named associations.
9012
9013 while Present (Constr) loop
9014
9015 -- Positional association forbidden after a named association
9016
9017 if Nkind (Constr) /= N_Discriminant_Association then
9018 Error_Msg_N ("positional association follows named one", Constr);
9019 return New_Elmt_List;
9020
9021 -- Otherwise it is a named association
9022
9023 else
9024 -- E records the type of the discriminants in the named
9025 -- association. All the discriminants specified in the same name
9026 -- association must have the same type.
9027
9028 E := Empty;
9029
9030 -- Search the list of discriminants in T to see if the simple name
9031 -- given in the constraint matches any of them.
9032
9033 Id := First (Selector_Names (Constr));
9034 while Present (Id) loop
9035 Found := False;
9036
9037 -- If Original_Discriminant is present, we are processing a
9038 -- generic instantiation and this is an instance node. We need
9039 -- to find the name of the corresponding discriminant in the
9040 -- actual record type T and not the name of the discriminant in
9041 -- the generic formal. Example:
9042
9043 -- generic
9044 -- type G (D : int) is private;
9045 -- package P is
9046 -- subtype W is G (D => 1);
9047 -- end package;
9048 -- type Rec (X : int) is record ... end record;
9049 -- package Q is new P (G => Rec);
9050
9051 -- At the point of the instantiation, formal type G is Rec
9052 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9053 -- which really looks like "subtype W is Rec (D => 1);" at
9054 -- the point of instantiation, we want to find the discriminant
9055 -- that corresponds to D in Rec, i.e. X.
9056
9057 if Present (Original_Discriminant (Id))
9058 and then In_Instance
9059 then
9060 Discr := Find_Corresponding_Discriminant (Id, T);
9061 Found := True;
9062
9063 else
9064 Discr := First_Discriminant (T);
9065 while Present (Discr) loop
9066 if Chars (Discr) = Chars (Id) then
9067 Found := True;
9068 exit;
9069 end if;
9070
9071 Next_Discriminant (Discr);
9072 end loop;
9073
9074 if not Found then
9075 Error_Msg_N ("& does not match any discriminant", Id);
9076 return New_Elmt_List;
9077
9078 -- If the parent type is a generic formal, preserve the
9079 -- name of the discriminant for subsequent instances.
9080 -- see comment at the beginning of this if statement.
9081
9082 elsif Is_Generic_Type (Root_Type (T)) then
9083 Set_Original_Discriminant (Id, Discr);
9084 end if;
9085 end if;
9086
9087 Position := Pos_Of_Discr (T, Discr);
9088
9089 if Present (Discr_Expr (Position)) then
9090 Error_Msg_N ("duplicate constraint for discriminant&", Id);
9091
9092 else
9093 -- Each discriminant specified in the same named association
9094 -- must be associated with a separate copy of the
9095 -- corresponding expression.
9096
9097 if Present (Next (Id)) then
9098 Expr := New_Copy_Tree (Expression (Constr));
9099 Set_Parent (Expr, Parent (Expression (Constr)));
9100 else
9101 Expr := Expression (Constr);
9102 end if;
9103
9104 Discr_Expr (Position) := Expr;
9105 Process_Discriminant_Expression (Expr, Discr);
9106 end if;
9107
9108 -- A discriminant association with more than one discriminant
9109 -- name is only allowed if the named discriminants are all of
9110 -- the same type (RM 3.7.1(8)).
9111
9112 if E = Empty then
9113 E := Base_Type (Etype (Discr));
9114
9115 elsif Base_Type (Etype (Discr)) /= E then
9116 Error_Msg_N
9117 ("all discriminants in an association " &
9118 "must have the same type", Id);
9119 end if;
9120
9121 Next (Id);
9122 end loop;
9123 end if;
9124
9125 Next (Constr);
9126 end loop;
9127
9128 -- A discriminant constraint must provide exactly one value for each
9129 -- discriminant of the type (RM 3.7.1(8)).
9130
9131 for J in Discr_Expr'Range loop
9132 if No (Discr_Expr (J)) then
9133 Error_Msg_N ("too few discriminants given in constraint", C);
9134 return New_Elmt_List;
9135 end if;
9136 end loop;
9137
9138 -- Determine if there are discriminant expressions in the constraint
9139
9140 for J in Discr_Expr'Range loop
9141 if Denotes_Discriminant
9142 (Discr_Expr (J), Check_Concurrent => True)
9143 then
9144 Discrim_Present := True;
9145 end if;
9146 end loop;
9147
9148 -- Build an element list consisting of the expressions given in the
9149 -- discriminant constraint and apply the appropriate checks. The list
9150 -- is constructed after resolving any named discriminant associations
9151 -- and therefore the expressions appear in the textual order of the
9152 -- discriminants.
9153
9154 Discr := First_Discriminant (T);
9155 for J in Discr_Expr'Range loop
9156 if Discr_Expr (J) /= Error then
9157 Append_Elmt (Discr_Expr (J), Elist);
9158
9159 -- If any of the discriminant constraints is given by a
9160 -- discriminant and we are in a derived type declaration we
9161 -- have a discriminant renaming. Establish link between new
9162 -- and old discriminant.
9163
9164 if Denotes_Discriminant (Discr_Expr (J)) then
9165 if Derived_Def then
9166 Set_Corresponding_Discriminant
9167 (Entity (Discr_Expr (J)), Discr);
9168 end if;
9169
9170 -- Force the evaluation of non-discriminant expressions.
9171 -- If we have found a discriminant in the constraint 3.4(26)
9172 -- and 3.8(18) demand that no range checks are performed are
9173 -- after evaluation. If the constraint is for a component
9174 -- definition that has a per-object constraint, expressions are
9175 -- evaluated but not checked either. In all other cases perform
9176 -- a range check.
9177
9178 else
9179 if Discrim_Present then
9180 null;
9181
9182 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
9183 and then
9184 Has_Per_Object_Constraint
9185 (Defining_Identifier (Parent (Parent (Def))))
9186 then
9187 null;
9188
9189 elsif Is_Access_Type (Etype (Discr)) then
9190 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
9191
9192 else
9193 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
9194 end if;
9195
9196 Force_Evaluation (Discr_Expr (J));
9197 end if;
9198
9199 -- Check that the designated type of an access discriminant's
9200 -- expression is not a class-wide type unless the discriminant's
9201 -- designated type is also class-wide.
9202
9203 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
9204 and then not Is_Class_Wide_Type
9205 (Designated_Type (Etype (Discr)))
9206 and then Etype (Discr_Expr (J)) /= Any_Type
9207 and then Is_Class_Wide_Type
9208 (Designated_Type (Etype (Discr_Expr (J))))
9209 then
9210 Wrong_Type (Discr_Expr (J), Etype (Discr));
9211
9212 elsif Is_Access_Type (Etype (Discr))
9213 and then not Is_Access_Constant (Etype (Discr))
9214 and then Is_Access_Type (Etype (Discr_Expr (J)))
9215 and then Is_Access_Constant (Etype (Discr_Expr (J)))
9216 then
9217 Error_Msg_NE
9218 ("constraint for discriminant& must be access to variable",
9219 Def, Discr);
9220 end if;
9221 end if;
9222
9223 Next_Discriminant (Discr);
9224 end loop;
9225
9226 return Elist;
9227 end Build_Discriminant_Constraints;
9228
9229 ---------------------------------
9230 -- Build_Discriminated_Subtype --
9231 ---------------------------------
9232
9233 procedure Build_Discriminated_Subtype
9234 (T : Entity_Id;
9235 Def_Id : Entity_Id;
9236 Elist : Elist_Id;
9237 Related_Nod : Node_Id;
9238 For_Access : Boolean := False)
9239 is
9240 Has_Discrs : constant Boolean := Has_Discriminants (T);
9241 Constrained : constant Boolean :=
9242 (Has_Discrs
9243 and then not Is_Empty_Elmt_List (Elist)
9244 and then not Is_Class_Wide_Type (T))
9245 or else Is_Constrained (T);
9246
9247 begin
9248 if Ekind (T) = E_Record_Type then
9249 if For_Access then
9250 Set_Ekind (Def_Id, E_Private_Subtype);
9251 Set_Is_For_Access_Subtype (Def_Id, True);
9252 else
9253 Set_Ekind (Def_Id, E_Record_Subtype);
9254 end if;
9255
9256 -- Inherit preelaboration flag from base, for types for which it
9257 -- may have been set: records, private types, protected types.
9258
9259 Set_Known_To_Have_Preelab_Init
9260 (Def_Id, Known_To_Have_Preelab_Init (T));
9261
9262 elsif Ekind (T) = E_Task_Type then
9263 Set_Ekind (Def_Id, E_Task_Subtype);
9264
9265 elsif Ekind (T) = E_Protected_Type then
9266 Set_Ekind (Def_Id, E_Protected_Subtype);
9267 Set_Known_To_Have_Preelab_Init
9268 (Def_Id, Known_To_Have_Preelab_Init (T));
9269
9270 elsif Is_Private_Type (T) then
9271 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
9272 Set_Known_To_Have_Preelab_Init
9273 (Def_Id, Known_To_Have_Preelab_Init (T));
9274
9275 -- Private subtypes may have private dependents
9276
9277 Set_Private_Dependents (Def_Id, New_Elmt_List);
9278
9279 elsif Is_Class_Wide_Type (T) then
9280 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
9281
9282 else
9283 -- Incomplete type. Attach subtype to list of dependents, to be
9284 -- completed with full view of parent type, unless is it the
9285 -- designated subtype of a record component within an init_proc.
9286 -- This last case arises for a component of an access type whose
9287 -- designated type is incomplete (e.g. a Taft Amendment type).
9288 -- The designated subtype is within an inner scope, and needs no
9289 -- elaboration, because only the access type is needed in the
9290 -- initialization procedure.
9291
9292 Set_Ekind (Def_Id, Ekind (T));
9293
9294 if For_Access and then Within_Init_Proc then
9295 null;
9296 else
9297 Append_Elmt (Def_Id, Private_Dependents (T));
9298 end if;
9299 end if;
9300
9301 Set_Etype (Def_Id, T);
9302 Init_Size_Align (Def_Id);
9303 Set_Has_Discriminants (Def_Id, Has_Discrs);
9304 Set_Is_Constrained (Def_Id, Constrained);
9305
9306 Set_First_Entity (Def_Id, First_Entity (T));
9307 Set_Last_Entity (Def_Id, Last_Entity (T));
9308 Set_Has_Implicit_Dereference
9309 (Def_Id, Has_Implicit_Dereference (T));
9310
9311 -- If the subtype is the completion of a private declaration, there may
9312 -- have been representation clauses for the partial view, and they must
9313 -- be preserved. Build_Derived_Type chains the inherited clauses with
9314 -- the ones appearing on the extension. If this comes from a subtype
9315 -- declaration, all clauses are inherited.
9316
9317 if No (First_Rep_Item (Def_Id)) then
9318 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9319 end if;
9320
9321 if Is_Tagged_Type (T) then
9322 Set_Is_Tagged_Type (Def_Id);
9323 Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T));
9324 Make_Class_Wide_Type (Def_Id);
9325 end if;
9326
9327 Set_Stored_Constraint (Def_Id, No_Elist);
9328
9329 if Has_Discrs then
9330 Set_Discriminant_Constraint (Def_Id, Elist);
9331 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
9332 end if;
9333
9334 if Is_Tagged_Type (T) then
9335
9336 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9337 -- concurrent record type (which has the list of primitive
9338 -- operations).
9339
9340 if Ada_Version >= Ada_2005
9341 and then Is_Concurrent_Type (T)
9342 then
9343 Set_Corresponding_Record_Type (Def_Id,
9344 Corresponding_Record_Type (T));
9345 else
9346 Set_Direct_Primitive_Operations (Def_Id,
9347 Direct_Primitive_Operations (T));
9348 end if;
9349
9350 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
9351 end if;
9352
9353 -- Subtypes introduced by component declarations do not need to be
9354 -- marked as delayed, and do not get freeze nodes, because the semantics
9355 -- verifies that the parents of the subtypes are frozen before the
9356 -- enclosing record is frozen.
9357
9358 if not Is_Type (Scope (Def_Id)) then
9359 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
9360
9361 if Is_Private_Type (T)
9362 and then Present (Full_View (T))
9363 then
9364 Conditional_Delay (Def_Id, Full_View (T));
9365 else
9366 Conditional_Delay (Def_Id, T);
9367 end if;
9368 end if;
9369
9370 if Is_Record_Type (T) then
9371 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
9372
9373 if Has_Discrs
9374 and then not Is_Empty_Elmt_List (Elist)
9375 and then not For_Access
9376 then
9377 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
9378 elsif not For_Access then
9379 Set_Cloned_Subtype (Def_Id, T);
9380 end if;
9381 end if;
9382 end Build_Discriminated_Subtype;
9383
9384 ---------------------------
9385 -- Build_Itype_Reference --
9386 ---------------------------
9387
9388 procedure Build_Itype_Reference
9389 (Ityp : Entity_Id;
9390 Nod : Node_Id)
9391 is
9392 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
9393 begin
9394
9395 -- Itype references are only created for use by the back-end
9396
9397 if Inside_A_Generic then
9398 return;
9399 else
9400 Set_Itype (IR, Ityp);
9401 Insert_After (Nod, IR);
9402 end if;
9403 end Build_Itype_Reference;
9404
9405 ------------------------
9406 -- Build_Scalar_Bound --
9407 ------------------------
9408
9409 function Build_Scalar_Bound
9410 (Bound : Node_Id;
9411 Par_T : Entity_Id;
9412 Der_T : Entity_Id) return Node_Id
9413 is
9414 New_Bound : Entity_Id;
9415
9416 begin
9417 -- Note: not clear why this is needed, how can the original bound
9418 -- be unanalyzed at this point? and if it is, what business do we
9419 -- have messing around with it? and why is the base type of the
9420 -- parent type the right type for the resolution. It probably is
9421 -- not. It is OK for the new bound we are creating, but not for
9422 -- the old one??? Still if it never happens, no problem.
9423
9424 Analyze_And_Resolve (Bound, Base_Type (Par_T));
9425
9426 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
9427 New_Bound := New_Copy (Bound);
9428 Set_Etype (New_Bound, Der_T);
9429 Set_Analyzed (New_Bound);
9430
9431 elsif Is_Entity_Name (Bound) then
9432 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
9433
9434 -- The following is almost certainly wrong. What business do we have
9435 -- relocating a node (Bound) that is presumably still attached to
9436 -- the tree elsewhere???
9437
9438 else
9439 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
9440 end if;
9441
9442 Set_Etype (New_Bound, Der_T);
9443 return New_Bound;
9444 end Build_Scalar_Bound;
9445
9446 --------------------------------
9447 -- Build_Underlying_Full_View --
9448 --------------------------------
9449
9450 procedure Build_Underlying_Full_View
9451 (N : Node_Id;
9452 Typ : Entity_Id;
9453 Par : Entity_Id)
9454 is
9455 Loc : constant Source_Ptr := Sloc (N);
9456 Subt : constant Entity_Id :=
9457 Make_Defining_Identifier
9458 (Loc, New_External_Name (Chars (Typ), 'S'));
9459
9460 Constr : Node_Id;
9461 Indic : Node_Id;
9462 C : Node_Id;
9463 Id : Node_Id;
9464
9465 procedure Set_Discriminant_Name (Id : Node_Id);
9466 -- If the derived type has discriminants, they may rename discriminants
9467 -- of the parent. When building the full view of the parent, we need to
9468 -- recover the names of the original discriminants if the constraint is
9469 -- given by named associations.
9470
9471 ---------------------------
9472 -- Set_Discriminant_Name --
9473 ---------------------------
9474
9475 procedure Set_Discriminant_Name (Id : Node_Id) is
9476 Disc : Entity_Id;
9477
9478 begin
9479 Set_Original_Discriminant (Id, Empty);
9480
9481 if Has_Discriminants (Typ) then
9482 Disc := First_Discriminant (Typ);
9483 while Present (Disc) loop
9484 if Chars (Disc) = Chars (Id)
9485 and then Present (Corresponding_Discriminant (Disc))
9486 then
9487 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
9488 end if;
9489 Next_Discriminant (Disc);
9490 end loop;
9491 end if;
9492 end Set_Discriminant_Name;
9493
9494 -- Start of processing for Build_Underlying_Full_View
9495
9496 begin
9497 if Nkind (N) = N_Full_Type_Declaration then
9498 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
9499
9500 elsif Nkind (N) = N_Subtype_Declaration then
9501 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
9502
9503 elsif Nkind (N) = N_Component_Declaration then
9504 Constr :=
9505 New_Copy_Tree
9506 (Constraint (Subtype_Indication (Component_Definition (N))));
9507
9508 else
9509 raise Program_Error;
9510 end if;
9511
9512 C := First (Constraints (Constr));
9513 while Present (C) loop
9514 if Nkind (C) = N_Discriminant_Association then
9515 Id := First (Selector_Names (C));
9516 while Present (Id) loop
9517 Set_Discriminant_Name (Id);
9518 Next (Id);
9519 end loop;
9520 end if;
9521
9522 Next (C);
9523 end loop;
9524
9525 Indic :=
9526 Make_Subtype_Declaration (Loc,
9527 Defining_Identifier => Subt,
9528 Subtype_Indication =>
9529 Make_Subtype_Indication (Loc,
9530 Subtype_Mark => New_Occurrence_Of (Par, Loc),
9531 Constraint => New_Copy_Tree (Constr)));
9532
9533 -- If this is a component subtype for an outer itype, it is not
9534 -- a list member, so simply set the parent link for analysis: if
9535 -- the enclosing type does not need to be in a declarative list,
9536 -- neither do the components.
9537
9538 if Is_List_Member (N)
9539 and then Nkind (N) /= N_Component_Declaration
9540 then
9541 Insert_Before (N, Indic);
9542 else
9543 Set_Parent (Indic, Parent (N));
9544 end if;
9545
9546 Analyze (Indic);
9547 Set_Underlying_Full_View (Typ, Full_View (Subt));
9548 end Build_Underlying_Full_View;
9549
9550 -------------------------------
9551 -- Check_Abstract_Overriding --
9552 -------------------------------
9553
9554 procedure Check_Abstract_Overriding (T : Entity_Id) is
9555 Alias_Subp : Entity_Id;
9556 Elmt : Elmt_Id;
9557 Op_List : Elist_Id;
9558 Subp : Entity_Id;
9559 Type_Def : Node_Id;
9560
9561 procedure Check_Pragma_Implemented (Subp : Entity_Id);
9562 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9563 -- which has pragma Implemented already set. Check whether Subp's entity
9564 -- kind conforms to the implementation kind of the overridden routine.
9565
9566 procedure Check_Pragma_Implemented
9567 (Subp : Entity_Id;
9568 Iface_Subp : Entity_Id);
9569 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9570 -- Iface_Subp and both entities have pragma Implemented already set on
9571 -- them. Check whether the two implementation kinds are conforming.
9572
9573 procedure Inherit_Pragma_Implemented
9574 (Subp : Entity_Id;
9575 Iface_Subp : Entity_Id);
9576 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9577 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9578 -- Propagate the implementation kind of Iface_Subp to Subp.
9579
9580 ------------------------------
9581 -- Check_Pragma_Implemented --
9582 ------------------------------
9583
9584 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
9585 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
9586 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
9587 Subp_Alias : constant Entity_Id := Alias (Subp);
9588 Contr_Typ : Entity_Id;
9589 Impl_Subp : Entity_Id;
9590
9591 begin
9592 -- Subp must have an alias since it is a hidden entity used to link
9593 -- an interface subprogram to its overriding counterpart.
9594
9595 pragma Assert (Present (Subp_Alias));
9596
9597 -- Handle aliases to synchronized wrappers
9598
9599 Impl_Subp := Subp_Alias;
9600
9601 if Is_Primitive_Wrapper (Impl_Subp) then
9602 Impl_Subp := Wrapped_Entity (Impl_Subp);
9603 end if;
9604
9605 -- Extract the type of the controlling formal
9606
9607 Contr_Typ := Etype (First_Formal (Subp_Alias));
9608
9609 if Is_Concurrent_Record_Type (Contr_Typ) then
9610 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
9611 end if;
9612
9613 -- An interface subprogram whose implementation kind is By_Entry must
9614 -- be implemented by an entry.
9615
9616 if Impl_Kind = Name_By_Entry
9617 and then Ekind (Impl_Subp) /= E_Entry
9618 then
9619 Error_Msg_Node_2 := Iface_Alias;
9620 Error_Msg_NE
9621 ("type & must implement abstract subprogram & with an entry",
9622 Subp_Alias, Contr_Typ);
9623
9624 elsif Impl_Kind = Name_By_Protected_Procedure then
9625
9626 -- An interface subprogram whose implementation kind is By_
9627 -- Protected_Procedure cannot be implemented by a primitive
9628 -- procedure of a task type.
9629
9630 if Ekind (Contr_Typ) /= E_Protected_Type then
9631 Error_Msg_Node_2 := Contr_Typ;
9632 Error_Msg_NE
9633 ("interface subprogram & cannot be implemented by a " &
9634 "primitive procedure of task type &", Subp_Alias,
9635 Iface_Alias);
9636
9637 -- An interface subprogram whose implementation kind is By_
9638 -- Protected_Procedure must be implemented by a procedure.
9639
9640 elsif Ekind (Impl_Subp) /= E_Procedure then
9641 Error_Msg_Node_2 := Iface_Alias;
9642 Error_Msg_NE
9643 ("type & must implement abstract subprogram & with a " &
9644 "procedure", Subp_Alias, Contr_Typ);
9645
9646 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9647 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9648 then
9649 Error_Msg_Name_1 := Impl_Kind;
9650 Error_Msg_N
9651 ("overriding operation& must have synchronization%",
9652 Subp_Alias);
9653 end if;
9654
9655 -- If primitive has Optional synchronization, overriding operation
9656 -- must match if it has an explicit synchronization..
9657
9658 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9659 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9660 then
9661 Error_Msg_Name_1 := Impl_Kind;
9662 Error_Msg_N
9663 ("overriding operation& must have syncrhonization%",
9664 Subp_Alias);
9665 end if;
9666 end Check_Pragma_Implemented;
9667
9668 ------------------------------
9669 -- Check_Pragma_Implemented --
9670 ------------------------------
9671
9672 procedure Check_Pragma_Implemented
9673 (Subp : Entity_Id;
9674 Iface_Subp : Entity_Id)
9675 is
9676 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9677 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
9678
9679 begin
9680 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9681 -- and overriding subprogram are different. In general this is an
9682 -- error except when the implementation kind of the overridden
9683 -- subprograms is By_Any or Optional.
9684
9685 if Iface_Kind /= Subp_Kind
9686 and then Iface_Kind /= Name_By_Any
9687 and then Iface_Kind /= Name_Optional
9688 then
9689 if Iface_Kind = Name_By_Entry then
9690 Error_Msg_N
9691 ("incompatible implementation kind, overridden subprogram " &
9692 "is marked By_Entry", Subp);
9693 else
9694 Error_Msg_N
9695 ("incompatible implementation kind, overridden subprogram " &
9696 "is marked By_Protected_Procedure", Subp);
9697 end if;
9698 end if;
9699 end Check_Pragma_Implemented;
9700
9701 --------------------------------
9702 -- Inherit_Pragma_Implemented --
9703 --------------------------------
9704
9705 procedure Inherit_Pragma_Implemented
9706 (Subp : Entity_Id;
9707 Iface_Subp : Entity_Id)
9708 is
9709 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9710 Loc : constant Source_Ptr := Sloc (Subp);
9711 Impl_Prag : Node_Id;
9712
9713 begin
9714 -- Since the implementation kind is stored as a representation item
9715 -- rather than a flag, create a pragma node.
9716
9717 Impl_Prag :=
9718 Make_Pragma (Loc,
9719 Chars => Name_Implemented,
9720 Pragma_Argument_Associations => New_List (
9721 Make_Pragma_Argument_Association (Loc,
9722 Expression => New_Occurrence_Of (Subp, Loc)),
9723
9724 Make_Pragma_Argument_Association (Loc,
9725 Expression => Make_Identifier (Loc, Iface_Kind))));
9726
9727 -- The pragma doesn't need to be analyzed because it is internally
9728 -- built. It is safe to directly register it as a rep item since we
9729 -- are only interested in the characters of the implementation kind.
9730
9731 Record_Rep_Item (Subp, Impl_Prag);
9732 end Inherit_Pragma_Implemented;
9733
9734 -- Start of processing for Check_Abstract_Overriding
9735
9736 begin
9737 Op_List := Primitive_Operations (T);
9738
9739 -- Loop to check primitive operations
9740
9741 Elmt := First_Elmt (Op_List);
9742 while Present (Elmt) loop
9743 Subp := Node (Elmt);
9744 Alias_Subp := Alias (Subp);
9745
9746 -- Inherited subprograms are identified by the fact that they do not
9747 -- come from source, and the associated source location is the
9748 -- location of the first subtype of the derived type.
9749
9750 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9751 -- subprograms that "require overriding".
9752
9753 -- Special exception, do not complain about failure to override the
9754 -- stream routines _Input and _Output, as well as the primitive
9755 -- operations used in dispatching selects since we always provide
9756 -- automatic overridings for these subprograms.
9757
9758 -- Also ignore this rule for convention CIL since .NET libraries
9759 -- do bizarre things with interfaces???
9760
9761 -- The partial view of T may have been a private extension, for
9762 -- which inherited functions dispatching on result are abstract.
9763 -- If the full view is a null extension, there is no need for
9764 -- overriding in Ada 2005, but wrappers need to be built for them
9765 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9766
9767 if Is_Null_Extension (T)
9768 and then Has_Controlling_Result (Subp)
9769 and then Ada_Version >= Ada_2005
9770 and then Present (Alias_Subp)
9771 and then not Comes_From_Source (Subp)
9772 and then not Is_Abstract_Subprogram (Alias_Subp)
9773 and then not Is_Access_Type (Etype (Subp))
9774 then
9775 null;
9776
9777 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9778 -- processing because this check is done with the aliased
9779 -- entity
9780
9781 elsif Present (Interface_Alias (Subp)) then
9782 null;
9783
9784 elsif (Is_Abstract_Subprogram (Subp)
9785 or else Requires_Overriding (Subp)
9786 or else
9787 (Has_Controlling_Result (Subp)
9788 and then Present (Alias_Subp)
9789 and then not Comes_From_Source (Subp)
9790 and then Sloc (Subp) = Sloc (First_Subtype (T))))
9791 and then not Is_TSS (Subp, TSS_Stream_Input)
9792 and then not Is_TSS (Subp, TSS_Stream_Output)
9793 and then not Is_Abstract_Type (T)
9794 and then Convention (T) /= Convention_CIL
9795 and then not Is_Predefined_Interface_Primitive (Subp)
9796
9797 -- Ada 2005 (AI-251): Do not consider hidden entities associated
9798 -- with abstract interface types because the check will be done
9799 -- with the aliased entity (otherwise we generate a duplicated
9800 -- error message).
9801
9802 and then not Present (Interface_Alias (Subp))
9803 then
9804 if Present (Alias_Subp) then
9805
9806 -- Only perform the check for a derived subprogram when the
9807 -- type has an explicit record extension. This avoids incorrect
9808 -- flagging of abstract subprograms for the case of a type
9809 -- without an extension that is derived from a formal type
9810 -- with a tagged actual (can occur within a private part).
9811
9812 -- Ada 2005 (AI-391): In the case of an inherited function with
9813 -- a controlling result of the type, the rule does not apply if
9814 -- the type is a null extension (unless the parent function
9815 -- itself is abstract, in which case the function must still be
9816 -- be overridden). The expander will generate an overriding
9817 -- wrapper function calling the parent subprogram (see
9818 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
9819
9820 Type_Def := Type_Definition (Parent (T));
9821
9822 if Nkind (Type_Def) = N_Derived_Type_Definition
9823 and then Present (Record_Extension_Part (Type_Def))
9824 and then
9825 (Ada_Version < Ada_2005
9826 or else not Is_Null_Extension (T)
9827 or else Ekind (Subp) = E_Procedure
9828 or else not Has_Controlling_Result (Subp)
9829 or else Is_Abstract_Subprogram (Alias_Subp)
9830 or else Requires_Overriding (Subp)
9831 or else Is_Access_Type (Etype (Subp)))
9832 then
9833 -- Avoid reporting error in case of abstract predefined
9834 -- primitive inherited from interface type because the
9835 -- body of internally generated predefined primitives
9836 -- of tagged types are generated later by Freeze_Type
9837
9838 if Is_Interface (Root_Type (T))
9839 and then Is_Abstract_Subprogram (Subp)
9840 and then Is_Predefined_Dispatching_Operation (Subp)
9841 and then not Comes_From_Source (Ultimate_Alias (Subp))
9842 then
9843 null;
9844
9845 else
9846 Error_Msg_NE
9847 ("type must be declared abstract or & overridden",
9848 T, Subp);
9849
9850 -- Traverse the whole chain of aliased subprograms to
9851 -- complete the error notification. This is especially
9852 -- useful for traceability of the chain of entities when
9853 -- the subprogram corresponds with an interface
9854 -- subprogram (which may be defined in another package).
9855
9856 if Present (Alias_Subp) then
9857 declare
9858 E : Entity_Id;
9859
9860 begin
9861 E := Subp;
9862 while Present (Alias (E)) loop
9863
9864 -- Avoid reporting redundant errors on entities
9865 -- inherited from interfaces
9866
9867 if Sloc (E) /= Sloc (T) then
9868 Error_Msg_Sloc := Sloc (E);
9869 Error_Msg_NE
9870 ("\& has been inherited #", T, Subp);
9871 end if;
9872
9873 E := Alias (E);
9874 end loop;
9875
9876 Error_Msg_Sloc := Sloc (E);
9877
9878 -- AI05-0068: report if there is an overriding
9879 -- non-abstract subprogram that is invisible.
9880
9881 if Is_Hidden (E)
9882 and then not Is_Abstract_Subprogram (E)
9883 then
9884 Error_Msg_NE
9885 ("\& subprogram# is not visible",
9886 T, Subp);
9887
9888 else
9889 Error_Msg_NE
9890 ("\& has been inherited from subprogram #",
9891 T, Subp);
9892 end if;
9893 end;
9894 end if;
9895 end if;
9896
9897 -- Ada 2005 (AI-345): Protected or task type implementing
9898 -- abstract interfaces.
9899
9900 elsif Is_Concurrent_Record_Type (T)
9901 and then Present (Interfaces (T))
9902 then
9903 -- If an inherited subprogram is implemented by a protected
9904 -- procedure or an entry, then the first parameter of the
9905 -- inherited subprogram shall be of mode OUT or IN OUT, or
9906 -- an access-to-variable parameter (RM 9.4(11.9/3))
9907
9908 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
9909 and then Ekind (First_Formal (Subp)) = E_In_Parameter
9910 and then Ekind (Subp) /= E_Function
9911 and then not Is_Predefined_Dispatching_Operation (Subp)
9912 then
9913 Error_Msg_PT (T, Subp);
9914
9915 -- Some other kind of overriding failure
9916
9917 else
9918 Error_Msg_NE
9919 ("interface subprogram & must be overridden",
9920 T, Subp);
9921
9922 -- Examine primitive operations of synchronized type,
9923 -- to find homonyms that have the wrong profile.
9924
9925 declare
9926 Prim : Entity_Id;
9927
9928 begin
9929 Prim :=
9930 First_Entity (Corresponding_Concurrent_Type (T));
9931 while Present (Prim) loop
9932 if Chars (Prim) = Chars (Subp) then
9933 Error_Msg_NE
9934 ("profile is not type conformant with "
9935 & "prefixed view profile of "
9936 & "inherited operation&", Prim, Subp);
9937 end if;
9938
9939 Next_Entity (Prim);
9940 end loop;
9941 end;
9942 end if;
9943 end if;
9944
9945 else
9946 Error_Msg_Node_2 := T;
9947 Error_Msg_N
9948 ("abstract subprogram& not allowed for type&", Subp);
9949
9950 -- Also post unconditional warning on the type (unconditional
9951 -- so that if there are more than one of these cases, we get
9952 -- them all, and not just the first one).
9953
9954 Error_Msg_Node_2 := Subp;
9955 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
9956 end if;
9957 end if;
9958
9959 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
9960
9961 -- Subp is an expander-generated procedure which maps an interface
9962 -- alias to a protected wrapper. The interface alias is flagged by
9963 -- pragma Implemented. Ensure that Subp is a procedure when the
9964 -- implementation kind is By_Protected_Procedure or an entry when
9965 -- By_Entry.
9966
9967 if Ada_Version >= Ada_2012
9968 and then Is_Hidden (Subp)
9969 and then Present (Interface_Alias (Subp))
9970 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
9971 then
9972 Check_Pragma_Implemented (Subp);
9973 end if;
9974
9975 -- Subp is an interface primitive which overrides another interface
9976 -- primitive marked with pragma Implemented.
9977
9978 if Ada_Version >= Ada_2012
9979 and then Present (Overridden_Operation (Subp))
9980 and then Has_Rep_Pragma
9981 (Overridden_Operation (Subp), Name_Implemented)
9982 then
9983 -- If the overriding routine is also marked by Implemented, check
9984 -- that the two implementation kinds are conforming.
9985
9986 if Has_Rep_Pragma (Subp, Name_Implemented) then
9987 Check_Pragma_Implemented
9988 (Subp => Subp,
9989 Iface_Subp => Overridden_Operation (Subp));
9990
9991 -- Otherwise the overriding routine inherits the implementation
9992 -- kind from the overridden subprogram.
9993
9994 else
9995 Inherit_Pragma_Implemented
9996 (Subp => Subp,
9997 Iface_Subp => Overridden_Operation (Subp));
9998 end if;
9999 end if;
10000
10001 -- If the operation is a wrapper for a synchronized primitive, it
10002 -- may be called indirectly through a dispatching select. We assume
10003 -- that it will be referenced elsewhere indirectly, and suppress
10004 -- warnings about an unused entity.
10005
10006 if Is_Primitive_Wrapper (Subp)
10007 and then Present (Wrapped_Entity (Subp))
10008 then
10009 Set_Referenced (Wrapped_Entity (Subp));
10010 end if;
10011
10012 Next_Elmt (Elmt);
10013 end loop;
10014 end Check_Abstract_Overriding;
10015
10016 ------------------------------------------------
10017 -- Check_Access_Discriminant_Requires_Limited --
10018 ------------------------------------------------
10019
10020 procedure Check_Access_Discriminant_Requires_Limited
10021 (D : Node_Id;
10022 Loc : Node_Id)
10023 is
10024 begin
10025 -- A discriminant_specification for an access discriminant shall appear
10026 -- only in the declaration for a task or protected type, or for a type
10027 -- with the reserved word 'limited' in its definition or in one of its
10028 -- ancestors (RM 3.7(10)).
10029
10030 -- AI-0063: The proper condition is that type must be immutably limited,
10031 -- or else be a partial view.
10032
10033 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
10034 if Is_Limited_View (Current_Scope)
10035 or else
10036 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
10037 and then Limited_Present (Parent (Current_Scope)))
10038 then
10039 null;
10040
10041 else
10042 Error_Msg_N
10043 ("access discriminants allowed only for limited types", Loc);
10044 end if;
10045 end if;
10046 end Check_Access_Discriminant_Requires_Limited;
10047
10048 -----------------------------------
10049 -- Check_Aliased_Component_Types --
10050 -----------------------------------
10051
10052 procedure Check_Aliased_Component_Types (T : Entity_Id) is
10053 C : Entity_Id;
10054
10055 begin
10056 -- ??? Also need to check components of record extensions, but not
10057 -- components of protected types (which are always limited).
10058
10059 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10060 -- types to be unconstrained. This is safe because it is illegal to
10061 -- create access subtypes to such types with explicit discriminant
10062 -- constraints.
10063
10064 if not Is_Limited_Type (T) then
10065 if Ekind (T) = E_Record_Type then
10066 C := First_Component (T);
10067 while Present (C) loop
10068 if Is_Aliased (C)
10069 and then Has_Discriminants (Etype (C))
10070 and then not Is_Constrained (Etype (C))
10071 and then not In_Instance_Body
10072 and then Ada_Version < Ada_2005
10073 then
10074 Error_Msg_N
10075 ("aliased component must be constrained (RM 3.6(11))",
10076 C);
10077 end if;
10078
10079 Next_Component (C);
10080 end loop;
10081
10082 elsif Ekind (T) = E_Array_Type then
10083 if Has_Aliased_Components (T)
10084 and then Has_Discriminants (Component_Type (T))
10085 and then not Is_Constrained (Component_Type (T))
10086 and then not In_Instance_Body
10087 and then Ada_Version < Ada_2005
10088 then
10089 Error_Msg_N
10090 ("aliased component type must be constrained (RM 3.6(11))",
10091 T);
10092 end if;
10093 end if;
10094 end if;
10095 end Check_Aliased_Component_Types;
10096
10097 ---------------------------------------
10098 -- Check_Anonymous_Access_Components --
10099 ---------------------------------------
10100
10101 procedure Check_Anonymous_Access_Components
10102 (Typ_Decl : Node_Id;
10103 Typ : Entity_Id;
10104 Prev : Entity_Id;
10105 Comp_List : Node_Id)
10106 is
10107 Loc : constant Source_Ptr := Sloc (Typ_Decl);
10108 Anon_Access : Entity_Id;
10109 Acc_Def : Node_Id;
10110 Comp : Node_Id;
10111 Comp_Def : Node_Id;
10112 Decl : Node_Id;
10113 Type_Def : Node_Id;
10114
10115 procedure Build_Incomplete_Type_Declaration;
10116 -- If the record type contains components that include an access to the
10117 -- current record, then create an incomplete type declaration for the
10118 -- record, to be used as the designated type of the anonymous access.
10119 -- This is done only once, and only if there is no previous partial
10120 -- view of the type.
10121
10122 function Designates_T (Subt : Node_Id) return Boolean;
10123 -- Check whether a node designates the enclosing record type, or 'Class
10124 -- of that type
10125
10126 function Mentions_T (Acc_Def : Node_Id) return Boolean;
10127 -- Check whether an access definition includes a reference to
10128 -- the enclosing record type. The reference can be a subtype mark
10129 -- in the access definition itself, a 'Class attribute reference, or
10130 -- recursively a reference appearing in a parameter specification
10131 -- or result definition of an access_to_subprogram definition.
10132
10133 --------------------------------------
10134 -- Build_Incomplete_Type_Declaration --
10135 --------------------------------------
10136
10137 procedure Build_Incomplete_Type_Declaration is
10138 Decl : Node_Id;
10139 Inc_T : Entity_Id;
10140 H : Entity_Id;
10141
10142 -- Is_Tagged indicates whether the type is tagged. It is tagged if
10143 -- it's "is new ... with record" or else "is tagged record ...".
10144
10145 Is_Tagged : constant Boolean :=
10146 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
10147 and then
10148 Present (Record_Extension_Part (Type_Definition (Typ_Decl))))
10149 or else
10150 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
10151 and then Tagged_Present (Type_Definition (Typ_Decl)));
10152
10153 begin
10154 -- If there is a previous partial view, no need to create a new one
10155 -- If the partial view, given by Prev, is incomplete, If Prev is
10156 -- a private declaration, full declaration is flagged accordingly.
10157
10158 if Prev /= Typ then
10159 if Is_Tagged then
10160 Make_Class_Wide_Type (Prev);
10161 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
10162 Set_Etype (Class_Wide_Type (Typ), Typ);
10163 end if;
10164
10165 return;
10166
10167 elsif Has_Private_Declaration (Typ) then
10168
10169 -- If we refer to T'Class inside T, and T is the completion of a
10170 -- private type, then make sure the class-wide type exists.
10171
10172 if Is_Tagged then
10173 Make_Class_Wide_Type (Typ);
10174 end if;
10175
10176 return;
10177
10178 -- If there was a previous anonymous access type, the incomplete
10179 -- type declaration will have been created already.
10180
10181 elsif Present (Current_Entity (Typ))
10182 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
10183 and then Full_View (Current_Entity (Typ)) = Typ
10184 then
10185 if Is_Tagged
10186 and then Comes_From_Source (Current_Entity (Typ))
10187 and then not Is_Tagged_Type (Current_Entity (Typ))
10188 then
10189 Make_Class_Wide_Type (Typ);
10190 Error_Msg_N
10191 ("incomplete view of tagged type should be declared tagged??",
10192 Parent (Current_Entity (Typ)));
10193 end if;
10194 return;
10195
10196 else
10197 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
10198 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
10199
10200 -- Type has already been inserted into the current scope. Remove
10201 -- it, and add incomplete declaration for type, so that subsequent
10202 -- anonymous access types can use it. The entity is unchained from
10203 -- the homonym list and from immediate visibility. After analysis,
10204 -- the entity in the incomplete declaration becomes immediately
10205 -- visible in the record declaration that follows.
10206
10207 H := Current_Entity (Typ);
10208
10209 if H = Typ then
10210 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
10211 else
10212 while Present (H)
10213 and then Homonym (H) /= Typ
10214 loop
10215 H := Homonym (Typ);
10216 end loop;
10217
10218 Set_Homonym (H, Homonym (Typ));
10219 end if;
10220
10221 Insert_Before (Typ_Decl, Decl);
10222 Analyze (Decl);
10223 Set_Full_View (Inc_T, Typ);
10224
10225 if Is_Tagged then
10226
10227 -- Create a common class-wide type for both views, and set the
10228 -- Etype of the class-wide type to the full view.
10229
10230 Make_Class_Wide_Type (Inc_T);
10231 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
10232 Set_Etype (Class_Wide_Type (Typ), Typ);
10233 end if;
10234 end if;
10235 end Build_Incomplete_Type_Declaration;
10236
10237 ------------------
10238 -- Designates_T --
10239 ------------------
10240
10241 function Designates_T (Subt : Node_Id) return Boolean is
10242 Type_Id : constant Name_Id := Chars (Typ);
10243
10244 function Names_T (Nam : Node_Id) return Boolean;
10245 -- The record type has not been introduced in the current scope
10246 -- yet, so we must examine the name of the type itself, either
10247 -- an identifier T, or an expanded name of the form P.T, where
10248 -- P denotes the current scope.
10249
10250 -------------
10251 -- Names_T --
10252 -------------
10253
10254 function Names_T (Nam : Node_Id) return Boolean is
10255 begin
10256 if Nkind (Nam) = N_Identifier then
10257 return Chars (Nam) = Type_Id;
10258
10259 elsif Nkind (Nam) = N_Selected_Component then
10260 if Chars (Selector_Name (Nam)) = Type_Id then
10261 if Nkind (Prefix (Nam)) = N_Identifier then
10262 return Chars (Prefix (Nam)) = Chars (Current_Scope);
10263
10264 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
10265 return Chars (Selector_Name (Prefix (Nam))) =
10266 Chars (Current_Scope);
10267 else
10268 return False;
10269 end if;
10270
10271 else
10272 return False;
10273 end if;
10274
10275 else
10276 return False;
10277 end if;
10278 end Names_T;
10279
10280 -- Start of processing for Designates_T
10281
10282 begin
10283 if Nkind (Subt) = N_Identifier then
10284 return Chars (Subt) = Type_Id;
10285
10286 -- Reference can be through an expanded name which has not been
10287 -- analyzed yet, and which designates enclosing scopes.
10288
10289 elsif Nkind (Subt) = N_Selected_Component then
10290 if Names_T (Subt) then
10291 return True;
10292
10293 -- Otherwise it must denote an entity that is already visible.
10294 -- The access definition may name a subtype of the enclosing
10295 -- type, if there is a previous incomplete declaration for it.
10296
10297 else
10298 Find_Selected_Component (Subt);
10299 return
10300 Is_Entity_Name (Subt)
10301 and then Scope (Entity (Subt)) = Current_Scope
10302 and then
10303 (Chars (Base_Type (Entity (Subt))) = Type_Id
10304 or else
10305 (Is_Class_Wide_Type (Entity (Subt))
10306 and then
10307 Chars (Etype (Base_Type (Entity (Subt)))) =
10308 Type_Id));
10309 end if;
10310
10311 -- A reference to the current type may appear as the prefix of
10312 -- a 'Class attribute.
10313
10314 elsif Nkind (Subt) = N_Attribute_Reference
10315 and then Attribute_Name (Subt) = Name_Class
10316 then
10317 return Names_T (Prefix (Subt));
10318
10319 else
10320 return False;
10321 end if;
10322 end Designates_T;
10323
10324 ----------------
10325 -- Mentions_T --
10326 ----------------
10327
10328 function Mentions_T (Acc_Def : Node_Id) return Boolean is
10329 Param_Spec : Node_Id;
10330
10331 Acc_Subprg : constant Node_Id :=
10332 Access_To_Subprogram_Definition (Acc_Def);
10333
10334 begin
10335 if No (Acc_Subprg) then
10336 return Designates_T (Subtype_Mark (Acc_Def));
10337 end if;
10338
10339 -- Component is an access_to_subprogram: examine its formals,
10340 -- and result definition in the case of an access_to_function.
10341
10342 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
10343 while Present (Param_Spec) loop
10344 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
10345 and then Mentions_T (Parameter_Type (Param_Spec))
10346 then
10347 return True;
10348
10349 elsif Designates_T (Parameter_Type (Param_Spec)) then
10350 return True;
10351 end if;
10352
10353 Next (Param_Spec);
10354 end loop;
10355
10356 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
10357 if Nkind (Result_Definition (Acc_Subprg)) =
10358 N_Access_Definition
10359 then
10360 return Mentions_T (Result_Definition (Acc_Subprg));
10361 else
10362 return Designates_T (Result_Definition (Acc_Subprg));
10363 end if;
10364 end if;
10365
10366 return False;
10367 end Mentions_T;
10368
10369 -- Start of processing for Check_Anonymous_Access_Components
10370
10371 begin
10372 if No (Comp_List) then
10373 return;
10374 end if;
10375
10376 Comp := First (Component_Items (Comp_List));
10377 while Present (Comp) loop
10378 if Nkind (Comp) = N_Component_Declaration
10379 and then Present
10380 (Access_Definition (Component_Definition (Comp)))
10381 and then
10382 Mentions_T (Access_Definition (Component_Definition (Comp)))
10383 then
10384 Comp_Def := Component_Definition (Comp);
10385 Acc_Def :=
10386 Access_To_Subprogram_Definition (Access_Definition (Comp_Def));
10387
10388 Build_Incomplete_Type_Declaration;
10389 Anon_Access := Make_Temporary (Loc, 'S');
10390
10391 -- Create a declaration for the anonymous access type: either
10392 -- an access_to_object or an access_to_subprogram.
10393
10394 if Present (Acc_Def) then
10395 if Nkind (Acc_Def) = N_Access_Function_Definition then
10396 Type_Def :=
10397 Make_Access_Function_Definition (Loc,
10398 Parameter_Specifications =>
10399 Parameter_Specifications (Acc_Def),
10400 Result_Definition => Result_Definition (Acc_Def));
10401 else
10402 Type_Def :=
10403 Make_Access_Procedure_Definition (Loc,
10404 Parameter_Specifications =>
10405 Parameter_Specifications (Acc_Def));
10406 end if;
10407
10408 else
10409 Type_Def :=
10410 Make_Access_To_Object_Definition (Loc,
10411 Subtype_Indication =>
10412 Relocate_Node
10413 (Subtype_Mark (Access_Definition (Comp_Def))));
10414
10415 Set_Constant_Present
10416 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
10417 Set_All_Present
10418 (Type_Def, All_Present (Access_Definition (Comp_Def)));
10419 end if;
10420
10421 Set_Null_Exclusion_Present
10422 (Type_Def,
10423 Null_Exclusion_Present (Access_Definition (Comp_Def)));
10424
10425 Decl :=
10426 Make_Full_Type_Declaration (Loc,
10427 Defining_Identifier => Anon_Access,
10428 Type_Definition => Type_Def);
10429
10430 Insert_Before (Typ_Decl, Decl);
10431 Analyze (Decl);
10432
10433 -- If an access to subprogram, create the extra formals
10434
10435 if Present (Acc_Def) then
10436 Create_Extra_Formals (Designated_Type (Anon_Access));
10437
10438 -- If an access to object, preserve entity of designated type,
10439 -- for ASIS use, before rewriting the component definition.
10440
10441 else
10442 declare
10443 Desig : Entity_Id;
10444
10445 begin
10446 Desig := Entity (Subtype_Indication (Type_Def));
10447
10448 -- If the access definition is to the current record,
10449 -- the visible entity at this point is an incomplete
10450 -- type. Retrieve the full view to simplify ASIS queries
10451
10452 if Ekind (Desig) = E_Incomplete_Type then
10453 Desig := Full_View (Desig);
10454 end if;
10455
10456 Set_Entity
10457 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
10458 end;
10459 end if;
10460
10461 Rewrite (Comp_Def,
10462 Make_Component_Definition (Loc,
10463 Subtype_Indication =>
10464 New_Occurrence_Of (Anon_Access, Loc)));
10465
10466 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
10467 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
10468 else
10469 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
10470 end if;
10471
10472 Set_Is_Local_Anonymous_Access (Anon_Access);
10473 end if;
10474
10475 Next (Comp);
10476 end loop;
10477
10478 if Present (Variant_Part (Comp_List)) then
10479 declare
10480 V : Node_Id;
10481 begin
10482 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
10483 while Present (V) loop
10484 Check_Anonymous_Access_Components
10485 (Typ_Decl, Typ, Prev, Component_List (V));
10486 Next_Non_Pragma (V);
10487 end loop;
10488 end;
10489 end if;
10490 end Check_Anonymous_Access_Components;
10491
10492 ----------------------
10493 -- Check_Completion --
10494 ----------------------
10495
10496 procedure Check_Completion (Body_Id : Node_Id := Empty) is
10497 E : Entity_Id;
10498
10499 procedure Post_Error;
10500 -- Post error message for lack of completion for entity E
10501
10502 ----------------
10503 -- Post_Error --
10504 ----------------
10505
10506 procedure Post_Error is
10507
10508 procedure Missing_Body;
10509 -- Output missing body message
10510
10511 ------------------
10512 -- Missing_Body --
10513 ------------------
10514
10515 procedure Missing_Body is
10516 begin
10517 -- Spec is in same unit, so we can post on spec
10518
10519 if In_Same_Source_Unit (Body_Id, E) then
10520 Error_Msg_N ("missing body for &", E);
10521
10522 -- Spec is in a separate unit, so we have to post on the body
10523
10524 else
10525 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
10526 end if;
10527 end Missing_Body;
10528
10529 -- Start of processing for Post_Error
10530
10531 begin
10532 if not Comes_From_Source (E) then
10533
10534 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
10535
10536 -- It may be an anonymous protected type created for a
10537 -- single variable. Post error on variable, if present.
10538
10539 declare
10540 Var : Entity_Id;
10541
10542 begin
10543 Var := First_Entity (Current_Scope);
10544 while Present (Var) loop
10545 exit when Etype (Var) = E
10546 and then Comes_From_Source (Var);
10547
10548 Next_Entity (Var);
10549 end loop;
10550
10551 if Present (Var) then
10552 E := Var;
10553 end if;
10554 end;
10555 end if;
10556 end if;
10557
10558 -- If a generated entity has no completion, then either previous
10559 -- semantic errors have disabled the expansion phase, or else we had
10560 -- missing subunits, or else we are compiling without expansion,
10561 -- or else something is very wrong.
10562
10563 if not Comes_From_Source (E) then
10564 pragma Assert
10565 (Serious_Errors_Detected > 0
10566 or else Configurable_Run_Time_Violations > 0
10567 or else Subunits_Missing
10568 or else not Expander_Active);
10569 return;
10570
10571 -- Here for source entity
10572
10573 else
10574 -- Here if no body to post the error message, so we post the error
10575 -- on the declaration that has no completion. This is not really
10576 -- the right place to post it, think about this later ???
10577
10578 if No (Body_Id) then
10579 if Is_Type (E) then
10580 Error_Msg_NE
10581 ("missing full declaration for }", Parent (E), E);
10582 else
10583 Error_Msg_NE ("missing body for &", Parent (E), E);
10584 end if;
10585
10586 -- Package body has no completion for a declaration that appears
10587 -- in the corresponding spec. Post error on the body, with a
10588 -- reference to the non-completed declaration.
10589
10590 else
10591 Error_Msg_Sloc := Sloc (E);
10592
10593 if Is_Type (E) then
10594 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
10595
10596 elsif Is_Overloadable (E)
10597 and then Current_Entity_In_Scope (E) /= E
10598 then
10599 -- It may be that the completion is mistyped and appears as
10600 -- a distinct overloading of the entity.
10601
10602 declare
10603 Candidate : constant Entity_Id :=
10604 Current_Entity_In_Scope (E);
10605 Decl : constant Node_Id :=
10606 Unit_Declaration_Node (Candidate);
10607
10608 begin
10609 if Is_Overloadable (Candidate)
10610 and then Ekind (Candidate) = Ekind (E)
10611 and then Nkind (Decl) = N_Subprogram_Body
10612 and then Acts_As_Spec (Decl)
10613 then
10614 Check_Type_Conformant (Candidate, E);
10615
10616 else
10617 Missing_Body;
10618 end if;
10619 end;
10620
10621 else
10622 Missing_Body;
10623 end if;
10624 end if;
10625 end if;
10626 end Post_Error;
10627
10628 -- Start of processing for Check_Completion
10629
10630 begin
10631 E := First_Entity (Current_Scope);
10632 while Present (E) loop
10633 if Is_Intrinsic_Subprogram (E) then
10634 null;
10635
10636 -- The following situation requires special handling: a child unit
10637 -- that appears in the context clause of the body of its parent:
10638
10639 -- procedure Parent.Child (...);
10640
10641 -- with Parent.Child;
10642 -- package body Parent is
10643
10644 -- Here Parent.Child appears as a local entity, but should not be
10645 -- flagged as requiring completion, because it is a compilation
10646 -- unit.
10647
10648 -- Ignore missing completion for a subprogram that does not come from
10649 -- source (including the _Call primitive operation of RAS types,
10650 -- which has to have the flag Comes_From_Source for other purposes):
10651 -- we assume that the expander will provide the missing completion.
10652 -- In case of previous errors, other expansion actions that provide
10653 -- bodies for null procedures with not be invoked, so inhibit message
10654 -- in those cases.
10655
10656 -- Note that E_Operator is not in the list that follows, because
10657 -- this kind is reserved for predefined operators, that are
10658 -- intrinsic and do not need completion.
10659
10660 elsif Ekind_In (E, E_Function,
10661 E_Procedure,
10662 E_Generic_Function,
10663 E_Generic_Procedure)
10664 then
10665 if Has_Completion (E) then
10666 null;
10667
10668 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
10669 null;
10670
10671 elsif Is_Subprogram (E)
10672 and then (not Comes_From_Source (E)
10673 or else Chars (E) = Name_uCall)
10674 then
10675 null;
10676
10677 elsif
10678 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
10679 then
10680 null;
10681
10682 elsif Nkind (Parent (E)) = N_Procedure_Specification
10683 and then Null_Present (Parent (E))
10684 and then Serious_Errors_Detected > 0
10685 then
10686 null;
10687
10688 else
10689 Post_Error;
10690 end if;
10691
10692 elsif Is_Entry (E) then
10693 if not Has_Completion (E) and then
10694 (Ekind (Scope (E)) = E_Protected_Object
10695 or else Ekind (Scope (E)) = E_Protected_Type)
10696 then
10697 Post_Error;
10698 end if;
10699
10700 elsif Is_Package_Or_Generic_Package (E) then
10701 if Unit_Requires_Body (E) then
10702 if not Has_Completion (E)
10703 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
10704 N_Compilation_Unit
10705 then
10706 Post_Error;
10707 end if;
10708
10709 elsif not Is_Child_Unit (E) then
10710 May_Need_Implicit_Body (E);
10711 end if;
10712
10713 -- A formal incomplete type (Ada 2012) does not require a completion;
10714 -- other incomplete type declarations do.
10715
10716 elsif Ekind (E) = E_Incomplete_Type
10717 and then No (Underlying_Type (E))
10718 and then not Is_Generic_Type (E)
10719 then
10720 Post_Error;
10721
10722 elsif Ekind_In (E, E_Task_Type, E_Protected_Type)
10723 and then not Has_Completion (E)
10724 then
10725 Post_Error;
10726
10727 -- A single task declared in the current scope is a constant, verify
10728 -- that the body of its anonymous type is in the same scope. If the
10729 -- task is defined elsewhere, this may be a renaming declaration for
10730 -- which no completion is needed.
10731
10732 elsif Ekind (E) = E_Constant
10733 and then Ekind (Etype (E)) = E_Task_Type
10734 and then not Has_Completion (Etype (E))
10735 and then Scope (Etype (E)) = Current_Scope
10736 then
10737 Post_Error;
10738
10739 elsif Ekind (E) = E_Protected_Object
10740 and then not Has_Completion (Etype (E))
10741 then
10742 Post_Error;
10743
10744 elsif Ekind (E) = E_Record_Type then
10745 if Is_Tagged_Type (E) then
10746 Check_Abstract_Overriding (E);
10747 Check_Conventions (E);
10748 end if;
10749
10750 Check_Aliased_Component_Types (E);
10751
10752 elsif Ekind (E) = E_Array_Type then
10753 Check_Aliased_Component_Types (E);
10754
10755 end if;
10756
10757 Next_Entity (E);
10758 end loop;
10759 end Check_Completion;
10760
10761 ------------------------------------
10762 -- Check_CPP_Type_Has_No_Defaults --
10763 ------------------------------------
10764
10765 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
10766 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
10767 Clist : Node_Id;
10768 Comp : Node_Id;
10769
10770 begin
10771 -- Obtain the component list
10772
10773 if Nkind (Tdef) = N_Record_Definition then
10774 Clist := Component_List (Tdef);
10775 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
10776 Clist := Component_List (Record_Extension_Part (Tdef));
10777 end if;
10778
10779 -- Check all components to ensure no default expressions
10780
10781 if Present (Clist) then
10782 Comp := First (Component_Items (Clist));
10783 while Present (Comp) loop
10784 if Present (Expression (Comp)) then
10785 Error_Msg_N
10786 ("component of imported 'C'P'P type cannot have "
10787 & "default expression", Expression (Comp));
10788 end if;
10789
10790 Next (Comp);
10791 end loop;
10792 end if;
10793 end Check_CPP_Type_Has_No_Defaults;
10794
10795 ----------------------------
10796 -- Check_Delta_Expression --
10797 ----------------------------
10798
10799 procedure Check_Delta_Expression (E : Node_Id) is
10800 begin
10801 if not (Is_Real_Type (Etype (E))) then
10802 Wrong_Type (E, Any_Real);
10803
10804 elsif not Is_OK_Static_Expression (E) then
10805 Flag_Non_Static_Expr
10806 ("non-static expression used for delta value!", E);
10807
10808 elsif not UR_Is_Positive (Expr_Value_R (E)) then
10809 Error_Msg_N ("delta expression must be positive", E);
10810
10811 else
10812 return;
10813 end if;
10814
10815 -- If any of above errors occurred, then replace the incorrect
10816 -- expression by the real 0.1, which should prevent further errors.
10817
10818 Rewrite (E,
10819 Make_Real_Literal (Sloc (E), Ureal_Tenth));
10820 Analyze_And_Resolve (E, Standard_Float);
10821 end Check_Delta_Expression;
10822
10823 -----------------------------
10824 -- Check_Digits_Expression --
10825 -----------------------------
10826
10827 procedure Check_Digits_Expression (E : Node_Id) is
10828 begin
10829 if not (Is_Integer_Type (Etype (E))) then
10830 Wrong_Type (E, Any_Integer);
10831
10832 elsif not Is_OK_Static_Expression (E) then
10833 Flag_Non_Static_Expr
10834 ("non-static expression used for digits value!", E);
10835
10836 elsif Expr_Value (E) <= 0 then
10837 Error_Msg_N ("digits value must be greater than zero", E);
10838
10839 else
10840 return;
10841 end if;
10842
10843 -- If any of above errors occurred, then replace the incorrect
10844 -- expression by the integer 1, which should prevent further errors.
10845
10846 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
10847 Analyze_And_Resolve (E, Standard_Integer);
10848
10849 end Check_Digits_Expression;
10850
10851 --------------------------
10852 -- Check_Initialization --
10853 --------------------------
10854
10855 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
10856 begin
10857 -- Special processing for limited types
10858
10859 if Is_Limited_Type (T)
10860 and then not In_Instance
10861 and then not In_Inlined_Body
10862 then
10863 if not OK_For_Limited_Init (T, Exp) then
10864
10865 -- In GNAT mode, this is just a warning, to allow it to be evilly
10866 -- turned off. Otherwise it is a real error.
10867
10868 if GNAT_Mode then
10869 Error_Msg_N
10870 ("??cannot initialize entities of limited type!", Exp);
10871
10872 elsif Ada_Version < Ada_2005 then
10873
10874 -- The side effect removal machinery may generate illegal Ada
10875 -- code to avoid the usage of access types and 'reference in
10876 -- SPARK mode. Since this is legal code with respect to theorem
10877 -- proving, do not emit the error.
10878
10879 if GNATprove_Mode
10880 and then Nkind (Exp) = N_Function_Call
10881 and then Nkind (Parent (Exp)) = N_Object_Declaration
10882 and then not Comes_From_Source
10883 (Defining_Identifier (Parent (Exp)))
10884 then
10885 null;
10886
10887 else
10888 Error_Msg_N
10889 ("cannot initialize entities of limited type", Exp);
10890 Explain_Limited_Type (T, Exp);
10891 end if;
10892
10893 else
10894 -- Specialize error message according to kind of illegal
10895 -- initial expression.
10896
10897 if Nkind (Exp) = N_Type_Conversion
10898 and then Nkind (Expression (Exp)) = N_Function_Call
10899 then
10900 Error_Msg_N
10901 ("illegal context for call"
10902 & " to function with limited result", Exp);
10903
10904 else
10905 Error_Msg_N
10906 ("initialization of limited object requires aggregate "
10907 & "or function call", Exp);
10908 end if;
10909 end if;
10910 end if;
10911 end if;
10912
10913 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
10914 -- set unless we can be sure that no range check is required.
10915
10916 if (GNATprove_Mode or not Expander_Active)
10917 and then Is_Scalar_Type (T)
10918 and then not Is_In_Range (Exp, T, Assume_Valid => True)
10919 then
10920 Set_Do_Range_Check (Exp);
10921 end if;
10922 end Check_Initialization;
10923
10924 ----------------------
10925 -- Check_Interfaces --
10926 ----------------------
10927
10928 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
10929 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
10930
10931 Iface : Node_Id;
10932 Iface_Def : Node_Id;
10933 Iface_Typ : Entity_Id;
10934 Parent_Node : Node_Id;
10935
10936 Is_Task : Boolean := False;
10937 -- Set True if parent type or any progenitor is a task interface
10938
10939 Is_Protected : Boolean := False;
10940 -- Set True if parent type or any progenitor is a protected interface
10941
10942 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
10943 -- Check that a progenitor is compatible with declaration. If an error
10944 -- message is output, it is posted on Error_Node.
10945
10946 ------------------
10947 -- Check_Ifaces --
10948 ------------------
10949
10950 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
10951 Iface_Id : constant Entity_Id :=
10952 Defining_Identifier (Parent (Iface_Def));
10953 Type_Def : Node_Id;
10954
10955 begin
10956 if Nkind (N) = N_Private_Extension_Declaration then
10957 Type_Def := N;
10958 else
10959 Type_Def := Type_Definition (N);
10960 end if;
10961
10962 if Is_Task_Interface (Iface_Id) then
10963 Is_Task := True;
10964
10965 elsif Is_Protected_Interface (Iface_Id) then
10966 Is_Protected := True;
10967 end if;
10968
10969 if Is_Synchronized_Interface (Iface_Id) then
10970
10971 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
10972 -- extension derived from a synchronized interface must explicitly
10973 -- be declared synchronized, because the full view will be a
10974 -- synchronized type.
10975
10976 if Nkind (N) = N_Private_Extension_Declaration then
10977 if not Synchronized_Present (N) then
10978 Error_Msg_NE
10979 ("private extension of& must be explicitly synchronized",
10980 N, Iface_Id);
10981 end if;
10982
10983 -- However, by 3.9.4(16/2), a full type that is a record extension
10984 -- is never allowed to derive from a synchronized interface (note
10985 -- that interfaces must be excluded from this check, because those
10986 -- are represented by derived type definitions in some cases).
10987
10988 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
10989 and then not Interface_Present (Type_Definition (N))
10990 then
10991 Error_Msg_N ("record extension cannot derive from synchronized "
10992 & "interface", Error_Node);
10993 end if;
10994 end if;
10995
10996 -- Check that the characteristics of the progenitor are compatible
10997 -- with the explicit qualifier in the declaration.
10998 -- The check only applies to qualifiers that come from source.
10999 -- Limited_Present also appears in the declaration of corresponding
11000 -- records, and the check does not apply to them.
11001
11002 if Limited_Present (Type_Def)
11003 and then not
11004 Is_Concurrent_Record_Type (Defining_Identifier (N))
11005 then
11006 if Is_Limited_Interface (Parent_Type)
11007 and then not Is_Limited_Interface (Iface_Id)
11008 then
11009 Error_Msg_NE
11010 ("progenitor & must be limited interface",
11011 Error_Node, Iface_Id);
11012
11013 elsif
11014 (Task_Present (Iface_Def)
11015 or else Protected_Present (Iface_Def)
11016 or else Synchronized_Present (Iface_Def))
11017 and then Nkind (N) /= N_Private_Extension_Declaration
11018 and then not Error_Posted (N)
11019 then
11020 Error_Msg_NE
11021 ("progenitor & must be limited interface",
11022 Error_Node, Iface_Id);
11023 end if;
11024
11025 -- Protected interfaces can only inherit from limited, synchronized
11026 -- or protected interfaces.
11027
11028 elsif Nkind (N) = N_Full_Type_Declaration
11029 and then Protected_Present (Type_Def)
11030 then
11031 if Limited_Present (Iface_Def)
11032 or else Synchronized_Present (Iface_Def)
11033 or else Protected_Present (Iface_Def)
11034 then
11035 null;
11036
11037 elsif Task_Present (Iface_Def) then
11038 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11039 & "from task interface", Error_Node);
11040
11041 else
11042 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11043 & "from non-limited interface", Error_Node);
11044 end if;
11045
11046 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11047 -- limited and synchronized.
11048
11049 elsif Synchronized_Present (Type_Def) then
11050 if Limited_Present (Iface_Def)
11051 or else Synchronized_Present (Iface_Def)
11052 then
11053 null;
11054
11055 elsif Protected_Present (Iface_Def)
11056 and then Nkind (N) /= N_Private_Extension_Declaration
11057 then
11058 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11059 & "from protected interface", Error_Node);
11060
11061 elsif Task_Present (Iface_Def)
11062 and then Nkind (N) /= N_Private_Extension_Declaration
11063 then
11064 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11065 & "from task interface", Error_Node);
11066
11067 elsif not Is_Limited_Interface (Iface_Id) then
11068 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11069 & "from non-limited interface", Error_Node);
11070 end if;
11071
11072 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
11073 -- synchronized or task interfaces.
11074
11075 elsif Nkind (N) = N_Full_Type_Declaration
11076 and then Task_Present (Type_Def)
11077 then
11078 if Limited_Present (Iface_Def)
11079 or else Synchronized_Present (Iface_Def)
11080 or else Task_Present (Iface_Def)
11081 then
11082 null;
11083
11084 elsif Protected_Present (Iface_Def) then
11085 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11086 & "protected interface", Error_Node);
11087
11088 else
11089 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11090 & "non-limited interface", Error_Node);
11091 end if;
11092 end if;
11093 end Check_Ifaces;
11094
11095 -- Start of processing for Check_Interfaces
11096
11097 begin
11098 if Is_Interface (Parent_Type) then
11099 if Is_Task_Interface (Parent_Type) then
11100 Is_Task := True;
11101
11102 elsif Is_Protected_Interface (Parent_Type) then
11103 Is_Protected := True;
11104 end if;
11105 end if;
11106
11107 if Nkind (N) = N_Private_Extension_Declaration then
11108
11109 -- Check that progenitors are compatible with declaration
11110
11111 Iface := First (Interface_List (Def));
11112 while Present (Iface) loop
11113 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11114
11115 Parent_Node := Parent (Base_Type (Iface_Typ));
11116 Iface_Def := Type_Definition (Parent_Node);
11117
11118 if not Is_Interface (Iface_Typ) then
11119 Diagnose_Interface (Iface, Iface_Typ);
11120 else
11121 Check_Ifaces (Iface_Def, Iface);
11122 end if;
11123
11124 Next (Iface);
11125 end loop;
11126
11127 if Is_Task and Is_Protected then
11128 Error_Msg_N
11129 ("type cannot derive from task and protected interface", N);
11130 end if;
11131
11132 return;
11133 end if;
11134
11135 -- Full type declaration of derived type.
11136 -- Check compatibility with parent if it is interface type
11137
11138 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11139 and then Is_Interface (Parent_Type)
11140 then
11141 Parent_Node := Parent (Parent_Type);
11142
11143 -- More detailed checks for interface varieties
11144
11145 Check_Ifaces
11146 (Iface_Def => Type_Definition (Parent_Node),
11147 Error_Node => Subtype_Indication (Type_Definition (N)));
11148 end if;
11149
11150 Iface := First (Interface_List (Def));
11151 while Present (Iface) loop
11152 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11153
11154 Parent_Node := Parent (Base_Type (Iface_Typ));
11155 Iface_Def := Type_Definition (Parent_Node);
11156
11157 if not Is_Interface (Iface_Typ) then
11158 Diagnose_Interface (Iface, Iface_Typ);
11159
11160 else
11161 -- "The declaration of a specific descendant of an interface
11162 -- type freezes the interface type" RM 13.14
11163
11164 Freeze_Before (N, Iface_Typ);
11165 Check_Ifaces (Iface_Def, Error_Node => Iface);
11166 end if;
11167
11168 Next (Iface);
11169 end loop;
11170
11171 if Is_Task and Is_Protected then
11172 Error_Msg_N
11173 ("type cannot derive from task and protected interface", N);
11174 end if;
11175 end Check_Interfaces;
11176
11177 ------------------------------------
11178 -- Check_Or_Process_Discriminants --
11179 ------------------------------------
11180
11181 -- If an incomplete or private type declaration was already given for the
11182 -- type, the discriminants may have already been processed if they were
11183 -- present on the incomplete declaration. In this case a full conformance
11184 -- check has been performed in Find_Type_Name, and we then recheck here
11185 -- some properties that can't be checked on the partial view alone.
11186 -- Otherwise we call Process_Discriminants.
11187
11188 procedure Check_Or_Process_Discriminants
11189 (N : Node_Id;
11190 T : Entity_Id;
11191 Prev : Entity_Id := Empty)
11192 is
11193 begin
11194 if Has_Discriminants (T) then
11195
11196 -- Discriminants are already set on T if they were already present
11197 -- on the partial view. Make them visible to component declarations.
11198
11199 declare
11200 D : Entity_Id;
11201 -- Discriminant on T (full view) referencing expr on partial view
11202
11203 Prev_D : Entity_Id;
11204 -- Entity of corresponding discriminant on partial view
11205
11206 New_D : Node_Id;
11207 -- Discriminant specification for full view, expression is
11208 -- the syntactic copy on full view (which has been checked for
11209 -- conformance with partial view), only used here to post error
11210 -- message.
11211
11212 begin
11213 D := First_Discriminant (T);
11214 New_D := First (Discriminant_Specifications (N));
11215 while Present (D) loop
11216 Prev_D := Current_Entity (D);
11217 Set_Current_Entity (D);
11218 Set_Is_Immediately_Visible (D);
11219 Set_Homonym (D, Prev_D);
11220
11221 -- Handle the case where there is an untagged partial view and
11222 -- the full view is tagged: must disallow discriminants with
11223 -- defaults, unless compiling for Ada 2012, which allows a
11224 -- limited tagged type to have defaulted discriminants (see
11225 -- AI05-0214). However, suppress error here if it was already
11226 -- reported on the default expression of the partial view.
11227
11228 if Is_Tagged_Type (T)
11229 and then Present (Expression (Parent (D)))
11230 and then (not Is_Limited_Type (Current_Scope)
11231 or else Ada_Version < Ada_2012)
11232 and then not Error_Posted (Expression (Parent (D)))
11233 then
11234 if Ada_Version >= Ada_2012 then
11235 Error_Msg_N
11236 ("discriminants of nonlimited tagged type cannot have "
11237 & "defaults",
11238 Expression (New_D));
11239 else
11240 Error_Msg_N
11241 ("discriminants of tagged type cannot have defaults",
11242 Expression (New_D));
11243 end if;
11244 end if;
11245
11246 -- Ada 2005 (AI-230): Access discriminant allowed in
11247 -- non-limited record types.
11248
11249 if Ada_Version < Ada_2005 then
11250
11251 -- This restriction gets applied to the full type here. It
11252 -- has already been applied earlier to the partial view.
11253
11254 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
11255 end if;
11256
11257 Next_Discriminant (D);
11258 Next (New_D);
11259 end loop;
11260 end;
11261
11262 elsif Present (Discriminant_Specifications (N)) then
11263 Process_Discriminants (N, Prev);
11264 end if;
11265 end Check_Or_Process_Discriminants;
11266
11267 ----------------------
11268 -- Check_Real_Bound --
11269 ----------------------
11270
11271 procedure Check_Real_Bound (Bound : Node_Id) is
11272 begin
11273 if not Is_Real_Type (Etype (Bound)) then
11274 Error_Msg_N
11275 ("bound in real type definition must be of real type", Bound);
11276
11277 elsif not Is_OK_Static_Expression (Bound) then
11278 Flag_Non_Static_Expr
11279 ("non-static expression used for real type bound!", Bound);
11280
11281 else
11282 return;
11283 end if;
11284
11285 Rewrite
11286 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
11287 Analyze (Bound);
11288 Resolve (Bound, Standard_Float);
11289 end Check_Real_Bound;
11290
11291 ------------------------------
11292 -- Complete_Private_Subtype --
11293 ------------------------------
11294
11295 procedure Complete_Private_Subtype
11296 (Priv : Entity_Id;
11297 Full : Entity_Id;
11298 Full_Base : Entity_Id;
11299 Related_Nod : Node_Id)
11300 is
11301 Save_Next_Entity : Entity_Id;
11302 Save_Homonym : Entity_Id;
11303
11304 begin
11305 -- Set semantic attributes for (implicit) private subtype completion.
11306 -- If the full type has no discriminants, then it is a copy of the
11307 -- full view of the base. Otherwise, it is a subtype of the base with
11308 -- a possible discriminant constraint. Save and restore the original
11309 -- Next_Entity field of full to ensure that the calls to Copy_Node do
11310 -- not corrupt the entity chain.
11311
11312 -- Note that the type of the full view is the same entity as the type
11313 -- of the partial view. In this fashion, the subtype has access to the
11314 -- correct view of the parent.
11315
11316 Save_Next_Entity := Next_Entity (Full);
11317 Save_Homonym := Homonym (Priv);
11318
11319 case Ekind (Full_Base) is
11320 when E_Record_Type |
11321 E_Record_Subtype |
11322 Class_Wide_Kind |
11323 Private_Kind |
11324 Task_Kind |
11325 Protected_Kind =>
11326 Copy_Node (Priv, Full);
11327
11328 Set_Has_Discriminants
11329 (Full, Has_Discriminants (Full_Base));
11330 Set_Has_Unknown_Discriminants
11331 (Full, Has_Unknown_Discriminants (Full_Base));
11332 Set_First_Entity (Full, First_Entity (Full_Base));
11333 Set_Last_Entity (Full, Last_Entity (Full_Base));
11334
11335 -- If the underlying base type is constrained, we know that the
11336 -- full view of the subtype is constrained as well (the converse
11337 -- is not necessarily true).
11338
11339 if Is_Constrained (Full_Base) then
11340 Set_Is_Constrained (Full);
11341 end if;
11342
11343 when others =>
11344 Copy_Node (Full_Base, Full);
11345
11346 Set_Chars (Full, Chars (Priv));
11347 Conditional_Delay (Full, Priv);
11348 Set_Sloc (Full, Sloc (Priv));
11349 end case;
11350
11351 Set_Next_Entity (Full, Save_Next_Entity);
11352 Set_Homonym (Full, Save_Homonym);
11353 Set_Associated_Node_For_Itype (Full, Related_Nod);
11354
11355 -- Set common attributes for all subtypes: kind, convention, etc.
11356
11357 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
11358 Set_Convention (Full, Convention (Full_Base));
11359
11360 -- The Etype of the full view is inconsistent. Gigi needs to see the
11361 -- structural full view, which is what the current scheme gives: the
11362 -- Etype of the full view is the etype of the full base. However, if the
11363 -- full base is a derived type, the full view then looks like a subtype
11364 -- of the parent, not a subtype of the full base. If instead we write:
11365
11366 -- Set_Etype (Full, Full_Base);
11367
11368 -- then we get inconsistencies in the front-end (confusion between
11369 -- views). Several outstanding bugs are related to this ???
11370
11371 Set_Is_First_Subtype (Full, False);
11372 Set_Scope (Full, Scope (Priv));
11373 Set_Size_Info (Full, Full_Base);
11374 Set_RM_Size (Full, RM_Size (Full_Base));
11375 Set_Is_Itype (Full);
11376
11377 -- A subtype of a private-type-without-discriminants, whose full-view
11378 -- has discriminants with default expressions, is not constrained.
11379
11380 if not Has_Discriminants (Priv) then
11381 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
11382
11383 if Has_Discriminants (Full_Base) then
11384 Set_Discriminant_Constraint
11385 (Full, Discriminant_Constraint (Full_Base));
11386
11387 -- The partial view may have been indefinite, the full view
11388 -- might not be.
11389
11390 Set_Has_Unknown_Discriminants
11391 (Full, Has_Unknown_Discriminants (Full_Base));
11392 end if;
11393 end if;
11394
11395 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
11396 Set_Depends_On_Private (Full, Has_Private_Component (Full));
11397
11398 -- Freeze the private subtype entity if its parent is delayed, and not
11399 -- already frozen. We skip this processing if the type is an anonymous
11400 -- subtype of a record component, or is the corresponding record of a
11401 -- protected type, since ???
11402
11403 if not Is_Type (Scope (Full)) then
11404 Set_Has_Delayed_Freeze (Full,
11405 Has_Delayed_Freeze (Full_Base)
11406 and then (not Is_Frozen (Full_Base)));
11407 end if;
11408
11409 Set_Freeze_Node (Full, Empty);
11410 Set_Is_Frozen (Full, False);
11411 Set_Full_View (Priv, Full);
11412
11413 if Has_Discriminants (Full) then
11414 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
11415 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
11416
11417 if Has_Unknown_Discriminants (Full) then
11418 Set_Discriminant_Constraint (Full, No_Elist);
11419 end if;
11420 end if;
11421
11422 if Ekind (Full_Base) = E_Record_Type
11423 and then Has_Discriminants (Full_Base)
11424 and then Has_Discriminants (Priv) -- might not, if errors
11425 and then not Has_Unknown_Discriminants (Priv)
11426 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
11427 then
11428 Create_Constrained_Components
11429 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
11430
11431 -- If the full base is itself derived from private, build a congruent
11432 -- subtype of its underlying type, for use by the back end. For a
11433 -- constrained record component, the declaration cannot be placed on
11434 -- the component list, but it must nevertheless be built an analyzed, to
11435 -- supply enough information for Gigi to compute the size of component.
11436
11437 elsif Ekind (Full_Base) in Private_Kind
11438 and then Is_Derived_Type (Full_Base)
11439 and then Has_Discriminants (Full_Base)
11440 and then (Ekind (Current_Scope) /= E_Record_Subtype)
11441 then
11442 if not Is_Itype (Priv)
11443 and then
11444 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
11445 then
11446 Build_Underlying_Full_View
11447 (Parent (Priv), Full, Etype (Full_Base));
11448
11449 elsif Nkind (Related_Nod) = N_Component_Declaration then
11450 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
11451 end if;
11452
11453 elsif Is_Record_Type (Full_Base) then
11454
11455 -- Show Full is simply a renaming of Full_Base
11456
11457 Set_Cloned_Subtype (Full, Full_Base);
11458 end if;
11459
11460 -- It is unsafe to share the bounds of a scalar type, because the Itype
11461 -- is elaborated on demand, and if a bound is non-static then different
11462 -- orders of elaboration in different units will lead to different
11463 -- external symbols.
11464
11465 if Is_Scalar_Type (Full_Base) then
11466 Set_Scalar_Range (Full,
11467 Make_Range (Sloc (Related_Nod),
11468 Low_Bound =>
11469 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
11470 High_Bound =>
11471 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
11472
11473 -- This completion inherits the bounds of the full parent, but if
11474 -- the parent is an unconstrained floating point type, so is the
11475 -- completion.
11476
11477 if Is_Floating_Point_Type (Full_Base) then
11478 Set_Includes_Infinities
11479 (Scalar_Range (Full), Has_Infinities (Full_Base));
11480 end if;
11481 end if;
11482
11483 -- ??? It seems that a lot of fields are missing that should be copied
11484 -- from Full_Base to Full. Here are some that are introduced in a
11485 -- non-disruptive way but a cleanup is necessary.
11486
11487 if Is_Tagged_Type (Full_Base) then
11488 Set_Is_Tagged_Type (Full);
11489 Set_Direct_Primitive_Operations
11490 (Full, Direct_Primitive_Operations (Full_Base));
11491 Set_No_Tagged_Streams_Pragma
11492 (Full, No_Tagged_Streams_Pragma (Full_Base));
11493
11494 -- Inherit class_wide type of full_base in case the partial view was
11495 -- not tagged. Otherwise it has already been created when the private
11496 -- subtype was analyzed.
11497
11498 if No (Class_Wide_Type (Full)) then
11499 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
11500 end if;
11501
11502 -- If this is a subtype of a protected or task type, constrain its
11503 -- corresponding record, unless this is a subtype without constraints,
11504 -- i.e. a simple renaming as with an actual subtype in an instance.
11505
11506 elsif Is_Concurrent_Type (Full_Base) then
11507 if Has_Discriminants (Full)
11508 and then Present (Corresponding_Record_Type (Full_Base))
11509 and then
11510 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
11511 then
11512 Set_Corresponding_Record_Type (Full,
11513 Constrain_Corresponding_Record
11514 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
11515
11516 else
11517 Set_Corresponding_Record_Type (Full,
11518 Corresponding_Record_Type (Full_Base));
11519 end if;
11520 end if;
11521
11522 -- Link rep item chain, and also setting of Has_Predicates from private
11523 -- subtype to full subtype, since we will need these on the full subtype
11524 -- to create the predicate function. Note that the full subtype may
11525 -- already have rep items, inherited from the full view of the base
11526 -- type, so we must be sure not to overwrite these entries.
11527
11528 declare
11529 Append : Boolean;
11530 Item : Node_Id;
11531 Next_Item : Node_Id;
11532
11533 begin
11534 Item := First_Rep_Item (Full);
11535
11536 -- If no existing rep items on full type, we can just link directly
11537 -- to the list of items on the private type.
11538
11539 if No (Item) then
11540 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
11541
11542 -- Otherwise, search to the end of items currently linked to the full
11543 -- subtype and append the private items to the end. However, if Priv
11544 -- and Full already have the same list of rep items, then the append
11545 -- is not done, as that would create a circularity.
11546
11547 elsif Item /= First_Rep_Item (Priv) then
11548 Append := True;
11549 loop
11550 Next_Item := Next_Rep_Item (Item);
11551 exit when No (Next_Item);
11552 Item := Next_Item;
11553
11554 -- If the private view has aspect specifications, the full view
11555 -- inherits them. Since these aspects may already have been
11556 -- attached to the full view during derivation, do not append
11557 -- them if already present.
11558
11559 if Item = First_Rep_Item (Priv) then
11560 Append := False;
11561 exit;
11562 end if;
11563 end loop;
11564
11565 -- And link the private type items at the end of the chain
11566
11567 if Append then
11568 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
11569 end if;
11570 end if;
11571 end;
11572
11573 -- Make sure Has_Predicates is set on full type if it is set on the
11574 -- private type. Note that it may already be set on the full type and
11575 -- if so, we don't want to unset it.
11576
11577 if Has_Predicates (Priv) then
11578 Set_Has_Predicates (Full);
11579 end if;
11580 end Complete_Private_Subtype;
11581
11582 ----------------------------
11583 -- Constant_Redeclaration --
11584 ----------------------------
11585
11586 procedure Constant_Redeclaration
11587 (Id : Entity_Id;
11588 N : Node_Id;
11589 T : out Entity_Id)
11590 is
11591 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
11592 Obj_Def : constant Node_Id := Object_Definition (N);
11593 New_T : Entity_Id;
11594
11595 procedure Check_Possible_Deferred_Completion
11596 (Prev_Id : Entity_Id;
11597 Prev_Obj_Def : Node_Id;
11598 Curr_Obj_Def : Node_Id);
11599 -- Determine whether the two object definitions describe the partial
11600 -- and the full view of a constrained deferred constant. Generate
11601 -- a subtype for the full view and verify that it statically matches
11602 -- the subtype of the partial view.
11603
11604 procedure Check_Recursive_Declaration (Typ : Entity_Id);
11605 -- If deferred constant is an access type initialized with an allocator,
11606 -- check whether there is an illegal recursion in the definition,
11607 -- through a default value of some record subcomponent. This is normally
11608 -- detected when generating init procs, but requires this additional
11609 -- mechanism when expansion is disabled.
11610
11611 ----------------------------------------
11612 -- Check_Possible_Deferred_Completion --
11613 ----------------------------------------
11614
11615 procedure Check_Possible_Deferred_Completion
11616 (Prev_Id : Entity_Id;
11617 Prev_Obj_Def : Node_Id;
11618 Curr_Obj_Def : Node_Id)
11619 is
11620 begin
11621 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
11622 and then Present (Constraint (Prev_Obj_Def))
11623 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
11624 and then Present (Constraint (Curr_Obj_Def))
11625 then
11626 declare
11627 Loc : constant Source_Ptr := Sloc (N);
11628 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
11629 Decl : constant Node_Id :=
11630 Make_Subtype_Declaration (Loc,
11631 Defining_Identifier => Def_Id,
11632 Subtype_Indication =>
11633 Relocate_Node (Curr_Obj_Def));
11634
11635 begin
11636 Insert_Before_And_Analyze (N, Decl);
11637 Set_Etype (Id, Def_Id);
11638
11639 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
11640 Error_Msg_Sloc := Sloc (Prev_Id);
11641 Error_Msg_N ("subtype does not statically match deferred "
11642 & "declaration #", N);
11643 end if;
11644 end;
11645 end if;
11646 end Check_Possible_Deferred_Completion;
11647
11648 ---------------------------------
11649 -- Check_Recursive_Declaration --
11650 ---------------------------------
11651
11652 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
11653 Comp : Entity_Id;
11654
11655 begin
11656 if Is_Record_Type (Typ) then
11657 Comp := First_Component (Typ);
11658 while Present (Comp) loop
11659 if Comes_From_Source (Comp) then
11660 if Present (Expression (Parent (Comp)))
11661 and then Is_Entity_Name (Expression (Parent (Comp)))
11662 and then Entity (Expression (Parent (Comp))) = Prev
11663 then
11664 Error_Msg_Sloc := Sloc (Parent (Comp));
11665 Error_Msg_NE
11666 ("illegal circularity with declaration for & #",
11667 N, Comp);
11668 return;
11669
11670 elsif Is_Record_Type (Etype (Comp)) then
11671 Check_Recursive_Declaration (Etype (Comp));
11672 end if;
11673 end if;
11674
11675 Next_Component (Comp);
11676 end loop;
11677 end if;
11678 end Check_Recursive_Declaration;
11679
11680 -- Start of processing for Constant_Redeclaration
11681
11682 begin
11683 if Nkind (Parent (Prev)) = N_Object_Declaration then
11684 if Nkind (Object_Definition
11685 (Parent (Prev))) = N_Subtype_Indication
11686 then
11687 -- Find type of new declaration. The constraints of the two
11688 -- views must match statically, but there is no point in
11689 -- creating an itype for the full view.
11690
11691 if Nkind (Obj_Def) = N_Subtype_Indication then
11692 Find_Type (Subtype_Mark (Obj_Def));
11693 New_T := Entity (Subtype_Mark (Obj_Def));
11694
11695 else
11696 Find_Type (Obj_Def);
11697 New_T := Entity (Obj_Def);
11698 end if;
11699
11700 T := Etype (Prev);
11701
11702 else
11703 -- The full view may impose a constraint, even if the partial
11704 -- view does not, so construct the subtype.
11705
11706 New_T := Find_Type_Of_Object (Obj_Def, N);
11707 T := New_T;
11708 end if;
11709
11710 else
11711 -- Current declaration is illegal, diagnosed below in Enter_Name
11712
11713 T := Empty;
11714 New_T := Any_Type;
11715 end if;
11716
11717 -- If previous full declaration or a renaming declaration exists, or if
11718 -- a homograph is present, let Enter_Name handle it, either with an
11719 -- error or with the removal of an overridden implicit subprogram.
11720 -- The previous one is a full declaration if it has an expression
11721 -- (which in the case of an aggregate is indicated by the Init flag).
11722
11723 if Ekind (Prev) /= E_Constant
11724 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
11725 or else Present (Expression (Parent (Prev)))
11726 or else Has_Init_Expression (Parent (Prev))
11727 or else Present (Full_View (Prev))
11728 then
11729 Enter_Name (Id);
11730
11731 -- Verify that types of both declarations match, or else that both types
11732 -- are anonymous access types whose designated subtypes statically match
11733 -- (as allowed in Ada 2005 by AI-385).
11734
11735 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
11736 and then
11737 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
11738 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
11739 or else Is_Access_Constant (Etype (New_T)) /=
11740 Is_Access_Constant (Etype (Prev))
11741 or else Can_Never_Be_Null (Etype (New_T)) /=
11742 Can_Never_Be_Null (Etype (Prev))
11743 or else Null_Exclusion_Present (Parent (Prev)) /=
11744 Null_Exclusion_Present (Parent (Id))
11745 or else not Subtypes_Statically_Match
11746 (Designated_Type (Etype (Prev)),
11747 Designated_Type (Etype (New_T))))
11748 then
11749 Error_Msg_Sloc := Sloc (Prev);
11750 Error_Msg_N ("type does not match declaration#", N);
11751 Set_Full_View (Prev, Id);
11752 Set_Etype (Id, Any_Type);
11753
11754 -- A deferred constant whose type is an anonymous array is always
11755 -- illegal (unless imported). A detailed error message might be
11756 -- helpful for Ada beginners.
11757
11758 if Nkind (Object_Definition (Parent (Prev)))
11759 = N_Constrained_Array_Definition
11760 and then Nkind (Object_Definition (N))
11761 = N_Constrained_Array_Definition
11762 then
11763 Error_Msg_N ("\each anonymous array is a distinct type", N);
11764 Error_Msg_N ("a deferred constant must have a named type",
11765 Object_Definition (Parent (Prev)));
11766 end if;
11767
11768 elsif
11769 Null_Exclusion_Present (Parent (Prev))
11770 and then not Null_Exclusion_Present (N)
11771 then
11772 Error_Msg_Sloc := Sloc (Prev);
11773 Error_Msg_N ("null-exclusion does not match declaration#", N);
11774 Set_Full_View (Prev, Id);
11775 Set_Etype (Id, Any_Type);
11776
11777 -- If so, process the full constant declaration
11778
11779 else
11780 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
11781 -- the deferred declaration is constrained, then the subtype defined
11782 -- by the subtype_indication in the full declaration shall match it
11783 -- statically.
11784
11785 Check_Possible_Deferred_Completion
11786 (Prev_Id => Prev,
11787 Prev_Obj_Def => Object_Definition (Parent (Prev)),
11788 Curr_Obj_Def => Obj_Def);
11789
11790 Set_Full_View (Prev, Id);
11791 Set_Is_Public (Id, Is_Public (Prev));
11792 Set_Is_Internal (Id);
11793 Append_Entity (Id, Current_Scope);
11794
11795 -- Check ALIASED present if present before (RM 7.4(7))
11796
11797 if Is_Aliased (Prev)
11798 and then not Aliased_Present (N)
11799 then
11800 Error_Msg_Sloc := Sloc (Prev);
11801 Error_Msg_N ("ALIASED required (see declaration #)", N);
11802 end if;
11803
11804 -- Check that placement is in private part and that the incomplete
11805 -- declaration appeared in the visible part.
11806
11807 if Ekind (Current_Scope) = E_Package
11808 and then not In_Private_Part (Current_Scope)
11809 then
11810 Error_Msg_Sloc := Sloc (Prev);
11811 Error_Msg_N
11812 ("full constant for declaration#"
11813 & " must be in private part", N);
11814
11815 elsif Ekind (Current_Scope) = E_Package
11816 and then
11817 List_Containing (Parent (Prev)) /=
11818 Visible_Declarations (Package_Specification (Current_Scope))
11819 then
11820 Error_Msg_N
11821 ("deferred constant must be declared in visible part",
11822 Parent (Prev));
11823 end if;
11824
11825 if Is_Access_Type (T)
11826 and then Nkind (Expression (N)) = N_Allocator
11827 then
11828 Check_Recursive_Declaration (Designated_Type (T));
11829 end if;
11830
11831 -- A deferred constant is a visible entity. If type has invariants,
11832 -- verify that the initial value satisfies them.
11833
11834 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
11835 Insert_After (N,
11836 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
11837 end if;
11838 end if;
11839 end Constant_Redeclaration;
11840
11841 ----------------------
11842 -- Constrain_Access --
11843 ----------------------
11844
11845 procedure Constrain_Access
11846 (Def_Id : in out Entity_Id;
11847 S : Node_Id;
11848 Related_Nod : Node_Id)
11849 is
11850 T : constant Entity_Id := Entity (Subtype_Mark (S));
11851 Desig_Type : constant Entity_Id := Designated_Type (T);
11852 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
11853 Constraint_OK : Boolean := True;
11854
11855 begin
11856 if Is_Array_Type (Desig_Type) then
11857 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
11858
11859 elsif (Is_Record_Type (Desig_Type)
11860 or else Is_Incomplete_Or_Private_Type (Desig_Type))
11861 and then not Is_Constrained (Desig_Type)
11862 then
11863 -- ??? The following code is a temporary bypass to ignore a
11864 -- discriminant constraint on access type if it is constraining
11865 -- the current record. Avoid creating the implicit subtype of the
11866 -- record we are currently compiling since right now, we cannot
11867 -- handle these. For now, just return the access type itself.
11868
11869 if Desig_Type = Current_Scope
11870 and then No (Def_Id)
11871 then
11872 Set_Ekind (Desig_Subtype, E_Record_Subtype);
11873 Def_Id := Entity (Subtype_Mark (S));
11874
11875 -- This call added to ensure that the constraint is analyzed
11876 -- (needed for a B test). Note that we still return early from
11877 -- this procedure to avoid recursive processing. ???
11878
11879 Constrain_Discriminated_Type
11880 (Desig_Subtype, S, Related_Nod, For_Access => True);
11881 return;
11882 end if;
11883
11884 -- Enforce rule that the constraint is illegal if there is an
11885 -- unconstrained view of the designated type. This means that the
11886 -- partial view (either a private type declaration or a derivation
11887 -- from a private type) has no discriminants. (Defect Report
11888 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
11889
11890 -- Rule updated for Ada 2005: The private type is said to have
11891 -- a constrained partial view, given that objects of the type
11892 -- can be declared. Furthermore, the rule applies to all access
11893 -- types, unlike the rule concerning default discriminants (see
11894 -- RM 3.7.1(7/3))
11895
11896 if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005)
11897 and then Has_Private_Declaration (Desig_Type)
11898 and then In_Open_Scopes (Scope (Desig_Type))
11899 and then Has_Discriminants (Desig_Type)
11900 then
11901 declare
11902 Pack : constant Node_Id :=
11903 Unit_Declaration_Node (Scope (Desig_Type));
11904 Decls : List_Id;
11905 Decl : Node_Id;
11906
11907 begin
11908 if Nkind (Pack) = N_Package_Declaration then
11909 Decls := Visible_Declarations (Specification (Pack));
11910 Decl := First (Decls);
11911 while Present (Decl) loop
11912 if (Nkind (Decl) = N_Private_Type_Declaration
11913 and then Chars (Defining_Identifier (Decl)) =
11914 Chars (Desig_Type))
11915
11916 or else
11917 (Nkind (Decl) = N_Full_Type_Declaration
11918 and then
11919 Chars (Defining_Identifier (Decl)) =
11920 Chars (Desig_Type)
11921 and then Is_Derived_Type (Desig_Type)
11922 and then
11923 Has_Private_Declaration (Etype (Desig_Type)))
11924 then
11925 if No (Discriminant_Specifications (Decl)) then
11926 Error_Msg_N
11927 ("cannot constrain access type if designated "
11928 & "type has constrained partial view", S);
11929 end if;
11930
11931 exit;
11932 end if;
11933
11934 Next (Decl);
11935 end loop;
11936 end if;
11937 end;
11938 end if;
11939
11940 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
11941 For_Access => True);
11942
11943 elsif Is_Concurrent_Type (Desig_Type)
11944 and then not Is_Constrained (Desig_Type)
11945 then
11946 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
11947
11948 else
11949 Error_Msg_N ("invalid constraint on access type", S);
11950
11951 -- We simply ignore an invalid constraint
11952
11953 Desig_Subtype := Desig_Type;
11954 Constraint_OK := False;
11955 end if;
11956
11957 if No (Def_Id) then
11958 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
11959 else
11960 Set_Ekind (Def_Id, E_Access_Subtype);
11961 end if;
11962
11963 if Constraint_OK then
11964 Set_Etype (Def_Id, Base_Type (T));
11965
11966 if Is_Private_Type (Desig_Type) then
11967 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
11968 end if;
11969 else
11970 Set_Etype (Def_Id, Any_Type);
11971 end if;
11972
11973 Set_Size_Info (Def_Id, T);
11974 Set_Is_Constrained (Def_Id, Constraint_OK);
11975 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
11976 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11977 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
11978
11979 Conditional_Delay (Def_Id, T);
11980
11981 -- AI-363 : Subtypes of general access types whose designated types have
11982 -- default discriminants are disallowed. In instances, the rule has to
11983 -- be checked against the actual, of which T is the subtype. In a
11984 -- generic body, the rule is checked assuming that the actual type has
11985 -- defaulted discriminants.
11986
11987 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
11988 if Ekind (Base_Type (T)) = E_General_Access_Type
11989 and then Has_Defaulted_Discriminants (Desig_Type)
11990 then
11991 if Ada_Version < Ada_2005 then
11992 Error_Msg_N
11993 ("access subtype of general access type would not " &
11994 "be allowed in Ada 2005?y?", S);
11995 else
11996 Error_Msg_N
11997 ("access subtype of general access type not allowed", S);
11998 end if;
11999
12000 Error_Msg_N ("\discriminants have defaults", S);
12001
12002 elsif Is_Access_Type (T)
12003 and then Is_Generic_Type (Desig_Type)
12004 and then Has_Discriminants (Desig_Type)
12005 and then In_Package_Body (Current_Scope)
12006 then
12007 if Ada_Version < Ada_2005 then
12008 Error_Msg_N
12009 ("access subtype would not be allowed in generic body "
12010 & "in Ada 2005?y?", S);
12011 else
12012 Error_Msg_N
12013 ("access subtype not allowed in generic body", S);
12014 end if;
12015
12016 Error_Msg_N
12017 ("\designated type is a discriminated formal", S);
12018 end if;
12019 end if;
12020 end Constrain_Access;
12021
12022 ---------------------
12023 -- Constrain_Array --
12024 ---------------------
12025
12026 procedure Constrain_Array
12027 (Def_Id : in out Entity_Id;
12028 SI : Node_Id;
12029 Related_Nod : Node_Id;
12030 Related_Id : Entity_Id;
12031 Suffix : Character)
12032 is
12033 C : constant Node_Id := Constraint (SI);
12034 Number_Of_Constraints : Nat := 0;
12035 Index : Node_Id;
12036 S, T : Entity_Id;
12037 Constraint_OK : Boolean := True;
12038
12039 begin
12040 T := Entity (Subtype_Mark (SI));
12041
12042 if Is_Access_Type (T) then
12043 T := Designated_Type (T);
12044 end if;
12045
12046 -- If an index constraint follows a subtype mark in a subtype indication
12047 -- then the type or subtype denoted by the subtype mark must not already
12048 -- impose an index constraint. The subtype mark must denote either an
12049 -- unconstrained array type or an access type whose designated type
12050 -- is such an array type... (RM 3.6.1)
12051
12052 if Is_Constrained (T) then
12053 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
12054 Constraint_OK := False;
12055
12056 else
12057 S := First (Constraints (C));
12058 while Present (S) loop
12059 Number_Of_Constraints := Number_Of_Constraints + 1;
12060 Next (S);
12061 end loop;
12062
12063 -- In either case, the index constraint must provide a discrete
12064 -- range for each index of the array type and the type of each
12065 -- discrete range must be the same as that of the corresponding
12066 -- index. (RM 3.6.1)
12067
12068 if Number_Of_Constraints /= Number_Dimensions (T) then
12069 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
12070 Constraint_OK := False;
12071
12072 else
12073 S := First (Constraints (C));
12074 Index := First_Index (T);
12075 Analyze (Index);
12076
12077 -- Apply constraints to each index type
12078
12079 for J in 1 .. Number_Of_Constraints loop
12080 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
12081 Next (Index);
12082 Next (S);
12083 end loop;
12084
12085 end if;
12086 end if;
12087
12088 if No (Def_Id) then
12089 Def_Id :=
12090 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
12091 Set_Parent (Def_Id, Related_Nod);
12092
12093 else
12094 Set_Ekind (Def_Id, E_Array_Subtype);
12095 end if;
12096
12097 Set_Size_Info (Def_Id, (T));
12098 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12099 Set_Etype (Def_Id, Base_Type (T));
12100
12101 if Constraint_OK then
12102 Set_First_Index (Def_Id, First (Constraints (C)));
12103 else
12104 Set_First_Index (Def_Id, First_Index (T));
12105 end if;
12106
12107 Set_Is_Constrained (Def_Id, True);
12108 Set_Is_Aliased (Def_Id, Is_Aliased (T));
12109 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12110
12111 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
12112 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
12113
12114 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
12115 -- We need to initialize the attribute because if Def_Id is previously
12116 -- analyzed through a limited_with clause, it will have the attributes
12117 -- of an incomplete type, one of which is an Elist that overlaps the
12118 -- Packed_Array_Impl_Type field.
12119
12120 Set_Packed_Array_Impl_Type (Def_Id, Empty);
12121
12122 -- Build a freeze node if parent still needs one. Also make sure that
12123 -- the Depends_On_Private status is set because the subtype will need
12124 -- reprocessing at the time the base type does, and also we must set a
12125 -- conditional delay.
12126
12127 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
12128 Conditional_Delay (Def_Id, T);
12129 end Constrain_Array;
12130
12131 ------------------------------
12132 -- Constrain_Component_Type --
12133 ------------------------------
12134
12135 function Constrain_Component_Type
12136 (Comp : Entity_Id;
12137 Constrained_Typ : Entity_Id;
12138 Related_Node : Node_Id;
12139 Typ : Entity_Id;
12140 Constraints : Elist_Id) return Entity_Id
12141 is
12142 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
12143 Compon_Type : constant Entity_Id := Etype (Comp);
12144
12145 function Build_Constrained_Array_Type
12146 (Old_Type : Entity_Id) return Entity_Id;
12147 -- If Old_Type is an array type, one of whose indexes is constrained
12148 -- by a discriminant, build an Itype whose constraint replaces the
12149 -- discriminant with its value in the constraint.
12150
12151 function Build_Constrained_Discriminated_Type
12152 (Old_Type : Entity_Id) return Entity_Id;
12153 -- Ditto for record components
12154
12155 function Build_Constrained_Access_Type
12156 (Old_Type : Entity_Id) return Entity_Id;
12157 -- Ditto for access types. Makes use of previous two functions, to
12158 -- constrain designated type.
12159
12160 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
12161 -- T is an array or discriminated type, C is a list of constraints
12162 -- that apply to T. This routine builds the constrained subtype.
12163
12164 function Is_Discriminant (Expr : Node_Id) return Boolean;
12165 -- Returns True if Expr is a discriminant
12166
12167 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
12168 -- Find the value of discriminant Discrim in Constraint
12169
12170 -----------------------------------
12171 -- Build_Constrained_Access_Type --
12172 -----------------------------------
12173
12174 function Build_Constrained_Access_Type
12175 (Old_Type : Entity_Id) return Entity_Id
12176 is
12177 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
12178 Itype : Entity_Id;
12179 Desig_Subtype : Entity_Id;
12180 Scop : Entity_Id;
12181
12182 begin
12183 -- if the original access type was not embedded in the enclosing
12184 -- type definition, there is no need to produce a new access
12185 -- subtype. In fact every access type with an explicit constraint
12186 -- generates an itype whose scope is the enclosing record.
12187
12188 if not Is_Type (Scope (Old_Type)) then
12189 return Old_Type;
12190
12191 elsif Is_Array_Type (Desig_Type) then
12192 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
12193
12194 elsif Has_Discriminants (Desig_Type) then
12195
12196 -- This may be an access type to an enclosing record type for
12197 -- which we are constructing the constrained components. Return
12198 -- the enclosing record subtype. This is not always correct,
12199 -- but avoids infinite recursion. ???
12200
12201 Desig_Subtype := Any_Type;
12202
12203 for J in reverse 0 .. Scope_Stack.Last loop
12204 Scop := Scope_Stack.Table (J).Entity;
12205
12206 if Is_Type (Scop)
12207 and then Base_Type (Scop) = Base_Type (Desig_Type)
12208 then
12209 Desig_Subtype := Scop;
12210 end if;
12211
12212 exit when not Is_Type (Scop);
12213 end loop;
12214
12215 if Desig_Subtype = Any_Type then
12216 Desig_Subtype :=
12217 Build_Constrained_Discriminated_Type (Desig_Type);
12218 end if;
12219
12220 else
12221 return Old_Type;
12222 end if;
12223
12224 if Desig_Subtype /= Desig_Type then
12225
12226 -- The Related_Node better be here or else we won't be able
12227 -- to attach new itypes to a node in the tree.
12228
12229 pragma Assert (Present (Related_Node));
12230
12231 Itype := Create_Itype (E_Access_Subtype, Related_Node);
12232
12233 Set_Etype (Itype, Base_Type (Old_Type));
12234 Set_Size_Info (Itype, (Old_Type));
12235 Set_Directly_Designated_Type (Itype, Desig_Subtype);
12236 Set_Depends_On_Private (Itype, Has_Private_Component
12237 (Old_Type));
12238 Set_Is_Access_Constant (Itype, Is_Access_Constant
12239 (Old_Type));
12240
12241 -- The new itype needs freezing when it depends on a not frozen
12242 -- type and the enclosing subtype needs freezing.
12243
12244 if Has_Delayed_Freeze (Constrained_Typ)
12245 and then not Is_Frozen (Constrained_Typ)
12246 then
12247 Conditional_Delay (Itype, Base_Type (Old_Type));
12248 end if;
12249
12250 return Itype;
12251
12252 else
12253 return Old_Type;
12254 end if;
12255 end Build_Constrained_Access_Type;
12256
12257 ----------------------------------
12258 -- Build_Constrained_Array_Type --
12259 ----------------------------------
12260
12261 function Build_Constrained_Array_Type
12262 (Old_Type : Entity_Id) return Entity_Id
12263 is
12264 Lo_Expr : Node_Id;
12265 Hi_Expr : Node_Id;
12266 Old_Index : Node_Id;
12267 Range_Node : Node_Id;
12268 Constr_List : List_Id;
12269
12270 Need_To_Create_Itype : Boolean := False;
12271
12272 begin
12273 Old_Index := First_Index (Old_Type);
12274 while Present (Old_Index) loop
12275 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
12276
12277 if Is_Discriminant (Lo_Expr)
12278 or else
12279 Is_Discriminant (Hi_Expr)
12280 then
12281 Need_To_Create_Itype := True;
12282 end if;
12283
12284 Next_Index (Old_Index);
12285 end loop;
12286
12287 if Need_To_Create_Itype then
12288 Constr_List := New_List;
12289
12290 Old_Index := First_Index (Old_Type);
12291 while Present (Old_Index) loop
12292 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
12293
12294 if Is_Discriminant (Lo_Expr) then
12295 Lo_Expr := Get_Discr_Value (Lo_Expr);
12296 end if;
12297
12298 if Is_Discriminant (Hi_Expr) then
12299 Hi_Expr := Get_Discr_Value (Hi_Expr);
12300 end if;
12301
12302 Range_Node :=
12303 Make_Range
12304 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
12305
12306 Append (Range_Node, To => Constr_List);
12307
12308 Next_Index (Old_Index);
12309 end loop;
12310
12311 return Build_Subtype (Old_Type, Constr_List);
12312
12313 else
12314 return Old_Type;
12315 end if;
12316 end Build_Constrained_Array_Type;
12317
12318 ------------------------------------------
12319 -- Build_Constrained_Discriminated_Type --
12320 ------------------------------------------
12321
12322 function Build_Constrained_Discriminated_Type
12323 (Old_Type : Entity_Id) return Entity_Id
12324 is
12325 Expr : Node_Id;
12326 Constr_List : List_Id;
12327 Old_Constraint : Elmt_Id;
12328
12329 Need_To_Create_Itype : Boolean := False;
12330
12331 begin
12332 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
12333 while Present (Old_Constraint) loop
12334 Expr := Node (Old_Constraint);
12335
12336 if Is_Discriminant (Expr) then
12337 Need_To_Create_Itype := True;
12338 end if;
12339
12340 Next_Elmt (Old_Constraint);
12341 end loop;
12342
12343 if Need_To_Create_Itype then
12344 Constr_List := New_List;
12345
12346 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
12347 while Present (Old_Constraint) loop
12348 Expr := Node (Old_Constraint);
12349
12350 if Is_Discriminant (Expr) then
12351 Expr := Get_Discr_Value (Expr);
12352 end if;
12353
12354 Append (New_Copy_Tree (Expr), To => Constr_List);
12355
12356 Next_Elmt (Old_Constraint);
12357 end loop;
12358
12359 return Build_Subtype (Old_Type, Constr_List);
12360
12361 else
12362 return Old_Type;
12363 end if;
12364 end Build_Constrained_Discriminated_Type;
12365
12366 -------------------
12367 -- Build_Subtype --
12368 -------------------
12369
12370 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
12371 Indic : Node_Id;
12372 Subtyp_Decl : Node_Id;
12373 Def_Id : Entity_Id;
12374 Btyp : Entity_Id := Base_Type (T);
12375
12376 begin
12377 -- The Related_Node better be here or else we won't be able to
12378 -- attach new itypes to a node in the tree.
12379
12380 pragma Assert (Present (Related_Node));
12381
12382 -- If the view of the component's type is incomplete or private
12383 -- with unknown discriminants, then the constraint must be applied
12384 -- to the full type.
12385
12386 if Has_Unknown_Discriminants (Btyp)
12387 and then Present (Underlying_Type (Btyp))
12388 then
12389 Btyp := Underlying_Type (Btyp);
12390 end if;
12391
12392 Indic :=
12393 Make_Subtype_Indication (Loc,
12394 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
12395 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
12396
12397 Def_Id := Create_Itype (Ekind (T), Related_Node);
12398
12399 Subtyp_Decl :=
12400 Make_Subtype_Declaration (Loc,
12401 Defining_Identifier => Def_Id,
12402 Subtype_Indication => Indic);
12403
12404 Set_Parent (Subtyp_Decl, Parent (Related_Node));
12405
12406 -- Itypes must be analyzed with checks off (see package Itypes)
12407
12408 Analyze (Subtyp_Decl, Suppress => All_Checks);
12409
12410 return Def_Id;
12411 end Build_Subtype;
12412
12413 ---------------------
12414 -- Get_Discr_Value --
12415 ---------------------
12416
12417 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
12418 D : Entity_Id;
12419 E : Elmt_Id;
12420
12421 begin
12422 -- The discriminant may be declared for the type, in which case we
12423 -- find it by iterating over the list of discriminants. If the
12424 -- discriminant is inherited from a parent type, it appears as the
12425 -- corresponding discriminant of the current type. This will be the
12426 -- case when constraining an inherited component whose constraint is
12427 -- given by a discriminant of the parent.
12428
12429 D := First_Discriminant (Typ);
12430 E := First_Elmt (Constraints);
12431
12432 while Present (D) loop
12433 if D = Entity (Discrim)
12434 or else D = CR_Discriminant (Entity (Discrim))
12435 or else Corresponding_Discriminant (D) = Entity (Discrim)
12436 then
12437 return Node (E);
12438 end if;
12439
12440 Next_Discriminant (D);
12441 Next_Elmt (E);
12442 end loop;
12443
12444 -- The Corresponding_Discriminant mechanism is incomplete, because
12445 -- the correspondence between new and old discriminants is not one
12446 -- to one: one new discriminant can constrain several old ones. In
12447 -- that case, scan sequentially the stored_constraint, the list of
12448 -- discriminants of the parents, and the constraints.
12449
12450 -- Previous code checked for the present of the Stored_Constraint
12451 -- list for the derived type, but did not use it at all. Should it
12452 -- be present when the component is a discriminated task type?
12453
12454 if Is_Derived_Type (Typ)
12455 and then Scope (Entity (Discrim)) = Etype (Typ)
12456 then
12457 D := First_Discriminant (Etype (Typ));
12458 E := First_Elmt (Constraints);
12459 while Present (D) loop
12460 if D = Entity (Discrim) then
12461 return Node (E);
12462 end if;
12463
12464 Next_Discriminant (D);
12465 Next_Elmt (E);
12466 end loop;
12467 end if;
12468
12469 -- Something is wrong if we did not find the value
12470
12471 raise Program_Error;
12472 end Get_Discr_Value;
12473
12474 ---------------------
12475 -- Is_Discriminant --
12476 ---------------------
12477
12478 function Is_Discriminant (Expr : Node_Id) return Boolean is
12479 Discrim_Scope : Entity_Id;
12480
12481 begin
12482 if Denotes_Discriminant (Expr) then
12483 Discrim_Scope := Scope (Entity (Expr));
12484
12485 -- Either we have a reference to one of Typ's discriminants,
12486
12487 pragma Assert (Discrim_Scope = Typ
12488
12489 -- or to the discriminants of the parent type, in the case
12490 -- of a derivation of a tagged type with variants.
12491
12492 or else Discrim_Scope = Etype (Typ)
12493 or else Full_View (Discrim_Scope) = Etype (Typ)
12494
12495 -- or same as above for the case where the discriminants
12496 -- were declared in Typ's private view.
12497
12498 or else (Is_Private_Type (Discrim_Scope)
12499 and then Chars (Discrim_Scope) = Chars (Typ))
12500
12501 -- or else we are deriving from the full view and the
12502 -- discriminant is declared in the private entity.
12503
12504 or else (Is_Private_Type (Typ)
12505 and then Chars (Discrim_Scope) = Chars (Typ))
12506
12507 -- Or we are constrained the corresponding record of a
12508 -- synchronized type that completes a private declaration.
12509
12510 or else (Is_Concurrent_Record_Type (Typ)
12511 and then
12512 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
12513
12514 -- or we have a class-wide type, in which case make sure the
12515 -- discriminant found belongs to the root type.
12516
12517 or else (Is_Class_Wide_Type (Typ)
12518 and then Etype (Typ) = Discrim_Scope));
12519
12520 return True;
12521 end if;
12522
12523 -- In all other cases we have something wrong
12524
12525 return False;
12526 end Is_Discriminant;
12527
12528 -- Start of processing for Constrain_Component_Type
12529
12530 begin
12531 if Nkind (Parent (Comp)) = N_Component_Declaration
12532 and then Comes_From_Source (Parent (Comp))
12533 and then Comes_From_Source
12534 (Subtype_Indication (Component_Definition (Parent (Comp))))
12535 and then
12536 Is_Entity_Name
12537 (Subtype_Indication (Component_Definition (Parent (Comp))))
12538 then
12539 return Compon_Type;
12540
12541 elsif Is_Array_Type (Compon_Type) then
12542 return Build_Constrained_Array_Type (Compon_Type);
12543
12544 elsif Has_Discriminants (Compon_Type) then
12545 return Build_Constrained_Discriminated_Type (Compon_Type);
12546
12547 elsif Is_Access_Type (Compon_Type) then
12548 return Build_Constrained_Access_Type (Compon_Type);
12549
12550 else
12551 return Compon_Type;
12552 end if;
12553 end Constrain_Component_Type;
12554
12555 --------------------------
12556 -- Constrain_Concurrent --
12557 --------------------------
12558
12559 -- For concurrent types, the associated record value type carries the same
12560 -- discriminants, so when we constrain a concurrent type, we must constrain
12561 -- the corresponding record type as well.
12562
12563 procedure Constrain_Concurrent
12564 (Def_Id : in out Entity_Id;
12565 SI : Node_Id;
12566 Related_Nod : Node_Id;
12567 Related_Id : Entity_Id;
12568 Suffix : Character)
12569 is
12570 -- Retrieve Base_Type to ensure getting to the concurrent type in the
12571 -- case of a private subtype (needed when only doing semantic analysis).
12572
12573 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
12574 T_Val : Entity_Id;
12575
12576 begin
12577 if Is_Access_Type (T_Ent) then
12578 T_Ent := Designated_Type (T_Ent);
12579 end if;
12580
12581 T_Val := Corresponding_Record_Type (T_Ent);
12582
12583 if Present (T_Val) then
12584
12585 if No (Def_Id) then
12586 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12587 end if;
12588
12589 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12590
12591 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12592 Set_Corresponding_Record_Type (Def_Id,
12593 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
12594
12595 else
12596 -- If there is no associated record, expansion is disabled and this
12597 -- is a generic context. Create a subtype in any case, so that
12598 -- semantic analysis can proceed.
12599
12600 if No (Def_Id) then
12601 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12602 end if;
12603
12604 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12605 end if;
12606 end Constrain_Concurrent;
12607
12608 ------------------------------------
12609 -- Constrain_Corresponding_Record --
12610 ------------------------------------
12611
12612 function Constrain_Corresponding_Record
12613 (Prot_Subt : Entity_Id;
12614 Corr_Rec : Entity_Id;
12615 Related_Nod : Node_Id) return Entity_Id
12616 is
12617 T_Sub : constant Entity_Id :=
12618 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
12619
12620 begin
12621 Set_Etype (T_Sub, Corr_Rec);
12622 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
12623 Set_Is_Constrained (T_Sub, True);
12624 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
12625 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
12626
12627 if Has_Discriminants (Prot_Subt) then -- False only if errors.
12628 Set_Discriminant_Constraint
12629 (T_Sub, Discriminant_Constraint (Prot_Subt));
12630 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
12631 Create_Constrained_Components
12632 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
12633 end if;
12634
12635 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
12636
12637 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
12638 Conditional_Delay (T_Sub, Corr_Rec);
12639
12640 else
12641 -- This is a component subtype: it will be frozen in the context of
12642 -- the enclosing record's init_proc, so that discriminant references
12643 -- are resolved to discriminals. (Note: we used to skip freezing
12644 -- altogether in that case, which caused errors downstream for
12645 -- components of a bit packed array type).
12646
12647 Set_Has_Delayed_Freeze (T_Sub);
12648 end if;
12649
12650 return T_Sub;
12651 end Constrain_Corresponding_Record;
12652
12653 -----------------------
12654 -- Constrain_Decimal --
12655 -----------------------
12656
12657 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
12658 T : constant Entity_Id := Entity (Subtype_Mark (S));
12659 C : constant Node_Id := Constraint (S);
12660 Loc : constant Source_Ptr := Sloc (C);
12661 Range_Expr : Node_Id;
12662 Digits_Expr : Node_Id;
12663 Digits_Val : Uint;
12664 Bound_Val : Ureal;
12665
12666 begin
12667 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
12668
12669 if Nkind (C) = N_Range_Constraint then
12670 Range_Expr := Range_Expression (C);
12671 Digits_Val := Digits_Value (T);
12672
12673 else
12674 pragma Assert (Nkind (C) = N_Digits_Constraint);
12675
12676 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
12677
12678 Digits_Expr := Digits_Expression (C);
12679 Analyze_And_Resolve (Digits_Expr, Any_Integer);
12680
12681 Check_Digits_Expression (Digits_Expr);
12682 Digits_Val := Expr_Value (Digits_Expr);
12683
12684 if Digits_Val > Digits_Value (T) then
12685 Error_Msg_N
12686 ("digits expression is incompatible with subtype", C);
12687 Digits_Val := Digits_Value (T);
12688 end if;
12689
12690 if Present (Range_Constraint (C)) then
12691 Range_Expr := Range_Expression (Range_Constraint (C));
12692 else
12693 Range_Expr := Empty;
12694 end if;
12695 end if;
12696
12697 Set_Etype (Def_Id, Base_Type (T));
12698 Set_Size_Info (Def_Id, (T));
12699 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12700 Set_Delta_Value (Def_Id, Delta_Value (T));
12701 Set_Scale_Value (Def_Id, Scale_Value (T));
12702 Set_Small_Value (Def_Id, Small_Value (T));
12703 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
12704 Set_Digits_Value (Def_Id, Digits_Val);
12705
12706 -- Manufacture range from given digits value if no range present
12707
12708 if No (Range_Expr) then
12709 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
12710 Range_Expr :=
12711 Make_Range (Loc,
12712 Low_Bound =>
12713 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
12714 High_Bound =>
12715 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
12716 end if;
12717
12718 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
12719 Set_Discrete_RM_Size (Def_Id);
12720
12721 -- Unconditionally delay the freeze, since we cannot set size
12722 -- information in all cases correctly until the freeze point.
12723
12724 Set_Has_Delayed_Freeze (Def_Id);
12725 end Constrain_Decimal;
12726
12727 ----------------------------------
12728 -- Constrain_Discriminated_Type --
12729 ----------------------------------
12730
12731 procedure Constrain_Discriminated_Type
12732 (Def_Id : Entity_Id;
12733 S : Node_Id;
12734 Related_Nod : Node_Id;
12735 For_Access : Boolean := False)
12736 is
12737 E : constant Entity_Id := Entity (Subtype_Mark (S));
12738 T : Entity_Id;
12739 C : Node_Id;
12740 Elist : Elist_Id := New_Elmt_List;
12741
12742 procedure Fixup_Bad_Constraint;
12743 -- This is called after finding a bad constraint, and after having
12744 -- posted an appropriate error message. The mission is to leave the
12745 -- entity T in as reasonable state as possible.
12746
12747 --------------------------
12748 -- Fixup_Bad_Constraint --
12749 --------------------------
12750
12751 procedure Fixup_Bad_Constraint is
12752 begin
12753 -- Set a reasonable Ekind for the entity. For an incomplete type,
12754 -- we can't do much, but for other types, we can set the proper
12755 -- corresponding subtype kind.
12756
12757 if Ekind (T) = E_Incomplete_Type then
12758 Set_Ekind (Def_Id, Ekind (T));
12759 else
12760 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
12761 end if;
12762
12763 -- Set Etype to the known type, to reduce chances of cascaded errors
12764
12765 Set_Etype (Def_Id, E);
12766 Set_Error_Posted (Def_Id);
12767 end Fixup_Bad_Constraint;
12768
12769 -- Start of processing for Constrain_Discriminated_Type
12770
12771 begin
12772 C := Constraint (S);
12773
12774 -- A discriminant constraint is only allowed in a subtype indication,
12775 -- after a subtype mark. This subtype mark must denote either a type
12776 -- with discriminants, or an access type whose designated type is a
12777 -- type with discriminants. A discriminant constraint specifies the
12778 -- values of these discriminants (RM 3.7.2(5)).
12779
12780 T := Base_Type (Entity (Subtype_Mark (S)));
12781
12782 if Is_Access_Type (T) then
12783 T := Designated_Type (T);
12784 end if;
12785
12786 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
12787 -- Avoid generating an error for access-to-incomplete subtypes.
12788
12789 if Ada_Version >= Ada_2005
12790 and then Ekind (T) = E_Incomplete_Type
12791 and then Nkind (Parent (S)) = N_Subtype_Declaration
12792 and then not Is_Itype (Def_Id)
12793 then
12794 -- A little sanity check, emit an error message if the type
12795 -- has discriminants to begin with. Type T may be a regular
12796 -- incomplete type or imported via a limited with clause.
12797
12798 if Has_Discriminants (T)
12799 or else (From_Limited_With (T)
12800 and then Present (Non_Limited_View (T))
12801 and then Nkind (Parent (Non_Limited_View (T))) =
12802 N_Full_Type_Declaration
12803 and then Present (Discriminant_Specifications
12804 (Parent (Non_Limited_View (T)))))
12805 then
12806 Error_Msg_N
12807 ("(Ada 2005) incomplete subtype may not be constrained", C);
12808 else
12809 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12810 end if;
12811
12812 Fixup_Bad_Constraint;
12813 return;
12814
12815 -- Check that the type has visible discriminants. The type may be
12816 -- a private type with unknown discriminants whose full view has
12817 -- discriminants which are invisible.
12818
12819 elsif not Has_Discriminants (T)
12820 or else
12821 (Has_Unknown_Discriminants (T)
12822 and then Is_Private_Type (T))
12823 then
12824 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12825 Fixup_Bad_Constraint;
12826 return;
12827
12828 elsif Is_Constrained (E)
12829 or else (Ekind (E) = E_Class_Wide_Subtype
12830 and then Present (Discriminant_Constraint (E)))
12831 then
12832 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
12833 Fixup_Bad_Constraint;
12834 return;
12835 end if;
12836
12837 -- T may be an unconstrained subtype (e.g. a generic actual).
12838 -- Constraint applies to the base type.
12839
12840 T := Base_Type (T);
12841
12842 Elist := Build_Discriminant_Constraints (T, S);
12843
12844 -- If the list returned was empty we had an error in building the
12845 -- discriminant constraint. We have also already signalled an error
12846 -- in the incomplete type case
12847
12848 if Is_Empty_Elmt_List (Elist) then
12849 Fixup_Bad_Constraint;
12850 return;
12851 end if;
12852
12853 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
12854 end Constrain_Discriminated_Type;
12855
12856 ---------------------------
12857 -- Constrain_Enumeration --
12858 ---------------------------
12859
12860 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
12861 T : constant Entity_Id := Entity (Subtype_Mark (S));
12862 C : constant Node_Id := Constraint (S);
12863
12864 begin
12865 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12866
12867 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
12868
12869 Set_Etype (Def_Id, Base_Type (T));
12870 Set_Size_Info (Def_Id, (T));
12871 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12872 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12873
12874 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12875
12876 Set_Discrete_RM_Size (Def_Id);
12877 end Constrain_Enumeration;
12878
12879 ----------------------
12880 -- Constrain_Float --
12881 ----------------------
12882
12883 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
12884 T : constant Entity_Id := Entity (Subtype_Mark (S));
12885 C : Node_Id;
12886 D : Node_Id;
12887 Rais : Node_Id;
12888
12889 begin
12890 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
12891
12892 Set_Etype (Def_Id, Base_Type (T));
12893 Set_Size_Info (Def_Id, (T));
12894 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12895
12896 -- Process the constraint
12897
12898 C := Constraint (S);
12899
12900 -- Digits constraint present
12901
12902 if Nkind (C) = N_Digits_Constraint then
12903
12904 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
12905 Check_Restriction (No_Obsolescent_Features, C);
12906
12907 if Warn_On_Obsolescent_Feature then
12908 Error_Msg_N
12909 ("subtype digits constraint is an " &
12910 "obsolescent feature (RM J.3(8))?j?", C);
12911 end if;
12912
12913 D := Digits_Expression (C);
12914 Analyze_And_Resolve (D, Any_Integer);
12915 Check_Digits_Expression (D);
12916 Set_Digits_Value (Def_Id, Expr_Value (D));
12917
12918 -- Check that digits value is in range. Obviously we can do this
12919 -- at compile time, but it is strictly a runtime check, and of
12920 -- course there is an ACVC test that checks this.
12921
12922 if Digits_Value (Def_Id) > Digits_Value (T) then
12923 Error_Msg_Uint_1 := Digits_Value (T);
12924 Error_Msg_N ("??digits value is too large, maximum is ^", D);
12925 Rais :=
12926 Make_Raise_Constraint_Error (Sloc (D),
12927 Reason => CE_Range_Check_Failed);
12928 Insert_Action (Declaration_Node (Def_Id), Rais);
12929 end if;
12930
12931 C := Range_Constraint (C);
12932
12933 -- No digits constraint present
12934
12935 else
12936 Set_Digits_Value (Def_Id, Digits_Value (T));
12937 end if;
12938
12939 -- Range constraint present
12940
12941 if Nkind (C) = N_Range_Constraint then
12942 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12943
12944 -- No range constraint present
12945
12946 else
12947 pragma Assert (No (C));
12948 Set_Scalar_Range (Def_Id, Scalar_Range (T));
12949 end if;
12950
12951 Set_Is_Constrained (Def_Id);
12952 end Constrain_Float;
12953
12954 ---------------------
12955 -- Constrain_Index --
12956 ---------------------
12957
12958 procedure Constrain_Index
12959 (Index : Node_Id;
12960 S : Node_Id;
12961 Related_Nod : Node_Id;
12962 Related_Id : Entity_Id;
12963 Suffix : Character;
12964 Suffix_Index : Nat)
12965 is
12966 Def_Id : Entity_Id;
12967 R : Node_Id := Empty;
12968 T : constant Entity_Id := Etype (Index);
12969
12970 begin
12971 if Nkind (S) = N_Range
12972 or else
12973 (Nkind (S) = N_Attribute_Reference
12974 and then Attribute_Name (S) = Name_Range)
12975 then
12976 -- A Range attribute will be transformed into N_Range by Resolve
12977
12978 Analyze (S);
12979 Set_Etype (S, T);
12980 R := S;
12981
12982 Process_Range_Expr_In_Decl (R, T);
12983
12984 if not Error_Posted (S)
12985 and then
12986 (Nkind (S) /= N_Range
12987 or else not Covers (T, (Etype (Low_Bound (S))))
12988 or else not Covers (T, (Etype (High_Bound (S)))))
12989 then
12990 if Base_Type (T) /= Any_Type
12991 and then Etype (Low_Bound (S)) /= Any_Type
12992 and then Etype (High_Bound (S)) /= Any_Type
12993 then
12994 Error_Msg_N ("range expected", S);
12995 end if;
12996 end if;
12997
12998 elsif Nkind (S) = N_Subtype_Indication then
12999
13000 -- The parser has verified that this is a discrete indication
13001
13002 Resolve_Discrete_Subtype_Indication (S, T);
13003 Bad_Predicated_Subtype_Use
13004 ("subtype& has predicate, not allowed in index constraint",
13005 S, Entity (Subtype_Mark (S)));
13006
13007 R := Range_Expression (Constraint (S));
13008
13009 -- Capture values of bounds and generate temporaries for them if
13010 -- needed, since checks may cause duplication of the expressions
13011 -- which must not be reevaluated.
13012
13013 -- The forced evaluation removes side effects from expressions, which
13014 -- should occur also in GNATprove mode. Otherwise, we end up with
13015 -- unexpected insertions of actions at places where this is not
13016 -- supposed to occur, e.g. on default parameters of a call.
13017
13018 if Expander_Active or GNATprove_Mode then
13019 Force_Evaluation (Low_Bound (R));
13020 Force_Evaluation (High_Bound (R));
13021 end if;
13022
13023 elsif Nkind (S) = N_Discriminant_Association then
13024
13025 -- Syntactically valid in subtype indication
13026
13027 Error_Msg_N ("invalid index constraint", S);
13028 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13029 return;
13030
13031 -- Subtype_Mark case, no anonymous subtypes to construct
13032
13033 else
13034 Analyze (S);
13035
13036 if Is_Entity_Name (S) then
13037 if not Is_Type (Entity (S)) then
13038 Error_Msg_N ("expect subtype mark for index constraint", S);
13039
13040 elsif Base_Type (Entity (S)) /= Base_Type (T) then
13041 Wrong_Type (S, Base_Type (T));
13042
13043 -- Check error of subtype with predicate in index constraint
13044
13045 else
13046 Bad_Predicated_Subtype_Use
13047 ("subtype& has predicate, not allowed in index constraint",
13048 S, Entity (S));
13049 end if;
13050
13051 return;
13052
13053 else
13054 Error_Msg_N ("invalid index constraint", S);
13055 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13056 return;
13057 end if;
13058 end if;
13059
13060 Def_Id :=
13061 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
13062
13063 Set_Etype (Def_Id, Base_Type (T));
13064
13065 if Is_Modular_Integer_Type (T) then
13066 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13067
13068 elsif Is_Integer_Type (T) then
13069 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13070
13071 else
13072 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13073 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13074 Set_First_Literal (Def_Id, First_Literal (T));
13075 end if;
13076
13077 Set_Size_Info (Def_Id, (T));
13078 Set_RM_Size (Def_Id, RM_Size (T));
13079 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13080
13081 Set_Scalar_Range (Def_Id, R);
13082
13083 Set_Etype (S, Def_Id);
13084 Set_Discrete_RM_Size (Def_Id);
13085 end Constrain_Index;
13086
13087 -----------------------
13088 -- Constrain_Integer --
13089 -----------------------
13090
13091 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
13092 T : constant Entity_Id := Entity (Subtype_Mark (S));
13093 C : constant Node_Id := Constraint (S);
13094
13095 begin
13096 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13097
13098 if Is_Modular_Integer_Type (T) then
13099 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13100 else
13101 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13102 end if;
13103
13104 Set_Etype (Def_Id, Base_Type (T));
13105 Set_Size_Info (Def_Id, (T));
13106 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13107 Set_Discrete_RM_Size (Def_Id);
13108 end Constrain_Integer;
13109
13110 ------------------------------
13111 -- Constrain_Ordinary_Fixed --
13112 ------------------------------
13113
13114 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
13115 T : constant Entity_Id := Entity (Subtype_Mark (S));
13116 C : Node_Id;
13117 D : Node_Id;
13118 Rais : Node_Id;
13119
13120 begin
13121 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
13122 Set_Etype (Def_Id, Base_Type (T));
13123 Set_Size_Info (Def_Id, (T));
13124 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13125 Set_Small_Value (Def_Id, Small_Value (T));
13126
13127 -- Process the constraint
13128
13129 C := Constraint (S);
13130
13131 -- Delta constraint present
13132
13133 if Nkind (C) = N_Delta_Constraint then
13134
13135 Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
13136 Check_Restriction (No_Obsolescent_Features, C);
13137
13138 if Warn_On_Obsolescent_Feature then
13139 Error_Msg_S
13140 ("subtype delta constraint is an " &
13141 "obsolescent feature (RM J.3(7))?j?");
13142 end if;
13143
13144 D := Delta_Expression (C);
13145 Analyze_And_Resolve (D, Any_Real);
13146 Check_Delta_Expression (D);
13147 Set_Delta_Value (Def_Id, Expr_Value_R (D));
13148
13149 -- Check that delta value is in range. Obviously we can do this
13150 -- at compile time, but it is strictly a runtime check, and of
13151 -- course there is an ACVC test that checks this.
13152
13153 if Delta_Value (Def_Id) < Delta_Value (T) then
13154 Error_Msg_N ("??delta value is too small", D);
13155 Rais :=
13156 Make_Raise_Constraint_Error (Sloc (D),
13157 Reason => CE_Range_Check_Failed);
13158 Insert_Action (Declaration_Node (Def_Id), Rais);
13159 end if;
13160
13161 C := Range_Constraint (C);
13162
13163 -- No delta constraint present
13164
13165 else
13166 Set_Delta_Value (Def_Id, Delta_Value (T));
13167 end if;
13168
13169 -- Range constraint present
13170
13171 if Nkind (C) = N_Range_Constraint then
13172 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13173
13174 -- No range constraint present
13175
13176 else
13177 pragma Assert (No (C));
13178 Set_Scalar_Range (Def_Id, Scalar_Range (T));
13179
13180 end if;
13181
13182 Set_Discrete_RM_Size (Def_Id);
13183
13184 -- Unconditionally delay the freeze, since we cannot set size
13185 -- information in all cases correctly until the freeze point.
13186
13187 Set_Has_Delayed_Freeze (Def_Id);
13188 end Constrain_Ordinary_Fixed;
13189
13190 -----------------------
13191 -- Contain_Interface --
13192 -----------------------
13193
13194 function Contain_Interface
13195 (Iface : Entity_Id;
13196 Ifaces : Elist_Id) return Boolean
13197 is
13198 Iface_Elmt : Elmt_Id;
13199
13200 begin
13201 if Present (Ifaces) then
13202 Iface_Elmt := First_Elmt (Ifaces);
13203 while Present (Iface_Elmt) loop
13204 if Node (Iface_Elmt) = Iface then
13205 return True;
13206 end if;
13207
13208 Next_Elmt (Iface_Elmt);
13209 end loop;
13210 end if;
13211
13212 return False;
13213 end Contain_Interface;
13214
13215 ---------------------------
13216 -- Convert_Scalar_Bounds --
13217 ---------------------------
13218
13219 procedure Convert_Scalar_Bounds
13220 (N : Node_Id;
13221 Parent_Type : Entity_Id;
13222 Derived_Type : Entity_Id;
13223 Loc : Source_Ptr)
13224 is
13225 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
13226
13227 Lo : Node_Id;
13228 Hi : Node_Id;
13229 Rng : Node_Id;
13230
13231 begin
13232 -- Defend against previous errors
13233
13234 if No (Scalar_Range (Derived_Type)) then
13235 Check_Error_Detected;
13236 return;
13237 end if;
13238
13239 Lo := Build_Scalar_Bound
13240 (Type_Low_Bound (Derived_Type),
13241 Parent_Type, Implicit_Base);
13242
13243 Hi := Build_Scalar_Bound
13244 (Type_High_Bound (Derived_Type),
13245 Parent_Type, Implicit_Base);
13246
13247 Rng :=
13248 Make_Range (Loc,
13249 Low_Bound => Lo,
13250 High_Bound => Hi);
13251
13252 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
13253
13254 Set_Parent (Rng, N);
13255 Set_Scalar_Range (Derived_Type, Rng);
13256
13257 -- Analyze the bounds
13258
13259 Analyze_And_Resolve (Lo, Implicit_Base);
13260 Analyze_And_Resolve (Hi, Implicit_Base);
13261
13262 -- Analyze the range itself, except that we do not analyze it if
13263 -- the bounds are real literals, and we have a fixed-point type.
13264 -- The reason for this is that we delay setting the bounds in this
13265 -- case till we know the final Small and Size values (see circuit
13266 -- in Freeze.Freeze_Fixed_Point_Type for further details).
13267
13268 if Is_Fixed_Point_Type (Parent_Type)
13269 and then Nkind (Lo) = N_Real_Literal
13270 and then Nkind (Hi) = N_Real_Literal
13271 then
13272 return;
13273
13274 -- Here we do the analysis of the range
13275
13276 -- Note: we do this manually, since if we do a normal Analyze and
13277 -- Resolve call, there are problems with the conversions used for
13278 -- the derived type range.
13279
13280 else
13281 Set_Etype (Rng, Implicit_Base);
13282 Set_Analyzed (Rng, True);
13283 end if;
13284 end Convert_Scalar_Bounds;
13285
13286 -------------------
13287 -- Copy_And_Swap --
13288 -------------------
13289
13290 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
13291 begin
13292 -- Initialize new full declaration entity by copying the pertinent
13293 -- fields of the corresponding private declaration entity.
13294
13295 -- We temporarily set Ekind to a value appropriate for a type to
13296 -- avoid assert failures in Einfo from checking for setting type
13297 -- attributes on something that is not a type. Ekind (Priv) is an
13298 -- appropriate choice, since it allowed the attributes to be set
13299 -- in the first place. This Ekind value will be modified later.
13300
13301 Set_Ekind (Full, Ekind (Priv));
13302
13303 -- Also set Etype temporarily to Any_Type, again, in the absence
13304 -- of errors, it will be properly reset, and if there are errors,
13305 -- then we want a value of Any_Type to remain.
13306
13307 Set_Etype (Full, Any_Type);
13308
13309 -- Now start copying attributes
13310
13311 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
13312
13313 if Has_Discriminants (Full) then
13314 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
13315 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
13316 end if;
13317
13318 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
13319 Set_Homonym (Full, Homonym (Priv));
13320 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
13321 Set_Is_Public (Full, Is_Public (Priv));
13322 Set_Is_Pure (Full, Is_Pure (Priv));
13323 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
13324 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
13325 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
13326 Set_Has_Pragma_Unreferenced_Objects
13327 (Full, Has_Pragma_Unreferenced_Objects
13328 (Priv));
13329
13330 Conditional_Delay (Full, Priv);
13331
13332 if Is_Tagged_Type (Full) then
13333 Set_Direct_Primitive_Operations
13334 (Full, Direct_Primitive_Operations (Priv));
13335 Set_No_Tagged_Streams_Pragma
13336 (Full, No_Tagged_Streams_Pragma (Priv));
13337
13338 if Is_Base_Type (Priv) then
13339 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
13340 end if;
13341 end if;
13342
13343 Set_Is_Volatile (Full, Is_Volatile (Priv));
13344 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
13345 Set_Scope (Full, Scope (Priv));
13346 Set_Next_Entity (Full, Next_Entity (Priv));
13347 Set_First_Entity (Full, First_Entity (Priv));
13348 Set_Last_Entity (Full, Last_Entity (Priv));
13349
13350 -- If access types have been recorded for later handling, keep them in
13351 -- the full view so that they get handled when the full view freeze
13352 -- node is expanded.
13353
13354 if Present (Freeze_Node (Priv))
13355 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
13356 then
13357 Ensure_Freeze_Node (Full);
13358 Set_Access_Types_To_Process
13359 (Freeze_Node (Full),
13360 Access_Types_To_Process (Freeze_Node (Priv)));
13361 end if;
13362
13363 -- Swap the two entities. Now Private is the full type entity and Full
13364 -- is the private one. They will be swapped back at the end of the
13365 -- private part. This swapping ensures that the entity that is visible
13366 -- in the private part is the full declaration.
13367
13368 Exchange_Entities (Priv, Full);
13369 Append_Entity (Full, Scope (Full));
13370 end Copy_And_Swap;
13371
13372 -------------------------------------
13373 -- Copy_Array_Base_Type_Attributes --
13374 -------------------------------------
13375
13376 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
13377 begin
13378 Set_Component_Alignment (T1, Component_Alignment (T2));
13379 Set_Component_Type (T1, Component_Type (T2));
13380 Set_Component_Size (T1, Component_Size (T2));
13381 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
13382 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
13383 Set_Has_Protected (T1, Has_Protected (T2));
13384 Set_Has_Task (T1, Has_Task (T2));
13385 Set_Is_Packed (T1, Is_Packed (T2));
13386 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
13387 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
13388 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
13389 end Copy_Array_Base_Type_Attributes;
13390
13391 -----------------------------------
13392 -- Copy_Array_Subtype_Attributes --
13393 -----------------------------------
13394
13395 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
13396 begin
13397 Set_Size_Info (T1, T2);
13398
13399 Set_First_Index (T1, First_Index (T2));
13400 Set_Is_Aliased (T1, Is_Aliased (T2));
13401 Set_Is_Volatile (T1, Is_Volatile (T2));
13402 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
13403 Set_Is_Constrained (T1, Is_Constrained (T2));
13404 Set_Depends_On_Private (T1, Has_Private_Component (T2));
13405 Set_First_Rep_Item (T1, First_Rep_Item (T2));
13406 Set_Convention (T1, Convention (T2));
13407 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
13408 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
13409 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
13410 end Copy_Array_Subtype_Attributes;
13411
13412 -----------------------------------
13413 -- Create_Constrained_Components --
13414 -----------------------------------
13415
13416 procedure Create_Constrained_Components
13417 (Subt : Entity_Id;
13418 Decl_Node : Node_Id;
13419 Typ : Entity_Id;
13420 Constraints : Elist_Id)
13421 is
13422 Loc : constant Source_Ptr := Sloc (Subt);
13423 Comp_List : constant Elist_Id := New_Elmt_List;
13424 Parent_Type : constant Entity_Id := Etype (Typ);
13425 Assoc_List : constant List_Id := New_List;
13426 Discr_Val : Elmt_Id;
13427 Errors : Boolean;
13428 New_C : Entity_Id;
13429 Old_C : Entity_Id;
13430 Is_Static : Boolean := True;
13431
13432 procedure Collect_Fixed_Components (Typ : Entity_Id);
13433 -- Collect parent type components that do not appear in a variant part
13434
13435 procedure Create_All_Components;
13436 -- Iterate over Comp_List to create the components of the subtype
13437
13438 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
13439 -- Creates a new component from Old_Compon, copying all the fields from
13440 -- it, including its Etype, inserts the new component in the Subt entity
13441 -- chain and returns the new component.
13442
13443 function Is_Variant_Record (T : Entity_Id) return Boolean;
13444 -- If true, and discriminants are static, collect only components from
13445 -- variants selected by discriminant values.
13446
13447 ------------------------------
13448 -- Collect_Fixed_Components --
13449 ------------------------------
13450
13451 procedure Collect_Fixed_Components (Typ : Entity_Id) is
13452 begin
13453 -- Build association list for discriminants, and find components of the
13454 -- variant part selected by the values of the discriminants.
13455
13456 Old_C := First_Discriminant (Typ);
13457 Discr_Val := First_Elmt (Constraints);
13458 while Present (Old_C) loop
13459 Append_To (Assoc_List,
13460 Make_Component_Association (Loc,
13461 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
13462 Expression => New_Copy (Node (Discr_Val))));
13463
13464 Next_Elmt (Discr_Val);
13465 Next_Discriminant (Old_C);
13466 end loop;
13467
13468 -- The tag and the possible parent component are unconditionally in
13469 -- the subtype.
13470
13471 if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
13472 Old_C := First_Component (Typ);
13473 while Present (Old_C) loop
13474 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
13475 Append_Elmt (Old_C, Comp_List);
13476 end if;
13477
13478 Next_Component (Old_C);
13479 end loop;
13480 end if;
13481 end Collect_Fixed_Components;
13482
13483 ---------------------------
13484 -- Create_All_Components --
13485 ---------------------------
13486
13487 procedure Create_All_Components is
13488 Comp : Elmt_Id;
13489
13490 begin
13491 Comp := First_Elmt (Comp_List);
13492 while Present (Comp) loop
13493 Old_C := Node (Comp);
13494 New_C := Create_Component (Old_C);
13495
13496 Set_Etype
13497 (New_C,
13498 Constrain_Component_Type
13499 (Old_C, Subt, Decl_Node, Typ, Constraints));
13500 Set_Is_Public (New_C, Is_Public (Subt));
13501
13502 Next_Elmt (Comp);
13503 end loop;
13504 end Create_All_Components;
13505
13506 ----------------------
13507 -- Create_Component --
13508 ----------------------
13509
13510 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
13511 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
13512
13513 begin
13514 if Ekind (Old_Compon) = E_Discriminant
13515 and then Is_Completely_Hidden (Old_Compon)
13516 then
13517 -- This is a shadow discriminant created for a discriminant of
13518 -- the parent type, which needs to be present in the subtype.
13519 -- Give the shadow discriminant an internal name that cannot
13520 -- conflict with that of visible components.
13521
13522 Set_Chars (New_Compon, New_Internal_Name ('C'));
13523 end if;
13524
13525 -- Set the parent so we have a proper link for freezing etc. This is
13526 -- not a real parent pointer, since of course our parent does not own
13527 -- up to us and reference us, we are an illegitimate child of the
13528 -- original parent.
13529
13530 Set_Parent (New_Compon, Parent (Old_Compon));
13531
13532 -- If the old component's Esize was already determined and is a
13533 -- static value, then the new component simply inherits it. Otherwise
13534 -- the old component's size may require run-time determination, but
13535 -- the new component's size still might be statically determinable
13536 -- (if, for example it has a static constraint). In that case we want
13537 -- Layout_Type to recompute the component's size, so we reset its
13538 -- size and positional fields.
13539
13540 if Frontend_Layout_On_Target
13541 and then not Known_Static_Esize (Old_Compon)
13542 then
13543 Set_Esize (New_Compon, Uint_0);
13544 Init_Normalized_First_Bit (New_Compon);
13545 Init_Normalized_Position (New_Compon);
13546 Init_Normalized_Position_Max (New_Compon);
13547 end if;
13548
13549 -- We do not want this node marked as Comes_From_Source, since
13550 -- otherwise it would get first class status and a separate cross-
13551 -- reference line would be generated. Illegitimate children do not
13552 -- rate such recognition.
13553
13554 Set_Comes_From_Source (New_Compon, False);
13555
13556 -- But it is a real entity, and a birth certificate must be properly
13557 -- registered by entering it into the entity list.
13558
13559 Enter_Name (New_Compon);
13560
13561 return New_Compon;
13562 end Create_Component;
13563
13564 -----------------------
13565 -- Is_Variant_Record --
13566 -----------------------
13567
13568 function Is_Variant_Record (T : Entity_Id) return Boolean is
13569 begin
13570 return Nkind (Parent (T)) = N_Full_Type_Declaration
13571 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
13572 and then Present (Component_List (Type_Definition (Parent (T))))
13573 and then
13574 Present
13575 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
13576 end Is_Variant_Record;
13577
13578 -- Start of processing for Create_Constrained_Components
13579
13580 begin
13581 pragma Assert (Subt /= Base_Type (Subt));
13582 pragma Assert (Typ = Base_Type (Typ));
13583
13584 Set_First_Entity (Subt, Empty);
13585 Set_Last_Entity (Subt, Empty);
13586
13587 -- Check whether constraint is fully static, in which case we can
13588 -- optimize the list of components.
13589
13590 Discr_Val := First_Elmt (Constraints);
13591 while Present (Discr_Val) loop
13592 if not Is_OK_Static_Expression (Node (Discr_Val)) then
13593 Is_Static := False;
13594 exit;
13595 end if;
13596
13597 Next_Elmt (Discr_Val);
13598 end loop;
13599
13600 Set_Has_Static_Discriminants (Subt, Is_Static);
13601
13602 Push_Scope (Subt);
13603
13604 -- Inherit the discriminants of the parent type
13605
13606 Add_Discriminants : declare
13607 Num_Disc : Int;
13608 Num_Gird : Int;
13609
13610 begin
13611 Num_Disc := 0;
13612 Old_C := First_Discriminant (Typ);
13613
13614 while Present (Old_C) loop
13615 Num_Disc := Num_Disc + 1;
13616 New_C := Create_Component (Old_C);
13617 Set_Is_Public (New_C, Is_Public (Subt));
13618 Next_Discriminant (Old_C);
13619 end loop;
13620
13621 -- For an untagged derived subtype, the number of discriminants may
13622 -- be smaller than the number of inherited discriminants, because
13623 -- several of them may be renamed by a single new discriminant or
13624 -- constrained. In this case, add the hidden discriminants back into
13625 -- the subtype, because they need to be present if the optimizer of
13626 -- the GCC 4.x back-end decides to break apart assignments between
13627 -- objects using the parent view into member-wise assignments.
13628
13629 Num_Gird := 0;
13630
13631 if Is_Derived_Type (Typ)
13632 and then not Is_Tagged_Type (Typ)
13633 then
13634 Old_C := First_Stored_Discriminant (Typ);
13635
13636 while Present (Old_C) loop
13637 Num_Gird := Num_Gird + 1;
13638 Next_Stored_Discriminant (Old_C);
13639 end loop;
13640 end if;
13641
13642 if Num_Gird > Num_Disc then
13643
13644 -- Find out multiple uses of new discriminants, and add hidden
13645 -- components for the extra renamed discriminants. We recognize
13646 -- multiple uses through the Corresponding_Discriminant of a
13647 -- new discriminant: if it constrains several old discriminants,
13648 -- this field points to the last one in the parent type. The
13649 -- stored discriminants of the derived type have the same name
13650 -- as those of the parent.
13651
13652 declare
13653 Constr : Elmt_Id;
13654 New_Discr : Entity_Id;
13655 Old_Discr : Entity_Id;
13656
13657 begin
13658 Constr := First_Elmt (Stored_Constraint (Typ));
13659 Old_Discr := First_Stored_Discriminant (Typ);
13660 while Present (Constr) loop
13661 if Is_Entity_Name (Node (Constr))
13662 and then Ekind (Entity (Node (Constr))) = E_Discriminant
13663 then
13664 New_Discr := Entity (Node (Constr));
13665
13666 if Chars (Corresponding_Discriminant (New_Discr)) /=
13667 Chars (Old_Discr)
13668 then
13669 -- The new discriminant has been used to rename a
13670 -- subsequent old discriminant. Introduce a shadow
13671 -- component for the current old discriminant.
13672
13673 New_C := Create_Component (Old_Discr);
13674 Set_Original_Record_Component (New_C, Old_Discr);
13675 end if;
13676
13677 else
13678 -- The constraint has eliminated the old discriminant.
13679 -- Introduce a shadow component.
13680
13681 New_C := Create_Component (Old_Discr);
13682 Set_Original_Record_Component (New_C, Old_Discr);
13683 end if;
13684
13685 Next_Elmt (Constr);
13686 Next_Stored_Discriminant (Old_Discr);
13687 end loop;
13688 end;
13689 end if;
13690 end Add_Discriminants;
13691
13692 if Is_Static
13693 and then Is_Variant_Record (Typ)
13694 then
13695 Collect_Fixed_Components (Typ);
13696
13697 Gather_Components (
13698 Typ,
13699 Component_List (Type_Definition (Parent (Typ))),
13700 Governed_By => Assoc_List,
13701 Into => Comp_List,
13702 Report_Errors => Errors);
13703 pragma Assert (not Errors);
13704
13705 Create_All_Components;
13706
13707 -- If the subtype declaration is created for a tagged type derivation
13708 -- with constraints, we retrieve the record definition of the parent
13709 -- type to select the components of the proper variant.
13710
13711 elsif Is_Static
13712 and then Is_Tagged_Type (Typ)
13713 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
13714 and then
13715 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
13716 and then Is_Variant_Record (Parent_Type)
13717 then
13718 Collect_Fixed_Components (Typ);
13719
13720 Gather_Components (
13721 Typ,
13722 Component_List (Type_Definition (Parent (Parent_Type))),
13723 Governed_By => Assoc_List,
13724 Into => Comp_List,
13725 Report_Errors => Errors);
13726 pragma Assert (not Errors);
13727
13728 -- If the tagged derivation has a type extension, collect all the
13729 -- new components therein.
13730
13731 if Present
13732 (Record_Extension_Part (Type_Definition (Parent (Typ))))
13733 then
13734 Old_C := First_Component (Typ);
13735 while Present (Old_C) loop
13736 if Original_Record_Component (Old_C) = Old_C
13737 and then Chars (Old_C) /= Name_uTag
13738 and then Chars (Old_C) /= Name_uParent
13739 then
13740 Append_Elmt (Old_C, Comp_List);
13741 end if;
13742
13743 Next_Component (Old_C);
13744 end loop;
13745 end if;
13746
13747 Create_All_Components;
13748
13749 else
13750 -- If discriminants are not static, or if this is a multi-level type
13751 -- extension, we have to include all components of the parent type.
13752
13753 Old_C := First_Component (Typ);
13754 while Present (Old_C) loop
13755 New_C := Create_Component (Old_C);
13756
13757 Set_Etype
13758 (New_C,
13759 Constrain_Component_Type
13760 (Old_C, Subt, Decl_Node, Typ, Constraints));
13761 Set_Is_Public (New_C, Is_Public (Subt));
13762
13763 Next_Component (Old_C);
13764 end loop;
13765 end if;
13766
13767 End_Scope;
13768 end Create_Constrained_Components;
13769
13770 ------------------------------------------
13771 -- Decimal_Fixed_Point_Type_Declaration --
13772 ------------------------------------------
13773
13774 procedure Decimal_Fixed_Point_Type_Declaration
13775 (T : Entity_Id;
13776 Def : Node_Id)
13777 is
13778 Loc : constant Source_Ptr := Sloc (Def);
13779 Digs_Expr : constant Node_Id := Digits_Expression (Def);
13780 Delta_Expr : constant Node_Id := Delta_Expression (Def);
13781 Implicit_Base : Entity_Id;
13782 Digs_Val : Uint;
13783 Delta_Val : Ureal;
13784 Scale_Val : Uint;
13785 Bound_Val : Ureal;
13786
13787 begin
13788 Check_SPARK_05_Restriction
13789 ("decimal fixed point type is not allowed", Def);
13790 Check_Restriction (No_Fixed_Point, Def);
13791
13792 -- Create implicit base type
13793
13794 Implicit_Base :=
13795 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
13796 Set_Etype (Implicit_Base, Implicit_Base);
13797
13798 -- Analyze and process delta expression
13799
13800 Analyze_And_Resolve (Delta_Expr, Universal_Real);
13801
13802 Check_Delta_Expression (Delta_Expr);
13803 Delta_Val := Expr_Value_R (Delta_Expr);
13804
13805 -- Check delta is power of 10, and determine scale value from it
13806
13807 declare
13808 Val : Ureal;
13809
13810 begin
13811 Scale_Val := Uint_0;
13812 Val := Delta_Val;
13813
13814 if Val < Ureal_1 then
13815 while Val < Ureal_1 loop
13816 Val := Val * Ureal_10;
13817 Scale_Val := Scale_Val + 1;
13818 end loop;
13819
13820 if Scale_Val > 18 then
13821 Error_Msg_N ("scale exceeds maximum value of 18", Def);
13822 Scale_Val := UI_From_Int (+18);
13823 end if;
13824
13825 else
13826 while Val > Ureal_1 loop
13827 Val := Val / Ureal_10;
13828 Scale_Val := Scale_Val - 1;
13829 end loop;
13830
13831 if Scale_Val < -18 then
13832 Error_Msg_N ("scale is less than minimum value of -18", Def);
13833 Scale_Val := UI_From_Int (-18);
13834 end if;
13835 end if;
13836
13837 if Val /= Ureal_1 then
13838 Error_Msg_N ("delta expression must be a power of 10", Def);
13839 Delta_Val := Ureal_10 ** (-Scale_Val);
13840 end if;
13841 end;
13842
13843 -- Set delta, scale and small (small = delta for decimal type)
13844
13845 Set_Delta_Value (Implicit_Base, Delta_Val);
13846 Set_Scale_Value (Implicit_Base, Scale_Val);
13847 Set_Small_Value (Implicit_Base, Delta_Val);
13848
13849 -- Analyze and process digits expression
13850
13851 Analyze_And_Resolve (Digs_Expr, Any_Integer);
13852 Check_Digits_Expression (Digs_Expr);
13853 Digs_Val := Expr_Value (Digs_Expr);
13854
13855 if Digs_Val > 18 then
13856 Digs_Val := UI_From_Int (+18);
13857 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
13858 end if;
13859
13860 Set_Digits_Value (Implicit_Base, Digs_Val);
13861 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
13862
13863 -- Set range of base type from digits value for now. This will be
13864 -- expanded to represent the true underlying base range by Freeze.
13865
13866 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
13867
13868 -- Note: We leave size as zero for now, size will be set at freeze
13869 -- time. We have to do this for ordinary fixed-point, because the size
13870 -- depends on the specified small, and we might as well do the same for
13871 -- decimal fixed-point.
13872
13873 pragma Assert (Esize (Implicit_Base) = Uint_0);
13874
13875 -- If there are bounds given in the declaration use them as the
13876 -- bounds of the first named subtype.
13877
13878 if Present (Real_Range_Specification (Def)) then
13879 declare
13880 RRS : constant Node_Id := Real_Range_Specification (Def);
13881 Low : constant Node_Id := Low_Bound (RRS);
13882 High : constant Node_Id := High_Bound (RRS);
13883 Low_Val : Ureal;
13884 High_Val : Ureal;
13885
13886 begin
13887 Analyze_And_Resolve (Low, Any_Real);
13888 Analyze_And_Resolve (High, Any_Real);
13889 Check_Real_Bound (Low);
13890 Check_Real_Bound (High);
13891 Low_Val := Expr_Value_R (Low);
13892 High_Val := Expr_Value_R (High);
13893
13894 if Low_Val < (-Bound_Val) then
13895 Error_Msg_N
13896 ("range low bound too small for digits value", Low);
13897 Low_Val := -Bound_Val;
13898 end if;
13899
13900 if High_Val > Bound_Val then
13901 Error_Msg_N
13902 ("range high bound too large for digits value", High);
13903 High_Val := Bound_Val;
13904 end if;
13905
13906 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
13907 end;
13908
13909 -- If no explicit range, use range that corresponds to given
13910 -- digits value. This will end up as the final range for the
13911 -- first subtype.
13912
13913 else
13914 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
13915 end if;
13916
13917 -- Complete entity for first subtype
13918
13919 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
13920 Set_Etype (T, Implicit_Base);
13921 Set_Size_Info (T, Implicit_Base);
13922 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
13923 Set_Digits_Value (T, Digs_Val);
13924 Set_Delta_Value (T, Delta_Val);
13925 Set_Small_Value (T, Delta_Val);
13926 Set_Scale_Value (T, Scale_Val);
13927 Set_Is_Constrained (T);
13928 end Decimal_Fixed_Point_Type_Declaration;
13929
13930 -----------------------------------
13931 -- Derive_Progenitor_Subprograms --
13932 -----------------------------------
13933
13934 procedure Derive_Progenitor_Subprograms
13935 (Parent_Type : Entity_Id;
13936 Tagged_Type : Entity_Id)
13937 is
13938 E : Entity_Id;
13939 Elmt : Elmt_Id;
13940 Iface : Entity_Id;
13941 Iface_Elmt : Elmt_Id;
13942 Iface_Subp : Entity_Id;
13943 New_Subp : Entity_Id := Empty;
13944 Prim_Elmt : Elmt_Id;
13945 Subp : Entity_Id;
13946 Typ : Entity_Id;
13947
13948 begin
13949 pragma Assert (Ada_Version >= Ada_2005
13950 and then Is_Record_Type (Tagged_Type)
13951 and then Is_Tagged_Type (Tagged_Type)
13952 and then Has_Interfaces (Tagged_Type));
13953
13954 -- Step 1: Transfer to the full-view primitives associated with the
13955 -- partial-view that cover interface primitives. Conceptually this
13956 -- work should be done later by Process_Full_View; done here to
13957 -- simplify its implementation at later stages. It can be safely
13958 -- done here because interfaces must be visible in the partial and
13959 -- private view (RM 7.3(7.3/2)).
13960
13961 -- Small optimization: This work is only required if the parent may
13962 -- have entities whose Alias attribute reference an interface primitive.
13963 -- Such a situation may occur if the parent is an abstract type and the
13964 -- primitive has not been yet overridden or if the parent is a generic
13965 -- formal type covering interfaces.
13966
13967 -- If the tagged type is not abstract, it cannot have abstract
13968 -- primitives (the only entities in the list of primitives of
13969 -- non-abstract tagged types that can reference abstract primitives
13970 -- through its Alias attribute are the internal entities that have
13971 -- attribute Interface_Alias, and these entities are generated later
13972 -- by Add_Internal_Interface_Entities).
13973
13974 if In_Private_Part (Current_Scope)
13975 and then (Is_Abstract_Type (Parent_Type)
13976 or else
13977 Is_Generic_Type (Parent_Type))
13978 then
13979 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
13980 while Present (Elmt) loop
13981 Subp := Node (Elmt);
13982
13983 -- At this stage it is not possible to have entities in the list
13984 -- of primitives that have attribute Interface_Alias.
13985
13986 pragma Assert (No (Interface_Alias (Subp)));
13987
13988 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
13989
13990 if Is_Interface (Typ) then
13991 E := Find_Primitive_Covering_Interface
13992 (Tagged_Type => Tagged_Type,
13993 Iface_Prim => Subp);
13994
13995 if Present (E)
13996 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
13997 then
13998 Replace_Elmt (Elmt, E);
13999 Remove_Homonym (Subp);
14000 end if;
14001 end if;
14002
14003 Next_Elmt (Elmt);
14004 end loop;
14005 end if;
14006
14007 -- Step 2: Add primitives of progenitors that are not implemented by
14008 -- parents of Tagged_Type.
14009
14010 if Present (Interfaces (Base_Type (Tagged_Type))) then
14011 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
14012 while Present (Iface_Elmt) loop
14013 Iface := Node (Iface_Elmt);
14014
14015 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
14016 while Present (Prim_Elmt) loop
14017 Iface_Subp := Node (Prim_Elmt);
14018
14019 -- Exclude derivation of predefined primitives except those
14020 -- that come from source, or are inherited from one that comes
14021 -- from source. Required to catch declarations of equality
14022 -- operators of interfaces. For example:
14023
14024 -- type Iface is interface;
14025 -- function "=" (Left, Right : Iface) return Boolean;
14026
14027 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
14028 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
14029 then
14030 E := Find_Primitive_Covering_Interface
14031 (Tagged_Type => Tagged_Type,
14032 Iface_Prim => Iface_Subp);
14033
14034 -- If not found we derive a new primitive leaving its alias
14035 -- attribute referencing the interface primitive.
14036
14037 if No (E) then
14038 Derive_Subprogram
14039 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14040
14041 -- Ada 2012 (AI05-0197): If the covering primitive's name
14042 -- differs from the name of the interface primitive then it
14043 -- is a private primitive inherited from a parent type. In
14044 -- such case, given that Tagged_Type covers the interface,
14045 -- the inherited private primitive becomes visible. For such
14046 -- purpose we add a new entity that renames the inherited
14047 -- private primitive.
14048
14049 elsif Chars (E) /= Chars (Iface_Subp) then
14050 pragma Assert (Has_Suffix (E, 'P'));
14051 Derive_Subprogram
14052 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14053 Set_Alias (New_Subp, E);
14054 Set_Is_Abstract_Subprogram (New_Subp,
14055 Is_Abstract_Subprogram (E));
14056
14057 -- Propagate to the full view interface entities associated
14058 -- with the partial view.
14059
14060 elsif In_Private_Part (Current_Scope)
14061 and then Present (Alias (E))
14062 and then Alias (E) = Iface_Subp
14063 and then
14064 List_Containing (Parent (E)) /=
14065 Private_Declarations
14066 (Specification
14067 (Unit_Declaration_Node (Current_Scope)))
14068 then
14069 Append_Elmt (E, Primitive_Operations (Tagged_Type));
14070 end if;
14071 end if;
14072
14073 Next_Elmt (Prim_Elmt);
14074 end loop;
14075
14076 Next_Elmt (Iface_Elmt);
14077 end loop;
14078 end if;
14079 end Derive_Progenitor_Subprograms;
14080
14081 -----------------------
14082 -- Derive_Subprogram --
14083 -----------------------
14084
14085 procedure Derive_Subprogram
14086 (New_Subp : in out Entity_Id;
14087 Parent_Subp : Entity_Id;
14088 Derived_Type : Entity_Id;
14089 Parent_Type : Entity_Id;
14090 Actual_Subp : Entity_Id := Empty)
14091 is
14092 Formal : Entity_Id;
14093 -- Formal parameter of parent primitive operation
14094
14095 Formal_Of_Actual : Entity_Id;
14096 -- Formal parameter of actual operation, when the derivation is to
14097 -- create a renaming for a primitive operation of an actual in an
14098 -- instantiation.
14099
14100 New_Formal : Entity_Id;
14101 -- Formal of inherited operation
14102
14103 Visible_Subp : Entity_Id := Parent_Subp;
14104
14105 function Is_Private_Overriding return Boolean;
14106 -- If Subp is a private overriding of a visible operation, the inherited
14107 -- operation derives from the overridden op (even though its body is the
14108 -- overriding one) and the inherited operation is visible now. See
14109 -- sem_disp to see the full details of the handling of the overridden
14110 -- subprogram, which is removed from the list of primitive operations of
14111 -- the type. The overridden subprogram is saved locally in Visible_Subp,
14112 -- and used to diagnose abstract operations that need overriding in the
14113 -- derived type.
14114
14115 procedure Replace_Type (Id, New_Id : Entity_Id);
14116 -- When the type is an anonymous access type, create a new access type
14117 -- designating the derived type.
14118
14119 procedure Set_Derived_Name;
14120 -- This procedure sets the appropriate Chars name for New_Subp. This
14121 -- is normally just a copy of the parent name. An exception arises for
14122 -- type support subprograms, where the name is changed to reflect the
14123 -- name of the derived type, e.g. if type foo is derived from type bar,
14124 -- then a procedure barDA is derived with a name fooDA.
14125
14126 ---------------------------
14127 -- Is_Private_Overriding --
14128 ---------------------------
14129
14130 function Is_Private_Overriding return Boolean is
14131 Prev : Entity_Id;
14132
14133 begin
14134 -- If the parent is not a dispatching operation there is no
14135 -- need to investigate overridings
14136
14137 if not Is_Dispatching_Operation (Parent_Subp) then
14138 return False;
14139 end if;
14140
14141 -- The visible operation that is overridden is a homonym of the
14142 -- parent subprogram. We scan the homonym chain to find the one
14143 -- whose alias is the subprogram we are deriving.
14144
14145 Prev := Current_Entity (Parent_Subp);
14146 while Present (Prev) loop
14147 if Ekind (Prev) = Ekind (Parent_Subp)
14148 and then Alias (Prev) = Parent_Subp
14149 and then Scope (Parent_Subp) = Scope (Prev)
14150 and then not Is_Hidden (Prev)
14151 then
14152 Visible_Subp := Prev;
14153 return True;
14154 end if;
14155
14156 Prev := Homonym (Prev);
14157 end loop;
14158
14159 return False;
14160 end Is_Private_Overriding;
14161
14162 ------------------
14163 -- Replace_Type --
14164 ------------------
14165
14166 procedure Replace_Type (Id, New_Id : Entity_Id) is
14167 Id_Type : constant Entity_Id := Etype (Id);
14168 Acc_Type : Entity_Id;
14169 Par : constant Node_Id := Parent (Derived_Type);
14170
14171 begin
14172 -- When the type is an anonymous access type, create a new access
14173 -- type designating the derived type. This itype must be elaborated
14174 -- at the point of the derivation, not on subsequent calls that may
14175 -- be out of the proper scope for Gigi, so we insert a reference to
14176 -- it after the derivation.
14177
14178 if Ekind (Id_Type) = E_Anonymous_Access_Type then
14179 declare
14180 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
14181
14182 begin
14183 if Ekind (Desig_Typ) = E_Record_Type_With_Private
14184 and then Present (Full_View (Desig_Typ))
14185 and then not Is_Private_Type (Parent_Type)
14186 then
14187 Desig_Typ := Full_View (Desig_Typ);
14188 end if;
14189
14190 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
14191
14192 -- Ada 2005 (AI-251): Handle also derivations of abstract
14193 -- interface primitives.
14194
14195 or else (Is_Interface (Desig_Typ)
14196 and then not Is_Class_Wide_Type (Desig_Typ))
14197 then
14198 Acc_Type := New_Copy (Id_Type);
14199 Set_Etype (Acc_Type, Acc_Type);
14200 Set_Scope (Acc_Type, New_Subp);
14201
14202 -- Set size of anonymous access type. If we have an access
14203 -- to an unconstrained array, this is a fat pointer, so it
14204 -- is sizes at twice addtress size.
14205
14206 if Is_Array_Type (Desig_Typ)
14207 and then not Is_Constrained (Desig_Typ)
14208 then
14209 Init_Size (Acc_Type, 2 * System_Address_Size);
14210
14211 -- Other cases use a thin pointer
14212
14213 else
14214 Init_Size (Acc_Type, System_Address_Size);
14215 end if;
14216
14217 -- Set remaining characterstics of anonymous access type
14218
14219 Init_Alignment (Acc_Type);
14220 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
14221
14222 Set_Etype (New_Id, Acc_Type);
14223 Set_Scope (New_Id, New_Subp);
14224
14225 -- Create a reference to it
14226
14227 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
14228
14229 else
14230 Set_Etype (New_Id, Id_Type);
14231 end if;
14232 end;
14233
14234 -- In Ada2012, a formal may have an incomplete type but the type
14235 -- derivation that inherits the primitive follows the full view.
14236
14237 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
14238 or else
14239 (Ekind (Id_Type) = E_Record_Type_With_Private
14240 and then Present (Full_View (Id_Type))
14241 and then
14242 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
14243 or else
14244 (Ada_Version >= Ada_2012
14245 and then Ekind (Id_Type) = E_Incomplete_Type
14246 and then Full_View (Id_Type) = Parent_Type)
14247 then
14248 -- Constraint checks on formals are generated during expansion,
14249 -- based on the signature of the original subprogram. The bounds
14250 -- of the derived type are not relevant, and thus we can use
14251 -- the base type for the formals. However, the return type may be
14252 -- used in a context that requires that the proper static bounds
14253 -- be used (a case statement, for example) and for those cases
14254 -- we must use the derived type (first subtype), not its base.
14255
14256 -- If the derived_type_definition has no constraints, we know that
14257 -- the derived type has the same constraints as the first subtype
14258 -- of the parent, and we can also use it rather than its base,
14259 -- which can lead to more efficient code.
14260
14261 if Etype (Id) = Parent_Type then
14262 if Is_Scalar_Type (Parent_Type)
14263 and then
14264 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
14265 then
14266 Set_Etype (New_Id, Derived_Type);
14267
14268 elsif Nkind (Par) = N_Full_Type_Declaration
14269 and then
14270 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
14271 and then
14272 Is_Entity_Name
14273 (Subtype_Indication (Type_Definition (Par)))
14274 then
14275 Set_Etype (New_Id, Derived_Type);
14276
14277 else
14278 Set_Etype (New_Id, Base_Type (Derived_Type));
14279 end if;
14280
14281 else
14282 Set_Etype (New_Id, Base_Type (Derived_Type));
14283 end if;
14284
14285 else
14286 Set_Etype (New_Id, Etype (Id));
14287 end if;
14288 end Replace_Type;
14289
14290 ----------------------
14291 -- Set_Derived_Name --
14292 ----------------------
14293
14294 procedure Set_Derived_Name is
14295 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
14296 begin
14297 if Nm = TSS_Null then
14298 Set_Chars (New_Subp, Chars (Parent_Subp));
14299 else
14300 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
14301 end if;
14302 end Set_Derived_Name;
14303
14304 -- Start of processing for Derive_Subprogram
14305
14306 begin
14307 New_Subp :=
14308 New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
14309 Set_Ekind (New_Subp, Ekind (Parent_Subp));
14310 Set_Contract (New_Subp, Make_Contract (Sloc (New_Subp)));
14311
14312 -- Check whether the inherited subprogram is a private operation that
14313 -- should be inherited but not yet made visible. Such subprograms can
14314 -- become visible at a later point (e.g., the private part of a public
14315 -- child unit) via Declare_Inherited_Private_Subprograms. If the
14316 -- following predicate is true, then this is not such a private
14317 -- operation and the subprogram simply inherits the name of the parent
14318 -- subprogram. Note the special check for the names of controlled
14319 -- operations, which are currently exempted from being inherited with
14320 -- a hidden name because they must be findable for generation of
14321 -- implicit run-time calls.
14322
14323 if not Is_Hidden (Parent_Subp)
14324 or else Is_Internal (Parent_Subp)
14325 or else Is_Private_Overriding
14326 or else Is_Internal_Name (Chars (Parent_Subp))
14327 or else Nam_In (Chars (Parent_Subp), Name_Initialize,
14328 Name_Adjust,
14329 Name_Finalize)
14330 then
14331 Set_Derived_Name;
14332
14333 -- An inherited dispatching equality will be overridden by an internally
14334 -- generated one, or by an explicit one, so preserve its name and thus
14335 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
14336 -- private operation it may become invisible if the full view has
14337 -- progenitors, and the dispatch table will be malformed.
14338 -- We check that the type is limited to handle the anomalous declaration
14339 -- of Limited_Controlled, which is derived from a non-limited type, and
14340 -- which is handled specially elsewhere as well.
14341
14342 elsif Chars (Parent_Subp) = Name_Op_Eq
14343 and then Is_Dispatching_Operation (Parent_Subp)
14344 and then Etype (Parent_Subp) = Standard_Boolean
14345 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
14346 and then
14347 Etype (First_Formal (Parent_Subp)) =
14348 Etype (Next_Formal (First_Formal (Parent_Subp)))
14349 then
14350 Set_Derived_Name;
14351
14352 -- If parent is hidden, this can be a regular derivation if the
14353 -- parent is immediately visible in a non-instantiating context,
14354 -- or if we are in the private part of an instance. This test
14355 -- should still be refined ???
14356
14357 -- The test for In_Instance_Not_Visible avoids inheriting the derived
14358 -- operation as a non-visible operation in cases where the parent
14359 -- subprogram might not be visible now, but was visible within the
14360 -- original generic, so it would be wrong to make the inherited
14361 -- subprogram non-visible now. (Not clear if this test is fully
14362 -- correct; are there any cases where we should declare the inherited
14363 -- operation as not visible to avoid it being overridden, e.g., when
14364 -- the parent type is a generic actual with private primitives ???)
14365
14366 -- (they should be treated the same as other private inherited
14367 -- subprograms, but it's not clear how to do this cleanly). ???
14368
14369 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
14370 and then Is_Immediately_Visible (Parent_Subp)
14371 and then not In_Instance)
14372 or else In_Instance_Not_Visible
14373 then
14374 Set_Derived_Name;
14375
14376 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
14377 -- overrides an interface primitive because interface primitives
14378 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
14379
14380 elsif Ada_Version >= Ada_2005
14381 and then Is_Dispatching_Operation (Parent_Subp)
14382 and then Covers_Some_Interface (Parent_Subp)
14383 then
14384 Set_Derived_Name;
14385
14386 -- Otherwise, the type is inheriting a private operation, so enter
14387 -- it with a special name so it can't be overridden.
14388
14389 else
14390 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
14391 end if;
14392
14393 Set_Parent (New_Subp, Parent (Derived_Type));
14394
14395 if Present (Actual_Subp) then
14396 Replace_Type (Actual_Subp, New_Subp);
14397 else
14398 Replace_Type (Parent_Subp, New_Subp);
14399 end if;
14400
14401 Conditional_Delay (New_Subp, Parent_Subp);
14402
14403 -- If we are creating a renaming for a primitive operation of an
14404 -- actual of a generic derived type, we must examine the signature
14405 -- of the actual primitive, not that of the generic formal, which for
14406 -- example may be an interface. However the name and initial value
14407 -- of the inherited operation are those of the formal primitive.
14408
14409 Formal := First_Formal (Parent_Subp);
14410
14411 if Present (Actual_Subp) then
14412 Formal_Of_Actual := First_Formal (Actual_Subp);
14413 else
14414 Formal_Of_Actual := Empty;
14415 end if;
14416
14417 while Present (Formal) loop
14418 New_Formal := New_Copy (Formal);
14419
14420 -- Normally we do not go copying parents, but in the case of
14421 -- formals, we need to link up to the declaration (which is the
14422 -- parameter specification), and it is fine to link up to the
14423 -- original formal's parameter specification in this case.
14424
14425 Set_Parent (New_Formal, Parent (Formal));
14426 Append_Entity (New_Formal, New_Subp);
14427
14428 if Present (Formal_Of_Actual) then
14429 Replace_Type (Formal_Of_Actual, New_Formal);
14430 Next_Formal (Formal_Of_Actual);
14431 else
14432 Replace_Type (Formal, New_Formal);
14433 end if;
14434
14435 Next_Formal (Formal);
14436 end loop;
14437
14438 -- If this derivation corresponds to a tagged generic actual, then
14439 -- primitive operations rename those of the actual. Otherwise the
14440 -- primitive operations rename those of the parent type, If the parent
14441 -- renames an intrinsic operator, so does the new subprogram. We except
14442 -- concatenation, which is always properly typed, and does not get
14443 -- expanded as other intrinsic operations.
14444
14445 if No (Actual_Subp) then
14446 if Is_Intrinsic_Subprogram (Parent_Subp) then
14447 Set_Is_Intrinsic_Subprogram (New_Subp);
14448
14449 if Present (Alias (Parent_Subp))
14450 and then Chars (Parent_Subp) /= Name_Op_Concat
14451 then
14452 Set_Alias (New_Subp, Alias (Parent_Subp));
14453 else
14454 Set_Alias (New_Subp, Parent_Subp);
14455 end if;
14456
14457 else
14458 Set_Alias (New_Subp, Parent_Subp);
14459 end if;
14460
14461 else
14462 Set_Alias (New_Subp, Actual_Subp);
14463 end if;
14464
14465 -- Derived subprograms of a tagged type must inherit the convention
14466 -- of the parent subprogram (a requirement of AI-117). Derived
14467 -- subprograms of untagged types simply get convention Ada by default.
14468
14469 -- If the derived type is a tagged generic formal type with unknown
14470 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
14471
14472 -- However, if the type is derived from a generic formal, the further
14473 -- inherited subprogram has the convention of the non-generic ancestor.
14474 -- Otherwise there would be no way to override the operation.
14475 -- (This is subject to forthcoming ARG discussions).
14476
14477 if Is_Tagged_Type (Derived_Type) then
14478 if Is_Generic_Type (Derived_Type)
14479 and then Has_Unknown_Discriminants (Derived_Type)
14480 then
14481 Set_Convention (New_Subp, Convention_Intrinsic);
14482
14483 else
14484 if Is_Generic_Type (Parent_Type)
14485 and then Has_Unknown_Discriminants (Parent_Type)
14486 then
14487 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
14488 else
14489 Set_Convention (New_Subp, Convention (Parent_Subp));
14490 end if;
14491 end if;
14492 end if;
14493
14494 -- Predefined controlled operations retain their name even if the parent
14495 -- is hidden (see above), but they are not primitive operations if the
14496 -- ancestor is not visible, for example if the parent is a private
14497 -- extension completed with a controlled extension. Note that a full
14498 -- type that is controlled can break privacy: the flag Is_Controlled is
14499 -- set on both views of the type.
14500
14501 if Is_Controlled (Parent_Type)
14502 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
14503 Name_Adjust,
14504 Name_Finalize)
14505 and then Is_Hidden (Parent_Subp)
14506 and then not Is_Visibly_Controlled (Parent_Type)
14507 then
14508 Set_Is_Hidden (New_Subp);
14509 end if;
14510
14511 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
14512 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
14513
14514 if Ekind (Parent_Subp) = E_Procedure then
14515 Set_Is_Valued_Procedure
14516 (New_Subp, Is_Valued_Procedure (Parent_Subp));
14517 else
14518 Set_Has_Controlling_Result
14519 (New_Subp, Has_Controlling_Result (Parent_Subp));
14520 end if;
14521
14522 -- No_Return must be inherited properly. If this is overridden in the
14523 -- case of a dispatching operation, then a check is made in Sem_Disp
14524 -- that the overriding operation is also No_Return (no such check is
14525 -- required for the case of non-dispatching operation.
14526
14527 Set_No_Return (New_Subp, No_Return (Parent_Subp));
14528
14529 -- A derived function with a controlling result is abstract. If the
14530 -- Derived_Type is a nonabstract formal generic derived type, then
14531 -- inherited operations are not abstract: the required check is done at
14532 -- instantiation time. If the derivation is for a generic actual, the
14533 -- function is not abstract unless the actual is.
14534
14535 if Is_Generic_Type (Derived_Type)
14536 and then not Is_Abstract_Type (Derived_Type)
14537 then
14538 null;
14539
14540 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
14541 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
14542
14543 elsif Ada_Version >= Ada_2005
14544 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14545 or else (Is_Tagged_Type (Derived_Type)
14546 and then Etype (New_Subp) = Derived_Type
14547 and then not Is_Null_Extension (Derived_Type))
14548 or else (Is_Tagged_Type (Derived_Type)
14549 and then Ekind (Etype (New_Subp)) =
14550 E_Anonymous_Access_Type
14551 and then Designated_Type (Etype (New_Subp)) =
14552 Derived_Type
14553 and then not Is_Null_Extension (Derived_Type)))
14554 and then No (Actual_Subp)
14555 then
14556 if not Is_Tagged_Type (Derived_Type)
14557 or else Is_Abstract_Type (Derived_Type)
14558 or else Is_Abstract_Subprogram (Alias (New_Subp))
14559 then
14560 Set_Is_Abstract_Subprogram (New_Subp);
14561 else
14562 Set_Requires_Overriding (New_Subp);
14563 end if;
14564
14565 elsif Ada_Version < Ada_2005
14566 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14567 or else (Is_Tagged_Type (Derived_Type)
14568 and then Etype (New_Subp) = Derived_Type
14569 and then No (Actual_Subp)))
14570 then
14571 Set_Is_Abstract_Subprogram (New_Subp);
14572
14573 -- AI05-0097 : an inherited operation that dispatches on result is
14574 -- abstract if the derived type is abstract, even if the parent type
14575 -- is concrete and the derived type is a null extension.
14576
14577 elsif Has_Controlling_Result (Alias (New_Subp))
14578 and then Is_Abstract_Type (Etype (New_Subp))
14579 then
14580 Set_Is_Abstract_Subprogram (New_Subp);
14581
14582 -- Finally, if the parent type is abstract we must verify that all
14583 -- inherited operations are either non-abstract or overridden, or that
14584 -- the derived type itself is abstract (this check is performed at the
14585 -- end of a package declaration, in Check_Abstract_Overriding). A
14586 -- private overriding in the parent type will not be visible in the
14587 -- derivation if we are not in an inner package or in a child unit of
14588 -- the parent type, in which case the abstractness of the inherited
14589 -- operation is carried to the new subprogram.
14590
14591 elsif Is_Abstract_Type (Parent_Type)
14592 and then not In_Open_Scopes (Scope (Parent_Type))
14593 and then Is_Private_Overriding
14594 and then Is_Abstract_Subprogram (Visible_Subp)
14595 then
14596 if No (Actual_Subp) then
14597 Set_Alias (New_Subp, Visible_Subp);
14598 Set_Is_Abstract_Subprogram (New_Subp, True);
14599
14600 else
14601 -- If this is a derivation for an instance of a formal derived
14602 -- type, abstractness comes from the primitive operation of the
14603 -- actual, not from the operation inherited from the ancestor.
14604
14605 Set_Is_Abstract_Subprogram
14606 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
14607 end if;
14608 end if;
14609
14610 New_Overloaded_Entity (New_Subp, Derived_Type);
14611
14612 -- Check for case of a derived subprogram for the instantiation of a
14613 -- formal derived tagged type, if so mark the subprogram as dispatching
14614 -- and inherit the dispatching attributes of the actual subprogram. The
14615 -- derived subprogram is effectively renaming of the actual subprogram,
14616 -- so it needs to have the same attributes as the actual.
14617
14618 if Present (Actual_Subp)
14619 and then Is_Dispatching_Operation (Actual_Subp)
14620 then
14621 Set_Is_Dispatching_Operation (New_Subp);
14622
14623 if Present (DTC_Entity (Actual_Subp)) then
14624 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
14625 Set_DT_Position (New_Subp, DT_Position (Actual_Subp));
14626 end if;
14627 end if;
14628
14629 -- Indicate that a derived subprogram does not require a body and that
14630 -- it does not require processing of default expressions.
14631
14632 Set_Has_Completion (New_Subp);
14633 Set_Default_Expressions_Processed (New_Subp);
14634
14635 if Ekind (New_Subp) = E_Function then
14636 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
14637 end if;
14638 end Derive_Subprogram;
14639
14640 ------------------------
14641 -- Derive_Subprograms --
14642 ------------------------
14643
14644 procedure Derive_Subprograms
14645 (Parent_Type : Entity_Id;
14646 Derived_Type : Entity_Id;
14647 Generic_Actual : Entity_Id := Empty)
14648 is
14649 Op_List : constant Elist_Id :=
14650 Collect_Primitive_Operations (Parent_Type);
14651
14652 function Check_Derived_Type return Boolean;
14653 -- Check that all the entities derived from Parent_Type are found in
14654 -- the list of primitives of Derived_Type exactly in the same order.
14655
14656 procedure Derive_Interface_Subprogram
14657 (New_Subp : in out Entity_Id;
14658 Subp : Entity_Id;
14659 Actual_Subp : Entity_Id);
14660 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
14661 -- (which is an interface primitive). If Generic_Actual is present then
14662 -- Actual_Subp is the actual subprogram corresponding with the generic
14663 -- subprogram Subp.
14664
14665 function Check_Derived_Type return Boolean is
14666 E : Entity_Id;
14667 Elmt : Elmt_Id;
14668 List : Elist_Id;
14669 New_Subp : Entity_Id;
14670 Op_Elmt : Elmt_Id;
14671 Subp : Entity_Id;
14672
14673 begin
14674 -- Traverse list of entities in the current scope searching for
14675 -- an incomplete type whose full-view is derived type
14676
14677 E := First_Entity (Scope (Derived_Type));
14678 while Present (E) and then E /= Derived_Type loop
14679 if Ekind (E) = E_Incomplete_Type
14680 and then Present (Full_View (E))
14681 and then Full_View (E) = Derived_Type
14682 then
14683 -- Disable this test if Derived_Type completes an incomplete
14684 -- type because in such case more primitives can be added
14685 -- later to the list of primitives of Derived_Type by routine
14686 -- Process_Incomplete_Dependents
14687
14688 return True;
14689 end if;
14690
14691 E := Next_Entity (E);
14692 end loop;
14693
14694 List := Collect_Primitive_Operations (Derived_Type);
14695 Elmt := First_Elmt (List);
14696
14697 Op_Elmt := First_Elmt (Op_List);
14698 while Present (Op_Elmt) loop
14699 Subp := Node (Op_Elmt);
14700 New_Subp := Node (Elmt);
14701
14702 -- At this early stage Derived_Type has no entities with attribute
14703 -- Interface_Alias. In addition, such primitives are always
14704 -- located at the end of the list of primitives of Parent_Type.
14705 -- Therefore, if found we can safely stop processing pending
14706 -- entities.
14707
14708 exit when Present (Interface_Alias (Subp));
14709
14710 -- Handle hidden entities
14711
14712 if not Is_Predefined_Dispatching_Operation (Subp)
14713 and then Is_Hidden (Subp)
14714 then
14715 if Present (New_Subp)
14716 and then Primitive_Names_Match (Subp, New_Subp)
14717 then
14718 Next_Elmt (Elmt);
14719 end if;
14720
14721 else
14722 if not Present (New_Subp)
14723 or else Ekind (Subp) /= Ekind (New_Subp)
14724 or else not Primitive_Names_Match (Subp, New_Subp)
14725 then
14726 return False;
14727 end if;
14728
14729 Next_Elmt (Elmt);
14730 end if;
14731
14732 Next_Elmt (Op_Elmt);
14733 end loop;
14734
14735 return True;
14736 end Check_Derived_Type;
14737
14738 ---------------------------------
14739 -- Derive_Interface_Subprogram --
14740 ---------------------------------
14741
14742 procedure Derive_Interface_Subprogram
14743 (New_Subp : in out Entity_Id;
14744 Subp : Entity_Id;
14745 Actual_Subp : Entity_Id)
14746 is
14747 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
14748 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
14749
14750 begin
14751 pragma Assert (Is_Interface (Iface_Type));
14752
14753 Derive_Subprogram
14754 (New_Subp => New_Subp,
14755 Parent_Subp => Iface_Subp,
14756 Derived_Type => Derived_Type,
14757 Parent_Type => Iface_Type,
14758 Actual_Subp => Actual_Subp);
14759
14760 -- Given that this new interface entity corresponds with a primitive
14761 -- of the parent that was not overridden we must leave it associated
14762 -- with its parent primitive to ensure that it will share the same
14763 -- dispatch table slot when overridden.
14764
14765 if No (Actual_Subp) then
14766 Set_Alias (New_Subp, Subp);
14767
14768 -- For instantiations this is not needed since the previous call to
14769 -- Derive_Subprogram leaves the entity well decorated.
14770
14771 else
14772 pragma Assert (Alias (New_Subp) = Actual_Subp);
14773 null;
14774 end if;
14775 end Derive_Interface_Subprogram;
14776
14777 -- Local variables
14778
14779 Alias_Subp : Entity_Id;
14780 Act_List : Elist_Id;
14781 Act_Elmt : Elmt_Id;
14782 Act_Subp : Entity_Id := Empty;
14783 Elmt : Elmt_Id;
14784 Need_Search : Boolean := False;
14785 New_Subp : Entity_Id := Empty;
14786 Parent_Base : Entity_Id;
14787 Subp : Entity_Id;
14788
14789 -- Start of processing for Derive_Subprograms
14790
14791 begin
14792 if Ekind (Parent_Type) = E_Record_Type_With_Private
14793 and then Has_Discriminants (Parent_Type)
14794 and then Present (Full_View (Parent_Type))
14795 then
14796 Parent_Base := Full_View (Parent_Type);
14797 else
14798 Parent_Base := Parent_Type;
14799 end if;
14800
14801 if Present (Generic_Actual) then
14802 Act_List := Collect_Primitive_Operations (Generic_Actual);
14803 Act_Elmt := First_Elmt (Act_List);
14804 else
14805 Act_List := No_Elist;
14806 Act_Elmt := No_Elmt;
14807 end if;
14808
14809 -- Derive primitives inherited from the parent. Note that if the generic
14810 -- actual is present, this is not really a type derivation, it is a
14811 -- completion within an instance.
14812
14813 -- Case 1: Derived_Type does not implement interfaces
14814
14815 if not Is_Tagged_Type (Derived_Type)
14816 or else (not Has_Interfaces (Derived_Type)
14817 and then not (Present (Generic_Actual)
14818 and then Has_Interfaces (Generic_Actual)))
14819 then
14820 Elmt := First_Elmt (Op_List);
14821 while Present (Elmt) loop
14822 Subp := Node (Elmt);
14823
14824 -- Literals are derived earlier in the process of building the
14825 -- derived type, and are skipped here.
14826
14827 if Ekind (Subp) = E_Enumeration_Literal then
14828 null;
14829
14830 -- The actual is a direct descendant and the common primitive
14831 -- operations appear in the same order.
14832
14833 -- If the generic parent type is present, the derived type is an
14834 -- instance of a formal derived type, and within the instance its
14835 -- operations are those of the actual. We derive from the formal
14836 -- type but make the inherited operations aliases of the
14837 -- corresponding operations of the actual.
14838
14839 else
14840 pragma Assert (No (Node (Act_Elmt))
14841 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
14842 and then
14843 Type_Conformant
14844 (Subp, Node (Act_Elmt),
14845 Skip_Controlling_Formals => True)));
14846
14847 Derive_Subprogram
14848 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
14849
14850 if Present (Act_Elmt) then
14851 Next_Elmt (Act_Elmt);
14852 end if;
14853 end if;
14854
14855 Next_Elmt (Elmt);
14856 end loop;
14857
14858 -- Case 2: Derived_Type implements interfaces
14859
14860 else
14861 -- If the parent type has no predefined primitives we remove
14862 -- predefined primitives from the list of primitives of generic
14863 -- actual to simplify the complexity of this algorithm.
14864
14865 if Present (Generic_Actual) then
14866 declare
14867 Has_Predefined_Primitives : Boolean := False;
14868
14869 begin
14870 -- Check if the parent type has predefined primitives
14871
14872 Elmt := First_Elmt (Op_List);
14873 while Present (Elmt) loop
14874 Subp := Node (Elmt);
14875
14876 if Is_Predefined_Dispatching_Operation (Subp)
14877 and then not Comes_From_Source (Ultimate_Alias (Subp))
14878 then
14879 Has_Predefined_Primitives := True;
14880 exit;
14881 end if;
14882
14883 Next_Elmt (Elmt);
14884 end loop;
14885
14886 -- Remove predefined primitives of Generic_Actual. We must use
14887 -- an auxiliary list because in case of tagged types the value
14888 -- returned by Collect_Primitive_Operations is the value stored
14889 -- in its Primitive_Operations attribute (and we don't want to
14890 -- modify its current contents).
14891
14892 if not Has_Predefined_Primitives then
14893 declare
14894 Aux_List : constant Elist_Id := New_Elmt_List;
14895
14896 begin
14897 Elmt := First_Elmt (Act_List);
14898 while Present (Elmt) loop
14899 Subp := Node (Elmt);
14900
14901 if not Is_Predefined_Dispatching_Operation (Subp)
14902 or else Comes_From_Source (Subp)
14903 then
14904 Append_Elmt (Subp, Aux_List);
14905 end if;
14906
14907 Next_Elmt (Elmt);
14908 end loop;
14909
14910 Act_List := Aux_List;
14911 end;
14912 end if;
14913
14914 Act_Elmt := First_Elmt (Act_List);
14915 Act_Subp := Node (Act_Elmt);
14916 end;
14917 end if;
14918
14919 -- Stage 1: If the generic actual is not present we derive the
14920 -- primitives inherited from the parent type. If the generic parent
14921 -- type is present, the derived type is an instance of a formal
14922 -- derived type, and within the instance its operations are those of
14923 -- the actual. We derive from the formal type but make the inherited
14924 -- operations aliases of the corresponding operations of the actual.
14925
14926 Elmt := First_Elmt (Op_List);
14927 while Present (Elmt) loop
14928 Subp := Node (Elmt);
14929 Alias_Subp := Ultimate_Alias (Subp);
14930
14931 -- Do not derive internal entities of the parent that link
14932 -- interface primitives with their covering primitive. These
14933 -- entities will be added to this type when frozen.
14934
14935 if Present (Interface_Alias (Subp)) then
14936 goto Continue;
14937 end if;
14938
14939 -- If the generic actual is present find the corresponding
14940 -- operation in the generic actual. If the parent type is a
14941 -- direct ancestor of the derived type then, even if it is an
14942 -- interface, the operations are inherited from the primary
14943 -- dispatch table and are in the proper order. If we detect here
14944 -- that primitives are not in the same order we traverse the list
14945 -- of primitive operations of the actual to find the one that
14946 -- implements the interface primitive.
14947
14948 if Need_Search
14949 or else
14950 (Present (Generic_Actual)
14951 and then Present (Act_Subp)
14952 and then not
14953 (Primitive_Names_Match (Subp, Act_Subp)
14954 and then
14955 Type_Conformant (Subp, Act_Subp,
14956 Skip_Controlling_Formals => True)))
14957 then
14958 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
14959 Use_Full_View => True));
14960
14961 -- Remember that we need searching for all pending primitives
14962
14963 Need_Search := True;
14964
14965 -- Handle entities associated with interface primitives
14966
14967 if Present (Alias_Subp)
14968 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
14969 and then not Is_Predefined_Dispatching_Operation (Subp)
14970 then
14971 -- Search for the primitive in the homonym chain
14972
14973 Act_Subp :=
14974 Find_Primitive_Covering_Interface
14975 (Tagged_Type => Generic_Actual,
14976 Iface_Prim => Alias_Subp);
14977
14978 -- Previous search may not locate primitives covering
14979 -- interfaces defined in generics units or instantiations.
14980 -- (it fails if the covering primitive has formals whose
14981 -- type is also defined in generics or instantiations).
14982 -- In such case we search in the list of primitives of the
14983 -- generic actual for the internal entity that links the
14984 -- interface primitive and the covering primitive.
14985
14986 if No (Act_Subp)
14987 and then Is_Generic_Type (Parent_Type)
14988 then
14989 -- This code has been designed to handle only generic
14990 -- formals that implement interfaces that are defined
14991 -- in a generic unit or instantiation. If this code is
14992 -- needed for other cases we must review it because
14993 -- (given that it relies on Original_Location to locate
14994 -- the primitive of Generic_Actual that covers the
14995 -- interface) it could leave linked through attribute
14996 -- Alias entities of unrelated instantiations).
14997
14998 pragma Assert
14999 (Is_Generic_Unit
15000 (Scope (Find_Dispatching_Type (Alias_Subp)))
15001 or else
15002 Instantiation_Depth
15003 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
15004
15005 declare
15006 Iface_Prim_Loc : constant Source_Ptr :=
15007 Original_Location (Sloc (Alias_Subp));
15008
15009 Elmt : Elmt_Id;
15010 Prim : Entity_Id;
15011
15012 begin
15013 Elmt :=
15014 First_Elmt (Primitive_Operations (Generic_Actual));
15015
15016 Search : while Present (Elmt) loop
15017 Prim := Node (Elmt);
15018
15019 if Present (Interface_Alias (Prim))
15020 and then Original_Location
15021 (Sloc (Interface_Alias (Prim))) =
15022 Iface_Prim_Loc
15023 then
15024 Act_Subp := Alias (Prim);
15025 exit Search;
15026 end if;
15027
15028 Next_Elmt (Elmt);
15029 end loop Search;
15030 end;
15031 end if;
15032
15033 pragma Assert (Present (Act_Subp)
15034 or else Is_Abstract_Type (Generic_Actual)
15035 or else Serious_Errors_Detected > 0);
15036
15037 -- Handle predefined primitives plus the rest of user-defined
15038 -- primitives
15039
15040 else
15041 Act_Elmt := First_Elmt (Act_List);
15042 while Present (Act_Elmt) loop
15043 Act_Subp := Node (Act_Elmt);
15044
15045 exit when Primitive_Names_Match (Subp, Act_Subp)
15046 and then Type_Conformant
15047 (Subp, Act_Subp,
15048 Skip_Controlling_Formals => True)
15049 and then No (Interface_Alias (Act_Subp));
15050
15051 Next_Elmt (Act_Elmt);
15052 end loop;
15053
15054 if No (Act_Elmt) then
15055 Act_Subp := Empty;
15056 end if;
15057 end if;
15058 end if;
15059
15060 -- Case 1: If the parent is a limited interface then it has the
15061 -- predefined primitives of synchronized interfaces. However, the
15062 -- actual type may be a non-limited type and hence it does not
15063 -- have such primitives.
15064
15065 if Present (Generic_Actual)
15066 and then not Present (Act_Subp)
15067 and then Is_Limited_Interface (Parent_Base)
15068 and then Is_Predefined_Interface_Primitive (Subp)
15069 then
15070 null;
15071
15072 -- Case 2: Inherit entities associated with interfaces that were
15073 -- not covered by the parent type. We exclude here null interface
15074 -- primitives because they do not need special management.
15075
15076 -- We also exclude interface operations that are renamings. If the
15077 -- subprogram is an explicit renaming of an interface primitive,
15078 -- it is a regular primitive operation, and the presence of its
15079 -- alias is not relevant: it has to be derived like any other
15080 -- primitive.
15081
15082 elsif Present (Alias (Subp))
15083 and then Nkind (Unit_Declaration_Node (Subp)) /=
15084 N_Subprogram_Renaming_Declaration
15085 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
15086 and then not
15087 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
15088 and then Null_Present (Parent (Alias_Subp)))
15089 then
15090 -- If this is an abstract private type then we transfer the
15091 -- derivation of the interface primitive from the partial view
15092 -- to the full view. This is safe because all the interfaces
15093 -- must be visible in the partial view. Done to avoid adding
15094 -- a new interface derivation to the private part of the
15095 -- enclosing package; otherwise this new derivation would be
15096 -- decorated as hidden when the analysis of the enclosing
15097 -- package completes.
15098
15099 if Is_Abstract_Type (Derived_Type)
15100 and then In_Private_Part (Current_Scope)
15101 and then Has_Private_Declaration (Derived_Type)
15102 then
15103 declare
15104 Partial_View : Entity_Id;
15105 Elmt : Elmt_Id;
15106 Ent : Entity_Id;
15107
15108 begin
15109 Partial_View := First_Entity (Current_Scope);
15110 loop
15111 exit when No (Partial_View)
15112 or else (Has_Private_Declaration (Partial_View)
15113 and then
15114 Full_View (Partial_View) = Derived_Type);
15115
15116 Next_Entity (Partial_View);
15117 end loop;
15118
15119 -- If the partial view was not found then the source code
15120 -- has errors and the derivation is not needed.
15121
15122 if Present (Partial_View) then
15123 Elmt :=
15124 First_Elmt (Primitive_Operations (Partial_View));
15125 while Present (Elmt) loop
15126 Ent := Node (Elmt);
15127
15128 if Present (Alias (Ent))
15129 and then Ultimate_Alias (Ent) = Alias (Subp)
15130 then
15131 Append_Elmt
15132 (Ent, Primitive_Operations (Derived_Type));
15133 exit;
15134 end if;
15135
15136 Next_Elmt (Elmt);
15137 end loop;
15138
15139 -- If the interface primitive was not found in the
15140 -- partial view then this interface primitive was
15141 -- overridden. We add a derivation to activate in
15142 -- Derive_Progenitor_Subprograms the machinery to
15143 -- search for it.
15144
15145 if No (Elmt) then
15146 Derive_Interface_Subprogram
15147 (New_Subp => New_Subp,
15148 Subp => Subp,
15149 Actual_Subp => Act_Subp);
15150 end if;
15151 end if;
15152 end;
15153 else
15154 Derive_Interface_Subprogram
15155 (New_Subp => New_Subp,
15156 Subp => Subp,
15157 Actual_Subp => Act_Subp);
15158 end if;
15159
15160 -- Case 3: Common derivation
15161
15162 else
15163 Derive_Subprogram
15164 (New_Subp => New_Subp,
15165 Parent_Subp => Subp,
15166 Derived_Type => Derived_Type,
15167 Parent_Type => Parent_Base,
15168 Actual_Subp => Act_Subp);
15169 end if;
15170
15171 -- No need to update Act_Elm if we must search for the
15172 -- corresponding operation in the generic actual
15173
15174 if not Need_Search
15175 and then Present (Act_Elmt)
15176 then
15177 Next_Elmt (Act_Elmt);
15178 Act_Subp := Node (Act_Elmt);
15179 end if;
15180
15181 <<Continue>>
15182 Next_Elmt (Elmt);
15183 end loop;
15184
15185 -- Inherit additional operations from progenitors. If the derived
15186 -- type is a generic actual, there are not new primitive operations
15187 -- for the type because it has those of the actual, and therefore
15188 -- nothing needs to be done. The renamings generated above are not
15189 -- primitive operations, and their purpose is simply to make the
15190 -- proper operations visible within an instantiation.
15191
15192 if No (Generic_Actual) then
15193 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
15194 end if;
15195 end if;
15196
15197 -- Final check: Direct descendants must have their primitives in the
15198 -- same order. We exclude from this test untagged types and instances
15199 -- of formal derived types. We skip this test if we have already
15200 -- reported serious errors in the sources.
15201
15202 pragma Assert (not Is_Tagged_Type (Derived_Type)
15203 or else Present (Generic_Actual)
15204 or else Serious_Errors_Detected > 0
15205 or else Check_Derived_Type);
15206 end Derive_Subprograms;
15207
15208 --------------------------------
15209 -- Derived_Standard_Character --
15210 --------------------------------
15211
15212 procedure Derived_Standard_Character
15213 (N : Node_Id;
15214 Parent_Type : Entity_Id;
15215 Derived_Type : Entity_Id)
15216 is
15217 Loc : constant Source_Ptr := Sloc (N);
15218 Def : constant Node_Id := Type_Definition (N);
15219 Indic : constant Node_Id := Subtype_Indication (Def);
15220 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
15221 Implicit_Base : constant Entity_Id :=
15222 Create_Itype
15223 (E_Enumeration_Type, N, Derived_Type, 'B');
15224
15225 Lo : Node_Id;
15226 Hi : Node_Id;
15227
15228 begin
15229 Discard_Node (Process_Subtype (Indic, N));
15230
15231 Set_Etype (Implicit_Base, Parent_Base);
15232 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
15233 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
15234
15235 Set_Is_Character_Type (Implicit_Base, True);
15236 Set_Has_Delayed_Freeze (Implicit_Base);
15237
15238 -- The bounds of the implicit base are the bounds of the parent base.
15239 -- Note that their type is the parent base.
15240
15241 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
15242 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
15243
15244 Set_Scalar_Range (Implicit_Base,
15245 Make_Range (Loc,
15246 Low_Bound => Lo,
15247 High_Bound => Hi));
15248
15249 Conditional_Delay (Derived_Type, Parent_Type);
15250
15251 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
15252 Set_Etype (Derived_Type, Implicit_Base);
15253 Set_Size_Info (Derived_Type, Parent_Type);
15254
15255 if Unknown_RM_Size (Derived_Type) then
15256 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
15257 end if;
15258
15259 Set_Is_Character_Type (Derived_Type, True);
15260
15261 if Nkind (Indic) /= N_Subtype_Indication then
15262
15263 -- If no explicit constraint, the bounds are those
15264 -- of the parent type.
15265
15266 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
15267 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
15268 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
15269 end if;
15270
15271 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
15272
15273 -- Because the implicit base is used in the conversion of the bounds, we
15274 -- have to freeze it now. This is similar to what is done for numeric
15275 -- types, and it equally suspicious, but otherwise a non-static bound
15276 -- will have a reference to an unfrozen type, which is rejected by Gigi
15277 -- (???). This requires specific care for definition of stream
15278 -- attributes. For details, see comments at the end of
15279 -- Build_Derived_Numeric_Type.
15280
15281 Freeze_Before (N, Implicit_Base);
15282 end Derived_Standard_Character;
15283
15284 ------------------------------
15285 -- Derived_Type_Declaration --
15286 ------------------------------
15287
15288 procedure Derived_Type_Declaration
15289 (T : Entity_Id;
15290 N : Node_Id;
15291 Is_Completion : Boolean)
15292 is
15293 Parent_Type : Entity_Id;
15294
15295 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
15296 -- Check whether the parent type is a generic formal, or derives
15297 -- directly or indirectly from one.
15298
15299 ------------------------
15300 -- Comes_From_Generic --
15301 ------------------------
15302
15303 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
15304 begin
15305 if Is_Generic_Type (Typ) then
15306 return True;
15307
15308 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
15309 return True;
15310
15311 elsif Is_Private_Type (Typ)
15312 and then Present (Full_View (Typ))
15313 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
15314 then
15315 return True;
15316
15317 elsif Is_Generic_Actual_Type (Typ) then
15318 return True;
15319
15320 else
15321 return False;
15322 end if;
15323 end Comes_From_Generic;
15324
15325 -- Local variables
15326
15327 Def : constant Node_Id := Type_Definition (N);
15328 Iface_Def : Node_Id;
15329 Indic : constant Node_Id := Subtype_Indication (Def);
15330 Extension : constant Node_Id := Record_Extension_Part (Def);
15331 Parent_Node : Node_Id;
15332 Taggd : Boolean;
15333
15334 -- Start of processing for Derived_Type_Declaration
15335
15336 begin
15337 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
15338
15339 -- Ada 2005 (AI-251): In case of interface derivation check that the
15340 -- parent is also an interface.
15341
15342 if Interface_Present (Def) then
15343 Check_SPARK_05_Restriction ("interface is not allowed", Def);
15344
15345 if not Is_Interface (Parent_Type) then
15346 Diagnose_Interface (Indic, Parent_Type);
15347
15348 else
15349 Parent_Node := Parent (Base_Type (Parent_Type));
15350 Iface_Def := Type_Definition (Parent_Node);
15351
15352 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
15353 -- other limited interfaces.
15354
15355 if Limited_Present (Def) then
15356 if Limited_Present (Iface_Def) then
15357 null;
15358
15359 elsif Protected_Present (Iface_Def) then
15360 Error_Msg_NE
15361 ("descendant of& must be declared"
15362 & " as a protected interface",
15363 N, Parent_Type);
15364
15365 elsif Synchronized_Present (Iface_Def) then
15366 Error_Msg_NE
15367 ("descendant of& must be declared"
15368 & " as a synchronized interface",
15369 N, Parent_Type);
15370
15371 elsif Task_Present (Iface_Def) then
15372 Error_Msg_NE
15373 ("descendant of& must be declared as a task interface",
15374 N, Parent_Type);
15375
15376 else
15377 Error_Msg_N
15378 ("(Ada 2005) limited interface cannot "
15379 & "inherit from non-limited interface", Indic);
15380 end if;
15381
15382 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
15383 -- from non-limited or limited interfaces.
15384
15385 elsif not Protected_Present (Def)
15386 and then not Synchronized_Present (Def)
15387 and then not Task_Present (Def)
15388 then
15389 if Limited_Present (Iface_Def) then
15390 null;
15391
15392 elsif Protected_Present (Iface_Def) then
15393 Error_Msg_NE
15394 ("descendant of& must be declared"
15395 & " as a protected interface",
15396 N, Parent_Type);
15397
15398 elsif Synchronized_Present (Iface_Def) then
15399 Error_Msg_NE
15400 ("descendant of& must be declared"
15401 & " as a synchronized interface",
15402 N, Parent_Type);
15403
15404 elsif Task_Present (Iface_Def) then
15405 Error_Msg_NE
15406 ("descendant of& must be declared as a task interface",
15407 N, Parent_Type);
15408 else
15409 null;
15410 end if;
15411 end if;
15412 end if;
15413 end if;
15414
15415 if Is_Tagged_Type (Parent_Type)
15416 and then Is_Concurrent_Type (Parent_Type)
15417 and then not Is_Interface (Parent_Type)
15418 then
15419 Error_Msg_N
15420 ("parent type of a record extension cannot be "
15421 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
15422 Set_Etype (T, Any_Type);
15423 return;
15424 end if;
15425
15426 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
15427 -- interfaces
15428
15429 if Is_Tagged_Type (Parent_Type)
15430 and then Is_Non_Empty_List (Interface_List (Def))
15431 then
15432 declare
15433 Intf : Node_Id;
15434 T : Entity_Id;
15435
15436 begin
15437 Intf := First (Interface_List (Def));
15438 while Present (Intf) loop
15439 T := Find_Type_Of_Subtype_Indic (Intf);
15440
15441 if not Is_Interface (T) then
15442 Diagnose_Interface (Intf, T);
15443
15444 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
15445 -- a limited type from having a nonlimited progenitor.
15446
15447 elsif (Limited_Present (Def)
15448 or else (not Is_Interface (Parent_Type)
15449 and then Is_Limited_Type (Parent_Type)))
15450 and then not Is_Limited_Interface (T)
15451 then
15452 Error_Msg_NE
15453 ("progenitor interface& of limited type must be limited",
15454 N, T);
15455 end if;
15456
15457 Next (Intf);
15458 end loop;
15459 end;
15460 end if;
15461
15462 if Parent_Type = Any_Type
15463 or else Etype (Parent_Type) = Any_Type
15464 or else (Is_Class_Wide_Type (Parent_Type)
15465 and then Etype (Parent_Type) = T)
15466 then
15467 -- If Parent_Type is undefined or illegal, make new type into a
15468 -- subtype of Any_Type, and set a few attributes to prevent cascaded
15469 -- errors. If this is a self-definition, emit error now.
15470
15471 if T = Parent_Type or else T = Etype (Parent_Type) then
15472 Error_Msg_N ("type cannot be used in its own definition", Indic);
15473 end if;
15474
15475 Set_Ekind (T, Ekind (Parent_Type));
15476 Set_Etype (T, Any_Type);
15477 Set_Scalar_Range (T, Scalar_Range (Any_Type));
15478
15479 if Is_Tagged_Type (T)
15480 and then Is_Record_Type (T)
15481 then
15482 Set_Direct_Primitive_Operations (T, New_Elmt_List);
15483 end if;
15484
15485 return;
15486 end if;
15487
15488 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
15489 -- an interface is special because the list of interfaces in the full
15490 -- view can be given in any order. For example:
15491
15492 -- type A is interface;
15493 -- type B is interface and A;
15494 -- type D is new B with private;
15495 -- private
15496 -- type D is new A and B with null record; -- 1 --
15497
15498 -- In this case we perform the following transformation of -1-:
15499
15500 -- type D is new B and A with null record;
15501
15502 -- If the parent of the full-view covers the parent of the partial-view
15503 -- we have two possible cases:
15504
15505 -- 1) They have the same parent
15506 -- 2) The parent of the full-view implements some further interfaces
15507
15508 -- In both cases we do not need to perform the transformation. In the
15509 -- first case the source program is correct and the transformation is
15510 -- not needed; in the second case the source program does not fulfill
15511 -- the no-hidden interfaces rule (AI-396) and the error will be reported
15512 -- later.
15513
15514 -- This transformation not only simplifies the rest of the analysis of
15515 -- this type declaration but also simplifies the correct generation of
15516 -- the object layout to the expander.
15517
15518 if In_Private_Part (Current_Scope)
15519 and then Is_Interface (Parent_Type)
15520 then
15521 declare
15522 Iface : Node_Id;
15523 Partial_View : Entity_Id;
15524 Partial_View_Parent : Entity_Id;
15525 New_Iface : Node_Id;
15526
15527 begin
15528 -- Look for the associated private type declaration
15529
15530 Partial_View := First_Entity (Current_Scope);
15531 loop
15532 exit when No (Partial_View)
15533 or else (Has_Private_Declaration (Partial_View)
15534 and then Full_View (Partial_View) = T);
15535
15536 Next_Entity (Partial_View);
15537 end loop;
15538
15539 -- If the partial view was not found then the source code has
15540 -- errors and the transformation is not needed.
15541
15542 if Present (Partial_View) then
15543 Partial_View_Parent := Etype (Partial_View);
15544
15545 -- If the parent of the full-view covers the parent of the
15546 -- partial-view we have nothing else to do.
15547
15548 if Interface_Present_In_Ancestor
15549 (Parent_Type, Partial_View_Parent)
15550 then
15551 null;
15552
15553 -- Traverse the list of interfaces of the full-view to look
15554 -- for the parent of the partial-view and perform the tree
15555 -- transformation.
15556
15557 else
15558 Iface := First (Interface_List (Def));
15559 while Present (Iface) loop
15560 if Etype (Iface) = Etype (Partial_View) then
15561 Rewrite (Subtype_Indication (Def),
15562 New_Copy (Subtype_Indication
15563 (Parent (Partial_View))));
15564
15565 New_Iface :=
15566 Make_Identifier (Sloc (N), Chars (Parent_Type));
15567 Append (New_Iface, Interface_List (Def));
15568
15569 -- Analyze the transformed code
15570
15571 Derived_Type_Declaration (T, N, Is_Completion);
15572 return;
15573 end if;
15574
15575 Next (Iface);
15576 end loop;
15577 end if;
15578 end if;
15579 end;
15580 end if;
15581
15582 -- Only composite types other than array types are allowed to have
15583 -- discriminants.
15584
15585 if Present (Discriminant_Specifications (N)) then
15586 if (Is_Elementary_Type (Parent_Type)
15587 or else
15588 Is_Array_Type (Parent_Type))
15589 and then not Error_Posted (N)
15590 then
15591 Error_Msg_N
15592 ("elementary or array type cannot have discriminants",
15593 Defining_Identifier (First (Discriminant_Specifications (N))));
15594 Set_Has_Discriminants (T, False);
15595
15596 -- The type is allowed to have discriminants
15597
15598 else
15599 Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
15600 end if;
15601 end if;
15602
15603 -- In Ada 83, a derived type defined in a package specification cannot
15604 -- be used for further derivation until the end of its visible part.
15605 -- Note that derivation in the private part of the package is allowed.
15606
15607 if Ada_Version = Ada_83
15608 and then Is_Derived_Type (Parent_Type)
15609 and then In_Visible_Part (Scope (Parent_Type))
15610 then
15611 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
15612 Error_Msg_N
15613 ("(Ada 83): premature use of type for derivation", Indic);
15614 end if;
15615 end if;
15616
15617 -- Check for early use of incomplete or private type
15618
15619 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
15620 Error_Msg_N ("premature derivation of incomplete type", Indic);
15621 return;
15622
15623 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
15624 and then not Comes_From_Generic (Parent_Type))
15625 or else Has_Private_Component (Parent_Type)
15626 then
15627 -- The ancestor type of a formal type can be incomplete, in which
15628 -- case only the operations of the partial view are available in the
15629 -- generic. Subsequent checks may be required when the full view is
15630 -- analyzed to verify that a derivation from a tagged type has an
15631 -- extension.
15632
15633 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
15634 null;
15635
15636 elsif No (Underlying_Type (Parent_Type))
15637 or else Has_Private_Component (Parent_Type)
15638 then
15639 Error_Msg_N
15640 ("premature derivation of derived or private type", Indic);
15641
15642 -- Flag the type itself as being in error, this prevents some
15643 -- nasty problems with subsequent uses of the malformed type.
15644
15645 Set_Error_Posted (T);
15646
15647 -- Check that within the immediate scope of an untagged partial
15648 -- view it's illegal to derive from the partial view if the
15649 -- full view is tagged. (7.3(7))
15650
15651 -- We verify that the Parent_Type is a partial view by checking
15652 -- that it is not a Full_Type_Declaration (i.e. a private type or
15653 -- private extension declaration), to distinguish a partial view
15654 -- from a derivation from a private type which also appears as
15655 -- E_Private_Type. If the parent base type is not declared in an
15656 -- enclosing scope there is no need to check.
15657
15658 elsif Present (Full_View (Parent_Type))
15659 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
15660 and then not Is_Tagged_Type (Parent_Type)
15661 and then Is_Tagged_Type (Full_View (Parent_Type))
15662 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15663 then
15664 Error_Msg_N
15665 ("premature derivation from type with tagged full view",
15666 Indic);
15667 end if;
15668 end if;
15669
15670 -- Check that form of derivation is appropriate
15671
15672 Taggd := Is_Tagged_Type (Parent_Type);
15673
15674 -- Perhaps the parent type should be changed to the class-wide type's
15675 -- specific type in this case to prevent cascading errors ???
15676
15677 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
15678 Error_Msg_N ("parent type must not be a class-wide type", Indic);
15679 return;
15680 end if;
15681
15682 if Present (Extension) and then not Taggd then
15683 Error_Msg_N
15684 ("type derived from untagged type cannot have extension", Indic);
15685
15686 elsif No (Extension) and then Taggd then
15687
15688 -- If this declaration is within a private part (or body) of a
15689 -- generic instantiation then the derivation is allowed (the parent
15690 -- type can only appear tagged in this case if it's a generic actual
15691 -- type, since it would otherwise have been rejected in the analysis
15692 -- of the generic template).
15693
15694 if not Is_Generic_Actual_Type (Parent_Type)
15695 or else In_Visible_Part (Scope (Parent_Type))
15696 then
15697 if Is_Class_Wide_Type (Parent_Type) then
15698 Error_Msg_N
15699 ("parent type must not be a class-wide type", Indic);
15700
15701 -- Use specific type to prevent cascaded errors.
15702
15703 Parent_Type := Etype (Parent_Type);
15704
15705 else
15706 Error_Msg_N
15707 ("type derived from tagged type must have extension", Indic);
15708 end if;
15709 end if;
15710 end if;
15711
15712 -- AI-443: Synchronized formal derived types require a private
15713 -- extension. There is no point in checking the ancestor type or
15714 -- the progenitors since the construct is wrong to begin with.
15715
15716 if Ada_Version >= Ada_2005
15717 and then Is_Generic_Type (T)
15718 and then Present (Original_Node (N))
15719 then
15720 declare
15721 Decl : constant Node_Id := Original_Node (N);
15722
15723 begin
15724 if Nkind (Decl) = N_Formal_Type_Declaration
15725 and then Nkind (Formal_Type_Definition (Decl)) =
15726 N_Formal_Derived_Type_Definition
15727 and then Synchronized_Present (Formal_Type_Definition (Decl))
15728 and then No (Extension)
15729
15730 -- Avoid emitting a duplicate error message
15731
15732 and then not Error_Posted (Indic)
15733 then
15734 Error_Msg_N
15735 ("synchronized derived type must have extension", N);
15736 end if;
15737 end;
15738 end if;
15739
15740 if Null_Exclusion_Present (Def)
15741 and then not Is_Access_Type (Parent_Type)
15742 then
15743 Error_Msg_N ("null exclusion can only apply to an access type", N);
15744 end if;
15745
15746 -- Avoid deriving parent primitives of underlying record views
15747
15748 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
15749 Derive_Subps => not Is_Underlying_Record_View (T));
15750
15751 -- AI-419: The parent type of an explicitly limited derived type must
15752 -- be a limited type or a limited interface.
15753
15754 if Limited_Present (Def) then
15755 Set_Is_Limited_Record (T);
15756
15757 if Is_Interface (T) then
15758 Set_Is_Limited_Interface (T);
15759 end if;
15760
15761 if not Is_Limited_Type (Parent_Type)
15762 and then
15763 (not Is_Interface (Parent_Type)
15764 or else not Is_Limited_Interface (Parent_Type))
15765 then
15766 -- AI05-0096: a derivation in the private part of an instance is
15767 -- legal if the generic formal is untagged limited, and the actual
15768 -- is non-limited.
15769
15770 if Is_Generic_Actual_Type (Parent_Type)
15771 and then In_Private_Part (Current_Scope)
15772 and then
15773 not Is_Tagged_Type
15774 (Generic_Parent_Type (Parent (Parent_Type)))
15775 then
15776 null;
15777
15778 else
15779 Error_Msg_NE
15780 ("parent type& of limited type must be limited",
15781 N, Parent_Type);
15782 end if;
15783 end if;
15784 end if;
15785
15786 -- In SPARK, there are no derived type definitions other than type
15787 -- extensions of tagged record types.
15788
15789 if No (Extension) then
15790 Check_SPARK_05_Restriction
15791 ("derived type is not allowed", Original_Node (N));
15792 end if;
15793 end Derived_Type_Declaration;
15794
15795 ------------------------
15796 -- Diagnose_Interface --
15797 ------------------------
15798
15799 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
15800 begin
15801 if not Is_Interface (E)
15802 and then E /= Any_Type
15803 then
15804 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
15805 end if;
15806 end Diagnose_Interface;
15807
15808 ----------------------------------
15809 -- Enumeration_Type_Declaration --
15810 ----------------------------------
15811
15812 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15813 Ev : Uint;
15814 L : Node_Id;
15815 R_Node : Node_Id;
15816 B_Node : Node_Id;
15817
15818 begin
15819 -- Create identifier node representing lower bound
15820
15821 B_Node := New_Node (N_Identifier, Sloc (Def));
15822 L := First (Literals (Def));
15823 Set_Chars (B_Node, Chars (L));
15824 Set_Entity (B_Node, L);
15825 Set_Etype (B_Node, T);
15826 Set_Is_Static_Expression (B_Node, True);
15827
15828 R_Node := New_Node (N_Range, Sloc (Def));
15829 Set_Low_Bound (R_Node, B_Node);
15830
15831 Set_Ekind (T, E_Enumeration_Type);
15832 Set_First_Literal (T, L);
15833 Set_Etype (T, T);
15834 Set_Is_Constrained (T);
15835
15836 Ev := Uint_0;
15837
15838 -- Loop through literals of enumeration type setting pos and rep values
15839 -- except that if the Ekind is already set, then it means the literal
15840 -- was already constructed (case of a derived type declaration and we
15841 -- should not disturb the Pos and Rep values.
15842
15843 while Present (L) loop
15844 if Ekind (L) /= E_Enumeration_Literal then
15845 Set_Ekind (L, E_Enumeration_Literal);
15846 Set_Enumeration_Pos (L, Ev);
15847 Set_Enumeration_Rep (L, Ev);
15848 Set_Is_Known_Valid (L, True);
15849 end if;
15850
15851 Set_Etype (L, T);
15852 New_Overloaded_Entity (L);
15853 Generate_Definition (L);
15854 Set_Convention (L, Convention_Intrinsic);
15855
15856 -- Case of character literal
15857
15858 if Nkind (L) = N_Defining_Character_Literal then
15859 Set_Is_Character_Type (T, True);
15860
15861 -- Check violation of No_Wide_Characters
15862
15863 if Restriction_Check_Required (No_Wide_Characters) then
15864 Get_Name_String (Chars (L));
15865
15866 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
15867 Check_Restriction (No_Wide_Characters, L);
15868 end if;
15869 end if;
15870 end if;
15871
15872 Ev := Ev + 1;
15873 Next (L);
15874 end loop;
15875
15876 -- Now create a node representing upper bound
15877
15878 B_Node := New_Node (N_Identifier, Sloc (Def));
15879 Set_Chars (B_Node, Chars (Last (Literals (Def))));
15880 Set_Entity (B_Node, Last (Literals (Def)));
15881 Set_Etype (B_Node, T);
15882 Set_Is_Static_Expression (B_Node, True);
15883
15884 Set_High_Bound (R_Node, B_Node);
15885
15886 -- Initialize various fields of the type. Some of this information
15887 -- may be overwritten later through rep.clauses.
15888
15889 Set_Scalar_Range (T, R_Node);
15890 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
15891 Set_Enum_Esize (T);
15892 Set_Enum_Pos_To_Rep (T, Empty);
15893
15894 -- Set Discard_Names if configuration pragma set, or if there is
15895 -- a parameterless pragma in the current declarative region
15896
15897 if Global_Discard_Names or else Discard_Names (Scope (T)) then
15898 Set_Discard_Names (T);
15899 end if;
15900
15901 -- Process end label if there is one
15902
15903 if Present (Def) then
15904 Process_End_Label (Def, 'e', T);
15905 end if;
15906 end Enumeration_Type_Declaration;
15907
15908 ---------------------------------
15909 -- Expand_To_Stored_Constraint --
15910 ---------------------------------
15911
15912 function Expand_To_Stored_Constraint
15913 (Typ : Entity_Id;
15914 Constraint : Elist_Id) return Elist_Id
15915 is
15916 Explicitly_Discriminated_Type : Entity_Id;
15917 Expansion : Elist_Id;
15918 Discriminant : Entity_Id;
15919
15920 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
15921 -- Find the nearest type that actually specifies discriminants
15922
15923 ---------------------------------
15924 -- Type_With_Explicit_Discrims --
15925 ---------------------------------
15926
15927 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
15928 Typ : constant E := Base_Type (Id);
15929
15930 begin
15931 if Ekind (Typ) in Incomplete_Or_Private_Kind then
15932 if Present (Full_View (Typ)) then
15933 return Type_With_Explicit_Discrims (Full_View (Typ));
15934 end if;
15935
15936 else
15937 if Has_Discriminants (Typ) then
15938 return Typ;
15939 end if;
15940 end if;
15941
15942 if Etype (Typ) = Typ then
15943 return Empty;
15944 elsif Has_Discriminants (Typ) then
15945 return Typ;
15946 else
15947 return Type_With_Explicit_Discrims (Etype (Typ));
15948 end if;
15949
15950 end Type_With_Explicit_Discrims;
15951
15952 -- Start of processing for Expand_To_Stored_Constraint
15953
15954 begin
15955 if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then
15956 return No_Elist;
15957 end if;
15958
15959 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
15960
15961 if No (Explicitly_Discriminated_Type) then
15962 return No_Elist;
15963 end if;
15964
15965 Expansion := New_Elmt_List;
15966
15967 Discriminant :=
15968 First_Stored_Discriminant (Explicitly_Discriminated_Type);
15969 while Present (Discriminant) loop
15970 Append_Elmt
15971 (Get_Discriminant_Value
15972 (Discriminant, Explicitly_Discriminated_Type, Constraint),
15973 To => Expansion);
15974 Next_Stored_Discriminant (Discriminant);
15975 end loop;
15976
15977 return Expansion;
15978 end Expand_To_Stored_Constraint;
15979
15980 ---------------------------
15981 -- Find_Hidden_Interface --
15982 ---------------------------
15983
15984 function Find_Hidden_Interface
15985 (Src : Elist_Id;
15986 Dest : Elist_Id) return Entity_Id
15987 is
15988 Iface : Entity_Id;
15989 Iface_Elmt : Elmt_Id;
15990
15991 begin
15992 if Present (Src) and then Present (Dest) then
15993 Iface_Elmt := First_Elmt (Src);
15994 while Present (Iface_Elmt) loop
15995 Iface := Node (Iface_Elmt);
15996
15997 if Is_Interface (Iface)
15998 and then not Contain_Interface (Iface, Dest)
15999 then
16000 return Iface;
16001 end if;
16002
16003 Next_Elmt (Iface_Elmt);
16004 end loop;
16005 end if;
16006
16007 return Empty;
16008 end Find_Hidden_Interface;
16009
16010 --------------------
16011 -- Find_Type_Name --
16012 --------------------
16013
16014 function Find_Type_Name (N : Node_Id) return Entity_Id is
16015 Id : constant Entity_Id := Defining_Identifier (N);
16016 Prev : Entity_Id;
16017 New_Id : Entity_Id;
16018 Prev_Par : Node_Id;
16019
16020 procedure Check_Duplicate_Aspects;
16021 -- Check that aspects specified in a completion have not been specified
16022 -- already in the partial view. Type_Invariant and others can be
16023 -- specified on either view but never on both.
16024
16025 procedure Tag_Mismatch;
16026 -- Diagnose a tagged partial view whose full view is untagged.
16027 -- We post the message on the full view, with a reference to
16028 -- the previous partial view. The partial view can be private
16029 -- or incomplete, and these are handled in a different manner,
16030 -- so we determine the position of the error message from the
16031 -- respective slocs of both.
16032
16033 -----------------------------
16034 -- Check_Duplicate_Aspects --
16035 -----------------------------
16036 procedure Check_Duplicate_Aspects is
16037 Prev_Aspects : constant List_Id := Aspect_Specifications (Prev_Par);
16038 Full_Aspects : constant List_Id := Aspect_Specifications (N);
16039 F_Spec, P_Spec : Node_Id;
16040
16041 begin
16042 if Present (Prev_Aspects) and then Present (Full_Aspects) then
16043 F_Spec := First (Full_Aspects);
16044 while Present (F_Spec) loop
16045 P_Spec := First (Prev_Aspects);
16046 while Present (P_Spec) loop
16047 if
16048 Chars (Identifier (P_Spec)) = Chars (Identifier (F_Spec))
16049 then
16050 Error_Msg_N
16051 ("aspect already specified in private declaration",
16052 F_Spec);
16053 Remove (F_Spec);
16054 return;
16055 end if;
16056
16057 Next (P_Spec);
16058 end loop;
16059
16060 Next (F_Spec);
16061 end loop;
16062 end if;
16063 end Check_Duplicate_Aspects;
16064
16065 ------------------
16066 -- Tag_Mismatch --
16067 ------------------
16068
16069 procedure Tag_Mismatch is
16070 begin
16071 if Sloc (Prev) < Sloc (Id) then
16072 if Ada_Version >= Ada_2012
16073 and then Nkind (N) = N_Private_Type_Declaration
16074 then
16075 Error_Msg_NE
16076 ("declaration of private } must be a tagged type ", Id, Prev);
16077 else
16078 Error_Msg_NE
16079 ("full declaration of } must be a tagged type ", Id, Prev);
16080 end if;
16081
16082 else
16083 if Ada_Version >= Ada_2012
16084 and then Nkind (N) = N_Private_Type_Declaration
16085 then
16086 Error_Msg_NE
16087 ("declaration of private } must be a tagged type ", Prev, Id);
16088 else
16089 Error_Msg_NE
16090 ("full declaration of } must be a tagged type ", Prev, Id);
16091 end if;
16092 end if;
16093 end Tag_Mismatch;
16094
16095 -- Start of processing for Find_Type_Name
16096
16097 begin
16098 -- Find incomplete declaration, if one was given
16099
16100 Prev := Current_Entity_In_Scope (Id);
16101
16102 -- New type declaration
16103
16104 if No (Prev) then
16105 Enter_Name (Id);
16106 return Id;
16107
16108 -- Previous declaration exists
16109
16110 else
16111 Prev_Par := Parent (Prev);
16112
16113 -- Error if not incomplete/private case except if previous
16114 -- declaration is implicit, etc. Enter_Name will emit error if
16115 -- appropriate.
16116
16117 if not Is_Incomplete_Or_Private_Type (Prev) then
16118 Enter_Name (Id);
16119 New_Id := Id;
16120
16121 -- Check invalid completion of private or incomplete type
16122
16123 elsif not Nkind_In (N, N_Full_Type_Declaration,
16124 N_Task_Type_Declaration,
16125 N_Protected_Type_Declaration)
16126 and then
16127 (Ada_Version < Ada_2012
16128 or else not Is_Incomplete_Type (Prev)
16129 or else not Nkind_In (N, N_Private_Type_Declaration,
16130 N_Private_Extension_Declaration))
16131 then
16132 -- Completion must be a full type declarations (RM 7.3(4))
16133
16134 Error_Msg_Sloc := Sloc (Prev);
16135 Error_Msg_NE ("invalid completion of }", Id, Prev);
16136
16137 -- Set scope of Id to avoid cascaded errors. Entity is never
16138 -- examined again, except when saving globals in generics.
16139
16140 Set_Scope (Id, Current_Scope);
16141 New_Id := Id;
16142
16143 -- If this is a repeated incomplete declaration, no further
16144 -- checks are possible.
16145
16146 if Nkind (N) = N_Incomplete_Type_Declaration then
16147 return Prev;
16148 end if;
16149
16150 -- Case of full declaration of incomplete type
16151
16152 elsif Ekind (Prev) = E_Incomplete_Type
16153 and then (Ada_Version < Ada_2012
16154 or else No (Full_View (Prev))
16155 or else not Is_Private_Type (Full_View (Prev)))
16156 then
16157 -- Indicate that the incomplete declaration has a matching full
16158 -- declaration. The defining occurrence of the incomplete
16159 -- declaration remains the visible one, and the procedure
16160 -- Get_Full_View dereferences it whenever the type is used.
16161
16162 if Present (Full_View (Prev)) then
16163 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
16164 end if;
16165
16166 Set_Full_View (Prev, Id);
16167 Append_Entity (Id, Current_Scope);
16168 Set_Is_Public (Id, Is_Public (Prev));
16169 Set_Is_Internal (Id);
16170 New_Id := Prev;
16171
16172 -- If the incomplete view is tagged, a class_wide type has been
16173 -- created already. Use it for the private type as well, in order
16174 -- to prevent multiple incompatible class-wide types that may be
16175 -- created for self-referential anonymous access components.
16176
16177 if Is_Tagged_Type (Prev)
16178 and then Present (Class_Wide_Type (Prev))
16179 then
16180 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
16181 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
16182
16183 -- If the incomplete type is completed by a private declaration
16184 -- the class-wide type remains associated with the incomplete
16185 -- type, to prevent order-of-elaboration issues in gigi, else
16186 -- we associate the class-wide type with the known full view.
16187
16188 if Nkind (N) /= N_Private_Type_Declaration then
16189 Set_Etype (Class_Wide_Type (Id), Id);
16190 end if;
16191 end if;
16192
16193 -- Case of full declaration of private type
16194
16195 else
16196 -- If the private type was a completion of an incomplete type then
16197 -- update Prev to reference the private type
16198
16199 if Ada_Version >= Ada_2012
16200 and then Ekind (Prev) = E_Incomplete_Type
16201 and then Present (Full_View (Prev))
16202 and then Is_Private_Type (Full_View (Prev))
16203 then
16204 Prev := Full_View (Prev);
16205 Prev_Par := Parent (Prev);
16206 end if;
16207
16208 if Nkind (N) = N_Full_Type_Declaration
16209 and then Nkind_In
16210 (Type_Definition (N), N_Record_Definition,
16211 N_Derived_Type_Definition)
16212 and then Interface_Present (Type_Definition (N))
16213 then
16214 Error_Msg_N
16215 ("completion of private type cannot be an interface", N);
16216 end if;
16217
16218 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
16219 if Etype (Prev) /= Prev then
16220
16221 -- Prev is a private subtype or a derived type, and needs
16222 -- no completion.
16223
16224 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
16225 New_Id := Id;
16226
16227 elsif Ekind (Prev) = E_Private_Type
16228 and then Nkind_In (N, N_Task_Type_Declaration,
16229 N_Protected_Type_Declaration)
16230 then
16231 Error_Msg_N
16232 ("completion of nonlimited type cannot be limited", N);
16233
16234 elsif Ekind (Prev) = E_Record_Type_With_Private
16235 and then Nkind_In (N, N_Task_Type_Declaration,
16236 N_Protected_Type_Declaration)
16237 then
16238 if not Is_Limited_Record (Prev) then
16239 Error_Msg_N
16240 ("completion of nonlimited type cannot be limited", N);
16241
16242 elsif No (Interface_List (N)) then
16243 Error_Msg_N
16244 ("completion of tagged private type must be tagged",
16245 N);
16246 end if;
16247 end if;
16248
16249 -- Ada 2005 (AI-251): Private extension declaration of a task
16250 -- type or a protected type. This case arises when covering
16251 -- interface types.
16252
16253 elsif Nkind_In (N, N_Task_Type_Declaration,
16254 N_Protected_Type_Declaration)
16255 then
16256 null;
16257
16258 elsif Nkind (N) /= N_Full_Type_Declaration
16259 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
16260 then
16261 Error_Msg_N
16262 ("full view of private extension must be an extension", N);
16263
16264 elsif not (Abstract_Present (Parent (Prev)))
16265 and then Abstract_Present (Type_Definition (N))
16266 then
16267 Error_Msg_N
16268 ("full view of non-abstract extension cannot be abstract", N);
16269 end if;
16270
16271 if not In_Private_Part (Current_Scope) then
16272 Error_Msg_N
16273 ("declaration of full view must appear in private part", N);
16274 end if;
16275
16276 if Ada_Version >= Ada_2012 then
16277 Check_Duplicate_Aspects;
16278 end if;
16279
16280 Copy_And_Swap (Prev, Id);
16281 Set_Has_Private_Declaration (Prev);
16282 Set_Has_Private_Declaration (Id);
16283
16284 -- Preserve aspect and iterator flags that may have been set on
16285 -- the partial view.
16286
16287 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
16288 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
16289
16290 -- If no error, propagate freeze_node from private to full view.
16291 -- It may have been generated for an early operational item.
16292
16293 if Present (Freeze_Node (Id))
16294 and then Serious_Errors_Detected = 0
16295 and then No (Full_View (Id))
16296 then
16297 Set_Freeze_Node (Prev, Freeze_Node (Id));
16298 Set_Freeze_Node (Id, Empty);
16299 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
16300 end if;
16301
16302 Set_Full_View (Id, Prev);
16303 New_Id := Prev;
16304 end if;
16305
16306 -- Verify that full declaration conforms to partial one
16307
16308 if Is_Incomplete_Or_Private_Type (Prev)
16309 and then Present (Discriminant_Specifications (Prev_Par))
16310 then
16311 if Present (Discriminant_Specifications (N)) then
16312 if Ekind (Prev) = E_Incomplete_Type then
16313 Check_Discriminant_Conformance (N, Prev, Prev);
16314 else
16315 Check_Discriminant_Conformance (N, Prev, Id);
16316 end if;
16317
16318 else
16319 Error_Msg_N
16320 ("missing discriminants in full type declaration", N);
16321
16322 -- To avoid cascaded errors on subsequent use, share the
16323 -- discriminants of the partial view.
16324
16325 Set_Discriminant_Specifications (N,
16326 Discriminant_Specifications (Prev_Par));
16327 end if;
16328 end if;
16329
16330 -- A prior untagged partial view can have an associated class-wide
16331 -- type due to use of the class attribute, and in this case the full
16332 -- type must also be tagged. This Ada 95 usage is deprecated in favor
16333 -- of incomplete tagged declarations, but we check for it.
16334
16335 if Is_Type (Prev)
16336 and then (Is_Tagged_Type (Prev)
16337 or else Present (Class_Wide_Type (Prev)))
16338 then
16339 -- Ada 2012 (AI05-0162): A private type may be the completion of
16340 -- an incomplete type.
16341
16342 if Ada_Version >= Ada_2012
16343 and then Is_Incomplete_Type (Prev)
16344 and then Nkind_In (N, N_Private_Type_Declaration,
16345 N_Private_Extension_Declaration)
16346 then
16347 -- No need to check private extensions since they are tagged
16348
16349 if Nkind (N) = N_Private_Type_Declaration
16350 and then not Tagged_Present (N)
16351 then
16352 Tag_Mismatch;
16353 end if;
16354
16355 -- The full declaration is either a tagged type (including
16356 -- a synchronized type that implements interfaces) or a
16357 -- type extension, otherwise this is an error.
16358
16359 elsif Nkind_In (N, N_Task_Type_Declaration,
16360 N_Protected_Type_Declaration)
16361 then
16362 if No (Interface_List (N))
16363 and then not Error_Posted (N)
16364 then
16365 Tag_Mismatch;
16366 end if;
16367
16368 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
16369
16370 -- Indicate that the previous declaration (tagged incomplete
16371 -- or private declaration) requires the same on the full one.
16372
16373 if not Tagged_Present (Type_Definition (N)) then
16374 Tag_Mismatch;
16375 Set_Is_Tagged_Type (Id);
16376 end if;
16377
16378 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
16379 if No (Record_Extension_Part (Type_Definition (N))) then
16380 Error_Msg_NE
16381 ("full declaration of } must be a record extension",
16382 Prev, Id);
16383
16384 -- Set some attributes to produce a usable full view
16385
16386 Set_Is_Tagged_Type (Id);
16387 end if;
16388
16389 else
16390 Tag_Mismatch;
16391 end if;
16392 end if;
16393
16394 if Present (Prev)
16395 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
16396 and then Present (Premature_Use (Parent (Prev)))
16397 then
16398 Error_Msg_Sloc := Sloc (N);
16399 Error_Msg_N
16400 ("\full declaration #", Premature_Use (Parent (Prev)));
16401 end if;
16402
16403 return New_Id;
16404 end if;
16405 end Find_Type_Name;
16406
16407 -------------------------
16408 -- Find_Type_Of_Object --
16409 -------------------------
16410
16411 function Find_Type_Of_Object
16412 (Obj_Def : Node_Id;
16413 Related_Nod : Node_Id) return Entity_Id
16414 is
16415 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
16416 P : Node_Id := Parent (Obj_Def);
16417 T : Entity_Id;
16418 Nam : Name_Id;
16419
16420 begin
16421 -- If the parent is a component_definition node we climb to the
16422 -- component_declaration node
16423
16424 if Nkind (P) = N_Component_Definition then
16425 P := Parent (P);
16426 end if;
16427
16428 -- Case of an anonymous array subtype
16429
16430 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
16431 N_Unconstrained_Array_Definition)
16432 then
16433 T := Empty;
16434 Array_Type_Declaration (T, Obj_Def);
16435
16436 -- Create an explicit subtype whenever possible
16437
16438 elsif Nkind (P) /= N_Component_Declaration
16439 and then Def_Kind = N_Subtype_Indication
16440 then
16441 -- Base name of subtype on object name, which will be unique in
16442 -- the current scope.
16443
16444 -- If this is a duplicate declaration, return base type, to avoid
16445 -- generating duplicate anonymous types.
16446
16447 if Error_Posted (P) then
16448 Analyze (Subtype_Mark (Obj_Def));
16449 return Entity (Subtype_Mark (Obj_Def));
16450 end if;
16451
16452 Nam :=
16453 New_External_Name
16454 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
16455
16456 T := Make_Defining_Identifier (Sloc (P), Nam);
16457
16458 Insert_Action (Obj_Def,
16459 Make_Subtype_Declaration (Sloc (P),
16460 Defining_Identifier => T,
16461 Subtype_Indication => Relocate_Node (Obj_Def)));
16462
16463 -- This subtype may need freezing, and this will not be done
16464 -- automatically if the object declaration is not in declarative
16465 -- part. Since this is an object declaration, the type cannot always
16466 -- be frozen here. Deferred constants do not freeze their type
16467 -- (which often enough will be private).
16468
16469 if Nkind (P) = N_Object_Declaration
16470 and then Constant_Present (P)
16471 and then No (Expression (P))
16472 then
16473 null;
16474
16475 -- Here we freeze the base type of object type to catch premature use
16476 -- of discriminated private type without a full view.
16477
16478 else
16479 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
16480 end if;
16481
16482 -- Ada 2005 AI-406: the object definition in an object declaration
16483 -- can be an access definition.
16484
16485 elsif Def_Kind = N_Access_Definition then
16486 T := Access_Definition (Related_Nod, Obj_Def);
16487
16488 Set_Is_Local_Anonymous_Access
16489 (T,
16490 V => (Ada_Version < Ada_2012)
16491 or else (Nkind (P) /= N_Object_Declaration)
16492 or else Is_Library_Level_Entity (Defining_Identifier (P)));
16493
16494 -- Otherwise, the object definition is just a subtype_mark
16495
16496 else
16497 T := Process_Subtype (Obj_Def, Related_Nod);
16498
16499 -- If expansion is disabled an object definition that is an aggregate
16500 -- will not get expanded and may lead to scoping problems in the back
16501 -- end, if the object is referenced in an inner scope. In that case
16502 -- create an itype reference for the object definition now. This
16503 -- may be redundant in some cases, but harmless.
16504
16505 if Is_Itype (T)
16506 and then Nkind (Related_Nod) = N_Object_Declaration
16507 and then ASIS_Mode
16508 then
16509 Build_Itype_Reference (T, Related_Nod);
16510 end if;
16511 end if;
16512
16513 return T;
16514 end Find_Type_Of_Object;
16515
16516 --------------------------------
16517 -- Find_Type_Of_Subtype_Indic --
16518 --------------------------------
16519
16520 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
16521 Typ : Entity_Id;
16522
16523 begin
16524 -- Case of subtype mark with a constraint
16525
16526 if Nkind (S) = N_Subtype_Indication then
16527 Find_Type (Subtype_Mark (S));
16528 Typ := Entity (Subtype_Mark (S));
16529
16530 if not
16531 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
16532 then
16533 Error_Msg_N
16534 ("incorrect constraint for this kind of type", Constraint (S));
16535 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
16536 end if;
16537
16538 -- Otherwise we have a subtype mark without a constraint
16539
16540 elsif Error_Posted (S) then
16541 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
16542 return Any_Type;
16543
16544 else
16545 Find_Type (S);
16546 Typ := Entity (S);
16547 end if;
16548
16549 -- Check No_Wide_Characters restriction
16550
16551 Check_Wide_Character_Restriction (Typ, S);
16552
16553 return Typ;
16554 end Find_Type_Of_Subtype_Indic;
16555
16556 -------------------------------------
16557 -- Floating_Point_Type_Declaration --
16558 -------------------------------------
16559
16560 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16561 Digs : constant Node_Id := Digits_Expression (Def);
16562 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
16563 Digs_Val : Uint;
16564 Base_Typ : Entity_Id;
16565 Implicit_Base : Entity_Id;
16566 Bound : Node_Id;
16567
16568 function Can_Derive_From (E : Entity_Id) return Boolean;
16569 -- Find if given digits value, and possibly a specified range, allows
16570 -- derivation from specified type
16571
16572 function Find_Base_Type return Entity_Id;
16573 -- Find a predefined base type that Def can derive from, or generate
16574 -- an error and substitute Long_Long_Float if none exists.
16575
16576 ---------------------
16577 -- Can_Derive_From --
16578 ---------------------
16579
16580 function Can_Derive_From (E : Entity_Id) return Boolean is
16581 Spec : constant Entity_Id := Real_Range_Specification (Def);
16582
16583 begin
16584 -- Check specified "digits" constraint
16585
16586 if Digs_Val > Digits_Value (E) then
16587 return False;
16588 end if;
16589
16590 -- Check for matching range, if specified
16591
16592 if Present (Spec) then
16593 if Expr_Value_R (Type_Low_Bound (E)) >
16594 Expr_Value_R (Low_Bound (Spec))
16595 then
16596 return False;
16597 end if;
16598
16599 if Expr_Value_R (Type_High_Bound (E)) <
16600 Expr_Value_R (High_Bound (Spec))
16601 then
16602 return False;
16603 end if;
16604 end if;
16605
16606 return True;
16607 end Can_Derive_From;
16608
16609 --------------------
16610 -- Find_Base_Type --
16611 --------------------
16612
16613 function Find_Base_Type return Entity_Id is
16614 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
16615
16616 begin
16617 -- Iterate over the predefined types in order, returning the first
16618 -- one that Def can derive from.
16619
16620 while Present (Choice) loop
16621 if Can_Derive_From (Node (Choice)) then
16622 return Node (Choice);
16623 end if;
16624
16625 Next_Elmt (Choice);
16626 end loop;
16627
16628 -- If we can't derive from any existing type, use Long_Long_Float
16629 -- and give appropriate message explaining the problem.
16630
16631 if Digs_Val > Max_Digs_Val then
16632 -- It might be the case that there is a type with the requested
16633 -- range, just not the combination of digits and range.
16634
16635 Error_Msg_N
16636 ("no predefined type has requested range and precision",
16637 Real_Range_Specification (Def));
16638
16639 else
16640 Error_Msg_N
16641 ("range too large for any predefined type",
16642 Real_Range_Specification (Def));
16643 end if;
16644
16645 return Standard_Long_Long_Float;
16646 end Find_Base_Type;
16647
16648 -- Start of processing for Floating_Point_Type_Declaration
16649
16650 begin
16651 Check_Restriction (No_Floating_Point, Def);
16652
16653 -- Create an implicit base type
16654
16655 Implicit_Base :=
16656 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
16657
16658 -- Analyze and verify digits value
16659
16660 Analyze_And_Resolve (Digs, Any_Integer);
16661 Check_Digits_Expression (Digs);
16662 Digs_Val := Expr_Value (Digs);
16663
16664 -- Process possible range spec and find correct type to derive from
16665
16666 Process_Real_Range_Specification (Def);
16667
16668 -- Check that requested number of digits is not too high.
16669
16670 if Digs_Val > Max_Digs_Val then
16671 -- The check for Max_Base_Digits may be somewhat expensive, as it
16672 -- requires reading System, so only do it when necessary.
16673
16674 declare
16675 Max_Base_Digits : constant Uint :=
16676 Expr_Value
16677 (Expression
16678 (Parent (RTE (RE_Max_Base_Digits))));
16679
16680 begin
16681 if Digs_Val > Max_Base_Digits then
16682 Error_Msg_Uint_1 := Max_Base_Digits;
16683 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
16684
16685 elsif No (Real_Range_Specification (Def)) then
16686 Error_Msg_Uint_1 := Max_Digs_Val;
16687 Error_Msg_N ("types with more than ^ digits need range spec "
16688 & "(RM 3.5.7(6))", Digs);
16689 end if;
16690 end;
16691 end if;
16692
16693 -- Find a suitable type to derive from or complain and use a substitute
16694
16695 Base_Typ := Find_Base_Type;
16696
16697 -- If there are bounds given in the declaration use them as the bounds
16698 -- of the type, otherwise use the bounds of the predefined base type
16699 -- that was chosen based on the Digits value.
16700
16701 if Present (Real_Range_Specification (Def)) then
16702 Set_Scalar_Range (T, Real_Range_Specification (Def));
16703 Set_Is_Constrained (T);
16704
16705 -- The bounds of this range must be converted to machine numbers
16706 -- in accordance with RM 4.9(38).
16707
16708 Bound := Type_Low_Bound (T);
16709
16710 if Nkind (Bound) = N_Real_Literal then
16711 Set_Realval
16712 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16713 Set_Is_Machine_Number (Bound);
16714 end if;
16715
16716 Bound := Type_High_Bound (T);
16717
16718 if Nkind (Bound) = N_Real_Literal then
16719 Set_Realval
16720 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16721 Set_Is_Machine_Number (Bound);
16722 end if;
16723
16724 else
16725 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
16726 end if;
16727
16728 -- Complete definition of implicit base and declared first subtype
16729
16730 Set_Etype (Implicit_Base, Base_Typ);
16731
16732 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
16733 Set_Size_Info (Implicit_Base, (Base_Typ));
16734 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
16735 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
16736 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
16737 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
16738
16739 Set_Ekind (T, E_Floating_Point_Subtype);
16740 Set_Etype (T, Implicit_Base);
16741
16742 Set_Size_Info (T, (Implicit_Base));
16743 Set_RM_Size (T, RM_Size (Implicit_Base));
16744 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
16745 Set_Digits_Value (T, Digs_Val);
16746 end Floating_Point_Type_Declaration;
16747
16748 ----------------------------
16749 -- Get_Discriminant_Value --
16750 ----------------------------
16751
16752 -- This is the situation:
16753
16754 -- There is a non-derived type
16755
16756 -- type T0 (Dx, Dy, Dz...)
16757
16758 -- There are zero or more levels of derivation, with each derivation
16759 -- either purely inheriting the discriminants, or defining its own.
16760
16761 -- type Ti is new Ti-1
16762 -- or
16763 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
16764 -- or
16765 -- subtype Ti is ...
16766
16767 -- The subtype issue is avoided by the use of Original_Record_Component,
16768 -- and the fact that derived subtypes also derive the constraints.
16769
16770 -- This chain leads back from
16771
16772 -- Typ_For_Constraint
16773
16774 -- Typ_For_Constraint has discriminants, and the value for each
16775 -- discriminant is given by its corresponding Elmt of Constraints.
16776
16777 -- Discriminant is some discriminant in this hierarchy
16778
16779 -- We need to return its value
16780
16781 -- We do this by recursively searching each level, and looking for
16782 -- Discriminant. Once we get to the bottom, we start backing up
16783 -- returning the value for it which may in turn be a discriminant
16784 -- further up, so on the backup we continue the substitution.
16785
16786 function Get_Discriminant_Value
16787 (Discriminant : Entity_Id;
16788 Typ_For_Constraint : Entity_Id;
16789 Constraint : Elist_Id) return Node_Id
16790 is
16791 function Root_Corresponding_Discriminant
16792 (Discr : Entity_Id) return Entity_Id;
16793 -- Given a discriminant, traverse the chain of inherited discriminants
16794 -- and return the topmost discriminant.
16795
16796 function Search_Derivation_Levels
16797 (Ti : Entity_Id;
16798 Discrim_Values : Elist_Id;
16799 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
16800 -- This is the routine that performs the recursive search of levels
16801 -- as described above.
16802
16803 -------------------------------------
16804 -- Root_Corresponding_Discriminant --
16805 -------------------------------------
16806
16807 function Root_Corresponding_Discriminant
16808 (Discr : Entity_Id) return Entity_Id
16809 is
16810 D : Entity_Id;
16811
16812 begin
16813 D := Discr;
16814 while Present (Corresponding_Discriminant (D)) loop
16815 D := Corresponding_Discriminant (D);
16816 end loop;
16817
16818 return D;
16819 end Root_Corresponding_Discriminant;
16820
16821 ------------------------------
16822 -- Search_Derivation_Levels --
16823 ------------------------------
16824
16825 function Search_Derivation_Levels
16826 (Ti : Entity_Id;
16827 Discrim_Values : Elist_Id;
16828 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
16829 is
16830 Assoc : Elmt_Id;
16831 Disc : Entity_Id;
16832 Result : Node_Or_Entity_Id;
16833 Result_Entity : Node_Id;
16834
16835 begin
16836 -- If inappropriate type, return Error, this happens only in
16837 -- cascaded error situations, and we want to avoid a blow up.
16838
16839 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
16840 return Error;
16841 end if;
16842
16843 -- Look deeper if possible. Use Stored_Constraints only for
16844 -- untagged types. For tagged types use the given constraint.
16845 -- This asymmetry needs explanation???
16846
16847 if not Stored_Discrim_Values
16848 and then Present (Stored_Constraint (Ti))
16849 and then not Is_Tagged_Type (Ti)
16850 then
16851 Result :=
16852 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
16853 else
16854 declare
16855 Td : constant Entity_Id := Etype (Ti);
16856
16857 begin
16858 if Td = Ti then
16859 Result := Discriminant;
16860
16861 else
16862 if Present (Stored_Constraint (Ti)) then
16863 Result :=
16864 Search_Derivation_Levels
16865 (Td, Stored_Constraint (Ti), True);
16866 else
16867 Result :=
16868 Search_Derivation_Levels
16869 (Td, Discrim_Values, Stored_Discrim_Values);
16870 end if;
16871 end if;
16872 end;
16873 end if;
16874
16875 -- Extra underlying places to search, if not found above. For
16876 -- concurrent types, the relevant discriminant appears in the
16877 -- corresponding record. For a type derived from a private type
16878 -- without discriminant, the full view inherits the discriminants
16879 -- of the full view of the parent.
16880
16881 if Result = Discriminant then
16882 if Is_Concurrent_Type (Ti)
16883 and then Present (Corresponding_Record_Type (Ti))
16884 then
16885 Result :=
16886 Search_Derivation_Levels (
16887 Corresponding_Record_Type (Ti),
16888 Discrim_Values,
16889 Stored_Discrim_Values);
16890
16891 elsif Is_Private_Type (Ti)
16892 and then not Has_Discriminants (Ti)
16893 and then Present (Full_View (Ti))
16894 and then Etype (Full_View (Ti)) /= Ti
16895 then
16896 Result :=
16897 Search_Derivation_Levels (
16898 Full_View (Ti),
16899 Discrim_Values,
16900 Stored_Discrim_Values);
16901 end if;
16902 end if;
16903
16904 -- If Result is not a (reference to a) discriminant, return it,
16905 -- otherwise set Result_Entity to the discriminant.
16906
16907 if Nkind (Result) = N_Defining_Identifier then
16908 pragma Assert (Result = Discriminant);
16909 Result_Entity := Result;
16910
16911 else
16912 if not Denotes_Discriminant (Result) then
16913 return Result;
16914 end if;
16915
16916 Result_Entity := Entity (Result);
16917 end if;
16918
16919 -- See if this level of derivation actually has discriminants
16920 -- because tagged derivations can add them, hence the lower
16921 -- levels need not have any.
16922
16923 if not Has_Discriminants (Ti) then
16924 return Result;
16925 end if;
16926
16927 -- Scan Ti's discriminants for Result_Entity,
16928 -- and return its corresponding value, if any.
16929
16930 Result_Entity := Original_Record_Component (Result_Entity);
16931
16932 Assoc := First_Elmt (Discrim_Values);
16933
16934 if Stored_Discrim_Values then
16935 Disc := First_Stored_Discriminant (Ti);
16936 else
16937 Disc := First_Discriminant (Ti);
16938 end if;
16939
16940 while Present (Disc) loop
16941 pragma Assert (Present (Assoc));
16942
16943 if Original_Record_Component (Disc) = Result_Entity then
16944 return Node (Assoc);
16945 end if;
16946
16947 Next_Elmt (Assoc);
16948
16949 if Stored_Discrim_Values then
16950 Next_Stored_Discriminant (Disc);
16951 else
16952 Next_Discriminant (Disc);
16953 end if;
16954 end loop;
16955
16956 -- Could not find it
16957 --
16958 return Result;
16959 end Search_Derivation_Levels;
16960
16961 -- Local Variables
16962
16963 Result : Node_Or_Entity_Id;
16964
16965 -- Start of processing for Get_Discriminant_Value
16966
16967 begin
16968 -- ??? This routine is a gigantic mess and will be deleted. For the
16969 -- time being just test for the trivial case before calling recurse.
16970
16971 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
16972 declare
16973 D : Entity_Id;
16974 E : Elmt_Id;
16975
16976 begin
16977 D := First_Discriminant (Typ_For_Constraint);
16978 E := First_Elmt (Constraint);
16979 while Present (D) loop
16980 if Chars (D) = Chars (Discriminant) then
16981 return Node (E);
16982 end if;
16983
16984 Next_Discriminant (D);
16985 Next_Elmt (E);
16986 end loop;
16987 end;
16988 end if;
16989
16990 Result := Search_Derivation_Levels
16991 (Typ_For_Constraint, Constraint, False);
16992
16993 -- ??? hack to disappear when this routine is gone
16994
16995 if Nkind (Result) = N_Defining_Identifier then
16996 declare
16997 D : Entity_Id;
16998 E : Elmt_Id;
16999
17000 begin
17001 D := First_Discriminant (Typ_For_Constraint);
17002 E := First_Elmt (Constraint);
17003 while Present (D) loop
17004 if Root_Corresponding_Discriminant (D) = Discriminant then
17005 return Node (E);
17006 end if;
17007
17008 Next_Discriminant (D);
17009 Next_Elmt (E);
17010 end loop;
17011 end;
17012 end if;
17013
17014 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
17015 return Result;
17016 end Get_Discriminant_Value;
17017
17018 --------------------------
17019 -- Has_Range_Constraint --
17020 --------------------------
17021
17022 function Has_Range_Constraint (N : Node_Id) return Boolean is
17023 C : constant Node_Id := Constraint (N);
17024
17025 begin
17026 if Nkind (C) = N_Range_Constraint then
17027 return True;
17028
17029 elsif Nkind (C) = N_Digits_Constraint then
17030 return
17031 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
17032 or else Present (Range_Constraint (C));
17033
17034 elsif Nkind (C) = N_Delta_Constraint then
17035 return Present (Range_Constraint (C));
17036
17037 else
17038 return False;
17039 end if;
17040 end Has_Range_Constraint;
17041
17042 ------------------------
17043 -- Inherit_Components --
17044 ------------------------
17045
17046 function Inherit_Components
17047 (N : Node_Id;
17048 Parent_Base : Entity_Id;
17049 Derived_Base : Entity_Id;
17050 Is_Tagged : Boolean;
17051 Inherit_Discr : Boolean;
17052 Discs : Elist_Id) return Elist_Id
17053 is
17054 Assoc_List : constant Elist_Id := New_Elmt_List;
17055
17056 procedure Inherit_Component
17057 (Old_C : Entity_Id;
17058 Plain_Discrim : Boolean := False;
17059 Stored_Discrim : Boolean := False);
17060 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
17061 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
17062 -- True, Old_C is a stored discriminant. If they are both false then
17063 -- Old_C is a regular component.
17064
17065 -----------------------
17066 -- Inherit_Component --
17067 -----------------------
17068
17069 procedure Inherit_Component
17070 (Old_C : Entity_Id;
17071 Plain_Discrim : Boolean := False;
17072 Stored_Discrim : Boolean := False)
17073 is
17074 procedure Set_Anonymous_Type (Id : Entity_Id);
17075 -- Id denotes the entity of an access discriminant or anonymous
17076 -- access component. Set the type of Id to either the same type of
17077 -- Old_C or create a new one depending on whether the parent and
17078 -- the child types are in the same scope.
17079
17080 ------------------------
17081 -- Set_Anonymous_Type --
17082 ------------------------
17083
17084 procedure Set_Anonymous_Type (Id : Entity_Id) is
17085 Old_Typ : constant Entity_Id := Etype (Old_C);
17086
17087 begin
17088 if Scope (Parent_Base) = Scope (Derived_Base) then
17089 Set_Etype (Id, Old_Typ);
17090
17091 -- The parent and the derived type are in two different scopes.
17092 -- Reuse the type of the original discriminant / component by
17093 -- copying it in order to preserve all attributes.
17094
17095 else
17096 declare
17097 Typ : constant Entity_Id := New_Copy (Old_Typ);
17098
17099 begin
17100 Set_Etype (Id, Typ);
17101
17102 -- Since we do not generate component declarations for
17103 -- inherited components, associate the itype with the
17104 -- derived type.
17105
17106 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
17107 Set_Scope (Typ, Derived_Base);
17108 end;
17109 end if;
17110 end Set_Anonymous_Type;
17111
17112 -- Local variables and constants
17113
17114 New_C : constant Entity_Id := New_Copy (Old_C);
17115
17116 Corr_Discrim : Entity_Id;
17117 Discrim : Entity_Id;
17118
17119 -- Start of processing for Inherit_Component
17120
17121 begin
17122 pragma Assert (not Is_Tagged or not Stored_Discrim);
17123
17124 Set_Parent (New_C, Parent (Old_C));
17125
17126 -- Regular discriminants and components must be inserted in the scope
17127 -- of the Derived_Base. Do it here.
17128
17129 if not Stored_Discrim then
17130 Enter_Name (New_C);
17131 end if;
17132
17133 -- For tagged types the Original_Record_Component must point to
17134 -- whatever this field was pointing to in the parent type. This has
17135 -- already been achieved by the call to New_Copy above.
17136
17137 if not Is_Tagged then
17138 Set_Original_Record_Component (New_C, New_C);
17139 end if;
17140
17141 -- Set the proper type of an access discriminant
17142
17143 if Ekind (New_C) = E_Discriminant
17144 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
17145 then
17146 Set_Anonymous_Type (New_C);
17147 end if;
17148
17149 -- If we have inherited a component then see if its Etype contains
17150 -- references to Parent_Base discriminants. In this case, replace
17151 -- these references with the constraints given in Discs. We do not
17152 -- do this for the partial view of private types because this is
17153 -- not needed (only the components of the full view will be used
17154 -- for code generation) and cause problem. We also avoid this
17155 -- transformation in some error situations.
17156
17157 if Ekind (New_C) = E_Component then
17158
17159 -- Set the proper type of an anonymous access component
17160
17161 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
17162 Set_Anonymous_Type (New_C);
17163
17164 elsif (Is_Private_Type (Derived_Base)
17165 and then not Is_Generic_Type (Derived_Base))
17166 or else (Is_Empty_Elmt_List (Discs)
17167 and then not Expander_Active)
17168 then
17169 Set_Etype (New_C, Etype (Old_C));
17170
17171 else
17172 -- The current component introduces a circularity of the
17173 -- following kind:
17174
17175 -- limited with Pack_2;
17176 -- package Pack_1 is
17177 -- type T_1 is tagged record
17178 -- Comp : access Pack_2.T_2;
17179 -- ...
17180 -- end record;
17181 -- end Pack_1;
17182
17183 -- with Pack_1;
17184 -- package Pack_2 is
17185 -- type T_2 is new Pack_1.T_1 with ...;
17186 -- end Pack_2;
17187
17188 Set_Etype
17189 (New_C,
17190 Constrain_Component_Type
17191 (Old_C, Derived_Base, N, Parent_Base, Discs));
17192 end if;
17193 end if;
17194
17195 -- In derived tagged types it is illegal to reference a non
17196 -- discriminant component in the parent type. To catch this, mark
17197 -- these components with an Ekind of E_Void. This will be reset in
17198 -- Record_Type_Definition after processing the record extension of
17199 -- the derived type.
17200
17201 -- If the declaration is a private extension, there is no further
17202 -- record extension to process, and the components retain their
17203 -- current kind, because they are visible at this point.
17204
17205 if Is_Tagged and then Ekind (New_C) = E_Component
17206 and then Nkind (N) /= N_Private_Extension_Declaration
17207 then
17208 Set_Ekind (New_C, E_Void);
17209 end if;
17210
17211 if Plain_Discrim then
17212 Set_Corresponding_Discriminant (New_C, Old_C);
17213 Build_Discriminal (New_C);
17214
17215 -- If we are explicitly inheriting a stored discriminant it will be
17216 -- completely hidden.
17217
17218 elsif Stored_Discrim then
17219 Set_Corresponding_Discriminant (New_C, Empty);
17220 Set_Discriminal (New_C, Empty);
17221 Set_Is_Completely_Hidden (New_C);
17222
17223 -- Set the Original_Record_Component of each discriminant in the
17224 -- derived base to point to the corresponding stored that we just
17225 -- created.
17226
17227 Discrim := First_Discriminant (Derived_Base);
17228 while Present (Discrim) loop
17229 Corr_Discrim := Corresponding_Discriminant (Discrim);
17230
17231 -- Corr_Discrim could be missing in an error situation
17232
17233 if Present (Corr_Discrim)
17234 and then Original_Record_Component (Corr_Discrim) = Old_C
17235 then
17236 Set_Original_Record_Component (Discrim, New_C);
17237 end if;
17238
17239 Next_Discriminant (Discrim);
17240 end loop;
17241
17242 Append_Entity (New_C, Derived_Base);
17243 end if;
17244
17245 if not Is_Tagged then
17246 Append_Elmt (Old_C, Assoc_List);
17247 Append_Elmt (New_C, Assoc_List);
17248 end if;
17249 end Inherit_Component;
17250
17251 -- Variables local to Inherit_Component
17252
17253 Loc : constant Source_Ptr := Sloc (N);
17254
17255 Parent_Discrim : Entity_Id;
17256 Stored_Discrim : Entity_Id;
17257 D : Entity_Id;
17258 Component : Entity_Id;
17259
17260 -- Start of processing for Inherit_Components
17261
17262 begin
17263 if not Is_Tagged then
17264 Append_Elmt (Parent_Base, Assoc_List);
17265 Append_Elmt (Derived_Base, Assoc_List);
17266 end if;
17267
17268 -- Inherit parent discriminants if needed
17269
17270 if Inherit_Discr then
17271 Parent_Discrim := First_Discriminant (Parent_Base);
17272 while Present (Parent_Discrim) loop
17273 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
17274 Next_Discriminant (Parent_Discrim);
17275 end loop;
17276 end if;
17277
17278 -- Create explicit stored discrims for untagged types when necessary
17279
17280 if not Has_Unknown_Discriminants (Derived_Base)
17281 and then Has_Discriminants (Parent_Base)
17282 and then not Is_Tagged
17283 and then
17284 (not Inherit_Discr
17285 or else First_Discriminant (Parent_Base) /=
17286 First_Stored_Discriminant (Parent_Base))
17287 then
17288 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
17289 while Present (Stored_Discrim) loop
17290 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
17291 Next_Stored_Discriminant (Stored_Discrim);
17292 end loop;
17293 end if;
17294
17295 -- See if we can apply the second transformation for derived types, as
17296 -- explained in point 6. in the comments above Build_Derived_Record_Type
17297 -- This is achieved by appending Derived_Base discriminants into Discs,
17298 -- which has the side effect of returning a non empty Discs list to the
17299 -- caller of Inherit_Components, which is what we want. This must be
17300 -- done for private derived types if there are explicit stored
17301 -- discriminants, to ensure that we can retrieve the values of the
17302 -- constraints provided in the ancestors.
17303
17304 if Inherit_Discr
17305 and then Is_Empty_Elmt_List (Discs)
17306 and then Present (First_Discriminant (Derived_Base))
17307 and then
17308 (not Is_Private_Type (Derived_Base)
17309 or else Is_Completely_Hidden
17310 (First_Stored_Discriminant (Derived_Base))
17311 or else Is_Generic_Type (Derived_Base))
17312 then
17313 D := First_Discriminant (Derived_Base);
17314 while Present (D) loop
17315 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
17316 Next_Discriminant (D);
17317 end loop;
17318 end if;
17319
17320 -- Finally, inherit non-discriminant components unless they are not
17321 -- visible because defined or inherited from the full view of the
17322 -- parent. Don't inherit the _parent field of the parent type.
17323
17324 Component := First_Entity (Parent_Base);
17325 while Present (Component) loop
17326
17327 -- Ada 2005 (AI-251): Do not inherit components associated with
17328 -- secondary tags of the parent.
17329
17330 if Ekind (Component) = E_Component
17331 and then Present (Related_Type (Component))
17332 then
17333 null;
17334
17335 elsif Ekind (Component) /= E_Component
17336 or else Chars (Component) = Name_uParent
17337 then
17338 null;
17339
17340 -- If the derived type is within the parent type's declarative
17341 -- region, then the components can still be inherited even though
17342 -- they aren't visible at this point. This can occur for cases
17343 -- such as within public child units where the components must
17344 -- become visible upon entering the child unit's private part.
17345
17346 elsif not Is_Visible_Component (Component)
17347 and then not In_Open_Scopes (Scope (Parent_Base))
17348 then
17349 null;
17350
17351 elsif Ekind_In (Derived_Base, E_Private_Type,
17352 E_Limited_Private_Type)
17353 then
17354 null;
17355
17356 else
17357 Inherit_Component (Component);
17358 end if;
17359
17360 Next_Entity (Component);
17361 end loop;
17362
17363 -- For tagged derived types, inherited discriminants cannot be used in
17364 -- component declarations of the record extension part. To achieve this
17365 -- we mark the inherited discriminants as not visible.
17366
17367 if Is_Tagged and then Inherit_Discr then
17368 D := First_Discriminant (Derived_Base);
17369 while Present (D) loop
17370 Set_Is_Immediately_Visible (D, False);
17371 Next_Discriminant (D);
17372 end loop;
17373 end if;
17374
17375 return Assoc_List;
17376 end Inherit_Components;
17377
17378 -----------------------------
17379 -- Inherit_Predicate_Flags --
17380 -----------------------------
17381
17382 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
17383 begin
17384 Set_Has_Predicates (Subt, Has_Predicates (Par));
17385 Set_Has_Static_Predicate_Aspect
17386 (Subt, Has_Static_Predicate_Aspect (Par));
17387 Set_Has_Dynamic_Predicate_Aspect
17388 (Subt, Has_Dynamic_Predicate_Aspect (Par));
17389 end Inherit_Predicate_Flags;
17390
17391 -----------------------
17392 -- Is_Null_Extension --
17393 -----------------------
17394
17395 function Is_Null_Extension (T : Entity_Id) return Boolean is
17396 Type_Decl : constant Node_Id := Parent (Base_Type (T));
17397 Comp_List : Node_Id;
17398 Comp : Node_Id;
17399
17400 begin
17401 if Nkind (Type_Decl) /= N_Full_Type_Declaration
17402 or else not Is_Tagged_Type (T)
17403 or else Nkind (Type_Definition (Type_Decl)) /=
17404 N_Derived_Type_Definition
17405 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
17406 then
17407 return False;
17408 end if;
17409
17410 Comp_List :=
17411 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
17412
17413 if Present (Discriminant_Specifications (Type_Decl)) then
17414 return False;
17415
17416 elsif Present (Comp_List)
17417 and then Is_Non_Empty_List (Component_Items (Comp_List))
17418 then
17419 Comp := First (Component_Items (Comp_List));
17420
17421 -- Only user-defined components are relevant. The component list
17422 -- may also contain a parent component and internal components
17423 -- corresponding to secondary tags, but these do not determine
17424 -- whether this is a null extension.
17425
17426 while Present (Comp) loop
17427 if Comes_From_Source (Comp) then
17428 return False;
17429 end if;
17430
17431 Next (Comp);
17432 end loop;
17433
17434 return True;
17435 else
17436 return True;
17437 end if;
17438 end Is_Null_Extension;
17439
17440 ------------------------------
17441 -- Is_Valid_Constraint_Kind --
17442 ------------------------------
17443
17444 function Is_Valid_Constraint_Kind
17445 (T_Kind : Type_Kind;
17446 Constraint_Kind : Node_Kind) return Boolean
17447 is
17448 begin
17449 case T_Kind is
17450 when Enumeration_Kind |
17451 Integer_Kind =>
17452 return Constraint_Kind = N_Range_Constraint;
17453
17454 when Decimal_Fixed_Point_Kind =>
17455 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
17456 N_Range_Constraint);
17457
17458 when Ordinary_Fixed_Point_Kind =>
17459 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
17460 N_Range_Constraint);
17461
17462 when Float_Kind =>
17463 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
17464 N_Range_Constraint);
17465
17466 when Access_Kind |
17467 Array_Kind |
17468 E_Record_Type |
17469 E_Record_Subtype |
17470 Class_Wide_Kind |
17471 E_Incomplete_Type |
17472 Private_Kind |
17473 Concurrent_Kind =>
17474 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
17475
17476 when others =>
17477 return True; -- Error will be detected later
17478 end case;
17479 end Is_Valid_Constraint_Kind;
17480
17481 --------------------------
17482 -- Is_Visible_Component --
17483 --------------------------
17484
17485 function Is_Visible_Component
17486 (C : Entity_Id;
17487 N : Node_Id := Empty) return Boolean
17488 is
17489 Original_Comp : Entity_Id := Empty;
17490 Original_Scope : Entity_Id;
17491 Type_Scope : Entity_Id;
17492
17493 function Is_Local_Type (Typ : Entity_Id) return Boolean;
17494 -- Check whether parent type of inherited component is declared locally,
17495 -- possibly within a nested package or instance. The current scope is
17496 -- the derived record itself.
17497
17498 -------------------
17499 -- Is_Local_Type --
17500 -------------------
17501
17502 function Is_Local_Type (Typ : Entity_Id) return Boolean is
17503 Scop : Entity_Id;
17504
17505 begin
17506 Scop := Scope (Typ);
17507 while Present (Scop)
17508 and then Scop /= Standard_Standard
17509 loop
17510 if Scop = Scope (Current_Scope) then
17511 return True;
17512 end if;
17513
17514 Scop := Scope (Scop);
17515 end loop;
17516
17517 return False;
17518 end Is_Local_Type;
17519
17520 -- Start of processing for Is_Visible_Component
17521
17522 begin
17523 if Ekind_In (C, E_Component, E_Discriminant) then
17524 Original_Comp := Original_Record_Component (C);
17525 end if;
17526
17527 if No (Original_Comp) then
17528
17529 -- Premature usage, or previous error
17530
17531 return False;
17532
17533 else
17534 Original_Scope := Scope (Original_Comp);
17535 Type_Scope := Scope (Base_Type (Scope (C)));
17536 end if;
17537
17538 -- This test only concerns tagged types
17539
17540 if not Is_Tagged_Type (Original_Scope) then
17541 return True;
17542
17543 -- If it is _Parent or _Tag, there is no visibility issue
17544
17545 elsif not Comes_From_Source (Original_Comp) then
17546 return True;
17547
17548 -- Discriminants are visible unless the (private) type has unknown
17549 -- discriminants. If the discriminant reference is inserted for a
17550 -- discriminant check on a full view it is also visible.
17551
17552 elsif Ekind (Original_Comp) = E_Discriminant
17553 and then
17554 (not Has_Unknown_Discriminants (Original_Scope)
17555 or else (Present (N)
17556 and then Nkind (N) = N_Selected_Component
17557 and then Nkind (Prefix (N)) = N_Type_Conversion
17558 and then not Comes_From_Source (Prefix (N))))
17559 then
17560 return True;
17561
17562 -- In the body of an instantiation, no need to check for the visibility
17563 -- of a component.
17564
17565 elsif In_Instance_Body then
17566 return True;
17567
17568 -- If the component has been declared in an ancestor which is currently
17569 -- a private type, then it is not visible. The same applies if the
17570 -- component's containing type is not in an open scope and the original
17571 -- component's enclosing type is a visible full view of a private type
17572 -- (which can occur in cases where an attempt is being made to reference
17573 -- a component in a sibling package that is inherited from a visible
17574 -- component of a type in an ancestor package; the component in the
17575 -- sibling package should not be visible even though the component it
17576 -- inherited from is visible). This does not apply however in the case
17577 -- where the scope of the type is a private child unit, or when the
17578 -- parent comes from a local package in which the ancestor is currently
17579 -- visible. The latter suppression of visibility is needed for cases
17580 -- that are tested in B730006.
17581
17582 elsif Is_Private_Type (Original_Scope)
17583 or else
17584 (not Is_Private_Descendant (Type_Scope)
17585 and then not In_Open_Scopes (Type_Scope)
17586 and then Has_Private_Declaration (Original_Scope))
17587 then
17588 -- If the type derives from an entity in a formal package, there
17589 -- are no additional visible components.
17590
17591 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
17592 N_Formal_Package_Declaration
17593 then
17594 return False;
17595
17596 -- if we are not in the private part of the current package, there
17597 -- are no additional visible components.
17598
17599 elsif Ekind (Scope (Current_Scope)) = E_Package
17600 and then not In_Private_Part (Scope (Current_Scope))
17601 then
17602 return False;
17603 else
17604 return
17605 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
17606 and then In_Open_Scopes (Scope (Original_Scope))
17607 and then Is_Local_Type (Type_Scope);
17608 end if;
17609
17610 -- There is another weird way in which a component may be invisible when
17611 -- the private and the full view are not derived from the same ancestor.
17612 -- Here is an example :
17613
17614 -- type A1 is tagged record F1 : integer; end record;
17615 -- type A2 is new A1 with record F2 : integer; end record;
17616 -- type T is new A1 with private;
17617 -- private
17618 -- type T is new A2 with null record;
17619
17620 -- In this case, the full view of T inherits F1 and F2 but the private
17621 -- view inherits only F1
17622
17623 else
17624 declare
17625 Ancestor : Entity_Id := Scope (C);
17626
17627 begin
17628 loop
17629 if Ancestor = Original_Scope then
17630 return True;
17631 elsif Ancestor = Etype (Ancestor) then
17632 return False;
17633 end if;
17634
17635 Ancestor := Etype (Ancestor);
17636 end loop;
17637 end;
17638 end if;
17639 end Is_Visible_Component;
17640
17641 --------------------------
17642 -- Make_Class_Wide_Type --
17643 --------------------------
17644
17645 procedure Make_Class_Wide_Type (T : Entity_Id) is
17646 CW_Type : Entity_Id;
17647 CW_Name : Name_Id;
17648 Next_E : Entity_Id;
17649
17650 begin
17651 if Present (Class_Wide_Type (T)) then
17652
17653 -- The class-wide type is a partially decorated entity created for a
17654 -- unanalyzed tagged type referenced through a limited with clause.
17655 -- When the tagged type is analyzed, its class-wide type needs to be
17656 -- redecorated. Note that we reuse the entity created by Decorate_
17657 -- Tagged_Type in order to preserve all links.
17658
17659 if Materialize_Entity (Class_Wide_Type (T)) then
17660 CW_Type := Class_Wide_Type (T);
17661 Set_Materialize_Entity (CW_Type, False);
17662
17663 -- The class wide type can have been defined by the partial view, in
17664 -- which case everything is already done.
17665
17666 else
17667 return;
17668 end if;
17669
17670 -- Default case, we need to create a new class-wide type
17671
17672 else
17673 CW_Type :=
17674 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
17675 end if;
17676
17677 -- Inherit root type characteristics
17678
17679 CW_Name := Chars (CW_Type);
17680 Next_E := Next_Entity (CW_Type);
17681 Copy_Node (T, CW_Type);
17682 Set_Comes_From_Source (CW_Type, False);
17683 Set_Chars (CW_Type, CW_Name);
17684 Set_Parent (CW_Type, Parent (T));
17685 Set_Next_Entity (CW_Type, Next_E);
17686
17687 -- Ensure we have a new freeze node for the class-wide type. The partial
17688 -- view may have freeze action of its own, requiring a proper freeze
17689 -- node, and the same freeze node cannot be shared between the two
17690 -- types.
17691
17692 Set_Has_Delayed_Freeze (CW_Type);
17693 Set_Freeze_Node (CW_Type, Empty);
17694
17695 -- Customize the class-wide type: It has no prim. op., it cannot be
17696 -- abstract and its Etype points back to the specific root type.
17697
17698 Set_Ekind (CW_Type, E_Class_Wide_Type);
17699 Set_Is_Tagged_Type (CW_Type, True);
17700 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
17701 Set_Is_Abstract_Type (CW_Type, False);
17702 Set_Is_Constrained (CW_Type, False);
17703 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
17704 Set_Default_SSO (CW_Type);
17705
17706 if Ekind (T) = E_Class_Wide_Subtype then
17707 Set_Etype (CW_Type, Etype (Base_Type (T)));
17708 else
17709 Set_Etype (CW_Type, T);
17710 end if;
17711
17712 Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams);
17713
17714 -- If this is the class_wide type of a constrained subtype, it does
17715 -- not have discriminants.
17716
17717 Set_Has_Discriminants (CW_Type,
17718 Has_Discriminants (T) and then not Is_Constrained (T));
17719
17720 Set_Has_Unknown_Discriminants (CW_Type, True);
17721 Set_Class_Wide_Type (T, CW_Type);
17722 Set_Equivalent_Type (CW_Type, Empty);
17723
17724 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
17725
17726 Set_Class_Wide_Type (CW_Type, CW_Type);
17727 end Make_Class_Wide_Type;
17728
17729 ----------------
17730 -- Make_Index --
17731 ----------------
17732
17733 procedure Make_Index
17734 (N : Node_Id;
17735 Related_Nod : Node_Id;
17736 Related_Id : Entity_Id := Empty;
17737 Suffix_Index : Nat := 1;
17738 In_Iter_Schm : Boolean := False)
17739 is
17740 R : Node_Id;
17741 T : Entity_Id;
17742 Def_Id : Entity_Id := Empty;
17743 Found : Boolean := False;
17744
17745 begin
17746 -- For a discrete range used in a constrained array definition and
17747 -- defined by a range, an implicit conversion to the predefined type
17748 -- INTEGER is assumed if each bound is either a numeric literal, a named
17749 -- number, or an attribute, and the type of both bounds (prior to the
17750 -- implicit conversion) is the type universal_integer. Otherwise, both
17751 -- bounds must be of the same discrete type, other than universal
17752 -- integer; this type must be determinable independently of the
17753 -- context, but using the fact that the type must be discrete and that
17754 -- both bounds must have the same type.
17755
17756 -- Character literals also have a universal type in the absence of
17757 -- of additional context, and are resolved to Standard_Character.
17758
17759 if Nkind (N) = N_Range then
17760
17761 -- The index is given by a range constraint. The bounds are known
17762 -- to be of a consistent type.
17763
17764 if not Is_Overloaded (N) then
17765 T := Etype (N);
17766
17767 -- For universal bounds, choose the specific predefined type
17768
17769 if T = Universal_Integer then
17770 T := Standard_Integer;
17771
17772 elsif T = Any_Character then
17773 Ambiguous_Character (Low_Bound (N));
17774
17775 T := Standard_Character;
17776 end if;
17777
17778 -- The node may be overloaded because some user-defined operators
17779 -- are available, but if a universal interpretation exists it is
17780 -- also the selected one.
17781
17782 elsif Universal_Interpretation (N) = Universal_Integer then
17783 T := Standard_Integer;
17784
17785 else
17786 T := Any_Type;
17787
17788 declare
17789 Ind : Interp_Index;
17790 It : Interp;
17791
17792 begin
17793 Get_First_Interp (N, Ind, It);
17794 while Present (It.Typ) loop
17795 if Is_Discrete_Type (It.Typ) then
17796
17797 if Found
17798 and then not Covers (It.Typ, T)
17799 and then not Covers (T, It.Typ)
17800 then
17801 Error_Msg_N ("ambiguous bounds in discrete range", N);
17802 exit;
17803 else
17804 T := It.Typ;
17805 Found := True;
17806 end if;
17807 end if;
17808
17809 Get_Next_Interp (Ind, It);
17810 end loop;
17811
17812 if T = Any_Type then
17813 Error_Msg_N ("discrete type required for range", N);
17814 Set_Etype (N, Any_Type);
17815 return;
17816
17817 elsif T = Universal_Integer then
17818 T := Standard_Integer;
17819 end if;
17820 end;
17821 end if;
17822
17823 if not Is_Discrete_Type (T) then
17824 Error_Msg_N ("discrete type required for range", N);
17825 Set_Etype (N, Any_Type);
17826 return;
17827 end if;
17828
17829 if Nkind (Low_Bound (N)) = N_Attribute_Reference
17830 and then Attribute_Name (Low_Bound (N)) = Name_First
17831 and then Is_Entity_Name (Prefix (Low_Bound (N)))
17832 and then Is_Type (Entity (Prefix (Low_Bound (N))))
17833 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
17834 then
17835 -- The type of the index will be the type of the prefix, as long
17836 -- as the upper bound is 'Last of the same type.
17837
17838 Def_Id := Entity (Prefix (Low_Bound (N)));
17839
17840 if Nkind (High_Bound (N)) /= N_Attribute_Reference
17841 or else Attribute_Name (High_Bound (N)) /= Name_Last
17842 or else not Is_Entity_Name (Prefix (High_Bound (N)))
17843 or else Entity (Prefix (High_Bound (N))) /= Def_Id
17844 then
17845 Def_Id := Empty;
17846 end if;
17847 end if;
17848
17849 R := N;
17850 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
17851
17852 elsif Nkind (N) = N_Subtype_Indication then
17853
17854 -- The index is given by a subtype with a range constraint
17855
17856 T := Base_Type (Entity (Subtype_Mark (N)));
17857
17858 if not Is_Discrete_Type (T) then
17859 Error_Msg_N ("discrete type required for range", N);
17860 Set_Etype (N, Any_Type);
17861 return;
17862 end if;
17863
17864 R := Range_Expression (Constraint (N));
17865
17866 Resolve (R, T);
17867 Process_Range_Expr_In_Decl
17868 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
17869
17870 elsif Nkind (N) = N_Attribute_Reference then
17871
17872 -- Catch beginner's error (use of attribute other than 'Range)
17873
17874 if Attribute_Name (N) /= Name_Range then
17875 Error_Msg_N ("expect attribute ''Range", N);
17876 Set_Etype (N, Any_Type);
17877 return;
17878 end if;
17879
17880 -- If the node denotes the range of a type mark, that is also the
17881 -- resulting type, and we do not need to create an Itype for it.
17882
17883 if Is_Entity_Name (Prefix (N))
17884 and then Comes_From_Source (N)
17885 and then Is_Type (Entity (Prefix (N)))
17886 and then Is_Discrete_Type (Entity (Prefix (N)))
17887 then
17888 Def_Id := Entity (Prefix (N));
17889 end if;
17890
17891 Analyze_And_Resolve (N);
17892 T := Etype (N);
17893 R := N;
17894
17895 -- If none of the above, must be a subtype. We convert this to a
17896 -- range attribute reference because in the case of declared first
17897 -- named subtypes, the types in the range reference can be different
17898 -- from the type of the entity. A range attribute normalizes the
17899 -- reference and obtains the correct types for the bounds.
17900
17901 -- This transformation is in the nature of an expansion, is only
17902 -- done if expansion is active. In particular, it is not done on
17903 -- formal generic types, because we need to retain the name of the
17904 -- original index for instantiation purposes.
17905
17906 else
17907 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
17908 Error_Msg_N ("invalid subtype mark in discrete range ", N);
17909 Set_Etype (N, Any_Integer);
17910 return;
17911
17912 else
17913 -- The type mark may be that of an incomplete type. It is only
17914 -- now that we can get the full view, previous analysis does
17915 -- not look specifically for a type mark.
17916
17917 Set_Entity (N, Get_Full_View (Entity (N)));
17918 Set_Etype (N, Entity (N));
17919 Def_Id := Entity (N);
17920
17921 if not Is_Discrete_Type (Def_Id) then
17922 Error_Msg_N ("discrete type required for index", N);
17923 Set_Etype (N, Any_Type);
17924 return;
17925 end if;
17926 end if;
17927
17928 if Expander_Active then
17929 Rewrite (N,
17930 Make_Attribute_Reference (Sloc (N),
17931 Attribute_Name => Name_Range,
17932 Prefix => Relocate_Node (N)));
17933
17934 -- The original was a subtype mark that does not freeze. This
17935 -- means that the rewritten version must not freeze either.
17936
17937 Set_Must_Not_Freeze (N);
17938 Set_Must_Not_Freeze (Prefix (N));
17939 Analyze_And_Resolve (N);
17940 T := Etype (N);
17941 R := N;
17942
17943 -- If expander is inactive, type is legal, nothing else to construct
17944
17945 else
17946 return;
17947 end if;
17948 end if;
17949
17950 if not Is_Discrete_Type (T) then
17951 Error_Msg_N ("discrete type required for range", N);
17952 Set_Etype (N, Any_Type);
17953 return;
17954
17955 elsif T = Any_Type then
17956 Set_Etype (N, Any_Type);
17957 return;
17958 end if;
17959
17960 -- We will now create the appropriate Itype to describe the range, but
17961 -- first a check. If we originally had a subtype, then we just label
17962 -- the range with this subtype. Not only is there no need to construct
17963 -- a new subtype, but it is wrong to do so for two reasons:
17964
17965 -- 1. A legality concern, if we have a subtype, it must not freeze,
17966 -- and the Itype would cause freezing incorrectly
17967
17968 -- 2. An efficiency concern, if we created an Itype, it would not be
17969 -- recognized as the same type for the purposes of eliminating
17970 -- checks in some circumstances.
17971
17972 -- We signal this case by setting the subtype entity in Def_Id
17973
17974 if No (Def_Id) then
17975 Def_Id :=
17976 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
17977 Set_Etype (Def_Id, Base_Type (T));
17978
17979 if Is_Signed_Integer_Type (T) then
17980 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
17981
17982 elsif Is_Modular_Integer_Type (T) then
17983 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
17984
17985 else
17986 Set_Ekind (Def_Id, E_Enumeration_Subtype);
17987 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
17988 Set_First_Literal (Def_Id, First_Literal (T));
17989 end if;
17990
17991 Set_Size_Info (Def_Id, (T));
17992 Set_RM_Size (Def_Id, RM_Size (T));
17993 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
17994
17995 Set_Scalar_Range (Def_Id, R);
17996 Conditional_Delay (Def_Id, T);
17997
17998 if Nkind (N) = N_Subtype_Indication then
17999 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
18000 end if;
18001
18002 -- In the subtype indication case, if the immediate parent of the
18003 -- new subtype is non-static, then the subtype we create is non-
18004 -- static, even if its bounds are static.
18005
18006 if Nkind (N) = N_Subtype_Indication
18007 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
18008 then
18009 Set_Is_Non_Static_Subtype (Def_Id);
18010 end if;
18011 end if;
18012
18013 -- Final step is to label the index with this constructed type
18014
18015 Set_Etype (N, Def_Id);
18016 end Make_Index;
18017
18018 ------------------------------
18019 -- Modular_Type_Declaration --
18020 ------------------------------
18021
18022 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
18023 Mod_Expr : constant Node_Id := Expression (Def);
18024 M_Val : Uint;
18025
18026 procedure Set_Modular_Size (Bits : Int);
18027 -- Sets RM_Size to Bits, and Esize to normal word size above this
18028
18029 ----------------------
18030 -- Set_Modular_Size --
18031 ----------------------
18032
18033 procedure Set_Modular_Size (Bits : Int) is
18034 begin
18035 Set_RM_Size (T, UI_From_Int (Bits));
18036
18037 if Bits <= 8 then
18038 Init_Esize (T, 8);
18039
18040 elsif Bits <= 16 then
18041 Init_Esize (T, 16);
18042
18043 elsif Bits <= 32 then
18044 Init_Esize (T, 32);
18045
18046 else
18047 Init_Esize (T, System_Max_Binary_Modulus_Power);
18048 end if;
18049
18050 if not Non_Binary_Modulus (T)
18051 and then Esize (T) = RM_Size (T)
18052 then
18053 Set_Is_Known_Valid (T);
18054 end if;
18055 end Set_Modular_Size;
18056
18057 -- Start of processing for Modular_Type_Declaration
18058
18059 begin
18060 -- If the mod expression is (exactly) 2 * literal, where literal is
18061 -- 64 or less,then almost certainly the * was meant to be **. Warn.
18062
18063 if Warn_On_Suspicious_Modulus_Value
18064 and then Nkind (Mod_Expr) = N_Op_Multiply
18065 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
18066 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
18067 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
18068 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
18069 then
18070 Error_Msg_N
18071 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
18072 end if;
18073
18074 -- Proceed with analysis of mod expression
18075
18076 Analyze_And_Resolve (Mod_Expr, Any_Integer);
18077 Set_Etype (T, T);
18078 Set_Ekind (T, E_Modular_Integer_Type);
18079 Init_Alignment (T);
18080 Set_Is_Constrained (T);
18081
18082 if not Is_OK_Static_Expression (Mod_Expr) then
18083 Flag_Non_Static_Expr
18084 ("non-static expression used for modular type bound!", Mod_Expr);
18085 M_Val := 2 ** System_Max_Binary_Modulus_Power;
18086 else
18087 M_Val := Expr_Value (Mod_Expr);
18088 end if;
18089
18090 if M_Val < 1 then
18091 Error_Msg_N ("modulus value must be positive", Mod_Expr);
18092 M_Val := 2 ** System_Max_Binary_Modulus_Power;
18093 end if;
18094
18095 if M_Val > 2 ** Standard_Long_Integer_Size then
18096 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
18097 end if;
18098
18099 Set_Modulus (T, M_Val);
18100
18101 -- Create bounds for the modular type based on the modulus given in
18102 -- the type declaration and then analyze and resolve those bounds.
18103
18104 Set_Scalar_Range (T,
18105 Make_Range (Sloc (Mod_Expr),
18106 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
18107 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
18108
18109 -- Properly analyze the literals for the range. We do this manually
18110 -- because we can't go calling Resolve, since we are resolving these
18111 -- bounds with the type, and this type is certainly not complete yet.
18112
18113 Set_Etype (Low_Bound (Scalar_Range (T)), T);
18114 Set_Etype (High_Bound (Scalar_Range (T)), T);
18115 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
18116 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
18117
18118 -- Loop through powers of two to find number of bits required
18119
18120 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
18121
18122 -- Binary case
18123
18124 if M_Val = 2 ** Bits then
18125 Set_Modular_Size (Bits);
18126 return;
18127
18128 -- Non-binary case
18129
18130 elsif M_Val < 2 ** Bits then
18131 Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
18132 Set_Non_Binary_Modulus (T);
18133
18134 if Bits > System_Max_Nonbinary_Modulus_Power then
18135 Error_Msg_Uint_1 :=
18136 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
18137 Error_Msg_F
18138 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
18139 Set_Modular_Size (System_Max_Binary_Modulus_Power);
18140 return;
18141
18142 else
18143 -- In the non-binary case, set size as per RM 13.3(55)
18144
18145 Set_Modular_Size (Bits);
18146 return;
18147 end if;
18148 end if;
18149
18150 end loop;
18151
18152 -- If we fall through, then the size exceed System.Max_Binary_Modulus
18153 -- so we just signal an error and set the maximum size.
18154
18155 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
18156 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
18157
18158 Set_Modular_Size (System_Max_Binary_Modulus_Power);
18159 Init_Alignment (T);
18160
18161 end Modular_Type_Declaration;
18162
18163 --------------------------
18164 -- New_Concatenation_Op --
18165 --------------------------
18166
18167 procedure New_Concatenation_Op (Typ : Entity_Id) is
18168 Loc : constant Source_Ptr := Sloc (Typ);
18169 Op : Entity_Id;
18170
18171 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
18172 -- Create abbreviated declaration for the formal of a predefined
18173 -- Operator 'Op' of type 'Typ'
18174
18175 --------------------
18176 -- Make_Op_Formal --
18177 --------------------
18178
18179 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
18180 Formal : Entity_Id;
18181 begin
18182 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
18183 Set_Etype (Formal, Typ);
18184 Set_Mechanism (Formal, Default_Mechanism);
18185 return Formal;
18186 end Make_Op_Formal;
18187
18188 -- Start of processing for New_Concatenation_Op
18189
18190 begin
18191 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
18192
18193 Set_Ekind (Op, E_Operator);
18194 Set_Scope (Op, Current_Scope);
18195 Set_Etype (Op, Typ);
18196 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
18197 Set_Is_Immediately_Visible (Op);
18198 Set_Is_Intrinsic_Subprogram (Op);
18199 Set_Has_Completion (Op);
18200 Append_Entity (Op, Current_Scope);
18201
18202 Set_Name_Entity_Id (Name_Op_Concat, Op);
18203
18204 Append_Entity (Make_Op_Formal (Typ, Op), Op);
18205 Append_Entity (Make_Op_Formal (Typ, Op), Op);
18206 end New_Concatenation_Op;
18207
18208 -------------------------
18209 -- OK_For_Limited_Init --
18210 -------------------------
18211
18212 -- ???Check all calls of this, and compare the conditions under which it's
18213 -- called.
18214
18215 function OK_For_Limited_Init
18216 (Typ : Entity_Id;
18217 Exp : Node_Id) return Boolean
18218 is
18219 begin
18220 return Is_CPP_Constructor_Call (Exp)
18221 or else (Ada_Version >= Ada_2005
18222 and then not Debug_Flag_Dot_L
18223 and then OK_For_Limited_Init_In_05 (Typ, Exp));
18224 end OK_For_Limited_Init;
18225
18226 -------------------------------
18227 -- OK_For_Limited_Init_In_05 --
18228 -------------------------------
18229
18230 function OK_For_Limited_Init_In_05
18231 (Typ : Entity_Id;
18232 Exp : Node_Id) return Boolean
18233 is
18234 begin
18235 -- An object of a limited interface type can be initialized with any
18236 -- expression of a nonlimited descendant type.
18237
18238 if Is_Class_Wide_Type (Typ)
18239 and then Is_Limited_Interface (Typ)
18240 and then not Is_Limited_Type (Etype (Exp))
18241 then
18242 return True;
18243 end if;
18244
18245 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
18246 -- case of limited aggregates (including extension aggregates), and
18247 -- function calls. The function call may have been given in prefixed
18248 -- notation, in which case the original node is an indexed component.
18249 -- If the function is parameterless, the original node was an explicit
18250 -- dereference. The function may also be parameterless, in which case
18251 -- the source node is just an identifier.
18252
18253 case Nkind (Original_Node (Exp)) is
18254 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
18255 return True;
18256
18257 when N_Identifier =>
18258 return Present (Entity (Original_Node (Exp)))
18259 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
18260
18261 when N_Qualified_Expression =>
18262 return
18263 OK_For_Limited_Init_In_05
18264 (Typ, Expression (Original_Node (Exp)));
18265
18266 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
18267 -- with a function call, the expander has rewritten the call into an
18268 -- N_Type_Conversion node to force displacement of the pointer to
18269 -- reference the component containing the secondary dispatch table.
18270 -- Otherwise a type conversion is not a legal context.
18271 -- A return statement for a build-in-place function returning a
18272 -- synchronized type also introduces an unchecked conversion.
18273
18274 when N_Type_Conversion |
18275 N_Unchecked_Type_Conversion =>
18276 return not Comes_From_Source (Exp)
18277 and then
18278 OK_For_Limited_Init_In_05
18279 (Typ, Expression (Original_Node (Exp)));
18280
18281 when N_Indexed_Component |
18282 N_Selected_Component |
18283 N_Explicit_Dereference =>
18284 return Nkind (Exp) = N_Function_Call;
18285
18286 -- A use of 'Input is a function call, hence allowed. Normally the
18287 -- attribute will be changed to a call, but the attribute by itself
18288 -- can occur with -gnatc.
18289
18290 when N_Attribute_Reference =>
18291 return Attribute_Name (Original_Node (Exp)) = Name_Input;
18292
18293 -- For a case expression, all dependent expressions must be legal
18294
18295 when N_Case_Expression =>
18296 declare
18297 Alt : Node_Id;
18298
18299 begin
18300 Alt := First (Alternatives (Original_Node (Exp)));
18301 while Present (Alt) loop
18302 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
18303 return False;
18304 end if;
18305
18306 Next (Alt);
18307 end loop;
18308
18309 return True;
18310 end;
18311
18312 -- For an if expression, all dependent expressions must be legal
18313
18314 when N_If_Expression =>
18315 declare
18316 Then_Expr : constant Node_Id :=
18317 Next (First (Expressions (Original_Node (Exp))));
18318 Else_Expr : constant Node_Id := Next (Then_Expr);
18319 begin
18320 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
18321 and then
18322 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
18323 end;
18324
18325 when others =>
18326 return False;
18327 end case;
18328 end OK_For_Limited_Init_In_05;
18329
18330 -------------------------------------------
18331 -- Ordinary_Fixed_Point_Type_Declaration --
18332 -------------------------------------------
18333
18334 procedure Ordinary_Fixed_Point_Type_Declaration
18335 (T : Entity_Id;
18336 Def : Node_Id)
18337 is
18338 Loc : constant Source_Ptr := Sloc (Def);
18339 Delta_Expr : constant Node_Id := Delta_Expression (Def);
18340 RRS : constant Node_Id := Real_Range_Specification (Def);
18341 Implicit_Base : Entity_Id;
18342 Delta_Val : Ureal;
18343 Small_Val : Ureal;
18344 Low_Val : Ureal;
18345 High_Val : Ureal;
18346
18347 begin
18348 Check_Restriction (No_Fixed_Point, Def);
18349
18350 -- Create implicit base type
18351
18352 Implicit_Base :=
18353 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
18354 Set_Etype (Implicit_Base, Implicit_Base);
18355
18356 -- Analyze and process delta expression
18357
18358 Analyze_And_Resolve (Delta_Expr, Any_Real);
18359
18360 Check_Delta_Expression (Delta_Expr);
18361 Delta_Val := Expr_Value_R (Delta_Expr);
18362
18363 Set_Delta_Value (Implicit_Base, Delta_Val);
18364
18365 -- Compute default small from given delta, which is the largest power
18366 -- of two that does not exceed the given delta value.
18367
18368 declare
18369 Tmp : Ureal;
18370 Scale : Int;
18371
18372 begin
18373 Tmp := Ureal_1;
18374 Scale := 0;
18375
18376 if Delta_Val < Ureal_1 then
18377 while Delta_Val < Tmp loop
18378 Tmp := Tmp / Ureal_2;
18379 Scale := Scale + 1;
18380 end loop;
18381
18382 else
18383 loop
18384 Tmp := Tmp * Ureal_2;
18385 exit when Tmp > Delta_Val;
18386 Scale := Scale - 1;
18387 end loop;
18388 end if;
18389
18390 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
18391 end;
18392
18393 Set_Small_Value (Implicit_Base, Small_Val);
18394
18395 -- If no range was given, set a dummy range
18396
18397 if RRS <= Empty_Or_Error then
18398 Low_Val := -Small_Val;
18399 High_Val := Small_Val;
18400
18401 -- Otherwise analyze and process given range
18402
18403 else
18404 declare
18405 Low : constant Node_Id := Low_Bound (RRS);
18406 High : constant Node_Id := High_Bound (RRS);
18407
18408 begin
18409 Analyze_And_Resolve (Low, Any_Real);
18410 Analyze_And_Resolve (High, Any_Real);
18411 Check_Real_Bound (Low);
18412 Check_Real_Bound (High);
18413
18414 -- Obtain and set the range
18415
18416 Low_Val := Expr_Value_R (Low);
18417 High_Val := Expr_Value_R (High);
18418
18419 if Low_Val > High_Val then
18420 Error_Msg_NE ("??fixed point type& has null range", Def, T);
18421 end if;
18422 end;
18423 end if;
18424
18425 -- The range for both the implicit base and the declared first subtype
18426 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
18427 -- set a temporary range in place. Note that the bounds of the base
18428 -- type will be widened to be symmetrical and to fill the available
18429 -- bits when the type is frozen.
18430
18431 -- We could do this with all discrete types, and probably should, but
18432 -- we absolutely have to do it for fixed-point, since the end-points
18433 -- of the range and the size are determined by the small value, which
18434 -- could be reset before the freeze point.
18435
18436 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
18437 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
18438
18439 -- Complete definition of first subtype
18440
18441 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
18442 Set_Etype (T, Implicit_Base);
18443 Init_Size_Align (T);
18444 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
18445 Set_Small_Value (T, Small_Val);
18446 Set_Delta_Value (T, Delta_Val);
18447 Set_Is_Constrained (T);
18448 end Ordinary_Fixed_Point_Type_Declaration;
18449
18450 ----------------------------------
18451 -- Preanalyze_Assert_Expression --
18452 ----------------------------------
18453
18454 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
18455 begin
18456 In_Assertion_Expr := In_Assertion_Expr + 1;
18457 Preanalyze_Spec_Expression (N, T);
18458 In_Assertion_Expr := In_Assertion_Expr - 1;
18459 end Preanalyze_Assert_Expression;
18460
18461 -----------------------------------
18462 -- Preanalyze_Default_Expression --
18463 -----------------------------------
18464
18465 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
18466 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
18467 begin
18468 In_Default_Expr := True;
18469 Preanalyze_Spec_Expression (N, T);
18470 In_Default_Expr := Save_In_Default_Expr;
18471 end Preanalyze_Default_Expression;
18472
18473 --------------------------------
18474 -- Preanalyze_Spec_Expression --
18475 --------------------------------
18476
18477 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
18478 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
18479 begin
18480 In_Spec_Expression := True;
18481 Preanalyze_And_Resolve (N, T);
18482 In_Spec_Expression := Save_In_Spec_Expression;
18483 end Preanalyze_Spec_Expression;
18484
18485 ----------------------------------------
18486 -- Prepare_Private_Subtype_Completion --
18487 ----------------------------------------
18488
18489 procedure Prepare_Private_Subtype_Completion
18490 (Id : Entity_Id;
18491 Related_Nod : Node_Id)
18492 is
18493 Id_B : constant Entity_Id := Base_Type (Id);
18494 Full_B : Entity_Id := Full_View (Id_B);
18495 Full : Entity_Id;
18496
18497 begin
18498 if Present (Full_B) then
18499
18500 -- Get to the underlying full view if necessary
18501
18502 if Is_Private_Type (Full_B)
18503 and then Present (Underlying_Full_View (Full_B))
18504 then
18505 Full_B := Underlying_Full_View (Full_B);
18506 end if;
18507
18508 -- The Base_Type is already completed, we can complete the subtype
18509 -- now. We have to create a new entity with the same name, Thus we
18510 -- can't use Create_Itype.
18511
18512 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
18513 Set_Is_Itype (Full);
18514 Set_Associated_Node_For_Itype (Full, Related_Nod);
18515 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
18516 end if;
18517
18518 -- The parent subtype may be private, but the base might not, in some
18519 -- nested instances. In that case, the subtype does not need to be
18520 -- exchanged. It would still be nice to make private subtypes and their
18521 -- bases consistent at all times ???
18522
18523 if Is_Private_Type (Id_B) then
18524 Append_Elmt (Id, Private_Dependents (Id_B));
18525 end if;
18526 end Prepare_Private_Subtype_Completion;
18527
18528 ---------------------------
18529 -- Process_Discriminants --
18530 ---------------------------
18531
18532 procedure Process_Discriminants
18533 (N : Node_Id;
18534 Prev : Entity_Id := Empty)
18535 is
18536 Elist : constant Elist_Id := New_Elmt_List;
18537 Id : Node_Id;
18538 Discr : Node_Id;
18539 Discr_Number : Uint;
18540 Discr_Type : Entity_Id;
18541 Default_Present : Boolean := False;
18542 Default_Not_Present : Boolean := False;
18543
18544 begin
18545 -- A composite type other than an array type can have discriminants.
18546 -- On entry, the current scope is the composite type.
18547
18548 -- The discriminants are initially entered into the scope of the type
18549 -- via Enter_Name with the default Ekind of E_Void to prevent premature
18550 -- use, as explained at the end of this procedure.
18551
18552 Discr := First (Discriminant_Specifications (N));
18553 while Present (Discr) loop
18554 Enter_Name (Defining_Identifier (Discr));
18555
18556 -- For navigation purposes we add a reference to the discriminant
18557 -- in the entity for the type. If the current declaration is a
18558 -- completion, place references on the partial view. Otherwise the
18559 -- type is the current scope.
18560
18561 if Present (Prev) then
18562
18563 -- The references go on the partial view, if present. If the
18564 -- partial view has discriminants, the references have been
18565 -- generated already.
18566
18567 if not Has_Discriminants (Prev) then
18568 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
18569 end if;
18570 else
18571 Generate_Reference
18572 (Current_Scope, Defining_Identifier (Discr), 'd');
18573 end if;
18574
18575 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
18576 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
18577
18578 -- Ada 2005 (AI-254)
18579
18580 if Present (Access_To_Subprogram_Definition
18581 (Discriminant_Type (Discr)))
18582 and then Protected_Present (Access_To_Subprogram_Definition
18583 (Discriminant_Type (Discr)))
18584 then
18585 Discr_Type :=
18586 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
18587 end if;
18588
18589 else
18590 Find_Type (Discriminant_Type (Discr));
18591 Discr_Type := Etype (Discriminant_Type (Discr));
18592
18593 if Error_Posted (Discriminant_Type (Discr)) then
18594 Discr_Type := Any_Type;
18595 end if;
18596 end if;
18597
18598 -- Handling of discriminants that are access types
18599
18600 if Is_Access_Type (Discr_Type) then
18601
18602 -- Ada 2005 (AI-230): Access discriminant allowed in non-
18603 -- limited record types
18604
18605 if Ada_Version < Ada_2005 then
18606 Check_Access_Discriminant_Requires_Limited
18607 (Discr, Discriminant_Type (Discr));
18608 end if;
18609
18610 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
18611 Error_Msg_N
18612 ("(Ada 83) access discriminant not allowed", Discr);
18613 end if;
18614
18615 -- If not access type, must be a discrete type
18616
18617 elsif not Is_Discrete_Type (Discr_Type) then
18618 Error_Msg_N
18619 ("discriminants must have a discrete or access type",
18620 Discriminant_Type (Discr));
18621 end if;
18622
18623 Set_Etype (Defining_Identifier (Discr), Discr_Type);
18624
18625 -- If a discriminant specification includes the assignment compound
18626 -- delimiter followed by an expression, the expression is the default
18627 -- expression of the discriminant; the default expression must be of
18628 -- the type of the discriminant. (RM 3.7.1) Since this expression is
18629 -- a default expression, we do the special preanalysis, since this
18630 -- expression does not freeze (see section "Handling of Default and
18631 -- Per-Object Expressions" in spec of package Sem).
18632
18633 if Present (Expression (Discr)) then
18634 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
18635
18636 -- Legaity checks
18637
18638 if Nkind (N) = N_Formal_Type_Declaration then
18639 Error_Msg_N
18640 ("discriminant defaults not allowed for formal type",
18641 Expression (Discr));
18642
18643 -- Flag an error for a tagged type with defaulted discriminants,
18644 -- excluding limited tagged types when compiling for Ada 2012
18645 -- (see AI05-0214).
18646
18647 elsif Is_Tagged_Type (Current_Scope)
18648 and then (not Is_Limited_Type (Current_Scope)
18649 or else Ada_Version < Ada_2012)
18650 and then Comes_From_Source (N)
18651 then
18652 -- Note: see similar test in Check_Or_Process_Discriminants, to
18653 -- handle the (illegal) case of the completion of an untagged
18654 -- view with discriminants with defaults by a tagged full view.
18655 -- We skip the check if Discr does not come from source, to
18656 -- account for the case of an untagged derived type providing
18657 -- defaults for a renamed discriminant from a private untagged
18658 -- ancestor with a tagged full view (ACATS B460006).
18659
18660 if Ada_Version >= Ada_2012 then
18661 Error_Msg_N
18662 ("discriminants of nonlimited tagged type cannot have"
18663 & " defaults",
18664 Expression (Discr));
18665 else
18666 Error_Msg_N
18667 ("discriminants of tagged type cannot have defaults",
18668 Expression (Discr));
18669 end if;
18670
18671 else
18672 Default_Present := True;
18673 Append_Elmt (Expression (Discr), Elist);
18674
18675 -- Tag the defining identifiers for the discriminants with
18676 -- their corresponding default expressions from the tree.
18677
18678 Set_Discriminant_Default_Value
18679 (Defining_Identifier (Discr), Expression (Discr));
18680 end if;
18681
18682 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
18683 -- gets set unless we can be sure that no range check is required.
18684
18685 if (GNATprove_Mode or not Expander_Active)
18686 and then not
18687 Is_In_Range
18688 (Expression (Discr), Discr_Type, Assume_Valid => True)
18689 then
18690 Set_Do_Range_Check (Expression (Discr));
18691 end if;
18692
18693 -- No default discriminant value given
18694
18695 else
18696 Default_Not_Present := True;
18697 end if;
18698
18699 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
18700 -- Discr_Type but with the null-exclusion attribute
18701
18702 if Ada_Version >= Ada_2005 then
18703
18704 -- Ada 2005 (AI-231): Static checks
18705
18706 if Can_Never_Be_Null (Discr_Type) then
18707 Null_Exclusion_Static_Checks (Discr);
18708
18709 elsif Is_Access_Type (Discr_Type)
18710 and then Null_Exclusion_Present (Discr)
18711
18712 -- No need to check itypes because in their case this check
18713 -- was done at their point of creation
18714
18715 and then not Is_Itype (Discr_Type)
18716 then
18717 if Can_Never_Be_Null (Discr_Type) then
18718 Error_Msg_NE
18719 ("`NOT NULL` not allowed (& already excludes null)",
18720 Discr,
18721 Discr_Type);
18722 end if;
18723
18724 Set_Etype (Defining_Identifier (Discr),
18725 Create_Null_Excluding_Itype
18726 (T => Discr_Type,
18727 Related_Nod => Discr));
18728
18729 -- Check for improper null exclusion if the type is otherwise
18730 -- legal for a discriminant.
18731
18732 elsif Null_Exclusion_Present (Discr)
18733 and then Is_Discrete_Type (Discr_Type)
18734 then
18735 Error_Msg_N
18736 ("null exclusion can only apply to an access type", Discr);
18737 end if;
18738
18739 -- Ada 2005 (AI-402): access discriminants of nonlimited types
18740 -- can't have defaults. Synchronized types, or types that are
18741 -- explicitly limited are fine, but special tests apply to derived
18742 -- types in generics: in a generic body we have to assume the
18743 -- worst, and therefore defaults are not allowed if the parent is
18744 -- a generic formal private type (see ACATS B370001).
18745
18746 if Is_Access_Type (Discr_Type) and then Default_Present then
18747 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
18748 or else Is_Limited_Record (Current_Scope)
18749 or else Is_Concurrent_Type (Current_Scope)
18750 or else Is_Concurrent_Record_Type (Current_Scope)
18751 or else Ekind (Current_Scope) = E_Limited_Private_Type
18752 then
18753 if not Is_Derived_Type (Current_Scope)
18754 or else not Is_Generic_Type (Etype (Current_Scope))
18755 or else not In_Package_Body (Scope (Etype (Current_Scope)))
18756 or else Limited_Present
18757 (Type_Definition (Parent (Current_Scope)))
18758 then
18759 null;
18760
18761 else
18762 Error_Msg_N ("access discriminants of nonlimited types",
18763 Expression (Discr));
18764 Error_Msg_N ("\cannot have defaults", Expression (Discr));
18765 end if;
18766
18767 elsif Present (Expression (Discr)) then
18768 Error_Msg_N
18769 ("(Ada 2005) access discriminants of nonlimited types",
18770 Expression (Discr));
18771 Error_Msg_N ("\cannot have defaults", Expression (Discr));
18772 end if;
18773 end if;
18774 end if;
18775
18776 -- A discriminant cannot be effectively volatile. This check is only
18777 -- relevant when SPARK_Mode is on as it is not standard Ada legality
18778 -- rule (SPARK RM 7.1.3(6)).
18779
18780 if SPARK_Mode = On
18781 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
18782 then
18783 Error_Msg_N ("discriminant cannot be volatile", Discr);
18784 end if;
18785
18786 Next (Discr);
18787 end loop;
18788
18789 -- An element list consisting of the default expressions of the
18790 -- discriminants is constructed in the above loop and used to set
18791 -- the Discriminant_Constraint attribute for the type. If an object
18792 -- is declared of this (record or task) type without any explicit
18793 -- discriminant constraint given, this element list will form the
18794 -- actual parameters for the corresponding initialization procedure
18795 -- for the type.
18796
18797 Set_Discriminant_Constraint (Current_Scope, Elist);
18798 Set_Stored_Constraint (Current_Scope, No_Elist);
18799
18800 -- Default expressions must be provided either for all or for none
18801 -- of the discriminants of a discriminant part. (RM 3.7.1)
18802
18803 if Default_Present and then Default_Not_Present then
18804 Error_Msg_N
18805 ("incomplete specification of defaults for discriminants", N);
18806 end if;
18807
18808 -- The use of the name of a discriminant is not allowed in default
18809 -- expressions of a discriminant part if the specification of the
18810 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
18811
18812 -- To detect this, the discriminant names are entered initially with an
18813 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
18814 -- attempt to use a void entity (for example in an expression that is
18815 -- type-checked) produces the error message: premature usage. Now after
18816 -- completing the semantic analysis of the discriminant part, we can set
18817 -- the Ekind of all the discriminants appropriately.
18818
18819 Discr := First (Discriminant_Specifications (N));
18820 Discr_Number := Uint_1;
18821 while Present (Discr) loop
18822 Id := Defining_Identifier (Discr);
18823 Set_Ekind (Id, E_Discriminant);
18824 Init_Component_Location (Id);
18825 Init_Esize (Id);
18826 Set_Discriminant_Number (Id, Discr_Number);
18827
18828 -- Make sure this is always set, even in illegal programs
18829
18830 Set_Corresponding_Discriminant (Id, Empty);
18831
18832 -- Initialize the Original_Record_Component to the entity itself.
18833 -- Inherit_Components will propagate the right value to
18834 -- discriminants in derived record types.
18835
18836 Set_Original_Record_Component (Id, Id);
18837
18838 -- Create the discriminal for the discriminant
18839
18840 Build_Discriminal (Id);
18841
18842 Next (Discr);
18843 Discr_Number := Discr_Number + 1;
18844 end loop;
18845
18846 Set_Has_Discriminants (Current_Scope);
18847 end Process_Discriminants;
18848
18849 -----------------------
18850 -- Process_Full_View --
18851 -----------------------
18852
18853 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
18854 procedure Collect_Implemented_Interfaces
18855 (Typ : Entity_Id;
18856 Ifaces : Elist_Id);
18857 -- Ada 2005: Gather all the interfaces that Typ directly or
18858 -- inherently implements. Duplicate entries are not added to
18859 -- the list Ifaces.
18860
18861 ------------------------------------
18862 -- Collect_Implemented_Interfaces --
18863 ------------------------------------
18864
18865 procedure Collect_Implemented_Interfaces
18866 (Typ : Entity_Id;
18867 Ifaces : Elist_Id)
18868 is
18869 Iface : Entity_Id;
18870 Iface_Elmt : Elmt_Id;
18871
18872 begin
18873 -- Abstract interfaces are only associated with tagged record types
18874
18875 if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then
18876 return;
18877 end if;
18878
18879 -- Recursively climb to the ancestors
18880
18881 if Etype (Typ) /= Typ
18882
18883 -- Protect the frontend against wrong cyclic declarations like:
18884
18885 -- type B is new A with private;
18886 -- type C is new A with private;
18887 -- private
18888 -- type B is new C with null record;
18889 -- type C is new B with null record;
18890
18891 and then Etype (Typ) /= Priv_T
18892 and then Etype (Typ) /= Full_T
18893 then
18894 -- Keep separate the management of private type declarations
18895
18896 if Ekind (Typ) = E_Record_Type_With_Private then
18897
18898 -- Handle the following illegal usage:
18899 -- type Private_Type is tagged private;
18900 -- private
18901 -- type Private_Type is new Type_Implementing_Iface;
18902
18903 if Present (Full_View (Typ))
18904 and then Etype (Typ) /= Full_View (Typ)
18905 then
18906 if Is_Interface (Etype (Typ)) then
18907 Append_Unique_Elmt (Etype (Typ), Ifaces);
18908 end if;
18909
18910 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18911 end if;
18912
18913 -- Non-private types
18914
18915 else
18916 if Is_Interface (Etype (Typ)) then
18917 Append_Unique_Elmt (Etype (Typ), Ifaces);
18918 end if;
18919
18920 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18921 end if;
18922 end if;
18923
18924 -- Handle entities in the list of abstract interfaces
18925
18926 if Present (Interfaces (Typ)) then
18927 Iface_Elmt := First_Elmt (Interfaces (Typ));
18928 while Present (Iface_Elmt) loop
18929 Iface := Node (Iface_Elmt);
18930
18931 pragma Assert (Is_Interface (Iface));
18932
18933 if not Contain_Interface (Iface, Ifaces) then
18934 Append_Elmt (Iface, Ifaces);
18935 Collect_Implemented_Interfaces (Iface, Ifaces);
18936 end if;
18937
18938 Next_Elmt (Iface_Elmt);
18939 end loop;
18940 end if;
18941 end Collect_Implemented_Interfaces;
18942
18943 -- Local variables
18944
18945 Full_Indic : Node_Id;
18946 Full_Parent : Entity_Id;
18947 Priv_Parent : Entity_Id;
18948
18949 -- Start of processing for Process_Full_View
18950
18951 begin
18952 -- First some sanity checks that must be done after semantic
18953 -- decoration of the full view and thus cannot be placed with other
18954 -- similar checks in Find_Type_Name
18955
18956 if not Is_Limited_Type (Priv_T)
18957 and then (Is_Limited_Type (Full_T)
18958 or else Is_Limited_Composite (Full_T))
18959 then
18960 if In_Instance then
18961 null;
18962 else
18963 Error_Msg_N
18964 ("completion of nonlimited type cannot be limited", Full_T);
18965 Explain_Limited_Type (Full_T, Full_T);
18966 end if;
18967
18968 elsif Is_Abstract_Type (Full_T)
18969 and then not Is_Abstract_Type (Priv_T)
18970 then
18971 Error_Msg_N
18972 ("completion of nonabstract type cannot be abstract", Full_T);
18973
18974 elsif Is_Tagged_Type (Priv_T)
18975 and then Is_Limited_Type (Priv_T)
18976 and then not Is_Limited_Type (Full_T)
18977 then
18978 -- If pragma CPP_Class was applied to the private declaration
18979 -- propagate the limitedness to the full-view
18980
18981 if Is_CPP_Class (Priv_T) then
18982 Set_Is_Limited_Record (Full_T);
18983
18984 -- GNAT allow its own definition of Limited_Controlled to disobey
18985 -- this rule in order in ease the implementation. This test is safe
18986 -- because Root_Controlled is defined in a child of System that
18987 -- normal programs are not supposed to use.
18988
18989 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
18990 Set_Is_Limited_Composite (Full_T);
18991 else
18992 Error_Msg_N
18993 ("completion of limited tagged type must be limited", Full_T);
18994 end if;
18995
18996 elsif Is_Generic_Type (Priv_T) then
18997 Error_Msg_N ("generic type cannot have a completion", Full_T);
18998 end if;
18999
19000 -- Check that ancestor interfaces of private and full views are
19001 -- consistent. We omit this check for synchronized types because
19002 -- they are performed on the corresponding record type when frozen.
19003
19004 if Ada_Version >= Ada_2005
19005 and then Is_Tagged_Type (Priv_T)
19006 and then Is_Tagged_Type (Full_T)
19007 and then not Is_Concurrent_Type (Full_T)
19008 then
19009 declare
19010 Iface : Entity_Id;
19011 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
19012 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
19013
19014 begin
19015 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
19016 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
19017
19018 -- Ada 2005 (AI-251): The partial view shall be a descendant of
19019 -- an interface type if and only if the full type is descendant
19020 -- of the interface type (AARM 7.3 (7.3/2)).
19021
19022 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
19023
19024 if Present (Iface) then
19025 Error_Msg_NE
19026 ("interface in partial view& not implemented by full type "
19027 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
19028 end if;
19029
19030 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
19031
19032 if Present (Iface) then
19033 Error_Msg_NE
19034 ("interface & not implemented by partial view "
19035 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
19036 end if;
19037 end;
19038 end if;
19039
19040 if Is_Tagged_Type (Priv_T)
19041 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19042 and then Is_Derived_Type (Full_T)
19043 then
19044 Priv_Parent := Etype (Priv_T);
19045
19046 -- The full view of a private extension may have been transformed
19047 -- into an unconstrained derived type declaration and a subtype
19048 -- declaration (see build_derived_record_type for details).
19049
19050 if Nkind (N) = N_Subtype_Declaration then
19051 Full_Indic := Subtype_Indication (N);
19052 Full_Parent := Etype (Base_Type (Full_T));
19053 else
19054 Full_Indic := Subtype_Indication (Type_Definition (N));
19055 Full_Parent := Etype (Full_T);
19056 end if;
19057
19058 -- Check that the parent type of the full type is a descendant of
19059 -- the ancestor subtype given in the private extension. If either
19060 -- entity has an Etype equal to Any_Type then we had some previous
19061 -- error situation [7.3(8)].
19062
19063 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
19064 return;
19065
19066 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
19067 -- any order. Therefore we don't have to check that its parent must
19068 -- be a descendant of the parent of the private type declaration.
19069
19070 elsif Is_Interface (Priv_Parent)
19071 and then Is_Interface (Full_Parent)
19072 then
19073 null;
19074
19075 -- Ada 2005 (AI-251): If the parent of the private type declaration
19076 -- is an interface there is no need to check that it is an ancestor
19077 -- of the associated full type declaration. The required tests for
19078 -- this case are performed by Build_Derived_Record_Type.
19079
19080 elsif not Is_Interface (Base_Type (Priv_Parent))
19081 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
19082 then
19083 Error_Msg_N
19084 ("parent of full type must descend from parent"
19085 & " of private extension", Full_Indic);
19086
19087 -- First check a formal restriction, and then proceed with checking
19088 -- Ada rules. Since the formal restriction is not a serious error, we
19089 -- don't prevent further error detection for this check, hence the
19090 -- ELSE.
19091
19092 else
19093
19094 -- In formal mode, when completing a private extension the type
19095 -- named in the private part must be exactly the same as that
19096 -- named in the visible part.
19097
19098 if Priv_Parent /= Full_Parent then
19099 Error_Msg_Name_1 := Chars (Priv_Parent);
19100 Check_SPARK_05_Restriction ("% expected", Full_Indic);
19101 end if;
19102
19103 -- Check the rules of 7.3(10): if the private extension inherits
19104 -- known discriminants, then the full type must also inherit those
19105 -- discriminants from the same (ancestor) type, and the parent
19106 -- subtype of the full type must be constrained if and only if
19107 -- the ancestor subtype of the private extension is constrained.
19108
19109 if No (Discriminant_Specifications (Parent (Priv_T)))
19110 and then not Has_Unknown_Discriminants (Priv_T)
19111 and then Has_Discriminants (Base_Type (Priv_Parent))
19112 then
19113 declare
19114 Priv_Indic : constant Node_Id :=
19115 Subtype_Indication (Parent (Priv_T));
19116
19117 Priv_Constr : constant Boolean :=
19118 Is_Constrained (Priv_Parent)
19119 or else
19120 Nkind (Priv_Indic) = N_Subtype_Indication
19121 or else
19122 Is_Constrained (Entity (Priv_Indic));
19123
19124 Full_Constr : constant Boolean :=
19125 Is_Constrained (Full_Parent)
19126 or else
19127 Nkind (Full_Indic) = N_Subtype_Indication
19128 or else
19129 Is_Constrained (Entity (Full_Indic));
19130
19131 Priv_Discr : Entity_Id;
19132 Full_Discr : Entity_Id;
19133
19134 begin
19135 Priv_Discr := First_Discriminant (Priv_Parent);
19136 Full_Discr := First_Discriminant (Full_Parent);
19137 while Present (Priv_Discr) and then Present (Full_Discr) loop
19138 if Original_Record_Component (Priv_Discr) =
19139 Original_Record_Component (Full_Discr)
19140 or else
19141 Corresponding_Discriminant (Priv_Discr) =
19142 Corresponding_Discriminant (Full_Discr)
19143 then
19144 null;
19145 else
19146 exit;
19147 end if;
19148
19149 Next_Discriminant (Priv_Discr);
19150 Next_Discriminant (Full_Discr);
19151 end loop;
19152
19153 if Present (Priv_Discr) or else Present (Full_Discr) then
19154 Error_Msg_N
19155 ("full view must inherit discriminants of the parent"
19156 & " type used in the private extension", Full_Indic);
19157
19158 elsif Priv_Constr and then not Full_Constr then
19159 Error_Msg_N
19160 ("parent subtype of full type must be constrained",
19161 Full_Indic);
19162
19163 elsif Full_Constr and then not Priv_Constr then
19164 Error_Msg_N
19165 ("parent subtype of full type must be unconstrained",
19166 Full_Indic);
19167 end if;
19168 end;
19169
19170 -- Check the rules of 7.3(12): if a partial view has neither
19171 -- known or unknown discriminants, then the full type
19172 -- declaration shall define a definite subtype.
19173
19174 elsif not Has_Unknown_Discriminants (Priv_T)
19175 and then not Has_Discriminants (Priv_T)
19176 and then not Is_Constrained (Full_T)
19177 then
19178 Error_Msg_N
19179 ("full view must define a constrained type if partial view"
19180 & " has no discriminants", Full_T);
19181 end if;
19182
19183 -- ??????? Do we implement the following properly ?????
19184 -- If the ancestor subtype of a private extension has constrained
19185 -- discriminants, then the parent subtype of the full view shall
19186 -- impose a statically matching constraint on those discriminants
19187 -- [7.3(13)].
19188 end if;
19189
19190 else
19191 -- For untagged types, verify that a type without discriminants is
19192 -- not completed with an unconstrained type. A separate error message
19193 -- is produced if the full type has defaulted discriminants.
19194
19195 if not Is_Indefinite_Subtype (Priv_T)
19196 and then Is_Indefinite_Subtype (Full_T)
19197 then
19198 Error_Msg_Sloc := Sloc (Parent (Priv_T));
19199 Error_Msg_NE
19200 ("full view of& not compatible with declaration#",
19201 Full_T, Priv_T);
19202
19203 if not Is_Tagged_Type (Full_T) then
19204 Error_Msg_N
19205 ("\one is constrained, the other unconstrained", Full_T);
19206 end if;
19207 end if;
19208 end if;
19209
19210 -- AI-419: verify that the use of "limited" is consistent
19211
19212 declare
19213 Orig_Decl : constant Node_Id := Original_Node (N);
19214
19215 begin
19216 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19217 and then not Limited_Present (Parent (Priv_T))
19218 and then not Synchronized_Present (Parent (Priv_T))
19219 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
19220 and then Nkind
19221 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
19222 and then Limited_Present (Type_Definition (Orig_Decl))
19223 then
19224 Error_Msg_N
19225 ("full view of non-limited extension cannot be limited", N);
19226 end if;
19227 end;
19228
19229 -- Ada 2005 (AI-443): A synchronized private extension must be
19230 -- completed by a task or protected type.
19231
19232 if Ada_Version >= Ada_2005
19233 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19234 and then Synchronized_Present (Parent (Priv_T))
19235 and then not Is_Concurrent_Type (Full_T)
19236 then
19237 Error_Msg_N ("full view of synchronized extension must " &
19238 "be synchronized type", N);
19239 end if;
19240
19241 -- Ada 2005 AI-363: if the full view has discriminants with
19242 -- defaults, it is illegal to declare constrained access subtypes
19243 -- whose designated type is the current type. This allows objects
19244 -- of the type that are declared in the heap to be unconstrained.
19245
19246 if not Has_Unknown_Discriminants (Priv_T)
19247 and then not Has_Discriminants (Priv_T)
19248 and then Has_Discriminants (Full_T)
19249 and then
19250 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
19251 then
19252 Set_Has_Constrained_Partial_View (Full_T);
19253 Set_Has_Constrained_Partial_View (Priv_T);
19254 end if;
19255
19256 -- Create a full declaration for all its subtypes recorded in
19257 -- Private_Dependents and swap them similarly to the base type. These
19258 -- are subtypes that have been define before the full declaration of
19259 -- the private type. We also swap the entry in Private_Dependents list
19260 -- so we can properly restore the private view on exit from the scope.
19261
19262 declare
19263 Priv_Elmt : Elmt_Id;
19264 Priv_Scop : Entity_Id;
19265 Priv : Entity_Id;
19266 Full : Entity_Id;
19267
19268 begin
19269 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
19270 while Present (Priv_Elmt) loop
19271 Priv := Node (Priv_Elmt);
19272 Priv_Scop := Scope (Priv);
19273
19274 if Ekind_In (Priv, E_Private_Subtype,
19275 E_Limited_Private_Subtype,
19276 E_Record_Subtype_With_Private)
19277 then
19278 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
19279 Set_Is_Itype (Full);
19280 Set_Parent (Full, Parent (Priv));
19281 Set_Associated_Node_For_Itype (Full, N);
19282
19283 -- Now we need to complete the private subtype, but since the
19284 -- base type has already been swapped, we must also swap the
19285 -- subtypes (and thus, reverse the arguments in the call to
19286 -- Complete_Private_Subtype). Also note that we may need to
19287 -- re-establish the scope of the private subtype.
19288
19289 Copy_And_Swap (Priv, Full);
19290
19291 if not In_Open_Scopes (Priv_Scop) then
19292 Push_Scope (Priv_Scop);
19293
19294 else
19295 -- Reset Priv_Scop to Empty to indicate no scope was pushed
19296
19297 Priv_Scop := Empty;
19298 end if;
19299
19300 Complete_Private_Subtype (Full, Priv, Full_T, N);
19301
19302 if Present (Priv_Scop) then
19303 Pop_Scope;
19304 end if;
19305
19306 Replace_Elmt (Priv_Elmt, Full);
19307 end if;
19308
19309 Next_Elmt (Priv_Elmt);
19310 end loop;
19311 end;
19312
19313 -- If the private view was tagged, copy the new primitive operations
19314 -- from the private view to the full view.
19315
19316 if Is_Tagged_Type (Full_T) then
19317 declare
19318 Disp_Typ : Entity_Id;
19319 Full_List : Elist_Id;
19320 Prim : Entity_Id;
19321 Prim_Elmt : Elmt_Id;
19322 Priv_List : Elist_Id;
19323
19324 function Contains
19325 (E : Entity_Id;
19326 L : Elist_Id) return Boolean;
19327 -- Determine whether list L contains element E
19328
19329 --------------
19330 -- Contains --
19331 --------------
19332
19333 function Contains
19334 (E : Entity_Id;
19335 L : Elist_Id) return Boolean
19336 is
19337 List_Elmt : Elmt_Id;
19338
19339 begin
19340 List_Elmt := First_Elmt (L);
19341 while Present (List_Elmt) loop
19342 if Node (List_Elmt) = E then
19343 return True;
19344 end if;
19345
19346 Next_Elmt (List_Elmt);
19347 end loop;
19348
19349 return False;
19350 end Contains;
19351
19352 -- Start of processing
19353
19354 begin
19355 if Is_Tagged_Type (Priv_T) then
19356 Priv_List := Primitive_Operations (Priv_T);
19357 Prim_Elmt := First_Elmt (Priv_List);
19358
19359 -- In the case of a concurrent type completing a private tagged
19360 -- type, primitives may have been declared in between the two
19361 -- views. These subprograms need to be wrapped the same way
19362 -- entries and protected procedures are handled because they
19363 -- cannot be directly shared by the two views.
19364
19365 if Is_Concurrent_Type (Full_T) then
19366 declare
19367 Conc_Typ : constant Entity_Id :=
19368 Corresponding_Record_Type (Full_T);
19369 Curr_Nod : Node_Id := Parent (Conc_Typ);
19370 Wrap_Spec : Node_Id;
19371
19372 begin
19373 while Present (Prim_Elmt) loop
19374 Prim := Node (Prim_Elmt);
19375
19376 if Comes_From_Source (Prim)
19377 and then not Is_Abstract_Subprogram (Prim)
19378 then
19379 Wrap_Spec :=
19380 Make_Subprogram_Declaration (Sloc (Prim),
19381 Specification =>
19382 Build_Wrapper_Spec
19383 (Subp_Id => Prim,
19384 Obj_Typ => Conc_Typ,
19385 Formals =>
19386 Parameter_Specifications (
19387 Parent (Prim))));
19388
19389 Insert_After (Curr_Nod, Wrap_Spec);
19390 Curr_Nod := Wrap_Spec;
19391
19392 Analyze (Wrap_Spec);
19393 end if;
19394
19395 Next_Elmt (Prim_Elmt);
19396 end loop;
19397
19398 return;
19399 end;
19400
19401 -- For non-concurrent types, transfer explicit primitives, but
19402 -- omit those inherited from the parent of the private view
19403 -- since they will be re-inherited later on.
19404
19405 else
19406 Full_List := Primitive_Operations (Full_T);
19407
19408 while Present (Prim_Elmt) loop
19409 Prim := Node (Prim_Elmt);
19410
19411 if Comes_From_Source (Prim)
19412 and then not Contains (Prim, Full_List)
19413 then
19414 Append_Elmt (Prim, Full_List);
19415 end if;
19416
19417 Next_Elmt (Prim_Elmt);
19418 end loop;
19419 end if;
19420
19421 -- Untagged private view
19422
19423 else
19424 Full_List := Primitive_Operations (Full_T);
19425
19426 -- In this case the partial view is untagged, so here we locate
19427 -- all of the earlier primitives that need to be treated as
19428 -- dispatching (those that appear between the two views). Note
19429 -- that these additional operations must all be new operations
19430 -- (any earlier operations that override inherited operations
19431 -- of the full view will already have been inserted in the
19432 -- primitives list, marked by Check_Operation_From_Private_View
19433 -- as dispatching. Note that implicit "/=" operators are
19434 -- excluded from being added to the primitives list since they
19435 -- shouldn't be treated as dispatching (tagged "/=" is handled
19436 -- specially).
19437
19438 Prim := Next_Entity (Full_T);
19439 while Present (Prim) and then Prim /= Priv_T loop
19440 if Ekind_In (Prim, E_Procedure, E_Function) then
19441 Disp_Typ := Find_Dispatching_Type (Prim);
19442
19443 if Disp_Typ = Full_T
19444 and then (Chars (Prim) /= Name_Op_Ne
19445 or else Comes_From_Source (Prim))
19446 then
19447 Check_Controlling_Formals (Full_T, Prim);
19448
19449 if not Is_Dispatching_Operation (Prim) then
19450 Append_Elmt (Prim, Full_List);
19451 Set_Is_Dispatching_Operation (Prim, True);
19452 Set_DT_Position (Prim, No_Uint);
19453 end if;
19454
19455 elsif Is_Dispatching_Operation (Prim)
19456 and then Disp_Typ /= Full_T
19457 then
19458
19459 -- Verify that it is not otherwise controlled by a
19460 -- formal or a return value of type T.
19461
19462 Check_Controlling_Formals (Disp_Typ, Prim);
19463 end if;
19464 end if;
19465
19466 Next_Entity (Prim);
19467 end loop;
19468 end if;
19469
19470 -- For the tagged case, the two views can share the same primitive
19471 -- operations list and the same class-wide type. Update attributes
19472 -- of the class-wide type which depend on the full declaration.
19473
19474 if Is_Tagged_Type (Priv_T) then
19475 Set_Direct_Primitive_Operations (Priv_T, Full_List);
19476 Set_Class_Wide_Type
19477 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
19478
19479 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
19480 Set_Has_Protected
19481 (Class_Wide_Type (Priv_T), Has_Protected (Full_T));
19482 end if;
19483 end;
19484 end if;
19485
19486 -- Ada 2005 AI 161: Check preelaborable initialization consistency
19487
19488 if Known_To_Have_Preelab_Init (Priv_T) then
19489
19490 -- Case where there is a pragma Preelaborable_Initialization. We
19491 -- always allow this in predefined units, which is cheating a bit,
19492 -- but it means we don't have to struggle to meet the requirements in
19493 -- the RM for having Preelaborable Initialization. Otherwise we
19494 -- require that the type meets the RM rules. But we can't check that
19495 -- yet, because of the rule about overriding Initialize, so we simply
19496 -- set a flag that will be checked at freeze time.
19497
19498 if not In_Predefined_Unit (Full_T) then
19499 Set_Must_Have_Preelab_Init (Full_T);
19500 end if;
19501 end if;
19502
19503 -- If pragma CPP_Class was applied to the private type declaration,
19504 -- propagate it now to the full type declaration.
19505
19506 if Is_CPP_Class (Priv_T) then
19507 Set_Is_CPP_Class (Full_T);
19508 Set_Convention (Full_T, Convention_CPP);
19509
19510 -- Check that components of imported CPP types do not have default
19511 -- expressions.
19512
19513 Check_CPP_Type_Has_No_Defaults (Full_T);
19514 end if;
19515
19516 -- If the private view has user specified stream attributes, then so has
19517 -- the full view.
19518
19519 -- Why the test, how could these flags be already set in Full_T ???
19520
19521 if Has_Specified_Stream_Read (Priv_T) then
19522 Set_Has_Specified_Stream_Read (Full_T);
19523 end if;
19524
19525 if Has_Specified_Stream_Write (Priv_T) then
19526 Set_Has_Specified_Stream_Write (Full_T);
19527 end if;
19528
19529 if Has_Specified_Stream_Input (Priv_T) then
19530 Set_Has_Specified_Stream_Input (Full_T);
19531 end if;
19532
19533 if Has_Specified_Stream_Output (Priv_T) then
19534 Set_Has_Specified_Stream_Output (Full_T);
19535 end if;
19536
19537 -- Propagate the attributes related to pragma Default_Initial_Condition
19538 -- from the private to the full view. Note that both flags are mutually
19539 -- exclusive.
19540
19541 if Has_Default_Init_Cond (Priv_T)
19542 or else Has_Inherited_Default_Init_Cond (Priv_T)
19543 then
19544 Propagate_Default_Init_Cond_Attributes
19545 (From_Typ => Priv_T,
19546 To_Typ => Full_T,
19547 Private_To_Full_View => True);
19548
19549 -- In the case where the full view is derived from another private type,
19550 -- the attributes related to pragma Default_Initial_Condition must be
19551 -- propagated from the full to the private view to maintain consistency
19552 -- of views.
19553
19554 -- package Pack is
19555 -- type Parent_Typ is private
19556 -- with Default_Initial_Condition ...;
19557 -- private
19558 -- type Parent_Typ is ...;
19559 -- end Pack;
19560
19561 -- with Pack; use Pack;
19562 -- package Pack_2 is
19563 -- type Deriv_Typ is private; -- must inherit
19564 -- private
19565 -- type Deriv_Typ is new Parent_Typ; -- must inherit
19566 -- end Pack_2;
19567
19568 elsif Has_Default_Init_Cond (Full_T)
19569 or else Has_Inherited_Default_Init_Cond (Full_T)
19570 then
19571 Propagate_Default_Init_Cond_Attributes
19572 (From_Typ => Full_T,
19573 To_Typ => Priv_T,
19574 Private_To_Full_View => True);
19575 end if;
19576
19577 -- Propagate invariants to full type
19578
19579 if Has_Invariants (Priv_T) then
19580 Set_Has_Invariants (Full_T);
19581 Set_Invariant_Procedure (Full_T, Invariant_Procedure (Priv_T));
19582 end if;
19583
19584 if Has_Inheritable_Invariants (Priv_T) then
19585 Set_Has_Inheritable_Invariants (Full_T);
19586 end if;
19587
19588 -- Propagate predicates to full type, and predicate function if already
19589 -- defined. It is not clear that this can actually happen? the partial
19590 -- view cannot be frozen yet, and the predicate function has not been
19591 -- built. Still it is a cheap check and seems safer to make it.
19592
19593 if Has_Predicates (Priv_T) then
19594 if Present (Predicate_Function (Priv_T)) then
19595 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
19596 end if;
19597
19598 Set_Has_Predicates (Full_T);
19599 end if;
19600 end Process_Full_View;
19601
19602 -----------------------------------
19603 -- Process_Incomplete_Dependents --
19604 -----------------------------------
19605
19606 procedure Process_Incomplete_Dependents
19607 (N : Node_Id;
19608 Full_T : Entity_Id;
19609 Inc_T : Entity_Id)
19610 is
19611 Inc_Elmt : Elmt_Id;
19612 Priv_Dep : Entity_Id;
19613 New_Subt : Entity_Id;
19614
19615 Disc_Constraint : Elist_Id;
19616
19617 begin
19618 if No (Private_Dependents (Inc_T)) then
19619 return;
19620 end if;
19621
19622 -- Itypes that may be generated by the completion of an incomplete
19623 -- subtype are not used by the back-end and not attached to the tree.
19624 -- They are created only for constraint-checking purposes.
19625
19626 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
19627 while Present (Inc_Elmt) loop
19628 Priv_Dep := Node (Inc_Elmt);
19629
19630 if Ekind (Priv_Dep) = E_Subprogram_Type then
19631
19632 -- An Access_To_Subprogram type may have a return type or a
19633 -- parameter type that is incomplete. Replace with the full view.
19634
19635 if Etype (Priv_Dep) = Inc_T then
19636 Set_Etype (Priv_Dep, Full_T);
19637 end if;
19638
19639 declare
19640 Formal : Entity_Id;
19641
19642 begin
19643 Formal := First_Formal (Priv_Dep);
19644 while Present (Formal) loop
19645 if Etype (Formal) = Inc_T then
19646 Set_Etype (Formal, Full_T);
19647 end if;
19648
19649 Next_Formal (Formal);
19650 end loop;
19651 end;
19652
19653 elsif Is_Overloadable (Priv_Dep) then
19654
19655 -- If a subprogram in the incomplete dependents list is primitive
19656 -- for a tagged full type then mark it as a dispatching operation,
19657 -- check whether it overrides an inherited subprogram, and check
19658 -- restrictions on its controlling formals. Note that a protected
19659 -- operation is never dispatching: only its wrapper operation
19660 -- (which has convention Ada) is.
19661
19662 if Is_Tagged_Type (Full_T)
19663 and then Is_Primitive (Priv_Dep)
19664 and then Convention (Priv_Dep) /= Convention_Protected
19665 then
19666 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
19667 Set_Is_Dispatching_Operation (Priv_Dep);
19668 Check_Controlling_Formals (Full_T, Priv_Dep);
19669 end if;
19670
19671 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
19672
19673 -- Can happen during processing of a body before the completion
19674 -- of a TA type. Ignore, because spec is also on dependent list.
19675
19676 return;
19677
19678 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
19679 -- corresponding subtype of the full view.
19680
19681 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
19682 Set_Subtype_Indication
19683 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
19684 Set_Etype (Priv_Dep, Full_T);
19685 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
19686 Set_Analyzed (Parent (Priv_Dep), False);
19687
19688 -- Reanalyze the declaration, suppressing the call to
19689 -- Enter_Name to avoid duplicate names.
19690
19691 Analyze_Subtype_Declaration
19692 (N => Parent (Priv_Dep),
19693 Skip => True);
19694
19695 -- Dependent is a subtype
19696
19697 else
19698 -- We build a new subtype indication using the full view of the
19699 -- incomplete parent. The discriminant constraints have been
19700 -- elaborated already at the point of the subtype declaration.
19701
19702 New_Subt := Create_Itype (E_Void, N);
19703
19704 if Has_Discriminants (Full_T) then
19705 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
19706 else
19707 Disc_Constraint := No_Elist;
19708 end if;
19709
19710 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
19711 Set_Full_View (Priv_Dep, New_Subt);
19712 end if;
19713
19714 Next_Elmt (Inc_Elmt);
19715 end loop;
19716 end Process_Incomplete_Dependents;
19717
19718 --------------------------------
19719 -- Process_Range_Expr_In_Decl --
19720 --------------------------------
19721
19722 procedure Process_Range_Expr_In_Decl
19723 (R : Node_Id;
19724 T : Entity_Id;
19725 Subtyp : Entity_Id := Empty;
19726 Check_List : List_Id := Empty_List;
19727 R_Check_Off : Boolean := False;
19728 In_Iter_Schm : Boolean := False)
19729 is
19730 Lo, Hi : Node_Id;
19731 R_Checks : Check_Result;
19732 Insert_Node : Node_Id;
19733 Def_Id : Entity_Id;
19734
19735 begin
19736 Analyze_And_Resolve (R, Base_Type (T));
19737
19738 if Nkind (R) = N_Range then
19739
19740 -- In SPARK, all ranges should be static, with the exception of the
19741 -- discrete type definition of a loop parameter specification.
19742
19743 if not In_Iter_Schm
19744 and then not Is_OK_Static_Range (R)
19745 then
19746 Check_SPARK_05_Restriction ("range should be static", R);
19747 end if;
19748
19749 Lo := Low_Bound (R);
19750 Hi := High_Bound (R);
19751
19752 -- Validity checks on the range of a quantified expression are
19753 -- delayed until the construct is transformed into a loop.
19754
19755 if Nkind (Parent (R)) = N_Loop_Parameter_Specification
19756 and then Nkind (Parent (Parent (R))) = N_Quantified_Expression
19757 then
19758 null;
19759
19760 -- We need to ensure validity of the bounds here, because if we
19761 -- go ahead and do the expansion, then the expanded code will get
19762 -- analyzed with range checks suppressed and we miss the check.
19763
19764 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
19765 -- the temporaries generated by routine Remove_Side_Effects by means
19766 -- of validity checks must use the same names. When a range appears
19767 -- in the parent of a generic, the range is processed with checks
19768 -- disabled as part of the generic context and with checks enabled
19769 -- for code generation purposes. This leads to link issues as the
19770 -- generic contains references to xxx_FIRST/_LAST, but the inlined
19771 -- template sees the temporaries generated by Remove_Side_Effects.
19772
19773 else
19774 Validity_Check_Range (R, Subtyp);
19775 end if;
19776
19777 -- If there were errors in the declaration, try and patch up some
19778 -- common mistakes in the bounds. The cases handled are literals
19779 -- which are Integer where the expected type is Real and vice versa.
19780 -- These corrections allow the compilation process to proceed further
19781 -- along since some basic assumptions of the format of the bounds
19782 -- are guaranteed.
19783
19784 if Etype (R) = Any_Type then
19785 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
19786 Rewrite (Lo,
19787 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
19788
19789 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
19790 Rewrite (Hi,
19791 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
19792
19793 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
19794 Rewrite (Lo,
19795 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
19796
19797 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
19798 Rewrite (Hi,
19799 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
19800 end if;
19801
19802 Set_Etype (Lo, T);
19803 Set_Etype (Hi, T);
19804 end if;
19805
19806 -- If the bounds of the range have been mistakenly given as string
19807 -- literals (perhaps in place of character literals), then an error
19808 -- has already been reported, but we rewrite the string literal as a
19809 -- bound of the range's type to avoid blowups in later processing
19810 -- that looks at static values.
19811
19812 if Nkind (Lo) = N_String_Literal then
19813 Rewrite (Lo,
19814 Make_Attribute_Reference (Sloc (Lo),
19815 Prefix => New_Occurrence_Of (T, Sloc (Lo)),
19816 Attribute_Name => Name_First));
19817 Analyze_And_Resolve (Lo);
19818 end if;
19819
19820 if Nkind (Hi) = N_String_Literal then
19821 Rewrite (Hi,
19822 Make_Attribute_Reference (Sloc (Hi),
19823 Prefix => New_Occurrence_Of (T, Sloc (Hi)),
19824 Attribute_Name => Name_First));
19825 Analyze_And_Resolve (Hi);
19826 end if;
19827
19828 -- If bounds aren't scalar at this point then exit, avoiding
19829 -- problems with further processing of the range in this procedure.
19830
19831 if not Is_Scalar_Type (Etype (Lo)) then
19832 return;
19833 end if;
19834
19835 -- Resolve (actually Sem_Eval) has checked that the bounds are in
19836 -- then range of the base type. Here we check whether the bounds
19837 -- are in the range of the subtype itself. Note that if the bounds
19838 -- represent the null range the Constraint_Error exception should
19839 -- not be raised.
19840
19841 -- ??? The following code should be cleaned up as follows
19842
19843 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
19844 -- is done in the call to Range_Check (R, T); below
19845
19846 -- 2. The use of R_Check_Off should be investigated and possibly
19847 -- removed, this would clean up things a bit.
19848
19849 if Is_Null_Range (Lo, Hi) then
19850 null;
19851
19852 else
19853 -- Capture values of bounds and generate temporaries for them
19854 -- if needed, before applying checks, since checks may cause
19855 -- duplication of the expression without forcing evaluation.
19856
19857 -- The forced evaluation removes side effects from expressions,
19858 -- which should occur also in GNATprove mode. Otherwise, we end up
19859 -- with unexpected insertions of actions at places where this is
19860 -- not supposed to occur, e.g. on default parameters of a call.
19861
19862 if Expander_Active or GNATprove_Mode then
19863
19864 -- If no subtype name, then just call Force_Evaluation to
19865 -- create declarations as needed to deal with side effects.
19866 -- Also ignore calls from within a record type, where we
19867 -- have possible scoping issues.
19868
19869 if No (Subtyp) or else Is_Record_Type (Current_Scope) then
19870 Force_Evaluation (Lo);
19871 Force_Evaluation (Hi);
19872
19873 -- If a subtype is given, then we capture the bounds if they
19874 -- are not known at compile time, using constant identifiers
19875 -- xxx_FIRST and xxx_LAST where xxx is the name of the subtype.
19876
19877 -- Note: we do this transformation even if expansion is not
19878 -- active, and in particular we do it in GNATprove_Mode since
19879 -- the transformation is in general required to ensure that the
19880 -- resulting tree has proper Ada semantics.
19881
19882 -- Historical note: We used to just do Force_Evaluation calls
19883 -- in all cases, but it is better to capture the bounds with
19884 -- proper non-serialized names, since these will be accessed
19885 -- from other units, and hence may be public, and also we can
19886 -- then expand 'First and 'Last references to be references to
19887 -- these special names.
19888
19889 else
19890 if not Compile_Time_Known_Value (Lo)
19891
19892 -- No need to capture bounds if they already are
19893 -- references to constants.
19894
19895 and then not (Is_Entity_Name (Lo)
19896 and then Is_Constant_Object (Entity (Lo)))
19897 then
19898 declare
19899 Loc : constant Source_Ptr := Sloc (Lo);
19900 Lov : constant Entity_Id :=
19901 Make_Defining_Identifier (Loc,
19902 Chars =>
19903 New_External_Name (Chars (Subtyp), "_FIRST"));
19904 begin
19905 Insert_Action (R,
19906 Make_Object_Declaration (Loc,
19907 Defining_Identifier => Lov,
19908 Object_Definition =>
19909 New_Occurrence_Of (Base_Type (T), Loc),
19910 Constant_Present => True,
19911 Expression => Relocate_Node (Lo)));
19912 Rewrite (Lo, New_Occurrence_Of (Lov, Loc));
19913 end;
19914 end if;
19915
19916 if not Compile_Time_Known_Value (Hi)
19917 and then not (Is_Entity_Name (Hi)
19918 and then Is_Constant_Object (Entity (Hi)))
19919 then
19920 declare
19921 Loc : constant Source_Ptr := Sloc (Hi);
19922 Hiv : constant Entity_Id :=
19923 Make_Defining_Identifier (Loc,
19924 Chars =>
19925 New_External_Name (Chars (Subtyp), "_LAST"));
19926 begin
19927 Insert_Action (R,
19928 Make_Object_Declaration (Loc,
19929 Defining_Identifier => Hiv,
19930 Object_Definition =>
19931 New_Occurrence_Of (Base_Type (T), Loc),
19932 Constant_Present => True,
19933 Expression => Relocate_Node (Hi)));
19934 Rewrite (Hi, New_Occurrence_Of (Hiv, Loc));
19935 end;
19936 end if;
19937 end if;
19938 end if;
19939
19940 -- We use a flag here instead of suppressing checks on the
19941 -- type because the type we check against isn't necessarily
19942 -- the place where we put the check.
19943
19944 if not R_Check_Off then
19945 R_Checks := Get_Range_Checks (R, T);
19946
19947 -- Look up tree to find an appropriate insertion point. We
19948 -- can't just use insert_actions because later processing
19949 -- depends on the insertion node. Prior to Ada 2012 the
19950 -- insertion point could only be a declaration or a loop, but
19951 -- quantified expressions can appear within any context in an
19952 -- expression, and the insertion point can be any statement,
19953 -- pragma, or declaration.
19954
19955 Insert_Node := Parent (R);
19956 while Present (Insert_Node) loop
19957 exit when
19958 Nkind (Insert_Node) in N_Declaration
19959 and then
19960 not Nkind_In
19961 (Insert_Node, N_Component_Declaration,
19962 N_Loop_Parameter_Specification,
19963 N_Function_Specification,
19964 N_Procedure_Specification);
19965
19966 exit when Nkind (Insert_Node) in N_Later_Decl_Item
19967 or else Nkind (Insert_Node) in
19968 N_Statement_Other_Than_Procedure_Call
19969 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
19970 N_Pragma);
19971
19972 Insert_Node := Parent (Insert_Node);
19973 end loop;
19974
19975 -- Why would Type_Decl not be present??? Without this test,
19976 -- short regression tests fail.
19977
19978 if Present (Insert_Node) then
19979
19980 -- Case of loop statement. Verify that the range is part
19981 -- of the subtype indication of the iteration scheme.
19982
19983 if Nkind (Insert_Node) = N_Loop_Statement then
19984 declare
19985 Indic : Node_Id;
19986
19987 begin
19988 Indic := Parent (R);
19989 while Present (Indic)
19990 and then Nkind (Indic) /= N_Subtype_Indication
19991 loop
19992 Indic := Parent (Indic);
19993 end loop;
19994
19995 if Present (Indic) then
19996 Def_Id := Etype (Subtype_Mark (Indic));
19997
19998 Insert_Range_Checks
19999 (R_Checks,
20000 Insert_Node,
20001 Def_Id,
20002 Sloc (Insert_Node),
20003 R,
20004 Do_Before => True);
20005 end if;
20006 end;
20007
20008 -- Insertion before a declaration. If the declaration
20009 -- includes discriminants, the list of applicable checks
20010 -- is given by the caller.
20011
20012 elsif Nkind (Insert_Node) in N_Declaration then
20013 Def_Id := Defining_Identifier (Insert_Node);
20014
20015 if (Ekind (Def_Id) = E_Record_Type
20016 and then Depends_On_Discriminant (R))
20017 or else
20018 (Ekind (Def_Id) = E_Protected_Type
20019 and then Has_Discriminants (Def_Id))
20020 then
20021 Append_Range_Checks
20022 (R_Checks,
20023 Check_List, Def_Id, Sloc (Insert_Node), R);
20024
20025 else
20026 Insert_Range_Checks
20027 (R_Checks,
20028 Insert_Node, Def_Id, Sloc (Insert_Node), R);
20029
20030 end if;
20031
20032 -- Insertion before a statement. Range appears in the
20033 -- context of a quantified expression. Insertion will
20034 -- take place when expression is expanded.
20035
20036 else
20037 null;
20038 end if;
20039 end if;
20040 end if;
20041 end if;
20042
20043 -- Case of other than an explicit N_Range node
20044
20045 -- The forced evaluation removes side effects from expressions, which
20046 -- should occur also in GNATprove mode. Otherwise, we end up with
20047 -- unexpected insertions of actions at places where this is not
20048 -- supposed to occur, e.g. on default parameters of a call.
20049
20050 elsif Expander_Active or GNATprove_Mode then
20051 Get_Index_Bounds (R, Lo, Hi);
20052 Force_Evaluation (Lo);
20053 Force_Evaluation (Hi);
20054 end if;
20055 end Process_Range_Expr_In_Decl;
20056
20057 --------------------------------------
20058 -- Process_Real_Range_Specification --
20059 --------------------------------------
20060
20061 procedure Process_Real_Range_Specification (Def : Node_Id) is
20062 Spec : constant Node_Id := Real_Range_Specification (Def);
20063 Lo : Node_Id;
20064 Hi : Node_Id;
20065 Err : Boolean := False;
20066
20067 procedure Analyze_Bound (N : Node_Id);
20068 -- Analyze and check one bound
20069
20070 -------------------
20071 -- Analyze_Bound --
20072 -------------------
20073
20074 procedure Analyze_Bound (N : Node_Id) is
20075 begin
20076 Analyze_And_Resolve (N, Any_Real);
20077
20078 if not Is_OK_Static_Expression (N) then
20079 Flag_Non_Static_Expr
20080 ("bound in real type definition is not static!", N);
20081 Err := True;
20082 end if;
20083 end Analyze_Bound;
20084
20085 -- Start of processing for Process_Real_Range_Specification
20086
20087 begin
20088 if Present (Spec) then
20089 Lo := Low_Bound (Spec);
20090 Hi := High_Bound (Spec);
20091 Analyze_Bound (Lo);
20092 Analyze_Bound (Hi);
20093
20094 -- If error, clear away junk range specification
20095
20096 if Err then
20097 Set_Real_Range_Specification (Def, Empty);
20098 end if;
20099 end if;
20100 end Process_Real_Range_Specification;
20101
20102 ---------------------
20103 -- Process_Subtype --
20104 ---------------------
20105
20106 function Process_Subtype
20107 (S : Node_Id;
20108 Related_Nod : Node_Id;
20109 Related_Id : Entity_Id := Empty;
20110 Suffix : Character := ' ') return Entity_Id
20111 is
20112 P : Node_Id;
20113 Def_Id : Entity_Id;
20114 Error_Node : Node_Id;
20115 Full_View_Id : Entity_Id;
20116 Subtype_Mark_Id : Entity_Id;
20117
20118 May_Have_Null_Exclusion : Boolean;
20119
20120 procedure Check_Incomplete (T : Entity_Id);
20121 -- Called to verify that an incomplete type is not used prematurely
20122
20123 ----------------------
20124 -- Check_Incomplete --
20125 ----------------------
20126
20127 procedure Check_Incomplete (T : Entity_Id) is
20128 begin
20129 -- Ada 2005 (AI-412): Incomplete subtypes are legal
20130
20131 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
20132 and then
20133 not (Ada_Version >= Ada_2005
20134 and then
20135 (Nkind (Parent (T)) = N_Subtype_Declaration
20136 or else (Nkind (Parent (T)) = N_Subtype_Indication
20137 and then Nkind (Parent (Parent (T))) =
20138 N_Subtype_Declaration)))
20139 then
20140 Error_Msg_N ("invalid use of type before its full declaration", T);
20141 end if;
20142 end Check_Incomplete;
20143
20144 -- Start of processing for Process_Subtype
20145
20146 begin
20147 -- Case of no constraints present
20148
20149 if Nkind (S) /= N_Subtype_Indication then
20150 Find_Type (S);
20151 Check_Incomplete (S);
20152 P := Parent (S);
20153
20154 -- Ada 2005 (AI-231): Static check
20155
20156 if Ada_Version >= Ada_2005
20157 and then Present (P)
20158 and then Null_Exclusion_Present (P)
20159 and then Nkind (P) /= N_Access_To_Object_Definition
20160 and then not Is_Access_Type (Entity (S))
20161 then
20162 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
20163 end if;
20164
20165 -- The following is ugly, can't we have a range or even a flag???
20166
20167 May_Have_Null_Exclusion :=
20168 Nkind_In (P, N_Access_Definition,
20169 N_Access_Function_Definition,
20170 N_Access_Procedure_Definition,
20171 N_Access_To_Object_Definition,
20172 N_Allocator,
20173 N_Component_Definition)
20174 or else
20175 Nkind_In (P, N_Derived_Type_Definition,
20176 N_Discriminant_Specification,
20177 N_Formal_Object_Declaration,
20178 N_Object_Declaration,
20179 N_Object_Renaming_Declaration,
20180 N_Parameter_Specification,
20181 N_Subtype_Declaration);
20182
20183 -- Create an Itype that is a duplicate of Entity (S) but with the
20184 -- null-exclusion attribute.
20185
20186 if May_Have_Null_Exclusion
20187 and then Is_Access_Type (Entity (S))
20188 and then Null_Exclusion_Present (P)
20189
20190 -- No need to check the case of an access to object definition.
20191 -- It is correct to define double not-null pointers.
20192
20193 -- Example:
20194 -- type Not_Null_Int_Ptr is not null access Integer;
20195 -- type Acc is not null access Not_Null_Int_Ptr;
20196
20197 and then Nkind (P) /= N_Access_To_Object_Definition
20198 then
20199 if Can_Never_Be_Null (Entity (S)) then
20200 case Nkind (Related_Nod) is
20201 when N_Full_Type_Declaration =>
20202 if Nkind (Type_Definition (Related_Nod))
20203 in N_Array_Type_Definition
20204 then
20205 Error_Node :=
20206 Subtype_Indication
20207 (Component_Definition
20208 (Type_Definition (Related_Nod)));
20209 else
20210 Error_Node :=
20211 Subtype_Indication (Type_Definition (Related_Nod));
20212 end if;
20213
20214 when N_Subtype_Declaration =>
20215 Error_Node := Subtype_Indication (Related_Nod);
20216
20217 when N_Object_Declaration =>
20218 Error_Node := Object_Definition (Related_Nod);
20219
20220 when N_Component_Declaration =>
20221 Error_Node :=
20222 Subtype_Indication (Component_Definition (Related_Nod));
20223
20224 when N_Allocator =>
20225 Error_Node := Expression (Related_Nod);
20226
20227 when others =>
20228 pragma Assert (False);
20229 Error_Node := Related_Nod;
20230 end case;
20231
20232 Error_Msg_NE
20233 ("`NOT NULL` not allowed (& already excludes null)",
20234 Error_Node,
20235 Entity (S));
20236 end if;
20237
20238 Set_Etype (S,
20239 Create_Null_Excluding_Itype
20240 (T => Entity (S),
20241 Related_Nod => P));
20242 Set_Entity (S, Etype (S));
20243 end if;
20244
20245 return Entity (S);
20246
20247 -- Case of constraint present, so that we have an N_Subtype_Indication
20248 -- node (this node is created only if constraints are present).
20249
20250 else
20251 Find_Type (Subtype_Mark (S));
20252
20253 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
20254 and then not
20255 (Nkind (Parent (S)) = N_Subtype_Declaration
20256 and then Is_Itype (Defining_Identifier (Parent (S))))
20257 then
20258 Check_Incomplete (Subtype_Mark (S));
20259 end if;
20260
20261 P := Parent (S);
20262 Subtype_Mark_Id := Entity (Subtype_Mark (S));
20263
20264 -- Explicit subtype declaration case
20265
20266 if Nkind (P) = N_Subtype_Declaration then
20267 Def_Id := Defining_Identifier (P);
20268
20269 -- Explicit derived type definition case
20270
20271 elsif Nkind (P) = N_Derived_Type_Definition then
20272 Def_Id := Defining_Identifier (Parent (P));
20273
20274 -- Implicit case, the Def_Id must be created as an implicit type.
20275 -- The one exception arises in the case of concurrent types, array
20276 -- and access types, where other subsidiary implicit types may be
20277 -- created and must appear before the main implicit type. In these
20278 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
20279 -- has not yet been called to create Def_Id.
20280
20281 else
20282 if Is_Array_Type (Subtype_Mark_Id)
20283 or else Is_Concurrent_Type (Subtype_Mark_Id)
20284 or else Is_Access_Type (Subtype_Mark_Id)
20285 then
20286 Def_Id := Empty;
20287
20288 -- For the other cases, we create a new unattached Itype,
20289 -- and set the indication to ensure it gets attached later.
20290
20291 else
20292 Def_Id :=
20293 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
20294 end if;
20295 end if;
20296
20297 -- If the kind of constraint is invalid for this kind of type,
20298 -- then give an error, and then pretend no constraint was given.
20299
20300 if not Is_Valid_Constraint_Kind
20301 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
20302 then
20303 Error_Msg_N
20304 ("incorrect constraint for this kind of type", Constraint (S));
20305
20306 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
20307
20308 -- Set Ekind of orphan itype, to prevent cascaded errors
20309
20310 if Present (Def_Id) then
20311 Set_Ekind (Def_Id, Ekind (Any_Type));
20312 end if;
20313
20314 -- Make recursive call, having got rid of the bogus constraint
20315
20316 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
20317 end if;
20318
20319 -- Remaining processing depends on type. Select on Base_Type kind to
20320 -- ensure getting to the concrete type kind in the case of a private
20321 -- subtype (needed when only doing semantic analysis).
20322
20323 case Ekind (Base_Type (Subtype_Mark_Id)) is
20324 when Access_Kind =>
20325
20326 -- If this is a constraint on a class-wide type, discard it.
20327 -- There is currently no way to express a partial discriminant
20328 -- constraint on a type with unknown discriminants. This is
20329 -- a pathology that the ACATS wisely decides not to test.
20330
20331 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
20332 if Comes_From_Source (S) then
20333 Error_Msg_N
20334 ("constraint on class-wide type ignored??",
20335 Constraint (S));
20336 end if;
20337
20338 if Nkind (P) = N_Subtype_Declaration then
20339 Set_Subtype_Indication (P,
20340 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
20341 end if;
20342
20343 return Subtype_Mark_Id;
20344 end if;
20345
20346 Constrain_Access (Def_Id, S, Related_Nod);
20347
20348 if Expander_Active
20349 and then Is_Itype (Designated_Type (Def_Id))
20350 and then Nkind (Related_Nod) = N_Subtype_Declaration
20351 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
20352 then
20353 Build_Itype_Reference
20354 (Designated_Type (Def_Id), Related_Nod);
20355 end if;
20356
20357 when Array_Kind =>
20358 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
20359
20360 when Decimal_Fixed_Point_Kind =>
20361 Constrain_Decimal (Def_Id, S);
20362
20363 when Enumeration_Kind =>
20364 Constrain_Enumeration (Def_Id, S);
20365 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
20366
20367 when Ordinary_Fixed_Point_Kind =>
20368 Constrain_Ordinary_Fixed (Def_Id, S);
20369
20370 when Float_Kind =>
20371 Constrain_Float (Def_Id, S);
20372
20373 when Integer_Kind =>
20374 Constrain_Integer (Def_Id, S);
20375 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
20376
20377 when E_Record_Type |
20378 E_Record_Subtype |
20379 Class_Wide_Kind |
20380 E_Incomplete_Type =>
20381 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
20382
20383 if Ekind (Def_Id) = E_Incomplete_Type then
20384 Set_Private_Dependents (Def_Id, New_Elmt_List);
20385 end if;
20386
20387 when Private_Kind =>
20388 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
20389 Set_Private_Dependents (Def_Id, New_Elmt_List);
20390
20391 -- In case of an invalid constraint prevent further processing
20392 -- since the type constructed is missing expected fields.
20393
20394 if Etype (Def_Id) = Any_Type then
20395 return Def_Id;
20396 end if;
20397
20398 -- If the full view is that of a task with discriminants,
20399 -- we must constrain both the concurrent type and its
20400 -- corresponding record type. Otherwise we will just propagate
20401 -- the constraint to the full view, if available.
20402
20403 if Present (Full_View (Subtype_Mark_Id))
20404 and then Has_Discriminants (Subtype_Mark_Id)
20405 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
20406 then
20407 Full_View_Id :=
20408 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
20409
20410 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
20411 Constrain_Concurrent (Full_View_Id, S,
20412 Related_Nod, Related_Id, Suffix);
20413 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
20414 Set_Full_View (Def_Id, Full_View_Id);
20415
20416 -- Introduce an explicit reference to the private subtype,
20417 -- to prevent scope anomalies in gigi if first use appears
20418 -- in a nested context, e.g. a later function body.
20419 -- Should this be generated in other contexts than a full
20420 -- type declaration?
20421
20422 if Is_Itype (Def_Id)
20423 and then
20424 Nkind (Parent (P)) = N_Full_Type_Declaration
20425 then
20426 Build_Itype_Reference (Def_Id, Parent (P));
20427 end if;
20428
20429 else
20430 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
20431 end if;
20432
20433 when Concurrent_Kind =>
20434 Constrain_Concurrent (Def_Id, S,
20435 Related_Nod, Related_Id, Suffix);
20436
20437 when others =>
20438 Error_Msg_N ("invalid subtype mark in subtype indication", S);
20439 end case;
20440
20441 -- Size and Convention are always inherited from the base type
20442
20443 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
20444 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
20445
20446 return Def_Id;
20447 end if;
20448 end Process_Subtype;
20449
20450 --------------------------------------------
20451 -- Propagate_Default_Init_Cond_Attributes --
20452 --------------------------------------------
20453
20454 procedure Propagate_Default_Init_Cond_Attributes
20455 (From_Typ : Entity_Id;
20456 To_Typ : Entity_Id;
20457 Parent_To_Derivation : Boolean := False;
20458 Private_To_Full_View : Boolean := False)
20459 is
20460 procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id);
20461 -- Remove the default initial procedure (if any) from the rep chain of
20462 -- type Typ.
20463
20464 ----------------------------------------
20465 -- Remove_Default_Init_Cond_Procedure --
20466 ----------------------------------------
20467
20468 procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id) is
20469 Found : Boolean := False;
20470 Prev : Entity_Id;
20471 Subp : Entity_Id;
20472
20473 begin
20474 Prev := Typ;
20475 Subp := Subprograms_For_Type (Typ);
20476 while Present (Subp) loop
20477 if Is_Default_Init_Cond_Procedure (Subp) then
20478 Found := True;
20479 exit;
20480 end if;
20481
20482 Prev := Subp;
20483 Subp := Subprograms_For_Type (Subp);
20484 end loop;
20485
20486 if Found then
20487 Set_Subprograms_For_Type (Prev, Subprograms_For_Type (Subp));
20488 Set_Subprograms_For_Type (Subp, Empty);
20489 end if;
20490 end Remove_Default_Init_Cond_Procedure;
20491
20492 -- Local variables
20493
20494 Inherit_Procedure : Boolean := False;
20495
20496 -- Start of processing for Propagate_Default_Init_Cond_Attributes
20497
20498 begin
20499 if Has_Default_Init_Cond (From_Typ) then
20500
20501 -- A derived type inherits the attributes from its parent type
20502
20503 if Parent_To_Derivation then
20504 Set_Has_Inherited_Default_Init_Cond (To_Typ);
20505
20506 -- A full view shares the attributes with its private view
20507
20508 else
20509 Set_Has_Default_Init_Cond (To_Typ);
20510 end if;
20511
20512 Inherit_Procedure := True;
20513
20514 -- Due to the order of expansion, a derived private type is processed
20515 -- by two routines which both attempt to set the attributes related
20516 -- to pragma Default_Initial_Condition - Build_Derived_Type and then
20517 -- Process_Full_View.
20518
20519 -- package Pack is
20520 -- type Parent_Typ is private
20521 -- with Default_Initial_Condition ...;
20522 -- private
20523 -- type Parent_Typ is ...;
20524 -- end Pack;
20525
20526 -- with Pack; use Pack;
20527 -- package Pack_2 is
20528 -- type Deriv_Typ is private
20529 -- with Default_Initial_Condition ...;
20530 -- private
20531 -- type Deriv_Typ is new Parent_Typ;
20532 -- end Pack_2;
20533
20534 -- When Build_Derived_Type operates, it sets the attributes on the
20535 -- full view without taking into account that the private view may
20536 -- define its own default initial condition procedure. This becomes
20537 -- apparent in Process_Full_View which must undo some of the work by
20538 -- Build_Derived_Type and propagate the attributes from the private
20539 -- to the full view.
20540
20541 if Private_To_Full_View then
20542 Set_Has_Inherited_Default_Init_Cond (To_Typ, False);
20543 Remove_Default_Init_Cond_Procedure (To_Typ);
20544 end if;
20545
20546 -- A type must inherit the default initial condition procedure from a
20547 -- parent type when the parent itself is inheriting the procedure or
20548 -- when it is defining one. This circuitry is also used when dealing
20549 -- with the private / full view of a type.
20550
20551 elsif Has_Inherited_Default_Init_Cond (From_Typ)
20552 or (Parent_To_Derivation
20553 and Present (Get_Pragma
20554 (From_Typ, Pragma_Default_Initial_Condition)))
20555 then
20556 Set_Has_Inherited_Default_Init_Cond (To_Typ);
20557 Inherit_Procedure := True;
20558 end if;
20559
20560 if Inherit_Procedure
20561 and then No (Default_Init_Cond_Procedure (To_Typ))
20562 then
20563 Set_Default_Init_Cond_Procedure
20564 (To_Typ, Default_Init_Cond_Procedure (From_Typ));
20565 end if;
20566 end Propagate_Default_Init_Cond_Attributes;
20567
20568 -----------------------------
20569 -- Record_Type_Declaration --
20570 -----------------------------
20571
20572 procedure Record_Type_Declaration
20573 (T : Entity_Id;
20574 N : Node_Id;
20575 Prev : Entity_Id)
20576 is
20577 Def : constant Node_Id := Type_Definition (N);
20578 Is_Tagged : Boolean;
20579 Tag_Comp : Entity_Id;
20580
20581 begin
20582 -- These flags must be initialized before calling Process_Discriminants
20583 -- because this routine makes use of them.
20584
20585 Set_Ekind (T, E_Record_Type);
20586 Set_Etype (T, T);
20587 Init_Size_Align (T);
20588 Set_Interfaces (T, No_Elist);
20589 Set_Stored_Constraint (T, No_Elist);
20590 Set_Default_SSO (T);
20591
20592 -- Normal case
20593
20594 if Ada_Version < Ada_2005 or else not Interface_Present (Def) then
20595 if Limited_Present (Def) then
20596 Check_SPARK_05_Restriction ("limited is not allowed", N);
20597 end if;
20598
20599 if Abstract_Present (Def) then
20600 Check_SPARK_05_Restriction ("abstract is not allowed", N);
20601 end if;
20602
20603 -- The flag Is_Tagged_Type might have already been set by
20604 -- Find_Type_Name if it detected an error for declaration T. This
20605 -- arises in the case of private tagged types where the full view
20606 -- omits the word tagged.
20607
20608 Is_Tagged :=
20609 Tagged_Present (Def)
20610 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
20611
20612 Set_Is_Limited_Record (T, Limited_Present (Def));
20613
20614 if Is_Tagged then
20615 Set_Is_Tagged_Type (T, True);
20616 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
20617 end if;
20618
20619 -- Type is abstract if full declaration carries keyword, or if
20620 -- previous partial view did.
20621
20622 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
20623 or else Abstract_Present (Def));
20624
20625 else
20626 Check_SPARK_05_Restriction ("interface is not allowed", N);
20627
20628 Is_Tagged := True;
20629 Analyze_Interface_Declaration (T, Def);
20630
20631 if Present (Discriminant_Specifications (N)) then
20632 Error_Msg_N
20633 ("interface types cannot have discriminants",
20634 Defining_Identifier
20635 (First (Discriminant_Specifications (N))));
20636 end if;
20637 end if;
20638
20639 -- First pass: if there are self-referential access components,
20640 -- create the required anonymous access type declarations, and if
20641 -- need be an incomplete type declaration for T itself.
20642
20643 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
20644
20645 if Ada_Version >= Ada_2005
20646 and then Present (Interface_List (Def))
20647 then
20648 Check_Interfaces (N, Def);
20649
20650 declare
20651 Ifaces_List : Elist_Id;
20652
20653 begin
20654 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
20655 -- already in the parents.
20656
20657 Collect_Interfaces
20658 (T => T,
20659 Ifaces_List => Ifaces_List,
20660 Exclude_Parents => True);
20661
20662 Set_Interfaces (T, Ifaces_List);
20663 end;
20664 end if;
20665
20666 -- Records constitute a scope for the component declarations within.
20667 -- The scope is created prior to the processing of these declarations.
20668 -- Discriminants are processed first, so that they are visible when
20669 -- processing the other components. The Ekind of the record type itself
20670 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
20671
20672 -- Enter record scope
20673
20674 Push_Scope (T);
20675
20676 -- If an incomplete or private type declaration was already given for
20677 -- the type, then this scope already exists, and the discriminants have
20678 -- been declared within. We must verify that the full declaration
20679 -- matches the incomplete one.
20680
20681 Check_Or_Process_Discriminants (N, T, Prev);
20682
20683 Set_Is_Constrained (T, not Has_Discriminants (T));
20684 Set_Has_Delayed_Freeze (T, True);
20685
20686 -- For tagged types add a manually analyzed component corresponding
20687 -- to the component _tag, the corresponding piece of tree will be
20688 -- expanded as part of the freezing actions if it is not a CPP_Class.
20689
20690 if Is_Tagged then
20691
20692 -- Do not add the tag unless we are in expansion mode
20693
20694 if Expander_Active then
20695 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
20696 Enter_Name (Tag_Comp);
20697
20698 Set_Ekind (Tag_Comp, E_Component);
20699 Set_Is_Tag (Tag_Comp);
20700 Set_Is_Aliased (Tag_Comp);
20701 Set_Etype (Tag_Comp, RTE (RE_Tag));
20702 Set_DT_Entry_Count (Tag_Comp, No_Uint);
20703 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
20704 Init_Component_Location (Tag_Comp);
20705
20706 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
20707 -- implemented interfaces.
20708
20709 if Has_Interfaces (T) then
20710 Add_Interface_Tag_Components (N, T);
20711 end if;
20712 end if;
20713
20714 Make_Class_Wide_Type (T);
20715 Set_Direct_Primitive_Operations (T, New_Elmt_List);
20716 end if;
20717
20718 -- We must suppress range checks when processing record components in
20719 -- the presence of discriminants, since we don't want spurious checks to
20720 -- be generated during their analysis, but Suppress_Range_Checks flags
20721 -- must be reset the after processing the record definition.
20722
20723 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
20724 -- couldn't we just use the normal range check suppression method here.
20725 -- That would seem cleaner ???
20726
20727 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
20728 Set_Kill_Range_Checks (T, True);
20729 Record_Type_Definition (Def, Prev);
20730 Set_Kill_Range_Checks (T, False);
20731 else
20732 Record_Type_Definition (Def, Prev);
20733 end if;
20734
20735 -- Exit from record scope
20736
20737 End_Scope;
20738
20739 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
20740 -- the implemented interfaces and associate them an aliased entity.
20741
20742 if Is_Tagged
20743 and then not Is_Empty_List (Interface_List (Def))
20744 then
20745 Derive_Progenitor_Subprograms (T, T);
20746 end if;
20747
20748 Check_Function_Writable_Actuals (N);
20749 end Record_Type_Declaration;
20750
20751 ----------------------------
20752 -- Record_Type_Definition --
20753 ----------------------------
20754
20755 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
20756 Component : Entity_Id;
20757 Ctrl_Components : Boolean := False;
20758 Final_Storage_Only : Boolean;
20759 T : Entity_Id;
20760
20761 begin
20762 if Ekind (Prev_T) = E_Incomplete_Type then
20763 T := Full_View (Prev_T);
20764 else
20765 T := Prev_T;
20766 end if;
20767
20768 -- In SPARK, tagged types and type extensions may only be declared in
20769 -- the specification of library unit packages.
20770
20771 if Present (Def) and then Is_Tagged_Type (T) then
20772 declare
20773 Typ : Node_Id;
20774 Ctxt : Node_Id;
20775
20776 begin
20777 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
20778 Typ := Parent (Def);
20779 else
20780 pragma Assert
20781 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
20782 Typ := Parent (Parent (Def));
20783 end if;
20784
20785 Ctxt := Parent (Typ);
20786
20787 if Nkind (Ctxt) = N_Package_Body
20788 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
20789 then
20790 Check_SPARK_05_Restriction
20791 ("type should be defined in package specification", Typ);
20792
20793 elsif Nkind (Ctxt) /= N_Package_Specification
20794 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
20795 then
20796 Check_SPARK_05_Restriction
20797 ("type should be defined in library unit package", Typ);
20798 end if;
20799 end;
20800 end if;
20801
20802 Final_Storage_Only := not Is_Controlled (T);
20803
20804 -- Ada 2005: Check whether an explicit Limited is present in a derived
20805 -- type declaration.
20806
20807 if Nkind (Parent (Def)) = N_Derived_Type_Definition
20808 and then Limited_Present (Parent (Def))
20809 then
20810 Set_Is_Limited_Record (T);
20811 end if;
20812
20813 -- If the component list of a record type is defined by the reserved
20814 -- word null and there is no discriminant part, then the record type has
20815 -- no components and all records of the type are null records (RM 3.7)
20816 -- This procedure is also called to process the extension part of a
20817 -- record extension, in which case the current scope may have inherited
20818 -- components.
20819
20820 if No (Def)
20821 or else No (Component_List (Def))
20822 or else Null_Present (Component_List (Def))
20823 then
20824 if not Is_Tagged_Type (T) then
20825 Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
20826 end if;
20827
20828 else
20829 Analyze_Declarations (Component_Items (Component_List (Def)));
20830
20831 if Present (Variant_Part (Component_List (Def))) then
20832 Check_SPARK_05_Restriction ("variant part is not allowed", Def);
20833 Analyze (Variant_Part (Component_List (Def)));
20834 end if;
20835 end if;
20836
20837 -- After completing the semantic analysis of the record definition,
20838 -- record components, both new and inherited, are accessible. Set their
20839 -- kind accordingly. Exclude malformed itypes from illegal declarations,
20840 -- whose Ekind may be void.
20841
20842 Component := First_Entity (Current_Scope);
20843 while Present (Component) loop
20844 if Ekind (Component) = E_Void
20845 and then not Is_Itype (Component)
20846 then
20847 Set_Ekind (Component, E_Component);
20848 Init_Component_Location (Component);
20849 end if;
20850
20851 if Has_Task (Etype (Component)) then
20852 Set_Has_Task (T);
20853 end if;
20854
20855 if Has_Protected (Etype (Component)) then
20856 Set_Has_Protected (T);
20857 end if;
20858
20859 if Ekind (Component) /= E_Component then
20860 null;
20861
20862 -- Do not set Has_Controlled_Component on a class-wide equivalent
20863 -- type. See Make_CW_Equivalent_Type.
20864
20865 elsif not Is_Class_Wide_Equivalent_Type (T)
20866 and then (Has_Controlled_Component (Etype (Component))
20867 or else (Chars (Component) /= Name_uParent
20868 and then Is_Controlled (Etype (Component))))
20869 then
20870 Set_Has_Controlled_Component (T, True);
20871 Final_Storage_Only :=
20872 Final_Storage_Only
20873 and then Finalize_Storage_Only (Etype (Component));
20874 Ctrl_Components := True;
20875 end if;
20876
20877 Next_Entity (Component);
20878 end loop;
20879
20880 -- A Type is Finalize_Storage_Only only if all its controlled components
20881 -- are also.
20882
20883 if Ctrl_Components then
20884 Set_Finalize_Storage_Only (T, Final_Storage_Only);
20885 end if;
20886
20887 -- Place reference to end record on the proper entity, which may
20888 -- be a partial view.
20889
20890 if Present (Def) then
20891 Process_End_Label (Def, 'e', Prev_T);
20892 end if;
20893 end Record_Type_Definition;
20894
20895 ------------------------
20896 -- Replace_Components --
20897 ------------------------
20898
20899 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
20900 function Process (N : Node_Id) return Traverse_Result;
20901
20902 -------------
20903 -- Process --
20904 -------------
20905
20906 function Process (N : Node_Id) return Traverse_Result is
20907 Comp : Entity_Id;
20908
20909 begin
20910 if Nkind (N) = N_Discriminant_Specification then
20911 Comp := First_Discriminant (Typ);
20912 while Present (Comp) loop
20913 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20914 Set_Defining_Identifier (N, Comp);
20915 exit;
20916 end if;
20917
20918 Next_Discriminant (Comp);
20919 end loop;
20920
20921 elsif Nkind (N) = N_Component_Declaration then
20922 Comp := First_Component (Typ);
20923 while Present (Comp) loop
20924 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20925 Set_Defining_Identifier (N, Comp);
20926 exit;
20927 end if;
20928
20929 Next_Component (Comp);
20930 end loop;
20931 end if;
20932
20933 return OK;
20934 end Process;
20935
20936 procedure Replace is new Traverse_Proc (Process);
20937
20938 -- Start of processing for Replace_Components
20939
20940 begin
20941 Replace (Decl);
20942 end Replace_Components;
20943
20944 -------------------------------
20945 -- Set_Completion_Referenced --
20946 -------------------------------
20947
20948 procedure Set_Completion_Referenced (E : Entity_Id) is
20949 begin
20950 -- If in main unit, mark entity that is a completion as referenced,
20951 -- warnings go on the partial view when needed.
20952
20953 if In_Extended_Main_Source_Unit (E) then
20954 Set_Referenced (E);
20955 end if;
20956 end Set_Completion_Referenced;
20957
20958 ---------------------
20959 -- Set_Default_SSO --
20960 ---------------------
20961
20962 procedure Set_Default_SSO (T : Entity_Id) is
20963 begin
20964 case Opt.Default_SSO is
20965 when ' ' =>
20966 null;
20967 when 'L' =>
20968 Set_SSO_Set_Low_By_Default (T, True);
20969 when 'H' =>
20970 Set_SSO_Set_High_By_Default (T, True);
20971 when others =>
20972 raise Program_Error;
20973 end case;
20974 end Set_Default_SSO;
20975
20976 ---------------------
20977 -- Set_Fixed_Range --
20978 ---------------------
20979
20980 -- The range for fixed-point types is complicated by the fact that we
20981 -- do not know the exact end points at the time of the declaration. This
20982 -- is true for three reasons:
20983
20984 -- A size clause may affect the fudging of the end-points.
20985 -- A small clause may affect the values of the end-points.
20986 -- We try to include the end-points if it does not affect the size.
20987
20988 -- This means that the actual end-points must be established at the
20989 -- point when the type is frozen. Meanwhile, we first narrow the range
20990 -- as permitted (so that it will fit if necessary in a small specified
20991 -- size), and then build a range subtree with these narrowed bounds.
20992 -- Set_Fixed_Range constructs the range from real literal values, and
20993 -- sets the range as the Scalar_Range of the given fixed-point type entity.
20994
20995 -- The parent of this range is set to point to the entity so that it is
20996 -- properly hooked into the tree (unlike normal Scalar_Range entries for
20997 -- other scalar types, which are just pointers to the range in the
20998 -- original tree, this would otherwise be an orphan).
20999
21000 -- The tree is left unanalyzed. When the type is frozen, the processing
21001 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
21002 -- analyzed, and uses this as an indication that it should complete
21003 -- work on the range (it will know the final small and size values).
21004
21005 procedure Set_Fixed_Range
21006 (E : Entity_Id;
21007 Loc : Source_Ptr;
21008 Lo : Ureal;
21009 Hi : Ureal)
21010 is
21011 S : constant Node_Id :=
21012 Make_Range (Loc,
21013 Low_Bound => Make_Real_Literal (Loc, Lo),
21014 High_Bound => Make_Real_Literal (Loc, Hi));
21015 begin
21016 Set_Scalar_Range (E, S);
21017 Set_Parent (S, E);
21018
21019 -- Before the freeze point, the bounds of a fixed point are universal
21020 -- and carry the corresponding type.
21021
21022 Set_Etype (Low_Bound (S), Universal_Real);
21023 Set_Etype (High_Bound (S), Universal_Real);
21024 end Set_Fixed_Range;
21025
21026 ----------------------------------
21027 -- Set_Scalar_Range_For_Subtype --
21028 ----------------------------------
21029
21030 procedure Set_Scalar_Range_For_Subtype
21031 (Def_Id : Entity_Id;
21032 R : Node_Id;
21033 Subt : Entity_Id)
21034 is
21035 Kind : constant Entity_Kind := Ekind (Def_Id);
21036
21037 begin
21038 -- Defend against previous error
21039
21040 if Nkind (R) = N_Error then
21041 return;
21042 end if;
21043
21044 Set_Scalar_Range (Def_Id, R);
21045
21046 -- We need to link the range into the tree before resolving it so
21047 -- that types that are referenced, including importantly the subtype
21048 -- itself, are properly frozen (Freeze_Expression requires that the
21049 -- expression be properly linked into the tree). Of course if it is
21050 -- already linked in, then we do not disturb the current link.
21051
21052 if No (Parent (R)) then
21053 Set_Parent (R, Def_Id);
21054 end if;
21055
21056 -- Reset the kind of the subtype during analysis of the range, to
21057 -- catch possible premature use in the bounds themselves.
21058
21059 Set_Ekind (Def_Id, E_Void);
21060 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
21061 Set_Ekind (Def_Id, Kind);
21062 end Set_Scalar_Range_For_Subtype;
21063
21064 --------------------------------------------------------
21065 -- Set_Stored_Constraint_From_Discriminant_Constraint --
21066 --------------------------------------------------------
21067
21068 procedure Set_Stored_Constraint_From_Discriminant_Constraint
21069 (E : Entity_Id)
21070 is
21071 begin
21072 -- Make sure set if encountered during Expand_To_Stored_Constraint
21073
21074 Set_Stored_Constraint (E, No_Elist);
21075
21076 -- Give it the right value
21077
21078 if Is_Constrained (E) and then Has_Discriminants (E) then
21079 Set_Stored_Constraint (E,
21080 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
21081 end if;
21082 end Set_Stored_Constraint_From_Discriminant_Constraint;
21083
21084 -------------------------------------
21085 -- Signed_Integer_Type_Declaration --
21086 -------------------------------------
21087
21088 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
21089 Implicit_Base : Entity_Id;
21090 Base_Typ : Entity_Id;
21091 Lo_Val : Uint;
21092 Hi_Val : Uint;
21093 Errs : Boolean := False;
21094 Lo : Node_Id;
21095 Hi : Node_Id;
21096
21097 function Can_Derive_From (E : Entity_Id) return Boolean;
21098 -- Determine whether given bounds allow derivation from specified type
21099
21100 procedure Check_Bound (Expr : Node_Id);
21101 -- Check bound to make sure it is integral and static. If not, post
21102 -- appropriate error message and set Errs flag
21103
21104 ---------------------
21105 -- Can_Derive_From --
21106 ---------------------
21107
21108 -- Note we check both bounds against both end values, to deal with
21109 -- strange types like ones with a range of 0 .. -12341234.
21110
21111 function Can_Derive_From (E : Entity_Id) return Boolean is
21112 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
21113 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
21114 begin
21115 return Lo <= Lo_Val and then Lo_Val <= Hi
21116 and then
21117 Lo <= Hi_Val and then Hi_Val <= Hi;
21118 end Can_Derive_From;
21119
21120 -----------------
21121 -- Check_Bound --
21122 -----------------
21123
21124 procedure Check_Bound (Expr : Node_Id) is
21125 begin
21126 -- If a range constraint is used as an integer type definition, each
21127 -- bound of the range must be defined by a static expression of some
21128 -- integer type, but the two bounds need not have the same integer
21129 -- type (Negative bounds are allowed.) (RM 3.5.4)
21130
21131 if not Is_Integer_Type (Etype (Expr)) then
21132 Error_Msg_N
21133 ("integer type definition bounds must be of integer type", Expr);
21134 Errs := True;
21135
21136 elsif not Is_OK_Static_Expression (Expr) then
21137 Flag_Non_Static_Expr
21138 ("non-static expression used for integer type bound!", Expr);
21139 Errs := True;
21140
21141 -- The bounds are folded into literals, and we set their type to be
21142 -- universal, to avoid typing difficulties: we cannot set the type
21143 -- of the literal to the new type, because this would be a forward
21144 -- reference for the back end, and if the original type is user-
21145 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
21146
21147 else
21148 if Is_Entity_Name (Expr) then
21149 Fold_Uint (Expr, Expr_Value (Expr), True);
21150 end if;
21151
21152 Set_Etype (Expr, Universal_Integer);
21153 end if;
21154 end Check_Bound;
21155
21156 -- Start of processing for Signed_Integer_Type_Declaration
21157
21158 begin
21159 -- Create an anonymous base type
21160
21161 Implicit_Base :=
21162 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
21163
21164 -- Analyze and check the bounds, they can be of any integer type
21165
21166 Lo := Low_Bound (Def);
21167 Hi := High_Bound (Def);
21168
21169 -- Arbitrarily use Integer as the type if either bound had an error
21170
21171 if Hi = Error or else Lo = Error then
21172 Base_Typ := Any_Integer;
21173 Set_Error_Posted (T, True);
21174
21175 -- Here both bounds are OK expressions
21176
21177 else
21178 Analyze_And_Resolve (Lo, Any_Integer);
21179 Analyze_And_Resolve (Hi, Any_Integer);
21180
21181 Check_Bound (Lo);
21182 Check_Bound (Hi);
21183
21184 if Errs then
21185 Hi := Type_High_Bound (Standard_Long_Long_Integer);
21186 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
21187 end if;
21188
21189 -- Find type to derive from
21190
21191 Lo_Val := Expr_Value (Lo);
21192 Hi_Val := Expr_Value (Hi);
21193
21194 if Can_Derive_From (Standard_Short_Short_Integer) then
21195 Base_Typ := Base_Type (Standard_Short_Short_Integer);
21196
21197 elsif Can_Derive_From (Standard_Short_Integer) then
21198 Base_Typ := Base_Type (Standard_Short_Integer);
21199
21200 elsif Can_Derive_From (Standard_Integer) then
21201 Base_Typ := Base_Type (Standard_Integer);
21202
21203 elsif Can_Derive_From (Standard_Long_Integer) then
21204 Base_Typ := Base_Type (Standard_Long_Integer);
21205
21206 elsif Can_Derive_From (Standard_Long_Long_Integer) then
21207 Check_Restriction (No_Long_Long_Integers, Def);
21208 Base_Typ := Base_Type (Standard_Long_Long_Integer);
21209
21210 else
21211 Base_Typ := Base_Type (Standard_Long_Long_Integer);
21212 Error_Msg_N ("integer type definition bounds out of range", Def);
21213 Hi := Type_High_Bound (Standard_Long_Long_Integer);
21214 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
21215 end if;
21216 end if;
21217
21218 -- Complete both implicit base and declared first subtype entities
21219
21220 Set_Etype (Implicit_Base, Base_Typ);
21221 Set_Size_Info (Implicit_Base, (Base_Typ));
21222 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
21223 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
21224
21225 Set_Ekind (T, E_Signed_Integer_Subtype);
21226 Set_Etype (T, Implicit_Base);
21227
21228 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
21229
21230 Set_Size_Info (T, (Implicit_Base));
21231 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
21232 Set_Scalar_Range (T, Def);
21233 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
21234 Set_Is_Constrained (T);
21235 end Signed_Integer_Type_Declaration;
21236
21237 end Sem_Ch3;