[multiple changes]
[gcc.git] / gcc / ada / sem_ch3.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Elists; use Elists;
31 with Einfo; use Einfo;
32 with Errout; use Errout;
33 with Eval_Fat; use Eval_Fat;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Dist; use Exp_Dist;
38 with Exp_Tss; use Exp_Tss;
39 with Exp_Util; use Exp_Util;
40 with Fname; use Fname;
41 with Freeze; use Freeze;
42 with Itypes; use Itypes;
43 with Layout; use Layout;
44 with Lib; use Lib;
45 with Lib.Xref; use Lib.Xref;
46 with Namet; use Namet;
47 with Nmake; use Nmake;
48 with Opt; use Opt;
49 with Restrict; use Restrict;
50 with Rident; use Rident;
51 with Rtsfind; use Rtsfind;
52 with Sem; use Sem;
53 with Sem_Aux; use Sem_Aux;
54 with Sem_Case; use Sem_Case;
55 with Sem_Cat; use Sem_Cat;
56 with Sem_Ch6; use Sem_Ch6;
57 with Sem_Ch7; use Sem_Ch7;
58 with Sem_Ch8; use Sem_Ch8;
59 with Sem_Ch10; use Sem_Ch10;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Dim; use Sem_Dim;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elim; use Sem_Elim;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Mech; use Sem_Mech;
67 with Sem_Prag; use Sem_Prag;
68 with Sem_Res; use Sem_Res;
69 with Sem_Smem; use Sem_Smem;
70 with Sem_Type; use Sem_Type;
71 with Sem_Util; use Sem_Util;
72 with Sem_Warn; use Sem_Warn;
73 with Stand; use Stand;
74 with Sinfo; use Sinfo;
75 with Sinput; use Sinput;
76 with Snames; use Snames;
77 with Targparm; use Targparm;
78 with Tbuild; use Tbuild;
79 with Ttypes; use Ttypes;
80 with Uintp; use Uintp;
81 with Urealp; use Urealp;
82
83 package body Sem_Ch3 is
84
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
88
89 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
92 -- record type.
93
94 procedure Analyze_Object_Contract (Obj_Id : Entity_Id);
95 -- Analyze all delayed pragmas chained on the contract of object Obj_Id as
96 -- if they appeared at the end of the declarative region. The pragmas to be
97 -- considered are:
98 -- Async_Readers
99 -- Async_Writers
100 -- Effective_Reads
101 -- Effective_Writes
102 -- Part_Of
103
104 procedure Build_Derived_Type
105 (N : Node_Id;
106 Parent_Type : Entity_Id;
107 Derived_Type : Entity_Id;
108 Is_Completion : Boolean;
109 Derive_Subps : Boolean := True);
110 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
111 -- the N_Full_Type_Declaration node containing the derived type definition.
112 -- Parent_Type is the entity for the parent type in the derived type
113 -- definition and Derived_Type the actual derived type. Is_Completion must
114 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
115 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
116 -- completion of a private type declaration. If Is_Completion is set to
117 -- True, N is the completion of a private type declaration and Derived_Type
118 -- is different from the defining identifier inside N (i.e. Derived_Type /=
119 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
120 -- subprograms should be derived. The only case where this parameter is
121 -- False is when Build_Derived_Type is recursively called to process an
122 -- implicit derived full type for a type derived from a private type (in
123 -- that case the subprograms must only be derived for the private view of
124 -- the type).
125 --
126 -- ??? These flags need a bit of re-examination and re-documentation:
127 -- ??? are they both necessary (both seem related to the recursion)?
128
129 procedure Build_Derived_Access_Type
130 (N : Node_Id;
131 Parent_Type : Entity_Id;
132 Derived_Type : Entity_Id);
133 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
134 -- create an implicit base if the parent type is constrained or if the
135 -- subtype indication has a constraint.
136
137 procedure Build_Derived_Array_Type
138 (N : Node_Id;
139 Parent_Type : Entity_Id;
140 Derived_Type : Entity_Id);
141 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
142 -- create an implicit base if the parent type is constrained or if the
143 -- subtype indication has a constraint.
144
145 procedure Build_Derived_Concurrent_Type
146 (N : Node_Id;
147 Parent_Type : Entity_Id;
148 Derived_Type : Entity_Id);
149 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
150 -- protected type, inherit entries and protected subprograms, check
151 -- legality of discriminant constraints if any.
152
153 procedure Build_Derived_Enumeration_Type
154 (N : Node_Id;
155 Parent_Type : Entity_Id;
156 Derived_Type : Entity_Id);
157 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
158 -- type, we must create a new list of literals. Types derived from
159 -- Character and [Wide_]Wide_Character are special-cased.
160
161 procedure Build_Derived_Numeric_Type
162 (N : Node_Id;
163 Parent_Type : Entity_Id;
164 Derived_Type : Entity_Id);
165 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
166 -- an anonymous base type, and propagate constraint to subtype if needed.
167
168 procedure Build_Derived_Private_Type
169 (N : Node_Id;
170 Parent_Type : Entity_Id;
171 Derived_Type : Entity_Id;
172 Is_Completion : Boolean;
173 Derive_Subps : Boolean := True);
174 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
175 -- because the parent may or may not have a completion, and the derivation
176 -- may itself be a completion.
177
178 procedure Build_Derived_Record_Type
179 (N : Node_Id;
180 Parent_Type : Entity_Id;
181 Derived_Type : Entity_Id;
182 Derive_Subps : Boolean := True);
183 -- Subsidiary procedure used for tagged and untagged record types
184 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
185 -- All parameters are as in Build_Derived_Type except that N, in
186 -- addition to being an N_Full_Type_Declaration node, can also be an
187 -- N_Private_Extension_Declaration node. See the definition of this routine
188 -- for much more info. Derive_Subps indicates whether subprograms should be
189 -- derived from the parent type. The only case where Derive_Subps is False
190 -- is for an implicit derived full type for a type derived from a private
191 -- type (see Build_Derived_Type).
192
193 procedure Build_Discriminal (Discrim : Entity_Id);
194 -- Create the discriminal corresponding to discriminant Discrim, that is
195 -- the parameter corresponding to Discrim to be used in initialization
196 -- procedures for the type where Discrim is a discriminant. Discriminals
197 -- are not used during semantic analysis, and are not fully defined
198 -- entities until expansion. Thus they are not given a scope until
199 -- initialization procedures are built.
200
201 function Build_Discriminant_Constraints
202 (T : Entity_Id;
203 Def : Node_Id;
204 Derived_Def : Boolean := False) return Elist_Id;
205 -- Validate discriminant constraints and return the list of the constraints
206 -- in order of discriminant declarations, where T is the discriminated
207 -- unconstrained type. Def is the N_Subtype_Indication node where the
208 -- discriminants constraints for T are specified. Derived_Def is True
209 -- when building the discriminant constraints in a derived type definition
210 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
211 -- type and Def is the constraint "(xxx)" on T and this routine sets the
212 -- Corresponding_Discriminant field of the discriminants in the derived
213 -- type D to point to the corresponding discriminants in the parent type T.
214
215 procedure Build_Discriminated_Subtype
216 (T : Entity_Id;
217 Def_Id : Entity_Id;
218 Elist : Elist_Id;
219 Related_Nod : Node_Id;
220 For_Access : Boolean := False);
221 -- Subsidiary procedure to Constrain_Discriminated_Type and to
222 -- Process_Incomplete_Dependents. Given
223 --
224 -- T (a possibly discriminated base type)
225 -- Def_Id (a very partially built subtype for T),
226 --
227 -- the call completes Def_Id to be the appropriate E_*_Subtype.
228 --
229 -- The Elist is the list of discriminant constraints if any (it is set
230 -- to No_Elist if T is not a discriminated type, and to an empty list if
231 -- T has discriminants but there are no discriminant constraints). The
232 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
233 -- The For_Access says whether or not this subtype is really constraining
234 -- an access type. That is its sole purpose is the designated type of an
235 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
236 -- is built to avoid freezing T when the access subtype is frozen.
237
238 function Build_Scalar_Bound
239 (Bound : Node_Id;
240 Par_T : Entity_Id;
241 Der_T : Entity_Id) return Node_Id;
242 -- The bounds of a derived scalar type are conversions of the bounds of
243 -- the parent type. Optimize the representation if the bounds are literals.
244 -- Needs a more complete spec--what are the parameters exactly, and what
245 -- exactly is the returned value, and how is Bound affected???
246
247 procedure Build_Underlying_Full_View
248 (N : Node_Id;
249 Typ : Entity_Id;
250 Par : Entity_Id);
251 -- If the completion of a private type is itself derived from a private
252 -- type, or if the full view of a private subtype is itself private, the
253 -- back-end has no way to compute the actual size of this type. We build
254 -- an internal subtype declaration of the proper parent type to convey
255 -- this information. This extra mechanism is needed because a full
256 -- view cannot itself have a full view (it would get clobbered during
257 -- view exchanges).
258
259 procedure Check_Access_Discriminant_Requires_Limited
260 (D : Node_Id;
261 Loc : Node_Id);
262 -- Check the restriction that the type to which an access discriminant
263 -- belongs must be a concurrent type or a descendant of a type with
264 -- the reserved word 'limited' in its declaration.
265
266 procedure Check_Anonymous_Access_Components
267 (Typ_Decl : Node_Id;
268 Typ : Entity_Id;
269 Prev : Entity_Id;
270 Comp_List : Node_Id);
271 -- Ada 2005 AI-382: an access component in a record definition can refer to
272 -- the enclosing record, in which case it denotes the type itself, and not
273 -- the current instance of the type. We create an anonymous access type for
274 -- the component, and flag it as an access to a component, so accessibility
275 -- checks are properly performed on it. The declaration of the access type
276 -- is placed ahead of that of the record to prevent order-of-elaboration
277 -- circularity issues in Gigi. We create an incomplete type for the record
278 -- declaration, which is the designated type of the anonymous access.
279
280 procedure Check_Delta_Expression (E : Node_Id);
281 -- Check that the expression represented by E is suitable for use as a
282 -- delta expression, i.e. it is of real type and is static.
283
284 procedure Check_Digits_Expression (E : Node_Id);
285 -- Check that the expression represented by E is suitable for use as a
286 -- digits expression, i.e. it is of integer type, positive and static.
287
288 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
289 -- Validate the initialization of an object declaration. T is the required
290 -- type, and Exp is the initialization expression.
291
292 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
293 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
294
295 procedure Check_Or_Process_Discriminants
296 (N : Node_Id;
297 T : Entity_Id;
298 Prev : Entity_Id := Empty);
299 -- If N is the full declaration of the completion T of an incomplete or
300 -- private type, check its discriminants (which are already known to be
301 -- conformant with those of the partial view, see Find_Type_Name),
302 -- otherwise process them. Prev is the entity of the partial declaration,
303 -- if any.
304
305 procedure Check_Real_Bound (Bound : Node_Id);
306 -- Check given bound for being of real type and static. If not, post an
307 -- appropriate message, and rewrite the bound with the real literal zero.
308
309 procedure Constant_Redeclaration
310 (Id : Entity_Id;
311 N : Node_Id;
312 T : out Entity_Id);
313 -- Various checks on legality of full declaration of deferred constant.
314 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
315 -- node. The caller has not yet set any attributes of this entity.
316
317 function Contain_Interface
318 (Iface : Entity_Id;
319 Ifaces : Elist_Id) return Boolean;
320 -- Ada 2005: Determine whether Iface is present in the list Ifaces
321
322 procedure Convert_Scalar_Bounds
323 (N : Node_Id;
324 Parent_Type : Entity_Id;
325 Derived_Type : Entity_Id;
326 Loc : Source_Ptr);
327 -- For derived scalar types, convert the bounds in the type definition to
328 -- the derived type, and complete their analysis. Given a constraint of the
329 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
330 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
331 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
332 -- subtype are conversions of those bounds to the derived_type, so that
333 -- their typing is consistent.
334
335 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
336 -- Copies attributes from array base type T2 to array base type T1. Copies
337 -- only attributes that apply to base types, but not subtypes.
338
339 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
340 -- Copies attributes from array subtype T2 to array subtype T1. Copies
341 -- attributes that apply to both subtypes and base types.
342
343 procedure Create_Constrained_Components
344 (Subt : Entity_Id;
345 Decl_Node : Node_Id;
346 Typ : Entity_Id;
347 Constraints : Elist_Id);
348 -- Build the list of entities for a constrained discriminated record
349 -- subtype. If a component depends on a discriminant, replace its subtype
350 -- using the discriminant values in the discriminant constraint. Subt
351 -- is the defining identifier for the subtype whose list of constrained
352 -- entities we will create. Decl_Node is the type declaration node where
353 -- we will attach all the itypes created. Typ is the base discriminated
354 -- type for the subtype Subt. Constraints is the list of discriminant
355 -- constraints for Typ.
356
357 function Constrain_Component_Type
358 (Comp : Entity_Id;
359 Constrained_Typ : Entity_Id;
360 Related_Node : Node_Id;
361 Typ : Entity_Id;
362 Constraints : Elist_Id) return Entity_Id;
363 -- Given a discriminated base type Typ, a list of discriminant constraints,
364 -- Constraints, for Typ and a component Comp of Typ, create and return the
365 -- type corresponding to Etype (Comp) where all discriminant references
366 -- are replaced with the corresponding constraint. If Etype (Comp) contains
367 -- no discriminant references then it is returned as-is. Constrained_Typ
368 -- is the final constrained subtype to which the constrained component
369 -- belongs. Related_Node is the node where we attach all created itypes.
370
371 procedure Constrain_Access
372 (Def_Id : in out Entity_Id;
373 S : Node_Id;
374 Related_Nod : Node_Id);
375 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
376 -- an anonymous type created for a subtype indication. In that case it is
377 -- created in the procedure and attached to Related_Nod.
378
379 procedure Constrain_Array
380 (Def_Id : in out Entity_Id;
381 SI : Node_Id;
382 Related_Nod : Node_Id;
383 Related_Id : Entity_Id;
384 Suffix : Character);
385 -- Apply a list of index constraints to an unconstrained array type. The
386 -- first parameter is the entity for the resulting subtype. A value of
387 -- Empty for Def_Id indicates that an implicit type must be created, but
388 -- creation is delayed (and must be done by this procedure) because other
389 -- subsidiary implicit types must be created first (which is why Def_Id
390 -- is an in/out parameter). The second parameter is a subtype indication
391 -- node for the constrained array to be created (e.g. something of the
392 -- form string (1 .. 10)). Related_Nod gives the place where this type
393 -- has to be inserted in the tree. The Related_Id and Suffix parameters
394 -- are used to build the associated Implicit type name.
395
396 procedure Constrain_Concurrent
397 (Def_Id : in out Entity_Id;
398 SI : Node_Id;
399 Related_Nod : Node_Id;
400 Related_Id : Entity_Id;
401 Suffix : Character);
402 -- Apply list of discriminant constraints to an unconstrained concurrent
403 -- type.
404 --
405 -- SI is the N_Subtype_Indication node containing the constraint and
406 -- the unconstrained type to constrain.
407 --
408 -- Def_Id is the entity for the resulting constrained subtype. A value
409 -- of Empty for Def_Id indicates that an implicit type must be created,
410 -- but creation is delayed (and must be done by this procedure) because
411 -- other subsidiary implicit types must be created first (which is why
412 -- Def_Id is an in/out parameter).
413 --
414 -- Related_Nod gives the place where this type has to be inserted
415 -- in the tree.
416 --
417 -- The last two arguments are used to create its external name if needed.
418
419 function Constrain_Corresponding_Record
420 (Prot_Subt : Entity_Id;
421 Corr_Rec : Entity_Id;
422 Related_Nod : Node_Id) return Entity_Id;
423 -- When constraining a protected type or task type with discriminants,
424 -- constrain the corresponding record with the same discriminant values.
425
426 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
427 -- Constrain a decimal fixed point type with a digits constraint and/or a
428 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
429
430 procedure Constrain_Discriminated_Type
431 (Def_Id : Entity_Id;
432 S : Node_Id;
433 Related_Nod : Node_Id;
434 For_Access : Boolean := False);
435 -- Process discriminant constraints of composite type. Verify that values
436 -- have been provided for all discriminants, that the original type is
437 -- unconstrained, and that the types of the supplied expressions match
438 -- the discriminant types. The first three parameters are like in routine
439 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
440 -- of For_Access.
441
442 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
443 -- Constrain an enumeration type with a range constraint. This is identical
444 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
445
446 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
447 -- Constrain a floating point type with either a digits constraint
448 -- and/or a range constraint, building a E_Floating_Point_Subtype.
449
450 procedure Constrain_Index
451 (Index : Node_Id;
452 S : Node_Id;
453 Related_Nod : Node_Id;
454 Related_Id : Entity_Id;
455 Suffix : Character;
456 Suffix_Index : Nat);
457 -- Process an index constraint S in a constrained array declaration. The
458 -- constraint can be a subtype name, or a range with or without an explicit
459 -- subtype mark. The index is the corresponding index of the unconstrained
460 -- array. The Related_Id and Suffix parameters are used to build the
461 -- associated Implicit type name.
462
463 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
464 -- Build subtype of a signed or modular integer type
465
466 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
467 -- Constrain an ordinary fixed point type with a range constraint, and
468 -- build an E_Ordinary_Fixed_Point_Subtype entity.
469
470 procedure Copy_And_Swap (Priv, Full : Entity_Id);
471 -- Copy the Priv entity into the entity of its full declaration then swap
472 -- the two entities in such a manner that the former private type is now
473 -- seen as a full type.
474
475 procedure Decimal_Fixed_Point_Type_Declaration
476 (T : Entity_Id;
477 Def : Node_Id);
478 -- Create a new decimal fixed point type, and apply the constraint to
479 -- obtain a subtype of this new type.
480
481 procedure Complete_Private_Subtype
482 (Priv : Entity_Id;
483 Full : Entity_Id;
484 Full_Base : Entity_Id;
485 Related_Nod : Node_Id);
486 -- Complete the implicit full view of a private subtype by setting the
487 -- appropriate semantic fields. If the full view of the parent is a record
488 -- type, build constrained components of subtype.
489
490 procedure Derive_Progenitor_Subprograms
491 (Parent_Type : Entity_Id;
492 Tagged_Type : Entity_Id);
493 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
494 -- operations of progenitors of Tagged_Type, and replace the subsidiary
495 -- subtypes with Tagged_Type, to build the specs of the inherited interface
496 -- primitives. The derived primitives are aliased to those of the
497 -- interface. This routine takes care also of transferring to the full view
498 -- subprograms associated with the partial view of Tagged_Type that cover
499 -- interface primitives.
500
501 procedure Derived_Standard_Character
502 (N : Node_Id;
503 Parent_Type : Entity_Id;
504 Derived_Type : Entity_Id);
505 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
506 -- derivations from types Standard.Character and Standard.Wide_Character.
507
508 procedure Derived_Type_Declaration
509 (T : Entity_Id;
510 N : Node_Id;
511 Is_Completion : Boolean);
512 -- Process a derived type declaration. Build_Derived_Type is invoked
513 -- to process the actual derived type definition. Parameters N and
514 -- Is_Completion have the same meaning as in Build_Derived_Type.
515 -- T is the N_Defining_Identifier for the entity defined in the
516 -- N_Full_Type_Declaration node N, that is T is the derived type.
517
518 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
519 -- Insert each literal in symbol table, as an overloadable identifier. Each
520 -- enumeration type is mapped into a sequence of integers, and each literal
521 -- is defined as a constant with integer value. If any of the literals are
522 -- character literals, the type is a character type, which means that
523 -- strings are legal aggregates for arrays of components of the type.
524
525 function Expand_To_Stored_Constraint
526 (Typ : Entity_Id;
527 Constraint : Elist_Id) return Elist_Id;
528 -- Given a constraint (i.e. a list of expressions) on the discriminants of
529 -- Typ, expand it into a constraint on the stored discriminants and return
530 -- the new list of expressions constraining the stored discriminants.
531
532 function Find_Type_Of_Object
533 (Obj_Def : Node_Id;
534 Related_Nod : Node_Id) return Entity_Id;
535 -- Get type entity for object referenced by Obj_Def, attaching the
536 -- implicit types generated to Related_Nod
537
538 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
539 -- Create a new float and apply the constraint to obtain subtype of it
540
541 function Has_Range_Constraint (N : Node_Id) return Boolean;
542 -- Given an N_Subtype_Indication node N, return True if a range constraint
543 -- is present, either directly, or as part of a digits or delta constraint.
544 -- In addition, a digits constraint in the decimal case returns True, since
545 -- it establishes a default range if no explicit range is present.
546
547 function Inherit_Components
548 (N : Node_Id;
549 Parent_Base : Entity_Id;
550 Derived_Base : Entity_Id;
551 Is_Tagged : Boolean;
552 Inherit_Discr : Boolean;
553 Discs : Elist_Id) return Elist_Id;
554 -- Called from Build_Derived_Record_Type to inherit the components of
555 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
556 -- For more information on derived types and component inheritance please
557 -- consult the comment above the body of Build_Derived_Record_Type.
558 --
559 -- N is the original derived type declaration
560 --
561 -- Is_Tagged is set if we are dealing with tagged types
562 --
563 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
564 -- Parent_Base, otherwise no discriminants are inherited.
565 --
566 -- Discs gives the list of constraints that apply to Parent_Base in the
567 -- derived type declaration. If Discs is set to No_Elist, then we have
568 -- the following situation:
569 --
570 -- type Parent (D1..Dn : ..) is [tagged] record ...;
571 -- type Derived is new Parent [with ...];
572 --
573 -- which gets treated as
574 --
575 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
576 --
577 -- For untagged types the returned value is an association list. The list
578 -- starts from the association (Parent_Base => Derived_Base), and then it
579 -- contains a sequence of the associations of the form
580 --
581 -- (Old_Component => New_Component),
582 --
583 -- where Old_Component is the Entity_Id of a component in Parent_Base and
584 -- New_Component is the Entity_Id of the corresponding component in
585 -- Derived_Base. For untagged records, this association list is needed when
586 -- copying the record declaration for the derived base. In the tagged case
587 -- the value returned is irrelevant.
588
589 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
590 -- Propagate static and dynamic predicate flags from a parent to the
591 -- subtype in a subtype declaration with and without constraints.
592
593 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean;
594 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
595 -- Determine whether subprogram Subp is a procedure subject to pragma
596 -- Extensions_Visible with value False and has at least one controlling
597 -- parameter of mode OUT.
598
599 function Is_Valid_Constraint_Kind
600 (T_Kind : Type_Kind;
601 Constraint_Kind : Node_Kind) return Boolean;
602 -- Returns True if it is legal to apply the given kind of constraint to the
603 -- given kind of type (index constraint to an array type, for example).
604
605 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
606 -- Create new modular type. Verify that modulus is in bounds
607
608 procedure New_Concatenation_Op (Typ : Entity_Id);
609 -- Create an abbreviated declaration for an operator in order to
610 -- materialize concatenation on array types.
611
612 procedure Ordinary_Fixed_Point_Type_Declaration
613 (T : Entity_Id;
614 Def : Node_Id);
615 -- Create a new ordinary fixed point type, and apply the constraint to
616 -- obtain subtype of it.
617
618 procedure Prepare_Private_Subtype_Completion
619 (Id : Entity_Id;
620 Related_Nod : Node_Id);
621 -- Id is a subtype of some private type. Creates the full declaration
622 -- associated with Id whenever possible, i.e. when the full declaration
623 -- of the base type is already known. Records each subtype into
624 -- Private_Dependents of the base type.
625
626 procedure Process_Incomplete_Dependents
627 (N : Node_Id;
628 Full_T : Entity_Id;
629 Inc_T : Entity_Id);
630 -- Process all entities that depend on an incomplete type. There include
631 -- subtypes, subprogram types that mention the incomplete type in their
632 -- profiles, and subprogram with access parameters that designate the
633 -- incomplete type.
634
635 -- Inc_T is the defining identifier of an incomplete type declaration, its
636 -- Ekind is E_Incomplete_Type.
637 --
638 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
639 --
640 -- Full_T is N's defining identifier.
641 --
642 -- Subtypes of incomplete types with discriminants are completed when the
643 -- parent type is. This is simpler than private subtypes, because they can
644 -- only appear in the same scope, and there is no need to exchange views.
645 -- Similarly, access_to_subprogram types may have a parameter or a return
646 -- type that is an incomplete type, and that must be replaced with the
647 -- full type.
648 --
649 -- If the full type is tagged, subprogram with access parameters that
650 -- designated the incomplete may be primitive operations of the full type,
651 -- and have to be processed accordingly.
652
653 procedure Process_Real_Range_Specification (Def : Node_Id);
654 -- Given the type definition for a real type, this procedure processes and
655 -- checks the real range specification of this type definition if one is
656 -- present. If errors are found, error messages are posted, and the
657 -- Real_Range_Specification of Def is reset to Empty.
658
659 procedure Propagate_Default_Init_Cond_Attributes
660 (From_Typ : Entity_Id;
661 To_Typ : Entity_Id;
662 Parent_To_Derivation : Boolean := False;
663 Private_To_Full_View : Boolean := False);
664 -- Subsidiary to routines Build_Derived_Type and Process_Full_View. Inherit
665 -- all attributes related to pragma Default_Initial_Condition from From_Typ
666 -- to To_Typ. Flag Parent_To_Derivation should be set when the context is
667 -- the creation of a derived type. Flag Private_To_Full_View should be set
668 -- when processing both views of a private type.
669
670 procedure Record_Type_Declaration
671 (T : Entity_Id;
672 N : Node_Id;
673 Prev : Entity_Id);
674 -- Process a record type declaration (for both untagged and tagged
675 -- records). Parameters T and N are exactly like in procedure
676 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
677 -- for this routine. If this is the completion of an incomplete type
678 -- declaration, Prev is the entity of the incomplete declaration, used for
679 -- cross-referencing. Otherwise Prev = T.
680
681 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
682 -- This routine is used to process the actual record type definition (both
683 -- for untagged and tagged records). Def is a record type definition node.
684 -- This procedure analyzes the components in this record type definition.
685 -- Prev_T is the entity for the enclosing record type. It is provided so
686 -- that its Has_Task flag can be set if any of the component have Has_Task
687 -- set. If the declaration is the completion of an incomplete type
688 -- declaration, Prev_T is the original incomplete type, whose full view is
689 -- the record type.
690
691 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
692 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
693 -- build a copy of the declaration tree of the parent, and we create
694 -- independently the list of components for the derived type. Semantic
695 -- information uses the component entities, but record representation
696 -- clauses are validated on the declaration tree. This procedure replaces
697 -- discriminants and components in the declaration with those that have
698 -- been created by Inherit_Components.
699
700 procedure Set_Fixed_Range
701 (E : Entity_Id;
702 Loc : Source_Ptr;
703 Lo : Ureal;
704 Hi : Ureal);
705 -- Build a range node with the given bounds and set it as the Scalar_Range
706 -- of the given fixed-point type entity. Loc is the source location used
707 -- for the constructed range. See body for further details.
708
709 procedure Set_Scalar_Range_For_Subtype
710 (Def_Id : Entity_Id;
711 R : Node_Id;
712 Subt : Entity_Id);
713 -- This routine is used to set the scalar range field for a subtype given
714 -- Def_Id, the entity for the subtype, and R, the range expression for the
715 -- scalar range. Subt provides the parent subtype to be used to analyze,
716 -- resolve, and check the given range.
717
718 procedure Set_Default_SSO (T : Entity_Id);
719 -- T is the entity for an array or record being declared. This procedure
720 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
721 -- to the setting of Opt.Default_SSO.
722
723 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
724 -- Create a new signed integer entity, and apply the constraint to obtain
725 -- the required first named subtype of this type.
726
727 procedure Set_Stored_Constraint_From_Discriminant_Constraint
728 (E : Entity_Id);
729 -- E is some record type. This routine computes E's Stored_Constraint
730 -- from its Discriminant_Constraint.
731
732 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
733 -- Check that an entity in a list of progenitors is an interface,
734 -- emit error otherwise.
735
736 -----------------------
737 -- Access_Definition --
738 -----------------------
739
740 function Access_Definition
741 (Related_Nod : Node_Id;
742 N : Node_Id) return Entity_Id
743 is
744 Anon_Type : Entity_Id;
745 Anon_Scope : Entity_Id;
746 Desig_Type : Entity_Id;
747 Enclosing_Prot_Type : Entity_Id := Empty;
748
749 begin
750 Check_SPARK_05_Restriction ("access type is not allowed", N);
751
752 if Is_Entry (Current_Scope)
753 and then Is_Task_Type (Etype (Scope (Current_Scope)))
754 then
755 Error_Msg_N ("task entries cannot have access parameters", N);
756 return Empty;
757 end if;
758
759 -- Ada 2005: For an object declaration the corresponding anonymous
760 -- type is declared in the current scope.
761
762 -- If the access definition is the return type of another access to
763 -- function, scope is the current one, because it is the one of the
764 -- current type declaration, except for the pathological case below.
765
766 if Nkind_In (Related_Nod, N_Object_Declaration,
767 N_Access_Function_Definition)
768 then
769 Anon_Scope := Current_Scope;
770
771 -- A pathological case: function returning access functions that
772 -- return access functions, etc. Each anonymous access type created
773 -- is in the enclosing scope of the outermost function.
774
775 declare
776 Par : Node_Id;
777
778 begin
779 Par := Related_Nod;
780 while Nkind_In (Par, N_Access_Function_Definition,
781 N_Access_Definition)
782 loop
783 Par := Parent (Par);
784 end loop;
785
786 if Nkind (Par) = N_Function_Specification then
787 Anon_Scope := Scope (Defining_Entity (Par));
788 end if;
789 end;
790
791 -- For the anonymous function result case, retrieve the scope of the
792 -- function specification's associated entity rather than using the
793 -- current scope. The current scope will be the function itself if the
794 -- formal part is currently being analyzed, but will be the parent scope
795 -- in the case of a parameterless function, and we always want to use
796 -- the function's parent scope. Finally, if the function is a child
797 -- unit, we must traverse the tree to retrieve the proper entity.
798
799 elsif Nkind (Related_Nod) = N_Function_Specification
800 and then Nkind (Parent (N)) /= N_Parameter_Specification
801 then
802 -- If the current scope is a protected type, the anonymous access
803 -- is associated with one of the protected operations, and must
804 -- be available in the scope that encloses the protected declaration.
805 -- Otherwise the type is in the scope enclosing the subprogram.
806
807 -- If the function has formals, The return type of a subprogram
808 -- declaration is analyzed in the scope of the subprogram (see
809 -- Process_Formals) and thus the protected type, if present, is
810 -- the scope of the current function scope.
811
812 if Ekind (Current_Scope) = E_Protected_Type then
813 Enclosing_Prot_Type := Current_Scope;
814
815 elsif Ekind (Current_Scope) = E_Function
816 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
817 then
818 Enclosing_Prot_Type := Scope (Current_Scope);
819 end if;
820
821 if Present (Enclosing_Prot_Type) then
822 Anon_Scope := Scope (Enclosing_Prot_Type);
823
824 else
825 Anon_Scope := Scope (Defining_Entity (Related_Nod));
826 end if;
827
828 -- For an access type definition, if the current scope is a child
829 -- unit it is the scope of the type.
830
831 elsif Is_Compilation_Unit (Current_Scope) then
832 Anon_Scope := Current_Scope;
833
834 -- For access formals, access components, and access discriminants, the
835 -- scope is that of the enclosing declaration,
836
837 else
838 Anon_Scope := Scope (Current_Scope);
839 end if;
840
841 Anon_Type :=
842 Create_Itype
843 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
844
845 if All_Present (N)
846 and then Ada_Version >= Ada_2005
847 then
848 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
849 end if;
850
851 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
852 -- the corresponding semantic routine
853
854 if Present (Access_To_Subprogram_Definition (N)) then
855
856 -- Compiler runtime units are compiled in Ada 2005 mode when building
857 -- the runtime library but must also be compilable in Ada 95 mode
858 -- (when bootstrapping the compiler).
859
860 Check_Compiler_Unit ("anonymous access to subprogram", N);
861
862 Access_Subprogram_Declaration
863 (T_Name => Anon_Type,
864 T_Def => Access_To_Subprogram_Definition (N));
865
866 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
867 Set_Ekind
868 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
869 else
870 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
871 end if;
872
873 Set_Can_Use_Internal_Rep
874 (Anon_Type, not Always_Compatible_Rep_On_Target);
875
876 -- If the anonymous access is associated with a protected operation,
877 -- create a reference to it after the enclosing protected definition
878 -- because the itype will be used in the subsequent bodies.
879
880 if Ekind (Current_Scope) = E_Protected_Type then
881 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
882 end if;
883
884 return Anon_Type;
885 end if;
886
887 Find_Type (Subtype_Mark (N));
888 Desig_Type := Entity (Subtype_Mark (N));
889
890 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
891 Set_Etype (Anon_Type, Anon_Type);
892
893 -- Make sure the anonymous access type has size and alignment fields
894 -- set, as required by gigi. This is necessary in the case of the
895 -- Task_Body_Procedure.
896
897 if not Has_Private_Component (Desig_Type) then
898 Layout_Type (Anon_Type);
899 end if;
900
901 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
902 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
903 -- the null value is allowed. In Ada 95 the null value is never allowed.
904
905 if Ada_Version >= Ada_2005 then
906 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
907 else
908 Set_Can_Never_Be_Null (Anon_Type, True);
909 end if;
910
911 -- The anonymous access type is as public as the discriminated type or
912 -- subprogram that defines it. It is imported (for back-end purposes)
913 -- if the designated type is.
914
915 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
916
917 -- Ada 2005 (AI-231): Propagate the access-constant attribute
918
919 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
920
921 -- The context is either a subprogram declaration, object declaration,
922 -- or an access discriminant, in a private or a full type declaration.
923 -- In the case of a subprogram, if the designated type is incomplete,
924 -- the operation will be a primitive operation of the full type, to be
925 -- updated subsequently. If the type is imported through a limited_with
926 -- clause, the subprogram is not a primitive operation of the type
927 -- (which is declared elsewhere in some other scope).
928
929 if Ekind (Desig_Type) = E_Incomplete_Type
930 and then not From_Limited_With (Desig_Type)
931 and then Is_Overloadable (Current_Scope)
932 then
933 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
934 Set_Has_Delayed_Freeze (Current_Scope);
935 end if;
936
937 -- Ada 2005: If the designated type is an interface that may contain
938 -- tasks, create a Master entity for the declaration. This must be done
939 -- before expansion of the full declaration, because the declaration may
940 -- include an expression that is an allocator, whose expansion needs the
941 -- proper Master for the created tasks.
942
943 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
944 then
945 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
946 then
947 Build_Class_Wide_Master (Anon_Type);
948
949 -- Similarly, if the type is an anonymous access that designates
950 -- tasks, create a master entity for it in the current context.
951
952 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
953 then
954 Build_Master_Entity (Defining_Identifier (Related_Nod));
955 Build_Master_Renaming (Anon_Type);
956 end if;
957 end if;
958
959 -- For a private component of a protected type, it is imperative that
960 -- the back-end elaborate the type immediately after the protected
961 -- declaration, because this type will be used in the declarations
962 -- created for the component within each protected body, so we must
963 -- create an itype reference for it now.
964
965 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
966 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
967
968 -- Similarly, if the access definition is the return result of a
969 -- function, create an itype reference for it because it will be used
970 -- within the function body. For a regular function that is not a
971 -- compilation unit, insert reference after the declaration. For a
972 -- protected operation, insert it after the enclosing protected type
973 -- declaration. In either case, do not create a reference for a type
974 -- obtained through a limited_with clause, because this would introduce
975 -- semantic dependencies.
976
977 -- Similarly, do not create a reference if the designated type is a
978 -- generic formal, because no use of it will reach the backend.
979
980 elsif Nkind (Related_Nod) = N_Function_Specification
981 and then not From_Limited_With (Desig_Type)
982 and then not Is_Generic_Type (Desig_Type)
983 then
984 if Present (Enclosing_Prot_Type) then
985 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
986
987 elsif Is_List_Member (Parent (Related_Nod))
988 and then Nkind (Parent (N)) /= N_Parameter_Specification
989 then
990 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
991 end if;
992
993 -- Finally, create an itype reference for an object declaration of an
994 -- anonymous access type. This is strictly necessary only for deferred
995 -- constants, but in any case will avoid out-of-scope problems in the
996 -- back-end.
997
998 elsif Nkind (Related_Nod) = N_Object_Declaration then
999 Build_Itype_Reference (Anon_Type, Related_Nod);
1000 end if;
1001
1002 return Anon_Type;
1003 end Access_Definition;
1004
1005 -----------------------------------
1006 -- Access_Subprogram_Declaration --
1007 -----------------------------------
1008
1009 procedure Access_Subprogram_Declaration
1010 (T_Name : Entity_Id;
1011 T_Def : Node_Id)
1012 is
1013 procedure Check_For_Premature_Usage (Def : Node_Id);
1014 -- Check that type T_Name is not used, directly or recursively, as a
1015 -- parameter or a return type in Def. Def is either a subtype, an
1016 -- access_definition, or an access_to_subprogram_definition.
1017
1018 -------------------------------
1019 -- Check_For_Premature_Usage --
1020 -------------------------------
1021
1022 procedure Check_For_Premature_Usage (Def : Node_Id) is
1023 Param : Node_Id;
1024
1025 begin
1026 -- Check for a subtype mark
1027
1028 if Nkind (Def) in N_Has_Etype then
1029 if Etype (Def) = T_Name then
1030 Error_Msg_N
1031 ("type& cannot be used before end of its declaration", Def);
1032 end if;
1033
1034 -- If this is not a subtype, then this is an access_definition
1035
1036 elsif Nkind (Def) = N_Access_Definition then
1037 if Present (Access_To_Subprogram_Definition (Def)) then
1038 Check_For_Premature_Usage
1039 (Access_To_Subprogram_Definition (Def));
1040 else
1041 Check_For_Premature_Usage (Subtype_Mark (Def));
1042 end if;
1043
1044 -- The only cases left are N_Access_Function_Definition and
1045 -- N_Access_Procedure_Definition.
1046
1047 else
1048 if Present (Parameter_Specifications (Def)) then
1049 Param := First (Parameter_Specifications (Def));
1050 while Present (Param) loop
1051 Check_For_Premature_Usage (Parameter_Type (Param));
1052 Param := Next (Param);
1053 end loop;
1054 end if;
1055
1056 if Nkind (Def) = N_Access_Function_Definition then
1057 Check_For_Premature_Usage (Result_Definition (Def));
1058 end if;
1059 end if;
1060 end Check_For_Premature_Usage;
1061
1062 -- Local variables
1063
1064 Formals : constant List_Id := Parameter_Specifications (T_Def);
1065 Formal : Entity_Id;
1066 D_Ityp : Node_Id;
1067 Desig_Type : constant Entity_Id :=
1068 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1069
1070 -- Start of processing for Access_Subprogram_Declaration
1071
1072 begin
1073 Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1074
1075 -- Associate the Itype node with the inner full-type declaration or
1076 -- subprogram spec or entry body. This is required to handle nested
1077 -- anonymous declarations. For example:
1078
1079 -- procedure P
1080 -- (X : access procedure
1081 -- (Y : access procedure
1082 -- (Z : access T)))
1083
1084 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1085 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1086 N_Private_Type_Declaration,
1087 N_Private_Extension_Declaration,
1088 N_Procedure_Specification,
1089 N_Function_Specification,
1090 N_Entry_Body)
1091
1092 or else
1093 Nkind_In (D_Ityp, N_Object_Declaration,
1094 N_Object_Renaming_Declaration,
1095 N_Formal_Object_Declaration,
1096 N_Formal_Type_Declaration,
1097 N_Task_Type_Declaration,
1098 N_Protected_Type_Declaration))
1099 loop
1100 D_Ityp := Parent (D_Ityp);
1101 pragma Assert (D_Ityp /= Empty);
1102 end loop;
1103
1104 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1105
1106 if Nkind_In (D_Ityp, N_Procedure_Specification,
1107 N_Function_Specification)
1108 then
1109 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1110
1111 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1112 N_Object_Declaration,
1113 N_Object_Renaming_Declaration,
1114 N_Formal_Type_Declaration)
1115 then
1116 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1117 end if;
1118
1119 if Nkind (T_Def) = N_Access_Function_Definition then
1120 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1121 declare
1122 Acc : constant Node_Id := Result_Definition (T_Def);
1123
1124 begin
1125 if Present (Access_To_Subprogram_Definition (Acc))
1126 and then
1127 Protected_Present (Access_To_Subprogram_Definition (Acc))
1128 then
1129 Set_Etype
1130 (Desig_Type,
1131 Replace_Anonymous_Access_To_Protected_Subprogram
1132 (T_Def));
1133
1134 else
1135 Set_Etype
1136 (Desig_Type,
1137 Access_Definition (T_Def, Result_Definition (T_Def)));
1138 end if;
1139 end;
1140
1141 else
1142 Analyze (Result_Definition (T_Def));
1143
1144 declare
1145 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1146
1147 begin
1148 -- If a null exclusion is imposed on the result type, then
1149 -- create a null-excluding itype (an access subtype) and use
1150 -- it as the function's Etype.
1151
1152 if Is_Access_Type (Typ)
1153 and then Null_Exclusion_In_Return_Present (T_Def)
1154 then
1155 Set_Etype (Desig_Type,
1156 Create_Null_Excluding_Itype
1157 (T => Typ,
1158 Related_Nod => T_Def,
1159 Scope_Id => Current_Scope));
1160
1161 else
1162 if From_Limited_With (Typ) then
1163
1164 -- AI05-151: Incomplete types are allowed in all basic
1165 -- declarations, including access to subprograms.
1166
1167 if Ada_Version >= Ada_2012 then
1168 null;
1169
1170 else
1171 Error_Msg_NE
1172 ("illegal use of incomplete type&",
1173 Result_Definition (T_Def), Typ);
1174 end if;
1175
1176 elsif Ekind (Current_Scope) = E_Package
1177 and then In_Private_Part (Current_Scope)
1178 then
1179 if Ekind (Typ) = E_Incomplete_Type then
1180 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1181
1182 elsif Is_Class_Wide_Type (Typ)
1183 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1184 then
1185 Append_Elmt
1186 (Desig_Type, Private_Dependents (Etype (Typ)));
1187 end if;
1188 end if;
1189
1190 Set_Etype (Desig_Type, Typ);
1191 end if;
1192 end;
1193 end if;
1194
1195 if not (Is_Type (Etype (Desig_Type))) then
1196 Error_Msg_N
1197 ("expect type in function specification",
1198 Result_Definition (T_Def));
1199 end if;
1200
1201 else
1202 Set_Etype (Desig_Type, Standard_Void_Type);
1203 end if;
1204
1205 if Present (Formals) then
1206 Push_Scope (Desig_Type);
1207
1208 -- Some special tests here. These special tests can be removed
1209 -- if and when Itypes always have proper parent pointers to their
1210 -- declarations???
1211
1212 -- Special test 1) Link defining_identifier of formals. Required by
1213 -- First_Formal to provide its functionality.
1214
1215 declare
1216 F : Node_Id;
1217
1218 begin
1219 F := First (Formals);
1220
1221 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1222 -- when it is part of an unconstrained type and subtype expansion
1223 -- is disabled. To avoid back-end problems with shared profiles,
1224 -- use previous subprogram type as the designated type, and then
1225 -- remove scope added above.
1226
1227 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1228 then
1229 Set_Etype (T_Name, T_Name);
1230 Init_Size_Align (T_Name);
1231 Set_Directly_Designated_Type (T_Name,
1232 Scope (Defining_Identifier (F)));
1233 End_Scope;
1234 return;
1235 end if;
1236
1237 while Present (F) loop
1238 if No (Parent (Defining_Identifier (F))) then
1239 Set_Parent (Defining_Identifier (F), F);
1240 end if;
1241
1242 Next (F);
1243 end loop;
1244 end;
1245
1246 Process_Formals (Formals, Parent (T_Def));
1247
1248 -- Special test 2) End_Scope requires that the parent pointer be set
1249 -- to something reasonable, but Itypes don't have parent pointers. So
1250 -- we set it and then unset it ???
1251
1252 Set_Parent (Desig_Type, T_Name);
1253 End_Scope;
1254 Set_Parent (Desig_Type, Empty);
1255 end if;
1256
1257 -- Check for premature usage of the type being defined
1258
1259 Check_For_Premature_Usage (T_Def);
1260
1261 -- The return type and/or any parameter type may be incomplete. Mark the
1262 -- subprogram_type as depending on the incomplete type, so that it can
1263 -- be updated when the full type declaration is seen. This only applies
1264 -- to incomplete types declared in some enclosing scope, not to limited
1265 -- views from other packages.
1266
1267 -- Prior to Ada 2012, access to functions can only have in_parameters.
1268
1269 if Present (Formals) then
1270 Formal := First_Formal (Desig_Type);
1271 while Present (Formal) loop
1272 if Ekind (Formal) /= E_In_Parameter
1273 and then Nkind (T_Def) = N_Access_Function_Definition
1274 and then Ada_Version < Ada_2012
1275 then
1276 Error_Msg_N ("functions can only have IN parameters", Formal);
1277 end if;
1278
1279 if Ekind (Etype (Formal)) = E_Incomplete_Type
1280 and then In_Open_Scopes (Scope (Etype (Formal)))
1281 then
1282 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1283 Set_Has_Delayed_Freeze (Desig_Type);
1284 end if;
1285
1286 Next_Formal (Formal);
1287 end loop;
1288 end if;
1289
1290 -- Check whether an indirect call without actuals may be possible. This
1291 -- is used when resolving calls whose result is then indexed.
1292
1293 May_Need_Actuals (Desig_Type);
1294
1295 -- If the return type is incomplete, this is legal as long as the type
1296 -- is declared in the current scope and will be completed in it (rather
1297 -- than being part of limited view).
1298
1299 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1300 and then not Has_Delayed_Freeze (Desig_Type)
1301 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1302 then
1303 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1304 Set_Has_Delayed_Freeze (Desig_Type);
1305 end if;
1306
1307 Check_Delayed_Subprogram (Desig_Type);
1308
1309 if Protected_Present (T_Def) then
1310 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1311 Set_Convention (Desig_Type, Convention_Protected);
1312 else
1313 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1314 end if;
1315
1316 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1317
1318 Set_Etype (T_Name, T_Name);
1319 Init_Size_Align (T_Name);
1320 Set_Directly_Designated_Type (T_Name, Desig_Type);
1321
1322 Generate_Reference_To_Formals (T_Name);
1323
1324 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1325
1326 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1327
1328 Check_Restriction (No_Access_Subprograms, T_Def);
1329 end Access_Subprogram_Declaration;
1330
1331 ----------------------------
1332 -- Access_Type_Declaration --
1333 ----------------------------
1334
1335 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1336 P : constant Node_Id := Parent (Def);
1337 S : constant Node_Id := Subtype_Indication (Def);
1338
1339 Full_Desig : Entity_Id;
1340
1341 begin
1342 Check_SPARK_05_Restriction ("access type is not allowed", Def);
1343
1344 -- Check for permissible use of incomplete type
1345
1346 if Nkind (S) /= N_Subtype_Indication then
1347 Analyze (S);
1348
1349 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1350 Set_Directly_Designated_Type (T, Entity (S));
1351
1352 -- If the designated type is a limited view, we cannot tell if
1353 -- the full view contains tasks, and there is no way to handle
1354 -- that full view in a client. We create a master entity for the
1355 -- scope, which will be used when a client determines that one
1356 -- is needed.
1357
1358 if From_Limited_With (Entity (S))
1359 and then not Is_Class_Wide_Type (Entity (S))
1360 then
1361 Set_Ekind (T, E_Access_Type);
1362 Build_Master_Entity (T);
1363 Build_Master_Renaming (T);
1364 end if;
1365
1366 else
1367 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1368 end if;
1369
1370 -- If the access definition is of the form: ACCESS NOT NULL ..
1371 -- the subtype indication must be of an access type. Create
1372 -- a null-excluding subtype of it.
1373
1374 if Null_Excluding_Subtype (Def) then
1375 if not Is_Access_Type (Entity (S)) then
1376 Error_Msg_N ("null exclusion must apply to access type", Def);
1377
1378 else
1379 declare
1380 Loc : constant Source_Ptr := Sloc (S);
1381 Decl : Node_Id;
1382 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1383
1384 begin
1385 Decl :=
1386 Make_Subtype_Declaration (Loc,
1387 Defining_Identifier => Nam,
1388 Subtype_Indication =>
1389 New_Occurrence_Of (Entity (S), Loc));
1390 Set_Null_Exclusion_Present (Decl);
1391 Insert_Before (Parent (Def), Decl);
1392 Analyze (Decl);
1393 Set_Entity (S, Nam);
1394 end;
1395 end if;
1396 end if;
1397
1398 else
1399 Set_Directly_Designated_Type (T,
1400 Process_Subtype (S, P, T, 'P'));
1401 end if;
1402
1403 if All_Present (Def) or Constant_Present (Def) then
1404 Set_Ekind (T, E_General_Access_Type);
1405 else
1406 Set_Ekind (T, E_Access_Type);
1407 end if;
1408
1409 Full_Desig := Designated_Type (T);
1410
1411 if Base_Type (Full_Desig) = T then
1412 Error_Msg_N ("access type cannot designate itself", S);
1413
1414 -- In Ada 2005, the type may have a limited view through some unit in
1415 -- its own context, allowing the following circularity that cannot be
1416 -- detected earlier.
1417
1418 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1419 then
1420 Error_Msg_N
1421 ("access type cannot designate its own classwide type", S);
1422
1423 -- Clean up indication of tagged status to prevent cascaded errors
1424
1425 Set_Is_Tagged_Type (T, False);
1426 end if;
1427
1428 Set_Etype (T, T);
1429
1430 -- If the type has appeared already in a with_type clause, it is frozen
1431 -- and the pointer size is already set. Else, initialize.
1432
1433 if not From_Limited_With (T) then
1434 Init_Size_Align (T);
1435 end if;
1436
1437 -- Note that Has_Task is always false, since the access type itself
1438 -- is not a task type. See Einfo for more description on this point.
1439 -- Exactly the same consideration applies to Has_Controlled_Component
1440 -- and to Has_Protected.
1441
1442 Set_Has_Task (T, False);
1443 Set_Has_Controlled_Component (T, False);
1444 Set_Has_Protected (T, False);
1445
1446 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1447 -- problems where an incomplete view of this entity has been previously
1448 -- established by a limited with and an overlaid version of this field
1449 -- (Stored_Constraint) was initialized for the incomplete view.
1450
1451 -- This reset is performed in most cases except where the access type
1452 -- has been created for the purposes of allocating or deallocating a
1453 -- build-in-place object. Such access types have explicitly set pools
1454 -- and finalization masters.
1455
1456 if No (Associated_Storage_Pool (T)) then
1457 Set_Finalization_Master (T, Empty);
1458 end if;
1459
1460 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1461 -- attributes
1462
1463 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1464 Set_Is_Access_Constant (T, Constant_Present (Def));
1465 end Access_Type_Declaration;
1466
1467 ----------------------------------
1468 -- Add_Interface_Tag_Components --
1469 ----------------------------------
1470
1471 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1472 Loc : constant Source_Ptr := Sloc (N);
1473 L : List_Id;
1474 Last_Tag : Node_Id;
1475
1476 procedure Add_Tag (Iface : Entity_Id);
1477 -- Add tag for one of the progenitor interfaces
1478
1479 -------------
1480 -- Add_Tag --
1481 -------------
1482
1483 procedure Add_Tag (Iface : Entity_Id) is
1484 Decl : Node_Id;
1485 Def : Node_Id;
1486 Tag : Entity_Id;
1487 Offset : Entity_Id;
1488
1489 begin
1490 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1491
1492 -- This is a reasonable place to propagate predicates
1493
1494 if Has_Predicates (Iface) then
1495 Set_Has_Predicates (Typ);
1496 end if;
1497
1498 Def :=
1499 Make_Component_Definition (Loc,
1500 Aliased_Present => True,
1501 Subtype_Indication =>
1502 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1503
1504 Tag := Make_Temporary (Loc, 'V');
1505
1506 Decl :=
1507 Make_Component_Declaration (Loc,
1508 Defining_Identifier => Tag,
1509 Component_Definition => Def);
1510
1511 Analyze_Component_Declaration (Decl);
1512
1513 Set_Analyzed (Decl);
1514 Set_Ekind (Tag, E_Component);
1515 Set_Is_Tag (Tag);
1516 Set_Is_Aliased (Tag);
1517 Set_Related_Type (Tag, Iface);
1518 Init_Component_Location (Tag);
1519
1520 pragma Assert (Is_Frozen (Iface));
1521
1522 Set_DT_Entry_Count (Tag,
1523 DT_Entry_Count (First_Entity (Iface)));
1524
1525 if No (Last_Tag) then
1526 Prepend (Decl, L);
1527 else
1528 Insert_After (Last_Tag, Decl);
1529 end if;
1530
1531 Last_Tag := Decl;
1532
1533 -- If the ancestor has discriminants we need to give special support
1534 -- to store the offset_to_top value of the secondary dispatch tables.
1535 -- For this purpose we add a supplementary component just after the
1536 -- field that contains the tag associated with each secondary DT.
1537
1538 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1539 Def :=
1540 Make_Component_Definition (Loc,
1541 Subtype_Indication =>
1542 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1543
1544 Offset := Make_Temporary (Loc, 'V');
1545
1546 Decl :=
1547 Make_Component_Declaration (Loc,
1548 Defining_Identifier => Offset,
1549 Component_Definition => Def);
1550
1551 Analyze_Component_Declaration (Decl);
1552
1553 Set_Analyzed (Decl);
1554 Set_Ekind (Offset, E_Component);
1555 Set_Is_Aliased (Offset);
1556 Set_Related_Type (Offset, Iface);
1557 Init_Component_Location (Offset);
1558 Insert_After (Last_Tag, Decl);
1559 Last_Tag := Decl;
1560 end if;
1561 end Add_Tag;
1562
1563 -- Local variables
1564
1565 Elmt : Elmt_Id;
1566 Ext : Node_Id;
1567 Comp : Node_Id;
1568
1569 -- Start of processing for Add_Interface_Tag_Components
1570
1571 begin
1572 if not RTE_Available (RE_Interface_Tag) then
1573 Error_Msg
1574 ("(Ada 2005) interface types not supported by this run-time!",
1575 Sloc (N));
1576 return;
1577 end if;
1578
1579 if Ekind (Typ) /= E_Record_Type
1580 or else (Is_Concurrent_Record_Type (Typ)
1581 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1582 or else (not Is_Concurrent_Record_Type (Typ)
1583 and then No (Interfaces (Typ))
1584 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1585 then
1586 return;
1587 end if;
1588
1589 -- Find the current last tag
1590
1591 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1592 Ext := Record_Extension_Part (Type_Definition (N));
1593 else
1594 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1595 Ext := Type_Definition (N);
1596 end if;
1597
1598 Last_Tag := Empty;
1599
1600 if not (Present (Component_List (Ext))) then
1601 Set_Null_Present (Ext, False);
1602 L := New_List;
1603 Set_Component_List (Ext,
1604 Make_Component_List (Loc,
1605 Component_Items => L,
1606 Null_Present => False));
1607 else
1608 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1609 L := Component_Items
1610 (Component_List
1611 (Record_Extension_Part
1612 (Type_Definition (N))));
1613 else
1614 L := Component_Items
1615 (Component_List
1616 (Type_Definition (N)));
1617 end if;
1618
1619 -- Find the last tag component
1620
1621 Comp := First (L);
1622 while Present (Comp) loop
1623 if Nkind (Comp) = N_Component_Declaration
1624 and then Is_Tag (Defining_Identifier (Comp))
1625 then
1626 Last_Tag := Comp;
1627 end if;
1628
1629 Next (Comp);
1630 end loop;
1631 end if;
1632
1633 -- At this point L references the list of components and Last_Tag
1634 -- references the current last tag (if any). Now we add the tag
1635 -- corresponding with all the interfaces that are not implemented
1636 -- by the parent.
1637
1638 if Present (Interfaces (Typ)) then
1639 Elmt := First_Elmt (Interfaces (Typ));
1640 while Present (Elmt) loop
1641 Add_Tag (Node (Elmt));
1642 Next_Elmt (Elmt);
1643 end loop;
1644 end if;
1645 end Add_Interface_Tag_Components;
1646
1647 -------------------------------------
1648 -- Add_Internal_Interface_Entities --
1649 -------------------------------------
1650
1651 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1652 Elmt : Elmt_Id;
1653 Iface : Entity_Id;
1654 Iface_Elmt : Elmt_Id;
1655 Iface_Prim : Entity_Id;
1656 Ifaces_List : Elist_Id;
1657 New_Subp : Entity_Id := Empty;
1658 Prim : Entity_Id;
1659 Restore_Scope : Boolean := False;
1660
1661 begin
1662 pragma Assert (Ada_Version >= Ada_2005
1663 and then Is_Record_Type (Tagged_Type)
1664 and then Is_Tagged_Type (Tagged_Type)
1665 and then Has_Interfaces (Tagged_Type)
1666 and then not Is_Interface (Tagged_Type));
1667
1668 -- Ensure that the internal entities are added to the scope of the type
1669
1670 if Scope (Tagged_Type) /= Current_Scope then
1671 Push_Scope (Scope (Tagged_Type));
1672 Restore_Scope := True;
1673 end if;
1674
1675 Collect_Interfaces (Tagged_Type, Ifaces_List);
1676
1677 Iface_Elmt := First_Elmt (Ifaces_List);
1678 while Present (Iface_Elmt) loop
1679 Iface := Node (Iface_Elmt);
1680
1681 -- Originally we excluded here from this processing interfaces that
1682 -- are parents of Tagged_Type because their primitives are located
1683 -- in the primary dispatch table (and hence no auxiliary internal
1684 -- entities are required to handle secondary dispatch tables in such
1685 -- case). However, these auxiliary entities are also required to
1686 -- handle derivations of interfaces in formals of generics (see
1687 -- Derive_Subprograms).
1688
1689 Elmt := First_Elmt (Primitive_Operations (Iface));
1690 while Present (Elmt) loop
1691 Iface_Prim := Node (Elmt);
1692
1693 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1694 Prim :=
1695 Find_Primitive_Covering_Interface
1696 (Tagged_Type => Tagged_Type,
1697 Iface_Prim => Iface_Prim);
1698
1699 if No (Prim) and then Serious_Errors_Detected > 0 then
1700 goto Continue;
1701 end if;
1702
1703 pragma Assert (Present (Prim));
1704
1705 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1706 -- differs from the name of the interface primitive then it is
1707 -- a private primitive inherited from a parent type. In such
1708 -- case, given that Tagged_Type covers the interface, the
1709 -- inherited private primitive becomes visible. For such
1710 -- purpose we add a new entity that renames the inherited
1711 -- private primitive.
1712
1713 if Chars (Prim) /= Chars (Iface_Prim) then
1714 pragma Assert (Has_Suffix (Prim, 'P'));
1715 Derive_Subprogram
1716 (New_Subp => New_Subp,
1717 Parent_Subp => Iface_Prim,
1718 Derived_Type => Tagged_Type,
1719 Parent_Type => Iface);
1720 Set_Alias (New_Subp, Prim);
1721 Set_Is_Abstract_Subprogram
1722 (New_Subp, Is_Abstract_Subprogram (Prim));
1723 end if;
1724
1725 Derive_Subprogram
1726 (New_Subp => New_Subp,
1727 Parent_Subp => Iface_Prim,
1728 Derived_Type => Tagged_Type,
1729 Parent_Type => Iface);
1730
1731 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1732 -- associated with interface types. These entities are
1733 -- only registered in the list of primitives of its
1734 -- corresponding tagged type because they are only used
1735 -- to fill the contents of the secondary dispatch tables.
1736 -- Therefore they are removed from the homonym chains.
1737
1738 Set_Is_Hidden (New_Subp);
1739 Set_Is_Internal (New_Subp);
1740 Set_Alias (New_Subp, Prim);
1741 Set_Is_Abstract_Subprogram
1742 (New_Subp, Is_Abstract_Subprogram (Prim));
1743 Set_Interface_Alias (New_Subp, Iface_Prim);
1744
1745 -- If the returned type is an interface then propagate it to
1746 -- the returned type. Needed by the thunk to generate the code
1747 -- which displaces "this" to reference the corresponding
1748 -- secondary dispatch table in the returned object.
1749
1750 if Is_Interface (Etype (Iface_Prim)) then
1751 Set_Etype (New_Subp, Etype (Iface_Prim));
1752 end if;
1753
1754 -- Internal entities associated with interface types are
1755 -- only registered in the list of primitives of the tagged
1756 -- type. They are only used to fill the contents of the
1757 -- secondary dispatch tables. Therefore they are not needed
1758 -- in the homonym chains.
1759
1760 Remove_Homonym (New_Subp);
1761
1762 -- Hidden entities associated with interfaces must have set
1763 -- the Has_Delay_Freeze attribute to ensure that, in case of
1764 -- locally defined tagged types (or compiling with static
1765 -- dispatch tables generation disabled) the corresponding
1766 -- entry of the secondary dispatch table is filled when
1767 -- such an entity is frozen.
1768
1769 Set_Has_Delayed_Freeze (New_Subp);
1770 end if;
1771
1772 <<Continue>>
1773 Next_Elmt (Elmt);
1774 end loop;
1775
1776 Next_Elmt (Iface_Elmt);
1777 end loop;
1778
1779 if Restore_Scope then
1780 Pop_Scope;
1781 end if;
1782 end Add_Internal_Interface_Entities;
1783
1784 -----------------------------------
1785 -- Analyze_Component_Declaration --
1786 -----------------------------------
1787
1788 procedure Analyze_Component_Declaration (N : Node_Id) is
1789 Id : constant Entity_Id := Defining_Identifier (N);
1790 E : constant Node_Id := Expression (N);
1791 Typ : constant Node_Id :=
1792 Subtype_Indication (Component_Definition (N));
1793 T : Entity_Id;
1794 P : Entity_Id;
1795
1796 function Contains_POC (Constr : Node_Id) return Boolean;
1797 -- Determines whether a constraint uses the discriminant of a record
1798 -- type thus becoming a per-object constraint (POC).
1799
1800 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1801 -- Typ is the type of the current component, check whether this type is
1802 -- a limited type. Used to validate declaration against that of
1803 -- enclosing record.
1804
1805 ------------------
1806 -- Contains_POC --
1807 ------------------
1808
1809 function Contains_POC (Constr : Node_Id) return Boolean is
1810 begin
1811 -- Prevent cascaded errors
1812
1813 if Error_Posted (Constr) then
1814 return False;
1815 end if;
1816
1817 case Nkind (Constr) is
1818 when N_Attribute_Reference =>
1819 return Attribute_Name (Constr) = Name_Access
1820 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1821
1822 when N_Discriminant_Association =>
1823 return Denotes_Discriminant (Expression (Constr));
1824
1825 when N_Identifier =>
1826 return Denotes_Discriminant (Constr);
1827
1828 when N_Index_Or_Discriminant_Constraint =>
1829 declare
1830 IDC : Node_Id;
1831
1832 begin
1833 IDC := First (Constraints (Constr));
1834 while Present (IDC) loop
1835
1836 -- One per-object constraint is sufficient
1837
1838 if Contains_POC (IDC) then
1839 return True;
1840 end if;
1841
1842 Next (IDC);
1843 end loop;
1844
1845 return False;
1846 end;
1847
1848 when N_Range =>
1849 return Denotes_Discriminant (Low_Bound (Constr))
1850 or else
1851 Denotes_Discriminant (High_Bound (Constr));
1852
1853 when N_Range_Constraint =>
1854 return Denotes_Discriminant (Range_Expression (Constr));
1855
1856 when others =>
1857 return False;
1858
1859 end case;
1860 end Contains_POC;
1861
1862 ----------------------
1863 -- Is_Known_Limited --
1864 ----------------------
1865
1866 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1867 P : constant Entity_Id := Etype (Typ);
1868 R : constant Entity_Id := Root_Type (Typ);
1869
1870 begin
1871 if Is_Limited_Record (Typ) then
1872 return True;
1873
1874 -- If the root type is limited (and not a limited interface)
1875 -- so is the current type
1876
1877 elsif Is_Limited_Record (R)
1878 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1879 then
1880 return True;
1881
1882 -- Else the type may have a limited interface progenitor, but a
1883 -- limited record parent.
1884
1885 elsif R /= P and then Is_Limited_Record (P) then
1886 return True;
1887
1888 else
1889 return False;
1890 end if;
1891 end Is_Known_Limited;
1892
1893 -- Start of processing for Analyze_Component_Declaration
1894
1895 begin
1896 Generate_Definition (Id);
1897 Enter_Name (Id);
1898
1899 if Present (Typ) then
1900 T := Find_Type_Of_Object
1901 (Subtype_Indication (Component_Definition (N)), N);
1902
1903 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1904 Check_SPARK_05_Restriction ("subtype mark required", Typ);
1905 end if;
1906
1907 -- Ada 2005 (AI-230): Access Definition case
1908
1909 else
1910 pragma Assert (Present
1911 (Access_Definition (Component_Definition (N))));
1912
1913 T := Access_Definition
1914 (Related_Nod => N,
1915 N => Access_Definition (Component_Definition (N)));
1916 Set_Is_Local_Anonymous_Access (T);
1917
1918 -- Ada 2005 (AI-254)
1919
1920 if Present (Access_To_Subprogram_Definition
1921 (Access_Definition (Component_Definition (N))))
1922 and then Protected_Present (Access_To_Subprogram_Definition
1923 (Access_Definition
1924 (Component_Definition (N))))
1925 then
1926 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1927 end if;
1928 end if;
1929
1930 -- If the subtype is a constrained subtype of the enclosing record,
1931 -- (which must have a partial view) the back-end does not properly
1932 -- handle the recursion. Rewrite the component declaration with an
1933 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1934 -- the tree directly because side effects have already been removed from
1935 -- discriminant constraints.
1936
1937 if Ekind (T) = E_Access_Subtype
1938 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1939 and then Comes_From_Source (T)
1940 and then Nkind (Parent (T)) = N_Subtype_Declaration
1941 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1942 then
1943 Rewrite
1944 (Subtype_Indication (Component_Definition (N)),
1945 New_Copy_Tree (Subtype_Indication (Parent (T))));
1946 T := Find_Type_Of_Object
1947 (Subtype_Indication (Component_Definition (N)), N);
1948 end if;
1949
1950 -- If the component declaration includes a default expression, then we
1951 -- check that the component is not of a limited type (RM 3.7(5)),
1952 -- and do the special preanalysis of the expression (see section on
1953 -- "Handling of Default and Per-Object Expressions" in the spec of
1954 -- package Sem).
1955
1956 if Present (E) then
1957 Check_SPARK_05_Restriction ("default expression is not allowed", E);
1958 Preanalyze_Default_Expression (E, T);
1959 Check_Initialization (T, E);
1960
1961 if Ada_Version >= Ada_2005
1962 and then Ekind (T) = E_Anonymous_Access_Type
1963 and then Etype (E) /= Any_Type
1964 then
1965 -- Check RM 3.9.2(9): "if the expected type for an expression is
1966 -- an anonymous access-to-specific tagged type, then the object
1967 -- designated by the expression shall not be dynamically tagged
1968 -- unless it is a controlling operand in a call on a dispatching
1969 -- operation"
1970
1971 if Is_Tagged_Type (Directly_Designated_Type (T))
1972 and then
1973 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1974 and then
1975 Ekind (Directly_Designated_Type (Etype (E))) =
1976 E_Class_Wide_Type
1977 then
1978 Error_Msg_N
1979 ("access to specific tagged type required (RM 3.9.2(9))", E);
1980 end if;
1981
1982 -- (Ada 2005: AI-230): Accessibility check for anonymous
1983 -- components
1984
1985 if Type_Access_Level (Etype (E)) >
1986 Deepest_Type_Access_Level (T)
1987 then
1988 Error_Msg_N
1989 ("expression has deeper access level than component " &
1990 "(RM 3.10.2 (12.2))", E);
1991 end if;
1992
1993 -- The initialization expression is a reference to an access
1994 -- discriminant. The type of the discriminant is always deeper
1995 -- than any access type.
1996
1997 if Ekind (Etype (E)) = E_Anonymous_Access_Type
1998 and then Is_Entity_Name (E)
1999 and then Ekind (Entity (E)) = E_In_Parameter
2000 and then Present (Discriminal_Link (Entity (E)))
2001 then
2002 Error_Msg_N
2003 ("discriminant has deeper accessibility level than target",
2004 E);
2005 end if;
2006 end if;
2007 end if;
2008
2009 -- The parent type may be a private view with unknown discriminants,
2010 -- and thus unconstrained. Regular components must be constrained.
2011
2012 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
2013 if Is_Class_Wide_Type (T) then
2014 Error_Msg_N
2015 ("class-wide subtype with unknown discriminants" &
2016 " in component declaration",
2017 Subtype_Indication (Component_Definition (N)));
2018 else
2019 Error_Msg_N
2020 ("unconstrained subtype in component declaration",
2021 Subtype_Indication (Component_Definition (N)));
2022 end if;
2023
2024 -- Components cannot be abstract, except for the special case of
2025 -- the _Parent field (case of extending an abstract tagged type)
2026
2027 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2028 Error_Msg_N ("type of a component cannot be abstract", N);
2029 end if;
2030
2031 Set_Etype (Id, T);
2032 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2033
2034 -- The component declaration may have a per-object constraint, set
2035 -- the appropriate flag in the defining identifier of the subtype.
2036
2037 if Present (Subtype_Indication (Component_Definition (N))) then
2038 declare
2039 Sindic : constant Node_Id :=
2040 Subtype_Indication (Component_Definition (N));
2041 begin
2042 if Nkind (Sindic) = N_Subtype_Indication
2043 and then Present (Constraint (Sindic))
2044 and then Contains_POC (Constraint (Sindic))
2045 then
2046 Set_Has_Per_Object_Constraint (Id);
2047 end if;
2048 end;
2049 end if;
2050
2051 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2052 -- out some static checks.
2053
2054 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2055 Null_Exclusion_Static_Checks (N);
2056 end if;
2057
2058 -- If this component is private (or depends on a private type), flag the
2059 -- record type to indicate that some operations are not available.
2060
2061 P := Private_Component (T);
2062
2063 if Present (P) then
2064
2065 -- Check for circular definitions
2066
2067 if P = Any_Type then
2068 Set_Etype (Id, Any_Type);
2069
2070 -- There is a gap in the visibility of operations only if the
2071 -- component type is not defined in the scope of the record type.
2072
2073 elsif Scope (P) = Scope (Current_Scope) then
2074 null;
2075
2076 elsif Is_Limited_Type (P) then
2077 Set_Is_Limited_Composite (Current_Scope);
2078
2079 else
2080 Set_Is_Private_Composite (Current_Scope);
2081 end if;
2082 end if;
2083
2084 if P /= Any_Type
2085 and then Is_Limited_Type (T)
2086 and then Chars (Id) /= Name_uParent
2087 and then Is_Tagged_Type (Current_Scope)
2088 then
2089 if Is_Derived_Type (Current_Scope)
2090 and then not Is_Known_Limited (Current_Scope)
2091 then
2092 Error_Msg_N
2093 ("extension of nonlimited type cannot have limited components",
2094 N);
2095
2096 if Is_Interface (Root_Type (Current_Scope)) then
2097 Error_Msg_N
2098 ("\limitedness is not inherited from limited interface", N);
2099 Error_Msg_N ("\add LIMITED to type indication", N);
2100 end if;
2101
2102 Explain_Limited_Type (T, N);
2103 Set_Etype (Id, Any_Type);
2104 Set_Is_Limited_Composite (Current_Scope, False);
2105
2106 elsif not Is_Derived_Type (Current_Scope)
2107 and then not Is_Limited_Record (Current_Scope)
2108 and then not Is_Concurrent_Type (Current_Scope)
2109 then
2110 Error_Msg_N
2111 ("nonlimited tagged type cannot have limited components", N);
2112 Explain_Limited_Type (T, N);
2113 Set_Etype (Id, Any_Type);
2114 Set_Is_Limited_Composite (Current_Scope, False);
2115 end if;
2116 end if;
2117
2118 Set_Original_Record_Component (Id, Id);
2119
2120 if Has_Aspects (N) then
2121 Analyze_Aspect_Specifications (N, Id);
2122 end if;
2123
2124 Analyze_Dimension (N);
2125 end Analyze_Component_Declaration;
2126
2127 --------------------------
2128 -- Analyze_Declarations --
2129 --------------------------
2130
2131 procedure Analyze_Declarations (L : List_Id) is
2132 Decl : Node_Id;
2133
2134 procedure Adjust_Decl;
2135 -- Adjust Decl not to include implicit label declarations, since these
2136 -- have strange Sloc values that result in elaboration check problems.
2137 -- (They have the sloc of the label as found in the source, and that
2138 -- is ahead of the current declarative part).
2139
2140 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2141 -- Determine whether Body_Decl denotes the body of a late controlled
2142 -- primitive (either Initialize, Adjust or Finalize). If this is the
2143 -- case, add a proper spec if the body lacks one. The spec is inserted
2144 -- before Body_Decl and immedately analyzed.
2145
2146 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2147 -- Spec_Id is the entity of a package that may define abstract states.
2148 -- If the states have visible refinement, remove the visibility of each
2149 -- constituent at the end of the package body declarations.
2150
2151 -----------------
2152 -- Adjust_Decl --
2153 -----------------
2154
2155 procedure Adjust_Decl is
2156 begin
2157 while Present (Prev (Decl))
2158 and then Nkind (Decl) = N_Implicit_Label_Declaration
2159 loop
2160 Prev (Decl);
2161 end loop;
2162 end Adjust_Decl;
2163
2164 --------------------------------------
2165 -- Handle_Late_Controlled_Primitive --
2166 --------------------------------------
2167
2168 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2169 Body_Spec : constant Node_Id := Specification (Body_Decl);
2170 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2171 Loc : constant Source_Ptr := Sloc (Body_Id);
2172 Params : constant List_Id :=
2173 Parameter_Specifications (Body_Spec);
2174 Spec : Node_Id;
2175 Spec_Id : Entity_Id;
2176 Typ : Node_Id;
2177
2178 begin
2179 -- Consider only procedure bodies whose name matches one of the three
2180 -- controlled primitives.
2181
2182 if Nkind (Body_Spec) /= N_Procedure_Specification
2183 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2184 Name_Finalize,
2185 Name_Initialize)
2186 then
2187 return;
2188
2189 -- A controlled primitive must have exactly one formal which is not
2190 -- an anonymous access type.
2191
2192 elsif List_Length (Params) /= 1 then
2193 return;
2194 end if;
2195
2196 Typ := Parameter_Type (First (Params));
2197
2198 if Nkind (Typ) = N_Access_Definition then
2199 return;
2200 end if;
2201
2202 Find_Type (Typ);
2203
2204 -- The type of the formal must be derived from [Limited_]Controlled
2205
2206 if not Is_Controlled (Entity (Typ)) then
2207 return;
2208 end if;
2209
2210 -- Check whether a specification exists for this body. We do not
2211 -- analyze the spec of the body in full, because it will be analyzed
2212 -- again when the body is properly analyzed, and we cannot create
2213 -- duplicate entries in the formals chain. We look for an explicit
2214 -- specification because the body may be an overriding operation and
2215 -- an inherited spec may be present.
2216
2217 Spec_Id := Current_Entity (Body_Id);
2218
2219 while Present (Spec_Id) loop
2220 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure)
2221 and then Scope (Spec_Id) = Current_Scope
2222 and then Present (First_Formal (Spec_Id))
2223 and then No (Next_Formal (First_Formal (Spec_Id)))
2224 and then Etype (First_Formal (Spec_Id)) = Entity (Typ)
2225 and then Comes_From_Source (Spec_Id)
2226 then
2227 return;
2228 end if;
2229
2230 Spec_Id := Homonym (Spec_Id);
2231 end loop;
2232
2233 -- At this point the body is known to be a late controlled primitive.
2234 -- Generate a matching spec and insert it before the body. Note the
2235 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2236 -- tree in this case.
2237
2238 Spec := Copy_Separate_Tree (Body_Spec);
2239
2240 -- Ensure that the subprogram declaration does not inherit the null
2241 -- indicator from the body as we now have a proper spec/body pair.
2242
2243 Set_Null_Present (Spec, False);
2244
2245 Insert_Before_And_Analyze (Body_Decl,
2246 Make_Subprogram_Declaration (Loc, Specification => Spec));
2247 end Handle_Late_Controlled_Primitive;
2248
2249 --------------------------------
2250 -- Remove_Visible_Refinements --
2251 --------------------------------
2252
2253 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2254 State_Elmt : Elmt_Id;
2255 begin
2256 if Present (Abstract_States (Spec_Id)) then
2257 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2258 while Present (State_Elmt) loop
2259 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2260 Next_Elmt (State_Elmt);
2261 end loop;
2262 end if;
2263 end Remove_Visible_Refinements;
2264
2265 -- Local variables
2266
2267 Context : Node_Id;
2268 Freeze_From : Entity_Id := Empty;
2269 Next_Decl : Node_Id;
2270 Spec_Id : Entity_Id;
2271
2272 Body_Seen : Boolean := False;
2273 -- Flag set when the first body [stub] is encountered
2274
2275 In_Package_Body : Boolean := False;
2276 -- Flag set when the current declaration list belongs to a package body
2277
2278 -- Start of processing for Analyze_Declarations
2279
2280 begin
2281 if Restriction_Check_Required (SPARK_05) then
2282 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2283 end if;
2284
2285 Decl := First (L);
2286 while Present (Decl) loop
2287
2288 -- Package spec cannot contain a package declaration in SPARK
2289
2290 if Nkind (Decl) = N_Package_Declaration
2291 and then Nkind (Parent (L)) = N_Package_Specification
2292 then
2293 Check_SPARK_05_Restriction
2294 ("package specification cannot contain a package declaration",
2295 Decl);
2296 end if;
2297
2298 -- Complete analysis of declaration
2299
2300 Analyze (Decl);
2301 Next_Decl := Next (Decl);
2302
2303 if No (Freeze_From) then
2304 Freeze_From := First_Entity (Current_Scope);
2305 end if;
2306
2307 -- At the end of a declarative part, freeze remaining entities
2308 -- declared in it. The end of the visible declarations of package
2309 -- specification is not the end of a declarative part if private
2310 -- declarations are present. The end of a package declaration is a
2311 -- freezing point only if it a library package. A task definition or
2312 -- protected type definition is not a freeze point either. Finally,
2313 -- we do not freeze entities in generic scopes, because there is no
2314 -- code generated for them and freeze nodes will be generated for
2315 -- the instance.
2316
2317 -- The end of a package instantiation is not a freeze point, but
2318 -- for now we make it one, because the generic body is inserted
2319 -- (currently) immediately after. Generic instantiations will not
2320 -- be a freeze point once delayed freezing of bodies is implemented.
2321 -- (This is needed in any case for early instantiations ???).
2322
2323 if No (Next_Decl) then
2324 if Nkind_In (Parent (L), N_Component_List,
2325 N_Task_Definition,
2326 N_Protected_Definition)
2327 then
2328 null;
2329
2330 elsif Nkind (Parent (L)) /= N_Package_Specification then
2331 if Nkind (Parent (L)) = N_Package_Body then
2332 Freeze_From := First_Entity (Current_Scope);
2333 end if;
2334
2335 -- There may have been several freezing points previously,
2336 -- for example object declarations or subprogram bodies, but
2337 -- at the end of a declarative part we check freezing from
2338 -- the beginning, even though entities may already be frozen,
2339 -- in order to perform visibility checks on delayed aspects.
2340
2341 Adjust_Decl;
2342 Freeze_All (First_Entity (Current_Scope), Decl);
2343 Freeze_From := Last_Entity (Current_Scope);
2344
2345 elsif Scope (Current_Scope) /= Standard_Standard
2346 and then not Is_Child_Unit (Current_Scope)
2347 and then No (Generic_Parent (Parent (L)))
2348 then
2349 null;
2350
2351 elsif L /= Visible_Declarations (Parent (L))
2352 or else No (Private_Declarations (Parent (L)))
2353 or else Is_Empty_List (Private_Declarations (Parent (L)))
2354 then
2355 Adjust_Decl;
2356 Freeze_All (First_Entity (Current_Scope), Decl);
2357 Freeze_From := Last_Entity (Current_Scope);
2358 end if;
2359
2360 -- If next node is a body then freeze all types before the body.
2361 -- An exception occurs for some expander-generated bodies. If these
2362 -- are generated at places where in general language rules would not
2363 -- allow a freeze point, then we assume that the expander has
2364 -- explicitly checked that all required types are properly frozen,
2365 -- and we do not cause general freezing here. This special circuit
2366 -- is used when the encountered body is marked as having already
2367 -- been analyzed.
2368
2369 -- In all other cases (bodies that come from source, and expander
2370 -- generated bodies that have not been analyzed yet), freeze all
2371 -- types now. Note that in the latter case, the expander must take
2372 -- care to attach the bodies at a proper place in the tree so as to
2373 -- not cause unwanted freezing at that point.
2374
2375 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl) then
2376
2377 -- When a controlled type is frozen, the expander generates stream
2378 -- and controlled type support routines. If the freeze is caused
2379 -- by the stand alone body of Initialize, Adjust and Finalize, the
2380 -- expander will end up using the wrong version of these routines
2381 -- as the body has not been processed yet. To remedy this, detect
2382 -- a late controlled primitive and create a proper spec for it.
2383 -- This ensures that the primitive will override its inherited
2384 -- counterpart before the freeze takes place.
2385
2386 -- If the declaration we just processed is a body, do not attempt
2387 -- to examine Next_Decl as the late primitive idiom can only apply
2388 -- to the first encountered body.
2389
2390 -- The spec of the late primitive is not generated in ASIS mode to
2391 -- ensure a consistent list of primitives that indicates the true
2392 -- semantic structure of the program (which is not relevant when
2393 -- generating executable code.
2394
2395 -- ??? a cleaner approach may be possible and/or this solution
2396 -- could be extended to general-purpose late primitives, TBD.
2397
2398 if not ASIS_Mode and then not Body_Seen and then not Is_Body (Decl)
2399 then
2400 Body_Seen := True;
2401
2402 if Nkind (Next_Decl) = N_Subprogram_Body then
2403 Handle_Late_Controlled_Primitive (Next_Decl);
2404 end if;
2405 end if;
2406
2407 Adjust_Decl;
2408 Freeze_All (Freeze_From, Decl);
2409 Freeze_From := Last_Entity (Current_Scope);
2410 end if;
2411
2412 Decl := Next_Decl;
2413 end loop;
2414
2415 -- Analyze the contracts of packages and their bodies
2416
2417 if Present (L) then
2418 Context := Parent (L);
2419
2420 if Nkind (Context) = N_Package_Specification then
2421
2422 -- When a package has private declarations, its contract must be
2423 -- analyzed at the end of the said declarations. This way both the
2424 -- analysis and freeze actions are properly synchronized in case
2425 -- of private type use within the contract.
2426
2427 if L = Private_Declarations (Context) then
2428 Analyze_Package_Contract (Defining_Entity (Context));
2429
2430 -- Build the bodies of the default initial condition procedures
2431 -- for all types subject to pragma Default_Initial_Condition.
2432 -- From a purely Ada stand point, this is a freezing activity,
2433 -- however freezing is not available under GNATprove_Mode. To
2434 -- accomodate both scenarios, the bodies are build at the end
2435 -- of private declaration analysis.
2436
2437 Build_Default_Init_Cond_Procedure_Bodies (L);
2438
2439 -- Otherwise the contract is analyzed at the end of the visible
2440 -- declarations.
2441
2442 elsif L = Visible_Declarations (Context)
2443 and then No (Private_Declarations (Context))
2444 then
2445 Analyze_Package_Contract (Defining_Entity (Context));
2446 end if;
2447
2448 elsif Nkind (Context) = N_Package_Body then
2449 In_Package_Body := True;
2450 Spec_Id := Corresponding_Spec (Context);
2451
2452 Analyze_Package_Body_Contract (Defining_Entity (Context));
2453 end if;
2454 end if;
2455
2456 -- Analyze the contracts of subprogram declarations, subprogram bodies
2457 -- and variables now due to the delayed visibility requirements of their
2458 -- aspects.
2459
2460 Decl := First (L);
2461 while Present (Decl) loop
2462 if Nkind (Decl) = N_Object_Declaration then
2463 Analyze_Object_Contract (Defining_Entity (Decl));
2464
2465 elsif Nkind_In (Decl, N_Abstract_Subprogram_Declaration,
2466 N_Subprogram_Declaration)
2467 then
2468 Analyze_Subprogram_Contract (Defining_Entity (Decl));
2469
2470 elsif Nkind (Decl) = N_Subprogram_Body then
2471 Analyze_Subprogram_Body_Contract (Defining_Entity (Decl));
2472
2473 elsif Nkind (Decl) = N_Subprogram_Body_Stub then
2474 Analyze_Subprogram_Body_Stub_Contract (Defining_Entity (Decl));
2475 end if;
2476
2477 Next (Decl);
2478 end loop;
2479
2480 -- State refinements are visible upto the end the of the package body
2481 -- declarations. Hide the refinements from visibility to restore the
2482 -- original state conditions.
2483
2484 if In_Package_Body then
2485 Remove_Visible_Refinements (Spec_Id);
2486 end if;
2487 end Analyze_Declarations;
2488
2489 -----------------------------------
2490 -- Analyze_Full_Type_Declaration --
2491 -----------------------------------
2492
2493 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2494 Def : constant Node_Id := Type_Definition (N);
2495 Def_Id : constant Entity_Id := Defining_Identifier (N);
2496 T : Entity_Id;
2497 Prev : Entity_Id;
2498
2499 Is_Remote : constant Boolean :=
2500 (Is_Remote_Types (Current_Scope)
2501 or else Is_Remote_Call_Interface (Current_Scope))
2502 and then not (In_Private_Part (Current_Scope)
2503 or else In_Package_Body (Current_Scope));
2504
2505 procedure Check_Ops_From_Incomplete_Type;
2506 -- If there is a tagged incomplete partial view of the type, traverse
2507 -- the primitives of the incomplete view and change the type of any
2508 -- controlling formals and result to indicate the full view. The
2509 -- primitives will be added to the full type's primitive operations
2510 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2511 -- is called from Process_Incomplete_Dependents).
2512
2513 ------------------------------------
2514 -- Check_Ops_From_Incomplete_Type --
2515 ------------------------------------
2516
2517 procedure Check_Ops_From_Incomplete_Type is
2518 Elmt : Elmt_Id;
2519 Formal : Entity_Id;
2520 Op : Entity_Id;
2521
2522 begin
2523 if Prev /= T
2524 and then Ekind (Prev) = E_Incomplete_Type
2525 and then Is_Tagged_Type (Prev)
2526 and then Is_Tagged_Type (T)
2527 then
2528 Elmt := First_Elmt (Primitive_Operations (Prev));
2529 while Present (Elmt) loop
2530 Op := Node (Elmt);
2531
2532 Formal := First_Formal (Op);
2533 while Present (Formal) loop
2534 if Etype (Formal) = Prev then
2535 Set_Etype (Formal, T);
2536 end if;
2537
2538 Next_Formal (Formal);
2539 end loop;
2540
2541 if Etype (Op) = Prev then
2542 Set_Etype (Op, T);
2543 end if;
2544
2545 Next_Elmt (Elmt);
2546 end loop;
2547 end if;
2548 end Check_Ops_From_Incomplete_Type;
2549
2550 -- Start of processing for Analyze_Full_Type_Declaration
2551
2552 begin
2553 Prev := Find_Type_Name (N);
2554
2555 -- The full view, if present, now points to the current type
2556 -- If there is an incomplete partial view, set a link to it, to
2557 -- simplify the retrieval of primitive operations of the type.
2558
2559 -- Ada 2005 (AI-50217): If the type was previously decorated when
2560 -- imported through a LIMITED WITH clause, it appears as incomplete
2561 -- but has no full view.
2562
2563 if Ekind (Prev) = E_Incomplete_Type
2564 and then Present (Full_View (Prev))
2565 then
2566 T := Full_View (Prev);
2567 Set_Incomplete_View (N, Parent (Prev));
2568 else
2569 T := Prev;
2570 end if;
2571
2572 Set_Is_Pure (T, Is_Pure (Current_Scope));
2573
2574 -- We set the flag Is_First_Subtype here. It is needed to set the
2575 -- corresponding flag for the Implicit class-wide-type created
2576 -- during tagged types processing.
2577
2578 Set_Is_First_Subtype (T, True);
2579
2580 -- Only composite types other than array types are allowed to have
2581 -- discriminants.
2582
2583 case Nkind (Def) is
2584
2585 -- For derived types, the rule will be checked once we've figured
2586 -- out the parent type.
2587
2588 when N_Derived_Type_Definition =>
2589 null;
2590
2591 -- For record types, discriminants are allowed, unless we are in
2592 -- SPARK.
2593
2594 when N_Record_Definition =>
2595 if Present (Discriminant_Specifications (N)) then
2596 Check_SPARK_05_Restriction
2597 ("discriminant type is not allowed",
2598 Defining_Identifier
2599 (First (Discriminant_Specifications (N))));
2600 end if;
2601
2602 when others =>
2603 if Present (Discriminant_Specifications (N)) then
2604 Error_Msg_N
2605 ("elementary or array type cannot have discriminants",
2606 Defining_Identifier
2607 (First (Discriminant_Specifications (N))));
2608 end if;
2609 end case;
2610
2611 -- Elaborate the type definition according to kind, and generate
2612 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2613 -- already done (this happens during the reanalysis that follows a call
2614 -- to the high level optimizer).
2615
2616 if not Analyzed (T) then
2617 Set_Analyzed (T);
2618
2619 case Nkind (Def) is
2620
2621 when N_Access_To_Subprogram_Definition =>
2622 Access_Subprogram_Declaration (T, Def);
2623
2624 -- If this is a remote access to subprogram, we must create the
2625 -- equivalent fat pointer type, and related subprograms.
2626
2627 if Is_Remote then
2628 Process_Remote_AST_Declaration (N);
2629 end if;
2630
2631 -- Validate categorization rule against access type declaration
2632 -- usually a violation in Pure unit, Shared_Passive unit.
2633
2634 Validate_Access_Type_Declaration (T, N);
2635
2636 when N_Access_To_Object_Definition =>
2637 Access_Type_Declaration (T, Def);
2638
2639 -- Validate categorization rule against access type declaration
2640 -- usually a violation in Pure unit, Shared_Passive unit.
2641
2642 Validate_Access_Type_Declaration (T, N);
2643
2644 -- If we are in a Remote_Call_Interface package and define a
2645 -- RACW, then calling stubs and specific stream attributes
2646 -- must be added.
2647
2648 if Is_Remote
2649 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2650 then
2651 Add_RACW_Features (Def_Id);
2652 end if;
2653
2654 -- Set no strict aliasing flag if config pragma seen
2655
2656 if Opt.No_Strict_Aliasing then
2657 Set_No_Strict_Aliasing (Base_Type (Def_Id));
2658 end if;
2659
2660 when N_Array_Type_Definition =>
2661 Array_Type_Declaration (T, Def);
2662
2663 when N_Derived_Type_Definition =>
2664 Derived_Type_Declaration (T, N, T /= Def_Id);
2665
2666 when N_Enumeration_Type_Definition =>
2667 Enumeration_Type_Declaration (T, Def);
2668
2669 when N_Floating_Point_Definition =>
2670 Floating_Point_Type_Declaration (T, Def);
2671
2672 when N_Decimal_Fixed_Point_Definition =>
2673 Decimal_Fixed_Point_Type_Declaration (T, Def);
2674
2675 when N_Ordinary_Fixed_Point_Definition =>
2676 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2677
2678 when N_Signed_Integer_Type_Definition =>
2679 Signed_Integer_Type_Declaration (T, Def);
2680
2681 when N_Modular_Type_Definition =>
2682 Modular_Type_Declaration (T, Def);
2683
2684 when N_Record_Definition =>
2685 Record_Type_Declaration (T, N, Prev);
2686
2687 -- If declaration has a parse error, nothing to elaborate.
2688
2689 when N_Error =>
2690 null;
2691
2692 when others =>
2693 raise Program_Error;
2694
2695 end case;
2696 end if;
2697
2698 if Etype (T) = Any_Type then
2699 return;
2700 end if;
2701
2702 -- Controlled type is not allowed in SPARK
2703
2704 if Is_Visibly_Controlled (T) then
2705 Check_SPARK_05_Restriction ("controlled type is not allowed", N);
2706 end if;
2707
2708 -- Some common processing for all types
2709
2710 Set_Depends_On_Private (T, Has_Private_Component (T));
2711 Check_Ops_From_Incomplete_Type;
2712
2713 -- Both the declared entity, and its anonymous base type if one
2714 -- was created, need freeze nodes allocated.
2715
2716 declare
2717 B : constant Entity_Id := Base_Type (T);
2718
2719 begin
2720 -- In the case where the base type differs from the first subtype, we
2721 -- pre-allocate a freeze node, and set the proper link to the first
2722 -- subtype. Freeze_Entity will use this preallocated freeze node when
2723 -- it freezes the entity.
2724
2725 -- This does not apply if the base type is a generic type, whose
2726 -- declaration is independent of the current derived definition.
2727
2728 if B /= T and then not Is_Generic_Type (B) then
2729 Ensure_Freeze_Node (B);
2730 Set_First_Subtype_Link (Freeze_Node (B), T);
2731 end if;
2732
2733 -- A type that is imported through a limited_with clause cannot
2734 -- generate any code, and thus need not be frozen. However, an access
2735 -- type with an imported designated type needs a finalization list,
2736 -- which may be referenced in some other package that has non-limited
2737 -- visibility on the designated type. Thus we must create the
2738 -- finalization list at the point the access type is frozen, to
2739 -- prevent unsatisfied references at link time.
2740
2741 if not From_Limited_With (T) or else Is_Access_Type (T) then
2742 Set_Has_Delayed_Freeze (T);
2743 end if;
2744 end;
2745
2746 -- Case where T is the full declaration of some private type which has
2747 -- been swapped in Defining_Identifier (N).
2748
2749 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2750 Process_Full_View (N, T, Def_Id);
2751
2752 -- Record the reference. The form of this is a little strange, since
2753 -- the full declaration has been swapped in. So the first parameter
2754 -- here represents the entity to which a reference is made which is
2755 -- the "real" entity, i.e. the one swapped in, and the second
2756 -- parameter provides the reference location.
2757
2758 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2759 -- since we don't want a complaint about the full type being an
2760 -- unwanted reference to the private type
2761
2762 declare
2763 B : constant Boolean := Has_Pragma_Unreferenced (T);
2764 begin
2765 Set_Has_Pragma_Unreferenced (T, False);
2766 Generate_Reference (T, T, 'c');
2767 Set_Has_Pragma_Unreferenced (T, B);
2768 end;
2769
2770 Set_Completion_Referenced (Def_Id);
2771
2772 -- For completion of incomplete type, process incomplete dependents
2773 -- and always mark the full type as referenced (it is the incomplete
2774 -- type that we get for any real reference).
2775
2776 elsif Ekind (Prev) = E_Incomplete_Type then
2777 Process_Incomplete_Dependents (N, T, Prev);
2778 Generate_Reference (Prev, Def_Id, 'c');
2779 Set_Completion_Referenced (Def_Id);
2780
2781 -- If not private type or incomplete type completion, this is a real
2782 -- definition of a new entity, so record it.
2783
2784 else
2785 Generate_Definition (Def_Id);
2786 end if;
2787
2788 if Chars (Scope (Def_Id)) = Name_System
2789 and then Chars (Def_Id) = Name_Address
2790 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
2791 then
2792 Set_Is_Descendent_Of_Address (Def_Id);
2793 Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
2794 Set_Is_Descendent_Of_Address (Prev);
2795 end if;
2796
2797 Set_Optimize_Alignment_Flags (Def_Id);
2798 Check_Eliminated (Def_Id);
2799
2800 -- If the declaration is a completion and aspects are present, apply
2801 -- them to the entity for the type which is currently the partial
2802 -- view, but which is the one that will be frozen.
2803
2804 if Has_Aspects (N) then
2805
2806 -- In most cases the partial view is a private type, and both views
2807 -- appear in different declarative parts. In the unusual case where
2808 -- the partial view is incomplete, perform the analysis on the
2809 -- full view, to prevent freezing anomalies with the corresponding
2810 -- class-wide type, which otherwise might be frozen before the
2811 -- dispatch table is built.
2812
2813 if Prev /= Def_Id
2814 and then Ekind (Prev) /= E_Incomplete_Type
2815 then
2816 Analyze_Aspect_Specifications (N, Prev);
2817
2818 -- Normal case
2819
2820 else
2821 Analyze_Aspect_Specifications (N, Def_Id);
2822 end if;
2823 end if;
2824 end Analyze_Full_Type_Declaration;
2825
2826 ----------------------------------
2827 -- Analyze_Incomplete_Type_Decl --
2828 ----------------------------------
2829
2830 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
2831 F : constant Boolean := Is_Pure (Current_Scope);
2832 T : Entity_Id;
2833
2834 begin
2835 Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
2836
2837 Generate_Definition (Defining_Identifier (N));
2838
2839 -- Process an incomplete declaration. The identifier must not have been
2840 -- declared already in the scope. However, an incomplete declaration may
2841 -- appear in the private part of a package, for a private type that has
2842 -- already been declared.
2843
2844 -- In this case, the discriminants (if any) must match
2845
2846 T := Find_Type_Name (N);
2847
2848 Set_Ekind (T, E_Incomplete_Type);
2849 Init_Size_Align (T);
2850 Set_Is_First_Subtype (T, True);
2851 Set_Etype (T, T);
2852
2853 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2854 -- incomplete types.
2855
2856 if Tagged_Present (N) then
2857 Set_Is_Tagged_Type (T, True);
2858 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
2859 Make_Class_Wide_Type (T);
2860 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2861 end if;
2862
2863 Push_Scope (T);
2864
2865 Set_Stored_Constraint (T, No_Elist);
2866
2867 if Present (Discriminant_Specifications (N)) then
2868 Process_Discriminants (N);
2869 end if;
2870
2871 End_Scope;
2872
2873 -- If the type has discriminants, non-trivial subtypes may be
2874 -- declared before the full view of the type. The full views of those
2875 -- subtypes will be built after the full view of the type.
2876
2877 Set_Private_Dependents (T, New_Elmt_List);
2878 Set_Is_Pure (T, F);
2879 end Analyze_Incomplete_Type_Decl;
2880
2881 -----------------------------------
2882 -- Analyze_Interface_Declaration --
2883 -----------------------------------
2884
2885 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
2886 CW : constant Entity_Id := Class_Wide_Type (T);
2887
2888 begin
2889 Set_Is_Tagged_Type (T);
2890 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
2891
2892 Set_Is_Limited_Record (T, Limited_Present (Def)
2893 or else Task_Present (Def)
2894 or else Protected_Present (Def)
2895 or else Synchronized_Present (Def));
2896
2897 -- Type is abstract if full declaration carries keyword, or if previous
2898 -- partial view did.
2899
2900 Set_Is_Abstract_Type (T);
2901 Set_Is_Interface (T);
2902
2903 -- Type is a limited interface if it includes the keyword limited, task,
2904 -- protected, or synchronized.
2905
2906 Set_Is_Limited_Interface
2907 (T, Limited_Present (Def)
2908 or else Protected_Present (Def)
2909 or else Synchronized_Present (Def)
2910 or else Task_Present (Def));
2911
2912 Set_Interfaces (T, New_Elmt_List);
2913 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2914
2915 -- Complete the decoration of the class-wide entity if it was already
2916 -- built (i.e. during the creation of the limited view)
2917
2918 if Present (CW) then
2919 Set_Is_Interface (CW);
2920 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
2921 end if;
2922
2923 -- Check runtime support for synchronized interfaces
2924
2925 if VM_Target = No_VM
2926 and then (Is_Task_Interface (T)
2927 or else Is_Protected_Interface (T)
2928 or else Is_Synchronized_Interface (T))
2929 and then not RTE_Available (RE_Select_Specific_Data)
2930 then
2931 Error_Msg_CRT ("synchronized interfaces", T);
2932 end if;
2933 end Analyze_Interface_Declaration;
2934
2935 -----------------------------
2936 -- Analyze_Itype_Reference --
2937 -----------------------------
2938
2939 -- Nothing to do. This node is placed in the tree only for the benefit of
2940 -- back end processing, and has no effect on the semantic processing.
2941
2942 procedure Analyze_Itype_Reference (N : Node_Id) is
2943 begin
2944 pragma Assert (Is_Itype (Itype (N)));
2945 null;
2946 end Analyze_Itype_Reference;
2947
2948 --------------------------------
2949 -- Analyze_Number_Declaration --
2950 --------------------------------
2951
2952 procedure Analyze_Number_Declaration (N : Node_Id) is
2953 Id : constant Entity_Id := Defining_Identifier (N);
2954 E : constant Node_Id := Expression (N);
2955 T : Entity_Id;
2956 Index : Interp_Index;
2957 It : Interp;
2958
2959 begin
2960 Generate_Definition (Id);
2961 Enter_Name (Id);
2962
2963 -- This is an optimization of a common case of an integer literal
2964
2965 if Nkind (E) = N_Integer_Literal then
2966 Set_Is_Static_Expression (E, True);
2967 Set_Etype (E, Universal_Integer);
2968
2969 Set_Etype (Id, Universal_Integer);
2970 Set_Ekind (Id, E_Named_Integer);
2971 Set_Is_Frozen (Id, True);
2972 return;
2973 end if;
2974
2975 Set_Is_Pure (Id, Is_Pure (Current_Scope));
2976
2977 -- Process expression, replacing error by integer zero, to avoid
2978 -- cascaded errors or aborts further along in the processing
2979
2980 -- Replace Error by integer zero, which seems least likely to cause
2981 -- cascaded errors.
2982
2983 if E = Error then
2984 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
2985 Set_Error_Posted (E);
2986 end if;
2987
2988 Analyze (E);
2989
2990 -- Verify that the expression is static and numeric. If
2991 -- the expression is overloaded, we apply the preference
2992 -- rule that favors root numeric types.
2993
2994 if not Is_Overloaded (E) then
2995 T := Etype (E);
2996 if Has_Dynamic_Predicate_Aspect (T) then
2997 Error_Msg_N
2998 ("subtype has dynamic predicate, "
2999 & "not allowed in number declaration", N);
3000 end if;
3001
3002 else
3003 T := Any_Type;
3004
3005 Get_First_Interp (E, Index, It);
3006 while Present (It.Typ) loop
3007 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
3008 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
3009 then
3010 if T = Any_Type then
3011 T := It.Typ;
3012
3013 elsif It.Typ = Universal_Real
3014 or else
3015 It.Typ = Universal_Integer
3016 then
3017 -- Choose universal interpretation over any other
3018
3019 T := It.Typ;
3020 exit;
3021 end if;
3022 end if;
3023
3024 Get_Next_Interp (Index, It);
3025 end loop;
3026 end if;
3027
3028 if Is_Integer_Type (T) then
3029 Resolve (E, T);
3030 Set_Etype (Id, Universal_Integer);
3031 Set_Ekind (Id, E_Named_Integer);
3032
3033 elsif Is_Real_Type (T) then
3034
3035 -- Because the real value is converted to universal_real, this is a
3036 -- legal context for a universal fixed expression.
3037
3038 if T = Universal_Fixed then
3039 declare
3040 Loc : constant Source_Ptr := Sloc (N);
3041 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3042 Subtype_Mark =>
3043 New_Occurrence_Of (Universal_Real, Loc),
3044 Expression => Relocate_Node (E));
3045
3046 begin
3047 Rewrite (E, Conv);
3048 Analyze (E);
3049 end;
3050
3051 elsif T = Any_Fixed then
3052 Error_Msg_N ("illegal context for mixed mode operation", E);
3053
3054 -- Expression is of the form : universal_fixed * integer. Try to
3055 -- resolve as universal_real.
3056
3057 T := Universal_Real;
3058 Set_Etype (E, T);
3059 end if;
3060
3061 Resolve (E, T);
3062 Set_Etype (Id, Universal_Real);
3063 Set_Ekind (Id, E_Named_Real);
3064
3065 else
3066 Wrong_Type (E, Any_Numeric);
3067 Resolve (E, T);
3068
3069 Set_Etype (Id, T);
3070 Set_Ekind (Id, E_Constant);
3071 Set_Never_Set_In_Source (Id, True);
3072 Set_Is_True_Constant (Id, True);
3073 return;
3074 end if;
3075
3076 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3077 Set_Etype (E, Etype (Id));
3078 end if;
3079
3080 if not Is_OK_Static_Expression (E) then
3081 Flag_Non_Static_Expr
3082 ("non-static expression used in number declaration!", E);
3083 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3084 Set_Etype (E, Any_Type);
3085 end if;
3086 end Analyze_Number_Declaration;
3087
3088 -----------------------------
3089 -- Analyze_Object_Contract --
3090 -----------------------------
3091
3092 procedure Analyze_Object_Contract (Obj_Id : Entity_Id) is
3093 Obj_Typ : constant Entity_Id := Etype (Obj_Id);
3094 AR_Val : Boolean := False;
3095 AW_Val : Boolean := False;
3096 ER_Val : Boolean := False;
3097 EW_Val : Boolean := False;
3098 Prag : Node_Id;
3099 Seen : Boolean := False;
3100
3101 begin
3102 if Ekind (Obj_Id) = E_Constant then
3103
3104 -- A constant cannot be effectively volatile. This check is only
3105 -- relevant with SPARK_Mode on as it is not a standard Ada legality
3106 -- rule. Do not flag internally-generated constants that map generic
3107 -- formals to actuals in instantiations (SPARK RM 7.1.3(6)).
3108
3109 if SPARK_Mode = On
3110 and then Is_Effectively_Volatile (Obj_Id)
3111 and then No (Corresponding_Generic_Association (Parent (Obj_Id)))
3112 then
3113 Error_Msg_N ("constant cannot be volatile", Obj_Id);
3114 end if;
3115
3116 -- The loop parameter in an element iterator over a formal container
3117 -- is declared with an object declaration but no contracts apply.
3118
3119 elsif Ekind (Obj_Id) = E_Loop_Parameter then
3120 null;
3121
3122 else pragma Assert (Ekind (Obj_Id) = E_Variable);
3123
3124 -- The following checks are only relevant when SPARK_Mode is on as
3125 -- they are not standard Ada legality rules. Internally generated
3126 -- temporaries are ignored.
3127
3128 if SPARK_Mode = On and then Comes_From_Source (Obj_Id) then
3129 if Is_Effectively_Volatile (Obj_Id) then
3130
3131 -- The declaration of an effectively volatile object must
3132 -- appear at the library level (SPARK RM 7.1.3(7), C.6(6)).
3133
3134 if not Is_Library_Level_Entity (Obj_Id) then
3135 Error_Msg_N
3136 ("volatile variable & must be declared at library level",
3137 Obj_Id);
3138
3139 -- An object of a discriminated type cannot be effectively
3140 -- volatile (SPARK RM C.6(4)).
3141
3142 elsif Has_Discriminants (Obj_Typ) then
3143 Error_Msg_N
3144 ("discriminated object & cannot be volatile", Obj_Id);
3145
3146 -- An object of a tagged type cannot be effectively volatile
3147 -- (SPARK RM C.6(5)).
3148
3149 elsif Is_Tagged_Type (Obj_Typ) then
3150 Error_Msg_N ("tagged object & cannot be volatile", Obj_Id);
3151 end if;
3152
3153 -- The object is not effectively volatile
3154
3155 else
3156 -- A non-effectively volatile object cannot have effectively
3157 -- volatile components (SPARK RM 7.1.3(7)).
3158
3159 if not Is_Effectively_Volatile (Obj_Id)
3160 and then Has_Volatile_Component (Obj_Typ)
3161 then
3162 Error_Msg_N
3163 ("non-volatile object & cannot have volatile components",
3164 Obj_Id);
3165 end if;
3166 end if;
3167 end if;
3168
3169 -- Analyze all external properties
3170
3171 Prag := Get_Pragma (Obj_Id, Pragma_Async_Readers);
3172
3173 if Present (Prag) then
3174 Analyze_External_Property_In_Decl_Part (Prag, AR_Val);
3175 Seen := True;
3176 end if;
3177
3178 Prag := Get_Pragma (Obj_Id, Pragma_Async_Writers);
3179
3180 if Present (Prag) then
3181 Analyze_External_Property_In_Decl_Part (Prag, AW_Val);
3182 Seen := True;
3183 end if;
3184
3185 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Reads);
3186
3187 if Present (Prag) then
3188 Analyze_External_Property_In_Decl_Part (Prag, ER_Val);
3189 Seen := True;
3190 end if;
3191
3192 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Writes);
3193
3194 if Present (Prag) then
3195 Analyze_External_Property_In_Decl_Part (Prag, EW_Val);
3196 Seen := True;
3197 end if;
3198
3199 -- Verify the mutual interaction of the various external properties
3200
3201 if Seen then
3202 Check_External_Properties (Obj_Id, AR_Val, AW_Val, ER_Val, EW_Val);
3203 end if;
3204
3205 -- Check whether the lack of indicator Part_Of agrees with the
3206 -- placement of the variable with respect to the state space.
3207
3208 Prag := Get_Pragma (Obj_Id, Pragma_Part_Of);
3209
3210 if No (Prag) then
3211 Check_Missing_Part_Of (Obj_Id);
3212 end if;
3213 end if;
3214 end Analyze_Object_Contract;
3215
3216 --------------------------------
3217 -- Analyze_Object_Declaration --
3218 --------------------------------
3219
3220 procedure Analyze_Object_Declaration (N : Node_Id) is
3221 Loc : constant Source_Ptr := Sloc (N);
3222 Id : constant Entity_Id := Defining_Identifier (N);
3223 T : Entity_Id;
3224 Act_T : Entity_Id;
3225
3226 E : Node_Id := Expression (N);
3227 -- E is set to Expression (N) throughout this routine. When
3228 -- Expression (N) is modified, E is changed accordingly.
3229
3230 Prev_Entity : Entity_Id := Empty;
3231
3232 function Count_Tasks (T : Entity_Id) return Uint;
3233 -- This function is called when a non-generic library level object of a
3234 -- task type is declared. Its function is to count the static number of
3235 -- tasks declared within the type (it is only called if Has_Tasks is set
3236 -- for T). As a side effect, if an array of tasks with non-static bounds
3237 -- or a variant record type is encountered, Check_Restrictions is called
3238 -- indicating the count is unknown.
3239
3240 -----------------
3241 -- Count_Tasks --
3242 -----------------
3243
3244 function Count_Tasks (T : Entity_Id) return Uint is
3245 C : Entity_Id;
3246 X : Node_Id;
3247 V : Uint;
3248
3249 begin
3250 if Is_Task_Type (T) then
3251 return Uint_1;
3252
3253 elsif Is_Record_Type (T) then
3254 if Has_Discriminants (T) then
3255 Check_Restriction (Max_Tasks, N);
3256 return Uint_0;
3257
3258 else
3259 V := Uint_0;
3260 C := First_Component (T);
3261 while Present (C) loop
3262 V := V + Count_Tasks (Etype (C));
3263 Next_Component (C);
3264 end loop;
3265
3266 return V;
3267 end if;
3268
3269 elsif Is_Array_Type (T) then
3270 X := First_Index (T);
3271 V := Count_Tasks (Component_Type (T));
3272 while Present (X) loop
3273 C := Etype (X);
3274
3275 if not Is_OK_Static_Subtype (C) then
3276 Check_Restriction (Max_Tasks, N);
3277 return Uint_0;
3278 else
3279 V := V * (UI_Max (Uint_0,
3280 Expr_Value (Type_High_Bound (C)) -
3281 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3282 end if;
3283
3284 Next_Index (X);
3285 end loop;
3286
3287 return V;
3288
3289 else
3290 return Uint_0;
3291 end if;
3292 end Count_Tasks;
3293
3294 -- Start of processing for Analyze_Object_Declaration
3295
3296 begin
3297 -- There are three kinds of implicit types generated by an
3298 -- object declaration:
3299
3300 -- 1. Those generated by the original Object Definition
3301
3302 -- 2. Those generated by the Expression
3303
3304 -- 3. Those used to constrain the Object Definition with the
3305 -- expression constraints when the definition is unconstrained.
3306
3307 -- They must be generated in this order to avoid order of elaboration
3308 -- issues. Thus the first step (after entering the name) is to analyze
3309 -- the object definition.
3310
3311 if Constant_Present (N) then
3312 Prev_Entity := Current_Entity_In_Scope (Id);
3313
3314 if Present (Prev_Entity)
3315 and then
3316 -- If the homograph is an implicit subprogram, it is overridden
3317 -- by the current declaration.
3318
3319 ((Is_Overloadable (Prev_Entity)
3320 and then Is_Inherited_Operation (Prev_Entity))
3321
3322 -- The current object is a discriminal generated for an entry
3323 -- family index. Even though the index is a constant, in this
3324 -- particular context there is no true constant redeclaration.
3325 -- Enter_Name will handle the visibility.
3326
3327 or else
3328 (Is_Discriminal (Id)
3329 and then Ekind (Discriminal_Link (Id)) =
3330 E_Entry_Index_Parameter)
3331
3332 -- The current object is the renaming for a generic declared
3333 -- within the instance.
3334
3335 or else
3336 (Ekind (Prev_Entity) = E_Package
3337 and then Nkind (Parent (Prev_Entity)) =
3338 N_Package_Renaming_Declaration
3339 and then not Comes_From_Source (Prev_Entity)
3340 and then
3341 Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
3342 then
3343 Prev_Entity := Empty;
3344 end if;
3345 end if;
3346
3347 if Present (Prev_Entity) then
3348 Constant_Redeclaration (Id, N, T);
3349
3350 Generate_Reference (Prev_Entity, Id, 'c');
3351 Set_Completion_Referenced (Id);
3352
3353 if Error_Posted (N) then
3354
3355 -- Type mismatch or illegal redeclaration, Do not analyze
3356 -- expression to avoid cascaded errors.
3357
3358 T := Find_Type_Of_Object (Object_Definition (N), N);
3359 Set_Etype (Id, T);
3360 Set_Ekind (Id, E_Variable);
3361 goto Leave;
3362 end if;
3363
3364 -- In the normal case, enter identifier at the start to catch premature
3365 -- usage in the initialization expression.
3366
3367 else
3368 Generate_Definition (Id);
3369 Enter_Name (Id);
3370
3371 Mark_Coextensions (N, Object_Definition (N));
3372
3373 T := Find_Type_Of_Object (Object_Definition (N), N);
3374
3375 if Nkind (Object_Definition (N)) = N_Access_Definition
3376 and then Present
3377 (Access_To_Subprogram_Definition (Object_Definition (N)))
3378 and then Protected_Present
3379 (Access_To_Subprogram_Definition (Object_Definition (N)))
3380 then
3381 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3382 end if;
3383
3384 if Error_Posted (Id) then
3385 Set_Etype (Id, T);
3386 Set_Ekind (Id, E_Variable);
3387 goto Leave;
3388 end if;
3389 end if;
3390
3391 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3392 -- out some static checks
3393
3394 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
3395
3396 -- In case of aggregates we must also take care of the correct
3397 -- initialization of nested aggregates bug this is done at the
3398 -- point of the analysis of the aggregate (see sem_aggr.adb).
3399
3400 if Present (Expression (N))
3401 and then Nkind (Expression (N)) = N_Aggregate
3402 then
3403 null;
3404
3405 else
3406 declare
3407 Save_Typ : constant Entity_Id := Etype (Id);
3408 begin
3409 Set_Etype (Id, T); -- Temp. decoration for static checks
3410 Null_Exclusion_Static_Checks (N);
3411 Set_Etype (Id, Save_Typ);
3412 end;
3413 end if;
3414 end if;
3415
3416 -- Object is marked pure if it is in a pure scope
3417
3418 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3419
3420 -- If deferred constant, make sure context is appropriate. We detect
3421 -- a deferred constant as a constant declaration with no expression.
3422 -- A deferred constant can appear in a package body if its completion
3423 -- is by means of an interface pragma.
3424
3425 if Constant_Present (N) and then No (E) then
3426
3427 -- A deferred constant may appear in the declarative part of the
3428 -- following constructs:
3429
3430 -- blocks
3431 -- entry bodies
3432 -- extended return statements
3433 -- package specs
3434 -- package bodies
3435 -- subprogram bodies
3436 -- task bodies
3437
3438 -- When declared inside a package spec, a deferred constant must be
3439 -- completed by a full constant declaration or pragma Import. In all
3440 -- other cases, the only proper completion is pragma Import. Extended
3441 -- return statements are flagged as invalid contexts because they do
3442 -- not have a declarative part and so cannot accommodate the pragma.
3443
3444 if Ekind (Current_Scope) = E_Return_Statement then
3445 Error_Msg_N
3446 ("invalid context for deferred constant declaration (RM 7.4)",
3447 N);
3448 Error_Msg_N
3449 ("\declaration requires an initialization expression",
3450 N);
3451 Set_Constant_Present (N, False);
3452
3453 -- In Ada 83, deferred constant must be of private type
3454
3455 elsif not Is_Private_Type (T) then
3456 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3457 Error_Msg_N
3458 ("(Ada 83) deferred constant must be private type", N);
3459 end if;
3460 end if;
3461
3462 -- If not a deferred constant, then the object declaration freezes
3463 -- its type, unless the object is of an anonymous type and has delayed
3464 -- aspects. In that case the type is frozen when the object itself is.
3465
3466 else
3467 Check_Fully_Declared (T, N);
3468
3469 if Has_Delayed_Aspects (Id)
3470 and then Is_Array_Type (T)
3471 and then Is_Itype (T)
3472 then
3473 Set_Has_Delayed_Freeze (T);
3474 else
3475 Freeze_Before (N, T);
3476 end if;
3477 end if;
3478
3479 -- If the object was created by a constrained array definition, then
3480 -- set the link in both the anonymous base type and anonymous subtype
3481 -- that are built to represent the array type to point to the object.
3482
3483 if Nkind (Object_Definition (Declaration_Node (Id))) =
3484 N_Constrained_Array_Definition
3485 then
3486 Set_Related_Array_Object (T, Id);
3487 Set_Related_Array_Object (Base_Type (T), Id);
3488 end if;
3489
3490 -- Special checks for protected objects not at library level
3491
3492 if Is_Protected_Type (T)
3493 and then not Is_Library_Level_Entity (Id)
3494 then
3495 Check_Restriction (No_Local_Protected_Objects, Id);
3496
3497 -- Protected objects with interrupt handlers must be at library level
3498
3499 -- Ada 2005: This test is not needed (and the corresponding clause
3500 -- in the RM is removed) because accessibility checks are sufficient
3501 -- to make handlers not at the library level illegal.
3502
3503 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3504 -- applies to the '95 version of the language as well.
3505
3506 if Has_Interrupt_Handler (T) and then Ada_Version < Ada_95 then
3507 Error_Msg_N
3508 ("interrupt object can only be declared at library level", Id);
3509 end if;
3510 end if;
3511
3512 -- The actual subtype of the object is the nominal subtype, unless
3513 -- the nominal one is unconstrained and obtained from the expression.
3514
3515 Act_T := T;
3516
3517 -- These checks should be performed before the initialization expression
3518 -- is considered, so that the Object_Definition node is still the same
3519 -- as in source code.
3520
3521 -- In SPARK, the nominal subtype is always given by a subtype mark
3522 -- and must not be unconstrained. (The only exception to this is the
3523 -- acceptance of declarations of constants of type String.)
3524
3525 if not
3526 Nkind_In (Object_Definition (N), N_Identifier, N_Expanded_Name)
3527 then
3528 Check_SPARK_05_Restriction
3529 ("subtype mark required", Object_Definition (N));
3530
3531 elsif Is_Array_Type (T)
3532 and then not Is_Constrained (T)
3533 and then T /= Standard_String
3534 then
3535 Check_SPARK_05_Restriction
3536 ("subtype mark of constrained type expected",
3537 Object_Definition (N));
3538 end if;
3539
3540 -- There are no aliased objects in SPARK
3541
3542 if Aliased_Present (N) then
3543 Check_SPARK_05_Restriction ("aliased object is not allowed", N);
3544 end if;
3545
3546 -- Process initialization expression if present and not in error
3547
3548 if Present (E) and then E /= Error then
3549
3550 -- Generate an error in case of CPP class-wide object initialization.
3551 -- Required because otherwise the expansion of the class-wide
3552 -- assignment would try to use 'size to initialize the object
3553 -- (primitive that is not available in CPP tagged types).
3554
3555 if Is_Class_Wide_Type (Act_T)
3556 and then
3557 (Is_CPP_Class (Root_Type (Etype (Act_T)))
3558 or else
3559 (Present (Full_View (Root_Type (Etype (Act_T))))
3560 and then
3561 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
3562 then
3563 Error_Msg_N
3564 ("predefined assignment not available for 'C'P'P tagged types",
3565 E);
3566 end if;
3567
3568 Mark_Coextensions (N, E);
3569 Analyze (E);
3570
3571 -- In case of errors detected in the analysis of the expression,
3572 -- decorate it with the expected type to avoid cascaded errors
3573
3574 if No (Etype (E)) then
3575 Set_Etype (E, T);
3576 end if;
3577
3578 -- If an initialization expression is present, then we set the
3579 -- Is_True_Constant flag. It will be reset if this is a variable
3580 -- and it is indeed modified.
3581
3582 Set_Is_True_Constant (Id, True);
3583
3584 -- If we are analyzing a constant declaration, set its completion
3585 -- flag after analyzing and resolving the expression.
3586
3587 if Constant_Present (N) then
3588 Set_Has_Completion (Id);
3589 end if;
3590
3591 -- Set type and resolve (type may be overridden later on). Note:
3592 -- Ekind (Id) must still be E_Void at this point so that incorrect
3593 -- early usage within E is properly diagnosed.
3594
3595 Set_Etype (Id, T);
3596
3597 -- If the expression is an aggregate we must look ahead to detect
3598 -- the possible presence of an address clause, and defer resolution
3599 -- and expansion of the aggregate to the freeze point of the entity.
3600
3601 if Comes_From_Source (N)
3602 and then Expander_Active
3603 and then Has_Following_Address_Clause (N)
3604 and then Nkind (E) = N_Aggregate
3605 then
3606 Set_Etype (E, T);
3607
3608 else
3609 Resolve (E, T);
3610 end if;
3611
3612 -- No further action needed if E is a call to an inlined function
3613 -- which returns an unconstrained type and it has been expanded into
3614 -- a procedure call. In that case N has been replaced by an object
3615 -- declaration without initializing expression and it has been
3616 -- analyzed (see Expand_Inlined_Call).
3617
3618 if Back_End_Inlining
3619 and then Expander_Active
3620 and then Nkind (E) = N_Function_Call
3621 and then Nkind (Name (E)) in N_Has_Entity
3622 and then Is_Inlined (Entity (Name (E)))
3623 and then not Is_Constrained (Etype (E))
3624 and then Analyzed (N)
3625 and then No (Expression (N))
3626 then
3627 return;
3628 end if;
3629
3630 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3631 -- node (which was marked already-analyzed), we need to set the type
3632 -- to something other than Any_Access in order to keep gigi happy.
3633
3634 if Etype (E) = Any_Access then
3635 Set_Etype (E, T);
3636 end if;
3637
3638 -- If the object is an access to variable, the initialization
3639 -- expression cannot be an access to constant.
3640
3641 if Is_Access_Type (T)
3642 and then not Is_Access_Constant (T)
3643 and then Is_Access_Type (Etype (E))
3644 and then Is_Access_Constant (Etype (E))
3645 then
3646 Error_Msg_N
3647 ("access to variable cannot be initialized with an "
3648 & "access-to-constant expression", E);
3649 end if;
3650
3651 if not Assignment_OK (N) then
3652 Check_Initialization (T, E);
3653 end if;
3654
3655 Check_Unset_Reference (E);
3656
3657 -- If this is a variable, then set current value. If this is a
3658 -- declared constant of a scalar type with a static expression,
3659 -- indicate that it is always valid.
3660
3661 if not Constant_Present (N) then
3662 if Compile_Time_Known_Value (E) then
3663 Set_Current_Value (Id, E);
3664 end if;
3665
3666 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
3667 Set_Is_Known_Valid (Id);
3668 end if;
3669
3670 -- Deal with setting of null flags
3671
3672 if Is_Access_Type (T) then
3673 if Known_Non_Null (E) then
3674 Set_Is_Known_Non_Null (Id, True);
3675 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
3676 Set_Is_Known_Null (Id, True);
3677 end if;
3678 end if;
3679
3680 -- Check incorrect use of dynamically tagged expressions
3681
3682 if Is_Tagged_Type (T) then
3683 Check_Dynamically_Tagged_Expression
3684 (Expr => E,
3685 Typ => T,
3686 Related_Nod => N);
3687 end if;
3688
3689 Apply_Scalar_Range_Check (E, T);
3690 Apply_Static_Length_Check (E, T);
3691
3692 if Nkind (Original_Node (N)) = N_Object_Declaration
3693 and then Comes_From_Source (Original_Node (N))
3694
3695 -- Only call test if needed
3696
3697 and then Restriction_Check_Required (SPARK_05)
3698 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
3699 then
3700 Check_SPARK_05_Restriction
3701 ("initialization expression is not appropriate", E);
3702 end if;
3703
3704 -- A formal parameter of a specific tagged type whose related
3705 -- subprogram is subject to pragma Extensions_Visible with value
3706 -- "False" cannot be implicitly converted to a class-wide type by
3707 -- means of an initialization expression (SPARK RM 6.1.7(3)).
3708
3709 if Is_Class_Wide_Type (T) and then Is_EVF_Expression (E) then
3710 Error_Msg_N
3711 ("formal parameter with Extensions_Visible False cannot be "
3712 & "implicitly converted to class-wide type", E);
3713 end if;
3714 end if;
3715
3716 -- If the No_Streams restriction is set, check that the type of the
3717 -- object is not, and does not contain, any subtype derived from
3718 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3719 -- Has_Stream just for efficiency reasons. There is no point in
3720 -- spending time on a Has_Stream check if the restriction is not set.
3721
3722 if Restriction_Check_Required (No_Streams) then
3723 if Has_Stream (T) then
3724 Check_Restriction (No_Streams, N);
3725 end if;
3726 end if;
3727
3728 -- Deal with predicate check before we start to do major rewriting. It
3729 -- is OK to initialize and then check the initialized value, since the
3730 -- object goes out of scope if we get a predicate failure. Note that we
3731 -- do this in the analyzer and not the expander because the analyzer
3732 -- does some substantial rewriting in some cases.
3733
3734 -- We need a predicate check if the type has predicates, and if either
3735 -- there is an initializing expression, or for default initialization
3736 -- when we have at least one case of an explicit default initial value
3737 -- and then this is not an internal declaration whose initialization
3738 -- comes later (as for an aggregate expansion).
3739
3740 if not Suppress_Assignment_Checks (N)
3741 and then Present (Predicate_Function (T))
3742 and then not No_Initialization (N)
3743 and then
3744 (Present (E)
3745 or else
3746 Is_Partially_Initialized_Type (T, Include_Implicit => False))
3747 then
3748 -- If the type has a static predicate and the expression is known at
3749 -- compile time, see if the expression satisfies the predicate.
3750
3751 if Present (E) then
3752 Check_Expression_Against_Static_Predicate (E, T);
3753 end if;
3754
3755 Insert_After (N,
3756 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
3757 end if;
3758
3759 -- Case of unconstrained type
3760
3761 if Is_Indefinite_Subtype (T) then
3762
3763 -- In SPARK, a declaration of unconstrained type is allowed
3764 -- only for constants of type string.
3765
3766 if Is_String_Type (T) and then not Constant_Present (N) then
3767 Check_SPARK_05_Restriction
3768 ("declaration of object of unconstrained type not allowed", N);
3769 end if;
3770
3771 -- Nothing to do in deferred constant case
3772
3773 if Constant_Present (N) and then No (E) then
3774 null;
3775
3776 -- Case of no initialization present
3777
3778 elsif No (E) then
3779 if No_Initialization (N) then
3780 null;
3781
3782 elsif Is_Class_Wide_Type (T) then
3783 Error_Msg_N
3784 ("initialization required in class-wide declaration ", N);
3785
3786 else
3787 Error_Msg_N
3788 ("unconstrained subtype not allowed (need initialization)",
3789 Object_Definition (N));
3790
3791 if Is_Record_Type (T) and then Has_Discriminants (T) then
3792 Error_Msg_N
3793 ("\provide initial value or explicit discriminant values",
3794 Object_Definition (N));
3795
3796 Error_Msg_NE
3797 ("\or give default discriminant values for type&",
3798 Object_Definition (N), T);
3799
3800 elsif Is_Array_Type (T) then
3801 Error_Msg_N
3802 ("\provide initial value or explicit array bounds",
3803 Object_Definition (N));
3804 end if;
3805 end if;
3806
3807 -- Case of initialization present but in error. Set initial
3808 -- expression as absent (but do not make above complaints)
3809
3810 elsif E = Error then
3811 Set_Expression (N, Empty);
3812 E := Empty;
3813
3814 -- Case of initialization present
3815
3816 else
3817 -- Check restrictions in Ada 83
3818
3819 if not Constant_Present (N) then
3820
3821 -- Unconstrained variables not allowed in Ada 83 mode
3822
3823 if Ada_Version = Ada_83
3824 and then Comes_From_Source (Object_Definition (N))
3825 then
3826 Error_Msg_N
3827 ("(Ada 83) unconstrained variable not allowed",
3828 Object_Definition (N));
3829 end if;
3830 end if;
3831
3832 -- Now we constrain the variable from the initializing expression
3833
3834 -- If the expression is an aggregate, it has been expanded into
3835 -- individual assignments. Retrieve the actual type from the
3836 -- expanded construct.
3837
3838 if Is_Array_Type (T)
3839 and then No_Initialization (N)
3840 and then Nkind (Original_Node (E)) = N_Aggregate
3841 then
3842 Act_T := Etype (E);
3843
3844 -- In case of class-wide interface object declarations we delay
3845 -- the generation of the equivalent record type declarations until
3846 -- its expansion because there are cases in they are not required.
3847
3848 elsif Is_Interface (T) then
3849 null;
3850
3851 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
3852 -- we should prevent the generation of another Itype with the
3853 -- same name as the one already generated, or we end up with
3854 -- two identical types in GNATprove.
3855
3856 elsif GNATprove_Mode then
3857 null;
3858
3859 -- If the type is an unchecked union, no subtype can be built from
3860 -- the expression. Rewrite declaration as a renaming, which the
3861 -- back-end can handle properly. This is a rather unusual case,
3862 -- because most unchecked_union declarations have default values
3863 -- for discriminants and are thus not indefinite.
3864
3865 elsif Is_Unchecked_Union (T) then
3866 if Constant_Present (N) or else Nkind (E) = N_Function_Call then
3867 Set_Ekind (Id, E_Constant);
3868 else
3869 Set_Ekind (Id, E_Variable);
3870 end if;
3871
3872 Rewrite (N,
3873 Make_Object_Renaming_Declaration (Loc,
3874 Defining_Identifier => Id,
3875 Subtype_Mark => New_Occurrence_Of (T, Loc),
3876 Name => E));
3877
3878 Set_Renamed_Object (Id, E);
3879 Freeze_Before (N, T);
3880 Set_Is_Frozen (Id);
3881 return;
3882
3883 else
3884 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
3885 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
3886 end if;
3887
3888 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
3889
3890 if Aliased_Present (N) then
3891 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3892 end if;
3893
3894 Freeze_Before (N, Act_T);
3895 Freeze_Before (N, T);
3896 end if;
3897
3898 elsif Is_Array_Type (T)
3899 and then No_Initialization (N)
3900 and then Nkind (Original_Node (E)) = N_Aggregate
3901 then
3902 if not Is_Entity_Name (Object_Definition (N)) then
3903 Act_T := Etype (E);
3904 Check_Compile_Time_Size (Act_T);
3905
3906 if Aliased_Present (N) then
3907 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3908 end if;
3909 end if;
3910
3911 -- When the given object definition and the aggregate are specified
3912 -- independently, and their lengths might differ do a length check.
3913 -- This cannot happen if the aggregate is of the form (others =>...)
3914
3915 if not Is_Constrained (T) then
3916 null;
3917
3918 elsif Nkind (E) = N_Raise_Constraint_Error then
3919
3920 -- Aggregate is statically illegal. Place back in declaration
3921
3922 Set_Expression (N, E);
3923 Set_No_Initialization (N, False);
3924
3925 elsif T = Etype (E) then
3926 null;
3927
3928 elsif Nkind (E) = N_Aggregate
3929 and then Present (Component_Associations (E))
3930 and then Present (Choices (First (Component_Associations (E))))
3931 and then Nkind (First
3932 (Choices (First (Component_Associations (E))))) = N_Others_Choice
3933 then
3934 null;
3935
3936 else
3937 Apply_Length_Check (E, T);
3938 end if;
3939
3940 -- If the type is limited unconstrained with defaulted discriminants and
3941 -- there is no expression, then the object is constrained by the
3942 -- defaults, so it is worthwhile building the corresponding subtype.
3943
3944 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
3945 and then not Is_Constrained (T)
3946 and then Has_Discriminants (T)
3947 then
3948 if No (E) then
3949 Act_T := Build_Default_Subtype (T, N);
3950 else
3951 -- Ada 2005: A limited object may be initialized by means of an
3952 -- aggregate. If the type has default discriminants it has an
3953 -- unconstrained nominal type, Its actual subtype will be obtained
3954 -- from the aggregate, and not from the default discriminants.
3955
3956 Act_T := Etype (E);
3957 end if;
3958
3959 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
3960
3961 elsif Nkind (E) = N_Function_Call
3962 and then Constant_Present (N)
3963 and then Has_Unconstrained_Elements (Etype (E))
3964 then
3965 -- The back-end has problems with constants of a discriminated type
3966 -- with defaults, if the initial value is a function call. We
3967 -- generate an intermediate temporary that will receive a reference
3968 -- to the result of the call. The initialization expression then
3969 -- becomes a dereference of that temporary.
3970
3971 Remove_Side_Effects (E);
3972
3973 -- If this is a constant declaration of an unconstrained type and
3974 -- the initialization is an aggregate, we can use the subtype of the
3975 -- aggregate for the declared entity because it is immutable.
3976
3977 elsif not Is_Constrained (T)
3978 and then Has_Discriminants (T)
3979 and then Constant_Present (N)
3980 and then not Has_Unchecked_Union (T)
3981 and then Nkind (E) = N_Aggregate
3982 then
3983 Act_T := Etype (E);
3984 end if;
3985
3986 -- Check No_Wide_Characters restriction
3987
3988 Check_Wide_Character_Restriction (T, Object_Definition (N));
3989
3990 -- Indicate this is not set in source. Certainly true for constants, and
3991 -- true for variables so far (will be reset for a variable if and when
3992 -- we encounter a modification in the source).
3993
3994 Set_Never_Set_In_Source (Id, True);
3995
3996 -- Now establish the proper kind and type of the object
3997
3998 if Constant_Present (N) then
3999 Set_Ekind (Id, E_Constant);
4000 Set_Is_True_Constant (Id);
4001
4002 else
4003 Set_Ekind (Id, E_Variable);
4004
4005 -- A variable is set as shared passive if it appears in a shared
4006 -- passive package, and is at the outer level. This is not done for
4007 -- entities generated during expansion, because those are always
4008 -- manipulated locally.
4009
4010 if Is_Shared_Passive (Current_Scope)
4011 and then Is_Library_Level_Entity (Id)
4012 and then Comes_From_Source (Id)
4013 then
4014 Set_Is_Shared_Passive (Id);
4015 Check_Shared_Var (Id, T, N);
4016 end if;
4017
4018 -- Set Has_Initial_Value if initializing expression present. Note
4019 -- that if there is no initializing expression, we leave the state
4020 -- of this flag unchanged (usually it will be False, but notably in
4021 -- the case of exception choice variables, it will already be true).
4022
4023 if Present (E) then
4024 Set_Has_Initial_Value (Id, True);
4025 end if;
4026
4027 Set_Contract (Id, Make_Contract (Sloc (Id)));
4028 end if;
4029
4030 -- Initialize alignment and size and capture alignment setting
4031
4032 Init_Alignment (Id);
4033 Init_Esize (Id);
4034 Set_Optimize_Alignment_Flags (Id);
4035
4036 -- Deal with aliased case
4037
4038 if Aliased_Present (N) then
4039 Set_Is_Aliased (Id);
4040
4041 -- If the object is aliased and the type is unconstrained with
4042 -- defaulted discriminants and there is no expression, then the
4043 -- object is constrained by the defaults, so it is worthwhile
4044 -- building the corresponding subtype.
4045
4046 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4047 -- unconstrained, then only establish an actual subtype if the
4048 -- nominal subtype is indefinite. In definite cases the object is
4049 -- unconstrained in Ada 2005.
4050
4051 if No (E)
4052 and then Is_Record_Type (T)
4053 and then not Is_Constrained (T)
4054 and then Has_Discriminants (T)
4055 and then (Ada_Version < Ada_2005 or else Is_Indefinite_Subtype (T))
4056 then
4057 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
4058 end if;
4059 end if;
4060
4061 -- Now we can set the type of the object
4062
4063 Set_Etype (Id, Act_T);
4064
4065 -- Non-constant object is marked to be treated as volatile if type is
4066 -- volatile and we clear the Current_Value setting that may have been
4067 -- set above. Doing so for constants isn't required and might interfere
4068 -- with possible uses of the object as a static expression in contexts
4069 -- incompatible with volatility (e.g. as a case-statement alternative).
4070
4071 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
4072 Set_Treat_As_Volatile (Id);
4073 Set_Current_Value (Id, Empty);
4074 end if;
4075
4076 -- Deal with controlled types
4077
4078 if Has_Controlled_Component (Etype (Id))
4079 or else Is_Controlled (Etype (Id))
4080 then
4081 if not Is_Library_Level_Entity (Id) then
4082 Check_Restriction (No_Nested_Finalization, N);
4083 else
4084 Validate_Controlled_Object (Id);
4085 end if;
4086 end if;
4087
4088 if Has_Task (Etype (Id)) then
4089 Check_Restriction (No_Tasking, N);
4090
4091 -- Deal with counting max tasks
4092
4093 -- Nothing to do if inside a generic
4094
4095 if Inside_A_Generic then
4096 null;
4097
4098 -- If library level entity, then count tasks
4099
4100 elsif Is_Library_Level_Entity (Id) then
4101 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4102
4103 -- If not library level entity, then indicate we don't know max
4104 -- tasks and also check task hierarchy restriction and blocking
4105 -- operation (since starting a task is definitely blocking).
4106
4107 else
4108 Check_Restriction (Max_Tasks, N);
4109 Check_Restriction (No_Task_Hierarchy, N);
4110 Check_Potentially_Blocking_Operation (N);
4111 end if;
4112
4113 -- A rather specialized test. If we see two tasks being declared
4114 -- of the same type in the same object declaration, and the task
4115 -- has an entry with an address clause, we know that program error
4116 -- will be raised at run time since we can't have two tasks with
4117 -- entries at the same address.
4118
4119 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4120 declare
4121 E : Entity_Id;
4122
4123 begin
4124 E := First_Entity (Etype (Id));
4125 while Present (E) loop
4126 if Ekind (E) = E_Entry
4127 and then Present (Get_Attribute_Definition_Clause
4128 (E, Attribute_Address))
4129 then
4130 Error_Msg_Warn := SPARK_Mode /= On;
4131 Error_Msg_N
4132 ("more than one task with same entry address<<", N);
4133 Error_Msg_N ("\Program_Error [<<", N);
4134 Insert_Action (N,
4135 Make_Raise_Program_Error (Loc,
4136 Reason => PE_Duplicated_Entry_Address));
4137 exit;
4138 end if;
4139
4140 Next_Entity (E);
4141 end loop;
4142 end;
4143 end if;
4144 end if;
4145
4146 -- Some simple constant-propagation: if the expression is a constant
4147 -- string initialized with a literal, share the literal. This avoids
4148 -- a run-time copy.
4149
4150 if Present (E)
4151 and then Is_Entity_Name (E)
4152 and then Ekind (Entity (E)) = E_Constant
4153 and then Base_Type (Etype (E)) = Standard_String
4154 then
4155 declare
4156 Val : constant Node_Id := Constant_Value (Entity (E));
4157 begin
4158 if Present (Val) and then Nkind (Val) = N_String_Literal then
4159 Rewrite (E, New_Copy (Val));
4160 end if;
4161 end;
4162 end if;
4163
4164 -- Another optimization: if the nominal subtype is unconstrained and
4165 -- the expression is a function call that returns an unconstrained
4166 -- type, rewrite the declaration as a renaming of the result of the
4167 -- call. The exceptions below are cases where the copy is expected,
4168 -- either by the back end (Aliased case) or by the semantics, as for
4169 -- initializing controlled types or copying tags for classwide types.
4170
4171 if Present (E)
4172 and then Nkind (E) = N_Explicit_Dereference
4173 and then Nkind (Original_Node (E)) = N_Function_Call
4174 and then not Is_Library_Level_Entity (Id)
4175 and then not Is_Constrained (Underlying_Type (T))
4176 and then not Is_Aliased (Id)
4177 and then not Is_Class_Wide_Type (T)
4178 and then not Is_Controlled (T)
4179 and then not Has_Controlled_Component (Base_Type (T))
4180 and then Expander_Active
4181 then
4182 Rewrite (N,
4183 Make_Object_Renaming_Declaration (Loc,
4184 Defining_Identifier => Id,
4185 Access_Definition => Empty,
4186 Subtype_Mark => New_Occurrence_Of
4187 (Base_Type (Etype (Id)), Loc),
4188 Name => E));
4189
4190 Set_Renamed_Object (Id, E);
4191
4192 -- Force generation of debugging information for the constant and for
4193 -- the renamed function call.
4194
4195 Set_Debug_Info_Needed (Id);
4196 Set_Debug_Info_Needed (Entity (Prefix (E)));
4197 end if;
4198
4199 if Present (Prev_Entity)
4200 and then Is_Frozen (Prev_Entity)
4201 and then not Error_Posted (Id)
4202 then
4203 Error_Msg_N ("full constant declaration appears too late", N);
4204 end if;
4205
4206 Check_Eliminated (Id);
4207
4208 -- Deal with setting In_Private_Part flag if in private part
4209
4210 if Ekind (Scope (Id)) = E_Package and then In_Private_Part (Scope (Id))
4211 then
4212 Set_In_Private_Part (Id);
4213 end if;
4214
4215 -- Check for violation of No_Local_Timing_Events
4216
4217 if Restriction_Check_Required (No_Local_Timing_Events)
4218 and then not Is_Library_Level_Entity (Id)
4219 and then Is_RTE (Etype (Id), RE_Timing_Event)
4220 then
4221 Check_Restriction (No_Local_Timing_Events, N);
4222 end if;
4223
4224 <<Leave>>
4225 -- Initialize the refined state of a variable here because this is a
4226 -- common destination for legal and illegal object declarations.
4227
4228 if Ekind (Id) = E_Variable then
4229 Set_Encapsulating_State (Id, Empty);
4230 end if;
4231
4232 if Has_Aspects (N) then
4233 Analyze_Aspect_Specifications (N, Id);
4234 end if;
4235
4236 Analyze_Dimension (N);
4237
4238 -- Verify whether the object declaration introduces an illegal hidden
4239 -- state within a package subject to a null abstract state.
4240
4241 if Ekind (Id) = E_Variable then
4242 Check_No_Hidden_State (Id);
4243 end if;
4244 end Analyze_Object_Declaration;
4245
4246 ---------------------------
4247 -- Analyze_Others_Choice --
4248 ---------------------------
4249
4250 -- Nothing to do for the others choice node itself, the semantic analysis
4251 -- of the others choice will occur as part of the processing of the parent
4252
4253 procedure Analyze_Others_Choice (N : Node_Id) is
4254 pragma Warnings (Off, N);
4255 begin
4256 null;
4257 end Analyze_Others_Choice;
4258
4259 -------------------------------------------
4260 -- Analyze_Private_Extension_Declaration --
4261 -------------------------------------------
4262
4263 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4264 T : constant Entity_Id := Defining_Identifier (N);
4265 Indic : constant Node_Id := Subtype_Indication (N);
4266 Parent_Type : Entity_Id;
4267 Parent_Base : Entity_Id;
4268
4269 begin
4270 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4271
4272 if Is_Non_Empty_List (Interface_List (N)) then
4273 declare
4274 Intf : Node_Id;
4275 T : Entity_Id;
4276
4277 begin
4278 Intf := First (Interface_List (N));
4279 while Present (Intf) loop
4280 T := Find_Type_Of_Subtype_Indic (Intf);
4281
4282 Diagnose_Interface (Intf, T);
4283 Next (Intf);
4284 end loop;
4285 end;
4286 end if;
4287
4288 Generate_Definition (T);
4289
4290 -- For other than Ada 2012, just enter the name in the current scope
4291
4292 if Ada_Version < Ada_2012 then
4293 Enter_Name (T);
4294
4295 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4296 -- case of private type that completes an incomplete type.
4297
4298 else
4299 declare
4300 Prev : Entity_Id;
4301
4302 begin
4303 Prev := Find_Type_Name (N);
4304
4305 pragma Assert (Prev = T
4306 or else (Ekind (Prev) = E_Incomplete_Type
4307 and then Present (Full_View (Prev))
4308 and then Full_View (Prev) = T));
4309 end;
4310 end if;
4311
4312 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
4313 Parent_Base := Base_Type (Parent_Type);
4314
4315 if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then
4316 Set_Ekind (T, Ekind (Parent_Type));
4317 Set_Etype (T, Any_Type);
4318 goto Leave;
4319
4320 elsif not Is_Tagged_Type (Parent_Type) then
4321 Error_Msg_N
4322 ("parent of type extension must be a tagged type ", Indic);
4323 goto Leave;
4324
4325 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
4326 Error_Msg_N ("premature derivation of incomplete type", Indic);
4327 goto Leave;
4328
4329 elsif Is_Concurrent_Type (Parent_Type) then
4330 Error_Msg_N
4331 ("parent type of a private extension cannot be "
4332 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
4333
4334 Set_Etype (T, Any_Type);
4335 Set_Ekind (T, E_Limited_Private_Type);
4336 Set_Private_Dependents (T, New_Elmt_List);
4337 Set_Error_Posted (T);
4338 goto Leave;
4339 end if;
4340
4341 -- Perhaps the parent type should be changed to the class-wide type's
4342 -- specific type in this case to prevent cascading errors ???
4343
4344 if Is_Class_Wide_Type (Parent_Type) then
4345 Error_Msg_N
4346 ("parent of type extension must not be a class-wide type", Indic);
4347 goto Leave;
4348 end if;
4349
4350 if (not Is_Package_Or_Generic_Package (Current_Scope)
4351 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
4352 or else In_Private_Part (Current_Scope)
4353
4354 then
4355 Error_Msg_N ("invalid context for private extension", N);
4356 end if;
4357
4358 -- Set common attributes
4359
4360 Set_Is_Pure (T, Is_Pure (Current_Scope));
4361 Set_Scope (T, Current_Scope);
4362 Set_Ekind (T, E_Record_Type_With_Private);
4363 Init_Size_Align (T);
4364 Set_Default_SSO (T);
4365
4366 Set_Etype (T, Parent_Base);
4367 Set_Has_Task (T, Has_Task (Parent_Base));
4368 Set_Has_Protected (T, Has_Task (Parent_Base));
4369
4370 Set_Convention (T, Convention (Parent_Type));
4371 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
4372 Set_Is_First_Subtype (T);
4373 Make_Class_Wide_Type (T);
4374
4375 if Unknown_Discriminants_Present (N) then
4376 Set_Discriminant_Constraint (T, No_Elist);
4377 end if;
4378
4379 Build_Derived_Record_Type (N, Parent_Type, T);
4380
4381 -- Propagate inherited invariant information. The new type has
4382 -- invariants, if the parent type has inheritable invariants,
4383 -- and these invariants can in turn be inherited.
4384
4385 if Has_Inheritable_Invariants (Parent_Type) then
4386 Set_Has_Inheritable_Invariants (T);
4387 Set_Has_Invariants (T);
4388 end if;
4389
4390 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4391 -- synchronized formal derived type.
4392
4393 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
4394 Set_Is_Limited_Record (T);
4395
4396 -- Formal derived type case
4397
4398 if Is_Generic_Type (T) then
4399
4400 -- The parent must be a tagged limited type or a synchronized
4401 -- interface.
4402
4403 if (not Is_Tagged_Type (Parent_Type)
4404 or else not Is_Limited_Type (Parent_Type))
4405 and then
4406 (not Is_Interface (Parent_Type)
4407 or else not Is_Synchronized_Interface (Parent_Type))
4408 then
4409 Error_Msg_NE ("parent type of & must be tagged limited " &
4410 "or synchronized", N, T);
4411 end if;
4412
4413 -- The progenitors (if any) must be limited or synchronized
4414 -- interfaces.
4415
4416 if Present (Interfaces (T)) then
4417 declare
4418 Iface : Entity_Id;
4419 Iface_Elmt : Elmt_Id;
4420
4421 begin
4422 Iface_Elmt := First_Elmt (Interfaces (T));
4423 while Present (Iface_Elmt) loop
4424 Iface := Node (Iface_Elmt);
4425
4426 if not Is_Limited_Interface (Iface)
4427 and then not Is_Synchronized_Interface (Iface)
4428 then
4429 Error_Msg_NE ("progenitor & must be limited " &
4430 "or synchronized", N, Iface);
4431 end if;
4432
4433 Next_Elmt (Iface_Elmt);
4434 end loop;
4435 end;
4436 end if;
4437
4438 -- Regular derived extension, the parent must be a limited or
4439 -- synchronized interface.
4440
4441 else
4442 if not Is_Interface (Parent_Type)
4443 or else (not Is_Limited_Interface (Parent_Type)
4444 and then not Is_Synchronized_Interface (Parent_Type))
4445 then
4446 Error_Msg_NE
4447 ("parent type of & must be limited interface", N, T);
4448 end if;
4449 end if;
4450
4451 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4452 -- extension with a synchronized parent must be explicitly declared
4453 -- synchronized, because the full view will be a synchronized type.
4454 -- This must be checked before the check for limited types below,
4455 -- to ensure that types declared limited are not allowed to extend
4456 -- synchronized interfaces.
4457
4458 elsif Is_Interface (Parent_Type)
4459 and then Is_Synchronized_Interface (Parent_Type)
4460 and then not Synchronized_Present (N)
4461 then
4462 Error_Msg_NE
4463 ("private extension of& must be explicitly synchronized",
4464 N, Parent_Type);
4465
4466 elsif Limited_Present (N) then
4467 Set_Is_Limited_Record (T);
4468
4469 if not Is_Limited_Type (Parent_Type)
4470 and then
4471 (not Is_Interface (Parent_Type)
4472 or else not Is_Limited_Interface (Parent_Type))
4473 then
4474 Error_Msg_NE ("parent type& of limited extension must be limited",
4475 N, Parent_Type);
4476 end if;
4477 end if;
4478
4479 <<Leave>>
4480 if Has_Aspects (N) then
4481 Analyze_Aspect_Specifications (N, T);
4482 end if;
4483 end Analyze_Private_Extension_Declaration;
4484
4485 ---------------------------------
4486 -- Analyze_Subtype_Declaration --
4487 ---------------------------------
4488
4489 procedure Analyze_Subtype_Declaration
4490 (N : Node_Id;
4491 Skip : Boolean := False)
4492 is
4493 Id : constant Entity_Id := Defining_Identifier (N);
4494 T : Entity_Id;
4495 R_Checks : Check_Result;
4496
4497 begin
4498 Generate_Definition (Id);
4499 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4500 Init_Size_Align (Id);
4501
4502 -- The following guard condition on Enter_Name is to handle cases where
4503 -- the defining identifier has already been entered into the scope but
4504 -- the declaration as a whole needs to be analyzed.
4505
4506 -- This case in particular happens for derived enumeration types. The
4507 -- derived enumeration type is processed as an inserted enumeration type
4508 -- declaration followed by a rewritten subtype declaration. The defining
4509 -- identifier, however, is entered into the name scope very early in the
4510 -- processing of the original type declaration and therefore needs to be
4511 -- avoided here, when the created subtype declaration is analyzed. (See
4512 -- Build_Derived_Types)
4513
4514 -- This also happens when the full view of a private type is derived
4515 -- type with constraints. In this case the entity has been introduced
4516 -- in the private declaration.
4517
4518 -- Finally this happens in some complex cases when validity checks are
4519 -- enabled, where the same subtype declaration may be analyzed twice.
4520 -- This can happen if the subtype is created by the pre-analysis of
4521 -- an attribute tht gives the range of a loop statement, and the loop
4522 -- itself appears within an if_statement that will be rewritten during
4523 -- expansion.
4524
4525 if Skip
4526 or else (Present (Etype (Id))
4527 and then (Is_Private_Type (Etype (Id))
4528 or else Is_Task_Type (Etype (Id))
4529 or else Is_Rewrite_Substitution (N)))
4530 then
4531 null;
4532
4533 elsif Current_Entity (Id) = Id then
4534 null;
4535
4536 else
4537 Enter_Name (Id);
4538 end if;
4539
4540 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
4541
4542 -- Class-wide equivalent types of records with unknown discriminants
4543 -- involve the generation of an itype which serves as the private view
4544 -- of a constrained record subtype. In such cases the base type of the
4545 -- current subtype we are processing is the private itype. Use the full
4546 -- of the private itype when decorating various attributes.
4547
4548 if Is_Itype (T)
4549 and then Is_Private_Type (T)
4550 and then Present (Full_View (T))
4551 then
4552 T := Full_View (T);
4553 end if;
4554
4555 -- Inherit common attributes
4556
4557 Set_Is_Volatile (Id, Is_Volatile (T));
4558 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
4559 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
4560 Set_Convention (Id, Convention (T));
4561
4562 -- If ancestor has predicates then so does the subtype, and in addition
4563 -- we must delay the freeze to properly arrange predicate inheritance.
4564
4565 -- The Ancestor_Type test is really unpleasant, there seem to be cases
4566 -- in which T = ID, so the above tests and assignments do nothing???
4567
4568 if Has_Predicates (T)
4569 or else (Present (Ancestor_Subtype (T))
4570 and then Has_Predicates (Ancestor_Subtype (T)))
4571 then
4572 Set_Has_Predicates (Id);
4573 Set_Has_Delayed_Freeze (Id);
4574 end if;
4575
4576 -- Subtype of Boolean cannot have a constraint in SPARK
4577
4578 if Is_Boolean_Type (T)
4579 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
4580 then
4581 Check_SPARK_05_Restriction
4582 ("subtype of Boolean cannot have constraint", N);
4583 end if;
4584
4585 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4586 declare
4587 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
4588 One_Cstr : Node_Id;
4589 Low : Node_Id;
4590 High : Node_Id;
4591
4592 begin
4593 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
4594 One_Cstr := First (Constraints (Cstr));
4595 while Present (One_Cstr) loop
4596
4597 -- Index or discriminant constraint in SPARK must be a
4598 -- subtype mark.
4599
4600 if not
4601 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
4602 then
4603 Check_SPARK_05_Restriction
4604 ("subtype mark required", One_Cstr);
4605
4606 -- String subtype must have a lower bound of 1 in SPARK.
4607 -- Note that we do not need to test for the non-static case
4608 -- here, since that was already taken care of in
4609 -- Process_Range_Expr_In_Decl.
4610
4611 elsif Base_Type (T) = Standard_String then
4612 Get_Index_Bounds (One_Cstr, Low, High);
4613
4614 if Is_OK_Static_Expression (Low)
4615 and then Expr_Value (Low) /= 1
4616 then
4617 Check_SPARK_05_Restriction
4618 ("String subtype must have lower bound of 1", N);
4619 end if;
4620 end if;
4621
4622 Next (One_Cstr);
4623 end loop;
4624 end if;
4625 end;
4626 end if;
4627
4628 -- In the case where there is no constraint given in the subtype
4629 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4630 -- semantic attributes must be established here.
4631
4632 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
4633 Set_Etype (Id, Base_Type (T));
4634
4635 -- Subtype of unconstrained array without constraint is not allowed
4636 -- in SPARK.
4637
4638 if Is_Array_Type (T) and then not Is_Constrained (T) then
4639 Check_SPARK_05_Restriction
4640 ("subtype of unconstrained array must have constraint", N);
4641 end if;
4642
4643 case Ekind (T) is
4644 when Array_Kind =>
4645 Set_Ekind (Id, E_Array_Subtype);
4646 Copy_Array_Subtype_Attributes (Id, T);
4647
4648 when Decimal_Fixed_Point_Kind =>
4649 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
4650 Set_Digits_Value (Id, Digits_Value (T));
4651 Set_Delta_Value (Id, Delta_Value (T));
4652 Set_Scale_Value (Id, Scale_Value (T));
4653 Set_Small_Value (Id, Small_Value (T));
4654 Set_Scalar_Range (Id, Scalar_Range (T));
4655 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
4656 Set_Is_Constrained (Id, Is_Constrained (T));
4657 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4658 Set_RM_Size (Id, RM_Size (T));
4659
4660 when Enumeration_Kind =>
4661 Set_Ekind (Id, E_Enumeration_Subtype);
4662 Set_First_Literal (Id, First_Literal (Base_Type (T)));
4663 Set_Scalar_Range (Id, Scalar_Range (T));
4664 Set_Is_Character_Type (Id, Is_Character_Type (T));
4665 Set_Is_Constrained (Id, Is_Constrained (T));
4666 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4667 Set_RM_Size (Id, RM_Size (T));
4668 Inherit_Predicate_Flags (Id, T);
4669
4670 when Ordinary_Fixed_Point_Kind =>
4671 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
4672 Set_Scalar_Range (Id, Scalar_Range (T));
4673 Set_Small_Value (Id, Small_Value (T));
4674 Set_Delta_Value (Id, Delta_Value (T));
4675 Set_Is_Constrained (Id, Is_Constrained (T));
4676 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4677 Set_RM_Size (Id, RM_Size (T));
4678
4679 when Float_Kind =>
4680 Set_Ekind (Id, E_Floating_Point_Subtype);
4681 Set_Scalar_Range (Id, Scalar_Range (T));
4682 Set_Digits_Value (Id, Digits_Value (T));
4683 Set_Is_Constrained (Id, Is_Constrained (T));
4684
4685 when Signed_Integer_Kind =>
4686 Set_Ekind (Id, E_Signed_Integer_Subtype);
4687 Set_Scalar_Range (Id, Scalar_Range (T));
4688 Set_Is_Constrained (Id, Is_Constrained (T));
4689 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4690 Set_RM_Size (Id, RM_Size (T));
4691 Inherit_Predicate_Flags (Id, T);
4692
4693 when Modular_Integer_Kind =>
4694 Set_Ekind (Id, E_Modular_Integer_Subtype);
4695 Set_Scalar_Range (Id, Scalar_Range (T));
4696 Set_Is_Constrained (Id, Is_Constrained (T));
4697 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4698 Set_RM_Size (Id, RM_Size (T));
4699 Inherit_Predicate_Flags (Id, T);
4700
4701 when Class_Wide_Kind =>
4702 Set_Ekind (Id, E_Class_Wide_Subtype);
4703 Set_First_Entity (Id, First_Entity (T));
4704 Set_Last_Entity (Id, Last_Entity (T));
4705 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4706 Set_Cloned_Subtype (Id, T);
4707 Set_Is_Tagged_Type (Id, True);
4708 Set_Has_Unknown_Discriminants
4709 (Id, True);
4710 Set_No_Tagged_Streams_Pragma
4711 (Id, No_Tagged_Streams_Pragma (T));
4712
4713 if Ekind (T) = E_Class_Wide_Subtype then
4714 Set_Equivalent_Type (Id, Equivalent_Type (T));
4715 end if;
4716
4717 when E_Record_Type | E_Record_Subtype =>
4718 Set_Ekind (Id, E_Record_Subtype);
4719
4720 if Ekind (T) = E_Record_Subtype
4721 and then Present (Cloned_Subtype (T))
4722 then
4723 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
4724 else
4725 Set_Cloned_Subtype (Id, T);
4726 end if;
4727
4728 Set_First_Entity (Id, First_Entity (T));
4729 Set_Last_Entity (Id, Last_Entity (T));
4730 Set_Has_Discriminants (Id, Has_Discriminants (T));
4731 Set_Is_Constrained (Id, Is_Constrained (T));
4732 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4733 Set_Has_Implicit_Dereference
4734 (Id, Has_Implicit_Dereference (T));
4735 Set_Has_Unknown_Discriminants
4736 (Id, Has_Unknown_Discriminants (T));
4737
4738 if Has_Discriminants (T) then
4739 Set_Discriminant_Constraint
4740 (Id, Discriminant_Constraint (T));
4741 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4742
4743 elsif Has_Unknown_Discriminants (Id) then
4744 Set_Discriminant_Constraint (Id, No_Elist);
4745 end if;
4746
4747 if Is_Tagged_Type (T) then
4748 Set_Is_Tagged_Type (Id, True);
4749 Set_No_Tagged_Streams_Pragma
4750 (Id, No_Tagged_Streams_Pragma (T));
4751 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4752 Set_Direct_Primitive_Operations
4753 (Id, Direct_Primitive_Operations (T));
4754 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4755
4756 if Is_Interface (T) then
4757 Set_Is_Interface (Id);
4758 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
4759 end if;
4760 end if;
4761
4762 when Private_Kind =>
4763 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4764 Set_Has_Discriminants (Id, Has_Discriminants (T));
4765 Set_Is_Constrained (Id, Is_Constrained (T));
4766 Set_First_Entity (Id, First_Entity (T));
4767 Set_Last_Entity (Id, Last_Entity (T));
4768 Set_Private_Dependents (Id, New_Elmt_List);
4769 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4770 Set_Has_Implicit_Dereference
4771 (Id, Has_Implicit_Dereference (T));
4772 Set_Has_Unknown_Discriminants
4773 (Id, Has_Unknown_Discriminants (T));
4774 Set_Known_To_Have_Preelab_Init
4775 (Id, Known_To_Have_Preelab_Init (T));
4776
4777 if Is_Tagged_Type (T) then
4778 Set_Is_Tagged_Type (Id);
4779 Set_No_Tagged_Streams_Pragma (Id,
4780 No_Tagged_Streams_Pragma (T));
4781 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4782 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4783 Set_Direct_Primitive_Operations (Id,
4784 Direct_Primitive_Operations (T));
4785 end if;
4786
4787 -- In general the attributes of the subtype of a private type
4788 -- are the attributes of the partial view of parent. However,
4789 -- the full view may be a discriminated type, and the subtype
4790 -- must share the discriminant constraint to generate correct
4791 -- calls to initialization procedures.
4792
4793 if Has_Discriminants (T) then
4794 Set_Discriminant_Constraint
4795 (Id, Discriminant_Constraint (T));
4796 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4797
4798 elsif Present (Full_View (T))
4799 and then Has_Discriminants (Full_View (T))
4800 then
4801 Set_Discriminant_Constraint
4802 (Id, Discriminant_Constraint (Full_View (T)));
4803 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4804
4805 -- This would seem semantically correct, but apparently
4806 -- generates spurious errors about missing components ???
4807
4808 -- Set_Has_Discriminants (Id);
4809 end if;
4810
4811 Prepare_Private_Subtype_Completion (Id, N);
4812
4813 -- If this is the subtype of a constrained private type with
4814 -- discriminants that has got a full view and we also have
4815 -- built a completion just above, show that the completion
4816 -- is a clone of the full view to the back-end.
4817
4818 if Has_Discriminants (T)
4819 and then not Has_Unknown_Discriminants (T)
4820 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
4821 and then Present (Full_View (T))
4822 and then Present (Full_View (Id))
4823 then
4824 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
4825 end if;
4826
4827 when Access_Kind =>
4828 Set_Ekind (Id, E_Access_Subtype);
4829 Set_Is_Constrained (Id, Is_Constrained (T));
4830 Set_Is_Access_Constant
4831 (Id, Is_Access_Constant (T));
4832 Set_Directly_Designated_Type
4833 (Id, Designated_Type (T));
4834 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
4835
4836 -- A Pure library_item must not contain the declaration of a
4837 -- named access type, except within a subprogram, generic
4838 -- subprogram, task unit, or protected unit, or if it has
4839 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4840
4841 if Comes_From_Source (Id)
4842 and then In_Pure_Unit
4843 and then not In_Subprogram_Task_Protected_Unit
4844 and then not No_Pool_Assigned (Id)
4845 then
4846 Error_Msg_N
4847 ("named access types not allowed in pure unit", N);
4848 end if;
4849
4850 when Concurrent_Kind =>
4851 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4852 Set_Corresponding_Record_Type (Id,
4853 Corresponding_Record_Type (T));
4854 Set_First_Entity (Id, First_Entity (T));
4855 Set_First_Private_Entity (Id, First_Private_Entity (T));
4856 Set_Has_Discriminants (Id, Has_Discriminants (T));
4857 Set_Is_Constrained (Id, Is_Constrained (T));
4858 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4859 Set_Last_Entity (Id, Last_Entity (T));
4860
4861 if Is_Tagged_Type (T) then
4862 Set_No_Tagged_Streams_Pragma
4863 (Id, No_Tagged_Streams_Pragma (T));
4864 end if;
4865
4866 if Has_Discriminants (T) then
4867 Set_Discriminant_Constraint (Id,
4868 Discriminant_Constraint (T));
4869 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4870 end if;
4871
4872 when E_Incomplete_Type =>
4873 if Ada_Version >= Ada_2005 then
4874
4875 -- In Ada 2005 an incomplete type can be explicitly tagged:
4876 -- propagate indication.
4877
4878 Set_Ekind (Id, E_Incomplete_Subtype);
4879 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4880 Set_Private_Dependents (Id, New_Elmt_List);
4881
4882 if Is_Tagged_Type (Id) then
4883 Set_No_Tagged_Streams_Pragma
4884 (Id, No_Tagged_Streams_Pragma (T));
4885 end if;
4886
4887 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
4888 -- incomplete type visible through a limited with clause.
4889
4890 if From_Limited_With (T)
4891 and then Present (Non_Limited_View (T))
4892 then
4893 Set_From_Limited_With (Id);
4894 Set_Non_Limited_View (Id, Non_Limited_View (T));
4895
4896 -- Ada 2005 (AI-412): Add the regular incomplete subtype
4897 -- to the private dependents of the original incomplete
4898 -- type for future transformation.
4899
4900 else
4901 Append_Elmt (Id, Private_Dependents (T));
4902 end if;
4903
4904 -- If the subtype name denotes an incomplete type an error
4905 -- was already reported by Process_Subtype.
4906
4907 else
4908 Set_Etype (Id, Any_Type);
4909 end if;
4910
4911 when others =>
4912 raise Program_Error;
4913 end case;
4914 end if;
4915
4916 if Etype (Id) = Any_Type then
4917 goto Leave;
4918 end if;
4919
4920 -- Some common processing on all types
4921
4922 Set_Size_Info (Id, T);
4923 Set_First_Rep_Item (Id, First_Rep_Item (T));
4924
4925 -- If the parent type is a generic actual, so is the subtype. This may
4926 -- happen in a nested instance. Why Comes_From_Source test???
4927
4928 if not Comes_From_Source (N) then
4929 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
4930 end if;
4931
4932 T := Etype (Id);
4933
4934 Set_Is_Immediately_Visible (Id, True);
4935 Set_Depends_On_Private (Id, Has_Private_Component (T));
4936 Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
4937
4938 if Is_Interface (T) then
4939 Set_Is_Interface (Id);
4940 end if;
4941
4942 if Present (Generic_Parent_Type (N))
4943 and then
4944 (Nkind (Parent (Generic_Parent_Type (N))) /=
4945 N_Formal_Type_Declaration
4946 or else Nkind (Formal_Type_Definition
4947 (Parent (Generic_Parent_Type (N)))) /=
4948 N_Formal_Private_Type_Definition)
4949 then
4950 if Is_Tagged_Type (Id) then
4951
4952 -- If this is a generic actual subtype for a synchronized type,
4953 -- the primitive operations are those of the corresponding record
4954 -- for which there is a separate subtype declaration.
4955
4956 if Is_Concurrent_Type (Id) then
4957 null;
4958 elsif Is_Class_Wide_Type (Id) then
4959 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
4960 else
4961 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
4962 end if;
4963
4964 elsif Scope (Etype (Id)) /= Standard_Standard then
4965 Derive_Subprograms (Generic_Parent_Type (N), Id);
4966 end if;
4967 end if;
4968
4969 if Is_Private_Type (T) and then Present (Full_View (T)) then
4970 Conditional_Delay (Id, Full_View (T));
4971
4972 -- The subtypes of components or subcomponents of protected types
4973 -- do not need freeze nodes, which would otherwise appear in the
4974 -- wrong scope (before the freeze node for the protected type). The
4975 -- proper subtypes are those of the subcomponents of the corresponding
4976 -- record.
4977
4978 elsif Ekind (Scope (Id)) /= E_Protected_Type
4979 and then Present (Scope (Scope (Id))) -- error defense
4980 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
4981 then
4982 Conditional_Delay (Id, T);
4983 end if;
4984
4985 -- Check that Constraint_Error is raised for a scalar subtype indication
4986 -- when the lower or upper bound of a non-null range lies outside the
4987 -- range of the type mark.
4988
4989 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4990 if Is_Scalar_Type (Etype (Id))
4991 and then Scalar_Range (Id) /=
4992 Scalar_Range (Etype (Subtype_Mark
4993 (Subtype_Indication (N))))
4994 then
4995 Apply_Range_Check
4996 (Scalar_Range (Id),
4997 Etype (Subtype_Mark (Subtype_Indication (N))));
4998
4999 -- In the array case, check compatibility for each index
5000
5001 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
5002 then
5003 -- This really should be a subprogram that finds the indications
5004 -- to check???
5005
5006 declare
5007 Subt_Index : Node_Id := First_Index (Id);
5008 Target_Index : Node_Id :=
5009 First_Index (Etype
5010 (Subtype_Mark (Subtype_Indication (N))));
5011 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
5012
5013 begin
5014 while Present (Subt_Index) loop
5015 if ((Nkind (Subt_Index) = N_Identifier
5016 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
5017 or else Nkind (Subt_Index) = N_Subtype_Indication)
5018 and then
5019 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
5020 then
5021 declare
5022 Target_Typ : constant Entity_Id :=
5023 Etype (Target_Index);
5024 begin
5025 R_Checks :=
5026 Get_Range_Checks
5027 (Scalar_Range (Etype (Subt_Index)),
5028 Target_Typ,
5029 Etype (Subt_Index),
5030 Defining_Identifier (N));
5031
5032 -- Reset Has_Dynamic_Range_Check on the subtype to
5033 -- prevent elision of the index check due to a dynamic
5034 -- check generated for a preceding index (needed since
5035 -- Insert_Range_Checks tries to avoid generating
5036 -- redundant checks on a given declaration).
5037
5038 Set_Has_Dynamic_Range_Check (N, False);
5039
5040 Insert_Range_Checks
5041 (R_Checks,
5042 N,
5043 Target_Typ,
5044 Sloc (Defining_Identifier (N)));
5045
5046 -- Record whether this index involved a dynamic check
5047
5048 Has_Dyn_Chk :=
5049 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
5050 end;
5051 end if;
5052
5053 Next_Index (Subt_Index);
5054 Next_Index (Target_Index);
5055 end loop;
5056
5057 -- Finally, mark whether the subtype involves dynamic checks
5058
5059 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
5060 end;
5061 end if;
5062 end if;
5063
5064 -- A type invariant applies to any subtype in its scope, in particular
5065 -- to a generic actual.
5066
5067 if Has_Invariants (T) and then In_Open_Scopes (Scope (T)) then
5068 Set_Has_Invariants (Id);
5069 Set_Invariant_Procedure (Id, Invariant_Procedure (T));
5070 end if;
5071
5072 -- Make sure that generic actual types are properly frozen. The subtype
5073 -- is marked as a generic actual type when the enclosing instance is
5074 -- analyzed, so here we identify the subtype from the tree structure.
5075
5076 if Expander_Active
5077 and then Is_Generic_Actual_Type (Id)
5078 and then In_Instance
5079 and then not Comes_From_Source (N)
5080 and then Nkind (Subtype_Indication (N)) /= N_Subtype_Indication
5081 and then Is_Frozen (T)
5082 then
5083 Freeze_Before (N, Id);
5084 end if;
5085
5086 Set_Optimize_Alignment_Flags (Id);
5087 Check_Eliminated (Id);
5088
5089 <<Leave>>
5090 if Has_Aspects (N) then
5091 Analyze_Aspect_Specifications (N, Id);
5092 end if;
5093
5094 Analyze_Dimension (N);
5095 end Analyze_Subtype_Declaration;
5096
5097 --------------------------------
5098 -- Analyze_Subtype_Indication --
5099 --------------------------------
5100
5101 procedure Analyze_Subtype_Indication (N : Node_Id) is
5102 T : constant Entity_Id := Subtype_Mark (N);
5103 R : constant Node_Id := Range_Expression (Constraint (N));
5104
5105 begin
5106 Analyze (T);
5107
5108 if R /= Error then
5109 Analyze (R);
5110 Set_Etype (N, Etype (R));
5111 Resolve (R, Entity (T));
5112 else
5113 Set_Error_Posted (R);
5114 Set_Error_Posted (T);
5115 end if;
5116 end Analyze_Subtype_Indication;
5117
5118 --------------------------
5119 -- Analyze_Variant_Part --
5120 --------------------------
5121
5122 procedure Analyze_Variant_Part (N : Node_Id) is
5123 Discr_Name : Node_Id;
5124 Discr_Type : Entity_Id;
5125
5126 procedure Process_Variant (A : Node_Id);
5127 -- Analyze declarations for a single variant
5128
5129 package Analyze_Variant_Choices is
5130 new Generic_Analyze_Choices (Process_Variant);
5131 use Analyze_Variant_Choices;
5132
5133 ---------------------
5134 -- Process_Variant --
5135 ---------------------
5136
5137 procedure Process_Variant (A : Node_Id) is
5138 CL : constant Node_Id := Component_List (A);
5139 begin
5140 if not Null_Present (CL) then
5141 Analyze_Declarations (Component_Items (CL));
5142
5143 if Present (Variant_Part (CL)) then
5144 Analyze (Variant_Part (CL));
5145 end if;
5146 end if;
5147 end Process_Variant;
5148
5149 -- Start of processing for Analyze_Variant_Part
5150
5151 begin
5152 Discr_Name := Name (N);
5153 Analyze (Discr_Name);
5154
5155 -- If Discr_Name bad, get out (prevent cascaded errors)
5156
5157 if Etype (Discr_Name) = Any_Type then
5158 return;
5159 end if;
5160
5161 -- Check invalid discriminant in variant part
5162
5163 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
5164 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
5165 end if;
5166
5167 Discr_Type := Etype (Entity (Discr_Name));
5168
5169 if not Is_Discrete_Type (Discr_Type) then
5170 Error_Msg_N
5171 ("discriminant in a variant part must be of a discrete type",
5172 Name (N));
5173 return;
5174 end if;
5175
5176 -- Now analyze the choices, which also analyzes the declarations that
5177 -- are associated with each choice.
5178
5179 Analyze_Choices (Variants (N), Discr_Type);
5180
5181 -- Note: we used to instantiate and call Check_Choices here to check
5182 -- that the choices covered the discriminant, but it's too early to do
5183 -- that because of statically predicated subtypes, whose analysis may
5184 -- be deferred to their freeze point which may be as late as the freeze
5185 -- point of the containing record. So this call is now to be found in
5186 -- Freeze_Record_Declaration.
5187
5188 end Analyze_Variant_Part;
5189
5190 ----------------------------
5191 -- Array_Type_Declaration --
5192 ----------------------------
5193
5194 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
5195 Component_Def : constant Node_Id := Component_Definition (Def);
5196 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
5197 Element_Type : Entity_Id;
5198 Implicit_Base : Entity_Id;
5199 Index : Node_Id;
5200 Related_Id : Entity_Id := Empty;
5201 Nb_Index : Nat;
5202 P : constant Node_Id := Parent (Def);
5203 Priv : Entity_Id;
5204
5205 begin
5206 if Nkind (Def) = N_Constrained_Array_Definition then
5207 Index := First (Discrete_Subtype_Definitions (Def));
5208 else
5209 Index := First (Subtype_Marks (Def));
5210 end if;
5211
5212 -- Find proper names for the implicit types which may be public. In case
5213 -- of anonymous arrays we use the name of the first object of that type
5214 -- as prefix.
5215
5216 if No (T) then
5217 Related_Id := Defining_Identifier (P);
5218 else
5219 Related_Id := T;
5220 end if;
5221
5222 Nb_Index := 1;
5223 while Present (Index) loop
5224 Analyze (Index);
5225
5226 -- Test for odd case of trying to index a type by the type itself
5227
5228 if Is_Entity_Name (Index) and then Entity (Index) = T then
5229 Error_Msg_N ("type& cannot be indexed by itself", Index);
5230 Set_Entity (Index, Standard_Boolean);
5231 Set_Etype (Index, Standard_Boolean);
5232 end if;
5233
5234 -- Check SPARK restriction requiring a subtype mark
5235
5236 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
5237 Check_SPARK_05_Restriction ("subtype mark required", Index);
5238 end if;
5239
5240 -- Add a subtype declaration for each index of private array type
5241 -- declaration whose etype is also private. For example:
5242
5243 -- package Pkg is
5244 -- type Index is private;
5245 -- private
5246 -- type Table is array (Index) of ...
5247 -- end;
5248
5249 -- This is currently required by the expander for the internally
5250 -- generated equality subprogram of records with variant parts in
5251 -- which the etype of some component is such private type.
5252
5253 if Ekind (Current_Scope) = E_Package
5254 and then In_Private_Part (Current_Scope)
5255 and then Has_Private_Declaration (Etype (Index))
5256 then
5257 declare
5258 Loc : constant Source_Ptr := Sloc (Def);
5259 New_E : Entity_Id;
5260 Decl : Entity_Id;
5261
5262 begin
5263 New_E := Make_Temporary (Loc, 'T');
5264 Set_Is_Internal (New_E);
5265
5266 Decl :=
5267 Make_Subtype_Declaration (Loc,
5268 Defining_Identifier => New_E,
5269 Subtype_Indication =>
5270 New_Occurrence_Of (Etype (Index), Loc));
5271
5272 Insert_Before (Parent (Def), Decl);
5273 Analyze (Decl);
5274 Set_Etype (Index, New_E);
5275
5276 -- If the index is a range the Entity attribute is not
5277 -- available. Example:
5278
5279 -- package Pkg is
5280 -- type T is private;
5281 -- private
5282 -- type T is new Natural;
5283 -- Table : array (T(1) .. T(10)) of Boolean;
5284 -- end Pkg;
5285
5286 if Nkind (Index) /= N_Range then
5287 Set_Entity (Index, New_E);
5288 end if;
5289 end;
5290 end if;
5291
5292 Make_Index (Index, P, Related_Id, Nb_Index);
5293
5294 -- Check error of subtype with predicate for index type
5295
5296 Bad_Predicated_Subtype_Use
5297 ("subtype& has predicate, not allowed as index subtype",
5298 Index, Etype (Index));
5299
5300 -- Move to next index
5301
5302 Next_Index (Index);
5303 Nb_Index := Nb_Index + 1;
5304 end loop;
5305
5306 -- Process subtype indication if one is present
5307
5308 if Present (Component_Typ) then
5309 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
5310
5311 Set_Etype (Component_Typ, Element_Type);
5312
5313 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
5314 Check_SPARK_05_Restriction
5315 ("subtype mark required", Component_Typ);
5316 end if;
5317
5318 -- Ada 2005 (AI-230): Access Definition case
5319
5320 else pragma Assert (Present (Access_Definition (Component_Def)));
5321
5322 -- Indicate that the anonymous access type is created by the
5323 -- array type declaration.
5324
5325 Element_Type := Access_Definition
5326 (Related_Nod => P,
5327 N => Access_Definition (Component_Def));
5328 Set_Is_Local_Anonymous_Access (Element_Type);
5329
5330 -- Propagate the parent. This field is needed if we have to generate
5331 -- the master_id associated with an anonymous access to task type
5332 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5333
5334 Set_Parent (Element_Type, Parent (T));
5335
5336 -- Ada 2005 (AI-230): In case of components that are anonymous access
5337 -- types the level of accessibility depends on the enclosing type
5338 -- declaration
5339
5340 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
5341
5342 -- Ada 2005 (AI-254)
5343
5344 declare
5345 CD : constant Node_Id :=
5346 Access_To_Subprogram_Definition
5347 (Access_Definition (Component_Def));
5348 begin
5349 if Present (CD) and then Protected_Present (CD) then
5350 Element_Type :=
5351 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
5352 end if;
5353 end;
5354 end if;
5355
5356 -- Constrained array case
5357
5358 if No (T) then
5359 T := Create_Itype (E_Void, P, Related_Id, 'T');
5360 end if;
5361
5362 if Nkind (Def) = N_Constrained_Array_Definition then
5363
5364 -- Establish Implicit_Base as unconstrained base type
5365
5366 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
5367
5368 Set_Etype (Implicit_Base, Implicit_Base);
5369 Set_Scope (Implicit_Base, Current_Scope);
5370 Set_Has_Delayed_Freeze (Implicit_Base);
5371 Set_Default_SSO (Implicit_Base);
5372
5373 -- The constrained array type is a subtype of the unconstrained one
5374
5375 Set_Ekind (T, E_Array_Subtype);
5376 Init_Size_Align (T);
5377 Set_Etype (T, Implicit_Base);
5378 Set_Scope (T, Current_Scope);
5379 Set_Is_Constrained (T, True);
5380 Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
5381 Set_Has_Delayed_Freeze (T);
5382
5383 -- Complete setup of implicit base type
5384
5385 Set_First_Index (Implicit_Base, First_Index (T));
5386 Set_Component_Type (Implicit_Base, Element_Type);
5387 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
5388 Set_Has_Protected (Implicit_Base, Has_Protected (Element_Type));
5389 Set_Component_Size (Implicit_Base, Uint_0);
5390 Set_Packed_Array_Impl_Type (Implicit_Base, Empty);
5391 Set_Has_Controlled_Component
5392 (Implicit_Base,
5393 Has_Controlled_Component (Element_Type)
5394 or else Is_Controlled (Element_Type));
5395 Set_Finalize_Storage_Only
5396 (Implicit_Base, Finalize_Storage_Only
5397 (Element_Type));
5398
5399 -- Unconstrained array case
5400
5401 else
5402 Set_Ekind (T, E_Array_Type);
5403 Init_Size_Align (T);
5404 Set_Etype (T, T);
5405 Set_Scope (T, Current_Scope);
5406 Set_Component_Size (T, Uint_0);
5407 Set_Is_Constrained (T, False);
5408 Set_First_Index (T, First (Subtype_Marks (Def)));
5409 Set_Has_Delayed_Freeze (T, True);
5410 Set_Has_Task (T, Has_Task (Element_Type));
5411 Set_Has_Protected (T, Has_Protected (Element_Type));
5412 Set_Has_Controlled_Component (T, Has_Controlled_Component
5413 (Element_Type)
5414 or else
5415 Is_Controlled (Element_Type));
5416 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
5417 (Element_Type));
5418 Set_Default_SSO (T);
5419 end if;
5420
5421 -- Common attributes for both cases
5422
5423 Set_Component_Type (Base_Type (T), Element_Type);
5424 Set_Packed_Array_Impl_Type (T, Empty);
5425
5426 if Aliased_Present (Component_Definition (Def)) then
5427 Check_SPARK_05_Restriction
5428 ("aliased is not allowed", Component_Definition (Def));
5429 Set_Has_Aliased_Components (Etype (T));
5430 end if;
5431
5432 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5433 -- array type to ensure that objects of this type are initialized.
5434
5435 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
5436 Set_Can_Never_Be_Null (T);
5437
5438 if Null_Exclusion_Present (Component_Definition (Def))
5439
5440 -- No need to check itypes because in their case this check was
5441 -- done at their point of creation
5442
5443 and then not Is_Itype (Element_Type)
5444 then
5445 Error_Msg_N
5446 ("`NOT NULL` not allowed (null already excluded)",
5447 Subtype_Indication (Component_Definition (Def)));
5448 end if;
5449 end if;
5450
5451 Priv := Private_Component (Element_Type);
5452
5453 if Present (Priv) then
5454
5455 -- Check for circular definitions
5456
5457 if Priv = Any_Type then
5458 Set_Component_Type (Etype (T), Any_Type);
5459
5460 -- There is a gap in the visibility of operations on the composite
5461 -- type only if the component type is defined in a different scope.
5462
5463 elsif Scope (Priv) = Current_Scope then
5464 null;
5465
5466 elsif Is_Limited_Type (Priv) then
5467 Set_Is_Limited_Composite (Etype (T));
5468 Set_Is_Limited_Composite (T);
5469 else
5470 Set_Is_Private_Composite (Etype (T));
5471 Set_Is_Private_Composite (T);
5472 end if;
5473 end if;
5474
5475 -- A syntax error in the declaration itself may lead to an empty index
5476 -- list, in which case do a minimal patch.
5477
5478 if No (First_Index (T)) then
5479 Error_Msg_N ("missing index definition in array type declaration", T);
5480
5481 declare
5482 Indexes : constant List_Id :=
5483 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
5484 begin
5485 Set_Discrete_Subtype_Definitions (Def, Indexes);
5486 Set_First_Index (T, First (Indexes));
5487 return;
5488 end;
5489 end if;
5490
5491 -- Create a concatenation operator for the new type. Internal array
5492 -- types created for packed entities do not need such, they are
5493 -- compatible with the user-defined type.
5494
5495 if Number_Dimensions (T) = 1
5496 and then not Is_Packed_Array_Impl_Type (T)
5497 then
5498 New_Concatenation_Op (T);
5499 end if;
5500
5501 -- In the case of an unconstrained array the parser has already verified
5502 -- that all the indexes are unconstrained but we still need to make sure
5503 -- that the element type is constrained.
5504
5505 if Is_Indefinite_Subtype (Element_Type) then
5506 Error_Msg_N
5507 ("unconstrained element type in array declaration",
5508 Subtype_Indication (Component_Def));
5509
5510 elsif Is_Abstract_Type (Element_Type) then
5511 Error_Msg_N
5512 ("the type of a component cannot be abstract",
5513 Subtype_Indication (Component_Def));
5514 end if;
5515
5516 -- There may be an invariant declared for the component type, but
5517 -- the construction of the component invariant checking procedure
5518 -- takes place during expansion.
5519 end Array_Type_Declaration;
5520
5521 ------------------------------------------------------
5522 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5523 ------------------------------------------------------
5524
5525 function Replace_Anonymous_Access_To_Protected_Subprogram
5526 (N : Node_Id) return Entity_Id
5527 is
5528 Loc : constant Source_Ptr := Sloc (N);
5529
5530 Curr_Scope : constant Scope_Stack_Entry :=
5531 Scope_Stack.Table (Scope_Stack.Last);
5532
5533 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
5534
5535 Acc : Node_Id;
5536 -- Access definition in declaration
5537
5538 Comp : Node_Id;
5539 -- Object definition or formal definition with an access definition
5540
5541 Decl : Node_Id;
5542 -- Declaration of anonymous access to subprogram type
5543
5544 Spec : Node_Id;
5545 -- Original specification in access to subprogram
5546
5547 P : Node_Id;
5548
5549 begin
5550 Set_Is_Internal (Anon);
5551
5552 case Nkind (N) is
5553 when N_Component_Declaration |
5554 N_Unconstrained_Array_Definition |
5555 N_Constrained_Array_Definition =>
5556 Comp := Component_Definition (N);
5557 Acc := Access_Definition (Comp);
5558
5559 when N_Discriminant_Specification =>
5560 Comp := Discriminant_Type (N);
5561 Acc := Comp;
5562
5563 when N_Parameter_Specification =>
5564 Comp := Parameter_Type (N);
5565 Acc := Comp;
5566
5567 when N_Access_Function_Definition =>
5568 Comp := Result_Definition (N);
5569 Acc := Comp;
5570
5571 when N_Object_Declaration =>
5572 Comp := Object_Definition (N);
5573 Acc := Comp;
5574
5575 when N_Function_Specification =>
5576 Comp := Result_Definition (N);
5577 Acc := Comp;
5578
5579 when others =>
5580 raise Program_Error;
5581 end case;
5582
5583 Spec := Access_To_Subprogram_Definition (Acc);
5584
5585 Decl :=
5586 Make_Full_Type_Declaration (Loc,
5587 Defining_Identifier => Anon,
5588 Type_Definition => Copy_Separate_Tree (Spec));
5589
5590 Mark_Rewrite_Insertion (Decl);
5591
5592 -- In ASIS mode, analyze the profile on the original node, because
5593 -- the separate copy does not provide enough links to recover the
5594 -- original tree. Analysis is limited to type annotations, within
5595 -- a temporary scope that serves as an anonymous subprogram to collect
5596 -- otherwise useless temporaries and itypes.
5597
5598 if ASIS_Mode then
5599 declare
5600 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
5601
5602 begin
5603 if Nkind (Spec) = N_Access_Function_Definition then
5604 Set_Ekind (Typ, E_Function);
5605 else
5606 Set_Ekind (Typ, E_Procedure);
5607 end if;
5608
5609 Set_Parent (Typ, N);
5610 Set_Scope (Typ, Current_Scope);
5611 Push_Scope (Typ);
5612
5613 Process_Formals (Parameter_Specifications (Spec), Spec);
5614
5615 if Nkind (Spec) = N_Access_Function_Definition then
5616 declare
5617 Def : constant Node_Id := Result_Definition (Spec);
5618
5619 begin
5620 -- The result might itself be an anonymous access type, so
5621 -- have to recurse.
5622
5623 if Nkind (Def) = N_Access_Definition then
5624 if Present (Access_To_Subprogram_Definition (Def)) then
5625 Set_Etype
5626 (Def,
5627 Replace_Anonymous_Access_To_Protected_Subprogram
5628 (Spec));
5629 else
5630 Find_Type (Subtype_Mark (Def));
5631 end if;
5632
5633 else
5634 Find_Type (Def);
5635 end if;
5636 end;
5637 end if;
5638
5639 End_Scope;
5640 end;
5641 end if;
5642
5643 -- Insert the new declaration in the nearest enclosing scope. If the
5644 -- node is a body and N is its return type, the declaration belongs in
5645 -- the enclosing scope.
5646
5647 P := Parent (N);
5648
5649 if Nkind (P) = N_Subprogram_Body
5650 and then Nkind (N) = N_Function_Specification
5651 then
5652 P := Parent (P);
5653 end if;
5654
5655 while Present (P) and then not Has_Declarations (P) loop
5656 P := Parent (P);
5657 end loop;
5658
5659 pragma Assert (Present (P));
5660
5661 if Nkind (P) = N_Package_Specification then
5662 Prepend (Decl, Visible_Declarations (P));
5663 else
5664 Prepend (Decl, Declarations (P));
5665 end if;
5666
5667 -- Replace the anonymous type with an occurrence of the new declaration.
5668 -- In all cases the rewritten node does not have the null-exclusion
5669 -- attribute because (if present) it was already inherited by the
5670 -- anonymous entity (Anon). Thus, in case of components we do not
5671 -- inherit this attribute.
5672
5673 if Nkind (N) = N_Parameter_Specification then
5674 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5675 Set_Etype (Defining_Identifier (N), Anon);
5676 Set_Null_Exclusion_Present (N, False);
5677
5678 elsif Nkind (N) = N_Object_Declaration then
5679 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5680 Set_Etype (Defining_Identifier (N), Anon);
5681
5682 elsif Nkind (N) = N_Access_Function_Definition then
5683 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5684
5685 elsif Nkind (N) = N_Function_Specification then
5686 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5687 Set_Etype (Defining_Unit_Name (N), Anon);
5688
5689 else
5690 Rewrite (Comp,
5691 Make_Component_Definition (Loc,
5692 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
5693 end if;
5694
5695 Mark_Rewrite_Insertion (Comp);
5696
5697 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition) then
5698 Analyze (Decl);
5699
5700 else
5701 -- Temporarily remove the current scope (record or subprogram) from
5702 -- the stack to add the new declarations to the enclosing scope.
5703
5704 Scope_Stack.Decrement_Last;
5705 Analyze (Decl);
5706 Set_Is_Itype (Anon);
5707 Scope_Stack.Append (Curr_Scope);
5708 end if;
5709
5710 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
5711 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
5712 return Anon;
5713 end Replace_Anonymous_Access_To_Protected_Subprogram;
5714
5715 -------------------------------
5716 -- Build_Derived_Access_Type --
5717 -------------------------------
5718
5719 procedure Build_Derived_Access_Type
5720 (N : Node_Id;
5721 Parent_Type : Entity_Id;
5722 Derived_Type : Entity_Id)
5723 is
5724 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
5725
5726 Desig_Type : Entity_Id;
5727 Discr : Entity_Id;
5728 Discr_Con_Elist : Elist_Id;
5729 Discr_Con_El : Elmt_Id;
5730 Subt : Entity_Id;
5731
5732 begin
5733 -- Set the designated type so it is available in case this is an access
5734 -- to a self-referential type, e.g. a standard list type with a next
5735 -- pointer. Will be reset after subtype is built.
5736
5737 Set_Directly_Designated_Type
5738 (Derived_Type, Designated_Type (Parent_Type));
5739
5740 Subt := Process_Subtype (S, N);
5741
5742 if Nkind (S) /= N_Subtype_Indication
5743 and then Subt /= Base_Type (Subt)
5744 then
5745 Set_Ekind (Derived_Type, E_Access_Subtype);
5746 end if;
5747
5748 if Ekind (Derived_Type) = E_Access_Subtype then
5749 declare
5750 Pbase : constant Entity_Id := Base_Type (Parent_Type);
5751 Ibase : constant Entity_Id :=
5752 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
5753 Svg_Chars : constant Name_Id := Chars (Ibase);
5754 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
5755
5756 begin
5757 Copy_Node (Pbase, Ibase);
5758
5759 Set_Chars (Ibase, Svg_Chars);
5760 Set_Next_Entity (Ibase, Svg_Next_E);
5761 Set_Sloc (Ibase, Sloc (Derived_Type));
5762 Set_Scope (Ibase, Scope (Derived_Type));
5763 Set_Freeze_Node (Ibase, Empty);
5764 Set_Is_Frozen (Ibase, False);
5765 Set_Comes_From_Source (Ibase, False);
5766 Set_Is_First_Subtype (Ibase, False);
5767
5768 Set_Etype (Ibase, Pbase);
5769 Set_Etype (Derived_Type, Ibase);
5770 end;
5771 end if;
5772
5773 Set_Directly_Designated_Type
5774 (Derived_Type, Designated_Type (Subt));
5775
5776 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
5777 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
5778 Set_Size_Info (Derived_Type, Parent_Type);
5779 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5780 Set_Depends_On_Private (Derived_Type,
5781 Has_Private_Component (Derived_Type));
5782 Conditional_Delay (Derived_Type, Subt);
5783
5784 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5785 -- that it is not redundant.
5786
5787 if Null_Exclusion_Present (Type_Definition (N)) then
5788 Set_Can_Never_Be_Null (Derived_Type);
5789
5790 -- What is with the "AND THEN FALSE" here ???
5791
5792 if Can_Never_Be_Null (Parent_Type)
5793 and then False
5794 then
5795 Error_Msg_NE
5796 ("`NOT NULL` not allowed (& already excludes null)",
5797 N, Parent_Type);
5798 end if;
5799
5800 elsif Can_Never_Be_Null (Parent_Type) then
5801 Set_Can_Never_Be_Null (Derived_Type);
5802 end if;
5803
5804 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5805 -- the root type for this information.
5806
5807 -- Apply range checks to discriminants for derived record case
5808 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5809
5810 Desig_Type := Designated_Type (Derived_Type);
5811 if Is_Composite_Type (Desig_Type)
5812 and then (not Is_Array_Type (Desig_Type))
5813 and then Has_Discriminants (Desig_Type)
5814 and then Base_Type (Desig_Type) /= Desig_Type
5815 then
5816 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
5817 Discr_Con_El := First_Elmt (Discr_Con_Elist);
5818
5819 Discr := First_Discriminant (Base_Type (Desig_Type));
5820 while Present (Discr_Con_El) loop
5821 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
5822 Next_Elmt (Discr_Con_El);
5823 Next_Discriminant (Discr);
5824 end loop;
5825 end if;
5826 end Build_Derived_Access_Type;
5827
5828 ------------------------------
5829 -- Build_Derived_Array_Type --
5830 ------------------------------
5831
5832 procedure Build_Derived_Array_Type
5833 (N : Node_Id;
5834 Parent_Type : Entity_Id;
5835 Derived_Type : Entity_Id)
5836 is
5837 Loc : constant Source_Ptr := Sloc (N);
5838 Tdef : constant Node_Id := Type_Definition (N);
5839 Indic : constant Node_Id := Subtype_Indication (Tdef);
5840 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
5841 Implicit_Base : Entity_Id;
5842 New_Indic : Node_Id;
5843
5844 procedure Make_Implicit_Base;
5845 -- If the parent subtype is constrained, the derived type is a subtype
5846 -- of an implicit base type derived from the parent base.
5847
5848 ------------------------
5849 -- Make_Implicit_Base --
5850 ------------------------
5851
5852 procedure Make_Implicit_Base is
5853 begin
5854 Implicit_Base :=
5855 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
5856
5857 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
5858 Set_Etype (Implicit_Base, Parent_Base);
5859
5860 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
5861 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
5862
5863 Set_Has_Delayed_Freeze (Implicit_Base, True);
5864 end Make_Implicit_Base;
5865
5866 -- Start of processing for Build_Derived_Array_Type
5867
5868 begin
5869 if not Is_Constrained (Parent_Type) then
5870 if Nkind (Indic) /= N_Subtype_Indication then
5871 Set_Ekind (Derived_Type, E_Array_Type);
5872
5873 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5874 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
5875
5876 Set_Has_Delayed_Freeze (Derived_Type, True);
5877
5878 else
5879 Make_Implicit_Base;
5880 Set_Etype (Derived_Type, Implicit_Base);
5881
5882 New_Indic :=
5883 Make_Subtype_Declaration (Loc,
5884 Defining_Identifier => Derived_Type,
5885 Subtype_Indication =>
5886 Make_Subtype_Indication (Loc,
5887 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
5888 Constraint => Constraint (Indic)));
5889
5890 Rewrite (N, New_Indic);
5891 Analyze (N);
5892 end if;
5893
5894 else
5895 if Nkind (Indic) /= N_Subtype_Indication then
5896 Make_Implicit_Base;
5897
5898 Set_Ekind (Derived_Type, Ekind (Parent_Type));
5899 Set_Etype (Derived_Type, Implicit_Base);
5900 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5901
5902 else
5903 Error_Msg_N ("illegal constraint on constrained type", Indic);
5904 end if;
5905 end if;
5906
5907 -- If parent type is not a derived type itself, and is declared in
5908 -- closed scope (e.g. a subprogram), then we must explicitly introduce
5909 -- the new type's concatenation operator since Derive_Subprograms
5910 -- will not inherit the parent's operator. If the parent type is
5911 -- unconstrained, the operator is of the unconstrained base type.
5912
5913 if Number_Dimensions (Parent_Type) = 1
5914 and then not Is_Limited_Type (Parent_Type)
5915 and then not Is_Derived_Type (Parent_Type)
5916 and then not Is_Package_Or_Generic_Package
5917 (Scope (Base_Type (Parent_Type)))
5918 then
5919 if not Is_Constrained (Parent_Type)
5920 and then Is_Constrained (Derived_Type)
5921 then
5922 New_Concatenation_Op (Implicit_Base);
5923 else
5924 New_Concatenation_Op (Derived_Type);
5925 end if;
5926 end if;
5927 end Build_Derived_Array_Type;
5928
5929 -----------------------------------
5930 -- Build_Derived_Concurrent_Type --
5931 -----------------------------------
5932
5933 procedure Build_Derived_Concurrent_Type
5934 (N : Node_Id;
5935 Parent_Type : Entity_Id;
5936 Derived_Type : Entity_Id)
5937 is
5938 Loc : constant Source_Ptr := Sloc (N);
5939
5940 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
5941 Corr_Decl : Node_Id;
5942 Corr_Decl_Needed : Boolean;
5943 -- If the derived type has fewer discriminants than its parent, the
5944 -- corresponding record is also a derived type, in order to account for
5945 -- the bound discriminants. We create a full type declaration for it in
5946 -- this case.
5947
5948 Constraint_Present : constant Boolean :=
5949 Nkind (Subtype_Indication (Type_Definition (N))) =
5950 N_Subtype_Indication;
5951
5952 D_Constraint : Node_Id;
5953 New_Constraint : Elist_Id;
5954 Old_Disc : Entity_Id;
5955 New_Disc : Entity_Id;
5956 New_N : Node_Id;
5957
5958 begin
5959 Set_Stored_Constraint (Derived_Type, No_Elist);
5960 Corr_Decl_Needed := False;
5961 Old_Disc := Empty;
5962
5963 if Present (Discriminant_Specifications (N))
5964 and then Constraint_Present
5965 then
5966 Old_Disc := First_Discriminant (Parent_Type);
5967 New_Disc := First (Discriminant_Specifications (N));
5968 while Present (New_Disc) and then Present (Old_Disc) loop
5969 Next_Discriminant (Old_Disc);
5970 Next (New_Disc);
5971 end loop;
5972 end if;
5973
5974 if Present (Old_Disc) and then Expander_Active then
5975
5976 -- The new type has fewer discriminants, so we need to create a new
5977 -- corresponding record, which is derived from the corresponding
5978 -- record of the parent, and has a stored constraint that captures
5979 -- the values of the discriminant constraints. The corresponding
5980 -- record is needed only if expander is active and code generation is
5981 -- enabled.
5982
5983 -- The type declaration for the derived corresponding record has the
5984 -- same discriminant part and constraints as the current declaration.
5985 -- Copy the unanalyzed tree to build declaration.
5986
5987 Corr_Decl_Needed := True;
5988 New_N := Copy_Separate_Tree (N);
5989
5990 Corr_Decl :=
5991 Make_Full_Type_Declaration (Loc,
5992 Defining_Identifier => Corr_Record,
5993 Discriminant_Specifications =>
5994 Discriminant_Specifications (New_N),
5995 Type_Definition =>
5996 Make_Derived_Type_Definition (Loc,
5997 Subtype_Indication =>
5998 Make_Subtype_Indication (Loc,
5999 Subtype_Mark =>
6000 New_Occurrence_Of
6001 (Corresponding_Record_Type (Parent_Type), Loc),
6002 Constraint =>
6003 Constraint
6004 (Subtype_Indication (Type_Definition (New_N))))));
6005 end if;
6006
6007 -- Copy Storage_Size and Relative_Deadline variables if task case
6008
6009 if Is_Task_Type (Parent_Type) then
6010 Set_Storage_Size_Variable (Derived_Type,
6011 Storage_Size_Variable (Parent_Type));
6012 Set_Relative_Deadline_Variable (Derived_Type,
6013 Relative_Deadline_Variable (Parent_Type));
6014 end if;
6015
6016 if Present (Discriminant_Specifications (N)) then
6017 Push_Scope (Derived_Type);
6018 Check_Or_Process_Discriminants (N, Derived_Type);
6019
6020 if Constraint_Present then
6021 New_Constraint :=
6022 Expand_To_Stored_Constraint
6023 (Parent_Type,
6024 Build_Discriminant_Constraints
6025 (Parent_Type,
6026 Subtype_Indication (Type_Definition (N)), True));
6027 end if;
6028
6029 End_Scope;
6030
6031 elsif Constraint_Present then
6032
6033 -- Build constrained subtype, copying the constraint, and derive
6034 -- from it to create a derived constrained type.
6035
6036 declare
6037 Loc : constant Source_Ptr := Sloc (N);
6038 Anon : constant Entity_Id :=
6039 Make_Defining_Identifier (Loc,
6040 Chars => New_External_Name (Chars (Derived_Type), 'T'));
6041 Decl : Node_Id;
6042
6043 begin
6044 Decl :=
6045 Make_Subtype_Declaration (Loc,
6046 Defining_Identifier => Anon,
6047 Subtype_Indication =>
6048 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
6049 Insert_Before (N, Decl);
6050 Analyze (Decl);
6051
6052 Rewrite (Subtype_Indication (Type_Definition (N)),
6053 New_Occurrence_Of (Anon, Loc));
6054 Set_Analyzed (Derived_Type, False);
6055 Analyze (N);
6056 return;
6057 end;
6058 end if;
6059
6060 -- By default, operations and private data are inherited from parent.
6061 -- However, in the presence of bound discriminants, a new corresponding
6062 -- record will be created, see below.
6063
6064 Set_Has_Discriminants
6065 (Derived_Type, Has_Discriminants (Parent_Type));
6066 Set_Corresponding_Record_Type
6067 (Derived_Type, Corresponding_Record_Type (Parent_Type));
6068
6069 -- Is_Constrained is set according the parent subtype, but is set to
6070 -- False if the derived type is declared with new discriminants.
6071
6072 Set_Is_Constrained
6073 (Derived_Type,
6074 (Is_Constrained (Parent_Type) or else Constraint_Present)
6075 and then not Present (Discriminant_Specifications (N)));
6076
6077 if Constraint_Present then
6078 if not Has_Discriminants (Parent_Type) then
6079 Error_Msg_N ("untagged parent must have discriminants", N);
6080
6081 elsif Present (Discriminant_Specifications (N)) then
6082
6083 -- Verify that new discriminants are used to constrain old ones
6084
6085 D_Constraint :=
6086 First
6087 (Constraints
6088 (Constraint (Subtype_Indication (Type_Definition (N)))));
6089
6090 Old_Disc := First_Discriminant (Parent_Type);
6091
6092 while Present (D_Constraint) loop
6093 if Nkind (D_Constraint) /= N_Discriminant_Association then
6094
6095 -- Positional constraint. If it is a reference to a new
6096 -- discriminant, it constrains the corresponding old one.
6097
6098 if Nkind (D_Constraint) = N_Identifier then
6099 New_Disc := First_Discriminant (Derived_Type);
6100 while Present (New_Disc) loop
6101 exit when Chars (New_Disc) = Chars (D_Constraint);
6102 Next_Discriminant (New_Disc);
6103 end loop;
6104
6105 if Present (New_Disc) then
6106 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
6107 end if;
6108 end if;
6109
6110 Next_Discriminant (Old_Disc);
6111
6112 -- if this is a named constraint, search by name for the old
6113 -- discriminants constrained by the new one.
6114
6115 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
6116
6117 -- Find new discriminant with that name
6118
6119 New_Disc := First_Discriminant (Derived_Type);
6120 while Present (New_Disc) loop
6121 exit when
6122 Chars (New_Disc) = Chars (Expression (D_Constraint));
6123 Next_Discriminant (New_Disc);
6124 end loop;
6125
6126 if Present (New_Disc) then
6127
6128 -- Verify that new discriminant renames some discriminant
6129 -- of the parent type, and associate the new discriminant
6130 -- with one or more old ones that it renames.
6131
6132 declare
6133 Selector : Node_Id;
6134
6135 begin
6136 Selector := First (Selector_Names (D_Constraint));
6137 while Present (Selector) loop
6138 Old_Disc := First_Discriminant (Parent_Type);
6139 while Present (Old_Disc) loop
6140 exit when Chars (Old_Disc) = Chars (Selector);
6141 Next_Discriminant (Old_Disc);
6142 end loop;
6143
6144 if Present (Old_Disc) then
6145 Set_Corresponding_Discriminant
6146 (New_Disc, Old_Disc);
6147 end if;
6148
6149 Next (Selector);
6150 end loop;
6151 end;
6152 end if;
6153 end if;
6154
6155 Next (D_Constraint);
6156 end loop;
6157
6158 New_Disc := First_Discriminant (Derived_Type);
6159 while Present (New_Disc) loop
6160 if No (Corresponding_Discriminant (New_Disc)) then
6161 Error_Msg_NE
6162 ("new discriminant& must constrain old one", N, New_Disc);
6163
6164 elsif not
6165 Subtypes_Statically_Compatible
6166 (Etype (New_Disc),
6167 Etype (Corresponding_Discriminant (New_Disc)))
6168 then
6169 Error_Msg_NE
6170 ("& not statically compatible with parent discriminant",
6171 N, New_Disc);
6172 end if;
6173
6174 Next_Discriminant (New_Disc);
6175 end loop;
6176 end if;
6177
6178 elsif Present (Discriminant_Specifications (N)) then
6179 Error_Msg_N
6180 ("missing discriminant constraint in untagged derivation", N);
6181 end if;
6182
6183 -- The entity chain of the derived type includes the new discriminants
6184 -- but shares operations with the parent.
6185
6186 if Present (Discriminant_Specifications (N)) then
6187 Old_Disc := First_Discriminant (Parent_Type);
6188 while Present (Old_Disc) loop
6189 if No (Next_Entity (Old_Disc))
6190 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
6191 then
6192 Set_Next_Entity
6193 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
6194 exit;
6195 end if;
6196
6197 Next_Discriminant (Old_Disc);
6198 end loop;
6199
6200 else
6201 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
6202 if Has_Discriminants (Parent_Type) then
6203 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6204 Set_Discriminant_Constraint (
6205 Derived_Type, Discriminant_Constraint (Parent_Type));
6206 end if;
6207 end if;
6208
6209 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
6210
6211 Set_Has_Completion (Derived_Type);
6212
6213 if Corr_Decl_Needed then
6214 Set_Stored_Constraint (Derived_Type, New_Constraint);
6215 Insert_After (N, Corr_Decl);
6216 Analyze (Corr_Decl);
6217 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
6218 end if;
6219 end Build_Derived_Concurrent_Type;
6220
6221 ------------------------------------
6222 -- Build_Derived_Enumeration_Type --
6223 ------------------------------------
6224
6225 procedure Build_Derived_Enumeration_Type
6226 (N : Node_Id;
6227 Parent_Type : Entity_Id;
6228 Derived_Type : Entity_Id)
6229 is
6230 Loc : constant Source_Ptr := Sloc (N);
6231 Def : constant Node_Id := Type_Definition (N);
6232 Indic : constant Node_Id := Subtype_Indication (Def);
6233 Implicit_Base : Entity_Id;
6234 Literal : Entity_Id;
6235 New_Lit : Entity_Id;
6236 Literals_List : List_Id;
6237 Type_Decl : Node_Id;
6238 Hi, Lo : Node_Id;
6239 Rang_Expr : Node_Id;
6240
6241 begin
6242 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6243 -- not have explicit literals lists we need to process types derived
6244 -- from them specially. This is handled by Derived_Standard_Character.
6245 -- If the parent type is a generic type, there are no literals either,
6246 -- and we construct the same skeletal representation as for the generic
6247 -- parent type.
6248
6249 if Is_Standard_Character_Type (Parent_Type) then
6250 Derived_Standard_Character (N, Parent_Type, Derived_Type);
6251
6252 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
6253 declare
6254 Lo : Node_Id;
6255 Hi : Node_Id;
6256
6257 begin
6258 if Nkind (Indic) /= N_Subtype_Indication then
6259 Lo :=
6260 Make_Attribute_Reference (Loc,
6261 Attribute_Name => Name_First,
6262 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6263 Set_Etype (Lo, Derived_Type);
6264
6265 Hi :=
6266 Make_Attribute_Reference (Loc,
6267 Attribute_Name => Name_Last,
6268 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6269 Set_Etype (Hi, Derived_Type);
6270
6271 Set_Scalar_Range (Derived_Type,
6272 Make_Range (Loc,
6273 Low_Bound => Lo,
6274 High_Bound => Hi));
6275 else
6276
6277 -- Analyze subtype indication and verify compatibility
6278 -- with parent type.
6279
6280 if Base_Type (Process_Subtype (Indic, N)) /=
6281 Base_Type (Parent_Type)
6282 then
6283 Error_Msg_N
6284 ("illegal constraint for formal discrete type", N);
6285 end if;
6286 end if;
6287 end;
6288
6289 else
6290 -- If a constraint is present, analyze the bounds to catch
6291 -- premature usage of the derived literals.
6292
6293 if Nkind (Indic) = N_Subtype_Indication
6294 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
6295 then
6296 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
6297 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
6298 end if;
6299
6300 -- Introduce an implicit base type for the derived type even if there
6301 -- is no constraint attached to it, since this seems closer to the
6302 -- Ada semantics. Build a full type declaration tree for the derived
6303 -- type using the implicit base type as the defining identifier. The
6304 -- build a subtype declaration tree which applies the constraint (if
6305 -- any) have it replace the derived type declaration.
6306
6307 Literal := First_Literal (Parent_Type);
6308 Literals_List := New_List;
6309 while Present (Literal)
6310 and then Ekind (Literal) = E_Enumeration_Literal
6311 loop
6312 -- Literals of the derived type have the same representation as
6313 -- those of the parent type, but this representation can be
6314 -- overridden by an explicit representation clause. Indicate
6315 -- that there is no explicit representation given yet. These
6316 -- derived literals are implicit operations of the new type,
6317 -- and can be overridden by explicit ones.
6318
6319 if Nkind (Literal) = N_Defining_Character_Literal then
6320 New_Lit :=
6321 Make_Defining_Character_Literal (Loc, Chars (Literal));
6322 else
6323 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
6324 end if;
6325
6326 Set_Ekind (New_Lit, E_Enumeration_Literal);
6327 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
6328 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
6329 Set_Enumeration_Rep_Expr (New_Lit, Empty);
6330 Set_Alias (New_Lit, Literal);
6331 Set_Is_Known_Valid (New_Lit, True);
6332
6333 Append (New_Lit, Literals_List);
6334 Next_Literal (Literal);
6335 end loop;
6336
6337 Implicit_Base :=
6338 Make_Defining_Identifier (Sloc (Derived_Type),
6339 Chars => New_External_Name (Chars (Derived_Type), 'B'));
6340
6341 -- Indicate the proper nature of the derived type. This must be done
6342 -- before analysis of the literals, to recognize cases when a literal
6343 -- may be hidden by a previous explicit function definition (cf.
6344 -- c83031a).
6345
6346 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
6347 Set_Etype (Derived_Type, Implicit_Base);
6348
6349 Type_Decl :=
6350 Make_Full_Type_Declaration (Loc,
6351 Defining_Identifier => Implicit_Base,
6352 Discriminant_Specifications => No_List,
6353 Type_Definition =>
6354 Make_Enumeration_Type_Definition (Loc, Literals_List));
6355
6356 Mark_Rewrite_Insertion (Type_Decl);
6357 Insert_Before (N, Type_Decl);
6358 Analyze (Type_Decl);
6359
6360 -- After the implicit base is analyzed its Etype needs to be changed
6361 -- to reflect the fact that it is derived from the parent type which
6362 -- was ignored during analysis. We also set the size at this point.
6363
6364 Set_Etype (Implicit_Base, Parent_Type);
6365
6366 Set_Size_Info (Implicit_Base, Parent_Type);
6367 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
6368 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
6369
6370 -- Copy other flags from parent type
6371
6372 Set_Has_Non_Standard_Rep
6373 (Implicit_Base, Has_Non_Standard_Rep
6374 (Parent_Type));
6375 Set_Has_Pragma_Ordered
6376 (Implicit_Base, Has_Pragma_Ordered
6377 (Parent_Type));
6378 Set_Has_Delayed_Freeze (Implicit_Base);
6379
6380 -- Process the subtype indication including a validation check on the
6381 -- constraint, if any. If a constraint is given, its bounds must be
6382 -- implicitly converted to the new type.
6383
6384 if Nkind (Indic) = N_Subtype_Indication then
6385 declare
6386 R : constant Node_Id :=
6387 Range_Expression (Constraint (Indic));
6388
6389 begin
6390 if Nkind (R) = N_Range then
6391 Hi := Build_Scalar_Bound
6392 (High_Bound (R), Parent_Type, Implicit_Base);
6393 Lo := Build_Scalar_Bound
6394 (Low_Bound (R), Parent_Type, Implicit_Base);
6395
6396 else
6397 -- Constraint is a Range attribute. Replace with explicit
6398 -- mention of the bounds of the prefix, which must be a
6399 -- subtype.
6400
6401 Analyze (Prefix (R));
6402 Hi :=
6403 Convert_To (Implicit_Base,
6404 Make_Attribute_Reference (Loc,
6405 Attribute_Name => Name_Last,
6406 Prefix =>
6407 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6408
6409 Lo :=
6410 Convert_To (Implicit_Base,
6411 Make_Attribute_Reference (Loc,
6412 Attribute_Name => Name_First,
6413 Prefix =>
6414 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6415 end if;
6416 end;
6417
6418 else
6419 Hi :=
6420 Build_Scalar_Bound
6421 (Type_High_Bound (Parent_Type),
6422 Parent_Type, Implicit_Base);
6423 Lo :=
6424 Build_Scalar_Bound
6425 (Type_Low_Bound (Parent_Type),
6426 Parent_Type, Implicit_Base);
6427 end if;
6428
6429 Rang_Expr :=
6430 Make_Range (Loc,
6431 Low_Bound => Lo,
6432 High_Bound => Hi);
6433
6434 -- If we constructed a default range for the case where no range
6435 -- was given, then the expressions in the range must not freeze
6436 -- since they do not correspond to expressions in the source.
6437
6438 if Nkind (Indic) /= N_Subtype_Indication then
6439 Set_Must_Not_Freeze (Lo);
6440 Set_Must_Not_Freeze (Hi);
6441 Set_Must_Not_Freeze (Rang_Expr);
6442 end if;
6443
6444 Rewrite (N,
6445 Make_Subtype_Declaration (Loc,
6446 Defining_Identifier => Derived_Type,
6447 Subtype_Indication =>
6448 Make_Subtype_Indication (Loc,
6449 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6450 Constraint =>
6451 Make_Range_Constraint (Loc,
6452 Range_Expression => Rang_Expr))));
6453
6454 Analyze (N);
6455
6456 -- Propagate the aspects from the original type declaration to the
6457 -- declaration of the implicit base.
6458
6459 Move_Aspects (From => Original_Node (N), To => Type_Decl);
6460
6461 -- Apply a range check. Since this range expression doesn't have an
6462 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6463 -- this right???
6464
6465 if Nkind (Indic) = N_Subtype_Indication then
6466 Apply_Range_Check
6467 (Range_Expression (Constraint (Indic)), Parent_Type,
6468 Source_Typ => Entity (Subtype_Mark (Indic)));
6469 end if;
6470 end if;
6471 end Build_Derived_Enumeration_Type;
6472
6473 --------------------------------
6474 -- Build_Derived_Numeric_Type --
6475 --------------------------------
6476
6477 procedure Build_Derived_Numeric_Type
6478 (N : Node_Id;
6479 Parent_Type : Entity_Id;
6480 Derived_Type : Entity_Id)
6481 is
6482 Loc : constant Source_Ptr := Sloc (N);
6483 Tdef : constant Node_Id := Type_Definition (N);
6484 Indic : constant Node_Id := Subtype_Indication (Tdef);
6485 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6486 No_Constraint : constant Boolean := Nkind (Indic) /=
6487 N_Subtype_Indication;
6488 Implicit_Base : Entity_Id;
6489
6490 Lo : Node_Id;
6491 Hi : Node_Id;
6492
6493 begin
6494 -- Process the subtype indication including a validation check on
6495 -- the constraint if any.
6496
6497 Discard_Node (Process_Subtype (Indic, N));
6498
6499 -- Introduce an implicit base type for the derived type even if there
6500 -- is no constraint attached to it, since this seems closer to the Ada
6501 -- semantics.
6502
6503 Implicit_Base :=
6504 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6505
6506 Set_Etype (Implicit_Base, Parent_Base);
6507 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6508 Set_Size_Info (Implicit_Base, Parent_Base);
6509 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
6510 Set_Parent (Implicit_Base, Parent (Derived_Type));
6511 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
6512
6513 -- Set RM Size for discrete type or decimal fixed-point type
6514 -- Ordinary fixed-point is excluded, why???
6515
6516 if Is_Discrete_Type (Parent_Base)
6517 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
6518 then
6519 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
6520 end if;
6521
6522 Set_Has_Delayed_Freeze (Implicit_Base);
6523
6524 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
6525 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
6526
6527 Set_Scalar_Range (Implicit_Base,
6528 Make_Range (Loc,
6529 Low_Bound => Lo,
6530 High_Bound => Hi));
6531
6532 if Has_Infinities (Parent_Base) then
6533 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
6534 end if;
6535
6536 -- The Derived_Type, which is the entity of the declaration, is a
6537 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6538 -- absence of an explicit constraint.
6539
6540 Set_Etype (Derived_Type, Implicit_Base);
6541
6542 -- If we did not have a constraint, then the Ekind is set from the
6543 -- parent type (otherwise Process_Subtype has set the bounds)
6544
6545 if No_Constraint then
6546 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
6547 end if;
6548
6549 -- If we did not have a range constraint, then set the range from the
6550 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6551
6552 if No_Constraint or else not Has_Range_Constraint (Indic) then
6553 Set_Scalar_Range (Derived_Type,
6554 Make_Range (Loc,
6555 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
6556 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
6557 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6558
6559 if Has_Infinities (Parent_Type) then
6560 Set_Includes_Infinities (Scalar_Range (Derived_Type));
6561 end if;
6562
6563 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
6564 end if;
6565
6566 Set_Is_Descendent_Of_Address (Derived_Type,
6567 Is_Descendent_Of_Address (Parent_Type));
6568 Set_Is_Descendent_Of_Address (Implicit_Base,
6569 Is_Descendent_Of_Address (Parent_Type));
6570
6571 -- Set remaining type-specific fields, depending on numeric type
6572
6573 if Is_Modular_Integer_Type (Parent_Type) then
6574 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
6575
6576 Set_Non_Binary_Modulus
6577 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
6578
6579 Set_Is_Known_Valid
6580 (Implicit_Base, Is_Known_Valid (Parent_Base));
6581
6582 elsif Is_Floating_Point_Type (Parent_Type) then
6583
6584 -- Digits of base type is always copied from the digits value of
6585 -- the parent base type, but the digits of the derived type will
6586 -- already have been set if there was a constraint present.
6587
6588 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6589 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
6590
6591 if No_Constraint then
6592 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
6593 end if;
6594
6595 elsif Is_Fixed_Point_Type (Parent_Type) then
6596
6597 -- Small of base type and derived type are always copied from the
6598 -- parent base type, since smalls never change. The delta of the
6599 -- base type is also copied from the parent base type. However the
6600 -- delta of the derived type will have been set already if a
6601 -- constraint was present.
6602
6603 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
6604 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
6605 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
6606
6607 if No_Constraint then
6608 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
6609 end if;
6610
6611 -- The scale and machine radix in the decimal case are always
6612 -- copied from the parent base type.
6613
6614 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
6615 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
6616 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
6617
6618 Set_Machine_Radix_10
6619 (Derived_Type, Machine_Radix_10 (Parent_Base));
6620 Set_Machine_Radix_10
6621 (Implicit_Base, Machine_Radix_10 (Parent_Base));
6622
6623 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6624
6625 if No_Constraint then
6626 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
6627
6628 else
6629 -- the analysis of the subtype_indication sets the
6630 -- digits value of the derived type.
6631
6632 null;
6633 end if;
6634 end if;
6635 end if;
6636
6637 if Is_Integer_Type (Parent_Type) then
6638 Set_Has_Shift_Operator
6639 (Implicit_Base, Has_Shift_Operator (Parent_Type));
6640 end if;
6641
6642 -- The type of the bounds is that of the parent type, and they
6643 -- must be converted to the derived type.
6644
6645 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
6646
6647 -- The implicit_base should be frozen when the derived type is frozen,
6648 -- but note that it is used in the conversions of the bounds. For fixed
6649 -- types we delay the determination of the bounds until the proper
6650 -- freezing point. For other numeric types this is rejected by GCC, for
6651 -- reasons that are currently unclear (???), so we choose to freeze the
6652 -- implicit base now. In the case of integers and floating point types
6653 -- this is harmless because subsequent representation clauses cannot
6654 -- affect anything, but it is still baffling that we cannot use the
6655 -- same mechanism for all derived numeric types.
6656
6657 -- There is a further complication: actually some representation
6658 -- clauses can affect the implicit base type. For example, attribute
6659 -- definition clauses for stream-oriented attributes need to set the
6660 -- corresponding TSS entries on the base type, and this normally
6661 -- cannot be done after the base type is frozen, so the circuitry in
6662 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6663 -- and not use Set_TSS in this case.
6664
6665 -- There are also consequences for the case of delayed representation
6666 -- aspects for some cases. For example, a Size aspect is delayed and
6667 -- should not be evaluated to the freeze point. This early freezing
6668 -- means that the size attribute evaluation happens too early???
6669
6670 if Is_Fixed_Point_Type (Parent_Type) then
6671 Conditional_Delay (Implicit_Base, Parent_Type);
6672 else
6673 Freeze_Before (N, Implicit_Base);
6674 end if;
6675 end Build_Derived_Numeric_Type;
6676
6677 --------------------------------
6678 -- Build_Derived_Private_Type --
6679 --------------------------------
6680
6681 procedure Build_Derived_Private_Type
6682 (N : Node_Id;
6683 Parent_Type : Entity_Id;
6684 Derived_Type : Entity_Id;
6685 Is_Completion : Boolean;
6686 Derive_Subps : Boolean := True)
6687 is
6688 Loc : constant Source_Ptr := Sloc (N);
6689 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
6690 Par_Scope : constant Entity_Id := Scope (Par_Base);
6691 Full_N : constant Node_Id := New_Copy_Tree (N);
6692 Full_Der : Entity_Id := New_Copy (Derived_Type);
6693 Full_P : Entity_Id;
6694
6695 procedure Build_Full_Derivation;
6696 -- Build full derivation, i.e. derive from the full view
6697
6698 procedure Copy_And_Build;
6699 -- Copy derived type declaration, replace parent with its full view,
6700 -- and build derivation
6701
6702 ---------------------------
6703 -- Build_Full_Derivation --
6704 ---------------------------
6705
6706 procedure Build_Full_Derivation is
6707 begin
6708 -- If parent scope is not open, install the declarations
6709
6710 if not In_Open_Scopes (Par_Scope) then
6711 Install_Private_Declarations (Par_Scope);
6712 Install_Visible_Declarations (Par_Scope);
6713 Copy_And_Build;
6714 Uninstall_Declarations (Par_Scope);
6715
6716 -- If parent scope is open and in another unit, and parent has a
6717 -- completion, then the derivation is taking place in the visible
6718 -- part of a child unit. In that case retrieve the full view of
6719 -- the parent momentarily.
6720
6721 elsif not In_Same_Source_Unit (N, Parent_Type) then
6722 Full_P := Full_View (Parent_Type);
6723 Exchange_Declarations (Parent_Type);
6724 Copy_And_Build;
6725 Exchange_Declarations (Full_P);
6726
6727 -- Otherwise it is a local derivation
6728
6729 else
6730 Copy_And_Build;
6731 end if;
6732 end Build_Full_Derivation;
6733
6734 --------------------
6735 -- Copy_And_Build --
6736 --------------------
6737
6738 procedure Copy_And_Build is
6739 Full_Parent : Entity_Id := Parent_Type;
6740
6741 begin
6742 -- If the parent is itself derived from another private type,
6743 -- installing the private declarations has not affected its
6744 -- privacy status, so use its own full view explicitly.
6745
6746 if Is_Private_Type (Full_Parent)
6747 and then Present (Full_View (Full_Parent))
6748 then
6749 Full_Parent := Full_View (Full_Parent);
6750 end if;
6751
6752 -- And its underlying full view if necessary
6753
6754 if Is_Private_Type (Full_Parent)
6755 and then Present (Underlying_Full_View (Full_Parent))
6756 then
6757 Full_Parent := Underlying_Full_View (Full_Parent);
6758 end if;
6759
6760 -- For record, access and most enumeration types, derivation from
6761 -- the full view requires a fully-fledged declaration. In the other
6762 -- cases, just use an itype.
6763
6764 if Ekind (Full_Parent) in Record_Kind
6765 or else Ekind (Full_Parent) in Access_Kind
6766 or else
6767 (Ekind (Full_Parent) in Enumeration_Kind
6768 and then not Is_Standard_Character_Type (Full_Parent)
6769 and then not Is_Generic_Type (Root_Type (Full_Parent)))
6770 then
6771 -- Copy and adjust declaration to provide a completion for what
6772 -- is originally a private declaration. Indicate that full view
6773 -- is internally generated.
6774
6775 Set_Comes_From_Source (Full_N, False);
6776 Set_Comes_From_Source (Full_Der, False);
6777 Set_Parent (Full_Der, Full_N);
6778 Set_Defining_Identifier (Full_N, Full_Der);
6779
6780 -- If there are no constraints, adjust the subtype mark
6781
6782 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
6783 N_Subtype_Indication
6784 then
6785 Set_Subtype_Indication
6786 (Type_Definition (Full_N),
6787 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
6788 end if;
6789
6790 Insert_After (N, Full_N);
6791
6792 -- Build full view of derived type from full view of parent which
6793 -- is now installed. Subprograms have been derived on the partial
6794 -- view, the completion does not derive them anew.
6795
6796 if Ekind (Full_Parent) in Record_Kind then
6797
6798 -- If parent type is tagged, the completion inherits the proper
6799 -- primitive operations.
6800
6801 if Is_Tagged_Type (Parent_Type) then
6802 Build_Derived_Record_Type
6803 (Full_N, Full_Parent, Full_Der, Derive_Subps);
6804 else
6805 Build_Derived_Record_Type
6806 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
6807 end if;
6808
6809 else
6810 Build_Derived_Type
6811 (Full_N, Full_Parent, Full_Der,
6812 Is_Completion => False, Derive_Subps => False);
6813 end if;
6814
6815 -- The full declaration has been introduced into the tree and
6816 -- processed in the step above. It should not be analyzed again
6817 -- (when encountered later in the current list of declarations)
6818 -- to prevent spurious name conflicts. The full entity remains
6819 -- invisible.
6820
6821 Set_Analyzed (Full_N);
6822
6823 else
6824 Full_Der :=
6825 Make_Defining_Identifier (Sloc (Derived_Type),
6826 Chars => Chars (Derived_Type));
6827 Set_Is_Itype (Full_Der);
6828 Set_Associated_Node_For_Itype (Full_Der, N);
6829 Set_Parent (Full_Der, N);
6830 Build_Derived_Type
6831 (N, Full_Parent, Full_Der,
6832 Is_Completion => False, Derive_Subps => False);
6833 end if;
6834
6835 Set_Has_Private_Declaration (Full_Der);
6836 Set_Has_Private_Declaration (Derived_Type);
6837
6838 Set_Scope (Full_Der, Scope (Derived_Type));
6839 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
6840 Set_Has_Size_Clause (Full_Der, False);
6841 Set_Has_Alignment_Clause (Full_Der, False);
6842 Set_Has_Delayed_Freeze (Full_Der);
6843 Set_Is_Frozen (Full_Der, False);
6844 Set_Freeze_Node (Full_Der, Empty);
6845 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
6846 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
6847
6848 -- The convention on the base type may be set in the private part
6849 -- and not propagated to the subtype until later, so we obtain the
6850 -- convention from the base type of the parent.
6851
6852 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
6853 end Copy_And_Build;
6854
6855 -- Start of processing for Build_Derived_Private_Type
6856
6857 begin
6858 if Is_Tagged_Type (Parent_Type) then
6859 Full_P := Full_View (Parent_Type);
6860
6861 -- A type extension of a type with unknown discriminants is an
6862 -- indefinite type that the back-end cannot handle directly.
6863 -- We treat it as a private type, and build a completion that is
6864 -- derived from the full view of the parent, and hopefully has
6865 -- known discriminants.
6866
6867 -- If the full view of the parent type has an underlying record view,
6868 -- use it to generate the underlying record view of this derived type
6869 -- (required for chains of derivations with unknown discriminants).
6870
6871 -- Minor optimization: we avoid the generation of useless underlying
6872 -- record view entities if the private type declaration has unknown
6873 -- discriminants but its corresponding full view has no
6874 -- discriminants.
6875
6876 if Has_Unknown_Discriminants (Parent_Type)
6877 and then Present (Full_P)
6878 and then (Has_Discriminants (Full_P)
6879 or else Present (Underlying_Record_View (Full_P)))
6880 and then not In_Open_Scopes (Par_Scope)
6881 and then Expander_Active
6882 then
6883 declare
6884 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
6885 New_Ext : constant Node_Id :=
6886 Copy_Separate_Tree
6887 (Record_Extension_Part (Type_Definition (N)));
6888 Decl : Node_Id;
6889
6890 begin
6891 Build_Derived_Record_Type
6892 (N, Parent_Type, Derived_Type, Derive_Subps);
6893
6894 -- Build anonymous completion, as a derivation from the full
6895 -- view of the parent. This is not a completion in the usual
6896 -- sense, because the current type is not private.
6897
6898 Decl :=
6899 Make_Full_Type_Declaration (Loc,
6900 Defining_Identifier => Full_Der,
6901 Type_Definition =>
6902 Make_Derived_Type_Definition (Loc,
6903 Subtype_Indication =>
6904 New_Copy_Tree
6905 (Subtype_Indication (Type_Definition (N))),
6906 Record_Extension_Part => New_Ext));
6907
6908 -- If the parent type has an underlying record view, use it
6909 -- here to build the new underlying record view.
6910
6911 if Present (Underlying_Record_View (Full_P)) then
6912 pragma Assert
6913 (Nkind (Subtype_Indication (Type_Definition (Decl)))
6914 = N_Identifier);
6915 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
6916 Underlying_Record_View (Full_P));
6917 end if;
6918
6919 Install_Private_Declarations (Par_Scope);
6920 Install_Visible_Declarations (Par_Scope);
6921 Insert_Before (N, Decl);
6922
6923 -- Mark entity as an underlying record view before analysis,
6924 -- to avoid generating the list of its primitive operations
6925 -- (which is not really required for this entity) and thus
6926 -- prevent spurious errors associated with missing overriding
6927 -- of abstract primitives (overridden only for Derived_Type).
6928
6929 Set_Ekind (Full_Der, E_Record_Type);
6930 Set_Is_Underlying_Record_View (Full_Der);
6931 Set_Default_SSO (Full_Der);
6932
6933 Analyze (Decl);
6934
6935 pragma Assert (Has_Discriminants (Full_Der)
6936 and then not Has_Unknown_Discriminants (Full_Der));
6937
6938 Uninstall_Declarations (Par_Scope);
6939
6940 -- Freeze the underlying record view, to prevent generation of
6941 -- useless dispatching information, which is simply shared with
6942 -- the real derived type.
6943
6944 Set_Is_Frozen (Full_Der);
6945
6946 -- Set up links between real entity and underlying record view
6947
6948 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
6949 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
6950 end;
6951
6952 -- If discriminants are known, build derived record
6953
6954 else
6955 Build_Derived_Record_Type
6956 (N, Parent_Type, Derived_Type, Derive_Subps);
6957 end if;
6958
6959 return;
6960
6961 elsif Has_Discriminants (Parent_Type) then
6962
6963 -- Build partial view of derived type from partial view of parent.
6964 -- This must be done before building the full derivation because the
6965 -- second derivation will modify the discriminants of the first and
6966 -- the discriminants are chained with the rest of the components in
6967 -- the full derivation.
6968
6969 Build_Derived_Record_Type
6970 (N, Parent_Type, Derived_Type, Derive_Subps);
6971
6972 -- Build the full derivation if this is not the anonymous derived
6973 -- base type created by Build_Derived_Record_Type in the constrained
6974 -- case (see point 5. of its head comment) since we build it for the
6975 -- derived subtype. And skip it for protected types altogether, as
6976 -- gigi does not use these types directly.
6977
6978 if Present (Full_View (Parent_Type))
6979 and then not Is_Itype (Derived_Type)
6980 and then not (Ekind (Full_View (Parent_Type)) in Protected_Kind)
6981 then
6982 declare
6983 Der_Base : constant Entity_Id := Base_Type (Derived_Type);
6984 Discr : Entity_Id;
6985 Last_Discr : Entity_Id;
6986
6987 begin
6988 -- If this is not a completion, construct the implicit full
6989 -- view by deriving from the full view of the parent type.
6990 -- But if this is a completion, the derived private type
6991 -- being built is a full view and the full derivation can
6992 -- only be its underlying full view.
6993
6994 Build_Full_Derivation;
6995
6996 if not Is_Completion then
6997 Set_Full_View (Derived_Type, Full_Der);
6998 else
6999 Set_Underlying_Full_View (Derived_Type, Full_Der);
7000 end if;
7001
7002 if not Is_Base_Type (Derived_Type) then
7003 Set_Full_View (Der_Base, Base_Type (Full_Der));
7004 end if;
7005
7006 -- Copy the discriminant list from full view to the partial
7007 -- view (base type and its subtype). Gigi requires that the
7008 -- partial and full views have the same discriminants.
7009
7010 -- Note that since the partial view points to discriminants
7011 -- in the full view, their scope will be that of the full
7012 -- view. This might cause some front end problems and need
7013 -- adjustment???
7014
7015 Discr := First_Discriminant (Base_Type (Full_Der));
7016 Set_First_Entity (Der_Base, Discr);
7017
7018 loop
7019 Last_Discr := Discr;
7020 Next_Discriminant (Discr);
7021 exit when No (Discr);
7022 end loop;
7023
7024 Set_Last_Entity (Der_Base, Last_Discr);
7025 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
7026 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
7027
7028 Set_Stored_Constraint
7029 (Full_Der, Stored_Constraint (Derived_Type));
7030 end;
7031 end if;
7032
7033 elsif Present (Full_View (Parent_Type))
7034 and then Has_Discriminants (Full_View (Parent_Type))
7035 then
7036 if Has_Unknown_Discriminants (Parent_Type)
7037 and then Nkind (Subtype_Indication (Type_Definition (N))) =
7038 N_Subtype_Indication
7039 then
7040 Error_Msg_N
7041 ("cannot constrain type with unknown discriminants",
7042 Subtype_Indication (Type_Definition (N)));
7043 return;
7044 end if;
7045
7046 -- If this is not a completion, construct the implicit full view by
7047 -- deriving from the full view of the parent type. But if this is a
7048 -- completion, the derived private type being built is a full view
7049 -- and the full derivation can only be its underlying full view.
7050
7051 Build_Full_Derivation;
7052
7053 if not Is_Completion then
7054 Set_Full_View (Derived_Type, Full_Der);
7055 else
7056 Set_Underlying_Full_View (Derived_Type, Full_Der);
7057 end if;
7058
7059 -- In any case, the primitive operations are inherited from the
7060 -- parent type, not from the internal full view.
7061
7062 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
7063
7064 if Derive_Subps then
7065 Derive_Subprograms (Parent_Type, Derived_Type);
7066 end if;
7067
7068 Set_Stored_Constraint (Derived_Type, No_Elist);
7069 Set_Is_Constrained
7070 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
7071
7072 else
7073 -- Untagged type, No discriminants on either view
7074
7075 if Nkind (Subtype_Indication (Type_Definition (N))) =
7076 N_Subtype_Indication
7077 then
7078 Error_Msg_N
7079 ("illegal constraint on type without discriminants", N);
7080 end if;
7081
7082 if Present (Discriminant_Specifications (N))
7083 and then Present (Full_View (Parent_Type))
7084 and then not Is_Tagged_Type (Full_View (Parent_Type))
7085 then
7086 Error_Msg_N ("cannot add discriminants to untagged type", N);
7087 end if;
7088
7089 Set_Stored_Constraint (Derived_Type, No_Elist);
7090 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7091 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
7092 Set_Has_Controlled_Component
7093 (Derived_Type, Has_Controlled_Component
7094 (Parent_Type));
7095
7096 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7097
7098 if not Is_Controlled (Parent_Type) then
7099 Set_Finalize_Storage_Only
7100 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
7101 end if;
7102
7103 -- If this is not a completion, construct the implicit full view by
7104 -- deriving from the full view of the parent type.
7105
7106 -- ??? If the parent is untagged private and its completion is
7107 -- tagged, this mechanism will not work because we cannot derive from
7108 -- the tagged full view unless we have an extension.
7109
7110 if Present (Full_View (Parent_Type))
7111 and then not Is_Tagged_Type (Full_View (Parent_Type))
7112 and then not Is_Completion
7113 then
7114 Build_Full_Derivation;
7115 Set_Full_View (Derived_Type, Full_Der);
7116 end if;
7117 end if;
7118
7119 Set_Has_Unknown_Discriminants (Derived_Type,
7120 Has_Unknown_Discriminants (Parent_Type));
7121
7122 if Is_Private_Type (Derived_Type) then
7123 Set_Private_Dependents (Derived_Type, New_Elmt_List);
7124 end if;
7125
7126 -- If the parent base type is in scope, add the derived type to its
7127 -- list of private dependents, because its full view may become
7128 -- visible subsequently (in a nested private part, a body, or in a
7129 -- further child unit).
7130
7131 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
7132 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
7133
7134 -- Check for unusual case where a type completed by a private
7135 -- derivation occurs within a package nested in a child unit, and
7136 -- the parent is declared in an ancestor.
7137
7138 if Is_Child_Unit (Scope (Current_Scope))
7139 and then Is_Completion
7140 and then In_Private_Part (Current_Scope)
7141 and then Scope (Parent_Type) /= Current_Scope
7142
7143 -- Note that if the parent has a completion in the private part,
7144 -- (which is itself a derivation from some other private type)
7145 -- it is that completion that is visible, there is no full view
7146 -- available, and no special processing is needed.
7147
7148 and then Present (Full_View (Parent_Type))
7149 then
7150 -- In this case, the full view of the parent type will become
7151 -- visible in the body of the enclosing child, and only then will
7152 -- the current type be possibly non-private. Build an underlying
7153 -- full view that will be installed when the enclosing child body
7154 -- is compiled.
7155
7156 if Present (Underlying_Full_View (Derived_Type)) then
7157 Full_Der := Underlying_Full_View (Derived_Type);
7158 else
7159 Build_Full_Derivation;
7160 Set_Underlying_Full_View (Derived_Type, Full_Der);
7161 end if;
7162
7163 -- The full view will be used to swap entities on entry/exit to
7164 -- the body, and must appear in the entity list for the package.
7165
7166 Append_Entity (Full_Der, Scope (Derived_Type));
7167 end if;
7168 end if;
7169 end Build_Derived_Private_Type;
7170
7171 -------------------------------
7172 -- Build_Derived_Record_Type --
7173 -------------------------------
7174
7175 -- 1. INTRODUCTION
7176
7177 -- Ideally we would like to use the same model of type derivation for
7178 -- tagged and untagged record types. Unfortunately this is not quite
7179 -- possible because the semantics of representation clauses is different
7180 -- for tagged and untagged records under inheritance. Consider the
7181 -- following:
7182
7183 -- type R (...) is [tagged] record ... end record;
7184 -- type T (...) is new R (...) [with ...];
7185
7186 -- The representation clauses for T can specify a completely different
7187 -- record layout from R's. Hence the same component can be placed in two
7188 -- very different positions in objects of type T and R. If R and T are
7189 -- tagged types, representation clauses for T can only specify the layout
7190 -- of non inherited components, thus components that are common in R and T
7191 -- have the same position in objects of type R and T.
7192
7193 -- This has two implications. The first is that the entire tree for R's
7194 -- declaration needs to be copied for T in the untagged case, so that T
7195 -- can be viewed as a record type of its own with its own representation
7196 -- clauses. The second implication is the way we handle discriminants.
7197 -- Specifically, in the untagged case we need a way to communicate to Gigi
7198 -- what are the real discriminants in the record, while for the semantics
7199 -- we need to consider those introduced by the user to rename the
7200 -- discriminants in the parent type. This is handled by introducing the
7201 -- notion of stored discriminants. See below for more.
7202
7203 -- Fortunately the way regular components are inherited can be handled in
7204 -- the same way in tagged and untagged types.
7205
7206 -- To complicate things a bit more the private view of a private extension
7207 -- cannot be handled in the same way as the full view (for one thing the
7208 -- semantic rules are somewhat different). We will explain what differs
7209 -- below.
7210
7211 -- 2. DISCRIMINANTS UNDER INHERITANCE
7212
7213 -- The semantic rules governing the discriminants of derived types are
7214 -- quite subtle.
7215
7216 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7217 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7218
7219 -- If parent type has discriminants, then the discriminants that are
7220 -- declared in the derived type are [3.4 (11)]:
7221
7222 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7223 -- there is one;
7224
7225 -- o Otherwise, each discriminant of the parent type (implicitly declared
7226 -- in the same order with the same specifications). In this case, the
7227 -- discriminants are said to be "inherited", or if unknown in the parent
7228 -- are also unknown in the derived type.
7229
7230 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7231
7232 -- o The parent subtype must be constrained;
7233
7234 -- o If the parent type is not a tagged type, then each discriminant of
7235 -- the derived type must be used in the constraint defining a parent
7236 -- subtype. [Implementation note: This ensures that the new discriminant
7237 -- can share storage with an existing discriminant.]
7238
7239 -- For the derived type each discriminant of the parent type is either
7240 -- inherited, constrained to equal some new discriminant of the derived
7241 -- type, or constrained to the value of an expression.
7242
7243 -- When inherited or constrained to equal some new discriminant, the
7244 -- parent discriminant and the discriminant of the derived type are said
7245 -- to "correspond".
7246
7247 -- If a discriminant of the parent type is constrained to a specific value
7248 -- in the derived type definition, then the discriminant is said to be
7249 -- "specified" by that derived type definition.
7250
7251 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7252
7253 -- We have spoken about stored discriminants in point 1 (introduction)
7254 -- above. There are two sort of stored discriminants: implicit and
7255 -- explicit. As long as the derived type inherits the same discriminants as
7256 -- the root record type, stored discriminants are the same as regular
7257 -- discriminants, and are said to be implicit. However, if any discriminant
7258 -- in the root type was renamed in the derived type, then the derived
7259 -- type will contain explicit stored discriminants. Explicit stored
7260 -- discriminants are discriminants in addition to the semantically visible
7261 -- discriminants defined for the derived type. Stored discriminants are
7262 -- used by Gigi to figure out what are the physical discriminants in
7263 -- objects of the derived type (see precise definition in einfo.ads).
7264 -- As an example, consider the following:
7265
7266 -- type R (D1, D2, D3 : Int) is record ... end record;
7267 -- type T1 is new R;
7268 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7269 -- type T3 is new T2;
7270 -- type T4 (Y : Int) is new T3 (Y, 99);
7271
7272 -- The following table summarizes the discriminants and stored
7273 -- discriminants in R and T1 through T4.
7274
7275 -- Type Discrim Stored Discrim Comment
7276 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7277 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7278 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7279 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7280 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7281
7282 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7283 -- find the corresponding discriminant in the parent type, while
7284 -- Original_Record_Component (abbreviated ORC below), the actual physical
7285 -- component that is renamed. Finally the field Is_Completely_Hidden
7286 -- (abbreviated ICH below) is set for all explicit stored discriminants
7287 -- (see einfo.ads for more info). For the above example this gives:
7288
7289 -- Discrim CD ORC ICH
7290 -- ^^^^^^^ ^^ ^^^ ^^^
7291 -- D1 in R empty itself no
7292 -- D2 in R empty itself no
7293 -- D3 in R empty itself no
7294
7295 -- D1 in T1 D1 in R itself no
7296 -- D2 in T1 D2 in R itself no
7297 -- D3 in T1 D3 in R itself no
7298
7299 -- X1 in T2 D3 in T1 D3 in T2 no
7300 -- X2 in T2 D1 in T1 D1 in T2 no
7301 -- D1 in T2 empty itself yes
7302 -- D2 in T2 empty itself yes
7303 -- D3 in T2 empty itself yes
7304
7305 -- X1 in T3 X1 in T2 D3 in T3 no
7306 -- X2 in T3 X2 in T2 D1 in T3 no
7307 -- D1 in T3 empty itself yes
7308 -- D2 in T3 empty itself yes
7309 -- D3 in T3 empty itself yes
7310
7311 -- Y in T4 X1 in T3 D3 in T3 no
7312 -- D1 in T3 empty itself yes
7313 -- D2 in T3 empty itself yes
7314 -- D3 in T3 empty itself yes
7315
7316 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7317
7318 -- Type derivation for tagged types is fairly straightforward. If no
7319 -- discriminants are specified by the derived type, these are inherited
7320 -- from the parent. No explicit stored discriminants are ever necessary.
7321 -- The only manipulation that is done to the tree is that of adding a
7322 -- _parent field with parent type and constrained to the same constraint
7323 -- specified for the parent in the derived type definition. For instance:
7324
7325 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7326 -- type T1 is new R with null record;
7327 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7328
7329 -- are changed into:
7330
7331 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7332 -- _parent : R (D1, D2, D3);
7333 -- end record;
7334
7335 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7336 -- _parent : T1 (X2, 88, X1);
7337 -- end record;
7338
7339 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7340 -- ORC and ICH fields are:
7341
7342 -- Discrim CD ORC ICH
7343 -- ^^^^^^^ ^^ ^^^ ^^^
7344 -- D1 in R empty itself no
7345 -- D2 in R empty itself no
7346 -- D3 in R empty itself no
7347
7348 -- D1 in T1 D1 in R D1 in R no
7349 -- D2 in T1 D2 in R D2 in R no
7350 -- D3 in T1 D3 in R D3 in R no
7351
7352 -- X1 in T2 D3 in T1 D3 in R no
7353 -- X2 in T2 D1 in T1 D1 in R no
7354
7355 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7356 --
7357 -- Regardless of whether we dealing with a tagged or untagged type
7358 -- we will transform all derived type declarations of the form
7359 --
7360 -- type T is new R (...) [with ...];
7361 -- or
7362 -- subtype S is R (...);
7363 -- type T is new S [with ...];
7364 -- into
7365 -- type BT is new R [with ...];
7366 -- subtype T is BT (...);
7367 --
7368 -- That is, the base derived type is constrained only if it has no
7369 -- discriminants. The reason for doing this is that GNAT's semantic model
7370 -- assumes that a base type with discriminants is unconstrained.
7371 --
7372 -- Note that, strictly speaking, the above transformation is not always
7373 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7374 --
7375 -- procedure B34011A is
7376 -- type REC (D : integer := 0) is record
7377 -- I : Integer;
7378 -- end record;
7379
7380 -- package P is
7381 -- type T6 is new Rec;
7382 -- function F return T6;
7383 -- end P;
7384
7385 -- use P;
7386 -- package Q6 is
7387 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7388 -- end Q6;
7389 --
7390 -- The definition of Q6.U is illegal. However transforming Q6.U into
7391
7392 -- type BaseU is new T6;
7393 -- subtype U is BaseU (Q6.F.I)
7394
7395 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7396 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7397 -- the transformation described above.
7398
7399 -- There is another instance where the above transformation is incorrect.
7400 -- Consider:
7401
7402 -- package Pack is
7403 -- type Base (D : Integer) is tagged null record;
7404 -- procedure P (X : Base);
7405
7406 -- type Der is new Base (2) with null record;
7407 -- procedure P (X : Der);
7408 -- end Pack;
7409
7410 -- Then the above transformation turns this into
7411
7412 -- type Der_Base is new Base with null record;
7413 -- -- procedure P (X : Base) is implicitly inherited here
7414 -- -- as procedure P (X : Der_Base).
7415
7416 -- subtype Der is Der_Base (2);
7417 -- procedure P (X : Der);
7418 -- -- The overriding of P (X : Der_Base) is illegal since we
7419 -- -- have a parameter conformance problem.
7420
7421 -- To get around this problem, after having semantically processed Der_Base
7422 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7423 -- Discriminant_Constraint from Der so that when parameter conformance is
7424 -- checked when P is overridden, no semantic errors are flagged.
7425
7426 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7427
7428 -- Regardless of whether we are dealing with a tagged or untagged type
7429 -- we will transform all derived type declarations of the form
7430
7431 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7432 -- type T is new R [with ...];
7433 -- into
7434 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7435
7436 -- The reason for such transformation is that it allows us to implement a
7437 -- very clean form of component inheritance as explained below.
7438
7439 -- Note that this transformation is not achieved by direct tree rewriting
7440 -- and manipulation, but rather by redoing the semantic actions that the
7441 -- above transformation will entail. This is done directly in routine
7442 -- Inherit_Components.
7443
7444 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7445
7446 -- In both tagged and untagged derived types, regular non discriminant
7447 -- components are inherited in the derived type from the parent type. In
7448 -- the absence of discriminants component, inheritance is straightforward
7449 -- as components can simply be copied from the parent.
7450
7451 -- If the parent has discriminants, inheriting components constrained with
7452 -- these discriminants requires caution. Consider the following example:
7453
7454 -- type R (D1, D2 : Positive) is [tagged] record
7455 -- S : String (D1 .. D2);
7456 -- end record;
7457
7458 -- type T1 is new R [with null record];
7459 -- type T2 (X : positive) is new R (1, X) [with null record];
7460
7461 -- As explained in 6. above, T1 is rewritten as
7462 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7463 -- which makes the treatment for T1 and T2 identical.
7464
7465 -- What we want when inheriting S, is that references to D1 and D2 in R are
7466 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7467 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7468 -- with either discriminant references in the derived type or expressions.
7469 -- This replacement is achieved as follows: before inheriting R's
7470 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7471 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7472 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7473 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7474 -- by String (1 .. X).
7475
7476 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7477
7478 -- We explain here the rules governing private type extensions relevant to
7479 -- type derivation. These rules are explained on the following example:
7480
7481 -- type D [(...)] is new A [(...)] with private; <-- partial view
7482 -- type D [(...)] is new P [(...)] with null record; <-- full view
7483
7484 -- Type A is called the ancestor subtype of the private extension.
7485 -- Type P is the parent type of the full view of the private extension. It
7486 -- must be A or a type derived from A.
7487
7488 -- The rules concerning the discriminants of private type extensions are
7489 -- [7.3(10-13)]:
7490
7491 -- o If a private extension inherits known discriminants from the ancestor
7492 -- subtype, then the full view must also inherit its discriminants from
7493 -- the ancestor subtype and the parent subtype of the full view must be
7494 -- constrained if and only if the ancestor subtype is constrained.
7495
7496 -- o If a partial view has unknown discriminants, then the full view may
7497 -- define a definite or an indefinite subtype, with or without
7498 -- discriminants.
7499
7500 -- o If a partial view has neither known nor unknown discriminants, then
7501 -- the full view must define a definite subtype.
7502
7503 -- o If the ancestor subtype of a private extension has constrained
7504 -- discriminants, then the parent subtype of the full view must impose a
7505 -- statically matching constraint on those discriminants.
7506
7507 -- This means that only the following forms of private extensions are
7508 -- allowed:
7509
7510 -- type D is new A with private; <-- partial view
7511 -- type D is new P with null record; <-- full view
7512
7513 -- If A has no discriminants than P has no discriminants, otherwise P must
7514 -- inherit A's discriminants.
7515
7516 -- type D is new A (...) with private; <-- partial view
7517 -- type D is new P (:::) with null record; <-- full view
7518
7519 -- P must inherit A's discriminants and (...) and (:::) must statically
7520 -- match.
7521
7522 -- subtype A is R (...);
7523 -- type D is new A with private; <-- partial view
7524 -- type D is new P with null record; <-- full view
7525
7526 -- P must have inherited R's discriminants and must be derived from A or
7527 -- any of its subtypes.
7528
7529 -- type D (..) is new A with private; <-- partial view
7530 -- type D (..) is new P [(:::)] with null record; <-- full view
7531
7532 -- No specific constraints on P's discriminants or constraint (:::).
7533 -- Note that A can be unconstrained, but the parent subtype P must either
7534 -- be constrained or (:::) must be present.
7535
7536 -- type D (..) is new A [(...)] with private; <-- partial view
7537 -- type D (..) is new P [(:::)] with null record; <-- full view
7538
7539 -- P's constraints on A's discriminants must statically match those
7540 -- imposed by (...).
7541
7542 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7543
7544 -- The full view of a private extension is handled exactly as described
7545 -- above. The model chose for the private view of a private extension is
7546 -- the same for what concerns discriminants (i.e. they receive the same
7547 -- treatment as in the tagged case). However, the private view of the
7548 -- private extension always inherits the components of the parent base,
7549 -- without replacing any discriminant reference. Strictly speaking this is
7550 -- incorrect. However, Gigi never uses this view to generate code so this
7551 -- is a purely semantic issue. In theory, a set of transformations similar
7552 -- to those given in 5. and 6. above could be applied to private views of
7553 -- private extensions to have the same model of component inheritance as
7554 -- for non private extensions. However, this is not done because it would
7555 -- further complicate private type processing. Semantically speaking, this
7556 -- leaves us in an uncomfortable situation. As an example consider:
7557
7558 -- package Pack is
7559 -- type R (D : integer) is tagged record
7560 -- S : String (1 .. D);
7561 -- end record;
7562 -- procedure P (X : R);
7563 -- type T is new R (1) with private;
7564 -- private
7565 -- type T is new R (1) with null record;
7566 -- end;
7567
7568 -- This is transformed into:
7569
7570 -- package Pack is
7571 -- type R (D : integer) is tagged record
7572 -- S : String (1 .. D);
7573 -- end record;
7574 -- procedure P (X : R);
7575 -- type T is new R (1) with private;
7576 -- private
7577 -- type BaseT is new R with null record;
7578 -- subtype T is BaseT (1);
7579 -- end;
7580
7581 -- (strictly speaking the above is incorrect Ada)
7582
7583 -- From the semantic standpoint the private view of private extension T
7584 -- should be flagged as constrained since one can clearly have
7585 --
7586 -- Obj : T;
7587 --
7588 -- in a unit withing Pack. However, when deriving subprograms for the
7589 -- private view of private extension T, T must be seen as unconstrained
7590 -- since T has discriminants (this is a constraint of the current
7591 -- subprogram derivation model). Thus, when processing the private view of
7592 -- a private extension such as T, we first mark T as unconstrained, we
7593 -- process it, we perform program derivation and just before returning from
7594 -- Build_Derived_Record_Type we mark T as constrained.
7595
7596 -- ??? Are there are other uncomfortable cases that we will have to
7597 -- deal with.
7598
7599 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7600
7601 -- Types that are derived from a visible record type and have a private
7602 -- extension present other peculiarities. They behave mostly like private
7603 -- types, but if they have primitive operations defined, these will not
7604 -- have the proper signatures for further inheritance, because other
7605 -- primitive operations will use the implicit base that we define for
7606 -- private derivations below. This affect subprogram inheritance (see
7607 -- Derive_Subprograms for details). We also derive the implicit base from
7608 -- the base type of the full view, so that the implicit base is a record
7609 -- type and not another private type, This avoids infinite loops.
7610
7611 procedure Build_Derived_Record_Type
7612 (N : Node_Id;
7613 Parent_Type : Entity_Id;
7614 Derived_Type : Entity_Id;
7615 Derive_Subps : Boolean := True)
7616 is
7617 Discriminant_Specs : constant Boolean :=
7618 Present (Discriminant_Specifications (N));
7619 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
7620 Loc : constant Source_Ptr := Sloc (N);
7621 Private_Extension : constant Boolean :=
7622 Nkind (N) = N_Private_Extension_Declaration;
7623 Assoc_List : Elist_Id;
7624 Constraint_Present : Boolean;
7625 Constrs : Elist_Id;
7626 Discrim : Entity_Id;
7627 Indic : Node_Id;
7628 Inherit_Discrims : Boolean := False;
7629 Last_Discrim : Entity_Id;
7630 New_Base : Entity_Id;
7631 New_Decl : Node_Id;
7632 New_Discrs : Elist_Id;
7633 New_Indic : Node_Id;
7634 Parent_Base : Entity_Id;
7635 Save_Etype : Entity_Id;
7636 Save_Discr_Constr : Elist_Id;
7637 Save_Next_Entity : Entity_Id;
7638 Type_Def : Node_Id;
7639
7640 Discs : Elist_Id := New_Elmt_List;
7641 -- An empty Discs list means that there were no constraints in the
7642 -- subtype indication or that there was an error processing it.
7643
7644 begin
7645 if Ekind (Parent_Type) = E_Record_Type_With_Private
7646 and then Present (Full_View (Parent_Type))
7647 and then Has_Discriminants (Parent_Type)
7648 then
7649 Parent_Base := Base_Type (Full_View (Parent_Type));
7650 else
7651 Parent_Base := Base_Type (Parent_Type);
7652 end if;
7653
7654 -- AI05-0115 : if this is a derivation from a private type in some
7655 -- other scope that may lead to invisible components for the derived
7656 -- type, mark it accordingly.
7657
7658 if Is_Private_Type (Parent_Type) then
7659 if Scope (Parent_Type) = Scope (Derived_Type) then
7660 null;
7661
7662 elsif In_Open_Scopes (Scope (Parent_Type))
7663 and then In_Private_Part (Scope (Parent_Type))
7664 then
7665 null;
7666
7667 else
7668 Set_Has_Private_Ancestor (Derived_Type);
7669 end if;
7670
7671 else
7672 Set_Has_Private_Ancestor
7673 (Derived_Type, Has_Private_Ancestor (Parent_Type));
7674 end if;
7675
7676 -- Before we start the previously documented transformations, here is
7677 -- little fix for size and alignment of tagged types. Normally when we
7678 -- derive type D from type P, we copy the size and alignment of P as the
7679 -- default for D, and in the absence of explicit representation clauses
7680 -- for D, the size and alignment are indeed the same as the parent.
7681
7682 -- But this is wrong for tagged types, since fields may be added, and
7683 -- the default size may need to be larger, and the default alignment may
7684 -- need to be larger.
7685
7686 -- We therefore reset the size and alignment fields in the tagged case.
7687 -- Note that the size and alignment will in any case be at least as
7688 -- large as the parent type (since the derived type has a copy of the
7689 -- parent type in the _parent field)
7690
7691 -- The type is also marked as being tagged here, which is needed when
7692 -- processing components with a self-referential anonymous access type
7693 -- in the call to Check_Anonymous_Access_Components below. Note that
7694 -- this flag is also set later on for completeness.
7695
7696 if Is_Tagged then
7697 Set_Is_Tagged_Type (Derived_Type);
7698 Init_Size_Align (Derived_Type);
7699 end if;
7700
7701 -- STEP 0a: figure out what kind of derived type declaration we have
7702
7703 if Private_Extension then
7704 Type_Def := N;
7705 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
7706 Set_Default_SSO (Derived_Type);
7707
7708 else
7709 Type_Def := Type_Definition (N);
7710
7711 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7712 -- Parent_Base can be a private type or private extension. However,
7713 -- for tagged types with an extension the newly added fields are
7714 -- visible and hence the Derived_Type is always an E_Record_Type.
7715 -- (except that the parent may have its own private fields).
7716 -- For untagged types we preserve the Ekind of the Parent_Base.
7717
7718 if Present (Record_Extension_Part (Type_Def)) then
7719 Set_Ekind (Derived_Type, E_Record_Type);
7720 Set_Default_SSO (Derived_Type);
7721
7722 -- Create internal access types for components with anonymous
7723 -- access types.
7724
7725 if Ada_Version >= Ada_2005 then
7726 Check_Anonymous_Access_Components
7727 (N, Derived_Type, Derived_Type,
7728 Component_List (Record_Extension_Part (Type_Def)));
7729 end if;
7730
7731 else
7732 Set_Ekind (Derived_Type, Ekind (Parent_Base));
7733 end if;
7734 end if;
7735
7736 -- Indic can either be an N_Identifier if the subtype indication
7737 -- contains no constraint or an N_Subtype_Indication if the subtype
7738 -- indication has a constraint.
7739
7740 Indic := Subtype_Indication (Type_Def);
7741 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
7742
7743 -- Check that the type has visible discriminants. The type may be
7744 -- a private type with unknown discriminants whose full view has
7745 -- discriminants which are invisible.
7746
7747 if Constraint_Present then
7748 if not Has_Discriminants (Parent_Base)
7749 or else
7750 (Has_Unknown_Discriminants (Parent_Base)
7751 and then Is_Private_Type (Parent_Base))
7752 then
7753 Error_Msg_N
7754 ("invalid constraint: type has no discriminant",
7755 Constraint (Indic));
7756
7757 Constraint_Present := False;
7758 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7759
7760 elsif Is_Constrained (Parent_Type) then
7761 Error_Msg_N
7762 ("invalid constraint: parent type is already constrained",
7763 Constraint (Indic));
7764
7765 Constraint_Present := False;
7766 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7767 end if;
7768 end if;
7769
7770 -- STEP 0b: If needed, apply transformation given in point 5. above
7771
7772 if not Private_Extension
7773 and then Has_Discriminants (Parent_Type)
7774 and then not Discriminant_Specs
7775 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
7776 then
7777 -- First, we must analyze the constraint (see comment in point 5.)
7778 -- The constraint may come from the subtype indication of the full
7779 -- declaration.
7780
7781 if Constraint_Present then
7782 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
7783
7784 -- If there is no explicit constraint, there might be one that is
7785 -- inherited from a constrained parent type. In that case verify that
7786 -- it conforms to the constraint in the partial view. In perverse
7787 -- cases the parent subtypes of the partial and full view can have
7788 -- different constraints.
7789
7790 elsif Present (Stored_Constraint (Parent_Type)) then
7791 New_Discrs := Stored_Constraint (Parent_Type);
7792
7793 else
7794 New_Discrs := No_Elist;
7795 end if;
7796
7797 if Has_Discriminants (Derived_Type)
7798 and then Has_Private_Declaration (Derived_Type)
7799 and then Present (Discriminant_Constraint (Derived_Type))
7800 and then Present (New_Discrs)
7801 then
7802 -- Verify that constraints of the full view statically match
7803 -- those given in the partial view.
7804
7805 declare
7806 C1, C2 : Elmt_Id;
7807
7808 begin
7809 C1 := First_Elmt (New_Discrs);
7810 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
7811 while Present (C1) and then Present (C2) loop
7812 if Fully_Conformant_Expressions (Node (C1), Node (C2))
7813 or else
7814 (Is_OK_Static_Expression (Node (C1))
7815 and then Is_OK_Static_Expression (Node (C2))
7816 and then
7817 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
7818 then
7819 null;
7820
7821 else
7822 if Constraint_Present then
7823 Error_Msg_N
7824 ("constraint not conformant to previous declaration",
7825 Node (C1));
7826 else
7827 Error_Msg_N
7828 ("constraint of full view is incompatible "
7829 & "with partial view", N);
7830 end if;
7831 end if;
7832
7833 Next_Elmt (C1);
7834 Next_Elmt (C2);
7835 end loop;
7836 end;
7837 end if;
7838
7839 -- Insert and analyze the declaration for the unconstrained base type
7840
7841 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
7842
7843 New_Decl :=
7844 Make_Full_Type_Declaration (Loc,
7845 Defining_Identifier => New_Base,
7846 Type_Definition =>
7847 Make_Derived_Type_Definition (Loc,
7848 Abstract_Present => Abstract_Present (Type_Def),
7849 Limited_Present => Limited_Present (Type_Def),
7850 Subtype_Indication =>
7851 New_Occurrence_Of (Parent_Base, Loc),
7852 Record_Extension_Part =>
7853 Relocate_Node (Record_Extension_Part (Type_Def)),
7854 Interface_List => Interface_List (Type_Def)));
7855
7856 Set_Parent (New_Decl, Parent (N));
7857 Mark_Rewrite_Insertion (New_Decl);
7858 Insert_Before (N, New_Decl);
7859
7860 -- In the extension case, make sure ancestor is frozen appropriately
7861 -- (see also non-discriminated case below).
7862
7863 if Present (Record_Extension_Part (Type_Def))
7864 or else Is_Interface (Parent_Base)
7865 then
7866 Freeze_Before (New_Decl, Parent_Type);
7867 end if;
7868
7869 -- Note that this call passes False for the Derive_Subps parameter
7870 -- because subprogram derivation is deferred until after creating
7871 -- the subtype (see below).
7872
7873 Build_Derived_Type
7874 (New_Decl, Parent_Base, New_Base,
7875 Is_Completion => False, Derive_Subps => False);
7876
7877 -- ??? This needs re-examination to determine whether the
7878 -- above call can simply be replaced by a call to Analyze.
7879
7880 Set_Analyzed (New_Decl);
7881
7882 -- Insert and analyze the declaration for the constrained subtype
7883
7884 if Constraint_Present then
7885 New_Indic :=
7886 Make_Subtype_Indication (Loc,
7887 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7888 Constraint => Relocate_Node (Constraint (Indic)));
7889
7890 else
7891 declare
7892 Constr_List : constant List_Id := New_List;
7893 C : Elmt_Id;
7894 Expr : Node_Id;
7895
7896 begin
7897 C := First_Elmt (Discriminant_Constraint (Parent_Type));
7898 while Present (C) loop
7899 Expr := Node (C);
7900
7901 -- It is safe here to call New_Copy_Tree since
7902 -- Force_Evaluation was called on each constraint in
7903 -- Build_Discriminant_Constraints.
7904
7905 Append (New_Copy_Tree (Expr), To => Constr_List);
7906
7907 Next_Elmt (C);
7908 end loop;
7909
7910 New_Indic :=
7911 Make_Subtype_Indication (Loc,
7912 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7913 Constraint =>
7914 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
7915 end;
7916 end if;
7917
7918 Rewrite (N,
7919 Make_Subtype_Declaration (Loc,
7920 Defining_Identifier => Derived_Type,
7921 Subtype_Indication => New_Indic));
7922
7923 Analyze (N);
7924
7925 -- Derivation of subprograms must be delayed until the full subtype
7926 -- has been established, to ensure proper overriding of subprograms
7927 -- inherited by full types. If the derivations occurred as part of
7928 -- the call to Build_Derived_Type above, then the check for type
7929 -- conformance would fail because earlier primitive subprograms
7930 -- could still refer to the full type prior the change to the new
7931 -- subtype and hence would not match the new base type created here.
7932 -- Subprograms are not derived, however, when Derive_Subps is False
7933 -- (since otherwise there could be redundant derivations).
7934
7935 if Derive_Subps then
7936 Derive_Subprograms (Parent_Type, Derived_Type);
7937 end if;
7938
7939 -- For tagged types the Discriminant_Constraint of the new base itype
7940 -- is inherited from the first subtype so that no subtype conformance
7941 -- problem arise when the first subtype overrides primitive
7942 -- operations inherited by the implicit base type.
7943
7944 if Is_Tagged then
7945 Set_Discriminant_Constraint
7946 (New_Base, Discriminant_Constraint (Derived_Type));
7947 end if;
7948
7949 return;
7950 end if;
7951
7952 -- If we get here Derived_Type will have no discriminants or it will be
7953 -- a discriminated unconstrained base type.
7954
7955 -- STEP 1a: perform preliminary actions/checks for derived tagged types
7956
7957 if Is_Tagged then
7958
7959 -- The parent type is frozen for non-private extensions (RM 13.14(7))
7960 -- The declaration of a specific descendant of an interface type
7961 -- freezes the interface type (RM 13.14).
7962
7963 if not Private_Extension or else Is_Interface (Parent_Base) then
7964 Freeze_Before (N, Parent_Type);
7965 end if;
7966
7967 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
7968 -- cannot be declared at a deeper level than its parent type is
7969 -- removed. The check on derivation within a generic body is also
7970 -- relaxed, but there's a restriction that a derived tagged type
7971 -- cannot be declared in a generic body if it's derived directly
7972 -- or indirectly from a formal type of that generic.
7973
7974 if Ada_Version >= Ada_2005 then
7975 if Present (Enclosing_Generic_Body (Derived_Type)) then
7976 declare
7977 Ancestor_Type : Entity_Id;
7978
7979 begin
7980 -- Check to see if any ancestor of the derived type is a
7981 -- formal type.
7982
7983 Ancestor_Type := Parent_Type;
7984 while not Is_Generic_Type (Ancestor_Type)
7985 and then Etype (Ancestor_Type) /= Ancestor_Type
7986 loop
7987 Ancestor_Type := Etype (Ancestor_Type);
7988 end loop;
7989
7990 -- If the derived type does have a formal type as an
7991 -- ancestor, then it's an error if the derived type is
7992 -- declared within the body of the generic unit that
7993 -- declares the formal type in its generic formal part. It's
7994 -- sufficient to check whether the ancestor type is declared
7995 -- inside the same generic body as the derived type (such as
7996 -- within a nested generic spec), in which case the
7997 -- derivation is legal. If the formal type is declared
7998 -- outside of that generic body, then it's guaranteed that
7999 -- the derived type is declared within the generic body of
8000 -- the generic unit declaring the formal type.
8001
8002 if Is_Generic_Type (Ancestor_Type)
8003 and then Enclosing_Generic_Body (Ancestor_Type) /=
8004 Enclosing_Generic_Body (Derived_Type)
8005 then
8006 Error_Msg_NE
8007 ("parent type of& must not be descendant of formal type"
8008 & " of an enclosing generic body",
8009 Indic, Derived_Type);
8010 end if;
8011 end;
8012 end if;
8013
8014 elsif Type_Access_Level (Derived_Type) /=
8015 Type_Access_Level (Parent_Type)
8016 and then not Is_Generic_Type (Derived_Type)
8017 then
8018 if Is_Controlled (Parent_Type) then
8019 Error_Msg_N
8020 ("controlled type must be declared at the library level",
8021 Indic);
8022 else
8023 Error_Msg_N
8024 ("type extension at deeper accessibility level than parent",
8025 Indic);
8026 end if;
8027
8028 else
8029 declare
8030 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
8031 begin
8032 if Present (GB)
8033 and then GB /= Enclosing_Generic_Body (Parent_Base)
8034 then
8035 Error_Msg_NE
8036 ("parent type of& must not be outside generic body"
8037 & " (RM 3.9.1(4))",
8038 Indic, Derived_Type);
8039 end if;
8040 end;
8041 end if;
8042 end if;
8043
8044 -- Ada 2005 (AI-251)
8045
8046 if Ada_Version >= Ada_2005 and then Is_Tagged then
8047
8048 -- "The declaration of a specific descendant of an interface type
8049 -- freezes the interface type" (RM 13.14).
8050
8051 declare
8052 Iface : Node_Id;
8053 begin
8054 if Is_Non_Empty_List (Interface_List (Type_Def)) then
8055 Iface := First (Interface_List (Type_Def));
8056 while Present (Iface) loop
8057 Freeze_Before (N, Etype (Iface));
8058 Next (Iface);
8059 end loop;
8060 end if;
8061 end;
8062 end if;
8063
8064 -- STEP 1b : preliminary cleanup of the full view of private types
8065
8066 -- If the type is already marked as having discriminants, then it's the
8067 -- completion of a private type or private extension and we need to
8068 -- retain the discriminants from the partial view if the current
8069 -- declaration has Discriminant_Specifications so that we can verify
8070 -- conformance. However, we must remove any existing components that
8071 -- were inherited from the parent (and attached in Copy_And_Swap)
8072 -- because the full type inherits all appropriate components anyway, and
8073 -- we do not want the partial view's components interfering.
8074
8075 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
8076 Discrim := First_Discriminant (Derived_Type);
8077 loop
8078 Last_Discrim := Discrim;
8079 Next_Discriminant (Discrim);
8080 exit when No (Discrim);
8081 end loop;
8082
8083 Set_Last_Entity (Derived_Type, Last_Discrim);
8084
8085 -- In all other cases wipe out the list of inherited components (even
8086 -- inherited discriminants), it will be properly rebuilt here.
8087
8088 else
8089 Set_First_Entity (Derived_Type, Empty);
8090 Set_Last_Entity (Derived_Type, Empty);
8091 end if;
8092
8093 -- STEP 1c: Initialize some flags for the Derived_Type
8094
8095 -- The following flags must be initialized here so that
8096 -- Process_Discriminants can check that discriminants of tagged types do
8097 -- not have a default initial value and that access discriminants are
8098 -- only specified for limited records. For completeness, these flags are
8099 -- also initialized along with all the other flags below.
8100
8101 -- AI-419: Limitedness is not inherited from an interface parent, so to
8102 -- be limited in that case the type must be explicitly declared as
8103 -- limited. However, task and protected interfaces are always limited.
8104
8105 if Limited_Present (Type_Def) then
8106 Set_Is_Limited_Record (Derived_Type);
8107
8108 elsif Is_Limited_Record (Parent_Type)
8109 or else (Present (Full_View (Parent_Type))
8110 and then Is_Limited_Record (Full_View (Parent_Type)))
8111 then
8112 if not Is_Interface (Parent_Type)
8113 or else Is_Synchronized_Interface (Parent_Type)
8114 or else Is_Protected_Interface (Parent_Type)
8115 or else Is_Task_Interface (Parent_Type)
8116 then
8117 Set_Is_Limited_Record (Derived_Type);
8118 end if;
8119 end if;
8120
8121 -- STEP 2a: process discriminants of derived type if any
8122
8123 Push_Scope (Derived_Type);
8124
8125 if Discriminant_Specs then
8126 Set_Has_Unknown_Discriminants (Derived_Type, False);
8127
8128 -- The following call initializes fields Has_Discriminants and
8129 -- Discriminant_Constraint, unless we are processing the completion
8130 -- of a private type declaration.
8131
8132 Check_Or_Process_Discriminants (N, Derived_Type);
8133
8134 -- For untagged types, the constraint on the Parent_Type must be
8135 -- present and is used to rename the discriminants.
8136
8137 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
8138 Error_Msg_N ("untagged parent must have discriminants", Indic);
8139
8140 elsif not Is_Tagged and then not Constraint_Present then
8141 Error_Msg_N
8142 ("discriminant constraint needed for derived untagged records",
8143 Indic);
8144
8145 -- Otherwise the parent subtype must be constrained unless we have a
8146 -- private extension.
8147
8148 elsif not Constraint_Present
8149 and then not Private_Extension
8150 and then not Is_Constrained (Parent_Type)
8151 then
8152 Error_Msg_N
8153 ("unconstrained type not allowed in this context", Indic);
8154
8155 elsif Constraint_Present then
8156 -- The following call sets the field Corresponding_Discriminant
8157 -- for the discriminants in the Derived_Type.
8158
8159 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
8160
8161 -- For untagged types all new discriminants must rename
8162 -- discriminants in the parent. For private extensions new
8163 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8164
8165 Discrim := First_Discriminant (Derived_Type);
8166 while Present (Discrim) loop
8167 if not Is_Tagged
8168 and then No (Corresponding_Discriminant (Discrim))
8169 then
8170 Error_Msg_N
8171 ("new discriminants must constrain old ones", Discrim);
8172
8173 elsif Private_Extension
8174 and then Present (Corresponding_Discriminant (Discrim))
8175 then
8176 Error_Msg_N
8177 ("only static constraints allowed for parent"
8178 & " discriminants in the partial view", Indic);
8179 exit;
8180 end if;
8181
8182 -- If a new discriminant is used in the constraint, then its
8183 -- subtype must be statically compatible with the parent
8184 -- discriminant's subtype (3.7(15)).
8185
8186 -- However, if the record contains an array constrained by
8187 -- the discriminant but with some different bound, the compiler
8188 -- attemps to create a smaller range for the discriminant type.
8189 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8190 -- the discriminant type is a scalar type, the check must use
8191 -- the original discriminant type in the parent declaration.
8192
8193 declare
8194 Corr_Disc : constant Entity_Id :=
8195 Corresponding_Discriminant (Discrim);
8196 Disc_Type : constant Entity_Id := Etype (Discrim);
8197 Corr_Type : Entity_Id;
8198
8199 begin
8200 if Present (Corr_Disc) then
8201 if Is_Scalar_Type (Disc_Type) then
8202 Corr_Type :=
8203 Entity (Discriminant_Type (Parent (Corr_Disc)));
8204 else
8205 Corr_Type := Etype (Corr_Disc);
8206 end if;
8207
8208 if not
8209 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
8210 then
8211 Error_Msg_N
8212 ("subtype must be compatible "
8213 & "with parent discriminant",
8214 Discrim);
8215 end if;
8216 end if;
8217 end;
8218
8219 Next_Discriminant (Discrim);
8220 end loop;
8221
8222 -- Check whether the constraints of the full view statically
8223 -- match those imposed by the parent subtype [7.3(13)].
8224
8225 if Present (Stored_Constraint (Derived_Type)) then
8226 declare
8227 C1, C2 : Elmt_Id;
8228
8229 begin
8230 C1 := First_Elmt (Discs);
8231 C2 := First_Elmt (Stored_Constraint (Derived_Type));
8232 while Present (C1) and then Present (C2) loop
8233 if not
8234 Fully_Conformant_Expressions (Node (C1), Node (C2))
8235 then
8236 Error_Msg_N
8237 ("not conformant with previous declaration",
8238 Node (C1));
8239 end if;
8240
8241 Next_Elmt (C1);
8242 Next_Elmt (C2);
8243 end loop;
8244 end;
8245 end if;
8246 end if;
8247
8248 -- STEP 2b: No new discriminants, inherit discriminants if any
8249
8250 else
8251 if Private_Extension then
8252 Set_Has_Unknown_Discriminants
8253 (Derived_Type,
8254 Has_Unknown_Discriminants (Parent_Type)
8255 or else Unknown_Discriminants_Present (N));
8256
8257 -- The partial view of the parent may have unknown discriminants,
8258 -- but if the full view has discriminants and the parent type is
8259 -- in scope they must be inherited.
8260
8261 elsif Has_Unknown_Discriminants (Parent_Type)
8262 and then
8263 (not Has_Discriminants (Parent_Type)
8264 or else not In_Open_Scopes (Scope (Parent_Type)))
8265 then
8266 Set_Has_Unknown_Discriminants (Derived_Type);
8267 end if;
8268
8269 if not Has_Unknown_Discriminants (Derived_Type)
8270 and then not Has_Unknown_Discriminants (Parent_Base)
8271 and then Has_Discriminants (Parent_Type)
8272 then
8273 Inherit_Discrims := True;
8274 Set_Has_Discriminants
8275 (Derived_Type, True);
8276 Set_Discriminant_Constraint
8277 (Derived_Type, Discriminant_Constraint (Parent_Base));
8278 end if;
8279
8280 -- The following test is true for private types (remember
8281 -- transformation 5. is not applied to those) and in an error
8282 -- situation.
8283
8284 if Constraint_Present then
8285 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
8286 end if;
8287
8288 -- For now mark a new derived type as constrained only if it has no
8289 -- discriminants. At the end of Build_Derived_Record_Type we properly
8290 -- set this flag in the case of private extensions. See comments in
8291 -- point 9. just before body of Build_Derived_Record_Type.
8292
8293 Set_Is_Constrained
8294 (Derived_Type,
8295 not (Inherit_Discrims
8296 or else Has_Unknown_Discriminants (Derived_Type)));
8297 end if;
8298
8299 -- STEP 3: initialize fields of derived type
8300
8301 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
8302 Set_Stored_Constraint (Derived_Type, No_Elist);
8303
8304 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8305 -- but cannot be interfaces
8306
8307 if not Private_Extension
8308 and then Ekind (Derived_Type) /= E_Private_Type
8309 and then Ekind (Derived_Type) /= E_Limited_Private_Type
8310 then
8311 if Interface_Present (Type_Def) then
8312 Analyze_Interface_Declaration (Derived_Type, Type_Def);
8313 end if;
8314
8315 Set_Interfaces (Derived_Type, No_Elist);
8316 end if;
8317
8318 -- Fields inherited from the Parent_Type
8319
8320 Set_Has_Specified_Layout
8321 (Derived_Type, Has_Specified_Layout (Parent_Type));
8322 Set_Is_Limited_Composite
8323 (Derived_Type, Is_Limited_Composite (Parent_Type));
8324 Set_Is_Private_Composite
8325 (Derived_Type, Is_Private_Composite (Parent_Type));
8326
8327 if Is_Tagged_Type (Parent_Type) then
8328 Set_No_Tagged_Streams_Pragma
8329 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
8330 end if;
8331
8332 -- Fields inherited from the Parent_Base
8333
8334 Set_Has_Controlled_Component
8335 (Derived_Type, Has_Controlled_Component (Parent_Base));
8336 Set_Has_Non_Standard_Rep
8337 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8338 Set_Has_Primitive_Operations
8339 (Derived_Type, Has_Primitive_Operations (Parent_Base));
8340
8341 -- Fields inherited from the Parent_Base in the non-private case
8342
8343 if Ekind (Derived_Type) = E_Record_Type then
8344 Set_Has_Complex_Representation
8345 (Derived_Type, Has_Complex_Representation (Parent_Base));
8346 end if;
8347
8348 -- Fields inherited from the Parent_Base for record types
8349
8350 if Is_Record_Type (Derived_Type) then
8351 declare
8352 Parent_Full : Entity_Id;
8353
8354 begin
8355 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8356 -- Parent_Base can be a private type or private extension. Go
8357 -- to the full view here to get the E_Record_Type specific flags.
8358
8359 if Present (Full_View (Parent_Base)) then
8360 Parent_Full := Full_View (Parent_Base);
8361 else
8362 Parent_Full := Parent_Base;
8363 end if;
8364
8365 Set_OK_To_Reorder_Components
8366 (Derived_Type, OK_To_Reorder_Components (Parent_Full));
8367 end;
8368 end if;
8369
8370 -- Set fields for private derived types
8371
8372 if Is_Private_Type (Derived_Type) then
8373 Set_Depends_On_Private (Derived_Type, True);
8374 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8375
8376 -- Inherit fields from non private record types. If this is the
8377 -- completion of a derivation from a private type, the parent itself
8378 -- is private, and the attributes come from its full view, which must
8379 -- be present.
8380
8381 else
8382 if Is_Private_Type (Parent_Base)
8383 and then not Is_Record_Type (Parent_Base)
8384 then
8385 Set_Component_Alignment
8386 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
8387 Set_C_Pass_By_Copy
8388 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
8389 else
8390 Set_Component_Alignment
8391 (Derived_Type, Component_Alignment (Parent_Base));
8392 Set_C_Pass_By_Copy
8393 (Derived_Type, C_Pass_By_Copy (Parent_Base));
8394 end if;
8395 end if;
8396
8397 -- Set fields for tagged types
8398
8399 if Is_Tagged then
8400 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
8401
8402 -- All tagged types defined in Ada.Finalization are controlled
8403
8404 if Chars (Scope (Derived_Type)) = Name_Finalization
8405 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
8406 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
8407 then
8408 Set_Is_Controlled (Derived_Type);
8409 else
8410 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
8411 end if;
8412
8413 -- Minor optimization: there is no need to generate the class-wide
8414 -- entity associated with an underlying record view.
8415
8416 if not Is_Underlying_Record_View (Derived_Type) then
8417 Make_Class_Wide_Type (Derived_Type);
8418 end if;
8419
8420 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
8421
8422 if Has_Discriminants (Derived_Type)
8423 and then Constraint_Present
8424 then
8425 Set_Stored_Constraint
8426 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
8427 end if;
8428
8429 if Ada_Version >= Ada_2005 then
8430 declare
8431 Ifaces_List : Elist_Id;
8432
8433 begin
8434 -- Checks rules 3.9.4 (13/2 and 14/2)
8435
8436 if Comes_From_Source (Derived_Type)
8437 and then not Is_Private_Type (Derived_Type)
8438 and then Is_Interface (Parent_Type)
8439 and then not Is_Interface (Derived_Type)
8440 then
8441 if Is_Task_Interface (Parent_Type) then
8442 Error_Msg_N
8443 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8444 Derived_Type);
8445
8446 elsif Is_Protected_Interface (Parent_Type) then
8447 Error_Msg_N
8448 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8449 Derived_Type);
8450 end if;
8451 end if;
8452
8453 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8454
8455 Check_Interfaces (N, Type_Def);
8456
8457 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8458 -- not already in the parents.
8459
8460 Collect_Interfaces
8461 (T => Derived_Type,
8462 Ifaces_List => Ifaces_List,
8463 Exclude_Parents => True);
8464
8465 Set_Interfaces (Derived_Type, Ifaces_List);
8466
8467 -- If the derived type is the anonymous type created for
8468 -- a declaration whose parent has a constraint, propagate
8469 -- the interface list to the source type. This must be done
8470 -- prior to the completion of the analysis of the source type
8471 -- because the components in the extension may contain current
8472 -- instances whose legality depends on some ancestor.
8473
8474 if Is_Itype (Derived_Type) then
8475 declare
8476 Def : constant Node_Id :=
8477 Associated_Node_For_Itype (Derived_Type);
8478 begin
8479 if Present (Def)
8480 and then Nkind (Def) = N_Full_Type_Declaration
8481 then
8482 Set_Interfaces
8483 (Defining_Identifier (Def), Ifaces_List);
8484 end if;
8485 end;
8486 end if;
8487 end;
8488 end if;
8489
8490 else
8491 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
8492 Set_Has_Non_Standard_Rep
8493 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8494 end if;
8495
8496 -- STEP 4: Inherit components from the parent base and constrain them.
8497 -- Apply the second transformation described in point 6. above.
8498
8499 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
8500 or else not Has_Discriminants (Parent_Type)
8501 or else not Is_Constrained (Parent_Type)
8502 then
8503 Constrs := Discs;
8504 else
8505 Constrs := Discriminant_Constraint (Parent_Type);
8506 end if;
8507
8508 Assoc_List :=
8509 Inherit_Components
8510 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
8511
8512 -- STEP 5a: Copy the parent record declaration for untagged types
8513
8514 if not Is_Tagged then
8515
8516 -- Discriminant_Constraint (Derived_Type) has been properly
8517 -- constructed. Save it and temporarily set it to Empty because we
8518 -- do not want the call to New_Copy_Tree below to mess this list.
8519
8520 if Has_Discriminants (Derived_Type) then
8521 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
8522 Set_Discriminant_Constraint (Derived_Type, No_Elist);
8523 else
8524 Save_Discr_Constr := No_Elist;
8525 end if;
8526
8527 -- Save the Etype field of Derived_Type. It is correctly set now,
8528 -- but the call to New_Copy tree may remap it to point to itself,
8529 -- which is not what we want. Ditto for the Next_Entity field.
8530
8531 Save_Etype := Etype (Derived_Type);
8532 Save_Next_Entity := Next_Entity (Derived_Type);
8533
8534 -- Assoc_List maps all stored discriminants in the Parent_Base to
8535 -- stored discriminants in the Derived_Type. It is fundamental that
8536 -- no types or itypes with discriminants other than the stored
8537 -- discriminants appear in the entities declared inside
8538 -- Derived_Type, since the back end cannot deal with it.
8539
8540 New_Decl :=
8541 New_Copy_Tree
8542 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
8543
8544 -- Restore the fields saved prior to the New_Copy_Tree call
8545 -- and compute the stored constraint.
8546
8547 Set_Etype (Derived_Type, Save_Etype);
8548 Set_Next_Entity (Derived_Type, Save_Next_Entity);
8549
8550 if Has_Discriminants (Derived_Type) then
8551 Set_Discriminant_Constraint
8552 (Derived_Type, Save_Discr_Constr);
8553 Set_Stored_Constraint
8554 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
8555 Replace_Components (Derived_Type, New_Decl);
8556 Set_Has_Implicit_Dereference
8557 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
8558 end if;
8559
8560 -- Insert the new derived type declaration
8561
8562 Rewrite (N, New_Decl);
8563
8564 -- STEP 5b: Complete the processing for record extensions in generics
8565
8566 -- There is no completion for record extensions declared in the
8567 -- parameter part of a generic, so we need to complete processing for
8568 -- these generic record extensions here. The Record_Type_Definition call
8569 -- will change the Ekind of the components from E_Void to E_Component.
8570
8571 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
8572 Record_Type_Definition (Empty, Derived_Type);
8573
8574 -- STEP 5c: Process the record extension for non private tagged types
8575
8576 elsif not Private_Extension then
8577 Expand_Record_Extension (Derived_Type, Type_Def);
8578
8579 -- Note : previously in ASIS mode we set the Parent_Subtype of the
8580 -- derived type to propagate some semantic information. This led
8581 -- to other ASIS failures and has been removed.
8582
8583 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8584 -- implemented interfaces if we are in expansion mode
8585
8586 if Expander_Active
8587 and then Has_Interfaces (Derived_Type)
8588 then
8589 Add_Interface_Tag_Components (N, Derived_Type);
8590 end if;
8591
8592 -- Analyze the record extension
8593
8594 Record_Type_Definition
8595 (Record_Extension_Part (Type_Def), Derived_Type);
8596 end if;
8597
8598 End_Scope;
8599
8600 -- Nothing else to do if there is an error in the derivation.
8601 -- An unusual case: the full view may be derived from a type in an
8602 -- instance, when the partial view was used illegally as an actual
8603 -- in that instance, leading to a circular definition.
8604
8605 if Etype (Derived_Type) = Any_Type
8606 or else Etype (Parent_Type) = Derived_Type
8607 then
8608 return;
8609 end if;
8610
8611 -- Set delayed freeze and then derive subprograms, we need to do
8612 -- this in this order so that derived subprograms inherit the
8613 -- derived freeze if necessary.
8614
8615 Set_Has_Delayed_Freeze (Derived_Type);
8616
8617 if Derive_Subps then
8618 Derive_Subprograms (Parent_Type, Derived_Type);
8619 end if;
8620
8621 -- If we have a private extension which defines a constrained derived
8622 -- type mark as constrained here after we have derived subprograms. See
8623 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8624
8625 if Private_Extension and then Inherit_Discrims then
8626 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
8627 Set_Is_Constrained (Derived_Type, True);
8628 Set_Discriminant_Constraint (Derived_Type, Discs);
8629
8630 elsif Is_Constrained (Parent_Type) then
8631 Set_Is_Constrained
8632 (Derived_Type, True);
8633 Set_Discriminant_Constraint
8634 (Derived_Type, Discriminant_Constraint (Parent_Type));
8635 end if;
8636 end if;
8637
8638 -- Update the class-wide type, which shares the now-completed entity
8639 -- list with its specific type. In case of underlying record views,
8640 -- we do not generate the corresponding class wide entity.
8641
8642 if Is_Tagged
8643 and then not Is_Underlying_Record_View (Derived_Type)
8644 then
8645 Set_First_Entity
8646 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
8647 Set_Last_Entity
8648 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
8649 end if;
8650
8651 Check_Function_Writable_Actuals (N);
8652 end Build_Derived_Record_Type;
8653
8654 ------------------------
8655 -- Build_Derived_Type --
8656 ------------------------
8657
8658 procedure Build_Derived_Type
8659 (N : Node_Id;
8660 Parent_Type : Entity_Id;
8661 Derived_Type : Entity_Id;
8662 Is_Completion : Boolean;
8663 Derive_Subps : Boolean := True)
8664 is
8665 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
8666
8667 begin
8668 -- Set common attributes
8669
8670 Set_Scope (Derived_Type, Current_Scope);
8671
8672 Set_Etype (Derived_Type, Parent_Base);
8673 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8674 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
8675 Set_Has_Protected (Derived_Type, Has_Protected (Parent_Base));
8676
8677 Set_Size_Info (Derived_Type, Parent_Type);
8678 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
8679 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
8680 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
8681
8682 if Is_Tagged_Type (Derived_Type) then
8683 Set_No_Tagged_Streams_Pragma
8684 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
8685 end if;
8686
8687 -- If the parent has primitive routines, set the derived type link
8688
8689 if Has_Primitive_Operations (Parent_Type) then
8690 Set_Derived_Type_Link (Parent_Base, Derived_Type);
8691 end if;
8692
8693 -- If the parent type is a private subtype, the convention on the base
8694 -- type may be set in the private part, and not propagated to the
8695 -- subtype until later, so we obtain the convention from the base type.
8696
8697 Set_Convention (Derived_Type, Convention (Parent_Base));
8698
8699 -- Set SSO default for record or array type
8700
8701 if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type))
8702 and then Is_Base_Type (Derived_Type)
8703 then
8704 Set_Default_SSO (Derived_Type);
8705 end if;
8706
8707 -- Propagate invariant information. The new type has invariants if
8708 -- they are inherited from the parent type, and these invariants can
8709 -- be further inherited, so both flags are set.
8710
8711 -- We similarly inherit predicates
8712
8713 if Has_Predicates (Parent_Type) then
8714 Set_Has_Predicates (Derived_Type);
8715 end if;
8716
8717 -- The derived type inherits the representation clauses of the parent
8718
8719 Inherit_Rep_Item_Chain (Derived_Type, Parent_Type);
8720
8721 -- Propagate the attributes related to pragma Default_Initial_Condition
8722 -- from the parent type to the private extension. A derived type always
8723 -- inherits the default initial condition flag from the parent type. If
8724 -- the derived type carries its own Default_Initial_Condition pragma,
8725 -- the flag is later reset in Analyze_Pragma. Note that both flags are
8726 -- mutually exclusive.
8727
8728 Propagate_Default_Init_Cond_Attributes
8729 (From_Typ => Parent_Type,
8730 To_Typ => Derived_Type,
8731 Parent_To_Derivation => True);
8732
8733 -- If the parent type has delayed rep aspects, then mark the derived
8734 -- type as possibly inheriting a delayed rep aspect.
8735
8736 if Has_Delayed_Rep_Aspects (Parent_Type) then
8737 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
8738 end if;
8739
8740 -- Type dependent processing
8741
8742 case Ekind (Parent_Type) is
8743 when Numeric_Kind =>
8744 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
8745
8746 when Array_Kind =>
8747 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
8748
8749 when E_Record_Type
8750 | E_Record_Subtype
8751 | Class_Wide_Kind =>
8752 Build_Derived_Record_Type
8753 (N, Parent_Type, Derived_Type, Derive_Subps);
8754 return;
8755
8756 when Enumeration_Kind =>
8757 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
8758
8759 when Access_Kind =>
8760 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
8761
8762 when Incomplete_Or_Private_Kind =>
8763 Build_Derived_Private_Type
8764 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
8765
8766 -- For discriminated types, the derivation includes deriving
8767 -- primitive operations. For others it is done below.
8768
8769 if Is_Tagged_Type (Parent_Type)
8770 or else Has_Discriminants (Parent_Type)
8771 or else (Present (Full_View (Parent_Type))
8772 and then Has_Discriminants (Full_View (Parent_Type)))
8773 then
8774 return;
8775 end if;
8776
8777 when Concurrent_Kind =>
8778 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
8779
8780 when others =>
8781 raise Program_Error;
8782 end case;
8783
8784 -- Nothing more to do if some error occurred
8785
8786 if Etype (Derived_Type) = Any_Type then
8787 return;
8788 end if;
8789
8790 -- Set delayed freeze and then derive subprograms, we need to do this
8791 -- in this order so that derived subprograms inherit the derived freeze
8792 -- if necessary.
8793
8794 Set_Has_Delayed_Freeze (Derived_Type);
8795
8796 if Derive_Subps then
8797 Derive_Subprograms (Parent_Type, Derived_Type);
8798 end if;
8799
8800 Set_Has_Primitive_Operations
8801 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
8802 end Build_Derived_Type;
8803
8804 -----------------------
8805 -- Build_Discriminal --
8806 -----------------------
8807
8808 procedure Build_Discriminal (Discrim : Entity_Id) is
8809 D_Minal : Entity_Id;
8810 CR_Disc : Entity_Id;
8811
8812 begin
8813 -- A discriminal has the same name as the discriminant
8814
8815 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8816
8817 Set_Ekind (D_Minal, E_In_Parameter);
8818 Set_Mechanism (D_Minal, Default_Mechanism);
8819 Set_Etype (D_Minal, Etype (Discrim));
8820 Set_Scope (D_Minal, Current_Scope);
8821
8822 Set_Discriminal (Discrim, D_Minal);
8823 Set_Discriminal_Link (D_Minal, Discrim);
8824
8825 -- For task types, build at once the discriminants of the corresponding
8826 -- record, which are needed if discriminants are used in entry defaults
8827 -- and in family bounds.
8828
8829 if Is_Concurrent_Type (Current_Scope)
8830 or else
8831 Is_Limited_Type (Current_Scope)
8832 then
8833 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8834
8835 Set_Ekind (CR_Disc, E_In_Parameter);
8836 Set_Mechanism (CR_Disc, Default_Mechanism);
8837 Set_Etype (CR_Disc, Etype (Discrim));
8838 Set_Scope (CR_Disc, Current_Scope);
8839 Set_Discriminal_Link (CR_Disc, Discrim);
8840 Set_CR_Discriminant (Discrim, CR_Disc);
8841 end if;
8842 end Build_Discriminal;
8843
8844 ------------------------------------
8845 -- Build_Discriminant_Constraints --
8846 ------------------------------------
8847
8848 function Build_Discriminant_Constraints
8849 (T : Entity_Id;
8850 Def : Node_Id;
8851 Derived_Def : Boolean := False) return Elist_Id
8852 is
8853 C : constant Node_Id := Constraint (Def);
8854 Nb_Discr : constant Nat := Number_Discriminants (T);
8855
8856 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
8857 -- Saves the expression corresponding to a given discriminant in T
8858
8859 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
8860 -- Return the Position number within array Discr_Expr of a discriminant
8861 -- D within the discriminant list of the discriminated type T.
8862
8863 procedure Process_Discriminant_Expression
8864 (Expr : Node_Id;
8865 D : Entity_Id);
8866 -- If this is a discriminant constraint on a partial view, do not
8867 -- generate an overflow check on the discriminant expression. The check
8868 -- will be generated when constraining the full view. Otherwise the
8869 -- backend creates duplicate symbols for the temporaries corresponding
8870 -- to the expressions to be checked, causing spurious assembler errors.
8871
8872 ------------------
8873 -- Pos_Of_Discr --
8874 ------------------
8875
8876 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
8877 Disc : Entity_Id;
8878
8879 begin
8880 Disc := First_Discriminant (T);
8881 for J in Discr_Expr'Range loop
8882 if Disc = D then
8883 return J;
8884 end if;
8885
8886 Next_Discriminant (Disc);
8887 end loop;
8888
8889 -- Note: Since this function is called on discriminants that are
8890 -- known to belong to the discriminated type, falling through the
8891 -- loop with no match signals an internal compiler error.
8892
8893 raise Program_Error;
8894 end Pos_Of_Discr;
8895
8896 -------------------------------------
8897 -- Process_Discriminant_Expression --
8898 -------------------------------------
8899
8900 procedure Process_Discriminant_Expression
8901 (Expr : Node_Id;
8902 D : Entity_Id)
8903 is
8904 BDT : constant Entity_Id := Base_Type (Etype (D));
8905
8906 begin
8907 -- If this is a discriminant constraint on a partial view, do
8908 -- not generate an overflow on the discriminant expression. The
8909 -- check will be generated when constraining the full view.
8910
8911 if Is_Private_Type (T)
8912 and then Present (Full_View (T))
8913 then
8914 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
8915 else
8916 Analyze_And_Resolve (Expr, BDT);
8917 end if;
8918 end Process_Discriminant_Expression;
8919
8920 -- Declarations local to Build_Discriminant_Constraints
8921
8922 Discr : Entity_Id;
8923 E : Entity_Id;
8924 Elist : constant Elist_Id := New_Elmt_List;
8925
8926 Constr : Node_Id;
8927 Expr : Node_Id;
8928 Id : Node_Id;
8929 Position : Nat;
8930 Found : Boolean;
8931
8932 Discrim_Present : Boolean := False;
8933
8934 -- Start of processing for Build_Discriminant_Constraints
8935
8936 begin
8937 -- The following loop will process positional associations only.
8938 -- For a positional association, the (single) discriminant is
8939 -- implicitly specified by position, in textual order (RM 3.7.2).
8940
8941 Discr := First_Discriminant (T);
8942 Constr := First (Constraints (C));
8943 for D in Discr_Expr'Range loop
8944 exit when Nkind (Constr) = N_Discriminant_Association;
8945
8946 if No (Constr) then
8947 Error_Msg_N ("too few discriminants given in constraint", C);
8948 return New_Elmt_List;
8949
8950 elsif Nkind (Constr) = N_Range
8951 or else (Nkind (Constr) = N_Attribute_Reference
8952 and then Attribute_Name (Constr) = Name_Range)
8953 then
8954 Error_Msg_N
8955 ("a range is not a valid discriminant constraint", Constr);
8956 Discr_Expr (D) := Error;
8957
8958 else
8959 Process_Discriminant_Expression (Constr, Discr);
8960 Discr_Expr (D) := Constr;
8961 end if;
8962
8963 Next_Discriminant (Discr);
8964 Next (Constr);
8965 end loop;
8966
8967 if No (Discr) and then Present (Constr) then
8968 Error_Msg_N ("too many discriminants given in constraint", Constr);
8969 return New_Elmt_List;
8970 end if;
8971
8972 -- Named associations can be given in any order, but if both positional
8973 -- and named associations are used in the same discriminant constraint,
8974 -- then positional associations must occur first, at their normal
8975 -- position. Hence once a named association is used, the rest of the
8976 -- discriminant constraint must use only named associations.
8977
8978 while Present (Constr) loop
8979
8980 -- Positional association forbidden after a named association
8981
8982 if Nkind (Constr) /= N_Discriminant_Association then
8983 Error_Msg_N ("positional association follows named one", Constr);
8984 return New_Elmt_List;
8985
8986 -- Otherwise it is a named association
8987
8988 else
8989 -- E records the type of the discriminants in the named
8990 -- association. All the discriminants specified in the same name
8991 -- association must have the same type.
8992
8993 E := Empty;
8994
8995 -- Search the list of discriminants in T to see if the simple name
8996 -- given in the constraint matches any of them.
8997
8998 Id := First (Selector_Names (Constr));
8999 while Present (Id) loop
9000 Found := False;
9001
9002 -- If Original_Discriminant is present, we are processing a
9003 -- generic instantiation and this is an instance node. We need
9004 -- to find the name of the corresponding discriminant in the
9005 -- actual record type T and not the name of the discriminant in
9006 -- the generic formal. Example:
9007
9008 -- generic
9009 -- type G (D : int) is private;
9010 -- package P is
9011 -- subtype W is G (D => 1);
9012 -- end package;
9013 -- type Rec (X : int) is record ... end record;
9014 -- package Q is new P (G => Rec);
9015
9016 -- At the point of the instantiation, formal type G is Rec
9017 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9018 -- which really looks like "subtype W is Rec (D => 1);" at
9019 -- the point of instantiation, we want to find the discriminant
9020 -- that corresponds to D in Rec, i.e. X.
9021
9022 if Present (Original_Discriminant (Id))
9023 and then In_Instance
9024 then
9025 Discr := Find_Corresponding_Discriminant (Id, T);
9026 Found := True;
9027
9028 else
9029 Discr := First_Discriminant (T);
9030 while Present (Discr) loop
9031 if Chars (Discr) = Chars (Id) then
9032 Found := True;
9033 exit;
9034 end if;
9035
9036 Next_Discriminant (Discr);
9037 end loop;
9038
9039 if not Found then
9040 Error_Msg_N ("& does not match any discriminant", Id);
9041 return New_Elmt_List;
9042
9043 -- If the parent type is a generic formal, preserve the
9044 -- name of the discriminant for subsequent instances.
9045 -- see comment at the beginning of this if statement.
9046
9047 elsif Is_Generic_Type (Root_Type (T)) then
9048 Set_Original_Discriminant (Id, Discr);
9049 end if;
9050 end if;
9051
9052 Position := Pos_Of_Discr (T, Discr);
9053
9054 if Present (Discr_Expr (Position)) then
9055 Error_Msg_N ("duplicate constraint for discriminant&", Id);
9056
9057 else
9058 -- Each discriminant specified in the same named association
9059 -- must be associated with a separate copy of the
9060 -- corresponding expression.
9061
9062 if Present (Next (Id)) then
9063 Expr := New_Copy_Tree (Expression (Constr));
9064 Set_Parent (Expr, Parent (Expression (Constr)));
9065 else
9066 Expr := Expression (Constr);
9067 end if;
9068
9069 Discr_Expr (Position) := Expr;
9070 Process_Discriminant_Expression (Expr, Discr);
9071 end if;
9072
9073 -- A discriminant association with more than one discriminant
9074 -- name is only allowed if the named discriminants are all of
9075 -- the same type (RM 3.7.1(8)).
9076
9077 if E = Empty then
9078 E := Base_Type (Etype (Discr));
9079
9080 elsif Base_Type (Etype (Discr)) /= E then
9081 Error_Msg_N
9082 ("all discriminants in an association " &
9083 "must have the same type", Id);
9084 end if;
9085
9086 Next (Id);
9087 end loop;
9088 end if;
9089
9090 Next (Constr);
9091 end loop;
9092
9093 -- A discriminant constraint must provide exactly one value for each
9094 -- discriminant of the type (RM 3.7.1(8)).
9095
9096 for J in Discr_Expr'Range loop
9097 if No (Discr_Expr (J)) then
9098 Error_Msg_N ("too few discriminants given in constraint", C);
9099 return New_Elmt_List;
9100 end if;
9101 end loop;
9102
9103 -- Determine if there are discriminant expressions in the constraint
9104
9105 for J in Discr_Expr'Range loop
9106 if Denotes_Discriminant
9107 (Discr_Expr (J), Check_Concurrent => True)
9108 then
9109 Discrim_Present := True;
9110 end if;
9111 end loop;
9112
9113 -- Build an element list consisting of the expressions given in the
9114 -- discriminant constraint and apply the appropriate checks. The list
9115 -- is constructed after resolving any named discriminant associations
9116 -- and therefore the expressions appear in the textual order of the
9117 -- discriminants.
9118
9119 Discr := First_Discriminant (T);
9120 for J in Discr_Expr'Range loop
9121 if Discr_Expr (J) /= Error then
9122 Append_Elmt (Discr_Expr (J), Elist);
9123
9124 -- If any of the discriminant constraints is given by a
9125 -- discriminant and we are in a derived type declaration we
9126 -- have a discriminant renaming. Establish link between new
9127 -- and old discriminant.
9128
9129 if Denotes_Discriminant (Discr_Expr (J)) then
9130 if Derived_Def then
9131 Set_Corresponding_Discriminant
9132 (Entity (Discr_Expr (J)), Discr);
9133 end if;
9134
9135 -- Force the evaluation of non-discriminant expressions.
9136 -- If we have found a discriminant in the constraint 3.4(26)
9137 -- and 3.8(18) demand that no range checks are performed are
9138 -- after evaluation. If the constraint is for a component
9139 -- definition that has a per-object constraint, expressions are
9140 -- evaluated but not checked either. In all other cases perform
9141 -- a range check.
9142
9143 else
9144 if Discrim_Present then
9145 null;
9146
9147 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
9148 and then
9149 Has_Per_Object_Constraint
9150 (Defining_Identifier (Parent (Parent (Def))))
9151 then
9152 null;
9153
9154 elsif Is_Access_Type (Etype (Discr)) then
9155 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
9156
9157 else
9158 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
9159 end if;
9160
9161 Force_Evaluation (Discr_Expr (J));
9162 end if;
9163
9164 -- Check that the designated type of an access discriminant's
9165 -- expression is not a class-wide type unless the discriminant's
9166 -- designated type is also class-wide.
9167
9168 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
9169 and then not Is_Class_Wide_Type
9170 (Designated_Type (Etype (Discr)))
9171 and then Etype (Discr_Expr (J)) /= Any_Type
9172 and then Is_Class_Wide_Type
9173 (Designated_Type (Etype (Discr_Expr (J))))
9174 then
9175 Wrong_Type (Discr_Expr (J), Etype (Discr));
9176
9177 elsif Is_Access_Type (Etype (Discr))
9178 and then not Is_Access_Constant (Etype (Discr))
9179 and then Is_Access_Type (Etype (Discr_Expr (J)))
9180 and then Is_Access_Constant (Etype (Discr_Expr (J)))
9181 then
9182 Error_Msg_NE
9183 ("constraint for discriminant& must be access to variable",
9184 Def, Discr);
9185 end if;
9186 end if;
9187
9188 Next_Discriminant (Discr);
9189 end loop;
9190
9191 return Elist;
9192 end Build_Discriminant_Constraints;
9193
9194 ---------------------------------
9195 -- Build_Discriminated_Subtype --
9196 ---------------------------------
9197
9198 procedure Build_Discriminated_Subtype
9199 (T : Entity_Id;
9200 Def_Id : Entity_Id;
9201 Elist : Elist_Id;
9202 Related_Nod : Node_Id;
9203 For_Access : Boolean := False)
9204 is
9205 Has_Discrs : constant Boolean := Has_Discriminants (T);
9206 Constrained : constant Boolean :=
9207 (Has_Discrs
9208 and then not Is_Empty_Elmt_List (Elist)
9209 and then not Is_Class_Wide_Type (T))
9210 or else Is_Constrained (T);
9211
9212 begin
9213 if Ekind (T) = E_Record_Type then
9214 if For_Access then
9215 Set_Ekind (Def_Id, E_Private_Subtype);
9216 Set_Is_For_Access_Subtype (Def_Id, True);
9217 else
9218 Set_Ekind (Def_Id, E_Record_Subtype);
9219 end if;
9220
9221 -- Inherit preelaboration flag from base, for types for which it
9222 -- may have been set: records, private types, protected types.
9223
9224 Set_Known_To_Have_Preelab_Init
9225 (Def_Id, Known_To_Have_Preelab_Init (T));
9226
9227 elsif Ekind (T) = E_Task_Type then
9228 Set_Ekind (Def_Id, E_Task_Subtype);
9229
9230 elsif Ekind (T) = E_Protected_Type then
9231 Set_Ekind (Def_Id, E_Protected_Subtype);
9232 Set_Known_To_Have_Preelab_Init
9233 (Def_Id, Known_To_Have_Preelab_Init (T));
9234
9235 elsif Is_Private_Type (T) then
9236 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
9237 Set_Known_To_Have_Preelab_Init
9238 (Def_Id, Known_To_Have_Preelab_Init (T));
9239
9240 -- Private subtypes may have private dependents
9241
9242 Set_Private_Dependents (Def_Id, New_Elmt_List);
9243
9244 elsif Is_Class_Wide_Type (T) then
9245 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
9246
9247 else
9248 -- Incomplete type. Attach subtype to list of dependents, to be
9249 -- completed with full view of parent type, unless is it the
9250 -- designated subtype of a record component within an init_proc.
9251 -- This last case arises for a component of an access type whose
9252 -- designated type is incomplete (e.g. a Taft Amendment type).
9253 -- The designated subtype is within an inner scope, and needs no
9254 -- elaboration, because only the access type is needed in the
9255 -- initialization procedure.
9256
9257 Set_Ekind (Def_Id, Ekind (T));
9258
9259 if For_Access and then Within_Init_Proc then
9260 null;
9261 else
9262 Append_Elmt (Def_Id, Private_Dependents (T));
9263 end if;
9264 end if;
9265
9266 Set_Etype (Def_Id, T);
9267 Init_Size_Align (Def_Id);
9268 Set_Has_Discriminants (Def_Id, Has_Discrs);
9269 Set_Is_Constrained (Def_Id, Constrained);
9270
9271 Set_First_Entity (Def_Id, First_Entity (T));
9272 Set_Last_Entity (Def_Id, Last_Entity (T));
9273 Set_Has_Implicit_Dereference
9274 (Def_Id, Has_Implicit_Dereference (T));
9275
9276 -- If the subtype is the completion of a private declaration, there may
9277 -- have been representation clauses for the partial view, and they must
9278 -- be preserved. Build_Derived_Type chains the inherited clauses with
9279 -- the ones appearing on the extension. If this comes from a subtype
9280 -- declaration, all clauses are inherited.
9281
9282 if No (First_Rep_Item (Def_Id)) then
9283 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9284 end if;
9285
9286 if Is_Tagged_Type (T) then
9287 Set_Is_Tagged_Type (Def_Id);
9288 Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T));
9289 Make_Class_Wide_Type (Def_Id);
9290 end if;
9291
9292 Set_Stored_Constraint (Def_Id, No_Elist);
9293
9294 if Has_Discrs then
9295 Set_Discriminant_Constraint (Def_Id, Elist);
9296 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
9297 end if;
9298
9299 if Is_Tagged_Type (T) then
9300
9301 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9302 -- concurrent record type (which has the list of primitive
9303 -- operations).
9304
9305 if Ada_Version >= Ada_2005
9306 and then Is_Concurrent_Type (T)
9307 then
9308 Set_Corresponding_Record_Type (Def_Id,
9309 Corresponding_Record_Type (T));
9310 else
9311 Set_Direct_Primitive_Operations (Def_Id,
9312 Direct_Primitive_Operations (T));
9313 end if;
9314
9315 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
9316 end if;
9317
9318 -- Subtypes introduced by component declarations do not need to be
9319 -- marked as delayed, and do not get freeze nodes, because the semantics
9320 -- verifies that the parents of the subtypes are frozen before the
9321 -- enclosing record is frozen.
9322
9323 if not Is_Type (Scope (Def_Id)) then
9324 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
9325
9326 if Is_Private_Type (T)
9327 and then Present (Full_View (T))
9328 then
9329 Conditional_Delay (Def_Id, Full_View (T));
9330 else
9331 Conditional_Delay (Def_Id, T);
9332 end if;
9333 end if;
9334
9335 if Is_Record_Type (T) then
9336 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
9337
9338 if Has_Discrs
9339 and then not Is_Empty_Elmt_List (Elist)
9340 and then not For_Access
9341 then
9342 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
9343 elsif not For_Access then
9344 Set_Cloned_Subtype (Def_Id, T);
9345 end if;
9346 end if;
9347 end Build_Discriminated_Subtype;
9348
9349 ---------------------------
9350 -- Build_Itype_Reference --
9351 ---------------------------
9352
9353 procedure Build_Itype_Reference
9354 (Ityp : Entity_Id;
9355 Nod : Node_Id)
9356 is
9357 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
9358 begin
9359
9360 -- Itype references are only created for use by the back-end
9361
9362 if Inside_A_Generic then
9363 return;
9364 else
9365 Set_Itype (IR, Ityp);
9366 Insert_After (Nod, IR);
9367 end if;
9368 end Build_Itype_Reference;
9369
9370 ------------------------
9371 -- Build_Scalar_Bound --
9372 ------------------------
9373
9374 function Build_Scalar_Bound
9375 (Bound : Node_Id;
9376 Par_T : Entity_Id;
9377 Der_T : Entity_Id) return Node_Id
9378 is
9379 New_Bound : Entity_Id;
9380
9381 begin
9382 -- Note: not clear why this is needed, how can the original bound
9383 -- be unanalyzed at this point? and if it is, what business do we
9384 -- have messing around with it? and why is the base type of the
9385 -- parent type the right type for the resolution. It probably is
9386 -- not. It is OK for the new bound we are creating, but not for
9387 -- the old one??? Still if it never happens, no problem.
9388
9389 Analyze_And_Resolve (Bound, Base_Type (Par_T));
9390
9391 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
9392 New_Bound := New_Copy (Bound);
9393 Set_Etype (New_Bound, Der_T);
9394 Set_Analyzed (New_Bound);
9395
9396 elsif Is_Entity_Name (Bound) then
9397 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
9398
9399 -- The following is almost certainly wrong. What business do we have
9400 -- relocating a node (Bound) that is presumably still attached to
9401 -- the tree elsewhere???
9402
9403 else
9404 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
9405 end if;
9406
9407 Set_Etype (New_Bound, Der_T);
9408 return New_Bound;
9409 end Build_Scalar_Bound;
9410
9411 --------------------------------
9412 -- Build_Underlying_Full_View --
9413 --------------------------------
9414
9415 procedure Build_Underlying_Full_View
9416 (N : Node_Id;
9417 Typ : Entity_Id;
9418 Par : Entity_Id)
9419 is
9420 Loc : constant Source_Ptr := Sloc (N);
9421 Subt : constant Entity_Id :=
9422 Make_Defining_Identifier
9423 (Loc, New_External_Name (Chars (Typ), 'S'));
9424
9425 Constr : Node_Id;
9426 Indic : Node_Id;
9427 C : Node_Id;
9428 Id : Node_Id;
9429
9430 procedure Set_Discriminant_Name (Id : Node_Id);
9431 -- If the derived type has discriminants, they may rename discriminants
9432 -- of the parent. When building the full view of the parent, we need to
9433 -- recover the names of the original discriminants if the constraint is
9434 -- given by named associations.
9435
9436 ---------------------------
9437 -- Set_Discriminant_Name --
9438 ---------------------------
9439
9440 procedure Set_Discriminant_Name (Id : Node_Id) is
9441 Disc : Entity_Id;
9442
9443 begin
9444 Set_Original_Discriminant (Id, Empty);
9445
9446 if Has_Discriminants (Typ) then
9447 Disc := First_Discriminant (Typ);
9448 while Present (Disc) loop
9449 if Chars (Disc) = Chars (Id)
9450 and then Present (Corresponding_Discriminant (Disc))
9451 then
9452 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
9453 end if;
9454 Next_Discriminant (Disc);
9455 end loop;
9456 end if;
9457 end Set_Discriminant_Name;
9458
9459 -- Start of processing for Build_Underlying_Full_View
9460
9461 begin
9462 if Nkind (N) = N_Full_Type_Declaration then
9463 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
9464
9465 elsif Nkind (N) = N_Subtype_Declaration then
9466 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
9467
9468 elsif Nkind (N) = N_Component_Declaration then
9469 Constr :=
9470 New_Copy_Tree
9471 (Constraint (Subtype_Indication (Component_Definition (N))));
9472
9473 else
9474 raise Program_Error;
9475 end if;
9476
9477 C := First (Constraints (Constr));
9478 while Present (C) loop
9479 if Nkind (C) = N_Discriminant_Association then
9480 Id := First (Selector_Names (C));
9481 while Present (Id) loop
9482 Set_Discriminant_Name (Id);
9483 Next (Id);
9484 end loop;
9485 end if;
9486
9487 Next (C);
9488 end loop;
9489
9490 Indic :=
9491 Make_Subtype_Declaration (Loc,
9492 Defining_Identifier => Subt,
9493 Subtype_Indication =>
9494 Make_Subtype_Indication (Loc,
9495 Subtype_Mark => New_Occurrence_Of (Par, Loc),
9496 Constraint => New_Copy_Tree (Constr)));
9497
9498 -- If this is a component subtype for an outer itype, it is not
9499 -- a list member, so simply set the parent link for analysis: if
9500 -- the enclosing type does not need to be in a declarative list,
9501 -- neither do the components.
9502
9503 if Is_List_Member (N)
9504 and then Nkind (N) /= N_Component_Declaration
9505 then
9506 Insert_Before (N, Indic);
9507 else
9508 Set_Parent (Indic, Parent (N));
9509 end if;
9510
9511 Analyze (Indic);
9512 Set_Underlying_Full_View (Typ, Full_View (Subt));
9513 end Build_Underlying_Full_View;
9514
9515 -------------------------------
9516 -- Check_Abstract_Overriding --
9517 -------------------------------
9518
9519 procedure Check_Abstract_Overriding (T : Entity_Id) is
9520 Alias_Subp : Entity_Id;
9521 Elmt : Elmt_Id;
9522 Op_List : Elist_Id;
9523 Subp : Entity_Id;
9524 Type_Def : Node_Id;
9525
9526 procedure Check_Pragma_Implemented (Subp : Entity_Id);
9527 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9528 -- which has pragma Implemented already set. Check whether Subp's entity
9529 -- kind conforms to the implementation kind of the overridden routine.
9530
9531 procedure Check_Pragma_Implemented
9532 (Subp : Entity_Id;
9533 Iface_Subp : Entity_Id);
9534 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9535 -- Iface_Subp and both entities have pragma Implemented already set on
9536 -- them. Check whether the two implementation kinds are conforming.
9537
9538 procedure Inherit_Pragma_Implemented
9539 (Subp : Entity_Id;
9540 Iface_Subp : Entity_Id);
9541 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9542 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9543 -- Propagate the implementation kind of Iface_Subp to Subp.
9544
9545 ------------------------------
9546 -- Check_Pragma_Implemented --
9547 ------------------------------
9548
9549 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
9550 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
9551 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
9552 Subp_Alias : constant Entity_Id := Alias (Subp);
9553 Contr_Typ : Entity_Id;
9554 Impl_Subp : Entity_Id;
9555
9556 begin
9557 -- Subp must have an alias since it is a hidden entity used to link
9558 -- an interface subprogram to its overriding counterpart.
9559
9560 pragma Assert (Present (Subp_Alias));
9561
9562 -- Handle aliases to synchronized wrappers
9563
9564 Impl_Subp := Subp_Alias;
9565
9566 if Is_Primitive_Wrapper (Impl_Subp) then
9567 Impl_Subp := Wrapped_Entity (Impl_Subp);
9568 end if;
9569
9570 -- Extract the type of the controlling formal
9571
9572 Contr_Typ := Etype (First_Formal (Subp_Alias));
9573
9574 if Is_Concurrent_Record_Type (Contr_Typ) then
9575 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
9576 end if;
9577
9578 -- An interface subprogram whose implementation kind is By_Entry must
9579 -- be implemented by an entry.
9580
9581 if Impl_Kind = Name_By_Entry
9582 and then Ekind (Impl_Subp) /= E_Entry
9583 then
9584 Error_Msg_Node_2 := Iface_Alias;
9585 Error_Msg_NE
9586 ("type & must implement abstract subprogram & with an entry",
9587 Subp_Alias, Contr_Typ);
9588
9589 elsif Impl_Kind = Name_By_Protected_Procedure then
9590
9591 -- An interface subprogram whose implementation kind is By_
9592 -- Protected_Procedure cannot be implemented by a primitive
9593 -- procedure of a task type.
9594
9595 if Ekind (Contr_Typ) /= E_Protected_Type then
9596 Error_Msg_Node_2 := Contr_Typ;
9597 Error_Msg_NE
9598 ("interface subprogram & cannot be implemented by a " &
9599 "primitive procedure of task type &", Subp_Alias,
9600 Iface_Alias);
9601
9602 -- An interface subprogram whose implementation kind is By_
9603 -- Protected_Procedure must be implemented by a procedure.
9604
9605 elsif Ekind (Impl_Subp) /= E_Procedure then
9606 Error_Msg_Node_2 := Iface_Alias;
9607 Error_Msg_NE
9608 ("type & must implement abstract subprogram & with a " &
9609 "procedure", Subp_Alias, Contr_Typ);
9610
9611 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9612 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9613 then
9614 Error_Msg_Name_1 := Impl_Kind;
9615 Error_Msg_N
9616 ("overriding operation& must have synchronization%",
9617 Subp_Alias);
9618 end if;
9619
9620 -- If primitive has Optional synchronization, overriding operation
9621 -- must match if it has an explicit synchronization..
9622
9623 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9624 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9625 then
9626 Error_Msg_Name_1 := Impl_Kind;
9627 Error_Msg_N
9628 ("overriding operation& must have syncrhonization%",
9629 Subp_Alias);
9630 end if;
9631 end Check_Pragma_Implemented;
9632
9633 ------------------------------
9634 -- Check_Pragma_Implemented --
9635 ------------------------------
9636
9637 procedure Check_Pragma_Implemented
9638 (Subp : Entity_Id;
9639 Iface_Subp : Entity_Id)
9640 is
9641 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9642 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
9643
9644 begin
9645 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9646 -- and overriding subprogram are different. In general this is an
9647 -- error except when the implementation kind of the overridden
9648 -- subprograms is By_Any or Optional.
9649
9650 if Iface_Kind /= Subp_Kind
9651 and then Iface_Kind /= Name_By_Any
9652 and then Iface_Kind /= Name_Optional
9653 then
9654 if Iface_Kind = Name_By_Entry then
9655 Error_Msg_N
9656 ("incompatible implementation kind, overridden subprogram " &
9657 "is marked By_Entry", Subp);
9658 else
9659 Error_Msg_N
9660 ("incompatible implementation kind, overridden subprogram " &
9661 "is marked By_Protected_Procedure", Subp);
9662 end if;
9663 end if;
9664 end Check_Pragma_Implemented;
9665
9666 --------------------------------
9667 -- Inherit_Pragma_Implemented --
9668 --------------------------------
9669
9670 procedure Inherit_Pragma_Implemented
9671 (Subp : Entity_Id;
9672 Iface_Subp : Entity_Id)
9673 is
9674 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9675 Loc : constant Source_Ptr := Sloc (Subp);
9676 Impl_Prag : Node_Id;
9677
9678 begin
9679 -- Since the implementation kind is stored as a representation item
9680 -- rather than a flag, create a pragma node.
9681
9682 Impl_Prag :=
9683 Make_Pragma (Loc,
9684 Chars => Name_Implemented,
9685 Pragma_Argument_Associations => New_List (
9686 Make_Pragma_Argument_Association (Loc,
9687 Expression => New_Occurrence_Of (Subp, Loc)),
9688
9689 Make_Pragma_Argument_Association (Loc,
9690 Expression => Make_Identifier (Loc, Iface_Kind))));
9691
9692 -- The pragma doesn't need to be analyzed because it is internally
9693 -- built. It is safe to directly register it as a rep item since we
9694 -- are only interested in the characters of the implementation kind.
9695
9696 Record_Rep_Item (Subp, Impl_Prag);
9697 end Inherit_Pragma_Implemented;
9698
9699 -- Start of processing for Check_Abstract_Overriding
9700
9701 begin
9702 Op_List := Primitive_Operations (T);
9703
9704 -- Loop to check primitive operations
9705
9706 Elmt := First_Elmt (Op_List);
9707 while Present (Elmt) loop
9708 Subp := Node (Elmt);
9709 Alias_Subp := Alias (Subp);
9710
9711 -- Inherited subprograms are identified by the fact that they do not
9712 -- come from source, and the associated source location is the
9713 -- location of the first subtype of the derived type.
9714
9715 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9716 -- subprograms that "require overriding".
9717
9718 -- Special exception, do not complain about failure to override the
9719 -- stream routines _Input and _Output, as well as the primitive
9720 -- operations used in dispatching selects since we always provide
9721 -- automatic overridings for these subprograms.
9722
9723 -- Also ignore this rule for convention CIL since .NET libraries
9724 -- do bizarre things with interfaces???
9725
9726 -- The partial view of T may have been a private extension, for
9727 -- which inherited functions dispatching on result are abstract.
9728 -- If the full view is a null extension, there is no need for
9729 -- overriding in Ada 2005, but wrappers need to be built for them
9730 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9731
9732 if Is_Null_Extension (T)
9733 and then Has_Controlling_Result (Subp)
9734 and then Ada_Version >= Ada_2005
9735 and then Present (Alias_Subp)
9736 and then not Comes_From_Source (Subp)
9737 and then not Is_Abstract_Subprogram (Alias_Subp)
9738 and then not Is_Access_Type (Etype (Subp))
9739 then
9740 null;
9741
9742 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9743 -- processing because this check is done with the aliased
9744 -- entity
9745
9746 elsif Present (Interface_Alias (Subp)) then
9747 null;
9748
9749 elsif (Is_Abstract_Subprogram (Subp)
9750 or else Requires_Overriding (Subp)
9751 or else
9752 (Has_Controlling_Result (Subp)
9753 and then Present (Alias_Subp)
9754 and then not Comes_From_Source (Subp)
9755 and then Sloc (Subp) = Sloc (First_Subtype (T))))
9756 and then not Is_TSS (Subp, TSS_Stream_Input)
9757 and then not Is_TSS (Subp, TSS_Stream_Output)
9758 and then not Is_Abstract_Type (T)
9759 and then Convention (T) /= Convention_CIL
9760 and then not Is_Predefined_Interface_Primitive (Subp)
9761
9762 -- Ada 2005 (AI-251): Do not consider hidden entities associated
9763 -- with abstract interface types because the check will be done
9764 -- with the aliased entity (otherwise we generate a duplicated
9765 -- error message).
9766
9767 and then not Present (Interface_Alias (Subp))
9768 then
9769 if Present (Alias_Subp) then
9770
9771 -- Only perform the check for a derived subprogram when the
9772 -- type has an explicit record extension. This avoids incorrect
9773 -- flagging of abstract subprograms for the case of a type
9774 -- without an extension that is derived from a formal type
9775 -- with a tagged actual (can occur within a private part).
9776
9777 -- Ada 2005 (AI-391): In the case of an inherited function with
9778 -- a controlling result of the type, the rule does not apply if
9779 -- the type is a null extension (unless the parent function
9780 -- itself is abstract, in which case the function must still be
9781 -- be overridden). The expander will generate an overriding
9782 -- wrapper function calling the parent subprogram (see
9783 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
9784
9785 Type_Def := Type_Definition (Parent (T));
9786
9787 if Nkind (Type_Def) = N_Derived_Type_Definition
9788 and then Present (Record_Extension_Part (Type_Def))
9789 and then
9790 (Ada_Version < Ada_2005
9791 or else not Is_Null_Extension (T)
9792 or else Ekind (Subp) = E_Procedure
9793 or else not Has_Controlling_Result (Subp)
9794 or else Is_Abstract_Subprogram (Alias_Subp)
9795 or else Requires_Overriding (Subp)
9796 or else Is_Access_Type (Etype (Subp)))
9797 then
9798 -- Avoid reporting error in case of abstract predefined
9799 -- primitive inherited from interface type because the
9800 -- body of internally generated predefined primitives
9801 -- of tagged types are generated later by Freeze_Type
9802
9803 if Is_Interface (Root_Type (T))
9804 and then Is_Abstract_Subprogram (Subp)
9805 and then Is_Predefined_Dispatching_Operation (Subp)
9806 and then not Comes_From_Source (Ultimate_Alias (Subp))
9807 then
9808 null;
9809
9810 -- A null extension is not obliged to override an inherited
9811 -- procedure subject to pragma Extensions_Visible with value
9812 -- False and at least one controlling OUT parameter
9813 -- (SPARK RM 6.1.7(6)).
9814
9815 elsif Is_Null_Extension (T)
9816 and then Is_EVF_Procedure (Subp)
9817 then
9818 null;
9819
9820 else
9821 Error_Msg_NE
9822 ("type must be declared abstract or & overridden",
9823 T, Subp);
9824
9825 -- Traverse the whole chain of aliased subprograms to
9826 -- complete the error notification. This is especially
9827 -- useful for traceability of the chain of entities when
9828 -- the subprogram corresponds with an interface
9829 -- subprogram (which may be defined in another package).
9830
9831 if Present (Alias_Subp) then
9832 declare
9833 E : Entity_Id;
9834
9835 begin
9836 E := Subp;
9837 while Present (Alias (E)) loop
9838
9839 -- Avoid reporting redundant errors on entities
9840 -- inherited from interfaces
9841
9842 if Sloc (E) /= Sloc (T) then
9843 Error_Msg_Sloc := Sloc (E);
9844 Error_Msg_NE
9845 ("\& has been inherited #", T, Subp);
9846 end if;
9847
9848 E := Alias (E);
9849 end loop;
9850
9851 Error_Msg_Sloc := Sloc (E);
9852
9853 -- AI05-0068: report if there is an overriding
9854 -- non-abstract subprogram that is invisible.
9855
9856 if Is_Hidden (E)
9857 and then not Is_Abstract_Subprogram (E)
9858 then
9859 Error_Msg_NE
9860 ("\& subprogram# is not visible",
9861 T, Subp);
9862
9863 -- Clarify the case where a non-null extension must
9864 -- override inherited procedure subject to pragma
9865 -- Extensions_Visible with value False and at least
9866 -- one controlling OUT param.
9867
9868 elsif Is_EVF_Procedure (E) then
9869 Error_Msg_NE
9870 ("\& # is subject to Extensions_Visible False",
9871 T, Subp);
9872
9873 else
9874 Error_Msg_NE
9875 ("\& has been inherited from subprogram #",
9876 T, Subp);
9877 end if;
9878 end;
9879 end if;
9880 end if;
9881
9882 -- Ada 2005 (AI-345): Protected or task type implementing
9883 -- abstract interfaces.
9884
9885 elsif Is_Concurrent_Record_Type (T)
9886 and then Present (Interfaces (T))
9887 then
9888 -- If an inherited subprogram is implemented by a protected
9889 -- procedure or an entry, then the first parameter of the
9890 -- inherited subprogram shall be of mode OUT or IN OUT, or
9891 -- an access-to-variable parameter (RM 9.4(11.9/3))
9892
9893 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
9894 and then Ekind (First_Formal (Subp)) = E_In_Parameter
9895 and then Ekind (Subp) /= E_Function
9896 and then not Is_Predefined_Dispatching_Operation (Subp)
9897 then
9898 Error_Msg_PT (T, Subp);
9899
9900 -- Some other kind of overriding failure
9901
9902 else
9903 Error_Msg_NE
9904 ("interface subprogram & must be overridden",
9905 T, Subp);
9906
9907 -- Examine primitive operations of synchronized type,
9908 -- to find homonyms that have the wrong profile.
9909
9910 declare
9911 Prim : Entity_Id;
9912
9913 begin
9914 Prim :=
9915 First_Entity (Corresponding_Concurrent_Type (T));
9916 while Present (Prim) loop
9917 if Chars (Prim) = Chars (Subp) then
9918 Error_Msg_NE
9919 ("profile is not type conformant with "
9920 & "prefixed view profile of "
9921 & "inherited operation&", Prim, Subp);
9922 end if;
9923
9924 Next_Entity (Prim);
9925 end loop;
9926 end;
9927 end if;
9928 end if;
9929
9930 else
9931 Error_Msg_Node_2 := T;
9932 Error_Msg_N
9933 ("abstract subprogram& not allowed for type&", Subp);
9934
9935 -- Also post unconditional warning on the type (unconditional
9936 -- so that if there are more than one of these cases, we get
9937 -- them all, and not just the first one).
9938
9939 Error_Msg_Node_2 := Subp;
9940 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
9941 end if;
9942
9943 -- A subprogram subject to pragma Extensions_Visible with value
9944 -- "True" cannot override a subprogram subject to the same pragma
9945 -- with value "False" (SPARK RM 6.1.7(5)).
9946
9947 elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True
9948 and then Present (Overridden_Operation (Subp))
9949 and then Extensions_Visible_Status (Overridden_Operation (Subp)) =
9950 Extensions_Visible_False
9951 then
9952 Error_Msg_Sloc := Sloc (Overridden_Operation (Subp));
9953 Error_Msg_N
9954 ("subprogram & with Extensions_Visible True cannot override "
9955 & "subprogram # with Extensions_Visible False", Subp);
9956 end if;
9957
9958 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
9959
9960 -- Subp is an expander-generated procedure which maps an interface
9961 -- alias to a protected wrapper. The interface alias is flagged by
9962 -- pragma Implemented. Ensure that Subp is a procedure when the
9963 -- implementation kind is By_Protected_Procedure or an entry when
9964 -- By_Entry.
9965
9966 if Ada_Version >= Ada_2012
9967 and then Is_Hidden (Subp)
9968 and then Present (Interface_Alias (Subp))
9969 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
9970 then
9971 Check_Pragma_Implemented (Subp);
9972 end if;
9973
9974 -- Subp is an interface primitive which overrides another interface
9975 -- primitive marked with pragma Implemented.
9976
9977 if Ada_Version >= Ada_2012
9978 and then Present (Overridden_Operation (Subp))
9979 and then Has_Rep_Pragma
9980 (Overridden_Operation (Subp), Name_Implemented)
9981 then
9982 -- If the overriding routine is also marked by Implemented, check
9983 -- that the two implementation kinds are conforming.
9984
9985 if Has_Rep_Pragma (Subp, Name_Implemented) then
9986 Check_Pragma_Implemented
9987 (Subp => Subp,
9988 Iface_Subp => Overridden_Operation (Subp));
9989
9990 -- Otherwise the overriding routine inherits the implementation
9991 -- kind from the overridden subprogram.
9992
9993 else
9994 Inherit_Pragma_Implemented
9995 (Subp => Subp,
9996 Iface_Subp => Overridden_Operation (Subp));
9997 end if;
9998 end if;
9999
10000 -- If the operation is a wrapper for a synchronized primitive, it
10001 -- may be called indirectly through a dispatching select. We assume
10002 -- that it will be referenced elsewhere indirectly, and suppress
10003 -- warnings about an unused entity.
10004
10005 if Is_Primitive_Wrapper (Subp)
10006 and then Present (Wrapped_Entity (Subp))
10007 then
10008 Set_Referenced (Wrapped_Entity (Subp));
10009 end if;
10010
10011 Next_Elmt (Elmt);
10012 end loop;
10013 end Check_Abstract_Overriding;
10014
10015 ------------------------------------------------
10016 -- Check_Access_Discriminant_Requires_Limited --
10017 ------------------------------------------------
10018
10019 procedure Check_Access_Discriminant_Requires_Limited
10020 (D : Node_Id;
10021 Loc : Node_Id)
10022 is
10023 begin
10024 -- A discriminant_specification for an access discriminant shall appear
10025 -- only in the declaration for a task or protected type, or for a type
10026 -- with the reserved word 'limited' in its definition or in one of its
10027 -- ancestors (RM 3.7(10)).
10028
10029 -- AI-0063: The proper condition is that type must be immutably limited,
10030 -- or else be a partial view.
10031
10032 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
10033 if Is_Limited_View (Current_Scope)
10034 or else
10035 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
10036 and then Limited_Present (Parent (Current_Scope)))
10037 then
10038 null;
10039
10040 else
10041 Error_Msg_N
10042 ("access discriminants allowed only for limited types", Loc);
10043 end if;
10044 end if;
10045 end Check_Access_Discriminant_Requires_Limited;
10046
10047 -----------------------------------
10048 -- Check_Aliased_Component_Types --
10049 -----------------------------------
10050
10051 procedure Check_Aliased_Component_Types (T : Entity_Id) is
10052 C : Entity_Id;
10053
10054 begin
10055 -- ??? Also need to check components of record extensions, but not
10056 -- components of protected types (which are always limited).
10057
10058 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10059 -- types to be unconstrained. This is safe because it is illegal to
10060 -- create access subtypes to such types with explicit discriminant
10061 -- constraints.
10062
10063 if not Is_Limited_Type (T) then
10064 if Ekind (T) = E_Record_Type then
10065 C := First_Component (T);
10066 while Present (C) loop
10067 if Is_Aliased (C)
10068 and then Has_Discriminants (Etype (C))
10069 and then not Is_Constrained (Etype (C))
10070 and then not In_Instance_Body
10071 and then Ada_Version < Ada_2005
10072 then
10073 Error_Msg_N
10074 ("aliased component must be constrained (RM 3.6(11))",
10075 C);
10076 end if;
10077
10078 Next_Component (C);
10079 end loop;
10080
10081 elsif Ekind (T) = E_Array_Type then
10082 if Has_Aliased_Components (T)
10083 and then Has_Discriminants (Component_Type (T))
10084 and then not Is_Constrained (Component_Type (T))
10085 and then not In_Instance_Body
10086 and then Ada_Version < Ada_2005
10087 then
10088 Error_Msg_N
10089 ("aliased component type must be constrained (RM 3.6(11))",
10090 T);
10091 end if;
10092 end if;
10093 end if;
10094 end Check_Aliased_Component_Types;
10095
10096 ---------------------------------------
10097 -- Check_Anonymous_Access_Components --
10098 ---------------------------------------
10099
10100 procedure Check_Anonymous_Access_Components
10101 (Typ_Decl : Node_Id;
10102 Typ : Entity_Id;
10103 Prev : Entity_Id;
10104 Comp_List : Node_Id)
10105 is
10106 Loc : constant Source_Ptr := Sloc (Typ_Decl);
10107 Anon_Access : Entity_Id;
10108 Acc_Def : Node_Id;
10109 Comp : Node_Id;
10110 Comp_Def : Node_Id;
10111 Decl : Node_Id;
10112 Type_Def : Node_Id;
10113
10114 procedure Build_Incomplete_Type_Declaration;
10115 -- If the record type contains components that include an access to the
10116 -- current record, then create an incomplete type declaration for the
10117 -- record, to be used as the designated type of the anonymous access.
10118 -- This is done only once, and only if there is no previous partial
10119 -- view of the type.
10120
10121 function Designates_T (Subt : Node_Id) return Boolean;
10122 -- Check whether a node designates the enclosing record type, or 'Class
10123 -- of that type
10124
10125 function Mentions_T (Acc_Def : Node_Id) return Boolean;
10126 -- Check whether an access definition includes a reference to
10127 -- the enclosing record type. The reference can be a subtype mark
10128 -- in the access definition itself, a 'Class attribute reference, or
10129 -- recursively a reference appearing in a parameter specification
10130 -- or result definition of an access_to_subprogram definition.
10131
10132 --------------------------------------
10133 -- Build_Incomplete_Type_Declaration --
10134 --------------------------------------
10135
10136 procedure Build_Incomplete_Type_Declaration is
10137 Decl : Node_Id;
10138 Inc_T : Entity_Id;
10139 H : Entity_Id;
10140
10141 -- Is_Tagged indicates whether the type is tagged. It is tagged if
10142 -- it's "is new ... with record" or else "is tagged record ...".
10143
10144 Is_Tagged : constant Boolean :=
10145 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
10146 and then
10147 Present (Record_Extension_Part (Type_Definition (Typ_Decl))))
10148 or else
10149 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
10150 and then Tagged_Present (Type_Definition (Typ_Decl)));
10151
10152 begin
10153 -- If there is a previous partial view, no need to create a new one
10154 -- If the partial view, given by Prev, is incomplete, If Prev is
10155 -- a private declaration, full declaration is flagged accordingly.
10156
10157 if Prev /= Typ then
10158 if Is_Tagged then
10159 Make_Class_Wide_Type (Prev);
10160 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
10161 Set_Etype (Class_Wide_Type (Typ), Typ);
10162 end if;
10163
10164 return;
10165
10166 elsif Has_Private_Declaration (Typ) then
10167
10168 -- If we refer to T'Class inside T, and T is the completion of a
10169 -- private type, then make sure the class-wide type exists.
10170
10171 if Is_Tagged then
10172 Make_Class_Wide_Type (Typ);
10173 end if;
10174
10175 return;
10176
10177 -- If there was a previous anonymous access type, the incomplete
10178 -- type declaration will have been created already.
10179
10180 elsif Present (Current_Entity (Typ))
10181 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
10182 and then Full_View (Current_Entity (Typ)) = Typ
10183 then
10184 if Is_Tagged
10185 and then Comes_From_Source (Current_Entity (Typ))
10186 and then not Is_Tagged_Type (Current_Entity (Typ))
10187 then
10188 Make_Class_Wide_Type (Typ);
10189 Error_Msg_N
10190 ("incomplete view of tagged type should be declared tagged??",
10191 Parent (Current_Entity (Typ)));
10192 end if;
10193 return;
10194
10195 else
10196 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
10197 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
10198
10199 -- Type has already been inserted into the current scope. Remove
10200 -- it, and add incomplete declaration for type, so that subsequent
10201 -- anonymous access types can use it. The entity is unchained from
10202 -- the homonym list and from immediate visibility. After analysis,
10203 -- the entity in the incomplete declaration becomes immediately
10204 -- visible in the record declaration that follows.
10205
10206 H := Current_Entity (Typ);
10207
10208 if H = Typ then
10209 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
10210 else
10211 while Present (H)
10212 and then Homonym (H) /= Typ
10213 loop
10214 H := Homonym (Typ);
10215 end loop;
10216
10217 Set_Homonym (H, Homonym (Typ));
10218 end if;
10219
10220 Insert_Before (Typ_Decl, Decl);
10221 Analyze (Decl);
10222 Set_Full_View (Inc_T, Typ);
10223
10224 if Is_Tagged then
10225
10226 -- Create a common class-wide type for both views, and set the
10227 -- Etype of the class-wide type to the full view.
10228
10229 Make_Class_Wide_Type (Inc_T);
10230 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
10231 Set_Etype (Class_Wide_Type (Typ), Typ);
10232 end if;
10233 end if;
10234 end Build_Incomplete_Type_Declaration;
10235
10236 ------------------
10237 -- Designates_T --
10238 ------------------
10239
10240 function Designates_T (Subt : Node_Id) return Boolean is
10241 Type_Id : constant Name_Id := Chars (Typ);
10242
10243 function Names_T (Nam : Node_Id) return Boolean;
10244 -- The record type has not been introduced in the current scope
10245 -- yet, so we must examine the name of the type itself, either
10246 -- an identifier T, or an expanded name of the form P.T, where
10247 -- P denotes the current scope.
10248
10249 -------------
10250 -- Names_T --
10251 -------------
10252
10253 function Names_T (Nam : Node_Id) return Boolean is
10254 begin
10255 if Nkind (Nam) = N_Identifier then
10256 return Chars (Nam) = Type_Id;
10257
10258 elsif Nkind (Nam) = N_Selected_Component then
10259 if Chars (Selector_Name (Nam)) = Type_Id then
10260 if Nkind (Prefix (Nam)) = N_Identifier then
10261 return Chars (Prefix (Nam)) = Chars (Current_Scope);
10262
10263 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
10264 return Chars (Selector_Name (Prefix (Nam))) =
10265 Chars (Current_Scope);
10266 else
10267 return False;
10268 end if;
10269
10270 else
10271 return False;
10272 end if;
10273
10274 else
10275 return False;
10276 end if;
10277 end Names_T;
10278
10279 -- Start of processing for Designates_T
10280
10281 begin
10282 if Nkind (Subt) = N_Identifier then
10283 return Chars (Subt) = Type_Id;
10284
10285 -- Reference can be through an expanded name which has not been
10286 -- analyzed yet, and which designates enclosing scopes.
10287
10288 elsif Nkind (Subt) = N_Selected_Component then
10289 if Names_T (Subt) then
10290 return True;
10291
10292 -- Otherwise it must denote an entity that is already visible.
10293 -- The access definition may name a subtype of the enclosing
10294 -- type, if there is a previous incomplete declaration for it.
10295
10296 else
10297 Find_Selected_Component (Subt);
10298 return
10299 Is_Entity_Name (Subt)
10300 and then Scope (Entity (Subt)) = Current_Scope
10301 and then
10302 (Chars (Base_Type (Entity (Subt))) = Type_Id
10303 or else
10304 (Is_Class_Wide_Type (Entity (Subt))
10305 and then
10306 Chars (Etype (Base_Type (Entity (Subt)))) =
10307 Type_Id));
10308 end if;
10309
10310 -- A reference to the current type may appear as the prefix of
10311 -- a 'Class attribute.
10312
10313 elsif Nkind (Subt) = N_Attribute_Reference
10314 and then Attribute_Name (Subt) = Name_Class
10315 then
10316 return Names_T (Prefix (Subt));
10317
10318 else
10319 return False;
10320 end if;
10321 end Designates_T;
10322
10323 ----------------
10324 -- Mentions_T --
10325 ----------------
10326
10327 function Mentions_T (Acc_Def : Node_Id) return Boolean is
10328 Param_Spec : Node_Id;
10329
10330 Acc_Subprg : constant Node_Id :=
10331 Access_To_Subprogram_Definition (Acc_Def);
10332
10333 begin
10334 if No (Acc_Subprg) then
10335 return Designates_T (Subtype_Mark (Acc_Def));
10336 end if;
10337
10338 -- Component is an access_to_subprogram: examine its formals,
10339 -- and result definition in the case of an access_to_function.
10340
10341 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
10342 while Present (Param_Spec) loop
10343 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
10344 and then Mentions_T (Parameter_Type (Param_Spec))
10345 then
10346 return True;
10347
10348 elsif Designates_T (Parameter_Type (Param_Spec)) then
10349 return True;
10350 end if;
10351
10352 Next (Param_Spec);
10353 end loop;
10354
10355 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
10356 if Nkind (Result_Definition (Acc_Subprg)) =
10357 N_Access_Definition
10358 then
10359 return Mentions_T (Result_Definition (Acc_Subprg));
10360 else
10361 return Designates_T (Result_Definition (Acc_Subprg));
10362 end if;
10363 end if;
10364
10365 return False;
10366 end Mentions_T;
10367
10368 -- Start of processing for Check_Anonymous_Access_Components
10369
10370 begin
10371 if No (Comp_List) then
10372 return;
10373 end if;
10374
10375 Comp := First (Component_Items (Comp_List));
10376 while Present (Comp) loop
10377 if Nkind (Comp) = N_Component_Declaration
10378 and then Present
10379 (Access_Definition (Component_Definition (Comp)))
10380 and then
10381 Mentions_T (Access_Definition (Component_Definition (Comp)))
10382 then
10383 Comp_Def := Component_Definition (Comp);
10384 Acc_Def :=
10385 Access_To_Subprogram_Definition (Access_Definition (Comp_Def));
10386
10387 Build_Incomplete_Type_Declaration;
10388 Anon_Access := Make_Temporary (Loc, 'S');
10389
10390 -- Create a declaration for the anonymous access type: either
10391 -- an access_to_object or an access_to_subprogram.
10392
10393 if Present (Acc_Def) then
10394 if Nkind (Acc_Def) = N_Access_Function_Definition then
10395 Type_Def :=
10396 Make_Access_Function_Definition (Loc,
10397 Parameter_Specifications =>
10398 Parameter_Specifications (Acc_Def),
10399 Result_Definition => Result_Definition (Acc_Def));
10400 else
10401 Type_Def :=
10402 Make_Access_Procedure_Definition (Loc,
10403 Parameter_Specifications =>
10404 Parameter_Specifications (Acc_Def));
10405 end if;
10406
10407 else
10408 Type_Def :=
10409 Make_Access_To_Object_Definition (Loc,
10410 Subtype_Indication =>
10411 Relocate_Node
10412 (Subtype_Mark (Access_Definition (Comp_Def))));
10413
10414 Set_Constant_Present
10415 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
10416 Set_All_Present
10417 (Type_Def, All_Present (Access_Definition (Comp_Def)));
10418 end if;
10419
10420 Set_Null_Exclusion_Present
10421 (Type_Def,
10422 Null_Exclusion_Present (Access_Definition (Comp_Def)));
10423
10424 Decl :=
10425 Make_Full_Type_Declaration (Loc,
10426 Defining_Identifier => Anon_Access,
10427 Type_Definition => Type_Def);
10428
10429 Insert_Before (Typ_Decl, Decl);
10430 Analyze (Decl);
10431
10432 -- If an access to subprogram, create the extra formals
10433
10434 if Present (Acc_Def) then
10435 Create_Extra_Formals (Designated_Type (Anon_Access));
10436
10437 -- If an access to object, preserve entity of designated type,
10438 -- for ASIS use, before rewriting the component definition.
10439
10440 else
10441 declare
10442 Desig : Entity_Id;
10443
10444 begin
10445 Desig := Entity (Subtype_Indication (Type_Def));
10446
10447 -- If the access definition is to the current record,
10448 -- the visible entity at this point is an incomplete
10449 -- type. Retrieve the full view to simplify ASIS queries
10450
10451 if Ekind (Desig) = E_Incomplete_Type then
10452 Desig := Full_View (Desig);
10453 end if;
10454
10455 Set_Entity
10456 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
10457 end;
10458 end if;
10459
10460 Rewrite (Comp_Def,
10461 Make_Component_Definition (Loc,
10462 Subtype_Indication =>
10463 New_Occurrence_Of (Anon_Access, Loc)));
10464
10465 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
10466 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
10467 else
10468 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
10469 end if;
10470
10471 Set_Is_Local_Anonymous_Access (Anon_Access);
10472 end if;
10473
10474 Next (Comp);
10475 end loop;
10476
10477 if Present (Variant_Part (Comp_List)) then
10478 declare
10479 V : Node_Id;
10480 begin
10481 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
10482 while Present (V) loop
10483 Check_Anonymous_Access_Components
10484 (Typ_Decl, Typ, Prev, Component_List (V));
10485 Next_Non_Pragma (V);
10486 end loop;
10487 end;
10488 end if;
10489 end Check_Anonymous_Access_Components;
10490
10491 ----------------------
10492 -- Check_Completion --
10493 ----------------------
10494
10495 procedure Check_Completion (Body_Id : Node_Id := Empty) is
10496 E : Entity_Id;
10497
10498 procedure Post_Error;
10499 -- Post error message for lack of completion for entity E
10500
10501 ----------------
10502 -- Post_Error --
10503 ----------------
10504
10505 procedure Post_Error is
10506
10507 procedure Missing_Body;
10508 -- Output missing body message
10509
10510 ------------------
10511 -- Missing_Body --
10512 ------------------
10513
10514 procedure Missing_Body is
10515 begin
10516 -- Spec is in same unit, so we can post on spec
10517
10518 if In_Same_Source_Unit (Body_Id, E) then
10519 Error_Msg_N ("missing body for &", E);
10520
10521 -- Spec is in a separate unit, so we have to post on the body
10522
10523 else
10524 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
10525 end if;
10526 end Missing_Body;
10527
10528 -- Start of processing for Post_Error
10529
10530 begin
10531 if not Comes_From_Source (E) then
10532
10533 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
10534
10535 -- It may be an anonymous protected type created for a
10536 -- single variable. Post error on variable, if present.
10537
10538 declare
10539 Var : Entity_Id;
10540
10541 begin
10542 Var := First_Entity (Current_Scope);
10543 while Present (Var) loop
10544 exit when Etype (Var) = E
10545 and then Comes_From_Source (Var);
10546
10547 Next_Entity (Var);
10548 end loop;
10549
10550 if Present (Var) then
10551 E := Var;
10552 end if;
10553 end;
10554 end if;
10555 end if;
10556
10557 -- If a generated entity has no completion, then either previous
10558 -- semantic errors have disabled the expansion phase, or else we had
10559 -- missing subunits, or else we are compiling without expansion,
10560 -- or else something is very wrong.
10561
10562 if not Comes_From_Source (E) then
10563 pragma Assert
10564 (Serious_Errors_Detected > 0
10565 or else Configurable_Run_Time_Violations > 0
10566 or else Subunits_Missing
10567 or else not Expander_Active);
10568 return;
10569
10570 -- Here for source entity
10571
10572 else
10573 -- Here if no body to post the error message, so we post the error
10574 -- on the declaration that has no completion. This is not really
10575 -- the right place to post it, think about this later ???
10576
10577 if No (Body_Id) then
10578 if Is_Type (E) then
10579 Error_Msg_NE
10580 ("missing full declaration for }", Parent (E), E);
10581 else
10582 Error_Msg_NE ("missing body for &", Parent (E), E);
10583 end if;
10584
10585 -- Package body has no completion for a declaration that appears
10586 -- in the corresponding spec. Post error on the body, with a
10587 -- reference to the non-completed declaration.
10588
10589 else
10590 Error_Msg_Sloc := Sloc (E);
10591
10592 if Is_Type (E) then
10593 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
10594
10595 elsif Is_Overloadable (E)
10596 and then Current_Entity_In_Scope (E) /= E
10597 then
10598 -- It may be that the completion is mistyped and appears as
10599 -- a distinct overloading of the entity.
10600
10601 declare
10602 Candidate : constant Entity_Id :=
10603 Current_Entity_In_Scope (E);
10604 Decl : constant Node_Id :=
10605 Unit_Declaration_Node (Candidate);
10606
10607 begin
10608 if Is_Overloadable (Candidate)
10609 and then Ekind (Candidate) = Ekind (E)
10610 and then Nkind (Decl) = N_Subprogram_Body
10611 and then Acts_As_Spec (Decl)
10612 then
10613 Check_Type_Conformant (Candidate, E);
10614
10615 else
10616 Missing_Body;
10617 end if;
10618 end;
10619
10620 else
10621 Missing_Body;
10622 end if;
10623 end if;
10624 end if;
10625 end Post_Error;
10626
10627 -- Start of processing for Check_Completion
10628
10629 begin
10630 E := First_Entity (Current_Scope);
10631 while Present (E) loop
10632 if Is_Intrinsic_Subprogram (E) then
10633 null;
10634
10635 -- The following situation requires special handling: a child unit
10636 -- that appears in the context clause of the body of its parent:
10637
10638 -- procedure Parent.Child (...);
10639
10640 -- with Parent.Child;
10641 -- package body Parent is
10642
10643 -- Here Parent.Child appears as a local entity, but should not be
10644 -- flagged as requiring completion, because it is a compilation
10645 -- unit.
10646
10647 -- Ignore missing completion for a subprogram that does not come from
10648 -- source (including the _Call primitive operation of RAS types,
10649 -- which has to have the flag Comes_From_Source for other purposes):
10650 -- we assume that the expander will provide the missing completion.
10651 -- In case of previous errors, other expansion actions that provide
10652 -- bodies for null procedures with not be invoked, so inhibit message
10653 -- in those cases.
10654
10655 -- Note that E_Operator is not in the list that follows, because
10656 -- this kind is reserved for predefined operators, that are
10657 -- intrinsic and do not need completion.
10658
10659 elsif Ekind_In (E, E_Function,
10660 E_Procedure,
10661 E_Generic_Function,
10662 E_Generic_Procedure)
10663 then
10664 if Has_Completion (E) then
10665 null;
10666
10667 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
10668 null;
10669
10670 elsif Is_Subprogram (E)
10671 and then (not Comes_From_Source (E)
10672 or else Chars (E) = Name_uCall)
10673 then
10674 null;
10675
10676 elsif
10677 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
10678 then
10679 null;
10680
10681 elsif Nkind (Parent (E)) = N_Procedure_Specification
10682 and then Null_Present (Parent (E))
10683 and then Serious_Errors_Detected > 0
10684 then
10685 null;
10686
10687 else
10688 Post_Error;
10689 end if;
10690
10691 elsif Is_Entry (E) then
10692 if not Has_Completion (E) and then
10693 (Ekind (Scope (E)) = E_Protected_Object
10694 or else Ekind (Scope (E)) = E_Protected_Type)
10695 then
10696 Post_Error;
10697 end if;
10698
10699 elsif Is_Package_Or_Generic_Package (E) then
10700 if Unit_Requires_Body (E) then
10701 if not Has_Completion (E)
10702 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
10703 N_Compilation_Unit
10704 then
10705 Post_Error;
10706 end if;
10707
10708 elsif not Is_Child_Unit (E) then
10709 May_Need_Implicit_Body (E);
10710 end if;
10711
10712 -- A formal incomplete type (Ada 2012) does not require a completion;
10713 -- other incomplete type declarations do.
10714
10715 elsif Ekind (E) = E_Incomplete_Type
10716 and then No (Underlying_Type (E))
10717 and then not Is_Generic_Type (E)
10718 then
10719 Post_Error;
10720
10721 elsif Ekind_In (E, E_Task_Type, E_Protected_Type)
10722 and then not Has_Completion (E)
10723 then
10724 Post_Error;
10725
10726 -- A single task declared in the current scope is a constant, verify
10727 -- that the body of its anonymous type is in the same scope. If the
10728 -- task is defined elsewhere, this may be a renaming declaration for
10729 -- which no completion is needed.
10730
10731 elsif Ekind (E) = E_Constant
10732 and then Ekind (Etype (E)) = E_Task_Type
10733 and then not Has_Completion (Etype (E))
10734 and then Scope (Etype (E)) = Current_Scope
10735 then
10736 Post_Error;
10737
10738 elsif Ekind (E) = E_Protected_Object
10739 and then not Has_Completion (Etype (E))
10740 then
10741 Post_Error;
10742
10743 elsif Ekind (E) = E_Record_Type then
10744 if Is_Tagged_Type (E) then
10745 Check_Abstract_Overriding (E);
10746 Check_Conventions (E);
10747 end if;
10748
10749 Check_Aliased_Component_Types (E);
10750
10751 elsif Ekind (E) = E_Array_Type then
10752 Check_Aliased_Component_Types (E);
10753
10754 end if;
10755
10756 Next_Entity (E);
10757 end loop;
10758 end Check_Completion;
10759
10760 ------------------------------------
10761 -- Check_CPP_Type_Has_No_Defaults --
10762 ------------------------------------
10763
10764 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
10765 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
10766 Clist : Node_Id;
10767 Comp : Node_Id;
10768
10769 begin
10770 -- Obtain the component list
10771
10772 if Nkind (Tdef) = N_Record_Definition then
10773 Clist := Component_List (Tdef);
10774 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
10775 Clist := Component_List (Record_Extension_Part (Tdef));
10776 end if;
10777
10778 -- Check all components to ensure no default expressions
10779
10780 if Present (Clist) then
10781 Comp := First (Component_Items (Clist));
10782 while Present (Comp) loop
10783 if Present (Expression (Comp)) then
10784 Error_Msg_N
10785 ("component of imported 'C'P'P type cannot have "
10786 & "default expression", Expression (Comp));
10787 end if;
10788
10789 Next (Comp);
10790 end loop;
10791 end if;
10792 end Check_CPP_Type_Has_No_Defaults;
10793
10794 ----------------------------
10795 -- Check_Delta_Expression --
10796 ----------------------------
10797
10798 procedure Check_Delta_Expression (E : Node_Id) is
10799 begin
10800 if not (Is_Real_Type (Etype (E))) then
10801 Wrong_Type (E, Any_Real);
10802
10803 elsif not Is_OK_Static_Expression (E) then
10804 Flag_Non_Static_Expr
10805 ("non-static expression used for delta value!", E);
10806
10807 elsif not UR_Is_Positive (Expr_Value_R (E)) then
10808 Error_Msg_N ("delta expression must be positive", E);
10809
10810 else
10811 return;
10812 end if;
10813
10814 -- If any of above errors occurred, then replace the incorrect
10815 -- expression by the real 0.1, which should prevent further errors.
10816
10817 Rewrite (E,
10818 Make_Real_Literal (Sloc (E), Ureal_Tenth));
10819 Analyze_And_Resolve (E, Standard_Float);
10820 end Check_Delta_Expression;
10821
10822 -----------------------------
10823 -- Check_Digits_Expression --
10824 -----------------------------
10825
10826 procedure Check_Digits_Expression (E : Node_Id) is
10827 begin
10828 if not (Is_Integer_Type (Etype (E))) then
10829 Wrong_Type (E, Any_Integer);
10830
10831 elsif not Is_OK_Static_Expression (E) then
10832 Flag_Non_Static_Expr
10833 ("non-static expression used for digits value!", E);
10834
10835 elsif Expr_Value (E) <= 0 then
10836 Error_Msg_N ("digits value must be greater than zero", E);
10837
10838 else
10839 return;
10840 end if;
10841
10842 -- If any of above errors occurred, then replace the incorrect
10843 -- expression by the integer 1, which should prevent further errors.
10844
10845 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
10846 Analyze_And_Resolve (E, Standard_Integer);
10847
10848 end Check_Digits_Expression;
10849
10850 --------------------------
10851 -- Check_Initialization --
10852 --------------------------
10853
10854 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
10855 begin
10856 -- Special processing for limited types
10857
10858 if Is_Limited_Type (T)
10859 and then not In_Instance
10860 and then not In_Inlined_Body
10861 then
10862 if not OK_For_Limited_Init (T, Exp) then
10863
10864 -- In GNAT mode, this is just a warning, to allow it to be evilly
10865 -- turned off. Otherwise it is a real error.
10866
10867 if GNAT_Mode then
10868 Error_Msg_N
10869 ("??cannot initialize entities of limited type!", Exp);
10870
10871 elsif Ada_Version < Ada_2005 then
10872
10873 -- The side effect removal machinery may generate illegal Ada
10874 -- code to avoid the usage of access types and 'reference in
10875 -- SPARK mode. Since this is legal code with respect to theorem
10876 -- proving, do not emit the error.
10877
10878 if GNATprove_Mode
10879 and then Nkind (Exp) = N_Function_Call
10880 and then Nkind (Parent (Exp)) = N_Object_Declaration
10881 and then not Comes_From_Source
10882 (Defining_Identifier (Parent (Exp)))
10883 then
10884 null;
10885
10886 else
10887 Error_Msg_N
10888 ("cannot initialize entities of limited type", Exp);
10889 Explain_Limited_Type (T, Exp);
10890 end if;
10891
10892 else
10893 -- Specialize error message according to kind of illegal
10894 -- initial expression.
10895
10896 if Nkind (Exp) = N_Type_Conversion
10897 and then Nkind (Expression (Exp)) = N_Function_Call
10898 then
10899 Error_Msg_N
10900 ("illegal context for call"
10901 & " to function with limited result", Exp);
10902
10903 else
10904 Error_Msg_N
10905 ("initialization of limited object requires aggregate "
10906 & "or function call", Exp);
10907 end if;
10908 end if;
10909 end if;
10910 end if;
10911
10912 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
10913 -- set unless we can be sure that no range check is required.
10914
10915 if (GNATprove_Mode or not Expander_Active)
10916 and then Is_Scalar_Type (T)
10917 and then not Is_In_Range (Exp, T, Assume_Valid => True)
10918 then
10919 Set_Do_Range_Check (Exp);
10920 end if;
10921 end Check_Initialization;
10922
10923 ----------------------
10924 -- Check_Interfaces --
10925 ----------------------
10926
10927 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
10928 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
10929
10930 Iface : Node_Id;
10931 Iface_Def : Node_Id;
10932 Iface_Typ : Entity_Id;
10933 Parent_Node : Node_Id;
10934
10935 Is_Task : Boolean := False;
10936 -- Set True if parent type or any progenitor is a task interface
10937
10938 Is_Protected : Boolean := False;
10939 -- Set True if parent type or any progenitor is a protected interface
10940
10941 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
10942 -- Check that a progenitor is compatible with declaration. If an error
10943 -- message is output, it is posted on Error_Node.
10944
10945 ------------------
10946 -- Check_Ifaces --
10947 ------------------
10948
10949 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
10950 Iface_Id : constant Entity_Id :=
10951 Defining_Identifier (Parent (Iface_Def));
10952 Type_Def : Node_Id;
10953
10954 begin
10955 if Nkind (N) = N_Private_Extension_Declaration then
10956 Type_Def := N;
10957 else
10958 Type_Def := Type_Definition (N);
10959 end if;
10960
10961 if Is_Task_Interface (Iface_Id) then
10962 Is_Task := True;
10963
10964 elsif Is_Protected_Interface (Iface_Id) then
10965 Is_Protected := True;
10966 end if;
10967
10968 if Is_Synchronized_Interface (Iface_Id) then
10969
10970 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
10971 -- extension derived from a synchronized interface must explicitly
10972 -- be declared synchronized, because the full view will be a
10973 -- synchronized type.
10974
10975 if Nkind (N) = N_Private_Extension_Declaration then
10976 if not Synchronized_Present (N) then
10977 Error_Msg_NE
10978 ("private extension of& must be explicitly synchronized",
10979 N, Iface_Id);
10980 end if;
10981
10982 -- However, by 3.9.4(16/2), a full type that is a record extension
10983 -- is never allowed to derive from a synchronized interface (note
10984 -- that interfaces must be excluded from this check, because those
10985 -- are represented by derived type definitions in some cases).
10986
10987 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
10988 and then not Interface_Present (Type_Definition (N))
10989 then
10990 Error_Msg_N ("record extension cannot derive from synchronized "
10991 & "interface", Error_Node);
10992 end if;
10993 end if;
10994
10995 -- Check that the characteristics of the progenitor are compatible
10996 -- with the explicit qualifier in the declaration.
10997 -- The check only applies to qualifiers that come from source.
10998 -- Limited_Present also appears in the declaration of corresponding
10999 -- records, and the check does not apply to them.
11000
11001 if Limited_Present (Type_Def)
11002 and then not
11003 Is_Concurrent_Record_Type (Defining_Identifier (N))
11004 then
11005 if Is_Limited_Interface (Parent_Type)
11006 and then not Is_Limited_Interface (Iface_Id)
11007 then
11008 Error_Msg_NE
11009 ("progenitor & must be limited interface",
11010 Error_Node, Iface_Id);
11011
11012 elsif
11013 (Task_Present (Iface_Def)
11014 or else Protected_Present (Iface_Def)
11015 or else Synchronized_Present (Iface_Def))
11016 and then Nkind (N) /= N_Private_Extension_Declaration
11017 and then not Error_Posted (N)
11018 then
11019 Error_Msg_NE
11020 ("progenitor & must be limited interface",
11021 Error_Node, Iface_Id);
11022 end if;
11023
11024 -- Protected interfaces can only inherit from limited, synchronized
11025 -- or protected interfaces.
11026
11027 elsif Nkind (N) = N_Full_Type_Declaration
11028 and then Protected_Present (Type_Def)
11029 then
11030 if Limited_Present (Iface_Def)
11031 or else Synchronized_Present (Iface_Def)
11032 or else Protected_Present (Iface_Def)
11033 then
11034 null;
11035
11036 elsif Task_Present (Iface_Def) then
11037 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11038 & "from task interface", Error_Node);
11039
11040 else
11041 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11042 & "from non-limited interface", Error_Node);
11043 end if;
11044
11045 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11046 -- limited and synchronized.
11047
11048 elsif Synchronized_Present (Type_Def) then
11049 if Limited_Present (Iface_Def)
11050 or else Synchronized_Present (Iface_Def)
11051 then
11052 null;
11053
11054 elsif Protected_Present (Iface_Def)
11055 and then Nkind (N) /= N_Private_Extension_Declaration
11056 then
11057 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11058 & "from protected interface", Error_Node);
11059
11060 elsif Task_Present (Iface_Def)
11061 and then Nkind (N) /= N_Private_Extension_Declaration
11062 then
11063 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11064 & "from task interface", Error_Node);
11065
11066 elsif not Is_Limited_Interface (Iface_Id) then
11067 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11068 & "from non-limited interface", Error_Node);
11069 end if;
11070
11071 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
11072 -- synchronized or task interfaces.
11073
11074 elsif Nkind (N) = N_Full_Type_Declaration
11075 and then Task_Present (Type_Def)
11076 then
11077 if Limited_Present (Iface_Def)
11078 or else Synchronized_Present (Iface_Def)
11079 or else Task_Present (Iface_Def)
11080 then
11081 null;
11082
11083 elsif Protected_Present (Iface_Def) then
11084 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11085 & "protected interface", Error_Node);
11086
11087 else
11088 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11089 & "non-limited interface", Error_Node);
11090 end if;
11091 end if;
11092 end Check_Ifaces;
11093
11094 -- Start of processing for Check_Interfaces
11095
11096 begin
11097 if Is_Interface (Parent_Type) then
11098 if Is_Task_Interface (Parent_Type) then
11099 Is_Task := True;
11100
11101 elsif Is_Protected_Interface (Parent_Type) then
11102 Is_Protected := True;
11103 end if;
11104 end if;
11105
11106 if Nkind (N) = N_Private_Extension_Declaration then
11107
11108 -- Check that progenitors are compatible with declaration
11109
11110 Iface := First (Interface_List (Def));
11111 while Present (Iface) loop
11112 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11113
11114 Parent_Node := Parent (Base_Type (Iface_Typ));
11115 Iface_Def := Type_Definition (Parent_Node);
11116
11117 if not Is_Interface (Iface_Typ) then
11118 Diagnose_Interface (Iface, Iface_Typ);
11119 else
11120 Check_Ifaces (Iface_Def, Iface);
11121 end if;
11122
11123 Next (Iface);
11124 end loop;
11125
11126 if Is_Task and Is_Protected then
11127 Error_Msg_N
11128 ("type cannot derive from task and protected interface", N);
11129 end if;
11130
11131 return;
11132 end if;
11133
11134 -- Full type declaration of derived type.
11135 -- Check compatibility with parent if it is interface type
11136
11137 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11138 and then Is_Interface (Parent_Type)
11139 then
11140 Parent_Node := Parent (Parent_Type);
11141
11142 -- More detailed checks for interface varieties
11143
11144 Check_Ifaces
11145 (Iface_Def => Type_Definition (Parent_Node),
11146 Error_Node => Subtype_Indication (Type_Definition (N)));
11147 end if;
11148
11149 Iface := First (Interface_List (Def));
11150 while Present (Iface) loop
11151 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11152
11153 Parent_Node := Parent (Base_Type (Iface_Typ));
11154 Iface_Def := Type_Definition (Parent_Node);
11155
11156 if not Is_Interface (Iface_Typ) then
11157 Diagnose_Interface (Iface, Iface_Typ);
11158
11159 else
11160 -- "The declaration of a specific descendant of an interface
11161 -- type freezes the interface type" RM 13.14
11162
11163 Freeze_Before (N, Iface_Typ);
11164 Check_Ifaces (Iface_Def, Error_Node => Iface);
11165 end if;
11166
11167 Next (Iface);
11168 end loop;
11169
11170 if Is_Task and Is_Protected then
11171 Error_Msg_N
11172 ("type cannot derive from task and protected interface", N);
11173 end if;
11174 end Check_Interfaces;
11175
11176 ------------------------------------
11177 -- Check_Or_Process_Discriminants --
11178 ------------------------------------
11179
11180 -- If an incomplete or private type declaration was already given for the
11181 -- type, the discriminants may have already been processed if they were
11182 -- present on the incomplete declaration. In this case a full conformance
11183 -- check has been performed in Find_Type_Name, and we then recheck here
11184 -- some properties that can't be checked on the partial view alone.
11185 -- Otherwise we call Process_Discriminants.
11186
11187 procedure Check_Or_Process_Discriminants
11188 (N : Node_Id;
11189 T : Entity_Id;
11190 Prev : Entity_Id := Empty)
11191 is
11192 begin
11193 if Has_Discriminants (T) then
11194
11195 -- Discriminants are already set on T if they were already present
11196 -- on the partial view. Make them visible to component declarations.
11197
11198 declare
11199 D : Entity_Id;
11200 -- Discriminant on T (full view) referencing expr on partial view
11201
11202 Prev_D : Entity_Id;
11203 -- Entity of corresponding discriminant on partial view
11204
11205 New_D : Node_Id;
11206 -- Discriminant specification for full view, expression is
11207 -- the syntactic copy on full view (which has been checked for
11208 -- conformance with partial view), only used here to post error
11209 -- message.
11210
11211 begin
11212 D := First_Discriminant (T);
11213 New_D := First (Discriminant_Specifications (N));
11214 while Present (D) loop
11215 Prev_D := Current_Entity (D);
11216 Set_Current_Entity (D);
11217 Set_Is_Immediately_Visible (D);
11218 Set_Homonym (D, Prev_D);
11219
11220 -- Handle the case where there is an untagged partial view and
11221 -- the full view is tagged: must disallow discriminants with
11222 -- defaults, unless compiling for Ada 2012, which allows a
11223 -- limited tagged type to have defaulted discriminants (see
11224 -- AI05-0214). However, suppress error here if it was already
11225 -- reported on the default expression of the partial view.
11226
11227 if Is_Tagged_Type (T)
11228 and then Present (Expression (Parent (D)))
11229 and then (not Is_Limited_Type (Current_Scope)
11230 or else Ada_Version < Ada_2012)
11231 and then not Error_Posted (Expression (Parent (D)))
11232 then
11233 if Ada_Version >= Ada_2012 then
11234 Error_Msg_N
11235 ("discriminants of nonlimited tagged type cannot have "
11236 & "defaults",
11237 Expression (New_D));
11238 else
11239 Error_Msg_N
11240 ("discriminants of tagged type cannot have defaults",
11241 Expression (New_D));
11242 end if;
11243 end if;
11244
11245 -- Ada 2005 (AI-230): Access discriminant allowed in
11246 -- non-limited record types.
11247
11248 if Ada_Version < Ada_2005 then
11249
11250 -- This restriction gets applied to the full type here. It
11251 -- has already been applied earlier to the partial view.
11252
11253 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
11254 end if;
11255
11256 Next_Discriminant (D);
11257 Next (New_D);
11258 end loop;
11259 end;
11260
11261 elsif Present (Discriminant_Specifications (N)) then
11262 Process_Discriminants (N, Prev);
11263 end if;
11264 end Check_Or_Process_Discriminants;
11265
11266 ----------------------
11267 -- Check_Real_Bound --
11268 ----------------------
11269
11270 procedure Check_Real_Bound (Bound : Node_Id) is
11271 begin
11272 if not Is_Real_Type (Etype (Bound)) then
11273 Error_Msg_N
11274 ("bound in real type definition must be of real type", Bound);
11275
11276 elsif not Is_OK_Static_Expression (Bound) then
11277 Flag_Non_Static_Expr
11278 ("non-static expression used for real type bound!", Bound);
11279
11280 else
11281 return;
11282 end if;
11283
11284 Rewrite
11285 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
11286 Analyze (Bound);
11287 Resolve (Bound, Standard_Float);
11288 end Check_Real_Bound;
11289
11290 ------------------------------
11291 -- Complete_Private_Subtype --
11292 ------------------------------
11293
11294 procedure Complete_Private_Subtype
11295 (Priv : Entity_Id;
11296 Full : Entity_Id;
11297 Full_Base : Entity_Id;
11298 Related_Nod : Node_Id)
11299 is
11300 Save_Next_Entity : Entity_Id;
11301 Save_Homonym : Entity_Id;
11302
11303 begin
11304 -- Set semantic attributes for (implicit) private subtype completion.
11305 -- If the full type has no discriminants, then it is a copy of the
11306 -- full view of the base. Otherwise, it is a subtype of the base with
11307 -- a possible discriminant constraint. Save and restore the original
11308 -- Next_Entity field of full to ensure that the calls to Copy_Node do
11309 -- not corrupt the entity chain.
11310
11311 -- Note that the type of the full view is the same entity as the type
11312 -- of the partial view. In this fashion, the subtype has access to the
11313 -- correct view of the parent.
11314
11315 Save_Next_Entity := Next_Entity (Full);
11316 Save_Homonym := Homonym (Priv);
11317
11318 case Ekind (Full_Base) is
11319 when E_Record_Type |
11320 E_Record_Subtype |
11321 Class_Wide_Kind |
11322 Private_Kind |
11323 Task_Kind |
11324 Protected_Kind =>
11325 Copy_Node (Priv, Full);
11326
11327 Set_Has_Discriminants
11328 (Full, Has_Discriminants (Full_Base));
11329 Set_Has_Unknown_Discriminants
11330 (Full, Has_Unknown_Discriminants (Full_Base));
11331 Set_First_Entity (Full, First_Entity (Full_Base));
11332 Set_Last_Entity (Full, Last_Entity (Full_Base));
11333
11334 -- If the underlying base type is constrained, we know that the
11335 -- full view of the subtype is constrained as well (the converse
11336 -- is not necessarily true).
11337
11338 if Is_Constrained (Full_Base) then
11339 Set_Is_Constrained (Full);
11340 end if;
11341
11342 when others =>
11343 Copy_Node (Full_Base, Full);
11344
11345 Set_Chars (Full, Chars (Priv));
11346 Conditional_Delay (Full, Priv);
11347 Set_Sloc (Full, Sloc (Priv));
11348 end case;
11349
11350 Set_Next_Entity (Full, Save_Next_Entity);
11351 Set_Homonym (Full, Save_Homonym);
11352 Set_Associated_Node_For_Itype (Full, Related_Nod);
11353
11354 -- Set common attributes for all subtypes: kind, convention, etc.
11355
11356 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
11357 Set_Convention (Full, Convention (Full_Base));
11358
11359 -- The Etype of the full view is inconsistent. Gigi needs to see the
11360 -- structural full view, which is what the current scheme gives: the
11361 -- Etype of the full view is the etype of the full base. However, if the
11362 -- full base is a derived type, the full view then looks like a subtype
11363 -- of the parent, not a subtype of the full base. If instead we write:
11364
11365 -- Set_Etype (Full, Full_Base);
11366
11367 -- then we get inconsistencies in the front-end (confusion between
11368 -- views). Several outstanding bugs are related to this ???
11369
11370 Set_Is_First_Subtype (Full, False);
11371 Set_Scope (Full, Scope (Priv));
11372 Set_Size_Info (Full, Full_Base);
11373 Set_RM_Size (Full, RM_Size (Full_Base));
11374 Set_Is_Itype (Full);
11375
11376 -- A subtype of a private-type-without-discriminants, whose full-view
11377 -- has discriminants with default expressions, is not constrained.
11378
11379 if not Has_Discriminants (Priv) then
11380 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
11381
11382 if Has_Discriminants (Full_Base) then
11383 Set_Discriminant_Constraint
11384 (Full, Discriminant_Constraint (Full_Base));
11385
11386 -- The partial view may have been indefinite, the full view
11387 -- might not be.
11388
11389 Set_Has_Unknown_Discriminants
11390 (Full, Has_Unknown_Discriminants (Full_Base));
11391 end if;
11392 end if;
11393
11394 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
11395 Set_Depends_On_Private (Full, Has_Private_Component (Full));
11396
11397 -- Freeze the private subtype entity if its parent is delayed, and not
11398 -- already frozen. We skip this processing if the type is an anonymous
11399 -- subtype of a record component, or is the corresponding record of a
11400 -- protected type, since ???
11401
11402 if not Is_Type (Scope (Full)) then
11403 Set_Has_Delayed_Freeze (Full,
11404 Has_Delayed_Freeze (Full_Base)
11405 and then (not Is_Frozen (Full_Base)));
11406 end if;
11407
11408 Set_Freeze_Node (Full, Empty);
11409 Set_Is_Frozen (Full, False);
11410 Set_Full_View (Priv, Full);
11411
11412 if Has_Discriminants (Full) then
11413 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
11414 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
11415
11416 if Has_Unknown_Discriminants (Full) then
11417 Set_Discriminant_Constraint (Full, No_Elist);
11418 end if;
11419 end if;
11420
11421 if Ekind (Full_Base) = E_Record_Type
11422 and then Has_Discriminants (Full_Base)
11423 and then Has_Discriminants (Priv) -- might not, if errors
11424 and then not Has_Unknown_Discriminants (Priv)
11425 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
11426 then
11427 Create_Constrained_Components
11428 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
11429
11430 -- If the full base is itself derived from private, build a congruent
11431 -- subtype of its underlying type, for use by the back end. For a
11432 -- constrained record component, the declaration cannot be placed on
11433 -- the component list, but it must nevertheless be built an analyzed, to
11434 -- supply enough information for Gigi to compute the size of component.
11435
11436 elsif Ekind (Full_Base) in Private_Kind
11437 and then Is_Derived_Type (Full_Base)
11438 and then Has_Discriminants (Full_Base)
11439 and then (Ekind (Current_Scope) /= E_Record_Subtype)
11440 then
11441 if not Is_Itype (Priv)
11442 and then
11443 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
11444 then
11445 Build_Underlying_Full_View
11446 (Parent (Priv), Full, Etype (Full_Base));
11447
11448 elsif Nkind (Related_Nod) = N_Component_Declaration then
11449 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
11450 end if;
11451
11452 elsif Is_Record_Type (Full_Base) then
11453
11454 -- Show Full is simply a renaming of Full_Base
11455
11456 Set_Cloned_Subtype (Full, Full_Base);
11457 end if;
11458
11459 -- It is unsafe to share the bounds of a scalar type, because the Itype
11460 -- is elaborated on demand, and if a bound is non-static then different
11461 -- orders of elaboration in different units will lead to different
11462 -- external symbols.
11463
11464 if Is_Scalar_Type (Full_Base) then
11465 Set_Scalar_Range (Full,
11466 Make_Range (Sloc (Related_Nod),
11467 Low_Bound =>
11468 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
11469 High_Bound =>
11470 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
11471
11472 -- This completion inherits the bounds of the full parent, but if
11473 -- the parent is an unconstrained floating point type, so is the
11474 -- completion.
11475
11476 if Is_Floating_Point_Type (Full_Base) then
11477 Set_Includes_Infinities
11478 (Scalar_Range (Full), Has_Infinities (Full_Base));
11479 end if;
11480 end if;
11481
11482 -- ??? It seems that a lot of fields are missing that should be copied
11483 -- from Full_Base to Full. Here are some that are introduced in a
11484 -- non-disruptive way but a cleanup is necessary.
11485
11486 if Is_Tagged_Type (Full_Base) then
11487 Set_Is_Tagged_Type (Full);
11488 Set_Direct_Primitive_Operations
11489 (Full, Direct_Primitive_Operations (Full_Base));
11490 Set_No_Tagged_Streams_Pragma
11491 (Full, No_Tagged_Streams_Pragma (Full_Base));
11492
11493 -- Inherit class_wide type of full_base in case the partial view was
11494 -- not tagged. Otherwise it has already been created when the private
11495 -- subtype was analyzed.
11496
11497 if No (Class_Wide_Type (Full)) then
11498 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
11499 end if;
11500
11501 -- If this is a subtype of a protected or task type, constrain its
11502 -- corresponding record, unless this is a subtype without constraints,
11503 -- i.e. a simple renaming as with an actual subtype in an instance.
11504
11505 elsif Is_Concurrent_Type (Full_Base) then
11506 if Has_Discriminants (Full)
11507 and then Present (Corresponding_Record_Type (Full_Base))
11508 and then
11509 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
11510 then
11511 Set_Corresponding_Record_Type (Full,
11512 Constrain_Corresponding_Record
11513 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
11514
11515 else
11516 Set_Corresponding_Record_Type (Full,
11517 Corresponding_Record_Type (Full_Base));
11518 end if;
11519 end if;
11520
11521 -- Link rep item chain, and also setting of Has_Predicates from private
11522 -- subtype to full subtype, since we will need these on the full subtype
11523 -- to create the predicate function. Note that the full subtype may
11524 -- already have rep items, inherited from the full view of the base
11525 -- type, so we must be sure not to overwrite these entries.
11526
11527 declare
11528 Append : Boolean;
11529 Item : Node_Id;
11530 Next_Item : Node_Id;
11531
11532 begin
11533 Item := First_Rep_Item (Full);
11534
11535 -- If no existing rep items on full type, we can just link directly
11536 -- to the list of items on the private type.
11537
11538 if No (Item) then
11539 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
11540
11541 -- Otherwise, search to the end of items currently linked to the full
11542 -- subtype and append the private items to the end. However, if Priv
11543 -- and Full already have the same list of rep items, then the append
11544 -- is not done, as that would create a circularity.
11545
11546 elsif Item /= First_Rep_Item (Priv) then
11547 Append := True;
11548 loop
11549 Next_Item := Next_Rep_Item (Item);
11550 exit when No (Next_Item);
11551 Item := Next_Item;
11552
11553 -- If the private view has aspect specifications, the full view
11554 -- inherits them. Since these aspects may already have been
11555 -- attached to the full view during derivation, do not append
11556 -- them if already present.
11557
11558 if Item = First_Rep_Item (Priv) then
11559 Append := False;
11560 exit;
11561 end if;
11562 end loop;
11563
11564 -- And link the private type items at the end of the chain
11565
11566 if Append then
11567 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
11568 end if;
11569 end if;
11570 end;
11571
11572 -- Make sure Has_Predicates is set on full type if it is set on the
11573 -- private type. Note that it may already be set on the full type and
11574 -- if so, we don't want to unset it.
11575
11576 if Has_Predicates (Priv) then
11577 Set_Has_Predicates (Full);
11578 end if;
11579 end Complete_Private_Subtype;
11580
11581 ----------------------------
11582 -- Constant_Redeclaration --
11583 ----------------------------
11584
11585 procedure Constant_Redeclaration
11586 (Id : Entity_Id;
11587 N : Node_Id;
11588 T : out Entity_Id)
11589 is
11590 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
11591 Obj_Def : constant Node_Id := Object_Definition (N);
11592 New_T : Entity_Id;
11593
11594 procedure Check_Possible_Deferred_Completion
11595 (Prev_Id : Entity_Id;
11596 Prev_Obj_Def : Node_Id;
11597 Curr_Obj_Def : Node_Id);
11598 -- Determine whether the two object definitions describe the partial
11599 -- and the full view of a constrained deferred constant. Generate
11600 -- a subtype for the full view and verify that it statically matches
11601 -- the subtype of the partial view.
11602
11603 procedure Check_Recursive_Declaration (Typ : Entity_Id);
11604 -- If deferred constant is an access type initialized with an allocator,
11605 -- check whether there is an illegal recursion in the definition,
11606 -- through a default value of some record subcomponent. This is normally
11607 -- detected when generating init procs, but requires this additional
11608 -- mechanism when expansion is disabled.
11609
11610 ----------------------------------------
11611 -- Check_Possible_Deferred_Completion --
11612 ----------------------------------------
11613
11614 procedure Check_Possible_Deferred_Completion
11615 (Prev_Id : Entity_Id;
11616 Prev_Obj_Def : Node_Id;
11617 Curr_Obj_Def : Node_Id)
11618 is
11619 begin
11620 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
11621 and then Present (Constraint (Prev_Obj_Def))
11622 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
11623 and then Present (Constraint (Curr_Obj_Def))
11624 then
11625 declare
11626 Loc : constant Source_Ptr := Sloc (N);
11627 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
11628 Decl : constant Node_Id :=
11629 Make_Subtype_Declaration (Loc,
11630 Defining_Identifier => Def_Id,
11631 Subtype_Indication =>
11632 Relocate_Node (Curr_Obj_Def));
11633
11634 begin
11635 Insert_Before_And_Analyze (N, Decl);
11636 Set_Etype (Id, Def_Id);
11637
11638 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
11639 Error_Msg_Sloc := Sloc (Prev_Id);
11640 Error_Msg_N ("subtype does not statically match deferred "
11641 & "declaration #", N);
11642 end if;
11643 end;
11644 end if;
11645 end Check_Possible_Deferred_Completion;
11646
11647 ---------------------------------
11648 -- Check_Recursive_Declaration --
11649 ---------------------------------
11650
11651 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
11652 Comp : Entity_Id;
11653
11654 begin
11655 if Is_Record_Type (Typ) then
11656 Comp := First_Component (Typ);
11657 while Present (Comp) loop
11658 if Comes_From_Source (Comp) then
11659 if Present (Expression (Parent (Comp)))
11660 and then Is_Entity_Name (Expression (Parent (Comp)))
11661 and then Entity (Expression (Parent (Comp))) = Prev
11662 then
11663 Error_Msg_Sloc := Sloc (Parent (Comp));
11664 Error_Msg_NE
11665 ("illegal circularity with declaration for & #",
11666 N, Comp);
11667 return;
11668
11669 elsif Is_Record_Type (Etype (Comp)) then
11670 Check_Recursive_Declaration (Etype (Comp));
11671 end if;
11672 end if;
11673
11674 Next_Component (Comp);
11675 end loop;
11676 end if;
11677 end Check_Recursive_Declaration;
11678
11679 -- Start of processing for Constant_Redeclaration
11680
11681 begin
11682 if Nkind (Parent (Prev)) = N_Object_Declaration then
11683 if Nkind (Object_Definition
11684 (Parent (Prev))) = N_Subtype_Indication
11685 then
11686 -- Find type of new declaration. The constraints of the two
11687 -- views must match statically, but there is no point in
11688 -- creating an itype for the full view.
11689
11690 if Nkind (Obj_Def) = N_Subtype_Indication then
11691 Find_Type (Subtype_Mark (Obj_Def));
11692 New_T := Entity (Subtype_Mark (Obj_Def));
11693
11694 else
11695 Find_Type (Obj_Def);
11696 New_T := Entity (Obj_Def);
11697 end if;
11698
11699 T := Etype (Prev);
11700
11701 else
11702 -- The full view may impose a constraint, even if the partial
11703 -- view does not, so construct the subtype.
11704
11705 New_T := Find_Type_Of_Object (Obj_Def, N);
11706 T := New_T;
11707 end if;
11708
11709 else
11710 -- Current declaration is illegal, diagnosed below in Enter_Name
11711
11712 T := Empty;
11713 New_T := Any_Type;
11714 end if;
11715
11716 -- If previous full declaration or a renaming declaration exists, or if
11717 -- a homograph is present, let Enter_Name handle it, either with an
11718 -- error or with the removal of an overridden implicit subprogram.
11719 -- The previous one is a full declaration if it has an expression
11720 -- (which in the case of an aggregate is indicated by the Init flag).
11721
11722 if Ekind (Prev) /= E_Constant
11723 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
11724 or else Present (Expression (Parent (Prev)))
11725 or else Has_Init_Expression (Parent (Prev))
11726 or else Present (Full_View (Prev))
11727 then
11728 Enter_Name (Id);
11729
11730 -- Verify that types of both declarations match, or else that both types
11731 -- are anonymous access types whose designated subtypes statically match
11732 -- (as allowed in Ada 2005 by AI-385).
11733
11734 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
11735 and then
11736 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
11737 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
11738 or else Is_Access_Constant (Etype (New_T)) /=
11739 Is_Access_Constant (Etype (Prev))
11740 or else Can_Never_Be_Null (Etype (New_T)) /=
11741 Can_Never_Be_Null (Etype (Prev))
11742 or else Null_Exclusion_Present (Parent (Prev)) /=
11743 Null_Exclusion_Present (Parent (Id))
11744 or else not Subtypes_Statically_Match
11745 (Designated_Type (Etype (Prev)),
11746 Designated_Type (Etype (New_T))))
11747 then
11748 Error_Msg_Sloc := Sloc (Prev);
11749 Error_Msg_N ("type does not match declaration#", N);
11750 Set_Full_View (Prev, Id);
11751 Set_Etype (Id, Any_Type);
11752
11753 -- A deferred constant whose type is an anonymous array is always
11754 -- illegal (unless imported). A detailed error message might be
11755 -- helpful for Ada beginners.
11756
11757 if Nkind (Object_Definition (Parent (Prev)))
11758 = N_Constrained_Array_Definition
11759 and then Nkind (Object_Definition (N))
11760 = N_Constrained_Array_Definition
11761 then
11762 Error_Msg_N ("\each anonymous array is a distinct type", N);
11763 Error_Msg_N ("a deferred constant must have a named type",
11764 Object_Definition (Parent (Prev)));
11765 end if;
11766
11767 elsif
11768 Null_Exclusion_Present (Parent (Prev))
11769 and then not Null_Exclusion_Present (N)
11770 then
11771 Error_Msg_Sloc := Sloc (Prev);
11772 Error_Msg_N ("null-exclusion does not match declaration#", N);
11773 Set_Full_View (Prev, Id);
11774 Set_Etype (Id, Any_Type);
11775
11776 -- If so, process the full constant declaration
11777
11778 else
11779 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
11780 -- the deferred declaration is constrained, then the subtype defined
11781 -- by the subtype_indication in the full declaration shall match it
11782 -- statically.
11783
11784 Check_Possible_Deferred_Completion
11785 (Prev_Id => Prev,
11786 Prev_Obj_Def => Object_Definition (Parent (Prev)),
11787 Curr_Obj_Def => Obj_Def);
11788
11789 Set_Full_View (Prev, Id);
11790 Set_Is_Public (Id, Is_Public (Prev));
11791 Set_Is_Internal (Id);
11792 Append_Entity (Id, Current_Scope);
11793
11794 -- Check ALIASED present if present before (RM 7.4(7))
11795
11796 if Is_Aliased (Prev)
11797 and then not Aliased_Present (N)
11798 then
11799 Error_Msg_Sloc := Sloc (Prev);
11800 Error_Msg_N ("ALIASED required (see declaration #)", N);
11801 end if;
11802
11803 -- Check that placement is in private part and that the incomplete
11804 -- declaration appeared in the visible part.
11805
11806 if Ekind (Current_Scope) = E_Package
11807 and then not In_Private_Part (Current_Scope)
11808 then
11809 Error_Msg_Sloc := Sloc (Prev);
11810 Error_Msg_N
11811 ("full constant for declaration#"
11812 & " must be in private part", N);
11813
11814 elsif Ekind (Current_Scope) = E_Package
11815 and then
11816 List_Containing (Parent (Prev)) /=
11817 Visible_Declarations (Package_Specification (Current_Scope))
11818 then
11819 Error_Msg_N
11820 ("deferred constant must be declared in visible part",
11821 Parent (Prev));
11822 end if;
11823
11824 if Is_Access_Type (T)
11825 and then Nkind (Expression (N)) = N_Allocator
11826 then
11827 Check_Recursive_Declaration (Designated_Type (T));
11828 end if;
11829
11830 -- A deferred constant is a visible entity. If type has invariants,
11831 -- verify that the initial value satisfies them.
11832
11833 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
11834 Insert_After (N,
11835 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
11836 end if;
11837 end if;
11838 end Constant_Redeclaration;
11839
11840 ----------------------
11841 -- Constrain_Access --
11842 ----------------------
11843
11844 procedure Constrain_Access
11845 (Def_Id : in out Entity_Id;
11846 S : Node_Id;
11847 Related_Nod : Node_Id)
11848 is
11849 T : constant Entity_Id := Entity (Subtype_Mark (S));
11850 Desig_Type : constant Entity_Id := Designated_Type (T);
11851 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
11852 Constraint_OK : Boolean := True;
11853
11854 begin
11855 if Is_Array_Type (Desig_Type) then
11856 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
11857
11858 elsif (Is_Record_Type (Desig_Type)
11859 or else Is_Incomplete_Or_Private_Type (Desig_Type))
11860 and then not Is_Constrained (Desig_Type)
11861 then
11862 -- ??? The following code is a temporary bypass to ignore a
11863 -- discriminant constraint on access type if it is constraining
11864 -- the current record. Avoid creating the implicit subtype of the
11865 -- record we are currently compiling since right now, we cannot
11866 -- handle these. For now, just return the access type itself.
11867
11868 if Desig_Type = Current_Scope
11869 and then No (Def_Id)
11870 then
11871 Set_Ekind (Desig_Subtype, E_Record_Subtype);
11872 Def_Id := Entity (Subtype_Mark (S));
11873
11874 -- This call added to ensure that the constraint is analyzed
11875 -- (needed for a B test). Note that we still return early from
11876 -- this procedure to avoid recursive processing. ???
11877
11878 Constrain_Discriminated_Type
11879 (Desig_Subtype, S, Related_Nod, For_Access => True);
11880 return;
11881 end if;
11882
11883 -- Enforce rule that the constraint is illegal if there is an
11884 -- unconstrained view of the designated type. This means that the
11885 -- partial view (either a private type declaration or a derivation
11886 -- from a private type) has no discriminants. (Defect Report
11887 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
11888
11889 -- Rule updated for Ada 2005: The private type is said to have
11890 -- a constrained partial view, given that objects of the type
11891 -- can be declared. Furthermore, the rule applies to all access
11892 -- types, unlike the rule concerning default discriminants (see
11893 -- RM 3.7.1(7/3))
11894
11895 if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005)
11896 and then Has_Private_Declaration (Desig_Type)
11897 and then In_Open_Scopes (Scope (Desig_Type))
11898 and then Has_Discriminants (Desig_Type)
11899 then
11900 declare
11901 Pack : constant Node_Id :=
11902 Unit_Declaration_Node (Scope (Desig_Type));
11903 Decls : List_Id;
11904 Decl : Node_Id;
11905
11906 begin
11907 if Nkind (Pack) = N_Package_Declaration then
11908 Decls := Visible_Declarations (Specification (Pack));
11909 Decl := First (Decls);
11910 while Present (Decl) loop
11911 if (Nkind (Decl) = N_Private_Type_Declaration
11912 and then Chars (Defining_Identifier (Decl)) =
11913 Chars (Desig_Type))
11914
11915 or else
11916 (Nkind (Decl) = N_Full_Type_Declaration
11917 and then
11918 Chars (Defining_Identifier (Decl)) =
11919 Chars (Desig_Type)
11920 and then Is_Derived_Type (Desig_Type)
11921 and then
11922 Has_Private_Declaration (Etype (Desig_Type)))
11923 then
11924 if No (Discriminant_Specifications (Decl)) then
11925 Error_Msg_N
11926 ("cannot constrain access type if designated "
11927 & "type has constrained partial view", S);
11928 end if;
11929
11930 exit;
11931 end if;
11932
11933 Next (Decl);
11934 end loop;
11935 end if;
11936 end;
11937 end if;
11938
11939 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
11940 For_Access => True);
11941
11942 elsif Is_Concurrent_Type (Desig_Type)
11943 and then not Is_Constrained (Desig_Type)
11944 then
11945 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
11946
11947 else
11948 Error_Msg_N ("invalid constraint on access type", S);
11949
11950 -- We simply ignore an invalid constraint
11951
11952 Desig_Subtype := Desig_Type;
11953 Constraint_OK := False;
11954 end if;
11955
11956 if No (Def_Id) then
11957 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
11958 else
11959 Set_Ekind (Def_Id, E_Access_Subtype);
11960 end if;
11961
11962 if Constraint_OK then
11963 Set_Etype (Def_Id, Base_Type (T));
11964
11965 if Is_Private_Type (Desig_Type) then
11966 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
11967 end if;
11968 else
11969 Set_Etype (Def_Id, Any_Type);
11970 end if;
11971
11972 Set_Size_Info (Def_Id, T);
11973 Set_Is_Constrained (Def_Id, Constraint_OK);
11974 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
11975 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11976 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
11977
11978 Conditional_Delay (Def_Id, T);
11979
11980 -- AI-363 : Subtypes of general access types whose designated types have
11981 -- default discriminants are disallowed. In instances, the rule has to
11982 -- be checked against the actual, of which T is the subtype. In a
11983 -- generic body, the rule is checked assuming that the actual type has
11984 -- defaulted discriminants.
11985
11986 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
11987 if Ekind (Base_Type (T)) = E_General_Access_Type
11988 and then Has_Defaulted_Discriminants (Desig_Type)
11989 then
11990 if Ada_Version < Ada_2005 then
11991 Error_Msg_N
11992 ("access subtype of general access type would not " &
11993 "be allowed in Ada 2005?y?", S);
11994 else
11995 Error_Msg_N
11996 ("access subtype of general access type not allowed", S);
11997 end if;
11998
11999 Error_Msg_N ("\discriminants have defaults", S);
12000
12001 elsif Is_Access_Type (T)
12002 and then Is_Generic_Type (Desig_Type)
12003 and then Has_Discriminants (Desig_Type)
12004 and then In_Package_Body (Current_Scope)
12005 then
12006 if Ada_Version < Ada_2005 then
12007 Error_Msg_N
12008 ("access subtype would not be allowed in generic body "
12009 & "in Ada 2005?y?", S);
12010 else
12011 Error_Msg_N
12012 ("access subtype not allowed in generic body", S);
12013 end if;
12014
12015 Error_Msg_N
12016 ("\designated type is a discriminated formal", S);
12017 end if;
12018 end if;
12019 end Constrain_Access;
12020
12021 ---------------------
12022 -- Constrain_Array --
12023 ---------------------
12024
12025 procedure Constrain_Array
12026 (Def_Id : in out Entity_Id;
12027 SI : Node_Id;
12028 Related_Nod : Node_Id;
12029 Related_Id : Entity_Id;
12030 Suffix : Character)
12031 is
12032 C : constant Node_Id := Constraint (SI);
12033 Number_Of_Constraints : Nat := 0;
12034 Index : Node_Id;
12035 S, T : Entity_Id;
12036 Constraint_OK : Boolean := True;
12037
12038 begin
12039 T := Entity (Subtype_Mark (SI));
12040
12041 if Is_Access_Type (T) then
12042 T := Designated_Type (T);
12043 end if;
12044
12045 -- If an index constraint follows a subtype mark in a subtype indication
12046 -- then the type or subtype denoted by the subtype mark must not already
12047 -- impose an index constraint. The subtype mark must denote either an
12048 -- unconstrained array type or an access type whose designated type
12049 -- is such an array type... (RM 3.6.1)
12050
12051 if Is_Constrained (T) then
12052 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
12053 Constraint_OK := False;
12054
12055 else
12056 S := First (Constraints (C));
12057 while Present (S) loop
12058 Number_Of_Constraints := Number_Of_Constraints + 1;
12059 Next (S);
12060 end loop;
12061
12062 -- In either case, the index constraint must provide a discrete
12063 -- range for each index of the array type and the type of each
12064 -- discrete range must be the same as that of the corresponding
12065 -- index. (RM 3.6.1)
12066
12067 if Number_Of_Constraints /= Number_Dimensions (T) then
12068 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
12069 Constraint_OK := False;
12070
12071 else
12072 S := First (Constraints (C));
12073 Index := First_Index (T);
12074 Analyze (Index);
12075
12076 -- Apply constraints to each index type
12077
12078 for J in 1 .. Number_Of_Constraints loop
12079 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
12080 Next (Index);
12081 Next (S);
12082 end loop;
12083
12084 end if;
12085 end if;
12086
12087 if No (Def_Id) then
12088 Def_Id :=
12089 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
12090 Set_Parent (Def_Id, Related_Nod);
12091
12092 else
12093 Set_Ekind (Def_Id, E_Array_Subtype);
12094 end if;
12095
12096 Set_Size_Info (Def_Id, (T));
12097 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12098 Set_Etype (Def_Id, Base_Type (T));
12099
12100 if Constraint_OK then
12101 Set_First_Index (Def_Id, First (Constraints (C)));
12102 else
12103 Set_First_Index (Def_Id, First_Index (T));
12104 end if;
12105
12106 Set_Is_Constrained (Def_Id, True);
12107 Set_Is_Aliased (Def_Id, Is_Aliased (T));
12108 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12109
12110 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
12111 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
12112
12113 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
12114 -- We need to initialize the attribute because if Def_Id is previously
12115 -- analyzed through a limited_with clause, it will have the attributes
12116 -- of an incomplete type, one of which is an Elist that overlaps the
12117 -- Packed_Array_Impl_Type field.
12118
12119 Set_Packed_Array_Impl_Type (Def_Id, Empty);
12120
12121 -- Build a freeze node if parent still needs one. Also make sure that
12122 -- the Depends_On_Private status is set because the subtype will need
12123 -- reprocessing at the time the base type does, and also we must set a
12124 -- conditional delay.
12125
12126 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
12127 Conditional_Delay (Def_Id, T);
12128 end Constrain_Array;
12129
12130 ------------------------------
12131 -- Constrain_Component_Type --
12132 ------------------------------
12133
12134 function Constrain_Component_Type
12135 (Comp : Entity_Id;
12136 Constrained_Typ : Entity_Id;
12137 Related_Node : Node_Id;
12138 Typ : Entity_Id;
12139 Constraints : Elist_Id) return Entity_Id
12140 is
12141 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
12142 Compon_Type : constant Entity_Id := Etype (Comp);
12143
12144 function Build_Constrained_Array_Type
12145 (Old_Type : Entity_Id) return Entity_Id;
12146 -- If Old_Type is an array type, one of whose indexes is constrained
12147 -- by a discriminant, build an Itype whose constraint replaces the
12148 -- discriminant with its value in the constraint.
12149
12150 function Build_Constrained_Discriminated_Type
12151 (Old_Type : Entity_Id) return Entity_Id;
12152 -- Ditto for record components
12153
12154 function Build_Constrained_Access_Type
12155 (Old_Type : Entity_Id) return Entity_Id;
12156 -- Ditto for access types. Makes use of previous two functions, to
12157 -- constrain designated type.
12158
12159 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
12160 -- T is an array or discriminated type, C is a list of constraints
12161 -- that apply to T. This routine builds the constrained subtype.
12162
12163 function Is_Discriminant (Expr : Node_Id) return Boolean;
12164 -- Returns True if Expr is a discriminant
12165
12166 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
12167 -- Find the value of discriminant Discrim in Constraint
12168
12169 -----------------------------------
12170 -- Build_Constrained_Access_Type --
12171 -----------------------------------
12172
12173 function Build_Constrained_Access_Type
12174 (Old_Type : Entity_Id) return Entity_Id
12175 is
12176 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
12177 Itype : Entity_Id;
12178 Desig_Subtype : Entity_Id;
12179 Scop : Entity_Id;
12180
12181 begin
12182 -- if the original access type was not embedded in the enclosing
12183 -- type definition, there is no need to produce a new access
12184 -- subtype. In fact every access type with an explicit constraint
12185 -- generates an itype whose scope is the enclosing record.
12186
12187 if not Is_Type (Scope (Old_Type)) then
12188 return Old_Type;
12189
12190 elsif Is_Array_Type (Desig_Type) then
12191 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
12192
12193 elsif Has_Discriminants (Desig_Type) then
12194
12195 -- This may be an access type to an enclosing record type for
12196 -- which we are constructing the constrained components. Return
12197 -- the enclosing record subtype. This is not always correct,
12198 -- but avoids infinite recursion. ???
12199
12200 Desig_Subtype := Any_Type;
12201
12202 for J in reverse 0 .. Scope_Stack.Last loop
12203 Scop := Scope_Stack.Table (J).Entity;
12204
12205 if Is_Type (Scop)
12206 and then Base_Type (Scop) = Base_Type (Desig_Type)
12207 then
12208 Desig_Subtype := Scop;
12209 end if;
12210
12211 exit when not Is_Type (Scop);
12212 end loop;
12213
12214 if Desig_Subtype = Any_Type then
12215 Desig_Subtype :=
12216 Build_Constrained_Discriminated_Type (Desig_Type);
12217 end if;
12218
12219 else
12220 return Old_Type;
12221 end if;
12222
12223 if Desig_Subtype /= Desig_Type then
12224
12225 -- The Related_Node better be here or else we won't be able
12226 -- to attach new itypes to a node in the tree.
12227
12228 pragma Assert (Present (Related_Node));
12229
12230 Itype := Create_Itype (E_Access_Subtype, Related_Node);
12231
12232 Set_Etype (Itype, Base_Type (Old_Type));
12233 Set_Size_Info (Itype, (Old_Type));
12234 Set_Directly_Designated_Type (Itype, Desig_Subtype);
12235 Set_Depends_On_Private (Itype, Has_Private_Component
12236 (Old_Type));
12237 Set_Is_Access_Constant (Itype, Is_Access_Constant
12238 (Old_Type));
12239
12240 -- The new itype needs freezing when it depends on a not frozen
12241 -- type and the enclosing subtype needs freezing.
12242
12243 if Has_Delayed_Freeze (Constrained_Typ)
12244 and then not Is_Frozen (Constrained_Typ)
12245 then
12246 Conditional_Delay (Itype, Base_Type (Old_Type));
12247 end if;
12248
12249 return Itype;
12250
12251 else
12252 return Old_Type;
12253 end if;
12254 end Build_Constrained_Access_Type;
12255
12256 ----------------------------------
12257 -- Build_Constrained_Array_Type --
12258 ----------------------------------
12259
12260 function Build_Constrained_Array_Type
12261 (Old_Type : Entity_Id) return Entity_Id
12262 is
12263 Lo_Expr : Node_Id;
12264 Hi_Expr : Node_Id;
12265 Old_Index : Node_Id;
12266 Range_Node : Node_Id;
12267 Constr_List : List_Id;
12268
12269 Need_To_Create_Itype : Boolean := False;
12270
12271 begin
12272 Old_Index := First_Index (Old_Type);
12273 while Present (Old_Index) loop
12274 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
12275
12276 if Is_Discriminant (Lo_Expr)
12277 or else
12278 Is_Discriminant (Hi_Expr)
12279 then
12280 Need_To_Create_Itype := True;
12281 end if;
12282
12283 Next_Index (Old_Index);
12284 end loop;
12285
12286 if Need_To_Create_Itype then
12287 Constr_List := New_List;
12288
12289 Old_Index := First_Index (Old_Type);
12290 while Present (Old_Index) loop
12291 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
12292
12293 if Is_Discriminant (Lo_Expr) then
12294 Lo_Expr := Get_Discr_Value (Lo_Expr);
12295 end if;
12296
12297 if Is_Discriminant (Hi_Expr) then
12298 Hi_Expr := Get_Discr_Value (Hi_Expr);
12299 end if;
12300
12301 Range_Node :=
12302 Make_Range
12303 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
12304
12305 Append (Range_Node, To => Constr_List);
12306
12307 Next_Index (Old_Index);
12308 end loop;
12309
12310 return Build_Subtype (Old_Type, Constr_List);
12311
12312 else
12313 return Old_Type;
12314 end if;
12315 end Build_Constrained_Array_Type;
12316
12317 ------------------------------------------
12318 -- Build_Constrained_Discriminated_Type --
12319 ------------------------------------------
12320
12321 function Build_Constrained_Discriminated_Type
12322 (Old_Type : Entity_Id) return Entity_Id
12323 is
12324 Expr : Node_Id;
12325 Constr_List : List_Id;
12326 Old_Constraint : Elmt_Id;
12327
12328 Need_To_Create_Itype : Boolean := False;
12329
12330 begin
12331 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
12332 while Present (Old_Constraint) loop
12333 Expr := Node (Old_Constraint);
12334
12335 if Is_Discriminant (Expr) then
12336 Need_To_Create_Itype := True;
12337 end if;
12338
12339 Next_Elmt (Old_Constraint);
12340 end loop;
12341
12342 if Need_To_Create_Itype then
12343 Constr_List := New_List;
12344
12345 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
12346 while Present (Old_Constraint) loop
12347 Expr := Node (Old_Constraint);
12348
12349 if Is_Discriminant (Expr) then
12350 Expr := Get_Discr_Value (Expr);
12351 end if;
12352
12353 Append (New_Copy_Tree (Expr), To => Constr_List);
12354
12355 Next_Elmt (Old_Constraint);
12356 end loop;
12357
12358 return Build_Subtype (Old_Type, Constr_List);
12359
12360 else
12361 return Old_Type;
12362 end if;
12363 end Build_Constrained_Discriminated_Type;
12364
12365 -------------------
12366 -- Build_Subtype --
12367 -------------------
12368
12369 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
12370 Indic : Node_Id;
12371 Subtyp_Decl : Node_Id;
12372 Def_Id : Entity_Id;
12373 Btyp : Entity_Id := Base_Type (T);
12374
12375 begin
12376 -- The Related_Node better be here or else we won't be able to
12377 -- attach new itypes to a node in the tree.
12378
12379 pragma Assert (Present (Related_Node));
12380
12381 -- If the view of the component's type is incomplete or private
12382 -- with unknown discriminants, then the constraint must be applied
12383 -- to the full type.
12384
12385 if Has_Unknown_Discriminants (Btyp)
12386 and then Present (Underlying_Type (Btyp))
12387 then
12388 Btyp := Underlying_Type (Btyp);
12389 end if;
12390
12391 Indic :=
12392 Make_Subtype_Indication (Loc,
12393 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
12394 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
12395
12396 Def_Id := Create_Itype (Ekind (T), Related_Node);
12397
12398 Subtyp_Decl :=
12399 Make_Subtype_Declaration (Loc,
12400 Defining_Identifier => Def_Id,
12401 Subtype_Indication => Indic);
12402
12403 Set_Parent (Subtyp_Decl, Parent (Related_Node));
12404
12405 -- Itypes must be analyzed with checks off (see package Itypes)
12406
12407 Analyze (Subtyp_Decl, Suppress => All_Checks);
12408
12409 return Def_Id;
12410 end Build_Subtype;
12411
12412 ---------------------
12413 -- Get_Discr_Value --
12414 ---------------------
12415
12416 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
12417 D : Entity_Id;
12418 E : Elmt_Id;
12419
12420 begin
12421 -- The discriminant may be declared for the type, in which case we
12422 -- find it by iterating over the list of discriminants. If the
12423 -- discriminant is inherited from a parent type, it appears as the
12424 -- corresponding discriminant of the current type. This will be the
12425 -- case when constraining an inherited component whose constraint is
12426 -- given by a discriminant of the parent.
12427
12428 D := First_Discriminant (Typ);
12429 E := First_Elmt (Constraints);
12430
12431 while Present (D) loop
12432 if D = Entity (Discrim)
12433 or else D = CR_Discriminant (Entity (Discrim))
12434 or else Corresponding_Discriminant (D) = Entity (Discrim)
12435 then
12436 return Node (E);
12437 end if;
12438
12439 Next_Discriminant (D);
12440 Next_Elmt (E);
12441 end loop;
12442
12443 -- The Corresponding_Discriminant mechanism is incomplete, because
12444 -- the correspondence between new and old discriminants is not one
12445 -- to one: one new discriminant can constrain several old ones. In
12446 -- that case, scan sequentially the stored_constraint, the list of
12447 -- discriminants of the parents, and the constraints.
12448
12449 -- Previous code checked for the present of the Stored_Constraint
12450 -- list for the derived type, but did not use it at all. Should it
12451 -- be present when the component is a discriminated task type?
12452
12453 if Is_Derived_Type (Typ)
12454 and then Scope (Entity (Discrim)) = Etype (Typ)
12455 then
12456 D := First_Discriminant (Etype (Typ));
12457 E := First_Elmt (Constraints);
12458 while Present (D) loop
12459 if D = Entity (Discrim) then
12460 return Node (E);
12461 end if;
12462
12463 Next_Discriminant (D);
12464 Next_Elmt (E);
12465 end loop;
12466 end if;
12467
12468 -- Something is wrong if we did not find the value
12469
12470 raise Program_Error;
12471 end Get_Discr_Value;
12472
12473 ---------------------
12474 -- Is_Discriminant --
12475 ---------------------
12476
12477 function Is_Discriminant (Expr : Node_Id) return Boolean is
12478 Discrim_Scope : Entity_Id;
12479
12480 begin
12481 if Denotes_Discriminant (Expr) then
12482 Discrim_Scope := Scope (Entity (Expr));
12483
12484 -- Either we have a reference to one of Typ's discriminants,
12485
12486 pragma Assert (Discrim_Scope = Typ
12487
12488 -- or to the discriminants of the parent type, in the case
12489 -- of a derivation of a tagged type with variants.
12490
12491 or else Discrim_Scope = Etype (Typ)
12492 or else Full_View (Discrim_Scope) = Etype (Typ)
12493
12494 -- or same as above for the case where the discriminants
12495 -- were declared in Typ's private view.
12496
12497 or else (Is_Private_Type (Discrim_Scope)
12498 and then Chars (Discrim_Scope) = Chars (Typ))
12499
12500 -- or else we are deriving from the full view and the
12501 -- discriminant is declared in the private entity.
12502
12503 or else (Is_Private_Type (Typ)
12504 and then Chars (Discrim_Scope) = Chars (Typ))
12505
12506 -- Or we are constrained the corresponding record of a
12507 -- synchronized type that completes a private declaration.
12508
12509 or else (Is_Concurrent_Record_Type (Typ)
12510 and then
12511 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
12512
12513 -- or we have a class-wide type, in which case make sure the
12514 -- discriminant found belongs to the root type.
12515
12516 or else (Is_Class_Wide_Type (Typ)
12517 and then Etype (Typ) = Discrim_Scope));
12518
12519 return True;
12520 end if;
12521
12522 -- In all other cases we have something wrong
12523
12524 return False;
12525 end Is_Discriminant;
12526
12527 -- Start of processing for Constrain_Component_Type
12528
12529 begin
12530 if Nkind (Parent (Comp)) = N_Component_Declaration
12531 and then Comes_From_Source (Parent (Comp))
12532 and then Comes_From_Source
12533 (Subtype_Indication (Component_Definition (Parent (Comp))))
12534 and then
12535 Is_Entity_Name
12536 (Subtype_Indication (Component_Definition (Parent (Comp))))
12537 then
12538 return Compon_Type;
12539
12540 elsif Is_Array_Type (Compon_Type) then
12541 return Build_Constrained_Array_Type (Compon_Type);
12542
12543 elsif Has_Discriminants (Compon_Type) then
12544 return Build_Constrained_Discriminated_Type (Compon_Type);
12545
12546 elsif Is_Access_Type (Compon_Type) then
12547 return Build_Constrained_Access_Type (Compon_Type);
12548
12549 else
12550 return Compon_Type;
12551 end if;
12552 end Constrain_Component_Type;
12553
12554 --------------------------
12555 -- Constrain_Concurrent --
12556 --------------------------
12557
12558 -- For concurrent types, the associated record value type carries the same
12559 -- discriminants, so when we constrain a concurrent type, we must constrain
12560 -- the corresponding record type as well.
12561
12562 procedure Constrain_Concurrent
12563 (Def_Id : in out Entity_Id;
12564 SI : Node_Id;
12565 Related_Nod : Node_Id;
12566 Related_Id : Entity_Id;
12567 Suffix : Character)
12568 is
12569 -- Retrieve Base_Type to ensure getting to the concurrent type in the
12570 -- case of a private subtype (needed when only doing semantic analysis).
12571
12572 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
12573 T_Val : Entity_Id;
12574
12575 begin
12576 if Is_Access_Type (T_Ent) then
12577 T_Ent := Designated_Type (T_Ent);
12578 end if;
12579
12580 T_Val := Corresponding_Record_Type (T_Ent);
12581
12582 if Present (T_Val) then
12583
12584 if No (Def_Id) then
12585 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12586 end if;
12587
12588 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12589
12590 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12591 Set_Corresponding_Record_Type (Def_Id,
12592 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
12593
12594 else
12595 -- If there is no associated record, expansion is disabled and this
12596 -- is a generic context. Create a subtype in any case, so that
12597 -- semantic analysis can proceed.
12598
12599 if No (Def_Id) then
12600 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12601 end if;
12602
12603 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12604 end if;
12605 end Constrain_Concurrent;
12606
12607 ------------------------------------
12608 -- Constrain_Corresponding_Record --
12609 ------------------------------------
12610
12611 function Constrain_Corresponding_Record
12612 (Prot_Subt : Entity_Id;
12613 Corr_Rec : Entity_Id;
12614 Related_Nod : Node_Id) return Entity_Id
12615 is
12616 T_Sub : constant Entity_Id :=
12617 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
12618
12619 begin
12620 Set_Etype (T_Sub, Corr_Rec);
12621 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
12622 Set_Is_Constrained (T_Sub, True);
12623 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
12624 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
12625
12626 if Has_Discriminants (Prot_Subt) then -- False only if errors.
12627 Set_Discriminant_Constraint
12628 (T_Sub, Discriminant_Constraint (Prot_Subt));
12629 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
12630 Create_Constrained_Components
12631 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
12632 end if;
12633
12634 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
12635
12636 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
12637 Conditional_Delay (T_Sub, Corr_Rec);
12638
12639 else
12640 -- This is a component subtype: it will be frozen in the context of
12641 -- the enclosing record's init_proc, so that discriminant references
12642 -- are resolved to discriminals. (Note: we used to skip freezing
12643 -- altogether in that case, which caused errors downstream for
12644 -- components of a bit packed array type).
12645
12646 Set_Has_Delayed_Freeze (T_Sub);
12647 end if;
12648
12649 return T_Sub;
12650 end Constrain_Corresponding_Record;
12651
12652 -----------------------
12653 -- Constrain_Decimal --
12654 -----------------------
12655
12656 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
12657 T : constant Entity_Id := Entity (Subtype_Mark (S));
12658 C : constant Node_Id := Constraint (S);
12659 Loc : constant Source_Ptr := Sloc (C);
12660 Range_Expr : Node_Id;
12661 Digits_Expr : Node_Id;
12662 Digits_Val : Uint;
12663 Bound_Val : Ureal;
12664
12665 begin
12666 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
12667
12668 if Nkind (C) = N_Range_Constraint then
12669 Range_Expr := Range_Expression (C);
12670 Digits_Val := Digits_Value (T);
12671
12672 else
12673 pragma Assert (Nkind (C) = N_Digits_Constraint);
12674
12675 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
12676
12677 Digits_Expr := Digits_Expression (C);
12678 Analyze_And_Resolve (Digits_Expr, Any_Integer);
12679
12680 Check_Digits_Expression (Digits_Expr);
12681 Digits_Val := Expr_Value (Digits_Expr);
12682
12683 if Digits_Val > Digits_Value (T) then
12684 Error_Msg_N
12685 ("digits expression is incompatible with subtype", C);
12686 Digits_Val := Digits_Value (T);
12687 end if;
12688
12689 if Present (Range_Constraint (C)) then
12690 Range_Expr := Range_Expression (Range_Constraint (C));
12691 else
12692 Range_Expr := Empty;
12693 end if;
12694 end if;
12695
12696 Set_Etype (Def_Id, Base_Type (T));
12697 Set_Size_Info (Def_Id, (T));
12698 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12699 Set_Delta_Value (Def_Id, Delta_Value (T));
12700 Set_Scale_Value (Def_Id, Scale_Value (T));
12701 Set_Small_Value (Def_Id, Small_Value (T));
12702 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
12703 Set_Digits_Value (Def_Id, Digits_Val);
12704
12705 -- Manufacture range from given digits value if no range present
12706
12707 if No (Range_Expr) then
12708 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
12709 Range_Expr :=
12710 Make_Range (Loc,
12711 Low_Bound =>
12712 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
12713 High_Bound =>
12714 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
12715 end if;
12716
12717 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
12718 Set_Discrete_RM_Size (Def_Id);
12719
12720 -- Unconditionally delay the freeze, since we cannot set size
12721 -- information in all cases correctly until the freeze point.
12722
12723 Set_Has_Delayed_Freeze (Def_Id);
12724 end Constrain_Decimal;
12725
12726 ----------------------------------
12727 -- Constrain_Discriminated_Type --
12728 ----------------------------------
12729
12730 procedure Constrain_Discriminated_Type
12731 (Def_Id : Entity_Id;
12732 S : Node_Id;
12733 Related_Nod : Node_Id;
12734 For_Access : Boolean := False)
12735 is
12736 E : constant Entity_Id := Entity (Subtype_Mark (S));
12737 T : Entity_Id;
12738 C : Node_Id;
12739 Elist : Elist_Id := New_Elmt_List;
12740
12741 procedure Fixup_Bad_Constraint;
12742 -- This is called after finding a bad constraint, and after having
12743 -- posted an appropriate error message. The mission is to leave the
12744 -- entity T in as reasonable state as possible.
12745
12746 --------------------------
12747 -- Fixup_Bad_Constraint --
12748 --------------------------
12749
12750 procedure Fixup_Bad_Constraint is
12751 begin
12752 -- Set a reasonable Ekind for the entity. For an incomplete type,
12753 -- we can't do much, but for other types, we can set the proper
12754 -- corresponding subtype kind.
12755
12756 if Ekind (T) = E_Incomplete_Type then
12757 Set_Ekind (Def_Id, Ekind (T));
12758 else
12759 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
12760 end if;
12761
12762 -- Set Etype to the known type, to reduce chances of cascaded errors
12763
12764 Set_Etype (Def_Id, E);
12765 Set_Error_Posted (Def_Id);
12766 end Fixup_Bad_Constraint;
12767
12768 -- Start of processing for Constrain_Discriminated_Type
12769
12770 begin
12771 C := Constraint (S);
12772
12773 -- A discriminant constraint is only allowed in a subtype indication,
12774 -- after a subtype mark. This subtype mark must denote either a type
12775 -- with discriminants, or an access type whose designated type is a
12776 -- type with discriminants. A discriminant constraint specifies the
12777 -- values of these discriminants (RM 3.7.2(5)).
12778
12779 T := Base_Type (Entity (Subtype_Mark (S)));
12780
12781 if Is_Access_Type (T) then
12782 T := Designated_Type (T);
12783 end if;
12784
12785 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
12786 -- Avoid generating an error for access-to-incomplete subtypes.
12787
12788 if Ada_Version >= Ada_2005
12789 and then Ekind (T) = E_Incomplete_Type
12790 and then Nkind (Parent (S)) = N_Subtype_Declaration
12791 and then not Is_Itype (Def_Id)
12792 then
12793 -- A little sanity check, emit an error message if the type
12794 -- has discriminants to begin with. Type T may be a regular
12795 -- incomplete type or imported via a limited with clause.
12796
12797 if Has_Discriminants (T)
12798 or else (From_Limited_With (T)
12799 and then Present (Non_Limited_View (T))
12800 and then Nkind (Parent (Non_Limited_View (T))) =
12801 N_Full_Type_Declaration
12802 and then Present (Discriminant_Specifications
12803 (Parent (Non_Limited_View (T)))))
12804 then
12805 Error_Msg_N
12806 ("(Ada 2005) incomplete subtype may not be constrained", C);
12807 else
12808 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12809 end if;
12810
12811 Fixup_Bad_Constraint;
12812 return;
12813
12814 -- Check that the type has visible discriminants. The type may be
12815 -- a private type with unknown discriminants whose full view has
12816 -- discriminants which are invisible.
12817
12818 elsif not Has_Discriminants (T)
12819 or else
12820 (Has_Unknown_Discriminants (T)
12821 and then Is_Private_Type (T))
12822 then
12823 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12824 Fixup_Bad_Constraint;
12825 return;
12826
12827 elsif Is_Constrained (E)
12828 or else (Ekind (E) = E_Class_Wide_Subtype
12829 and then Present (Discriminant_Constraint (E)))
12830 then
12831 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
12832 Fixup_Bad_Constraint;
12833 return;
12834 end if;
12835
12836 -- T may be an unconstrained subtype (e.g. a generic actual).
12837 -- Constraint applies to the base type.
12838
12839 T := Base_Type (T);
12840
12841 Elist := Build_Discriminant_Constraints (T, S);
12842
12843 -- If the list returned was empty we had an error in building the
12844 -- discriminant constraint. We have also already signalled an error
12845 -- in the incomplete type case
12846
12847 if Is_Empty_Elmt_List (Elist) then
12848 Fixup_Bad_Constraint;
12849 return;
12850 end if;
12851
12852 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
12853 end Constrain_Discriminated_Type;
12854
12855 ---------------------------
12856 -- Constrain_Enumeration --
12857 ---------------------------
12858
12859 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
12860 T : constant Entity_Id := Entity (Subtype_Mark (S));
12861 C : constant Node_Id := Constraint (S);
12862
12863 begin
12864 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12865
12866 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
12867
12868 Set_Etype (Def_Id, Base_Type (T));
12869 Set_Size_Info (Def_Id, (T));
12870 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12871 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12872
12873 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12874
12875 Set_Discrete_RM_Size (Def_Id);
12876 end Constrain_Enumeration;
12877
12878 ----------------------
12879 -- Constrain_Float --
12880 ----------------------
12881
12882 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
12883 T : constant Entity_Id := Entity (Subtype_Mark (S));
12884 C : Node_Id;
12885 D : Node_Id;
12886 Rais : Node_Id;
12887
12888 begin
12889 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
12890
12891 Set_Etype (Def_Id, Base_Type (T));
12892 Set_Size_Info (Def_Id, (T));
12893 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12894
12895 -- Process the constraint
12896
12897 C := Constraint (S);
12898
12899 -- Digits constraint present
12900
12901 if Nkind (C) = N_Digits_Constraint then
12902
12903 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
12904 Check_Restriction (No_Obsolescent_Features, C);
12905
12906 if Warn_On_Obsolescent_Feature then
12907 Error_Msg_N
12908 ("subtype digits constraint is an " &
12909 "obsolescent feature (RM J.3(8))?j?", C);
12910 end if;
12911
12912 D := Digits_Expression (C);
12913 Analyze_And_Resolve (D, Any_Integer);
12914 Check_Digits_Expression (D);
12915 Set_Digits_Value (Def_Id, Expr_Value (D));
12916
12917 -- Check that digits value is in range. Obviously we can do this
12918 -- at compile time, but it is strictly a runtime check, and of
12919 -- course there is an ACVC test that checks this.
12920
12921 if Digits_Value (Def_Id) > Digits_Value (T) then
12922 Error_Msg_Uint_1 := Digits_Value (T);
12923 Error_Msg_N ("??digits value is too large, maximum is ^", D);
12924 Rais :=
12925 Make_Raise_Constraint_Error (Sloc (D),
12926 Reason => CE_Range_Check_Failed);
12927 Insert_Action (Declaration_Node (Def_Id), Rais);
12928 end if;
12929
12930 C := Range_Constraint (C);
12931
12932 -- No digits constraint present
12933
12934 else
12935 Set_Digits_Value (Def_Id, Digits_Value (T));
12936 end if;
12937
12938 -- Range constraint present
12939
12940 if Nkind (C) = N_Range_Constraint then
12941 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12942
12943 -- No range constraint present
12944
12945 else
12946 pragma Assert (No (C));
12947 Set_Scalar_Range (Def_Id, Scalar_Range (T));
12948 end if;
12949
12950 Set_Is_Constrained (Def_Id);
12951 end Constrain_Float;
12952
12953 ---------------------
12954 -- Constrain_Index --
12955 ---------------------
12956
12957 procedure Constrain_Index
12958 (Index : Node_Id;
12959 S : Node_Id;
12960 Related_Nod : Node_Id;
12961 Related_Id : Entity_Id;
12962 Suffix : Character;
12963 Suffix_Index : Nat)
12964 is
12965 Def_Id : Entity_Id;
12966 R : Node_Id := Empty;
12967 T : constant Entity_Id := Etype (Index);
12968
12969 begin
12970 if Nkind (S) = N_Range
12971 or else
12972 (Nkind (S) = N_Attribute_Reference
12973 and then Attribute_Name (S) = Name_Range)
12974 then
12975 -- A Range attribute will be transformed into N_Range by Resolve
12976
12977 Analyze (S);
12978 Set_Etype (S, T);
12979 R := S;
12980
12981 Process_Range_Expr_In_Decl (R, T);
12982
12983 if not Error_Posted (S)
12984 and then
12985 (Nkind (S) /= N_Range
12986 or else not Covers (T, (Etype (Low_Bound (S))))
12987 or else not Covers (T, (Etype (High_Bound (S)))))
12988 then
12989 if Base_Type (T) /= Any_Type
12990 and then Etype (Low_Bound (S)) /= Any_Type
12991 and then Etype (High_Bound (S)) /= Any_Type
12992 then
12993 Error_Msg_N ("range expected", S);
12994 end if;
12995 end if;
12996
12997 elsif Nkind (S) = N_Subtype_Indication then
12998
12999 -- The parser has verified that this is a discrete indication
13000
13001 Resolve_Discrete_Subtype_Indication (S, T);
13002 Bad_Predicated_Subtype_Use
13003 ("subtype& has predicate, not allowed in index constraint",
13004 S, Entity (Subtype_Mark (S)));
13005
13006 R := Range_Expression (Constraint (S));
13007
13008 -- Capture values of bounds and generate temporaries for them if
13009 -- needed, since checks may cause duplication of the expressions
13010 -- which must not be reevaluated.
13011
13012 -- The forced evaluation removes side effects from expressions, which
13013 -- should occur also in GNATprove mode. Otherwise, we end up with
13014 -- unexpected insertions of actions at places where this is not
13015 -- supposed to occur, e.g. on default parameters of a call.
13016
13017 if Expander_Active or GNATprove_Mode then
13018 Force_Evaluation (Low_Bound (R));
13019 Force_Evaluation (High_Bound (R));
13020 end if;
13021
13022 elsif Nkind (S) = N_Discriminant_Association then
13023
13024 -- Syntactically valid in subtype indication
13025
13026 Error_Msg_N ("invalid index constraint", S);
13027 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13028 return;
13029
13030 -- Subtype_Mark case, no anonymous subtypes to construct
13031
13032 else
13033 Analyze (S);
13034
13035 if Is_Entity_Name (S) then
13036 if not Is_Type (Entity (S)) then
13037 Error_Msg_N ("expect subtype mark for index constraint", S);
13038
13039 elsif Base_Type (Entity (S)) /= Base_Type (T) then
13040 Wrong_Type (S, Base_Type (T));
13041
13042 -- Check error of subtype with predicate in index constraint
13043
13044 else
13045 Bad_Predicated_Subtype_Use
13046 ("subtype& has predicate, not allowed in index constraint",
13047 S, Entity (S));
13048 end if;
13049
13050 return;
13051
13052 else
13053 Error_Msg_N ("invalid index constraint", S);
13054 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13055 return;
13056 end if;
13057 end if;
13058
13059 Def_Id :=
13060 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
13061
13062 Set_Etype (Def_Id, Base_Type (T));
13063
13064 if Is_Modular_Integer_Type (T) then
13065 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13066
13067 elsif Is_Integer_Type (T) then
13068 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13069
13070 else
13071 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13072 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13073 Set_First_Literal (Def_Id, First_Literal (T));
13074 end if;
13075
13076 Set_Size_Info (Def_Id, (T));
13077 Set_RM_Size (Def_Id, RM_Size (T));
13078 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13079
13080 Set_Scalar_Range (Def_Id, R);
13081
13082 Set_Etype (S, Def_Id);
13083 Set_Discrete_RM_Size (Def_Id);
13084 end Constrain_Index;
13085
13086 -----------------------
13087 -- Constrain_Integer --
13088 -----------------------
13089
13090 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
13091 T : constant Entity_Id := Entity (Subtype_Mark (S));
13092 C : constant Node_Id := Constraint (S);
13093
13094 begin
13095 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13096
13097 if Is_Modular_Integer_Type (T) then
13098 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13099 else
13100 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13101 end if;
13102
13103 Set_Etype (Def_Id, Base_Type (T));
13104 Set_Size_Info (Def_Id, (T));
13105 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13106 Set_Discrete_RM_Size (Def_Id);
13107 end Constrain_Integer;
13108
13109 ------------------------------
13110 -- Constrain_Ordinary_Fixed --
13111 ------------------------------
13112
13113 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
13114 T : constant Entity_Id := Entity (Subtype_Mark (S));
13115 C : Node_Id;
13116 D : Node_Id;
13117 Rais : Node_Id;
13118
13119 begin
13120 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
13121 Set_Etype (Def_Id, Base_Type (T));
13122 Set_Size_Info (Def_Id, (T));
13123 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13124 Set_Small_Value (Def_Id, Small_Value (T));
13125
13126 -- Process the constraint
13127
13128 C := Constraint (S);
13129
13130 -- Delta constraint present
13131
13132 if Nkind (C) = N_Delta_Constraint then
13133
13134 Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
13135 Check_Restriction (No_Obsolescent_Features, C);
13136
13137 if Warn_On_Obsolescent_Feature then
13138 Error_Msg_S
13139 ("subtype delta constraint is an " &
13140 "obsolescent feature (RM J.3(7))?j?");
13141 end if;
13142
13143 D := Delta_Expression (C);
13144 Analyze_And_Resolve (D, Any_Real);
13145 Check_Delta_Expression (D);
13146 Set_Delta_Value (Def_Id, Expr_Value_R (D));
13147
13148 -- Check that delta value is in range. Obviously we can do this
13149 -- at compile time, but it is strictly a runtime check, and of
13150 -- course there is an ACVC test that checks this.
13151
13152 if Delta_Value (Def_Id) < Delta_Value (T) then
13153 Error_Msg_N ("??delta value is too small", D);
13154 Rais :=
13155 Make_Raise_Constraint_Error (Sloc (D),
13156 Reason => CE_Range_Check_Failed);
13157 Insert_Action (Declaration_Node (Def_Id), Rais);
13158 end if;
13159
13160 C := Range_Constraint (C);
13161
13162 -- No delta constraint present
13163
13164 else
13165 Set_Delta_Value (Def_Id, Delta_Value (T));
13166 end if;
13167
13168 -- Range constraint present
13169
13170 if Nkind (C) = N_Range_Constraint then
13171 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13172
13173 -- No range constraint present
13174
13175 else
13176 pragma Assert (No (C));
13177 Set_Scalar_Range (Def_Id, Scalar_Range (T));
13178
13179 end if;
13180
13181 Set_Discrete_RM_Size (Def_Id);
13182
13183 -- Unconditionally delay the freeze, since we cannot set size
13184 -- information in all cases correctly until the freeze point.
13185
13186 Set_Has_Delayed_Freeze (Def_Id);
13187 end Constrain_Ordinary_Fixed;
13188
13189 -----------------------
13190 -- Contain_Interface --
13191 -----------------------
13192
13193 function Contain_Interface
13194 (Iface : Entity_Id;
13195 Ifaces : Elist_Id) return Boolean
13196 is
13197 Iface_Elmt : Elmt_Id;
13198
13199 begin
13200 if Present (Ifaces) then
13201 Iface_Elmt := First_Elmt (Ifaces);
13202 while Present (Iface_Elmt) loop
13203 if Node (Iface_Elmt) = Iface then
13204 return True;
13205 end if;
13206
13207 Next_Elmt (Iface_Elmt);
13208 end loop;
13209 end if;
13210
13211 return False;
13212 end Contain_Interface;
13213
13214 ---------------------------
13215 -- Convert_Scalar_Bounds --
13216 ---------------------------
13217
13218 procedure Convert_Scalar_Bounds
13219 (N : Node_Id;
13220 Parent_Type : Entity_Id;
13221 Derived_Type : Entity_Id;
13222 Loc : Source_Ptr)
13223 is
13224 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
13225
13226 Lo : Node_Id;
13227 Hi : Node_Id;
13228 Rng : Node_Id;
13229
13230 begin
13231 -- Defend against previous errors
13232
13233 if No (Scalar_Range (Derived_Type)) then
13234 Check_Error_Detected;
13235 return;
13236 end if;
13237
13238 Lo := Build_Scalar_Bound
13239 (Type_Low_Bound (Derived_Type),
13240 Parent_Type, Implicit_Base);
13241
13242 Hi := Build_Scalar_Bound
13243 (Type_High_Bound (Derived_Type),
13244 Parent_Type, Implicit_Base);
13245
13246 Rng :=
13247 Make_Range (Loc,
13248 Low_Bound => Lo,
13249 High_Bound => Hi);
13250
13251 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
13252
13253 Set_Parent (Rng, N);
13254 Set_Scalar_Range (Derived_Type, Rng);
13255
13256 -- Analyze the bounds
13257
13258 Analyze_And_Resolve (Lo, Implicit_Base);
13259 Analyze_And_Resolve (Hi, Implicit_Base);
13260
13261 -- Analyze the range itself, except that we do not analyze it if
13262 -- the bounds are real literals, and we have a fixed-point type.
13263 -- The reason for this is that we delay setting the bounds in this
13264 -- case till we know the final Small and Size values (see circuit
13265 -- in Freeze.Freeze_Fixed_Point_Type for further details).
13266
13267 if Is_Fixed_Point_Type (Parent_Type)
13268 and then Nkind (Lo) = N_Real_Literal
13269 and then Nkind (Hi) = N_Real_Literal
13270 then
13271 return;
13272
13273 -- Here we do the analysis of the range
13274
13275 -- Note: we do this manually, since if we do a normal Analyze and
13276 -- Resolve call, there are problems with the conversions used for
13277 -- the derived type range.
13278
13279 else
13280 Set_Etype (Rng, Implicit_Base);
13281 Set_Analyzed (Rng, True);
13282 end if;
13283 end Convert_Scalar_Bounds;
13284
13285 -------------------
13286 -- Copy_And_Swap --
13287 -------------------
13288
13289 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
13290 begin
13291 -- Initialize new full declaration entity by copying the pertinent
13292 -- fields of the corresponding private declaration entity.
13293
13294 -- We temporarily set Ekind to a value appropriate for a type to
13295 -- avoid assert failures in Einfo from checking for setting type
13296 -- attributes on something that is not a type. Ekind (Priv) is an
13297 -- appropriate choice, since it allowed the attributes to be set
13298 -- in the first place. This Ekind value will be modified later.
13299
13300 Set_Ekind (Full, Ekind (Priv));
13301
13302 -- Also set Etype temporarily to Any_Type, again, in the absence
13303 -- of errors, it will be properly reset, and if there are errors,
13304 -- then we want a value of Any_Type to remain.
13305
13306 Set_Etype (Full, Any_Type);
13307
13308 -- Now start copying attributes
13309
13310 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
13311
13312 if Has_Discriminants (Full) then
13313 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
13314 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
13315 end if;
13316
13317 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
13318 Set_Homonym (Full, Homonym (Priv));
13319 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
13320 Set_Is_Public (Full, Is_Public (Priv));
13321 Set_Is_Pure (Full, Is_Pure (Priv));
13322 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
13323 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
13324 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
13325 Set_Has_Pragma_Unreferenced_Objects
13326 (Full, Has_Pragma_Unreferenced_Objects
13327 (Priv));
13328
13329 Conditional_Delay (Full, Priv);
13330
13331 if Is_Tagged_Type (Full) then
13332 Set_Direct_Primitive_Operations
13333 (Full, Direct_Primitive_Operations (Priv));
13334 Set_No_Tagged_Streams_Pragma
13335 (Full, No_Tagged_Streams_Pragma (Priv));
13336
13337 if Is_Base_Type (Priv) then
13338 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
13339 end if;
13340 end if;
13341
13342 Set_Is_Volatile (Full, Is_Volatile (Priv));
13343 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
13344 Set_Scope (Full, Scope (Priv));
13345 Set_Next_Entity (Full, Next_Entity (Priv));
13346 Set_First_Entity (Full, First_Entity (Priv));
13347 Set_Last_Entity (Full, Last_Entity (Priv));
13348
13349 -- If access types have been recorded for later handling, keep them in
13350 -- the full view so that they get handled when the full view freeze
13351 -- node is expanded.
13352
13353 if Present (Freeze_Node (Priv))
13354 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
13355 then
13356 Ensure_Freeze_Node (Full);
13357 Set_Access_Types_To_Process
13358 (Freeze_Node (Full),
13359 Access_Types_To_Process (Freeze_Node (Priv)));
13360 end if;
13361
13362 -- Swap the two entities. Now Private is the full type entity and Full
13363 -- is the private one. They will be swapped back at the end of the
13364 -- private part. This swapping ensures that the entity that is visible
13365 -- in the private part is the full declaration.
13366
13367 Exchange_Entities (Priv, Full);
13368 Append_Entity (Full, Scope (Full));
13369 end Copy_And_Swap;
13370
13371 -------------------------------------
13372 -- Copy_Array_Base_Type_Attributes --
13373 -------------------------------------
13374
13375 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
13376 begin
13377 Set_Component_Alignment (T1, Component_Alignment (T2));
13378 Set_Component_Type (T1, Component_Type (T2));
13379 Set_Component_Size (T1, Component_Size (T2));
13380 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
13381 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
13382 Set_Has_Protected (T1, Has_Protected (T2));
13383 Set_Has_Task (T1, Has_Task (T2));
13384 Set_Is_Packed (T1, Is_Packed (T2));
13385 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
13386 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
13387 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
13388 end Copy_Array_Base_Type_Attributes;
13389
13390 -----------------------------------
13391 -- Copy_Array_Subtype_Attributes --
13392 -----------------------------------
13393
13394 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
13395 begin
13396 Set_Size_Info (T1, T2);
13397
13398 Set_First_Index (T1, First_Index (T2));
13399 Set_Is_Aliased (T1, Is_Aliased (T2));
13400 Set_Is_Volatile (T1, Is_Volatile (T2));
13401 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
13402 Set_Is_Constrained (T1, Is_Constrained (T2));
13403 Set_Depends_On_Private (T1, Has_Private_Component (T2));
13404 Inherit_Rep_Item_Chain (T1, T2);
13405 Set_Convention (T1, Convention (T2));
13406 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
13407 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
13408 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
13409 end Copy_Array_Subtype_Attributes;
13410
13411 -----------------------------------
13412 -- Create_Constrained_Components --
13413 -----------------------------------
13414
13415 procedure Create_Constrained_Components
13416 (Subt : Entity_Id;
13417 Decl_Node : Node_Id;
13418 Typ : Entity_Id;
13419 Constraints : Elist_Id)
13420 is
13421 Loc : constant Source_Ptr := Sloc (Subt);
13422 Comp_List : constant Elist_Id := New_Elmt_List;
13423 Parent_Type : constant Entity_Id := Etype (Typ);
13424 Assoc_List : constant List_Id := New_List;
13425 Discr_Val : Elmt_Id;
13426 Errors : Boolean;
13427 New_C : Entity_Id;
13428 Old_C : Entity_Id;
13429 Is_Static : Boolean := True;
13430
13431 procedure Collect_Fixed_Components (Typ : Entity_Id);
13432 -- Collect parent type components that do not appear in a variant part
13433
13434 procedure Create_All_Components;
13435 -- Iterate over Comp_List to create the components of the subtype
13436
13437 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
13438 -- Creates a new component from Old_Compon, copying all the fields from
13439 -- it, including its Etype, inserts the new component in the Subt entity
13440 -- chain and returns the new component.
13441
13442 function Is_Variant_Record (T : Entity_Id) return Boolean;
13443 -- If true, and discriminants are static, collect only components from
13444 -- variants selected by discriminant values.
13445
13446 ------------------------------
13447 -- Collect_Fixed_Components --
13448 ------------------------------
13449
13450 procedure Collect_Fixed_Components (Typ : Entity_Id) is
13451 begin
13452 -- Build association list for discriminants, and find components of the
13453 -- variant part selected by the values of the discriminants.
13454
13455 Old_C := First_Discriminant (Typ);
13456 Discr_Val := First_Elmt (Constraints);
13457 while Present (Old_C) loop
13458 Append_To (Assoc_List,
13459 Make_Component_Association (Loc,
13460 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
13461 Expression => New_Copy (Node (Discr_Val))));
13462
13463 Next_Elmt (Discr_Val);
13464 Next_Discriminant (Old_C);
13465 end loop;
13466
13467 -- The tag and the possible parent component are unconditionally in
13468 -- the subtype.
13469
13470 if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
13471 Old_C := First_Component (Typ);
13472 while Present (Old_C) loop
13473 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
13474 Append_Elmt (Old_C, Comp_List);
13475 end if;
13476
13477 Next_Component (Old_C);
13478 end loop;
13479 end if;
13480 end Collect_Fixed_Components;
13481
13482 ---------------------------
13483 -- Create_All_Components --
13484 ---------------------------
13485
13486 procedure Create_All_Components is
13487 Comp : Elmt_Id;
13488
13489 begin
13490 Comp := First_Elmt (Comp_List);
13491 while Present (Comp) loop
13492 Old_C := Node (Comp);
13493 New_C := Create_Component (Old_C);
13494
13495 Set_Etype
13496 (New_C,
13497 Constrain_Component_Type
13498 (Old_C, Subt, Decl_Node, Typ, Constraints));
13499 Set_Is_Public (New_C, Is_Public (Subt));
13500
13501 Next_Elmt (Comp);
13502 end loop;
13503 end Create_All_Components;
13504
13505 ----------------------
13506 -- Create_Component --
13507 ----------------------
13508
13509 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
13510 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
13511
13512 begin
13513 if Ekind (Old_Compon) = E_Discriminant
13514 and then Is_Completely_Hidden (Old_Compon)
13515 then
13516 -- This is a shadow discriminant created for a discriminant of
13517 -- the parent type, which needs to be present in the subtype.
13518 -- Give the shadow discriminant an internal name that cannot
13519 -- conflict with that of visible components.
13520
13521 Set_Chars (New_Compon, New_Internal_Name ('C'));
13522 end if;
13523
13524 -- Set the parent so we have a proper link for freezing etc. This is
13525 -- not a real parent pointer, since of course our parent does not own
13526 -- up to us and reference us, we are an illegitimate child of the
13527 -- original parent.
13528
13529 Set_Parent (New_Compon, Parent (Old_Compon));
13530
13531 -- If the old component's Esize was already determined and is a
13532 -- static value, then the new component simply inherits it. Otherwise
13533 -- the old component's size may require run-time determination, but
13534 -- the new component's size still might be statically determinable
13535 -- (if, for example it has a static constraint). In that case we want
13536 -- Layout_Type to recompute the component's size, so we reset its
13537 -- size and positional fields.
13538
13539 if Frontend_Layout_On_Target
13540 and then not Known_Static_Esize (Old_Compon)
13541 then
13542 Set_Esize (New_Compon, Uint_0);
13543 Init_Normalized_First_Bit (New_Compon);
13544 Init_Normalized_Position (New_Compon);
13545 Init_Normalized_Position_Max (New_Compon);
13546 end if;
13547
13548 -- We do not want this node marked as Comes_From_Source, since
13549 -- otherwise it would get first class status and a separate cross-
13550 -- reference line would be generated. Illegitimate children do not
13551 -- rate such recognition.
13552
13553 Set_Comes_From_Source (New_Compon, False);
13554
13555 -- But it is a real entity, and a birth certificate must be properly
13556 -- registered by entering it into the entity list.
13557
13558 Enter_Name (New_Compon);
13559
13560 return New_Compon;
13561 end Create_Component;
13562
13563 -----------------------
13564 -- Is_Variant_Record --
13565 -----------------------
13566
13567 function Is_Variant_Record (T : Entity_Id) return Boolean is
13568 begin
13569 return Nkind (Parent (T)) = N_Full_Type_Declaration
13570 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
13571 and then Present (Component_List (Type_Definition (Parent (T))))
13572 and then
13573 Present
13574 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
13575 end Is_Variant_Record;
13576
13577 -- Start of processing for Create_Constrained_Components
13578
13579 begin
13580 pragma Assert (Subt /= Base_Type (Subt));
13581 pragma Assert (Typ = Base_Type (Typ));
13582
13583 Set_First_Entity (Subt, Empty);
13584 Set_Last_Entity (Subt, Empty);
13585
13586 -- Check whether constraint is fully static, in which case we can
13587 -- optimize the list of components.
13588
13589 Discr_Val := First_Elmt (Constraints);
13590 while Present (Discr_Val) loop
13591 if not Is_OK_Static_Expression (Node (Discr_Val)) then
13592 Is_Static := False;
13593 exit;
13594 end if;
13595
13596 Next_Elmt (Discr_Val);
13597 end loop;
13598
13599 Set_Has_Static_Discriminants (Subt, Is_Static);
13600
13601 Push_Scope (Subt);
13602
13603 -- Inherit the discriminants of the parent type
13604
13605 Add_Discriminants : declare
13606 Num_Disc : Int;
13607 Num_Gird : Int;
13608
13609 begin
13610 Num_Disc := 0;
13611 Old_C := First_Discriminant (Typ);
13612
13613 while Present (Old_C) loop
13614 Num_Disc := Num_Disc + 1;
13615 New_C := Create_Component (Old_C);
13616 Set_Is_Public (New_C, Is_Public (Subt));
13617 Next_Discriminant (Old_C);
13618 end loop;
13619
13620 -- For an untagged derived subtype, the number of discriminants may
13621 -- be smaller than the number of inherited discriminants, because
13622 -- several of them may be renamed by a single new discriminant or
13623 -- constrained. In this case, add the hidden discriminants back into
13624 -- the subtype, because they need to be present if the optimizer of
13625 -- the GCC 4.x back-end decides to break apart assignments between
13626 -- objects using the parent view into member-wise assignments.
13627
13628 Num_Gird := 0;
13629
13630 if Is_Derived_Type (Typ)
13631 and then not Is_Tagged_Type (Typ)
13632 then
13633 Old_C := First_Stored_Discriminant (Typ);
13634
13635 while Present (Old_C) loop
13636 Num_Gird := Num_Gird + 1;
13637 Next_Stored_Discriminant (Old_C);
13638 end loop;
13639 end if;
13640
13641 if Num_Gird > Num_Disc then
13642
13643 -- Find out multiple uses of new discriminants, and add hidden
13644 -- components for the extra renamed discriminants. We recognize
13645 -- multiple uses through the Corresponding_Discriminant of a
13646 -- new discriminant: if it constrains several old discriminants,
13647 -- this field points to the last one in the parent type. The
13648 -- stored discriminants of the derived type have the same name
13649 -- as those of the parent.
13650
13651 declare
13652 Constr : Elmt_Id;
13653 New_Discr : Entity_Id;
13654 Old_Discr : Entity_Id;
13655
13656 begin
13657 Constr := First_Elmt (Stored_Constraint (Typ));
13658 Old_Discr := First_Stored_Discriminant (Typ);
13659 while Present (Constr) loop
13660 if Is_Entity_Name (Node (Constr))
13661 and then Ekind (Entity (Node (Constr))) = E_Discriminant
13662 then
13663 New_Discr := Entity (Node (Constr));
13664
13665 if Chars (Corresponding_Discriminant (New_Discr)) /=
13666 Chars (Old_Discr)
13667 then
13668 -- The new discriminant has been used to rename a
13669 -- subsequent old discriminant. Introduce a shadow
13670 -- component for the current old discriminant.
13671
13672 New_C := Create_Component (Old_Discr);
13673 Set_Original_Record_Component (New_C, Old_Discr);
13674 end if;
13675
13676 else
13677 -- The constraint has eliminated the old discriminant.
13678 -- Introduce a shadow component.
13679
13680 New_C := Create_Component (Old_Discr);
13681 Set_Original_Record_Component (New_C, Old_Discr);
13682 end if;
13683
13684 Next_Elmt (Constr);
13685 Next_Stored_Discriminant (Old_Discr);
13686 end loop;
13687 end;
13688 end if;
13689 end Add_Discriminants;
13690
13691 if Is_Static
13692 and then Is_Variant_Record (Typ)
13693 then
13694 Collect_Fixed_Components (Typ);
13695
13696 Gather_Components (
13697 Typ,
13698 Component_List (Type_Definition (Parent (Typ))),
13699 Governed_By => Assoc_List,
13700 Into => Comp_List,
13701 Report_Errors => Errors);
13702 pragma Assert (not Errors);
13703
13704 Create_All_Components;
13705
13706 -- If the subtype declaration is created for a tagged type derivation
13707 -- with constraints, we retrieve the record definition of the parent
13708 -- type to select the components of the proper variant.
13709
13710 elsif Is_Static
13711 and then Is_Tagged_Type (Typ)
13712 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
13713 and then
13714 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
13715 and then Is_Variant_Record (Parent_Type)
13716 then
13717 Collect_Fixed_Components (Typ);
13718
13719 Gather_Components (
13720 Typ,
13721 Component_List (Type_Definition (Parent (Parent_Type))),
13722 Governed_By => Assoc_List,
13723 Into => Comp_List,
13724 Report_Errors => Errors);
13725 pragma Assert (not Errors);
13726
13727 -- If the tagged derivation has a type extension, collect all the
13728 -- new components therein.
13729
13730 if Present
13731 (Record_Extension_Part (Type_Definition (Parent (Typ))))
13732 then
13733 Old_C := First_Component (Typ);
13734 while Present (Old_C) loop
13735 if Original_Record_Component (Old_C) = Old_C
13736 and then Chars (Old_C) /= Name_uTag
13737 and then Chars (Old_C) /= Name_uParent
13738 then
13739 Append_Elmt (Old_C, Comp_List);
13740 end if;
13741
13742 Next_Component (Old_C);
13743 end loop;
13744 end if;
13745
13746 Create_All_Components;
13747
13748 else
13749 -- If discriminants are not static, or if this is a multi-level type
13750 -- extension, we have to include all components of the parent type.
13751
13752 Old_C := First_Component (Typ);
13753 while Present (Old_C) loop
13754 New_C := Create_Component (Old_C);
13755
13756 Set_Etype
13757 (New_C,
13758 Constrain_Component_Type
13759 (Old_C, Subt, Decl_Node, Typ, Constraints));
13760 Set_Is_Public (New_C, Is_Public (Subt));
13761
13762 Next_Component (Old_C);
13763 end loop;
13764 end if;
13765
13766 End_Scope;
13767 end Create_Constrained_Components;
13768
13769 ------------------------------------------
13770 -- Decimal_Fixed_Point_Type_Declaration --
13771 ------------------------------------------
13772
13773 procedure Decimal_Fixed_Point_Type_Declaration
13774 (T : Entity_Id;
13775 Def : Node_Id)
13776 is
13777 Loc : constant Source_Ptr := Sloc (Def);
13778 Digs_Expr : constant Node_Id := Digits_Expression (Def);
13779 Delta_Expr : constant Node_Id := Delta_Expression (Def);
13780 Implicit_Base : Entity_Id;
13781 Digs_Val : Uint;
13782 Delta_Val : Ureal;
13783 Scale_Val : Uint;
13784 Bound_Val : Ureal;
13785
13786 begin
13787 Check_SPARK_05_Restriction
13788 ("decimal fixed point type is not allowed", Def);
13789 Check_Restriction (No_Fixed_Point, Def);
13790
13791 -- Create implicit base type
13792
13793 Implicit_Base :=
13794 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
13795 Set_Etype (Implicit_Base, Implicit_Base);
13796
13797 -- Analyze and process delta expression
13798
13799 Analyze_And_Resolve (Delta_Expr, Universal_Real);
13800
13801 Check_Delta_Expression (Delta_Expr);
13802 Delta_Val := Expr_Value_R (Delta_Expr);
13803
13804 -- Check delta is power of 10, and determine scale value from it
13805
13806 declare
13807 Val : Ureal;
13808
13809 begin
13810 Scale_Val := Uint_0;
13811 Val := Delta_Val;
13812
13813 if Val < Ureal_1 then
13814 while Val < Ureal_1 loop
13815 Val := Val * Ureal_10;
13816 Scale_Val := Scale_Val + 1;
13817 end loop;
13818
13819 if Scale_Val > 18 then
13820 Error_Msg_N ("scale exceeds maximum value of 18", Def);
13821 Scale_Val := UI_From_Int (+18);
13822 end if;
13823
13824 else
13825 while Val > Ureal_1 loop
13826 Val := Val / Ureal_10;
13827 Scale_Val := Scale_Val - 1;
13828 end loop;
13829
13830 if Scale_Val < -18 then
13831 Error_Msg_N ("scale is less than minimum value of -18", Def);
13832 Scale_Val := UI_From_Int (-18);
13833 end if;
13834 end if;
13835
13836 if Val /= Ureal_1 then
13837 Error_Msg_N ("delta expression must be a power of 10", Def);
13838 Delta_Val := Ureal_10 ** (-Scale_Val);
13839 end if;
13840 end;
13841
13842 -- Set delta, scale and small (small = delta for decimal type)
13843
13844 Set_Delta_Value (Implicit_Base, Delta_Val);
13845 Set_Scale_Value (Implicit_Base, Scale_Val);
13846 Set_Small_Value (Implicit_Base, Delta_Val);
13847
13848 -- Analyze and process digits expression
13849
13850 Analyze_And_Resolve (Digs_Expr, Any_Integer);
13851 Check_Digits_Expression (Digs_Expr);
13852 Digs_Val := Expr_Value (Digs_Expr);
13853
13854 if Digs_Val > 18 then
13855 Digs_Val := UI_From_Int (+18);
13856 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
13857 end if;
13858
13859 Set_Digits_Value (Implicit_Base, Digs_Val);
13860 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
13861
13862 -- Set range of base type from digits value for now. This will be
13863 -- expanded to represent the true underlying base range by Freeze.
13864
13865 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
13866
13867 -- Note: We leave size as zero for now, size will be set at freeze
13868 -- time. We have to do this for ordinary fixed-point, because the size
13869 -- depends on the specified small, and we might as well do the same for
13870 -- decimal fixed-point.
13871
13872 pragma Assert (Esize (Implicit_Base) = Uint_0);
13873
13874 -- If there are bounds given in the declaration use them as the
13875 -- bounds of the first named subtype.
13876
13877 if Present (Real_Range_Specification (Def)) then
13878 declare
13879 RRS : constant Node_Id := Real_Range_Specification (Def);
13880 Low : constant Node_Id := Low_Bound (RRS);
13881 High : constant Node_Id := High_Bound (RRS);
13882 Low_Val : Ureal;
13883 High_Val : Ureal;
13884
13885 begin
13886 Analyze_And_Resolve (Low, Any_Real);
13887 Analyze_And_Resolve (High, Any_Real);
13888 Check_Real_Bound (Low);
13889 Check_Real_Bound (High);
13890 Low_Val := Expr_Value_R (Low);
13891 High_Val := Expr_Value_R (High);
13892
13893 if Low_Val < (-Bound_Val) then
13894 Error_Msg_N
13895 ("range low bound too small for digits value", Low);
13896 Low_Val := -Bound_Val;
13897 end if;
13898
13899 if High_Val > Bound_Val then
13900 Error_Msg_N
13901 ("range high bound too large for digits value", High);
13902 High_Val := Bound_Val;
13903 end if;
13904
13905 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
13906 end;
13907
13908 -- If no explicit range, use range that corresponds to given
13909 -- digits value. This will end up as the final range for the
13910 -- first subtype.
13911
13912 else
13913 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
13914 end if;
13915
13916 -- Complete entity for first subtype. The inheritance of the rep item
13917 -- chain ensures that SPARK-related pragmas are not clobbered when the
13918 -- decimal fixed point type acts as a full view of a private type.
13919
13920 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
13921 Set_Etype (T, Implicit_Base);
13922 Set_Size_Info (T, Implicit_Base);
13923 Inherit_Rep_Item_Chain (T, Implicit_Base);
13924 Set_Digits_Value (T, Digs_Val);
13925 Set_Delta_Value (T, Delta_Val);
13926 Set_Small_Value (T, Delta_Val);
13927 Set_Scale_Value (T, Scale_Val);
13928 Set_Is_Constrained (T);
13929 end Decimal_Fixed_Point_Type_Declaration;
13930
13931 -----------------------------------
13932 -- Derive_Progenitor_Subprograms --
13933 -----------------------------------
13934
13935 procedure Derive_Progenitor_Subprograms
13936 (Parent_Type : Entity_Id;
13937 Tagged_Type : Entity_Id)
13938 is
13939 E : Entity_Id;
13940 Elmt : Elmt_Id;
13941 Iface : Entity_Id;
13942 Iface_Elmt : Elmt_Id;
13943 Iface_Subp : Entity_Id;
13944 New_Subp : Entity_Id := Empty;
13945 Prim_Elmt : Elmt_Id;
13946 Subp : Entity_Id;
13947 Typ : Entity_Id;
13948
13949 begin
13950 pragma Assert (Ada_Version >= Ada_2005
13951 and then Is_Record_Type (Tagged_Type)
13952 and then Is_Tagged_Type (Tagged_Type)
13953 and then Has_Interfaces (Tagged_Type));
13954
13955 -- Step 1: Transfer to the full-view primitives associated with the
13956 -- partial-view that cover interface primitives. Conceptually this
13957 -- work should be done later by Process_Full_View; done here to
13958 -- simplify its implementation at later stages. It can be safely
13959 -- done here because interfaces must be visible in the partial and
13960 -- private view (RM 7.3(7.3/2)).
13961
13962 -- Small optimization: This work is only required if the parent may
13963 -- have entities whose Alias attribute reference an interface primitive.
13964 -- Such a situation may occur if the parent is an abstract type and the
13965 -- primitive has not been yet overridden or if the parent is a generic
13966 -- formal type covering interfaces.
13967
13968 -- If the tagged type is not abstract, it cannot have abstract
13969 -- primitives (the only entities in the list of primitives of
13970 -- non-abstract tagged types that can reference abstract primitives
13971 -- through its Alias attribute are the internal entities that have
13972 -- attribute Interface_Alias, and these entities are generated later
13973 -- by Add_Internal_Interface_Entities).
13974
13975 if In_Private_Part (Current_Scope)
13976 and then (Is_Abstract_Type (Parent_Type)
13977 or else
13978 Is_Generic_Type (Parent_Type))
13979 then
13980 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
13981 while Present (Elmt) loop
13982 Subp := Node (Elmt);
13983
13984 -- At this stage it is not possible to have entities in the list
13985 -- of primitives that have attribute Interface_Alias.
13986
13987 pragma Assert (No (Interface_Alias (Subp)));
13988
13989 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
13990
13991 if Is_Interface (Typ) then
13992 E := Find_Primitive_Covering_Interface
13993 (Tagged_Type => Tagged_Type,
13994 Iface_Prim => Subp);
13995
13996 if Present (E)
13997 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
13998 then
13999 Replace_Elmt (Elmt, E);
14000 Remove_Homonym (Subp);
14001 end if;
14002 end if;
14003
14004 Next_Elmt (Elmt);
14005 end loop;
14006 end if;
14007
14008 -- Step 2: Add primitives of progenitors that are not implemented by
14009 -- parents of Tagged_Type.
14010
14011 if Present (Interfaces (Base_Type (Tagged_Type))) then
14012 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
14013 while Present (Iface_Elmt) loop
14014 Iface := Node (Iface_Elmt);
14015
14016 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
14017 while Present (Prim_Elmt) loop
14018 Iface_Subp := Node (Prim_Elmt);
14019
14020 -- Exclude derivation of predefined primitives except those
14021 -- that come from source, or are inherited from one that comes
14022 -- from source. Required to catch declarations of equality
14023 -- operators of interfaces. For example:
14024
14025 -- type Iface is interface;
14026 -- function "=" (Left, Right : Iface) return Boolean;
14027
14028 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
14029 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
14030 then
14031 E := Find_Primitive_Covering_Interface
14032 (Tagged_Type => Tagged_Type,
14033 Iface_Prim => Iface_Subp);
14034
14035 -- If not found we derive a new primitive leaving its alias
14036 -- attribute referencing the interface primitive.
14037
14038 if No (E) then
14039 Derive_Subprogram
14040 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14041
14042 -- Ada 2012 (AI05-0197): If the covering primitive's name
14043 -- differs from the name of the interface primitive then it
14044 -- is a private primitive inherited from a parent type. In
14045 -- such case, given that Tagged_Type covers the interface,
14046 -- the inherited private primitive becomes visible. For such
14047 -- purpose we add a new entity that renames the inherited
14048 -- private primitive.
14049
14050 elsif Chars (E) /= Chars (Iface_Subp) then
14051 pragma Assert (Has_Suffix (E, 'P'));
14052 Derive_Subprogram
14053 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14054 Set_Alias (New_Subp, E);
14055 Set_Is_Abstract_Subprogram (New_Subp,
14056 Is_Abstract_Subprogram (E));
14057
14058 -- Propagate to the full view interface entities associated
14059 -- with the partial view.
14060
14061 elsif In_Private_Part (Current_Scope)
14062 and then Present (Alias (E))
14063 and then Alias (E) = Iface_Subp
14064 and then
14065 List_Containing (Parent (E)) /=
14066 Private_Declarations
14067 (Specification
14068 (Unit_Declaration_Node (Current_Scope)))
14069 then
14070 Append_Elmt (E, Primitive_Operations (Tagged_Type));
14071 end if;
14072 end if;
14073
14074 Next_Elmt (Prim_Elmt);
14075 end loop;
14076
14077 Next_Elmt (Iface_Elmt);
14078 end loop;
14079 end if;
14080 end Derive_Progenitor_Subprograms;
14081
14082 -----------------------
14083 -- Derive_Subprogram --
14084 -----------------------
14085
14086 procedure Derive_Subprogram
14087 (New_Subp : in out Entity_Id;
14088 Parent_Subp : Entity_Id;
14089 Derived_Type : Entity_Id;
14090 Parent_Type : Entity_Id;
14091 Actual_Subp : Entity_Id := Empty)
14092 is
14093 Formal : Entity_Id;
14094 -- Formal parameter of parent primitive operation
14095
14096 Formal_Of_Actual : Entity_Id;
14097 -- Formal parameter of actual operation, when the derivation is to
14098 -- create a renaming for a primitive operation of an actual in an
14099 -- instantiation.
14100
14101 New_Formal : Entity_Id;
14102 -- Formal of inherited operation
14103
14104 Visible_Subp : Entity_Id := Parent_Subp;
14105
14106 function Is_Private_Overriding return Boolean;
14107 -- If Subp is a private overriding of a visible operation, the inherited
14108 -- operation derives from the overridden op (even though its body is the
14109 -- overriding one) and the inherited operation is visible now. See
14110 -- sem_disp to see the full details of the handling of the overridden
14111 -- subprogram, which is removed from the list of primitive operations of
14112 -- the type. The overridden subprogram is saved locally in Visible_Subp,
14113 -- and used to diagnose abstract operations that need overriding in the
14114 -- derived type.
14115
14116 procedure Replace_Type (Id, New_Id : Entity_Id);
14117 -- When the type is an anonymous access type, create a new access type
14118 -- designating the derived type.
14119
14120 procedure Set_Derived_Name;
14121 -- This procedure sets the appropriate Chars name for New_Subp. This
14122 -- is normally just a copy of the parent name. An exception arises for
14123 -- type support subprograms, where the name is changed to reflect the
14124 -- name of the derived type, e.g. if type foo is derived from type bar,
14125 -- then a procedure barDA is derived with a name fooDA.
14126
14127 ---------------------------
14128 -- Is_Private_Overriding --
14129 ---------------------------
14130
14131 function Is_Private_Overriding return Boolean is
14132 Prev : Entity_Id;
14133
14134 begin
14135 -- If the parent is not a dispatching operation there is no
14136 -- need to investigate overridings
14137
14138 if not Is_Dispatching_Operation (Parent_Subp) then
14139 return False;
14140 end if;
14141
14142 -- The visible operation that is overridden is a homonym of the
14143 -- parent subprogram. We scan the homonym chain to find the one
14144 -- whose alias is the subprogram we are deriving.
14145
14146 Prev := Current_Entity (Parent_Subp);
14147 while Present (Prev) loop
14148 if Ekind (Prev) = Ekind (Parent_Subp)
14149 and then Alias (Prev) = Parent_Subp
14150 and then Scope (Parent_Subp) = Scope (Prev)
14151 and then not Is_Hidden (Prev)
14152 then
14153 Visible_Subp := Prev;
14154 return True;
14155 end if;
14156
14157 Prev := Homonym (Prev);
14158 end loop;
14159
14160 return False;
14161 end Is_Private_Overriding;
14162
14163 ------------------
14164 -- Replace_Type --
14165 ------------------
14166
14167 procedure Replace_Type (Id, New_Id : Entity_Id) is
14168 Id_Type : constant Entity_Id := Etype (Id);
14169 Acc_Type : Entity_Id;
14170 Par : constant Node_Id := Parent (Derived_Type);
14171
14172 begin
14173 -- When the type is an anonymous access type, create a new access
14174 -- type designating the derived type. This itype must be elaborated
14175 -- at the point of the derivation, not on subsequent calls that may
14176 -- be out of the proper scope for Gigi, so we insert a reference to
14177 -- it after the derivation.
14178
14179 if Ekind (Id_Type) = E_Anonymous_Access_Type then
14180 declare
14181 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
14182
14183 begin
14184 if Ekind (Desig_Typ) = E_Record_Type_With_Private
14185 and then Present (Full_View (Desig_Typ))
14186 and then not Is_Private_Type (Parent_Type)
14187 then
14188 Desig_Typ := Full_View (Desig_Typ);
14189 end if;
14190
14191 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
14192
14193 -- Ada 2005 (AI-251): Handle also derivations of abstract
14194 -- interface primitives.
14195
14196 or else (Is_Interface (Desig_Typ)
14197 and then not Is_Class_Wide_Type (Desig_Typ))
14198 then
14199 Acc_Type := New_Copy (Id_Type);
14200 Set_Etype (Acc_Type, Acc_Type);
14201 Set_Scope (Acc_Type, New_Subp);
14202
14203 -- Set size of anonymous access type. If we have an access
14204 -- to an unconstrained array, this is a fat pointer, so it
14205 -- is sizes at twice addtress size.
14206
14207 if Is_Array_Type (Desig_Typ)
14208 and then not Is_Constrained (Desig_Typ)
14209 then
14210 Init_Size (Acc_Type, 2 * System_Address_Size);
14211
14212 -- Other cases use a thin pointer
14213
14214 else
14215 Init_Size (Acc_Type, System_Address_Size);
14216 end if;
14217
14218 -- Set remaining characterstics of anonymous access type
14219
14220 Init_Alignment (Acc_Type);
14221 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
14222
14223 Set_Etype (New_Id, Acc_Type);
14224 Set_Scope (New_Id, New_Subp);
14225
14226 -- Create a reference to it
14227
14228 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
14229
14230 else
14231 Set_Etype (New_Id, Id_Type);
14232 end if;
14233 end;
14234
14235 -- In Ada2012, a formal may have an incomplete type but the type
14236 -- derivation that inherits the primitive follows the full view.
14237
14238 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
14239 or else
14240 (Ekind (Id_Type) = E_Record_Type_With_Private
14241 and then Present (Full_View (Id_Type))
14242 and then
14243 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
14244 or else
14245 (Ada_Version >= Ada_2012
14246 and then Ekind (Id_Type) = E_Incomplete_Type
14247 and then Full_View (Id_Type) = Parent_Type)
14248 then
14249 -- Constraint checks on formals are generated during expansion,
14250 -- based on the signature of the original subprogram. The bounds
14251 -- of the derived type are not relevant, and thus we can use
14252 -- the base type for the formals. However, the return type may be
14253 -- used in a context that requires that the proper static bounds
14254 -- be used (a case statement, for example) and for those cases
14255 -- we must use the derived type (first subtype), not its base.
14256
14257 -- If the derived_type_definition has no constraints, we know that
14258 -- the derived type has the same constraints as the first subtype
14259 -- of the parent, and we can also use it rather than its base,
14260 -- which can lead to more efficient code.
14261
14262 if Etype (Id) = Parent_Type then
14263 if Is_Scalar_Type (Parent_Type)
14264 and then
14265 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
14266 then
14267 Set_Etype (New_Id, Derived_Type);
14268
14269 elsif Nkind (Par) = N_Full_Type_Declaration
14270 and then
14271 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
14272 and then
14273 Is_Entity_Name
14274 (Subtype_Indication (Type_Definition (Par)))
14275 then
14276 Set_Etype (New_Id, Derived_Type);
14277
14278 else
14279 Set_Etype (New_Id, Base_Type (Derived_Type));
14280 end if;
14281
14282 else
14283 Set_Etype (New_Id, Base_Type (Derived_Type));
14284 end if;
14285
14286 else
14287 Set_Etype (New_Id, Etype (Id));
14288 end if;
14289 end Replace_Type;
14290
14291 ----------------------
14292 -- Set_Derived_Name --
14293 ----------------------
14294
14295 procedure Set_Derived_Name is
14296 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
14297 begin
14298 if Nm = TSS_Null then
14299 Set_Chars (New_Subp, Chars (Parent_Subp));
14300 else
14301 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
14302 end if;
14303 end Set_Derived_Name;
14304
14305 -- Start of processing for Derive_Subprogram
14306
14307 begin
14308 New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
14309 Set_Ekind (New_Subp, Ekind (Parent_Subp));
14310 Set_Contract (New_Subp, Make_Contract (Sloc (New_Subp)));
14311
14312 -- Check whether the inherited subprogram is a private operation that
14313 -- should be inherited but not yet made visible. Such subprograms can
14314 -- become visible at a later point (e.g., the private part of a public
14315 -- child unit) via Declare_Inherited_Private_Subprograms. If the
14316 -- following predicate is true, then this is not such a private
14317 -- operation and the subprogram simply inherits the name of the parent
14318 -- subprogram. Note the special check for the names of controlled
14319 -- operations, which are currently exempted from being inherited with
14320 -- a hidden name because they must be findable for generation of
14321 -- implicit run-time calls.
14322
14323 if not Is_Hidden (Parent_Subp)
14324 or else Is_Internal (Parent_Subp)
14325 or else Is_Private_Overriding
14326 or else Is_Internal_Name (Chars (Parent_Subp))
14327 or else Nam_In (Chars (Parent_Subp), Name_Initialize,
14328 Name_Adjust,
14329 Name_Finalize)
14330 then
14331 Set_Derived_Name;
14332
14333 -- An inherited dispatching equality will be overridden by an internally
14334 -- generated one, or by an explicit one, so preserve its name and thus
14335 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
14336 -- private operation it may become invisible if the full view has
14337 -- progenitors, and the dispatch table will be malformed.
14338 -- We check that the type is limited to handle the anomalous declaration
14339 -- of Limited_Controlled, which is derived from a non-limited type, and
14340 -- which is handled specially elsewhere as well.
14341
14342 elsif Chars (Parent_Subp) = Name_Op_Eq
14343 and then Is_Dispatching_Operation (Parent_Subp)
14344 and then Etype (Parent_Subp) = Standard_Boolean
14345 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
14346 and then
14347 Etype (First_Formal (Parent_Subp)) =
14348 Etype (Next_Formal (First_Formal (Parent_Subp)))
14349 then
14350 Set_Derived_Name;
14351
14352 -- If parent is hidden, this can be a regular derivation if the
14353 -- parent is immediately visible in a non-instantiating context,
14354 -- or if we are in the private part of an instance. This test
14355 -- should still be refined ???
14356
14357 -- The test for In_Instance_Not_Visible avoids inheriting the derived
14358 -- operation as a non-visible operation in cases where the parent
14359 -- subprogram might not be visible now, but was visible within the
14360 -- original generic, so it would be wrong to make the inherited
14361 -- subprogram non-visible now. (Not clear if this test is fully
14362 -- correct; are there any cases where we should declare the inherited
14363 -- operation as not visible to avoid it being overridden, e.g., when
14364 -- the parent type is a generic actual with private primitives ???)
14365
14366 -- (they should be treated the same as other private inherited
14367 -- subprograms, but it's not clear how to do this cleanly). ???
14368
14369 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
14370 and then Is_Immediately_Visible (Parent_Subp)
14371 and then not In_Instance)
14372 or else In_Instance_Not_Visible
14373 then
14374 Set_Derived_Name;
14375
14376 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
14377 -- overrides an interface primitive because interface primitives
14378 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
14379
14380 elsif Ada_Version >= Ada_2005
14381 and then Is_Dispatching_Operation (Parent_Subp)
14382 and then Covers_Some_Interface (Parent_Subp)
14383 then
14384 Set_Derived_Name;
14385
14386 -- Otherwise, the type is inheriting a private operation, so enter
14387 -- it with a special name so it can't be overridden.
14388
14389 else
14390 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
14391 end if;
14392
14393 Set_Parent (New_Subp, Parent (Derived_Type));
14394
14395 if Present (Actual_Subp) then
14396 Replace_Type (Actual_Subp, New_Subp);
14397 else
14398 Replace_Type (Parent_Subp, New_Subp);
14399 end if;
14400
14401 Conditional_Delay (New_Subp, Parent_Subp);
14402
14403 -- If we are creating a renaming for a primitive operation of an
14404 -- actual of a generic derived type, we must examine the signature
14405 -- of the actual primitive, not that of the generic formal, which for
14406 -- example may be an interface. However the name and initial value
14407 -- of the inherited operation are those of the formal primitive.
14408
14409 Formal := First_Formal (Parent_Subp);
14410
14411 if Present (Actual_Subp) then
14412 Formal_Of_Actual := First_Formal (Actual_Subp);
14413 else
14414 Formal_Of_Actual := Empty;
14415 end if;
14416
14417 while Present (Formal) loop
14418 New_Formal := New_Copy (Formal);
14419
14420 -- Normally we do not go copying parents, but in the case of
14421 -- formals, we need to link up to the declaration (which is the
14422 -- parameter specification), and it is fine to link up to the
14423 -- original formal's parameter specification in this case.
14424
14425 Set_Parent (New_Formal, Parent (Formal));
14426 Append_Entity (New_Formal, New_Subp);
14427
14428 if Present (Formal_Of_Actual) then
14429 Replace_Type (Formal_Of_Actual, New_Formal);
14430 Next_Formal (Formal_Of_Actual);
14431 else
14432 Replace_Type (Formal, New_Formal);
14433 end if;
14434
14435 Next_Formal (Formal);
14436 end loop;
14437
14438 -- If this derivation corresponds to a tagged generic actual, then
14439 -- primitive operations rename those of the actual. Otherwise the
14440 -- primitive operations rename those of the parent type, If the parent
14441 -- renames an intrinsic operator, so does the new subprogram. We except
14442 -- concatenation, which is always properly typed, and does not get
14443 -- expanded as other intrinsic operations.
14444
14445 if No (Actual_Subp) then
14446 if Is_Intrinsic_Subprogram (Parent_Subp) then
14447 Set_Is_Intrinsic_Subprogram (New_Subp);
14448
14449 if Present (Alias (Parent_Subp))
14450 and then Chars (Parent_Subp) /= Name_Op_Concat
14451 then
14452 Set_Alias (New_Subp, Alias (Parent_Subp));
14453 else
14454 Set_Alias (New_Subp, Parent_Subp);
14455 end if;
14456
14457 else
14458 Set_Alias (New_Subp, Parent_Subp);
14459 end if;
14460
14461 else
14462 Set_Alias (New_Subp, Actual_Subp);
14463 end if;
14464
14465 -- Derived subprograms of a tagged type must inherit the convention
14466 -- of the parent subprogram (a requirement of AI-117). Derived
14467 -- subprograms of untagged types simply get convention Ada by default.
14468
14469 -- If the derived type is a tagged generic formal type with unknown
14470 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
14471
14472 -- However, if the type is derived from a generic formal, the further
14473 -- inherited subprogram has the convention of the non-generic ancestor.
14474 -- Otherwise there would be no way to override the operation.
14475 -- (This is subject to forthcoming ARG discussions).
14476
14477 if Is_Tagged_Type (Derived_Type) then
14478 if Is_Generic_Type (Derived_Type)
14479 and then Has_Unknown_Discriminants (Derived_Type)
14480 then
14481 Set_Convention (New_Subp, Convention_Intrinsic);
14482
14483 else
14484 if Is_Generic_Type (Parent_Type)
14485 and then Has_Unknown_Discriminants (Parent_Type)
14486 then
14487 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
14488 else
14489 Set_Convention (New_Subp, Convention (Parent_Subp));
14490 end if;
14491 end if;
14492 end if;
14493
14494 -- Predefined controlled operations retain their name even if the parent
14495 -- is hidden (see above), but they are not primitive operations if the
14496 -- ancestor is not visible, for example if the parent is a private
14497 -- extension completed with a controlled extension. Note that a full
14498 -- type that is controlled can break privacy: the flag Is_Controlled is
14499 -- set on both views of the type.
14500
14501 if Is_Controlled (Parent_Type)
14502 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
14503 Name_Adjust,
14504 Name_Finalize)
14505 and then Is_Hidden (Parent_Subp)
14506 and then not Is_Visibly_Controlled (Parent_Type)
14507 then
14508 Set_Is_Hidden (New_Subp);
14509 end if;
14510
14511 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
14512 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
14513
14514 if Ekind (Parent_Subp) = E_Procedure then
14515 Set_Is_Valued_Procedure
14516 (New_Subp, Is_Valued_Procedure (Parent_Subp));
14517 else
14518 Set_Has_Controlling_Result
14519 (New_Subp, Has_Controlling_Result (Parent_Subp));
14520 end if;
14521
14522 -- No_Return must be inherited properly. If this is overridden in the
14523 -- case of a dispatching operation, then a check is made in Sem_Disp
14524 -- that the overriding operation is also No_Return (no such check is
14525 -- required for the case of non-dispatching operation.
14526
14527 Set_No_Return (New_Subp, No_Return (Parent_Subp));
14528
14529 -- A derived function with a controlling result is abstract. If the
14530 -- Derived_Type is a nonabstract formal generic derived type, then
14531 -- inherited operations are not abstract: the required check is done at
14532 -- instantiation time. If the derivation is for a generic actual, the
14533 -- function is not abstract unless the actual is.
14534
14535 if Is_Generic_Type (Derived_Type)
14536 and then not Is_Abstract_Type (Derived_Type)
14537 then
14538 null;
14539
14540 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
14541 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
14542
14543 -- A subprogram subject to pragma Extensions_Visible with value False
14544 -- requires overriding if the subprogram has at least one controlling
14545 -- OUT parameter (SPARK RM 6.1.7(6)).
14546
14547 elsif Ada_Version >= Ada_2005
14548 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14549 or else (Is_Tagged_Type (Derived_Type)
14550 and then Etype (New_Subp) = Derived_Type
14551 and then not Is_Null_Extension (Derived_Type))
14552 or else (Is_Tagged_Type (Derived_Type)
14553 and then Ekind (Etype (New_Subp)) =
14554 E_Anonymous_Access_Type
14555 and then Designated_Type (Etype (New_Subp)) =
14556 Derived_Type
14557 and then not Is_Null_Extension (Derived_Type))
14558 or else Is_EVF_Procedure (Alias (New_Subp)))
14559 and then No (Actual_Subp)
14560 then
14561 if not Is_Tagged_Type (Derived_Type)
14562 or else Is_Abstract_Type (Derived_Type)
14563 or else Is_Abstract_Subprogram (Alias (New_Subp))
14564 then
14565 Set_Is_Abstract_Subprogram (New_Subp);
14566 else
14567 Set_Requires_Overriding (New_Subp);
14568 end if;
14569
14570 elsif Ada_Version < Ada_2005
14571 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14572 or else (Is_Tagged_Type (Derived_Type)
14573 and then Etype (New_Subp) = Derived_Type
14574 and then No (Actual_Subp)))
14575 then
14576 Set_Is_Abstract_Subprogram (New_Subp);
14577
14578 -- AI05-0097 : an inherited operation that dispatches on result is
14579 -- abstract if the derived type is abstract, even if the parent type
14580 -- is concrete and the derived type is a null extension.
14581
14582 elsif Has_Controlling_Result (Alias (New_Subp))
14583 and then Is_Abstract_Type (Etype (New_Subp))
14584 then
14585 Set_Is_Abstract_Subprogram (New_Subp);
14586
14587 -- Finally, if the parent type is abstract we must verify that all
14588 -- inherited operations are either non-abstract or overridden, or that
14589 -- the derived type itself is abstract (this check is performed at the
14590 -- end of a package declaration, in Check_Abstract_Overriding). A
14591 -- private overriding in the parent type will not be visible in the
14592 -- derivation if we are not in an inner package or in a child unit of
14593 -- the parent type, in which case the abstractness of the inherited
14594 -- operation is carried to the new subprogram.
14595
14596 elsif Is_Abstract_Type (Parent_Type)
14597 and then not In_Open_Scopes (Scope (Parent_Type))
14598 and then Is_Private_Overriding
14599 and then Is_Abstract_Subprogram (Visible_Subp)
14600 then
14601 if No (Actual_Subp) then
14602 Set_Alias (New_Subp, Visible_Subp);
14603 Set_Is_Abstract_Subprogram (New_Subp, True);
14604
14605 else
14606 -- If this is a derivation for an instance of a formal derived
14607 -- type, abstractness comes from the primitive operation of the
14608 -- actual, not from the operation inherited from the ancestor.
14609
14610 Set_Is_Abstract_Subprogram
14611 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
14612 end if;
14613 end if;
14614
14615 New_Overloaded_Entity (New_Subp, Derived_Type);
14616
14617 -- Check for case of a derived subprogram for the instantiation of a
14618 -- formal derived tagged type, if so mark the subprogram as dispatching
14619 -- and inherit the dispatching attributes of the actual subprogram. The
14620 -- derived subprogram is effectively renaming of the actual subprogram,
14621 -- so it needs to have the same attributes as the actual.
14622
14623 if Present (Actual_Subp)
14624 and then Is_Dispatching_Operation (Actual_Subp)
14625 then
14626 Set_Is_Dispatching_Operation (New_Subp);
14627
14628 if Present (DTC_Entity (Actual_Subp)) then
14629 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
14630 Set_DT_Position (New_Subp, DT_Position (Actual_Subp));
14631 end if;
14632 end if;
14633
14634 -- Indicate that a derived subprogram does not require a body and that
14635 -- it does not require processing of default expressions.
14636
14637 Set_Has_Completion (New_Subp);
14638 Set_Default_Expressions_Processed (New_Subp);
14639
14640 if Ekind (New_Subp) = E_Function then
14641 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
14642 end if;
14643 end Derive_Subprogram;
14644
14645 ------------------------
14646 -- Derive_Subprograms --
14647 ------------------------
14648
14649 procedure Derive_Subprograms
14650 (Parent_Type : Entity_Id;
14651 Derived_Type : Entity_Id;
14652 Generic_Actual : Entity_Id := Empty)
14653 is
14654 Op_List : constant Elist_Id :=
14655 Collect_Primitive_Operations (Parent_Type);
14656
14657 function Check_Derived_Type return Boolean;
14658 -- Check that all the entities derived from Parent_Type are found in
14659 -- the list of primitives of Derived_Type exactly in the same order.
14660
14661 procedure Derive_Interface_Subprogram
14662 (New_Subp : in out Entity_Id;
14663 Subp : Entity_Id;
14664 Actual_Subp : Entity_Id);
14665 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
14666 -- (which is an interface primitive). If Generic_Actual is present then
14667 -- Actual_Subp is the actual subprogram corresponding with the generic
14668 -- subprogram Subp.
14669
14670 function Check_Derived_Type return Boolean is
14671 E : Entity_Id;
14672 Elmt : Elmt_Id;
14673 List : Elist_Id;
14674 New_Subp : Entity_Id;
14675 Op_Elmt : Elmt_Id;
14676 Subp : Entity_Id;
14677
14678 begin
14679 -- Traverse list of entities in the current scope searching for
14680 -- an incomplete type whose full-view is derived type
14681
14682 E := First_Entity (Scope (Derived_Type));
14683 while Present (E) and then E /= Derived_Type loop
14684 if Ekind (E) = E_Incomplete_Type
14685 and then Present (Full_View (E))
14686 and then Full_View (E) = Derived_Type
14687 then
14688 -- Disable this test if Derived_Type completes an incomplete
14689 -- type because in such case more primitives can be added
14690 -- later to the list of primitives of Derived_Type by routine
14691 -- Process_Incomplete_Dependents
14692
14693 return True;
14694 end if;
14695
14696 E := Next_Entity (E);
14697 end loop;
14698
14699 List := Collect_Primitive_Operations (Derived_Type);
14700 Elmt := First_Elmt (List);
14701
14702 Op_Elmt := First_Elmt (Op_List);
14703 while Present (Op_Elmt) loop
14704 Subp := Node (Op_Elmt);
14705 New_Subp := Node (Elmt);
14706
14707 -- At this early stage Derived_Type has no entities with attribute
14708 -- Interface_Alias. In addition, such primitives are always
14709 -- located at the end of the list of primitives of Parent_Type.
14710 -- Therefore, if found we can safely stop processing pending
14711 -- entities.
14712
14713 exit when Present (Interface_Alias (Subp));
14714
14715 -- Handle hidden entities
14716
14717 if not Is_Predefined_Dispatching_Operation (Subp)
14718 and then Is_Hidden (Subp)
14719 then
14720 if Present (New_Subp)
14721 and then Primitive_Names_Match (Subp, New_Subp)
14722 then
14723 Next_Elmt (Elmt);
14724 end if;
14725
14726 else
14727 if not Present (New_Subp)
14728 or else Ekind (Subp) /= Ekind (New_Subp)
14729 or else not Primitive_Names_Match (Subp, New_Subp)
14730 then
14731 return False;
14732 end if;
14733
14734 Next_Elmt (Elmt);
14735 end if;
14736
14737 Next_Elmt (Op_Elmt);
14738 end loop;
14739
14740 return True;
14741 end Check_Derived_Type;
14742
14743 ---------------------------------
14744 -- Derive_Interface_Subprogram --
14745 ---------------------------------
14746
14747 procedure Derive_Interface_Subprogram
14748 (New_Subp : in out Entity_Id;
14749 Subp : Entity_Id;
14750 Actual_Subp : Entity_Id)
14751 is
14752 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
14753 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
14754
14755 begin
14756 pragma Assert (Is_Interface (Iface_Type));
14757
14758 Derive_Subprogram
14759 (New_Subp => New_Subp,
14760 Parent_Subp => Iface_Subp,
14761 Derived_Type => Derived_Type,
14762 Parent_Type => Iface_Type,
14763 Actual_Subp => Actual_Subp);
14764
14765 -- Given that this new interface entity corresponds with a primitive
14766 -- of the parent that was not overridden we must leave it associated
14767 -- with its parent primitive to ensure that it will share the same
14768 -- dispatch table slot when overridden.
14769
14770 if No (Actual_Subp) then
14771 Set_Alias (New_Subp, Subp);
14772
14773 -- For instantiations this is not needed since the previous call to
14774 -- Derive_Subprogram leaves the entity well decorated.
14775
14776 else
14777 pragma Assert (Alias (New_Subp) = Actual_Subp);
14778 null;
14779 end if;
14780 end Derive_Interface_Subprogram;
14781
14782 -- Local variables
14783
14784 Alias_Subp : Entity_Id;
14785 Act_List : Elist_Id;
14786 Act_Elmt : Elmt_Id;
14787 Act_Subp : Entity_Id := Empty;
14788 Elmt : Elmt_Id;
14789 Need_Search : Boolean := False;
14790 New_Subp : Entity_Id := Empty;
14791 Parent_Base : Entity_Id;
14792 Subp : Entity_Id;
14793
14794 -- Start of processing for Derive_Subprograms
14795
14796 begin
14797 if Ekind (Parent_Type) = E_Record_Type_With_Private
14798 and then Has_Discriminants (Parent_Type)
14799 and then Present (Full_View (Parent_Type))
14800 then
14801 Parent_Base := Full_View (Parent_Type);
14802 else
14803 Parent_Base := Parent_Type;
14804 end if;
14805
14806 if Present (Generic_Actual) then
14807 Act_List := Collect_Primitive_Operations (Generic_Actual);
14808 Act_Elmt := First_Elmt (Act_List);
14809 else
14810 Act_List := No_Elist;
14811 Act_Elmt := No_Elmt;
14812 end if;
14813
14814 -- Derive primitives inherited from the parent. Note that if the generic
14815 -- actual is present, this is not really a type derivation, it is a
14816 -- completion within an instance.
14817
14818 -- Case 1: Derived_Type does not implement interfaces
14819
14820 if not Is_Tagged_Type (Derived_Type)
14821 or else (not Has_Interfaces (Derived_Type)
14822 and then not (Present (Generic_Actual)
14823 and then Has_Interfaces (Generic_Actual)))
14824 then
14825 Elmt := First_Elmt (Op_List);
14826 while Present (Elmt) loop
14827 Subp := Node (Elmt);
14828
14829 -- Literals are derived earlier in the process of building the
14830 -- derived type, and are skipped here.
14831
14832 if Ekind (Subp) = E_Enumeration_Literal then
14833 null;
14834
14835 -- The actual is a direct descendant and the common primitive
14836 -- operations appear in the same order.
14837
14838 -- If the generic parent type is present, the derived type is an
14839 -- instance of a formal derived type, and within the instance its
14840 -- operations are those of the actual. We derive from the formal
14841 -- type but make the inherited operations aliases of the
14842 -- corresponding operations of the actual.
14843
14844 else
14845 pragma Assert (No (Node (Act_Elmt))
14846 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
14847 and then
14848 Type_Conformant
14849 (Subp, Node (Act_Elmt),
14850 Skip_Controlling_Formals => True)));
14851
14852 Derive_Subprogram
14853 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
14854
14855 if Present (Act_Elmt) then
14856 Next_Elmt (Act_Elmt);
14857 end if;
14858 end if;
14859
14860 Next_Elmt (Elmt);
14861 end loop;
14862
14863 -- Case 2: Derived_Type implements interfaces
14864
14865 else
14866 -- If the parent type has no predefined primitives we remove
14867 -- predefined primitives from the list of primitives of generic
14868 -- actual to simplify the complexity of this algorithm.
14869
14870 if Present (Generic_Actual) then
14871 declare
14872 Has_Predefined_Primitives : Boolean := False;
14873
14874 begin
14875 -- Check if the parent type has predefined primitives
14876
14877 Elmt := First_Elmt (Op_List);
14878 while Present (Elmt) loop
14879 Subp := Node (Elmt);
14880
14881 if Is_Predefined_Dispatching_Operation (Subp)
14882 and then not Comes_From_Source (Ultimate_Alias (Subp))
14883 then
14884 Has_Predefined_Primitives := True;
14885 exit;
14886 end if;
14887
14888 Next_Elmt (Elmt);
14889 end loop;
14890
14891 -- Remove predefined primitives of Generic_Actual. We must use
14892 -- an auxiliary list because in case of tagged types the value
14893 -- returned by Collect_Primitive_Operations is the value stored
14894 -- in its Primitive_Operations attribute (and we don't want to
14895 -- modify its current contents).
14896
14897 if not Has_Predefined_Primitives then
14898 declare
14899 Aux_List : constant Elist_Id := New_Elmt_List;
14900
14901 begin
14902 Elmt := First_Elmt (Act_List);
14903 while Present (Elmt) loop
14904 Subp := Node (Elmt);
14905
14906 if not Is_Predefined_Dispatching_Operation (Subp)
14907 or else Comes_From_Source (Subp)
14908 then
14909 Append_Elmt (Subp, Aux_List);
14910 end if;
14911
14912 Next_Elmt (Elmt);
14913 end loop;
14914
14915 Act_List := Aux_List;
14916 end;
14917 end if;
14918
14919 Act_Elmt := First_Elmt (Act_List);
14920 Act_Subp := Node (Act_Elmt);
14921 end;
14922 end if;
14923
14924 -- Stage 1: If the generic actual is not present we derive the
14925 -- primitives inherited from the parent type. If the generic parent
14926 -- type is present, the derived type is an instance of a formal
14927 -- derived type, and within the instance its operations are those of
14928 -- the actual. We derive from the formal type but make the inherited
14929 -- operations aliases of the corresponding operations of the actual.
14930
14931 Elmt := First_Elmt (Op_List);
14932 while Present (Elmt) loop
14933 Subp := Node (Elmt);
14934 Alias_Subp := Ultimate_Alias (Subp);
14935
14936 -- Do not derive internal entities of the parent that link
14937 -- interface primitives with their covering primitive. These
14938 -- entities will be added to this type when frozen.
14939
14940 if Present (Interface_Alias (Subp)) then
14941 goto Continue;
14942 end if;
14943
14944 -- If the generic actual is present find the corresponding
14945 -- operation in the generic actual. If the parent type is a
14946 -- direct ancestor of the derived type then, even if it is an
14947 -- interface, the operations are inherited from the primary
14948 -- dispatch table and are in the proper order. If we detect here
14949 -- that primitives are not in the same order we traverse the list
14950 -- of primitive operations of the actual to find the one that
14951 -- implements the interface primitive.
14952
14953 if Need_Search
14954 or else
14955 (Present (Generic_Actual)
14956 and then Present (Act_Subp)
14957 and then not
14958 (Primitive_Names_Match (Subp, Act_Subp)
14959 and then
14960 Type_Conformant (Subp, Act_Subp,
14961 Skip_Controlling_Formals => True)))
14962 then
14963 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
14964 Use_Full_View => True));
14965
14966 -- Remember that we need searching for all pending primitives
14967
14968 Need_Search := True;
14969
14970 -- Handle entities associated with interface primitives
14971
14972 if Present (Alias_Subp)
14973 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
14974 and then not Is_Predefined_Dispatching_Operation (Subp)
14975 then
14976 -- Search for the primitive in the homonym chain
14977
14978 Act_Subp :=
14979 Find_Primitive_Covering_Interface
14980 (Tagged_Type => Generic_Actual,
14981 Iface_Prim => Alias_Subp);
14982
14983 -- Previous search may not locate primitives covering
14984 -- interfaces defined in generics units or instantiations.
14985 -- (it fails if the covering primitive has formals whose
14986 -- type is also defined in generics or instantiations).
14987 -- In such case we search in the list of primitives of the
14988 -- generic actual for the internal entity that links the
14989 -- interface primitive and the covering primitive.
14990
14991 if No (Act_Subp)
14992 and then Is_Generic_Type (Parent_Type)
14993 then
14994 -- This code has been designed to handle only generic
14995 -- formals that implement interfaces that are defined
14996 -- in a generic unit or instantiation. If this code is
14997 -- needed for other cases we must review it because
14998 -- (given that it relies on Original_Location to locate
14999 -- the primitive of Generic_Actual that covers the
15000 -- interface) it could leave linked through attribute
15001 -- Alias entities of unrelated instantiations).
15002
15003 pragma Assert
15004 (Is_Generic_Unit
15005 (Scope (Find_Dispatching_Type (Alias_Subp)))
15006 or else
15007 Instantiation_Depth
15008 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
15009
15010 declare
15011 Iface_Prim_Loc : constant Source_Ptr :=
15012 Original_Location (Sloc (Alias_Subp));
15013
15014 Elmt : Elmt_Id;
15015 Prim : Entity_Id;
15016
15017 begin
15018 Elmt :=
15019 First_Elmt (Primitive_Operations (Generic_Actual));
15020
15021 Search : while Present (Elmt) loop
15022 Prim := Node (Elmt);
15023
15024 if Present (Interface_Alias (Prim))
15025 and then Original_Location
15026 (Sloc (Interface_Alias (Prim))) =
15027 Iface_Prim_Loc
15028 then
15029 Act_Subp := Alias (Prim);
15030 exit Search;
15031 end if;
15032
15033 Next_Elmt (Elmt);
15034 end loop Search;
15035 end;
15036 end if;
15037
15038 pragma Assert (Present (Act_Subp)
15039 or else Is_Abstract_Type (Generic_Actual)
15040 or else Serious_Errors_Detected > 0);
15041
15042 -- Handle predefined primitives plus the rest of user-defined
15043 -- primitives
15044
15045 else
15046 Act_Elmt := First_Elmt (Act_List);
15047 while Present (Act_Elmt) loop
15048 Act_Subp := Node (Act_Elmt);
15049
15050 exit when Primitive_Names_Match (Subp, Act_Subp)
15051 and then Type_Conformant
15052 (Subp, Act_Subp,
15053 Skip_Controlling_Formals => True)
15054 and then No (Interface_Alias (Act_Subp));
15055
15056 Next_Elmt (Act_Elmt);
15057 end loop;
15058
15059 if No (Act_Elmt) then
15060 Act_Subp := Empty;
15061 end if;
15062 end if;
15063 end if;
15064
15065 -- Case 1: If the parent is a limited interface then it has the
15066 -- predefined primitives of synchronized interfaces. However, the
15067 -- actual type may be a non-limited type and hence it does not
15068 -- have such primitives.
15069
15070 if Present (Generic_Actual)
15071 and then not Present (Act_Subp)
15072 and then Is_Limited_Interface (Parent_Base)
15073 and then Is_Predefined_Interface_Primitive (Subp)
15074 then
15075 null;
15076
15077 -- Case 2: Inherit entities associated with interfaces that were
15078 -- not covered by the parent type. We exclude here null interface
15079 -- primitives because they do not need special management.
15080
15081 -- We also exclude interface operations that are renamings. If the
15082 -- subprogram is an explicit renaming of an interface primitive,
15083 -- it is a regular primitive operation, and the presence of its
15084 -- alias is not relevant: it has to be derived like any other
15085 -- primitive.
15086
15087 elsif Present (Alias (Subp))
15088 and then Nkind (Unit_Declaration_Node (Subp)) /=
15089 N_Subprogram_Renaming_Declaration
15090 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
15091 and then not
15092 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
15093 and then Null_Present (Parent (Alias_Subp)))
15094 then
15095 -- If this is an abstract private type then we transfer the
15096 -- derivation of the interface primitive from the partial view
15097 -- to the full view. This is safe because all the interfaces
15098 -- must be visible in the partial view. Done to avoid adding
15099 -- a new interface derivation to the private part of the
15100 -- enclosing package; otherwise this new derivation would be
15101 -- decorated as hidden when the analysis of the enclosing
15102 -- package completes.
15103
15104 if Is_Abstract_Type (Derived_Type)
15105 and then In_Private_Part (Current_Scope)
15106 and then Has_Private_Declaration (Derived_Type)
15107 then
15108 declare
15109 Partial_View : Entity_Id;
15110 Elmt : Elmt_Id;
15111 Ent : Entity_Id;
15112
15113 begin
15114 Partial_View := First_Entity (Current_Scope);
15115 loop
15116 exit when No (Partial_View)
15117 or else (Has_Private_Declaration (Partial_View)
15118 and then
15119 Full_View (Partial_View) = Derived_Type);
15120
15121 Next_Entity (Partial_View);
15122 end loop;
15123
15124 -- If the partial view was not found then the source code
15125 -- has errors and the derivation is not needed.
15126
15127 if Present (Partial_View) then
15128 Elmt :=
15129 First_Elmt (Primitive_Operations (Partial_View));
15130 while Present (Elmt) loop
15131 Ent := Node (Elmt);
15132
15133 if Present (Alias (Ent))
15134 and then Ultimate_Alias (Ent) = Alias (Subp)
15135 then
15136 Append_Elmt
15137 (Ent, Primitive_Operations (Derived_Type));
15138 exit;
15139 end if;
15140
15141 Next_Elmt (Elmt);
15142 end loop;
15143
15144 -- If the interface primitive was not found in the
15145 -- partial view then this interface primitive was
15146 -- overridden. We add a derivation to activate in
15147 -- Derive_Progenitor_Subprograms the machinery to
15148 -- search for it.
15149
15150 if No (Elmt) then
15151 Derive_Interface_Subprogram
15152 (New_Subp => New_Subp,
15153 Subp => Subp,
15154 Actual_Subp => Act_Subp);
15155 end if;
15156 end if;
15157 end;
15158 else
15159 Derive_Interface_Subprogram
15160 (New_Subp => New_Subp,
15161 Subp => Subp,
15162 Actual_Subp => Act_Subp);
15163 end if;
15164
15165 -- Case 3: Common derivation
15166
15167 else
15168 Derive_Subprogram
15169 (New_Subp => New_Subp,
15170 Parent_Subp => Subp,
15171 Derived_Type => Derived_Type,
15172 Parent_Type => Parent_Base,
15173 Actual_Subp => Act_Subp);
15174 end if;
15175
15176 -- No need to update Act_Elm if we must search for the
15177 -- corresponding operation in the generic actual
15178
15179 if not Need_Search
15180 and then Present (Act_Elmt)
15181 then
15182 Next_Elmt (Act_Elmt);
15183 Act_Subp := Node (Act_Elmt);
15184 end if;
15185
15186 <<Continue>>
15187 Next_Elmt (Elmt);
15188 end loop;
15189
15190 -- Inherit additional operations from progenitors. If the derived
15191 -- type is a generic actual, there are not new primitive operations
15192 -- for the type because it has those of the actual, and therefore
15193 -- nothing needs to be done. The renamings generated above are not
15194 -- primitive operations, and their purpose is simply to make the
15195 -- proper operations visible within an instantiation.
15196
15197 if No (Generic_Actual) then
15198 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
15199 end if;
15200 end if;
15201
15202 -- Final check: Direct descendants must have their primitives in the
15203 -- same order. We exclude from this test untagged types and instances
15204 -- of formal derived types. We skip this test if we have already
15205 -- reported serious errors in the sources.
15206
15207 pragma Assert (not Is_Tagged_Type (Derived_Type)
15208 or else Present (Generic_Actual)
15209 or else Serious_Errors_Detected > 0
15210 or else Check_Derived_Type);
15211 end Derive_Subprograms;
15212
15213 --------------------------------
15214 -- Derived_Standard_Character --
15215 --------------------------------
15216
15217 procedure Derived_Standard_Character
15218 (N : Node_Id;
15219 Parent_Type : Entity_Id;
15220 Derived_Type : Entity_Id)
15221 is
15222 Loc : constant Source_Ptr := Sloc (N);
15223 Def : constant Node_Id := Type_Definition (N);
15224 Indic : constant Node_Id := Subtype_Indication (Def);
15225 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
15226 Implicit_Base : constant Entity_Id :=
15227 Create_Itype
15228 (E_Enumeration_Type, N, Derived_Type, 'B');
15229
15230 Lo : Node_Id;
15231 Hi : Node_Id;
15232
15233 begin
15234 Discard_Node (Process_Subtype (Indic, N));
15235
15236 Set_Etype (Implicit_Base, Parent_Base);
15237 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
15238 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
15239
15240 Set_Is_Character_Type (Implicit_Base, True);
15241 Set_Has_Delayed_Freeze (Implicit_Base);
15242
15243 -- The bounds of the implicit base are the bounds of the parent base.
15244 -- Note that their type is the parent base.
15245
15246 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
15247 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
15248
15249 Set_Scalar_Range (Implicit_Base,
15250 Make_Range (Loc,
15251 Low_Bound => Lo,
15252 High_Bound => Hi));
15253
15254 Conditional_Delay (Derived_Type, Parent_Type);
15255
15256 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
15257 Set_Etype (Derived_Type, Implicit_Base);
15258 Set_Size_Info (Derived_Type, Parent_Type);
15259
15260 if Unknown_RM_Size (Derived_Type) then
15261 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
15262 end if;
15263
15264 Set_Is_Character_Type (Derived_Type, True);
15265
15266 if Nkind (Indic) /= N_Subtype_Indication then
15267
15268 -- If no explicit constraint, the bounds are those
15269 -- of the parent type.
15270
15271 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
15272 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
15273 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
15274 end if;
15275
15276 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
15277
15278 -- Because the implicit base is used in the conversion of the bounds, we
15279 -- have to freeze it now. This is similar to what is done for numeric
15280 -- types, and it equally suspicious, but otherwise a non-static bound
15281 -- will have a reference to an unfrozen type, which is rejected by Gigi
15282 -- (???). This requires specific care for definition of stream
15283 -- attributes. For details, see comments at the end of
15284 -- Build_Derived_Numeric_Type.
15285
15286 Freeze_Before (N, Implicit_Base);
15287 end Derived_Standard_Character;
15288
15289 ------------------------------
15290 -- Derived_Type_Declaration --
15291 ------------------------------
15292
15293 procedure Derived_Type_Declaration
15294 (T : Entity_Id;
15295 N : Node_Id;
15296 Is_Completion : Boolean)
15297 is
15298 Parent_Type : Entity_Id;
15299
15300 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
15301 -- Check whether the parent type is a generic formal, or derives
15302 -- directly or indirectly from one.
15303
15304 ------------------------
15305 -- Comes_From_Generic --
15306 ------------------------
15307
15308 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
15309 begin
15310 if Is_Generic_Type (Typ) then
15311 return True;
15312
15313 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
15314 return True;
15315
15316 elsif Is_Private_Type (Typ)
15317 and then Present (Full_View (Typ))
15318 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
15319 then
15320 return True;
15321
15322 elsif Is_Generic_Actual_Type (Typ) then
15323 return True;
15324
15325 else
15326 return False;
15327 end if;
15328 end Comes_From_Generic;
15329
15330 -- Local variables
15331
15332 Def : constant Node_Id := Type_Definition (N);
15333 Iface_Def : Node_Id;
15334 Indic : constant Node_Id := Subtype_Indication (Def);
15335 Extension : constant Node_Id := Record_Extension_Part (Def);
15336 Parent_Node : Node_Id;
15337 Taggd : Boolean;
15338
15339 -- Start of processing for Derived_Type_Declaration
15340
15341 begin
15342 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
15343
15344 -- Ada 2005 (AI-251): In case of interface derivation check that the
15345 -- parent is also an interface.
15346
15347 if Interface_Present (Def) then
15348 Check_SPARK_05_Restriction ("interface is not allowed", Def);
15349
15350 if not Is_Interface (Parent_Type) then
15351 Diagnose_Interface (Indic, Parent_Type);
15352
15353 else
15354 Parent_Node := Parent (Base_Type (Parent_Type));
15355 Iface_Def := Type_Definition (Parent_Node);
15356
15357 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
15358 -- other limited interfaces.
15359
15360 if Limited_Present (Def) then
15361 if Limited_Present (Iface_Def) then
15362 null;
15363
15364 elsif Protected_Present (Iface_Def) then
15365 Error_Msg_NE
15366 ("descendant of& must be declared"
15367 & " as a protected interface",
15368 N, Parent_Type);
15369
15370 elsif Synchronized_Present (Iface_Def) then
15371 Error_Msg_NE
15372 ("descendant of& must be declared"
15373 & " as a synchronized interface",
15374 N, Parent_Type);
15375
15376 elsif Task_Present (Iface_Def) then
15377 Error_Msg_NE
15378 ("descendant of& must be declared as a task interface",
15379 N, Parent_Type);
15380
15381 else
15382 Error_Msg_N
15383 ("(Ada 2005) limited interface cannot "
15384 & "inherit from non-limited interface", Indic);
15385 end if;
15386
15387 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
15388 -- from non-limited or limited interfaces.
15389
15390 elsif not Protected_Present (Def)
15391 and then not Synchronized_Present (Def)
15392 and then not Task_Present (Def)
15393 then
15394 if Limited_Present (Iface_Def) then
15395 null;
15396
15397 elsif Protected_Present (Iface_Def) then
15398 Error_Msg_NE
15399 ("descendant of& must be declared"
15400 & " as a protected interface",
15401 N, Parent_Type);
15402
15403 elsif Synchronized_Present (Iface_Def) then
15404 Error_Msg_NE
15405 ("descendant of& must be declared"
15406 & " as a synchronized interface",
15407 N, Parent_Type);
15408
15409 elsif Task_Present (Iface_Def) then
15410 Error_Msg_NE
15411 ("descendant of& must be declared as a task interface",
15412 N, Parent_Type);
15413 else
15414 null;
15415 end if;
15416 end if;
15417 end if;
15418 end if;
15419
15420 if Is_Tagged_Type (Parent_Type)
15421 and then Is_Concurrent_Type (Parent_Type)
15422 and then not Is_Interface (Parent_Type)
15423 then
15424 Error_Msg_N
15425 ("parent type of a record extension cannot be "
15426 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
15427 Set_Etype (T, Any_Type);
15428 return;
15429 end if;
15430
15431 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
15432 -- interfaces
15433
15434 if Is_Tagged_Type (Parent_Type)
15435 and then Is_Non_Empty_List (Interface_List (Def))
15436 then
15437 declare
15438 Intf : Node_Id;
15439 T : Entity_Id;
15440
15441 begin
15442 Intf := First (Interface_List (Def));
15443 while Present (Intf) loop
15444 T := Find_Type_Of_Subtype_Indic (Intf);
15445
15446 if not Is_Interface (T) then
15447 Diagnose_Interface (Intf, T);
15448
15449 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
15450 -- a limited type from having a nonlimited progenitor.
15451
15452 elsif (Limited_Present (Def)
15453 or else (not Is_Interface (Parent_Type)
15454 and then Is_Limited_Type (Parent_Type)))
15455 and then not Is_Limited_Interface (T)
15456 then
15457 Error_Msg_NE
15458 ("progenitor interface& of limited type must be limited",
15459 N, T);
15460 end if;
15461
15462 Next (Intf);
15463 end loop;
15464 end;
15465 end if;
15466
15467 if Parent_Type = Any_Type
15468 or else Etype (Parent_Type) = Any_Type
15469 or else (Is_Class_Wide_Type (Parent_Type)
15470 and then Etype (Parent_Type) = T)
15471 then
15472 -- If Parent_Type is undefined or illegal, make new type into a
15473 -- subtype of Any_Type, and set a few attributes to prevent cascaded
15474 -- errors. If this is a self-definition, emit error now.
15475
15476 if T = Parent_Type or else T = Etype (Parent_Type) then
15477 Error_Msg_N ("type cannot be used in its own definition", Indic);
15478 end if;
15479
15480 Set_Ekind (T, Ekind (Parent_Type));
15481 Set_Etype (T, Any_Type);
15482 Set_Scalar_Range (T, Scalar_Range (Any_Type));
15483
15484 if Is_Tagged_Type (T)
15485 and then Is_Record_Type (T)
15486 then
15487 Set_Direct_Primitive_Operations (T, New_Elmt_List);
15488 end if;
15489
15490 return;
15491 end if;
15492
15493 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
15494 -- an interface is special because the list of interfaces in the full
15495 -- view can be given in any order. For example:
15496
15497 -- type A is interface;
15498 -- type B is interface and A;
15499 -- type D is new B with private;
15500 -- private
15501 -- type D is new A and B with null record; -- 1 --
15502
15503 -- In this case we perform the following transformation of -1-:
15504
15505 -- type D is new B and A with null record;
15506
15507 -- If the parent of the full-view covers the parent of the partial-view
15508 -- we have two possible cases:
15509
15510 -- 1) They have the same parent
15511 -- 2) The parent of the full-view implements some further interfaces
15512
15513 -- In both cases we do not need to perform the transformation. In the
15514 -- first case the source program is correct and the transformation is
15515 -- not needed; in the second case the source program does not fulfill
15516 -- the no-hidden interfaces rule (AI-396) and the error will be reported
15517 -- later.
15518
15519 -- This transformation not only simplifies the rest of the analysis of
15520 -- this type declaration but also simplifies the correct generation of
15521 -- the object layout to the expander.
15522
15523 if In_Private_Part (Current_Scope)
15524 and then Is_Interface (Parent_Type)
15525 then
15526 declare
15527 Iface : Node_Id;
15528 Partial_View : Entity_Id;
15529 Partial_View_Parent : Entity_Id;
15530 New_Iface : Node_Id;
15531
15532 begin
15533 -- Look for the associated private type declaration
15534
15535 Partial_View := First_Entity (Current_Scope);
15536 loop
15537 exit when No (Partial_View)
15538 or else (Has_Private_Declaration (Partial_View)
15539 and then Full_View (Partial_View) = T);
15540
15541 Next_Entity (Partial_View);
15542 end loop;
15543
15544 -- If the partial view was not found then the source code has
15545 -- errors and the transformation is not needed.
15546
15547 if Present (Partial_View) then
15548 Partial_View_Parent := Etype (Partial_View);
15549
15550 -- If the parent of the full-view covers the parent of the
15551 -- partial-view we have nothing else to do.
15552
15553 if Interface_Present_In_Ancestor
15554 (Parent_Type, Partial_View_Parent)
15555 then
15556 null;
15557
15558 -- Traverse the list of interfaces of the full-view to look
15559 -- for the parent of the partial-view and perform the tree
15560 -- transformation.
15561
15562 else
15563 Iface := First (Interface_List (Def));
15564 while Present (Iface) loop
15565 if Etype (Iface) = Etype (Partial_View) then
15566 Rewrite (Subtype_Indication (Def),
15567 New_Copy (Subtype_Indication
15568 (Parent (Partial_View))));
15569
15570 New_Iface :=
15571 Make_Identifier (Sloc (N), Chars (Parent_Type));
15572 Append (New_Iface, Interface_List (Def));
15573
15574 -- Analyze the transformed code
15575
15576 Derived_Type_Declaration (T, N, Is_Completion);
15577 return;
15578 end if;
15579
15580 Next (Iface);
15581 end loop;
15582 end if;
15583 end if;
15584 end;
15585 end if;
15586
15587 -- Only composite types other than array types are allowed to have
15588 -- discriminants.
15589
15590 if Present (Discriminant_Specifications (N)) then
15591 if (Is_Elementary_Type (Parent_Type)
15592 or else
15593 Is_Array_Type (Parent_Type))
15594 and then not Error_Posted (N)
15595 then
15596 Error_Msg_N
15597 ("elementary or array type cannot have discriminants",
15598 Defining_Identifier (First (Discriminant_Specifications (N))));
15599 Set_Has_Discriminants (T, False);
15600
15601 -- The type is allowed to have discriminants
15602
15603 else
15604 Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
15605 end if;
15606 end if;
15607
15608 -- In Ada 83, a derived type defined in a package specification cannot
15609 -- be used for further derivation until the end of its visible part.
15610 -- Note that derivation in the private part of the package is allowed.
15611
15612 if Ada_Version = Ada_83
15613 and then Is_Derived_Type (Parent_Type)
15614 and then In_Visible_Part (Scope (Parent_Type))
15615 then
15616 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
15617 Error_Msg_N
15618 ("(Ada 83): premature use of type for derivation", Indic);
15619 end if;
15620 end if;
15621
15622 -- Check for early use of incomplete or private type
15623
15624 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
15625 Error_Msg_N ("premature derivation of incomplete type", Indic);
15626 return;
15627
15628 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
15629 and then not Comes_From_Generic (Parent_Type))
15630 or else Has_Private_Component (Parent_Type)
15631 then
15632 -- The ancestor type of a formal type can be incomplete, in which
15633 -- case only the operations of the partial view are available in the
15634 -- generic. Subsequent checks may be required when the full view is
15635 -- analyzed to verify that a derivation from a tagged type has an
15636 -- extension.
15637
15638 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
15639 null;
15640
15641 elsif No (Underlying_Type (Parent_Type))
15642 or else Has_Private_Component (Parent_Type)
15643 then
15644 Error_Msg_N
15645 ("premature derivation of derived or private type", Indic);
15646
15647 -- Flag the type itself as being in error, this prevents some
15648 -- nasty problems with subsequent uses of the malformed type.
15649
15650 Set_Error_Posted (T);
15651
15652 -- Check that within the immediate scope of an untagged partial
15653 -- view it's illegal to derive from the partial view if the
15654 -- full view is tagged. (7.3(7))
15655
15656 -- We verify that the Parent_Type is a partial view by checking
15657 -- that it is not a Full_Type_Declaration (i.e. a private type or
15658 -- private extension declaration), to distinguish a partial view
15659 -- from a derivation from a private type which also appears as
15660 -- E_Private_Type. If the parent base type is not declared in an
15661 -- enclosing scope there is no need to check.
15662
15663 elsif Present (Full_View (Parent_Type))
15664 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
15665 and then not Is_Tagged_Type (Parent_Type)
15666 and then Is_Tagged_Type (Full_View (Parent_Type))
15667 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15668 then
15669 Error_Msg_N
15670 ("premature derivation from type with tagged full view",
15671 Indic);
15672 end if;
15673 end if;
15674
15675 -- Check that form of derivation is appropriate
15676
15677 Taggd := Is_Tagged_Type (Parent_Type);
15678
15679 -- Perhaps the parent type should be changed to the class-wide type's
15680 -- specific type in this case to prevent cascading errors ???
15681
15682 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
15683 Error_Msg_N ("parent type must not be a class-wide type", Indic);
15684 return;
15685 end if;
15686
15687 if Present (Extension) and then not Taggd then
15688 Error_Msg_N
15689 ("type derived from untagged type cannot have extension", Indic);
15690
15691 elsif No (Extension) and then Taggd then
15692
15693 -- If this declaration is within a private part (or body) of a
15694 -- generic instantiation then the derivation is allowed (the parent
15695 -- type can only appear tagged in this case if it's a generic actual
15696 -- type, since it would otherwise have been rejected in the analysis
15697 -- of the generic template).
15698
15699 if not Is_Generic_Actual_Type (Parent_Type)
15700 or else In_Visible_Part (Scope (Parent_Type))
15701 then
15702 if Is_Class_Wide_Type (Parent_Type) then
15703 Error_Msg_N
15704 ("parent type must not be a class-wide type", Indic);
15705
15706 -- Use specific type to prevent cascaded errors.
15707
15708 Parent_Type := Etype (Parent_Type);
15709
15710 else
15711 Error_Msg_N
15712 ("type derived from tagged type must have extension", Indic);
15713 end if;
15714 end if;
15715 end if;
15716
15717 -- AI-443: Synchronized formal derived types require a private
15718 -- extension. There is no point in checking the ancestor type or
15719 -- the progenitors since the construct is wrong to begin with.
15720
15721 if Ada_Version >= Ada_2005
15722 and then Is_Generic_Type (T)
15723 and then Present (Original_Node (N))
15724 then
15725 declare
15726 Decl : constant Node_Id := Original_Node (N);
15727
15728 begin
15729 if Nkind (Decl) = N_Formal_Type_Declaration
15730 and then Nkind (Formal_Type_Definition (Decl)) =
15731 N_Formal_Derived_Type_Definition
15732 and then Synchronized_Present (Formal_Type_Definition (Decl))
15733 and then No (Extension)
15734
15735 -- Avoid emitting a duplicate error message
15736
15737 and then not Error_Posted (Indic)
15738 then
15739 Error_Msg_N
15740 ("synchronized derived type must have extension", N);
15741 end if;
15742 end;
15743 end if;
15744
15745 if Null_Exclusion_Present (Def)
15746 and then not Is_Access_Type (Parent_Type)
15747 then
15748 Error_Msg_N ("null exclusion can only apply to an access type", N);
15749 end if;
15750
15751 -- Avoid deriving parent primitives of underlying record views
15752
15753 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
15754 Derive_Subps => not Is_Underlying_Record_View (T));
15755
15756 -- AI-419: The parent type of an explicitly limited derived type must
15757 -- be a limited type or a limited interface.
15758
15759 if Limited_Present (Def) then
15760 Set_Is_Limited_Record (T);
15761
15762 if Is_Interface (T) then
15763 Set_Is_Limited_Interface (T);
15764 end if;
15765
15766 if not Is_Limited_Type (Parent_Type)
15767 and then
15768 (not Is_Interface (Parent_Type)
15769 or else not Is_Limited_Interface (Parent_Type))
15770 then
15771 -- AI05-0096: a derivation in the private part of an instance is
15772 -- legal if the generic formal is untagged limited, and the actual
15773 -- is non-limited.
15774
15775 if Is_Generic_Actual_Type (Parent_Type)
15776 and then In_Private_Part (Current_Scope)
15777 and then
15778 not Is_Tagged_Type
15779 (Generic_Parent_Type (Parent (Parent_Type)))
15780 then
15781 null;
15782
15783 else
15784 Error_Msg_NE
15785 ("parent type& of limited type must be limited",
15786 N, Parent_Type);
15787 end if;
15788 end if;
15789 end if;
15790
15791 -- In SPARK, there are no derived type definitions other than type
15792 -- extensions of tagged record types.
15793
15794 if No (Extension) then
15795 Check_SPARK_05_Restriction
15796 ("derived type is not allowed", Original_Node (N));
15797 end if;
15798 end Derived_Type_Declaration;
15799
15800 ------------------------
15801 -- Diagnose_Interface --
15802 ------------------------
15803
15804 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
15805 begin
15806 if not Is_Interface (E)
15807 and then E /= Any_Type
15808 then
15809 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
15810 end if;
15811 end Diagnose_Interface;
15812
15813 ----------------------------------
15814 -- Enumeration_Type_Declaration --
15815 ----------------------------------
15816
15817 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15818 Ev : Uint;
15819 L : Node_Id;
15820 R_Node : Node_Id;
15821 B_Node : Node_Id;
15822
15823 begin
15824 -- Create identifier node representing lower bound
15825
15826 B_Node := New_Node (N_Identifier, Sloc (Def));
15827 L := First (Literals (Def));
15828 Set_Chars (B_Node, Chars (L));
15829 Set_Entity (B_Node, L);
15830 Set_Etype (B_Node, T);
15831 Set_Is_Static_Expression (B_Node, True);
15832
15833 R_Node := New_Node (N_Range, Sloc (Def));
15834 Set_Low_Bound (R_Node, B_Node);
15835
15836 Set_Ekind (T, E_Enumeration_Type);
15837 Set_First_Literal (T, L);
15838 Set_Etype (T, T);
15839 Set_Is_Constrained (T);
15840
15841 Ev := Uint_0;
15842
15843 -- Loop through literals of enumeration type setting pos and rep values
15844 -- except that if the Ekind is already set, then it means the literal
15845 -- was already constructed (case of a derived type declaration and we
15846 -- should not disturb the Pos and Rep values.
15847
15848 while Present (L) loop
15849 if Ekind (L) /= E_Enumeration_Literal then
15850 Set_Ekind (L, E_Enumeration_Literal);
15851 Set_Enumeration_Pos (L, Ev);
15852 Set_Enumeration_Rep (L, Ev);
15853 Set_Is_Known_Valid (L, True);
15854 end if;
15855
15856 Set_Etype (L, T);
15857 New_Overloaded_Entity (L);
15858 Generate_Definition (L);
15859 Set_Convention (L, Convention_Intrinsic);
15860
15861 -- Case of character literal
15862
15863 if Nkind (L) = N_Defining_Character_Literal then
15864 Set_Is_Character_Type (T, True);
15865
15866 -- Check violation of No_Wide_Characters
15867
15868 if Restriction_Check_Required (No_Wide_Characters) then
15869 Get_Name_String (Chars (L));
15870
15871 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
15872 Check_Restriction (No_Wide_Characters, L);
15873 end if;
15874 end if;
15875 end if;
15876
15877 Ev := Ev + 1;
15878 Next (L);
15879 end loop;
15880
15881 -- Now create a node representing upper bound
15882
15883 B_Node := New_Node (N_Identifier, Sloc (Def));
15884 Set_Chars (B_Node, Chars (Last (Literals (Def))));
15885 Set_Entity (B_Node, Last (Literals (Def)));
15886 Set_Etype (B_Node, T);
15887 Set_Is_Static_Expression (B_Node, True);
15888
15889 Set_High_Bound (R_Node, B_Node);
15890
15891 -- Initialize various fields of the type. Some of this information
15892 -- may be overwritten later through rep.clauses.
15893
15894 Set_Scalar_Range (T, R_Node);
15895 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
15896 Set_Enum_Esize (T);
15897 Set_Enum_Pos_To_Rep (T, Empty);
15898
15899 -- Set Discard_Names if configuration pragma set, or if there is
15900 -- a parameterless pragma in the current declarative region
15901
15902 if Global_Discard_Names or else Discard_Names (Scope (T)) then
15903 Set_Discard_Names (T);
15904 end if;
15905
15906 -- Process end label if there is one
15907
15908 if Present (Def) then
15909 Process_End_Label (Def, 'e', T);
15910 end if;
15911 end Enumeration_Type_Declaration;
15912
15913 ---------------------------------
15914 -- Expand_To_Stored_Constraint --
15915 ---------------------------------
15916
15917 function Expand_To_Stored_Constraint
15918 (Typ : Entity_Id;
15919 Constraint : Elist_Id) return Elist_Id
15920 is
15921 Explicitly_Discriminated_Type : Entity_Id;
15922 Expansion : Elist_Id;
15923 Discriminant : Entity_Id;
15924
15925 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
15926 -- Find the nearest type that actually specifies discriminants
15927
15928 ---------------------------------
15929 -- Type_With_Explicit_Discrims --
15930 ---------------------------------
15931
15932 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
15933 Typ : constant E := Base_Type (Id);
15934
15935 begin
15936 if Ekind (Typ) in Incomplete_Or_Private_Kind then
15937 if Present (Full_View (Typ)) then
15938 return Type_With_Explicit_Discrims (Full_View (Typ));
15939 end if;
15940
15941 else
15942 if Has_Discriminants (Typ) then
15943 return Typ;
15944 end if;
15945 end if;
15946
15947 if Etype (Typ) = Typ then
15948 return Empty;
15949 elsif Has_Discriminants (Typ) then
15950 return Typ;
15951 else
15952 return Type_With_Explicit_Discrims (Etype (Typ));
15953 end if;
15954
15955 end Type_With_Explicit_Discrims;
15956
15957 -- Start of processing for Expand_To_Stored_Constraint
15958
15959 begin
15960 if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then
15961 return No_Elist;
15962 end if;
15963
15964 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
15965
15966 if No (Explicitly_Discriminated_Type) then
15967 return No_Elist;
15968 end if;
15969
15970 Expansion := New_Elmt_List;
15971
15972 Discriminant :=
15973 First_Stored_Discriminant (Explicitly_Discriminated_Type);
15974 while Present (Discriminant) loop
15975 Append_Elmt
15976 (Get_Discriminant_Value
15977 (Discriminant, Explicitly_Discriminated_Type, Constraint),
15978 To => Expansion);
15979 Next_Stored_Discriminant (Discriminant);
15980 end loop;
15981
15982 return Expansion;
15983 end Expand_To_Stored_Constraint;
15984
15985 ---------------------------
15986 -- Find_Hidden_Interface --
15987 ---------------------------
15988
15989 function Find_Hidden_Interface
15990 (Src : Elist_Id;
15991 Dest : Elist_Id) return Entity_Id
15992 is
15993 Iface : Entity_Id;
15994 Iface_Elmt : Elmt_Id;
15995
15996 begin
15997 if Present (Src) and then Present (Dest) then
15998 Iface_Elmt := First_Elmt (Src);
15999 while Present (Iface_Elmt) loop
16000 Iface := Node (Iface_Elmt);
16001
16002 if Is_Interface (Iface)
16003 and then not Contain_Interface (Iface, Dest)
16004 then
16005 return Iface;
16006 end if;
16007
16008 Next_Elmt (Iface_Elmt);
16009 end loop;
16010 end if;
16011
16012 return Empty;
16013 end Find_Hidden_Interface;
16014
16015 --------------------
16016 -- Find_Type_Name --
16017 --------------------
16018
16019 function Find_Type_Name (N : Node_Id) return Entity_Id is
16020 Id : constant Entity_Id := Defining_Identifier (N);
16021 Prev : Entity_Id;
16022 New_Id : Entity_Id;
16023 Prev_Par : Node_Id;
16024
16025 procedure Check_Duplicate_Aspects;
16026 -- Check that aspects specified in a completion have not been specified
16027 -- already in the partial view. Type_Invariant and others can be
16028 -- specified on either view but never on both.
16029
16030 procedure Tag_Mismatch;
16031 -- Diagnose a tagged partial view whose full view is untagged.
16032 -- We post the message on the full view, with a reference to
16033 -- the previous partial view. The partial view can be private
16034 -- or incomplete, and these are handled in a different manner,
16035 -- so we determine the position of the error message from the
16036 -- respective slocs of both.
16037
16038 -----------------------------
16039 -- Check_Duplicate_Aspects --
16040 -----------------------------
16041 procedure Check_Duplicate_Aspects is
16042 Prev_Aspects : constant List_Id := Aspect_Specifications (Prev_Par);
16043 Full_Aspects : constant List_Id := Aspect_Specifications (N);
16044 F_Spec, P_Spec : Node_Id;
16045
16046 begin
16047 if Present (Prev_Aspects) and then Present (Full_Aspects) then
16048 F_Spec := First (Full_Aspects);
16049 while Present (F_Spec) loop
16050 P_Spec := First (Prev_Aspects);
16051 while Present (P_Spec) loop
16052 if
16053 Chars (Identifier (P_Spec)) = Chars (Identifier (F_Spec))
16054 then
16055 Error_Msg_N
16056 ("aspect already specified in private declaration",
16057 F_Spec);
16058 Remove (F_Spec);
16059 return;
16060 end if;
16061
16062 Next (P_Spec);
16063 end loop;
16064
16065 Next (F_Spec);
16066 end loop;
16067 end if;
16068 end Check_Duplicate_Aspects;
16069
16070 ------------------
16071 -- Tag_Mismatch --
16072 ------------------
16073
16074 procedure Tag_Mismatch is
16075 begin
16076 if Sloc (Prev) < Sloc (Id) then
16077 if Ada_Version >= Ada_2012
16078 and then Nkind (N) = N_Private_Type_Declaration
16079 then
16080 Error_Msg_NE
16081 ("declaration of private } must be a tagged type ", Id, Prev);
16082 else
16083 Error_Msg_NE
16084 ("full declaration of } must be a tagged type ", Id, Prev);
16085 end if;
16086
16087 else
16088 if Ada_Version >= Ada_2012
16089 and then Nkind (N) = N_Private_Type_Declaration
16090 then
16091 Error_Msg_NE
16092 ("declaration of private } must be a tagged type ", Prev, Id);
16093 else
16094 Error_Msg_NE
16095 ("full declaration of } must be a tagged type ", Prev, Id);
16096 end if;
16097 end if;
16098 end Tag_Mismatch;
16099
16100 -- Start of processing for Find_Type_Name
16101
16102 begin
16103 -- Find incomplete declaration, if one was given
16104
16105 Prev := Current_Entity_In_Scope (Id);
16106
16107 -- New type declaration
16108
16109 if No (Prev) then
16110 Enter_Name (Id);
16111 return Id;
16112
16113 -- Previous declaration exists
16114
16115 else
16116 Prev_Par := Parent (Prev);
16117
16118 -- Error if not incomplete/private case except if previous
16119 -- declaration is implicit, etc. Enter_Name will emit error if
16120 -- appropriate.
16121
16122 if not Is_Incomplete_Or_Private_Type (Prev) then
16123 Enter_Name (Id);
16124 New_Id := Id;
16125
16126 -- Check invalid completion of private or incomplete type
16127
16128 elsif not Nkind_In (N, N_Full_Type_Declaration,
16129 N_Task_Type_Declaration,
16130 N_Protected_Type_Declaration)
16131 and then
16132 (Ada_Version < Ada_2012
16133 or else not Is_Incomplete_Type (Prev)
16134 or else not Nkind_In (N, N_Private_Type_Declaration,
16135 N_Private_Extension_Declaration))
16136 then
16137 -- Completion must be a full type declarations (RM 7.3(4))
16138
16139 Error_Msg_Sloc := Sloc (Prev);
16140 Error_Msg_NE ("invalid completion of }", Id, Prev);
16141
16142 -- Set scope of Id to avoid cascaded errors. Entity is never
16143 -- examined again, except when saving globals in generics.
16144
16145 Set_Scope (Id, Current_Scope);
16146 New_Id := Id;
16147
16148 -- If this is a repeated incomplete declaration, no further
16149 -- checks are possible.
16150
16151 if Nkind (N) = N_Incomplete_Type_Declaration then
16152 return Prev;
16153 end if;
16154
16155 -- Case of full declaration of incomplete type
16156
16157 elsif Ekind (Prev) = E_Incomplete_Type
16158 and then (Ada_Version < Ada_2012
16159 or else No (Full_View (Prev))
16160 or else not Is_Private_Type (Full_View (Prev)))
16161 then
16162 -- Indicate that the incomplete declaration has a matching full
16163 -- declaration. The defining occurrence of the incomplete
16164 -- declaration remains the visible one, and the procedure
16165 -- Get_Full_View dereferences it whenever the type is used.
16166
16167 if Present (Full_View (Prev)) then
16168 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
16169 end if;
16170
16171 Set_Full_View (Prev, Id);
16172 Append_Entity (Id, Current_Scope);
16173 Set_Is_Public (Id, Is_Public (Prev));
16174 Set_Is_Internal (Id);
16175 New_Id := Prev;
16176
16177 -- If the incomplete view is tagged, a class_wide type has been
16178 -- created already. Use it for the private type as well, in order
16179 -- to prevent multiple incompatible class-wide types that may be
16180 -- created for self-referential anonymous access components.
16181
16182 if Is_Tagged_Type (Prev)
16183 and then Present (Class_Wide_Type (Prev))
16184 then
16185 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
16186 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
16187
16188 -- If the incomplete type is completed by a private declaration
16189 -- the class-wide type remains associated with the incomplete
16190 -- type, to prevent order-of-elaboration issues in gigi, else
16191 -- we associate the class-wide type with the known full view.
16192
16193 if Nkind (N) /= N_Private_Type_Declaration then
16194 Set_Etype (Class_Wide_Type (Id), Id);
16195 end if;
16196 end if;
16197
16198 -- Case of full declaration of private type
16199
16200 else
16201 -- If the private type was a completion of an incomplete type then
16202 -- update Prev to reference the private type
16203
16204 if Ada_Version >= Ada_2012
16205 and then Ekind (Prev) = E_Incomplete_Type
16206 and then Present (Full_View (Prev))
16207 and then Is_Private_Type (Full_View (Prev))
16208 then
16209 Prev := Full_View (Prev);
16210 Prev_Par := Parent (Prev);
16211 end if;
16212
16213 if Nkind (N) = N_Full_Type_Declaration
16214 and then Nkind_In
16215 (Type_Definition (N), N_Record_Definition,
16216 N_Derived_Type_Definition)
16217 and then Interface_Present (Type_Definition (N))
16218 then
16219 Error_Msg_N
16220 ("completion of private type cannot be an interface", N);
16221 end if;
16222
16223 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
16224 if Etype (Prev) /= Prev then
16225
16226 -- Prev is a private subtype or a derived type, and needs
16227 -- no completion.
16228
16229 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
16230 New_Id := Id;
16231
16232 elsif Ekind (Prev) = E_Private_Type
16233 and then Nkind_In (N, N_Task_Type_Declaration,
16234 N_Protected_Type_Declaration)
16235 then
16236 Error_Msg_N
16237 ("completion of nonlimited type cannot be limited", N);
16238
16239 elsif Ekind (Prev) = E_Record_Type_With_Private
16240 and then Nkind_In (N, N_Task_Type_Declaration,
16241 N_Protected_Type_Declaration)
16242 then
16243 if not Is_Limited_Record (Prev) then
16244 Error_Msg_N
16245 ("completion of nonlimited type cannot be limited", N);
16246
16247 elsif No (Interface_List (N)) then
16248 Error_Msg_N
16249 ("completion of tagged private type must be tagged",
16250 N);
16251 end if;
16252 end if;
16253
16254 -- Ada 2005 (AI-251): Private extension declaration of a task
16255 -- type or a protected type. This case arises when covering
16256 -- interface types.
16257
16258 elsif Nkind_In (N, N_Task_Type_Declaration,
16259 N_Protected_Type_Declaration)
16260 then
16261 null;
16262
16263 elsif Nkind (N) /= N_Full_Type_Declaration
16264 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
16265 then
16266 Error_Msg_N
16267 ("full view of private extension must be an extension", N);
16268
16269 elsif not (Abstract_Present (Parent (Prev)))
16270 and then Abstract_Present (Type_Definition (N))
16271 then
16272 Error_Msg_N
16273 ("full view of non-abstract extension cannot be abstract", N);
16274 end if;
16275
16276 if not In_Private_Part (Current_Scope) then
16277 Error_Msg_N
16278 ("declaration of full view must appear in private part", N);
16279 end if;
16280
16281 if Ada_Version >= Ada_2012 then
16282 Check_Duplicate_Aspects;
16283 end if;
16284
16285 Copy_And_Swap (Prev, Id);
16286 Set_Has_Private_Declaration (Prev);
16287 Set_Has_Private_Declaration (Id);
16288
16289 -- Preserve aspect and iterator flags that may have been set on
16290 -- the partial view.
16291
16292 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
16293 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
16294
16295 -- If no error, propagate freeze_node from private to full view.
16296 -- It may have been generated for an early operational item.
16297
16298 if Present (Freeze_Node (Id))
16299 and then Serious_Errors_Detected = 0
16300 and then No (Full_View (Id))
16301 then
16302 Set_Freeze_Node (Prev, Freeze_Node (Id));
16303 Set_Freeze_Node (Id, Empty);
16304 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
16305 end if;
16306
16307 Set_Full_View (Id, Prev);
16308 New_Id := Prev;
16309 end if;
16310
16311 -- Verify that full declaration conforms to partial one
16312
16313 if Is_Incomplete_Or_Private_Type (Prev)
16314 and then Present (Discriminant_Specifications (Prev_Par))
16315 then
16316 if Present (Discriminant_Specifications (N)) then
16317 if Ekind (Prev) = E_Incomplete_Type then
16318 Check_Discriminant_Conformance (N, Prev, Prev);
16319 else
16320 Check_Discriminant_Conformance (N, Prev, Id);
16321 end if;
16322
16323 else
16324 Error_Msg_N
16325 ("missing discriminants in full type declaration", N);
16326
16327 -- To avoid cascaded errors on subsequent use, share the
16328 -- discriminants of the partial view.
16329
16330 Set_Discriminant_Specifications (N,
16331 Discriminant_Specifications (Prev_Par));
16332 end if;
16333 end if;
16334
16335 -- A prior untagged partial view can have an associated class-wide
16336 -- type due to use of the class attribute, and in this case the full
16337 -- type must also be tagged. This Ada 95 usage is deprecated in favor
16338 -- of incomplete tagged declarations, but we check for it.
16339
16340 if Is_Type (Prev)
16341 and then (Is_Tagged_Type (Prev)
16342 or else Present (Class_Wide_Type (Prev)))
16343 then
16344 -- Ada 2012 (AI05-0162): A private type may be the completion of
16345 -- an incomplete type.
16346
16347 if Ada_Version >= Ada_2012
16348 and then Is_Incomplete_Type (Prev)
16349 and then Nkind_In (N, N_Private_Type_Declaration,
16350 N_Private_Extension_Declaration)
16351 then
16352 -- No need to check private extensions since they are tagged
16353
16354 if Nkind (N) = N_Private_Type_Declaration
16355 and then not Tagged_Present (N)
16356 then
16357 Tag_Mismatch;
16358 end if;
16359
16360 -- The full declaration is either a tagged type (including
16361 -- a synchronized type that implements interfaces) or a
16362 -- type extension, otherwise this is an error.
16363
16364 elsif Nkind_In (N, N_Task_Type_Declaration,
16365 N_Protected_Type_Declaration)
16366 then
16367 if No (Interface_List (N))
16368 and then not Error_Posted (N)
16369 then
16370 Tag_Mismatch;
16371 end if;
16372
16373 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
16374
16375 -- Indicate that the previous declaration (tagged incomplete
16376 -- or private declaration) requires the same on the full one.
16377
16378 if not Tagged_Present (Type_Definition (N)) then
16379 Tag_Mismatch;
16380 Set_Is_Tagged_Type (Id);
16381 end if;
16382
16383 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
16384 if No (Record_Extension_Part (Type_Definition (N))) then
16385 Error_Msg_NE
16386 ("full declaration of } must be a record extension",
16387 Prev, Id);
16388
16389 -- Set some attributes to produce a usable full view
16390
16391 Set_Is_Tagged_Type (Id);
16392 end if;
16393
16394 else
16395 Tag_Mismatch;
16396 end if;
16397 end if;
16398
16399 if Present (Prev)
16400 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
16401 and then Present (Premature_Use (Parent (Prev)))
16402 then
16403 Error_Msg_Sloc := Sloc (N);
16404 Error_Msg_N
16405 ("\full declaration #", Premature_Use (Parent (Prev)));
16406 end if;
16407
16408 return New_Id;
16409 end if;
16410 end Find_Type_Name;
16411
16412 -------------------------
16413 -- Find_Type_Of_Object --
16414 -------------------------
16415
16416 function Find_Type_Of_Object
16417 (Obj_Def : Node_Id;
16418 Related_Nod : Node_Id) return Entity_Id
16419 is
16420 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
16421 P : Node_Id := Parent (Obj_Def);
16422 T : Entity_Id;
16423 Nam : Name_Id;
16424
16425 begin
16426 -- If the parent is a component_definition node we climb to the
16427 -- component_declaration node
16428
16429 if Nkind (P) = N_Component_Definition then
16430 P := Parent (P);
16431 end if;
16432
16433 -- Case of an anonymous array subtype
16434
16435 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
16436 N_Unconstrained_Array_Definition)
16437 then
16438 T := Empty;
16439 Array_Type_Declaration (T, Obj_Def);
16440
16441 -- Create an explicit subtype whenever possible
16442
16443 elsif Nkind (P) /= N_Component_Declaration
16444 and then Def_Kind = N_Subtype_Indication
16445 then
16446 -- Base name of subtype on object name, which will be unique in
16447 -- the current scope.
16448
16449 -- If this is a duplicate declaration, return base type, to avoid
16450 -- generating duplicate anonymous types.
16451
16452 if Error_Posted (P) then
16453 Analyze (Subtype_Mark (Obj_Def));
16454 return Entity (Subtype_Mark (Obj_Def));
16455 end if;
16456
16457 Nam :=
16458 New_External_Name
16459 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
16460
16461 T := Make_Defining_Identifier (Sloc (P), Nam);
16462
16463 Insert_Action (Obj_Def,
16464 Make_Subtype_Declaration (Sloc (P),
16465 Defining_Identifier => T,
16466 Subtype_Indication => Relocate_Node (Obj_Def)));
16467
16468 -- This subtype may need freezing, and this will not be done
16469 -- automatically if the object declaration is not in declarative
16470 -- part. Since this is an object declaration, the type cannot always
16471 -- be frozen here. Deferred constants do not freeze their type
16472 -- (which often enough will be private).
16473
16474 if Nkind (P) = N_Object_Declaration
16475 and then Constant_Present (P)
16476 and then No (Expression (P))
16477 then
16478 null;
16479
16480 -- Here we freeze the base type of object type to catch premature use
16481 -- of discriminated private type without a full view.
16482
16483 else
16484 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
16485 end if;
16486
16487 -- Ada 2005 AI-406: the object definition in an object declaration
16488 -- can be an access definition.
16489
16490 elsif Def_Kind = N_Access_Definition then
16491 T := Access_Definition (Related_Nod, Obj_Def);
16492
16493 Set_Is_Local_Anonymous_Access
16494 (T,
16495 V => (Ada_Version < Ada_2012)
16496 or else (Nkind (P) /= N_Object_Declaration)
16497 or else Is_Library_Level_Entity (Defining_Identifier (P)));
16498
16499 -- Otherwise, the object definition is just a subtype_mark
16500
16501 else
16502 T := Process_Subtype (Obj_Def, Related_Nod);
16503
16504 -- If expansion is disabled an object definition that is an aggregate
16505 -- will not get expanded and may lead to scoping problems in the back
16506 -- end, if the object is referenced in an inner scope. In that case
16507 -- create an itype reference for the object definition now. This
16508 -- may be redundant in some cases, but harmless.
16509
16510 if Is_Itype (T)
16511 and then Nkind (Related_Nod) = N_Object_Declaration
16512 and then ASIS_Mode
16513 then
16514 Build_Itype_Reference (T, Related_Nod);
16515 end if;
16516 end if;
16517
16518 return T;
16519 end Find_Type_Of_Object;
16520
16521 --------------------------------
16522 -- Find_Type_Of_Subtype_Indic --
16523 --------------------------------
16524
16525 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
16526 Typ : Entity_Id;
16527
16528 begin
16529 -- Case of subtype mark with a constraint
16530
16531 if Nkind (S) = N_Subtype_Indication then
16532 Find_Type (Subtype_Mark (S));
16533 Typ := Entity (Subtype_Mark (S));
16534
16535 if not
16536 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
16537 then
16538 Error_Msg_N
16539 ("incorrect constraint for this kind of type", Constraint (S));
16540 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
16541 end if;
16542
16543 -- Otherwise we have a subtype mark without a constraint
16544
16545 elsif Error_Posted (S) then
16546 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
16547 return Any_Type;
16548
16549 else
16550 Find_Type (S);
16551 Typ := Entity (S);
16552 end if;
16553
16554 -- Check No_Wide_Characters restriction
16555
16556 Check_Wide_Character_Restriction (Typ, S);
16557
16558 return Typ;
16559 end Find_Type_Of_Subtype_Indic;
16560
16561 -------------------------------------
16562 -- Floating_Point_Type_Declaration --
16563 -------------------------------------
16564
16565 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16566 Digs : constant Node_Id := Digits_Expression (Def);
16567 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
16568 Digs_Val : Uint;
16569 Base_Typ : Entity_Id;
16570 Implicit_Base : Entity_Id;
16571 Bound : Node_Id;
16572
16573 function Can_Derive_From (E : Entity_Id) return Boolean;
16574 -- Find if given digits value, and possibly a specified range, allows
16575 -- derivation from specified type
16576
16577 function Find_Base_Type return Entity_Id;
16578 -- Find a predefined base type that Def can derive from, or generate
16579 -- an error and substitute Long_Long_Float if none exists.
16580
16581 ---------------------
16582 -- Can_Derive_From --
16583 ---------------------
16584
16585 function Can_Derive_From (E : Entity_Id) return Boolean is
16586 Spec : constant Entity_Id := Real_Range_Specification (Def);
16587
16588 begin
16589 -- Check specified "digits" constraint
16590
16591 if Digs_Val > Digits_Value (E) then
16592 return False;
16593 end if;
16594
16595 -- Check for matching range, if specified
16596
16597 if Present (Spec) then
16598 if Expr_Value_R (Type_Low_Bound (E)) >
16599 Expr_Value_R (Low_Bound (Spec))
16600 then
16601 return False;
16602 end if;
16603
16604 if Expr_Value_R (Type_High_Bound (E)) <
16605 Expr_Value_R (High_Bound (Spec))
16606 then
16607 return False;
16608 end if;
16609 end if;
16610
16611 return True;
16612 end Can_Derive_From;
16613
16614 --------------------
16615 -- Find_Base_Type --
16616 --------------------
16617
16618 function Find_Base_Type return Entity_Id is
16619 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
16620
16621 begin
16622 -- Iterate over the predefined types in order, returning the first
16623 -- one that Def can derive from.
16624
16625 while Present (Choice) loop
16626 if Can_Derive_From (Node (Choice)) then
16627 return Node (Choice);
16628 end if;
16629
16630 Next_Elmt (Choice);
16631 end loop;
16632
16633 -- If we can't derive from any existing type, use Long_Long_Float
16634 -- and give appropriate message explaining the problem.
16635
16636 if Digs_Val > Max_Digs_Val then
16637 -- It might be the case that there is a type with the requested
16638 -- range, just not the combination of digits and range.
16639
16640 Error_Msg_N
16641 ("no predefined type has requested range and precision",
16642 Real_Range_Specification (Def));
16643
16644 else
16645 Error_Msg_N
16646 ("range too large for any predefined type",
16647 Real_Range_Specification (Def));
16648 end if;
16649
16650 return Standard_Long_Long_Float;
16651 end Find_Base_Type;
16652
16653 -- Start of processing for Floating_Point_Type_Declaration
16654
16655 begin
16656 Check_Restriction (No_Floating_Point, Def);
16657
16658 -- Create an implicit base type
16659
16660 Implicit_Base :=
16661 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
16662
16663 -- Analyze and verify digits value
16664
16665 Analyze_And_Resolve (Digs, Any_Integer);
16666 Check_Digits_Expression (Digs);
16667 Digs_Val := Expr_Value (Digs);
16668
16669 -- Process possible range spec and find correct type to derive from
16670
16671 Process_Real_Range_Specification (Def);
16672
16673 -- Check that requested number of digits is not too high.
16674
16675 if Digs_Val > Max_Digs_Val then
16676 -- The check for Max_Base_Digits may be somewhat expensive, as it
16677 -- requires reading System, so only do it when necessary.
16678
16679 declare
16680 Max_Base_Digits : constant Uint :=
16681 Expr_Value
16682 (Expression
16683 (Parent (RTE (RE_Max_Base_Digits))));
16684
16685 begin
16686 if Digs_Val > Max_Base_Digits then
16687 Error_Msg_Uint_1 := Max_Base_Digits;
16688 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
16689
16690 elsif No (Real_Range_Specification (Def)) then
16691 Error_Msg_Uint_1 := Max_Digs_Val;
16692 Error_Msg_N ("types with more than ^ digits need range spec "
16693 & "(RM 3.5.7(6))", Digs);
16694 end if;
16695 end;
16696 end if;
16697
16698 -- Find a suitable type to derive from or complain and use a substitute
16699
16700 Base_Typ := Find_Base_Type;
16701
16702 -- If there are bounds given in the declaration use them as the bounds
16703 -- of the type, otherwise use the bounds of the predefined base type
16704 -- that was chosen based on the Digits value.
16705
16706 if Present (Real_Range_Specification (Def)) then
16707 Set_Scalar_Range (T, Real_Range_Specification (Def));
16708 Set_Is_Constrained (T);
16709
16710 -- The bounds of this range must be converted to machine numbers
16711 -- in accordance with RM 4.9(38).
16712
16713 Bound := Type_Low_Bound (T);
16714
16715 if Nkind (Bound) = N_Real_Literal then
16716 Set_Realval
16717 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16718 Set_Is_Machine_Number (Bound);
16719 end if;
16720
16721 Bound := Type_High_Bound (T);
16722
16723 if Nkind (Bound) = N_Real_Literal then
16724 Set_Realval
16725 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16726 Set_Is_Machine_Number (Bound);
16727 end if;
16728
16729 else
16730 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
16731 end if;
16732
16733 -- Complete definition of implicit base and declared first subtype. The
16734 -- inheritance of the rep item chain ensures that SPARK-related pragmas
16735 -- are not clobbered when the floating point type acts as a full view of
16736 -- a private type.
16737
16738 Set_Etype (Implicit_Base, Base_Typ);
16739 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
16740 Set_Size_Info (Implicit_Base, Base_Typ);
16741 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
16742 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
16743 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
16744 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
16745
16746 Set_Ekind (T, E_Floating_Point_Subtype);
16747 Set_Etype (T, Implicit_Base);
16748 Set_Size_Info (T, Implicit_Base);
16749 Set_RM_Size (T, RM_Size (Implicit_Base));
16750 Inherit_Rep_Item_Chain (T, Implicit_Base);
16751 Set_Digits_Value (T, Digs_Val);
16752 end Floating_Point_Type_Declaration;
16753
16754 ----------------------------
16755 -- Get_Discriminant_Value --
16756 ----------------------------
16757
16758 -- This is the situation:
16759
16760 -- There is a non-derived type
16761
16762 -- type T0 (Dx, Dy, Dz...)
16763
16764 -- There are zero or more levels of derivation, with each derivation
16765 -- either purely inheriting the discriminants, or defining its own.
16766
16767 -- type Ti is new Ti-1
16768 -- or
16769 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
16770 -- or
16771 -- subtype Ti is ...
16772
16773 -- The subtype issue is avoided by the use of Original_Record_Component,
16774 -- and the fact that derived subtypes also derive the constraints.
16775
16776 -- This chain leads back from
16777
16778 -- Typ_For_Constraint
16779
16780 -- Typ_For_Constraint has discriminants, and the value for each
16781 -- discriminant is given by its corresponding Elmt of Constraints.
16782
16783 -- Discriminant is some discriminant in this hierarchy
16784
16785 -- We need to return its value
16786
16787 -- We do this by recursively searching each level, and looking for
16788 -- Discriminant. Once we get to the bottom, we start backing up
16789 -- returning the value for it which may in turn be a discriminant
16790 -- further up, so on the backup we continue the substitution.
16791
16792 function Get_Discriminant_Value
16793 (Discriminant : Entity_Id;
16794 Typ_For_Constraint : Entity_Id;
16795 Constraint : Elist_Id) return Node_Id
16796 is
16797 function Root_Corresponding_Discriminant
16798 (Discr : Entity_Id) return Entity_Id;
16799 -- Given a discriminant, traverse the chain of inherited discriminants
16800 -- and return the topmost discriminant.
16801
16802 function Search_Derivation_Levels
16803 (Ti : Entity_Id;
16804 Discrim_Values : Elist_Id;
16805 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
16806 -- This is the routine that performs the recursive search of levels
16807 -- as described above.
16808
16809 -------------------------------------
16810 -- Root_Corresponding_Discriminant --
16811 -------------------------------------
16812
16813 function Root_Corresponding_Discriminant
16814 (Discr : Entity_Id) return Entity_Id
16815 is
16816 D : Entity_Id;
16817
16818 begin
16819 D := Discr;
16820 while Present (Corresponding_Discriminant (D)) loop
16821 D := Corresponding_Discriminant (D);
16822 end loop;
16823
16824 return D;
16825 end Root_Corresponding_Discriminant;
16826
16827 ------------------------------
16828 -- Search_Derivation_Levels --
16829 ------------------------------
16830
16831 function Search_Derivation_Levels
16832 (Ti : Entity_Id;
16833 Discrim_Values : Elist_Id;
16834 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
16835 is
16836 Assoc : Elmt_Id;
16837 Disc : Entity_Id;
16838 Result : Node_Or_Entity_Id;
16839 Result_Entity : Node_Id;
16840
16841 begin
16842 -- If inappropriate type, return Error, this happens only in
16843 -- cascaded error situations, and we want to avoid a blow up.
16844
16845 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
16846 return Error;
16847 end if;
16848
16849 -- Look deeper if possible. Use Stored_Constraints only for
16850 -- untagged types. For tagged types use the given constraint.
16851 -- This asymmetry needs explanation???
16852
16853 if not Stored_Discrim_Values
16854 and then Present (Stored_Constraint (Ti))
16855 and then not Is_Tagged_Type (Ti)
16856 then
16857 Result :=
16858 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
16859 else
16860 declare
16861 Td : constant Entity_Id := Etype (Ti);
16862
16863 begin
16864 if Td = Ti then
16865 Result := Discriminant;
16866
16867 else
16868 if Present (Stored_Constraint (Ti)) then
16869 Result :=
16870 Search_Derivation_Levels
16871 (Td, Stored_Constraint (Ti), True);
16872 else
16873 Result :=
16874 Search_Derivation_Levels
16875 (Td, Discrim_Values, Stored_Discrim_Values);
16876 end if;
16877 end if;
16878 end;
16879 end if;
16880
16881 -- Extra underlying places to search, if not found above. For
16882 -- concurrent types, the relevant discriminant appears in the
16883 -- corresponding record. For a type derived from a private type
16884 -- without discriminant, the full view inherits the discriminants
16885 -- of the full view of the parent.
16886
16887 if Result = Discriminant then
16888 if Is_Concurrent_Type (Ti)
16889 and then Present (Corresponding_Record_Type (Ti))
16890 then
16891 Result :=
16892 Search_Derivation_Levels (
16893 Corresponding_Record_Type (Ti),
16894 Discrim_Values,
16895 Stored_Discrim_Values);
16896
16897 elsif Is_Private_Type (Ti)
16898 and then not Has_Discriminants (Ti)
16899 and then Present (Full_View (Ti))
16900 and then Etype (Full_View (Ti)) /= Ti
16901 then
16902 Result :=
16903 Search_Derivation_Levels (
16904 Full_View (Ti),
16905 Discrim_Values,
16906 Stored_Discrim_Values);
16907 end if;
16908 end if;
16909
16910 -- If Result is not a (reference to a) discriminant, return it,
16911 -- otherwise set Result_Entity to the discriminant.
16912
16913 if Nkind (Result) = N_Defining_Identifier then
16914 pragma Assert (Result = Discriminant);
16915 Result_Entity := Result;
16916
16917 else
16918 if not Denotes_Discriminant (Result) then
16919 return Result;
16920 end if;
16921
16922 Result_Entity := Entity (Result);
16923 end if;
16924
16925 -- See if this level of derivation actually has discriminants
16926 -- because tagged derivations can add them, hence the lower
16927 -- levels need not have any.
16928
16929 if not Has_Discriminants (Ti) then
16930 return Result;
16931 end if;
16932
16933 -- Scan Ti's discriminants for Result_Entity,
16934 -- and return its corresponding value, if any.
16935
16936 Result_Entity := Original_Record_Component (Result_Entity);
16937
16938 Assoc := First_Elmt (Discrim_Values);
16939
16940 if Stored_Discrim_Values then
16941 Disc := First_Stored_Discriminant (Ti);
16942 else
16943 Disc := First_Discriminant (Ti);
16944 end if;
16945
16946 while Present (Disc) loop
16947 pragma Assert (Present (Assoc));
16948
16949 if Original_Record_Component (Disc) = Result_Entity then
16950 return Node (Assoc);
16951 end if;
16952
16953 Next_Elmt (Assoc);
16954
16955 if Stored_Discrim_Values then
16956 Next_Stored_Discriminant (Disc);
16957 else
16958 Next_Discriminant (Disc);
16959 end if;
16960 end loop;
16961
16962 -- Could not find it
16963 --
16964 return Result;
16965 end Search_Derivation_Levels;
16966
16967 -- Local Variables
16968
16969 Result : Node_Or_Entity_Id;
16970
16971 -- Start of processing for Get_Discriminant_Value
16972
16973 begin
16974 -- ??? This routine is a gigantic mess and will be deleted. For the
16975 -- time being just test for the trivial case before calling recurse.
16976
16977 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
16978 declare
16979 D : Entity_Id;
16980 E : Elmt_Id;
16981
16982 begin
16983 D := First_Discriminant (Typ_For_Constraint);
16984 E := First_Elmt (Constraint);
16985 while Present (D) loop
16986 if Chars (D) = Chars (Discriminant) then
16987 return Node (E);
16988 end if;
16989
16990 Next_Discriminant (D);
16991 Next_Elmt (E);
16992 end loop;
16993 end;
16994 end if;
16995
16996 Result := Search_Derivation_Levels
16997 (Typ_For_Constraint, Constraint, False);
16998
16999 -- ??? hack to disappear when this routine is gone
17000
17001 if Nkind (Result) = N_Defining_Identifier then
17002 declare
17003 D : Entity_Id;
17004 E : Elmt_Id;
17005
17006 begin
17007 D := First_Discriminant (Typ_For_Constraint);
17008 E := First_Elmt (Constraint);
17009 while Present (D) loop
17010 if Root_Corresponding_Discriminant (D) = Discriminant then
17011 return Node (E);
17012 end if;
17013
17014 Next_Discriminant (D);
17015 Next_Elmt (E);
17016 end loop;
17017 end;
17018 end if;
17019
17020 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
17021 return Result;
17022 end Get_Discriminant_Value;
17023
17024 --------------------------
17025 -- Has_Range_Constraint --
17026 --------------------------
17027
17028 function Has_Range_Constraint (N : Node_Id) return Boolean is
17029 C : constant Node_Id := Constraint (N);
17030
17031 begin
17032 if Nkind (C) = N_Range_Constraint then
17033 return True;
17034
17035 elsif Nkind (C) = N_Digits_Constraint then
17036 return
17037 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
17038 or else Present (Range_Constraint (C));
17039
17040 elsif Nkind (C) = N_Delta_Constraint then
17041 return Present (Range_Constraint (C));
17042
17043 else
17044 return False;
17045 end if;
17046 end Has_Range_Constraint;
17047
17048 ------------------------
17049 -- Inherit_Components --
17050 ------------------------
17051
17052 function Inherit_Components
17053 (N : Node_Id;
17054 Parent_Base : Entity_Id;
17055 Derived_Base : Entity_Id;
17056 Is_Tagged : Boolean;
17057 Inherit_Discr : Boolean;
17058 Discs : Elist_Id) return Elist_Id
17059 is
17060 Assoc_List : constant Elist_Id := New_Elmt_List;
17061
17062 procedure Inherit_Component
17063 (Old_C : Entity_Id;
17064 Plain_Discrim : Boolean := False;
17065 Stored_Discrim : Boolean := False);
17066 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
17067 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
17068 -- True, Old_C is a stored discriminant. If they are both false then
17069 -- Old_C is a regular component.
17070
17071 -----------------------
17072 -- Inherit_Component --
17073 -----------------------
17074
17075 procedure Inherit_Component
17076 (Old_C : Entity_Id;
17077 Plain_Discrim : Boolean := False;
17078 Stored_Discrim : Boolean := False)
17079 is
17080 procedure Set_Anonymous_Type (Id : Entity_Id);
17081 -- Id denotes the entity of an access discriminant or anonymous
17082 -- access component. Set the type of Id to either the same type of
17083 -- Old_C or create a new one depending on whether the parent and
17084 -- the child types are in the same scope.
17085
17086 ------------------------
17087 -- Set_Anonymous_Type --
17088 ------------------------
17089
17090 procedure Set_Anonymous_Type (Id : Entity_Id) is
17091 Old_Typ : constant Entity_Id := Etype (Old_C);
17092
17093 begin
17094 if Scope (Parent_Base) = Scope (Derived_Base) then
17095 Set_Etype (Id, Old_Typ);
17096
17097 -- The parent and the derived type are in two different scopes.
17098 -- Reuse the type of the original discriminant / component by
17099 -- copying it in order to preserve all attributes.
17100
17101 else
17102 declare
17103 Typ : constant Entity_Id := New_Copy (Old_Typ);
17104
17105 begin
17106 Set_Etype (Id, Typ);
17107
17108 -- Since we do not generate component declarations for
17109 -- inherited components, associate the itype with the
17110 -- derived type.
17111
17112 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
17113 Set_Scope (Typ, Derived_Base);
17114 end;
17115 end if;
17116 end Set_Anonymous_Type;
17117
17118 -- Local variables and constants
17119
17120 New_C : constant Entity_Id := New_Copy (Old_C);
17121
17122 Corr_Discrim : Entity_Id;
17123 Discrim : Entity_Id;
17124
17125 -- Start of processing for Inherit_Component
17126
17127 begin
17128 pragma Assert (not Is_Tagged or not Stored_Discrim);
17129
17130 Set_Parent (New_C, Parent (Old_C));
17131
17132 -- Regular discriminants and components must be inserted in the scope
17133 -- of the Derived_Base. Do it here.
17134
17135 if not Stored_Discrim then
17136 Enter_Name (New_C);
17137 end if;
17138
17139 -- For tagged types the Original_Record_Component must point to
17140 -- whatever this field was pointing to in the parent type. This has
17141 -- already been achieved by the call to New_Copy above.
17142
17143 if not Is_Tagged then
17144 Set_Original_Record_Component (New_C, New_C);
17145 end if;
17146
17147 -- Set the proper type of an access discriminant
17148
17149 if Ekind (New_C) = E_Discriminant
17150 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
17151 then
17152 Set_Anonymous_Type (New_C);
17153 end if;
17154
17155 -- If we have inherited a component then see if its Etype contains
17156 -- references to Parent_Base discriminants. In this case, replace
17157 -- these references with the constraints given in Discs. We do not
17158 -- do this for the partial view of private types because this is
17159 -- not needed (only the components of the full view will be used
17160 -- for code generation) and cause problem. We also avoid this
17161 -- transformation in some error situations.
17162
17163 if Ekind (New_C) = E_Component then
17164
17165 -- Set the proper type of an anonymous access component
17166
17167 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
17168 Set_Anonymous_Type (New_C);
17169
17170 elsif (Is_Private_Type (Derived_Base)
17171 and then not Is_Generic_Type (Derived_Base))
17172 or else (Is_Empty_Elmt_List (Discs)
17173 and then not Expander_Active)
17174 then
17175 Set_Etype (New_C, Etype (Old_C));
17176
17177 else
17178 -- The current component introduces a circularity of the
17179 -- following kind:
17180
17181 -- limited with Pack_2;
17182 -- package Pack_1 is
17183 -- type T_1 is tagged record
17184 -- Comp : access Pack_2.T_2;
17185 -- ...
17186 -- end record;
17187 -- end Pack_1;
17188
17189 -- with Pack_1;
17190 -- package Pack_2 is
17191 -- type T_2 is new Pack_1.T_1 with ...;
17192 -- end Pack_2;
17193
17194 Set_Etype
17195 (New_C,
17196 Constrain_Component_Type
17197 (Old_C, Derived_Base, N, Parent_Base, Discs));
17198 end if;
17199 end if;
17200
17201 -- In derived tagged types it is illegal to reference a non
17202 -- discriminant component in the parent type. To catch this, mark
17203 -- these components with an Ekind of E_Void. This will be reset in
17204 -- Record_Type_Definition after processing the record extension of
17205 -- the derived type.
17206
17207 -- If the declaration is a private extension, there is no further
17208 -- record extension to process, and the components retain their
17209 -- current kind, because they are visible at this point.
17210
17211 if Is_Tagged and then Ekind (New_C) = E_Component
17212 and then Nkind (N) /= N_Private_Extension_Declaration
17213 then
17214 Set_Ekind (New_C, E_Void);
17215 end if;
17216
17217 if Plain_Discrim then
17218 Set_Corresponding_Discriminant (New_C, Old_C);
17219 Build_Discriminal (New_C);
17220
17221 -- If we are explicitly inheriting a stored discriminant it will be
17222 -- completely hidden.
17223
17224 elsif Stored_Discrim then
17225 Set_Corresponding_Discriminant (New_C, Empty);
17226 Set_Discriminal (New_C, Empty);
17227 Set_Is_Completely_Hidden (New_C);
17228
17229 -- Set the Original_Record_Component of each discriminant in the
17230 -- derived base to point to the corresponding stored that we just
17231 -- created.
17232
17233 Discrim := First_Discriminant (Derived_Base);
17234 while Present (Discrim) loop
17235 Corr_Discrim := Corresponding_Discriminant (Discrim);
17236
17237 -- Corr_Discrim could be missing in an error situation
17238
17239 if Present (Corr_Discrim)
17240 and then Original_Record_Component (Corr_Discrim) = Old_C
17241 then
17242 Set_Original_Record_Component (Discrim, New_C);
17243 end if;
17244
17245 Next_Discriminant (Discrim);
17246 end loop;
17247
17248 Append_Entity (New_C, Derived_Base);
17249 end if;
17250
17251 if not Is_Tagged then
17252 Append_Elmt (Old_C, Assoc_List);
17253 Append_Elmt (New_C, Assoc_List);
17254 end if;
17255 end Inherit_Component;
17256
17257 -- Variables local to Inherit_Component
17258
17259 Loc : constant Source_Ptr := Sloc (N);
17260
17261 Parent_Discrim : Entity_Id;
17262 Stored_Discrim : Entity_Id;
17263 D : Entity_Id;
17264 Component : Entity_Id;
17265
17266 -- Start of processing for Inherit_Components
17267
17268 begin
17269 if not Is_Tagged then
17270 Append_Elmt (Parent_Base, Assoc_List);
17271 Append_Elmt (Derived_Base, Assoc_List);
17272 end if;
17273
17274 -- Inherit parent discriminants if needed
17275
17276 if Inherit_Discr then
17277 Parent_Discrim := First_Discriminant (Parent_Base);
17278 while Present (Parent_Discrim) loop
17279 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
17280 Next_Discriminant (Parent_Discrim);
17281 end loop;
17282 end if;
17283
17284 -- Create explicit stored discrims for untagged types when necessary
17285
17286 if not Has_Unknown_Discriminants (Derived_Base)
17287 and then Has_Discriminants (Parent_Base)
17288 and then not Is_Tagged
17289 and then
17290 (not Inherit_Discr
17291 or else First_Discriminant (Parent_Base) /=
17292 First_Stored_Discriminant (Parent_Base))
17293 then
17294 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
17295 while Present (Stored_Discrim) loop
17296 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
17297 Next_Stored_Discriminant (Stored_Discrim);
17298 end loop;
17299 end if;
17300
17301 -- See if we can apply the second transformation for derived types, as
17302 -- explained in point 6. in the comments above Build_Derived_Record_Type
17303 -- This is achieved by appending Derived_Base discriminants into Discs,
17304 -- which has the side effect of returning a non empty Discs list to the
17305 -- caller of Inherit_Components, which is what we want. This must be
17306 -- done for private derived types if there are explicit stored
17307 -- discriminants, to ensure that we can retrieve the values of the
17308 -- constraints provided in the ancestors.
17309
17310 if Inherit_Discr
17311 and then Is_Empty_Elmt_List (Discs)
17312 and then Present (First_Discriminant (Derived_Base))
17313 and then
17314 (not Is_Private_Type (Derived_Base)
17315 or else Is_Completely_Hidden
17316 (First_Stored_Discriminant (Derived_Base))
17317 or else Is_Generic_Type (Derived_Base))
17318 then
17319 D := First_Discriminant (Derived_Base);
17320 while Present (D) loop
17321 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
17322 Next_Discriminant (D);
17323 end loop;
17324 end if;
17325
17326 -- Finally, inherit non-discriminant components unless they are not
17327 -- visible because defined or inherited from the full view of the
17328 -- parent. Don't inherit the _parent field of the parent type.
17329
17330 Component := First_Entity (Parent_Base);
17331 while Present (Component) loop
17332
17333 -- Ada 2005 (AI-251): Do not inherit components associated with
17334 -- secondary tags of the parent.
17335
17336 if Ekind (Component) = E_Component
17337 and then Present (Related_Type (Component))
17338 then
17339 null;
17340
17341 elsif Ekind (Component) /= E_Component
17342 or else Chars (Component) = Name_uParent
17343 then
17344 null;
17345
17346 -- If the derived type is within the parent type's declarative
17347 -- region, then the components can still be inherited even though
17348 -- they aren't visible at this point. This can occur for cases
17349 -- such as within public child units where the components must
17350 -- become visible upon entering the child unit's private part.
17351
17352 elsif not Is_Visible_Component (Component)
17353 and then not In_Open_Scopes (Scope (Parent_Base))
17354 then
17355 null;
17356
17357 elsif Ekind_In (Derived_Base, E_Private_Type,
17358 E_Limited_Private_Type)
17359 then
17360 null;
17361
17362 else
17363 Inherit_Component (Component);
17364 end if;
17365
17366 Next_Entity (Component);
17367 end loop;
17368
17369 -- For tagged derived types, inherited discriminants cannot be used in
17370 -- component declarations of the record extension part. To achieve this
17371 -- we mark the inherited discriminants as not visible.
17372
17373 if Is_Tagged and then Inherit_Discr then
17374 D := First_Discriminant (Derived_Base);
17375 while Present (D) loop
17376 Set_Is_Immediately_Visible (D, False);
17377 Next_Discriminant (D);
17378 end loop;
17379 end if;
17380
17381 return Assoc_List;
17382 end Inherit_Components;
17383
17384 -----------------------------
17385 -- Inherit_Predicate_Flags --
17386 -----------------------------
17387
17388 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
17389 begin
17390 Set_Has_Predicates (Subt, Has_Predicates (Par));
17391 Set_Has_Static_Predicate_Aspect
17392 (Subt, Has_Static_Predicate_Aspect (Par));
17393 Set_Has_Dynamic_Predicate_Aspect
17394 (Subt, Has_Dynamic_Predicate_Aspect (Par));
17395 end Inherit_Predicate_Flags;
17396
17397 ----------------------
17398 -- Is_EVF_Procedure --
17399 ----------------------
17400
17401 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is
17402 Formal : Entity_Id;
17403
17404 begin
17405 -- Examine the formals of an Extensions_Visible False procedure looking
17406 -- for a controlling OUT parameter.
17407
17408 if Ekind (Subp) = E_Procedure
17409 and then Extensions_Visible_Status (Subp) = Extensions_Visible_False
17410 then
17411 Formal := First_Formal (Subp);
17412 while Present (Formal) loop
17413 if Ekind (Formal) = E_Out_Parameter
17414 and then Is_Controlling_Formal (Formal)
17415 then
17416 return True;
17417 end if;
17418
17419 Next_Formal (Formal);
17420 end loop;
17421 end if;
17422
17423 return False;
17424 end Is_EVF_Procedure;
17425
17426 -----------------------
17427 -- Is_Null_Extension --
17428 -----------------------
17429
17430 function Is_Null_Extension (T : Entity_Id) return Boolean is
17431 Type_Decl : constant Node_Id := Parent (Base_Type (T));
17432 Comp_List : Node_Id;
17433 Comp : Node_Id;
17434
17435 begin
17436 if Nkind (Type_Decl) /= N_Full_Type_Declaration
17437 or else not Is_Tagged_Type (T)
17438 or else Nkind (Type_Definition (Type_Decl)) /=
17439 N_Derived_Type_Definition
17440 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
17441 then
17442 return False;
17443 end if;
17444
17445 Comp_List :=
17446 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
17447
17448 if Present (Discriminant_Specifications (Type_Decl)) then
17449 return False;
17450
17451 elsif Present (Comp_List)
17452 and then Is_Non_Empty_List (Component_Items (Comp_List))
17453 then
17454 Comp := First (Component_Items (Comp_List));
17455
17456 -- Only user-defined components are relevant. The component list
17457 -- may also contain a parent component and internal components
17458 -- corresponding to secondary tags, but these do not determine
17459 -- whether this is a null extension.
17460
17461 while Present (Comp) loop
17462 if Comes_From_Source (Comp) then
17463 return False;
17464 end if;
17465
17466 Next (Comp);
17467 end loop;
17468
17469 return True;
17470 else
17471 return True;
17472 end if;
17473 end Is_Null_Extension;
17474
17475 ------------------------------
17476 -- Is_Valid_Constraint_Kind --
17477 ------------------------------
17478
17479 function Is_Valid_Constraint_Kind
17480 (T_Kind : Type_Kind;
17481 Constraint_Kind : Node_Kind) return Boolean
17482 is
17483 begin
17484 case T_Kind is
17485 when Enumeration_Kind |
17486 Integer_Kind =>
17487 return Constraint_Kind = N_Range_Constraint;
17488
17489 when Decimal_Fixed_Point_Kind =>
17490 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
17491 N_Range_Constraint);
17492
17493 when Ordinary_Fixed_Point_Kind =>
17494 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
17495 N_Range_Constraint);
17496
17497 when Float_Kind =>
17498 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
17499 N_Range_Constraint);
17500
17501 when Access_Kind |
17502 Array_Kind |
17503 E_Record_Type |
17504 E_Record_Subtype |
17505 Class_Wide_Kind |
17506 E_Incomplete_Type |
17507 Private_Kind |
17508 Concurrent_Kind =>
17509 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
17510
17511 when others =>
17512 return True; -- Error will be detected later
17513 end case;
17514 end Is_Valid_Constraint_Kind;
17515
17516 --------------------------
17517 -- Is_Visible_Component --
17518 --------------------------
17519
17520 function Is_Visible_Component
17521 (C : Entity_Id;
17522 N : Node_Id := Empty) return Boolean
17523 is
17524 Original_Comp : Entity_Id := Empty;
17525 Original_Scope : Entity_Id;
17526 Type_Scope : Entity_Id;
17527
17528 function Is_Local_Type (Typ : Entity_Id) return Boolean;
17529 -- Check whether parent type of inherited component is declared locally,
17530 -- possibly within a nested package or instance. The current scope is
17531 -- the derived record itself.
17532
17533 -------------------
17534 -- Is_Local_Type --
17535 -------------------
17536
17537 function Is_Local_Type (Typ : Entity_Id) return Boolean is
17538 Scop : Entity_Id;
17539
17540 begin
17541 Scop := Scope (Typ);
17542 while Present (Scop)
17543 and then Scop /= Standard_Standard
17544 loop
17545 if Scop = Scope (Current_Scope) then
17546 return True;
17547 end if;
17548
17549 Scop := Scope (Scop);
17550 end loop;
17551
17552 return False;
17553 end Is_Local_Type;
17554
17555 -- Start of processing for Is_Visible_Component
17556
17557 begin
17558 if Ekind_In (C, E_Component, E_Discriminant) then
17559 Original_Comp := Original_Record_Component (C);
17560 end if;
17561
17562 if No (Original_Comp) then
17563
17564 -- Premature usage, or previous error
17565
17566 return False;
17567
17568 else
17569 Original_Scope := Scope (Original_Comp);
17570 Type_Scope := Scope (Base_Type (Scope (C)));
17571 end if;
17572
17573 -- This test only concerns tagged types
17574
17575 if not Is_Tagged_Type (Original_Scope) then
17576 return True;
17577
17578 -- If it is _Parent or _Tag, there is no visibility issue
17579
17580 elsif not Comes_From_Source (Original_Comp) then
17581 return True;
17582
17583 -- Discriminants are visible unless the (private) type has unknown
17584 -- discriminants. If the discriminant reference is inserted for a
17585 -- discriminant check on a full view it is also visible.
17586
17587 elsif Ekind (Original_Comp) = E_Discriminant
17588 and then
17589 (not Has_Unknown_Discriminants (Original_Scope)
17590 or else (Present (N)
17591 and then Nkind (N) = N_Selected_Component
17592 and then Nkind (Prefix (N)) = N_Type_Conversion
17593 and then not Comes_From_Source (Prefix (N))))
17594 then
17595 return True;
17596
17597 -- In the body of an instantiation, no need to check for the visibility
17598 -- of a component.
17599
17600 elsif In_Instance_Body then
17601 return True;
17602
17603 -- If the component has been declared in an ancestor which is currently
17604 -- a private type, then it is not visible. The same applies if the
17605 -- component's containing type is not in an open scope and the original
17606 -- component's enclosing type is a visible full view of a private type
17607 -- (which can occur in cases where an attempt is being made to reference
17608 -- a component in a sibling package that is inherited from a visible
17609 -- component of a type in an ancestor package; the component in the
17610 -- sibling package should not be visible even though the component it
17611 -- inherited from is visible). This does not apply however in the case
17612 -- where the scope of the type is a private child unit, or when the
17613 -- parent comes from a local package in which the ancestor is currently
17614 -- visible. The latter suppression of visibility is needed for cases
17615 -- that are tested in B730006.
17616
17617 elsif Is_Private_Type (Original_Scope)
17618 or else
17619 (not Is_Private_Descendant (Type_Scope)
17620 and then not In_Open_Scopes (Type_Scope)
17621 and then Has_Private_Declaration (Original_Scope))
17622 then
17623 -- If the type derives from an entity in a formal package, there
17624 -- are no additional visible components.
17625
17626 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
17627 N_Formal_Package_Declaration
17628 then
17629 return False;
17630
17631 -- if we are not in the private part of the current package, there
17632 -- are no additional visible components.
17633
17634 elsif Ekind (Scope (Current_Scope)) = E_Package
17635 and then not In_Private_Part (Scope (Current_Scope))
17636 then
17637 return False;
17638 else
17639 return
17640 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
17641 and then In_Open_Scopes (Scope (Original_Scope))
17642 and then Is_Local_Type (Type_Scope);
17643 end if;
17644
17645 -- There is another weird way in which a component may be invisible when
17646 -- the private and the full view are not derived from the same ancestor.
17647 -- Here is an example :
17648
17649 -- type A1 is tagged record F1 : integer; end record;
17650 -- type A2 is new A1 with record F2 : integer; end record;
17651 -- type T is new A1 with private;
17652 -- private
17653 -- type T is new A2 with null record;
17654
17655 -- In this case, the full view of T inherits F1 and F2 but the private
17656 -- view inherits only F1
17657
17658 else
17659 declare
17660 Ancestor : Entity_Id := Scope (C);
17661
17662 begin
17663 loop
17664 if Ancestor = Original_Scope then
17665 return True;
17666 elsif Ancestor = Etype (Ancestor) then
17667 return False;
17668 end if;
17669
17670 Ancestor := Etype (Ancestor);
17671 end loop;
17672 end;
17673 end if;
17674 end Is_Visible_Component;
17675
17676 --------------------------
17677 -- Make_Class_Wide_Type --
17678 --------------------------
17679
17680 procedure Make_Class_Wide_Type (T : Entity_Id) is
17681 CW_Type : Entity_Id;
17682 CW_Name : Name_Id;
17683 Next_E : Entity_Id;
17684
17685 begin
17686 if Present (Class_Wide_Type (T)) then
17687
17688 -- The class-wide type is a partially decorated entity created for a
17689 -- unanalyzed tagged type referenced through a limited with clause.
17690 -- When the tagged type is analyzed, its class-wide type needs to be
17691 -- redecorated. Note that we reuse the entity created by Decorate_
17692 -- Tagged_Type in order to preserve all links.
17693
17694 if Materialize_Entity (Class_Wide_Type (T)) then
17695 CW_Type := Class_Wide_Type (T);
17696 Set_Materialize_Entity (CW_Type, False);
17697
17698 -- The class wide type can have been defined by the partial view, in
17699 -- which case everything is already done.
17700
17701 else
17702 return;
17703 end if;
17704
17705 -- Default case, we need to create a new class-wide type
17706
17707 else
17708 CW_Type :=
17709 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
17710 end if;
17711
17712 -- Inherit root type characteristics
17713
17714 CW_Name := Chars (CW_Type);
17715 Next_E := Next_Entity (CW_Type);
17716 Copy_Node (T, CW_Type);
17717 Set_Comes_From_Source (CW_Type, False);
17718 Set_Chars (CW_Type, CW_Name);
17719 Set_Parent (CW_Type, Parent (T));
17720 Set_Next_Entity (CW_Type, Next_E);
17721
17722 -- Ensure we have a new freeze node for the class-wide type. The partial
17723 -- view may have freeze action of its own, requiring a proper freeze
17724 -- node, and the same freeze node cannot be shared between the two
17725 -- types.
17726
17727 Set_Has_Delayed_Freeze (CW_Type);
17728 Set_Freeze_Node (CW_Type, Empty);
17729
17730 -- Customize the class-wide type: It has no prim. op., it cannot be
17731 -- abstract and its Etype points back to the specific root type.
17732
17733 Set_Ekind (CW_Type, E_Class_Wide_Type);
17734 Set_Is_Tagged_Type (CW_Type, True);
17735 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
17736 Set_Is_Abstract_Type (CW_Type, False);
17737 Set_Is_Constrained (CW_Type, False);
17738 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
17739 Set_Default_SSO (CW_Type);
17740
17741 if Ekind (T) = E_Class_Wide_Subtype then
17742 Set_Etype (CW_Type, Etype (Base_Type (T)));
17743 else
17744 Set_Etype (CW_Type, T);
17745 end if;
17746
17747 Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams);
17748
17749 -- If this is the class_wide type of a constrained subtype, it does
17750 -- not have discriminants.
17751
17752 Set_Has_Discriminants (CW_Type,
17753 Has_Discriminants (T) and then not Is_Constrained (T));
17754
17755 Set_Has_Unknown_Discriminants (CW_Type, True);
17756 Set_Class_Wide_Type (T, CW_Type);
17757 Set_Equivalent_Type (CW_Type, Empty);
17758
17759 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
17760
17761 Set_Class_Wide_Type (CW_Type, CW_Type);
17762 end Make_Class_Wide_Type;
17763
17764 ----------------
17765 -- Make_Index --
17766 ----------------
17767
17768 procedure Make_Index
17769 (N : Node_Id;
17770 Related_Nod : Node_Id;
17771 Related_Id : Entity_Id := Empty;
17772 Suffix_Index : Nat := 1;
17773 In_Iter_Schm : Boolean := False)
17774 is
17775 R : Node_Id;
17776 T : Entity_Id;
17777 Def_Id : Entity_Id := Empty;
17778 Found : Boolean := False;
17779
17780 begin
17781 -- For a discrete range used in a constrained array definition and
17782 -- defined by a range, an implicit conversion to the predefined type
17783 -- INTEGER is assumed if each bound is either a numeric literal, a named
17784 -- number, or an attribute, and the type of both bounds (prior to the
17785 -- implicit conversion) is the type universal_integer. Otherwise, both
17786 -- bounds must be of the same discrete type, other than universal
17787 -- integer; this type must be determinable independently of the
17788 -- context, but using the fact that the type must be discrete and that
17789 -- both bounds must have the same type.
17790
17791 -- Character literals also have a universal type in the absence of
17792 -- of additional context, and are resolved to Standard_Character.
17793
17794 if Nkind (N) = N_Range then
17795
17796 -- The index is given by a range constraint. The bounds are known
17797 -- to be of a consistent type.
17798
17799 if not Is_Overloaded (N) then
17800 T := Etype (N);
17801
17802 -- For universal bounds, choose the specific predefined type
17803
17804 if T = Universal_Integer then
17805 T := Standard_Integer;
17806
17807 elsif T = Any_Character then
17808 Ambiguous_Character (Low_Bound (N));
17809
17810 T := Standard_Character;
17811 end if;
17812
17813 -- The node may be overloaded because some user-defined operators
17814 -- are available, but if a universal interpretation exists it is
17815 -- also the selected one.
17816
17817 elsif Universal_Interpretation (N) = Universal_Integer then
17818 T := Standard_Integer;
17819
17820 else
17821 T := Any_Type;
17822
17823 declare
17824 Ind : Interp_Index;
17825 It : Interp;
17826
17827 begin
17828 Get_First_Interp (N, Ind, It);
17829 while Present (It.Typ) loop
17830 if Is_Discrete_Type (It.Typ) then
17831
17832 if Found
17833 and then not Covers (It.Typ, T)
17834 and then not Covers (T, It.Typ)
17835 then
17836 Error_Msg_N ("ambiguous bounds in discrete range", N);
17837 exit;
17838 else
17839 T := It.Typ;
17840 Found := True;
17841 end if;
17842 end if;
17843
17844 Get_Next_Interp (Ind, It);
17845 end loop;
17846
17847 if T = Any_Type then
17848 Error_Msg_N ("discrete type required for range", N);
17849 Set_Etype (N, Any_Type);
17850 return;
17851
17852 elsif T = Universal_Integer then
17853 T := Standard_Integer;
17854 end if;
17855 end;
17856 end if;
17857
17858 if not Is_Discrete_Type (T) then
17859 Error_Msg_N ("discrete type required for range", N);
17860 Set_Etype (N, Any_Type);
17861 return;
17862 end if;
17863
17864 if Nkind (Low_Bound (N)) = N_Attribute_Reference
17865 and then Attribute_Name (Low_Bound (N)) = Name_First
17866 and then Is_Entity_Name (Prefix (Low_Bound (N)))
17867 and then Is_Type (Entity (Prefix (Low_Bound (N))))
17868 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
17869 then
17870 -- The type of the index will be the type of the prefix, as long
17871 -- as the upper bound is 'Last of the same type.
17872
17873 Def_Id := Entity (Prefix (Low_Bound (N)));
17874
17875 if Nkind (High_Bound (N)) /= N_Attribute_Reference
17876 or else Attribute_Name (High_Bound (N)) /= Name_Last
17877 or else not Is_Entity_Name (Prefix (High_Bound (N)))
17878 or else Entity (Prefix (High_Bound (N))) /= Def_Id
17879 then
17880 Def_Id := Empty;
17881 end if;
17882 end if;
17883
17884 R := N;
17885 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
17886
17887 elsif Nkind (N) = N_Subtype_Indication then
17888
17889 -- The index is given by a subtype with a range constraint
17890
17891 T := Base_Type (Entity (Subtype_Mark (N)));
17892
17893 if not Is_Discrete_Type (T) then
17894 Error_Msg_N ("discrete type required for range", N);
17895 Set_Etype (N, Any_Type);
17896 return;
17897 end if;
17898
17899 R := Range_Expression (Constraint (N));
17900
17901 Resolve (R, T);
17902 Process_Range_Expr_In_Decl
17903 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
17904
17905 elsif Nkind (N) = N_Attribute_Reference then
17906
17907 -- Catch beginner's error (use of attribute other than 'Range)
17908
17909 if Attribute_Name (N) /= Name_Range then
17910 Error_Msg_N ("expect attribute ''Range", N);
17911 Set_Etype (N, Any_Type);
17912 return;
17913 end if;
17914
17915 -- If the node denotes the range of a type mark, that is also the
17916 -- resulting type, and we do not need to create an Itype for it.
17917
17918 if Is_Entity_Name (Prefix (N))
17919 and then Comes_From_Source (N)
17920 and then Is_Type (Entity (Prefix (N)))
17921 and then Is_Discrete_Type (Entity (Prefix (N)))
17922 then
17923 Def_Id := Entity (Prefix (N));
17924 end if;
17925
17926 Analyze_And_Resolve (N);
17927 T := Etype (N);
17928 R := N;
17929
17930 -- If none of the above, must be a subtype. We convert this to a
17931 -- range attribute reference because in the case of declared first
17932 -- named subtypes, the types in the range reference can be different
17933 -- from the type of the entity. A range attribute normalizes the
17934 -- reference and obtains the correct types for the bounds.
17935
17936 -- This transformation is in the nature of an expansion, is only
17937 -- done if expansion is active. In particular, it is not done on
17938 -- formal generic types, because we need to retain the name of the
17939 -- original index for instantiation purposes.
17940
17941 else
17942 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
17943 Error_Msg_N ("invalid subtype mark in discrete range ", N);
17944 Set_Etype (N, Any_Integer);
17945 return;
17946
17947 else
17948 -- The type mark may be that of an incomplete type. It is only
17949 -- now that we can get the full view, previous analysis does
17950 -- not look specifically for a type mark.
17951
17952 Set_Entity (N, Get_Full_View (Entity (N)));
17953 Set_Etype (N, Entity (N));
17954 Def_Id := Entity (N);
17955
17956 if not Is_Discrete_Type (Def_Id) then
17957 Error_Msg_N ("discrete type required for index", N);
17958 Set_Etype (N, Any_Type);
17959 return;
17960 end if;
17961 end if;
17962
17963 if Expander_Active then
17964 Rewrite (N,
17965 Make_Attribute_Reference (Sloc (N),
17966 Attribute_Name => Name_Range,
17967 Prefix => Relocate_Node (N)));
17968
17969 -- The original was a subtype mark that does not freeze. This
17970 -- means that the rewritten version must not freeze either.
17971
17972 Set_Must_Not_Freeze (N);
17973 Set_Must_Not_Freeze (Prefix (N));
17974 Analyze_And_Resolve (N);
17975 T := Etype (N);
17976 R := N;
17977
17978 -- If expander is inactive, type is legal, nothing else to construct
17979
17980 else
17981 return;
17982 end if;
17983 end if;
17984
17985 if not Is_Discrete_Type (T) then
17986 Error_Msg_N ("discrete type required for range", N);
17987 Set_Etype (N, Any_Type);
17988 return;
17989
17990 elsif T = Any_Type then
17991 Set_Etype (N, Any_Type);
17992 return;
17993 end if;
17994
17995 -- We will now create the appropriate Itype to describe the range, but
17996 -- first a check. If we originally had a subtype, then we just label
17997 -- the range with this subtype. Not only is there no need to construct
17998 -- a new subtype, but it is wrong to do so for two reasons:
17999
18000 -- 1. A legality concern, if we have a subtype, it must not freeze,
18001 -- and the Itype would cause freezing incorrectly
18002
18003 -- 2. An efficiency concern, if we created an Itype, it would not be
18004 -- recognized as the same type for the purposes of eliminating
18005 -- checks in some circumstances.
18006
18007 -- We signal this case by setting the subtype entity in Def_Id
18008
18009 if No (Def_Id) then
18010 Def_Id :=
18011 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
18012 Set_Etype (Def_Id, Base_Type (T));
18013
18014 if Is_Signed_Integer_Type (T) then
18015 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
18016
18017 elsif Is_Modular_Integer_Type (T) then
18018 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
18019
18020 else
18021 Set_Ekind (Def_Id, E_Enumeration_Subtype);
18022 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
18023 Set_First_Literal (Def_Id, First_Literal (T));
18024 end if;
18025
18026 Set_Size_Info (Def_Id, (T));
18027 Set_RM_Size (Def_Id, RM_Size (T));
18028 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
18029
18030 Set_Scalar_Range (Def_Id, R);
18031 Conditional_Delay (Def_Id, T);
18032
18033 if Nkind (N) = N_Subtype_Indication then
18034 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
18035 end if;
18036
18037 -- In the subtype indication case, if the immediate parent of the
18038 -- new subtype is non-static, then the subtype we create is non-
18039 -- static, even if its bounds are static.
18040
18041 if Nkind (N) = N_Subtype_Indication
18042 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
18043 then
18044 Set_Is_Non_Static_Subtype (Def_Id);
18045 end if;
18046 end if;
18047
18048 -- Final step is to label the index with this constructed type
18049
18050 Set_Etype (N, Def_Id);
18051 end Make_Index;
18052
18053 ------------------------------
18054 -- Modular_Type_Declaration --
18055 ------------------------------
18056
18057 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
18058 Mod_Expr : constant Node_Id := Expression (Def);
18059 M_Val : Uint;
18060
18061 procedure Set_Modular_Size (Bits : Int);
18062 -- Sets RM_Size to Bits, and Esize to normal word size above this
18063
18064 ----------------------
18065 -- Set_Modular_Size --
18066 ----------------------
18067
18068 procedure Set_Modular_Size (Bits : Int) is
18069 begin
18070 Set_RM_Size (T, UI_From_Int (Bits));
18071
18072 if Bits <= 8 then
18073 Init_Esize (T, 8);
18074
18075 elsif Bits <= 16 then
18076 Init_Esize (T, 16);
18077
18078 elsif Bits <= 32 then
18079 Init_Esize (T, 32);
18080
18081 else
18082 Init_Esize (T, System_Max_Binary_Modulus_Power);
18083 end if;
18084
18085 if not Non_Binary_Modulus (T)
18086 and then Esize (T) = RM_Size (T)
18087 then
18088 Set_Is_Known_Valid (T);
18089 end if;
18090 end Set_Modular_Size;
18091
18092 -- Start of processing for Modular_Type_Declaration
18093
18094 begin
18095 -- If the mod expression is (exactly) 2 * literal, where literal is
18096 -- 64 or less,then almost certainly the * was meant to be **. Warn.
18097
18098 if Warn_On_Suspicious_Modulus_Value
18099 and then Nkind (Mod_Expr) = N_Op_Multiply
18100 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
18101 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
18102 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
18103 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
18104 then
18105 Error_Msg_N
18106 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
18107 end if;
18108
18109 -- Proceed with analysis of mod expression
18110
18111 Analyze_And_Resolve (Mod_Expr, Any_Integer);
18112 Set_Etype (T, T);
18113 Set_Ekind (T, E_Modular_Integer_Type);
18114 Init_Alignment (T);
18115 Set_Is_Constrained (T);
18116
18117 if not Is_OK_Static_Expression (Mod_Expr) then
18118 Flag_Non_Static_Expr
18119 ("non-static expression used for modular type bound!", Mod_Expr);
18120 M_Val := 2 ** System_Max_Binary_Modulus_Power;
18121 else
18122 M_Val := Expr_Value (Mod_Expr);
18123 end if;
18124
18125 if M_Val < 1 then
18126 Error_Msg_N ("modulus value must be positive", Mod_Expr);
18127 M_Val := 2 ** System_Max_Binary_Modulus_Power;
18128 end if;
18129
18130 if M_Val > 2 ** Standard_Long_Integer_Size then
18131 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
18132 end if;
18133
18134 Set_Modulus (T, M_Val);
18135
18136 -- Create bounds for the modular type based on the modulus given in
18137 -- the type declaration and then analyze and resolve those bounds.
18138
18139 Set_Scalar_Range (T,
18140 Make_Range (Sloc (Mod_Expr),
18141 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
18142 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
18143
18144 -- Properly analyze the literals for the range. We do this manually
18145 -- because we can't go calling Resolve, since we are resolving these
18146 -- bounds with the type, and this type is certainly not complete yet.
18147
18148 Set_Etype (Low_Bound (Scalar_Range (T)), T);
18149 Set_Etype (High_Bound (Scalar_Range (T)), T);
18150 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
18151 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
18152
18153 -- Loop through powers of two to find number of bits required
18154
18155 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
18156
18157 -- Binary case
18158
18159 if M_Val = 2 ** Bits then
18160 Set_Modular_Size (Bits);
18161 return;
18162
18163 -- Non-binary case
18164
18165 elsif M_Val < 2 ** Bits then
18166 Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
18167 Set_Non_Binary_Modulus (T);
18168
18169 if Bits > System_Max_Nonbinary_Modulus_Power then
18170 Error_Msg_Uint_1 :=
18171 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
18172 Error_Msg_F
18173 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
18174 Set_Modular_Size (System_Max_Binary_Modulus_Power);
18175 return;
18176
18177 else
18178 -- In the non-binary case, set size as per RM 13.3(55)
18179
18180 Set_Modular_Size (Bits);
18181 return;
18182 end if;
18183 end if;
18184
18185 end loop;
18186
18187 -- If we fall through, then the size exceed System.Max_Binary_Modulus
18188 -- so we just signal an error and set the maximum size.
18189
18190 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
18191 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
18192
18193 Set_Modular_Size (System_Max_Binary_Modulus_Power);
18194 Init_Alignment (T);
18195
18196 end Modular_Type_Declaration;
18197
18198 --------------------------
18199 -- New_Concatenation_Op --
18200 --------------------------
18201
18202 procedure New_Concatenation_Op (Typ : Entity_Id) is
18203 Loc : constant Source_Ptr := Sloc (Typ);
18204 Op : Entity_Id;
18205
18206 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
18207 -- Create abbreviated declaration for the formal of a predefined
18208 -- Operator 'Op' of type 'Typ'
18209
18210 --------------------
18211 -- Make_Op_Formal --
18212 --------------------
18213
18214 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
18215 Formal : Entity_Id;
18216 begin
18217 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
18218 Set_Etype (Formal, Typ);
18219 Set_Mechanism (Formal, Default_Mechanism);
18220 return Formal;
18221 end Make_Op_Formal;
18222
18223 -- Start of processing for New_Concatenation_Op
18224
18225 begin
18226 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
18227
18228 Set_Ekind (Op, E_Operator);
18229 Set_Scope (Op, Current_Scope);
18230 Set_Etype (Op, Typ);
18231 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
18232 Set_Is_Immediately_Visible (Op);
18233 Set_Is_Intrinsic_Subprogram (Op);
18234 Set_Has_Completion (Op);
18235 Append_Entity (Op, Current_Scope);
18236
18237 Set_Name_Entity_Id (Name_Op_Concat, Op);
18238
18239 Append_Entity (Make_Op_Formal (Typ, Op), Op);
18240 Append_Entity (Make_Op_Formal (Typ, Op), Op);
18241 end New_Concatenation_Op;
18242
18243 -------------------------
18244 -- OK_For_Limited_Init --
18245 -------------------------
18246
18247 -- ???Check all calls of this, and compare the conditions under which it's
18248 -- called.
18249
18250 function OK_For_Limited_Init
18251 (Typ : Entity_Id;
18252 Exp : Node_Id) return Boolean
18253 is
18254 begin
18255 return Is_CPP_Constructor_Call (Exp)
18256 or else (Ada_Version >= Ada_2005
18257 and then not Debug_Flag_Dot_L
18258 and then OK_For_Limited_Init_In_05 (Typ, Exp));
18259 end OK_For_Limited_Init;
18260
18261 -------------------------------
18262 -- OK_For_Limited_Init_In_05 --
18263 -------------------------------
18264
18265 function OK_For_Limited_Init_In_05
18266 (Typ : Entity_Id;
18267 Exp : Node_Id) return Boolean
18268 is
18269 begin
18270 -- An object of a limited interface type can be initialized with any
18271 -- expression of a nonlimited descendant type.
18272
18273 if Is_Class_Wide_Type (Typ)
18274 and then Is_Limited_Interface (Typ)
18275 and then not Is_Limited_Type (Etype (Exp))
18276 then
18277 return True;
18278 end if;
18279
18280 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
18281 -- case of limited aggregates (including extension aggregates), and
18282 -- function calls. The function call may have been given in prefixed
18283 -- notation, in which case the original node is an indexed component.
18284 -- If the function is parameterless, the original node was an explicit
18285 -- dereference. The function may also be parameterless, in which case
18286 -- the source node is just an identifier.
18287
18288 case Nkind (Original_Node (Exp)) is
18289 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
18290 return True;
18291
18292 when N_Identifier =>
18293 return Present (Entity (Original_Node (Exp)))
18294 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
18295
18296 when N_Qualified_Expression =>
18297 return
18298 OK_For_Limited_Init_In_05
18299 (Typ, Expression (Original_Node (Exp)));
18300
18301 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
18302 -- with a function call, the expander has rewritten the call into an
18303 -- N_Type_Conversion node to force displacement of the pointer to
18304 -- reference the component containing the secondary dispatch table.
18305 -- Otherwise a type conversion is not a legal context.
18306 -- A return statement for a build-in-place function returning a
18307 -- synchronized type also introduces an unchecked conversion.
18308
18309 when N_Type_Conversion |
18310 N_Unchecked_Type_Conversion =>
18311 return not Comes_From_Source (Exp)
18312 and then
18313 OK_For_Limited_Init_In_05
18314 (Typ, Expression (Original_Node (Exp)));
18315
18316 when N_Indexed_Component |
18317 N_Selected_Component |
18318 N_Explicit_Dereference =>
18319 return Nkind (Exp) = N_Function_Call;
18320
18321 -- A use of 'Input is a function call, hence allowed. Normally the
18322 -- attribute will be changed to a call, but the attribute by itself
18323 -- can occur with -gnatc.
18324
18325 when N_Attribute_Reference =>
18326 return Attribute_Name (Original_Node (Exp)) = Name_Input;
18327
18328 -- For a case expression, all dependent expressions must be legal
18329
18330 when N_Case_Expression =>
18331 declare
18332 Alt : Node_Id;
18333
18334 begin
18335 Alt := First (Alternatives (Original_Node (Exp)));
18336 while Present (Alt) loop
18337 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
18338 return False;
18339 end if;
18340
18341 Next (Alt);
18342 end loop;
18343
18344 return True;
18345 end;
18346
18347 -- For an if expression, all dependent expressions must be legal
18348
18349 when N_If_Expression =>
18350 declare
18351 Then_Expr : constant Node_Id :=
18352 Next (First (Expressions (Original_Node (Exp))));
18353 Else_Expr : constant Node_Id := Next (Then_Expr);
18354 begin
18355 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
18356 and then
18357 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
18358 end;
18359
18360 when others =>
18361 return False;
18362 end case;
18363 end OK_For_Limited_Init_In_05;
18364
18365 -------------------------------------------
18366 -- Ordinary_Fixed_Point_Type_Declaration --
18367 -------------------------------------------
18368
18369 procedure Ordinary_Fixed_Point_Type_Declaration
18370 (T : Entity_Id;
18371 Def : Node_Id)
18372 is
18373 Loc : constant Source_Ptr := Sloc (Def);
18374 Delta_Expr : constant Node_Id := Delta_Expression (Def);
18375 RRS : constant Node_Id := Real_Range_Specification (Def);
18376 Implicit_Base : Entity_Id;
18377 Delta_Val : Ureal;
18378 Small_Val : Ureal;
18379 Low_Val : Ureal;
18380 High_Val : Ureal;
18381
18382 begin
18383 Check_Restriction (No_Fixed_Point, Def);
18384
18385 -- Create implicit base type
18386
18387 Implicit_Base :=
18388 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
18389 Set_Etype (Implicit_Base, Implicit_Base);
18390
18391 -- Analyze and process delta expression
18392
18393 Analyze_And_Resolve (Delta_Expr, Any_Real);
18394
18395 Check_Delta_Expression (Delta_Expr);
18396 Delta_Val := Expr_Value_R (Delta_Expr);
18397
18398 Set_Delta_Value (Implicit_Base, Delta_Val);
18399
18400 -- Compute default small from given delta, which is the largest power
18401 -- of two that does not exceed the given delta value.
18402
18403 declare
18404 Tmp : Ureal;
18405 Scale : Int;
18406
18407 begin
18408 Tmp := Ureal_1;
18409 Scale := 0;
18410
18411 if Delta_Val < Ureal_1 then
18412 while Delta_Val < Tmp loop
18413 Tmp := Tmp / Ureal_2;
18414 Scale := Scale + 1;
18415 end loop;
18416
18417 else
18418 loop
18419 Tmp := Tmp * Ureal_2;
18420 exit when Tmp > Delta_Val;
18421 Scale := Scale - 1;
18422 end loop;
18423 end if;
18424
18425 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
18426 end;
18427
18428 Set_Small_Value (Implicit_Base, Small_Val);
18429
18430 -- If no range was given, set a dummy range
18431
18432 if RRS <= Empty_Or_Error then
18433 Low_Val := -Small_Val;
18434 High_Val := Small_Val;
18435
18436 -- Otherwise analyze and process given range
18437
18438 else
18439 declare
18440 Low : constant Node_Id := Low_Bound (RRS);
18441 High : constant Node_Id := High_Bound (RRS);
18442
18443 begin
18444 Analyze_And_Resolve (Low, Any_Real);
18445 Analyze_And_Resolve (High, Any_Real);
18446 Check_Real_Bound (Low);
18447 Check_Real_Bound (High);
18448
18449 -- Obtain and set the range
18450
18451 Low_Val := Expr_Value_R (Low);
18452 High_Val := Expr_Value_R (High);
18453
18454 if Low_Val > High_Val then
18455 Error_Msg_NE ("??fixed point type& has null range", Def, T);
18456 end if;
18457 end;
18458 end if;
18459
18460 -- The range for both the implicit base and the declared first subtype
18461 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
18462 -- set a temporary range in place. Note that the bounds of the base
18463 -- type will be widened to be symmetrical and to fill the available
18464 -- bits when the type is frozen.
18465
18466 -- We could do this with all discrete types, and probably should, but
18467 -- we absolutely have to do it for fixed-point, since the end-points
18468 -- of the range and the size are determined by the small value, which
18469 -- could be reset before the freeze point.
18470
18471 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
18472 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
18473
18474 -- Complete definition of first subtype. The inheritance of the rep item
18475 -- chain ensures that SPARK-related pragmas are not clobbered when the
18476 -- ordinary fixed point type acts as a full view of a private type.
18477
18478 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
18479 Set_Etype (T, Implicit_Base);
18480 Init_Size_Align (T);
18481 Inherit_Rep_Item_Chain (T, Implicit_Base);
18482 Set_Small_Value (T, Small_Val);
18483 Set_Delta_Value (T, Delta_Val);
18484 Set_Is_Constrained (T);
18485 end Ordinary_Fixed_Point_Type_Declaration;
18486
18487 ----------------------------------
18488 -- Preanalyze_Assert_Expression --
18489 ----------------------------------
18490
18491 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
18492 begin
18493 In_Assertion_Expr := In_Assertion_Expr + 1;
18494 Preanalyze_Spec_Expression (N, T);
18495 In_Assertion_Expr := In_Assertion_Expr - 1;
18496 end Preanalyze_Assert_Expression;
18497
18498 -----------------------------------
18499 -- Preanalyze_Default_Expression --
18500 -----------------------------------
18501
18502 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
18503 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
18504 begin
18505 In_Default_Expr := True;
18506 Preanalyze_Spec_Expression (N, T);
18507 In_Default_Expr := Save_In_Default_Expr;
18508 end Preanalyze_Default_Expression;
18509
18510 --------------------------------
18511 -- Preanalyze_Spec_Expression --
18512 --------------------------------
18513
18514 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
18515 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
18516 begin
18517 In_Spec_Expression := True;
18518 Preanalyze_And_Resolve (N, T);
18519 In_Spec_Expression := Save_In_Spec_Expression;
18520 end Preanalyze_Spec_Expression;
18521
18522 ----------------------------------------
18523 -- Prepare_Private_Subtype_Completion --
18524 ----------------------------------------
18525
18526 procedure Prepare_Private_Subtype_Completion
18527 (Id : Entity_Id;
18528 Related_Nod : Node_Id)
18529 is
18530 Id_B : constant Entity_Id := Base_Type (Id);
18531 Full_B : Entity_Id := Full_View (Id_B);
18532 Full : Entity_Id;
18533
18534 begin
18535 if Present (Full_B) then
18536
18537 -- Get to the underlying full view if necessary
18538
18539 if Is_Private_Type (Full_B)
18540 and then Present (Underlying_Full_View (Full_B))
18541 then
18542 Full_B := Underlying_Full_View (Full_B);
18543 end if;
18544
18545 -- The Base_Type is already completed, we can complete the subtype
18546 -- now. We have to create a new entity with the same name, Thus we
18547 -- can't use Create_Itype.
18548
18549 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
18550 Set_Is_Itype (Full);
18551 Set_Associated_Node_For_Itype (Full, Related_Nod);
18552 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
18553 end if;
18554
18555 -- The parent subtype may be private, but the base might not, in some
18556 -- nested instances. In that case, the subtype does not need to be
18557 -- exchanged. It would still be nice to make private subtypes and their
18558 -- bases consistent at all times ???
18559
18560 if Is_Private_Type (Id_B) then
18561 Append_Elmt (Id, Private_Dependents (Id_B));
18562 end if;
18563 end Prepare_Private_Subtype_Completion;
18564
18565 ---------------------------
18566 -- Process_Discriminants --
18567 ---------------------------
18568
18569 procedure Process_Discriminants
18570 (N : Node_Id;
18571 Prev : Entity_Id := Empty)
18572 is
18573 Elist : constant Elist_Id := New_Elmt_List;
18574 Id : Node_Id;
18575 Discr : Node_Id;
18576 Discr_Number : Uint;
18577 Discr_Type : Entity_Id;
18578 Default_Present : Boolean := False;
18579 Default_Not_Present : Boolean := False;
18580
18581 begin
18582 -- A composite type other than an array type can have discriminants.
18583 -- On entry, the current scope is the composite type.
18584
18585 -- The discriminants are initially entered into the scope of the type
18586 -- via Enter_Name with the default Ekind of E_Void to prevent premature
18587 -- use, as explained at the end of this procedure.
18588
18589 Discr := First (Discriminant_Specifications (N));
18590 while Present (Discr) loop
18591 Enter_Name (Defining_Identifier (Discr));
18592
18593 -- For navigation purposes we add a reference to the discriminant
18594 -- in the entity for the type. If the current declaration is a
18595 -- completion, place references on the partial view. Otherwise the
18596 -- type is the current scope.
18597
18598 if Present (Prev) then
18599
18600 -- The references go on the partial view, if present. If the
18601 -- partial view has discriminants, the references have been
18602 -- generated already.
18603
18604 if not Has_Discriminants (Prev) then
18605 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
18606 end if;
18607 else
18608 Generate_Reference
18609 (Current_Scope, Defining_Identifier (Discr), 'd');
18610 end if;
18611
18612 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
18613 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
18614
18615 -- Ada 2005 (AI-254)
18616
18617 if Present (Access_To_Subprogram_Definition
18618 (Discriminant_Type (Discr)))
18619 and then Protected_Present (Access_To_Subprogram_Definition
18620 (Discriminant_Type (Discr)))
18621 then
18622 Discr_Type :=
18623 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
18624 end if;
18625
18626 else
18627 Find_Type (Discriminant_Type (Discr));
18628 Discr_Type := Etype (Discriminant_Type (Discr));
18629
18630 if Error_Posted (Discriminant_Type (Discr)) then
18631 Discr_Type := Any_Type;
18632 end if;
18633 end if;
18634
18635 -- Handling of discriminants that are access types
18636
18637 if Is_Access_Type (Discr_Type) then
18638
18639 -- Ada 2005 (AI-230): Access discriminant allowed in non-
18640 -- limited record types
18641
18642 if Ada_Version < Ada_2005 then
18643 Check_Access_Discriminant_Requires_Limited
18644 (Discr, Discriminant_Type (Discr));
18645 end if;
18646
18647 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
18648 Error_Msg_N
18649 ("(Ada 83) access discriminant not allowed", Discr);
18650 end if;
18651
18652 -- If not access type, must be a discrete type
18653
18654 elsif not Is_Discrete_Type (Discr_Type) then
18655 Error_Msg_N
18656 ("discriminants must have a discrete or access type",
18657 Discriminant_Type (Discr));
18658 end if;
18659
18660 Set_Etype (Defining_Identifier (Discr), Discr_Type);
18661
18662 -- If a discriminant specification includes the assignment compound
18663 -- delimiter followed by an expression, the expression is the default
18664 -- expression of the discriminant; the default expression must be of
18665 -- the type of the discriminant. (RM 3.7.1) Since this expression is
18666 -- a default expression, we do the special preanalysis, since this
18667 -- expression does not freeze (see section "Handling of Default and
18668 -- Per-Object Expressions" in spec of package Sem).
18669
18670 if Present (Expression (Discr)) then
18671 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
18672
18673 -- Legaity checks
18674
18675 if Nkind (N) = N_Formal_Type_Declaration then
18676 Error_Msg_N
18677 ("discriminant defaults not allowed for formal type",
18678 Expression (Discr));
18679
18680 -- Flag an error for a tagged type with defaulted discriminants,
18681 -- excluding limited tagged types when compiling for Ada 2012
18682 -- (see AI05-0214).
18683
18684 elsif Is_Tagged_Type (Current_Scope)
18685 and then (not Is_Limited_Type (Current_Scope)
18686 or else Ada_Version < Ada_2012)
18687 and then Comes_From_Source (N)
18688 then
18689 -- Note: see similar test in Check_Or_Process_Discriminants, to
18690 -- handle the (illegal) case of the completion of an untagged
18691 -- view with discriminants with defaults by a tagged full view.
18692 -- We skip the check if Discr does not come from source, to
18693 -- account for the case of an untagged derived type providing
18694 -- defaults for a renamed discriminant from a private untagged
18695 -- ancestor with a tagged full view (ACATS B460006).
18696
18697 if Ada_Version >= Ada_2012 then
18698 Error_Msg_N
18699 ("discriminants of nonlimited tagged type cannot have"
18700 & " defaults",
18701 Expression (Discr));
18702 else
18703 Error_Msg_N
18704 ("discriminants of tagged type cannot have defaults",
18705 Expression (Discr));
18706 end if;
18707
18708 else
18709 Default_Present := True;
18710 Append_Elmt (Expression (Discr), Elist);
18711
18712 -- Tag the defining identifiers for the discriminants with
18713 -- their corresponding default expressions from the tree.
18714
18715 Set_Discriminant_Default_Value
18716 (Defining_Identifier (Discr), Expression (Discr));
18717 end if;
18718
18719 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
18720 -- gets set unless we can be sure that no range check is required.
18721
18722 if (GNATprove_Mode or not Expander_Active)
18723 and then not
18724 Is_In_Range
18725 (Expression (Discr), Discr_Type, Assume_Valid => True)
18726 then
18727 Set_Do_Range_Check (Expression (Discr));
18728 end if;
18729
18730 -- No default discriminant value given
18731
18732 else
18733 Default_Not_Present := True;
18734 end if;
18735
18736 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
18737 -- Discr_Type but with the null-exclusion attribute
18738
18739 if Ada_Version >= Ada_2005 then
18740
18741 -- Ada 2005 (AI-231): Static checks
18742
18743 if Can_Never_Be_Null (Discr_Type) then
18744 Null_Exclusion_Static_Checks (Discr);
18745
18746 elsif Is_Access_Type (Discr_Type)
18747 and then Null_Exclusion_Present (Discr)
18748
18749 -- No need to check itypes because in their case this check
18750 -- was done at their point of creation
18751
18752 and then not Is_Itype (Discr_Type)
18753 then
18754 if Can_Never_Be_Null (Discr_Type) then
18755 Error_Msg_NE
18756 ("`NOT NULL` not allowed (& already excludes null)",
18757 Discr,
18758 Discr_Type);
18759 end if;
18760
18761 Set_Etype (Defining_Identifier (Discr),
18762 Create_Null_Excluding_Itype
18763 (T => Discr_Type,
18764 Related_Nod => Discr));
18765
18766 -- Check for improper null exclusion if the type is otherwise
18767 -- legal for a discriminant.
18768
18769 elsif Null_Exclusion_Present (Discr)
18770 and then Is_Discrete_Type (Discr_Type)
18771 then
18772 Error_Msg_N
18773 ("null exclusion can only apply to an access type", Discr);
18774 end if;
18775
18776 -- Ada 2005 (AI-402): access discriminants of nonlimited types
18777 -- can't have defaults. Synchronized types, or types that are
18778 -- explicitly limited are fine, but special tests apply to derived
18779 -- types in generics: in a generic body we have to assume the
18780 -- worst, and therefore defaults are not allowed if the parent is
18781 -- a generic formal private type (see ACATS B370001).
18782
18783 if Is_Access_Type (Discr_Type) and then Default_Present then
18784 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
18785 or else Is_Limited_Record (Current_Scope)
18786 or else Is_Concurrent_Type (Current_Scope)
18787 or else Is_Concurrent_Record_Type (Current_Scope)
18788 or else Ekind (Current_Scope) = E_Limited_Private_Type
18789 then
18790 if not Is_Derived_Type (Current_Scope)
18791 or else not Is_Generic_Type (Etype (Current_Scope))
18792 or else not In_Package_Body (Scope (Etype (Current_Scope)))
18793 or else Limited_Present
18794 (Type_Definition (Parent (Current_Scope)))
18795 then
18796 null;
18797
18798 else
18799 Error_Msg_N ("access discriminants of nonlimited types",
18800 Expression (Discr));
18801 Error_Msg_N ("\cannot have defaults", Expression (Discr));
18802 end if;
18803
18804 elsif Present (Expression (Discr)) then
18805 Error_Msg_N
18806 ("(Ada 2005) access discriminants of nonlimited types",
18807 Expression (Discr));
18808 Error_Msg_N ("\cannot have defaults", Expression (Discr));
18809 end if;
18810 end if;
18811 end if;
18812
18813 -- A discriminant cannot be effectively volatile. This check is only
18814 -- relevant when SPARK_Mode is on as it is not standard Ada legality
18815 -- rule (SPARK RM 7.1.3(6)).
18816
18817 if SPARK_Mode = On
18818 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
18819 then
18820 Error_Msg_N ("discriminant cannot be volatile", Discr);
18821 end if;
18822
18823 Next (Discr);
18824 end loop;
18825
18826 -- An element list consisting of the default expressions of the
18827 -- discriminants is constructed in the above loop and used to set
18828 -- the Discriminant_Constraint attribute for the type. If an object
18829 -- is declared of this (record or task) type without any explicit
18830 -- discriminant constraint given, this element list will form the
18831 -- actual parameters for the corresponding initialization procedure
18832 -- for the type.
18833
18834 Set_Discriminant_Constraint (Current_Scope, Elist);
18835 Set_Stored_Constraint (Current_Scope, No_Elist);
18836
18837 -- Default expressions must be provided either for all or for none
18838 -- of the discriminants of a discriminant part. (RM 3.7.1)
18839
18840 if Default_Present and then Default_Not_Present then
18841 Error_Msg_N
18842 ("incomplete specification of defaults for discriminants", N);
18843 end if;
18844
18845 -- The use of the name of a discriminant is not allowed in default
18846 -- expressions of a discriminant part if the specification of the
18847 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
18848
18849 -- To detect this, the discriminant names are entered initially with an
18850 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
18851 -- attempt to use a void entity (for example in an expression that is
18852 -- type-checked) produces the error message: premature usage. Now after
18853 -- completing the semantic analysis of the discriminant part, we can set
18854 -- the Ekind of all the discriminants appropriately.
18855
18856 Discr := First (Discriminant_Specifications (N));
18857 Discr_Number := Uint_1;
18858 while Present (Discr) loop
18859 Id := Defining_Identifier (Discr);
18860 Set_Ekind (Id, E_Discriminant);
18861 Init_Component_Location (Id);
18862 Init_Esize (Id);
18863 Set_Discriminant_Number (Id, Discr_Number);
18864
18865 -- Make sure this is always set, even in illegal programs
18866
18867 Set_Corresponding_Discriminant (Id, Empty);
18868
18869 -- Initialize the Original_Record_Component to the entity itself.
18870 -- Inherit_Components will propagate the right value to
18871 -- discriminants in derived record types.
18872
18873 Set_Original_Record_Component (Id, Id);
18874
18875 -- Create the discriminal for the discriminant
18876
18877 Build_Discriminal (Id);
18878
18879 Next (Discr);
18880 Discr_Number := Discr_Number + 1;
18881 end loop;
18882
18883 Set_Has_Discriminants (Current_Scope);
18884 end Process_Discriminants;
18885
18886 -----------------------
18887 -- Process_Full_View --
18888 -----------------------
18889
18890 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
18891 procedure Collect_Implemented_Interfaces
18892 (Typ : Entity_Id;
18893 Ifaces : Elist_Id);
18894 -- Ada 2005: Gather all the interfaces that Typ directly or
18895 -- inherently implements. Duplicate entries are not added to
18896 -- the list Ifaces.
18897
18898 ------------------------------------
18899 -- Collect_Implemented_Interfaces --
18900 ------------------------------------
18901
18902 procedure Collect_Implemented_Interfaces
18903 (Typ : Entity_Id;
18904 Ifaces : Elist_Id)
18905 is
18906 Iface : Entity_Id;
18907 Iface_Elmt : Elmt_Id;
18908
18909 begin
18910 -- Abstract interfaces are only associated with tagged record types
18911
18912 if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then
18913 return;
18914 end if;
18915
18916 -- Recursively climb to the ancestors
18917
18918 if Etype (Typ) /= Typ
18919
18920 -- Protect the frontend against wrong cyclic declarations like:
18921
18922 -- type B is new A with private;
18923 -- type C is new A with private;
18924 -- private
18925 -- type B is new C with null record;
18926 -- type C is new B with null record;
18927
18928 and then Etype (Typ) /= Priv_T
18929 and then Etype (Typ) /= Full_T
18930 then
18931 -- Keep separate the management of private type declarations
18932
18933 if Ekind (Typ) = E_Record_Type_With_Private then
18934
18935 -- Handle the following illegal usage:
18936 -- type Private_Type is tagged private;
18937 -- private
18938 -- type Private_Type is new Type_Implementing_Iface;
18939
18940 if Present (Full_View (Typ))
18941 and then Etype (Typ) /= Full_View (Typ)
18942 then
18943 if Is_Interface (Etype (Typ)) then
18944 Append_Unique_Elmt (Etype (Typ), Ifaces);
18945 end if;
18946
18947 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18948 end if;
18949
18950 -- Non-private types
18951
18952 else
18953 if Is_Interface (Etype (Typ)) then
18954 Append_Unique_Elmt (Etype (Typ), Ifaces);
18955 end if;
18956
18957 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18958 end if;
18959 end if;
18960
18961 -- Handle entities in the list of abstract interfaces
18962
18963 if Present (Interfaces (Typ)) then
18964 Iface_Elmt := First_Elmt (Interfaces (Typ));
18965 while Present (Iface_Elmt) loop
18966 Iface := Node (Iface_Elmt);
18967
18968 pragma Assert (Is_Interface (Iface));
18969
18970 if not Contain_Interface (Iface, Ifaces) then
18971 Append_Elmt (Iface, Ifaces);
18972 Collect_Implemented_Interfaces (Iface, Ifaces);
18973 end if;
18974
18975 Next_Elmt (Iface_Elmt);
18976 end loop;
18977 end if;
18978 end Collect_Implemented_Interfaces;
18979
18980 -- Local variables
18981
18982 Full_Indic : Node_Id;
18983 Full_Parent : Entity_Id;
18984 Priv_Parent : Entity_Id;
18985
18986 -- Start of processing for Process_Full_View
18987
18988 begin
18989 -- First some sanity checks that must be done after semantic
18990 -- decoration of the full view and thus cannot be placed with other
18991 -- similar checks in Find_Type_Name
18992
18993 if not Is_Limited_Type (Priv_T)
18994 and then (Is_Limited_Type (Full_T)
18995 or else Is_Limited_Composite (Full_T))
18996 then
18997 if In_Instance then
18998 null;
18999 else
19000 Error_Msg_N
19001 ("completion of nonlimited type cannot be limited", Full_T);
19002 Explain_Limited_Type (Full_T, Full_T);
19003 end if;
19004
19005 elsif Is_Abstract_Type (Full_T)
19006 and then not Is_Abstract_Type (Priv_T)
19007 then
19008 Error_Msg_N
19009 ("completion of nonabstract type cannot be abstract", Full_T);
19010
19011 elsif Is_Tagged_Type (Priv_T)
19012 and then Is_Limited_Type (Priv_T)
19013 and then not Is_Limited_Type (Full_T)
19014 then
19015 -- If pragma CPP_Class was applied to the private declaration
19016 -- propagate the limitedness to the full-view
19017
19018 if Is_CPP_Class (Priv_T) then
19019 Set_Is_Limited_Record (Full_T);
19020
19021 -- GNAT allow its own definition of Limited_Controlled to disobey
19022 -- this rule in order in ease the implementation. This test is safe
19023 -- because Root_Controlled is defined in a child of System that
19024 -- normal programs are not supposed to use.
19025
19026 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
19027 Set_Is_Limited_Composite (Full_T);
19028 else
19029 Error_Msg_N
19030 ("completion of limited tagged type must be limited", Full_T);
19031 end if;
19032
19033 elsif Is_Generic_Type (Priv_T) then
19034 Error_Msg_N ("generic type cannot have a completion", Full_T);
19035 end if;
19036
19037 -- Check that ancestor interfaces of private and full views are
19038 -- consistent. We omit this check for synchronized types because
19039 -- they are performed on the corresponding record type when frozen.
19040
19041 if Ada_Version >= Ada_2005
19042 and then Is_Tagged_Type (Priv_T)
19043 and then Is_Tagged_Type (Full_T)
19044 and then not Is_Concurrent_Type (Full_T)
19045 then
19046 declare
19047 Iface : Entity_Id;
19048 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
19049 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
19050
19051 begin
19052 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
19053 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
19054
19055 -- Ada 2005 (AI-251): The partial view shall be a descendant of
19056 -- an interface type if and only if the full type is descendant
19057 -- of the interface type (AARM 7.3 (7.3/2)).
19058
19059 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
19060
19061 if Present (Iface) then
19062 Error_Msg_NE
19063 ("interface in partial view& not implemented by full type "
19064 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
19065 end if;
19066
19067 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
19068
19069 if Present (Iface) then
19070 Error_Msg_NE
19071 ("interface & not implemented by partial view "
19072 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
19073 end if;
19074 end;
19075 end if;
19076
19077 if Is_Tagged_Type (Priv_T)
19078 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19079 and then Is_Derived_Type (Full_T)
19080 then
19081 Priv_Parent := Etype (Priv_T);
19082
19083 -- The full view of a private extension may have been transformed
19084 -- into an unconstrained derived type declaration and a subtype
19085 -- declaration (see build_derived_record_type for details).
19086
19087 if Nkind (N) = N_Subtype_Declaration then
19088 Full_Indic := Subtype_Indication (N);
19089 Full_Parent := Etype (Base_Type (Full_T));
19090 else
19091 Full_Indic := Subtype_Indication (Type_Definition (N));
19092 Full_Parent := Etype (Full_T);
19093 end if;
19094
19095 -- Check that the parent type of the full type is a descendant of
19096 -- the ancestor subtype given in the private extension. If either
19097 -- entity has an Etype equal to Any_Type then we had some previous
19098 -- error situation [7.3(8)].
19099
19100 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
19101 return;
19102
19103 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
19104 -- any order. Therefore we don't have to check that its parent must
19105 -- be a descendant of the parent of the private type declaration.
19106
19107 elsif Is_Interface (Priv_Parent)
19108 and then Is_Interface (Full_Parent)
19109 then
19110 null;
19111
19112 -- Ada 2005 (AI-251): If the parent of the private type declaration
19113 -- is an interface there is no need to check that it is an ancestor
19114 -- of the associated full type declaration. The required tests for
19115 -- this case are performed by Build_Derived_Record_Type.
19116
19117 elsif not Is_Interface (Base_Type (Priv_Parent))
19118 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
19119 then
19120 Error_Msg_N
19121 ("parent of full type must descend from parent"
19122 & " of private extension", Full_Indic);
19123
19124 -- First check a formal restriction, and then proceed with checking
19125 -- Ada rules. Since the formal restriction is not a serious error, we
19126 -- don't prevent further error detection for this check, hence the
19127 -- ELSE.
19128
19129 else
19130 -- In formal mode, when completing a private extension the type
19131 -- named in the private part must be exactly the same as that
19132 -- named in the visible part.
19133
19134 if Priv_Parent /= Full_Parent then
19135 Error_Msg_Name_1 := Chars (Priv_Parent);
19136 Check_SPARK_05_Restriction ("% expected", Full_Indic);
19137 end if;
19138
19139 -- Check the rules of 7.3(10): if the private extension inherits
19140 -- known discriminants, then the full type must also inherit those
19141 -- discriminants from the same (ancestor) type, and the parent
19142 -- subtype of the full type must be constrained if and only if
19143 -- the ancestor subtype of the private extension is constrained.
19144
19145 if No (Discriminant_Specifications (Parent (Priv_T)))
19146 and then not Has_Unknown_Discriminants (Priv_T)
19147 and then Has_Discriminants (Base_Type (Priv_Parent))
19148 then
19149 declare
19150 Priv_Indic : constant Node_Id :=
19151 Subtype_Indication (Parent (Priv_T));
19152
19153 Priv_Constr : constant Boolean :=
19154 Is_Constrained (Priv_Parent)
19155 or else
19156 Nkind (Priv_Indic) = N_Subtype_Indication
19157 or else
19158 Is_Constrained (Entity (Priv_Indic));
19159
19160 Full_Constr : constant Boolean :=
19161 Is_Constrained (Full_Parent)
19162 or else
19163 Nkind (Full_Indic) = N_Subtype_Indication
19164 or else
19165 Is_Constrained (Entity (Full_Indic));
19166
19167 Priv_Discr : Entity_Id;
19168 Full_Discr : Entity_Id;
19169
19170 begin
19171 Priv_Discr := First_Discriminant (Priv_Parent);
19172 Full_Discr := First_Discriminant (Full_Parent);
19173 while Present (Priv_Discr) and then Present (Full_Discr) loop
19174 if Original_Record_Component (Priv_Discr) =
19175 Original_Record_Component (Full_Discr)
19176 or else
19177 Corresponding_Discriminant (Priv_Discr) =
19178 Corresponding_Discriminant (Full_Discr)
19179 then
19180 null;
19181 else
19182 exit;
19183 end if;
19184
19185 Next_Discriminant (Priv_Discr);
19186 Next_Discriminant (Full_Discr);
19187 end loop;
19188
19189 if Present (Priv_Discr) or else Present (Full_Discr) then
19190 Error_Msg_N
19191 ("full view must inherit discriminants of the parent"
19192 & " type used in the private extension", Full_Indic);
19193
19194 elsif Priv_Constr and then not Full_Constr then
19195 Error_Msg_N
19196 ("parent subtype of full type must be constrained",
19197 Full_Indic);
19198
19199 elsif Full_Constr and then not Priv_Constr then
19200 Error_Msg_N
19201 ("parent subtype of full type must be unconstrained",
19202 Full_Indic);
19203 end if;
19204 end;
19205
19206 -- Check the rules of 7.3(12): if a partial view has neither
19207 -- known or unknown discriminants, then the full type
19208 -- declaration shall define a definite subtype.
19209
19210 elsif not Has_Unknown_Discriminants (Priv_T)
19211 and then not Has_Discriminants (Priv_T)
19212 and then not Is_Constrained (Full_T)
19213 then
19214 Error_Msg_N
19215 ("full view must define a constrained type if partial view"
19216 & " has no discriminants", Full_T);
19217 end if;
19218
19219 -- ??????? Do we implement the following properly ?????
19220 -- If the ancestor subtype of a private extension has constrained
19221 -- discriminants, then the parent subtype of the full view shall
19222 -- impose a statically matching constraint on those discriminants
19223 -- [7.3(13)].
19224 end if;
19225
19226 else
19227 -- For untagged types, verify that a type without discriminants is
19228 -- not completed with an unconstrained type. A separate error message
19229 -- is produced if the full type has defaulted discriminants.
19230
19231 if not Is_Indefinite_Subtype (Priv_T)
19232 and then Is_Indefinite_Subtype (Full_T)
19233 then
19234 Error_Msg_Sloc := Sloc (Parent (Priv_T));
19235 Error_Msg_NE
19236 ("full view of& not compatible with declaration#",
19237 Full_T, Priv_T);
19238
19239 if not Is_Tagged_Type (Full_T) then
19240 Error_Msg_N
19241 ("\one is constrained, the other unconstrained", Full_T);
19242 end if;
19243 end if;
19244 end if;
19245
19246 -- AI-419: verify that the use of "limited" is consistent
19247
19248 declare
19249 Orig_Decl : constant Node_Id := Original_Node (N);
19250
19251 begin
19252 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19253 and then not Limited_Present (Parent (Priv_T))
19254 and then not Synchronized_Present (Parent (Priv_T))
19255 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
19256 and then Nkind
19257 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
19258 and then Limited_Present (Type_Definition (Orig_Decl))
19259 then
19260 Error_Msg_N
19261 ("full view of non-limited extension cannot be limited", N);
19262 end if;
19263 end;
19264
19265 -- Ada 2005 (AI-443): A synchronized private extension must be
19266 -- completed by a task or protected type.
19267
19268 if Ada_Version >= Ada_2005
19269 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19270 and then Synchronized_Present (Parent (Priv_T))
19271 and then not Is_Concurrent_Type (Full_T)
19272 then
19273 Error_Msg_N ("full view of synchronized extension must " &
19274 "be synchronized type", N);
19275 end if;
19276
19277 -- Ada 2005 AI-363: if the full view has discriminants with
19278 -- defaults, it is illegal to declare constrained access subtypes
19279 -- whose designated type is the current type. This allows objects
19280 -- of the type that are declared in the heap to be unconstrained.
19281
19282 if not Has_Unknown_Discriminants (Priv_T)
19283 and then not Has_Discriminants (Priv_T)
19284 and then Has_Discriminants (Full_T)
19285 and then
19286 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
19287 then
19288 Set_Has_Constrained_Partial_View (Full_T);
19289 Set_Has_Constrained_Partial_View (Priv_T);
19290 end if;
19291
19292 -- Create a full declaration for all its subtypes recorded in
19293 -- Private_Dependents and swap them similarly to the base type. These
19294 -- are subtypes that have been define before the full declaration of
19295 -- the private type. We also swap the entry in Private_Dependents list
19296 -- so we can properly restore the private view on exit from the scope.
19297
19298 declare
19299 Priv_Elmt : Elmt_Id;
19300 Priv_Scop : Entity_Id;
19301 Priv : Entity_Id;
19302 Full : Entity_Id;
19303
19304 begin
19305 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
19306 while Present (Priv_Elmt) loop
19307 Priv := Node (Priv_Elmt);
19308 Priv_Scop := Scope (Priv);
19309
19310 if Ekind_In (Priv, E_Private_Subtype,
19311 E_Limited_Private_Subtype,
19312 E_Record_Subtype_With_Private)
19313 then
19314 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
19315 Set_Is_Itype (Full);
19316 Set_Parent (Full, Parent (Priv));
19317 Set_Associated_Node_For_Itype (Full, N);
19318
19319 -- Now we need to complete the private subtype, but since the
19320 -- base type has already been swapped, we must also swap the
19321 -- subtypes (and thus, reverse the arguments in the call to
19322 -- Complete_Private_Subtype). Also note that we may need to
19323 -- re-establish the scope of the private subtype.
19324
19325 Copy_And_Swap (Priv, Full);
19326
19327 if not In_Open_Scopes (Priv_Scop) then
19328 Push_Scope (Priv_Scop);
19329
19330 else
19331 -- Reset Priv_Scop to Empty to indicate no scope was pushed
19332
19333 Priv_Scop := Empty;
19334 end if;
19335
19336 Complete_Private_Subtype (Full, Priv, Full_T, N);
19337
19338 if Present (Priv_Scop) then
19339 Pop_Scope;
19340 end if;
19341
19342 Replace_Elmt (Priv_Elmt, Full);
19343 end if;
19344
19345 Next_Elmt (Priv_Elmt);
19346 end loop;
19347 end;
19348
19349 -- If the private view was tagged, copy the new primitive operations
19350 -- from the private view to the full view.
19351
19352 if Is_Tagged_Type (Full_T) then
19353 declare
19354 Disp_Typ : Entity_Id;
19355 Full_List : Elist_Id;
19356 Prim : Entity_Id;
19357 Prim_Elmt : Elmt_Id;
19358 Priv_List : Elist_Id;
19359
19360 function Contains
19361 (E : Entity_Id;
19362 L : Elist_Id) return Boolean;
19363 -- Determine whether list L contains element E
19364
19365 --------------
19366 -- Contains --
19367 --------------
19368
19369 function Contains
19370 (E : Entity_Id;
19371 L : Elist_Id) return Boolean
19372 is
19373 List_Elmt : Elmt_Id;
19374
19375 begin
19376 List_Elmt := First_Elmt (L);
19377 while Present (List_Elmt) loop
19378 if Node (List_Elmt) = E then
19379 return True;
19380 end if;
19381
19382 Next_Elmt (List_Elmt);
19383 end loop;
19384
19385 return False;
19386 end Contains;
19387
19388 -- Start of processing
19389
19390 begin
19391 if Is_Tagged_Type (Priv_T) then
19392 Priv_List := Primitive_Operations (Priv_T);
19393 Prim_Elmt := First_Elmt (Priv_List);
19394
19395 -- In the case of a concurrent type completing a private tagged
19396 -- type, primitives may have been declared in between the two
19397 -- views. These subprograms need to be wrapped the same way
19398 -- entries and protected procedures are handled because they
19399 -- cannot be directly shared by the two views.
19400
19401 if Is_Concurrent_Type (Full_T) then
19402 declare
19403 Conc_Typ : constant Entity_Id :=
19404 Corresponding_Record_Type (Full_T);
19405 Curr_Nod : Node_Id := Parent (Conc_Typ);
19406 Wrap_Spec : Node_Id;
19407
19408 begin
19409 while Present (Prim_Elmt) loop
19410 Prim := Node (Prim_Elmt);
19411
19412 if Comes_From_Source (Prim)
19413 and then not Is_Abstract_Subprogram (Prim)
19414 then
19415 Wrap_Spec :=
19416 Make_Subprogram_Declaration (Sloc (Prim),
19417 Specification =>
19418 Build_Wrapper_Spec
19419 (Subp_Id => Prim,
19420 Obj_Typ => Conc_Typ,
19421 Formals =>
19422 Parameter_Specifications (
19423 Parent (Prim))));
19424
19425 Insert_After (Curr_Nod, Wrap_Spec);
19426 Curr_Nod := Wrap_Spec;
19427
19428 Analyze (Wrap_Spec);
19429 end if;
19430
19431 Next_Elmt (Prim_Elmt);
19432 end loop;
19433
19434 return;
19435 end;
19436
19437 -- For non-concurrent types, transfer explicit primitives, but
19438 -- omit those inherited from the parent of the private view
19439 -- since they will be re-inherited later on.
19440
19441 else
19442 Full_List := Primitive_Operations (Full_T);
19443
19444 while Present (Prim_Elmt) loop
19445 Prim := Node (Prim_Elmt);
19446
19447 if Comes_From_Source (Prim)
19448 and then not Contains (Prim, Full_List)
19449 then
19450 Append_Elmt (Prim, Full_List);
19451 end if;
19452
19453 Next_Elmt (Prim_Elmt);
19454 end loop;
19455 end if;
19456
19457 -- Untagged private view
19458
19459 else
19460 Full_List := Primitive_Operations (Full_T);
19461
19462 -- In this case the partial view is untagged, so here we locate
19463 -- all of the earlier primitives that need to be treated as
19464 -- dispatching (those that appear between the two views). Note
19465 -- that these additional operations must all be new operations
19466 -- (any earlier operations that override inherited operations
19467 -- of the full view will already have been inserted in the
19468 -- primitives list, marked by Check_Operation_From_Private_View
19469 -- as dispatching. Note that implicit "/=" operators are
19470 -- excluded from being added to the primitives list since they
19471 -- shouldn't be treated as dispatching (tagged "/=" is handled
19472 -- specially).
19473
19474 Prim := Next_Entity (Full_T);
19475 while Present (Prim) and then Prim /= Priv_T loop
19476 if Ekind_In (Prim, E_Procedure, E_Function) then
19477 Disp_Typ := Find_Dispatching_Type (Prim);
19478
19479 if Disp_Typ = Full_T
19480 and then (Chars (Prim) /= Name_Op_Ne
19481 or else Comes_From_Source (Prim))
19482 then
19483 Check_Controlling_Formals (Full_T, Prim);
19484
19485 if not Is_Dispatching_Operation (Prim) then
19486 Append_Elmt (Prim, Full_List);
19487 Set_Is_Dispatching_Operation (Prim, True);
19488 Set_DT_Position (Prim, No_Uint);
19489 end if;
19490
19491 elsif Is_Dispatching_Operation (Prim)
19492 and then Disp_Typ /= Full_T
19493 then
19494
19495 -- Verify that it is not otherwise controlled by a
19496 -- formal or a return value of type T.
19497
19498 Check_Controlling_Formals (Disp_Typ, Prim);
19499 end if;
19500 end if;
19501
19502 Next_Entity (Prim);
19503 end loop;
19504 end if;
19505
19506 -- For the tagged case, the two views can share the same primitive
19507 -- operations list and the same class-wide type. Update attributes
19508 -- of the class-wide type which depend on the full declaration.
19509
19510 if Is_Tagged_Type (Priv_T) then
19511 Set_Direct_Primitive_Operations (Priv_T, Full_List);
19512 Set_Class_Wide_Type
19513 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
19514
19515 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
19516 Set_Has_Protected
19517 (Class_Wide_Type (Priv_T), Has_Protected (Full_T));
19518 end if;
19519 end;
19520 end if;
19521
19522 -- Ada 2005 AI 161: Check preelaborable initialization consistency
19523
19524 if Known_To_Have_Preelab_Init (Priv_T) then
19525
19526 -- Case where there is a pragma Preelaborable_Initialization. We
19527 -- always allow this in predefined units, which is cheating a bit,
19528 -- but it means we don't have to struggle to meet the requirements in
19529 -- the RM for having Preelaborable Initialization. Otherwise we
19530 -- require that the type meets the RM rules. But we can't check that
19531 -- yet, because of the rule about overriding Initialize, so we simply
19532 -- set a flag that will be checked at freeze time.
19533
19534 if not In_Predefined_Unit (Full_T) then
19535 Set_Must_Have_Preelab_Init (Full_T);
19536 end if;
19537 end if;
19538
19539 -- If pragma CPP_Class was applied to the private type declaration,
19540 -- propagate it now to the full type declaration.
19541
19542 if Is_CPP_Class (Priv_T) then
19543 Set_Is_CPP_Class (Full_T);
19544 Set_Convention (Full_T, Convention_CPP);
19545
19546 -- Check that components of imported CPP types do not have default
19547 -- expressions.
19548
19549 Check_CPP_Type_Has_No_Defaults (Full_T);
19550 end if;
19551
19552 -- If the private view has user specified stream attributes, then so has
19553 -- the full view.
19554
19555 -- Why the test, how could these flags be already set in Full_T ???
19556
19557 if Has_Specified_Stream_Read (Priv_T) then
19558 Set_Has_Specified_Stream_Read (Full_T);
19559 end if;
19560
19561 if Has_Specified_Stream_Write (Priv_T) then
19562 Set_Has_Specified_Stream_Write (Full_T);
19563 end if;
19564
19565 if Has_Specified_Stream_Input (Priv_T) then
19566 Set_Has_Specified_Stream_Input (Full_T);
19567 end if;
19568
19569 if Has_Specified_Stream_Output (Priv_T) then
19570 Set_Has_Specified_Stream_Output (Full_T);
19571 end if;
19572
19573 -- Propagate the attributes related to pragma Default_Initial_Condition
19574 -- from the private to the full view. Note that both flags are mutually
19575 -- exclusive.
19576
19577 if Has_Default_Init_Cond (Priv_T)
19578 or else Has_Inherited_Default_Init_Cond (Priv_T)
19579 then
19580 Propagate_Default_Init_Cond_Attributes
19581 (From_Typ => Priv_T,
19582 To_Typ => Full_T,
19583 Private_To_Full_View => True);
19584
19585 -- In the case where the full view is derived from another private type,
19586 -- the attributes related to pragma Default_Initial_Condition must be
19587 -- propagated from the full to the private view to maintain consistency
19588 -- of views.
19589
19590 -- package Pack is
19591 -- type Parent_Typ is private
19592 -- with Default_Initial_Condition ...;
19593 -- private
19594 -- type Parent_Typ is ...;
19595 -- end Pack;
19596
19597 -- with Pack; use Pack;
19598 -- package Pack_2 is
19599 -- type Deriv_Typ is private; -- must inherit
19600 -- private
19601 -- type Deriv_Typ is new Parent_Typ; -- must inherit
19602 -- end Pack_2;
19603
19604 elsif Has_Default_Init_Cond (Full_T)
19605 or else Has_Inherited_Default_Init_Cond (Full_T)
19606 then
19607 Propagate_Default_Init_Cond_Attributes
19608 (From_Typ => Full_T,
19609 To_Typ => Priv_T,
19610 Private_To_Full_View => True);
19611 end if;
19612
19613 -- Propagate invariants to full type
19614
19615 if Has_Invariants (Priv_T) then
19616 Set_Has_Invariants (Full_T);
19617 Set_Invariant_Procedure (Full_T, Invariant_Procedure (Priv_T));
19618 end if;
19619
19620 if Has_Inheritable_Invariants (Priv_T) then
19621 Set_Has_Inheritable_Invariants (Full_T);
19622 end if;
19623
19624 -- Propagate predicates to full type, and predicate function if already
19625 -- defined. It is not clear that this can actually happen? the partial
19626 -- view cannot be frozen yet, and the predicate function has not been
19627 -- built. Still it is a cheap check and seems safer to make it.
19628
19629 if Has_Predicates (Priv_T) then
19630 if Present (Predicate_Function (Priv_T)) then
19631 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
19632 end if;
19633
19634 Set_Has_Predicates (Full_T);
19635 end if;
19636 end Process_Full_View;
19637
19638 -----------------------------------
19639 -- Process_Incomplete_Dependents --
19640 -----------------------------------
19641
19642 procedure Process_Incomplete_Dependents
19643 (N : Node_Id;
19644 Full_T : Entity_Id;
19645 Inc_T : Entity_Id)
19646 is
19647 Inc_Elmt : Elmt_Id;
19648 Priv_Dep : Entity_Id;
19649 New_Subt : Entity_Id;
19650
19651 Disc_Constraint : Elist_Id;
19652
19653 begin
19654 if No (Private_Dependents (Inc_T)) then
19655 return;
19656 end if;
19657
19658 -- Itypes that may be generated by the completion of an incomplete
19659 -- subtype are not used by the back-end and not attached to the tree.
19660 -- They are created only for constraint-checking purposes.
19661
19662 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
19663 while Present (Inc_Elmt) loop
19664 Priv_Dep := Node (Inc_Elmt);
19665
19666 if Ekind (Priv_Dep) = E_Subprogram_Type then
19667
19668 -- An Access_To_Subprogram type may have a return type or a
19669 -- parameter type that is incomplete. Replace with the full view.
19670
19671 if Etype (Priv_Dep) = Inc_T then
19672 Set_Etype (Priv_Dep, Full_T);
19673 end if;
19674
19675 declare
19676 Formal : Entity_Id;
19677
19678 begin
19679 Formal := First_Formal (Priv_Dep);
19680 while Present (Formal) loop
19681 if Etype (Formal) = Inc_T then
19682 Set_Etype (Formal, Full_T);
19683 end if;
19684
19685 Next_Formal (Formal);
19686 end loop;
19687 end;
19688
19689 elsif Is_Overloadable (Priv_Dep) then
19690
19691 -- If a subprogram in the incomplete dependents list is primitive
19692 -- for a tagged full type then mark it as a dispatching operation,
19693 -- check whether it overrides an inherited subprogram, and check
19694 -- restrictions on its controlling formals. Note that a protected
19695 -- operation is never dispatching: only its wrapper operation
19696 -- (which has convention Ada) is.
19697
19698 if Is_Tagged_Type (Full_T)
19699 and then Is_Primitive (Priv_Dep)
19700 and then Convention (Priv_Dep) /= Convention_Protected
19701 then
19702 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
19703 Set_Is_Dispatching_Operation (Priv_Dep);
19704 Check_Controlling_Formals (Full_T, Priv_Dep);
19705 end if;
19706
19707 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
19708
19709 -- Can happen during processing of a body before the completion
19710 -- of a TA type. Ignore, because spec is also on dependent list.
19711
19712 return;
19713
19714 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
19715 -- corresponding subtype of the full view.
19716
19717 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
19718 Set_Subtype_Indication
19719 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
19720 Set_Etype (Priv_Dep, Full_T);
19721 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
19722 Set_Analyzed (Parent (Priv_Dep), False);
19723
19724 -- Reanalyze the declaration, suppressing the call to
19725 -- Enter_Name to avoid duplicate names.
19726
19727 Analyze_Subtype_Declaration
19728 (N => Parent (Priv_Dep),
19729 Skip => True);
19730
19731 -- Dependent is a subtype
19732
19733 else
19734 -- We build a new subtype indication using the full view of the
19735 -- incomplete parent. The discriminant constraints have been
19736 -- elaborated already at the point of the subtype declaration.
19737
19738 New_Subt := Create_Itype (E_Void, N);
19739
19740 if Has_Discriminants (Full_T) then
19741 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
19742 else
19743 Disc_Constraint := No_Elist;
19744 end if;
19745
19746 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
19747 Set_Full_View (Priv_Dep, New_Subt);
19748 end if;
19749
19750 Next_Elmt (Inc_Elmt);
19751 end loop;
19752 end Process_Incomplete_Dependents;
19753
19754 --------------------------------
19755 -- Process_Range_Expr_In_Decl --
19756 --------------------------------
19757
19758 procedure Process_Range_Expr_In_Decl
19759 (R : Node_Id;
19760 T : Entity_Id;
19761 Subtyp : Entity_Id := Empty;
19762 Check_List : List_Id := Empty_List;
19763 R_Check_Off : Boolean := False;
19764 In_Iter_Schm : Boolean := False)
19765 is
19766 Lo, Hi : Node_Id;
19767 R_Checks : Check_Result;
19768 Insert_Node : Node_Id;
19769 Def_Id : Entity_Id;
19770
19771 begin
19772 Analyze_And_Resolve (R, Base_Type (T));
19773
19774 if Nkind (R) = N_Range then
19775
19776 -- In SPARK, all ranges should be static, with the exception of the
19777 -- discrete type definition of a loop parameter specification.
19778
19779 if not In_Iter_Schm
19780 and then not Is_OK_Static_Range (R)
19781 then
19782 Check_SPARK_05_Restriction ("range should be static", R);
19783 end if;
19784
19785 Lo := Low_Bound (R);
19786 Hi := High_Bound (R);
19787
19788 -- Validity checks on the range of a quantified expression are
19789 -- delayed until the construct is transformed into a loop.
19790
19791 if Nkind (Parent (R)) = N_Loop_Parameter_Specification
19792 and then Nkind (Parent (Parent (R))) = N_Quantified_Expression
19793 then
19794 null;
19795
19796 -- We need to ensure validity of the bounds here, because if we
19797 -- go ahead and do the expansion, then the expanded code will get
19798 -- analyzed with range checks suppressed and we miss the check.
19799
19800 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
19801 -- the temporaries generated by routine Remove_Side_Effects by means
19802 -- of validity checks must use the same names. When a range appears
19803 -- in the parent of a generic, the range is processed with checks
19804 -- disabled as part of the generic context and with checks enabled
19805 -- for code generation purposes. This leads to link issues as the
19806 -- generic contains references to xxx_FIRST/_LAST, but the inlined
19807 -- template sees the temporaries generated by Remove_Side_Effects.
19808
19809 else
19810 Validity_Check_Range (R, Subtyp);
19811 end if;
19812
19813 -- If there were errors in the declaration, try and patch up some
19814 -- common mistakes in the bounds. The cases handled are literals
19815 -- which are Integer where the expected type is Real and vice versa.
19816 -- These corrections allow the compilation process to proceed further
19817 -- along since some basic assumptions of the format of the bounds
19818 -- are guaranteed.
19819
19820 if Etype (R) = Any_Type then
19821 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
19822 Rewrite (Lo,
19823 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
19824
19825 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
19826 Rewrite (Hi,
19827 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
19828
19829 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
19830 Rewrite (Lo,
19831 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
19832
19833 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
19834 Rewrite (Hi,
19835 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
19836 end if;
19837
19838 Set_Etype (Lo, T);
19839 Set_Etype (Hi, T);
19840 end if;
19841
19842 -- If the bounds of the range have been mistakenly given as string
19843 -- literals (perhaps in place of character literals), then an error
19844 -- has already been reported, but we rewrite the string literal as a
19845 -- bound of the range's type to avoid blowups in later processing
19846 -- that looks at static values.
19847
19848 if Nkind (Lo) = N_String_Literal then
19849 Rewrite (Lo,
19850 Make_Attribute_Reference (Sloc (Lo),
19851 Prefix => New_Occurrence_Of (T, Sloc (Lo)),
19852 Attribute_Name => Name_First));
19853 Analyze_And_Resolve (Lo);
19854 end if;
19855
19856 if Nkind (Hi) = N_String_Literal then
19857 Rewrite (Hi,
19858 Make_Attribute_Reference (Sloc (Hi),
19859 Prefix => New_Occurrence_Of (T, Sloc (Hi)),
19860 Attribute_Name => Name_First));
19861 Analyze_And_Resolve (Hi);
19862 end if;
19863
19864 -- If bounds aren't scalar at this point then exit, avoiding
19865 -- problems with further processing of the range in this procedure.
19866
19867 if not Is_Scalar_Type (Etype (Lo)) then
19868 return;
19869 end if;
19870
19871 -- Resolve (actually Sem_Eval) has checked that the bounds are in
19872 -- then range of the base type. Here we check whether the bounds
19873 -- are in the range of the subtype itself. Note that if the bounds
19874 -- represent the null range the Constraint_Error exception should
19875 -- not be raised.
19876
19877 -- ??? The following code should be cleaned up as follows
19878
19879 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
19880 -- is done in the call to Range_Check (R, T); below
19881
19882 -- 2. The use of R_Check_Off should be investigated and possibly
19883 -- removed, this would clean up things a bit.
19884
19885 if Is_Null_Range (Lo, Hi) then
19886 null;
19887
19888 else
19889 -- Capture values of bounds and generate temporaries for them
19890 -- if needed, before applying checks, since checks may cause
19891 -- duplication of the expression without forcing evaluation.
19892
19893 -- The forced evaluation removes side effects from expressions,
19894 -- which should occur also in GNATprove mode. Otherwise, we end up
19895 -- with unexpected insertions of actions at places where this is
19896 -- not supposed to occur, e.g. on default parameters of a call.
19897
19898 if Expander_Active or GNATprove_Mode then
19899
19900 -- If no subtype name, then just call Force_Evaluation to
19901 -- create declarations as needed to deal with side effects.
19902 -- Also ignore calls from within a record type, where we
19903 -- have possible scoping issues.
19904
19905 if No (Subtyp) or else Is_Record_Type (Current_Scope) then
19906 Force_Evaluation (Lo);
19907 Force_Evaluation (Hi);
19908
19909 -- If a subtype is given, then we capture the bounds if they
19910 -- are not known at compile time, using constant identifiers
19911 -- xxx_FIRST and xxx_LAST where xxx is the name of the subtype.
19912
19913 -- Note: we do this transformation even if expansion is not
19914 -- active, and in particular we do it in GNATprove_Mode since
19915 -- the transformation is in general required to ensure that the
19916 -- resulting tree has proper Ada semantics.
19917
19918 -- Historical note: We used to just do Force_Evaluation calls
19919 -- in all cases, but it is better to capture the bounds with
19920 -- proper non-serialized names, since these will be accessed
19921 -- from other units, and hence may be public, and also we can
19922 -- then expand 'First and 'Last references to be references to
19923 -- these special names.
19924
19925 else
19926 if not Compile_Time_Known_Value (Lo)
19927
19928 -- No need to capture bounds if they already are
19929 -- references to constants.
19930
19931 and then not (Is_Entity_Name (Lo)
19932 and then Is_Constant_Object (Entity (Lo)))
19933 then
19934 declare
19935 Loc : constant Source_Ptr := Sloc (Lo);
19936 Lov : constant Entity_Id :=
19937 Make_Defining_Identifier (Loc,
19938 Chars =>
19939 New_External_Name (Chars (Subtyp), "_FIRST"));
19940 begin
19941 Insert_Action (R,
19942 Make_Object_Declaration (Loc,
19943 Defining_Identifier => Lov,
19944 Object_Definition =>
19945 New_Occurrence_Of (Base_Type (T), Loc),
19946 Constant_Present => True,
19947 Expression => Relocate_Node (Lo)));
19948 Rewrite (Lo, New_Occurrence_Of (Lov, Loc));
19949 end;
19950 end if;
19951
19952 if not Compile_Time_Known_Value (Hi)
19953 and then not (Is_Entity_Name (Hi)
19954 and then Is_Constant_Object (Entity (Hi)))
19955 then
19956 declare
19957 Loc : constant Source_Ptr := Sloc (Hi);
19958 Hiv : constant Entity_Id :=
19959 Make_Defining_Identifier (Loc,
19960 Chars =>
19961 New_External_Name (Chars (Subtyp), "_LAST"));
19962 begin
19963 Insert_Action (R,
19964 Make_Object_Declaration (Loc,
19965 Defining_Identifier => Hiv,
19966 Object_Definition =>
19967 New_Occurrence_Of (Base_Type (T), Loc),
19968 Constant_Present => True,
19969 Expression => Relocate_Node (Hi)));
19970 Rewrite (Hi, New_Occurrence_Of (Hiv, Loc));
19971 end;
19972 end if;
19973 end if;
19974 end if;
19975
19976 -- We use a flag here instead of suppressing checks on the
19977 -- type because the type we check against isn't necessarily
19978 -- the place where we put the check.
19979
19980 if not R_Check_Off then
19981 R_Checks := Get_Range_Checks (R, T);
19982
19983 -- Look up tree to find an appropriate insertion point. We
19984 -- can't just use insert_actions because later processing
19985 -- depends on the insertion node. Prior to Ada 2012 the
19986 -- insertion point could only be a declaration or a loop, but
19987 -- quantified expressions can appear within any context in an
19988 -- expression, and the insertion point can be any statement,
19989 -- pragma, or declaration.
19990
19991 Insert_Node := Parent (R);
19992 while Present (Insert_Node) loop
19993 exit when
19994 Nkind (Insert_Node) in N_Declaration
19995 and then
19996 not Nkind_In
19997 (Insert_Node, N_Component_Declaration,
19998 N_Loop_Parameter_Specification,
19999 N_Function_Specification,
20000 N_Procedure_Specification);
20001
20002 exit when Nkind (Insert_Node) in N_Later_Decl_Item
20003 or else Nkind (Insert_Node) in
20004 N_Statement_Other_Than_Procedure_Call
20005 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
20006 N_Pragma);
20007
20008 Insert_Node := Parent (Insert_Node);
20009 end loop;
20010
20011 -- Why would Type_Decl not be present??? Without this test,
20012 -- short regression tests fail.
20013
20014 if Present (Insert_Node) then
20015
20016 -- Case of loop statement. Verify that the range is part
20017 -- of the subtype indication of the iteration scheme.
20018
20019 if Nkind (Insert_Node) = N_Loop_Statement then
20020 declare
20021 Indic : Node_Id;
20022
20023 begin
20024 Indic := Parent (R);
20025 while Present (Indic)
20026 and then Nkind (Indic) /= N_Subtype_Indication
20027 loop
20028 Indic := Parent (Indic);
20029 end loop;
20030
20031 if Present (Indic) then
20032 Def_Id := Etype (Subtype_Mark (Indic));
20033
20034 Insert_Range_Checks
20035 (R_Checks,
20036 Insert_Node,
20037 Def_Id,
20038 Sloc (Insert_Node),
20039 R,
20040 Do_Before => True);
20041 end if;
20042 end;
20043
20044 -- Insertion before a declaration. If the declaration
20045 -- includes discriminants, the list of applicable checks
20046 -- is given by the caller.
20047
20048 elsif Nkind (Insert_Node) in N_Declaration then
20049 Def_Id := Defining_Identifier (Insert_Node);
20050
20051 if (Ekind (Def_Id) = E_Record_Type
20052 and then Depends_On_Discriminant (R))
20053 or else
20054 (Ekind (Def_Id) = E_Protected_Type
20055 and then Has_Discriminants (Def_Id))
20056 then
20057 Append_Range_Checks
20058 (R_Checks,
20059 Check_List, Def_Id, Sloc (Insert_Node), R);
20060
20061 else
20062 Insert_Range_Checks
20063 (R_Checks,
20064 Insert_Node, Def_Id, Sloc (Insert_Node), R);
20065
20066 end if;
20067
20068 -- Insertion before a statement. Range appears in the
20069 -- context of a quantified expression. Insertion will
20070 -- take place when expression is expanded.
20071
20072 else
20073 null;
20074 end if;
20075 end if;
20076 end if;
20077 end if;
20078
20079 -- Case of other than an explicit N_Range node
20080
20081 -- The forced evaluation removes side effects from expressions, which
20082 -- should occur also in GNATprove mode. Otherwise, we end up with
20083 -- unexpected insertions of actions at places where this is not
20084 -- supposed to occur, e.g. on default parameters of a call.
20085
20086 elsif Expander_Active or GNATprove_Mode then
20087 Get_Index_Bounds (R, Lo, Hi);
20088 Force_Evaluation (Lo);
20089 Force_Evaluation (Hi);
20090 end if;
20091 end Process_Range_Expr_In_Decl;
20092
20093 --------------------------------------
20094 -- Process_Real_Range_Specification --
20095 --------------------------------------
20096
20097 procedure Process_Real_Range_Specification (Def : Node_Id) is
20098 Spec : constant Node_Id := Real_Range_Specification (Def);
20099 Lo : Node_Id;
20100 Hi : Node_Id;
20101 Err : Boolean := False;
20102
20103 procedure Analyze_Bound (N : Node_Id);
20104 -- Analyze and check one bound
20105
20106 -------------------
20107 -- Analyze_Bound --
20108 -------------------
20109
20110 procedure Analyze_Bound (N : Node_Id) is
20111 begin
20112 Analyze_And_Resolve (N, Any_Real);
20113
20114 if not Is_OK_Static_Expression (N) then
20115 Flag_Non_Static_Expr
20116 ("bound in real type definition is not static!", N);
20117 Err := True;
20118 end if;
20119 end Analyze_Bound;
20120
20121 -- Start of processing for Process_Real_Range_Specification
20122
20123 begin
20124 if Present (Spec) then
20125 Lo := Low_Bound (Spec);
20126 Hi := High_Bound (Spec);
20127 Analyze_Bound (Lo);
20128 Analyze_Bound (Hi);
20129
20130 -- If error, clear away junk range specification
20131
20132 if Err then
20133 Set_Real_Range_Specification (Def, Empty);
20134 end if;
20135 end if;
20136 end Process_Real_Range_Specification;
20137
20138 ---------------------
20139 -- Process_Subtype --
20140 ---------------------
20141
20142 function Process_Subtype
20143 (S : Node_Id;
20144 Related_Nod : Node_Id;
20145 Related_Id : Entity_Id := Empty;
20146 Suffix : Character := ' ') return Entity_Id
20147 is
20148 P : Node_Id;
20149 Def_Id : Entity_Id;
20150 Error_Node : Node_Id;
20151 Full_View_Id : Entity_Id;
20152 Subtype_Mark_Id : Entity_Id;
20153
20154 May_Have_Null_Exclusion : Boolean;
20155
20156 procedure Check_Incomplete (T : Entity_Id);
20157 -- Called to verify that an incomplete type is not used prematurely
20158
20159 ----------------------
20160 -- Check_Incomplete --
20161 ----------------------
20162
20163 procedure Check_Incomplete (T : Entity_Id) is
20164 begin
20165 -- Ada 2005 (AI-412): Incomplete subtypes are legal
20166
20167 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
20168 and then
20169 not (Ada_Version >= Ada_2005
20170 and then
20171 (Nkind (Parent (T)) = N_Subtype_Declaration
20172 or else (Nkind (Parent (T)) = N_Subtype_Indication
20173 and then Nkind (Parent (Parent (T))) =
20174 N_Subtype_Declaration)))
20175 then
20176 Error_Msg_N ("invalid use of type before its full declaration", T);
20177 end if;
20178 end Check_Incomplete;
20179
20180 -- Start of processing for Process_Subtype
20181
20182 begin
20183 -- Case of no constraints present
20184
20185 if Nkind (S) /= N_Subtype_Indication then
20186 Find_Type (S);
20187 Check_Incomplete (S);
20188 P := Parent (S);
20189
20190 -- Ada 2005 (AI-231): Static check
20191
20192 if Ada_Version >= Ada_2005
20193 and then Present (P)
20194 and then Null_Exclusion_Present (P)
20195 and then Nkind (P) /= N_Access_To_Object_Definition
20196 and then not Is_Access_Type (Entity (S))
20197 then
20198 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
20199 end if;
20200
20201 -- The following is ugly, can't we have a range or even a flag???
20202
20203 May_Have_Null_Exclusion :=
20204 Nkind_In (P, N_Access_Definition,
20205 N_Access_Function_Definition,
20206 N_Access_Procedure_Definition,
20207 N_Access_To_Object_Definition,
20208 N_Allocator,
20209 N_Component_Definition)
20210 or else
20211 Nkind_In (P, N_Derived_Type_Definition,
20212 N_Discriminant_Specification,
20213 N_Formal_Object_Declaration,
20214 N_Object_Declaration,
20215 N_Object_Renaming_Declaration,
20216 N_Parameter_Specification,
20217 N_Subtype_Declaration);
20218
20219 -- Create an Itype that is a duplicate of Entity (S) but with the
20220 -- null-exclusion attribute.
20221
20222 if May_Have_Null_Exclusion
20223 and then Is_Access_Type (Entity (S))
20224 and then Null_Exclusion_Present (P)
20225
20226 -- No need to check the case of an access to object definition.
20227 -- It is correct to define double not-null pointers.
20228
20229 -- Example:
20230 -- type Not_Null_Int_Ptr is not null access Integer;
20231 -- type Acc is not null access Not_Null_Int_Ptr;
20232
20233 and then Nkind (P) /= N_Access_To_Object_Definition
20234 then
20235 if Can_Never_Be_Null (Entity (S)) then
20236 case Nkind (Related_Nod) is
20237 when N_Full_Type_Declaration =>
20238 if Nkind (Type_Definition (Related_Nod))
20239 in N_Array_Type_Definition
20240 then
20241 Error_Node :=
20242 Subtype_Indication
20243 (Component_Definition
20244 (Type_Definition (Related_Nod)));
20245 else
20246 Error_Node :=
20247 Subtype_Indication (Type_Definition (Related_Nod));
20248 end if;
20249
20250 when N_Subtype_Declaration =>
20251 Error_Node := Subtype_Indication (Related_Nod);
20252
20253 when N_Object_Declaration =>
20254 Error_Node := Object_Definition (Related_Nod);
20255
20256 when N_Component_Declaration =>
20257 Error_Node :=
20258 Subtype_Indication (Component_Definition (Related_Nod));
20259
20260 when N_Allocator =>
20261 Error_Node := Expression (Related_Nod);
20262
20263 when others =>
20264 pragma Assert (False);
20265 Error_Node := Related_Nod;
20266 end case;
20267
20268 Error_Msg_NE
20269 ("`NOT NULL` not allowed (& already excludes null)",
20270 Error_Node,
20271 Entity (S));
20272 end if;
20273
20274 Set_Etype (S,
20275 Create_Null_Excluding_Itype
20276 (T => Entity (S),
20277 Related_Nod => P));
20278 Set_Entity (S, Etype (S));
20279 end if;
20280
20281 return Entity (S);
20282
20283 -- Case of constraint present, so that we have an N_Subtype_Indication
20284 -- node (this node is created only if constraints are present).
20285
20286 else
20287 Find_Type (Subtype_Mark (S));
20288
20289 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
20290 and then not
20291 (Nkind (Parent (S)) = N_Subtype_Declaration
20292 and then Is_Itype (Defining_Identifier (Parent (S))))
20293 then
20294 Check_Incomplete (Subtype_Mark (S));
20295 end if;
20296
20297 P := Parent (S);
20298 Subtype_Mark_Id := Entity (Subtype_Mark (S));
20299
20300 -- Explicit subtype declaration case
20301
20302 if Nkind (P) = N_Subtype_Declaration then
20303 Def_Id := Defining_Identifier (P);
20304
20305 -- Explicit derived type definition case
20306
20307 elsif Nkind (P) = N_Derived_Type_Definition then
20308 Def_Id := Defining_Identifier (Parent (P));
20309
20310 -- Implicit case, the Def_Id must be created as an implicit type.
20311 -- The one exception arises in the case of concurrent types, array
20312 -- and access types, where other subsidiary implicit types may be
20313 -- created and must appear before the main implicit type. In these
20314 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
20315 -- has not yet been called to create Def_Id.
20316
20317 else
20318 if Is_Array_Type (Subtype_Mark_Id)
20319 or else Is_Concurrent_Type (Subtype_Mark_Id)
20320 or else Is_Access_Type (Subtype_Mark_Id)
20321 then
20322 Def_Id := Empty;
20323
20324 -- For the other cases, we create a new unattached Itype,
20325 -- and set the indication to ensure it gets attached later.
20326
20327 else
20328 Def_Id :=
20329 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
20330 end if;
20331 end if;
20332
20333 -- If the kind of constraint is invalid for this kind of type,
20334 -- then give an error, and then pretend no constraint was given.
20335
20336 if not Is_Valid_Constraint_Kind
20337 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
20338 then
20339 Error_Msg_N
20340 ("incorrect constraint for this kind of type", Constraint (S));
20341
20342 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
20343
20344 -- Set Ekind of orphan itype, to prevent cascaded errors
20345
20346 if Present (Def_Id) then
20347 Set_Ekind (Def_Id, Ekind (Any_Type));
20348 end if;
20349
20350 -- Make recursive call, having got rid of the bogus constraint
20351
20352 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
20353 end if;
20354
20355 -- Remaining processing depends on type. Select on Base_Type kind to
20356 -- ensure getting to the concrete type kind in the case of a private
20357 -- subtype (needed when only doing semantic analysis).
20358
20359 case Ekind (Base_Type (Subtype_Mark_Id)) is
20360 when Access_Kind =>
20361
20362 -- If this is a constraint on a class-wide type, discard it.
20363 -- There is currently no way to express a partial discriminant
20364 -- constraint on a type with unknown discriminants. This is
20365 -- a pathology that the ACATS wisely decides not to test.
20366
20367 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
20368 if Comes_From_Source (S) then
20369 Error_Msg_N
20370 ("constraint on class-wide type ignored??",
20371 Constraint (S));
20372 end if;
20373
20374 if Nkind (P) = N_Subtype_Declaration then
20375 Set_Subtype_Indication (P,
20376 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
20377 end if;
20378
20379 return Subtype_Mark_Id;
20380 end if;
20381
20382 Constrain_Access (Def_Id, S, Related_Nod);
20383
20384 if Expander_Active
20385 and then Is_Itype (Designated_Type (Def_Id))
20386 and then Nkind (Related_Nod) = N_Subtype_Declaration
20387 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
20388 then
20389 Build_Itype_Reference
20390 (Designated_Type (Def_Id), Related_Nod);
20391 end if;
20392
20393 when Array_Kind =>
20394 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
20395
20396 when Decimal_Fixed_Point_Kind =>
20397 Constrain_Decimal (Def_Id, S);
20398
20399 when Enumeration_Kind =>
20400 Constrain_Enumeration (Def_Id, S);
20401 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
20402
20403 when Ordinary_Fixed_Point_Kind =>
20404 Constrain_Ordinary_Fixed (Def_Id, S);
20405
20406 when Float_Kind =>
20407 Constrain_Float (Def_Id, S);
20408
20409 when Integer_Kind =>
20410 Constrain_Integer (Def_Id, S);
20411 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
20412
20413 when E_Record_Type |
20414 E_Record_Subtype |
20415 Class_Wide_Kind |
20416 E_Incomplete_Type =>
20417 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
20418
20419 if Ekind (Def_Id) = E_Incomplete_Type then
20420 Set_Private_Dependents (Def_Id, New_Elmt_List);
20421 end if;
20422
20423 when Private_Kind =>
20424 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
20425 Set_Private_Dependents (Def_Id, New_Elmt_List);
20426
20427 -- In case of an invalid constraint prevent further processing
20428 -- since the type constructed is missing expected fields.
20429
20430 if Etype (Def_Id) = Any_Type then
20431 return Def_Id;
20432 end if;
20433
20434 -- If the full view is that of a task with discriminants,
20435 -- we must constrain both the concurrent type and its
20436 -- corresponding record type. Otherwise we will just propagate
20437 -- the constraint to the full view, if available.
20438
20439 if Present (Full_View (Subtype_Mark_Id))
20440 and then Has_Discriminants (Subtype_Mark_Id)
20441 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
20442 then
20443 Full_View_Id :=
20444 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
20445
20446 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
20447 Constrain_Concurrent (Full_View_Id, S,
20448 Related_Nod, Related_Id, Suffix);
20449 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
20450 Set_Full_View (Def_Id, Full_View_Id);
20451
20452 -- Introduce an explicit reference to the private subtype,
20453 -- to prevent scope anomalies in gigi if first use appears
20454 -- in a nested context, e.g. a later function body.
20455 -- Should this be generated in other contexts than a full
20456 -- type declaration?
20457
20458 if Is_Itype (Def_Id)
20459 and then
20460 Nkind (Parent (P)) = N_Full_Type_Declaration
20461 then
20462 Build_Itype_Reference (Def_Id, Parent (P));
20463 end if;
20464
20465 else
20466 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
20467 end if;
20468
20469 when Concurrent_Kind =>
20470 Constrain_Concurrent (Def_Id, S,
20471 Related_Nod, Related_Id, Suffix);
20472
20473 when others =>
20474 Error_Msg_N ("invalid subtype mark in subtype indication", S);
20475 end case;
20476
20477 -- Size and Convention are always inherited from the base type
20478
20479 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
20480 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
20481
20482 return Def_Id;
20483 end if;
20484 end Process_Subtype;
20485
20486 --------------------------------------------
20487 -- Propagate_Default_Init_Cond_Attributes --
20488 --------------------------------------------
20489
20490 procedure Propagate_Default_Init_Cond_Attributes
20491 (From_Typ : Entity_Id;
20492 To_Typ : Entity_Id;
20493 Parent_To_Derivation : Boolean := False;
20494 Private_To_Full_View : Boolean := False)
20495 is
20496 procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id);
20497 -- Remove the default initial procedure (if any) from the rep chain of
20498 -- type Typ.
20499
20500 ----------------------------------------
20501 -- Remove_Default_Init_Cond_Procedure --
20502 ----------------------------------------
20503
20504 procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id) is
20505 Found : Boolean := False;
20506 Prev : Entity_Id;
20507 Subp : Entity_Id;
20508
20509 begin
20510 Prev := Typ;
20511 Subp := Subprograms_For_Type (Typ);
20512 while Present (Subp) loop
20513 if Is_Default_Init_Cond_Procedure (Subp) then
20514 Found := True;
20515 exit;
20516 end if;
20517
20518 Prev := Subp;
20519 Subp := Subprograms_For_Type (Subp);
20520 end loop;
20521
20522 if Found then
20523 Set_Subprograms_For_Type (Prev, Subprograms_For_Type (Subp));
20524 Set_Subprograms_For_Type (Subp, Empty);
20525 end if;
20526 end Remove_Default_Init_Cond_Procedure;
20527
20528 -- Local variables
20529
20530 Inherit_Procedure : Boolean := False;
20531
20532 -- Start of processing for Propagate_Default_Init_Cond_Attributes
20533
20534 begin
20535 if Has_Default_Init_Cond (From_Typ) then
20536
20537 -- A derived type inherits the attributes from its parent type
20538
20539 if Parent_To_Derivation then
20540 Set_Has_Inherited_Default_Init_Cond (To_Typ);
20541
20542 -- A full view shares the attributes with its private view
20543
20544 else
20545 Set_Has_Default_Init_Cond (To_Typ);
20546 end if;
20547
20548 Inherit_Procedure := True;
20549
20550 -- Due to the order of expansion, a derived private type is processed
20551 -- by two routines which both attempt to set the attributes related
20552 -- to pragma Default_Initial_Condition - Build_Derived_Type and then
20553 -- Process_Full_View.
20554
20555 -- package Pack is
20556 -- type Parent_Typ is private
20557 -- with Default_Initial_Condition ...;
20558 -- private
20559 -- type Parent_Typ is ...;
20560 -- end Pack;
20561
20562 -- with Pack; use Pack;
20563 -- package Pack_2 is
20564 -- type Deriv_Typ is private
20565 -- with Default_Initial_Condition ...;
20566 -- private
20567 -- type Deriv_Typ is new Parent_Typ;
20568 -- end Pack_2;
20569
20570 -- When Build_Derived_Type operates, it sets the attributes on the
20571 -- full view without taking into account that the private view may
20572 -- define its own default initial condition procedure. This becomes
20573 -- apparent in Process_Full_View which must undo some of the work by
20574 -- Build_Derived_Type and propagate the attributes from the private
20575 -- to the full view.
20576
20577 if Private_To_Full_View then
20578 Set_Has_Inherited_Default_Init_Cond (To_Typ, False);
20579 Remove_Default_Init_Cond_Procedure (To_Typ);
20580 end if;
20581
20582 -- A type must inherit the default initial condition procedure from a
20583 -- parent type when the parent itself is inheriting the procedure or
20584 -- when it is defining one. This circuitry is also used when dealing
20585 -- with the private / full view of a type.
20586
20587 elsif Has_Inherited_Default_Init_Cond (From_Typ)
20588 or (Parent_To_Derivation
20589 and Present (Get_Pragma
20590 (From_Typ, Pragma_Default_Initial_Condition)))
20591 then
20592 Set_Has_Inherited_Default_Init_Cond (To_Typ);
20593 Inherit_Procedure := True;
20594 end if;
20595
20596 if Inherit_Procedure
20597 and then No (Default_Init_Cond_Procedure (To_Typ))
20598 then
20599 Set_Default_Init_Cond_Procedure
20600 (To_Typ, Default_Init_Cond_Procedure (From_Typ));
20601 end if;
20602 end Propagate_Default_Init_Cond_Attributes;
20603
20604 -----------------------------
20605 -- Record_Type_Declaration --
20606 -----------------------------
20607
20608 procedure Record_Type_Declaration
20609 (T : Entity_Id;
20610 N : Node_Id;
20611 Prev : Entity_Id)
20612 is
20613 Def : constant Node_Id := Type_Definition (N);
20614 Is_Tagged : Boolean;
20615 Tag_Comp : Entity_Id;
20616
20617 begin
20618 -- These flags must be initialized before calling Process_Discriminants
20619 -- because this routine makes use of them.
20620
20621 Set_Ekind (T, E_Record_Type);
20622 Set_Etype (T, T);
20623 Init_Size_Align (T);
20624 Set_Interfaces (T, No_Elist);
20625 Set_Stored_Constraint (T, No_Elist);
20626 Set_Default_SSO (T);
20627
20628 -- Normal case
20629
20630 if Ada_Version < Ada_2005 or else not Interface_Present (Def) then
20631 if Limited_Present (Def) then
20632 Check_SPARK_05_Restriction ("limited is not allowed", N);
20633 end if;
20634
20635 if Abstract_Present (Def) then
20636 Check_SPARK_05_Restriction ("abstract is not allowed", N);
20637 end if;
20638
20639 -- The flag Is_Tagged_Type might have already been set by
20640 -- Find_Type_Name if it detected an error for declaration T. This
20641 -- arises in the case of private tagged types where the full view
20642 -- omits the word tagged.
20643
20644 Is_Tagged :=
20645 Tagged_Present (Def)
20646 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
20647
20648 Set_Is_Limited_Record (T, Limited_Present (Def));
20649
20650 if Is_Tagged then
20651 Set_Is_Tagged_Type (T, True);
20652 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
20653 end if;
20654
20655 -- Type is abstract if full declaration carries keyword, or if
20656 -- previous partial view did.
20657
20658 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
20659 or else Abstract_Present (Def));
20660
20661 else
20662 Check_SPARK_05_Restriction ("interface is not allowed", N);
20663
20664 Is_Tagged := True;
20665 Analyze_Interface_Declaration (T, Def);
20666
20667 if Present (Discriminant_Specifications (N)) then
20668 Error_Msg_N
20669 ("interface types cannot have discriminants",
20670 Defining_Identifier
20671 (First (Discriminant_Specifications (N))));
20672 end if;
20673 end if;
20674
20675 -- First pass: if there are self-referential access components,
20676 -- create the required anonymous access type declarations, and if
20677 -- need be an incomplete type declaration for T itself.
20678
20679 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
20680
20681 if Ada_Version >= Ada_2005
20682 and then Present (Interface_List (Def))
20683 then
20684 Check_Interfaces (N, Def);
20685
20686 declare
20687 Ifaces_List : Elist_Id;
20688
20689 begin
20690 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
20691 -- already in the parents.
20692
20693 Collect_Interfaces
20694 (T => T,
20695 Ifaces_List => Ifaces_List,
20696 Exclude_Parents => True);
20697
20698 Set_Interfaces (T, Ifaces_List);
20699 end;
20700 end if;
20701
20702 -- Records constitute a scope for the component declarations within.
20703 -- The scope is created prior to the processing of these declarations.
20704 -- Discriminants are processed first, so that they are visible when
20705 -- processing the other components. The Ekind of the record type itself
20706 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
20707
20708 -- Enter record scope
20709
20710 Push_Scope (T);
20711
20712 -- If an incomplete or private type declaration was already given for
20713 -- the type, then this scope already exists, and the discriminants have
20714 -- been declared within. We must verify that the full declaration
20715 -- matches the incomplete one.
20716
20717 Check_Or_Process_Discriminants (N, T, Prev);
20718
20719 Set_Is_Constrained (T, not Has_Discriminants (T));
20720 Set_Has_Delayed_Freeze (T, True);
20721
20722 -- For tagged types add a manually analyzed component corresponding
20723 -- to the component _tag, the corresponding piece of tree will be
20724 -- expanded as part of the freezing actions if it is not a CPP_Class.
20725
20726 if Is_Tagged then
20727
20728 -- Do not add the tag unless we are in expansion mode
20729
20730 if Expander_Active then
20731 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
20732 Enter_Name (Tag_Comp);
20733
20734 Set_Ekind (Tag_Comp, E_Component);
20735 Set_Is_Tag (Tag_Comp);
20736 Set_Is_Aliased (Tag_Comp);
20737 Set_Etype (Tag_Comp, RTE (RE_Tag));
20738 Set_DT_Entry_Count (Tag_Comp, No_Uint);
20739 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
20740 Init_Component_Location (Tag_Comp);
20741
20742 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
20743 -- implemented interfaces.
20744
20745 if Has_Interfaces (T) then
20746 Add_Interface_Tag_Components (N, T);
20747 end if;
20748 end if;
20749
20750 Make_Class_Wide_Type (T);
20751 Set_Direct_Primitive_Operations (T, New_Elmt_List);
20752 end if;
20753
20754 -- We must suppress range checks when processing record components in
20755 -- the presence of discriminants, since we don't want spurious checks to
20756 -- be generated during their analysis, but Suppress_Range_Checks flags
20757 -- must be reset the after processing the record definition.
20758
20759 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
20760 -- couldn't we just use the normal range check suppression method here.
20761 -- That would seem cleaner ???
20762
20763 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
20764 Set_Kill_Range_Checks (T, True);
20765 Record_Type_Definition (Def, Prev);
20766 Set_Kill_Range_Checks (T, False);
20767 else
20768 Record_Type_Definition (Def, Prev);
20769 end if;
20770
20771 -- Exit from record scope
20772
20773 End_Scope;
20774
20775 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
20776 -- the implemented interfaces and associate them an aliased entity.
20777
20778 if Is_Tagged
20779 and then not Is_Empty_List (Interface_List (Def))
20780 then
20781 Derive_Progenitor_Subprograms (T, T);
20782 end if;
20783
20784 Check_Function_Writable_Actuals (N);
20785 end Record_Type_Declaration;
20786
20787 ----------------------------
20788 -- Record_Type_Definition --
20789 ----------------------------
20790
20791 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
20792 Component : Entity_Id;
20793 Ctrl_Components : Boolean := False;
20794 Final_Storage_Only : Boolean;
20795 T : Entity_Id;
20796
20797 begin
20798 if Ekind (Prev_T) = E_Incomplete_Type then
20799 T := Full_View (Prev_T);
20800 else
20801 T := Prev_T;
20802 end if;
20803
20804 -- In SPARK, tagged types and type extensions may only be declared in
20805 -- the specification of library unit packages.
20806
20807 if Present (Def) and then Is_Tagged_Type (T) then
20808 declare
20809 Typ : Node_Id;
20810 Ctxt : Node_Id;
20811
20812 begin
20813 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
20814 Typ := Parent (Def);
20815 else
20816 pragma Assert
20817 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
20818 Typ := Parent (Parent (Def));
20819 end if;
20820
20821 Ctxt := Parent (Typ);
20822
20823 if Nkind (Ctxt) = N_Package_Body
20824 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
20825 then
20826 Check_SPARK_05_Restriction
20827 ("type should be defined in package specification", Typ);
20828
20829 elsif Nkind (Ctxt) /= N_Package_Specification
20830 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
20831 then
20832 Check_SPARK_05_Restriction
20833 ("type should be defined in library unit package", Typ);
20834 end if;
20835 end;
20836 end if;
20837
20838 Final_Storage_Only := not Is_Controlled (T);
20839
20840 -- Ada 2005: Check whether an explicit Limited is present in a derived
20841 -- type declaration.
20842
20843 if Nkind (Parent (Def)) = N_Derived_Type_Definition
20844 and then Limited_Present (Parent (Def))
20845 then
20846 Set_Is_Limited_Record (T);
20847 end if;
20848
20849 -- If the component list of a record type is defined by the reserved
20850 -- word null and there is no discriminant part, then the record type has
20851 -- no components and all records of the type are null records (RM 3.7)
20852 -- This procedure is also called to process the extension part of a
20853 -- record extension, in which case the current scope may have inherited
20854 -- components.
20855
20856 if No (Def)
20857 or else No (Component_List (Def))
20858 or else Null_Present (Component_List (Def))
20859 then
20860 if not Is_Tagged_Type (T) then
20861 Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
20862 end if;
20863
20864 else
20865 Analyze_Declarations (Component_Items (Component_List (Def)));
20866
20867 if Present (Variant_Part (Component_List (Def))) then
20868 Check_SPARK_05_Restriction ("variant part is not allowed", Def);
20869 Analyze (Variant_Part (Component_List (Def)));
20870 end if;
20871 end if;
20872
20873 -- After completing the semantic analysis of the record definition,
20874 -- record components, both new and inherited, are accessible. Set their
20875 -- kind accordingly. Exclude malformed itypes from illegal declarations,
20876 -- whose Ekind may be void.
20877
20878 Component := First_Entity (Current_Scope);
20879 while Present (Component) loop
20880 if Ekind (Component) = E_Void
20881 and then not Is_Itype (Component)
20882 then
20883 Set_Ekind (Component, E_Component);
20884 Init_Component_Location (Component);
20885 end if;
20886
20887 if Has_Task (Etype (Component)) then
20888 Set_Has_Task (T);
20889 end if;
20890
20891 if Has_Protected (Etype (Component)) then
20892 Set_Has_Protected (T);
20893 end if;
20894
20895 if Ekind (Component) /= E_Component then
20896 null;
20897
20898 -- Do not set Has_Controlled_Component on a class-wide equivalent
20899 -- type. See Make_CW_Equivalent_Type.
20900
20901 elsif not Is_Class_Wide_Equivalent_Type (T)
20902 and then (Has_Controlled_Component (Etype (Component))
20903 or else (Chars (Component) /= Name_uParent
20904 and then Is_Controlled (Etype (Component))))
20905 then
20906 Set_Has_Controlled_Component (T, True);
20907 Final_Storage_Only :=
20908 Final_Storage_Only
20909 and then Finalize_Storage_Only (Etype (Component));
20910 Ctrl_Components := True;
20911 end if;
20912
20913 Next_Entity (Component);
20914 end loop;
20915
20916 -- A Type is Finalize_Storage_Only only if all its controlled components
20917 -- are also.
20918
20919 if Ctrl_Components then
20920 Set_Finalize_Storage_Only (T, Final_Storage_Only);
20921 end if;
20922
20923 -- Place reference to end record on the proper entity, which may
20924 -- be a partial view.
20925
20926 if Present (Def) then
20927 Process_End_Label (Def, 'e', Prev_T);
20928 end if;
20929 end Record_Type_Definition;
20930
20931 ------------------------
20932 -- Replace_Components --
20933 ------------------------
20934
20935 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
20936 function Process (N : Node_Id) return Traverse_Result;
20937
20938 -------------
20939 -- Process --
20940 -------------
20941
20942 function Process (N : Node_Id) return Traverse_Result is
20943 Comp : Entity_Id;
20944
20945 begin
20946 if Nkind (N) = N_Discriminant_Specification then
20947 Comp := First_Discriminant (Typ);
20948 while Present (Comp) loop
20949 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20950 Set_Defining_Identifier (N, Comp);
20951 exit;
20952 end if;
20953
20954 Next_Discriminant (Comp);
20955 end loop;
20956
20957 elsif Nkind (N) = N_Component_Declaration then
20958 Comp := First_Component (Typ);
20959 while Present (Comp) loop
20960 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20961 Set_Defining_Identifier (N, Comp);
20962 exit;
20963 end if;
20964
20965 Next_Component (Comp);
20966 end loop;
20967 end if;
20968
20969 return OK;
20970 end Process;
20971
20972 procedure Replace is new Traverse_Proc (Process);
20973
20974 -- Start of processing for Replace_Components
20975
20976 begin
20977 Replace (Decl);
20978 end Replace_Components;
20979
20980 -------------------------------
20981 -- Set_Completion_Referenced --
20982 -------------------------------
20983
20984 procedure Set_Completion_Referenced (E : Entity_Id) is
20985 begin
20986 -- If in main unit, mark entity that is a completion as referenced,
20987 -- warnings go on the partial view when needed.
20988
20989 if In_Extended_Main_Source_Unit (E) then
20990 Set_Referenced (E);
20991 end if;
20992 end Set_Completion_Referenced;
20993
20994 ---------------------
20995 -- Set_Default_SSO --
20996 ---------------------
20997
20998 procedure Set_Default_SSO (T : Entity_Id) is
20999 begin
21000 case Opt.Default_SSO is
21001 when ' ' =>
21002 null;
21003 when 'L' =>
21004 Set_SSO_Set_Low_By_Default (T, True);
21005 when 'H' =>
21006 Set_SSO_Set_High_By_Default (T, True);
21007 when others =>
21008 raise Program_Error;
21009 end case;
21010 end Set_Default_SSO;
21011
21012 ---------------------
21013 -- Set_Fixed_Range --
21014 ---------------------
21015
21016 -- The range for fixed-point types is complicated by the fact that we
21017 -- do not know the exact end points at the time of the declaration. This
21018 -- is true for three reasons:
21019
21020 -- A size clause may affect the fudging of the end-points.
21021 -- A small clause may affect the values of the end-points.
21022 -- We try to include the end-points if it does not affect the size.
21023
21024 -- This means that the actual end-points must be established at the
21025 -- point when the type is frozen. Meanwhile, we first narrow the range
21026 -- as permitted (so that it will fit if necessary in a small specified
21027 -- size), and then build a range subtree with these narrowed bounds.
21028 -- Set_Fixed_Range constructs the range from real literal values, and
21029 -- sets the range as the Scalar_Range of the given fixed-point type entity.
21030
21031 -- The parent of this range is set to point to the entity so that it is
21032 -- properly hooked into the tree (unlike normal Scalar_Range entries for
21033 -- other scalar types, which are just pointers to the range in the
21034 -- original tree, this would otherwise be an orphan).
21035
21036 -- The tree is left unanalyzed. When the type is frozen, the processing
21037 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
21038 -- analyzed, and uses this as an indication that it should complete
21039 -- work on the range (it will know the final small and size values).
21040
21041 procedure Set_Fixed_Range
21042 (E : Entity_Id;
21043 Loc : Source_Ptr;
21044 Lo : Ureal;
21045 Hi : Ureal)
21046 is
21047 S : constant Node_Id :=
21048 Make_Range (Loc,
21049 Low_Bound => Make_Real_Literal (Loc, Lo),
21050 High_Bound => Make_Real_Literal (Loc, Hi));
21051 begin
21052 Set_Scalar_Range (E, S);
21053 Set_Parent (S, E);
21054
21055 -- Before the freeze point, the bounds of a fixed point are universal
21056 -- and carry the corresponding type.
21057
21058 Set_Etype (Low_Bound (S), Universal_Real);
21059 Set_Etype (High_Bound (S), Universal_Real);
21060 end Set_Fixed_Range;
21061
21062 ----------------------------------
21063 -- Set_Scalar_Range_For_Subtype --
21064 ----------------------------------
21065
21066 procedure Set_Scalar_Range_For_Subtype
21067 (Def_Id : Entity_Id;
21068 R : Node_Id;
21069 Subt : Entity_Id)
21070 is
21071 Kind : constant Entity_Kind := Ekind (Def_Id);
21072
21073 begin
21074 -- Defend against previous error
21075
21076 if Nkind (R) = N_Error then
21077 return;
21078 end if;
21079
21080 Set_Scalar_Range (Def_Id, R);
21081
21082 -- We need to link the range into the tree before resolving it so
21083 -- that types that are referenced, including importantly the subtype
21084 -- itself, are properly frozen (Freeze_Expression requires that the
21085 -- expression be properly linked into the tree). Of course if it is
21086 -- already linked in, then we do not disturb the current link.
21087
21088 if No (Parent (R)) then
21089 Set_Parent (R, Def_Id);
21090 end if;
21091
21092 -- Reset the kind of the subtype during analysis of the range, to
21093 -- catch possible premature use in the bounds themselves.
21094
21095 Set_Ekind (Def_Id, E_Void);
21096 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
21097 Set_Ekind (Def_Id, Kind);
21098 end Set_Scalar_Range_For_Subtype;
21099
21100 --------------------------------------------------------
21101 -- Set_Stored_Constraint_From_Discriminant_Constraint --
21102 --------------------------------------------------------
21103
21104 procedure Set_Stored_Constraint_From_Discriminant_Constraint
21105 (E : Entity_Id)
21106 is
21107 begin
21108 -- Make sure set if encountered during Expand_To_Stored_Constraint
21109
21110 Set_Stored_Constraint (E, No_Elist);
21111
21112 -- Give it the right value
21113
21114 if Is_Constrained (E) and then Has_Discriminants (E) then
21115 Set_Stored_Constraint (E,
21116 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
21117 end if;
21118 end Set_Stored_Constraint_From_Discriminant_Constraint;
21119
21120 -------------------------------------
21121 -- Signed_Integer_Type_Declaration --
21122 -------------------------------------
21123
21124 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
21125 Implicit_Base : Entity_Id;
21126 Base_Typ : Entity_Id;
21127 Lo_Val : Uint;
21128 Hi_Val : Uint;
21129 Errs : Boolean := False;
21130 Lo : Node_Id;
21131 Hi : Node_Id;
21132
21133 function Can_Derive_From (E : Entity_Id) return Boolean;
21134 -- Determine whether given bounds allow derivation from specified type
21135
21136 procedure Check_Bound (Expr : Node_Id);
21137 -- Check bound to make sure it is integral and static. If not, post
21138 -- appropriate error message and set Errs flag
21139
21140 ---------------------
21141 -- Can_Derive_From --
21142 ---------------------
21143
21144 -- Note we check both bounds against both end values, to deal with
21145 -- strange types like ones with a range of 0 .. -12341234.
21146
21147 function Can_Derive_From (E : Entity_Id) return Boolean is
21148 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
21149 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
21150 begin
21151 return Lo <= Lo_Val and then Lo_Val <= Hi
21152 and then
21153 Lo <= Hi_Val and then Hi_Val <= Hi;
21154 end Can_Derive_From;
21155
21156 -----------------
21157 -- Check_Bound --
21158 -----------------
21159
21160 procedure Check_Bound (Expr : Node_Id) is
21161 begin
21162 -- If a range constraint is used as an integer type definition, each
21163 -- bound of the range must be defined by a static expression of some
21164 -- integer type, but the two bounds need not have the same integer
21165 -- type (Negative bounds are allowed.) (RM 3.5.4)
21166
21167 if not Is_Integer_Type (Etype (Expr)) then
21168 Error_Msg_N
21169 ("integer type definition bounds must be of integer type", Expr);
21170 Errs := True;
21171
21172 elsif not Is_OK_Static_Expression (Expr) then
21173 Flag_Non_Static_Expr
21174 ("non-static expression used for integer type bound!", Expr);
21175 Errs := True;
21176
21177 -- The bounds are folded into literals, and we set their type to be
21178 -- universal, to avoid typing difficulties: we cannot set the type
21179 -- of the literal to the new type, because this would be a forward
21180 -- reference for the back end, and if the original type is user-
21181 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
21182
21183 else
21184 if Is_Entity_Name (Expr) then
21185 Fold_Uint (Expr, Expr_Value (Expr), True);
21186 end if;
21187
21188 Set_Etype (Expr, Universal_Integer);
21189 end if;
21190 end Check_Bound;
21191
21192 -- Start of processing for Signed_Integer_Type_Declaration
21193
21194 begin
21195 -- Create an anonymous base type
21196
21197 Implicit_Base :=
21198 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
21199
21200 -- Analyze and check the bounds, they can be of any integer type
21201
21202 Lo := Low_Bound (Def);
21203 Hi := High_Bound (Def);
21204
21205 -- Arbitrarily use Integer as the type if either bound had an error
21206
21207 if Hi = Error or else Lo = Error then
21208 Base_Typ := Any_Integer;
21209 Set_Error_Posted (T, True);
21210
21211 -- Here both bounds are OK expressions
21212
21213 else
21214 Analyze_And_Resolve (Lo, Any_Integer);
21215 Analyze_And_Resolve (Hi, Any_Integer);
21216
21217 Check_Bound (Lo);
21218 Check_Bound (Hi);
21219
21220 if Errs then
21221 Hi := Type_High_Bound (Standard_Long_Long_Integer);
21222 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
21223 end if;
21224
21225 -- Find type to derive from
21226
21227 Lo_Val := Expr_Value (Lo);
21228 Hi_Val := Expr_Value (Hi);
21229
21230 if Can_Derive_From (Standard_Short_Short_Integer) then
21231 Base_Typ := Base_Type (Standard_Short_Short_Integer);
21232
21233 elsif Can_Derive_From (Standard_Short_Integer) then
21234 Base_Typ := Base_Type (Standard_Short_Integer);
21235
21236 elsif Can_Derive_From (Standard_Integer) then
21237 Base_Typ := Base_Type (Standard_Integer);
21238
21239 elsif Can_Derive_From (Standard_Long_Integer) then
21240 Base_Typ := Base_Type (Standard_Long_Integer);
21241
21242 elsif Can_Derive_From (Standard_Long_Long_Integer) then
21243 Check_Restriction (No_Long_Long_Integers, Def);
21244 Base_Typ := Base_Type (Standard_Long_Long_Integer);
21245
21246 else
21247 Base_Typ := Base_Type (Standard_Long_Long_Integer);
21248 Error_Msg_N ("integer type definition bounds out of range", Def);
21249 Hi := Type_High_Bound (Standard_Long_Long_Integer);
21250 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
21251 end if;
21252 end if;
21253
21254 -- Complete both implicit base and declared first subtype entities. The
21255 -- inheritance of the rep item chain ensures that SPARK-related pragmas
21256 -- are not clobbered when the signed integer type acts as a full view of
21257 -- a private type.
21258
21259 Set_Etype (Implicit_Base, Base_Typ);
21260 Set_Size_Info (Implicit_Base, Base_Typ);
21261 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
21262 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
21263 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
21264
21265 Set_Ekind (T, E_Signed_Integer_Subtype);
21266 Set_Etype (T, Implicit_Base);
21267 Set_Size_Info (T, Implicit_Base);
21268 Inherit_Rep_Item_Chain (T, Implicit_Base);
21269 Set_Scalar_Range (T, Def);
21270 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
21271 Set_Is_Constrained (T);
21272 end Signed_Integer_Type_Declaration;
21273
21274 end Sem_Ch3;