[multiple changes]
[gcc.git] / gcc / ada / sem_ch3.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Elists; use Elists;
31 with Einfo; use Einfo;
32 with Errout; use Errout;
33 with Eval_Fat; use Eval_Fat;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Dist; use Exp_Dist;
38 with Exp_Tss; use Exp_Tss;
39 with Exp_Util; use Exp_Util;
40 with Fname; use Fname;
41 with Freeze; use Freeze;
42 with Itypes; use Itypes;
43 with Layout; use Layout;
44 with Lib; use Lib;
45 with Lib.Xref; use Lib.Xref;
46 with Namet; use Namet;
47 with Nmake; use Nmake;
48 with Opt; use Opt;
49 with Restrict; use Restrict;
50 with Rident; use Rident;
51 with Rtsfind; use Rtsfind;
52 with Sem; use Sem;
53 with Sem_Aux; use Sem_Aux;
54 with Sem_Case; use Sem_Case;
55 with Sem_Cat; use Sem_Cat;
56 with Sem_Ch6; use Sem_Ch6;
57 with Sem_Ch7; use Sem_Ch7;
58 with Sem_Ch8; use Sem_Ch8;
59 with Sem_Ch10; use Sem_Ch10;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Dim; use Sem_Dim;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elim; use Sem_Elim;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Mech; use Sem_Mech;
67 with Sem_Prag; use Sem_Prag;
68 with Sem_Res; use Sem_Res;
69 with Sem_Smem; use Sem_Smem;
70 with Sem_Type; use Sem_Type;
71 with Sem_Util; use Sem_Util;
72 with Sem_Warn; use Sem_Warn;
73 with Stand; use Stand;
74 with Sinfo; use Sinfo;
75 with Sinput; use Sinput;
76 with Snames; use Snames;
77 with Targparm; use Targparm;
78 with Tbuild; use Tbuild;
79 with Ttypes; use Ttypes;
80 with Uintp; use Uintp;
81 with Urealp; use Urealp;
82
83 package body Sem_Ch3 is
84
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
88
89 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
92 -- record type.
93
94 procedure Analyze_Object_Contract (Obj_Id : Entity_Id);
95 -- Analyze all delayed aspects chained on the contract of object Obj_Id as
96 -- if they appeared at the end of the declarative region. The aspects to be
97 -- considered are:
98 -- Async_Readers
99 -- Async_Writers
100 -- Effective_Reads
101 -- Effective_Writes
102 -- Part_Of
103
104 procedure Build_Derived_Type
105 (N : Node_Id;
106 Parent_Type : Entity_Id;
107 Derived_Type : Entity_Id;
108 Is_Completion : Boolean;
109 Derive_Subps : Boolean := True);
110 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
111 -- the N_Full_Type_Declaration node containing the derived type definition.
112 -- Parent_Type is the entity for the parent type in the derived type
113 -- definition and Derived_Type the actual derived type. Is_Completion must
114 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
115 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
116 -- completion of a private type declaration. If Is_Completion is set to
117 -- True, N is the completion of a private type declaration and Derived_Type
118 -- is different from the defining identifier inside N (i.e. Derived_Type /=
119 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
120 -- subprograms should be derived. The only case where this parameter is
121 -- False is when Build_Derived_Type is recursively called to process an
122 -- implicit derived full type for a type derived from a private type (in
123 -- that case the subprograms must only be derived for the private view of
124 -- the type).
125 --
126 -- ??? These flags need a bit of re-examination and re-documentation:
127 -- ??? are they both necessary (both seem related to the recursion)?
128
129 procedure Build_Derived_Access_Type
130 (N : Node_Id;
131 Parent_Type : Entity_Id;
132 Derived_Type : Entity_Id);
133 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
134 -- create an implicit base if the parent type is constrained or if the
135 -- subtype indication has a constraint.
136
137 procedure Build_Derived_Array_Type
138 (N : Node_Id;
139 Parent_Type : Entity_Id;
140 Derived_Type : Entity_Id);
141 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
142 -- create an implicit base if the parent type is constrained or if the
143 -- subtype indication has a constraint.
144
145 procedure Build_Derived_Concurrent_Type
146 (N : Node_Id;
147 Parent_Type : Entity_Id;
148 Derived_Type : Entity_Id);
149 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
150 -- protected type, inherit entries and protected subprograms, check
151 -- legality of discriminant constraints if any.
152
153 procedure Build_Derived_Enumeration_Type
154 (N : Node_Id;
155 Parent_Type : Entity_Id;
156 Derived_Type : Entity_Id);
157 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
158 -- type, we must create a new list of literals. Types derived from
159 -- Character and [Wide_]Wide_Character are special-cased.
160
161 procedure Build_Derived_Numeric_Type
162 (N : Node_Id;
163 Parent_Type : Entity_Id;
164 Derived_Type : Entity_Id);
165 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
166 -- an anonymous base type, and propagate constraint to subtype if needed.
167
168 procedure Build_Derived_Private_Type
169 (N : Node_Id;
170 Parent_Type : Entity_Id;
171 Derived_Type : Entity_Id;
172 Is_Completion : Boolean;
173 Derive_Subps : Boolean := True);
174 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
175 -- because the parent may or may not have a completion, and the derivation
176 -- may itself be a completion.
177
178 procedure Build_Derived_Record_Type
179 (N : Node_Id;
180 Parent_Type : Entity_Id;
181 Derived_Type : Entity_Id;
182 Derive_Subps : Boolean := True);
183 -- Subsidiary procedure used for tagged and untagged record types
184 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
185 -- All parameters are as in Build_Derived_Type except that N, in
186 -- addition to being an N_Full_Type_Declaration node, can also be an
187 -- N_Private_Extension_Declaration node. See the definition of this routine
188 -- for much more info. Derive_Subps indicates whether subprograms should be
189 -- derived from the parent type. The only case where Derive_Subps is False
190 -- is for an implicit derived full type for a type derived from a private
191 -- type (see Build_Derived_Type).
192
193 procedure Build_Discriminal (Discrim : Entity_Id);
194 -- Create the discriminal corresponding to discriminant Discrim, that is
195 -- the parameter corresponding to Discrim to be used in initialization
196 -- procedures for the type where Discrim is a discriminant. Discriminals
197 -- are not used during semantic analysis, and are not fully defined
198 -- entities until expansion. Thus they are not given a scope until
199 -- initialization procedures are built.
200
201 function Build_Discriminant_Constraints
202 (T : Entity_Id;
203 Def : Node_Id;
204 Derived_Def : Boolean := False) return Elist_Id;
205 -- Validate discriminant constraints and return the list of the constraints
206 -- in order of discriminant declarations, where T is the discriminated
207 -- unconstrained type. Def is the N_Subtype_Indication node where the
208 -- discriminants constraints for T are specified. Derived_Def is True
209 -- when building the discriminant constraints in a derived type definition
210 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
211 -- type and Def is the constraint "(xxx)" on T and this routine sets the
212 -- Corresponding_Discriminant field of the discriminants in the derived
213 -- type D to point to the corresponding discriminants in the parent type T.
214
215 procedure Build_Discriminated_Subtype
216 (T : Entity_Id;
217 Def_Id : Entity_Id;
218 Elist : Elist_Id;
219 Related_Nod : Node_Id;
220 For_Access : Boolean := False);
221 -- Subsidiary procedure to Constrain_Discriminated_Type and to
222 -- Process_Incomplete_Dependents. Given
223 --
224 -- T (a possibly discriminated base type)
225 -- Def_Id (a very partially built subtype for T),
226 --
227 -- the call completes Def_Id to be the appropriate E_*_Subtype.
228 --
229 -- The Elist is the list of discriminant constraints if any (it is set
230 -- to No_Elist if T is not a discriminated type, and to an empty list if
231 -- T has discriminants but there are no discriminant constraints). The
232 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
233 -- The For_Access says whether or not this subtype is really constraining
234 -- an access type. That is its sole purpose is the designated type of an
235 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
236 -- is built to avoid freezing T when the access subtype is frozen.
237
238 function Build_Scalar_Bound
239 (Bound : Node_Id;
240 Par_T : Entity_Id;
241 Der_T : Entity_Id) return Node_Id;
242 -- The bounds of a derived scalar type are conversions of the bounds of
243 -- the parent type. Optimize the representation if the bounds are literals.
244 -- Needs a more complete spec--what are the parameters exactly, and what
245 -- exactly is the returned value, and how is Bound affected???
246
247 procedure Build_Underlying_Full_View
248 (N : Node_Id;
249 Typ : Entity_Id;
250 Par : Entity_Id);
251 -- If the completion of a private type is itself derived from a private
252 -- type, or if the full view of a private subtype is itself private, the
253 -- back-end has no way to compute the actual size of this type. We build
254 -- an internal subtype declaration of the proper parent type to convey
255 -- this information. This extra mechanism is needed because a full
256 -- view cannot itself have a full view (it would get clobbered during
257 -- view exchanges).
258
259 procedure Check_Access_Discriminant_Requires_Limited
260 (D : Node_Id;
261 Loc : Node_Id);
262 -- Check the restriction that the type to which an access discriminant
263 -- belongs must be a concurrent type or a descendant of a type with
264 -- the reserved word 'limited' in its declaration.
265
266 procedure Check_Anonymous_Access_Components
267 (Typ_Decl : Node_Id;
268 Typ : Entity_Id;
269 Prev : Entity_Id;
270 Comp_List : Node_Id);
271 -- Ada 2005 AI-382: an access component in a record definition can refer to
272 -- the enclosing record, in which case it denotes the type itself, and not
273 -- the current instance of the type. We create an anonymous access type for
274 -- the component, and flag it as an access to a component, so accessibility
275 -- checks are properly performed on it. The declaration of the access type
276 -- is placed ahead of that of the record to prevent order-of-elaboration
277 -- circularity issues in Gigi. We create an incomplete type for the record
278 -- declaration, which is the designated type of the anonymous access.
279
280 procedure Check_Delta_Expression (E : Node_Id);
281 -- Check that the expression represented by E is suitable for use as a
282 -- delta expression, i.e. it is of real type and is static.
283
284 procedure Check_Digits_Expression (E : Node_Id);
285 -- Check that the expression represented by E is suitable for use as a
286 -- digits expression, i.e. it is of integer type, positive and static.
287
288 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
289 -- Validate the initialization of an object declaration. T is the required
290 -- type, and Exp is the initialization expression.
291
292 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
293 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
294
295 procedure Check_Or_Process_Discriminants
296 (N : Node_Id;
297 T : Entity_Id;
298 Prev : Entity_Id := Empty);
299 -- If N is the full declaration of the completion T of an incomplete or
300 -- private type, check its discriminants (which are already known to be
301 -- conformant with those of the partial view, see Find_Type_Name),
302 -- otherwise process them. Prev is the entity of the partial declaration,
303 -- if any.
304
305 procedure Check_Real_Bound (Bound : Node_Id);
306 -- Check given bound for being of real type and static. If not, post an
307 -- appropriate message, and rewrite the bound with the real literal zero.
308
309 procedure Constant_Redeclaration
310 (Id : Entity_Id;
311 N : Node_Id;
312 T : out Entity_Id);
313 -- Various checks on legality of full declaration of deferred constant.
314 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
315 -- node. The caller has not yet set any attributes of this entity.
316
317 function Contain_Interface
318 (Iface : Entity_Id;
319 Ifaces : Elist_Id) return Boolean;
320 -- Ada 2005: Determine whether Iface is present in the list Ifaces
321
322 procedure Convert_Scalar_Bounds
323 (N : Node_Id;
324 Parent_Type : Entity_Id;
325 Derived_Type : Entity_Id;
326 Loc : Source_Ptr);
327 -- For derived scalar types, convert the bounds in the type definition to
328 -- the derived type, and complete their analysis. Given a constraint of the
329 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
330 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
331 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
332 -- subtype are conversions of those bounds to the derived_type, so that
333 -- their typing is consistent.
334
335 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
336 -- Copies attributes from array base type T2 to array base type T1. Copies
337 -- only attributes that apply to base types, but not subtypes.
338
339 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
340 -- Copies attributes from array subtype T2 to array subtype T1. Copies
341 -- attributes that apply to both subtypes and base types.
342
343 procedure Create_Constrained_Components
344 (Subt : Entity_Id;
345 Decl_Node : Node_Id;
346 Typ : Entity_Id;
347 Constraints : Elist_Id);
348 -- Build the list of entities for a constrained discriminated record
349 -- subtype. If a component depends on a discriminant, replace its subtype
350 -- using the discriminant values in the discriminant constraint. Subt
351 -- is the defining identifier for the subtype whose list of constrained
352 -- entities we will create. Decl_Node is the type declaration node where
353 -- we will attach all the itypes created. Typ is the base discriminated
354 -- type for the subtype Subt. Constraints is the list of discriminant
355 -- constraints for Typ.
356
357 function Constrain_Component_Type
358 (Comp : Entity_Id;
359 Constrained_Typ : Entity_Id;
360 Related_Node : Node_Id;
361 Typ : Entity_Id;
362 Constraints : Elist_Id) return Entity_Id;
363 -- Given a discriminated base type Typ, a list of discriminant constraints,
364 -- Constraints, for Typ and a component Comp of Typ, create and return the
365 -- type corresponding to Etype (Comp) where all discriminant references
366 -- are replaced with the corresponding constraint. If Etype (Comp) contains
367 -- no discriminant references then it is returned as-is. Constrained_Typ
368 -- is the final constrained subtype to which the constrained component
369 -- belongs. Related_Node is the node where we attach all created itypes.
370
371 procedure Constrain_Access
372 (Def_Id : in out Entity_Id;
373 S : Node_Id;
374 Related_Nod : Node_Id);
375 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
376 -- an anonymous type created for a subtype indication. In that case it is
377 -- created in the procedure and attached to Related_Nod.
378
379 procedure Constrain_Array
380 (Def_Id : in out Entity_Id;
381 SI : Node_Id;
382 Related_Nod : Node_Id;
383 Related_Id : Entity_Id;
384 Suffix : Character);
385 -- Apply a list of index constraints to an unconstrained array type. The
386 -- first parameter is the entity for the resulting subtype. A value of
387 -- Empty for Def_Id indicates that an implicit type must be created, but
388 -- creation is delayed (and must be done by this procedure) because other
389 -- subsidiary implicit types must be created first (which is why Def_Id
390 -- is an in/out parameter). The second parameter is a subtype indication
391 -- node for the constrained array to be created (e.g. something of the
392 -- form string (1 .. 10)). Related_Nod gives the place where this type
393 -- has to be inserted in the tree. The Related_Id and Suffix parameters
394 -- are used to build the associated Implicit type name.
395
396 procedure Constrain_Concurrent
397 (Def_Id : in out Entity_Id;
398 SI : Node_Id;
399 Related_Nod : Node_Id;
400 Related_Id : Entity_Id;
401 Suffix : Character);
402 -- Apply list of discriminant constraints to an unconstrained concurrent
403 -- type.
404 --
405 -- SI is the N_Subtype_Indication node containing the constraint and
406 -- the unconstrained type to constrain.
407 --
408 -- Def_Id is the entity for the resulting constrained subtype. A value
409 -- of Empty for Def_Id indicates that an implicit type must be created,
410 -- but creation is delayed (and must be done by this procedure) because
411 -- other subsidiary implicit types must be created first (which is why
412 -- Def_Id is an in/out parameter).
413 --
414 -- Related_Nod gives the place where this type has to be inserted
415 -- in the tree.
416 --
417 -- The last two arguments are used to create its external name if needed.
418
419 function Constrain_Corresponding_Record
420 (Prot_Subt : Entity_Id;
421 Corr_Rec : Entity_Id;
422 Related_Nod : Node_Id) return Entity_Id;
423 -- When constraining a protected type or task type with discriminants,
424 -- constrain the corresponding record with the same discriminant values.
425
426 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
427 -- Constrain a decimal fixed point type with a digits constraint and/or a
428 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
429
430 procedure Constrain_Discriminated_Type
431 (Def_Id : Entity_Id;
432 S : Node_Id;
433 Related_Nod : Node_Id;
434 For_Access : Boolean := False);
435 -- Process discriminant constraints of composite type. Verify that values
436 -- have been provided for all discriminants, that the original type is
437 -- unconstrained, and that the types of the supplied expressions match
438 -- the discriminant types. The first three parameters are like in routine
439 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
440 -- of For_Access.
441
442 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
443 -- Constrain an enumeration type with a range constraint. This is identical
444 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
445
446 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
447 -- Constrain a floating point type with either a digits constraint
448 -- and/or a range constraint, building a E_Floating_Point_Subtype.
449
450 procedure Constrain_Index
451 (Index : Node_Id;
452 S : Node_Id;
453 Related_Nod : Node_Id;
454 Related_Id : Entity_Id;
455 Suffix : Character;
456 Suffix_Index : Nat);
457 -- Process an index constraint S in a constrained array declaration. The
458 -- constraint can be a subtype name, or a range with or without an explicit
459 -- subtype mark. The index is the corresponding index of the unconstrained
460 -- array. The Related_Id and Suffix parameters are used to build the
461 -- associated Implicit type name.
462
463 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
464 -- Build subtype of a signed or modular integer type
465
466 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
467 -- Constrain an ordinary fixed point type with a range constraint, and
468 -- build an E_Ordinary_Fixed_Point_Subtype entity.
469
470 procedure Copy_And_Swap (Priv, Full : Entity_Id);
471 -- Copy the Priv entity into the entity of its full declaration then swap
472 -- the two entities in such a manner that the former private type is now
473 -- seen as a full type.
474
475 procedure Decimal_Fixed_Point_Type_Declaration
476 (T : Entity_Id;
477 Def : Node_Id);
478 -- Create a new decimal fixed point type, and apply the constraint to
479 -- obtain a subtype of this new type.
480
481 procedure Complete_Private_Subtype
482 (Priv : Entity_Id;
483 Full : Entity_Id;
484 Full_Base : Entity_Id;
485 Related_Nod : Node_Id);
486 -- Complete the implicit full view of a private subtype by setting the
487 -- appropriate semantic fields. If the full view of the parent is a record
488 -- type, build constrained components of subtype.
489
490 procedure Derive_Progenitor_Subprograms
491 (Parent_Type : Entity_Id;
492 Tagged_Type : Entity_Id);
493 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
494 -- operations of progenitors of Tagged_Type, and replace the subsidiary
495 -- subtypes with Tagged_Type, to build the specs of the inherited interface
496 -- primitives. The derived primitives are aliased to those of the
497 -- interface. This routine takes care also of transferring to the full view
498 -- subprograms associated with the partial view of Tagged_Type that cover
499 -- interface primitives.
500
501 procedure Derived_Standard_Character
502 (N : Node_Id;
503 Parent_Type : Entity_Id;
504 Derived_Type : Entity_Id);
505 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
506 -- derivations from types Standard.Character and Standard.Wide_Character.
507
508 procedure Derived_Type_Declaration
509 (T : Entity_Id;
510 N : Node_Id;
511 Is_Completion : Boolean);
512 -- Process a derived type declaration. Build_Derived_Type is invoked
513 -- to process the actual derived type definition. Parameters N and
514 -- Is_Completion have the same meaning as in Build_Derived_Type.
515 -- T is the N_Defining_Identifier for the entity defined in the
516 -- N_Full_Type_Declaration node N, that is T is the derived type.
517
518 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
519 -- Insert each literal in symbol table, as an overloadable identifier. Each
520 -- enumeration type is mapped into a sequence of integers, and each literal
521 -- is defined as a constant with integer value. If any of the literals are
522 -- character literals, the type is a character type, which means that
523 -- strings are legal aggregates for arrays of components of the type.
524
525 function Expand_To_Stored_Constraint
526 (Typ : Entity_Id;
527 Constraint : Elist_Id) return Elist_Id;
528 -- Given a constraint (i.e. a list of expressions) on the discriminants of
529 -- Typ, expand it into a constraint on the stored discriminants and return
530 -- the new list of expressions constraining the stored discriminants.
531
532 function Find_Type_Of_Object
533 (Obj_Def : Node_Id;
534 Related_Nod : Node_Id) return Entity_Id;
535 -- Get type entity for object referenced by Obj_Def, attaching the
536 -- implicit types generated to Related_Nod
537
538 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
539 -- Create a new float and apply the constraint to obtain subtype of it
540
541 function Has_Range_Constraint (N : Node_Id) return Boolean;
542 -- Given an N_Subtype_Indication node N, return True if a range constraint
543 -- is present, either directly, or as part of a digits or delta constraint.
544 -- In addition, a digits constraint in the decimal case returns True, since
545 -- it establishes a default range if no explicit range is present.
546
547 function Inherit_Components
548 (N : Node_Id;
549 Parent_Base : Entity_Id;
550 Derived_Base : Entity_Id;
551 Is_Tagged : Boolean;
552 Inherit_Discr : Boolean;
553 Discs : Elist_Id) return Elist_Id;
554 -- Called from Build_Derived_Record_Type to inherit the components of
555 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
556 -- For more information on derived types and component inheritance please
557 -- consult the comment above the body of Build_Derived_Record_Type.
558 --
559 -- N is the original derived type declaration
560 --
561 -- Is_Tagged is set if we are dealing with tagged types
562 --
563 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
564 -- Parent_Base, otherwise no discriminants are inherited.
565 --
566 -- Discs gives the list of constraints that apply to Parent_Base in the
567 -- derived type declaration. If Discs is set to No_Elist, then we have
568 -- the following situation:
569 --
570 -- type Parent (D1..Dn : ..) is [tagged] record ...;
571 -- type Derived is new Parent [with ...];
572 --
573 -- which gets treated as
574 --
575 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
576 --
577 -- For untagged types the returned value is an association list. The list
578 -- starts from the association (Parent_Base => Derived_Base), and then it
579 -- contains a sequence of the associations of the form
580 --
581 -- (Old_Component => New_Component),
582 --
583 -- where Old_Component is the Entity_Id of a component in Parent_Base and
584 -- New_Component is the Entity_Id of the corresponding component in
585 -- Derived_Base. For untagged records, this association list is needed when
586 -- copying the record declaration for the derived base. In the tagged case
587 -- the value returned is irrelevant.
588
589 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
590 -- Propagate static and dynamic predicate flags from a parent to the
591 -- subtype in a subtype declaration with and without constraints.
592
593 function Is_Valid_Constraint_Kind
594 (T_Kind : Type_Kind;
595 Constraint_Kind : Node_Kind) return Boolean;
596 -- Returns True if it is legal to apply the given kind of constraint to the
597 -- given kind of type (index constraint to an array type, for example).
598
599 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
600 -- Create new modular type. Verify that modulus is in bounds
601
602 procedure New_Concatenation_Op (Typ : Entity_Id);
603 -- Create an abbreviated declaration for an operator in order to
604 -- materialize concatenation on array types.
605
606 procedure Ordinary_Fixed_Point_Type_Declaration
607 (T : Entity_Id;
608 Def : Node_Id);
609 -- Create a new ordinary fixed point type, and apply the constraint to
610 -- obtain subtype of it.
611
612 procedure Prepare_Private_Subtype_Completion
613 (Id : Entity_Id;
614 Related_Nod : Node_Id);
615 -- Id is a subtype of some private type. Creates the full declaration
616 -- associated with Id whenever possible, i.e. when the full declaration
617 -- of the base type is already known. Records each subtype into
618 -- Private_Dependents of the base type.
619
620 procedure Process_Incomplete_Dependents
621 (N : Node_Id;
622 Full_T : Entity_Id;
623 Inc_T : Entity_Id);
624 -- Process all entities that depend on an incomplete type. There include
625 -- subtypes, subprogram types that mention the incomplete type in their
626 -- profiles, and subprogram with access parameters that designate the
627 -- incomplete type.
628
629 -- Inc_T is the defining identifier of an incomplete type declaration, its
630 -- Ekind is E_Incomplete_Type.
631 --
632 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
633 --
634 -- Full_T is N's defining identifier.
635 --
636 -- Subtypes of incomplete types with discriminants are completed when the
637 -- parent type is. This is simpler than private subtypes, because they can
638 -- only appear in the same scope, and there is no need to exchange views.
639 -- Similarly, access_to_subprogram types may have a parameter or a return
640 -- type that is an incomplete type, and that must be replaced with the
641 -- full type.
642 --
643 -- If the full type is tagged, subprogram with access parameters that
644 -- designated the incomplete may be primitive operations of the full type,
645 -- and have to be processed accordingly.
646
647 procedure Process_Real_Range_Specification (Def : Node_Id);
648 -- Given the type definition for a real type, this procedure processes and
649 -- checks the real range specification of this type definition if one is
650 -- present. If errors are found, error messages are posted, and the
651 -- Real_Range_Specification of Def is reset to Empty.
652
653 procedure Record_Type_Declaration
654 (T : Entity_Id;
655 N : Node_Id;
656 Prev : Entity_Id);
657 -- Process a record type declaration (for both untagged and tagged
658 -- records). Parameters T and N are exactly like in procedure
659 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
660 -- for this routine. If this is the completion of an incomplete type
661 -- declaration, Prev is the entity of the incomplete declaration, used for
662 -- cross-referencing. Otherwise Prev = T.
663
664 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
665 -- This routine is used to process the actual record type definition (both
666 -- for untagged and tagged records). Def is a record type definition node.
667 -- This procedure analyzes the components in this record type definition.
668 -- Prev_T is the entity for the enclosing record type. It is provided so
669 -- that its Has_Task flag can be set if any of the component have Has_Task
670 -- set. If the declaration is the completion of an incomplete type
671 -- declaration, Prev_T is the original incomplete type, whose full view is
672 -- the record type.
673
674 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
675 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
676 -- build a copy of the declaration tree of the parent, and we create
677 -- independently the list of components for the derived type. Semantic
678 -- information uses the component entities, but record representation
679 -- clauses are validated on the declaration tree. This procedure replaces
680 -- discriminants and components in the declaration with those that have
681 -- been created by Inherit_Components.
682
683 procedure Set_Fixed_Range
684 (E : Entity_Id;
685 Loc : Source_Ptr;
686 Lo : Ureal;
687 Hi : Ureal);
688 -- Build a range node with the given bounds and set it as the Scalar_Range
689 -- of the given fixed-point type entity. Loc is the source location used
690 -- for the constructed range. See body for further details.
691
692 procedure Set_Scalar_Range_For_Subtype
693 (Def_Id : Entity_Id;
694 R : Node_Id;
695 Subt : Entity_Id);
696 -- This routine is used to set the scalar range field for a subtype given
697 -- Def_Id, the entity for the subtype, and R, the range expression for the
698 -- scalar range. Subt provides the parent subtype to be used to analyze,
699 -- resolve, and check the given range.
700
701 procedure Set_Default_SSO (T : Entity_Id);
702 -- T is the entity for an array or record being declared. This procedure
703 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
704 -- to the setting of Opt.Default_SSO.
705
706 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
707 -- Create a new signed integer entity, and apply the constraint to obtain
708 -- the required first named subtype of this type.
709
710 procedure Set_Stored_Constraint_From_Discriminant_Constraint
711 (E : Entity_Id);
712 -- E is some record type. This routine computes E's Stored_Constraint
713 -- from its Discriminant_Constraint.
714
715 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
716 -- Check that an entity in a list of progenitors is an interface,
717 -- emit error otherwise.
718
719 -----------------------
720 -- Access_Definition --
721 -----------------------
722
723 function Access_Definition
724 (Related_Nod : Node_Id;
725 N : Node_Id) return Entity_Id
726 is
727 Anon_Type : Entity_Id;
728 Anon_Scope : Entity_Id;
729 Desig_Type : Entity_Id;
730 Enclosing_Prot_Type : Entity_Id := Empty;
731
732 begin
733 Check_SPARK_05_Restriction ("access type is not allowed", N);
734
735 if Is_Entry (Current_Scope)
736 and then Is_Task_Type (Etype (Scope (Current_Scope)))
737 then
738 Error_Msg_N ("task entries cannot have access parameters", N);
739 return Empty;
740 end if;
741
742 -- Ada 2005: For an object declaration the corresponding anonymous
743 -- type is declared in the current scope.
744
745 -- If the access definition is the return type of another access to
746 -- function, scope is the current one, because it is the one of the
747 -- current type declaration, except for the pathological case below.
748
749 if Nkind_In (Related_Nod, N_Object_Declaration,
750 N_Access_Function_Definition)
751 then
752 Anon_Scope := Current_Scope;
753
754 -- A pathological case: function returning access functions that
755 -- return access functions, etc. Each anonymous access type created
756 -- is in the enclosing scope of the outermost function.
757
758 declare
759 Par : Node_Id;
760
761 begin
762 Par := Related_Nod;
763 while Nkind_In (Par, N_Access_Function_Definition,
764 N_Access_Definition)
765 loop
766 Par := Parent (Par);
767 end loop;
768
769 if Nkind (Par) = N_Function_Specification then
770 Anon_Scope := Scope (Defining_Entity (Par));
771 end if;
772 end;
773
774 -- For the anonymous function result case, retrieve the scope of the
775 -- function specification's associated entity rather than using the
776 -- current scope. The current scope will be the function itself if the
777 -- formal part is currently being analyzed, but will be the parent scope
778 -- in the case of a parameterless function, and we always want to use
779 -- the function's parent scope. Finally, if the function is a child
780 -- unit, we must traverse the tree to retrieve the proper entity.
781
782 elsif Nkind (Related_Nod) = N_Function_Specification
783 and then Nkind (Parent (N)) /= N_Parameter_Specification
784 then
785 -- If the current scope is a protected type, the anonymous access
786 -- is associated with one of the protected operations, and must
787 -- be available in the scope that encloses the protected declaration.
788 -- Otherwise the type is in the scope enclosing the subprogram.
789
790 -- If the function has formals, The return type of a subprogram
791 -- declaration is analyzed in the scope of the subprogram (see
792 -- Process_Formals) and thus the protected type, if present, is
793 -- the scope of the current function scope.
794
795 if Ekind (Current_Scope) = E_Protected_Type then
796 Enclosing_Prot_Type := Current_Scope;
797
798 elsif Ekind (Current_Scope) = E_Function
799 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
800 then
801 Enclosing_Prot_Type := Scope (Current_Scope);
802 end if;
803
804 if Present (Enclosing_Prot_Type) then
805 Anon_Scope := Scope (Enclosing_Prot_Type);
806
807 else
808 Anon_Scope := Scope (Defining_Entity (Related_Nod));
809 end if;
810
811 -- For an access type definition, if the current scope is a child
812 -- unit it is the scope of the type.
813
814 elsif Is_Compilation_Unit (Current_Scope) then
815 Anon_Scope := Current_Scope;
816
817 -- For access formals, access components, and access discriminants, the
818 -- scope is that of the enclosing declaration,
819
820 else
821 Anon_Scope := Scope (Current_Scope);
822 end if;
823
824 Anon_Type :=
825 Create_Itype
826 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
827
828 if All_Present (N)
829 and then Ada_Version >= Ada_2005
830 then
831 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
832 end if;
833
834 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
835 -- the corresponding semantic routine
836
837 if Present (Access_To_Subprogram_Definition (N)) then
838
839 -- Compiler runtime units are compiled in Ada 2005 mode when building
840 -- the runtime library but must also be compilable in Ada 95 mode
841 -- (when bootstrapping the compiler).
842
843 Check_Compiler_Unit ("anonymous access to subprogram", N);
844
845 Access_Subprogram_Declaration
846 (T_Name => Anon_Type,
847 T_Def => Access_To_Subprogram_Definition (N));
848
849 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
850 Set_Ekind
851 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
852 else
853 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
854 end if;
855
856 Set_Can_Use_Internal_Rep
857 (Anon_Type, not Always_Compatible_Rep_On_Target);
858
859 -- If the anonymous access is associated with a protected operation,
860 -- create a reference to it after the enclosing protected definition
861 -- because the itype will be used in the subsequent bodies.
862
863 if Ekind (Current_Scope) = E_Protected_Type then
864 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
865 end if;
866
867 return Anon_Type;
868 end if;
869
870 Find_Type (Subtype_Mark (N));
871 Desig_Type := Entity (Subtype_Mark (N));
872
873 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
874 Set_Etype (Anon_Type, Anon_Type);
875
876 -- Make sure the anonymous access type has size and alignment fields
877 -- set, as required by gigi. This is necessary in the case of the
878 -- Task_Body_Procedure.
879
880 if not Has_Private_Component (Desig_Type) then
881 Layout_Type (Anon_Type);
882 end if;
883
884 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
885 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
886 -- the null value is allowed. In Ada 95 the null value is never allowed.
887
888 if Ada_Version >= Ada_2005 then
889 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
890 else
891 Set_Can_Never_Be_Null (Anon_Type, True);
892 end if;
893
894 -- The anonymous access type is as public as the discriminated type or
895 -- subprogram that defines it. It is imported (for back-end purposes)
896 -- if the designated type is.
897
898 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
899
900 -- Ada 2005 (AI-231): Propagate the access-constant attribute
901
902 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
903
904 -- The context is either a subprogram declaration, object declaration,
905 -- or an access discriminant, in a private or a full type declaration.
906 -- In the case of a subprogram, if the designated type is incomplete,
907 -- the operation will be a primitive operation of the full type, to be
908 -- updated subsequently. If the type is imported through a limited_with
909 -- clause, the subprogram is not a primitive operation of the type
910 -- (which is declared elsewhere in some other scope).
911
912 if Ekind (Desig_Type) = E_Incomplete_Type
913 and then not From_Limited_With (Desig_Type)
914 and then Is_Overloadable (Current_Scope)
915 then
916 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
917 Set_Has_Delayed_Freeze (Current_Scope);
918 end if;
919
920 -- Ada 2005: If the designated type is an interface that may contain
921 -- tasks, create a Master entity for the declaration. This must be done
922 -- before expansion of the full declaration, because the declaration may
923 -- include an expression that is an allocator, whose expansion needs the
924 -- proper Master for the created tasks.
925
926 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
927 then
928 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
929 then
930 Build_Class_Wide_Master (Anon_Type);
931
932 -- Similarly, if the type is an anonymous access that designates
933 -- tasks, create a master entity for it in the current context.
934
935 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
936 then
937 Build_Master_Entity (Defining_Identifier (Related_Nod));
938 Build_Master_Renaming (Anon_Type);
939 end if;
940 end if;
941
942 -- For a private component of a protected type, it is imperative that
943 -- the back-end elaborate the type immediately after the protected
944 -- declaration, because this type will be used in the declarations
945 -- created for the component within each protected body, so we must
946 -- create an itype reference for it now.
947
948 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
949 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
950
951 -- Similarly, if the access definition is the return result of a
952 -- function, create an itype reference for it because it will be used
953 -- within the function body. For a regular function that is not a
954 -- compilation unit, insert reference after the declaration. For a
955 -- protected operation, insert it after the enclosing protected type
956 -- declaration. In either case, do not create a reference for a type
957 -- obtained through a limited_with clause, because this would introduce
958 -- semantic dependencies.
959
960 -- Similarly, do not create a reference if the designated type is a
961 -- generic formal, because no use of it will reach the backend.
962
963 elsif Nkind (Related_Nod) = N_Function_Specification
964 and then not From_Limited_With (Desig_Type)
965 and then not Is_Generic_Type (Desig_Type)
966 then
967 if Present (Enclosing_Prot_Type) then
968 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
969
970 elsif Is_List_Member (Parent (Related_Nod))
971 and then Nkind (Parent (N)) /= N_Parameter_Specification
972 then
973 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
974 end if;
975
976 -- Finally, create an itype reference for an object declaration of an
977 -- anonymous access type. This is strictly necessary only for deferred
978 -- constants, but in any case will avoid out-of-scope problems in the
979 -- back-end.
980
981 elsif Nkind (Related_Nod) = N_Object_Declaration then
982 Build_Itype_Reference (Anon_Type, Related_Nod);
983 end if;
984
985 return Anon_Type;
986 end Access_Definition;
987
988 -----------------------------------
989 -- Access_Subprogram_Declaration --
990 -----------------------------------
991
992 procedure Access_Subprogram_Declaration
993 (T_Name : Entity_Id;
994 T_Def : Node_Id)
995 is
996 procedure Check_For_Premature_Usage (Def : Node_Id);
997 -- Check that type T_Name is not used, directly or recursively, as a
998 -- parameter or a return type in Def. Def is either a subtype, an
999 -- access_definition, or an access_to_subprogram_definition.
1000
1001 -------------------------------
1002 -- Check_For_Premature_Usage --
1003 -------------------------------
1004
1005 procedure Check_For_Premature_Usage (Def : Node_Id) is
1006 Param : Node_Id;
1007
1008 begin
1009 -- Check for a subtype mark
1010
1011 if Nkind (Def) in N_Has_Etype then
1012 if Etype (Def) = T_Name then
1013 Error_Msg_N
1014 ("type& cannot be used before end of its declaration", Def);
1015 end if;
1016
1017 -- If this is not a subtype, then this is an access_definition
1018
1019 elsif Nkind (Def) = N_Access_Definition then
1020 if Present (Access_To_Subprogram_Definition (Def)) then
1021 Check_For_Premature_Usage
1022 (Access_To_Subprogram_Definition (Def));
1023 else
1024 Check_For_Premature_Usage (Subtype_Mark (Def));
1025 end if;
1026
1027 -- The only cases left are N_Access_Function_Definition and
1028 -- N_Access_Procedure_Definition.
1029
1030 else
1031 if Present (Parameter_Specifications (Def)) then
1032 Param := First (Parameter_Specifications (Def));
1033 while Present (Param) loop
1034 Check_For_Premature_Usage (Parameter_Type (Param));
1035 Param := Next (Param);
1036 end loop;
1037 end if;
1038
1039 if Nkind (Def) = N_Access_Function_Definition then
1040 Check_For_Premature_Usage (Result_Definition (Def));
1041 end if;
1042 end if;
1043 end Check_For_Premature_Usage;
1044
1045 -- Local variables
1046
1047 Formals : constant List_Id := Parameter_Specifications (T_Def);
1048 Formal : Entity_Id;
1049 D_Ityp : Node_Id;
1050 Desig_Type : constant Entity_Id :=
1051 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1052
1053 -- Start of processing for Access_Subprogram_Declaration
1054
1055 begin
1056 Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1057
1058 -- Associate the Itype node with the inner full-type declaration or
1059 -- subprogram spec or entry body. This is required to handle nested
1060 -- anonymous declarations. For example:
1061
1062 -- procedure P
1063 -- (X : access procedure
1064 -- (Y : access procedure
1065 -- (Z : access T)))
1066
1067 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1068 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1069 N_Private_Type_Declaration,
1070 N_Private_Extension_Declaration,
1071 N_Procedure_Specification,
1072 N_Function_Specification,
1073 N_Entry_Body)
1074
1075 or else
1076 Nkind_In (D_Ityp, N_Object_Declaration,
1077 N_Object_Renaming_Declaration,
1078 N_Formal_Object_Declaration,
1079 N_Formal_Type_Declaration,
1080 N_Task_Type_Declaration,
1081 N_Protected_Type_Declaration))
1082 loop
1083 D_Ityp := Parent (D_Ityp);
1084 pragma Assert (D_Ityp /= Empty);
1085 end loop;
1086
1087 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1088
1089 if Nkind_In (D_Ityp, N_Procedure_Specification,
1090 N_Function_Specification)
1091 then
1092 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1093
1094 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1095 N_Object_Declaration,
1096 N_Object_Renaming_Declaration,
1097 N_Formal_Type_Declaration)
1098 then
1099 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1100 end if;
1101
1102 if Nkind (T_Def) = N_Access_Function_Definition then
1103 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1104 declare
1105 Acc : constant Node_Id := Result_Definition (T_Def);
1106
1107 begin
1108 if Present (Access_To_Subprogram_Definition (Acc))
1109 and then
1110 Protected_Present (Access_To_Subprogram_Definition (Acc))
1111 then
1112 Set_Etype
1113 (Desig_Type,
1114 Replace_Anonymous_Access_To_Protected_Subprogram
1115 (T_Def));
1116
1117 else
1118 Set_Etype
1119 (Desig_Type,
1120 Access_Definition (T_Def, Result_Definition (T_Def)));
1121 end if;
1122 end;
1123
1124 else
1125 Analyze (Result_Definition (T_Def));
1126
1127 declare
1128 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1129
1130 begin
1131 -- If a null exclusion is imposed on the result type, then
1132 -- create a null-excluding itype (an access subtype) and use
1133 -- it as the function's Etype.
1134
1135 if Is_Access_Type (Typ)
1136 and then Null_Exclusion_In_Return_Present (T_Def)
1137 then
1138 Set_Etype (Desig_Type,
1139 Create_Null_Excluding_Itype
1140 (T => Typ,
1141 Related_Nod => T_Def,
1142 Scope_Id => Current_Scope));
1143
1144 else
1145 if From_Limited_With (Typ) then
1146
1147 -- AI05-151: Incomplete types are allowed in all basic
1148 -- declarations, including access to subprograms.
1149
1150 if Ada_Version >= Ada_2012 then
1151 null;
1152
1153 else
1154 Error_Msg_NE
1155 ("illegal use of incomplete type&",
1156 Result_Definition (T_Def), Typ);
1157 end if;
1158
1159 elsif Ekind (Current_Scope) = E_Package
1160 and then In_Private_Part (Current_Scope)
1161 then
1162 if Ekind (Typ) = E_Incomplete_Type then
1163 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1164
1165 elsif Is_Class_Wide_Type (Typ)
1166 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1167 then
1168 Append_Elmt
1169 (Desig_Type, Private_Dependents (Etype (Typ)));
1170 end if;
1171 end if;
1172
1173 Set_Etype (Desig_Type, Typ);
1174 end if;
1175 end;
1176 end if;
1177
1178 if not (Is_Type (Etype (Desig_Type))) then
1179 Error_Msg_N
1180 ("expect type in function specification",
1181 Result_Definition (T_Def));
1182 end if;
1183
1184 else
1185 Set_Etype (Desig_Type, Standard_Void_Type);
1186 end if;
1187
1188 if Present (Formals) then
1189 Push_Scope (Desig_Type);
1190
1191 -- Some special tests here. These special tests can be removed
1192 -- if and when Itypes always have proper parent pointers to their
1193 -- declarations???
1194
1195 -- Special test 1) Link defining_identifier of formals. Required by
1196 -- First_Formal to provide its functionality.
1197
1198 declare
1199 F : Node_Id;
1200
1201 begin
1202 F := First (Formals);
1203
1204 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1205 -- when it is part of an unconstrained type and subtype expansion
1206 -- is disabled. To avoid back-end problems with shared profiles,
1207 -- use previous subprogram type as the designated type, and then
1208 -- remove scope added above.
1209
1210 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1211 then
1212 Set_Etype (T_Name, T_Name);
1213 Init_Size_Align (T_Name);
1214 Set_Directly_Designated_Type (T_Name,
1215 Scope (Defining_Identifier (F)));
1216 End_Scope;
1217 return;
1218 end if;
1219
1220 while Present (F) loop
1221 if No (Parent (Defining_Identifier (F))) then
1222 Set_Parent (Defining_Identifier (F), F);
1223 end if;
1224
1225 Next (F);
1226 end loop;
1227 end;
1228
1229 Process_Formals (Formals, Parent (T_Def));
1230
1231 -- Special test 2) End_Scope requires that the parent pointer be set
1232 -- to something reasonable, but Itypes don't have parent pointers. So
1233 -- we set it and then unset it ???
1234
1235 Set_Parent (Desig_Type, T_Name);
1236 End_Scope;
1237 Set_Parent (Desig_Type, Empty);
1238 end if;
1239
1240 -- Check for premature usage of the type being defined
1241
1242 Check_For_Premature_Usage (T_Def);
1243
1244 -- The return type and/or any parameter type may be incomplete. Mark the
1245 -- subprogram_type as depending on the incomplete type, so that it can
1246 -- be updated when the full type declaration is seen. This only applies
1247 -- to incomplete types declared in some enclosing scope, not to limited
1248 -- views from other packages.
1249
1250 -- Prior to Ada 2012, access to functions can only have in_parameters.
1251
1252 if Present (Formals) then
1253 Formal := First_Formal (Desig_Type);
1254 while Present (Formal) loop
1255 if Ekind (Formal) /= E_In_Parameter
1256 and then Nkind (T_Def) = N_Access_Function_Definition
1257 and then Ada_Version < Ada_2012
1258 then
1259 Error_Msg_N ("functions can only have IN parameters", Formal);
1260 end if;
1261
1262 if Ekind (Etype (Formal)) = E_Incomplete_Type
1263 and then In_Open_Scopes (Scope (Etype (Formal)))
1264 then
1265 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1266 Set_Has_Delayed_Freeze (Desig_Type);
1267 end if;
1268
1269 Next_Formal (Formal);
1270 end loop;
1271 end if;
1272
1273 -- Check whether an indirect call without actuals may be possible. This
1274 -- is used when resolving calls whose result is then indexed.
1275
1276 May_Need_Actuals (Desig_Type);
1277
1278 -- If the return type is incomplete, this is legal as long as the type
1279 -- is declared in the current scope and will be completed in it (rather
1280 -- than being part of limited view).
1281
1282 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1283 and then not Has_Delayed_Freeze (Desig_Type)
1284 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1285 then
1286 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1287 Set_Has_Delayed_Freeze (Desig_Type);
1288 end if;
1289
1290 Check_Delayed_Subprogram (Desig_Type);
1291
1292 if Protected_Present (T_Def) then
1293 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1294 Set_Convention (Desig_Type, Convention_Protected);
1295 else
1296 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1297 end if;
1298
1299 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1300
1301 Set_Etype (T_Name, T_Name);
1302 Init_Size_Align (T_Name);
1303 Set_Directly_Designated_Type (T_Name, Desig_Type);
1304
1305 Generate_Reference_To_Formals (T_Name);
1306
1307 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1308
1309 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1310
1311 Check_Restriction (No_Access_Subprograms, T_Def);
1312 end Access_Subprogram_Declaration;
1313
1314 ----------------------------
1315 -- Access_Type_Declaration --
1316 ----------------------------
1317
1318 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1319 P : constant Node_Id := Parent (Def);
1320 S : constant Node_Id := Subtype_Indication (Def);
1321
1322 Full_Desig : Entity_Id;
1323
1324 begin
1325 Check_SPARK_05_Restriction ("access type is not allowed", Def);
1326
1327 -- Check for permissible use of incomplete type
1328
1329 if Nkind (S) /= N_Subtype_Indication then
1330 Analyze (S);
1331
1332 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1333 Set_Directly_Designated_Type (T, Entity (S));
1334
1335 -- If the designated type is a limited view, we cannot tell if
1336 -- the full view contains tasks, and there is no way to handle
1337 -- that full view in a client. We create a master entity for the
1338 -- scope, which will be used when a client determines that one
1339 -- is needed.
1340
1341 if From_Limited_With (Entity (S))
1342 and then not Is_Class_Wide_Type (Entity (S))
1343 then
1344 Set_Ekind (T, E_Access_Type);
1345 Build_Master_Entity (T);
1346 Build_Master_Renaming (T);
1347 end if;
1348
1349 else
1350 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1351 end if;
1352
1353 -- If the access definition is of the form: ACCESS NOT NULL ..
1354 -- the subtype indication must be of an access type. Create
1355 -- a null-excluding subtype of it.
1356
1357 if Null_Excluding_Subtype (Def) then
1358 if not Is_Access_Type (Entity (S)) then
1359 Error_Msg_N ("null exclusion must apply to access type", Def);
1360
1361 else
1362 declare
1363 Loc : constant Source_Ptr := Sloc (S);
1364 Decl : Node_Id;
1365 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1366
1367 begin
1368 Decl :=
1369 Make_Subtype_Declaration (Loc,
1370 Defining_Identifier => Nam,
1371 Subtype_Indication =>
1372 New_Occurrence_Of (Entity (S), Loc));
1373 Set_Null_Exclusion_Present (Decl);
1374 Insert_Before (Parent (Def), Decl);
1375 Analyze (Decl);
1376 Set_Entity (S, Nam);
1377 end;
1378 end if;
1379 end if;
1380
1381 else
1382 Set_Directly_Designated_Type (T,
1383 Process_Subtype (S, P, T, 'P'));
1384 end if;
1385
1386 if All_Present (Def) or Constant_Present (Def) then
1387 Set_Ekind (T, E_General_Access_Type);
1388 else
1389 Set_Ekind (T, E_Access_Type);
1390 end if;
1391
1392 Full_Desig := Designated_Type (T);
1393
1394 if Base_Type (Full_Desig) = T then
1395 Error_Msg_N ("access type cannot designate itself", S);
1396
1397 -- In Ada 2005, the type may have a limited view through some unit in
1398 -- its own context, allowing the following circularity that cannot be
1399 -- detected earlier.
1400
1401 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1402 then
1403 Error_Msg_N
1404 ("access type cannot designate its own classwide type", S);
1405
1406 -- Clean up indication of tagged status to prevent cascaded errors
1407
1408 Set_Is_Tagged_Type (T, False);
1409 end if;
1410
1411 Set_Etype (T, T);
1412
1413 -- If the type has appeared already in a with_type clause, it is frozen
1414 -- and the pointer size is already set. Else, initialize.
1415
1416 if not From_Limited_With (T) then
1417 Init_Size_Align (T);
1418 end if;
1419
1420 -- Note that Has_Task is always false, since the access type itself
1421 -- is not a task type. See Einfo for more description on this point.
1422 -- Exactly the same consideration applies to Has_Controlled_Component
1423 -- and to Has_Protected.
1424
1425 Set_Has_Task (T, False);
1426 Set_Has_Controlled_Component (T, False);
1427 Set_Has_Protected (T, False);
1428
1429 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1430 -- problems where an incomplete view of this entity has been previously
1431 -- established by a limited with and an overlaid version of this field
1432 -- (Stored_Constraint) was initialized for the incomplete view.
1433
1434 -- This reset is performed in most cases except where the access type
1435 -- has been created for the purposes of allocating or deallocating a
1436 -- build-in-place object. Such access types have explicitly set pools
1437 -- and finalization masters.
1438
1439 if No (Associated_Storage_Pool (T)) then
1440 Set_Finalization_Master (T, Empty);
1441 end if;
1442
1443 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1444 -- attributes
1445
1446 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1447 Set_Is_Access_Constant (T, Constant_Present (Def));
1448 end Access_Type_Declaration;
1449
1450 ----------------------------------
1451 -- Add_Interface_Tag_Components --
1452 ----------------------------------
1453
1454 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1455 Loc : constant Source_Ptr := Sloc (N);
1456 L : List_Id;
1457 Last_Tag : Node_Id;
1458
1459 procedure Add_Tag (Iface : Entity_Id);
1460 -- Add tag for one of the progenitor interfaces
1461
1462 -------------
1463 -- Add_Tag --
1464 -------------
1465
1466 procedure Add_Tag (Iface : Entity_Id) is
1467 Decl : Node_Id;
1468 Def : Node_Id;
1469 Tag : Entity_Id;
1470 Offset : Entity_Id;
1471
1472 begin
1473 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1474
1475 -- This is a reasonable place to propagate predicates
1476
1477 if Has_Predicates (Iface) then
1478 Set_Has_Predicates (Typ);
1479 end if;
1480
1481 Def :=
1482 Make_Component_Definition (Loc,
1483 Aliased_Present => True,
1484 Subtype_Indication =>
1485 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1486
1487 Tag := Make_Temporary (Loc, 'V');
1488
1489 Decl :=
1490 Make_Component_Declaration (Loc,
1491 Defining_Identifier => Tag,
1492 Component_Definition => Def);
1493
1494 Analyze_Component_Declaration (Decl);
1495
1496 Set_Analyzed (Decl);
1497 Set_Ekind (Tag, E_Component);
1498 Set_Is_Tag (Tag);
1499 Set_Is_Aliased (Tag);
1500 Set_Related_Type (Tag, Iface);
1501 Init_Component_Location (Tag);
1502
1503 pragma Assert (Is_Frozen (Iface));
1504
1505 Set_DT_Entry_Count (Tag,
1506 DT_Entry_Count (First_Entity (Iface)));
1507
1508 if No (Last_Tag) then
1509 Prepend (Decl, L);
1510 else
1511 Insert_After (Last_Tag, Decl);
1512 end if;
1513
1514 Last_Tag := Decl;
1515
1516 -- If the ancestor has discriminants we need to give special support
1517 -- to store the offset_to_top value of the secondary dispatch tables.
1518 -- For this purpose we add a supplementary component just after the
1519 -- field that contains the tag associated with each secondary DT.
1520
1521 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1522 Def :=
1523 Make_Component_Definition (Loc,
1524 Subtype_Indication =>
1525 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1526
1527 Offset := Make_Temporary (Loc, 'V');
1528
1529 Decl :=
1530 Make_Component_Declaration (Loc,
1531 Defining_Identifier => Offset,
1532 Component_Definition => Def);
1533
1534 Analyze_Component_Declaration (Decl);
1535
1536 Set_Analyzed (Decl);
1537 Set_Ekind (Offset, E_Component);
1538 Set_Is_Aliased (Offset);
1539 Set_Related_Type (Offset, Iface);
1540 Init_Component_Location (Offset);
1541 Insert_After (Last_Tag, Decl);
1542 Last_Tag := Decl;
1543 end if;
1544 end Add_Tag;
1545
1546 -- Local variables
1547
1548 Elmt : Elmt_Id;
1549 Ext : Node_Id;
1550 Comp : Node_Id;
1551
1552 -- Start of processing for Add_Interface_Tag_Components
1553
1554 begin
1555 if not RTE_Available (RE_Interface_Tag) then
1556 Error_Msg
1557 ("(Ada 2005) interface types not supported by this run-time!",
1558 Sloc (N));
1559 return;
1560 end if;
1561
1562 if Ekind (Typ) /= E_Record_Type
1563 or else (Is_Concurrent_Record_Type (Typ)
1564 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1565 or else (not Is_Concurrent_Record_Type (Typ)
1566 and then No (Interfaces (Typ))
1567 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1568 then
1569 return;
1570 end if;
1571
1572 -- Find the current last tag
1573
1574 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1575 Ext := Record_Extension_Part (Type_Definition (N));
1576 else
1577 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1578 Ext := Type_Definition (N);
1579 end if;
1580
1581 Last_Tag := Empty;
1582
1583 if not (Present (Component_List (Ext))) then
1584 Set_Null_Present (Ext, False);
1585 L := New_List;
1586 Set_Component_List (Ext,
1587 Make_Component_List (Loc,
1588 Component_Items => L,
1589 Null_Present => False));
1590 else
1591 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1592 L := Component_Items
1593 (Component_List
1594 (Record_Extension_Part
1595 (Type_Definition (N))));
1596 else
1597 L := Component_Items
1598 (Component_List
1599 (Type_Definition (N)));
1600 end if;
1601
1602 -- Find the last tag component
1603
1604 Comp := First (L);
1605 while Present (Comp) loop
1606 if Nkind (Comp) = N_Component_Declaration
1607 and then Is_Tag (Defining_Identifier (Comp))
1608 then
1609 Last_Tag := Comp;
1610 end if;
1611
1612 Next (Comp);
1613 end loop;
1614 end if;
1615
1616 -- At this point L references the list of components and Last_Tag
1617 -- references the current last tag (if any). Now we add the tag
1618 -- corresponding with all the interfaces that are not implemented
1619 -- by the parent.
1620
1621 if Present (Interfaces (Typ)) then
1622 Elmt := First_Elmt (Interfaces (Typ));
1623 while Present (Elmt) loop
1624 Add_Tag (Node (Elmt));
1625 Next_Elmt (Elmt);
1626 end loop;
1627 end if;
1628 end Add_Interface_Tag_Components;
1629
1630 -------------------------------------
1631 -- Add_Internal_Interface_Entities --
1632 -------------------------------------
1633
1634 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1635 Elmt : Elmt_Id;
1636 Iface : Entity_Id;
1637 Iface_Elmt : Elmt_Id;
1638 Iface_Prim : Entity_Id;
1639 Ifaces_List : Elist_Id;
1640 New_Subp : Entity_Id := Empty;
1641 Prim : Entity_Id;
1642 Restore_Scope : Boolean := False;
1643
1644 begin
1645 pragma Assert (Ada_Version >= Ada_2005
1646 and then Is_Record_Type (Tagged_Type)
1647 and then Is_Tagged_Type (Tagged_Type)
1648 and then Has_Interfaces (Tagged_Type)
1649 and then not Is_Interface (Tagged_Type));
1650
1651 -- Ensure that the internal entities are added to the scope of the type
1652
1653 if Scope (Tagged_Type) /= Current_Scope then
1654 Push_Scope (Scope (Tagged_Type));
1655 Restore_Scope := True;
1656 end if;
1657
1658 Collect_Interfaces (Tagged_Type, Ifaces_List);
1659
1660 Iface_Elmt := First_Elmt (Ifaces_List);
1661 while Present (Iface_Elmt) loop
1662 Iface := Node (Iface_Elmt);
1663
1664 -- Originally we excluded here from this processing interfaces that
1665 -- are parents of Tagged_Type because their primitives are located
1666 -- in the primary dispatch table (and hence no auxiliary internal
1667 -- entities are required to handle secondary dispatch tables in such
1668 -- case). However, these auxiliary entities are also required to
1669 -- handle derivations of interfaces in formals of generics (see
1670 -- Derive_Subprograms).
1671
1672 Elmt := First_Elmt (Primitive_Operations (Iface));
1673 while Present (Elmt) loop
1674 Iface_Prim := Node (Elmt);
1675
1676 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1677 Prim :=
1678 Find_Primitive_Covering_Interface
1679 (Tagged_Type => Tagged_Type,
1680 Iface_Prim => Iface_Prim);
1681
1682 if No (Prim) and then Serious_Errors_Detected > 0 then
1683 goto Continue;
1684 end if;
1685
1686 pragma Assert (Present (Prim));
1687
1688 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1689 -- differs from the name of the interface primitive then it is
1690 -- a private primitive inherited from a parent type. In such
1691 -- case, given that Tagged_Type covers the interface, the
1692 -- inherited private primitive becomes visible. For such
1693 -- purpose we add a new entity that renames the inherited
1694 -- private primitive.
1695
1696 if Chars (Prim) /= Chars (Iface_Prim) then
1697 pragma Assert (Has_Suffix (Prim, 'P'));
1698 Derive_Subprogram
1699 (New_Subp => New_Subp,
1700 Parent_Subp => Iface_Prim,
1701 Derived_Type => Tagged_Type,
1702 Parent_Type => Iface);
1703 Set_Alias (New_Subp, Prim);
1704 Set_Is_Abstract_Subprogram
1705 (New_Subp, Is_Abstract_Subprogram (Prim));
1706 end if;
1707
1708 Derive_Subprogram
1709 (New_Subp => New_Subp,
1710 Parent_Subp => Iface_Prim,
1711 Derived_Type => Tagged_Type,
1712 Parent_Type => Iface);
1713
1714 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1715 -- associated with interface types. These entities are
1716 -- only registered in the list of primitives of its
1717 -- corresponding tagged type because they are only used
1718 -- to fill the contents of the secondary dispatch tables.
1719 -- Therefore they are removed from the homonym chains.
1720
1721 Set_Is_Hidden (New_Subp);
1722 Set_Is_Internal (New_Subp);
1723 Set_Alias (New_Subp, Prim);
1724 Set_Is_Abstract_Subprogram
1725 (New_Subp, Is_Abstract_Subprogram (Prim));
1726 Set_Interface_Alias (New_Subp, Iface_Prim);
1727
1728 -- If the returned type is an interface then propagate it to
1729 -- the returned type. Needed by the thunk to generate the code
1730 -- which displaces "this" to reference the corresponding
1731 -- secondary dispatch table in the returned object.
1732
1733 if Is_Interface (Etype (Iface_Prim)) then
1734 Set_Etype (New_Subp, Etype (Iface_Prim));
1735 end if;
1736
1737 -- Internal entities associated with interface types are
1738 -- only registered in the list of primitives of the tagged
1739 -- type. They are only used to fill the contents of the
1740 -- secondary dispatch tables. Therefore they are not needed
1741 -- in the homonym chains.
1742
1743 Remove_Homonym (New_Subp);
1744
1745 -- Hidden entities associated with interfaces must have set
1746 -- the Has_Delay_Freeze attribute to ensure that, in case of
1747 -- locally defined tagged types (or compiling with static
1748 -- dispatch tables generation disabled) the corresponding
1749 -- entry of the secondary dispatch table is filled when
1750 -- such an entity is frozen.
1751
1752 Set_Has_Delayed_Freeze (New_Subp);
1753 end if;
1754
1755 <<Continue>>
1756 Next_Elmt (Elmt);
1757 end loop;
1758
1759 Next_Elmt (Iface_Elmt);
1760 end loop;
1761
1762 if Restore_Scope then
1763 Pop_Scope;
1764 end if;
1765 end Add_Internal_Interface_Entities;
1766
1767 -----------------------------------
1768 -- Analyze_Component_Declaration --
1769 -----------------------------------
1770
1771 procedure Analyze_Component_Declaration (N : Node_Id) is
1772 Id : constant Entity_Id := Defining_Identifier (N);
1773 E : constant Node_Id := Expression (N);
1774 Typ : constant Node_Id :=
1775 Subtype_Indication (Component_Definition (N));
1776 T : Entity_Id;
1777 P : Entity_Id;
1778
1779 function Contains_POC (Constr : Node_Id) return Boolean;
1780 -- Determines whether a constraint uses the discriminant of a record
1781 -- type thus becoming a per-object constraint (POC).
1782
1783 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1784 -- Typ is the type of the current component, check whether this type is
1785 -- a limited type. Used to validate declaration against that of
1786 -- enclosing record.
1787
1788 ------------------
1789 -- Contains_POC --
1790 ------------------
1791
1792 function Contains_POC (Constr : Node_Id) return Boolean is
1793 begin
1794 -- Prevent cascaded errors
1795
1796 if Error_Posted (Constr) then
1797 return False;
1798 end if;
1799
1800 case Nkind (Constr) is
1801 when N_Attribute_Reference =>
1802 return Attribute_Name (Constr) = Name_Access
1803 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1804
1805 when N_Discriminant_Association =>
1806 return Denotes_Discriminant (Expression (Constr));
1807
1808 when N_Identifier =>
1809 return Denotes_Discriminant (Constr);
1810
1811 when N_Index_Or_Discriminant_Constraint =>
1812 declare
1813 IDC : Node_Id;
1814
1815 begin
1816 IDC := First (Constraints (Constr));
1817 while Present (IDC) loop
1818
1819 -- One per-object constraint is sufficient
1820
1821 if Contains_POC (IDC) then
1822 return True;
1823 end if;
1824
1825 Next (IDC);
1826 end loop;
1827
1828 return False;
1829 end;
1830
1831 when N_Range =>
1832 return Denotes_Discriminant (Low_Bound (Constr))
1833 or else
1834 Denotes_Discriminant (High_Bound (Constr));
1835
1836 when N_Range_Constraint =>
1837 return Denotes_Discriminant (Range_Expression (Constr));
1838
1839 when others =>
1840 return False;
1841
1842 end case;
1843 end Contains_POC;
1844
1845 ----------------------
1846 -- Is_Known_Limited --
1847 ----------------------
1848
1849 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1850 P : constant Entity_Id := Etype (Typ);
1851 R : constant Entity_Id := Root_Type (Typ);
1852
1853 begin
1854 if Is_Limited_Record (Typ) then
1855 return True;
1856
1857 -- If the root type is limited (and not a limited interface)
1858 -- so is the current type
1859
1860 elsif Is_Limited_Record (R)
1861 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1862 then
1863 return True;
1864
1865 -- Else the type may have a limited interface progenitor, but a
1866 -- limited record parent.
1867
1868 elsif R /= P and then Is_Limited_Record (P) then
1869 return True;
1870
1871 else
1872 return False;
1873 end if;
1874 end Is_Known_Limited;
1875
1876 -- Start of processing for Analyze_Component_Declaration
1877
1878 begin
1879 Generate_Definition (Id);
1880 Enter_Name (Id);
1881
1882 if Present (Typ) then
1883 T := Find_Type_Of_Object
1884 (Subtype_Indication (Component_Definition (N)), N);
1885
1886 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1887 Check_SPARK_05_Restriction ("subtype mark required", Typ);
1888 end if;
1889
1890 -- Ada 2005 (AI-230): Access Definition case
1891
1892 else
1893 pragma Assert (Present
1894 (Access_Definition (Component_Definition (N))));
1895
1896 T := Access_Definition
1897 (Related_Nod => N,
1898 N => Access_Definition (Component_Definition (N)));
1899 Set_Is_Local_Anonymous_Access (T);
1900
1901 -- Ada 2005 (AI-254)
1902
1903 if Present (Access_To_Subprogram_Definition
1904 (Access_Definition (Component_Definition (N))))
1905 and then Protected_Present (Access_To_Subprogram_Definition
1906 (Access_Definition
1907 (Component_Definition (N))))
1908 then
1909 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1910 end if;
1911 end if;
1912
1913 -- If the subtype is a constrained subtype of the enclosing record,
1914 -- (which must have a partial view) the back-end does not properly
1915 -- handle the recursion. Rewrite the component declaration with an
1916 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1917 -- the tree directly because side effects have already been removed from
1918 -- discriminant constraints.
1919
1920 if Ekind (T) = E_Access_Subtype
1921 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1922 and then Comes_From_Source (T)
1923 and then Nkind (Parent (T)) = N_Subtype_Declaration
1924 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1925 then
1926 Rewrite
1927 (Subtype_Indication (Component_Definition (N)),
1928 New_Copy_Tree (Subtype_Indication (Parent (T))));
1929 T := Find_Type_Of_Object
1930 (Subtype_Indication (Component_Definition (N)), N);
1931 end if;
1932
1933 -- If the component declaration includes a default expression, then we
1934 -- check that the component is not of a limited type (RM 3.7(5)),
1935 -- and do the special preanalysis of the expression (see section on
1936 -- "Handling of Default and Per-Object Expressions" in the spec of
1937 -- package Sem).
1938
1939 if Present (E) then
1940 Check_SPARK_05_Restriction ("default expression is not allowed", E);
1941 Preanalyze_Default_Expression (E, T);
1942 Check_Initialization (T, E);
1943
1944 if Ada_Version >= Ada_2005
1945 and then Ekind (T) = E_Anonymous_Access_Type
1946 and then Etype (E) /= Any_Type
1947 then
1948 -- Check RM 3.9.2(9): "if the expected type for an expression is
1949 -- an anonymous access-to-specific tagged type, then the object
1950 -- designated by the expression shall not be dynamically tagged
1951 -- unless it is a controlling operand in a call on a dispatching
1952 -- operation"
1953
1954 if Is_Tagged_Type (Directly_Designated_Type (T))
1955 and then
1956 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1957 and then
1958 Ekind (Directly_Designated_Type (Etype (E))) =
1959 E_Class_Wide_Type
1960 then
1961 Error_Msg_N
1962 ("access to specific tagged type required (RM 3.9.2(9))", E);
1963 end if;
1964
1965 -- (Ada 2005: AI-230): Accessibility check for anonymous
1966 -- components
1967
1968 if Type_Access_Level (Etype (E)) >
1969 Deepest_Type_Access_Level (T)
1970 then
1971 Error_Msg_N
1972 ("expression has deeper access level than component " &
1973 "(RM 3.10.2 (12.2))", E);
1974 end if;
1975
1976 -- The initialization expression is a reference to an access
1977 -- discriminant. The type of the discriminant is always deeper
1978 -- than any access type.
1979
1980 if Ekind (Etype (E)) = E_Anonymous_Access_Type
1981 and then Is_Entity_Name (E)
1982 and then Ekind (Entity (E)) = E_In_Parameter
1983 and then Present (Discriminal_Link (Entity (E)))
1984 then
1985 Error_Msg_N
1986 ("discriminant has deeper accessibility level than target",
1987 E);
1988 end if;
1989 end if;
1990 end if;
1991
1992 -- The parent type may be a private view with unknown discriminants,
1993 -- and thus unconstrained. Regular components must be constrained.
1994
1995 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
1996 if Is_Class_Wide_Type (T) then
1997 Error_Msg_N
1998 ("class-wide subtype with unknown discriminants" &
1999 " in component declaration",
2000 Subtype_Indication (Component_Definition (N)));
2001 else
2002 Error_Msg_N
2003 ("unconstrained subtype in component declaration",
2004 Subtype_Indication (Component_Definition (N)));
2005 end if;
2006
2007 -- Components cannot be abstract, except for the special case of
2008 -- the _Parent field (case of extending an abstract tagged type)
2009
2010 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2011 Error_Msg_N ("type of a component cannot be abstract", N);
2012 end if;
2013
2014 Set_Etype (Id, T);
2015 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2016
2017 -- The component declaration may have a per-object constraint, set
2018 -- the appropriate flag in the defining identifier of the subtype.
2019
2020 if Present (Subtype_Indication (Component_Definition (N))) then
2021 declare
2022 Sindic : constant Node_Id :=
2023 Subtype_Indication (Component_Definition (N));
2024 begin
2025 if Nkind (Sindic) = N_Subtype_Indication
2026 and then Present (Constraint (Sindic))
2027 and then Contains_POC (Constraint (Sindic))
2028 then
2029 Set_Has_Per_Object_Constraint (Id);
2030 end if;
2031 end;
2032 end if;
2033
2034 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2035 -- out some static checks.
2036
2037 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2038 Null_Exclusion_Static_Checks (N);
2039 end if;
2040
2041 -- If this component is private (or depends on a private type), flag the
2042 -- record type to indicate that some operations are not available.
2043
2044 P := Private_Component (T);
2045
2046 if Present (P) then
2047
2048 -- Check for circular definitions
2049
2050 if P = Any_Type then
2051 Set_Etype (Id, Any_Type);
2052
2053 -- There is a gap in the visibility of operations only if the
2054 -- component type is not defined in the scope of the record type.
2055
2056 elsif Scope (P) = Scope (Current_Scope) then
2057 null;
2058
2059 elsif Is_Limited_Type (P) then
2060 Set_Is_Limited_Composite (Current_Scope);
2061
2062 else
2063 Set_Is_Private_Composite (Current_Scope);
2064 end if;
2065 end if;
2066
2067 if P /= Any_Type
2068 and then Is_Limited_Type (T)
2069 and then Chars (Id) /= Name_uParent
2070 and then Is_Tagged_Type (Current_Scope)
2071 then
2072 if Is_Derived_Type (Current_Scope)
2073 and then not Is_Known_Limited (Current_Scope)
2074 then
2075 Error_Msg_N
2076 ("extension of nonlimited type cannot have limited components",
2077 N);
2078
2079 if Is_Interface (Root_Type (Current_Scope)) then
2080 Error_Msg_N
2081 ("\limitedness is not inherited from limited interface", N);
2082 Error_Msg_N ("\add LIMITED to type indication", N);
2083 end if;
2084
2085 Explain_Limited_Type (T, N);
2086 Set_Etype (Id, Any_Type);
2087 Set_Is_Limited_Composite (Current_Scope, False);
2088
2089 elsif not Is_Derived_Type (Current_Scope)
2090 and then not Is_Limited_Record (Current_Scope)
2091 and then not Is_Concurrent_Type (Current_Scope)
2092 then
2093 Error_Msg_N
2094 ("nonlimited tagged type cannot have limited components", N);
2095 Explain_Limited_Type (T, N);
2096 Set_Etype (Id, Any_Type);
2097 Set_Is_Limited_Composite (Current_Scope, False);
2098 end if;
2099 end if;
2100
2101 Set_Original_Record_Component (Id, Id);
2102
2103 if Has_Aspects (N) then
2104 Analyze_Aspect_Specifications (N, Id);
2105 end if;
2106
2107 Analyze_Dimension (N);
2108 end Analyze_Component_Declaration;
2109
2110 --------------------------
2111 -- Analyze_Declarations --
2112 --------------------------
2113
2114 procedure Analyze_Declarations (L : List_Id) is
2115 Decl : Node_Id;
2116
2117 procedure Adjust_Decl;
2118 -- Adjust Decl not to include implicit label declarations, since these
2119 -- have strange Sloc values that result in elaboration check problems.
2120 -- (They have the sloc of the label as found in the source, and that
2121 -- is ahead of the current declarative part).
2122
2123 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2124 -- Determine whether Body_Decl denotes the body of a late controlled
2125 -- primitive (either Initialize, Adjust or Finalize). If this is the
2126 -- case, add a proper spec if the body lacks one. The spec is inserted
2127 -- before Body_Decl and immedately analyzed.
2128
2129 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2130 -- Spec_Id is the entity of a package that may define abstract states.
2131 -- If the states have visible refinement, remove the visibility of each
2132 -- constituent at the end of the package body declarations.
2133
2134 -----------------
2135 -- Adjust_Decl --
2136 -----------------
2137
2138 procedure Adjust_Decl is
2139 begin
2140 while Present (Prev (Decl))
2141 and then Nkind (Decl) = N_Implicit_Label_Declaration
2142 loop
2143 Prev (Decl);
2144 end loop;
2145 end Adjust_Decl;
2146
2147 --------------------------------------
2148 -- Handle_Late_Controlled_Primitive --
2149 --------------------------------------
2150
2151 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2152 Body_Spec : constant Node_Id := Specification (Body_Decl);
2153 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2154 Loc : constant Source_Ptr := Sloc (Body_Id);
2155 Params : constant List_Id :=
2156 Parameter_Specifications (Body_Spec);
2157 Spec : Node_Id;
2158 Spec_Id : Entity_Id;
2159
2160 Dummy : Entity_Id;
2161 -- A dummy variable used to capture the unused result of subprogram
2162 -- spec analysis.
2163
2164 begin
2165 -- Consider only procedure bodies whose name matches one of the three
2166 -- controlled primitives.
2167
2168 if Nkind (Body_Spec) /= N_Procedure_Specification
2169 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2170 Name_Finalize,
2171 Name_Initialize)
2172 then
2173 return;
2174
2175 -- A controlled primitive must have exactly one formal
2176
2177 elsif List_Length (Params) /= 1 then
2178 return;
2179 end if;
2180
2181 Dummy := Analyze_Subprogram_Specification (Body_Spec);
2182
2183 -- The type of the formal must be derived from [Limited_]Controlled
2184
2185 if not Is_Controlled (Etype (Defining_Entity (First (Params)))) then
2186 return;
2187 end if;
2188
2189 Spec_Id := Find_Corresponding_Spec (Body_Decl, Post_Error => False);
2190
2191 -- The body has a matching spec, therefore it cannot be a late
2192 -- primitive.
2193
2194 if Present (Spec_Id) then
2195 return;
2196 end if;
2197
2198 -- At this point the body is known to be a late controlled primitive.
2199 -- Generate a matching spec and insert it before the body. Note the
2200 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2201 -- tree in this case.
2202
2203 Spec := Copy_Separate_Tree (Body_Spec);
2204
2205 -- Ensure that the subprogram declaration does not inherit the null
2206 -- indicator from the body as we now have a proper spec/body pair.
2207
2208 Set_Null_Present (Spec, False);
2209
2210 Insert_Before_And_Analyze (Body_Decl,
2211 Make_Subprogram_Declaration (Loc,
2212 Specification => Spec));
2213 end Handle_Late_Controlled_Primitive;
2214
2215 --------------------------------
2216 -- Remove_Visible_Refinements --
2217 --------------------------------
2218
2219 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2220 State_Elmt : Elmt_Id;
2221 begin
2222 if Present (Abstract_States (Spec_Id)) then
2223 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2224 while Present (State_Elmt) loop
2225 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2226 Next_Elmt (State_Elmt);
2227 end loop;
2228 end if;
2229 end Remove_Visible_Refinements;
2230
2231 -- Local variables
2232
2233 Context : Node_Id;
2234 Freeze_From : Entity_Id := Empty;
2235 Next_Decl : Node_Id;
2236 Spec_Id : Entity_Id;
2237
2238 Body_Seen : Boolean := False;
2239 -- Flag set when the first body [stub] is encountered
2240
2241 In_Package_Body : Boolean := False;
2242 -- Flag set when the current declaration list belongs to a package body
2243
2244 -- Start of processing for Analyze_Declarations
2245
2246 begin
2247 if Restriction_Check_Required (SPARK_05) then
2248 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2249 end if;
2250
2251 Decl := First (L);
2252 while Present (Decl) loop
2253
2254 -- Package spec cannot contain a package declaration in SPARK
2255
2256 if Nkind (Decl) = N_Package_Declaration
2257 and then Nkind (Parent (L)) = N_Package_Specification
2258 then
2259 Check_SPARK_05_Restriction
2260 ("package specification cannot contain a package declaration",
2261 Decl);
2262 end if;
2263
2264 -- Complete analysis of declaration
2265
2266 Analyze (Decl);
2267 Next_Decl := Next (Decl);
2268
2269 if No (Freeze_From) then
2270 Freeze_From := First_Entity (Current_Scope);
2271 end if;
2272
2273 -- At the end of a declarative part, freeze remaining entities
2274 -- declared in it. The end of the visible declarations of package
2275 -- specification is not the end of a declarative part if private
2276 -- declarations are present. The end of a package declaration is a
2277 -- freezing point only if it a library package. A task definition or
2278 -- protected type definition is not a freeze point either. Finally,
2279 -- we do not freeze entities in generic scopes, because there is no
2280 -- code generated for them and freeze nodes will be generated for
2281 -- the instance.
2282
2283 -- The end of a package instantiation is not a freeze point, but
2284 -- for now we make it one, because the generic body is inserted
2285 -- (currently) immediately after. Generic instantiations will not
2286 -- be a freeze point once delayed freezing of bodies is implemented.
2287 -- (This is needed in any case for early instantiations ???).
2288
2289 if No (Next_Decl) then
2290 if Nkind_In (Parent (L), N_Component_List,
2291 N_Task_Definition,
2292 N_Protected_Definition)
2293 then
2294 null;
2295
2296 elsif Nkind (Parent (L)) /= N_Package_Specification then
2297 if Nkind (Parent (L)) = N_Package_Body then
2298 Freeze_From := First_Entity (Current_Scope);
2299 end if;
2300
2301 -- There may have been several freezing points previously,
2302 -- for example object declarations or subprogram bodies, but
2303 -- at the end of a declarative part we check freezing from
2304 -- the beginning, even though entities may already be frozen,
2305 -- in order to perform visibility checks on delayed aspects.
2306
2307 Adjust_Decl;
2308 Freeze_All (First_Entity (Current_Scope), Decl);
2309 Freeze_From := Last_Entity (Current_Scope);
2310
2311 elsif Scope (Current_Scope) /= Standard_Standard
2312 and then not Is_Child_Unit (Current_Scope)
2313 and then No (Generic_Parent (Parent (L)))
2314 then
2315 null;
2316
2317 elsif L /= Visible_Declarations (Parent (L))
2318 or else No (Private_Declarations (Parent (L)))
2319 or else Is_Empty_List (Private_Declarations (Parent (L)))
2320 then
2321 Adjust_Decl;
2322 Freeze_All (First_Entity (Current_Scope), Decl);
2323 Freeze_From := Last_Entity (Current_Scope);
2324 end if;
2325
2326 -- If next node is a body then freeze all types before the body.
2327 -- An exception occurs for some expander-generated bodies. If these
2328 -- are generated at places where in general language rules would not
2329 -- allow a freeze point, then we assume that the expander has
2330 -- explicitly checked that all required types are properly frozen,
2331 -- and we do not cause general freezing here. This special circuit
2332 -- is used when the encountered body is marked as having already
2333 -- been analyzed.
2334
2335 -- In all other cases (bodies that come from source, and expander
2336 -- generated bodies that have not been analyzed yet), freeze all
2337 -- types now. Note that in the latter case, the expander must take
2338 -- care to attach the bodies at a proper place in the tree so as to
2339 -- not cause unwanted freezing at that point.
2340
2341 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl) then
2342
2343 -- When a controlled type is frozen, the expander generates stream
2344 -- and controlled type support routines. If the freeze is caused
2345 -- by the stand alone body of Initialize, Adjust and Finalize, the
2346 -- expander will end up using the wrong version of these routines
2347 -- as the body has not been processed yet. To remedy this, detect
2348 -- a late controlled primitive and create a proper spec for it.
2349 -- This ensures that the primitive will override its inherited
2350 -- counterpart before the freeze takes place.
2351
2352 -- If the declaration we just processed is a body, do not attempt
2353 -- to examine Next_Decl as the late primitive idiom can only apply
2354 -- to the first encountered body.
2355
2356 -- The spec of the late primitive is not generated in ASIS mode to
2357 -- ensure a consistent list of primitives that indicates the true
2358 -- semantic structure of the program (which is not relevant when
2359 -- generating executable code.
2360
2361 -- ??? a cleaner approach may be possible and/or this solution
2362 -- could be extended to general-purpose late primitives, TBD.
2363
2364 if not ASIS_Mode and then not Body_Seen and then not Is_Body (Decl)
2365 then
2366 Body_Seen := True;
2367
2368 if Nkind (Next_Decl) = N_Subprogram_Body then
2369 Handle_Late_Controlled_Primitive (Next_Decl);
2370 end if;
2371 end if;
2372
2373 Adjust_Decl;
2374 Freeze_All (Freeze_From, Decl);
2375 Freeze_From := Last_Entity (Current_Scope);
2376 end if;
2377
2378 Decl := Next_Decl;
2379 end loop;
2380
2381 -- Analyze the contracts of packages and their bodies
2382
2383 if Present (L) then
2384 Context := Parent (L);
2385
2386 if Nkind (Context) = N_Package_Specification then
2387
2388 -- When a package has private declarations, its contract must be
2389 -- analyzed at the end of the said declarations. This way both the
2390 -- analysis and freeze actions are properly synchronized in case
2391 -- of private type use within the contract.
2392
2393 if L = Private_Declarations (Context) then
2394 Analyze_Package_Contract (Defining_Entity (Context));
2395
2396 -- Otherwise the contract is analyzed at the end of the visible
2397 -- declarations.
2398
2399 elsif L = Visible_Declarations (Context)
2400 and then No (Private_Declarations (Context))
2401 then
2402 Analyze_Package_Contract (Defining_Entity (Context));
2403 end if;
2404
2405 elsif Nkind (Context) = N_Package_Body then
2406 In_Package_Body := True;
2407 Spec_Id := Corresponding_Spec (Context);
2408
2409 Analyze_Package_Body_Contract (Defining_Entity (Context));
2410 end if;
2411 end if;
2412
2413 -- Analyze the contracts of subprogram declarations, subprogram bodies
2414 -- and variables now due to the delayed visibility requirements of their
2415 -- aspects.
2416
2417 Decl := First (L);
2418 while Present (Decl) loop
2419 if Nkind (Decl) = N_Object_Declaration then
2420 Analyze_Object_Contract (Defining_Entity (Decl));
2421
2422 elsif Nkind_In (Decl, N_Abstract_Subprogram_Declaration,
2423 N_Subprogram_Declaration)
2424 then
2425 Analyze_Subprogram_Contract (Defining_Entity (Decl));
2426
2427 elsif Nkind (Decl) = N_Subprogram_Body then
2428 Analyze_Subprogram_Body_Contract (Defining_Entity (Decl));
2429
2430 elsif Nkind (Decl) = N_Subprogram_Body_Stub then
2431 Analyze_Subprogram_Body_Stub_Contract (Defining_Entity (Decl));
2432 end if;
2433
2434 Next (Decl);
2435 end loop;
2436
2437 -- State refinements are visible upto the end the of the package body
2438 -- declarations. Hide the refinements from visibility to restore the
2439 -- original state conditions.
2440
2441 if In_Package_Body then
2442 Remove_Visible_Refinements (Spec_Id);
2443 end if;
2444 end Analyze_Declarations;
2445
2446 -----------------------------------
2447 -- Analyze_Full_Type_Declaration --
2448 -----------------------------------
2449
2450 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2451 Def : constant Node_Id := Type_Definition (N);
2452 Def_Id : constant Entity_Id := Defining_Identifier (N);
2453 T : Entity_Id;
2454 Prev : Entity_Id;
2455
2456 Is_Remote : constant Boolean :=
2457 (Is_Remote_Types (Current_Scope)
2458 or else Is_Remote_Call_Interface (Current_Scope))
2459 and then not (In_Private_Part (Current_Scope)
2460 or else In_Package_Body (Current_Scope));
2461
2462 procedure Check_Ops_From_Incomplete_Type;
2463 -- If there is a tagged incomplete partial view of the type, traverse
2464 -- the primitives of the incomplete view and change the type of any
2465 -- controlling formals and result to indicate the full view. The
2466 -- primitives will be added to the full type's primitive operations
2467 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2468 -- is called from Process_Incomplete_Dependents).
2469
2470 ------------------------------------
2471 -- Check_Ops_From_Incomplete_Type --
2472 ------------------------------------
2473
2474 procedure Check_Ops_From_Incomplete_Type is
2475 Elmt : Elmt_Id;
2476 Formal : Entity_Id;
2477 Op : Entity_Id;
2478
2479 begin
2480 if Prev /= T
2481 and then Ekind (Prev) = E_Incomplete_Type
2482 and then Is_Tagged_Type (Prev)
2483 and then Is_Tagged_Type (T)
2484 then
2485 Elmt := First_Elmt (Primitive_Operations (Prev));
2486 while Present (Elmt) loop
2487 Op := Node (Elmt);
2488
2489 Formal := First_Formal (Op);
2490 while Present (Formal) loop
2491 if Etype (Formal) = Prev then
2492 Set_Etype (Formal, T);
2493 end if;
2494
2495 Next_Formal (Formal);
2496 end loop;
2497
2498 if Etype (Op) = Prev then
2499 Set_Etype (Op, T);
2500 end if;
2501
2502 Next_Elmt (Elmt);
2503 end loop;
2504 end if;
2505 end Check_Ops_From_Incomplete_Type;
2506
2507 -- Start of processing for Analyze_Full_Type_Declaration
2508
2509 begin
2510 Prev := Find_Type_Name (N);
2511
2512 -- The full view, if present, now points to the current type
2513 -- If there is an incomplete partial view, set a link to it, to
2514 -- simplify the retrieval of primitive operations of the type.
2515
2516 -- Ada 2005 (AI-50217): If the type was previously decorated when
2517 -- imported through a LIMITED WITH clause, it appears as incomplete
2518 -- but has no full view.
2519
2520 if Ekind (Prev) = E_Incomplete_Type and then Present (Full_View (Prev))
2521 then
2522 T := Full_View (Prev);
2523 Set_Incomplete_View (N, Parent (Prev));
2524 else
2525 T := Prev;
2526 end if;
2527
2528 Set_Is_Pure (T, Is_Pure (Current_Scope));
2529
2530 -- We set the flag Is_First_Subtype here. It is needed to set the
2531 -- corresponding flag for the Implicit class-wide-type created
2532 -- during tagged types processing.
2533
2534 Set_Is_First_Subtype (T, True);
2535
2536 -- Only composite types other than array types are allowed to have
2537 -- discriminants.
2538
2539 case Nkind (Def) is
2540
2541 -- For derived types, the rule will be checked once we've figured
2542 -- out the parent type.
2543
2544 when N_Derived_Type_Definition =>
2545 null;
2546
2547 -- For record types, discriminants are allowed, unless we are in
2548 -- SPARK.
2549
2550 when N_Record_Definition =>
2551 if Present (Discriminant_Specifications (N)) then
2552 Check_SPARK_05_Restriction
2553 ("discriminant type is not allowed",
2554 Defining_Identifier
2555 (First (Discriminant_Specifications (N))));
2556 end if;
2557
2558 when others =>
2559 if Present (Discriminant_Specifications (N)) then
2560 Error_Msg_N
2561 ("elementary or array type cannot have discriminants",
2562 Defining_Identifier
2563 (First (Discriminant_Specifications (N))));
2564 end if;
2565 end case;
2566
2567 -- Elaborate the type definition according to kind, and generate
2568 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2569 -- already done (this happens during the reanalysis that follows a call
2570 -- to the high level optimizer).
2571
2572 if not Analyzed (T) then
2573 Set_Analyzed (T);
2574
2575 case Nkind (Def) is
2576
2577 when N_Access_To_Subprogram_Definition =>
2578 Access_Subprogram_Declaration (T, Def);
2579
2580 -- If this is a remote access to subprogram, we must create the
2581 -- equivalent fat pointer type, and related subprograms.
2582
2583 if Is_Remote then
2584 Process_Remote_AST_Declaration (N);
2585 end if;
2586
2587 -- Validate categorization rule against access type declaration
2588 -- usually a violation in Pure unit, Shared_Passive unit.
2589
2590 Validate_Access_Type_Declaration (T, N);
2591
2592 when N_Access_To_Object_Definition =>
2593 Access_Type_Declaration (T, Def);
2594
2595 -- Validate categorization rule against access type declaration
2596 -- usually a violation in Pure unit, Shared_Passive unit.
2597
2598 Validate_Access_Type_Declaration (T, N);
2599
2600 -- If we are in a Remote_Call_Interface package and define a
2601 -- RACW, then calling stubs and specific stream attributes
2602 -- must be added.
2603
2604 if Is_Remote
2605 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2606 then
2607 Add_RACW_Features (Def_Id);
2608 end if;
2609
2610 -- Set no strict aliasing flag if config pragma seen
2611
2612 if Opt.No_Strict_Aliasing then
2613 Set_No_Strict_Aliasing (Base_Type (Def_Id));
2614 end if;
2615
2616 when N_Array_Type_Definition =>
2617 Array_Type_Declaration (T, Def);
2618
2619 when N_Derived_Type_Definition =>
2620 Derived_Type_Declaration (T, N, T /= Def_Id);
2621
2622 when N_Enumeration_Type_Definition =>
2623 Enumeration_Type_Declaration (T, Def);
2624
2625 when N_Floating_Point_Definition =>
2626 Floating_Point_Type_Declaration (T, Def);
2627
2628 when N_Decimal_Fixed_Point_Definition =>
2629 Decimal_Fixed_Point_Type_Declaration (T, Def);
2630
2631 when N_Ordinary_Fixed_Point_Definition =>
2632 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2633
2634 when N_Signed_Integer_Type_Definition =>
2635 Signed_Integer_Type_Declaration (T, Def);
2636
2637 when N_Modular_Type_Definition =>
2638 Modular_Type_Declaration (T, Def);
2639
2640 when N_Record_Definition =>
2641 Record_Type_Declaration (T, N, Prev);
2642
2643 -- If declaration has a parse error, nothing to elaborate.
2644
2645 when N_Error =>
2646 null;
2647
2648 when others =>
2649 raise Program_Error;
2650
2651 end case;
2652 end if;
2653
2654 if Etype (T) = Any_Type then
2655 return;
2656 end if;
2657
2658 -- Controlled type is not allowed in SPARK
2659
2660 if Is_Visibly_Controlled (T) then
2661 Check_SPARK_05_Restriction ("controlled type is not allowed", N);
2662 end if;
2663
2664 -- Some common processing for all types
2665
2666 Set_Depends_On_Private (T, Has_Private_Component (T));
2667 Check_Ops_From_Incomplete_Type;
2668
2669 -- Both the declared entity, and its anonymous base type if one
2670 -- was created, need freeze nodes allocated.
2671
2672 declare
2673 B : constant Entity_Id := Base_Type (T);
2674
2675 begin
2676 -- In the case where the base type differs from the first subtype, we
2677 -- pre-allocate a freeze node, and set the proper link to the first
2678 -- subtype. Freeze_Entity will use this preallocated freeze node when
2679 -- it freezes the entity.
2680
2681 -- This does not apply if the base type is a generic type, whose
2682 -- declaration is independent of the current derived definition.
2683
2684 if B /= T and then not Is_Generic_Type (B) then
2685 Ensure_Freeze_Node (B);
2686 Set_First_Subtype_Link (Freeze_Node (B), T);
2687 end if;
2688
2689 -- A type that is imported through a limited_with clause cannot
2690 -- generate any code, and thus need not be frozen. However, an access
2691 -- type with an imported designated type needs a finalization list,
2692 -- which may be referenced in some other package that has non-limited
2693 -- visibility on the designated type. Thus we must create the
2694 -- finalization list at the point the access type is frozen, to
2695 -- prevent unsatisfied references at link time.
2696
2697 if not From_Limited_With (T) or else Is_Access_Type (T) then
2698 Set_Has_Delayed_Freeze (T);
2699 end if;
2700 end;
2701
2702 -- Case where T is the full declaration of some private type which has
2703 -- been swapped in Defining_Identifier (N).
2704
2705 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2706 Process_Full_View (N, T, Def_Id);
2707
2708 -- Record the reference. The form of this is a little strange, since
2709 -- the full declaration has been swapped in. So the first parameter
2710 -- here represents the entity to which a reference is made which is
2711 -- the "real" entity, i.e. the one swapped in, and the second
2712 -- parameter provides the reference location.
2713
2714 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2715 -- since we don't want a complaint about the full type being an
2716 -- unwanted reference to the private type
2717
2718 declare
2719 B : constant Boolean := Has_Pragma_Unreferenced (T);
2720 begin
2721 Set_Has_Pragma_Unreferenced (T, False);
2722 Generate_Reference (T, T, 'c');
2723 Set_Has_Pragma_Unreferenced (T, B);
2724 end;
2725
2726 Set_Completion_Referenced (Def_Id);
2727
2728 -- For completion of incomplete type, process incomplete dependents
2729 -- and always mark the full type as referenced (it is the incomplete
2730 -- type that we get for any real reference).
2731
2732 elsif Ekind (Prev) = E_Incomplete_Type then
2733 Process_Incomplete_Dependents (N, T, Prev);
2734 Generate_Reference (Prev, Def_Id, 'c');
2735 Set_Completion_Referenced (Def_Id);
2736
2737 -- If not private type or incomplete type completion, this is a real
2738 -- definition of a new entity, so record it.
2739
2740 else
2741 Generate_Definition (Def_Id);
2742 end if;
2743
2744 if Chars (Scope (Def_Id)) = Name_System
2745 and then Chars (Def_Id) = Name_Address
2746 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
2747 then
2748 Set_Is_Descendent_Of_Address (Def_Id);
2749 Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
2750 Set_Is_Descendent_Of_Address (Prev);
2751 end if;
2752
2753 Set_Optimize_Alignment_Flags (Def_Id);
2754 Check_Eliminated (Def_Id);
2755
2756 -- If the declaration is a completion and aspects are present, apply
2757 -- them to the entity for the type which is currently the partial
2758 -- view, but which is the one that will be frozen.
2759
2760 if Has_Aspects (N) then
2761 if Prev /= Def_Id then
2762 Analyze_Aspect_Specifications (N, Prev);
2763 else
2764 Analyze_Aspect_Specifications (N, Def_Id);
2765 end if;
2766 end if;
2767 end Analyze_Full_Type_Declaration;
2768
2769 ----------------------------------
2770 -- Analyze_Incomplete_Type_Decl --
2771 ----------------------------------
2772
2773 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
2774 F : constant Boolean := Is_Pure (Current_Scope);
2775 T : Entity_Id;
2776
2777 begin
2778 Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
2779
2780 Generate_Definition (Defining_Identifier (N));
2781
2782 -- Process an incomplete declaration. The identifier must not have been
2783 -- declared already in the scope. However, an incomplete declaration may
2784 -- appear in the private part of a package, for a private type that has
2785 -- already been declared.
2786
2787 -- In this case, the discriminants (if any) must match
2788
2789 T := Find_Type_Name (N);
2790
2791 Set_Ekind (T, E_Incomplete_Type);
2792 Init_Size_Align (T);
2793 Set_Is_First_Subtype (T, True);
2794 Set_Etype (T, T);
2795
2796 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2797 -- incomplete types.
2798
2799 if Tagged_Present (N) then
2800 Set_Is_Tagged_Type (T);
2801 Make_Class_Wide_Type (T);
2802 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2803 end if;
2804
2805 Push_Scope (T);
2806
2807 Set_Stored_Constraint (T, No_Elist);
2808
2809 if Present (Discriminant_Specifications (N)) then
2810 Process_Discriminants (N);
2811 end if;
2812
2813 End_Scope;
2814
2815 -- If the type has discriminants, non-trivial subtypes may be
2816 -- declared before the full view of the type. The full views of those
2817 -- subtypes will be built after the full view of the type.
2818
2819 Set_Private_Dependents (T, New_Elmt_List);
2820 Set_Is_Pure (T, F);
2821 end Analyze_Incomplete_Type_Decl;
2822
2823 -----------------------------------
2824 -- Analyze_Interface_Declaration --
2825 -----------------------------------
2826
2827 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
2828 CW : constant Entity_Id := Class_Wide_Type (T);
2829
2830 begin
2831 Set_Is_Tagged_Type (T);
2832
2833 Set_Is_Limited_Record (T, Limited_Present (Def)
2834 or else Task_Present (Def)
2835 or else Protected_Present (Def)
2836 or else Synchronized_Present (Def));
2837
2838 -- Type is abstract if full declaration carries keyword, or if previous
2839 -- partial view did.
2840
2841 Set_Is_Abstract_Type (T);
2842 Set_Is_Interface (T);
2843
2844 -- Type is a limited interface if it includes the keyword limited, task,
2845 -- protected, or synchronized.
2846
2847 Set_Is_Limited_Interface
2848 (T, Limited_Present (Def)
2849 or else Protected_Present (Def)
2850 or else Synchronized_Present (Def)
2851 or else Task_Present (Def));
2852
2853 Set_Interfaces (T, New_Elmt_List);
2854 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2855
2856 -- Complete the decoration of the class-wide entity if it was already
2857 -- built (i.e. during the creation of the limited view)
2858
2859 if Present (CW) then
2860 Set_Is_Interface (CW);
2861 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
2862 end if;
2863
2864 -- Check runtime support for synchronized interfaces
2865
2866 if VM_Target = No_VM
2867 and then (Is_Task_Interface (T)
2868 or else Is_Protected_Interface (T)
2869 or else Is_Synchronized_Interface (T))
2870 and then not RTE_Available (RE_Select_Specific_Data)
2871 then
2872 Error_Msg_CRT ("synchronized interfaces", T);
2873 end if;
2874 end Analyze_Interface_Declaration;
2875
2876 -----------------------------
2877 -- Analyze_Itype_Reference --
2878 -----------------------------
2879
2880 -- Nothing to do. This node is placed in the tree only for the benefit of
2881 -- back end processing, and has no effect on the semantic processing.
2882
2883 procedure Analyze_Itype_Reference (N : Node_Id) is
2884 begin
2885 pragma Assert (Is_Itype (Itype (N)));
2886 null;
2887 end Analyze_Itype_Reference;
2888
2889 --------------------------------
2890 -- Analyze_Number_Declaration --
2891 --------------------------------
2892
2893 procedure Analyze_Number_Declaration (N : Node_Id) is
2894 Id : constant Entity_Id := Defining_Identifier (N);
2895 E : constant Node_Id := Expression (N);
2896 T : Entity_Id;
2897 Index : Interp_Index;
2898 It : Interp;
2899
2900 begin
2901 Generate_Definition (Id);
2902 Enter_Name (Id);
2903
2904 -- This is an optimization of a common case of an integer literal
2905
2906 if Nkind (E) = N_Integer_Literal then
2907 Set_Is_Static_Expression (E, True);
2908 Set_Etype (E, Universal_Integer);
2909
2910 Set_Etype (Id, Universal_Integer);
2911 Set_Ekind (Id, E_Named_Integer);
2912 Set_Is_Frozen (Id, True);
2913 return;
2914 end if;
2915
2916 Set_Is_Pure (Id, Is_Pure (Current_Scope));
2917
2918 -- Process expression, replacing error by integer zero, to avoid
2919 -- cascaded errors or aborts further along in the processing
2920
2921 -- Replace Error by integer zero, which seems least likely to cause
2922 -- cascaded errors.
2923
2924 if E = Error then
2925 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
2926 Set_Error_Posted (E);
2927 end if;
2928
2929 Analyze (E);
2930
2931 -- Verify that the expression is static and numeric. If
2932 -- the expression is overloaded, we apply the preference
2933 -- rule that favors root numeric types.
2934
2935 if not Is_Overloaded (E) then
2936 T := Etype (E);
2937 if Has_Dynamic_Predicate_Aspect (T) then
2938 Error_Msg_N
2939 ("subtype has dynamic predicate, "
2940 & "not allowed in number declaration", N);
2941 end if;
2942
2943 else
2944 T := Any_Type;
2945
2946 Get_First_Interp (E, Index, It);
2947 while Present (It.Typ) loop
2948 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
2949 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
2950 then
2951 if T = Any_Type then
2952 T := It.Typ;
2953
2954 elsif It.Typ = Universal_Real
2955 or else It.Typ = Universal_Integer
2956 then
2957 -- Choose universal interpretation over any other
2958
2959 T := It.Typ;
2960 exit;
2961 end if;
2962 end if;
2963
2964 Get_Next_Interp (Index, It);
2965 end loop;
2966 end if;
2967
2968 if Is_Integer_Type (T) then
2969 Resolve (E, T);
2970 Set_Etype (Id, Universal_Integer);
2971 Set_Ekind (Id, E_Named_Integer);
2972
2973 elsif Is_Real_Type (T) then
2974
2975 -- Because the real value is converted to universal_real, this is a
2976 -- legal context for a universal fixed expression.
2977
2978 if T = Universal_Fixed then
2979 declare
2980 Loc : constant Source_Ptr := Sloc (N);
2981 Conv : constant Node_Id := Make_Type_Conversion (Loc,
2982 Subtype_Mark =>
2983 New_Occurrence_Of (Universal_Real, Loc),
2984 Expression => Relocate_Node (E));
2985
2986 begin
2987 Rewrite (E, Conv);
2988 Analyze (E);
2989 end;
2990
2991 elsif T = Any_Fixed then
2992 Error_Msg_N ("illegal context for mixed mode operation", E);
2993
2994 -- Expression is of the form : universal_fixed * integer. Try to
2995 -- resolve as universal_real.
2996
2997 T := Universal_Real;
2998 Set_Etype (E, T);
2999 end if;
3000
3001 Resolve (E, T);
3002 Set_Etype (Id, Universal_Real);
3003 Set_Ekind (Id, E_Named_Real);
3004
3005 else
3006 Wrong_Type (E, Any_Numeric);
3007 Resolve (E, T);
3008
3009 Set_Etype (Id, T);
3010 Set_Ekind (Id, E_Constant);
3011 Set_Never_Set_In_Source (Id, True);
3012 Set_Is_True_Constant (Id, True);
3013 return;
3014 end if;
3015
3016 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3017 Set_Etype (E, Etype (Id));
3018 end if;
3019
3020 if not Is_OK_Static_Expression (E) then
3021 Flag_Non_Static_Expr
3022 ("non-static expression used in number declaration!", E);
3023 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3024 Set_Etype (E, Any_Type);
3025 end if;
3026 end Analyze_Number_Declaration;
3027
3028 -----------------------------
3029 -- Analyze_Object_Contract --
3030 -----------------------------
3031
3032 procedure Analyze_Object_Contract (Obj_Id : Entity_Id) is
3033 Obj_Typ : constant Entity_Id := Etype (Obj_Id);
3034 AR_Val : Boolean := False;
3035 AW_Val : Boolean := False;
3036 ER_Val : Boolean := False;
3037 EW_Val : Boolean := False;
3038 Prag : Node_Id;
3039 Seen : Boolean := False;
3040
3041 begin
3042 if Ekind (Obj_Id) = E_Constant then
3043
3044 -- A constant cannot be effectively volatile. This check is only
3045 -- relevant with SPARK_Mode on as it is not a standard Ada legality
3046 -- rule. Do not flag internally-generated constants that map generic
3047 -- formals to actuals in instantiations (SPARK RM 7.1.3(6)).
3048
3049 if SPARK_Mode = On
3050 and then Is_Effectively_Volatile (Obj_Id)
3051 and then No (Corresponding_Generic_Association (Parent (Obj_Id)))
3052 then
3053 Error_Msg_N ("constant cannot be volatile", Obj_Id);
3054 end if;
3055
3056 else pragma Assert (Ekind (Obj_Id) = E_Variable);
3057
3058 -- The following checks are only relevant when SPARK_Mode is on as
3059 -- they are not standard Ada legality rules. Internally generated
3060 -- temporaries are ignored.
3061
3062 if SPARK_Mode = On and then Comes_From_Source (Obj_Id) then
3063 if Is_Effectively_Volatile (Obj_Id) then
3064
3065 -- The declaration of an effectively volatile object must
3066 -- appear at the library level (SPARK RM 7.1.3(7), C.6(6)).
3067
3068 if not Is_Library_Level_Entity (Obj_Id) then
3069 Error_Msg_N
3070 ("volatile variable & must be declared at library level",
3071 Obj_Id);
3072
3073 -- An object of a discriminated type cannot be effectively
3074 -- volatile (SPARK RM C.6(4)).
3075
3076 elsif Has_Discriminants (Obj_Typ) then
3077 Error_Msg_N
3078 ("discriminated object & cannot be volatile", Obj_Id);
3079
3080 -- An object of a tagged type cannot be effectively volatile
3081 -- (SPARK RM C.6(5)).
3082
3083 elsif Is_Tagged_Type (Obj_Typ) then
3084 Error_Msg_N ("tagged object & cannot be volatile", Obj_Id);
3085 end if;
3086
3087 -- The object is not effectively volatile
3088
3089 else
3090 -- A non-effectively volatile object cannot have effectively
3091 -- volatile components (SPARK RM 7.1.3(7)).
3092
3093 if not Is_Effectively_Volatile (Obj_Id)
3094 and then Has_Volatile_Component (Obj_Typ)
3095 then
3096 Error_Msg_N
3097 ("non-volatile object & cannot have volatile components",
3098 Obj_Id);
3099 end if;
3100 end if;
3101 end if;
3102
3103 -- Analyze all external properties
3104
3105 Prag := Get_Pragma (Obj_Id, Pragma_Async_Readers);
3106
3107 if Present (Prag) then
3108 Analyze_External_Property_In_Decl_Part (Prag, AR_Val);
3109 Seen := True;
3110 end if;
3111
3112 Prag := Get_Pragma (Obj_Id, Pragma_Async_Writers);
3113
3114 if Present (Prag) then
3115 Analyze_External_Property_In_Decl_Part (Prag, AW_Val);
3116 Seen := True;
3117 end if;
3118
3119 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Reads);
3120
3121 if Present (Prag) then
3122 Analyze_External_Property_In_Decl_Part (Prag, ER_Val);
3123 Seen := True;
3124 end if;
3125
3126 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Writes);
3127
3128 if Present (Prag) then
3129 Analyze_External_Property_In_Decl_Part (Prag, EW_Val);
3130 Seen := True;
3131 end if;
3132
3133 -- Verify the mutual interaction of the various external properties
3134
3135 if Seen then
3136 Check_External_Properties (Obj_Id, AR_Val, AW_Val, ER_Val, EW_Val);
3137 end if;
3138
3139 -- Check whether the lack of indicator Part_Of agrees with the
3140 -- placement of the variable with respect to the state space.
3141
3142 Prag := Get_Pragma (Obj_Id, Pragma_Part_Of);
3143
3144 if No (Prag) then
3145 Check_Missing_Part_Of (Obj_Id);
3146 end if;
3147 end if;
3148 end Analyze_Object_Contract;
3149
3150 --------------------------------
3151 -- Analyze_Object_Declaration --
3152 --------------------------------
3153
3154 procedure Analyze_Object_Declaration (N : Node_Id) is
3155 Loc : constant Source_Ptr := Sloc (N);
3156 Id : constant Entity_Id := Defining_Identifier (N);
3157 T : Entity_Id;
3158 Act_T : Entity_Id;
3159
3160 E : Node_Id := Expression (N);
3161 -- E is set to Expression (N) throughout this routine. When
3162 -- Expression (N) is modified, E is changed accordingly.
3163
3164 Prev_Entity : Entity_Id := Empty;
3165
3166 function Count_Tasks (T : Entity_Id) return Uint;
3167 -- This function is called when a non-generic library level object of a
3168 -- task type is declared. Its function is to count the static number of
3169 -- tasks declared within the type (it is only called if Has_Tasks is set
3170 -- for T). As a side effect, if an array of tasks with non-static bounds
3171 -- or a variant record type is encountered, Check_Restrictions is called
3172 -- indicating the count is unknown.
3173
3174 -----------------
3175 -- Count_Tasks --
3176 -----------------
3177
3178 function Count_Tasks (T : Entity_Id) return Uint is
3179 C : Entity_Id;
3180 X : Node_Id;
3181 V : Uint;
3182
3183 begin
3184 if Is_Task_Type (T) then
3185 return Uint_1;
3186
3187 elsif Is_Record_Type (T) then
3188 if Has_Discriminants (T) then
3189 Check_Restriction (Max_Tasks, N);
3190 return Uint_0;
3191
3192 else
3193 V := Uint_0;
3194 C := First_Component (T);
3195 while Present (C) loop
3196 V := V + Count_Tasks (Etype (C));
3197 Next_Component (C);
3198 end loop;
3199
3200 return V;
3201 end if;
3202
3203 elsif Is_Array_Type (T) then
3204 X := First_Index (T);
3205 V := Count_Tasks (Component_Type (T));
3206 while Present (X) loop
3207 C := Etype (X);
3208
3209 if not Is_OK_Static_Subtype (C) then
3210 Check_Restriction (Max_Tasks, N);
3211 return Uint_0;
3212 else
3213 V := V * (UI_Max (Uint_0,
3214 Expr_Value (Type_High_Bound (C)) -
3215 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3216 end if;
3217
3218 Next_Index (X);
3219 end loop;
3220
3221 return V;
3222
3223 else
3224 return Uint_0;
3225 end if;
3226 end Count_Tasks;
3227
3228 -- Start of processing for Analyze_Object_Declaration
3229
3230 begin
3231 -- There are three kinds of implicit types generated by an
3232 -- object declaration:
3233
3234 -- 1. Those generated by the original Object Definition
3235
3236 -- 2. Those generated by the Expression
3237
3238 -- 3. Those used to constrain the Object Definition with the
3239 -- expression constraints when the definition is unconstrained.
3240
3241 -- They must be generated in this order to avoid order of elaboration
3242 -- issues. Thus the first step (after entering the name) is to analyze
3243 -- the object definition.
3244
3245 if Constant_Present (N) then
3246 Prev_Entity := Current_Entity_In_Scope (Id);
3247
3248 if Present (Prev_Entity)
3249 and then
3250 -- If the homograph is an implicit subprogram, it is overridden
3251 -- by the current declaration.
3252
3253 ((Is_Overloadable (Prev_Entity)
3254 and then Is_Inherited_Operation (Prev_Entity))
3255
3256 -- The current object is a discriminal generated for an entry
3257 -- family index. Even though the index is a constant, in this
3258 -- particular context there is no true constant redeclaration.
3259 -- Enter_Name will handle the visibility.
3260
3261 or else
3262 (Is_Discriminal (Id)
3263 and then Ekind (Discriminal_Link (Id)) =
3264 E_Entry_Index_Parameter)
3265
3266 -- The current object is the renaming for a generic declared
3267 -- within the instance.
3268
3269 or else
3270 (Ekind (Prev_Entity) = E_Package
3271 and then Nkind (Parent (Prev_Entity)) =
3272 N_Package_Renaming_Declaration
3273 and then not Comes_From_Source (Prev_Entity)
3274 and then Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
3275 then
3276 Prev_Entity := Empty;
3277 end if;
3278 end if;
3279
3280 if Present (Prev_Entity) then
3281 Constant_Redeclaration (Id, N, T);
3282
3283 Generate_Reference (Prev_Entity, Id, 'c');
3284 Set_Completion_Referenced (Id);
3285
3286 if Error_Posted (N) then
3287
3288 -- Type mismatch or illegal redeclaration, Do not analyze
3289 -- expression to avoid cascaded errors.
3290
3291 T := Find_Type_Of_Object (Object_Definition (N), N);
3292 Set_Etype (Id, T);
3293 Set_Ekind (Id, E_Variable);
3294 goto Leave;
3295 end if;
3296
3297 -- In the normal case, enter identifier at the start to catch premature
3298 -- usage in the initialization expression.
3299
3300 else
3301 Generate_Definition (Id);
3302 Enter_Name (Id);
3303
3304 Mark_Coextensions (N, Object_Definition (N));
3305
3306 T := Find_Type_Of_Object (Object_Definition (N), N);
3307
3308 if Nkind (Object_Definition (N)) = N_Access_Definition
3309 and then Present
3310 (Access_To_Subprogram_Definition (Object_Definition (N)))
3311 and then Protected_Present
3312 (Access_To_Subprogram_Definition (Object_Definition (N)))
3313 then
3314 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3315 end if;
3316
3317 if Error_Posted (Id) then
3318 Set_Etype (Id, T);
3319 Set_Ekind (Id, E_Variable);
3320 goto Leave;
3321 end if;
3322 end if;
3323
3324 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3325 -- out some static checks
3326
3327 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
3328
3329 -- In case of aggregates we must also take care of the correct
3330 -- initialization of nested aggregates bug this is done at the
3331 -- point of the analysis of the aggregate (see sem_aggr.adb).
3332
3333 if Present (Expression (N))
3334 and then Nkind (Expression (N)) = N_Aggregate
3335 then
3336 null;
3337
3338 else
3339 declare
3340 Save_Typ : constant Entity_Id := Etype (Id);
3341 begin
3342 Set_Etype (Id, T); -- Temp. decoration for static checks
3343 Null_Exclusion_Static_Checks (N);
3344 Set_Etype (Id, Save_Typ);
3345 end;
3346 end if;
3347 end if;
3348
3349 -- Object is marked pure if it is in a pure scope
3350
3351 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3352
3353 -- If deferred constant, make sure context is appropriate. We detect
3354 -- a deferred constant as a constant declaration with no expression.
3355 -- A deferred constant can appear in a package body if its completion
3356 -- is by means of an interface pragma.
3357
3358 if Constant_Present (N) and then No (E) then
3359
3360 -- A deferred constant may appear in the declarative part of the
3361 -- following constructs:
3362
3363 -- blocks
3364 -- entry bodies
3365 -- extended return statements
3366 -- package specs
3367 -- package bodies
3368 -- subprogram bodies
3369 -- task bodies
3370
3371 -- When declared inside a package spec, a deferred constant must be
3372 -- completed by a full constant declaration or pragma Import. In all
3373 -- other cases, the only proper completion is pragma Import. Extended
3374 -- return statements are flagged as invalid contexts because they do
3375 -- not have a declarative part and so cannot accommodate the pragma.
3376
3377 if Ekind (Current_Scope) = E_Return_Statement then
3378 Error_Msg_N
3379 ("invalid context for deferred constant declaration (RM 7.4)",
3380 N);
3381 Error_Msg_N
3382 ("\declaration requires an initialization expression",
3383 N);
3384 Set_Constant_Present (N, False);
3385
3386 -- In Ada 83, deferred constant must be of private type
3387
3388 elsif not Is_Private_Type (T) then
3389 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3390 Error_Msg_N
3391 ("(Ada 83) deferred constant must be private type", N);
3392 end if;
3393 end if;
3394
3395 -- If not a deferred constant, then object declaration freezes its type
3396
3397 else
3398 Check_Fully_Declared (T, N);
3399 Freeze_Before (N, T);
3400 end if;
3401
3402 -- If the object was created by a constrained array definition, then
3403 -- set the link in both the anonymous base type and anonymous subtype
3404 -- that are built to represent the array type to point to the object.
3405
3406 if Nkind (Object_Definition (Declaration_Node (Id))) =
3407 N_Constrained_Array_Definition
3408 then
3409 Set_Related_Array_Object (T, Id);
3410 Set_Related_Array_Object (Base_Type (T), Id);
3411 end if;
3412
3413 -- Special checks for protected objects not at library level
3414
3415 if Is_Protected_Type (T)
3416 and then not Is_Library_Level_Entity (Id)
3417 then
3418 Check_Restriction (No_Local_Protected_Objects, Id);
3419
3420 -- Protected objects with interrupt handlers must be at library level
3421
3422 -- Ada 2005: This test is not needed (and the corresponding clause
3423 -- in the RM is removed) because accessibility checks are sufficient
3424 -- to make handlers not at the library level illegal.
3425
3426 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3427 -- applies to the '95 version of the language as well.
3428
3429 if Has_Interrupt_Handler (T) and then Ada_Version < Ada_95 then
3430 Error_Msg_N
3431 ("interrupt object can only be declared at library level", Id);
3432 end if;
3433 end if;
3434
3435 -- The actual subtype of the object is the nominal subtype, unless
3436 -- the nominal one is unconstrained and obtained from the expression.
3437
3438 Act_T := T;
3439
3440 -- These checks should be performed before the initialization expression
3441 -- is considered, so that the Object_Definition node is still the same
3442 -- as in source code.
3443
3444 -- In SPARK, the nominal subtype is always given by a subtype mark
3445 -- and must not be unconstrained. (The only exception to this is the
3446 -- acceptance of declarations of constants of type String.)
3447
3448 if not
3449 Nkind_In (Object_Definition (N), N_Identifier, N_Expanded_Name)
3450 then
3451 Check_SPARK_05_Restriction
3452 ("subtype mark required", Object_Definition (N));
3453
3454 elsif Is_Array_Type (T)
3455 and then not Is_Constrained (T)
3456 and then T /= Standard_String
3457 then
3458 Check_SPARK_05_Restriction
3459 ("subtype mark of constrained type expected",
3460 Object_Definition (N));
3461 end if;
3462
3463 -- There are no aliased objects in SPARK
3464
3465 if Aliased_Present (N) then
3466 Check_SPARK_05_Restriction ("aliased object is not allowed", N);
3467 end if;
3468
3469 -- Process initialization expression if present and not in error
3470
3471 if Present (E) and then E /= Error then
3472
3473 -- Generate an error in case of CPP class-wide object initialization.
3474 -- Required because otherwise the expansion of the class-wide
3475 -- assignment would try to use 'size to initialize the object
3476 -- (primitive that is not available in CPP tagged types).
3477
3478 if Is_Class_Wide_Type (Act_T)
3479 and then
3480 (Is_CPP_Class (Root_Type (Etype (Act_T)))
3481 or else
3482 (Present (Full_View (Root_Type (Etype (Act_T))))
3483 and then
3484 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
3485 then
3486 Error_Msg_N
3487 ("predefined assignment not available for 'C'P'P tagged types",
3488 E);
3489 end if;
3490
3491 Mark_Coextensions (N, E);
3492 Analyze (E);
3493
3494 -- In case of errors detected in the analysis of the expression,
3495 -- decorate it with the expected type to avoid cascaded errors
3496
3497 if No (Etype (E)) then
3498 Set_Etype (E, T);
3499 end if;
3500
3501 -- If an initialization expression is present, then we set the
3502 -- Is_True_Constant flag. It will be reset if this is a variable
3503 -- and it is indeed modified.
3504
3505 Set_Is_True_Constant (Id, True);
3506
3507 -- If we are analyzing a constant declaration, set its completion
3508 -- flag after analyzing and resolving the expression.
3509
3510 if Constant_Present (N) then
3511 Set_Has_Completion (Id);
3512 end if;
3513
3514 -- Set type and resolve (type may be overridden later on). Note:
3515 -- Ekind (Id) must still be E_Void at this point so that incorrect
3516 -- early usage within E is properly diagnosed.
3517
3518 Set_Etype (Id, T);
3519
3520 -- If the expression is an aggregate we must look ahead to detect
3521 -- the possible presence of an address clause, and defer resolution
3522 -- and expansion of the aggregate to the freeze point of the entity.
3523
3524 if Comes_From_Source (N)
3525 and then Expander_Active
3526 and then Has_Following_Address_Clause (N)
3527 and then Nkind (E) = N_Aggregate
3528 then
3529 Set_Etype (E, T);
3530
3531 else
3532 Resolve (E, T);
3533 end if;
3534
3535 -- No further action needed if E is a call to an inlined function
3536 -- which returns an unconstrained type and it has been expanded into
3537 -- a procedure call. In that case N has been replaced by an object
3538 -- declaration without initializing expression and it has been
3539 -- analyzed (see Expand_Inlined_Call).
3540
3541 if Back_End_Inlining
3542 and then Expander_Active
3543 and then Nkind (E) = N_Function_Call
3544 and then Nkind (Name (E)) in N_Has_Entity
3545 and then Is_Inlined (Entity (Name (E)))
3546 and then not Is_Constrained (Etype (E))
3547 and then Analyzed (N)
3548 and then No (Expression (N))
3549 then
3550 return;
3551 end if;
3552
3553 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3554 -- node (which was marked already-analyzed), we need to set the type
3555 -- to something other than Any_Access in order to keep gigi happy.
3556
3557 if Etype (E) = Any_Access then
3558 Set_Etype (E, T);
3559 end if;
3560
3561 -- If the object is an access to variable, the initialization
3562 -- expression cannot be an access to constant.
3563
3564 if Is_Access_Type (T)
3565 and then not Is_Access_Constant (T)
3566 and then Is_Access_Type (Etype (E))
3567 and then Is_Access_Constant (Etype (E))
3568 then
3569 Error_Msg_N
3570 ("access to variable cannot be initialized "
3571 & "with an access-to-constant expression", E);
3572 end if;
3573
3574 if not Assignment_OK (N) then
3575 Check_Initialization (T, E);
3576 end if;
3577
3578 Check_Unset_Reference (E);
3579
3580 -- If this is a variable, then set current value. If this is a
3581 -- declared constant of a scalar type with a static expression,
3582 -- indicate that it is always valid.
3583
3584 if not Constant_Present (N) then
3585 if Compile_Time_Known_Value (E) then
3586 Set_Current_Value (Id, E);
3587 end if;
3588
3589 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
3590 Set_Is_Known_Valid (Id);
3591 end if;
3592
3593 -- Deal with setting of null flags
3594
3595 if Is_Access_Type (T) then
3596 if Known_Non_Null (E) then
3597 Set_Is_Known_Non_Null (Id, True);
3598 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
3599 Set_Is_Known_Null (Id, True);
3600 end if;
3601 end if;
3602
3603 -- Check incorrect use of dynamically tagged expressions
3604
3605 if Is_Tagged_Type (T) then
3606 Check_Dynamically_Tagged_Expression
3607 (Expr => E,
3608 Typ => T,
3609 Related_Nod => N);
3610 end if;
3611
3612 Apply_Scalar_Range_Check (E, T);
3613 Apply_Static_Length_Check (E, T);
3614
3615 if Nkind (Original_Node (N)) = N_Object_Declaration
3616 and then Comes_From_Source (Original_Node (N))
3617
3618 -- Only call test if needed
3619
3620 and then Restriction_Check_Required (SPARK_05)
3621 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
3622 then
3623 Check_SPARK_05_Restriction
3624 ("initialization expression is not appropriate", E);
3625 end if;
3626 end if;
3627
3628 -- If the No_Streams restriction is set, check that the type of the
3629 -- object is not, and does not contain, any subtype derived from
3630 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3631 -- Has_Stream just for efficiency reasons. There is no point in
3632 -- spending time on a Has_Stream check if the restriction is not set.
3633
3634 if Restriction_Check_Required (No_Streams) then
3635 if Has_Stream (T) then
3636 Check_Restriction (No_Streams, N);
3637 end if;
3638 end if;
3639
3640 -- Deal with predicate check before we start to do major rewriting. It
3641 -- is OK to initialize and then check the initialized value, since the
3642 -- object goes out of scope if we get a predicate failure. Note that we
3643 -- do this in the analyzer and not the expander because the analyzer
3644 -- does some substantial rewriting in some cases.
3645
3646 -- We need a predicate check if the type has predicates, and if either
3647 -- there is an initializing expression, or for default initialization
3648 -- when we have at least one case of an explicit default initial value
3649 -- and then this is not an internal declaration whose initialization
3650 -- comes later (as for an aggregate expansion).
3651
3652 if not Suppress_Assignment_Checks (N)
3653 and then Present (Predicate_Function (T))
3654 and then not No_Initialization (N)
3655 and then
3656 (Present (E)
3657 or else
3658 Is_Partially_Initialized_Type (T, Include_Implicit => False))
3659 then
3660 -- If the type has a static predicate and the expression is known at
3661 -- compile time, see if the expression satisfies the predicate.
3662
3663 if Present (E) then
3664 Check_Expression_Against_Static_Predicate (E, T);
3665 end if;
3666
3667 Insert_After (N,
3668 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
3669 end if;
3670
3671 -- Case of unconstrained type
3672
3673 if Is_Indefinite_Subtype (T) then
3674
3675 -- In SPARK, a declaration of unconstrained type is allowed
3676 -- only for constants of type string.
3677
3678 if Is_String_Type (T) and then not Constant_Present (N) then
3679 Check_SPARK_05_Restriction
3680 ("declaration of object of unconstrained type not allowed", N);
3681 end if;
3682
3683 -- Nothing to do in deferred constant case
3684
3685 if Constant_Present (N) and then No (E) then
3686 null;
3687
3688 -- Case of no initialization present
3689
3690 elsif No (E) then
3691 if No_Initialization (N) then
3692 null;
3693
3694 elsif Is_Class_Wide_Type (T) then
3695 Error_Msg_N
3696 ("initialization required in class-wide declaration ", N);
3697
3698 else
3699 Error_Msg_N
3700 ("unconstrained subtype not allowed (need initialization)",
3701 Object_Definition (N));
3702
3703 if Is_Record_Type (T) and then Has_Discriminants (T) then
3704 Error_Msg_N
3705 ("\provide initial value or explicit discriminant values",
3706 Object_Definition (N));
3707
3708 Error_Msg_NE
3709 ("\or give default discriminant values for type&",
3710 Object_Definition (N), T);
3711
3712 elsif Is_Array_Type (T) then
3713 Error_Msg_N
3714 ("\provide initial value or explicit array bounds",
3715 Object_Definition (N));
3716 end if;
3717 end if;
3718
3719 -- Case of initialization present but in error. Set initial
3720 -- expression as absent (but do not make above complaints)
3721
3722 elsif E = Error then
3723 Set_Expression (N, Empty);
3724 E := Empty;
3725
3726 -- Case of initialization present
3727
3728 else
3729 -- Check restrictions in Ada 83
3730
3731 if not Constant_Present (N) then
3732
3733 -- Unconstrained variables not allowed in Ada 83 mode
3734
3735 if Ada_Version = Ada_83
3736 and then Comes_From_Source (Object_Definition (N))
3737 then
3738 Error_Msg_N
3739 ("(Ada 83) unconstrained variable not allowed",
3740 Object_Definition (N));
3741 end if;
3742 end if;
3743
3744 -- Now we constrain the variable from the initializing expression
3745
3746 -- If the expression is an aggregate, it has been expanded into
3747 -- individual assignments. Retrieve the actual type from the
3748 -- expanded construct.
3749
3750 if Is_Array_Type (T)
3751 and then No_Initialization (N)
3752 and then Nkind (Original_Node (E)) = N_Aggregate
3753 then
3754 Act_T := Etype (E);
3755
3756 -- In case of class-wide interface object declarations we delay
3757 -- the generation of the equivalent record type declarations until
3758 -- its expansion because there are cases in they are not required.
3759
3760 elsif Is_Interface (T) then
3761 null;
3762
3763 else
3764 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
3765 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
3766 end if;
3767
3768 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
3769
3770 if Aliased_Present (N) then
3771 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3772 end if;
3773
3774 Freeze_Before (N, Act_T);
3775 Freeze_Before (N, T);
3776 end if;
3777
3778 elsif Is_Array_Type (T)
3779 and then No_Initialization (N)
3780 and then Nkind (Original_Node (E)) = N_Aggregate
3781 then
3782 if not Is_Entity_Name (Object_Definition (N)) then
3783 Act_T := Etype (E);
3784 Check_Compile_Time_Size (Act_T);
3785
3786 if Aliased_Present (N) then
3787 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3788 end if;
3789 end if;
3790
3791 -- When the given object definition and the aggregate are specified
3792 -- independently, and their lengths might differ do a length check.
3793 -- This cannot happen if the aggregate is of the form (others =>...)
3794
3795 if not Is_Constrained (T) then
3796 null;
3797
3798 elsif Nkind (E) = N_Raise_Constraint_Error then
3799
3800 -- Aggregate is statically illegal. Place back in declaration
3801
3802 Set_Expression (N, E);
3803 Set_No_Initialization (N, False);
3804
3805 elsif T = Etype (E) then
3806 null;
3807
3808 elsif Nkind (E) = N_Aggregate
3809 and then Present (Component_Associations (E))
3810 and then Present (Choices (First (Component_Associations (E))))
3811 and then Nkind (First
3812 (Choices (First (Component_Associations (E))))) = N_Others_Choice
3813 then
3814 null;
3815
3816 else
3817 Apply_Length_Check (E, T);
3818 end if;
3819
3820 -- If the type is limited unconstrained with defaulted discriminants and
3821 -- there is no expression, then the object is constrained by the
3822 -- defaults, so it is worthwhile building the corresponding subtype.
3823
3824 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
3825 and then not Is_Constrained (T)
3826 and then Has_Discriminants (T)
3827 then
3828 if No (E) then
3829 Act_T := Build_Default_Subtype (T, N);
3830 else
3831 -- Ada 2005: A limited object may be initialized by means of an
3832 -- aggregate. If the type has default discriminants it has an
3833 -- unconstrained nominal type, Its actual subtype will be obtained
3834 -- from the aggregate, and not from the default discriminants.
3835
3836 Act_T := Etype (E);
3837 end if;
3838
3839 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
3840
3841 elsif Nkind (E) = N_Function_Call
3842 and then Constant_Present (N)
3843 and then Has_Unconstrained_Elements (Etype (E))
3844 then
3845 -- The back-end has problems with constants of a discriminated type
3846 -- with defaults, if the initial value is a function call. We
3847 -- generate an intermediate temporary that will receive a reference
3848 -- to the result of the call. The initialization expression then
3849 -- becomes a dereference of that temporary.
3850
3851 Remove_Side_Effects (E);
3852
3853 -- If this is a constant declaration of an unconstrained type and
3854 -- the initialization is an aggregate, we can use the subtype of the
3855 -- aggregate for the declared entity because it is immutable.
3856
3857 elsif not Is_Constrained (T)
3858 and then Has_Discriminants (T)
3859 and then Constant_Present (N)
3860 and then not Has_Unchecked_Union (T)
3861 and then Nkind (E) = N_Aggregate
3862 then
3863 Act_T := Etype (E);
3864 end if;
3865
3866 -- Check No_Wide_Characters restriction
3867
3868 Check_Wide_Character_Restriction (T, Object_Definition (N));
3869
3870 -- Indicate this is not set in source. Certainly true for constants, and
3871 -- true for variables so far (will be reset for a variable if and when
3872 -- we encounter a modification in the source).
3873
3874 Set_Never_Set_In_Source (Id, True);
3875
3876 -- Now establish the proper kind and type of the object
3877
3878 if Constant_Present (N) then
3879 Set_Ekind (Id, E_Constant);
3880 Set_Is_True_Constant (Id);
3881
3882 else
3883 Set_Ekind (Id, E_Variable);
3884
3885 -- A variable is set as shared passive if it appears in a shared
3886 -- passive package, and is at the outer level. This is not done for
3887 -- entities generated during expansion, because those are always
3888 -- manipulated locally.
3889
3890 if Is_Shared_Passive (Current_Scope)
3891 and then Is_Library_Level_Entity (Id)
3892 and then Comes_From_Source (Id)
3893 then
3894 Set_Is_Shared_Passive (Id);
3895 Check_Shared_Var (Id, T, N);
3896 end if;
3897
3898 -- Set Has_Initial_Value if initializing expression present. Note
3899 -- that if there is no initializing expression, we leave the state
3900 -- of this flag unchanged (usually it will be False, but notably in
3901 -- the case of exception choice variables, it will already be true).
3902
3903 if Present (E) then
3904 Set_Has_Initial_Value (Id, True);
3905 end if;
3906
3907 Set_Contract (Id, Make_Contract (Sloc (Id)));
3908 end if;
3909
3910 -- Initialize alignment and size and capture alignment setting
3911
3912 Init_Alignment (Id);
3913 Init_Esize (Id);
3914 Set_Optimize_Alignment_Flags (Id);
3915
3916 -- Deal with aliased case
3917
3918 if Aliased_Present (N) then
3919 Set_Is_Aliased (Id);
3920
3921 -- If the object is aliased and the type is unconstrained with
3922 -- defaulted discriminants and there is no expression, then the
3923 -- object is constrained by the defaults, so it is worthwhile
3924 -- building the corresponding subtype.
3925
3926 -- Ada 2005 (AI-363): If the aliased object is discriminated and
3927 -- unconstrained, then only establish an actual subtype if the
3928 -- nominal subtype is indefinite. In definite cases the object is
3929 -- unconstrained in Ada 2005.
3930
3931 if No (E)
3932 and then Is_Record_Type (T)
3933 and then not Is_Constrained (T)
3934 and then Has_Discriminants (T)
3935 and then (Ada_Version < Ada_2005 or else Is_Indefinite_Subtype (T))
3936 then
3937 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
3938 end if;
3939 end if;
3940
3941 -- Now we can set the type of the object
3942
3943 Set_Etype (Id, Act_T);
3944
3945 -- Non-constant object is marked to be treated as volatile if type is
3946 -- volatile and we clear the Current_Value setting that may have been
3947 -- set above. Doing so for constants isn't required and might interfere
3948 -- with possible uses of the object as a static expression in contexts
3949 -- incompatible with volatility (e.g. as a case-statement alternative).
3950
3951 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
3952 Set_Treat_As_Volatile (Id);
3953 Set_Current_Value (Id, Empty);
3954 end if;
3955
3956 -- Deal with controlled types
3957
3958 if Has_Controlled_Component (Etype (Id))
3959 or else Is_Controlled (Etype (Id))
3960 then
3961 if not Is_Library_Level_Entity (Id) then
3962 Check_Restriction (No_Nested_Finalization, N);
3963 else
3964 Validate_Controlled_Object (Id);
3965 end if;
3966 end if;
3967
3968 if Has_Task (Etype (Id)) then
3969 Check_Restriction (No_Tasking, N);
3970
3971 -- Deal with counting max tasks
3972
3973 -- Nothing to do if inside a generic
3974
3975 if Inside_A_Generic then
3976 null;
3977
3978 -- If library level entity, then count tasks
3979
3980 elsif Is_Library_Level_Entity (Id) then
3981 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
3982
3983 -- If not library level entity, then indicate we don't know max
3984 -- tasks and also check task hierarchy restriction and blocking
3985 -- operation (since starting a task is definitely blocking).
3986
3987 else
3988 Check_Restriction (Max_Tasks, N);
3989 Check_Restriction (No_Task_Hierarchy, N);
3990 Check_Potentially_Blocking_Operation (N);
3991 end if;
3992
3993 -- A rather specialized test. If we see two tasks being declared
3994 -- of the same type in the same object declaration, and the task
3995 -- has an entry with an address clause, we know that program error
3996 -- will be raised at run time since we can't have two tasks with
3997 -- entries at the same address.
3998
3999 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4000 declare
4001 E : Entity_Id;
4002
4003 begin
4004 E := First_Entity (Etype (Id));
4005 while Present (E) loop
4006 if Ekind (E) = E_Entry
4007 and then Present (Get_Attribute_Definition_Clause
4008 (E, Attribute_Address))
4009 then
4010 Error_Msg_Warn := SPARK_Mode /= On;
4011 Error_Msg_N
4012 ("more than one task with same entry address<<", N);
4013 Error_Msg_N ("\Program_Error [<<", N);
4014 Insert_Action (N,
4015 Make_Raise_Program_Error (Loc,
4016 Reason => PE_Duplicated_Entry_Address));
4017 exit;
4018 end if;
4019
4020 Next_Entity (E);
4021 end loop;
4022 end;
4023 end if;
4024 end if;
4025
4026 -- Some simple constant-propagation: if the expression is a constant
4027 -- string initialized with a literal, share the literal. This avoids
4028 -- a run-time copy.
4029
4030 if Present (E)
4031 and then Is_Entity_Name (E)
4032 and then Ekind (Entity (E)) = E_Constant
4033 and then Base_Type (Etype (E)) = Standard_String
4034 then
4035 declare
4036 Val : constant Node_Id := Constant_Value (Entity (E));
4037 begin
4038 if Present (Val) and then Nkind (Val) = N_String_Literal then
4039 Rewrite (E, New_Copy (Val));
4040 end if;
4041 end;
4042 end if;
4043
4044 -- Another optimization: if the nominal subtype is unconstrained and
4045 -- the expression is a function call that returns an unconstrained
4046 -- type, rewrite the declaration as a renaming of the result of the
4047 -- call. The exceptions below are cases where the copy is expected,
4048 -- either by the back end (Aliased case) or by the semantics, as for
4049 -- initializing controlled types or copying tags for classwide types.
4050
4051 if Present (E)
4052 and then Nkind (E) = N_Explicit_Dereference
4053 and then Nkind (Original_Node (E)) = N_Function_Call
4054 and then not Is_Library_Level_Entity (Id)
4055 and then not Is_Constrained (Underlying_Type (T))
4056 and then not Is_Aliased (Id)
4057 and then not Is_Class_Wide_Type (T)
4058 and then not Is_Controlled (T)
4059 and then not Has_Controlled_Component (Base_Type (T))
4060 and then Expander_Active
4061 then
4062 Rewrite (N,
4063 Make_Object_Renaming_Declaration (Loc,
4064 Defining_Identifier => Id,
4065 Access_Definition => Empty,
4066 Subtype_Mark => New_Occurrence_Of
4067 (Base_Type (Etype (Id)), Loc),
4068 Name => E));
4069
4070 Set_Renamed_Object (Id, E);
4071
4072 -- Force generation of debugging information for the constant and for
4073 -- the renamed function call.
4074
4075 Set_Debug_Info_Needed (Id);
4076 Set_Debug_Info_Needed (Entity (Prefix (E)));
4077 end if;
4078
4079 if Present (Prev_Entity)
4080 and then Is_Frozen (Prev_Entity)
4081 and then not Error_Posted (Id)
4082 then
4083 Error_Msg_N ("full constant declaration appears too late", N);
4084 end if;
4085
4086 Check_Eliminated (Id);
4087
4088 -- Deal with setting In_Private_Part flag if in private part
4089
4090 if Ekind (Scope (Id)) = E_Package and then In_Private_Part (Scope (Id))
4091 then
4092 Set_In_Private_Part (Id);
4093 end if;
4094
4095 -- Check for violation of No_Local_Timing_Events
4096
4097 if Restriction_Check_Required (No_Local_Timing_Events)
4098 and then not Is_Library_Level_Entity (Id)
4099 and then Is_RTE (Etype (Id), RE_Timing_Event)
4100 then
4101 Check_Restriction (No_Local_Timing_Events, N);
4102 end if;
4103
4104 <<Leave>>
4105 -- Initialize the refined state of a variable here because this is a
4106 -- common destination for legal and illegal object declarations.
4107
4108 if Ekind (Id) = E_Variable then
4109 Set_Encapsulating_State (Id, Empty);
4110 end if;
4111
4112 if Has_Aspects (N) then
4113 Analyze_Aspect_Specifications (N, Id);
4114 end if;
4115
4116 Analyze_Dimension (N);
4117
4118 -- Verify whether the object declaration introduces an illegal hidden
4119 -- state within a package subject to a null abstract state.
4120
4121 if Ekind (Id) = E_Variable then
4122 Check_No_Hidden_State (Id);
4123 end if;
4124 end Analyze_Object_Declaration;
4125
4126 ---------------------------
4127 -- Analyze_Others_Choice --
4128 ---------------------------
4129
4130 -- Nothing to do for the others choice node itself, the semantic analysis
4131 -- of the others choice will occur as part of the processing of the parent
4132
4133 procedure Analyze_Others_Choice (N : Node_Id) is
4134 pragma Warnings (Off, N);
4135 begin
4136 null;
4137 end Analyze_Others_Choice;
4138
4139 -------------------------------------------
4140 -- Analyze_Private_Extension_Declaration --
4141 -------------------------------------------
4142
4143 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4144 T : constant Entity_Id := Defining_Identifier (N);
4145 Indic : constant Node_Id := Subtype_Indication (N);
4146 Parent_Type : Entity_Id;
4147 Parent_Base : Entity_Id;
4148
4149 begin
4150 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4151
4152 if Is_Non_Empty_List (Interface_List (N)) then
4153 declare
4154 Intf : Node_Id;
4155 T : Entity_Id;
4156
4157 begin
4158 Intf := First (Interface_List (N));
4159 while Present (Intf) loop
4160 T := Find_Type_Of_Subtype_Indic (Intf);
4161
4162 Diagnose_Interface (Intf, T);
4163 Next (Intf);
4164 end loop;
4165 end;
4166 end if;
4167
4168 Generate_Definition (T);
4169
4170 -- For other than Ada 2012, just enter the name in the current scope
4171
4172 if Ada_Version < Ada_2012 then
4173 Enter_Name (T);
4174
4175 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4176 -- case of private type that completes an incomplete type.
4177
4178 else
4179 declare
4180 Prev : Entity_Id;
4181
4182 begin
4183 Prev := Find_Type_Name (N);
4184
4185 pragma Assert (Prev = T
4186 or else (Ekind (Prev) = E_Incomplete_Type
4187 and then Present (Full_View (Prev))
4188 and then Full_View (Prev) = T));
4189 end;
4190 end if;
4191
4192 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
4193 Parent_Base := Base_Type (Parent_Type);
4194
4195 if Parent_Type = Any_Type
4196 or else Etype (Parent_Type) = Any_Type
4197 then
4198 Set_Ekind (T, Ekind (Parent_Type));
4199 Set_Etype (T, Any_Type);
4200 goto Leave;
4201
4202 elsif not Is_Tagged_Type (Parent_Type) then
4203 Error_Msg_N
4204 ("parent of type extension must be a tagged type ", Indic);
4205 goto Leave;
4206
4207 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
4208 Error_Msg_N ("premature derivation of incomplete type", Indic);
4209 goto Leave;
4210
4211 elsif Is_Concurrent_Type (Parent_Type) then
4212 Error_Msg_N
4213 ("parent type of a private extension cannot be "
4214 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
4215
4216 Set_Etype (T, Any_Type);
4217 Set_Ekind (T, E_Limited_Private_Type);
4218 Set_Private_Dependents (T, New_Elmt_List);
4219 Set_Error_Posted (T);
4220 goto Leave;
4221 end if;
4222
4223 -- Perhaps the parent type should be changed to the class-wide type's
4224 -- specific type in this case to prevent cascading errors ???
4225
4226 if Is_Class_Wide_Type (Parent_Type) then
4227 Error_Msg_N
4228 ("parent of type extension must not be a class-wide type", Indic);
4229 goto Leave;
4230 end if;
4231
4232 if (not Is_Package_Or_Generic_Package (Current_Scope)
4233 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
4234 or else In_Private_Part (Current_Scope)
4235
4236 then
4237 Error_Msg_N ("invalid context for private extension", N);
4238 end if;
4239
4240 -- Set common attributes
4241
4242 Set_Is_Pure (T, Is_Pure (Current_Scope));
4243 Set_Scope (T, Current_Scope);
4244 Set_Ekind (T, E_Record_Type_With_Private);
4245 Init_Size_Align (T);
4246 Set_Default_SSO (T);
4247
4248 Set_Etype (T, Parent_Base);
4249 Set_Has_Task (T, Has_Task (Parent_Base));
4250 Set_Has_Protected (T, Has_Task (Parent_Base));
4251
4252 Set_Convention (T, Convention (Parent_Type));
4253 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
4254 Set_Is_First_Subtype (T);
4255 Make_Class_Wide_Type (T);
4256
4257 if Unknown_Discriminants_Present (N) then
4258 Set_Discriminant_Constraint (T, No_Elist);
4259 end if;
4260
4261 Build_Derived_Record_Type (N, Parent_Type, T);
4262
4263 -- Propagate inherited invariant information. The new type has
4264 -- invariants, if the parent type has inheritable invariants,
4265 -- and these invariants can in turn be inherited.
4266
4267 if Has_Inheritable_Invariants (Parent_Type) then
4268 Set_Has_Inheritable_Invariants (T);
4269 Set_Has_Invariants (T);
4270 end if;
4271
4272 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4273 -- synchronized formal derived type.
4274
4275 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
4276 Set_Is_Limited_Record (T);
4277
4278 -- Formal derived type case
4279
4280 if Is_Generic_Type (T) then
4281
4282 -- The parent must be a tagged limited type or a synchronized
4283 -- interface.
4284
4285 if (not Is_Tagged_Type (Parent_Type)
4286 or else not Is_Limited_Type (Parent_Type))
4287 and then
4288 (not Is_Interface (Parent_Type)
4289 or else not Is_Synchronized_Interface (Parent_Type))
4290 then
4291 Error_Msg_NE ("parent type of & must be tagged limited " &
4292 "or synchronized", N, T);
4293 end if;
4294
4295 -- The progenitors (if any) must be limited or synchronized
4296 -- interfaces.
4297
4298 if Present (Interfaces (T)) then
4299 declare
4300 Iface : Entity_Id;
4301 Iface_Elmt : Elmt_Id;
4302
4303 begin
4304 Iface_Elmt := First_Elmt (Interfaces (T));
4305 while Present (Iface_Elmt) loop
4306 Iface := Node (Iface_Elmt);
4307
4308 if not Is_Limited_Interface (Iface)
4309 and then not Is_Synchronized_Interface (Iface)
4310 then
4311 Error_Msg_NE ("progenitor & must be limited " &
4312 "or synchronized", N, Iface);
4313 end if;
4314
4315 Next_Elmt (Iface_Elmt);
4316 end loop;
4317 end;
4318 end if;
4319
4320 -- Regular derived extension, the parent must be a limited or
4321 -- synchronized interface.
4322
4323 else
4324 if not Is_Interface (Parent_Type)
4325 or else (not Is_Limited_Interface (Parent_Type)
4326 and then not Is_Synchronized_Interface (Parent_Type))
4327 then
4328 Error_Msg_NE
4329 ("parent type of & must be limited interface", N, T);
4330 end if;
4331 end if;
4332
4333 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4334 -- extension with a synchronized parent must be explicitly declared
4335 -- synchronized, because the full view will be a synchronized type.
4336 -- This must be checked before the check for limited types below,
4337 -- to ensure that types declared limited are not allowed to extend
4338 -- synchronized interfaces.
4339
4340 elsif Is_Interface (Parent_Type)
4341 and then Is_Synchronized_Interface (Parent_Type)
4342 and then not Synchronized_Present (N)
4343 then
4344 Error_Msg_NE
4345 ("private extension of& must be explicitly synchronized",
4346 N, Parent_Type);
4347
4348 elsif Limited_Present (N) then
4349 Set_Is_Limited_Record (T);
4350
4351 if not Is_Limited_Type (Parent_Type)
4352 and then
4353 (not Is_Interface (Parent_Type)
4354 or else not Is_Limited_Interface (Parent_Type))
4355 then
4356 Error_Msg_NE ("parent type& of limited extension must be limited",
4357 N, Parent_Type);
4358 end if;
4359 end if;
4360
4361 <<Leave>>
4362 if Has_Aspects (N) then
4363 Analyze_Aspect_Specifications (N, T);
4364 end if;
4365 end Analyze_Private_Extension_Declaration;
4366
4367 ---------------------------------
4368 -- Analyze_Subtype_Declaration --
4369 ---------------------------------
4370
4371 procedure Analyze_Subtype_Declaration
4372 (N : Node_Id;
4373 Skip : Boolean := False)
4374 is
4375 Id : constant Entity_Id := Defining_Identifier (N);
4376 T : Entity_Id;
4377 R_Checks : Check_Result;
4378
4379 begin
4380 Generate_Definition (Id);
4381 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4382 Init_Size_Align (Id);
4383
4384 -- The following guard condition on Enter_Name is to handle cases where
4385 -- the defining identifier has already been entered into the scope but
4386 -- the declaration as a whole needs to be analyzed.
4387
4388 -- This case in particular happens for derived enumeration types. The
4389 -- derived enumeration type is processed as an inserted enumeration type
4390 -- declaration followed by a rewritten subtype declaration. The defining
4391 -- identifier, however, is entered into the name scope very early in the
4392 -- processing of the original type declaration and therefore needs to be
4393 -- avoided here, when the created subtype declaration is analyzed. (See
4394 -- Build_Derived_Types)
4395
4396 -- This also happens when the full view of a private type is derived
4397 -- type with constraints. In this case the entity has been introduced
4398 -- in the private declaration.
4399
4400 -- Finally this happens in some complex cases when validity checks are
4401 -- enabled, where the same subtype declaration may be analyzed twice.
4402 -- This can happen if the subtype is created by the pre-analysis of
4403 -- an attribute tht gives the range of a loop statement, and the loop
4404 -- itself appears within an if_statement that will be rewritten during
4405 -- expansion.
4406
4407 if Skip
4408 or else (Present (Etype (Id))
4409 and then (Is_Private_Type (Etype (Id))
4410 or else Is_Task_Type (Etype (Id))
4411 or else Is_Rewrite_Substitution (N)))
4412 then
4413 null;
4414
4415 elsif Current_Entity (Id) = Id then
4416 null;
4417
4418 else
4419 Enter_Name (Id);
4420 end if;
4421
4422 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
4423
4424 -- Class-wide equivalent types of records with unknown discriminants
4425 -- involve the generation of an itype which serves as the private view
4426 -- of a constrained record subtype. In such cases the base type of the
4427 -- current subtype we are processing is the private itype. Use the full
4428 -- of the private itype when decorating various attributes.
4429
4430 if Is_Itype (T)
4431 and then Is_Private_Type (T)
4432 and then Present (Full_View (T))
4433 then
4434 T := Full_View (T);
4435 end if;
4436
4437 -- Inherit common attributes
4438
4439 Set_Is_Volatile (Id, Is_Volatile (T));
4440 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
4441 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
4442 Set_Convention (Id, Convention (T));
4443
4444 -- If ancestor has predicates then so does the subtype, and in addition
4445 -- we must delay the freeze to properly arrange predicate inheritance.
4446
4447 -- The Ancestor_Type test is really unpleasant, there seem to be cases
4448 -- in which T = ID, so the above tests and assignments do nothing???
4449
4450 if Has_Predicates (T)
4451 or else (Present (Ancestor_Subtype (T))
4452 and then Has_Predicates (Ancestor_Subtype (T)))
4453 then
4454 Set_Has_Predicates (Id);
4455 Set_Has_Delayed_Freeze (Id);
4456 end if;
4457
4458 -- Subtype of Boolean cannot have a constraint in SPARK
4459
4460 if Is_Boolean_Type (T)
4461 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
4462 then
4463 Check_SPARK_05_Restriction
4464 ("subtype of Boolean cannot have constraint", N);
4465 end if;
4466
4467 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4468 declare
4469 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
4470 One_Cstr : Node_Id;
4471 Low : Node_Id;
4472 High : Node_Id;
4473
4474 begin
4475 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
4476 One_Cstr := First (Constraints (Cstr));
4477 while Present (One_Cstr) loop
4478
4479 -- Index or discriminant constraint in SPARK must be a
4480 -- subtype mark.
4481
4482 if not
4483 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
4484 then
4485 Check_SPARK_05_Restriction
4486 ("subtype mark required", One_Cstr);
4487
4488 -- String subtype must have a lower bound of 1 in SPARK.
4489 -- Note that we do not need to test for the non-static case
4490 -- here, since that was already taken care of in
4491 -- Process_Range_Expr_In_Decl.
4492
4493 elsif Base_Type (T) = Standard_String then
4494 Get_Index_Bounds (One_Cstr, Low, High);
4495
4496 if Is_OK_Static_Expression (Low)
4497 and then Expr_Value (Low) /= 1
4498 then
4499 Check_SPARK_05_Restriction
4500 ("String subtype must have lower bound of 1", N);
4501 end if;
4502 end if;
4503
4504 Next (One_Cstr);
4505 end loop;
4506 end if;
4507 end;
4508 end if;
4509
4510 -- In the case where there is no constraint given in the subtype
4511 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4512 -- semantic attributes must be established here.
4513
4514 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
4515 Set_Etype (Id, Base_Type (T));
4516
4517 -- Subtype of unconstrained array without constraint is not allowed
4518 -- in SPARK.
4519
4520 if Is_Array_Type (T) and then not Is_Constrained (T) then
4521 Check_SPARK_05_Restriction
4522 ("subtype of unconstrained array must have constraint", N);
4523 end if;
4524
4525 case Ekind (T) is
4526 when Array_Kind =>
4527 Set_Ekind (Id, E_Array_Subtype);
4528 Copy_Array_Subtype_Attributes (Id, T);
4529
4530 when Decimal_Fixed_Point_Kind =>
4531 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
4532 Set_Digits_Value (Id, Digits_Value (T));
4533 Set_Delta_Value (Id, Delta_Value (T));
4534 Set_Scale_Value (Id, Scale_Value (T));
4535 Set_Small_Value (Id, Small_Value (T));
4536 Set_Scalar_Range (Id, Scalar_Range (T));
4537 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
4538 Set_Is_Constrained (Id, Is_Constrained (T));
4539 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4540 Set_RM_Size (Id, RM_Size (T));
4541
4542 when Enumeration_Kind =>
4543 Set_Ekind (Id, E_Enumeration_Subtype);
4544 Set_First_Literal (Id, First_Literal (Base_Type (T)));
4545 Set_Scalar_Range (Id, Scalar_Range (T));
4546 Set_Is_Character_Type (Id, Is_Character_Type (T));
4547 Set_Is_Constrained (Id, Is_Constrained (T));
4548 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4549 Set_RM_Size (Id, RM_Size (T));
4550 Inherit_Predicate_Flags (Id, T);
4551
4552 when Ordinary_Fixed_Point_Kind =>
4553 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
4554 Set_Scalar_Range (Id, Scalar_Range (T));
4555 Set_Small_Value (Id, Small_Value (T));
4556 Set_Delta_Value (Id, Delta_Value (T));
4557 Set_Is_Constrained (Id, Is_Constrained (T));
4558 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4559 Set_RM_Size (Id, RM_Size (T));
4560
4561 when Float_Kind =>
4562 Set_Ekind (Id, E_Floating_Point_Subtype);
4563 Set_Scalar_Range (Id, Scalar_Range (T));
4564 Set_Digits_Value (Id, Digits_Value (T));
4565 Set_Is_Constrained (Id, Is_Constrained (T));
4566
4567 when Signed_Integer_Kind =>
4568 Set_Ekind (Id, E_Signed_Integer_Subtype);
4569 Set_Scalar_Range (Id, Scalar_Range (T));
4570 Set_Is_Constrained (Id, Is_Constrained (T));
4571 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4572 Set_RM_Size (Id, RM_Size (T));
4573 Inherit_Predicate_Flags (Id, T);
4574
4575 when Modular_Integer_Kind =>
4576 Set_Ekind (Id, E_Modular_Integer_Subtype);
4577 Set_Scalar_Range (Id, Scalar_Range (T));
4578 Set_Is_Constrained (Id, Is_Constrained (T));
4579 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4580 Set_RM_Size (Id, RM_Size (T));
4581 Inherit_Predicate_Flags (Id, T);
4582
4583 when Class_Wide_Kind =>
4584 Set_Ekind (Id, E_Class_Wide_Subtype);
4585 Set_First_Entity (Id, First_Entity (T));
4586 Set_Last_Entity (Id, Last_Entity (T));
4587 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4588 Set_Cloned_Subtype (Id, T);
4589 Set_Is_Tagged_Type (Id, True);
4590 Set_Has_Unknown_Discriminants
4591 (Id, True);
4592
4593 if Ekind (T) = E_Class_Wide_Subtype then
4594 Set_Equivalent_Type (Id, Equivalent_Type (T));
4595 end if;
4596
4597 when E_Record_Type | E_Record_Subtype =>
4598 Set_Ekind (Id, E_Record_Subtype);
4599
4600 if Ekind (T) = E_Record_Subtype
4601 and then Present (Cloned_Subtype (T))
4602 then
4603 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
4604 else
4605 Set_Cloned_Subtype (Id, T);
4606 end if;
4607
4608 Set_First_Entity (Id, First_Entity (T));
4609 Set_Last_Entity (Id, Last_Entity (T));
4610 Set_Has_Discriminants (Id, Has_Discriminants (T));
4611 Set_Is_Constrained (Id, Is_Constrained (T));
4612 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4613 Set_Has_Implicit_Dereference
4614 (Id, Has_Implicit_Dereference (T));
4615 Set_Has_Unknown_Discriminants
4616 (Id, Has_Unknown_Discriminants (T));
4617
4618 if Has_Discriminants (T) then
4619 Set_Discriminant_Constraint
4620 (Id, Discriminant_Constraint (T));
4621 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4622
4623 elsif Has_Unknown_Discriminants (Id) then
4624 Set_Discriminant_Constraint (Id, No_Elist);
4625 end if;
4626
4627 if Is_Tagged_Type (T) then
4628 Set_Is_Tagged_Type (Id);
4629 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4630 Set_Direct_Primitive_Operations
4631 (Id, Direct_Primitive_Operations (T));
4632 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4633
4634 if Is_Interface (T) then
4635 Set_Is_Interface (Id);
4636 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
4637 end if;
4638 end if;
4639
4640 when Private_Kind =>
4641 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4642 Set_Has_Discriminants (Id, Has_Discriminants (T));
4643 Set_Is_Constrained (Id, Is_Constrained (T));
4644 Set_First_Entity (Id, First_Entity (T));
4645 Set_Last_Entity (Id, Last_Entity (T));
4646 Set_Private_Dependents (Id, New_Elmt_List);
4647 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4648 Set_Has_Implicit_Dereference
4649 (Id, Has_Implicit_Dereference (T));
4650 Set_Has_Unknown_Discriminants
4651 (Id, Has_Unknown_Discriminants (T));
4652 Set_Known_To_Have_Preelab_Init
4653 (Id, Known_To_Have_Preelab_Init (T));
4654
4655 if Is_Tagged_Type (T) then
4656 Set_Is_Tagged_Type (Id);
4657 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4658 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4659 Set_Direct_Primitive_Operations (Id,
4660 Direct_Primitive_Operations (T));
4661 end if;
4662
4663 -- In general the attributes of the subtype of a private type
4664 -- are the attributes of the partial view of parent. However,
4665 -- the full view may be a discriminated type, and the subtype
4666 -- must share the discriminant constraint to generate correct
4667 -- calls to initialization procedures.
4668
4669 if Has_Discriminants (T) then
4670 Set_Discriminant_Constraint
4671 (Id, Discriminant_Constraint (T));
4672 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4673
4674 elsif Present (Full_View (T))
4675 and then Has_Discriminants (Full_View (T))
4676 then
4677 Set_Discriminant_Constraint
4678 (Id, Discriminant_Constraint (Full_View (T)));
4679 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4680
4681 -- This would seem semantically correct, but apparently
4682 -- generates spurious errors about missing components ???
4683
4684 -- Set_Has_Discriminants (Id);
4685 end if;
4686
4687 Prepare_Private_Subtype_Completion (Id, N);
4688
4689 -- If this is the subtype of a constrained private type with
4690 -- discriminants that has got a full view and we also have
4691 -- built a completion just above, show that the completion
4692 -- is a clone of the full view to the back-end.
4693
4694 if Has_Discriminants (T)
4695 and then not Has_Unknown_Discriminants (T)
4696 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
4697 and then Present (Full_View (T))
4698 and then Present (Full_View (Id))
4699 then
4700 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
4701 end if;
4702
4703 when Access_Kind =>
4704 Set_Ekind (Id, E_Access_Subtype);
4705 Set_Is_Constrained (Id, Is_Constrained (T));
4706 Set_Is_Access_Constant
4707 (Id, Is_Access_Constant (T));
4708 Set_Directly_Designated_Type
4709 (Id, Designated_Type (T));
4710 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
4711
4712 -- A Pure library_item must not contain the declaration of a
4713 -- named access type, except within a subprogram, generic
4714 -- subprogram, task unit, or protected unit, or if it has
4715 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4716
4717 if Comes_From_Source (Id)
4718 and then In_Pure_Unit
4719 and then not In_Subprogram_Task_Protected_Unit
4720 and then not No_Pool_Assigned (Id)
4721 then
4722 Error_Msg_N
4723 ("named access types not allowed in pure unit", N);
4724 end if;
4725
4726 when Concurrent_Kind =>
4727 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4728 Set_Corresponding_Record_Type (Id,
4729 Corresponding_Record_Type (T));
4730 Set_First_Entity (Id, First_Entity (T));
4731 Set_First_Private_Entity (Id, First_Private_Entity (T));
4732 Set_Has_Discriminants (Id, Has_Discriminants (T));
4733 Set_Is_Constrained (Id, Is_Constrained (T));
4734 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4735 Set_Last_Entity (Id, Last_Entity (T));
4736
4737 if Has_Discriminants (T) then
4738 Set_Discriminant_Constraint (Id,
4739 Discriminant_Constraint (T));
4740 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4741 end if;
4742
4743 when E_Incomplete_Type =>
4744 if Ada_Version >= Ada_2005 then
4745
4746 -- In Ada 2005 an incomplete type can be explicitly tagged:
4747 -- propagate indication.
4748
4749 Set_Ekind (Id, E_Incomplete_Subtype);
4750 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4751 Set_Private_Dependents (Id, New_Elmt_List);
4752
4753 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
4754 -- incomplete type visible through a limited with clause.
4755
4756 if From_Limited_With (T)
4757 and then Present (Non_Limited_View (T))
4758 then
4759 Set_From_Limited_With (Id);
4760 Set_Non_Limited_View (Id, Non_Limited_View (T));
4761
4762 -- Ada 2005 (AI-412): Add the regular incomplete subtype
4763 -- to the private dependents of the original incomplete
4764 -- type for future transformation.
4765
4766 else
4767 Append_Elmt (Id, Private_Dependents (T));
4768 end if;
4769
4770 -- If the subtype name denotes an incomplete type an error
4771 -- was already reported by Process_Subtype.
4772
4773 else
4774 Set_Etype (Id, Any_Type);
4775 end if;
4776
4777 when others =>
4778 raise Program_Error;
4779 end case;
4780 end if;
4781
4782 if Etype (Id) = Any_Type then
4783 goto Leave;
4784 end if;
4785
4786 -- Some common processing on all types
4787
4788 Set_Size_Info (Id, T);
4789 Set_First_Rep_Item (Id, First_Rep_Item (T));
4790
4791 -- If the parent type is a generic actual, so is the subtype. This may
4792 -- happen in a nested instance. Why Comes_From_Source test???
4793
4794 if not Comes_From_Source (N) then
4795 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
4796 end if;
4797
4798 T := Etype (Id);
4799
4800 Set_Is_Immediately_Visible (Id, True);
4801 Set_Depends_On_Private (Id, Has_Private_Component (T));
4802 Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
4803
4804 if Is_Interface (T) then
4805 Set_Is_Interface (Id);
4806 end if;
4807
4808 if Present (Generic_Parent_Type (N))
4809 and then
4810 (Nkind (Parent (Generic_Parent_Type (N))) /=
4811 N_Formal_Type_Declaration
4812 or else Nkind
4813 (Formal_Type_Definition (Parent (Generic_Parent_Type (N)))) /=
4814 N_Formal_Private_Type_Definition)
4815 then
4816 if Is_Tagged_Type (Id) then
4817
4818 -- If this is a generic actual subtype for a synchronized type,
4819 -- the primitive operations are those of the corresponding record
4820 -- for which there is a separate subtype declaration.
4821
4822 if Is_Concurrent_Type (Id) then
4823 null;
4824 elsif Is_Class_Wide_Type (Id) then
4825 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
4826 else
4827 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
4828 end if;
4829
4830 elsif Scope (Etype (Id)) /= Standard_Standard then
4831 Derive_Subprograms (Generic_Parent_Type (N), Id);
4832 end if;
4833 end if;
4834
4835 if Is_Private_Type (T) and then Present (Full_View (T)) then
4836 Conditional_Delay (Id, Full_View (T));
4837
4838 -- The subtypes of components or subcomponents of protected types
4839 -- do not need freeze nodes, which would otherwise appear in the
4840 -- wrong scope (before the freeze node for the protected type). The
4841 -- proper subtypes are those of the subcomponents of the corresponding
4842 -- record.
4843
4844 elsif Ekind (Scope (Id)) /= E_Protected_Type
4845 and then Present (Scope (Scope (Id))) -- error defense
4846 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
4847 then
4848 Conditional_Delay (Id, T);
4849 end if;
4850
4851 -- Check that Constraint_Error is raised for a scalar subtype indication
4852 -- when the lower or upper bound of a non-null range lies outside the
4853 -- range of the type mark.
4854
4855 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4856 if Is_Scalar_Type (Etype (Id))
4857 and then Scalar_Range (Id) /=
4858 Scalar_Range (Etype (Subtype_Mark
4859 (Subtype_Indication (N))))
4860 then
4861 Apply_Range_Check
4862 (Scalar_Range (Id),
4863 Etype (Subtype_Mark (Subtype_Indication (N))));
4864
4865 -- In the array case, check compatibility for each index
4866
4867 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
4868 then
4869 -- This really should be a subprogram that finds the indications
4870 -- to check???
4871
4872 declare
4873 Subt_Index : Node_Id := First_Index (Id);
4874 Target_Index : Node_Id :=
4875 First_Index (Etype
4876 (Subtype_Mark (Subtype_Indication (N))));
4877 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
4878
4879 begin
4880 while Present (Subt_Index) loop
4881 if ((Nkind (Subt_Index) = N_Identifier
4882 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
4883 or else Nkind (Subt_Index) = N_Subtype_Indication)
4884 and then
4885 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
4886 then
4887 declare
4888 Target_Typ : constant Entity_Id :=
4889 Etype (Target_Index);
4890 begin
4891 R_Checks :=
4892 Get_Range_Checks
4893 (Scalar_Range (Etype (Subt_Index)),
4894 Target_Typ,
4895 Etype (Subt_Index),
4896 Defining_Identifier (N));
4897
4898 -- Reset Has_Dynamic_Range_Check on the subtype to
4899 -- prevent elision of the index check due to a dynamic
4900 -- check generated for a preceding index (needed since
4901 -- Insert_Range_Checks tries to avoid generating
4902 -- redundant checks on a given declaration).
4903
4904 Set_Has_Dynamic_Range_Check (N, False);
4905
4906 Insert_Range_Checks
4907 (R_Checks,
4908 N,
4909 Target_Typ,
4910 Sloc (Defining_Identifier (N)));
4911
4912 -- Record whether this index involved a dynamic check
4913
4914 Has_Dyn_Chk :=
4915 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
4916 end;
4917 end if;
4918
4919 Next_Index (Subt_Index);
4920 Next_Index (Target_Index);
4921 end loop;
4922
4923 -- Finally, mark whether the subtype involves dynamic checks
4924
4925 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
4926 end;
4927 end if;
4928 end if;
4929
4930 -- Make sure that generic actual types are properly frozen. The subtype
4931 -- is marked as a generic actual type when the enclosing instance is
4932 -- analyzed, so here we identify the subtype from the tree structure.
4933
4934 if Expander_Active
4935 and then Is_Generic_Actual_Type (Id)
4936 and then In_Instance
4937 and then not Comes_From_Source (N)
4938 and then Nkind (Subtype_Indication (N)) /= N_Subtype_Indication
4939 and then Is_Frozen (T)
4940 then
4941 Freeze_Before (N, Id);
4942 end if;
4943
4944 Set_Optimize_Alignment_Flags (Id);
4945 Check_Eliminated (Id);
4946
4947 <<Leave>>
4948 if Has_Aspects (N) then
4949 Analyze_Aspect_Specifications (N, Id);
4950 end if;
4951
4952 Analyze_Dimension (N);
4953 end Analyze_Subtype_Declaration;
4954
4955 --------------------------------
4956 -- Analyze_Subtype_Indication --
4957 --------------------------------
4958
4959 procedure Analyze_Subtype_Indication (N : Node_Id) is
4960 T : constant Entity_Id := Subtype_Mark (N);
4961 R : constant Node_Id := Range_Expression (Constraint (N));
4962
4963 begin
4964 Analyze (T);
4965
4966 if R /= Error then
4967 Analyze (R);
4968 Set_Etype (N, Etype (R));
4969 Resolve (R, Entity (T));
4970 else
4971 Set_Error_Posted (R);
4972 Set_Error_Posted (T);
4973 end if;
4974 end Analyze_Subtype_Indication;
4975
4976 --------------------------
4977 -- Analyze_Variant_Part --
4978 --------------------------
4979
4980 procedure Analyze_Variant_Part (N : Node_Id) is
4981 Discr_Name : Node_Id;
4982 Discr_Type : Entity_Id;
4983
4984 procedure Process_Variant (A : Node_Id);
4985 -- Analyze declarations for a single variant
4986
4987 package Analyze_Variant_Choices is
4988 new Generic_Analyze_Choices (Process_Variant);
4989 use Analyze_Variant_Choices;
4990
4991 ---------------------
4992 -- Process_Variant --
4993 ---------------------
4994
4995 procedure Process_Variant (A : Node_Id) is
4996 CL : constant Node_Id := Component_List (A);
4997 begin
4998 if not Null_Present (CL) then
4999 Analyze_Declarations (Component_Items (CL));
5000
5001 if Present (Variant_Part (CL)) then
5002 Analyze (Variant_Part (CL));
5003 end if;
5004 end if;
5005 end Process_Variant;
5006
5007 -- Start of processing for Analyze_Variant_Part
5008
5009 begin
5010 Discr_Name := Name (N);
5011 Analyze (Discr_Name);
5012
5013 -- If Discr_Name bad, get out (prevent cascaded errors)
5014
5015 if Etype (Discr_Name) = Any_Type then
5016 return;
5017 end if;
5018
5019 -- Check invalid discriminant in variant part
5020
5021 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
5022 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
5023 end if;
5024
5025 Discr_Type := Etype (Entity (Discr_Name));
5026
5027 if not Is_Discrete_Type (Discr_Type) then
5028 Error_Msg_N
5029 ("discriminant in a variant part must be of a discrete type",
5030 Name (N));
5031 return;
5032 end if;
5033
5034 -- Now analyze the choices, which also analyzes the declarations that
5035 -- are associated with each choice.
5036
5037 Analyze_Choices (Variants (N), Discr_Type);
5038
5039 -- Note: we used to instantiate and call Check_Choices here to check
5040 -- that the choices covered the discriminant, but it's too early to do
5041 -- that because of statically predicated subtypes, whose analysis may
5042 -- be deferred to their freeze point which may be as late as the freeze
5043 -- point of the containing record. So this call is now to be found in
5044 -- Freeze_Record_Declaration.
5045
5046 end Analyze_Variant_Part;
5047
5048 ----------------------------
5049 -- Array_Type_Declaration --
5050 ----------------------------
5051
5052 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
5053 Component_Def : constant Node_Id := Component_Definition (Def);
5054 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
5055 Element_Type : Entity_Id;
5056 Implicit_Base : Entity_Id;
5057 Index : Node_Id;
5058 Related_Id : Entity_Id := Empty;
5059 Nb_Index : Nat;
5060 P : constant Node_Id := Parent (Def);
5061 Priv : Entity_Id;
5062
5063 begin
5064 if Nkind (Def) = N_Constrained_Array_Definition then
5065 Index := First (Discrete_Subtype_Definitions (Def));
5066 else
5067 Index := First (Subtype_Marks (Def));
5068 end if;
5069
5070 -- Find proper names for the implicit types which may be public. In case
5071 -- of anonymous arrays we use the name of the first object of that type
5072 -- as prefix.
5073
5074 if No (T) then
5075 Related_Id := Defining_Identifier (P);
5076 else
5077 Related_Id := T;
5078 end if;
5079
5080 Nb_Index := 1;
5081 while Present (Index) loop
5082 Analyze (Index);
5083
5084 -- Test for odd case of trying to index a type by the type itself
5085
5086 if Is_Entity_Name (Index) and then Entity (Index) = T then
5087 Error_Msg_N ("type& cannot be indexed by itself", Index);
5088 Set_Entity (Index, Standard_Boolean);
5089 Set_Etype (Index, Standard_Boolean);
5090 end if;
5091
5092 -- Check SPARK restriction requiring a subtype mark
5093
5094 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
5095 Check_SPARK_05_Restriction ("subtype mark required", Index);
5096 end if;
5097
5098 -- Add a subtype declaration for each index of private array type
5099 -- declaration whose etype is also private. For example:
5100
5101 -- package Pkg is
5102 -- type Index is private;
5103 -- private
5104 -- type Table is array (Index) of ...
5105 -- end;
5106
5107 -- This is currently required by the expander for the internally
5108 -- generated equality subprogram of records with variant parts in
5109 -- which the etype of some component is such private type.
5110
5111 if Ekind (Current_Scope) = E_Package
5112 and then In_Private_Part (Current_Scope)
5113 and then Has_Private_Declaration (Etype (Index))
5114 then
5115 declare
5116 Loc : constant Source_Ptr := Sloc (Def);
5117 New_E : Entity_Id;
5118 Decl : Entity_Id;
5119
5120 begin
5121 New_E := Make_Temporary (Loc, 'T');
5122 Set_Is_Internal (New_E);
5123
5124 Decl :=
5125 Make_Subtype_Declaration (Loc,
5126 Defining_Identifier => New_E,
5127 Subtype_Indication =>
5128 New_Occurrence_Of (Etype (Index), Loc));
5129
5130 Insert_Before (Parent (Def), Decl);
5131 Analyze (Decl);
5132 Set_Etype (Index, New_E);
5133
5134 -- If the index is a range the Entity attribute is not
5135 -- available. Example:
5136
5137 -- package Pkg is
5138 -- type T is private;
5139 -- private
5140 -- type T is new Natural;
5141 -- Table : array (T(1) .. T(10)) of Boolean;
5142 -- end Pkg;
5143
5144 if Nkind (Index) /= N_Range then
5145 Set_Entity (Index, New_E);
5146 end if;
5147 end;
5148 end if;
5149
5150 Make_Index (Index, P, Related_Id, Nb_Index);
5151
5152 -- Check error of subtype with predicate for index type
5153
5154 Bad_Predicated_Subtype_Use
5155 ("subtype& has predicate, not allowed as index subtype",
5156 Index, Etype (Index));
5157
5158 -- Move to next index
5159
5160 Next_Index (Index);
5161 Nb_Index := Nb_Index + 1;
5162 end loop;
5163
5164 -- Process subtype indication if one is present
5165
5166 if Present (Component_Typ) then
5167 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
5168
5169 Set_Etype (Component_Typ, Element_Type);
5170
5171 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
5172 Check_SPARK_05_Restriction
5173 ("subtype mark required", Component_Typ);
5174 end if;
5175
5176 -- Ada 2005 (AI-230): Access Definition case
5177
5178 else pragma Assert (Present (Access_Definition (Component_Def)));
5179
5180 -- Indicate that the anonymous access type is created by the
5181 -- array type declaration.
5182
5183 Element_Type := Access_Definition
5184 (Related_Nod => P,
5185 N => Access_Definition (Component_Def));
5186 Set_Is_Local_Anonymous_Access (Element_Type);
5187
5188 -- Propagate the parent. This field is needed if we have to generate
5189 -- the master_id associated with an anonymous access to task type
5190 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5191
5192 Set_Parent (Element_Type, Parent (T));
5193
5194 -- Ada 2005 (AI-230): In case of components that are anonymous access
5195 -- types the level of accessibility depends on the enclosing type
5196 -- declaration
5197
5198 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
5199
5200 -- Ada 2005 (AI-254)
5201
5202 declare
5203 CD : constant Node_Id :=
5204 Access_To_Subprogram_Definition
5205 (Access_Definition (Component_Def));
5206 begin
5207 if Present (CD) and then Protected_Present (CD) then
5208 Element_Type :=
5209 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
5210 end if;
5211 end;
5212 end if;
5213
5214 -- Constrained array case
5215
5216 if No (T) then
5217 T := Create_Itype (E_Void, P, Related_Id, 'T');
5218 end if;
5219
5220 if Nkind (Def) = N_Constrained_Array_Definition then
5221
5222 -- Establish Implicit_Base as unconstrained base type
5223
5224 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
5225
5226 Set_Etype (Implicit_Base, Implicit_Base);
5227 Set_Scope (Implicit_Base, Current_Scope);
5228 Set_Has_Delayed_Freeze (Implicit_Base);
5229 Set_Default_SSO (Implicit_Base);
5230
5231 -- The constrained array type is a subtype of the unconstrained one
5232
5233 Set_Ekind (T, E_Array_Subtype);
5234 Init_Size_Align (T);
5235 Set_Etype (T, Implicit_Base);
5236 Set_Scope (T, Current_Scope);
5237 Set_Is_Constrained (T, True);
5238 Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
5239 Set_Has_Delayed_Freeze (T);
5240
5241 -- Complete setup of implicit base type
5242
5243 Set_First_Index (Implicit_Base, First_Index (T));
5244 Set_Component_Type (Implicit_Base, Element_Type);
5245 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
5246 Set_Has_Protected (Implicit_Base, Has_Protected (Element_Type));
5247 Set_Component_Size (Implicit_Base, Uint_0);
5248 Set_Packed_Array_Impl_Type (Implicit_Base, Empty);
5249 Set_Has_Controlled_Component
5250 (Implicit_Base, Has_Controlled_Component
5251 (Element_Type)
5252 or else Is_Controlled
5253 (Element_Type));
5254 Set_Finalize_Storage_Only
5255 (Implicit_Base, Finalize_Storage_Only
5256 (Element_Type));
5257
5258 -- Unconstrained array case
5259
5260 else
5261 Set_Ekind (T, E_Array_Type);
5262 Init_Size_Align (T);
5263 Set_Etype (T, T);
5264 Set_Scope (T, Current_Scope);
5265 Set_Component_Size (T, Uint_0);
5266 Set_Is_Constrained (T, False);
5267 Set_First_Index (T, First (Subtype_Marks (Def)));
5268 Set_Has_Delayed_Freeze (T, True);
5269 Set_Has_Task (T, Has_Task (Element_Type));
5270 Set_Has_Protected (T, Has_Protected (Element_Type));
5271 Set_Has_Controlled_Component (T, Has_Controlled_Component
5272 (Element_Type)
5273 or else
5274 Is_Controlled (Element_Type));
5275 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
5276 (Element_Type));
5277 Set_Default_SSO (T);
5278 end if;
5279
5280 -- Common attributes for both cases
5281
5282 Set_Component_Type (Base_Type (T), Element_Type);
5283 Set_Packed_Array_Impl_Type (T, Empty);
5284
5285 if Aliased_Present (Component_Definition (Def)) then
5286 Check_SPARK_05_Restriction
5287 ("aliased is not allowed", Component_Definition (Def));
5288 Set_Has_Aliased_Components (Etype (T));
5289 end if;
5290
5291 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5292 -- array type to ensure that objects of this type are initialized.
5293
5294 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
5295 Set_Can_Never_Be_Null (T);
5296
5297 if Null_Exclusion_Present (Component_Definition (Def))
5298
5299 -- No need to check itypes because in their case this check was
5300 -- done at their point of creation
5301
5302 and then not Is_Itype (Element_Type)
5303 then
5304 Error_Msg_N
5305 ("`NOT NULL` not allowed (null already excluded)",
5306 Subtype_Indication (Component_Definition (Def)));
5307 end if;
5308 end if;
5309
5310 Priv := Private_Component (Element_Type);
5311
5312 if Present (Priv) then
5313
5314 -- Check for circular definitions
5315
5316 if Priv = Any_Type then
5317 Set_Component_Type (Etype (T), Any_Type);
5318
5319 -- There is a gap in the visibility of operations on the composite
5320 -- type only if the component type is defined in a different scope.
5321
5322 elsif Scope (Priv) = Current_Scope then
5323 null;
5324
5325 elsif Is_Limited_Type (Priv) then
5326 Set_Is_Limited_Composite (Etype (T));
5327 Set_Is_Limited_Composite (T);
5328 else
5329 Set_Is_Private_Composite (Etype (T));
5330 Set_Is_Private_Composite (T);
5331 end if;
5332 end if;
5333
5334 -- A syntax error in the declaration itself may lead to an empty index
5335 -- list, in which case do a minimal patch.
5336
5337 if No (First_Index (T)) then
5338 Error_Msg_N ("missing index definition in array type declaration", T);
5339
5340 declare
5341 Indexes : constant List_Id :=
5342 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
5343 begin
5344 Set_Discrete_Subtype_Definitions (Def, Indexes);
5345 Set_First_Index (T, First (Indexes));
5346 return;
5347 end;
5348 end if;
5349
5350 -- Create a concatenation operator for the new type. Internal array
5351 -- types created for packed entities do not need such, they are
5352 -- compatible with the user-defined type.
5353
5354 if Number_Dimensions (T) = 1
5355 and then not Is_Packed_Array_Impl_Type (T)
5356 then
5357 New_Concatenation_Op (T);
5358 end if;
5359
5360 -- In the case of an unconstrained array the parser has already verified
5361 -- that all the indexes are unconstrained but we still need to make sure
5362 -- that the element type is constrained.
5363
5364 if Is_Indefinite_Subtype (Element_Type) then
5365 Error_Msg_N
5366 ("unconstrained element type in array declaration",
5367 Subtype_Indication (Component_Def));
5368
5369 elsif Is_Abstract_Type (Element_Type) then
5370 Error_Msg_N
5371 ("the type of a component cannot be abstract",
5372 Subtype_Indication (Component_Def));
5373 end if;
5374
5375 -- There may be an invariant declared for the component type, but
5376 -- the construction of the component invariant checking procedure
5377 -- takes place during expansion.
5378 end Array_Type_Declaration;
5379
5380 ------------------------------------------------------
5381 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5382 ------------------------------------------------------
5383
5384 function Replace_Anonymous_Access_To_Protected_Subprogram
5385 (N : Node_Id) return Entity_Id
5386 is
5387 Loc : constant Source_Ptr := Sloc (N);
5388
5389 Curr_Scope : constant Scope_Stack_Entry :=
5390 Scope_Stack.Table (Scope_Stack.Last);
5391
5392 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
5393
5394 Acc : Node_Id;
5395 -- Access definition in declaration
5396
5397 Comp : Node_Id;
5398 -- Object definition or formal definition with an access definition
5399
5400 Decl : Node_Id;
5401 -- Declaration of anonymous access to subprogram type
5402
5403 Spec : Node_Id;
5404 -- Original specification in access to subprogram
5405
5406 P : Node_Id;
5407
5408 begin
5409 Set_Is_Internal (Anon);
5410
5411 case Nkind (N) is
5412 when N_Component_Declaration |
5413 N_Unconstrained_Array_Definition |
5414 N_Constrained_Array_Definition =>
5415 Comp := Component_Definition (N);
5416 Acc := Access_Definition (Comp);
5417
5418 when N_Discriminant_Specification =>
5419 Comp := Discriminant_Type (N);
5420 Acc := Comp;
5421
5422 when N_Parameter_Specification =>
5423 Comp := Parameter_Type (N);
5424 Acc := Comp;
5425
5426 when N_Access_Function_Definition =>
5427 Comp := Result_Definition (N);
5428 Acc := Comp;
5429
5430 when N_Object_Declaration =>
5431 Comp := Object_Definition (N);
5432 Acc := Comp;
5433
5434 when N_Function_Specification =>
5435 Comp := Result_Definition (N);
5436 Acc := Comp;
5437
5438 when others =>
5439 raise Program_Error;
5440 end case;
5441
5442 Spec := Access_To_Subprogram_Definition (Acc);
5443
5444 Decl :=
5445 Make_Full_Type_Declaration (Loc,
5446 Defining_Identifier => Anon,
5447 Type_Definition => Copy_Separate_Tree (Spec));
5448
5449 Mark_Rewrite_Insertion (Decl);
5450
5451 -- In ASIS mode, analyze the profile on the original node, because
5452 -- the separate copy does not provide enough links to recover the
5453 -- original tree. Analysis is limited to type annotations, within
5454 -- a temporary scope that serves as an anonymous subprogram to collect
5455 -- otherwise useless temporaries and itypes.
5456
5457 if ASIS_Mode then
5458 declare
5459 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
5460
5461 begin
5462 if Nkind (Spec) = N_Access_Function_Definition then
5463 Set_Ekind (Typ, E_Function);
5464 else
5465 Set_Ekind (Typ, E_Procedure);
5466 end if;
5467
5468 Set_Parent (Typ, N);
5469 Set_Scope (Typ, Current_Scope);
5470 Push_Scope (Typ);
5471
5472 Process_Formals (Parameter_Specifications (Spec), Spec);
5473
5474 if Nkind (Spec) = N_Access_Function_Definition then
5475 declare
5476 Def : constant Node_Id := Result_Definition (Spec);
5477
5478 begin
5479 -- The result might itself be an anonymous access type, so
5480 -- have to recurse.
5481
5482 if Nkind (Def) = N_Access_Definition then
5483 if Present (Access_To_Subprogram_Definition (Def)) then
5484 Set_Etype
5485 (Def,
5486 Replace_Anonymous_Access_To_Protected_Subprogram
5487 (Spec));
5488 else
5489 Find_Type (Subtype_Mark (Def));
5490 end if;
5491
5492 else
5493 Find_Type (Def);
5494 end if;
5495 end;
5496 end if;
5497
5498 End_Scope;
5499 end;
5500 end if;
5501
5502 -- Insert the new declaration in the nearest enclosing scope. If the
5503 -- node is a body and N is its return type, the declaration belongs in
5504 -- the enclosing scope.
5505
5506 P := Parent (N);
5507
5508 if Nkind (P) = N_Subprogram_Body
5509 and then Nkind (N) = N_Function_Specification
5510 then
5511 P := Parent (P);
5512 end if;
5513
5514 while Present (P) and then not Has_Declarations (P) loop
5515 P := Parent (P);
5516 end loop;
5517
5518 pragma Assert (Present (P));
5519
5520 if Nkind (P) = N_Package_Specification then
5521 Prepend (Decl, Visible_Declarations (P));
5522 else
5523 Prepend (Decl, Declarations (P));
5524 end if;
5525
5526 -- Replace the anonymous type with an occurrence of the new declaration.
5527 -- In all cases the rewritten node does not have the null-exclusion
5528 -- attribute because (if present) it was already inherited by the
5529 -- anonymous entity (Anon). Thus, in case of components we do not
5530 -- inherit this attribute.
5531
5532 if Nkind (N) = N_Parameter_Specification then
5533 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5534 Set_Etype (Defining_Identifier (N), Anon);
5535 Set_Null_Exclusion_Present (N, False);
5536
5537 elsif Nkind (N) = N_Object_Declaration then
5538 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5539 Set_Etype (Defining_Identifier (N), Anon);
5540
5541 elsif Nkind (N) = N_Access_Function_Definition then
5542 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5543
5544 elsif Nkind (N) = N_Function_Specification then
5545 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5546 Set_Etype (Defining_Unit_Name (N), Anon);
5547
5548 else
5549 Rewrite (Comp,
5550 Make_Component_Definition (Loc,
5551 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
5552 end if;
5553
5554 Mark_Rewrite_Insertion (Comp);
5555
5556 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition) then
5557 Analyze (Decl);
5558
5559 else
5560 -- Temporarily remove the current scope (record or subprogram) from
5561 -- the stack to add the new declarations to the enclosing scope.
5562
5563 Scope_Stack.Decrement_Last;
5564 Analyze (Decl);
5565 Set_Is_Itype (Anon);
5566 Scope_Stack.Append (Curr_Scope);
5567 end if;
5568
5569 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
5570 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
5571 return Anon;
5572 end Replace_Anonymous_Access_To_Protected_Subprogram;
5573
5574 -------------------------------
5575 -- Build_Derived_Access_Type --
5576 -------------------------------
5577
5578 procedure Build_Derived_Access_Type
5579 (N : Node_Id;
5580 Parent_Type : Entity_Id;
5581 Derived_Type : Entity_Id)
5582 is
5583 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
5584
5585 Desig_Type : Entity_Id;
5586 Discr : Entity_Id;
5587 Discr_Con_Elist : Elist_Id;
5588 Discr_Con_El : Elmt_Id;
5589 Subt : Entity_Id;
5590
5591 begin
5592 -- Set the designated type so it is available in case this is an access
5593 -- to a self-referential type, e.g. a standard list type with a next
5594 -- pointer. Will be reset after subtype is built.
5595
5596 Set_Directly_Designated_Type
5597 (Derived_Type, Designated_Type (Parent_Type));
5598
5599 Subt := Process_Subtype (S, N);
5600
5601 if Nkind (S) /= N_Subtype_Indication
5602 and then Subt /= Base_Type (Subt)
5603 then
5604 Set_Ekind (Derived_Type, E_Access_Subtype);
5605 end if;
5606
5607 if Ekind (Derived_Type) = E_Access_Subtype then
5608 declare
5609 Pbase : constant Entity_Id := Base_Type (Parent_Type);
5610 Ibase : constant Entity_Id :=
5611 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
5612 Svg_Chars : constant Name_Id := Chars (Ibase);
5613 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
5614
5615 begin
5616 Copy_Node (Pbase, Ibase);
5617
5618 Set_Chars (Ibase, Svg_Chars);
5619 Set_Next_Entity (Ibase, Svg_Next_E);
5620 Set_Sloc (Ibase, Sloc (Derived_Type));
5621 Set_Scope (Ibase, Scope (Derived_Type));
5622 Set_Freeze_Node (Ibase, Empty);
5623 Set_Is_Frozen (Ibase, False);
5624 Set_Comes_From_Source (Ibase, False);
5625 Set_Is_First_Subtype (Ibase, False);
5626
5627 Set_Etype (Ibase, Pbase);
5628 Set_Etype (Derived_Type, Ibase);
5629 end;
5630 end if;
5631
5632 Set_Directly_Designated_Type
5633 (Derived_Type, Designated_Type (Subt));
5634
5635 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
5636 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
5637 Set_Size_Info (Derived_Type, Parent_Type);
5638 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5639 Set_Depends_On_Private (Derived_Type,
5640 Has_Private_Component (Derived_Type));
5641 Conditional_Delay (Derived_Type, Subt);
5642
5643 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5644 -- that it is not redundant.
5645
5646 if Null_Exclusion_Present (Type_Definition (N)) then
5647 Set_Can_Never_Be_Null (Derived_Type);
5648
5649 -- What is with the "AND THEN FALSE" here ???
5650
5651 if Can_Never_Be_Null (Parent_Type)
5652 and then False
5653 then
5654 Error_Msg_NE
5655 ("`NOT NULL` not allowed (& already excludes null)",
5656 N, Parent_Type);
5657 end if;
5658
5659 elsif Can_Never_Be_Null (Parent_Type) then
5660 Set_Can_Never_Be_Null (Derived_Type);
5661 end if;
5662
5663 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5664 -- the root type for this information.
5665
5666 -- Apply range checks to discriminants for derived record case
5667 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5668
5669 Desig_Type := Designated_Type (Derived_Type);
5670 if Is_Composite_Type (Desig_Type)
5671 and then (not Is_Array_Type (Desig_Type))
5672 and then Has_Discriminants (Desig_Type)
5673 and then Base_Type (Desig_Type) /= Desig_Type
5674 then
5675 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
5676 Discr_Con_El := First_Elmt (Discr_Con_Elist);
5677
5678 Discr := First_Discriminant (Base_Type (Desig_Type));
5679 while Present (Discr_Con_El) loop
5680 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
5681 Next_Elmt (Discr_Con_El);
5682 Next_Discriminant (Discr);
5683 end loop;
5684 end if;
5685 end Build_Derived_Access_Type;
5686
5687 ------------------------------
5688 -- Build_Derived_Array_Type --
5689 ------------------------------
5690
5691 procedure Build_Derived_Array_Type
5692 (N : Node_Id;
5693 Parent_Type : Entity_Id;
5694 Derived_Type : Entity_Id)
5695 is
5696 Loc : constant Source_Ptr := Sloc (N);
5697 Tdef : constant Node_Id := Type_Definition (N);
5698 Indic : constant Node_Id := Subtype_Indication (Tdef);
5699 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
5700 Implicit_Base : Entity_Id;
5701 New_Indic : Node_Id;
5702
5703 procedure Make_Implicit_Base;
5704 -- If the parent subtype is constrained, the derived type is a subtype
5705 -- of an implicit base type derived from the parent base.
5706
5707 ------------------------
5708 -- Make_Implicit_Base --
5709 ------------------------
5710
5711 procedure Make_Implicit_Base is
5712 begin
5713 Implicit_Base :=
5714 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
5715
5716 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
5717 Set_Etype (Implicit_Base, Parent_Base);
5718
5719 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
5720 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
5721
5722 Set_Has_Delayed_Freeze (Implicit_Base, True);
5723 end Make_Implicit_Base;
5724
5725 -- Start of processing for Build_Derived_Array_Type
5726
5727 begin
5728 if not Is_Constrained (Parent_Type) then
5729 if Nkind (Indic) /= N_Subtype_Indication then
5730 Set_Ekind (Derived_Type, E_Array_Type);
5731
5732 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5733 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
5734
5735 Set_Has_Delayed_Freeze (Derived_Type, True);
5736
5737 else
5738 Make_Implicit_Base;
5739 Set_Etype (Derived_Type, Implicit_Base);
5740
5741 New_Indic :=
5742 Make_Subtype_Declaration (Loc,
5743 Defining_Identifier => Derived_Type,
5744 Subtype_Indication =>
5745 Make_Subtype_Indication (Loc,
5746 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
5747 Constraint => Constraint (Indic)));
5748
5749 Rewrite (N, New_Indic);
5750 Analyze (N);
5751 end if;
5752
5753 else
5754 if Nkind (Indic) /= N_Subtype_Indication then
5755 Make_Implicit_Base;
5756
5757 Set_Ekind (Derived_Type, Ekind (Parent_Type));
5758 Set_Etype (Derived_Type, Implicit_Base);
5759 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5760
5761 else
5762 Error_Msg_N ("illegal constraint on constrained type", Indic);
5763 end if;
5764 end if;
5765
5766 -- If parent type is not a derived type itself, and is declared in
5767 -- closed scope (e.g. a subprogram), then we must explicitly introduce
5768 -- the new type's concatenation operator since Derive_Subprograms
5769 -- will not inherit the parent's operator. If the parent type is
5770 -- unconstrained, the operator is of the unconstrained base type.
5771
5772 if Number_Dimensions (Parent_Type) = 1
5773 and then not Is_Limited_Type (Parent_Type)
5774 and then not Is_Derived_Type (Parent_Type)
5775 and then not Is_Package_Or_Generic_Package
5776 (Scope (Base_Type (Parent_Type)))
5777 then
5778 if not Is_Constrained (Parent_Type)
5779 and then Is_Constrained (Derived_Type)
5780 then
5781 New_Concatenation_Op (Implicit_Base);
5782 else
5783 New_Concatenation_Op (Derived_Type);
5784 end if;
5785 end if;
5786 end Build_Derived_Array_Type;
5787
5788 -----------------------------------
5789 -- Build_Derived_Concurrent_Type --
5790 -----------------------------------
5791
5792 procedure Build_Derived_Concurrent_Type
5793 (N : Node_Id;
5794 Parent_Type : Entity_Id;
5795 Derived_Type : Entity_Id)
5796 is
5797 Loc : constant Source_Ptr := Sloc (N);
5798
5799 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
5800 Corr_Decl : Node_Id;
5801 Corr_Decl_Needed : Boolean;
5802 -- If the derived type has fewer discriminants than its parent, the
5803 -- corresponding record is also a derived type, in order to account for
5804 -- the bound discriminants. We create a full type declaration for it in
5805 -- this case.
5806
5807 Constraint_Present : constant Boolean :=
5808 Nkind (Subtype_Indication (Type_Definition (N))) =
5809 N_Subtype_Indication;
5810
5811 D_Constraint : Node_Id;
5812 New_Constraint : Elist_Id;
5813 Old_Disc : Entity_Id;
5814 New_Disc : Entity_Id;
5815 New_N : Node_Id;
5816
5817 begin
5818 Set_Stored_Constraint (Derived_Type, No_Elist);
5819 Corr_Decl_Needed := False;
5820 Old_Disc := Empty;
5821
5822 if Present (Discriminant_Specifications (N))
5823 and then Constraint_Present
5824 then
5825 Old_Disc := First_Discriminant (Parent_Type);
5826 New_Disc := First (Discriminant_Specifications (N));
5827 while Present (New_Disc) and then Present (Old_Disc) loop
5828 Next_Discriminant (Old_Disc);
5829 Next (New_Disc);
5830 end loop;
5831 end if;
5832
5833 if Present (Old_Disc) and then Expander_Active then
5834
5835 -- The new type has fewer discriminants, so we need to create a new
5836 -- corresponding record, which is derived from the corresponding
5837 -- record of the parent, and has a stored constraint that captures
5838 -- the values of the discriminant constraints. The corresponding
5839 -- record is needed only if expander is active and code generation is
5840 -- enabled.
5841
5842 -- The type declaration for the derived corresponding record has the
5843 -- same discriminant part and constraints as the current declaration.
5844 -- Copy the unanalyzed tree to build declaration.
5845
5846 Corr_Decl_Needed := True;
5847 New_N := Copy_Separate_Tree (N);
5848
5849 Corr_Decl :=
5850 Make_Full_Type_Declaration (Loc,
5851 Defining_Identifier => Corr_Record,
5852 Discriminant_Specifications =>
5853 Discriminant_Specifications (New_N),
5854 Type_Definition =>
5855 Make_Derived_Type_Definition (Loc,
5856 Subtype_Indication =>
5857 Make_Subtype_Indication (Loc,
5858 Subtype_Mark =>
5859 New_Occurrence_Of
5860 (Corresponding_Record_Type (Parent_Type), Loc),
5861 Constraint =>
5862 Constraint
5863 (Subtype_Indication (Type_Definition (New_N))))));
5864 end if;
5865
5866 -- Copy Storage_Size and Relative_Deadline variables if task case
5867
5868 if Is_Task_Type (Parent_Type) then
5869 Set_Storage_Size_Variable (Derived_Type,
5870 Storage_Size_Variable (Parent_Type));
5871 Set_Relative_Deadline_Variable (Derived_Type,
5872 Relative_Deadline_Variable (Parent_Type));
5873 end if;
5874
5875 if Present (Discriminant_Specifications (N)) then
5876 Push_Scope (Derived_Type);
5877 Check_Or_Process_Discriminants (N, Derived_Type);
5878
5879 if Constraint_Present then
5880 New_Constraint :=
5881 Expand_To_Stored_Constraint
5882 (Parent_Type,
5883 Build_Discriminant_Constraints
5884 (Parent_Type,
5885 Subtype_Indication (Type_Definition (N)), True));
5886 end if;
5887
5888 End_Scope;
5889
5890 elsif Constraint_Present then
5891
5892 -- Build constrained subtype, copying the constraint, and derive
5893 -- from it to create a derived constrained type.
5894
5895 declare
5896 Loc : constant Source_Ptr := Sloc (N);
5897 Anon : constant Entity_Id :=
5898 Make_Defining_Identifier (Loc,
5899 Chars => New_External_Name (Chars (Derived_Type), 'T'));
5900 Decl : Node_Id;
5901
5902 begin
5903 Decl :=
5904 Make_Subtype_Declaration (Loc,
5905 Defining_Identifier => Anon,
5906 Subtype_Indication =>
5907 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
5908 Insert_Before (N, Decl);
5909 Analyze (Decl);
5910
5911 Rewrite (Subtype_Indication (Type_Definition (N)),
5912 New_Occurrence_Of (Anon, Loc));
5913 Set_Analyzed (Derived_Type, False);
5914 Analyze (N);
5915 return;
5916 end;
5917 end if;
5918
5919 -- By default, operations and private data are inherited from parent.
5920 -- However, in the presence of bound discriminants, a new corresponding
5921 -- record will be created, see below.
5922
5923 Set_Has_Discriminants
5924 (Derived_Type, Has_Discriminants (Parent_Type));
5925 Set_Corresponding_Record_Type
5926 (Derived_Type, Corresponding_Record_Type (Parent_Type));
5927
5928 -- Is_Constrained is set according the parent subtype, but is set to
5929 -- False if the derived type is declared with new discriminants.
5930
5931 Set_Is_Constrained
5932 (Derived_Type,
5933 (Is_Constrained (Parent_Type) or else Constraint_Present)
5934 and then not Present (Discriminant_Specifications (N)));
5935
5936 if Constraint_Present then
5937 if not Has_Discriminants (Parent_Type) then
5938 Error_Msg_N ("untagged parent must have discriminants", N);
5939
5940 elsif Present (Discriminant_Specifications (N)) then
5941
5942 -- Verify that new discriminants are used to constrain old ones
5943
5944 D_Constraint :=
5945 First
5946 (Constraints
5947 (Constraint (Subtype_Indication (Type_Definition (N)))));
5948
5949 Old_Disc := First_Discriminant (Parent_Type);
5950
5951 while Present (D_Constraint) loop
5952 if Nkind (D_Constraint) /= N_Discriminant_Association then
5953
5954 -- Positional constraint. If it is a reference to a new
5955 -- discriminant, it constrains the corresponding old one.
5956
5957 if Nkind (D_Constraint) = N_Identifier then
5958 New_Disc := First_Discriminant (Derived_Type);
5959 while Present (New_Disc) loop
5960 exit when Chars (New_Disc) = Chars (D_Constraint);
5961 Next_Discriminant (New_Disc);
5962 end loop;
5963
5964 if Present (New_Disc) then
5965 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
5966 end if;
5967 end if;
5968
5969 Next_Discriminant (Old_Disc);
5970
5971 -- if this is a named constraint, search by name for the old
5972 -- discriminants constrained by the new one.
5973
5974 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
5975
5976 -- Find new discriminant with that name
5977
5978 New_Disc := First_Discriminant (Derived_Type);
5979 while Present (New_Disc) loop
5980 exit when
5981 Chars (New_Disc) = Chars (Expression (D_Constraint));
5982 Next_Discriminant (New_Disc);
5983 end loop;
5984
5985 if Present (New_Disc) then
5986
5987 -- Verify that new discriminant renames some discriminant
5988 -- of the parent type, and associate the new discriminant
5989 -- with one or more old ones that it renames.
5990
5991 declare
5992 Selector : Node_Id;
5993
5994 begin
5995 Selector := First (Selector_Names (D_Constraint));
5996 while Present (Selector) loop
5997 Old_Disc := First_Discriminant (Parent_Type);
5998 while Present (Old_Disc) loop
5999 exit when Chars (Old_Disc) = Chars (Selector);
6000 Next_Discriminant (Old_Disc);
6001 end loop;
6002
6003 if Present (Old_Disc) then
6004 Set_Corresponding_Discriminant
6005 (New_Disc, Old_Disc);
6006 end if;
6007
6008 Next (Selector);
6009 end loop;
6010 end;
6011 end if;
6012 end if;
6013
6014 Next (D_Constraint);
6015 end loop;
6016
6017 New_Disc := First_Discriminant (Derived_Type);
6018 while Present (New_Disc) loop
6019 if No (Corresponding_Discriminant (New_Disc)) then
6020 Error_Msg_NE
6021 ("new discriminant& must constrain old one", N, New_Disc);
6022
6023 elsif not
6024 Subtypes_Statically_Compatible
6025 (Etype (New_Disc),
6026 Etype (Corresponding_Discriminant (New_Disc)))
6027 then
6028 Error_Msg_NE
6029 ("& not statically compatible with parent discriminant",
6030 N, New_Disc);
6031 end if;
6032
6033 Next_Discriminant (New_Disc);
6034 end loop;
6035 end if;
6036
6037 elsif Present (Discriminant_Specifications (N)) then
6038 Error_Msg_N
6039 ("missing discriminant constraint in untagged derivation", N);
6040 end if;
6041
6042 -- The entity chain of the derived type includes the new discriminants
6043 -- but shares operations with the parent.
6044
6045 if Present (Discriminant_Specifications (N)) then
6046 Old_Disc := First_Discriminant (Parent_Type);
6047 while Present (Old_Disc) loop
6048 if No (Next_Entity (Old_Disc))
6049 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
6050 then
6051 Set_Next_Entity
6052 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
6053 exit;
6054 end if;
6055
6056 Next_Discriminant (Old_Disc);
6057 end loop;
6058
6059 else
6060 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
6061 if Has_Discriminants (Parent_Type) then
6062 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6063 Set_Discriminant_Constraint (
6064 Derived_Type, Discriminant_Constraint (Parent_Type));
6065 end if;
6066 end if;
6067
6068 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
6069
6070 Set_Has_Completion (Derived_Type);
6071
6072 if Corr_Decl_Needed then
6073 Set_Stored_Constraint (Derived_Type, New_Constraint);
6074 Insert_After (N, Corr_Decl);
6075 Analyze (Corr_Decl);
6076 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
6077 end if;
6078 end Build_Derived_Concurrent_Type;
6079
6080 ------------------------------------
6081 -- Build_Derived_Enumeration_Type --
6082 ------------------------------------
6083
6084 procedure Build_Derived_Enumeration_Type
6085 (N : Node_Id;
6086 Parent_Type : Entity_Id;
6087 Derived_Type : Entity_Id)
6088 is
6089 Loc : constant Source_Ptr := Sloc (N);
6090 Def : constant Node_Id := Type_Definition (N);
6091 Indic : constant Node_Id := Subtype_Indication (Def);
6092 Implicit_Base : Entity_Id;
6093 Literal : Entity_Id;
6094 New_Lit : Entity_Id;
6095 Literals_List : List_Id;
6096 Type_Decl : Node_Id;
6097 Hi, Lo : Node_Id;
6098 Rang_Expr : Node_Id;
6099
6100 begin
6101 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6102 -- not have explicit literals lists we need to process types derived
6103 -- from them specially. This is handled by Derived_Standard_Character.
6104 -- If the parent type is a generic type, there are no literals either,
6105 -- and we construct the same skeletal representation as for the generic
6106 -- parent type.
6107
6108 if Is_Standard_Character_Type (Parent_Type) then
6109 Derived_Standard_Character (N, Parent_Type, Derived_Type);
6110
6111 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
6112 declare
6113 Lo : Node_Id;
6114 Hi : Node_Id;
6115
6116 begin
6117 if Nkind (Indic) /= N_Subtype_Indication then
6118 Lo :=
6119 Make_Attribute_Reference (Loc,
6120 Attribute_Name => Name_First,
6121 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6122 Set_Etype (Lo, Derived_Type);
6123
6124 Hi :=
6125 Make_Attribute_Reference (Loc,
6126 Attribute_Name => Name_Last,
6127 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6128 Set_Etype (Hi, Derived_Type);
6129
6130 Set_Scalar_Range (Derived_Type,
6131 Make_Range (Loc,
6132 Low_Bound => Lo,
6133 High_Bound => Hi));
6134 else
6135
6136 -- Analyze subtype indication and verify compatibility
6137 -- with parent type.
6138
6139 if Base_Type (Process_Subtype (Indic, N)) /=
6140 Base_Type (Parent_Type)
6141 then
6142 Error_Msg_N
6143 ("illegal constraint for formal discrete type", N);
6144 end if;
6145 end if;
6146 end;
6147
6148 else
6149 -- If a constraint is present, analyze the bounds to catch
6150 -- premature usage of the derived literals.
6151
6152 if Nkind (Indic) = N_Subtype_Indication
6153 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
6154 then
6155 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
6156 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
6157 end if;
6158
6159 -- Introduce an implicit base type for the derived type even if there
6160 -- is no constraint attached to it, since this seems closer to the
6161 -- Ada semantics. Build a full type declaration tree for the derived
6162 -- type using the implicit base type as the defining identifier. The
6163 -- build a subtype declaration tree which applies the constraint (if
6164 -- any) have it replace the derived type declaration.
6165
6166 Literal := First_Literal (Parent_Type);
6167 Literals_List := New_List;
6168 while Present (Literal)
6169 and then Ekind (Literal) = E_Enumeration_Literal
6170 loop
6171 -- Literals of the derived type have the same representation as
6172 -- those of the parent type, but this representation can be
6173 -- overridden by an explicit representation clause. Indicate
6174 -- that there is no explicit representation given yet. These
6175 -- derived literals are implicit operations of the new type,
6176 -- and can be overridden by explicit ones.
6177
6178 if Nkind (Literal) = N_Defining_Character_Literal then
6179 New_Lit :=
6180 Make_Defining_Character_Literal (Loc, Chars (Literal));
6181 else
6182 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
6183 end if;
6184
6185 Set_Ekind (New_Lit, E_Enumeration_Literal);
6186 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
6187 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
6188 Set_Enumeration_Rep_Expr (New_Lit, Empty);
6189 Set_Alias (New_Lit, Literal);
6190 Set_Is_Known_Valid (New_Lit, True);
6191
6192 Append (New_Lit, Literals_List);
6193 Next_Literal (Literal);
6194 end loop;
6195
6196 Implicit_Base :=
6197 Make_Defining_Identifier (Sloc (Derived_Type),
6198 Chars => New_External_Name (Chars (Derived_Type), 'B'));
6199
6200 -- Indicate the proper nature of the derived type. This must be done
6201 -- before analysis of the literals, to recognize cases when a literal
6202 -- may be hidden by a previous explicit function definition (cf.
6203 -- c83031a).
6204
6205 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
6206 Set_Etype (Derived_Type, Implicit_Base);
6207
6208 Type_Decl :=
6209 Make_Full_Type_Declaration (Loc,
6210 Defining_Identifier => Implicit_Base,
6211 Discriminant_Specifications => No_List,
6212 Type_Definition =>
6213 Make_Enumeration_Type_Definition (Loc, Literals_List));
6214
6215 Mark_Rewrite_Insertion (Type_Decl);
6216 Insert_Before (N, Type_Decl);
6217 Analyze (Type_Decl);
6218
6219 -- After the implicit base is analyzed its Etype needs to be changed
6220 -- to reflect the fact that it is derived from the parent type which
6221 -- was ignored during analysis. We also set the size at this point.
6222
6223 Set_Etype (Implicit_Base, Parent_Type);
6224
6225 Set_Size_Info (Implicit_Base, Parent_Type);
6226 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
6227 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
6228
6229 -- Copy other flags from parent type
6230
6231 Set_Has_Non_Standard_Rep
6232 (Implicit_Base, Has_Non_Standard_Rep
6233 (Parent_Type));
6234 Set_Has_Pragma_Ordered
6235 (Implicit_Base, Has_Pragma_Ordered
6236 (Parent_Type));
6237 Set_Has_Delayed_Freeze (Implicit_Base);
6238
6239 -- Process the subtype indication including a validation check on the
6240 -- constraint, if any. If a constraint is given, its bounds must be
6241 -- implicitly converted to the new type.
6242
6243 if Nkind (Indic) = N_Subtype_Indication then
6244 declare
6245 R : constant Node_Id :=
6246 Range_Expression (Constraint (Indic));
6247
6248 begin
6249 if Nkind (R) = N_Range then
6250 Hi := Build_Scalar_Bound
6251 (High_Bound (R), Parent_Type, Implicit_Base);
6252 Lo := Build_Scalar_Bound
6253 (Low_Bound (R), Parent_Type, Implicit_Base);
6254
6255 else
6256 -- Constraint is a Range attribute. Replace with explicit
6257 -- mention of the bounds of the prefix, which must be a
6258 -- subtype.
6259
6260 Analyze (Prefix (R));
6261 Hi :=
6262 Convert_To (Implicit_Base,
6263 Make_Attribute_Reference (Loc,
6264 Attribute_Name => Name_Last,
6265 Prefix =>
6266 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6267
6268 Lo :=
6269 Convert_To (Implicit_Base,
6270 Make_Attribute_Reference (Loc,
6271 Attribute_Name => Name_First,
6272 Prefix =>
6273 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6274 end if;
6275 end;
6276
6277 else
6278 Hi :=
6279 Build_Scalar_Bound
6280 (Type_High_Bound (Parent_Type),
6281 Parent_Type, Implicit_Base);
6282 Lo :=
6283 Build_Scalar_Bound
6284 (Type_Low_Bound (Parent_Type),
6285 Parent_Type, Implicit_Base);
6286 end if;
6287
6288 Rang_Expr :=
6289 Make_Range (Loc,
6290 Low_Bound => Lo,
6291 High_Bound => Hi);
6292
6293 -- If we constructed a default range for the case where no range
6294 -- was given, then the expressions in the range must not freeze
6295 -- since they do not correspond to expressions in the source.
6296
6297 if Nkind (Indic) /= N_Subtype_Indication then
6298 Set_Must_Not_Freeze (Lo);
6299 Set_Must_Not_Freeze (Hi);
6300 Set_Must_Not_Freeze (Rang_Expr);
6301 end if;
6302
6303 Rewrite (N,
6304 Make_Subtype_Declaration (Loc,
6305 Defining_Identifier => Derived_Type,
6306 Subtype_Indication =>
6307 Make_Subtype_Indication (Loc,
6308 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6309 Constraint =>
6310 Make_Range_Constraint (Loc,
6311 Range_Expression => Rang_Expr))));
6312
6313 Analyze (N);
6314
6315 -- Apply a range check. Since this range expression doesn't have an
6316 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6317 -- this right???
6318
6319 if Nkind (Indic) = N_Subtype_Indication then
6320 Apply_Range_Check (Range_Expression (Constraint (Indic)),
6321 Parent_Type,
6322 Source_Typ => Entity (Subtype_Mark (Indic)));
6323 end if;
6324 end if;
6325 end Build_Derived_Enumeration_Type;
6326
6327 --------------------------------
6328 -- Build_Derived_Numeric_Type --
6329 --------------------------------
6330
6331 procedure Build_Derived_Numeric_Type
6332 (N : Node_Id;
6333 Parent_Type : Entity_Id;
6334 Derived_Type : Entity_Id)
6335 is
6336 Loc : constant Source_Ptr := Sloc (N);
6337 Tdef : constant Node_Id := Type_Definition (N);
6338 Indic : constant Node_Id := Subtype_Indication (Tdef);
6339 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6340 No_Constraint : constant Boolean := Nkind (Indic) /=
6341 N_Subtype_Indication;
6342 Implicit_Base : Entity_Id;
6343
6344 Lo : Node_Id;
6345 Hi : Node_Id;
6346
6347 begin
6348 -- Process the subtype indication including a validation check on
6349 -- the constraint if any.
6350
6351 Discard_Node (Process_Subtype (Indic, N));
6352
6353 -- Introduce an implicit base type for the derived type even if there
6354 -- is no constraint attached to it, since this seems closer to the Ada
6355 -- semantics.
6356
6357 Implicit_Base :=
6358 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6359
6360 Set_Etype (Implicit_Base, Parent_Base);
6361 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6362 Set_Size_Info (Implicit_Base, Parent_Base);
6363 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
6364 Set_Parent (Implicit_Base, Parent (Derived_Type));
6365 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
6366
6367 -- Set RM Size for discrete type or decimal fixed-point type
6368 -- Ordinary fixed-point is excluded, why???
6369
6370 if Is_Discrete_Type (Parent_Base)
6371 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
6372 then
6373 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
6374 end if;
6375
6376 Set_Has_Delayed_Freeze (Implicit_Base);
6377
6378 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
6379 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
6380
6381 Set_Scalar_Range (Implicit_Base,
6382 Make_Range (Loc,
6383 Low_Bound => Lo,
6384 High_Bound => Hi));
6385
6386 if Has_Infinities (Parent_Base) then
6387 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
6388 end if;
6389
6390 -- The Derived_Type, which is the entity of the declaration, is a
6391 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6392 -- absence of an explicit constraint.
6393
6394 Set_Etype (Derived_Type, Implicit_Base);
6395
6396 -- If we did not have a constraint, then the Ekind is set from the
6397 -- parent type (otherwise Process_Subtype has set the bounds)
6398
6399 if No_Constraint then
6400 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
6401 end if;
6402
6403 -- If we did not have a range constraint, then set the range from the
6404 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6405
6406 if No_Constraint
6407 or else not Has_Range_Constraint (Indic)
6408 then
6409 Set_Scalar_Range (Derived_Type,
6410 Make_Range (Loc,
6411 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
6412 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
6413 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6414
6415 if Has_Infinities (Parent_Type) then
6416 Set_Includes_Infinities (Scalar_Range (Derived_Type));
6417 end if;
6418
6419 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
6420 end if;
6421
6422 Set_Is_Descendent_Of_Address (Derived_Type,
6423 Is_Descendent_Of_Address (Parent_Type));
6424 Set_Is_Descendent_Of_Address (Implicit_Base,
6425 Is_Descendent_Of_Address (Parent_Type));
6426
6427 -- Set remaining type-specific fields, depending on numeric type
6428
6429 if Is_Modular_Integer_Type (Parent_Type) then
6430 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
6431
6432 Set_Non_Binary_Modulus
6433 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
6434
6435 Set_Is_Known_Valid
6436 (Implicit_Base, Is_Known_Valid (Parent_Base));
6437
6438 elsif Is_Floating_Point_Type (Parent_Type) then
6439
6440 -- Digits of base type is always copied from the digits value of
6441 -- the parent base type, but the digits of the derived type will
6442 -- already have been set if there was a constraint present.
6443
6444 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6445 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
6446
6447 if No_Constraint then
6448 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
6449 end if;
6450
6451 elsif Is_Fixed_Point_Type (Parent_Type) then
6452
6453 -- Small of base type and derived type are always copied from the
6454 -- parent base type, since smalls never change. The delta of the
6455 -- base type is also copied from the parent base type. However the
6456 -- delta of the derived type will have been set already if a
6457 -- constraint was present.
6458
6459 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
6460 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
6461 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
6462
6463 if No_Constraint then
6464 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
6465 end if;
6466
6467 -- The scale and machine radix in the decimal case are always
6468 -- copied from the parent base type.
6469
6470 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
6471 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
6472 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
6473
6474 Set_Machine_Radix_10
6475 (Derived_Type, Machine_Radix_10 (Parent_Base));
6476 Set_Machine_Radix_10
6477 (Implicit_Base, Machine_Radix_10 (Parent_Base));
6478
6479 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6480
6481 if No_Constraint then
6482 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
6483
6484 else
6485 -- the analysis of the subtype_indication sets the
6486 -- digits value of the derived type.
6487
6488 null;
6489 end if;
6490 end if;
6491 end if;
6492
6493 if Is_Integer_Type (Parent_Type) then
6494 Set_Has_Shift_Operator
6495 (Implicit_Base, Has_Shift_Operator (Parent_Type));
6496 end if;
6497
6498 -- The type of the bounds is that of the parent type, and they
6499 -- must be converted to the derived type.
6500
6501 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
6502
6503 -- The implicit_base should be frozen when the derived type is frozen,
6504 -- but note that it is used in the conversions of the bounds. For fixed
6505 -- types we delay the determination of the bounds until the proper
6506 -- freezing point. For other numeric types this is rejected by GCC, for
6507 -- reasons that are currently unclear (???), so we choose to freeze the
6508 -- implicit base now. In the case of integers and floating point types
6509 -- this is harmless because subsequent representation clauses cannot
6510 -- affect anything, but it is still baffling that we cannot use the
6511 -- same mechanism for all derived numeric types.
6512
6513 -- There is a further complication: actually some representation
6514 -- clauses can affect the implicit base type. For example, attribute
6515 -- definition clauses for stream-oriented attributes need to set the
6516 -- corresponding TSS entries on the base type, and this normally
6517 -- cannot be done after the base type is frozen, so the circuitry in
6518 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6519 -- and not use Set_TSS in this case.
6520
6521 -- There are also consequences for the case of delayed representation
6522 -- aspects for some cases. For example, a Size aspect is delayed and
6523 -- should not be evaluated to the freeze point. This early freezing
6524 -- means that the size attribute evaluation happens too early???
6525
6526 if Is_Fixed_Point_Type (Parent_Type) then
6527 Conditional_Delay (Implicit_Base, Parent_Type);
6528 else
6529 Freeze_Before (N, Implicit_Base);
6530 end if;
6531 end Build_Derived_Numeric_Type;
6532
6533 --------------------------------
6534 -- Build_Derived_Private_Type --
6535 --------------------------------
6536
6537 procedure Build_Derived_Private_Type
6538 (N : Node_Id;
6539 Parent_Type : Entity_Id;
6540 Derived_Type : Entity_Id;
6541 Is_Completion : Boolean;
6542 Derive_Subps : Boolean := True)
6543 is
6544 Loc : constant Source_Ptr := Sloc (N);
6545 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
6546 Par_Scope : constant Entity_Id := Scope (Par_Base);
6547 Der_Base : Entity_Id;
6548 Discr : Entity_Id;
6549 Full_Der : Entity_Id;
6550 Full_P : Entity_Id;
6551 Last_Discr : Entity_Id;
6552
6553 procedure Build_Full_Derivation;
6554 -- Build full derivation, i.e. derive from the full view
6555
6556 procedure Copy_And_Build;
6557 -- Copy derived type declaration, replace parent with its full view,
6558 -- and build derivation
6559
6560 ---------------------------
6561 -- Build_Full_Derivation --
6562 ---------------------------
6563
6564 procedure Build_Full_Derivation is
6565 begin
6566 -- If parent scope is not open, install the declarations
6567
6568 if not In_Open_Scopes (Par_Scope) then
6569 Install_Private_Declarations (Par_Scope);
6570 Install_Visible_Declarations (Par_Scope);
6571 Copy_And_Build;
6572 Uninstall_Declarations (Par_Scope);
6573
6574 -- If parent scope is open and in another unit, and parent has a
6575 -- completion, then the derivation is taking place in the visible
6576 -- part of a child unit. In that case retrieve the full view of
6577 -- the parent momentarily.
6578
6579 elsif not In_Same_Source_Unit (N, Parent_Type) then
6580 Full_P := Full_View (Parent_Type);
6581 Exchange_Declarations (Parent_Type);
6582 Copy_And_Build;
6583 Exchange_Declarations (Full_P);
6584
6585 -- Otherwise it is a local derivation
6586
6587 else
6588 Copy_And_Build;
6589 end if;
6590 end Build_Full_Derivation;
6591
6592 --------------------
6593 -- Copy_And_Build --
6594 --------------------
6595
6596 procedure Copy_And_Build is
6597 Full_N : Node_Id;
6598 Full_Parent : Entity_Id := Parent_Type;
6599
6600 begin
6601 -- If the parent is itself derived from another private type,
6602 -- installing the private declarations has not affected its
6603 -- privacy status, so use its own full view explicitly.
6604
6605 if Is_Private_Type (Full_Parent)
6606 and then Present (Full_View (Full_Parent))
6607 then
6608 Full_Parent := Full_View (Full_Parent);
6609 end if;
6610
6611 -- And its underlying full view if necessary
6612
6613 if Is_Private_Type (Full_Parent)
6614 and then Present (Underlying_Full_View (Full_Parent))
6615 then
6616 Full_Parent := Underlying_Full_View (Full_Parent);
6617 end if;
6618
6619 -- For record, access and most enumeration types, derivation from
6620 -- the full view requires a fully-fledged declaration. In the other
6621 -- cases, just use an itype.
6622
6623 if Ekind (Full_Parent) in Record_Kind
6624 or else Ekind (Full_Parent) in Access_Kind
6625 or else
6626 (Ekind (Full_Parent) in Enumeration_Kind
6627 and then not Is_Standard_Character_Type (Full_Parent)
6628 and then not Is_Generic_Type (Root_Type (Full_Parent)))
6629 then
6630 -- Copy and adjust declaration to provide a completion for what
6631 -- is originally a private declaration. Indicate that full view
6632 -- is internally generated.
6633
6634 Full_N := New_Copy_Tree (N);
6635 Full_Der := New_Copy (Derived_Type);
6636 Set_Comes_From_Source (Full_N, False);
6637 Set_Comes_From_Source (Full_Der, False);
6638 Set_Parent (Full_Der, Full_N);
6639 Set_Defining_Identifier (Full_N, Full_Der);
6640
6641 -- If there are no constraints, adjust the subtype mark
6642
6643 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
6644 N_Subtype_Indication
6645 then
6646 Set_Subtype_Indication
6647 (Type_Definition (Full_N),
6648 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
6649 end if;
6650
6651 Insert_After (N, Full_N);
6652
6653 -- Build full view of derived type from full view of parent which
6654 -- is now installed. Subprograms have been derived on the partial
6655 -- view, the completion does not derive them anew.
6656
6657 if Ekind (Full_Parent) in Record_Kind then
6658
6659 -- If parent type is tagged, the completion inherits the proper
6660 -- primitive operations.
6661
6662 if Is_Tagged_Type (Parent_Type) then
6663 Build_Derived_Record_Type
6664 (Full_N, Full_Parent, Full_Der, Derive_Subps);
6665 else
6666 Build_Derived_Record_Type
6667 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
6668 end if;
6669
6670 else
6671 Build_Derived_Type
6672 (Full_N, Full_Parent, Full_Der, True, Derive_Subps => False);
6673 end if;
6674
6675 -- The full declaration has been introduced into the tree and
6676 -- processed in the step above. It should not be analyzed again
6677 -- (when encountered later in the current list of declarations)
6678 -- to prevent spurious name conflicts. The full entity remains
6679 -- invisible.
6680
6681 Set_Analyzed (Full_N);
6682
6683 else
6684 Full_Der :=
6685 Make_Defining_Identifier (Sloc (Derived_Type),
6686 Chars => Chars (Derived_Type));
6687 Set_Is_Itype (Full_Der);
6688 Set_Associated_Node_For_Itype (Full_Der, N);
6689 Set_Parent (Full_Der, N);
6690 Build_Derived_Type
6691 (N, Full_Parent, Full_Der, True, Derive_Subps => False);
6692 end if;
6693
6694 Set_Has_Private_Declaration (Full_Der);
6695 Set_Has_Private_Declaration (Derived_Type);
6696
6697 Set_Scope (Full_Der, Scope (Derived_Type));
6698 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
6699 Set_Has_Size_Clause (Full_Der, False);
6700 Set_Has_Alignment_Clause (Full_Der, False);
6701 Set_Has_Delayed_Freeze (Full_Der);
6702 Set_Is_Frozen (Full_Der, False);
6703 Set_Freeze_Node (Full_Der, Empty);
6704 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
6705 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
6706
6707 -- The convention on the base type may be set in the private part
6708 -- and not propagated to the subtype until later, so we obtain the
6709 -- convention from the base type of the parent.
6710
6711 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
6712 end Copy_And_Build;
6713
6714 -- Start of processing for Build_Derived_Private_Type
6715
6716 begin
6717 if Is_Tagged_Type (Parent_Type) then
6718 Full_P := Full_View (Parent_Type);
6719
6720 -- A type extension of a type with unknown discriminants is an
6721 -- indefinite type that the back-end cannot handle directly.
6722 -- We treat it as a private type, and build a completion that is
6723 -- derived from the full view of the parent, and hopefully has
6724 -- known discriminants.
6725
6726 -- If the full view of the parent type has an underlying record view,
6727 -- use it to generate the underlying record view of this derived type
6728 -- (required for chains of derivations with unknown discriminants).
6729
6730 -- Minor optimization: we avoid the generation of useless underlying
6731 -- record view entities if the private type declaration has unknown
6732 -- discriminants but its corresponding full view has no
6733 -- discriminants.
6734
6735 if Has_Unknown_Discriminants (Parent_Type)
6736 and then Present (Full_P)
6737 and then (Has_Discriminants (Full_P)
6738 or else Present (Underlying_Record_View (Full_P)))
6739 and then not In_Open_Scopes (Par_Scope)
6740 and then Expander_Active
6741 then
6742 declare
6743 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
6744 New_Ext : constant Node_Id :=
6745 Copy_Separate_Tree
6746 (Record_Extension_Part (Type_Definition (N)));
6747 Decl : Node_Id;
6748
6749 begin
6750 Build_Derived_Record_Type
6751 (N, Parent_Type, Derived_Type, Derive_Subps);
6752
6753 -- Build anonymous completion, as a derivation from the full
6754 -- view of the parent. This is not a completion in the usual
6755 -- sense, because the current type is not private.
6756
6757 Decl :=
6758 Make_Full_Type_Declaration (Loc,
6759 Defining_Identifier => Full_Der,
6760 Type_Definition =>
6761 Make_Derived_Type_Definition (Loc,
6762 Subtype_Indication =>
6763 New_Copy_Tree
6764 (Subtype_Indication (Type_Definition (N))),
6765 Record_Extension_Part => New_Ext));
6766
6767 -- If the parent type has an underlying record view, use it
6768 -- here to build the new underlying record view.
6769
6770 if Present (Underlying_Record_View (Full_P)) then
6771 pragma Assert
6772 (Nkind (Subtype_Indication (Type_Definition (Decl)))
6773 = N_Identifier);
6774 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
6775 Underlying_Record_View (Full_P));
6776 end if;
6777
6778 Install_Private_Declarations (Par_Scope);
6779 Install_Visible_Declarations (Par_Scope);
6780 Insert_Before (N, Decl);
6781
6782 -- Mark entity as an underlying record view before analysis,
6783 -- to avoid generating the list of its primitive operations
6784 -- (which is not really required for this entity) and thus
6785 -- prevent spurious errors associated with missing overriding
6786 -- of abstract primitives (overridden only for Derived_Type).
6787
6788 Set_Ekind (Full_Der, E_Record_Type);
6789 Set_Is_Underlying_Record_View (Full_Der);
6790 Set_Default_SSO (Full_Der);
6791
6792 Analyze (Decl);
6793
6794 pragma Assert (Has_Discriminants (Full_Der)
6795 and then not Has_Unknown_Discriminants (Full_Der));
6796
6797 Uninstall_Declarations (Par_Scope);
6798
6799 -- Freeze the underlying record view, to prevent generation of
6800 -- useless dispatching information, which is simply shared with
6801 -- the real derived type.
6802
6803 Set_Is_Frozen (Full_Der);
6804
6805 -- Set up links between real entity and underlying record view
6806
6807 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
6808 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
6809 end;
6810
6811 -- If discriminants are known, build derived record
6812
6813 else
6814 Build_Derived_Record_Type
6815 (N, Parent_Type, Derived_Type, Derive_Subps);
6816 end if;
6817
6818 return;
6819
6820 elsif Has_Discriminants (Parent_Type) then
6821 if Present (Full_View (Parent_Type)) then
6822 if not Is_Completion then
6823 -- If this is not a completion, construct the implicit full
6824 -- view by deriving from the full view of the parent type.
6825
6826 Build_Full_Derivation;
6827
6828 else
6829 -- If this is a completion, the full view being built is itself
6830 -- private. We build a subtype of the parent with the same
6831 -- constraints as this full view, to convey to the back end the
6832 -- constrained components and the size of this subtype. If the
6833 -- parent is constrained, its full view can serve as the
6834 -- underlying full view of the derived type.
6835
6836 if No (Discriminant_Specifications (N)) then
6837 if Nkind (Subtype_Indication (Type_Definition (N))) =
6838 N_Subtype_Indication
6839 then
6840 Build_Underlying_Full_View (N, Derived_Type, Parent_Type);
6841
6842 elsif Is_Constrained (Full_View (Parent_Type)) then
6843 Set_Underlying_Full_View
6844 (Derived_Type, Full_View (Parent_Type));
6845 end if;
6846
6847 else
6848 -- If there are new discriminants, the parent subtype is
6849 -- constrained by them, but it is not clear how to build
6850 -- the Underlying_Full_View in this case???
6851
6852 null;
6853 end if;
6854 end if;
6855 end if;
6856
6857 -- Build partial view of derived type from partial view of parent
6858
6859 Build_Derived_Record_Type
6860 (N, Parent_Type, Derived_Type, Derive_Subps);
6861
6862 if Present (Full_View (Parent_Type)) and then not Is_Completion then
6863 -- Install full view in derived type (base type and subtype)
6864
6865 Der_Base := Base_Type (Derived_Type);
6866 Set_Full_View (Derived_Type, Full_Der);
6867 Set_Full_View (Der_Base, Base_Type (Full_Der));
6868
6869 -- Copy the discriminant list from full view to the partial views
6870 -- (base type and its subtype). Gigi requires that the partial and
6871 -- full views have the same discriminants.
6872
6873 -- Note that since the partial view is pointing to discriminants
6874 -- in the full view, their scope will be that of the full view.
6875 -- This might cause some front end problems and need adjustment???
6876
6877 Discr := First_Discriminant (Base_Type (Full_Der));
6878 Set_First_Entity (Der_Base, Discr);
6879
6880 loop
6881 Last_Discr := Discr;
6882 Next_Discriminant (Discr);
6883 exit when No (Discr);
6884 end loop;
6885
6886 Set_Last_Entity (Der_Base, Last_Discr);
6887
6888 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
6889 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
6890 Set_Stored_Constraint (Full_Der, Stored_Constraint (Derived_Type));
6891 end if;
6892
6893 elsif Present (Full_View (Parent_Type))
6894 and then Has_Discriminants (Full_View (Parent_Type))
6895 then
6896 if Has_Unknown_Discriminants (Parent_Type)
6897 and then Nkind (Subtype_Indication (Type_Definition (N))) =
6898 N_Subtype_Indication
6899 then
6900 Error_Msg_N
6901 ("cannot constrain type with unknown discriminants",
6902 Subtype_Indication (Type_Definition (N)));
6903 return;
6904 end if;
6905
6906 if not Is_Completion then
6907 -- If this is not a completion, construct the implicit full view
6908 -- by deriving from the full view of the parent type.
6909
6910 Build_Full_Derivation;
6911 Set_Full_View (Derived_Type, Full_Der);
6912
6913 else
6914 -- If this is a completion, the full view being built is itself
6915 -- private. Construct an underlying full view by deriving from
6916 -- the full view of the parent type.
6917
6918 Build_Full_Derivation;
6919 Set_Underlying_Full_View (Derived_Type, Full_Der);
6920 end if;
6921
6922 -- In any case, the primitive operations are inherited from the
6923 -- parent type, not from the internal full view.
6924
6925 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
6926
6927 if Derive_Subps then
6928 Derive_Subprograms (Parent_Type, Derived_Type);
6929 end if;
6930
6931 Set_Stored_Constraint (Derived_Type, No_Elist);
6932 Set_Is_Constrained
6933 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
6934
6935 else
6936 -- Untagged type, No discriminants on either view
6937
6938 if Nkind (Subtype_Indication (Type_Definition (N))) =
6939 N_Subtype_Indication
6940 then
6941 Error_Msg_N
6942 ("illegal constraint on type without discriminants", N);
6943 end if;
6944
6945 if Present (Discriminant_Specifications (N))
6946 and then Present (Full_View (Parent_Type))
6947 and then not Is_Tagged_Type (Full_View (Parent_Type))
6948 then
6949 Error_Msg_N ("cannot add discriminants to untagged type", N);
6950 end if;
6951
6952 Set_Stored_Constraint (Derived_Type, No_Elist);
6953 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6954 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
6955 Set_Has_Controlled_Component
6956 (Derived_Type, Has_Controlled_Component
6957 (Parent_Type));
6958
6959 -- Direct controlled types do not inherit Finalize_Storage_Only flag
6960
6961 if not Is_Controlled (Parent_Type) then
6962 Set_Finalize_Storage_Only
6963 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
6964 end if;
6965
6966 -- If this is not a completion, construct the implicit full view by
6967 -- deriving from the full view of the parent type.
6968
6969 -- ??? If the parent is untagged private and its completion is
6970 -- tagged, this mechanism will not work because we cannot derive from
6971 -- the tagged full view unless we have an extension.
6972
6973 if Present (Full_View (Parent_Type))
6974 and then not Is_Tagged_Type (Full_View (Parent_Type))
6975 and then not Is_Completion
6976 then
6977 Build_Full_Derivation;
6978 Set_Full_View (Derived_Type, Full_Der);
6979 end if;
6980 end if;
6981
6982 Set_Has_Unknown_Discriminants (Derived_Type,
6983 Has_Unknown_Discriminants (Parent_Type));
6984
6985 if Is_Private_Type (Derived_Type) then
6986 Set_Private_Dependents (Derived_Type, New_Elmt_List);
6987 end if;
6988
6989 -- If the parent base type is in scope, add the derived type to its
6990 -- list of private dependents, because its full view may become
6991 -- visible subsequently (in a nested private part, a body, or in a
6992 -- further child unit).
6993
6994 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
6995 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
6996
6997 -- Check for unusual case where a type completed by a private
6998 -- derivation occurs within a package nested in a child unit, and
6999 -- the parent is declared in an ancestor.
7000
7001 if Is_Child_Unit (Scope (Current_Scope))
7002 and then Is_Completion
7003 and then In_Private_Part (Current_Scope)
7004 and then Scope (Parent_Type) /= Current_Scope
7005
7006 -- Note that if the parent has a completion in the private part,
7007 -- (which is itself a derivation from some other private type)
7008 -- it is that completion that is visible, there is no full view
7009 -- available, and no special processing is needed.
7010
7011 and then Present (Full_View (Parent_Type))
7012 then
7013 -- In this case, the full view of the parent type will become
7014 -- visible in the body of the enclosing child, and only then will
7015 -- the current type be possibly non-private. Build an underlying
7016 -- full view that will be installed when the enclosing child body
7017 -- is compiled.
7018
7019 if Present (Underlying_Full_View (Derived_Type)) then
7020 Full_Der := Underlying_Full_View (Derived_Type);
7021 else
7022 Build_Full_Derivation;
7023 Set_Underlying_Full_View (Derived_Type, Full_Der);
7024 end if;
7025
7026 -- The full view will be used to swap entities on entry/exit to
7027 -- the body, and must appear in the entity list for the package.
7028
7029 Append_Entity (Full_Der, Scope (Derived_Type));
7030 end if;
7031 end if;
7032 end Build_Derived_Private_Type;
7033
7034 -------------------------------
7035 -- Build_Derived_Record_Type --
7036 -------------------------------
7037
7038 -- 1. INTRODUCTION
7039
7040 -- Ideally we would like to use the same model of type derivation for
7041 -- tagged and untagged record types. Unfortunately this is not quite
7042 -- possible because the semantics of representation clauses is different
7043 -- for tagged and untagged records under inheritance. Consider the
7044 -- following:
7045
7046 -- type R (...) is [tagged] record ... end record;
7047 -- type T (...) is new R (...) [with ...];
7048
7049 -- The representation clauses for T can specify a completely different
7050 -- record layout from R's. Hence the same component can be placed in two
7051 -- very different positions in objects of type T and R. If R and T are
7052 -- tagged types, representation clauses for T can only specify the layout
7053 -- of non inherited components, thus components that are common in R and T
7054 -- have the same position in objects of type R and T.
7055
7056 -- This has two implications. The first is that the entire tree for R's
7057 -- declaration needs to be copied for T in the untagged case, so that T
7058 -- can be viewed as a record type of its own with its own representation
7059 -- clauses. The second implication is the way we handle discriminants.
7060 -- Specifically, in the untagged case we need a way to communicate to Gigi
7061 -- what are the real discriminants in the record, while for the semantics
7062 -- we need to consider those introduced by the user to rename the
7063 -- discriminants in the parent type. This is handled by introducing the
7064 -- notion of stored discriminants. See below for more.
7065
7066 -- Fortunately the way regular components are inherited can be handled in
7067 -- the same way in tagged and untagged types.
7068
7069 -- To complicate things a bit more the private view of a private extension
7070 -- cannot be handled in the same way as the full view (for one thing the
7071 -- semantic rules are somewhat different). We will explain what differs
7072 -- below.
7073
7074 -- 2. DISCRIMINANTS UNDER INHERITANCE
7075
7076 -- The semantic rules governing the discriminants of derived types are
7077 -- quite subtle.
7078
7079 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7080 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7081
7082 -- If parent type has discriminants, then the discriminants that are
7083 -- declared in the derived type are [3.4 (11)]:
7084
7085 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7086 -- there is one;
7087
7088 -- o Otherwise, each discriminant of the parent type (implicitly declared
7089 -- in the same order with the same specifications). In this case, the
7090 -- discriminants are said to be "inherited", or if unknown in the parent
7091 -- are also unknown in the derived type.
7092
7093 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7094
7095 -- o The parent subtype must be constrained;
7096
7097 -- o If the parent type is not a tagged type, then each discriminant of
7098 -- the derived type must be used in the constraint defining a parent
7099 -- subtype. [Implementation note: This ensures that the new discriminant
7100 -- can share storage with an existing discriminant.]
7101
7102 -- For the derived type each discriminant of the parent type is either
7103 -- inherited, constrained to equal some new discriminant of the derived
7104 -- type, or constrained to the value of an expression.
7105
7106 -- When inherited or constrained to equal some new discriminant, the
7107 -- parent discriminant and the discriminant of the derived type are said
7108 -- to "correspond".
7109
7110 -- If a discriminant of the parent type is constrained to a specific value
7111 -- in the derived type definition, then the discriminant is said to be
7112 -- "specified" by that derived type definition.
7113
7114 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7115
7116 -- We have spoken about stored discriminants in point 1 (introduction)
7117 -- above. There are two sort of stored discriminants: implicit and
7118 -- explicit. As long as the derived type inherits the same discriminants as
7119 -- the root record type, stored discriminants are the same as regular
7120 -- discriminants, and are said to be implicit. However, if any discriminant
7121 -- in the root type was renamed in the derived type, then the derived
7122 -- type will contain explicit stored discriminants. Explicit stored
7123 -- discriminants are discriminants in addition to the semantically visible
7124 -- discriminants defined for the derived type. Stored discriminants are
7125 -- used by Gigi to figure out what are the physical discriminants in
7126 -- objects of the derived type (see precise definition in einfo.ads).
7127 -- As an example, consider the following:
7128
7129 -- type R (D1, D2, D3 : Int) is record ... end record;
7130 -- type T1 is new R;
7131 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7132 -- type T3 is new T2;
7133 -- type T4 (Y : Int) is new T3 (Y, 99);
7134
7135 -- The following table summarizes the discriminants and stored
7136 -- discriminants in R and T1 through T4.
7137
7138 -- Type Discrim Stored Discrim Comment
7139 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7140 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7141 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7142 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7143 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7144
7145 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7146 -- find the corresponding discriminant in the parent type, while
7147 -- Original_Record_Component (abbreviated ORC below), the actual physical
7148 -- component that is renamed. Finally the field Is_Completely_Hidden
7149 -- (abbreviated ICH below) is set for all explicit stored discriminants
7150 -- (see einfo.ads for more info). For the above example this gives:
7151
7152 -- Discrim CD ORC ICH
7153 -- ^^^^^^^ ^^ ^^^ ^^^
7154 -- D1 in R empty itself no
7155 -- D2 in R empty itself no
7156 -- D3 in R empty itself no
7157
7158 -- D1 in T1 D1 in R itself no
7159 -- D2 in T1 D2 in R itself no
7160 -- D3 in T1 D3 in R itself no
7161
7162 -- X1 in T2 D3 in T1 D3 in T2 no
7163 -- X2 in T2 D1 in T1 D1 in T2 no
7164 -- D1 in T2 empty itself yes
7165 -- D2 in T2 empty itself yes
7166 -- D3 in T2 empty itself yes
7167
7168 -- X1 in T3 X1 in T2 D3 in T3 no
7169 -- X2 in T3 X2 in T2 D1 in T3 no
7170 -- D1 in T3 empty itself yes
7171 -- D2 in T3 empty itself yes
7172 -- D3 in T3 empty itself yes
7173
7174 -- Y in T4 X1 in T3 D3 in T3 no
7175 -- D1 in T3 empty itself yes
7176 -- D2 in T3 empty itself yes
7177 -- D3 in T3 empty itself yes
7178
7179 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7180
7181 -- Type derivation for tagged types is fairly straightforward. If no
7182 -- discriminants are specified by the derived type, these are inherited
7183 -- from the parent. No explicit stored discriminants are ever necessary.
7184 -- The only manipulation that is done to the tree is that of adding a
7185 -- _parent field with parent type and constrained to the same constraint
7186 -- specified for the parent in the derived type definition. For instance:
7187
7188 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7189 -- type T1 is new R with null record;
7190 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7191
7192 -- are changed into:
7193
7194 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7195 -- _parent : R (D1, D2, D3);
7196 -- end record;
7197
7198 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7199 -- _parent : T1 (X2, 88, X1);
7200 -- end record;
7201
7202 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7203 -- ORC and ICH fields are:
7204
7205 -- Discrim CD ORC ICH
7206 -- ^^^^^^^ ^^ ^^^ ^^^
7207 -- D1 in R empty itself no
7208 -- D2 in R empty itself no
7209 -- D3 in R empty itself no
7210
7211 -- D1 in T1 D1 in R D1 in R no
7212 -- D2 in T1 D2 in R D2 in R no
7213 -- D3 in T1 D3 in R D3 in R no
7214
7215 -- X1 in T2 D3 in T1 D3 in R no
7216 -- X2 in T2 D1 in T1 D1 in R no
7217
7218 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7219 --
7220 -- Regardless of whether we dealing with a tagged or untagged type
7221 -- we will transform all derived type declarations of the form
7222 --
7223 -- type T is new R (...) [with ...];
7224 -- or
7225 -- subtype S is R (...);
7226 -- type T is new S [with ...];
7227 -- into
7228 -- type BT is new R [with ...];
7229 -- subtype T is BT (...);
7230 --
7231 -- That is, the base derived type is constrained only if it has no
7232 -- discriminants. The reason for doing this is that GNAT's semantic model
7233 -- assumes that a base type with discriminants is unconstrained.
7234 --
7235 -- Note that, strictly speaking, the above transformation is not always
7236 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7237 --
7238 -- procedure B34011A is
7239 -- type REC (D : integer := 0) is record
7240 -- I : Integer;
7241 -- end record;
7242
7243 -- package P is
7244 -- type T6 is new Rec;
7245 -- function F return T6;
7246 -- end P;
7247
7248 -- use P;
7249 -- package Q6 is
7250 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7251 -- end Q6;
7252 --
7253 -- The definition of Q6.U is illegal. However transforming Q6.U into
7254
7255 -- type BaseU is new T6;
7256 -- subtype U is BaseU (Q6.F.I)
7257
7258 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7259 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7260 -- the transformation described above.
7261
7262 -- There is another instance where the above transformation is incorrect.
7263 -- Consider:
7264
7265 -- package Pack is
7266 -- type Base (D : Integer) is tagged null record;
7267 -- procedure P (X : Base);
7268
7269 -- type Der is new Base (2) with null record;
7270 -- procedure P (X : Der);
7271 -- end Pack;
7272
7273 -- Then the above transformation turns this into
7274
7275 -- type Der_Base is new Base with null record;
7276 -- -- procedure P (X : Base) is implicitly inherited here
7277 -- -- as procedure P (X : Der_Base).
7278
7279 -- subtype Der is Der_Base (2);
7280 -- procedure P (X : Der);
7281 -- -- The overriding of P (X : Der_Base) is illegal since we
7282 -- -- have a parameter conformance problem.
7283
7284 -- To get around this problem, after having semantically processed Der_Base
7285 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7286 -- Discriminant_Constraint from Der so that when parameter conformance is
7287 -- checked when P is overridden, no semantic errors are flagged.
7288
7289 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7290
7291 -- Regardless of whether we are dealing with a tagged or untagged type
7292 -- we will transform all derived type declarations of the form
7293
7294 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7295 -- type T is new R [with ...];
7296 -- into
7297 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7298
7299 -- The reason for such transformation is that it allows us to implement a
7300 -- very clean form of component inheritance as explained below.
7301
7302 -- Note that this transformation is not achieved by direct tree rewriting
7303 -- and manipulation, but rather by redoing the semantic actions that the
7304 -- above transformation will entail. This is done directly in routine
7305 -- Inherit_Components.
7306
7307 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7308
7309 -- In both tagged and untagged derived types, regular non discriminant
7310 -- components are inherited in the derived type from the parent type. In
7311 -- the absence of discriminants component, inheritance is straightforward
7312 -- as components can simply be copied from the parent.
7313
7314 -- If the parent has discriminants, inheriting components constrained with
7315 -- these discriminants requires caution. Consider the following example:
7316
7317 -- type R (D1, D2 : Positive) is [tagged] record
7318 -- S : String (D1 .. D2);
7319 -- end record;
7320
7321 -- type T1 is new R [with null record];
7322 -- type T2 (X : positive) is new R (1, X) [with null record];
7323
7324 -- As explained in 6. above, T1 is rewritten as
7325 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7326 -- which makes the treatment for T1 and T2 identical.
7327
7328 -- What we want when inheriting S, is that references to D1 and D2 in R are
7329 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7330 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7331 -- with either discriminant references in the derived type or expressions.
7332 -- This replacement is achieved as follows: before inheriting R's
7333 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7334 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7335 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7336 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7337 -- by String (1 .. X).
7338
7339 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7340
7341 -- We explain here the rules governing private type extensions relevant to
7342 -- type derivation. These rules are explained on the following example:
7343
7344 -- type D [(...)] is new A [(...)] with private; <-- partial view
7345 -- type D [(...)] is new P [(...)] with null record; <-- full view
7346
7347 -- Type A is called the ancestor subtype of the private extension.
7348 -- Type P is the parent type of the full view of the private extension. It
7349 -- must be A or a type derived from A.
7350
7351 -- The rules concerning the discriminants of private type extensions are
7352 -- [7.3(10-13)]:
7353
7354 -- o If a private extension inherits known discriminants from the ancestor
7355 -- subtype, then the full view must also inherit its discriminants from
7356 -- the ancestor subtype and the parent subtype of the full view must be
7357 -- constrained if and only if the ancestor subtype is constrained.
7358
7359 -- o If a partial view has unknown discriminants, then the full view may
7360 -- define a definite or an indefinite subtype, with or without
7361 -- discriminants.
7362
7363 -- o If a partial view has neither known nor unknown discriminants, then
7364 -- the full view must define a definite subtype.
7365
7366 -- o If the ancestor subtype of a private extension has constrained
7367 -- discriminants, then the parent subtype of the full view must impose a
7368 -- statically matching constraint on those discriminants.
7369
7370 -- This means that only the following forms of private extensions are
7371 -- allowed:
7372
7373 -- type D is new A with private; <-- partial view
7374 -- type D is new P with null record; <-- full view
7375
7376 -- If A has no discriminants than P has no discriminants, otherwise P must
7377 -- inherit A's discriminants.
7378
7379 -- type D is new A (...) with private; <-- partial view
7380 -- type D is new P (:::) with null record; <-- full view
7381
7382 -- P must inherit A's discriminants and (...) and (:::) must statically
7383 -- match.
7384
7385 -- subtype A is R (...);
7386 -- type D is new A with private; <-- partial view
7387 -- type D is new P with null record; <-- full view
7388
7389 -- P must have inherited R's discriminants and must be derived from A or
7390 -- any of its subtypes.
7391
7392 -- type D (..) is new A with private; <-- partial view
7393 -- type D (..) is new P [(:::)] with null record; <-- full view
7394
7395 -- No specific constraints on P's discriminants or constraint (:::).
7396 -- Note that A can be unconstrained, but the parent subtype P must either
7397 -- be constrained or (:::) must be present.
7398
7399 -- type D (..) is new A [(...)] with private; <-- partial view
7400 -- type D (..) is new P [(:::)] with null record; <-- full view
7401
7402 -- P's constraints on A's discriminants must statically match those
7403 -- imposed by (...).
7404
7405 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7406
7407 -- The full view of a private extension is handled exactly as described
7408 -- above. The model chose for the private view of a private extension is
7409 -- the same for what concerns discriminants (i.e. they receive the same
7410 -- treatment as in the tagged case). However, the private view of the
7411 -- private extension always inherits the components of the parent base,
7412 -- without replacing any discriminant reference. Strictly speaking this is
7413 -- incorrect. However, Gigi never uses this view to generate code so this
7414 -- is a purely semantic issue. In theory, a set of transformations similar
7415 -- to those given in 5. and 6. above could be applied to private views of
7416 -- private extensions to have the same model of component inheritance as
7417 -- for non private extensions. However, this is not done because it would
7418 -- further complicate private type processing. Semantically speaking, this
7419 -- leaves us in an uncomfortable situation. As an example consider:
7420
7421 -- package Pack is
7422 -- type R (D : integer) is tagged record
7423 -- S : String (1 .. D);
7424 -- end record;
7425 -- procedure P (X : R);
7426 -- type T is new R (1) with private;
7427 -- private
7428 -- type T is new R (1) with null record;
7429 -- end;
7430
7431 -- This is transformed into:
7432
7433 -- package Pack is
7434 -- type R (D : integer) is tagged record
7435 -- S : String (1 .. D);
7436 -- end record;
7437 -- procedure P (X : R);
7438 -- type T is new R (1) with private;
7439 -- private
7440 -- type BaseT is new R with null record;
7441 -- subtype T is BaseT (1);
7442 -- end;
7443
7444 -- (strictly speaking the above is incorrect Ada)
7445
7446 -- From the semantic standpoint the private view of private extension T
7447 -- should be flagged as constrained since one can clearly have
7448 --
7449 -- Obj : T;
7450 --
7451 -- in a unit withing Pack. However, when deriving subprograms for the
7452 -- private view of private extension T, T must be seen as unconstrained
7453 -- since T has discriminants (this is a constraint of the current
7454 -- subprogram derivation model). Thus, when processing the private view of
7455 -- a private extension such as T, we first mark T as unconstrained, we
7456 -- process it, we perform program derivation and just before returning from
7457 -- Build_Derived_Record_Type we mark T as constrained.
7458
7459 -- ??? Are there are other uncomfortable cases that we will have to
7460 -- deal with.
7461
7462 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7463
7464 -- Types that are derived from a visible record type and have a private
7465 -- extension present other peculiarities. They behave mostly like private
7466 -- types, but if they have primitive operations defined, these will not
7467 -- have the proper signatures for further inheritance, because other
7468 -- primitive operations will use the implicit base that we define for
7469 -- private derivations below. This affect subprogram inheritance (see
7470 -- Derive_Subprograms for details). We also derive the implicit base from
7471 -- the base type of the full view, so that the implicit base is a record
7472 -- type and not another private type, This avoids infinite loops.
7473
7474 procedure Build_Derived_Record_Type
7475 (N : Node_Id;
7476 Parent_Type : Entity_Id;
7477 Derived_Type : Entity_Id;
7478 Derive_Subps : Boolean := True)
7479 is
7480 Discriminant_Specs : constant Boolean :=
7481 Present (Discriminant_Specifications (N));
7482 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
7483 Loc : constant Source_Ptr := Sloc (N);
7484 Private_Extension : constant Boolean :=
7485 Nkind (N) = N_Private_Extension_Declaration;
7486 Assoc_List : Elist_Id;
7487 Constraint_Present : Boolean;
7488 Constrs : Elist_Id;
7489 Discrim : Entity_Id;
7490 Indic : Node_Id;
7491 Inherit_Discrims : Boolean := False;
7492 Last_Discrim : Entity_Id;
7493 New_Base : Entity_Id;
7494 New_Decl : Node_Id;
7495 New_Discrs : Elist_Id;
7496 New_Indic : Node_Id;
7497 Parent_Base : Entity_Id;
7498 Save_Etype : Entity_Id;
7499 Save_Discr_Constr : Elist_Id;
7500 Save_Next_Entity : Entity_Id;
7501 Type_Def : Node_Id;
7502
7503 Discs : Elist_Id := New_Elmt_List;
7504 -- An empty Discs list means that there were no constraints in the
7505 -- subtype indication or that there was an error processing it.
7506
7507 begin
7508 if Ekind (Parent_Type) = E_Record_Type_With_Private
7509 and then Present (Full_View (Parent_Type))
7510 and then Has_Discriminants (Parent_Type)
7511 then
7512 Parent_Base := Base_Type (Full_View (Parent_Type));
7513 else
7514 Parent_Base := Base_Type (Parent_Type);
7515 end if;
7516
7517 -- AI05-0115 : if this is a derivation from a private type in some
7518 -- other scope that may lead to invisible components for the derived
7519 -- type, mark it accordingly.
7520
7521 if Is_Private_Type (Parent_Type) then
7522 if Scope (Parent_Type) = Scope (Derived_Type) then
7523 null;
7524
7525 elsif In_Open_Scopes (Scope (Parent_Type))
7526 and then In_Private_Part (Scope (Parent_Type))
7527 then
7528 null;
7529
7530 else
7531 Set_Has_Private_Ancestor (Derived_Type);
7532 end if;
7533
7534 else
7535 Set_Has_Private_Ancestor
7536 (Derived_Type, Has_Private_Ancestor (Parent_Type));
7537 end if;
7538
7539 -- Before we start the previously documented transformations, here is
7540 -- little fix for size and alignment of tagged types. Normally when we
7541 -- derive type D from type P, we copy the size and alignment of P as the
7542 -- default for D, and in the absence of explicit representation clauses
7543 -- for D, the size and alignment are indeed the same as the parent.
7544
7545 -- But this is wrong for tagged types, since fields may be added, and
7546 -- the default size may need to be larger, and the default alignment may
7547 -- need to be larger.
7548
7549 -- We therefore reset the size and alignment fields in the tagged case.
7550 -- Note that the size and alignment will in any case be at least as
7551 -- large as the parent type (since the derived type has a copy of the
7552 -- parent type in the _parent field)
7553
7554 -- The type is also marked as being tagged here, which is needed when
7555 -- processing components with a self-referential anonymous access type
7556 -- in the call to Check_Anonymous_Access_Components below. Note that
7557 -- this flag is also set later on for completeness.
7558
7559 if Is_Tagged then
7560 Set_Is_Tagged_Type (Derived_Type);
7561 Init_Size_Align (Derived_Type);
7562 end if;
7563
7564 -- STEP 0a: figure out what kind of derived type declaration we have
7565
7566 if Private_Extension then
7567 Type_Def := N;
7568 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
7569 Set_Default_SSO (Derived_Type);
7570
7571 else
7572 Type_Def := Type_Definition (N);
7573
7574 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7575 -- Parent_Base can be a private type or private extension. However,
7576 -- for tagged types with an extension the newly added fields are
7577 -- visible and hence the Derived_Type is always an E_Record_Type.
7578 -- (except that the parent may have its own private fields).
7579 -- For untagged types we preserve the Ekind of the Parent_Base.
7580
7581 if Present (Record_Extension_Part (Type_Def)) then
7582 Set_Ekind (Derived_Type, E_Record_Type);
7583 Set_Default_SSO (Derived_Type);
7584
7585 -- Create internal access types for components with anonymous
7586 -- access types.
7587
7588 if Ada_Version >= Ada_2005 then
7589 Check_Anonymous_Access_Components
7590 (N, Derived_Type, Derived_Type,
7591 Component_List (Record_Extension_Part (Type_Def)));
7592 end if;
7593
7594 else
7595 Set_Ekind (Derived_Type, Ekind (Parent_Base));
7596 end if;
7597 end if;
7598
7599 -- Indic can either be an N_Identifier if the subtype indication
7600 -- contains no constraint or an N_Subtype_Indication if the subtype
7601 -- indication has a constraint.
7602
7603 Indic := Subtype_Indication (Type_Def);
7604 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
7605
7606 -- Check that the type has visible discriminants. The type may be
7607 -- a private type with unknown discriminants whose full view has
7608 -- discriminants which are invisible.
7609
7610 if Constraint_Present then
7611 if not Has_Discriminants (Parent_Base)
7612 or else
7613 (Has_Unknown_Discriminants (Parent_Base)
7614 and then Is_Private_Type (Parent_Base))
7615 then
7616 Error_Msg_N
7617 ("invalid constraint: type has no discriminant",
7618 Constraint (Indic));
7619
7620 Constraint_Present := False;
7621 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7622
7623 elsif Is_Constrained (Parent_Type) then
7624 Error_Msg_N
7625 ("invalid constraint: parent type is already constrained",
7626 Constraint (Indic));
7627
7628 Constraint_Present := False;
7629 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7630 end if;
7631 end if;
7632
7633 -- STEP 0b: If needed, apply transformation given in point 5. above
7634
7635 if not Private_Extension
7636 and then Has_Discriminants (Parent_Type)
7637 and then not Discriminant_Specs
7638 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
7639 then
7640 -- First, we must analyze the constraint (see comment in point 5.)
7641 -- The constraint may come from the subtype indication of the full
7642 -- declaration.
7643
7644 if Constraint_Present then
7645 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
7646
7647 -- If there is no explicit constraint, there might be one that is
7648 -- inherited from a constrained parent type. In that case verify that
7649 -- it conforms to the constraint in the partial view. In perverse
7650 -- cases the parent subtypes of the partial and full view can have
7651 -- different constraints.
7652
7653 elsif Present (Stored_Constraint (Parent_Type)) then
7654 New_Discrs := Stored_Constraint (Parent_Type);
7655
7656 else
7657 New_Discrs := No_Elist;
7658 end if;
7659
7660 if Has_Discriminants (Derived_Type)
7661 and then Has_Private_Declaration (Derived_Type)
7662 and then Present (Discriminant_Constraint (Derived_Type))
7663 and then Present (New_Discrs)
7664 then
7665 -- Verify that constraints of the full view statically match
7666 -- those given in the partial view.
7667
7668 declare
7669 C1, C2 : Elmt_Id;
7670
7671 begin
7672 C1 := First_Elmt (New_Discrs);
7673 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
7674 while Present (C1) and then Present (C2) loop
7675 if Fully_Conformant_Expressions (Node (C1), Node (C2))
7676 or else
7677 (Is_OK_Static_Expression (Node (C1))
7678 and then Is_OK_Static_Expression (Node (C2))
7679 and then
7680 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
7681 then
7682 null;
7683
7684 else
7685 if Constraint_Present then
7686 Error_Msg_N
7687 ("constraint not conformant to previous declaration",
7688 Node (C1));
7689 else
7690 Error_Msg_N
7691 ("constraint of full view is incompatible "
7692 & "with partial view", N);
7693 end if;
7694 end if;
7695
7696 Next_Elmt (C1);
7697 Next_Elmt (C2);
7698 end loop;
7699 end;
7700 end if;
7701
7702 -- Insert and analyze the declaration for the unconstrained base type
7703
7704 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
7705
7706 New_Decl :=
7707 Make_Full_Type_Declaration (Loc,
7708 Defining_Identifier => New_Base,
7709 Type_Definition =>
7710 Make_Derived_Type_Definition (Loc,
7711 Abstract_Present => Abstract_Present (Type_Def),
7712 Limited_Present => Limited_Present (Type_Def),
7713 Subtype_Indication =>
7714 New_Occurrence_Of (Parent_Base, Loc),
7715 Record_Extension_Part =>
7716 Relocate_Node (Record_Extension_Part (Type_Def)),
7717 Interface_List => Interface_List (Type_Def)));
7718
7719 Set_Parent (New_Decl, Parent (N));
7720 Mark_Rewrite_Insertion (New_Decl);
7721 Insert_Before (N, New_Decl);
7722
7723 -- In the extension case, make sure ancestor is frozen appropriately
7724 -- (see also non-discriminated case below).
7725
7726 if Present (Record_Extension_Part (Type_Def))
7727 or else Is_Interface (Parent_Base)
7728 then
7729 Freeze_Before (New_Decl, Parent_Type);
7730 end if;
7731
7732 -- Note that this call passes False for the Derive_Subps parameter
7733 -- because subprogram derivation is deferred until after creating
7734 -- the subtype (see below).
7735
7736 Build_Derived_Type
7737 (New_Decl, Parent_Base, New_Base,
7738 Is_Completion => True, Derive_Subps => False);
7739
7740 -- ??? This needs re-examination to determine whether the
7741 -- above call can simply be replaced by a call to Analyze.
7742
7743 Set_Analyzed (New_Decl);
7744
7745 -- Insert and analyze the declaration for the constrained subtype
7746
7747 if Constraint_Present then
7748 New_Indic :=
7749 Make_Subtype_Indication (Loc,
7750 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7751 Constraint => Relocate_Node (Constraint (Indic)));
7752
7753 else
7754 declare
7755 Constr_List : constant List_Id := New_List;
7756 C : Elmt_Id;
7757 Expr : Node_Id;
7758
7759 begin
7760 C := First_Elmt (Discriminant_Constraint (Parent_Type));
7761 while Present (C) loop
7762 Expr := Node (C);
7763
7764 -- It is safe here to call New_Copy_Tree since
7765 -- Force_Evaluation was called on each constraint in
7766 -- Build_Discriminant_Constraints.
7767
7768 Append (New_Copy_Tree (Expr), To => Constr_List);
7769
7770 Next_Elmt (C);
7771 end loop;
7772
7773 New_Indic :=
7774 Make_Subtype_Indication (Loc,
7775 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7776 Constraint =>
7777 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
7778 end;
7779 end if;
7780
7781 Rewrite (N,
7782 Make_Subtype_Declaration (Loc,
7783 Defining_Identifier => Derived_Type,
7784 Subtype_Indication => New_Indic));
7785
7786 Analyze (N);
7787
7788 -- Derivation of subprograms must be delayed until the full subtype
7789 -- has been established, to ensure proper overriding of subprograms
7790 -- inherited by full types. If the derivations occurred as part of
7791 -- the call to Build_Derived_Type above, then the check for type
7792 -- conformance would fail because earlier primitive subprograms
7793 -- could still refer to the full type prior the change to the new
7794 -- subtype and hence would not match the new base type created here.
7795 -- Subprograms are not derived, however, when Derive_Subps is False
7796 -- (since otherwise there could be redundant derivations).
7797
7798 if Derive_Subps then
7799 Derive_Subprograms (Parent_Type, Derived_Type);
7800 end if;
7801
7802 -- For tagged types the Discriminant_Constraint of the new base itype
7803 -- is inherited from the first subtype so that no subtype conformance
7804 -- problem arise when the first subtype overrides primitive
7805 -- operations inherited by the implicit base type.
7806
7807 if Is_Tagged then
7808 Set_Discriminant_Constraint
7809 (New_Base, Discriminant_Constraint (Derived_Type));
7810 end if;
7811
7812 return;
7813 end if;
7814
7815 -- If we get here Derived_Type will have no discriminants or it will be
7816 -- a discriminated unconstrained base type.
7817
7818 -- STEP 1a: perform preliminary actions/checks for derived tagged types
7819
7820 if Is_Tagged then
7821
7822 -- The parent type is frozen for non-private extensions (RM 13.14(7))
7823 -- The declaration of a specific descendant of an interface type
7824 -- freezes the interface type (RM 13.14).
7825
7826 if not Private_Extension or else Is_Interface (Parent_Base) then
7827 Freeze_Before (N, Parent_Type);
7828 end if;
7829
7830 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
7831 -- cannot be declared at a deeper level than its parent type is
7832 -- removed. The check on derivation within a generic body is also
7833 -- relaxed, but there's a restriction that a derived tagged type
7834 -- cannot be declared in a generic body if it's derived directly
7835 -- or indirectly from a formal type of that generic.
7836
7837 if Ada_Version >= Ada_2005 then
7838 if Present (Enclosing_Generic_Body (Derived_Type)) then
7839 declare
7840 Ancestor_Type : Entity_Id;
7841
7842 begin
7843 -- Check to see if any ancestor of the derived type is a
7844 -- formal type.
7845
7846 Ancestor_Type := Parent_Type;
7847 while not Is_Generic_Type (Ancestor_Type)
7848 and then Etype (Ancestor_Type) /= Ancestor_Type
7849 loop
7850 Ancestor_Type := Etype (Ancestor_Type);
7851 end loop;
7852
7853 -- If the derived type does have a formal type as an
7854 -- ancestor, then it's an error if the derived type is
7855 -- declared within the body of the generic unit that
7856 -- declares the formal type in its generic formal part. It's
7857 -- sufficient to check whether the ancestor type is declared
7858 -- inside the same generic body as the derived type (such as
7859 -- within a nested generic spec), in which case the
7860 -- derivation is legal. If the formal type is declared
7861 -- outside of that generic body, then it's guaranteed that
7862 -- the derived type is declared within the generic body of
7863 -- the generic unit declaring the formal type.
7864
7865 if Is_Generic_Type (Ancestor_Type)
7866 and then Enclosing_Generic_Body (Ancestor_Type) /=
7867 Enclosing_Generic_Body (Derived_Type)
7868 then
7869 Error_Msg_NE
7870 ("parent type of& must not be descendant of formal type"
7871 & " of an enclosing generic body",
7872 Indic, Derived_Type);
7873 end if;
7874 end;
7875 end if;
7876
7877 elsif Type_Access_Level (Derived_Type) /=
7878 Type_Access_Level (Parent_Type)
7879 and then not Is_Generic_Type (Derived_Type)
7880 then
7881 if Is_Controlled (Parent_Type) then
7882 Error_Msg_N
7883 ("controlled type must be declared at the library level",
7884 Indic);
7885 else
7886 Error_Msg_N
7887 ("type extension at deeper accessibility level than parent",
7888 Indic);
7889 end if;
7890
7891 else
7892 declare
7893 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
7894 begin
7895 if Present (GB)
7896 and then GB /= Enclosing_Generic_Body (Parent_Base)
7897 then
7898 Error_Msg_NE
7899 ("parent type of& must not be outside generic body"
7900 & " (RM 3.9.1(4))",
7901 Indic, Derived_Type);
7902 end if;
7903 end;
7904 end if;
7905 end if;
7906
7907 -- Ada 2005 (AI-251)
7908
7909 if Ada_Version >= Ada_2005 and then Is_Tagged then
7910
7911 -- "The declaration of a specific descendant of an interface type
7912 -- freezes the interface type" (RM 13.14).
7913
7914 declare
7915 Iface : Node_Id;
7916 begin
7917 if Is_Non_Empty_List (Interface_List (Type_Def)) then
7918 Iface := First (Interface_List (Type_Def));
7919 while Present (Iface) loop
7920 Freeze_Before (N, Etype (Iface));
7921 Next (Iface);
7922 end loop;
7923 end if;
7924 end;
7925 end if;
7926
7927 -- STEP 1b : preliminary cleanup of the full view of private types
7928
7929 -- If the type is already marked as having discriminants, then it's the
7930 -- completion of a private type or private extension and we need to
7931 -- retain the discriminants from the partial view if the current
7932 -- declaration has Discriminant_Specifications so that we can verify
7933 -- conformance. However, we must remove any existing components that
7934 -- were inherited from the parent (and attached in Copy_And_Swap)
7935 -- because the full type inherits all appropriate components anyway, and
7936 -- we do not want the partial view's components interfering.
7937
7938 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
7939 Discrim := First_Discriminant (Derived_Type);
7940 loop
7941 Last_Discrim := Discrim;
7942 Next_Discriminant (Discrim);
7943 exit when No (Discrim);
7944 end loop;
7945
7946 Set_Last_Entity (Derived_Type, Last_Discrim);
7947
7948 -- In all other cases wipe out the list of inherited components (even
7949 -- inherited discriminants), it will be properly rebuilt here.
7950
7951 else
7952 Set_First_Entity (Derived_Type, Empty);
7953 Set_Last_Entity (Derived_Type, Empty);
7954 end if;
7955
7956 -- STEP 1c: Initialize some flags for the Derived_Type
7957
7958 -- The following flags must be initialized here so that
7959 -- Process_Discriminants can check that discriminants of tagged types do
7960 -- not have a default initial value and that access discriminants are
7961 -- only specified for limited records. For completeness, these flags are
7962 -- also initialized along with all the other flags below.
7963
7964 -- AI-419: Limitedness is not inherited from an interface parent, so to
7965 -- be limited in that case the type must be explicitly declared as
7966 -- limited. However, task and protected interfaces are always limited.
7967
7968 if Limited_Present (Type_Def) then
7969 Set_Is_Limited_Record (Derived_Type);
7970
7971 elsif Is_Limited_Record (Parent_Type)
7972 or else (Present (Full_View (Parent_Type))
7973 and then Is_Limited_Record (Full_View (Parent_Type)))
7974 then
7975 if not Is_Interface (Parent_Type)
7976 or else Is_Synchronized_Interface (Parent_Type)
7977 or else Is_Protected_Interface (Parent_Type)
7978 or else Is_Task_Interface (Parent_Type)
7979 then
7980 Set_Is_Limited_Record (Derived_Type);
7981 end if;
7982 end if;
7983
7984 -- STEP 2a: process discriminants of derived type if any
7985
7986 Push_Scope (Derived_Type);
7987
7988 if Discriminant_Specs then
7989 Set_Has_Unknown_Discriminants (Derived_Type, False);
7990
7991 -- The following call initializes fields Has_Discriminants and
7992 -- Discriminant_Constraint, unless we are processing the completion
7993 -- of a private type declaration.
7994
7995 Check_Or_Process_Discriminants (N, Derived_Type);
7996
7997 -- For untagged types, the constraint on the Parent_Type must be
7998 -- present and is used to rename the discriminants.
7999
8000 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
8001 Error_Msg_N ("untagged parent must have discriminants", Indic);
8002
8003 elsif not Is_Tagged and then not Constraint_Present then
8004 Error_Msg_N
8005 ("discriminant constraint needed for derived untagged records",
8006 Indic);
8007
8008 -- Otherwise the parent subtype must be constrained unless we have a
8009 -- private extension.
8010
8011 elsif not Constraint_Present
8012 and then not Private_Extension
8013 and then not Is_Constrained (Parent_Type)
8014 then
8015 Error_Msg_N
8016 ("unconstrained type not allowed in this context", Indic);
8017
8018 elsif Constraint_Present then
8019 -- The following call sets the field Corresponding_Discriminant
8020 -- for the discriminants in the Derived_Type.
8021
8022 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
8023
8024 -- For untagged types all new discriminants must rename
8025 -- discriminants in the parent. For private extensions new
8026 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8027
8028 Discrim := First_Discriminant (Derived_Type);
8029 while Present (Discrim) loop
8030 if not Is_Tagged
8031 and then No (Corresponding_Discriminant (Discrim))
8032 then
8033 Error_Msg_N
8034 ("new discriminants must constrain old ones", Discrim);
8035
8036 elsif Private_Extension
8037 and then Present (Corresponding_Discriminant (Discrim))
8038 then
8039 Error_Msg_N
8040 ("only static constraints allowed for parent"
8041 & " discriminants in the partial view", Indic);
8042 exit;
8043 end if;
8044
8045 -- If a new discriminant is used in the constraint, then its
8046 -- subtype must be statically compatible with the parent
8047 -- discriminant's subtype (3.7(15)).
8048
8049 -- However, if the record contains an array constrained by
8050 -- the discriminant but with some different bound, the compiler
8051 -- attemps to create a smaller range for the discriminant type.
8052 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8053 -- the discriminant type is a scalar type, the check must use
8054 -- the original discriminant type in the parent declaration.
8055
8056 declare
8057 Corr_Disc : constant Entity_Id :=
8058 Corresponding_Discriminant (Discrim);
8059 Disc_Type : constant Entity_Id := Etype (Discrim);
8060 Corr_Type : Entity_Id;
8061
8062 begin
8063 if Present (Corr_Disc) then
8064 if Is_Scalar_Type (Disc_Type) then
8065 Corr_Type :=
8066 Entity (Discriminant_Type (Parent (Corr_Disc)));
8067 else
8068 Corr_Type := Etype (Corr_Disc);
8069 end if;
8070
8071 if not
8072 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
8073 then
8074 Error_Msg_N
8075 ("subtype must be compatible "
8076 & "with parent discriminant",
8077 Discrim);
8078 end if;
8079 end if;
8080 end;
8081
8082 Next_Discriminant (Discrim);
8083 end loop;
8084
8085 -- Check whether the constraints of the full view statically
8086 -- match those imposed by the parent subtype [7.3(13)].
8087
8088 if Present (Stored_Constraint (Derived_Type)) then
8089 declare
8090 C1, C2 : Elmt_Id;
8091
8092 begin
8093 C1 := First_Elmt (Discs);
8094 C2 := First_Elmt (Stored_Constraint (Derived_Type));
8095 while Present (C1) and then Present (C2) loop
8096 if not
8097 Fully_Conformant_Expressions (Node (C1), Node (C2))
8098 then
8099 Error_Msg_N
8100 ("not conformant with previous declaration",
8101 Node (C1));
8102 end if;
8103
8104 Next_Elmt (C1);
8105 Next_Elmt (C2);
8106 end loop;
8107 end;
8108 end if;
8109 end if;
8110
8111 -- STEP 2b: No new discriminants, inherit discriminants if any
8112
8113 else
8114 if Private_Extension then
8115 Set_Has_Unknown_Discriminants
8116 (Derived_Type,
8117 Has_Unknown_Discriminants (Parent_Type)
8118 or else Unknown_Discriminants_Present (N));
8119
8120 -- The partial view of the parent may have unknown discriminants,
8121 -- but if the full view has discriminants and the parent type is
8122 -- in scope they must be inherited.
8123
8124 elsif Has_Unknown_Discriminants (Parent_Type)
8125 and then
8126 (not Has_Discriminants (Parent_Type)
8127 or else not In_Open_Scopes (Scope (Parent_Type)))
8128 then
8129 Set_Has_Unknown_Discriminants (Derived_Type);
8130 end if;
8131
8132 if not Has_Unknown_Discriminants (Derived_Type)
8133 and then not Has_Unknown_Discriminants (Parent_Base)
8134 and then Has_Discriminants (Parent_Type)
8135 then
8136 Inherit_Discrims := True;
8137 Set_Has_Discriminants
8138 (Derived_Type, True);
8139 Set_Discriminant_Constraint
8140 (Derived_Type, Discriminant_Constraint (Parent_Base));
8141 end if;
8142
8143 -- The following test is true for private types (remember
8144 -- transformation 5. is not applied to those) and in an error
8145 -- situation.
8146
8147 if Constraint_Present then
8148 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
8149 end if;
8150
8151 -- For now mark a new derived type as constrained only if it has no
8152 -- discriminants. At the end of Build_Derived_Record_Type we properly
8153 -- set this flag in the case of private extensions. See comments in
8154 -- point 9. just before body of Build_Derived_Record_Type.
8155
8156 Set_Is_Constrained
8157 (Derived_Type,
8158 not (Inherit_Discrims
8159 or else Has_Unknown_Discriminants (Derived_Type)));
8160 end if;
8161
8162 -- STEP 3: initialize fields of derived type
8163
8164 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
8165 Set_Stored_Constraint (Derived_Type, No_Elist);
8166
8167 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8168 -- but cannot be interfaces
8169
8170 if not Private_Extension
8171 and then Ekind (Derived_Type) /= E_Private_Type
8172 and then Ekind (Derived_Type) /= E_Limited_Private_Type
8173 then
8174 if Interface_Present (Type_Def) then
8175 Analyze_Interface_Declaration (Derived_Type, Type_Def);
8176 end if;
8177
8178 Set_Interfaces (Derived_Type, No_Elist);
8179 end if;
8180
8181 -- Fields inherited from the Parent_Type
8182
8183 Set_Has_Specified_Layout
8184 (Derived_Type, Has_Specified_Layout (Parent_Type));
8185 Set_Is_Limited_Composite
8186 (Derived_Type, Is_Limited_Composite (Parent_Type));
8187 Set_Is_Private_Composite
8188 (Derived_Type, Is_Private_Composite (Parent_Type));
8189
8190 -- Fields inherited from the Parent_Base
8191
8192 Set_Has_Controlled_Component
8193 (Derived_Type, Has_Controlled_Component (Parent_Base));
8194 Set_Has_Non_Standard_Rep
8195 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8196 Set_Has_Primitive_Operations
8197 (Derived_Type, Has_Primitive_Operations (Parent_Base));
8198
8199 -- Fields inherited from the Parent_Base in the non-private case
8200
8201 if Ekind (Derived_Type) = E_Record_Type then
8202 Set_Has_Complex_Representation
8203 (Derived_Type, Has_Complex_Representation (Parent_Base));
8204 end if;
8205
8206 -- Fields inherited from the Parent_Base for record types
8207
8208 if Is_Record_Type (Derived_Type) then
8209
8210 declare
8211 Parent_Full : Entity_Id;
8212
8213 begin
8214 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8215 -- Parent_Base can be a private type or private extension. Go
8216 -- to the full view here to get the E_Record_Type specific flags.
8217
8218 if Present (Full_View (Parent_Base)) then
8219 Parent_Full := Full_View (Parent_Base);
8220 else
8221 Parent_Full := Parent_Base;
8222 end if;
8223
8224 Set_OK_To_Reorder_Components
8225 (Derived_Type, OK_To_Reorder_Components (Parent_Full));
8226 end;
8227 end if;
8228
8229 -- Set fields for private derived types
8230
8231 if Is_Private_Type (Derived_Type) then
8232 Set_Depends_On_Private (Derived_Type, True);
8233 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8234
8235 -- Inherit fields from non private record types. If this is the
8236 -- completion of a derivation from a private type, the parent itself
8237 -- is private, and the attributes come from its full view, which must
8238 -- be present.
8239
8240 else
8241 if Is_Private_Type (Parent_Base)
8242 and then not Is_Record_Type (Parent_Base)
8243 then
8244 Set_Component_Alignment
8245 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
8246 Set_C_Pass_By_Copy
8247 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
8248 else
8249 Set_Component_Alignment
8250 (Derived_Type, Component_Alignment (Parent_Base));
8251 Set_C_Pass_By_Copy
8252 (Derived_Type, C_Pass_By_Copy (Parent_Base));
8253 end if;
8254 end if;
8255
8256 -- Set fields for tagged types
8257
8258 if Is_Tagged then
8259 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
8260
8261 -- All tagged types defined in Ada.Finalization are controlled
8262
8263 if Chars (Scope (Derived_Type)) = Name_Finalization
8264 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
8265 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
8266 then
8267 Set_Is_Controlled (Derived_Type);
8268 else
8269 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
8270 end if;
8271
8272 -- Minor optimization: there is no need to generate the class-wide
8273 -- entity associated with an underlying record view.
8274
8275 if not Is_Underlying_Record_View (Derived_Type) then
8276 Make_Class_Wide_Type (Derived_Type);
8277 end if;
8278
8279 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
8280
8281 if Has_Discriminants (Derived_Type)
8282 and then Constraint_Present
8283 then
8284 Set_Stored_Constraint
8285 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
8286 end if;
8287
8288 if Ada_Version >= Ada_2005 then
8289 declare
8290 Ifaces_List : Elist_Id;
8291
8292 begin
8293 -- Checks rules 3.9.4 (13/2 and 14/2)
8294
8295 if Comes_From_Source (Derived_Type)
8296 and then not Is_Private_Type (Derived_Type)
8297 and then Is_Interface (Parent_Type)
8298 and then not Is_Interface (Derived_Type)
8299 then
8300 if Is_Task_Interface (Parent_Type) then
8301 Error_Msg_N
8302 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8303 Derived_Type);
8304
8305 elsif Is_Protected_Interface (Parent_Type) then
8306 Error_Msg_N
8307 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8308 Derived_Type);
8309 end if;
8310 end if;
8311
8312 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8313
8314 Check_Interfaces (N, Type_Def);
8315
8316 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8317 -- not already in the parents.
8318
8319 Collect_Interfaces
8320 (T => Derived_Type,
8321 Ifaces_List => Ifaces_List,
8322 Exclude_Parents => True);
8323
8324 Set_Interfaces (Derived_Type, Ifaces_List);
8325
8326 -- If the derived type is the anonymous type created for
8327 -- a declaration whose parent has a constraint, propagate
8328 -- the interface list to the source type. This must be done
8329 -- prior to the completion of the analysis of the source type
8330 -- because the components in the extension may contain current
8331 -- instances whose legality depends on some ancestor.
8332
8333 if Is_Itype (Derived_Type) then
8334 declare
8335 Def : constant Node_Id :=
8336 Associated_Node_For_Itype (Derived_Type);
8337 begin
8338 if Present (Def)
8339 and then Nkind (Def) = N_Full_Type_Declaration
8340 then
8341 Set_Interfaces
8342 (Defining_Identifier (Def), Ifaces_List);
8343 end if;
8344 end;
8345 end if;
8346 end;
8347 end if;
8348
8349 else
8350 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
8351 Set_Has_Non_Standard_Rep
8352 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8353 end if;
8354
8355 -- STEP 4: Inherit components from the parent base and constrain them.
8356 -- Apply the second transformation described in point 6. above.
8357
8358 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
8359 or else not Has_Discriminants (Parent_Type)
8360 or else not Is_Constrained (Parent_Type)
8361 then
8362 Constrs := Discs;
8363 else
8364 Constrs := Discriminant_Constraint (Parent_Type);
8365 end if;
8366
8367 Assoc_List :=
8368 Inherit_Components
8369 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
8370
8371 -- STEP 5a: Copy the parent record declaration for untagged types
8372
8373 if not Is_Tagged then
8374
8375 -- Discriminant_Constraint (Derived_Type) has been properly
8376 -- constructed. Save it and temporarily set it to Empty because we
8377 -- do not want the call to New_Copy_Tree below to mess this list.
8378
8379 if Has_Discriminants (Derived_Type) then
8380 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
8381 Set_Discriminant_Constraint (Derived_Type, No_Elist);
8382 else
8383 Save_Discr_Constr := No_Elist;
8384 end if;
8385
8386 -- Save the Etype field of Derived_Type. It is correctly set now,
8387 -- but the call to New_Copy tree may remap it to point to itself,
8388 -- which is not what we want. Ditto for the Next_Entity field.
8389
8390 Save_Etype := Etype (Derived_Type);
8391 Save_Next_Entity := Next_Entity (Derived_Type);
8392
8393 -- Assoc_List maps all stored discriminants in the Parent_Base to
8394 -- stored discriminants in the Derived_Type. It is fundamental that
8395 -- no types or itypes with discriminants other than the stored
8396 -- discriminants appear in the entities declared inside
8397 -- Derived_Type, since the back end cannot deal with it.
8398
8399 New_Decl :=
8400 New_Copy_Tree
8401 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
8402
8403 -- Restore the fields saved prior to the New_Copy_Tree call
8404 -- and compute the stored constraint.
8405
8406 Set_Etype (Derived_Type, Save_Etype);
8407 Set_Next_Entity (Derived_Type, Save_Next_Entity);
8408
8409 if Has_Discriminants (Derived_Type) then
8410 Set_Discriminant_Constraint
8411 (Derived_Type, Save_Discr_Constr);
8412 Set_Stored_Constraint
8413 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
8414 Replace_Components (Derived_Type, New_Decl);
8415 Set_Has_Implicit_Dereference
8416 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
8417 end if;
8418
8419 -- Insert the new derived type declaration
8420
8421 Rewrite (N, New_Decl);
8422
8423 -- STEP 5b: Complete the processing for record extensions in generics
8424
8425 -- There is no completion for record extensions declared in the
8426 -- parameter part of a generic, so we need to complete processing for
8427 -- these generic record extensions here. The Record_Type_Definition call
8428 -- will change the Ekind of the components from E_Void to E_Component.
8429
8430 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
8431 Record_Type_Definition (Empty, Derived_Type);
8432
8433 -- STEP 5c: Process the record extension for non private tagged types
8434
8435 elsif not Private_Extension then
8436 Expand_Record_Extension (Derived_Type, Type_Def);
8437
8438 -- Note : previously in ASIS mode we set the Parent_Subtype of the
8439 -- derived type to propagate some semantic information. This led
8440 -- to other ASIS failures and has been removed.
8441
8442 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8443 -- implemented interfaces if we are in expansion mode
8444
8445 if Expander_Active
8446 and then Has_Interfaces (Derived_Type)
8447 then
8448 Add_Interface_Tag_Components (N, Derived_Type);
8449 end if;
8450
8451 -- Analyze the record extension
8452
8453 Record_Type_Definition
8454 (Record_Extension_Part (Type_Def), Derived_Type);
8455 end if;
8456
8457 End_Scope;
8458
8459 -- Nothing else to do if there is an error in the derivation.
8460 -- An unusual case: the full view may be derived from a type in an
8461 -- instance, when the partial view was used illegally as an actual
8462 -- in that instance, leading to a circular definition.
8463
8464 if Etype (Derived_Type) = Any_Type
8465 or else Etype (Parent_Type) = Derived_Type
8466 then
8467 return;
8468 end if;
8469
8470 -- Set delayed freeze and then derive subprograms, we need to do
8471 -- this in this order so that derived subprograms inherit the
8472 -- derived freeze if necessary.
8473
8474 Set_Has_Delayed_Freeze (Derived_Type);
8475
8476 if Derive_Subps then
8477 Derive_Subprograms (Parent_Type, Derived_Type);
8478 end if;
8479
8480 -- If we have a private extension which defines a constrained derived
8481 -- type mark as constrained here after we have derived subprograms. See
8482 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8483
8484 if Private_Extension and then Inherit_Discrims then
8485 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
8486 Set_Is_Constrained (Derived_Type, True);
8487 Set_Discriminant_Constraint (Derived_Type, Discs);
8488
8489 elsif Is_Constrained (Parent_Type) then
8490 Set_Is_Constrained
8491 (Derived_Type, True);
8492 Set_Discriminant_Constraint
8493 (Derived_Type, Discriminant_Constraint (Parent_Type));
8494 end if;
8495 end if;
8496
8497 -- Update the class-wide type, which shares the now-completed entity
8498 -- list with its specific type. In case of underlying record views,
8499 -- we do not generate the corresponding class wide entity.
8500
8501 if Is_Tagged
8502 and then not Is_Underlying_Record_View (Derived_Type)
8503 then
8504 Set_First_Entity
8505 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
8506 Set_Last_Entity
8507 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
8508 end if;
8509
8510 Check_Function_Writable_Actuals (N);
8511 end Build_Derived_Record_Type;
8512
8513 ------------------------
8514 -- Build_Derived_Type --
8515 ------------------------
8516
8517 procedure Build_Derived_Type
8518 (N : Node_Id;
8519 Parent_Type : Entity_Id;
8520 Derived_Type : Entity_Id;
8521 Is_Completion : Boolean;
8522 Derive_Subps : Boolean := True)
8523 is
8524 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
8525
8526 begin
8527 -- Set common attributes
8528
8529 Set_Scope (Derived_Type, Current_Scope);
8530
8531 Set_Etype (Derived_Type, Parent_Base);
8532 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8533 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
8534 Set_Has_Protected (Derived_Type, Has_Protected (Parent_Base));
8535
8536 Set_Size_Info (Derived_Type, Parent_Type);
8537 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
8538 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
8539 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
8540
8541 -- If the parent has primitive routines, set the derived type link
8542
8543 if Has_Primitive_Operations (Parent_Type) then
8544 Set_Derived_Type_Link (Parent_Base, Derived_Type);
8545 end if;
8546
8547 -- If the parent type is a private subtype, the convention on the base
8548 -- type may be set in the private part, and not propagated to the
8549 -- subtype until later, so we obtain the convention from the base type.
8550
8551 Set_Convention (Derived_Type, Convention (Parent_Base));
8552
8553 -- Set SSO default for record or array type
8554
8555 if (Is_Array_Type (Derived_Type)
8556 or else Is_Record_Type (Derived_Type))
8557 and then Is_Base_Type (Derived_Type)
8558 then
8559 Set_Default_SSO (Derived_Type);
8560 end if;
8561
8562 -- Propagate invariant information. The new type has invariants if
8563 -- they are inherited from the parent type, and these invariants can
8564 -- be further inherited, so both flags are set.
8565
8566 -- We similarly inherit predicates
8567
8568 if Has_Predicates (Parent_Type) then
8569 Set_Has_Predicates (Derived_Type);
8570 end if;
8571
8572 -- The derived type inherits the representation clauses of the parent.
8573 -- However, for a private type that is completed by a derivation, there
8574 -- may be operation attributes that have been specified already (stream
8575 -- attributes and External_Tag) and those must be provided. Finally,
8576 -- if the partial view is a private extension, the representation items
8577 -- of the parent have been inherited already, and should not be chained
8578 -- twice to the derived type.
8579
8580 if Is_Tagged_Type (Parent_Type)
8581 and then Present (First_Rep_Item (Derived_Type))
8582 then
8583 -- The existing items are either operational items or items inherited
8584 -- from a private extension declaration.
8585
8586 declare
8587 Rep : Node_Id;
8588 -- Used to iterate over representation items of the derived type
8589
8590 Last_Rep : Node_Id;
8591 -- Last representation item of the (non-empty) representation
8592 -- item list of the derived type.
8593
8594 Found : Boolean := False;
8595
8596 begin
8597 Rep := First_Rep_Item (Derived_Type);
8598 Last_Rep := Rep;
8599 while Present (Rep) loop
8600 if Rep = First_Rep_Item (Parent_Type) then
8601 Found := True;
8602 exit;
8603
8604 else
8605 Rep := Next_Rep_Item (Rep);
8606
8607 if Present (Rep) then
8608 Last_Rep := Rep;
8609 end if;
8610 end if;
8611 end loop;
8612
8613 -- Here if we either encountered the parent type's first rep
8614 -- item on the derived type's rep item list (in which case
8615 -- Found is True, and we have nothing else to do), or if we
8616 -- reached the last rep item of the derived type, which is
8617 -- Last_Rep, in which case we further chain the parent type's
8618 -- rep items to those of the derived type.
8619
8620 if not Found then
8621 Set_Next_Rep_Item (Last_Rep, First_Rep_Item (Parent_Type));
8622 end if;
8623 end;
8624
8625 else
8626 Set_First_Rep_Item (Derived_Type, First_Rep_Item (Parent_Type));
8627 end if;
8628
8629 -- If the parent type has delayed rep aspects, then mark the derived
8630 -- type as possibly inheriting a delayed rep aspect.
8631
8632 if Has_Delayed_Rep_Aspects (Parent_Type) then
8633 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
8634 end if;
8635
8636 -- Type dependent processing
8637
8638 case Ekind (Parent_Type) is
8639 when Numeric_Kind =>
8640 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
8641
8642 when Array_Kind =>
8643 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
8644
8645 when E_Record_Type
8646 | E_Record_Subtype
8647 | Class_Wide_Kind =>
8648 Build_Derived_Record_Type
8649 (N, Parent_Type, Derived_Type, Derive_Subps);
8650 return;
8651
8652 when Enumeration_Kind =>
8653 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
8654
8655 when Access_Kind =>
8656 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
8657
8658 when Incomplete_Or_Private_Kind =>
8659 Build_Derived_Private_Type
8660 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
8661
8662 -- For discriminated types, the derivation includes deriving
8663 -- primitive operations. For others it is done below.
8664
8665 if Is_Tagged_Type (Parent_Type)
8666 or else Has_Discriminants (Parent_Type)
8667 or else (Present (Full_View (Parent_Type))
8668 and then Has_Discriminants (Full_View (Parent_Type)))
8669 then
8670 return;
8671 end if;
8672
8673 when Concurrent_Kind =>
8674 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
8675
8676 when others =>
8677 raise Program_Error;
8678 end case;
8679
8680 -- Nothing more to do if some error occurred
8681
8682 if Etype (Derived_Type) = Any_Type then
8683 return;
8684 end if;
8685
8686 -- Set delayed freeze and then derive subprograms, we need to do this
8687 -- in this order so that derived subprograms inherit the derived freeze
8688 -- if necessary.
8689
8690 Set_Has_Delayed_Freeze (Derived_Type);
8691
8692 if Derive_Subps then
8693 Derive_Subprograms (Parent_Type, Derived_Type);
8694 end if;
8695
8696 Set_Has_Primitive_Operations
8697 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
8698 end Build_Derived_Type;
8699
8700 -----------------------
8701 -- Build_Discriminal --
8702 -----------------------
8703
8704 procedure Build_Discriminal (Discrim : Entity_Id) is
8705 D_Minal : Entity_Id;
8706 CR_Disc : Entity_Id;
8707
8708 begin
8709 -- A discriminal has the same name as the discriminant
8710
8711 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8712
8713 Set_Ekind (D_Minal, E_In_Parameter);
8714 Set_Mechanism (D_Minal, Default_Mechanism);
8715 Set_Etype (D_Minal, Etype (Discrim));
8716 Set_Scope (D_Minal, Current_Scope);
8717
8718 Set_Discriminal (Discrim, D_Minal);
8719 Set_Discriminal_Link (D_Minal, Discrim);
8720
8721 -- For task types, build at once the discriminants of the corresponding
8722 -- record, which are needed if discriminants are used in entry defaults
8723 -- and in family bounds.
8724
8725 if Is_Concurrent_Type (Current_Scope)
8726 or else Is_Limited_Type (Current_Scope)
8727 then
8728 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8729
8730 Set_Ekind (CR_Disc, E_In_Parameter);
8731 Set_Mechanism (CR_Disc, Default_Mechanism);
8732 Set_Etype (CR_Disc, Etype (Discrim));
8733 Set_Scope (CR_Disc, Current_Scope);
8734 Set_Discriminal_Link (CR_Disc, Discrim);
8735 Set_CR_Discriminant (Discrim, CR_Disc);
8736 end if;
8737 end Build_Discriminal;
8738
8739 ------------------------------------
8740 -- Build_Discriminant_Constraints --
8741 ------------------------------------
8742
8743 function Build_Discriminant_Constraints
8744 (T : Entity_Id;
8745 Def : Node_Id;
8746 Derived_Def : Boolean := False) return Elist_Id
8747 is
8748 C : constant Node_Id := Constraint (Def);
8749 Nb_Discr : constant Nat := Number_Discriminants (T);
8750
8751 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
8752 -- Saves the expression corresponding to a given discriminant in T
8753
8754 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
8755 -- Return the Position number within array Discr_Expr of a discriminant
8756 -- D within the discriminant list of the discriminated type T.
8757
8758 procedure Process_Discriminant_Expression
8759 (Expr : Node_Id;
8760 D : Entity_Id);
8761 -- If this is a discriminant constraint on a partial view, do not
8762 -- generate an overflow check on the discriminant expression. The check
8763 -- will be generated when constraining the full view. Otherwise the
8764 -- backend creates duplicate symbols for the temporaries corresponding
8765 -- to the expressions to be checked, causing spurious assembler errors.
8766
8767 ------------------
8768 -- Pos_Of_Discr --
8769 ------------------
8770
8771 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
8772 Disc : Entity_Id;
8773
8774 begin
8775 Disc := First_Discriminant (T);
8776 for J in Discr_Expr'Range loop
8777 if Disc = D then
8778 return J;
8779 end if;
8780
8781 Next_Discriminant (Disc);
8782 end loop;
8783
8784 -- Note: Since this function is called on discriminants that are
8785 -- known to belong to the discriminated type, falling through the
8786 -- loop with no match signals an internal compiler error.
8787
8788 raise Program_Error;
8789 end Pos_Of_Discr;
8790
8791 -------------------------------------
8792 -- Process_Discriminant_Expression --
8793 -------------------------------------
8794
8795 procedure Process_Discriminant_Expression
8796 (Expr : Node_Id;
8797 D : Entity_Id)
8798 is
8799 BDT : constant Entity_Id := Base_Type (Etype (D));
8800
8801 begin
8802 -- If this is a discriminant constraint on a partial view, do
8803 -- not generate an overflow on the discriminant expression. The
8804 -- check will be generated when constraining the full view.
8805
8806 if Is_Private_Type (T)
8807 and then Present (Full_View (T))
8808 then
8809 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
8810 else
8811 Analyze_And_Resolve (Expr, BDT);
8812 end if;
8813 end Process_Discriminant_Expression;
8814
8815 -- Declarations local to Build_Discriminant_Constraints
8816
8817 Discr : Entity_Id;
8818 E : Entity_Id;
8819 Elist : constant Elist_Id := New_Elmt_List;
8820
8821 Constr : Node_Id;
8822 Expr : Node_Id;
8823 Id : Node_Id;
8824 Position : Nat;
8825 Found : Boolean;
8826
8827 Discrim_Present : Boolean := False;
8828
8829 -- Start of processing for Build_Discriminant_Constraints
8830
8831 begin
8832 -- The following loop will process positional associations only.
8833 -- For a positional association, the (single) discriminant is
8834 -- implicitly specified by position, in textual order (RM 3.7.2).
8835
8836 Discr := First_Discriminant (T);
8837 Constr := First (Constraints (C));
8838 for D in Discr_Expr'Range loop
8839 exit when Nkind (Constr) = N_Discriminant_Association;
8840
8841 if No (Constr) then
8842 Error_Msg_N ("too few discriminants given in constraint", C);
8843 return New_Elmt_List;
8844
8845 elsif Nkind (Constr) = N_Range
8846 or else (Nkind (Constr) = N_Attribute_Reference
8847 and then
8848 Attribute_Name (Constr) = Name_Range)
8849 then
8850 Error_Msg_N
8851 ("a range is not a valid discriminant constraint", Constr);
8852 Discr_Expr (D) := Error;
8853
8854 else
8855 Process_Discriminant_Expression (Constr, Discr);
8856 Discr_Expr (D) := Constr;
8857 end if;
8858
8859 Next_Discriminant (Discr);
8860 Next (Constr);
8861 end loop;
8862
8863 if No (Discr) and then Present (Constr) then
8864 Error_Msg_N ("too many discriminants given in constraint", Constr);
8865 return New_Elmt_List;
8866 end if;
8867
8868 -- Named associations can be given in any order, but if both positional
8869 -- and named associations are used in the same discriminant constraint,
8870 -- then positional associations must occur first, at their normal
8871 -- position. Hence once a named association is used, the rest of the
8872 -- discriminant constraint must use only named associations.
8873
8874 while Present (Constr) loop
8875
8876 -- Positional association forbidden after a named association
8877
8878 if Nkind (Constr) /= N_Discriminant_Association then
8879 Error_Msg_N ("positional association follows named one", Constr);
8880 return New_Elmt_List;
8881
8882 -- Otherwise it is a named association
8883
8884 else
8885 -- E records the type of the discriminants in the named
8886 -- association. All the discriminants specified in the same name
8887 -- association must have the same type.
8888
8889 E := Empty;
8890
8891 -- Search the list of discriminants in T to see if the simple name
8892 -- given in the constraint matches any of them.
8893
8894 Id := First (Selector_Names (Constr));
8895 while Present (Id) loop
8896 Found := False;
8897
8898 -- If Original_Discriminant is present, we are processing a
8899 -- generic instantiation and this is an instance node. We need
8900 -- to find the name of the corresponding discriminant in the
8901 -- actual record type T and not the name of the discriminant in
8902 -- the generic formal. Example:
8903
8904 -- generic
8905 -- type G (D : int) is private;
8906 -- package P is
8907 -- subtype W is G (D => 1);
8908 -- end package;
8909 -- type Rec (X : int) is record ... end record;
8910 -- package Q is new P (G => Rec);
8911
8912 -- At the point of the instantiation, formal type G is Rec
8913 -- and therefore when reanalyzing "subtype W is G (D => 1);"
8914 -- which really looks like "subtype W is Rec (D => 1);" at
8915 -- the point of instantiation, we want to find the discriminant
8916 -- that corresponds to D in Rec, i.e. X.
8917
8918 if Present (Original_Discriminant (Id))
8919 and then In_Instance
8920 then
8921 Discr := Find_Corresponding_Discriminant (Id, T);
8922 Found := True;
8923
8924 else
8925 Discr := First_Discriminant (T);
8926 while Present (Discr) loop
8927 if Chars (Discr) = Chars (Id) then
8928 Found := True;
8929 exit;
8930 end if;
8931
8932 Next_Discriminant (Discr);
8933 end loop;
8934
8935 if not Found then
8936 Error_Msg_N ("& does not match any discriminant", Id);
8937 return New_Elmt_List;
8938
8939 -- If the parent type is a generic formal, preserve the
8940 -- name of the discriminant for subsequent instances.
8941 -- see comment at the beginning of this if statement.
8942
8943 elsif Is_Generic_Type (Root_Type (T)) then
8944 Set_Original_Discriminant (Id, Discr);
8945 end if;
8946 end if;
8947
8948 Position := Pos_Of_Discr (T, Discr);
8949
8950 if Present (Discr_Expr (Position)) then
8951 Error_Msg_N ("duplicate constraint for discriminant&", Id);
8952
8953 else
8954 -- Each discriminant specified in the same named association
8955 -- must be associated with a separate copy of the
8956 -- corresponding expression.
8957
8958 if Present (Next (Id)) then
8959 Expr := New_Copy_Tree (Expression (Constr));
8960 Set_Parent (Expr, Parent (Expression (Constr)));
8961 else
8962 Expr := Expression (Constr);
8963 end if;
8964
8965 Discr_Expr (Position) := Expr;
8966 Process_Discriminant_Expression (Expr, Discr);
8967 end if;
8968
8969 -- A discriminant association with more than one discriminant
8970 -- name is only allowed if the named discriminants are all of
8971 -- the same type (RM 3.7.1(8)).
8972
8973 if E = Empty then
8974 E := Base_Type (Etype (Discr));
8975
8976 elsif Base_Type (Etype (Discr)) /= E then
8977 Error_Msg_N
8978 ("all discriminants in an association " &
8979 "must have the same type", Id);
8980 end if;
8981
8982 Next (Id);
8983 end loop;
8984 end if;
8985
8986 Next (Constr);
8987 end loop;
8988
8989 -- A discriminant constraint must provide exactly one value for each
8990 -- discriminant of the type (RM 3.7.1(8)).
8991
8992 for J in Discr_Expr'Range loop
8993 if No (Discr_Expr (J)) then
8994 Error_Msg_N ("too few discriminants given in constraint", C);
8995 return New_Elmt_List;
8996 end if;
8997 end loop;
8998
8999 -- Determine if there are discriminant expressions in the constraint
9000
9001 for J in Discr_Expr'Range loop
9002 if Denotes_Discriminant
9003 (Discr_Expr (J), Check_Concurrent => True)
9004 then
9005 Discrim_Present := True;
9006 end if;
9007 end loop;
9008
9009 -- Build an element list consisting of the expressions given in the
9010 -- discriminant constraint and apply the appropriate checks. The list
9011 -- is constructed after resolving any named discriminant associations
9012 -- and therefore the expressions appear in the textual order of the
9013 -- discriminants.
9014
9015 Discr := First_Discriminant (T);
9016 for J in Discr_Expr'Range loop
9017 if Discr_Expr (J) /= Error then
9018 Append_Elmt (Discr_Expr (J), Elist);
9019
9020 -- If any of the discriminant constraints is given by a
9021 -- discriminant and we are in a derived type declaration we
9022 -- have a discriminant renaming. Establish link between new
9023 -- and old discriminant.
9024
9025 if Denotes_Discriminant (Discr_Expr (J)) then
9026 if Derived_Def then
9027 Set_Corresponding_Discriminant
9028 (Entity (Discr_Expr (J)), Discr);
9029 end if;
9030
9031 -- Force the evaluation of non-discriminant expressions.
9032 -- If we have found a discriminant in the constraint 3.4(26)
9033 -- and 3.8(18) demand that no range checks are performed are
9034 -- after evaluation. If the constraint is for a component
9035 -- definition that has a per-object constraint, expressions are
9036 -- evaluated but not checked either. In all other cases perform
9037 -- a range check.
9038
9039 else
9040 if Discrim_Present then
9041 null;
9042
9043 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
9044 and then
9045 Has_Per_Object_Constraint
9046 (Defining_Identifier (Parent (Parent (Def))))
9047 then
9048 null;
9049
9050 elsif Is_Access_Type (Etype (Discr)) then
9051 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
9052
9053 else
9054 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
9055 end if;
9056
9057 Force_Evaluation (Discr_Expr (J));
9058 end if;
9059
9060 -- Check that the designated type of an access discriminant's
9061 -- expression is not a class-wide type unless the discriminant's
9062 -- designated type is also class-wide.
9063
9064 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
9065 and then not Is_Class_Wide_Type
9066 (Designated_Type (Etype (Discr)))
9067 and then Etype (Discr_Expr (J)) /= Any_Type
9068 and then Is_Class_Wide_Type
9069 (Designated_Type (Etype (Discr_Expr (J))))
9070 then
9071 Wrong_Type (Discr_Expr (J), Etype (Discr));
9072
9073 elsif Is_Access_Type (Etype (Discr))
9074 and then not Is_Access_Constant (Etype (Discr))
9075 and then Is_Access_Type (Etype (Discr_Expr (J)))
9076 and then Is_Access_Constant (Etype (Discr_Expr (J)))
9077 then
9078 Error_Msg_NE
9079 ("constraint for discriminant& must be access to variable",
9080 Def, Discr);
9081 end if;
9082 end if;
9083
9084 Next_Discriminant (Discr);
9085 end loop;
9086
9087 return Elist;
9088 end Build_Discriminant_Constraints;
9089
9090 ---------------------------------
9091 -- Build_Discriminated_Subtype --
9092 ---------------------------------
9093
9094 procedure Build_Discriminated_Subtype
9095 (T : Entity_Id;
9096 Def_Id : Entity_Id;
9097 Elist : Elist_Id;
9098 Related_Nod : Node_Id;
9099 For_Access : Boolean := False)
9100 is
9101 Has_Discrs : constant Boolean := Has_Discriminants (T);
9102 Constrained : constant Boolean :=
9103 (Has_Discrs
9104 and then not Is_Empty_Elmt_List (Elist)
9105 and then not Is_Class_Wide_Type (T))
9106 or else Is_Constrained (T);
9107
9108 begin
9109 if Ekind (T) = E_Record_Type then
9110 if For_Access then
9111 Set_Ekind (Def_Id, E_Private_Subtype);
9112 Set_Is_For_Access_Subtype (Def_Id, True);
9113 else
9114 Set_Ekind (Def_Id, E_Record_Subtype);
9115 end if;
9116
9117 -- Inherit preelaboration flag from base, for types for which it
9118 -- may have been set: records, private types, protected types.
9119
9120 Set_Known_To_Have_Preelab_Init
9121 (Def_Id, Known_To_Have_Preelab_Init (T));
9122
9123 elsif Ekind (T) = E_Task_Type then
9124 Set_Ekind (Def_Id, E_Task_Subtype);
9125
9126 elsif Ekind (T) = E_Protected_Type then
9127 Set_Ekind (Def_Id, E_Protected_Subtype);
9128 Set_Known_To_Have_Preelab_Init
9129 (Def_Id, Known_To_Have_Preelab_Init (T));
9130
9131 elsif Is_Private_Type (T) then
9132 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
9133 Set_Known_To_Have_Preelab_Init
9134 (Def_Id, Known_To_Have_Preelab_Init (T));
9135
9136 -- Private subtypes may have private dependents
9137
9138 Set_Private_Dependents (Def_Id, New_Elmt_List);
9139
9140 elsif Is_Class_Wide_Type (T) then
9141 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
9142
9143 else
9144 -- Incomplete type. Attach subtype to list of dependents, to be
9145 -- completed with full view of parent type, unless is it the
9146 -- designated subtype of a record component within an init_proc.
9147 -- This last case arises for a component of an access type whose
9148 -- designated type is incomplete (e.g. a Taft Amendment type).
9149 -- The designated subtype is within an inner scope, and needs no
9150 -- elaboration, because only the access type is needed in the
9151 -- initialization procedure.
9152
9153 Set_Ekind (Def_Id, Ekind (T));
9154
9155 if For_Access and then Within_Init_Proc then
9156 null;
9157 else
9158 Append_Elmt (Def_Id, Private_Dependents (T));
9159 end if;
9160 end if;
9161
9162 Set_Etype (Def_Id, T);
9163 Init_Size_Align (Def_Id);
9164 Set_Has_Discriminants (Def_Id, Has_Discrs);
9165 Set_Is_Constrained (Def_Id, Constrained);
9166
9167 Set_First_Entity (Def_Id, First_Entity (T));
9168 Set_Last_Entity (Def_Id, Last_Entity (T));
9169 Set_Has_Implicit_Dereference
9170 (Def_Id, Has_Implicit_Dereference (T));
9171
9172 -- If the subtype is the completion of a private declaration, there may
9173 -- have been representation clauses for the partial view, and they must
9174 -- be preserved. Build_Derived_Type chains the inherited clauses with
9175 -- the ones appearing on the extension. If this comes from a subtype
9176 -- declaration, all clauses are inherited.
9177
9178 if No (First_Rep_Item (Def_Id)) then
9179 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9180 end if;
9181
9182 if Is_Tagged_Type (T) then
9183 Set_Is_Tagged_Type (Def_Id);
9184 Make_Class_Wide_Type (Def_Id);
9185 end if;
9186
9187 Set_Stored_Constraint (Def_Id, No_Elist);
9188
9189 if Has_Discrs then
9190 Set_Discriminant_Constraint (Def_Id, Elist);
9191 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
9192 end if;
9193
9194 if Is_Tagged_Type (T) then
9195
9196 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9197 -- concurrent record type (which has the list of primitive
9198 -- operations).
9199
9200 if Ada_Version >= Ada_2005
9201 and then Is_Concurrent_Type (T)
9202 then
9203 Set_Corresponding_Record_Type (Def_Id,
9204 Corresponding_Record_Type (T));
9205 else
9206 Set_Direct_Primitive_Operations (Def_Id,
9207 Direct_Primitive_Operations (T));
9208 end if;
9209
9210 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
9211 end if;
9212
9213 -- Subtypes introduced by component declarations do not need to be
9214 -- marked as delayed, and do not get freeze nodes, because the semantics
9215 -- verifies that the parents of the subtypes are frozen before the
9216 -- enclosing record is frozen.
9217
9218 if not Is_Type (Scope (Def_Id)) then
9219 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
9220
9221 if Is_Private_Type (T)
9222 and then Present (Full_View (T))
9223 then
9224 Conditional_Delay (Def_Id, Full_View (T));
9225 else
9226 Conditional_Delay (Def_Id, T);
9227 end if;
9228 end if;
9229
9230 if Is_Record_Type (T) then
9231 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
9232
9233 if Has_Discrs
9234 and then not Is_Empty_Elmt_List (Elist)
9235 and then not For_Access
9236 then
9237 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
9238 elsif not For_Access then
9239 Set_Cloned_Subtype (Def_Id, T);
9240 end if;
9241 end if;
9242 end Build_Discriminated_Subtype;
9243
9244 ---------------------------
9245 -- Build_Itype_Reference --
9246 ---------------------------
9247
9248 procedure Build_Itype_Reference
9249 (Ityp : Entity_Id;
9250 Nod : Node_Id)
9251 is
9252 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
9253 begin
9254
9255 -- Itype references are only created for use by the back-end
9256
9257 if Inside_A_Generic then
9258 return;
9259 else
9260 Set_Itype (IR, Ityp);
9261 Insert_After (Nod, IR);
9262 end if;
9263 end Build_Itype_Reference;
9264
9265 ------------------------
9266 -- Build_Scalar_Bound --
9267 ------------------------
9268
9269 function Build_Scalar_Bound
9270 (Bound : Node_Id;
9271 Par_T : Entity_Id;
9272 Der_T : Entity_Id) return Node_Id
9273 is
9274 New_Bound : Entity_Id;
9275
9276 begin
9277 -- Note: not clear why this is needed, how can the original bound
9278 -- be unanalyzed at this point? and if it is, what business do we
9279 -- have messing around with it? and why is the base type of the
9280 -- parent type the right type for the resolution. It probably is
9281 -- not. It is OK for the new bound we are creating, but not for
9282 -- the old one??? Still if it never happens, no problem.
9283
9284 Analyze_And_Resolve (Bound, Base_Type (Par_T));
9285
9286 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
9287 New_Bound := New_Copy (Bound);
9288 Set_Etype (New_Bound, Der_T);
9289 Set_Analyzed (New_Bound);
9290
9291 elsif Is_Entity_Name (Bound) then
9292 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
9293
9294 -- The following is almost certainly wrong. What business do we have
9295 -- relocating a node (Bound) that is presumably still attached to
9296 -- the tree elsewhere???
9297
9298 else
9299 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
9300 end if;
9301
9302 Set_Etype (New_Bound, Der_T);
9303 return New_Bound;
9304 end Build_Scalar_Bound;
9305
9306 --------------------------------
9307 -- Build_Underlying_Full_View --
9308 --------------------------------
9309
9310 procedure Build_Underlying_Full_View
9311 (N : Node_Id;
9312 Typ : Entity_Id;
9313 Par : Entity_Id)
9314 is
9315 Loc : constant Source_Ptr := Sloc (N);
9316 Subt : constant Entity_Id :=
9317 Make_Defining_Identifier
9318 (Loc, New_External_Name (Chars (Typ), 'S'));
9319
9320 Constr : Node_Id;
9321 Indic : Node_Id;
9322 C : Node_Id;
9323 Id : Node_Id;
9324
9325 procedure Set_Discriminant_Name (Id : Node_Id);
9326 -- If the derived type has discriminants, they may rename discriminants
9327 -- of the parent. When building the full view of the parent, we need to
9328 -- recover the names of the original discriminants if the constraint is
9329 -- given by named associations.
9330
9331 ---------------------------
9332 -- Set_Discriminant_Name --
9333 ---------------------------
9334
9335 procedure Set_Discriminant_Name (Id : Node_Id) is
9336 Disc : Entity_Id;
9337
9338 begin
9339 Set_Original_Discriminant (Id, Empty);
9340
9341 if Has_Discriminants (Typ) then
9342 Disc := First_Discriminant (Typ);
9343 while Present (Disc) loop
9344 if Chars (Disc) = Chars (Id)
9345 and then Present (Corresponding_Discriminant (Disc))
9346 then
9347 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
9348 end if;
9349 Next_Discriminant (Disc);
9350 end loop;
9351 end if;
9352 end Set_Discriminant_Name;
9353
9354 -- Start of processing for Build_Underlying_Full_View
9355
9356 begin
9357 if Nkind (N) = N_Full_Type_Declaration then
9358 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
9359
9360 elsif Nkind (N) = N_Subtype_Declaration then
9361 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
9362
9363 elsif Nkind (N) = N_Component_Declaration then
9364 Constr :=
9365 New_Copy_Tree
9366 (Constraint (Subtype_Indication (Component_Definition (N))));
9367
9368 else
9369 raise Program_Error;
9370 end if;
9371
9372 C := First (Constraints (Constr));
9373 while Present (C) loop
9374 if Nkind (C) = N_Discriminant_Association then
9375 Id := First (Selector_Names (C));
9376 while Present (Id) loop
9377 Set_Discriminant_Name (Id);
9378 Next (Id);
9379 end loop;
9380 end if;
9381
9382 Next (C);
9383 end loop;
9384
9385 Indic :=
9386 Make_Subtype_Declaration (Loc,
9387 Defining_Identifier => Subt,
9388 Subtype_Indication =>
9389 Make_Subtype_Indication (Loc,
9390 Subtype_Mark => New_Occurrence_Of (Par, Loc),
9391 Constraint => New_Copy_Tree (Constr)));
9392
9393 -- If this is a component subtype for an outer itype, it is not
9394 -- a list member, so simply set the parent link for analysis: if
9395 -- the enclosing type does not need to be in a declarative list,
9396 -- neither do the components.
9397
9398 if Is_List_Member (N)
9399 and then Nkind (N) /= N_Component_Declaration
9400 then
9401 Insert_Before (N, Indic);
9402 else
9403 Set_Parent (Indic, Parent (N));
9404 end if;
9405
9406 Analyze (Indic);
9407 Set_Underlying_Full_View (Typ, Full_View (Subt));
9408 end Build_Underlying_Full_View;
9409
9410 -------------------------------
9411 -- Check_Abstract_Overriding --
9412 -------------------------------
9413
9414 procedure Check_Abstract_Overriding (T : Entity_Id) is
9415 Alias_Subp : Entity_Id;
9416 Elmt : Elmt_Id;
9417 Op_List : Elist_Id;
9418 Subp : Entity_Id;
9419 Type_Def : Node_Id;
9420
9421 procedure Check_Pragma_Implemented (Subp : Entity_Id);
9422 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9423 -- which has pragma Implemented already set. Check whether Subp's entity
9424 -- kind conforms to the implementation kind of the overridden routine.
9425
9426 procedure Check_Pragma_Implemented
9427 (Subp : Entity_Id;
9428 Iface_Subp : Entity_Id);
9429 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9430 -- Iface_Subp and both entities have pragma Implemented already set on
9431 -- them. Check whether the two implementation kinds are conforming.
9432
9433 procedure Inherit_Pragma_Implemented
9434 (Subp : Entity_Id;
9435 Iface_Subp : Entity_Id);
9436 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9437 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9438 -- Propagate the implementation kind of Iface_Subp to Subp.
9439
9440 ------------------------------
9441 -- Check_Pragma_Implemented --
9442 ------------------------------
9443
9444 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
9445 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
9446 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
9447 Subp_Alias : constant Entity_Id := Alias (Subp);
9448 Contr_Typ : Entity_Id;
9449 Impl_Subp : Entity_Id;
9450
9451 begin
9452 -- Subp must have an alias since it is a hidden entity used to link
9453 -- an interface subprogram to its overriding counterpart.
9454
9455 pragma Assert (Present (Subp_Alias));
9456
9457 -- Handle aliases to synchronized wrappers
9458
9459 Impl_Subp := Subp_Alias;
9460
9461 if Is_Primitive_Wrapper (Impl_Subp) then
9462 Impl_Subp := Wrapped_Entity (Impl_Subp);
9463 end if;
9464
9465 -- Extract the type of the controlling formal
9466
9467 Contr_Typ := Etype (First_Formal (Subp_Alias));
9468
9469 if Is_Concurrent_Record_Type (Contr_Typ) then
9470 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
9471 end if;
9472
9473 -- An interface subprogram whose implementation kind is By_Entry must
9474 -- be implemented by an entry.
9475
9476 if Impl_Kind = Name_By_Entry
9477 and then Ekind (Impl_Subp) /= E_Entry
9478 then
9479 Error_Msg_Node_2 := Iface_Alias;
9480 Error_Msg_NE
9481 ("type & must implement abstract subprogram & with an entry",
9482 Subp_Alias, Contr_Typ);
9483
9484 elsif Impl_Kind = Name_By_Protected_Procedure then
9485
9486 -- An interface subprogram whose implementation kind is By_
9487 -- Protected_Procedure cannot be implemented by a primitive
9488 -- procedure of a task type.
9489
9490 if Ekind (Contr_Typ) /= E_Protected_Type then
9491 Error_Msg_Node_2 := Contr_Typ;
9492 Error_Msg_NE
9493 ("interface subprogram & cannot be implemented by a " &
9494 "primitive procedure of task type &", Subp_Alias,
9495 Iface_Alias);
9496
9497 -- An interface subprogram whose implementation kind is By_
9498 -- Protected_Procedure must be implemented by a procedure.
9499
9500 elsif Ekind (Impl_Subp) /= E_Procedure then
9501 Error_Msg_Node_2 := Iface_Alias;
9502 Error_Msg_NE
9503 ("type & must implement abstract subprogram & with a " &
9504 "procedure", Subp_Alias, Contr_Typ);
9505
9506 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9507 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9508 then
9509 Error_Msg_Name_1 := Impl_Kind;
9510 Error_Msg_N
9511 ("overriding operation& must have synchronization%",
9512 Subp_Alias);
9513 end if;
9514
9515 -- If primitive has Optional synchronization, overriding operation
9516 -- must match if it has an explicit synchronization..
9517
9518 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9519 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9520 then
9521 Error_Msg_Name_1 := Impl_Kind;
9522 Error_Msg_N
9523 ("overriding operation& must have syncrhonization%",
9524 Subp_Alias);
9525 end if;
9526 end Check_Pragma_Implemented;
9527
9528 ------------------------------
9529 -- Check_Pragma_Implemented --
9530 ------------------------------
9531
9532 procedure Check_Pragma_Implemented
9533 (Subp : Entity_Id;
9534 Iface_Subp : Entity_Id)
9535 is
9536 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9537 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
9538
9539 begin
9540 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9541 -- and overriding subprogram are different. In general this is an
9542 -- error except when the implementation kind of the overridden
9543 -- subprograms is By_Any or Optional.
9544
9545 if Iface_Kind /= Subp_Kind
9546 and then Iface_Kind /= Name_By_Any
9547 and then Iface_Kind /= Name_Optional
9548 then
9549 if Iface_Kind = Name_By_Entry then
9550 Error_Msg_N
9551 ("incompatible implementation kind, overridden subprogram " &
9552 "is marked By_Entry", Subp);
9553 else
9554 Error_Msg_N
9555 ("incompatible implementation kind, overridden subprogram " &
9556 "is marked By_Protected_Procedure", Subp);
9557 end if;
9558 end if;
9559 end Check_Pragma_Implemented;
9560
9561 --------------------------------
9562 -- Inherit_Pragma_Implemented --
9563 --------------------------------
9564
9565 procedure Inherit_Pragma_Implemented
9566 (Subp : Entity_Id;
9567 Iface_Subp : Entity_Id)
9568 is
9569 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9570 Loc : constant Source_Ptr := Sloc (Subp);
9571 Impl_Prag : Node_Id;
9572
9573 begin
9574 -- Since the implementation kind is stored as a representation item
9575 -- rather than a flag, create a pragma node.
9576
9577 Impl_Prag :=
9578 Make_Pragma (Loc,
9579 Chars => Name_Implemented,
9580 Pragma_Argument_Associations => New_List (
9581 Make_Pragma_Argument_Association (Loc,
9582 Expression => New_Occurrence_Of (Subp, Loc)),
9583
9584 Make_Pragma_Argument_Association (Loc,
9585 Expression => Make_Identifier (Loc, Iface_Kind))));
9586
9587 -- The pragma doesn't need to be analyzed because it is internally
9588 -- built. It is safe to directly register it as a rep item since we
9589 -- are only interested in the characters of the implementation kind.
9590
9591 Record_Rep_Item (Subp, Impl_Prag);
9592 end Inherit_Pragma_Implemented;
9593
9594 -- Start of processing for Check_Abstract_Overriding
9595
9596 begin
9597 Op_List := Primitive_Operations (T);
9598
9599 -- Loop to check primitive operations
9600
9601 Elmt := First_Elmt (Op_List);
9602 while Present (Elmt) loop
9603 Subp := Node (Elmt);
9604 Alias_Subp := Alias (Subp);
9605
9606 -- Inherited subprograms are identified by the fact that they do not
9607 -- come from source, and the associated source location is the
9608 -- location of the first subtype of the derived type.
9609
9610 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9611 -- subprograms that "require overriding".
9612
9613 -- Special exception, do not complain about failure to override the
9614 -- stream routines _Input and _Output, as well as the primitive
9615 -- operations used in dispatching selects since we always provide
9616 -- automatic overridings for these subprograms.
9617
9618 -- Also ignore this rule for convention CIL since .NET libraries
9619 -- do bizarre things with interfaces???
9620
9621 -- The partial view of T may have been a private extension, for
9622 -- which inherited functions dispatching on result are abstract.
9623 -- If the full view is a null extension, there is no need for
9624 -- overriding in Ada 2005, but wrappers need to be built for them
9625 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9626
9627 if Is_Null_Extension (T)
9628 and then Has_Controlling_Result (Subp)
9629 and then Ada_Version >= Ada_2005
9630 and then Present (Alias_Subp)
9631 and then not Comes_From_Source (Subp)
9632 and then not Is_Abstract_Subprogram (Alias_Subp)
9633 and then not Is_Access_Type (Etype (Subp))
9634 then
9635 null;
9636
9637 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9638 -- processing because this check is done with the aliased
9639 -- entity
9640
9641 elsif Present (Interface_Alias (Subp)) then
9642 null;
9643
9644 elsif (Is_Abstract_Subprogram (Subp)
9645 or else Requires_Overriding (Subp)
9646 or else
9647 (Has_Controlling_Result (Subp)
9648 and then Present (Alias_Subp)
9649 and then not Comes_From_Source (Subp)
9650 and then Sloc (Subp) = Sloc (First_Subtype (T))))
9651 and then not Is_TSS (Subp, TSS_Stream_Input)
9652 and then not Is_TSS (Subp, TSS_Stream_Output)
9653 and then not Is_Abstract_Type (T)
9654 and then Convention (T) /= Convention_CIL
9655 and then not Is_Predefined_Interface_Primitive (Subp)
9656
9657 -- Ada 2005 (AI-251): Do not consider hidden entities associated
9658 -- with abstract interface types because the check will be done
9659 -- with the aliased entity (otherwise we generate a duplicated
9660 -- error message).
9661
9662 and then not Present (Interface_Alias (Subp))
9663 then
9664 if Present (Alias_Subp) then
9665
9666 -- Only perform the check for a derived subprogram when the
9667 -- type has an explicit record extension. This avoids incorrect
9668 -- flagging of abstract subprograms for the case of a type
9669 -- without an extension that is derived from a formal type
9670 -- with a tagged actual (can occur within a private part).
9671
9672 -- Ada 2005 (AI-391): In the case of an inherited function with
9673 -- a controlling result of the type, the rule does not apply if
9674 -- the type is a null extension (unless the parent function
9675 -- itself is abstract, in which case the function must still be
9676 -- be overridden). The expander will generate an overriding
9677 -- wrapper function calling the parent subprogram (see
9678 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
9679
9680 Type_Def := Type_Definition (Parent (T));
9681
9682 if Nkind (Type_Def) = N_Derived_Type_Definition
9683 and then Present (Record_Extension_Part (Type_Def))
9684 and then
9685 (Ada_Version < Ada_2005
9686 or else not Is_Null_Extension (T)
9687 or else Ekind (Subp) = E_Procedure
9688 or else not Has_Controlling_Result (Subp)
9689 or else Is_Abstract_Subprogram (Alias_Subp)
9690 or else Requires_Overriding (Subp)
9691 or else Is_Access_Type (Etype (Subp)))
9692 then
9693 -- Avoid reporting error in case of abstract predefined
9694 -- primitive inherited from interface type because the
9695 -- body of internally generated predefined primitives
9696 -- of tagged types are generated later by Freeze_Type
9697
9698 if Is_Interface (Root_Type (T))
9699 and then Is_Abstract_Subprogram (Subp)
9700 and then Is_Predefined_Dispatching_Operation (Subp)
9701 and then not Comes_From_Source (Ultimate_Alias (Subp))
9702 then
9703 null;
9704
9705 else
9706 Error_Msg_NE
9707 ("type must be declared abstract or & overridden",
9708 T, Subp);
9709
9710 -- Traverse the whole chain of aliased subprograms to
9711 -- complete the error notification. This is especially
9712 -- useful for traceability of the chain of entities when
9713 -- the subprogram corresponds with an interface
9714 -- subprogram (which may be defined in another package).
9715
9716 if Present (Alias_Subp) then
9717 declare
9718 E : Entity_Id;
9719
9720 begin
9721 E := Subp;
9722 while Present (Alias (E)) loop
9723
9724 -- Avoid reporting redundant errors on entities
9725 -- inherited from interfaces
9726
9727 if Sloc (E) /= Sloc (T) then
9728 Error_Msg_Sloc := Sloc (E);
9729 Error_Msg_NE
9730 ("\& has been inherited #", T, Subp);
9731 end if;
9732
9733 E := Alias (E);
9734 end loop;
9735
9736 Error_Msg_Sloc := Sloc (E);
9737
9738 -- AI05-0068: report if there is an overriding
9739 -- non-abstract subprogram that is invisible.
9740
9741 if Is_Hidden (E)
9742 and then not Is_Abstract_Subprogram (E)
9743 then
9744 Error_Msg_NE
9745 ("\& subprogram# is not visible",
9746 T, Subp);
9747
9748 else
9749 Error_Msg_NE
9750 ("\& has been inherited from subprogram #",
9751 T, Subp);
9752 end if;
9753 end;
9754 end if;
9755 end if;
9756
9757 -- Ada 2005 (AI-345): Protected or task type implementing
9758 -- abstract interfaces.
9759
9760 elsif Is_Concurrent_Record_Type (T)
9761 and then Present (Interfaces (T))
9762 then
9763 -- If an inherited subprogram is implemented by a protected
9764 -- procedure or an entry, then the first parameter of the
9765 -- inherited subprogram shall be of mode OUT or IN OUT, or
9766 -- an access-to-variable parameter (RM 9.4(11.9/3))
9767
9768 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
9769 and then Ekind (First_Formal (Subp)) = E_In_Parameter
9770 and then Ekind (Subp) /= E_Function
9771 and then not Is_Predefined_Dispatching_Operation (Subp)
9772 then
9773 Error_Msg_PT (T, Subp);
9774
9775 -- Some other kind of overriding failure
9776
9777 else
9778 Error_Msg_NE
9779 ("interface subprogram & must be overridden",
9780 T, Subp);
9781
9782 -- Examine primitive operations of synchronized type,
9783 -- to find homonyms that have the wrong profile.
9784
9785 declare
9786 Prim : Entity_Id;
9787
9788 begin
9789 Prim :=
9790 First_Entity (Corresponding_Concurrent_Type (T));
9791 while Present (Prim) loop
9792 if Chars (Prim) = Chars (Subp) then
9793 Error_Msg_NE
9794 ("profile is not type conformant with "
9795 & "prefixed view profile of "
9796 & "inherited operation&", Prim, Subp);
9797 end if;
9798
9799 Next_Entity (Prim);
9800 end loop;
9801 end;
9802 end if;
9803 end if;
9804
9805 else
9806 Error_Msg_Node_2 := T;
9807 Error_Msg_N
9808 ("abstract subprogram& not allowed for type&", Subp);
9809
9810 -- Also post unconditional warning on the type (unconditional
9811 -- so that if there are more than one of these cases, we get
9812 -- them all, and not just the first one).
9813
9814 Error_Msg_Node_2 := Subp;
9815 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
9816 end if;
9817 end if;
9818
9819 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
9820
9821 -- Subp is an expander-generated procedure which maps an interface
9822 -- alias to a protected wrapper. The interface alias is flagged by
9823 -- pragma Implemented. Ensure that Subp is a procedure when the
9824 -- implementation kind is By_Protected_Procedure or an entry when
9825 -- By_Entry.
9826
9827 if Ada_Version >= Ada_2012
9828 and then Is_Hidden (Subp)
9829 and then Present (Interface_Alias (Subp))
9830 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
9831 then
9832 Check_Pragma_Implemented (Subp);
9833 end if;
9834
9835 -- Subp is an interface primitive which overrides another interface
9836 -- primitive marked with pragma Implemented.
9837
9838 if Ada_Version >= Ada_2012
9839 and then Present (Overridden_Operation (Subp))
9840 and then Has_Rep_Pragma
9841 (Overridden_Operation (Subp), Name_Implemented)
9842 then
9843 -- If the overriding routine is also marked by Implemented, check
9844 -- that the two implementation kinds are conforming.
9845
9846 if Has_Rep_Pragma (Subp, Name_Implemented) then
9847 Check_Pragma_Implemented
9848 (Subp => Subp,
9849 Iface_Subp => Overridden_Operation (Subp));
9850
9851 -- Otherwise the overriding routine inherits the implementation
9852 -- kind from the overridden subprogram.
9853
9854 else
9855 Inherit_Pragma_Implemented
9856 (Subp => Subp,
9857 Iface_Subp => Overridden_Operation (Subp));
9858 end if;
9859 end if;
9860
9861 -- If the operation is a wrapper for a synchronized primitive, it
9862 -- may be called indirectly through a dispatching select. We assume
9863 -- that it will be referenced elsewhere indirectly, and suppress
9864 -- warnings about an unused entity.
9865
9866 if Is_Primitive_Wrapper (Subp)
9867 and then Present (Wrapped_Entity (Subp))
9868 then
9869 Set_Referenced (Wrapped_Entity (Subp));
9870 end if;
9871
9872 Next_Elmt (Elmt);
9873 end loop;
9874 end Check_Abstract_Overriding;
9875
9876 ------------------------------------------------
9877 -- Check_Access_Discriminant_Requires_Limited --
9878 ------------------------------------------------
9879
9880 procedure Check_Access_Discriminant_Requires_Limited
9881 (D : Node_Id;
9882 Loc : Node_Id)
9883 is
9884 begin
9885 -- A discriminant_specification for an access discriminant shall appear
9886 -- only in the declaration for a task or protected type, or for a type
9887 -- with the reserved word 'limited' in its definition or in one of its
9888 -- ancestors (RM 3.7(10)).
9889
9890 -- AI-0063: The proper condition is that type must be immutably limited,
9891 -- or else be a partial view.
9892
9893 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
9894 if Is_Limited_View (Current_Scope)
9895 or else
9896 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
9897 and then Limited_Present (Parent (Current_Scope)))
9898 then
9899 null;
9900
9901 else
9902 Error_Msg_N
9903 ("access discriminants allowed only for limited types", Loc);
9904 end if;
9905 end if;
9906 end Check_Access_Discriminant_Requires_Limited;
9907
9908 -----------------------------------
9909 -- Check_Aliased_Component_Types --
9910 -----------------------------------
9911
9912 procedure Check_Aliased_Component_Types (T : Entity_Id) is
9913 C : Entity_Id;
9914
9915 begin
9916 -- ??? Also need to check components of record extensions, but not
9917 -- components of protected types (which are always limited).
9918
9919 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
9920 -- types to be unconstrained. This is safe because it is illegal to
9921 -- create access subtypes to such types with explicit discriminant
9922 -- constraints.
9923
9924 if not Is_Limited_Type (T) then
9925 if Ekind (T) = E_Record_Type then
9926 C := First_Component (T);
9927 while Present (C) loop
9928 if Is_Aliased (C)
9929 and then Has_Discriminants (Etype (C))
9930 and then not Is_Constrained (Etype (C))
9931 and then not In_Instance_Body
9932 and then Ada_Version < Ada_2005
9933 then
9934 Error_Msg_N
9935 ("aliased component must be constrained (RM 3.6(11))",
9936 C);
9937 end if;
9938
9939 Next_Component (C);
9940 end loop;
9941
9942 elsif Ekind (T) = E_Array_Type then
9943 if Has_Aliased_Components (T)
9944 and then Has_Discriminants (Component_Type (T))
9945 and then not Is_Constrained (Component_Type (T))
9946 and then not In_Instance_Body
9947 and then Ada_Version < Ada_2005
9948 then
9949 Error_Msg_N
9950 ("aliased component type must be constrained (RM 3.6(11))",
9951 T);
9952 end if;
9953 end if;
9954 end if;
9955 end Check_Aliased_Component_Types;
9956
9957 ----------------------
9958 -- Check_Completion --
9959 ----------------------
9960
9961 procedure Check_Completion (Body_Id : Node_Id := Empty) is
9962 E : Entity_Id;
9963
9964 procedure Post_Error;
9965 -- Post error message for lack of completion for entity E
9966
9967 ----------------
9968 -- Post_Error --
9969 ----------------
9970
9971 procedure Post_Error is
9972
9973 procedure Missing_Body;
9974 -- Output missing body message
9975
9976 ------------------
9977 -- Missing_Body --
9978 ------------------
9979
9980 procedure Missing_Body is
9981 begin
9982 -- Spec is in same unit, so we can post on spec
9983
9984 if In_Same_Source_Unit (Body_Id, E) then
9985 Error_Msg_N ("missing body for &", E);
9986
9987 -- Spec is in a separate unit, so we have to post on the body
9988
9989 else
9990 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
9991 end if;
9992 end Missing_Body;
9993
9994 -- Start of processing for Post_Error
9995
9996 begin
9997 if not Comes_From_Source (E) then
9998
9999 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
10000 -- It may be an anonymous protected type created for a
10001 -- single variable. Post error on variable, if present.
10002
10003 declare
10004 Var : Entity_Id;
10005
10006 begin
10007 Var := First_Entity (Current_Scope);
10008 while Present (Var) loop
10009 exit when Etype (Var) = E
10010 and then Comes_From_Source (Var);
10011
10012 Next_Entity (Var);
10013 end loop;
10014
10015 if Present (Var) then
10016 E := Var;
10017 end if;
10018 end;
10019 end if;
10020 end if;
10021
10022 -- If a generated entity has no completion, then either previous
10023 -- semantic errors have disabled the expansion phase, or else we had
10024 -- missing subunits, or else we are compiling without expansion,
10025 -- or else something is very wrong.
10026
10027 if not Comes_From_Source (E) then
10028 pragma Assert
10029 (Serious_Errors_Detected > 0
10030 or else Configurable_Run_Time_Violations > 0
10031 or else Subunits_Missing
10032 or else not Expander_Active);
10033 return;
10034
10035 -- Here for source entity
10036
10037 else
10038 -- Here if no body to post the error message, so we post the error
10039 -- on the declaration that has no completion. This is not really
10040 -- the right place to post it, think about this later ???
10041
10042 if No (Body_Id) then
10043 if Is_Type (E) then
10044 Error_Msg_NE
10045 ("missing full declaration for }", Parent (E), E);
10046 else
10047 Error_Msg_NE ("missing body for &", Parent (E), E);
10048 end if;
10049
10050 -- Package body has no completion for a declaration that appears
10051 -- in the corresponding spec. Post error on the body, with a
10052 -- reference to the non-completed declaration.
10053
10054 else
10055 Error_Msg_Sloc := Sloc (E);
10056
10057 if Is_Type (E) then
10058 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
10059
10060 elsif Is_Overloadable (E)
10061 and then Current_Entity_In_Scope (E) /= E
10062 then
10063 -- It may be that the completion is mistyped and appears as
10064 -- a distinct overloading of the entity.
10065
10066 declare
10067 Candidate : constant Entity_Id :=
10068 Current_Entity_In_Scope (E);
10069 Decl : constant Node_Id :=
10070 Unit_Declaration_Node (Candidate);
10071
10072 begin
10073 if Is_Overloadable (Candidate)
10074 and then Ekind (Candidate) = Ekind (E)
10075 and then Nkind (Decl) = N_Subprogram_Body
10076 and then Acts_As_Spec (Decl)
10077 then
10078 Check_Type_Conformant (Candidate, E);
10079
10080 else
10081 Missing_Body;
10082 end if;
10083 end;
10084
10085 else
10086 Missing_Body;
10087 end if;
10088 end if;
10089 end if;
10090 end Post_Error;
10091
10092 -- Start of processing for Check_Completion
10093
10094 begin
10095 E := First_Entity (Current_Scope);
10096 while Present (E) loop
10097 if Is_Intrinsic_Subprogram (E) then
10098 null;
10099
10100 -- The following situation requires special handling: a child unit
10101 -- that appears in the context clause of the body of its parent:
10102
10103 -- procedure Parent.Child (...);
10104
10105 -- with Parent.Child;
10106 -- package body Parent is
10107
10108 -- Here Parent.Child appears as a local entity, but should not be
10109 -- flagged as requiring completion, because it is a compilation
10110 -- unit.
10111
10112 -- Ignore missing completion for a subprogram that does not come from
10113 -- source (including the _Call primitive operation of RAS types,
10114 -- which has to have the flag Comes_From_Source for other purposes):
10115 -- we assume that the expander will provide the missing completion.
10116 -- In case of previous errors, other expansion actions that provide
10117 -- bodies for null procedures with not be invoked, so inhibit message
10118 -- in those cases.
10119
10120 -- Note that E_Operator is not in the list that follows, because
10121 -- this kind is reserved for predefined operators, that are
10122 -- intrinsic and do not need completion.
10123
10124 elsif Ekind (E) = E_Function
10125 or else Ekind (E) = E_Procedure
10126 or else Ekind (E) = E_Generic_Function
10127 or else Ekind (E) = E_Generic_Procedure
10128 then
10129 if Has_Completion (E) then
10130 null;
10131
10132 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
10133 null;
10134
10135 elsif Is_Subprogram (E)
10136 and then (not Comes_From_Source (E)
10137 or else Chars (E) = Name_uCall)
10138 then
10139 null;
10140
10141 elsif
10142 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
10143 then
10144 null;
10145
10146 elsif Nkind (Parent (E)) = N_Procedure_Specification
10147 and then Null_Present (Parent (E))
10148 and then Serious_Errors_Detected > 0
10149 then
10150 null;
10151
10152 else
10153 Post_Error;
10154 end if;
10155
10156 elsif Is_Entry (E) then
10157 if not Has_Completion (E) and then
10158 (Ekind (Scope (E)) = E_Protected_Object
10159 or else Ekind (Scope (E)) = E_Protected_Type)
10160 then
10161 Post_Error;
10162 end if;
10163
10164 elsif Is_Package_Or_Generic_Package (E) then
10165 if Unit_Requires_Body (E) then
10166 if not Has_Completion (E)
10167 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
10168 N_Compilation_Unit
10169 then
10170 Post_Error;
10171 end if;
10172
10173 elsif not Is_Child_Unit (E) then
10174 May_Need_Implicit_Body (E);
10175 end if;
10176
10177 -- A formal incomplete type (Ada 2012) does not require a completion;
10178 -- other incomplete type declarations do.
10179
10180 elsif Ekind (E) = E_Incomplete_Type
10181 and then No (Underlying_Type (E))
10182 and then not Is_Generic_Type (E)
10183 then
10184 Post_Error;
10185
10186 elsif (Ekind (E) = E_Task_Type or else
10187 Ekind (E) = E_Protected_Type)
10188 and then not Has_Completion (E)
10189 then
10190 Post_Error;
10191
10192 -- A single task declared in the current scope is a constant, verify
10193 -- that the body of its anonymous type is in the same scope. If the
10194 -- task is defined elsewhere, this may be a renaming declaration for
10195 -- which no completion is needed.
10196
10197 elsif Ekind (E) = E_Constant
10198 and then Ekind (Etype (E)) = E_Task_Type
10199 and then not Has_Completion (Etype (E))
10200 and then Scope (Etype (E)) = Current_Scope
10201 then
10202 Post_Error;
10203
10204 elsif Ekind (E) = E_Protected_Object
10205 and then not Has_Completion (Etype (E))
10206 then
10207 Post_Error;
10208
10209 elsif Ekind (E) = E_Record_Type then
10210 if Is_Tagged_Type (E) then
10211 Check_Abstract_Overriding (E);
10212 Check_Conventions (E);
10213 end if;
10214
10215 Check_Aliased_Component_Types (E);
10216
10217 elsif Ekind (E) = E_Array_Type then
10218 Check_Aliased_Component_Types (E);
10219
10220 end if;
10221
10222 Next_Entity (E);
10223 end loop;
10224 end Check_Completion;
10225
10226 ------------------------------------
10227 -- Check_CPP_Type_Has_No_Defaults --
10228 ------------------------------------
10229
10230 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
10231 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
10232 Clist : Node_Id;
10233 Comp : Node_Id;
10234
10235 begin
10236 -- Obtain the component list
10237
10238 if Nkind (Tdef) = N_Record_Definition then
10239 Clist := Component_List (Tdef);
10240 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
10241 Clist := Component_List (Record_Extension_Part (Tdef));
10242 end if;
10243
10244 -- Check all components to ensure no default expressions
10245
10246 if Present (Clist) then
10247 Comp := First (Component_Items (Clist));
10248 while Present (Comp) loop
10249 if Present (Expression (Comp)) then
10250 Error_Msg_N
10251 ("component of imported 'C'P'P type cannot have "
10252 & "default expression", Expression (Comp));
10253 end if;
10254
10255 Next (Comp);
10256 end loop;
10257 end if;
10258 end Check_CPP_Type_Has_No_Defaults;
10259
10260 ----------------------------
10261 -- Check_Delta_Expression --
10262 ----------------------------
10263
10264 procedure Check_Delta_Expression (E : Node_Id) is
10265 begin
10266 if not (Is_Real_Type (Etype (E))) then
10267 Wrong_Type (E, Any_Real);
10268
10269 elsif not Is_OK_Static_Expression (E) then
10270 Flag_Non_Static_Expr
10271 ("non-static expression used for delta value!", E);
10272
10273 elsif not UR_Is_Positive (Expr_Value_R (E)) then
10274 Error_Msg_N ("delta expression must be positive", E);
10275
10276 else
10277 return;
10278 end if;
10279
10280 -- If any of above errors occurred, then replace the incorrect
10281 -- expression by the real 0.1, which should prevent further errors.
10282
10283 Rewrite (E,
10284 Make_Real_Literal (Sloc (E), Ureal_Tenth));
10285 Analyze_And_Resolve (E, Standard_Float);
10286 end Check_Delta_Expression;
10287
10288 -----------------------------
10289 -- Check_Digits_Expression --
10290 -----------------------------
10291
10292 procedure Check_Digits_Expression (E : Node_Id) is
10293 begin
10294 if not (Is_Integer_Type (Etype (E))) then
10295 Wrong_Type (E, Any_Integer);
10296
10297 elsif not Is_OK_Static_Expression (E) then
10298 Flag_Non_Static_Expr
10299 ("non-static expression used for digits value!", E);
10300
10301 elsif Expr_Value (E) <= 0 then
10302 Error_Msg_N ("digits value must be greater than zero", E);
10303
10304 else
10305 return;
10306 end if;
10307
10308 -- If any of above errors occurred, then replace the incorrect
10309 -- expression by the integer 1, which should prevent further errors.
10310
10311 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
10312 Analyze_And_Resolve (E, Standard_Integer);
10313
10314 end Check_Digits_Expression;
10315
10316 --------------------------
10317 -- Check_Initialization --
10318 --------------------------
10319
10320 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
10321 begin
10322 -- Special processing for limited types
10323
10324 if Is_Limited_Type (T)
10325 and then not In_Instance
10326 and then not In_Inlined_Body
10327 then
10328 if not OK_For_Limited_Init (T, Exp) then
10329
10330 -- In GNAT mode, this is just a warning, to allow it to be evilly
10331 -- turned off. Otherwise it is a real error.
10332
10333 if GNAT_Mode then
10334 Error_Msg_N
10335 ("??cannot initialize entities of limited type!", Exp);
10336
10337 elsif Ada_Version < Ada_2005 then
10338
10339 -- The side effect removal machinery may generate illegal Ada
10340 -- code to avoid the usage of access types and 'reference in
10341 -- SPARK mode. Since this is legal code with respect to theorem
10342 -- proving, do not emit the error.
10343
10344 if GNATprove_Mode
10345 and then Nkind (Exp) = N_Function_Call
10346 and then Nkind (Parent (Exp)) = N_Object_Declaration
10347 and then not Comes_From_Source
10348 (Defining_Identifier (Parent (Exp)))
10349 then
10350 null;
10351
10352 else
10353 Error_Msg_N
10354 ("cannot initialize entities of limited type", Exp);
10355 Explain_Limited_Type (T, Exp);
10356 end if;
10357
10358 else
10359 -- Specialize error message according to kind of illegal
10360 -- initial expression.
10361
10362 if Nkind (Exp) = N_Type_Conversion
10363 and then Nkind (Expression (Exp)) = N_Function_Call
10364 then
10365 Error_Msg_N
10366 ("illegal context for call"
10367 & " to function with limited result", Exp);
10368
10369 else
10370 Error_Msg_N
10371 ("initialization of limited object requires aggregate "
10372 & "or function call", Exp);
10373 end if;
10374 end if;
10375 end if;
10376 end if;
10377
10378 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
10379 -- set unless we can be sure that no range check is required.
10380
10381 if (GNATprove_Mode or not Expander_Active)
10382 and then Is_Scalar_Type (T)
10383 and then not Is_In_Range (Exp, T, Assume_Valid => True)
10384 then
10385 Set_Do_Range_Check (Exp);
10386 end if;
10387 end Check_Initialization;
10388
10389 ----------------------
10390 -- Check_Interfaces --
10391 ----------------------
10392
10393 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
10394 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
10395
10396 Iface : Node_Id;
10397 Iface_Def : Node_Id;
10398 Iface_Typ : Entity_Id;
10399 Parent_Node : Node_Id;
10400
10401 Is_Task : Boolean := False;
10402 -- Set True if parent type or any progenitor is a task interface
10403
10404 Is_Protected : Boolean := False;
10405 -- Set True if parent type or any progenitor is a protected interface
10406
10407 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
10408 -- Check that a progenitor is compatible with declaration.
10409 -- Error is posted on Error_Node.
10410
10411 ------------------
10412 -- Check_Ifaces --
10413 ------------------
10414
10415 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
10416 Iface_Id : constant Entity_Id :=
10417 Defining_Identifier (Parent (Iface_Def));
10418 Type_Def : Node_Id;
10419
10420 begin
10421 if Nkind (N) = N_Private_Extension_Declaration then
10422 Type_Def := N;
10423 else
10424 Type_Def := Type_Definition (N);
10425 end if;
10426
10427 if Is_Task_Interface (Iface_Id) then
10428 Is_Task := True;
10429
10430 elsif Is_Protected_Interface (Iface_Id) then
10431 Is_Protected := True;
10432 end if;
10433
10434 if Is_Synchronized_Interface (Iface_Id) then
10435
10436 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
10437 -- extension derived from a synchronized interface must explicitly
10438 -- be declared synchronized, because the full view will be a
10439 -- synchronized type.
10440
10441 if Nkind (N) = N_Private_Extension_Declaration then
10442 if not Synchronized_Present (N) then
10443 Error_Msg_NE
10444 ("private extension of& must be explicitly synchronized",
10445 N, Iface_Id);
10446 end if;
10447
10448 -- However, by 3.9.4(16/2), a full type that is a record extension
10449 -- is never allowed to derive from a synchronized interface (note
10450 -- that interfaces must be excluded from this check, because those
10451 -- are represented by derived type definitions in some cases).
10452
10453 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
10454 and then not Interface_Present (Type_Definition (N))
10455 then
10456 Error_Msg_N ("record extension cannot derive from synchronized"
10457 & " interface", Error_Node);
10458 end if;
10459 end if;
10460
10461 -- Check that the characteristics of the progenitor are compatible
10462 -- with the explicit qualifier in the declaration.
10463 -- The check only applies to qualifiers that come from source.
10464 -- Limited_Present also appears in the declaration of corresponding
10465 -- records, and the check does not apply to them.
10466
10467 if Limited_Present (Type_Def)
10468 and then not
10469 Is_Concurrent_Record_Type (Defining_Identifier (N))
10470 then
10471 if Is_Limited_Interface (Parent_Type)
10472 and then not Is_Limited_Interface (Iface_Id)
10473 then
10474 Error_Msg_NE
10475 ("progenitor& must be limited interface",
10476 Error_Node, Iface_Id);
10477
10478 elsif
10479 (Task_Present (Iface_Def)
10480 or else Protected_Present (Iface_Def)
10481 or else Synchronized_Present (Iface_Def))
10482 and then Nkind (N) /= N_Private_Extension_Declaration
10483 and then not Error_Posted (N)
10484 then
10485 Error_Msg_NE
10486 ("progenitor& must be limited interface",
10487 Error_Node, Iface_Id);
10488 end if;
10489
10490 -- Protected interfaces can only inherit from limited, synchronized
10491 -- or protected interfaces.
10492
10493 elsif Nkind (N) = N_Full_Type_Declaration
10494 and then Protected_Present (Type_Def)
10495 then
10496 if Limited_Present (Iface_Def)
10497 or else Synchronized_Present (Iface_Def)
10498 or else Protected_Present (Iface_Def)
10499 then
10500 null;
10501
10502 elsif Task_Present (Iface_Def) then
10503 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
10504 & " from task interface", Error_Node);
10505
10506 else
10507 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
10508 & " from non-limited interface", Error_Node);
10509 end if;
10510
10511 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
10512 -- limited and synchronized.
10513
10514 elsif Synchronized_Present (Type_Def) then
10515 if Limited_Present (Iface_Def)
10516 or else Synchronized_Present (Iface_Def)
10517 then
10518 null;
10519
10520 elsif Protected_Present (Iface_Def)
10521 and then Nkind (N) /= N_Private_Extension_Declaration
10522 then
10523 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10524 & " from protected interface", Error_Node);
10525
10526 elsif Task_Present (Iface_Def)
10527 and then Nkind (N) /= N_Private_Extension_Declaration
10528 then
10529 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10530 & " from task interface", Error_Node);
10531
10532 elsif not Is_Limited_Interface (Iface_Id) then
10533 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10534 & " from non-limited interface", Error_Node);
10535 end if;
10536
10537 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
10538 -- synchronized or task interfaces.
10539
10540 elsif Nkind (N) = N_Full_Type_Declaration
10541 and then Task_Present (Type_Def)
10542 then
10543 if Limited_Present (Iface_Def)
10544 or else Synchronized_Present (Iface_Def)
10545 or else Task_Present (Iface_Def)
10546 then
10547 null;
10548
10549 elsif Protected_Present (Iface_Def) then
10550 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
10551 & " protected interface", Error_Node);
10552
10553 else
10554 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
10555 & " non-limited interface", Error_Node);
10556 end if;
10557 end if;
10558 end Check_Ifaces;
10559
10560 -- Start of processing for Check_Interfaces
10561
10562 begin
10563 if Is_Interface (Parent_Type) then
10564 if Is_Task_Interface (Parent_Type) then
10565 Is_Task := True;
10566
10567 elsif Is_Protected_Interface (Parent_Type) then
10568 Is_Protected := True;
10569 end if;
10570 end if;
10571
10572 if Nkind (N) = N_Private_Extension_Declaration then
10573
10574 -- Check that progenitors are compatible with declaration
10575
10576 Iface := First (Interface_List (Def));
10577 while Present (Iface) loop
10578 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
10579
10580 Parent_Node := Parent (Base_Type (Iface_Typ));
10581 Iface_Def := Type_Definition (Parent_Node);
10582
10583 if not Is_Interface (Iface_Typ) then
10584 Diagnose_Interface (Iface, Iface_Typ);
10585
10586 else
10587 Check_Ifaces (Iface_Def, Iface);
10588 end if;
10589
10590 Next (Iface);
10591 end loop;
10592
10593 if Is_Task and Is_Protected then
10594 Error_Msg_N
10595 ("type cannot derive from task and protected interface", N);
10596 end if;
10597
10598 return;
10599 end if;
10600
10601 -- Full type declaration of derived type.
10602 -- Check compatibility with parent if it is interface type
10603
10604 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
10605 and then Is_Interface (Parent_Type)
10606 then
10607 Parent_Node := Parent (Parent_Type);
10608
10609 -- More detailed checks for interface varieties
10610
10611 Check_Ifaces
10612 (Iface_Def => Type_Definition (Parent_Node),
10613 Error_Node => Subtype_Indication (Type_Definition (N)));
10614 end if;
10615
10616 Iface := First (Interface_List (Def));
10617 while Present (Iface) loop
10618 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
10619
10620 Parent_Node := Parent (Base_Type (Iface_Typ));
10621 Iface_Def := Type_Definition (Parent_Node);
10622
10623 if not Is_Interface (Iface_Typ) then
10624 Diagnose_Interface (Iface, Iface_Typ);
10625
10626 else
10627 -- "The declaration of a specific descendant of an interface
10628 -- type freezes the interface type" RM 13.14
10629
10630 Freeze_Before (N, Iface_Typ);
10631 Check_Ifaces (Iface_Def, Error_Node => Iface);
10632 end if;
10633
10634 Next (Iface);
10635 end loop;
10636
10637 if Is_Task and Is_Protected then
10638 Error_Msg_N
10639 ("type cannot derive from task and protected interface", N);
10640 end if;
10641 end Check_Interfaces;
10642
10643 ------------------------------------
10644 -- Check_Or_Process_Discriminants --
10645 ------------------------------------
10646
10647 -- If an incomplete or private type declaration was already given for the
10648 -- type, the discriminants may have already been processed if they were
10649 -- present on the incomplete declaration. In this case a full conformance
10650 -- check has been performed in Find_Type_Name, and we then recheck here
10651 -- some properties that can't be checked on the partial view alone.
10652 -- Otherwise we call Process_Discriminants.
10653
10654 procedure Check_Or_Process_Discriminants
10655 (N : Node_Id;
10656 T : Entity_Id;
10657 Prev : Entity_Id := Empty)
10658 is
10659 begin
10660 if Has_Discriminants (T) then
10661
10662 -- Discriminants are already set on T if they were already present
10663 -- on the partial view. Make them visible to component declarations.
10664
10665 declare
10666 D : Entity_Id;
10667 -- Discriminant on T (full view) referencing expr on partial view
10668
10669 Prev_D : Entity_Id;
10670 -- Entity of corresponding discriminant on partial view
10671
10672 New_D : Node_Id;
10673 -- Discriminant specification for full view, expression is the
10674 -- syntactic copy on full view (which has been checked for
10675 -- conformance with partial view), only used here to post error
10676 -- message.
10677
10678 begin
10679 D := First_Discriminant (T);
10680 New_D := First (Discriminant_Specifications (N));
10681 while Present (D) loop
10682 Prev_D := Current_Entity (D);
10683 Set_Current_Entity (D);
10684 Set_Is_Immediately_Visible (D);
10685 Set_Homonym (D, Prev_D);
10686
10687 -- Handle the case where there is an untagged partial view and
10688 -- the full view is tagged: must disallow discriminants with
10689 -- defaults, unless compiling for Ada 2012, which allows a
10690 -- limited tagged type to have defaulted discriminants (see
10691 -- AI05-0214). However, suppress error here if it was already
10692 -- reported on the default expression of the partial view.
10693
10694 if Is_Tagged_Type (T)
10695 and then Present (Expression (Parent (D)))
10696 and then (not Is_Limited_Type (Current_Scope)
10697 or else Ada_Version < Ada_2012)
10698 and then not Error_Posted (Expression (Parent (D)))
10699 then
10700 if Ada_Version >= Ada_2012 then
10701 Error_Msg_N
10702 ("discriminants of nonlimited tagged type cannot have"
10703 & " defaults",
10704 Expression (New_D));
10705 else
10706 Error_Msg_N
10707 ("discriminants of tagged type cannot have defaults",
10708 Expression (New_D));
10709 end if;
10710 end if;
10711
10712 -- Ada 2005 (AI-230): Access discriminant allowed in
10713 -- non-limited record types.
10714
10715 if Ada_Version < Ada_2005 then
10716
10717 -- This restriction gets applied to the full type here. It
10718 -- has already been applied earlier to the partial view.
10719
10720 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
10721 end if;
10722
10723 Next_Discriminant (D);
10724 Next (New_D);
10725 end loop;
10726 end;
10727
10728 elsif Present (Discriminant_Specifications (N)) then
10729 Process_Discriminants (N, Prev);
10730 end if;
10731 end Check_Or_Process_Discriminants;
10732
10733 ----------------------
10734 -- Check_Real_Bound --
10735 ----------------------
10736
10737 procedure Check_Real_Bound (Bound : Node_Id) is
10738 begin
10739 if not Is_Real_Type (Etype (Bound)) then
10740 Error_Msg_N
10741 ("bound in real type definition must be of real type", Bound);
10742
10743 elsif not Is_OK_Static_Expression (Bound) then
10744 Flag_Non_Static_Expr
10745 ("non-static expression used for real type bound!", Bound);
10746
10747 else
10748 return;
10749 end if;
10750
10751 Rewrite
10752 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
10753 Analyze (Bound);
10754 Resolve (Bound, Standard_Float);
10755 end Check_Real_Bound;
10756
10757 ------------------------------
10758 -- Complete_Private_Subtype --
10759 ------------------------------
10760
10761 procedure Complete_Private_Subtype
10762 (Priv : Entity_Id;
10763 Full : Entity_Id;
10764 Full_Base : Entity_Id;
10765 Related_Nod : Node_Id)
10766 is
10767 Save_Next_Entity : Entity_Id;
10768 Save_Homonym : Entity_Id;
10769
10770 begin
10771 -- Set semantic attributes for (implicit) private subtype completion.
10772 -- If the full type has no discriminants, then it is a copy of the full
10773 -- view of the base. Otherwise, it is a subtype of the base with a
10774 -- possible discriminant constraint. Save and restore the original
10775 -- Next_Entity field of full to ensure that the calls to Copy_Node
10776 -- do not corrupt the entity chain.
10777
10778 -- Note that the type of the full view is the same entity as the type of
10779 -- the partial view. In this fashion, the subtype has access to the
10780 -- correct view of the parent.
10781
10782 Save_Next_Entity := Next_Entity (Full);
10783 Save_Homonym := Homonym (Priv);
10784
10785 case Ekind (Full_Base) is
10786 when E_Record_Type |
10787 E_Record_Subtype |
10788 Class_Wide_Kind |
10789 Private_Kind |
10790 Task_Kind |
10791 Protected_Kind =>
10792 Copy_Node (Priv, Full);
10793
10794 Set_Has_Discriminants
10795 (Full, Has_Discriminants (Full_Base));
10796 Set_Has_Unknown_Discriminants
10797 (Full, Has_Unknown_Discriminants (Full_Base));
10798 Set_First_Entity (Full, First_Entity (Full_Base));
10799 Set_Last_Entity (Full, Last_Entity (Full_Base));
10800
10801 -- If the underlying base type is constrained, we know that the
10802 -- full view of the subtype is constrained as well (the converse
10803 -- is not necessarily true).
10804
10805 if Is_Constrained (Full_Base) then
10806 Set_Is_Constrained (Full);
10807 end if;
10808
10809 when others =>
10810 Copy_Node (Full_Base, Full);
10811
10812 Set_Chars (Full, Chars (Priv));
10813 Conditional_Delay (Full, Priv);
10814 Set_Sloc (Full, Sloc (Priv));
10815 end case;
10816
10817 Set_Next_Entity (Full, Save_Next_Entity);
10818 Set_Homonym (Full, Save_Homonym);
10819 Set_Associated_Node_For_Itype (Full, Related_Nod);
10820
10821 -- Set common attributes for all subtypes: kind, convention, etc.
10822
10823 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
10824 Set_Convention (Full, Convention (Full_Base));
10825
10826 -- The Etype of the full view is inconsistent. Gigi needs to see the
10827 -- structural full view, which is what the current scheme gives:
10828 -- the Etype of the full view is the etype of the full base. However,
10829 -- if the full base is a derived type, the full view then looks like
10830 -- a subtype of the parent, not a subtype of the full base. If instead
10831 -- we write:
10832
10833 -- Set_Etype (Full, Full_Base);
10834
10835 -- then we get inconsistencies in the front-end (confusion between
10836 -- views). Several outstanding bugs are related to this ???
10837
10838 Set_Is_First_Subtype (Full, False);
10839 Set_Scope (Full, Scope (Priv));
10840 Set_Size_Info (Full, Full_Base);
10841 Set_RM_Size (Full, RM_Size (Full_Base));
10842 Set_Is_Itype (Full);
10843
10844 -- A subtype of a private-type-without-discriminants, whose full-view
10845 -- has discriminants with default expressions, is not constrained.
10846
10847 if not Has_Discriminants (Priv) then
10848 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
10849
10850 if Has_Discriminants (Full_Base) then
10851 Set_Discriminant_Constraint
10852 (Full, Discriminant_Constraint (Full_Base));
10853
10854 -- The partial view may have been indefinite, the full view
10855 -- might not be.
10856
10857 Set_Has_Unknown_Discriminants
10858 (Full, Has_Unknown_Discriminants (Full_Base));
10859 end if;
10860 end if;
10861
10862 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
10863 Set_Depends_On_Private (Full, Has_Private_Component (Full));
10864
10865 -- Freeze the private subtype entity if its parent is delayed, and not
10866 -- already frozen. We skip this processing if the type is an anonymous
10867 -- subtype of a record component, or is the corresponding record of a
10868 -- protected type, since ???
10869
10870 if not Is_Type (Scope (Full)) then
10871 Set_Has_Delayed_Freeze (Full,
10872 Has_Delayed_Freeze (Full_Base)
10873 and then (not Is_Frozen (Full_Base)));
10874 end if;
10875
10876 Set_Freeze_Node (Full, Empty);
10877 Set_Is_Frozen (Full, False);
10878 Set_Full_View (Priv, Full);
10879
10880 if Has_Discriminants (Full) then
10881 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
10882 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
10883
10884 if Has_Unknown_Discriminants (Full) then
10885 Set_Discriminant_Constraint (Full, No_Elist);
10886 end if;
10887 end if;
10888
10889 if Ekind (Full_Base) = E_Record_Type
10890 and then Has_Discriminants (Full_Base)
10891 and then Has_Discriminants (Priv) -- might not, if errors
10892 and then not Has_Unknown_Discriminants (Priv)
10893 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
10894 then
10895 Create_Constrained_Components
10896 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
10897
10898 -- If the full base is itself derived from private, build a congruent
10899 -- subtype of its underlying type, for use by the back end. For a
10900 -- constrained record component, the declaration cannot be placed on
10901 -- the component list, but it must nevertheless be built an analyzed, to
10902 -- supply enough information for Gigi to compute the size of component.
10903
10904 elsif Ekind (Full_Base) in Private_Kind
10905 and then Is_Derived_Type (Full_Base)
10906 and then Has_Discriminants (Full_Base)
10907 and then (Ekind (Current_Scope) /= E_Record_Subtype)
10908 then
10909 if not Is_Itype (Priv)
10910 and then
10911 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
10912 then
10913 Build_Underlying_Full_View
10914 (Parent (Priv), Full, Etype (Full_Base));
10915
10916 elsif Nkind (Related_Nod) = N_Component_Declaration then
10917 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
10918 end if;
10919
10920 elsif Is_Record_Type (Full_Base) then
10921
10922 -- Show Full is simply a renaming of Full_Base
10923
10924 Set_Cloned_Subtype (Full, Full_Base);
10925 end if;
10926
10927 -- It is unsafe to share the bounds of a scalar type, because the Itype
10928 -- is elaborated on demand, and if a bound is non-static then different
10929 -- orders of elaboration in different units will lead to different
10930 -- external symbols.
10931
10932 if Is_Scalar_Type (Full_Base) then
10933 Set_Scalar_Range (Full,
10934 Make_Range (Sloc (Related_Nod),
10935 Low_Bound =>
10936 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
10937 High_Bound =>
10938 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
10939
10940 -- This completion inherits the bounds of the full parent, but if
10941 -- the parent is an unconstrained floating point type, so is the
10942 -- completion.
10943
10944 if Is_Floating_Point_Type (Full_Base) then
10945 Set_Includes_Infinities
10946 (Scalar_Range (Full), Has_Infinities (Full_Base));
10947 end if;
10948 end if;
10949
10950 -- ??? It seems that a lot of fields are missing that should be copied
10951 -- from Full_Base to Full. Here are some that are introduced in a
10952 -- non-disruptive way but a cleanup is necessary.
10953
10954 if Is_Tagged_Type (Full_Base) then
10955 Set_Is_Tagged_Type (Full);
10956 Set_Direct_Primitive_Operations (Full,
10957 Direct_Primitive_Operations (Full_Base));
10958
10959 -- Inherit class_wide type of full_base in case the partial view was
10960 -- not tagged. Otherwise it has already been created when the private
10961 -- subtype was analyzed.
10962
10963 if No (Class_Wide_Type (Full)) then
10964 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
10965 end if;
10966
10967 -- If this is a subtype of a protected or task type, constrain its
10968 -- corresponding record, unless this is a subtype without constraints,
10969 -- i.e. a simple renaming as with an actual subtype in an instance.
10970
10971 elsif Is_Concurrent_Type (Full_Base) then
10972 if Has_Discriminants (Full)
10973 and then Present (Corresponding_Record_Type (Full_Base))
10974 and then
10975 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
10976 then
10977 Set_Corresponding_Record_Type (Full,
10978 Constrain_Corresponding_Record
10979 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
10980
10981 else
10982 Set_Corresponding_Record_Type (Full,
10983 Corresponding_Record_Type (Full_Base));
10984 end if;
10985 end if;
10986
10987 -- Link rep item chain, and also setting of Has_Predicates from private
10988 -- subtype to full subtype, since we will need these on the full subtype
10989 -- to create the predicate function. Note that the full subtype may
10990 -- already have rep items, inherited from the full view of the base
10991 -- type, so we must be sure not to overwrite these entries.
10992
10993 declare
10994 Append : Boolean;
10995 Item : Node_Id;
10996 Next_Item : Node_Id;
10997
10998 begin
10999 Item := First_Rep_Item (Full);
11000
11001 -- If no existing rep items on full type, we can just link directly
11002 -- to the list of items on the private type.
11003
11004 if No (Item) then
11005 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
11006
11007 -- Otherwise, search to the end of items currently linked to the full
11008 -- subtype and append the private items to the end. However, if Priv
11009 -- and Full already have the same list of rep items, then the append
11010 -- is not done, as that would create a circularity.
11011
11012 elsif Item /= First_Rep_Item (Priv) then
11013 Append := True;
11014
11015 loop
11016 Next_Item := Next_Rep_Item (Item);
11017 exit when No (Next_Item);
11018 Item := Next_Item;
11019
11020 -- If the private view has aspect specifications, the full view
11021 -- inherits them. Since these aspects may already have been
11022 -- attached to the full view during derivation, do not append
11023 -- them if already present.
11024
11025 if Item = First_Rep_Item (Priv) then
11026 Append := False;
11027 exit;
11028 end if;
11029 end loop;
11030
11031 -- And link the private type items at the end of the chain
11032
11033 if Append then
11034 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
11035 end if;
11036 end if;
11037 end;
11038
11039 -- Make sure Has_Predicates is set on full type if it is set on the
11040 -- private type. Note that it may already be set on the full type and
11041 -- if so, we don't want to unset it.
11042
11043 if Has_Predicates (Priv) then
11044 Set_Has_Predicates (Full);
11045 end if;
11046 end Complete_Private_Subtype;
11047
11048 ----------------------------
11049 -- Constant_Redeclaration --
11050 ----------------------------
11051
11052 procedure Constant_Redeclaration
11053 (Id : Entity_Id;
11054 N : Node_Id;
11055 T : out Entity_Id)
11056 is
11057 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
11058 Obj_Def : constant Node_Id := Object_Definition (N);
11059 New_T : Entity_Id;
11060
11061 procedure Check_Possible_Deferred_Completion
11062 (Prev_Id : Entity_Id;
11063 Prev_Obj_Def : Node_Id;
11064 Curr_Obj_Def : Node_Id);
11065 -- Determine whether the two object definitions describe the partial
11066 -- and the full view of a constrained deferred constant. Generate
11067 -- a subtype for the full view and verify that it statically matches
11068 -- the subtype of the partial view.
11069
11070 procedure Check_Recursive_Declaration (Typ : Entity_Id);
11071 -- If deferred constant is an access type initialized with an allocator,
11072 -- check whether there is an illegal recursion in the definition,
11073 -- through a default value of some record subcomponent. This is normally
11074 -- detected when generating init procs, but requires this additional
11075 -- mechanism when expansion is disabled.
11076
11077 ----------------------------------------
11078 -- Check_Possible_Deferred_Completion --
11079 ----------------------------------------
11080
11081 procedure Check_Possible_Deferred_Completion
11082 (Prev_Id : Entity_Id;
11083 Prev_Obj_Def : Node_Id;
11084 Curr_Obj_Def : Node_Id)
11085 is
11086 begin
11087 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
11088 and then Present (Constraint (Prev_Obj_Def))
11089 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
11090 and then Present (Constraint (Curr_Obj_Def))
11091 then
11092 declare
11093 Loc : constant Source_Ptr := Sloc (N);
11094 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
11095 Decl : constant Node_Id :=
11096 Make_Subtype_Declaration (Loc,
11097 Defining_Identifier => Def_Id,
11098 Subtype_Indication =>
11099 Relocate_Node (Curr_Obj_Def));
11100
11101 begin
11102 Insert_Before_And_Analyze (N, Decl);
11103 Set_Etype (Id, Def_Id);
11104
11105 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
11106 Error_Msg_Sloc := Sloc (Prev_Id);
11107 Error_Msg_N ("subtype does not statically match deferred " &
11108 "declaration#", N);
11109 end if;
11110 end;
11111 end if;
11112 end Check_Possible_Deferred_Completion;
11113
11114 ---------------------------------
11115 -- Check_Recursive_Declaration --
11116 ---------------------------------
11117
11118 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
11119 Comp : Entity_Id;
11120
11121 begin
11122 if Is_Record_Type (Typ) then
11123 Comp := First_Component (Typ);
11124 while Present (Comp) loop
11125 if Comes_From_Source (Comp) then
11126 if Present (Expression (Parent (Comp)))
11127 and then Is_Entity_Name (Expression (Parent (Comp)))
11128 and then Entity (Expression (Parent (Comp))) = Prev
11129 then
11130 Error_Msg_Sloc := Sloc (Parent (Comp));
11131 Error_Msg_NE
11132 ("illegal circularity with declaration for&#",
11133 N, Comp);
11134 return;
11135
11136 elsif Is_Record_Type (Etype (Comp)) then
11137 Check_Recursive_Declaration (Etype (Comp));
11138 end if;
11139 end if;
11140
11141 Next_Component (Comp);
11142 end loop;
11143 end if;
11144 end Check_Recursive_Declaration;
11145
11146 -- Start of processing for Constant_Redeclaration
11147
11148 begin
11149 if Nkind (Parent (Prev)) = N_Object_Declaration then
11150 if Nkind (Object_Definition
11151 (Parent (Prev))) = N_Subtype_Indication
11152 then
11153 -- Find type of new declaration. The constraints of the two
11154 -- views must match statically, but there is no point in
11155 -- creating an itype for the full view.
11156
11157 if Nkind (Obj_Def) = N_Subtype_Indication then
11158 Find_Type (Subtype_Mark (Obj_Def));
11159 New_T := Entity (Subtype_Mark (Obj_Def));
11160
11161 else
11162 Find_Type (Obj_Def);
11163 New_T := Entity (Obj_Def);
11164 end if;
11165
11166 T := Etype (Prev);
11167
11168 else
11169 -- The full view may impose a constraint, even if the partial
11170 -- view does not, so construct the subtype.
11171
11172 New_T := Find_Type_Of_Object (Obj_Def, N);
11173 T := New_T;
11174 end if;
11175
11176 else
11177 -- Current declaration is illegal, diagnosed below in Enter_Name
11178
11179 T := Empty;
11180 New_T := Any_Type;
11181 end if;
11182
11183 -- If previous full declaration or a renaming declaration exists, or if
11184 -- a homograph is present, let Enter_Name handle it, either with an
11185 -- error or with the removal of an overridden implicit subprogram.
11186 -- The previous one is a full declaration if it has an expression
11187 -- (which in the case of an aggregate is indicated by the Init flag).
11188
11189 if Ekind (Prev) /= E_Constant
11190 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
11191 or else Present (Expression (Parent (Prev)))
11192 or else Has_Init_Expression (Parent (Prev))
11193 or else Present (Full_View (Prev))
11194 then
11195 Enter_Name (Id);
11196
11197 -- Verify that types of both declarations match, or else that both types
11198 -- are anonymous access types whose designated subtypes statically match
11199 -- (as allowed in Ada 2005 by AI-385).
11200
11201 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
11202 and then
11203 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
11204 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
11205 or else Is_Access_Constant (Etype (New_T)) /=
11206 Is_Access_Constant (Etype (Prev))
11207 or else Can_Never_Be_Null (Etype (New_T)) /=
11208 Can_Never_Be_Null (Etype (Prev))
11209 or else Null_Exclusion_Present (Parent (Prev)) /=
11210 Null_Exclusion_Present (Parent (Id))
11211 or else not Subtypes_Statically_Match
11212 (Designated_Type (Etype (Prev)),
11213 Designated_Type (Etype (New_T))))
11214 then
11215 Error_Msg_Sloc := Sloc (Prev);
11216 Error_Msg_N ("type does not match declaration#", N);
11217 Set_Full_View (Prev, Id);
11218 Set_Etype (Id, Any_Type);
11219
11220 elsif
11221 Null_Exclusion_Present (Parent (Prev))
11222 and then not Null_Exclusion_Present (N)
11223 then
11224 Error_Msg_Sloc := Sloc (Prev);
11225 Error_Msg_N ("null-exclusion does not match declaration#", N);
11226 Set_Full_View (Prev, Id);
11227 Set_Etype (Id, Any_Type);
11228
11229 -- If so, process the full constant declaration
11230
11231 else
11232 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
11233 -- the deferred declaration is constrained, then the subtype defined
11234 -- by the subtype_indication in the full declaration shall match it
11235 -- statically.
11236
11237 Check_Possible_Deferred_Completion
11238 (Prev_Id => Prev,
11239 Prev_Obj_Def => Object_Definition (Parent (Prev)),
11240 Curr_Obj_Def => Obj_Def);
11241
11242 Set_Full_View (Prev, Id);
11243 Set_Is_Public (Id, Is_Public (Prev));
11244 Set_Is_Internal (Id);
11245 Append_Entity (Id, Current_Scope);
11246
11247 -- Check ALIASED present if present before (RM 7.4(7))
11248
11249 if Is_Aliased (Prev)
11250 and then not Aliased_Present (N)
11251 then
11252 Error_Msg_Sloc := Sloc (Prev);
11253 Error_Msg_N ("ALIASED required (see declaration#)", N);
11254 end if;
11255
11256 -- Check that placement is in private part and that the incomplete
11257 -- declaration appeared in the visible part.
11258
11259 if Ekind (Current_Scope) = E_Package
11260 and then not In_Private_Part (Current_Scope)
11261 then
11262 Error_Msg_Sloc := Sloc (Prev);
11263 Error_Msg_N
11264 ("full constant for declaration#"
11265 & " must be in private part", N);
11266
11267 elsif Ekind (Current_Scope) = E_Package
11268 and then
11269 List_Containing (Parent (Prev)) /=
11270 Visible_Declarations (Package_Specification (Current_Scope))
11271 then
11272 Error_Msg_N
11273 ("deferred constant must be declared in visible part",
11274 Parent (Prev));
11275 end if;
11276
11277 if Is_Access_Type (T)
11278 and then Nkind (Expression (N)) = N_Allocator
11279 then
11280 Check_Recursive_Declaration (Designated_Type (T));
11281 end if;
11282
11283 -- A deferred constant is a visible entity. If type has invariants,
11284 -- verify that the initial value satisfies them.
11285
11286 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
11287 Insert_After (N,
11288 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
11289 end if;
11290 end if;
11291 end Constant_Redeclaration;
11292
11293 ----------------------
11294 -- Constrain_Access --
11295 ----------------------
11296
11297 procedure Constrain_Access
11298 (Def_Id : in out Entity_Id;
11299 S : Node_Id;
11300 Related_Nod : Node_Id)
11301 is
11302 T : constant Entity_Id := Entity (Subtype_Mark (S));
11303 Desig_Type : constant Entity_Id := Designated_Type (T);
11304 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
11305 Constraint_OK : Boolean := True;
11306
11307 begin
11308 if Is_Array_Type (Desig_Type) then
11309 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
11310
11311 elsif (Is_Record_Type (Desig_Type)
11312 or else Is_Incomplete_Or_Private_Type (Desig_Type))
11313 and then not Is_Constrained (Desig_Type)
11314 then
11315 -- ??? The following code is a temporary bypass to ignore a
11316 -- discriminant constraint on access type if it is constraining
11317 -- the current record. Avoid creating the implicit subtype of the
11318 -- record we are currently compiling since right now, we cannot
11319 -- handle these. For now, just return the access type itself.
11320
11321 if Desig_Type = Current_Scope
11322 and then No (Def_Id)
11323 then
11324 Set_Ekind (Desig_Subtype, E_Record_Subtype);
11325 Def_Id := Entity (Subtype_Mark (S));
11326
11327 -- This call added to ensure that the constraint is analyzed
11328 -- (needed for a B test). Note that we still return early from
11329 -- this procedure to avoid recursive processing. ???
11330
11331 Constrain_Discriminated_Type
11332 (Desig_Subtype, S, Related_Nod, For_Access => True);
11333 return;
11334 end if;
11335
11336 -- Enforce rule that the constraint is illegal if there is an
11337 -- unconstrained view of the designated type. This means that the
11338 -- partial view (either a private type declaration or a derivation
11339 -- from a private type) has no discriminants. (Defect Report
11340 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
11341
11342 -- Rule updated for Ada 2005: The private type is said to have
11343 -- a constrained partial view, given that objects of the type
11344 -- can be declared. Furthermore, the rule applies to all access
11345 -- types, unlike the rule concerning default discriminants (see
11346 -- RM 3.7.1(7/3))
11347
11348 if (Ekind (T) = E_General_Access_Type
11349 or else Ada_Version >= Ada_2005)
11350 and then Has_Private_Declaration (Desig_Type)
11351 and then In_Open_Scopes (Scope (Desig_Type))
11352 and then Has_Discriminants (Desig_Type)
11353 then
11354 declare
11355 Pack : constant Node_Id :=
11356 Unit_Declaration_Node (Scope (Desig_Type));
11357 Decls : List_Id;
11358 Decl : Node_Id;
11359
11360 begin
11361 if Nkind (Pack) = N_Package_Declaration then
11362 Decls := Visible_Declarations (Specification (Pack));
11363 Decl := First (Decls);
11364 while Present (Decl) loop
11365 if (Nkind (Decl) = N_Private_Type_Declaration
11366 and then
11367 Chars (Defining_Identifier (Decl)) =
11368 Chars (Desig_Type))
11369
11370 or else
11371 (Nkind (Decl) = N_Full_Type_Declaration
11372 and then
11373 Chars (Defining_Identifier (Decl)) =
11374 Chars (Desig_Type)
11375 and then Is_Derived_Type (Desig_Type)
11376 and then
11377 Has_Private_Declaration (Etype (Desig_Type)))
11378 then
11379 if No (Discriminant_Specifications (Decl)) then
11380 Error_Msg_N
11381 ("cannot constrain access type if designated " &
11382 "type has constrained partial view", S);
11383 end if;
11384
11385 exit;
11386 end if;
11387
11388 Next (Decl);
11389 end loop;
11390 end if;
11391 end;
11392 end if;
11393
11394 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
11395 For_Access => True);
11396
11397 elsif (Is_Task_Type (Desig_Type)
11398 or else Is_Protected_Type (Desig_Type))
11399 and then not Is_Constrained (Desig_Type)
11400 then
11401 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
11402
11403 else
11404 Error_Msg_N ("invalid constraint on access type", S);
11405 Desig_Subtype := Desig_Type; -- Ignore invalid constraint.
11406 Constraint_OK := False;
11407 end if;
11408
11409 if No (Def_Id) then
11410 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
11411 else
11412 Set_Ekind (Def_Id, E_Access_Subtype);
11413 end if;
11414
11415 if Constraint_OK then
11416 Set_Etype (Def_Id, Base_Type (T));
11417
11418 if Is_Private_Type (Desig_Type) then
11419 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
11420 end if;
11421 else
11422 Set_Etype (Def_Id, Any_Type);
11423 end if;
11424
11425 Set_Size_Info (Def_Id, T);
11426 Set_Is_Constrained (Def_Id, Constraint_OK);
11427 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
11428 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11429 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
11430
11431 Conditional_Delay (Def_Id, T);
11432
11433 -- AI-363 : Subtypes of general access types whose designated types have
11434 -- default discriminants are disallowed. In instances, the rule has to
11435 -- be checked against the actual, of which T is the subtype. In a
11436 -- generic body, the rule is checked assuming that the actual type has
11437 -- defaulted discriminants.
11438
11439 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
11440 if Ekind (Base_Type (T)) = E_General_Access_Type
11441 and then Has_Defaulted_Discriminants (Desig_Type)
11442 then
11443 if Ada_Version < Ada_2005 then
11444 Error_Msg_N
11445 ("access subtype of general access type would not " &
11446 "be allowed in Ada 2005?y?", S);
11447 else
11448 Error_Msg_N
11449 ("access subtype of general access type not allowed", S);
11450 end if;
11451
11452 Error_Msg_N ("\discriminants have defaults", S);
11453
11454 elsif Is_Access_Type (T)
11455 and then Is_Generic_Type (Desig_Type)
11456 and then Has_Discriminants (Desig_Type)
11457 and then In_Package_Body (Current_Scope)
11458 then
11459 if Ada_Version < Ada_2005 then
11460 Error_Msg_N
11461 ("access subtype would not be allowed in generic body " &
11462 "in Ada 2005?y?", S);
11463 else
11464 Error_Msg_N
11465 ("access subtype not allowed in generic body", S);
11466 end if;
11467
11468 Error_Msg_N
11469 ("\designated type is a discriminated formal", S);
11470 end if;
11471 end if;
11472 end Constrain_Access;
11473
11474 ---------------------
11475 -- Constrain_Array --
11476 ---------------------
11477
11478 procedure Constrain_Array
11479 (Def_Id : in out Entity_Id;
11480 SI : Node_Id;
11481 Related_Nod : Node_Id;
11482 Related_Id : Entity_Id;
11483 Suffix : Character)
11484 is
11485 C : constant Node_Id := Constraint (SI);
11486 Number_Of_Constraints : Nat := 0;
11487 Index : Node_Id;
11488 S, T : Entity_Id;
11489 Constraint_OK : Boolean := True;
11490
11491 begin
11492 T := Entity (Subtype_Mark (SI));
11493
11494 if Is_Access_Type (T) then
11495 T := Designated_Type (T);
11496 end if;
11497
11498 -- If an index constraint follows a subtype mark in a subtype indication
11499 -- then the type or subtype denoted by the subtype mark must not already
11500 -- impose an index constraint. The subtype mark must denote either an
11501 -- unconstrained array type or an access type whose designated type
11502 -- is such an array type... (RM 3.6.1)
11503
11504 if Is_Constrained (T) then
11505 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
11506 Constraint_OK := False;
11507
11508 else
11509 S := First (Constraints (C));
11510 while Present (S) loop
11511 Number_Of_Constraints := Number_Of_Constraints + 1;
11512 Next (S);
11513 end loop;
11514
11515 -- In either case, the index constraint must provide a discrete
11516 -- range for each index of the array type and the type of each
11517 -- discrete range must be the same as that of the corresponding
11518 -- index. (RM 3.6.1)
11519
11520 if Number_Of_Constraints /= Number_Dimensions (T) then
11521 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
11522 Constraint_OK := False;
11523
11524 else
11525 S := First (Constraints (C));
11526 Index := First_Index (T);
11527 Analyze (Index);
11528
11529 -- Apply constraints to each index type
11530
11531 for J in 1 .. Number_Of_Constraints loop
11532 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
11533 Next (Index);
11534 Next (S);
11535 end loop;
11536
11537 end if;
11538 end if;
11539
11540 if No (Def_Id) then
11541 Def_Id :=
11542 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
11543 Set_Parent (Def_Id, Related_Nod);
11544
11545 else
11546 Set_Ekind (Def_Id, E_Array_Subtype);
11547 end if;
11548
11549 Set_Size_Info (Def_Id, (T));
11550 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
11551 Set_Etype (Def_Id, Base_Type (T));
11552
11553 if Constraint_OK then
11554 Set_First_Index (Def_Id, First (Constraints (C)));
11555 else
11556 Set_First_Index (Def_Id, First_Index (T));
11557 end if;
11558
11559 Set_Is_Constrained (Def_Id, True);
11560 Set_Is_Aliased (Def_Id, Is_Aliased (T));
11561 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11562
11563 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
11564 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
11565
11566 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
11567 -- We need to initialize the attribute because if Def_Id is previously
11568 -- analyzed through a limited_with clause, it will have the attributes
11569 -- of an incomplete type, one of which is an Elist that overlaps the
11570 -- Packed_Array_Impl_Type field.
11571
11572 Set_Packed_Array_Impl_Type (Def_Id, Empty);
11573
11574 -- Build a freeze node if parent still needs one. Also make sure that
11575 -- the Depends_On_Private status is set because the subtype will need
11576 -- reprocessing at the time the base type does, and also we must set a
11577 -- conditional delay.
11578
11579 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
11580 Conditional_Delay (Def_Id, T);
11581 end Constrain_Array;
11582
11583 ------------------------------
11584 -- Constrain_Component_Type --
11585 ------------------------------
11586
11587 function Constrain_Component_Type
11588 (Comp : Entity_Id;
11589 Constrained_Typ : Entity_Id;
11590 Related_Node : Node_Id;
11591 Typ : Entity_Id;
11592 Constraints : Elist_Id) return Entity_Id
11593 is
11594 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
11595 Compon_Type : constant Entity_Id := Etype (Comp);
11596
11597 function Build_Constrained_Array_Type
11598 (Old_Type : Entity_Id) return Entity_Id;
11599 -- If Old_Type is an array type, one of whose indexes is constrained
11600 -- by a discriminant, build an Itype whose constraint replaces the
11601 -- discriminant with its value in the constraint.
11602
11603 function Build_Constrained_Discriminated_Type
11604 (Old_Type : Entity_Id) return Entity_Id;
11605 -- Ditto for record components
11606
11607 function Build_Constrained_Access_Type
11608 (Old_Type : Entity_Id) return Entity_Id;
11609 -- Ditto for access types. Makes use of previous two functions, to
11610 -- constrain designated type.
11611
11612 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
11613 -- T is an array or discriminated type, C is a list of constraints
11614 -- that apply to T. This routine builds the constrained subtype.
11615
11616 function Is_Discriminant (Expr : Node_Id) return Boolean;
11617 -- Returns True if Expr is a discriminant
11618
11619 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
11620 -- Find the value of discriminant Discrim in Constraint
11621
11622 -----------------------------------
11623 -- Build_Constrained_Access_Type --
11624 -----------------------------------
11625
11626 function Build_Constrained_Access_Type
11627 (Old_Type : Entity_Id) return Entity_Id
11628 is
11629 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
11630 Itype : Entity_Id;
11631 Desig_Subtype : Entity_Id;
11632 Scop : Entity_Id;
11633
11634 begin
11635 -- if the original access type was not embedded in the enclosing
11636 -- type definition, there is no need to produce a new access
11637 -- subtype. In fact every access type with an explicit constraint
11638 -- generates an itype whose scope is the enclosing record.
11639
11640 if not Is_Type (Scope (Old_Type)) then
11641 return Old_Type;
11642
11643 elsif Is_Array_Type (Desig_Type) then
11644 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
11645
11646 elsif Has_Discriminants (Desig_Type) then
11647
11648 -- This may be an access type to an enclosing record type for
11649 -- which we are constructing the constrained components. Return
11650 -- the enclosing record subtype. This is not always correct,
11651 -- but avoids infinite recursion. ???
11652
11653 Desig_Subtype := Any_Type;
11654
11655 for J in reverse 0 .. Scope_Stack.Last loop
11656 Scop := Scope_Stack.Table (J).Entity;
11657
11658 if Is_Type (Scop)
11659 and then Base_Type (Scop) = Base_Type (Desig_Type)
11660 then
11661 Desig_Subtype := Scop;
11662 end if;
11663
11664 exit when not Is_Type (Scop);
11665 end loop;
11666
11667 if Desig_Subtype = Any_Type then
11668 Desig_Subtype :=
11669 Build_Constrained_Discriminated_Type (Desig_Type);
11670 end if;
11671
11672 else
11673 return Old_Type;
11674 end if;
11675
11676 if Desig_Subtype /= Desig_Type then
11677
11678 -- The Related_Node better be here or else we won't be able
11679 -- to attach new itypes to a node in the tree.
11680
11681 pragma Assert (Present (Related_Node));
11682
11683 Itype := Create_Itype (E_Access_Subtype, Related_Node);
11684
11685 Set_Etype (Itype, Base_Type (Old_Type));
11686 Set_Size_Info (Itype, (Old_Type));
11687 Set_Directly_Designated_Type (Itype, Desig_Subtype);
11688 Set_Depends_On_Private (Itype, Has_Private_Component
11689 (Old_Type));
11690 Set_Is_Access_Constant (Itype, Is_Access_Constant
11691 (Old_Type));
11692
11693 -- The new itype needs freezing when it depends on a not frozen
11694 -- type and the enclosing subtype needs freezing.
11695
11696 if Has_Delayed_Freeze (Constrained_Typ)
11697 and then not Is_Frozen (Constrained_Typ)
11698 then
11699 Conditional_Delay (Itype, Base_Type (Old_Type));
11700 end if;
11701
11702 return Itype;
11703
11704 else
11705 return Old_Type;
11706 end if;
11707 end Build_Constrained_Access_Type;
11708
11709 ----------------------------------
11710 -- Build_Constrained_Array_Type --
11711 ----------------------------------
11712
11713 function Build_Constrained_Array_Type
11714 (Old_Type : Entity_Id) return Entity_Id
11715 is
11716 Lo_Expr : Node_Id;
11717 Hi_Expr : Node_Id;
11718 Old_Index : Node_Id;
11719 Range_Node : Node_Id;
11720 Constr_List : List_Id;
11721
11722 Need_To_Create_Itype : Boolean := False;
11723
11724 begin
11725 Old_Index := First_Index (Old_Type);
11726 while Present (Old_Index) loop
11727 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
11728
11729 if Is_Discriminant (Lo_Expr)
11730 or else Is_Discriminant (Hi_Expr)
11731 then
11732 Need_To_Create_Itype := True;
11733 end if;
11734
11735 Next_Index (Old_Index);
11736 end loop;
11737
11738 if Need_To_Create_Itype then
11739 Constr_List := New_List;
11740
11741 Old_Index := First_Index (Old_Type);
11742 while Present (Old_Index) loop
11743 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
11744
11745 if Is_Discriminant (Lo_Expr) then
11746 Lo_Expr := Get_Discr_Value (Lo_Expr);
11747 end if;
11748
11749 if Is_Discriminant (Hi_Expr) then
11750 Hi_Expr := Get_Discr_Value (Hi_Expr);
11751 end if;
11752
11753 Range_Node :=
11754 Make_Range
11755 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
11756
11757 Append (Range_Node, To => Constr_List);
11758
11759 Next_Index (Old_Index);
11760 end loop;
11761
11762 return Build_Subtype (Old_Type, Constr_List);
11763
11764 else
11765 return Old_Type;
11766 end if;
11767 end Build_Constrained_Array_Type;
11768
11769 ------------------------------------------
11770 -- Build_Constrained_Discriminated_Type --
11771 ------------------------------------------
11772
11773 function Build_Constrained_Discriminated_Type
11774 (Old_Type : Entity_Id) return Entity_Id
11775 is
11776 Expr : Node_Id;
11777 Constr_List : List_Id;
11778 Old_Constraint : Elmt_Id;
11779
11780 Need_To_Create_Itype : Boolean := False;
11781
11782 begin
11783 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
11784 while Present (Old_Constraint) loop
11785 Expr := Node (Old_Constraint);
11786
11787 if Is_Discriminant (Expr) then
11788 Need_To_Create_Itype := True;
11789 end if;
11790
11791 Next_Elmt (Old_Constraint);
11792 end loop;
11793
11794 if Need_To_Create_Itype then
11795 Constr_List := New_List;
11796
11797 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
11798 while Present (Old_Constraint) loop
11799 Expr := Node (Old_Constraint);
11800
11801 if Is_Discriminant (Expr) then
11802 Expr := Get_Discr_Value (Expr);
11803 end if;
11804
11805 Append (New_Copy_Tree (Expr), To => Constr_List);
11806
11807 Next_Elmt (Old_Constraint);
11808 end loop;
11809
11810 return Build_Subtype (Old_Type, Constr_List);
11811
11812 else
11813 return Old_Type;
11814 end if;
11815 end Build_Constrained_Discriminated_Type;
11816
11817 -------------------
11818 -- Build_Subtype --
11819 -------------------
11820
11821 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
11822 Indic : Node_Id;
11823 Subtyp_Decl : Node_Id;
11824 Def_Id : Entity_Id;
11825 Btyp : Entity_Id := Base_Type (T);
11826
11827 begin
11828 -- The Related_Node better be here or else we won't be able to
11829 -- attach new itypes to a node in the tree.
11830
11831 pragma Assert (Present (Related_Node));
11832
11833 -- If the view of the component's type is incomplete or private
11834 -- with unknown discriminants, then the constraint must be applied
11835 -- to the full type.
11836
11837 if Has_Unknown_Discriminants (Btyp)
11838 and then Present (Underlying_Type (Btyp))
11839 then
11840 Btyp := Underlying_Type (Btyp);
11841 end if;
11842
11843 Indic :=
11844 Make_Subtype_Indication (Loc,
11845 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
11846 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
11847
11848 Def_Id := Create_Itype (Ekind (T), Related_Node);
11849
11850 Subtyp_Decl :=
11851 Make_Subtype_Declaration (Loc,
11852 Defining_Identifier => Def_Id,
11853 Subtype_Indication => Indic);
11854
11855 Set_Parent (Subtyp_Decl, Parent (Related_Node));
11856
11857 -- Itypes must be analyzed with checks off (see package Itypes)
11858
11859 Analyze (Subtyp_Decl, Suppress => All_Checks);
11860
11861 return Def_Id;
11862 end Build_Subtype;
11863
11864 ---------------------
11865 -- Get_Discr_Value --
11866 ---------------------
11867
11868 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
11869 D : Entity_Id;
11870 E : Elmt_Id;
11871
11872 begin
11873 -- The discriminant may be declared for the type, in which case we
11874 -- find it by iterating over the list of discriminants. If the
11875 -- discriminant is inherited from a parent type, it appears as the
11876 -- corresponding discriminant of the current type. This will be the
11877 -- case when constraining an inherited component whose constraint is
11878 -- given by a discriminant of the parent.
11879
11880 D := First_Discriminant (Typ);
11881 E := First_Elmt (Constraints);
11882
11883 while Present (D) loop
11884 if D = Entity (Discrim)
11885 or else D = CR_Discriminant (Entity (Discrim))
11886 or else Corresponding_Discriminant (D) = Entity (Discrim)
11887 then
11888 return Node (E);
11889 end if;
11890
11891 Next_Discriminant (D);
11892 Next_Elmt (E);
11893 end loop;
11894
11895 -- The Corresponding_Discriminant mechanism is incomplete, because
11896 -- the correspondence between new and old discriminants is not one
11897 -- to one: one new discriminant can constrain several old ones. In
11898 -- that case, scan sequentially the stored_constraint, the list of
11899 -- discriminants of the parents, and the constraints.
11900
11901 -- Previous code checked for the present of the Stored_Constraint
11902 -- list for the derived type, but did not use it at all. Should it
11903 -- be present when the component is a discriminated task type?
11904
11905 if Is_Derived_Type (Typ)
11906 and then Scope (Entity (Discrim)) = Etype (Typ)
11907 then
11908 D := First_Discriminant (Etype (Typ));
11909 E := First_Elmt (Constraints);
11910 while Present (D) loop
11911 if D = Entity (Discrim) then
11912 return Node (E);
11913 end if;
11914
11915 Next_Discriminant (D);
11916 Next_Elmt (E);
11917 end loop;
11918 end if;
11919
11920 -- Something is wrong if we did not find the value
11921
11922 raise Program_Error;
11923 end Get_Discr_Value;
11924
11925 ---------------------
11926 -- Is_Discriminant --
11927 ---------------------
11928
11929 function Is_Discriminant (Expr : Node_Id) return Boolean is
11930 Discrim_Scope : Entity_Id;
11931
11932 begin
11933 if Denotes_Discriminant (Expr) then
11934 Discrim_Scope := Scope (Entity (Expr));
11935
11936 -- Either we have a reference to one of Typ's discriminants,
11937
11938 pragma Assert (Discrim_Scope = Typ
11939
11940 -- or to the discriminants of the parent type, in the case
11941 -- of a derivation of a tagged type with variants.
11942
11943 or else Discrim_Scope = Etype (Typ)
11944 or else Full_View (Discrim_Scope) = Etype (Typ)
11945
11946 -- or same as above for the case where the discriminants
11947 -- were declared in Typ's private view.
11948
11949 or else (Is_Private_Type (Discrim_Scope)
11950 and then Chars (Discrim_Scope) = Chars (Typ))
11951
11952 -- or else we are deriving from the full view and the
11953 -- discriminant is declared in the private entity.
11954
11955 or else (Is_Private_Type (Typ)
11956 and then Chars (Discrim_Scope) = Chars (Typ))
11957
11958 -- Or we are constrained the corresponding record of a
11959 -- synchronized type that completes a private declaration.
11960
11961 or else (Is_Concurrent_Record_Type (Typ)
11962 and then
11963 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
11964
11965 -- or we have a class-wide type, in which case make sure the
11966 -- discriminant found belongs to the root type.
11967
11968 or else (Is_Class_Wide_Type (Typ)
11969 and then Etype (Typ) = Discrim_Scope));
11970
11971 return True;
11972 end if;
11973
11974 -- In all other cases we have something wrong
11975
11976 return False;
11977 end Is_Discriminant;
11978
11979 -- Start of processing for Constrain_Component_Type
11980
11981 begin
11982 if Nkind (Parent (Comp)) = N_Component_Declaration
11983 and then Comes_From_Source (Parent (Comp))
11984 and then Comes_From_Source
11985 (Subtype_Indication (Component_Definition (Parent (Comp))))
11986 and then
11987 Is_Entity_Name
11988 (Subtype_Indication (Component_Definition (Parent (Comp))))
11989 then
11990 return Compon_Type;
11991
11992 elsif Is_Array_Type (Compon_Type) then
11993 return Build_Constrained_Array_Type (Compon_Type);
11994
11995 elsif Has_Discriminants (Compon_Type) then
11996 return Build_Constrained_Discriminated_Type (Compon_Type);
11997
11998 elsif Is_Access_Type (Compon_Type) then
11999 return Build_Constrained_Access_Type (Compon_Type);
12000
12001 else
12002 return Compon_Type;
12003 end if;
12004 end Constrain_Component_Type;
12005
12006 --------------------------
12007 -- Constrain_Concurrent --
12008 --------------------------
12009
12010 -- For concurrent types, the associated record value type carries the same
12011 -- discriminants, so when we constrain a concurrent type, we must constrain
12012 -- the corresponding record type as well.
12013
12014 procedure Constrain_Concurrent
12015 (Def_Id : in out Entity_Id;
12016 SI : Node_Id;
12017 Related_Nod : Node_Id;
12018 Related_Id : Entity_Id;
12019 Suffix : Character)
12020 is
12021 -- Retrieve Base_Type to ensure getting to the concurrent type in the
12022 -- case of a private subtype (needed when only doing semantic analysis).
12023
12024 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
12025 T_Val : Entity_Id;
12026
12027 begin
12028 if Is_Access_Type (T_Ent) then
12029 T_Ent := Designated_Type (T_Ent);
12030 end if;
12031
12032 T_Val := Corresponding_Record_Type (T_Ent);
12033
12034 if Present (T_Val) then
12035
12036 if No (Def_Id) then
12037 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12038 end if;
12039
12040 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12041
12042 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12043 Set_Corresponding_Record_Type (Def_Id,
12044 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
12045
12046 else
12047 -- If there is no associated record, expansion is disabled and this
12048 -- is a generic context. Create a subtype in any case, so that
12049 -- semantic analysis can proceed.
12050
12051 if No (Def_Id) then
12052 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12053 end if;
12054
12055 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12056 end if;
12057 end Constrain_Concurrent;
12058
12059 ------------------------------------
12060 -- Constrain_Corresponding_Record --
12061 ------------------------------------
12062
12063 function Constrain_Corresponding_Record
12064 (Prot_Subt : Entity_Id;
12065 Corr_Rec : Entity_Id;
12066 Related_Nod : Node_Id) return Entity_Id
12067 is
12068 T_Sub : constant Entity_Id :=
12069 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
12070
12071 begin
12072 Set_Etype (T_Sub, Corr_Rec);
12073 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
12074 Set_Is_Constrained (T_Sub, True);
12075 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
12076 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
12077
12078 if Has_Discriminants (Prot_Subt) then -- False only if errors.
12079 Set_Discriminant_Constraint
12080 (T_Sub, Discriminant_Constraint (Prot_Subt));
12081 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
12082 Create_Constrained_Components
12083 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
12084 end if;
12085
12086 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
12087
12088 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
12089 Conditional_Delay (T_Sub, Corr_Rec);
12090
12091 else
12092 -- This is a component subtype: it will be frozen in the context of
12093 -- the enclosing record's init_proc, so that discriminant references
12094 -- are resolved to discriminals. (Note: we used to skip freezing
12095 -- altogether in that case, which caused errors downstream for
12096 -- components of a bit packed array type).
12097
12098 Set_Has_Delayed_Freeze (T_Sub);
12099 end if;
12100
12101 return T_Sub;
12102 end Constrain_Corresponding_Record;
12103
12104 -----------------------
12105 -- Constrain_Decimal --
12106 -----------------------
12107
12108 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
12109 T : constant Entity_Id := Entity (Subtype_Mark (S));
12110 C : constant Node_Id := Constraint (S);
12111 Loc : constant Source_Ptr := Sloc (C);
12112 Range_Expr : Node_Id;
12113 Digits_Expr : Node_Id;
12114 Digits_Val : Uint;
12115 Bound_Val : Ureal;
12116
12117 begin
12118 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
12119
12120 if Nkind (C) = N_Range_Constraint then
12121 Range_Expr := Range_Expression (C);
12122 Digits_Val := Digits_Value (T);
12123
12124 else
12125 pragma Assert (Nkind (C) = N_Digits_Constraint);
12126
12127 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
12128
12129 Digits_Expr := Digits_Expression (C);
12130 Analyze_And_Resolve (Digits_Expr, Any_Integer);
12131
12132 Check_Digits_Expression (Digits_Expr);
12133 Digits_Val := Expr_Value (Digits_Expr);
12134
12135 if Digits_Val > Digits_Value (T) then
12136 Error_Msg_N
12137 ("digits expression is incompatible with subtype", C);
12138 Digits_Val := Digits_Value (T);
12139 end if;
12140
12141 if Present (Range_Constraint (C)) then
12142 Range_Expr := Range_Expression (Range_Constraint (C));
12143 else
12144 Range_Expr := Empty;
12145 end if;
12146 end if;
12147
12148 Set_Etype (Def_Id, Base_Type (T));
12149 Set_Size_Info (Def_Id, (T));
12150 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12151 Set_Delta_Value (Def_Id, Delta_Value (T));
12152 Set_Scale_Value (Def_Id, Scale_Value (T));
12153 Set_Small_Value (Def_Id, Small_Value (T));
12154 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
12155 Set_Digits_Value (Def_Id, Digits_Val);
12156
12157 -- Manufacture range from given digits value if no range present
12158
12159 if No (Range_Expr) then
12160 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
12161 Range_Expr :=
12162 Make_Range (Loc,
12163 Low_Bound =>
12164 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
12165 High_Bound =>
12166 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
12167 end if;
12168
12169 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
12170 Set_Discrete_RM_Size (Def_Id);
12171
12172 -- Unconditionally delay the freeze, since we cannot set size
12173 -- information in all cases correctly until the freeze point.
12174
12175 Set_Has_Delayed_Freeze (Def_Id);
12176 end Constrain_Decimal;
12177
12178 ----------------------------------
12179 -- Constrain_Discriminated_Type --
12180 ----------------------------------
12181
12182 procedure Constrain_Discriminated_Type
12183 (Def_Id : Entity_Id;
12184 S : Node_Id;
12185 Related_Nod : Node_Id;
12186 For_Access : Boolean := False)
12187 is
12188 E : constant Entity_Id := Entity (Subtype_Mark (S));
12189 T : Entity_Id;
12190 C : Node_Id;
12191 Elist : Elist_Id := New_Elmt_List;
12192
12193 procedure Fixup_Bad_Constraint;
12194 -- This is called after finding a bad constraint, and after having
12195 -- posted an appropriate error message. The mission is to leave the
12196 -- entity T in as reasonable state as possible.
12197
12198 --------------------------
12199 -- Fixup_Bad_Constraint --
12200 --------------------------
12201
12202 procedure Fixup_Bad_Constraint is
12203 begin
12204 -- Set a reasonable Ekind for the entity. For an incomplete type,
12205 -- we can't do much, but for other types, we can set the proper
12206 -- corresponding subtype kind.
12207
12208 if Ekind (T) = E_Incomplete_Type then
12209 Set_Ekind (Def_Id, Ekind (T));
12210 else
12211 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
12212 end if;
12213
12214 -- Set Etype to the known type, to reduce chances of cascaded errors
12215
12216 Set_Etype (Def_Id, E);
12217 Set_Error_Posted (Def_Id);
12218 end Fixup_Bad_Constraint;
12219
12220 -- Start of processing for Constrain_Discriminated_Type
12221
12222 begin
12223 C := Constraint (S);
12224
12225 -- A discriminant constraint is only allowed in a subtype indication,
12226 -- after a subtype mark. This subtype mark must denote either a type
12227 -- with discriminants, or an access type whose designated type is a
12228 -- type with discriminants. A discriminant constraint specifies the
12229 -- values of these discriminants (RM 3.7.2(5)).
12230
12231 T := Base_Type (Entity (Subtype_Mark (S)));
12232
12233 if Is_Access_Type (T) then
12234 T := Designated_Type (T);
12235 end if;
12236
12237 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
12238 -- Avoid generating an error for access-to-incomplete subtypes.
12239
12240 if Ada_Version >= Ada_2005
12241 and then Ekind (T) = E_Incomplete_Type
12242 and then Nkind (Parent (S)) = N_Subtype_Declaration
12243 and then not Is_Itype (Def_Id)
12244 then
12245 -- A little sanity check, emit an error message if the type
12246 -- has discriminants to begin with. Type T may be a regular
12247 -- incomplete type or imported via a limited with clause.
12248
12249 if Has_Discriminants (T)
12250 or else (From_Limited_With (T)
12251 and then Present (Non_Limited_View (T))
12252 and then Nkind (Parent (Non_Limited_View (T))) =
12253 N_Full_Type_Declaration
12254 and then Present (Discriminant_Specifications
12255 (Parent (Non_Limited_View (T)))))
12256 then
12257 Error_Msg_N
12258 ("(Ada 2005) incomplete subtype may not be constrained", C);
12259 else
12260 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12261 end if;
12262
12263 Fixup_Bad_Constraint;
12264 return;
12265
12266 -- Check that the type has visible discriminants. The type may be
12267 -- a private type with unknown discriminants whose full view has
12268 -- discriminants which are invisible.
12269
12270 elsif not Has_Discriminants (T)
12271 or else
12272 (Has_Unknown_Discriminants (T)
12273 and then Is_Private_Type (T))
12274 then
12275 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12276 Fixup_Bad_Constraint;
12277 return;
12278
12279 elsif Is_Constrained (E)
12280 or else (Ekind (E) = E_Class_Wide_Subtype
12281 and then Present (Discriminant_Constraint (E)))
12282 then
12283 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
12284 Fixup_Bad_Constraint;
12285 return;
12286 end if;
12287
12288 -- T may be an unconstrained subtype (e.g. a generic actual).
12289 -- Constraint applies to the base type.
12290
12291 T := Base_Type (T);
12292
12293 Elist := Build_Discriminant_Constraints (T, S);
12294
12295 -- If the list returned was empty we had an error in building the
12296 -- discriminant constraint. We have also already signalled an error
12297 -- in the incomplete type case
12298
12299 if Is_Empty_Elmt_List (Elist) then
12300 Fixup_Bad_Constraint;
12301 return;
12302 end if;
12303
12304 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
12305 end Constrain_Discriminated_Type;
12306
12307 ---------------------------
12308 -- Constrain_Enumeration --
12309 ---------------------------
12310
12311 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
12312 T : constant Entity_Id := Entity (Subtype_Mark (S));
12313 C : constant Node_Id := Constraint (S);
12314
12315 begin
12316 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12317
12318 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
12319
12320 Set_Etype (Def_Id, Base_Type (T));
12321 Set_Size_Info (Def_Id, (T));
12322 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12323 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12324
12325 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12326
12327 Set_Discrete_RM_Size (Def_Id);
12328 end Constrain_Enumeration;
12329
12330 ----------------------
12331 -- Constrain_Float --
12332 ----------------------
12333
12334 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
12335 T : constant Entity_Id := Entity (Subtype_Mark (S));
12336 C : Node_Id;
12337 D : Node_Id;
12338 Rais : Node_Id;
12339
12340 begin
12341 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
12342
12343 Set_Etype (Def_Id, Base_Type (T));
12344 Set_Size_Info (Def_Id, (T));
12345 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12346
12347 -- Process the constraint
12348
12349 C := Constraint (S);
12350
12351 -- Digits constraint present
12352
12353 if Nkind (C) = N_Digits_Constraint then
12354
12355 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
12356 Check_Restriction (No_Obsolescent_Features, C);
12357
12358 if Warn_On_Obsolescent_Feature then
12359 Error_Msg_N
12360 ("subtype digits constraint is an " &
12361 "obsolescent feature (RM J.3(8))?j?", C);
12362 end if;
12363
12364 D := Digits_Expression (C);
12365 Analyze_And_Resolve (D, Any_Integer);
12366 Check_Digits_Expression (D);
12367 Set_Digits_Value (Def_Id, Expr_Value (D));
12368
12369 -- Check that digits value is in range. Obviously we can do this
12370 -- at compile time, but it is strictly a runtime check, and of
12371 -- course there is an ACVC test that checks this.
12372
12373 if Digits_Value (Def_Id) > Digits_Value (T) then
12374 Error_Msg_Uint_1 := Digits_Value (T);
12375 Error_Msg_N ("??digits value is too large, maximum is ^", D);
12376 Rais :=
12377 Make_Raise_Constraint_Error (Sloc (D),
12378 Reason => CE_Range_Check_Failed);
12379 Insert_Action (Declaration_Node (Def_Id), Rais);
12380 end if;
12381
12382 C := Range_Constraint (C);
12383
12384 -- No digits constraint present
12385
12386 else
12387 Set_Digits_Value (Def_Id, Digits_Value (T));
12388 end if;
12389
12390 -- Range constraint present
12391
12392 if Nkind (C) = N_Range_Constraint then
12393 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12394
12395 -- No range constraint present
12396
12397 else
12398 pragma Assert (No (C));
12399 Set_Scalar_Range (Def_Id, Scalar_Range (T));
12400 end if;
12401
12402 Set_Is_Constrained (Def_Id);
12403 end Constrain_Float;
12404
12405 ---------------------
12406 -- Constrain_Index --
12407 ---------------------
12408
12409 procedure Constrain_Index
12410 (Index : Node_Id;
12411 S : Node_Id;
12412 Related_Nod : Node_Id;
12413 Related_Id : Entity_Id;
12414 Suffix : Character;
12415 Suffix_Index : Nat)
12416 is
12417 Def_Id : Entity_Id;
12418 R : Node_Id := Empty;
12419 T : constant Entity_Id := Etype (Index);
12420
12421 begin
12422 if Nkind (S) = N_Range
12423 or else
12424 (Nkind (S) = N_Attribute_Reference
12425 and then Attribute_Name (S) = Name_Range)
12426 then
12427 -- A Range attribute will be transformed into N_Range by Resolve
12428
12429 Analyze (S);
12430 Set_Etype (S, T);
12431 R := S;
12432
12433 Process_Range_Expr_In_Decl (R, T);
12434
12435 if not Error_Posted (S)
12436 and then
12437 (Nkind (S) /= N_Range
12438 or else not Covers (T, (Etype (Low_Bound (S))))
12439 or else not Covers (T, (Etype (High_Bound (S)))))
12440 then
12441 if Base_Type (T) /= Any_Type
12442 and then Etype (Low_Bound (S)) /= Any_Type
12443 and then Etype (High_Bound (S)) /= Any_Type
12444 then
12445 Error_Msg_N ("range expected", S);
12446 end if;
12447 end if;
12448
12449 elsif Nkind (S) = N_Subtype_Indication then
12450
12451 -- The parser has verified that this is a discrete indication
12452
12453 Resolve_Discrete_Subtype_Indication (S, T);
12454 Bad_Predicated_Subtype_Use
12455 ("subtype& has predicate, not allowed in index constraint",
12456 S, Entity (Subtype_Mark (S)));
12457
12458 R := Range_Expression (Constraint (S));
12459
12460 -- Capture values of bounds and generate temporaries for them if
12461 -- needed, since checks may cause duplication of the expressions
12462 -- which must not be reevaluated.
12463
12464 -- The forced evaluation removes side effects from expressions, which
12465 -- should occur also in GNATprove mode. Otherwise, we end up with
12466 -- unexpected insertions of actions at places where this is not
12467 -- supposed to occur, e.g. on default parameters of a call.
12468
12469 if Expander_Active or GNATprove_Mode then
12470 Force_Evaluation (Low_Bound (R));
12471 Force_Evaluation (High_Bound (R));
12472 end if;
12473
12474 elsif Nkind (S) = N_Discriminant_Association then
12475
12476 -- Syntactically valid in subtype indication
12477
12478 Error_Msg_N ("invalid index constraint", S);
12479 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
12480 return;
12481
12482 -- Subtype_Mark case, no anonymous subtypes to construct
12483
12484 else
12485 Analyze (S);
12486
12487 if Is_Entity_Name (S) then
12488 if not Is_Type (Entity (S)) then
12489 Error_Msg_N ("expect subtype mark for index constraint", S);
12490
12491 elsif Base_Type (Entity (S)) /= Base_Type (T) then
12492 Wrong_Type (S, Base_Type (T));
12493
12494 -- Check error of subtype with predicate in index constraint
12495
12496 else
12497 Bad_Predicated_Subtype_Use
12498 ("subtype& has predicate, not allowed in index constraint",
12499 S, Entity (S));
12500 end if;
12501
12502 return;
12503
12504 else
12505 Error_Msg_N ("invalid index constraint", S);
12506 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
12507 return;
12508 end if;
12509 end if;
12510
12511 Def_Id :=
12512 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
12513
12514 Set_Etype (Def_Id, Base_Type (T));
12515
12516 if Is_Modular_Integer_Type (T) then
12517 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
12518
12519 elsif Is_Integer_Type (T) then
12520 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
12521
12522 else
12523 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12524 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12525 Set_First_Literal (Def_Id, First_Literal (T));
12526 end if;
12527
12528 Set_Size_Info (Def_Id, (T));
12529 Set_RM_Size (Def_Id, RM_Size (T));
12530 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12531
12532 Set_Scalar_Range (Def_Id, R);
12533
12534 Set_Etype (S, Def_Id);
12535 Set_Discrete_RM_Size (Def_Id);
12536 end Constrain_Index;
12537
12538 -----------------------
12539 -- Constrain_Integer --
12540 -----------------------
12541
12542 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
12543 T : constant Entity_Id := Entity (Subtype_Mark (S));
12544 C : constant Node_Id := Constraint (S);
12545
12546 begin
12547 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12548
12549 if Is_Modular_Integer_Type (T) then
12550 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
12551 else
12552 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
12553 end if;
12554
12555 Set_Etype (Def_Id, Base_Type (T));
12556 Set_Size_Info (Def_Id, (T));
12557 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12558 Set_Discrete_RM_Size (Def_Id);
12559 end Constrain_Integer;
12560
12561 ------------------------------
12562 -- Constrain_Ordinary_Fixed --
12563 ------------------------------
12564
12565 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
12566 T : constant Entity_Id := Entity (Subtype_Mark (S));
12567 C : Node_Id;
12568 D : Node_Id;
12569 Rais : Node_Id;
12570
12571 begin
12572 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
12573 Set_Etype (Def_Id, Base_Type (T));
12574 Set_Size_Info (Def_Id, (T));
12575 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12576 Set_Small_Value (Def_Id, Small_Value (T));
12577
12578 -- Process the constraint
12579
12580 C := Constraint (S);
12581
12582 -- Delta constraint present
12583
12584 if Nkind (C) = N_Delta_Constraint then
12585
12586 Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
12587 Check_Restriction (No_Obsolescent_Features, C);
12588
12589 if Warn_On_Obsolescent_Feature then
12590 Error_Msg_S
12591 ("subtype delta constraint is an " &
12592 "obsolescent feature (RM J.3(7))?j?");
12593 end if;
12594
12595 D := Delta_Expression (C);
12596 Analyze_And_Resolve (D, Any_Real);
12597 Check_Delta_Expression (D);
12598 Set_Delta_Value (Def_Id, Expr_Value_R (D));
12599
12600 -- Check that delta value is in range. Obviously we can do this
12601 -- at compile time, but it is strictly a runtime check, and of
12602 -- course there is an ACVC test that checks this.
12603
12604 if Delta_Value (Def_Id) < Delta_Value (T) then
12605 Error_Msg_N ("??delta value is too small", D);
12606 Rais :=
12607 Make_Raise_Constraint_Error (Sloc (D),
12608 Reason => CE_Range_Check_Failed);
12609 Insert_Action (Declaration_Node (Def_Id), Rais);
12610 end if;
12611
12612 C := Range_Constraint (C);
12613
12614 -- No delta constraint present
12615
12616 else
12617 Set_Delta_Value (Def_Id, Delta_Value (T));
12618 end if;
12619
12620 -- Range constraint present
12621
12622 if Nkind (C) = N_Range_Constraint then
12623 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12624
12625 -- No range constraint present
12626
12627 else
12628 pragma Assert (No (C));
12629 Set_Scalar_Range (Def_Id, Scalar_Range (T));
12630
12631 end if;
12632
12633 Set_Discrete_RM_Size (Def_Id);
12634
12635 -- Unconditionally delay the freeze, since we cannot set size
12636 -- information in all cases correctly until the freeze point.
12637
12638 Set_Has_Delayed_Freeze (Def_Id);
12639 end Constrain_Ordinary_Fixed;
12640
12641 -----------------------
12642 -- Contain_Interface --
12643 -----------------------
12644
12645 function Contain_Interface
12646 (Iface : Entity_Id;
12647 Ifaces : Elist_Id) return Boolean
12648 is
12649 Iface_Elmt : Elmt_Id;
12650
12651 begin
12652 if Present (Ifaces) then
12653 Iface_Elmt := First_Elmt (Ifaces);
12654 while Present (Iface_Elmt) loop
12655 if Node (Iface_Elmt) = Iface then
12656 return True;
12657 end if;
12658
12659 Next_Elmt (Iface_Elmt);
12660 end loop;
12661 end if;
12662
12663 return False;
12664 end Contain_Interface;
12665
12666 ---------------------------
12667 -- Convert_Scalar_Bounds --
12668 ---------------------------
12669
12670 procedure Convert_Scalar_Bounds
12671 (N : Node_Id;
12672 Parent_Type : Entity_Id;
12673 Derived_Type : Entity_Id;
12674 Loc : Source_Ptr)
12675 is
12676 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
12677
12678 Lo : Node_Id;
12679 Hi : Node_Id;
12680 Rng : Node_Id;
12681
12682 begin
12683 -- Defend against previous errors
12684
12685 if No (Scalar_Range (Derived_Type)) then
12686 Check_Error_Detected;
12687 return;
12688 end if;
12689
12690 Lo := Build_Scalar_Bound
12691 (Type_Low_Bound (Derived_Type),
12692 Parent_Type, Implicit_Base);
12693
12694 Hi := Build_Scalar_Bound
12695 (Type_High_Bound (Derived_Type),
12696 Parent_Type, Implicit_Base);
12697
12698 Rng :=
12699 Make_Range (Loc,
12700 Low_Bound => Lo,
12701 High_Bound => Hi);
12702
12703 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
12704
12705 Set_Parent (Rng, N);
12706 Set_Scalar_Range (Derived_Type, Rng);
12707
12708 -- Analyze the bounds
12709
12710 Analyze_And_Resolve (Lo, Implicit_Base);
12711 Analyze_And_Resolve (Hi, Implicit_Base);
12712
12713 -- Analyze the range itself, except that we do not analyze it if
12714 -- the bounds are real literals, and we have a fixed-point type.
12715 -- The reason for this is that we delay setting the bounds in this
12716 -- case till we know the final Small and Size values (see circuit
12717 -- in Freeze.Freeze_Fixed_Point_Type for further details).
12718
12719 if Is_Fixed_Point_Type (Parent_Type)
12720 and then Nkind (Lo) = N_Real_Literal
12721 and then Nkind (Hi) = N_Real_Literal
12722 then
12723 return;
12724
12725 -- Here we do the analysis of the range
12726
12727 -- Note: we do this manually, since if we do a normal Analyze and
12728 -- Resolve call, there are problems with the conversions used for
12729 -- the derived type range.
12730
12731 else
12732 Set_Etype (Rng, Implicit_Base);
12733 Set_Analyzed (Rng, True);
12734 end if;
12735 end Convert_Scalar_Bounds;
12736
12737 -------------------
12738 -- Copy_And_Swap --
12739 -------------------
12740
12741 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
12742 begin
12743 -- Initialize new full declaration entity by copying the pertinent
12744 -- fields of the corresponding private declaration entity.
12745
12746 -- We temporarily set Ekind to a value appropriate for a type to
12747 -- avoid assert failures in Einfo from checking for setting type
12748 -- attributes on something that is not a type. Ekind (Priv) is an
12749 -- appropriate choice, since it allowed the attributes to be set
12750 -- in the first place. This Ekind value will be modified later.
12751
12752 Set_Ekind (Full, Ekind (Priv));
12753
12754 -- Also set Etype temporarily to Any_Type, again, in the absence
12755 -- of errors, it will be properly reset, and if there are errors,
12756 -- then we want a value of Any_Type to remain.
12757
12758 Set_Etype (Full, Any_Type);
12759
12760 -- Now start copying attributes
12761
12762 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
12763
12764 if Has_Discriminants (Full) then
12765 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
12766 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
12767 end if;
12768
12769 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
12770 Set_Homonym (Full, Homonym (Priv));
12771 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
12772 Set_Is_Public (Full, Is_Public (Priv));
12773 Set_Is_Pure (Full, Is_Pure (Priv));
12774 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
12775 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
12776 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
12777 Set_Has_Pragma_Unreferenced_Objects
12778 (Full, Has_Pragma_Unreferenced_Objects
12779 (Priv));
12780
12781 Conditional_Delay (Full, Priv);
12782
12783 if Is_Tagged_Type (Full) then
12784 Set_Direct_Primitive_Operations (Full,
12785 Direct_Primitive_Operations (Priv));
12786
12787 if Is_Base_Type (Priv) then
12788 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
12789 end if;
12790 end if;
12791
12792 Set_Is_Volatile (Full, Is_Volatile (Priv));
12793 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
12794 Set_Scope (Full, Scope (Priv));
12795 Set_Next_Entity (Full, Next_Entity (Priv));
12796 Set_First_Entity (Full, First_Entity (Priv));
12797 Set_Last_Entity (Full, Last_Entity (Priv));
12798
12799 -- If access types have been recorded for later handling, keep them in
12800 -- the full view so that they get handled when the full view freeze
12801 -- node is expanded.
12802
12803 if Present (Freeze_Node (Priv))
12804 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
12805 then
12806 Ensure_Freeze_Node (Full);
12807 Set_Access_Types_To_Process
12808 (Freeze_Node (Full),
12809 Access_Types_To_Process (Freeze_Node (Priv)));
12810 end if;
12811
12812 -- Swap the two entities. Now Private is the full type entity and Full
12813 -- is the private one. They will be swapped back at the end of the
12814 -- private part. This swapping ensures that the entity that is visible
12815 -- in the private part is the full declaration.
12816
12817 Exchange_Entities (Priv, Full);
12818 Append_Entity (Full, Scope (Full));
12819 end Copy_And_Swap;
12820
12821 -------------------------------------
12822 -- Copy_Array_Base_Type_Attributes --
12823 -------------------------------------
12824
12825 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
12826 begin
12827 Set_Component_Alignment (T1, Component_Alignment (T2));
12828 Set_Component_Type (T1, Component_Type (T2));
12829 Set_Component_Size (T1, Component_Size (T2));
12830 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
12831 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
12832 Set_Has_Protected (T1, Has_Protected (T2));
12833 Set_Has_Task (T1, Has_Task (T2));
12834 Set_Is_Packed (T1, Is_Packed (T2));
12835 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
12836 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
12837 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
12838 end Copy_Array_Base_Type_Attributes;
12839
12840 -----------------------------------
12841 -- Copy_Array_Subtype_Attributes --
12842 -----------------------------------
12843
12844 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
12845 begin
12846 Set_Size_Info (T1, T2);
12847
12848 Set_First_Index (T1, First_Index (T2));
12849 Set_Is_Aliased (T1, Is_Aliased (T2));
12850 Set_Is_Volatile (T1, Is_Volatile (T2));
12851 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
12852 Set_Is_Constrained (T1, Is_Constrained (T2));
12853 Set_Depends_On_Private (T1, Has_Private_Component (T2));
12854 Set_First_Rep_Item (T1, First_Rep_Item (T2));
12855 Set_Convention (T1, Convention (T2));
12856 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
12857 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
12858 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
12859 end Copy_Array_Subtype_Attributes;
12860
12861 -----------------------------------
12862 -- Create_Constrained_Components --
12863 -----------------------------------
12864
12865 procedure Create_Constrained_Components
12866 (Subt : Entity_Id;
12867 Decl_Node : Node_Id;
12868 Typ : Entity_Id;
12869 Constraints : Elist_Id)
12870 is
12871 Loc : constant Source_Ptr := Sloc (Subt);
12872 Comp_List : constant Elist_Id := New_Elmt_List;
12873 Parent_Type : constant Entity_Id := Etype (Typ);
12874 Assoc_List : constant List_Id := New_List;
12875 Discr_Val : Elmt_Id;
12876 Errors : Boolean;
12877 New_C : Entity_Id;
12878 Old_C : Entity_Id;
12879 Is_Static : Boolean := True;
12880
12881 procedure Collect_Fixed_Components (Typ : Entity_Id);
12882 -- Collect parent type components that do not appear in a variant part
12883
12884 procedure Create_All_Components;
12885 -- Iterate over Comp_List to create the components of the subtype
12886
12887 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
12888 -- Creates a new component from Old_Compon, copying all the fields from
12889 -- it, including its Etype, inserts the new component in the Subt entity
12890 -- chain and returns the new component.
12891
12892 function Is_Variant_Record (T : Entity_Id) return Boolean;
12893 -- If true, and discriminants are static, collect only components from
12894 -- variants selected by discriminant values.
12895
12896 ------------------------------
12897 -- Collect_Fixed_Components --
12898 ------------------------------
12899
12900 procedure Collect_Fixed_Components (Typ : Entity_Id) is
12901 begin
12902 -- Build association list for discriminants, and find components of the
12903 -- variant part selected by the values of the discriminants.
12904
12905 Old_C := First_Discriminant (Typ);
12906 Discr_Val := First_Elmt (Constraints);
12907 while Present (Old_C) loop
12908 Append_To (Assoc_List,
12909 Make_Component_Association (Loc,
12910 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
12911 Expression => New_Copy (Node (Discr_Val))));
12912
12913 Next_Elmt (Discr_Val);
12914 Next_Discriminant (Old_C);
12915 end loop;
12916
12917 -- The tag and the possible parent component are unconditionally in
12918 -- the subtype.
12919
12920 if Is_Tagged_Type (Typ)
12921 or else Has_Controlled_Component (Typ)
12922 then
12923 Old_C := First_Component (Typ);
12924 while Present (Old_C) loop
12925 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
12926 Append_Elmt (Old_C, Comp_List);
12927 end if;
12928
12929 Next_Component (Old_C);
12930 end loop;
12931 end if;
12932 end Collect_Fixed_Components;
12933
12934 ---------------------------
12935 -- Create_All_Components --
12936 ---------------------------
12937
12938 procedure Create_All_Components is
12939 Comp : Elmt_Id;
12940
12941 begin
12942 Comp := First_Elmt (Comp_List);
12943 while Present (Comp) loop
12944 Old_C := Node (Comp);
12945 New_C := Create_Component (Old_C);
12946
12947 Set_Etype
12948 (New_C,
12949 Constrain_Component_Type
12950 (Old_C, Subt, Decl_Node, Typ, Constraints));
12951 Set_Is_Public (New_C, Is_Public (Subt));
12952
12953 Next_Elmt (Comp);
12954 end loop;
12955 end Create_All_Components;
12956
12957 ----------------------
12958 -- Create_Component --
12959 ----------------------
12960
12961 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
12962 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
12963
12964 begin
12965 if Ekind (Old_Compon) = E_Discriminant
12966 and then Is_Completely_Hidden (Old_Compon)
12967 then
12968 -- This is a shadow discriminant created for a discriminant of
12969 -- the parent type, which needs to be present in the subtype.
12970 -- Give the shadow discriminant an internal name that cannot
12971 -- conflict with that of visible components.
12972
12973 Set_Chars (New_Compon, New_Internal_Name ('C'));
12974 end if;
12975
12976 -- Set the parent so we have a proper link for freezing etc. This is
12977 -- not a real parent pointer, since of course our parent does not own
12978 -- up to us and reference us, we are an illegitimate child of the
12979 -- original parent.
12980
12981 Set_Parent (New_Compon, Parent (Old_Compon));
12982
12983 -- If the old component's Esize was already determined and is a
12984 -- static value, then the new component simply inherits it. Otherwise
12985 -- the old component's size may require run-time determination, but
12986 -- the new component's size still might be statically determinable
12987 -- (if, for example it has a static constraint). In that case we want
12988 -- Layout_Type to recompute the component's size, so we reset its
12989 -- size and positional fields.
12990
12991 if Frontend_Layout_On_Target
12992 and then not Known_Static_Esize (Old_Compon)
12993 then
12994 Set_Esize (New_Compon, Uint_0);
12995 Init_Normalized_First_Bit (New_Compon);
12996 Init_Normalized_Position (New_Compon);
12997 Init_Normalized_Position_Max (New_Compon);
12998 end if;
12999
13000 -- We do not want this node marked as Comes_From_Source, since
13001 -- otherwise it would get first class status and a separate cross-
13002 -- reference line would be generated. Illegitimate children do not
13003 -- rate such recognition.
13004
13005 Set_Comes_From_Source (New_Compon, False);
13006
13007 -- But it is a real entity, and a birth certificate must be properly
13008 -- registered by entering it into the entity list.
13009
13010 Enter_Name (New_Compon);
13011
13012 return New_Compon;
13013 end Create_Component;
13014
13015 -----------------------
13016 -- Is_Variant_Record --
13017 -----------------------
13018
13019 function Is_Variant_Record (T : Entity_Id) return Boolean is
13020 begin
13021 return Nkind (Parent (T)) = N_Full_Type_Declaration
13022 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
13023 and then Present (Component_List (Type_Definition (Parent (T))))
13024 and then
13025 Present
13026 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
13027 end Is_Variant_Record;
13028
13029 -- Start of processing for Create_Constrained_Components
13030
13031 begin
13032 pragma Assert (Subt /= Base_Type (Subt));
13033 pragma Assert (Typ = Base_Type (Typ));
13034
13035 Set_First_Entity (Subt, Empty);
13036 Set_Last_Entity (Subt, Empty);
13037
13038 -- Check whether constraint is fully static, in which case we can
13039 -- optimize the list of components.
13040
13041 Discr_Val := First_Elmt (Constraints);
13042 while Present (Discr_Val) loop
13043 if not Is_OK_Static_Expression (Node (Discr_Val)) then
13044 Is_Static := False;
13045 exit;
13046 end if;
13047
13048 Next_Elmt (Discr_Val);
13049 end loop;
13050
13051 Set_Has_Static_Discriminants (Subt, Is_Static);
13052
13053 Push_Scope (Subt);
13054
13055 -- Inherit the discriminants of the parent type
13056
13057 Add_Discriminants : declare
13058 Num_Disc : Int;
13059 Num_Gird : Int;
13060
13061 begin
13062 Num_Disc := 0;
13063 Old_C := First_Discriminant (Typ);
13064
13065 while Present (Old_C) loop
13066 Num_Disc := Num_Disc + 1;
13067 New_C := Create_Component (Old_C);
13068 Set_Is_Public (New_C, Is_Public (Subt));
13069 Next_Discriminant (Old_C);
13070 end loop;
13071
13072 -- For an untagged derived subtype, the number of discriminants may
13073 -- be smaller than the number of inherited discriminants, because
13074 -- several of them may be renamed by a single new discriminant or
13075 -- constrained. In this case, add the hidden discriminants back into
13076 -- the subtype, because they need to be present if the optimizer of
13077 -- the GCC 4.x back-end decides to break apart assignments between
13078 -- objects using the parent view into member-wise assignments.
13079
13080 Num_Gird := 0;
13081
13082 if Is_Derived_Type (Typ)
13083 and then not Is_Tagged_Type (Typ)
13084 then
13085 Old_C := First_Stored_Discriminant (Typ);
13086
13087 while Present (Old_C) loop
13088 Num_Gird := Num_Gird + 1;
13089 Next_Stored_Discriminant (Old_C);
13090 end loop;
13091 end if;
13092
13093 if Num_Gird > Num_Disc then
13094
13095 -- Find out multiple uses of new discriminants, and add hidden
13096 -- components for the extra renamed discriminants. We recognize
13097 -- multiple uses through the Corresponding_Discriminant of a
13098 -- new discriminant: if it constrains several old discriminants,
13099 -- this field points to the last one in the parent type. The
13100 -- stored discriminants of the derived type have the same name
13101 -- as those of the parent.
13102
13103 declare
13104 Constr : Elmt_Id;
13105 New_Discr : Entity_Id;
13106 Old_Discr : Entity_Id;
13107
13108 begin
13109 Constr := First_Elmt (Stored_Constraint (Typ));
13110 Old_Discr := First_Stored_Discriminant (Typ);
13111 while Present (Constr) loop
13112 if Is_Entity_Name (Node (Constr))
13113 and then Ekind (Entity (Node (Constr))) = E_Discriminant
13114 then
13115 New_Discr := Entity (Node (Constr));
13116
13117 if Chars (Corresponding_Discriminant (New_Discr)) /=
13118 Chars (Old_Discr)
13119 then
13120 -- The new discriminant has been used to rename a
13121 -- subsequent old discriminant. Introduce a shadow
13122 -- component for the current old discriminant.
13123
13124 New_C := Create_Component (Old_Discr);
13125 Set_Original_Record_Component (New_C, Old_Discr);
13126 end if;
13127
13128 else
13129 -- The constraint has eliminated the old discriminant.
13130 -- Introduce a shadow component.
13131
13132 New_C := Create_Component (Old_Discr);
13133 Set_Original_Record_Component (New_C, Old_Discr);
13134 end if;
13135
13136 Next_Elmt (Constr);
13137 Next_Stored_Discriminant (Old_Discr);
13138 end loop;
13139 end;
13140 end if;
13141 end Add_Discriminants;
13142
13143 if Is_Static
13144 and then Is_Variant_Record (Typ)
13145 then
13146 Collect_Fixed_Components (Typ);
13147
13148 Gather_Components (
13149 Typ,
13150 Component_List (Type_Definition (Parent (Typ))),
13151 Governed_By => Assoc_List,
13152 Into => Comp_List,
13153 Report_Errors => Errors);
13154 pragma Assert (not Errors);
13155
13156 Create_All_Components;
13157
13158 -- If the subtype declaration is created for a tagged type derivation
13159 -- with constraints, we retrieve the record definition of the parent
13160 -- type to select the components of the proper variant.
13161
13162 elsif Is_Static
13163 and then Is_Tagged_Type (Typ)
13164 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
13165 and then
13166 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
13167 and then Is_Variant_Record (Parent_Type)
13168 then
13169 Collect_Fixed_Components (Typ);
13170
13171 Gather_Components (
13172 Typ,
13173 Component_List (Type_Definition (Parent (Parent_Type))),
13174 Governed_By => Assoc_List,
13175 Into => Comp_List,
13176 Report_Errors => Errors);
13177 pragma Assert (not Errors);
13178
13179 -- If the tagged derivation has a type extension, collect all the
13180 -- new components therein.
13181
13182 if Present
13183 (Record_Extension_Part (Type_Definition (Parent (Typ))))
13184 then
13185 Old_C := First_Component (Typ);
13186 while Present (Old_C) loop
13187 if Original_Record_Component (Old_C) = Old_C
13188 and then Chars (Old_C) /= Name_uTag
13189 and then Chars (Old_C) /= Name_uParent
13190 then
13191 Append_Elmt (Old_C, Comp_List);
13192 end if;
13193
13194 Next_Component (Old_C);
13195 end loop;
13196 end if;
13197
13198 Create_All_Components;
13199
13200 else
13201 -- If discriminants are not static, or if this is a multi-level type
13202 -- extension, we have to include all components of the parent type.
13203
13204 Old_C := First_Component (Typ);
13205 while Present (Old_C) loop
13206 New_C := Create_Component (Old_C);
13207
13208 Set_Etype
13209 (New_C,
13210 Constrain_Component_Type
13211 (Old_C, Subt, Decl_Node, Typ, Constraints));
13212 Set_Is_Public (New_C, Is_Public (Subt));
13213
13214 Next_Component (Old_C);
13215 end loop;
13216 end if;
13217
13218 End_Scope;
13219 end Create_Constrained_Components;
13220
13221 ------------------------------------------
13222 -- Decimal_Fixed_Point_Type_Declaration --
13223 ------------------------------------------
13224
13225 procedure Decimal_Fixed_Point_Type_Declaration
13226 (T : Entity_Id;
13227 Def : Node_Id)
13228 is
13229 Loc : constant Source_Ptr := Sloc (Def);
13230 Digs_Expr : constant Node_Id := Digits_Expression (Def);
13231 Delta_Expr : constant Node_Id := Delta_Expression (Def);
13232 Implicit_Base : Entity_Id;
13233 Digs_Val : Uint;
13234 Delta_Val : Ureal;
13235 Scale_Val : Uint;
13236 Bound_Val : Ureal;
13237
13238 begin
13239 Check_SPARK_05_Restriction
13240 ("decimal fixed point type is not allowed", Def);
13241 Check_Restriction (No_Fixed_Point, Def);
13242
13243 -- Create implicit base type
13244
13245 Implicit_Base :=
13246 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
13247 Set_Etype (Implicit_Base, Implicit_Base);
13248
13249 -- Analyze and process delta expression
13250
13251 Analyze_And_Resolve (Delta_Expr, Universal_Real);
13252
13253 Check_Delta_Expression (Delta_Expr);
13254 Delta_Val := Expr_Value_R (Delta_Expr);
13255
13256 -- Check delta is power of 10, and determine scale value from it
13257
13258 declare
13259 Val : Ureal;
13260
13261 begin
13262 Scale_Val := Uint_0;
13263 Val := Delta_Val;
13264
13265 if Val < Ureal_1 then
13266 while Val < Ureal_1 loop
13267 Val := Val * Ureal_10;
13268 Scale_Val := Scale_Val + 1;
13269 end loop;
13270
13271 if Scale_Val > 18 then
13272 Error_Msg_N ("scale exceeds maximum value of 18", Def);
13273 Scale_Val := UI_From_Int (+18);
13274 end if;
13275
13276 else
13277 while Val > Ureal_1 loop
13278 Val := Val / Ureal_10;
13279 Scale_Val := Scale_Val - 1;
13280 end loop;
13281
13282 if Scale_Val < -18 then
13283 Error_Msg_N ("scale is less than minimum value of -18", Def);
13284 Scale_Val := UI_From_Int (-18);
13285 end if;
13286 end if;
13287
13288 if Val /= Ureal_1 then
13289 Error_Msg_N ("delta expression must be a power of 10", Def);
13290 Delta_Val := Ureal_10 ** (-Scale_Val);
13291 end if;
13292 end;
13293
13294 -- Set delta, scale and small (small = delta for decimal type)
13295
13296 Set_Delta_Value (Implicit_Base, Delta_Val);
13297 Set_Scale_Value (Implicit_Base, Scale_Val);
13298 Set_Small_Value (Implicit_Base, Delta_Val);
13299
13300 -- Analyze and process digits expression
13301
13302 Analyze_And_Resolve (Digs_Expr, Any_Integer);
13303 Check_Digits_Expression (Digs_Expr);
13304 Digs_Val := Expr_Value (Digs_Expr);
13305
13306 if Digs_Val > 18 then
13307 Digs_Val := UI_From_Int (+18);
13308 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
13309 end if;
13310
13311 Set_Digits_Value (Implicit_Base, Digs_Val);
13312 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
13313
13314 -- Set range of base type from digits value for now. This will be
13315 -- expanded to represent the true underlying base range by Freeze.
13316
13317 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
13318
13319 -- Note: We leave size as zero for now, size will be set at freeze
13320 -- time. We have to do this for ordinary fixed-point, because the size
13321 -- depends on the specified small, and we might as well do the same for
13322 -- decimal fixed-point.
13323
13324 pragma Assert (Esize (Implicit_Base) = Uint_0);
13325
13326 -- If there are bounds given in the declaration use them as the
13327 -- bounds of the first named subtype.
13328
13329 if Present (Real_Range_Specification (Def)) then
13330 declare
13331 RRS : constant Node_Id := Real_Range_Specification (Def);
13332 Low : constant Node_Id := Low_Bound (RRS);
13333 High : constant Node_Id := High_Bound (RRS);
13334 Low_Val : Ureal;
13335 High_Val : Ureal;
13336
13337 begin
13338 Analyze_And_Resolve (Low, Any_Real);
13339 Analyze_And_Resolve (High, Any_Real);
13340 Check_Real_Bound (Low);
13341 Check_Real_Bound (High);
13342 Low_Val := Expr_Value_R (Low);
13343 High_Val := Expr_Value_R (High);
13344
13345 if Low_Val < (-Bound_Val) then
13346 Error_Msg_N
13347 ("range low bound too small for digits value", Low);
13348 Low_Val := -Bound_Val;
13349 end if;
13350
13351 if High_Val > Bound_Val then
13352 Error_Msg_N
13353 ("range high bound too large for digits value", High);
13354 High_Val := Bound_Val;
13355 end if;
13356
13357 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
13358 end;
13359
13360 -- If no explicit range, use range that corresponds to given
13361 -- digits value. This will end up as the final range for the
13362 -- first subtype.
13363
13364 else
13365 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
13366 end if;
13367
13368 -- Complete entity for first subtype
13369
13370 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
13371 Set_Etype (T, Implicit_Base);
13372 Set_Size_Info (T, Implicit_Base);
13373 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
13374 Set_Digits_Value (T, Digs_Val);
13375 Set_Delta_Value (T, Delta_Val);
13376 Set_Small_Value (T, Delta_Val);
13377 Set_Scale_Value (T, Scale_Val);
13378 Set_Is_Constrained (T);
13379 end Decimal_Fixed_Point_Type_Declaration;
13380
13381 -----------------------------------
13382 -- Derive_Progenitor_Subprograms --
13383 -----------------------------------
13384
13385 procedure Derive_Progenitor_Subprograms
13386 (Parent_Type : Entity_Id;
13387 Tagged_Type : Entity_Id)
13388 is
13389 E : Entity_Id;
13390 Elmt : Elmt_Id;
13391 Iface : Entity_Id;
13392 Iface_Elmt : Elmt_Id;
13393 Iface_Subp : Entity_Id;
13394 New_Subp : Entity_Id := Empty;
13395 Prim_Elmt : Elmt_Id;
13396 Subp : Entity_Id;
13397 Typ : Entity_Id;
13398
13399 begin
13400 pragma Assert (Ada_Version >= Ada_2005
13401 and then Is_Record_Type (Tagged_Type)
13402 and then Is_Tagged_Type (Tagged_Type)
13403 and then Has_Interfaces (Tagged_Type));
13404
13405 -- Step 1: Transfer to the full-view primitives associated with the
13406 -- partial-view that cover interface primitives. Conceptually this
13407 -- work should be done later by Process_Full_View; done here to
13408 -- simplify its implementation at later stages. It can be safely
13409 -- done here because interfaces must be visible in the partial and
13410 -- private view (RM 7.3(7.3/2)).
13411
13412 -- Small optimization: This work is only required if the parent may
13413 -- have entities whose Alias attribute reference an interface primitive.
13414 -- Such a situation may occur if the parent is an abstract type and the
13415 -- primitive has not been yet overridden or if the parent is a generic
13416 -- formal type covering interfaces.
13417
13418 -- If the tagged type is not abstract, it cannot have abstract
13419 -- primitives (the only entities in the list of primitives of
13420 -- non-abstract tagged types that can reference abstract primitives
13421 -- through its Alias attribute are the internal entities that have
13422 -- attribute Interface_Alias, and these entities are generated later
13423 -- by Add_Internal_Interface_Entities).
13424
13425 if In_Private_Part (Current_Scope)
13426 and then (Is_Abstract_Type (Parent_Type)
13427 or else
13428 Is_Generic_Type (Parent_Type))
13429 then
13430 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
13431 while Present (Elmt) loop
13432 Subp := Node (Elmt);
13433
13434 -- At this stage it is not possible to have entities in the list
13435 -- of primitives that have attribute Interface_Alias.
13436
13437 pragma Assert (No (Interface_Alias (Subp)));
13438
13439 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
13440
13441 if Is_Interface (Typ) then
13442 E := Find_Primitive_Covering_Interface
13443 (Tagged_Type => Tagged_Type,
13444 Iface_Prim => Subp);
13445
13446 if Present (E)
13447 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
13448 then
13449 Replace_Elmt (Elmt, E);
13450 Remove_Homonym (Subp);
13451 end if;
13452 end if;
13453
13454 Next_Elmt (Elmt);
13455 end loop;
13456 end if;
13457
13458 -- Step 2: Add primitives of progenitors that are not implemented by
13459 -- parents of Tagged_Type.
13460
13461 if Present (Interfaces (Base_Type (Tagged_Type))) then
13462 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
13463 while Present (Iface_Elmt) loop
13464 Iface := Node (Iface_Elmt);
13465
13466 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
13467 while Present (Prim_Elmt) loop
13468 Iface_Subp := Node (Prim_Elmt);
13469
13470 -- Exclude derivation of predefined primitives except those
13471 -- that come from source, or are inherited from one that comes
13472 -- from source. Required to catch declarations of equality
13473 -- operators of interfaces. For example:
13474
13475 -- type Iface is interface;
13476 -- function "=" (Left, Right : Iface) return Boolean;
13477
13478 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
13479 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
13480 then
13481 E := Find_Primitive_Covering_Interface
13482 (Tagged_Type => Tagged_Type,
13483 Iface_Prim => Iface_Subp);
13484
13485 -- If not found we derive a new primitive leaving its alias
13486 -- attribute referencing the interface primitive.
13487
13488 if No (E) then
13489 Derive_Subprogram
13490 (New_Subp, Iface_Subp, Tagged_Type, Iface);
13491
13492 -- Ada 2012 (AI05-0197): If the covering primitive's name
13493 -- differs from the name of the interface primitive then it
13494 -- is a private primitive inherited from a parent type. In
13495 -- such case, given that Tagged_Type covers the interface,
13496 -- the inherited private primitive becomes visible. For such
13497 -- purpose we add a new entity that renames the inherited
13498 -- private primitive.
13499
13500 elsif Chars (E) /= Chars (Iface_Subp) then
13501 pragma Assert (Has_Suffix (E, 'P'));
13502 Derive_Subprogram
13503 (New_Subp, Iface_Subp, Tagged_Type, Iface);
13504 Set_Alias (New_Subp, E);
13505 Set_Is_Abstract_Subprogram (New_Subp,
13506 Is_Abstract_Subprogram (E));
13507
13508 -- Propagate to the full view interface entities associated
13509 -- with the partial view.
13510
13511 elsif In_Private_Part (Current_Scope)
13512 and then Present (Alias (E))
13513 and then Alias (E) = Iface_Subp
13514 and then
13515 List_Containing (Parent (E)) /=
13516 Private_Declarations
13517 (Specification
13518 (Unit_Declaration_Node (Current_Scope)))
13519 then
13520 Append_Elmt (E, Primitive_Operations (Tagged_Type));
13521 end if;
13522 end if;
13523
13524 Next_Elmt (Prim_Elmt);
13525 end loop;
13526
13527 Next_Elmt (Iface_Elmt);
13528 end loop;
13529 end if;
13530 end Derive_Progenitor_Subprograms;
13531
13532 -----------------------
13533 -- Derive_Subprogram --
13534 -----------------------
13535
13536 procedure Derive_Subprogram
13537 (New_Subp : in out Entity_Id;
13538 Parent_Subp : Entity_Id;
13539 Derived_Type : Entity_Id;
13540 Parent_Type : Entity_Id;
13541 Actual_Subp : Entity_Id := Empty)
13542 is
13543 Formal : Entity_Id;
13544 -- Formal parameter of parent primitive operation
13545
13546 Formal_Of_Actual : Entity_Id;
13547 -- Formal parameter of actual operation, when the derivation is to
13548 -- create a renaming for a primitive operation of an actual in an
13549 -- instantiation.
13550
13551 New_Formal : Entity_Id;
13552 -- Formal of inherited operation
13553
13554 Visible_Subp : Entity_Id := Parent_Subp;
13555
13556 function Is_Private_Overriding return Boolean;
13557 -- If Subp is a private overriding of a visible operation, the inherited
13558 -- operation derives from the overridden op (even though its body is the
13559 -- overriding one) and the inherited operation is visible now. See
13560 -- sem_disp to see the full details of the handling of the overridden
13561 -- subprogram, which is removed from the list of primitive operations of
13562 -- the type. The overridden subprogram is saved locally in Visible_Subp,
13563 -- and used to diagnose abstract operations that need overriding in the
13564 -- derived type.
13565
13566 procedure Replace_Type (Id, New_Id : Entity_Id);
13567 -- When the type is an anonymous access type, create a new access type
13568 -- designating the derived type.
13569
13570 procedure Set_Derived_Name;
13571 -- This procedure sets the appropriate Chars name for New_Subp. This
13572 -- is normally just a copy of the parent name. An exception arises for
13573 -- type support subprograms, where the name is changed to reflect the
13574 -- name of the derived type, e.g. if type foo is derived from type bar,
13575 -- then a procedure barDA is derived with a name fooDA.
13576
13577 ---------------------------
13578 -- Is_Private_Overriding --
13579 ---------------------------
13580
13581 function Is_Private_Overriding return Boolean is
13582 Prev : Entity_Id;
13583
13584 begin
13585 -- If the parent is not a dispatching operation there is no
13586 -- need to investigate overridings
13587
13588 if not Is_Dispatching_Operation (Parent_Subp) then
13589 return False;
13590 end if;
13591
13592 -- The visible operation that is overridden is a homonym of the
13593 -- parent subprogram. We scan the homonym chain to find the one
13594 -- whose alias is the subprogram we are deriving.
13595
13596 Prev := Current_Entity (Parent_Subp);
13597 while Present (Prev) loop
13598 if Ekind (Prev) = Ekind (Parent_Subp)
13599 and then Alias (Prev) = Parent_Subp
13600 and then Scope (Parent_Subp) = Scope (Prev)
13601 and then not Is_Hidden (Prev)
13602 then
13603 Visible_Subp := Prev;
13604 return True;
13605 end if;
13606
13607 Prev := Homonym (Prev);
13608 end loop;
13609
13610 return False;
13611 end Is_Private_Overriding;
13612
13613 ------------------
13614 -- Replace_Type --
13615 ------------------
13616
13617 procedure Replace_Type (Id, New_Id : Entity_Id) is
13618 Id_Type : constant Entity_Id := Etype (Id);
13619 Acc_Type : Entity_Id;
13620 Par : constant Node_Id := Parent (Derived_Type);
13621
13622 begin
13623 -- When the type is an anonymous access type, create a new access
13624 -- type designating the derived type. This itype must be elaborated
13625 -- at the point of the derivation, not on subsequent calls that may
13626 -- be out of the proper scope for Gigi, so we insert a reference to
13627 -- it after the derivation.
13628
13629 if Ekind (Id_Type) = E_Anonymous_Access_Type then
13630 declare
13631 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
13632
13633 begin
13634 if Ekind (Desig_Typ) = E_Record_Type_With_Private
13635 and then Present (Full_View (Desig_Typ))
13636 and then not Is_Private_Type (Parent_Type)
13637 then
13638 Desig_Typ := Full_View (Desig_Typ);
13639 end if;
13640
13641 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
13642
13643 -- Ada 2005 (AI-251): Handle also derivations of abstract
13644 -- interface primitives.
13645
13646 or else (Is_Interface (Desig_Typ)
13647 and then not Is_Class_Wide_Type (Desig_Typ))
13648 then
13649 Acc_Type := New_Copy (Id_Type);
13650 Set_Etype (Acc_Type, Acc_Type);
13651 Set_Scope (Acc_Type, New_Subp);
13652
13653 -- Set size of anonymous access type. If we have an access
13654 -- to an unconstrained array, this is a fat pointer, so it
13655 -- is sizes at twice addtress size.
13656
13657 if Is_Array_Type (Desig_Typ)
13658 and then not Is_Constrained (Desig_Typ)
13659 then
13660 Init_Size (Acc_Type, 2 * System_Address_Size);
13661
13662 -- Other cases use a thin pointer
13663
13664 else
13665 Init_Size (Acc_Type, System_Address_Size);
13666 end if;
13667
13668 -- Set remaining characterstics of anonymous access type
13669
13670 Init_Alignment (Acc_Type);
13671 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
13672
13673 Set_Etype (New_Id, Acc_Type);
13674 Set_Scope (New_Id, New_Subp);
13675
13676 -- Create a reference to it
13677
13678 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
13679
13680 else
13681 Set_Etype (New_Id, Id_Type);
13682 end if;
13683 end;
13684
13685 -- In Ada2012, a formal may have an incomplete type but the type
13686 -- derivation that inherits the primitive follows the full view.
13687
13688 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
13689 or else
13690 (Ekind (Id_Type) = E_Record_Type_With_Private
13691 and then Present (Full_View (Id_Type))
13692 and then
13693 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
13694 or else
13695 (Ada_Version >= Ada_2012
13696 and then Ekind (Id_Type) = E_Incomplete_Type
13697 and then Full_View (Id_Type) = Parent_Type)
13698 then
13699 -- Constraint checks on formals are generated during expansion,
13700 -- based on the signature of the original subprogram. The bounds
13701 -- of the derived type are not relevant, and thus we can use
13702 -- the base type for the formals. However, the return type may be
13703 -- used in a context that requires that the proper static bounds
13704 -- be used (a case statement, for example) and for those cases
13705 -- we must use the derived type (first subtype), not its base.
13706
13707 -- If the derived_type_definition has no constraints, we know that
13708 -- the derived type has the same constraints as the first subtype
13709 -- of the parent, and we can also use it rather than its base,
13710 -- which can lead to more efficient code.
13711
13712 if Etype (Id) = Parent_Type then
13713 if Is_Scalar_Type (Parent_Type)
13714 and then
13715 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
13716 then
13717 Set_Etype (New_Id, Derived_Type);
13718
13719 elsif Nkind (Par) = N_Full_Type_Declaration
13720 and then
13721 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
13722 and then
13723 Is_Entity_Name
13724 (Subtype_Indication (Type_Definition (Par)))
13725 then
13726 Set_Etype (New_Id, Derived_Type);
13727
13728 else
13729 Set_Etype (New_Id, Base_Type (Derived_Type));
13730 end if;
13731
13732 else
13733 Set_Etype (New_Id, Base_Type (Derived_Type));
13734 end if;
13735
13736 else
13737 Set_Etype (New_Id, Etype (Id));
13738 end if;
13739 end Replace_Type;
13740
13741 ----------------------
13742 -- Set_Derived_Name --
13743 ----------------------
13744
13745 procedure Set_Derived_Name is
13746 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
13747 begin
13748 if Nm = TSS_Null then
13749 Set_Chars (New_Subp, Chars (Parent_Subp));
13750 else
13751 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
13752 end if;
13753 end Set_Derived_Name;
13754
13755 -- Start of processing for Derive_Subprogram
13756
13757 begin
13758 New_Subp :=
13759 New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
13760 Set_Ekind (New_Subp, Ekind (Parent_Subp));
13761 Set_Contract (New_Subp, Make_Contract (Sloc (New_Subp)));
13762
13763 -- Check whether the inherited subprogram is a private operation that
13764 -- should be inherited but not yet made visible. Such subprograms can
13765 -- become visible at a later point (e.g., the private part of a public
13766 -- child unit) via Declare_Inherited_Private_Subprograms. If the
13767 -- following predicate is true, then this is not such a private
13768 -- operation and the subprogram simply inherits the name of the parent
13769 -- subprogram. Note the special check for the names of controlled
13770 -- operations, which are currently exempted from being inherited with
13771 -- a hidden name because they must be findable for generation of
13772 -- implicit run-time calls.
13773
13774 if not Is_Hidden (Parent_Subp)
13775 or else Is_Internal (Parent_Subp)
13776 or else Is_Private_Overriding
13777 or else Is_Internal_Name (Chars (Parent_Subp))
13778 or else Nam_In (Chars (Parent_Subp), Name_Initialize,
13779 Name_Adjust,
13780 Name_Finalize)
13781 then
13782 Set_Derived_Name;
13783
13784 -- An inherited dispatching equality will be overridden by an internally
13785 -- generated one, or by an explicit one, so preserve its name and thus
13786 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
13787 -- private operation it may become invisible if the full view has
13788 -- progenitors, and the dispatch table will be malformed.
13789 -- We check that the type is limited to handle the anomalous declaration
13790 -- of Limited_Controlled, which is derived from a non-limited type, and
13791 -- which is handled specially elsewhere as well.
13792
13793 elsif Chars (Parent_Subp) = Name_Op_Eq
13794 and then Is_Dispatching_Operation (Parent_Subp)
13795 and then Etype (Parent_Subp) = Standard_Boolean
13796 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
13797 and then
13798 Etype (First_Formal (Parent_Subp)) =
13799 Etype (Next_Formal (First_Formal (Parent_Subp)))
13800 then
13801 Set_Derived_Name;
13802
13803 -- If parent is hidden, this can be a regular derivation if the
13804 -- parent is immediately visible in a non-instantiating context,
13805 -- or if we are in the private part of an instance. This test
13806 -- should still be refined ???
13807
13808 -- The test for In_Instance_Not_Visible avoids inheriting the derived
13809 -- operation as a non-visible operation in cases where the parent
13810 -- subprogram might not be visible now, but was visible within the
13811 -- original generic, so it would be wrong to make the inherited
13812 -- subprogram non-visible now. (Not clear if this test is fully
13813 -- correct; are there any cases where we should declare the inherited
13814 -- operation as not visible to avoid it being overridden, e.g., when
13815 -- the parent type is a generic actual with private primitives ???)
13816
13817 -- (they should be treated the same as other private inherited
13818 -- subprograms, but it's not clear how to do this cleanly). ???
13819
13820 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
13821 and then Is_Immediately_Visible (Parent_Subp)
13822 and then not In_Instance)
13823 or else In_Instance_Not_Visible
13824 then
13825 Set_Derived_Name;
13826
13827 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
13828 -- overrides an interface primitive because interface primitives
13829 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
13830
13831 elsif Ada_Version >= Ada_2005
13832 and then Is_Dispatching_Operation (Parent_Subp)
13833 and then Covers_Some_Interface (Parent_Subp)
13834 then
13835 Set_Derived_Name;
13836
13837 -- Otherwise, the type is inheriting a private operation, so enter
13838 -- it with a special name so it can't be overridden.
13839
13840 else
13841 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
13842 end if;
13843
13844 Set_Parent (New_Subp, Parent (Derived_Type));
13845
13846 if Present (Actual_Subp) then
13847 Replace_Type (Actual_Subp, New_Subp);
13848 else
13849 Replace_Type (Parent_Subp, New_Subp);
13850 end if;
13851
13852 Conditional_Delay (New_Subp, Parent_Subp);
13853
13854 -- If we are creating a renaming for a primitive operation of an
13855 -- actual of a generic derived type, we must examine the signature
13856 -- of the actual primitive, not that of the generic formal, which for
13857 -- example may be an interface. However the name and initial value
13858 -- of the inherited operation are those of the formal primitive.
13859
13860 Formal := First_Formal (Parent_Subp);
13861
13862 if Present (Actual_Subp) then
13863 Formal_Of_Actual := First_Formal (Actual_Subp);
13864 else
13865 Formal_Of_Actual := Empty;
13866 end if;
13867
13868 while Present (Formal) loop
13869 New_Formal := New_Copy (Formal);
13870
13871 -- Normally we do not go copying parents, but in the case of
13872 -- formals, we need to link up to the declaration (which is the
13873 -- parameter specification), and it is fine to link up to the
13874 -- original formal's parameter specification in this case.
13875
13876 Set_Parent (New_Formal, Parent (Formal));
13877 Append_Entity (New_Formal, New_Subp);
13878
13879 if Present (Formal_Of_Actual) then
13880 Replace_Type (Formal_Of_Actual, New_Formal);
13881 Next_Formal (Formal_Of_Actual);
13882 else
13883 Replace_Type (Formal, New_Formal);
13884 end if;
13885
13886 Next_Formal (Formal);
13887 end loop;
13888
13889 -- If this derivation corresponds to a tagged generic actual, then
13890 -- primitive operations rename those of the actual. Otherwise the
13891 -- primitive operations rename those of the parent type, If the parent
13892 -- renames an intrinsic operator, so does the new subprogram. We except
13893 -- concatenation, which is always properly typed, and does not get
13894 -- expanded as other intrinsic operations.
13895
13896 if No (Actual_Subp) then
13897 if Is_Intrinsic_Subprogram (Parent_Subp) then
13898 Set_Is_Intrinsic_Subprogram (New_Subp);
13899
13900 if Present (Alias (Parent_Subp))
13901 and then Chars (Parent_Subp) /= Name_Op_Concat
13902 then
13903 Set_Alias (New_Subp, Alias (Parent_Subp));
13904 else
13905 Set_Alias (New_Subp, Parent_Subp);
13906 end if;
13907
13908 else
13909 Set_Alias (New_Subp, Parent_Subp);
13910 end if;
13911
13912 else
13913 Set_Alias (New_Subp, Actual_Subp);
13914 end if;
13915
13916 -- Derived subprograms of a tagged type must inherit the convention
13917 -- of the parent subprogram (a requirement of AI-117). Derived
13918 -- subprograms of untagged types simply get convention Ada by default.
13919
13920 -- If the derived type is a tagged generic formal type with unknown
13921 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
13922
13923 -- However, if the type is derived from a generic formal, the further
13924 -- inherited subprogram has the convention of the non-generic ancestor.
13925 -- Otherwise there would be no way to override the operation.
13926 -- (This is subject to forthcoming ARG discussions).
13927
13928 if Is_Tagged_Type (Derived_Type) then
13929 if Is_Generic_Type (Derived_Type)
13930 and then Has_Unknown_Discriminants (Derived_Type)
13931 then
13932 Set_Convention (New_Subp, Convention_Intrinsic);
13933
13934 else
13935 if Is_Generic_Type (Parent_Type)
13936 and then Has_Unknown_Discriminants (Parent_Type)
13937 then
13938 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
13939 else
13940 Set_Convention (New_Subp, Convention (Parent_Subp));
13941 end if;
13942 end if;
13943 end if;
13944
13945 -- Predefined controlled operations retain their name even if the parent
13946 -- is hidden (see above), but they are not primitive operations if the
13947 -- ancestor is not visible, for example if the parent is a private
13948 -- extension completed with a controlled extension. Note that a full
13949 -- type that is controlled can break privacy: the flag Is_Controlled is
13950 -- set on both views of the type.
13951
13952 if Is_Controlled (Parent_Type)
13953 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
13954 Name_Adjust,
13955 Name_Finalize)
13956 and then Is_Hidden (Parent_Subp)
13957 and then not Is_Visibly_Controlled (Parent_Type)
13958 then
13959 Set_Is_Hidden (New_Subp);
13960 end if;
13961
13962 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
13963 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
13964
13965 if Ekind (Parent_Subp) = E_Procedure then
13966 Set_Is_Valued_Procedure
13967 (New_Subp, Is_Valued_Procedure (Parent_Subp));
13968 else
13969 Set_Has_Controlling_Result
13970 (New_Subp, Has_Controlling_Result (Parent_Subp));
13971 end if;
13972
13973 -- No_Return must be inherited properly. If this is overridden in the
13974 -- case of a dispatching operation, then a check is made in Sem_Disp
13975 -- that the overriding operation is also No_Return (no such check is
13976 -- required for the case of non-dispatching operation.
13977
13978 Set_No_Return (New_Subp, No_Return (Parent_Subp));
13979
13980 -- A derived function with a controlling result is abstract. If the
13981 -- Derived_Type is a nonabstract formal generic derived type, then
13982 -- inherited operations are not abstract: the required check is done at
13983 -- instantiation time. If the derivation is for a generic actual, the
13984 -- function is not abstract unless the actual is.
13985
13986 if Is_Generic_Type (Derived_Type)
13987 and then not Is_Abstract_Type (Derived_Type)
13988 then
13989 null;
13990
13991 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
13992 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
13993
13994 elsif Ada_Version >= Ada_2005
13995 and then (Is_Abstract_Subprogram (Alias (New_Subp))
13996 or else (Is_Tagged_Type (Derived_Type)
13997 and then Etype (New_Subp) = Derived_Type
13998 and then not Is_Null_Extension (Derived_Type))
13999 or else (Is_Tagged_Type (Derived_Type)
14000 and then Ekind (Etype (New_Subp)) =
14001 E_Anonymous_Access_Type
14002 and then Designated_Type (Etype (New_Subp)) =
14003 Derived_Type
14004 and then not Is_Null_Extension (Derived_Type)))
14005 and then No (Actual_Subp)
14006 then
14007 if not Is_Tagged_Type (Derived_Type)
14008 or else Is_Abstract_Type (Derived_Type)
14009 or else Is_Abstract_Subprogram (Alias (New_Subp))
14010 then
14011 Set_Is_Abstract_Subprogram (New_Subp);
14012 else
14013 Set_Requires_Overriding (New_Subp);
14014 end if;
14015
14016 elsif Ada_Version < Ada_2005
14017 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14018 or else (Is_Tagged_Type (Derived_Type)
14019 and then Etype (New_Subp) = Derived_Type
14020 and then No (Actual_Subp)))
14021 then
14022 Set_Is_Abstract_Subprogram (New_Subp);
14023
14024 -- AI05-0097 : an inherited operation that dispatches on result is
14025 -- abstract if the derived type is abstract, even if the parent type
14026 -- is concrete and the derived type is a null extension.
14027
14028 elsif Has_Controlling_Result (Alias (New_Subp))
14029 and then Is_Abstract_Type (Etype (New_Subp))
14030 then
14031 Set_Is_Abstract_Subprogram (New_Subp);
14032
14033 -- Finally, if the parent type is abstract we must verify that all
14034 -- inherited operations are either non-abstract or overridden, or that
14035 -- the derived type itself is abstract (this check is performed at the
14036 -- end of a package declaration, in Check_Abstract_Overriding). A
14037 -- private overriding in the parent type will not be visible in the
14038 -- derivation if we are not in an inner package or in a child unit of
14039 -- the parent type, in which case the abstractness of the inherited
14040 -- operation is carried to the new subprogram.
14041
14042 elsif Is_Abstract_Type (Parent_Type)
14043 and then not In_Open_Scopes (Scope (Parent_Type))
14044 and then Is_Private_Overriding
14045 and then Is_Abstract_Subprogram (Visible_Subp)
14046 then
14047 if No (Actual_Subp) then
14048 Set_Alias (New_Subp, Visible_Subp);
14049 Set_Is_Abstract_Subprogram (New_Subp, True);
14050
14051 else
14052 -- If this is a derivation for an instance of a formal derived
14053 -- type, abstractness comes from the primitive operation of the
14054 -- actual, not from the operation inherited from the ancestor.
14055
14056 Set_Is_Abstract_Subprogram
14057 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
14058 end if;
14059 end if;
14060
14061 New_Overloaded_Entity (New_Subp, Derived_Type);
14062
14063 -- Check for case of a derived subprogram for the instantiation of a
14064 -- formal derived tagged type, if so mark the subprogram as dispatching
14065 -- and inherit the dispatching attributes of the actual subprogram. The
14066 -- derived subprogram is effectively renaming of the actual subprogram,
14067 -- so it needs to have the same attributes as the actual.
14068
14069 if Present (Actual_Subp)
14070 and then Is_Dispatching_Operation (Actual_Subp)
14071 then
14072 Set_Is_Dispatching_Operation (New_Subp);
14073
14074 if Present (DTC_Entity (Actual_Subp)) then
14075 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
14076 Set_DT_Position (New_Subp, DT_Position (Actual_Subp));
14077 end if;
14078 end if;
14079
14080 -- Indicate that a derived subprogram does not require a body and that
14081 -- it does not require processing of default expressions.
14082
14083 Set_Has_Completion (New_Subp);
14084 Set_Default_Expressions_Processed (New_Subp);
14085
14086 if Ekind (New_Subp) = E_Function then
14087 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
14088 end if;
14089 end Derive_Subprogram;
14090
14091 ------------------------
14092 -- Derive_Subprograms --
14093 ------------------------
14094
14095 procedure Derive_Subprograms
14096 (Parent_Type : Entity_Id;
14097 Derived_Type : Entity_Id;
14098 Generic_Actual : Entity_Id := Empty)
14099 is
14100 Op_List : constant Elist_Id :=
14101 Collect_Primitive_Operations (Parent_Type);
14102
14103 function Check_Derived_Type return Boolean;
14104 -- Check that all the entities derived from Parent_Type are found in
14105 -- the list of primitives of Derived_Type exactly in the same order.
14106
14107 procedure Derive_Interface_Subprogram
14108 (New_Subp : in out Entity_Id;
14109 Subp : Entity_Id;
14110 Actual_Subp : Entity_Id);
14111 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
14112 -- (which is an interface primitive). If Generic_Actual is present then
14113 -- Actual_Subp is the actual subprogram corresponding with the generic
14114 -- subprogram Subp.
14115
14116 function Check_Derived_Type return Boolean is
14117 E : Entity_Id;
14118 Elmt : Elmt_Id;
14119 List : Elist_Id;
14120 New_Subp : Entity_Id;
14121 Op_Elmt : Elmt_Id;
14122 Subp : Entity_Id;
14123
14124 begin
14125 -- Traverse list of entities in the current scope searching for
14126 -- an incomplete type whose full-view is derived type
14127
14128 E := First_Entity (Scope (Derived_Type));
14129 while Present (E) and then E /= Derived_Type loop
14130 if Ekind (E) = E_Incomplete_Type
14131 and then Present (Full_View (E))
14132 and then Full_View (E) = Derived_Type
14133 then
14134 -- Disable this test if Derived_Type completes an incomplete
14135 -- type because in such case more primitives can be added
14136 -- later to the list of primitives of Derived_Type by routine
14137 -- Process_Incomplete_Dependents
14138
14139 return True;
14140 end if;
14141
14142 E := Next_Entity (E);
14143 end loop;
14144
14145 List := Collect_Primitive_Operations (Derived_Type);
14146 Elmt := First_Elmt (List);
14147
14148 Op_Elmt := First_Elmt (Op_List);
14149 while Present (Op_Elmt) loop
14150 Subp := Node (Op_Elmt);
14151 New_Subp := Node (Elmt);
14152
14153 -- At this early stage Derived_Type has no entities with attribute
14154 -- Interface_Alias. In addition, such primitives are always
14155 -- located at the end of the list of primitives of Parent_Type.
14156 -- Therefore, if found we can safely stop processing pending
14157 -- entities.
14158
14159 exit when Present (Interface_Alias (Subp));
14160
14161 -- Handle hidden entities
14162
14163 if not Is_Predefined_Dispatching_Operation (Subp)
14164 and then Is_Hidden (Subp)
14165 then
14166 if Present (New_Subp)
14167 and then Primitive_Names_Match (Subp, New_Subp)
14168 then
14169 Next_Elmt (Elmt);
14170 end if;
14171
14172 else
14173 if not Present (New_Subp)
14174 or else Ekind (Subp) /= Ekind (New_Subp)
14175 or else not Primitive_Names_Match (Subp, New_Subp)
14176 then
14177 return False;
14178 end if;
14179
14180 Next_Elmt (Elmt);
14181 end if;
14182
14183 Next_Elmt (Op_Elmt);
14184 end loop;
14185
14186 return True;
14187 end Check_Derived_Type;
14188
14189 ---------------------------------
14190 -- Derive_Interface_Subprogram --
14191 ---------------------------------
14192
14193 procedure Derive_Interface_Subprogram
14194 (New_Subp : in out Entity_Id;
14195 Subp : Entity_Id;
14196 Actual_Subp : Entity_Id)
14197 is
14198 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
14199 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
14200
14201 begin
14202 pragma Assert (Is_Interface (Iface_Type));
14203
14204 Derive_Subprogram
14205 (New_Subp => New_Subp,
14206 Parent_Subp => Iface_Subp,
14207 Derived_Type => Derived_Type,
14208 Parent_Type => Iface_Type,
14209 Actual_Subp => Actual_Subp);
14210
14211 -- Given that this new interface entity corresponds with a primitive
14212 -- of the parent that was not overridden we must leave it associated
14213 -- with its parent primitive to ensure that it will share the same
14214 -- dispatch table slot when overridden.
14215
14216 if No (Actual_Subp) then
14217 Set_Alias (New_Subp, Subp);
14218
14219 -- For instantiations this is not needed since the previous call to
14220 -- Derive_Subprogram leaves the entity well decorated.
14221
14222 else
14223 pragma Assert (Alias (New_Subp) = Actual_Subp);
14224 null;
14225 end if;
14226 end Derive_Interface_Subprogram;
14227
14228 -- Local variables
14229
14230 Alias_Subp : Entity_Id;
14231 Act_List : Elist_Id;
14232 Act_Elmt : Elmt_Id;
14233 Act_Subp : Entity_Id := Empty;
14234 Elmt : Elmt_Id;
14235 Need_Search : Boolean := False;
14236 New_Subp : Entity_Id := Empty;
14237 Parent_Base : Entity_Id;
14238 Subp : Entity_Id;
14239
14240 -- Start of processing for Derive_Subprograms
14241
14242 begin
14243 if Ekind (Parent_Type) = E_Record_Type_With_Private
14244 and then Has_Discriminants (Parent_Type)
14245 and then Present (Full_View (Parent_Type))
14246 then
14247 Parent_Base := Full_View (Parent_Type);
14248 else
14249 Parent_Base := Parent_Type;
14250 end if;
14251
14252 if Present (Generic_Actual) then
14253 Act_List := Collect_Primitive_Operations (Generic_Actual);
14254 Act_Elmt := First_Elmt (Act_List);
14255 else
14256 Act_List := No_Elist;
14257 Act_Elmt := No_Elmt;
14258 end if;
14259
14260 -- Derive primitives inherited from the parent. Note that if the generic
14261 -- actual is present, this is not really a type derivation, it is a
14262 -- completion within an instance.
14263
14264 -- Case 1: Derived_Type does not implement interfaces
14265
14266 if not Is_Tagged_Type (Derived_Type)
14267 or else (not Has_Interfaces (Derived_Type)
14268 and then not (Present (Generic_Actual)
14269 and then Has_Interfaces (Generic_Actual)))
14270 then
14271 Elmt := First_Elmt (Op_List);
14272 while Present (Elmt) loop
14273 Subp := Node (Elmt);
14274
14275 -- Literals are derived earlier in the process of building the
14276 -- derived type, and are skipped here.
14277
14278 if Ekind (Subp) = E_Enumeration_Literal then
14279 null;
14280
14281 -- The actual is a direct descendant and the common primitive
14282 -- operations appear in the same order.
14283
14284 -- If the generic parent type is present, the derived type is an
14285 -- instance of a formal derived type, and within the instance its
14286 -- operations are those of the actual. We derive from the formal
14287 -- type but make the inherited operations aliases of the
14288 -- corresponding operations of the actual.
14289
14290 else
14291 pragma Assert (No (Node (Act_Elmt))
14292 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
14293 and then
14294 Type_Conformant
14295 (Subp, Node (Act_Elmt),
14296 Skip_Controlling_Formals => True)));
14297
14298 Derive_Subprogram
14299 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
14300
14301 if Present (Act_Elmt) then
14302 Next_Elmt (Act_Elmt);
14303 end if;
14304 end if;
14305
14306 Next_Elmt (Elmt);
14307 end loop;
14308
14309 -- Case 2: Derived_Type implements interfaces
14310
14311 else
14312 -- If the parent type has no predefined primitives we remove
14313 -- predefined primitives from the list of primitives of generic
14314 -- actual to simplify the complexity of this algorithm.
14315
14316 if Present (Generic_Actual) then
14317 declare
14318 Has_Predefined_Primitives : Boolean := False;
14319
14320 begin
14321 -- Check if the parent type has predefined primitives
14322
14323 Elmt := First_Elmt (Op_List);
14324 while Present (Elmt) loop
14325 Subp := Node (Elmt);
14326
14327 if Is_Predefined_Dispatching_Operation (Subp)
14328 and then not Comes_From_Source (Ultimate_Alias (Subp))
14329 then
14330 Has_Predefined_Primitives := True;
14331 exit;
14332 end if;
14333
14334 Next_Elmt (Elmt);
14335 end loop;
14336
14337 -- Remove predefined primitives of Generic_Actual. We must use
14338 -- an auxiliary list because in case of tagged types the value
14339 -- returned by Collect_Primitive_Operations is the value stored
14340 -- in its Primitive_Operations attribute (and we don't want to
14341 -- modify its current contents).
14342
14343 if not Has_Predefined_Primitives then
14344 declare
14345 Aux_List : constant Elist_Id := New_Elmt_List;
14346
14347 begin
14348 Elmt := First_Elmt (Act_List);
14349 while Present (Elmt) loop
14350 Subp := Node (Elmt);
14351
14352 if not Is_Predefined_Dispatching_Operation (Subp)
14353 or else Comes_From_Source (Subp)
14354 then
14355 Append_Elmt (Subp, Aux_List);
14356 end if;
14357
14358 Next_Elmt (Elmt);
14359 end loop;
14360
14361 Act_List := Aux_List;
14362 end;
14363 end if;
14364
14365 Act_Elmt := First_Elmt (Act_List);
14366 Act_Subp := Node (Act_Elmt);
14367 end;
14368 end if;
14369
14370 -- Stage 1: If the generic actual is not present we derive the
14371 -- primitives inherited from the parent type. If the generic parent
14372 -- type is present, the derived type is an instance of a formal
14373 -- derived type, and within the instance its operations are those of
14374 -- the actual. We derive from the formal type but make the inherited
14375 -- operations aliases of the corresponding operations of the actual.
14376
14377 Elmt := First_Elmt (Op_List);
14378 while Present (Elmt) loop
14379 Subp := Node (Elmt);
14380 Alias_Subp := Ultimate_Alias (Subp);
14381
14382 -- Do not derive internal entities of the parent that link
14383 -- interface primitives with their covering primitive. These
14384 -- entities will be added to this type when frozen.
14385
14386 if Present (Interface_Alias (Subp)) then
14387 goto Continue;
14388 end if;
14389
14390 -- If the generic actual is present find the corresponding
14391 -- operation in the generic actual. If the parent type is a
14392 -- direct ancestor of the derived type then, even if it is an
14393 -- interface, the operations are inherited from the primary
14394 -- dispatch table and are in the proper order. If we detect here
14395 -- that primitives are not in the same order we traverse the list
14396 -- of primitive operations of the actual to find the one that
14397 -- implements the interface primitive.
14398
14399 if Need_Search
14400 or else
14401 (Present (Generic_Actual)
14402 and then Present (Act_Subp)
14403 and then not
14404 (Primitive_Names_Match (Subp, Act_Subp)
14405 and then
14406 Type_Conformant (Subp, Act_Subp,
14407 Skip_Controlling_Formals => True)))
14408 then
14409 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
14410 Use_Full_View => True));
14411
14412 -- Remember that we need searching for all pending primitives
14413
14414 Need_Search := True;
14415
14416 -- Handle entities associated with interface primitives
14417
14418 if Present (Alias_Subp)
14419 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
14420 and then not Is_Predefined_Dispatching_Operation (Subp)
14421 then
14422 -- Search for the primitive in the homonym chain
14423
14424 Act_Subp :=
14425 Find_Primitive_Covering_Interface
14426 (Tagged_Type => Generic_Actual,
14427 Iface_Prim => Alias_Subp);
14428
14429 -- Previous search may not locate primitives covering
14430 -- interfaces defined in generics units or instantiations.
14431 -- (it fails if the covering primitive has formals whose
14432 -- type is also defined in generics or instantiations).
14433 -- In such case we search in the list of primitives of the
14434 -- generic actual for the internal entity that links the
14435 -- interface primitive and the covering primitive.
14436
14437 if No (Act_Subp)
14438 and then Is_Generic_Type (Parent_Type)
14439 then
14440 -- This code has been designed to handle only generic
14441 -- formals that implement interfaces that are defined
14442 -- in a generic unit or instantiation. If this code is
14443 -- needed for other cases we must review it because
14444 -- (given that it relies on Original_Location to locate
14445 -- the primitive of Generic_Actual that covers the
14446 -- interface) it could leave linked through attribute
14447 -- Alias entities of unrelated instantiations).
14448
14449 pragma Assert
14450 (Is_Generic_Unit
14451 (Scope (Find_Dispatching_Type (Alias_Subp)))
14452 or else
14453 Instantiation_Depth
14454 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
14455
14456 declare
14457 Iface_Prim_Loc : constant Source_Ptr :=
14458 Original_Location (Sloc (Alias_Subp));
14459
14460 Elmt : Elmt_Id;
14461 Prim : Entity_Id;
14462
14463 begin
14464 Elmt :=
14465 First_Elmt (Primitive_Operations (Generic_Actual));
14466
14467 Search : while Present (Elmt) loop
14468 Prim := Node (Elmt);
14469
14470 if Present (Interface_Alias (Prim))
14471 and then Original_Location
14472 (Sloc (Interface_Alias (Prim))) =
14473 Iface_Prim_Loc
14474 then
14475 Act_Subp := Alias (Prim);
14476 exit Search;
14477 end if;
14478
14479 Next_Elmt (Elmt);
14480 end loop Search;
14481 end;
14482 end if;
14483
14484 pragma Assert (Present (Act_Subp)
14485 or else Is_Abstract_Type (Generic_Actual)
14486 or else Serious_Errors_Detected > 0);
14487
14488 -- Handle predefined primitives plus the rest of user-defined
14489 -- primitives
14490
14491 else
14492 Act_Elmt := First_Elmt (Act_List);
14493 while Present (Act_Elmt) loop
14494 Act_Subp := Node (Act_Elmt);
14495
14496 exit when Primitive_Names_Match (Subp, Act_Subp)
14497 and then Type_Conformant
14498 (Subp, Act_Subp,
14499 Skip_Controlling_Formals => True)
14500 and then No (Interface_Alias (Act_Subp));
14501
14502 Next_Elmt (Act_Elmt);
14503 end loop;
14504
14505 if No (Act_Elmt) then
14506 Act_Subp := Empty;
14507 end if;
14508 end if;
14509 end if;
14510
14511 -- Case 1: If the parent is a limited interface then it has the
14512 -- predefined primitives of synchronized interfaces. However, the
14513 -- actual type may be a non-limited type and hence it does not
14514 -- have such primitives.
14515
14516 if Present (Generic_Actual)
14517 and then not Present (Act_Subp)
14518 and then Is_Limited_Interface (Parent_Base)
14519 and then Is_Predefined_Interface_Primitive (Subp)
14520 then
14521 null;
14522
14523 -- Case 2: Inherit entities associated with interfaces that were
14524 -- not covered by the parent type. We exclude here null interface
14525 -- primitives because they do not need special management.
14526
14527 -- We also exclude interface operations that are renamings. If the
14528 -- subprogram is an explicit renaming of an interface primitive,
14529 -- it is a regular primitive operation, and the presence of its
14530 -- alias is not relevant: it has to be derived like any other
14531 -- primitive.
14532
14533 elsif Present (Alias (Subp))
14534 and then Nkind (Unit_Declaration_Node (Subp)) /=
14535 N_Subprogram_Renaming_Declaration
14536 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
14537 and then not
14538 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
14539 and then Null_Present (Parent (Alias_Subp)))
14540 then
14541 -- If this is an abstract private type then we transfer the
14542 -- derivation of the interface primitive from the partial view
14543 -- to the full view. This is safe because all the interfaces
14544 -- must be visible in the partial view. Done to avoid adding
14545 -- a new interface derivation to the private part of the
14546 -- enclosing package; otherwise this new derivation would be
14547 -- decorated as hidden when the analysis of the enclosing
14548 -- package completes.
14549
14550 if Is_Abstract_Type (Derived_Type)
14551 and then In_Private_Part (Current_Scope)
14552 and then Has_Private_Declaration (Derived_Type)
14553 then
14554 declare
14555 Partial_View : Entity_Id;
14556 Elmt : Elmt_Id;
14557 Ent : Entity_Id;
14558
14559 begin
14560 Partial_View := First_Entity (Current_Scope);
14561 loop
14562 exit when No (Partial_View)
14563 or else (Has_Private_Declaration (Partial_View)
14564 and then
14565 Full_View (Partial_View) = Derived_Type);
14566
14567 Next_Entity (Partial_View);
14568 end loop;
14569
14570 -- If the partial view was not found then the source code
14571 -- has errors and the derivation is not needed.
14572
14573 if Present (Partial_View) then
14574 Elmt :=
14575 First_Elmt (Primitive_Operations (Partial_View));
14576 while Present (Elmt) loop
14577 Ent := Node (Elmt);
14578
14579 if Present (Alias (Ent))
14580 and then Ultimate_Alias (Ent) = Alias (Subp)
14581 then
14582 Append_Elmt
14583 (Ent, Primitive_Operations (Derived_Type));
14584 exit;
14585 end if;
14586
14587 Next_Elmt (Elmt);
14588 end loop;
14589
14590 -- If the interface primitive was not found in the
14591 -- partial view then this interface primitive was
14592 -- overridden. We add a derivation to activate in
14593 -- Derive_Progenitor_Subprograms the machinery to
14594 -- search for it.
14595
14596 if No (Elmt) then
14597 Derive_Interface_Subprogram
14598 (New_Subp => New_Subp,
14599 Subp => Subp,
14600 Actual_Subp => Act_Subp);
14601 end if;
14602 end if;
14603 end;
14604 else
14605 Derive_Interface_Subprogram
14606 (New_Subp => New_Subp,
14607 Subp => Subp,
14608 Actual_Subp => Act_Subp);
14609 end if;
14610
14611 -- Case 3: Common derivation
14612
14613 else
14614 Derive_Subprogram
14615 (New_Subp => New_Subp,
14616 Parent_Subp => Subp,
14617 Derived_Type => Derived_Type,
14618 Parent_Type => Parent_Base,
14619 Actual_Subp => Act_Subp);
14620 end if;
14621
14622 -- No need to update Act_Elm if we must search for the
14623 -- corresponding operation in the generic actual
14624
14625 if not Need_Search
14626 and then Present (Act_Elmt)
14627 then
14628 Next_Elmt (Act_Elmt);
14629 Act_Subp := Node (Act_Elmt);
14630 end if;
14631
14632 <<Continue>>
14633 Next_Elmt (Elmt);
14634 end loop;
14635
14636 -- Inherit additional operations from progenitors. If the derived
14637 -- type is a generic actual, there are not new primitive operations
14638 -- for the type because it has those of the actual, and therefore
14639 -- nothing needs to be done. The renamings generated above are not
14640 -- primitive operations, and their purpose is simply to make the
14641 -- proper operations visible within an instantiation.
14642
14643 if No (Generic_Actual) then
14644 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
14645 end if;
14646 end if;
14647
14648 -- Final check: Direct descendants must have their primitives in the
14649 -- same order. We exclude from this test untagged types and instances
14650 -- of formal derived types. We skip this test if we have already
14651 -- reported serious errors in the sources.
14652
14653 pragma Assert (not Is_Tagged_Type (Derived_Type)
14654 or else Present (Generic_Actual)
14655 or else Serious_Errors_Detected > 0
14656 or else Check_Derived_Type);
14657 end Derive_Subprograms;
14658
14659 --------------------------------
14660 -- Derived_Standard_Character --
14661 --------------------------------
14662
14663 procedure Derived_Standard_Character
14664 (N : Node_Id;
14665 Parent_Type : Entity_Id;
14666 Derived_Type : Entity_Id)
14667 is
14668 Loc : constant Source_Ptr := Sloc (N);
14669 Def : constant Node_Id := Type_Definition (N);
14670 Indic : constant Node_Id := Subtype_Indication (Def);
14671 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
14672 Implicit_Base : constant Entity_Id :=
14673 Create_Itype
14674 (E_Enumeration_Type, N, Derived_Type, 'B');
14675
14676 Lo : Node_Id;
14677 Hi : Node_Id;
14678
14679 begin
14680 Discard_Node (Process_Subtype (Indic, N));
14681
14682 Set_Etype (Implicit_Base, Parent_Base);
14683 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
14684 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
14685
14686 Set_Is_Character_Type (Implicit_Base, True);
14687 Set_Has_Delayed_Freeze (Implicit_Base);
14688
14689 -- The bounds of the implicit base are the bounds of the parent base.
14690 -- Note that their type is the parent base.
14691
14692 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
14693 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
14694
14695 Set_Scalar_Range (Implicit_Base,
14696 Make_Range (Loc,
14697 Low_Bound => Lo,
14698 High_Bound => Hi));
14699
14700 Conditional_Delay (Derived_Type, Parent_Type);
14701
14702 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
14703 Set_Etype (Derived_Type, Implicit_Base);
14704 Set_Size_Info (Derived_Type, Parent_Type);
14705
14706 if Unknown_RM_Size (Derived_Type) then
14707 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
14708 end if;
14709
14710 Set_Is_Character_Type (Derived_Type, True);
14711
14712 if Nkind (Indic) /= N_Subtype_Indication then
14713
14714 -- If no explicit constraint, the bounds are those
14715 -- of the parent type.
14716
14717 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
14718 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
14719 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
14720 end if;
14721
14722 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
14723
14724 -- Because the implicit base is used in the conversion of the bounds, we
14725 -- have to freeze it now. This is similar to what is done for numeric
14726 -- types, and it equally suspicious, but otherwise a non-static bound
14727 -- will have a reference to an unfrozen type, which is rejected by Gigi
14728 -- (???). This requires specific care for definition of stream
14729 -- attributes. For details, see comments at the end of
14730 -- Build_Derived_Numeric_Type.
14731
14732 Freeze_Before (N, Implicit_Base);
14733 end Derived_Standard_Character;
14734
14735 ------------------------------
14736 -- Derived_Type_Declaration --
14737 ------------------------------
14738
14739 procedure Derived_Type_Declaration
14740 (T : Entity_Id;
14741 N : Node_Id;
14742 Is_Completion : Boolean)
14743 is
14744 Parent_Type : Entity_Id;
14745
14746 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
14747 -- Check whether the parent type is a generic formal, or derives
14748 -- directly or indirectly from one.
14749
14750 ------------------------
14751 -- Comes_From_Generic --
14752 ------------------------
14753
14754 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
14755 begin
14756 if Is_Generic_Type (Typ) then
14757 return True;
14758
14759 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
14760 return True;
14761
14762 elsif Is_Private_Type (Typ)
14763 and then Present (Full_View (Typ))
14764 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
14765 then
14766 return True;
14767
14768 elsif Is_Generic_Actual_Type (Typ) then
14769 return True;
14770
14771 else
14772 return False;
14773 end if;
14774 end Comes_From_Generic;
14775
14776 -- Local variables
14777
14778 Def : constant Node_Id := Type_Definition (N);
14779 Iface_Def : Node_Id;
14780 Indic : constant Node_Id := Subtype_Indication (Def);
14781 Extension : constant Node_Id := Record_Extension_Part (Def);
14782 Parent_Node : Node_Id;
14783 Taggd : Boolean;
14784
14785 -- Start of processing for Derived_Type_Declaration
14786
14787 begin
14788 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
14789
14790 -- Ada 2005 (AI-251): In case of interface derivation check that the
14791 -- parent is also an interface.
14792
14793 if Interface_Present (Def) then
14794 Check_SPARK_05_Restriction ("interface is not allowed", Def);
14795
14796 if not Is_Interface (Parent_Type) then
14797 Diagnose_Interface (Indic, Parent_Type);
14798
14799 else
14800 Parent_Node := Parent (Base_Type (Parent_Type));
14801 Iface_Def := Type_Definition (Parent_Node);
14802
14803 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
14804 -- other limited interfaces.
14805
14806 if Limited_Present (Def) then
14807 if Limited_Present (Iface_Def) then
14808 null;
14809
14810 elsif Protected_Present (Iface_Def) then
14811 Error_Msg_NE
14812 ("descendant of& must be declared"
14813 & " as a protected interface",
14814 N, Parent_Type);
14815
14816 elsif Synchronized_Present (Iface_Def) then
14817 Error_Msg_NE
14818 ("descendant of& must be declared"
14819 & " as a synchronized interface",
14820 N, Parent_Type);
14821
14822 elsif Task_Present (Iface_Def) then
14823 Error_Msg_NE
14824 ("descendant of& must be declared as a task interface",
14825 N, Parent_Type);
14826
14827 else
14828 Error_Msg_N
14829 ("(Ada 2005) limited interface cannot "
14830 & "inherit from non-limited interface", Indic);
14831 end if;
14832
14833 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
14834 -- from non-limited or limited interfaces.
14835
14836 elsif not Protected_Present (Def)
14837 and then not Synchronized_Present (Def)
14838 and then not Task_Present (Def)
14839 then
14840 if Limited_Present (Iface_Def) then
14841 null;
14842
14843 elsif Protected_Present (Iface_Def) then
14844 Error_Msg_NE
14845 ("descendant of& must be declared"
14846 & " as a protected interface",
14847 N, Parent_Type);
14848
14849 elsif Synchronized_Present (Iface_Def) then
14850 Error_Msg_NE
14851 ("descendant of& must be declared"
14852 & " as a synchronized interface",
14853 N, Parent_Type);
14854
14855 elsif Task_Present (Iface_Def) then
14856 Error_Msg_NE
14857 ("descendant of& must be declared as a task interface",
14858 N, Parent_Type);
14859 else
14860 null;
14861 end if;
14862 end if;
14863 end if;
14864 end if;
14865
14866 if Is_Tagged_Type (Parent_Type)
14867 and then Is_Concurrent_Type (Parent_Type)
14868 and then not Is_Interface (Parent_Type)
14869 then
14870 Error_Msg_N
14871 ("parent type of a record extension cannot be "
14872 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
14873 Set_Etype (T, Any_Type);
14874 return;
14875 end if;
14876
14877 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
14878 -- interfaces
14879
14880 if Is_Tagged_Type (Parent_Type)
14881 and then Is_Non_Empty_List (Interface_List (Def))
14882 then
14883 declare
14884 Intf : Node_Id;
14885 T : Entity_Id;
14886
14887 begin
14888 Intf := First (Interface_List (Def));
14889 while Present (Intf) loop
14890 T := Find_Type_Of_Subtype_Indic (Intf);
14891
14892 if not Is_Interface (T) then
14893 Diagnose_Interface (Intf, T);
14894
14895 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
14896 -- a limited type from having a nonlimited progenitor.
14897
14898 elsif (Limited_Present (Def)
14899 or else (not Is_Interface (Parent_Type)
14900 and then Is_Limited_Type (Parent_Type)))
14901 and then not Is_Limited_Interface (T)
14902 then
14903 Error_Msg_NE
14904 ("progenitor interface& of limited type must be limited",
14905 N, T);
14906 end if;
14907
14908 Next (Intf);
14909 end loop;
14910 end;
14911 end if;
14912
14913 if Parent_Type = Any_Type
14914 or else Etype (Parent_Type) = Any_Type
14915 or else (Is_Class_Wide_Type (Parent_Type)
14916 and then Etype (Parent_Type) = T)
14917 then
14918 -- If Parent_Type is undefined or illegal, make new type into a
14919 -- subtype of Any_Type, and set a few attributes to prevent cascaded
14920 -- errors. If this is a self-definition, emit error now.
14921
14922 if T = Parent_Type
14923 or else T = Etype (Parent_Type)
14924 then
14925 Error_Msg_N ("type cannot be used in its own definition", Indic);
14926 end if;
14927
14928 Set_Ekind (T, Ekind (Parent_Type));
14929 Set_Etype (T, Any_Type);
14930 Set_Scalar_Range (T, Scalar_Range (Any_Type));
14931
14932 if Is_Tagged_Type (T)
14933 and then Is_Record_Type (T)
14934 then
14935 Set_Direct_Primitive_Operations (T, New_Elmt_List);
14936 end if;
14937
14938 return;
14939 end if;
14940
14941 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
14942 -- an interface is special because the list of interfaces in the full
14943 -- view can be given in any order. For example:
14944
14945 -- type A is interface;
14946 -- type B is interface and A;
14947 -- type D is new B with private;
14948 -- private
14949 -- type D is new A and B with null record; -- 1 --
14950
14951 -- In this case we perform the following transformation of -1-:
14952
14953 -- type D is new B and A with null record;
14954
14955 -- If the parent of the full-view covers the parent of the partial-view
14956 -- we have two possible cases:
14957
14958 -- 1) They have the same parent
14959 -- 2) The parent of the full-view implements some further interfaces
14960
14961 -- In both cases we do not need to perform the transformation. In the
14962 -- first case the source program is correct and the transformation is
14963 -- not needed; in the second case the source program does not fulfill
14964 -- the no-hidden interfaces rule (AI-396) and the error will be reported
14965 -- later.
14966
14967 -- This transformation not only simplifies the rest of the analysis of
14968 -- this type declaration but also simplifies the correct generation of
14969 -- the object layout to the expander.
14970
14971 if In_Private_Part (Current_Scope)
14972 and then Is_Interface (Parent_Type)
14973 then
14974 declare
14975 Iface : Node_Id;
14976 Partial_View : Entity_Id;
14977 Partial_View_Parent : Entity_Id;
14978 New_Iface : Node_Id;
14979
14980 begin
14981 -- Look for the associated private type declaration
14982
14983 Partial_View := First_Entity (Current_Scope);
14984 loop
14985 exit when No (Partial_View)
14986 or else (Has_Private_Declaration (Partial_View)
14987 and then Full_View (Partial_View) = T);
14988
14989 Next_Entity (Partial_View);
14990 end loop;
14991
14992 -- If the partial view was not found then the source code has
14993 -- errors and the transformation is not needed.
14994
14995 if Present (Partial_View) then
14996 Partial_View_Parent := Etype (Partial_View);
14997
14998 -- If the parent of the full-view covers the parent of the
14999 -- partial-view we have nothing else to do.
15000
15001 if Interface_Present_In_Ancestor
15002 (Parent_Type, Partial_View_Parent)
15003 then
15004 null;
15005
15006 -- Traverse the list of interfaces of the full-view to look
15007 -- for the parent of the partial-view and perform the tree
15008 -- transformation.
15009
15010 else
15011 Iface := First (Interface_List (Def));
15012 while Present (Iface) loop
15013 if Etype (Iface) = Etype (Partial_View) then
15014 Rewrite (Subtype_Indication (Def),
15015 New_Copy (Subtype_Indication
15016 (Parent (Partial_View))));
15017
15018 New_Iface :=
15019 Make_Identifier (Sloc (N), Chars (Parent_Type));
15020 Append (New_Iface, Interface_List (Def));
15021
15022 -- Analyze the transformed code
15023
15024 Derived_Type_Declaration (T, N, Is_Completion);
15025 return;
15026 end if;
15027
15028 Next (Iface);
15029 end loop;
15030 end if;
15031 end if;
15032 end;
15033 end if;
15034
15035 -- Only composite types other than array types are allowed to have
15036 -- discriminants. In SPARK, no types are allowed to have discriminants.
15037
15038 if Present (Discriminant_Specifications (N)) then
15039 if (Is_Elementary_Type (Parent_Type)
15040 or else Is_Array_Type (Parent_Type))
15041 and then not Error_Posted (N)
15042 then
15043 Error_Msg_N
15044 ("elementary or array type cannot have discriminants",
15045 Defining_Identifier (First (Discriminant_Specifications (N))));
15046 Set_Has_Discriminants (T, False);
15047 else
15048 Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
15049 end if;
15050 end if;
15051
15052 -- In Ada 83, a derived type defined in a package specification cannot
15053 -- be used for further derivation until the end of its visible part.
15054 -- Note that derivation in the private part of the package is allowed.
15055
15056 if Ada_Version = Ada_83
15057 and then Is_Derived_Type (Parent_Type)
15058 and then In_Visible_Part (Scope (Parent_Type))
15059 then
15060 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
15061 Error_Msg_N
15062 ("(Ada 83): premature use of type for derivation", Indic);
15063 end if;
15064 end if;
15065
15066 -- Check for early use of incomplete or private type
15067
15068 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
15069 Error_Msg_N ("premature derivation of incomplete type", Indic);
15070 return;
15071
15072 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
15073 and then not Comes_From_Generic (Parent_Type))
15074 or else Has_Private_Component (Parent_Type)
15075 then
15076 -- The ancestor type of a formal type can be incomplete, in which
15077 -- case only the operations of the partial view are available in the
15078 -- generic. Subsequent checks may be required when the full view is
15079 -- analyzed to verify that a derivation from a tagged type has an
15080 -- extension.
15081
15082 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
15083 null;
15084
15085 elsif No (Underlying_Type (Parent_Type))
15086 or else Has_Private_Component (Parent_Type)
15087 then
15088 Error_Msg_N
15089 ("premature derivation of derived or private type", Indic);
15090
15091 -- Flag the type itself as being in error, this prevents some
15092 -- nasty problems with subsequent uses of the malformed type.
15093
15094 Set_Error_Posted (T);
15095
15096 -- Check that within the immediate scope of an untagged partial
15097 -- view it's illegal to derive from the partial view if the
15098 -- full view is tagged. (7.3(7))
15099
15100 -- We verify that the Parent_Type is a partial view by checking
15101 -- that it is not a Full_Type_Declaration (i.e. a private type or
15102 -- private extension declaration), to distinguish a partial view
15103 -- from a derivation from a private type which also appears as
15104 -- E_Private_Type. If the parent base type is not declared in an
15105 -- enclosing scope there is no need to check.
15106
15107 elsif Present (Full_View (Parent_Type))
15108 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
15109 and then not Is_Tagged_Type (Parent_Type)
15110 and then Is_Tagged_Type (Full_View (Parent_Type))
15111 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15112 then
15113 Error_Msg_N
15114 ("premature derivation from type with tagged full view",
15115 Indic);
15116 end if;
15117 end if;
15118
15119 -- Check that form of derivation is appropriate
15120
15121 Taggd := Is_Tagged_Type (Parent_Type);
15122
15123 -- Perhaps the parent type should be changed to the class-wide type's
15124 -- specific type in this case to prevent cascading errors ???
15125
15126 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
15127 Error_Msg_N ("parent type must not be a class-wide type", Indic);
15128 return;
15129 end if;
15130
15131 if Present (Extension) and then not Taggd then
15132 Error_Msg_N
15133 ("type derived from untagged type cannot have extension", Indic);
15134
15135 elsif No (Extension) and then Taggd then
15136
15137 -- If this declaration is within a private part (or body) of a
15138 -- generic instantiation then the derivation is allowed (the parent
15139 -- type can only appear tagged in this case if it's a generic actual
15140 -- type, since it would otherwise have been rejected in the analysis
15141 -- of the generic template).
15142
15143 if not Is_Generic_Actual_Type (Parent_Type)
15144 or else In_Visible_Part (Scope (Parent_Type))
15145 then
15146 if Is_Class_Wide_Type (Parent_Type) then
15147 Error_Msg_N
15148 ("parent type must not be a class-wide type", Indic);
15149
15150 -- Use specific type to prevent cascaded errors.
15151
15152 Parent_Type := Etype (Parent_Type);
15153
15154 else
15155 Error_Msg_N
15156 ("type derived from tagged type must have extension", Indic);
15157 end if;
15158 end if;
15159 end if;
15160
15161 -- AI-443: Synchronized formal derived types require a private
15162 -- extension. There is no point in checking the ancestor type or
15163 -- the progenitors since the construct is wrong to begin with.
15164
15165 if Ada_Version >= Ada_2005
15166 and then Is_Generic_Type (T)
15167 and then Present (Original_Node (N))
15168 then
15169 declare
15170 Decl : constant Node_Id := Original_Node (N);
15171
15172 begin
15173 if Nkind (Decl) = N_Formal_Type_Declaration
15174 and then Nkind (Formal_Type_Definition (Decl)) =
15175 N_Formal_Derived_Type_Definition
15176 and then Synchronized_Present (Formal_Type_Definition (Decl))
15177 and then No (Extension)
15178
15179 -- Avoid emitting a duplicate error message
15180
15181 and then not Error_Posted (Indic)
15182 then
15183 Error_Msg_N
15184 ("synchronized derived type must have extension", N);
15185 end if;
15186 end;
15187 end if;
15188
15189 if Null_Exclusion_Present (Def)
15190 and then not Is_Access_Type (Parent_Type)
15191 then
15192 Error_Msg_N ("null exclusion can only apply to an access type", N);
15193 end if;
15194
15195 -- Avoid deriving parent primitives of underlying record views
15196
15197 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
15198 Derive_Subps => not Is_Underlying_Record_View (T));
15199
15200 -- AI-419: The parent type of an explicitly limited derived type must
15201 -- be a limited type or a limited interface.
15202
15203 if Limited_Present (Def) then
15204 Set_Is_Limited_Record (T);
15205
15206 if Is_Interface (T) then
15207 Set_Is_Limited_Interface (T);
15208 end if;
15209
15210 if not Is_Limited_Type (Parent_Type)
15211 and then
15212 (not Is_Interface (Parent_Type)
15213 or else not Is_Limited_Interface (Parent_Type))
15214 then
15215 -- AI05-0096: a derivation in the private part of an instance is
15216 -- legal if the generic formal is untagged limited, and the actual
15217 -- is non-limited.
15218
15219 if Is_Generic_Actual_Type (Parent_Type)
15220 and then In_Private_Part (Current_Scope)
15221 and then
15222 not Is_Tagged_Type
15223 (Generic_Parent_Type (Parent (Parent_Type)))
15224 then
15225 null;
15226
15227 else
15228 Error_Msg_NE
15229 ("parent type& of limited type must be limited",
15230 N, Parent_Type);
15231 end if;
15232 end if;
15233 end if;
15234
15235 -- In SPARK, there are no derived type definitions other than type
15236 -- extensions of tagged record types.
15237
15238 if No (Extension) then
15239 Check_SPARK_05_Restriction
15240 ("derived type is not allowed", Original_Node (N));
15241 end if;
15242 end Derived_Type_Declaration;
15243
15244 ------------------------
15245 -- Diagnose_Interface --
15246 ------------------------
15247
15248 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
15249 begin
15250 if not Is_Interface (E)
15251 and then E /= Any_Type
15252 then
15253 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
15254 end if;
15255 end Diagnose_Interface;
15256
15257 ----------------------------------
15258 -- Enumeration_Type_Declaration --
15259 ----------------------------------
15260
15261 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15262 Ev : Uint;
15263 L : Node_Id;
15264 R_Node : Node_Id;
15265 B_Node : Node_Id;
15266
15267 begin
15268 -- Create identifier node representing lower bound
15269
15270 B_Node := New_Node (N_Identifier, Sloc (Def));
15271 L := First (Literals (Def));
15272 Set_Chars (B_Node, Chars (L));
15273 Set_Entity (B_Node, L);
15274 Set_Etype (B_Node, T);
15275 Set_Is_Static_Expression (B_Node, True);
15276
15277 R_Node := New_Node (N_Range, Sloc (Def));
15278 Set_Low_Bound (R_Node, B_Node);
15279
15280 Set_Ekind (T, E_Enumeration_Type);
15281 Set_First_Literal (T, L);
15282 Set_Etype (T, T);
15283 Set_Is_Constrained (T);
15284
15285 Ev := Uint_0;
15286
15287 -- Loop through literals of enumeration type setting pos and rep values
15288 -- except that if the Ekind is already set, then it means the literal
15289 -- was already constructed (case of a derived type declaration and we
15290 -- should not disturb the Pos and Rep values.
15291
15292 while Present (L) loop
15293 if Ekind (L) /= E_Enumeration_Literal then
15294 Set_Ekind (L, E_Enumeration_Literal);
15295 Set_Enumeration_Pos (L, Ev);
15296 Set_Enumeration_Rep (L, Ev);
15297 Set_Is_Known_Valid (L, True);
15298 end if;
15299
15300 Set_Etype (L, T);
15301 New_Overloaded_Entity (L);
15302 Generate_Definition (L);
15303 Set_Convention (L, Convention_Intrinsic);
15304
15305 -- Case of character literal
15306
15307 if Nkind (L) = N_Defining_Character_Literal then
15308 Set_Is_Character_Type (T, True);
15309
15310 -- Check violation of No_Wide_Characters
15311
15312 if Restriction_Check_Required (No_Wide_Characters) then
15313 Get_Name_String (Chars (L));
15314
15315 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
15316 Check_Restriction (No_Wide_Characters, L);
15317 end if;
15318 end if;
15319 end if;
15320
15321 Ev := Ev + 1;
15322 Next (L);
15323 end loop;
15324
15325 -- Now create a node representing upper bound
15326
15327 B_Node := New_Node (N_Identifier, Sloc (Def));
15328 Set_Chars (B_Node, Chars (Last (Literals (Def))));
15329 Set_Entity (B_Node, Last (Literals (Def)));
15330 Set_Etype (B_Node, T);
15331 Set_Is_Static_Expression (B_Node, True);
15332
15333 Set_High_Bound (R_Node, B_Node);
15334
15335 -- Initialize various fields of the type. Some of this information
15336 -- may be overwritten later through rep.clauses.
15337
15338 Set_Scalar_Range (T, R_Node);
15339 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
15340 Set_Enum_Esize (T);
15341 Set_Enum_Pos_To_Rep (T, Empty);
15342
15343 -- Set Discard_Names if configuration pragma set, or if there is
15344 -- a parameterless pragma in the current declarative region
15345
15346 if Global_Discard_Names or else Discard_Names (Scope (T)) then
15347 Set_Discard_Names (T);
15348 end if;
15349
15350 -- Process end label if there is one
15351
15352 if Present (Def) then
15353 Process_End_Label (Def, 'e', T);
15354 end if;
15355 end Enumeration_Type_Declaration;
15356
15357 ---------------------------------
15358 -- Expand_To_Stored_Constraint --
15359 ---------------------------------
15360
15361 function Expand_To_Stored_Constraint
15362 (Typ : Entity_Id;
15363 Constraint : Elist_Id) return Elist_Id
15364 is
15365 Explicitly_Discriminated_Type : Entity_Id;
15366 Expansion : Elist_Id;
15367 Discriminant : Entity_Id;
15368
15369 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
15370 -- Find the nearest type that actually specifies discriminants
15371
15372 ---------------------------------
15373 -- Type_With_Explicit_Discrims --
15374 ---------------------------------
15375
15376 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
15377 Typ : constant E := Base_Type (Id);
15378
15379 begin
15380 if Ekind (Typ) in Incomplete_Or_Private_Kind then
15381 if Present (Full_View (Typ)) then
15382 return Type_With_Explicit_Discrims (Full_View (Typ));
15383 end if;
15384
15385 else
15386 if Has_Discriminants (Typ) then
15387 return Typ;
15388 end if;
15389 end if;
15390
15391 if Etype (Typ) = Typ then
15392 return Empty;
15393 elsif Has_Discriminants (Typ) then
15394 return Typ;
15395 else
15396 return Type_With_Explicit_Discrims (Etype (Typ));
15397 end if;
15398
15399 end Type_With_Explicit_Discrims;
15400
15401 -- Start of processing for Expand_To_Stored_Constraint
15402
15403 begin
15404 if No (Constraint)
15405 or else Is_Empty_Elmt_List (Constraint)
15406 then
15407 return No_Elist;
15408 end if;
15409
15410 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
15411
15412 if No (Explicitly_Discriminated_Type) then
15413 return No_Elist;
15414 end if;
15415
15416 Expansion := New_Elmt_List;
15417
15418 Discriminant :=
15419 First_Stored_Discriminant (Explicitly_Discriminated_Type);
15420 while Present (Discriminant) loop
15421 Append_Elmt
15422 (Get_Discriminant_Value
15423 (Discriminant, Explicitly_Discriminated_Type, Constraint),
15424 To => Expansion);
15425 Next_Stored_Discriminant (Discriminant);
15426 end loop;
15427
15428 return Expansion;
15429 end Expand_To_Stored_Constraint;
15430
15431 ---------------------------
15432 -- Find_Hidden_Interface --
15433 ---------------------------
15434
15435 function Find_Hidden_Interface
15436 (Src : Elist_Id;
15437 Dest : Elist_Id) return Entity_Id
15438 is
15439 Iface : Entity_Id;
15440 Iface_Elmt : Elmt_Id;
15441
15442 begin
15443 if Present (Src) and then Present (Dest) then
15444 Iface_Elmt := First_Elmt (Src);
15445 while Present (Iface_Elmt) loop
15446 Iface := Node (Iface_Elmt);
15447
15448 if Is_Interface (Iface)
15449 and then not Contain_Interface (Iface, Dest)
15450 then
15451 return Iface;
15452 end if;
15453
15454 Next_Elmt (Iface_Elmt);
15455 end loop;
15456 end if;
15457
15458 return Empty;
15459 end Find_Hidden_Interface;
15460
15461 --------------------
15462 -- Find_Type_Name --
15463 --------------------
15464
15465 function Find_Type_Name (N : Node_Id) return Entity_Id is
15466 Id : constant Entity_Id := Defining_Identifier (N);
15467 Prev : Entity_Id;
15468 New_Id : Entity_Id;
15469 Prev_Par : Node_Id;
15470
15471 procedure Check_Duplicate_Aspects;
15472 -- Check that aspects specified in a completion have not been specified
15473 -- already in the partial view. Type_Invariant and others can be
15474 -- specified on either view but never on both.
15475
15476 procedure Tag_Mismatch;
15477 -- Diagnose a tagged partial view whose full view is untagged.
15478 -- We post the message on the full view, with a reference to
15479 -- the previous partial view. The partial view can be private
15480 -- or incomplete, and these are handled in a different manner,
15481 -- so we determine the position of the error message from the
15482 -- respective slocs of both.
15483
15484 -----------------------------
15485 -- Check_Duplicate_Aspects --
15486 -----------------------------
15487 procedure Check_Duplicate_Aspects is
15488 Prev_Aspects : constant List_Id := Aspect_Specifications (Prev_Par);
15489 Full_Aspects : constant List_Id := Aspect_Specifications (N);
15490 F_Spec, P_Spec : Node_Id;
15491
15492 begin
15493 if Present (Prev_Aspects) and then Present (Full_Aspects) then
15494 F_Spec := First (Full_Aspects);
15495 while Present (F_Spec) loop
15496 P_Spec := First (Prev_Aspects);
15497 while Present (P_Spec) loop
15498 if
15499 Chars (Identifier (P_Spec)) = Chars (Identifier (F_Spec))
15500 then
15501 Error_Msg_N
15502 ("aspect already specified in private declaration",
15503 F_Spec);
15504 Remove (F_Spec);
15505 return;
15506 end if;
15507
15508 Next (P_Spec);
15509 end loop;
15510
15511 Next (F_Spec);
15512 end loop;
15513 end if;
15514 end Check_Duplicate_Aspects;
15515
15516 ------------------
15517 -- Tag_Mismatch --
15518 ------------------
15519
15520 procedure Tag_Mismatch is
15521 begin
15522 if Sloc (Prev) < Sloc (Id) then
15523 if Ada_Version >= Ada_2012
15524 and then Nkind (N) = N_Private_Type_Declaration
15525 then
15526 Error_Msg_NE
15527 ("declaration of private } must be a tagged type ", Id, Prev);
15528 else
15529 Error_Msg_NE
15530 ("full declaration of } must be a tagged type ", Id, Prev);
15531 end if;
15532
15533 else
15534 if Ada_Version >= Ada_2012
15535 and then Nkind (N) = N_Private_Type_Declaration
15536 then
15537 Error_Msg_NE
15538 ("declaration of private } must be a tagged type ", Prev, Id);
15539 else
15540 Error_Msg_NE
15541 ("full declaration of } must be a tagged type ", Prev, Id);
15542 end if;
15543 end if;
15544 end Tag_Mismatch;
15545
15546 -- Start of processing for Find_Type_Name
15547
15548 begin
15549 -- Find incomplete declaration, if one was given
15550
15551 Prev := Current_Entity_In_Scope (Id);
15552
15553 -- New type declaration
15554
15555 if No (Prev) then
15556 Enter_Name (Id);
15557 return Id;
15558
15559 -- Previous declaration exists
15560
15561 else
15562 Prev_Par := Parent (Prev);
15563
15564 -- Error if not incomplete/private case except if previous
15565 -- declaration is implicit, etc. Enter_Name will emit error if
15566 -- appropriate.
15567
15568 if not Is_Incomplete_Or_Private_Type (Prev) then
15569 Enter_Name (Id);
15570 New_Id := Id;
15571
15572 -- Check invalid completion of private or incomplete type
15573
15574 elsif not Nkind_In (N, N_Full_Type_Declaration,
15575 N_Task_Type_Declaration,
15576 N_Protected_Type_Declaration)
15577 and then
15578 (Ada_Version < Ada_2012
15579 or else not Is_Incomplete_Type (Prev)
15580 or else not Nkind_In (N, N_Private_Type_Declaration,
15581 N_Private_Extension_Declaration))
15582 then
15583 -- Completion must be a full type declarations (RM 7.3(4))
15584
15585 Error_Msg_Sloc := Sloc (Prev);
15586 Error_Msg_NE ("invalid completion of }", Id, Prev);
15587
15588 -- Set scope of Id to avoid cascaded errors. Entity is never
15589 -- examined again, except when saving globals in generics.
15590
15591 Set_Scope (Id, Current_Scope);
15592 New_Id := Id;
15593
15594 -- If this is a repeated incomplete declaration, no further
15595 -- checks are possible.
15596
15597 if Nkind (N) = N_Incomplete_Type_Declaration then
15598 return Prev;
15599 end if;
15600
15601 -- Case of full declaration of incomplete type
15602
15603 elsif Ekind (Prev) = E_Incomplete_Type
15604 and then (Ada_Version < Ada_2012
15605 or else No (Full_View (Prev))
15606 or else not Is_Private_Type (Full_View (Prev)))
15607 then
15608 -- Indicate that the incomplete declaration has a matching full
15609 -- declaration. The defining occurrence of the incomplete
15610 -- declaration remains the visible one, and the procedure
15611 -- Get_Full_View dereferences it whenever the type is used.
15612
15613 if Present (Full_View (Prev)) then
15614 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
15615 end if;
15616
15617 Set_Full_View (Prev, Id);
15618 Append_Entity (Id, Current_Scope);
15619 Set_Is_Public (Id, Is_Public (Prev));
15620 Set_Is_Internal (Id);
15621 New_Id := Prev;
15622
15623 -- If the incomplete view is tagged, a class_wide type has been
15624 -- created already. Use it for the private type as well, in order
15625 -- to prevent multiple incompatible class-wide types that may be
15626 -- created for self-referential anonymous access components.
15627
15628 if Is_Tagged_Type (Prev)
15629 and then Present (Class_Wide_Type (Prev))
15630 then
15631 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
15632 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
15633
15634 -- If the incomplete type is completed by a private declaration
15635 -- the class-wide type remains associated with the incomplete
15636 -- type, to prevent order-of-elaboration issues in gigi, else
15637 -- we associate the class-wide type with the known full view.
15638
15639 if Nkind (N) /= N_Private_Type_Declaration then
15640 Set_Etype (Class_Wide_Type (Id), Id);
15641 end if;
15642 end if;
15643
15644 -- Case of full declaration of private type
15645
15646 else
15647 -- If the private type was a completion of an incomplete type then
15648 -- update Prev to reference the private type
15649
15650 if Ada_Version >= Ada_2012
15651 and then Ekind (Prev) = E_Incomplete_Type
15652 and then Present (Full_View (Prev))
15653 and then Is_Private_Type (Full_View (Prev))
15654 then
15655 Prev := Full_View (Prev);
15656 Prev_Par := Parent (Prev);
15657 end if;
15658
15659 if Nkind (N) = N_Full_Type_Declaration
15660 and then Nkind_In
15661 (Type_Definition (N), N_Record_Definition,
15662 N_Derived_Type_Definition)
15663 and then Interface_Present (Type_Definition (N))
15664 then
15665 Error_Msg_N
15666 ("completion of private type cannot be an interface", N);
15667 end if;
15668
15669 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
15670 if Etype (Prev) /= Prev then
15671
15672 -- Prev is a private subtype or a derived type, and needs
15673 -- no completion.
15674
15675 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
15676 New_Id := Id;
15677
15678 elsif Ekind (Prev) = E_Private_Type
15679 and then Nkind_In (N, N_Task_Type_Declaration,
15680 N_Protected_Type_Declaration)
15681 then
15682 Error_Msg_N
15683 ("completion of nonlimited type cannot be limited", N);
15684
15685 elsif Ekind (Prev) = E_Record_Type_With_Private
15686 and then Nkind_In (N, N_Task_Type_Declaration,
15687 N_Protected_Type_Declaration)
15688 then
15689 if not Is_Limited_Record (Prev) then
15690 Error_Msg_N
15691 ("completion of nonlimited type cannot be limited", N);
15692
15693 elsif No (Interface_List (N)) then
15694 Error_Msg_N
15695 ("completion of tagged private type must be tagged",
15696 N);
15697 end if;
15698 end if;
15699
15700 -- Ada 2005 (AI-251): Private extension declaration of a task
15701 -- type or a protected type. This case arises when covering
15702 -- interface types.
15703
15704 elsif Nkind_In (N, N_Task_Type_Declaration,
15705 N_Protected_Type_Declaration)
15706 then
15707 null;
15708
15709 elsif Nkind (N) /= N_Full_Type_Declaration
15710 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
15711 then
15712 Error_Msg_N
15713 ("full view of private extension must be an extension", N);
15714
15715 elsif not (Abstract_Present (Parent (Prev)))
15716 and then Abstract_Present (Type_Definition (N))
15717 then
15718 Error_Msg_N
15719 ("full view of non-abstract extension cannot be abstract", N);
15720 end if;
15721
15722 if not In_Private_Part (Current_Scope) then
15723 Error_Msg_N
15724 ("declaration of full view must appear in private part", N);
15725 end if;
15726
15727 if Ada_Version >= Ada_2012 then
15728 Check_Duplicate_Aspects;
15729 end if;
15730
15731 Copy_And_Swap (Prev, Id);
15732 Set_Has_Private_Declaration (Prev);
15733 Set_Has_Private_Declaration (Id);
15734
15735 -- Preserve aspect and iterator flags that may have been set on
15736 -- the partial view.
15737
15738 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
15739 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
15740
15741 -- If no error, propagate freeze_node from private to full view.
15742 -- It may have been generated for an early operational item.
15743
15744 if Present (Freeze_Node (Id))
15745 and then Serious_Errors_Detected = 0
15746 and then No (Full_View (Id))
15747 then
15748 Set_Freeze_Node (Prev, Freeze_Node (Id));
15749 Set_Freeze_Node (Id, Empty);
15750 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
15751 end if;
15752
15753 Set_Full_View (Id, Prev);
15754 New_Id := Prev;
15755 end if;
15756
15757 -- Verify that full declaration conforms to partial one
15758
15759 if Is_Incomplete_Or_Private_Type (Prev)
15760 and then Present (Discriminant_Specifications (Prev_Par))
15761 then
15762 if Present (Discriminant_Specifications (N)) then
15763 if Ekind (Prev) = E_Incomplete_Type then
15764 Check_Discriminant_Conformance (N, Prev, Prev);
15765 else
15766 Check_Discriminant_Conformance (N, Prev, Id);
15767 end if;
15768
15769 else
15770 Error_Msg_N
15771 ("missing discriminants in full type declaration", N);
15772
15773 -- To avoid cascaded errors on subsequent use, share the
15774 -- discriminants of the partial view.
15775
15776 Set_Discriminant_Specifications (N,
15777 Discriminant_Specifications (Prev_Par));
15778 end if;
15779 end if;
15780
15781 -- A prior untagged partial view can have an associated class-wide
15782 -- type due to use of the class attribute, and in this case the full
15783 -- type must also be tagged. This Ada 95 usage is deprecated in favor
15784 -- of incomplete tagged declarations, but we check for it.
15785
15786 if Is_Type (Prev)
15787 and then (Is_Tagged_Type (Prev)
15788 or else Present (Class_Wide_Type (Prev)))
15789 then
15790 -- Ada 2012 (AI05-0162): A private type may be the completion of
15791 -- an incomplete type.
15792
15793 if Ada_Version >= Ada_2012
15794 and then Is_Incomplete_Type (Prev)
15795 and then Nkind_In (N, N_Private_Type_Declaration,
15796 N_Private_Extension_Declaration)
15797 then
15798 -- No need to check private extensions since they are tagged
15799
15800 if Nkind (N) = N_Private_Type_Declaration
15801 and then not Tagged_Present (N)
15802 then
15803 Tag_Mismatch;
15804 end if;
15805
15806 -- The full declaration is either a tagged type (including
15807 -- a synchronized type that implements interfaces) or a
15808 -- type extension, otherwise this is an error.
15809
15810 elsif Nkind_In (N, N_Task_Type_Declaration,
15811 N_Protected_Type_Declaration)
15812 then
15813 if No (Interface_List (N))
15814 and then not Error_Posted (N)
15815 then
15816 Tag_Mismatch;
15817 end if;
15818
15819 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
15820
15821 -- Indicate that the previous declaration (tagged incomplete
15822 -- or private declaration) requires the same on the full one.
15823
15824 if not Tagged_Present (Type_Definition (N)) then
15825 Tag_Mismatch;
15826 Set_Is_Tagged_Type (Id);
15827 end if;
15828
15829 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
15830 if No (Record_Extension_Part (Type_Definition (N))) then
15831 Error_Msg_NE
15832 ("full declaration of } must be a record extension",
15833 Prev, Id);
15834
15835 -- Set some attributes to produce a usable full view
15836
15837 Set_Is_Tagged_Type (Id);
15838 end if;
15839
15840 else
15841 Tag_Mismatch;
15842 end if;
15843 end if;
15844
15845 if Present (Prev)
15846 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
15847 and then Present (Premature_Use (Parent (Prev)))
15848 then
15849 Error_Msg_Sloc := Sloc (N);
15850 Error_Msg_N
15851 ("\full declaration #", Premature_Use (Parent (Prev)));
15852 end if;
15853
15854 return New_Id;
15855 end if;
15856 end Find_Type_Name;
15857
15858 -------------------------
15859 -- Find_Type_Of_Object --
15860 -------------------------
15861
15862 function Find_Type_Of_Object
15863 (Obj_Def : Node_Id;
15864 Related_Nod : Node_Id) return Entity_Id
15865 is
15866 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
15867 P : Node_Id := Parent (Obj_Def);
15868 T : Entity_Id;
15869 Nam : Name_Id;
15870
15871 begin
15872 -- If the parent is a component_definition node we climb to the
15873 -- component_declaration node
15874
15875 if Nkind (P) = N_Component_Definition then
15876 P := Parent (P);
15877 end if;
15878
15879 -- Case of an anonymous array subtype
15880
15881 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
15882 N_Unconstrained_Array_Definition)
15883 then
15884 T := Empty;
15885 Array_Type_Declaration (T, Obj_Def);
15886
15887 -- Create an explicit subtype whenever possible
15888
15889 elsif Nkind (P) /= N_Component_Declaration
15890 and then Def_Kind = N_Subtype_Indication
15891 then
15892 -- Base name of subtype on object name, which will be unique in
15893 -- the current scope.
15894
15895 -- If this is a duplicate declaration, return base type, to avoid
15896 -- generating duplicate anonymous types.
15897
15898 if Error_Posted (P) then
15899 Analyze (Subtype_Mark (Obj_Def));
15900 return Entity (Subtype_Mark (Obj_Def));
15901 end if;
15902
15903 Nam :=
15904 New_External_Name
15905 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
15906
15907 T := Make_Defining_Identifier (Sloc (P), Nam);
15908
15909 Insert_Action (Obj_Def,
15910 Make_Subtype_Declaration (Sloc (P),
15911 Defining_Identifier => T,
15912 Subtype_Indication => Relocate_Node (Obj_Def)));
15913
15914 -- This subtype may need freezing, and this will not be done
15915 -- automatically if the object declaration is not in declarative
15916 -- part. Since this is an object declaration, the type cannot always
15917 -- be frozen here. Deferred constants do not freeze their type
15918 -- (which often enough will be private).
15919
15920 if Nkind (P) = N_Object_Declaration
15921 and then Constant_Present (P)
15922 and then No (Expression (P))
15923 then
15924 null;
15925
15926 -- Here we freeze the base type of object type to catch premature use
15927 -- of discriminated private type without a full view.
15928
15929 else
15930 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
15931 end if;
15932
15933 -- Ada 2005 AI-406: the object definition in an object declaration
15934 -- can be an access definition.
15935
15936 elsif Def_Kind = N_Access_Definition then
15937 T := Access_Definition (Related_Nod, Obj_Def);
15938
15939 Set_Is_Local_Anonymous_Access
15940 (T,
15941 V => (Ada_Version < Ada_2012)
15942 or else (Nkind (P) /= N_Object_Declaration)
15943 or else Is_Library_Level_Entity (Defining_Identifier (P)));
15944
15945 -- Otherwise, the object definition is just a subtype_mark
15946
15947 else
15948 T := Process_Subtype (Obj_Def, Related_Nod);
15949
15950 -- If expansion is disabled an object definition that is an aggregate
15951 -- will not get expanded and may lead to scoping problems in the back
15952 -- end, if the object is referenced in an inner scope. In that case
15953 -- create an itype reference for the object definition now. This
15954 -- may be redundant in some cases, but harmless.
15955
15956 if Is_Itype (T)
15957 and then Nkind (Related_Nod) = N_Object_Declaration
15958 and then ASIS_Mode
15959 then
15960 Build_Itype_Reference (T, Related_Nod);
15961 end if;
15962 end if;
15963
15964 return T;
15965 end Find_Type_Of_Object;
15966
15967 --------------------------------
15968 -- Find_Type_Of_Subtype_Indic --
15969 --------------------------------
15970
15971 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
15972 Typ : Entity_Id;
15973
15974 begin
15975 -- Case of subtype mark with a constraint
15976
15977 if Nkind (S) = N_Subtype_Indication then
15978 Find_Type (Subtype_Mark (S));
15979 Typ := Entity (Subtype_Mark (S));
15980
15981 if not
15982 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
15983 then
15984 Error_Msg_N
15985 ("incorrect constraint for this kind of type", Constraint (S));
15986 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
15987 end if;
15988
15989 -- Otherwise we have a subtype mark without a constraint
15990
15991 elsif Error_Posted (S) then
15992 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
15993 return Any_Type;
15994
15995 else
15996 Find_Type (S);
15997 Typ := Entity (S);
15998 end if;
15999
16000 -- Check No_Wide_Characters restriction
16001
16002 Check_Wide_Character_Restriction (Typ, S);
16003
16004 return Typ;
16005 end Find_Type_Of_Subtype_Indic;
16006
16007 -------------------------------------
16008 -- Floating_Point_Type_Declaration --
16009 -------------------------------------
16010
16011 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16012 Digs : constant Node_Id := Digits_Expression (Def);
16013 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
16014 Digs_Val : Uint;
16015 Base_Typ : Entity_Id;
16016 Implicit_Base : Entity_Id;
16017 Bound : Node_Id;
16018
16019 function Can_Derive_From (E : Entity_Id) return Boolean;
16020 -- Find if given digits value, and possibly a specified range, allows
16021 -- derivation from specified type
16022
16023 function Find_Base_Type return Entity_Id;
16024 -- Find a predefined base type that Def can derive from, or generate
16025 -- an error and substitute Long_Long_Float if none exists.
16026
16027 ---------------------
16028 -- Can_Derive_From --
16029 ---------------------
16030
16031 function Can_Derive_From (E : Entity_Id) return Boolean is
16032 Spec : constant Entity_Id := Real_Range_Specification (Def);
16033
16034 begin
16035 -- Check specified "digits" constraint
16036
16037 if Digs_Val > Digits_Value (E) then
16038 return False;
16039 end if;
16040
16041 -- Check for matching range, if specified
16042
16043 if Present (Spec) then
16044 if Expr_Value_R (Type_Low_Bound (E)) >
16045 Expr_Value_R (Low_Bound (Spec))
16046 then
16047 return False;
16048 end if;
16049
16050 if Expr_Value_R (Type_High_Bound (E)) <
16051 Expr_Value_R (High_Bound (Spec))
16052 then
16053 return False;
16054 end if;
16055 end if;
16056
16057 return True;
16058 end Can_Derive_From;
16059
16060 --------------------
16061 -- Find_Base_Type --
16062 --------------------
16063
16064 function Find_Base_Type return Entity_Id is
16065 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
16066
16067 begin
16068 -- Iterate over the predefined types in order, returning the first
16069 -- one that Def can derive from.
16070
16071 while Present (Choice) loop
16072 if Can_Derive_From (Node (Choice)) then
16073 return Node (Choice);
16074 end if;
16075
16076 Next_Elmt (Choice);
16077 end loop;
16078
16079 -- If we can't derive from any existing type, use Long_Long_Float
16080 -- and give appropriate message explaining the problem.
16081
16082 if Digs_Val > Max_Digs_Val then
16083 -- It might be the case that there is a type with the requested
16084 -- range, just not the combination of digits and range.
16085
16086 Error_Msg_N
16087 ("no predefined type has requested range and precision",
16088 Real_Range_Specification (Def));
16089
16090 else
16091 Error_Msg_N
16092 ("range too large for any predefined type",
16093 Real_Range_Specification (Def));
16094 end if;
16095
16096 return Standard_Long_Long_Float;
16097 end Find_Base_Type;
16098
16099 -- Start of processing for Floating_Point_Type_Declaration
16100
16101 begin
16102 Check_Restriction (No_Floating_Point, Def);
16103
16104 -- Create an implicit base type
16105
16106 Implicit_Base :=
16107 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
16108
16109 -- Analyze and verify digits value
16110
16111 Analyze_And_Resolve (Digs, Any_Integer);
16112 Check_Digits_Expression (Digs);
16113 Digs_Val := Expr_Value (Digs);
16114
16115 -- Process possible range spec and find correct type to derive from
16116
16117 Process_Real_Range_Specification (Def);
16118
16119 -- Check that requested number of digits is not too high.
16120
16121 if Digs_Val > Max_Digs_Val then
16122 -- The check for Max_Base_Digits may be somewhat expensive, as it
16123 -- requires reading System, so only do it when necessary.
16124
16125 declare
16126 Max_Base_Digits : constant Uint :=
16127 Expr_Value
16128 (Expression
16129 (Parent (RTE (RE_Max_Base_Digits))));
16130
16131 begin
16132 if Digs_Val > Max_Base_Digits then
16133 Error_Msg_Uint_1 := Max_Base_Digits;
16134 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
16135
16136 elsif No (Real_Range_Specification (Def)) then
16137 Error_Msg_Uint_1 := Max_Digs_Val;
16138 Error_Msg_N ("types with more than ^ digits need range spec "
16139 & "(RM 3.5.7(6))", Digs);
16140 end if;
16141 end;
16142 end if;
16143
16144 -- Find a suitable type to derive from or complain and use a substitute
16145
16146 Base_Typ := Find_Base_Type;
16147
16148 -- If there are bounds given in the declaration use them as the bounds
16149 -- of the type, otherwise use the bounds of the predefined base type
16150 -- that was chosen based on the Digits value.
16151
16152 if Present (Real_Range_Specification (Def)) then
16153 Set_Scalar_Range (T, Real_Range_Specification (Def));
16154 Set_Is_Constrained (T);
16155
16156 -- The bounds of this range must be converted to machine numbers
16157 -- in accordance with RM 4.9(38).
16158
16159 Bound := Type_Low_Bound (T);
16160
16161 if Nkind (Bound) = N_Real_Literal then
16162 Set_Realval
16163 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16164 Set_Is_Machine_Number (Bound);
16165 end if;
16166
16167 Bound := Type_High_Bound (T);
16168
16169 if Nkind (Bound) = N_Real_Literal then
16170 Set_Realval
16171 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16172 Set_Is_Machine_Number (Bound);
16173 end if;
16174
16175 else
16176 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
16177 end if;
16178
16179 -- Complete definition of implicit base and declared first subtype
16180
16181 Set_Etype (Implicit_Base, Base_Typ);
16182
16183 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
16184 Set_Size_Info (Implicit_Base, (Base_Typ));
16185 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
16186 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
16187 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
16188 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
16189
16190 Set_Ekind (T, E_Floating_Point_Subtype);
16191 Set_Etype (T, Implicit_Base);
16192
16193 Set_Size_Info (T, (Implicit_Base));
16194 Set_RM_Size (T, RM_Size (Implicit_Base));
16195 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
16196 Set_Digits_Value (T, Digs_Val);
16197 end Floating_Point_Type_Declaration;
16198
16199 ----------------------------
16200 -- Get_Discriminant_Value --
16201 ----------------------------
16202
16203 -- This is the situation:
16204
16205 -- There is a non-derived type
16206
16207 -- type T0 (Dx, Dy, Dz...)
16208
16209 -- There are zero or more levels of derivation, with each derivation
16210 -- either purely inheriting the discriminants, or defining its own.
16211
16212 -- type Ti is new Ti-1
16213 -- or
16214 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
16215 -- or
16216 -- subtype Ti is ...
16217
16218 -- The subtype issue is avoided by the use of Original_Record_Component,
16219 -- and the fact that derived subtypes also derive the constraints.
16220
16221 -- This chain leads back from
16222
16223 -- Typ_For_Constraint
16224
16225 -- Typ_For_Constraint has discriminants, and the value for each
16226 -- discriminant is given by its corresponding Elmt of Constraints.
16227
16228 -- Discriminant is some discriminant in this hierarchy
16229
16230 -- We need to return its value
16231
16232 -- We do this by recursively searching each level, and looking for
16233 -- Discriminant. Once we get to the bottom, we start backing up
16234 -- returning the value for it which may in turn be a discriminant
16235 -- further up, so on the backup we continue the substitution.
16236
16237 function Get_Discriminant_Value
16238 (Discriminant : Entity_Id;
16239 Typ_For_Constraint : Entity_Id;
16240 Constraint : Elist_Id) return Node_Id
16241 is
16242 function Root_Corresponding_Discriminant
16243 (Discr : Entity_Id) return Entity_Id;
16244 -- Given a discriminant, traverse the chain of inherited discriminants
16245 -- and return the topmost discriminant.
16246
16247 function Search_Derivation_Levels
16248 (Ti : Entity_Id;
16249 Discrim_Values : Elist_Id;
16250 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
16251 -- This is the routine that performs the recursive search of levels
16252 -- as described above.
16253
16254 -------------------------------------
16255 -- Root_Corresponding_Discriminant --
16256 -------------------------------------
16257
16258 function Root_Corresponding_Discriminant
16259 (Discr : Entity_Id) return Entity_Id
16260 is
16261 D : Entity_Id;
16262
16263 begin
16264 D := Discr;
16265 while Present (Corresponding_Discriminant (D)) loop
16266 D := Corresponding_Discriminant (D);
16267 end loop;
16268
16269 return D;
16270 end Root_Corresponding_Discriminant;
16271
16272 ------------------------------
16273 -- Search_Derivation_Levels --
16274 ------------------------------
16275
16276 function Search_Derivation_Levels
16277 (Ti : Entity_Id;
16278 Discrim_Values : Elist_Id;
16279 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
16280 is
16281 Assoc : Elmt_Id;
16282 Disc : Entity_Id;
16283 Result : Node_Or_Entity_Id;
16284 Result_Entity : Node_Id;
16285
16286 begin
16287 -- If inappropriate type, return Error, this happens only in
16288 -- cascaded error situations, and we want to avoid a blow up.
16289
16290 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
16291 return Error;
16292 end if;
16293
16294 -- Look deeper if possible. Use Stored_Constraints only for
16295 -- untagged types. For tagged types use the given constraint.
16296 -- This asymmetry needs explanation???
16297
16298 if not Stored_Discrim_Values
16299 and then Present (Stored_Constraint (Ti))
16300 and then not Is_Tagged_Type (Ti)
16301 then
16302 Result :=
16303 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
16304 else
16305 declare
16306 Td : constant Entity_Id := Etype (Ti);
16307
16308 begin
16309 if Td = Ti then
16310 Result := Discriminant;
16311
16312 else
16313 if Present (Stored_Constraint (Ti)) then
16314 Result :=
16315 Search_Derivation_Levels
16316 (Td, Stored_Constraint (Ti), True);
16317 else
16318 Result :=
16319 Search_Derivation_Levels
16320 (Td, Discrim_Values, Stored_Discrim_Values);
16321 end if;
16322 end if;
16323 end;
16324 end if;
16325
16326 -- Extra underlying places to search, if not found above. For
16327 -- concurrent types, the relevant discriminant appears in the
16328 -- corresponding record. For a type derived from a private type
16329 -- without discriminant, the full view inherits the discriminants
16330 -- of the full view of the parent.
16331
16332 if Result = Discriminant then
16333 if Is_Concurrent_Type (Ti)
16334 and then Present (Corresponding_Record_Type (Ti))
16335 then
16336 Result :=
16337 Search_Derivation_Levels (
16338 Corresponding_Record_Type (Ti),
16339 Discrim_Values,
16340 Stored_Discrim_Values);
16341
16342 elsif Is_Private_Type (Ti)
16343 and then not Has_Discriminants (Ti)
16344 and then Present (Full_View (Ti))
16345 and then Etype (Full_View (Ti)) /= Ti
16346 then
16347 Result :=
16348 Search_Derivation_Levels (
16349 Full_View (Ti),
16350 Discrim_Values,
16351 Stored_Discrim_Values);
16352 end if;
16353 end if;
16354
16355 -- If Result is not a (reference to a) discriminant, return it,
16356 -- otherwise set Result_Entity to the discriminant.
16357
16358 if Nkind (Result) = N_Defining_Identifier then
16359 pragma Assert (Result = Discriminant);
16360 Result_Entity := Result;
16361
16362 else
16363 if not Denotes_Discriminant (Result) then
16364 return Result;
16365 end if;
16366
16367 Result_Entity := Entity (Result);
16368 end if;
16369
16370 -- See if this level of derivation actually has discriminants
16371 -- because tagged derivations can add them, hence the lower
16372 -- levels need not have any.
16373
16374 if not Has_Discriminants (Ti) then
16375 return Result;
16376 end if;
16377
16378 -- Scan Ti's discriminants for Result_Entity,
16379 -- and return its corresponding value, if any.
16380
16381 Result_Entity := Original_Record_Component (Result_Entity);
16382
16383 Assoc := First_Elmt (Discrim_Values);
16384
16385 if Stored_Discrim_Values then
16386 Disc := First_Stored_Discriminant (Ti);
16387 else
16388 Disc := First_Discriminant (Ti);
16389 end if;
16390
16391 while Present (Disc) loop
16392 pragma Assert (Present (Assoc));
16393
16394 if Original_Record_Component (Disc) = Result_Entity then
16395 return Node (Assoc);
16396 end if;
16397
16398 Next_Elmt (Assoc);
16399
16400 if Stored_Discrim_Values then
16401 Next_Stored_Discriminant (Disc);
16402 else
16403 Next_Discriminant (Disc);
16404 end if;
16405 end loop;
16406
16407 -- Could not find it
16408 --
16409 return Result;
16410 end Search_Derivation_Levels;
16411
16412 -- Local Variables
16413
16414 Result : Node_Or_Entity_Id;
16415
16416 -- Start of processing for Get_Discriminant_Value
16417
16418 begin
16419 -- ??? This routine is a gigantic mess and will be deleted. For the
16420 -- time being just test for the trivial case before calling recurse.
16421
16422 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
16423 declare
16424 D : Entity_Id;
16425 E : Elmt_Id;
16426
16427 begin
16428 D := First_Discriminant (Typ_For_Constraint);
16429 E := First_Elmt (Constraint);
16430 while Present (D) loop
16431 if Chars (D) = Chars (Discriminant) then
16432 return Node (E);
16433 end if;
16434
16435 Next_Discriminant (D);
16436 Next_Elmt (E);
16437 end loop;
16438 end;
16439 end if;
16440
16441 Result := Search_Derivation_Levels
16442 (Typ_For_Constraint, Constraint, False);
16443
16444 -- ??? hack to disappear when this routine is gone
16445
16446 if Nkind (Result) = N_Defining_Identifier then
16447 declare
16448 D : Entity_Id;
16449 E : Elmt_Id;
16450
16451 begin
16452 D := First_Discriminant (Typ_For_Constraint);
16453 E := First_Elmt (Constraint);
16454 while Present (D) loop
16455 if Root_Corresponding_Discriminant (D) = Discriminant then
16456 return Node (E);
16457 end if;
16458
16459 Next_Discriminant (D);
16460 Next_Elmt (E);
16461 end loop;
16462 end;
16463 end if;
16464
16465 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
16466 return Result;
16467 end Get_Discriminant_Value;
16468
16469 --------------------------
16470 -- Has_Range_Constraint --
16471 --------------------------
16472
16473 function Has_Range_Constraint (N : Node_Id) return Boolean is
16474 C : constant Node_Id := Constraint (N);
16475
16476 begin
16477 if Nkind (C) = N_Range_Constraint then
16478 return True;
16479
16480 elsif Nkind (C) = N_Digits_Constraint then
16481 return
16482 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
16483 or else
16484 Present (Range_Constraint (C));
16485
16486 elsif Nkind (C) = N_Delta_Constraint then
16487 return Present (Range_Constraint (C));
16488
16489 else
16490 return False;
16491 end if;
16492 end Has_Range_Constraint;
16493
16494 ------------------------
16495 -- Inherit_Components --
16496 ------------------------
16497
16498 function Inherit_Components
16499 (N : Node_Id;
16500 Parent_Base : Entity_Id;
16501 Derived_Base : Entity_Id;
16502 Is_Tagged : Boolean;
16503 Inherit_Discr : Boolean;
16504 Discs : Elist_Id) return Elist_Id
16505 is
16506 Assoc_List : constant Elist_Id := New_Elmt_List;
16507
16508 procedure Inherit_Component
16509 (Old_C : Entity_Id;
16510 Plain_Discrim : Boolean := False;
16511 Stored_Discrim : Boolean := False);
16512 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
16513 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
16514 -- True, Old_C is a stored discriminant. If they are both false then
16515 -- Old_C is a regular component.
16516
16517 -----------------------
16518 -- Inherit_Component --
16519 -----------------------
16520
16521 procedure Inherit_Component
16522 (Old_C : Entity_Id;
16523 Plain_Discrim : Boolean := False;
16524 Stored_Discrim : Boolean := False)
16525 is
16526 procedure Set_Anonymous_Type (Id : Entity_Id);
16527 -- Id denotes the entity of an access discriminant or anonymous
16528 -- access component. Set the type of Id to either the same type of
16529 -- Old_C or create a new one depending on whether the parent and
16530 -- the child types are in the same scope.
16531
16532 ------------------------
16533 -- Set_Anonymous_Type --
16534 ------------------------
16535
16536 procedure Set_Anonymous_Type (Id : Entity_Id) is
16537 Old_Typ : constant Entity_Id := Etype (Old_C);
16538
16539 begin
16540 if Scope (Parent_Base) = Scope (Derived_Base) then
16541 Set_Etype (Id, Old_Typ);
16542
16543 -- The parent and the derived type are in two different scopes.
16544 -- Reuse the type of the original discriminant / component by
16545 -- copying it in order to preserve all attributes.
16546
16547 else
16548 declare
16549 Typ : constant Entity_Id := New_Copy (Old_Typ);
16550
16551 begin
16552 Set_Etype (Id, Typ);
16553
16554 -- Since we do not generate component declarations for
16555 -- inherited components, associate the itype with the
16556 -- derived type.
16557
16558 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
16559 Set_Scope (Typ, Derived_Base);
16560 end;
16561 end if;
16562 end Set_Anonymous_Type;
16563
16564 -- Local variables and constants
16565
16566 New_C : constant Entity_Id := New_Copy (Old_C);
16567
16568 Corr_Discrim : Entity_Id;
16569 Discrim : Entity_Id;
16570
16571 -- Start of processing for Inherit_Component
16572
16573 begin
16574 pragma Assert (not Is_Tagged or else not Stored_Discrim);
16575
16576 Set_Parent (New_C, Parent (Old_C));
16577
16578 -- Regular discriminants and components must be inserted in the scope
16579 -- of the Derived_Base. Do it here.
16580
16581 if not Stored_Discrim then
16582 Enter_Name (New_C);
16583 end if;
16584
16585 -- For tagged types the Original_Record_Component must point to
16586 -- whatever this field was pointing to in the parent type. This has
16587 -- already been achieved by the call to New_Copy above.
16588
16589 if not Is_Tagged then
16590 Set_Original_Record_Component (New_C, New_C);
16591 end if;
16592
16593 -- Set the proper type of an access discriminant
16594
16595 if Ekind (New_C) = E_Discriminant
16596 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
16597 then
16598 Set_Anonymous_Type (New_C);
16599 end if;
16600
16601 -- If we have inherited a component then see if its Etype contains
16602 -- references to Parent_Base discriminants. In this case, replace
16603 -- these references with the constraints given in Discs. We do not
16604 -- do this for the partial view of private types because this is
16605 -- not needed (only the components of the full view will be used
16606 -- for code generation) and cause problem. We also avoid this
16607 -- transformation in some error situations.
16608
16609 if Ekind (New_C) = E_Component then
16610
16611 -- Set the proper type of an anonymous access component
16612
16613 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
16614 Set_Anonymous_Type (New_C);
16615
16616 elsif (Is_Private_Type (Derived_Base)
16617 and then not Is_Generic_Type (Derived_Base))
16618 or else (Is_Empty_Elmt_List (Discs)
16619 and then not Expander_Active)
16620 then
16621 Set_Etype (New_C, Etype (Old_C));
16622
16623 else
16624 -- The current component introduces a circularity of the
16625 -- following kind:
16626
16627 -- limited with Pack_2;
16628 -- package Pack_1 is
16629 -- type T_1 is tagged record
16630 -- Comp : access Pack_2.T_2;
16631 -- ...
16632 -- end record;
16633 -- end Pack_1;
16634
16635 -- with Pack_1;
16636 -- package Pack_2 is
16637 -- type T_2 is new Pack_1.T_1 with ...;
16638 -- end Pack_2;
16639
16640 Set_Etype
16641 (New_C,
16642 Constrain_Component_Type
16643 (Old_C, Derived_Base, N, Parent_Base, Discs));
16644 end if;
16645 end if;
16646
16647 -- In derived tagged types it is illegal to reference a non
16648 -- discriminant component in the parent type. To catch this, mark
16649 -- these components with an Ekind of E_Void. This will be reset in
16650 -- Record_Type_Definition after processing the record extension of
16651 -- the derived type.
16652
16653 -- If the declaration is a private extension, there is no further
16654 -- record extension to process, and the components retain their
16655 -- current kind, because they are visible at this point.
16656
16657 if Is_Tagged and then Ekind (New_C) = E_Component
16658 and then Nkind (N) /= N_Private_Extension_Declaration
16659 then
16660 Set_Ekind (New_C, E_Void);
16661 end if;
16662
16663 if Plain_Discrim then
16664 Set_Corresponding_Discriminant (New_C, Old_C);
16665 Build_Discriminal (New_C);
16666
16667 -- If we are explicitly inheriting a stored discriminant it will be
16668 -- completely hidden.
16669
16670 elsif Stored_Discrim then
16671 Set_Corresponding_Discriminant (New_C, Empty);
16672 Set_Discriminal (New_C, Empty);
16673 Set_Is_Completely_Hidden (New_C);
16674
16675 -- Set the Original_Record_Component of each discriminant in the
16676 -- derived base to point to the corresponding stored that we just
16677 -- created.
16678
16679 Discrim := First_Discriminant (Derived_Base);
16680 while Present (Discrim) loop
16681 Corr_Discrim := Corresponding_Discriminant (Discrim);
16682
16683 -- Corr_Discrim could be missing in an error situation
16684
16685 if Present (Corr_Discrim)
16686 and then Original_Record_Component (Corr_Discrim) = Old_C
16687 then
16688 Set_Original_Record_Component (Discrim, New_C);
16689 end if;
16690
16691 Next_Discriminant (Discrim);
16692 end loop;
16693
16694 Append_Entity (New_C, Derived_Base);
16695 end if;
16696
16697 if not Is_Tagged then
16698 Append_Elmt (Old_C, Assoc_List);
16699 Append_Elmt (New_C, Assoc_List);
16700 end if;
16701 end Inherit_Component;
16702
16703 -- Variables local to Inherit_Component
16704
16705 Loc : constant Source_Ptr := Sloc (N);
16706
16707 Parent_Discrim : Entity_Id;
16708 Stored_Discrim : Entity_Id;
16709 D : Entity_Id;
16710 Component : Entity_Id;
16711
16712 -- Start of processing for Inherit_Components
16713
16714 begin
16715 if not Is_Tagged then
16716 Append_Elmt (Parent_Base, Assoc_List);
16717 Append_Elmt (Derived_Base, Assoc_List);
16718 end if;
16719
16720 -- Inherit parent discriminants if needed
16721
16722 if Inherit_Discr then
16723 Parent_Discrim := First_Discriminant (Parent_Base);
16724 while Present (Parent_Discrim) loop
16725 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
16726 Next_Discriminant (Parent_Discrim);
16727 end loop;
16728 end if;
16729
16730 -- Create explicit stored discrims for untagged types when necessary
16731
16732 if not Has_Unknown_Discriminants (Derived_Base)
16733 and then Has_Discriminants (Parent_Base)
16734 and then not Is_Tagged
16735 and then
16736 (not Inherit_Discr
16737 or else First_Discriminant (Parent_Base) /=
16738 First_Stored_Discriminant (Parent_Base))
16739 then
16740 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
16741 while Present (Stored_Discrim) loop
16742 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
16743 Next_Stored_Discriminant (Stored_Discrim);
16744 end loop;
16745 end if;
16746
16747 -- See if we can apply the second transformation for derived types, as
16748 -- explained in point 6. in the comments above Build_Derived_Record_Type
16749 -- This is achieved by appending Derived_Base discriminants into Discs,
16750 -- which has the side effect of returning a non empty Discs list to the
16751 -- caller of Inherit_Components, which is what we want. This must be
16752 -- done for private derived types if there are explicit stored
16753 -- discriminants, to ensure that we can retrieve the values of the
16754 -- constraints provided in the ancestors.
16755
16756 if Inherit_Discr
16757 and then Is_Empty_Elmt_List (Discs)
16758 and then Present (First_Discriminant (Derived_Base))
16759 and then
16760 (not Is_Private_Type (Derived_Base)
16761 or else Is_Completely_Hidden
16762 (First_Stored_Discriminant (Derived_Base))
16763 or else Is_Generic_Type (Derived_Base))
16764 then
16765 D := First_Discriminant (Derived_Base);
16766 while Present (D) loop
16767 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
16768 Next_Discriminant (D);
16769 end loop;
16770 end if;
16771
16772 -- Finally, inherit non-discriminant components unless they are not
16773 -- visible because defined or inherited from the full view of the
16774 -- parent. Don't inherit the _parent field of the parent type.
16775
16776 Component := First_Entity (Parent_Base);
16777 while Present (Component) loop
16778
16779 -- Ada 2005 (AI-251): Do not inherit components associated with
16780 -- secondary tags of the parent.
16781
16782 if Ekind (Component) = E_Component
16783 and then Present (Related_Type (Component))
16784 then
16785 null;
16786
16787 elsif Ekind (Component) /= E_Component
16788 or else Chars (Component) = Name_uParent
16789 then
16790 null;
16791
16792 -- If the derived type is within the parent type's declarative
16793 -- region, then the components can still be inherited even though
16794 -- they aren't visible at this point. This can occur for cases
16795 -- such as within public child units where the components must
16796 -- become visible upon entering the child unit's private part.
16797
16798 elsif not Is_Visible_Component (Component)
16799 and then not In_Open_Scopes (Scope (Parent_Base))
16800 then
16801 null;
16802
16803 elsif Ekind_In (Derived_Base, E_Private_Type,
16804 E_Limited_Private_Type)
16805 then
16806 null;
16807
16808 else
16809 Inherit_Component (Component);
16810 end if;
16811
16812 Next_Entity (Component);
16813 end loop;
16814
16815 -- For tagged derived types, inherited discriminants cannot be used in
16816 -- component declarations of the record extension part. To achieve this
16817 -- we mark the inherited discriminants as not visible.
16818
16819 if Is_Tagged and then Inherit_Discr then
16820 D := First_Discriminant (Derived_Base);
16821 while Present (D) loop
16822 Set_Is_Immediately_Visible (D, False);
16823 Next_Discriminant (D);
16824 end loop;
16825 end if;
16826
16827 return Assoc_List;
16828 end Inherit_Components;
16829
16830 -----------------------------
16831 -- Inherit_Predicate_Flags --
16832 -----------------------------
16833
16834 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
16835 begin
16836 Set_Has_Predicates (Subt, Has_Predicates (Par));
16837 Set_Has_Static_Predicate_Aspect
16838 (Subt, Has_Static_Predicate_Aspect (Par));
16839 Set_Has_Dynamic_Predicate_Aspect
16840 (Subt, Has_Dynamic_Predicate_Aspect (Par));
16841 end Inherit_Predicate_Flags;
16842
16843 -----------------------
16844 -- Is_Null_Extension --
16845 -----------------------
16846
16847 function Is_Null_Extension (T : Entity_Id) return Boolean is
16848 Type_Decl : constant Node_Id := Parent (Base_Type (T));
16849 Comp_List : Node_Id;
16850 Comp : Node_Id;
16851
16852 begin
16853 if Nkind (Type_Decl) /= N_Full_Type_Declaration
16854 or else not Is_Tagged_Type (T)
16855 or else Nkind (Type_Definition (Type_Decl)) /=
16856 N_Derived_Type_Definition
16857 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
16858 then
16859 return False;
16860 end if;
16861
16862 Comp_List :=
16863 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
16864
16865 if Present (Discriminant_Specifications (Type_Decl)) then
16866 return False;
16867
16868 elsif Present (Comp_List)
16869 and then Is_Non_Empty_List (Component_Items (Comp_List))
16870 then
16871 Comp := First (Component_Items (Comp_List));
16872
16873 -- Only user-defined components are relevant. The component list
16874 -- may also contain a parent component and internal components
16875 -- corresponding to secondary tags, but these do not determine
16876 -- whether this is a null extension.
16877
16878 while Present (Comp) loop
16879 if Comes_From_Source (Comp) then
16880 return False;
16881 end if;
16882
16883 Next (Comp);
16884 end loop;
16885
16886 return True;
16887 else
16888 return True;
16889 end if;
16890 end Is_Null_Extension;
16891
16892 ------------------------------
16893 -- Is_Valid_Constraint_Kind --
16894 ------------------------------
16895
16896 function Is_Valid_Constraint_Kind
16897 (T_Kind : Type_Kind;
16898 Constraint_Kind : Node_Kind) return Boolean
16899 is
16900 begin
16901 case T_Kind is
16902 when Enumeration_Kind |
16903 Integer_Kind =>
16904 return Constraint_Kind = N_Range_Constraint;
16905
16906 when Decimal_Fixed_Point_Kind =>
16907 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
16908 N_Range_Constraint);
16909
16910 when Ordinary_Fixed_Point_Kind =>
16911 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
16912 N_Range_Constraint);
16913
16914 when Float_Kind =>
16915 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
16916 N_Range_Constraint);
16917
16918 when Access_Kind |
16919 Array_Kind |
16920 E_Record_Type |
16921 E_Record_Subtype |
16922 Class_Wide_Kind |
16923 E_Incomplete_Type |
16924 Private_Kind |
16925 Concurrent_Kind =>
16926 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
16927
16928 when others =>
16929 return True; -- Error will be detected later
16930 end case;
16931 end Is_Valid_Constraint_Kind;
16932
16933 --------------------------
16934 -- Is_Visible_Component --
16935 --------------------------
16936
16937 function Is_Visible_Component
16938 (C : Entity_Id;
16939 N : Node_Id := Empty) return Boolean
16940 is
16941 Original_Comp : Entity_Id := Empty;
16942 Original_Scope : Entity_Id;
16943 Type_Scope : Entity_Id;
16944
16945 function Is_Local_Type (Typ : Entity_Id) return Boolean;
16946 -- Check whether parent type of inherited component is declared locally,
16947 -- possibly within a nested package or instance. The current scope is
16948 -- the derived record itself.
16949
16950 -------------------
16951 -- Is_Local_Type --
16952 -------------------
16953
16954 function Is_Local_Type (Typ : Entity_Id) return Boolean is
16955 Scop : Entity_Id;
16956
16957 begin
16958 Scop := Scope (Typ);
16959 while Present (Scop)
16960 and then Scop /= Standard_Standard
16961 loop
16962 if Scop = Scope (Current_Scope) then
16963 return True;
16964 end if;
16965
16966 Scop := Scope (Scop);
16967 end loop;
16968
16969 return False;
16970 end Is_Local_Type;
16971
16972 -- Start of processing for Is_Visible_Component
16973
16974 begin
16975 if Ekind_In (C, E_Component, E_Discriminant) then
16976 Original_Comp := Original_Record_Component (C);
16977 end if;
16978
16979 if No (Original_Comp) then
16980
16981 -- Premature usage, or previous error
16982
16983 return False;
16984
16985 else
16986 Original_Scope := Scope (Original_Comp);
16987 Type_Scope := Scope (Base_Type (Scope (C)));
16988 end if;
16989
16990 -- This test only concerns tagged types
16991
16992 if not Is_Tagged_Type (Original_Scope) then
16993 return True;
16994
16995 -- If it is _Parent or _Tag, there is no visibility issue
16996
16997 elsif not Comes_From_Source (Original_Comp) then
16998 return True;
16999
17000 -- Discriminants are visible unless the (private) type has unknown
17001 -- discriminants. If the discriminant reference is inserted for a
17002 -- discriminant check on a full view it is also visible.
17003
17004 elsif Ekind (Original_Comp) = E_Discriminant
17005 and then
17006 (not Has_Unknown_Discriminants (Original_Scope)
17007 or else (Present (N)
17008 and then Nkind (N) = N_Selected_Component
17009 and then Nkind (Prefix (N)) = N_Type_Conversion
17010 and then not Comes_From_Source (Prefix (N))))
17011 then
17012 return True;
17013
17014 -- In the body of an instantiation, no need to check for the visibility
17015 -- of a component.
17016
17017 elsif In_Instance_Body then
17018 return True;
17019
17020 -- If the component has been declared in an ancestor which is currently
17021 -- a private type, then it is not visible. The same applies if the
17022 -- component's containing type is not in an open scope and the original
17023 -- component's enclosing type is a visible full view of a private type
17024 -- (which can occur in cases where an attempt is being made to reference
17025 -- a component in a sibling package that is inherited from a visible
17026 -- component of a type in an ancestor package; the component in the
17027 -- sibling package should not be visible even though the component it
17028 -- inherited from is visible). This does not apply however in the case
17029 -- where the scope of the type is a private child unit, or when the
17030 -- parent comes from a local package in which the ancestor is currently
17031 -- visible. The latter suppression of visibility is needed for cases
17032 -- that are tested in B730006.
17033
17034 elsif Is_Private_Type (Original_Scope)
17035 or else
17036 (not Is_Private_Descendant (Type_Scope)
17037 and then not In_Open_Scopes (Type_Scope)
17038 and then Has_Private_Declaration (Original_Scope))
17039 then
17040 -- If the type derives from an entity in a formal package, there
17041 -- are no additional visible components.
17042
17043 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
17044 N_Formal_Package_Declaration
17045 then
17046 return False;
17047
17048 -- if we are not in the private part of the current package, there
17049 -- are no additional visible components.
17050
17051 elsif Ekind (Scope (Current_Scope)) = E_Package
17052 and then not In_Private_Part (Scope (Current_Scope))
17053 then
17054 return False;
17055 else
17056 return
17057 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
17058 and then In_Open_Scopes (Scope (Original_Scope))
17059 and then Is_Local_Type (Type_Scope);
17060 end if;
17061
17062 -- There is another weird way in which a component may be invisible when
17063 -- the private and the full view are not derived from the same ancestor.
17064 -- Here is an example :
17065
17066 -- type A1 is tagged record F1 : integer; end record;
17067 -- type A2 is new A1 with record F2 : integer; end record;
17068 -- type T is new A1 with private;
17069 -- private
17070 -- type T is new A2 with null record;
17071
17072 -- In this case, the full view of T inherits F1 and F2 but the private
17073 -- view inherits only F1
17074
17075 else
17076 declare
17077 Ancestor : Entity_Id := Scope (C);
17078
17079 begin
17080 loop
17081 if Ancestor = Original_Scope then
17082 return True;
17083 elsif Ancestor = Etype (Ancestor) then
17084 return False;
17085 end if;
17086
17087 Ancestor := Etype (Ancestor);
17088 end loop;
17089 end;
17090 end if;
17091 end Is_Visible_Component;
17092
17093 --------------------------
17094 -- Make_Class_Wide_Type --
17095 --------------------------
17096
17097 procedure Make_Class_Wide_Type (T : Entity_Id) is
17098 CW_Type : Entity_Id;
17099 CW_Name : Name_Id;
17100 Next_E : Entity_Id;
17101
17102 begin
17103 if Present (Class_Wide_Type (T)) then
17104
17105 -- The class-wide type is a partially decorated entity created for a
17106 -- unanalyzed tagged type referenced through a limited with clause.
17107 -- When the tagged type is analyzed, its class-wide type needs to be
17108 -- redecorated. Note that we reuse the entity created by Decorate_
17109 -- Tagged_Type in order to preserve all links.
17110
17111 if Materialize_Entity (Class_Wide_Type (T)) then
17112 CW_Type := Class_Wide_Type (T);
17113 Set_Materialize_Entity (CW_Type, False);
17114
17115 -- The class wide type can have been defined by the partial view, in
17116 -- which case everything is already done.
17117
17118 else
17119 return;
17120 end if;
17121
17122 -- Default case, we need to create a new class-wide type
17123
17124 else
17125 CW_Type :=
17126 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
17127 end if;
17128
17129 -- Inherit root type characteristics
17130
17131 CW_Name := Chars (CW_Type);
17132 Next_E := Next_Entity (CW_Type);
17133 Copy_Node (T, CW_Type);
17134 Set_Comes_From_Source (CW_Type, False);
17135 Set_Chars (CW_Type, CW_Name);
17136 Set_Parent (CW_Type, Parent (T));
17137 Set_Next_Entity (CW_Type, Next_E);
17138
17139 -- Ensure we have a new freeze node for the class-wide type. The partial
17140 -- view may have freeze action of its own, requiring a proper freeze
17141 -- node, and the same freeze node cannot be shared between the two
17142 -- types.
17143
17144 Set_Has_Delayed_Freeze (CW_Type);
17145 Set_Freeze_Node (CW_Type, Empty);
17146
17147 -- Customize the class-wide type: It has no prim. op., it cannot be
17148 -- abstract and its Etype points back to the specific root type.
17149
17150 Set_Ekind (CW_Type, E_Class_Wide_Type);
17151 Set_Is_Tagged_Type (CW_Type, True);
17152 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
17153 Set_Is_Abstract_Type (CW_Type, False);
17154 Set_Is_Constrained (CW_Type, False);
17155 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
17156 Set_Default_SSO (CW_Type);
17157
17158 if Ekind (T) = E_Class_Wide_Subtype then
17159 Set_Etype (CW_Type, Etype (Base_Type (T)));
17160 else
17161 Set_Etype (CW_Type, T);
17162 end if;
17163
17164 -- If this is the class_wide type of a constrained subtype, it does
17165 -- not have discriminants.
17166
17167 Set_Has_Discriminants (CW_Type,
17168 Has_Discriminants (T) and then not Is_Constrained (T));
17169
17170 Set_Has_Unknown_Discriminants (CW_Type, True);
17171 Set_Class_Wide_Type (T, CW_Type);
17172 Set_Equivalent_Type (CW_Type, Empty);
17173
17174 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
17175
17176 Set_Class_Wide_Type (CW_Type, CW_Type);
17177 end Make_Class_Wide_Type;
17178
17179 ----------------
17180 -- Make_Index --
17181 ----------------
17182
17183 procedure Make_Index
17184 (N : Node_Id;
17185 Related_Nod : Node_Id;
17186 Related_Id : Entity_Id := Empty;
17187 Suffix_Index : Nat := 1;
17188 In_Iter_Schm : Boolean := False)
17189 is
17190 R : Node_Id;
17191 T : Entity_Id;
17192 Def_Id : Entity_Id := Empty;
17193 Found : Boolean := False;
17194
17195 begin
17196 -- For a discrete range used in a constrained array definition and
17197 -- defined by a range, an implicit conversion to the predefined type
17198 -- INTEGER is assumed if each bound is either a numeric literal, a named
17199 -- number, or an attribute, and the type of both bounds (prior to the
17200 -- implicit conversion) is the type universal_integer. Otherwise, both
17201 -- bounds must be of the same discrete type, other than universal
17202 -- integer; this type must be determinable independently of the
17203 -- context, but using the fact that the type must be discrete and that
17204 -- both bounds must have the same type.
17205
17206 -- Character literals also have a universal type in the absence of
17207 -- of additional context, and are resolved to Standard_Character.
17208
17209 if Nkind (N) = N_Range then
17210
17211 -- The index is given by a range constraint. The bounds are known
17212 -- to be of a consistent type.
17213
17214 if not Is_Overloaded (N) then
17215 T := Etype (N);
17216
17217 -- For universal bounds, choose the specific predefined type
17218
17219 if T = Universal_Integer then
17220 T := Standard_Integer;
17221
17222 elsif T = Any_Character then
17223 Ambiguous_Character (Low_Bound (N));
17224
17225 T := Standard_Character;
17226 end if;
17227
17228 -- The node may be overloaded because some user-defined operators
17229 -- are available, but if a universal interpretation exists it is
17230 -- also the selected one.
17231
17232 elsif Universal_Interpretation (N) = Universal_Integer then
17233 T := Standard_Integer;
17234
17235 else
17236 T := Any_Type;
17237
17238 declare
17239 Ind : Interp_Index;
17240 It : Interp;
17241
17242 begin
17243 Get_First_Interp (N, Ind, It);
17244 while Present (It.Typ) loop
17245 if Is_Discrete_Type (It.Typ) then
17246
17247 if Found
17248 and then not Covers (It.Typ, T)
17249 and then not Covers (T, It.Typ)
17250 then
17251 Error_Msg_N ("ambiguous bounds in discrete range", N);
17252 exit;
17253 else
17254 T := It.Typ;
17255 Found := True;
17256 end if;
17257 end if;
17258
17259 Get_Next_Interp (Ind, It);
17260 end loop;
17261
17262 if T = Any_Type then
17263 Error_Msg_N ("discrete type required for range", N);
17264 Set_Etype (N, Any_Type);
17265 return;
17266
17267 elsif T = Universal_Integer then
17268 T := Standard_Integer;
17269 end if;
17270 end;
17271 end if;
17272
17273 if not Is_Discrete_Type (T) then
17274 Error_Msg_N ("discrete type required for range", N);
17275 Set_Etype (N, Any_Type);
17276 return;
17277 end if;
17278
17279 if Nkind (Low_Bound (N)) = N_Attribute_Reference
17280 and then Attribute_Name (Low_Bound (N)) = Name_First
17281 and then Is_Entity_Name (Prefix (Low_Bound (N)))
17282 and then Is_Type (Entity (Prefix (Low_Bound (N))))
17283 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
17284 then
17285 -- The type of the index will be the type of the prefix, as long
17286 -- as the upper bound is 'Last of the same type.
17287
17288 Def_Id := Entity (Prefix (Low_Bound (N)));
17289
17290 if Nkind (High_Bound (N)) /= N_Attribute_Reference
17291 or else Attribute_Name (High_Bound (N)) /= Name_Last
17292 or else not Is_Entity_Name (Prefix (High_Bound (N)))
17293 or else Entity (Prefix (High_Bound (N))) /= Def_Id
17294 then
17295 Def_Id := Empty;
17296 end if;
17297 end if;
17298
17299 R := N;
17300 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
17301
17302 elsif Nkind (N) = N_Subtype_Indication then
17303
17304 -- The index is given by a subtype with a range constraint
17305
17306 T := Base_Type (Entity (Subtype_Mark (N)));
17307
17308 if not Is_Discrete_Type (T) then
17309 Error_Msg_N ("discrete type required for range", N);
17310 Set_Etype (N, Any_Type);
17311 return;
17312 end if;
17313
17314 R := Range_Expression (Constraint (N));
17315
17316 Resolve (R, T);
17317 Process_Range_Expr_In_Decl
17318 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
17319
17320 elsif Nkind (N) = N_Attribute_Reference then
17321
17322 -- Catch beginner's error (use of attribute other than 'Range)
17323
17324 if Attribute_Name (N) /= Name_Range then
17325 Error_Msg_N ("expect attribute ''Range", N);
17326 Set_Etype (N, Any_Type);
17327 return;
17328 end if;
17329
17330 -- If the node denotes the range of a type mark, that is also the
17331 -- resulting type, and we do not need to create an Itype for it.
17332
17333 if Is_Entity_Name (Prefix (N))
17334 and then Comes_From_Source (N)
17335 and then Is_Type (Entity (Prefix (N)))
17336 and then Is_Discrete_Type (Entity (Prefix (N)))
17337 then
17338 Def_Id := Entity (Prefix (N));
17339 end if;
17340
17341 Analyze_And_Resolve (N);
17342 T := Etype (N);
17343 R := N;
17344
17345 -- If none of the above, must be a subtype. We convert this to a
17346 -- range attribute reference because in the case of declared first
17347 -- named subtypes, the types in the range reference can be different
17348 -- from the type of the entity. A range attribute normalizes the
17349 -- reference and obtains the correct types for the bounds.
17350
17351 -- This transformation is in the nature of an expansion, is only
17352 -- done if expansion is active. In particular, it is not done on
17353 -- formal generic types, because we need to retain the name of the
17354 -- original index for instantiation purposes.
17355
17356 else
17357 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
17358 Error_Msg_N ("invalid subtype mark in discrete range ", N);
17359 Set_Etype (N, Any_Integer);
17360 return;
17361
17362 else
17363 -- The type mark may be that of an incomplete type. It is only
17364 -- now that we can get the full view, previous analysis does
17365 -- not look specifically for a type mark.
17366
17367 Set_Entity (N, Get_Full_View (Entity (N)));
17368 Set_Etype (N, Entity (N));
17369 Def_Id := Entity (N);
17370
17371 if not Is_Discrete_Type (Def_Id) then
17372 Error_Msg_N ("discrete type required for index", N);
17373 Set_Etype (N, Any_Type);
17374 return;
17375 end if;
17376 end if;
17377
17378 if Expander_Active then
17379 Rewrite (N,
17380 Make_Attribute_Reference (Sloc (N),
17381 Attribute_Name => Name_Range,
17382 Prefix => Relocate_Node (N)));
17383
17384 -- The original was a subtype mark that does not freeze. This
17385 -- means that the rewritten version must not freeze either.
17386
17387 Set_Must_Not_Freeze (N);
17388 Set_Must_Not_Freeze (Prefix (N));
17389 Analyze_And_Resolve (N);
17390 T := Etype (N);
17391 R := N;
17392
17393 -- If expander is inactive, type is legal, nothing else to construct
17394
17395 else
17396 return;
17397 end if;
17398 end if;
17399
17400 if not Is_Discrete_Type (T) then
17401 Error_Msg_N ("discrete type required for range", N);
17402 Set_Etype (N, Any_Type);
17403 return;
17404
17405 elsif T = Any_Type then
17406 Set_Etype (N, Any_Type);
17407 return;
17408 end if;
17409
17410 -- We will now create the appropriate Itype to describe the range, but
17411 -- first a check. If we originally had a subtype, then we just label
17412 -- the range with this subtype. Not only is there no need to construct
17413 -- a new subtype, but it is wrong to do so for two reasons:
17414
17415 -- 1. A legality concern, if we have a subtype, it must not freeze,
17416 -- and the Itype would cause freezing incorrectly
17417
17418 -- 2. An efficiency concern, if we created an Itype, it would not be
17419 -- recognized as the same type for the purposes of eliminating
17420 -- checks in some circumstances.
17421
17422 -- We signal this case by setting the subtype entity in Def_Id
17423
17424 if No (Def_Id) then
17425 Def_Id :=
17426 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
17427 Set_Etype (Def_Id, Base_Type (T));
17428
17429 if Is_Signed_Integer_Type (T) then
17430 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
17431
17432 elsif Is_Modular_Integer_Type (T) then
17433 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
17434
17435 else
17436 Set_Ekind (Def_Id, E_Enumeration_Subtype);
17437 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
17438 Set_First_Literal (Def_Id, First_Literal (T));
17439 end if;
17440
17441 Set_Size_Info (Def_Id, (T));
17442 Set_RM_Size (Def_Id, RM_Size (T));
17443 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
17444
17445 Set_Scalar_Range (Def_Id, R);
17446 Conditional_Delay (Def_Id, T);
17447
17448 if Nkind (N) = N_Subtype_Indication then
17449 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
17450 end if;
17451
17452 -- In the subtype indication case, if the immediate parent of the
17453 -- new subtype is non-static, then the subtype we create is non-
17454 -- static, even if its bounds are static.
17455
17456 if Nkind (N) = N_Subtype_Indication
17457 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
17458 then
17459 Set_Is_Non_Static_Subtype (Def_Id);
17460 end if;
17461 end if;
17462
17463 -- Final step is to label the index with this constructed type
17464
17465 Set_Etype (N, Def_Id);
17466 end Make_Index;
17467
17468 ------------------------------
17469 -- Modular_Type_Declaration --
17470 ------------------------------
17471
17472 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
17473 Mod_Expr : constant Node_Id := Expression (Def);
17474 M_Val : Uint;
17475
17476 procedure Set_Modular_Size (Bits : Int);
17477 -- Sets RM_Size to Bits, and Esize to normal word size above this
17478
17479 ----------------------
17480 -- Set_Modular_Size --
17481 ----------------------
17482
17483 procedure Set_Modular_Size (Bits : Int) is
17484 begin
17485 Set_RM_Size (T, UI_From_Int (Bits));
17486
17487 if Bits <= 8 then
17488 Init_Esize (T, 8);
17489
17490 elsif Bits <= 16 then
17491 Init_Esize (T, 16);
17492
17493 elsif Bits <= 32 then
17494 Init_Esize (T, 32);
17495
17496 else
17497 Init_Esize (T, System_Max_Binary_Modulus_Power);
17498 end if;
17499
17500 if not Non_Binary_Modulus (T)
17501 and then Esize (T) = RM_Size (T)
17502 then
17503 Set_Is_Known_Valid (T);
17504 end if;
17505 end Set_Modular_Size;
17506
17507 -- Start of processing for Modular_Type_Declaration
17508
17509 begin
17510 -- If the mod expression is (exactly) 2 * literal, where literal is
17511 -- 64 or less,then almost certainly the * was meant to be **. Warn.
17512
17513 if Warn_On_Suspicious_Modulus_Value
17514 and then Nkind (Mod_Expr) = N_Op_Multiply
17515 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
17516 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
17517 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
17518 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
17519 then
17520 Error_Msg_N
17521 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
17522 end if;
17523
17524 -- Proceed with analysis of mod expression
17525
17526 Analyze_And_Resolve (Mod_Expr, Any_Integer);
17527 Set_Etype (T, T);
17528 Set_Ekind (T, E_Modular_Integer_Type);
17529 Init_Alignment (T);
17530 Set_Is_Constrained (T);
17531
17532 if not Is_OK_Static_Expression (Mod_Expr) then
17533 Flag_Non_Static_Expr
17534 ("non-static expression used for modular type bound!", Mod_Expr);
17535 M_Val := 2 ** System_Max_Binary_Modulus_Power;
17536 else
17537 M_Val := Expr_Value (Mod_Expr);
17538 end if;
17539
17540 if M_Val < 1 then
17541 Error_Msg_N ("modulus value must be positive", Mod_Expr);
17542 M_Val := 2 ** System_Max_Binary_Modulus_Power;
17543 end if;
17544
17545 if M_Val > 2 ** Standard_Long_Integer_Size then
17546 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
17547 end if;
17548
17549 Set_Modulus (T, M_Val);
17550
17551 -- Create bounds for the modular type based on the modulus given in
17552 -- the type declaration and then analyze and resolve those bounds.
17553
17554 Set_Scalar_Range (T,
17555 Make_Range (Sloc (Mod_Expr),
17556 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
17557 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
17558
17559 -- Properly analyze the literals for the range. We do this manually
17560 -- because we can't go calling Resolve, since we are resolving these
17561 -- bounds with the type, and this type is certainly not complete yet.
17562
17563 Set_Etype (Low_Bound (Scalar_Range (T)), T);
17564 Set_Etype (High_Bound (Scalar_Range (T)), T);
17565 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
17566 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
17567
17568 -- Loop through powers of two to find number of bits required
17569
17570 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
17571
17572 -- Binary case
17573
17574 if M_Val = 2 ** Bits then
17575 Set_Modular_Size (Bits);
17576 return;
17577
17578 -- Non-binary case
17579
17580 elsif M_Val < 2 ** Bits then
17581 Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
17582 Set_Non_Binary_Modulus (T);
17583
17584 if Bits > System_Max_Nonbinary_Modulus_Power then
17585 Error_Msg_Uint_1 :=
17586 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
17587 Error_Msg_F
17588 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
17589 Set_Modular_Size (System_Max_Binary_Modulus_Power);
17590 return;
17591
17592 else
17593 -- In the non-binary case, set size as per RM 13.3(55)
17594
17595 Set_Modular_Size (Bits);
17596 return;
17597 end if;
17598 end if;
17599
17600 end loop;
17601
17602 -- If we fall through, then the size exceed System.Max_Binary_Modulus
17603 -- so we just signal an error and set the maximum size.
17604
17605 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
17606 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
17607
17608 Set_Modular_Size (System_Max_Binary_Modulus_Power);
17609 Init_Alignment (T);
17610
17611 end Modular_Type_Declaration;
17612
17613 --------------------------
17614 -- New_Concatenation_Op --
17615 --------------------------
17616
17617 procedure New_Concatenation_Op (Typ : Entity_Id) is
17618 Loc : constant Source_Ptr := Sloc (Typ);
17619 Op : Entity_Id;
17620
17621 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
17622 -- Create abbreviated declaration for the formal of a predefined
17623 -- Operator 'Op' of type 'Typ'
17624
17625 --------------------
17626 -- Make_Op_Formal --
17627 --------------------
17628
17629 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
17630 Formal : Entity_Id;
17631 begin
17632 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
17633 Set_Etype (Formal, Typ);
17634 Set_Mechanism (Formal, Default_Mechanism);
17635 return Formal;
17636 end Make_Op_Formal;
17637
17638 -- Start of processing for New_Concatenation_Op
17639
17640 begin
17641 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
17642
17643 Set_Ekind (Op, E_Operator);
17644 Set_Scope (Op, Current_Scope);
17645 Set_Etype (Op, Typ);
17646 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
17647 Set_Is_Immediately_Visible (Op);
17648 Set_Is_Intrinsic_Subprogram (Op);
17649 Set_Has_Completion (Op);
17650 Append_Entity (Op, Current_Scope);
17651
17652 Set_Name_Entity_Id (Name_Op_Concat, Op);
17653
17654 Append_Entity (Make_Op_Formal (Typ, Op), Op);
17655 Append_Entity (Make_Op_Formal (Typ, Op), Op);
17656 end New_Concatenation_Op;
17657
17658 -------------------------
17659 -- OK_For_Limited_Init --
17660 -------------------------
17661
17662 -- ???Check all calls of this, and compare the conditions under which it's
17663 -- called.
17664
17665 function OK_For_Limited_Init
17666 (Typ : Entity_Id;
17667 Exp : Node_Id) return Boolean
17668 is
17669 begin
17670 return Is_CPP_Constructor_Call (Exp)
17671 or else (Ada_Version >= Ada_2005
17672 and then not Debug_Flag_Dot_L
17673 and then OK_For_Limited_Init_In_05 (Typ, Exp));
17674 end OK_For_Limited_Init;
17675
17676 -------------------------------
17677 -- OK_For_Limited_Init_In_05 --
17678 -------------------------------
17679
17680 function OK_For_Limited_Init_In_05
17681 (Typ : Entity_Id;
17682 Exp : Node_Id) return Boolean
17683 is
17684 begin
17685 -- An object of a limited interface type can be initialized with any
17686 -- expression of a nonlimited descendant type.
17687
17688 if Is_Class_Wide_Type (Typ)
17689 and then Is_Limited_Interface (Typ)
17690 and then not Is_Limited_Type (Etype (Exp))
17691 then
17692 return True;
17693 end if;
17694
17695 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
17696 -- case of limited aggregates (including extension aggregates), and
17697 -- function calls. The function call may have been given in prefixed
17698 -- notation, in which case the original node is an indexed component.
17699 -- If the function is parameterless, the original node was an explicit
17700 -- dereference. The function may also be parameterless, in which case
17701 -- the source node is just an identifier.
17702
17703 case Nkind (Original_Node (Exp)) is
17704 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
17705 return True;
17706
17707 when N_Identifier =>
17708 return Present (Entity (Original_Node (Exp)))
17709 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
17710
17711 when N_Qualified_Expression =>
17712 return
17713 OK_For_Limited_Init_In_05
17714 (Typ, Expression (Original_Node (Exp)));
17715
17716 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
17717 -- with a function call, the expander has rewritten the call into an
17718 -- N_Type_Conversion node to force displacement of the pointer to
17719 -- reference the component containing the secondary dispatch table.
17720 -- Otherwise a type conversion is not a legal context.
17721 -- A return statement for a build-in-place function returning a
17722 -- synchronized type also introduces an unchecked conversion.
17723
17724 when N_Type_Conversion |
17725 N_Unchecked_Type_Conversion =>
17726 return not Comes_From_Source (Exp)
17727 and then
17728 OK_For_Limited_Init_In_05
17729 (Typ, Expression (Original_Node (Exp)));
17730
17731 when N_Indexed_Component |
17732 N_Selected_Component |
17733 N_Explicit_Dereference =>
17734 return Nkind (Exp) = N_Function_Call;
17735
17736 -- A use of 'Input is a function call, hence allowed. Normally the
17737 -- attribute will be changed to a call, but the attribute by itself
17738 -- can occur with -gnatc.
17739
17740 when N_Attribute_Reference =>
17741 return Attribute_Name (Original_Node (Exp)) = Name_Input;
17742
17743 -- For a case expression, all dependent expressions must be legal
17744
17745 when N_Case_Expression =>
17746 declare
17747 Alt : Node_Id;
17748
17749 begin
17750 Alt := First (Alternatives (Original_Node (Exp)));
17751 while Present (Alt) loop
17752 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
17753 return False;
17754 end if;
17755
17756 Next (Alt);
17757 end loop;
17758
17759 return True;
17760 end;
17761
17762 -- For an if expression, all dependent expressions must be legal
17763
17764 when N_If_Expression =>
17765 declare
17766 Then_Expr : constant Node_Id :=
17767 Next (First (Expressions (Original_Node (Exp))));
17768 Else_Expr : constant Node_Id := Next (Then_Expr);
17769 begin
17770 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
17771 and then
17772 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
17773 end;
17774
17775 when others =>
17776 return False;
17777 end case;
17778 end OK_For_Limited_Init_In_05;
17779
17780 -------------------------------------------
17781 -- Ordinary_Fixed_Point_Type_Declaration --
17782 -------------------------------------------
17783
17784 procedure Ordinary_Fixed_Point_Type_Declaration
17785 (T : Entity_Id;
17786 Def : Node_Id)
17787 is
17788 Loc : constant Source_Ptr := Sloc (Def);
17789 Delta_Expr : constant Node_Id := Delta_Expression (Def);
17790 RRS : constant Node_Id := Real_Range_Specification (Def);
17791 Implicit_Base : Entity_Id;
17792 Delta_Val : Ureal;
17793 Small_Val : Ureal;
17794 Low_Val : Ureal;
17795 High_Val : Ureal;
17796
17797 begin
17798 Check_Restriction (No_Fixed_Point, Def);
17799
17800 -- Create implicit base type
17801
17802 Implicit_Base :=
17803 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
17804 Set_Etype (Implicit_Base, Implicit_Base);
17805
17806 -- Analyze and process delta expression
17807
17808 Analyze_And_Resolve (Delta_Expr, Any_Real);
17809
17810 Check_Delta_Expression (Delta_Expr);
17811 Delta_Val := Expr_Value_R (Delta_Expr);
17812
17813 Set_Delta_Value (Implicit_Base, Delta_Val);
17814
17815 -- Compute default small from given delta, which is the largest power
17816 -- of two that does not exceed the given delta value.
17817
17818 declare
17819 Tmp : Ureal;
17820 Scale : Int;
17821
17822 begin
17823 Tmp := Ureal_1;
17824 Scale := 0;
17825
17826 if Delta_Val < Ureal_1 then
17827 while Delta_Val < Tmp loop
17828 Tmp := Tmp / Ureal_2;
17829 Scale := Scale + 1;
17830 end loop;
17831
17832 else
17833 loop
17834 Tmp := Tmp * Ureal_2;
17835 exit when Tmp > Delta_Val;
17836 Scale := Scale - 1;
17837 end loop;
17838 end if;
17839
17840 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
17841 end;
17842
17843 Set_Small_Value (Implicit_Base, Small_Val);
17844
17845 -- If no range was given, set a dummy range
17846
17847 if RRS <= Empty_Or_Error then
17848 Low_Val := -Small_Val;
17849 High_Val := Small_Val;
17850
17851 -- Otherwise analyze and process given range
17852
17853 else
17854 declare
17855 Low : constant Node_Id := Low_Bound (RRS);
17856 High : constant Node_Id := High_Bound (RRS);
17857
17858 begin
17859 Analyze_And_Resolve (Low, Any_Real);
17860 Analyze_And_Resolve (High, Any_Real);
17861 Check_Real_Bound (Low);
17862 Check_Real_Bound (High);
17863
17864 -- Obtain and set the range
17865
17866 Low_Val := Expr_Value_R (Low);
17867 High_Val := Expr_Value_R (High);
17868
17869 if Low_Val > High_Val then
17870 Error_Msg_NE ("??fixed point type& has null range", Def, T);
17871 end if;
17872 end;
17873 end if;
17874
17875 -- The range for both the implicit base and the declared first subtype
17876 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
17877 -- set a temporary range in place. Note that the bounds of the base
17878 -- type will be widened to be symmetrical and to fill the available
17879 -- bits when the type is frozen.
17880
17881 -- We could do this with all discrete types, and probably should, but
17882 -- we absolutely have to do it for fixed-point, since the end-points
17883 -- of the range and the size are determined by the small value, which
17884 -- could be reset before the freeze point.
17885
17886 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
17887 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
17888
17889 -- Complete definition of first subtype
17890
17891 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
17892 Set_Etype (T, Implicit_Base);
17893 Init_Size_Align (T);
17894 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
17895 Set_Small_Value (T, Small_Val);
17896 Set_Delta_Value (T, Delta_Val);
17897 Set_Is_Constrained (T);
17898
17899 end Ordinary_Fixed_Point_Type_Declaration;
17900
17901 ----------------------------------------
17902 -- Prepare_Private_Subtype_Completion --
17903 ----------------------------------------
17904
17905 procedure Prepare_Private_Subtype_Completion
17906 (Id : Entity_Id;
17907 Related_Nod : Node_Id)
17908 is
17909 Id_B : constant Entity_Id := Base_Type (Id);
17910 Full_B : Entity_Id := Full_View (Id_B);
17911 Full : Entity_Id;
17912
17913 begin
17914 if Present (Full_B) then
17915
17916 -- Get to the underlying full view if necessary
17917
17918 if Is_Private_Type (Full_B)
17919 and then Present (Underlying_Full_View (Full_B))
17920 then
17921 Full_B := Underlying_Full_View (Full_B);
17922 end if;
17923
17924 -- The Base_Type is already completed, we can complete the subtype
17925 -- now. We have to create a new entity with the same name, Thus we
17926 -- can't use Create_Itype.
17927
17928 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
17929 Set_Is_Itype (Full);
17930 Set_Associated_Node_For_Itype (Full, Related_Nod);
17931 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
17932 end if;
17933
17934 -- The parent subtype may be private, but the base might not, in some
17935 -- nested instances. In that case, the subtype does not need to be
17936 -- exchanged. It would still be nice to make private subtypes and their
17937 -- bases consistent at all times ???
17938
17939 if Is_Private_Type (Id_B) then
17940 Append_Elmt (Id, Private_Dependents (Id_B));
17941 end if;
17942 end Prepare_Private_Subtype_Completion;
17943
17944 ---------------------------
17945 -- Process_Discriminants --
17946 ---------------------------
17947
17948 procedure Process_Discriminants
17949 (N : Node_Id;
17950 Prev : Entity_Id := Empty)
17951 is
17952 Elist : constant Elist_Id := New_Elmt_List;
17953 Id : Node_Id;
17954 Discr : Node_Id;
17955 Discr_Number : Uint;
17956 Discr_Type : Entity_Id;
17957 Default_Present : Boolean := False;
17958 Default_Not_Present : Boolean := False;
17959
17960 begin
17961 -- A composite type other than an array type can have discriminants.
17962 -- On entry, the current scope is the composite type.
17963
17964 -- The discriminants are initially entered into the scope of the type
17965 -- via Enter_Name with the default Ekind of E_Void to prevent premature
17966 -- use, as explained at the end of this procedure.
17967
17968 Discr := First (Discriminant_Specifications (N));
17969 while Present (Discr) loop
17970 Enter_Name (Defining_Identifier (Discr));
17971
17972 -- For navigation purposes we add a reference to the discriminant
17973 -- in the entity for the type. If the current declaration is a
17974 -- completion, place references on the partial view. Otherwise the
17975 -- type is the current scope.
17976
17977 if Present (Prev) then
17978
17979 -- The references go on the partial view, if present. If the
17980 -- partial view has discriminants, the references have been
17981 -- generated already.
17982
17983 if not Has_Discriminants (Prev) then
17984 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
17985 end if;
17986 else
17987 Generate_Reference
17988 (Current_Scope, Defining_Identifier (Discr), 'd');
17989 end if;
17990
17991 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
17992 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
17993
17994 -- Ada 2005 (AI-254)
17995
17996 if Present (Access_To_Subprogram_Definition
17997 (Discriminant_Type (Discr)))
17998 and then Protected_Present (Access_To_Subprogram_Definition
17999 (Discriminant_Type (Discr)))
18000 then
18001 Discr_Type :=
18002 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
18003 end if;
18004
18005 else
18006 Find_Type (Discriminant_Type (Discr));
18007 Discr_Type := Etype (Discriminant_Type (Discr));
18008
18009 if Error_Posted (Discriminant_Type (Discr)) then
18010 Discr_Type := Any_Type;
18011 end if;
18012 end if;
18013
18014 if Is_Access_Type (Discr_Type) then
18015
18016 -- Ada 2005 (AI-230): Access discriminant allowed in non-limited
18017 -- record types
18018
18019 if Ada_Version < Ada_2005 then
18020 Check_Access_Discriminant_Requires_Limited
18021 (Discr, Discriminant_Type (Discr));
18022 end if;
18023
18024 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
18025 Error_Msg_N
18026 ("(Ada 83) access discriminant not allowed", Discr);
18027 end if;
18028
18029 elsif not Is_Discrete_Type (Discr_Type) then
18030 Error_Msg_N ("discriminants must have a discrete or access type",
18031 Discriminant_Type (Discr));
18032 end if;
18033
18034 Set_Etype (Defining_Identifier (Discr), Discr_Type);
18035
18036 -- If a discriminant specification includes the assignment compound
18037 -- delimiter followed by an expression, the expression is the default
18038 -- expression of the discriminant; the default expression must be of
18039 -- the type of the discriminant. (RM 3.7.1) Since this expression is
18040 -- a default expression, we do the special preanalysis, since this
18041 -- expression does not freeze (see "Handling of Default and Per-
18042 -- Object Expressions" in spec of package Sem).
18043
18044 if Present (Expression (Discr)) then
18045 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
18046
18047 -- Legaity checks
18048
18049 if Nkind (N) = N_Formal_Type_Declaration then
18050 Error_Msg_N
18051 ("discriminant defaults not allowed for formal type",
18052 Expression (Discr));
18053
18054 -- Flag an error for a tagged type with defaulted discriminants,
18055 -- excluding limited tagged types when compiling for Ada 2012
18056 -- (see AI05-0214).
18057
18058 elsif Is_Tagged_Type (Current_Scope)
18059 and then (not Is_Limited_Type (Current_Scope)
18060 or else Ada_Version < Ada_2012)
18061 and then Comes_From_Source (N)
18062 then
18063 -- Note: see similar test in Check_Or_Process_Discriminants, to
18064 -- handle the (illegal) case of the completion of an untagged
18065 -- view with discriminants with defaults by a tagged full view.
18066 -- We skip the check if Discr does not come from source, to
18067 -- account for the case of an untagged derived type providing
18068 -- defaults for a renamed discriminant from a private untagged
18069 -- ancestor with a tagged full view (ACATS B460006).
18070
18071 if Ada_Version >= Ada_2012 then
18072 Error_Msg_N
18073 ("discriminants of nonlimited tagged type cannot have"
18074 & " defaults",
18075 Expression (Discr));
18076 else
18077 Error_Msg_N
18078 ("discriminants of tagged type cannot have defaults",
18079 Expression (Discr));
18080 end if;
18081
18082 else
18083 Default_Present := True;
18084 Append_Elmt (Expression (Discr), Elist);
18085
18086 -- Tag the defining identifiers for the discriminants with
18087 -- their corresponding default expressions from the tree.
18088
18089 Set_Discriminant_Default_Value
18090 (Defining_Identifier (Discr), Expression (Discr));
18091 end if;
18092
18093 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
18094 -- gets set unless we can be sure that no range check is required.
18095
18096 if (GNATprove_Mode or not Expander_Active)
18097 and then not
18098 Is_In_Range
18099 (Expression (Discr), Discr_Type, Assume_Valid => True)
18100 then
18101 Set_Do_Range_Check (Expression (Discr));
18102 end if;
18103
18104 -- No default discriminant value given
18105
18106 else
18107 Default_Not_Present := True;
18108 end if;
18109
18110 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
18111 -- Discr_Type but with the null-exclusion attribute
18112
18113 if Ada_Version >= Ada_2005 then
18114
18115 -- Ada 2005 (AI-231): Static checks
18116
18117 if Can_Never_Be_Null (Discr_Type) then
18118 Null_Exclusion_Static_Checks (Discr);
18119
18120 elsif Is_Access_Type (Discr_Type)
18121 and then Null_Exclusion_Present (Discr)
18122
18123 -- No need to check itypes because in their case this check
18124 -- was done at their point of creation
18125
18126 and then not Is_Itype (Discr_Type)
18127 then
18128 if Can_Never_Be_Null (Discr_Type) then
18129 Error_Msg_NE
18130 ("`NOT NULL` not allowed (& already excludes null)",
18131 Discr,
18132 Discr_Type);
18133 end if;
18134
18135 Set_Etype (Defining_Identifier (Discr),
18136 Create_Null_Excluding_Itype
18137 (T => Discr_Type,
18138 Related_Nod => Discr));
18139
18140 -- Check for improper null exclusion if the type is otherwise
18141 -- legal for a discriminant.
18142
18143 elsif Null_Exclusion_Present (Discr)
18144 and then Is_Discrete_Type (Discr_Type)
18145 then
18146 Error_Msg_N
18147 ("null exclusion can only apply to an access type", Discr);
18148 end if;
18149
18150 -- Ada 2005 (AI-402): access discriminants of nonlimited types
18151 -- can't have defaults. Synchronized types, or types that are
18152 -- explicitly limited are fine, but special tests apply to derived
18153 -- types in generics: in a generic body we have to assume the
18154 -- worst, and therefore defaults are not allowed if the parent is
18155 -- a generic formal private type (see ACATS B370001).
18156
18157 if Is_Access_Type (Discr_Type) and then Default_Present then
18158 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
18159 or else Is_Limited_Record (Current_Scope)
18160 or else Is_Concurrent_Type (Current_Scope)
18161 or else Is_Concurrent_Record_Type (Current_Scope)
18162 or else Ekind (Current_Scope) = E_Limited_Private_Type
18163 then
18164 if not Is_Derived_Type (Current_Scope)
18165 or else not Is_Generic_Type (Etype (Current_Scope))
18166 or else not In_Package_Body (Scope (Etype (Current_Scope)))
18167 or else Limited_Present
18168 (Type_Definition (Parent (Current_Scope)))
18169 then
18170 null;
18171
18172 else
18173 Error_Msg_N ("access discriminants of nonlimited types",
18174 Expression (Discr));
18175 Error_Msg_N ("\cannot have defaults", Expression (Discr));
18176 end if;
18177
18178 elsif Present (Expression (Discr)) then
18179 Error_Msg_N
18180 ("(Ada 2005) access discriminants of nonlimited types",
18181 Expression (Discr));
18182 Error_Msg_N ("\cannot have defaults", Expression (Discr));
18183 end if;
18184 end if;
18185 end if;
18186
18187 -- A discriminant cannot be effectively volatile. This check is only
18188 -- relevant when SPARK_Mode is on as it is not standard Ada legality
18189 -- rule (SPARK RM 7.1.3(6)).
18190
18191 if SPARK_Mode = On
18192 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
18193 then
18194 Error_Msg_N ("discriminant cannot be volatile", Discr);
18195 end if;
18196
18197 Next (Discr);
18198 end loop;
18199
18200 -- An element list consisting of the default expressions of the
18201 -- discriminants is constructed in the above loop and used to set
18202 -- the Discriminant_Constraint attribute for the type. If an object
18203 -- is declared of this (record or task) type without any explicit
18204 -- discriminant constraint given, this element list will form the
18205 -- actual parameters for the corresponding initialization procedure
18206 -- for the type.
18207
18208 Set_Discriminant_Constraint (Current_Scope, Elist);
18209 Set_Stored_Constraint (Current_Scope, No_Elist);
18210
18211 -- Default expressions must be provided either for all or for none
18212 -- of the discriminants of a discriminant part. (RM 3.7.1)
18213
18214 if Default_Present and then Default_Not_Present then
18215 Error_Msg_N
18216 ("incomplete specification of defaults for discriminants", N);
18217 end if;
18218
18219 -- The use of the name of a discriminant is not allowed in default
18220 -- expressions of a discriminant part if the specification of the
18221 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
18222
18223 -- To detect this, the discriminant names are entered initially with an
18224 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
18225 -- attempt to use a void entity (for example in an expression that is
18226 -- type-checked) produces the error message: premature usage. Now after
18227 -- completing the semantic analysis of the discriminant part, we can set
18228 -- the Ekind of all the discriminants appropriately.
18229
18230 Discr := First (Discriminant_Specifications (N));
18231 Discr_Number := Uint_1;
18232 while Present (Discr) loop
18233 Id := Defining_Identifier (Discr);
18234 Set_Ekind (Id, E_Discriminant);
18235 Init_Component_Location (Id);
18236 Init_Esize (Id);
18237 Set_Discriminant_Number (Id, Discr_Number);
18238
18239 -- Make sure this is always set, even in illegal programs
18240
18241 Set_Corresponding_Discriminant (Id, Empty);
18242
18243 -- Initialize the Original_Record_Component to the entity itself.
18244 -- Inherit_Components will propagate the right value to
18245 -- discriminants in derived record types.
18246
18247 Set_Original_Record_Component (Id, Id);
18248
18249 -- Create the discriminal for the discriminant
18250
18251 Build_Discriminal (Id);
18252
18253 Next (Discr);
18254 Discr_Number := Discr_Number + 1;
18255 end loop;
18256
18257 Set_Has_Discriminants (Current_Scope);
18258 end Process_Discriminants;
18259
18260 -----------------------
18261 -- Process_Full_View --
18262 -----------------------
18263
18264 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
18265 Priv_Parent : Entity_Id;
18266 Full_Parent : Entity_Id;
18267 Full_Indic : Node_Id;
18268
18269 procedure Collect_Implemented_Interfaces
18270 (Typ : Entity_Id;
18271 Ifaces : Elist_Id);
18272 -- Ada 2005: Gather all the interfaces that Typ directly or
18273 -- inherently implements. Duplicate entries are not added to
18274 -- the list Ifaces.
18275
18276 ------------------------------------
18277 -- Collect_Implemented_Interfaces --
18278 ------------------------------------
18279
18280 procedure Collect_Implemented_Interfaces
18281 (Typ : Entity_Id;
18282 Ifaces : Elist_Id)
18283 is
18284 Iface : Entity_Id;
18285 Iface_Elmt : Elmt_Id;
18286
18287 begin
18288 -- Abstract interfaces are only associated with tagged record types
18289
18290 if not Is_Tagged_Type (Typ)
18291 or else not Is_Record_Type (Typ)
18292 then
18293 return;
18294 end if;
18295
18296 -- Recursively climb to the ancestors
18297
18298 if Etype (Typ) /= Typ
18299
18300 -- Protect the frontend against wrong cyclic declarations like:
18301
18302 -- type B is new A with private;
18303 -- type C is new A with private;
18304 -- private
18305 -- type B is new C with null record;
18306 -- type C is new B with null record;
18307
18308 and then Etype (Typ) /= Priv_T
18309 and then Etype (Typ) /= Full_T
18310 then
18311 -- Keep separate the management of private type declarations
18312
18313 if Ekind (Typ) = E_Record_Type_With_Private then
18314
18315 -- Handle the following illegal usage:
18316 -- type Private_Type is tagged private;
18317 -- private
18318 -- type Private_Type is new Type_Implementing_Iface;
18319
18320 if Present (Full_View (Typ))
18321 and then Etype (Typ) /= Full_View (Typ)
18322 then
18323 if Is_Interface (Etype (Typ)) then
18324 Append_Unique_Elmt (Etype (Typ), Ifaces);
18325 end if;
18326
18327 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18328 end if;
18329
18330 -- Non-private types
18331
18332 else
18333 if Is_Interface (Etype (Typ)) then
18334 Append_Unique_Elmt (Etype (Typ), Ifaces);
18335 end if;
18336
18337 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18338 end if;
18339 end if;
18340
18341 -- Handle entities in the list of abstract interfaces
18342
18343 if Present (Interfaces (Typ)) then
18344 Iface_Elmt := First_Elmt (Interfaces (Typ));
18345 while Present (Iface_Elmt) loop
18346 Iface := Node (Iface_Elmt);
18347
18348 pragma Assert (Is_Interface (Iface));
18349
18350 if not Contain_Interface (Iface, Ifaces) then
18351 Append_Elmt (Iface, Ifaces);
18352 Collect_Implemented_Interfaces (Iface, Ifaces);
18353 end if;
18354
18355 Next_Elmt (Iface_Elmt);
18356 end loop;
18357 end if;
18358 end Collect_Implemented_Interfaces;
18359
18360 -- Start of processing for Process_Full_View
18361
18362 begin
18363 -- First some sanity checks that must be done after semantic
18364 -- decoration of the full view and thus cannot be placed with other
18365 -- similar checks in Find_Type_Name
18366
18367 if not Is_Limited_Type (Priv_T)
18368 and then (Is_Limited_Type (Full_T)
18369 or else Is_Limited_Composite (Full_T))
18370 then
18371 if In_Instance then
18372 null;
18373 else
18374 Error_Msg_N
18375 ("completion of nonlimited type cannot be limited", Full_T);
18376 Explain_Limited_Type (Full_T, Full_T);
18377 end if;
18378
18379 elsif Is_Abstract_Type (Full_T)
18380 and then not Is_Abstract_Type (Priv_T)
18381 then
18382 Error_Msg_N
18383 ("completion of nonabstract type cannot be abstract", Full_T);
18384
18385 elsif Is_Tagged_Type (Priv_T)
18386 and then Is_Limited_Type (Priv_T)
18387 and then not Is_Limited_Type (Full_T)
18388 then
18389 -- If pragma CPP_Class was applied to the private declaration
18390 -- propagate the limitedness to the full-view
18391
18392 if Is_CPP_Class (Priv_T) then
18393 Set_Is_Limited_Record (Full_T);
18394
18395 -- GNAT allow its own definition of Limited_Controlled to disobey
18396 -- this rule in order in ease the implementation. This test is safe
18397 -- because Root_Controlled is defined in a child of System that
18398 -- normal programs are not supposed to use.
18399
18400 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
18401 Set_Is_Limited_Composite (Full_T);
18402 else
18403 Error_Msg_N
18404 ("completion of limited tagged type must be limited", Full_T);
18405 end if;
18406
18407 elsif Is_Generic_Type (Priv_T) then
18408 Error_Msg_N ("generic type cannot have a completion", Full_T);
18409 end if;
18410
18411 -- Check that ancestor interfaces of private and full views are
18412 -- consistent. We omit this check for synchronized types because
18413 -- they are performed on the corresponding record type when frozen.
18414
18415 if Ada_Version >= Ada_2005
18416 and then Is_Tagged_Type (Priv_T)
18417 and then Is_Tagged_Type (Full_T)
18418 and then not Is_Concurrent_Type (Full_T)
18419 then
18420 declare
18421 Iface : Entity_Id;
18422 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
18423 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
18424
18425 begin
18426 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
18427 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
18428
18429 -- Ada 2005 (AI-251): The partial view shall be a descendant of
18430 -- an interface type if and only if the full type is descendant
18431 -- of the interface type (AARM 7.3 (7.3/2)).
18432
18433 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
18434
18435 if Present (Iface) then
18436 Error_Msg_NE
18437 ("interface in partial view& not implemented by full type "
18438 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
18439 end if;
18440
18441 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
18442
18443 if Present (Iface) then
18444 Error_Msg_NE
18445 ("interface & not implemented by partial view "
18446 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
18447 end if;
18448 end;
18449 end if;
18450
18451 if Is_Tagged_Type (Priv_T)
18452 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18453 and then Is_Derived_Type (Full_T)
18454 then
18455 Priv_Parent := Etype (Priv_T);
18456
18457 -- The full view of a private extension may have been transformed
18458 -- into an unconstrained derived type declaration and a subtype
18459 -- declaration (see build_derived_record_type for details).
18460
18461 if Nkind (N) = N_Subtype_Declaration then
18462 Full_Indic := Subtype_Indication (N);
18463 Full_Parent := Etype (Base_Type (Full_T));
18464 else
18465 Full_Indic := Subtype_Indication (Type_Definition (N));
18466 Full_Parent := Etype (Full_T);
18467 end if;
18468
18469 -- Check that the parent type of the full type is a descendant of
18470 -- the ancestor subtype given in the private extension. If either
18471 -- entity has an Etype equal to Any_Type then we had some previous
18472 -- error situation [7.3(8)].
18473
18474 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
18475 return;
18476
18477 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
18478 -- any order. Therefore we don't have to check that its parent must
18479 -- be a descendant of the parent of the private type declaration.
18480
18481 elsif Is_Interface (Priv_Parent)
18482 and then Is_Interface (Full_Parent)
18483 then
18484 null;
18485
18486 -- Ada 2005 (AI-251): If the parent of the private type declaration
18487 -- is an interface there is no need to check that it is an ancestor
18488 -- of the associated full type declaration. The required tests for
18489 -- this case are performed by Build_Derived_Record_Type.
18490
18491 elsif not Is_Interface (Base_Type (Priv_Parent))
18492 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
18493 then
18494 Error_Msg_N
18495 ("parent of full type must descend from parent"
18496 & " of private extension", Full_Indic);
18497
18498 -- First check a formal restriction, and then proceed with checking
18499 -- Ada rules. Since the formal restriction is not a serious error, we
18500 -- don't prevent further error detection for this check, hence the
18501 -- ELSE.
18502
18503 else
18504
18505 -- In formal mode, when completing a private extension the type
18506 -- named in the private part must be exactly the same as that
18507 -- named in the visible part.
18508
18509 if Priv_Parent /= Full_Parent then
18510 Error_Msg_Name_1 := Chars (Priv_Parent);
18511 Check_SPARK_05_Restriction ("% expected", Full_Indic);
18512 end if;
18513
18514 -- Check the rules of 7.3(10): if the private extension inherits
18515 -- known discriminants, then the full type must also inherit those
18516 -- discriminants from the same (ancestor) type, and the parent
18517 -- subtype of the full type must be constrained if and only if
18518 -- the ancestor subtype of the private extension is constrained.
18519
18520 if No (Discriminant_Specifications (Parent (Priv_T)))
18521 and then not Has_Unknown_Discriminants (Priv_T)
18522 and then Has_Discriminants (Base_Type (Priv_Parent))
18523 then
18524 declare
18525 Priv_Indic : constant Node_Id :=
18526 Subtype_Indication (Parent (Priv_T));
18527
18528 Priv_Constr : constant Boolean :=
18529 Is_Constrained (Priv_Parent)
18530 or else
18531 Nkind (Priv_Indic) = N_Subtype_Indication
18532 or else
18533 Is_Constrained (Entity (Priv_Indic));
18534
18535 Full_Constr : constant Boolean :=
18536 Is_Constrained (Full_Parent)
18537 or else
18538 Nkind (Full_Indic) = N_Subtype_Indication
18539 or else
18540 Is_Constrained (Entity (Full_Indic));
18541
18542 Priv_Discr : Entity_Id;
18543 Full_Discr : Entity_Id;
18544
18545 begin
18546 Priv_Discr := First_Discriminant (Priv_Parent);
18547 Full_Discr := First_Discriminant (Full_Parent);
18548 while Present (Priv_Discr) and then Present (Full_Discr) loop
18549 if Original_Record_Component (Priv_Discr) =
18550 Original_Record_Component (Full_Discr)
18551 or else
18552 Corresponding_Discriminant (Priv_Discr) =
18553 Corresponding_Discriminant (Full_Discr)
18554 then
18555 null;
18556 else
18557 exit;
18558 end if;
18559
18560 Next_Discriminant (Priv_Discr);
18561 Next_Discriminant (Full_Discr);
18562 end loop;
18563
18564 if Present (Priv_Discr) or else Present (Full_Discr) then
18565 Error_Msg_N
18566 ("full view must inherit discriminants of the parent"
18567 & " type used in the private extension", Full_Indic);
18568
18569 elsif Priv_Constr and then not Full_Constr then
18570 Error_Msg_N
18571 ("parent subtype of full type must be constrained",
18572 Full_Indic);
18573
18574 elsif Full_Constr and then not Priv_Constr then
18575 Error_Msg_N
18576 ("parent subtype of full type must be unconstrained",
18577 Full_Indic);
18578 end if;
18579 end;
18580
18581 -- Check the rules of 7.3(12): if a partial view has neither
18582 -- known or unknown discriminants, then the full type
18583 -- declaration shall define a definite subtype.
18584
18585 elsif not Has_Unknown_Discriminants (Priv_T)
18586 and then not Has_Discriminants (Priv_T)
18587 and then not Is_Constrained (Full_T)
18588 then
18589 Error_Msg_N
18590 ("full view must define a constrained type if partial view"
18591 & " has no discriminants", Full_T);
18592 end if;
18593
18594 -- ??????? Do we implement the following properly ?????
18595 -- If the ancestor subtype of a private extension has constrained
18596 -- discriminants, then the parent subtype of the full view shall
18597 -- impose a statically matching constraint on those discriminants
18598 -- [7.3(13)].
18599 end if;
18600
18601 else
18602 -- For untagged types, verify that a type without discriminants is
18603 -- not completed with an unconstrained type. A separate error message
18604 -- is produced if the full type has defaulted discriminants.
18605
18606 if not Is_Indefinite_Subtype (Priv_T)
18607 and then Is_Indefinite_Subtype (Full_T)
18608 then
18609 Error_Msg_Sloc := Sloc (Parent (Priv_T));
18610 Error_Msg_NE
18611 ("full view of& not compatible with declaration#",
18612 Full_T, Priv_T);
18613
18614 if not Is_Tagged_Type (Full_T) then
18615 Error_Msg_N
18616 ("\one is constrained, the other unconstrained", Full_T);
18617 end if;
18618 end if;
18619 end if;
18620
18621 -- AI-419: verify that the use of "limited" is consistent
18622
18623 declare
18624 Orig_Decl : constant Node_Id := Original_Node (N);
18625
18626 begin
18627 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18628 and then not Limited_Present (Parent (Priv_T))
18629 and then not Synchronized_Present (Parent (Priv_T))
18630 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
18631 and then Nkind
18632 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
18633 and then Limited_Present (Type_Definition (Orig_Decl))
18634 then
18635 Error_Msg_N
18636 ("full view of non-limited extension cannot be limited", N);
18637 end if;
18638 end;
18639
18640 -- Ada 2005 (AI-443): A synchronized private extension must be
18641 -- completed by a task or protected type.
18642
18643 if Ada_Version >= Ada_2005
18644 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18645 and then Synchronized_Present (Parent (Priv_T))
18646 and then not Is_Concurrent_Type (Full_T)
18647 then
18648 Error_Msg_N ("full view of synchronized extension must " &
18649 "be synchronized type", N);
18650 end if;
18651
18652 -- Ada 2005 AI-363: if the full view has discriminants with
18653 -- defaults, it is illegal to declare constrained access subtypes
18654 -- whose designated type is the current type. This allows objects
18655 -- of the type that are declared in the heap to be unconstrained.
18656
18657 if not Has_Unknown_Discriminants (Priv_T)
18658 and then not Has_Discriminants (Priv_T)
18659 and then Has_Discriminants (Full_T)
18660 and then
18661 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
18662 then
18663 Set_Has_Constrained_Partial_View (Full_T);
18664 Set_Has_Constrained_Partial_View (Priv_T);
18665 end if;
18666
18667 -- Create a full declaration for all its subtypes recorded in
18668 -- Private_Dependents and swap them similarly to the base type. These
18669 -- are subtypes that have been define before the full declaration of
18670 -- the private type. We also swap the entry in Private_Dependents list
18671 -- so we can properly restore the private view on exit from the scope.
18672
18673 declare
18674 Priv_Elmt : Elmt_Id;
18675 Priv_Scop : Entity_Id;
18676 Priv : Entity_Id;
18677 Full : Entity_Id;
18678
18679 begin
18680 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
18681 while Present (Priv_Elmt) loop
18682 Priv := Node (Priv_Elmt);
18683 Priv_Scop := Scope (Priv);
18684
18685 if Ekind_In (Priv, E_Private_Subtype,
18686 E_Limited_Private_Subtype,
18687 E_Record_Subtype_With_Private)
18688 then
18689 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
18690 Set_Is_Itype (Full);
18691 Set_Parent (Full, Parent (Priv));
18692 Set_Associated_Node_For_Itype (Full, N);
18693
18694 -- Now we need to complete the private subtype, but since the
18695 -- base type has already been swapped, we must also swap the
18696 -- subtypes (and thus, reverse the arguments in the call to
18697 -- Complete_Private_Subtype). Also note that we may need to
18698 -- re-establish the scope of the private subtype.
18699
18700 Copy_And_Swap (Priv, Full);
18701
18702 if not In_Open_Scopes (Priv_Scop) then
18703 Push_Scope (Priv_Scop);
18704
18705 else
18706 -- Reset Priv_Scop to Empty to indicate no scope was pushed
18707
18708 Priv_Scop := Empty;
18709 end if;
18710
18711 Complete_Private_Subtype (Full, Priv, Full_T, N);
18712
18713 if Present (Priv_Scop) then
18714 Pop_Scope;
18715 end if;
18716
18717 Replace_Elmt (Priv_Elmt, Full);
18718 end if;
18719
18720 Next_Elmt (Priv_Elmt);
18721 end loop;
18722 end;
18723
18724 -- If the private view was tagged, copy the new primitive operations
18725 -- from the private view to the full view.
18726
18727 if Is_Tagged_Type (Full_T) then
18728 declare
18729 Disp_Typ : Entity_Id;
18730 Full_List : Elist_Id;
18731 Prim : Entity_Id;
18732 Prim_Elmt : Elmt_Id;
18733 Priv_List : Elist_Id;
18734
18735 function Contains
18736 (E : Entity_Id;
18737 L : Elist_Id) return Boolean;
18738 -- Determine whether list L contains element E
18739
18740 --------------
18741 -- Contains --
18742 --------------
18743
18744 function Contains
18745 (E : Entity_Id;
18746 L : Elist_Id) return Boolean
18747 is
18748 List_Elmt : Elmt_Id;
18749
18750 begin
18751 List_Elmt := First_Elmt (L);
18752 while Present (List_Elmt) loop
18753 if Node (List_Elmt) = E then
18754 return True;
18755 end if;
18756
18757 Next_Elmt (List_Elmt);
18758 end loop;
18759
18760 return False;
18761 end Contains;
18762
18763 -- Start of processing
18764
18765 begin
18766 if Is_Tagged_Type (Priv_T) then
18767 Priv_List := Primitive_Operations (Priv_T);
18768 Prim_Elmt := First_Elmt (Priv_List);
18769
18770 -- In the case of a concurrent type completing a private tagged
18771 -- type, primitives may have been declared in between the two
18772 -- views. These subprograms need to be wrapped the same way
18773 -- entries and protected procedures are handled because they
18774 -- cannot be directly shared by the two views.
18775
18776 if Is_Concurrent_Type (Full_T) then
18777 declare
18778 Conc_Typ : constant Entity_Id :=
18779 Corresponding_Record_Type (Full_T);
18780 Curr_Nod : Node_Id := Parent (Conc_Typ);
18781 Wrap_Spec : Node_Id;
18782
18783 begin
18784 while Present (Prim_Elmt) loop
18785 Prim := Node (Prim_Elmt);
18786
18787 if Comes_From_Source (Prim)
18788 and then not Is_Abstract_Subprogram (Prim)
18789 then
18790 Wrap_Spec :=
18791 Make_Subprogram_Declaration (Sloc (Prim),
18792 Specification =>
18793 Build_Wrapper_Spec
18794 (Subp_Id => Prim,
18795 Obj_Typ => Conc_Typ,
18796 Formals =>
18797 Parameter_Specifications (
18798 Parent (Prim))));
18799
18800 Insert_After (Curr_Nod, Wrap_Spec);
18801 Curr_Nod := Wrap_Spec;
18802
18803 Analyze (Wrap_Spec);
18804 end if;
18805
18806 Next_Elmt (Prim_Elmt);
18807 end loop;
18808
18809 return;
18810 end;
18811
18812 -- For non-concurrent types, transfer explicit primitives, but
18813 -- omit those inherited from the parent of the private view
18814 -- since they will be re-inherited later on.
18815
18816 else
18817 Full_List := Primitive_Operations (Full_T);
18818
18819 while Present (Prim_Elmt) loop
18820 Prim := Node (Prim_Elmt);
18821
18822 if Comes_From_Source (Prim)
18823 and then not Contains (Prim, Full_List)
18824 then
18825 Append_Elmt (Prim, Full_List);
18826 end if;
18827
18828 Next_Elmt (Prim_Elmt);
18829 end loop;
18830 end if;
18831
18832 -- Untagged private view
18833
18834 else
18835 Full_List := Primitive_Operations (Full_T);
18836
18837 -- In this case the partial view is untagged, so here we locate
18838 -- all of the earlier primitives that need to be treated as
18839 -- dispatching (those that appear between the two views). Note
18840 -- that these additional operations must all be new operations
18841 -- (any earlier operations that override inherited operations
18842 -- of the full view will already have been inserted in the
18843 -- primitives list, marked by Check_Operation_From_Private_View
18844 -- as dispatching. Note that implicit "/=" operators are
18845 -- excluded from being added to the primitives list since they
18846 -- shouldn't be treated as dispatching (tagged "/=" is handled
18847 -- specially).
18848
18849 Prim := Next_Entity (Full_T);
18850 while Present (Prim) and then Prim /= Priv_T loop
18851 if Ekind_In (Prim, E_Procedure, E_Function) then
18852 Disp_Typ := Find_Dispatching_Type (Prim);
18853
18854 if Disp_Typ = Full_T
18855 and then (Chars (Prim) /= Name_Op_Ne
18856 or else Comes_From_Source (Prim))
18857 then
18858 Check_Controlling_Formals (Full_T, Prim);
18859
18860 if not Is_Dispatching_Operation (Prim) then
18861 Append_Elmt (Prim, Full_List);
18862 Set_Is_Dispatching_Operation (Prim, True);
18863 Set_DT_Position (Prim, No_Uint);
18864 end if;
18865
18866 elsif Is_Dispatching_Operation (Prim)
18867 and then Disp_Typ /= Full_T
18868 then
18869
18870 -- Verify that it is not otherwise controlled by a
18871 -- formal or a return value of type T.
18872
18873 Check_Controlling_Formals (Disp_Typ, Prim);
18874 end if;
18875 end if;
18876
18877 Next_Entity (Prim);
18878 end loop;
18879 end if;
18880
18881 -- For the tagged case, the two views can share the same primitive
18882 -- operations list and the same class-wide type. Update attributes
18883 -- of the class-wide type which depend on the full declaration.
18884
18885 if Is_Tagged_Type (Priv_T) then
18886 Set_Direct_Primitive_Operations (Priv_T, Full_List);
18887 Set_Class_Wide_Type
18888 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
18889
18890 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
18891 Set_Has_Protected
18892 (Class_Wide_Type (Priv_T), Has_Protected (Full_T));
18893 end if;
18894 end;
18895 end if;
18896
18897 -- Ada 2005 AI 161: Check preelaborable initialization consistency
18898
18899 if Known_To_Have_Preelab_Init (Priv_T) then
18900
18901 -- Case where there is a pragma Preelaborable_Initialization. We
18902 -- always allow this in predefined units, which is cheating a bit,
18903 -- but it means we don't have to struggle to meet the requirements in
18904 -- the RM for having Preelaborable Initialization. Otherwise we
18905 -- require that the type meets the RM rules. But we can't check that
18906 -- yet, because of the rule about overriding Initialize, so we simply
18907 -- set a flag that will be checked at freeze time.
18908
18909 if not In_Predefined_Unit (Full_T) then
18910 Set_Must_Have_Preelab_Init (Full_T);
18911 end if;
18912 end if;
18913
18914 -- If pragma CPP_Class was applied to the private type declaration,
18915 -- propagate it now to the full type declaration.
18916
18917 if Is_CPP_Class (Priv_T) then
18918 Set_Is_CPP_Class (Full_T);
18919 Set_Convention (Full_T, Convention_CPP);
18920
18921 -- Check that components of imported CPP types do not have default
18922 -- expressions.
18923
18924 Check_CPP_Type_Has_No_Defaults (Full_T);
18925 end if;
18926
18927 -- If the private view has user specified stream attributes, then so has
18928 -- the full view.
18929
18930 -- Why the test, how could these flags be already set in Full_T ???
18931
18932 if Has_Specified_Stream_Read (Priv_T) then
18933 Set_Has_Specified_Stream_Read (Full_T);
18934 end if;
18935
18936 if Has_Specified_Stream_Write (Priv_T) then
18937 Set_Has_Specified_Stream_Write (Full_T);
18938 end if;
18939
18940 if Has_Specified_Stream_Input (Priv_T) then
18941 Set_Has_Specified_Stream_Input (Full_T);
18942 end if;
18943
18944 if Has_Specified_Stream_Output (Priv_T) then
18945 Set_Has_Specified_Stream_Output (Full_T);
18946 end if;
18947
18948 -- Propagate invariants to full type
18949
18950 if Has_Invariants (Priv_T) then
18951 Set_Has_Invariants (Full_T);
18952 Set_Invariant_Procedure (Full_T, Invariant_Procedure (Priv_T));
18953 end if;
18954
18955 if Has_Inheritable_Invariants (Priv_T) then
18956 Set_Has_Inheritable_Invariants (Full_T);
18957 end if;
18958
18959 -- Propagate predicates to full type, and predicate function if already
18960 -- defined. It is not clear that this can actually happen? the partial
18961 -- view cannot be frozen yet, and the predicate function has not been
18962 -- built. Still it is a cheap check and seems safer to make it.
18963
18964 if Has_Predicates (Priv_T) then
18965 if Present (Predicate_Function (Priv_T)) then
18966 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
18967 end if;
18968
18969 Set_Has_Predicates (Full_T);
18970 end if;
18971 end Process_Full_View;
18972
18973 -----------------------------------
18974 -- Process_Incomplete_Dependents --
18975 -----------------------------------
18976
18977 procedure Process_Incomplete_Dependents
18978 (N : Node_Id;
18979 Full_T : Entity_Id;
18980 Inc_T : Entity_Id)
18981 is
18982 Inc_Elmt : Elmt_Id;
18983 Priv_Dep : Entity_Id;
18984 New_Subt : Entity_Id;
18985
18986 Disc_Constraint : Elist_Id;
18987
18988 begin
18989 if No (Private_Dependents (Inc_T)) then
18990 return;
18991 end if;
18992
18993 -- Itypes that may be generated by the completion of an incomplete
18994 -- subtype are not used by the back-end and not attached to the tree.
18995 -- They are created only for constraint-checking purposes.
18996
18997 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
18998 while Present (Inc_Elmt) loop
18999 Priv_Dep := Node (Inc_Elmt);
19000
19001 if Ekind (Priv_Dep) = E_Subprogram_Type then
19002
19003 -- An Access_To_Subprogram type may have a return type or a
19004 -- parameter type that is incomplete. Replace with the full view.
19005
19006 if Etype (Priv_Dep) = Inc_T then
19007 Set_Etype (Priv_Dep, Full_T);
19008 end if;
19009
19010 declare
19011 Formal : Entity_Id;
19012
19013 begin
19014 Formal := First_Formal (Priv_Dep);
19015 while Present (Formal) loop
19016 if Etype (Formal) = Inc_T then
19017 Set_Etype (Formal, Full_T);
19018 end if;
19019
19020 Next_Formal (Formal);
19021 end loop;
19022 end;
19023
19024 elsif Is_Overloadable (Priv_Dep) then
19025
19026 -- If a subprogram in the incomplete dependents list is primitive
19027 -- for a tagged full type then mark it as a dispatching operation,
19028 -- check whether it overrides an inherited subprogram, and check
19029 -- restrictions on its controlling formals. Note that a protected
19030 -- operation is never dispatching: only its wrapper operation
19031 -- (which has convention Ada) is.
19032
19033 if Is_Tagged_Type (Full_T)
19034 and then Is_Primitive (Priv_Dep)
19035 and then Convention (Priv_Dep) /= Convention_Protected
19036 then
19037 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
19038 Set_Is_Dispatching_Operation (Priv_Dep);
19039 Check_Controlling_Formals (Full_T, Priv_Dep);
19040 end if;
19041
19042 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
19043
19044 -- Can happen during processing of a body before the completion
19045 -- of a TA type. Ignore, because spec is also on dependent list.
19046
19047 return;
19048
19049 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
19050 -- corresponding subtype of the full view.
19051
19052 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
19053 Set_Subtype_Indication
19054 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
19055 Set_Etype (Priv_Dep, Full_T);
19056 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
19057 Set_Analyzed (Parent (Priv_Dep), False);
19058
19059 -- Reanalyze the declaration, suppressing the call to
19060 -- Enter_Name to avoid duplicate names.
19061
19062 Analyze_Subtype_Declaration
19063 (N => Parent (Priv_Dep),
19064 Skip => True);
19065
19066 -- Dependent is a subtype
19067
19068 else
19069 -- We build a new subtype indication using the full view of the
19070 -- incomplete parent. The discriminant constraints have been
19071 -- elaborated already at the point of the subtype declaration.
19072
19073 New_Subt := Create_Itype (E_Void, N);
19074
19075 if Has_Discriminants (Full_T) then
19076 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
19077 else
19078 Disc_Constraint := No_Elist;
19079 end if;
19080
19081 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
19082 Set_Full_View (Priv_Dep, New_Subt);
19083 end if;
19084
19085 Next_Elmt (Inc_Elmt);
19086 end loop;
19087 end Process_Incomplete_Dependents;
19088
19089 --------------------------------
19090 -- Process_Range_Expr_In_Decl --
19091 --------------------------------
19092
19093 procedure Process_Range_Expr_In_Decl
19094 (R : Node_Id;
19095 T : Entity_Id;
19096 Subtyp : Entity_Id := Empty;
19097 Check_List : List_Id := Empty_List;
19098 R_Check_Off : Boolean := False;
19099 In_Iter_Schm : Boolean := False)
19100 is
19101 Lo, Hi : Node_Id;
19102 R_Checks : Check_Result;
19103 Insert_Node : Node_Id;
19104 Def_Id : Entity_Id;
19105
19106 begin
19107 Analyze_And_Resolve (R, Base_Type (T));
19108
19109 if Nkind (R) = N_Range then
19110
19111 -- In SPARK, all ranges should be static, with the exception of the
19112 -- discrete type definition of a loop parameter specification.
19113
19114 if not In_Iter_Schm
19115 and then not Is_OK_Static_Range (R)
19116 then
19117 Check_SPARK_05_Restriction ("range should be static", R);
19118 end if;
19119
19120 Lo := Low_Bound (R);
19121 Hi := High_Bound (R);
19122
19123 -- We need to ensure validity of the bounds here, because if we
19124 -- go ahead and do the expansion, then the expanded code will get
19125 -- analyzed with range checks suppressed and we miss the check.
19126 -- Validity checks on the range of a quantified expression are
19127 -- delayed until the construct is transformed into a loop.
19128
19129 if Nkind (Parent (R)) /= N_Loop_Parameter_Specification
19130 or else Nkind (Parent (Parent (R))) /= N_Quantified_Expression
19131 then
19132 Validity_Check_Range (R);
19133 end if;
19134
19135 -- If there were errors in the declaration, try and patch up some
19136 -- common mistakes in the bounds. The cases handled are literals
19137 -- which are Integer where the expected type is Real and vice versa.
19138 -- These corrections allow the compilation process to proceed further
19139 -- along since some basic assumptions of the format of the bounds
19140 -- are guaranteed.
19141
19142 if Etype (R) = Any_Type then
19143 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
19144 Rewrite (Lo,
19145 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
19146
19147 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
19148 Rewrite (Hi,
19149 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
19150
19151 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
19152 Rewrite (Lo,
19153 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
19154
19155 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
19156 Rewrite (Hi,
19157 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
19158 end if;
19159
19160 Set_Etype (Lo, T);
19161 Set_Etype (Hi, T);
19162 end if;
19163
19164 -- If the bounds of the range have been mistakenly given as string
19165 -- literals (perhaps in place of character literals), then an error
19166 -- has already been reported, but we rewrite the string literal as a
19167 -- bound of the range's type to avoid blowups in later processing
19168 -- that looks at static values.
19169
19170 if Nkind (Lo) = N_String_Literal then
19171 Rewrite (Lo,
19172 Make_Attribute_Reference (Sloc (Lo),
19173 Attribute_Name => Name_First,
19174 Prefix => New_Occurrence_Of (T, Sloc (Lo))));
19175 Analyze_And_Resolve (Lo);
19176 end if;
19177
19178 if Nkind (Hi) = N_String_Literal then
19179 Rewrite (Hi,
19180 Make_Attribute_Reference (Sloc (Hi),
19181 Attribute_Name => Name_First,
19182 Prefix => New_Occurrence_Of (T, Sloc (Hi))));
19183 Analyze_And_Resolve (Hi);
19184 end if;
19185
19186 -- If bounds aren't scalar at this point then exit, avoiding
19187 -- problems with further processing of the range in this procedure.
19188
19189 if not Is_Scalar_Type (Etype (Lo)) then
19190 return;
19191 end if;
19192
19193 -- Resolve (actually Sem_Eval) has checked that the bounds are in
19194 -- then range of the base type. Here we check whether the bounds
19195 -- are in the range of the subtype itself. Note that if the bounds
19196 -- represent the null range the Constraint_Error exception should
19197 -- not be raised.
19198
19199 -- ??? The following code should be cleaned up as follows
19200
19201 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
19202 -- is done in the call to Range_Check (R, T); below
19203
19204 -- 2. The use of R_Check_Off should be investigated and possibly
19205 -- removed, this would clean up things a bit.
19206
19207 if Is_Null_Range (Lo, Hi) then
19208 null;
19209
19210 else
19211 -- Capture values of bounds and generate temporaries for them
19212 -- if needed, before applying checks, since checks may cause
19213 -- duplication of the expression without forcing evaluation.
19214
19215 -- The forced evaluation removes side effects from expressions,
19216 -- which should occur also in GNATprove mode. Otherwise, we end up
19217 -- with unexpected insertions of actions at places where this is
19218 -- not supposed to occur, e.g. on default parameters of a call.
19219
19220 if Expander_Active or GNATprove_Mode then
19221
19222 -- If no subtype name, then just call Force_Evaluation to
19223 -- create declarations as needed to deal with side effects.
19224 -- Also ignore calls from within a record type, where we
19225 -- have possible scoping issues.
19226
19227 if No (Subtyp) or else Is_Record_Type (Current_Scope) then
19228 Force_Evaluation (Lo);
19229 Force_Evaluation (Hi);
19230
19231 -- If a subtype is given, then we capture the bounds if they
19232 -- are not known at compile time, using constant identifiers
19233 -- xxx_FIRST and xxx_LAST where xxx is the name of the subtype.
19234
19235 -- Note: we do this transformation even if expansion is not
19236 -- active, and in particular we do it in GNATprove_Mode since
19237 -- the transformation is in general required to ensure that the
19238 -- resulting tree has proper Ada semantics.
19239
19240 -- Historical note: We used to just do Force_Evaluation calls
19241 -- in all cases, but it is better to capture the bounds with
19242 -- proper non-serialized names, since these will be accessed
19243 -- from other units, and hence may be public, and also we can
19244 -- then expand 'First and 'Last references to be references to
19245 -- these special names.
19246
19247 else
19248 if not Compile_Time_Known_Value (Lo)
19249
19250 -- No need to capture bounds if they already are
19251 -- references to constants.
19252
19253 and then not (Is_Entity_Name (Lo)
19254 and then Is_Constant_Object (Entity (Lo)))
19255 then
19256 declare
19257 Loc : constant Source_Ptr := Sloc (Lo);
19258 Lov : constant Entity_Id :=
19259 Make_Defining_Identifier (Loc,
19260 Chars =>
19261 New_External_Name (Chars (Subtyp), "_FIRST"));
19262 begin
19263 Insert_Action (R,
19264 Make_Object_Declaration (Loc,
19265 Defining_Identifier => Lov,
19266 Object_Definition =>
19267 New_Occurrence_Of (Base_Type (T), Loc),
19268 Constant_Present => True,
19269 Expression => Relocate_Node (Lo)));
19270 Rewrite (Lo, New_Occurrence_Of (Lov, Loc));
19271 end;
19272 end if;
19273
19274 if not Compile_Time_Known_Value (Hi)
19275 and then not (Is_Entity_Name (Hi)
19276 and then Is_Constant_Object (Entity (Hi)))
19277 then
19278 declare
19279 Loc : constant Source_Ptr := Sloc (Hi);
19280 Hiv : constant Entity_Id :=
19281 Make_Defining_Identifier (Loc,
19282 Chars =>
19283 New_External_Name (Chars (Subtyp), "_LAST"));
19284 begin
19285 Insert_Action (R,
19286 Make_Object_Declaration (Loc,
19287 Defining_Identifier => Hiv,
19288 Object_Definition =>
19289 New_Occurrence_Of (Base_Type (T), Loc),
19290 Constant_Present => True,
19291 Expression => Relocate_Node (Hi)));
19292 Rewrite (Hi, New_Occurrence_Of (Hiv, Loc));
19293 end;
19294 end if;
19295 end if;
19296 end if;
19297
19298 -- We use a flag here instead of suppressing checks on the
19299 -- type because the type we check against isn't necessarily
19300 -- the place where we put the check.
19301
19302 if not R_Check_Off then
19303 R_Checks := Get_Range_Checks (R, T);
19304
19305 -- Look up tree to find an appropriate insertion point. We
19306 -- can't just use insert_actions because later processing
19307 -- depends on the insertion node. Prior to Ada 2012 the
19308 -- insertion point could only be a declaration or a loop, but
19309 -- quantified expressions can appear within any context in an
19310 -- expression, and the insertion point can be any statement,
19311 -- pragma, or declaration.
19312
19313 Insert_Node := Parent (R);
19314 while Present (Insert_Node) loop
19315 exit when
19316 Nkind (Insert_Node) in N_Declaration
19317 and then
19318 not Nkind_In
19319 (Insert_Node, N_Component_Declaration,
19320 N_Loop_Parameter_Specification,
19321 N_Function_Specification,
19322 N_Procedure_Specification);
19323
19324 exit when Nkind (Insert_Node) in N_Later_Decl_Item
19325 or else Nkind (Insert_Node) in
19326 N_Statement_Other_Than_Procedure_Call
19327 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
19328 N_Pragma);
19329
19330 Insert_Node := Parent (Insert_Node);
19331 end loop;
19332
19333 -- Why would Type_Decl not be present??? Without this test,
19334 -- short regression tests fail.
19335
19336 if Present (Insert_Node) then
19337
19338 -- Case of loop statement. Verify that the range is part
19339 -- of the subtype indication of the iteration scheme.
19340
19341 if Nkind (Insert_Node) = N_Loop_Statement then
19342 declare
19343 Indic : Node_Id;
19344
19345 begin
19346 Indic := Parent (R);
19347 while Present (Indic)
19348 and then Nkind (Indic) /= N_Subtype_Indication
19349 loop
19350 Indic := Parent (Indic);
19351 end loop;
19352
19353 if Present (Indic) then
19354 Def_Id := Etype (Subtype_Mark (Indic));
19355
19356 Insert_Range_Checks
19357 (R_Checks,
19358 Insert_Node,
19359 Def_Id,
19360 Sloc (Insert_Node),
19361 R,
19362 Do_Before => True);
19363 end if;
19364 end;
19365
19366 -- Insertion before a declaration. If the declaration
19367 -- includes discriminants, the list of applicable checks
19368 -- is given by the caller.
19369
19370 elsif Nkind (Insert_Node) in N_Declaration then
19371 Def_Id := Defining_Identifier (Insert_Node);
19372
19373 if (Ekind (Def_Id) = E_Record_Type
19374 and then Depends_On_Discriminant (R))
19375 or else
19376 (Ekind (Def_Id) = E_Protected_Type
19377 and then Has_Discriminants (Def_Id))
19378 then
19379 Append_Range_Checks
19380 (R_Checks,
19381 Check_List, Def_Id, Sloc (Insert_Node), R);
19382
19383 else
19384 Insert_Range_Checks
19385 (R_Checks,
19386 Insert_Node, Def_Id, Sloc (Insert_Node), R);
19387
19388 end if;
19389
19390 -- Insertion before a statement. Range appears in the
19391 -- context of a quantified expression. Insertion will
19392 -- take place when expression is expanded.
19393
19394 else
19395 null;
19396 end if;
19397 end if;
19398 end if;
19399 end if;
19400
19401 -- Case of other than an explicit N_Range node
19402
19403 -- The forced evaluation removes side effects from expressions, which
19404 -- should occur also in GNATprove mode. Otherwise, we end up with
19405 -- unexpected insertions of actions at places where this is not
19406 -- supposed to occur, e.g. on default parameters of a call.
19407
19408 elsif Expander_Active or GNATprove_Mode then
19409 Get_Index_Bounds (R, Lo, Hi);
19410 Force_Evaluation (Lo);
19411 Force_Evaluation (Hi);
19412 end if;
19413 end Process_Range_Expr_In_Decl;
19414
19415 --------------------------------------
19416 -- Process_Real_Range_Specification --
19417 --------------------------------------
19418
19419 procedure Process_Real_Range_Specification (Def : Node_Id) is
19420 Spec : constant Node_Id := Real_Range_Specification (Def);
19421 Lo : Node_Id;
19422 Hi : Node_Id;
19423 Err : Boolean := False;
19424
19425 procedure Analyze_Bound (N : Node_Id);
19426 -- Analyze and check one bound
19427
19428 -------------------
19429 -- Analyze_Bound --
19430 -------------------
19431
19432 procedure Analyze_Bound (N : Node_Id) is
19433 begin
19434 Analyze_And_Resolve (N, Any_Real);
19435
19436 if not Is_OK_Static_Expression (N) then
19437 Flag_Non_Static_Expr
19438 ("bound in real type definition is not static!", N);
19439 Err := True;
19440 end if;
19441 end Analyze_Bound;
19442
19443 -- Start of processing for Process_Real_Range_Specification
19444
19445 begin
19446 if Present (Spec) then
19447 Lo := Low_Bound (Spec);
19448 Hi := High_Bound (Spec);
19449 Analyze_Bound (Lo);
19450 Analyze_Bound (Hi);
19451
19452 -- If error, clear away junk range specification
19453
19454 if Err then
19455 Set_Real_Range_Specification (Def, Empty);
19456 end if;
19457 end if;
19458 end Process_Real_Range_Specification;
19459
19460 ---------------------
19461 -- Process_Subtype --
19462 ---------------------
19463
19464 function Process_Subtype
19465 (S : Node_Id;
19466 Related_Nod : Node_Id;
19467 Related_Id : Entity_Id := Empty;
19468 Suffix : Character := ' ') return Entity_Id
19469 is
19470 P : Node_Id;
19471 Def_Id : Entity_Id;
19472 Error_Node : Node_Id;
19473 Full_View_Id : Entity_Id;
19474 Subtype_Mark_Id : Entity_Id;
19475
19476 May_Have_Null_Exclusion : Boolean;
19477
19478 procedure Check_Incomplete (T : Entity_Id);
19479 -- Called to verify that an incomplete type is not used prematurely
19480
19481 ----------------------
19482 -- Check_Incomplete --
19483 ----------------------
19484
19485 procedure Check_Incomplete (T : Entity_Id) is
19486 begin
19487 -- Ada 2005 (AI-412): Incomplete subtypes are legal
19488
19489 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
19490 and then
19491 not (Ada_Version >= Ada_2005
19492 and then
19493 (Nkind (Parent (T)) = N_Subtype_Declaration
19494 or else
19495 (Nkind (Parent (T)) = N_Subtype_Indication
19496 and then Nkind (Parent (Parent (T))) =
19497 N_Subtype_Declaration)))
19498 then
19499 Error_Msg_N ("invalid use of type before its full declaration", T);
19500 end if;
19501 end Check_Incomplete;
19502
19503 -- Start of processing for Process_Subtype
19504
19505 begin
19506 -- Case of no constraints present
19507
19508 if Nkind (S) /= N_Subtype_Indication then
19509 Find_Type (S);
19510 Check_Incomplete (S);
19511 P := Parent (S);
19512
19513 -- Ada 2005 (AI-231): Static check
19514
19515 if Ada_Version >= Ada_2005
19516 and then Present (P)
19517 and then Null_Exclusion_Present (P)
19518 and then Nkind (P) /= N_Access_To_Object_Definition
19519 and then not Is_Access_Type (Entity (S))
19520 then
19521 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
19522 end if;
19523
19524 -- The following is ugly, can't we have a range or even a flag???
19525
19526 May_Have_Null_Exclusion :=
19527 Nkind_In (P, N_Access_Definition,
19528 N_Access_Function_Definition,
19529 N_Access_Procedure_Definition,
19530 N_Access_To_Object_Definition,
19531 N_Allocator,
19532 N_Component_Definition)
19533 or else
19534 Nkind_In (P, N_Derived_Type_Definition,
19535 N_Discriminant_Specification,
19536 N_Formal_Object_Declaration,
19537 N_Object_Declaration,
19538 N_Object_Renaming_Declaration,
19539 N_Parameter_Specification,
19540 N_Subtype_Declaration);
19541
19542 -- Create an Itype that is a duplicate of Entity (S) but with the
19543 -- null-exclusion attribute.
19544
19545 if May_Have_Null_Exclusion
19546 and then Is_Access_Type (Entity (S))
19547 and then Null_Exclusion_Present (P)
19548
19549 -- No need to check the case of an access to object definition.
19550 -- It is correct to define double not-null pointers.
19551
19552 -- Example:
19553 -- type Not_Null_Int_Ptr is not null access Integer;
19554 -- type Acc is not null access Not_Null_Int_Ptr;
19555
19556 and then Nkind (P) /= N_Access_To_Object_Definition
19557 then
19558 if Can_Never_Be_Null (Entity (S)) then
19559 case Nkind (Related_Nod) is
19560 when N_Full_Type_Declaration =>
19561 if Nkind (Type_Definition (Related_Nod))
19562 in N_Array_Type_Definition
19563 then
19564 Error_Node :=
19565 Subtype_Indication
19566 (Component_Definition
19567 (Type_Definition (Related_Nod)));
19568 else
19569 Error_Node :=
19570 Subtype_Indication (Type_Definition (Related_Nod));
19571 end if;
19572
19573 when N_Subtype_Declaration =>
19574 Error_Node := Subtype_Indication (Related_Nod);
19575
19576 when N_Object_Declaration =>
19577 Error_Node := Object_Definition (Related_Nod);
19578
19579 when N_Component_Declaration =>
19580 Error_Node :=
19581 Subtype_Indication (Component_Definition (Related_Nod));
19582
19583 when N_Allocator =>
19584 Error_Node := Expression (Related_Nod);
19585
19586 when others =>
19587 pragma Assert (False);
19588 Error_Node := Related_Nod;
19589 end case;
19590
19591 Error_Msg_NE
19592 ("`NOT NULL` not allowed (& already excludes null)",
19593 Error_Node,
19594 Entity (S));
19595 end if;
19596
19597 Set_Etype (S,
19598 Create_Null_Excluding_Itype
19599 (T => Entity (S),
19600 Related_Nod => P));
19601 Set_Entity (S, Etype (S));
19602 end if;
19603
19604 return Entity (S);
19605
19606 -- Case of constraint present, so that we have an N_Subtype_Indication
19607 -- node (this node is created only if constraints are present).
19608
19609 else
19610 Find_Type (Subtype_Mark (S));
19611
19612 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
19613 and then not
19614 (Nkind (Parent (S)) = N_Subtype_Declaration
19615 and then Is_Itype (Defining_Identifier (Parent (S))))
19616 then
19617 Check_Incomplete (Subtype_Mark (S));
19618 end if;
19619
19620 P := Parent (S);
19621 Subtype_Mark_Id := Entity (Subtype_Mark (S));
19622
19623 -- Explicit subtype declaration case
19624
19625 if Nkind (P) = N_Subtype_Declaration then
19626 Def_Id := Defining_Identifier (P);
19627
19628 -- Explicit derived type definition case
19629
19630 elsif Nkind (P) = N_Derived_Type_Definition then
19631 Def_Id := Defining_Identifier (Parent (P));
19632
19633 -- Implicit case, the Def_Id must be created as an implicit type.
19634 -- The one exception arises in the case of concurrent types, array
19635 -- and access types, where other subsidiary implicit types may be
19636 -- created and must appear before the main implicit type. In these
19637 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
19638 -- has not yet been called to create Def_Id.
19639
19640 else
19641 if Is_Array_Type (Subtype_Mark_Id)
19642 or else Is_Concurrent_Type (Subtype_Mark_Id)
19643 or else Is_Access_Type (Subtype_Mark_Id)
19644 then
19645 Def_Id := Empty;
19646
19647 -- For the other cases, we create a new unattached Itype,
19648 -- and set the indication to ensure it gets attached later.
19649
19650 else
19651 Def_Id :=
19652 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
19653 end if;
19654 end if;
19655
19656 -- If the kind of constraint is invalid for this kind of type,
19657 -- then give an error, and then pretend no constraint was given.
19658
19659 if not Is_Valid_Constraint_Kind
19660 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
19661 then
19662 Error_Msg_N
19663 ("incorrect constraint for this kind of type", Constraint (S));
19664
19665 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
19666
19667 -- Set Ekind of orphan itype, to prevent cascaded errors
19668
19669 if Present (Def_Id) then
19670 Set_Ekind (Def_Id, Ekind (Any_Type));
19671 end if;
19672
19673 -- Make recursive call, having got rid of the bogus constraint
19674
19675 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
19676 end if;
19677
19678 -- Remaining processing depends on type. Select on Base_Type kind to
19679 -- ensure getting to the concrete type kind in the case of a private
19680 -- subtype (needed when only doing semantic analysis).
19681
19682 case Ekind (Base_Type (Subtype_Mark_Id)) is
19683 when Access_Kind =>
19684
19685 -- If this is a constraint on a class-wide type, discard it.
19686 -- There is currently no way to express a partial discriminant
19687 -- constraint on a type with unknown discriminants. This is
19688 -- a pathology that the ACATS wisely decides not to test.
19689
19690 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
19691 if Comes_From_Source (S) then
19692 Error_Msg_N
19693 ("constraint on class-wide type ignored??",
19694 Constraint (S));
19695 end if;
19696
19697 if Nkind (P) = N_Subtype_Declaration then
19698 Set_Subtype_Indication (P,
19699 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
19700 end if;
19701
19702 return Subtype_Mark_Id;
19703 end if;
19704
19705 Constrain_Access (Def_Id, S, Related_Nod);
19706
19707 if Expander_Active
19708 and then Is_Itype (Designated_Type (Def_Id))
19709 and then Nkind (Related_Nod) = N_Subtype_Declaration
19710 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
19711 then
19712 Build_Itype_Reference
19713 (Designated_Type (Def_Id), Related_Nod);
19714 end if;
19715
19716 when Array_Kind =>
19717 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
19718
19719 when Decimal_Fixed_Point_Kind =>
19720 Constrain_Decimal (Def_Id, S);
19721
19722 when Enumeration_Kind =>
19723 Constrain_Enumeration (Def_Id, S);
19724 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
19725
19726 when Ordinary_Fixed_Point_Kind =>
19727 Constrain_Ordinary_Fixed (Def_Id, S);
19728
19729 when Float_Kind =>
19730 Constrain_Float (Def_Id, S);
19731
19732 when Integer_Kind =>
19733 Constrain_Integer (Def_Id, S);
19734 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
19735
19736 when E_Record_Type |
19737 E_Record_Subtype |
19738 Class_Wide_Kind |
19739 E_Incomplete_Type =>
19740 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
19741
19742 if Ekind (Def_Id) = E_Incomplete_Type then
19743 Set_Private_Dependents (Def_Id, New_Elmt_List);
19744 end if;
19745
19746 when Private_Kind =>
19747 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
19748 Set_Private_Dependents (Def_Id, New_Elmt_List);
19749
19750 -- In case of an invalid constraint prevent further processing
19751 -- since the type constructed is missing expected fields.
19752
19753 if Etype (Def_Id) = Any_Type then
19754 return Def_Id;
19755 end if;
19756
19757 -- If the full view is that of a task with discriminants,
19758 -- we must constrain both the concurrent type and its
19759 -- corresponding record type. Otherwise we will just propagate
19760 -- the constraint to the full view, if available.
19761
19762 if Present (Full_View (Subtype_Mark_Id))
19763 and then Has_Discriminants (Subtype_Mark_Id)
19764 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
19765 then
19766 Full_View_Id :=
19767 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
19768
19769 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
19770 Constrain_Concurrent (Full_View_Id, S,
19771 Related_Nod, Related_Id, Suffix);
19772 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
19773 Set_Full_View (Def_Id, Full_View_Id);
19774
19775 -- Introduce an explicit reference to the private subtype,
19776 -- to prevent scope anomalies in gigi if first use appears
19777 -- in a nested context, e.g. a later function body.
19778 -- Should this be generated in other contexts than a full
19779 -- type declaration?
19780
19781 if Is_Itype (Def_Id)
19782 and then
19783 Nkind (Parent (P)) = N_Full_Type_Declaration
19784 then
19785 Build_Itype_Reference (Def_Id, Parent (P));
19786 end if;
19787
19788 else
19789 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
19790 end if;
19791
19792 when Concurrent_Kind =>
19793 Constrain_Concurrent (Def_Id, S,
19794 Related_Nod, Related_Id, Suffix);
19795
19796 when others =>
19797 Error_Msg_N ("invalid subtype mark in subtype indication", S);
19798 end case;
19799
19800 -- Size and Convention are always inherited from the base type
19801
19802 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
19803 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
19804
19805 return Def_Id;
19806 end if;
19807 end Process_Subtype;
19808
19809 ---------------------------------------
19810 -- Check_Anonymous_Access_Components --
19811 ---------------------------------------
19812
19813 procedure Check_Anonymous_Access_Components
19814 (Typ_Decl : Node_Id;
19815 Typ : Entity_Id;
19816 Prev : Entity_Id;
19817 Comp_List : Node_Id)
19818 is
19819 Loc : constant Source_Ptr := Sloc (Typ_Decl);
19820 Anon_Access : Entity_Id;
19821 Acc_Def : Node_Id;
19822 Comp : Node_Id;
19823 Comp_Def : Node_Id;
19824 Decl : Node_Id;
19825 Type_Def : Node_Id;
19826
19827 procedure Build_Incomplete_Type_Declaration;
19828 -- If the record type contains components that include an access to the
19829 -- current record, then create an incomplete type declaration for the
19830 -- record, to be used as the designated type of the anonymous access.
19831 -- This is done only once, and only if there is no previous partial
19832 -- view of the type.
19833
19834 function Designates_T (Subt : Node_Id) return Boolean;
19835 -- Check whether a node designates the enclosing record type, or 'Class
19836 -- of that type
19837
19838 function Mentions_T (Acc_Def : Node_Id) return Boolean;
19839 -- Check whether an access definition includes a reference to
19840 -- the enclosing record type. The reference can be a subtype mark
19841 -- in the access definition itself, a 'Class attribute reference, or
19842 -- recursively a reference appearing in a parameter specification
19843 -- or result definition of an access_to_subprogram definition.
19844
19845 --------------------------------------
19846 -- Build_Incomplete_Type_Declaration --
19847 --------------------------------------
19848
19849 procedure Build_Incomplete_Type_Declaration is
19850 Decl : Node_Id;
19851 Inc_T : Entity_Id;
19852 H : Entity_Id;
19853
19854 -- Is_Tagged indicates whether the type is tagged. It is tagged if
19855 -- it's "is new ... with record" or else "is tagged record ...".
19856
19857 Is_Tagged : constant Boolean :=
19858 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
19859 and then
19860 Present
19861 (Record_Extension_Part (Type_Definition (Typ_Decl))))
19862 or else
19863 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
19864 and then Tagged_Present (Type_Definition (Typ_Decl)));
19865
19866 begin
19867 -- If there is a previous partial view, no need to create a new one
19868 -- If the partial view, given by Prev, is incomplete, If Prev is
19869 -- a private declaration, full declaration is flagged accordingly.
19870
19871 if Prev /= Typ then
19872 if Is_Tagged then
19873 Make_Class_Wide_Type (Prev);
19874 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
19875 Set_Etype (Class_Wide_Type (Typ), Typ);
19876 end if;
19877
19878 return;
19879
19880 elsif Has_Private_Declaration (Typ) then
19881
19882 -- If we refer to T'Class inside T, and T is the completion of a
19883 -- private type, then we need to make sure the class-wide type
19884 -- exists.
19885
19886 if Is_Tagged then
19887 Make_Class_Wide_Type (Typ);
19888 end if;
19889
19890 return;
19891
19892 -- If there was a previous anonymous access type, the incomplete
19893 -- type declaration will have been created already.
19894
19895 elsif Present (Current_Entity (Typ))
19896 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
19897 and then Full_View (Current_Entity (Typ)) = Typ
19898 then
19899 if Is_Tagged
19900 and then Comes_From_Source (Current_Entity (Typ))
19901 and then not Is_Tagged_Type (Current_Entity (Typ))
19902 then
19903 Make_Class_Wide_Type (Typ);
19904 Error_Msg_N
19905 ("incomplete view of tagged type should be declared tagged??",
19906 Parent (Current_Entity (Typ)));
19907 end if;
19908 return;
19909
19910 else
19911 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
19912 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
19913
19914 -- Type has already been inserted into the current scope. Remove
19915 -- it, and add incomplete declaration for type, so that subsequent
19916 -- anonymous access types can use it. The entity is unchained from
19917 -- the homonym list and from immediate visibility. After analysis,
19918 -- the entity in the incomplete declaration becomes immediately
19919 -- visible in the record declaration that follows.
19920
19921 H := Current_Entity (Typ);
19922
19923 if H = Typ then
19924 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
19925 else
19926 while Present (H)
19927 and then Homonym (H) /= Typ
19928 loop
19929 H := Homonym (Typ);
19930 end loop;
19931
19932 Set_Homonym (H, Homonym (Typ));
19933 end if;
19934
19935 Insert_Before (Typ_Decl, Decl);
19936 Analyze (Decl);
19937 Set_Full_View (Inc_T, Typ);
19938
19939 if Is_Tagged then
19940
19941 -- Create a common class-wide type for both views, and set the
19942 -- Etype of the class-wide type to the full view.
19943
19944 Make_Class_Wide_Type (Inc_T);
19945 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
19946 Set_Etype (Class_Wide_Type (Typ), Typ);
19947 end if;
19948 end if;
19949 end Build_Incomplete_Type_Declaration;
19950
19951 ------------------
19952 -- Designates_T --
19953 ------------------
19954
19955 function Designates_T (Subt : Node_Id) return Boolean is
19956 Type_Id : constant Name_Id := Chars (Typ);
19957
19958 function Names_T (Nam : Node_Id) return Boolean;
19959 -- The record type has not been introduced in the current scope
19960 -- yet, so we must examine the name of the type itself, either
19961 -- an identifier T, or an expanded name of the form P.T, where
19962 -- P denotes the current scope.
19963
19964 -------------
19965 -- Names_T --
19966 -------------
19967
19968 function Names_T (Nam : Node_Id) return Boolean is
19969 begin
19970 if Nkind (Nam) = N_Identifier then
19971 return Chars (Nam) = Type_Id;
19972
19973 elsif Nkind (Nam) = N_Selected_Component then
19974 if Chars (Selector_Name (Nam)) = Type_Id then
19975 if Nkind (Prefix (Nam)) = N_Identifier then
19976 return Chars (Prefix (Nam)) = Chars (Current_Scope);
19977
19978 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
19979 return Chars (Selector_Name (Prefix (Nam))) =
19980 Chars (Current_Scope);
19981 else
19982 return False;
19983 end if;
19984
19985 else
19986 return False;
19987 end if;
19988
19989 else
19990 return False;
19991 end if;
19992 end Names_T;
19993
19994 -- Start of processing for Designates_T
19995
19996 begin
19997 if Nkind (Subt) = N_Identifier then
19998 return Chars (Subt) = Type_Id;
19999
20000 -- Reference can be through an expanded name which has not been
20001 -- analyzed yet, and which designates enclosing scopes.
20002
20003 elsif Nkind (Subt) = N_Selected_Component then
20004 if Names_T (Subt) then
20005 return True;
20006
20007 -- Otherwise it must denote an entity that is already visible.
20008 -- The access definition may name a subtype of the enclosing
20009 -- type, if there is a previous incomplete declaration for it.
20010
20011 else
20012 Find_Selected_Component (Subt);
20013 return
20014 Is_Entity_Name (Subt)
20015 and then Scope (Entity (Subt)) = Current_Scope
20016 and then
20017 (Chars (Base_Type (Entity (Subt))) = Type_Id
20018 or else
20019 (Is_Class_Wide_Type (Entity (Subt))
20020 and then
20021 Chars (Etype (Base_Type (Entity (Subt)))) =
20022 Type_Id));
20023 end if;
20024
20025 -- A reference to the current type may appear as the prefix of
20026 -- a 'Class attribute.
20027
20028 elsif Nkind (Subt) = N_Attribute_Reference
20029 and then Attribute_Name (Subt) = Name_Class
20030 then
20031 return Names_T (Prefix (Subt));
20032
20033 else
20034 return False;
20035 end if;
20036 end Designates_T;
20037
20038 ----------------
20039 -- Mentions_T --
20040 ----------------
20041
20042 function Mentions_T (Acc_Def : Node_Id) return Boolean is
20043 Param_Spec : Node_Id;
20044
20045 Acc_Subprg : constant Node_Id :=
20046 Access_To_Subprogram_Definition (Acc_Def);
20047
20048 begin
20049 if No (Acc_Subprg) then
20050 return Designates_T (Subtype_Mark (Acc_Def));
20051 end if;
20052
20053 -- Component is an access_to_subprogram: examine its formals,
20054 -- and result definition in the case of an access_to_function.
20055
20056 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
20057 while Present (Param_Spec) loop
20058 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
20059 and then Mentions_T (Parameter_Type (Param_Spec))
20060 then
20061 return True;
20062
20063 elsif Designates_T (Parameter_Type (Param_Spec)) then
20064 return True;
20065 end if;
20066
20067 Next (Param_Spec);
20068 end loop;
20069
20070 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
20071 if Nkind (Result_Definition (Acc_Subprg)) =
20072 N_Access_Definition
20073 then
20074 return Mentions_T (Result_Definition (Acc_Subprg));
20075 else
20076 return Designates_T (Result_Definition (Acc_Subprg));
20077 end if;
20078 end if;
20079
20080 return False;
20081 end Mentions_T;
20082
20083 -- Start of processing for Check_Anonymous_Access_Components
20084
20085 begin
20086 if No (Comp_List) then
20087 return;
20088 end if;
20089
20090 Comp := First (Component_Items (Comp_List));
20091 while Present (Comp) loop
20092 if Nkind (Comp) = N_Component_Declaration
20093 and then Present
20094 (Access_Definition (Component_Definition (Comp)))
20095 and then
20096 Mentions_T (Access_Definition (Component_Definition (Comp)))
20097 then
20098 Comp_Def := Component_Definition (Comp);
20099 Acc_Def :=
20100 Access_To_Subprogram_Definition
20101 (Access_Definition (Comp_Def));
20102
20103 Build_Incomplete_Type_Declaration;
20104 Anon_Access := Make_Temporary (Loc, 'S');
20105
20106 -- Create a declaration for the anonymous access type: either
20107 -- an access_to_object or an access_to_subprogram.
20108
20109 if Present (Acc_Def) then
20110 if Nkind (Acc_Def) = N_Access_Function_Definition then
20111 Type_Def :=
20112 Make_Access_Function_Definition (Loc,
20113 Parameter_Specifications =>
20114 Parameter_Specifications (Acc_Def),
20115 Result_Definition => Result_Definition (Acc_Def));
20116 else
20117 Type_Def :=
20118 Make_Access_Procedure_Definition (Loc,
20119 Parameter_Specifications =>
20120 Parameter_Specifications (Acc_Def));
20121 end if;
20122
20123 else
20124 Type_Def :=
20125 Make_Access_To_Object_Definition (Loc,
20126 Subtype_Indication =>
20127 Relocate_Node
20128 (Subtype_Mark
20129 (Access_Definition (Comp_Def))));
20130
20131 Set_Constant_Present
20132 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
20133 Set_All_Present
20134 (Type_Def, All_Present (Access_Definition (Comp_Def)));
20135 end if;
20136
20137 Set_Null_Exclusion_Present
20138 (Type_Def,
20139 Null_Exclusion_Present (Access_Definition (Comp_Def)));
20140
20141 Decl :=
20142 Make_Full_Type_Declaration (Loc,
20143 Defining_Identifier => Anon_Access,
20144 Type_Definition => Type_Def);
20145
20146 Insert_Before (Typ_Decl, Decl);
20147 Analyze (Decl);
20148
20149 -- If an access to subprogram, create the extra formals
20150
20151 if Present (Acc_Def) then
20152 Create_Extra_Formals (Designated_Type (Anon_Access));
20153
20154 -- If an access to object, preserve entity of designated type,
20155 -- for ASIS use, before rewriting the component definition.
20156
20157 else
20158 declare
20159 Desig : Entity_Id;
20160
20161 begin
20162 Desig := Entity (Subtype_Indication (Type_Def));
20163
20164 -- If the access definition is to the current record,
20165 -- the visible entity at this point is an incomplete
20166 -- type. Retrieve the full view to simplify ASIS queries
20167
20168 if Ekind (Desig) = E_Incomplete_Type then
20169 Desig := Full_View (Desig);
20170 end if;
20171
20172 Set_Entity
20173 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
20174 end;
20175 end if;
20176
20177 Rewrite (Comp_Def,
20178 Make_Component_Definition (Loc,
20179 Subtype_Indication =>
20180 New_Occurrence_Of (Anon_Access, Loc)));
20181
20182 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
20183 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
20184 else
20185 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
20186 end if;
20187
20188 Set_Is_Local_Anonymous_Access (Anon_Access);
20189 end if;
20190
20191 Next (Comp);
20192 end loop;
20193
20194 if Present (Variant_Part (Comp_List)) then
20195 declare
20196 V : Node_Id;
20197 begin
20198 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
20199 while Present (V) loop
20200 Check_Anonymous_Access_Components
20201 (Typ_Decl, Typ, Prev, Component_List (V));
20202 Next_Non_Pragma (V);
20203 end loop;
20204 end;
20205 end if;
20206 end Check_Anonymous_Access_Components;
20207
20208 ----------------------------------
20209 -- Preanalyze_Assert_Expression --
20210 ----------------------------------
20211
20212 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
20213 begin
20214 In_Assertion_Expr := In_Assertion_Expr + 1;
20215 Preanalyze_Spec_Expression (N, T);
20216 In_Assertion_Expr := In_Assertion_Expr - 1;
20217 end Preanalyze_Assert_Expression;
20218
20219 -----------------------------------
20220 -- Preanalyze_Default_Expression --
20221 -----------------------------------
20222
20223 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
20224 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
20225 begin
20226 In_Default_Expr := True;
20227 Preanalyze_Spec_Expression (N, T);
20228 In_Default_Expr := Save_In_Default_Expr;
20229 end Preanalyze_Default_Expression;
20230
20231 --------------------------------
20232 -- Preanalyze_Spec_Expression --
20233 --------------------------------
20234
20235 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
20236 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
20237 begin
20238 In_Spec_Expression := True;
20239 Preanalyze_And_Resolve (N, T);
20240 In_Spec_Expression := Save_In_Spec_Expression;
20241 end Preanalyze_Spec_Expression;
20242
20243 -----------------------------
20244 -- Record_Type_Declaration --
20245 -----------------------------
20246
20247 procedure Record_Type_Declaration
20248 (T : Entity_Id;
20249 N : Node_Id;
20250 Prev : Entity_Id)
20251 is
20252 Def : constant Node_Id := Type_Definition (N);
20253 Is_Tagged : Boolean;
20254 Tag_Comp : Entity_Id;
20255
20256 begin
20257 -- These flags must be initialized before calling Process_Discriminants
20258 -- because this routine makes use of them.
20259
20260 Set_Ekind (T, E_Record_Type);
20261 Set_Etype (T, T);
20262 Init_Size_Align (T);
20263 Set_Interfaces (T, No_Elist);
20264 Set_Stored_Constraint (T, No_Elist);
20265 Set_Default_SSO (T);
20266
20267 -- Normal case
20268
20269 if Ada_Version < Ada_2005
20270 or else not Interface_Present (Def)
20271 then
20272 if Limited_Present (Def) then
20273 Check_SPARK_05_Restriction ("limited is not allowed", N);
20274 end if;
20275
20276 if Abstract_Present (Def) then
20277 Check_SPARK_05_Restriction ("abstract is not allowed", N);
20278 end if;
20279
20280 -- The flag Is_Tagged_Type might have already been set by
20281 -- Find_Type_Name if it detected an error for declaration T. This
20282 -- arises in the case of private tagged types where the full view
20283 -- omits the word tagged.
20284
20285 Is_Tagged :=
20286 Tagged_Present (Def)
20287 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
20288
20289 Set_Is_Tagged_Type (T, Is_Tagged);
20290 Set_Is_Limited_Record (T, Limited_Present (Def));
20291
20292 -- Type is abstract if full declaration carries keyword, or if
20293 -- previous partial view did.
20294
20295 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
20296 or else Abstract_Present (Def));
20297
20298 else
20299 Check_SPARK_05_Restriction ("interface is not allowed", N);
20300
20301 Is_Tagged := True;
20302 Analyze_Interface_Declaration (T, Def);
20303
20304 if Present (Discriminant_Specifications (N)) then
20305 Error_Msg_N
20306 ("interface types cannot have discriminants",
20307 Defining_Identifier
20308 (First (Discriminant_Specifications (N))));
20309 end if;
20310 end if;
20311
20312 -- First pass: if there are self-referential access components,
20313 -- create the required anonymous access type declarations, and if
20314 -- need be an incomplete type declaration for T itself.
20315
20316 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
20317
20318 if Ada_Version >= Ada_2005
20319 and then Present (Interface_List (Def))
20320 then
20321 Check_Interfaces (N, Def);
20322
20323 declare
20324 Ifaces_List : Elist_Id;
20325
20326 begin
20327 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
20328 -- already in the parents.
20329
20330 Collect_Interfaces
20331 (T => T,
20332 Ifaces_List => Ifaces_List,
20333 Exclude_Parents => True);
20334
20335 Set_Interfaces (T, Ifaces_List);
20336 end;
20337 end if;
20338
20339 -- Records constitute a scope for the component declarations within.
20340 -- The scope is created prior to the processing of these declarations.
20341 -- Discriminants are processed first, so that they are visible when
20342 -- processing the other components. The Ekind of the record type itself
20343 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
20344
20345 -- Enter record scope
20346
20347 Push_Scope (T);
20348
20349 -- If an incomplete or private type declaration was already given for
20350 -- the type, then this scope already exists, and the discriminants have
20351 -- been declared within. We must verify that the full declaration
20352 -- matches the incomplete one.
20353
20354 Check_Or_Process_Discriminants (N, T, Prev);
20355
20356 Set_Is_Constrained (T, not Has_Discriminants (T));
20357 Set_Has_Delayed_Freeze (T, True);
20358
20359 -- For tagged types add a manually analyzed component corresponding
20360 -- to the component _tag, the corresponding piece of tree will be
20361 -- expanded as part of the freezing actions if it is not a CPP_Class.
20362
20363 if Is_Tagged then
20364
20365 -- Do not add the tag unless we are in expansion mode
20366
20367 if Expander_Active then
20368 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
20369 Enter_Name (Tag_Comp);
20370
20371 Set_Ekind (Tag_Comp, E_Component);
20372 Set_Is_Tag (Tag_Comp);
20373 Set_Is_Aliased (Tag_Comp);
20374 Set_Etype (Tag_Comp, RTE (RE_Tag));
20375 Set_DT_Entry_Count (Tag_Comp, No_Uint);
20376 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
20377 Init_Component_Location (Tag_Comp);
20378
20379 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
20380 -- implemented interfaces.
20381
20382 if Has_Interfaces (T) then
20383 Add_Interface_Tag_Components (N, T);
20384 end if;
20385 end if;
20386
20387 Make_Class_Wide_Type (T);
20388 Set_Direct_Primitive_Operations (T, New_Elmt_List);
20389 end if;
20390
20391 -- We must suppress range checks when processing record components in
20392 -- the presence of discriminants, since we don't want spurious checks to
20393 -- be generated during their analysis, but Suppress_Range_Checks flags
20394 -- must be reset the after processing the record definition.
20395
20396 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
20397 -- couldn't we just use the normal range check suppression method here.
20398 -- That would seem cleaner ???
20399
20400 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
20401 Set_Kill_Range_Checks (T, True);
20402 Record_Type_Definition (Def, Prev);
20403 Set_Kill_Range_Checks (T, False);
20404 else
20405 Record_Type_Definition (Def, Prev);
20406 end if;
20407
20408 -- Exit from record scope
20409
20410 End_Scope;
20411
20412 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
20413 -- the implemented interfaces and associate them an aliased entity.
20414
20415 if Is_Tagged
20416 and then not Is_Empty_List (Interface_List (Def))
20417 then
20418 Derive_Progenitor_Subprograms (T, T);
20419 end if;
20420
20421 Check_Function_Writable_Actuals (N);
20422 end Record_Type_Declaration;
20423
20424 ----------------------------
20425 -- Record_Type_Definition --
20426 ----------------------------
20427
20428 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
20429 Component : Entity_Id;
20430 Ctrl_Components : Boolean := False;
20431 Final_Storage_Only : Boolean;
20432 T : Entity_Id;
20433
20434 begin
20435 if Ekind (Prev_T) = E_Incomplete_Type then
20436 T := Full_View (Prev_T);
20437 else
20438 T := Prev_T;
20439 end if;
20440
20441 -- In SPARK, tagged types and type extensions may only be declared in
20442 -- the specification of library unit packages.
20443
20444 if Present (Def) and then Is_Tagged_Type (T) then
20445 declare
20446 Typ : Node_Id;
20447 Ctxt : Node_Id;
20448
20449 begin
20450 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
20451 Typ := Parent (Def);
20452 else
20453 pragma Assert
20454 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
20455 Typ := Parent (Parent (Def));
20456 end if;
20457
20458 Ctxt := Parent (Typ);
20459
20460 if Nkind (Ctxt) = N_Package_Body
20461 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
20462 then
20463 Check_SPARK_05_Restriction
20464 ("type should be defined in package specification", Typ);
20465
20466 elsif Nkind (Ctxt) /= N_Package_Specification
20467 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
20468 then
20469 Check_SPARK_05_Restriction
20470 ("type should be defined in library unit package", Typ);
20471 end if;
20472 end;
20473 end if;
20474
20475 Final_Storage_Only := not Is_Controlled (T);
20476
20477 -- Ada 2005: Check whether an explicit Limited is present in a derived
20478 -- type declaration.
20479
20480 if Nkind (Parent (Def)) = N_Derived_Type_Definition
20481 and then Limited_Present (Parent (Def))
20482 then
20483 Set_Is_Limited_Record (T);
20484 end if;
20485
20486 -- If the component list of a record type is defined by the reserved
20487 -- word null and there is no discriminant part, then the record type has
20488 -- no components and all records of the type are null records (RM 3.7)
20489 -- This procedure is also called to process the extension part of a
20490 -- record extension, in which case the current scope may have inherited
20491 -- components.
20492
20493 if No (Def)
20494 or else No (Component_List (Def))
20495 or else Null_Present (Component_List (Def))
20496 then
20497 if not Is_Tagged_Type (T) then
20498 Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
20499 end if;
20500
20501 else
20502 Analyze_Declarations (Component_Items (Component_List (Def)));
20503
20504 if Present (Variant_Part (Component_List (Def))) then
20505 Check_SPARK_05_Restriction ("variant part is not allowed", Def);
20506 Analyze (Variant_Part (Component_List (Def)));
20507 end if;
20508 end if;
20509
20510 -- After completing the semantic analysis of the record definition,
20511 -- record components, both new and inherited, are accessible. Set their
20512 -- kind accordingly. Exclude malformed itypes from illegal declarations,
20513 -- whose Ekind may be void.
20514
20515 Component := First_Entity (Current_Scope);
20516 while Present (Component) loop
20517 if Ekind (Component) = E_Void
20518 and then not Is_Itype (Component)
20519 then
20520 Set_Ekind (Component, E_Component);
20521 Init_Component_Location (Component);
20522 end if;
20523
20524 if Has_Task (Etype (Component)) then
20525 Set_Has_Task (T);
20526 end if;
20527
20528 if Has_Protected (Etype (Component)) then
20529 Set_Has_Protected (T);
20530 end if;
20531
20532 if Ekind (Component) /= E_Component then
20533 null;
20534
20535 -- Do not set Has_Controlled_Component on a class-wide equivalent
20536 -- type. See Make_CW_Equivalent_Type.
20537
20538 elsif not Is_Class_Wide_Equivalent_Type (T)
20539 and then (Has_Controlled_Component (Etype (Component))
20540 or else (Chars (Component) /= Name_uParent
20541 and then Is_Controlled (Etype (Component))))
20542 then
20543 Set_Has_Controlled_Component (T, True);
20544 Final_Storage_Only :=
20545 Final_Storage_Only
20546 and then Finalize_Storage_Only (Etype (Component));
20547 Ctrl_Components := True;
20548 end if;
20549
20550 Next_Entity (Component);
20551 end loop;
20552
20553 -- A Type is Finalize_Storage_Only only if all its controlled components
20554 -- are also.
20555
20556 if Ctrl_Components then
20557 Set_Finalize_Storage_Only (T, Final_Storage_Only);
20558 end if;
20559
20560 -- Place reference to end record on the proper entity, which may
20561 -- be a partial view.
20562
20563 if Present (Def) then
20564 Process_End_Label (Def, 'e', Prev_T);
20565 end if;
20566 end Record_Type_Definition;
20567
20568 ------------------------
20569 -- Replace_Components --
20570 ------------------------
20571
20572 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
20573 function Process (N : Node_Id) return Traverse_Result;
20574
20575 -------------
20576 -- Process --
20577 -------------
20578
20579 function Process (N : Node_Id) return Traverse_Result is
20580 Comp : Entity_Id;
20581
20582 begin
20583 if Nkind (N) = N_Discriminant_Specification then
20584 Comp := First_Discriminant (Typ);
20585 while Present (Comp) loop
20586 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20587 Set_Defining_Identifier (N, Comp);
20588 exit;
20589 end if;
20590
20591 Next_Discriminant (Comp);
20592 end loop;
20593
20594 elsif Nkind (N) = N_Component_Declaration then
20595 Comp := First_Component (Typ);
20596 while Present (Comp) loop
20597 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20598 Set_Defining_Identifier (N, Comp);
20599 exit;
20600 end if;
20601
20602 Next_Component (Comp);
20603 end loop;
20604 end if;
20605
20606 return OK;
20607 end Process;
20608
20609 procedure Replace is new Traverse_Proc (Process);
20610
20611 -- Start of processing for Replace_Components
20612
20613 begin
20614 Replace (Decl);
20615 end Replace_Components;
20616
20617 -------------------------------
20618 -- Set_Completion_Referenced --
20619 -------------------------------
20620
20621 procedure Set_Completion_Referenced (E : Entity_Id) is
20622 begin
20623 -- If in main unit, mark entity that is a completion as referenced,
20624 -- warnings go on the partial view when needed.
20625
20626 if In_Extended_Main_Source_Unit (E) then
20627 Set_Referenced (E);
20628 end if;
20629 end Set_Completion_Referenced;
20630
20631 ---------------------
20632 -- Set_Default_SSO --
20633 ---------------------
20634
20635 procedure Set_Default_SSO (T : Entity_Id) is
20636 begin
20637 case Opt.Default_SSO is
20638 when ' ' =>
20639 null;
20640 when 'L' =>
20641 Set_SSO_Set_Low_By_Default (T, True);
20642 when 'H' =>
20643 Set_SSO_Set_High_By_Default (T, True);
20644 when others =>
20645 raise Program_Error;
20646 end case;
20647 end Set_Default_SSO;
20648
20649 ---------------------
20650 -- Set_Fixed_Range --
20651 ---------------------
20652
20653 -- The range for fixed-point types is complicated by the fact that we
20654 -- do not know the exact end points at the time of the declaration. This
20655 -- is true for three reasons:
20656
20657 -- A size clause may affect the fudging of the end-points.
20658 -- A small clause may affect the values of the end-points.
20659 -- We try to include the end-points if it does not affect the size.
20660
20661 -- This means that the actual end-points must be established at the
20662 -- point when the type is frozen. Meanwhile, we first narrow the range
20663 -- as permitted (so that it will fit if necessary in a small specified
20664 -- size), and then build a range subtree with these narrowed bounds.
20665 -- Set_Fixed_Range constructs the range from real literal values, and
20666 -- sets the range as the Scalar_Range of the given fixed-point type entity.
20667
20668 -- The parent of this range is set to point to the entity so that it is
20669 -- properly hooked into the tree (unlike normal Scalar_Range entries for
20670 -- other scalar types, which are just pointers to the range in the
20671 -- original tree, this would otherwise be an orphan).
20672
20673 -- The tree is left unanalyzed. When the type is frozen, the processing
20674 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
20675 -- analyzed, and uses this as an indication that it should complete
20676 -- work on the range (it will know the final small and size values).
20677
20678 procedure Set_Fixed_Range
20679 (E : Entity_Id;
20680 Loc : Source_Ptr;
20681 Lo : Ureal;
20682 Hi : Ureal)
20683 is
20684 S : constant Node_Id :=
20685 Make_Range (Loc,
20686 Low_Bound => Make_Real_Literal (Loc, Lo),
20687 High_Bound => Make_Real_Literal (Loc, Hi));
20688 begin
20689 Set_Scalar_Range (E, S);
20690 Set_Parent (S, E);
20691
20692 -- Before the freeze point, the bounds of a fixed point are universal
20693 -- and carry the corresponding type.
20694
20695 Set_Etype (Low_Bound (S), Universal_Real);
20696 Set_Etype (High_Bound (S), Universal_Real);
20697 end Set_Fixed_Range;
20698
20699 ----------------------------------
20700 -- Set_Scalar_Range_For_Subtype --
20701 ----------------------------------
20702
20703 procedure Set_Scalar_Range_For_Subtype
20704 (Def_Id : Entity_Id;
20705 R : Node_Id;
20706 Subt : Entity_Id)
20707 is
20708 Kind : constant Entity_Kind := Ekind (Def_Id);
20709
20710 begin
20711 -- Defend against previous error
20712
20713 if Nkind (R) = N_Error then
20714 return;
20715 end if;
20716
20717 Set_Scalar_Range (Def_Id, R);
20718
20719 -- We need to link the range into the tree before resolving it so
20720 -- that types that are referenced, including importantly the subtype
20721 -- itself, are properly frozen (Freeze_Expression requires that the
20722 -- expression be properly linked into the tree). Of course if it is
20723 -- already linked in, then we do not disturb the current link.
20724
20725 if No (Parent (R)) then
20726 Set_Parent (R, Def_Id);
20727 end if;
20728
20729 -- Reset the kind of the subtype during analysis of the range, to
20730 -- catch possible premature use in the bounds themselves.
20731
20732 Set_Ekind (Def_Id, E_Void);
20733 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
20734 Set_Ekind (Def_Id, Kind);
20735 end Set_Scalar_Range_For_Subtype;
20736
20737 --------------------------------------------------------
20738 -- Set_Stored_Constraint_From_Discriminant_Constraint --
20739 --------------------------------------------------------
20740
20741 procedure Set_Stored_Constraint_From_Discriminant_Constraint
20742 (E : Entity_Id)
20743 is
20744 begin
20745 -- Make sure set if encountered during Expand_To_Stored_Constraint
20746
20747 Set_Stored_Constraint (E, No_Elist);
20748
20749 -- Give it the right value
20750
20751 if Is_Constrained (E) and then Has_Discriminants (E) then
20752 Set_Stored_Constraint (E,
20753 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
20754 end if;
20755 end Set_Stored_Constraint_From_Discriminant_Constraint;
20756
20757 -------------------------------------
20758 -- Signed_Integer_Type_Declaration --
20759 -------------------------------------
20760
20761 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
20762 Implicit_Base : Entity_Id;
20763 Base_Typ : Entity_Id;
20764 Lo_Val : Uint;
20765 Hi_Val : Uint;
20766 Errs : Boolean := False;
20767 Lo : Node_Id;
20768 Hi : Node_Id;
20769
20770 function Can_Derive_From (E : Entity_Id) return Boolean;
20771 -- Determine whether given bounds allow derivation from specified type
20772
20773 procedure Check_Bound (Expr : Node_Id);
20774 -- Check bound to make sure it is integral and static. If not, post
20775 -- appropriate error message and set Errs flag
20776
20777 ---------------------
20778 -- Can_Derive_From --
20779 ---------------------
20780
20781 -- Note we check both bounds against both end values, to deal with
20782 -- strange types like ones with a range of 0 .. -12341234.
20783
20784 function Can_Derive_From (E : Entity_Id) return Boolean is
20785 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
20786 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
20787 begin
20788 return Lo <= Lo_Val and then Lo_Val <= Hi
20789 and then
20790 Lo <= Hi_Val and then Hi_Val <= Hi;
20791 end Can_Derive_From;
20792
20793 -----------------
20794 -- Check_Bound --
20795 -----------------
20796
20797 procedure Check_Bound (Expr : Node_Id) is
20798 begin
20799 -- If a range constraint is used as an integer type definition, each
20800 -- bound of the range must be defined by a static expression of some
20801 -- integer type, but the two bounds need not have the same integer
20802 -- type (Negative bounds are allowed.) (RM 3.5.4)
20803
20804 if not Is_Integer_Type (Etype (Expr)) then
20805 Error_Msg_N
20806 ("integer type definition bounds must be of integer type", Expr);
20807 Errs := True;
20808
20809 elsif not Is_OK_Static_Expression (Expr) then
20810 Flag_Non_Static_Expr
20811 ("non-static expression used for integer type bound!", Expr);
20812 Errs := True;
20813
20814 -- The bounds are folded into literals, and we set their type to be
20815 -- universal, to avoid typing difficulties: we cannot set the type
20816 -- of the literal to the new type, because this would be a forward
20817 -- reference for the back end, and if the original type is user-
20818 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
20819
20820 else
20821 if Is_Entity_Name (Expr) then
20822 Fold_Uint (Expr, Expr_Value (Expr), True);
20823 end if;
20824
20825 Set_Etype (Expr, Universal_Integer);
20826 end if;
20827 end Check_Bound;
20828
20829 -- Start of processing for Signed_Integer_Type_Declaration
20830
20831 begin
20832 -- Create an anonymous base type
20833
20834 Implicit_Base :=
20835 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
20836
20837 -- Analyze and check the bounds, they can be of any integer type
20838
20839 Lo := Low_Bound (Def);
20840 Hi := High_Bound (Def);
20841
20842 -- Arbitrarily use Integer as the type if either bound had an error
20843
20844 if Hi = Error or else Lo = Error then
20845 Base_Typ := Any_Integer;
20846 Set_Error_Posted (T, True);
20847
20848 -- Here both bounds are OK expressions
20849
20850 else
20851 Analyze_And_Resolve (Lo, Any_Integer);
20852 Analyze_And_Resolve (Hi, Any_Integer);
20853
20854 Check_Bound (Lo);
20855 Check_Bound (Hi);
20856
20857 if Errs then
20858 Hi := Type_High_Bound (Standard_Long_Long_Integer);
20859 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
20860 end if;
20861
20862 -- Find type to derive from
20863
20864 Lo_Val := Expr_Value (Lo);
20865 Hi_Val := Expr_Value (Hi);
20866
20867 if Can_Derive_From (Standard_Short_Short_Integer) then
20868 Base_Typ := Base_Type (Standard_Short_Short_Integer);
20869
20870 elsif Can_Derive_From (Standard_Short_Integer) then
20871 Base_Typ := Base_Type (Standard_Short_Integer);
20872
20873 elsif Can_Derive_From (Standard_Integer) then
20874 Base_Typ := Base_Type (Standard_Integer);
20875
20876 elsif Can_Derive_From (Standard_Long_Integer) then
20877 Base_Typ := Base_Type (Standard_Long_Integer);
20878
20879 elsif Can_Derive_From (Standard_Long_Long_Integer) then
20880 Check_Restriction (No_Long_Long_Integers, Def);
20881 Base_Typ := Base_Type (Standard_Long_Long_Integer);
20882
20883 else
20884 Base_Typ := Base_Type (Standard_Long_Long_Integer);
20885 Error_Msg_N ("integer type definition bounds out of range", Def);
20886 Hi := Type_High_Bound (Standard_Long_Long_Integer);
20887 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
20888 end if;
20889 end if;
20890
20891 -- Complete both implicit base and declared first subtype entities
20892
20893 Set_Etype (Implicit_Base, Base_Typ);
20894 Set_Size_Info (Implicit_Base, (Base_Typ));
20895 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
20896 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
20897
20898 Set_Ekind (T, E_Signed_Integer_Subtype);
20899 Set_Etype (T, Implicit_Base);
20900
20901 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
20902
20903 Set_Size_Info (T, (Implicit_Base));
20904 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
20905 Set_Scalar_Range (T, Def);
20906 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
20907 Set_Is_Constrained (T);
20908 end Signed_Integer_Type_Declaration;
20909
20910 end Sem_Ch3;