[multiple changes]
[gcc.git] / gcc / ada / sem_ch3.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Elists; use Elists;
31 with Einfo; use Einfo;
32 with Errout; use Errout;
33 with Eval_Fat; use Eval_Fat;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Dist; use Exp_Dist;
38 with Exp_Tss; use Exp_Tss;
39 with Exp_Util; use Exp_Util;
40 with Fname; use Fname;
41 with Freeze; use Freeze;
42 with Ghost; use Ghost;
43 with Itypes; use Itypes;
44 with Layout; use Layout;
45 with Lib; use Lib;
46 with Lib.Xref; use Lib.Xref;
47 with Namet; use Namet;
48 with Nmake; use Nmake;
49 with Opt; use Opt;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Case; use Sem_Case;
56 with Sem_Cat; use Sem_Cat;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch7; use Sem_Ch7;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch10; use Sem_Ch10;
61 with Sem_Ch13; use Sem_Ch13;
62 with Sem_Dim; use Sem_Dim;
63 with Sem_Disp; use Sem_Disp;
64 with Sem_Dist; use Sem_Dist;
65 with Sem_Elim; use Sem_Elim;
66 with Sem_Eval; use Sem_Eval;
67 with Sem_Mech; use Sem_Mech;
68 with Sem_Prag; use Sem_Prag;
69 with Sem_Res; use Sem_Res;
70 with Sem_Smem; use Sem_Smem;
71 with Sem_Type; use Sem_Type;
72 with Sem_Util; use Sem_Util;
73 with Sem_Warn; use Sem_Warn;
74 with Stand; use Stand;
75 with Sinfo; use Sinfo;
76 with Sinput; use Sinput;
77 with Snames; use Snames;
78 with Targparm; use Targparm;
79 with Tbuild; use Tbuild;
80 with Ttypes; use Ttypes;
81 with Uintp; use Uintp;
82 with Urealp; use Urealp;
83
84 package body Sem_Ch3 is
85
86 -----------------------
87 -- Local Subprograms --
88 -----------------------
89
90 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
91 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
92 -- abstract interface types implemented by a record type or a derived
93 -- record type.
94
95 procedure Analyze_Object_Contract (Obj_Id : Entity_Id);
96 -- Analyze all delayed pragmas chained on the contract of object Obj_Id as
97 -- if they appeared at the end of the declarative region. The pragmas to be
98 -- considered are:
99 -- Async_Readers
100 -- Async_Writers
101 -- Effective_Reads
102 -- Effective_Writes
103 -- Part_Of
104
105 procedure Build_Derived_Type
106 (N : Node_Id;
107 Parent_Type : Entity_Id;
108 Derived_Type : Entity_Id;
109 Is_Completion : Boolean;
110 Derive_Subps : Boolean := True);
111 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
112 -- the N_Full_Type_Declaration node containing the derived type definition.
113 -- Parent_Type is the entity for the parent type in the derived type
114 -- definition and Derived_Type the actual derived type. Is_Completion must
115 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
116 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
117 -- completion of a private type declaration. If Is_Completion is set to
118 -- True, N is the completion of a private type declaration and Derived_Type
119 -- is different from the defining identifier inside N (i.e. Derived_Type /=
120 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
121 -- subprograms should be derived. The only case where this parameter is
122 -- False is when Build_Derived_Type is recursively called to process an
123 -- implicit derived full type for a type derived from a private type (in
124 -- that case the subprograms must only be derived for the private view of
125 -- the type).
126 --
127 -- ??? These flags need a bit of re-examination and re-documentation:
128 -- ??? are they both necessary (both seem related to the recursion)?
129
130 procedure Build_Derived_Access_Type
131 (N : Node_Id;
132 Parent_Type : Entity_Id;
133 Derived_Type : Entity_Id);
134 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
135 -- create an implicit base if the parent type is constrained or if the
136 -- subtype indication has a constraint.
137
138 procedure Build_Derived_Array_Type
139 (N : Node_Id;
140 Parent_Type : Entity_Id;
141 Derived_Type : Entity_Id);
142 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
143 -- create an implicit base if the parent type is constrained or if the
144 -- subtype indication has a constraint.
145
146 procedure Build_Derived_Concurrent_Type
147 (N : Node_Id;
148 Parent_Type : Entity_Id;
149 Derived_Type : Entity_Id);
150 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
151 -- protected type, inherit entries and protected subprograms, check
152 -- legality of discriminant constraints if any.
153
154 procedure Build_Derived_Enumeration_Type
155 (N : Node_Id;
156 Parent_Type : Entity_Id;
157 Derived_Type : Entity_Id);
158 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
159 -- type, we must create a new list of literals. Types derived from
160 -- Character and [Wide_]Wide_Character are special-cased.
161
162 procedure Build_Derived_Numeric_Type
163 (N : Node_Id;
164 Parent_Type : Entity_Id;
165 Derived_Type : Entity_Id);
166 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
167 -- an anonymous base type, and propagate constraint to subtype if needed.
168
169 procedure Build_Derived_Private_Type
170 (N : Node_Id;
171 Parent_Type : Entity_Id;
172 Derived_Type : Entity_Id;
173 Is_Completion : Boolean;
174 Derive_Subps : Boolean := True);
175 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
176 -- because the parent may or may not have a completion, and the derivation
177 -- may itself be a completion.
178
179 procedure Build_Derived_Record_Type
180 (N : Node_Id;
181 Parent_Type : Entity_Id;
182 Derived_Type : Entity_Id;
183 Derive_Subps : Boolean := True);
184 -- Subsidiary procedure used for tagged and untagged record types
185 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
186 -- All parameters are as in Build_Derived_Type except that N, in
187 -- addition to being an N_Full_Type_Declaration node, can also be an
188 -- N_Private_Extension_Declaration node. See the definition of this routine
189 -- for much more info. Derive_Subps indicates whether subprograms should be
190 -- derived from the parent type. The only case where Derive_Subps is False
191 -- is for an implicit derived full type for a type derived from a private
192 -- type (see Build_Derived_Type).
193
194 procedure Build_Discriminal (Discrim : Entity_Id);
195 -- Create the discriminal corresponding to discriminant Discrim, that is
196 -- the parameter corresponding to Discrim to be used in initialization
197 -- procedures for the type where Discrim is a discriminant. Discriminals
198 -- are not used during semantic analysis, and are not fully defined
199 -- entities until expansion. Thus they are not given a scope until
200 -- initialization procedures are built.
201
202 function Build_Discriminant_Constraints
203 (T : Entity_Id;
204 Def : Node_Id;
205 Derived_Def : Boolean := False) return Elist_Id;
206 -- Validate discriminant constraints and return the list of the constraints
207 -- in order of discriminant declarations, where T is the discriminated
208 -- unconstrained type. Def is the N_Subtype_Indication node where the
209 -- discriminants constraints for T are specified. Derived_Def is True
210 -- when building the discriminant constraints in a derived type definition
211 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
212 -- type and Def is the constraint "(xxx)" on T and this routine sets the
213 -- Corresponding_Discriminant field of the discriminants in the derived
214 -- type D to point to the corresponding discriminants in the parent type T.
215
216 procedure Build_Discriminated_Subtype
217 (T : Entity_Id;
218 Def_Id : Entity_Id;
219 Elist : Elist_Id;
220 Related_Nod : Node_Id;
221 For_Access : Boolean := False);
222 -- Subsidiary procedure to Constrain_Discriminated_Type and to
223 -- Process_Incomplete_Dependents. Given
224 --
225 -- T (a possibly discriminated base type)
226 -- Def_Id (a very partially built subtype for T),
227 --
228 -- the call completes Def_Id to be the appropriate E_*_Subtype.
229 --
230 -- The Elist is the list of discriminant constraints if any (it is set
231 -- to No_Elist if T is not a discriminated type, and to an empty list if
232 -- T has discriminants but there are no discriminant constraints). The
233 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
234 -- The For_Access says whether or not this subtype is really constraining
235 -- an access type. That is its sole purpose is the designated type of an
236 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
237 -- is built to avoid freezing T when the access subtype is frozen.
238
239 function Build_Scalar_Bound
240 (Bound : Node_Id;
241 Par_T : Entity_Id;
242 Der_T : Entity_Id) return Node_Id;
243 -- The bounds of a derived scalar type are conversions of the bounds of
244 -- the parent type. Optimize the representation if the bounds are literals.
245 -- Needs a more complete spec--what are the parameters exactly, and what
246 -- exactly is the returned value, and how is Bound affected???
247
248 procedure Build_Underlying_Full_View
249 (N : Node_Id;
250 Typ : Entity_Id;
251 Par : Entity_Id);
252 -- If the completion of a private type is itself derived from a private
253 -- type, or if the full view of a private subtype is itself private, the
254 -- back-end has no way to compute the actual size of this type. We build
255 -- an internal subtype declaration of the proper parent type to convey
256 -- this information. This extra mechanism is needed because a full
257 -- view cannot itself have a full view (it would get clobbered during
258 -- view exchanges).
259
260 procedure Check_Access_Discriminant_Requires_Limited
261 (D : Node_Id;
262 Loc : Node_Id);
263 -- Check the restriction that the type to which an access discriminant
264 -- belongs must be a concurrent type or a descendant of a type with
265 -- the reserved word 'limited' in its declaration.
266
267 procedure Check_Anonymous_Access_Components
268 (Typ_Decl : Node_Id;
269 Typ : Entity_Id;
270 Prev : Entity_Id;
271 Comp_List : Node_Id);
272 -- Ada 2005 AI-382: an access component in a record definition can refer to
273 -- the enclosing record, in which case it denotes the type itself, and not
274 -- the current instance of the type. We create an anonymous access type for
275 -- the component, and flag it as an access to a component, so accessibility
276 -- checks are properly performed on it. The declaration of the access type
277 -- is placed ahead of that of the record to prevent order-of-elaboration
278 -- circularity issues in Gigi. We create an incomplete type for the record
279 -- declaration, which is the designated type of the anonymous access.
280
281 procedure Check_Delta_Expression (E : Node_Id);
282 -- Check that the expression represented by E is suitable for use as a
283 -- delta expression, i.e. it is of real type and is static.
284
285 procedure Check_Digits_Expression (E : Node_Id);
286 -- Check that the expression represented by E is suitable for use as a
287 -- digits expression, i.e. it is of integer type, positive and static.
288
289 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
290 -- Validate the initialization of an object declaration. T is the required
291 -- type, and Exp is the initialization expression.
292
293 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
294 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
295
296 procedure Check_Or_Process_Discriminants
297 (N : Node_Id;
298 T : Entity_Id;
299 Prev : Entity_Id := Empty);
300 -- If N is the full declaration of the completion T of an incomplete or
301 -- private type, check its discriminants (which are already known to be
302 -- conformant with those of the partial view, see Find_Type_Name),
303 -- otherwise process them. Prev is the entity of the partial declaration,
304 -- if any.
305
306 procedure Check_Real_Bound (Bound : Node_Id);
307 -- Check given bound for being of real type and static. If not, post an
308 -- appropriate message, and rewrite the bound with the real literal zero.
309
310 procedure Constant_Redeclaration
311 (Id : Entity_Id;
312 N : Node_Id;
313 T : out Entity_Id);
314 -- Various checks on legality of full declaration of deferred constant.
315 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
316 -- node. The caller has not yet set any attributes of this entity.
317
318 function Contain_Interface
319 (Iface : Entity_Id;
320 Ifaces : Elist_Id) return Boolean;
321 -- Ada 2005: Determine whether Iface is present in the list Ifaces
322
323 procedure Convert_Scalar_Bounds
324 (N : Node_Id;
325 Parent_Type : Entity_Id;
326 Derived_Type : Entity_Id;
327 Loc : Source_Ptr);
328 -- For derived scalar types, convert the bounds in the type definition to
329 -- the derived type, and complete their analysis. Given a constraint of the
330 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
331 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
332 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
333 -- subtype are conversions of those bounds to the derived_type, so that
334 -- their typing is consistent.
335
336 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
337 -- Copies attributes from array base type T2 to array base type T1. Copies
338 -- only attributes that apply to base types, but not subtypes.
339
340 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
341 -- Copies attributes from array subtype T2 to array subtype T1. Copies
342 -- attributes that apply to both subtypes and base types.
343
344 procedure Create_Constrained_Components
345 (Subt : Entity_Id;
346 Decl_Node : Node_Id;
347 Typ : Entity_Id;
348 Constraints : Elist_Id);
349 -- Build the list of entities for a constrained discriminated record
350 -- subtype. If a component depends on a discriminant, replace its subtype
351 -- using the discriminant values in the discriminant constraint. Subt
352 -- is the defining identifier for the subtype whose list of constrained
353 -- entities we will create. Decl_Node is the type declaration node where
354 -- we will attach all the itypes created. Typ is the base discriminated
355 -- type for the subtype Subt. Constraints is the list of discriminant
356 -- constraints for Typ.
357
358 function Constrain_Component_Type
359 (Comp : Entity_Id;
360 Constrained_Typ : Entity_Id;
361 Related_Node : Node_Id;
362 Typ : Entity_Id;
363 Constraints : Elist_Id) return Entity_Id;
364 -- Given a discriminated base type Typ, a list of discriminant constraints,
365 -- Constraints, for Typ and a component Comp of Typ, create and return the
366 -- type corresponding to Etype (Comp) where all discriminant references
367 -- are replaced with the corresponding constraint. If Etype (Comp) contains
368 -- no discriminant references then it is returned as-is. Constrained_Typ
369 -- is the final constrained subtype to which the constrained component
370 -- belongs. Related_Node is the node where we attach all created itypes.
371
372 procedure Constrain_Access
373 (Def_Id : in out Entity_Id;
374 S : Node_Id;
375 Related_Nod : Node_Id);
376 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
377 -- an anonymous type created for a subtype indication. In that case it is
378 -- created in the procedure and attached to Related_Nod.
379
380 procedure Constrain_Array
381 (Def_Id : in out Entity_Id;
382 SI : Node_Id;
383 Related_Nod : Node_Id;
384 Related_Id : Entity_Id;
385 Suffix : Character);
386 -- Apply a list of index constraints to an unconstrained array type. The
387 -- first parameter is the entity for the resulting subtype. A value of
388 -- Empty for Def_Id indicates that an implicit type must be created, but
389 -- creation is delayed (and must be done by this procedure) because other
390 -- subsidiary implicit types must be created first (which is why Def_Id
391 -- is an in/out parameter). The second parameter is a subtype indication
392 -- node for the constrained array to be created (e.g. something of the
393 -- form string (1 .. 10)). Related_Nod gives the place where this type
394 -- has to be inserted in the tree. The Related_Id and Suffix parameters
395 -- are used to build the associated Implicit type name.
396
397 procedure Constrain_Concurrent
398 (Def_Id : in out Entity_Id;
399 SI : Node_Id;
400 Related_Nod : Node_Id;
401 Related_Id : Entity_Id;
402 Suffix : Character);
403 -- Apply list of discriminant constraints to an unconstrained concurrent
404 -- type.
405 --
406 -- SI is the N_Subtype_Indication node containing the constraint and
407 -- the unconstrained type to constrain.
408 --
409 -- Def_Id is the entity for the resulting constrained subtype. A value
410 -- of Empty for Def_Id indicates that an implicit type must be created,
411 -- but creation is delayed (and must be done by this procedure) because
412 -- other subsidiary implicit types must be created first (which is why
413 -- Def_Id is an in/out parameter).
414 --
415 -- Related_Nod gives the place where this type has to be inserted
416 -- in the tree.
417 --
418 -- The last two arguments are used to create its external name if needed.
419
420 function Constrain_Corresponding_Record
421 (Prot_Subt : Entity_Id;
422 Corr_Rec : Entity_Id;
423 Related_Nod : Node_Id) return Entity_Id;
424 -- When constraining a protected type or task type with discriminants,
425 -- constrain the corresponding record with the same discriminant values.
426
427 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
428 -- Constrain a decimal fixed point type with a digits constraint and/or a
429 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
430
431 procedure Constrain_Discriminated_Type
432 (Def_Id : Entity_Id;
433 S : Node_Id;
434 Related_Nod : Node_Id;
435 For_Access : Boolean := False);
436 -- Process discriminant constraints of composite type. Verify that values
437 -- have been provided for all discriminants, that the original type is
438 -- unconstrained, and that the types of the supplied expressions match
439 -- the discriminant types. The first three parameters are like in routine
440 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
441 -- of For_Access.
442
443 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
444 -- Constrain an enumeration type with a range constraint. This is identical
445 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
446
447 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
448 -- Constrain a floating point type with either a digits constraint
449 -- and/or a range constraint, building a E_Floating_Point_Subtype.
450
451 procedure Constrain_Index
452 (Index : Node_Id;
453 S : Node_Id;
454 Related_Nod : Node_Id;
455 Related_Id : Entity_Id;
456 Suffix : Character;
457 Suffix_Index : Nat);
458 -- Process an index constraint S in a constrained array declaration. The
459 -- constraint can be a subtype name, or a range with or without an explicit
460 -- subtype mark. The index is the corresponding index of the unconstrained
461 -- array. The Related_Id and Suffix parameters are used to build the
462 -- associated Implicit type name.
463
464 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
465 -- Build subtype of a signed or modular integer type
466
467 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
468 -- Constrain an ordinary fixed point type with a range constraint, and
469 -- build an E_Ordinary_Fixed_Point_Subtype entity.
470
471 procedure Copy_And_Swap (Priv, Full : Entity_Id);
472 -- Copy the Priv entity into the entity of its full declaration then swap
473 -- the two entities in such a manner that the former private type is now
474 -- seen as a full type.
475
476 procedure Decimal_Fixed_Point_Type_Declaration
477 (T : Entity_Id;
478 Def : Node_Id);
479 -- Create a new decimal fixed point type, and apply the constraint to
480 -- obtain a subtype of this new type.
481
482 procedure Complete_Private_Subtype
483 (Priv : Entity_Id;
484 Full : Entity_Id;
485 Full_Base : Entity_Id;
486 Related_Nod : Node_Id);
487 -- Complete the implicit full view of a private subtype by setting the
488 -- appropriate semantic fields. If the full view of the parent is a record
489 -- type, build constrained components of subtype.
490
491 procedure Derive_Progenitor_Subprograms
492 (Parent_Type : Entity_Id;
493 Tagged_Type : Entity_Id);
494 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
495 -- operations of progenitors of Tagged_Type, and replace the subsidiary
496 -- subtypes with Tagged_Type, to build the specs of the inherited interface
497 -- primitives. The derived primitives are aliased to those of the
498 -- interface. This routine takes care also of transferring to the full view
499 -- subprograms associated with the partial view of Tagged_Type that cover
500 -- interface primitives.
501
502 procedure Derived_Standard_Character
503 (N : Node_Id;
504 Parent_Type : Entity_Id;
505 Derived_Type : Entity_Id);
506 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
507 -- derivations from types Standard.Character and Standard.Wide_Character.
508
509 procedure Derived_Type_Declaration
510 (T : Entity_Id;
511 N : Node_Id;
512 Is_Completion : Boolean);
513 -- Process a derived type declaration. Build_Derived_Type is invoked
514 -- to process the actual derived type definition. Parameters N and
515 -- Is_Completion have the same meaning as in Build_Derived_Type.
516 -- T is the N_Defining_Identifier for the entity defined in the
517 -- N_Full_Type_Declaration node N, that is T is the derived type.
518
519 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
520 -- Insert each literal in symbol table, as an overloadable identifier. Each
521 -- enumeration type is mapped into a sequence of integers, and each literal
522 -- is defined as a constant with integer value. If any of the literals are
523 -- character literals, the type is a character type, which means that
524 -- strings are legal aggregates for arrays of components of the type.
525
526 function Expand_To_Stored_Constraint
527 (Typ : Entity_Id;
528 Constraint : Elist_Id) return Elist_Id;
529 -- Given a constraint (i.e. a list of expressions) on the discriminants of
530 -- Typ, expand it into a constraint on the stored discriminants and return
531 -- the new list of expressions constraining the stored discriminants.
532
533 function Find_Type_Of_Object
534 (Obj_Def : Node_Id;
535 Related_Nod : Node_Id) return Entity_Id;
536 -- Get type entity for object referenced by Obj_Def, attaching the implicit
537 -- types generated to Related_Nod.
538
539 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
540 -- Create a new float and apply the constraint to obtain subtype of it
541
542 function Has_Range_Constraint (N : Node_Id) return Boolean;
543 -- Given an N_Subtype_Indication node N, return True if a range constraint
544 -- is present, either directly, or as part of a digits or delta constraint.
545 -- In addition, a digits constraint in the decimal case returns True, since
546 -- it establishes a default range if no explicit range is present.
547
548 function Inherit_Components
549 (N : Node_Id;
550 Parent_Base : Entity_Id;
551 Derived_Base : Entity_Id;
552 Is_Tagged : Boolean;
553 Inherit_Discr : Boolean;
554 Discs : Elist_Id) return Elist_Id;
555 -- Called from Build_Derived_Record_Type to inherit the components of
556 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
557 -- For more information on derived types and component inheritance please
558 -- consult the comment above the body of Build_Derived_Record_Type.
559 --
560 -- N is the original derived type declaration
561 --
562 -- Is_Tagged is set if we are dealing with tagged types
563 --
564 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
565 -- Parent_Base, otherwise no discriminants are inherited.
566 --
567 -- Discs gives the list of constraints that apply to Parent_Base in the
568 -- derived type declaration. If Discs is set to No_Elist, then we have
569 -- the following situation:
570 --
571 -- type Parent (D1..Dn : ..) is [tagged] record ...;
572 -- type Derived is new Parent [with ...];
573 --
574 -- which gets treated as
575 --
576 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
577 --
578 -- For untagged types the returned value is an association list. The list
579 -- starts from the association (Parent_Base => Derived_Base), and then it
580 -- contains a sequence of the associations of the form
581 --
582 -- (Old_Component => New_Component),
583 --
584 -- where Old_Component is the Entity_Id of a component in Parent_Base and
585 -- New_Component is the Entity_Id of the corresponding component in
586 -- Derived_Base. For untagged records, this association list is needed when
587 -- copying the record declaration for the derived base. In the tagged case
588 -- the value returned is irrelevant.
589
590 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
591 -- Propagate static and dynamic predicate flags from a parent to the
592 -- subtype in a subtype declaration with and without constraints.
593
594 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean;
595 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
596 -- Determine whether subprogram Subp is a procedure subject to pragma
597 -- Extensions_Visible with value False and has at least one controlling
598 -- parameter of mode OUT.
599
600 function Is_Valid_Constraint_Kind
601 (T_Kind : Type_Kind;
602 Constraint_Kind : Node_Kind) return Boolean;
603 -- Returns True if it is legal to apply the given kind of constraint to the
604 -- given kind of type (index constraint to an array type, for example).
605
606 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
607 -- Create new modular type. Verify that modulus is in bounds
608
609 procedure New_Concatenation_Op (Typ : Entity_Id);
610 -- Create an abbreviated declaration for an operator in order to
611 -- materialize concatenation on array types.
612
613 procedure Ordinary_Fixed_Point_Type_Declaration
614 (T : Entity_Id;
615 Def : Node_Id);
616 -- Create a new ordinary fixed point type, and apply the constraint to
617 -- obtain subtype of it.
618
619 procedure Prepare_Private_Subtype_Completion
620 (Id : Entity_Id;
621 Related_Nod : Node_Id);
622 -- Id is a subtype of some private type. Creates the full declaration
623 -- associated with Id whenever possible, i.e. when the full declaration
624 -- of the base type is already known. Records each subtype into
625 -- Private_Dependents of the base type.
626
627 procedure Process_Incomplete_Dependents
628 (N : Node_Id;
629 Full_T : Entity_Id;
630 Inc_T : Entity_Id);
631 -- Process all entities that depend on an incomplete type. There include
632 -- subtypes, subprogram types that mention the incomplete type in their
633 -- profiles, and subprogram with access parameters that designate the
634 -- incomplete type.
635
636 -- Inc_T is the defining identifier of an incomplete type declaration, its
637 -- Ekind is E_Incomplete_Type.
638 --
639 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
640 --
641 -- Full_T is N's defining identifier.
642 --
643 -- Subtypes of incomplete types with discriminants are completed when the
644 -- parent type is. This is simpler than private subtypes, because they can
645 -- only appear in the same scope, and there is no need to exchange views.
646 -- Similarly, access_to_subprogram types may have a parameter or a return
647 -- type that is an incomplete type, and that must be replaced with the
648 -- full type.
649 --
650 -- If the full type is tagged, subprogram with access parameters that
651 -- designated the incomplete may be primitive operations of the full type,
652 -- and have to be processed accordingly.
653
654 procedure Process_Real_Range_Specification (Def : Node_Id);
655 -- Given the type definition for a real type, this procedure processes and
656 -- checks the real range specification of this type definition if one is
657 -- present. If errors are found, error messages are posted, and the
658 -- Real_Range_Specification of Def is reset to Empty.
659
660 procedure Propagate_Default_Init_Cond_Attributes
661 (From_Typ : Entity_Id;
662 To_Typ : Entity_Id;
663 Parent_To_Derivation : Boolean := False;
664 Private_To_Full_View : Boolean := False);
665 -- Subsidiary to routines Build_Derived_Type and Process_Full_View. Inherit
666 -- all attributes related to pragma Default_Initial_Condition from From_Typ
667 -- to To_Typ. Flag Parent_To_Derivation should be set when the context is
668 -- the creation of a derived type. Flag Private_To_Full_View should be set
669 -- when processing both views of a private type.
670
671 procedure Record_Type_Declaration
672 (T : Entity_Id;
673 N : Node_Id;
674 Prev : Entity_Id);
675 -- Process a record type declaration (for both untagged and tagged
676 -- records). Parameters T and N are exactly like in procedure
677 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
678 -- for this routine. If this is the completion of an incomplete type
679 -- declaration, Prev is the entity of the incomplete declaration, used for
680 -- cross-referencing. Otherwise Prev = T.
681
682 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
683 -- This routine is used to process the actual record type definition (both
684 -- for untagged and tagged records). Def is a record type definition node.
685 -- This procedure analyzes the components in this record type definition.
686 -- Prev_T is the entity for the enclosing record type. It is provided so
687 -- that its Has_Task flag can be set if any of the component have Has_Task
688 -- set. If the declaration is the completion of an incomplete type
689 -- declaration, Prev_T is the original incomplete type, whose full view is
690 -- the record type.
691
692 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
693 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
694 -- build a copy of the declaration tree of the parent, and we create
695 -- independently the list of components for the derived type. Semantic
696 -- information uses the component entities, but record representation
697 -- clauses are validated on the declaration tree. This procedure replaces
698 -- discriminants and components in the declaration with those that have
699 -- been created by Inherit_Components.
700
701 procedure Set_Fixed_Range
702 (E : Entity_Id;
703 Loc : Source_Ptr;
704 Lo : Ureal;
705 Hi : Ureal);
706 -- Build a range node with the given bounds and set it as the Scalar_Range
707 -- of the given fixed-point type entity. Loc is the source location used
708 -- for the constructed range. See body for further details.
709
710 procedure Set_Scalar_Range_For_Subtype
711 (Def_Id : Entity_Id;
712 R : Node_Id;
713 Subt : Entity_Id);
714 -- This routine is used to set the scalar range field for a subtype given
715 -- Def_Id, the entity for the subtype, and R, the range expression for the
716 -- scalar range. Subt provides the parent subtype to be used to analyze,
717 -- resolve, and check the given range.
718
719 procedure Set_Default_SSO (T : Entity_Id);
720 -- T is the entity for an array or record being declared. This procedure
721 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
722 -- to the setting of Opt.Default_SSO.
723
724 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
725 -- Create a new signed integer entity, and apply the constraint to obtain
726 -- the required first named subtype of this type.
727
728 procedure Set_Stored_Constraint_From_Discriminant_Constraint
729 (E : Entity_Id);
730 -- E is some record type. This routine computes E's Stored_Constraint
731 -- from its Discriminant_Constraint.
732
733 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
734 -- Check that an entity in a list of progenitors is an interface,
735 -- emit error otherwise.
736
737 -----------------------
738 -- Access_Definition --
739 -----------------------
740
741 function Access_Definition
742 (Related_Nod : Node_Id;
743 N : Node_Id) return Entity_Id
744 is
745 Anon_Type : Entity_Id;
746 Anon_Scope : Entity_Id;
747 Desig_Type : Entity_Id;
748 Enclosing_Prot_Type : Entity_Id := Empty;
749
750 begin
751 Check_SPARK_05_Restriction ("access type is not allowed", N);
752
753 if Is_Entry (Current_Scope)
754 and then Is_Task_Type (Etype (Scope (Current_Scope)))
755 then
756 Error_Msg_N ("task entries cannot have access parameters", N);
757 return Empty;
758 end if;
759
760 -- Ada 2005: For an object declaration the corresponding anonymous
761 -- type is declared in the current scope.
762
763 -- If the access definition is the return type of another access to
764 -- function, scope is the current one, because it is the one of the
765 -- current type declaration, except for the pathological case below.
766
767 if Nkind_In (Related_Nod, N_Object_Declaration,
768 N_Access_Function_Definition)
769 then
770 Anon_Scope := Current_Scope;
771
772 -- A pathological case: function returning access functions that
773 -- return access functions, etc. Each anonymous access type created
774 -- is in the enclosing scope of the outermost function.
775
776 declare
777 Par : Node_Id;
778
779 begin
780 Par := Related_Nod;
781 while Nkind_In (Par, N_Access_Function_Definition,
782 N_Access_Definition)
783 loop
784 Par := Parent (Par);
785 end loop;
786
787 if Nkind (Par) = N_Function_Specification then
788 Anon_Scope := Scope (Defining_Entity (Par));
789 end if;
790 end;
791
792 -- For the anonymous function result case, retrieve the scope of the
793 -- function specification's associated entity rather than using the
794 -- current scope. The current scope will be the function itself if the
795 -- formal part is currently being analyzed, but will be the parent scope
796 -- in the case of a parameterless function, and we always want to use
797 -- the function's parent scope. Finally, if the function is a child
798 -- unit, we must traverse the tree to retrieve the proper entity.
799
800 elsif Nkind (Related_Nod) = N_Function_Specification
801 and then Nkind (Parent (N)) /= N_Parameter_Specification
802 then
803 -- If the current scope is a protected type, the anonymous access
804 -- is associated with one of the protected operations, and must
805 -- be available in the scope that encloses the protected declaration.
806 -- Otherwise the type is in the scope enclosing the subprogram.
807
808 -- If the function has formals, The return type of a subprogram
809 -- declaration is analyzed in the scope of the subprogram (see
810 -- Process_Formals) and thus the protected type, if present, is
811 -- the scope of the current function scope.
812
813 if Ekind (Current_Scope) = E_Protected_Type then
814 Enclosing_Prot_Type := Current_Scope;
815
816 elsif Ekind (Current_Scope) = E_Function
817 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
818 then
819 Enclosing_Prot_Type := Scope (Current_Scope);
820 end if;
821
822 if Present (Enclosing_Prot_Type) then
823 Anon_Scope := Scope (Enclosing_Prot_Type);
824
825 else
826 Anon_Scope := Scope (Defining_Entity (Related_Nod));
827 end if;
828
829 -- For an access type definition, if the current scope is a child
830 -- unit it is the scope of the type.
831
832 elsif Is_Compilation_Unit (Current_Scope) then
833 Anon_Scope := Current_Scope;
834
835 -- For access formals, access components, and access discriminants, the
836 -- scope is that of the enclosing declaration,
837
838 else
839 Anon_Scope := Scope (Current_Scope);
840 end if;
841
842 Anon_Type :=
843 Create_Itype
844 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
845
846 if All_Present (N)
847 and then Ada_Version >= Ada_2005
848 then
849 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
850 end if;
851
852 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
853 -- the corresponding semantic routine
854
855 if Present (Access_To_Subprogram_Definition (N)) then
856
857 -- Compiler runtime units are compiled in Ada 2005 mode when building
858 -- the runtime library but must also be compilable in Ada 95 mode
859 -- (when bootstrapping the compiler).
860
861 Check_Compiler_Unit ("anonymous access to subprogram", N);
862
863 Access_Subprogram_Declaration
864 (T_Name => Anon_Type,
865 T_Def => Access_To_Subprogram_Definition (N));
866
867 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
868 Set_Ekind
869 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
870 else
871 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
872 end if;
873
874 Set_Can_Use_Internal_Rep
875 (Anon_Type, not Always_Compatible_Rep_On_Target);
876
877 -- If the anonymous access is associated with a protected operation,
878 -- create a reference to it after the enclosing protected definition
879 -- because the itype will be used in the subsequent bodies.
880
881 -- If the anonymous access itself is protected, a full type
882 -- declaratiton will be created for it, so that the equivalent
883 -- record type can be constructed. For further details, see
884 -- Replace_Anonymous_Access_To_Protected-Subprogram.
885
886 if Ekind (Current_Scope) = E_Protected_Type
887 and then not Protected_Present (Access_To_Subprogram_Definition (N))
888 then
889 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
890 end if;
891
892 return Anon_Type;
893 end if;
894
895 Find_Type (Subtype_Mark (N));
896 Desig_Type := Entity (Subtype_Mark (N));
897
898 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
899 Set_Etype (Anon_Type, Anon_Type);
900
901 -- Make sure the anonymous access type has size and alignment fields
902 -- set, as required by gigi. This is necessary in the case of the
903 -- Task_Body_Procedure.
904
905 if not Has_Private_Component (Desig_Type) then
906 Layout_Type (Anon_Type);
907 end if;
908
909 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
910 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
911 -- the null value is allowed. In Ada 95 the null value is never allowed.
912
913 if Ada_Version >= Ada_2005 then
914 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
915 else
916 Set_Can_Never_Be_Null (Anon_Type, True);
917 end if;
918
919 -- The anonymous access type is as public as the discriminated type or
920 -- subprogram that defines it. It is imported (for back-end purposes)
921 -- if the designated type is.
922
923 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
924
925 -- Ada 2005 (AI-231): Propagate the access-constant attribute
926
927 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
928
929 -- The context is either a subprogram declaration, object declaration,
930 -- or an access discriminant, in a private or a full type declaration.
931 -- In the case of a subprogram, if the designated type is incomplete,
932 -- the operation will be a primitive operation of the full type, to be
933 -- updated subsequently. If the type is imported through a limited_with
934 -- clause, the subprogram is not a primitive operation of the type
935 -- (which is declared elsewhere in some other scope).
936
937 if Ekind (Desig_Type) = E_Incomplete_Type
938 and then not From_Limited_With (Desig_Type)
939 and then Is_Overloadable (Current_Scope)
940 then
941 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
942 Set_Has_Delayed_Freeze (Current_Scope);
943 end if;
944
945 -- Ada 2005: If the designated type is an interface that may contain
946 -- tasks, create a Master entity for the declaration. This must be done
947 -- before expansion of the full declaration, because the declaration may
948 -- include an expression that is an allocator, whose expansion needs the
949 -- proper Master for the created tasks.
950
951 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
952 then
953 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
954 then
955 Build_Class_Wide_Master (Anon_Type);
956
957 -- Similarly, if the type is an anonymous access that designates
958 -- tasks, create a master entity for it in the current context.
959
960 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
961 then
962 Build_Master_Entity (Defining_Identifier (Related_Nod));
963 Build_Master_Renaming (Anon_Type);
964 end if;
965 end if;
966
967 -- For a private component of a protected type, it is imperative that
968 -- the back-end elaborate the type immediately after the protected
969 -- declaration, because this type will be used in the declarations
970 -- created for the component within each protected body, so we must
971 -- create an itype reference for it now.
972
973 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
974 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
975
976 -- Similarly, if the access definition is the return result of a
977 -- function, create an itype reference for it because it will be used
978 -- within the function body. For a regular function that is not a
979 -- compilation unit, insert reference after the declaration. For a
980 -- protected operation, insert it after the enclosing protected type
981 -- declaration. In either case, do not create a reference for a type
982 -- obtained through a limited_with clause, because this would introduce
983 -- semantic dependencies.
984
985 -- Similarly, do not create a reference if the designated type is a
986 -- generic formal, because no use of it will reach the backend.
987
988 elsif Nkind (Related_Nod) = N_Function_Specification
989 and then not From_Limited_With (Desig_Type)
990 and then not Is_Generic_Type (Desig_Type)
991 then
992 if Present (Enclosing_Prot_Type) then
993 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
994
995 elsif Is_List_Member (Parent (Related_Nod))
996 and then Nkind (Parent (N)) /= N_Parameter_Specification
997 then
998 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
999 end if;
1000
1001 -- Finally, create an itype reference for an object declaration of an
1002 -- anonymous access type. This is strictly necessary only for deferred
1003 -- constants, but in any case will avoid out-of-scope problems in the
1004 -- back-end.
1005
1006 elsif Nkind (Related_Nod) = N_Object_Declaration then
1007 Build_Itype_Reference (Anon_Type, Related_Nod);
1008 end if;
1009
1010 return Anon_Type;
1011 end Access_Definition;
1012
1013 -----------------------------------
1014 -- Access_Subprogram_Declaration --
1015 -----------------------------------
1016
1017 procedure Access_Subprogram_Declaration
1018 (T_Name : Entity_Id;
1019 T_Def : Node_Id)
1020 is
1021 procedure Check_For_Premature_Usage (Def : Node_Id);
1022 -- Check that type T_Name is not used, directly or recursively, as a
1023 -- parameter or a return type in Def. Def is either a subtype, an
1024 -- access_definition, or an access_to_subprogram_definition.
1025
1026 -------------------------------
1027 -- Check_For_Premature_Usage --
1028 -------------------------------
1029
1030 procedure Check_For_Premature_Usage (Def : Node_Id) is
1031 Param : Node_Id;
1032
1033 begin
1034 -- Check for a subtype mark
1035
1036 if Nkind (Def) in N_Has_Etype then
1037 if Etype (Def) = T_Name then
1038 Error_Msg_N
1039 ("type& cannot be used before end of its declaration", Def);
1040 end if;
1041
1042 -- If this is not a subtype, then this is an access_definition
1043
1044 elsif Nkind (Def) = N_Access_Definition then
1045 if Present (Access_To_Subprogram_Definition (Def)) then
1046 Check_For_Premature_Usage
1047 (Access_To_Subprogram_Definition (Def));
1048 else
1049 Check_For_Premature_Usage (Subtype_Mark (Def));
1050 end if;
1051
1052 -- The only cases left are N_Access_Function_Definition and
1053 -- N_Access_Procedure_Definition.
1054
1055 else
1056 if Present (Parameter_Specifications (Def)) then
1057 Param := First (Parameter_Specifications (Def));
1058 while Present (Param) loop
1059 Check_For_Premature_Usage (Parameter_Type (Param));
1060 Param := Next (Param);
1061 end loop;
1062 end if;
1063
1064 if Nkind (Def) = N_Access_Function_Definition then
1065 Check_For_Premature_Usage (Result_Definition (Def));
1066 end if;
1067 end if;
1068 end Check_For_Premature_Usage;
1069
1070 -- Local variables
1071
1072 Formals : constant List_Id := Parameter_Specifications (T_Def);
1073 Formal : Entity_Id;
1074 D_Ityp : Node_Id;
1075 Desig_Type : constant Entity_Id :=
1076 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1077
1078 -- Start of processing for Access_Subprogram_Declaration
1079
1080 begin
1081 Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1082
1083 -- Associate the Itype node with the inner full-type declaration or
1084 -- subprogram spec or entry body. This is required to handle nested
1085 -- anonymous declarations. For example:
1086
1087 -- procedure P
1088 -- (X : access procedure
1089 -- (Y : access procedure
1090 -- (Z : access T)))
1091
1092 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1093 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1094 N_Private_Type_Declaration,
1095 N_Private_Extension_Declaration,
1096 N_Procedure_Specification,
1097 N_Function_Specification,
1098 N_Entry_Body)
1099
1100 or else
1101 Nkind_In (D_Ityp, N_Object_Declaration,
1102 N_Object_Renaming_Declaration,
1103 N_Formal_Object_Declaration,
1104 N_Formal_Type_Declaration,
1105 N_Task_Type_Declaration,
1106 N_Protected_Type_Declaration))
1107 loop
1108 D_Ityp := Parent (D_Ityp);
1109 pragma Assert (D_Ityp /= Empty);
1110 end loop;
1111
1112 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1113
1114 if Nkind_In (D_Ityp, N_Procedure_Specification,
1115 N_Function_Specification)
1116 then
1117 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1118
1119 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1120 N_Object_Declaration,
1121 N_Object_Renaming_Declaration,
1122 N_Formal_Type_Declaration)
1123 then
1124 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1125 end if;
1126
1127 if Nkind (T_Def) = N_Access_Function_Definition then
1128 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1129 declare
1130 Acc : constant Node_Id := Result_Definition (T_Def);
1131
1132 begin
1133 if Present (Access_To_Subprogram_Definition (Acc))
1134 and then
1135 Protected_Present (Access_To_Subprogram_Definition (Acc))
1136 then
1137 Set_Etype
1138 (Desig_Type,
1139 Replace_Anonymous_Access_To_Protected_Subprogram
1140 (T_Def));
1141
1142 else
1143 Set_Etype
1144 (Desig_Type,
1145 Access_Definition (T_Def, Result_Definition (T_Def)));
1146 end if;
1147 end;
1148
1149 else
1150 Analyze (Result_Definition (T_Def));
1151
1152 declare
1153 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1154
1155 begin
1156 -- If a null exclusion is imposed on the result type, then
1157 -- create a null-excluding itype (an access subtype) and use
1158 -- it as the function's Etype.
1159
1160 if Is_Access_Type (Typ)
1161 and then Null_Exclusion_In_Return_Present (T_Def)
1162 then
1163 Set_Etype (Desig_Type,
1164 Create_Null_Excluding_Itype
1165 (T => Typ,
1166 Related_Nod => T_Def,
1167 Scope_Id => Current_Scope));
1168
1169 else
1170 if From_Limited_With (Typ) then
1171
1172 -- AI05-151: Incomplete types are allowed in all basic
1173 -- declarations, including access to subprograms.
1174
1175 if Ada_Version >= Ada_2012 then
1176 null;
1177
1178 else
1179 Error_Msg_NE
1180 ("illegal use of incomplete type&",
1181 Result_Definition (T_Def), Typ);
1182 end if;
1183
1184 elsif Ekind (Current_Scope) = E_Package
1185 and then In_Private_Part (Current_Scope)
1186 then
1187 if Ekind (Typ) = E_Incomplete_Type then
1188 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1189
1190 elsif Is_Class_Wide_Type (Typ)
1191 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1192 then
1193 Append_Elmt
1194 (Desig_Type, Private_Dependents (Etype (Typ)));
1195 end if;
1196 end if;
1197
1198 Set_Etype (Desig_Type, Typ);
1199 end if;
1200 end;
1201 end if;
1202
1203 if not (Is_Type (Etype (Desig_Type))) then
1204 Error_Msg_N
1205 ("expect type in function specification",
1206 Result_Definition (T_Def));
1207 end if;
1208
1209 else
1210 Set_Etype (Desig_Type, Standard_Void_Type);
1211 end if;
1212
1213 if Present (Formals) then
1214 Push_Scope (Desig_Type);
1215
1216 -- Some special tests here. These special tests can be removed
1217 -- if and when Itypes always have proper parent pointers to their
1218 -- declarations???
1219
1220 -- Special test 1) Link defining_identifier of formals. Required by
1221 -- First_Formal to provide its functionality.
1222
1223 declare
1224 F : Node_Id;
1225
1226 begin
1227 F := First (Formals);
1228
1229 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1230 -- when it is part of an unconstrained type and subtype expansion
1231 -- is disabled. To avoid back-end problems with shared profiles,
1232 -- use previous subprogram type as the designated type, and then
1233 -- remove scope added above.
1234
1235 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1236 then
1237 Set_Etype (T_Name, T_Name);
1238 Init_Size_Align (T_Name);
1239 Set_Directly_Designated_Type (T_Name,
1240 Scope (Defining_Identifier (F)));
1241 End_Scope;
1242 return;
1243 end if;
1244
1245 while Present (F) loop
1246 if No (Parent (Defining_Identifier (F))) then
1247 Set_Parent (Defining_Identifier (F), F);
1248 end if;
1249
1250 Next (F);
1251 end loop;
1252 end;
1253
1254 Process_Formals (Formals, Parent (T_Def));
1255
1256 -- Special test 2) End_Scope requires that the parent pointer be set
1257 -- to something reasonable, but Itypes don't have parent pointers. So
1258 -- we set it and then unset it ???
1259
1260 Set_Parent (Desig_Type, T_Name);
1261 End_Scope;
1262 Set_Parent (Desig_Type, Empty);
1263 end if;
1264
1265 -- Check for premature usage of the type being defined
1266
1267 Check_For_Premature_Usage (T_Def);
1268
1269 -- The return type and/or any parameter type may be incomplete. Mark the
1270 -- subprogram_type as depending on the incomplete type, so that it can
1271 -- be updated when the full type declaration is seen. This only applies
1272 -- to incomplete types declared in some enclosing scope, not to limited
1273 -- views from other packages.
1274
1275 -- Prior to Ada 2012, access to functions can only have in_parameters.
1276
1277 if Present (Formals) then
1278 Formal := First_Formal (Desig_Type);
1279 while Present (Formal) loop
1280 if Ekind (Formal) /= E_In_Parameter
1281 and then Nkind (T_Def) = N_Access_Function_Definition
1282 and then Ada_Version < Ada_2012
1283 then
1284 Error_Msg_N ("functions can only have IN parameters", Formal);
1285 end if;
1286
1287 if Ekind (Etype (Formal)) = E_Incomplete_Type
1288 and then In_Open_Scopes (Scope (Etype (Formal)))
1289 then
1290 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1291 Set_Has_Delayed_Freeze (Desig_Type);
1292 end if;
1293
1294 Next_Formal (Formal);
1295 end loop;
1296 end if;
1297
1298 -- Check whether an indirect call without actuals may be possible. This
1299 -- is used when resolving calls whose result is then indexed.
1300
1301 May_Need_Actuals (Desig_Type);
1302
1303 -- If the return type is incomplete, this is legal as long as the type
1304 -- is declared in the current scope and will be completed in it (rather
1305 -- than being part of limited view).
1306
1307 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1308 and then not Has_Delayed_Freeze (Desig_Type)
1309 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1310 then
1311 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1312 Set_Has_Delayed_Freeze (Desig_Type);
1313 end if;
1314
1315 Check_Delayed_Subprogram (Desig_Type);
1316
1317 if Protected_Present (T_Def) then
1318 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1319 Set_Convention (Desig_Type, Convention_Protected);
1320 else
1321 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1322 end if;
1323
1324 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1325
1326 Set_Etype (T_Name, T_Name);
1327 Init_Size_Align (T_Name);
1328 Set_Directly_Designated_Type (T_Name, Desig_Type);
1329
1330 Generate_Reference_To_Formals (T_Name);
1331
1332 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1333
1334 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1335
1336 Check_Restriction (No_Access_Subprograms, T_Def);
1337 end Access_Subprogram_Declaration;
1338
1339 ----------------------------
1340 -- Access_Type_Declaration --
1341 ----------------------------
1342
1343 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1344 P : constant Node_Id := Parent (Def);
1345 S : constant Node_Id := Subtype_Indication (Def);
1346
1347 Full_Desig : Entity_Id;
1348
1349 begin
1350 Check_SPARK_05_Restriction ("access type is not allowed", Def);
1351
1352 -- Check for permissible use of incomplete type
1353
1354 if Nkind (S) /= N_Subtype_Indication then
1355 Analyze (S);
1356
1357 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1358 Set_Directly_Designated_Type (T, Entity (S));
1359
1360 -- If the designated type is a limited view, we cannot tell if
1361 -- the full view contains tasks, and there is no way to handle
1362 -- that full view in a client. We create a master entity for the
1363 -- scope, which will be used when a client determines that one
1364 -- is needed.
1365
1366 if From_Limited_With (Entity (S))
1367 and then not Is_Class_Wide_Type (Entity (S))
1368 then
1369 Set_Ekind (T, E_Access_Type);
1370 Build_Master_Entity (T);
1371 Build_Master_Renaming (T);
1372 end if;
1373
1374 else
1375 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1376 end if;
1377
1378 -- If the access definition is of the form: ACCESS NOT NULL ..
1379 -- the subtype indication must be of an access type. Create
1380 -- a null-excluding subtype of it.
1381
1382 if Null_Excluding_Subtype (Def) then
1383 if not Is_Access_Type (Entity (S)) then
1384 Error_Msg_N ("null exclusion must apply to access type", Def);
1385
1386 else
1387 declare
1388 Loc : constant Source_Ptr := Sloc (S);
1389 Decl : Node_Id;
1390 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1391
1392 begin
1393 Decl :=
1394 Make_Subtype_Declaration (Loc,
1395 Defining_Identifier => Nam,
1396 Subtype_Indication =>
1397 New_Occurrence_Of (Entity (S), Loc));
1398 Set_Null_Exclusion_Present (Decl);
1399 Insert_Before (Parent (Def), Decl);
1400 Analyze (Decl);
1401 Set_Entity (S, Nam);
1402 end;
1403 end if;
1404 end if;
1405
1406 else
1407 Set_Directly_Designated_Type (T,
1408 Process_Subtype (S, P, T, 'P'));
1409 end if;
1410
1411 if All_Present (Def) or Constant_Present (Def) then
1412 Set_Ekind (T, E_General_Access_Type);
1413 else
1414 Set_Ekind (T, E_Access_Type);
1415 end if;
1416
1417 Full_Desig := Designated_Type (T);
1418
1419 if Base_Type (Full_Desig) = T then
1420 Error_Msg_N ("access type cannot designate itself", S);
1421
1422 -- In Ada 2005, the type may have a limited view through some unit in
1423 -- its own context, allowing the following circularity that cannot be
1424 -- detected earlier.
1425
1426 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1427 then
1428 Error_Msg_N
1429 ("access type cannot designate its own classwide type", S);
1430
1431 -- Clean up indication of tagged status to prevent cascaded errors
1432
1433 Set_Is_Tagged_Type (T, False);
1434 end if;
1435
1436 Set_Etype (T, T);
1437
1438 -- If the type has appeared already in a with_type clause, it is frozen
1439 -- and the pointer size is already set. Else, initialize.
1440
1441 if not From_Limited_With (T) then
1442 Init_Size_Align (T);
1443 end if;
1444
1445 -- Note that Has_Task is always false, since the access type itself
1446 -- is not a task type. See Einfo for more description on this point.
1447 -- Exactly the same consideration applies to Has_Controlled_Component
1448 -- and to Has_Protected.
1449
1450 Set_Has_Task (T, False);
1451 Set_Has_Controlled_Component (T, False);
1452 Set_Has_Protected (T, False);
1453
1454 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1455 -- problems where an incomplete view of this entity has been previously
1456 -- established by a limited with and an overlaid version of this field
1457 -- (Stored_Constraint) was initialized for the incomplete view.
1458
1459 -- This reset is performed in most cases except where the access type
1460 -- has been created for the purposes of allocating or deallocating a
1461 -- build-in-place object. Such access types have explicitly set pools
1462 -- and finalization masters.
1463
1464 if No (Associated_Storage_Pool (T)) then
1465 Set_Finalization_Master (T, Empty);
1466 end if;
1467
1468 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1469 -- attributes
1470
1471 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1472 Set_Is_Access_Constant (T, Constant_Present (Def));
1473 end Access_Type_Declaration;
1474
1475 ----------------------------------
1476 -- Add_Interface_Tag_Components --
1477 ----------------------------------
1478
1479 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1480 Loc : constant Source_Ptr := Sloc (N);
1481 L : List_Id;
1482 Last_Tag : Node_Id;
1483
1484 procedure Add_Tag (Iface : Entity_Id);
1485 -- Add tag for one of the progenitor interfaces
1486
1487 -------------
1488 -- Add_Tag --
1489 -------------
1490
1491 procedure Add_Tag (Iface : Entity_Id) is
1492 Decl : Node_Id;
1493 Def : Node_Id;
1494 Tag : Entity_Id;
1495 Offset : Entity_Id;
1496
1497 begin
1498 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1499
1500 -- This is a reasonable place to propagate predicates
1501
1502 if Has_Predicates (Iface) then
1503 Set_Has_Predicates (Typ);
1504 end if;
1505
1506 Def :=
1507 Make_Component_Definition (Loc,
1508 Aliased_Present => True,
1509 Subtype_Indication =>
1510 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1511
1512 Tag := Make_Temporary (Loc, 'V');
1513
1514 Decl :=
1515 Make_Component_Declaration (Loc,
1516 Defining_Identifier => Tag,
1517 Component_Definition => Def);
1518
1519 Analyze_Component_Declaration (Decl);
1520
1521 Set_Analyzed (Decl);
1522 Set_Ekind (Tag, E_Component);
1523 Set_Is_Tag (Tag);
1524 Set_Is_Aliased (Tag);
1525 Set_Related_Type (Tag, Iface);
1526 Init_Component_Location (Tag);
1527
1528 pragma Assert (Is_Frozen (Iface));
1529
1530 Set_DT_Entry_Count (Tag,
1531 DT_Entry_Count (First_Entity (Iface)));
1532
1533 if No (Last_Tag) then
1534 Prepend (Decl, L);
1535 else
1536 Insert_After (Last_Tag, Decl);
1537 end if;
1538
1539 Last_Tag := Decl;
1540
1541 -- If the ancestor has discriminants we need to give special support
1542 -- to store the offset_to_top value of the secondary dispatch tables.
1543 -- For this purpose we add a supplementary component just after the
1544 -- field that contains the tag associated with each secondary DT.
1545
1546 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1547 Def :=
1548 Make_Component_Definition (Loc,
1549 Subtype_Indication =>
1550 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1551
1552 Offset := Make_Temporary (Loc, 'V');
1553
1554 Decl :=
1555 Make_Component_Declaration (Loc,
1556 Defining_Identifier => Offset,
1557 Component_Definition => Def);
1558
1559 Analyze_Component_Declaration (Decl);
1560
1561 Set_Analyzed (Decl);
1562 Set_Ekind (Offset, E_Component);
1563 Set_Is_Aliased (Offset);
1564 Set_Related_Type (Offset, Iface);
1565 Init_Component_Location (Offset);
1566 Insert_After (Last_Tag, Decl);
1567 Last_Tag := Decl;
1568 end if;
1569 end Add_Tag;
1570
1571 -- Local variables
1572
1573 Elmt : Elmt_Id;
1574 Ext : Node_Id;
1575 Comp : Node_Id;
1576
1577 -- Start of processing for Add_Interface_Tag_Components
1578
1579 begin
1580 if not RTE_Available (RE_Interface_Tag) then
1581 Error_Msg
1582 ("(Ada 2005) interface types not supported by this run-time!",
1583 Sloc (N));
1584 return;
1585 end if;
1586
1587 if Ekind (Typ) /= E_Record_Type
1588 or else (Is_Concurrent_Record_Type (Typ)
1589 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1590 or else (not Is_Concurrent_Record_Type (Typ)
1591 and then No (Interfaces (Typ))
1592 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1593 then
1594 return;
1595 end if;
1596
1597 -- Find the current last tag
1598
1599 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1600 Ext := Record_Extension_Part (Type_Definition (N));
1601 else
1602 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1603 Ext := Type_Definition (N);
1604 end if;
1605
1606 Last_Tag := Empty;
1607
1608 if not (Present (Component_List (Ext))) then
1609 Set_Null_Present (Ext, False);
1610 L := New_List;
1611 Set_Component_List (Ext,
1612 Make_Component_List (Loc,
1613 Component_Items => L,
1614 Null_Present => False));
1615 else
1616 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1617 L := Component_Items
1618 (Component_List
1619 (Record_Extension_Part
1620 (Type_Definition (N))));
1621 else
1622 L := Component_Items
1623 (Component_List
1624 (Type_Definition (N)));
1625 end if;
1626
1627 -- Find the last tag component
1628
1629 Comp := First (L);
1630 while Present (Comp) loop
1631 if Nkind (Comp) = N_Component_Declaration
1632 and then Is_Tag (Defining_Identifier (Comp))
1633 then
1634 Last_Tag := Comp;
1635 end if;
1636
1637 Next (Comp);
1638 end loop;
1639 end if;
1640
1641 -- At this point L references the list of components and Last_Tag
1642 -- references the current last tag (if any). Now we add the tag
1643 -- corresponding with all the interfaces that are not implemented
1644 -- by the parent.
1645
1646 if Present (Interfaces (Typ)) then
1647 Elmt := First_Elmt (Interfaces (Typ));
1648 while Present (Elmt) loop
1649 Add_Tag (Node (Elmt));
1650 Next_Elmt (Elmt);
1651 end loop;
1652 end if;
1653 end Add_Interface_Tag_Components;
1654
1655 -------------------------------------
1656 -- Add_Internal_Interface_Entities --
1657 -------------------------------------
1658
1659 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1660 Elmt : Elmt_Id;
1661 Iface : Entity_Id;
1662 Iface_Elmt : Elmt_Id;
1663 Iface_Prim : Entity_Id;
1664 Ifaces_List : Elist_Id;
1665 New_Subp : Entity_Id := Empty;
1666 Prim : Entity_Id;
1667 Restore_Scope : Boolean := False;
1668
1669 begin
1670 pragma Assert (Ada_Version >= Ada_2005
1671 and then Is_Record_Type (Tagged_Type)
1672 and then Is_Tagged_Type (Tagged_Type)
1673 and then Has_Interfaces (Tagged_Type)
1674 and then not Is_Interface (Tagged_Type));
1675
1676 -- Ensure that the internal entities are added to the scope of the type
1677
1678 if Scope (Tagged_Type) /= Current_Scope then
1679 Push_Scope (Scope (Tagged_Type));
1680 Restore_Scope := True;
1681 end if;
1682
1683 Collect_Interfaces (Tagged_Type, Ifaces_List);
1684
1685 Iface_Elmt := First_Elmt (Ifaces_List);
1686 while Present (Iface_Elmt) loop
1687 Iface := Node (Iface_Elmt);
1688
1689 -- Originally we excluded here from this processing interfaces that
1690 -- are parents of Tagged_Type because their primitives are located
1691 -- in the primary dispatch table (and hence no auxiliary internal
1692 -- entities are required to handle secondary dispatch tables in such
1693 -- case). However, these auxiliary entities are also required to
1694 -- handle derivations of interfaces in formals of generics (see
1695 -- Derive_Subprograms).
1696
1697 Elmt := First_Elmt (Primitive_Operations (Iface));
1698 while Present (Elmt) loop
1699 Iface_Prim := Node (Elmt);
1700
1701 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1702 Prim :=
1703 Find_Primitive_Covering_Interface
1704 (Tagged_Type => Tagged_Type,
1705 Iface_Prim => Iface_Prim);
1706
1707 if No (Prim) and then Serious_Errors_Detected > 0 then
1708 goto Continue;
1709 end if;
1710
1711 pragma Assert (Present (Prim));
1712
1713 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1714 -- differs from the name of the interface primitive then it is
1715 -- a private primitive inherited from a parent type. In such
1716 -- case, given that Tagged_Type covers the interface, the
1717 -- inherited private primitive becomes visible. For such
1718 -- purpose we add a new entity that renames the inherited
1719 -- private primitive.
1720
1721 if Chars (Prim) /= Chars (Iface_Prim) then
1722 pragma Assert (Has_Suffix (Prim, 'P'));
1723 Derive_Subprogram
1724 (New_Subp => New_Subp,
1725 Parent_Subp => Iface_Prim,
1726 Derived_Type => Tagged_Type,
1727 Parent_Type => Iface);
1728 Set_Alias (New_Subp, Prim);
1729 Set_Is_Abstract_Subprogram
1730 (New_Subp, Is_Abstract_Subprogram (Prim));
1731 end if;
1732
1733 Derive_Subprogram
1734 (New_Subp => New_Subp,
1735 Parent_Subp => Iface_Prim,
1736 Derived_Type => Tagged_Type,
1737 Parent_Type => Iface);
1738
1739 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1740 -- associated with interface types. These entities are
1741 -- only registered in the list of primitives of its
1742 -- corresponding tagged type because they are only used
1743 -- to fill the contents of the secondary dispatch tables.
1744 -- Therefore they are removed from the homonym chains.
1745
1746 Set_Is_Hidden (New_Subp);
1747 Set_Is_Internal (New_Subp);
1748 Set_Alias (New_Subp, Prim);
1749 Set_Is_Abstract_Subprogram
1750 (New_Subp, Is_Abstract_Subprogram (Prim));
1751 Set_Interface_Alias (New_Subp, Iface_Prim);
1752
1753 -- If the returned type is an interface then propagate it to
1754 -- the returned type. Needed by the thunk to generate the code
1755 -- which displaces "this" to reference the corresponding
1756 -- secondary dispatch table in the returned object.
1757
1758 if Is_Interface (Etype (Iface_Prim)) then
1759 Set_Etype (New_Subp, Etype (Iface_Prim));
1760 end if;
1761
1762 -- Internal entities associated with interface types are
1763 -- only registered in the list of primitives of the tagged
1764 -- type. They are only used to fill the contents of the
1765 -- secondary dispatch tables. Therefore they are not needed
1766 -- in the homonym chains.
1767
1768 Remove_Homonym (New_Subp);
1769
1770 -- Hidden entities associated with interfaces must have set
1771 -- the Has_Delay_Freeze attribute to ensure that, in case of
1772 -- locally defined tagged types (or compiling with static
1773 -- dispatch tables generation disabled) the corresponding
1774 -- entry of the secondary dispatch table is filled when
1775 -- such an entity is frozen.
1776
1777 Set_Has_Delayed_Freeze (New_Subp);
1778 end if;
1779
1780 <<Continue>>
1781 Next_Elmt (Elmt);
1782 end loop;
1783
1784 Next_Elmt (Iface_Elmt);
1785 end loop;
1786
1787 if Restore_Scope then
1788 Pop_Scope;
1789 end if;
1790 end Add_Internal_Interface_Entities;
1791
1792 -----------------------------------
1793 -- Analyze_Component_Declaration --
1794 -----------------------------------
1795
1796 procedure Analyze_Component_Declaration (N : Node_Id) is
1797 Loc : constant Source_Ptr := Sloc (N);
1798 Id : constant Entity_Id := Defining_Identifier (N);
1799 E : constant Node_Id := Expression (N);
1800 Typ : constant Node_Id :=
1801 Subtype_Indication (Component_Definition (N));
1802 T : Entity_Id;
1803 P : Entity_Id;
1804
1805 function Contains_POC (Constr : Node_Id) return Boolean;
1806 -- Determines whether a constraint uses the discriminant of a record
1807 -- type thus becoming a per-object constraint (POC).
1808
1809 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1810 -- Typ is the type of the current component, check whether this type is
1811 -- a limited type. Used to validate declaration against that of
1812 -- enclosing record.
1813
1814 ------------------
1815 -- Contains_POC --
1816 ------------------
1817
1818 function Contains_POC (Constr : Node_Id) return Boolean is
1819 begin
1820 -- Prevent cascaded errors
1821
1822 if Error_Posted (Constr) then
1823 return False;
1824 end if;
1825
1826 case Nkind (Constr) is
1827 when N_Attribute_Reference =>
1828 return Attribute_Name (Constr) = Name_Access
1829 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1830
1831 when N_Discriminant_Association =>
1832 return Denotes_Discriminant (Expression (Constr));
1833
1834 when N_Identifier =>
1835 return Denotes_Discriminant (Constr);
1836
1837 when N_Index_Or_Discriminant_Constraint =>
1838 declare
1839 IDC : Node_Id;
1840
1841 begin
1842 IDC := First (Constraints (Constr));
1843 while Present (IDC) loop
1844
1845 -- One per-object constraint is sufficient
1846
1847 if Contains_POC (IDC) then
1848 return True;
1849 end if;
1850
1851 Next (IDC);
1852 end loop;
1853
1854 return False;
1855 end;
1856
1857 when N_Range =>
1858 return Denotes_Discriminant (Low_Bound (Constr))
1859 or else
1860 Denotes_Discriminant (High_Bound (Constr));
1861
1862 when N_Range_Constraint =>
1863 return Denotes_Discriminant (Range_Expression (Constr));
1864
1865 when others =>
1866 return False;
1867
1868 end case;
1869 end Contains_POC;
1870
1871 ----------------------
1872 -- Is_Known_Limited --
1873 ----------------------
1874
1875 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1876 P : constant Entity_Id := Etype (Typ);
1877 R : constant Entity_Id := Root_Type (Typ);
1878
1879 begin
1880 if Is_Limited_Record (Typ) then
1881 return True;
1882
1883 -- If the root type is limited (and not a limited interface)
1884 -- so is the current type
1885
1886 elsif Is_Limited_Record (R)
1887 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1888 then
1889 return True;
1890
1891 -- Else the type may have a limited interface progenitor, but a
1892 -- limited record parent.
1893
1894 elsif R /= P and then Is_Limited_Record (P) then
1895 return True;
1896
1897 else
1898 return False;
1899 end if;
1900 end Is_Known_Limited;
1901
1902 -- Start of processing for Analyze_Component_Declaration
1903
1904 begin
1905 Generate_Definition (Id);
1906 Enter_Name (Id);
1907
1908 if Present (Typ) then
1909 T := Find_Type_Of_Object
1910 (Subtype_Indication (Component_Definition (N)), N);
1911
1912 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1913 Check_SPARK_05_Restriction ("subtype mark required", Typ);
1914 end if;
1915
1916 -- Ada 2005 (AI-230): Access Definition case
1917
1918 else
1919 pragma Assert (Present
1920 (Access_Definition (Component_Definition (N))));
1921
1922 T := Access_Definition
1923 (Related_Nod => N,
1924 N => Access_Definition (Component_Definition (N)));
1925 Set_Is_Local_Anonymous_Access (T);
1926
1927 -- Ada 2005 (AI-254)
1928
1929 if Present (Access_To_Subprogram_Definition
1930 (Access_Definition (Component_Definition (N))))
1931 and then Protected_Present (Access_To_Subprogram_Definition
1932 (Access_Definition
1933 (Component_Definition (N))))
1934 then
1935 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1936 end if;
1937 end if;
1938
1939 -- If the subtype is a constrained subtype of the enclosing record,
1940 -- (which must have a partial view) the back-end does not properly
1941 -- handle the recursion. Rewrite the component declaration with an
1942 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1943 -- the tree directly because side effects have already been removed from
1944 -- discriminant constraints.
1945
1946 if Ekind (T) = E_Access_Subtype
1947 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1948 and then Comes_From_Source (T)
1949 and then Nkind (Parent (T)) = N_Subtype_Declaration
1950 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1951 then
1952 Rewrite
1953 (Subtype_Indication (Component_Definition (N)),
1954 New_Copy_Tree (Subtype_Indication (Parent (T))));
1955 T := Find_Type_Of_Object
1956 (Subtype_Indication (Component_Definition (N)), N);
1957 end if;
1958
1959 -- If the component declaration includes a default expression, then we
1960 -- check that the component is not of a limited type (RM 3.7(5)),
1961 -- and do the special preanalysis of the expression (see section on
1962 -- "Handling of Default and Per-Object Expressions" in the spec of
1963 -- package Sem).
1964
1965 if Present (E) then
1966 Check_SPARK_05_Restriction ("default expression is not allowed", E);
1967 Preanalyze_Default_Expression (E, T);
1968 Check_Initialization (T, E);
1969
1970 if Ada_Version >= Ada_2005
1971 and then Ekind (T) = E_Anonymous_Access_Type
1972 and then Etype (E) /= Any_Type
1973 then
1974 -- Check RM 3.9.2(9): "if the expected type for an expression is
1975 -- an anonymous access-to-specific tagged type, then the object
1976 -- designated by the expression shall not be dynamically tagged
1977 -- unless it is a controlling operand in a call on a dispatching
1978 -- operation"
1979
1980 if Is_Tagged_Type (Directly_Designated_Type (T))
1981 and then
1982 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1983 and then
1984 Ekind (Directly_Designated_Type (Etype (E))) =
1985 E_Class_Wide_Type
1986 then
1987 Error_Msg_N
1988 ("access to specific tagged type required (RM 3.9.2(9))", E);
1989 end if;
1990
1991 -- (Ada 2005: AI-230): Accessibility check for anonymous
1992 -- components
1993
1994 if Type_Access_Level (Etype (E)) >
1995 Deepest_Type_Access_Level (T)
1996 then
1997 Error_Msg_N
1998 ("expression has deeper access level than component " &
1999 "(RM 3.10.2 (12.2))", E);
2000 end if;
2001
2002 -- The initialization expression is a reference to an access
2003 -- discriminant. The type of the discriminant is always deeper
2004 -- than any access type.
2005
2006 if Ekind (Etype (E)) = E_Anonymous_Access_Type
2007 and then Is_Entity_Name (E)
2008 and then Ekind (Entity (E)) = E_In_Parameter
2009 and then Present (Discriminal_Link (Entity (E)))
2010 then
2011 Error_Msg_N
2012 ("discriminant has deeper accessibility level than target",
2013 E);
2014 end if;
2015 end if;
2016 end if;
2017
2018 -- The parent type may be a private view with unknown discriminants,
2019 -- and thus unconstrained. Regular components must be constrained.
2020
2021 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
2022 if Is_Class_Wide_Type (T) then
2023 Error_Msg_N
2024 ("class-wide subtype with unknown discriminants" &
2025 " in component declaration",
2026 Subtype_Indication (Component_Definition (N)));
2027 else
2028 Error_Msg_N
2029 ("unconstrained subtype in component declaration",
2030 Subtype_Indication (Component_Definition (N)));
2031 end if;
2032
2033 -- Components cannot be abstract, except for the special case of
2034 -- the _Parent field (case of extending an abstract tagged type)
2035
2036 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2037 Error_Msg_N ("type of a component cannot be abstract", N);
2038 end if;
2039
2040 Set_Etype (Id, T);
2041 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2042
2043 -- The component declaration may have a per-object constraint, set
2044 -- the appropriate flag in the defining identifier of the subtype.
2045
2046 if Present (Subtype_Indication (Component_Definition (N))) then
2047 declare
2048 Sindic : constant Node_Id :=
2049 Subtype_Indication (Component_Definition (N));
2050 begin
2051 if Nkind (Sindic) = N_Subtype_Indication
2052 and then Present (Constraint (Sindic))
2053 and then Contains_POC (Constraint (Sindic))
2054 then
2055 Set_Has_Per_Object_Constraint (Id);
2056 end if;
2057 end;
2058 end if;
2059
2060 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2061 -- out some static checks.
2062
2063 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2064 Null_Exclusion_Static_Checks (N);
2065 end if;
2066
2067 -- If this component is private (or depends on a private type), flag the
2068 -- record type to indicate that some operations are not available.
2069
2070 P := Private_Component (T);
2071
2072 if Present (P) then
2073
2074 -- Check for circular definitions
2075
2076 if P = Any_Type then
2077 Set_Etype (Id, Any_Type);
2078
2079 -- There is a gap in the visibility of operations only if the
2080 -- component type is not defined in the scope of the record type.
2081
2082 elsif Scope (P) = Scope (Current_Scope) then
2083 null;
2084
2085 elsif Is_Limited_Type (P) then
2086 Set_Is_Limited_Composite (Current_Scope);
2087
2088 else
2089 Set_Is_Private_Composite (Current_Scope);
2090 end if;
2091 end if;
2092
2093 if P /= Any_Type
2094 and then Is_Limited_Type (T)
2095 and then Chars (Id) /= Name_uParent
2096 and then Is_Tagged_Type (Current_Scope)
2097 then
2098 if Is_Derived_Type (Current_Scope)
2099 and then not Is_Known_Limited (Current_Scope)
2100 then
2101 Error_Msg_N
2102 ("extension of nonlimited type cannot have limited components",
2103 N);
2104
2105 if Is_Interface (Root_Type (Current_Scope)) then
2106 Error_Msg_N
2107 ("\limitedness is not inherited from limited interface", N);
2108 Error_Msg_N ("\add LIMITED to type indication", N);
2109 end if;
2110
2111 Explain_Limited_Type (T, N);
2112 Set_Etype (Id, Any_Type);
2113 Set_Is_Limited_Composite (Current_Scope, False);
2114
2115 elsif not Is_Derived_Type (Current_Scope)
2116 and then not Is_Limited_Record (Current_Scope)
2117 and then not Is_Concurrent_Type (Current_Scope)
2118 then
2119 Error_Msg_N
2120 ("nonlimited tagged type cannot have limited components", N);
2121 Explain_Limited_Type (T, N);
2122 Set_Etype (Id, Any_Type);
2123 Set_Is_Limited_Composite (Current_Scope, False);
2124 end if;
2125 end if;
2126
2127 -- If the component is an unconstrained task or protected type with
2128 -- discriminants, the component and the enclosing record are limited
2129 -- and the component is constrained by its default values. Compute
2130 -- its actual subtype, else it may be allocated the maximum size by
2131 -- the backend, and possibly overflow.
2132
2133 if Is_Concurrent_Type (T)
2134 and then not Is_Constrained (T)
2135 and then Has_Discriminants (T)
2136 and then not Has_Discriminants (Current_Scope)
2137 then
2138 declare
2139 Act_T : constant Entity_Id := Build_Default_Subtype (T, N);
2140 begin
2141 Set_Etype (Id, Act_T);
2142 Set_Component_Definition (N,
2143 Make_Component_Definition (Loc,
2144 Subtype_Indication => New_Occurrence_Of (Act_T, Loc)));
2145 end;
2146 end if;
2147
2148 Set_Original_Record_Component (Id, Id);
2149
2150 if Has_Aspects (N) then
2151 Analyze_Aspect_Specifications (N, Id);
2152 end if;
2153
2154 Analyze_Dimension (N);
2155 end Analyze_Component_Declaration;
2156
2157 --------------------------
2158 -- Analyze_Declarations --
2159 --------------------------
2160
2161 procedure Analyze_Declarations (L : List_Id) is
2162 Decl : Node_Id;
2163
2164 procedure Adjust_Decl;
2165 -- Adjust Decl not to include implicit label declarations, since these
2166 -- have strange Sloc values that result in elaboration check problems.
2167 -- (They have the sloc of the label as found in the source, and that
2168 -- is ahead of the current declarative part).
2169
2170 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2171 -- Determine whether Body_Decl denotes the body of a late controlled
2172 -- primitive (either Initialize, Adjust or Finalize). If this is the
2173 -- case, add a proper spec if the body lacks one. The spec is inserted
2174 -- before Body_Decl and immedately analyzed.
2175
2176 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2177 -- Spec_Id is the entity of a package that may define abstract states.
2178 -- If the states have visible refinement, remove the visibility of each
2179 -- constituent at the end of the package body declarations.
2180
2181 -----------------
2182 -- Adjust_Decl --
2183 -----------------
2184
2185 procedure Adjust_Decl is
2186 begin
2187 while Present (Prev (Decl))
2188 and then Nkind (Decl) = N_Implicit_Label_Declaration
2189 loop
2190 Prev (Decl);
2191 end loop;
2192 end Adjust_Decl;
2193
2194 --------------------------------------
2195 -- Handle_Late_Controlled_Primitive --
2196 --------------------------------------
2197
2198 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2199 Body_Spec : constant Node_Id := Specification (Body_Decl);
2200 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2201 Loc : constant Source_Ptr := Sloc (Body_Id);
2202 Params : constant List_Id :=
2203 Parameter_Specifications (Body_Spec);
2204 Spec : Node_Id;
2205 Spec_Id : Entity_Id;
2206 Typ : Node_Id;
2207
2208 begin
2209 -- Consider only procedure bodies whose name matches one of the three
2210 -- controlled primitives.
2211
2212 if Nkind (Body_Spec) /= N_Procedure_Specification
2213 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2214 Name_Finalize,
2215 Name_Initialize)
2216 then
2217 return;
2218
2219 -- A controlled primitive must have exactly one formal which is not
2220 -- an anonymous access type.
2221
2222 elsif List_Length (Params) /= 1 then
2223 return;
2224 end if;
2225
2226 Typ := Parameter_Type (First (Params));
2227
2228 if Nkind (Typ) = N_Access_Definition then
2229 return;
2230 end if;
2231
2232 Find_Type (Typ);
2233
2234 -- The type of the formal must be derived from [Limited_]Controlled
2235
2236 if not Is_Controlled (Entity (Typ)) then
2237 return;
2238 end if;
2239
2240 -- Check whether a specification exists for this body. We do not
2241 -- analyze the spec of the body in full, because it will be analyzed
2242 -- again when the body is properly analyzed, and we cannot create
2243 -- duplicate entries in the formals chain. We look for an explicit
2244 -- specification because the body may be an overriding operation and
2245 -- an inherited spec may be present.
2246
2247 Spec_Id := Current_Entity (Body_Id);
2248
2249 while Present (Spec_Id) loop
2250 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure)
2251 and then Scope (Spec_Id) = Current_Scope
2252 and then Present (First_Formal (Spec_Id))
2253 and then No (Next_Formal (First_Formal (Spec_Id)))
2254 and then Etype (First_Formal (Spec_Id)) = Entity (Typ)
2255 and then Comes_From_Source (Spec_Id)
2256 then
2257 return;
2258 end if;
2259
2260 Spec_Id := Homonym (Spec_Id);
2261 end loop;
2262
2263 -- At this point the body is known to be a late controlled primitive.
2264 -- Generate a matching spec and insert it before the body. Note the
2265 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2266 -- tree in this case.
2267
2268 Spec := Copy_Separate_Tree (Body_Spec);
2269
2270 -- Ensure that the subprogram declaration does not inherit the null
2271 -- indicator from the body as we now have a proper spec/body pair.
2272
2273 Set_Null_Present (Spec, False);
2274
2275 Insert_Before_And_Analyze (Body_Decl,
2276 Make_Subprogram_Declaration (Loc, Specification => Spec));
2277 end Handle_Late_Controlled_Primitive;
2278
2279 --------------------------------
2280 -- Remove_Visible_Refinements --
2281 --------------------------------
2282
2283 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2284 State_Elmt : Elmt_Id;
2285 begin
2286 if Present (Abstract_States (Spec_Id)) then
2287 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2288 while Present (State_Elmt) loop
2289 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2290 Next_Elmt (State_Elmt);
2291 end loop;
2292 end if;
2293 end Remove_Visible_Refinements;
2294
2295 -- Local variables
2296
2297 Context : Node_Id;
2298 Freeze_From : Entity_Id := Empty;
2299 Next_Decl : Node_Id;
2300 Spec_Id : Entity_Id;
2301
2302 Body_Seen : Boolean := False;
2303 -- Flag set when the first body [stub] is encountered
2304
2305 In_Package_Body : Boolean := False;
2306 -- Flag set when the current declaration list belongs to a package body
2307
2308 -- Start of processing for Analyze_Declarations
2309
2310 begin
2311 if Restriction_Check_Required (SPARK_05) then
2312 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2313 end if;
2314
2315 Decl := First (L);
2316 while Present (Decl) loop
2317
2318 -- Package spec cannot contain a package declaration in SPARK
2319
2320 if Nkind (Decl) = N_Package_Declaration
2321 and then Nkind (Parent (L)) = N_Package_Specification
2322 then
2323 Check_SPARK_05_Restriction
2324 ("package specification cannot contain a package declaration",
2325 Decl);
2326 end if;
2327
2328 -- Complete analysis of declaration
2329
2330 Analyze (Decl);
2331 Next_Decl := Next (Decl);
2332
2333 if No (Freeze_From) then
2334 Freeze_From := First_Entity (Current_Scope);
2335 end if;
2336
2337 -- At the end of a declarative part, freeze remaining entities
2338 -- declared in it. The end of the visible declarations of package
2339 -- specification is not the end of a declarative part if private
2340 -- declarations are present. The end of a package declaration is a
2341 -- freezing point only if it a library package. A task definition or
2342 -- protected type definition is not a freeze point either. Finally,
2343 -- we do not freeze entities in generic scopes, because there is no
2344 -- code generated for them and freeze nodes will be generated for
2345 -- the instance.
2346
2347 -- The end of a package instantiation is not a freeze point, but
2348 -- for now we make it one, because the generic body is inserted
2349 -- (currently) immediately after. Generic instantiations will not
2350 -- be a freeze point once delayed freezing of bodies is implemented.
2351 -- (This is needed in any case for early instantiations ???).
2352
2353 if No (Next_Decl) then
2354 if Nkind_In (Parent (L), N_Component_List,
2355 N_Task_Definition,
2356 N_Protected_Definition)
2357 then
2358 null;
2359
2360 elsif Nkind (Parent (L)) /= N_Package_Specification then
2361 if Nkind (Parent (L)) = N_Package_Body then
2362 Freeze_From := First_Entity (Current_Scope);
2363 end if;
2364
2365 -- There may have been several freezing points previously,
2366 -- for example object declarations or subprogram bodies, but
2367 -- at the end of a declarative part we check freezing from
2368 -- the beginning, even though entities may already be frozen,
2369 -- in order to perform visibility checks on delayed aspects.
2370
2371 Adjust_Decl;
2372 Freeze_All (First_Entity (Current_Scope), Decl);
2373 Freeze_From := Last_Entity (Current_Scope);
2374
2375 elsif Scope (Current_Scope) /= Standard_Standard
2376 and then not Is_Child_Unit (Current_Scope)
2377 and then No (Generic_Parent (Parent (L)))
2378 then
2379 null;
2380
2381 elsif L /= Visible_Declarations (Parent (L))
2382 or else No (Private_Declarations (Parent (L)))
2383 or else Is_Empty_List (Private_Declarations (Parent (L)))
2384 then
2385 Adjust_Decl;
2386 Freeze_All (First_Entity (Current_Scope), Decl);
2387 Freeze_From := Last_Entity (Current_Scope);
2388 end if;
2389
2390 -- If next node is a body then freeze all types before the body.
2391 -- An exception occurs for some expander-generated bodies. If these
2392 -- are generated at places where in general language rules would not
2393 -- allow a freeze point, then we assume that the expander has
2394 -- explicitly checked that all required types are properly frozen,
2395 -- and we do not cause general freezing here. This special circuit
2396 -- is used when the encountered body is marked as having already
2397 -- been analyzed.
2398
2399 -- In all other cases (bodies that come from source, and expander
2400 -- generated bodies that have not been analyzed yet), freeze all
2401 -- types now. Note that in the latter case, the expander must take
2402 -- care to attach the bodies at a proper place in the tree so as to
2403 -- not cause unwanted freezing at that point.
2404
2405 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl) then
2406
2407 -- When a controlled type is frozen, the expander generates stream
2408 -- and controlled type support routines. If the freeze is caused
2409 -- by the stand alone body of Initialize, Adjust and Finalize, the
2410 -- expander will end up using the wrong version of these routines
2411 -- as the body has not been processed yet. To remedy this, detect
2412 -- a late controlled primitive and create a proper spec for it.
2413 -- This ensures that the primitive will override its inherited
2414 -- counterpart before the freeze takes place.
2415
2416 -- If the declaration we just processed is a body, do not attempt
2417 -- to examine Next_Decl as the late primitive idiom can only apply
2418 -- to the first encountered body.
2419
2420 -- The spec of the late primitive is not generated in ASIS mode to
2421 -- ensure a consistent list of primitives that indicates the true
2422 -- semantic structure of the program (which is not relevant when
2423 -- generating executable code.
2424
2425 -- ??? a cleaner approach may be possible and/or this solution
2426 -- could be extended to general-purpose late primitives, TBD.
2427
2428 if not ASIS_Mode and then not Body_Seen and then not Is_Body (Decl)
2429 then
2430 Body_Seen := True;
2431
2432 if Nkind (Next_Decl) = N_Subprogram_Body then
2433 Handle_Late_Controlled_Primitive (Next_Decl);
2434 end if;
2435 end if;
2436
2437 Adjust_Decl;
2438 Freeze_All (Freeze_From, Decl);
2439 Freeze_From := Last_Entity (Current_Scope);
2440 end if;
2441
2442 Decl := Next_Decl;
2443 end loop;
2444
2445 -- Analyze the contracts of packages and their bodies
2446
2447 if Present (L) then
2448 Context := Parent (L);
2449
2450 if Nkind (Context) = N_Package_Specification then
2451
2452 -- When a package has private declarations, its contract must be
2453 -- analyzed at the end of the said declarations. This way both the
2454 -- analysis and freeze actions are properly synchronized in case
2455 -- of private type use within the contract.
2456
2457 if L = Private_Declarations (Context) then
2458 Analyze_Package_Contract (Defining_Entity (Context));
2459
2460 -- Build the bodies of the default initial condition procedures
2461 -- for all types subject to pragma Default_Initial_Condition.
2462 -- From a purely Ada stand point, this is a freezing activity,
2463 -- however freezing is not available under GNATprove_Mode. To
2464 -- accomodate both scenarios, the bodies are build at the end
2465 -- of private declaration analysis.
2466
2467 Build_Default_Init_Cond_Procedure_Bodies (L);
2468
2469 -- Otherwise the contract is analyzed at the end of the visible
2470 -- declarations.
2471
2472 elsif L = Visible_Declarations (Context)
2473 and then No (Private_Declarations (Context))
2474 then
2475 Analyze_Package_Contract (Defining_Entity (Context));
2476 end if;
2477
2478 elsif Nkind (Context) = N_Package_Body then
2479 In_Package_Body := True;
2480 Spec_Id := Corresponding_Spec (Context);
2481
2482 Analyze_Package_Body_Contract (Defining_Entity (Context));
2483 end if;
2484 end if;
2485
2486 -- Analyze the contracts of subprogram declarations, subprogram bodies
2487 -- and variables now due to the delayed visibility requirements of their
2488 -- aspects.
2489
2490 Decl := First (L);
2491 while Present (Decl) loop
2492 if Nkind (Decl) = N_Object_Declaration then
2493 Analyze_Object_Contract (Defining_Entity (Decl));
2494
2495 elsif Nkind_In (Decl, N_Abstract_Subprogram_Declaration,
2496 N_Generic_Subprogram_Declaration,
2497 N_Subprogram_Declaration)
2498 then
2499 Analyze_Subprogram_Contract (Defining_Entity (Decl));
2500
2501 elsif Nkind (Decl) = N_Subprogram_Body then
2502 Analyze_Subprogram_Body_Contract (Defining_Entity (Decl));
2503
2504 elsif Nkind (Decl) = N_Subprogram_Body_Stub then
2505 Analyze_Subprogram_Body_Stub_Contract (Defining_Entity (Decl));
2506 end if;
2507
2508 Next (Decl);
2509 end loop;
2510
2511 -- State refinements are visible upto the end the of the package body
2512 -- declarations. Hide the refinements from visibility to restore the
2513 -- original state conditions.
2514
2515 if In_Package_Body then
2516 Remove_Visible_Refinements (Spec_Id);
2517 end if;
2518 end Analyze_Declarations;
2519
2520 -----------------------------------
2521 -- Analyze_Full_Type_Declaration --
2522 -----------------------------------
2523
2524 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2525 Def : constant Node_Id := Type_Definition (N);
2526 Def_Id : constant Entity_Id := Defining_Identifier (N);
2527 T : Entity_Id;
2528 Prev : Entity_Id;
2529
2530 Is_Remote : constant Boolean :=
2531 (Is_Remote_Types (Current_Scope)
2532 or else Is_Remote_Call_Interface (Current_Scope))
2533 and then not (In_Private_Part (Current_Scope)
2534 or else In_Package_Body (Current_Scope));
2535
2536 procedure Check_Ops_From_Incomplete_Type;
2537 -- If there is a tagged incomplete partial view of the type, traverse
2538 -- the primitives of the incomplete view and change the type of any
2539 -- controlling formals and result to indicate the full view. The
2540 -- primitives will be added to the full type's primitive operations
2541 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2542 -- is called from Process_Incomplete_Dependents).
2543
2544 ------------------------------------
2545 -- Check_Ops_From_Incomplete_Type --
2546 ------------------------------------
2547
2548 procedure Check_Ops_From_Incomplete_Type is
2549 Elmt : Elmt_Id;
2550 Formal : Entity_Id;
2551 Op : Entity_Id;
2552
2553 begin
2554 if Prev /= T
2555 and then Ekind (Prev) = E_Incomplete_Type
2556 and then Is_Tagged_Type (Prev)
2557 and then Is_Tagged_Type (T)
2558 then
2559 Elmt := First_Elmt (Primitive_Operations (Prev));
2560 while Present (Elmt) loop
2561 Op := Node (Elmt);
2562
2563 Formal := First_Formal (Op);
2564 while Present (Formal) loop
2565 if Etype (Formal) = Prev then
2566 Set_Etype (Formal, T);
2567 end if;
2568
2569 Next_Formal (Formal);
2570 end loop;
2571
2572 if Etype (Op) = Prev then
2573 Set_Etype (Op, T);
2574 end if;
2575
2576 Next_Elmt (Elmt);
2577 end loop;
2578 end if;
2579 end Check_Ops_From_Incomplete_Type;
2580
2581 -- Start of processing for Analyze_Full_Type_Declaration
2582
2583 begin
2584 Prev := Find_Type_Name (N);
2585
2586 -- The type declaration may be subject to pragma Ghost with policy
2587 -- Ignore. Set the mode now to ensure that any nodes generated during
2588 -- analysis and expansion are properly flagged as ignored Ghost.
2589
2590 Set_Ghost_Mode (N, Prev);
2591
2592 -- The full view, if present, now points to the current type. If there
2593 -- is an incomplete partial view, set a link to it, to simplify the
2594 -- retrieval of primitive operations of the type.
2595
2596 -- Ada 2005 (AI-50217): If the type was previously decorated when
2597 -- imported through a LIMITED WITH clause, it appears as incomplete
2598 -- but has no full view.
2599
2600 if Ekind (Prev) = E_Incomplete_Type
2601 and then Present (Full_View (Prev))
2602 then
2603 T := Full_View (Prev);
2604 Set_Incomplete_View (N, Parent (Prev));
2605 else
2606 T := Prev;
2607 end if;
2608
2609 Set_Is_Pure (T, Is_Pure (Current_Scope));
2610
2611 -- We set the flag Is_First_Subtype here. It is needed to set the
2612 -- corresponding flag for the Implicit class-wide-type created
2613 -- during tagged types processing.
2614
2615 Set_Is_First_Subtype (T, True);
2616
2617 -- Only composite types other than array types are allowed to have
2618 -- discriminants.
2619
2620 case Nkind (Def) is
2621
2622 -- For derived types, the rule will be checked once we've figured
2623 -- out the parent type.
2624
2625 when N_Derived_Type_Definition =>
2626 null;
2627
2628 -- For record types, discriminants are allowed, unless we are in
2629 -- SPARK.
2630
2631 when N_Record_Definition =>
2632 if Present (Discriminant_Specifications (N)) then
2633 Check_SPARK_05_Restriction
2634 ("discriminant type is not allowed",
2635 Defining_Identifier
2636 (First (Discriminant_Specifications (N))));
2637 end if;
2638
2639 when others =>
2640 if Present (Discriminant_Specifications (N)) then
2641 Error_Msg_N
2642 ("elementary or array type cannot have discriminants",
2643 Defining_Identifier
2644 (First (Discriminant_Specifications (N))));
2645 end if;
2646 end case;
2647
2648 -- Elaborate the type definition according to kind, and generate
2649 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2650 -- already done (this happens during the reanalysis that follows a call
2651 -- to the high level optimizer).
2652
2653 if not Analyzed (T) then
2654 Set_Analyzed (T);
2655
2656 case Nkind (Def) is
2657 when N_Access_To_Subprogram_Definition =>
2658 Access_Subprogram_Declaration (T, Def);
2659
2660 -- If this is a remote access to subprogram, we must create the
2661 -- equivalent fat pointer type, and related subprograms.
2662
2663 if Is_Remote then
2664 Process_Remote_AST_Declaration (N);
2665 end if;
2666
2667 -- Validate categorization rule against access type declaration
2668 -- usually a violation in Pure unit, Shared_Passive unit.
2669
2670 Validate_Access_Type_Declaration (T, N);
2671
2672 when N_Access_To_Object_Definition =>
2673 Access_Type_Declaration (T, Def);
2674
2675 -- Validate categorization rule against access type declaration
2676 -- usually a violation in Pure unit, Shared_Passive unit.
2677
2678 Validate_Access_Type_Declaration (T, N);
2679
2680 -- If we are in a Remote_Call_Interface package and define a
2681 -- RACW, then calling stubs and specific stream attributes
2682 -- must be added.
2683
2684 if Is_Remote
2685 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2686 then
2687 Add_RACW_Features (Def_Id);
2688 end if;
2689
2690 when N_Array_Type_Definition =>
2691 Array_Type_Declaration (T, Def);
2692
2693 when N_Derived_Type_Definition =>
2694 Derived_Type_Declaration (T, N, T /= Def_Id);
2695
2696 when N_Enumeration_Type_Definition =>
2697 Enumeration_Type_Declaration (T, Def);
2698
2699 when N_Floating_Point_Definition =>
2700 Floating_Point_Type_Declaration (T, Def);
2701
2702 when N_Decimal_Fixed_Point_Definition =>
2703 Decimal_Fixed_Point_Type_Declaration (T, Def);
2704
2705 when N_Ordinary_Fixed_Point_Definition =>
2706 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2707
2708 when N_Signed_Integer_Type_Definition =>
2709 Signed_Integer_Type_Declaration (T, Def);
2710
2711 when N_Modular_Type_Definition =>
2712 Modular_Type_Declaration (T, Def);
2713
2714 when N_Record_Definition =>
2715 Record_Type_Declaration (T, N, Prev);
2716
2717 -- If declaration has a parse error, nothing to elaborate.
2718
2719 when N_Error =>
2720 null;
2721
2722 when others =>
2723 raise Program_Error;
2724
2725 end case;
2726 end if;
2727
2728 if Etype (T) = Any_Type then
2729 return;
2730 end if;
2731
2732 -- Controlled type is not allowed in SPARK
2733
2734 if Is_Visibly_Controlled (T) then
2735 Check_SPARK_05_Restriction ("controlled type is not allowed", N);
2736 end if;
2737
2738 -- A type declared within a Ghost region is automatically Ghost
2739 -- (SPARK RM 6.9(2)).
2740
2741 if Comes_From_Source (T) and then Ghost_Mode > None then
2742 Set_Is_Ghost_Entity (T);
2743 end if;
2744
2745 -- Some common processing for all types
2746
2747 Set_Depends_On_Private (T, Has_Private_Component (T));
2748 Check_Ops_From_Incomplete_Type;
2749
2750 -- Both the declared entity, and its anonymous base type if one was
2751 -- created, need freeze nodes allocated.
2752
2753 declare
2754 B : constant Entity_Id := Base_Type (T);
2755
2756 begin
2757 -- In the case where the base type differs from the first subtype, we
2758 -- pre-allocate a freeze node, and set the proper link to the first
2759 -- subtype. Freeze_Entity will use this preallocated freeze node when
2760 -- it freezes the entity.
2761
2762 -- This does not apply if the base type is a generic type, whose
2763 -- declaration is independent of the current derived definition.
2764
2765 if B /= T and then not Is_Generic_Type (B) then
2766 Ensure_Freeze_Node (B);
2767 Set_First_Subtype_Link (Freeze_Node (B), T);
2768 end if;
2769
2770 -- A type that is imported through a limited_with clause cannot
2771 -- generate any code, and thus need not be frozen. However, an access
2772 -- type with an imported designated type needs a finalization list,
2773 -- which may be referenced in some other package that has non-limited
2774 -- visibility on the designated type. Thus we must create the
2775 -- finalization list at the point the access type is frozen, to
2776 -- prevent unsatisfied references at link time.
2777
2778 if not From_Limited_With (T) or else Is_Access_Type (T) then
2779 Set_Has_Delayed_Freeze (T);
2780 end if;
2781 end;
2782
2783 -- Case where T is the full declaration of some private type which has
2784 -- been swapped in Defining_Identifier (N).
2785
2786 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2787 Process_Full_View (N, T, Def_Id);
2788
2789 -- Record the reference. The form of this is a little strange, since
2790 -- the full declaration has been swapped in. So the first parameter
2791 -- here represents the entity to which a reference is made which is
2792 -- the "real" entity, i.e. the one swapped in, and the second
2793 -- parameter provides the reference location.
2794
2795 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2796 -- since we don't want a complaint about the full type being an
2797 -- unwanted reference to the private type
2798
2799 declare
2800 B : constant Boolean := Has_Pragma_Unreferenced (T);
2801 begin
2802 Set_Has_Pragma_Unreferenced (T, False);
2803 Generate_Reference (T, T, 'c');
2804 Set_Has_Pragma_Unreferenced (T, B);
2805 end;
2806
2807 Set_Completion_Referenced (Def_Id);
2808
2809 -- For completion of incomplete type, process incomplete dependents
2810 -- and always mark the full type as referenced (it is the incomplete
2811 -- type that we get for any real reference).
2812
2813 elsif Ekind (Prev) = E_Incomplete_Type then
2814 Process_Incomplete_Dependents (N, T, Prev);
2815 Generate_Reference (Prev, Def_Id, 'c');
2816 Set_Completion_Referenced (Def_Id);
2817
2818 -- If not private type or incomplete type completion, this is a real
2819 -- definition of a new entity, so record it.
2820
2821 else
2822 Generate_Definition (Def_Id);
2823 end if;
2824
2825 -- Propagate any pending access types whose finalization masters need to
2826 -- be fully initialized from the partial to the full view. Guard against
2827 -- an illegal full view that remains unanalyzed.
2828
2829 if Is_Type (Def_Id) and then Is_Incomplete_Or_Private_Type (Prev) then
2830 Set_Pending_Access_Types (Def_Id, Pending_Access_Types (Prev));
2831 end if;
2832
2833 if Chars (Scope (Def_Id)) = Name_System
2834 and then Chars (Def_Id) = Name_Address
2835 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
2836 then
2837 Set_Is_Descendent_Of_Address (Def_Id);
2838 Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
2839 Set_Is_Descendent_Of_Address (Prev);
2840 end if;
2841
2842 Set_Optimize_Alignment_Flags (Def_Id);
2843 Check_Eliminated (Def_Id);
2844
2845 -- If the declaration is a completion and aspects are present, apply
2846 -- them to the entity for the type which is currently the partial
2847 -- view, but which is the one that will be frozen.
2848
2849 if Has_Aspects (N) then
2850
2851 -- In most cases the partial view is a private type, and both views
2852 -- appear in different declarative parts. In the unusual case where
2853 -- the partial view is incomplete, perform the analysis on the
2854 -- full view, to prevent freezing anomalies with the corresponding
2855 -- class-wide type, which otherwise might be frozen before the
2856 -- dispatch table is built.
2857
2858 if Prev /= Def_Id
2859 and then Ekind (Prev) /= E_Incomplete_Type
2860 then
2861 Analyze_Aspect_Specifications (N, Prev);
2862
2863 -- Normal case
2864
2865 else
2866 Analyze_Aspect_Specifications (N, Def_Id);
2867 end if;
2868 end if;
2869 end Analyze_Full_Type_Declaration;
2870
2871 ----------------------------------
2872 -- Analyze_Incomplete_Type_Decl --
2873 ----------------------------------
2874
2875 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
2876 F : constant Boolean := Is_Pure (Current_Scope);
2877 T : Entity_Id;
2878
2879 begin
2880 Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
2881
2882 Generate_Definition (Defining_Identifier (N));
2883
2884 -- Process an incomplete declaration. The identifier must not have been
2885 -- declared already in the scope. However, an incomplete declaration may
2886 -- appear in the private part of a package, for a private type that has
2887 -- already been declared.
2888
2889 -- In this case, the discriminants (if any) must match
2890
2891 T := Find_Type_Name (N);
2892
2893 Set_Ekind (T, E_Incomplete_Type);
2894 Init_Size_Align (T);
2895 Set_Is_First_Subtype (T, True);
2896 Set_Etype (T, T);
2897
2898 -- An incomplete type declared within a Ghost region is automatically
2899 -- Ghost (SPARK RM 6.9(2)).
2900
2901 if Ghost_Mode > None then
2902 Set_Is_Ghost_Entity (T);
2903 end if;
2904
2905 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2906 -- incomplete types.
2907
2908 if Tagged_Present (N) then
2909 Set_Is_Tagged_Type (T, True);
2910 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
2911 Make_Class_Wide_Type (T);
2912 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2913 end if;
2914
2915 Push_Scope (T);
2916
2917 Set_Stored_Constraint (T, No_Elist);
2918
2919 if Present (Discriminant_Specifications (N)) then
2920 Process_Discriminants (N);
2921 end if;
2922
2923 End_Scope;
2924
2925 -- If the type has discriminants, non-trivial subtypes may be
2926 -- declared before the full view of the type. The full views of those
2927 -- subtypes will be built after the full view of the type.
2928
2929 Set_Private_Dependents (T, New_Elmt_List);
2930 Set_Is_Pure (T, F);
2931 end Analyze_Incomplete_Type_Decl;
2932
2933 -----------------------------------
2934 -- Analyze_Interface_Declaration --
2935 -----------------------------------
2936
2937 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
2938 CW : constant Entity_Id := Class_Wide_Type (T);
2939
2940 begin
2941 Set_Is_Tagged_Type (T);
2942 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
2943
2944 Set_Is_Limited_Record (T, Limited_Present (Def)
2945 or else Task_Present (Def)
2946 or else Protected_Present (Def)
2947 or else Synchronized_Present (Def));
2948
2949 -- Type is abstract if full declaration carries keyword, or if previous
2950 -- partial view did.
2951
2952 Set_Is_Abstract_Type (T);
2953 Set_Is_Interface (T);
2954
2955 -- Type is a limited interface if it includes the keyword limited, task,
2956 -- protected, or synchronized.
2957
2958 Set_Is_Limited_Interface
2959 (T, Limited_Present (Def)
2960 or else Protected_Present (Def)
2961 or else Synchronized_Present (Def)
2962 or else Task_Present (Def));
2963
2964 Set_Interfaces (T, New_Elmt_List);
2965 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2966
2967 -- Complete the decoration of the class-wide entity if it was already
2968 -- built (i.e. during the creation of the limited view)
2969
2970 if Present (CW) then
2971 Set_Is_Interface (CW);
2972 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
2973 end if;
2974
2975 -- Check runtime support for synchronized interfaces
2976
2977 if VM_Target = No_VM
2978 and then (Is_Task_Interface (T)
2979 or else Is_Protected_Interface (T)
2980 or else Is_Synchronized_Interface (T))
2981 and then not RTE_Available (RE_Select_Specific_Data)
2982 then
2983 Error_Msg_CRT ("synchronized interfaces", T);
2984 end if;
2985 end Analyze_Interface_Declaration;
2986
2987 -----------------------------
2988 -- Analyze_Itype_Reference --
2989 -----------------------------
2990
2991 -- Nothing to do. This node is placed in the tree only for the benefit of
2992 -- back end processing, and has no effect on the semantic processing.
2993
2994 procedure Analyze_Itype_Reference (N : Node_Id) is
2995 begin
2996 pragma Assert (Is_Itype (Itype (N)));
2997 null;
2998 end Analyze_Itype_Reference;
2999
3000 --------------------------------
3001 -- Analyze_Number_Declaration --
3002 --------------------------------
3003
3004 procedure Analyze_Number_Declaration (N : Node_Id) is
3005 Id : constant Entity_Id := Defining_Identifier (N);
3006 E : constant Node_Id := Expression (N);
3007 T : Entity_Id;
3008 Index : Interp_Index;
3009 It : Interp;
3010
3011 begin
3012 -- The number declaration may be subject to pragma Ghost with policy
3013 -- Ignore. Set the mode now to ensure that any nodes generated during
3014 -- analysis and expansion are properly flagged as ignored Ghost.
3015
3016 Set_Ghost_Mode (N);
3017
3018 Generate_Definition (Id);
3019 Enter_Name (Id);
3020
3021 -- A number declared within a Ghost region is automatically Ghost
3022 -- (SPARK RM 6.9(2)).
3023
3024 if Ghost_Mode > None then
3025 Set_Is_Ghost_Entity (Id);
3026 end if;
3027
3028 -- This is an optimization of a common case of an integer literal
3029
3030 if Nkind (E) = N_Integer_Literal then
3031 Set_Is_Static_Expression (E, True);
3032 Set_Etype (E, Universal_Integer);
3033
3034 Set_Etype (Id, Universal_Integer);
3035 Set_Ekind (Id, E_Named_Integer);
3036 Set_Is_Frozen (Id, True);
3037 return;
3038 end if;
3039
3040 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3041
3042 -- Process expression, replacing error by integer zero, to avoid
3043 -- cascaded errors or aborts further along in the processing
3044
3045 -- Replace Error by integer zero, which seems least likely to cause
3046 -- cascaded errors.
3047
3048 if E = Error then
3049 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
3050 Set_Error_Posted (E);
3051 end if;
3052
3053 Analyze (E);
3054
3055 -- Verify that the expression is static and numeric. If
3056 -- the expression is overloaded, we apply the preference
3057 -- rule that favors root numeric types.
3058
3059 if not Is_Overloaded (E) then
3060 T := Etype (E);
3061 if Has_Dynamic_Predicate_Aspect (T) then
3062 Error_Msg_N
3063 ("subtype has dynamic predicate, "
3064 & "not allowed in number declaration", N);
3065 end if;
3066
3067 else
3068 T := Any_Type;
3069
3070 Get_First_Interp (E, Index, It);
3071 while Present (It.Typ) loop
3072 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
3073 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
3074 then
3075 if T = Any_Type then
3076 T := It.Typ;
3077
3078 elsif It.Typ = Universal_Real
3079 or else
3080 It.Typ = Universal_Integer
3081 then
3082 -- Choose universal interpretation over any other
3083
3084 T := It.Typ;
3085 exit;
3086 end if;
3087 end if;
3088
3089 Get_Next_Interp (Index, It);
3090 end loop;
3091 end if;
3092
3093 if Is_Integer_Type (T) then
3094 Resolve (E, T);
3095 Set_Etype (Id, Universal_Integer);
3096 Set_Ekind (Id, E_Named_Integer);
3097
3098 elsif Is_Real_Type (T) then
3099
3100 -- Because the real value is converted to universal_real, this is a
3101 -- legal context for a universal fixed expression.
3102
3103 if T = Universal_Fixed then
3104 declare
3105 Loc : constant Source_Ptr := Sloc (N);
3106 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3107 Subtype_Mark =>
3108 New_Occurrence_Of (Universal_Real, Loc),
3109 Expression => Relocate_Node (E));
3110
3111 begin
3112 Rewrite (E, Conv);
3113 Analyze (E);
3114 end;
3115
3116 elsif T = Any_Fixed then
3117 Error_Msg_N ("illegal context for mixed mode operation", E);
3118
3119 -- Expression is of the form : universal_fixed * integer. Try to
3120 -- resolve as universal_real.
3121
3122 T := Universal_Real;
3123 Set_Etype (E, T);
3124 end if;
3125
3126 Resolve (E, T);
3127 Set_Etype (Id, Universal_Real);
3128 Set_Ekind (Id, E_Named_Real);
3129
3130 else
3131 Wrong_Type (E, Any_Numeric);
3132 Resolve (E, T);
3133
3134 Set_Etype (Id, T);
3135 Set_Ekind (Id, E_Constant);
3136 Set_Never_Set_In_Source (Id, True);
3137 Set_Is_True_Constant (Id, True);
3138 return;
3139 end if;
3140
3141 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3142 Set_Etype (E, Etype (Id));
3143 end if;
3144
3145 if not Is_OK_Static_Expression (E) then
3146 Flag_Non_Static_Expr
3147 ("non-static expression used in number declaration!", E);
3148 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3149 Set_Etype (E, Any_Type);
3150 end if;
3151 end Analyze_Number_Declaration;
3152
3153 -----------------------------
3154 -- Analyze_Object_Contract --
3155 -----------------------------
3156
3157 procedure Analyze_Object_Contract (Obj_Id : Entity_Id) is
3158 Obj_Typ : constant Entity_Id := Etype (Obj_Id);
3159 AR_Val : Boolean := False;
3160 AW_Val : Boolean := False;
3161 ER_Val : Boolean := False;
3162 EW_Val : Boolean := False;
3163 Prag : Node_Id;
3164 Seen : Boolean := False;
3165
3166 begin
3167 -- The loop parameter in an element iterator over a formal container
3168 -- is declared with an object declaration but no contracts apply.
3169
3170 if Ekind (Obj_Id) = E_Loop_Parameter then
3171 return;
3172 end if;
3173
3174 if Ekind (Obj_Id) = E_Constant then
3175
3176 -- A constant cannot be effectively volatile. This check is only
3177 -- relevant with SPARK_Mode on as it is not a standard Ada legality
3178 -- rule. Do not flag internally-generated constants that map generic
3179 -- formals to actuals in instantiations (SPARK RM 7.1.3(6)).
3180
3181 if SPARK_Mode = On
3182 and then Is_Effectively_Volatile (Obj_Id)
3183 and then No (Corresponding_Generic_Association (Parent (Obj_Id)))
3184
3185 -- Don't give this for internally generated entities (such as the
3186 -- FIRST and LAST temporaries generated for bounds).
3187
3188 and then Comes_From_Source (Obj_Id)
3189 then
3190 Error_Msg_N ("constant cannot be volatile", Obj_Id);
3191 end if;
3192
3193 else pragma Assert (Ekind (Obj_Id) = E_Variable);
3194
3195 -- The following checks are only relevant when SPARK_Mode is on as
3196 -- they are not standard Ada legality rules. Internally generated
3197 -- temporaries are ignored.
3198
3199 if SPARK_Mode = On and then Comes_From_Source (Obj_Id) then
3200 if Is_Effectively_Volatile (Obj_Id) then
3201
3202 -- The declaration of an effectively volatile object must
3203 -- appear at the library level (SPARK RM 7.1.3(7), C.6(6)).
3204
3205 if not Is_Library_Level_Entity (Obj_Id) then
3206 Error_Msg_N
3207 ("volatile variable & must be declared at library level",
3208 Obj_Id);
3209
3210 -- An object of a discriminated type cannot be effectively
3211 -- volatile (SPARK RM C.6(4)).
3212
3213 elsif Has_Discriminants (Obj_Typ) then
3214 Error_Msg_N
3215 ("discriminated object & cannot be volatile", Obj_Id);
3216
3217 -- An object of a tagged type cannot be effectively volatile
3218 -- (SPARK RM C.6(5)).
3219
3220 elsif Is_Tagged_Type (Obj_Typ) then
3221 Error_Msg_N ("tagged object & cannot be volatile", Obj_Id);
3222 end if;
3223
3224 -- The object is not effectively volatile
3225
3226 else
3227 -- A non-effectively volatile object cannot have effectively
3228 -- volatile components (SPARK RM 7.1.3(7)).
3229
3230 if not Is_Effectively_Volatile (Obj_Id)
3231 and then Has_Volatile_Component (Obj_Typ)
3232 then
3233 Error_Msg_N
3234 ("non-volatile object & cannot have volatile components",
3235 Obj_Id);
3236 end if;
3237 end if;
3238 end if;
3239
3240 if Is_Ghost_Entity (Obj_Id) then
3241
3242 -- A Ghost object cannot be effectively volatile (SPARK RM 6.9(8))
3243
3244 if Is_Effectively_Volatile (Obj_Id) then
3245 Error_Msg_N ("ghost variable & cannot be volatile", Obj_Id);
3246
3247 -- A Ghost object cannot be imported or exported (SPARK RM 6.9(8))
3248
3249 elsif Is_Imported (Obj_Id) then
3250 Error_Msg_N ("ghost object & cannot be imported", Obj_Id);
3251
3252 elsif Is_Exported (Obj_Id) then
3253 Error_Msg_N ("ghost object & cannot be exported", Obj_Id);
3254 end if;
3255 end if;
3256
3257 -- Analyze all external properties
3258
3259 Prag := Get_Pragma (Obj_Id, Pragma_Async_Readers);
3260
3261 if Present (Prag) then
3262 Analyze_External_Property_In_Decl_Part (Prag, AR_Val);
3263 Seen := True;
3264 end if;
3265
3266 Prag := Get_Pragma (Obj_Id, Pragma_Async_Writers);
3267
3268 if Present (Prag) then
3269 Analyze_External_Property_In_Decl_Part (Prag, AW_Val);
3270 Seen := True;
3271 end if;
3272
3273 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Reads);
3274
3275 if Present (Prag) then
3276 Analyze_External_Property_In_Decl_Part (Prag, ER_Val);
3277 Seen := True;
3278 end if;
3279
3280 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Writes);
3281
3282 if Present (Prag) then
3283 Analyze_External_Property_In_Decl_Part (Prag, EW_Val);
3284 Seen := True;
3285 end if;
3286
3287 -- Verify the mutual interaction of the various external properties
3288
3289 if Seen then
3290 Check_External_Properties (Obj_Id, AR_Val, AW_Val, ER_Val, EW_Val);
3291 end if;
3292
3293 -- Check whether the lack of indicator Part_Of agrees with the
3294 -- placement of the variable with respect to the state space.
3295
3296 Prag := Get_Pragma (Obj_Id, Pragma_Part_Of);
3297
3298 if No (Prag) then
3299 Check_Missing_Part_Of (Obj_Id);
3300 end if;
3301 end if;
3302
3303 -- A ghost object cannot be imported or exported (SPARK RM 6.9(8))
3304
3305 if Is_Ghost_Entity (Obj_Id) then
3306 if Is_Exported (Obj_Id) then
3307 Error_Msg_N ("ghost object & cannot be exported", Obj_Id);
3308
3309 elsif Is_Imported (Obj_Id) then
3310 Error_Msg_N ("ghost object & cannot be imported", Obj_Id);
3311 end if;
3312 end if;
3313 end Analyze_Object_Contract;
3314
3315 --------------------------------
3316 -- Analyze_Object_Declaration --
3317 --------------------------------
3318
3319 procedure Analyze_Object_Declaration (N : Node_Id) is
3320 Loc : constant Source_Ptr := Sloc (N);
3321 Id : constant Entity_Id := Defining_Identifier (N);
3322 T : Entity_Id;
3323 Act_T : Entity_Id;
3324
3325 E : Node_Id := Expression (N);
3326 -- E is set to Expression (N) throughout this routine. When
3327 -- Expression (N) is modified, E is changed accordingly.
3328
3329 Prev_Entity : Entity_Id := Empty;
3330
3331 function Count_Tasks (T : Entity_Id) return Uint;
3332 -- This function is called when a non-generic library level object of a
3333 -- task type is declared. Its function is to count the static number of
3334 -- tasks declared within the type (it is only called if Has_Tasks is set
3335 -- for T). As a side effect, if an array of tasks with non-static bounds
3336 -- or a variant record type is encountered, Check_Restrictions is called
3337 -- indicating the count is unknown.
3338
3339 -----------------
3340 -- Count_Tasks --
3341 -----------------
3342
3343 function Count_Tasks (T : Entity_Id) return Uint is
3344 C : Entity_Id;
3345 X : Node_Id;
3346 V : Uint;
3347
3348 begin
3349 if Is_Task_Type (T) then
3350 return Uint_1;
3351
3352 elsif Is_Record_Type (T) then
3353 if Has_Discriminants (T) then
3354 Check_Restriction (Max_Tasks, N);
3355 return Uint_0;
3356
3357 else
3358 V := Uint_0;
3359 C := First_Component (T);
3360 while Present (C) loop
3361 V := V + Count_Tasks (Etype (C));
3362 Next_Component (C);
3363 end loop;
3364
3365 return V;
3366 end if;
3367
3368 elsif Is_Array_Type (T) then
3369 X := First_Index (T);
3370 V := Count_Tasks (Component_Type (T));
3371 while Present (X) loop
3372 C := Etype (X);
3373
3374 if not Is_OK_Static_Subtype (C) then
3375 Check_Restriction (Max_Tasks, N);
3376 return Uint_0;
3377 else
3378 V := V * (UI_Max (Uint_0,
3379 Expr_Value (Type_High_Bound (C)) -
3380 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3381 end if;
3382
3383 Next_Index (X);
3384 end loop;
3385
3386 return V;
3387
3388 else
3389 return Uint_0;
3390 end if;
3391 end Count_Tasks;
3392
3393 -- Start of processing for Analyze_Object_Declaration
3394
3395 begin
3396 -- There are three kinds of implicit types generated by an
3397 -- object declaration:
3398
3399 -- 1. Those generated by the original Object Definition
3400
3401 -- 2. Those generated by the Expression
3402
3403 -- 3. Those used to constrain the Object Definition with the
3404 -- expression constraints when the definition is unconstrained.
3405
3406 -- They must be generated in this order to avoid order of elaboration
3407 -- issues. Thus the first step (after entering the name) is to analyze
3408 -- the object definition.
3409
3410 if Constant_Present (N) then
3411 Prev_Entity := Current_Entity_In_Scope (Id);
3412
3413 if Present (Prev_Entity)
3414 and then
3415 -- If the homograph is an implicit subprogram, it is overridden
3416 -- by the current declaration.
3417
3418 ((Is_Overloadable (Prev_Entity)
3419 and then Is_Inherited_Operation (Prev_Entity))
3420
3421 -- The current object is a discriminal generated for an entry
3422 -- family index. Even though the index is a constant, in this
3423 -- particular context there is no true constant redeclaration.
3424 -- Enter_Name will handle the visibility.
3425
3426 or else
3427 (Is_Discriminal (Id)
3428 and then Ekind (Discriminal_Link (Id)) =
3429 E_Entry_Index_Parameter)
3430
3431 -- The current object is the renaming for a generic declared
3432 -- within the instance.
3433
3434 or else
3435 (Ekind (Prev_Entity) = E_Package
3436 and then Nkind (Parent (Prev_Entity)) =
3437 N_Package_Renaming_Declaration
3438 and then not Comes_From_Source (Prev_Entity)
3439 and then
3440 Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
3441 then
3442 Prev_Entity := Empty;
3443 end if;
3444 end if;
3445
3446 -- The object declaration may be subject to pragma Ghost with policy
3447 -- Ignore. Set the mode now to ensure that any nodes generated during
3448 -- analysis and expansion are properly flagged as ignored Ghost.
3449
3450 Set_Ghost_Mode (N, Prev_Entity);
3451
3452 if Present (Prev_Entity) then
3453 Constant_Redeclaration (Id, N, T);
3454
3455 Generate_Reference (Prev_Entity, Id, 'c');
3456 Set_Completion_Referenced (Id);
3457
3458 if Error_Posted (N) then
3459
3460 -- Type mismatch or illegal redeclaration, Do not analyze
3461 -- expression to avoid cascaded errors.
3462
3463 T := Find_Type_Of_Object (Object_Definition (N), N);
3464 Set_Etype (Id, T);
3465 Set_Ekind (Id, E_Variable);
3466 goto Leave;
3467 end if;
3468
3469 -- In the normal case, enter identifier at the start to catch premature
3470 -- usage in the initialization expression.
3471
3472 else
3473 Generate_Definition (Id);
3474 Enter_Name (Id);
3475
3476 Mark_Coextensions (N, Object_Definition (N));
3477
3478 T := Find_Type_Of_Object (Object_Definition (N), N);
3479
3480 if Nkind (Object_Definition (N)) = N_Access_Definition
3481 and then Present
3482 (Access_To_Subprogram_Definition (Object_Definition (N)))
3483 and then Protected_Present
3484 (Access_To_Subprogram_Definition (Object_Definition (N)))
3485 then
3486 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3487 end if;
3488
3489 if Error_Posted (Id) then
3490 Set_Etype (Id, T);
3491 Set_Ekind (Id, E_Variable);
3492 goto Leave;
3493 end if;
3494 end if;
3495
3496 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3497 -- out some static checks
3498
3499 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
3500
3501 -- In case of aggregates we must also take care of the correct
3502 -- initialization of nested aggregates bug this is done at the
3503 -- point of the analysis of the aggregate (see sem_aggr.adb).
3504
3505 if Present (Expression (N))
3506 and then Nkind (Expression (N)) = N_Aggregate
3507 then
3508 null;
3509
3510 else
3511 declare
3512 Save_Typ : constant Entity_Id := Etype (Id);
3513 begin
3514 Set_Etype (Id, T); -- Temp. decoration for static checks
3515 Null_Exclusion_Static_Checks (N);
3516 Set_Etype (Id, Save_Typ);
3517 end;
3518 end if;
3519 end if;
3520
3521 -- Object is marked pure if it is in a pure scope
3522
3523 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3524
3525 -- If deferred constant, make sure context is appropriate. We detect
3526 -- a deferred constant as a constant declaration with no expression.
3527 -- A deferred constant can appear in a package body if its completion
3528 -- is by means of an interface pragma.
3529
3530 if Constant_Present (N) and then No (E) then
3531
3532 -- A deferred constant may appear in the declarative part of the
3533 -- following constructs:
3534
3535 -- blocks
3536 -- entry bodies
3537 -- extended return statements
3538 -- package specs
3539 -- package bodies
3540 -- subprogram bodies
3541 -- task bodies
3542
3543 -- When declared inside a package spec, a deferred constant must be
3544 -- completed by a full constant declaration or pragma Import. In all
3545 -- other cases, the only proper completion is pragma Import. Extended
3546 -- return statements are flagged as invalid contexts because they do
3547 -- not have a declarative part and so cannot accommodate the pragma.
3548
3549 if Ekind (Current_Scope) = E_Return_Statement then
3550 Error_Msg_N
3551 ("invalid context for deferred constant declaration (RM 7.4)",
3552 N);
3553 Error_Msg_N
3554 ("\declaration requires an initialization expression",
3555 N);
3556 Set_Constant_Present (N, False);
3557
3558 -- In Ada 83, deferred constant must be of private type
3559
3560 elsif not Is_Private_Type (T) then
3561 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3562 Error_Msg_N
3563 ("(Ada 83) deferred constant must be private type", N);
3564 end if;
3565 end if;
3566
3567 -- If not a deferred constant, then the object declaration freezes
3568 -- its type, unless the object is of an anonymous type and has delayed
3569 -- aspects. In that case the type is frozen when the object itself is.
3570
3571 else
3572 Check_Fully_Declared (T, N);
3573
3574 if Has_Delayed_Aspects (Id)
3575 and then Is_Array_Type (T)
3576 and then Is_Itype (T)
3577 then
3578 Set_Has_Delayed_Freeze (T);
3579 else
3580 Freeze_Before (N, T);
3581 end if;
3582 end if;
3583
3584 -- If the object was created by a constrained array definition, then
3585 -- set the link in both the anonymous base type and anonymous subtype
3586 -- that are built to represent the array type to point to the object.
3587
3588 if Nkind (Object_Definition (Declaration_Node (Id))) =
3589 N_Constrained_Array_Definition
3590 then
3591 Set_Related_Array_Object (T, Id);
3592 Set_Related_Array_Object (Base_Type (T), Id);
3593 end if;
3594
3595 -- Special checks for protected objects not at library level
3596
3597 if Is_Protected_Type (T)
3598 and then not Is_Library_Level_Entity (Id)
3599 then
3600 Check_Restriction (No_Local_Protected_Objects, Id);
3601
3602 -- Protected objects with interrupt handlers must be at library level
3603
3604 -- Ada 2005: This test is not needed (and the corresponding clause
3605 -- in the RM is removed) because accessibility checks are sufficient
3606 -- to make handlers not at the library level illegal.
3607
3608 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3609 -- applies to the '95 version of the language as well.
3610
3611 if Has_Interrupt_Handler (T) and then Ada_Version < Ada_95 then
3612 Error_Msg_N
3613 ("interrupt object can only be declared at library level", Id);
3614 end if;
3615 end if;
3616
3617 -- The actual subtype of the object is the nominal subtype, unless
3618 -- the nominal one is unconstrained and obtained from the expression.
3619
3620 Act_T := T;
3621
3622 -- These checks should be performed before the initialization expression
3623 -- is considered, so that the Object_Definition node is still the same
3624 -- as in source code.
3625
3626 -- In SPARK, the nominal subtype is always given by a subtype mark
3627 -- and must not be unconstrained. (The only exception to this is the
3628 -- acceptance of declarations of constants of type String.)
3629
3630 if not Nkind_In (Object_Definition (N), N_Expanded_Name, N_Identifier)
3631 then
3632 Check_SPARK_05_Restriction
3633 ("subtype mark required", Object_Definition (N));
3634
3635 elsif Is_Array_Type (T)
3636 and then not Is_Constrained (T)
3637 and then T /= Standard_String
3638 then
3639 Check_SPARK_05_Restriction
3640 ("subtype mark of constrained type expected",
3641 Object_Definition (N));
3642 end if;
3643
3644 -- There are no aliased objects in SPARK
3645
3646 if Aliased_Present (N) then
3647 Check_SPARK_05_Restriction ("aliased object is not allowed", N);
3648 end if;
3649
3650 -- Process initialization expression if present and not in error
3651
3652 if Present (E) and then E /= Error then
3653
3654 -- Generate an error in case of CPP class-wide object initialization.
3655 -- Required because otherwise the expansion of the class-wide
3656 -- assignment would try to use 'size to initialize the object
3657 -- (primitive that is not available in CPP tagged types).
3658
3659 if Is_Class_Wide_Type (Act_T)
3660 and then
3661 (Is_CPP_Class (Root_Type (Etype (Act_T)))
3662 or else
3663 (Present (Full_View (Root_Type (Etype (Act_T))))
3664 and then
3665 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
3666 then
3667 Error_Msg_N
3668 ("predefined assignment not available for 'C'P'P tagged types",
3669 E);
3670 end if;
3671
3672 Mark_Coextensions (N, E);
3673 Analyze (E);
3674
3675 -- In case of errors detected in the analysis of the expression,
3676 -- decorate it with the expected type to avoid cascaded errors
3677
3678 if No (Etype (E)) then
3679 Set_Etype (E, T);
3680 end if;
3681
3682 -- If an initialization expression is present, then we set the
3683 -- Is_True_Constant flag. It will be reset if this is a variable
3684 -- and it is indeed modified.
3685
3686 Set_Is_True_Constant (Id, True);
3687
3688 -- If we are analyzing a constant declaration, set its completion
3689 -- flag after analyzing and resolving the expression.
3690
3691 if Constant_Present (N) then
3692 Set_Has_Completion (Id);
3693 end if;
3694
3695 -- Set type and resolve (type may be overridden later on). Note:
3696 -- Ekind (Id) must still be E_Void at this point so that incorrect
3697 -- early usage within E is properly diagnosed.
3698
3699 Set_Etype (Id, T);
3700
3701 -- If the expression is an aggregate we must look ahead to detect
3702 -- the possible presence of an address clause, and defer resolution
3703 -- and expansion of the aggregate to the freeze point of the entity.
3704
3705 if Comes_From_Source (N)
3706 and then Expander_Active
3707 and then Nkind (E) = N_Aggregate
3708 and then Present (Following_Address_Clause (N))
3709 then
3710 Set_Etype (E, T);
3711
3712 else
3713 Resolve (E, T);
3714 end if;
3715
3716 -- No further action needed if E is a call to an inlined function
3717 -- which returns an unconstrained type and it has been expanded into
3718 -- a procedure call. In that case N has been replaced by an object
3719 -- declaration without initializing expression and it has been
3720 -- analyzed (see Expand_Inlined_Call).
3721
3722 if Back_End_Inlining
3723 and then Expander_Active
3724 and then Nkind (E) = N_Function_Call
3725 and then Nkind (Name (E)) in N_Has_Entity
3726 and then Is_Inlined (Entity (Name (E)))
3727 and then not Is_Constrained (Etype (E))
3728 and then Analyzed (N)
3729 and then No (Expression (N))
3730 then
3731 return;
3732 end if;
3733
3734 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3735 -- node (which was marked already-analyzed), we need to set the type
3736 -- to something other than Any_Access in order to keep gigi happy.
3737
3738 if Etype (E) = Any_Access then
3739 Set_Etype (E, T);
3740 end if;
3741
3742 -- If the object is an access to variable, the initialization
3743 -- expression cannot be an access to constant.
3744
3745 if Is_Access_Type (T)
3746 and then not Is_Access_Constant (T)
3747 and then Is_Access_Type (Etype (E))
3748 and then Is_Access_Constant (Etype (E))
3749 then
3750 Error_Msg_N
3751 ("access to variable cannot be initialized with an "
3752 & "access-to-constant expression", E);
3753 end if;
3754
3755 if not Assignment_OK (N) then
3756 Check_Initialization (T, E);
3757 end if;
3758
3759 Check_Unset_Reference (E);
3760
3761 -- If this is a variable, then set current value. If this is a
3762 -- declared constant of a scalar type with a static expression,
3763 -- indicate that it is always valid.
3764
3765 if not Constant_Present (N) then
3766 if Compile_Time_Known_Value (E) then
3767 Set_Current_Value (Id, E);
3768 end if;
3769
3770 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
3771 Set_Is_Known_Valid (Id);
3772 end if;
3773
3774 -- Deal with setting of null flags
3775
3776 if Is_Access_Type (T) then
3777 if Known_Non_Null (E) then
3778 Set_Is_Known_Non_Null (Id, True);
3779 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
3780 Set_Is_Known_Null (Id, True);
3781 end if;
3782 end if;
3783
3784 -- Check incorrect use of dynamically tagged expressions
3785
3786 if Is_Tagged_Type (T) then
3787 Check_Dynamically_Tagged_Expression
3788 (Expr => E,
3789 Typ => T,
3790 Related_Nod => N);
3791 end if;
3792
3793 Apply_Scalar_Range_Check (E, T);
3794 Apply_Static_Length_Check (E, T);
3795
3796 if Nkind (Original_Node (N)) = N_Object_Declaration
3797 and then Comes_From_Source (Original_Node (N))
3798
3799 -- Only call test if needed
3800
3801 and then Restriction_Check_Required (SPARK_05)
3802 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
3803 then
3804 Check_SPARK_05_Restriction
3805 ("initialization expression is not appropriate", E);
3806 end if;
3807
3808 -- A formal parameter of a specific tagged type whose related
3809 -- subprogram is subject to pragma Extensions_Visible with value
3810 -- "False" cannot be implicitly converted to a class-wide type by
3811 -- means of an initialization expression (SPARK RM 6.1.7(3)).
3812
3813 if Is_Class_Wide_Type (T) and then Is_EVF_Expression (E) then
3814 Error_Msg_N
3815 ("formal parameter with Extensions_Visible False cannot be "
3816 & "implicitly converted to class-wide type", E);
3817 end if;
3818 end if;
3819
3820 -- If the No_Streams restriction is set, check that the type of the
3821 -- object is not, and does not contain, any subtype derived from
3822 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3823 -- Has_Stream just for efficiency reasons. There is no point in
3824 -- spending time on a Has_Stream check if the restriction is not set.
3825
3826 if Restriction_Check_Required (No_Streams) then
3827 if Has_Stream (T) then
3828 Check_Restriction (No_Streams, N);
3829 end if;
3830 end if;
3831
3832 -- Deal with predicate check before we start to do major rewriting. It
3833 -- is OK to initialize and then check the initialized value, since the
3834 -- object goes out of scope if we get a predicate failure. Note that we
3835 -- do this in the analyzer and not the expander because the analyzer
3836 -- does some substantial rewriting in some cases.
3837
3838 -- We need a predicate check if the type has predicates, and if either
3839 -- there is an initializing expression, or for default initialization
3840 -- when we have at least one case of an explicit default initial value
3841 -- and then this is not an internal declaration whose initialization
3842 -- comes later (as for an aggregate expansion).
3843
3844 if not Suppress_Assignment_Checks (N)
3845 and then Present (Predicate_Function (T))
3846 and then not No_Initialization (N)
3847 and then
3848 (Present (E)
3849 or else
3850 Is_Partially_Initialized_Type (T, Include_Implicit => False))
3851 then
3852 -- If the type has a static predicate and the expression is known at
3853 -- compile time, see if the expression satisfies the predicate.
3854
3855 if Present (E) then
3856 Check_Expression_Against_Static_Predicate (E, T);
3857 end if;
3858
3859 Insert_After (N,
3860 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
3861 end if;
3862
3863 -- Case of unconstrained type
3864
3865 if Is_Indefinite_Subtype (T) then
3866
3867 -- In SPARK, a declaration of unconstrained type is allowed
3868 -- only for constants of type string.
3869
3870 if Is_String_Type (T) and then not Constant_Present (N) then
3871 Check_SPARK_05_Restriction
3872 ("declaration of object of unconstrained type not allowed", N);
3873 end if;
3874
3875 -- Nothing to do in deferred constant case
3876
3877 if Constant_Present (N) and then No (E) then
3878 null;
3879
3880 -- Case of no initialization present
3881
3882 elsif No (E) then
3883 if No_Initialization (N) then
3884 null;
3885
3886 elsif Is_Class_Wide_Type (T) then
3887 Error_Msg_N
3888 ("initialization required in class-wide declaration ", N);
3889
3890 else
3891 Error_Msg_N
3892 ("unconstrained subtype not allowed (need initialization)",
3893 Object_Definition (N));
3894
3895 if Is_Record_Type (T) and then Has_Discriminants (T) then
3896 Error_Msg_N
3897 ("\provide initial value or explicit discriminant values",
3898 Object_Definition (N));
3899
3900 Error_Msg_NE
3901 ("\or give default discriminant values for type&",
3902 Object_Definition (N), T);
3903
3904 elsif Is_Array_Type (T) then
3905 Error_Msg_N
3906 ("\provide initial value or explicit array bounds",
3907 Object_Definition (N));
3908 end if;
3909 end if;
3910
3911 -- Case of initialization present but in error. Set initial
3912 -- expression as absent (but do not make above complaints)
3913
3914 elsif E = Error then
3915 Set_Expression (N, Empty);
3916 E := Empty;
3917
3918 -- Case of initialization present
3919
3920 else
3921 -- Check restrictions in Ada 83
3922
3923 if not Constant_Present (N) then
3924
3925 -- Unconstrained variables not allowed in Ada 83 mode
3926
3927 if Ada_Version = Ada_83
3928 and then Comes_From_Source (Object_Definition (N))
3929 then
3930 Error_Msg_N
3931 ("(Ada 83) unconstrained variable not allowed",
3932 Object_Definition (N));
3933 end if;
3934 end if;
3935
3936 -- Now we constrain the variable from the initializing expression
3937
3938 -- If the expression is an aggregate, it has been expanded into
3939 -- individual assignments. Retrieve the actual type from the
3940 -- expanded construct.
3941
3942 if Is_Array_Type (T)
3943 and then No_Initialization (N)
3944 and then Nkind (Original_Node (E)) = N_Aggregate
3945 then
3946 Act_T := Etype (E);
3947
3948 -- In case of class-wide interface object declarations we delay
3949 -- the generation of the equivalent record type declarations until
3950 -- its expansion because there are cases in they are not required.
3951
3952 elsif Is_Interface (T) then
3953 null;
3954
3955 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
3956 -- we should prevent the generation of another Itype with the
3957 -- same name as the one already generated, or we end up with
3958 -- two identical types in GNATprove.
3959
3960 elsif GNATprove_Mode then
3961 null;
3962
3963 -- If the type is an unchecked union, no subtype can be built from
3964 -- the expression. Rewrite declaration as a renaming, which the
3965 -- back-end can handle properly. This is a rather unusual case,
3966 -- because most unchecked_union declarations have default values
3967 -- for discriminants and are thus not indefinite.
3968
3969 elsif Is_Unchecked_Union (T) then
3970 if Constant_Present (N) or else Nkind (E) = N_Function_Call then
3971 Set_Ekind (Id, E_Constant);
3972 else
3973 Set_Ekind (Id, E_Variable);
3974 end if;
3975
3976 -- An object declared within a Ghost region is automatically
3977 -- Ghost (SPARK RM 6.9(2)).
3978
3979 if Comes_From_Source (Id) and then Ghost_Mode > None then
3980 Set_Is_Ghost_Entity (Id);
3981
3982 -- The Ghost policy in effect at the point of declaration
3983 -- and at the point of completion must match
3984 -- (SPARK RM 6.9(15)).
3985
3986 if Present (Prev_Entity)
3987 and then Is_Ghost_Entity (Prev_Entity)
3988 then
3989 Check_Ghost_Completion (Prev_Entity, Id);
3990 end if;
3991 end if;
3992
3993 Rewrite (N,
3994 Make_Object_Renaming_Declaration (Loc,
3995 Defining_Identifier => Id,
3996 Subtype_Mark => New_Occurrence_Of (T, Loc),
3997 Name => E));
3998
3999 Set_Renamed_Object (Id, E);
4000 Freeze_Before (N, T);
4001 Set_Is_Frozen (Id);
4002 return;
4003
4004 else
4005 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
4006 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
4007 end if;
4008
4009 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
4010
4011 if Aliased_Present (N) then
4012 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4013 end if;
4014
4015 Freeze_Before (N, Act_T);
4016 Freeze_Before (N, T);
4017 end if;
4018
4019 elsif Is_Array_Type (T)
4020 and then No_Initialization (N)
4021 and then Nkind (Original_Node (E)) = N_Aggregate
4022 then
4023 if not Is_Entity_Name (Object_Definition (N)) then
4024 Act_T := Etype (E);
4025 Check_Compile_Time_Size (Act_T);
4026
4027 if Aliased_Present (N) then
4028 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4029 end if;
4030 end if;
4031
4032 -- When the given object definition and the aggregate are specified
4033 -- independently, and their lengths might differ do a length check.
4034 -- This cannot happen if the aggregate is of the form (others =>...)
4035
4036 if not Is_Constrained (T) then
4037 null;
4038
4039 elsif Nkind (E) = N_Raise_Constraint_Error then
4040
4041 -- Aggregate is statically illegal. Place back in declaration
4042
4043 Set_Expression (N, E);
4044 Set_No_Initialization (N, False);
4045
4046 elsif T = Etype (E) then
4047 null;
4048
4049 elsif Nkind (E) = N_Aggregate
4050 and then Present (Component_Associations (E))
4051 and then Present (Choices (First (Component_Associations (E))))
4052 and then Nkind (First
4053 (Choices (First (Component_Associations (E))))) = N_Others_Choice
4054 then
4055 null;
4056
4057 else
4058 Apply_Length_Check (E, T);
4059 end if;
4060
4061 -- If the type is limited unconstrained with defaulted discriminants and
4062 -- there is no expression, then the object is constrained by the
4063 -- defaults, so it is worthwhile building the corresponding subtype.
4064
4065 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
4066 and then not Is_Constrained (T)
4067 and then Has_Discriminants (T)
4068 then
4069 if No (E) then
4070 Act_T := Build_Default_Subtype (T, N);
4071 else
4072 -- Ada 2005: A limited object may be initialized by means of an
4073 -- aggregate. If the type has default discriminants it has an
4074 -- unconstrained nominal type, Its actual subtype will be obtained
4075 -- from the aggregate, and not from the default discriminants.
4076
4077 Act_T := Etype (E);
4078 end if;
4079
4080 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
4081
4082 elsif Nkind (E) = N_Function_Call
4083 and then Constant_Present (N)
4084 and then Has_Unconstrained_Elements (Etype (E))
4085 then
4086 -- The back-end has problems with constants of a discriminated type
4087 -- with defaults, if the initial value is a function call. We
4088 -- generate an intermediate temporary that will receive a reference
4089 -- to the result of the call. The initialization expression then
4090 -- becomes a dereference of that temporary.
4091
4092 Remove_Side_Effects (E);
4093
4094 -- If this is a constant declaration of an unconstrained type and
4095 -- the initialization is an aggregate, we can use the subtype of the
4096 -- aggregate for the declared entity because it is immutable.
4097
4098 elsif not Is_Constrained (T)
4099 and then Has_Discriminants (T)
4100 and then Constant_Present (N)
4101 and then not Has_Unchecked_Union (T)
4102 and then Nkind (E) = N_Aggregate
4103 then
4104 Act_T := Etype (E);
4105 end if;
4106
4107 -- Check No_Wide_Characters restriction
4108
4109 Check_Wide_Character_Restriction (T, Object_Definition (N));
4110
4111 -- Indicate this is not set in source. Certainly true for constants, and
4112 -- true for variables so far (will be reset for a variable if and when
4113 -- we encounter a modification in the source).
4114
4115 Set_Never_Set_In_Source (Id);
4116
4117 -- Now establish the proper kind and type of the object
4118
4119 if Constant_Present (N) then
4120 Set_Ekind (Id, E_Constant);
4121 Set_Is_True_Constant (Id);
4122
4123 else
4124 Set_Ekind (Id, E_Variable);
4125
4126 -- A variable is set as shared passive if it appears in a shared
4127 -- passive package, and is at the outer level. This is not done for
4128 -- entities generated during expansion, because those are always
4129 -- manipulated locally.
4130
4131 if Is_Shared_Passive (Current_Scope)
4132 and then Is_Library_Level_Entity (Id)
4133 and then Comes_From_Source (Id)
4134 then
4135 Set_Is_Shared_Passive (Id);
4136 Check_Shared_Var (Id, T, N);
4137 end if;
4138
4139 -- Set Has_Initial_Value if initializing expression present. Note
4140 -- that if there is no initializing expression, we leave the state
4141 -- of this flag unchanged (usually it will be False, but notably in
4142 -- the case of exception choice variables, it will already be true).
4143
4144 if Present (E) then
4145 Set_Has_Initial_Value (Id);
4146 end if;
4147 end if;
4148
4149 -- Initialize alignment and size and capture alignment setting
4150
4151 Init_Alignment (Id);
4152 Init_Esize (Id);
4153 Set_Optimize_Alignment_Flags (Id);
4154
4155 -- An object declared within a Ghost region is automatically Ghost
4156 -- (SPARK RM 6.9(2)).
4157
4158 if Comes_From_Source (Id)
4159 and then (Ghost_Mode > None
4160 or else (Present (Prev_Entity)
4161 and then Is_Ghost_Entity (Prev_Entity)))
4162 then
4163 Set_Is_Ghost_Entity (Id);
4164
4165 -- The Ghost policy in effect at the point of declaration and at the
4166 -- point of completion must match (SPARK RM 6.9(16)).
4167
4168 if Present (Prev_Entity) and then Is_Ghost_Entity (Prev_Entity) then
4169 Check_Ghost_Completion (Prev_Entity, Id);
4170 end if;
4171 end if;
4172
4173 -- Deal with aliased case
4174
4175 if Aliased_Present (N) then
4176 Set_Is_Aliased (Id);
4177
4178 -- If the object is aliased and the type is unconstrained with
4179 -- defaulted discriminants and there is no expression, then the
4180 -- object is constrained by the defaults, so it is worthwhile
4181 -- building the corresponding subtype.
4182
4183 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4184 -- unconstrained, then only establish an actual subtype if the
4185 -- nominal subtype is indefinite. In definite cases the object is
4186 -- unconstrained in Ada 2005.
4187
4188 if No (E)
4189 and then Is_Record_Type (T)
4190 and then not Is_Constrained (T)
4191 and then Has_Discriminants (T)
4192 and then (Ada_Version < Ada_2005 or else Is_Indefinite_Subtype (T))
4193 then
4194 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
4195 end if;
4196 end if;
4197
4198 -- Now we can set the type of the object
4199
4200 Set_Etype (Id, Act_T);
4201
4202 -- Non-constant object is marked to be treated as volatile if type is
4203 -- volatile and we clear the Current_Value setting that may have been
4204 -- set above. Doing so for constants isn't required and might interfere
4205 -- with possible uses of the object as a static expression in contexts
4206 -- incompatible with volatility (e.g. as a case-statement alternative).
4207
4208 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
4209 Set_Treat_As_Volatile (Id);
4210 Set_Current_Value (Id, Empty);
4211 end if;
4212
4213 -- Deal with controlled types
4214
4215 if Has_Controlled_Component (Etype (Id))
4216 or else Is_Controlled (Etype (Id))
4217 then
4218 if not Is_Library_Level_Entity (Id) then
4219 Check_Restriction (No_Nested_Finalization, N);
4220 else
4221 Validate_Controlled_Object (Id);
4222 end if;
4223 end if;
4224
4225 if Has_Task (Etype (Id)) then
4226 Check_Restriction (No_Tasking, N);
4227
4228 -- Deal with counting max tasks
4229
4230 -- Nothing to do if inside a generic
4231
4232 if Inside_A_Generic then
4233 null;
4234
4235 -- If library level entity, then count tasks
4236
4237 elsif Is_Library_Level_Entity (Id) then
4238 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4239
4240 -- If not library level entity, then indicate we don't know max
4241 -- tasks and also check task hierarchy restriction and blocking
4242 -- operation (since starting a task is definitely blocking).
4243
4244 else
4245 Check_Restriction (Max_Tasks, N);
4246 Check_Restriction (No_Task_Hierarchy, N);
4247 Check_Potentially_Blocking_Operation (N);
4248 end if;
4249
4250 -- A rather specialized test. If we see two tasks being declared
4251 -- of the same type in the same object declaration, and the task
4252 -- has an entry with an address clause, we know that program error
4253 -- will be raised at run time since we can't have two tasks with
4254 -- entries at the same address.
4255
4256 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4257 declare
4258 E : Entity_Id;
4259
4260 begin
4261 E := First_Entity (Etype (Id));
4262 while Present (E) loop
4263 if Ekind (E) = E_Entry
4264 and then Present (Get_Attribute_Definition_Clause
4265 (E, Attribute_Address))
4266 then
4267 Error_Msg_Warn := SPARK_Mode /= On;
4268 Error_Msg_N
4269 ("more than one task with same entry address<<", N);
4270 Error_Msg_N ("\Program_Error [<<", N);
4271 Insert_Action (N,
4272 Make_Raise_Program_Error (Loc,
4273 Reason => PE_Duplicated_Entry_Address));
4274 exit;
4275 end if;
4276
4277 Next_Entity (E);
4278 end loop;
4279 end;
4280 end if;
4281 end if;
4282
4283 -- Some simple constant-propagation: if the expression is a constant
4284 -- string initialized with a literal, share the literal. This avoids
4285 -- a run-time copy.
4286
4287 if Present (E)
4288 and then Is_Entity_Name (E)
4289 and then Ekind (Entity (E)) = E_Constant
4290 and then Base_Type (Etype (E)) = Standard_String
4291 then
4292 declare
4293 Val : constant Node_Id := Constant_Value (Entity (E));
4294 begin
4295 if Present (Val) and then Nkind (Val) = N_String_Literal then
4296 Rewrite (E, New_Copy (Val));
4297 end if;
4298 end;
4299 end if;
4300
4301 -- Another optimization: if the nominal subtype is unconstrained and
4302 -- the expression is a function call that returns an unconstrained
4303 -- type, rewrite the declaration as a renaming of the result of the
4304 -- call. The exceptions below are cases where the copy is expected,
4305 -- either by the back end (Aliased case) or by the semantics, as for
4306 -- initializing controlled types or copying tags for classwide types.
4307
4308 if Present (E)
4309 and then Nkind (E) = N_Explicit_Dereference
4310 and then Nkind (Original_Node (E)) = N_Function_Call
4311 and then not Is_Library_Level_Entity (Id)
4312 and then not Is_Constrained (Underlying_Type (T))
4313 and then not Is_Aliased (Id)
4314 and then not Is_Class_Wide_Type (T)
4315 and then not Is_Controlled (T)
4316 and then not Has_Controlled_Component (Base_Type (T))
4317 and then Expander_Active
4318 then
4319 Rewrite (N,
4320 Make_Object_Renaming_Declaration (Loc,
4321 Defining_Identifier => Id,
4322 Access_Definition => Empty,
4323 Subtype_Mark => New_Occurrence_Of
4324 (Base_Type (Etype (Id)), Loc),
4325 Name => E));
4326
4327 Set_Renamed_Object (Id, E);
4328
4329 -- Force generation of debugging information for the constant and for
4330 -- the renamed function call.
4331
4332 Set_Debug_Info_Needed (Id);
4333 Set_Debug_Info_Needed (Entity (Prefix (E)));
4334 end if;
4335
4336 if Present (Prev_Entity)
4337 and then Is_Frozen (Prev_Entity)
4338 and then not Error_Posted (Id)
4339 then
4340 Error_Msg_N ("full constant declaration appears too late", N);
4341 end if;
4342
4343 Check_Eliminated (Id);
4344
4345 -- Deal with setting In_Private_Part flag if in private part
4346
4347 if Ekind (Scope (Id)) = E_Package and then In_Private_Part (Scope (Id))
4348 then
4349 Set_In_Private_Part (Id);
4350 end if;
4351
4352 -- Check for violation of No_Local_Timing_Events
4353
4354 if Restriction_Check_Required (No_Local_Timing_Events)
4355 and then not Is_Library_Level_Entity (Id)
4356 and then Is_RTE (Etype (Id), RE_Timing_Event)
4357 then
4358 Check_Restriction (No_Local_Timing_Events, N);
4359 end if;
4360
4361 <<Leave>>
4362 -- Initialize the refined state of a variable here because this is a
4363 -- common destination for legal and illegal object declarations.
4364
4365 if Ekind (Id) = E_Variable then
4366 Set_Encapsulating_State (Id, Empty);
4367 end if;
4368
4369 if Has_Aspects (N) then
4370 Analyze_Aspect_Specifications (N, Id);
4371 end if;
4372
4373 Analyze_Dimension (N);
4374
4375 -- Verify whether the object declaration introduces an illegal hidden
4376 -- state within a package subject to a null abstract state.
4377
4378 if Ekind (Id) = E_Variable then
4379 Check_No_Hidden_State (Id);
4380 end if;
4381 end Analyze_Object_Declaration;
4382
4383 ---------------------------
4384 -- Analyze_Others_Choice --
4385 ---------------------------
4386
4387 -- Nothing to do for the others choice node itself, the semantic analysis
4388 -- of the others choice will occur as part of the processing of the parent
4389
4390 procedure Analyze_Others_Choice (N : Node_Id) is
4391 pragma Warnings (Off, N);
4392 begin
4393 null;
4394 end Analyze_Others_Choice;
4395
4396 -------------------------------------------
4397 -- Analyze_Private_Extension_Declaration --
4398 -------------------------------------------
4399
4400 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4401 T : constant Entity_Id := Defining_Identifier (N);
4402 Indic : constant Node_Id := Subtype_Indication (N);
4403 Parent_Type : Entity_Id;
4404 Parent_Base : Entity_Id;
4405
4406 begin
4407 -- The private extension declaration may be subject to pragma Ghost with
4408 -- policy Ignore. Set the mode now to ensure that any nodes generated
4409 -- during analysis and expansion are properly flagged as ignored Ghost.
4410
4411 Set_Ghost_Mode (N);
4412
4413 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4414
4415 if Is_Non_Empty_List (Interface_List (N)) then
4416 declare
4417 Intf : Node_Id;
4418 T : Entity_Id;
4419
4420 begin
4421 Intf := First (Interface_List (N));
4422 while Present (Intf) loop
4423 T := Find_Type_Of_Subtype_Indic (Intf);
4424
4425 Diagnose_Interface (Intf, T);
4426 Next (Intf);
4427 end loop;
4428 end;
4429 end if;
4430
4431 Generate_Definition (T);
4432
4433 -- For other than Ada 2012, just enter the name in the current scope
4434
4435 if Ada_Version < Ada_2012 then
4436 Enter_Name (T);
4437
4438 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4439 -- case of private type that completes an incomplete type.
4440
4441 else
4442 declare
4443 Prev : Entity_Id;
4444
4445 begin
4446 Prev := Find_Type_Name (N);
4447
4448 pragma Assert (Prev = T
4449 or else (Ekind (Prev) = E_Incomplete_Type
4450 and then Present (Full_View (Prev))
4451 and then Full_View (Prev) = T));
4452 end;
4453 end if;
4454
4455 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
4456 Parent_Base := Base_Type (Parent_Type);
4457
4458 if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then
4459 Set_Ekind (T, Ekind (Parent_Type));
4460 Set_Etype (T, Any_Type);
4461 goto Leave;
4462
4463 elsif not Is_Tagged_Type (Parent_Type) then
4464 Error_Msg_N
4465 ("parent of type extension must be a tagged type ", Indic);
4466 goto Leave;
4467
4468 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
4469 Error_Msg_N ("premature derivation of incomplete type", Indic);
4470 goto Leave;
4471
4472 elsif Is_Concurrent_Type (Parent_Type) then
4473 Error_Msg_N
4474 ("parent type of a private extension cannot be "
4475 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
4476
4477 Set_Etype (T, Any_Type);
4478 Set_Ekind (T, E_Limited_Private_Type);
4479 Set_Private_Dependents (T, New_Elmt_List);
4480 Set_Error_Posted (T);
4481 goto Leave;
4482 end if;
4483
4484 -- Perhaps the parent type should be changed to the class-wide type's
4485 -- specific type in this case to prevent cascading errors ???
4486
4487 if Is_Class_Wide_Type (Parent_Type) then
4488 Error_Msg_N
4489 ("parent of type extension must not be a class-wide type", Indic);
4490 goto Leave;
4491 end if;
4492
4493 if (not Is_Package_Or_Generic_Package (Current_Scope)
4494 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
4495 or else In_Private_Part (Current_Scope)
4496
4497 then
4498 Error_Msg_N ("invalid context for private extension", N);
4499 end if;
4500
4501 -- Set common attributes
4502
4503 Set_Is_Pure (T, Is_Pure (Current_Scope));
4504 Set_Scope (T, Current_Scope);
4505 Set_Ekind (T, E_Record_Type_With_Private);
4506 Init_Size_Align (T);
4507 Set_Default_SSO (T);
4508
4509 Set_Etype (T, Parent_Base);
4510 Set_Has_Task (T, Has_Task (Parent_Base));
4511 Set_Has_Protected (T, Has_Task (Parent_Base));
4512
4513 Set_Convention (T, Convention (Parent_Type));
4514 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
4515 Set_Is_First_Subtype (T);
4516 Make_Class_Wide_Type (T);
4517
4518 if Unknown_Discriminants_Present (N) then
4519 Set_Discriminant_Constraint (T, No_Elist);
4520 end if;
4521
4522 Build_Derived_Record_Type (N, Parent_Type, T);
4523
4524 -- Propagate inherited invariant information. The new type has
4525 -- invariants, if the parent type has inheritable invariants,
4526 -- and these invariants can in turn be inherited.
4527
4528 if Has_Inheritable_Invariants (Parent_Type) then
4529 Set_Has_Inheritable_Invariants (T);
4530 Set_Has_Invariants (T);
4531 end if;
4532
4533 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4534 -- synchronized formal derived type.
4535
4536 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
4537 Set_Is_Limited_Record (T);
4538
4539 -- Formal derived type case
4540
4541 if Is_Generic_Type (T) then
4542
4543 -- The parent must be a tagged limited type or a synchronized
4544 -- interface.
4545
4546 if (not Is_Tagged_Type (Parent_Type)
4547 or else not Is_Limited_Type (Parent_Type))
4548 and then
4549 (not Is_Interface (Parent_Type)
4550 or else not Is_Synchronized_Interface (Parent_Type))
4551 then
4552 Error_Msg_NE ("parent type of & must be tagged limited " &
4553 "or synchronized", N, T);
4554 end if;
4555
4556 -- The progenitors (if any) must be limited or synchronized
4557 -- interfaces.
4558
4559 if Present (Interfaces (T)) then
4560 declare
4561 Iface : Entity_Id;
4562 Iface_Elmt : Elmt_Id;
4563
4564 begin
4565 Iface_Elmt := First_Elmt (Interfaces (T));
4566 while Present (Iface_Elmt) loop
4567 Iface := Node (Iface_Elmt);
4568
4569 if not Is_Limited_Interface (Iface)
4570 and then not Is_Synchronized_Interface (Iface)
4571 then
4572 Error_Msg_NE ("progenitor & must be limited " &
4573 "or synchronized", N, Iface);
4574 end if;
4575
4576 Next_Elmt (Iface_Elmt);
4577 end loop;
4578 end;
4579 end if;
4580
4581 -- Regular derived extension, the parent must be a limited or
4582 -- synchronized interface.
4583
4584 else
4585 if not Is_Interface (Parent_Type)
4586 or else (not Is_Limited_Interface (Parent_Type)
4587 and then not Is_Synchronized_Interface (Parent_Type))
4588 then
4589 Error_Msg_NE
4590 ("parent type of & must be limited interface", N, T);
4591 end if;
4592 end if;
4593
4594 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4595 -- extension with a synchronized parent must be explicitly declared
4596 -- synchronized, because the full view will be a synchronized type.
4597 -- This must be checked before the check for limited types below,
4598 -- to ensure that types declared limited are not allowed to extend
4599 -- synchronized interfaces.
4600
4601 elsif Is_Interface (Parent_Type)
4602 and then Is_Synchronized_Interface (Parent_Type)
4603 and then not Synchronized_Present (N)
4604 then
4605 Error_Msg_NE
4606 ("private extension of& must be explicitly synchronized",
4607 N, Parent_Type);
4608
4609 elsif Limited_Present (N) then
4610 Set_Is_Limited_Record (T);
4611
4612 if not Is_Limited_Type (Parent_Type)
4613 and then
4614 (not Is_Interface (Parent_Type)
4615 or else not Is_Limited_Interface (Parent_Type))
4616 then
4617 Error_Msg_NE ("parent type& of limited extension must be limited",
4618 N, Parent_Type);
4619 end if;
4620 end if;
4621
4622 <<Leave>>
4623 if Has_Aspects (N) then
4624 Analyze_Aspect_Specifications (N, T);
4625 end if;
4626 end Analyze_Private_Extension_Declaration;
4627
4628 ---------------------------------
4629 -- Analyze_Subtype_Declaration --
4630 ---------------------------------
4631
4632 procedure Analyze_Subtype_Declaration
4633 (N : Node_Id;
4634 Skip : Boolean := False)
4635 is
4636 Id : constant Entity_Id := Defining_Identifier (N);
4637 T : Entity_Id;
4638 R_Checks : Check_Result;
4639
4640 begin
4641 -- The subtype declaration may be subject to pragma Ghost with policy
4642 -- Ignore. Set the mode now to ensure that any nodes generated during
4643 -- analysis and expansion are properly flagged as ignored Ghost.
4644
4645 Set_Ghost_Mode (N);
4646
4647 Generate_Definition (Id);
4648 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4649 Init_Size_Align (Id);
4650
4651 -- The following guard condition on Enter_Name is to handle cases where
4652 -- the defining identifier has already been entered into the scope but
4653 -- the declaration as a whole needs to be analyzed.
4654
4655 -- This case in particular happens for derived enumeration types. The
4656 -- derived enumeration type is processed as an inserted enumeration type
4657 -- declaration followed by a rewritten subtype declaration. The defining
4658 -- identifier, however, is entered into the name scope very early in the
4659 -- processing of the original type declaration and therefore needs to be
4660 -- avoided here, when the created subtype declaration is analyzed. (See
4661 -- Build_Derived_Types)
4662
4663 -- This also happens when the full view of a private type is derived
4664 -- type with constraints. In this case the entity has been introduced
4665 -- in the private declaration.
4666
4667 -- Finally this happens in some complex cases when validity checks are
4668 -- enabled, where the same subtype declaration may be analyzed twice.
4669 -- This can happen if the subtype is created by the pre-analysis of
4670 -- an attribute tht gives the range of a loop statement, and the loop
4671 -- itself appears within an if_statement that will be rewritten during
4672 -- expansion.
4673
4674 if Skip
4675 or else (Present (Etype (Id))
4676 and then (Is_Private_Type (Etype (Id))
4677 or else Is_Task_Type (Etype (Id))
4678 or else Is_Rewrite_Substitution (N)))
4679 then
4680 null;
4681
4682 elsif Current_Entity (Id) = Id then
4683 null;
4684
4685 else
4686 Enter_Name (Id);
4687 end if;
4688
4689 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
4690
4691 -- Class-wide equivalent types of records with unknown discriminants
4692 -- involve the generation of an itype which serves as the private view
4693 -- of a constrained record subtype. In such cases the base type of the
4694 -- current subtype we are processing is the private itype. Use the full
4695 -- of the private itype when decorating various attributes.
4696
4697 if Is_Itype (T)
4698 and then Is_Private_Type (T)
4699 and then Present (Full_View (T))
4700 then
4701 T := Full_View (T);
4702 end if;
4703
4704 -- Inherit common attributes
4705
4706 Set_Is_Volatile (Id, Is_Volatile (T));
4707 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
4708 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
4709 Set_Convention (Id, Convention (T));
4710
4711 -- If ancestor has predicates then so does the subtype, and in addition
4712 -- we must delay the freeze to properly arrange predicate inheritance.
4713
4714 -- The Ancestor_Type test is really unpleasant, there seem to be cases
4715 -- in which T = ID, so the above tests and assignments do nothing???
4716
4717 if Has_Predicates (T)
4718 or else (Present (Ancestor_Subtype (T))
4719 and then Has_Predicates (Ancestor_Subtype (T)))
4720 then
4721 Set_Has_Predicates (Id);
4722 Set_Has_Delayed_Freeze (Id);
4723 end if;
4724
4725 -- Subtype of Boolean cannot have a constraint in SPARK
4726
4727 if Is_Boolean_Type (T)
4728 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
4729 then
4730 Check_SPARK_05_Restriction
4731 ("subtype of Boolean cannot have constraint", N);
4732 end if;
4733
4734 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4735 declare
4736 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
4737 One_Cstr : Node_Id;
4738 Low : Node_Id;
4739 High : Node_Id;
4740
4741 begin
4742 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
4743 One_Cstr := First (Constraints (Cstr));
4744 while Present (One_Cstr) loop
4745
4746 -- Index or discriminant constraint in SPARK must be a
4747 -- subtype mark.
4748
4749 if not
4750 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
4751 then
4752 Check_SPARK_05_Restriction
4753 ("subtype mark required", One_Cstr);
4754
4755 -- String subtype must have a lower bound of 1 in SPARK.
4756 -- Note that we do not need to test for the non-static case
4757 -- here, since that was already taken care of in
4758 -- Process_Range_Expr_In_Decl.
4759
4760 elsif Base_Type (T) = Standard_String then
4761 Get_Index_Bounds (One_Cstr, Low, High);
4762
4763 if Is_OK_Static_Expression (Low)
4764 and then Expr_Value (Low) /= 1
4765 then
4766 Check_SPARK_05_Restriction
4767 ("String subtype must have lower bound of 1", N);
4768 end if;
4769 end if;
4770
4771 Next (One_Cstr);
4772 end loop;
4773 end if;
4774 end;
4775 end if;
4776
4777 -- In the case where there is no constraint given in the subtype
4778 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4779 -- semantic attributes must be established here.
4780
4781 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
4782 Set_Etype (Id, Base_Type (T));
4783
4784 -- Subtype of unconstrained array without constraint is not allowed
4785 -- in SPARK.
4786
4787 if Is_Array_Type (T) and then not Is_Constrained (T) then
4788 Check_SPARK_05_Restriction
4789 ("subtype of unconstrained array must have constraint", N);
4790 end if;
4791
4792 case Ekind (T) is
4793 when Array_Kind =>
4794 Set_Ekind (Id, E_Array_Subtype);
4795 Copy_Array_Subtype_Attributes (Id, T);
4796
4797 when Decimal_Fixed_Point_Kind =>
4798 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
4799 Set_Digits_Value (Id, Digits_Value (T));
4800 Set_Delta_Value (Id, Delta_Value (T));
4801 Set_Scale_Value (Id, Scale_Value (T));
4802 Set_Small_Value (Id, Small_Value (T));
4803 Set_Scalar_Range (Id, Scalar_Range (T));
4804 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
4805 Set_Is_Constrained (Id, Is_Constrained (T));
4806 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4807 Set_RM_Size (Id, RM_Size (T));
4808
4809 when Enumeration_Kind =>
4810 Set_Ekind (Id, E_Enumeration_Subtype);
4811 Set_First_Literal (Id, First_Literal (Base_Type (T)));
4812 Set_Scalar_Range (Id, Scalar_Range (T));
4813 Set_Is_Character_Type (Id, Is_Character_Type (T));
4814 Set_Is_Constrained (Id, Is_Constrained (T));
4815 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4816 Set_RM_Size (Id, RM_Size (T));
4817 Inherit_Predicate_Flags (Id, T);
4818
4819 when Ordinary_Fixed_Point_Kind =>
4820 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
4821 Set_Scalar_Range (Id, Scalar_Range (T));
4822 Set_Small_Value (Id, Small_Value (T));
4823 Set_Delta_Value (Id, Delta_Value (T));
4824 Set_Is_Constrained (Id, Is_Constrained (T));
4825 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4826 Set_RM_Size (Id, RM_Size (T));
4827
4828 when Float_Kind =>
4829 Set_Ekind (Id, E_Floating_Point_Subtype);
4830 Set_Scalar_Range (Id, Scalar_Range (T));
4831 Set_Digits_Value (Id, Digits_Value (T));
4832 Set_Is_Constrained (Id, Is_Constrained (T));
4833
4834 when Signed_Integer_Kind =>
4835 Set_Ekind (Id, E_Signed_Integer_Subtype);
4836 Set_Scalar_Range (Id, Scalar_Range (T));
4837 Set_Is_Constrained (Id, Is_Constrained (T));
4838 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4839 Set_RM_Size (Id, RM_Size (T));
4840 Inherit_Predicate_Flags (Id, T);
4841
4842 when Modular_Integer_Kind =>
4843 Set_Ekind (Id, E_Modular_Integer_Subtype);
4844 Set_Scalar_Range (Id, Scalar_Range (T));
4845 Set_Is_Constrained (Id, Is_Constrained (T));
4846 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4847 Set_RM_Size (Id, RM_Size (T));
4848 Inherit_Predicate_Flags (Id, T);
4849
4850 when Class_Wide_Kind =>
4851 Set_Ekind (Id, E_Class_Wide_Subtype);
4852 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4853 Set_Cloned_Subtype (Id, T);
4854 Set_Is_Tagged_Type (Id, True);
4855 Set_Has_Unknown_Discriminants
4856 (Id, True);
4857 Set_No_Tagged_Streams_Pragma
4858 (Id, No_Tagged_Streams_Pragma (T));
4859
4860 if Ekind (T) = E_Class_Wide_Subtype then
4861 Set_Equivalent_Type (Id, Equivalent_Type (T));
4862 end if;
4863
4864 when E_Record_Type | E_Record_Subtype =>
4865 Set_Ekind (Id, E_Record_Subtype);
4866
4867 if Ekind (T) = E_Record_Subtype
4868 and then Present (Cloned_Subtype (T))
4869 then
4870 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
4871 else
4872 Set_Cloned_Subtype (Id, T);
4873 end if;
4874
4875 Set_First_Entity (Id, First_Entity (T));
4876 Set_Last_Entity (Id, Last_Entity (T));
4877 Set_Has_Discriminants (Id, Has_Discriminants (T));
4878 Set_Is_Constrained (Id, Is_Constrained (T));
4879 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4880 Set_Has_Implicit_Dereference
4881 (Id, Has_Implicit_Dereference (T));
4882 Set_Has_Unknown_Discriminants
4883 (Id, Has_Unknown_Discriminants (T));
4884
4885 if Has_Discriminants (T) then
4886 Set_Discriminant_Constraint
4887 (Id, Discriminant_Constraint (T));
4888 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4889
4890 elsif Has_Unknown_Discriminants (Id) then
4891 Set_Discriminant_Constraint (Id, No_Elist);
4892 end if;
4893
4894 if Is_Tagged_Type (T) then
4895 Set_Is_Tagged_Type (Id, True);
4896 Set_No_Tagged_Streams_Pragma
4897 (Id, No_Tagged_Streams_Pragma (T));
4898 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4899 Set_Direct_Primitive_Operations
4900 (Id, Direct_Primitive_Operations (T));
4901 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4902
4903 if Is_Interface (T) then
4904 Set_Is_Interface (Id);
4905 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
4906 end if;
4907 end if;
4908
4909 when Private_Kind =>
4910 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4911 Set_Has_Discriminants (Id, Has_Discriminants (T));
4912 Set_Is_Constrained (Id, Is_Constrained (T));
4913 Set_First_Entity (Id, First_Entity (T));
4914 Set_Last_Entity (Id, Last_Entity (T));
4915 Set_Private_Dependents (Id, New_Elmt_List);
4916 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4917 Set_Has_Implicit_Dereference
4918 (Id, Has_Implicit_Dereference (T));
4919 Set_Has_Unknown_Discriminants
4920 (Id, Has_Unknown_Discriminants (T));
4921 Set_Known_To_Have_Preelab_Init
4922 (Id, Known_To_Have_Preelab_Init (T));
4923
4924 if Is_Tagged_Type (T) then
4925 Set_Is_Tagged_Type (Id);
4926 Set_No_Tagged_Streams_Pragma (Id,
4927 No_Tagged_Streams_Pragma (T));
4928 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4929 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4930 Set_Direct_Primitive_Operations (Id,
4931 Direct_Primitive_Operations (T));
4932 end if;
4933
4934 -- In general the attributes of the subtype of a private type
4935 -- are the attributes of the partial view of parent. However,
4936 -- the full view may be a discriminated type, and the subtype
4937 -- must share the discriminant constraint to generate correct
4938 -- calls to initialization procedures.
4939
4940 if Has_Discriminants (T) then
4941 Set_Discriminant_Constraint
4942 (Id, Discriminant_Constraint (T));
4943 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4944
4945 elsif Present (Full_View (T))
4946 and then Has_Discriminants (Full_View (T))
4947 then
4948 Set_Discriminant_Constraint
4949 (Id, Discriminant_Constraint (Full_View (T)));
4950 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4951
4952 -- This would seem semantically correct, but apparently
4953 -- generates spurious errors about missing components ???
4954
4955 -- Set_Has_Discriminants (Id);
4956 end if;
4957
4958 Prepare_Private_Subtype_Completion (Id, N);
4959
4960 -- If this is the subtype of a constrained private type with
4961 -- discriminants that has got a full view and we also have
4962 -- built a completion just above, show that the completion
4963 -- is a clone of the full view to the back-end.
4964
4965 if Has_Discriminants (T)
4966 and then not Has_Unknown_Discriminants (T)
4967 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
4968 and then Present (Full_View (T))
4969 and then Present (Full_View (Id))
4970 then
4971 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
4972 end if;
4973
4974 when Access_Kind =>
4975 Set_Ekind (Id, E_Access_Subtype);
4976 Set_Is_Constrained (Id, Is_Constrained (T));
4977 Set_Is_Access_Constant
4978 (Id, Is_Access_Constant (T));
4979 Set_Directly_Designated_Type
4980 (Id, Designated_Type (T));
4981 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
4982
4983 -- A Pure library_item must not contain the declaration of a
4984 -- named access type, except within a subprogram, generic
4985 -- subprogram, task unit, or protected unit, or if it has
4986 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4987
4988 if Comes_From_Source (Id)
4989 and then In_Pure_Unit
4990 and then not In_Subprogram_Task_Protected_Unit
4991 and then not No_Pool_Assigned (Id)
4992 then
4993 Error_Msg_N
4994 ("named access types not allowed in pure unit", N);
4995 end if;
4996
4997 when Concurrent_Kind =>
4998 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4999 Set_Corresponding_Record_Type (Id,
5000 Corresponding_Record_Type (T));
5001 Set_First_Entity (Id, First_Entity (T));
5002 Set_First_Private_Entity (Id, First_Private_Entity (T));
5003 Set_Has_Discriminants (Id, Has_Discriminants (T));
5004 Set_Is_Constrained (Id, Is_Constrained (T));
5005 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5006 Set_Last_Entity (Id, Last_Entity (T));
5007
5008 if Is_Tagged_Type (T) then
5009 Set_No_Tagged_Streams_Pragma
5010 (Id, No_Tagged_Streams_Pragma (T));
5011 end if;
5012
5013 if Has_Discriminants (T) then
5014 Set_Discriminant_Constraint
5015 (Id, Discriminant_Constraint (T));
5016 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5017 end if;
5018
5019 when Incomplete_Kind =>
5020 if Ada_Version >= Ada_2005 then
5021
5022 -- In Ada 2005 an incomplete type can be explicitly tagged:
5023 -- propagate indication. Note that we also have to include
5024 -- subtypes for Ada 2012 extended use of incomplete types.
5025
5026 Set_Ekind (Id, E_Incomplete_Subtype);
5027 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5028 Set_Private_Dependents (Id, New_Elmt_List);
5029
5030 if Is_Tagged_Type (Id) then
5031 Set_No_Tagged_Streams_Pragma
5032 (Id, No_Tagged_Streams_Pragma (T));
5033 Set_Direct_Primitive_Operations (Id, New_Elmt_List);
5034 end if;
5035
5036 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
5037 -- incomplete type visible through a limited with clause.
5038
5039 if From_Limited_With (T)
5040 and then Present (Non_Limited_View (T))
5041 then
5042 Set_From_Limited_With (Id);
5043 Set_Non_Limited_View (Id, Non_Limited_View (T));
5044
5045 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5046 -- to the private dependents of the original incomplete
5047 -- type for future transformation.
5048
5049 else
5050 Append_Elmt (Id, Private_Dependents (T));
5051 end if;
5052
5053 -- If the subtype name denotes an incomplete type an error
5054 -- was already reported by Process_Subtype.
5055
5056 else
5057 Set_Etype (Id, Any_Type);
5058 end if;
5059
5060 when others =>
5061 raise Program_Error;
5062 end case;
5063 end if;
5064
5065 if Etype (Id) = Any_Type then
5066 goto Leave;
5067 end if;
5068
5069 -- Some common processing on all types
5070
5071 Set_Size_Info (Id, T);
5072 Set_First_Rep_Item (Id, First_Rep_Item (T));
5073
5074 -- If the parent type is a generic actual, so is the subtype. This may
5075 -- happen in a nested instance. Why Comes_From_Source test???
5076
5077 if not Comes_From_Source (N) then
5078 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
5079 end if;
5080
5081 T := Etype (Id);
5082
5083 Set_Is_Immediately_Visible (Id, True);
5084 Set_Depends_On_Private (Id, Has_Private_Component (T));
5085 Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
5086
5087 if Is_Interface (T) then
5088 Set_Is_Interface (Id);
5089 end if;
5090
5091 if Present (Generic_Parent_Type (N))
5092 and then
5093 (Nkind (Parent (Generic_Parent_Type (N))) /=
5094 N_Formal_Type_Declaration
5095 or else Nkind (Formal_Type_Definition
5096 (Parent (Generic_Parent_Type (N)))) /=
5097 N_Formal_Private_Type_Definition)
5098 then
5099 if Is_Tagged_Type (Id) then
5100
5101 -- If this is a generic actual subtype for a synchronized type,
5102 -- the primitive operations are those of the corresponding record
5103 -- for which there is a separate subtype declaration.
5104
5105 if Is_Concurrent_Type (Id) then
5106 null;
5107 elsif Is_Class_Wide_Type (Id) then
5108 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
5109 else
5110 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
5111 end if;
5112
5113 elsif Scope (Etype (Id)) /= Standard_Standard then
5114 Derive_Subprograms (Generic_Parent_Type (N), Id);
5115 end if;
5116 end if;
5117
5118 if Is_Private_Type (T) and then Present (Full_View (T)) then
5119 Conditional_Delay (Id, Full_View (T));
5120
5121 -- The subtypes of components or subcomponents of protected types
5122 -- do not need freeze nodes, which would otherwise appear in the
5123 -- wrong scope (before the freeze node for the protected type). The
5124 -- proper subtypes are those of the subcomponents of the corresponding
5125 -- record.
5126
5127 elsif Ekind (Scope (Id)) /= E_Protected_Type
5128 and then Present (Scope (Scope (Id))) -- error defense
5129 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
5130 then
5131 Conditional_Delay (Id, T);
5132 end if;
5133
5134 -- Check that Constraint_Error is raised for a scalar subtype indication
5135 -- when the lower or upper bound of a non-null range lies outside the
5136 -- range of the type mark.
5137
5138 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5139 if Is_Scalar_Type (Etype (Id))
5140 and then Scalar_Range (Id) /=
5141 Scalar_Range (Etype (Subtype_Mark
5142 (Subtype_Indication (N))))
5143 then
5144 Apply_Range_Check
5145 (Scalar_Range (Id),
5146 Etype (Subtype_Mark (Subtype_Indication (N))));
5147
5148 -- In the array case, check compatibility for each index
5149
5150 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
5151 then
5152 -- This really should be a subprogram that finds the indications
5153 -- to check???
5154
5155 declare
5156 Subt_Index : Node_Id := First_Index (Id);
5157 Target_Index : Node_Id :=
5158 First_Index (Etype
5159 (Subtype_Mark (Subtype_Indication (N))));
5160 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
5161
5162 begin
5163 while Present (Subt_Index) loop
5164 if ((Nkind (Subt_Index) = N_Identifier
5165 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
5166 or else Nkind (Subt_Index) = N_Subtype_Indication)
5167 and then
5168 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
5169 then
5170 declare
5171 Target_Typ : constant Entity_Id :=
5172 Etype (Target_Index);
5173 begin
5174 R_Checks :=
5175 Get_Range_Checks
5176 (Scalar_Range (Etype (Subt_Index)),
5177 Target_Typ,
5178 Etype (Subt_Index),
5179 Defining_Identifier (N));
5180
5181 -- Reset Has_Dynamic_Range_Check on the subtype to
5182 -- prevent elision of the index check due to a dynamic
5183 -- check generated for a preceding index (needed since
5184 -- Insert_Range_Checks tries to avoid generating
5185 -- redundant checks on a given declaration).
5186
5187 Set_Has_Dynamic_Range_Check (N, False);
5188
5189 Insert_Range_Checks
5190 (R_Checks,
5191 N,
5192 Target_Typ,
5193 Sloc (Defining_Identifier (N)));
5194
5195 -- Record whether this index involved a dynamic check
5196
5197 Has_Dyn_Chk :=
5198 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
5199 end;
5200 end if;
5201
5202 Next_Index (Subt_Index);
5203 Next_Index (Target_Index);
5204 end loop;
5205
5206 -- Finally, mark whether the subtype involves dynamic checks
5207
5208 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
5209 end;
5210 end if;
5211 end if;
5212
5213 -- A type invariant applies to any subtype in its scope, in particular
5214 -- to a generic actual.
5215
5216 if Has_Invariants (T) and then In_Open_Scopes (Scope (T)) then
5217 Set_Has_Invariants (Id);
5218 Set_Invariant_Procedure (Id, Invariant_Procedure (T));
5219 end if;
5220
5221 -- Make sure that generic actual types are properly frozen. The subtype
5222 -- is marked as a generic actual type when the enclosing instance is
5223 -- analyzed, so here we identify the subtype from the tree structure.
5224
5225 if Expander_Active
5226 and then Is_Generic_Actual_Type (Id)
5227 and then In_Instance
5228 and then not Comes_From_Source (N)
5229 and then Nkind (Subtype_Indication (N)) /= N_Subtype_Indication
5230 and then Is_Frozen (T)
5231 then
5232 Freeze_Before (N, Id);
5233 end if;
5234
5235 Set_Optimize_Alignment_Flags (Id);
5236 Check_Eliminated (Id);
5237
5238 <<Leave>>
5239 if Has_Aspects (N) then
5240 Analyze_Aspect_Specifications (N, Id);
5241 end if;
5242
5243 Analyze_Dimension (N);
5244 end Analyze_Subtype_Declaration;
5245
5246 --------------------------------
5247 -- Analyze_Subtype_Indication --
5248 --------------------------------
5249
5250 procedure Analyze_Subtype_Indication (N : Node_Id) is
5251 T : constant Entity_Id := Subtype_Mark (N);
5252 R : constant Node_Id := Range_Expression (Constraint (N));
5253
5254 begin
5255 Analyze (T);
5256
5257 if R /= Error then
5258 Analyze (R);
5259 Set_Etype (N, Etype (R));
5260 Resolve (R, Entity (T));
5261 else
5262 Set_Error_Posted (R);
5263 Set_Error_Posted (T);
5264 end if;
5265 end Analyze_Subtype_Indication;
5266
5267 --------------------------
5268 -- Analyze_Variant_Part --
5269 --------------------------
5270
5271 procedure Analyze_Variant_Part (N : Node_Id) is
5272 Discr_Name : Node_Id;
5273 Discr_Type : Entity_Id;
5274
5275 procedure Process_Variant (A : Node_Id);
5276 -- Analyze declarations for a single variant
5277
5278 package Analyze_Variant_Choices is
5279 new Generic_Analyze_Choices (Process_Variant);
5280 use Analyze_Variant_Choices;
5281
5282 ---------------------
5283 -- Process_Variant --
5284 ---------------------
5285
5286 procedure Process_Variant (A : Node_Id) is
5287 CL : constant Node_Id := Component_List (A);
5288 begin
5289 if not Null_Present (CL) then
5290 Analyze_Declarations (Component_Items (CL));
5291
5292 if Present (Variant_Part (CL)) then
5293 Analyze (Variant_Part (CL));
5294 end if;
5295 end if;
5296 end Process_Variant;
5297
5298 -- Start of processing for Analyze_Variant_Part
5299
5300 begin
5301 Discr_Name := Name (N);
5302 Analyze (Discr_Name);
5303
5304 -- If Discr_Name bad, get out (prevent cascaded errors)
5305
5306 if Etype (Discr_Name) = Any_Type then
5307 return;
5308 end if;
5309
5310 -- Check invalid discriminant in variant part
5311
5312 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
5313 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
5314 end if;
5315
5316 Discr_Type := Etype (Entity (Discr_Name));
5317
5318 if not Is_Discrete_Type (Discr_Type) then
5319 Error_Msg_N
5320 ("discriminant in a variant part must be of a discrete type",
5321 Name (N));
5322 return;
5323 end if;
5324
5325 -- Now analyze the choices, which also analyzes the declarations that
5326 -- are associated with each choice.
5327
5328 Analyze_Choices (Variants (N), Discr_Type);
5329
5330 -- Note: we used to instantiate and call Check_Choices here to check
5331 -- that the choices covered the discriminant, but it's too early to do
5332 -- that because of statically predicated subtypes, whose analysis may
5333 -- be deferred to their freeze point which may be as late as the freeze
5334 -- point of the containing record. So this call is now to be found in
5335 -- Freeze_Record_Declaration.
5336
5337 end Analyze_Variant_Part;
5338
5339 ----------------------------
5340 -- Array_Type_Declaration --
5341 ----------------------------
5342
5343 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
5344 Component_Def : constant Node_Id := Component_Definition (Def);
5345 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
5346 Element_Type : Entity_Id;
5347 Implicit_Base : Entity_Id;
5348 Index : Node_Id;
5349 Related_Id : Entity_Id := Empty;
5350 Nb_Index : Nat;
5351 P : constant Node_Id := Parent (Def);
5352 Priv : Entity_Id;
5353
5354 begin
5355 if Nkind (Def) = N_Constrained_Array_Definition then
5356 Index := First (Discrete_Subtype_Definitions (Def));
5357 else
5358 Index := First (Subtype_Marks (Def));
5359 end if;
5360
5361 -- Find proper names for the implicit types which may be public. In case
5362 -- of anonymous arrays we use the name of the first object of that type
5363 -- as prefix.
5364
5365 if No (T) then
5366 Related_Id := Defining_Identifier (P);
5367 else
5368 Related_Id := T;
5369 end if;
5370
5371 Nb_Index := 1;
5372 while Present (Index) loop
5373 Analyze (Index);
5374
5375 -- Test for odd case of trying to index a type by the type itself
5376
5377 if Is_Entity_Name (Index) and then Entity (Index) = T then
5378 Error_Msg_N ("type& cannot be indexed by itself", Index);
5379 Set_Entity (Index, Standard_Boolean);
5380 Set_Etype (Index, Standard_Boolean);
5381 end if;
5382
5383 -- Check SPARK restriction requiring a subtype mark
5384
5385 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
5386 Check_SPARK_05_Restriction ("subtype mark required", Index);
5387 end if;
5388
5389 -- Add a subtype declaration for each index of private array type
5390 -- declaration whose etype is also private. For example:
5391
5392 -- package Pkg is
5393 -- type Index is private;
5394 -- private
5395 -- type Table is array (Index) of ...
5396 -- end;
5397
5398 -- This is currently required by the expander for the internally
5399 -- generated equality subprogram of records with variant parts in
5400 -- which the etype of some component is such private type.
5401
5402 if Ekind (Current_Scope) = E_Package
5403 and then In_Private_Part (Current_Scope)
5404 and then Has_Private_Declaration (Etype (Index))
5405 then
5406 declare
5407 Loc : constant Source_Ptr := Sloc (Def);
5408 New_E : Entity_Id;
5409 Decl : Entity_Id;
5410
5411 begin
5412 New_E := Make_Temporary (Loc, 'T');
5413 Set_Is_Internal (New_E);
5414
5415 Decl :=
5416 Make_Subtype_Declaration (Loc,
5417 Defining_Identifier => New_E,
5418 Subtype_Indication =>
5419 New_Occurrence_Of (Etype (Index), Loc));
5420
5421 Insert_Before (Parent (Def), Decl);
5422 Analyze (Decl);
5423 Set_Etype (Index, New_E);
5424
5425 -- If the index is a range the Entity attribute is not
5426 -- available. Example:
5427
5428 -- package Pkg is
5429 -- type T is private;
5430 -- private
5431 -- type T is new Natural;
5432 -- Table : array (T(1) .. T(10)) of Boolean;
5433 -- end Pkg;
5434
5435 if Nkind (Index) /= N_Range then
5436 Set_Entity (Index, New_E);
5437 end if;
5438 end;
5439 end if;
5440
5441 Make_Index (Index, P, Related_Id, Nb_Index);
5442
5443 -- Check error of subtype with predicate for index type
5444
5445 Bad_Predicated_Subtype_Use
5446 ("subtype& has predicate, not allowed as index subtype",
5447 Index, Etype (Index));
5448
5449 -- Move to next index
5450
5451 Next_Index (Index);
5452 Nb_Index := Nb_Index + 1;
5453 end loop;
5454
5455 -- Process subtype indication if one is present
5456
5457 if Present (Component_Typ) then
5458 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
5459
5460 Set_Etype (Component_Typ, Element_Type);
5461
5462 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
5463 Check_SPARK_05_Restriction
5464 ("subtype mark required", Component_Typ);
5465 end if;
5466
5467 -- Ada 2005 (AI-230): Access Definition case
5468
5469 else pragma Assert (Present (Access_Definition (Component_Def)));
5470
5471 -- Indicate that the anonymous access type is created by the
5472 -- array type declaration.
5473
5474 Element_Type := Access_Definition
5475 (Related_Nod => P,
5476 N => Access_Definition (Component_Def));
5477 Set_Is_Local_Anonymous_Access (Element_Type);
5478
5479 -- Propagate the parent. This field is needed if we have to generate
5480 -- the master_id associated with an anonymous access to task type
5481 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5482
5483 Set_Parent (Element_Type, Parent (T));
5484
5485 -- Ada 2005 (AI-230): In case of components that are anonymous access
5486 -- types the level of accessibility depends on the enclosing type
5487 -- declaration
5488
5489 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
5490
5491 -- Ada 2005 (AI-254)
5492
5493 declare
5494 CD : constant Node_Id :=
5495 Access_To_Subprogram_Definition
5496 (Access_Definition (Component_Def));
5497 begin
5498 if Present (CD) and then Protected_Present (CD) then
5499 Element_Type :=
5500 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
5501 end if;
5502 end;
5503 end if;
5504
5505 -- Constrained array case
5506
5507 if No (T) then
5508 T := Create_Itype (E_Void, P, Related_Id, 'T');
5509 end if;
5510
5511 if Nkind (Def) = N_Constrained_Array_Definition then
5512
5513 -- Establish Implicit_Base as unconstrained base type
5514
5515 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
5516
5517 Set_Etype (Implicit_Base, Implicit_Base);
5518 Set_Scope (Implicit_Base, Current_Scope);
5519 Set_Has_Delayed_Freeze (Implicit_Base);
5520 Set_Default_SSO (Implicit_Base);
5521
5522 -- The constrained array type is a subtype of the unconstrained one
5523
5524 Set_Ekind (T, E_Array_Subtype);
5525 Init_Size_Align (T);
5526 Set_Etype (T, Implicit_Base);
5527 Set_Scope (T, Current_Scope);
5528 Set_Is_Constrained (T);
5529 Set_First_Index (T,
5530 First (Discrete_Subtype_Definitions (Def)));
5531 Set_Has_Delayed_Freeze (T);
5532
5533 -- Complete setup of implicit base type
5534
5535 Set_First_Index (Implicit_Base, First_Index (T));
5536 Set_Component_Type (Implicit_Base, Element_Type);
5537 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
5538 Set_Has_Protected (Implicit_Base, Has_Protected (Element_Type));
5539 Set_Component_Size (Implicit_Base, Uint_0);
5540 Set_Packed_Array_Impl_Type (Implicit_Base, Empty);
5541 Set_Has_Controlled_Component (Implicit_Base,
5542 Has_Controlled_Component (Element_Type)
5543 or else Is_Controlled (Element_Type));
5544 Set_Finalize_Storage_Only (Implicit_Base,
5545 Finalize_Storage_Only (Element_Type));
5546
5547 -- Inherit the "ghostness" from the constrained array type
5548
5549 if Is_Ghost_Entity (T) or else Ghost_Mode > None then
5550 Set_Is_Ghost_Entity (Implicit_Base);
5551 end if;
5552
5553 -- Unconstrained array case
5554
5555 else
5556 Set_Ekind (T, E_Array_Type);
5557 Init_Size_Align (T);
5558 Set_Etype (T, T);
5559 Set_Scope (T, Current_Scope);
5560 Set_Component_Size (T, Uint_0);
5561 Set_Is_Constrained (T, False);
5562 Set_First_Index (T, First (Subtype_Marks (Def)));
5563 Set_Has_Delayed_Freeze (T, True);
5564 Set_Has_Task (T, Has_Task (Element_Type));
5565 Set_Has_Protected (T, Has_Protected (Element_Type));
5566 Set_Has_Controlled_Component (T, Has_Controlled_Component
5567 (Element_Type)
5568 or else
5569 Is_Controlled (Element_Type));
5570 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
5571 (Element_Type));
5572 Set_Default_SSO (T);
5573 end if;
5574
5575 -- Common attributes for both cases
5576
5577 Set_Component_Type (Base_Type (T), Element_Type);
5578 Set_Packed_Array_Impl_Type (T, Empty);
5579
5580 if Aliased_Present (Component_Definition (Def)) then
5581 Check_SPARK_05_Restriction
5582 ("aliased is not allowed", Component_Definition (Def));
5583 Set_Has_Aliased_Components (Etype (T));
5584 end if;
5585
5586 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5587 -- array type to ensure that objects of this type are initialized.
5588
5589 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
5590 Set_Can_Never_Be_Null (T);
5591
5592 if Null_Exclusion_Present (Component_Definition (Def))
5593
5594 -- No need to check itypes because in their case this check was
5595 -- done at their point of creation
5596
5597 and then not Is_Itype (Element_Type)
5598 then
5599 Error_Msg_N
5600 ("`NOT NULL` not allowed (null already excluded)",
5601 Subtype_Indication (Component_Definition (Def)));
5602 end if;
5603 end if;
5604
5605 Priv := Private_Component (Element_Type);
5606
5607 if Present (Priv) then
5608
5609 -- Check for circular definitions
5610
5611 if Priv = Any_Type then
5612 Set_Component_Type (Etype (T), Any_Type);
5613
5614 -- There is a gap in the visibility of operations on the composite
5615 -- type only if the component type is defined in a different scope.
5616
5617 elsif Scope (Priv) = Current_Scope then
5618 null;
5619
5620 elsif Is_Limited_Type (Priv) then
5621 Set_Is_Limited_Composite (Etype (T));
5622 Set_Is_Limited_Composite (T);
5623 else
5624 Set_Is_Private_Composite (Etype (T));
5625 Set_Is_Private_Composite (T);
5626 end if;
5627 end if;
5628
5629 -- A syntax error in the declaration itself may lead to an empty index
5630 -- list, in which case do a minimal patch.
5631
5632 if No (First_Index (T)) then
5633 Error_Msg_N ("missing index definition in array type declaration", T);
5634
5635 declare
5636 Indexes : constant List_Id :=
5637 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
5638 begin
5639 Set_Discrete_Subtype_Definitions (Def, Indexes);
5640 Set_First_Index (T, First (Indexes));
5641 return;
5642 end;
5643 end if;
5644
5645 -- Create a concatenation operator for the new type. Internal array
5646 -- types created for packed entities do not need such, they are
5647 -- compatible with the user-defined type.
5648
5649 if Number_Dimensions (T) = 1
5650 and then not Is_Packed_Array_Impl_Type (T)
5651 then
5652 New_Concatenation_Op (T);
5653 end if;
5654
5655 -- In the case of an unconstrained array the parser has already verified
5656 -- that all the indexes are unconstrained but we still need to make sure
5657 -- that the element type is constrained.
5658
5659 if Is_Indefinite_Subtype (Element_Type) then
5660 Error_Msg_N
5661 ("unconstrained element type in array declaration",
5662 Subtype_Indication (Component_Def));
5663
5664 elsif Is_Abstract_Type (Element_Type) then
5665 Error_Msg_N
5666 ("the type of a component cannot be abstract",
5667 Subtype_Indication (Component_Def));
5668 end if;
5669
5670 -- There may be an invariant declared for the component type, but
5671 -- the construction of the component invariant checking procedure
5672 -- takes place during expansion.
5673 end Array_Type_Declaration;
5674
5675 ------------------------------------------------------
5676 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5677 ------------------------------------------------------
5678
5679 function Replace_Anonymous_Access_To_Protected_Subprogram
5680 (N : Node_Id) return Entity_Id
5681 is
5682 Loc : constant Source_Ptr := Sloc (N);
5683
5684 Curr_Scope : constant Scope_Stack_Entry :=
5685 Scope_Stack.Table (Scope_Stack.Last);
5686
5687 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
5688
5689 Acc : Node_Id;
5690 -- Access definition in declaration
5691
5692 Comp : Node_Id;
5693 -- Object definition or formal definition with an access definition
5694
5695 Decl : Node_Id;
5696 -- Declaration of anonymous access to subprogram type
5697
5698 Spec : Node_Id;
5699 -- Original specification in access to subprogram
5700
5701 P : Node_Id;
5702
5703 begin
5704 Set_Is_Internal (Anon);
5705
5706 case Nkind (N) is
5707 when N_Component_Declaration |
5708 N_Unconstrained_Array_Definition |
5709 N_Constrained_Array_Definition =>
5710 Comp := Component_Definition (N);
5711 Acc := Access_Definition (Comp);
5712
5713 when N_Discriminant_Specification =>
5714 Comp := Discriminant_Type (N);
5715 Acc := Comp;
5716
5717 when N_Parameter_Specification =>
5718 Comp := Parameter_Type (N);
5719 Acc := Comp;
5720
5721 when N_Access_Function_Definition =>
5722 Comp := Result_Definition (N);
5723 Acc := Comp;
5724
5725 when N_Object_Declaration =>
5726 Comp := Object_Definition (N);
5727 Acc := Comp;
5728
5729 when N_Function_Specification =>
5730 Comp := Result_Definition (N);
5731 Acc := Comp;
5732
5733 when others =>
5734 raise Program_Error;
5735 end case;
5736
5737 Spec := Access_To_Subprogram_Definition (Acc);
5738
5739 Decl :=
5740 Make_Full_Type_Declaration (Loc,
5741 Defining_Identifier => Anon,
5742 Type_Definition => Copy_Separate_Tree (Spec));
5743
5744 Mark_Rewrite_Insertion (Decl);
5745
5746 -- In ASIS mode, analyze the profile on the original node, because
5747 -- the separate copy does not provide enough links to recover the
5748 -- original tree. Analysis is limited to type annotations, within
5749 -- a temporary scope that serves as an anonymous subprogram to collect
5750 -- otherwise useless temporaries and itypes.
5751
5752 if ASIS_Mode then
5753 declare
5754 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
5755
5756 begin
5757 if Nkind (Spec) = N_Access_Function_Definition then
5758 Set_Ekind (Typ, E_Function);
5759 else
5760 Set_Ekind (Typ, E_Procedure);
5761 end if;
5762
5763 Set_Parent (Typ, N);
5764 Set_Scope (Typ, Current_Scope);
5765 Push_Scope (Typ);
5766
5767 Process_Formals (Parameter_Specifications (Spec), Spec);
5768
5769 if Nkind (Spec) = N_Access_Function_Definition then
5770 declare
5771 Def : constant Node_Id := Result_Definition (Spec);
5772
5773 begin
5774 -- The result might itself be an anonymous access type, so
5775 -- have to recurse.
5776
5777 if Nkind (Def) = N_Access_Definition then
5778 if Present (Access_To_Subprogram_Definition (Def)) then
5779 Set_Etype
5780 (Def,
5781 Replace_Anonymous_Access_To_Protected_Subprogram
5782 (Spec));
5783 else
5784 Find_Type (Subtype_Mark (Def));
5785 end if;
5786
5787 else
5788 Find_Type (Def);
5789 end if;
5790 end;
5791 end if;
5792
5793 End_Scope;
5794 end;
5795 end if;
5796
5797 -- Insert the new declaration in the nearest enclosing scope. If the
5798 -- node is a body and N is its return type, the declaration belongs in
5799 -- the enclosing scope.
5800
5801 P := Parent (N);
5802
5803 if Nkind (P) = N_Subprogram_Body
5804 and then Nkind (N) = N_Function_Specification
5805 then
5806 P := Parent (P);
5807 end if;
5808
5809 while Present (P) and then not Has_Declarations (P) loop
5810 P := Parent (P);
5811 end loop;
5812
5813 pragma Assert (Present (P));
5814
5815 if Nkind (P) = N_Package_Specification then
5816 Prepend (Decl, Visible_Declarations (P));
5817 else
5818 Prepend (Decl, Declarations (P));
5819 end if;
5820
5821 -- Replace the anonymous type with an occurrence of the new declaration.
5822 -- In all cases the rewritten node does not have the null-exclusion
5823 -- attribute because (if present) it was already inherited by the
5824 -- anonymous entity (Anon). Thus, in case of components we do not
5825 -- inherit this attribute.
5826
5827 if Nkind (N) = N_Parameter_Specification then
5828 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5829 Set_Etype (Defining_Identifier (N), Anon);
5830 Set_Null_Exclusion_Present (N, False);
5831
5832 elsif Nkind (N) = N_Object_Declaration then
5833 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5834 Set_Etype (Defining_Identifier (N), Anon);
5835
5836 elsif Nkind (N) = N_Access_Function_Definition then
5837 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5838
5839 elsif Nkind (N) = N_Function_Specification then
5840 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5841 Set_Etype (Defining_Unit_Name (N), Anon);
5842
5843 else
5844 Rewrite (Comp,
5845 Make_Component_Definition (Loc,
5846 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
5847 end if;
5848
5849 Mark_Rewrite_Insertion (Comp);
5850
5851 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition) then
5852 Analyze (Decl);
5853
5854 else
5855 -- Temporarily remove the current scope (record or subprogram) from
5856 -- the stack to add the new declarations to the enclosing scope.
5857
5858 Scope_Stack.Decrement_Last;
5859 Analyze (Decl);
5860 Set_Is_Itype (Anon);
5861 Scope_Stack.Append (Curr_Scope);
5862 end if;
5863
5864 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
5865 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
5866 return Anon;
5867 end Replace_Anonymous_Access_To_Protected_Subprogram;
5868
5869 -------------------------------
5870 -- Build_Derived_Access_Type --
5871 -------------------------------
5872
5873 procedure Build_Derived_Access_Type
5874 (N : Node_Id;
5875 Parent_Type : Entity_Id;
5876 Derived_Type : Entity_Id)
5877 is
5878 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
5879
5880 Desig_Type : Entity_Id;
5881 Discr : Entity_Id;
5882 Discr_Con_Elist : Elist_Id;
5883 Discr_Con_El : Elmt_Id;
5884 Subt : Entity_Id;
5885
5886 begin
5887 -- Set the designated type so it is available in case this is an access
5888 -- to a self-referential type, e.g. a standard list type with a next
5889 -- pointer. Will be reset after subtype is built.
5890
5891 Set_Directly_Designated_Type
5892 (Derived_Type, Designated_Type (Parent_Type));
5893
5894 Subt := Process_Subtype (S, N);
5895
5896 if Nkind (S) /= N_Subtype_Indication
5897 and then Subt /= Base_Type (Subt)
5898 then
5899 Set_Ekind (Derived_Type, E_Access_Subtype);
5900 end if;
5901
5902 if Ekind (Derived_Type) = E_Access_Subtype then
5903 declare
5904 Pbase : constant Entity_Id := Base_Type (Parent_Type);
5905 Ibase : constant Entity_Id :=
5906 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
5907 Svg_Chars : constant Name_Id := Chars (Ibase);
5908 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
5909
5910 begin
5911 Copy_Node (Pbase, Ibase);
5912
5913 Set_Chars (Ibase, Svg_Chars);
5914 Set_Next_Entity (Ibase, Svg_Next_E);
5915 Set_Sloc (Ibase, Sloc (Derived_Type));
5916 Set_Scope (Ibase, Scope (Derived_Type));
5917 Set_Freeze_Node (Ibase, Empty);
5918 Set_Is_Frozen (Ibase, False);
5919 Set_Comes_From_Source (Ibase, False);
5920 Set_Is_First_Subtype (Ibase, False);
5921
5922 Set_Etype (Ibase, Pbase);
5923 Set_Etype (Derived_Type, Ibase);
5924 end;
5925 end if;
5926
5927 Set_Directly_Designated_Type
5928 (Derived_Type, Designated_Type (Subt));
5929
5930 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
5931 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
5932 Set_Size_Info (Derived_Type, Parent_Type);
5933 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5934 Set_Depends_On_Private (Derived_Type,
5935 Has_Private_Component (Derived_Type));
5936 Conditional_Delay (Derived_Type, Subt);
5937
5938 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5939 -- that it is not redundant.
5940
5941 if Null_Exclusion_Present (Type_Definition (N)) then
5942 Set_Can_Never_Be_Null (Derived_Type);
5943
5944 -- What is with the "AND THEN FALSE" here ???
5945
5946 if Can_Never_Be_Null (Parent_Type)
5947 and then False
5948 then
5949 Error_Msg_NE
5950 ("`NOT NULL` not allowed (& already excludes null)",
5951 N, Parent_Type);
5952 end if;
5953
5954 elsif Can_Never_Be_Null (Parent_Type) then
5955 Set_Can_Never_Be_Null (Derived_Type);
5956 end if;
5957
5958 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5959 -- the root type for this information.
5960
5961 -- Apply range checks to discriminants for derived record case
5962 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5963
5964 Desig_Type := Designated_Type (Derived_Type);
5965 if Is_Composite_Type (Desig_Type)
5966 and then (not Is_Array_Type (Desig_Type))
5967 and then Has_Discriminants (Desig_Type)
5968 and then Base_Type (Desig_Type) /= Desig_Type
5969 then
5970 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
5971 Discr_Con_El := First_Elmt (Discr_Con_Elist);
5972
5973 Discr := First_Discriminant (Base_Type (Desig_Type));
5974 while Present (Discr_Con_El) loop
5975 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
5976 Next_Elmt (Discr_Con_El);
5977 Next_Discriminant (Discr);
5978 end loop;
5979 end if;
5980 end Build_Derived_Access_Type;
5981
5982 ------------------------------
5983 -- Build_Derived_Array_Type --
5984 ------------------------------
5985
5986 procedure Build_Derived_Array_Type
5987 (N : Node_Id;
5988 Parent_Type : Entity_Id;
5989 Derived_Type : Entity_Id)
5990 is
5991 Loc : constant Source_Ptr := Sloc (N);
5992 Tdef : constant Node_Id := Type_Definition (N);
5993 Indic : constant Node_Id := Subtype_Indication (Tdef);
5994 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
5995 Implicit_Base : Entity_Id;
5996 New_Indic : Node_Id;
5997
5998 procedure Make_Implicit_Base;
5999 -- If the parent subtype is constrained, the derived type is a subtype
6000 -- of an implicit base type derived from the parent base.
6001
6002 ------------------------
6003 -- Make_Implicit_Base --
6004 ------------------------
6005
6006 procedure Make_Implicit_Base is
6007 begin
6008 Implicit_Base :=
6009 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6010
6011 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6012 Set_Etype (Implicit_Base, Parent_Base);
6013
6014 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
6015 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
6016
6017 Set_Has_Delayed_Freeze (Implicit_Base, True);
6018
6019 -- Inherit the "ghostness" from the parent base type
6020
6021 if Is_Ghost_Entity (Parent_Base) or else Ghost_Mode > None then
6022 Set_Is_Ghost_Entity (Implicit_Base);
6023 end if;
6024 end Make_Implicit_Base;
6025
6026 -- Start of processing for Build_Derived_Array_Type
6027
6028 begin
6029 if not Is_Constrained (Parent_Type) then
6030 if Nkind (Indic) /= N_Subtype_Indication then
6031 Set_Ekind (Derived_Type, E_Array_Type);
6032
6033 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6034 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
6035
6036 Set_Has_Delayed_Freeze (Derived_Type, True);
6037
6038 else
6039 Make_Implicit_Base;
6040 Set_Etype (Derived_Type, Implicit_Base);
6041
6042 New_Indic :=
6043 Make_Subtype_Declaration (Loc,
6044 Defining_Identifier => Derived_Type,
6045 Subtype_Indication =>
6046 Make_Subtype_Indication (Loc,
6047 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6048 Constraint => Constraint (Indic)));
6049
6050 Rewrite (N, New_Indic);
6051 Analyze (N);
6052 end if;
6053
6054 else
6055 if Nkind (Indic) /= N_Subtype_Indication then
6056 Make_Implicit_Base;
6057
6058 Set_Ekind (Derived_Type, Ekind (Parent_Type));
6059 Set_Etype (Derived_Type, Implicit_Base);
6060 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6061
6062 else
6063 Error_Msg_N ("illegal constraint on constrained type", Indic);
6064 end if;
6065 end if;
6066
6067 -- If parent type is not a derived type itself, and is declared in
6068 -- closed scope (e.g. a subprogram), then we must explicitly introduce
6069 -- the new type's concatenation operator since Derive_Subprograms
6070 -- will not inherit the parent's operator. If the parent type is
6071 -- unconstrained, the operator is of the unconstrained base type.
6072
6073 if Number_Dimensions (Parent_Type) = 1
6074 and then not Is_Limited_Type (Parent_Type)
6075 and then not Is_Derived_Type (Parent_Type)
6076 and then not Is_Package_Or_Generic_Package
6077 (Scope (Base_Type (Parent_Type)))
6078 then
6079 if not Is_Constrained (Parent_Type)
6080 and then Is_Constrained (Derived_Type)
6081 then
6082 New_Concatenation_Op (Implicit_Base);
6083 else
6084 New_Concatenation_Op (Derived_Type);
6085 end if;
6086 end if;
6087 end Build_Derived_Array_Type;
6088
6089 -----------------------------------
6090 -- Build_Derived_Concurrent_Type --
6091 -----------------------------------
6092
6093 procedure Build_Derived_Concurrent_Type
6094 (N : Node_Id;
6095 Parent_Type : Entity_Id;
6096 Derived_Type : Entity_Id)
6097 is
6098 Loc : constant Source_Ptr := Sloc (N);
6099
6100 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
6101 Corr_Decl : Node_Id;
6102 Corr_Decl_Needed : Boolean;
6103 -- If the derived type has fewer discriminants than its parent, the
6104 -- corresponding record is also a derived type, in order to account for
6105 -- the bound discriminants. We create a full type declaration for it in
6106 -- this case.
6107
6108 Constraint_Present : constant Boolean :=
6109 Nkind (Subtype_Indication (Type_Definition (N))) =
6110 N_Subtype_Indication;
6111
6112 D_Constraint : Node_Id;
6113 New_Constraint : Elist_Id;
6114 Old_Disc : Entity_Id;
6115 New_Disc : Entity_Id;
6116 New_N : Node_Id;
6117
6118 begin
6119 Set_Stored_Constraint (Derived_Type, No_Elist);
6120 Corr_Decl_Needed := False;
6121 Old_Disc := Empty;
6122
6123 if Present (Discriminant_Specifications (N))
6124 and then Constraint_Present
6125 then
6126 Old_Disc := First_Discriminant (Parent_Type);
6127 New_Disc := First (Discriminant_Specifications (N));
6128 while Present (New_Disc) and then Present (Old_Disc) loop
6129 Next_Discriminant (Old_Disc);
6130 Next (New_Disc);
6131 end loop;
6132 end if;
6133
6134 if Present (Old_Disc) and then Expander_Active then
6135
6136 -- The new type has fewer discriminants, so we need to create a new
6137 -- corresponding record, which is derived from the corresponding
6138 -- record of the parent, and has a stored constraint that captures
6139 -- the values of the discriminant constraints. The corresponding
6140 -- record is needed only if expander is active and code generation is
6141 -- enabled.
6142
6143 -- The type declaration for the derived corresponding record has the
6144 -- same discriminant part and constraints as the current declaration.
6145 -- Copy the unanalyzed tree to build declaration.
6146
6147 Corr_Decl_Needed := True;
6148 New_N := Copy_Separate_Tree (N);
6149
6150 Corr_Decl :=
6151 Make_Full_Type_Declaration (Loc,
6152 Defining_Identifier => Corr_Record,
6153 Discriminant_Specifications =>
6154 Discriminant_Specifications (New_N),
6155 Type_Definition =>
6156 Make_Derived_Type_Definition (Loc,
6157 Subtype_Indication =>
6158 Make_Subtype_Indication (Loc,
6159 Subtype_Mark =>
6160 New_Occurrence_Of
6161 (Corresponding_Record_Type (Parent_Type), Loc),
6162 Constraint =>
6163 Constraint
6164 (Subtype_Indication (Type_Definition (New_N))))));
6165 end if;
6166
6167 -- Copy Storage_Size and Relative_Deadline variables if task case
6168
6169 if Is_Task_Type (Parent_Type) then
6170 Set_Storage_Size_Variable (Derived_Type,
6171 Storage_Size_Variable (Parent_Type));
6172 Set_Relative_Deadline_Variable (Derived_Type,
6173 Relative_Deadline_Variable (Parent_Type));
6174 end if;
6175
6176 if Present (Discriminant_Specifications (N)) then
6177 Push_Scope (Derived_Type);
6178 Check_Or_Process_Discriminants (N, Derived_Type);
6179
6180 if Constraint_Present then
6181 New_Constraint :=
6182 Expand_To_Stored_Constraint
6183 (Parent_Type,
6184 Build_Discriminant_Constraints
6185 (Parent_Type,
6186 Subtype_Indication (Type_Definition (N)), True));
6187 end if;
6188
6189 End_Scope;
6190
6191 elsif Constraint_Present then
6192
6193 -- Build constrained subtype, copying the constraint, and derive
6194 -- from it to create a derived constrained type.
6195
6196 declare
6197 Loc : constant Source_Ptr := Sloc (N);
6198 Anon : constant Entity_Id :=
6199 Make_Defining_Identifier (Loc,
6200 Chars => New_External_Name (Chars (Derived_Type), 'T'));
6201 Decl : Node_Id;
6202
6203 begin
6204 Decl :=
6205 Make_Subtype_Declaration (Loc,
6206 Defining_Identifier => Anon,
6207 Subtype_Indication =>
6208 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
6209 Insert_Before (N, Decl);
6210 Analyze (Decl);
6211
6212 Rewrite (Subtype_Indication (Type_Definition (N)),
6213 New_Occurrence_Of (Anon, Loc));
6214 Set_Analyzed (Derived_Type, False);
6215 Analyze (N);
6216 return;
6217 end;
6218 end if;
6219
6220 -- By default, operations and private data are inherited from parent.
6221 -- However, in the presence of bound discriminants, a new corresponding
6222 -- record will be created, see below.
6223
6224 Set_Has_Discriminants
6225 (Derived_Type, Has_Discriminants (Parent_Type));
6226 Set_Corresponding_Record_Type
6227 (Derived_Type, Corresponding_Record_Type (Parent_Type));
6228
6229 -- Is_Constrained is set according the parent subtype, but is set to
6230 -- False if the derived type is declared with new discriminants.
6231
6232 Set_Is_Constrained
6233 (Derived_Type,
6234 (Is_Constrained (Parent_Type) or else Constraint_Present)
6235 and then not Present (Discriminant_Specifications (N)));
6236
6237 if Constraint_Present then
6238 if not Has_Discriminants (Parent_Type) then
6239 Error_Msg_N ("untagged parent must have discriminants", N);
6240
6241 elsif Present (Discriminant_Specifications (N)) then
6242
6243 -- Verify that new discriminants are used to constrain old ones
6244
6245 D_Constraint :=
6246 First
6247 (Constraints
6248 (Constraint (Subtype_Indication (Type_Definition (N)))));
6249
6250 Old_Disc := First_Discriminant (Parent_Type);
6251
6252 while Present (D_Constraint) loop
6253 if Nkind (D_Constraint) /= N_Discriminant_Association then
6254
6255 -- Positional constraint. If it is a reference to a new
6256 -- discriminant, it constrains the corresponding old one.
6257
6258 if Nkind (D_Constraint) = N_Identifier then
6259 New_Disc := First_Discriminant (Derived_Type);
6260 while Present (New_Disc) loop
6261 exit when Chars (New_Disc) = Chars (D_Constraint);
6262 Next_Discriminant (New_Disc);
6263 end loop;
6264
6265 if Present (New_Disc) then
6266 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
6267 end if;
6268 end if;
6269
6270 Next_Discriminant (Old_Disc);
6271
6272 -- if this is a named constraint, search by name for the old
6273 -- discriminants constrained by the new one.
6274
6275 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
6276
6277 -- Find new discriminant with that name
6278
6279 New_Disc := First_Discriminant (Derived_Type);
6280 while Present (New_Disc) loop
6281 exit when
6282 Chars (New_Disc) = Chars (Expression (D_Constraint));
6283 Next_Discriminant (New_Disc);
6284 end loop;
6285
6286 if Present (New_Disc) then
6287
6288 -- Verify that new discriminant renames some discriminant
6289 -- of the parent type, and associate the new discriminant
6290 -- with one or more old ones that it renames.
6291
6292 declare
6293 Selector : Node_Id;
6294
6295 begin
6296 Selector := First (Selector_Names (D_Constraint));
6297 while Present (Selector) loop
6298 Old_Disc := First_Discriminant (Parent_Type);
6299 while Present (Old_Disc) loop
6300 exit when Chars (Old_Disc) = Chars (Selector);
6301 Next_Discriminant (Old_Disc);
6302 end loop;
6303
6304 if Present (Old_Disc) then
6305 Set_Corresponding_Discriminant
6306 (New_Disc, Old_Disc);
6307 end if;
6308
6309 Next (Selector);
6310 end loop;
6311 end;
6312 end if;
6313 end if;
6314
6315 Next (D_Constraint);
6316 end loop;
6317
6318 New_Disc := First_Discriminant (Derived_Type);
6319 while Present (New_Disc) loop
6320 if No (Corresponding_Discriminant (New_Disc)) then
6321 Error_Msg_NE
6322 ("new discriminant& must constrain old one", N, New_Disc);
6323
6324 elsif not
6325 Subtypes_Statically_Compatible
6326 (Etype (New_Disc),
6327 Etype (Corresponding_Discriminant (New_Disc)))
6328 then
6329 Error_Msg_NE
6330 ("& not statically compatible with parent discriminant",
6331 N, New_Disc);
6332 end if;
6333
6334 Next_Discriminant (New_Disc);
6335 end loop;
6336 end if;
6337
6338 elsif Present (Discriminant_Specifications (N)) then
6339 Error_Msg_N
6340 ("missing discriminant constraint in untagged derivation", N);
6341 end if;
6342
6343 -- The entity chain of the derived type includes the new discriminants
6344 -- but shares operations with the parent.
6345
6346 if Present (Discriminant_Specifications (N)) then
6347 Old_Disc := First_Discriminant (Parent_Type);
6348 while Present (Old_Disc) loop
6349 if No (Next_Entity (Old_Disc))
6350 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
6351 then
6352 Set_Next_Entity
6353 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
6354 exit;
6355 end if;
6356
6357 Next_Discriminant (Old_Disc);
6358 end loop;
6359
6360 else
6361 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
6362 if Has_Discriminants (Parent_Type) then
6363 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6364 Set_Discriminant_Constraint (
6365 Derived_Type, Discriminant_Constraint (Parent_Type));
6366 end if;
6367 end if;
6368
6369 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
6370
6371 Set_Has_Completion (Derived_Type);
6372
6373 if Corr_Decl_Needed then
6374 Set_Stored_Constraint (Derived_Type, New_Constraint);
6375 Insert_After (N, Corr_Decl);
6376 Analyze (Corr_Decl);
6377 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
6378 end if;
6379 end Build_Derived_Concurrent_Type;
6380
6381 ------------------------------------
6382 -- Build_Derived_Enumeration_Type --
6383 ------------------------------------
6384
6385 procedure Build_Derived_Enumeration_Type
6386 (N : Node_Id;
6387 Parent_Type : Entity_Id;
6388 Derived_Type : Entity_Id)
6389 is
6390 Loc : constant Source_Ptr := Sloc (N);
6391 Def : constant Node_Id := Type_Definition (N);
6392 Indic : constant Node_Id := Subtype_Indication (Def);
6393 Implicit_Base : Entity_Id;
6394 Literal : Entity_Id;
6395 New_Lit : Entity_Id;
6396 Literals_List : List_Id;
6397 Type_Decl : Node_Id;
6398 Hi, Lo : Node_Id;
6399 Rang_Expr : Node_Id;
6400
6401 begin
6402 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6403 -- not have explicit literals lists we need to process types derived
6404 -- from them specially. This is handled by Derived_Standard_Character.
6405 -- If the parent type is a generic type, there are no literals either,
6406 -- and we construct the same skeletal representation as for the generic
6407 -- parent type.
6408
6409 if Is_Standard_Character_Type (Parent_Type) then
6410 Derived_Standard_Character (N, Parent_Type, Derived_Type);
6411
6412 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
6413 declare
6414 Lo : Node_Id;
6415 Hi : Node_Id;
6416
6417 begin
6418 if Nkind (Indic) /= N_Subtype_Indication then
6419 Lo :=
6420 Make_Attribute_Reference (Loc,
6421 Attribute_Name => Name_First,
6422 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6423 Set_Etype (Lo, Derived_Type);
6424
6425 Hi :=
6426 Make_Attribute_Reference (Loc,
6427 Attribute_Name => Name_Last,
6428 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6429 Set_Etype (Hi, Derived_Type);
6430
6431 Set_Scalar_Range (Derived_Type,
6432 Make_Range (Loc,
6433 Low_Bound => Lo,
6434 High_Bound => Hi));
6435 else
6436
6437 -- Analyze subtype indication and verify compatibility
6438 -- with parent type.
6439
6440 if Base_Type (Process_Subtype (Indic, N)) /=
6441 Base_Type (Parent_Type)
6442 then
6443 Error_Msg_N
6444 ("illegal constraint for formal discrete type", N);
6445 end if;
6446 end if;
6447 end;
6448
6449 else
6450 -- If a constraint is present, analyze the bounds to catch
6451 -- premature usage of the derived literals.
6452
6453 if Nkind (Indic) = N_Subtype_Indication
6454 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
6455 then
6456 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
6457 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
6458 end if;
6459
6460 -- Introduce an implicit base type for the derived type even if there
6461 -- is no constraint attached to it, since this seems closer to the
6462 -- Ada semantics. Build a full type declaration tree for the derived
6463 -- type using the implicit base type as the defining identifier. The
6464 -- build a subtype declaration tree which applies the constraint (if
6465 -- any) have it replace the derived type declaration.
6466
6467 Literal := First_Literal (Parent_Type);
6468 Literals_List := New_List;
6469 while Present (Literal)
6470 and then Ekind (Literal) = E_Enumeration_Literal
6471 loop
6472 -- Literals of the derived type have the same representation as
6473 -- those of the parent type, but this representation can be
6474 -- overridden by an explicit representation clause. Indicate
6475 -- that there is no explicit representation given yet. These
6476 -- derived literals are implicit operations of the new type,
6477 -- and can be overridden by explicit ones.
6478
6479 if Nkind (Literal) = N_Defining_Character_Literal then
6480 New_Lit :=
6481 Make_Defining_Character_Literal (Loc, Chars (Literal));
6482 else
6483 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
6484 end if;
6485
6486 Set_Ekind (New_Lit, E_Enumeration_Literal);
6487 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
6488 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
6489 Set_Enumeration_Rep_Expr (New_Lit, Empty);
6490 Set_Alias (New_Lit, Literal);
6491 Set_Is_Known_Valid (New_Lit, True);
6492
6493 Append (New_Lit, Literals_List);
6494 Next_Literal (Literal);
6495 end loop;
6496
6497 Implicit_Base :=
6498 Make_Defining_Identifier (Sloc (Derived_Type),
6499 Chars => New_External_Name (Chars (Derived_Type), 'B'));
6500
6501 -- Indicate the proper nature of the derived type. This must be done
6502 -- before analysis of the literals, to recognize cases when a literal
6503 -- may be hidden by a previous explicit function definition (cf.
6504 -- c83031a).
6505
6506 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
6507 Set_Etype (Derived_Type, Implicit_Base);
6508
6509 Type_Decl :=
6510 Make_Full_Type_Declaration (Loc,
6511 Defining_Identifier => Implicit_Base,
6512 Discriminant_Specifications => No_List,
6513 Type_Definition =>
6514 Make_Enumeration_Type_Definition (Loc, Literals_List));
6515
6516 Mark_Rewrite_Insertion (Type_Decl);
6517 Insert_Before (N, Type_Decl);
6518 Analyze (Type_Decl);
6519
6520 -- After the implicit base is analyzed its Etype needs to be changed
6521 -- to reflect the fact that it is derived from the parent type which
6522 -- was ignored during analysis. We also set the size at this point.
6523
6524 Set_Etype (Implicit_Base, Parent_Type);
6525
6526 Set_Size_Info (Implicit_Base, Parent_Type);
6527 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
6528 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
6529
6530 -- Copy other flags from parent type
6531
6532 Set_Has_Non_Standard_Rep
6533 (Implicit_Base, Has_Non_Standard_Rep
6534 (Parent_Type));
6535 Set_Has_Pragma_Ordered
6536 (Implicit_Base, Has_Pragma_Ordered
6537 (Parent_Type));
6538 Set_Has_Delayed_Freeze (Implicit_Base);
6539
6540 -- Process the subtype indication including a validation check on the
6541 -- constraint, if any. If a constraint is given, its bounds must be
6542 -- implicitly converted to the new type.
6543
6544 if Nkind (Indic) = N_Subtype_Indication then
6545 declare
6546 R : constant Node_Id :=
6547 Range_Expression (Constraint (Indic));
6548
6549 begin
6550 if Nkind (R) = N_Range then
6551 Hi := Build_Scalar_Bound
6552 (High_Bound (R), Parent_Type, Implicit_Base);
6553 Lo := Build_Scalar_Bound
6554 (Low_Bound (R), Parent_Type, Implicit_Base);
6555
6556 else
6557 -- Constraint is a Range attribute. Replace with explicit
6558 -- mention of the bounds of the prefix, which must be a
6559 -- subtype.
6560
6561 Analyze (Prefix (R));
6562 Hi :=
6563 Convert_To (Implicit_Base,
6564 Make_Attribute_Reference (Loc,
6565 Attribute_Name => Name_Last,
6566 Prefix =>
6567 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6568
6569 Lo :=
6570 Convert_To (Implicit_Base,
6571 Make_Attribute_Reference (Loc,
6572 Attribute_Name => Name_First,
6573 Prefix =>
6574 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6575 end if;
6576 end;
6577
6578 else
6579 Hi :=
6580 Build_Scalar_Bound
6581 (Type_High_Bound (Parent_Type),
6582 Parent_Type, Implicit_Base);
6583 Lo :=
6584 Build_Scalar_Bound
6585 (Type_Low_Bound (Parent_Type),
6586 Parent_Type, Implicit_Base);
6587 end if;
6588
6589 Rang_Expr :=
6590 Make_Range (Loc,
6591 Low_Bound => Lo,
6592 High_Bound => Hi);
6593
6594 -- If we constructed a default range for the case where no range
6595 -- was given, then the expressions in the range must not freeze
6596 -- since they do not correspond to expressions in the source.
6597
6598 if Nkind (Indic) /= N_Subtype_Indication then
6599 Set_Must_Not_Freeze (Lo);
6600 Set_Must_Not_Freeze (Hi);
6601 Set_Must_Not_Freeze (Rang_Expr);
6602 end if;
6603
6604 Rewrite (N,
6605 Make_Subtype_Declaration (Loc,
6606 Defining_Identifier => Derived_Type,
6607 Subtype_Indication =>
6608 Make_Subtype_Indication (Loc,
6609 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6610 Constraint =>
6611 Make_Range_Constraint (Loc,
6612 Range_Expression => Rang_Expr))));
6613
6614 Analyze (N);
6615
6616 -- Propagate the aspects from the original type declaration to the
6617 -- declaration of the implicit base.
6618
6619 Move_Aspects (From => Original_Node (N), To => Type_Decl);
6620
6621 -- Apply a range check. Since this range expression doesn't have an
6622 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6623 -- this right???
6624
6625 if Nkind (Indic) = N_Subtype_Indication then
6626 Apply_Range_Check
6627 (Range_Expression (Constraint (Indic)), Parent_Type,
6628 Source_Typ => Entity (Subtype_Mark (Indic)));
6629 end if;
6630 end if;
6631 end Build_Derived_Enumeration_Type;
6632
6633 --------------------------------
6634 -- Build_Derived_Numeric_Type --
6635 --------------------------------
6636
6637 procedure Build_Derived_Numeric_Type
6638 (N : Node_Id;
6639 Parent_Type : Entity_Id;
6640 Derived_Type : Entity_Id)
6641 is
6642 Loc : constant Source_Ptr := Sloc (N);
6643 Tdef : constant Node_Id := Type_Definition (N);
6644 Indic : constant Node_Id := Subtype_Indication (Tdef);
6645 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6646 No_Constraint : constant Boolean := Nkind (Indic) /=
6647 N_Subtype_Indication;
6648 Implicit_Base : Entity_Id;
6649
6650 Lo : Node_Id;
6651 Hi : Node_Id;
6652
6653 begin
6654 -- Process the subtype indication including a validation check on
6655 -- the constraint if any.
6656
6657 Discard_Node (Process_Subtype (Indic, N));
6658
6659 -- Introduce an implicit base type for the derived type even if there
6660 -- is no constraint attached to it, since this seems closer to the Ada
6661 -- semantics.
6662
6663 Implicit_Base :=
6664 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6665
6666 Set_Etype (Implicit_Base, Parent_Base);
6667 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6668 Set_Size_Info (Implicit_Base, Parent_Base);
6669 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
6670 Set_Parent (Implicit_Base, Parent (Derived_Type));
6671 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
6672
6673 -- Set RM Size for discrete type or decimal fixed-point type
6674 -- Ordinary fixed-point is excluded, why???
6675
6676 if Is_Discrete_Type (Parent_Base)
6677 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
6678 then
6679 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
6680 end if;
6681
6682 Set_Has_Delayed_Freeze (Implicit_Base);
6683
6684 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
6685 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
6686
6687 Set_Scalar_Range (Implicit_Base,
6688 Make_Range (Loc,
6689 Low_Bound => Lo,
6690 High_Bound => Hi));
6691
6692 if Has_Infinities (Parent_Base) then
6693 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
6694 end if;
6695
6696 -- The Derived_Type, which is the entity of the declaration, is a
6697 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6698 -- absence of an explicit constraint.
6699
6700 Set_Etype (Derived_Type, Implicit_Base);
6701
6702 -- If we did not have a constraint, then the Ekind is set from the
6703 -- parent type (otherwise Process_Subtype has set the bounds)
6704
6705 if No_Constraint then
6706 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
6707 end if;
6708
6709 -- If we did not have a range constraint, then set the range from the
6710 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6711
6712 if No_Constraint or else not Has_Range_Constraint (Indic) then
6713 Set_Scalar_Range (Derived_Type,
6714 Make_Range (Loc,
6715 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
6716 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
6717 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6718
6719 if Has_Infinities (Parent_Type) then
6720 Set_Includes_Infinities (Scalar_Range (Derived_Type));
6721 end if;
6722
6723 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
6724 end if;
6725
6726 Set_Is_Descendent_Of_Address (Derived_Type,
6727 Is_Descendent_Of_Address (Parent_Type));
6728 Set_Is_Descendent_Of_Address (Implicit_Base,
6729 Is_Descendent_Of_Address (Parent_Type));
6730
6731 -- Set remaining type-specific fields, depending on numeric type
6732
6733 if Is_Modular_Integer_Type (Parent_Type) then
6734 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
6735
6736 Set_Non_Binary_Modulus
6737 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
6738
6739 Set_Is_Known_Valid
6740 (Implicit_Base, Is_Known_Valid (Parent_Base));
6741
6742 elsif Is_Floating_Point_Type (Parent_Type) then
6743
6744 -- Digits of base type is always copied from the digits value of
6745 -- the parent base type, but the digits of the derived type will
6746 -- already have been set if there was a constraint present.
6747
6748 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6749 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
6750
6751 if No_Constraint then
6752 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
6753 end if;
6754
6755 elsif Is_Fixed_Point_Type (Parent_Type) then
6756
6757 -- Small of base type and derived type are always copied from the
6758 -- parent base type, since smalls never change. The delta of the
6759 -- base type is also copied from the parent base type. However the
6760 -- delta of the derived type will have been set already if a
6761 -- constraint was present.
6762
6763 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
6764 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
6765 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
6766
6767 if No_Constraint then
6768 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
6769 end if;
6770
6771 -- The scale and machine radix in the decimal case are always
6772 -- copied from the parent base type.
6773
6774 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
6775 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
6776 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
6777
6778 Set_Machine_Radix_10
6779 (Derived_Type, Machine_Radix_10 (Parent_Base));
6780 Set_Machine_Radix_10
6781 (Implicit_Base, Machine_Radix_10 (Parent_Base));
6782
6783 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6784
6785 if No_Constraint then
6786 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
6787
6788 else
6789 -- the analysis of the subtype_indication sets the
6790 -- digits value of the derived type.
6791
6792 null;
6793 end if;
6794 end if;
6795 end if;
6796
6797 if Is_Integer_Type (Parent_Type) then
6798 Set_Has_Shift_Operator
6799 (Implicit_Base, Has_Shift_Operator (Parent_Type));
6800 end if;
6801
6802 -- The type of the bounds is that of the parent type, and they
6803 -- must be converted to the derived type.
6804
6805 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
6806
6807 -- The implicit_base should be frozen when the derived type is frozen,
6808 -- but note that it is used in the conversions of the bounds. For fixed
6809 -- types we delay the determination of the bounds until the proper
6810 -- freezing point. For other numeric types this is rejected by GCC, for
6811 -- reasons that are currently unclear (???), so we choose to freeze the
6812 -- implicit base now. In the case of integers and floating point types
6813 -- this is harmless because subsequent representation clauses cannot
6814 -- affect anything, but it is still baffling that we cannot use the
6815 -- same mechanism for all derived numeric types.
6816
6817 -- There is a further complication: actually some representation
6818 -- clauses can affect the implicit base type. For example, attribute
6819 -- definition clauses for stream-oriented attributes need to set the
6820 -- corresponding TSS entries on the base type, and this normally
6821 -- cannot be done after the base type is frozen, so the circuitry in
6822 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6823 -- and not use Set_TSS in this case.
6824
6825 -- There are also consequences for the case of delayed representation
6826 -- aspects for some cases. For example, a Size aspect is delayed and
6827 -- should not be evaluated to the freeze point. This early freezing
6828 -- means that the size attribute evaluation happens too early???
6829
6830 if Is_Fixed_Point_Type (Parent_Type) then
6831 Conditional_Delay (Implicit_Base, Parent_Type);
6832 else
6833 Freeze_Before (N, Implicit_Base);
6834 end if;
6835 end Build_Derived_Numeric_Type;
6836
6837 --------------------------------
6838 -- Build_Derived_Private_Type --
6839 --------------------------------
6840
6841 procedure Build_Derived_Private_Type
6842 (N : Node_Id;
6843 Parent_Type : Entity_Id;
6844 Derived_Type : Entity_Id;
6845 Is_Completion : Boolean;
6846 Derive_Subps : Boolean := True)
6847 is
6848 Loc : constant Source_Ptr := Sloc (N);
6849 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
6850 Par_Scope : constant Entity_Id := Scope (Par_Base);
6851 Full_N : constant Node_Id := New_Copy_Tree (N);
6852 Full_Der : Entity_Id := New_Copy (Derived_Type);
6853 Full_P : Entity_Id;
6854
6855 procedure Build_Full_Derivation;
6856 -- Build full derivation, i.e. derive from the full view
6857
6858 procedure Copy_And_Build;
6859 -- Copy derived type declaration, replace parent with its full view,
6860 -- and build derivation
6861
6862 ---------------------------
6863 -- Build_Full_Derivation --
6864 ---------------------------
6865
6866 procedure Build_Full_Derivation is
6867 begin
6868 -- If parent scope is not open, install the declarations
6869
6870 if not In_Open_Scopes (Par_Scope) then
6871 Install_Private_Declarations (Par_Scope);
6872 Install_Visible_Declarations (Par_Scope);
6873 Copy_And_Build;
6874 Uninstall_Declarations (Par_Scope);
6875
6876 -- If parent scope is open and in another unit, and parent has a
6877 -- completion, then the derivation is taking place in the visible
6878 -- part of a child unit. In that case retrieve the full view of
6879 -- the parent momentarily.
6880
6881 elsif not In_Same_Source_Unit (N, Parent_Type) then
6882 Full_P := Full_View (Parent_Type);
6883 Exchange_Declarations (Parent_Type);
6884 Copy_And_Build;
6885 Exchange_Declarations (Full_P);
6886
6887 -- Otherwise it is a local derivation
6888
6889 else
6890 Copy_And_Build;
6891 end if;
6892 end Build_Full_Derivation;
6893
6894 --------------------
6895 -- Copy_And_Build --
6896 --------------------
6897
6898 procedure Copy_And_Build is
6899 Full_Parent : Entity_Id := Parent_Type;
6900
6901 begin
6902 -- If the parent is itself derived from another private type,
6903 -- installing the private declarations has not affected its
6904 -- privacy status, so use its own full view explicitly.
6905
6906 if Is_Private_Type (Full_Parent)
6907 and then Present (Full_View (Full_Parent))
6908 then
6909 Full_Parent := Full_View (Full_Parent);
6910 end if;
6911
6912 -- And its underlying full view if necessary
6913
6914 if Is_Private_Type (Full_Parent)
6915 and then Present (Underlying_Full_View (Full_Parent))
6916 then
6917 Full_Parent := Underlying_Full_View (Full_Parent);
6918 end if;
6919
6920 -- For record, access and most enumeration types, derivation from
6921 -- the full view requires a fully-fledged declaration. In the other
6922 -- cases, just use an itype.
6923
6924 if Ekind (Full_Parent) in Record_Kind
6925 or else Ekind (Full_Parent) in Access_Kind
6926 or else
6927 (Ekind (Full_Parent) in Enumeration_Kind
6928 and then not Is_Standard_Character_Type (Full_Parent)
6929 and then not Is_Generic_Type (Root_Type (Full_Parent)))
6930 then
6931 -- Copy and adjust declaration to provide a completion for what
6932 -- is originally a private declaration. Indicate that full view
6933 -- is internally generated.
6934
6935 Set_Comes_From_Source (Full_N, False);
6936 Set_Comes_From_Source (Full_Der, False);
6937 Set_Parent (Full_Der, Full_N);
6938 Set_Defining_Identifier (Full_N, Full_Der);
6939
6940 -- If there are no constraints, adjust the subtype mark
6941
6942 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
6943 N_Subtype_Indication
6944 then
6945 Set_Subtype_Indication
6946 (Type_Definition (Full_N),
6947 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
6948 end if;
6949
6950 Insert_After (N, Full_N);
6951
6952 -- Build full view of derived type from full view of parent which
6953 -- is now installed. Subprograms have been derived on the partial
6954 -- view, the completion does not derive them anew.
6955
6956 if Ekind (Full_Parent) in Record_Kind then
6957
6958 -- If parent type is tagged, the completion inherits the proper
6959 -- primitive operations.
6960
6961 if Is_Tagged_Type (Parent_Type) then
6962 Build_Derived_Record_Type
6963 (Full_N, Full_Parent, Full_Der, Derive_Subps);
6964 else
6965 Build_Derived_Record_Type
6966 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
6967 end if;
6968
6969 else
6970 Build_Derived_Type
6971 (Full_N, Full_Parent, Full_Der,
6972 Is_Completion => False, Derive_Subps => False);
6973 end if;
6974
6975 -- The full declaration has been introduced into the tree and
6976 -- processed in the step above. It should not be analyzed again
6977 -- (when encountered later in the current list of declarations)
6978 -- to prevent spurious name conflicts. The full entity remains
6979 -- invisible.
6980
6981 Set_Analyzed (Full_N);
6982
6983 else
6984 Full_Der :=
6985 Make_Defining_Identifier (Sloc (Derived_Type),
6986 Chars => Chars (Derived_Type));
6987 Set_Is_Itype (Full_Der);
6988 Set_Associated_Node_For_Itype (Full_Der, N);
6989 Set_Parent (Full_Der, N);
6990 Build_Derived_Type
6991 (N, Full_Parent, Full_Der,
6992 Is_Completion => False, Derive_Subps => False);
6993 end if;
6994
6995 Set_Has_Private_Declaration (Full_Der);
6996 Set_Has_Private_Declaration (Derived_Type);
6997
6998 Set_Scope (Full_Der, Scope (Derived_Type));
6999 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
7000 Set_Has_Size_Clause (Full_Der, False);
7001 Set_Has_Alignment_Clause (Full_Der, False);
7002 Set_Has_Delayed_Freeze (Full_Der);
7003 Set_Is_Frozen (Full_Der, False);
7004 Set_Freeze_Node (Full_Der, Empty);
7005 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
7006 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
7007
7008 -- The convention on the base type may be set in the private part
7009 -- and not propagated to the subtype until later, so we obtain the
7010 -- convention from the base type of the parent.
7011
7012 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
7013 end Copy_And_Build;
7014
7015 -- Start of processing for Build_Derived_Private_Type
7016
7017 begin
7018 if Is_Tagged_Type (Parent_Type) then
7019 Full_P := Full_View (Parent_Type);
7020
7021 -- A type extension of a type with unknown discriminants is an
7022 -- indefinite type that the back-end cannot handle directly.
7023 -- We treat it as a private type, and build a completion that is
7024 -- derived from the full view of the parent, and hopefully has
7025 -- known discriminants.
7026
7027 -- If the full view of the parent type has an underlying record view,
7028 -- use it to generate the underlying record view of this derived type
7029 -- (required for chains of derivations with unknown discriminants).
7030
7031 -- Minor optimization: we avoid the generation of useless underlying
7032 -- record view entities if the private type declaration has unknown
7033 -- discriminants but its corresponding full view has no
7034 -- discriminants.
7035
7036 if Has_Unknown_Discriminants (Parent_Type)
7037 and then Present (Full_P)
7038 and then (Has_Discriminants (Full_P)
7039 or else Present (Underlying_Record_View (Full_P)))
7040 and then not In_Open_Scopes (Par_Scope)
7041 and then Expander_Active
7042 then
7043 declare
7044 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
7045 New_Ext : constant Node_Id :=
7046 Copy_Separate_Tree
7047 (Record_Extension_Part (Type_Definition (N)));
7048 Decl : Node_Id;
7049
7050 begin
7051 Build_Derived_Record_Type
7052 (N, Parent_Type, Derived_Type, Derive_Subps);
7053
7054 -- Build anonymous completion, as a derivation from the full
7055 -- view of the parent. This is not a completion in the usual
7056 -- sense, because the current type is not private.
7057
7058 Decl :=
7059 Make_Full_Type_Declaration (Loc,
7060 Defining_Identifier => Full_Der,
7061 Type_Definition =>
7062 Make_Derived_Type_Definition (Loc,
7063 Subtype_Indication =>
7064 New_Copy_Tree
7065 (Subtype_Indication (Type_Definition (N))),
7066 Record_Extension_Part => New_Ext));
7067
7068 -- If the parent type has an underlying record view, use it
7069 -- here to build the new underlying record view.
7070
7071 if Present (Underlying_Record_View (Full_P)) then
7072 pragma Assert
7073 (Nkind (Subtype_Indication (Type_Definition (Decl)))
7074 = N_Identifier);
7075 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
7076 Underlying_Record_View (Full_P));
7077 end if;
7078
7079 Install_Private_Declarations (Par_Scope);
7080 Install_Visible_Declarations (Par_Scope);
7081 Insert_Before (N, Decl);
7082
7083 -- Mark entity as an underlying record view before analysis,
7084 -- to avoid generating the list of its primitive operations
7085 -- (which is not really required for this entity) and thus
7086 -- prevent spurious errors associated with missing overriding
7087 -- of abstract primitives (overridden only for Derived_Type).
7088
7089 Set_Ekind (Full_Der, E_Record_Type);
7090 Set_Is_Underlying_Record_View (Full_Der);
7091 Set_Default_SSO (Full_Der);
7092
7093 Analyze (Decl);
7094
7095 pragma Assert (Has_Discriminants (Full_Der)
7096 and then not Has_Unknown_Discriminants (Full_Der));
7097
7098 Uninstall_Declarations (Par_Scope);
7099
7100 -- Freeze the underlying record view, to prevent generation of
7101 -- useless dispatching information, which is simply shared with
7102 -- the real derived type.
7103
7104 Set_Is_Frozen (Full_Der);
7105
7106 -- If the derived type has access discriminants, create
7107 -- references to their anonymous types now, to prevent
7108 -- back-end problems when their first use is in generated
7109 -- bodies of primitives.
7110
7111 declare
7112 E : Entity_Id;
7113
7114 begin
7115 E := First_Entity (Full_Der);
7116
7117 while Present (E) loop
7118 if Ekind (E) = E_Discriminant
7119 and then Ekind (Etype (E)) = E_Anonymous_Access_Type
7120 then
7121 Build_Itype_Reference (Etype (E), Decl);
7122 end if;
7123
7124 Next_Entity (E);
7125 end loop;
7126 end;
7127
7128 -- Set up links between real entity and underlying record view
7129
7130 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
7131 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
7132 end;
7133
7134 -- If discriminants are known, build derived record
7135
7136 else
7137 Build_Derived_Record_Type
7138 (N, Parent_Type, Derived_Type, Derive_Subps);
7139 end if;
7140
7141 return;
7142
7143 elsif Has_Discriminants (Parent_Type) then
7144
7145 -- Build partial view of derived type from partial view of parent.
7146 -- This must be done before building the full derivation because the
7147 -- second derivation will modify the discriminants of the first and
7148 -- the discriminants are chained with the rest of the components in
7149 -- the full derivation.
7150
7151 Build_Derived_Record_Type
7152 (N, Parent_Type, Derived_Type, Derive_Subps);
7153
7154 -- Build the full derivation if this is not the anonymous derived
7155 -- base type created by Build_Derived_Record_Type in the constrained
7156 -- case (see point 5. of its head comment) since we build it for the
7157 -- derived subtype. And skip it for protected types altogether, as
7158 -- gigi does not use these types directly.
7159
7160 if Present (Full_View (Parent_Type))
7161 and then not Is_Itype (Derived_Type)
7162 and then not (Ekind (Full_View (Parent_Type)) in Protected_Kind)
7163 then
7164 declare
7165 Der_Base : constant Entity_Id := Base_Type (Derived_Type);
7166 Discr : Entity_Id;
7167 Last_Discr : Entity_Id;
7168
7169 begin
7170 -- If this is not a completion, construct the implicit full
7171 -- view by deriving from the full view of the parent type.
7172 -- But if this is a completion, the derived private type
7173 -- being built is a full view and the full derivation can
7174 -- only be its underlying full view.
7175
7176 Build_Full_Derivation;
7177
7178 if not Is_Completion then
7179 Set_Full_View (Derived_Type, Full_Der);
7180 else
7181 Set_Underlying_Full_View (Derived_Type, Full_Der);
7182 end if;
7183
7184 if not Is_Base_Type (Derived_Type) then
7185 Set_Full_View (Der_Base, Base_Type (Full_Der));
7186 end if;
7187
7188 -- Copy the discriminant list from full view to the partial
7189 -- view (base type and its subtype). Gigi requires that the
7190 -- partial and full views have the same discriminants.
7191
7192 -- Note that since the partial view points to discriminants
7193 -- in the full view, their scope will be that of the full
7194 -- view. This might cause some front end problems and need
7195 -- adjustment???
7196
7197 Discr := First_Discriminant (Base_Type (Full_Der));
7198 Set_First_Entity (Der_Base, Discr);
7199
7200 loop
7201 Last_Discr := Discr;
7202 Next_Discriminant (Discr);
7203 exit when No (Discr);
7204 end loop;
7205
7206 Set_Last_Entity (Der_Base, Last_Discr);
7207 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
7208 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
7209
7210 Set_Stored_Constraint
7211 (Full_Der, Stored_Constraint (Derived_Type));
7212 end;
7213 end if;
7214
7215 elsif Present (Full_View (Parent_Type))
7216 and then Has_Discriminants (Full_View (Parent_Type))
7217 then
7218 if Has_Unknown_Discriminants (Parent_Type)
7219 and then Nkind (Subtype_Indication (Type_Definition (N))) =
7220 N_Subtype_Indication
7221 then
7222 Error_Msg_N
7223 ("cannot constrain type with unknown discriminants",
7224 Subtype_Indication (Type_Definition (N)));
7225 return;
7226 end if;
7227
7228 -- If this is not a completion, construct the implicit full view by
7229 -- deriving from the full view of the parent type. But if this is a
7230 -- completion, the derived private type being built is a full view
7231 -- and the full derivation can only be its underlying full view.
7232
7233 Build_Full_Derivation;
7234
7235 if not Is_Completion then
7236 Set_Full_View (Derived_Type, Full_Der);
7237 else
7238 Set_Underlying_Full_View (Derived_Type, Full_Der);
7239 end if;
7240
7241 -- In any case, the primitive operations are inherited from the
7242 -- parent type, not from the internal full view.
7243
7244 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
7245
7246 if Derive_Subps then
7247 Derive_Subprograms (Parent_Type, Derived_Type);
7248 end if;
7249
7250 Set_Stored_Constraint (Derived_Type, No_Elist);
7251 Set_Is_Constrained
7252 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
7253
7254 else
7255 -- Untagged type, No discriminants on either view
7256
7257 if Nkind (Subtype_Indication (Type_Definition (N))) =
7258 N_Subtype_Indication
7259 then
7260 Error_Msg_N
7261 ("illegal constraint on type without discriminants", N);
7262 end if;
7263
7264 if Present (Discriminant_Specifications (N))
7265 and then Present (Full_View (Parent_Type))
7266 and then not Is_Tagged_Type (Full_View (Parent_Type))
7267 then
7268 Error_Msg_N ("cannot add discriminants to untagged type", N);
7269 end if;
7270
7271 Set_Stored_Constraint (Derived_Type, No_Elist);
7272 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7273 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
7274 Set_Has_Controlled_Component
7275 (Derived_Type, Has_Controlled_Component
7276 (Parent_Type));
7277
7278 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7279
7280 if not Is_Controlled (Parent_Type) then
7281 Set_Finalize_Storage_Only
7282 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
7283 end if;
7284
7285 -- If this is not a completion, construct the implicit full view by
7286 -- deriving from the full view of the parent type.
7287
7288 -- ??? If the parent is untagged private and its completion is
7289 -- tagged, this mechanism will not work because we cannot derive from
7290 -- the tagged full view unless we have an extension.
7291
7292 if Present (Full_View (Parent_Type))
7293 and then not Is_Tagged_Type (Full_View (Parent_Type))
7294 and then not Is_Completion
7295 then
7296 Build_Full_Derivation;
7297 Set_Full_View (Derived_Type, Full_Der);
7298 end if;
7299 end if;
7300
7301 Set_Has_Unknown_Discriminants (Derived_Type,
7302 Has_Unknown_Discriminants (Parent_Type));
7303
7304 if Is_Private_Type (Derived_Type) then
7305 Set_Private_Dependents (Derived_Type, New_Elmt_List);
7306 end if;
7307
7308 -- If the parent base type is in scope, add the derived type to its
7309 -- list of private dependents, because its full view may become
7310 -- visible subsequently (in a nested private part, a body, or in a
7311 -- further child unit).
7312
7313 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
7314 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
7315
7316 -- Check for unusual case where a type completed by a private
7317 -- derivation occurs within a package nested in a child unit, and
7318 -- the parent is declared in an ancestor.
7319
7320 if Is_Child_Unit (Scope (Current_Scope))
7321 and then Is_Completion
7322 and then In_Private_Part (Current_Scope)
7323 and then Scope (Parent_Type) /= Current_Scope
7324
7325 -- Note that if the parent has a completion in the private part,
7326 -- (which is itself a derivation from some other private type)
7327 -- it is that completion that is visible, there is no full view
7328 -- available, and no special processing is needed.
7329
7330 and then Present (Full_View (Parent_Type))
7331 then
7332 -- In this case, the full view of the parent type will become
7333 -- visible in the body of the enclosing child, and only then will
7334 -- the current type be possibly non-private. Build an underlying
7335 -- full view that will be installed when the enclosing child body
7336 -- is compiled.
7337
7338 if Present (Underlying_Full_View (Derived_Type)) then
7339 Full_Der := Underlying_Full_View (Derived_Type);
7340 else
7341 Build_Full_Derivation;
7342 Set_Underlying_Full_View (Derived_Type, Full_Der);
7343 end if;
7344
7345 -- The full view will be used to swap entities on entry/exit to
7346 -- the body, and must appear in the entity list for the package.
7347
7348 Append_Entity (Full_Der, Scope (Derived_Type));
7349 end if;
7350 end if;
7351 end Build_Derived_Private_Type;
7352
7353 -------------------------------
7354 -- Build_Derived_Record_Type --
7355 -------------------------------
7356
7357 -- 1. INTRODUCTION
7358
7359 -- Ideally we would like to use the same model of type derivation for
7360 -- tagged and untagged record types. Unfortunately this is not quite
7361 -- possible because the semantics of representation clauses is different
7362 -- for tagged and untagged records under inheritance. Consider the
7363 -- following:
7364
7365 -- type R (...) is [tagged] record ... end record;
7366 -- type T (...) is new R (...) [with ...];
7367
7368 -- The representation clauses for T can specify a completely different
7369 -- record layout from R's. Hence the same component can be placed in two
7370 -- very different positions in objects of type T and R. If R and T are
7371 -- tagged types, representation clauses for T can only specify the layout
7372 -- of non inherited components, thus components that are common in R and T
7373 -- have the same position in objects of type R and T.
7374
7375 -- This has two implications. The first is that the entire tree for R's
7376 -- declaration needs to be copied for T in the untagged case, so that T
7377 -- can be viewed as a record type of its own with its own representation
7378 -- clauses. The second implication is the way we handle discriminants.
7379 -- Specifically, in the untagged case we need a way to communicate to Gigi
7380 -- what are the real discriminants in the record, while for the semantics
7381 -- we need to consider those introduced by the user to rename the
7382 -- discriminants in the parent type. This is handled by introducing the
7383 -- notion of stored discriminants. See below for more.
7384
7385 -- Fortunately the way regular components are inherited can be handled in
7386 -- the same way in tagged and untagged types.
7387
7388 -- To complicate things a bit more the private view of a private extension
7389 -- cannot be handled in the same way as the full view (for one thing the
7390 -- semantic rules are somewhat different). We will explain what differs
7391 -- below.
7392
7393 -- 2. DISCRIMINANTS UNDER INHERITANCE
7394
7395 -- The semantic rules governing the discriminants of derived types are
7396 -- quite subtle.
7397
7398 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7399 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7400
7401 -- If parent type has discriminants, then the discriminants that are
7402 -- declared in the derived type are [3.4 (11)]:
7403
7404 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7405 -- there is one;
7406
7407 -- o Otherwise, each discriminant of the parent type (implicitly declared
7408 -- in the same order with the same specifications). In this case, the
7409 -- discriminants are said to be "inherited", or if unknown in the parent
7410 -- are also unknown in the derived type.
7411
7412 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7413
7414 -- o The parent subtype must be constrained;
7415
7416 -- o If the parent type is not a tagged type, then each discriminant of
7417 -- the derived type must be used in the constraint defining a parent
7418 -- subtype. [Implementation note: This ensures that the new discriminant
7419 -- can share storage with an existing discriminant.]
7420
7421 -- For the derived type each discriminant of the parent type is either
7422 -- inherited, constrained to equal some new discriminant of the derived
7423 -- type, or constrained to the value of an expression.
7424
7425 -- When inherited or constrained to equal some new discriminant, the
7426 -- parent discriminant and the discriminant of the derived type are said
7427 -- to "correspond".
7428
7429 -- If a discriminant of the parent type is constrained to a specific value
7430 -- in the derived type definition, then the discriminant is said to be
7431 -- "specified" by that derived type definition.
7432
7433 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7434
7435 -- We have spoken about stored discriminants in point 1 (introduction)
7436 -- above. There are two sort of stored discriminants: implicit and
7437 -- explicit. As long as the derived type inherits the same discriminants as
7438 -- the root record type, stored discriminants are the same as regular
7439 -- discriminants, and are said to be implicit. However, if any discriminant
7440 -- in the root type was renamed in the derived type, then the derived
7441 -- type will contain explicit stored discriminants. Explicit stored
7442 -- discriminants are discriminants in addition to the semantically visible
7443 -- discriminants defined for the derived type. Stored discriminants are
7444 -- used by Gigi to figure out what are the physical discriminants in
7445 -- objects of the derived type (see precise definition in einfo.ads).
7446 -- As an example, consider the following:
7447
7448 -- type R (D1, D2, D3 : Int) is record ... end record;
7449 -- type T1 is new R;
7450 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7451 -- type T3 is new T2;
7452 -- type T4 (Y : Int) is new T3 (Y, 99);
7453
7454 -- The following table summarizes the discriminants and stored
7455 -- discriminants in R and T1 through T4.
7456
7457 -- Type Discrim Stored Discrim Comment
7458 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7459 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7460 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7461 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7462 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7463
7464 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7465 -- find the corresponding discriminant in the parent type, while
7466 -- Original_Record_Component (abbreviated ORC below), the actual physical
7467 -- component that is renamed. Finally the field Is_Completely_Hidden
7468 -- (abbreviated ICH below) is set for all explicit stored discriminants
7469 -- (see einfo.ads for more info). For the above example this gives:
7470
7471 -- Discrim CD ORC ICH
7472 -- ^^^^^^^ ^^ ^^^ ^^^
7473 -- D1 in R empty itself no
7474 -- D2 in R empty itself no
7475 -- D3 in R empty itself no
7476
7477 -- D1 in T1 D1 in R itself no
7478 -- D2 in T1 D2 in R itself no
7479 -- D3 in T1 D3 in R itself no
7480
7481 -- X1 in T2 D3 in T1 D3 in T2 no
7482 -- X2 in T2 D1 in T1 D1 in T2 no
7483 -- D1 in T2 empty itself yes
7484 -- D2 in T2 empty itself yes
7485 -- D3 in T2 empty itself yes
7486
7487 -- X1 in T3 X1 in T2 D3 in T3 no
7488 -- X2 in T3 X2 in T2 D1 in T3 no
7489 -- D1 in T3 empty itself yes
7490 -- D2 in T3 empty itself yes
7491 -- D3 in T3 empty itself yes
7492
7493 -- Y in T4 X1 in T3 D3 in T3 no
7494 -- D1 in T3 empty itself yes
7495 -- D2 in T3 empty itself yes
7496 -- D3 in T3 empty itself yes
7497
7498 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7499
7500 -- Type derivation for tagged types is fairly straightforward. If no
7501 -- discriminants are specified by the derived type, these are inherited
7502 -- from the parent. No explicit stored discriminants are ever necessary.
7503 -- The only manipulation that is done to the tree is that of adding a
7504 -- _parent field with parent type and constrained to the same constraint
7505 -- specified for the parent in the derived type definition. For instance:
7506
7507 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7508 -- type T1 is new R with null record;
7509 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7510
7511 -- are changed into:
7512
7513 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7514 -- _parent : R (D1, D2, D3);
7515 -- end record;
7516
7517 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7518 -- _parent : T1 (X2, 88, X1);
7519 -- end record;
7520
7521 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7522 -- ORC and ICH fields are:
7523
7524 -- Discrim CD ORC ICH
7525 -- ^^^^^^^ ^^ ^^^ ^^^
7526 -- D1 in R empty itself no
7527 -- D2 in R empty itself no
7528 -- D3 in R empty itself no
7529
7530 -- D1 in T1 D1 in R D1 in R no
7531 -- D2 in T1 D2 in R D2 in R no
7532 -- D3 in T1 D3 in R D3 in R no
7533
7534 -- X1 in T2 D3 in T1 D3 in R no
7535 -- X2 in T2 D1 in T1 D1 in R no
7536
7537 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7538 --
7539 -- Regardless of whether we dealing with a tagged or untagged type
7540 -- we will transform all derived type declarations of the form
7541 --
7542 -- type T is new R (...) [with ...];
7543 -- or
7544 -- subtype S is R (...);
7545 -- type T is new S [with ...];
7546 -- into
7547 -- type BT is new R [with ...];
7548 -- subtype T is BT (...);
7549 --
7550 -- That is, the base derived type is constrained only if it has no
7551 -- discriminants. The reason for doing this is that GNAT's semantic model
7552 -- assumes that a base type with discriminants is unconstrained.
7553 --
7554 -- Note that, strictly speaking, the above transformation is not always
7555 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7556 --
7557 -- procedure B34011A is
7558 -- type REC (D : integer := 0) is record
7559 -- I : Integer;
7560 -- end record;
7561
7562 -- package P is
7563 -- type T6 is new Rec;
7564 -- function F return T6;
7565 -- end P;
7566
7567 -- use P;
7568 -- package Q6 is
7569 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7570 -- end Q6;
7571 --
7572 -- The definition of Q6.U is illegal. However transforming Q6.U into
7573
7574 -- type BaseU is new T6;
7575 -- subtype U is BaseU (Q6.F.I)
7576
7577 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7578 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7579 -- the transformation described above.
7580
7581 -- There is another instance where the above transformation is incorrect.
7582 -- Consider:
7583
7584 -- package Pack is
7585 -- type Base (D : Integer) is tagged null record;
7586 -- procedure P (X : Base);
7587
7588 -- type Der is new Base (2) with null record;
7589 -- procedure P (X : Der);
7590 -- end Pack;
7591
7592 -- Then the above transformation turns this into
7593
7594 -- type Der_Base is new Base with null record;
7595 -- -- procedure P (X : Base) is implicitly inherited here
7596 -- -- as procedure P (X : Der_Base).
7597
7598 -- subtype Der is Der_Base (2);
7599 -- procedure P (X : Der);
7600 -- -- The overriding of P (X : Der_Base) is illegal since we
7601 -- -- have a parameter conformance problem.
7602
7603 -- To get around this problem, after having semantically processed Der_Base
7604 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7605 -- Discriminant_Constraint from Der so that when parameter conformance is
7606 -- checked when P is overridden, no semantic errors are flagged.
7607
7608 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7609
7610 -- Regardless of whether we are dealing with a tagged or untagged type
7611 -- we will transform all derived type declarations of the form
7612
7613 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7614 -- type T is new R [with ...];
7615 -- into
7616 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7617
7618 -- The reason for such transformation is that it allows us to implement a
7619 -- very clean form of component inheritance as explained below.
7620
7621 -- Note that this transformation is not achieved by direct tree rewriting
7622 -- and manipulation, but rather by redoing the semantic actions that the
7623 -- above transformation will entail. This is done directly in routine
7624 -- Inherit_Components.
7625
7626 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7627
7628 -- In both tagged and untagged derived types, regular non discriminant
7629 -- components are inherited in the derived type from the parent type. In
7630 -- the absence of discriminants component, inheritance is straightforward
7631 -- as components can simply be copied from the parent.
7632
7633 -- If the parent has discriminants, inheriting components constrained with
7634 -- these discriminants requires caution. Consider the following example:
7635
7636 -- type R (D1, D2 : Positive) is [tagged] record
7637 -- S : String (D1 .. D2);
7638 -- end record;
7639
7640 -- type T1 is new R [with null record];
7641 -- type T2 (X : positive) is new R (1, X) [with null record];
7642
7643 -- As explained in 6. above, T1 is rewritten as
7644 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7645 -- which makes the treatment for T1 and T2 identical.
7646
7647 -- What we want when inheriting S, is that references to D1 and D2 in R are
7648 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7649 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7650 -- with either discriminant references in the derived type or expressions.
7651 -- This replacement is achieved as follows: before inheriting R's
7652 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7653 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7654 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7655 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7656 -- by String (1 .. X).
7657
7658 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7659
7660 -- We explain here the rules governing private type extensions relevant to
7661 -- type derivation. These rules are explained on the following example:
7662
7663 -- type D [(...)] is new A [(...)] with private; <-- partial view
7664 -- type D [(...)] is new P [(...)] with null record; <-- full view
7665
7666 -- Type A is called the ancestor subtype of the private extension.
7667 -- Type P is the parent type of the full view of the private extension. It
7668 -- must be A or a type derived from A.
7669
7670 -- The rules concerning the discriminants of private type extensions are
7671 -- [7.3(10-13)]:
7672
7673 -- o If a private extension inherits known discriminants from the ancestor
7674 -- subtype, then the full view must also inherit its discriminants from
7675 -- the ancestor subtype and the parent subtype of the full view must be
7676 -- constrained if and only if the ancestor subtype is constrained.
7677
7678 -- o If a partial view has unknown discriminants, then the full view may
7679 -- define a definite or an indefinite subtype, with or without
7680 -- discriminants.
7681
7682 -- o If a partial view has neither known nor unknown discriminants, then
7683 -- the full view must define a definite subtype.
7684
7685 -- o If the ancestor subtype of a private extension has constrained
7686 -- discriminants, then the parent subtype of the full view must impose a
7687 -- statically matching constraint on those discriminants.
7688
7689 -- This means that only the following forms of private extensions are
7690 -- allowed:
7691
7692 -- type D is new A with private; <-- partial view
7693 -- type D is new P with null record; <-- full view
7694
7695 -- If A has no discriminants than P has no discriminants, otherwise P must
7696 -- inherit A's discriminants.
7697
7698 -- type D is new A (...) with private; <-- partial view
7699 -- type D is new P (:::) with null record; <-- full view
7700
7701 -- P must inherit A's discriminants and (...) and (:::) must statically
7702 -- match.
7703
7704 -- subtype A is R (...);
7705 -- type D is new A with private; <-- partial view
7706 -- type D is new P with null record; <-- full view
7707
7708 -- P must have inherited R's discriminants and must be derived from A or
7709 -- any of its subtypes.
7710
7711 -- type D (..) is new A with private; <-- partial view
7712 -- type D (..) is new P [(:::)] with null record; <-- full view
7713
7714 -- No specific constraints on P's discriminants or constraint (:::).
7715 -- Note that A can be unconstrained, but the parent subtype P must either
7716 -- be constrained or (:::) must be present.
7717
7718 -- type D (..) is new A [(...)] with private; <-- partial view
7719 -- type D (..) is new P [(:::)] with null record; <-- full view
7720
7721 -- P's constraints on A's discriminants must statically match those
7722 -- imposed by (...).
7723
7724 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7725
7726 -- The full view of a private extension is handled exactly as described
7727 -- above. The model chose for the private view of a private extension is
7728 -- the same for what concerns discriminants (i.e. they receive the same
7729 -- treatment as in the tagged case). However, the private view of the
7730 -- private extension always inherits the components of the parent base,
7731 -- without replacing any discriminant reference. Strictly speaking this is
7732 -- incorrect. However, Gigi never uses this view to generate code so this
7733 -- is a purely semantic issue. In theory, a set of transformations similar
7734 -- to those given in 5. and 6. above could be applied to private views of
7735 -- private extensions to have the same model of component inheritance as
7736 -- for non private extensions. However, this is not done because it would
7737 -- further complicate private type processing. Semantically speaking, this
7738 -- leaves us in an uncomfortable situation. As an example consider:
7739
7740 -- package Pack is
7741 -- type R (D : integer) is tagged record
7742 -- S : String (1 .. D);
7743 -- end record;
7744 -- procedure P (X : R);
7745 -- type T is new R (1) with private;
7746 -- private
7747 -- type T is new R (1) with null record;
7748 -- end;
7749
7750 -- This is transformed into:
7751
7752 -- package Pack is
7753 -- type R (D : integer) is tagged record
7754 -- S : String (1 .. D);
7755 -- end record;
7756 -- procedure P (X : R);
7757 -- type T is new R (1) with private;
7758 -- private
7759 -- type BaseT is new R with null record;
7760 -- subtype T is BaseT (1);
7761 -- end;
7762
7763 -- (strictly speaking the above is incorrect Ada)
7764
7765 -- From the semantic standpoint the private view of private extension T
7766 -- should be flagged as constrained since one can clearly have
7767 --
7768 -- Obj : T;
7769 --
7770 -- in a unit withing Pack. However, when deriving subprograms for the
7771 -- private view of private extension T, T must be seen as unconstrained
7772 -- since T has discriminants (this is a constraint of the current
7773 -- subprogram derivation model). Thus, when processing the private view of
7774 -- a private extension such as T, we first mark T as unconstrained, we
7775 -- process it, we perform program derivation and just before returning from
7776 -- Build_Derived_Record_Type we mark T as constrained.
7777
7778 -- ??? Are there are other uncomfortable cases that we will have to
7779 -- deal with.
7780
7781 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7782
7783 -- Types that are derived from a visible record type and have a private
7784 -- extension present other peculiarities. They behave mostly like private
7785 -- types, but if they have primitive operations defined, these will not
7786 -- have the proper signatures for further inheritance, because other
7787 -- primitive operations will use the implicit base that we define for
7788 -- private derivations below. This affect subprogram inheritance (see
7789 -- Derive_Subprograms for details). We also derive the implicit base from
7790 -- the base type of the full view, so that the implicit base is a record
7791 -- type and not another private type, This avoids infinite loops.
7792
7793 procedure Build_Derived_Record_Type
7794 (N : Node_Id;
7795 Parent_Type : Entity_Id;
7796 Derived_Type : Entity_Id;
7797 Derive_Subps : Boolean := True)
7798 is
7799 Discriminant_Specs : constant Boolean :=
7800 Present (Discriminant_Specifications (N));
7801 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
7802 Loc : constant Source_Ptr := Sloc (N);
7803 Private_Extension : constant Boolean :=
7804 Nkind (N) = N_Private_Extension_Declaration;
7805 Assoc_List : Elist_Id;
7806 Constraint_Present : Boolean;
7807 Constrs : Elist_Id;
7808 Discrim : Entity_Id;
7809 Indic : Node_Id;
7810 Inherit_Discrims : Boolean := False;
7811 Last_Discrim : Entity_Id;
7812 New_Base : Entity_Id;
7813 New_Decl : Node_Id;
7814 New_Discrs : Elist_Id;
7815 New_Indic : Node_Id;
7816 Parent_Base : Entity_Id;
7817 Save_Etype : Entity_Id;
7818 Save_Discr_Constr : Elist_Id;
7819 Save_Next_Entity : Entity_Id;
7820 Type_Def : Node_Id;
7821
7822 Discs : Elist_Id := New_Elmt_List;
7823 -- An empty Discs list means that there were no constraints in the
7824 -- subtype indication or that there was an error processing it.
7825
7826 begin
7827 if Ekind (Parent_Type) = E_Record_Type_With_Private
7828 and then Present (Full_View (Parent_Type))
7829 and then Has_Discriminants (Parent_Type)
7830 then
7831 Parent_Base := Base_Type (Full_View (Parent_Type));
7832 else
7833 Parent_Base := Base_Type (Parent_Type);
7834 end if;
7835
7836 -- AI05-0115 : if this is a derivation from a private type in some
7837 -- other scope that may lead to invisible components for the derived
7838 -- type, mark it accordingly.
7839
7840 if Is_Private_Type (Parent_Type) then
7841 if Scope (Parent_Type) = Scope (Derived_Type) then
7842 null;
7843
7844 elsif In_Open_Scopes (Scope (Parent_Type))
7845 and then In_Private_Part (Scope (Parent_Type))
7846 then
7847 null;
7848
7849 else
7850 Set_Has_Private_Ancestor (Derived_Type);
7851 end if;
7852
7853 else
7854 Set_Has_Private_Ancestor
7855 (Derived_Type, Has_Private_Ancestor (Parent_Type));
7856 end if;
7857
7858 -- Before we start the previously documented transformations, here is
7859 -- little fix for size and alignment of tagged types. Normally when we
7860 -- derive type D from type P, we copy the size and alignment of P as the
7861 -- default for D, and in the absence of explicit representation clauses
7862 -- for D, the size and alignment are indeed the same as the parent.
7863
7864 -- But this is wrong for tagged types, since fields may be added, and
7865 -- the default size may need to be larger, and the default alignment may
7866 -- need to be larger.
7867
7868 -- We therefore reset the size and alignment fields in the tagged case.
7869 -- Note that the size and alignment will in any case be at least as
7870 -- large as the parent type (since the derived type has a copy of the
7871 -- parent type in the _parent field)
7872
7873 -- The type is also marked as being tagged here, which is needed when
7874 -- processing components with a self-referential anonymous access type
7875 -- in the call to Check_Anonymous_Access_Components below. Note that
7876 -- this flag is also set later on for completeness.
7877
7878 if Is_Tagged then
7879 Set_Is_Tagged_Type (Derived_Type);
7880 Init_Size_Align (Derived_Type);
7881 end if;
7882
7883 -- STEP 0a: figure out what kind of derived type declaration we have
7884
7885 if Private_Extension then
7886 Type_Def := N;
7887 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
7888 Set_Default_SSO (Derived_Type);
7889
7890 else
7891 Type_Def := Type_Definition (N);
7892
7893 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7894 -- Parent_Base can be a private type or private extension. However,
7895 -- for tagged types with an extension the newly added fields are
7896 -- visible and hence the Derived_Type is always an E_Record_Type.
7897 -- (except that the parent may have its own private fields).
7898 -- For untagged types we preserve the Ekind of the Parent_Base.
7899
7900 if Present (Record_Extension_Part (Type_Def)) then
7901 Set_Ekind (Derived_Type, E_Record_Type);
7902 Set_Default_SSO (Derived_Type);
7903
7904 -- Create internal access types for components with anonymous
7905 -- access types.
7906
7907 if Ada_Version >= Ada_2005 then
7908 Check_Anonymous_Access_Components
7909 (N, Derived_Type, Derived_Type,
7910 Component_List (Record_Extension_Part (Type_Def)));
7911 end if;
7912
7913 else
7914 Set_Ekind (Derived_Type, Ekind (Parent_Base));
7915 end if;
7916 end if;
7917
7918 -- Indic can either be an N_Identifier if the subtype indication
7919 -- contains no constraint or an N_Subtype_Indication if the subtype
7920 -- indication has a constraint.
7921
7922 Indic := Subtype_Indication (Type_Def);
7923 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
7924
7925 -- Check that the type has visible discriminants. The type may be
7926 -- a private type with unknown discriminants whose full view has
7927 -- discriminants which are invisible.
7928
7929 if Constraint_Present then
7930 if not Has_Discriminants (Parent_Base)
7931 or else
7932 (Has_Unknown_Discriminants (Parent_Base)
7933 and then Is_Private_Type (Parent_Base))
7934 then
7935 Error_Msg_N
7936 ("invalid constraint: type has no discriminant",
7937 Constraint (Indic));
7938
7939 Constraint_Present := False;
7940 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7941
7942 elsif Is_Constrained (Parent_Type) then
7943 Error_Msg_N
7944 ("invalid constraint: parent type is already constrained",
7945 Constraint (Indic));
7946
7947 Constraint_Present := False;
7948 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7949 end if;
7950 end if;
7951
7952 -- STEP 0b: If needed, apply transformation given in point 5. above
7953
7954 if not Private_Extension
7955 and then Has_Discriminants (Parent_Type)
7956 and then not Discriminant_Specs
7957 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
7958 then
7959 -- First, we must analyze the constraint (see comment in point 5.)
7960 -- The constraint may come from the subtype indication of the full
7961 -- declaration.
7962
7963 if Constraint_Present then
7964 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
7965
7966 -- If there is no explicit constraint, there might be one that is
7967 -- inherited from a constrained parent type. In that case verify that
7968 -- it conforms to the constraint in the partial view. In perverse
7969 -- cases the parent subtypes of the partial and full view can have
7970 -- different constraints.
7971
7972 elsif Present (Stored_Constraint (Parent_Type)) then
7973 New_Discrs := Stored_Constraint (Parent_Type);
7974
7975 else
7976 New_Discrs := No_Elist;
7977 end if;
7978
7979 if Has_Discriminants (Derived_Type)
7980 and then Has_Private_Declaration (Derived_Type)
7981 and then Present (Discriminant_Constraint (Derived_Type))
7982 and then Present (New_Discrs)
7983 then
7984 -- Verify that constraints of the full view statically match
7985 -- those given in the partial view.
7986
7987 declare
7988 C1, C2 : Elmt_Id;
7989
7990 begin
7991 C1 := First_Elmt (New_Discrs);
7992 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
7993 while Present (C1) and then Present (C2) loop
7994 if Fully_Conformant_Expressions (Node (C1), Node (C2))
7995 or else
7996 (Is_OK_Static_Expression (Node (C1))
7997 and then Is_OK_Static_Expression (Node (C2))
7998 and then
7999 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
8000 then
8001 null;
8002
8003 else
8004 if Constraint_Present then
8005 Error_Msg_N
8006 ("constraint not conformant to previous declaration",
8007 Node (C1));
8008 else
8009 Error_Msg_N
8010 ("constraint of full view is incompatible "
8011 & "with partial view", N);
8012 end if;
8013 end if;
8014
8015 Next_Elmt (C1);
8016 Next_Elmt (C2);
8017 end loop;
8018 end;
8019 end if;
8020
8021 -- Insert and analyze the declaration for the unconstrained base type
8022
8023 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
8024
8025 New_Decl :=
8026 Make_Full_Type_Declaration (Loc,
8027 Defining_Identifier => New_Base,
8028 Type_Definition =>
8029 Make_Derived_Type_Definition (Loc,
8030 Abstract_Present => Abstract_Present (Type_Def),
8031 Limited_Present => Limited_Present (Type_Def),
8032 Subtype_Indication =>
8033 New_Occurrence_Of (Parent_Base, Loc),
8034 Record_Extension_Part =>
8035 Relocate_Node (Record_Extension_Part (Type_Def)),
8036 Interface_List => Interface_List (Type_Def)));
8037
8038 Set_Parent (New_Decl, Parent (N));
8039 Mark_Rewrite_Insertion (New_Decl);
8040 Insert_Before (N, New_Decl);
8041
8042 -- In the extension case, make sure ancestor is frozen appropriately
8043 -- (see also non-discriminated case below).
8044
8045 if Present (Record_Extension_Part (Type_Def))
8046 or else Is_Interface (Parent_Base)
8047 then
8048 Freeze_Before (New_Decl, Parent_Type);
8049 end if;
8050
8051 -- Note that this call passes False for the Derive_Subps parameter
8052 -- because subprogram derivation is deferred until after creating
8053 -- the subtype (see below).
8054
8055 Build_Derived_Type
8056 (New_Decl, Parent_Base, New_Base,
8057 Is_Completion => False, Derive_Subps => False);
8058
8059 -- ??? This needs re-examination to determine whether the
8060 -- above call can simply be replaced by a call to Analyze.
8061
8062 Set_Analyzed (New_Decl);
8063
8064 -- Insert and analyze the declaration for the constrained subtype
8065
8066 if Constraint_Present then
8067 New_Indic :=
8068 Make_Subtype_Indication (Loc,
8069 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8070 Constraint => Relocate_Node (Constraint (Indic)));
8071
8072 else
8073 declare
8074 Constr_List : constant List_Id := New_List;
8075 C : Elmt_Id;
8076 Expr : Node_Id;
8077
8078 begin
8079 C := First_Elmt (Discriminant_Constraint (Parent_Type));
8080 while Present (C) loop
8081 Expr := Node (C);
8082
8083 -- It is safe here to call New_Copy_Tree since we called
8084 -- Force_Evaluation on each constraint previously
8085 -- in Build_Discriminant_Constraints.
8086
8087 Append (New_Copy_Tree (Expr), To => Constr_List);
8088
8089 Next_Elmt (C);
8090 end loop;
8091
8092 New_Indic :=
8093 Make_Subtype_Indication (Loc,
8094 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8095 Constraint =>
8096 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
8097 end;
8098 end if;
8099
8100 Rewrite (N,
8101 Make_Subtype_Declaration (Loc,
8102 Defining_Identifier => Derived_Type,
8103 Subtype_Indication => New_Indic));
8104
8105 Analyze (N);
8106
8107 -- Derivation of subprograms must be delayed until the full subtype
8108 -- has been established, to ensure proper overriding of subprograms
8109 -- inherited by full types. If the derivations occurred as part of
8110 -- the call to Build_Derived_Type above, then the check for type
8111 -- conformance would fail because earlier primitive subprograms
8112 -- could still refer to the full type prior the change to the new
8113 -- subtype and hence would not match the new base type created here.
8114 -- Subprograms are not derived, however, when Derive_Subps is False
8115 -- (since otherwise there could be redundant derivations).
8116
8117 if Derive_Subps then
8118 Derive_Subprograms (Parent_Type, Derived_Type);
8119 end if;
8120
8121 -- For tagged types the Discriminant_Constraint of the new base itype
8122 -- is inherited from the first subtype so that no subtype conformance
8123 -- problem arise when the first subtype overrides primitive
8124 -- operations inherited by the implicit base type.
8125
8126 if Is_Tagged then
8127 Set_Discriminant_Constraint
8128 (New_Base, Discriminant_Constraint (Derived_Type));
8129 end if;
8130
8131 return;
8132 end if;
8133
8134 -- If we get here Derived_Type will have no discriminants or it will be
8135 -- a discriminated unconstrained base type.
8136
8137 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8138
8139 if Is_Tagged then
8140
8141 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8142 -- The declaration of a specific descendant of an interface type
8143 -- freezes the interface type (RM 13.14).
8144
8145 if not Private_Extension or else Is_Interface (Parent_Base) then
8146 Freeze_Before (N, Parent_Type);
8147 end if;
8148
8149 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8150 -- cannot be declared at a deeper level than its parent type is
8151 -- removed. The check on derivation within a generic body is also
8152 -- relaxed, but there's a restriction that a derived tagged type
8153 -- cannot be declared in a generic body if it's derived directly
8154 -- or indirectly from a formal type of that generic.
8155
8156 if Ada_Version >= Ada_2005 then
8157 if Present (Enclosing_Generic_Body (Derived_Type)) then
8158 declare
8159 Ancestor_Type : Entity_Id;
8160
8161 begin
8162 -- Check to see if any ancestor of the derived type is a
8163 -- formal type.
8164
8165 Ancestor_Type := Parent_Type;
8166 while not Is_Generic_Type (Ancestor_Type)
8167 and then Etype (Ancestor_Type) /= Ancestor_Type
8168 loop
8169 Ancestor_Type := Etype (Ancestor_Type);
8170 end loop;
8171
8172 -- If the derived type does have a formal type as an
8173 -- ancestor, then it's an error if the derived type is
8174 -- declared within the body of the generic unit that
8175 -- declares the formal type in its generic formal part. It's
8176 -- sufficient to check whether the ancestor type is declared
8177 -- inside the same generic body as the derived type (such as
8178 -- within a nested generic spec), in which case the
8179 -- derivation is legal. If the formal type is declared
8180 -- outside of that generic body, then it's guaranteed that
8181 -- the derived type is declared within the generic body of
8182 -- the generic unit declaring the formal type.
8183
8184 if Is_Generic_Type (Ancestor_Type)
8185 and then Enclosing_Generic_Body (Ancestor_Type) /=
8186 Enclosing_Generic_Body (Derived_Type)
8187 then
8188 Error_Msg_NE
8189 ("parent type of& must not be descendant of formal type"
8190 & " of an enclosing generic body",
8191 Indic, Derived_Type);
8192 end if;
8193 end;
8194 end if;
8195
8196 elsif Type_Access_Level (Derived_Type) /=
8197 Type_Access_Level (Parent_Type)
8198 and then not Is_Generic_Type (Derived_Type)
8199 then
8200 if Is_Controlled (Parent_Type) then
8201 Error_Msg_N
8202 ("controlled type must be declared at the library level",
8203 Indic);
8204 else
8205 Error_Msg_N
8206 ("type extension at deeper accessibility level than parent",
8207 Indic);
8208 end if;
8209
8210 else
8211 declare
8212 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
8213 begin
8214 if Present (GB)
8215 and then GB /= Enclosing_Generic_Body (Parent_Base)
8216 then
8217 Error_Msg_NE
8218 ("parent type of& must not be outside generic body"
8219 & " (RM 3.9.1(4))",
8220 Indic, Derived_Type);
8221 end if;
8222 end;
8223 end if;
8224 end if;
8225
8226 -- Ada 2005 (AI-251)
8227
8228 if Ada_Version >= Ada_2005 and then Is_Tagged then
8229
8230 -- "The declaration of a specific descendant of an interface type
8231 -- freezes the interface type" (RM 13.14).
8232
8233 declare
8234 Iface : Node_Id;
8235 begin
8236 if Is_Non_Empty_List (Interface_List (Type_Def)) then
8237 Iface := First (Interface_List (Type_Def));
8238 while Present (Iface) loop
8239 Freeze_Before (N, Etype (Iface));
8240 Next (Iface);
8241 end loop;
8242 end if;
8243 end;
8244 end if;
8245
8246 -- STEP 1b : preliminary cleanup of the full view of private types
8247
8248 -- If the type is already marked as having discriminants, then it's the
8249 -- completion of a private type or private extension and we need to
8250 -- retain the discriminants from the partial view if the current
8251 -- declaration has Discriminant_Specifications so that we can verify
8252 -- conformance. However, we must remove any existing components that
8253 -- were inherited from the parent (and attached in Copy_And_Swap)
8254 -- because the full type inherits all appropriate components anyway, and
8255 -- we do not want the partial view's components interfering.
8256
8257 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
8258 Discrim := First_Discriminant (Derived_Type);
8259 loop
8260 Last_Discrim := Discrim;
8261 Next_Discriminant (Discrim);
8262 exit when No (Discrim);
8263 end loop;
8264
8265 Set_Last_Entity (Derived_Type, Last_Discrim);
8266
8267 -- In all other cases wipe out the list of inherited components (even
8268 -- inherited discriminants), it will be properly rebuilt here.
8269
8270 else
8271 Set_First_Entity (Derived_Type, Empty);
8272 Set_Last_Entity (Derived_Type, Empty);
8273 end if;
8274
8275 -- STEP 1c: Initialize some flags for the Derived_Type
8276
8277 -- The following flags must be initialized here so that
8278 -- Process_Discriminants can check that discriminants of tagged types do
8279 -- not have a default initial value and that access discriminants are
8280 -- only specified for limited records. For completeness, these flags are
8281 -- also initialized along with all the other flags below.
8282
8283 -- AI-419: Limitedness is not inherited from an interface parent, so to
8284 -- be limited in that case the type must be explicitly declared as
8285 -- limited. However, task and protected interfaces are always limited.
8286
8287 if Limited_Present (Type_Def) then
8288 Set_Is_Limited_Record (Derived_Type);
8289
8290 elsif Is_Limited_Record (Parent_Type)
8291 or else (Present (Full_View (Parent_Type))
8292 and then Is_Limited_Record (Full_View (Parent_Type)))
8293 then
8294 if not Is_Interface (Parent_Type)
8295 or else Is_Synchronized_Interface (Parent_Type)
8296 or else Is_Protected_Interface (Parent_Type)
8297 or else Is_Task_Interface (Parent_Type)
8298 then
8299 Set_Is_Limited_Record (Derived_Type);
8300 end if;
8301 end if;
8302
8303 -- STEP 2a: process discriminants of derived type if any
8304
8305 Push_Scope (Derived_Type);
8306
8307 if Discriminant_Specs then
8308 Set_Has_Unknown_Discriminants (Derived_Type, False);
8309
8310 -- The following call initializes fields Has_Discriminants and
8311 -- Discriminant_Constraint, unless we are processing the completion
8312 -- of a private type declaration.
8313
8314 Check_Or_Process_Discriminants (N, Derived_Type);
8315
8316 -- For untagged types, the constraint on the Parent_Type must be
8317 -- present and is used to rename the discriminants.
8318
8319 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
8320 Error_Msg_N ("untagged parent must have discriminants", Indic);
8321
8322 elsif not Is_Tagged and then not Constraint_Present then
8323 Error_Msg_N
8324 ("discriminant constraint needed for derived untagged records",
8325 Indic);
8326
8327 -- Otherwise the parent subtype must be constrained unless we have a
8328 -- private extension.
8329
8330 elsif not Constraint_Present
8331 and then not Private_Extension
8332 and then not Is_Constrained (Parent_Type)
8333 then
8334 Error_Msg_N
8335 ("unconstrained type not allowed in this context", Indic);
8336
8337 elsif Constraint_Present then
8338 -- The following call sets the field Corresponding_Discriminant
8339 -- for the discriminants in the Derived_Type.
8340
8341 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
8342
8343 -- For untagged types all new discriminants must rename
8344 -- discriminants in the parent. For private extensions new
8345 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8346
8347 Discrim := First_Discriminant (Derived_Type);
8348 while Present (Discrim) loop
8349 if not Is_Tagged
8350 and then No (Corresponding_Discriminant (Discrim))
8351 then
8352 Error_Msg_N
8353 ("new discriminants must constrain old ones", Discrim);
8354
8355 elsif Private_Extension
8356 and then Present (Corresponding_Discriminant (Discrim))
8357 then
8358 Error_Msg_N
8359 ("only static constraints allowed for parent"
8360 & " discriminants in the partial view", Indic);
8361 exit;
8362 end if;
8363
8364 -- If a new discriminant is used in the constraint, then its
8365 -- subtype must be statically compatible with the parent
8366 -- discriminant's subtype (3.7(15)).
8367
8368 -- However, if the record contains an array constrained by
8369 -- the discriminant but with some different bound, the compiler
8370 -- attemps to create a smaller range for the discriminant type.
8371 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8372 -- the discriminant type is a scalar type, the check must use
8373 -- the original discriminant type in the parent declaration.
8374
8375 declare
8376 Corr_Disc : constant Entity_Id :=
8377 Corresponding_Discriminant (Discrim);
8378 Disc_Type : constant Entity_Id := Etype (Discrim);
8379 Corr_Type : Entity_Id;
8380
8381 begin
8382 if Present (Corr_Disc) then
8383 if Is_Scalar_Type (Disc_Type) then
8384 Corr_Type :=
8385 Entity (Discriminant_Type (Parent (Corr_Disc)));
8386 else
8387 Corr_Type := Etype (Corr_Disc);
8388 end if;
8389
8390 if not
8391 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
8392 then
8393 Error_Msg_N
8394 ("subtype must be compatible "
8395 & "with parent discriminant",
8396 Discrim);
8397 end if;
8398 end if;
8399 end;
8400
8401 Next_Discriminant (Discrim);
8402 end loop;
8403
8404 -- Check whether the constraints of the full view statically
8405 -- match those imposed by the parent subtype [7.3(13)].
8406
8407 if Present (Stored_Constraint (Derived_Type)) then
8408 declare
8409 C1, C2 : Elmt_Id;
8410
8411 begin
8412 C1 := First_Elmt (Discs);
8413 C2 := First_Elmt (Stored_Constraint (Derived_Type));
8414 while Present (C1) and then Present (C2) loop
8415 if not
8416 Fully_Conformant_Expressions (Node (C1), Node (C2))
8417 then
8418 Error_Msg_N
8419 ("not conformant with previous declaration",
8420 Node (C1));
8421 end if;
8422
8423 Next_Elmt (C1);
8424 Next_Elmt (C2);
8425 end loop;
8426 end;
8427 end if;
8428 end if;
8429
8430 -- STEP 2b: No new discriminants, inherit discriminants if any
8431
8432 else
8433 if Private_Extension then
8434 Set_Has_Unknown_Discriminants
8435 (Derived_Type,
8436 Has_Unknown_Discriminants (Parent_Type)
8437 or else Unknown_Discriminants_Present (N));
8438
8439 -- The partial view of the parent may have unknown discriminants,
8440 -- but if the full view has discriminants and the parent type is
8441 -- in scope they must be inherited.
8442
8443 elsif Has_Unknown_Discriminants (Parent_Type)
8444 and then
8445 (not Has_Discriminants (Parent_Type)
8446 or else not In_Open_Scopes (Scope (Parent_Type)))
8447 then
8448 Set_Has_Unknown_Discriminants (Derived_Type);
8449 end if;
8450
8451 if not Has_Unknown_Discriminants (Derived_Type)
8452 and then not Has_Unknown_Discriminants (Parent_Base)
8453 and then Has_Discriminants (Parent_Type)
8454 then
8455 Inherit_Discrims := True;
8456 Set_Has_Discriminants
8457 (Derived_Type, True);
8458 Set_Discriminant_Constraint
8459 (Derived_Type, Discriminant_Constraint (Parent_Base));
8460 end if;
8461
8462 -- The following test is true for private types (remember
8463 -- transformation 5. is not applied to those) and in an error
8464 -- situation.
8465
8466 if Constraint_Present then
8467 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
8468 end if;
8469
8470 -- For now mark a new derived type as constrained only if it has no
8471 -- discriminants. At the end of Build_Derived_Record_Type we properly
8472 -- set this flag in the case of private extensions. See comments in
8473 -- point 9. just before body of Build_Derived_Record_Type.
8474
8475 Set_Is_Constrained
8476 (Derived_Type,
8477 not (Inherit_Discrims
8478 or else Has_Unknown_Discriminants (Derived_Type)));
8479 end if;
8480
8481 -- STEP 3: initialize fields of derived type
8482
8483 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
8484 Set_Stored_Constraint (Derived_Type, No_Elist);
8485
8486 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8487 -- but cannot be interfaces
8488
8489 if not Private_Extension
8490 and then Ekind (Derived_Type) /= E_Private_Type
8491 and then Ekind (Derived_Type) /= E_Limited_Private_Type
8492 then
8493 if Interface_Present (Type_Def) then
8494 Analyze_Interface_Declaration (Derived_Type, Type_Def);
8495 end if;
8496
8497 Set_Interfaces (Derived_Type, No_Elist);
8498 end if;
8499
8500 -- Fields inherited from the Parent_Type
8501
8502 Set_Has_Specified_Layout
8503 (Derived_Type, Has_Specified_Layout (Parent_Type));
8504 Set_Is_Limited_Composite
8505 (Derived_Type, Is_Limited_Composite (Parent_Type));
8506 Set_Is_Private_Composite
8507 (Derived_Type, Is_Private_Composite (Parent_Type));
8508
8509 if Is_Tagged_Type (Parent_Type) then
8510 Set_No_Tagged_Streams_Pragma
8511 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
8512 end if;
8513
8514 -- Fields inherited from the Parent_Base
8515
8516 Set_Has_Controlled_Component
8517 (Derived_Type, Has_Controlled_Component (Parent_Base));
8518 Set_Has_Non_Standard_Rep
8519 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8520 Set_Has_Primitive_Operations
8521 (Derived_Type, Has_Primitive_Operations (Parent_Base));
8522
8523 -- Fields inherited from the Parent_Base in the non-private case
8524
8525 if Ekind (Derived_Type) = E_Record_Type then
8526 Set_Has_Complex_Representation
8527 (Derived_Type, Has_Complex_Representation (Parent_Base));
8528 end if;
8529
8530 -- Fields inherited from the Parent_Base for record types
8531
8532 if Is_Record_Type (Derived_Type) then
8533 declare
8534 Parent_Full : Entity_Id;
8535
8536 begin
8537 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8538 -- Parent_Base can be a private type or private extension. Go
8539 -- to the full view here to get the E_Record_Type specific flags.
8540
8541 if Present (Full_View (Parent_Base)) then
8542 Parent_Full := Full_View (Parent_Base);
8543 else
8544 Parent_Full := Parent_Base;
8545 end if;
8546
8547 Set_OK_To_Reorder_Components
8548 (Derived_Type, OK_To_Reorder_Components (Parent_Full));
8549 end;
8550 end if;
8551
8552 -- Set fields for private derived types
8553
8554 if Is_Private_Type (Derived_Type) then
8555 Set_Depends_On_Private (Derived_Type, True);
8556 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8557
8558 -- Inherit fields from non private record types. If this is the
8559 -- completion of a derivation from a private type, the parent itself
8560 -- is private, and the attributes come from its full view, which must
8561 -- be present.
8562
8563 else
8564 if Is_Private_Type (Parent_Base)
8565 and then not Is_Record_Type (Parent_Base)
8566 then
8567 Set_Component_Alignment
8568 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
8569 Set_C_Pass_By_Copy
8570 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
8571 else
8572 Set_Component_Alignment
8573 (Derived_Type, Component_Alignment (Parent_Base));
8574 Set_C_Pass_By_Copy
8575 (Derived_Type, C_Pass_By_Copy (Parent_Base));
8576 end if;
8577 end if;
8578
8579 -- Set fields for tagged types
8580
8581 if Is_Tagged then
8582 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
8583
8584 -- All tagged types defined in Ada.Finalization are controlled
8585
8586 if Chars (Scope (Derived_Type)) = Name_Finalization
8587 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
8588 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
8589 then
8590 Set_Is_Controlled (Derived_Type);
8591 else
8592 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
8593 end if;
8594
8595 -- Minor optimization: there is no need to generate the class-wide
8596 -- entity associated with an underlying record view.
8597
8598 if not Is_Underlying_Record_View (Derived_Type) then
8599 Make_Class_Wide_Type (Derived_Type);
8600 end if;
8601
8602 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
8603
8604 if Has_Discriminants (Derived_Type)
8605 and then Constraint_Present
8606 then
8607 Set_Stored_Constraint
8608 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
8609 end if;
8610
8611 if Ada_Version >= Ada_2005 then
8612 declare
8613 Ifaces_List : Elist_Id;
8614
8615 begin
8616 -- Checks rules 3.9.4 (13/2 and 14/2)
8617
8618 if Comes_From_Source (Derived_Type)
8619 and then not Is_Private_Type (Derived_Type)
8620 and then Is_Interface (Parent_Type)
8621 and then not Is_Interface (Derived_Type)
8622 then
8623 if Is_Task_Interface (Parent_Type) then
8624 Error_Msg_N
8625 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8626 Derived_Type);
8627
8628 elsif Is_Protected_Interface (Parent_Type) then
8629 Error_Msg_N
8630 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8631 Derived_Type);
8632 end if;
8633 end if;
8634
8635 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8636
8637 Check_Interfaces (N, Type_Def);
8638
8639 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8640 -- not already in the parents.
8641
8642 Collect_Interfaces
8643 (T => Derived_Type,
8644 Ifaces_List => Ifaces_List,
8645 Exclude_Parents => True);
8646
8647 Set_Interfaces (Derived_Type, Ifaces_List);
8648
8649 -- If the derived type is the anonymous type created for
8650 -- a declaration whose parent has a constraint, propagate
8651 -- the interface list to the source type. This must be done
8652 -- prior to the completion of the analysis of the source type
8653 -- because the components in the extension may contain current
8654 -- instances whose legality depends on some ancestor.
8655
8656 if Is_Itype (Derived_Type) then
8657 declare
8658 Def : constant Node_Id :=
8659 Associated_Node_For_Itype (Derived_Type);
8660 begin
8661 if Present (Def)
8662 and then Nkind (Def) = N_Full_Type_Declaration
8663 then
8664 Set_Interfaces
8665 (Defining_Identifier (Def), Ifaces_List);
8666 end if;
8667 end;
8668 end if;
8669
8670 -- Propagate inherited invariant information of parents
8671 -- and progenitors
8672
8673 if Ada_Version >= Ada_2012
8674 and then not Is_Interface (Derived_Type)
8675 then
8676 if Has_Inheritable_Invariants (Parent_Type) then
8677 Set_Has_Invariants (Derived_Type);
8678 Set_Has_Inheritable_Invariants (Derived_Type);
8679
8680 elsif not Is_Empty_Elmt_List (Ifaces_List) then
8681 declare
8682 AI : Elmt_Id;
8683
8684 begin
8685 AI := First_Elmt (Ifaces_List);
8686 while Present (AI) loop
8687 if Has_Inheritable_Invariants (Node (AI)) then
8688 Set_Has_Invariants (Derived_Type);
8689 Set_Has_Inheritable_Invariants (Derived_Type);
8690
8691 exit;
8692 end if;
8693
8694 Next_Elmt (AI);
8695 end loop;
8696 end;
8697 end if;
8698 end if;
8699
8700 -- A type extension is automatically Ghost when one of its
8701 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
8702 -- also inherited when the parent type is Ghost, but this is
8703 -- done in Build_Derived_Type as the mechanism also handles
8704 -- untagged derivations.
8705
8706 if Implements_Ghost_Interface (Derived_Type) then
8707 Set_Is_Ghost_Entity (Derived_Type);
8708 end if;
8709 end;
8710 end if;
8711
8712 else
8713 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
8714 Set_Has_Non_Standard_Rep
8715 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8716 end if;
8717
8718 -- STEP 4: Inherit components from the parent base and constrain them.
8719 -- Apply the second transformation described in point 6. above.
8720
8721 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
8722 or else not Has_Discriminants (Parent_Type)
8723 or else not Is_Constrained (Parent_Type)
8724 then
8725 Constrs := Discs;
8726 else
8727 Constrs := Discriminant_Constraint (Parent_Type);
8728 end if;
8729
8730 Assoc_List :=
8731 Inherit_Components
8732 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
8733
8734 -- STEP 5a: Copy the parent record declaration for untagged types
8735
8736 if not Is_Tagged then
8737
8738 -- Discriminant_Constraint (Derived_Type) has been properly
8739 -- constructed. Save it and temporarily set it to Empty because we
8740 -- do not want the call to New_Copy_Tree below to mess this list.
8741
8742 if Has_Discriminants (Derived_Type) then
8743 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
8744 Set_Discriminant_Constraint (Derived_Type, No_Elist);
8745 else
8746 Save_Discr_Constr := No_Elist;
8747 end if;
8748
8749 -- Save the Etype field of Derived_Type. It is correctly set now,
8750 -- but the call to New_Copy tree may remap it to point to itself,
8751 -- which is not what we want. Ditto for the Next_Entity field.
8752
8753 Save_Etype := Etype (Derived_Type);
8754 Save_Next_Entity := Next_Entity (Derived_Type);
8755
8756 -- Assoc_List maps all stored discriminants in the Parent_Base to
8757 -- stored discriminants in the Derived_Type. It is fundamental that
8758 -- no types or itypes with discriminants other than the stored
8759 -- discriminants appear in the entities declared inside
8760 -- Derived_Type, since the back end cannot deal with it.
8761
8762 New_Decl :=
8763 New_Copy_Tree
8764 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
8765
8766 -- Restore the fields saved prior to the New_Copy_Tree call
8767 -- and compute the stored constraint.
8768
8769 Set_Etype (Derived_Type, Save_Etype);
8770 Set_Next_Entity (Derived_Type, Save_Next_Entity);
8771
8772 if Has_Discriminants (Derived_Type) then
8773 Set_Discriminant_Constraint
8774 (Derived_Type, Save_Discr_Constr);
8775 Set_Stored_Constraint
8776 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
8777 Replace_Components (Derived_Type, New_Decl);
8778 Set_Has_Implicit_Dereference
8779 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
8780 end if;
8781
8782 -- Insert the new derived type declaration
8783
8784 Rewrite (N, New_Decl);
8785
8786 -- STEP 5b: Complete the processing for record extensions in generics
8787
8788 -- There is no completion for record extensions declared in the
8789 -- parameter part of a generic, so we need to complete processing for
8790 -- these generic record extensions here. The Record_Type_Definition call
8791 -- will change the Ekind of the components from E_Void to E_Component.
8792
8793 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
8794 Record_Type_Definition (Empty, Derived_Type);
8795
8796 -- STEP 5c: Process the record extension for non private tagged types
8797
8798 elsif not Private_Extension then
8799 Expand_Record_Extension (Derived_Type, Type_Def);
8800
8801 -- Note : previously in ASIS mode we set the Parent_Subtype of the
8802 -- derived type to propagate some semantic information. This led
8803 -- to other ASIS failures and has been removed.
8804
8805 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8806 -- implemented interfaces if we are in expansion mode
8807
8808 if Expander_Active
8809 and then Has_Interfaces (Derived_Type)
8810 then
8811 Add_Interface_Tag_Components (N, Derived_Type);
8812 end if;
8813
8814 -- Analyze the record extension
8815
8816 Record_Type_Definition
8817 (Record_Extension_Part (Type_Def), Derived_Type);
8818 end if;
8819
8820 End_Scope;
8821
8822 -- Nothing else to do if there is an error in the derivation.
8823 -- An unusual case: the full view may be derived from a type in an
8824 -- instance, when the partial view was used illegally as an actual
8825 -- in that instance, leading to a circular definition.
8826
8827 if Etype (Derived_Type) = Any_Type
8828 or else Etype (Parent_Type) = Derived_Type
8829 then
8830 return;
8831 end if;
8832
8833 -- Set delayed freeze and then derive subprograms, we need to do
8834 -- this in this order so that derived subprograms inherit the
8835 -- derived freeze if necessary.
8836
8837 Set_Has_Delayed_Freeze (Derived_Type);
8838
8839 if Derive_Subps then
8840 Derive_Subprograms (Parent_Type, Derived_Type);
8841 end if;
8842
8843 -- If we have a private extension which defines a constrained derived
8844 -- type mark as constrained here after we have derived subprograms. See
8845 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8846
8847 if Private_Extension and then Inherit_Discrims then
8848 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
8849 Set_Is_Constrained (Derived_Type, True);
8850 Set_Discriminant_Constraint (Derived_Type, Discs);
8851
8852 elsif Is_Constrained (Parent_Type) then
8853 Set_Is_Constrained
8854 (Derived_Type, True);
8855 Set_Discriminant_Constraint
8856 (Derived_Type, Discriminant_Constraint (Parent_Type));
8857 end if;
8858 end if;
8859
8860 -- Update the class-wide type, which shares the now-completed entity
8861 -- list with its specific type. In case of underlying record views,
8862 -- we do not generate the corresponding class wide entity.
8863
8864 if Is_Tagged
8865 and then not Is_Underlying_Record_View (Derived_Type)
8866 then
8867 Set_First_Entity
8868 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
8869 Set_Last_Entity
8870 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
8871 end if;
8872
8873 Check_Function_Writable_Actuals (N);
8874 end Build_Derived_Record_Type;
8875
8876 ------------------------
8877 -- Build_Derived_Type --
8878 ------------------------
8879
8880 procedure Build_Derived_Type
8881 (N : Node_Id;
8882 Parent_Type : Entity_Id;
8883 Derived_Type : Entity_Id;
8884 Is_Completion : Boolean;
8885 Derive_Subps : Boolean := True)
8886 is
8887 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
8888
8889 begin
8890 -- Set common attributes
8891
8892 Set_Scope (Derived_Type, Current_Scope);
8893
8894 Set_Etype (Derived_Type, Parent_Base);
8895 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8896 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
8897 Set_Has_Protected (Derived_Type, Has_Protected (Parent_Base));
8898
8899 Set_Size_Info (Derived_Type, Parent_Type);
8900 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
8901 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
8902 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
8903 Set_Is_Volatile (Derived_Type, Is_Volatile (Parent_Type));
8904
8905 if Is_Tagged_Type (Derived_Type) then
8906 Set_No_Tagged_Streams_Pragma
8907 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
8908 end if;
8909
8910 -- If the parent has primitive routines, set the derived type link
8911
8912 if Has_Primitive_Operations (Parent_Type) then
8913 Set_Derived_Type_Link (Parent_Base, Derived_Type);
8914 end if;
8915
8916 -- If the parent type is a private subtype, the convention on the base
8917 -- type may be set in the private part, and not propagated to the
8918 -- subtype until later, so we obtain the convention from the base type.
8919
8920 Set_Convention (Derived_Type, Convention (Parent_Base));
8921
8922 -- Set SSO default for record or array type
8923
8924 if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type))
8925 and then Is_Base_Type (Derived_Type)
8926 then
8927 Set_Default_SSO (Derived_Type);
8928 end if;
8929
8930 -- Propagate invariant information. The new type has invariants if
8931 -- they are inherited from the parent type, and these invariants can
8932 -- be further inherited, so both flags are set.
8933
8934 -- We similarly inherit predicates
8935
8936 if Has_Predicates (Parent_Type) then
8937 Set_Has_Predicates (Derived_Type);
8938 end if;
8939
8940 -- The derived type inherits the representation clauses of the parent
8941
8942 Inherit_Rep_Item_Chain (Derived_Type, Parent_Type);
8943
8944 -- Propagate the attributes related to pragma Default_Initial_Condition
8945 -- from the parent type to the private extension. A derived type always
8946 -- inherits the default initial condition flag from the parent type. If
8947 -- the derived type carries its own Default_Initial_Condition pragma,
8948 -- the flag is later reset in Analyze_Pragma. Note that both flags are
8949 -- mutually exclusive.
8950
8951 Propagate_Default_Init_Cond_Attributes
8952 (From_Typ => Parent_Type,
8953 To_Typ => Derived_Type,
8954 Parent_To_Derivation => True);
8955
8956 -- If the parent type has delayed rep aspects, then mark the derived
8957 -- type as possibly inheriting a delayed rep aspect.
8958
8959 if Has_Delayed_Rep_Aspects (Parent_Type) then
8960 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
8961 end if;
8962
8963 -- Propagate the attributes related to pragma Ghost from the parent type
8964 -- to the derived type or type extension (SPARK RM 6.9(9)).
8965
8966 if Is_Ghost_Entity (Parent_Type) then
8967 Set_Is_Ghost_Entity (Derived_Type);
8968 end if;
8969
8970 -- Type dependent processing
8971
8972 case Ekind (Parent_Type) is
8973 when Numeric_Kind =>
8974 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
8975
8976 when Array_Kind =>
8977 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
8978
8979 when E_Record_Type
8980 | E_Record_Subtype
8981 | Class_Wide_Kind =>
8982 Build_Derived_Record_Type
8983 (N, Parent_Type, Derived_Type, Derive_Subps);
8984 return;
8985
8986 when Enumeration_Kind =>
8987 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
8988
8989 when Access_Kind =>
8990 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
8991
8992 when Incomplete_Or_Private_Kind =>
8993 Build_Derived_Private_Type
8994 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
8995
8996 -- For discriminated types, the derivation includes deriving
8997 -- primitive operations. For others it is done below.
8998
8999 if Is_Tagged_Type (Parent_Type)
9000 or else Has_Discriminants (Parent_Type)
9001 or else (Present (Full_View (Parent_Type))
9002 and then Has_Discriminants (Full_View (Parent_Type)))
9003 then
9004 return;
9005 end if;
9006
9007 when Concurrent_Kind =>
9008 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
9009
9010 when others =>
9011 raise Program_Error;
9012 end case;
9013
9014 -- Nothing more to do if some error occurred
9015
9016 if Etype (Derived_Type) = Any_Type then
9017 return;
9018 end if;
9019
9020 -- Set delayed freeze and then derive subprograms, we need to do this
9021 -- in this order so that derived subprograms inherit the derived freeze
9022 -- if necessary.
9023
9024 Set_Has_Delayed_Freeze (Derived_Type);
9025
9026 if Derive_Subps then
9027 Derive_Subprograms (Parent_Type, Derived_Type);
9028 end if;
9029
9030 Set_Has_Primitive_Operations
9031 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
9032 end Build_Derived_Type;
9033
9034 -----------------------
9035 -- Build_Discriminal --
9036 -----------------------
9037
9038 procedure Build_Discriminal (Discrim : Entity_Id) is
9039 D_Minal : Entity_Id;
9040 CR_Disc : Entity_Id;
9041
9042 begin
9043 -- A discriminal has the same name as the discriminant
9044
9045 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9046
9047 Set_Ekind (D_Minal, E_In_Parameter);
9048 Set_Mechanism (D_Minal, Default_Mechanism);
9049 Set_Etype (D_Minal, Etype (Discrim));
9050 Set_Scope (D_Minal, Current_Scope);
9051
9052 Set_Discriminal (Discrim, D_Minal);
9053 Set_Discriminal_Link (D_Minal, Discrim);
9054
9055 -- For task types, build at once the discriminants of the corresponding
9056 -- record, which are needed if discriminants are used in entry defaults
9057 -- and in family bounds.
9058
9059 if Is_Concurrent_Type (Current_Scope)
9060 or else
9061 Is_Limited_Type (Current_Scope)
9062 then
9063 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9064
9065 Set_Ekind (CR_Disc, E_In_Parameter);
9066 Set_Mechanism (CR_Disc, Default_Mechanism);
9067 Set_Etype (CR_Disc, Etype (Discrim));
9068 Set_Scope (CR_Disc, Current_Scope);
9069 Set_Discriminal_Link (CR_Disc, Discrim);
9070 Set_CR_Discriminant (Discrim, CR_Disc);
9071 end if;
9072 end Build_Discriminal;
9073
9074 ------------------------------------
9075 -- Build_Discriminant_Constraints --
9076 ------------------------------------
9077
9078 function Build_Discriminant_Constraints
9079 (T : Entity_Id;
9080 Def : Node_Id;
9081 Derived_Def : Boolean := False) return Elist_Id
9082 is
9083 C : constant Node_Id := Constraint (Def);
9084 Nb_Discr : constant Nat := Number_Discriminants (T);
9085
9086 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
9087 -- Saves the expression corresponding to a given discriminant in T
9088
9089 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
9090 -- Return the Position number within array Discr_Expr of a discriminant
9091 -- D within the discriminant list of the discriminated type T.
9092
9093 procedure Process_Discriminant_Expression
9094 (Expr : Node_Id;
9095 D : Entity_Id);
9096 -- If this is a discriminant constraint on a partial view, do not
9097 -- generate an overflow check on the discriminant expression. The check
9098 -- will be generated when constraining the full view. Otherwise the
9099 -- backend creates duplicate symbols for the temporaries corresponding
9100 -- to the expressions to be checked, causing spurious assembler errors.
9101
9102 ------------------
9103 -- Pos_Of_Discr --
9104 ------------------
9105
9106 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
9107 Disc : Entity_Id;
9108
9109 begin
9110 Disc := First_Discriminant (T);
9111 for J in Discr_Expr'Range loop
9112 if Disc = D then
9113 return J;
9114 end if;
9115
9116 Next_Discriminant (Disc);
9117 end loop;
9118
9119 -- Note: Since this function is called on discriminants that are
9120 -- known to belong to the discriminated type, falling through the
9121 -- loop with no match signals an internal compiler error.
9122
9123 raise Program_Error;
9124 end Pos_Of_Discr;
9125
9126 -------------------------------------
9127 -- Process_Discriminant_Expression --
9128 -------------------------------------
9129
9130 procedure Process_Discriminant_Expression
9131 (Expr : Node_Id;
9132 D : Entity_Id)
9133 is
9134 BDT : constant Entity_Id := Base_Type (Etype (D));
9135
9136 begin
9137 -- If this is a discriminant constraint on a partial view, do
9138 -- not generate an overflow on the discriminant expression. The
9139 -- check will be generated when constraining the full view.
9140
9141 if Is_Private_Type (T)
9142 and then Present (Full_View (T))
9143 then
9144 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
9145 else
9146 Analyze_And_Resolve (Expr, BDT);
9147 end if;
9148 end Process_Discriminant_Expression;
9149
9150 -- Declarations local to Build_Discriminant_Constraints
9151
9152 Discr : Entity_Id;
9153 E : Entity_Id;
9154 Elist : constant Elist_Id := New_Elmt_List;
9155
9156 Constr : Node_Id;
9157 Expr : Node_Id;
9158 Id : Node_Id;
9159 Position : Nat;
9160 Found : Boolean;
9161
9162 Discrim_Present : Boolean := False;
9163
9164 -- Start of processing for Build_Discriminant_Constraints
9165
9166 begin
9167 -- The following loop will process positional associations only.
9168 -- For a positional association, the (single) discriminant is
9169 -- implicitly specified by position, in textual order (RM 3.7.2).
9170
9171 Discr := First_Discriminant (T);
9172 Constr := First (Constraints (C));
9173 for D in Discr_Expr'Range loop
9174 exit when Nkind (Constr) = N_Discriminant_Association;
9175
9176 if No (Constr) then
9177 Error_Msg_N ("too few discriminants given in constraint", C);
9178 return New_Elmt_List;
9179
9180 elsif Nkind (Constr) = N_Range
9181 or else (Nkind (Constr) = N_Attribute_Reference
9182 and then Attribute_Name (Constr) = Name_Range)
9183 then
9184 Error_Msg_N
9185 ("a range is not a valid discriminant constraint", Constr);
9186 Discr_Expr (D) := Error;
9187
9188 else
9189 Process_Discriminant_Expression (Constr, Discr);
9190 Discr_Expr (D) := Constr;
9191 end if;
9192
9193 Next_Discriminant (Discr);
9194 Next (Constr);
9195 end loop;
9196
9197 if No (Discr) and then Present (Constr) then
9198 Error_Msg_N ("too many discriminants given in constraint", Constr);
9199 return New_Elmt_List;
9200 end if;
9201
9202 -- Named associations can be given in any order, but if both positional
9203 -- and named associations are used in the same discriminant constraint,
9204 -- then positional associations must occur first, at their normal
9205 -- position. Hence once a named association is used, the rest of the
9206 -- discriminant constraint must use only named associations.
9207
9208 while Present (Constr) loop
9209
9210 -- Positional association forbidden after a named association
9211
9212 if Nkind (Constr) /= N_Discriminant_Association then
9213 Error_Msg_N ("positional association follows named one", Constr);
9214 return New_Elmt_List;
9215
9216 -- Otherwise it is a named association
9217
9218 else
9219 -- E records the type of the discriminants in the named
9220 -- association. All the discriminants specified in the same name
9221 -- association must have the same type.
9222
9223 E := Empty;
9224
9225 -- Search the list of discriminants in T to see if the simple name
9226 -- given in the constraint matches any of them.
9227
9228 Id := First (Selector_Names (Constr));
9229 while Present (Id) loop
9230 Found := False;
9231
9232 -- If Original_Discriminant is present, we are processing a
9233 -- generic instantiation and this is an instance node. We need
9234 -- to find the name of the corresponding discriminant in the
9235 -- actual record type T and not the name of the discriminant in
9236 -- the generic formal. Example:
9237
9238 -- generic
9239 -- type G (D : int) is private;
9240 -- package P is
9241 -- subtype W is G (D => 1);
9242 -- end package;
9243 -- type Rec (X : int) is record ... end record;
9244 -- package Q is new P (G => Rec);
9245
9246 -- At the point of the instantiation, formal type G is Rec
9247 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9248 -- which really looks like "subtype W is Rec (D => 1);" at
9249 -- the point of instantiation, we want to find the discriminant
9250 -- that corresponds to D in Rec, i.e. X.
9251
9252 if Present (Original_Discriminant (Id))
9253 and then In_Instance
9254 then
9255 Discr := Find_Corresponding_Discriminant (Id, T);
9256 Found := True;
9257
9258 else
9259 Discr := First_Discriminant (T);
9260 while Present (Discr) loop
9261 if Chars (Discr) = Chars (Id) then
9262 Found := True;
9263 exit;
9264 end if;
9265
9266 Next_Discriminant (Discr);
9267 end loop;
9268
9269 if not Found then
9270 Error_Msg_N ("& does not match any discriminant", Id);
9271 return New_Elmt_List;
9272
9273 -- If the parent type is a generic formal, preserve the
9274 -- name of the discriminant for subsequent instances.
9275 -- see comment at the beginning of this if statement.
9276
9277 elsif Is_Generic_Type (Root_Type (T)) then
9278 Set_Original_Discriminant (Id, Discr);
9279 end if;
9280 end if;
9281
9282 Position := Pos_Of_Discr (T, Discr);
9283
9284 if Present (Discr_Expr (Position)) then
9285 Error_Msg_N ("duplicate constraint for discriminant&", Id);
9286
9287 else
9288 -- Each discriminant specified in the same named association
9289 -- must be associated with a separate copy of the
9290 -- corresponding expression.
9291
9292 if Present (Next (Id)) then
9293 Expr := New_Copy_Tree (Expression (Constr));
9294 Set_Parent (Expr, Parent (Expression (Constr)));
9295 else
9296 Expr := Expression (Constr);
9297 end if;
9298
9299 Discr_Expr (Position) := Expr;
9300 Process_Discriminant_Expression (Expr, Discr);
9301 end if;
9302
9303 -- A discriminant association with more than one discriminant
9304 -- name is only allowed if the named discriminants are all of
9305 -- the same type (RM 3.7.1(8)).
9306
9307 if E = Empty then
9308 E := Base_Type (Etype (Discr));
9309
9310 elsif Base_Type (Etype (Discr)) /= E then
9311 Error_Msg_N
9312 ("all discriminants in an association " &
9313 "must have the same type", Id);
9314 end if;
9315
9316 Next (Id);
9317 end loop;
9318 end if;
9319
9320 Next (Constr);
9321 end loop;
9322
9323 -- A discriminant constraint must provide exactly one value for each
9324 -- discriminant of the type (RM 3.7.1(8)).
9325
9326 for J in Discr_Expr'Range loop
9327 if No (Discr_Expr (J)) then
9328 Error_Msg_N ("too few discriminants given in constraint", C);
9329 return New_Elmt_List;
9330 end if;
9331 end loop;
9332
9333 -- Determine if there are discriminant expressions in the constraint
9334
9335 for J in Discr_Expr'Range loop
9336 if Denotes_Discriminant
9337 (Discr_Expr (J), Check_Concurrent => True)
9338 then
9339 Discrim_Present := True;
9340 end if;
9341 end loop;
9342
9343 -- Build an element list consisting of the expressions given in the
9344 -- discriminant constraint and apply the appropriate checks. The list
9345 -- is constructed after resolving any named discriminant associations
9346 -- and therefore the expressions appear in the textual order of the
9347 -- discriminants.
9348
9349 Discr := First_Discriminant (T);
9350 for J in Discr_Expr'Range loop
9351 if Discr_Expr (J) /= Error then
9352 Append_Elmt (Discr_Expr (J), Elist);
9353
9354 -- If any of the discriminant constraints is given by a
9355 -- discriminant and we are in a derived type declaration we
9356 -- have a discriminant renaming. Establish link between new
9357 -- and old discriminant.
9358
9359 if Denotes_Discriminant (Discr_Expr (J)) then
9360 if Derived_Def then
9361 Set_Corresponding_Discriminant
9362 (Entity (Discr_Expr (J)), Discr);
9363 end if;
9364
9365 -- Force the evaluation of non-discriminant expressions.
9366 -- If we have found a discriminant in the constraint 3.4(26)
9367 -- and 3.8(18) demand that no range checks are performed are
9368 -- after evaluation. If the constraint is for a component
9369 -- definition that has a per-object constraint, expressions are
9370 -- evaluated but not checked either. In all other cases perform
9371 -- a range check.
9372
9373 else
9374 if Discrim_Present then
9375 null;
9376
9377 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
9378 and then
9379 Has_Per_Object_Constraint
9380 (Defining_Identifier (Parent (Parent (Def))))
9381 then
9382 null;
9383
9384 elsif Is_Access_Type (Etype (Discr)) then
9385 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
9386
9387 else
9388 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
9389 end if;
9390
9391 Force_Evaluation (Discr_Expr (J));
9392 end if;
9393
9394 -- Check that the designated type of an access discriminant's
9395 -- expression is not a class-wide type unless the discriminant's
9396 -- designated type is also class-wide.
9397
9398 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
9399 and then not Is_Class_Wide_Type
9400 (Designated_Type (Etype (Discr)))
9401 and then Etype (Discr_Expr (J)) /= Any_Type
9402 and then Is_Class_Wide_Type
9403 (Designated_Type (Etype (Discr_Expr (J))))
9404 then
9405 Wrong_Type (Discr_Expr (J), Etype (Discr));
9406
9407 elsif Is_Access_Type (Etype (Discr))
9408 and then not Is_Access_Constant (Etype (Discr))
9409 and then Is_Access_Type (Etype (Discr_Expr (J)))
9410 and then Is_Access_Constant (Etype (Discr_Expr (J)))
9411 then
9412 Error_Msg_NE
9413 ("constraint for discriminant& must be access to variable",
9414 Def, Discr);
9415 end if;
9416 end if;
9417
9418 Next_Discriminant (Discr);
9419 end loop;
9420
9421 return Elist;
9422 end Build_Discriminant_Constraints;
9423
9424 ---------------------------------
9425 -- Build_Discriminated_Subtype --
9426 ---------------------------------
9427
9428 procedure Build_Discriminated_Subtype
9429 (T : Entity_Id;
9430 Def_Id : Entity_Id;
9431 Elist : Elist_Id;
9432 Related_Nod : Node_Id;
9433 For_Access : Boolean := False)
9434 is
9435 Has_Discrs : constant Boolean := Has_Discriminants (T);
9436 Constrained : constant Boolean :=
9437 (Has_Discrs
9438 and then not Is_Empty_Elmt_List (Elist)
9439 and then not Is_Class_Wide_Type (T))
9440 or else Is_Constrained (T);
9441
9442 begin
9443 if Ekind (T) = E_Record_Type then
9444 if For_Access then
9445 Set_Ekind (Def_Id, E_Private_Subtype);
9446 Set_Is_For_Access_Subtype (Def_Id, True);
9447 else
9448 Set_Ekind (Def_Id, E_Record_Subtype);
9449 end if;
9450
9451 -- Inherit preelaboration flag from base, for types for which it
9452 -- may have been set: records, private types, protected types.
9453
9454 Set_Known_To_Have_Preelab_Init
9455 (Def_Id, Known_To_Have_Preelab_Init (T));
9456
9457 elsif Ekind (T) = E_Task_Type then
9458 Set_Ekind (Def_Id, E_Task_Subtype);
9459
9460 elsif Ekind (T) = E_Protected_Type then
9461 Set_Ekind (Def_Id, E_Protected_Subtype);
9462 Set_Known_To_Have_Preelab_Init
9463 (Def_Id, Known_To_Have_Preelab_Init (T));
9464
9465 elsif Is_Private_Type (T) then
9466 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
9467 Set_Known_To_Have_Preelab_Init
9468 (Def_Id, Known_To_Have_Preelab_Init (T));
9469
9470 -- Private subtypes may have private dependents
9471
9472 Set_Private_Dependents (Def_Id, New_Elmt_List);
9473
9474 elsif Is_Class_Wide_Type (T) then
9475 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
9476
9477 else
9478 -- Incomplete type. Attach subtype to list of dependents, to be
9479 -- completed with full view of parent type, unless is it the
9480 -- designated subtype of a record component within an init_proc.
9481 -- This last case arises for a component of an access type whose
9482 -- designated type is incomplete (e.g. a Taft Amendment type).
9483 -- The designated subtype is within an inner scope, and needs no
9484 -- elaboration, because only the access type is needed in the
9485 -- initialization procedure.
9486
9487 Set_Ekind (Def_Id, Ekind (T));
9488
9489 if For_Access and then Within_Init_Proc then
9490 null;
9491 else
9492 Append_Elmt (Def_Id, Private_Dependents (T));
9493 end if;
9494 end if;
9495
9496 Set_Etype (Def_Id, T);
9497 Init_Size_Align (Def_Id);
9498 Set_Has_Discriminants (Def_Id, Has_Discrs);
9499 Set_Is_Constrained (Def_Id, Constrained);
9500
9501 Set_First_Entity (Def_Id, First_Entity (T));
9502 Set_Last_Entity (Def_Id, Last_Entity (T));
9503 Set_Has_Implicit_Dereference
9504 (Def_Id, Has_Implicit_Dereference (T));
9505
9506 -- If the subtype is the completion of a private declaration, there may
9507 -- have been representation clauses for the partial view, and they must
9508 -- be preserved. Build_Derived_Type chains the inherited clauses with
9509 -- the ones appearing on the extension. If this comes from a subtype
9510 -- declaration, all clauses are inherited.
9511
9512 if No (First_Rep_Item (Def_Id)) then
9513 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9514 end if;
9515
9516 if Is_Tagged_Type (T) then
9517 Set_Is_Tagged_Type (Def_Id);
9518 Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T));
9519 Make_Class_Wide_Type (Def_Id);
9520 end if;
9521
9522 Set_Stored_Constraint (Def_Id, No_Elist);
9523
9524 if Has_Discrs then
9525 Set_Discriminant_Constraint (Def_Id, Elist);
9526 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
9527 end if;
9528
9529 if Is_Tagged_Type (T) then
9530
9531 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9532 -- concurrent record type (which has the list of primitive
9533 -- operations).
9534
9535 if Ada_Version >= Ada_2005
9536 and then Is_Concurrent_Type (T)
9537 then
9538 Set_Corresponding_Record_Type (Def_Id,
9539 Corresponding_Record_Type (T));
9540 else
9541 Set_Direct_Primitive_Operations (Def_Id,
9542 Direct_Primitive_Operations (T));
9543 end if;
9544
9545 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
9546 end if;
9547
9548 -- Subtypes introduced by component declarations do not need to be
9549 -- marked as delayed, and do not get freeze nodes, because the semantics
9550 -- verifies that the parents of the subtypes are frozen before the
9551 -- enclosing record is frozen.
9552
9553 if not Is_Type (Scope (Def_Id)) then
9554 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
9555
9556 if Is_Private_Type (T)
9557 and then Present (Full_View (T))
9558 then
9559 Conditional_Delay (Def_Id, Full_View (T));
9560 else
9561 Conditional_Delay (Def_Id, T);
9562 end if;
9563 end if;
9564
9565 if Is_Record_Type (T) then
9566 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
9567
9568 if Has_Discrs
9569 and then not Is_Empty_Elmt_List (Elist)
9570 and then not For_Access
9571 then
9572 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
9573 elsif not For_Access then
9574 Set_Cloned_Subtype (Def_Id, T);
9575 end if;
9576 end if;
9577 end Build_Discriminated_Subtype;
9578
9579 ---------------------------
9580 -- Build_Itype_Reference --
9581 ---------------------------
9582
9583 procedure Build_Itype_Reference
9584 (Ityp : Entity_Id;
9585 Nod : Node_Id)
9586 is
9587 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
9588 begin
9589
9590 -- Itype references are only created for use by the back-end
9591
9592 if Inside_A_Generic then
9593 return;
9594 else
9595 Set_Itype (IR, Ityp);
9596 Insert_After (Nod, IR);
9597 end if;
9598 end Build_Itype_Reference;
9599
9600 ------------------------
9601 -- Build_Scalar_Bound --
9602 ------------------------
9603
9604 function Build_Scalar_Bound
9605 (Bound : Node_Id;
9606 Par_T : Entity_Id;
9607 Der_T : Entity_Id) return Node_Id
9608 is
9609 New_Bound : Entity_Id;
9610
9611 begin
9612 -- Note: not clear why this is needed, how can the original bound
9613 -- be unanalyzed at this point? and if it is, what business do we
9614 -- have messing around with it? and why is the base type of the
9615 -- parent type the right type for the resolution. It probably is
9616 -- not. It is OK for the new bound we are creating, but not for
9617 -- the old one??? Still if it never happens, no problem.
9618
9619 Analyze_And_Resolve (Bound, Base_Type (Par_T));
9620
9621 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
9622 New_Bound := New_Copy (Bound);
9623 Set_Etype (New_Bound, Der_T);
9624 Set_Analyzed (New_Bound);
9625
9626 elsif Is_Entity_Name (Bound) then
9627 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
9628
9629 -- The following is almost certainly wrong. What business do we have
9630 -- relocating a node (Bound) that is presumably still attached to
9631 -- the tree elsewhere???
9632
9633 else
9634 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
9635 end if;
9636
9637 Set_Etype (New_Bound, Der_T);
9638 return New_Bound;
9639 end Build_Scalar_Bound;
9640
9641 --------------------------------
9642 -- Build_Underlying_Full_View --
9643 --------------------------------
9644
9645 procedure Build_Underlying_Full_View
9646 (N : Node_Id;
9647 Typ : Entity_Id;
9648 Par : Entity_Id)
9649 is
9650 Loc : constant Source_Ptr := Sloc (N);
9651 Subt : constant Entity_Id :=
9652 Make_Defining_Identifier
9653 (Loc, New_External_Name (Chars (Typ), 'S'));
9654
9655 Constr : Node_Id;
9656 Indic : Node_Id;
9657 C : Node_Id;
9658 Id : Node_Id;
9659
9660 procedure Set_Discriminant_Name (Id : Node_Id);
9661 -- If the derived type has discriminants, they may rename discriminants
9662 -- of the parent. When building the full view of the parent, we need to
9663 -- recover the names of the original discriminants if the constraint is
9664 -- given by named associations.
9665
9666 ---------------------------
9667 -- Set_Discriminant_Name --
9668 ---------------------------
9669
9670 procedure Set_Discriminant_Name (Id : Node_Id) is
9671 Disc : Entity_Id;
9672
9673 begin
9674 Set_Original_Discriminant (Id, Empty);
9675
9676 if Has_Discriminants (Typ) then
9677 Disc := First_Discriminant (Typ);
9678 while Present (Disc) loop
9679 if Chars (Disc) = Chars (Id)
9680 and then Present (Corresponding_Discriminant (Disc))
9681 then
9682 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
9683 end if;
9684 Next_Discriminant (Disc);
9685 end loop;
9686 end if;
9687 end Set_Discriminant_Name;
9688
9689 -- Start of processing for Build_Underlying_Full_View
9690
9691 begin
9692 if Nkind (N) = N_Full_Type_Declaration then
9693 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
9694
9695 elsif Nkind (N) = N_Subtype_Declaration then
9696 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
9697
9698 elsif Nkind (N) = N_Component_Declaration then
9699 Constr :=
9700 New_Copy_Tree
9701 (Constraint (Subtype_Indication (Component_Definition (N))));
9702
9703 else
9704 raise Program_Error;
9705 end if;
9706
9707 C := First (Constraints (Constr));
9708 while Present (C) loop
9709 if Nkind (C) = N_Discriminant_Association then
9710 Id := First (Selector_Names (C));
9711 while Present (Id) loop
9712 Set_Discriminant_Name (Id);
9713 Next (Id);
9714 end loop;
9715 end if;
9716
9717 Next (C);
9718 end loop;
9719
9720 Indic :=
9721 Make_Subtype_Declaration (Loc,
9722 Defining_Identifier => Subt,
9723 Subtype_Indication =>
9724 Make_Subtype_Indication (Loc,
9725 Subtype_Mark => New_Occurrence_Of (Par, Loc),
9726 Constraint => New_Copy_Tree (Constr)));
9727
9728 -- If this is a component subtype for an outer itype, it is not
9729 -- a list member, so simply set the parent link for analysis: if
9730 -- the enclosing type does not need to be in a declarative list,
9731 -- neither do the components.
9732
9733 if Is_List_Member (N)
9734 and then Nkind (N) /= N_Component_Declaration
9735 then
9736 Insert_Before (N, Indic);
9737 else
9738 Set_Parent (Indic, Parent (N));
9739 end if;
9740
9741 Analyze (Indic);
9742 Set_Underlying_Full_View (Typ, Full_View (Subt));
9743 end Build_Underlying_Full_View;
9744
9745 -------------------------------
9746 -- Check_Abstract_Overriding --
9747 -------------------------------
9748
9749 procedure Check_Abstract_Overriding (T : Entity_Id) is
9750 Alias_Subp : Entity_Id;
9751 Elmt : Elmt_Id;
9752 Op_List : Elist_Id;
9753 Subp : Entity_Id;
9754 Type_Def : Node_Id;
9755
9756 procedure Check_Pragma_Implemented (Subp : Entity_Id);
9757 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9758 -- which has pragma Implemented already set. Check whether Subp's entity
9759 -- kind conforms to the implementation kind of the overridden routine.
9760
9761 procedure Check_Pragma_Implemented
9762 (Subp : Entity_Id;
9763 Iface_Subp : Entity_Id);
9764 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9765 -- Iface_Subp and both entities have pragma Implemented already set on
9766 -- them. Check whether the two implementation kinds are conforming.
9767
9768 procedure Inherit_Pragma_Implemented
9769 (Subp : Entity_Id;
9770 Iface_Subp : Entity_Id);
9771 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9772 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9773 -- Propagate the implementation kind of Iface_Subp to Subp.
9774
9775 ------------------------------
9776 -- Check_Pragma_Implemented --
9777 ------------------------------
9778
9779 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
9780 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
9781 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
9782 Subp_Alias : constant Entity_Id := Alias (Subp);
9783 Contr_Typ : Entity_Id;
9784 Impl_Subp : Entity_Id;
9785
9786 begin
9787 -- Subp must have an alias since it is a hidden entity used to link
9788 -- an interface subprogram to its overriding counterpart.
9789
9790 pragma Assert (Present (Subp_Alias));
9791
9792 -- Handle aliases to synchronized wrappers
9793
9794 Impl_Subp := Subp_Alias;
9795
9796 if Is_Primitive_Wrapper (Impl_Subp) then
9797 Impl_Subp := Wrapped_Entity (Impl_Subp);
9798 end if;
9799
9800 -- Extract the type of the controlling formal
9801
9802 Contr_Typ := Etype (First_Formal (Subp_Alias));
9803
9804 if Is_Concurrent_Record_Type (Contr_Typ) then
9805 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
9806 end if;
9807
9808 -- An interface subprogram whose implementation kind is By_Entry must
9809 -- be implemented by an entry.
9810
9811 if Impl_Kind = Name_By_Entry
9812 and then Ekind (Impl_Subp) /= E_Entry
9813 then
9814 Error_Msg_Node_2 := Iface_Alias;
9815 Error_Msg_NE
9816 ("type & must implement abstract subprogram & with an entry",
9817 Subp_Alias, Contr_Typ);
9818
9819 elsif Impl_Kind = Name_By_Protected_Procedure then
9820
9821 -- An interface subprogram whose implementation kind is By_
9822 -- Protected_Procedure cannot be implemented by a primitive
9823 -- procedure of a task type.
9824
9825 if Ekind (Contr_Typ) /= E_Protected_Type then
9826 Error_Msg_Node_2 := Contr_Typ;
9827 Error_Msg_NE
9828 ("interface subprogram & cannot be implemented by a " &
9829 "primitive procedure of task type &", Subp_Alias,
9830 Iface_Alias);
9831
9832 -- An interface subprogram whose implementation kind is By_
9833 -- Protected_Procedure must be implemented by a procedure.
9834
9835 elsif Ekind (Impl_Subp) /= E_Procedure then
9836 Error_Msg_Node_2 := Iface_Alias;
9837 Error_Msg_NE
9838 ("type & must implement abstract subprogram & with a " &
9839 "procedure", Subp_Alias, Contr_Typ);
9840
9841 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9842 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9843 then
9844 Error_Msg_Name_1 := Impl_Kind;
9845 Error_Msg_N
9846 ("overriding operation& must have synchronization%",
9847 Subp_Alias);
9848 end if;
9849
9850 -- If primitive has Optional synchronization, overriding operation
9851 -- must match if it has an explicit synchronization..
9852
9853 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9854 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9855 then
9856 Error_Msg_Name_1 := Impl_Kind;
9857 Error_Msg_N
9858 ("overriding operation& must have syncrhonization%",
9859 Subp_Alias);
9860 end if;
9861 end Check_Pragma_Implemented;
9862
9863 ------------------------------
9864 -- Check_Pragma_Implemented --
9865 ------------------------------
9866
9867 procedure Check_Pragma_Implemented
9868 (Subp : Entity_Id;
9869 Iface_Subp : Entity_Id)
9870 is
9871 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9872 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
9873
9874 begin
9875 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9876 -- and overriding subprogram are different. In general this is an
9877 -- error except when the implementation kind of the overridden
9878 -- subprograms is By_Any or Optional.
9879
9880 if Iface_Kind /= Subp_Kind
9881 and then Iface_Kind /= Name_By_Any
9882 and then Iface_Kind /= Name_Optional
9883 then
9884 if Iface_Kind = Name_By_Entry then
9885 Error_Msg_N
9886 ("incompatible implementation kind, overridden subprogram " &
9887 "is marked By_Entry", Subp);
9888 else
9889 Error_Msg_N
9890 ("incompatible implementation kind, overridden subprogram " &
9891 "is marked By_Protected_Procedure", Subp);
9892 end if;
9893 end if;
9894 end Check_Pragma_Implemented;
9895
9896 --------------------------------
9897 -- Inherit_Pragma_Implemented --
9898 --------------------------------
9899
9900 procedure Inherit_Pragma_Implemented
9901 (Subp : Entity_Id;
9902 Iface_Subp : Entity_Id)
9903 is
9904 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9905 Loc : constant Source_Ptr := Sloc (Subp);
9906 Impl_Prag : Node_Id;
9907
9908 begin
9909 -- Since the implementation kind is stored as a representation item
9910 -- rather than a flag, create a pragma node.
9911
9912 Impl_Prag :=
9913 Make_Pragma (Loc,
9914 Chars => Name_Implemented,
9915 Pragma_Argument_Associations => New_List (
9916 Make_Pragma_Argument_Association (Loc,
9917 Expression => New_Occurrence_Of (Subp, Loc)),
9918
9919 Make_Pragma_Argument_Association (Loc,
9920 Expression => Make_Identifier (Loc, Iface_Kind))));
9921
9922 -- The pragma doesn't need to be analyzed because it is internally
9923 -- built. It is safe to directly register it as a rep item since we
9924 -- are only interested in the characters of the implementation kind.
9925
9926 Record_Rep_Item (Subp, Impl_Prag);
9927 end Inherit_Pragma_Implemented;
9928
9929 -- Start of processing for Check_Abstract_Overriding
9930
9931 begin
9932 Op_List := Primitive_Operations (T);
9933
9934 -- Loop to check primitive operations
9935
9936 Elmt := First_Elmt (Op_List);
9937 while Present (Elmt) loop
9938 Subp := Node (Elmt);
9939 Alias_Subp := Alias (Subp);
9940
9941 -- Inherited subprograms are identified by the fact that they do not
9942 -- come from source, and the associated source location is the
9943 -- location of the first subtype of the derived type.
9944
9945 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9946 -- subprograms that "require overriding".
9947
9948 -- Special exception, do not complain about failure to override the
9949 -- stream routines _Input and _Output, as well as the primitive
9950 -- operations used in dispatching selects since we always provide
9951 -- automatic overridings for these subprograms.
9952
9953 -- Also ignore this rule for convention CIL since .NET libraries
9954 -- do bizarre things with interfaces???
9955
9956 -- The partial view of T may have been a private extension, for
9957 -- which inherited functions dispatching on result are abstract.
9958 -- If the full view is a null extension, there is no need for
9959 -- overriding in Ada 2005, but wrappers need to be built for them
9960 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9961
9962 if Is_Null_Extension (T)
9963 and then Has_Controlling_Result (Subp)
9964 and then Ada_Version >= Ada_2005
9965 and then Present (Alias_Subp)
9966 and then not Comes_From_Source (Subp)
9967 and then not Is_Abstract_Subprogram (Alias_Subp)
9968 and then not Is_Access_Type (Etype (Subp))
9969 then
9970 null;
9971
9972 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9973 -- processing because this check is done with the aliased
9974 -- entity
9975
9976 elsif Present (Interface_Alias (Subp)) then
9977 null;
9978
9979 elsif (Is_Abstract_Subprogram (Subp)
9980 or else Requires_Overriding (Subp)
9981 or else
9982 (Has_Controlling_Result (Subp)
9983 and then Present (Alias_Subp)
9984 and then not Comes_From_Source (Subp)
9985 and then Sloc (Subp) = Sloc (First_Subtype (T))))
9986 and then not Is_TSS (Subp, TSS_Stream_Input)
9987 and then not Is_TSS (Subp, TSS_Stream_Output)
9988 and then not Is_Abstract_Type (T)
9989 and then Convention (T) /= Convention_CIL
9990 and then not Is_Predefined_Interface_Primitive (Subp)
9991
9992 -- Ada 2005 (AI-251): Do not consider hidden entities associated
9993 -- with abstract interface types because the check will be done
9994 -- with the aliased entity (otherwise we generate a duplicated
9995 -- error message).
9996
9997 and then not Present (Interface_Alias (Subp))
9998 then
9999 if Present (Alias_Subp) then
10000
10001 -- Only perform the check for a derived subprogram when the
10002 -- type has an explicit record extension. This avoids incorrect
10003 -- flagging of abstract subprograms for the case of a type
10004 -- without an extension that is derived from a formal type
10005 -- with a tagged actual (can occur within a private part).
10006
10007 -- Ada 2005 (AI-391): In the case of an inherited function with
10008 -- a controlling result of the type, the rule does not apply if
10009 -- the type is a null extension (unless the parent function
10010 -- itself is abstract, in which case the function must still be
10011 -- be overridden). The expander will generate an overriding
10012 -- wrapper function calling the parent subprogram (see
10013 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
10014
10015 Type_Def := Type_Definition (Parent (T));
10016
10017 if Nkind (Type_Def) = N_Derived_Type_Definition
10018 and then Present (Record_Extension_Part (Type_Def))
10019 and then
10020 (Ada_Version < Ada_2005
10021 or else not Is_Null_Extension (T)
10022 or else Ekind (Subp) = E_Procedure
10023 or else not Has_Controlling_Result (Subp)
10024 or else Is_Abstract_Subprogram (Alias_Subp)
10025 or else Requires_Overriding (Subp)
10026 or else Is_Access_Type (Etype (Subp)))
10027 then
10028 -- Avoid reporting error in case of abstract predefined
10029 -- primitive inherited from interface type because the
10030 -- body of internally generated predefined primitives
10031 -- of tagged types are generated later by Freeze_Type
10032
10033 if Is_Interface (Root_Type (T))
10034 and then Is_Abstract_Subprogram (Subp)
10035 and then Is_Predefined_Dispatching_Operation (Subp)
10036 and then not Comes_From_Source (Ultimate_Alias (Subp))
10037 then
10038 null;
10039
10040 -- A null extension is not obliged to override an inherited
10041 -- procedure subject to pragma Extensions_Visible with value
10042 -- False and at least one controlling OUT parameter
10043 -- (SPARK RM 6.1.7(6)).
10044
10045 elsif Is_Null_Extension (T)
10046 and then Is_EVF_Procedure (Subp)
10047 then
10048 null;
10049
10050 else
10051 Error_Msg_NE
10052 ("type must be declared abstract or & overridden",
10053 T, Subp);
10054
10055 -- Traverse the whole chain of aliased subprograms to
10056 -- complete the error notification. This is especially
10057 -- useful for traceability of the chain of entities when
10058 -- the subprogram corresponds with an interface
10059 -- subprogram (which may be defined in another package).
10060
10061 if Present (Alias_Subp) then
10062 declare
10063 E : Entity_Id;
10064
10065 begin
10066 E := Subp;
10067 while Present (Alias (E)) loop
10068
10069 -- Avoid reporting redundant errors on entities
10070 -- inherited from interfaces
10071
10072 if Sloc (E) /= Sloc (T) then
10073 Error_Msg_Sloc := Sloc (E);
10074 Error_Msg_NE
10075 ("\& has been inherited #", T, Subp);
10076 end if;
10077
10078 E := Alias (E);
10079 end loop;
10080
10081 Error_Msg_Sloc := Sloc (E);
10082
10083 -- AI05-0068: report if there is an overriding
10084 -- non-abstract subprogram that is invisible.
10085
10086 if Is_Hidden (E)
10087 and then not Is_Abstract_Subprogram (E)
10088 then
10089 Error_Msg_NE
10090 ("\& subprogram# is not visible",
10091 T, Subp);
10092
10093 -- Clarify the case where a non-null extension must
10094 -- override inherited procedure subject to pragma
10095 -- Extensions_Visible with value False and at least
10096 -- one controlling OUT param.
10097
10098 elsif Is_EVF_Procedure (E) then
10099 Error_Msg_NE
10100 ("\& # is subject to Extensions_Visible False",
10101 T, Subp);
10102
10103 else
10104 Error_Msg_NE
10105 ("\& has been inherited from subprogram #",
10106 T, Subp);
10107 end if;
10108 end;
10109 end if;
10110 end if;
10111
10112 -- Ada 2005 (AI-345): Protected or task type implementing
10113 -- abstract interfaces.
10114
10115 elsif Is_Concurrent_Record_Type (T)
10116 and then Present (Interfaces (T))
10117 then
10118 -- There is no need to check here RM 9.4(11.9/3) since we
10119 -- are processing the corresponding record type and the
10120 -- mode of the overriding subprograms was verified by
10121 -- Check_Conformance when the corresponding concurrent
10122 -- type declaration was analyzed.
10123
10124 Error_Msg_NE
10125 ("interface subprogram & must be overridden", T, Subp);
10126
10127 -- Examine primitive operations of synchronized type to find
10128 -- homonyms that have the wrong profile.
10129
10130 declare
10131 Prim : Entity_Id;
10132
10133 begin
10134 Prim := First_Entity (Corresponding_Concurrent_Type (T));
10135 while Present (Prim) loop
10136 if Chars (Prim) = Chars (Subp) then
10137 Error_Msg_NE
10138 ("profile is not type conformant with prefixed "
10139 & "view profile of inherited operation&",
10140 Prim, Subp);
10141 end if;
10142
10143 Next_Entity (Prim);
10144 end loop;
10145 end;
10146 end if;
10147
10148 else
10149 Error_Msg_Node_2 := T;
10150 Error_Msg_N
10151 ("abstract subprogram& not allowed for type&", Subp);
10152
10153 -- Also post unconditional warning on the type (unconditional
10154 -- so that if there are more than one of these cases, we get
10155 -- them all, and not just the first one).
10156
10157 Error_Msg_Node_2 := Subp;
10158 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
10159 end if;
10160
10161 -- A subprogram subject to pragma Extensions_Visible with value
10162 -- "True" cannot override a subprogram subject to the same pragma
10163 -- with value "False" (SPARK RM 6.1.7(5)).
10164
10165 elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True
10166 and then Present (Overridden_Operation (Subp))
10167 and then Extensions_Visible_Status (Overridden_Operation (Subp)) =
10168 Extensions_Visible_False
10169 then
10170 Error_Msg_Sloc := Sloc (Overridden_Operation (Subp));
10171 Error_Msg_N
10172 ("subprogram & with Extensions_Visible True cannot override "
10173 & "subprogram # with Extensions_Visible False", Subp);
10174 end if;
10175
10176 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10177
10178 -- Subp is an expander-generated procedure which maps an interface
10179 -- alias to a protected wrapper. The interface alias is flagged by
10180 -- pragma Implemented. Ensure that Subp is a procedure when the
10181 -- implementation kind is By_Protected_Procedure or an entry when
10182 -- By_Entry.
10183
10184 if Ada_Version >= Ada_2012
10185 and then Is_Hidden (Subp)
10186 and then Present (Interface_Alias (Subp))
10187 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
10188 then
10189 Check_Pragma_Implemented (Subp);
10190 end if;
10191
10192 -- Subp is an interface primitive which overrides another interface
10193 -- primitive marked with pragma Implemented.
10194
10195 if Ada_Version >= Ada_2012
10196 and then Present (Overridden_Operation (Subp))
10197 and then Has_Rep_Pragma
10198 (Overridden_Operation (Subp), Name_Implemented)
10199 then
10200 -- If the overriding routine is also marked by Implemented, check
10201 -- that the two implementation kinds are conforming.
10202
10203 if Has_Rep_Pragma (Subp, Name_Implemented) then
10204 Check_Pragma_Implemented
10205 (Subp => Subp,
10206 Iface_Subp => Overridden_Operation (Subp));
10207
10208 -- Otherwise the overriding routine inherits the implementation
10209 -- kind from the overridden subprogram.
10210
10211 else
10212 Inherit_Pragma_Implemented
10213 (Subp => Subp,
10214 Iface_Subp => Overridden_Operation (Subp));
10215 end if;
10216 end if;
10217
10218 -- If the operation is a wrapper for a synchronized primitive, it
10219 -- may be called indirectly through a dispatching select. We assume
10220 -- that it will be referenced elsewhere indirectly, and suppress
10221 -- warnings about an unused entity.
10222
10223 if Is_Primitive_Wrapper (Subp)
10224 and then Present (Wrapped_Entity (Subp))
10225 then
10226 Set_Referenced (Wrapped_Entity (Subp));
10227 end if;
10228
10229 Next_Elmt (Elmt);
10230 end loop;
10231 end Check_Abstract_Overriding;
10232
10233 ------------------------------------------------
10234 -- Check_Access_Discriminant_Requires_Limited --
10235 ------------------------------------------------
10236
10237 procedure Check_Access_Discriminant_Requires_Limited
10238 (D : Node_Id;
10239 Loc : Node_Id)
10240 is
10241 begin
10242 -- A discriminant_specification for an access discriminant shall appear
10243 -- only in the declaration for a task or protected type, or for a type
10244 -- with the reserved word 'limited' in its definition or in one of its
10245 -- ancestors (RM 3.7(10)).
10246
10247 -- AI-0063: The proper condition is that type must be immutably limited,
10248 -- or else be a partial view.
10249
10250 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
10251 if Is_Limited_View (Current_Scope)
10252 or else
10253 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
10254 and then Limited_Present (Parent (Current_Scope)))
10255 then
10256 null;
10257
10258 else
10259 Error_Msg_N
10260 ("access discriminants allowed only for limited types", Loc);
10261 end if;
10262 end if;
10263 end Check_Access_Discriminant_Requires_Limited;
10264
10265 -----------------------------------
10266 -- Check_Aliased_Component_Types --
10267 -----------------------------------
10268
10269 procedure Check_Aliased_Component_Types (T : Entity_Id) is
10270 C : Entity_Id;
10271
10272 begin
10273 -- ??? Also need to check components of record extensions, but not
10274 -- components of protected types (which are always limited).
10275
10276 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10277 -- types to be unconstrained. This is safe because it is illegal to
10278 -- create access subtypes to such types with explicit discriminant
10279 -- constraints.
10280
10281 if not Is_Limited_Type (T) then
10282 if Ekind (T) = E_Record_Type then
10283 C := First_Component (T);
10284 while Present (C) loop
10285 if Is_Aliased (C)
10286 and then Has_Discriminants (Etype (C))
10287 and then not Is_Constrained (Etype (C))
10288 and then not In_Instance_Body
10289 and then Ada_Version < Ada_2005
10290 then
10291 Error_Msg_N
10292 ("aliased component must be constrained (RM 3.6(11))",
10293 C);
10294 end if;
10295
10296 Next_Component (C);
10297 end loop;
10298
10299 elsif Ekind (T) = E_Array_Type then
10300 if Has_Aliased_Components (T)
10301 and then Has_Discriminants (Component_Type (T))
10302 and then not Is_Constrained (Component_Type (T))
10303 and then not In_Instance_Body
10304 and then Ada_Version < Ada_2005
10305 then
10306 Error_Msg_N
10307 ("aliased component type must be constrained (RM 3.6(11))",
10308 T);
10309 end if;
10310 end if;
10311 end if;
10312 end Check_Aliased_Component_Types;
10313
10314 ---------------------------------------
10315 -- Check_Anonymous_Access_Components --
10316 ---------------------------------------
10317
10318 procedure Check_Anonymous_Access_Components
10319 (Typ_Decl : Node_Id;
10320 Typ : Entity_Id;
10321 Prev : Entity_Id;
10322 Comp_List : Node_Id)
10323 is
10324 Loc : constant Source_Ptr := Sloc (Typ_Decl);
10325 Anon_Access : Entity_Id;
10326 Acc_Def : Node_Id;
10327 Comp : Node_Id;
10328 Comp_Def : Node_Id;
10329 Decl : Node_Id;
10330 Type_Def : Node_Id;
10331
10332 procedure Build_Incomplete_Type_Declaration;
10333 -- If the record type contains components that include an access to the
10334 -- current record, then create an incomplete type declaration for the
10335 -- record, to be used as the designated type of the anonymous access.
10336 -- This is done only once, and only if there is no previous partial
10337 -- view of the type.
10338
10339 function Designates_T (Subt : Node_Id) return Boolean;
10340 -- Check whether a node designates the enclosing record type, or 'Class
10341 -- of that type
10342
10343 function Mentions_T (Acc_Def : Node_Id) return Boolean;
10344 -- Check whether an access definition includes a reference to
10345 -- the enclosing record type. The reference can be a subtype mark
10346 -- in the access definition itself, a 'Class attribute reference, or
10347 -- recursively a reference appearing in a parameter specification
10348 -- or result definition of an access_to_subprogram definition.
10349
10350 --------------------------------------
10351 -- Build_Incomplete_Type_Declaration --
10352 --------------------------------------
10353
10354 procedure Build_Incomplete_Type_Declaration is
10355 Decl : Node_Id;
10356 Inc_T : Entity_Id;
10357 H : Entity_Id;
10358
10359 -- Is_Tagged indicates whether the type is tagged. It is tagged if
10360 -- it's "is new ... with record" or else "is tagged record ...".
10361
10362 Is_Tagged : constant Boolean :=
10363 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
10364 and then
10365 Present (Record_Extension_Part (Type_Definition (Typ_Decl))))
10366 or else
10367 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
10368 and then Tagged_Present (Type_Definition (Typ_Decl)));
10369
10370 begin
10371 -- If there is a previous partial view, no need to create a new one
10372 -- If the partial view, given by Prev, is incomplete, If Prev is
10373 -- a private declaration, full declaration is flagged accordingly.
10374
10375 if Prev /= Typ then
10376 if Is_Tagged then
10377 Make_Class_Wide_Type (Prev);
10378 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
10379 Set_Etype (Class_Wide_Type (Typ), Typ);
10380 end if;
10381
10382 return;
10383
10384 elsif Has_Private_Declaration (Typ) then
10385
10386 -- If we refer to T'Class inside T, and T is the completion of a
10387 -- private type, then make sure the class-wide type exists.
10388
10389 if Is_Tagged then
10390 Make_Class_Wide_Type (Typ);
10391 end if;
10392
10393 return;
10394
10395 -- If there was a previous anonymous access type, the incomplete
10396 -- type declaration will have been created already.
10397
10398 elsif Present (Current_Entity (Typ))
10399 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
10400 and then Full_View (Current_Entity (Typ)) = Typ
10401 then
10402 if Is_Tagged
10403 and then Comes_From_Source (Current_Entity (Typ))
10404 and then not Is_Tagged_Type (Current_Entity (Typ))
10405 then
10406 Make_Class_Wide_Type (Typ);
10407 Error_Msg_N
10408 ("incomplete view of tagged type should be declared tagged??",
10409 Parent (Current_Entity (Typ)));
10410 end if;
10411 return;
10412
10413 else
10414 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
10415 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
10416
10417 -- Type has already been inserted into the current scope. Remove
10418 -- it, and add incomplete declaration for type, so that subsequent
10419 -- anonymous access types can use it. The entity is unchained from
10420 -- the homonym list and from immediate visibility. After analysis,
10421 -- the entity in the incomplete declaration becomes immediately
10422 -- visible in the record declaration that follows.
10423
10424 H := Current_Entity (Typ);
10425
10426 if H = Typ then
10427 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
10428 else
10429 while Present (H)
10430 and then Homonym (H) /= Typ
10431 loop
10432 H := Homonym (Typ);
10433 end loop;
10434
10435 Set_Homonym (H, Homonym (Typ));
10436 end if;
10437
10438 Insert_Before (Typ_Decl, Decl);
10439 Analyze (Decl);
10440 Set_Full_View (Inc_T, Typ);
10441
10442 if Is_Tagged then
10443
10444 -- Create a common class-wide type for both views, and set the
10445 -- Etype of the class-wide type to the full view.
10446
10447 Make_Class_Wide_Type (Inc_T);
10448 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
10449 Set_Etype (Class_Wide_Type (Typ), Typ);
10450 end if;
10451 end if;
10452 end Build_Incomplete_Type_Declaration;
10453
10454 ------------------
10455 -- Designates_T --
10456 ------------------
10457
10458 function Designates_T (Subt : Node_Id) return Boolean is
10459 Type_Id : constant Name_Id := Chars (Typ);
10460
10461 function Names_T (Nam : Node_Id) return Boolean;
10462 -- The record type has not been introduced in the current scope
10463 -- yet, so we must examine the name of the type itself, either
10464 -- an identifier T, or an expanded name of the form P.T, where
10465 -- P denotes the current scope.
10466
10467 -------------
10468 -- Names_T --
10469 -------------
10470
10471 function Names_T (Nam : Node_Id) return Boolean is
10472 begin
10473 if Nkind (Nam) = N_Identifier then
10474 return Chars (Nam) = Type_Id;
10475
10476 elsif Nkind (Nam) = N_Selected_Component then
10477 if Chars (Selector_Name (Nam)) = Type_Id then
10478 if Nkind (Prefix (Nam)) = N_Identifier then
10479 return Chars (Prefix (Nam)) = Chars (Current_Scope);
10480
10481 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
10482 return Chars (Selector_Name (Prefix (Nam))) =
10483 Chars (Current_Scope);
10484 else
10485 return False;
10486 end if;
10487
10488 else
10489 return False;
10490 end if;
10491
10492 else
10493 return False;
10494 end if;
10495 end Names_T;
10496
10497 -- Start of processing for Designates_T
10498
10499 begin
10500 if Nkind (Subt) = N_Identifier then
10501 return Chars (Subt) = Type_Id;
10502
10503 -- Reference can be through an expanded name which has not been
10504 -- analyzed yet, and which designates enclosing scopes.
10505
10506 elsif Nkind (Subt) = N_Selected_Component then
10507 if Names_T (Subt) then
10508 return True;
10509
10510 -- Otherwise it must denote an entity that is already visible.
10511 -- The access definition may name a subtype of the enclosing
10512 -- type, if there is a previous incomplete declaration for it.
10513
10514 else
10515 Find_Selected_Component (Subt);
10516 return
10517 Is_Entity_Name (Subt)
10518 and then Scope (Entity (Subt)) = Current_Scope
10519 and then
10520 (Chars (Base_Type (Entity (Subt))) = Type_Id
10521 or else
10522 (Is_Class_Wide_Type (Entity (Subt))
10523 and then
10524 Chars (Etype (Base_Type (Entity (Subt)))) =
10525 Type_Id));
10526 end if;
10527
10528 -- A reference to the current type may appear as the prefix of
10529 -- a 'Class attribute.
10530
10531 elsif Nkind (Subt) = N_Attribute_Reference
10532 and then Attribute_Name (Subt) = Name_Class
10533 then
10534 return Names_T (Prefix (Subt));
10535
10536 else
10537 return False;
10538 end if;
10539 end Designates_T;
10540
10541 ----------------
10542 -- Mentions_T --
10543 ----------------
10544
10545 function Mentions_T (Acc_Def : Node_Id) return Boolean is
10546 Param_Spec : Node_Id;
10547
10548 Acc_Subprg : constant Node_Id :=
10549 Access_To_Subprogram_Definition (Acc_Def);
10550
10551 begin
10552 if No (Acc_Subprg) then
10553 return Designates_T (Subtype_Mark (Acc_Def));
10554 end if;
10555
10556 -- Component is an access_to_subprogram: examine its formals,
10557 -- and result definition in the case of an access_to_function.
10558
10559 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
10560 while Present (Param_Spec) loop
10561 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
10562 and then Mentions_T (Parameter_Type (Param_Spec))
10563 then
10564 return True;
10565
10566 elsif Designates_T (Parameter_Type (Param_Spec)) then
10567 return True;
10568 end if;
10569
10570 Next (Param_Spec);
10571 end loop;
10572
10573 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
10574 if Nkind (Result_Definition (Acc_Subprg)) =
10575 N_Access_Definition
10576 then
10577 return Mentions_T (Result_Definition (Acc_Subprg));
10578 else
10579 return Designates_T (Result_Definition (Acc_Subprg));
10580 end if;
10581 end if;
10582
10583 return False;
10584 end Mentions_T;
10585
10586 -- Start of processing for Check_Anonymous_Access_Components
10587
10588 begin
10589 if No (Comp_List) then
10590 return;
10591 end if;
10592
10593 Comp := First (Component_Items (Comp_List));
10594 while Present (Comp) loop
10595 if Nkind (Comp) = N_Component_Declaration
10596 and then Present
10597 (Access_Definition (Component_Definition (Comp)))
10598 and then
10599 Mentions_T (Access_Definition (Component_Definition (Comp)))
10600 then
10601 Comp_Def := Component_Definition (Comp);
10602 Acc_Def :=
10603 Access_To_Subprogram_Definition (Access_Definition (Comp_Def));
10604
10605 Build_Incomplete_Type_Declaration;
10606 Anon_Access := Make_Temporary (Loc, 'S');
10607
10608 -- Create a declaration for the anonymous access type: either
10609 -- an access_to_object or an access_to_subprogram.
10610
10611 if Present (Acc_Def) then
10612 if Nkind (Acc_Def) = N_Access_Function_Definition then
10613 Type_Def :=
10614 Make_Access_Function_Definition (Loc,
10615 Parameter_Specifications =>
10616 Parameter_Specifications (Acc_Def),
10617 Result_Definition => Result_Definition (Acc_Def));
10618 else
10619 Type_Def :=
10620 Make_Access_Procedure_Definition (Loc,
10621 Parameter_Specifications =>
10622 Parameter_Specifications (Acc_Def));
10623 end if;
10624
10625 else
10626 Type_Def :=
10627 Make_Access_To_Object_Definition (Loc,
10628 Subtype_Indication =>
10629 Relocate_Node
10630 (Subtype_Mark (Access_Definition (Comp_Def))));
10631
10632 Set_Constant_Present
10633 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
10634 Set_All_Present
10635 (Type_Def, All_Present (Access_Definition (Comp_Def)));
10636 end if;
10637
10638 Set_Null_Exclusion_Present
10639 (Type_Def,
10640 Null_Exclusion_Present (Access_Definition (Comp_Def)));
10641
10642 Decl :=
10643 Make_Full_Type_Declaration (Loc,
10644 Defining_Identifier => Anon_Access,
10645 Type_Definition => Type_Def);
10646
10647 Insert_Before (Typ_Decl, Decl);
10648 Analyze (Decl);
10649
10650 -- If an access to subprogram, create the extra formals
10651
10652 if Present (Acc_Def) then
10653 Create_Extra_Formals (Designated_Type (Anon_Access));
10654
10655 -- If an access to object, preserve entity of designated type,
10656 -- for ASIS use, before rewriting the component definition.
10657
10658 else
10659 declare
10660 Desig : Entity_Id;
10661
10662 begin
10663 Desig := Entity (Subtype_Indication (Type_Def));
10664
10665 -- If the access definition is to the current record,
10666 -- the visible entity at this point is an incomplete
10667 -- type. Retrieve the full view to simplify ASIS queries
10668
10669 if Ekind (Desig) = E_Incomplete_Type then
10670 Desig := Full_View (Desig);
10671 end if;
10672
10673 Set_Entity
10674 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
10675 end;
10676 end if;
10677
10678 Rewrite (Comp_Def,
10679 Make_Component_Definition (Loc,
10680 Subtype_Indication =>
10681 New_Occurrence_Of (Anon_Access, Loc)));
10682
10683 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
10684 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
10685 else
10686 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
10687 end if;
10688
10689 Set_Is_Local_Anonymous_Access (Anon_Access);
10690 end if;
10691
10692 Next (Comp);
10693 end loop;
10694
10695 if Present (Variant_Part (Comp_List)) then
10696 declare
10697 V : Node_Id;
10698 begin
10699 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
10700 while Present (V) loop
10701 Check_Anonymous_Access_Components
10702 (Typ_Decl, Typ, Prev, Component_List (V));
10703 Next_Non_Pragma (V);
10704 end loop;
10705 end;
10706 end if;
10707 end Check_Anonymous_Access_Components;
10708
10709 ----------------------
10710 -- Check_Completion --
10711 ----------------------
10712
10713 procedure Check_Completion (Body_Id : Node_Id := Empty) is
10714 E : Entity_Id;
10715
10716 procedure Post_Error;
10717 -- Post error message for lack of completion for entity E
10718
10719 ----------------
10720 -- Post_Error --
10721 ----------------
10722
10723 procedure Post_Error is
10724
10725 procedure Missing_Body;
10726 -- Output missing body message
10727
10728 ------------------
10729 -- Missing_Body --
10730 ------------------
10731
10732 procedure Missing_Body is
10733 begin
10734 -- Spec is in same unit, so we can post on spec
10735
10736 if In_Same_Source_Unit (Body_Id, E) then
10737 Error_Msg_N ("missing body for &", E);
10738
10739 -- Spec is in a separate unit, so we have to post on the body
10740
10741 else
10742 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
10743 end if;
10744 end Missing_Body;
10745
10746 -- Start of processing for Post_Error
10747
10748 begin
10749 if not Comes_From_Source (E) then
10750
10751 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
10752
10753 -- It may be an anonymous protected type created for a
10754 -- single variable. Post error on variable, if present.
10755
10756 declare
10757 Var : Entity_Id;
10758
10759 begin
10760 Var := First_Entity (Current_Scope);
10761 while Present (Var) loop
10762 exit when Etype (Var) = E
10763 and then Comes_From_Source (Var);
10764
10765 Next_Entity (Var);
10766 end loop;
10767
10768 if Present (Var) then
10769 E := Var;
10770 end if;
10771 end;
10772 end if;
10773 end if;
10774
10775 -- If a generated entity has no completion, then either previous
10776 -- semantic errors have disabled the expansion phase, or else we had
10777 -- missing subunits, or else we are compiling without expansion,
10778 -- or else something is very wrong.
10779
10780 if not Comes_From_Source (E) then
10781 pragma Assert
10782 (Serious_Errors_Detected > 0
10783 or else Configurable_Run_Time_Violations > 0
10784 or else Subunits_Missing
10785 or else not Expander_Active);
10786 return;
10787
10788 -- Here for source entity
10789
10790 else
10791 -- Here if no body to post the error message, so we post the error
10792 -- on the declaration that has no completion. This is not really
10793 -- the right place to post it, think about this later ???
10794
10795 if No (Body_Id) then
10796 if Is_Type (E) then
10797 Error_Msg_NE
10798 ("missing full declaration for }", Parent (E), E);
10799 else
10800 Error_Msg_NE ("missing body for &", Parent (E), E);
10801 end if;
10802
10803 -- Package body has no completion for a declaration that appears
10804 -- in the corresponding spec. Post error on the body, with a
10805 -- reference to the non-completed declaration.
10806
10807 else
10808 Error_Msg_Sloc := Sloc (E);
10809
10810 if Is_Type (E) then
10811 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
10812
10813 elsif Is_Overloadable (E)
10814 and then Current_Entity_In_Scope (E) /= E
10815 then
10816 -- It may be that the completion is mistyped and appears as
10817 -- a distinct overloading of the entity.
10818
10819 declare
10820 Candidate : constant Entity_Id :=
10821 Current_Entity_In_Scope (E);
10822 Decl : constant Node_Id :=
10823 Unit_Declaration_Node (Candidate);
10824
10825 begin
10826 if Is_Overloadable (Candidate)
10827 and then Ekind (Candidate) = Ekind (E)
10828 and then Nkind (Decl) = N_Subprogram_Body
10829 and then Acts_As_Spec (Decl)
10830 then
10831 Check_Type_Conformant (Candidate, E);
10832
10833 else
10834 Missing_Body;
10835 end if;
10836 end;
10837
10838 else
10839 Missing_Body;
10840 end if;
10841 end if;
10842 end if;
10843 end Post_Error;
10844
10845 -- Local variables
10846
10847 Pack_Id : constant Entity_Id := Current_Scope;
10848
10849 -- Start of processing for Check_Completion
10850
10851 begin
10852 E := First_Entity (Pack_Id);
10853 while Present (E) loop
10854 if Is_Intrinsic_Subprogram (E) then
10855 null;
10856
10857 -- A Ghost entity declared in a non-Ghost package does not force the
10858 -- need for a body (SPARK RM 6.9(11)).
10859
10860 elsif not Is_Ghost_Entity (Pack_Id) and then Is_Ghost_Entity (E) then
10861 null;
10862
10863 -- The following situation requires special handling: a child unit
10864 -- that appears in the context clause of the body of its parent:
10865
10866 -- procedure Parent.Child (...);
10867
10868 -- with Parent.Child;
10869 -- package body Parent is
10870
10871 -- Here Parent.Child appears as a local entity, but should not be
10872 -- flagged as requiring completion, because it is a compilation
10873 -- unit.
10874
10875 -- Ignore missing completion for a subprogram that does not come from
10876 -- source (including the _Call primitive operation of RAS types,
10877 -- which has to have the flag Comes_From_Source for other purposes):
10878 -- we assume that the expander will provide the missing completion.
10879 -- In case of previous errors, other expansion actions that provide
10880 -- bodies for null procedures with not be invoked, so inhibit message
10881 -- in those cases.
10882
10883 -- Note that E_Operator is not in the list that follows, because
10884 -- this kind is reserved for predefined operators, that are
10885 -- intrinsic and do not need completion.
10886
10887 elsif Ekind_In (E, E_Function,
10888 E_Procedure,
10889 E_Generic_Function,
10890 E_Generic_Procedure)
10891 then
10892 if Has_Completion (E) then
10893 null;
10894
10895 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
10896 null;
10897
10898 elsif Is_Subprogram (E)
10899 and then (not Comes_From_Source (E)
10900 or else Chars (E) = Name_uCall)
10901 then
10902 null;
10903
10904 elsif
10905 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
10906 then
10907 null;
10908
10909 elsif Nkind (Parent (E)) = N_Procedure_Specification
10910 and then Null_Present (Parent (E))
10911 and then Serious_Errors_Detected > 0
10912 then
10913 null;
10914
10915 else
10916 Post_Error;
10917 end if;
10918
10919 elsif Is_Entry (E) then
10920 if not Has_Completion (E) and then
10921 (Ekind (Scope (E)) = E_Protected_Object
10922 or else Ekind (Scope (E)) = E_Protected_Type)
10923 then
10924 Post_Error;
10925 end if;
10926
10927 elsif Is_Package_Or_Generic_Package (E) then
10928 if Unit_Requires_Body (E) then
10929 if not Has_Completion (E)
10930 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
10931 N_Compilation_Unit
10932 then
10933 Post_Error;
10934 end if;
10935
10936 elsif not Is_Child_Unit (E) then
10937 May_Need_Implicit_Body (E);
10938 end if;
10939
10940 -- A formal incomplete type (Ada 2012) does not require a completion;
10941 -- other incomplete type declarations do.
10942
10943 elsif Ekind (E) = E_Incomplete_Type
10944 and then No (Underlying_Type (E))
10945 and then not Is_Generic_Type (E)
10946 then
10947 Post_Error;
10948
10949 elsif Ekind_In (E, E_Task_Type, E_Protected_Type)
10950 and then not Has_Completion (E)
10951 then
10952 Post_Error;
10953
10954 -- A single task declared in the current scope is a constant, verify
10955 -- that the body of its anonymous type is in the same scope. If the
10956 -- task is defined elsewhere, this may be a renaming declaration for
10957 -- which no completion is needed.
10958
10959 elsif Ekind (E) = E_Constant
10960 and then Ekind (Etype (E)) = E_Task_Type
10961 and then not Has_Completion (Etype (E))
10962 and then Scope (Etype (E)) = Current_Scope
10963 then
10964 Post_Error;
10965
10966 elsif Ekind (E) = E_Protected_Object
10967 and then not Has_Completion (Etype (E))
10968 then
10969 Post_Error;
10970
10971 elsif Ekind (E) = E_Record_Type then
10972 if Is_Tagged_Type (E) then
10973 Check_Abstract_Overriding (E);
10974 Check_Conventions (E);
10975 end if;
10976
10977 Check_Aliased_Component_Types (E);
10978
10979 elsif Ekind (E) = E_Array_Type then
10980 Check_Aliased_Component_Types (E);
10981
10982 end if;
10983
10984 Next_Entity (E);
10985 end loop;
10986 end Check_Completion;
10987
10988 ------------------------------------
10989 -- Check_CPP_Type_Has_No_Defaults --
10990 ------------------------------------
10991
10992 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
10993 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
10994 Clist : Node_Id;
10995 Comp : Node_Id;
10996
10997 begin
10998 -- Obtain the component list
10999
11000 if Nkind (Tdef) = N_Record_Definition then
11001 Clist := Component_List (Tdef);
11002 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
11003 Clist := Component_List (Record_Extension_Part (Tdef));
11004 end if;
11005
11006 -- Check all components to ensure no default expressions
11007
11008 if Present (Clist) then
11009 Comp := First (Component_Items (Clist));
11010 while Present (Comp) loop
11011 if Present (Expression (Comp)) then
11012 Error_Msg_N
11013 ("component of imported 'C'P'P type cannot have "
11014 & "default expression", Expression (Comp));
11015 end if;
11016
11017 Next (Comp);
11018 end loop;
11019 end if;
11020 end Check_CPP_Type_Has_No_Defaults;
11021
11022 ----------------------------
11023 -- Check_Delta_Expression --
11024 ----------------------------
11025
11026 procedure Check_Delta_Expression (E : Node_Id) is
11027 begin
11028 if not (Is_Real_Type (Etype (E))) then
11029 Wrong_Type (E, Any_Real);
11030
11031 elsif not Is_OK_Static_Expression (E) then
11032 Flag_Non_Static_Expr
11033 ("non-static expression used for delta value!", E);
11034
11035 elsif not UR_Is_Positive (Expr_Value_R (E)) then
11036 Error_Msg_N ("delta expression must be positive", E);
11037
11038 else
11039 return;
11040 end if;
11041
11042 -- If any of above errors occurred, then replace the incorrect
11043 -- expression by the real 0.1, which should prevent further errors.
11044
11045 Rewrite (E,
11046 Make_Real_Literal (Sloc (E), Ureal_Tenth));
11047 Analyze_And_Resolve (E, Standard_Float);
11048 end Check_Delta_Expression;
11049
11050 -----------------------------
11051 -- Check_Digits_Expression --
11052 -----------------------------
11053
11054 procedure Check_Digits_Expression (E : Node_Id) is
11055 begin
11056 if not (Is_Integer_Type (Etype (E))) then
11057 Wrong_Type (E, Any_Integer);
11058
11059 elsif not Is_OK_Static_Expression (E) then
11060 Flag_Non_Static_Expr
11061 ("non-static expression used for digits value!", E);
11062
11063 elsif Expr_Value (E) <= 0 then
11064 Error_Msg_N ("digits value must be greater than zero", E);
11065
11066 else
11067 return;
11068 end if;
11069
11070 -- If any of above errors occurred, then replace the incorrect
11071 -- expression by the integer 1, which should prevent further errors.
11072
11073 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
11074 Analyze_And_Resolve (E, Standard_Integer);
11075
11076 end Check_Digits_Expression;
11077
11078 --------------------------
11079 -- Check_Initialization --
11080 --------------------------
11081
11082 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
11083 begin
11084 -- Special processing for limited types
11085
11086 if Is_Limited_Type (T)
11087 and then not In_Instance
11088 and then not In_Inlined_Body
11089 then
11090 if not OK_For_Limited_Init (T, Exp) then
11091
11092 -- In GNAT mode, this is just a warning, to allow it to be evilly
11093 -- turned off. Otherwise it is a real error.
11094
11095 if GNAT_Mode then
11096 Error_Msg_N
11097 ("??cannot initialize entities of limited type!", Exp);
11098
11099 elsif Ada_Version < Ada_2005 then
11100
11101 -- The side effect removal machinery may generate illegal Ada
11102 -- code to avoid the usage of access types and 'reference in
11103 -- SPARK mode. Since this is legal code with respect to theorem
11104 -- proving, do not emit the error.
11105
11106 if GNATprove_Mode
11107 and then Nkind (Exp) = N_Function_Call
11108 and then Nkind (Parent (Exp)) = N_Object_Declaration
11109 and then not Comes_From_Source
11110 (Defining_Identifier (Parent (Exp)))
11111 then
11112 null;
11113
11114 else
11115 Error_Msg_N
11116 ("cannot initialize entities of limited type", Exp);
11117 Explain_Limited_Type (T, Exp);
11118 end if;
11119
11120 else
11121 -- Specialize error message according to kind of illegal
11122 -- initial expression.
11123
11124 if Nkind (Exp) = N_Type_Conversion
11125 and then Nkind (Expression (Exp)) = N_Function_Call
11126 then
11127 Error_Msg_N
11128 ("illegal context for call"
11129 & " to function with limited result", Exp);
11130
11131 else
11132 Error_Msg_N
11133 ("initialization of limited object requires aggregate "
11134 & "or function call", Exp);
11135 end if;
11136 end if;
11137 end if;
11138 end if;
11139
11140 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11141 -- set unless we can be sure that no range check is required.
11142
11143 if (GNATprove_Mode or not Expander_Active)
11144 and then Is_Scalar_Type (T)
11145 and then not Is_In_Range (Exp, T, Assume_Valid => True)
11146 then
11147 Set_Do_Range_Check (Exp);
11148 end if;
11149 end Check_Initialization;
11150
11151 ----------------------
11152 -- Check_Interfaces --
11153 ----------------------
11154
11155 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
11156 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
11157
11158 Iface : Node_Id;
11159 Iface_Def : Node_Id;
11160 Iface_Typ : Entity_Id;
11161 Parent_Node : Node_Id;
11162
11163 Is_Task : Boolean := False;
11164 -- Set True if parent type or any progenitor is a task interface
11165
11166 Is_Protected : Boolean := False;
11167 -- Set True if parent type or any progenitor is a protected interface
11168
11169 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
11170 -- Check that a progenitor is compatible with declaration. If an error
11171 -- message is output, it is posted on Error_Node.
11172
11173 ------------------
11174 -- Check_Ifaces --
11175 ------------------
11176
11177 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
11178 Iface_Id : constant Entity_Id :=
11179 Defining_Identifier (Parent (Iface_Def));
11180 Type_Def : Node_Id;
11181
11182 begin
11183 if Nkind (N) = N_Private_Extension_Declaration then
11184 Type_Def := N;
11185 else
11186 Type_Def := Type_Definition (N);
11187 end if;
11188
11189 if Is_Task_Interface (Iface_Id) then
11190 Is_Task := True;
11191
11192 elsif Is_Protected_Interface (Iface_Id) then
11193 Is_Protected := True;
11194 end if;
11195
11196 if Is_Synchronized_Interface (Iface_Id) then
11197
11198 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11199 -- extension derived from a synchronized interface must explicitly
11200 -- be declared synchronized, because the full view will be a
11201 -- synchronized type.
11202
11203 if Nkind (N) = N_Private_Extension_Declaration then
11204 if not Synchronized_Present (N) then
11205 Error_Msg_NE
11206 ("private extension of& must be explicitly synchronized",
11207 N, Iface_Id);
11208 end if;
11209
11210 -- However, by 3.9.4(16/2), a full type that is a record extension
11211 -- is never allowed to derive from a synchronized interface (note
11212 -- that interfaces must be excluded from this check, because those
11213 -- are represented by derived type definitions in some cases).
11214
11215 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11216 and then not Interface_Present (Type_Definition (N))
11217 then
11218 Error_Msg_N ("record extension cannot derive from synchronized "
11219 & "interface", Error_Node);
11220 end if;
11221 end if;
11222
11223 -- Check that the characteristics of the progenitor are compatible
11224 -- with the explicit qualifier in the declaration.
11225 -- The check only applies to qualifiers that come from source.
11226 -- Limited_Present also appears in the declaration of corresponding
11227 -- records, and the check does not apply to them.
11228
11229 if Limited_Present (Type_Def)
11230 and then not
11231 Is_Concurrent_Record_Type (Defining_Identifier (N))
11232 then
11233 if Is_Limited_Interface (Parent_Type)
11234 and then not Is_Limited_Interface (Iface_Id)
11235 then
11236 Error_Msg_NE
11237 ("progenitor & must be limited interface",
11238 Error_Node, Iface_Id);
11239
11240 elsif
11241 (Task_Present (Iface_Def)
11242 or else Protected_Present (Iface_Def)
11243 or else Synchronized_Present (Iface_Def))
11244 and then Nkind (N) /= N_Private_Extension_Declaration
11245 and then not Error_Posted (N)
11246 then
11247 Error_Msg_NE
11248 ("progenitor & must be limited interface",
11249 Error_Node, Iface_Id);
11250 end if;
11251
11252 -- Protected interfaces can only inherit from limited, synchronized
11253 -- or protected interfaces.
11254
11255 elsif Nkind (N) = N_Full_Type_Declaration
11256 and then Protected_Present (Type_Def)
11257 then
11258 if Limited_Present (Iface_Def)
11259 or else Synchronized_Present (Iface_Def)
11260 or else Protected_Present (Iface_Def)
11261 then
11262 null;
11263
11264 elsif Task_Present (Iface_Def) then
11265 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11266 & "from task interface", Error_Node);
11267
11268 else
11269 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11270 & "from non-limited interface", Error_Node);
11271 end if;
11272
11273 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11274 -- limited and synchronized.
11275
11276 elsif Synchronized_Present (Type_Def) then
11277 if Limited_Present (Iface_Def)
11278 or else Synchronized_Present (Iface_Def)
11279 then
11280 null;
11281
11282 elsif Protected_Present (Iface_Def)
11283 and then Nkind (N) /= N_Private_Extension_Declaration
11284 then
11285 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11286 & "from protected interface", Error_Node);
11287
11288 elsif Task_Present (Iface_Def)
11289 and then Nkind (N) /= N_Private_Extension_Declaration
11290 then
11291 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11292 & "from task interface", Error_Node);
11293
11294 elsif not Is_Limited_Interface (Iface_Id) then
11295 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11296 & "from non-limited interface", Error_Node);
11297 end if;
11298
11299 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
11300 -- synchronized or task interfaces.
11301
11302 elsif Nkind (N) = N_Full_Type_Declaration
11303 and then Task_Present (Type_Def)
11304 then
11305 if Limited_Present (Iface_Def)
11306 or else Synchronized_Present (Iface_Def)
11307 or else Task_Present (Iface_Def)
11308 then
11309 null;
11310
11311 elsif Protected_Present (Iface_Def) then
11312 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11313 & "protected interface", Error_Node);
11314
11315 else
11316 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11317 & "non-limited interface", Error_Node);
11318 end if;
11319 end if;
11320 end Check_Ifaces;
11321
11322 -- Start of processing for Check_Interfaces
11323
11324 begin
11325 if Is_Interface (Parent_Type) then
11326 if Is_Task_Interface (Parent_Type) then
11327 Is_Task := True;
11328
11329 elsif Is_Protected_Interface (Parent_Type) then
11330 Is_Protected := True;
11331 end if;
11332 end if;
11333
11334 if Nkind (N) = N_Private_Extension_Declaration then
11335
11336 -- Check that progenitors are compatible with declaration
11337
11338 Iface := First (Interface_List (Def));
11339 while Present (Iface) loop
11340 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11341
11342 Parent_Node := Parent (Base_Type (Iface_Typ));
11343 Iface_Def := Type_Definition (Parent_Node);
11344
11345 if not Is_Interface (Iface_Typ) then
11346 Diagnose_Interface (Iface, Iface_Typ);
11347 else
11348 Check_Ifaces (Iface_Def, Iface);
11349 end if;
11350
11351 Next (Iface);
11352 end loop;
11353
11354 if Is_Task and Is_Protected then
11355 Error_Msg_N
11356 ("type cannot derive from task and protected interface", N);
11357 end if;
11358
11359 return;
11360 end if;
11361
11362 -- Full type declaration of derived type.
11363 -- Check compatibility with parent if it is interface type
11364
11365 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11366 and then Is_Interface (Parent_Type)
11367 then
11368 Parent_Node := Parent (Parent_Type);
11369
11370 -- More detailed checks for interface varieties
11371
11372 Check_Ifaces
11373 (Iface_Def => Type_Definition (Parent_Node),
11374 Error_Node => Subtype_Indication (Type_Definition (N)));
11375 end if;
11376
11377 Iface := First (Interface_List (Def));
11378 while Present (Iface) loop
11379 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11380
11381 Parent_Node := Parent (Base_Type (Iface_Typ));
11382 Iface_Def := Type_Definition (Parent_Node);
11383
11384 if not Is_Interface (Iface_Typ) then
11385 Diagnose_Interface (Iface, Iface_Typ);
11386
11387 else
11388 -- "The declaration of a specific descendant of an interface
11389 -- type freezes the interface type" RM 13.14
11390
11391 Freeze_Before (N, Iface_Typ);
11392 Check_Ifaces (Iface_Def, Error_Node => Iface);
11393 end if;
11394
11395 Next (Iface);
11396 end loop;
11397
11398 if Is_Task and Is_Protected then
11399 Error_Msg_N
11400 ("type cannot derive from task and protected interface", N);
11401 end if;
11402 end Check_Interfaces;
11403
11404 ------------------------------------
11405 -- Check_Or_Process_Discriminants --
11406 ------------------------------------
11407
11408 -- If an incomplete or private type declaration was already given for the
11409 -- type, the discriminants may have already been processed if they were
11410 -- present on the incomplete declaration. In this case a full conformance
11411 -- check has been performed in Find_Type_Name, and we then recheck here
11412 -- some properties that can't be checked on the partial view alone.
11413 -- Otherwise we call Process_Discriminants.
11414
11415 procedure Check_Or_Process_Discriminants
11416 (N : Node_Id;
11417 T : Entity_Id;
11418 Prev : Entity_Id := Empty)
11419 is
11420 begin
11421 if Has_Discriminants (T) then
11422
11423 -- Discriminants are already set on T if they were already present
11424 -- on the partial view. Make them visible to component declarations.
11425
11426 declare
11427 D : Entity_Id;
11428 -- Discriminant on T (full view) referencing expr on partial view
11429
11430 Prev_D : Entity_Id;
11431 -- Entity of corresponding discriminant on partial view
11432
11433 New_D : Node_Id;
11434 -- Discriminant specification for full view, expression is
11435 -- the syntactic copy on full view (which has been checked for
11436 -- conformance with partial view), only used here to post error
11437 -- message.
11438
11439 begin
11440 D := First_Discriminant (T);
11441 New_D := First (Discriminant_Specifications (N));
11442 while Present (D) loop
11443 Prev_D := Current_Entity (D);
11444 Set_Current_Entity (D);
11445 Set_Is_Immediately_Visible (D);
11446 Set_Homonym (D, Prev_D);
11447
11448 -- Handle the case where there is an untagged partial view and
11449 -- the full view is tagged: must disallow discriminants with
11450 -- defaults, unless compiling for Ada 2012, which allows a
11451 -- limited tagged type to have defaulted discriminants (see
11452 -- AI05-0214). However, suppress error here if it was already
11453 -- reported on the default expression of the partial view.
11454
11455 if Is_Tagged_Type (T)
11456 and then Present (Expression (Parent (D)))
11457 and then (not Is_Limited_Type (Current_Scope)
11458 or else Ada_Version < Ada_2012)
11459 and then not Error_Posted (Expression (Parent (D)))
11460 then
11461 if Ada_Version >= Ada_2012 then
11462 Error_Msg_N
11463 ("discriminants of nonlimited tagged type cannot have "
11464 & "defaults",
11465 Expression (New_D));
11466 else
11467 Error_Msg_N
11468 ("discriminants of tagged type cannot have defaults",
11469 Expression (New_D));
11470 end if;
11471 end if;
11472
11473 -- Ada 2005 (AI-230): Access discriminant allowed in
11474 -- non-limited record types.
11475
11476 if Ada_Version < Ada_2005 then
11477
11478 -- This restriction gets applied to the full type here. It
11479 -- has already been applied earlier to the partial view.
11480
11481 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
11482 end if;
11483
11484 Next_Discriminant (D);
11485 Next (New_D);
11486 end loop;
11487 end;
11488
11489 elsif Present (Discriminant_Specifications (N)) then
11490 Process_Discriminants (N, Prev);
11491 end if;
11492 end Check_Or_Process_Discriminants;
11493
11494 ----------------------
11495 -- Check_Real_Bound --
11496 ----------------------
11497
11498 procedure Check_Real_Bound (Bound : Node_Id) is
11499 begin
11500 if not Is_Real_Type (Etype (Bound)) then
11501 Error_Msg_N
11502 ("bound in real type definition must be of real type", Bound);
11503
11504 elsif not Is_OK_Static_Expression (Bound) then
11505 Flag_Non_Static_Expr
11506 ("non-static expression used for real type bound!", Bound);
11507
11508 else
11509 return;
11510 end if;
11511
11512 Rewrite
11513 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
11514 Analyze (Bound);
11515 Resolve (Bound, Standard_Float);
11516 end Check_Real_Bound;
11517
11518 ------------------------------
11519 -- Complete_Private_Subtype --
11520 ------------------------------
11521
11522 procedure Complete_Private_Subtype
11523 (Priv : Entity_Id;
11524 Full : Entity_Id;
11525 Full_Base : Entity_Id;
11526 Related_Nod : Node_Id)
11527 is
11528 Save_Next_Entity : Entity_Id;
11529 Save_Homonym : Entity_Id;
11530
11531 begin
11532 -- Set semantic attributes for (implicit) private subtype completion.
11533 -- If the full type has no discriminants, then it is a copy of the
11534 -- full view of the base. Otherwise, it is a subtype of the base with
11535 -- a possible discriminant constraint. Save and restore the original
11536 -- Next_Entity field of full to ensure that the calls to Copy_Node do
11537 -- not corrupt the entity chain.
11538
11539 -- Note that the type of the full view is the same entity as the type
11540 -- of the partial view. In this fashion, the subtype has access to the
11541 -- correct view of the parent.
11542
11543 Save_Next_Entity := Next_Entity (Full);
11544 Save_Homonym := Homonym (Priv);
11545
11546 case Ekind (Full_Base) is
11547 when E_Record_Type |
11548 E_Record_Subtype |
11549 Class_Wide_Kind |
11550 Private_Kind |
11551 Task_Kind |
11552 Protected_Kind =>
11553 Copy_Node (Priv, Full);
11554
11555 Set_Has_Discriminants
11556 (Full, Has_Discriminants (Full_Base));
11557 Set_Has_Unknown_Discriminants
11558 (Full, Has_Unknown_Discriminants (Full_Base));
11559 Set_First_Entity (Full, First_Entity (Full_Base));
11560 Set_Last_Entity (Full, Last_Entity (Full_Base));
11561
11562 -- If the underlying base type is constrained, we know that the
11563 -- full view of the subtype is constrained as well (the converse
11564 -- is not necessarily true).
11565
11566 if Is_Constrained (Full_Base) then
11567 Set_Is_Constrained (Full);
11568 end if;
11569
11570 when others =>
11571 Copy_Node (Full_Base, Full);
11572
11573 Set_Chars (Full, Chars (Priv));
11574 Conditional_Delay (Full, Priv);
11575 Set_Sloc (Full, Sloc (Priv));
11576 end case;
11577
11578 Set_Next_Entity (Full, Save_Next_Entity);
11579 Set_Homonym (Full, Save_Homonym);
11580 Set_Associated_Node_For_Itype (Full, Related_Nod);
11581
11582 -- Set common attributes for all subtypes: kind, convention, etc.
11583
11584 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
11585 Set_Convention (Full, Convention (Full_Base));
11586
11587 -- The Etype of the full view is inconsistent. Gigi needs to see the
11588 -- structural full view, which is what the current scheme gives: the
11589 -- Etype of the full view is the etype of the full base. However, if the
11590 -- full base is a derived type, the full view then looks like a subtype
11591 -- of the parent, not a subtype of the full base. If instead we write:
11592
11593 -- Set_Etype (Full, Full_Base);
11594
11595 -- then we get inconsistencies in the front-end (confusion between
11596 -- views). Several outstanding bugs are related to this ???
11597
11598 Set_Is_First_Subtype (Full, False);
11599 Set_Scope (Full, Scope (Priv));
11600 Set_Size_Info (Full, Full_Base);
11601 Set_RM_Size (Full, RM_Size (Full_Base));
11602 Set_Is_Itype (Full);
11603
11604 -- A subtype of a private-type-without-discriminants, whose full-view
11605 -- has discriminants with default expressions, is not constrained.
11606
11607 if not Has_Discriminants (Priv) then
11608 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
11609
11610 if Has_Discriminants (Full_Base) then
11611 Set_Discriminant_Constraint
11612 (Full, Discriminant_Constraint (Full_Base));
11613
11614 -- The partial view may have been indefinite, the full view
11615 -- might not be.
11616
11617 Set_Has_Unknown_Discriminants
11618 (Full, Has_Unknown_Discriminants (Full_Base));
11619 end if;
11620 end if;
11621
11622 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
11623 Set_Depends_On_Private (Full, Has_Private_Component (Full));
11624
11625 -- Freeze the private subtype entity if its parent is delayed, and not
11626 -- already frozen. We skip this processing if the type is an anonymous
11627 -- subtype of a record component, or is the corresponding record of a
11628 -- protected type, since ???
11629
11630 if not Is_Type (Scope (Full)) then
11631 Set_Has_Delayed_Freeze (Full,
11632 Has_Delayed_Freeze (Full_Base)
11633 and then (not Is_Frozen (Full_Base)));
11634 end if;
11635
11636 Set_Freeze_Node (Full, Empty);
11637 Set_Is_Frozen (Full, False);
11638 Set_Full_View (Priv, Full);
11639
11640 if Has_Discriminants (Full) then
11641 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
11642 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
11643
11644 if Has_Unknown_Discriminants (Full) then
11645 Set_Discriminant_Constraint (Full, No_Elist);
11646 end if;
11647 end if;
11648
11649 if Ekind (Full_Base) = E_Record_Type
11650 and then Has_Discriminants (Full_Base)
11651 and then Has_Discriminants (Priv) -- might not, if errors
11652 and then not Has_Unknown_Discriminants (Priv)
11653 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
11654 then
11655 Create_Constrained_Components
11656 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
11657
11658 -- If the full base is itself derived from private, build a congruent
11659 -- subtype of its underlying type, for use by the back end. For a
11660 -- constrained record component, the declaration cannot be placed on
11661 -- the component list, but it must nevertheless be built an analyzed, to
11662 -- supply enough information for Gigi to compute the size of component.
11663
11664 elsif Ekind (Full_Base) in Private_Kind
11665 and then Is_Derived_Type (Full_Base)
11666 and then Has_Discriminants (Full_Base)
11667 and then (Ekind (Current_Scope) /= E_Record_Subtype)
11668 then
11669 if not Is_Itype (Priv)
11670 and then
11671 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
11672 then
11673 Build_Underlying_Full_View
11674 (Parent (Priv), Full, Etype (Full_Base));
11675
11676 elsif Nkind (Related_Nod) = N_Component_Declaration then
11677 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
11678 end if;
11679
11680 elsif Is_Record_Type (Full_Base) then
11681
11682 -- Show Full is simply a renaming of Full_Base
11683
11684 Set_Cloned_Subtype (Full, Full_Base);
11685 end if;
11686
11687 -- It is unsafe to share the bounds of a scalar type, because the Itype
11688 -- is elaborated on demand, and if a bound is non-static then different
11689 -- orders of elaboration in different units will lead to different
11690 -- external symbols.
11691
11692 if Is_Scalar_Type (Full_Base) then
11693 Set_Scalar_Range (Full,
11694 Make_Range (Sloc (Related_Nod),
11695 Low_Bound =>
11696 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
11697 High_Bound =>
11698 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
11699
11700 -- This completion inherits the bounds of the full parent, but if
11701 -- the parent is an unconstrained floating point type, so is the
11702 -- completion.
11703
11704 if Is_Floating_Point_Type (Full_Base) then
11705 Set_Includes_Infinities
11706 (Scalar_Range (Full), Has_Infinities (Full_Base));
11707 end if;
11708 end if;
11709
11710 -- ??? It seems that a lot of fields are missing that should be copied
11711 -- from Full_Base to Full. Here are some that are introduced in a
11712 -- non-disruptive way but a cleanup is necessary.
11713
11714 if Is_Tagged_Type (Full_Base) then
11715 Set_Is_Tagged_Type (Full);
11716 Set_Direct_Primitive_Operations
11717 (Full, Direct_Primitive_Operations (Full_Base));
11718 Set_No_Tagged_Streams_Pragma
11719 (Full, No_Tagged_Streams_Pragma (Full_Base));
11720
11721 -- Inherit class_wide type of full_base in case the partial view was
11722 -- not tagged. Otherwise it has already been created when the private
11723 -- subtype was analyzed.
11724
11725 if No (Class_Wide_Type (Full)) then
11726 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
11727 end if;
11728
11729 -- If this is a subtype of a protected or task type, constrain its
11730 -- corresponding record, unless this is a subtype without constraints,
11731 -- i.e. a simple renaming as with an actual subtype in an instance.
11732
11733 elsif Is_Concurrent_Type (Full_Base) then
11734 if Has_Discriminants (Full)
11735 and then Present (Corresponding_Record_Type (Full_Base))
11736 and then
11737 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
11738 then
11739 Set_Corresponding_Record_Type (Full,
11740 Constrain_Corresponding_Record
11741 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
11742
11743 else
11744 Set_Corresponding_Record_Type (Full,
11745 Corresponding_Record_Type (Full_Base));
11746 end if;
11747 end if;
11748
11749 -- Link rep item chain, and also setting of Has_Predicates from private
11750 -- subtype to full subtype, since we will need these on the full subtype
11751 -- to create the predicate function. Note that the full subtype may
11752 -- already have rep items, inherited from the full view of the base
11753 -- type, so we must be sure not to overwrite these entries.
11754
11755 declare
11756 Append : Boolean;
11757 Item : Node_Id;
11758 Next_Item : Node_Id;
11759
11760 begin
11761 Item := First_Rep_Item (Full);
11762
11763 -- If no existing rep items on full type, we can just link directly
11764 -- to the list of items on the private type, if any exist.. Same if
11765 -- the rep items are only those inherited from the base
11766
11767 if (No (Item)
11768 or else Nkind (Item) /= N_Aspect_Specification
11769 or else Entity (Item) = Full_Base)
11770 and then Present (First_Rep_Item (Priv))
11771 then
11772 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
11773
11774 -- Otherwise, search to the end of items currently linked to the full
11775 -- subtype and append the private items to the end. However, if Priv
11776 -- and Full already have the same list of rep items, then the append
11777 -- is not done, as that would create a circularity.
11778
11779 elsif Item /= First_Rep_Item (Priv) then
11780 Append := True;
11781 loop
11782 Next_Item := Next_Rep_Item (Item);
11783 exit when No (Next_Item);
11784 Item := Next_Item;
11785
11786 -- If the private view has aspect specifications, the full view
11787 -- inherits them. Since these aspects may already have been
11788 -- attached to the full view during derivation, do not append
11789 -- them if already present.
11790
11791 if Item = First_Rep_Item (Priv) then
11792 Append := False;
11793 exit;
11794 end if;
11795 end loop;
11796
11797 -- And link the private type items at the end of the chain
11798
11799 if Append then
11800 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
11801 end if;
11802 end if;
11803 end;
11804
11805 -- Make sure Has_Predicates is set on full type if it is set on the
11806 -- private type. Note that it may already be set on the full type and
11807 -- if so, we don't want to unset it.
11808
11809 if Has_Predicates (Priv) then
11810 Set_Has_Predicates (Full);
11811 end if;
11812 end Complete_Private_Subtype;
11813
11814 ----------------------------
11815 -- Constant_Redeclaration --
11816 ----------------------------
11817
11818 procedure Constant_Redeclaration
11819 (Id : Entity_Id;
11820 N : Node_Id;
11821 T : out Entity_Id)
11822 is
11823 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
11824 Obj_Def : constant Node_Id := Object_Definition (N);
11825 New_T : Entity_Id;
11826
11827 procedure Check_Possible_Deferred_Completion
11828 (Prev_Id : Entity_Id;
11829 Prev_Obj_Def : Node_Id;
11830 Curr_Obj_Def : Node_Id);
11831 -- Determine whether the two object definitions describe the partial
11832 -- and the full view of a constrained deferred constant. Generate
11833 -- a subtype for the full view and verify that it statically matches
11834 -- the subtype of the partial view.
11835
11836 procedure Check_Recursive_Declaration (Typ : Entity_Id);
11837 -- If deferred constant is an access type initialized with an allocator,
11838 -- check whether there is an illegal recursion in the definition,
11839 -- through a default value of some record subcomponent. This is normally
11840 -- detected when generating init procs, but requires this additional
11841 -- mechanism when expansion is disabled.
11842
11843 ----------------------------------------
11844 -- Check_Possible_Deferred_Completion --
11845 ----------------------------------------
11846
11847 procedure Check_Possible_Deferred_Completion
11848 (Prev_Id : Entity_Id;
11849 Prev_Obj_Def : Node_Id;
11850 Curr_Obj_Def : Node_Id)
11851 is
11852 begin
11853 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
11854 and then Present (Constraint (Prev_Obj_Def))
11855 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
11856 and then Present (Constraint (Curr_Obj_Def))
11857 then
11858 declare
11859 Loc : constant Source_Ptr := Sloc (N);
11860 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
11861 Decl : constant Node_Id :=
11862 Make_Subtype_Declaration (Loc,
11863 Defining_Identifier => Def_Id,
11864 Subtype_Indication =>
11865 Relocate_Node (Curr_Obj_Def));
11866
11867 begin
11868 Insert_Before_And_Analyze (N, Decl);
11869 Set_Etype (Id, Def_Id);
11870
11871 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
11872 Error_Msg_Sloc := Sloc (Prev_Id);
11873 Error_Msg_N ("subtype does not statically match deferred "
11874 & "declaration #", N);
11875 end if;
11876 end;
11877 end if;
11878 end Check_Possible_Deferred_Completion;
11879
11880 ---------------------------------
11881 -- Check_Recursive_Declaration --
11882 ---------------------------------
11883
11884 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
11885 Comp : Entity_Id;
11886
11887 begin
11888 if Is_Record_Type (Typ) then
11889 Comp := First_Component (Typ);
11890 while Present (Comp) loop
11891 if Comes_From_Source (Comp) then
11892 if Present (Expression (Parent (Comp)))
11893 and then Is_Entity_Name (Expression (Parent (Comp)))
11894 and then Entity (Expression (Parent (Comp))) = Prev
11895 then
11896 Error_Msg_Sloc := Sloc (Parent (Comp));
11897 Error_Msg_NE
11898 ("illegal circularity with declaration for & #",
11899 N, Comp);
11900 return;
11901
11902 elsif Is_Record_Type (Etype (Comp)) then
11903 Check_Recursive_Declaration (Etype (Comp));
11904 end if;
11905 end if;
11906
11907 Next_Component (Comp);
11908 end loop;
11909 end if;
11910 end Check_Recursive_Declaration;
11911
11912 -- Start of processing for Constant_Redeclaration
11913
11914 begin
11915 if Nkind (Parent (Prev)) = N_Object_Declaration then
11916 if Nkind (Object_Definition
11917 (Parent (Prev))) = N_Subtype_Indication
11918 then
11919 -- Find type of new declaration. The constraints of the two
11920 -- views must match statically, but there is no point in
11921 -- creating an itype for the full view.
11922
11923 if Nkind (Obj_Def) = N_Subtype_Indication then
11924 Find_Type (Subtype_Mark (Obj_Def));
11925 New_T := Entity (Subtype_Mark (Obj_Def));
11926
11927 else
11928 Find_Type (Obj_Def);
11929 New_T := Entity (Obj_Def);
11930 end if;
11931
11932 T := Etype (Prev);
11933
11934 else
11935 -- The full view may impose a constraint, even if the partial
11936 -- view does not, so construct the subtype.
11937
11938 New_T := Find_Type_Of_Object (Obj_Def, N);
11939 T := New_T;
11940 end if;
11941
11942 else
11943 -- Current declaration is illegal, diagnosed below in Enter_Name
11944
11945 T := Empty;
11946 New_T := Any_Type;
11947 end if;
11948
11949 -- If previous full declaration or a renaming declaration exists, or if
11950 -- a homograph is present, let Enter_Name handle it, either with an
11951 -- error or with the removal of an overridden implicit subprogram.
11952 -- The previous one is a full declaration if it has an expression
11953 -- (which in the case of an aggregate is indicated by the Init flag).
11954
11955 if Ekind (Prev) /= E_Constant
11956 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
11957 or else Present (Expression (Parent (Prev)))
11958 or else Has_Init_Expression (Parent (Prev))
11959 or else Present (Full_View (Prev))
11960 then
11961 Enter_Name (Id);
11962
11963 -- Verify that types of both declarations match, or else that both types
11964 -- are anonymous access types whose designated subtypes statically match
11965 -- (as allowed in Ada 2005 by AI-385).
11966
11967 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
11968 and then
11969 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
11970 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
11971 or else Is_Access_Constant (Etype (New_T)) /=
11972 Is_Access_Constant (Etype (Prev))
11973 or else Can_Never_Be_Null (Etype (New_T)) /=
11974 Can_Never_Be_Null (Etype (Prev))
11975 or else Null_Exclusion_Present (Parent (Prev)) /=
11976 Null_Exclusion_Present (Parent (Id))
11977 or else not Subtypes_Statically_Match
11978 (Designated_Type (Etype (Prev)),
11979 Designated_Type (Etype (New_T))))
11980 then
11981 Error_Msg_Sloc := Sloc (Prev);
11982 Error_Msg_N ("type does not match declaration#", N);
11983 Set_Full_View (Prev, Id);
11984 Set_Etype (Id, Any_Type);
11985
11986 -- A deferred constant whose type is an anonymous array is always
11987 -- illegal (unless imported). A detailed error message might be
11988 -- helpful for Ada beginners.
11989
11990 if Nkind (Object_Definition (Parent (Prev)))
11991 = N_Constrained_Array_Definition
11992 and then Nkind (Object_Definition (N))
11993 = N_Constrained_Array_Definition
11994 then
11995 Error_Msg_N ("\each anonymous array is a distinct type", N);
11996 Error_Msg_N ("a deferred constant must have a named type",
11997 Object_Definition (Parent (Prev)));
11998 end if;
11999
12000 elsif
12001 Null_Exclusion_Present (Parent (Prev))
12002 and then not Null_Exclusion_Present (N)
12003 then
12004 Error_Msg_Sloc := Sloc (Prev);
12005 Error_Msg_N ("null-exclusion does not match declaration#", N);
12006 Set_Full_View (Prev, Id);
12007 Set_Etype (Id, Any_Type);
12008
12009 -- If so, process the full constant declaration
12010
12011 else
12012 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
12013 -- the deferred declaration is constrained, then the subtype defined
12014 -- by the subtype_indication in the full declaration shall match it
12015 -- statically.
12016
12017 Check_Possible_Deferred_Completion
12018 (Prev_Id => Prev,
12019 Prev_Obj_Def => Object_Definition (Parent (Prev)),
12020 Curr_Obj_Def => Obj_Def);
12021
12022 Set_Full_View (Prev, Id);
12023 Set_Is_Public (Id, Is_Public (Prev));
12024 Set_Is_Internal (Id);
12025 Append_Entity (Id, Current_Scope);
12026
12027 -- Check ALIASED present if present before (RM 7.4(7))
12028
12029 if Is_Aliased (Prev)
12030 and then not Aliased_Present (N)
12031 then
12032 Error_Msg_Sloc := Sloc (Prev);
12033 Error_Msg_N ("ALIASED required (see declaration #)", N);
12034 end if;
12035
12036 -- Check that placement is in private part and that the incomplete
12037 -- declaration appeared in the visible part.
12038
12039 if Ekind (Current_Scope) = E_Package
12040 and then not In_Private_Part (Current_Scope)
12041 then
12042 Error_Msg_Sloc := Sloc (Prev);
12043 Error_Msg_N
12044 ("full constant for declaration # must be in private part", N);
12045
12046 elsif Ekind (Current_Scope) = E_Package
12047 and then
12048 List_Containing (Parent (Prev)) /=
12049 Visible_Declarations (Package_Specification (Current_Scope))
12050 then
12051 Error_Msg_N
12052 ("deferred constant must be declared in visible part",
12053 Parent (Prev));
12054 end if;
12055
12056 if Is_Access_Type (T)
12057 and then Nkind (Expression (N)) = N_Allocator
12058 then
12059 Check_Recursive_Declaration (Designated_Type (T));
12060 end if;
12061
12062 -- A deferred constant is a visible entity. If type has invariants,
12063 -- verify that the initial value satisfies them.
12064
12065 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
12066 Insert_After (N,
12067 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
12068 end if;
12069 end if;
12070 end Constant_Redeclaration;
12071
12072 ----------------------
12073 -- Constrain_Access --
12074 ----------------------
12075
12076 procedure Constrain_Access
12077 (Def_Id : in out Entity_Id;
12078 S : Node_Id;
12079 Related_Nod : Node_Id)
12080 is
12081 T : constant Entity_Id := Entity (Subtype_Mark (S));
12082 Desig_Type : constant Entity_Id := Designated_Type (T);
12083 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
12084 Constraint_OK : Boolean := True;
12085
12086 begin
12087 if Is_Array_Type (Desig_Type) then
12088 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
12089
12090 elsif (Is_Record_Type (Desig_Type)
12091 or else Is_Incomplete_Or_Private_Type (Desig_Type))
12092 and then not Is_Constrained (Desig_Type)
12093 then
12094 -- ??? The following code is a temporary bypass to ignore a
12095 -- discriminant constraint on access type if it is constraining
12096 -- the current record. Avoid creating the implicit subtype of the
12097 -- record we are currently compiling since right now, we cannot
12098 -- handle these. For now, just return the access type itself.
12099
12100 if Desig_Type = Current_Scope
12101 and then No (Def_Id)
12102 then
12103 Set_Ekind (Desig_Subtype, E_Record_Subtype);
12104 Def_Id := Entity (Subtype_Mark (S));
12105
12106 -- This call added to ensure that the constraint is analyzed
12107 -- (needed for a B test). Note that we still return early from
12108 -- this procedure to avoid recursive processing. ???
12109
12110 Constrain_Discriminated_Type
12111 (Desig_Subtype, S, Related_Nod, For_Access => True);
12112 return;
12113 end if;
12114
12115 -- Enforce rule that the constraint is illegal if there is an
12116 -- unconstrained view of the designated type. This means that the
12117 -- partial view (either a private type declaration or a derivation
12118 -- from a private type) has no discriminants. (Defect Report
12119 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12120
12121 -- Rule updated for Ada 2005: The private type is said to have
12122 -- a constrained partial view, given that objects of the type
12123 -- can be declared. Furthermore, the rule applies to all access
12124 -- types, unlike the rule concerning default discriminants (see
12125 -- RM 3.7.1(7/3))
12126
12127 if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005)
12128 and then Has_Private_Declaration (Desig_Type)
12129 and then In_Open_Scopes (Scope (Desig_Type))
12130 and then Has_Discriminants (Desig_Type)
12131 then
12132 declare
12133 Pack : constant Node_Id :=
12134 Unit_Declaration_Node (Scope (Desig_Type));
12135 Decls : List_Id;
12136 Decl : Node_Id;
12137
12138 begin
12139 if Nkind (Pack) = N_Package_Declaration then
12140 Decls := Visible_Declarations (Specification (Pack));
12141 Decl := First (Decls);
12142 while Present (Decl) loop
12143 if (Nkind (Decl) = N_Private_Type_Declaration
12144 and then Chars (Defining_Identifier (Decl)) =
12145 Chars (Desig_Type))
12146
12147 or else
12148 (Nkind (Decl) = N_Full_Type_Declaration
12149 and then
12150 Chars (Defining_Identifier (Decl)) =
12151 Chars (Desig_Type)
12152 and then Is_Derived_Type (Desig_Type)
12153 and then
12154 Has_Private_Declaration (Etype (Desig_Type)))
12155 then
12156 if No (Discriminant_Specifications (Decl)) then
12157 Error_Msg_N
12158 ("cannot constrain access type if designated "
12159 & "type has constrained partial view", S);
12160 end if;
12161
12162 exit;
12163 end if;
12164
12165 Next (Decl);
12166 end loop;
12167 end if;
12168 end;
12169 end if;
12170
12171 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
12172 For_Access => True);
12173
12174 elsif Is_Concurrent_Type (Desig_Type)
12175 and then not Is_Constrained (Desig_Type)
12176 then
12177 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
12178
12179 else
12180 Error_Msg_N ("invalid constraint on access type", S);
12181
12182 -- We simply ignore an invalid constraint
12183
12184 Desig_Subtype := Desig_Type;
12185 Constraint_OK := False;
12186 end if;
12187
12188 if No (Def_Id) then
12189 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
12190 else
12191 Set_Ekind (Def_Id, E_Access_Subtype);
12192 end if;
12193
12194 if Constraint_OK then
12195 Set_Etype (Def_Id, Base_Type (T));
12196
12197 if Is_Private_Type (Desig_Type) then
12198 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
12199 end if;
12200 else
12201 Set_Etype (Def_Id, Any_Type);
12202 end if;
12203
12204 Set_Size_Info (Def_Id, T);
12205 Set_Is_Constrained (Def_Id, Constraint_OK);
12206 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
12207 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12208 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
12209
12210 Conditional_Delay (Def_Id, T);
12211
12212 -- AI-363 : Subtypes of general access types whose designated types have
12213 -- default discriminants are disallowed. In instances, the rule has to
12214 -- be checked against the actual, of which T is the subtype. In a
12215 -- generic body, the rule is checked assuming that the actual type has
12216 -- defaulted discriminants.
12217
12218 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
12219 if Ekind (Base_Type (T)) = E_General_Access_Type
12220 and then Has_Defaulted_Discriminants (Desig_Type)
12221 then
12222 if Ada_Version < Ada_2005 then
12223 Error_Msg_N
12224 ("access subtype of general access type would not " &
12225 "be allowed in Ada 2005?y?", S);
12226 else
12227 Error_Msg_N
12228 ("access subtype of general access type not allowed", S);
12229 end if;
12230
12231 Error_Msg_N ("\discriminants have defaults", S);
12232
12233 elsif Is_Access_Type (T)
12234 and then Is_Generic_Type (Desig_Type)
12235 and then Has_Discriminants (Desig_Type)
12236 and then In_Package_Body (Current_Scope)
12237 then
12238 if Ada_Version < Ada_2005 then
12239 Error_Msg_N
12240 ("access subtype would not be allowed in generic body "
12241 & "in Ada 2005?y?", S);
12242 else
12243 Error_Msg_N
12244 ("access subtype not allowed in generic body", S);
12245 end if;
12246
12247 Error_Msg_N
12248 ("\designated type is a discriminated formal", S);
12249 end if;
12250 end if;
12251 end Constrain_Access;
12252
12253 ---------------------
12254 -- Constrain_Array --
12255 ---------------------
12256
12257 procedure Constrain_Array
12258 (Def_Id : in out Entity_Id;
12259 SI : Node_Id;
12260 Related_Nod : Node_Id;
12261 Related_Id : Entity_Id;
12262 Suffix : Character)
12263 is
12264 C : constant Node_Id := Constraint (SI);
12265 Number_Of_Constraints : Nat := 0;
12266 Index : Node_Id;
12267 S, T : Entity_Id;
12268 Constraint_OK : Boolean := True;
12269
12270 begin
12271 T := Entity (Subtype_Mark (SI));
12272
12273 if Is_Access_Type (T) then
12274 T := Designated_Type (T);
12275 end if;
12276
12277 -- If an index constraint follows a subtype mark in a subtype indication
12278 -- then the type or subtype denoted by the subtype mark must not already
12279 -- impose an index constraint. The subtype mark must denote either an
12280 -- unconstrained array type or an access type whose designated type
12281 -- is such an array type... (RM 3.6.1)
12282
12283 if Is_Constrained (T) then
12284 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
12285 Constraint_OK := False;
12286
12287 else
12288 S := First (Constraints (C));
12289 while Present (S) loop
12290 Number_Of_Constraints := Number_Of_Constraints + 1;
12291 Next (S);
12292 end loop;
12293
12294 -- In either case, the index constraint must provide a discrete
12295 -- range for each index of the array type and the type of each
12296 -- discrete range must be the same as that of the corresponding
12297 -- index. (RM 3.6.1)
12298
12299 if Number_Of_Constraints /= Number_Dimensions (T) then
12300 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
12301 Constraint_OK := False;
12302
12303 else
12304 S := First (Constraints (C));
12305 Index := First_Index (T);
12306 Analyze (Index);
12307
12308 -- Apply constraints to each index type
12309
12310 for J in 1 .. Number_Of_Constraints loop
12311 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
12312 Next (Index);
12313 Next (S);
12314 end loop;
12315
12316 end if;
12317 end if;
12318
12319 if No (Def_Id) then
12320 Def_Id :=
12321 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
12322 Set_Parent (Def_Id, Related_Nod);
12323
12324 else
12325 Set_Ekind (Def_Id, E_Array_Subtype);
12326 end if;
12327
12328 Set_Size_Info (Def_Id, (T));
12329 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12330 Set_Etype (Def_Id, Base_Type (T));
12331
12332 if Constraint_OK then
12333 Set_First_Index (Def_Id, First (Constraints (C)));
12334 else
12335 Set_First_Index (Def_Id, First_Index (T));
12336 end if;
12337
12338 Set_Is_Constrained (Def_Id, True);
12339 Set_Is_Aliased (Def_Id, Is_Aliased (T));
12340 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12341
12342 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
12343 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
12344
12345 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
12346 -- We need to initialize the attribute because if Def_Id is previously
12347 -- analyzed through a limited_with clause, it will have the attributes
12348 -- of an incomplete type, one of which is an Elist that overlaps the
12349 -- Packed_Array_Impl_Type field.
12350
12351 Set_Packed_Array_Impl_Type (Def_Id, Empty);
12352
12353 -- Build a freeze node if parent still needs one. Also make sure that
12354 -- the Depends_On_Private status is set because the subtype will need
12355 -- reprocessing at the time the base type does, and also we must set a
12356 -- conditional delay.
12357
12358 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
12359 Conditional_Delay (Def_Id, T);
12360 end Constrain_Array;
12361
12362 ------------------------------
12363 -- Constrain_Component_Type --
12364 ------------------------------
12365
12366 function Constrain_Component_Type
12367 (Comp : Entity_Id;
12368 Constrained_Typ : Entity_Id;
12369 Related_Node : Node_Id;
12370 Typ : Entity_Id;
12371 Constraints : Elist_Id) return Entity_Id
12372 is
12373 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
12374 Compon_Type : constant Entity_Id := Etype (Comp);
12375
12376 function Build_Constrained_Array_Type
12377 (Old_Type : Entity_Id) return Entity_Id;
12378 -- If Old_Type is an array type, one of whose indexes is constrained
12379 -- by a discriminant, build an Itype whose constraint replaces the
12380 -- discriminant with its value in the constraint.
12381
12382 function Build_Constrained_Discriminated_Type
12383 (Old_Type : Entity_Id) return Entity_Id;
12384 -- Ditto for record components
12385
12386 function Build_Constrained_Access_Type
12387 (Old_Type : Entity_Id) return Entity_Id;
12388 -- Ditto for access types. Makes use of previous two functions, to
12389 -- constrain designated type.
12390
12391 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
12392 -- T is an array or discriminated type, C is a list of constraints
12393 -- that apply to T. This routine builds the constrained subtype.
12394
12395 function Is_Discriminant (Expr : Node_Id) return Boolean;
12396 -- Returns True if Expr is a discriminant
12397
12398 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
12399 -- Find the value of discriminant Discrim in Constraint
12400
12401 -----------------------------------
12402 -- Build_Constrained_Access_Type --
12403 -----------------------------------
12404
12405 function Build_Constrained_Access_Type
12406 (Old_Type : Entity_Id) return Entity_Id
12407 is
12408 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
12409 Itype : Entity_Id;
12410 Desig_Subtype : Entity_Id;
12411 Scop : Entity_Id;
12412
12413 begin
12414 -- if the original access type was not embedded in the enclosing
12415 -- type definition, there is no need to produce a new access
12416 -- subtype. In fact every access type with an explicit constraint
12417 -- generates an itype whose scope is the enclosing record.
12418
12419 if not Is_Type (Scope (Old_Type)) then
12420 return Old_Type;
12421
12422 elsif Is_Array_Type (Desig_Type) then
12423 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
12424
12425 elsif Has_Discriminants (Desig_Type) then
12426
12427 -- This may be an access type to an enclosing record type for
12428 -- which we are constructing the constrained components. Return
12429 -- the enclosing record subtype. This is not always correct,
12430 -- but avoids infinite recursion. ???
12431
12432 Desig_Subtype := Any_Type;
12433
12434 for J in reverse 0 .. Scope_Stack.Last loop
12435 Scop := Scope_Stack.Table (J).Entity;
12436
12437 if Is_Type (Scop)
12438 and then Base_Type (Scop) = Base_Type (Desig_Type)
12439 then
12440 Desig_Subtype := Scop;
12441 end if;
12442
12443 exit when not Is_Type (Scop);
12444 end loop;
12445
12446 if Desig_Subtype = Any_Type then
12447 Desig_Subtype :=
12448 Build_Constrained_Discriminated_Type (Desig_Type);
12449 end if;
12450
12451 else
12452 return Old_Type;
12453 end if;
12454
12455 if Desig_Subtype /= Desig_Type then
12456
12457 -- The Related_Node better be here or else we won't be able
12458 -- to attach new itypes to a node in the tree.
12459
12460 pragma Assert (Present (Related_Node));
12461
12462 Itype := Create_Itype (E_Access_Subtype, Related_Node);
12463
12464 Set_Etype (Itype, Base_Type (Old_Type));
12465 Set_Size_Info (Itype, (Old_Type));
12466 Set_Directly_Designated_Type (Itype, Desig_Subtype);
12467 Set_Depends_On_Private (Itype, Has_Private_Component
12468 (Old_Type));
12469 Set_Is_Access_Constant (Itype, Is_Access_Constant
12470 (Old_Type));
12471
12472 -- The new itype needs freezing when it depends on a not frozen
12473 -- type and the enclosing subtype needs freezing.
12474
12475 if Has_Delayed_Freeze (Constrained_Typ)
12476 and then not Is_Frozen (Constrained_Typ)
12477 then
12478 Conditional_Delay (Itype, Base_Type (Old_Type));
12479 end if;
12480
12481 return Itype;
12482
12483 else
12484 return Old_Type;
12485 end if;
12486 end Build_Constrained_Access_Type;
12487
12488 ----------------------------------
12489 -- Build_Constrained_Array_Type --
12490 ----------------------------------
12491
12492 function Build_Constrained_Array_Type
12493 (Old_Type : Entity_Id) return Entity_Id
12494 is
12495 Lo_Expr : Node_Id;
12496 Hi_Expr : Node_Id;
12497 Old_Index : Node_Id;
12498 Range_Node : Node_Id;
12499 Constr_List : List_Id;
12500
12501 Need_To_Create_Itype : Boolean := False;
12502
12503 begin
12504 Old_Index := First_Index (Old_Type);
12505 while Present (Old_Index) loop
12506 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
12507
12508 if Is_Discriminant (Lo_Expr)
12509 or else
12510 Is_Discriminant (Hi_Expr)
12511 then
12512 Need_To_Create_Itype := True;
12513 end if;
12514
12515 Next_Index (Old_Index);
12516 end loop;
12517
12518 if Need_To_Create_Itype then
12519 Constr_List := New_List;
12520
12521 Old_Index := First_Index (Old_Type);
12522 while Present (Old_Index) loop
12523 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
12524
12525 if Is_Discriminant (Lo_Expr) then
12526 Lo_Expr := Get_Discr_Value (Lo_Expr);
12527 end if;
12528
12529 if Is_Discriminant (Hi_Expr) then
12530 Hi_Expr := Get_Discr_Value (Hi_Expr);
12531 end if;
12532
12533 Range_Node :=
12534 Make_Range
12535 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
12536
12537 Append (Range_Node, To => Constr_List);
12538
12539 Next_Index (Old_Index);
12540 end loop;
12541
12542 return Build_Subtype (Old_Type, Constr_List);
12543
12544 else
12545 return Old_Type;
12546 end if;
12547 end Build_Constrained_Array_Type;
12548
12549 ------------------------------------------
12550 -- Build_Constrained_Discriminated_Type --
12551 ------------------------------------------
12552
12553 function Build_Constrained_Discriminated_Type
12554 (Old_Type : Entity_Id) return Entity_Id
12555 is
12556 Expr : Node_Id;
12557 Constr_List : List_Id;
12558 Old_Constraint : Elmt_Id;
12559
12560 Need_To_Create_Itype : Boolean := False;
12561
12562 begin
12563 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
12564 while Present (Old_Constraint) loop
12565 Expr := Node (Old_Constraint);
12566
12567 if Is_Discriminant (Expr) then
12568 Need_To_Create_Itype := True;
12569 end if;
12570
12571 Next_Elmt (Old_Constraint);
12572 end loop;
12573
12574 if Need_To_Create_Itype then
12575 Constr_List := New_List;
12576
12577 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
12578 while Present (Old_Constraint) loop
12579 Expr := Node (Old_Constraint);
12580
12581 if Is_Discriminant (Expr) then
12582 Expr := Get_Discr_Value (Expr);
12583 end if;
12584
12585 Append (New_Copy_Tree (Expr), To => Constr_List);
12586
12587 Next_Elmt (Old_Constraint);
12588 end loop;
12589
12590 return Build_Subtype (Old_Type, Constr_List);
12591
12592 else
12593 return Old_Type;
12594 end if;
12595 end Build_Constrained_Discriminated_Type;
12596
12597 -------------------
12598 -- Build_Subtype --
12599 -------------------
12600
12601 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
12602 Indic : Node_Id;
12603 Subtyp_Decl : Node_Id;
12604 Def_Id : Entity_Id;
12605 Btyp : Entity_Id := Base_Type (T);
12606
12607 begin
12608 -- The Related_Node better be here or else we won't be able to
12609 -- attach new itypes to a node in the tree.
12610
12611 pragma Assert (Present (Related_Node));
12612
12613 -- If the view of the component's type is incomplete or private
12614 -- with unknown discriminants, then the constraint must be applied
12615 -- to the full type.
12616
12617 if Has_Unknown_Discriminants (Btyp)
12618 and then Present (Underlying_Type (Btyp))
12619 then
12620 Btyp := Underlying_Type (Btyp);
12621 end if;
12622
12623 Indic :=
12624 Make_Subtype_Indication (Loc,
12625 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
12626 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
12627
12628 Def_Id := Create_Itype (Ekind (T), Related_Node);
12629
12630 Subtyp_Decl :=
12631 Make_Subtype_Declaration (Loc,
12632 Defining_Identifier => Def_Id,
12633 Subtype_Indication => Indic);
12634
12635 Set_Parent (Subtyp_Decl, Parent (Related_Node));
12636
12637 -- Itypes must be analyzed with checks off (see package Itypes)
12638
12639 Analyze (Subtyp_Decl, Suppress => All_Checks);
12640
12641 return Def_Id;
12642 end Build_Subtype;
12643
12644 ---------------------
12645 -- Get_Discr_Value --
12646 ---------------------
12647
12648 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
12649 D : Entity_Id;
12650 E : Elmt_Id;
12651
12652 begin
12653 -- The discriminant may be declared for the type, in which case we
12654 -- find it by iterating over the list of discriminants. If the
12655 -- discriminant is inherited from a parent type, it appears as the
12656 -- corresponding discriminant of the current type. This will be the
12657 -- case when constraining an inherited component whose constraint is
12658 -- given by a discriminant of the parent.
12659
12660 D := First_Discriminant (Typ);
12661 E := First_Elmt (Constraints);
12662
12663 while Present (D) loop
12664 if D = Entity (Discrim)
12665 or else D = CR_Discriminant (Entity (Discrim))
12666 or else Corresponding_Discriminant (D) = Entity (Discrim)
12667 then
12668 return Node (E);
12669 end if;
12670
12671 Next_Discriminant (D);
12672 Next_Elmt (E);
12673 end loop;
12674
12675 -- The Corresponding_Discriminant mechanism is incomplete, because
12676 -- the correspondence between new and old discriminants is not one
12677 -- to one: one new discriminant can constrain several old ones. In
12678 -- that case, scan sequentially the stored_constraint, the list of
12679 -- discriminants of the parents, and the constraints.
12680
12681 -- Previous code checked for the present of the Stored_Constraint
12682 -- list for the derived type, but did not use it at all. Should it
12683 -- be present when the component is a discriminated task type?
12684
12685 if Is_Derived_Type (Typ)
12686 and then Scope (Entity (Discrim)) = Etype (Typ)
12687 then
12688 D := First_Discriminant (Etype (Typ));
12689 E := First_Elmt (Constraints);
12690 while Present (D) loop
12691 if D = Entity (Discrim) then
12692 return Node (E);
12693 end if;
12694
12695 Next_Discriminant (D);
12696 Next_Elmt (E);
12697 end loop;
12698 end if;
12699
12700 -- Something is wrong if we did not find the value
12701
12702 raise Program_Error;
12703 end Get_Discr_Value;
12704
12705 ---------------------
12706 -- Is_Discriminant --
12707 ---------------------
12708
12709 function Is_Discriminant (Expr : Node_Id) return Boolean is
12710 Discrim_Scope : Entity_Id;
12711
12712 begin
12713 if Denotes_Discriminant (Expr) then
12714 Discrim_Scope := Scope (Entity (Expr));
12715
12716 -- Either we have a reference to one of Typ's discriminants,
12717
12718 pragma Assert (Discrim_Scope = Typ
12719
12720 -- or to the discriminants of the parent type, in the case
12721 -- of a derivation of a tagged type with variants.
12722
12723 or else Discrim_Scope = Etype (Typ)
12724 or else Full_View (Discrim_Scope) = Etype (Typ)
12725
12726 -- or same as above for the case where the discriminants
12727 -- were declared in Typ's private view.
12728
12729 or else (Is_Private_Type (Discrim_Scope)
12730 and then Chars (Discrim_Scope) = Chars (Typ))
12731
12732 -- or else we are deriving from the full view and the
12733 -- discriminant is declared in the private entity.
12734
12735 or else (Is_Private_Type (Typ)
12736 and then Chars (Discrim_Scope) = Chars (Typ))
12737
12738 -- Or we are constrained the corresponding record of a
12739 -- synchronized type that completes a private declaration.
12740
12741 or else (Is_Concurrent_Record_Type (Typ)
12742 and then
12743 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
12744
12745 -- or we have a class-wide type, in which case make sure the
12746 -- discriminant found belongs to the root type.
12747
12748 or else (Is_Class_Wide_Type (Typ)
12749 and then Etype (Typ) = Discrim_Scope));
12750
12751 return True;
12752 end if;
12753
12754 -- In all other cases we have something wrong
12755
12756 return False;
12757 end Is_Discriminant;
12758
12759 -- Start of processing for Constrain_Component_Type
12760
12761 begin
12762 if Nkind (Parent (Comp)) = N_Component_Declaration
12763 and then Comes_From_Source (Parent (Comp))
12764 and then Comes_From_Source
12765 (Subtype_Indication (Component_Definition (Parent (Comp))))
12766 and then
12767 Is_Entity_Name
12768 (Subtype_Indication (Component_Definition (Parent (Comp))))
12769 then
12770 return Compon_Type;
12771
12772 elsif Is_Array_Type (Compon_Type) then
12773 return Build_Constrained_Array_Type (Compon_Type);
12774
12775 elsif Has_Discriminants (Compon_Type) then
12776 return Build_Constrained_Discriminated_Type (Compon_Type);
12777
12778 elsif Is_Access_Type (Compon_Type) then
12779 return Build_Constrained_Access_Type (Compon_Type);
12780
12781 else
12782 return Compon_Type;
12783 end if;
12784 end Constrain_Component_Type;
12785
12786 --------------------------
12787 -- Constrain_Concurrent --
12788 --------------------------
12789
12790 -- For concurrent types, the associated record value type carries the same
12791 -- discriminants, so when we constrain a concurrent type, we must constrain
12792 -- the corresponding record type as well.
12793
12794 procedure Constrain_Concurrent
12795 (Def_Id : in out Entity_Id;
12796 SI : Node_Id;
12797 Related_Nod : Node_Id;
12798 Related_Id : Entity_Id;
12799 Suffix : Character)
12800 is
12801 -- Retrieve Base_Type to ensure getting to the concurrent type in the
12802 -- case of a private subtype (needed when only doing semantic analysis).
12803
12804 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
12805 T_Val : Entity_Id;
12806
12807 begin
12808 if Is_Access_Type (T_Ent) then
12809 T_Ent := Designated_Type (T_Ent);
12810 end if;
12811
12812 T_Val := Corresponding_Record_Type (T_Ent);
12813
12814 if Present (T_Val) then
12815
12816 if No (Def_Id) then
12817 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12818 end if;
12819
12820 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12821
12822 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12823 Set_Corresponding_Record_Type (Def_Id,
12824 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
12825
12826 else
12827 -- If there is no associated record, expansion is disabled and this
12828 -- is a generic context. Create a subtype in any case, so that
12829 -- semantic analysis can proceed.
12830
12831 if No (Def_Id) then
12832 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12833 end if;
12834
12835 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12836 end if;
12837 end Constrain_Concurrent;
12838
12839 ------------------------------------
12840 -- Constrain_Corresponding_Record --
12841 ------------------------------------
12842
12843 function Constrain_Corresponding_Record
12844 (Prot_Subt : Entity_Id;
12845 Corr_Rec : Entity_Id;
12846 Related_Nod : Node_Id) return Entity_Id
12847 is
12848 T_Sub : constant Entity_Id :=
12849 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
12850
12851 begin
12852 Set_Etype (T_Sub, Corr_Rec);
12853 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
12854 Set_Is_Constrained (T_Sub, True);
12855 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
12856 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
12857
12858 if Has_Discriminants (Prot_Subt) then -- False only if errors.
12859 Set_Discriminant_Constraint
12860 (T_Sub, Discriminant_Constraint (Prot_Subt));
12861 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
12862 Create_Constrained_Components
12863 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
12864 end if;
12865
12866 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
12867
12868 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
12869 Conditional_Delay (T_Sub, Corr_Rec);
12870
12871 else
12872 -- This is a component subtype: it will be frozen in the context of
12873 -- the enclosing record's init_proc, so that discriminant references
12874 -- are resolved to discriminals. (Note: we used to skip freezing
12875 -- altogether in that case, which caused errors downstream for
12876 -- components of a bit packed array type).
12877
12878 Set_Has_Delayed_Freeze (T_Sub);
12879 end if;
12880
12881 return T_Sub;
12882 end Constrain_Corresponding_Record;
12883
12884 -----------------------
12885 -- Constrain_Decimal --
12886 -----------------------
12887
12888 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
12889 T : constant Entity_Id := Entity (Subtype_Mark (S));
12890 C : constant Node_Id := Constraint (S);
12891 Loc : constant Source_Ptr := Sloc (C);
12892 Range_Expr : Node_Id;
12893 Digits_Expr : Node_Id;
12894 Digits_Val : Uint;
12895 Bound_Val : Ureal;
12896
12897 begin
12898 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
12899
12900 if Nkind (C) = N_Range_Constraint then
12901 Range_Expr := Range_Expression (C);
12902 Digits_Val := Digits_Value (T);
12903
12904 else
12905 pragma Assert (Nkind (C) = N_Digits_Constraint);
12906
12907 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
12908
12909 Digits_Expr := Digits_Expression (C);
12910 Analyze_And_Resolve (Digits_Expr, Any_Integer);
12911
12912 Check_Digits_Expression (Digits_Expr);
12913 Digits_Val := Expr_Value (Digits_Expr);
12914
12915 if Digits_Val > Digits_Value (T) then
12916 Error_Msg_N
12917 ("digits expression is incompatible with subtype", C);
12918 Digits_Val := Digits_Value (T);
12919 end if;
12920
12921 if Present (Range_Constraint (C)) then
12922 Range_Expr := Range_Expression (Range_Constraint (C));
12923 else
12924 Range_Expr := Empty;
12925 end if;
12926 end if;
12927
12928 Set_Etype (Def_Id, Base_Type (T));
12929 Set_Size_Info (Def_Id, (T));
12930 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12931 Set_Delta_Value (Def_Id, Delta_Value (T));
12932 Set_Scale_Value (Def_Id, Scale_Value (T));
12933 Set_Small_Value (Def_Id, Small_Value (T));
12934 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
12935 Set_Digits_Value (Def_Id, Digits_Val);
12936
12937 -- Manufacture range from given digits value if no range present
12938
12939 if No (Range_Expr) then
12940 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
12941 Range_Expr :=
12942 Make_Range (Loc,
12943 Low_Bound =>
12944 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
12945 High_Bound =>
12946 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
12947 end if;
12948
12949 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
12950 Set_Discrete_RM_Size (Def_Id);
12951
12952 -- Unconditionally delay the freeze, since we cannot set size
12953 -- information in all cases correctly until the freeze point.
12954
12955 Set_Has_Delayed_Freeze (Def_Id);
12956 end Constrain_Decimal;
12957
12958 ----------------------------------
12959 -- Constrain_Discriminated_Type --
12960 ----------------------------------
12961
12962 procedure Constrain_Discriminated_Type
12963 (Def_Id : Entity_Id;
12964 S : Node_Id;
12965 Related_Nod : Node_Id;
12966 For_Access : Boolean := False)
12967 is
12968 E : constant Entity_Id := Entity (Subtype_Mark (S));
12969 T : Entity_Id;
12970 C : Node_Id;
12971 Elist : Elist_Id := New_Elmt_List;
12972
12973 procedure Fixup_Bad_Constraint;
12974 -- This is called after finding a bad constraint, and after having
12975 -- posted an appropriate error message. The mission is to leave the
12976 -- entity T in as reasonable state as possible.
12977
12978 --------------------------
12979 -- Fixup_Bad_Constraint --
12980 --------------------------
12981
12982 procedure Fixup_Bad_Constraint is
12983 begin
12984 -- Set a reasonable Ekind for the entity. For an incomplete type,
12985 -- we can't do much, but for other types, we can set the proper
12986 -- corresponding subtype kind.
12987
12988 if Ekind (T) = E_Incomplete_Type then
12989 Set_Ekind (Def_Id, Ekind (T));
12990 else
12991 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
12992 end if;
12993
12994 -- Set Etype to the known type, to reduce chances of cascaded errors
12995
12996 Set_Etype (Def_Id, E);
12997 Set_Error_Posted (Def_Id);
12998 end Fixup_Bad_Constraint;
12999
13000 -- Start of processing for Constrain_Discriminated_Type
13001
13002 begin
13003 C := Constraint (S);
13004
13005 -- A discriminant constraint is only allowed in a subtype indication,
13006 -- after a subtype mark. This subtype mark must denote either a type
13007 -- with discriminants, or an access type whose designated type is a
13008 -- type with discriminants. A discriminant constraint specifies the
13009 -- values of these discriminants (RM 3.7.2(5)).
13010
13011 T := Base_Type (Entity (Subtype_Mark (S)));
13012
13013 if Is_Access_Type (T) then
13014 T := Designated_Type (T);
13015 end if;
13016
13017 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
13018 -- Avoid generating an error for access-to-incomplete subtypes.
13019
13020 if Ada_Version >= Ada_2005
13021 and then Ekind (T) = E_Incomplete_Type
13022 and then Nkind (Parent (S)) = N_Subtype_Declaration
13023 and then not Is_Itype (Def_Id)
13024 then
13025 -- A little sanity check, emit an error message if the type
13026 -- has discriminants to begin with. Type T may be a regular
13027 -- incomplete type or imported via a limited with clause.
13028
13029 if Has_Discriminants (T)
13030 or else (From_Limited_With (T)
13031 and then Present (Non_Limited_View (T))
13032 and then Nkind (Parent (Non_Limited_View (T))) =
13033 N_Full_Type_Declaration
13034 and then Present (Discriminant_Specifications
13035 (Parent (Non_Limited_View (T)))))
13036 then
13037 Error_Msg_N
13038 ("(Ada 2005) incomplete subtype may not be constrained", C);
13039 else
13040 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13041 end if;
13042
13043 Fixup_Bad_Constraint;
13044 return;
13045
13046 -- Check that the type has visible discriminants. The type may be
13047 -- a private type with unknown discriminants whose full view has
13048 -- discriminants which are invisible.
13049
13050 elsif not Has_Discriminants (T)
13051 or else
13052 (Has_Unknown_Discriminants (T)
13053 and then Is_Private_Type (T))
13054 then
13055 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13056 Fixup_Bad_Constraint;
13057 return;
13058
13059 elsif Is_Constrained (E)
13060 or else (Ekind (E) = E_Class_Wide_Subtype
13061 and then Present (Discriminant_Constraint (E)))
13062 then
13063 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
13064 Fixup_Bad_Constraint;
13065 return;
13066 end if;
13067
13068 -- T may be an unconstrained subtype (e.g. a generic actual).
13069 -- Constraint applies to the base type.
13070
13071 T := Base_Type (T);
13072
13073 Elist := Build_Discriminant_Constraints (T, S);
13074
13075 -- If the list returned was empty we had an error in building the
13076 -- discriminant constraint. We have also already signalled an error
13077 -- in the incomplete type case
13078
13079 if Is_Empty_Elmt_List (Elist) then
13080 Fixup_Bad_Constraint;
13081 return;
13082 end if;
13083
13084 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
13085 end Constrain_Discriminated_Type;
13086
13087 ---------------------------
13088 -- Constrain_Enumeration --
13089 ---------------------------
13090
13091 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
13092 T : constant Entity_Id := Entity (Subtype_Mark (S));
13093 C : constant Node_Id := Constraint (S);
13094
13095 begin
13096 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13097
13098 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
13099
13100 Set_Etype (Def_Id, Base_Type (T));
13101 Set_Size_Info (Def_Id, (T));
13102 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13103 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13104
13105 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13106
13107 Set_Discrete_RM_Size (Def_Id);
13108 end Constrain_Enumeration;
13109
13110 ----------------------
13111 -- Constrain_Float --
13112 ----------------------
13113
13114 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
13115 T : constant Entity_Id := Entity (Subtype_Mark (S));
13116 C : Node_Id;
13117 D : Node_Id;
13118 Rais : Node_Id;
13119
13120 begin
13121 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
13122
13123 Set_Etype (Def_Id, Base_Type (T));
13124 Set_Size_Info (Def_Id, (T));
13125 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13126
13127 -- Process the constraint
13128
13129 C := Constraint (S);
13130
13131 -- Digits constraint present
13132
13133 if Nkind (C) = N_Digits_Constraint then
13134
13135 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13136 Check_Restriction (No_Obsolescent_Features, C);
13137
13138 if Warn_On_Obsolescent_Feature then
13139 Error_Msg_N
13140 ("subtype digits constraint is an " &
13141 "obsolescent feature (RM J.3(8))?j?", C);
13142 end if;
13143
13144 D := Digits_Expression (C);
13145 Analyze_And_Resolve (D, Any_Integer);
13146 Check_Digits_Expression (D);
13147 Set_Digits_Value (Def_Id, Expr_Value (D));
13148
13149 -- Check that digits value is in range. Obviously we can do this
13150 -- at compile time, but it is strictly a runtime check, and of
13151 -- course there is an ACVC test that checks this.
13152
13153 if Digits_Value (Def_Id) > Digits_Value (T) then
13154 Error_Msg_Uint_1 := Digits_Value (T);
13155 Error_Msg_N ("??digits value is too large, maximum is ^", D);
13156 Rais :=
13157 Make_Raise_Constraint_Error (Sloc (D),
13158 Reason => CE_Range_Check_Failed);
13159 Insert_Action (Declaration_Node (Def_Id), Rais);
13160 end if;
13161
13162 C := Range_Constraint (C);
13163
13164 -- No digits constraint present
13165
13166 else
13167 Set_Digits_Value (Def_Id, Digits_Value (T));
13168 end if;
13169
13170 -- Range constraint present
13171
13172 if Nkind (C) = N_Range_Constraint then
13173 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13174
13175 -- No range constraint present
13176
13177 else
13178 pragma Assert (No (C));
13179 Set_Scalar_Range (Def_Id, Scalar_Range (T));
13180 end if;
13181
13182 Set_Is_Constrained (Def_Id);
13183 end Constrain_Float;
13184
13185 ---------------------
13186 -- Constrain_Index --
13187 ---------------------
13188
13189 procedure Constrain_Index
13190 (Index : Node_Id;
13191 S : Node_Id;
13192 Related_Nod : Node_Id;
13193 Related_Id : Entity_Id;
13194 Suffix : Character;
13195 Suffix_Index : Nat)
13196 is
13197 Def_Id : Entity_Id;
13198 R : Node_Id := Empty;
13199 T : constant Entity_Id := Etype (Index);
13200
13201 begin
13202 Def_Id :=
13203 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
13204 Set_Etype (Def_Id, Base_Type (T));
13205
13206 if Nkind (S) = N_Range
13207 or else
13208 (Nkind (S) = N_Attribute_Reference
13209 and then Attribute_Name (S) = Name_Range)
13210 then
13211 -- A Range attribute will be transformed into N_Range by Resolve
13212
13213 Analyze (S);
13214 Set_Etype (S, T);
13215 R := S;
13216
13217 Process_Range_Expr_In_Decl (R, T);
13218
13219 if not Error_Posted (S)
13220 and then
13221 (Nkind (S) /= N_Range
13222 or else not Covers (T, (Etype (Low_Bound (S))))
13223 or else not Covers (T, (Etype (High_Bound (S)))))
13224 then
13225 if Base_Type (T) /= Any_Type
13226 and then Etype (Low_Bound (S)) /= Any_Type
13227 and then Etype (High_Bound (S)) /= Any_Type
13228 then
13229 Error_Msg_N ("range expected", S);
13230 end if;
13231 end if;
13232
13233 elsif Nkind (S) = N_Subtype_Indication then
13234
13235 -- The parser has verified that this is a discrete indication
13236
13237 Resolve_Discrete_Subtype_Indication (S, T);
13238 Bad_Predicated_Subtype_Use
13239 ("subtype& has predicate, not allowed in index constraint",
13240 S, Entity (Subtype_Mark (S)));
13241
13242 R := Range_Expression (Constraint (S));
13243
13244 -- Capture values of bounds and generate temporaries for them if
13245 -- needed, since checks may cause duplication of the expressions
13246 -- which must not be reevaluated.
13247
13248 -- The forced evaluation removes side effects from expressions, which
13249 -- should occur also in GNATprove mode. Otherwise, we end up with
13250 -- unexpected insertions of actions at places where this is not
13251 -- supposed to occur, e.g. on default parameters of a call.
13252
13253 if Expander_Active or GNATprove_Mode then
13254 Force_Evaluation
13255 (Low_Bound (R), Related_Id => Def_Id, Is_Low_Bound => True);
13256 Force_Evaluation
13257 (High_Bound (R), Related_Id => Def_Id, Is_High_Bound => True);
13258 end if;
13259
13260 elsif Nkind (S) = N_Discriminant_Association then
13261
13262 -- Syntactically valid in subtype indication
13263
13264 Error_Msg_N ("invalid index constraint", S);
13265 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13266 return;
13267
13268 -- Subtype_Mark case, no anonymous subtypes to construct
13269
13270 else
13271 Analyze (S);
13272
13273 if Is_Entity_Name (S) then
13274 if not Is_Type (Entity (S)) then
13275 Error_Msg_N ("expect subtype mark for index constraint", S);
13276
13277 elsif Base_Type (Entity (S)) /= Base_Type (T) then
13278 Wrong_Type (S, Base_Type (T));
13279
13280 -- Check error of subtype with predicate in index constraint
13281
13282 else
13283 Bad_Predicated_Subtype_Use
13284 ("subtype& has predicate, not allowed in index constraint",
13285 S, Entity (S));
13286 end if;
13287
13288 return;
13289
13290 else
13291 Error_Msg_N ("invalid index constraint", S);
13292 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13293 return;
13294 end if;
13295 end if;
13296
13297 -- Complete construction of the Itype
13298
13299 if Is_Modular_Integer_Type (T) then
13300 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13301
13302 elsif Is_Integer_Type (T) then
13303 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13304
13305 else
13306 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13307 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13308 Set_First_Literal (Def_Id, First_Literal (T));
13309 end if;
13310
13311 Set_Size_Info (Def_Id, (T));
13312 Set_RM_Size (Def_Id, RM_Size (T));
13313 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13314
13315 Set_Scalar_Range (Def_Id, R);
13316
13317 Set_Etype (S, Def_Id);
13318 Set_Discrete_RM_Size (Def_Id);
13319 end Constrain_Index;
13320
13321 -----------------------
13322 -- Constrain_Integer --
13323 -----------------------
13324
13325 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
13326 T : constant Entity_Id := Entity (Subtype_Mark (S));
13327 C : constant Node_Id := Constraint (S);
13328
13329 begin
13330 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13331
13332 if Is_Modular_Integer_Type (T) then
13333 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13334 else
13335 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13336 end if;
13337
13338 Set_Etype (Def_Id, Base_Type (T));
13339 Set_Size_Info (Def_Id, (T));
13340 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13341 Set_Discrete_RM_Size (Def_Id);
13342 end Constrain_Integer;
13343
13344 ------------------------------
13345 -- Constrain_Ordinary_Fixed --
13346 ------------------------------
13347
13348 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
13349 T : constant Entity_Id := Entity (Subtype_Mark (S));
13350 C : Node_Id;
13351 D : Node_Id;
13352 Rais : Node_Id;
13353
13354 begin
13355 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
13356 Set_Etype (Def_Id, Base_Type (T));
13357 Set_Size_Info (Def_Id, (T));
13358 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13359 Set_Small_Value (Def_Id, Small_Value (T));
13360
13361 -- Process the constraint
13362
13363 C := Constraint (S);
13364
13365 -- Delta constraint present
13366
13367 if Nkind (C) = N_Delta_Constraint then
13368
13369 Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
13370 Check_Restriction (No_Obsolescent_Features, C);
13371
13372 if Warn_On_Obsolescent_Feature then
13373 Error_Msg_S
13374 ("subtype delta constraint is an " &
13375 "obsolescent feature (RM J.3(7))?j?");
13376 end if;
13377
13378 D := Delta_Expression (C);
13379 Analyze_And_Resolve (D, Any_Real);
13380 Check_Delta_Expression (D);
13381 Set_Delta_Value (Def_Id, Expr_Value_R (D));
13382
13383 -- Check that delta value is in range. Obviously we can do this
13384 -- at compile time, but it is strictly a runtime check, and of
13385 -- course there is an ACVC test that checks this.
13386
13387 if Delta_Value (Def_Id) < Delta_Value (T) then
13388 Error_Msg_N ("??delta value is too small", D);
13389 Rais :=
13390 Make_Raise_Constraint_Error (Sloc (D),
13391 Reason => CE_Range_Check_Failed);
13392 Insert_Action (Declaration_Node (Def_Id), Rais);
13393 end if;
13394
13395 C := Range_Constraint (C);
13396
13397 -- No delta constraint present
13398
13399 else
13400 Set_Delta_Value (Def_Id, Delta_Value (T));
13401 end if;
13402
13403 -- Range constraint present
13404
13405 if Nkind (C) = N_Range_Constraint then
13406 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13407
13408 -- No range constraint present
13409
13410 else
13411 pragma Assert (No (C));
13412 Set_Scalar_Range (Def_Id, Scalar_Range (T));
13413 end if;
13414
13415 Set_Discrete_RM_Size (Def_Id);
13416
13417 -- Unconditionally delay the freeze, since we cannot set size
13418 -- information in all cases correctly until the freeze point.
13419
13420 Set_Has_Delayed_Freeze (Def_Id);
13421 end Constrain_Ordinary_Fixed;
13422
13423 -----------------------
13424 -- Contain_Interface --
13425 -----------------------
13426
13427 function Contain_Interface
13428 (Iface : Entity_Id;
13429 Ifaces : Elist_Id) return Boolean
13430 is
13431 Iface_Elmt : Elmt_Id;
13432
13433 begin
13434 if Present (Ifaces) then
13435 Iface_Elmt := First_Elmt (Ifaces);
13436 while Present (Iface_Elmt) loop
13437 if Node (Iface_Elmt) = Iface then
13438 return True;
13439 end if;
13440
13441 Next_Elmt (Iface_Elmt);
13442 end loop;
13443 end if;
13444
13445 return False;
13446 end Contain_Interface;
13447
13448 ---------------------------
13449 -- Convert_Scalar_Bounds --
13450 ---------------------------
13451
13452 procedure Convert_Scalar_Bounds
13453 (N : Node_Id;
13454 Parent_Type : Entity_Id;
13455 Derived_Type : Entity_Id;
13456 Loc : Source_Ptr)
13457 is
13458 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
13459
13460 Lo : Node_Id;
13461 Hi : Node_Id;
13462 Rng : Node_Id;
13463
13464 begin
13465 -- Defend against previous errors
13466
13467 if No (Scalar_Range (Derived_Type)) then
13468 Check_Error_Detected;
13469 return;
13470 end if;
13471
13472 Lo := Build_Scalar_Bound
13473 (Type_Low_Bound (Derived_Type),
13474 Parent_Type, Implicit_Base);
13475
13476 Hi := Build_Scalar_Bound
13477 (Type_High_Bound (Derived_Type),
13478 Parent_Type, Implicit_Base);
13479
13480 Rng :=
13481 Make_Range (Loc,
13482 Low_Bound => Lo,
13483 High_Bound => Hi);
13484
13485 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
13486
13487 Set_Parent (Rng, N);
13488 Set_Scalar_Range (Derived_Type, Rng);
13489
13490 -- Analyze the bounds
13491
13492 Analyze_And_Resolve (Lo, Implicit_Base);
13493 Analyze_And_Resolve (Hi, Implicit_Base);
13494
13495 -- Analyze the range itself, except that we do not analyze it if
13496 -- the bounds are real literals, and we have a fixed-point type.
13497 -- The reason for this is that we delay setting the bounds in this
13498 -- case till we know the final Small and Size values (see circuit
13499 -- in Freeze.Freeze_Fixed_Point_Type for further details).
13500
13501 if Is_Fixed_Point_Type (Parent_Type)
13502 and then Nkind (Lo) = N_Real_Literal
13503 and then Nkind (Hi) = N_Real_Literal
13504 then
13505 return;
13506
13507 -- Here we do the analysis of the range
13508
13509 -- Note: we do this manually, since if we do a normal Analyze and
13510 -- Resolve call, there are problems with the conversions used for
13511 -- the derived type range.
13512
13513 else
13514 Set_Etype (Rng, Implicit_Base);
13515 Set_Analyzed (Rng, True);
13516 end if;
13517 end Convert_Scalar_Bounds;
13518
13519 -------------------
13520 -- Copy_And_Swap --
13521 -------------------
13522
13523 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
13524 begin
13525 -- Initialize new full declaration entity by copying the pertinent
13526 -- fields of the corresponding private declaration entity.
13527
13528 -- We temporarily set Ekind to a value appropriate for a type to
13529 -- avoid assert failures in Einfo from checking for setting type
13530 -- attributes on something that is not a type. Ekind (Priv) is an
13531 -- appropriate choice, since it allowed the attributes to be set
13532 -- in the first place. This Ekind value will be modified later.
13533
13534 Set_Ekind (Full, Ekind (Priv));
13535
13536 -- Also set Etype temporarily to Any_Type, again, in the absence
13537 -- of errors, it will be properly reset, and if there are errors,
13538 -- then we want a value of Any_Type to remain.
13539
13540 Set_Etype (Full, Any_Type);
13541
13542 -- Now start copying attributes
13543
13544 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
13545
13546 if Has_Discriminants (Full) then
13547 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
13548 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
13549 end if;
13550
13551 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
13552 Set_Homonym (Full, Homonym (Priv));
13553 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
13554 Set_Is_Public (Full, Is_Public (Priv));
13555 Set_Is_Pure (Full, Is_Pure (Priv));
13556 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
13557 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
13558 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
13559 Set_Has_Pragma_Unreferenced_Objects
13560 (Full, Has_Pragma_Unreferenced_Objects
13561 (Priv));
13562
13563 Conditional_Delay (Full, Priv);
13564
13565 if Is_Tagged_Type (Full) then
13566 Set_Direct_Primitive_Operations
13567 (Full, Direct_Primitive_Operations (Priv));
13568 Set_No_Tagged_Streams_Pragma
13569 (Full, No_Tagged_Streams_Pragma (Priv));
13570
13571 if Is_Base_Type (Priv) then
13572 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
13573 end if;
13574 end if;
13575
13576 Set_Is_Volatile (Full, Is_Volatile (Priv));
13577 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
13578 Set_Scope (Full, Scope (Priv));
13579 Set_Next_Entity (Full, Next_Entity (Priv));
13580 Set_First_Entity (Full, First_Entity (Priv));
13581 Set_Last_Entity (Full, Last_Entity (Priv));
13582
13583 -- If access types have been recorded for later handling, keep them in
13584 -- the full view so that they get handled when the full view freeze
13585 -- node is expanded.
13586
13587 if Present (Freeze_Node (Priv))
13588 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
13589 then
13590 Ensure_Freeze_Node (Full);
13591 Set_Access_Types_To_Process
13592 (Freeze_Node (Full),
13593 Access_Types_To_Process (Freeze_Node (Priv)));
13594 end if;
13595
13596 -- Swap the two entities. Now Private is the full type entity and Full
13597 -- is the private one. They will be swapped back at the end of the
13598 -- private part. This swapping ensures that the entity that is visible
13599 -- in the private part is the full declaration.
13600
13601 Exchange_Entities (Priv, Full);
13602 Append_Entity (Full, Scope (Full));
13603 end Copy_And_Swap;
13604
13605 -------------------------------------
13606 -- Copy_Array_Base_Type_Attributes --
13607 -------------------------------------
13608
13609 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
13610 begin
13611 Set_Component_Alignment (T1, Component_Alignment (T2));
13612 Set_Component_Type (T1, Component_Type (T2));
13613 Set_Component_Size (T1, Component_Size (T2));
13614 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
13615 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
13616 Set_Has_Protected (T1, Has_Protected (T2));
13617 Set_Has_Task (T1, Has_Task (T2));
13618 Set_Is_Packed (T1, Is_Packed (T2));
13619 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
13620 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
13621 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
13622 end Copy_Array_Base_Type_Attributes;
13623
13624 -----------------------------------
13625 -- Copy_Array_Subtype_Attributes --
13626 -----------------------------------
13627
13628 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
13629 begin
13630 Set_Size_Info (T1, T2);
13631
13632 Set_First_Index (T1, First_Index (T2));
13633 Set_Is_Aliased (T1, Is_Aliased (T2));
13634 Set_Is_Volatile (T1, Is_Volatile (T2));
13635 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
13636 Set_Is_Constrained (T1, Is_Constrained (T2));
13637 Set_Depends_On_Private (T1, Has_Private_Component (T2));
13638 Inherit_Rep_Item_Chain (T1, T2);
13639 Set_Convention (T1, Convention (T2));
13640 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
13641 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
13642 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
13643 end Copy_Array_Subtype_Attributes;
13644
13645 -----------------------------------
13646 -- Create_Constrained_Components --
13647 -----------------------------------
13648
13649 procedure Create_Constrained_Components
13650 (Subt : Entity_Id;
13651 Decl_Node : Node_Id;
13652 Typ : Entity_Id;
13653 Constraints : Elist_Id)
13654 is
13655 Loc : constant Source_Ptr := Sloc (Subt);
13656 Comp_List : constant Elist_Id := New_Elmt_List;
13657 Parent_Type : constant Entity_Id := Etype (Typ);
13658 Assoc_List : constant List_Id := New_List;
13659 Discr_Val : Elmt_Id;
13660 Errors : Boolean;
13661 New_C : Entity_Id;
13662 Old_C : Entity_Id;
13663 Is_Static : Boolean := True;
13664
13665 procedure Collect_Fixed_Components (Typ : Entity_Id);
13666 -- Collect parent type components that do not appear in a variant part
13667
13668 procedure Create_All_Components;
13669 -- Iterate over Comp_List to create the components of the subtype
13670
13671 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
13672 -- Creates a new component from Old_Compon, copying all the fields from
13673 -- it, including its Etype, inserts the new component in the Subt entity
13674 -- chain and returns the new component.
13675
13676 function Is_Variant_Record (T : Entity_Id) return Boolean;
13677 -- If true, and discriminants are static, collect only components from
13678 -- variants selected by discriminant values.
13679
13680 ------------------------------
13681 -- Collect_Fixed_Components --
13682 ------------------------------
13683
13684 procedure Collect_Fixed_Components (Typ : Entity_Id) is
13685 begin
13686 -- Build association list for discriminants, and find components of the
13687 -- variant part selected by the values of the discriminants.
13688
13689 Old_C := First_Discriminant (Typ);
13690 Discr_Val := First_Elmt (Constraints);
13691 while Present (Old_C) loop
13692 Append_To (Assoc_List,
13693 Make_Component_Association (Loc,
13694 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
13695 Expression => New_Copy (Node (Discr_Val))));
13696
13697 Next_Elmt (Discr_Val);
13698 Next_Discriminant (Old_C);
13699 end loop;
13700
13701 -- The tag and the possible parent component are unconditionally in
13702 -- the subtype.
13703
13704 if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
13705 Old_C := First_Component (Typ);
13706 while Present (Old_C) loop
13707 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
13708 Append_Elmt (Old_C, Comp_List);
13709 end if;
13710
13711 Next_Component (Old_C);
13712 end loop;
13713 end if;
13714 end Collect_Fixed_Components;
13715
13716 ---------------------------
13717 -- Create_All_Components --
13718 ---------------------------
13719
13720 procedure Create_All_Components is
13721 Comp : Elmt_Id;
13722
13723 begin
13724 Comp := First_Elmt (Comp_List);
13725 while Present (Comp) loop
13726 Old_C := Node (Comp);
13727 New_C := Create_Component (Old_C);
13728
13729 Set_Etype
13730 (New_C,
13731 Constrain_Component_Type
13732 (Old_C, Subt, Decl_Node, Typ, Constraints));
13733 Set_Is_Public (New_C, Is_Public (Subt));
13734
13735 Next_Elmt (Comp);
13736 end loop;
13737 end Create_All_Components;
13738
13739 ----------------------
13740 -- Create_Component --
13741 ----------------------
13742
13743 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
13744 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
13745
13746 begin
13747 if Ekind (Old_Compon) = E_Discriminant
13748 and then Is_Completely_Hidden (Old_Compon)
13749 then
13750 -- This is a shadow discriminant created for a discriminant of
13751 -- the parent type, which needs to be present in the subtype.
13752 -- Give the shadow discriminant an internal name that cannot
13753 -- conflict with that of visible components.
13754
13755 Set_Chars (New_Compon, New_Internal_Name ('C'));
13756 end if;
13757
13758 -- Set the parent so we have a proper link for freezing etc. This is
13759 -- not a real parent pointer, since of course our parent does not own
13760 -- up to us and reference us, we are an illegitimate child of the
13761 -- original parent.
13762
13763 Set_Parent (New_Compon, Parent (Old_Compon));
13764
13765 -- If the old component's Esize was already determined and is a
13766 -- static value, then the new component simply inherits it. Otherwise
13767 -- the old component's size may require run-time determination, but
13768 -- the new component's size still might be statically determinable
13769 -- (if, for example it has a static constraint). In that case we want
13770 -- Layout_Type to recompute the component's size, so we reset its
13771 -- size and positional fields.
13772
13773 if Frontend_Layout_On_Target
13774 and then not Known_Static_Esize (Old_Compon)
13775 then
13776 Set_Esize (New_Compon, Uint_0);
13777 Init_Normalized_First_Bit (New_Compon);
13778 Init_Normalized_Position (New_Compon);
13779 Init_Normalized_Position_Max (New_Compon);
13780 end if;
13781
13782 -- We do not want this node marked as Comes_From_Source, since
13783 -- otherwise it would get first class status and a separate cross-
13784 -- reference line would be generated. Illegitimate children do not
13785 -- rate such recognition.
13786
13787 Set_Comes_From_Source (New_Compon, False);
13788
13789 -- But it is a real entity, and a birth certificate must be properly
13790 -- registered by entering it into the entity list.
13791
13792 Enter_Name (New_Compon);
13793
13794 return New_Compon;
13795 end Create_Component;
13796
13797 -----------------------
13798 -- Is_Variant_Record --
13799 -----------------------
13800
13801 function Is_Variant_Record (T : Entity_Id) return Boolean is
13802 begin
13803 return Nkind (Parent (T)) = N_Full_Type_Declaration
13804 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
13805 and then Present (Component_List (Type_Definition (Parent (T))))
13806 and then
13807 Present
13808 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
13809 end Is_Variant_Record;
13810
13811 -- Start of processing for Create_Constrained_Components
13812
13813 begin
13814 pragma Assert (Subt /= Base_Type (Subt));
13815 pragma Assert (Typ = Base_Type (Typ));
13816
13817 Set_First_Entity (Subt, Empty);
13818 Set_Last_Entity (Subt, Empty);
13819
13820 -- Check whether constraint is fully static, in which case we can
13821 -- optimize the list of components.
13822
13823 Discr_Val := First_Elmt (Constraints);
13824 while Present (Discr_Val) loop
13825 if not Is_OK_Static_Expression (Node (Discr_Val)) then
13826 Is_Static := False;
13827 exit;
13828 end if;
13829
13830 Next_Elmt (Discr_Val);
13831 end loop;
13832
13833 Set_Has_Static_Discriminants (Subt, Is_Static);
13834
13835 Push_Scope (Subt);
13836
13837 -- Inherit the discriminants of the parent type
13838
13839 Add_Discriminants : declare
13840 Num_Disc : Int;
13841 Num_Gird : Int;
13842
13843 begin
13844 Num_Disc := 0;
13845 Old_C := First_Discriminant (Typ);
13846
13847 while Present (Old_C) loop
13848 Num_Disc := Num_Disc + 1;
13849 New_C := Create_Component (Old_C);
13850 Set_Is_Public (New_C, Is_Public (Subt));
13851 Next_Discriminant (Old_C);
13852 end loop;
13853
13854 -- For an untagged derived subtype, the number of discriminants may
13855 -- be smaller than the number of inherited discriminants, because
13856 -- several of them may be renamed by a single new discriminant or
13857 -- constrained. In this case, add the hidden discriminants back into
13858 -- the subtype, because they need to be present if the optimizer of
13859 -- the GCC 4.x back-end decides to break apart assignments between
13860 -- objects using the parent view into member-wise assignments.
13861
13862 Num_Gird := 0;
13863
13864 if Is_Derived_Type (Typ)
13865 and then not Is_Tagged_Type (Typ)
13866 then
13867 Old_C := First_Stored_Discriminant (Typ);
13868
13869 while Present (Old_C) loop
13870 Num_Gird := Num_Gird + 1;
13871 Next_Stored_Discriminant (Old_C);
13872 end loop;
13873 end if;
13874
13875 if Num_Gird > Num_Disc then
13876
13877 -- Find out multiple uses of new discriminants, and add hidden
13878 -- components for the extra renamed discriminants. We recognize
13879 -- multiple uses through the Corresponding_Discriminant of a
13880 -- new discriminant: if it constrains several old discriminants,
13881 -- this field points to the last one in the parent type. The
13882 -- stored discriminants of the derived type have the same name
13883 -- as those of the parent.
13884
13885 declare
13886 Constr : Elmt_Id;
13887 New_Discr : Entity_Id;
13888 Old_Discr : Entity_Id;
13889
13890 begin
13891 Constr := First_Elmt (Stored_Constraint (Typ));
13892 Old_Discr := First_Stored_Discriminant (Typ);
13893 while Present (Constr) loop
13894 if Is_Entity_Name (Node (Constr))
13895 and then Ekind (Entity (Node (Constr))) = E_Discriminant
13896 then
13897 New_Discr := Entity (Node (Constr));
13898
13899 if Chars (Corresponding_Discriminant (New_Discr)) /=
13900 Chars (Old_Discr)
13901 then
13902 -- The new discriminant has been used to rename a
13903 -- subsequent old discriminant. Introduce a shadow
13904 -- component for the current old discriminant.
13905
13906 New_C := Create_Component (Old_Discr);
13907 Set_Original_Record_Component (New_C, Old_Discr);
13908 end if;
13909
13910 else
13911 -- The constraint has eliminated the old discriminant.
13912 -- Introduce a shadow component.
13913
13914 New_C := Create_Component (Old_Discr);
13915 Set_Original_Record_Component (New_C, Old_Discr);
13916 end if;
13917
13918 Next_Elmt (Constr);
13919 Next_Stored_Discriminant (Old_Discr);
13920 end loop;
13921 end;
13922 end if;
13923 end Add_Discriminants;
13924
13925 if Is_Static
13926 and then Is_Variant_Record (Typ)
13927 then
13928 Collect_Fixed_Components (Typ);
13929
13930 Gather_Components (
13931 Typ,
13932 Component_List (Type_Definition (Parent (Typ))),
13933 Governed_By => Assoc_List,
13934 Into => Comp_List,
13935 Report_Errors => Errors);
13936 pragma Assert (not Errors);
13937
13938 Create_All_Components;
13939
13940 -- If the subtype declaration is created for a tagged type derivation
13941 -- with constraints, we retrieve the record definition of the parent
13942 -- type to select the components of the proper variant.
13943
13944 elsif Is_Static
13945 and then Is_Tagged_Type (Typ)
13946 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
13947 and then
13948 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
13949 and then Is_Variant_Record (Parent_Type)
13950 then
13951 Collect_Fixed_Components (Typ);
13952
13953 Gather_Components
13954 (Typ,
13955 Component_List (Type_Definition (Parent (Parent_Type))),
13956 Governed_By => Assoc_List,
13957 Into => Comp_List,
13958 Report_Errors => Errors);
13959
13960 -- Note: previously there was a check at this point that no errors
13961 -- were detected. As a consequence of AI05-220 there may be an error
13962 -- if an inherited discriminant that controls a variant has a non-
13963 -- static constraint.
13964
13965 -- If the tagged derivation has a type extension, collect all the
13966 -- new components therein.
13967
13968 if Present (Record_Extension_Part (Type_Definition (Parent (Typ))))
13969 then
13970 Old_C := First_Component (Typ);
13971 while Present (Old_C) loop
13972 if Original_Record_Component (Old_C) = Old_C
13973 and then Chars (Old_C) /= Name_uTag
13974 and then Chars (Old_C) /= Name_uParent
13975 then
13976 Append_Elmt (Old_C, Comp_List);
13977 end if;
13978
13979 Next_Component (Old_C);
13980 end loop;
13981 end if;
13982
13983 Create_All_Components;
13984
13985 else
13986 -- If discriminants are not static, or if this is a multi-level type
13987 -- extension, we have to include all components of the parent type.
13988
13989 Old_C := First_Component (Typ);
13990 while Present (Old_C) loop
13991 New_C := Create_Component (Old_C);
13992
13993 Set_Etype
13994 (New_C,
13995 Constrain_Component_Type
13996 (Old_C, Subt, Decl_Node, Typ, Constraints));
13997 Set_Is_Public (New_C, Is_Public (Subt));
13998
13999 Next_Component (Old_C);
14000 end loop;
14001 end if;
14002
14003 End_Scope;
14004 end Create_Constrained_Components;
14005
14006 ------------------------------------------
14007 -- Decimal_Fixed_Point_Type_Declaration --
14008 ------------------------------------------
14009
14010 procedure Decimal_Fixed_Point_Type_Declaration
14011 (T : Entity_Id;
14012 Def : Node_Id)
14013 is
14014 Loc : constant Source_Ptr := Sloc (Def);
14015 Digs_Expr : constant Node_Id := Digits_Expression (Def);
14016 Delta_Expr : constant Node_Id := Delta_Expression (Def);
14017 Implicit_Base : Entity_Id;
14018 Digs_Val : Uint;
14019 Delta_Val : Ureal;
14020 Scale_Val : Uint;
14021 Bound_Val : Ureal;
14022
14023 begin
14024 Check_SPARK_05_Restriction
14025 ("decimal fixed point type is not allowed", Def);
14026 Check_Restriction (No_Fixed_Point, Def);
14027
14028 -- Create implicit base type
14029
14030 Implicit_Base :=
14031 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
14032 Set_Etype (Implicit_Base, Implicit_Base);
14033
14034 -- Analyze and process delta expression
14035
14036 Analyze_And_Resolve (Delta_Expr, Universal_Real);
14037
14038 Check_Delta_Expression (Delta_Expr);
14039 Delta_Val := Expr_Value_R (Delta_Expr);
14040
14041 -- Check delta is power of 10, and determine scale value from it
14042
14043 declare
14044 Val : Ureal;
14045
14046 begin
14047 Scale_Val := Uint_0;
14048 Val := Delta_Val;
14049
14050 if Val < Ureal_1 then
14051 while Val < Ureal_1 loop
14052 Val := Val * Ureal_10;
14053 Scale_Val := Scale_Val + 1;
14054 end loop;
14055
14056 if Scale_Val > 18 then
14057 Error_Msg_N ("scale exceeds maximum value of 18", Def);
14058 Scale_Val := UI_From_Int (+18);
14059 end if;
14060
14061 else
14062 while Val > Ureal_1 loop
14063 Val := Val / Ureal_10;
14064 Scale_Val := Scale_Val - 1;
14065 end loop;
14066
14067 if Scale_Val < -18 then
14068 Error_Msg_N ("scale is less than minimum value of -18", Def);
14069 Scale_Val := UI_From_Int (-18);
14070 end if;
14071 end if;
14072
14073 if Val /= Ureal_1 then
14074 Error_Msg_N ("delta expression must be a power of 10", Def);
14075 Delta_Val := Ureal_10 ** (-Scale_Val);
14076 end if;
14077 end;
14078
14079 -- Set delta, scale and small (small = delta for decimal type)
14080
14081 Set_Delta_Value (Implicit_Base, Delta_Val);
14082 Set_Scale_Value (Implicit_Base, Scale_Val);
14083 Set_Small_Value (Implicit_Base, Delta_Val);
14084
14085 -- Analyze and process digits expression
14086
14087 Analyze_And_Resolve (Digs_Expr, Any_Integer);
14088 Check_Digits_Expression (Digs_Expr);
14089 Digs_Val := Expr_Value (Digs_Expr);
14090
14091 if Digs_Val > 18 then
14092 Digs_Val := UI_From_Int (+18);
14093 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
14094 end if;
14095
14096 Set_Digits_Value (Implicit_Base, Digs_Val);
14097 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
14098
14099 -- Set range of base type from digits value for now. This will be
14100 -- expanded to represent the true underlying base range by Freeze.
14101
14102 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
14103
14104 -- Note: We leave size as zero for now, size will be set at freeze
14105 -- time. We have to do this for ordinary fixed-point, because the size
14106 -- depends on the specified small, and we might as well do the same for
14107 -- decimal fixed-point.
14108
14109 pragma Assert (Esize (Implicit_Base) = Uint_0);
14110
14111 -- If there are bounds given in the declaration use them as the
14112 -- bounds of the first named subtype.
14113
14114 if Present (Real_Range_Specification (Def)) then
14115 declare
14116 RRS : constant Node_Id := Real_Range_Specification (Def);
14117 Low : constant Node_Id := Low_Bound (RRS);
14118 High : constant Node_Id := High_Bound (RRS);
14119 Low_Val : Ureal;
14120 High_Val : Ureal;
14121
14122 begin
14123 Analyze_And_Resolve (Low, Any_Real);
14124 Analyze_And_Resolve (High, Any_Real);
14125 Check_Real_Bound (Low);
14126 Check_Real_Bound (High);
14127 Low_Val := Expr_Value_R (Low);
14128 High_Val := Expr_Value_R (High);
14129
14130 if Low_Val < (-Bound_Val) then
14131 Error_Msg_N
14132 ("range low bound too small for digits value", Low);
14133 Low_Val := -Bound_Val;
14134 end if;
14135
14136 if High_Val > Bound_Val then
14137 Error_Msg_N
14138 ("range high bound too large for digits value", High);
14139 High_Val := Bound_Val;
14140 end if;
14141
14142 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
14143 end;
14144
14145 -- If no explicit range, use range that corresponds to given
14146 -- digits value. This will end up as the final range for the
14147 -- first subtype.
14148
14149 else
14150 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
14151 end if;
14152
14153 -- Complete entity for first subtype. The inheritance of the rep item
14154 -- chain ensures that SPARK-related pragmas are not clobbered when the
14155 -- decimal fixed point type acts as a full view of a private type.
14156
14157 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
14158 Set_Etype (T, Implicit_Base);
14159 Set_Size_Info (T, Implicit_Base);
14160 Inherit_Rep_Item_Chain (T, Implicit_Base);
14161 Set_Digits_Value (T, Digs_Val);
14162 Set_Delta_Value (T, Delta_Val);
14163 Set_Small_Value (T, Delta_Val);
14164 Set_Scale_Value (T, Scale_Val);
14165 Set_Is_Constrained (T);
14166 end Decimal_Fixed_Point_Type_Declaration;
14167
14168 -----------------------------------
14169 -- Derive_Progenitor_Subprograms --
14170 -----------------------------------
14171
14172 procedure Derive_Progenitor_Subprograms
14173 (Parent_Type : Entity_Id;
14174 Tagged_Type : Entity_Id)
14175 is
14176 E : Entity_Id;
14177 Elmt : Elmt_Id;
14178 Iface : Entity_Id;
14179 Iface_Elmt : Elmt_Id;
14180 Iface_Subp : Entity_Id;
14181 New_Subp : Entity_Id := Empty;
14182 Prim_Elmt : Elmt_Id;
14183 Subp : Entity_Id;
14184 Typ : Entity_Id;
14185
14186 begin
14187 pragma Assert (Ada_Version >= Ada_2005
14188 and then Is_Record_Type (Tagged_Type)
14189 and then Is_Tagged_Type (Tagged_Type)
14190 and then Has_Interfaces (Tagged_Type));
14191
14192 -- Step 1: Transfer to the full-view primitives associated with the
14193 -- partial-view that cover interface primitives. Conceptually this
14194 -- work should be done later by Process_Full_View; done here to
14195 -- simplify its implementation at later stages. It can be safely
14196 -- done here because interfaces must be visible in the partial and
14197 -- private view (RM 7.3(7.3/2)).
14198
14199 -- Small optimization: This work is only required if the parent may
14200 -- have entities whose Alias attribute reference an interface primitive.
14201 -- Such a situation may occur if the parent is an abstract type and the
14202 -- primitive has not been yet overridden or if the parent is a generic
14203 -- formal type covering interfaces.
14204
14205 -- If the tagged type is not abstract, it cannot have abstract
14206 -- primitives (the only entities in the list of primitives of
14207 -- non-abstract tagged types that can reference abstract primitives
14208 -- through its Alias attribute are the internal entities that have
14209 -- attribute Interface_Alias, and these entities are generated later
14210 -- by Add_Internal_Interface_Entities).
14211
14212 if In_Private_Part (Current_Scope)
14213 and then (Is_Abstract_Type (Parent_Type)
14214 or else
14215 Is_Generic_Type (Parent_Type))
14216 then
14217 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
14218 while Present (Elmt) loop
14219 Subp := Node (Elmt);
14220
14221 -- At this stage it is not possible to have entities in the list
14222 -- of primitives that have attribute Interface_Alias.
14223
14224 pragma Assert (No (Interface_Alias (Subp)));
14225
14226 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
14227
14228 if Is_Interface (Typ) then
14229 E := Find_Primitive_Covering_Interface
14230 (Tagged_Type => Tagged_Type,
14231 Iface_Prim => Subp);
14232
14233 if Present (E)
14234 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
14235 then
14236 Replace_Elmt (Elmt, E);
14237 Remove_Homonym (Subp);
14238 end if;
14239 end if;
14240
14241 Next_Elmt (Elmt);
14242 end loop;
14243 end if;
14244
14245 -- Step 2: Add primitives of progenitors that are not implemented by
14246 -- parents of Tagged_Type.
14247
14248 if Present (Interfaces (Base_Type (Tagged_Type))) then
14249 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
14250 while Present (Iface_Elmt) loop
14251 Iface := Node (Iface_Elmt);
14252
14253 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
14254 while Present (Prim_Elmt) loop
14255 Iface_Subp := Node (Prim_Elmt);
14256
14257 -- Exclude derivation of predefined primitives except those
14258 -- that come from source, or are inherited from one that comes
14259 -- from source. Required to catch declarations of equality
14260 -- operators of interfaces. For example:
14261
14262 -- type Iface is interface;
14263 -- function "=" (Left, Right : Iface) return Boolean;
14264
14265 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
14266 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
14267 then
14268 E := Find_Primitive_Covering_Interface
14269 (Tagged_Type => Tagged_Type,
14270 Iface_Prim => Iface_Subp);
14271
14272 -- If not found we derive a new primitive leaving its alias
14273 -- attribute referencing the interface primitive.
14274
14275 if No (E) then
14276 Derive_Subprogram
14277 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14278
14279 -- Ada 2012 (AI05-0197): If the covering primitive's name
14280 -- differs from the name of the interface primitive then it
14281 -- is a private primitive inherited from a parent type. In
14282 -- such case, given that Tagged_Type covers the interface,
14283 -- the inherited private primitive becomes visible. For such
14284 -- purpose we add a new entity that renames the inherited
14285 -- private primitive.
14286
14287 elsif Chars (E) /= Chars (Iface_Subp) then
14288 pragma Assert (Has_Suffix (E, 'P'));
14289 Derive_Subprogram
14290 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14291 Set_Alias (New_Subp, E);
14292 Set_Is_Abstract_Subprogram (New_Subp,
14293 Is_Abstract_Subprogram (E));
14294
14295 -- Propagate to the full view interface entities associated
14296 -- with the partial view.
14297
14298 elsif In_Private_Part (Current_Scope)
14299 and then Present (Alias (E))
14300 and then Alias (E) = Iface_Subp
14301 and then
14302 List_Containing (Parent (E)) /=
14303 Private_Declarations
14304 (Specification
14305 (Unit_Declaration_Node (Current_Scope)))
14306 then
14307 Append_Elmt (E, Primitive_Operations (Tagged_Type));
14308 end if;
14309 end if;
14310
14311 Next_Elmt (Prim_Elmt);
14312 end loop;
14313
14314 Next_Elmt (Iface_Elmt);
14315 end loop;
14316 end if;
14317 end Derive_Progenitor_Subprograms;
14318
14319 -----------------------
14320 -- Derive_Subprogram --
14321 -----------------------
14322
14323 procedure Derive_Subprogram
14324 (New_Subp : in out Entity_Id;
14325 Parent_Subp : Entity_Id;
14326 Derived_Type : Entity_Id;
14327 Parent_Type : Entity_Id;
14328 Actual_Subp : Entity_Id := Empty)
14329 is
14330 Formal : Entity_Id;
14331 -- Formal parameter of parent primitive operation
14332
14333 Formal_Of_Actual : Entity_Id;
14334 -- Formal parameter of actual operation, when the derivation is to
14335 -- create a renaming for a primitive operation of an actual in an
14336 -- instantiation.
14337
14338 New_Formal : Entity_Id;
14339 -- Formal of inherited operation
14340
14341 Visible_Subp : Entity_Id := Parent_Subp;
14342
14343 function Is_Private_Overriding return Boolean;
14344 -- If Subp is a private overriding of a visible operation, the inherited
14345 -- operation derives from the overridden op (even though its body is the
14346 -- overriding one) and the inherited operation is visible now. See
14347 -- sem_disp to see the full details of the handling of the overridden
14348 -- subprogram, which is removed from the list of primitive operations of
14349 -- the type. The overridden subprogram is saved locally in Visible_Subp,
14350 -- and used to diagnose abstract operations that need overriding in the
14351 -- derived type.
14352
14353 procedure Replace_Type (Id, New_Id : Entity_Id);
14354 -- When the type is an anonymous access type, create a new access type
14355 -- designating the derived type.
14356
14357 procedure Set_Derived_Name;
14358 -- This procedure sets the appropriate Chars name for New_Subp. This
14359 -- is normally just a copy of the parent name. An exception arises for
14360 -- type support subprograms, where the name is changed to reflect the
14361 -- name of the derived type, e.g. if type foo is derived from type bar,
14362 -- then a procedure barDA is derived with a name fooDA.
14363
14364 ---------------------------
14365 -- Is_Private_Overriding --
14366 ---------------------------
14367
14368 function Is_Private_Overriding return Boolean is
14369 Prev : Entity_Id;
14370
14371 begin
14372 -- If the parent is not a dispatching operation there is no
14373 -- need to investigate overridings
14374
14375 if not Is_Dispatching_Operation (Parent_Subp) then
14376 return False;
14377 end if;
14378
14379 -- The visible operation that is overridden is a homonym of the
14380 -- parent subprogram. We scan the homonym chain to find the one
14381 -- whose alias is the subprogram we are deriving.
14382
14383 Prev := Current_Entity (Parent_Subp);
14384 while Present (Prev) loop
14385 if Ekind (Prev) = Ekind (Parent_Subp)
14386 and then Alias (Prev) = Parent_Subp
14387 and then Scope (Parent_Subp) = Scope (Prev)
14388 and then not Is_Hidden (Prev)
14389 then
14390 Visible_Subp := Prev;
14391 return True;
14392 end if;
14393
14394 Prev := Homonym (Prev);
14395 end loop;
14396
14397 return False;
14398 end Is_Private_Overriding;
14399
14400 ------------------
14401 -- Replace_Type --
14402 ------------------
14403
14404 procedure Replace_Type (Id, New_Id : Entity_Id) is
14405 Id_Type : constant Entity_Id := Etype (Id);
14406 Acc_Type : Entity_Id;
14407 Par : constant Node_Id := Parent (Derived_Type);
14408
14409 begin
14410 -- When the type is an anonymous access type, create a new access
14411 -- type designating the derived type. This itype must be elaborated
14412 -- at the point of the derivation, not on subsequent calls that may
14413 -- be out of the proper scope for Gigi, so we insert a reference to
14414 -- it after the derivation.
14415
14416 if Ekind (Id_Type) = E_Anonymous_Access_Type then
14417 declare
14418 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
14419
14420 begin
14421 if Ekind (Desig_Typ) = E_Record_Type_With_Private
14422 and then Present (Full_View (Desig_Typ))
14423 and then not Is_Private_Type (Parent_Type)
14424 then
14425 Desig_Typ := Full_View (Desig_Typ);
14426 end if;
14427
14428 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
14429
14430 -- Ada 2005 (AI-251): Handle also derivations of abstract
14431 -- interface primitives.
14432
14433 or else (Is_Interface (Desig_Typ)
14434 and then not Is_Class_Wide_Type (Desig_Typ))
14435 then
14436 Acc_Type := New_Copy (Id_Type);
14437 Set_Etype (Acc_Type, Acc_Type);
14438 Set_Scope (Acc_Type, New_Subp);
14439
14440 -- Set size of anonymous access type. If we have an access
14441 -- to an unconstrained array, this is a fat pointer, so it
14442 -- is sizes at twice addtress size.
14443
14444 if Is_Array_Type (Desig_Typ)
14445 and then not Is_Constrained (Desig_Typ)
14446 then
14447 Init_Size (Acc_Type, 2 * System_Address_Size);
14448
14449 -- Other cases use a thin pointer
14450
14451 else
14452 Init_Size (Acc_Type, System_Address_Size);
14453 end if;
14454
14455 -- Set remaining characterstics of anonymous access type
14456
14457 Init_Alignment (Acc_Type);
14458 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
14459
14460 Set_Etype (New_Id, Acc_Type);
14461 Set_Scope (New_Id, New_Subp);
14462
14463 -- Create a reference to it
14464
14465 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
14466
14467 else
14468 Set_Etype (New_Id, Id_Type);
14469 end if;
14470 end;
14471
14472 -- In Ada2012, a formal may have an incomplete type but the type
14473 -- derivation that inherits the primitive follows the full view.
14474
14475 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
14476 or else
14477 (Ekind (Id_Type) = E_Record_Type_With_Private
14478 and then Present (Full_View (Id_Type))
14479 and then
14480 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
14481 or else
14482 (Ada_Version >= Ada_2012
14483 and then Ekind (Id_Type) = E_Incomplete_Type
14484 and then Full_View (Id_Type) = Parent_Type)
14485 then
14486 -- Constraint checks on formals are generated during expansion,
14487 -- based on the signature of the original subprogram. The bounds
14488 -- of the derived type are not relevant, and thus we can use
14489 -- the base type for the formals. However, the return type may be
14490 -- used in a context that requires that the proper static bounds
14491 -- be used (a case statement, for example) and for those cases
14492 -- we must use the derived type (first subtype), not its base.
14493
14494 -- If the derived_type_definition has no constraints, we know that
14495 -- the derived type has the same constraints as the first subtype
14496 -- of the parent, and we can also use it rather than its base,
14497 -- which can lead to more efficient code.
14498
14499 if Etype (Id) = Parent_Type then
14500 if Is_Scalar_Type (Parent_Type)
14501 and then
14502 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
14503 then
14504 Set_Etype (New_Id, Derived_Type);
14505
14506 elsif Nkind (Par) = N_Full_Type_Declaration
14507 and then
14508 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
14509 and then
14510 Is_Entity_Name
14511 (Subtype_Indication (Type_Definition (Par)))
14512 then
14513 Set_Etype (New_Id, Derived_Type);
14514
14515 else
14516 Set_Etype (New_Id, Base_Type (Derived_Type));
14517 end if;
14518
14519 else
14520 Set_Etype (New_Id, Base_Type (Derived_Type));
14521 end if;
14522
14523 else
14524 Set_Etype (New_Id, Etype (Id));
14525 end if;
14526 end Replace_Type;
14527
14528 ----------------------
14529 -- Set_Derived_Name --
14530 ----------------------
14531
14532 procedure Set_Derived_Name is
14533 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
14534 begin
14535 if Nm = TSS_Null then
14536 Set_Chars (New_Subp, Chars (Parent_Subp));
14537 else
14538 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
14539 end if;
14540 end Set_Derived_Name;
14541
14542 -- Start of processing for Derive_Subprogram
14543
14544 begin
14545 New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
14546 Set_Ekind (New_Subp, Ekind (Parent_Subp));
14547
14548 -- Check whether the inherited subprogram is a private operation that
14549 -- should be inherited but not yet made visible. Such subprograms can
14550 -- become visible at a later point (e.g., the private part of a public
14551 -- child unit) via Declare_Inherited_Private_Subprograms. If the
14552 -- following predicate is true, then this is not such a private
14553 -- operation and the subprogram simply inherits the name of the parent
14554 -- subprogram. Note the special check for the names of controlled
14555 -- operations, which are currently exempted from being inherited with
14556 -- a hidden name because they must be findable for generation of
14557 -- implicit run-time calls.
14558
14559 if not Is_Hidden (Parent_Subp)
14560 or else Is_Internal (Parent_Subp)
14561 or else Is_Private_Overriding
14562 or else Is_Internal_Name (Chars (Parent_Subp))
14563 or else Nam_In (Chars (Parent_Subp), Name_Initialize,
14564 Name_Adjust,
14565 Name_Finalize)
14566 then
14567 Set_Derived_Name;
14568
14569 -- An inherited dispatching equality will be overridden by an internally
14570 -- generated one, or by an explicit one, so preserve its name and thus
14571 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
14572 -- private operation it may become invisible if the full view has
14573 -- progenitors, and the dispatch table will be malformed.
14574 -- We check that the type is limited to handle the anomalous declaration
14575 -- of Limited_Controlled, which is derived from a non-limited type, and
14576 -- which is handled specially elsewhere as well.
14577
14578 elsif Chars (Parent_Subp) = Name_Op_Eq
14579 and then Is_Dispatching_Operation (Parent_Subp)
14580 and then Etype (Parent_Subp) = Standard_Boolean
14581 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
14582 and then
14583 Etype (First_Formal (Parent_Subp)) =
14584 Etype (Next_Formal (First_Formal (Parent_Subp)))
14585 then
14586 Set_Derived_Name;
14587
14588 -- If parent is hidden, this can be a regular derivation if the
14589 -- parent is immediately visible in a non-instantiating context,
14590 -- or if we are in the private part of an instance. This test
14591 -- should still be refined ???
14592
14593 -- The test for In_Instance_Not_Visible avoids inheriting the derived
14594 -- operation as a non-visible operation in cases where the parent
14595 -- subprogram might not be visible now, but was visible within the
14596 -- original generic, so it would be wrong to make the inherited
14597 -- subprogram non-visible now. (Not clear if this test is fully
14598 -- correct; are there any cases where we should declare the inherited
14599 -- operation as not visible to avoid it being overridden, e.g., when
14600 -- the parent type is a generic actual with private primitives ???)
14601
14602 -- (they should be treated the same as other private inherited
14603 -- subprograms, but it's not clear how to do this cleanly). ???
14604
14605 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
14606 and then Is_Immediately_Visible (Parent_Subp)
14607 and then not In_Instance)
14608 or else In_Instance_Not_Visible
14609 then
14610 Set_Derived_Name;
14611
14612 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
14613 -- overrides an interface primitive because interface primitives
14614 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
14615
14616 elsif Ada_Version >= Ada_2005
14617 and then Is_Dispatching_Operation (Parent_Subp)
14618 and then Covers_Some_Interface (Parent_Subp)
14619 then
14620 Set_Derived_Name;
14621
14622 -- Otherwise, the type is inheriting a private operation, so enter
14623 -- it with a special name so it can't be overridden.
14624
14625 else
14626 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
14627 end if;
14628
14629 Set_Parent (New_Subp, Parent (Derived_Type));
14630
14631 if Present (Actual_Subp) then
14632 Replace_Type (Actual_Subp, New_Subp);
14633 else
14634 Replace_Type (Parent_Subp, New_Subp);
14635 end if;
14636
14637 Conditional_Delay (New_Subp, Parent_Subp);
14638
14639 -- If we are creating a renaming for a primitive operation of an
14640 -- actual of a generic derived type, we must examine the signature
14641 -- of the actual primitive, not that of the generic formal, which for
14642 -- example may be an interface. However the name and initial value
14643 -- of the inherited operation are those of the formal primitive.
14644
14645 Formal := First_Formal (Parent_Subp);
14646
14647 if Present (Actual_Subp) then
14648 Formal_Of_Actual := First_Formal (Actual_Subp);
14649 else
14650 Formal_Of_Actual := Empty;
14651 end if;
14652
14653 while Present (Formal) loop
14654 New_Formal := New_Copy (Formal);
14655
14656 -- Normally we do not go copying parents, but in the case of
14657 -- formals, we need to link up to the declaration (which is the
14658 -- parameter specification), and it is fine to link up to the
14659 -- original formal's parameter specification in this case.
14660
14661 Set_Parent (New_Formal, Parent (Formal));
14662 Append_Entity (New_Formal, New_Subp);
14663
14664 if Present (Formal_Of_Actual) then
14665 Replace_Type (Formal_Of_Actual, New_Formal);
14666 Next_Formal (Formal_Of_Actual);
14667 else
14668 Replace_Type (Formal, New_Formal);
14669 end if;
14670
14671 Next_Formal (Formal);
14672 end loop;
14673
14674 -- If this derivation corresponds to a tagged generic actual, then
14675 -- primitive operations rename those of the actual. Otherwise the
14676 -- primitive operations rename those of the parent type, If the parent
14677 -- renames an intrinsic operator, so does the new subprogram. We except
14678 -- concatenation, which is always properly typed, and does not get
14679 -- expanded as other intrinsic operations.
14680
14681 if No (Actual_Subp) then
14682 if Is_Intrinsic_Subprogram (Parent_Subp) then
14683 Set_Is_Intrinsic_Subprogram (New_Subp);
14684
14685 if Present (Alias (Parent_Subp))
14686 and then Chars (Parent_Subp) /= Name_Op_Concat
14687 then
14688 Set_Alias (New_Subp, Alias (Parent_Subp));
14689 else
14690 Set_Alias (New_Subp, Parent_Subp);
14691 end if;
14692
14693 else
14694 Set_Alias (New_Subp, Parent_Subp);
14695 end if;
14696
14697 else
14698 Set_Alias (New_Subp, Actual_Subp);
14699 end if;
14700
14701 -- Inherit the "ghostness" from the parent subprogram
14702
14703 if Is_Ghost_Entity (Alias (New_Subp)) then
14704 Set_Is_Ghost_Entity (New_Subp);
14705 end if;
14706
14707 -- Derived subprograms of a tagged type must inherit the convention
14708 -- of the parent subprogram (a requirement of AI-117). Derived
14709 -- subprograms of untagged types simply get convention Ada by default.
14710
14711 -- If the derived type is a tagged generic formal type with unknown
14712 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
14713
14714 -- However, if the type is derived from a generic formal, the further
14715 -- inherited subprogram has the convention of the non-generic ancestor.
14716 -- Otherwise there would be no way to override the operation.
14717 -- (This is subject to forthcoming ARG discussions).
14718
14719 if Is_Tagged_Type (Derived_Type) then
14720 if Is_Generic_Type (Derived_Type)
14721 and then Has_Unknown_Discriminants (Derived_Type)
14722 then
14723 Set_Convention (New_Subp, Convention_Intrinsic);
14724
14725 else
14726 if Is_Generic_Type (Parent_Type)
14727 and then Has_Unknown_Discriminants (Parent_Type)
14728 then
14729 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
14730 else
14731 Set_Convention (New_Subp, Convention (Parent_Subp));
14732 end if;
14733 end if;
14734 end if;
14735
14736 -- Predefined controlled operations retain their name even if the parent
14737 -- is hidden (see above), but they are not primitive operations if the
14738 -- ancestor is not visible, for example if the parent is a private
14739 -- extension completed with a controlled extension. Note that a full
14740 -- type that is controlled can break privacy: the flag Is_Controlled is
14741 -- set on both views of the type.
14742
14743 if Is_Controlled (Parent_Type)
14744 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
14745 Name_Adjust,
14746 Name_Finalize)
14747 and then Is_Hidden (Parent_Subp)
14748 and then not Is_Visibly_Controlled (Parent_Type)
14749 then
14750 Set_Is_Hidden (New_Subp);
14751 end if;
14752
14753 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
14754 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
14755
14756 if Ekind (Parent_Subp) = E_Procedure then
14757 Set_Is_Valued_Procedure
14758 (New_Subp, Is_Valued_Procedure (Parent_Subp));
14759 else
14760 Set_Has_Controlling_Result
14761 (New_Subp, Has_Controlling_Result (Parent_Subp));
14762 end if;
14763
14764 -- No_Return must be inherited properly. If this is overridden in the
14765 -- case of a dispatching operation, then a check is made in Sem_Disp
14766 -- that the overriding operation is also No_Return (no such check is
14767 -- required for the case of non-dispatching operation.
14768
14769 Set_No_Return (New_Subp, No_Return (Parent_Subp));
14770
14771 -- A derived function with a controlling result is abstract. If the
14772 -- Derived_Type is a nonabstract formal generic derived type, then
14773 -- inherited operations are not abstract: the required check is done at
14774 -- instantiation time. If the derivation is for a generic actual, the
14775 -- function is not abstract unless the actual is.
14776
14777 if Is_Generic_Type (Derived_Type)
14778 and then not Is_Abstract_Type (Derived_Type)
14779 then
14780 null;
14781
14782 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
14783 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
14784
14785 -- A subprogram subject to pragma Extensions_Visible with value False
14786 -- requires overriding if the subprogram has at least one controlling
14787 -- OUT parameter (SPARK RM 6.1.7(6)).
14788
14789 elsif Ada_Version >= Ada_2005
14790 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14791 or else (Is_Tagged_Type (Derived_Type)
14792 and then Etype (New_Subp) = Derived_Type
14793 and then not Is_Null_Extension (Derived_Type))
14794 or else (Is_Tagged_Type (Derived_Type)
14795 and then Ekind (Etype (New_Subp)) =
14796 E_Anonymous_Access_Type
14797 and then Designated_Type (Etype (New_Subp)) =
14798 Derived_Type
14799 and then not Is_Null_Extension (Derived_Type))
14800 or else (Comes_From_Source (Alias (New_Subp))
14801 and then Is_EVF_Procedure (Alias (New_Subp))))
14802 and then No (Actual_Subp)
14803 then
14804 if not Is_Tagged_Type (Derived_Type)
14805 or else Is_Abstract_Type (Derived_Type)
14806 or else Is_Abstract_Subprogram (Alias (New_Subp))
14807 then
14808 Set_Is_Abstract_Subprogram (New_Subp);
14809 else
14810 Set_Requires_Overriding (New_Subp);
14811 end if;
14812
14813 elsif Ada_Version < Ada_2005
14814 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14815 or else (Is_Tagged_Type (Derived_Type)
14816 and then Etype (New_Subp) = Derived_Type
14817 and then No (Actual_Subp)))
14818 then
14819 Set_Is_Abstract_Subprogram (New_Subp);
14820
14821 -- AI05-0097 : an inherited operation that dispatches on result is
14822 -- abstract if the derived type is abstract, even if the parent type
14823 -- is concrete and the derived type is a null extension.
14824
14825 elsif Has_Controlling_Result (Alias (New_Subp))
14826 and then Is_Abstract_Type (Etype (New_Subp))
14827 then
14828 Set_Is_Abstract_Subprogram (New_Subp);
14829
14830 -- Finally, if the parent type is abstract we must verify that all
14831 -- inherited operations are either non-abstract or overridden, or that
14832 -- the derived type itself is abstract (this check is performed at the
14833 -- end of a package declaration, in Check_Abstract_Overriding). A
14834 -- private overriding in the parent type will not be visible in the
14835 -- derivation if we are not in an inner package or in a child unit of
14836 -- the parent type, in which case the abstractness of the inherited
14837 -- operation is carried to the new subprogram.
14838
14839 elsif Is_Abstract_Type (Parent_Type)
14840 and then not In_Open_Scopes (Scope (Parent_Type))
14841 and then Is_Private_Overriding
14842 and then Is_Abstract_Subprogram (Visible_Subp)
14843 then
14844 if No (Actual_Subp) then
14845 Set_Alias (New_Subp, Visible_Subp);
14846 Set_Is_Abstract_Subprogram (New_Subp, True);
14847
14848 else
14849 -- If this is a derivation for an instance of a formal derived
14850 -- type, abstractness comes from the primitive operation of the
14851 -- actual, not from the operation inherited from the ancestor.
14852
14853 Set_Is_Abstract_Subprogram
14854 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
14855 end if;
14856 end if;
14857
14858 New_Overloaded_Entity (New_Subp, Derived_Type);
14859
14860 -- Check for case of a derived subprogram for the instantiation of a
14861 -- formal derived tagged type, if so mark the subprogram as dispatching
14862 -- and inherit the dispatching attributes of the actual subprogram. The
14863 -- derived subprogram is effectively renaming of the actual subprogram,
14864 -- so it needs to have the same attributes as the actual.
14865
14866 if Present (Actual_Subp)
14867 and then Is_Dispatching_Operation (Actual_Subp)
14868 then
14869 Set_Is_Dispatching_Operation (New_Subp);
14870
14871 if Present (DTC_Entity (Actual_Subp)) then
14872 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
14873 Set_DT_Position_Value (New_Subp, DT_Position (Actual_Subp));
14874 end if;
14875 end if;
14876
14877 -- Indicate that a derived subprogram does not require a body and that
14878 -- it does not require processing of default expressions.
14879
14880 Set_Has_Completion (New_Subp);
14881 Set_Default_Expressions_Processed (New_Subp);
14882
14883 if Ekind (New_Subp) = E_Function then
14884 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
14885 end if;
14886 end Derive_Subprogram;
14887
14888 ------------------------
14889 -- Derive_Subprograms --
14890 ------------------------
14891
14892 procedure Derive_Subprograms
14893 (Parent_Type : Entity_Id;
14894 Derived_Type : Entity_Id;
14895 Generic_Actual : Entity_Id := Empty)
14896 is
14897 Op_List : constant Elist_Id :=
14898 Collect_Primitive_Operations (Parent_Type);
14899
14900 function Check_Derived_Type return Boolean;
14901 -- Check that all the entities derived from Parent_Type are found in
14902 -- the list of primitives of Derived_Type exactly in the same order.
14903
14904 procedure Derive_Interface_Subprogram
14905 (New_Subp : in out Entity_Id;
14906 Subp : Entity_Id;
14907 Actual_Subp : Entity_Id);
14908 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
14909 -- (which is an interface primitive). If Generic_Actual is present then
14910 -- Actual_Subp is the actual subprogram corresponding with the generic
14911 -- subprogram Subp.
14912
14913 function Check_Derived_Type return Boolean is
14914 E : Entity_Id;
14915 Elmt : Elmt_Id;
14916 List : Elist_Id;
14917 New_Subp : Entity_Id;
14918 Op_Elmt : Elmt_Id;
14919 Subp : Entity_Id;
14920
14921 begin
14922 -- Traverse list of entities in the current scope searching for
14923 -- an incomplete type whose full-view is derived type
14924
14925 E := First_Entity (Scope (Derived_Type));
14926 while Present (E) and then E /= Derived_Type loop
14927 if Ekind (E) = E_Incomplete_Type
14928 and then Present (Full_View (E))
14929 and then Full_View (E) = Derived_Type
14930 then
14931 -- Disable this test if Derived_Type completes an incomplete
14932 -- type because in such case more primitives can be added
14933 -- later to the list of primitives of Derived_Type by routine
14934 -- Process_Incomplete_Dependents
14935
14936 return True;
14937 end if;
14938
14939 E := Next_Entity (E);
14940 end loop;
14941
14942 List := Collect_Primitive_Operations (Derived_Type);
14943 Elmt := First_Elmt (List);
14944
14945 Op_Elmt := First_Elmt (Op_List);
14946 while Present (Op_Elmt) loop
14947 Subp := Node (Op_Elmt);
14948 New_Subp := Node (Elmt);
14949
14950 -- At this early stage Derived_Type has no entities with attribute
14951 -- Interface_Alias. In addition, such primitives are always
14952 -- located at the end of the list of primitives of Parent_Type.
14953 -- Therefore, if found we can safely stop processing pending
14954 -- entities.
14955
14956 exit when Present (Interface_Alias (Subp));
14957
14958 -- Handle hidden entities
14959
14960 if not Is_Predefined_Dispatching_Operation (Subp)
14961 and then Is_Hidden (Subp)
14962 then
14963 if Present (New_Subp)
14964 and then Primitive_Names_Match (Subp, New_Subp)
14965 then
14966 Next_Elmt (Elmt);
14967 end if;
14968
14969 else
14970 if not Present (New_Subp)
14971 or else Ekind (Subp) /= Ekind (New_Subp)
14972 or else not Primitive_Names_Match (Subp, New_Subp)
14973 then
14974 return False;
14975 end if;
14976
14977 Next_Elmt (Elmt);
14978 end if;
14979
14980 Next_Elmt (Op_Elmt);
14981 end loop;
14982
14983 return True;
14984 end Check_Derived_Type;
14985
14986 ---------------------------------
14987 -- Derive_Interface_Subprogram --
14988 ---------------------------------
14989
14990 procedure Derive_Interface_Subprogram
14991 (New_Subp : in out Entity_Id;
14992 Subp : Entity_Id;
14993 Actual_Subp : Entity_Id)
14994 is
14995 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
14996 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
14997
14998 begin
14999 pragma Assert (Is_Interface (Iface_Type));
15000
15001 Derive_Subprogram
15002 (New_Subp => New_Subp,
15003 Parent_Subp => Iface_Subp,
15004 Derived_Type => Derived_Type,
15005 Parent_Type => Iface_Type,
15006 Actual_Subp => Actual_Subp);
15007
15008 -- Given that this new interface entity corresponds with a primitive
15009 -- of the parent that was not overridden we must leave it associated
15010 -- with its parent primitive to ensure that it will share the same
15011 -- dispatch table slot when overridden.
15012
15013 if No (Actual_Subp) then
15014 Set_Alias (New_Subp, Subp);
15015
15016 -- For instantiations this is not needed since the previous call to
15017 -- Derive_Subprogram leaves the entity well decorated.
15018
15019 else
15020 pragma Assert (Alias (New_Subp) = Actual_Subp);
15021 null;
15022 end if;
15023 end Derive_Interface_Subprogram;
15024
15025 -- Local variables
15026
15027 Alias_Subp : Entity_Id;
15028 Act_List : Elist_Id;
15029 Act_Elmt : Elmt_Id;
15030 Act_Subp : Entity_Id := Empty;
15031 Elmt : Elmt_Id;
15032 Need_Search : Boolean := False;
15033 New_Subp : Entity_Id := Empty;
15034 Parent_Base : Entity_Id;
15035 Subp : Entity_Id;
15036
15037 -- Start of processing for Derive_Subprograms
15038
15039 begin
15040 if Ekind (Parent_Type) = E_Record_Type_With_Private
15041 and then Has_Discriminants (Parent_Type)
15042 and then Present (Full_View (Parent_Type))
15043 then
15044 Parent_Base := Full_View (Parent_Type);
15045 else
15046 Parent_Base := Parent_Type;
15047 end if;
15048
15049 if Present (Generic_Actual) then
15050 Act_List := Collect_Primitive_Operations (Generic_Actual);
15051 Act_Elmt := First_Elmt (Act_List);
15052 else
15053 Act_List := No_Elist;
15054 Act_Elmt := No_Elmt;
15055 end if;
15056
15057 -- Derive primitives inherited from the parent. Note that if the generic
15058 -- actual is present, this is not really a type derivation, it is a
15059 -- completion within an instance.
15060
15061 -- Case 1: Derived_Type does not implement interfaces
15062
15063 if not Is_Tagged_Type (Derived_Type)
15064 or else (not Has_Interfaces (Derived_Type)
15065 and then not (Present (Generic_Actual)
15066 and then Has_Interfaces (Generic_Actual)))
15067 then
15068 Elmt := First_Elmt (Op_List);
15069 while Present (Elmt) loop
15070 Subp := Node (Elmt);
15071
15072 -- Literals are derived earlier in the process of building the
15073 -- derived type, and are skipped here.
15074
15075 if Ekind (Subp) = E_Enumeration_Literal then
15076 null;
15077
15078 -- The actual is a direct descendant and the common primitive
15079 -- operations appear in the same order.
15080
15081 -- If the generic parent type is present, the derived type is an
15082 -- instance of a formal derived type, and within the instance its
15083 -- operations are those of the actual. We derive from the formal
15084 -- type but make the inherited operations aliases of the
15085 -- corresponding operations of the actual.
15086
15087 else
15088 pragma Assert (No (Node (Act_Elmt))
15089 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
15090 and then
15091 Type_Conformant
15092 (Subp, Node (Act_Elmt),
15093 Skip_Controlling_Formals => True)));
15094
15095 Derive_Subprogram
15096 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
15097
15098 if Present (Act_Elmt) then
15099 Next_Elmt (Act_Elmt);
15100 end if;
15101 end if;
15102
15103 Next_Elmt (Elmt);
15104 end loop;
15105
15106 -- Case 2: Derived_Type implements interfaces
15107
15108 else
15109 -- If the parent type has no predefined primitives we remove
15110 -- predefined primitives from the list of primitives of generic
15111 -- actual to simplify the complexity of this algorithm.
15112
15113 if Present (Generic_Actual) then
15114 declare
15115 Has_Predefined_Primitives : Boolean := False;
15116
15117 begin
15118 -- Check if the parent type has predefined primitives
15119
15120 Elmt := First_Elmt (Op_List);
15121 while Present (Elmt) loop
15122 Subp := Node (Elmt);
15123
15124 if Is_Predefined_Dispatching_Operation (Subp)
15125 and then not Comes_From_Source (Ultimate_Alias (Subp))
15126 then
15127 Has_Predefined_Primitives := True;
15128 exit;
15129 end if;
15130
15131 Next_Elmt (Elmt);
15132 end loop;
15133
15134 -- Remove predefined primitives of Generic_Actual. We must use
15135 -- an auxiliary list because in case of tagged types the value
15136 -- returned by Collect_Primitive_Operations is the value stored
15137 -- in its Primitive_Operations attribute (and we don't want to
15138 -- modify its current contents).
15139
15140 if not Has_Predefined_Primitives then
15141 declare
15142 Aux_List : constant Elist_Id := New_Elmt_List;
15143
15144 begin
15145 Elmt := First_Elmt (Act_List);
15146 while Present (Elmt) loop
15147 Subp := Node (Elmt);
15148
15149 if not Is_Predefined_Dispatching_Operation (Subp)
15150 or else Comes_From_Source (Subp)
15151 then
15152 Append_Elmt (Subp, Aux_List);
15153 end if;
15154
15155 Next_Elmt (Elmt);
15156 end loop;
15157
15158 Act_List := Aux_List;
15159 end;
15160 end if;
15161
15162 Act_Elmt := First_Elmt (Act_List);
15163 Act_Subp := Node (Act_Elmt);
15164 end;
15165 end if;
15166
15167 -- Stage 1: If the generic actual is not present we derive the
15168 -- primitives inherited from the parent type. If the generic parent
15169 -- type is present, the derived type is an instance of a formal
15170 -- derived type, and within the instance its operations are those of
15171 -- the actual. We derive from the formal type but make the inherited
15172 -- operations aliases of the corresponding operations of the actual.
15173
15174 Elmt := First_Elmt (Op_List);
15175 while Present (Elmt) loop
15176 Subp := Node (Elmt);
15177 Alias_Subp := Ultimate_Alias (Subp);
15178
15179 -- Do not derive internal entities of the parent that link
15180 -- interface primitives with their covering primitive. These
15181 -- entities will be added to this type when frozen.
15182
15183 if Present (Interface_Alias (Subp)) then
15184 goto Continue;
15185 end if;
15186
15187 -- If the generic actual is present find the corresponding
15188 -- operation in the generic actual. If the parent type is a
15189 -- direct ancestor of the derived type then, even if it is an
15190 -- interface, the operations are inherited from the primary
15191 -- dispatch table and are in the proper order. If we detect here
15192 -- that primitives are not in the same order we traverse the list
15193 -- of primitive operations of the actual to find the one that
15194 -- implements the interface primitive.
15195
15196 if Need_Search
15197 or else
15198 (Present (Generic_Actual)
15199 and then Present (Act_Subp)
15200 and then not
15201 (Primitive_Names_Match (Subp, Act_Subp)
15202 and then
15203 Type_Conformant (Subp, Act_Subp,
15204 Skip_Controlling_Formals => True)))
15205 then
15206 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
15207 Use_Full_View => True));
15208
15209 -- Remember that we need searching for all pending primitives
15210
15211 Need_Search := True;
15212
15213 -- Handle entities associated with interface primitives
15214
15215 if Present (Alias_Subp)
15216 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
15217 and then not Is_Predefined_Dispatching_Operation (Subp)
15218 then
15219 -- Search for the primitive in the homonym chain
15220
15221 Act_Subp :=
15222 Find_Primitive_Covering_Interface
15223 (Tagged_Type => Generic_Actual,
15224 Iface_Prim => Alias_Subp);
15225
15226 -- Previous search may not locate primitives covering
15227 -- interfaces defined in generics units or instantiations.
15228 -- (it fails if the covering primitive has formals whose
15229 -- type is also defined in generics or instantiations).
15230 -- In such case we search in the list of primitives of the
15231 -- generic actual for the internal entity that links the
15232 -- interface primitive and the covering primitive.
15233
15234 if No (Act_Subp)
15235 and then Is_Generic_Type (Parent_Type)
15236 then
15237 -- This code has been designed to handle only generic
15238 -- formals that implement interfaces that are defined
15239 -- in a generic unit or instantiation. If this code is
15240 -- needed for other cases we must review it because
15241 -- (given that it relies on Original_Location to locate
15242 -- the primitive of Generic_Actual that covers the
15243 -- interface) it could leave linked through attribute
15244 -- Alias entities of unrelated instantiations).
15245
15246 pragma Assert
15247 (Is_Generic_Unit
15248 (Scope (Find_Dispatching_Type (Alias_Subp)))
15249 or else
15250 Instantiation_Depth
15251 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
15252
15253 declare
15254 Iface_Prim_Loc : constant Source_Ptr :=
15255 Original_Location (Sloc (Alias_Subp));
15256
15257 Elmt : Elmt_Id;
15258 Prim : Entity_Id;
15259
15260 begin
15261 Elmt :=
15262 First_Elmt (Primitive_Operations (Generic_Actual));
15263
15264 Search : while Present (Elmt) loop
15265 Prim := Node (Elmt);
15266
15267 if Present (Interface_Alias (Prim))
15268 and then Original_Location
15269 (Sloc (Interface_Alias (Prim))) =
15270 Iface_Prim_Loc
15271 then
15272 Act_Subp := Alias (Prim);
15273 exit Search;
15274 end if;
15275
15276 Next_Elmt (Elmt);
15277 end loop Search;
15278 end;
15279 end if;
15280
15281 pragma Assert (Present (Act_Subp)
15282 or else Is_Abstract_Type (Generic_Actual)
15283 or else Serious_Errors_Detected > 0);
15284
15285 -- Handle predefined primitives plus the rest of user-defined
15286 -- primitives
15287
15288 else
15289 Act_Elmt := First_Elmt (Act_List);
15290 while Present (Act_Elmt) loop
15291 Act_Subp := Node (Act_Elmt);
15292
15293 exit when Primitive_Names_Match (Subp, Act_Subp)
15294 and then Type_Conformant
15295 (Subp, Act_Subp,
15296 Skip_Controlling_Formals => True)
15297 and then No (Interface_Alias (Act_Subp));
15298
15299 Next_Elmt (Act_Elmt);
15300 end loop;
15301
15302 if No (Act_Elmt) then
15303 Act_Subp := Empty;
15304 end if;
15305 end if;
15306 end if;
15307
15308 -- Case 1: If the parent is a limited interface then it has the
15309 -- predefined primitives of synchronized interfaces. However, the
15310 -- actual type may be a non-limited type and hence it does not
15311 -- have such primitives.
15312
15313 if Present (Generic_Actual)
15314 and then not Present (Act_Subp)
15315 and then Is_Limited_Interface (Parent_Base)
15316 and then Is_Predefined_Interface_Primitive (Subp)
15317 then
15318 null;
15319
15320 -- Case 2: Inherit entities associated with interfaces that were
15321 -- not covered by the parent type. We exclude here null interface
15322 -- primitives because they do not need special management.
15323
15324 -- We also exclude interface operations that are renamings. If the
15325 -- subprogram is an explicit renaming of an interface primitive,
15326 -- it is a regular primitive operation, and the presence of its
15327 -- alias is not relevant: it has to be derived like any other
15328 -- primitive.
15329
15330 elsif Present (Alias (Subp))
15331 and then Nkind (Unit_Declaration_Node (Subp)) /=
15332 N_Subprogram_Renaming_Declaration
15333 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
15334 and then not
15335 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
15336 and then Null_Present (Parent (Alias_Subp)))
15337 then
15338 -- If this is an abstract private type then we transfer the
15339 -- derivation of the interface primitive from the partial view
15340 -- to the full view. This is safe because all the interfaces
15341 -- must be visible in the partial view. Done to avoid adding
15342 -- a new interface derivation to the private part of the
15343 -- enclosing package; otherwise this new derivation would be
15344 -- decorated as hidden when the analysis of the enclosing
15345 -- package completes.
15346
15347 if Is_Abstract_Type (Derived_Type)
15348 and then In_Private_Part (Current_Scope)
15349 and then Has_Private_Declaration (Derived_Type)
15350 then
15351 declare
15352 Partial_View : Entity_Id;
15353 Elmt : Elmt_Id;
15354 Ent : Entity_Id;
15355
15356 begin
15357 Partial_View := First_Entity (Current_Scope);
15358 loop
15359 exit when No (Partial_View)
15360 or else (Has_Private_Declaration (Partial_View)
15361 and then
15362 Full_View (Partial_View) = Derived_Type);
15363
15364 Next_Entity (Partial_View);
15365 end loop;
15366
15367 -- If the partial view was not found then the source code
15368 -- has errors and the derivation is not needed.
15369
15370 if Present (Partial_View) then
15371 Elmt :=
15372 First_Elmt (Primitive_Operations (Partial_View));
15373 while Present (Elmt) loop
15374 Ent := Node (Elmt);
15375
15376 if Present (Alias (Ent))
15377 and then Ultimate_Alias (Ent) = Alias (Subp)
15378 then
15379 Append_Elmt
15380 (Ent, Primitive_Operations (Derived_Type));
15381 exit;
15382 end if;
15383
15384 Next_Elmt (Elmt);
15385 end loop;
15386
15387 -- If the interface primitive was not found in the
15388 -- partial view then this interface primitive was
15389 -- overridden. We add a derivation to activate in
15390 -- Derive_Progenitor_Subprograms the machinery to
15391 -- search for it.
15392
15393 if No (Elmt) then
15394 Derive_Interface_Subprogram
15395 (New_Subp => New_Subp,
15396 Subp => Subp,
15397 Actual_Subp => Act_Subp);
15398 end if;
15399 end if;
15400 end;
15401 else
15402 Derive_Interface_Subprogram
15403 (New_Subp => New_Subp,
15404 Subp => Subp,
15405 Actual_Subp => Act_Subp);
15406 end if;
15407
15408 -- Case 3: Common derivation
15409
15410 else
15411 Derive_Subprogram
15412 (New_Subp => New_Subp,
15413 Parent_Subp => Subp,
15414 Derived_Type => Derived_Type,
15415 Parent_Type => Parent_Base,
15416 Actual_Subp => Act_Subp);
15417 end if;
15418
15419 -- No need to update Act_Elm if we must search for the
15420 -- corresponding operation in the generic actual
15421
15422 if not Need_Search
15423 and then Present (Act_Elmt)
15424 then
15425 Next_Elmt (Act_Elmt);
15426 Act_Subp := Node (Act_Elmt);
15427 end if;
15428
15429 <<Continue>>
15430 Next_Elmt (Elmt);
15431 end loop;
15432
15433 -- Inherit additional operations from progenitors. If the derived
15434 -- type is a generic actual, there are not new primitive operations
15435 -- for the type because it has those of the actual, and therefore
15436 -- nothing needs to be done. The renamings generated above are not
15437 -- primitive operations, and their purpose is simply to make the
15438 -- proper operations visible within an instantiation.
15439
15440 if No (Generic_Actual) then
15441 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
15442 end if;
15443 end if;
15444
15445 -- Final check: Direct descendants must have their primitives in the
15446 -- same order. We exclude from this test untagged types and instances
15447 -- of formal derived types. We skip this test if we have already
15448 -- reported serious errors in the sources.
15449
15450 pragma Assert (not Is_Tagged_Type (Derived_Type)
15451 or else Present (Generic_Actual)
15452 or else Serious_Errors_Detected > 0
15453 or else Check_Derived_Type);
15454 end Derive_Subprograms;
15455
15456 --------------------------------
15457 -- Derived_Standard_Character --
15458 --------------------------------
15459
15460 procedure Derived_Standard_Character
15461 (N : Node_Id;
15462 Parent_Type : Entity_Id;
15463 Derived_Type : Entity_Id)
15464 is
15465 Loc : constant Source_Ptr := Sloc (N);
15466 Def : constant Node_Id := Type_Definition (N);
15467 Indic : constant Node_Id := Subtype_Indication (Def);
15468 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
15469 Implicit_Base : constant Entity_Id :=
15470 Create_Itype
15471 (E_Enumeration_Type, N, Derived_Type, 'B');
15472
15473 Lo : Node_Id;
15474 Hi : Node_Id;
15475
15476 begin
15477 Discard_Node (Process_Subtype (Indic, N));
15478
15479 Set_Etype (Implicit_Base, Parent_Base);
15480 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
15481 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
15482
15483 Set_Is_Character_Type (Implicit_Base, True);
15484 Set_Has_Delayed_Freeze (Implicit_Base);
15485
15486 -- The bounds of the implicit base are the bounds of the parent base.
15487 -- Note that their type is the parent base.
15488
15489 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
15490 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
15491
15492 Set_Scalar_Range (Implicit_Base,
15493 Make_Range (Loc,
15494 Low_Bound => Lo,
15495 High_Bound => Hi));
15496
15497 Conditional_Delay (Derived_Type, Parent_Type);
15498
15499 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
15500 Set_Etype (Derived_Type, Implicit_Base);
15501 Set_Size_Info (Derived_Type, Parent_Type);
15502
15503 if Unknown_RM_Size (Derived_Type) then
15504 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
15505 end if;
15506
15507 Set_Is_Character_Type (Derived_Type, True);
15508
15509 if Nkind (Indic) /= N_Subtype_Indication then
15510
15511 -- If no explicit constraint, the bounds are those
15512 -- of the parent type.
15513
15514 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
15515 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
15516 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
15517 end if;
15518
15519 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
15520
15521 -- Because the implicit base is used in the conversion of the bounds, we
15522 -- have to freeze it now. This is similar to what is done for numeric
15523 -- types, and it equally suspicious, but otherwise a non-static bound
15524 -- will have a reference to an unfrozen type, which is rejected by Gigi
15525 -- (???). This requires specific care for definition of stream
15526 -- attributes. For details, see comments at the end of
15527 -- Build_Derived_Numeric_Type.
15528
15529 Freeze_Before (N, Implicit_Base);
15530 end Derived_Standard_Character;
15531
15532 ------------------------------
15533 -- Derived_Type_Declaration --
15534 ------------------------------
15535
15536 procedure Derived_Type_Declaration
15537 (T : Entity_Id;
15538 N : Node_Id;
15539 Is_Completion : Boolean)
15540 is
15541 Parent_Type : Entity_Id;
15542
15543 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
15544 -- Check whether the parent type is a generic formal, or derives
15545 -- directly or indirectly from one.
15546
15547 ------------------------
15548 -- Comes_From_Generic --
15549 ------------------------
15550
15551 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
15552 begin
15553 if Is_Generic_Type (Typ) then
15554 return True;
15555
15556 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
15557 return True;
15558
15559 elsif Is_Private_Type (Typ)
15560 and then Present (Full_View (Typ))
15561 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
15562 then
15563 return True;
15564
15565 elsif Is_Generic_Actual_Type (Typ) then
15566 return True;
15567
15568 else
15569 return False;
15570 end if;
15571 end Comes_From_Generic;
15572
15573 -- Local variables
15574
15575 Def : constant Node_Id := Type_Definition (N);
15576 Iface_Def : Node_Id;
15577 Indic : constant Node_Id := Subtype_Indication (Def);
15578 Extension : constant Node_Id := Record_Extension_Part (Def);
15579 Parent_Node : Node_Id;
15580 Taggd : Boolean;
15581
15582 -- Start of processing for Derived_Type_Declaration
15583
15584 begin
15585 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
15586
15587 -- Ada 2005 (AI-251): In case of interface derivation check that the
15588 -- parent is also an interface.
15589
15590 if Interface_Present (Def) then
15591 Check_SPARK_05_Restriction ("interface is not allowed", Def);
15592
15593 if not Is_Interface (Parent_Type) then
15594 Diagnose_Interface (Indic, Parent_Type);
15595
15596 else
15597 Parent_Node := Parent (Base_Type (Parent_Type));
15598 Iface_Def := Type_Definition (Parent_Node);
15599
15600 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
15601 -- other limited interfaces.
15602
15603 if Limited_Present (Def) then
15604 if Limited_Present (Iface_Def) then
15605 null;
15606
15607 elsif Protected_Present (Iface_Def) then
15608 Error_Msg_NE
15609 ("descendant of& must be declared"
15610 & " as a protected interface",
15611 N, Parent_Type);
15612
15613 elsif Synchronized_Present (Iface_Def) then
15614 Error_Msg_NE
15615 ("descendant of& must be declared"
15616 & " as a synchronized interface",
15617 N, Parent_Type);
15618
15619 elsif Task_Present (Iface_Def) then
15620 Error_Msg_NE
15621 ("descendant of& must be declared as a task interface",
15622 N, Parent_Type);
15623
15624 else
15625 Error_Msg_N
15626 ("(Ada 2005) limited interface cannot "
15627 & "inherit from non-limited interface", Indic);
15628 end if;
15629
15630 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
15631 -- from non-limited or limited interfaces.
15632
15633 elsif not Protected_Present (Def)
15634 and then not Synchronized_Present (Def)
15635 and then not Task_Present (Def)
15636 then
15637 if Limited_Present (Iface_Def) then
15638 null;
15639
15640 elsif Protected_Present (Iface_Def) then
15641 Error_Msg_NE
15642 ("descendant of& must be declared"
15643 & " as a protected interface",
15644 N, Parent_Type);
15645
15646 elsif Synchronized_Present (Iface_Def) then
15647 Error_Msg_NE
15648 ("descendant of& must be declared"
15649 & " as a synchronized interface",
15650 N, Parent_Type);
15651
15652 elsif Task_Present (Iface_Def) then
15653 Error_Msg_NE
15654 ("descendant of& must be declared as a task interface",
15655 N, Parent_Type);
15656 else
15657 null;
15658 end if;
15659 end if;
15660 end if;
15661 end if;
15662
15663 if Is_Tagged_Type (Parent_Type)
15664 and then Is_Concurrent_Type (Parent_Type)
15665 and then not Is_Interface (Parent_Type)
15666 then
15667 Error_Msg_N
15668 ("parent type of a record extension cannot be "
15669 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
15670 Set_Etype (T, Any_Type);
15671 return;
15672 end if;
15673
15674 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
15675 -- interfaces
15676
15677 if Is_Tagged_Type (Parent_Type)
15678 and then Is_Non_Empty_List (Interface_List (Def))
15679 then
15680 declare
15681 Intf : Node_Id;
15682 T : Entity_Id;
15683
15684 begin
15685 Intf := First (Interface_List (Def));
15686 while Present (Intf) loop
15687 T := Find_Type_Of_Subtype_Indic (Intf);
15688
15689 if not Is_Interface (T) then
15690 Diagnose_Interface (Intf, T);
15691
15692 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
15693 -- a limited type from having a nonlimited progenitor.
15694
15695 elsif (Limited_Present (Def)
15696 or else (not Is_Interface (Parent_Type)
15697 and then Is_Limited_Type (Parent_Type)))
15698 and then not Is_Limited_Interface (T)
15699 then
15700 Error_Msg_NE
15701 ("progenitor interface& of limited type must be limited",
15702 N, T);
15703 end if;
15704
15705 Next (Intf);
15706 end loop;
15707 end;
15708 end if;
15709
15710 if Parent_Type = Any_Type
15711 or else Etype (Parent_Type) = Any_Type
15712 or else (Is_Class_Wide_Type (Parent_Type)
15713 and then Etype (Parent_Type) = T)
15714 then
15715 -- If Parent_Type is undefined or illegal, make new type into a
15716 -- subtype of Any_Type, and set a few attributes to prevent cascaded
15717 -- errors. If this is a self-definition, emit error now.
15718
15719 if T = Parent_Type or else T = Etype (Parent_Type) then
15720 Error_Msg_N ("type cannot be used in its own definition", Indic);
15721 end if;
15722
15723 Set_Ekind (T, Ekind (Parent_Type));
15724 Set_Etype (T, Any_Type);
15725 Set_Scalar_Range (T, Scalar_Range (Any_Type));
15726
15727 if Is_Tagged_Type (T)
15728 and then Is_Record_Type (T)
15729 then
15730 Set_Direct_Primitive_Operations (T, New_Elmt_List);
15731 end if;
15732
15733 return;
15734 end if;
15735
15736 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
15737 -- an interface is special because the list of interfaces in the full
15738 -- view can be given in any order. For example:
15739
15740 -- type A is interface;
15741 -- type B is interface and A;
15742 -- type D is new B with private;
15743 -- private
15744 -- type D is new A and B with null record; -- 1 --
15745
15746 -- In this case we perform the following transformation of -1-:
15747
15748 -- type D is new B and A with null record;
15749
15750 -- If the parent of the full-view covers the parent of the partial-view
15751 -- we have two possible cases:
15752
15753 -- 1) They have the same parent
15754 -- 2) The parent of the full-view implements some further interfaces
15755
15756 -- In both cases we do not need to perform the transformation. In the
15757 -- first case the source program is correct and the transformation is
15758 -- not needed; in the second case the source program does not fulfill
15759 -- the no-hidden interfaces rule (AI-396) and the error will be reported
15760 -- later.
15761
15762 -- This transformation not only simplifies the rest of the analysis of
15763 -- this type declaration but also simplifies the correct generation of
15764 -- the object layout to the expander.
15765
15766 if In_Private_Part (Current_Scope)
15767 and then Is_Interface (Parent_Type)
15768 then
15769 declare
15770 Iface : Node_Id;
15771 Partial_View : Entity_Id;
15772 Partial_View_Parent : Entity_Id;
15773 New_Iface : Node_Id;
15774
15775 begin
15776 -- Look for the associated private type declaration
15777
15778 Partial_View := First_Entity (Current_Scope);
15779 loop
15780 exit when No (Partial_View)
15781 or else (Has_Private_Declaration (Partial_View)
15782 and then Full_View (Partial_View) = T);
15783
15784 Next_Entity (Partial_View);
15785 end loop;
15786
15787 -- If the partial view was not found then the source code has
15788 -- errors and the transformation is not needed.
15789
15790 if Present (Partial_View) then
15791 Partial_View_Parent := Etype (Partial_View);
15792
15793 -- If the parent of the full-view covers the parent of the
15794 -- partial-view we have nothing else to do.
15795
15796 if Interface_Present_In_Ancestor
15797 (Parent_Type, Partial_View_Parent)
15798 then
15799 null;
15800
15801 -- Traverse the list of interfaces of the full-view to look
15802 -- for the parent of the partial-view and perform the tree
15803 -- transformation.
15804
15805 else
15806 Iface := First (Interface_List (Def));
15807 while Present (Iface) loop
15808 if Etype (Iface) = Etype (Partial_View) then
15809 Rewrite (Subtype_Indication (Def),
15810 New_Copy (Subtype_Indication
15811 (Parent (Partial_View))));
15812
15813 New_Iface :=
15814 Make_Identifier (Sloc (N), Chars (Parent_Type));
15815 Append (New_Iface, Interface_List (Def));
15816
15817 -- Analyze the transformed code
15818
15819 Derived_Type_Declaration (T, N, Is_Completion);
15820 return;
15821 end if;
15822
15823 Next (Iface);
15824 end loop;
15825 end if;
15826 end if;
15827 end;
15828 end if;
15829
15830 -- Only composite types other than array types are allowed to have
15831 -- discriminants.
15832
15833 if Present (Discriminant_Specifications (N)) then
15834 if (Is_Elementary_Type (Parent_Type)
15835 or else
15836 Is_Array_Type (Parent_Type))
15837 and then not Error_Posted (N)
15838 then
15839 Error_Msg_N
15840 ("elementary or array type cannot have discriminants",
15841 Defining_Identifier (First (Discriminant_Specifications (N))));
15842 Set_Has_Discriminants (T, False);
15843
15844 -- The type is allowed to have discriminants
15845
15846 else
15847 Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
15848 end if;
15849 end if;
15850
15851 -- In Ada 83, a derived type defined in a package specification cannot
15852 -- be used for further derivation until the end of its visible part.
15853 -- Note that derivation in the private part of the package is allowed.
15854
15855 if Ada_Version = Ada_83
15856 and then Is_Derived_Type (Parent_Type)
15857 and then In_Visible_Part (Scope (Parent_Type))
15858 then
15859 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
15860 Error_Msg_N
15861 ("(Ada 83): premature use of type for derivation", Indic);
15862 end if;
15863 end if;
15864
15865 -- Check for early use of incomplete or private type
15866
15867 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
15868 Error_Msg_N ("premature derivation of incomplete type", Indic);
15869 return;
15870
15871 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
15872 and then not Comes_From_Generic (Parent_Type))
15873 or else Has_Private_Component (Parent_Type)
15874 then
15875 -- The ancestor type of a formal type can be incomplete, in which
15876 -- case only the operations of the partial view are available in the
15877 -- generic. Subsequent checks may be required when the full view is
15878 -- analyzed to verify that a derivation from a tagged type has an
15879 -- extension.
15880
15881 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
15882 null;
15883
15884 elsif No (Underlying_Type (Parent_Type))
15885 or else Has_Private_Component (Parent_Type)
15886 then
15887 Error_Msg_N
15888 ("premature derivation of derived or private type", Indic);
15889
15890 -- Flag the type itself as being in error, this prevents some
15891 -- nasty problems with subsequent uses of the malformed type.
15892
15893 Set_Error_Posted (T);
15894
15895 -- Check that within the immediate scope of an untagged partial
15896 -- view it's illegal to derive from the partial view if the
15897 -- full view is tagged. (7.3(7))
15898
15899 -- We verify that the Parent_Type is a partial view by checking
15900 -- that it is not a Full_Type_Declaration (i.e. a private type or
15901 -- private extension declaration), to distinguish a partial view
15902 -- from a derivation from a private type which also appears as
15903 -- E_Private_Type. If the parent base type is not declared in an
15904 -- enclosing scope there is no need to check.
15905
15906 elsif Present (Full_View (Parent_Type))
15907 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
15908 and then not Is_Tagged_Type (Parent_Type)
15909 and then Is_Tagged_Type (Full_View (Parent_Type))
15910 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15911 then
15912 Error_Msg_N
15913 ("premature derivation from type with tagged full view",
15914 Indic);
15915 end if;
15916 end if;
15917
15918 -- Check that form of derivation is appropriate
15919
15920 Taggd := Is_Tagged_Type (Parent_Type);
15921
15922 -- Set the parent type to the class-wide type's specific type in this
15923 -- case to prevent cascading errors
15924
15925 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
15926 Error_Msg_N ("parent type must not be a class-wide type", Indic);
15927 Set_Etype (T, Etype (Parent_Type));
15928 return;
15929 end if;
15930
15931 if Present (Extension) and then not Taggd then
15932 Error_Msg_N
15933 ("type derived from untagged type cannot have extension", Indic);
15934
15935 elsif No (Extension) and then Taggd then
15936
15937 -- If this declaration is within a private part (or body) of a
15938 -- generic instantiation then the derivation is allowed (the parent
15939 -- type can only appear tagged in this case if it's a generic actual
15940 -- type, since it would otherwise have been rejected in the analysis
15941 -- of the generic template).
15942
15943 if not Is_Generic_Actual_Type (Parent_Type)
15944 or else In_Visible_Part (Scope (Parent_Type))
15945 then
15946 if Is_Class_Wide_Type (Parent_Type) then
15947 Error_Msg_N
15948 ("parent type must not be a class-wide type", Indic);
15949
15950 -- Use specific type to prevent cascaded errors.
15951
15952 Parent_Type := Etype (Parent_Type);
15953
15954 else
15955 Error_Msg_N
15956 ("type derived from tagged type must have extension", Indic);
15957 end if;
15958 end if;
15959 end if;
15960
15961 -- AI-443: Synchronized formal derived types require a private
15962 -- extension. There is no point in checking the ancestor type or
15963 -- the progenitors since the construct is wrong to begin with.
15964
15965 if Ada_Version >= Ada_2005
15966 and then Is_Generic_Type (T)
15967 and then Present (Original_Node (N))
15968 then
15969 declare
15970 Decl : constant Node_Id := Original_Node (N);
15971
15972 begin
15973 if Nkind (Decl) = N_Formal_Type_Declaration
15974 and then Nkind (Formal_Type_Definition (Decl)) =
15975 N_Formal_Derived_Type_Definition
15976 and then Synchronized_Present (Formal_Type_Definition (Decl))
15977 and then No (Extension)
15978
15979 -- Avoid emitting a duplicate error message
15980
15981 and then not Error_Posted (Indic)
15982 then
15983 Error_Msg_N
15984 ("synchronized derived type must have extension", N);
15985 end if;
15986 end;
15987 end if;
15988
15989 if Null_Exclusion_Present (Def)
15990 and then not Is_Access_Type (Parent_Type)
15991 then
15992 Error_Msg_N ("null exclusion can only apply to an access type", N);
15993 end if;
15994
15995 -- Avoid deriving parent primitives of underlying record views
15996
15997 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
15998 Derive_Subps => not Is_Underlying_Record_View (T));
15999
16000 -- AI-419: The parent type of an explicitly limited derived type must
16001 -- be a limited type or a limited interface.
16002
16003 if Limited_Present (Def) then
16004 Set_Is_Limited_Record (T);
16005
16006 if Is_Interface (T) then
16007 Set_Is_Limited_Interface (T);
16008 end if;
16009
16010 if not Is_Limited_Type (Parent_Type)
16011 and then
16012 (not Is_Interface (Parent_Type)
16013 or else not Is_Limited_Interface (Parent_Type))
16014 then
16015 -- AI05-0096: a derivation in the private part of an instance is
16016 -- legal if the generic formal is untagged limited, and the actual
16017 -- is non-limited.
16018
16019 if Is_Generic_Actual_Type (Parent_Type)
16020 and then In_Private_Part (Current_Scope)
16021 and then
16022 not Is_Tagged_Type
16023 (Generic_Parent_Type (Parent (Parent_Type)))
16024 then
16025 null;
16026
16027 else
16028 Error_Msg_NE
16029 ("parent type& of limited type must be limited",
16030 N, Parent_Type);
16031 end if;
16032 end if;
16033 end if;
16034
16035 -- In SPARK, there are no derived type definitions other than type
16036 -- extensions of tagged record types.
16037
16038 if No (Extension) then
16039 Check_SPARK_05_Restriction
16040 ("derived type is not allowed", Original_Node (N));
16041 end if;
16042 end Derived_Type_Declaration;
16043
16044 ------------------------
16045 -- Diagnose_Interface --
16046 ------------------------
16047
16048 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
16049 begin
16050 if not Is_Interface (E) and then E /= Any_Type then
16051 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
16052 end if;
16053 end Diagnose_Interface;
16054
16055 ----------------------------------
16056 -- Enumeration_Type_Declaration --
16057 ----------------------------------
16058
16059 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16060 Ev : Uint;
16061 L : Node_Id;
16062 R_Node : Node_Id;
16063 B_Node : Node_Id;
16064
16065 begin
16066 -- Create identifier node representing lower bound
16067
16068 B_Node := New_Node (N_Identifier, Sloc (Def));
16069 L := First (Literals (Def));
16070 Set_Chars (B_Node, Chars (L));
16071 Set_Entity (B_Node, L);
16072 Set_Etype (B_Node, T);
16073 Set_Is_Static_Expression (B_Node, True);
16074
16075 R_Node := New_Node (N_Range, Sloc (Def));
16076 Set_Low_Bound (R_Node, B_Node);
16077
16078 Set_Ekind (T, E_Enumeration_Type);
16079 Set_First_Literal (T, L);
16080 Set_Etype (T, T);
16081 Set_Is_Constrained (T);
16082
16083 Ev := Uint_0;
16084
16085 -- Loop through literals of enumeration type setting pos and rep values
16086 -- except that if the Ekind is already set, then it means the literal
16087 -- was already constructed (case of a derived type declaration and we
16088 -- should not disturb the Pos and Rep values.
16089
16090 while Present (L) loop
16091 if Ekind (L) /= E_Enumeration_Literal then
16092 Set_Ekind (L, E_Enumeration_Literal);
16093 Set_Enumeration_Pos (L, Ev);
16094 Set_Enumeration_Rep (L, Ev);
16095 Set_Is_Known_Valid (L, True);
16096 end if;
16097
16098 Set_Etype (L, T);
16099 New_Overloaded_Entity (L);
16100 Generate_Definition (L);
16101 Set_Convention (L, Convention_Intrinsic);
16102
16103 -- Case of character literal
16104
16105 if Nkind (L) = N_Defining_Character_Literal then
16106 Set_Is_Character_Type (T, True);
16107
16108 -- Check violation of No_Wide_Characters
16109
16110 if Restriction_Check_Required (No_Wide_Characters) then
16111 Get_Name_String (Chars (L));
16112
16113 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
16114 Check_Restriction (No_Wide_Characters, L);
16115 end if;
16116 end if;
16117 end if;
16118
16119 Ev := Ev + 1;
16120 Next (L);
16121 end loop;
16122
16123 -- Now create a node representing upper bound
16124
16125 B_Node := New_Node (N_Identifier, Sloc (Def));
16126 Set_Chars (B_Node, Chars (Last (Literals (Def))));
16127 Set_Entity (B_Node, Last (Literals (Def)));
16128 Set_Etype (B_Node, T);
16129 Set_Is_Static_Expression (B_Node, True);
16130
16131 Set_High_Bound (R_Node, B_Node);
16132
16133 -- Initialize various fields of the type. Some of this information
16134 -- may be overwritten later through rep.clauses.
16135
16136 Set_Scalar_Range (T, R_Node);
16137 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
16138 Set_Enum_Esize (T);
16139 Set_Enum_Pos_To_Rep (T, Empty);
16140
16141 -- Set Discard_Names if configuration pragma set, or if there is
16142 -- a parameterless pragma in the current declarative region
16143
16144 if Global_Discard_Names or else Discard_Names (Scope (T)) then
16145 Set_Discard_Names (T);
16146 end if;
16147
16148 -- Process end label if there is one
16149
16150 if Present (Def) then
16151 Process_End_Label (Def, 'e', T);
16152 end if;
16153 end Enumeration_Type_Declaration;
16154
16155 ---------------------------------
16156 -- Expand_To_Stored_Constraint --
16157 ---------------------------------
16158
16159 function Expand_To_Stored_Constraint
16160 (Typ : Entity_Id;
16161 Constraint : Elist_Id) return Elist_Id
16162 is
16163 Explicitly_Discriminated_Type : Entity_Id;
16164 Expansion : Elist_Id;
16165 Discriminant : Entity_Id;
16166
16167 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
16168 -- Find the nearest type that actually specifies discriminants
16169
16170 ---------------------------------
16171 -- Type_With_Explicit_Discrims --
16172 ---------------------------------
16173
16174 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
16175 Typ : constant E := Base_Type (Id);
16176
16177 begin
16178 if Ekind (Typ) in Incomplete_Or_Private_Kind then
16179 if Present (Full_View (Typ)) then
16180 return Type_With_Explicit_Discrims (Full_View (Typ));
16181 end if;
16182
16183 else
16184 if Has_Discriminants (Typ) then
16185 return Typ;
16186 end if;
16187 end if;
16188
16189 if Etype (Typ) = Typ then
16190 return Empty;
16191 elsif Has_Discriminants (Typ) then
16192 return Typ;
16193 else
16194 return Type_With_Explicit_Discrims (Etype (Typ));
16195 end if;
16196
16197 end Type_With_Explicit_Discrims;
16198
16199 -- Start of processing for Expand_To_Stored_Constraint
16200
16201 begin
16202 if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then
16203 return No_Elist;
16204 end if;
16205
16206 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
16207
16208 if No (Explicitly_Discriminated_Type) then
16209 return No_Elist;
16210 end if;
16211
16212 Expansion := New_Elmt_List;
16213
16214 Discriminant :=
16215 First_Stored_Discriminant (Explicitly_Discriminated_Type);
16216 while Present (Discriminant) loop
16217 Append_Elmt
16218 (Get_Discriminant_Value
16219 (Discriminant, Explicitly_Discriminated_Type, Constraint),
16220 To => Expansion);
16221 Next_Stored_Discriminant (Discriminant);
16222 end loop;
16223
16224 return Expansion;
16225 end Expand_To_Stored_Constraint;
16226
16227 ---------------------------
16228 -- Find_Hidden_Interface --
16229 ---------------------------
16230
16231 function Find_Hidden_Interface
16232 (Src : Elist_Id;
16233 Dest : Elist_Id) return Entity_Id
16234 is
16235 Iface : Entity_Id;
16236 Iface_Elmt : Elmt_Id;
16237
16238 begin
16239 if Present (Src) and then Present (Dest) then
16240 Iface_Elmt := First_Elmt (Src);
16241 while Present (Iface_Elmt) loop
16242 Iface := Node (Iface_Elmt);
16243
16244 if Is_Interface (Iface)
16245 and then not Contain_Interface (Iface, Dest)
16246 then
16247 return Iface;
16248 end if;
16249
16250 Next_Elmt (Iface_Elmt);
16251 end loop;
16252 end if;
16253
16254 return Empty;
16255 end Find_Hidden_Interface;
16256
16257 --------------------
16258 -- Find_Type_Name --
16259 --------------------
16260
16261 function Find_Type_Name (N : Node_Id) return Entity_Id is
16262 Id : constant Entity_Id := Defining_Identifier (N);
16263 Prev : Entity_Id;
16264 New_Id : Entity_Id;
16265 Prev_Par : Node_Id;
16266
16267 procedure Check_Duplicate_Aspects;
16268 -- Check that aspects specified in a completion have not been specified
16269 -- already in the partial view. Type_Invariant and others can be
16270 -- specified on either view but never on both.
16271
16272 procedure Tag_Mismatch;
16273 -- Diagnose a tagged partial view whose full view is untagged.
16274 -- We post the message on the full view, with a reference to
16275 -- the previous partial view. The partial view can be private
16276 -- or incomplete, and these are handled in a different manner,
16277 -- so we determine the position of the error message from the
16278 -- respective slocs of both.
16279
16280 -----------------------------
16281 -- Check_Duplicate_Aspects --
16282 -----------------------------
16283 procedure Check_Duplicate_Aspects is
16284 Prev_Aspects : constant List_Id := Aspect_Specifications (Prev_Par);
16285 Full_Aspects : constant List_Id := Aspect_Specifications (N);
16286 F_Spec, P_Spec : Node_Id;
16287
16288 begin
16289 if Present (Prev_Aspects) and then Present (Full_Aspects) then
16290 F_Spec := First (Full_Aspects);
16291 while Present (F_Spec) loop
16292 P_Spec := First (Prev_Aspects);
16293 while Present (P_Spec) loop
16294 if Chars (Identifier (P_Spec)) = Chars (Identifier (F_Spec))
16295 then
16296 Error_Msg_N
16297 ("aspect already specified in private declaration",
16298 F_Spec);
16299 Remove (F_Spec);
16300 return;
16301 end if;
16302
16303 Next (P_Spec);
16304 end loop;
16305
16306 Next (F_Spec);
16307 end loop;
16308 end if;
16309 end Check_Duplicate_Aspects;
16310
16311 ------------------
16312 -- Tag_Mismatch --
16313 ------------------
16314
16315 procedure Tag_Mismatch is
16316 begin
16317 if Sloc (Prev) < Sloc (Id) then
16318 if Ada_Version >= Ada_2012
16319 and then Nkind (N) = N_Private_Type_Declaration
16320 then
16321 Error_Msg_NE
16322 ("declaration of private } must be a tagged type ", Id, Prev);
16323 else
16324 Error_Msg_NE
16325 ("full declaration of } must be a tagged type ", Id, Prev);
16326 end if;
16327
16328 else
16329 if Ada_Version >= Ada_2012
16330 and then Nkind (N) = N_Private_Type_Declaration
16331 then
16332 Error_Msg_NE
16333 ("declaration of private } must be a tagged type ", Prev, Id);
16334 else
16335 Error_Msg_NE
16336 ("full declaration of } must be a tagged type ", Prev, Id);
16337 end if;
16338 end if;
16339 end Tag_Mismatch;
16340
16341 -- Start of processing for Find_Type_Name
16342
16343 begin
16344 -- Find incomplete declaration, if one was given
16345
16346 Prev := Current_Entity_In_Scope (Id);
16347
16348 -- New type declaration
16349
16350 if No (Prev) then
16351 Enter_Name (Id);
16352 return Id;
16353
16354 -- Previous declaration exists
16355
16356 else
16357 Prev_Par := Parent (Prev);
16358
16359 -- Error if not incomplete/private case except if previous
16360 -- declaration is implicit, etc. Enter_Name will emit error if
16361 -- appropriate.
16362
16363 if not Is_Incomplete_Or_Private_Type (Prev) then
16364 Enter_Name (Id);
16365 New_Id := Id;
16366
16367 -- Check invalid completion of private or incomplete type
16368
16369 elsif not Nkind_In (N, N_Full_Type_Declaration,
16370 N_Task_Type_Declaration,
16371 N_Protected_Type_Declaration)
16372 and then
16373 (Ada_Version < Ada_2012
16374 or else not Is_Incomplete_Type (Prev)
16375 or else not Nkind_In (N, N_Private_Type_Declaration,
16376 N_Private_Extension_Declaration))
16377 then
16378 -- Completion must be a full type declarations (RM 7.3(4))
16379
16380 Error_Msg_Sloc := Sloc (Prev);
16381 Error_Msg_NE ("invalid completion of }", Id, Prev);
16382
16383 -- Set scope of Id to avoid cascaded errors. Entity is never
16384 -- examined again, except when saving globals in generics.
16385
16386 Set_Scope (Id, Current_Scope);
16387 New_Id := Id;
16388
16389 -- If this is a repeated incomplete declaration, no further
16390 -- checks are possible.
16391
16392 if Nkind (N) = N_Incomplete_Type_Declaration then
16393 return Prev;
16394 end if;
16395
16396 -- Case of full declaration of incomplete type
16397
16398 elsif Ekind (Prev) = E_Incomplete_Type
16399 and then (Ada_Version < Ada_2012
16400 or else No (Full_View (Prev))
16401 or else not Is_Private_Type (Full_View (Prev)))
16402 then
16403 -- Indicate that the incomplete declaration has a matching full
16404 -- declaration. The defining occurrence of the incomplete
16405 -- declaration remains the visible one, and the procedure
16406 -- Get_Full_View dereferences it whenever the type is used.
16407
16408 if Present (Full_View (Prev)) then
16409 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
16410 end if;
16411
16412 Set_Full_View (Prev, Id);
16413 Append_Entity (Id, Current_Scope);
16414 Set_Is_Public (Id, Is_Public (Prev));
16415 Set_Is_Internal (Id);
16416 New_Id := Prev;
16417
16418 -- If the incomplete view is tagged, a class_wide type has been
16419 -- created already. Use it for the private type as well, in order
16420 -- to prevent multiple incompatible class-wide types that may be
16421 -- created for self-referential anonymous access components.
16422
16423 if Is_Tagged_Type (Prev)
16424 and then Present (Class_Wide_Type (Prev))
16425 then
16426 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
16427 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
16428
16429 -- The type of the classwide type is the current Id. Previously
16430 -- this was not done for private declarations because of order-
16431 -- of elaboration issues in the back-end, but gigi now handles
16432 -- this properly.
16433
16434 Set_Etype (Class_Wide_Type (Id), Id);
16435 end if;
16436
16437 -- Case of full declaration of private type
16438
16439 else
16440 -- If the private type was a completion of an incomplete type then
16441 -- update Prev to reference the private type
16442
16443 if Ada_Version >= Ada_2012
16444 and then Ekind (Prev) = E_Incomplete_Type
16445 and then Present (Full_View (Prev))
16446 and then Is_Private_Type (Full_View (Prev))
16447 then
16448 Prev := Full_View (Prev);
16449 Prev_Par := Parent (Prev);
16450 end if;
16451
16452 if Nkind (N) = N_Full_Type_Declaration
16453 and then Nkind_In
16454 (Type_Definition (N), N_Record_Definition,
16455 N_Derived_Type_Definition)
16456 and then Interface_Present (Type_Definition (N))
16457 then
16458 Error_Msg_N
16459 ("completion of private type cannot be an interface", N);
16460 end if;
16461
16462 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
16463 if Etype (Prev) /= Prev then
16464
16465 -- Prev is a private subtype or a derived type, and needs
16466 -- no completion.
16467
16468 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
16469 New_Id := Id;
16470
16471 elsif Ekind (Prev) = E_Private_Type
16472 and then Nkind_In (N, N_Task_Type_Declaration,
16473 N_Protected_Type_Declaration)
16474 then
16475 Error_Msg_N
16476 ("completion of nonlimited type cannot be limited", N);
16477
16478 elsif Ekind (Prev) = E_Record_Type_With_Private
16479 and then Nkind_In (N, N_Task_Type_Declaration,
16480 N_Protected_Type_Declaration)
16481 then
16482 if not Is_Limited_Record (Prev) then
16483 Error_Msg_N
16484 ("completion of nonlimited type cannot be limited", N);
16485
16486 elsif No (Interface_List (N)) then
16487 Error_Msg_N
16488 ("completion of tagged private type must be tagged",
16489 N);
16490 end if;
16491 end if;
16492
16493 -- Ada 2005 (AI-251): Private extension declaration of a task
16494 -- type or a protected type. This case arises when covering
16495 -- interface types.
16496
16497 elsif Nkind_In (N, N_Task_Type_Declaration,
16498 N_Protected_Type_Declaration)
16499 then
16500 null;
16501
16502 elsif Nkind (N) /= N_Full_Type_Declaration
16503 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
16504 then
16505 Error_Msg_N
16506 ("full view of private extension must be an extension", N);
16507
16508 elsif not (Abstract_Present (Parent (Prev)))
16509 and then Abstract_Present (Type_Definition (N))
16510 then
16511 Error_Msg_N
16512 ("full view of non-abstract extension cannot be abstract", N);
16513 end if;
16514
16515 if not In_Private_Part (Current_Scope) then
16516 Error_Msg_N
16517 ("declaration of full view must appear in private part", N);
16518 end if;
16519
16520 if Ada_Version >= Ada_2012 then
16521 Check_Duplicate_Aspects;
16522 end if;
16523
16524 Copy_And_Swap (Prev, Id);
16525 Set_Has_Private_Declaration (Prev);
16526 Set_Has_Private_Declaration (Id);
16527
16528 -- AI12-0133: Indicate whether we have a partial view with
16529 -- unknown discriminants, in which case initialization of objects
16530 -- of the type do not receive an invariant check.
16531
16532 Set_Partial_View_Has_Unknown_Discr
16533 (Prev, Has_Unknown_Discriminants (Id));
16534
16535 -- Preserve aspect and iterator flags that may have been set on
16536 -- the partial view.
16537
16538 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
16539 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
16540
16541 -- If no error, propagate freeze_node from private to full view.
16542 -- It may have been generated for an early operational item.
16543
16544 if Present (Freeze_Node (Id))
16545 and then Serious_Errors_Detected = 0
16546 and then No (Full_View (Id))
16547 then
16548 Set_Freeze_Node (Prev, Freeze_Node (Id));
16549 Set_Freeze_Node (Id, Empty);
16550 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
16551 end if;
16552
16553 Set_Full_View (Id, Prev);
16554 New_Id := Prev;
16555 end if;
16556
16557 -- Verify that full declaration conforms to partial one
16558
16559 if Is_Incomplete_Or_Private_Type (Prev)
16560 and then Present (Discriminant_Specifications (Prev_Par))
16561 then
16562 if Present (Discriminant_Specifications (N)) then
16563 if Ekind (Prev) = E_Incomplete_Type then
16564 Check_Discriminant_Conformance (N, Prev, Prev);
16565 else
16566 Check_Discriminant_Conformance (N, Prev, Id);
16567 end if;
16568
16569 else
16570 Error_Msg_N
16571 ("missing discriminants in full type declaration", N);
16572
16573 -- To avoid cascaded errors on subsequent use, share the
16574 -- discriminants of the partial view.
16575
16576 Set_Discriminant_Specifications (N,
16577 Discriminant_Specifications (Prev_Par));
16578 end if;
16579 end if;
16580
16581 -- A prior untagged partial view can have an associated class-wide
16582 -- type due to use of the class attribute, and in this case the full
16583 -- type must also be tagged. This Ada 95 usage is deprecated in favor
16584 -- of incomplete tagged declarations, but we check for it.
16585
16586 if Is_Type (Prev)
16587 and then (Is_Tagged_Type (Prev)
16588 or else Present (Class_Wide_Type (Prev)))
16589 then
16590 -- Ada 2012 (AI05-0162): A private type may be the completion of
16591 -- an incomplete type.
16592
16593 if Ada_Version >= Ada_2012
16594 and then Is_Incomplete_Type (Prev)
16595 and then Nkind_In (N, N_Private_Type_Declaration,
16596 N_Private_Extension_Declaration)
16597 then
16598 -- No need to check private extensions since they are tagged
16599
16600 if Nkind (N) = N_Private_Type_Declaration
16601 and then not Tagged_Present (N)
16602 then
16603 Tag_Mismatch;
16604 end if;
16605
16606 -- The full declaration is either a tagged type (including
16607 -- a synchronized type that implements interfaces) or a
16608 -- type extension, otherwise this is an error.
16609
16610 elsif Nkind_In (N, N_Task_Type_Declaration,
16611 N_Protected_Type_Declaration)
16612 then
16613 if No (Interface_List (N)) and then not Error_Posted (N) then
16614 Tag_Mismatch;
16615 end if;
16616
16617 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
16618
16619 -- Indicate that the previous declaration (tagged incomplete
16620 -- or private declaration) requires the same on the full one.
16621
16622 if not Tagged_Present (Type_Definition (N)) then
16623 Tag_Mismatch;
16624 Set_Is_Tagged_Type (Id);
16625 end if;
16626
16627 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
16628 if No (Record_Extension_Part (Type_Definition (N))) then
16629 Error_Msg_NE
16630 ("full declaration of } must be a record extension",
16631 Prev, Id);
16632
16633 -- Set some attributes to produce a usable full view
16634
16635 Set_Is_Tagged_Type (Id);
16636 end if;
16637
16638 else
16639 Tag_Mismatch;
16640 end if;
16641 end if;
16642
16643 if Present (Prev)
16644 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
16645 and then Present (Premature_Use (Parent (Prev)))
16646 then
16647 Error_Msg_Sloc := Sloc (N);
16648 Error_Msg_N
16649 ("\full declaration #", Premature_Use (Parent (Prev)));
16650 end if;
16651
16652 return New_Id;
16653 end if;
16654 end Find_Type_Name;
16655
16656 -------------------------
16657 -- Find_Type_Of_Object --
16658 -------------------------
16659
16660 function Find_Type_Of_Object
16661 (Obj_Def : Node_Id;
16662 Related_Nod : Node_Id) return Entity_Id
16663 is
16664 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
16665 P : Node_Id := Parent (Obj_Def);
16666 T : Entity_Id;
16667 Nam : Name_Id;
16668
16669 begin
16670 -- If the parent is a component_definition node we climb to the
16671 -- component_declaration node
16672
16673 if Nkind (P) = N_Component_Definition then
16674 P := Parent (P);
16675 end if;
16676
16677 -- Case of an anonymous array subtype
16678
16679 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
16680 N_Unconstrained_Array_Definition)
16681 then
16682 T := Empty;
16683 Array_Type_Declaration (T, Obj_Def);
16684
16685 -- Create an explicit subtype whenever possible
16686
16687 elsif Nkind (P) /= N_Component_Declaration
16688 and then Def_Kind = N_Subtype_Indication
16689 then
16690 -- Base name of subtype on object name, which will be unique in
16691 -- the current scope.
16692
16693 -- If this is a duplicate declaration, return base type, to avoid
16694 -- generating duplicate anonymous types.
16695
16696 if Error_Posted (P) then
16697 Analyze (Subtype_Mark (Obj_Def));
16698 return Entity (Subtype_Mark (Obj_Def));
16699 end if;
16700
16701 Nam :=
16702 New_External_Name
16703 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
16704
16705 T := Make_Defining_Identifier (Sloc (P), Nam);
16706
16707 Insert_Action (Obj_Def,
16708 Make_Subtype_Declaration (Sloc (P),
16709 Defining_Identifier => T,
16710 Subtype_Indication => Relocate_Node (Obj_Def)));
16711
16712 -- This subtype may need freezing, and this will not be done
16713 -- automatically if the object declaration is not in declarative
16714 -- part. Since this is an object declaration, the type cannot always
16715 -- be frozen here. Deferred constants do not freeze their type
16716 -- (which often enough will be private).
16717
16718 if Nkind (P) = N_Object_Declaration
16719 and then Constant_Present (P)
16720 and then No (Expression (P))
16721 then
16722 null;
16723
16724 -- Here we freeze the base type of object type to catch premature use
16725 -- of discriminated private type without a full view.
16726
16727 else
16728 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
16729 end if;
16730
16731 -- Ada 2005 AI-406: the object definition in an object declaration
16732 -- can be an access definition.
16733
16734 elsif Def_Kind = N_Access_Definition then
16735 T := Access_Definition (Related_Nod, Obj_Def);
16736
16737 Set_Is_Local_Anonymous_Access
16738 (T,
16739 V => (Ada_Version < Ada_2012)
16740 or else (Nkind (P) /= N_Object_Declaration)
16741 or else Is_Library_Level_Entity (Defining_Identifier (P)));
16742
16743 -- Otherwise, the object definition is just a subtype_mark
16744
16745 else
16746 T := Process_Subtype (Obj_Def, Related_Nod);
16747
16748 -- If expansion is disabled an object definition that is an aggregate
16749 -- will not get expanded and may lead to scoping problems in the back
16750 -- end, if the object is referenced in an inner scope. In that case
16751 -- create an itype reference for the object definition now. This
16752 -- may be redundant in some cases, but harmless.
16753
16754 if Is_Itype (T)
16755 and then Nkind (Related_Nod) = N_Object_Declaration
16756 and then ASIS_Mode
16757 then
16758 Build_Itype_Reference (T, Related_Nod);
16759 end if;
16760 end if;
16761
16762 return T;
16763 end Find_Type_Of_Object;
16764
16765 --------------------------------
16766 -- Find_Type_Of_Subtype_Indic --
16767 --------------------------------
16768
16769 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
16770 Typ : Entity_Id;
16771
16772 begin
16773 -- Case of subtype mark with a constraint
16774
16775 if Nkind (S) = N_Subtype_Indication then
16776 Find_Type (Subtype_Mark (S));
16777 Typ := Entity (Subtype_Mark (S));
16778
16779 if not
16780 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
16781 then
16782 Error_Msg_N
16783 ("incorrect constraint for this kind of type", Constraint (S));
16784 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
16785 end if;
16786
16787 -- Otherwise we have a subtype mark without a constraint
16788
16789 elsif Error_Posted (S) then
16790 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
16791 return Any_Type;
16792
16793 else
16794 Find_Type (S);
16795 Typ := Entity (S);
16796 end if;
16797
16798 -- Check No_Wide_Characters restriction
16799
16800 Check_Wide_Character_Restriction (Typ, S);
16801
16802 return Typ;
16803 end Find_Type_Of_Subtype_Indic;
16804
16805 -------------------------------------
16806 -- Floating_Point_Type_Declaration --
16807 -------------------------------------
16808
16809 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16810 Digs : constant Node_Id := Digits_Expression (Def);
16811 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
16812 Digs_Val : Uint;
16813 Base_Typ : Entity_Id;
16814 Implicit_Base : Entity_Id;
16815 Bound : Node_Id;
16816
16817 function Can_Derive_From (E : Entity_Id) return Boolean;
16818 -- Find if given digits value, and possibly a specified range, allows
16819 -- derivation from specified type
16820
16821 function Find_Base_Type return Entity_Id;
16822 -- Find a predefined base type that Def can derive from, or generate
16823 -- an error and substitute Long_Long_Float if none exists.
16824
16825 ---------------------
16826 -- Can_Derive_From --
16827 ---------------------
16828
16829 function Can_Derive_From (E : Entity_Id) return Boolean is
16830 Spec : constant Entity_Id := Real_Range_Specification (Def);
16831
16832 begin
16833 -- Check specified "digits" constraint
16834
16835 if Digs_Val > Digits_Value (E) then
16836 return False;
16837 end if;
16838
16839 -- Check for matching range, if specified
16840
16841 if Present (Spec) then
16842 if Expr_Value_R (Type_Low_Bound (E)) >
16843 Expr_Value_R (Low_Bound (Spec))
16844 then
16845 return False;
16846 end if;
16847
16848 if Expr_Value_R (Type_High_Bound (E)) <
16849 Expr_Value_R (High_Bound (Spec))
16850 then
16851 return False;
16852 end if;
16853 end if;
16854
16855 return True;
16856 end Can_Derive_From;
16857
16858 --------------------
16859 -- Find_Base_Type --
16860 --------------------
16861
16862 function Find_Base_Type return Entity_Id is
16863 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
16864
16865 begin
16866 -- Iterate over the predefined types in order, returning the first
16867 -- one that Def can derive from.
16868
16869 while Present (Choice) loop
16870 if Can_Derive_From (Node (Choice)) then
16871 return Node (Choice);
16872 end if;
16873
16874 Next_Elmt (Choice);
16875 end loop;
16876
16877 -- If we can't derive from any existing type, use Long_Long_Float
16878 -- and give appropriate message explaining the problem.
16879
16880 if Digs_Val > Max_Digs_Val then
16881 -- It might be the case that there is a type with the requested
16882 -- range, just not the combination of digits and range.
16883
16884 Error_Msg_N
16885 ("no predefined type has requested range and precision",
16886 Real_Range_Specification (Def));
16887
16888 else
16889 Error_Msg_N
16890 ("range too large for any predefined type",
16891 Real_Range_Specification (Def));
16892 end if;
16893
16894 return Standard_Long_Long_Float;
16895 end Find_Base_Type;
16896
16897 -- Start of processing for Floating_Point_Type_Declaration
16898
16899 begin
16900 Check_Restriction (No_Floating_Point, Def);
16901
16902 -- Create an implicit base type
16903
16904 Implicit_Base :=
16905 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
16906
16907 -- Analyze and verify digits value
16908
16909 Analyze_And_Resolve (Digs, Any_Integer);
16910 Check_Digits_Expression (Digs);
16911 Digs_Val := Expr_Value (Digs);
16912
16913 -- Process possible range spec and find correct type to derive from
16914
16915 Process_Real_Range_Specification (Def);
16916
16917 -- Check that requested number of digits is not too high.
16918
16919 if Digs_Val > Max_Digs_Val then
16920
16921 -- The check for Max_Base_Digits may be somewhat expensive, as it
16922 -- requires reading System, so only do it when necessary.
16923
16924 declare
16925 Max_Base_Digits : constant Uint :=
16926 Expr_Value
16927 (Expression
16928 (Parent (RTE (RE_Max_Base_Digits))));
16929
16930 begin
16931 if Digs_Val > Max_Base_Digits then
16932 Error_Msg_Uint_1 := Max_Base_Digits;
16933 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
16934
16935 elsif No (Real_Range_Specification (Def)) then
16936 Error_Msg_Uint_1 := Max_Digs_Val;
16937 Error_Msg_N ("types with more than ^ digits need range spec "
16938 & "(RM 3.5.7(6))", Digs);
16939 end if;
16940 end;
16941 end if;
16942
16943 -- Find a suitable type to derive from or complain and use a substitute
16944
16945 Base_Typ := Find_Base_Type;
16946
16947 -- If there are bounds given in the declaration use them as the bounds
16948 -- of the type, otherwise use the bounds of the predefined base type
16949 -- that was chosen based on the Digits value.
16950
16951 if Present (Real_Range_Specification (Def)) then
16952 Set_Scalar_Range (T, Real_Range_Specification (Def));
16953 Set_Is_Constrained (T);
16954
16955 -- The bounds of this range must be converted to machine numbers
16956 -- in accordance with RM 4.9(38).
16957
16958 Bound := Type_Low_Bound (T);
16959
16960 if Nkind (Bound) = N_Real_Literal then
16961 Set_Realval
16962 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16963 Set_Is_Machine_Number (Bound);
16964 end if;
16965
16966 Bound := Type_High_Bound (T);
16967
16968 if Nkind (Bound) = N_Real_Literal then
16969 Set_Realval
16970 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16971 Set_Is_Machine_Number (Bound);
16972 end if;
16973
16974 else
16975 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
16976 end if;
16977
16978 -- Complete definition of implicit base and declared first subtype. The
16979 -- inheritance of the rep item chain ensures that SPARK-related pragmas
16980 -- are not clobbered when the floating point type acts as a full view of
16981 -- a private type.
16982
16983 Set_Etype (Implicit_Base, Base_Typ);
16984 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
16985 Set_Size_Info (Implicit_Base, Base_Typ);
16986 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
16987 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
16988 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
16989 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
16990
16991 Set_Ekind (T, E_Floating_Point_Subtype);
16992 Set_Etype (T, Implicit_Base);
16993 Set_Size_Info (T, Implicit_Base);
16994 Set_RM_Size (T, RM_Size (Implicit_Base));
16995 Inherit_Rep_Item_Chain (T, Implicit_Base);
16996 Set_Digits_Value (T, Digs_Val);
16997 end Floating_Point_Type_Declaration;
16998
16999 ----------------------------
17000 -- Get_Discriminant_Value --
17001 ----------------------------
17002
17003 -- This is the situation:
17004
17005 -- There is a non-derived type
17006
17007 -- type T0 (Dx, Dy, Dz...)
17008
17009 -- There are zero or more levels of derivation, with each derivation
17010 -- either purely inheriting the discriminants, or defining its own.
17011
17012 -- type Ti is new Ti-1
17013 -- or
17014 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
17015 -- or
17016 -- subtype Ti is ...
17017
17018 -- The subtype issue is avoided by the use of Original_Record_Component,
17019 -- and the fact that derived subtypes also derive the constraints.
17020
17021 -- This chain leads back from
17022
17023 -- Typ_For_Constraint
17024
17025 -- Typ_For_Constraint has discriminants, and the value for each
17026 -- discriminant is given by its corresponding Elmt of Constraints.
17027
17028 -- Discriminant is some discriminant in this hierarchy
17029
17030 -- We need to return its value
17031
17032 -- We do this by recursively searching each level, and looking for
17033 -- Discriminant. Once we get to the bottom, we start backing up
17034 -- returning the value for it which may in turn be a discriminant
17035 -- further up, so on the backup we continue the substitution.
17036
17037 function Get_Discriminant_Value
17038 (Discriminant : Entity_Id;
17039 Typ_For_Constraint : Entity_Id;
17040 Constraint : Elist_Id) return Node_Id
17041 is
17042 function Root_Corresponding_Discriminant
17043 (Discr : Entity_Id) return Entity_Id;
17044 -- Given a discriminant, traverse the chain of inherited discriminants
17045 -- and return the topmost discriminant.
17046
17047 function Search_Derivation_Levels
17048 (Ti : Entity_Id;
17049 Discrim_Values : Elist_Id;
17050 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
17051 -- This is the routine that performs the recursive search of levels
17052 -- as described above.
17053
17054 -------------------------------------
17055 -- Root_Corresponding_Discriminant --
17056 -------------------------------------
17057
17058 function Root_Corresponding_Discriminant
17059 (Discr : Entity_Id) return Entity_Id
17060 is
17061 D : Entity_Id;
17062
17063 begin
17064 D := Discr;
17065 while Present (Corresponding_Discriminant (D)) loop
17066 D := Corresponding_Discriminant (D);
17067 end loop;
17068
17069 return D;
17070 end Root_Corresponding_Discriminant;
17071
17072 ------------------------------
17073 -- Search_Derivation_Levels --
17074 ------------------------------
17075
17076 function Search_Derivation_Levels
17077 (Ti : Entity_Id;
17078 Discrim_Values : Elist_Id;
17079 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
17080 is
17081 Assoc : Elmt_Id;
17082 Disc : Entity_Id;
17083 Result : Node_Or_Entity_Id;
17084 Result_Entity : Node_Id;
17085
17086 begin
17087 -- If inappropriate type, return Error, this happens only in
17088 -- cascaded error situations, and we want to avoid a blow up.
17089
17090 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
17091 return Error;
17092 end if;
17093
17094 -- Look deeper if possible. Use Stored_Constraints only for
17095 -- untagged types. For tagged types use the given constraint.
17096 -- This asymmetry needs explanation???
17097
17098 if not Stored_Discrim_Values
17099 and then Present (Stored_Constraint (Ti))
17100 and then not Is_Tagged_Type (Ti)
17101 then
17102 Result :=
17103 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
17104 else
17105 declare
17106 Td : constant Entity_Id := Etype (Ti);
17107
17108 begin
17109 if Td = Ti then
17110 Result := Discriminant;
17111
17112 else
17113 if Present (Stored_Constraint (Ti)) then
17114 Result :=
17115 Search_Derivation_Levels
17116 (Td, Stored_Constraint (Ti), True);
17117 else
17118 Result :=
17119 Search_Derivation_Levels
17120 (Td, Discrim_Values, Stored_Discrim_Values);
17121 end if;
17122 end if;
17123 end;
17124 end if;
17125
17126 -- Extra underlying places to search, if not found above. For
17127 -- concurrent types, the relevant discriminant appears in the
17128 -- corresponding record. For a type derived from a private type
17129 -- without discriminant, the full view inherits the discriminants
17130 -- of the full view of the parent.
17131
17132 if Result = Discriminant then
17133 if Is_Concurrent_Type (Ti)
17134 and then Present (Corresponding_Record_Type (Ti))
17135 then
17136 Result :=
17137 Search_Derivation_Levels (
17138 Corresponding_Record_Type (Ti),
17139 Discrim_Values,
17140 Stored_Discrim_Values);
17141
17142 elsif Is_Private_Type (Ti)
17143 and then not Has_Discriminants (Ti)
17144 and then Present (Full_View (Ti))
17145 and then Etype (Full_View (Ti)) /= Ti
17146 then
17147 Result :=
17148 Search_Derivation_Levels (
17149 Full_View (Ti),
17150 Discrim_Values,
17151 Stored_Discrim_Values);
17152 end if;
17153 end if;
17154
17155 -- If Result is not a (reference to a) discriminant, return it,
17156 -- otherwise set Result_Entity to the discriminant.
17157
17158 if Nkind (Result) = N_Defining_Identifier then
17159 pragma Assert (Result = Discriminant);
17160 Result_Entity := Result;
17161
17162 else
17163 if not Denotes_Discriminant (Result) then
17164 return Result;
17165 end if;
17166
17167 Result_Entity := Entity (Result);
17168 end if;
17169
17170 -- See if this level of derivation actually has discriminants because
17171 -- tagged derivations can add them, hence the lower levels need not
17172 -- have any.
17173
17174 if not Has_Discriminants (Ti) then
17175 return Result;
17176 end if;
17177
17178 -- Scan Ti's discriminants for Result_Entity, and return its
17179 -- corresponding value, if any.
17180
17181 Result_Entity := Original_Record_Component (Result_Entity);
17182
17183 Assoc := First_Elmt (Discrim_Values);
17184
17185 if Stored_Discrim_Values then
17186 Disc := First_Stored_Discriminant (Ti);
17187 else
17188 Disc := First_Discriminant (Ti);
17189 end if;
17190
17191 while Present (Disc) loop
17192 pragma Assert (Present (Assoc));
17193
17194 if Original_Record_Component (Disc) = Result_Entity then
17195 return Node (Assoc);
17196 end if;
17197
17198 Next_Elmt (Assoc);
17199
17200 if Stored_Discrim_Values then
17201 Next_Stored_Discriminant (Disc);
17202 else
17203 Next_Discriminant (Disc);
17204 end if;
17205 end loop;
17206
17207 -- Could not find it
17208
17209 return Result;
17210 end Search_Derivation_Levels;
17211
17212 -- Local Variables
17213
17214 Result : Node_Or_Entity_Id;
17215
17216 -- Start of processing for Get_Discriminant_Value
17217
17218 begin
17219 -- ??? This routine is a gigantic mess and will be deleted. For the
17220 -- time being just test for the trivial case before calling recurse.
17221
17222 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
17223 declare
17224 D : Entity_Id;
17225 E : Elmt_Id;
17226
17227 begin
17228 D := First_Discriminant (Typ_For_Constraint);
17229 E := First_Elmt (Constraint);
17230 while Present (D) loop
17231 if Chars (D) = Chars (Discriminant) then
17232 return Node (E);
17233 end if;
17234
17235 Next_Discriminant (D);
17236 Next_Elmt (E);
17237 end loop;
17238 end;
17239 end if;
17240
17241 Result := Search_Derivation_Levels
17242 (Typ_For_Constraint, Constraint, False);
17243
17244 -- ??? hack to disappear when this routine is gone
17245
17246 if Nkind (Result) = N_Defining_Identifier then
17247 declare
17248 D : Entity_Id;
17249 E : Elmt_Id;
17250
17251 begin
17252 D := First_Discriminant (Typ_For_Constraint);
17253 E := First_Elmt (Constraint);
17254 while Present (D) loop
17255 if Root_Corresponding_Discriminant (D) = Discriminant then
17256 return Node (E);
17257 end if;
17258
17259 Next_Discriminant (D);
17260 Next_Elmt (E);
17261 end loop;
17262 end;
17263 end if;
17264
17265 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
17266 return Result;
17267 end Get_Discriminant_Value;
17268
17269 --------------------------
17270 -- Has_Range_Constraint --
17271 --------------------------
17272
17273 function Has_Range_Constraint (N : Node_Id) return Boolean is
17274 C : constant Node_Id := Constraint (N);
17275
17276 begin
17277 if Nkind (C) = N_Range_Constraint then
17278 return True;
17279
17280 elsif Nkind (C) = N_Digits_Constraint then
17281 return
17282 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
17283 or else Present (Range_Constraint (C));
17284
17285 elsif Nkind (C) = N_Delta_Constraint then
17286 return Present (Range_Constraint (C));
17287
17288 else
17289 return False;
17290 end if;
17291 end Has_Range_Constraint;
17292
17293 ------------------------
17294 -- Inherit_Components --
17295 ------------------------
17296
17297 function Inherit_Components
17298 (N : Node_Id;
17299 Parent_Base : Entity_Id;
17300 Derived_Base : Entity_Id;
17301 Is_Tagged : Boolean;
17302 Inherit_Discr : Boolean;
17303 Discs : Elist_Id) return Elist_Id
17304 is
17305 Assoc_List : constant Elist_Id := New_Elmt_List;
17306
17307 procedure Inherit_Component
17308 (Old_C : Entity_Id;
17309 Plain_Discrim : Boolean := False;
17310 Stored_Discrim : Boolean := False);
17311 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
17312 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
17313 -- True, Old_C is a stored discriminant. If they are both false then
17314 -- Old_C is a regular component.
17315
17316 -----------------------
17317 -- Inherit_Component --
17318 -----------------------
17319
17320 procedure Inherit_Component
17321 (Old_C : Entity_Id;
17322 Plain_Discrim : Boolean := False;
17323 Stored_Discrim : Boolean := False)
17324 is
17325 procedure Set_Anonymous_Type (Id : Entity_Id);
17326 -- Id denotes the entity of an access discriminant or anonymous
17327 -- access component. Set the type of Id to either the same type of
17328 -- Old_C or create a new one depending on whether the parent and
17329 -- the child types are in the same scope.
17330
17331 ------------------------
17332 -- Set_Anonymous_Type --
17333 ------------------------
17334
17335 procedure Set_Anonymous_Type (Id : Entity_Id) is
17336 Old_Typ : constant Entity_Id := Etype (Old_C);
17337
17338 begin
17339 if Scope (Parent_Base) = Scope (Derived_Base) then
17340 Set_Etype (Id, Old_Typ);
17341
17342 -- The parent and the derived type are in two different scopes.
17343 -- Reuse the type of the original discriminant / component by
17344 -- copying it in order to preserve all attributes.
17345
17346 else
17347 declare
17348 Typ : constant Entity_Id := New_Copy (Old_Typ);
17349
17350 begin
17351 Set_Etype (Id, Typ);
17352
17353 -- Since we do not generate component declarations for
17354 -- inherited components, associate the itype with the
17355 -- derived type.
17356
17357 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
17358 Set_Scope (Typ, Derived_Base);
17359 end;
17360 end if;
17361 end Set_Anonymous_Type;
17362
17363 -- Local variables and constants
17364
17365 New_C : constant Entity_Id := New_Copy (Old_C);
17366
17367 Corr_Discrim : Entity_Id;
17368 Discrim : Entity_Id;
17369
17370 -- Start of processing for Inherit_Component
17371
17372 begin
17373 pragma Assert (not Is_Tagged or not Stored_Discrim);
17374
17375 Set_Parent (New_C, Parent (Old_C));
17376
17377 -- Regular discriminants and components must be inserted in the scope
17378 -- of the Derived_Base. Do it here.
17379
17380 if not Stored_Discrim then
17381 Enter_Name (New_C);
17382 end if;
17383
17384 -- For tagged types the Original_Record_Component must point to
17385 -- whatever this field was pointing to in the parent type. This has
17386 -- already been achieved by the call to New_Copy above.
17387
17388 if not Is_Tagged then
17389 Set_Original_Record_Component (New_C, New_C);
17390 end if;
17391
17392 -- Set the proper type of an access discriminant
17393
17394 if Ekind (New_C) = E_Discriminant
17395 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
17396 then
17397 Set_Anonymous_Type (New_C);
17398 end if;
17399
17400 -- If we have inherited a component then see if its Etype contains
17401 -- references to Parent_Base discriminants. In this case, replace
17402 -- these references with the constraints given in Discs. We do not
17403 -- do this for the partial view of private types because this is
17404 -- not needed (only the components of the full view will be used
17405 -- for code generation) and cause problem. We also avoid this
17406 -- transformation in some error situations.
17407
17408 if Ekind (New_C) = E_Component then
17409
17410 -- Set the proper type of an anonymous access component
17411
17412 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
17413 Set_Anonymous_Type (New_C);
17414
17415 elsif (Is_Private_Type (Derived_Base)
17416 and then not Is_Generic_Type (Derived_Base))
17417 or else (Is_Empty_Elmt_List (Discs)
17418 and then not Expander_Active)
17419 then
17420 Set_Etype (New_C, Etype (Old_C));
17421
17422 else
17423 -- The current component introduces a circularity of the
17424 -- following kind:
17425
17426 -- limited with Pack_2;
17427 -- package Pack_1 is
17428 -- type T_1 is tagged record
17429 -- Comp : access Pack_2.T_2;
17430 -- ...
17431 -- end record;
17432 -- end Pack_1;
17433
17434 -- with Pack_1;
17435 -- package Pack_2 is
17436 -- type T_2 is new Pack_1.T_1 with ...;
17437 -- end Pack_2;
17438
17439 Set_Etype
17440 (New_C,
17441 Constrain_Component_Type
17442 (Old_C, Derived_Base, N, Parent_Base, Discs));
17443 end if;
17444 end if;
17445
17446 -- In derived tagged types it is illegal to reference a non
17447 -- discriminant component in the parent type. To catch this, mark
17448 -- these components with an Ekind of E_Void. This will be reset in
17449 -- Record_Type_Definition after processing the record extension of
17450 -- the derived type.
17451
17452 -- If the declaration is a private extension, there is no further
17453 -- record extension to process, and the components retain their
17454 -- current kind, because they are visible at this point.
17455
17456 if Is_Tagged and then Ekind (New_C) = E_Component
17457 and then Nkind (N) /= N_Private_Extension_Declaration
17458 then
17459 Set_Ekind (New_C, E_Void);
17460 end if;
17461
17462 if Plain_Discrim then
17463 Set_Corresponding_Discriminant (New_C, Old_C);
17464 Build_Discriminal (New_C);
17465
17466 -- If we are explicitly inheriting a stored discriminant it will be
17467 -- completely hidden.
17468
17469 elsif Stored_Discrim then
17470 Set_Corresponding_Discriminant (New_C, Empty);
17471 Set_Discriminal (New_C, Empty);
17472 Set_Is_Completely_Hidden (New_C);
17473
17474 -- Set the Original_Record_Component of each discriminant in the
17475 -- derived base to point to the corresponding stored that we just
17476 -- created.
17477
17478 Discrim := First_Discriminant (Derived_Base);
17479 while Present (Discrim) loop
17480 Corr_Discrim := Corresponding_Discriminant (Discrim);
17481
17482 -- Corr_Discrim could be missing in an error situation
17483
17484 if Present (Corr_Discrim)
17485 and then Original_Record_Component (Corr_Discrim) = Old_C
17486 then
17487 Set_Original_Record_Component (Discrim, New_C);
17488 end if;
17489
17490 Next_Discriminant (Discrim);
17491 end loop;
17492
17493 Append_Entity (New_C, Derived_Base);
17494 end if;
17495
17496 if not Is_Tagged then
17497 Append_Elmt (Old_C, Assoc_List);
17498 Append_Elmt (New_C, Assoc_List);
17499 end if;
17500 end Inherit_Component;
17501
17502 -- Variables local to Inherit_Component
17503
17504 Loc : constant Source_Ptr := Sloc (N);
17505
17506 Parent_Discrim : Entity_Id;
17507 Stored_Discrim : Entity_Id;
17508 D : Entity_Id;
17509 Component : Entity_Id;
17510
17511 -- Start of processing for Inherit_Components
17512
17513 begin
17514 if not Is_Tagged then
17515 Append_Elmt (Parent_Base, Assoc_List);
17516 Append_Elmt (Derived_Base, Assoc_List);
17517 end if;
17518
17519 -- Inherit parent discriminants if needed
17520
17521 if Inherit_Discr then
17522 Parent_Discrim := First_Discriminant (Parent_Base);
17523 while Present (Parent_Discrim) loop
17524 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
17525 Next_Discriminant (Parent_Discrim);
17526 end loop;
17527 end if;
17528
17529 -- Create explicit stored discrims for untagged types when necessary
17530
17531 if not Has_Unknown_Discriminants (Derived_Base)
17532 and then Has_Discriminants (Parent_Base)
17533 and then not Is_Tagged
17534 and then
17535 (not Inherit_Discr
17536 or else First_Discriminant (Parent_Base) /=
17537 First_Stored_Discriminant (Parent_Base))
17538 then
17539 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
17540 while Present (Stored_Discrim) loop
17541 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
17542 Next_Stored_Discriminant (Stored_Discrim);
17543 end loop;
17544 end if;
17545
17546 -- See if we can apply the second transformation for derived types, as
17547 -- explained in point 6. in the comments above Build_Derived_Record_Type
17548 -- This is achieved by appending Derived_Base discriminants into Discs,
17549 -- which has the side effect of returning a non empty Discs list to the
17550 -- caller of Inherit_Components, which is what we want. This must be
17551 -- done for private derived types if there are explicit stored
17552 -- discriminants, to ensure that we can retrieve the values of the
17553 -- constraints provided in the ancestors.
17554
17555 if Inherit_Discr
17556 and then Is_Empty_Elmt_List (Discs)
17557 and then Present (First_Discriminant (Derived_Base))
17558 and then
17559 (not Is_Private_Type (Derived_Base)
17560 or else Is_Completely_Hidden
17561 (First_Stored_Discriminant (Derived_Base))
17562 or else Is_Generic_Type (Derived_Base))
17563 then
17564 D := First_Discriminant (Derived_Base);
17565 while Present (D) loop
17566 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
17567 Next_Discriminant (D);
17568 end loop;
17569 end if;
17570
17571 -- Finally, inherit non-discriminant components unless they are not
17572 -- visible because defined or inherited from the full view of the
17573 -- parent. Don't inherit the _parent field of the parent type.
17574
17575 Component := First_Entity (Parent_Base);
17576 while Present (Component) loop
17577
17578 -- Ada 2005 (AI-251): Do not inherit components associated with
17579 -- secondary tags of the parent.
17580
17581 if Ekind (Component) = E_Component
17582 and then Present (Related_Type (Component))
17583 then
17584 null;
17585
17586 elsif Ekind (Component) /= E_Component
17587 or else Chars (Component) = Name_uParent
17588 then
17589 null;
17590
17591 -- If the derived type is within the parent type's declarative
17592 -- region, then the components can still be inherited even though
17593 -- they aren't visible at this point. This can occur for cases
17594 -- such as within public child units where the components must
17595 -- become visible upon entering the child unit's private part.
17596
17597 elsif not Is_Visible_Component (Component)
17598 and then not In_Open_Scopes (Scope (Parent_Base))
17599 then
17600 null;
17601
17602 elsif Ekind_In (Derived_Base, E_Private_Type,
17603 E_Limited_Private_Type)
17604 then
17605 null;
17606
17607 else
17608 Inherit_Component (Component);
17609 end if;
17610
17611 Next_Entity (Component);
17612 end loop;
17613
17614 -- For tagged derived types, inherited discriminants cannot be used in
17615 -- component declarations of the record extension part. To achieve this
17616 -- we mark the inherited discriminants as not visible.
17617
17618 if Is_Tagged and then Inherit_Discr then
17619 D := First_Discriminant (Derived_Base);
17620 while Present (D) loop
17621 Set_Is_Immediately_Visible (D, False);
17622 Next_Discriminant (D);
17623 end loop;
17624 end if;
17625
17626 return Assoc_List;
17627 end Inherit_Components;
17628
17629 -----------------------------
17630 -- Inherit_Predicate_Flags --
17631 -----------------------------
17632
17633 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
17634 begin
17635 Set_Has_Predicates (Subt, Has_Predicates (Par));
17636 Set_Has_Static_Predicate_Aspect
17637 (Subt, Has_Static_Predicate_Aspect (Par));
17638 Set_Has_Dynamic_Predicate_Aspect
17639 (Subt, Has_Dynamic_Predicate_Aspect (Par));
17640 end Inherit_Predicate_Flags;
17641
17642 ----------------------
17643 -- Is_EVF_Procedure --
17644 ----------------------
17645
17646 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is
17647 Formal : Entity_Id;
17648
17649 begin
17650 -- Examine the formals of an Extensions_Visible False procedure looking
17651 -- for a controlling OUT parameter.
17652
17653 if Ekind (Subp) = E_Procedure
17654 and then Extensions_Visible_Status (Subp) = Extensions_Visible_False
17655 then
17656 Formal := First_Formal (Subp);
17657 while Present (Formal) loop
17658 if Ekind (Formal) = E_Out_Parameter
17659 and then Is_Controlling_Formal (Formal)
17660 then
17661 return True;
17662 end if;
17663
17664 Next_Formal (Formal);
17665 end loop;
17666 end if;
17667
17668 return False;
17669 end Is_EVF_Procedure;
17670
17671 -----------------------
17672 -- Is_Null_Extension --
17673 -----------------------
17674
17675 function Is_Null_Extension (T : Entity_Id) return Boolean is
17676 Type_Decl : constant Node_Id := Parent (Base_Type (T));
17677 Comp_List : Node_Id;
17678 Comp : Node_Id;
17679
17680 begin
17681 if Nkind (Type_Decl) /= N_Full_Type_Declaration
17682 or else not Is_Tagged_Type (T)
17683 or else Nkind (Type_Definition (Type_Decl)) /=
17684 N_Derived_Type_Definition
17685 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
17686 then
17687 return False;
17688 end if;
17689
17690 Comp_List :=
17691 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
17692
17693 if Present (Discriminant_Specifications (Type_Decl)) then
17694 return False;
17695
17696 elsif Present (Comp_List)
17697 and then Is_Non_Empty_List (Component_Items (Comp_List))
17698 then
17699 Comp := First (Component_Items (Comp_List));
17700
17701 -- Only user-defined components are relevant. The component list
17702 -- may also contain a parent component and internal components
17703 -- corresponding to secondary tags, but these do not determine
17704 -- whether this is a null extension.
17705
17706 while Present (Comp) loop
17707 if Comes_From_Source (Comp) then
17708 return False;
17709 end if;
17710
17711 Next (Comp);
17712 end loop;
17713
17714 return True;
17715
17716 else
17717 return True;
17718 end if;
17719 end Is_Null_Extension;
17720
17721 ------------------------------
17722 -- Is_Valid_Constraint_Kind --
17723 ------------------------------
17724
17725 function Is_Valid_Constraint_Kind
17726 (T_Kind : Type_Kind;
17727 Constraint_Kind : Node_Kind) return Boolean
17728 is
17729 begin
17730 case T_Kind is
17731 when Enumeration_Kind |
17732 Integer_Kind =>
17733 return Constraint_Kind = N_Range_Constraint;
17734
17735 when Decimal_Fixed_Point_Kind =>
17736 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
17737 N_Range_Constraint);
17738
17739 when Ordinary_Fixed_Point_Kind =>
17740 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
17741 N_Range_Constraint);
17742
17743 when Float_Kind =>
17744 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
17745 N_Range_Constraint);
17746
17747 when Access_Kind |
17748 Array_Kind |
17749 E_Record_Type |
17750 E_Record_Subtype |
17751 Class_Wide_Kind |
17752 E_Incomplete_Type |
17753 Private_Kind |
17754 Concurrent_Kind =>
17755 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
17756
17757 when others =>
17758 return True; -- Error will be detected later
17759 end case;
17760 end Is_Valid_Constraint_Kind;
17761
17762 --------------------------
17763 -- Is_Visible_Component --
17764 --------------------------
17765
17766 function Is_Visible_Component
17767 (C : Entity_Id;
17768 N : Node_Id := Empty) return Boolean
17769 is
17770 Original_Comp : Entity_Id := Empty;
17771 Original_Scope : Entity_Id;
17772 Type_Scope : Entity_Id;
17773
17774 function Is_Local_Type (Typ : Entity_Id) return Boolean;
17775 -- Check whether parent type of inherited component is declared locally,
17776 -- possibly within a nested package or instance. The current scope is
17777 -- the derived record itself.
17778
17779 -------------------
17780 -- Is_Local_Type --
17781 -------------------
17782
17783 function Is_Local_Type (Typ : Entity_Id) return Boolean is
17784 Scop : Entity_Id;
17785
17786 begin
17787 Scop := Scope (Typ);
17788 while Present (Scop)
17789 and then Scop /= Standard_Standard
17790 loop
17791 if Scop = Scope (Current_Scope) then
17792 return True;
17793 end if;
17794
17795 Scop := Scope (Scop);
17796 end loop;
17797
17798 return False;
17799 end Is_Local_Type;
17800
17801 -- Start of processing for Is_Visible_Component
17802
17803 begin
17804 if Ekind_In (C, E_Component, E_Discriminant) then
17805 Original_Comp := Original_Record_Component (C);
17806 end if;
17807
17808 if No (Original_Comp) then
17809
17810 -- Premature usage, or previous error
17811
17812 return False;
17813
17814 else
17815 Original_Scope := Scope (Original_Comp);
17816 Type_Scope := Scope (Base_Type (Scope (C)));
17817 end if;
17818
17819 -- This test only concerns tagged types
17820
17821 if not Is_Tagged_Type (Original_Scope) then
17822 return True;
17823
17824 -- If it is _Parent or _Tag, there is no visibility issue
17825
17826 elsif not Comes_From_Source (Original_Comp) then
17827 return True;
17828
17829 -- Discriminants are visible unless the (private) type has unknown
17830 -- discriminants. If the discriminant reference is inserted for a
17831 -- discriminant check on a full view it is also visible.
17832
17833 elsif Ekind (Original_Comp) = E_Discriminant
17834 and then
17835 (not Has_Unknown_Discriminants (Original_Scope)
17836 or else (Present (N)
17837 and then Nkind (N) = N_Selected_Component
17838 and then Nkind (Prefix (N)) = N_Type_Conversion
17839 and then not Comes_From_Source (Prefix (N))))
17840 then
17841 return True;
17842
17843 -- In the body of an instantiation, no need to check for the visibility
17844 -- of a component.
17845
17846 elsif In_Instance_Body then
17847 return True;
17848
17849 -- If the component has been declared in an ancestor which is currently
17850 -- a private type, then it is not visible. The same applies if the
17851 -- component's containing type is not in an open scope and the original
17852 -- component's enclosing type is a visible full view of a private type
17853 -- (which can occur in cases where an attempt is being made to reference
17854 -- a component in a sibling package that is inherited from a visible
17855 -- component of a type in an ancestor package; the component in the
17856 -- sibling package should not be visible even though the component it
17857 -- inherited from is visible). This does not apply however in the case
17858 -- where the scope of the type is a private child unit, or when the
17859 -- parent comes from a local package in which the ancestor is currently
17860 -- visible. The latter suppression of visibility is needed for cases
17861 -- that are tested in B730006.
17862
17863 elsif Is_Private_Type (Original_Scope)
17864 or else
17865 (not Is_Private_Descendant (Type_Scope)
17866 and then not In_Open_Scopes (Type_Scope)
17867 and then Has_Private_Declaration (Original_Scope))
17868 then
17869 -- If the type derives from an entity in a formal package, there
17870 -- are no additional visible components.
17871
17872 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
17873 N_Formal_Package_Declaration
17874 then
17875 return False;
17876
17877 -- if we are not in the private part of the current package, there
17878 -- are no additional visible components.
17879
17880 elsif Ekind (Scope (Current_Scope)) = E_Package
17881 and then not In_Private_Part (Scope (Current_Scope))
17882 then
17883 return False;
17884 else
17885 return
17886 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
17887 and then In_Open_Scopes (Scope (Original_Scope))
17888 and then Is_Local_Type (Type_Scope);
17889 end if;
17890
17891 -- There is another weird way in which a component may be invisible when
17892 -- the private and the full view are not derived from the same ancestor.
17893 -- Here is an example :
17894
17895 -- type A1 is tagged record F1 : integer; end record;
17896 -- type A2 is new A1 with record F2 : integer; end record;
17897 -- type T is new A1 with private;
17898 -- private
17899 -- type T is new A2 with null record;
17900
17901 -- In this case, the full view of T inherits F1 and F2 but the private
17902 -- view inherits only F1
17903
17904 else
17905 declare
17906 Ancestor : Entity_Id := Scope (C);
17907
17908 begin
17909 loop
17910 if Ancestor = Original_Scope then
17911 return True;
17912 elsif Ancestor = Etype (Ancestor) then
17913 return False;
17914 end if;
17915
17916 Ancestor := Etype (Ancestor);
17917 end loop;
17918 end;
17919 end if;
17920 end Is_Visible_Component;
17921
17922 --------------------------
17923 -- Make_Class_Wide_Type --
17924 --------------------------
17925
17926 procedure Make_Class_Wide_Type (T : Entity_Id) is
17927 CW_Type : Entity_Id;
17928 CW_Name : Name_Id;
17929 Next_E : Entity_Id;
17930
17931 begin
17932 if Present (Class_Wide_Type (T)) then
17933
17934 -- The class-wide type is a partially decorated entity created for a
17935 -- unanalyzed tagged type referenced through a limited with clause.
17936 -- When the tagged type is analyzed, its class-wide type needs to be
17937 -- redecorated. Note that we reuse the entity created by Decorate_
17938 -- Tagged_Type in order to preserve all links.
17939
17940 if Materialize_Entity (Class_Wide_Type (T)) then
17941 CW_Type := Class_Wide_Type (T);
17942 Set_Materialize_Entity (CW_Type, False);
17943
17944 -- The class wide type can have been defined by the partial view, in
17945 -- which case everything is already done.
17946
17947 else
17948 return;
17949 end if;
17950
17951 -- Default case, we need to create a new class-wide type
17952
17953 else
17954 CW_Type :=
17955 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
17956 end if;
17957
17958 -- Inherit root type characteristics
17959
17960 CW_Name := Chars (CW_Type);
17961 Next_E := Next_Entity (CW_Type);
17962 Copy_Node (T, CW_Type);
17963 Set_Comes_From_Source (CW_Type, False);
17964 Set_Chars (CW_Type, CW_Name);
17965 Set_Parent (CW_Type, Parent (T));
17966 Set_Next_Entity (CW_Type, Next_E);
17967
17968 -- Ensure we have a new freeze node for the class-wide type. The partial
17969 -- view may have freeze action of its own, requiring a proper freeze
17970 -- node, and the same freeze node cannot be shared between the two
17971 -- types.
17972
17973 Set_Has_Delayed_Freeze (CW_Type);
17974 Set_Freeze_Node (CW_Type, Empty);
17975
17976 -- Customize the class-wide type: It has no prim. op., it cannot be
17977 -- abstract and its Etype points back to the specific root type.
17978
17979 Set_Ekind (CW_Type, E_Class_Wide_Type);
17980 Set_Is_Tagged_Type (CW_Type, True);
17981 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
17982 Set_Is_Abstract_Type (CW_Type, False);
17983 Set_Is_Constrained (CW_Type, False);
17984 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
17985 Set_Default_SSO (CW_Type);
17986
17987 if Ekind (T) = E_Class_Wide_Subtype then
17988 Set_Etype (CW_Type, Etype (Base_Type (T)));
17989 else
17990 Set_Etype (CW_Type, T);
17991 end if;
17992
17993 Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams);
17994
17995 -- If this is the class_wide type of a constrained subtype, it does
17996 -- not have discriminants.
17997
17998 Set_Has_Discriminants (CW_Type,
17999 Has_Discriminants (T) and then not Is_Constrained (T));
18000
18001 Set_Has_Unknown_Discriminants (CW_Type, True);
18002 Set_Class_Wide_Type (T, CW_Type);
18003 Set_Equivalent_Type (CW_Type, Empty);
18004
18005 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
18006
18007 Set_Class_Wide_Type (CW_Type, CW_Type);
18008 end Make_Class_Wide_Type;
18009
18010 ----------------
18011 -- Make_Index --
18012 ----------------
18013
18014 procedure Make_Index
18015 (N : Node_Id;
18016 Related_Nod : Node_Id;
18017 Related_Id : Entity_Id := Empty;
18018 Suffix_Index : Nat := 1;
18019 In_Iter_Schm : Boolean := False)
18020 is
18021 R : Node_Id;
18022 T : Entity_Id;
18023 Def_Id : Entity_Id := Empty;
18024 Found : Boolean := False;
18025
18026 begin
18027 -- For a discrete range used in a constrained array definition and
18028 -- defined by a range, an implicit conversion to the predefined type
18029 -- INTEGER is assumed if each bound is either a numeric literal, a named
18030 -- number, or an attribute, and the type of both bounds (prior to the
18031 -- implicit conversion) is the type universal_integer. Otherwise, both
18032 -- bounds must be of the same discrete type, other than universal
18033 -- integer; this type must be determinable independently of the
18034 -- context, but using the fact that the type must be discrete and that
18035 -- both bounds must have the same type.
18036
18037 -- Character literals also have a universal type in the absence of
18038 -- of additional context, and are resolved to Standard_Character.
18039
18040 if Nkind (N) = N_Range then
18041
18042 -- The index is given by a range constraint. The bounds are known
18043 -- to be of a consistent type.
18044
18045 if not Is_Overloaded (N) then
18046 T := Etype (N);
18047
18048 -- For universal bounds, choose the specific predefined type
18049
18050 if T = Universal_Integer then
18051 T := Standard_Integer;
18052
18053 elsif T = Any_Character then
18054 Ambiguous_Character (Low_Bound (N));
18055
18056 T := Standard_Character;
18057 end if;
18058
18059 -- The node may be overloaded because some user-defined operators
18060 -- are available, but if a universal interpretation exists it is
18061 -- also the selected one.
18062
18063 elsif Universal_Interpretation (N) = Universal_Integer then
18064 T := Standard_Integer;
18065
18066 else
18067 T := Any_Type;
18068
18069 declare
18070 Ind : Interp_Index;
18071 It : Interp;
18072
18073 begin
18074 Get_First_Interp (N, Ind, It);
18075 while Present (It.Typ) loop
18076 if Is_Discrete_Type (It.Typ) then
18077
18078 if Found
18079 and then not Covers (It.Typ, T)
18080 and then not Covers (T, It.Typ)
18081 then
18082 Error_Msg_N ("ambiguous bounds in discrete range", N);
18083 exit;
18084 else
18085 T := It.Typ;
18086 Found := True;
18087 end if;
18088 end if;
18089
18090 Get_Next_Interp (Ind, It);
18091 end loop;
18092
18093 if T = Any_Type then
18094 Error_Msg_N ("discrete type required for range", N);
18095 Set_Etype (N, Any_Type);
18096 return;
18097
18098 elsif T = Universal_Integer then
18099 T := Standard_Integer;
18100 end if;
18101 end;
18102 end if;
18103
18104 if not Is_Discrete_Type (T) then
18105 Error_Msg_N ("discrete type required for range", N);
18106 Set_Etype (N, Any_Type);
18107 return;
18108 end if;
18109
18110 if Nkind (Low_Bound (N)) = N_Attribute_Reference
18111 and then Attribute_Name (Low_Bound (N)) = Name_First
18112 and then Is_Entity_Name (Prefix (Low_Bound (N)))
18113 and then Is_Type (Entity (Prefix (Low_Bound (N))))
18114 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
18115 then
18116 -- The type of the index will be the type of the prefix, as long
18117 -- as the upper bound is 'Last of the same type.
18118
18119 Def_Id := Entity (Prefix (Low_Bound (N)));
18120
18121 if Nkind (High_Bound (N)) /= N_Attribute_Reference
18122 or else Attribute_Name (High_Bound (N)) /= Name_Last
18123 or else not Is_Entity_Name (Prefix (High_Bound (N)))
18124 or else Entity (Prefix (High_Bound (N))) /= Def_Id
18125 then
18126 Def_Id := Empty;
18127 end if;
18128 end if;
18129
18130 R := N;
18131 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
18132
18133 elsif Nkind (N) = N_Subtype_Indication then
18134
18135 -- The index is given by a subtype with a range constraint
18136
18137 T := Base_Type (Entity (Subtype_Mark (N)));
18138
18139 if not Is_Discrete_Type (T) then
18140 Error_Msg_N ("discrete type required for range", N);
18141 Set_Etype (N, Any_Type);
18142 return;
18143 end if;
18144
18145 R := Range_Expression (Constraint (N));
18146
18147 Resolve (R, T);
18148 Process_Range_Expr_In_Decl
18149 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
18150
18151 elsif Nkind (N) = N_Attribute_Reference then
18152
18153 -- Catch beginner's error (use of attribute other than 'Range)
18154
18155 if Attribute_Name (N) /= Name_Range then
18156 Error_Msg_N ("expect attribute ''Range", N);
18157 Set_Etype (N, Any_Type);
18158 return;
18159 end if;
18160
18161 -- If the node denotes the range of a type mark, that is also the
18162 -- resulting type, and we do not need to create an Itype for it.
18163
18164 if Is_Entity_Name (Prefix (N))
18165 and then Comes_From_Source (N)
18166 and then Is_Type (Entity (Prefix (N)))
18167 and then Is_Discrete_Type (Entity (Prefix (N)))
18168 then
18169 Def_Id := Entity (Prefix (N));
18170 end if;
18171
18172 Analyze_And_Resolve (N);
18173 T := Etype (N);
18174 R := N;
18175
18176 -- If none of the above, must be a subtype. We convert this to a
18177 -- range attribute reference because in the case of declared first
18178 -- named subtypes, the types in the range reference can be different
18179 -- from the type of the entity. A range attribute normalizes the
18180 -- reference and obtains the correct types for the bounds.
18181
18182 -- This transformation is in the nature of an expansion, is only
18183 -- done if expansion is active. In particular, it is not done on
18184 -- formal generic types, because we need to retain the name of the
18185 -- original index for instantiation purposes.
18186
18187 else
18188 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
18189 Error_Msg_N ("invalid subtype mark in discrete range ", N);
18190 Set_Etype (N, Any_Integer);
18191 return;
18192
18193 else
18194 -- The type mark may be that of an incomplete type. It is only
18195 -- now that we can get the full view, previous analysis does
18196 -- not look specifically for a type mark.
18197
18198 Set_Entity (N, Get_Full_View (Entity (N)));
18199 Set_Etype (N, Entity (N));
18200 Def_Id := Entity (N);
18201
18202 if not Is_Discrete_Type (Def_Id) then
18203 Error_Msg_N ("discrete type required for index", N);
18204 Set_Etype (N, Any_Type);
18205 return;
18206 end if;
18207 end if;
18208
18209 if Expander_Active then
18210 Rewrite (N,
18211 Make_Attribute_Reference (Sloc (N),
18212 Attribute_Name => Name_Range,
18213 Prefix => Relocate_Node (N)));
18214
18215 -- The original was a subtype mark that does not freeze. This
18216 -- means that the rewritten version must not freeze either.
18217
18218 Set_Must_Not_Freeze (N);
18219 Set_Must_Not_Freeze (Prefix (N));
18220 Analyze_And_Resolve (N);
18221 T := Etype (N);
18222 R := N;
18223
18224 -- If expander is inactive, type is legal, nothing else to construct
18225
18226 else
18227 return;
18228 end if;
18229 end if;
18230
18231 if not Is_Discrete_Type (T) then
18232 Error_Msg_N ("discrete type required for range", N);
18233 Set_Etype (N, Any_Type);
18234 return;
18235
18236 elsif T = Any_Type then
18237 Set_Etype (N, Any_Type);
18238 return;
18239 end if;
18240
18241 -- We will now create the appropriate Itype to describe the range, but
18242 -- first a check. If we originally had a subtype, then we just label
18243 -- the range with this subtype. Not only is there no need to construct
18244 -- a new subtype, but it is wrong to do so for two reasons:
18245
18246 -- 1. A legality concern, if we have a subtype, it must not freeze,
18247 -- and the Itype would cause freezing incorrectly
18248
18249 -- 2. An efficiency concern, if we created an Itype, it would not be
18250 -- recognized as the same type for the purposes of eliminating
18251 -- checks in some circumstances.
18252
18253 -- We signal this case by setting the subtype entity in Def_Id
18254
18255 if No (Def_Id) then
18256 Def_Id :=
18257 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
18258 Set_Etype (Def_Id, Base_Type (T));
18259
18260 if Is_Signed_Integer_Type (T) then
18261 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
18262
18263 elsif Is_Modular_Integer_Type (T) then
18264 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
18265
18266 else
18267 Set_Ekind (Def_Id, E_Enumeration_Subtype);
18268 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
18269 Set_First_Literal (Def_Id, First_Literal (T));
18270 end if;
18271
18272 Set_Size_Info (Def_Id, (T));
18273 Set_RM_Size (Def_Id, RM_Size (T));
18274 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
18275
18276 Set_Scalar_Range (Def_Id, R);
18277 Conditional_Delay (Def_Id, T);
18278
18279 if Nkind (N) = N_Subtype_Indication then
18280 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
18281 end if;
18282
18283 -- In the subtype indication case, if the immediate parent of the
18284 -- new subtype is non-static, then the subtype we create is non-
18285 -- static, even if its bounds are static.
18286
18287 if Nkind (N) = N_Subtype_Indication
18288 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
18289 then
18290 Set_Is_Non_Static_Subtype (Def_Id);
18291 end if;
18292 end if;
18293
18294 -- Final step is to label the index with this constructed type
18295
18296 Set_Etype (N, Def_Id);
18297 end Make_Index;
18298
18299 ------------------------------
18300 -- Modular_Type_Declaration --
18301 ------------------------------
18302
18303 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
18304 Mod_Expr : constant Node_Id := Expression (Def);
18305 M_Val : Uint;
18306
18307 procedure Set_Modular_Size (Bits : Int);
18308 -- Sets RM_Size to Bits, and Esize to normal word size above this
18309
18310 ----------------------
18311 -- Set_Modular_Size --
18312 ----------------------
18313
18314 procedure Set_Modular_Size (Bits : Int) is
18315 begin
18316 Set_RM_Size (T, UI_From_Int (Bits));
18317
18318 if Bits <= 8 then
18319 Init_Esize (T, 8);
18320
18321 elsif Bits <= 16 then
18322 Init_Esize (T, 16);
18323
18324 elsif Bits <= 32 then
18325 Init_Esize (T, 32);
18326
18327 else
18328 Init_Esize (T, System_Max_Binary_Modulus_Power);
18329 end if;
18330
18331 if not Non_Binary_Modulus (T) and then Esize (T) = RM_Size (T) then
18332 Set_Is_Known_Valid (T);
18333 end if;
18334 end Set_Modular_Size;
18335
18336 -- Start of processing for Modular_Type_Declaration
18337
18338 begin
18339 -- If the mod expression is (exactly) 2 * literal, where literal is
18340 -- 64 or less,then almost certainly the * was meant to be **. Warn.
18341
18342 if Warn_On_Suspicious_Modulus_Value
18343 and then Nkind (Mod_Expr) = N_Op_Multiply
18344 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
18345 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
18346 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
18347 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
18348 then
18349 Error_Msg_N
18350 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
18351 end if;
18352
18353 -- Proceed with analysis of mod expression
18354
18355 Analyze_And_Resolve (Mod_Expr, Any_Integer);
18356 Set_Etype (T, T);
18357 Set_Ekind (T, E_Modular_Integer_Type);
18358 Init_Alignment (T);
18359 Set_Is_Constrained (T);
18360
18361 if not Is_OK_Static_Expression (Mod_Expr) then
18362 Flag_Non_Static_Expr
18363 ("non-static expression used for modular type bound!", Mod_Expr);
18364 M_Val := 2 ** System_Max_Binary_Modulus_Power;
18365 else
18366 M_Val := Expr_Value (Mod_Expr);
18367 end if;
18368
18369 if M_Val < 1 then
18370 Error_Msg_N ("modulus value must be positive", Mod_Expr);
18371 M_Val := 2 ** System_Max_Binary_Modulus_Power;
18372 end if;
18373
18374 if M_Val > 2 ** Standard_Long_Integer_Size then
18375 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
18376 end if;
18377
18378 Set_Modulus (T, M_Val);
18379
18380 -- Create bounds for the modular type based on the modulus given in
18381 -- the type declaration and then analyze and resolve those bounds.
18382
18383 Set_Scalar_Range (T,
18384 Make_Range (Sloc (Mod_Expr),
18385 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
18386 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
18387
18388 -- Properly analyze the literals for the range. We do this manually
18389 -- because we can't go calling Resolve, since we are resolving these
18390 -- bounds with the type, and this type is certainly not complete yet.
18391
18392 Set_Etype (Low_Bound (Scalar_Range (T)), T);
18393 Set_Etype (High_Bound (Scalar_Range (T)), T);
18394 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
18395 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
18396
18397 -- Loop through powers of two to find number of bits required
18398
18399 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
18400
18401 -- Binary case
18402
18403 if M_Val = 2 ** Bits then
18404 Set_Modular_Size (Bits);
18405 return;
18406
18407 -- Non-binary case
18408
18409 elsif M_Val < 2 ** Bits then
18410 Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
18411 Set_Non_Binary_Modulus (T);
18412
18413 if Bits > System_Max_Nonbinary_Modulus_Power then
18414 Error_Msg_Uint_1 :=
18415 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
18416 Error_Msg_F
18417 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
18418 Set_Modular_Size (System_Max_Binary_Modulus_Power);
18419 return;
18420
18421 else
18422 -- In the non-binary case, set size as per RM 13.3(55)
18423
18424 Set_Modular_Size (Bits);
18425 return;
18426 end if;
18427 end if;
18428
18429 end loop;
18430
18431 -- If we fall through, then the size exceed System.Max_Binary_Modulus
18432 -- so we just signal an error and set the maximum size.
18433
18434 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
18435 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
18436
18437 Set_Modular_Size (System_Max_Binary_Modulus_Power);
18438 Init_Alignment (T);
18439
18440 end Modular_Type_Declaration;
18441
18442 --------------------------
18443 -- New_Concatenation_Op --
18444 --------------------------
18445
18446 procedure New_Concatenation_Op (Typ : Entity_Id) is
18447 Loc : constant Source_Ptr := Sloc (Typ);
18448 Op : Entity_Id;
18449
18450 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
18451 -- Create abbreviated declaration for the formal of a predefined
18452 -- Operator 'Op' of type 'Typ'
18453
18454 --------------------
18455 -- Make_Op_Formal --
18456 --------------------
18457
18458 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
18459 Formal : Entity_Id;
18460 begin
18461 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
18462 Set_Etype (Formal, Typ);
18463 Set_Mechanism (Formal, Default_Mechanism);
18464 return Formal;
18465 end Make_Op_Formal;
18466
18467 -- Start of processing for New_Concatenation_Op
18468
18469 begin
18470 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
18471
18472 Set_Ekind (Op, E_Operator);
18473 Set_Scope (Op, Current_Scope);
18474 Set_Etype (Op, Typ);
18475 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
18476 Set_Is_Immediately_Visible (Op);
18477 Set_Is_Intrinsic_Subprogram (Op);
18478 Set_Has_Completion (Op);
18479 Append_Entity (Op, Current_Scope);
18480
18481 Set_Name_Entity_Id (Name_Op_Concat, Op);
18482
18483 Append_Entity (Make_Op_Formal (Typ, Op), Op);
18484 Append_Entity (Make_Op_Formal (Typ, Op), Op);
18485 end New_Concatenation_Op;
18486
18487 -------------------------
18488 -- OK_For_Limited_Init --
18489 -------------------------
18490
18491 -- ???Check all calls of this, and compare the conditions under which it's
18492 -- called.
18493
18494 function OK_For_Limited_Init
18495 (Typ : Entity_Id;
18496 Exp : Node_Id) return Boolean
18497 is
18498 begin
18499 return Is_CPP_Constructor_Call (Exp)
18500 or else (Ada_Version >= Ada_2005
18501 and then not Debug_Flag_Dot_L
18502 and then OK_For_Limited_Init_In_05 (Typ, Exp));
18503 end OK_For_Limited_Init;
18504
18505 -------------------------------
18506 -- OK_For_Limited_Init_In_05 --
18507 -------------------------------
18508
18509 function OK_For_Limited_Init_In_05
18510 (Typ : Entity_Id;
18511 Exp : Node_Id) return Boolean
18512 is
18513 begin
18514 -- An object of a limited interface type can be initialized with any
18515 -- expression of a nonlimited descendant type.
18516
18517 if Is_Class_Wide_Type (Typ)
18518 and then Is_Limited_Interface (Typ)
18519 and then not Is_Limited_Type (Etype (Exp))
18520 then
18521 return True;
18522 end if;
18523
18524 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
18525 -- case of limited aggregates (including extension aggregates), and
18526 -- function calls. The function call may have been given in prefixed
18527 -- notation, in which case the original node is an indexed component.
18528 -- If the function is parameterless, the original node was an explicit
18529 -- dereference. The function may also be parameterless, in which case
18530 -- the source node is just an identifier.
18531
18532 case Nkind (Original_Node (Exp)) is
18533 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
18534 return True;
18535
18536 when N_Identifier =>
18537 return Present (Entity (Original_Node (Exp)))
18538 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
18539
18540 when N_Qualified_Expression =>
18541 return
18542 OK_For_Limited_Init_In_05
18543 (Typ, Expression (Original_Node (Exp)));
18544
18545 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
18546 -- with a function call, the expander has rewritten the call into an
18547 -- N_Type_Conversion node to force displacement of the pointer to
18548 -- reference the component containing the secondary dispatch table.
18549 -- Otherwise a type conversion is not a legal context.
18550 -- A return statement for a build-in-place function returning a
18551 -- synchronized type also introduces an unchecked conversion.
18552
18553 when N_Type_Conversion |
18554 N_Unchecked_Type_Conversion =>
18555 return not Comes_From_Source (Exp)
18556 and then
18557 OK_For_Limited_Init_In_05
18558 (Typ, Expression (Original_Node (Exp)));
18559
18560 when N_Indexed_Component |
18561 N_Selected_Component |
18562 N_Explicit_Dereference =>
18563 return Nkind (Exp) = N_Function_Call;
18564
18565 -- A use of 'Input is a function call, hence allowed. Normally the
18566 -- attribute will be changed to a call, but the attribute by itself
18567 -- can occur with -gnatc.
18568
18569 when N_Attribute_Reference =>
18570 return Attribute_Name (Original_Node (Exp)) = Name_Input;
18571
18572 -- For a case expression, all dependent expressions must be legal
18573
18574 when N_Case_Expression =>
18575 declare
18576 Alt : Node_Id;
18577
18578 begin
18579 Alt := First (Alternatives (Original_Node (Exp)));
18580 while Present (Alt) loop
18581 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
18582 return False;
18583 end if;
18584
18585 Next (Alt);
18586 end loop;
18587
18588 return True;
18589 end;
18590
18591 -- For an if expression, all dependent expressions must be legal
18592
18593 when N_If_Expression =>
18594 declare
18595 Then_Expr : constant Node_Id :=
18596 Next (First (Expressions (Original_Node (Exp))));
18597 Else_Expr : constant Node_Id := Next (Then_Expr);
18598 begin
18599 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
18600 and then
18601 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
18602 end;
18603
18604 when others =>
18605 return False;
18606 end case;
18607 end OK_For_Limited_Init_In_05;
18608
18609 -------------------------------------------
18610 -- Ordinary_Fixed_Point_Type_Declaration --
18611 -------------------------------------------
18612
18613 procedure Ordinary_Fixed_Point_Type_Declaration
18614 (T : Entity_Id;
18615 Def : Node_Id)
18616 is
18617 Loc : constant Source_Ptr := Sloc (Def);
18618 Delta_Expr : constant Node_Id := Delta_Expression (Def);
18619 RRS : constant Node_Id := Real_Range_Specification (Def);
18620 Implicit_Base : Entity_Id;
18621 Delta_Val : Ureal;
18622 Small_Val : Ureal;
18623 Low_Val : Ureal;
18624 High_Val : Ureal;
18625
18626 begin
18627 Check_Restriction (No_Fixed_Point, Def);
18628
18629 -- Create implicit base type
18630
18631 Implicit_Base :=
18632 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
18633 Set_Etype (Implicit_Base, Implicit_Base);
18634
18635 -- Analyze and process delta expression
18636
18637 Analyze_And_Resolve (Delta_Expr, Any_Real);
18638
18639 Check_Delta_Expression (Delta_Expr);
18640 Delta_Val := Expr_Value_R (Delta_Expr);
18641
18642 Set_Delta_Value (Implicit_Base, Delta_Val);
18643
18644 -- Compute default small from given delta, which is the largest power
18645 -- of two that does not exceed the given delta value.
18646
18647 declare
18648 Tmp : Ureal;
18649 Scale : Int;
18650
18651 begin
18652 Tmp := Ureal_1;
18653 Scale := 0;
18654
18655 if Delta_Val < Ureal_1 then
18656 while Delta_Val < Tmp loop
18657 Tmp := Tmp / Ureal_2;
18658 Scale := Scale + 1;
18659 end loop;
18660
18661 else
18662 loop
18663 Tmp := Tmp * Ureal_2;
18664 exit when Tmp > Delta_Val;
18665 Scale := Scale - 1;
18666 end loop;
18667 end if;
18668
18669 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
18670 end;
18671
18672 Set_Small_Value (Implicit_Base, Small_Val);
18673
18674 -- If no range was given, set a dummy range
18675
18676 if RRS <= Empty_Or_Error then
18677 Low_Val := -Small_Val;
18678 High_Val := Small_Val;
18679
18680 -- Otherwise analyze and process given range
18681
18682 else
18683 declare
18684 Low : constant Node_Id := Low_Bound (RRS);
18685 High : constant Node_Id := High_Bound (RRS);
18686
18687 begin
18688 Analyze_And_Resolve (Low, Any_Real);
18689 Analyze_And_Resolve (High, Any_Real);
18690 Check_Real_Bound (Low);
18691 Check_Real_Bound (High);
18692
18693 -- Obtain and set the range
18694
18695 Low_Val := Expr_Value_R (Low);
18696 High_Val := Expr_Value_R (High);
18697
18698 if Low_Val > High_Val then
18699 Error_Msg_NE ("??fixed point type& has null range", Def, T);
18700 end if;
18701 end;
18702 end if;
18703
18704 -- The range for both the implicit base and the declared first subtype
18705 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
18706 -- set a temporary range in place. Note that the bounds of the base
18707 -- type will be widened to be symmetrical and to fill the available
18708 -- bits when the type is frozen.
18709
18710 -- We could do this with all discrete types, and probably should, but
18711 -- we absolutely have to do it for fixed-point, since the end-points
18712 -- of the range and the size are determined by the small value, which
18713 -- could be reset before the freeze point.
18714
18715 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
18716 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
18717
18718 -- Complete definition of first subtype. The inheritance of the rep item
18719 -- chain ensures that SPARK-related pragmas are not clobbered when the
18720 -- ordinary fixed point type acts as a full view of a private type.
18721
18722 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
18723 Set_Etype (T, Implicit_Base);
18724 Init_Size_Align (T);
18725 Inherit_Rep_Item_Chain (T, Implicit_Base);
18726 Set_Small_Value (T, Small_Val);
18727 Set_Delta_Value (T, Delta_Val);
18728 Set_Is_Constrained (T);
18729 end Ordinary_Fixed_Point_Type_Declaration;
18730
18731 ----------------------------------
18732 -- Preanalyze_Assert_Expression --
18733 ----------------------------------
18734
18735 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
18736 begin
18737 In_Assertion_Expr := In_Assertion_Expr + 1;
18738 Preanalyze_Spec_Expression (N, T);
18739 In_Assertion_Expr := In_Assertion_Expr - 1;
18740 end Preanalyze_Assert_Expression;
18741
18742 -----------------------------------
18743 -- Preanalyze_Default_Expression --
18744 -----------------------------------
18745
18746 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
18747 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
18748 begin
18749 In_Default_Expr := True;
18750 Preanalyze_Spec_Expression (N, T);
18751 In_Default_Expr := Save_In_Default_Expr;
18752 end Preanalyze_Default_Expression;
18753
18754 --------------------------------
18755 -- Preanalyze_Spec_Expression --
18756 --------------------------------
18757
18758 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
18759 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
18760 begin
18761 In_Spec_Expression := True;
18762 Preanalyze_And_Resolve (N, T);
18763 In_Spec_Expression := Save_In_Spec_Expression;
18764 end Preanalyze_Spec_Expression;
18765
18766 ----------------------------------------
18767 -- Prepare_Private_Subtype_Completion --
18768 ----------------------------------------
18769
18770 procedure Prepare_Private_Subtype_Completion
18771 (Id : Entity_Id;
18772 Related_Nod : Node_Id)
18773 is
18774 Id_B : constant Entity_Id := Base_Type (Id);
18775 Full_B : Entity_Id := Full_View (Id_B);
18776 Full : Entity_Id;
18777
18778 begin
18779 if Present (Full_B) then
18780
18781 -- Get to the underlying full view if necessary
18782
18783 if Is_Private_Type (Full_B)
18784 and then Present (Underlying_Full_View (Full_B))
18785 then
18786 Full_B := Underlying_Full_View (Full_B);
18787 end if;
18788
18789 -- The Base_Type is already completed, we can complete the subtype
18790 -- now. We have to create a new entity with the same name, Thus we
18791 -- can't use Create_Itype.
18792
18793 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
18794 Set_Is_Itype (Full);
18795 Set_Associated_Node_For_Itype (Full, Related_Nod);
18796 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
18797 end if;
18798
18799 -- The parent subtype may be private, but the base might not, in some
18800 -- nested instances. In that case, the subtype does not need to be
18801 -- exchanged. It would still be nice to make private subtypes and their
18802 -- bases consistent at all times ???
18803
18804 if Is_Private_Type (Id_B) then
18805 Append_Elmt (Id, Private_Dependents (Id_B));
18806 end if;
18807 end Prepare_Private_Subtype_Completion;
18808
18809 ---------------------------
18810 -- Process_Discriminants --
18811 ---------------------------
18812
18813 procedure Process_Discriminants
18814 (N : Node_Id;
18815 Prev : Entity_Id := Empty)
18816 is
18817 Elist : constant Elist_Id := New_Elmt_List;
18818 Id : Node_Id;
18819 Discr : Node_Id;
18820 Discr_Number : Uint;
18821 Discr_Type : Entity_Id;
18822 Default_Present : Boolean := False;
18823 Default_Not_Present : Boolean := False;
18824
18825 begin
18826 -- A composite type other than an array type can have discriminants.
18827 -- On entry, the current scope is the composite type.
18828
18829 -- The discriminants are initially entered into the scope of the type
18830 -- via Enter_Name with the default Ekind of E_Void to prevent premature
18831 -- use, as explained at the end of this procedure.
18832
18833 Discr := First (Discriminant_Specifications (N));
18834 while Present (Discr) loop
18835 Enter_Name (Defining_Identifier (Discr));
18836
18837 -- For navigation purposes we add a reference to the discriminant
18838 -- in the entity for the type. If the current declaration is a
18839 -- completion, place references on the partial view. Otherwise the
18840 -- type is the current scope.
18841
18842 if Present (Prev) then
18843
18844 -- The references go on the partial view, if present. If the
18845 -- partial view has discriminants, the references have been
18846 -- generated already.
18847
18848 if not Has_Discriminants (Prev) then
18849 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
18850 end if;
18851 else
18852 Generate_Reference
18853 (Current_Scope, Defining_Identifier (Discr), 'd');
18854 end if;
18855
18856 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
18857 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
18858
18859 -- Ada 2005 (AI-254)
18860
18861 if Present (Access_To_Subprogram_Definition
18862 (Discriminant_Type (Discr)))
18863 and then Protected_Present (Access_To_Subprogram_Definition
18864 (Discriminant_Type (Discr)))
18865 then
18866 Discr_Type :=
18867 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
18868 end if;
18869
18870 else
18871 Find_Type (Discriminant_Type (Discr));
18872 Discr_Type := Etype (Discriminant_Type (Discr));
18873
18874 if Error_Posted (Discriminant_Type (Discr)) then
18875 Discr_Type := Any_Type;
18876 end if;
18877 end if;
18878
18879 -- Handling of discriminants that are access types
18880
18881 if Is_Access_Type (Discr_Type) then
18882
18883 -- Ada 2005 (AI-230): Access discriminant allowed in non-
18884 -- limited record types
18885
18886 if Ada_Version < Ada_2005 then
18887 Check_Access_Discriminant_Requires_Limited
18888 (Discr, Discriminant_Type (Discr));
18889 end if;
18890
18891 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
18892 Error_Msg_N
18893 ("(Ada 83) access discriminant not allowed", Discr);
18894 end if;
18895
18896 -- If not access type, must be a discrete type
18897
18898 elsif not Is_Discrete_Type (Discr_Type) then
18899 Error_Msg_N
18900 ("discriminants must have a discrete or access type",
18901 Discriminant_Type (Discr));
18902 end if;
18903
18904 Set_Etype (Defining_Identifier (Discr), Discr_Type);
18905
18906 -- If a discriminant specification includes the assignment compound
18907 -- delimiter followed by an expression, the expression is the default
18908 -- expression of the discriminant; the default expression must be of
18909 -- the type of the discriminant. (RM 3.7.1) Since this expression is
18910 -- a default expression, we do the special preanalysis, since this
18911 -- expression does not freeze (see section "Handling of Default and
18912 -- Per-Object Expressions" in spec of package Sem).
18913
18914 if Present (Expression (Discr)) then
18915 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
18916
18917 -- Legaity checks
18918
18919 if Nkind (N) = N_Formal_Type_Declaration then
18920 Error_Msg_N
18921 ("discriminant defaults not allowed for formal type",
18922 Expression (Discr));
18923
18924 -- Flag an error for a tagged type with defaulted discriminants,
18925 -- excluding limited tagged types when compiling for Ada 2012
18926 -- (see AI05-0214).
18927
18928 elsif Is_Tagged_Type (Current_Scope)
18929 and then (not Is_Limited_Type (Current_Scope)
18930 or else Ada_Version < Ada_2012)
18931 and then Comes_From_Source (N)
18932 then
18933 -- Note: see similar test in Check_Or_Process_Discriminants, to
18934 -- handle the (illegal) case of the completion of an untagged
18935 -- view with discriminants with defaults by a tagged full view.
18936 -- We skip the check if Discr does not come from source, to
18937 -- account for the case of an untagged derived type providing
18938 -- defaults for a renamed discriminant from a private untagged
18939 -- ancestor with a tagged full view (ACATS B460006).
18940
18941 if Ada_Version >= Ada_2012 then
18942 Error_Msg_N
18943 ("discriminants of nonlimited tagged type cannot have"
18944 & " defaults",
18945 Expression (Discr));
18946 else
18947 Error_Msg_N
18948 ("discriminants of tagged type cannot have defaults",
18949 Expression (Discr));
18950 end if;
18951
18952 else
18953 Default_Present := True;
18954 Append_Elmt (Expression (Discr), Elist);
18955
18956 -- Tag the defining identifiers for the discriminants with
18957 -- their corresponding default expressions from the tree.
18958
18959 Set_Discriminant_Default_Value
18960 (Defining_Identifier (Discr), Expression (Discr));
18961 end if;
18962
18963 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
18964 -- gets set unless we can be sure that no range check is required.
18965
18966 if (GNATprove_Mode or not Expander_Active)
18967 and then not
18968 Is_In_Range
18969 (Expression (Discr), Discr_Type, Assume_Valid => True)
18970 then
18971 Set_Do_Range_Check (Expression (Discr));
18972 end if;
18973
18974 -- No default discriminant value given
18975
18976 else
18977 Default_Not_Present := True;
18978 end if;
18979
18980 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
18981 -- Discr_Type but with the null-exclusion attribute
18982
18983 if Ada_Version >= Ada_2005 then
18984
18985 -- Ada 2005 (AI-231): Static checks
18986
18987 if Can_Never_Be_Null (Discr_Type) then
18988 Null_Exclusion_Static_Checks (Discr);
18989
18990 elsif Is_Access_Type (Discr_Type)
18991 and then Null_Exclusion_Present (Discr)
18992
18993 -- No need to check itypes because in their case this check
18994 -- was done at their point of creation
18995
18996 and then not Is_Itype (Discr_Type)
18997 then
18998 if Can_Never_Be_Null (Discr_Type) then
18999 Error_Msg_NE
19000 ("`NOT NULL` not allowed (& already excludes null)",
19001 Discr,
19002 Discr_Type);
19003 end if;
19004
19005 Set_Etype (Defining_Identifier (Discr),
19006 Create_Null_Excluding_Itype
19007 (T => Discr_Type,
19008 Related_Nod => Discr));
19009
19010 -- Check for improper null exclusion if the type is otherwise
19011 -- legal for a discriminant.
19012
19013 elsif Null_Exclusion_Present (Discr)
19014 and then Is_Discrete_Type (Discr_Type)
19015 then
19016 Error_Msg_N
19017 ("null exclusion can only apply to an access type", Discr);
19018 end if;
19019
19020 -- Ada 2005 (AI-402): access discriminants of nonlimited types
19021 -- can't have defaults. Synchronized types, or types that are
19022 -- explicitly limited are fine, but special tests apply to derived
19023 -- types in generics: in a generic body we have to assume the
19024 -- worst, and therefore defaults are not allowed if the parent is
19025 -- a generic formal private type (see ACATS B370001).
19026
19027 if Is_Access_Type (Discr_Type) and then Default_Present then
19028 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
19029 or else Is_Limited_Record (Current_Scope)
19030 or else Is_Concurrent_Type (Current_Scope)
19031 or else Is_Concurrent_Record_Type (Current_Scope)
19032 or else Ekind (Current_Scope) = E_Limited_Private_Type
19033 then
19034 if not Is_Derived_Type (Current_Scope)
19035 or else not Is_Generic_Type (Etype (Current_Scope))
19036 or else not In_Package_Body (Scope (Etype (Current_Scope)))
19037 or else Limited_Present
19038 (Type_Definition (Parent (Current_Scope)))
19039 then
19040 null;
19041
19042 else
19043 Error_Msg_N
19044 ("access discriminants of nonlimited types cannot "
19045 & "have defaults", Expression (Discr));
19046 end if;
19047
19048 elsif Present (Expression (Discr)) then
19049 Error_Msg_N
19050 ("(Ada 2005) access discriminants of nonlimited types "
19051 & "cannot have defaults", Expression (Discr));
19052 end if;
19053 end if;
19054 end if;
19055
19056 -- A discriminant cannot be effectively volatile. This check is only
19057 -- relevant when SPARK_Mode is on as it is not standard Ada legality
19058 -- rule (SPARK RM 7.1.3(6)).
19059
19060 if SPARK_Mode = On
19061 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
19062 then
19063 Error_Msg_N ("discriminant cannot be volatile", Discr);
19064 end if;
19065
19066 Next (Discr);
19067 end loop;
19068
19069 -- An element list consisting of the default expressions of the
19070 -- discriminants is constructed in the above loop and used to set
19071 -- the Discriminant_Constraint attribute for the type. If an object
19072 -- is declared of this (record or task) type without any explicit
19073 -- discriminant constraint given, this element list will form the
19074 -- actual parameters for the corresponding initialization procedure
19075 -- for the type.
19076
19077 Set_Discriminant_Constraint (Current_Scope, Elist);
19078 Set_Stored_Constraint (Current_Scope, No_Elist);
19079
19080 -- Default expressions must be provided either for all or for none
19081 -- of the discriminants of a discriminant part. (RM 3.7.1)
19082
19083 if Default_Present and then Default_Not_Present then
19084 Error_Msg_N
19085 ("incomplete specification of defaults for discriminants", N);
19086 end if;
19087
19088 -- The use of the name of a discriminant is not allowed in default
19089 -- expressions of a discriminant part if the specification of the
19090 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
19091
19092 -- To detect this, the discriminant names are entered initially with an
19093 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
19094 -- attempt to use a void entity (for example in an expression that is
19095 -- type-checked) produces the error message: premature usage. Now after
19096 -- completing the semantic analysis of the discriminant part, we can set
19097 -- the Ekind of all the discriminants appropriately.
19098
19099 Discr := First (Discriminant_Specifications (N));
19100 Discr_Number := Uint_1;
19101 while Present (Discr) loop
19102 Id := Defining_Identifier (Discr);
19103 Set_Ekind (Id, E_Discriminant);
19104 Init_Component_Location (Id);
19105 Init_Esize (Id);
19106 Set_Discriminant_Number (Id, Discr_Number);
19107
19108 -- Make sure this is always set, even in illegal programs
19109
19110 Set_Corresponding_Discriminant (Id, Empty);
19111
19112 -- Initialize the Original_Record_Component to the entity itself.
19113 -- Inherit_Components will propagate the right value to
19114 -- discriminants in derived record types.
19115
19116 Set_Original_Record_Component (Id, Id);
19117
19118 -- Create the discriminal for the discriminant
19119
19120 Build_Discriminal (Id);
19121
19122 Next (Discr);
19123 Discr_Number := Discr_Number + 1;
19124 end loop;
19125
19126 Set_Has_Discriminants (Current_Scope);
19127 end Process_Discriminants;
19128
19129 -----------------------
19130 -- Process_Full_View --
19131 -----------------------
19132
19133 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
19134 procedure Collect_Implemented_Interfaces
19135 (Typ : Entity_Id;
19136 Ifaces : Elist_Id);
19137 -- Ada 2005: Gather all the interfaces that Typ directly or
19138 -- inherently implements. Duplicate entries are not added to
19139 -- the list Ifaces.
19140
19141 ------------------------------------
19142 -- Collect_Implemented_Interfaces --
19143 ------------------------------------
19144
19145 procedure Collect_Implemented_Interfaces
19146 (Typ : Entity_Id;
19147 Ifaces : Elist_Id)
19148 is
19149 Iface : Entity_Id;
19150 Iface_Elmt : Elmt_Id;
19151
19152 begin
19153 -- Abstract interfaces are only associated with tagged record types
19154
19155 if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then
19156 return;
19157 end if;
19158
19159 -- Recursively climb to the ancestors
19160
19161 if Etype (Typ) /= Typ
19162
19163 -- Protect the frontend against wrong cyclic declarations like:
19164
19165 -- type B is new A with private;
19166 -- type C is new A with private;
19167 -- private
19168 -- type B is new C with null record;
19169 -- type C is new B with null record;
19170
19171 and then Etype (Typ) /= Priv_T
19172 and then Etype (Typ) /= Full_T
19173 then
19174 -- Keep separate the management of private type declarations
19175
19176 if Ekind (Typ) = E_Record_Type_With_Private then
19177
19178 -- Handle the following illegal usage:
19179 -- type Private_Type is tagged private;
19180 -- private
19181 -- type Private_Type is new Type_Implementing_Iface;
19182
19183 if Present (Full_View (Typ))
19184 and then Etype (Typ) /= Full_View (Typ)
19185 then
19186 if Is_Interface (Etype (Typ)) then
19187 Append_Unique_Elmt (Etype (Typ), Ifaces);
19188 end if;
19189
19190 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
19191 end if;
19192
19193 -- Non-private types
19194
19195 else
19196 if Is_Interface (Etype (Typ)) then
19197 Append_Unique_Elmt (Etype (Typ), Ifaces);
19198 end if;
19199
19200 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
19201 end if;
19202 end if;
19203
19204 -- Handle entities in the list of abstract interfaces
19205
19206 if Present (Interfaces (Typ)) then
19207 Iface_Elmt := First_Elmt (Interfaces (Typ));
19208 while Present (Iface_Elmt) loop
19209 Iface := Node (Iface_Elmt);
19210
19211 pragma Assert (Is_Interface (Iface));
19212
19213 if not Contain_Interface (Iface, Ifaces) then
19214 Append_Elmt (Iface, Ifaces);
19215 Collect_Implemented_Interfaces (Iface, Ifaces);
19216 end if;
19217
19218 Next_Elmt (Iface_Elmt);
19219 end loop;
19220 end if;
19221 end Collect_Implemented_Interfaces;
19222
19223 -- Local variables
19224
19225 Full_Indic : Node_Id;
19226 Full_Parent : Entity_Id;
19227 Priv_Parent : Entity_Id;
19228
19229 -- Start of processing for Process_Full_View
19230
19231 begin
19232 -- First some sanity checks that must be done after semantic
19233 -- decoration of the full view and thus cannot be placed with other
19234 -- similar checks in Find_Type_Name
19235
19236 if not Is_Limited_Type (Priv_T)
19237 and then (Is_Limited_Type (Full_T)
19238 or else Is_Limited_Composite (Full_T))
19239 then
19240 if In_Instance then
19241 null;
19242 else
19243 Error_Msg_N
19244 ("completion of nonlimited type cannot be limited", Full_T);
19245 Explain_Limited_Type (Full_T, Full_T);
19246 end if;
19247
19248 elsif Is_Abstract_Type (Full_T)
19249 and then not Is_Abstract_Type (Priv_T)
19250 then
19251 Error_Msg_N
19252 ("completion of nonabstract type cannot be abstract", Full_T);
19253
19254 elsif Is_Tagged_Type (Priv_T)
19255 and then Is_Limited_Type (Priv_T)
19256 and then not Is_Limited_Type (Full_T)
19257 then
19258 -- If pragma CPP_Class was applied to the private declaration
19259 -- propagate the limitedness to the full-view
19260
19261 if Is_CPP_Class (Priv_T) then
19262 Set_Is_Limited_Record (Full_T);
19263
19264 -- GNAT allow its own definition of Limited_Controlled to disobey
19265 -- this rule in order in ease the implementation. This test is safe
19266 -- because Root_Controlled is defined in a child of System that
19267 -- normal programs are not supposed to use.
19268
19269 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
19270 Set_Is_Limited_Composite (Full_T);
19271 else
19272 Error_Msg_N
19273 ("completion of limited tagged type must be limited", Full_T);
19274 end if;
19275
19276 elsif Is_Generic_Type (Priv_T) then
19277 Error_Msg_N ("generic type cannot have a completion", Full_T);
19278 end if;
19279
19280 -- Check that ancestor interfaces of private and full views are
19281 -- consistent. We omit this check for synchronized types because
19282 -- they are performed on the corresponding record type when frozen.
19283
19284 if Ada_Version >= Ada_2005
19285 and then Is_Tagged_Type (Priv_T)
19286 and then Is_Tagged_Type (Full_T)
19287 and then not Is_Concurrent_Type (Full_T)
19288 then
19289 declare
19290 Iface : Entity_Id;
19291 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
19292 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
19293
19294 begin
19295 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
19296 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
19297
19298 -- Ada 2005 (AI-251): The partial view shall be a descendant of
19299 -- an interface type if and only if the full type is descendant
19300 -- of the interface type (AARM 7.3 (7.3/2)).
19301
19302 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
19303
19304 if Present (Iface) then
19305 Error_Msg_NE
19306 ("interface in partial view& not implemented by full type "
19307 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
19308 end if;
19309
19310 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
19311
19312 if Present (Iface) then
19313 Error_Msg_NE
19314 ("interface & not implemented by partial view "
19315 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
19316 end if;
19317 end;
19318 end if;
19319
19320 if Is_Tagged_Type (Priv_T)
19321 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19322 and then Is_Derived_Type (Full_T)
19323 then
19324 Priv_Parent := Etype (Priv_T);
19325
19326 -- The full view of a private extension may have been transformed
19327 -- into an unconstrained derived type declaration and a subtype
19328 -- declaration (see build_derived_record_type for details).
19329
19330 if Nkind (N) = N_Subtype_Declaration then
19331 Full_Indic := Subtype_Indication (N);
19332 Full_Parent := Etype (Base_Type (Full_T));
19333 else
19334 Full_Indic := Subtype_Indication (Type_Definition (N));
19335 Full_Parent := Etype (Full_T);
19336 end if;
19337
19338 -- Check that the parent type of the full type is a descendant of
19339 -- the ancestor subtype given in the private extension. If either
19340 -- entity has an Etype equal to Any_Type then we had some previous
19341 -- error situation [7.3(8)].
19342
19343 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
19344 return;
19345
19346 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
19347 -- any order. Therefore we don't have to check that its parent must
19348 -- be a descendant of the parent of the private type declaration.
19349
19350 elsif Is_Interface (Priv_Parent)
19351 and then Is_Interface (Full_Parent)
19352 then
19353 null;
19354
19355 -- Ada 2005 (AI-251): If the parent of the private type declaration
19356 -- is an interface there is no need to check that it is an ancestor
19357 -- of the associated full type declaration. The required tests for
19358 -- this case are performed by Build_Derived_Record_Type.
19359
19360 elsif not Is_Interface (Base_Type (Priv_Parent))
19361 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
19362 then
19363 Error_Msg_N
19364 ("parent of full type must descend from parent"
19365 & " of private extension", Full_Indic);
19366
19367 -- First check a formal restriction, and then proceed with checking
19368 -- Ada rules. Since the formal restriction is not a serious error, we
19369 -- don't prevent further error detection for this check, hence the
19370 -- ELSE.
19371
19372 else
19373 -- In formal mode, when completing a private extension the type
19374 -- named in the private part must be exactly the same as that
19375 -- named in the visible part.
19376
19377 if Priv_Parent /= Full_Parent then
19378 Error_Msg_Name_1 := Chars (Priv_Parent);
19379 Check_SPARK_05_Restriction ("% expected", Full_Indic);
19380 end if;
19381
19382 -- Check the rules of 7.3(10): if the private extension inherits
19383 -- known discriminants, then the full type must also inherit those
19384 -- discriminants from the same (ancestor) type, and the parent
19385 -- subtype of the full type must be constrained if and only if
19386 -- the ancestor subtype of the private extension is constrained.
19387
19388 if No (Discriminant_Specifications (Parent (Priv_T)))
19389 and then not Has_Unknown_Discriminants (Priv_T)
19390 and then Has_Discriminants (Base_Type (Priv_Parent))
19391 then
19392 declare
19393 Priv_Indic : constant Node_Id :=
19394 Subtype_Indication (Parent (Priv_T));
19395
19396 Priv_Constr : constant Boolean :=
19397 Is_Constrained (Priv_Parent)
19398 or else
19399 Nkind (Priv_Indic) = N_Subtype_Indication
19400 or else
19401 Is_Constrained (Entity (Priv_Indic));
19402
19403 Full_Constr : constant Boolean :=
19404 Is_Constrained (Full_Parent)
19405 or else
19406 Nkind (Full_Indic) = N_Subtype_Indication
19407 or else
19408 Is_Constrained (Entity (Full_Indic));
19409
19410 Priv_Discr : Entity_Id;
19411 Full_Discr : Entity_Id;
19412
19413 begin
19414 Priv_Discr := First_Discriminant (Priv_Parent);
19415 Full_Discr := First_Discriminant (Full_Parent);
19416 while Present (Priv_Discr) and then Present (Full_Discr) loop
19417 if Original_Record_Component (Priv_Discr) =
19418 Original_Record_Component (Full_Discr)
19419 or else
19420 Corresponding_Discriminant (Priv_Discr) =
19421 Corresponding_Discriminant (Full_Discr)
19422 then
19423 null;
19424 else
19425 exit;
19426 end if;
19427
19428 Next_Discriminant (Priv_Discr);
19429 Next_Discriminant (Full_Discr);
19430 end loop;
19431
19432 if Present (Priv_Discr) or else Present (Full_Discr) then
19433 Error_Msg_N
19434 ("full view must inherit discriminants of the parent"
19435 & " type used in the private extension", Full_Indic);
19436
19437 elsif Priv_Constr and then not Full_Constr then
19438 Error_Msg_N
19439 ("parent subtype of full type must be constrained",
19440 Full_Indic);
19441
19442 elsif Full_Constr and then not Priv_Constr then
19443 Error_Msg_N
19444 ("parent subtype of full type must be unconstrained",
19445 Full_Indic);
19446 end if;
19447 end;
19448
19449 -- Check the rules of 7.3(12): if a partial view has neither
19450 -- known or unknown discriminants, then the full type
19451 -- declaration shall define a definite subtype.
19452
19453 elsif not Has_Unknown_Discriminants (Priv_T)
19454 and then not Has_Discriminants (Priv_T)
19455 and then not Is_Constrained (Full_T)
19456 then
19457 Error_Msg_N
19458 ("full view must define a constrained type if partial view"
19459 & " has no discriminants", Full_T);
19460 end if;
19461
19462 -- ??????? Do we implement the following properly ?????
19463 -- If the ancestor subtype of a private extension has constrained
19464 -- discriminants, then the parent subtype of the full view shall
19465 -- impose a statically matching constraint on those discriminants
19466 -- [7.3(13)].
19467 end if;
19468
19469 else
19470 -- For untagged types, verify that a type without discriminants is
19471 -- not completed with an unconstrained type. A separate error message
19472 -- is produced if the full type has defaulted discriminants.
19473
19474 if not Is_Indefinite_Subtype (Priv_T)
19475 and then Is_Indefinite_Subtype (Full_T)
19476 then
19477 Error_Msg_Sloc := Sloc (Parent (Priv_T));
19478 Error_Msg_NE
19479 ("full view of& not compatible with declaration#",
19480 Full_T, Priv_T);
19481
19482 if not Is_Tagged_Type (Full_T) then
19483 Error_Msg_N
19484 ("\one is constrained, the other unconstrained", Full_T);
19485 end if;
19486 end if;
19487 end if;
19488
19489 -- AI-419: verify that the use of "limited" is consistent
19490
19491 declare
19492 Orig_Decl : constant Node_Id := Original_Node (N);
19493
19494 begin
19495 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19496 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
19497 and then Nkind
19498 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
19499 then
19500 if not Limited_Present (Parent (Priv_T))
19501 and then not Synchronized_Present (Parent (Priv_T))
19502 and then Limited_Present (Type_Definition (Orig_Decl))
19503 then
19504 Error_Msg_N
19505 ("full view of non-limited extension cannot be limited", N);
19506
19507 -- Conversely, if the partial view carries the limited keyword,
19508 -- the full view must as well, even if it may be redundant.
19509
19510 elsif Limited_Present (Parent (Priv_T))
19511 and then not Limited_Present (Type_Definition (Orig_Decl))
19512 then
19513 Error_Msg_N
19514 ("full view of limited extension must be explicitly limited",
19515 N);
19516 end if;
19517 end if;
19518 end;
19519
19520 -- Ada 2005 (AI-443): A synchronized private extension must be
19521 -- completed by a task or protected type.
19522
19523 if Ada_Version >= Ada_2005
19524 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19525 and then Synchronized_Present (Parent (Priv_T))
19526 and then not Is_Concurrent_Type (Full_T)
19527 then
19528 Error_Msg_N ("full view of synchronized extension must " &
19529 "be synchronized type", N);
19530 end if;
19531
19532 -- Ada 2005 AI-363: if the full view has discriminants with
19533 -- defaults, it is illegal to declare constrained access subtypes
19534 -- whose designated type is the current type. This allows objects
19535 -- of the type that are declared in the heap to be unconstrained.
19536
19537 if not Has_Unknown_Discriminants (Priv_T)
19538 and then not Has_Discriminants (Priv_T)
19539 and then Has_Discriminants (Full_T)
19540 and then
19541 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
19542 then
19543 Set_Has_Constrained_Partial_View (Full_T);
19544 Set_Has_Constrained_Partial_View (Priv_T);
19545 end if;
19546
19547 -- Create a full declaration for all its subtypes recorded in
19548 -- Private_Dependents and swap them similarly to the base type. These
19549 -- are subtypes that have been define before the full declaration of
19550 -- the private type. We also swap the entry in Private_Dependents list
19551 -- so we can properly restore the private view on exit from the scope.
19552
19553 declare
19554 Priv_Elmt : Elmt_Id;
19555 Priv_Scop : Entity_Id;
19556 Priv : Entity_Id;
19557 Full : Entity_Id;
19558
19559 begin
19560 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
19561 while Present (Priv_Elmt) loop
19562 Priv := Node (Priv_Elmt);
19563 Priv_Scop := Scope (Priv);
19564
19565 if Ekind_In (Priv, E_Private_Subtype,
19566 E_Limited_Private_Subtype,
19567 E_Record_Subtype_With_Private)
19568 then
19569 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
19570 Set_Is_Itype (Full);
19571 Set_Parent (Full, Parent (Priv));
19572 Set_Associated_Node_For_Itype (Full, N);
19573
19574 -- Now we need to complete the private subtype, but since the
19575 -- base type has already been swapped, we must also swap the
19576 -- subtypes (and thus, reverse the arguments in the call to
19577 -- Complete_Private_Subtype). Also note that we may need to
19578 -- re-establish the scope of the private subtype.
19579
19580 Copy_And_Swap (Priv, Full);
19581
19582 if not In_Open_Scopes (Priv_Scop) then
19583 Push_Scope (Priv_Scop);
19584
19585 else
19586 -- Reset Priv_Scop to Empty to indicate no scope was pushed
19587
19588 Priv_Scop := Empty;
19589 end if;
19590
19591 Complete_Private_Subtype (Full, Priv, Full_T, N);
19592
19593 if Present (Priv_Scop) then
19594 Pop_Scope;
19595 end if;
19596
19597 Replace_Elmt (Priv_Elmt, Full);
19598 end if;
19599
19600 Next_Elmt (Priv_Elmt);
19601 end loop;
19602 end;
19603
19604 -- If the private view was tagged, copy the new primitive operations
19605 -- from the private view to the full view.
19606
19607 if Is_Tagged_Type (Full_T) then
19608 declare
19609 Disp_Typ : Entity_Id;
19610 Full_List : Elist_Id;
19611 Prim : Entity_Id;
19612 Prim_Elmt : Elmt_Id;
19613 Priv_List : Elist_Id;
19614
19615 function Contains
19616 (E : Entity_Id;
19617 L : Elist_Id) return Boolean;
19618 -- Determine whether list L contains element E
19619
19620 --------------
19621 -- Contains --
19622 --------------
19623
19624 function Contains
19625 (E : Entity_Id;
19626 L : Elist_Id) return Boolean
19627 is
19628 List_Elmt : Elmt_Id;
19629
19630 begin
19631 List_Elmt := First_Elmt (L);
19632 while Present (List_Elmt) loop
19633 if Node (List_Elmt) = E then
19634 return True;
19635 end if;
19636
19637 Next_Elmt (List_Elmt);
19638 end loop;
19639
19640 return False;
19641 end Contains;
19642
19643 -- Start of processing
19644
19645 begin
19646 if Is_Tagged_Type (Priv_T) then
19647 Priv_List := Primitive_Operations (Priv_T);
19648 Prim_Elmt := First_Elmt (Priv_List);
19649
19650 -- In the case of a concurrent type completing a private tagged
19651 -- type, primitives may have been declared in between the two
19652 -- views. These subprograms need to be wrapped the same way
19653 -- entries and protected procedures are handled because they
19654 -- cannot be directly shared by the two views.
19655
19656 if Is_Concurrent_Type (Full_T) then
19657 declare
19658 Conc_Typ : constant Entity_Id :=
19659 Corresponding_Record_Type (Full_T);
19660 Curr_Nod : Node_Id := Parent (Conc_Typ);
19661 Wrap_Spec : Node_Id;
19662
19663 begin
19664 while Present (Prim_Elmt) loop
19665 Prim := Node (Prim_Elmt);
19666
19667 if Comes_From_Source (Prim)
19668 and then not Is_Abstract_Subprogram (Prim)
19669 then
19670 Wrap_Spec :=
19671 Make_Subprogram_Declaration (Sloc (Prim),
19672 Specification =>
19673 Build_Wrapper_Spec
19674 (Subp_Id => Prim,
19675 Obj_Typ => Conc_Typ,
19676 Formals =>
19677 Parameter_Specifications (
19678 Parent (Prim))));
19679
19680 Insert_After (Curr_Nod, Wrap_Spec);
19681 Curr_Nod := Wrap_Spec;
19682
19683 Analyze (Wrap_Spec);
19684 end if;
19685
19686 Next_Elmt (Prim_Elmt);
19687 end loop;
19688
19689 return;
19690 end;
19691
19692 -- For non-concurrent types, transfer explicit primitives, but
19693 -- omit those inherited from the parent of the private view
19694 -- since they will be re-inherited later on.
19695
19696 else
19697 Full_List := Primitive_Operations (Full_T);
19698
19699 while Present (Prim_Elmt) loop
19700 Prim := Node (Prim_Elmt);
19701
19702 if Comes_From_Source (Prim)
19703 and then not Contains (Prim, Full_List)
19704 then
19705 Append_Elmt (Prim, Full_List);
19706 end if;
19707
19708 Next_Elmt (Prim_Elmt);
19709 end loop;
19710 end if;
19711
19712 -- Untagged private view
19713
19714 else
19715 Full_List := Primitive_Operations (Full_T);
19716
19717 -- In this case the partial view is untagged, so here we locate
19718 -- all of the earlier primitives that need to be treated as
19719 -- dispatching (those that appear between the two views). Note
19720 -- that these additional operations must all be new operations
19721 -- (any earlier operations that override inherited operations
19722 -- of the full view will already have been inserted in the
19723 -- primitives list, marked by Check_Operation_From_Private_View
19724 -- as dispatching. Note that implicit "/=" operators are
19725 -- excluded from being added to the primitives list since they
19726 -- shouldn't be treated as dispatching (tagged "/=" is handled
19727 -- specially).
19728
19729 Prim := Next_Entity (Full_T);
19730 while Present (Prim) and then Prim /= Priv_T loop
19731 if Ekind_In (Prim, E_Procedure, E_Function) then
19732 Disp_Typ := Find_Dispatching_Type (Prim);
19733
19734 if Disp_Typ = Full_T
19735 and then (Chars (Prim) /= Name_Op_Ne
19736 or else Comes_From_Source (Prim))
19737 then
19738 Check_Controlling_Formals (Full_T, Prim);
19739
19740 if not Is_Dispatching_Operation (Prim) then
19741 Append_Elmt (Prim, Full_List);
19742 Set_Is_Dispatching_Operation (Prim, True);
19743 Set_DT_Position_Value (Prim, No_Uint);
19744 end if;
19745
19746 elsif Is_Dispatching_Operation (Prim)
19747 and then Disp_Typ /= Full_T
19748 then
19749
19750 -- Verify that it is not otherwise controlled by a
19751 -- formal or a return value of type T.
19752
19753 Check_Controlling_Formals (Disp_Typ, Prim);
19754 end if;
19755 end if;
19756
19757 Next_Entity (Prim);
19758 end loop;
19759 end if;
19760
19761 -- For the tagged case, the two views can share the same primitive
19762 -- operations list and the same class-wide type. Update attributes
19763 -- of the class-wide type which depend on the full declaration.
19764
19765 if Is_Tagged_Type (Priv_T) then
19766 Set_Direct_Primitive_Operations (Priv_T, Full_List);
19767 Set_Class_Wide_Type
19768 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
19769
19770 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
19771 Set_Has_Protected
19772 (Class_Wide_Type (Priv_T), Has_Protected (Full_T));
19773 end if;
19774 end;
19775 end if;
19776
19777 -- Ada 2005 AI 161: Check preelaborable initialization consistency
19778
19779 if Known_To_Have_Preelab_Init (Priv_T) then
19780
19781 -- Case where there is a pragma Preelaborable_Initialization. We
19782 -- always allow this in predefined units, which is cheating a bit,
19783 -- but it means we don't have to struggle to meet the requirements in
19784 -- the RM for having Preelaborable Initialization. Otherwise we
19785 -- require that the type meets the RM rules. But we can't check that
19786 -- yet, because of the rule about overriding Initialize, so we simply
19787 -- set a flag that will be checked at freeze time.
19788
19789 if not In_Predefined_Unit (Full_T) then
19790 Set_Must_Have_Preelab_Init (Full_T);
19791 end if;
19792 end if;
19793
19794 -- If pragma CPP_Class was applied to the private type declaration,
19795 -- propagate it now to the full type declaration.
19796
19797 if Is_CPP_Class (Priv_T) then
19798 Set_Is_CPP_Class (Full_T);
19799 Set_Convention (Full_T, Convention_CPP);
19800
19801 -- Check that components of imported CPP types do not have default
19802 -- expressions.
19803
19804 Check_CPP_Type_Has_No_Defaults (Full_T);
19805 end if;
19806
19807 -- If the private view has user specified stream attributes, then so has
19808 -- the full view.
19809
19810 -- Why the test, how could these flags be already set in Full_T ???
19811
19812 if Has_Specified_Stream_Read (Priv_T) then
19813 Set_Has_Specified_Stream_Read (Full_T);
19814 end if;
19815
19816 if Has_Specified_Stream_Write (Priv_T) then
19817 Set_Has_Specified_Stream_Write (Full_T);
19818 end if;
19819
19820 if Has_Specified_Stream_Input (Priv_T) then
19821 Set_Has_Specified_Stream_Input (Full_T);
19822 end if;
19823
19824 if Has_Specified_Stream_Output (Priv_T) then
19825 Set_Has_Specified_Stream_Output (Full_T);
19826 end if;
19827
19828 -- Propagate the attributes related to pragma Default_Initial_Condition
19829 -- from the private to the full view. Note that both flags are mutually
19830 -- exclusive.
19831
19832 if Has_Default_Init_Cond (Priv_T)
19833 or else Has_Inherited_Default_Init_Cond (Priv_T)
19834 then
19835 Propagate_Default_Init_Cond_Attributes
19836 (From_Typ => Priv_T,
19837 To_Typ => Full_T,
19838 Private_To_Full_View => True);
19839
19840 -- In the case where the full view is derived from another private type,
19841 -- the attributes related to pragma Default_Initial_Condition must be
19842 -- propagated from the full to the private view to maintain consistency
19843 -- of views.
19844
19845 -- package Pack is
19846 -- type Parent_Typ is private
19847 -- with Default_Initial_Condition ...;
19848 -- private
19849 -- type Parent_Typ is ...;
19850 -- end Pack;
19851
19852 -- with Pack; use Pack;
19853 -- package Pack_2 is
19854 -- type Deriv_Typ is private; -- must inherit
19855 -- private
19856 -- type Deriv_Typ is new Parent_Typ; -- must inherit
19857 -- end Pack_2;
19858
19859 elsif Has_Default_Init_Cond (Full_T)
19860 or else Has_Inherited_Default_Init_Cond (Full_T)
19861 then
19862 Propagate_Default_Init_Cond_Attributes
19863 (From_Typ => Full_T,
19864 To_Typ => Priv_T,
19865 Private_To_Full_View => True);
19866 end if;
19867
19868 -- Propagate the attributes related to pragma Ghost from the private to
19869 -- the full view.
19870
19871 if Is_Ghost_Entity (Priv_T) then
19872 Set_Is_Ghost_Entity (Full_T);
19873
19874 -- The Ghost policy in effect at the point of declaration and at the
19875 -- point of completion must match (SPARK RM 6.9(15)).
19876
19877 Check_Ghost_Completion (Priv_T, Full_T);
19878
19879 -- In the case where the private view of a tagged type lacks a parent
19880 -- type and is subject to pragma Ghost, ensure that the parent type
19881 -- specified by the full view is also Ghost (SPARK RM 6.9(9)).
19882
19883 if Is_Derived_Type (Full_T) then
19884 Check_Ghost_Derivation (Full_T);
19885 end if;
19886 end if;
19887
19888 -- Propagate invariants to full type
19889
19890 if Has_Invariants (Priv_T) then
19891 Set_Has_Invariants (Full_T);
19892 Set_Invariant_Procedure (Full_T, Invariant_Procedure (Priv_T));
19893 end if;
19894
19895 if Has_Inheritable_Invariants (Priv_T) then
19896 Set_Has_Inheritable_Invariants (Full_T);
19897 end if;
19898
19899 -- Check hidden inheritance of class-wide type invariants
19900
19901 if Ada_Version >= Ada_2012
19902 and then not Has_Inheritable_Invariants (Full_T)
19903 and then In_Private_Part (Current_Scope)
19904 and then Has_Interfaces (Full_T)
19905 then
19906 declare
19907 Ifaces : Elist_Id;
19908 AI : Elmt_Id;
19909
19910 begin
19911 Collect_Interfaces (Full_T, Ifaces, Exclude_Parents => True);
19912
19913 AI := First_Elmt (Ifaces);
19914 while Present (AI) loop
19915 if Has_Inheritable_Invariants (Node (AI)) then
19916 Error_Msg_N
19917 ("hidden inheritance of class-wide type invariants " &
19918 "not allowed", N);
19919 exit;
19920 end if;
19921
19922 Next_Elmt (AI);
19923 end loop;
19924 end;
19925 end if;
19926
19927 -- Propagate predicates to full type, and predicate function if already
19928 -- defined. It is not clear that this can actually happen? the partial
19929 -- view cannot be frozen yet, and the predicate function has not been
19930 -- built. Still it is a cheap check and seems safer to make it.
19931
19932 if Has_Predicates (Priv_T) then
19933 if Present (Predicate_Function (Priv_T)) then
19934 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
19935 end if;
19936
19937 Set_Has_Predicates (Full_T);
19938 end if;
19939 end Process_Full_View;
19940
19941 -----------------------------------
19942 -- Process_Incomplete_Dependents --
19943 -----------------------------------
19944
19945 procedure Process_Incomplete_Dependents
19946 (N : Node_Id;
19947 Full_T : Entity_Id;
19948 Inc_T : Entity_Id)
19949 is
19950 Inc_Elmt : Elmt_Id;
19951 Priv_Dep : Entity_Id;
19952 New_Subt : Entity_Id;
19953
19954 Disc_Constraint : Elist_Id;
19955
19956 begin
19957 if No (Private_Dependents (Inc_T)) then
19958 return;
19959 end if;
19960
19961 -- Itypes that may be generated by the completion of an incomplete
19962 -- subtype are not used by the back-end and not attached to the tree.
19963 -- They are created only for constraint-checking purposes.
19964
19965 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
19966 while Present (Inc_Elmt) loop
19967 Priv_Dep := Node (Inc_Elmt);
19968
19969 if Ekind (Priv_Dep) = E_Subprogram_Type then
19970
19971 -- An Access_To_Subprogram type may have a return type or a
19972 -- parameter type that is incomplete. Replace with the full view.
19973
19974 if Etype (Priv_Dep) = Inc_T then
19975 Set_Etype (Priv_Dep, Full_T);
19976 end if;
19977
19978 declare
19979 Formal : Entity_Id;
19980
19981 begin
19982 Formal := First_Formal (Priv_Dep);
19983 while Present (Formal) loop
19984 if Etype (Formal) = Inc_T then
19985 Set_Etype (Formal, Full_T);
19986 end if;
19987
19988 Next_Formal (Formal);
19989 end loop;
19990 end;
19991
19992 elsif Is_Overloadable (Priv_Dep) then
19993
19994 -- If a subprogram in the incomplete dependents list is primitive
19995 -- for a tagged full type then mark it as a dispatching operation,
19996 -- check whether it overrides an inherited subprogram, and check
19997 -- restrictions on its controlling formals. Note that a protected
19998 -- operation is never dispatching: only its wrapper operation
19999 -- (which has convention Ada) is.
20000
20001 if Is_Tagged_Type (Full_T)
20002 and then Is_Primitive (Priv_Dep)
20003 and then Convention (Priv_Dep) /= Convention_Protected
20004 then
20005 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
20006 Set_Is_Dispatching_Operation (Priv_Dep);
20007 Check_Controlling_Formals (Full_T, Priv_Dep);
20008 end if;
20009
20010 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
20011
20012 -- Can happen during processing of a body before the completion
20013 -- of a TA type. Ignore, because spec is also on dependent list.
20014
20015 return;
20016
20017 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
20018 -- corresponding subtype of the full view.
20019
20020 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
20021 Set_Subtype_Indication
20022 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
20023 Set_Etype (Priv_Dep, Full_T);
20024 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
20025 Set_Analyzed (Parent (Priv_Dep), False);
20026
20027 -- Reanalyze the declaration, suppressing the call to
20028 -- Enter_Name to avoid duplicate names.
20029
20030 Analyze_Subtype_Declaration
20031 (N => Parent (Priv_Dep),
20032 Skip => True);
20033
20034 -- Dependent is a subtype
20035
20036 else
20037 -- We build a new subtype indication using the full view of the
20038 -- incomplete parent. The discriminant constraints have been
20039 -- elaborated already at the point of the subtype declaration.
20040
20041 New_Subt := Create_Itype (E_Void, N);
20042
20043 if Has_Discriminants (Full_T) then
20044 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
20045 else
20046 Disc_Constraint := No_Elist;
20047 end if;
20048
20049 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
20050 Set_Full_View (Priv_Dep, New_Subt);
20051 end if;
20052
20053 Next_Elmt (Inc_Elmt);
20054 end loop;
20055 end Process_Incomplete_Dependents;
20056
20057 --------------------------------
20058 -- Process_Range_Expr_In_Decl --
20059 --------------------------------
20060
20061 procedure Process_Range_Expr_In_Decl
20062 (R : Node_Id;
20063 T : Entity_Id;
20064 Subtyp : Entity_Id := Empty;
20065 Check_List : List_Id := Empty_List;
20066 R_Check_Off : Boolean := False;
20067 In_Iter_Schm : Boolean := False)
20068 is
20069 Lo, Hi : Node_Id;
20070 R_Checks : Check_Result;
20071 Insert_Node : Node_Id;
20072 Def_Id : Entity_Id;
20073
20074 begin
20075 Analyze_And_Resolve (R, Base_Type (T));
20076
20077 if Nkind (R) = N_Range then
20078
20079 -- In SPARK, all ranges should be static, with the exception of the
20080 -- discrete type definition of a loop parameter specification.
20081
20082 if not In_Iter_Schm
20083 and then not Is_OK_Static_Range (R)
20084 then
20085 Check_SPARK_05_Restriction ("range should be static", R);
20086 end if;
20087
20088 Lo := Low_Bound (R);
20089 Hi := High_Bound (R);
20090
20091 -- Validity checks on the range of a quantified expression are
20092 -- delayed until the construct is transformed into a loop.
20093
20094 if Nkind (Parent (R)) = N_Loop_Parameter_Specification
20095 and then Nkind (Parent (Parent (R))) = N_Quantified_Expression
20096 then
20097 null;
20098
20099 -- We need to ensure validity of the bounds here, because if we
20100 -- go ahead and do the expansion, then the expanded code will get
20101 -- analyzed with range checks suppressed and we miss the check.
20102
20103 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
20104 -- the temporaries generated by routine Remove_Side_Effects by means
20105 -- of validity checks must use the same names. When a range appears
20106 -- in the parent of a generic, the range is processed with checks
20107 -- disabled as part of the generic context and with checks enabled
20108 -- for code generation purposes. This leads to link issues as the
20109 -- generic contains references to xxx_FIRST/_LAST, but the inlined
20110 -- template sees the temporaries generated by Remove_Side_Effects.
20111
20112 else
20113 Validity_Check_Range (R, Subtyp);
20114 end if;
20115
20116 -- If there were errors in the declaration, try and patch up some
20117 -- common mistakes in the bounds. The cases handled are literals
20118 -- which are Integer where the expected type is Real and vice versa.
20119 -- These corrections allow the compilation process to proceed further
20120 -- along since some basic assumptions of the format of the bounds
20121 -- are guaranteed.
20122
20123 if Etype (R) = Any_Type then
20124 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
20125 Rewrite (Lo,
20126 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
20127
20128 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
20129 Rewrite (Hi,
20130 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
20131
20132 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
20133 Rewrite (Lo,
20134 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
20135
20136 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
20137 Rewrite (Hi,
20138 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
20139 end if;
20140
20141 Set_Etype (Lo, T);
20142 Set_Etype (Hi, T);
20143 end if;
20144
20145 -- If the bounds of the range have been mistakenly given as string
20146 -- literals (perhaps in place of character literals), then an error
20147 -- has already been reported, but we rewrite the string literal as a
20148 -- bound of the range's type to avoid blowups in later processing
20149 -- that looks at static values.
20150
20151 if Nkind (Lo) = N_String_Literal then
20152 Rewrite (Lo,
20153 Make_Attribute_Reference (Sloc (Lo),
20154 Prefix => New_Occurrence_Of (T, Sloc (Lo)),
20155 Attribute_Name => Name_First));
20156 Analyze_And_Resolve (Lo);
20157 end if;
20158
20159 if Nkind (Hi) = N_String_Literal then
20160 Rewrite (Hi,
20161 Make_Attribute_Reference (Sloc (Hi),
20162 Prefix => New_Occurrence_Of (T, Sloc (Hi)),
20163 Attribute_Name => Name_First));
20164 Analyze_And_Resolve (Hi);
20165 end if;
20166
20167 -- If bounds aren't scalar at this point then exit, avoiding
20168 -- problems with further processing of the range in this procedure.
20169
20170 if not Is_Scalar_Type (Etype (Lo)) then
20171 return;
20172 end if;
20173
20174 -- Resolve (actually Sem_Eval) has checked that the bounds are in
20175 -- then range of the base type. Here we check whether the bounds
20176 -- are in the range of the subtype itself. Note that if the bounds
20177 -- represent the null range the Constraint_Error exception should
20178 -- not be raised.
20179
20180 -- ??? The following code should be cleaned up as follows
20181
20182 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
20183 -- is done in the call to Range_Check (R, T); below
20184
20185 -- 2. The use of R_Check_Off should be investigated and possibly
20186 -- removed, this would clean up things a bit.
20187
20188 if Is_Null_Range (Lo, Hi) then
20189 null;
20190
20191 else
20192 -- Capture values of bounds and generate temporaries for them
20193 -- if needed, before applying checks, since checks may cause
20194 -- duplication of the expression without forcing evaluation.
20195
20196 -- The forced evaluation removes side effects from expressions,
20197 -- which should occur also in GNATprove mode. Otherwise, we end up
20198 -- with unexpected insertions of actions at places where this is
20199 -- not supposed to occur, e.g. on default parameters of a call.
20200
20201 if Expander_Active or GNATprove_Mode then
20202
20203 -- Call Force_Evaluation to create declarations as needed to
20204 -- deal with side effects, and also create typ_FIRST/LAST
20205 -- entities for bounds if we have a subtype name.
20206
20207 -- Note: we do this transformation even if expansion is not
20208 -- active if we are in GNATprove_Mode since the transformation
20209 -- is in general required to ensure that the resulting tree has
20210 -- proper Ada semantics.
20211
20212 Force_Evaluation
20213 (Lo, Related_Id => Subtyp, Is_Low_Bound => True);
20214 Force_Evaluation
20215 (Hi, Related_Id => Subtyp, Is_High_Bound => True);
20216 end if;
20217
20218 -- We use a flag here instead of suppressing checks on the type
20219 -- because the type we check against isn't necessarily the place
20220 -- where we put the check.
20221
20222 if not R_Check_Off then
20223 R_Checks := Get_Range_Checks (R, T);
20224
20225 -- Look up tree to find an appropriate insertion point. We
20226 -- can't just use insert_actions because later processing
20227 -- depends on the insertion node. Prior to Ada 2012 the
20228 -- insertion point could only be a declaration or a loop, but
20229 -- quantified expressions can appear within any context in an
20230 -- expression, and the insertion point can be any statement,
20231 -- pragma, or declaration.
20232
20233 Insert_Node := Parent (R);
20234 while Present (Insert_Node) loop
20235 exit when
20236 Nkind (Insert_Node) in N_Declaration
20237 and then
20238 not Nkind_In
20239 (Insert_Node, N_Component_Declaration,
20240 N_Loop_Parameter_Specification,
20241 N_Function_Specification,
20242 N_Procedure_Specification);
20243
20244 exit when Nkind (Insert_Node) in N_Later_Decl_Item
20245 or else Nkind (Insert_Node) in
20246 N_Statement_Other_Than_Procedure_Call
20247 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
20248 N_Pragma);
20249
20250 Insert_Node := Parent (Insert_Node);
20251 end loop;
20252
20253 -- Why would Type_Decl not be present??? Without this test,
20254 -- short regression tests fail.
20255
20256 if Present (Insert_Node) then
20257
20258 -- Case of loop statement. Verify that the range is part
20259 -- of the subtype indication of the iteration scheme.
20260
20261 if Nkind (Insert_Node) = N_Loop_Statement then
20262 declare
20263 Indic : Node_Id;
20264
20265 begin
20266 Indic := Parent (R);
20267 while Present (Indic)
20268 and then Nkind (Indic) /= N_Subtype_Indication
20269 loop
20270 Indic := Parent (Indic);
20271 end loop;
20272
20273 if Present (Indic) then
20274 Def_Id := Etype (Subtype_Mark (Indic));
20275
20276 Insert_Range_Checks
20277 (R_Checks,
20278 Insert_Node,
20279 Def_Id,
20280 Sloc (Insert_Node),
20281 R,
20282 Do_Before => True);
20283 end if;
20284 end;
20285
20286 -- Insertion before a declaration. If the declaration
20287 -- includes discriminants, the list of applicable checks
20288 -- is given by the caller.
20289
20290 elsif Nkind (Insert_Node) in N_Declaration then
20291 Def_Id := Defining_Identifier (Insert_Node);
20292
20293 if (Ekind (Def_Id) = E_Record_Type
20294 and then Depends_On_Discriminant (R))
20295 or else
20296 (Ekind (Def_Id) = E_Protected_Type
20297 and then Has_Discriminants (Def_Id))
20298 then
20299 Append_Range_Checks
20300 (R_Checks,
20301 Check_List, Def_Id, Sloc (Insert_Node), R);
20302
20303 else
20304 Insert_Range_Checks
20305 (R_Checks,
20306 Insert_Node, Def_Id, Sloc (Insert_Node), R);
20307
20308 end if;
20309
20310 -- Insertion before a statement. Range appears in the
20311 -- context of a quantified expression. Insertion will
20312 -- take place when expression is expanded.
20313
20314 else
20315 null;
20316 end if;
20317 end if;
20318 end if;
20319 end if;
20320
20321 -- Case of other than an explicit N_Range node
20322
20323 -- The forced evaluation removes side effects from expressions, which
20324 -- should occur also in GNATprove mode. Otherwise, we end up with
20325 -- unexpected insertions of actions at places where this is not
20326 -- supposed to occur, e.g. on default parameters of a call.
20327
20328 elsif Expander_Active or GNATprove_Mode then
20329 Get_Index_Bounds (R, Lo, Hi);
20330 Force_Evaluation (Lo);
20331 Force_Evaluation (Hi);
20332 end if;
20333 end Process_Range_Expr_In_Decl;
20334
20335 --------------------------------------
20336 -- Process_Real_Range_Specification --
20337 --------------------------------------
20338
20339 procedure Process_Real_Range_Specification (Def : Node_Id) is
20340 Spec : constant Node_Id := Real_Range_Specification (Def);
20341 Lo : Node_Id;
20342 Hi : Node_Id;
20343 Err : Boolean := False;
20344
20345 procedure Analyze_Bound (N : Node_Id);
20346 -- Analyze and check one bound
20347
20348 -------------------
20349 -- Analyze_Bound --
20350 -------------------
20351
20352 procedure Analyze_Bound (N : Node_Id) is
20353 begin
20354 Analyze_And_Resolve (N, Any_Real);
20355
20356 if not Is_OK_Static_Expression (N) then
20357 Flag_Non_Static_Expr
20358 ("bound in real type definition is not static!", N);
20359 Err := True;
20360 end if;
20361 end Analyze_Bound;
20362
20363 -- Start of processing for Process_Real_Range_Specification
20364
20365 begin
20366 if Present (Spec) then
20367 Lo := Low_Bound (Spec);
20368 Hi := High_Bound (Spec);
20369 Analyze_Bound (Lo);
20370 Analyze_Bound (Hi);
20371
20372 -- If error, clear away junk range specification
20373
20374 if Err then
20375 Set_Real_Range_Specification (Def, Empty);
20376 end if;
20377 end if;
20378 end Process_Real_Range_Specification;
20379
20380 ---------------------
20381 -- Process_Subtype --
20382 ---------------------
20383
20384 function Process_Subtype
20385 (S : Node_Id;
20386 Related_Nod : Node_Id;
20387 Related_Id : Entity_Id := Empty;
20388 Suffix : Character := ' ') return Entity_Id
20389 is
20390 P : Node_Id;
20391 Def_Id : Entity_Id;
20392 Error_Node : Node_Id;
20393 Full_View_Id : Entity_Id;
20394 Subtype_Mark_Id : Entity_Id;
20395
20396 May_Have_Null_Exclusion : Boolean;
20397
20398 procedure Check_Incomplete (T : Entity_Id);
20399 -- Called to verify that an incomplete type is not used prematurely
20400
20401 ----------------------
20402 -- Check_Incomplete --
20403 ----------------------
20404
20405 procedure Check_Incomplete (T : Entity_Id) is
20406 begin
20407 -- Ada 2005 (AI-412): Incomplete subtypes are legal
20408
20409 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
20410 and then
20411 not (Ada_Version >= Ada_2005
20412 and then
20413 (Nkind (Parent (T)) = N_Subtype_Declaration
20414 or else (Nkind (Parent (T)) = N_Subtype_Indication
20415 and then Nkind (Parent (Parent (T))) =
20416 N_Subtype_Declaration)))
20417 then
20418 Error_Msg_N ("invalid use of type before its full declaration", T);
20419 end if;
20420 end Check_Incomplete;
20421
20422 -- Start of processing for Process_Subtype
20423
20424 begin
20425 -- Case of no constraints present
20426
20427 if Nkind (S) /= N_Subtype_Indication then
20428 Find_Type (S);
20429 Check_Incomplete (S);
20430 P := Parent (S);
20431
20432 -- Ada 2005 (AI-231): Static check
20433
20434 if Ada_Version >= Ada_2005
20435 and then Present (P)
20436 and then Null_Exclusion_Present (P)
20437 and then Nkind (P) /= N_Access_To_Object_Definition
20438 and then not Is_Access_Type (Entity (S))
20439 then
20440 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
20441 end if;
20442
20443 -- The following is ugly, can't we have a range or even a flag???
20444
20445 May_Have_Null_Exclusion :=
20446 Nkind_In (P, N_Access_Definition,
20447 N_Access_Function_Definition,
20448 N_Access_Procedure_Definition,
20449 N_Access_To_Object_Definition,
20450 N_Allocator,
20451 N_Component_Definition)
20452 or else
20453 Nkind_In (P, N_Derived_Type_Definition,
20454 N_Discriminant_Specification,
20455 N_Formal_Object_Declaration,
20456 N_Object_Declaration,
20457 N_Object_Renaming_Declaration,
20458 N_Parameter_Specification,
20459 N_Subtype_Declaration);
20460
20461 -- Create an Itype that is a duplicate of Entity (S) but with the
20462 -- null-exclusion attribute.
20463
20464 if May_Have_Null_Exclusion
20465 and then Is_Access_Type (Entity (S))
20466 and then Null_Exclusion_Present (P)
20467
20468 -- No need to check the case of an access to object definition.
20469 -- It is correct to define double not-null pointers.
20470
20471 -- Example:
20472 -- type Not_Null_Int_Ptr is not null access Integer;
20473 -- type Acc is not null access Not_Null_Int_Ptr;
20474
20475 and then Nkind (P) /= N_Access_To_Object_Definition
20476 then
20477 if Can_Never_Be_Null (Entity (S)) then
20478 case Nkind (Related_Nod) is
20479 when N_Full_Type_Declaration =>
20480 if Nkind (Type_Definition (Related_Nod))
20481 in N_Array_Type_Definition
20482 then
20483 Error_Node :=
20484 Subtype_Indication
20485 (Component_Definition
20486 (Type_Definition (Related_Nod)));
20487 else
20488 Error_Node :=
20489 Subtype_Indication (Type_Definition (Related_Nod));
20490 end if;
20491
20492 when N_Subtype_Declaration =>
20493 Error_Node := Subtype_Indication (Related_Nod);
20494
20495 when N_Object_Declaration =>
20496 Error_Node := Object_Definition (Related_Nod);
20497
20498 when N_Component_Declaration =>
20499 Error_Node :=
20500 Subtype_Indication (Component_Definition (Related_Nod));
20501
20502 when N_Allocator =>
20503 Error_Node := Expression (Related_Nod);
20504
20505 when others =>
20506 pragma Assert (False);
20507 Error_Node := Related_Nod;
20508 end case;
20509
20510 Error_Msg_NE
20511 ("`NOT NULL` not allowed (& already excludes null)",
20512 Error_Node,
20513 Entity (S));
20514 end if;
20515
20516 Set_Etype (S,
20517 Create_Null_Excluding_Itype
20518 (T => Entity (S),
20519 Related_Nod => P));
20520 Set_Entity (S, Etype (S));
20521 end if;
20522
20523 return Entity (S);
20524
20525 -- Case of constraint present, so that we have an N_Subtype_Indication
20526 -- node (this node is created only if constraints are present).
20527
20528 else
20529 Find_Type (Subtype_Mark (S));
20530
20531 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
20532 and then not
20533 (Nkind (Parent (S)) = N_Subtype_Declaration
20534 and then Is_Itype (Defining_Identifier (Parent (S))))
20535 then
20536 Check_Incomplete (Subtype_Mark (S));
20537 end if;
20538
20539 P := Parent (S);
20540 Subtype_Mark_Id := Entity (Subtype_Mark (S));
20541
20542 -- Explicit subtype declaration case
20543
20544 if Nkind (P) = N_Subtype_Declaration then
20545 Def_Id := Defining_Identifier (P);
20546
20547 -- Explicit derived type definition case
20548
20549 elsif Nkind (P) = N_Derived_Type_Definition then
20550 Def_Id := Defining_Identifier (Parent (P));
20551
20552 -- Implicit case, the Def_Id must be created as an implicit type.
20553 -- The one exception arises in the case of concurrent types, array
20554 -- and access types, where other subsidiary implicit types may be
20555 -- created and must appear before the main implicit type. In these
20556 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
20557 -- has not yet been called to create Def_Id.
20558
20559 else
20560 if Is_Array_Type (Subtype_Mark_Id)
20561 or else Is_Concurrent_Type (Subtype_Mark_Id)
20562 or else Is_Access_Type (Subtype_Mark_Id)
20563 then
20564 Def_Id := Empty;
20565
20566 -- For the other cases, we create a new unattached Itype,
20567 -- and set the indication to ensure it gets attached later.
20568
20569 else
20570 Def_Id :=
20571 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
20572 end if;
20573 end if;
20574
20575 -- If the kind of constraint is invalid for this kind of type,
20576 -- then give an error, and then pretend no constraint was given.
20577
20578 if not Is_Valid_Constraint_Kind
20579 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
20580 then
20581 Error_Msg_N
20582 ("incorrect constraint for this kind of type", Constraint (S));
20583
20584 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
20585
20586 -- Set Ekind of orphan itype, to prevent cascaded errors
20587
20588 if Present (Def_Id) then
20589 Set_Ekind (Def_Id, Ekind (Any_Type));
20590 end if;
20591
20592 -- Make recursive call, having got rid of the bogus constraint
20593
20594 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
20595 end if;
20596
20597 -- Remaining processing depends on type. Select on Base_Type kind to
20598 -- ensure getting to the concrete type kind in the case of a private
20599 -- subtype (needed when only doing semantic analysis).
20600
20601 case Ekind (Base_Type (Subtype_Mark_Id)) is
20602 when Access_Kind =>
20603
20604 -- If this is a constraint on a class-wide type, discard it.
20605 -- There is currently no way to express a partial discriminant
20606 -- constraint on a type with unknown discriminants. This is
20607 -- a pathology that the ACATS wisely decides not to test.
20608
20609 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
20610 if Comes_From_Source (S) then
20611 Error_Msg_N
20612 ("constraint on class-wide type ignored??",
20613 Constraint (S));
20614 end if;
20615
20616 if Nkind (P) = N_Subtype_Declaration then
20617 Set_Subtype_Indication (P,
20618 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
20619 end if;
20620
20621 return Subtype_Mark_Id;
20622 end if;
20623
20624 Constrain_Access (Def_Id, S, Related_Nod);
20625
20626 if Expander_Active
20627 and then Is_Itype (Designated_Type (Def_Id))
20628 and then Nkind (Related_Nod) = N_Subtype_Declaration
20629 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
20630 then
20631 Build_Itype_Reference
20632 (Designated_Type (Def_Id), Related_Nod);
20633 end if;
20634
20635 when Array_Kind =>
20636 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
20637
20638 when Decimal_Fixed_Point_Kind =>
20639 Constrain_Decimal (Def_Id, S);
20640
20641 when Enumeration_Kind =>
20642 Constrain_Enumeration (Def_Id, S);
20643 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
20644
20645 when Ordinary_Fixed_Point_Kind =>
20646 Constrain_Ordinary_Fixed (Def_Id, S);
20647
20648 when Float_Kind =>
20649 Constrain_Float (Def_Id, S);
20650
20651 when Integer_Kind =>
20652 Constrain_Integer (Def_Id, S);
20653 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
20654
20655 when E_Record_Type |
20656 E_Record_Subtype |
20657 Class_Wide_Kind |
20658 E_Incomplete_Type =>
20659 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
20660
20661 if Ekind (Def_Id) = E_Incomplete_Type then
20662 Set_Private_Dependents (Def_Id, New_Elmt_List);
20663 end if;
20664
20665 when Private_Kind =>
20666 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
20667 Set_Private_Dependents (Def_Id, New_Elmt_List);
20668
20669 -- In case of an invalid constraint prevent further processing
20670 -- since the type constructed is missing expected fields.
20671
20672 if Etype (Def_Id) = Any_Type then
20673 return Def_Id;
20674 end if;
20675
20676 -- If the full view is that of a task with discriminants,
20677 -- we must constrain both the concurrent type and its
20678 -- corresponding record type. Otherwise we will just propagate
20679 -- the constraint to the full view, if available.
20680
20681 if Present (Full_View (Subtype_Mark_Id))
20682 and then Has_Discriminants (Subtype_Mark_Id)
20683 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
20684 then
20685 Full_View_Id :=
20686 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
20687
20688 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
20689 Constrain_Concurrent (Full_View_Id, S,
20690 Related_Nod, Related_Id, Suffix);
20691 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
20692 Set_Full_View (Def_Id, Full_View_Id);
20693
20694 -- Introduce an explicit reference to the private subtype,
20695 -- to prevent scope anomalies in gigi if first use appears
20696 -- in a nested context, e.g. a later function body.
20697 -- Should this be generated in other contexts than a full
20698 -- type declaration?
20699
20700 if Is_Itype (Def_Id)
20701 and then
20702 Nkind (Parent (P)) = N_Full_Type_Declaration
20703 then
20704 Build_Itype_Reference (Def_Id, Parent (P));
20705 end if;
20706
20707 else
20708 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
20709 end if;
20710
20711 when Concurrent_Kind =>
20712 Constrain_Concurrent (Def_Id, S,
20713 Related_Nod, Related_Id, Suffix);
20714
20715 when others =>
20716 Error_Msg_N ("invalid subtype mark in subtype indication", S);
20717 end case;
20718
20719 -- Size and Convention are always inherited from the base type
20720
20721 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
20722 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
20723
20724 return Def_Id;
20725 end if;
20726 end Process_Subtype;
20727
20728 --------------------------------------------
20729 -- Propagate_Default_Init_Cond_Attributes --
20730 --------------------------------------------
20731
20732 procedure Propagate_Default_Init_Cond_Attributes
20733 (From_Typ : Entity_Id;
20734 To_Typ : Entity_Id;
20735 Parent_To_Derivation : Boolean := False;
20736 Private_To_Full_View : Boolean := False)
20737 is
20738 procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id);
20739 -- Remove the default initial procedure (if any) from the rep chain of
20740 -- type Typ.
20741
20742 ----------------------------------------
20743 -- Remove_Default_Init_Cond_Procedure --
20744 ----------------------------------------
20745
20746 procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id) is
20747 Found : Boolean := False;
20748 Prev : Entity_Id;
20749 Subp : Entity_Id;
20750
20751 begin
20752 Prev := Typ;
20753 Subp := Subprograms_For_Type (Typ);
20754 while Present (Subp) loop
20755 if Is_Default_Init_Cond_Procedure (Subp) then
20756 Found := True;
20757 exit;
20758 end if;
20759
20760 Prev := Subp;
20761 Subp := Subprograms_For_Type (Subp);
20762 end loop;
20763
20764 if Found then
20765 Set_Subprograms_For_Type (Prev, Subprograms_For_Type (Subp));
20766 Set_Subprograms_For_Type (Subp, Empty);
20767 end if;
20768 end Remove_Default_Init_Cond_Procedure;
20769
20770 -- Local variables
20771
20772 Inherit_Procedure : Boolean := False;
20773
20774 -- Start of processing for Propagate_Default_Init_Cond_Attributes
20775
20776 begin
20777 if Has_Default_Init_Cond (From_Typ) then
20778
20779 -- A derived type inherits the attributes from its parent type
20780
20781 if Parent_To_Derivation then
20782 Set_Has_Inherited_Default_Init_Cond (To_Typ);
20783
20784 -- A full view shares the attributes with its private view
20785
20786 else
20787 Set_Has_Default_Init_Cond (To_Typ);
20788 end if;
20789
20790 Inherit_Procedure := True;
20791
20792 -- Due to the order of expansion, a derived private type is processed
20793 -- by two routines which both attempt to set the attributes related
20794 -- to pragma Default_Initial_Condition - Build_Derived_Type and then
20795 -- Process_Full_View.
20796
20797 -- package Pack is
20798 -- type Parent_Typ is private
20799 -- with Default_Initial_Condition ...;
20800 -- private
20801 -- type Parent_Typ is ...;
20802 -- end Pack;
20803
20804 -- with Pack; use Pack;
20805 -- package Pack_2 is
20806 -- type Deriv_Typ is private
20807 -- with Default_Initial_Condition ...;
20808 -- private
20809 -- type Deriv_Typ is new Parent_Typ;
20810 -- end Pack_2;
20811
20812 -- When Build_Derived_Type operates, it sets the attributes on the
20813 -- full view without taking into account that the private view may
20814 -- define its own default initial condition procedure. This becomes
20815 -- apparent in Process_Full_View which must undo some of the work by
20816 -- Build_Derived_Type and propagate the attributes from the private
20817 -- to the full view.
20818
20819 if Private_To_Full_View then
20820 Set_Has_Inherited_Default_Init_Cond (To_Typ, False);
20821 Remove_Default_Init_Cond_Procedure (To_Typ);
20822 end if;
20823
20824 -- A type must inherit the default initial condition procedure from a
20825 -- parent type when the parent itself is inheriting the procedure or
20826 -- when it is defining one. This circuitry is also used when dealing
20827 -- with the private / full view of a type.
20828
20829 elsif Has_Inherited_Default_Init_Cond (From_Typ)
20830 or (Parent_To_Derivation
20831 and Present (Get_Pragma
20832 (From_Typ, Pragma_Default_Initial_Condition)))
20833 then
20834 Set_Has_Inherited_Default_Init_Cond (To_Typ);
20835 Inherit_Procedure := True;
20836 end if;
20837
20838 if Inherit_Procedure
20839 and then No (Default_Init_Cond_Procedure (To_Typ))
20840 then
20841 Set_Default_Init_Cond_Procedure
20842 (To_Typ, Default_Init_Cond_Procedure (From_Typ));
20843 end if;
20844 end Propagate_Default_Init_Cond_Attributes;
20845
20846 -----------------------------
20847 -- Record_Type_Declaration --
20848 -----------------------------
20849
20850 procedure Record_Type_Declaration
20851 (T : Entity_Id;
20852 N : Node_Id;
20853 Prev : Entity_Id)
20854 is
20855 Def : constant Node_Id := Type_Definition (N);
20856 Is_Tagged : Boolean;
20857 Tag_Comp : Entity_Id;
20858
20859 begin
20860 -- These flags must be initialized before calling Process_Discriminants
20861 -- because this routine makes use of them.
20862
20863 Set_Ekind (T, E_Record_Type);
20864 Set_Etype (T, T);
20865 Init_Size_Align (T);
20866 Set_Interfaces (T, No_Elist);
20867 Set_Stored_Constraint (T, No_Elist);
20868 Set_Default_SSO (T);
20869
20870 -- Normal case
20871
20872 if Ada_Version < Ada_2005 or else not Interface_Present (Def) then
20873 if Limited_Present (Def) then
20874 Check_SPARK_05_Restriction ("limited is not allowed", N);
20875 end if;
20876
20877 if Abstract_Present (Def) then
20878 Check_SPARK_05_Restriction ("abstract is not allowed", N);
20879 end if;
20880
20881 -- The flag Is_Tagged_Type might have already been set by
20882 -- Find_Type_Name if it detected an error for declaration T. This
20883 -- arises in the case of private tagged types where the full view
20884 -- omits the word tagged.
20885
20886 Is_Tagged :=
20887 Tagged_Present (Def)
20888 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
20889
20890 Set_Is_Limited_Record (T, Limited_Present (Def));
20891
20892 if Is_Tagged then
20893 Set_Is_Tagged_Type (T, True);
20894 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
20895 end if;
20896
20897 -- Type is abstract if full declaration carries keyword, or if
20898 -- previous partial view did.
20899
20900 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
20901 or else Abstract_Present (Def));
20902
20903 else
20904 Check_SPARK_05_Restriction ("interface is not allowed", N);
20905
20906 Is_Tagged := True;
20907 Analyze_Interface_Declaration (T, Def);
20908
20909 if Present (Discriminant_Specifications (N)) then
20910 Error_Msg_N
20911 ("interface types cannot have discriminants",
20912 Defining_Identifier
20913 (First (Discriminant_Specifications (N))));
20914 end if;
20915 end if;
20916
20917 -- First pass: if there are self-referential access components,
20918 -- create the required anonymous access type declarations, and if
20919 -- need be an incomplete type declaration for T itself.
20920
20921 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
20922
20923 if Ada_Version >= Ada_2005
20924 and then Present (Interface_List (Def))
20925 then
20926 Check_Interfaces (N, Def);
20927
20928 declare
20929 Ifaces_List : Elist_Id;
20930
20931 begin
20932 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
20933 -- already in the parents.
20934
20935 Collect_Interfaces
20936 (T => T,
20937 Ifaces_List => Ifaces_List,
20938 Exclude_Parents => True);
20939
20940 Set_Interfaces (T, Ifaces_List);
20941 end;
20942 end if;
20943
20944 -- Records constitute a scope for the component declarations within.
20945 -- The scope is created prior to the processing of these declarations.
20946 -- Discriminants are processed first, so that they are visible when
20947 -- processing the other components. The Ekind of the record type itself
20948 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
20949
20950 -- Enter record scope
20951
20952 Push_Scope (T);
20953
20954 -- If an incomplete or private type declaration was already given for
20955 -- the type, then this scope already exists, and the discriminants have
20956 -- been declared within. We must verify that the full declaration
20957 -- matches the incomplete one.
20958
20959 Check_Or_Process_Discriminants (N, T, Prev);
20960
20961 Set_Is_Constrained (T, not Has_Discriminants (T));
20962 Set_Has_Delayed_Freeze (T, True);
20963
20964 -- For tagged types add a manually analyzed component corresponding
20965 -- to the component _tag, the corresponding piece of tree will be
20966 -- expanded as part of the freezing actions if it is not a CPP_Class.
20967
20968 if Is_Tagged then
20969
20970 -- Do not add the tag unless we are in expansion mode
20971
20972 if Expander_Active then
20973 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
20974 Enter_Name (Tag_Comp);
20975
20976 Set_Ekind (Tag_Comp, E_Component);
20977 Set_Is_Tag (Tag_Comp);
20978 Set_Is_Aliased (Tag_Comp);
20979 Set_Etype (Tag_Comp, RTE (RE_Tag));
20980 Set_DT_Entry_Count (Tag_Comp, No_Uint);
20981 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
20982 Init_Component_Location (Tag_Comp);
20983
20984 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
20985 -- implemented interfaces.
20986
20987 if Has_Interfaces (T) then
20988 Add_Interface_Tag_Components (N, T);
20989 end if;
20990 end if;
20991
20992 Make_Class_Wide_Type (T);
20993 Set_Direct_Primitive_Operations (T, New_Elmt_List);
20994 end if;
20995
20996 -- We must suppress range checks when processing record components in
20997 -- the presence of discriminants, since we don't want spurious checks to
20998 -- be generated during their analysis, but Suppress_Range_Checks flags
20999 -- must be reset the after processing the record definition.
21000
21001 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
21002 -- couldn't we just use the normal range check suppression method here.
21003 -- That would seem cleaner ???
21004
21005 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
21006 Set_Kill_Range_Checks (T, True);
21007 Record_Type_Definition (Def, Prev);
21008 Set_Kill_Range_Checks (T, False);
21009 else
21010 Record_Type_Definition (Def, Prev);
21011 end if;
21012
21013 -- Exit from record scope
21014
21015 End_Scope;
21016
21017 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
21018 -- the implemented interfaces and associate them an aliased entity.
21019
21020 if Is_Tagged
21021 and then not Is_Empty_List (Interface_List (Def))
21022 then
21023 Derive_Progenitor_Subprograms (T, T);
21024 end if;
21025
21026 Check_Function_Writable_Actuals (N);
21027 end Record_Type_Declaration;
21028
21029 ----------------------------
21030 -- Record_Type_Definition --
21031 ----------------------------
21032
21033 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
21034 Component : Entity_Id;
21035 Ctrl_Components : Boolean := False;
21036 Final_Storage_Only : Boolean;
21037 T : Entity_Id;
21038
21039 begin
21040 if Ekind (Prev_T) = E_Incomplete_Type then
21041 T := Full_View (Prev_T);
21042 else
21043 T := Prev_T;
21044 end if;
21045
21046 -- In SPARK, tagged types and type extensions may only be declared in
21047 -- the specification of library unit packages.
21048
21049 if Present (Def) and then Is_Tagged_Type (T) then
21050 declare
21051 Typ : Node_Id;
21052 Ctxt : Node_Id;
21053
21054 begin
21055 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
21056 Typ := Parent (Def);
21057 else
21058 pragma Assert
21059 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
21060 Typ := Parent (Parent (Def));
21061 end if;
21062
21063 Ctxt := Parent (Typ);
21064
21065 if Nkind (Ctxt) = N_Package_Body
21066 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
21067 then
21068 Check_SPARK_05_Restriction
21069 ("type should be defined in package specification", Typ);
21070
21071 elsif Nkind (Ctxt) /= N_Package_Specification
21072 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
21073 then
21074 Check_SPARK_05_Restriction
21075 ("type should be defined in library unit package", Typ);
21076 end if;
21077 end;
21078 end if;
21079
21080 Final_Storage_Only := not Is_Controlled (T);
21081
21082 -- Ada 2005: Check whether an explicit Limited is present in a derived
21083 -- type declaration.
21084
21085 if Nkind (Parent (Def)) = N_Derived_Type_Definition
21086 and then Limited_Present (Parent (Def))
21087 then
21088 Set_Is_Limited_Record (T);
21089 end if;
21090
21091 -- If the component list of a record type is defined by the reserved
21092 -- word null and there is no discriminant part, then the record type has
21093 -- no components and all records of the type are null records (RM 3.7)
21094 -- This procedure is also called to process the extension part of a
21095 -- record extension, in which case the current scope may have inherited
21096 -- components.
21097
21098 if No (Def)
21099 or else No (Component_List (Def))
21100 or else Null_Present (Component_List (Def))
21101 then
21102 if not Is_Tagged_Type (T) then
21103 Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
21104 end if;
21105
21106 else
21107 Analyze_Declarations (Component_Items (Component_List (Def)));
21108
21109 if Present (Variant_Part (Component_List (Def))) then
21110 Check_SPARK_05_Restriction ("variant part is not allowed", Def);
21111 Analyze (Variant_Part (Component_List (Def)));
21112 end if;
21113 end if;
21114
21115 -- After completing the semantic analysis of the record definition,
21116 -- record components, both new and inherited, are accessible. Set their
21117 -- kind accordingly. Exclude malformed itypes from illegal declarations,
21118 -- whose Ekind may be void.
21119
21120 Component := First_Entity (Current_Scope);
21121 while Present (Component) loop
21122 if Ekind (Component) = E_Void
21123 and then not Is_Itype (Component)
21124 then
21125 Set_Ekind (Component, E_Component);
21126 Init_Component_Location (Component);
21127 end if;
21128
21129 if Has_Task (Etype (Component)) then
21130 Set_Has_Task (T);
21131 end if;
21132
21133 if Has_Protected (Etype (Component)) then
21134 Set_Has_Protected (T);
21135 end if;
21136
21137 if Ekind (Component) /= E_Component then
21138 null;
21139
21140 -- Do not set Has_Controlled_Component on a class-wide equivalent
21141 -- type. See Make_CW_Equivalent_Type.
21142
21143 elsif not Is_Class_Wide_Equivalent_Type (T)
21144 and then (Has_Controlled_Component (Etype (Component))
21145 or else (Chars (Component) /= Name_uParent
21146 and then Is_Controlled (Etype (Component))))
21147 then
21148 Set_Has_Controlled_Component (T, True);
21149 Final_Storage_Only :=
21150 Final_Storage_Only
21151 and then Finalize_Storage_Only (Etype (Component));
21152 Ctrl_Components := True;
21153 end if;
21154
21155 Next_Entity (Component);
21156 end loop;
21157
21158 -- A Type is Finalize_Storage_Only only if all its controlled components
21159 -- are also.
21160
21161 if Ctrl_Components then
21162 Set_Finalize_Storage_Only (T, Final_Storage_Only);
21163 end if;
21164
21165 -- Place reference to end record on the proper entity, which may
21166 -- be a partial view.
21167
21168 if Present (Def) then
21169 Process_End_Label (Def, 'e', Prev_T);
21170 end if;
21171 end Record_Type_Definition;
21172
21173 ------------------------
21174 -- Replace_Components --
21175 ------------------------
21176
21177 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
21178 function Process (N : Node_Id) return Traverse_Result;
21179
21180 -------------
21181 -- Process --
21182 -------------
21183
21184 function Process (N : Node_Id) return Traverse_Result is
21185 Comp : Entity_Id;
21186
21187 begin
21188 if Nkind (N) = N_Discriminant_Specification then
21189 Comp := First_Discriminant (Typ);
21190 while Present (Comp) loop
21191 if Chars (Comp) = Chars (Defining_Identifier (N)) then
21192 Set_Defining_Identifier (N, Comp);
21193 exit;
21194 end if;
21195
21196 Next_Discriminant (Comp);
21197 end loop;
21198
21199 elsif Nkind (N) = N_Component_Declaration then
21200 Comp := First_Component (Typ);
21201 while Present (Comp) loop
21202 if Chars (Comp) = Chars (Defining_Identifier (N)) then
21203 Set_Defining_Identifier (N, Comp);
21204 exit;
21205 end if;
21206
21207 Next_Component (Comp);
21208 end loop;
21209 end if;
21210
21211 return OK;
21212 end Process;
21213
21214 procedure Replace is new Traverse_Proc (Process);
21215
21216 -- Start of processing for Replace_Components
21217
21218 begin
21219 Replace (Decl);
21220 end Replace_Components;
21221
21222 -------------------------------
21223 -- Set_Completion_Referenced --
21224 -------------------------------
21225
21226 procedure Set_Completion_Referenced (E : Entity_Id) is
21227 begin
21228 -- If in main unit, mark entity that is a completion as referenced,
21229 -- warnings go on the partial view when needed.
21230
21231 if In_Extended_Main_Source_Unit (E) then
21232 Set_Referenced (E);
21233 end if;
21234 end Set_Completion_Referenced;
21235
21236 ---------------------
21237 -- Set_Default_SSO --
21238 ---------------------
21239
21240 procedure Set_Default_SSO (T : Entity_Id) is
21241 begin
21242 case Opt.Default_SSO is
21243 when ' ' =>
21244 null;
21245 when 'L' =>
21246 Set_SSO_Set_Low_By_Default (T, True);
21247 when 'H' =>
21248 Set_SSO_Set_High_By_Default (T, True);
21249 when others =>
21250 raise Program_Error;
21251 end case;
21252 end Set_Default_SSO;
21253
21254 ---------------------
21255 -- Set_Fixed_Range --
21256 ---------------------
21257
21258 -- The range for fixed-point types is complicated by the fact that we
21259 -- do not know the exact end points at the time of the declaration. This
21260 -- is true for three reasons:
21261
21262 -- A size clause may affect the fudging of the end-points.
21263 -- A small clause may affect the values of the end-points.
21264 -- We try to include the end-points if it does not affect the size.
21265
21266 -- This means that the actual end-points must be established at the
21267 -- point when the type is frozen. Meanwhile, we first narrow the range
21268 -- as permitted (so that it will fit if necessary in a small specified
21269 -- size), and then build a range subtree with these narrowed bounds.
21270 -- Set_Fixed_Range constructs the range from real literal values, and
21271 -- sets the range as the Scalar_Range of the given fixed-point type entity.
21272
21273 -- The parent of this range is set to point to the entity so that it is
21274 -- properly hooked into the tree (unlike normal Scalar_Range entries for
21275 -- other scalar types, which are just pointers to the range in the
21276 -- original tree, this would otherwise be an orphan).
21277
21278 -- The tree is left unanalyzed. When the type is frozen, the processing
21279 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
21280 -- analyzed, and uses this as an indication that it should complete
21281 -- work on the range (it will know the final small and size values).
21282
21283 procedure Set_Fixed_Range
21284 (E : Entity_Id;
21285 Loc : Source_Ptr;
21286 Lo : Ureal;
21287 Hi : Ureal)
21288 is
21289 S : constant Node_Id :=
21290 Make_Range (Loc,
21291 Low_Bound => Make_Real_Literal (Loc, Lo),
21292 High_Bound => Make_Real_Literal (Loc, Hi));
21293 begin
21294 Set_Scalar_Range (E, S);
21295 Set_Parent (S, E);
21296
21297 -- Before the freeze point, the bounds of a fixed point are universal
21298 -- and carry the corresponding type.
21299
21300 Set_Etype (Low_Bound (S), Universal_Real);
21301 Set_Etype (High_Bound (S), Universal_Real);
21302 end Set_Fixed_Range;
21303
21304 ----------------------------------
21305 -- Set_Scalar_Range_For_Subtype --
21306 ----------------------------------
21307
21308 procedure Set_Scalar_Range_For_Subtype
21309 (Def_Id : Entity_Id;
21310 R : Node_Id;
21311 Subt : Entity_Id)
21312 is
21313 Kind : constant Entity_Kind := Ekind (Def_Id);
21314
21315 begin
21316 -- Defend against previous error
21317
21318 if Nkind (R) = N_Error then
21319 return;
21320 end if;
21321
21322 Set_Scalar_Range (Def_Id, R);
21323
21324 -- We need to link the range into the tree before resolving it so
21325 -- that types that are referenced, including importantly the subtype
21326 -- itself, are properly frozen (Freeze_Expression requires that the
21327 -- expression be properly linked into the tree). Of course if it is
21328 -- already linked in, then we do not disturb the current link.
21329
21330 if No (Parent (R)) then
21331 Set_Parent (R, Def_Id);
21332 end if;
21333
21334 -- Reset the kind of the subtype during analysis of the range, to
21335 -- catch possible premature use in the bounds themselves.
21336
21337 Set_Ekind (Def_Id, E_Void);
21338 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
21339 Set_Ekind (Def_Id, Kind);
21340 end Set_Scalar_Range_For_Subtype;
21341
21342 --------------------------------------------------------
21343 -- Set_Stored_Constraint_From_Discriminant_Constraint --
21344 --------------------------------------------------------
21345
21346 procedure Set_Stored_Constraint_From_Discriminant_Constraint
21347 (E : Entity_Id)
21348 is
21349 begin
21350 -- Make sure set if encountered during Expand_To_Stored_Constraint
21351
21352 Set_Stored_Constraint (E, No_Elist);
21353
21354 -- Give it the right value
21355
21356 if Is_Constrained (E) and then Has_Discriminants (E) then
21357 Set_Stored_Constraint (E,
21358 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
21359 end if;
21360 end Set_Stored_Constraint_From_Discriminant_Constraint;
21361
21362 -------------------------------------
21363 -- Signed_Integer_Type_Declaration --
21364 -------------------------------------
21365
21366 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
21367 Implicit_Base : Entity_Id;
21368 Base_Typ : Entity_Id;
21369 Lo_Val : Uint;
21370 Hi_Val : Uint;
21371 Errs : Boolean := False;
21372 Lo : Node_Id;
21373 Hi : Node_Id;
21374
21375 function Can_Derive_From (E : Entity_Id) return Boolean;
21376 -- Determine whether given bounds allow derivation from specified type
21377
21378 procedure Check_Bound (Expr : Node_Id);
21379 -- Check bound to make sure it is integral and static. If not, post
21380 -- appropriate error message and set Errs flag
21381
21382 ---------------------
21383 -- Can_Derive_From --
21384 ---------------------
21385
21386 -- Note we check both bounds against both end values, to deal with
21387 -- strange types like ones with a range of 0 .. -12341234.
21388
21389 function Can_Derive_From (E : Entity_Id) return Boolean is
21390 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
21391 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
21392 begin
21393 return Lo <= Lo_Val and then Lo_Val <= Hi
21394 and then
21395 Lo <= Hi_Val and then Hi_Val <= Hi;
21396 end Can_Derive_From;
21397
21398 -----------------
21399 -- Check_Bound --
21400 -----------------
21401
21402 procedure Check_Bound (Expr : Node_Id) is
21403 begin
21404 -- If a range constraint is used as an integer type definition, each
21405 -- bound of the range must be defined by a static expression of some
21406 -- integer type, but the two bounds need not have the same integer
21407 -- type (Negative bounds are allowed.) (RM 3.5.4)
21408
21409 if not Is_Integer_Type (Etype (Expr)) then
21410 Error_Msg_N
21411 ("integer type definition bounds must be of integer type", Expr);
21412 Errs := True;
21413
21414 elsif not Is_OK_Static_Expression (Expr) then
21415 Flag_Non_Static_Expr
21416 ("non-static expression used for integer type bound!", Expr);
21417 Errs := True;
21418
21419 -- The bounds are folded into literals, and we set their type to be
21420 -- universal, to avoid typing difficulties: we cannot set the type
21421 -- of the literal to the new type, because this would be a forward
21422 -- reference for the back end, and if the original type is user-
21423 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
21424
21425 else
21426 if Is_Entity_Name (Expr) then
21427 Fold_Uint (Expr, Expr_Value (Expr), True);
21428 end if;
21429
21430 Set_Etype (Expr, Universal_Integer);
21431 end if;
21432 end Check_Bound;
21433
21434 -- Start of processing for Signed_Integer_Type_Declaration
21435
21436 begin
21437 -- Create an anonymous base type
21438
21439 Implicit_Base :=
21440 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
21441
21442 -- Analyze and check the bounds, they can be of any integer type
21443
21444 Lo := Low_Bound (Def);
21445 Hi := High_Bound (Def);
21446
21447 -- Arbitrarily use Integer as the type if either bound had an error
21448
21449 if Hi = Error or else Lo = Error then
21450 Base_Typ := Any_Integer;
21451 Set_Error_Posted (T, True);
21452
21453 -- Here both bounds are OK expressions
21454
21455 else
21456 Analyze_And_Resolve (Lo, Any_Integer);
21457 Analyze_And_Resolve (Hi, Any_Integer);
21458
21459 Check_Bound (Lo);
21460 Check_Bound (Hi);
21461
21462 if Errs then
21463 Hi := Type_High_Bound (Standard_Long_Long_Integer);
21464 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
21465 end if;
21466
21467 -- Find type to derive from
21468
21469 Lo_Val := Expr_Value (Lo);
21470 Hi_Val := Expr_Value (Hi);
21471
21472 if Can_Derive_From (Standard_Short_Short_Integer) then
21473 Base_Typ := Base_Type (Standard_Short_Short_Integer);
21474
21475 elsif Can_Derive_From (Standard_Short_Integer) then
21476 Base_Typ := Base_Type (Standard_Short_Integer);
21477
21478 elsif Can_Derive_From (Standard_Integer) then
21479 Base_Typ := Base_Type (Standard_Integer);
21480
21481 elsif Can_Derive_From (Standard_Long_Integer) then
21482 Base_Typ := Base_Type (Standard_Long_Integer);
21483
21484 elsif Can_Derive_From (Standard_Long_Long_Integer) then
21485 Check_Restriction (No_Long_Long_Integers, Def);
21486 Base_Typ := Base_Type (Standard_Long_Long_Integer);
21487
21488 else
21489 Base_Typ := Base_Type (Standard_Long_Long_Integer);
21490 Error_Msg_N ("integer type definition bounds out of range", Def);
21491 Hi := Type_High_Bound (Standard_Long_Long_Integer);
21492 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
21493 end if;
21494 end if;
21495
21496 -- Complete both implicit base and declared first subtype entities. The
21497 -- inheritance of the rep item chain ensures that SPARK-related pragmas
21498 -- are not clobbered when the signed integer type acts as a full view of
21499 -- a private type.
21500
21501 Set_Etype (Implicit_Base, Base_Typ);
21502 Set_Size_Info (Implicit_Base, Base_Typ);
21503 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
21504 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
21505 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
21506
21507 Set_Ekind (T, E_Signed_Integer_Subtype);
21508 Set_Etype (T, Implicit_Base);
21509 Set_Size_Info (T, Implicit_Base);
21510 Inherit_Rep_Item_Chain (T, Implicit_Base);
21511 Set_Scalar_Range (T, Def);
21512 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
21513 Set_Is_Constrained (T);
21514 end Signed_Integer_Type_Declaration;
21515
21516 end Sem_Ch3;