[multiple changes]
[gcc.git] / gcc / ada / sem_ch3.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Elists; use Elists;
31 with Einfo; use Einfo;
32 with Errout; use Errout;
33 with Eval_Fat; use Eval_Fat;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Dist; use Exp_Dist;
38 with Exp_Tss; use Exp_Tss;
39 with Exp_Util; use Exp_Util;
40 with Fname; use Fname;
41 with Freeze; use Freeze;
42 with Ghost; use Ghost;
43 with Itypes; use Itypes;
44 with Layout; use Layout;
45 with Lib; use Lib;
46 with Lib.Xref; use Lib.Xref;
47 with Namet; use Namet;
48 with Nmake; use Nmake;
49 with Opt; use Opt;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Case; use Sem_Case;
56 with Sem_Cat; use Sem_Cat;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch7; use Sem_Ch7;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch10; use Sem_Ch10;
61 with Sem_Ch13; use Sem_Ch13;
62 with Sem_Dim; use Sem_Dim;
63 with Sem_Disp; use Sem_Disp;
64 with Sem_Dist; use Sem_Dist;
65 with Sem_Elim; use Sem_Elim;
66 with Sem_Eval; use Sem_Eval;
67 with Sem_Mech; use Sem_Mech;
68 with Sem_Prag; use Sem_Prag;
69 with Sem_Res; use Sem_Res;
70 with Sem_Smem; use Sem_Smem;
71 with Sem_Type; use Sem_Type;
72 with Sem_Util; use Sem_Util;
73 with Sem_Warn; use Sem_Warn;
74 with Stand; use Stand;
75 with Sinfo; use Sinfo;
76 with Sinput; use Sinput;
77 with Snames; use Snames;
78 with Targparm; use Targparm;
79 with Tbuild; use Tbuild;
80 with Ttypes; use Ttypes;
81 with Uintp; use Uintp;
82 with Urealp; use Urealp;
83
84 package body Sem_Ch3 is
85
86 -----------------------
87 -- Local Subprograms --
88 -----------------------
89
90 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
91 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
92 -- abstract interface types implemented by a record type or a derived
93 -- record type.
94
95 procedure Analyze_Object_Contract (Obj_Id : Entity_Id);
96 -- Analyze all delayed pragmas chained on the contract of object Obj_Id as
97 -- if they appeared at the end of the declarative region. The pragmas to be
98 -- considered are:
99 -- Async_Readers
100 -- Async_Writers
101 -- Effective_Reads
102 -- Effective_Writes
103 -- Part_Of
104
105 procedure Build_Derived_Type
106 (N : Node_Id;
107 Parent_Type : Entity_Id;
108 Derived_Type : Entity_Id;
109 Is_Completion : Boolean;
110 Derive_Subps : Boolean := True);
111 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
112 -- the N_Full_Type_Declaration node containing the derived type definition.
113 -- Parent_Type is the entity for the parent type in the derived type
114 -- definition and Derived_Type the actual derived type. Is_Completion must
115 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
116 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
117 -- completion of a private type declaration. If Is_Completion is set to
118 -- True, N is the completion of a private type declaration and Derived_Type
119 -- is different from the defining identifier inside N (i.e. Derived_Type /=
120 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
121 -- subprograms should be derived. The only case where this parameter is
122 -- False is when Build_Derived_Type is recursively called to process an
123 -- implicit derived full type for a type derived from a private type (in
124 -- that case the subprograms must only be derived for the private view of
125 -- the type).
126 --
127 -- ??? These flags need a bit of re-examination and re-documentation:
128 -- ??? are they both necessary (both seem related to the recursion)?
129
130 procedure Build_Derived_Access_Type
131 (N : Node_Id;
132 Parent_Type : Entity_Id;
133 Derived_Type : Entity_Id);
134 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
135 -- create an implicit base if the parent type is constrained or if the
136 -- subtype indication has a constraint.
137
138 procedure Build_Derived_Array_Type
139 (N : Node_Id;
140 Parent_Type : Entity_Id;
141 Derived_Type : Entity_Id);
142 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
143 -- create an implicit base if the parent type is constrained or if the
144 -- subtype indication has a constraint.
145
146 procedure Build_Derived_Concurrent_Type
147 (N : Node_Id;
148 Parent_Type : Entity_Id;
149 Derived_Type : Entity_Id);
150 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
151 -- protected type, inherit entries and protected subprograms, check
152 -- legality of discriminant constraints if any.
153
154 procedure Build_Derived_Enumeration_Type
155 (N : Node_Id;
156 Parent_Type : Entity_Id;
157 Derived_Type : Entity_Id);
158 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
159 -- type, we must create a new list of literals. Types derived from
160 -- Character and [Wide_]Wide_Character are special-cased.
161
162 procedure Build_Derived_Numeric_Type
163 (N : Node_Id;
164 Parent_Type : Entity_Id;
165 Derived_Type : Entity_Id);
166 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
167 -- an anonymous base type, and propagate constraint to subtype if needed.
168
169 procedure Build_Derived_Private_Type
170 (N : Node_Id;
171 Parent_Type : Entity_Id;
172 Derived_Type : Entity_Id;
173 Is_Completion : Boolean;
174 Derive_Subps : Boolean := True);
175 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
176 -- because the parent may or may not have a completion, and the derivation
177 -- may itself be a completion.
178
179 procedure Build_Derived_Record_Type
180 (N : Node_Id;
181 Parent_Type : Entity_Id;
182 Derived_Type : Entity_Id;
183 Derive_Subps : Boolean := True);
184 -- Subsidiary procedure used for tagged and untagged record types
185 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
186 -- All parameters are as in Build_Derived_Type except that N, in
187 -- addition to being an N_Full_Type_Declaration node, can also be an
188 -- N_Private_Extension_Declaration node. See the definition of this routine
189 -- for much more info. Derive_Subps indicates whether subprograms should be
190 -- derived from the parent type. The only case where Derive_Subps is False
191 -- is for an implicit derived full type for a type derived from a private
192 -- type (see Build_Derived_Type).
193
194 procedure Build_Discriminal (Discrim : Entity_Id);
195 -- Create the discriminal corresponding to discriminant Discrim, that is
196 -- the parameter corresponding to Discrim to be used in initialization
197 -- procedures for the type where Discrim is a discriminant. Discriminals
198 -- are not used during semantic analysis, and are not fully defined
199 -- entities until expansion. Thus they are not given a scope until
200 -- initialization procedures are built.
201
202 function Build_Discriminant_Constraints
203 (T : Entity_Id;
204 Def : Node_Id;
205 Derived_Def : Boolean := False) return Elist_Id;
206 -- Validate discriminant constraints and return the list of the constraints
207 -- in order of discriminant declarations, where T is the discriminated
208 -- unconstrained type. Def is the N_Subtype_Indication node where the
209 -- discriminants constraints for T are specified. Derived_Def is True
210 -- when building the discriminant constraints in a derived type definition
211 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
212 -- type and Def is the constraint "(xxx)" on T and this routine sets the
213 -- Corresponding_Discriminant field of the discriminants in the derived
214 -- type D to point to the corresponding discriminants in the parent type T.
215
216 procedure Build_Discriminated_Subtype
217 (T : Entity_Id;
218 Def_Id : Entity_Id;
219 Elist : Elist_Id;
220 Related_Nod : Node_Id;
221 For_Access : Boolean := False);
222 -- Subsidiary procedure to Constrain_Discriminated_Type and to
223 -- Process_Incomplete_Dependents. Given
224 --
225 -- T (a possibly discriminated base type)
226 -- Def_Id (a very partially built subtype for T),
227 --
228 -- the call completes Def_Id to be the appropriate E_*_Subtype.
229 --
230 -- The Elist is the list of discriminant constraints if any (it is set
231 -- to No_Elist if T is not a discriminated type, and to an empty list if
232 -- T has discriminants but there are no discriminant constraints). The
233 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
234 -- The For_Access says whether or not this subtype is really constraining
235 -- an access type. That is its sole purpose is the designated type of an
236 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
237 -- is built to avoid freezing T when the access subtype is frozen.
238
239 function Build_Scalar_Bound
240 (Bound : Node_Id;
241 Par_T : Entity_Id;
242 Der_T : Entity_Id) return Node_Id;
243 -- The bounds of a derived scalar type are conversions of the bounds of
244 -- the parent type. Optimize the representation if the bounds are literals.
245 -- Needs a more complete spec--what are the parameters exactly, and what
246 -- exactly is the returned value, and how is Bound affected???
247
248 procedure Build_Underlying_Full_View
249 (N : Node_Id;
250 Typ : Entity_Id;
251 Par : Entity_Id);
252 -- If the completion of a private type is itself derived from a private
253 -- type, or if the full view of a private subtype is itself private, the
254 -- back-end has no way to compute the actual size of this type. We build
255 -- an internal subtype declaration of the proper parent type to convey
256 -- this information. This extra mechanism is needed because a full
257 -- view cannot itself have a full view (it would get clobbered during
258 -- view exchanges).
259
260 procedure Check_Access_Discriminant_Requires_Limited
261 (D : Node_Id;
262 Loc : Node_Id);
263 -- Check the restriction that the type to which an access discriminant
264 -- belongs must be a concurrent type or a descendant of a type with
265 -- the reserved word 'limited' in its declaration.
266
267 procedure Check_Anonymous_Access_Components
268 (Typ_Decl : Node_Id;
269 Typ : Entity_Id;
270 Prev : Entity_Id;
271 Comp_List : Node_Id);
272 -- Ada 2005 AI-382: an access component in a record definition can refer to
273 -- the enclosing record, in which case it denotes the type itself, and not
274 -- the current instance of the type. We create an anonymous access type for
275 -- the component, and flag it as an access to a component, so accessibility
276 -- checks are properly performed on it. The declaration of the access type
277 -- is placed ahead of that of the record to prevent order-of-elaboration
278 -- circularity issues in Gigi. We create an incomplete type for the record
279 -- declaration, which is the designated type of the anonymous access.
280
281 procedure Check_Delta_Expression (E : Node_Id);
282 -- Check that the expression represented by E is suitable for use as a
283 -- delta expression, i.e. it is of real type and is static.
284
285 procedure Check_Digits_Expression (E : Node_Id);
286 -- Check that the expression represented by E is suitable for use as a
287 -- digits expression, i.e. it is of integer type, positive and static.
288
289 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
290 -- Validate the initialization of an object declaration. T is the required
291 -- type, and Exp is the initialization expression.
292
293 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
294 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
295
296 procedure Check_Or_Process_Discriminants
297 (N : Node_Id;
298 T : Entity_Id;
299 Prev : Entity_Id := Empty);
300 -- If N is the full declaration of the completion T of an incomplete or
301 -- private type, check its discriminants (which are already known to be
302 -- conformant with those of the partial view, see Find_Type_Name),
303 -- otherwise process them. Prev is the entity of the partial declaration,
304 -- if any.
305
306 procedure Check_Real_Bound (Bound : Node_Id);
307 -- Check given bound for being of real type and static. If not, post an
308 -- appropriate message, and rewrite the bound with the real literal zero.
309
310 procedure Constant_Redeclaration
311 (Id : Entity_Id;
312 N : Node_Id;
313 T : out Entity_Id);
314 -- Various checks on legality of full declaration of deferred constant.
315 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
316 -- node. The caller has not yet set any attributes of this entity.
317
318 function Contain_Interface
319 (Iface : Entity_Id;
320 Ifaces : Elist_Id) return Boolean;
321 -- Ada 2005: Determine whether Iface is present in the list Ifaces
322
323 procedure Convert_Scalar_Bounds
324 (N : Node_Id;
325 Parent_Type : Entity_Id;
326 Derived_Type : Entity_Id;
327 Loc : Source_Ptr);
328 -- For derived scalar types, convert the bounds in the type definition to
329 -- the derived type, and complete their analysis. Given a constraint of the
330 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
331 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
332 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
333 -- subtype are conversions of those bounds to the derived_type, so that
334 -- their typing is consistent.
335
336 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
337 -- Copies attributes from array base type T2 to array base type T1. Copies
338 -- only attributes that apply to base types, but not subtypes.
339
340 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
341 -- Copies attributes from array subtype T2 to array subtype T1. Copies
342 -- attributes that apply to both subtypes and base types.
343
344 procedure Create_Constrained_Components
345 (Subt : Entity_Id;
346 Decl_Node : Node_Id;
347 Typ : Entity_Id;
348 Constraints : Elist_Id);
349 -- Build the list of entities for a constrained discriminated record
350 -- subtype. If a component depends on a discriminant, replace its subtype
351 -- using the discriminant values in the discriminant constraint. Subt
352 -- is the defining identifier for the subtype whose list of constrained
353 -- entities we will create. Decl_Node is the type declaration node where
354 -- we will attach all the itypes created. Typ is the base discriminated
355 -- type for the subtype Subt. Constraints is the list of discriminant
356 -- constraints for Typ.
357
358 function Constrain_Component_Type
359 (Comp : Entity_Id;
360 Constrained_Typ : Entity_Id;
361 Related_Node : Node_Id;
362 Typ : Entity_Id;
363 Constraints : Elist_Id) return Entity_Id;
364 -- Given a discriminated base type Typ, a list of discriminant constraints,
365 -- Constraints, for Typ and a component Comp of Typ, create and return the
366 -- type corresponding to Etype (Comp) where all discriminant references
367 -- are replaced with the corresponding constraint. If Etype (Comp) contains
368 -- no discriminant references then it is returned as-is. Constrained_Typ
369 -- is the final constrained subtype to which the constrained component
370 -- belongs. Related_Node is the node where we attach all created itypes.
371
372 procedure Constrain_Access
373 (Def_Id : in out Entity_Id;
374 S : Node_Id;
375 Related_Nod : Node_Id);
376 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
377 -- an anonymous type created for a subtype indication. In that case it is
378 -- created in the procedure and attached to Related_Nod.
379
380 procedure Constrain_Array
381 (Def_Id : in out Entity_Id;
382 SI : Node_Id;
383 Related_Nod : Node_Id;
384 Related_Id : Entity_Id;
385 Suffix : Character);
386 -- Apply a list of index constraints to an unconstrained array type. The
387 -- first parameter is the entity for the resulting subtype. A value of
388 -- Empty for Def_Id indicates that an implicit type must be created, but
389 -- creation is delayed (and must be done by this procedure) because other
390 -- subsidiary implicit types must be created first (which is why Def_Id
391 -- is an in/out parameter). The second parameter is a subtype indication
392 -- node for the constrained array to be created (e.g. something of the
393 -- form string (1 .. 10)). Related_Nod gives the place where this type
394 -- has to be inserted in the tree. The Related_Id and Suffix parameters
395 -- are used to build the associated Implicit type name.
396
397 procedure Constrain_Concurrent
398 (Def_Id : in out Entity_Id;
399 SI : Node_Id;
400 Related_Nod : Node_Id;
401 Related_Id : Entity_Id;
402 Suffix : Character);
403 -- Apply list of discriminant constraints to an unconstrained concurrent
404 -- type.
405 --
406 -- SI is the N_Subtype_Indication node containing the constraint and
407 -- the unconstrained type to constrain.
408 --
409 -- Def_Id is the entity for the resulting constrained subtype. A value
410 -- of Empty for Def_Id indicates that an implicit type must be created,
411 -- but creation is delayed (and must be done by this procedure) because
412 -- other subsidiary implicit types must be created first (which is why
413 -- Def_Id is an in/out parameter).
414 --
415 -- Related_Nod gives the place where this type has to be inserted
416 -- in the tree.
417 --
418 -- The last two arguments are used to create its external name if needed.
419
420 function Constrain_Corresponding_Record
421 (Prot_Subt : Entity_Id;
422 Corr_Rec : Entity_Id;
423 Related_Nod : Node_Id) return Entity_Id;
424 -- When constraining a protected type or task type with discriminants,
425 -- constrain the corresponding record with the same discriminant values.
426
427 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
428 -- Constrain a decimal fixed point type with a digits constraint and/or a
429 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
430
431 procedure Constrain_Discriminated_Type
432 (Def_Id : Entity_Id;
433 S : Node_Id;
434 Related_Nod : Node_Id;
435 For_Access : Boolean := False);
436 -- Process discriminant constraints of composite type. Verify that values
437 -- have been provided for all discriminants, that the original type is
438 -- unconstrained, and that the types of the supplied expressions match
439 -- the discriminant types. The first three parameters are like in routine
440 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
441 -- of For_Access.
442
443 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
444 -- Constrain an enumeration type with a range constraint. This is identical
445 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
446
447 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
448 -- Constrain a floating point type with either a digits constraint
449 -- and/or a range constraint, building a E_Floating_Point_Subtype.
450
451 procedure Constrain_Index
452 (Index : Node_Id;
453 S : Node_Id;
454 Related_Nod : Node_Id;
455 Related_Id : Entity_Id;
456 Suffix : Character;
457 Suffix_Index : Nat);
458 -- Process an index constraint S in a constrained array declaration. The
459 -- constraint can be a subtype name, or a range with or without an explicit
460 -- subtype mark. The index is the corresponding index of the unconstrained
461 -- array. The Related_Id and Suffix parameters are used to build the
462 -- associated Implicit type name.
463
464 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
465 -- Build subtype of a signed or modular integer type
466
467 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
468 -- Constrain an ordinary fixed point type with a range constraint, and
469 -- build an E_Ordinary_Fixed_Point_Subtype entity.
470
471 procedure Copy_And_Swap (Priv, Full : Entity_Id);
472 -- Copy the Priv entity into the entity of its full declaration then swap
473 -- the two entities in such a manner that the former private type is now
474 -- seen as a full type.
475
476 procedure Decimal_Fixed_Point_Type_Declaration
477 (T : Entity_Id;
478 Def : Node_Id);
479 -- Create a new decimal fixed point type, and apply the constraint to
480 -- obtain a subtype of this new type.
481
482 procedure Complete_Private_Subtype
483 (Priv : Entity_Id;
484 Full : Entity_Id;
485 Full_Base : Entity_Id;
486 Related_Nod : Node_Id);
487 -- Complete the implicit full view of a private subtype by setting the
488 -- appropriate semantic fields. If the full view of the parent is a record
489 -- type, build constrained components of subtype.
490
491 procedure Derive_Progenitor_Subprograms
492 (Parent_Type : Entity_Id;
493 Tagged_Type : Entity_Id);
494 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
495 -- operations of progenitors of Tagged_Type, and replace the subsidiary
496 -- subtypes with Tagged_Type, to build the specs of the inherited interface
497 -- primitives. The derived primitives are aliased to those of the
498 -- interface. This routine takes care also of transferring to the full view
499 -- subprograms associated with the partial view of Tagged_Type that cover
500 -- interface primitives.
501
502 procedure Derived_Standard_Character
503 (N : Node_Id;
504 Parent_Type : Entity_Id;
505 Derived_Type : Entity_Id);
506 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
507 -- derivations from types Standard.Character and Standard.Wide_Character.
508
509 procedure Derived_Type_Declaration
510 (T : Entity_Id;
511 N : Node_Id;
512 Is_Completion : Boolean);
513 -- Process a derived type declaration. Build_Derived_Type is invoked
514 -- to process the actual derived type definition. Parameters N and
515 -- Is_Completion have the same meaning as in Build_Derived_Type.
516 -- T is the N_Defining_Identifier for the entity defined in the
517 -- N_Full_Type_Declaration node N, that is T is the derived type.
518
519 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
520 -- Insert each literal in symbol table, as an overloadable identifier. Each
521 -- enumeration type is mapped into a sequence of integers, and each literal
522 -- is defined as a constant with integer value. If any of the literals are
523 -- character literals, the type is a character type, which means that
524 -- strings are legal aggregates for arrays of components of the type.
525
526 function Expand_To_Stored_Constraint
527 (Typ : Entity_Id;
528 Constraint : Elist_Id) return Elist_Id;
529 -- Given a constraint (i.e. a list of expressions) on the discriminants of
530 -- Typ, expand it into a constraint on the stored discriminants and return
531 -- the new list of expressions constraining the stored discriminants.
532
533 function Find_Type_Of_Object
534 (Obj_Def : Node_Id;
535 Related_Nod : Node_Id) return Entity_Id;
536 -- Get type entity for object referenced by Obj_Def, attaching the implicit
537 -- types generated to Related_Nod.
538
539 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
540 -- Create a new float and apply the constraint to obtain subtype of it
541
542 function Has_Range_Constraint (N : Node_Id) return Boolean;
543 -- Given an N_Subtype_Indication node N, return True if a range constraint
544 -- is present, either directly, or as part of a digits or delta constraint.
545 -- In addition, a digits constraint in the decimal case returns True, since
546 -- it establishes a default range if no explicit range is present.
547
548 function Inherit_Components
549 (N : Node_Id;
550 Parent_Base : Entity_Id;
551 Derived_Base : Entity_Id;
552 Is_Tagged : Boolean;
553 Inherit_Discr : Boolean;
554 Discs : Elist_Id) return Elist_Id;
555 -- Called from Build_Derived_Record_Type to inherit the components of
556 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
557 -- For more information on derived types and component inheritance please
558 -- consult the comment above the body of Build_Derived_Record_Type.
559 --
560 -- N is the original derived type declaration
561 --
562 -- Is_Tagged is set if we are dealing with tagged types
563 --
564 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
565 -- Parent_Base, otherwise no discriminants are inherited.
566 --
567 -- Discs gives the list of constraints that apply to Parent_Base in the
568 -- derived type declaration. If Discs is set to No_Elist, then we have
569 -- the following situation:
570 --
571 -- type Parent (D1..Dn : ..) is [tagged] record ...;
572 -- type Derived is new Parent [with ...];
573 --
574 -- which gets treated as
575 --
576 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
577 --
578 -- For untagged types the returned value is an association list. The list
579 -- starts from the association (Parent_Base => Derived_Base), and then it
580 -- contains a sequence of the associations of the form
581 --
582 -- (Old_Component => New_Component),
583 --
584 -- where Old_Component is the Entity_Id of a component in Parent_Base and
585 -- New_Component is the Entity_Id of the corresponding component in
586 -- Derived_Base. For untagged records, this association list is needed when
587 -- copying the record declaration for the derived base. In the tagged case
588 -- the value returned is irrelevant.
589
590 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
591 -- Propagate static and dynamic predicate flags from a parent to the
592 -- subtype in a subtype declaration with and without constraints.
593
594 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean;
595 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
596 -- Determine whether subprogram Subp is a procedure subject to pragma
597 -- Extensions_Visible with value False and has at least one controlling
598 -- parameter of mode OUT.
599
600 function Is_Valid_Constraint_Kind
601 (T_Kind : Type_Kind;
602 Constraint_Kind : Node_Kind) return Boolean;
603 -- Returns True if it is legal to apply the given kind of constraint to the
604 -- given kind of type (index constraint to an array type, for example).
605
606 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
607 -- Create new modular type. Verify that modulus is in bounds
608
609 procedure New_Concatenation_Op (Typ : Entity_Id);
610 -- Create an abbreviated declaration for an operator in order to
611 -- materialize concatenation on array types.
612
613 procedure Ordinary_Fixed_Point_Type_Declaration
614 (T : Entity_Id;
615 Def : Node_Id);
616 -- Create a new ordinary fixed point type, and apply the constraint to
617 -- obtain subtype of it.
618
619 procedure Prepare_Private_Subtype_Completion
620 (Id : Entity_Id;
621 Related_Nod : Node_Id);
622 -- Id is a subtype of some private type. Creates the full declaration
623 -- associated with Id whenever possible, i.e. when the full declaration
624 -- of the base type is already known. Records each subtype into
625 -- Private_Dependents of the base type.
626
627 procedure Process_Incomplete_Dependents
628 (N : Node_Id;
629 Full_T : Entity_Id;
630 Inc_T : Entity_Id);
631 -- Process all entities that depend on an incomplete type. There include
632 -- subtypes, subprogram types that mention the incomplete type in their
633 -- profiles, and subprogram with access parameters that designate the
634 -- incomplete type.
635
636 -- Inc_T is the defining identifier of an incomplete type declaration, its
637 -- Ekind is E_Incomplete_Type.
638 --
639 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
640 --
641 -- Full_T is N's defining identifier.
642 --
643 -- Subtypes of incomplete types with discriminants are completed when the
644 -- parent type is. This is simpler than private subtypes, because they can
645 -- only appear in the same scope, and there is no need to exchange views.
646 -- Similarly, access_to_subprogram types may have a parameter or a return
647 -- type that is an incomplete type, and that must be replaced with the
648 -- full type.
649 --
650 -- If the full type is tagged, subprogram with access parameters that
651 -- designated the incomplete may be primitive operations of the full type,
652 -- and have to be processed accordingly.
653
654 procedure Process_Real_Range_Specification (Def : Node_Id);
655 -- Given the type definition for a real type, this procedure processes and
656 -- checks the real range specification of this type definition if one is
657 -- present. If errors are found, error messages are posted, and the
658 -- Real_Range_Specification of Def is reset to Empty.
659
660 procedure Propagate_Default_Init_Cond_Attributes
661 (From_Typ : Entity_Id;
662 To_Typ : Entity_Id;
663 Parent_To_Derivation : Boolean := False;
664 Private_To_Full_View : Boolean := False);
665 -- Subsidiary to routines Build_Derived_Type and Process_Full_View. Inherit
666 -- all attributes related to pragma Default_Initial_Condition from From_Typ
667 -- to To_Typ. Flag Parent_To_Derivation should be set when the context is
668 -- the creation of a derived type. Flag Private_To_Full_View should be set
669 -- when processing both views of a private type.
670
671 procedure Record_Type_Declaration
672 (T : Entity_Id;
673 N : Node_Id;
674 Prev : Entity_Id);
675 -- Process a record type declaration (for both untagged and tagged
676 -- records). Parameters T and N are exactly like in procedure
677 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
678 -- for this routine. If this is the completion of an incomplete type
679 -- declaration, Prev is the entity of the incomplete declaration, used for
680 -- cross-referencing. Otherwise Prev = T.
681
682 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
683 -- This routine is used to process the actual record type definition (both
684 -- for untagged and tagged records). Def is a record type definition node.
685 -- This procedure analyzes the components in this record type definition.
686 -- Prev_T is the entity for the enclosing record type. It is provided so
687 -- that its Has_Task flag can be set if any of the component have Has_Task
688 -- set. If the declaration is the completion of an incomplete type
689 -- declaration, Prev_T is the original incomplete type, whose full view is
690 -- the record type.
691
692 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
693 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
694 -- build a copy of the declaration tree of the parent, and we create
695 -- independently the list of components for the derived type. Semantic
696 -- information uses the component entities, but record representation
697 -- clauses are validated on the declaration tree. This procedure replaces
698 -- discriminants and components in the declaration with those that have
699 -- been created by Inherit_Components.
700
701 procedure Set_Fixed_Range
702 (E : Entity_Id;
703 Loc : Source_Ptr;
704 Lo : Ureal;
705 Hi : Ureal);
706 -- Build a range node with the given bounds and set it as the Scalar_Range
707 -- of the given fixed-point type entity. Loc is the source location used
708 -- for the constructed range. See body for further details.
709
710 procedure Set_Scalar_Range_For_Subtype
711 (Def_Id : Entity_Id;
712 R : Node_Id;
713 Subt : Entity_Id);
714 -- This routine is used to set the scalar range field for a subtype given
715 -- Def_Id, the entity for the subtype, and R, the range expression for the
716 -- scalar range. Subt provides the parent subtype to be used to analyze,
717 -- resolve, and check the given range.
718
719 procedure Set_Default_SSO (T : Entity_Id);
720 -- T is the entity for an array or record being declared. This procedure
721 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
722 -- to the setting of Opt.Default_SSO.
723
724 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
725 -- Create a new signed integer entity, and apply the constraint to obtain
726 -- the required first named subtype of this type.
727
728 procedure Set_Stored_Constraint_From_Discriminant_Constraint
729 (E : Entity_Id);
730 -- E is some record type. This routine computes E's Stored_Constraint
731 -- from its Discriminant_Constraint.
732
733 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
734 -- Check that an entity in a list of progenitors is an interface,
735 -- emit error otherwise.
736
737 -----------------------
738 -- Access_Definition --
739 -----------------------
740
741 function Access_Definition
742 (Related_Nod : Node_Id;
743 N : Node_Id) return Entity_Id
744 is
745 Anon_Type : Entity_Id;
746 Anon_Scope : Entity_Id;
747 Desig_Type : Entity_Id;
748 Enclosing_Prot_Type : Entity_Id := Empty;
749
750 begin
751 Check_SPARK_05_Restriction ("access type is not allowed", N);
752
753 if Is_Entry (Current_Scope)
754 and then Is_Task_Type (Etype (Scope (Current_Scope)))
755 then
756 Error_Msg_N ("task entries cannot have access parameters", N);
757 return Empty;
758 end if;
759
760 -- Ada 2005: For an object declaration the corresponding anonymous
761 -- type is declared in the current scope.
762
763 -- If the access definition is the return type of another access to
764 -- function, scope is the current one, because it is the one of the
765 -- current type declaration, except for the pathological case below.
766
767 if Nkind_In (Related_Nod, N_Object_Declaration,
768 N_Access_Function_Definition)
769 then
770 Anon_Scope := Current_Scope;
771
772 -- A pathological case: function returning access functions that
773 -- return access functions, etc. Each anonymous access type created
774 -- is in the enclosing scope of the outermost function.
775
776 declare
777 Par : Node_Id;
778
779 begin
780 Par := Related_Nod;
781 while Nkind_In (Par, N_Access_Function_Definition,
782 N_Access_Definition)
783 loop
784 Par := Parent (Par);
785 end loop;
786
787 if Nkind (Par) = N_Function_Specification then
788 Anon_Scope := Scope (Defining_Entity (Par));
789 end if;
790 end;
791
792 -- For the anonymous function result case, retrieve the scope of the
793 -- function specification's associated entity rather than using the
794 -- current scope. The current scope will be the function itself if the
795 -- formal part is currently being analyzed, but will be the parent scope
796 -- in the case of a parameterless function, and we always want to use
797 -- the function's parent scope. Finally, if the function is a child
798 -- unit, we must traverse the tree to retrieve the proper entity.
799
800 elsif Nkind (Related_Nod) = N_Function_Specification
801 and then Nkind (Parent (N)) /= N_Parameter_Specification
802 then
803 -- If the current scope is a protected type, the anonymous access
804 -- is associated with one of the protected operations, and must
805 -- be available in the scope that encloses the protected declaration.
806 -- Otherwise the type is in the scope enclosing the subprogram.
807
808 -- If the function has formals, The return type of a subprogram
809 -- declaration is analyzed in the scope of the subprogram (see
810 -- Process_Formals) and thus the protected type, if present, is
811 -- the scope of the current function scope.
812
813 if Ekind (Current_Scope) = E_Protected_Type then
814 Enclosing_Prot_Type := Current_Scope;
815
816 elsif Ekind (Current_Scope) = E_Function
817 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
818 then
819 Enclosing_Prot_Type := Scope (Current_Scope);
820 end if;
821
822 if Present (Enclosing_Prot_Type) then
823 Anon_Scope := Scope (Enclosing_Prot_Type);
824
825 else
826 Anon_Scope := Scope (Defining_Entity (Related_Nod));
827 end if;
828
829 -- For an access type definition, if the current scope is a child
830 -- unit it is the scope of the type.
831
832 elsif Is_Compilation_Unit (Current_Scope) then
833 Anon_Scope := Current_Scope;
834
835 -- For access formals, access components, and access discriminants, the
836 -- scope is that of the enclosing declaration,
837
838 else
839 Anon_Scope := Scope (Current_Scope);
840 end if;
841
842 Anon_Type :=
843 Create_Itype
844 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
845
846 if All_Present (N)
847 and then Ada_Version >= Ada_2005
848 then
849 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
850 end if;
851
852 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
853 -- the corresponding semantic routine
854
855 if Present (Access_To_Subprogram_Definition (N)) then
856
857 -- Compiler runtime units are compiled in Ada 2005 mode when building
858 -- the runtime library but must also be compilable in Ada 95 mode
859 -- (when bootstrapping the compiler).
860
861 Check_Compiler_Unit ("anonymous access to subprogram", N);
862
863 Access_Subprogram_Declaration
864 (T_Name => Anon_Type,
865 T_Def => Access_To_Subprogram_Definition (N));
866
867 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
868 Set_Ekind
869 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
870 else
871 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
872 end if;
873
874 Set_Can_Use_Internal_Rep
875 (Anon_Type, not Always_Compatible_Rep_On_Target);
876
877 -- If the anonymous access is associated with a protected operation,
878 -- create a reference to it after the enclosing protected definition
879 -- because the itype will be used in the subsequent bodies.
880
881 -- If the anonymous access itself is protected, a full type
882 -- declaratiton will be created for it, so that the equivalent
883 -- record type can be constructed. For further details, see
884 -- Replace_Anonymous_Access_To_Protected-Subprogram.
885
886 if Ekind (Current_Scope) = E_Protected_Type
887 and then not Protected_Present (Access_To_Subprogram_Definition (N))
888 then
889 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
890 end if;
891
892 return Anon_Type;
893 end if;
894
895 Find_Type (Subtype_Mark (N));
896 Desig_Type := Entity (Subtype_Mark (N));
897
898 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
899 Set_Etype (Anon_Type, Anon_Type);
900
901 -- Make sure the anonymous access type has size and alignment fields
902 -- set, as required by gigi. This is necessary in the case of the
903 -- Task_Body_Procedure.
904
905 if not Has_Private_Component (Desig_Type) then
906 Layout_Type (Anon_Type);
907 end if;
908
909 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
910 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
911 -- the null value is allowed. In Ada 95 the null value is never allowed.
912
913 if Ada_Version >= Ada_2005 then
914 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
915 else
916 Set_Can_Never_Be_Null (Anon_Type, True);
917 end if;
918
919 -- The anonymous access type is as public as the discriminated type or
920 -- subprogram that defines it. It is imported (for back-end purposes)
921 -- if the designated type is.
922
923 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
924
925 -- Ada 2005 (AI-231): Propagate the access-constant attribute
926
927 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
928
929 -- The context is either a subprogram declaration, object declaration,
930 -- or an access discriminant, in a private or a full type declaration.
931 -- In the case of a subprogram, if the designated type is incomplete,
932 -- the operation will be a primitive operation of the full type, to be
933 -- updated subsequently. If the type is imported through a limited_with
934 -- clause, the subprogram is not a primitive operation of the type
935 -- (which is declared elsewhere in some other scope).
936
937 if Ekind (Desig_Type) = E_Incomplete_Type
938 and then not From_Limited_With (Desig_Type)
939 and then Is_Overloadable (Current_Scope)
940 then
941 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
942 Set_Has_Delayed_Freeze (Current_Scope);
943 end if;
944
945 -- Ada 2005: If the designated type is an interface that may contain
946 -- tasks, create a Master entity for the declaration. This must be done
947 -- before expansion of the full declaration, because the declaration may
948 -- include an expression that is an allocator, whose expansion needs the
949 -- proper Master for the created tasks.
950
951 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
952 then
953 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
954 then
955 Build_Class_Wide_Master (Anon_Type);
956
957 -- Similarly, if the type is an anonymous access that designates
958 -- tasks, create a master entity for it in the current context.
959
960 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
961 then
962 Build_Master_Entity (Defining_Identifier (Related_Nod));
963 Build_Master_Renaming (Anon_Type);
964 end if;
965 end if;
966
967 -- For a private component of a protected type, it is imperative that
968 -- the back-end elaborate the type immediately after the protected
969 -- declaration, because this type will be used in the declarations
970 -- created for the component within each protected body, so we must
971 -- create an itype reference for it now.
972
973 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
974 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
975
976 -- Similarly, if the access definition is the return result of a
977 -- function, create an itype reference for it because it will be used
978 -- within the function body. For a regular function that is not a
979 -- compilation unit, insert reference after the declaration. For a
980 -- protected operation, insert it after the enclosing protected type
981 -- declaration. In either case, do not create a reference for a type
982 -- obtained through a limited_with clause, because this would introduce
983 -- semantic dependencies.
984
985 -- Similarly, do not create a reference if the designated type is a
986 -- generic formal, because no use of it will reach the backend.
987
988 elsif Nkind (Related_Nod) = N_Function_Specification
989 and then not From_Limited_With (Desig_Type)
990 and then not Is_Generic_Type (Desig_Type)
991 then
992 if Present (Enclosing_Prot_Type) then
993 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
994
995 elsif Is_List_Member (Parent (Related_Nod))
996 and then Nkind (Parent (N)) /= N_Parameter_Specification
997 then
998 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
999 end if;
1000
1001 -- Finally, create an itype reference for an object declaration of an
1002 -- anonymous access type. This is strictly necessary only for deferred
1003 -- constants, but in any case will avoid out-of-scope problems in the
1004 -- back-end.
1005
1006 elsif Nkind (Related_Nod) = N_Object_Declaration then
1007 Build_Itype_Reference (Anon_Type, Related_Nod);
1008 end if;
1009
1010 return Anon_Type;
1011 end Access_Definition;
1012
1013 -----------------------------------
1014 -- Access_Subprogram_Declaration --
1015 -----------------------------------
1016
1017 procedure Access_Subprogram_Declaration
1018 (T_Name : Entity_Id;
1019 T_Def : Node_Id)
1020 is
1021 procedure Check_For_Premature_Usage (Def : Node_Id);
1022 -- Check that type T_Name is not used, directly or recursively, as a
1023 -- parameter or a return type in Def. Def is either a subtype, an
1024 -- access_definition, or an access_to_subprogram_definition.
1025
1026 -------------------------------
1027 -- Check_For_Premature_Usage --
1028 -------------------------------
1029
1030 procedure Check_For_Premature_Usage (Def : Node_Id) is
1031 Param : Node_Id;
1032
1033 begin
1034 -- Check for a subtype mark
1035
1036 if Nkind (Def) in N_Has_Etype then
1037 if Etype (Def) = T_Name then
1038 Error_Msg_N
1039 ("type& cannot be used before end of its declaration", Def);
1040 end if;
1041
1042 -- If this is not a subtype, then this is an access_definition
1043
1044 elsif Nkind (Def) = N_Access_Definition then
1045 if Present (Access_To_Subprogram_Definition (Def)) then
1046 Check_For_Premature_Usage
1047 (Access_To_Subprogram_Definition (Def));
1048 else
1049 Check_For_Premature_Usage (Subtype_Mark (Def));
1050 end if;
1051
1052 -- The only cases left are N_Access_Function_Definition and
1053 -- N_Access_Procedure_Definition.
1054
1055 else
1056 if Present (Parameter_Specifications (Def)) then
1057 Param := First (Parameter_Specifications (Def));
1058 while Present (Param) loop
1059 Check_For_Premature_Usage (Parameter_Type (Param));
1060 Param := Next (Param);
1061 end loop;
1062 end if;
1063
1064 if Nkind (Def) = N_Access_Function_Definition then
1065 Check_For_Premature_Usage (Result_Definition (Def));
1066 end if;
1067 end if;
1068 end Check_For_Premature_Usage;
1069
1070 -- Local variables
1071
1072 Formals : constant List_Id := Parameter_Specifications (T_Def);
1073 Formal : Entity_Id;
1074 D_Ityp : Node_Id;
1075 Desig_Type : constant Entity_Id :=
1076 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1077
1078 -- Start of processing for Access_Subprogram_Declaration
1079
1080 begin
1081 Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1082
1083 -- Associate the Itype node with the inner full-type declaration or
1084 -- subprogram spec or entry body. This is required to handle nested
1085 -- anonymous declarations. For example:
1086
1087 -- procedure P
1088 -- (X : access procedure
1089 -- (Y : access procedure
1090 -- (Z : access T)))
1091
1092 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1093 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1094 N_Private_Type_Declaration,
1095 N_Private_Extension_Declaration,
1096 N_Procedure_Specification,
1097 N_Function_Specification,
1098 N_Entry_Body)
1099
1100 or else
1101 Nkind_In (D_Ityp, N_Object_Declaration,
1102 N_Object_Renaming_Declaration,
1103 N_Formal_Object_Declaration,
1104 N_Formal_Type_Declaration,
1105 N_Task_Type_Declaration,
1106 N_Protected_Type_Declaration))
1107 loop
1108 D_Ityp := Parent (D_Ityp);
1109 pragma Assert (D_Ityp /= Empty);
1110 end loop;
1111
1112 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1113
1114 if Nkind_In (D_Ityp, N_Procedure_Specification,
1115 N_Function_Specification)
1116 then
1117 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1118
1119 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1120 N_Object_Declaration,
1121 N_Object_Renaming_Declaration,
1122 N_Formal_Type_Declaration)
1123 then
1124 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1125 end if;
1126
1127 if Nkind (T_Def) = N_Access_Function_Definition then
1128 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1129 declare
1130 Acc : constant Node_Id := Result_Definition (T_Def);
1131
1132 begin
1133 if Present (Access_To_Subprogram_Definition (Acc))
1134 and then
1135 Protected_Present (Access_To_Subprogram_Definition (Acc))
1136 then
1137 Set_Etype
1138 (Desig_Type,
1139 Replace_Anonymous_Access_To_Protected_Subprogram
1140 (T_Def));
1141
1142 else
1143 Set_Etype
1144 (Desig_Type,
1145 Access_Definition (T_Def, Result_Definition (T_Def)));
1146 end if;
1147 end;
1148
1149 else
1150 Analyze (Result_Definition (T_Def));
1151
1152 declare
1153 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1154
1155 begin
1156 -- If a null exclusion is imposed on the result type, then
1157 -- create a null-excluding itype (an access subtype) and use
1158 -- it as the function's Etype.
1159
1160 if Is_Access_Type (Typ)
1161 and then Null_Exclusion_In_Return_Present (T_Def)
1162 then
1163 Set_Etype (Desig_Type,
1164 Create_Null_Excluding_Itype
1165 (T => Typ,
1166 Related_Nod => T_Def,
1167 Scope_Id => Current_Scope));
1168
1169 else
1170 if From_Limited_With (Typ) then
1171
1172 -- AI05-151: Incomplete types are allowed in all basic
1173 -- declarations, including access to subprograms.
1174
1175 if Ada_Version >= Ada_2012 then
1176 null;
1177
1178 else
1179 Error_Msg_NE
1180 ("illegal use of incomplete type&",
1181 Result_Definition (T_Def), Typ);
1182 end if;
1183
1184 elsif Ekind (Current_Scope) = E_Package
1185 and then In_Private_Part (Current_Scope)
1186 then
1187 if Ekind (Typ) = E_Incomplete_Type then
1188 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1189
1190 elsif Is_Class_Wide_Type (Typ)
1191 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1192 then
1193 Append_Elmt
1194 (Desig_Type, Private_Dependents (Etype (Typ)));
1195 end if;
1196 end if;
1197
1198 Set_Etype (Desig_Type, Typ);
1199 end if;
1200 end;
1201 end if;
1202
1203 if not (Is_Type (Etype (Desig_Type))) then
1204 Error_Msg_N
1205 ("expect type in function specification",
1206 Result_Definition (T_Def));
1207 end if;
1208
1209 else
1210 Set_Etype (Desig_Type, Standard_Void_Type);
1211 end if;
1212
1213 if Present (Formals) then
1214 Push_Scope (Desig_Type);
1215
1216 -- Some special tests here. These special tests can be removed
1217 -- if and when Itypes always have proper parent pointers to their
1218 -- declarations???
1219
1220 -- Special test 1) Link defining_identifier of formals. Required by
1221 -- First_Formal to provide its functionality.
1222
1223 declare
1224 F : Node_Id;
1225
1226 begin
1227 F := First (Formals);
1228
1229 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1230 -- when it is part of an unconstrained type and subtype expansion
1231 -- is disabled. To avoid back-end problems with shared profiles,
1232 -- use previous subprogram type as the designated type, and then
1233 -- remove scope added above.
1234
1235 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1236 then
1237 Set_Etype (T_Name, T_Name);
1238 Init_Size_Align (T_Name);
1239 Set_Directly_Designated_Type (T_Name,
1240 Scope (Defining_Identifier (F)));
1241 End_Scope;
1242 return;
1243 end if;
1244
1245 while Present (F) loop
1246 if No (Parent (Defining_Identifier (F))) then
1247 Set_Parent (Defining_Identifier (F), F);
1248 end if;
1249
1250 Next (F);
1251 end loop;
1252 end;
1253
1254 Process_Formals (Formals, Parent (T_Def));
1255
1256 -- Special test 2) End_Scope requires that the parent pointer be set
1257 -- to something reasonable, but Itypes don't have parent pointers. So
1258 -- we set it and then unset it ???
1259
1260 Set_Parent (Desig_Type, T_Name);
1261 End_Scope;
1262 Set_Parent (Desig_Type, Empty);
1263 end if;
1264
1265 -- Check for premature usage of the type being defined
1266
1267 Check_For_Premature_Usage (T_Def);
1268
1269 -- The return type and/or any parameter type may be incomplete. Mark the
1270 -- subprogram_type as depending on the incomplete type, so that it can
1271 -- be updated when the full type declaration is seen. This only applies
1272 -- to incomplete types declared in some enclosing scope, not to limited
1273 -- views from other packages.
1274
1275 -- Prior to Ada 2012, access to functions can only have in_parameters.
1276
1277 if Present (Formals) then
1278 Formal := First_Formal (Desig_Type);
1279 while Present (Formal) loop
1280 if Ekind (Formal) /= E_In_Parameter
1281 and then Nkind (T_Def) = N_Access_Function_Definition
1282 and then Ada_Version < Ada_2012
1283 then
1284 Error_Msg_N ("functions can only have IN parameters", Formal);
1285 end if;
1286
1287 if Ekind (Etype (Formal)) = E_Incomplete_Type
1288 and then In_Open_Scopes (Scope (Etype (Formal)))
1289 then
1290 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1291 Set_Has_Delayed_Freeze (Desig_Type);
1292 end if;
1293
1294 Next_Formal (Formal);
1295 end loop;
1296 end if;
1297
1298 -- Check whether an indirect call without actuals may be possible. This
1299 -- is used when resolving calls whose result is then indexed.
1300
1301 May_Need_Actuals (Desig_Type);
1302
1303 -- If the return type is incomplete, this is legal as long as the type
1304 -- is declared in the current scope and will be completed in it (rather
1305 -- than being part of limited view).
1306
1307 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1308 and then not Has_Delayed_Freeze (Desig_Type)
1309 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1310 then
1311 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1312 Set_Has_Delayed_Freeze (Desig_Type);
1313 end if;
1314
1315 Check_Delayed_Subprogram (Desig_Type);
1316
1317 if Protected_Present (T_Def) then
1318 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1319 Set_Convention (Desig_Type, Convention_Protected);
1320 else
1321 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1322 end if;
1323
1324 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1325
1326 Set_Etype (T_Name, T_Name);
1327 Init_Size_Align (T_Name);
1328 Set_Directly_Designated_Type (T_Name, Desig_Type);
1329
1330 Generate_Reference_To_Formals (T_Name);
1331
1332 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1333
1334 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1335
1336 Check_Restriction (No_Access_Subprograms, T_Def);
1337 end Access_Subprogram_Declaration;
1338
1339 ----------------------------
1340 -- Access_Type_Declaration --
1341 ----------------------------
1342
1343 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1344 P : constant Node_Id := Parent (Def);
1345 S : constant Node_Id := Subtype_Indication (Def);
1346
1347 Full_Desig : Entity_Id;
1348
1349 begin
1350 Check_SPARK_05_Restriction ("access type is not allowed", Def);
1351
1352 -- Check for permissible use of incomplete type
1353
1354 if Nkind (S) /= N_Subtype_Indication then
1355 Analyze (S);
1356
1357 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1358 Set_Directly_Designated_Type (T, Entity (S));
1359
1360 -- If the designated type is a limited view, we cannot tell if
1361 -- the full view contains tasks, and there is no way to handle
1362 -- that full view in a client. We create a master entity for the
1363 -- scope, which will be used when a client determines that one
1364 -- is needed.
1365
1366 if From_Limited_With (Entity (S))
1367 and then not Is_Class_Wide_Type (Entity (S))
1368 then
1369 Set_Ekind (T, E_Access_Type);
1370 Build_Master_Entity (T);
1371 Build_Master_Renaming (T);
1372 end if;
1373
1374 else
1375 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1376 end if;
1377
1378 -- If the access definition is of the form: ACCESS NOT NULL ..
1379 -- the subtype indication must be of an access type. Create
1380 -- a null-excluding subtype of it.
1381
1382 if Null_Excluding_Subtype (Def) then
1383 if not Is_Access_Type (Entity (S)) then
1384 Error_Msg_N ("null exclusion must apply to access type", Def);
1385
1386 else
1387 declare
1388 Loc : constant Source_Ptr := Sloc (S);
1389 Decl : Node_Id;
1390 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1391
1392 begin
1393 Decl :=
1394 Make_Subtype_Declaration (Loc,
1395 Defining_Identifier => Nam,
1396 Subtype_Indication =>
1397 New_Occurrence_Of (Entity (S), Loc));
1398 Set_Null_Exclusion_Present (Decl);
1399 Insert_Before (Parent (Def), Decl);
1400 Analyze (Decl);
1401 Set_Entity (S, Nam);
1402 end;
1403 end if;
1404 end if;
1405
1406 else
1407 Set_Directly_Designated_Type (T,
1408 Process_Subtype (S, P, T, 'P'));
1409 end if;
1410
1411 if All_Present (Def) or Constant_Present (Def) then
1412 Set_Ekind (T, E_General_Access_Type);
1413 else
1414 Set_Ekind (T, E_Access_Type);
1415 end if;
1416
1417 Full_Desig := Designated_Type (T);
1418
1419 if Base_Type (Full_Desig) = T then
1420 Error_Msg_N ("access type cannot designate itself", S);
1421
1422 -- In Ada 2005, the type may have a limited view through some unit in
1423 -- its own context, allowing the following circularity that cannot be
1424 -- detected earlier.
1425
1426 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1427 then
1428 Error_Msg_N
1429 ("access type cannot designate its own classwide type", S);
1430
1431 -- Clean up indication of tagged status to prevent cascaded errors
1432
1433 Set_Is_Tagged_Type (T, False);
1434 end if;
1435
1436 Set_Etype (T, T);
1437
1438 -- If the type has appeared already in a with_type clause, it is frozen
1439 -- and the pointer size is already set. Else, initialize.
1440
1441 if not From_Limited_With (T) then
1442 Init_Size_Align (T);
1443 end if;
1444
1445 -- Note that Has_Task is always false, since the access type itself
1446 -- is not a task type. See Einfo for more description on this point.
1447 -- Exactly the same consideration applies to Has_Controlled_Component
1448 -- and to Has_Protected.
1449
1450 Set_Has_Task (T, False);
1451 Set_Has_Controlled_Component (T, False);
1452 Set_Has_Protected (T, False);
1453
1454 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1455 -- problems where an incomplete view of this entity has been previously
1456 -- established by a limited with and an overlaid version of this field
1457 -- (Stored_Constraint) was initialized for the incomplete view.
1458
1459 -- This reset is performed in most cases except where the access type
1460 -- has been created for the purposes of allocating or deallocating a
1461 -- build-in-place object. Such access types have explicitly set pools
1462 -- and finalization masters.
1463
1464 if No (Associated_Storage_Pool (T)) then
1465 Set_Finalization_Master (T, Empty);
1466 end if;
1467
1468 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1469 -- attributes
1470
1471 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1472 Set_Is_Access_Constant (T, Constant_Present (Def));
1473 end Access_Type_Declaration;
1474
1475 ----------------------------------
1476 -- Add_Interface_Tag_Components --
1477 ----------------------------------
1478
1479 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1480 Loc : constant Source_Ptr := Sloc (N);
1481 L : List_Id;
1482 Last_Tag : Node_Id;
1483
1484 procedure Add_Tag (Iface : Entity_Id);
1485 -- Add tag for one of the progenitor interfaces
1486
1487 -------------
1488 -- Add_Tag --
1489 -------------
1490
1491 procedure Add_Tag (Iface : Entity_Id) is
1492 Decl : Node_Id;
1493 Def : Node_Id;
1494 Tag : Entity_Id;
1495 Offset : Entity_Id;
1496
1497 begin
1498 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1499
1500 -- This is a reasonable place to propagate predicates
1501
1502 if Has_Predicates (Iface) then
1503 Set_Has_Predicates (Typ);
1504 end if;
1505
1506 Def :=
1507 Make_Component_Definition (Loc,
1508 Aliased_Present => True,
1509 Subtype_Indication =>
1510 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1511
1512 Tag := Make_Temporary (Loc, 'V');
1513
1514 Decl :=
1515 Make_Component_Declaration (Loc,
1516 Defining_Identifier => Tag,
1517 Component_Definition => Def);
1518
1519 Analyze_Component_Declaration (Decl);
1520
1521 Set_Analyzed (Decl);
1522 Set_Ekind (Tag, E_Component);
1523 Set_Is_Tag (Tag);
1524 Set_Is_Aliased (Tag);
1525 Set_Related_Type (Tag, Iface);
1526 Init_Component_Location (Tag);
1527
1528 pragma Assert (Is_Frozen (Iface));
1529
1530 Set_DT_Entry_Count (Tag,
1531 DT_Entry_Count (First_Entity (Iface)));
1532
1533 if No (Last_Tag) then
1534 Prepend (Decl, L);
1535 else
1536 Insert_After (Last_Tag, Decl);
1537 end if;
1538
1539 Last_Tag := Decl;
1540
1541 -- If the ancestor has discriminants we need to give special support
1542 -- to store the offset_to_top value of the secondary dispatch tables.
1543 -- For this purpose we add a supplementary component just after the
1544 -- field that contains the tag associated with each secondary DT.
1545
1546 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1547 Def :=
1548 Make_Component_Definition (Loc,
1549 Subtype_Indication =>
1550 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1551
1552 Offset := Make_Temporary (Loc, 'V');
1553
1554 Decl :=
1555 Make_Component_Declaration (Loc,
1556 Defining_Identifier => Offset,
1557 Component_Definition => Def);
1558
1559 Analyze_Component_Declaration (Decl);
1560
1561 Set_Analyzed (Decl);
1562 Set_Ekind (Offset, E_Component);
1563 Set_Is_Aliased (Offset);
1564 Set_Related_Type (Offset, Iface);
1565 Init_Component_Location (Offset);
1566 Insert_After (Last_Tag, Decl);
1567 Last_Tag := Decl;
1568 end if;
1569 end Add_Tag;
1570
1571 -- Local variables
1572
1573 Elmt : Elmt_Id;
1574 Ext : Node_Id;
1575 Comp : Node_Id;
1576
1577 -- Start of processing for Add_Interface_Tag_Components
1578
1579 begin
1580 if not RTE_Available (RE_Interface_Tag) then
1581 Error_Msg
1582 ("(Ada 2005) interface types not supported by this run-time!",
1583 Sloc (N));
1584 return;
1585 end if;
1586
1587 if Ekind (Typ) /= E_Record_Type
1588 or else (Is_Concurrent_Record_Type (Typ)
1589 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1590 or else (not Is_Concurrent_Record_Type (Typ)
1591 and then No (Interfaces (Typ))
1592 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1593 then
1594 return;
1595 end if;
1596
1597 -- Find the current last tag
1598
1599 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1600 Ext := Record_Extension_Part (Type_Definition (N));
1601 else
1602 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1603 Ext := Type_Definition (N);
1604 end if;
1605
1606 Last_Tag := Empty;
1607
1608 if not (Present (Component_List (Ext))) then
1609 Set_Null_Present (Ext, False);
1610 L := New_List;
1611 Set_Component_List (Ext,
1612 Make_Component_List (Loc,
1613 Component_Items => L,
1614 Null_Present => False));
1615 else
1616 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1617 L := Component_Items
1618 (Component_List
1619 (Record_Extension_Part
1620 (Type_Definition (N))));
1621 else
1622 L := Component_Items
1623 (Component_List
1624 (Type_Definition (N)));
1625 end if;
1626
1627 -- Find the last tag component
1628
1629 Comp := First (L);
1630 while Present (Comp) loop
1631 if Nkind (Comp) = N_Component_Declaration
1632 and then Is_Tag (Defining_Identifier (Comp))
1633 then
1634 Last_Tag := Comp;
1635 end if;
1636
1637 Next (Comp);
1638 end loop;
1639 end if;
1640
1641 -- At this point L references the list of components and Last_Tag
1642 -- references the current last tag (if any). Now we add the tag
1643 -- corresponding with all the interfaces that are not implemented
1644 -- by the parent.
1645
1646 if Present (Interfaces (Typ)) then
1647 Elmt := First_Elmt (Interfaces (Typ));
1648 while Present (Elmt) loop
1649 Add_Tag (Node (Elmt));
1650 Next_Elmt (Elmt);
1651 end loop;
1652 end if;
1653 end Add_Interface_Tag_Components;
1654
1655 -------------------------------------
1656 -- Add_Internal_Interface_Entities --
1657 -------------------------------------
1658
1659 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1660 Elmt : Elmt_Id;
1661 Iface : Entity_Id;
1662 Iface_Elmt : Elmt_Id;
1663 Iface_Prim : Entity_Id;
1664 Ifaces_List : Elist_Id;
1665 New_Subp : Entity_Id := Empty;
1666 Prim : Entity_Id;
1667 Restore_Scope : Boolean := False;
1668
1669 begin
1670 pragma Assert (Ada_Version >= Ada_2005
1671 and then Is_Record_Type (Tagged_Type)
1672 and then Is_Tagged_Type (Tagged_Type)
1673 and then Has_Interfaces (Tagged_Type)
1674 and then not Is_Interface (Tagged_Type));
1675
1676 -- Ensure that the internal entities are added to the scope of the type
1677
1678 if Scope (Tagged_Type) /= Current_Scope then
1679 Push_Scope (Scope (Tagged_Type));
1680 Restore_Scope := True;
1681 end if;
1682
1683 Collect_Interfaces (Tagged_Type, Ifaces_List);
1684
1685 Iface_Elmt := First_Elmt (Ifaces_List);
1686 while Present (Iface_Elmt) loop
1687 Iface := Node (Iface_Elmt);
1688
1689 -- Originally we excluded here from this processing interfaces that
1690 -- are parents of Tagged_Type because their primitives are located
1691 -- in the primary dispatch table (and hence no auxiliary internal
1692 -- entities are required to handle secondary dispatch tables in such
1693 -- case). However, these auxiliary entities are also required to
1694 -- handle derivations of interfaces in formals of generics (see
1695 -- Derive_Subprograms).
1696
1697 Elmt := First_Elmt (Primitive_Operations (Iface));
1698 while Present (Elmt) loop
1699 Iface_Prim := Node (Elmt);
1700
1701 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1702 Prim :=
1703 Find_Primitive_Covering_Interface
1704 (Tagged_Type => Tagged_Type,
1705 Iface_Prim => Iface_Prim);
1706
1707 if No (Prim) and then Serious_Errors_Detected > 0 then
1708 goto Continue;
1709 end if;
1710
1711 pragma Assert (Present (Prim));
1712
1713 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1714 -- differs from the name of the interface primitive then it is
1715 -- a private primitive inherited from a parent type. In such
1716 -- case, given that Tagged_Type covers the interface, the
1717 -- inherited private primitive becomes visible. For such
1718 -- purpose we add a new entity that renames the inherited
1719 -- private primitive.
1720
1721 if Chars (Prim) /= Chars (Iface_Prim) then
1722 pragma Assert (Has_Suffix (Prim, 'P'));
1723 Derive_Subprogram
1724 (New_Subp => New_Subp,
1725 Parent_Subp => Iface_Prim,
1726 Derived_Type => Tagged_Type,
1727 Parent_Type => Iface);
1728 Set_Alias (New_Subp, Prim);
1729 Set_Is_Abstract_Subprogram
1730 (New_Subp, Is_Abstract_Subprogram (Prim));
1731 end if;
1732
1733 Derive_Subprogram
1734 (New_Subp => New_Subp,
1735 Parent_Subp => Iface_Prim,
1736 Derived_Type => Tagged_Type,
1737 Parent_Type => Iface);
1738
1739 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1740 -- associated with interface types. These entities are
1741 -- only registered in the list of primitives of its
1742 -- corresponding tagged type because they are only used
1743 -- to fill the contents of the secondary dispatch tables.
1744 -- Therefore they are removed from the homonym chains.
1745
1746 Set_Is_Hidden (New_Subp);
1747 Set_Is_Internal (New_Subp);
1748 Set_Alias (New_Subp, Prim);
1749 Set_Is_Abstract_Subprogram
1750 (New_Subp, Is_Abstract_Subprogram (Prim));
1751 Set_Interface_Alias (New_Subp, Iface_Prim);
1752
1753 -- If the returned type is an interface then propagate it to
1754 -- the returned type. Needed by the thunk to generate the code
1755 -- which displaces "this" to reference the corresponding
1756 -- secondary dispatch table in the returned object.
1757
1758 if Is_Interface (Etype (Iface_Prim)) then
1759 Set_Etype (New_Subp, Etype (Iface_Prim));
1760 end if;
1761
1762 -- Internal entities associated with interface types are
1763 -- only registered in the list of primitives of the tagged
1764 -- type. They are only used to fill the contents of the
1765 -- secondary dispatch tables. Therefore they are not needed
1766 -- in the homonym chains.
1767
1768 Remove_Homonym (New_Subp);
1769
1770 -- Hidden entities associated with interfaces must have set
1771 -- the Has_Delay_Freeze attribute to ensure that, in case of
1772 -- locally defined tagged types (or compiling with static
1773 -- dispatch tables generation disabled) the corresponding
1774 -- entry of the secondary dispatch table is filled when
1775 -- such an entity is frozen.
1776
1777 Set_Has_Delayed_Freeze (New_Subp);
1778 end if;
1779
1780 <<Continue>>
1781 Next_Elmt (Elmt);
1782 end loop;
1783
1784 Next_Elmt (Iface_Elmt);
1785 end loop;
1786
1787 if Restore_Scope then
1788 Pop_Scope;
1789 end if;
1790 end Add_Internal_Interface_Entities;
1791
1792 -----------------------------------
1793 -- Analyze_Component_Declaration --
1794 -----------------------------------
1795
1796 procedure Analyze_Component_Declaration (N : Node_Id) is
1797 Loc : constant Source_Ptr := Sloc (N);
1798 Id : constant Entity_Id := Defining_Identifier (N);
1799 E : constant Node_Id := Expression (N);
1800 Typ : constant Node_Id :=
1801 Subtype_Indication (Component_Definition (N));
1802 T : Entity_Id;
1803 P : Entity_Id;
1804
1805 function Contains_POC (Constr : Node_Id) return Boolean;
1806 -- Determines whether a constraint uses the discriminant of a record
1807 -- type thus becoming a per-object constraint (POC).
1808
1809 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1810 -- Typ is the type of the current component, check whether this type is
1811 -- a limited type. Used to validate declaration against that of
1812 -- enclosing record.
1813
1814 ------------------
1815 -- Contains_POC --
1816 ------------------
1817
1818 function Contains_POC (Constr : Node_Id) return Boolean is
1819 begin
1820 -- Prevent cascaded errors
1821
1822 if Error_Posted (Constr) then
1823 return False;
1824 end if;
1825
1826 case Nkind (Constr) is
1827 when N_Attribute_Reference =>
1828 return Attribute_Name (Constr) = Name_Access
1829 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1830
1831 when N_Discriminant_Association =>
1832 return Denotes_Discriminant (Expression (Constr));
1833
1834 when N_Identifier =>
1835 return Denotes_Discriminant (Constr);
1836
1837 when N_Index_Or_Discriminant_Constraint =>
1838 declare
1839 IDC : Node_Id;
1840
1841 begin
1842 IDC := First (Constraints (Constr));
1843 while Present (IDC) loop
1844
1845 -- One per-object constraint is sufficient
1846
1847 if Contains_POC (IDC) then
1848 return True;
1849 end if;
1850
1851 Next (IDC);
1852 end loop;
1853
1854 return False;
1855 end;
1856
1857 when N_Range =>
1858 return Denotes_Discriminant (Low_Bound (Constr))
1859 or else
1860 Denotes_Discriminant (High_Bound (Constr));
1861
1862 when N_Range_Constraint =>
1863 return Denotes_Discriminant (Range_Expression (Constr));
1864
1865 when others =>
1866 return False;
1867
1868 end case;
1869 end Contains_POC;
1870
1871 ----------------------
1872 -- Is_Known_Limited --
1873 ----------------------
1874
1875 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1876 P : constant Entity_Id := Etype (Typ);
1877 R : constant Entity_Id := Root_Type (Typ);
1878
1879 begin
1880 if Is_Limited_Record (Typ) then
1881 return True;
1882
1883 -- If the root type is limited (and not a limited interface)
1884 -- so is the current type
1885
1886 elsif Is_Limited_Record (R)
1887 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1888 then
1889 return True;
1890
1891 -- Else the type may have a limited interface progenitor, but a
1892 -- limited record parent.
1893
1894 elsif R /= P and then Is_Limited_Record (P) then
1895 return True;
1896
1897 else
1898 return False;
1899 end if;
1900 end Is_Known_Limited;
1901
1902 -- Start of processing for Analyze_Component_Declaration
1903
1904 begin
1905 Generate_Definition (Id);
1906 Enter_Name (Id);
1907
1908 if Present (Typ) then
1909 T := Find_Type_Of_Object
1910 (Subtype_Indication (Component_Definition (N)), N);
1911
1912 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1913 Check_SPARK_05_Restriction ("subtype mark required", Typ);
1914 end if;
1915
1916 -- Ada 2005 (AI-230): Access Definition case
1917
1918 else
1919 pragma Assert (Present
1920 (Access_Definition (Component_Definition (N))));
1921
1922 T := Access_Definition
1923 (Related_Nod => N,
1924 N => Access_Definition (Component_Definition (N)));
1925 Set_Is_Local_Anonymous_Access (T);
1926
1927 -- Ada 2005 (AI-254)
1928
1929 if Present (Access_To_Subprogram_Definition
1930 (Access_Definition (Component_Definition (N))))
1931 and then Protected_Present (Access_To_Subprogram_Definition
1932 (Access_Definition
1933 (Component_Definition (N))))
1934 then
1935 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1936 end if;
1937 end if;
1938
1939 -- If the subtype is a constrained subtype of the enclosing record,
1940 -- (which must have a partial view) the back-end does not properly
1941 -- handle the recursion. Rewrite the component declaration with an
1942 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1943 -- the tree directly because side effects have already been removed from
1944 -- discriminant constraints.
1945
1946 if Ekind (T) = E_Access_Subtype
1947 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1948 and then Comes_From_Source (T)
1949 and then Nkind (Parent (T)) = N_Subtype_Declaration
1950 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1951 then
1952 Rewrite
1953 (Subtype_Indication (Component_Definition (N)),
1954 New_Copy_Tree (Subtype_Indication (Parent (T))));
1955 T := Find_Type_Of_Object
1956 (Subtype_Indication (Component_Definition (N)), N);
1957 end if;
1958
1959 -- If the component declaration includes a default expression, then we
1960 -- check that the component is not of a limited type (RM 3.7(5)),
1961 -- and do the special preanalysis of the expression (see section on
1962 -- "Handling of Default and Per-Object Expressions" in the spec of
1963 -- package Sem).
1964
1965 if Present (E) then
1966 Check_SPARK_05_Restriction ("default expression is not allowed", E);
1967 Preanalyze_Default_Expression (E, T);
1968 Check_Initialization (T, E);
1969
1970 if Ada_Version >= Ada_2005
1971 and then Ekind (T) = E_Anonymous_Access_Type
1972 and then Etype (E) /= Any_Type
1973 then
1974 -- Check RM 3.9.2(9): "if the expected type for an expression is
1975 -- an anonymous access-to-specific tagged type, then the object
1976 -- designated by the expression shall not be dynamically tagged
1977 -- unless it is a controlling operand in a call on a dispatching
1978 -- operation"
1979
1980 if Is_Tagged_Type (Directly_Designated_Type (T))
1981 and then
1982 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1983 and then
1984 Ekind (Directly_Designated_Type (Etype (E))) =
1985 E_Class_Wide_Type
1986 then
1987 Error_Msg_N
1988 ("access to specific tagged type required (RM 3.9.2(9))", E);
1989 end if;
1990
1991 -- (Ada 2005: AI-230): Accessibility check for anonymous
1992 -- components
1993
1994 if Type_Access_Level (Etype (E)) >
1995 Deepest_Type_Access_Level (T)
1996 then
1997 Error_Msg_N
1998 ("expression has deeper access level than component " &
1999 "(RM 3.10.2 (12.2))", E);
2000 end if;
2001
2002 -- The initialization expression is a reference to an access
2003 -- discriminant. The type of the discriminant is always deeper
2004 -- than any access type.
2005
2006 if Ekind (Etype (E)) = E_Anonymous_Access_Type
2007 and then Is_Entity_Name (E)
2008 and then Ekind (Entity (E)) = E_In_Parameter
2009 and then Present (Discriminal_Link (Entity (E)))
2010 then
2011 Error_Msg_N
2012 ("discriminant has deeper accessibility level than target",
2013 E);
2014 end if;
2015 end if;
2016 end if;
2017
2018 -- The parent type may be a private view with unknown discriminants,
2019 -- and thus unconstrained. Regular components must be constrained.
2020
2021 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
2022 if Is_Class_Wide_Type (T) then
2023 Error_Msg_N
2024 ("class-wide subtype with unknown discriminants" &
2025 " in component declaration",
2026 Subtype_Indication (Component_Definition (N)));
2027 else
2028 Error_Msg_N
2029 ("unconstrained subtype in component declaration",
2030 Subtype_Indication (Component_Definition (N)));
2031 end if;
2032
2033 -- Components cannot be abstract, except for the special case of
2034 -- the _Parent field (case of extending an abstract tagged type)
2035
2036 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2037 Error_Msg_N ("type of a component cannot be abstract", N);
2038 end if;
2039
2040 Set_Etype (Id, T);
2041 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2042
2043 -- The component declaration may have a per-object constraint, set
2044 -- the appropriate flag in the defining identifier of the subtype.
2045
2046 if Present (Subtype_Indication (Component_Definition (N))) then
2047 declare
2048 Sindic : constant Node_Id :=
2049 Subtype_Indication (Component_Definition (N));
2050 begin
2051 if Nkind (Sindic) = N_Subtype_Indication
2052 and then Present (Constraint (Sindic))
2053 and then Contains_POC (Constraint (Sindic))
2054 then
2055 Set_Has_Per_Object_Constraint (Id);
2056 end if;
2057 end;
2058 end if;
2059
2060 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2061 -- out some static checks.
2062
2063 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2064 Null_Exclusion_Static_Checks (N);
2065 end if;
2066
2067 -- If this component is private (or depends on a private type), flag the
2068 -- record type to indicate that some operations are not available.
2069
2070 P := Private_Component (T);
2071
2072 if Present (P) then
2073
2074 -- Check for circular definitions
2075
2076 if P = Any_Type then
2077 Set_Etype (Id, Any_Type);
2078
2079 -- There is a gap in the visibility of operations only if the
2080 -- component type is not defined in the scope of the record type.
2081
2082 elsif Scope (P) = Scope (Current_Scope) then
2083 null;
2084
2085 elsif Is_Limited_Type (P) then
2086 Set_Is_Limited_Composite (Current_Scope);
2087
2088 else
2089 Set_Is_Private_Composite (Current_Scope);
2090 end if;
2091 end if;
2092
2093 if P /= Any_Type
2094 and then Is_Limited_Type (T)
2095 and then Chars (Id) /= Name_uParent
2096 and then Is_Tagged_Type (Current_Scope)
2097 then
2098 if Is_Derived_Type (Current_Scope)
2099 and then not Is_Known_Limited (Current_Scope)
2100 then
2101 Error_Msg_N
2102 ("extension of nonlimited type cannot have limited components",
2103 N);
2104
2105 if Is_Interface (Root_Type (Current_Scope)) then
2106 Error_Msg_N
2107 ("\limitedness is not inherited from limited interface", N);
2108 Error_Msg_N ("\add LIMITED to type indication", N);
2109 end if;
2110
2111 Explain_Limited_Type (T, N);
2112 Set_Etype (Id, Any_Type);
2113 Set_Is_Limited_Composite (Current_Scope, False);
2114
2115 elsif not Is_Derived_Type (Current_Scope)
2116 and then not Is_Limited_Record (Current_Scope)
2117 and then not Is_Concurrent_Type (Current_Scope)
2118 then
2119 Error_Msg_N
2120 ("nonlimited tagged type cannot have limited components", N);
2121 Explain_Limited_Type (T, N);
2122 Set_Etype (Id, Any_Type);
2123 Set_Is_Limited_Composite (Current_Scope, False);
2124 end if;
2125 end if;
2126
2127 -- If the component is an unconstrained task or protected type with
2128 -- discriminants, the component and the enclosing record are limited
2129 -- and the component is constrained by its default values. Compute
2130 -- its actual subtype, else it may be allocated the maximum size by
2131 -- the backend, and possibly overflow.
2132
2133 if Is_Concurrent_Type (T)
2134 and then not Is_Constrained (T)
2135 and then Has_Discriminants (T)
2136 and then not Has_Discriminants (Current_Scope)
2137 then
2138 declare
2139 Act_T : constant Entity_Id := Build_Default_Subtype (T, N);
2140 begin
2141 Set_Etype (Id, Act_T);
2142 Set_Component_Definition (N,
2143 Make_Component_Definition (Loc,
2144 Subtype_Indication => New_Occurrence_Of (Act_T, Loc)));
2145 end;
2146 end if;
2147
2148 Set_Original_Record_Component (Id, Id);
2149
2150 if Has_Aspects (N) then
2151 Analyze_Aspect_Specifications (N, Id);
2152 end if;
2153
2154 Analyze_Dimension (N);
2155 end Analyze_Component_Declaration;
2156
2157 --------------------------
2158 -- Analyze_Declarations --
2159 --------------------------
2160
2161 procedure Analyze_Declarations (L : List_Id) is
2162 Decl : Node_Id;
2163
2164 procedure Adjust_Decl;
2165 -- Adjust Decl not to include implicit label declarations, since these
2166 -- have strange Sloc values that result in elaboration check problems.
2167 -- (They have the sloc of the label as found in the source, and that
2168 -- is ahead of the current declarative part).
2169
2170 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2171 -- Determine whether Body_Decl denotes the body of a late controlled
2172 -- primitive (either Initialize, Adjust or Finalize). If this is the
2173 -- case, add a proper spec if the body lacks one. The spec is inserted
2174 -- before Body_Decl and immedately analyzed.
2175
2176 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2177 -- Spec_Id is the entity of a package that may define abstract states.
2178 -- If the states have visible refinement, remove the visibility of each
2179 -- constituent at the end of the package body declarations.
2180
2181 -----------------
2182 -- Adjust_Decl --
2183 -----------------
2184
2185 procedure Adjust_Decl is
2186 begin
2187 while Present (Prev (Decl))
2188 and then Nkind (Decl) = N_Implicit_Label_Declaration
2189 loop
2190 Prev (Decl);
2191 end loop;
2192 end Adjust_Decl;
2193
2194 --------------------------------------
2195 -- Handle_Late_Controlled_Primitive --
2196 --------------------------------------
2197
2198 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2199 Body_Spec : constant Node_Id := Specification (Body_Decl);
2200 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2201 Loc : constant Source_Ptr := Sloc (Body_Id);
2202 Params : constant List_Id :=
2203 Parameter_Specifications (Body_Spec);
2204 Spec : Node_Id;
2205 Spec_Id : Entity_Id;
2206 Typ : Node_Id;
2207
2208 begin
2209 -- Consider only procedure bodies whose name matches one of the three
2210 -- controlled primitives.
2211
2212 if Nkind (Body_Spec) /= N_Procedure_Specification
2213 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2214 Name_Finalize,
2215 Name_Initialize)
2216 then
2217 return;
2218
2219 -- A controlled primitive must have exactly one formal which is not
2220 -- an anonymous access type.
2221
2222 elsif List_Length (Params) /= 1 then
2223 return;
2224 end if;
2225
2226 Typ := Parameter_Type (First (Params));
2227
2228 if Nkind (Typ) = N_Access_Definition then
2229 return;
2230 end if;
2231
2232 Find_Type (Typ);
2233
2234 -- The type of the formal must be derived from [Limited_]Controlled
2235
2236 if not Is_Controlled (Entity (Typ)) then
2237 return;
2238 end if;
2239
2240 -- Check whether a specification exists for this body. We do not
2241 -- analyze the spec of the body in full, because it will be analyzed
2242 -- again when the body is properly analyzed, and we cannot create
2243 -- duplicate entries in the formals chain. We look for an explicit
2244 -- specification because the body may be an overriding operation and
2245 -- an inherited spec may be present.
2246
2247 Spec_Id := Current_Entity (Body_Id);
2248
2249 while Present (Spec_Id) loop
2250 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure)
2251 and then Scope (Spec_Id) = Current_Scope
2252 and then Present (First_Formal (Spec_Id))
2253 and then No (Next_Formal (First_Formal (Spec_Id)))
2254 and then Etype (First_Formal (Spec_Id)) = Entity (Typ)
2255 and then Comes_From_Source (Spec_Id)
2256 then
2257 return;
2258 end if;
2259
2260 Spec_Id := Homonym (Spec_Id);
2261 end loop;
2262
2263 -- At this point the body is known to be a late controlled primitive.
2264 -- Generate a matching spec and insert it before the body. Note the
2265 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2266 -- tree in this case.
2267
2268 Spec := Copy_Separate_Tree (Body_Spec);
2269
2270 -- Ensure that the subprogram declaration does not inherit the null
2271 -- indicator from the body as we now have a proper spec/body pair.
2272
2273 Set_Null_Present (Spec, False);
2274
2275 Insert_Before_And_Analyze (Body_Decl,
2276 Make_Subprogram_Declaration (Loc, Specification => Spec));
2277 end Handle_Late_Controlled_Primitive;
2278
2279 --------------------------------
2280 -- Remove_Visible_Refinements --
2281 --------------------------------
2282
2283 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2284 State_Elmt : Elmt_Id;
2285 begin
2286 if Present (Abstract_States (Spec_Id)) then
2287 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2288 while Present (State_Elmt) loop
2289 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2290 Next_Elmt (State_Elmt);
2291 end loop;
2292 end if;
2293 end Remove_Visible_Refinements;
2294
2295 -- Local variables
2296
2297 Context : Node_Id;
2298 Freeze_From : Entity_Id := Empty;
2299 Next_Decl : Node_Id;
2300 Spec_Id : Entity_Id;
2301
2302 Body_Seen : Boolean := False;
2303 -- Flag set when the first body [stub] is encountered
2304
2305 In_Package_Body : Boolean := False;
2306 -- Flag set when the current declaration list belongs to a package body
2307
2308 -- Start of processing for Analyze_Declarations
2309
2310 begin
2311 if Restriction_Check_Required (SPARK_05) then
2312 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2313 end if;
2314
2315 Decl := First (L);
2316 while Present (Decl) loop
2317
2318 -- Package spec cannot contain a package declaration in SPARK
2319
2320 if Nkind (Decl) = N_Package_Declaration
2321 and then Nkind (Parent (L)) = N_Package_Specification
2322 then
2323 Check_SPARK_05_Restriction
2324 ("package specification cannot contain a package declaration",
2325 Decl);
2326 end if;
2327
2328 -- Complete analysis of declaration
2329
2330 Analyze (Decl);
2331 Next_Decl := Next (Decl);
2332
2333 if No (Freeze_From) then
2334 Freeze_From := First_Entity (Current_Scope);
2335 end if;
2336
2337 -- At the end of a declarative part, freeze remaining entities
2338 -- declared in it. The end of the visible declarations of package
2339 -- specification is not the end of a declarative part if private
2340 -- declarations are present. The end of a package declaration is a
2341 -- freezing point only if it a library package. A task definition or
2342 -- protected type definition is not a freeze point either. Finally,
2343 -- we do not freeze entities in generic scopes, because there is no
2344 -- code generated for them and freeze nodes will be generated for
2345 -- the instance.
2346
2347 -- The end of a package instantiation is not a freeze point, but
2348 -- for now we make it one, because the generic body is inserted
2349 -- (currently) immediately after. Generic instantiations will not
2350 -- be a freeze point once delayed freezing of bodies is implemented.
2351 -- (This is needed in any case for early instantiations ???).
2352
2353 if No (Next_Decl) then
2354 if Nkind_In (Parent (L), N_Component_List,
2355 N_Task_Definition,
2356 N_Protected_Definition)
2357 then
2358 null;
2359
2360 elsif Nkind (Parent (L)) /= N_Package_Specification then
2361 if Nkind (Parent (L)) = N_Package_Body then
2362 Freeze_From := First_Entity (Current_Scope);
2363 end if;
2364
2365 -- There may have been several freezing points previously,
2366 -- for example object declarations or subprogram bodies, but
2367 -- at the end of a declarative part we check freezing from
2368 -- the beginning, even though entities may already be frozen,
2369 -- in order to perform visibility checks on delayed aspects.
2370
2371 Adjust_Decl;
2372 Freeze_All (First_Entity (Current_Scope), Decl);
2373 Freeze_From := Last_Entity (Current_Scope);
2374
2375 elsif Scope (Current_Scope) /= Standard_Standard
2376 and then not Is_Child_Unit (Current_Scope)
2377 and then No (Generic_Parent (Parent (L)))
2378 then
2379 null;
2380
2381 elsif L /= Visible_Declarations (Parent (L))
2382 or else No (Private_Declarations (Parent (L)))
2383 or else Is_Empty_List (Private_Declarations (Parent (L)))
2384 then
2385 Adjust_Decl;
2386 Freeze_All (First_Entity (Current_Scope), Decl);
2387 Freeze_From := Last_Entity (Current_Scope);
2388 end if;
2389
2390 -- If next node is a body then freeze all types before the body.
2391 -- An exception occurs for some expander-generated bodies. If these
2392 -- are generated at places where in general language rules would not
2393 -- allow a freeze point, then we assume that the expander has
2394 -- explicitly checked that all required types are properly frozen,
2395 -- and we do not cause general freezing here. This special circuit
2396 -- is used when the encountered body is marked as having already
2397 -- been analyzed.
2398
2399 -- In all other cases (bodies that come from source, and expander
2400 -- generated bodies that have not been analyzed yet), freeze all
2401 -- types now. Note that in the latter case, the expander must take
2402 -- care to attach the bodies at a proper place in the tree so as to
2403 -- not cause unwanted freezing at that point.
2404
2405 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl) then
2406
2407 -- When a controlled type is frozen, the expander generates stream
2408 -- and controlled type support routines. If the freeze is caused
2409 -- by the stand alone body of Initialize, Adjust and Finalize, the
2410 -- expander will end up using the wrong version of these routines
2411 -- as the body has not been processed yet. To remedy this, detect
2412 -- a late controlled primitive and create a proper spec for it.
2413 -- This ensures that the primitive will override its inherited
2414 -- counterpart before the freeze takes place.
2415
2416 -- If the declaration we just processed is a body, do not attempt
2417 -- to examine Next_Decl as the late primitive idiom can only apply
2418 -- to the first encountered body.
2419
2420 -- The spec of the late primitive is not generated in ASIS mode to
2421 -- ensure a consistent list of primitives that indicates the true
2422 -- semantic structure of the program (which is not relevant when
2423 -- generating executable code.
2424
2425 -- ??? a cleaner approach may be possible and/or this solution
2426 -- could be extended to general-purpose late primitives, TBD.
2427
2428 if not ASIS_Mode and then not Body_Seen and then not Is_Body (Decl)
2429 then
2430 Body_Seen := True;
2431
2432 if Nkind (Next_Decl) = N_Subprogram_Body then
2433 Handle_Late_Controlled_Primitive (Next_Decl);
2434 end if;
2435 end if;
2436
2437 Adjust_Decl;
2438 Freeze_All (Freeze_From, Decl);
2439 Freeze_From := Last_Entity (Current_Scope);
2440 end if;
2441
2442 Decl := Next_Decl;
2443 end loop;
2444
2445 -- Analyze the contracts of packages and their bodies
2446
2447 if Present (L) then
2448 Context := Parent (L);
2449
2450 if Nkind (Context) = N_Package_Specification then
2451
2452 -- When a package has private declarations, its contract must be
2453 -- analyzed at the end of the said declarations. This way both the
2454 -- analysis and freeze actions are properly synchronized in case
2455 -- of private type use within the contract.
2456
2457 if L = Private_Declarations (Context) then
2458 Analyze_Package_Contract (Defining_Entity (Context));
2459
2460 -- Build the bodies of the default initial condition procedures
2461 -- for all types subject to pragma Default_Initial_Condition.
2462 -- From a purely Ada stand point, this is a freezing activity,
2463 -- however freezing is not available under GNATprove_Mode. To
2464 -- accomodate both scenarios, the bodies are build at the end
2465 -- of private declaration analysis.
2466
2467 Build_Default_Init_Cond_Procedure_Bodies (L);
2468
2469 -- Otherwise the contract is analyzed at the end of the visible
2470 -- declarations.
2471
2472 elsif L = Visible_Declarations (Context)
2473 and then No (Private_Declarations (Context))
2474 then
2475 Analyze_Package_Contract (Defining_Entity (Context));
2476 end if;
2477
2478 elsif Nkind (Context) = N_Package_Body then
2479 In_Package_Body := True;
2480 Spec_Id := Corresponding_Spec (Context);
2481
2482 Analyze_Package_Body_Contract (Defining_Entity (Context));
2483 end if;
2484 end if;
2485
2486 -- Analyze the contracts of subprogram declarations, subprogram bodies
2487 -- and variables now due to the delayed visibility requirements of their
2488 -- aspects.
2489
2490 Decl := First (L);
2491 while Present (Decl) loop
2492 if Nkind (Decl) = N_Object_Declaration then
2493 Analyze_Object_Contract (Defining_Entity (Decl));
2494
2495 elsif Nkind_In (Decl, N_Abstract_Subprogram_Declaration,
2496 N_Generic_Subprogram_Declaration,
2497 N_Subprogram_Declaration)
2498 then
2499 Analyze_Subprogram_Contract (Defining_Entity (Decl));
2500
2501 elsif Nkind (Decl) = N_Subprogram_Body then
2502 Analyze_Subprogram_Body_Contract (Defining_Entity (Decl));
2503
2504 elsif Nkind (Decl) = N_Subprogram_Body_Stub then
2505 Analyze_Subprogram_Body_Stub_Contract (Defining_Entity (Decl));
2506 end if;
2507
2508 Next (Decl);
2509 end loop;
2510
2511 -- State refinements are visible upto the end the of the package body
2512 -- declarations. Hide the refinements from visibility to restore the
2513 -- original state conditions.
2514
2515 if In_Package_Body then
2516 Remove_Visible_Refinements (Spec_Id);
2517 end if;
2518 end Analyze_Declarations;
2519
2520 -----------------------------------
2521 -- Analyze_Full_Type_Declaration --
2522 -----------------------------------
2523
2524 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2525 Def : constant Node_Id := Type_Definition (N);
2526 Def_Id : constant Entity_Id := Defining_Identifier (N);
2527 T : Entity_Id;
2528 Prev : Entity_Id;
2529
2530 Is_Remote : constant Boolean :=
2531 (Is_Remote_Types (Current_Scope)
2532 or else Is_Remote_Call_Interface (Current_Scope))
2533 and then not (In_Private_Part (Current_Scope)
2534 or else In_Package_Body (Current_Scope));
2535
2536 procedure Check_Ops_From_Incomplete_Type;
2537 -- If there is a tagged incomplete partial view of the type, traverse
2538 -- the primitives of the incomplete view and change the type of any
2539 -- controlling formals and result to indicate the full view. The
2540 -- primitives will be added to the full type's primitive operations
2541 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2542 -- is called from Process_Incomplete_Dependents).
2543
2544 ------------------------------------
2545 -- Check_Ops_From_Incomplete_Type --
2546 ------------------------------------
2547
2548 procedure Check_Ops_From_Incomplete_Type is
2549 Elmt : Elmt_Id;
2550 Formal : Entity_Id;
2551 Op : Entity_Id;
2552
2553 begin
2554 if Prev /= T
2555 and then Ekind (Prev) = E_Incomplete_Type
2556 and then Is_Tagged_Type (Prev)
2557 and then Is_Tagged_Type (T)
2558 then
2559 Elmt := First_Elmt (Primitive_Operations (Prev));
2560 while Present (Elmt) loop
2561 Op := Node (Elmt);
2562
2563 Formal := First_Formal (Op);
2564 while Present (Formal) loop
2565 if Etype (Formal) = Prev then
2566 Set_Etype (Formal, T);
2567 end if;
2568
2569 Next_Formal (Formal);
2570 end loop;
2571
2572 if Etype (Op) = Prev then
2573 Set_Etype (Op, T);
2574 end if;
2575
2576 Next_Elmt (Elmt);
2577 end loop;
2578 end if;
2579 end Check_Ops_From_Incomplete_Type;
2580
2581 -- Start of processing for Analyze_Full_Type_Declaration
2582
2583 begin
2584 Prev := Find_Type_Name (N);
2585
2586 -- The type declaration may be subject to pragma Ghost with policy
2587 -- Ignore. Set the mode now to ensure that any nodes generated during
2588 -- analysis and expansion are properly flagged as ignored Ghost.
2589
2590 Set_Ghost_Mode (N, Prev);
2591
2592 -- The full view, if present, now points to the current type. If there
2593 -- is an incomplete partial view, set a link to it, to simplify the
2594 -- retrieval of primitive operations of the type.
2595
2596 -- Ada 2005 (AI-50217): If the type was previously decorated when
2597 -- imported through a LIMITED WITH clause, it appears as incomplete
2598 -- but has no full view.
2599
2600 if Ekind (Prev) = E_Incomplete_Type
2601 and then Present (Full_View (Prev))
2602 then
2603 T := Full_View (Prev);
2604 Set_Incomplete_View (N, Parent (Prev));
2605 else
2606 T := Prev;
2607 end if;
2608
2609 Set_Is_Pure (T, Is_Pure (Current_Scope));
2610
2611 -- We set the flag Is_First_Subtype here. It is needed to set the
2612 -- corresponding flag for the Implicit class-wide-type created
2613 -- during tagged types processing.
2614
2615 Set_Is_First_Subtype (T, True);
2616
2617 -- Only composite types other than array types are allowed to have
2618 -- discriminants.
2619
2620 case Nkind (Def) is
2621
2622 -- For derived types, the rule will be checked once we've figured
2623 -- out the parent type.
2624
2625 when N_Derived_Type_Definition =>
2626 null;
2627
2628 -- For record types, discriminants are allowed, unless we are in
2629 -- SPARK.
2630
2631 when N_Record_Definition =>
2632 if Present (Discriminant_Specifications (N)) then
2633 Check_SPARK_05_Restriction
2634 ("discriminant type is not allowed",
2635 Defining_Identifier
2636 (First (Discriminant_Specifications (N))));
2637 end if;
2638
2639 when others =>
2640 if Present (Discriminant_Specifications (N)) then
2641 Error_Msg_N
2642 ("elementary or array type cannot have discriminants",
2643 Defining_Identifier
2644 (First (Discriminant_Specifications (N))));
2645 end if;
2646 end case;
2647
2648 -- Elaborate the type definition according to kind, and generate
2649 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2650 -- already done (this happens during the reanalysis that follows a call
2651 -- to the high level optimizer).
2652
2653 if not Analyzed (T) then
2654 Set_Analyzed (T);
2655
2656 case Nkind (Def) is
2657 when N_Access_To_Subprogram_Definition =>
2658 Access_Subprogram_Declaration (T, Def);
2659
2660 -- If this is a remote access to subprogram, we must create the
2661 -- equivalent fat pointer type, and related subprograms.
2662
2663 if Is_Remote then
2664 Process_Remote_AST_Declaration (N);
2665 end if;
2666
2667 -- Validate categorization rule against access type declaration
2668 -- usually a violation in Pure unit, Shared_Passive unit.
2669
2670 Validate_Access_Type_Declaration (T, N);
2671
2672 when N_Access_To_Object_Definition =>
2673 Access_Type_Declaration (T, Def);
2674
2675 -- Validate categorization rule against access type declaration
2676 -- usually a violation in Pure unit, Shared_Passive unit.
2677
2678 Validate_Access_Type_Declaration (T, N);
2679
2680 -- If we are in a Remote_Call_Interface package and define a
2681 -- RACW, then calling stubs and specific stream attributes
2682 -- must be added.
2683
2684 if Is_Remote
2685 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2686 then
2687 Add_RACW_Features (Def_Id);
2688 end if;
2689
2690 when N_Array_Type_Definition =>
2691 Array_Type_Declaration (T, Def);
2692
2693 when N_Derived_Type_Definition =>
2694 Derived_Type_Declaration (T, N, T /= Def_Id);
2695
2696 when N_Enumeration_Type_Definition =>
2697 Enumeration_Type_Declaration (T, Def);
2698
2699 when N_Floating_Point_Definition =>
2700 Floating_Point_Type_Declaration (T, Def);
2701
2702 when N_Decimal_Fixed_Point_Definition =>
2703 Decimal_Fixed_Point_Type_Declaration (T, Def);
2704
2705 when N_Ordinary_Fixed_Point_Definition =>
2706 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2707
2708 when N_Signed_Integer_Type_Definition =>
2709 Signed_Integer_Type_Declaration (T, Def);
2710
2711 when N_Modular_Type_Definition =>
2712 Modular_Type_Declaration (T, Def);
2713
2714 when N_Record_Definition =>
2715 Record_Type_Declaration (T, N, Prev);
2716
2717 -- If declaration has a parse error, nothing to elaborate.
2718
2719 when N_Error =>
2720 null;
2721
2722 when others =>
2723 raise Program_Error;
2724
2725 end case;
2726 end if;
2727
2728 if Etype (T) = Any_Type then
2729 return;
2730 end if;
2731
2732 -- Controlled type is not allowed in SPARK
2733
2734 if Is_Visibly_Controlled (T) then
2735 Check_SPARK_05_Restriction ("controlled type is not allowed", N);
2736 end if;
2737
2738 -- A type declared within a Ghost region is automatically Ghost
2739 -- (SPARK RM 6.9(2)).
2740
2741 if Comes_From_Source (T) and then Ghost_Mode > None then
2742 Set_Is_Ghost_Entity (T);
2743 end if;
2744
2745 -- Some common processing for all types
2746
2747 Set_Depends_On_Private (T, Has_Private_Component (T));
2748 Check_Ops_From_Incomplete_Type;
2749
2750 -- Both the declared entity, and its anonymous base type if one was
2751 -- created, need freeze nodes allocated.
2752
2753 declare
2754 B : constant Entity_Id := Base_Type (T);
2755
2756 begin
2757 -- In the case where the base type differs from the first subtype, we
2758 -- pre-allocate a freeze node, and set the proper link to the first
2759 -- subtype. Freeze_Entity will use this preallocated freeze node when
2760 -- it freezes the entity.
2761
2762 -- This does not apply if the base type is a generic type, whose
2763 -- declaration is independent of the current derived definition.
2764
2765 if B /= T and then not Is_Generic_Type (B) then
2766 Ensure_Freeze_Node (B);
2767 Set_First_Subtype_Link (Freeze_Node (B), T);
2768 end if;
2769
2770 -- A type that is imported through a limited_with clause cannot
2771 -- generate any code, and thus need not be frozen. However, an access
2772 -- type with an imported designated type needs a finalization list,
2773 -- which may be referenced in some other package that has non-limited
2774 -- visibility on the designated type. Thus we must create the
2775 -- finalization list at the point the access type is frozen, to
2776 -- prevent unsatisfied references at link time.
2777
2778 if not From_Limited_With (T) or else Is_Access_Type (T) then
2779 Set_Has_Delayed_Freeze (T);
2780 end if;
2781 end;
2782
2783 -- Case where T is the full declaration of some private type which has
2784 -- been swapped in Defining_Identifier (N).
2785
2786 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2787 Process_Full_View (N, T, Def_Id);
2788
2789 -- Record the reference. The form of this is a little strange, since
2790 -- the full declaration has been swapped in. So the first parameter
2791 -- here represents the entity to which a reference is made which is
2792 -- the "real" entity, i.e. the one swapped in, and the second
2793 -- parameter provides the reference location.
2794
2795 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2796 -- since we don't want a complaint about the full type being an
2797 -- unwanted reference to the private type
2798
2799 declare
2800 B : constant Boolean := Has_Pragma_Unreferenced (T);
2801 begin
2802 Set_Has_Pragma_Unreferenced (T, False);
2803 Generate_Reference (T, T, 'c');
2804 Set_Has_Pragma_Unreferenced (T, B);
2805 end;
2806
2807 Set_Completion_Referenced (Def_Id);
2808
2809 -- For completion of incomplete type, process incomplete dependents
2810 -- and always mark the full type as referenced (it is the incomplete
2811 -- type that we get for any real reference).
2812
2813 elsif Ekind (Prev) = E_Incomplete_Type then
2814 Process_Incomplete_Dependents (N, T, Prev);
2815 Generate_Reference (Prev, Def_Id, 'c');
2816 Set_Completion_Referenced (Def_Id);
2817
2818 -- If not private type or incomplete type completion, this is a real
2819 -- definition of a new entity, so record it.
2820
2821 else
2822 Generate_Definition (Def_Id);
2823 end if;
2824
2825 -- Propagate any pending access types whose finalization masters need to
2826 -- be fully initialized from the partial to the full view. Guard against
2827 -- an illegal full view that remains unanalyzed.
2828
2829 if Is_Type (Def_Id) and then Is_Incomplete_Or_Private_Type (Prev) then
2830 Set_Pending_Access_Types (Def_Id, Pending_Access_Types (Prev));
2831 end if;
2832
2833 if Chars (Scope (Def_Id)) = Name_System
2834 and then Chars (Def_Id) = Name_Address
2835 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
2836 then
2837 Set_Is_Descendent_Of_Address (Def_Id);
2838 Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
2839 Set_Is_Descendent_Of_Address (Prev);
2840 end if;
2841
2842 Set_Optimize_Alignment_Flags (Def_Id);
2843 Check_Eliminated (Def_Id);
2844
2845 -- If the declaration is a completion and aspects are present, apply
2846 -- them to the entity for the type which is currently the partial
2847 -- view, but which is the one that will be frozen.
2848
2849 if Has_Aspects (N) then
2850
2851 -- In most cases the partial view is a private type, and both views
2852 -- appear in different declarative parts. In the unusual case where
2853 -- the partial view is incomplete, perform the analysis on the
2854 -- full view, to prevent freezing anomalies with the corresponding
2855 -- class-wide type, which otherwise might be frozen before the
2856 -- dispatch table is built.
2857
2858 if Prev /= Def_Id
2859 and then Ekind (Prev) /= E_Incomplete_Type
2860 then
2861 Analyze_Aspect_Specifications (N, Prev);
2862
2863 -- Normal case
2864
2865 else
2866 Analyze_Aspect_Specifications (N, Def_Id);
2867 end if;
2868 end if;
2869 end Analyze_Full_Type_Declaration;
2870
2871 ----------------------------------
2872 -- Analyze_Incomplete_Type_Decl --
2873 ----------------------------------
2874
2875 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
2876 F : constant Boolean := Is_Pure (Current_Scope);
2877 T : Entity_Id;
2878
2879 begin
2880 Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
2881
2882 Generate_Definition (Defining_Identifier (N));
2883
2884 -- Process an incomplete declaration. The identifier must not have been
2885 -- declared already in the scope. However, an incomplete declaration may
2886 -- appear in the private part of a package, for a private type that has
2887 -- already been declared.
2888
2889 -- In this case, the discriminants (if any) must match
2890
2891 T := Find_Type_Name (N);
2892
2893 Set_Ekind (T, E_Incomplete_Type);
2894 Init_Size_Align (T);
2895 Set_Is_First_Subtype (T, True);
2896 Set_Etype (T, T);
2897
2898 -- An incomplete type declared within a Ghost region is automatically
2899 -- Ghost (SPARK RM 6.9(2)).
2900
2901 if Ghost_Mode > None then
2902 Set_Is_Ghost_Entity (T);
2903 end if;
2904
2905 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2906 -- incomplete types.
2907
2908 if Tagged_Present (N) then
2909 Set_Is_Tagged_Type (T, True);
2910 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
2911 Make_Class_Wide_Type (T);
2912 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2913 end if;
2914
2915 Push_Scope (T);
2916
2917 Set_Stored_Constraint (T, No_Elist);
2918
2919 if Present (Discriminant_Specifications (N)) then
2920 Process_Discriminants (N);
2921 end if;
2922
2923 End_Scope;
2924
2925 -- If the type has discriminants, non-trivial subtypes may be
2926 -- declared before the full view of the type. The full views of those
2927 -- subtypes will be built after the full view of the type.
2928
2929 Set_Private_Dependents (T, New_Elmt_List);
2930 Set_Is_Pure (T, F);
2931 end Analyze_Incomplete_Type_Decl;
2932
2933 -----------------------------------
2934 -- Analyze_Interface_Declaration --
2935 -----------------------------------
2936
2937 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
2938 CW : constant Entity_Id := Class_Wide_Type (T);
2939
2940 begin
2941 Set_Is_Tagged_Type (T);
2942 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
2943
2944 Set_Is_Limited_Record (T, Limited_Present (Def)
2945 or else Task_Present (Def)
2946 or else Protected_Present (Def)
2947 or else Synchronized_Present (Def));
2948
2949 -- Type is abstract if full declaration carries keyword, or if previous
2950 -- partial view did.
2951
2952 Set_Is_Abstract_Type (T);
2953 Set_Is_Interface (T);
2954
2955 -- Type is a limited interface if it includes the keyword limited, task,
2956 -- protected, or synchronized.
2957
2958 Set_Is_Limited_Interface
2959 (T, Limited_Present (Def)
2960 or else Protected_Present (Def)
2961 or else Synchronized_Present (Def)
2962 or else Task_Present (Def));
2963
2964 Set_Interfaces (T, New_Elmt_List);
2965 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2966
2967 -- Complete the decoration of the class-wide entity if it was already
2968 -- built (i.e. during the creation of the limited view)
2969
2970 if Present (CW) then
2971 Set_Is_Interface (CW);
2972 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
2973 end if;
2974
2975 -- Check runtime support for synchronized interfaces
2976
2977 if VM_Target = No_VM
2978 and then (Is_Task_Interface (T)
2979 or else Is_Protected_Interface (T)
2980 or else Is_Synchronized_Interface (T))
2981 and then not RTE_Available (RE_Select_Specific_Data)
2982 then
2983 Error_Msg_CRT ("synchronized interfaces", T);
2984 end if;
2985 end Analyze_Interface_Declaration;
2986
2987 -----------------------------
2988 -- Analyze_Itype_Reference --
2989 -----------------------------
2990
2991 -- Nothing to do. This node is placed in the tree only for the benefit of
2992 -- back end processing, and has no effect on the semantic processing.
2993
2994 procedure Analyze_Itype_Reference (N : Node_Id) is
2995 begin
2996 pragma Assert (Is_Itype (Itype (N)));
2997 null;
2998 end Analyze_Itype_Reference;
2999
3000 --------------------------------
3001 -- Analyze_Number_Declaration --
3002 --------------------------------
3003
3004 procedure Analyze_Number_Declaration (N : Node_Id) is
3005 Id : constant Entity_Id := Defining_Identifier (N);
3006 E : constant Node_Id := Expression (N);
3007 T : Entity_Id;
3008 Index : Interp_Index;
3009 It : Interp;
3010
3011 begin
3012 -- The number declaration may be subject to pragma Ghost with policy
3013 -- Ignore. Set the mode now to ensure that any nodes generated during
3014 -- analysis and expansion are properly flagged as ignored Ghost.
3015
3016 Set_Ghost_Mode (N);
3017
3018 Generate_Definition (Id);
3019 Enter_Name (Id);
3020
3021 -- A number declared within a Ghost region is automatically Ghost
3022 -- (SPARK RM 6.9(2)).
3023
3024 if Ghost_Mode > None then
3025 Set_Is_Ghost_Entity (Id);
3026 end if;
3027
3028 -- This is an optimization of a common case of an integer literal
3029
3030 if Nkind (E) = N_Integer_Literal then
3031 Set_Is_Static_Expression (E, True);
3032 Set_Etype (E, Universal_Integer);
3033
3034 Set_Etype (Id, Universal_Integer);
3035 Set_Ekind (Id, E_Named_Integer);
3036 Set_Is_Frozen (Id, True);
3037 return;
3038 end if;
3039
3040 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3041
3042 -- Process expression, replacing error by integer zero, to avoid
3043 -- cascaded errors or aborts further along in the processing
3044
3045 -- Replace Error by integer zero, which seems least likely to cause
3046 -- cascaded errors.
3047
3048 if E = Error then
3049 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
3050 Set_Error_Posted (E);
3051 end if;
3052
3053 Analyze (E);
3054
3055 -- Verify that the expression is static and numeric. If
3056 -- the expression is overloaded, we apply the preference
3057 -- rule that favors root numeric types.
3058
3059 if not Is_Overloaded (E) then
3060 T := Etype (E);
3061 if Has_Dynamic_Predicate_Aspect (T) then
3062 Error_Msg_N
3063 ("subtype has dynamic predicate, "
3064 & "not allowed in number declaration", N);
3065 end if;
3066
3067 else
3068 T := Any_Type;
3069
3070 Get_First_Interp (E, Index, It);
3071 while Present (It.Typ) loop
3072 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
3073 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
3074 then
3075 if T = Any_Type then
3076 T := It.Typ;
3077
3078 elsif It.Typ = Universal_Real
3079 or else
3080 It.Typ = Universal_Integer
3081 then
3082 -- Choose universal interpretation over any other
3083
3084 T := It.Typ;
3085 exit;
3086 end if;
3087 end if;
3088
3089 Get_Next_Interp (Index, It);
3090 end loop;
3091 end if;
3092
3093 if Is_Integer_Type (T) then
3094 Resolve (E, T);
3095 Set_Etype (Id, Universal_Integer);
3096 Set_Ekind (Id, E_Named_Integer);
3097
3098 elsif Is_Real_Type (T) then
3099
3100 -- Because the real value is converted to universal_real, this is a
3101 -- legal context for a universal fixed expression.
3102
3103 if T = Universal_Fixed then
3104 declare
3105 Loc : constant Source_Ptr := Sloc (N);
3106 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3107 Subtype_Mark =>
3108 New_Occurrence_Of (Universal_Real, Loc),
3109 Expression => Relocate_Node (E));
3110
3111 begin
3112 Rewrite (E, Conv);
3113 Analyze (E);
3114 end;
3115
3116 elsif T = Any_Fixed then
3117 Error_Msg_N ("illegal context for mixed mode operation", E);
3118
3119 -- Expression is of the form : universal_fixed * integer. Try to
3120 -- resolve as universal_real.
3121
3122 T := Universal_Real;
3123 Set_Etype (E, T);
3124 end if;
3125
3126 Resolve (E, T);
3127 Set_Etype (Id, Universal_Real);
3128 Set_Ekind (Id, E_Named_Real);
3129
3130 else
3131 Wrong_Type (E, Any_Numeric);
3132 Resolve (E, T);
3133
3134 Set_Etype (Id, T);
3135 Set_Ekind (Id, E_Constant);
3136 Set_Never_Set_In_Source (Id, True);
3137 Set_Is_True_Constant (Id, True);
3138 return;
3139 end if;
3140
3141 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3142 Set_Etype (E, Etype (Id));
3143 end if;
3144
3145 if not Is_OK_Static_Expression (E) then
3146 Flag_Non_Static_Expr
3147 ("non-static expression used in number declaration!", E);
3148 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3149 Set_Etype (E, Any_Type);
3150 end if;
3151 end Analyze_Number_Declaration;
3152
3153 -----------------------------
3154 -- Analyze_Object_Contract --
3155 -----------------------------
3156
3157 procedure Analyze_Object_Contract (Obj_Id : Entity_Id) is
3158 Obj_Typ : constant Entity_Id := Etype (Obj_Id);
3159 AR_Val : Boolean := False;
3160 AW_Val : Boolean := False;
3161 ER_Val : Boolean := False;
3162 EW_Val : Boolean := False;
3163 Prag : Node_Id;
3164 Seen : Boolean := False;
3165
3166 begin
3167 -- The loop parameter in an element iterator over a formal container
3168 -- is declared with an object declaration but no contracts apply.
3169
3170 if Ekind (Obj_Id) = E_Loop_Parameter then
3171 return;
3172 end if;
3173
3174 if Ekind (Obj_Id) = E_Constant then
3175
3176 -- A constant cannot be effectively volatile. This check is only
3177 -- relevant with SPARK_Mode on as it is not a standard Ada legality
3178 -- rule. Do not flag internally-generated constants that map generic
3179 -- formals to actuals in instantiations (SPARK RM 7.1.3(6)).
3180
3181 if SPARK_Mode = On
3182 and then Is_Effectively_Volatile (Obj_Id)
3183 and then No (Corresponding_Generic_Association (Parent (Obj_Id)))
3184
3185 -- Don't give this for internally generated entities (such as the
3186 -- FIRST and LAST temporaries generated for bounds).
3187
3188 and then Comes_From_Source (Obj_Id)
3189 then
3190 Error_Msg_N ("constant cannot be volatile", Obj_Id);
3191 end if;
3192
3193 else pragma Assert (Ekind (Obj_Id) = E_Variable);
3194
3195 -- The following checks are only relevant when SPARK_Mode is on as
3196 -- they are not standard Ada legality rules. Internally generated
3197 -- temporaries are ignored.
3198
3199 if SPARK_Mode = On and then Comes_From_Source (Obj_Id) then
3200 if Is_Effectively_Volatile (Obj_Id) then
3201
3202 -- The declaration of an effectively volatile object must
3203 -- appear at the library level (SPARK RM 7.1.3(7), C.6(6)).
3204
3205 if not Is_Library_Level_Entity (Obj_Id) then
3206 Error_Msg_N
3207 ("volatile variable & must be declared at library level",
3208 Obj_Id);
3209
3210 -- An object of a discriminated type cannot be effectively
3211 -- volatile (SPARK RM C.6(4)).
3212
3213 elsif Has_Discriminants (Obj_Typ) then
3214 Error_Msg_N
3215 ("discriminated object & cannot be volatile", Obj_Id);
3216
3217 -- An object of a tagged type cannot be effectively volatile
3218 -- (SPARK RM C.6(5)).
3219
3220 elsif Is_Tagged_Type (Obj_Typ) then
3221 Error_Msg_N ("tagged object & cannot be volatile", Obj_Id);
3222 end if;
3223
3224 -- The object is not effectively volatile
3225
3226 else
3227 -- A non-effectively volatile object cannot have effectively
3228 -- volatile components (SPARK RM 7.1.3(7)).
3229
3230 if not Is_Effectively_Volatile (Obj_Id)
3231 and then Has_Volatile_Component (Obj_Typ)
3232 then
3233 Error_Msg_N
3234 ("non-volatile object & cannot have volatile components",
3235 Obj_Id);
3236 end if;
3237 end if;
3238 end if;
3239
3240 if Is_Ghost_Entity (Obj_Id) then
3241
3242 -- A Ghost object cannot be effectively volatile (SPARK RM 6.9(8))
3243
3244 if Is_Effectively_Volatile (Obj_Id) then
3245 Error_Msg_N ("ghost variable & cannot be volatile", Obj_Id);
3246
3247 -- A Ghost object cannot be imported or exported (SPARK RM 6.9(8))
3248
3249 elsif Is_Imported (Obj_Id) then
3250 Error_Msg_N ("ghost object & cannot be imported", Obj_Id);
3251
3252 elsif Is_Exported (Obj_Id) then
3253 Error_Msg_N ("ghost object & cannot be exported", Obj_Id);
3254 end if;
3255 end if;
3256
3257 -- Analyze all external properties
3258
3259 Prag := Get_Pragma (Obj_Id, Pragma_Async_Readers);
3260
3261 if Present (Prag) then
3262 Analyze_External_Property_In_Decl_Part (Prag, AR_Val);
3263 Seen := True;
3264 end if;
3265
3266 Prag := Get_Pragma (Obj_Id, Pragma_Async_Writers);
3267
3268 if Present (Prag) then
3269 Analyze_External_Property_In_Decl_Part (Prag, AW_Val);
3270 Seen := True;
3271 end if;
3272
3273 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Reads);
3274
3275 if Present (Prag) then
3276 Analyze_External_Property_In_Decl_Part (Prag, ER_Val);
3277 Seen := True;
3278 end if;
3279
3280 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Writes);
3281
3282 if Present (Prag) then
3283 Analyze_External_Property_In_Decl_Part (Prag, EW_Val);
3284 Seen := True;
3285 end if;
3286
3287 -- Verify the mutual interaction of the various external properties
3288
3289 if Seen then
3290 Check_External_Properties (Obj_Id, AR_Val, AW_Val, ER_Val, EW_Val);
3291 end if;
3292
3293 -- Check whether the lack of indicator Part_Of agrees with the
3294 -- placement of the variable with respect to the state space.
3295
3296 Prag := Get_Pragma (Obj_Id, Pragma_Part_Of);
3297
3298 if No (Prag) then
3299 Check_Missing_Part_Of (Obj_Id);
3300 end if;
3301 end if;
3302
3303 -- A ghost object cannot be imported or exported (SPARK RM 6.9(8))
3304
3305 if Is_Ghost_Entity (Obj_Id) then
3306 if Is_Exported (Obj_Id) then
3307 Error_Msg_N ("ghost object & cannot be exported", Obj_Id);
3308
3309 elsif Is_Imported (Obj_Id) then
3310 Error_Msg_N ("ghost object & cannot be imported", Obj_Id);
3311 end if;
3312 end if;
3313 end Analyze_Object_Contract;
3314
3315 --------------------------------
3316 -- Analyze_Object_Declaration --
3317 --------------------------------
3318
3319 procedure Analyze_Object_Declaration (N : Node_Id) is
3320 Loc : constant Source_Ptr := Sloc (N);
3321 Id : constant Entity_Id := Defining_Identifier (N);
3322 T : Entity_Id;
3323 Act_T : Entity_Id;
3324
3325 E : Node_Id := Expression (N);
3326 -- E is set to Expression (N) throughout this routine. When
3327 -- Expression (N) is modified, E is changed accordingly.
3328
3329 Prev_Entity : Entity_Id := Empty;
3330
3331 function Count_Tasks (T : Entity_Id) return Uint;
3332 -- This function is called when a non-generic library level object of a
3333 -- task type is declared. Its function is to count the static number of
3334 -- tasks declared within the type (it is only called if Has_Tasks is set
3335 -- for T). As a side effect, if an array of tasks with non-static bounds
3336 -- or a variant record type is encountered, Check_Restrictions is called
3337 -- indicating the count is unknown.
3338
3339 function Delayed_Aspect_Present return Boolean;
3340 -- If the declaration has an expression that is an aggregate, and it
3341 -- has aspects that require delayed analysis, the resolution of the
3342 -- aggregate must be deferred to the freeze point of the objet. This
3343 -- special processing was created for address clauses, but it must
3344 -- also apply to Alignment. This must be done before the aspect
3345 -- specifications are analyzed because we must handle the aggregate
3346 -- before the analysis of the object declaration is complete.
3347
3348 -- Any other relevant delayed aspects on object declarations ???
3349
3350 -----------------
3351 -- Count_Tasks --
3352 -----------------
3353
3354 function Count_Tasks (T : Entity_Id) return Uint is
3355 C : Entity_Id;
3356 X : Node_Id;
3357 V : Uint;
3358
3359 begin
3360 if Is_Task_Type (T) then
3361 return Uint_1;
3362
3363 elsif Is_Record_Type (T) then
3364 if Has_Discriminants (T) then
3365 Check_Restriction (Max_Tasks, N);
3366 return Uint_0;
3367
3368 else
3369 V := Uint_0;
3370 C := First_Component (T);
3371 while Present (C) loop
3372 V := V + Count_Tasks (Etype (C));
3373 Next_Component (C);
3374 end loop;
3375
3376 return V;
3377 end if;
3378
3379 elsif Is_Array_Type (T) then
3380 X := First_Index (T);
3381 V := Count_Tasks (Component_Type (T));
3382 while Present (X) loop
3383 C := Etype (X);
3384
3385 if not Is_OK_Static_Subtype (C) then
3386 Check_Restriction (Max_Tasks, N);
3387 return Uint_0;
3388 else
3389 V := V * (UI_Max (Uint_0,
3390 Expr_Value (Type_High_Bound (C)) -
3391 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3392 end if;
3393
3394 Next_Index (X);
3395 end loop;
3396
3397 return V;
3398
3399 else
3400 return Uint_0;
3401 end if;
3402 end Count_Tasks;
3403
3404 ----------------------------
3405 -- Delayed_Aspect_Present --
3406 ----------------------------
3407
3408 function Delayed_Aspect_Present return Boolean is
3409 A : Node_Id;
3410 A_Id : Aspect_Id;
3411
3412 begin
3413 if Present (Aspect_Specifications (N)) then
3414 A := First (Aspect_Specifications (N));
3415 A_Id := Get_Aspect_Id (Chars (Identifier (A)));
3416 while Present (A) loop
3417 if A_Id = Aspect_Alignment or else A_Id = Aspect_Address then
3418 return True;
3419 end if;
3420
3421 Next (A);
3422 end loop;
3423 end if;
3424
3425 return False;
3426 end Delayed_Aspect_Present;
3427
3428 -- Start of processing for Analyze_Object_Declaration
3429
3430 begin
3431 -- There are three kinds of implicit types generated by an
3432 -- object declaration:
3433
3434 -- 1. Those generated by the original Object Definition
3435
3436 -- 2. Those generated by the Expression
3437
3438 -- 3. Those used to constrain the Object Definition with the
3439 -- expression constraints when the definition is unconstrained.
3440
3441 -- They must be generated in this order to avoid order of elaboration
3442 -- issues. Thus the first step (after entering the name) is to analyze
3443 -- the object definition.
3444
3445 if Constant_Present (N) then
3446 Prev_Entity := Current_Entity_In_Scope (Id);
3447
3448 if Present (Prev_Entity)
3449 and then
3450 -- If the homograph is an implicit subprogram, it is overridden
3451 -- by the current declaration.
3452
3453 ((Is_Overloadable (Prev_Entity)
3454 and then Is_Inherited_Operation (Prev_Entity))
3455
3456 -- The current object is a discriminal generated for an entry
3457 -- family index. Even though the index is a constant, in this
3458 -- particular context there is no true constant redeclaration.
3459 -- Enter_Name will handle the visibility.
3460
3461 or else
3462 (Is_Discriminal (Id)
3463 and then Ekind (Discriminal_Link (Id)) =
3464 E_Entry_Index_Parameter)
3465
3466 -- The current object is the renaming for a generic declared
3467 -- within the instance.
3468
3469 or else
3470 (Ekind (Prev_Entity) = E_Package
3471 and then Nkind (Parent (Prev_Entity)) =
3472 N_Package_Renaming_Declaration
3473 and then not Comes_From_Source (Prev_Entity)
3474 and then
3475 Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
3476 then
3477 Prev_Entity := Empty;
3478 end if;
3479 end if;
3480
3481 -- The object declaration may be subject to pragma Ghost with policy
3482 -- Ignore. Set the mode now to ensure that any nodes generated during
3483 -- analysis and expansion are properly flagged as ignored Ghost.
3484
3485 Set_Ghost_Mode (N, Prev_Entity);
3486
3487 if Present (Prev_Entity) then
3488 Constant_Redeclaration (Id, N, T);
3489
3490 Generate_Reference (Prev_Entity, Id, 'c');
3491 Set_Completion_Referenced (Id);
3492
3493 if Error_Posted (N) then
3494
3495 -- Type mismatch or illegal redeclaration, Do not analyze
3496 -- expression to avoid cascaded errors.
3497
3498 T := Find_Type_Of_Object (Object_Definition (N), N);
3499 Set_Etype (Id, T);
3500 Set_Ekind (Id, E_Variable);
3501 goto Leave;
3502 end if;
3503
3504 -- In the normal case, enter identifier at the start to catch premature
3505 -- usage in the initialization expression.
3506
3507 else
3508 Generate_Definition (Id);
3509 Enter_Name (Id);
3510
3511 Mark_Coextensions (N, Object_Definition (N));
3512
3513 T := Find_Type_Of_Object (Object_Definition (N), N);
3514
3515 if Nkind (Object_Definition (N)) = N_Access_Definition
3516 and then Present
3517 (Access_To_Subprogram_Definition (Object_Definition (N)))
3518 and then Protected_Present
3519 (Access_To_Subprogram_Definition (Object_Definition (N)))
3520 then
3521 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3522 end if;
3523
3524 if Error_Posted (Id) then
3525 Set_Etype (Id, T);
3526 Set_Ekind (Id, E_Variable);
3527 goto Leave;
3528 end if;
3529 end if;
3530
3531 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3532 -- out some static checks
3533
3534 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
3535
3536 -- In case of aggregates we must also take care of the correct
3537 -- initialization of nested aggregates bug this is done at the
3538 -- point of the analysis of the aggregate (see sem_aggr.adb).
3539
3540 if Present (Expression (N))
3541 and then Nkind (Expression (N)) = N_Aggregate
3542 then
3543 null;
3544
3545 else
3546 declare
3547 Save_Typ : constant Entity_Id := Etype (Id);
3548 begin
3549 Set_Etype (Id, T); -- Temp. decoration for static checks
3550 Null_Exclusion_Static_Checks (N);
3551 Set_Etype (Id, Save_Typ);
3552 end;
3553 end if;
3554 end if;
3555
3556 -- Object is marked pure if it is in a pure scope
3557
3558 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3559
3560 -- If deferred constant, make sure context is appropriate. We detect
3561 -- a deferred constant as a constant declaration with no expression.
3562 -- A deferred constant can appear in a package body if its completion
3563 -- is by means of an interface pragma.
3564
3565 if Constant_Present (N) and then No (E) then
3566
3567 -- A deferred constant may appear in the declarative part of the
3568 -- following constructs:
3569
3570 -- blocks
3571 -- entry bodies
3572 -- extended return statements
3573 -- package specs
3574 -- package bodies
3575 -- subprogram bodies
3576 -- task bodies
3577
3578 -- When declared inside a package spec, a deferred constant must be
3579 -- completed by a full constant declaration or pragma Import. In all
3580 -- other cases, the only proper completion is pragma Import. Extended
3581 -- return statements are flagged as invalid contexts because they do
3582 -- not have a declarative part and so cannot accommodate the pragma.
3583
3584 if Ekind (Current_Scope) = E_Return_Statement then
3585 Error_Msg_N
3586 ("invalid context for deferred constant declaration (RM 7.4)",
3587 N);
3588 Error_Msg_N
3589 ("\declaration requires an initialization expression",
3590 N);
3591 Set_Constant_Present (N, False);
3592
3593 -- In Ada 83, deferred constant must be of private type
3594
3595 elsif not Is_Private_Type (T) then
3596 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3597 Error_Msg_N
3598 ("(Ada 83) deferred constant must be private type", N);
3599 end if;
3600 end if;
3601
3602 -- If not a deferred constant, then the object declaration freezes
3603 -- its type, unless the object is of an anonymous type and has delayed
3604 -- aspects. In that case the type is frozen when the object itself is.
3605
3606 else
3607 Check_Fully_Declared (T, N);
3608
3609 if Has_Delayed_Aspects (Id)
3610 and then Is_Array_Type (T)
3611 and then Is_Itype (T)
3612 then
3613 Set_Has_Delayed_Freeze (T);
3614 else
3615 Freeze_Before (N, T);
3616 end if;
3617 end if;
3618
3619 -- If the object was created by a constrained array definition, then
3620 -- set the link in both the anonymous base type and anonymous subtype
3621 -- that are built to represent the array type to point to the object.
3622
3623 if Nkind (Object_Definition (Declaration_Node (Id))) =
3624 N_Constrained_Array_Definition
3625 then
3626 Set_Related_Array_Object (T, Id);
3627 Set_Related_Array_Object (Base_Type (T), Id);
3628 end if;
3629
3630 -- Special checks for protected objects not at library level
3631
3632 if Is_Protected_Type (T)
3633 and then not Is_Library_Level_Entity (Id)
3634 then
3635 Check_Restriction (No_Local_Protected_Objects, Id);
3636
3637 -- Protected objects with interrupt handlers must be at library level
3638
3639 -- Ada 2005: This test is not needed (and the corresponding clause
3640 -- in the RM is removed) because accessibility checks are sufficient
3641 -- to make handlers not at the library level illegal.
3642
3643 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3644 -- applies to the '95 version of the language as well.
3645
3646 if Has_Interrupt_Handler (T) and then Ada_Version < Ada_95 then
3647 Error_Msg_N
3648 ("interrupt object can only be declared at library level", Id);
3649 end if;
3650 end if;
3651
3652 -- The actual subtype of the object is the nominal subtype, unless
3653 -- the nominal one is unconstrained and obtained from the expression.
3654
3655 Act_T := T;
3656
3657 -- These checks should be performed before the initialization expression
3658 -- is considered, so that the Object_Definition node is still the same
3659 -- as in source code.
3660
3661 -- In SPARK, the nominal subtype is always given by a subtype mark
3662 -- and must not be unconstrained. (The only exception to this is the
3663 -- acceptance of declarations of constants of type String.)
3664
3665 if not Nkind_In (Object_Definition (N), N_Expanded_Name, N_Identifier)
3666 then
3667 Check_SPARK_05_Restriction
3668 ("subtype mark required", Object_Definition (N));
3669
3670 elsif Is_Array_Type (T)
3671 and then not Is_Constrained (T)
3672 and then T /= Standard_String
3673 then
3674 Check_SPARK_05_Restriction
3675 ("subtype mark of constrained type expected",
3676 Object_Definition (N));
3677 end if;
3678
3679 -- There are no aliased objects in SPARK
3680
3681 if Aliased_Present (N) then
3682 Check_SPARK_05_Restriction ("aliased object is not allowed", N);
3683 end if;
3684
3685 -- Process initialization expression if present and not in error
3686
3687 if Present (E) and then E /= Error then
3688
3689 -- Generate an error in case of CPP class-wide object initialization.
3690 -- Required because otherwise the expansion of the class-wide
3691 -- assignment would try to use 'size to initialize the object
3692 -- (primitive that is not available in CPP tagged types).
3693
3694 if Is_Class_Wide_Type (Act_T)
3695 and then
3696 (Is_CPP_Class (Root_Type (Etype (Act_T)))
3697 or else
3698 (Present (Full_View (Root_Type (Etype (Act_T))))
3699 and then
3700 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
3701 then
3702 Error_Msg_N
3703 ("predefined assignment not available for 'C'P'P tagged types",
3704 E);
3705 end if;
3706
3707 Mark_Coextensions (N, E);
3708 Analyze (E);
3709
3710 -- In case of errors detected in the analysis of the expression,
3711 -- decorate it with the expected type to avoid cascaded errors
3712
3713 if No (Etype (E)) then
3714 Set_Etype (E, T);
3715 end if;
3716
3717 -- If an initialization expression is present, then we set the
3718 -- Is_True_Constant flag. It will be reset if this is a variable
3719 -- and it is indeed modified.
3720
3721 Set_Is_True_Constant (Id, True);
3722
3723 -- If we are analyzing a constant declaration, set its completion
3724 -- flag after analyzing and resolving the expression.
3725
3726 if Constant_Present (N) then
3727 Set_Has_Completion (Id);
3728 end if;
3729
3730 -- Set type and resolve (type may be overridden later on). Note:
3731 -- Ekind (Id) must still be E_Void at this point so that incorrect
3732 -- early usage within E is properly diagnosed.
3733
3734 Set_Etype (Id, T);
3735
3736 -- If the expression is an aggregate we must look ahead to detect
3737 -- the possible presence of an address clause, and defer resolution
3738 -- and expansion of the aggregate to the freeze point of the entity.
3739
3740 if Comes_From_Source (N)
3741 and then Expander_Active
3742 and then Nkind (E) = N_Aggregate
3743 and then (Present (Following_Address_Clause (N))
3744 or else Delayed_Aspect_Present)
3745 then
3746 Set_Etype (E, T);
3747
3748 else
3749 Resolve (E, T);
3750 end if;
3751
3752 -- No further action needed if E is a call to an inlined function
3753 -- which returns an unconstrained type and it has been expanded into
3754 -- a procedure call. In that case N has been replaced by an object
3755 -- declaration without initializing expression and it has been
3756 -- analyzed (see Expand_Inlined_Call).
3757
3758 if Back_End_Inlining
3759 and then Expander_Active
3760 and then Nkind (E) = N_Function_Call
3761 and then Nkind (Name (E)) in N_Has_Entity
3762 and then Is_Inlined (Entity (Name (E)))
3763 and then not Is_Constrained (Etype (E))
3764 and then Analyzed (N)
3765 and then No (Expression (N))
3766 then
3767 return;
3768 end if;
3769
3770 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3771 -- node (which was marked already-analyzed), we need to set the type
3772 -- to something other than Any_Access in order to keep gigi happy.
3773
3774 if Etype (E) = Any_Access then
3775 Set_Etype (E, T);
3776 end if;
3777
3778 -- If the object is an access to variable, the initialization
3779 -- expression cannot be an access to constant.
3780
3781 if Is_Access_Type (T)
3782 and then not Is_Access_Constant (T)
3783 and then Is_Access_Type (Etype (E))
3784 and then Is_Access_Constant (Etype (E))
3785 then
3786 Error_Msg_N
3787 ("access to variable cannot be initialized with an "
3788 & "access-to-constant expression", E);
3789 end if;
3790
3791 if not Assignment_OK (N) then
3792 Check_Initialization (T, E);
3793 end if;
3794
3795 Check_Unset_Reference (E);
3796
3797 -- If this is a variable, then set current value. If this is a
3798 -- declared constant of a scalar type with a static expression,
3799 -- indicate that it is always valid.
3800
3801 if not Constant_Present (N) then
3802 if Compile_Time_Known_Value (E) then
3803 Set_Current_Value (Id, E);
3804 end if;
3805
3806 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
3807 Set_Is_Known_Valid (Id);
3808 end if;
3809
3810 -- Deal with setting of null flags
3811
3812 if Is_Access_Type (T) then
3813 if Known_Non_Null (E) then
3814 Set_Is_Known_Non_Null (Id, True);
3815 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
3816 Set_Is_Known_Null (Id, True);
3817 end if;
3818 end if;
3819
3820 -- Check incorrect use of dynamically tagged expressions
3821
3822 if Is_Tagged_Type (T) then
3823 Check_Dynamically_Tagged_Expression
3824 (Expr => E,
3825 Typ => T,
3826 Related_Nod => N);
3827 end if;
3828
3829 Apply_Scalar_Range_Check (E, T);
3830 Apply_Static_Length_Check (E, T);
3831
3832 if Nkind (Original_Node (N)) = N_Object_Declaration
3833 and then Comes_From_Source (Original_Node (N))
3834
3835 -- Only call test if needed
3836
3837 and then Restriction_Check_Required (SPARK_05)
3838 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
3839 then
3840 Check_SPARK_05_Restriction
3841 ("initialization expression is not appropriate", E);
3842 end if;
3843
3844 -- A formal parameter of a specific tagged type whose related
3845 -- subprogram is subject to pragma Extensions_Visible with value
3846 -- "False" cannot be implicitly converted to a class-wide type by
3847 -- means of an initialization expression (SPARK RM 6.1.7(3)).
3848
3849 if Is_Class_Wide_Type (T) and then Is_EVF_Expression (E) then
3850 Error_Msg_N
3851 ("formal parameter with Extensions_Visible False cannot be "
3852 & "implicitly converted to class-wide type", E);
3853 end if;
3854 end if;
3855
3856 -- If the No_Streams restriction is set, check that the type of the
3857 -- object is not, and does not contain, any subtype derived from
3858 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3859 -- Has_Stream just for efficiency reasons. There is no point in
3860 -- spending time on a Has_Stream check if the restriction is not set.
3861
3862 if Restriction_Check_Required (No_Streams) then
3863 if Has_Stream (T) then
3864 Check_Restriction (No_Streams, N);
3865 end if;
3866 end if;
3867
3868 -- Deal with predicate check before we start to do major rewriting. It
3869 -- is OK to initialize and then check the initialized value, since the
3870 -- object goes out of scope if we get a predicate failure. Note that we
3871 -- do this in the analyzer and not the expander because the analyzer
3872 -- does some substantial rewriting in some cases.
3873
3874 -- We need a predicate check if the type has predicates, and if either
3875 -- there is an initializing expression, or for default initialization
3876 -- when we have at least one case of an explicit default initial value
3877 -- and then this is not an internal declaration whose initialization
3878 -- comes later (as for an aggregate expansion).
3879
3880 if not Suppress_Assignment_Checks (N)
3881 and then Present (Predicate_Function (T))
3882 and then not No_Initialization (N)
3883 and then
3884 (Present (E)
3885 or else
3886 Is_Partially_Initialized_Type (T, Include_Implicit => False))
3887 then
3888 -- If the type has a static predicate and the expression is known at
3889 -- compile time, see if the expression satisfies the predicate.
3890
3891 if Present (E) then
3892 Check_Expression_Against_Static_Predicate (E, T);
3893 end if;
3894
3895 Insert_After (N,
3896 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
3897 end if;
3898
3899 -- Case of unconstrained type
3900
3901 if Is_Indefinite_Subtype (T) then
3902
3903 -- In SPARK, a declaration of unconstrained type is allowed
3904 -- only for constants of type string.
3905
3906 if Is_String_Type (T) and then not Constant_Present (N) then
3907 Check_SPARK_05_Restriction
3908 ("declaration of object of unconstrained type not allowed", N);
3909 end if;
3910
3911 -- Nothing to do in deferred constant case
3912
3913 if Constant_Present (N) and then No (E) then
3914 null;
3915
3916 -- Case of no initialization present
3917
3918 elsif No (E) then
3919 if No_Initialization (N) then
3920 null;
3921
3922 elsif Is_Class_Wide_Type (T) then
3923 Error_Msg_N
3924 ("initialization required in class-wide declaration ", N);
3925
3926 else
3927 Error_Msg_N
3928 ("unconstrained subtype not allowed (need initialization)",
3929 Object_Definition (N));
3930
3931 if Is_Record_Type (T) and then Has_Discriminants (T) then
3932 Error_Msg_N
3933 ("\provide initial value or explicit discriminant values",
3934 Object_Definition (N));
3935
3936 Error_Msg_NE
3937 ("\or give default discriminant values for type&",
3938 Object_Definition (N), T);
3939
3940 elsif Is_Array_Type (T) then
3941 Error_Msg_N
3942 ("\provide initial value or explicit array bounds",
3943 Object_Definition (N));
3944 end if;
3945 end if;
3946
3947 -- Case of initialization present but in error. Set initial
3948 -- expression as absent (but do not make above complaints)
3949
3950 elsif E = Error then
3951 Set_Expression (N, Empty);
3952 E := Empty;
3953
3954 -- Case of initialization present
3955
3956 else
3957 -- Check restrictions in Ada 83
3958
3959 if not Constant_Present (N) then
3960
3961 -- Unconstrained variables not allowed in Ada 83 mode
3962
3963 if Ada_Version = Ada_83
3964 and then Comes_From_Source (Object_Definition (N))
3965 then
3966 Error_Msg_N
3967 ("(Ada 83) unconstrained variable not allowed",
3968 Object_Definition (N));
3969 end if;
3970 end if;
3971
3972 -- Now we constrain the variable from the initializing expression
3973
3974 -- If the expression is an aggregate, it has been expanded into
3975 -- individual assignments. Retrieve the actual type from the
3976 -- expanded construct.
3977
3978 if Is_Array_Type (T)
3979 and then No_Initialization (N)
3980 and then Nkind (Original_Node (E)) = N_Aggregate
3981 then
3982 Act_T := Etype (E);
3983
3984 -- In case of class-wide interface object declarations we delay
3985 -- the generation of the equivalent record type declarations until
3986 -- its expansion because there are cases in they are not required.
3987
3988 elsif Is_Interface (T) then
3989 null;
3990
3991 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
3992 -- we should prevent the generation of another Itype with the
3993 -- same name as the one already generated, or we end up with
3994 -- two identical types in GNATprove.
3995
3996 elsif GNATprove_Mode then
3997 null;
3998
3999 -- If the type is an unchecked union, no subtype can be built from
4000 -- the expression. Rewrite declaration as a renaming, which the
4001 -- back-end can handle properly. This is a rather unusual case,
4002 -- because most unchecked_union declarations have default values
4003 -- for discriminants and are thus not indefinite.
4004
4005 elsif Is_Unchecked_Union (T) then
4006 if Constant_Present (N) or else Nkind (E) = N_Function_Call then
4007 Set_Ekind (Id, E_Constant);
4008 else
4009 Set_Ekind (Id, E_Variable);
4010 end if;
4011
4012 -- An object declared within a Ghost region is automatically
4013 -- Ghost (SPARK RM 6.9(2)).
4014
4015 if Comes_From_Source (Id) and then Ghost_Mode > None then
4016 Set_Is_Ghost_Entity (Id);
4017
4018 -- The Ghost policy in effect at the point of declaration
4019 -- and at the point of completion must match
4020 -- (SPARK RM 6.9(15)).
4021
4022 if Present (Prev_Entity)
4023 and then Is_Ghost_Entity (Prev_Entity)
4024 then
4025 Check_Ghost_Completion (Prev_Entity, Id);
4026 end if;
4027 end if;
4028
4029 Rewrite (N,
4030 Make_Object_Renaming_Declaration (Loc,
4031 Defining_Identifier => Id,
4032 Subtype_Mark => New_Occurrence_Of (T, Loc),
4033 Name => E));
4034
4035 Set_Renamed_Object (Id, E);
4036 Freeze_Before (N, T);
4037 Set_Is_Frozen (Id);
4038 return;
4039
4040 else
4041 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
4042 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
4043 end if;
4044
4045 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
4046
4047 if Aliased_Present (N) then
4048 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4049 end if;
4050
4051 Freeze_Before (N, Act_T);
4052 Freeze_Before (N, T);
4053 end if;
4054
4055 elsif Is_Array_Type (T)
4056 and then No_Initialization (N)
4057 and then Nkind (Original_Node (E)) = N_Aggregate
4058 then
4059 if not Is_Entity_Name (Object_Definition (N)) then
4060 Act_T := Etype (E);
4061 Check_Compile_Time_Size (Act_T);
4062
4063 if Aliased_Present (N) then
4064 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4065 end if;
4066 end if;
4067
4068 -- When the given object definition and the aggregate are specified
4069 -- independently, and their lengths might differ do a length check.
4070 -- This cannot happen if the aggregate is of the form (others =>...)
4071
4072 if not Is_Constrained (T) then
4073 null;
4074
4075 elsif Nkind (E) = N_Raise_Constraint_Error then
4076
4077 -- Aggregate is statically illegal. Place back in declaration
4078
4079 Set_Expression (N, E);
4080 Set_No_Initialization (N, False);
4081
4082 elsif T = Etype (E) then
4083 null;
4084
4085 elsif Nkind (E) = N_Aggregate
4086 and then Present (Component_Associations (E))
4087 and then Present (Choices (First (Component_Associations (E))))
4088 and then Nkind (First
4089 (Choices (First (Component_Associations (E))))) = N_Others_Choice
4090 then
4091 null;
4092
4093 else
4094 Apply_Length_Check (E, T);
4095 end if;
4096
4097 -- If the type is limited unconstrained with defaulted discriminants and
4098 -- there is no expression, then the object is constrained by the
4099 -- defaults, so it is worthwhile building the corresponding subtype.
4100
4101 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
4102 and then not Is_Constrained (T)
4103 and then Has_Discriminants (T)
4104 then
4105 if No (E) then
4106 Act_T := Build_Default_Subtype (T, N);
4107 else
4108 -- Ada 2005: A limited object may be initialized by means of an
4109 -- aggregate. If the type has default discriminants it has an
4110 -- unconstrained nominal type, Its actual subtype will be obtained
4111 -- from the aggregate, and not from the default discriminants.
4112
4113 Act_T := Etype (E);
4114 end if;
4115
4116 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
4117
4118 elsif Nkind (E) = N_Function_Call
4119 and then Constant_Present (N)
4120 and then Has_Unconstrained_Elements (Etype (E))
4121 then
4122 -- The back-end has problems with constants of a discriminated type
4123 -- with defaults, if the initial value is a function call. We
4124 -- generate an intermediate temporary that will receive a reference
4125 -- to the result of the call. The initialization expression then
4126 -- becomes a dereference of that temporary.
4127
4128 Remove_Side_Effects (E);
4129
4130 -- If this is a constant declaration of an unconstrained type and
4131 -- the initialization is an aggregate, we can use the subtype of the
4132 -- aggregate for the declared entity because it is immutable.
4133
4134 elsif not Is_Constrained (T)
4135 and then Has_Discriminants (T)
4136 and then Constant_Present (N)
4137 and then not Has_Unchecked_Union (T)
4138 and then Nkind (E) = N_Aggregate
4139 then
4140 Act_T := Etype (E);
4141 end if;
4142
4143 -- Check No_Wide_Characters restriction
4144
4145 Check_Wide_Character_Restriction (T, Object_Definition (N));
4146
4147 -- Indicate this is not set in source. Certainly true for constants, and
4148 -- true for variables so far (will be reset for a variable if and when
4149 -- we encounter a modification in the source).
4150
4151 Set_Never_Set_In_Source (Id);
4152
4153 -- Now establish the proper kind and type of the object
4154
4155 if Constant_Present (N) then
4156 Set_Ekind (Id, E_Constant);
4157 Set_Is_True_Constant (Id);
4158
4159 else
4160 Set_Ekind (Id, E_Variable);
4161
4162 -- A variable is set as shared passive if it appears in a shared
4163 -- passive package, and is at the outer level. This is not done for
4164 -- entities generated during expansion, because those are always
4165 -- manipulated locally.
4166
4167 if Is_Shared_Passive (Current_Scope)
4168 and then Is_Library_Level_Entity (Id)
4169 and then Comes_From_Source (Id)
4170 then
4171 Set_Is_Shared_Passive (Id);
4172 Check_Shared_Var (Id, T, N);
4173 end if;
4174
4175 -- Set Has_Initial_Value if initializing expression present. Note
4176 -- that if there is no initializing expression, we leave the state
4177 -- of this flag unchanged (usually it will be False, but notably in
4178 -- the case of exception choice variables, it will already be true).
4179
4180 if Present (E) then
4181 Set_Has_Initial_Value (Id);
4182 end if;
4183 end if;
4184
4185 -- Initialize alignment and size and capture alignment setting
4186
4187 Init_Alignment (Id);
4188 Init_Esize (Id);
4189 Set_Optimize_Alignment_Flags (Id);
4190
4191 -- An object declared within a Ghost region is automatically Ghost
4192 -- (SPARK RM 6.9(2)).
4193
4194 if Comes_From_Source (Id)
4195 and then (Ghost_Mode > None
4196 or else (Present (Prev_Entity)
4197 and then Is_Ghost_Entity (Prev_Entity)))
4198 then
4199 Set_Is_Ghost_Entity (Id);
4200
4201 -- The Ghost policy in effect at the point of declaration and at the
4202 -- point of completion must match (SPARK RM 6.9(16)).
4203
4204 if Present (Prev_Entity) and then Is_Ghost_Entity (Prev_Entity) then
4205 Check_Ghost_Completion (Prev_Entity, Id);
4206 end if;
4207 end if;
4208
4209 -- Deal with aliased case
4210
4211 if Aliased_Present (N) then
4212 Set_Is_Aliased (Id);
4213
4214 -- If the object is aliased and the type is unconstrained with
4215 -- defaulted discriminants and there is no expression, then the
4216 -- object is constrained by the defaults, so it is worthwhile
4217 -- building the corresponding subtype.
4218
4219 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4220 -- unconstrained, then only establish an actual subtype if the
4221 -- nominal subtype is indefinite. In definite cases the object is
4222 -- unconstrained in Ada 2005.
4223
4224 if No (E)
4225 and then Is_Record_Type (T)
4226 and then not Is_Constrained (T)
4227 and then Has_Discriminants (T)
4228 and then (Ada_Version < Ada_2005 or else Is_Indefinite_Subtype (T))
4229 then
4230 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
4231 end if;
4232 end if;
4233
4234 -- Now we can set the type of the object
4235
4236 Set_Etype (Id, Act_T);
4237
4238 -- Non-constant object is marked to be treated as volatile if type is
4239 -- volatile and we clear the Current_Value setting that may have been
4240 -- set above. Doing so for constants isn't required and might interfere
4241 -- with possible uses of the object as a static expression in contexts
4242 -- incompatible with volatility (e.g. as a case-statement alternative).
4243
4244 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
4245 Set_Treat_As_Volatile (Id);
4246 Set_Current_Value (Id, Empty);
4247 end if;
4248
4249 -- Deal with controlled types
4250
4251 if Has_Controlled_Component (Etype (Id))
4252 or else Is_Controlled (Etype (Id))
4253 then
4254 if not Is_Library_Level_Entity (Id) then
4255 Check_Restriction (No_Nested_Finalization, N);
4256 else
4257 Validate_Controlled_Object (Id);
4258 end if;
4259 end if;
4260
4261 if Has_Task (Etype (Id)) then
4262 Check_Restriction (No_Tasking, N);
4263
4264 -- Deal with counting max tasks
4265
4266 -- Nothing to do if inside a generic
4267
4268 if Inside_A_Generic then
4269 null;
4270
4271 -- If library level entity, then count tasks
4272
4273 elsif Is_Library_Level_Entity (Id) then
4274 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4275
4276 -- If not library level entity, then indicate we don't know max
4277 -- tasks and also check task hierarchy restriction and blocking
4278 -- operation (since starting a task is definitely blocking).
4279
4280 else
4281 Check_Restriction (Max_Tasks, N);
4282 Check_Restriction (No_Task_Hierarchy, N);
4283 Check_Potentially_Blocking_Operation (N);
4284 end if;
4285
4286 -- A rather specialized test. If we see two tasks being declared
4287 -- of the same type in the same object declaration, and the task
4288 -- has an entry with an address clause, we know that program error
4289 -- will be raised at run time since we can't have two tasks with
4290 -- entries at the same address.
4291
4292 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4293 declare
4294 E : Entity_Id;
4295
4296 begin
4297 E := First_Entity (Etype (Id));
4298 while Present (E) loop
4299 if Ekind (E) = E_Entry
4300 and then Present (Get_Attribute_Definition_Clause
4301 (E, Attribute_Address))
4302 then
4303 Error_Msg_Warn := SPARK_Mode /= On;
4304 Error_Msg_N
4305 ("more than one task with same entry address<<", N);
4306 Error_Msg_N ("\Program_Error [<<", N);
4307 Insert_Action (N,
4308 Make_Raise_Program_Error (Loc,
4309 Reason => PE_Duplicated_Entry_Address));
4310 exit;
4311 end if;
4312
4313 Next_Entity (E);
4314 end loop;
4315 end;
4316 end if;
4317 end if;
4318
4319 -- Some simple constant-propagation: if the expression is a constant
4320 -- string initialized with a literal, share the literal. This avoids
4321 -- a run-time copy.
4322
4323 if Present (E)
4324 and then Is_Entity_Name (E)
4325 and then Ekind (Entity (E)) = E_Constant
4326 and then Base_Type (Etype (E)) = Standard_String
4327 then
4328 declare
4329 Val : constant Node_Id := Constant_Value (Entity (E));
4330 begin
4331 if Present (Val) and then Nkind (Val) = N_String_Literal then
4332 Rewrite (E, New_Copy (Val));
4333 end if;
4334 end;
4335 end if;
4336
4337 -- Another optimization: if the nominal subtype is unconstrained and
4338 -- the expression is a function call that returns an unconstrained
4339 -- type, rewrite the declaration as a renaming of the result of the
4340 -- call. The exceptions below are cases where the copy is expected,
4341 -- either by the back end (Aliased case) or by the semantics, as for
4342 -- initializing controlled types or copying tags for classwide types.
4343
4344 if Present (E)
4345 and then Nkind (E) = N_Explicit_Dereference
4346 and then Nkind (Original_Node (E)) = N_Function_Call
4347 and then not Is_Library_Level_Entity (Id)
4348 and then not Is_Constrained (Underlying_Type (T))
4349 and then not Is_Aliased (Id)
4350 and then not Is_Class_Wide_Type (T)
4351 and then not Is_Controlled (T)
4352 and then not Has_Controlled_Component (Base_Type (T))
4353 and then Expander_Active
4354 then
4355 Rewrite (N,
4356 Make_Object_Renaming_Declaration (Loc,
4357 Defining_Identifier => Id,
4358 Access_Definition => Empty,
4359 Subtype_Mark => New_Occurrence_Of
4360 (Base_Type (Etype (Id)), Loc),
4361 Name => E));
4362
4363 Set_Renamed_Object (Id, E);
4364
4365 -- Force generation of debugging information for the constant and for
4366 -- the renamed function call.
4367
4368 Set_Debug_Info_Needed (Id);
4369 Set_Debug_Info_Needed (Entity (Prefix (E)));
4370 end if;
4371
4372 if Present (Prev_Entity)
4373 and then Is_Frozen (Prev_Entity)
4374 and then not Error_Posted (Id)
4375 then
4376 Error_Msg_N ("full constant declaration appears too late", N);
4377 end if;
4378
4379 Check_Eliminated (Id);
4380
4381 -- Deal with setting In_Private_Part flag if in private part
4382
4383 if Ekind (Scope (Id)) = E_Package and then In_Private_Part (Scope (Id))
4384 then
4385 Set_In_Private_Part (Id);
4386 end if;
4387
4388 -- Check for violation of No_Local_Timing_Events
4389
4390 if Restriction_Check_Required (No_Local_Timing_Events)
4391 and then not Is_Library_Level_Entity (Id)
4392 and then Is_RTE (Etype (Id), RE_Timing_Event)
4393 then
4394 Check_Restriction (No_Local_Timing_Events, N);
4395 end if;
4396
4397 <<Leave>>
4398 -- Initialize the refined state of a variable here because this is a
4399 -- common destination for legal and illegal object declarations.
4400
4401 if Ekind (Id) = E_Variable then
4402 Set_Encapsulating_State (Id, Empty);
4403 end if;
4404
4405 if Has_Aspects (N) then
4406 Analyze_Aspect_Specifications (N, Id);
4407 end if;
4408
4409 Analyze_Dimension (N);
4410
4411 -- Verify whether the object declaration introduces an illegal hidden
4412 -- state within a package subject to a null abstract state.
4413
4414 if Ekind (Id) = E_Variable then
4415 Check_No_Hidden_State (Id);
4416 end if;
4417 end Analyze_Object_Declaration;
4418
4419 ---------------------------
4420 -- Analyze_Others_Choice --
4421 ---------------------------
4422
4423 -- Nothing to do for the others choice node itself, the semantic analysis
4424 -- of the others choice will occur as part of the processing of the parent
4425
4426 procedure Analyze_Others_Choice (N : Node_Id) is
4427 pragma Warnings (Off, N);
4428 begin
4429 null;
4430 end Analyze_Others_Choice;
4431
4432 -------------------------------------------
4433 -- Analyze_Private_Extension_Declaration --
4434 -------------------------------------------
4435
4436 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4437 T : constant Entity_Id := Defining_Identifier (N);
4438 Indic : constant Node_Id := Subtype_Indication (N);
4439 Parent_Type : Entity_Id;
4440 Parent_Base : Entity_Id;
4441
4442 begin
4443 -- The private extension declaration may be subject to pragma Ghost with
4444 -- policy Ignore. Set the mode now to ensure that any nodes generated
4445 -- during analysis and expansion are properly flagged as ignored Ghost.
4446
4447 Set_Ghost_Mode (N);
4448
4449 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4450
4451 if Is_Non_Empty_List (Interface_List (N)) then
4452 declare
4453 Intf : Node_Id;
4454 T : Entity_Id;
4455
4456 begin
4457 Intf := First (Interface_List (N));
4458 while Present (Intf) loop
4459 T := Find_Type_Of_Subtype_Indic (Intf);
4460
4461 Diagnose_Interface (Intf, T);
4462 Next (Intf);
4463 end loop;
4464 end;
4465 end if;
4466
4467 Generate_Definition (T);
4468
4469 -- For other than Ada 2012, just enter the name in the current scope
4470
4471 if Ada_Version < Ada_2012 then
4472 Enter_Name (T);
4473
4474 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4475 -- case of private type that completes an incomplete type.
4476
4477 else
4478 declare
4479 Prev : Entity_Id;
4480
4481 begin
4482 Prev := Find_Type_Name (N);
4483
4484 pragma Assert (Prev = T
4485 or else (Ekind (Prev) = E_Incomplete_Type
4486 and then Present (Full_View (Prev))
4487 and then Full_View (Prev) = T));
4488 end;
4489 end if;
4490
4491 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
4492 Parent_Base := Base_Type (Parent_Type);
4493
4494 if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then
4495 Set_Ekind (T, Ekind (Parent_Type));
4496 Set_Etype (T, Any_Type);
4497 goto Leave;
4498
4499 elsif not Is_Tagged_Type (Parent_Type) then
4500 Error_Msg_N
4501 ("parent of type extension must be a tagged type ", Indic);
4502 goto Leave;
4503
4504 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
4505 Error_Msg_N ("premature derivation of incomplete type", Indic);
4506 goto Leave;
4507
4508 elsif Is_Concurrent_Type (Parent_Type) then
4509 Error_Msg_N
4510 ("parent type of a private extension cannot be "
4511 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
4512
4513 Set_Etype (T, Any_Type);
4514 Set_Ekind (T, E_Limited_Private_Type);
4515 Set_Private_Dependents (T, New_Elmt_List);
4516 Set_Error_Posted (T);
4517 goto Leave;
4518 end if;
4519
4520 -- Perhaps the parent type should be changed to the class-wide type's
4521 -- specific type in this case to prevent cascading errors ???
4522
4523 if Is_Class_Wide_Type (Parent_Type) then
4524 Error_Msg_N
4525 ("parent of type extension must not be a class-wide type", Indic);
4526 goto Leave;
4527 end if;
4528
4529 if (not Is_Package_Or_Generic_Package (Current_Scope)
4530 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
4531 or else In_Private_Part (Current_Scope)
4532
4533 then
4534 Error_Msg_N ("invalid context for private extension", N);
4535 end if;
4536
4537 -- Set common attributes
4538
4539 Set_Is_Pure (T, Is_Pure (Current_Scope));
4540 Set_Scope (T, Current_Scope);
4541 Set_Ekind (T, E_Record_Type_With_Private);
4542 Init_Size_Align (T);
4543 Set_Default_SSO (T);
4544
4545 Set_Etype (T, Parent_Base);
4546 Set_Has_Task (T, Has_Task (Parent_Base));
4547 Set_Has_Protected (T, Has_Task (Parent_Base));
4548
4549 Set_Convention (T, Convention (Parent_Type));
4550 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
4551 Set_Is_First_Subtype (T);
4552 Make_Class_Wide_Type (T);
4553
4554 if Unknown_Discriminants_Present (N) then
4555 Set_Discriminant_Constraint (T, No_Elist);
4556 end if;
4557
4558 Build_Derived_Record_Type (N, Parent_Type, T);
4559
4560 -- Propagate inherited invariant information. The new type has
4561 -- invariants, if the parent type has inheritable invariants,
4562 -- and these invariants can in turn be inherited.
4563
4564 if Has_Inheritable_Invariants (Parent_Type) then
4565 Set_Has_Inheritable_Invariants (T);
4566 Set_Has_Invariants (T);
4567 end if;
4568
4569 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4570 -- synchronized formal derived type.
4571
4572 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
4573 Set_Is_Limited_Record (T);
4574
4575 -- Formal derived type case
4576
4577 if Is_Generic_Type (T) then
4578
4579 -- The parent must be a tagged limited type or a synchronized
4580 -- interface.
4581
4582 if (not Is_Tagged_Type (Parent_Type)
4583 or else not Is_Limited_Type (Parent_Type))
4584 and then
4585 (not Is_Interface (Parent_Type)
4586 or else not Is_Synchronized_Interface (Parent_Type))
4587 then
4588 Error_Msg_NE ("parent type of & must be tagged limited " &
4589 "or synchronized", N, T);
4590 end if;
4591
4592 -- The progenitors (if any) must be limited or synchronized
4593 -- interfaces.
4594
4595 if Present (Interfaces (T)) then
4596 declare
4597 Iface : Entity_Id;
4598 Iface_Elmt : Elmt_Id;
4599
4600 begin
4601 Iface_Elmt := First_Elmt (Interfaces (T));
4602 while Present (Iface_Elmt) loop
4603 Iface := Node (Iface_Elmt);
4604
4605 if not Is_Limited_Interface (Iface)
4606 and then not Is_Synchronized_Interface (Iface)
4607 then
4608 Error_Msg_NE ("progenitor & must be limited " &
4609 "or synchronized", N, Iface);
4610 end if;
4611
4612 Next_Elmt (Iface_Elmt);
4613 end loop;
4614 end;
4615 end if;
4616
4617 -- Regular derived extension, the parent must be a limited or
4618 -- synchronized interface.
4619
4620 else
4621 if not Is_Interface (Parent_Type)
4622 or else (not Is_Limited_Interface (Parent_Type)
4623 and then not Is_Synchronized_Interface (Parent_Type))
4624 then
4625 Error_Msg_NE
4626 ("parent type of & must be limited interface", N, T);
4627 end if;
4628 end if;
4629
4630 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4631 -- extension with a synchronized parent must be explicitly declared
4632 -- synchronized, because the full view will be a synchronized type.
4633 -- This must be checked before the check for limited types below,
4634 -- to ensure that types declared limited are not allowed to extend
4635 -- synchronized interfaces.
4636
4637 elsif Is_Interface (Parent_Type)
4638 and then Is_Synchronized_Interface (Parent_Type)
4639 and then not Synchronized_Present (N)
4640 then
4641 Error_Msg_NE
4642 ("private extension of& must be explicitly synchronized",
4643 N, Parent_Type);
4644
4645 elsif Limited_Present (N) then
4646 Set_Is_Limited_Record (T);
4647
4648 if not Is_Limited_Type (Parent_Type)
4649 and then
4650 (not Is_Interface (Parent_Type)
4651 or else not Is_Limited_Interface (Parent_Type))
4652 then
4653 Error_Msg_NE ("parent type& of limited extension must be limited",
4654 N, Parent_Type);
4655 end if;
4656 end if;
4657
4658 <<Leave>>
4659 if Has_Aspects (N) then
4660 Analyze_Aspect_Specifications (N, T);
4661 end if;
4662 end Analyze_Private_Extension_Declaration;
4663
4664 ---------------------------------
4665 -- Analyze_Subtype_Declaration --
4666 ---------------------------------
4667
4668 procedure Analyze_Subtype_Declaration
4669 (N : Node_Id;
4670 Skip : Boolean := False)
4671 is
4672 Id : constant Entity_Id := Defining_Identifier (N);
4673 T : Entity_Id;
4674 R_Checks : Check_Result;
4675
4676 begin
4677 -- The subtype declaration may be subject to pragma Ghost with policy
4678 -- Ignore. Set the mode now to ensure that any nodes generated during
4679 -- analysis and expansion are properly flagged as ignored Ghost.
4680
4681 Set_Ghost_Mode (N);
4682
4683 Generate_Definition (Id);
4684 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4685 Init_Size_Align (Id);
4686
4687 -- The following guard condition on Enter_Name is to handle cases where
4688 -- the defining identifier has already been entered into the scope but
4689 -- the declaration as a whole needs to be analyzed.
4690
4691 -- This case in particular happens for derived enumeration types. The
4692 -- derived enumeration type is processed as an inserted enumeration type
4693 -- declaration followed by a rewritten subtype declaration. The defining
4694 -- identifier, however, is entered into the name scope very early in the
4695 -- processing of the original type declaration and therefore needs to be
4696 -- avoided here, when the created subtype declaration is analyzed. (See
4697 -- Build_Derived_Types)
4698
4699 -- This also happens when the full view of a private type is derived
4700 -- type with constraints. In this case the entity has been introduced
4701 -- in the private declaration.
4702
4703 -- Finally this happens in some complex cases when validity checks are
4704 -- enabled, where the same subtype declaration may be analyzed twice.
4705 -- This can happen if the subtype is created by the pre-analysis of
4706 -- an attribute tht gives the range of a loop statement, and the loop
4707 -- itself appears within an if_statement that will be rewritten during
4708 -- expansion.
4709
4710 if Skip
4711 or else (Present (Etype (Id))
4712 and then (Is_Private_Type (Etype (Id))
4713 or else Is_Task_Type (Etype (Id))
4714 or else Is_Rewrite_Substitution (N)))
4715 then
4716 null;
4717
4718 elsif Current_Entity (Id) = Id then
4719 null;
4720
4721 else
4722 Enter_Name (Id);
4723 end if;
4724
4725 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
4726
4727 -- Class-wide equivalent types of records with unknown discriminants
4728 -- involve the generation of an itype which serves as the private view
4729 -- of a constrained record subtype. In such cases the base type of the
4730 -- current subtype we are processing is the private itype. Use the full
4731 -- of the private itype when decorating various attributes.
4732
4733 if Is_Itype (T)
4734 and then Is_Private_Type (T)
4735 and then Present (Full_View (T))
4736 then
4737 T := Full_View (T);
4738 end if;
4739
4740 -- Inherit common attributes
4741
4742 Set_Is_Volatile (Id, Is_Volatile (T));
4743 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
4744 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
4745 Set_Convention (Id, Convention (T));
4746
4747 -- If ancestor has predicates then so does the subtype, and in addition
4748 -- we must delay the freeze to properly arrange predicate inheritance.
4749
4750 -- The Ancestor_Type test is really unpleasant, there seem to be cases
4751 -- in which T = ID, so the above tests and assignments do nothing???
4752
4753 if Has_Predicates (T)
4754 or else (Present (Ancestor_Subtype (T))
4755 and then Has_Predicates (Ancestor_Subtype (T)))
4756 then
4757 Set_Has_Predicates (Id);
4758 Set_Has_Delayed_Freeze (Id);
4759 end if;
4760
4761 -- Subtype of Boolean cannot have a constraint in SPARK
4762
4763 if Is_Boolean_Type (T)
4764 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
4765 then
4766 Check_SPARK_05_Restriction
4767 ("subtype of Boolean cannot have constraint", N);
4768 end if;
4769
4770 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4771 declare
4772 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
4773 One_Cstr : Node_Id;
4774 Low : Node_Id;
4775 High : Node_Id;
4776
4777 begin
4778 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
4779 One_Cstr := First (Constraints (Cstr));
4780 while Present (One_Cstr) loop
4781
4782 -- Index or discriminant constraint in SPARK must be a
4783 -- subtype mark.
4784
4785 if not
4786 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
4787 then
4788 Check_SPARK_05_Restriction
4789 ("subtype mark required", One_Cstr);
4790
4791 -- String subtype must have a lower bound of 1 in SPARK.
4792 -- Note that we do not need to test for the non-static case
4793 -- here, since that was already taken care of in
4794 -- Process_Range_Expr_In_Decl.
4795
4796 elsif Base_Type (T) = Standard_String then
4797 Get_Index_Bounds (One_Cstr, Low, High);
4798
4799 if Is_OK_Static_Expression (Low)
4800 and then Expr_Value (Low) /= 1
4801 then
4802 Check_SPARK_05_Restriction
4803 ("String subtype must have lower bound of 1", N);
4804 end if;
4805 end if;
4806
4807 Next (One_Cstr);
4808 end loop;
4809 end if;
4810 end;
4811 end if;
4812
4813 -- In the case where there is no constraint given in the subtype
4814 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4815 -- semantic attributes must be established here.
4816
4817 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
4818 Set_Etype (Id, Base_Type (T));
4819
4820 -- Subtype of unconstrained array without constraint is not allowed
4821 -- in SPARK.
4822
4823 if Is_Array_Type (T) and then not Is_Constrained (T) then
4824 Check_SPARK_05_Restriction
4825 ("subtype of unconstrained array must have constraint", N);
4826 end if;
4827
4828 case Ekind (T) is
4829 when Array_Kind =>
4830 Set_Ekind (Id, E_Array_Subtype);
4831 Copy_Array_Subtype_Attributes (Id, T);
4832
4833 when Decimal_Fixed_Point_Kind =>
4834 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
4835 Set_Digits_Value (Id, Digits_Value (T));
4836 Set_Delta_Value (Id, Delta_Value (T));
4837 Set_Scale_Value (Id, Scale_Value (T));
4838 Set_Small_Value (Id, Small_Value (T));
4839 Set_Scalar_Range (Id, Scalar_Range (T));
4840 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
4841 Set_Is_Constrained (Id, Is_Constrained (T));
4842 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4843 Set_RM_Size (Id, RM_Size (T));
4844
4845 when Enumeration_Kind =>
4846 Set_Ekind (Id, E_Enumeration_Subtype);
4847 Set_First_Literal (Id, First_Literal (Base_Type (T)));
4848 Set_Scalar_Range (Id, Scalar_Range (T));
4849 Set_Is_Character_Type (Id, Is_Character_Type (T));
4850 Set_Is_Constrained (Id, Is_Constrained (T));
4851 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4852 Set_RM_Size (Id, RM_Size (T));
4853 Inherit_Predicate_Flags (Id, T);
4854
4855 when Ordinary_Fixed_Point_Kind =>
4856 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
4857 Set_Scalar_Range (Id, Scalar_Range (T));
4858 Set_Small_Value (Id, Small_Value (T));
4859 Set_Delta_Value (Id, Delta_Value (T));
4860 Set_Is_Constrained (Id, Is_Constrained (T));
4861 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4862 Set_RM_Size (Id, RM_Size (T));
4863
4864 when Float_Kind =>
4865 Set_Ekind (Id, E_Floating_Point_Subtype);
4866 Set_Scalar_Range (Id, Scalar_Range (T));
4867 Set_Digits_Value (Id, Digits_Value (T));
4868 Set_Is_Constrained (Id, Is_Constrained (T));
4869
4870 when Signed_Integer_Kind =>
4871 Set_Ekind (Id, E_Signed_Integer_Subtype);
4872 Set_Scalar_Range (Id, Scalar_Range (T));
4873 Set_Is_Constrained (Id, Is_Constrained (T));
4874 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4875 Set_RM_Size (Id, RM_Size (T));
4876 Inherit_Predicate_Flags (Id, T);
4877
4878 when Modular_Integer_Kind =>
4879 Set_Ekind (Id, E_Modular_Integer_Subtype);
4880 Set_Scalar_Range (Id, Scalar_Range (T));
4881 Set_Is_Constrained (Id, Is_Constrained (T));
4882 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4883 Set_RM_Size (Id, RM_Size (T));
4884 Inherit_Predicate_Flags (Id, T);
4885
4886 when Class_Wide_Kind =>
4887 Set_Ekind (Id, E_Class_Wide_Subtype);
4888 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4889 Set_Cloned_Subtype (Id, T);
4890 Set_Is_Tagged_Type (Id, True);
4891 Set_Has_Unknown_Discriminants
4892 (Id, True);
4893 Set_No_Tagged_Streams_Pragma
4894 (Id, No_Tagged_Streams_Pragma (T));
4895
4896 if Ekind (T) = E_Class_Wide_Subtype then
4897 Set_Equivalent_Type (Id, Equivalent_Type (T));
4898 end if;
4899
4900 when E_Record_Type | E_Record_Subtype =>
4901 Set_Ekind (Id, E_Record_Subtype);
4902
4903 if Ekind (T) = E_Record_Subtype
4904 and then Present (Cloned_Subtype (T))
4905 then
4906 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
4907 else
4908 Set_Cloned_Subtype (Id, T);
4909 end if;
4910
4911 Set_First_Entity (Id, First_Entity (T));
4912 Set_Last_Entity (Id, Last_Entity (T));
4913 Set_Has_Discriminants (Id, Has_Discriminants (T));
4914 Set_Is_Constrained (Id, Is_Constrained (T));
4915 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4916 Set_Has_Implicit_Dereference
4917 (Id, Has_Implicit_Dereference (T));
4918 Set_Has_Unknown_Discriminants
4919 (Id, Has_Unknown_Discriminants (T));
4920
4921 if Has_Discriminants (T) then
4922 Set_Discriminant_Constraint
4923 (Id, Discriminant_Constraint (T));
4924 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4925
4926 elsif Has_Unknown_Discriminants (Id) then
4927 Set_Discriminant_Constraint (Id, No_Elist);
4928 end if;
4929
4930 if Is_Tagged_Type (T) then
4931 Set_Is_Tagged_Type (Id, True);
4932 Set_No_Tagged_Streams_Pragma
4933 (Id, No_Tagged_Streams_Pragma (T));
4934 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4935 Set_Direct_Primitive_Operations
4936 (Id, Direct_Primitive_Operations (T));
4937 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4938
4939 if Is_Interface (T) then
4940 Set_Is_Interface (Id);
4941 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
4942 end if;
4943 end if;
4944
4945 when Private_Kind =>
4946 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4947 Set_Has_Discriminants (Id, Has_Discriminants (T));
4948 Set_Is_Constrained (Id, Is_Constrained (T));
4949 Set_First_Entity (Id, First_Entity (T));
4950 Set_Last_Entity (Id, Last_Entity (T));
4951 Set_Private_Dependents (Id, New_Elmt_List);
4952 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4953 Set_Has_Implicit_Dereference
4954 (Id, Has_Implicit_Dereference (T));
4955 Set_Has_Unknown_Discriminants
4956 (Id, Has_Unknown_Discriminants (T));
4957 Set_Known_To_Have_Preelab_Init
4958 (Id, Known_To_Have_Preelab_Init (T));
4959
4960 if Is_Tagged_Type (T) then
4961 Set_Is_Tagged_Type (Id);
4962 Set_No_Tagged_Streams_Pragma (Id,
4963 No_Tagged_Streams_Pragma (T));
4964 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4965 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4966 Set_Direct_Primitive_Operations (Id,
4967 Direct_Primitive_Operations (T));
4968 end if;
4969
4970 -- In general the attributes of the subtype of a private type
4971 -- are the attributes of the partial view of parent. However,
4972 -- the full view may be a discriminated type, and the subtype
4973 -- must share the discriminant constraint to generate correct
4974 -- calls to initialization procedures.
4975
4976 if Has_Discriminants (T) then
4977 Set_Discriminant_Constraint
4978 (Id, Discriminant_Constraint (T));
4979 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4980
4981 elsif Present (Full_View (T))
4982 and then Has_Discriminants (Full_View (T))
4983 then
4984 Set_Discriminant_Constraint
4985 (Id, Discriminant_Constraint (Full_View (T)));
4986 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4987
4988 -- This would seem semantically correct, but apparently
4989 -- generates spurious errors about missing components ???
4990
4991 -- Set_Has_Discriminants (Id);
4992 end if;
4993
4994 Prepare_Private_Subtype_Completion (Id, N);
4995
4996 -- If this is the subtype of a constrained private type with
4997 -- discriminants that has got a full view and we also have
4998 -- built a completion just above, show that the completion
4999 -- is a clone of the full view to the back-end.
5000
5001 if Has_Discriminants (T)
5002 and then not Has_Unknown_Discriminants (T)
5003 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
5004 and then Present (Full_View (T))
5005 and then Present (Full_View (Id))
5006 then
5007 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
5008 end if;
5009
5010 when Access_Kind =>
5011 Set_Ekind (Id, E_Access_Subtype);
5012 Set_Is_Constrained (Id, Is_Constrained (T));
5013 Set_Is_Access_Constant
5014 (Id, Is_Access_Constant (T));
5015 Set_Directly_Designated_Type
5016 (Id, Designated_Type (T));
5017 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
5018
5019 -- A Pure library_item must not contain the declaration of a
5020 -- named access type, except within a subprogram, generic
5021 -- subprogram, task unit, or protected unit, or if it has
5022 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
5023
5024 if Comes_From_Source (Id)
5025 and then In_Pure_Unit
5026 and then not In_Subprogram_Task_Protected_Unit
5027 and then not No_Pool_Assigned (Id)
5028 then
5029 Error_Msg_N
5030 ("named access types not allowed in pure unit", N);
5031 end if;
5032
5033 when Concurrent_Kind =>
5034 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5035 Set_Corresponding_Record_Type (Id,
5036 Corresponding_Record_Type (T));
5037 Set_First_Entity (Id, First_Entity (T));
5038 Set_First_Private_Entity (Id, First_Private_Entity (T));
5039 Set_Has_Discriminants (Id, Has_Discriminants (T));
5040 Set_Is_Constrained (Id, Is_Constrained (T));
5041 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5042 Set_Last_Entity (Id, Last_Entity (T));
5043
5044 if Is_Tagged_Type (T) then
5045 Set_No_Tagged_Streams_Pragma
5046 (Id, No_Tagged_Streams_Pragma (T));
5047 end if;
5048
5049 if Has_Discriminants (T) then
5050 Set_Discriminant_Constraint
5051 (Id, Discriminant_Constraint (T));
5052 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5053 end if;
5054
5055 when Incomplete_Kind =>
5056 if Ada_Version >= Ada_2005 then
5057
5058 -- In Ada 2005 an incomplete type can be explicitly tagged:
5059 -- propagate indication. Note that we also have to include
5060 -- subtypes for Ada 2012 extended use of incomplete types.
5061
5062 Set_Ekind (Id, E_Incomplete_Subtype);
5063 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5064 Set_Private_Dependents (Id, New_Elmt_List);
5065
5066 if Is_Tagged_Type (Id) then
5067 Set_No_Tagged_Streams_Pragma
5068 (Id, No_Tagged_Streams_Pragma (T));
5069 Set_Direct_Primitive_Operations (Id, New_Elmt_List);
5070 end if;
5071
5072 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
5073 -- incomplete type visible through a limited with clause.
5074
5075 if From_Limited_With (T)
5076 and then Present (Non_Limited_View (T))
5077 then
5078 Set_From_Limited_With (Id);
5079 Set_Non_Limited_View (Id, Non_Limited_View (T));
5080
5081 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5082 -- to the private dependents of the original incomplete
5083 -- type for future transformation.
5084
5085 else
5086 Append_Elmt (Id, Private_Dependents (T));
5087 end if;
5088
5089 -- If the subtype name denotes an incomplete type an error
5090 -- was already reported by Process_Subtype.
5091
5092 else
5093 Set_Etype (Id, Any_Type);
5094 end if;
5095
5096 when others =>
5097 raise Program_Error;
5098 end case;
5099 end if;
5100
5101 if Etype (Id) = Any_Type then
5102 goto Leave;
5103 end if;
5104
5105 -- Some common processing on all types
5106
5107 Set_Size_Info (Id, T);
5108 Set_First_Rep_Item (Id, First_Rep_Item (T));
5109
5110 -- If the parent type is a generic actual, so is the subtype. This may
5111 -- happen in a nested instance. Why Comes_From_Source test???
5112
5113 if not Comes_From_Source (N) then
5114 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
5115 end if;
5116
5117 T := Etype (Id);
5118
5119 Set_Is_Immediately_Visible (Id, True);
5120 Set_Depends_On_Private (Id, Has_Private_Component (T));
5121 Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
5122
5123 if Is_Interface (T) then
5124 Set_Is_Interface (Id);
5125 end if;
5126
5127 if Present (Generic_Parent_Type (N))
5128 and then
5129 (Nkind (Parent (Generic_Parent_Type (N))) /=
5130 N_Formal_Type_Declaration
5131 or else Nkind (Formal_Type_Definition
5132 (Parent (Generic_Parent_Type (N)))) /=
5133 N_Formal_Private_Type_Definition)
5134 then
5135 if Is_Tagged_Type (Id) then
5136
5137 -- If this is a generic actual subtype for a synchronized type,
5138 -- the primitive operations are those of the corresponding record
5139 -- for which there is a separate subtype declaration.
5140
5141 if Is_Concurrent_Type (Id) then
5142 null;
5143 elsif Is_Class_Wide_Type (Id) then
5144 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
5145 else
5146 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
5147 end if;
5148
5149 elsif Scope (Etype (Id)) /= Standard_Standard then
5150 Derive_Subprograms (Generic_Parent_Type (N), Id);
5151 end if;
5152 end if;
5153
5154 if Is_Private_Type (T) and then Present (Full_View (T)) then
5155 Conditional_Delay (Id, Full_View (T));
5156
5157 -- The subtypes of components or subcomponents of protected types
5158 -- do not need freeze nodes, which would otherwise appear in the
5159 -- wrong scope (before the freeze node for the protected type). The
5160 -- proper subtypes are those of the subcomponents of the corresponding
5161 -- record.
5162
5163 elsif Ekind (Scope (Id)) /= E_Protected_Type
5164 and then Present (Scope (Scope (Id))) -- error defense
5165 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
5166 then
5167 Conditional_Delay (Id, T);
5168 end if;
5169
5170 -- Check that Constraint_Error is raised for a scalar subtype indication
5171 -- when the lower or upper bound of a non-null range lies outside the
5172 -- range of the type mark.
5173
5174 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5175 if Is_Scalar_Type (Etype (Id))
5176 and then Scalar_Range (Id) /=
5177 Scalar_Range (Etype (Subtype_Mark
5178 (Subtype_Indication (N))))
5179 then
5180 Apply_Range_Check
5181 (Scalar_Range (Id),
5182 Etype (Subtype_Mark (Subtype_Indication (N))));
5183
5184 -- In the array case, check compatibility for each index
5185
5186 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
5187 then
5188 -- This really should be a subprogram that finds the indications
5189 -- to check???
5190
5191 declare
5192 Subt_Index : Node_Id := First_Index (Id);
5193 Target_Index : Node_Id :=
5194 First_Index (Etype
5195 (Subtype_Mark (Subtype_Indication (N))));
5196 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
5197
5198 begin
5199 while Present (Subt_Index) loop
5200 if ((Nkind (Subt_Index) = N_Identifier
5201 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
5202 or else Nkind (Subt_Index) = N_Subtype_Indication)
5203 and then
5204 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
5205 then
5206 declare
5207 Target_Typ : constant Entity_Id :=
5208 Etype (Target_Index);
5209 begin
5210 R_Checks :=
5211 Get_Range_Checks
5212 (Scalar_Range (Etype (Subt_Index)),
5213 Target_Typ,
5214 Etype (Subt_Index),
5215 Defining_Identifier (N));
5216
5217 -- Reset Has_Dynamic_Range_Check on the subtype to
5218 -- prevent elision of the index check due to a dynamic
5219 -- check generated for a preceding index (needed since
5220 -- Insert_Range_Checks tries to avoid generating
5221 -- redundant checks on a given declaration).
5222
5223 Set_Has_Dynamic_Range_Check (N, False);
5224
5225 Insert_Range_Checks
5226 (R_Checks,
5227 N,
5228 Target_Typ,
5229 Sloc (Defining_Identifier (N)));
5230
5231 -- Record whether this index involved a dynamic check
5232
5233 Has_Dyn_Chk :=
5234 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
5235 end;
5236 end if;
5237
5238 Next_Index (Subt_Index);
5239 Next_Index (Target_Index);
5240 end loop;
5241
5242 -- Finally, mark whether the subtype involves dynamic checks
5243
5244 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
5245 end;
5246 end if;
5247 end if;
5248
5249 -- A type invariant applies to any subtype in its scope, in particular
5250 -- to a generic actual.
5251
5252 if Has_Invariants (T) and then In_Open_Scopes (Scope (T)) then
5253 Set_Has_Invariants (Id);
5254 Set_Invariant_Procedure (Id, Invariant_Procedure (T));
5255 end if;
5256
5257 -- Make sure that generic actual types are properly frozen. The subtype
5258 -- is marked as a generic actual type when the enclosing instance is
5259 -- analyzed, so here we identify the subtype from the tree structure.
5260
5261 if Expander_Active
5262 and then Is_Generic_Actual_Type (Id)
5263 and then In_Instance
5264 and then not Comes_From_Source (N)
5265 and then Nkind (Subtype_Indication (N)) /= N_Subtype_Indication
5266 and then Is_Frozen (T)
5267 then
5268 Freeze_Before (N, Id);
5269 end if;
5270
5271 Set_Optimize_Alignment_Flags (Id);
5272 Check_Eliminated (Id);
5273
5274 <<Leave>>
5275 if Has_Aspects (N) then
5276 Analyze_Aspect_Specifications (N, Id);
5277 end if;
5278
5279 Analyze_Dimension (N);
5280 end Analyze_Subtype_Declaration;
5281
5282 --------------------------------
5283 -- Analyze_Subtype_Indication --
5284 --------------------------------
5285
5286 procedure Analyze_Subtype_Indication (N : Node_Id) is
5287 T : constant Entity_Id := Subtype_Mark (N);
5288 R : constant Node_Id := Range_Expression (Constraint (N));
5289
5290 begin
5291 Analyze (T);
5292
5293 if R /= Error then
5294 Analyze (R);
5295 Set_Etype (N, Etype (R));
5296 Resolve (R, Entity (T));
5297 else
5298 Set_Error_Posted (R);
5299 Set_Error_Posted (T);
5300 end if;
5301 end Analyze_Subtype_Indication;
5302
5303 --------------------------
5304 -- Analyze_Variant_Part --
5305 --------------------------
5306
5307 procedure Analyze_Variant_Part (N : Node_Id) is
5308 Discr_Name : Node_Id;
5309 Discr_Type : Entity_Id;
5310
5311 procedure Process_Variant (A : Node_Id);
5312 -- Analyze declarations for a single variant
5313
5314 package Analyze_Variant_Choices is
5315 new Generic_Analyze_Choices (Process_Variant);
5316 use Analyze_Variant_Choices;
5317
5318 ---------------------
5319 -- Process_Variant --
5320 ---------------------
5321
5322 procedure Process_Variant (A : Node_Id) is
5323 CL : constant Node_Id := Component_List (A);
5324 begin
5325 if not Null_Present (CL) then
5326 Analyze_Declarations (Component_Items (CL));
5327
5328 if Present (Variant_Part (CL)) then
5329 Analyze (Variant_Part (CL));
5330 end if;
5331 end if;
5332 end Process_Variant;
5333
5334 -- Start of processing for Analyze_Variant_Part
5335
5336 begin
5337 Discr_Name := Name (N);
5338 Analyze (Discr_Name);
5339
5340 -- If Discr_Name bad, get out (prevent cascaded errors)
5341
5342 if Etype (Discr_Name) = Any_Type then
5343 return;
5344 end if;
5345
5346 -- Check invalid discriminant in variant part
5347
5348 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
5349 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
5350 end if;
5351
5352 Discr_Type := Etype (Entity (Discr_Name));
5353
5354 if not Is_Discrete_Type (Discr_Type) then
5355 Error_Msg_N
5356 ("discriminant in a variant part must be of a discrete type",
5357 Name (N));
5358 return;
5359 end if;
5360
5361 -- Now analyze the choices, which also analyzes the declarations that
5362 -- are associated with each choice.
5363
5364 Analyze_Choices (Variants (N), Discr_Type);
5365
5366 -- Note: we used to instantiate and call Check_Choices here to check
5367 -- that the choices covered the discriminant, but it's too early to do
5368 -- that because of statically predicated subtypes, whose analysis may
5369 -- be deferred to their freeze point which may be as late as the freeze
5370 -- point of the containing record. So this call is now to be found in
5371 -- Freeze_Record_Declaration.
5372
5373 end Analyze_Variant_Part;
5374
5375 ----------------------------
5376 -- Array_Type_Declaration --
5377 ----------------------------
5378
5379 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
5380 Component_Def : constant Node_Id := Component_Definition (Def);
5381 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
5382 Element_Type : Entity_Id;
5383 Implicit_Base : Entity_Id;
5384 Index : Node_Id;
5385 Related_Id : Entity_Id := Empty;
5386 Nb_Index : Nat;
5387 P : constant Node_Id := Parent (Def);
5388 Priv : Entity_Id;
5389
5390 begin
5391 if Nkind (Def) = N_Constrained_Array_Definition then
5392 Index := First (Discrete_Subtype_Definitions (Def));
5393 else
5394 Index := First (Subtype_Marks (Def));
5395 end if;
5396
5397 -- Find proper names for the implicit types which may be public. In case
5398 -- of anonymous arrays we use the name of the first object of that type
5399 -- as prefix.
5400
5401 if No (T) then
5402 Related_Id := Defining_Identifier (P);
5403 else
5404 Related_Id := T;
5405 end if;
5406
5407 Nb_Index := 1;
5408 while Present (Index) loop
5409 Analyze (Index);
5410
5411 -- Test for odd case of trying to index a type by the type itself
5412
5413 if Is_Entity_Name (Index) and then Entity (Index) = T then
5414 Error_Msg_N ("type& cannot be indexed by itself", Index);
5415 Set_Entity (Index, Standard_Boolean);
5416 Set_Etype (Index, Standard_Boolean);
5417 end if;
5418
5419 -- Check SPARK restriction requiring a subtype mark
5420
5421 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
5422 Check_SPARK_05_Restriction ("subtype mark required", Index);
5423 end if;
5424
5425 -- Add a subtype declaration for each index of private array type
5426 -- declaration whose etype is also private. For example:
5427
5428 -- package Pkg is
5429 -- type Index is private;
5430 -- private
5431 -- type Table is array (Index) of ...
5432 -- end;
5433
5434 -- This is currently required by the expander for the internally
5435 -- generated equality subprogram of records with variant parts in
5436 -- which the etype of some component is such private type.
5437
5438 if Ekind (Current_Scope) = E_Package
5439 and then In_Private_Part (Current_Scope)
5440 and then Has_Private_Declaration (Etype (Index))
5441 then
5442 declare
5443 Loc : constant Source_Ptr := Sloc (Def);
5444 New_E : Entity_Id;
5445 Decl : Entity_Id;
5446
5447 begin
5448 New_E := Make_Temporary (Loc, 'T');
5449 Set_Is_Internal (New_E);
5450
5451 Decl :=
5452 Make_Subtype_Declaration (Loc,
5453 Defining_Identifier => New_E,
5454 Subtype_Indication =>
5455 New_Occurrence_Of (Etype (Index), Loc));
5456
5457 Insert_Before (Parent (Def), Decl);
5458 Analyze (Decl);
5459 Set_Etype (Index, New_E);
5460
5461 -- If the index is a range the Entity attribute is not
5462 -- available. Example:
5463
5464 -- package Pkg is
5465 -- type T is private;
5466 -- private
5467 -- type T is new Natural;
5468 -- Table : array (T(1) .. T(10)) of Boolean;
5469 -- end Pkg;
5470
5471 if Nkind (Index) /= N_Range then
5472 Set_Entity (Index, New_E);
5473 end if;
5474 end;
5475 end if;
5476
5477 Make_Index (Index, P, Related_Id, Nb_Index);
5478
5479 -- Check error of subtype with predicate for index type
5480
5481 Bad_Predicated_Subtype_Use
5482 ("subtype& has predicate, not allowed as index subtype",
5483 Index, Etype (Index));
5484
5485 -- Move to next index
5486
5487 Next_Index (Index);
5488 Nb_Index := Nb_Index + 1;
5489 end loop;
5490
5491 -- Process subtype indication if one is present
5492
5493 if Present (Component_Typ) then
5494 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
5495
5496 Set_Etype (Component_Typ, Element_Type);
5497
5498 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
5499 Check_SPARK_05_Restriction
5500 ("subtype mark required", Component_Typ);
5501 end if;
5502
5503 -- Ada 2005 (AI-230): Access Definition case
5504
5505 else pragma Assert (Present (Access_Definition (Component_Def)));
5506
5507 -- Indicate that the anonymous access type is created by the
5508 -- array type declaration.
5509
5510 Element_Type := Access_Definition
5511 (Related_Nod => P,
5512 N => Access_Definition (Component_Def));
5513 Set_Is_Local_Anonymous_Access (Element_Type);
5514
5515 -- Propagate the parent. This field is needed if we have to generate
5516 -- the master_id associated with an anonymous access to task type
5517 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5518
5519 Set_Parent (Element_Type, Parent (T));
5520
5521 -- Ada 2005 (AI-230): In case of components that are anonymous access
5522 -- types the level of accessibility depends on the enclosing type
5523 -- declaration
5524
5525 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
5526
5527 -- Ada 2005 (AI-254)
5528
5529 declare
5530 CD : constant Node_Id :=
5531 Access_To_Subprogram_Definition
5532 (Access_Definition (Component_Def));
5533 begin
5534 if Present (CD) and then Protected_Present (CD) then
5535 Element_Type :=
5536 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
5537 end if;
5538 end;
5539 end if;
5540
5541 -- Constrained array case
5542
5543 if No (T) then
5544 T := Create_Itype (E_Void, P, Related_Id, 'T');
5545 end if;
5546
5547 if Nkind (Def) = N_Constrained_Array_Definition then
5548
5549 -- Establish Implicit_Base as unconstrained base type
5550
5551 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
5552
5553 Set_Etype (Implicit_Base, Implicit_Base);
5554 Set_Scope (Implicit_Base, Current_Scope);
5555 Set_Has_Delayed_Freeze (Implicit_Base);
5556 Set_Default_SSO (Implicit_Base);
5557
5558 -- The constrained array type is a subtype of the unconstrained one
5559
5560 Set_Ekind (T, E_Array_Subtype);
5561 Init_Size_Align (T);
5562 Set_Etype (T, Implicit_Base);
5563 Set_Scope (T, Current_Scope);
5564 Set_Is_Constrained (T);
5565 Set_First_Index (T,
5566 First (Discrete_Subtype_Definitions (Def)));
5567 Set_Has_Delayed_Freeze (T);
5568
5569 -- Complete setup of implicit base type
5570
5571 Set_First_Index (Implicit_Base, First_Index (T));
5572 Set_Component_Type (Implicit_Base, Element_Type);
5573 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
5574 Set_Has_Protected (Implicit_Base, Has_Protected (Element_Type));
5575 Set_Component_Size (Implicit_Base, Uint_0);
5576 Set_Packed_Array_Impl_Type (Implicit_Base, Empty);
5577 Set_Has_Controlled_Component (Implicit_Base,
5578 Has_Controlled_Component (Element_Type)
5579 or else Is_Controlled (Element_Type));
5580 Set_Finalize_Storage_Only (Implicit_Base,
5581 Finalize_Storage_Only (Element_Type));
5582
5583 -- Inherit the "ghostness" from the constrained array type
5584
5585 if Is_Ghost_Entity (T) or else Ghost_Mode > None then
5586 Set_Is_Ghost_Entity (Implicit_Base);
5587 end if;
5588
5589 -- Unconstrained array case
5590
5591 else
5592 Set_Ekind (T, E_Array_Type);
5593 Init_Size_Align (T);
5594 Set_Etype (T, T);
5595 Set_Scope (T, Current_Scope);
5596 Set_Component_Size (T, Uint_0);
5597 Set_Is_Constrained (T, False);
5598 Set_First_Index (T, First (Subtype_Marks (Def)));
5599 Set_Has_Delayed_Freeze (T, True);
5600 Set_Has_Task (T, Has_Task (Element_Type));
5601 Set_Has_Protected (T, Has_Protected (Element_Type));
5602 Set_Has_Controlled_Component (T, Has_Controlled_Component
5603 (Element_Type)
5604 or else
5605 Is_Controlled (Element_Type));
5606 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
5607 (Element_Type));
5608 Set_Default_SSO (T);
5609 end if;
5610
5611 -- Common attributes for both cases
5612
5613 Set_Component_Type (Base_Type (T), Element_Type);
5614 Set_Packed_Array_Impl_Type (T, Empty);
5615
5616 if Aliased_Present (Component_Definition (Def)) then
5617 Check_SPARK_05_Restriction
5618 ("aliased is not allowed", Component_Definition (Def));
5619 Set_Has_Aliased_Components (Etype (T));
5620 end if;
5621
5622 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5623 -- array type to ensure that objects of this type are initialized.
5624
5625 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
5626 Set_Can_Never_Be_Null (T);
5627
5628 if Null_Exclusion_Present (Component_Definition (Def))
5629
5630 -- No need to check itypes because in their case this check was
5631 -- done at their point of creation
5632
5633 and then not Is_Itype (Element_Type)
5634 then
5635 Error_Msg_N
5636 ("`NOT NULL` not allowed (null already excluded)",
5637 Subtype_Indication (Component_Definition (Def)));
5638 end if;
5639 end if;
5640
5641 Priv := Private_Component (Element_Type);
5642
5643 if Present (Priv) then
5644
5645 -- Check for circular definitions
5646
5647 if Priv = Any_Type then
5648 Set_Component_Type (Etype (T), Any_Type);
5649
5650 -- There is a gap in the visibility of operations on the composite
5651 -- type only if the component type is defined in a different scope.
5652
5653 elsif Scope (Priv) = Current_Scope then
5654 null;
5655
5656 elsif Is_Limited_Type (Priv) then
5657 Set_Is_Limited_Composite (Etype (T));
5658 Set_Is_Limited_Composite (T);
5659 else
5660 Set_Is_Private_Composite (Etype (T));
5661 Set_Is_Private_Composite (T);
5662 end if;
5663 end if;
5664
5665 -- A syntax error in the declaration itself may lead to an empty index
5666 -- list, in which case do a minimal patch.
5667
5668 if No (First_Index (T)) then
5669 Error_Msg_N ("missing index definition in array type declaration", T);
5670
5671 declare
5672 Indexes : constant List_Id :=
5673 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
5674 begin
5675 Set_Discrete_Subtype_Definitions (Def, Indexes);
5676 Set_First_Index (T, First (Indexes));
5677 return;
5678 end;
5679 end if;
5680
5681 -- Create a concatenation operator for the new type. Internal array
5682 -- types created for packed entities do not need such, they are
5683 -- compatible with the user-defined type.
5684
5685 if Number_Dimensions (T) = 1
5686 and then not Is_Packed_Array_Impl_Type (T)
5687 then
5688 New_Concatenation_Op (T);
5689 end if;
5690
5691 -- In the case of an unconstrained array the parser has already verified
5692 -- that all the indexes are unconstrained but we still need to make sure
5693 -- that the element type is constrained.
5694
5695 if Is_Indefinite_Subtype (Element_Type) then
5696 Error_Msg_N
5697 ("unconstrained element type in array declaration",
5698 Subtype_Indication (Component_Def));
5699
5700 elsif Is_Abstract_Type (Element_Type) then
5701 Error_Msg_N
5702 ("the type of a component cannot be abstract",
5703 Subtype_Indication (Component_Def));
5704 end if;
5705
5706 -- There may be an invariant declared for the component type, but
5707 -- the construction of the component invariant checking procedure
5708 -- takes place during expansion.
5709 end Array_Type_Declaration;
5710
5711 ------------------------------------------------------
5712 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5713 ------------------------------------------------------
5714
5715 function Replace_Anonymous_Access_To_Protected_Subprogram
5716 (N : Node_Id) return Entity_Id
5717 is
5718 Loc : constant Source_Ptr := Sloc (N);
5719
5720 Curr_Scope : constant Scope_Stack_Entry :=
5721 Scope_Stack.Table (Scope_Stack.Last);
5722
5723 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
5724
5725 Acc : Node_Id;
5726 -- Access definition in declaration
5727
5728 Comp : Node_Id;
5729 -- Object definition or formal definition with an access definition
5730
5731 Decl : Node_Id;
5732 -- Declaration of anonymous access to subprogram type
5733
5734 Spec : Node_Id;
5735 -- Original specification in access to subprogram
5736
5737 P : Node_Id;
5738
5739 begin
5740 Set_Is_Internal (Anon);
5741
5742 case Nkind (N) is
5743 when N_Component_Declaration |
5744 N_Unconstrained_Array_Definition |
5745 N_Constrained_Array_Definition =>
5746 Comp := Component_Definition (N);
5747 Acc := Access_Definition (Comp);
5748
5749 when N_Discriminant_Specification =>
5750 Comp := Discriminant_Type (N);
5751 Acc := Comp;
5752
5753 when N_Parameter_Specification =>
5754 Comp := Parameter_Type (N);
5755 Acc := Comp;
5756
5757 when N_Access_Function_Definition =>
5758 Comp := Result_Definition (N);
5759 Acc := Comp;
5760
5761 when N_Object_Declaration =>
5762 Comp := Object_Definition (N);
5763 Acc := Comp;
5764
5765 when N_Function_Specification =>
5766 Comp := Result_Definition (N);
5767 Acc := Comp;
5768
5769 when others =>
5770 raise Program_Error;
5771 end case;
5772
5773 Spec := Access_To_Subprogram_Definition (Acc);
5774
5775 Decl :=
5776 Make_Full_Type_Declaration (Loc,
5777 Defining_Identifier => Anon,
5778 Type_Definition => Copy_Separate_Tree (Spec));
5779
5780 Mark_Rewrite_Insertion (Decl);
5781
5782 -- In ASIS mode, analyze the profile on the original node, because
5783 -- the separate copy does not provide enough links to recover the
5784 -- original tree. Analysis is limited to type annotations, within
5785 -- a temporary scope that serves as an anonymous subprogram to collect
5786 -- otherwise useless temporaries and itypes.
5787
5788 if ASIS_Mode then
5789 declare
5790 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
5791
5792 begin
5793 if Nkind (Spec) = N_Access_Function_Definition then
5794 Set_Ekind (Typ, E_Function);
5795 else
5796 Set_Ekind (Typ, E_Procedure);
5797 end if;
5798
5799 Set_Parent (Typ, N);
5800 Set_Scope (Typ, Current_Scope);
5801 Push_Scope (Typ);
5802
5803 Process_Formals (Parameter_Specifications (Spec), Spec);
5804
5805 if Nkind (Spec) = N_Access_Function_Definition then
5806 declare
5807 Def : constant Node_Id := Result_Definition (Spec);
5808
5809 begin
5810 -- The result might itself be an anonymous access type, so
5811 -- have to recurse.
5812
5813 if Nkind (Def) = N_Access_Definition then
5814 if Present (Access_To_Subprogram_Definition (Def)) then
5815 Set_Etype
5816 (Def,
5817 Replace_Anonymous_Access_To_Protected_Subprogram
5818 (Spec));
5819 else
5820 Find_Type (Subtype_Mark (Def));
5821 end if;
5822
5823 else
5824 Find_Type (Def);
5825 end if;
5826 end;
5827 end if;
5828
5829 End_Scope;
5830 end;
5831 end if;
5832
5833 -- Insert the new declaration in the nearest enclosing scope. If the
5834 -- node is a body and N is its return type, the declaration belongs in
5835 -- the enclosing scope.
5836
5837 P := Parent (N);
5838
5839 if Nkind (P) = N_Subprogram_Body
5840 and then Nkind (N) = N_Function_Specification
5841 then
5842 P := Parent (P);
5843 end if;
5844
5845 while Present (P) and then not Has_Declarations (P) loop
5846 P := Parent (P);
5847 end loop;
5848
5849 pragma Assert (Present (P));
5850
5851 if Nkind (P) = N_Package_Specification then
5852 Prepend (Decl, Visible_Declarations (P));
5853 else
5854 Prepend (Decl, Declarations (P));
5855 end if;
5856
5857 -- Replace the anonymous type with an occurrence of the new declaration.
5858 -- In all cases the rewritten node does not have the null-exclusion
5859 -- attribute because (if present) it was already inherited by the
5860 -- anonymous entity (Anon). Thus, in case of components we do not
5861 -- inherit this attribute.
5862
5863 if Nkind (N) = N_Parameter_Specification then
5864 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5865 Set_Etype (Defining_Identifier (N), Anon);
5866 Set_Null_Exclusion_Present (N, False);
5867
5868 elsif Nkind (N) = N_Object_Declaration then
5869 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5870 Set_Etype (Defining_Identifier (N), Anon);
5871
5872 elsif Nkind (N) = N_Access_Function_Definition then
5873 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5874
5875 elsif Nkind (N) = N_Function_Specification then
5876 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5877 Set_Etype (Defining_Unit_Name (N), Anon);
5878
5879 else
5880 Rewrite (Comp,
5881 Make_Component_Definition (Loc,
5882 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
5883 end if;
5884
5885 Mark_Rewrite_Insertion (Comp);
5886
5887 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition) then
5888 Analyze (Decl);
5889
5890 else
5891 -- Temporarily remove the current scope (record or subprogram) from
5892 -- the stack to add the new declarations to the enclosing scope.
5893
5894 Scope_Stack.Decrement_Last;
5895 Analyze (Decl);
5896 Set_Is_Itype (Anon);
5897 Scope_Stack.Append (Curr_Scope);
5898 end if;
5899
5900 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
5901 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
5902 return Anon;
5903 end Replace_Anonymous_Access_To_Protected_Subprogram;
5904
5905 -------------------------------
5906 -- Build_Derived_Access_Type --
5907 -------------------------------
5908
5909 procedure Build_Derived_Access_Type
5910 (N : Node_Id;
5911 Parent_Type : Entity_Id;
5912 Derived_Type : Entity_Id)
5913 is
5914 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
5915
5916 Desig_Type : Entity_Id;
5917 Discr : Entity_Id;
5918 Discr_Con_Elist : Elist_Id;
5919 Discr_Con_El : Elmt_Id;
5920 Subt : Entity_Id;
5921
5922 begin
5923 -- Set the designated type so it is available in case this is an access
5924 -- to a self-referential type, e.g. a standard list type with a next
5925 -- pointer. Will be reset after subtype is built.
5926
5927 Set_Directly_Designated_Type
5928 (Derived_Type, Designated_Type (Parent_Type));
5929
5930 Subt := Process_Subtype (S, N);
5931
5932 if Nkind (S) /= N_Subtype_Indication
5933 and then Subt /= Base_Type (Subt)
5934 then
5935 Set_Ekind (Derived_Type, E_Access_Subtype);
5936 end if;
5937
5938 if Ekind (Derived_Type) = E_Access_Subtype then
5939 declare
5940 Pbase : constant Entity_Id := Base_Type (Parent_Type);
5941 Ibase : constant Entity_Id :=
5942 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
5943 Svg_Chars : constant Name_Id := Chars (Ibase);
5944 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
5945
5946 begin
5947 Copy_Node (Pbase, Ibase);
5948
5949 Set_Chars (Ibase, Svg_Chars);
5950 Set_Next_Entity (Ibase, Svg_Next_E);
5951 Set_Sloc (Ibase, Sloc (Derived_Type));
5952 Set_Scope (Ibase, Scope (Derived_Type));
5953 Set_Freeze_Node (Ibase, Empty);
5954 Set_Is_Frozen (Ibase, False);
5955 Set_Comes_From_Source (Ibase, False);
5956 Set_Is_First_Subtype (Ibase, False);
5957
5958 Set_Etype (Ibase, Pbase);
5959 Set_Etype (Derived_Type, Ibase);
5960 end;
5961 end if;
5962
5963 Set_Directly_Designated_Type
5964 (Derived_Type, Designated_Type (Subt));
5965
5966 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
5967 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
5968 Set_Size_Info (Derived_Type, Parent_Type);
5969 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5970 Set_Depends_On_Private (Derived_Type,
5971 Has_Private_Component (Derived_Type));
5972 Conditional_Delay (Derived_Type, Subt);
5973
5974 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5975 -- that it is not redundant.
5976
5977 if Null_Exclusion_Present (Type_Definition (N)) then
5978 Set_Can_Never_Be_Null (Derived_Type);
5979
5980 -- What is with the "AND THEN FALSE" here ???
5981
5982 if Can_Never_Be_Null (Parent_Type)
5983 and then False
5984 then
5985 Error_Msg_NE
5986 ("`NOT NULL` not allowed (& already excludes null)",
5987 N, Parent_Type);
5988 end if;
5989
5990 elsif Can_Never_Be_Null (Parent_Type) then
5991 Set_Can_Never_Be_Null (Derived_Type);
5992 end if;
5993
5994 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5995 -- the root type for this information.
5996
5997 -- Apply range checks to discriminants for derived record case
5998 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5999
6000 Desig_Type := Designated_Type (Derived_Type);
6001 if Is_Composite_Type (Desig_Type)
6002 and then (not Is_Array_Type (Desig_Type))
6003 and then Has_Discriminants (Desig_Type)
6004 and then Base_Type (Desig_Type) /= Desig_Type
6005 then
6006 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
6007 Discr_Con_El := First_Elmt (Discr_Con_Elist);
6008
6009 Discr := First_Discriminant (Base_Type (Desig_Type));
6010 while Present (Discr_Con_El) loop
6011 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
6012 Next_Elmt (Discr_Con_El);
6013 Next_Discriminant (Discr);
6014 end loop;
6015 end if;
6016 end Build_Derived_Access_Type;
6017
6018 ------------------------------
6019 -- Build_Derived_Array_Type --
6020 ------------------------------
6021
6022 procedure Build_Derived_Array_Type
6023 (N : Node_Id;
6024 Parent_Type : Entity_Id;
6025 Derived_Type : Entity_Id)
6026 is
6027 Loc : constant Source_Ptr := Sloc (N);
6028 Tdef : constant Node_Id := Type_Definition (N);
6029 Indic : constant Node_Id := Subtype_Indication (Tdef);
6030 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6031 Implicit_Base : Entity_Id;
6032 New_Indic : Node_Id;
6033
6034 procedure Make_Implicit_Base;
6035 -- If the parent subtype is constrained, the derived type is a subtype
6036 -- of an implicit base type derived from the parent base.
6037
6038 ------------------------
6039 -- Make_Implicit_Base --
6040 ------------------------
6041
6042 procedure Make_Implicit_Base is
6043 begin
6044 Implicit_Base :=
6045 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6046
6047 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6048 Set_Etype (Implicit_Base, Parent_Base);
6049
6050 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
6051 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
6052
6053 Set_Has_Delayed_Freeze (Implicit_Base, True);
6054
6055 -- Inherit the "ghostness" from the parent base type
6056
6057 if Is_Ghost_Entity (Parent_Base) or else Ghost_Mode > None then
6058 Set_Is_Ghost_Entity (Implicit_Base);
6059 end if;
6060 end Make_Implicit_Base;
6061
6062 -- Start of processing for Build_Derived_Array_Type
6063
6064 begin
6065 if not Is_Constrained (Parent_Type) then
6066 if Nkind (Indic) /= N_Subtype_Indication then
6067 Set_Ekind (Derived_Type, E_Array_Type);
6068
6069 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6070 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
6071
6072 Set_Has_Delayed_Freeze (Derived_Type, True);
6073
6074 else
6075 Make_Implicit_Base;
6076 Set_Etype (Derived_Type, Implicit_Base);
6077
6078 New_Indic :=
6079 Make_Subtype_Declaration (Loc,
6080 Defining_Identifier => Derived_Type,
6081 Subtype_Indication =>
6082 Make_Subtype_Indication (Loc,
6083 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6084 Constraint => Constraint (Indic)));
6085
6086 Rewrite (N, New_Indic);
6087 Analyze (N);
6088 end if;
6089
6090 else
6091 if Nkind (Indic) /= N_Subtype_Indication then
6092 Make_Implicit_Base;
6093
6094 Set_Ekind (Derived_Type, Ekind (Parent_Type));
6095 Set_Etype (Derived_Type, Implicit_Base);
6096 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6097
6098 else
6099 Error_Msg_N ("illegal constraint on constrained type", Indic);
6100 end if;
6101 end if;
6102
6103 -- If parent type is not a derived type itself, and is declared in
6104 -- closed scope (e.g. a subprogram), then we must explicitly introduce
6105 -- the new type's concatenation operator since Derive_Subprograms
6106 -- will not inherit the parent's operator. If the parent type is
6107 -- unconstrained, the operator is of the unconstrained base type.
6108
6109 if Number_Dimensions (Parent_Type) = 1
6110 and then not Is_Limited_Type (Parent_Type)
6111 and then not Is_Derived_Type (Parent_Type)
6112 and then not Is_Package_Or_Generic_Package
6113 (Scope (Base_Type (Parent_Type)))
6114 then
6115 if not Is_Constrained (Parent_Type)
6116 and then Is_Constrained (Derived_Type)
6117 then
6118 New_Concatenation_Op (Implicit_Base);
6119 else
6120 New_Concatenation_Op (Derived_Type);
6121 end if;
6122 end if;
6123 end Build_Derived_Array_Type;
6124
6125 -----------------------------------
6126 -- Build_Derived_Concurrent_Type --
6127 -----------------------------------
6128
6129 procedure Build_Derived_Concurrent_Type
6130 (N : Node_Id;
6131 Parent_Type : Entity_Id;
6132 Derived_Type : Entity_Id)
6133 is
6134 Loc : constant Source_Ptr := Sloc (N);
6135
6136 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
6137 Corr_Decl : Node_Id;
6138 Corr_Decl_Needed : Boolean;
6139 -- If the derived type has fewer discriminants than its parent, the
6140 -- corresponding record is also a derived type, in order to account for
6141 -- the bound discriminants. We create a full type declaration for it in
6142 -- this case.
6143
6144 Constraint_Present : constant Boolean :=
6145 Nkind (Subtype_Indication (Type_Definition (N))) =
6146 N_Subtype_Indication;
6147
6148 D_Constraint : Node_Id;
6149 New_Constraint : Elist_Id;
6150 Old_Disc : Entity_Id;
6151 New_Disc : Entity_Id;
6152 New_N : Node_Id;
6153
6154 begin
6155 Set_Stored_Constraint (Derived_Type, No_Elist);
6156 Corr_Decl_Needed := False;
6157 Old_Disc := Empty;
6158
6159 if Present (Discriminant_Specifications (N))
6160 and then Constraint_Present
6161 then
6162 Old_Disc := First_Discriminant (Parent_Type);
6163 New_Disc := First (Discriminant_Specifications (N));
6164 while Present (New_Disc) and then Present (Old_Disc) loop
6165 Next_Discriminant (Old_Disc);
6166 Next (New_Disc);
6167 end loop;
6168 end if;
6169
6170 if Present (Old_Disc) and then Expander_Active then
6171
6172 -- The new type has fewer discriminants, so we need to create a new
6173 -- corresponding record, which is derived from the corresponding
6174 -- record of the parent, and has a stored constraint that captures
6175 -- the values of the discriminant constraints. The corresponding
6176 -- record is needed only if expander is active and code generation is
6177 -- enabled.
6178
6179 -- The type declaration for the derived corresponding record has the
6180 -- same discriminant part and constraints as the current declaration.
6181 -- Copy the unanalyzed tree to build declaration.
6182
6183 Corr_Decl_Needed := True;
6184 New_N := Copy_Separate_Tree (N);
6185
6186 Corr_Decl :=
6187 Make_Full_Type_Declaration (Loc,
6188 Defining_Identifier => Corr_Record,
6189 Discriminant_Specifications =>
6190 Discriminant_Specifications (New_N),
6191 Type_Definition =>
6192 Make_Derived_Type_Definition (Loc,
6193 Subtype_Indication =>
6194 Make_Subtype_Indication (Loc,
6195 Subtype_Mark =>
6196 New_Occurrence_Of
6197 (Corresponding_Record_Type (Parent_Type), Loc),
6198 Constraint =>
6199 Constraint
6200 (Subtype_Indication (Type_Definition (New_N))))));
6201 end if;
6202
6203 -- Copy Storage_Size and Relative_Deadline variables if task case
6204
6205 if Is_Task_Type (Parent_Type) then
6206 Set_Storage_Size_Variable (Derived_Type,
6207 Storage_Size_Variable (Parent_Type));
6208 Set_Relative_Deadline_Variable (Derived_Type,
6209 Relative_Deadline_Variable (Parent_Type));
6210 end if;
6211
6212 if Present (Discriminant_Specifications (N)) then
6213 Push_Scope (Derived_Type);
6214 Check_Or_Process_Discriminants (N, Derived_Type);
6215
6216 if Constraint_Present then
6217 New_Constraint :=
6218 Expand_To_Stored_Constraint
6219 (Parent_Type,
6220 Build_Discriminant_Constraints
6221 (Parent_Type,
6222 Subtype_Indication (Type_Definition (N)), True));
6223 end if;
6224
6225 End_Scope;
6226
6227 elsif Constraint_Present then
6228
6229 -- Build constrained subtype, copying the constraint, and derive
6230 -- from it to create a derived constrained type.
6231
6232 declare
6233 Loc : constant Source_Ptr := Sloc (N);
6234 Anon : constant Entity_Id :=
6235 Make_Defining_Identifier (Loc,
6236 Chars => New_External_Name (Chars (Derived_Type), 'T'));
6237 Decl : Node_Id;
6238
6239 begin
6240 Decl :=
6241 Make_Subtype_Declaration (Loc,
6242 Defining_Identifier => Anon,
6243 Subtype_Indication =>
6244 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
6245 Insert_Before (N, Decl);
6246 Analyze (Decl);
6247
6248 Rewrite (Subtype_Indication (Type_Definition (N)),
6249 New_Occurrence_Of (Anon, Loc));
6250 Set_Analyzed (Derived_Type, False);
6251 Analyze (N);
6252 return;
6253 end;
6254 end if;
6255
6256 -- By default, operations and private data are inherited from parent.
6257 -- However, in the presence of bound discriminants, a new corresponding
6258 -- record will be created, see below.
6259
6260 Set_Has_Discriminants
6261 (Derived_Type, Has_Discriminants (Parent_Type));
6262 Set_Corresponding_Record_Type
6263 (Derived_Type, Corresponding_Record_Type (Parent_Type));
6264
6265 -- Is_Constrained is set according the parent subtype, but is set to
6266 -- False if the derived type is declared with new discriminants.
6267
6268 Set_Is_Constrained
6269 (Derived_Type,
6270 (Is_Constrained (Parent_Type) or else Constraint_Present)
6271 and then not Present (Discriminant_Specifications (N)));
6272
6273 if Constraint_Present then
6274 if not Has_Discriminants (Parent_Type) then
6275 Error_Msg_N ("untagged parent must have discriminants", N);
6276
6277 elsif Present (Discriminant_Specifications (N)) then
6278
6279 -- Verify that new discriminants are used to constrain old ones
6280
6281 D_Constraint :=
6282 First
6283 (Constraints
6284 (Constraint (Subtype_Indication (Type_Definition (N)))));
6285
6286 Old_Disc := First_Discriminant (Parent_Type);
6287
6288 while Present (D_Constraint) loop
6289 if Nkind (D_Constraint) /= N_Discriminant_Association then
6290
6291 -- Positional constraint. If it is a reference to a new
6292 -- discriminant, it constrains the corresponding old one.
6293
6294 if Nkind (D_Constraint) = N_Identifier then
6295 New_Disc := First_Discriminant (Derived_Type);
6296 while Present (New_Disc) loop
6297 exit when Chars (New_Disc) = Chars (D_Constraint);
6298 Next_Discriminant (New_Disc);
6299 end loop;
6300
6301 if Present (New_Disc) then
6302 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
6303 end if;
6304 end if;
6305
6306 Next_Discriminant (Old_Disc);
6307
6308 -- if this is a named constraint, search by name for the old
6309 -- discriminants constrained by the new one.
6310
6311 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
6312
6313 -- Find new discriminant with that name
6314
6315 New_Disc := First_Discriminant (Derived_Type);
6316 while Present (New_Disc) loop
6317 exit when
6318 Chars (New_Disc) = Chars (Expression (D_Constraint));
6319 Next_Discriminant (New_Disc);
6320 end loop;
6321
6322 if Present (New_Disc) then
6323
6324 -- Verify that new discriminant renames some discriminant
6325 -- of the parent type, and associate the new discriminant
6326 -- with one or more old ones that it renames.
6327
6328 declare
6329 Selector : Node_Id;
6330
6331 begin
6332 Selector := First (Selector_Names (D_Constraint));
6333 while Present (Selector) loop
6334 Old_Disc := First_Discriminant (Parent_Type);
6335 while Present (Old_Disc) loop
6336 exit when Chars (Old_Disc) = Chars (Selector);
6337 Next_Discriminant (Old_Disc);
6338 end loop;
6339
6340 if Present (Old_Disc) then
6341 Set_Corresponding_Discriminant
6342 (New_Disc, Old_Disc);
6343 end if;
6344
6345 Next (Selector);
6346 end loop;
6347 end;
6348 end if;
6349 end if;
6350
6351 Next (D_Constraint);
6352 end loop;
6353
6354 New_Disc := First_Discriminant (Derived_Type);
6355 while Present (New_Disc) loop
6356 if No (Corresponding_Discriminant (New_Disc)) then
6357 Error_Msg_NE
6358 ("new discriminant& must constrain old one", N, New_Disc);
6359
6360 elsif not
6361 Subtypes_Statically_Compatible
6362 (Etype (New_Disc),
6363 Etype (Corresponding_Discriminant (New_Disc)))
6364 then
6365 Error_Msg_NE
6366 ("& not statically compatible with parent discriminant",
6367 N, New_Disc);
6368 end if;
6369
6370 Next_Discriminant (New_Disc);
6371 end loop;
6372 end if;
6373
6374 elsif Present (Discriminant_Specifications (N)) then
6375 Error_Msg_N
6376 ("missing discriminant constraint in untagged derivation", N);
6377 end if;
6378
6379 -- The entity chain of the derived type includes the new discriminants
6380 -- but shares operations with the parent.
6381
6382 if Present (Discriminant_Specifications (N)) then
6383 Old_Disc := First_Discriminant (Parent_Type);
6384 while Present (Old_Disc) loop
6385 if No (Next_Entity (Old_Disc))
6386 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
6387 then
6388 Set_Next_Entity
6389 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
6390 exit;
6391 end if;
6392
6393 Next_Discriminant (Old_Disc);
6394 end loop;
6395
6396 else
6397 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
6398 if Has_Discriminants (Parent_Type) then
6399 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6400 Set_Discriminant_Constraint (
6401 Derived_Type, Discriminant_Constraint (Parent_Type));
6402 end if;
6403 end if;
6404
6405 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
6406
6407 Set_Has_Completion (Derived_Type);
6408
6409 if Corr_Decl_Needed then
6410 Set_Stored_Constraint (Derived_Type, New_Constraint);
6411 Insert_After (N, Corr_Decl);
6412 Analyze (Corr_Decl);
6413 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
6414 end if;
6415 end Build_Derived_Concurrent_Type;
6416
6417 ------------------------------------
6418 -- Build_Derived_Enumeration_Type --
6419 ------------------------------------
6420
6421 procedure Build_Derived_Enumeration_Type
6422 (N : Node_Id;
6423 Parent_Type : Entity_Id;
6424 Derived_Type : Entity_Id)
6425 is
6426 Loc : constant Source_Ptr := Sloc (N);
6427 Def : constant Node_Id := Type_Definition (N);
6428 Indic : constant Node_Id := Subtype_Indication (Def);
6429 Implicit_Base : Entity_Id;
6430 Literal : Entity_Id;
6431 New_Lit : Entity_Id;
6432 Literals_List : List_Id;
6433 Type_Decl : Node_Id;
6434 Hi, Lo : Node_Id;
6435 Rang_Expr : Node_Id;
6436
6437 begin
6438 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6439 -- not have explicit literals lists we need to process types derived
6440 -- from them specially. This is handled by Derived_Standard_Character.
6441 -- If the parent type is a generic type, there are no literals either,
6442 -- and we construct the same skeletal representation as for the generic
6443 -- parent type.
6444
6445 if Is_Standard_Character_Type (Parent_Type) then
6446 Derived_Standard_Character (N, Parent_Type, Derived_Type);
6447
6448 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
6449 declare
6450 Lo : Node_Id;
6451 Hi : Node_Id;
6452
6453 begin
6454 if Nkind (Indic) /= N_Subtype_Indication then
6455 Lo :=
6456 Make_Attribute_Reference (Loc,
6457 Attribute_Name => Name_First,
6458 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6459 Set_Etype (Lo, Derived_Type);
6460
6461 Hi :=
6462 Make_Attribute_Reference (Loc,
6463 Attribute_Name => Name_Last,
6464 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6465 Set_Etype (Hi, Derived_Type);
6466
6467 Set_Scalar_Range (Derived_Type,
6468 Make_Range (Loc,
6469 Low_Bound => Lo,
6470 High_Bound => Hi));
6471 else
6472
6473 -- Analyze subtype indication and verify compatibility
6474 -- with parent type.
6475
6476 if Base_Type (Process_Subtype (Indic, N)) /=
6477 Base_Type (Parent_Type)
6478 then
6479 Error_Msg_N
6480 ("illegal constraint for formal discrete type", N);
6481 end if;
6482 end if;
6483 end;
6484
6485 else
6486 -- If a constraint is present, analyze the bounds to catch
6487 -- premature usage of the derived literals.
6488
6489 if Nkind (Indic) = N_Subtype_Indication
6490 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
6491 then
6492 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
6493 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
6494 end if;
6495
6496 -- Introduce an implicit base type for the derived type even if there
6497 -- is no constraint attached to it, since this seems closer to the
6498 -- Ada semantics. Build a full type declaration tree for the derived
6499 -- type using the implicit base type as the defining identifier. The
6500 -- build a subtype declaration tree which applies the constraint (if
6501 -- any) have it replace the derived type declaration.
6502
6503 Literal := First_Literal (Parent_Type);
6504 Literals_List := New_List;
6505 while Present (Literal)
6506 and then Ekind (Literal) = E_Enumeration_Literal
6507 loop
6508 -- Literals of the derived type have the same representation as
6509 -- those of the parent type, but this representation can be
6510 -- overridden by an explicit representation clause. Indicate
6511 -- that there is no explicit representation given yet. These
6512 -- derived literals are implicit operations of the new type,
6513 -- and can be overridden by explicit ones.
6514
6515 if Nkind (Literal) = N_Defining_Character_Literal then
6516 New_Lit :=
6517 Make_Defining_Character_Literal (Loc, Chars (Literal));
6518 else
6519 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
6520 end if;
6521
6522 Set_Ekind (New_Lit, E_Enumeration_Literal);
6523 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
6524 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
6525 Set_Enumeration_Rep_Expr (New_Lit, Empty);
6526 Set_Alias (New_Lit, Literal);
6527 Set_Is_Known_Valid (New_Lit, True);
6528
6529 Append (New_Lit, Literals_List);
6530 Next_Literal (Literal);
6531 end loop;
6532
6533 Implicit_Base :=
6534 Make_Defining_Identifier (Sloc (Derived_Type),
6535 Chars => New_External_Name (Chars (Derived_Type), 'B'));
6536
6537 -- Indicate the proper nature of the derived type. This must be done
6538 -- before analysis of the literals, to recognize cases when a literal
6539 -- may be hidden by a previous explicit function definition (cf.
6540 -- c83031a).
6541
6542 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
6543 Set_Etype (Derived_Type, Implicit_Base);
6544
6545 Type_Decl :=
6546 Make_Full_Type_Declaration (Loc,
6547 Defining_Identifier => Implicit_Base,
6548 Discriminant_Specifications => No_List,
6549 Type_Definition =>
6550 Make_Enumeration_Type_Definition (Loc, Literals_List));
6551
6552 Mark_Rewrite_Insertion (Type_Decl);
6553 Insert_Before (N, Type_Decl);
6554 Analyze (Type_Decl);
6555
6556 -- After the implicit base is analyzed its Etype needs to be changed
6557 -- to reflect the fact that it is derived from the parent type which
6558 -- was ignored during analysis. We also set the size at this point.
6559
6560 Set_Etype (Implicit_Base, Parent_Type);
6561
6562 Set_Size_Info (Implicit_Base, Parent_Type);
6563 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
6564 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
6565
6566 -- Copy other flags from parent type
6567
6568 Set_Has_Non_Standard_Rep
6569 (Implicit_Base, Has_Non_Standard_Rep
6570 (Parent_Type));
6571 Set_Has_Pragma_Ordered
6572 (Implicit_Base, Has_Pragma_Ordered
6573 (Parent_Type));
6574 Set_Has_Delayed_Freeze (Implicit_Base);
6575
6576 -- Process the subtype indication including a validation check on the
6577 -- constraint, if any. If a constraint is given, its bounds must be
6578 -- implicitly converted to the new type.
6579
6580 if Nkind (Indic) = N_Subtype_Indication then
6581 declare
6582 R : constant Node_Id :=
6583 Range_Expression (Constraint (Indic));
6584
6585 begin
6586 if Nkind (R) = N_Range then
6587 Hi := Build_Scalar_Bound
6588 (High_Bound (R), Parent_Type, Implicit_Base);
6589 Lo := Build_Scalar_Bound
6590 (Low_Bound (R), Parent_Type, Implicit_Base);
6591
6592 else
6593 -- Constraint is a Range attribute. Replace with explicit
6594 -- mention of the bounds of the prefix, which must be a
6595 -- subtype.
6596
6597 Analyze (Prefix (R));
6598 Hi :=
6599 Convert_To (Implicit_Base,
6600 Make_Attribute_Reference (Loc,
6601 Attribute_Name => Name_Last,
6602 Prefix =>
6603 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6604
6605 Lo :=
6606 Convert_To (Implicit_Base,
6607 Make_Attribute_Reference (Loc,
6608 Attribute_Name => Name_First,
6609 Prefix =>
6610 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6611 end if;
6612 end;
6613
6614 else
6615 Hi :=
6616 Build_Scalar_Bound
6617 (Type_High_Bound (Parent_Type),
6618 Parent_Type, Implicit_Base);
6619 Lo :=
6620 Build_Scalar_Bound
6621 (Type_Low_Bound (Parent_Type),
6622 Parent_Type, Implicit_Base);
6623 end if;
6624
6625 Rang_Expr :=
6626 Make_Range (Loc,
6627 Low_Bound => Lo,
6628 High_Bound => Hi);
6629
6630 -- If we constructed a default range for the case where no range
6631 -- was given, then the expressions in the range must not freeze
6632 -- since they do not correspond to expressions in the source.
6633
6634 if Nkind (Indic) /= N_Subtype_Indication then
6635 Set_Must_Not_Freeze (Lo);
6636 Set_Must_Not_Freeze (Hi);
6637 Set_Must_Not_Freeze (Rang_Expr);
6638 end if;
6639
6640 Rewrite (N,
6641 Make_Subtype_Declaration (Loc,
6642 Defining_Identifier => Derived_Type,
6643 Subtype_Indication =>
6644 Make_Subtype_Indication (Loc,
6645 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6646 Constraint =>
6647 Make_Range_Constraint (Loc,
6648 Range_Expression => Rang_Expr))));
6649
6650 Analyze (N);
6651
6652 -- Propagate the aspects from the original type declaration to the
6653 -- declaration of the implicit base.
6654
6655 Move_Aspects (From => Original_Node (N), To => Type_Decl);
6656
6657 -- Apply a range check. Since this range expression doesn't have an
6658 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6659 -- this right???
6660
6661 if Nkind (Indic) = N_Subtype_Indication then
6662 Apply_Range_Check
6663 (Range_Expression (Constraint (Indic)), Parent_Type,
6664 Source_Typ => Entity (Subtype_Mark (Indic)));
6665 end if;
6666 end if;
6667 end Build_Derived_Enumeration_Type;
6668
6669 --------------------------------
6670 -- Build_Derived_Numeric_Type --
6671 --------------------------------
6672
6673 procedure Build_Derived_Numeric_Type
6674 (N : Node_Id;
6675 Parent_Type : Entity_Id;
6676 Derived_Type : Entity_Id)
6677 is
6678 Loc : constant Source_Ptr := Sloc (N);
6679 Tdef : constant Node_Id := Type_Definition (N);
6680 Indic : constant Node_Id := Subtype_Indication (Tdef);
6681 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6682 No_Constraint : constant Boolean := Nkind (Indic) /=
6683 N_Subtype_Indication;
6684 Implicit_Base : Entity_Id;
6685
6686 Lo : Node_Id;
6687 Hi : Node_Id;
6688
6689 begin
6690 -- Process the subtype indication including a validation check on
6691 -- the constraint if any.
6692
6693 Discard_Node (Process_Subtype (Indic, N));
6694
6695 -- Introduce an implicit base type for the derived type even if there
6696 -- is no constraint attached to it, since this seems closer to the Ada
6697 -- semantics.
6698
6699 Implicit_Base :=
6700 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6701
6702 Set_Etype (Implicit_Base, Parent_Base);
6703 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6704 Set_Size_Info (Implicit_Base, Parent_Base);
6705 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
6706 Set_Parent (Implicit_Base, Parent (Derived_Type));
6707 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
6708
6709 -- Set RM Size for discrete type or decimal fixed-point type
6710 -- Ordinary fixed-point is excluded, why???
6711
6712 if Is_Discrete_Type (Parent_Base)
6713 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
6714 then
6715 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
6716 end if;
6717
6718 Set_Has_Delayed_Freeze (Implicit_Base);
6719
6720 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
6721 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
6722
6723 Set_Scalar_Range (Implicit_Base,
6724 Make_Range (Loc,
6725 Low_Bound => Lo,
6726 High_Bound => Hi));
6727
6728 if Has_Infinities (Parent_Base) then
6729 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
6730 end if;
6731
6732 -- The Derived_Type, which is the entity of the declaration, is a
6733 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6734 -- absence of an explicit constraint.
6735
6736 Set_Etype (Derived_Type, Implicit_Base);
6737
6738 -- If we did not have a constraint, then the Ekind is set from the
6739 -- parent type (otherwise Process_Subtype has set the bounds)
6740
6741 if No_Constraint then
6742 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
6743 end if;
6744
6745 -- If we did not have a range constraint, then set the range from the
6746 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6747
6748 if No_Constraint or else not Has_Range_Constraint (Indic) then
6749 Set_Scalar_Range (Derived_Type,
6750 Make_Range (Loc,
6751 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
6752 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
6753 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6754
6755 if Has_Infinities (Parent_Type) then
6756 Set_Includes_Infinities (Scalar_Range (Derived_Type));
6757 end if;
6758
6759 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
6760 end if;
6761
6762 Set_Is_Descendent_Of_Address (Derived_Type,
6763 Is_Descendent_Of_Address (Parent_Type));
6764 Set_Is_Descendent_Of_Address (Implicit_Base,
6765 Is_Descendent_Of_Address (Parent_Type));
6766
6767 -- Set remaining type-specific fields, depending on numeric type
6768
6769 if Is_Modular_Integer_Type (Parent_Type) then
6770 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
6771
6772 Set_Non_Binary_Modulus
6773 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
6774
6775 Set_Is_Known_Valid
6776 (Implicit_Base, Is_Known_Valid (Parent_Base));
6777
6778 elsif Is_Floating_Point_Type (Parent_Type) then
6779
6780 -- Digits of base type is always copied from the digits value of
6781 -- the parent base type, but the digits of the derived type will
6782 -- already have been set if there was a constraint present.
6783
6784 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6785 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
6786
6787 if No_Constraint then
6788 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
6789 end if;
6790
6791 elsif Is_Fixed_Point_Type (Parent_Type) then
6792
6793 -- Small of base type and derived type are always copied from the
6794 -- parent base type, since smalls never change. The delta of the
6795 -- base type is also copied from the parent base type. However the
6796 -- delta of the derived type will have been set already if a
6797 -- constraint was present.
6798
6799 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
6800 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
6801 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
6802
6803 if No_Constraint then
6804 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
6805 end if;
6806
6807 -- The scale and machine radix in the decimal case are always
6808 -- copied from the parent base type.
6809
6810 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
6811 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
6812 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
6813
6814 Set_Machine_Radix_10
6815 (Derived_Type, Machine_Radix_10 (Parent_Base));
6816 Set_Machine_Radix_10
6817 (Implicit_Base, Machine_Radix_10 (Parent_Base));
6818
6819 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6820
6821 if No_Constraint then
6822 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
6823
6824 else
6825 -- the analysis of the subtype_indication sets the
6826 -- digits value of the derived type.
6827
6828 null;
6829 end if;
6830 end if;
6831 end if;
6832
6833 if Is_Integer_Type (Parent_Type) then
6834 Set_Has_Shift_Operator
6835 (Implicit_Base, Has_Shift_Operator (Parent_Type));
6836 end if;
6837
6838 -- The type of the bounds is that of the parent type, and they
6839 -- must be converted to the derived type.
6840
6841 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
6842
6843 -- The implicit_base should be frozen when the derived type is frozen,
6844 -- but note that it is used in the conversions of the bounds. For fixed
6845 -- types we delay the determination of the bounds until the proper
6846 -- freezing point. For other numeric types this is rejected by GCC, for
6847 -- reasons that are currently unclear (???), so we choose to freeze the
6848 -- implicit base now. In the case of integers and floating point types
6849 -- this is harmless because subsequent representation clauses cannot
6850 -- affect anything, but it is still baffling that we cannot use the
6851 -- same mechanism for all derived numeric types.
6852
6853 -- There is a further complication: actually some representation
6854 -- clauses can affect the implicit base type. For example, attribute
6855 -- definition clauses for stream-oriented attributes need to set the
6856 -- corresponding TSS entries on the base type, and this normally
6857 -- cannot be done after the base type is frozen, so the circuitry in
6858 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6859 -- and not use Set_TSS in this case.
6860
6861 -- There are also consequences for the case of delayed representation
6862 -- aspects for some cases. For example, a Size aspect is delayed and
6863 -- should not be evaluated to the freeze point. This early freezing
6864 -- means that the size attribute evaluation happens too early???
6865
6866 if Is_Fixed_Point_Type (Parent_Type) then
6867 Conditional_Delay (Implicit_Base, Parent_Type);
6868 else
6869 Freeze_Before (N, Implicit_Base);
6870 end if;
6871 end Build_Derived_Numeric_Type;
6872
6873 --------------------------------
6874 -- Build_Derived_Private_Type --
6875 --------------------------------
6876
6877 procedure Build_Derived_Private_Type
6878 (N : Node_Id;
6879 Parent_Type : Entity_Id;
6880 Derived_Type : Entity_Id;
6881 Is_Completion : Boolean;
6882 Derive_Subps : Boolean := True)
6883 is
6884 Loc : constant Source_Ptr := Sloc (N);
6885 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
6886 Par_Scope : constant Entity_Id := Scope (Par_Base);
6887 Full_N : constant Node_Id := New_Copy_Tree (N);
6888 Full_Der : Entity_Id := New_Copy (Derived_Type);
6889 Full_P : Entity_Id;
6890
6891 procedure Build_Full_Derivation;
6892 -- Build full derivation, i.e. derive from the full view
6893
6894 procedure Copy_And_Build;
6895 -- Copy derived type declaration, replace parent with its full view,
6896 -- and build derivation
6897
6898 ---------------------------
6899 -- Build_Full_Derivation --
6900 ---------------------------
6901
6902 procedure Build_Full_Derivation is
6903 begin
6904 -- If parent scope is not open, install the declarations
6905
6906 if not In_Open_Scopes (Par_Scope) then
6907 Install_Private_Declarations (Par_Scope);
6908 Install_Visible_Declarations (Par_Scope);
6909 Copy_And_Build;
6910 Uninstall_Declarations (Par_Scope);
6911
6912 -- If parent scope is open and in another unit, and parent has a
6913 -- completion, then the derivation is taking place in the visible
6914 -- part of a child unit. In that case retrieve the full view of
6915 -- the parent momentarily.
6916
6917 elsif not In_Same_Source_Unit (N, Parent_Type) then
6918 Full_P := Full_View (Parent_Type);
6919 Exchange_Declarations (Parent_Type);
6920 Copy_And_Build;
6921 Exchange_Declarations (Full_P);
6922
6923 -- Otherwise it is a local derivation
6924
6925 else
6926 Copy_And_Build;
6927 end if;
6928 end Build_Full_Derivation;
6929
6930 --------------------
6931 -- Copy_And_Build --
6932 --------------------
6933
6934 procedure Copy_And_Build is
6935 Full_Parent : Entity_Id := Parent_Type;
6936
6937 begin
6938 -- If the parent is itself derived from another private type,
6939 -- installing the private declarations has not affected its
6940 -- privacy status, so use its own full view explicitly.
6941
6942 if Is_Private_Type (Full_Parent)
6943 and then Present (Full_View (Full_Parent))
6944 then
6945 Full_Parent := Full_View (Full_Parent);
6946 end if;
6947
6948 -- And its underlying full view if necessary
6949
6950 if Is_Private_Type (Full_Parent)
6951 and then Present (Underlying_Full_View (Full_Parent))
6952 then
6953 Full_Parent := Underlying_Full_View (Full_Parent);
6954 end if;
6955
6956 -- For record, access and most enumeration types, derivation from
6957 -- the full view requires a fully-fledged declaration. In the other
6958 -- cases, just use an itype.
6959
6960 if Ekind (Full_Parent) in Record_Kind
6961 or else Ekind (Full_Parent) in Access_Kind
6962 or else
6963 (Ekind (Full_Parent) in Enumeration_Kind
6964 and then not Is_Standard_Character_Type (Full_Parent)
6965 and then not Is_Generic_Type (Root_Type (Full_Parent)))
6966 then
6967 -- Copy and adjust declaration to provide a completion for what
6968 -- is originally a private declaration. Indicate that full view
6969 -- is internally generated.
6970
6971 Set_Comes_From_Source (Full_N, False);
6972 Set_Comes_From_Source (Full_Der, False);
6973 Set_Parent (Full_Der, Full_N);
6974 Set_Defining_Identifier (Full_N, Full_Der);
6975
6976 -- If there are no constraints, adjust the subtype mark
6977
6978 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
6979 N_Subtype_Indication
6980 then
6981 Set_Subtype_Indication
6982 (Type_Definition (Full_N),
6983 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
6984 end if;
6985
6986 Insert_After (N, Full_N);
6987
6988 -- Build full view of derived type from full view of parent which
6989 -- is now installed. Subprograms have been derived on the partial
6990 -- view, the completion does not derive them anew.
6991
6992 if Ekind (Full_Parent) in Record_Kind then
6993
6994 -- If parent type is tagged, the completion inherits the proper
6995 -- primitive operations.
6996
6997 if Is_Tagged_Type (Parent_Type) then
6998 Build_Derived_Record_Type
6999 (Full_N, Full_Parent, Full_Der, Derive_Subps);
7000 else
7001 Build_Derived_Record_Type
7002 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
7003 end if;
7004
7005 else
7006 Build_Derived_Type
7007 (Full_N, Full_Parent, Full_Der,
7008 Is_Completion => False, Derive_Subps => False);
7009 end if;
7010
7011 -- The full declaration has been introduced into the tree and
7012 -- processed in the step above. It should not be analyzed again
7013 -- (when encountered later in the current list of declarations)
7014 -- to prevent spurious name conflicts. The full entity remains
7015 -- invisible.
7016
7017 Set_Analyzed (Full_N);
7018
7019 else
7020 Full_Der :=
7021 Make_Defining_Identifier (Sloc (Derived_Type),
7022 Chars => Chars (Derived_Type));
7023 Set_Is_Itype (Full_Der);
7024 Set_Associated_Node_For_Itype (Full_Der, N);
7025 Set_Parent (Full_Der, N);
7026 Build_Derived_Type
7027 (N, Full_Parent, Full_Der,
7028 Is_Completion => False, Derive_Subps => False);
7029 end if;
7030
7031 Set_Has_Private_Declaration (Full_Der);
7032 Set_Has_Private_Declaration (Derived_Type);
7033
7034 Set_Scope (Full_Der, Scope (Derived_Type));
7035 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
7036 Set_Has_Size_Clause (Full_Der, False);
7037 Set_Has_Alignment_Clause (Full_Der, False);
7038 Set_Has_Delayed_Freeze (Full_Der);
7039 Set_Is_Frozen (Full_Der, False);
7040 Set_Freeze_Node (Full_Der, Empty);
7041 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
7042 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
7043
7044 -- The convention on the base type may be set in the private part
7045 -- and not propagated to the subtype until later, so we obtain the
7046 -- convention from the base type of the parent.
7047
7048 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
7049 end Copy_And_Build;
7050
7051 -- Start of processing for Build_Derived_Private_Type
7052
7053 begin
7054 if Is_Tagged_Type (Parent_Type) then
7055 Full_P := Full_View (Parent_Type);
7056
7057 -- A type extension of a type with unknown discriminants is an
7058 -- indefinite type that the back-end cannot handle directly.
7059 -- We treat it as a private type, and build a completion that is
7060 -- derived from the full view of the parent, and hopefully has
7061 -- known discriminants.
7062
7063 -- If the full view of the parent type has an underlying record view,
7064 -- use it to generate the underlying record view of this derived type
7065 -- (required for chains of derivations with unknown discriminants).
7066
7067 -- Minor optimization: we avoid the generation of useless underlying
7068 -- record view entities if the private type declaration has unknown
7069 -- discriminants but its corresponding full view has no
7070 -- discriminants.
7071
7072 if Has_Unknown_Discriminants (Parent_Type)
7073 and then Present (Full_P)
7074 and then (Has_Discriminants (Full_P)
7075 or else Present (Underlying_Record_View (Full_P)))
7076 and then not In_Open_Scopes (Par_Scope)
7077 and then Expander_Active
7078 then
7079 declare
7080 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
7081 New_Ext : constant Node_Id :=
7082 Copy_Separate_Tree
7083 (Record_Extension_Part (Type_Definition (N)));
7084 Decl : Node_Id;
7085
7086 begin
7087 Build_Derived_Record_Type
7088 (N, Parent_Type, Derived_Type, Derive_Subps);
7089
7090 -- Build anonymous completion, as a derivation from the full
7091 -- view of the parent. This is not a completion in the usual
7092 -- sense, because the current type is not private.
7093
7094 Decl :=
7095 Make_Full_Type_Declaration (Loc,
7096 Defining_Identifier => Full_Der,
7097 Type_Definition =>
7098 Make_Derived_Type_Definition (Loc,
7099 Subtype_Indication =>
7100 New_Copy_Tree
7101 (Subtype_Indication (Type_Definition (N))),
7102 Record_Extension_Part => New_Ext));
7103
7104 -- If the parent type has an underlying record view, use it
7105 -- here to build the new underlying record view.
7106
7107 if Present (Underlying_Record_View (Full_P)) then
7108 pragma Assert
7109 (Nkind (Subtype_Indication (Type_Definition (Decl)))
7110 = N_Identifier);
7111 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
7112 Underlying_Record_View (Full_P));
7113 end if;
7114
7115 Install_Private_Declarations (Par_Scope);
7116 Install_Visible_Declarations (Par_Scope);
7117 Insert_Before (N, Decl);
7118
7119 -- Mark entity as an underlying record view before analysis,
7120 -- to avoid generating the list of its primitive operations
7121 -- (which is not really required for this entity) and thus
7122 -- prevent spurious errors associated with missing overriding
7123 -- of abstract primitives (overridden only for Derived_Type).
7124
7125 Set_Ekind (Full_Der, E_Record_Type);
7126 Set_Is_Underlying_Record_View (Full_Der);
7127 Set_Default_SSO (Full_Der);
7128
7129 Analyze (Decl);
7130
7131 pragma Assert (Has_Discriminants (Full_Der)
7132 and then not Has_Unknown_Discriminants (Full_Der));
7133
7134 Uninstall_Declarations (Par_Scope);
7135
7136 -- Freeze the underlying record view, to prevent generation of
7137 -- useless dispatching information, which is simply shared with
7138 -- the real derived type.
7139
7140 Set_Is_Frozen (Full_Der);
7141
7142 -- If the derived type has access discriminants, create
7143 -- references to their anonymous types now, to prevent
7144 -- back-end problems when their first use is in generated
7145 -- bodies of primitives.
7146
7147 declare
7148 E : Entity_Id;
7149
7150 begin
7151 E := First_Entity (Full_Der);
7152
7153 while Present (E) loop
7154 if Ekind (E) = E_Discriminant
7155 and then Ekind (Etype (E)) = E_Anonymous_Access_Type
7156 then
7157 Build_Itype_Reference (Etype (E), Decl);
7158 end if;
7159
7160 Next_Entity (E);
7161 end loop;
7162 end;
7163
7164 -- Set up links between real entity and underlying record view
7165
7166 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
7167 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
7168 end;
7169
7170 -- If discriminants are known, build derived record
7171
7172 else
7173 Build_Derived_Record_Type
7174 (N, Parent_Type, Derived_Type, Derive_Subps);
7175 end if;
7176
7177 return;
7178
7179 elsif Has_Discriminants (Parent_Type) then
7180
7181 -- Build partial view of derived type from partial view of parent.
7182 -- This must be done before building the full derivation because the
7183 -- second derivation will modify the discriminants of the first and
7184 -- the discriminants are chained with the rest of the components in
7185 -- the full derivation.
7186
7187 Build_Derived_Record_Type
7188 (N, Parent_Type, Derived_Type, Derive_Subps);
7189
7190 -- Build the full derivation if this is not the anonymous derived
7191 -- base type created by Build_Derived_Record_Type in the constrained
7192 -- case (see point 5. of its head comment) since we build it for the
7193 -- derived subtype. And skip it for protected types altogether, as
7194 -- gigi does not use these types directly.
7195
7196 if Present (Full_View (Parent_Type))
7197 and then not Is_Itype (Derived_Type)
7198 and then not (Ekind (Full_View (Parent_Type)) in Protected_Kind)
7199 then
7200 declare
7201 Der_Base : constant Entity_Id := Base_Type (Derived_Type);
7202 Discr : Entity_Id;
7203 Last_Discr : Entity_Id;
7204
7205 begin
7206 -- If this is not a completion, construct the implicit full
7207 -- view by deriving from the full view of the parent type.
7208 -- But if this is a completion, the derived private type
7209 -- being built is a full view and the full derivation can
7210 -- only be its underlying full view.
7211
7212 Build_Full_Derivation;
7213
7214 if not Is_Completion then
7215 Set_Full_View (Derived_Type, Full_Der);
7216 else
7217 Set_Underlying_Full_View (Derived_Type, Full_Der);
7218 end if;
7219
7220 if not Is_Base_Type (Derived_Type) then
7221 Set_Full_View (Der_Base, Base_Type (Full_Der));
7222 end if;
7223
7224 -- Copy the discriminant list from full view to the partial
7225 -- view (base type and its subtype). Gigi requires that the
7226 -- partial and full views have the same discriminants.
7227
7228 -- Note that since the partial view points to discriminants
7229 -- in the full view, their scope will be that of the full
7230 -- view. This might cause some front end problems and need
7231 -- adjustment???
7232
7233 Discr := First_Discriminant (Base_Type (Full_Der));
7234 Set_First_Entity (Der_Base, Discr);
7235
7236 loop
7237 Last_Discr := Discr;
7238 Next_Discriminant (Discr);
7239 exit when No (Discr);
7240 end loop;
7241
7242 Set_Last_Entity (Der_Base, Last_Discr);
7243 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
7244 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
7245
7246 Set_Stored_Constraint
7247 (Full_Der, Stored_Constraint (Derived_Type));
7248 end;
7249 end if;
7250
7251 elsif Present (Full_View (Parent_Type))
7252 and then Has_Discriminants (Full_View (Parent_Type))
7253 then
7254 if Has_Unknown_Discriminants (Parent_Type)
7255 and then Nkind (Subtype_Indication (Type_Definition (N))) =
7256 N_Subtype_Indication
7257 then
7258 Error_Msg_N
7259 ("cannot constrain type with unknown discriminants",
7260 Subtype_Indication (Type_Definition (N)));
7261 return;
7262 end if;
7263
7264 -- If this is not a completion, construct the implicit full view by
7265 -- deriving from the full view of the parent type. But if this is a
7266 -- completion, the derived private type being built is a full view
7267 -- and the full derivation can only be its underlying full view.
7268
7269 Build_Full_Derivation;
7270
7271 if not Is_Completion then
7272 Set_Full_View (Derived_Type, Full_Der);
7273 else
7274 Set_Underlying_Full_View (Derived_Type, Full_Der);
7275 end if;
7276
7277 -- In any case, the primitive operations are inherited from the
7278 -- parent type, not from the internal full view.
7279
7280 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
7281
7282 if Derive_Subps then
7283 Derive_Subprograms (Parent_Type, Derived_Type);
7284 end if;
7285
7286 Set_Stored_Constraint (Derived_Type, No_Elist);
7287 Set_Is_Constrained
7288 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
7289
7290 else
7291 -- Untagged type, No discriminants on either view
7292
7293 if Nkind (Subtype_Indication (Type_Definition (N))) =
7294 N_Subtype_Indication
7295 then
7296 Error_Msg_N
7297 ("illegal constraint on type without discriminants", N);
7298 end if;
7299
7300 if Present (Discriminant_Specifications (N))
7301 and then Present (Full_View (Parent_Type))
7302 and then not Is_Tagged_Type (Full_View (Parent_Type))
7303 then
7304 Error_Msg_N ("cannot add discriminants to untagged type", N);
7305 end if;
7306
7307 Set_Stored_Constraint (Derived_Type, No_Elist);
7308 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7309 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
7310 Set_Has_Controlled_Component
7311 (Derived_Type, Has_Controlled_Component
7312 (Parent_Type));
7313
7314 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7315
7316 if not Is_Controlled (Parent_Type) then
7317 Set_Finalize_Storage_Only
7318 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
7319 end if;
7320
7321 -- If this is not a completion, construct the implicit full view by
7322 -- deriving from the full view of the parent type.
7323
7324 -- ??? If the parent is untagged private and its completion is
7325 -- tagged, this mechanism will not work because we cannot derive from
7326 -- the tagged full view unless we have an extension.
7327
7328 if Present (Full_View (Parent_Type))
7329 and then not Is_Tagged_Type (Full_View (Parent_Type))
7330 and then not Is_Completion
7331 then
7332 Build_Full_Derivation;
7333 Set_Full_View (Derived_Type, Full_Der);
7334 end if;
7335 end if;
7336
7337 Set_Has_Unknown_Discriminants (Derived_Type,
7338 Has_Unknown_Discriminants (Parent_Type));
7339
7340 if Is_Private_Type (Derived_Type) then
7341 Set_Private_Dependents (Derived_Type, New_Elmt_List);
7342 end if;
7343
7344 -- If the parent base type is in scope, add the derived type to its
7345 -- list of private dependents, because its full view may become
7346 -- visible subsequently (in a nested private part, a body, or in a
7347 -- further child unit).
7348
7349 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
7350 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
7351
7352 -- Check for unusual case where a type completed by a private
7353 -- derivation occurs within a package nested in a child unit, and
7354 -- the parent is declared in an ancestor.
7355
7356 if Is_Child_Unit (Scope (Current_Scope))
7357 and then Is_Completion
7358 and then In_Private_Part (Current_Scope)
7359 and then Scope (Parent_Type) /= Current_Scope
7360
7361 -- Note that if the parent has a completion in the private part,
7362 -- (which is itself a derivation from some other private type)
7363 -- it is that completion that is visible, there is no full view
7364 -- available, and no special processing is needed.
7365
7366 and then Present (Full_View (Parent_Type))
7367 then
7368 -- In this case, the full view of the parent type will become
7369 -- visible in the body of the enclosing child, and only then will
7370 -- the current type be possibly non-private. Build an underlying
7371 -- full view that will be installed when the enclosing child body
7372 -- is compiled.
7373
7374 if Present (Underlying_Full_View (Derived_Type)) then
7375 Full_Der := Underlying_Full_View (Derived_Type);
7376 else
7377 Build_Full_Derivation;
7378 Set_Underlying_Full_View (Derived_Type, Full_Der);
7379 end if;
7380
7381 -- The full view will be used to swap entities on entry/exit to
7382 -- the body, and must appear in the entity list for the package.
7383
7384 Append_Entity (Full_Der, Scope (Derived_Type));
7385 end if;
7386 end if;
7387 end Build_Derived_Private_Type;
7388
7389 -------------------------------
7390 -- Build_Derived_Record_Type --
7391 -------------------------------
7392
7393 -- 1. INTRODUCTION
7394
7395 -- Ideally we would like to use the same model of type derivation for
7396 -- tagged and untagged record types. Unfortunately this is not quite
7397 -- possible because the semantics of representation clauses is different
7398 -- for tagged and untagged records under inheritance. Consider the
7399 -- following:
7400
7401 -- type R (...) is [tagged] record ... end record;
7402 -- type T (...) is new R (...) [with ...];
7403
7404 -- The representation clauses for T can specify a completely different
7405 -- record layout from R's. Hence the same component can be placed in two
7406 -- very different positions in objects of type T and R. If R and T are
7407 -- tagged types, representation clauses for T can only specify the layout
7408 -- of non inherited components, thus components that are common in R and T
7409 -- have the same position in objects of type R and T.
7410
7411 -- This has two implications. The first is that the entire tree for R's
7412 -- declaration needs to be copied for T in the untagged case, so that T
7413 -- can be viewed as a record type of its own with its own representation
7414 -- clauses. The second implication is the way we handle discriminants.
7415 -- Specifically, in the untagged case we need a way to communicate to Gigi
7416 -- what are the real discriminants in the record, while for the semantics
7417 -- we need to consider those introduced by the user to rename the
7418 -- discriminants in the parent type. This is handled by introducing the
7419 -- notion of stored discriminants. See below for more.
7420
7421 -- Fortunately the way regular components are inherited can be handled in
7422 -- the same way in tagged and untagged types.
7423
7424 -- To complicate things a bit more the private view of a private extension
7425 -- cannot be handled in the same way as the full view (for one thing the
7426 -- semantic rules are somewhat different). We will explain what differs
7427 -- below.
7428
7429 -- 2. DISCRIMINANTS UNDER INHERITANCE
7430
7431 -- The semantic rules governing the discriminants of derived types are
7432 -- quite subtle.
7433
7434 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7435 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7436
7437 -- If parent type has discriminants, then the discriminants that are
7438 -- declared in the derived type are [3.4 (11)]:
7439
7440 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7441 -- there is one;
7442
7443 -- o Otherwise, each discriminant of the parent type (implicitly declared
7444 -- in the same order with the same specifications). In this case, the
7445 -- discriminants are said to be "inherited", or if unknown in the parent
7446 -- are also unknown in the derived type.
7447
7448 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7449
7450 -- o The parent subtype must be constrained;
7451
7452 -- o If the parent type is not a tagged type, then each discriminant of
7453 -- the derived type must be used in the constraint defining a parent
7454 -- subtype. [Implementation note: This ensures that the new discriminant
7455 -- can share storage with an existing discriminant.]
7456
7457 -- For the derived type each discriminant of the parent type is either
7458 -- inherited, constrained to equal some new discriminant of the derived
7459 -- type, or constrained to the value of an expression.
7460
7461 -- When inherited or constrained to equal some new discriminant, the
7462 -- parent discriminant and the discriminant of the derived type are said
7463 -- to "correspond".
7464
7465 -- If a discriminant of the parent type is constrained to a specific value
7466 -- in the derived type definition, then the discriminant is said to be
7467 -- "specified" by that derived type definition.
7468
7469 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7470
7471 -- We have spoken about stored discriminants in point 1 (introduction)
7472 -- above. There are two sort of stored discriminants: implicit and
7473 -- explicit. As long as the derived type inherits the same discriminants as
7474 -- the root record type, stored discriminants are the same as regular
7475 -- discriminants, and are said to be implicit. However, if any discriminant
7476 -- in the root type was renamed in the derived type, then the derived
7477 -- type will contain explicit stored discriminants. Explicit stored
7478 -- discriminants are discriminants in addition to the semantically visible
7479 -- discriminants defined for the derived type. Stored discriminants are
7480 -- used by Gigi to figure out what are the physical discriminants in
7481 -- objects of the derived type (see precise definition in einfo.ads).
7482 -- As an example, consider the following:
7483
7484 -- type R (D1, D2, D3 : Int) is record ... end record;
7485 -- type T1 is new R;
7486 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7487 -- type T3 is new T2;
7488 -- type T4 (Y : Int) is new T3 (Y, 99);
7489
7490 -- The following table summarizes the discriminants and stored
7491 -- discriminants in R and T1 through T4.
7492
7493 -- Type Discrim Stored Discrim Comment
7494 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7495 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7496 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7497 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7498 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7499
7500 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7501 -- find the corresponding discriminant in the parent type, while
7502 -- Original_Record_Component (abbreviated ORC below), the actual physical
7503 -- component that is renamed. Finally the field Is_Completely_Hidden
7504 -- (abbreviated ICH below) is set for all explicit stored discriminants
7505 -- (see einfo.ads for more info). For the above example this gives:
7506
7507 -- Discrim CD ORC ICH
7508 -- ^^^^^^^ ^^ ^^^ ^^^
7509 -- D1 in R empty itself no
7510 -- D2 in R empty itself no
7511 -- D3 in R empty itself no
7512
7513 -- D1 in T1 D1 in R itself no
7514 -- D2 in T1 D2 in R itself no
7515 -- D3 in T1 D3 in R itself no
7516
7517 -- X1 in T2 D3 in T1 D3 in T2 no
7518 -- X2 in T2 D1 in T1 D1 in T2 no
7519 -- D1 in T2 empty itself yes
7520 -- D2 in T2 empty itself yes
7521 -- D3 in T2 empty itself yes
7522
7523 -- X1 in T3 X1 in T2 D3 in T3 no
7524 -- X2 in T3 X2 in T2 D1 in T3 no
7525 -- D1 in T3 empty itself yes
7526 -- D2 in T3 empty itself yes
7527 -- D3 in T3 empty itself yes
7528
7529 -- Y in T4 X1 in T3 D3 in T3 no
7530 -- D1 in T3 empty itself yes
7531 -- D2 in T3 empty itself yes
7532 -- D3 in T3 empty itself yes
7533
7534 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7535
7536 -- Type derivation for tagged types is fairly straightforward. If no
7537 -- discriminants are specified by the derived type, these are inherited
7538 -- from the parent. No explicit stored discriminants are ever necessary.
7539 -- The only manipulation that is done to the tree is that of adding a
7540 -- _parent field with parent type and constrained to the same constraint
7541 -- specified for the parent in the derived type definition. For instance:
7542
7543 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7544 -- type T1 is new R with null record;
7545 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7546
7547 -- are changed into:
7548
7549 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7550 -- _parent : R (D1, D2, D3);
7551 -- end record;
7552
7553 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7554 -- _parent : T1 (X2, 88, X1);
7555 -- end record;
7556
7557 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7558 -- ORC and ICH fields are:
7559
7560 -- Discrim CD ORC ICH
7561 -- ^^^^^^^ ^^ ^^^ ^^^
7562 -- D1 in R empty itself no
7563 -- D2 in R empty itself no
7564 -- D3 in R empty itself no
7565
7566 -- D1 in T1 D1 in R D1 in R no
7567 -- D2 in T1 D2 in R D2 in R no
7568 -- D3 in T1 D3 in R D3 in R no
7569
7570 -- X1 in T2 D3 in T1 D3 in R no
7571 -- X2 in T2 D1 in T1 D1 in R no
7572
7573 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7574 --
7575 -- Regardless of whether we dealing with a tagged or untagged type
7576 -- we will transform all derived type declarations of the form
7577 --
7578 -- type T is new R (...) [with ...];
7579 -- or
7580 -- subtype S is R (...);
7581 -- type T is new S [with ...];
7582 -- into
7583 -- type BT is new R [with ...];
7584 -- subtype T is BT (...);
7585 --
7586 -- That is, the base derived type is constrained only if it has no
7587 -- discriminants. The reason for doing this is that GNAT's semantic model
7588 -- assumes that a base type with discriminants is unconstrained.
7589 --
7590 -- Note that, strictly speaking, the above transformation is not always
7591 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7592 --
7593 -- procedure B34011A is
7594 -- type REC (D : integer := 0) is record
7595 -- I : Integer;
7596 -- end record;
7597
7598 -- package P is
7599 -- type T6 is new Rec;
7600 -- function F return T6;
7601 -- end P;
7602
7603 -- use P;
7604 -- package Q6 is
7605 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7606 -- end Q6;
7607 --
7608 -- The definition of Q6.U is illegal. However transforming Q6.U into
7609
7610 -- type BaseU is new T6;
7611 -- subtype U is BaseU (Q6.F.I)
7612
7613 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7614 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7615 -- the transformation described above.
7616
7617 -- There is another instance where the above transformation is incorrect.
7618 -- Consider:
7619
7620 -- package Pack is
7621 -- type Base (D : Integer) is tagged null record;
7622 -- procedure P (X : Base);
7623
7624 -- type Der is new Base (2) with null record;
7625 -- procedure P (X : Der);
7626 -- end Pack;
7627
7628 -- Then the above transformation turns this into
7629
7630 -- type Der_Base is new Base with null record;
7631 -- -- procedure P (X : Base) is implicitly inherited here
7632 -- -- as procedure P (X : Der_Base).
7633
7634 -- subtype Der is Der_Base (2);
7635 -- procedure P (X : Der);
7636 -- -- The overriding of P (X : Der_Base) is illegal since we
7637 -- -- have a parameter conformance problem.
7638
7639 -- To get around this problem, after having semantically processed Der_Base
7640 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7641 -- Discriminant_Constraint from Der so that when parameter conformance is
7642 -- checked when P is overridden, no semantic errors are flagged.
7643
7644 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7645
7646 -- Regardless of whether we are dealing with a tagged or untagged type
7647 -- we will transform all derived type declarations of the form
7648
7649 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7650 -- type T is new R [with ...];
7651 -- into
7652 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7653
7654 -- The reason for such transformation is that it allows us to implement a
7655 -- very clean form of component inheritance as explained below.
7656
7657 -- Note that this transformation is not achieved by direct tree rewriting
7658 -- and manipulation, but rather by redoing the semantic actions that the
7659 -- above transformation will entail. This is done directly in routine
7660 -- Inherit_Components.
7661
7662 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7663
7664 -- In both tagged and untagged derived types, regular non discriminant
7665 -- components are inherited in the derived type from the parent type. In
7666 -- the absence of discriminants component, inheritance is straightforward
7667 -- as components can simply be copied from the parent.
7668
7669 -- If the parent has discriminants, inheriting components constrained with
7670 -- these discriminants requires caution. Consider the following example:
7671
7672 -- type R (D1, D2 : Positive) is [tagged] record
7673 -- S : String (D1 .. D2);
7674 -- end record;
7675
7676 -- type T1 is new R [with null record];
7677 -- type T2 (X : positive) is new R (1, X) [with null record];
7678
7679 -- As explained in 6. above, T1 is rewritten as
7680 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7681 -- which makes the treatment for T1 and T2 identical.
7682
7683 -- What we want when inheriting S, is that references to D1 and D2 in R are
7684 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7685 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7686 -- with either discriminant references in the derived type or expressions.
7687 -- This replacement is achieved as follows: before inheriting R's
7688 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7689 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7690 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7691 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7692 -- by String (1 .. X).
7693
7694 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7695
7696 -- We explain here the rules governing private type extensions relevant to
7697 -- type derivation. These rules are explained on the following example:
7698
7699 -- type D [(...)] is new A [(...)] with private; <-- partial view
7700 -- type D [(...)] is new P [(...)] with null record; <-- full view
7701
7702 -- Type A is called the ancestor subtype of the private extension.
7703 -- Type P is the parent type of the full view of the private extension. It
7704 -- must be A or a type derived from A.
7705
7706 -- The rules concerning the discriminants of private type extensions are
7707 -- [7.3(10-13)]:
7708
7709 -- o If a private extension inherits known discriminants from the ancestor
7710 -- subtype, then the full view must also inherit its discriminants from
7711 -- the ancestor subtype and the parent subtype of the full view must be
7712 -- constrained if and only if the ancestor subtype is constrained.
7713
7714 -- o If a partial view has unknown discriminants, then the full view may
7715 -- define a definite or an indefinite subtype, with or without
7716 -- discriminants.
7717
7718 -- o If a partial view has neither known nor unknown discriminants, then
7719 -- the full view must define a definite subtype.
7720
7721 -- o If the ancestor subtype of a private extension has constrained
7722 -- discriminants, then the parent subtype of the full view must impose a
7723 -- statically matching constraint on those discriminants.
7724
7725 -- This means that only the following forms of private extensions are
7726 -- allowed:
7727
7728 -- type D is new A with private; <-- partial view
7729 -- type D is new P with null record; <-- full view
7730
7731 -- If A has no discriminants than P has no discriminants, otherwise P must
7732 -- inherit A's discriminants.
7733
7734 -- type D is new A (...) with private; <-- partial view
7735 -- type D is new P (:::) with null record; <-- full view
7736
7737 -- P must inherit A's discriminants and (...) and (:::) must statically
7738 -- match.
7739
7740 -- subtype A is R (...);
7741 -- type D is new A with private; <-- partial view
7742 -- type D is new P with null record; <-- full view
7743
7744 -- P must have inherited R's discriminants and must be derived from A or
7745 -- any of its subtypes.
7746
7747 -- type D (..) is new A with private; <-- partial view
7748 -- type D (..) is new P [(:::)] with null record; <-- full view
7749
7750 -- No specific constraints on P's discriminants or constraint (:::).
7751 -- Note that A can be unconstrained, but the parent subtype P must either
7752 -- be constrained or (:::) must be present.
7753
7754 -- type D (..) is new A [(...)] with private; <-- partial view
7755 -- type D (..) is new P [(:::)] with null record; <-- full view
7756
7757 -- P's constraints on A's discriminants must statically match those
7758 -- imposed by (...).
7759
7760 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7761
7762 -- The full view of a private extension is handled exactly as described
7763 -- above. The model chose for the private view of a private extension is
7764 -- the same for what concerns discriminants (i.e. they receive the same
7765 -- treatment as in the tagged case). However, the private view of the
7766 -- private extension always inherits the components of the parent base,
7767 -- without replacing any discriminant reference. Strictly speaking this is
7768 -- incorrect. However, Gigi never uses this view to generate code so this
7769 -- is a purely semantic issue. In theory, a set of transformations similar
7770 -- to those given in 5. and 6. above could be applied to private views of
7771 -- private extensions to have the same model of component inheritance as
7772 -- for non private extensions. However, this is not done because it would
7773 -- further complicate private type processing. Semantically speaking, this
7774 -- leaves us in an uncomfortable situation. As an example consider:
7775
7776 -- package Pack is
7777 -- type R (D : integer) is tagged record
7778 -- S : String (1 .. D);
7779 -- end record;
7780 -- procedure P (X : R);
7781 -- type T is new R (1) with private;
7782 -- private
7783 -- type T is new R (1) with null record;
7784 -- end;
7785
7786 -- This is transformed into:
7787
7788 -- package Pack is
7789 -- type R (D : integer) is tagged record
7790 -- S : String (1 .. D);
7791 -- end record;
7792 -- procedure P (X : R);
7793 -- type T is new R (1) with private;
7794 -- private
7795 -- type BaseT is new R with null record;
7796 -- subtype T is BaseT (1);
7797 -- end;
7798
7799 -- (strictly speaking the above is incorrect Ada)
7800
7801 -- From the semantic standpoint the private view of private extension T
7802 -- should be flagged as constrained since one can clearly have
7803 --
7804 -- Obj : T;
7805 --
7806 -- in a unit withing Pack. However, when deriving subprograms for the
7807 -- private view of private extension T, T must be seen as unconstrained
7808 -- since T has discriminants (this is a constraint of the current
7809 -- subprogram derivation model). Thus, when processing the private view of
7810 -- a private extension such as T, we first mark T as unconstrained, we
7811 -- process it, we perform program derivation and just before returning from
7812 -- Build_Derived_Record_Type we mark T as constrained.
7813
7814 -- ??? Are there are other uncomfortable cases that we will have to
7815 -- deal with.
7816
7817 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7818
7819 -- Types that are derived from a visible record type and have a private
7820 -- extension present other peculiarities. They behave mostly like private
7821 -- types, but if they have primitive operations defined, these will not
7822 -- have the proper signatures for further inheritance, because other
7823 -- primitive operations will use the implicit base that we define for
7824 -- private derivations below. This affect subprogram inheritance (see
7825 -- Derive_Subprograms for details). We also derive the implicit base from
7826 -- the base type of the full view, so that the implicit base is a record
7827 -- type and not another private type, This avoids infinite loops.
7828
7829 procedure Build_Derived_Record_Type
7830 (N : Node_Id;
7831 Parent_Type : Entity_Id;
7832 Derived_Type : Entity_Id;
7833 Derive_Subps : Boolean := True)
7834 is
7835 Discriminant_Specs : constant Boolean :=
7836 Present (Discriminant_Specifications (N));
7837 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
7838 Loc : constant Source_Ptr := Sloc (N);
7839 Private_Extension : constant Boolean :=
7840 Nkind (N) = N_Private_Extension_Declaration;
7841 Assoc_List : Elist_Id;
7842 Constraint_Present : Boolean;
7843 Constrs : Elist_Id;
7844 Discrim : Entity_Id;
7845 Indic : Node_Id;
7846 Inherit_Discrims : Boolean := False;
7847 Last_Discrim : Entity_Id;
7848 New_Base : Entity_Id;
7849 New_Decl : Node_Id;
7850 New_Discrs : Elist_Id;
7851 New_Indic : Node_Id;
7852 Parent_Base : Entity_Id;
7853 Save_Etype : Entity_Id;
7854 Save_Discr_Constr : Elist_Id;
7855 Save_Next_Entity : Entity_Id;
7856 Type_Def : Node_Id;
7857
7858 Discs : Elist_Id := New_Elmt_List;
7859 -- An empty Discs list means that there were no constraints in the
7860 -- subtype indication or that there was an error processing it.
7861
7862 begin
7863 if Ekind (Parent_Type) = E_Record_Type_With_Private
7864 and then Present (Full_View (Parent_Type))
7865 and then Has_Discriminants (Parent_Type)
7866 then
7867 Parent_Base := Base_Type (Full_View (Parent_Type));
7868 else
7869 Parent_Base := Base_Type (Parent_Type);
7870 end if;
7871
7872 -- AI05-0115 : if this is a derivation from a private type in some
7873 -- other scope that may lead to invisible components for the derived
7874 -- type, mark it accordingly.
7875
7876 if Is_Private_Type (Parent_Type) then
7877 if Scope (Parent_Type) = Scope (Derived_Type) then
7878 null;
7879
7880 elsif In_Open_Scopes (Scope (Parent_Type))
7881 and then In_Private_Part (Scope (Parent_Type))
7882 then
7883 null;
7884
7885 else
7886 Set_Has_Private_Ancestor (Derived_Type);
7887 end if;
7888
7889 else
7890 Set_Has_Private_Ancestor
7891 (Derived_Type, Has_Private_Ancestor (Parent_Type));
7892 end if;
7893
7894 -- Before we start the previously documented transformations, here is
7895 -- little fix for size and alignment of tagged types. Normally when we
7896 -- derive type D from type P, we copy the size and alignment of P as the
7897 -- default for D, and in the absence of explicit representation clauses
7898 -- for D, the size and alignment are indeed the same as the parent.
7899
7900 -- But this is wrong for tagged types, since fields may be added, and
7901 -- the default size may need to be larger, and the default alignment may
7902 -- need to be larger.
7903
7904 -- We therefore reset the size and alignment fields in the tagged case.
7905 -- Note that the size and alignment will in any case be at least as
7906 -- large as the parent type (since the derived type has a copy of the
7907 -- parent type in the _parent field)
7908
7909 -- The type is also marked as being tagged here, which is needed when
7910 -- processing components with a self-referential anonymous access type
7911 -- in the call to Check_Anonymous_Access_Components below. Note that
7912 -- this flag is also set later on for completeness.
7913
7914 if Is_Tagged then
7915 Set_Is_Tagged_Type (Derived_Type);
7916 Init_Size_Align (Derived_Type);
7917 end if;
7918
7919 -- STEP 0a: figure out what kind of derived type declaration we have
7920
7921 if Private_Extension then
7922 Type_Def := N;
7923 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
7924 Set_Default_SSO (Derived_Type);
7925
7926 else
7927 Type_Def := Type_Definition (N);
7928
7929 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7930 -- Parent_Base can be a private type or private extension. However,
7931 -- for tagged types with an extension the newly added fields are
7932 -- visible and hence the Derived_Type is always an E_Record_Type.
7933 -- (except that the parent may have its own private fields).
7934 -- For untagged types we preserve the Ekind of the Parent_Base.
7935
7936 if Present (Record_Extension_Part (Type_Def)) then
7937 Set_Ekind (Derived_Type, E_Record_Type);
7938 Set_Default_SSO (Derived_Type);
7939
7940 -- Create internal access types for components with anonymous
7941 -- access types.
7942
7943 if Ada_Version >= Ada_2005 then
7944 Check_Anonymous_Access_Components
7945 (N, Derived_Type, Derived_Type,
7946 Component_List (Record_Extension_Part (Type_Def)));
7947 end if;
7948
7949 else
7950 Set_Ekind (Derived_Type, Ekind (Parent_Base));
7951 end if;
7952 end if;
7953
7954 -- Indic can either be an N_Identifier if the subtype indication
7955 -- contains no constraint or an N_Subtype_Indication if the subtype
7956 -- indication has a constraint.
7957
7958 Indic := Subtype_Indication (Type_Def);
7959 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
7960
7961 -- Check that the type has visible discriminants. The type may be
7962 -- a private type with unknown discriminants whose full view has
7963 -- discriminants which are invisible.
7964
7965 if Constraint_Present then
7966 if not Has_Discriminants (Parent_Base)
7967 or else
7968 (Has_Unknown_Discriminants (Parent_Base)
7969 and then Is_Private_Type (Parent_Base))
7970 then
7971 Error_Msg_N
7972 ("invalid constraint: type has no discriminant",
7973 Constraint (Indic));
7974
7975 Constraint_Present := False;
7976 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7977
7978 elsif Is_Constrained (Parent_Type) then
7979 Error_Msg_N
7980 ("invalid constraint: parent type is already constrained",
7981 Constraint (Indic));
7982
7983 Constraint_Present := False;
7984 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7985 end if;
7986 end if;
7987
7988 -- STEP 0b: If needed, apply transformation given in point 5. above
7989
7990 if not Private_Extension
7991 and then Has_Discriminants (Parent_Type)
7992 and then not Discriminant_Specs
7993 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
7994 then
7995 -- First, we must analyze the constraint (see comment in point 5.)
7996 -- The constraint may come from the subtype indication of the full
7997 -- declaration.
7998
7999 if Constraint_Present then
8000 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
8001
8002 -- If there is no explicit constraint, there might be one that is
8003 -- inherited from a constrained parent type. In that case verify that
8004 -- it conforms to the constraint in the partial view. In perverse
8005 -- cases the parent subtypes of the partial and full view can have
8006 -- different constraints.
8007
8008 elsif Present (Stored_Constraint (Parent_Type)) then
8009 New_Discrs := Stored_Constraint (Parent_Type);
8010
8011 else
8012 New_Discrs := No_Elist;
8013 end if;
8014
8015 if Has_Discriminants (Derived_Type)
8016 and then Has_Private_Declaration (Derived_Type)
8017 and then Present (Discriminant_Constraint (Derived_Type))
8018 and then Present (New_Discrs)
8019 then
8020 -- Verify that constraints of the full view statically match
8021 -- those given in the partial view.
8022
8023 declare
8024 C1, C2 : Elmt_Id;
8025
8026 begin
8027 C1 := First_Elmt (New_Discrs);
8028 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
8029 while Present (C1) and then Present (C2) loop
8030 if Fully_Conformant_Expressions (Node (C1), Node (C2))
8031 or else
8032 (Is_OK_Static_Expression (Node (C1))
8033 and then Is_OK_Static_Expression (Node (C2))
8034 and then
8035 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
8036 then
8037 null;
8038
8039 else
8040 if Constraint_Present then
8041 Error_Msg_N
8042 ("constraint not conformant to previous declaration",
8043 Node (C1));
8044 else
8045 Error_Msg_N
8046 ("constraint of full view is incompatible "
8047 & "with partial view", N);
8048 end if;
8049 end if;
8050
8051 Next_Elmt (C1);
8052 Next_Elmt (C2);
8053 end loop;
8054 end;
8055 end if;
8056
8057 -- Insert and analyze the declaration for the unconstrained base type
8058
8059 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
8060
8061 New_Decl :=
8062 Make_Full_Type_Declaration (Loc,
8063 Defining_Identifier => New_Base,
8064 Type_Definition =>
8065 Make_Derived_Type_Definition (Loc,
8066 Abstract_Present => Abstract_Present (Type_Def),
8067 Limited_Present => Limited_Present (Type_Def),
8068 Subtype_Indication =>
8069 New_Occurrence_Of (Parent_Base, Loc),
8070 Record_Extension_Part =>
8071 Relocate_Node (Record_Extension_Part (Type_Def)),
8072 Interface_List => Interface_List (Type_Def)));
8073
8074 Set_Parent (New_Decl, Parent (N));
8075 Mark_Rewrite_Insertion (New_Decl);
8076 Insert_Before (N, New_Decl);
8077
8078 -- In the extension case, make sure ancestor is frozen appropriately
8079 -- (see also non-discriminated case below).
8080
8081 if Present (Record_Extension_Part (Type_Def))
8082 or else Is_Interface (Parent_Base)
8083 then
8084 Freeze_Before (New_Decl, Parent_Type);
8085 end if;
8086
8087 -- Note that this call passes False for the Derive_Subps parameter
8088 -- because subprogram derivation is deferred until after creating
8089 -- the subtype (see below).
8090
8091 Build_Derived_Type
8092 (New_Decl, Parent_Base, New_Base,
8093 Is_Completion => False, Derive_Subps => False);
8094
8095 -- ??? This needs re-examination to determine whether the
8096 -- above call can simply be replaced by a call to Analyze.
8097
8098 Set_Analyzed (New_Decl);
8099
8100 -- Insert and analyze the declaration for the constrained subtype
8101
8102 if Constraint_Present then
8103 New_Indic :=
8104 Make_Subtype_Indication (Loc,
8105 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8106 Constraint => Relocate_Node (Constraint (Indic)));
8107
8108 else
8109 declare
8110 Constr_List : constant List_Id := New_List;
8111 C : Elmt_Id;
8112 Expr : Node_Id;
8113
8114 begin
8115 C := First_Elmt (Discriminant_Constraint (Parent_Type));
8116 while Present (C) loop
8117 Expr := Node (C);
8118
8119 -- It is safe here to call New_Copy_Tree since we called
8120 -- Force_Evaluation on each constraint previously
8121 -- in Build_Discriminant_Constraints.
8122
8123 Append (New_Copy_Tree (Expr), To => Constr_List);
8124
8125 Next_Elmt (C);
8126 end loop;
8127
8128 New_Indic :=
8129 Make_Subtype_Indication (Loc,
8130 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8131 Constraint =>
8132 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
8133 end;
8134 end if;
8135
8136 Rewrite (N,
8137 Make_Subtype_Declaration (Loc,
8138 Defining_Identifier => Derived_Type,
8139 Subtype_Indication => New_Indic));
8140
8141 Analyze (N);
8142
8143 -- Derivation of subprograms must be delayed until the full subtype
8144 -- has been established, to ensure proper overriding of subprograms
8145 -- inherited by full types. If the derivations occurred as part of
8146 -- the call to Build_Derived_Type above, then the check for type
8147 -- conformance would fail because earlier primitive subprograms
8148 -- could still refer to the full type prior the change to the new
8149 -- subtype and hence would not match the new base type created here.
8150 -- Subprograms are not derived, however, when Derive_Subps is False
8151 -- (since otherwise there could be redundant derivations).
8152
8153 if Derive_Subps then
8154 Derive_Subprograms (Parent_Type, Derived_Type);
8155 end if;
8156
8157 -- For tagged types the Discriminant_Constraint of the new base itype
8158 -- is inherited from the first subtype so that no subtype conformance
8159 -- problem arise when the first subtype overrides primitive
8160 -- operations inherited by the implicit base type.
8161
8162 if Is_Tagged then
8163 Set_Discriminant_Constraint
8164 (New_Base, Discriminant_Constraint (Derived_Type));
8165 end if;
8166
8167 return;
8168 end if;
8169
8170 -- If we get here Derived_Type will have no discriminants or it will be
8171 -- a discriminated unconstrained base type.
8172
8173 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8174
8175 if Is_Tagged then
8176
8177 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8178 -- The declaration of a specific descendant of an interface type
8179 -- freezes the interface type (RM 13.14).
8180
8181 if not Private_Extension or else Is_Interface (Parent_Base) then
8182 Freeze_Before (N, Parent_Type);
8183 end if;
8184
8185 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8186 -- cannot be declared at a deeper level than its parent type is
8187 -- removed. The check on derivation within a generic body is also
8188 -- relaxed, but there's a restriction that a derived tagged type
8189 -- cannot be declared in a generic body if it's derived directly
8190 -- or indirectly from a formal type of that generic.
8191
8192 if Ada_Version >= Ada_2005 then
8193 if Present (Enclosing_Generic_Body (Derived_Type)) then
8194 declare
8195 Ancestor_Type : Entity_Id;
8196
8197 begin
8198 -- Check to see if any ancestor of the derived type is a
8199 -- formal type.
8200
8201 Ancestor_Type := Parent_Type;
8202 while not Is_Generic_Type (Ancestor_Type)
8203 and then Etype (Ancestor_Type) /= Ancestor_Type
8204 loop
8205 Ancestor_Type := Etype (Ancestor_Type);
8206 end loop;
8207
8208 -- If the derived type does have a formal type as an
8209 -- ancestor, then it's an error if the derived type is
8210 -- declared within the body of the generic unit that
8211 -- declares the formal type in its generic formal part. It's
8212 -- sufficient to check whether the ancestor type is declared
8213 -- inside the same generic body as the derived type (such as
8214 -- within a nested generic spec), in which case the
8215 -- derivation is legal. If the formal type is declared
8216 -- outside of that generic body, then it's guaranteed that
8217 -- the derived type is declared within the generic body of
8218 -- the generic unit declaring the formal type.
8219
8220 if Is_Generic_Type (Ancestor_Type)
8221 and then Enclosing_Generic_Body (Ancestor_Type) /=
8222 Enclosing_Generic_Body (Derived_Type)
8223 then
8224 Error_Msg_NE
8225 ("parent type of& must not be descendant of formal type"
8226 & " of an enclosing generic body",
8227 Indic, Derived_Type);
8228 end if;
8229 end;
8230 end if;
8231
8232 elsif Type_Access_Level (Derived_Type) /=
8233 Type_Access_Level (Parent_Type)
8234 and then not Is_Generic_Type (Derived_Type)
8235 then
8236 if Is_Controlled (Parent_Type) then
8237 Error_Msg_N
8238 ("controlled type must be declared at the library level",
8239 Indic);
8240 else
8241 Error_Msg_N
8242 ("type extension at deeper accessibility level than parent",
8243 Indic);
8244 end if;
8245
8246 else
8247 declare
8248 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
8249 begin
8250 if Present (GB)
8251 and then GB /= Enclosing_Generic_Body (Parent_Base)
8252 then
8253 Error_Msg_NE
8254 ("parent type of& must not be outside generic body"
8255 & " (RM 3.9.1(4))",
8256 Indic, Derived_Type);
8257 end if;
8258 end;
8259 end if;
8260 end if;
8261
8262 -- Ada 2005 (AI-251)
8263
8264 if Ada_Version >= Ada_2005 and then Is_Tagged then
8265
8266 -- "The declaration of a specific descendant of an interface type
8267 -- freezes the interface type" (RM 13.14).
8268
8269 declare
8270 Iface : Node_Id;
8271 begin
8272 if Is_Non_Empty_List (Interface_List (Type_Def)) then
8273 Iface := First (Interface_List (Type_Def));
8274 while Present (Iface) loop
8275 Freeze_Before (N, Etype (Iface));
8276 Next (Iface);
8277 end loop;
8278 end if;
8279 end;
8280 end if;
8281
8282 -- STEP 1b : preliminary cleanup of the full view of private types
8283
8284 -- If the type is already marked as having discriminants, then it's the
8285 -- completion of a private type or private extension and we need to
8286 -- retain the discriminants from the partial view if the current
8287 -- declaration has Discriminant_Specifications so that we can verify
8288 -- conformance. However, we must remove any existing components that
8289 -- were inherited from the parent (and attached in Copy_And_Swap)
8290 -- because the full type inherits all appropriate components anyway, and
8291 -- we do not want the partial view's components interfering.
8292
8293 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
8294 Discrim := First_Discriminant (Derived_Type);
8295 loop
8296 Last_Discrim := Discrim;
8297 Next_Discriminant (Discrim);
8298 exit when No (Discrim);
8299 end loop;
8300
8301 Set_Last_Entity (Derived_Type, Last_Discrim);
8302
8303 -- In all other cases wipe out the list of inherited components (even
8304 -- inherited discriminants), it will be properly rebuilt here.
8305
8306 else
8307 Set_First_Entity (Derived_Type, Empty);
8308 Set_Last_Entity (Derived_Type, Empty);
8309 end if;
8310
8311 -- STEP 1c: Initialize some flags for the Derived_Type
8312
8313 -- The following flags must be initialized here so that
8314 -- Process_Discriminants can check that discriminants of tagged types do
8315 -- not have a default initial value and that access discriminants are
8316 -- only specified for limited records. For completeness, these flags are
8317 -- also initialized along with all the other flags below.
8318
8319 -- AI-419: Limitedness is not inherited from an interface parent, so to
8320 -- be limited in that case the type must be explicitly declared as
8321 -- limited. However, task and protected interfaces are always limited.
8322
8323 if Limited_Present (Type_Def) then
8324 Set_Is_Limited_Record (Derived_Type);
8325
8326 elsif Is_Limited_Record (Parent_Type)
8327 or else (Present (Full_View (Parent_Type))
8328 and then Is_Limited_Record (Full_View (Parent_Type)))
8329 then
8330 if not Is_Interface (Parent_Type)
8331 or else Is_Synchronized_Interface (Parent_Type)
8332 or else Is_Protected_Interface (Parent_Type)
8333 or else Is_Task_Interface (Parent_Type)
8334 then
8335 Set_Is_Limited_Record (Derived_Type);
8336 end if;
8337 end if;
8338
8339 -- STEP 2a: process discriminants of derived type if any
8340
8341 Push_Scope (Derived_Type);
8342
8343 if Discriminant_Specs then
8344 Set_Has_Unknown_Discriminants (Derived_Type, False);
8345
8346 -- The following call initializes fields Has_Discriminants and
8347 -- Discriminant_Constraint, unless we are processing the completion
8348 -- of a private type declaration.
8349
8350 Check_Or_Process_Discriminants (N, Derived_Type);
8351
8352 -- For untagged types, the constraint on the Parent_Type must be
8353 -- present and is used to rename the discriminants.
8354
8355 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
8356 Error_Msg_N ("untagged parent must have discriminants", Indic);
8357
8358 elsif not Is_Tagged and then not Constraint_Present then
8359 Error_Msg_N
8360 ("discriminant constraint needed for derived untagged records",
8361 Indic);
8362
8363 -- Otherwise the parent subtype must be constrained unless we have a
8364 -- private extension.
8365
8366 elsif not Constraint_Present
8367 and then not Private_Extension
8368 and then not Is_Constrained (Parent_Type)
8369 then
8370 Error_Msg_N
8371 ("unconstrained type not allowed in this context", Indic);
8372
8373 elsif Constraint_Present then
8374 -- The following call sets the field Corresponding_Discriminant
8375 -- for the discriminants in the Derived_Type.
8376
8377 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
8378
8379 -- For untagged types all new discriminants must rename
8380 -- discriminants in the parent. For private extensions new
8381 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8382
8383 Discrim := First_Discriminant (Derived_Type);
8384 while Present (Discrim) loop
8385 if not Is_Tagged
8386 and then No (Corresponding_Discriminant (Discrim))
8387 then
8388 Error_Msg_N
8389 ("new discriminants must constrain old ones", Discrim);
8390
8391 elsif Private_Extension
8392 and then Present (Corresponding_Discriminant (Discrim))
8393 then
8394 Error_Msg_N
8395 ("only static constraints allowed for parent"
8396 & " discriminants in the partial view", Indic);
8397 exit;
8398 end if;
8399
8400 -- If a new discriminant is used in the constraint, then its
8401 -- subtype must be statically compatible with the parent
8402 -- discriminant's subtype (3.7(15)).
8403
8404 -- However, if the record contains an array constrained by
8405 -- the discriminant but with some different bound, the compiler
8406 -- attemps to create a smaller range for the discriminant type.
8407 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8408 -- the discriminant type is a scalar type, the check must use
8409 -- the original discriminant type in the parent declaration.
8410
8411 declare
8412 Corr_Disc : constant Entity_Id :=
8413 Corresponding_Discriminant (Discrim);
8414 Disc_Type : constant Entity_Id := Etype (Discrim);
8415 Corr_Type : Entity_Id;
8416
8417 begin
8418 if Present (Corr_Disc) then
8419 if Is_Scalar_Type (Disc_Type) then
8420 Corr_Type :=
8421 Entity (Discriminant_Type (Parent (Corr_Disc)));
8422 else
8423 Corr_Type := Etype (Corr_Disc);
8424 end if;
8425
8426 if not
8427 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
8428 then
8429 Error_Msg_N
8430 ("subtype must be compatible "
8431 & "with parent discriminant",
8432 Discrim);
8433 end if;
8434 end if;
8435 end;
8436
8437 Next_Discriminant (Discrim);
8438 end loop;
8439
8440 -- Check whether the constraints of the full view statically
8441 -- match those imposed by the parent subtype [7.3(13)].
8442
8443 if Present (Stored_Constraint (Derived_Type)) then
8444 declare
8445 C1, C2 : Elmt_Id;
8446
8447 begin
8448 C1 := First_Elmt (Discs);
8449 C2 := First_Elmt (Stored_Constraint (Derived_Type));
8450 while Present (C1) and then Present (C2) loop
8451 if not
8452 Fully_Conformant_Expressions (Node (C1), Node (C2))
8453 then
8454 Error_Msg_N
8455 ("not conformant with previous declaration",
8456 Node (C1));
8457 end if;
8458
8459 Next_Elmt (C1);
8460 Next_Elmt (C2);
8461 end loop;
8462 end;
8463 end if;
8464 end if;
8465
8466 -- STEP 2b: No new discriminants, inherit discriminants if any
8467
8468 else
8469 if Private_Extension then
8470 Set_Has_Unknown_Discriminants
8471 (Derived_Type,
8472 Has_Unknown_Discriminants (Parent_Type)
8473 or else Unknown_Discriminants_Present (N));
8474
8475 -- The partial view of the parent may have unknown discriminants,
8476 -- but if the full view has discriminants and the parent type is
8477 -- in scope they must be inherited.
8478
8479 elsif Has_Unknown_Discriminants (Parent_Type)
8480 and then
8481 (not Has_Discriminants (Parent_Type)
8482 or else not In_Open_Scopes (Scope (Parent_Type)))
8483 then
8484 Set_Has_Unknown_Discriminants (Derived_Type);
8485 end if;
8486
8487 if not Has_Unknown_Discriminants (Derived_Type)
8488 and then not Has_Unknown_Discriminants (Parent_Base)
8489 and then Has_Discriminants (Parent_Type)
8490 then
8491 Inherit_Discrims := True;
8492 Set_Has_Discriminants
8493 (Derived_Type, True);
8494 Set_Discriminant_Constraint
8495 (Derived_Type, Discriminant_Constraint (Parent_Base));
8496 end if;
8497
8498 -- The following test is true for private types (remember
8499 -- transformation 5. is not applied to those) and in an error
8500 -- situation.
8501
8502 if Constraint_Present then
8503 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
8504 end if;
8505
8506 -- For now mark a new derived type as constrained only if it has no
8507 -- discriminants. At the end of Build_Derived_Record_Type we properly
8508 -- set this flag in the case of private extensions. See comments in
8509 -- point 9. just before body of Build_Derived_Record_Type.
8510
8511 Set_Is_Constrained
8512 (Derived_Type,
8513 not (Inherit_Discrims
8514 or else Has_Unknown_Discriminants (Derived_Type)));
8515 end if;
8516
8517 -- STEP 3: initialize fields of derived type
8518
8519 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
8520 Set_Stored_Constraint (Derived_Type, No_Elist);
8521
8522 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8523 -- but cannot be interfaces
8524
8525 if not Private_Extension
8526 and then Ekind (Derived_Type) /= E_Private_Type
8527 and then Ekind (Derived_Type) /= E_Limited_Private_Type
8528 then
8529 if Interface_Present (Type_Def) then
8530 Analyze_Interface_Declaration (Derived_Type, Type_Def);
8531 end if;
8532
8533 Set_Interfaces (Derived_Type, No_Elist);
8534 end if;
8535
8536 -- Fields inherited from the Parent_Type
8537
8538 Set_Has_Specified_Layout
8539 (Derived_Type, Has_Specified_Layout (Parent_Type));
8540 Set_Is_Limited_Composite
8541 (Derived_Type, Is_Limited_Composite (Parent_Type));
8542 Set_Is_Private_Composite
8543 (Derived_Type, Is_Private_Composite (Parent_Type));
8544
8545 if Is_Tagged_Type (Parent_Type) then
8546 Set_No_Tagged_Streams_Pragma
8547 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
8548 end if;
8549
8550 -- Fields inherited from the Parent_Base
8551
8552 Set_Has_Controlled_Component
8553 (Derived_Type, Has_Controlled_Component (Parent_Base));
8554 Set_Has_Non_Standard_Rep
8555 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8556 Set_Has_Primitive_Operations
8557 (Derived_Type, Has_Primitive_Operations (Parent_Base));
8558
8559 -- Fields inherited from the Parent_Base in the non-private case
8560
8561 if Ekind (Derived_Type) = E_Record_Type then
8562 Set_Has_Complex_Representation
8563 (Derived_Type, Has_Complex_Representation (Parent_Base));
8564 end if;
8565
8566 -- Fields inherited from the Parent_Base for record types
8567
8568 if Is_Record_Type (Derived_Type) then
8569 declare
8570 Parent_Full : Entity_Id;
8571
8572 begin
8573 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8574 -- Parent_Base can be a private type or private extension. Go
8575 -- to the full view here to get the E_Record_Type specific flags.
8576
8577 if Present (Full_View (Parent_Base)) then
8578 Parent_Full := Full_View (Parent_Base);
8579 else
8580 Parent_Full := Parent_Base;
8581 end if;
8582
8583 Set_OK_To_Reorder_Components
8584 (Derived_Type, OK_To_Reorder_Components (Parent_Full));
8585 end;
8586 end if;
8587
8588 -- Set fields for private derived types
8589
8590 if Is_Private_Type (Derived_Type) then
8591 Set_Depends_On_Private (Derived_Type, True);
8592 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8593
8594 -- Inherit fields from non private record types. If this is the
8595 -- completion of a derivation from a private type, the parent itself
8596 -- is private, and the attributes come from its full view, which must
8597 -- be present.
8598
8599 else
8600 if Is_Private_Type (Parent_Base)
8601 and then not Is_Record_Type (Parent_Base)
8602 then
8603 Set_Component_Alignment
8604 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
8605 Set_C_Pass_By_Copy
8606 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
8607 else
8608 Set_Component_Alignment
8609 (Derived_Type, Component_Alignment (Parent_Base));
8610 Set_C_Pass_By_Copy
8611 (Derived_Type, C_Pass_By_Copy (Parent_Base));
8612 end if;
8613 end if;
8614
8615 -- Set fields for tagged types
8616
8617 if Is_Tagged then
8618 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
8619
8620 -- All tagged types defined in Ada.Finalization are controlled
8621
8622 if Chars (Scope (Derived_Type)) = Name_Finalization
8623 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
8624 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
8625 then
8626 Set_Is_Controlled (Derived_Type);
8627 else
8628 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
8629 end if;
8630
8631 -- Minor optimization: there is no need to generate the class-wide
8632 -- entity associated with an underlying record view.
8633
8634 if not Is_Underlying_Record_View (Derived_Type) then
8635 Make_Class_Wide_Type (Derived_Type);
8636 end if;
8637
8638 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
8639
8640 if Has_Discriminants (Derived_Type)
8641 and then Constraint_Present
8642 then
8643 Set_Stored_Constraint
8644 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
8645 end if;
8646
8647 if Ada_Version >= Ada_2005 then
8648 declare
8649 Ifaces_List : Elist_Id;
8650
8651 begin
8652 -- Checks rules 3.9.4 (13/2 and 14/2)
8653
8654 if Comes_From_Source (Derived_Type)
8655 and then not Is_Private_Type (Derived_Type)
8656 and then Is_Interface (Parent_Type)
8657 and then not Is_Interface (Derived_Type)
8658 then
8659 if Is_Task_Interface (Parent_Type) then
8660 Error_Msg_N
8661 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8662 Derived_Type);
8663
8664 elsif Is_Protected_Interface (Parent_Type) then
8665 Error_Msg_N
8666 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8667 Derived_Type);
8668 end if;
8669 end if;
8670
8671 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8672
8673 Check_Interfaces (N, Type_Def);
8674
8675 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8676 -- not already in the parents.
8677
8678 Collect_Interfaces
8679 (T => Derived_Type,
8680 Ifaces_List => Ifaces_List,
8681 Exclude_Parents => True);
8682
8683 Set_Interfaces (Derived_Type, Ifaces_List);
8684
8685 -- If the derived type is the anonymous type created for
8686 -- a declaration whose parent has a constraint, propagate
8687 -- the interface list to the source type. This must be done
8688 -- prior to the completion of the analysis of the source type
8689 -- because the components in the extension may contain current
8690 -- instances whose legality depends on some ancestor.
8691
8692 if Is_Itype (Derived_Type) then
8693 declare
8694 Def : constant Node_Id :=
8695 Associated_Node_For_Itype (Derived_Type);
8696 begin
8697 if Present (Def)
8698 and then Nkind (Def) = N_Full_Type_Declaration
8699 then
8700 Set_Interfaces
8701 (Defining_Identifier (Def), Ifaces_List);
8702 end if;
8703 end;
8704 end if;
8705
8706 -- Propagate inherited invariant information of parents
8707 -- and progenitors
8708
8709 if Ada_Version >= Ada_2012
8710 and then not Is_Interface (Derived_Type)
8711 then
8712 if Has_Inheritable_Invariants (Parent_Type) then
8713 Set_Has_Invariants (Derived_Type);
8714 Set_Has_Inheritable_Invariants (Derived_Type);
8715
8716 elsif not Is_Empty_Elmt_List (Ifaces_List) then
8717 declare
8718 AI : Elmt_Id;
8719
8720 begin
8721 AI := First_Elmt (Ifaces_List);
8722 while Present (AI) loop
8723 if Has_Inheritable_Invariants (Node (AI)) then
8724 Set_Has_Invariants (Derived_Type);
8725 Set_Has_Inheritable_Invariants (Derived_Type);
8726
8727 exit;
8728 end if;
8729
8730 Next_Elmt (AI);
8731 end loop;
8732 end;
8733 end if;
8734 end if;
8735
8736 -- A type extension is automatically Ghost when one of its
8737 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
8738 -- also inherited when the parent type is Ghost, but this is
8739 -- done in Build_Derived_Type as the mechanism also handles
8740 -- untagged derivations.
8741
8742 if Implements_Ghost_Interface (Derived_Type) then
8743 Set_Is_Ghost_Entity (Derived_Type);
8744 end if;
8745 end;
8746 end if;
8747
8748 else
8749 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
8750 Set_Has_Non_Standard_Rep
8751 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8752 end if;
8753
8754 -- STEP 4: Inherit components from the parent base and constrain them.
8755 -- Apply the second transformation described in point 6. above.
8756
8757 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
8758 or else not Has_Discriminants (Parent_Type)
8759 or else not Is_Constrained (Parent_Type)
8760 then
8761 Constrs := Discs;
8762 else
8763 Constrs := Discriminant_Constraint (Parent_Type);
8764 end if;
8765
8766 Assoc_List :=
8767 Inherit_Components
8768 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
8769
8770 -- STEP 5a: Copy the parent record declaration for untagged types
8771
8772 if not Is_Tagged then
8773
8774 -- Discriminant_Constraint (Derived_Type) has been properly
8775 -- constructed. Save it and temporarily set it to Empty because we
8776 -- do not want the call to New_Copy_Tree below to mess this list.
8777
8778 if Has_Discriminants (Derived_Type) then
8779 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
8780 Set_Discriminant_Constraint (Derived_Type, No_Elist);
8781 else
8782 Save_Discr_Constr := No_Elist;
8783 end if;
8784
8785 -- Save the Etype field of Derived_Type. It is correctly set now,
8786 -- but the call to New_Copy tree may remap it to point to itself,
8787 -- which is not what we want. Ditto for the Next_Entity field.
8788
8789 Save_Etype := Etype (Derived_Type);
8790 Save_Next_Entity := Next_Entity (Derived_Type);
8791
8792 -- Assoc_List maps all stored discriminants in the Parent_Base to
8793 -- stored discriminants in the Derived_Type. It is fundamental that
8794 -- no types or itypes with discriminants other than the stored
8795 -- discriminants appear in the entities declared inside
8796 -- Derived_Type, since the back end cannot deal with it.
8797
8798 New_Decl :=
8799 New_Copy_Tree
8800 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
8801
8802 -- Restore the fields saved prior to the New_Copy_Tree call
8803 -- and compute the stored constraint.
8804
8805 Set_Etype (Derived_Type, Save_Etype);
8806 Set_Next_Entity (Derived_Type, Save_Next_Entity);
8807
8808 if Has_Discriminants (Derived_Type) then
8809 Set_Discriminant_Constraint
8810 (Derived_Type, Save_Discr_Constr);
8811 Set_Stored_Constraint
8812 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
8813 Replace_Components (Derived_Type, New_Decl);
8814 Set_Has_Implicit_Dereference
8815 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
8816 end if;
8817
8818 -- Insert the new derived type declaration
8819
8820 Rewrite (N, New_Decl);
8821
8822 -- STEP 5b: Complete the processing for record extensions in generics
8823
8824 -- There is no completion for record extensions declared in the
8825 -- parameter part of a generic, so we need to complete processing for
8826 -- these generic record extensions here. The Record_Type_Definition call
8827 -- will change the Ekind of the components from E_Void to E_Component.
8828
8829 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
8830 Record_Type_Definition (Empty, Derived_Type);
8831
8832 -- STEP 5c: Process the record extension for non private tagged types
8833
8834 elsif not Private_Extension then
8835 Expand_Record_Extension (Derived_Type, Type_Def);
8836
8837 -- Note : previously in ASIS mode we set the Parent_Subtype of the
8838 -- derived type to propagate some semantic information. This led
8839 -- to other ASIS failures and has been removed.
8840
8841 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8842 -- implemented interfaces if we are in expansion mode
8843
8844 if Expander_Active
8845 and then Has_Interfaces (Derived_Type)
8846 then
8847 Add_Interface_Tag_Components (N, Derived_Type);
8848 end if;
8849
8850 -- Analyze the record extension
8851
8852 Record_Type_Definition
8853 (Record_Extension_Part (Type_Def), Derived_Type);
8854 end if;
8855
8856 End_Scope;
8857
8858 -- Nothing else to do if there is an error in the derivation.
8859 -- An unusual case: the full view may be derived from a type in an
8860 -- instance, when the partial view was used illegally as an actual
8861 -- in that instance, leading to a circular definition.
8862
8863 if Etype (Derived_Type) = Any_Type
8864 or else Etype (Parent_Type) = Derived_Type
8865 then
8866 return;
8867 end if;
8868
8869 -- Set delayed freeze and then derive subprograms, we need to do
8870 -- this in this order so that derived subprograms inherit the
8871 -- derived freeze if necessary.
8872
8873 Set_Has_Delayed_Freeze (Derived_Type);
8874
8875 if Derive_Subps then
8876 Derive_Subprograms (Parent_Type, Derived_Type);
8877 end if;
8878
8879 -- If we have a private extension which defines a constrained derived
8880 -- type mark as constrained here after we have derived subprograms. See
8881 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8882
8883 if Private_Extension and then Inherit_Discrims then
8884 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
8885 Set_Is_Constrained (Derived_Type, True);
8886 Set_Discriminant_Constraint (Derived_Type, Discs);
8887
8888 elsif Is_Constrained (Parent_Type) then
8889 Set_Is_Constrained
8890 (Derived_Type, True);
8891 Set_Discriminant_Constraint
8892 (Derived_Type, Discriminant_Constraint (Parent_Type));
8893 end if;
8894 end if;
8895
8896 -- Update the class-wide type, which shares the now-completed entity
8897 -- list with its specific type. In case of underlying record views,
8898 -- we do not generate the corresponding class wide entity.
8899
8900 if Is_Tagged
8901 and then not Is_Underlying_Record_View (Derived_Type)
8902 then
8903 Set_First_Entity
8904 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
8905 Set_Last_Entity
8906 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
8907 end if;
8908
8909 Check_Function_Writable_Actuals (N);
8910 end Build_Derived_Record_Type;
8911
8912 ------------------------
8913 -- Build_Derived_Type --
8914 ------------------------
8915
8916 procedure Build_Derived_Type
8917 (N : Node_Id;
8918 Parent_Type : Entity_Id;
8919 Derived_Type : Entity_Id;
8920 Is_Completion : Boolean;
8921 Derive_Subps : Boolean := True)
8922 is
8923 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
8924
8925 begin
8926 -- Set common attributes
8927
8928 Set_Scope (Derived_Type, Current_Scope);
8929
8930 Set_Etype (Derived_Type, Parent_Base);
8931 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8932 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
8933 Set_Has_Protected (Derived_Type, Has_Protected (Parent_Base));
8934
8935 Set_Size_Info (Derived_Type, Parent_Type);
8936 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
8937 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
8938 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
8939 Set_Is_Volatile (Derived_Type, Is_Volatile (Parent_Type));
8940
8941 if Is_Tagged_Type (Derived_Type) then
8942 Set_No_Tagged_Streams_Pragma
8943 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
8944 end if;
8945
8946 -- If the parent has primitive routines, set the derived type link
8947
8948 if Has_Primitive_Operations (Parent_Type) then
8949 Set_Derived_Type_Link (Parent_Base, Derived_Type);
8950 end if;
8951
8952 -- If the parent type is a private subtype, the convention on the base
8953 -- type may be set in the private part, and not propagated to the
8954 -- subtype until later, so we obtain the convention from the base type.
8955
8956 Set_Convention (Derived_Type, Convention (Parent_Base));
8957
8958 -- Set SSO default for record or array type
8959
8960 if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type))
8961 and then Is_Base_Type (Derived_Type)
8962 then
8963 Set_Default_SSO (Derived_Type);
8964 end if;
8965
8966 -- Propagate invariant information. The new type has invariants if
8967 -- they are inherited from the parent type, and these invariants can
8968 -- be further inherited, so both flags are set.
8969
8970 -- We similarly inherit predicates
8971
8972 if Has_Predicates (Parent_Type) then
8973 Set_Has_Predicates (Derived_Type);
8974 end if;
8975
8976 -- The derived type inherits the representation clauses of the parent
8977
8978 Inherit_Rep_Item_Chain (Derived_Type, Parent_Type);
8979
8980 -- Propagate the attributes related to pragma Default_Initial_Condition
8981 -- from the parent type to the private extension. A derived type always
8982 -- inherits the default initial condition flag from the parent type. If
8983 -- the derived type carries its own Default_Initial_Condition pragma,
8984 -- the flag is later reset in Analyze_Pragma. Note that both flags are
8985 -- mutually exclusive.
8986
8987 Propagate_Default_Init_Cond_Attributes
8988 (From_Typ => Parent_Type,
8989 To_Typ => Derived_Type,
8990 Parent_To_Derivation => True);
8991
8992 -- If the parent type has delayed rep aspects, then mark the derived
8993 -- type as possibly inheriting a delayed rep aspect.
8994
8995 if Has_Delayed_Rep_Aspects (Parent_Type) then
8996 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
8997 end if;
8998
8999 -- Propagate the attributes related to pragma Ghost from the parent type
9000 -- to the derived type or type extension (SPARK RM 6.9(9)).
9001
9002 if Is_Ghost_Entity (Parent_Type) then
9003 Set_Is_Ghost_Entity (Derived_Type);
9004 end if;
9005
9006 -- Type dependent processing
9007
9008 case Ekind (Parent_Type) is
9009 when Numeric_Kind =>
9010 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
9011
9012 when Array_Kind =>
9013 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
9014
9015 when E_Record_Type
9016 | E_Record_Subtype
9017 | Class_Wide_Kind =>
9018 Build_Derived_Record_Type
9019 (N, Parent_Type, Derived_Type, Derive_Subps);
9020 return;
9021
9022 when Enumeration_Kind =>
9023 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
9024
9025 when Access_Kind =>
9026 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
9027
9028 when Incomplete_Or_Private_Kind =>
9029 Build_Derived_Private_Type
9030 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
9031
9032 -- For discriminated types, the derivation includes deriving
9033 -- primitive operations. For others it is done below.
9034
9035 if Is_Tagged_Type (Parent_Type)
9036 or else Has_Discriminants (Parent_Type)
9037 or else (Present (Full_View (Parent_Type))
9038 and then Has_Discriminants (Full_View (Parent_Type)))
9039 then
9040 return;
9041 end if;
9042
9043 when Concurrent_Kind =>
9044 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
9045
9046 when others =>
9047 raise Program_Error;
9048 end case;
9049
9050 -- Nothing more to do if some error occurred
9051
9052 if Etype (Derived_Type) = Any_Type then
9053 return;
9054 end if;
9055
9056 -- Set delayed freeze and then derive subprograms, we need to do this
9057 -- in this order so that derived subprograms inherit the derived freeze
9058 -- if necessary.
9059
9060 Set_Has_Delayed_Freeze (Derived_Type);
9061
9062 if Derive_Subps then
9063 Derive_Subprograms (Parent_Type, Derived_Type);
9064 end if;
9065
9066 Set_Has_Primitive_Operations
9067 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
9068 end Build_Derived_Type;
9069
9070 -----------------------
9071 -- Build_Discriminal --
9072 -----------------------
9073
9074 procedure Build_Discriminal (Discrim : Entity_Id) is
9075 D_Minal : Entity_Id;
9076 CR_Disc : Entity_Id;
9077
9078 begin
9079 -- A discriminal has the same name as the discriminant
9080
9081 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9082
9083 Set_Ekind (D_Minal, E_In_Parameter);
9084 Set_Mechanism (D_Minal, Default_Mechanism);
9085 Set_Etype (D_Minal, Etype (Discrim));
9086 Set_Scope (D_Minal, Current_Scope);
9087
9088 Set_Discriminal (Discrim, D_Minal);
9089 Set_Discriminal_Link (D_Minal, Discrim);
9090
9091 -- For task types, build at once the discriminants of the corresponding
9092 -- record, which are needed if discriminants are used in entry defaults
9093 -- and in family bounds.
9094
9095 if Is_Concurrent_Type (Current_Scope)
9096 or else
9097 Is_Limited_Type (Current_Scope)
9098 then
9099 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9100
9101 Set_Ekind (CR_Disc, E_In_Parameter);
9102 Set_Mechanism (CR_Disc, Default_Mechanism);
9103 Set_Etype (CR_Disc, Etype (Discrim));
9104 Set_Scope (CR_Disc, Current_Scope);
9105 Set_Discriminal_Link (CR_Disc, Discrim);
9106 Set_CR_Discriminant (Discrim, CR_Disc);
9107 end if;
9108 end Build_Discriminal;
9109
9110 ------------------------------------
9111 -- Build_Discriminant_Constraints --
9112 ------------------------------------
9113
9114 function Build_Discriminant_Constraints
9115 (T : Entity_Id;
9116 Def : Node_Id;
9117 Derived_Def : Boolean := False) return Elist_Id
9118 is
9119 C : constant Node_Id := Constraint (Def);
9120 Nb_Discr : constant Nat := Number_Discriminants (T);
9121
9122 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
9123 -- Saves the expression corresponding to a given discriminant in T
9124
9125 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
9126 -- Return the Position number within array Discr_Expr of a discriminant
9127 -- D within the discriminant list of the discriminated type T.
9128
9129 procedure Process_Discriminant_Expression
9130 (Expr : Node_Id;
9131 D : Entity_Id);
9132 -- If this is a discriminant constraint on a partial view, do not
9133 -- generate an overflow check on the discriminant expression. The check
9134 -- will be generated when constraining the full view. Otherwise the
9135 -- backend creates duplicate symbols for the temporaries corresponding
9136 -- to the expressions to be checked, causing spurious assembler errors.
9137
9138 ------------------
9139 -- Pos_Of_Discr --
9140 ------------------
9141
9142 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
9143 Disc : Entity_Id;
9144
9145 begin
9146 Disc := First_Discriminant (T);
9147 for J in Discr_Expr'Range loop
9148 if Disc = D then
9149 return J;
9150 end if;
9151
9152 Next_Discriminant (Disc);
9153 end loop;
9154
9155 -- Note: Since this function is called on discriminants that are
9156 -- known to belong to the discriminated type, falling through the
9157 -- loop with no match signals an internal compiler error.
9158
9159 raise Program_Error;
9160 end Pos_Of_Discr;
9161
9162 -------------------------------------
9163 -- Process_Discriminant_Expression --
9164 -------------------------------------
9165
9166 procedure Process_Discriminant_Expression
9167 (Expr : Node_Id;
9168 D : Entity_Id)
9169 is
9170 BDT : constant Entity_Id := Base_Type (Etype (D));
9171
9172 begin
9173 -- If this is a discriminant constraint on a partial view, do
9174 -- not generate an overflow on the discriminant expression. The
9175 -- check will be generated when constraining the full view.
9176
9177 if Is_Private_Type (T)
9178 and then Present (Full_View (T))
9179 then
9180 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
9181 else
9182 Analyze_And_Resolve (Expr, BDT);
9183 end if;
9184 end Process_Discriminant_Expression;
9185
9186 -- Declarations local to Build_Discriminant_Constraints
9187
9188 Discr : Entity_Id;
9189 E : Entity_Id;
9190 Elist : constant Elist_Id := New_Elmt_List;
9191
9192 Constr : Node_Id;
9193 Expr : Node_Id;
9194 Id : Node_Id;
9195 Position : Nat;
9196 Found : Boolean;
9197
9198 Discrim_Present : Boolean := False;
9199
9200 -- Start of processing for Build_Discriminant_Constraints
9201
9202 begin
9203 -- The following loop will process positional associations only.
9204 -- For a positional association, the (single) discriminant is
9205 -- implicitly specified by position, in textual order (RM 3.7.2).
9206
9207 Discr := First_Discriminant (T);
9208 Constr := First (Constraints (C));
9209 for D in Discr_Expr'Range loop
9210 exit when Nkind (Constr) = N_Discriminant_Association;
9211
9212 if No (Constr) then
9213 Error_Msg_N ("too few discriminants given in constraint", C);
9214 return New_Elmt_List;
9215
9216 elsif Nkind (Constr) = N_Range
9217 or else (Nkind (Constr) = N_Attribute_Reference
9218 and then Attribute_Name (Constr) = Name_Range)
9219 then
9220 Error_Msg_N
9221 ("a range is not a valid discriminant constraint", Constr);
9222 Discr_Expr (D) := Error;
9223
9224 else
9225 Process_Discriminant_Expression (Constr, Discr);
9226 Discr_Expr (D) := Constr;
9227 end if;
9228
9229 Next_Discriminant (Discr);
9230 Next (Constr);
9231 end loop;
9232
9233 if No (Discr) and then Present (Constr) then
9234 Error_Msg_N ("too many discriminants given in constraint", Constr);
9235 return New_Elmt_List;
9236 end if;
9237
9238 -- Named associations can be given in any order, but if both positional
9239 -- and named associations are used in the same discriminant constraint,
9240 -- then positional associations must occur first, at their normal
9241 -- position. Hence once a named association is used, the rest of the
9242 -- discriminant constraint must use only named associations.
9243
9244 while Present (Constr) loop
9245
9246 -- Positional association forbidden after a named association
9247
9248 if Nkind (Constr) /= N_Discriminant_Association then
9249 Error_Msg_N ("positional association follows named one", Constr);
9250 return New_Elmt_List;
9251
9252 -- Otherwise it is a named association
9253
9254 else
9255 -- E records the type of the discriminants in the named
9256 -- association. All the discriminants specified in the same name
9257 -- association must have the same type.
9258
9259 E := Empty;
9260
9261 -- Search the list of discriminants in T to see if the simple name
9262 -- given in the constraint matches any of them.
9263
9264 Id := First (Selector_Names (Constr));
9265 while Present (Id) loop
9266 Found := False;
9267
9268 -- If Original_Discriminant is present, we are processing a
9269 -- generic instantiation and this is an instance node. We need
9270 -- to find the name of the corresponding discriminant in the
9271 -- actual record type T and not the name of the discriminant in
9272 -- the generic formal. Example:
9273
9274 -- generic
9275 -- type G (D : int) is private;
9276 -- package P is
9277 -- subtype W is G (D => 1);
9278 -- end package;
9279 -- type Rec (X : int) is record ... end record;
9280 -- package Q is new P (G => Rec);
9281
9282 -- At the point of the instantiation, formal type G is Rec
9283 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9284 -- which really looks like "subtype W is Rec (D => 1);" at
9285 -- the point of instantiation, we want to find the discriminant
9286 -- that corresponds to D in Rec, i.e. X.
9287
9288 if Present (Original_Discriminant (Id))
9289 and then In_Instance
9290 then
9291 Discr := Find_Corresponding_Discriminant (Id, T);
9292 Found := True;
9293
9294 else
9295 Discr := First_Discriminant (T);
9296 while Present (Discr) loop
9297 if Chars (Discr) = Chars (Id) then
9298 Found := True;
9299 exit;
9300 end if;
9301
9302 Next_Discriminant (Discr);
9303 end loop;
9304
9305 if not Found then
9306 Error_Msg_N ("& does not match any discriminant", Id);
9307 return New_Elmt_List;
9308
9309 -- If the parent type is a generic formal, preserve the
9310 -- name of the discriminant for subsequent instances.
9311 -- see comment at the beginning of this if statement.
9312
9313 elsif Is_Generic_Type (Root_Type (T)) then
9314 Set_Original_Discriminant (Id, Discr);
9315 end if;
9316 end if;
9317
9318 Position := Pos_Of_Discr (T, Discr);
9319
9320 if Present (Discr_Expr (Position)) then
9321 Error_Msg_N ("duplicate constraint for discriminant&", Id);
9322
9323 else
9324 -- Each discriminant specified in the same named association
9325 -- must be associated with a separate copy of the
9326 -- corresponding expression.
9327
9328 if Present (Next (Id)) then
9329 Expr := New_Copy_Tree (Expression (Constr));
9330 Set_Parent (Expr, Parent (Expression (Constr)));
9331 else
9332 Expr := Expression (Constr);
9333 end if;
9334
9335 Discr_Expr (Position) := Expr;
9336 Process_Discriminant_Expression (Expr, Discr);
9337 end if;
9338
9339 -- A discriminant association with more than one discriminant
9340 -- name is only allowed if the named discriminants are all of
9341 -- the same type (RM 3.7.1(8)).
9342
9343 if E = Empty then
9344 E := Base_Type (Etype (Discr));
9345
9346 elsif Base_Type (Etype (Discr)) /= E then
9347 Error_Msg_N
9348 ("all discriminants in an association " &
9349 "must have the same type", Id);
9350 end if;
9351
9352 Next (Id);
9353 end loop;
9354 end if;
9355
9356 Next (Constr);
9357 end loop;
9358
9359 -- A discriminant constraint must provide exactly one value for each
9360 -- discriminant of the type (RM 3.7.1(8)).
9361
9362 for J in Discr_Expr'Range loop
9363 if No (Discr_Expr (J)) then
9364 Error_Msg_N ("too few discriminants given in constraint", C);
9365 return New_Elmt_List;
9366 end if;
9367 end loop;
9368
9369 -- Determine if there are discriminant expressions in the constraint
9370
9371 for J in Discr_Expr'Range loop
9372 if Denotes_Discriminant
9373 (Discr_Expr (J), Check_Concurrent => True)
9374 then
9375 Discrim_Present := True;
9376 end if;
9377 end loop;
9378
9379 -- Build an element list consisting of the expressions given in the
9380 -- discriminant constraint and apply the appropriate checks. The list
9381 -- is constructed after resolving any named discriminant associations
9382 -- and therefore the expressions appear in the textual order of the
9383 -- discriminants.
9384
9385 Discr := First_Discriminant (T);
9386 for J in Discr_Expr'Range loop
9387 if Discr_Expr (J) /= Error then
9388 Append_Elmt (Discr_Expr (J), Elist);
9389
9390 -- If any of the discriminant constraints is given by a
9391 -- discriminant and we are in a derived type declaration we
9392 -- have a discriminant renaming. Establish link between new
9393 -- and old discriminant.
9394
9395 if Denotes_Discriminant (Discr_Expr (J)) then
9396 if Derived_Def then
9397 Set_Corresponding_Discriminant
9398 (Entity (Discr_Expr (J)), Discr);
9399 end if;
9400
9401 -- Force the evaluation of non-discriminant expressions.
9402 -- If we have found a discriminant in the constraint 3.4(26)
9403 -- and 3.8(18) demand that no range checks are performed are
9404 -- after evaluation. If the constraint is for a component
9405 -- definition that has a per-object constraint, expressions are
9406 -- evaluated but not checked either. In all other cases perform
9407 -- a range check.
9408
9409 else
9410 if Discrim_Present then
9411 null;
9412
9413 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
9414 and then
9415 Has_Per_Object_Constraint
9416 (Defining_Identifier (Parent (Parent (Def))))
9417 then
9418 null;
9419
9420 elsif Is_Access_Type (Etype (Discr)) then
9421 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
9422
9423 else
9424 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
9425 end if;
9426
9427 Force_Evaluation (Discr_Expr (J));
9428 end if;
9429
9430 -- Check that the designated type of an access discriminant's
9431 -- expression is not a class-wide type unless the discriminant's
9432 -- designated type is also class-wide.
9433
9434 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
9435 and then not Is_Class_Wide_Type
9436 (Designated_Type (Etype (Discr)))
9437 and then Etype (Discr_Expr (J)) /= Any_Type
9438 and then Is_Class_Wide_Type
9439 (Designated_Type (Etype (Discr_Expr (J))))
9440 then
9441 Wrong_Type (Discr_Expr (J), Etype (Discr));
9442
9443 elsif Is_Access_Type (Etype (Discr))
9444 and then not Is_Access_Constant (Etype (Discr))
9445 and then Is_Access_Type (Etype (Discr_Expr (J)))
9446 and then Is_Access_Constant (Etype (Discr_Expr (J)))
9447 then
9448 Error_Msg_NE
9449 ("constraint for discriminant& must be access to variable",
9450 Def, Discr);
9451 end if;
9452 end if;
9453
9454 Next_Discriminant (Discr);
9455 end loop;
9456
9457 return Elist;
9458 end Build_Discriminant_Constraints;
9459
9460 ---------------------------------
9461 -- Build_Discriminated_Subtype --
9462 ---------------------------------
9463
9464 procedure Build_Discriminated_Subtype
9465 (T : Entity_Id;
9466 Def_Id : Entity_Id;
9467 Elist : Elist_Id;
9468 Related_Nod : Node_Id;
9469 For_Access : Boolean := False)
9470 is
9471 Has_Discrs : constant Boolean := Has_Discriminants (T);
9472 Constrained : constant Boolean :=
9473 (Has_Discrs
9474 and then not Is_Empty_Elmt_List (Elist)
9475 and then not Is_Class_Wide_Type (T))
9476 or else Is_Constrained (T);
9477
9478 begin
9479 if Ekind (T) = E_Record_Type then
9480 if For_Access then
9481 Set_Ekind (Def_Id, E_Private_Subtype);
9482 Set_Is_For_Access_Subtype (Def_Id, True);
9483 else
9484 Set_Ekind (Def_Id, E_Record_Subtype);
9485 end if;
9486
9487 -- Inherit preelaboration flag from base, for types for which it
9488 -- may have been set: records, private types, protected types.
9489
9490 Set_Known_To_Have_Preelab_Init
9491 (Def_Id, Known_To_Have_Preelab_Init (T));
9492
9493 elsif Ekind (T) = E_Task_Type then
9494 Set_Ekind (Def_Id, E_Task_Subtype);
9495
9496 elsif Ekind (T) = E_Protected_Type then
9497 Set_Ekind (Def_Id, E_Protected_Subtype);
9498 Set_Known_To_Have_Preelab_Init
9499 (Def_Id, Known_To_Have_Preelab_Init (T));
9500
9501 elsif Is_Private_Type (T) then
9502 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
9503 Set_Known_To_Have_Preelab_Init
9504 (Def_Id, Known_To_Have_Preelab_Init (T));
9505
9506 -- Private subtypes may have private dependents
9507
9508 Set_Private_Dependents (Def_Id, New_Elmt_List);
9509
9510 elsif Is_Class_Wide_Type (T) then
9511 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
9512
9513 else
9514 -- Incomplete type. Attach subtype to list of dependents, to be
9515 -- completed with full view of parent type, unless is it the
9516 -- designated subtype of a record component within an init_proc.
9517 -- This last case arises for a component of an access type whose
9518 -- designated type is incomplete (e.g. a Taft Amendment type).
9519 -- The designated subtype is within an inner scope, and needs no
9520 -- elaboration, because only the access type is needed in the
9521 -- initialization procedure.
9522
9523 Set_Ekind (Def_Id, Ekind (T));
9524
9525 if For_Access and then Within_Init_Proc then
9526 null;
9527 else
9528 Append_Elmt (Def_Id, Private_Dependents (T));
9529 end if;
9530 end if;
9531
9532 Set_Etype (Def_Id, T);
9533 Init_Size_Align (Def_Id);
9534 Set_Has_Discriminants (Def_Id, Has_Discrs);
9535 Set_Is_Constrained (Def_Id, Constrained);
9536
9537 Set_First_Entity (Def_Id, First_Entity (T));
9538 Set_Last_Entity (Def_Id, Last_Entity (T));
9539 Set_Has_Implicit_Dereference
9540 (Def_Id, Has_Implicit_Dereference (T));
9541
9542 -- If the subtype is the completion of a private declaration, there may
9543 -- have been representation clauses for the partial view, and they must
9544 -- be preserved. Build_Derived_Type chains the inherited clauses with
9545 -- the ones appearing on the extension. If this comes from a subtype
9546 -- declaration, all clauses are inherited.
9547
9548 if No (First_Rep_Item (Def_Id)) then
9549 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9550 end if;
9551
9552 if Is_Tagged_Type (T) then
9553 Set_Is_Tagged_Type (Def_Id);
9554 Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T));
9555 Make_Class_Wide_Type (Def_Id);
9556 end if;
9557
9558 Set_Stored_Constraint (Def_Id, No_Elist);
9559
9560 if Has_Discrs then
9561 Set_Discriminant_Constraint (Def_Id, Elist);
9562 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
9563 end if;
9564
9565 if Is_Tagged_Type (T) then
9566
9567 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9568 -- concurrent record type (which has the list of primitive
9569 -- operations).
9570
9571 if Ada_Version >= Ada_2005
9572 and then Is_Concurrent_Type (T)
9573 then
9574 Set_Corresponding_Record_Type (Def_Id,
9575 Corresponding_Record_Type (T));
9576 else
9577 Set_Direct_Primitive_Operations (Def_Id,
9578 Direct_Primitive_Operations (T));
9579 end if;
9580
9581 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
9582 end if;
9583
9584 -- Subtypes introduced by component declarations do not need to be
9585 -- marked as delayed, and do not get freeze nodes, because the semantics
9586 -- verifies that the parents of the subtypes are frozen before the
9587 -- enclosing record is frozen.
9588
9589 if not Is_Type (Scope (Def_Id)) then
9590 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
9591
9592 if Is_Private_Type (T)
9593 and then Present (Full_View (T))
9594 then
9595 Conditional_Delay (Def_Id, Full_View (T));
9596 else
9597 Conditional_Delay (Def_Id, T);
9598 end if;
9599 end if;
9600
9601 if Is_Record_Type (T) then
9602 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
9603
9604 if Has_Discrs
9605 and then not Is_Empty_Elmt_List (Elist)
9606 and then not For_Access
9607 then
9608 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
9609 elsif not For_Access then
9610 Set_Cloned_Subtype (Def_Id, T);
9611 end if;
9612 end if;
9613 end Build_Discriminated_Subtype;
9614
9615 ---------------------------
9616 -- Build_Itype_Reference --
9617 ---------------------------
9618
9619 procedure Build_Itype_Reference
9620 (Ityp : Entity_Id;
9621 Nod : Node_Id)
9622 is
9623 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
9624 begin
9625
9626 -- Itype references are only created for use by the back-end
9627
9628 if Inside_A_Generic then
9629 return;
9630 else
9631 Set_Itype (IR, Ityp);
9632 Insert_After (Nod, IR);
9633 end if;
9634 end Build_Itype_Reference;
9635
9636 ------------------------
9637 -- Build_Scalar_Bound --
9638 ------------------------
9639
9640 function Build_Scalar_Bound
9641 (Bound : Node_Id;
9642 Par_T : Entity_Id;
9643 Der_T : Entity_Id) return Node_Id
9644 is
9645 New_Bound : Entity_Id;
9646
9647 begin
9648 -- Note: not clear why this is needed, how can the original bound
9649 -- be unanalyzed at this point? and if it is, what business do we
9650 -- have messing around with it? and why is the base type of the
9651 -- parent type the right type for the resolution. It probably is
9652 -- not. It is OK for the new bound we are creating, but not for
9653 -- the old one??? Still if it never happens, no problem.
9654
9655 Analyze_And_Resolve (Bound, Base_Type (Par_T));
9656
9657 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
9658 New_Bound := New_Copy (Bound);
9659 Set_Etype (New_Bound, Der_T);
9660 Set_Analyzed (New_Bound);
9661
9662 elsif Is_Entity_Name (Bound) then
9663 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
9664
9665 -- The following is almost certainly wrong. What business do we have
9666 -- relocating a node (Bound) that is presumably still attached to
9667 -- the tree elsewhere???
9668
9669 else
9670 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
9671 end if;
9672
9673 Set_Etype (New_Bound, Der_T);
9674 return New_Bound;
9675 end Build_Scalar_Bound;
9676
9677 --------------------------------
9678 -- Build_Underlying_Full_View --
9679 --------------------------------
9680
9681 procedure Build_Underlying_Full_View
9682 (N : Node_Id;
9683 Typ : Entity_Id;
9684 Par : Entity_Id)
9685 is
9686 Loc : constant Source_Ptr := Sloc (N);
9687 Subt : constant Entity_Id :=
9688 Make_Defining_Identifier
9689 (Loc, New_External_Name (Chars (Typ), 'S'));
9690
9691 Constr : Node_Id;
9692 Indic : Node_Id;
9693 C : Node_Id;
9694 Id : Node_Id;
9695
9696 procedure Set_Discriminant_Name (Id : Node_Id);
9697 -- If the derived type has discriminants, they may rename discriminants
9698 -- of the parent. When building the full view of the parent, we need to
9699 -- recover the names of the original discriminants if the constraint is
9700 -- given by named associations.
9701
9702 ---------------------------
9703 -- Set_Discriminant_Name --
9704 ---------------------------
9705
9706 procedure Set_Discriminant_Name (Id : Node_Id) is
9707 Disc : Entity_Id;
9708
9709 begin
9710 Set_Original_Discriminant (Id, Empty);
9711
9712 if Has_Discriminants (Typ) then
9713 Disc := First_Discriminant (Typ);
9714 while Present (Disc) loop
9715 if Chars (Disc) = Chars (Id)
9716 and then Present (Corresponding_Discriminant (Disc))
9717 then
9718 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
9719 end if;
9720 Next_Discriminant (Disc);
9721 end loop;
9722 end if;
9723 end Set_Discriminant_Name;
9724
9725 -- Start of processing for Build_Underlying_Full_View
9726
9727 begin
9728 if Nkind (N) = N_Full_Type_Declaration then
9729 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
9730
9731 elsif Nkind (N) = N_Subtype_Declaration then
9732 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
9733
9734 elsif Nkind (N) = N_Component_Declaration then
9735 Constr :=
9736 New_Copy_Tree
9737 (Constraint (Subtype_Indication (Component_Definition (N))));
9738
9739 else
9740 raise Program_Error;
9741 end if;
9742
9743 C := First (Constraints (Constr));
9744 while Present (C) loop
9745 if Nkind (C) = N_Discriminant_Association then
9746 Id := First (Selector_Names (C));
9747 while Present (Id) loop
9748 Set_Discriminant_Name (Id);
9749 Next (Id);
9750 end loop;
9751 end if;
9752
9753 Next (C);
9754 end loop;
9755
9756 Indic :=
9757 Make_Subtype_Declaration (Loc,
9758 Defining_Identifier => Subt,
9759 Subtype_Indication =>
9760 Make_Subtype_Indication (Loc,
9761 Subtype_Mark => New_Occurrence_Of (Par, Loc),
9762 Constraint => New_Copy_Tree (Constr)));
9763
9764 -- If this is a component subtype for an outer itype, it is not
9765 -- a list member, so simply set the parent link for analysis: if
9766 -- the enclosing type does not need to be in a declarative list,
9767 -- neither do the components.
9768
9769 if Is_List_Member (N)
9770 and then Nkind (N) /= N_Component_Declaration
9771 then
9772 Insert_Before (N, Indic);
9773 else
9774 Set_Parent (Indic, Parent (N));
9775 end if;
9776
9777 Analyze (Indic);
9778 Set_Underlying_Full_View (Typ, Full_View (Subt));
9779 end Build_Underlying_Full_View;
9780
9781 -------------------------------
9782 -- Check_Abstract_Overriding --
9783 -------------------------------
9784
9785 procedure Check_Abstract_Overriding (T : Entity_Id) is
9786 Alias_Subp : Entity_Id;
9787 Elmt : Elmt_Id;
9788 Op_List : Elist_Id;
9789 Subp : Entity_Id;
9790 Type_Def : Node_Id;
9791
9792 procedure Check_Pragma_Implemented (Subp : Entity_Id);
9793 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9794 -- which has pragma Implemented already set. Check whether Subp's entity
9795 -- kind conforms to the implementation kind of the overridden routine.
9796
9797 procedure Check_Pragma_Implemented
9798 (Subp : Entity_Id;
9799 Iface_Subp : Entity_Id);
9800 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9801 -- Iface_Subp and both entities have pragma Implemented already set on
9802 -- them. Check whether the two implementation kinds are conforming.
9803
9804 procedure Inherit_Pragma_Implemented
9805 (Subp : Entity_Id;
9806 Iface_Subp : Entity_Id);
9807 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9808 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9809 -- Propagate the implementation kind of Iface_Subp to Subp.
9810
9811 ------------------------------
9812 -- Check_Pragma_Implemented --
9813 ------------------------------
9814
9815 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
9816 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
9817 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
9818 Subp_Alias : constant Entity_Id := Alias (Subp);
9819 Contr_Typ : Entity_Id;
9820 Impl_Subp : Entity_Id;
9821
9822 begin
9823 -- Subp must have an alias since it is a hidden entity used to link
9824 -- an interface subprogram to its overriding counterpart.
9825
9826 pragma Assert (Present (Subp_Alias));
9827
9828 -- Handle aliases to synchronized wrappers
9829
9830 Impl_Subp := Subp_Alias;
9831
9832 if Is_Primitive_Wrapper (Impl_Subp) then
9833 Impl_Subp := Wrapped_Entity (Impl_Subp);
9834 end if;
9835
9836 -- Extract the type of the controlling formal
9837
9838 Contr_Typ := Etype (First_Formal (Subp_Alias));
9839
9840 if Is_Concurrent_Record_Type (Contr_Typ) then
9841 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
9842 end if;
9843
9844 -- An interface subprogram whose implementation kind is By_Entry must
9845 -- be implemented by an entry.
9846
9847 if Impl_Kind = Name_By_Entry
9848 and then Ekind (Impl_Subp) /= E_Entry
9849 then
9850 Error_Msg_Node_2 := Iface_Alias;
9851 Error_Msg_NE
9852 ("type & must implement abstract subprogram & with an entry",
9853 Subp_Alias, Contr_Typ);
9854
9855 elsif Impl_Kind = Name_By_Protected_Procedure then
9856
9857 -- An interface subprogram whose implementation kind is By_
9858 -- Protected_Procedure cannot be implemented by a primitive
9859 -- procedure of a task type.
9860
9861 if Ekind (Contr_Typ) /= E_Protected_Type then
9862 Error_Msg_Node_2 := Contr_Typ;
9863 Error_Msg_NE
9864 ("interface subprogram & cannot be implemented by a " &
9865 "primitive procedure of task type &", Subp_Alias,
9866 Iface_Alias);
9867
9868 -- An interface subprogram whose implementation kind is By_
9869 -- Protected_Procedure must be implemented by a procedure.
9870
9871 elsif Ekind (Impl_Subp) /= E_Procedure then
9872 Error_Msg_Node_2 := Iface_Alias;
9873 Error_Msg_NE
9874 ("type & must implement abstract subprogram & with a " &
9875 "procedure", Subp_Alias, Contr_Typ);
9876
9877 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9878 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9879 then
9880 Error_Msg_Name_1 := Impl_Kind;
9881 Error_Msg_N
9882 ("overriding operation& must have synchronization%",
9883 Subp_Alias);
9884 end if;
9885
9886 -- If primitive has Optional synchronization, overriding operation
9887 -- must match if it has an explicit synchronization..
9888
9889 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9890 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9891 then
9892 Error_Msg_Name_1 := Impl_Kind;
9893 Error_Msg_N
9894 ("overriding operation& must have syncrhonization%",
9895 Subp_Alias);
9896 end if;
9897 end Check_Pragma_Implemented;
9898
9899 ------------------------------
9900 -- Check_Pragma_Implemented --
9901 ------------------------------
9902
9903 procedure Check_Pragma_Implemented
9904 (Subp : Entity_Id;
9905 Iface_Subp : Entity_Id)
9906 is
9907 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9908 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
9909
9910 begin
9911 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9912 -- and overriding subprogram are different. In general this is an
9913 -- error except when the implementation kind of the overridden
9914 -- subprograms is By_Any or Optional.
9915
9916 if Iface_Kind /= Subp_Kind
9917 and then Iface_Kind /= Name_By_Any
9918 and then Iface_Kind /= Name_Optional
9919 then
9920 if Iface_Kind = Name_By_Entry then
9921 Error_Msg_N
9922 ("incompatible implementation kind, overridden subprogram " &
9923 "is marked By_Entry", Subp);
9924 else
9925 Error_Msg_N
9926 ("incompatible implementation kind, overridden subprogram " &
9927 "is marked By_Protected_Procedure", Subp);
9928 end if;
9929 end if;
9930 end Check_Pragma_Implemented;
9931
9932 --------------------------------
9933 -- Inherit_Pragma_Implemented --
9934 --------------------------------
9935
9936 procedure Inherit_Pragma_Implemented
9937 (Subp : Entity_Id;
9938 Iface_Subp : Entity_Id)
9939 is
9940 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9941 Loc : constant Source_Ptr := Sloc (Subp);
9942 Impl_Prag : Node_Id;
9943
9944 begin
9945 -- Since the implementation kind is stored as a representation item
9946 -- rather than a flag, create a pragma node.
9947
9948 Impl_Prag :=
9949 Make_Pragma (Loc,
9950 Chars => Name_Implemented,
9951 Pragma_Argument_Associations => New_List (
9952 Make_Pragma_Argument_Association (Loc,
9953 Expression => New_Occurrence_Of (Subp, Loc)),
9954
9955 Make_Pragma_Argument_Association (Loc,
9956 Expression => Make_Identifier (Loc, Iface_Kind))));
9957
9958 -- The pragma doesn't need to be analyzed because it is internally
9959 -- built. It is safe to directly register it as a rep item since we
9960 -- are only interested in the characters of the implementation kind.
9961
9962 Record_Rep_Item (Subp, Impl_Prag);
9963 end Inherit_Pragma_Implemented;
9964
9965 -- Start of processing for Check_Abstract_Overriding
9966
9967 begin
9968 Op_List := Primitive_Operations (T);
9969
9970 -- Loop to check primitive operations
9971
9972 Elmt := First_Elmt (Op_List);
9973 while Present (Elmt) loop
9974 Subp := Node (Elmt);
9975 Alias_Subp := Alias (Subp);
9976
9977 -- Inherited subprograms are identified by the fact that they do not
9978 -- come from source, and the associated source location is the
9979 -- location of the first subtype of the derived type.
9980
9981 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9982 -- subprograms that "require overriding".
9983
9984 -- Special exception, do not complain about failure to override the
9985 -- stream routines _Input and _Output, as well as the primitive
9986 -- operations used in dispatching selects since we always provide
9987 -- automatic overridings for these subprograms.
9988
9989 -- Also ignore this rule for convention CIL since .NET libraries
9990 -- do bizarre things with interfaces???
9991
9992 -- The partial view of T may have been a private extension, for
9993 -- which inherited functions dispatching on result are abstract.
9994 -- If the full view is a null extension, there is no need for
9995 -- overriding in Ada 2005, but wrappers need to be built for them
9996 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9997
9998 if Is_Null_Extension (T)
9999 and then Has_Controlling_Result (Subp)
10000 and then Ada_Version >= Ada_2005
10001 and then Present (Alias_Subp)
10002 and then not Comes_From_Source (Subp)
10003 and then not Is_Abstract_Subprogram (Alias_Subp)
10004 and then not Is_Access_Type (Etype (Subp))
10005 then
10006 null;
10007
10008 -- Ada 2005 (AI-251): Internal entities of interfaces need no
10009 -- processing because this check is done with the aliased
10010 -- entity
10011
10012 elsif Present (Interface_Alias (Subp)) then
10013 null;
10014
10015 elsif (Is_Abstract_Subprogram (Subp)
10016 or else Requires_Overriding (Subp)
10017 or else
10018 (Has_Controlling_Result (Subp)
10019 and then Present (Alias_Subp)
10020 and then not Comes_From_Source (Subp)
10021 and then Sloc (Subp) = Sloc (First_Subtype (T))))
10022 and then not Is_TSS (Subp, TSS_Stream_Input)
10023 and then not Is_TSS (Subp, TSS_Stream_Output)
10024 and then not Is_Abstract_Type (T)
10025 and then Convention (T) /= Convention_CIL
10026 and then not Is_Predefined_Interface_Primitive (Subp)
10027
10028 -- Ada 2005 (AI-251): Do not consider hidden entities associated
10029 -- with abstract interface types because the check will be done
10030 -- with the aliased entity (otherwise we generate a duplicated
10031 -- error message).
10032
10033 and then not Present (Interface_Alias (Subp))
10034 then
10035 if Present (Alias_Subp) then
10036
10037 -- Only perform the check for a derived subprogram when the
10038 -- type has an explicit record extension. This avoids incorrect
10039 -- flagging of abstract subprograms for the case of a type
10040 -- without an extension that is derived from a formal type
10041 -- with a tagged actual (can occur within a private part).
10042
10043 -- Ada 2005 (AI-391): In the case of an inherited function with
10044 -- a controlling result of the type, the rule does not apply if
10045 -- the type is a null extension (unless the parent function
10046 -- itself is abstract, in which case the function must still be
10047 -- be overridden). The expander will generate an overriding
10048 -- wrapper function calling the parent subprogram (see
10049 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
10050
10051 Type_Def := Type_Definition (Parent (T));
10052
10053 if Nkind (Type_Def) = N_Derived_Type_Definition
10054 and then Present (Record_Extension_Part (Type_Def))
10055 and then
10056 (Ada_Version < Ada_2005
10057 or else not Is_Null_Extension (T)
10058 or else Ekind (Subp) = E_Procedure
10059 or else not Has_Controlling_Result (Subp)
10060 or else Is_Abstract_Subprogram (Alias_Subp)
10061 or else Requires_Overriding (Subp)
10062 or else Is_Access_Type (Etype (Subp)))
10063 then
10064 -- Avoid reporting error in case of abstract predefined
10065 -- primitive inherited from interface type because the
10066 -- body of internally generated predefined primitives
10067 -- of tagged types are generated later by Freeze_Type
10068
10069 if Is_Interface (Root_Type (T))
10070 and then Is_Abstract_Subprogram (Subp)
10071 and then Is_Predefined_Dispatching_Operation (Subp)
10072 and then not Comes_From_Source (Ultimate_Alias (Subp))
10073 then
10074 null;
10075
10076 -- A null extension is not obliged to override an inherited
10077 -- procedure subject to pragma Extensions_Visible with value
10078 -- False and at least one controlling OUT parameter
10079 -- (SPARK RM 6.1.7(6)).
10080
10081 elsif Is_Null_Extension (T)
10082 and then Is_EVF_Procedure (Subp)
10083 then
10084 null;
10085
10086 else
10087 Error_Msg_NE
10088 ("type must be declared abstract or & overridden",
10089 T, Subp);
10090
10091 -- Traverse the whole chain of aliased subprograms to
10092 -- complete the error notification. This is especially
10093 -- useful for traceability of the chain of entities when
10094 -- the subprogram corresponds with an interface
10095 -- subprogram (which may be defined in another package).
10096
10097 if Present (Alias_Subp) then
10098 declare
10099 E : Entity_Id;
10100
10101 begin
10102 E := Subp;
10103 while Present (Alias (E)) loop
10104
10105 -- Avoid reporting redundant errors on entities
10106 -- inherited from interfaces
10107
10108 if Sloc (E) /= Sloc (T) then
10109 Error_Msg_Sloc := Sloc (E);
10110 Error_Msg_NE
10111 ("\& has been inherited #", T, Subp);
10112 end if;
10113
10114 E := Alias (E);
10115 end loop;
10116
10117 Error_Msg_Sloc := Sloc (E);
10118
10119 -- AI05-0068: report if there is an overriding
10120 -- non-abstract subprogram that is invisible.
10121
10122 if Is_Hidden (E)
10123 and then not Is_Abstract_Subprogram (E)
10124 then
10125 Error_Msg_NE
10126 ("\& subprogram# is not visible",
10127 T, Subp);
10128
10129 -- Clarify the case where a non-null extension must
10130 -- override inherited procedure subject to pragma
10131 -- Extensions_Visible with value False and at least
10132 -- one controlling OUT param.
10133
10134 elsif Is_EVF_Procedure (E) then
10135 Error_Msg_NE
10136 ("\& # is subject to Extensions_Visible False",
10137 T, Subp);
10138
10139 else
10140 Error_Msg_NE
10141 ("\& has been inherited from subprogram #",
10142 T, Subp);
10143 end if;
10144 end;
10145 end if;
10146 end if;
10147
10148 -- Ada 2005 (AI-345): Protected or task type implementing
10149 -- abstract interfaces.
10150
10151 elsif Is_Concurrent_Record_Type (T)
10152 and then Present (Interfaces (T))
10153 then
10154 -- There is no need to check here RM 9.4(11.9/3) since we
10155 -- are processing the corresponding record type and the
10156 -- mode of the overriding subprograms was verified by
10157 -- Check_Conformance when the corresponding concurrent
10158 -- type declaration was analyzed.
10159
10160 Error_Msg_NE
10161 ("interface subprogram & must be overridden", T, Subp);
10162
10163 -- Examine primitive operations of synchronized type to find
10164 -- homonyms that have the wrong profile.
10165
10166 declare
10167 Prim : Entity_Id;
10168
10169 begin
10170 Prim := First_Entity (Corresponding_Concurrent_Type (T));
10171 while Present (Prim) loop
10172 if Chars (Prim) = Chars (Subp) then
10173 Error_Msg_NE
10174 ("profile is not type conformant with prefixed "
10175 & "view profile of inherited operation&",
10176 Prim, Subp);
10177 end if;
10178
10179 Next_Entity (Prim);
10180 end loop;
10181 end;
10182 end if;
10183
10184 else
10185 Error_Msg_Node_2 := T;
10186 Error_Msg_N
10187 ("abstract subprogram& not allowed for type&", Subp);
10188
10189 -- Also post unconditional warning on the type (unconditional
10190 -- so that if there are more than one of these cases, we get
10191 -- them all, and not just the first one).
10192
10193 Error_Msg_Node_2 := Subp;
10194 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
10195 end if;
10196
10197 -- A subprogram subject to pragma Extensions_Visible with value
10198 -- "True" cannot override a subprogram subject to the same pragma
10199 -- with value "False" (SPARK RM 6.1.7(5)).
10200
10201 elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True
10202 and then Present (Overridden_Operation (Subp))
10203 and then Extensions_Visible_Status (Overridden_Operation (Subp)) =
10204 Extensions_Visible_False
10205 then
10206 Error_Msg_Sloc := Sloc (Overridden_Operation (Subp));
10207 Error_Msg_N
10208 ("subprogram & with Extensions_Visible True cannot override "
10209 & "subprogram # with Extensions_Visible False", Subp);
10210 end if;
10211
10212 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10213
10214 -- Subp is an expander-generated procedure which maps an interface
10215 -- alias to a protected wrapper. The interface alias is flagged by
10216 -- pragma Implemented. Ensure that Subp is a procedure when the
10217 -- implementation kind is By_Protected_Procedure or an entry when
10218 -- By_Entry.
10219
10220 if Ada_Version >= Ada_2012
10221 and then Is_Hidden (Subp)
10222 and then Present (Interface_Alias (Subp))
10223 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
10224 then
10225 Check_Pragma_Implemented (Subp);
10226 end if;
10227
10228 -- Subp is an interface primitive which overrides another interface
10229 -- primitive marked with pragma Implemented.
10230
10231 if Ada_Version >= Ada_2012
10232 and then Present (Overridden_Operation (Subp))
10233 and then Has_Rep_Pragma
10234 (Overridden_Operation (Subp), Name_Implemented)
10235 then
10236 -- If the overriding routine is also marked by Implemented, check
10237 -- that the two implementation kinds are conforming.
10238
10239 if Has_Rep_Pragma (Subp, Name_Implemented) then
10240 Check_Pragma_Implemented
10241 (Subp => Subp,
10242 Iface_Subp => Overridden_Operation (Subp));
10243
10244 -- Otherwise the overriding routine inherits the implementation
10245 -- kind from the overridden subprogram.
10246
10247 else
10248 Inherit_Pragma_Implemented
10249 (Subp => Subp,
10250 Iface_Subp => Overridden_Operation (Subp));
10251 end if;
10252 end if;
10253
10254 -- If the operation is a wrapper for a synchronized primitive, it
10255 -- may be called indirectly through a dispatching select. We assume
10256 -- that it will be referenced elsewhere indirectly, and suppress
10257 -- warnings about an unused entity.
10258
10259 if Is_Primitive_Wrapper (Subp)
10260 and then Present (Wrapped_Entity (Subp))
10261 then
10262 Set_Referenced (Wrapped_Entity (Subp));
10263 end if;
10264
10265 Next_Elmt (Elmt);
10266 end loop;
10267 end Check_Abstract_Overriding;
10268
10269 ------------------------------------------------
10270 -- Check_Access_Discriminant_Requires_Limited --
10271 ------------------------------------------------
10272
10273 procedure Check_Access_Discriminant_Requires_Limited
10274 (D : Node_Id;
10275 Loc : Node_Id)
10276 is
10277 begin
10278 -- A discriminant_specification for an access discriminant shall appear
10279 -- only in the declaration for a task or protected type, or for a type
10280 -- with the reserved word 'limited' in its definition or in one of its
10281 -- ancestors (RM 3.7(10)).
10282
10283 -- AI-0063: The proper condition is that type must be immutably limited,
10284 -- or else be a partial view.
10285
10286 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
10287 if Is_Limited_View (Current_Scope)
10288 or else
10289 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
10290 and then Limited_Present (Parent (Current_Scope)))
10291 then
10292 null;
10293
10294 else
10295 Error_Msg_N
10296 ("access discriminants allowed only for limited types", Loc);
10297 end if;
10298 end if;
10299 end Check_Access_Discriminant_Requires_Limited;
10300
10301 -----------------------------------
10302 -- Check_Aliased_Component_Types --
10303 -----------------------------------
10304
10305 procedure Check_Aliased_Component_Types (T : Entity_Id) is
10306 C : Entity_Id;
10307
10308 begin
10309 -- ??? Also need to check components of record extensions, but not
10310 -- components of protected types (which are always limited).
10311
10312 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10313 -- types to be unconstrained. This is safe because it is illegal to
10314 -- create access subtypes to such types with explicit discriminant
10315 -- constraints.
10316
10317 if not Is_Limited_Type (T) then
10318 if Ekind (T) = E_Record_Type then
10319 C := First_Component (T);
10320 while Present (C) loop
10321 if Is_Aliased (C)
10322 and then Has_Discriminants (Etype (C))
10323 and then not Is_Constrained (Etype (C))
10324 and then not In_Instance_Body
10325 and then Ada_Version < Ada_2005
10326 then
10327 Error_Msg_N
10328 ("aliased component must be constrained (RM 3.6(11))",
10329 C);
10330 end if;
10331
10332 Next_Component (C);
10333 end loop;
10334
10335 elsif Ekind (T) = E_Array_Type then
10336 if Has_Aliased_Components (T)
10337 and then Has_Discriminants (Component_Type (T))
10338 and then not Is_Constrained (Component_Type (T))
10339 and then not In_Instance_Body
10340 and then Ada_Version < Ada_2005
10341 then
10342 Error_Msg_N
10343 ("aliased component type must be constrained (RM 3.6(11))",
10344 T);
10345 end if;
10346 end if;
10347 end if;
10348 end Check_Aliased_Component_Types;
10349
10350 ---------------------------------------
10351 -- Check_Anonymous_Access_Components --
10352 ---------------------------------------
10353
10354 procedure Check_Anonymous_Access_Components
10355 (Typ_Decl : Node_Id;
10356 Typ : Entity_Id;
10357 Prev : Entity_Id;
10358 Comp_List : Node_Id)
10359 is
10360 Loc : constant Source_Ptr := Sloc (Typ_Decl);
10361 Anon_Access : Entity_Id;
10362 Acc_Def : Node_Id;
10363 Comp : Node_Id;
10364 Comp_Def : Node_Id;
10365 Decl : Node_Id;
10366 Type_Def : Node_Id;
10367
10368 procedure Build_Incomplete_Type_Declaration;
10369 -- If the record type contains components that include an access to the
10370 -- current record, then create an incomplete type declaration for the
10371 -- record, to be used as the designated type of the anonymous access.
10372 -- This is done only once, and only if there is no previous partial
10373 -- view of the type.
10374
10375 function Designates_T (Subt : Node_Id) return Boolean;
10376 -- Check whether a node designates the enclosing record type, or 'Class
10377 -- of that type
10378
10379 function Mentions_T (Acc_Def : Node_Id) return Boolean;
10380 -- Check whether an access definition includes a reference to
10381 -- the enclosing record type. The reference can be a subtype mark
10382 -- in the access definition itself, a 'Class attribute reference, or
10383 -- recursively a reference appearing in a parameter specification
10384 -- or result definition of an access_to_subprogram definition.
10385
10386 --------------------------------------
10387 -- Build_Incomplete_Type_Declaration --
10388 --------------------------------------
10389
10390 procedure Build_Incomplete_Type_Declaration is
10391 Decl : Node_Id;
10392 Inc_T : Entity_Id;
10393 H : Entity_Id;
10394
10395 -- Is_Tagged indicates whether the type is tagged. It is tagged if
10396 -- it's "is new ... with record" or else "is tagged record ...".
10397
10398 Is_Tagged : constant Boolean :=
10399 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
10400 and then
10401 Present (Record_Extension_Part (Type_Definition (Typ_Decl))))
10402 or else
10403 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
10404 and then Tagged_Present (Type_Definition (Typ_Decl)));
10405
10406 begin
10407 -- If there is a previous partial view, no need to create a new one
10408 -- If the partial view, given by Prev, is incomplete, If Prev is
10409 -- a private declaration, full declaration is flagged accordingly.
10410
10411 if Prev /= Typ then
10412 if Is_Tagged then
10413 Make_Class_Wide_Type (Prev);
10414 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
10415 Set_Etype (Class_Wide_Type (Typ), Typ);
10416 end if;
10417
10418 return;
10419
10420 elsif Has_Private_Declaration (Typ) then
10421
10422 -- If we refer to T'Class inside T, and T is the completion of a
10423 -- private type, then make sure the class-wide type exists.
10424
10425 if Is_Tagged then
10426 Make_Class_Wide_Type (Typ);
10427 end if;
10428
10429 return;
10430
10431 -- If there was a previous anonymous access type, the incomplete
10432 -- type declaration will have been created already.
10433
10434 elsif Present (Current_Entity (Typ))
10435 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
10436 and then Full_View (Current_Entity (Typ)) = Typ
10437 then
10438 if Is_Tagged
10439 and then Comes_From_Source (Current_Entity (Typ))
10440 and then not Is_Tagged_Type (Current_Entity (Typ))
10441 then
10442 Make_Class_Wide_Type (Typ);
10443 Error_Msg_N
10444 ("incomplete view of tagged type should be declared tagged??",
10445 Parent (Current_Entity (Typ)));
10446 end if;
10447 return;
10448
10449 else
10450 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
10451 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
10452
10453 -- Type has already been inserted into the current scope. Remove
10454 -- it, and add incomplete declaration for type, so that subsequent
10455 -- anonymous access types can use it. The entity is unchained from
10456 -- the homonym list and from immediate visibility. After analysis,
10457 -- the entity in the incomplete declaration becomes immediately
10458 -- visible in the record declaration that follows.
10459
10460 H := Current_Entity (Typ);
10461
10462 if H = Typ then
10463 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
10464 else
10465 while Present (H)
10466 and then Homonym (H) /= Typ
10467 loop
10468 H := Homonym (Typ);
10469 end loop;
10470
10471 Set_Homonym (H, Homonym (Typ));
10472 end if;
10473
10474 Insert_Before (Typ_Decl, Decl);
10475 Analyze (Decl);
10476 Set_Full_View (Inc_T, Typ);
10477
10478 if Is_Tagged then
10479
10480 -- Create a common class-wide type for both views, and set the
10481 -- Etype of the class-wide type to the full view.
10482
10483 Make_Class_Wide_Type (Inc_T);
10484 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
10485 Set_Etype (Class_Wide_Type (Typ), Typ);
10486 end if;
10487 end if;
10488 end Build_Incomplete_Type_Declaration;
10489
10490 ------------------
10491 -- Designates_T --
10492 ------------------
10493
10494 function Designates_T (Subt : Node_Id) return Boolean is
10495 Type_Id : constant Name_Id := Chars (Typ);
10496
10497 function Names_T (Nam : Node_Id) return Boolean;
10498 -- The record type has not been introduced in the current scope
10499 -- yet, so we must examine the name of the type itself, either
10500 -- an identifier T, or an expanded name of the form P.T, where
10501 -- P denotes the current scope.
10502
10503 -------------
10504 -- Names_T --
10505 -------------
10506
10507 function Names_T (Nam : Node_Id) return Boolean is
10508 begin
10509 if Nkind (Nam) = N_Identifier then
10510 return Chars (Nam) = Type_Id;
10511
10512 elsif Nkind (Nam) = N_Selected_Component then
10513 if Chars (Selector_Name (Nam)) = Type_Id then
10514 if Nkind (Prefix (Nam)) = N_Identifier then
10515 return Chars (Prefix (Nam)) = Chars (Current_Scope);
10516
10517 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
10518 return Chars (Selector_Name (Prefix (Nam))) =
10519 Chars (Current_Scope);
10520 else
10521 return False;
10522 end if;
10523
10524 else
10525 return False;
10526 end if;
10527
10528 else
10529 return False;
10530 end if;
10531 end Names_T;
10532
10533 -- Start of processing for Designates_T
10534
10535 begin
10536 if Nkind (Subt) = N_Identifier then
10537 return Chars (Subt) = Type_Id;
10538
10539 -- Reference can be through an expanded name which has not been
10540 -- analyzed yet, and which designates enclosing scopes.
10541
10542 elsif Nkind (Subt) = N_Selected_Component then
10543 if Names_T (Subt) then
10544 return True;
10545
10546 -- Otherwise it must denote an entity that is already visible.
10547 -- The access definition may name a subtype of the enclosing
10548 -- type, if there is a previous incomplete declaration for it.
10549
10550 else
10551 Find_Selected_Component (Subt);
10552 return
10553 Is_Entity_Name (Subt)
10554 and then Scope (Entity (Subt)) = Current_Scope
10555 and then
10556 (Chars (Base_Type (Entity (Subt))) = Type_Id
10557 or else
10558 (Is_Class_Wide_Type (Entity (Subt))
10559 and then
10560 Chars (Etype (Base_Type (Entity (Subt)))) =
10561 Type_Id));
10562 end if;
10563
10564 -- A reference to the current type may appear as the prefix of
10565 -- a 'Class attribute.
10566
10567 elsif Nkind (Subt) = N_Attribute_Reference
10568 and then Attribute_Name (Subt) = Name_Class
10569 then
10570 return Names_T (Prefix (Subt));
10571
10572 else
10573 return False;
10574 end if;
10575 end Designates_T;
10576
10577 ----------------
10578 -- Mentions_T --
10579 ----------------
10580
10581 function Mentions_T (Acc_Def : Node_Id) return Boolean is
10582 Param_Spec : Node_Id;
10583
10584 Acc_Subprg : constant Node_Id :=
10585 Access_To_Subprogram_Definition (Acc_Def);
10586
10587 begin
10588 if No (Acc_Subprg) then
10589 return Designates_T (Subtype_Mark (Acc_Def));
10590 end if;
10591
10592 -- Component is an access_to_subprogram: examine its formals,
10593 -- and result definition in the case of an access_to_function.
10594
10595 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
10596 while Present (Param_Spec) loop
10597 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
10598 and then Mentions_T (Parameter_Type (Param_Spec))
10599 then
10600 return True;
10601
10602 elsif Designates_T (Parameter_Type (Param_Spec)) then
10603 return True;
10604 end if;
10605
10606 Next (Param_Spec);
10607 end loop;
10608
10609 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
10610 if Nkind (Result_Definition (Acc_Subprg)) =
10611 N_Access_Definition
10612 then
10613 return Mentions_T (Result_Definition (Acc_Subprg));
10614 else
10615 return Designates_T (Result_Definition (Acc_Subprg));
10616 end if;
10617 end if;
10618
10619 return False;
10620 end Mentions_T;
10621
10622 -- Start of processing for Check_Anonymous_Access_Components
10623
10624 begin
10625 if No (Comp_List) then
10626 return;
10627 end if;
10628
10629 Comp := First (Component_Items (Comp_List));
10630 while Present (Comp) loop
10631 if Nkind (Comp) = N_Component_Declaration
10632 and then Present
10633 (Access_Definition (Component_Definition (Comp)))
10634 and then
10635 Mentions_T (Access_Definition (Component_Definition (Comp)))
10636 then
10637 Comp_Def := Component_Definition (Comp);
10638 Acc_Def :=
10639 Access_To_Subprogram_Definition (Access_Definition (Comp_Def));
10640
10641 Build_Incomplete_Type_Declaration;
10642 Anon_Access := Make_Temporary (Loc, 'S');
10643
10644 -- Create a declaration for the anonymous access type: either
10645 -- an access_to_object or an access_to_subprogram.
10646
10647 if Present (Acc_Def) then
10648 if Nkind (Acc_Def) = N_Access_Function_Definition then
10649 Type_Def :=
10650 Make_Access_Function_Definition (Loc,
10651 Parameter_Specifications =>
10652 Parameter_Specifications (Acc_Def),
10653 Result_Definition => Result_Definition (Acc_Def));
10654 else
10655 Type_Def :=
10656 Make_Access_Procedure_Definition (Loc,
10657 Parameter_Specifications =>
10658 Parameter_Specifications (Acc_Def));
10659 end if;
10660
10661 else
10662 Type_Def :=
10663 Make_Access_To_Object_Definition (Loc,
10664 Subtype_Indication =>
10665 Relocate_Node
10666 (Subtype_Mark (Access_Definition (Comp_Def))));
10667
10668 Set_Constant_Present
10669 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
10670 Set_All_Present
10671 (Type_Def, All_Present (Access_Definition (Comp_Def)));
10672 end if;
10673
10674 Set_Null_Exclusion_Present
10675 (Type_Def,
10676 Null_Exclusion_Present (Access_Definition (Comp_Def)));
10677
10678 Decl :=
10679 Make_Full_Type_Declaration (Loc,
10680 Defining_Identifier => Anon_Access,
10681 Type_Definition => Type_Def);
10682
10683 Insert_Before (Typ_Decl, Decl);
10684 Analyze (Decl);
10685
10686 -- If an access to subprogram, create the extra formals
10687
10688 if Present (Acc_Def) then
10689 Create_Extra_Formals (Designated_Type (Anon_Access));
10690
10691 -- If an access to object, preserve entity of designated type,
10692 -- for ASIS use, before rewriting the component definition.
10693
10694 else
10695 declare
10696 Desig : Entity_Id;
10697
10698 begin
10699 Desig := Entity (Subtype_Indication (Type_Def));
10700
10701 -- If the access definition is to the current record,
10702 -- the visible entity at this point is an incomplete
10703 -- type. Retrieve the full view to simplify ASIS queries
10704
10705 if Ekind (Desig) = E_Incomplete_Type then
10706 Desig := Full_View (Desig);
10707 end if;
10708
10709 Set_Entity
10710 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
10711 end;
10712 end if;
10713
10714 Rewrite (Comp_Def,
10715 Make_Component_Definition (Loc,
10716 Subtype_Indication =>
10717 New_Occurrence_Of (Anon_Access, Loc)));
10718
10719 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
10720 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
10721 else
10722 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
10723 end if;
10724
10725 Set_Is_Local_Anonymous_Access (Anon_Access);
10726 end if;
10727
10728 Next (Comp);
10729 end loop;
10730
10731 if Present (Variant_Part (Comp_List)) then
10732 declare
10733 V : Node_Id;
10734 begin
10735 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
10736 while Present (V) loop
10737 Check_Anonymous_Access_Components
10738 (Typ_Decl, Typ, Prev, Component_List (V));
10739 Next_Non_Pragma (V);
10740 end loop;
10741 end;
10742 end if;
10743 end Check_Anonymous_Access_Components;
10744
10745 ----------------------
10746 -- Check_Completion --
10747 ----------------------
10748
10749 procedure Check_Completion (Body_Id : Node_Id := Empty) is
10750 E : Entity_Id;
10751
10752 procedure Post_Error;
10753 -- Post error message for lack of completion for entity E
10754
10755 ----------------
10756 -- Post_Error --
10757 ----------------
10758
10759 procedure Post_Error is
10760
10761 procedure Missing_Body;
10762 -- Output missing body message
10763
10764 ------------------
10765 -- Missing_Body --
10766 ------------------
10767
10768 procedure Missing_Body is
10769 begin
10770 -- Spec is in same unit, so we can post on spec
10771
10772 if In_Same_Source_Unit (Body_Id, E) then
10773 Error_Msg_N ("missing body for &", E);
10774
10775 -- Spec is in a separate unit, so we have to post on the body
10776
10777 else
10778 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
10779 end if;
10780 end Missing_Body;
10781
10782 -- Start of processing for Post_Error
10783
10784 begin
10785 if not Comes_From_Source (E) then
10786
10787 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
10788
10789 -- It may be an anonymous protected type created for a
10790 -- single variable. Post error on variable, if present.
10791
10792 declare
10793 Var : Entity_Id;
10794
10795 begin
10796 Var := First_Entity (Current_Scope);
10797 while Present (Var) loop
10798 exit when Etype (Var) = E
10799 and then Comes_From_Source (Var);
10800
10801 Next_Entity (Var);
10802 end loop;
10803
10804 if Present (Var) then
10805 E := Var;
10806 end if;
10807 end;
10808 end if;
10809 end if;
10810
10811 -- If a generated entity has no completion, then either previous
10812 -- semantic errors have disabled the expansion phase, or else we had
10813 -- missing subunits, or else we are compiling without expansion,
10814 -- or else something is very wrong.
10815
10816 if not Comes_From_Source (E) then
10817 pragma Assert
10818 (Serious_Errors_Detected > 0
10819 or else Configurable_Run_Time_Violations > 0
10820 or else Subunits_Missing
10821 or else not Expander_Active);
10822 return;
10823
10824 -- Here for source entity
10825
10826 else
10827 -- Here if no body to post the error message, so we post the error
10828 -- on the declaration that has no completion. This is not really
10829 -- the right place to post it, think about this later ???
10830
10831 if No (Body_Id) then
10832 if Is_Type (E) then
10833 Error_Msg_NE
10834 ("missing full declaration for }", Parent (E), E);
10835 else
10836 Error_Msg_NE ("missing body for &", Parent (E), E);
10837 end if;
10838
10839 -- Package body has no completion for a declaration that appears
10840 -- in the corresponding spec. Post error on the body, with a
10841 -- reference to the non-completed declaration.
10842
10843 else
10844 Error_Msg_Sloc := Sloc (E);
10845
10846 if Is_Type (E) then
10847 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
10848
10849 elsif Is_Overloadable (E)
10850 and then Current_Entity_In_Scope (E) /= E
10851 then
10852 -- It may be that the completion is mistyped and appears as
10853 -- a distinct overloading of the entity.
10854
10855 declare
10856 Candidate : constant Entity_Id :=
10857 Current_Entity_In_Scope (E);
10858 Decl : constant Node_Id :=
10859 Unit_Declaration_Node (Candidate);
10860
10861 begin
10862 if Is_Overloadable (Candidate)
10863 and then Ekind (Candidate) = Ekind (E)
10864 and then Nkind (Decl) = N_Subprogram_Body
10865 and then Acts_As_Spec (Decl)
10866 then
10867 Check_Type_Conformant (Candidate, E);
10868
10869 else
10870 Missing_Body;
10871 end if;
10872 end;
10873
10874 else
10875 Missing_Body;
10876 end if;
10877 end if;
10878 end if;
10879 end Post_Error;
10880
10881 -- Local variables
10882
10883 Pack_Id : constant Entity_Id := Current_Scope;
10884
10885 -- Start of processing for Check_Completion
10886
10887 begin
10888 E := First_Entity (Pack_Id);
10889 while Present (E) loop
10890 if Is_Intrinsic_Subprogram (E) then
10891 null;
10892
10893 -- A Ghost entity declared in a non-Ghost package does not force the
10894 -- need for a body (SPARK RM 6.9(11)).
10895
10896 elsif not Is_Ghost_Entity (Pack_Id) and then Is_Ghost_Entity (E) then
10897 null;
10898
10899 -- The following situation requires special handling: a child unit
10900 -- that appears in the context clause of the body of its parent:
10901
10902 -- procedure Parent.Child (...);
10903
10904 -- with Parent.Child;
10905 -- package body Parent is
10906
10907 -- Here Parent.Child appears as a local entity, but should not be
10908 -- flagged as requiring completion, because it is a compilation
10909 -- unit.
10910
10911 -- Ignore missing completion for a subprogram that does not come from
10912 -- source (including the _Call primitive operation of RAS types,
10913 -- which has to have the flag Comes_From_Source for other purposes):
10914 -- we assume that the expander will provide the missing completion.
10915 -- In case of previous errors, other expansion actions that provide
10916 -- bodies for null procedures with not be invoked, so inhibit message
10917 -- in those cases.
10918
10919 -- Note that E_Operator is not in the list that follows, because
10920 -- this kind is reserved for predefined operators, that are
10921 -- intrinsic and do not need completion.
10922
10923 elsif Ekind_In (E, E_Function,
10924 E_Procedure,
10925 E_Generic_Function,
10926 E_Generic_Procedure)
10927 then
10928 if Has_Completion (E) then
10929 null;
10930
10931 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
10932 null;
10933
10934 elsif Is_Subprogram (E)
10935 and then (not Comes_From_Source (E)
10936 or else Chars (E) = Name_uCall)
10937 then
10938 null;
10939
10940 elsif
10941 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
10942 then
10943 null;
10944
10945 elsif Nkind (Parent (E)) = N_Procedure_Specification
10946 and then Null_Present (Parent (E))
10947 and then Serious_Errors_Detected > 0
10948 then
10949 null;
10950
10951 else
10952 Post_Error;
10953 end if;
10954
10955 elsif Is_Entry (E) then
10956 if not Has_Completion (E) and then
10957 (Ekind (Scope (E)) = E_Protected_Object
10958 or else Ekind (Scope (E)) = E_Protected_Type)
10959 then
10960 Post_Error;
10961 end if;
10962
10963 elsif Is_Package_Or_Generic_Package (E) then
10964 if Unit_Requires_Body (E) then
10965 if not Has_Completion (E)
10966 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
10967 N_Compilation_Unit
10968 then
10969 Post_Error;
10970 end if;
10971
10972 elsif not Is_Child_Unit (E) then
10973 May_Need_Implicit_Body (E);
10974 end if;
10975
10976 -- A formal incomplete type (Ada 2012) does not require a completion;
10977 -- other incomplete type declarations do.
10978
10979 elsif Ekind (E) = E_Incomplete_Type
10980 and then No (Underlying_Type (E))
10981 and then not Is_Generic_Type (E)
10982 then
10983 Post_Error;
10984
10985 elsif Ekind_In (E, E_Task_Type, E_Protected_Type)
10986 and then not Has_Completion (E)
10987 then
10988 Post_Error;
10989
10990 -- A single task declared in the current scope is a constant, verify
10991 -- that the body of its anonymous type is in the same scope. If the
10992 -- task is defined elsewhere, this may be a renaming declaration for
10993 -- which no completion is needed.
10994
10995 elsif Ekind (E) = E_Constant
10996 and then Ekind (Etype (E)) = E_Task_Type
10997 and then not Has_Completion (Etype (E))
10998 and then Scope (Etype (E)) = Current_Scope
10999 then
11000 Post_Error;
11001
11002 elsif Ekind (E) = E_Protected_Object
11003 and then not Has_Completion (Etype (E))
11004 then
11005 Post_Error;
11006
11007 elsif Ekind (E) = E_Record_Type then
11008 if Is_Tagged_Type (E) then
11009 Check_Abstract_Overriding (E);
11010 Check_Conventions (E);
11011 end if;
11012
11013 Check_Aliased_Component_Types (E);
11014
11015 elsif Ekind (E) = E_Array_Type then
11016 Check_Aliased_Component_Types (E);
11017
11018 end if;
11019
11020 Next_Entity (E);
11021 end loop;
11022 end Check_Completion;
11023
11024 ------------------------------------
11025 -- Check_CPP_Type_Has_No_Defaults --
11026 ------------------------------------
11027
11028 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
11029 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
11030 Clist : Node_Id;
11031 Comp : Node_Id;
11032
11033 begin
11034 -- Obtain the component list
11035
11036 if Nkind (Tdef) = N_Record_Definition then
11037 Clist := Component_List (Tdef);
11038 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
11039 Clist := Component_List (Record_Extension_Part (Tdef));
11040 end if;
11041
11042 -- Check all components to ensure no default expressions
11043
11044 if Present (Clist) then
11045 Comp := First (Component_Items (Clist));
11046 while Present (Comp) loop
11047 if Present (Expression (Comp)) then
11048 Error_Msg_N
11049 ("component of imported 'C'P'P type cannot have "
11050 & "default expression", Expression (Comp));
11051 end if;
11052
11053 Next (Comp);
11054 end loop;
11055 end if;
11056 end Check_CPP_Type_Has_No_Defaults;
11057
11058 ----------------------------
11059 -- Check_Delta_Expression --
11060 ----------------------------
11061
11062 procedure Check_Delta_Expression (E : Node_Id) is
11063 begin
11064 if not (Is_Real_Type (Etype (E))) then
11065 Wrong_Type (E, Any_Real);
11066
11067 elsif not Is_OK_Static_Expression (E) then
11068 Flag_Non_Static_Expr
11069 ("non-static expression used for delta value!", E);
11070
11071 elsif not UR_Is_Positive (Expr_Value_R (E)) then
11072 Error_Msg_N ("delta expression must be positive", E);
11073
11074 else
11075 return;
11076 end if;
11077
11078 -- If any of above errors occurred, then replace the incorrect
11079 -- expression by the real 0.1, which should prevent further errors.
11080
11081 Rewrite (E,
11082 Make_Real_Literal (Sloc (E), Ureal_Tenth));
11083 Analyze_And_Resolve (E, Standard_Float);
11084 end Check_Delta_Expression;
11085
11086 -----------------------------
11087 -- Check_Digits_Expression --
11088 -----------------------------
11089
11090 procedure Check_Digits_Expression (E : Node_Id) is
11091 begin
11092 if not (Is_Integer_Type (Etype (E))) then
11093 Wrong_Type (E, Any_Integer);
11094
11095 elsif not Is_OK_Static_Expression (E) then
11096 Flag_Non_Static_Expr
11097 ("non-static expression used for digits value!", E);
11098
11099 elsif Expr_Value (E) <= 0 then
11100 Error_Msg_N ("digits value must be greater than zero", E);
11101
11102 else
11103 return;
11104 end if;
11105
11106 -- If any of above errors occurred, then replace the incorrect
11107 -- expression by the integer 1, which should prevent further errors.
11108
11109 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
11110 Analyze_And_Resolve (E, Standard_Integer);
11111
11112 end Check_Digits_Expression;
11113
11114 --------------------------
11115 -- Check_Initialization --
11116 --------------------------
11117
11118 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
11119 begin
11120 -- Special processing for limited types
11121
11122 if Is_Limited_Type (T)
11123 and then not In_Instance
11124 and then not In_Inlined_Body
11125 then
11126 if not OK_For_Limited_Init (T, Exp) then
11127
11128 -- In GNAT mode, this is just a warning, to allow it to be evilly
11129 -- turned off. Otherwise it is a real error.
11130
11131 if GNAT_Mode then
11132 Error_Msg_N
11133 ("??cannot initialize entities of limited type!", Exp);
11134
11135 elsif Ada_Version < Ada_2005 then
11136
11137 -- The side effect removal machinery may generate illegal Ada
11138 -- code to avoid the usage of access types and 'reference in
11139 -- SPARK mode. Since this is legal code with respect to theorem
11140 -- proving, do not emit the error.
11141
11142 if GNATprove_Mode
11143 and then Nkind (Exp) = N_Function_Call
11144 and then Nkind (Parent (Exp)) = N_Object_Declaration
11145 and then not Comes_From_Source
11146 (Defining_Identifier (Parent (Exp)))
11147 then
11148 null;
11149
11150 else
11151 Error_Msg_N
11152 ("cannot initialize entities of limited type", Exp);
11153 Explain_Limited_Type (T, Exp);
11154 end if;
11155
11156 else
11157 -- Specialize error message according to kind of illegal
11158 -- initial expression.
11159
11160 if Nkind (Exp) = N_Type_Conversion
11161 and then Nkind (Expression (Exp)) = N_Function_Call
11162 then
11163 Error_Msg_N
11164 ("illegal context for call"
11165 & " to function with limited result", Exp);
11166
11167 else
11168 Error_Msg_N
11169 ("initialization of limited object requires aggregate "
11170 & "or function call", Exp);
11171 end if;
11172 end if;
11173 end if;
11174 end if;
11175
11176 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11177 -- set unless we can be sure that no range check is required.
11178
11179 if (GNATprove_Mode or not Expander_Active)
11180 and then Is_Scalar_Type (T)
11181 and then not Is_In_Range (Exp, T, Assume_Valid => True)
11182 then
11183 Set_Do_Range_Check (Exp);
11184 end if;
11185 end Check_Initialization;
11186
11187 ----------------------
11188 -- Check_Interfaces --
11189 ----------------------
11190
11191 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
11192 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
11193
11194 Iface : Node_Id;
11195 Iface_Def : Node_Id;
11196 Iface_Typ : Entity_Id;
11197 Parent_Node : Node_Id;
11198
11199 Is_Task : Boolean := False;
11200 -- Set True if parent type or any progenitor is a task interface
11201
11202 Is_Protected : Boolean := False;
11203 -- Set True if parent type or any progenitor is a protected interface
11204
11205 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
11206 -- Check that a progenitor is compatible with declaration. If an error
11207 -- message is output, it is posted on Error_Node.
11208
11209 ------------------
11210 -- Check_Ifaces --
11211 ------------------
11212
11213 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
11214 Iface_Id : constant Entity_Id :=
11215 Defining_Identifier (Parent (Iface_Def));
11216 Type_Def : Node_Id;
11217
11218 begin
11219 if Nkind (N) = N_Private_Extension_Declaration then
11220 Type_Def := N;
11221 else
11222 Type_Def := Type_Definition (N);
11223 end if;
11224
11225 if Is_Task_Interface (Iface_Id) then
11226 Is_Task := True;
11227
11228 elsif Is_Protected_Interface (Iface_Id) then
11229 Is_Protected := True;
11230 end if;
11231
11232 if Is_Synchronized_Interface (Iface_Id) then
11233
11234 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11235 -- extension derived from a synchronized interface must explicitly
11236 -- be declared synchronized, because the full view will be a
11237 -- synchronized type.
11238
11239 if Nkind (N) = N_Private_Extension_Declaration then
11240 if not Synchronized_Present (N) then
11241 Error_Msg_NE
11242 ("private extension of& must be explicitly synchronized",
11243 N, Iface_Id);
11244 end if;
11245
11246 -- However, by 3.9.4(16/2), a full type that is a record extension
11247 -- is never allowed to derive from a synchronized interface (note
11248 -- that interfaces must be excluded from this check, because those
11249 -- are represented by derived type definitions in some cases).
11250
11251 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11252 and then not Interface_Present (Type_Definition (N))
11253 then
11254 Error_Msg_N ("record extension cannot derive from synchronized "
11255 & "interface", Error_Node);
11256 end if;
11257 end if;
11258
11259 -- Check that the characteristics of the progenitor are compatible
11260 -- with the explicit qualifier in the declaration.
11261 -- The check only applies to qualifiers that come from source.
11262 -- Limited_Present also appears in the declaration of corresponding
11263 -- records, and the check does not apply to them.
11264
11265 if Limited_Present (Type_Def)
11266 and then not
11267 Is_Concurrent_Record_Type (Defining_Identifier (N))
11268 then
11269 if Is_Limited_Interface (Parent_Type)
11270 and then not Is_Limited_Interface (Iface_Id)
11271 then
11272 Error_Msg_NE
11273 ("progenitor & must be limited interface",
11274 Error_Node, Iface_Id);
11275
11276 elsif
11277 (Task_Present (Iface_Def)
11278 or else Protected_Present (Iface_Def)
11279 or else Synchronized_Present (Iface_Def))
11280 and then Nkind (N) /= N_Private_Extension_Declaration
11281 and then not Error_Posted (N)
11282 then
11283 Error_Msg_NE
11284 ("progenitor & must be limited interface",
11285 Error_Node, Iface_Id);
11286 end if;
11287
11288 -- Protected interfaces can only inherit from limited, synchronized
11289 -- or protected interfaces.
11290
11291 elsif Nkind (N) = N_Full_Type_Declaration
11292 and then Protected_Present (Type_Def)
11293 then
11294 if Limited_Present (Iface_Def)
11295 or else Synchronized_Present (Iface_Def)
11296 or else Protected_Present (Iface_Def)
11297 then
11298 null;
11299
11300 elsif Task_Present (Iface_Def) then
11301 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11302 & "from task interface", Error_Node);
11303
11304 else
11305 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11306 & "from non-limited interface", Error_Node);
11307 end if;
11308
11309 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11310 -- limited and synchronized.
11311
11312 elsif Synchronized_Present (Type_Def) then
11313 if Limited_Present (Iface_Def)
11314 or else Synchronized_Present (Iface_Def)
11315 then
11316 null;
11317
11318 elsif Protected_Present (Iface_Def)
11319 and then Nkind (N) /= N_Private_Extension_Declaration
11320 then
11321 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11322 & "from protected interface", Error_Node);
11323
11324 elsif Task_Present (Iface_Def)
11325 and then Nkind (N) /= N_Private_Extension_Declaration
11326 then
11327 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11328 & "from task interface", Error_Node);
11329
11330 elsif not Is_Limited_Interface (Iface_Id) then
11331 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11332 & "from non-limited interface", Error_Node);
11333 end if;
11334
11335 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
11336 -- synchronized or task interfaces.
11337
11338 elsif Nkind (N) = N_Full_Type_Declaration
11339 and then Task_Present (Type_Def)
11340 then
11341 if Limited_Present (Iface_Def)
11342 or else Synchronized_Present (Iface_Def)
11343 or else Task_Present (Iface_Def)
11344 then
11345 null;
11346
11347 elsif Protected_Present (Iface_Def) then
11348 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11349 & "protected interface", Error_Node);
11350
11351 else
11352 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11353 & "non-limited interface", Error_Node);
11354 end if;
11355 end if;
11356 end Check_Ifaces;
11357
11358 -- Start of processing for Check_Interfaces
11359
11360 begin
11361 if Is_Interface (Parent_Type) then
11362 if Is_Task_Interface (Parent_Type) then
11363 Is_Task := True;
11364
11365 elsif Is_Protected_Interface (Parent_Type) then
11366 Is_Protected := True;
11367 end if;
11368 end if;
11369
11370 if Nkind (N) = N_Private_Extension_Declaration then
11371
11372 -- Check that progenitors are compatible with declaration
11373
11374 Iface := First (Interface_List (Def));
11375 while Present (Iface) loop
11376 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11377
11378 Parent_Node := Parent (Base_Type (Iface_Typ));
11379 Iface_Def := Type_Definition (Parent_Node);
11380
11381 if not Is_Interface (Iface_Typ) then
11382 Diagnose_Interface (Iface, Iface_Typ);
11383 else
11384 Check_Ifaces (Iface_Def, Iface);
11385 end if;
11386
11387 Next (Iface);
11388 end loop;
11389
11390 if Is_Task and Is_Protected then
11391 Error_Msg_N
11392 ("type cannot derive from task and protected interface", N);
11393 end if;
11394
11395 return;
11396 end if;
11397
11398 -- Full type declaration of derived type.
11399 -- Check compatibility with parent if it is interface type
11400
11401 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11402 and then Is_Interface (Parent_Type)
11403 then
11404 Parent_Node := Parent (Parent_Type);
11405
11406 -- More detailed checks for interface varieties
11407
11408 Check_Ifaces
11409 (Iface_Def => Type_Definition (Parent_Node),
11410 Error_Node => Subtype_Indication (Type_Definition (N)));
11411 end if;
11412
11413 Iface := First (Interface_List (Def));
11414 while Present (Iface) loop
11415 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11416
11417 Parent_Node := Parent (Base_Type (Iface_Typ));
11418 Iface_Def := Type_Definition (Parent_Node);
11419
11420 if not Is_Interface (Iface_Typ) then
11421 Diagnose_Interface (Iface, Iface_Typ);
11422
11423 else
11424 -- "The declaration of a specific descendant of an interface
11425 -- type freezes the interface type" RM 13.14
11426
11427 Freeze_Before (N, Iface_Typ);
11428 Check_Ifaces (Iface_Def, Error_Node => Iface);
11429 end if;
11430
11431 Next (Iface);
11432 end loop;
11433
11434 if Is_Task and Is_Protected then
11435 Error_Msg_N
11436 ("type cannot derive from task and protected interface", N);
11437 end if;
11438 end Check_Interfaces;
11439
11440 ------------------------------------
11441 -- Check_Or_Process_Discriminants --
11442 ------------------------------------
11443
11444 -- If an incomplete or private type declaration was already given for the
11445 -- type, the discriminants may have already been processed if they were
11446 -- present on the incomplete declaration. In this case a full conformance
11447 -- check has been performed in Find_Type_Name, and we then recheck here
11448 -- some properties that can't be checked on the partial view alone.
11449 -- Otherwise we call Process_Discriminants.
11450
11451 procedure Check_Or_Process_Discriminants
11452 (N : Node_Id;
11453 T : Entity_Id;
11454 Prev : Entity_Id := Empty)
11455 is
11456 begin
11457 if Has_Discriminants (T) then
11458
11459 -- Discriminants are already set on T if they were already present
11460 -- on the partial view. Make them visible to component declarations.
11461
11462 declare
11463 D : Entity_Id;
11464 -- Discriminant on T (full view) referencing expr on partial view
11465
11466 Prev_D : Entity_Id;
11467 -- Entity of corresponding discriminant on partial view
11468
11469 New_D : Node_Id;
11470 -- Discriminant specification for full view, expression is
11471 -- the syntactic copy on full view (which has been checked for
11472 -- conformance with partial view), only used here to post error
11473 -- message.
11474
11475 begin
11476 D := First_Discriminant (T);
11477 New_D := First (Discriminant_Specifications (N));
11478 while Present (D) loop
11479 Prev_D := Current_Entity (D);
11480 Set_Current_Entity (D);
11481 Set_Is_Immediately_Visible (D);
11482 Set_Homonym (D, Prev_D);
11483
11484 -- Handle the case where there is an untagged partial view and
11485 -- the full view is tagged: must disallow discriminants with
11486 -- defaults, unless compiling for Ada 2012, which allows a
11487 -- limited tagged type to have defaulted discriminants (see
11488 -- AI05-0214). However, suppress error here if it was already
11489 -- reported on the default expression of the partial view.
11490
11491 if Is_Tagged_Type (T)
11492 and then Present (Expression (Parent (D)))
11493 and then (not Is_Limited_Type (Current_Scope)
11494 or else Ada_Version < Ada_2012)
11495 and then not Error_Posted (Expression (Parent (D)))
11496 then
11497 if Ada_Version >= Ada_2012 then
11498 Error_Msg_N
11499 ("discriminants of nonlimited tagged type cannot have "
11500 & "defaults",
11501 Expression (New_D));
11502 else
11503 Error_Msg_N
11504 ("discriminants of tagged type cannot have defaults",
11505 Expression (New_D));
11506 end if;
11507 end if;
11508
11509 -- Ada 2005 (AI-230): Access discriminant allowed in
11510 -- non-limited record types.
11511
11512 if Ada_Version < Ada_2005 then
11513
11514 -- This restriction gets applied to the full type here. It
11515 -- has already been applied earlier to the partial view.
11516
11517 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
11518 end if;
11519
11520 Next_Discriminant (D);
11521 Next (New_D);
11522 end loop;
11523 end;
11524
11525 elsif Present (Discriminant_Specifications (N)) then
11526 Process_Discriminants (N, Prev);
11527 end if;
11528 end Check_Or_Process_Discriminants;
11529
11530 ----------------------
11531 -- Check_Real_Bound --
11532 ----------------------
11533
11534 procedure Check_Real_Bound (Bound : Node_Id) is
11535 begin
11536 if not Is_Real_Type (Etype (Bound)) then
11537 Error_Msg_N
11538 ("bound in real type definition must be of real type", Bound);
11539
11540 elsif not Is_OK_Static_Expression (Bound) then
11541 Flag_Non_Static_Expr
11542 ("non-static expression used for real type bound!", Bound);
11543
11544 else
11545 return;
11546 end if;
11547
11548 Rewrite
11549 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
11550 Analyze (Bound);
11551 Resolve (Bound, Standard_Float);
11552 end Check_Real_Bound;
11553
11554 ------------------------------
11555 -- Complete_Private_Subtype --
11556 ------------------------------
11557
11558 procedure Complete_Private_Subtype
11559 (Priv : Entity_Id;
11560 Full : Entity_Id;
11561 Full_Base : Entity_Id;
11562 Related_Nod : Node_Id)
11563 is
11564 Save_Next_Entity : Entity_Id;
11565 Save_Homonym : Entity_Id;
11566
11567 begin
11568 -- Set semantic attributes for (implicit) private subtype completion.
11569 -- If the full type has no discriminants, then it is a copy of the
11570 -- full view of the base. Otherwise, it is a subtype of the base with
11571 -- a possible discriminant constraint. Save and restore the original
11572 -- Next_Entity field of full to ensure that the calls to Copy_Node do
11573 -- not corrupt the entity chain.
11574
11575 -- Note that the type of the full view is the same entity as the type
11576 -- of the partial view. In this fashion, the subtype has access to the
11577 -- correct view of the parent.
11578
11579 Save_Next_Entity := Next_Entity (Full);
11580 Save_Homonym := Homonym (Priv);
11581
11582 case Ekind (Full_Base) is
11583 when E_Record_Type |
11584 E_Record_Subtype |
11585 Class_Wide_Kind |
11586 Private_Kind |
11587 Task_Kind |
11588 Protected_Kind =>
11589 Copy_Node (Priv, Full);
11590
11591 Set_Has_Discriminants
11592 (Full, Has_Discriminants (Full_Base));
11593 Set_Has_Unknown_Discriminants
11594 (Full, Has_Unknown_Discriminants (Full_Base));
11595 Set_First_Entity (Full, First_Entity (Full_Base));
11596 Set_Last_Entity (Full, Last_Entity (Full_Base));
11597
11598 -- If the underlying base type is constrained, we know that the
11599 -- full view of the subtype is constrained as well (the converse
11600 -- is not necessarily true).
11601
11602 if Is_Constrained (Full_Base) then
11603 Set_Is_Constrained (Full);
11604 end if;
11605
11606 when others =>
11607 Copy_Node (Full_Base, Full);
11608
11609 Set_Chars (Full, Chars (Priv));
11610 Conditional_Delay (Full, Priv);
11611 Set_Sloc (Full, Sloc (Priv));
11612 end case;
11613
11614 Set_Next_Entity (Full, Save_Next_Entity);
11615 Set_Homonym (Full, Save_Homonym);
11616 Set_Associated_Node_For_Itype (Full, Related_Nod);
11617
11618 -- Set common attributes for all subtypes: kind, convention, etc.
11619
11620 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
11621 Set_Convention (Full, Convention (Full_Base));
11622
11623 -- The Etype of the full view is inconsistent. Gigi needs to see the
11624 -- structural full view, which is what the current scheme gives: the
11625 -- Etype of the full view is the etype of the full base. However, if the
11626 -- full base is a derived type, the full view then looks like a subtype
11627 -- of the parent, not a subtype of the full base. If instead we write:
11628
11629 -- Set_Etype (Full, Full_Base);
11630
11631 -- then we get inconsistencies in the front-end (confusion between
11632 -- views). Several outstanding bugs are related to this ???
11633
11634 Set_Is_First_Subtype (Full, False);
11635 Set_Scope (Full, Scope (Priv));
11636 Set_Size_Info (Full, Full_Base);
11637 Set_RM_Size (Full, RM_Size (Full_Base));
11638 Set_Is_Itype (Full);
11639
11640 -- A subtype of a private-type-without-discriminants, whose full-view
11641 -- has discriminants with default expressions, is not constrained.
11642
11643 if not Has_Discriminants (Priv) then
11644 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
11645
11646 if Has_Discriminants (Full_Base) then
11647 Set_Discriminant_Constraint
11648 (Full, Discriminant_Constraint (Full_Base));
11649
11650 -- The partial view may have been indefinite, the full view
11651 -- might not be.
11652
11653 Set_Has_Unknown_Discriminants
11654 (Full, Has_Unknown_Discriminants (Full_Base));
11655 end if;
11656 end if;
11657
11658 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
11659 Set_Depends_On_Private (Full, Has_Private_Component (Full));
11660
11661 -- Freeze the private subtype entity if its parent is delayed, and not
11662 -- already frozen. We skip this processing if the type is an anonymous
11663 -- subtype of a record component, or is the corresponding record of a
11664 -- protected type, since these are processed when the enclosing type
11665 -- is frozen.
11666
11667 if not Is_Type (Scope (Full)) then
11668 Set_Has_Delayed_Freeze (Full,
11669 Has_Delayed_Freeze (Full_Base)
11670 and then (not Is_Frozen (Full_Base)));
11671 end if;
11672
11673 Set_Freeze_Node (Full, Empty);
11674 Set_Is_Frozen (Full, False);
11675 Set_Full_View (Priv, Full);
11676
11677 if Has_Discriminants (Full) then
11678 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
11679 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
11680
11681 if Has_Unknown_Discriminants (Full) then
11682 Set_Discriminant_Constraint (Full, No_Elist);
11683 end if;
11684 end if;
11685
11686 if Ekind (Full_Base) = E_Record_Type
11687 and then Has_Discriminants (Full_Base)
11688 and then Has_Discriminants (Priv) -- might not, if errors
11689 and then not Has_Unknown_Discriminants (Priv)
11690 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
11691 then
11692 Create_Constrained_Components
11693 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
11694
11695 -- If the full base is itself derived from private, build a congruent
11696 -- subtype of its underlying type, for use by the back end. For a
11697 -- constrained record component, the declaration cannot be placed on
11698 -- the component list, but it must nevertheless be built an analyzed, to
11699 -- supply enough information for Gigi to compute the size of component.
11700
11701 elsif Ekind (Full_Base) in Private_Kind
11702 and then Is_Derived_Type (Full_Base)
11703 and then Has_Discriminants (Full_Base)
11704 and then (Ekind (Current_Scope) /= E_Record_Subtype)
11705 then
11706 if not Is_Itype (Priv)
11707 and then
11708 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
11709 then
11710 Build_Underlying_Full_View
11711 (Parent (Priv), Full, Etype (Full_Base));
11712
11713 elsif Nkind (Related_Nod) = N_Component_Declaration then
11714 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
11715 end if;
11716
11717 elsif Is_Record_Type (Full_Base) then
11718
11719 -- Show Full is simply a renaming of Full_Base
11720
11721 Set_Cloned_Subtype (Full, Full_Base);
11722 end if;
11723
11724 -- It is unsafe to share the bounds of a scalar type, because the Itype
11725 -- is elaborated on demand, and if a bound is non-static then different
11726 -- orders of elaboration in different units will lead to different
11727 -- external symbols.
11728
11729 if Is_Scalar_Type (Full_Base) then
11730 Set_Scalar_Range (Full,
11731 Make_Range (Sloc (Related_Nod),
11732 Low_Bound =>
11733 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
11734 High_Bound =>
11735 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
11736
11737 -- This completion inherits the bounds of the full parent, but if
11738 -- the parent is an unconstrained floating point type, so is the
11739 -- completion.
11740
11741 if Is_Floating_Point_Type (Full_Base) then
11742 Set_Includes_Infinities
11743 (Scalar_Range (Full), Has_Infinities (Full_Base));
11744 end if;
11745 end if;
11746
11747 -- ??? It seems that a lot of fields are missing that should be copied
11748 -- from Full_Base to Full. Here are some that are introduced in a
11749 -- non-disruptive way but a cleanup is necessary.
11750
11751 if Is_Tagged_Type (Full_Base) then
11752 Set_Is_Tagged_Type (Full);
11753 Set_Direct_Primitive_Operations
11754 (Full, Direct_Primitive_Operations (Full_Base));
11755 Set_No_Tagged_Streams_Pragma
11756 (Full, No_Tagged_Streams_Pragma (Full_Base));
11757
11758 -- Inherit class_wide type of full_base in case the partial view was
11759 -- not tagged. Otherwise it has already been created when the private
11760 -- subtype was analyzed.
11761
11762 if No (Class_Wide_Type (Full)) then
11763 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
11764 end if;
11765
11766 -- If this is a subtype of a protected or task type, constrain its
11767 -- corresponding record, unless this is a subtype without constraints,
11768 -- i.e. a simple renaming as with an actual subtype in an instance.
11769
11770 elsif Is_Concurrent_Type (Full_Base) then
11771 if Has_Discriminants (Full)
11772 and then Present (Corresponding_Record_Type (Full_Base))
11773 and then
11774 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
11775 then
11776 Set_Corresponding_Record_Type (Full,
11777 Constrain_Corresponding_Record
11778 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
11779
11780 else
11781 Set_Corresponding_Record_Type (Full,
11782 Corresponding_Record_Type (Full_Base));
11783 end if;
11784 end if;
11785
11786 -- Link rep item chain, and also setting of Has_Predicates from private
11787 -- subtype to full subtype, since we will need these on the full subtype
11788 -- to create the predicate function. Note that the full subtype may
11789 -- already have rep items, inherited from the full view of the base
11790 -- type, so we must be sure not to overwrite these entries.
11791
11792 declare
11793 Append : Boolean;
11794 Item : Node_Id;
11795 Next_Item : Node_Id;
11796
11797 begin
11798 Item := First_Rep_Item (Full);
11799
11800 -- If no existing rep items on full type, we can just link directly
11801 -- to the list of items on the private type, if any exist.. Same if
11802 -- the rep items are only those inherited from the base
11803
11804 if (No (Item)
11805 or else Nkind (Item) /= N_Aspect_Specification
11806 or else Entity (Item) = Full_Base)
11807 and then Present (First_Rep_Item (Priv))
11808 then
11809 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
11810
11811 -- Otherwise, search to the end of items currently linked to the full
11812 -- subtype and append the private items to the end. However, if Priv
11813 -- and Full already have the same list of rep items, then the append
11814 -- is not done, as that would create a circularity.
11815
11816 elsif Item /= First_Rep_Item (Priv) then
11817 Append := True;
11818 loop
11819 Next_Item := Next_Rep_Item (Item);
11820 exit when No (Next_Item);
11821 Item := Next_Item;
11822
11823 -- If the private view has aspect specifications, the full view
11824 -- inherits them. Since these aspects may already have been
11825 -- attached to the full view during derivation, do not append
11826 -- them if already present.
11827
11828 if Item = First_Rep_Item (Priv) then
11829 Append := False;
11830 exit;
11831 end if;
11832 end loop;
11833
11834 -- And link the private type items at the end of the chain
11835
11836 if Append then
11837 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
11838 end if;
11839 end if;
11840 end;
11841
11842 -- Make sure Has_Predicates is set on full type if it is set on the
11843 -- private type. Note that it may already be set on the full type and
11844 -- if so, we don't want to unset it. Similarly, propagate information
11845 -- about delayed aspects, because the corresponding pragmas must be
11846 -- analyzed when one of the views is frozen. This last step is needed
11847 -- in particular when the full type is a scalar type for which an
11848 -- anonymous base type is constructed.
11849
11850 if Has_Predicates (Priv) then
11851 Set_Has_Predicates (Full);
11852 end if;
11853
11854 if Has_Delayed_Aspects (Priv) then
11855 Set_Has_Delayed_Aspects (Full);
11856 end if;
11857 end Complete_Private_Subtype;
11858
11859 ----------------------------
11860 -- Constant_Redeclaration --
11861 ----------------------------
11862
11863 procedure Constant_Redeclaration
11864 (Id : Entity_Id;
11865 N : Node_Id;
11866 T : out Entity_Id)
11867 is
11868 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
11869 Obj_Def : constant Node_Id := Object_Definition (N);
11870 New_T : Entity_Id;
11871
11872 procedure Check_Possible_Deferred_Completion
11873 (Prev_Id : Entity_Id;
11874 Prev_Obj_Def : Node_Id;
11875 Curr_Obj_Def : Node_Id);
11876 -- Determine whether the two object definitions describe the partial
11877 -- and the full view of a constrained deferred constant. Generate
11878 -- a subtype for the full view and verify that it statically matches
11879 -- the subtype of the partial view.
11880
11881 procedure Check_Recursive_Declaration (Typ : Entity_Id);
11882 -- If deferred constant is an access type initialized with an allocator,
11883 -- check whether there is an illegal recursion in the definition,
11884 -- through a default value of some record subcomponent. This is normally
11885 -- detected when generating init procs, but requires this additional
11886 -- mechanism when expansion is disabled.
11887
11888 ----------------------------------------
11889 -- Check_Possible_Deferred_Completion --
11890 ----------------------------------------
11891
11892 procedure Check_Possible_Deferred_Completion
11893 (Prev_Id : Entity_Id;
11894 Prev_Obj_Def : Node_Id;
11895 Curr_Obj_Def : Node_Id)
11896 is
11897 begin
11898 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
11899 and then Present (Constraint (Prev_Obj_Def))
11900 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
11901 and then Present (Constraint (Curr_Obj_Def))
11902 then
11903 declare
11904 Loc : constant Source_Ptr := Sloc (N);
11905 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
11906 Decl : constant Node_Id :=
11907 Make_Subtype_Declaration (Loc,
11908 Defining_Identifier => Def_Id,
11909 Subtype_Indication =>
11910 Relocate_Node (Curr_Obj_Def));
11911
11912 begin
11913 Insert_Before_And_Analyze (N, Decl);
11914 Set_Etype (Id, Def_Id);
11915
11916 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
11917 Error_Msg_Sloc := Sloc (Prev_Id);
11918 Error_Msg_N ("subtype does not statically match deferred "
11919 & "declaration #", N);
11920 end if;
11921 end;
11922 end if;
11923 end Check_Possible_Deferred_Completion;
11924
11925 ---------------------------------
11926 -- Check_Recursive_Declaration --
11927 ---------------------------------
11928
11929 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
11930 Comp : Entity_Id;
11931
11932 begin
11933 if Is_Record_Type (Typ) then
11934 Comp := First_Component (Typ);
11935 while Present (Comp) loop
11936 if Comes_From_Source (Comp) then
11937 if Present (Expression (Parent (Comp)))
11938 and then Is_Entity_Name (Expression (Parent (Comp)))
11939 and then Entity (Expression (Parent (Comp))) = Prev
11940 then
11941 Error_Msg_Sloc := Sloc (Parent (Comp));
11942 Error_Msg_NE
11943 ("illegal circularity with declaration for & #",
11944 N, Comp);
11945 return;
11946
11947 elsif Is_Record_Type (Etype (Comp)) then
11948 Check_Recursive_Declaration (Etype (Comp));
11949 end if;
11950 end if;
11951
11952 Next_Component (Comp);
11953 end loop;
11954 end if;
11955 end Check_Recursive_Declaration;
11956
11957 -- Start of processing for Constant_Redeclaration
11958
11959 begin
11960 if Nkind (Parent (Prev)) = N_Object_Declaration then
11961 if Nkind (Object_Definition
11962 (Parent (Prev))) = N_Subtype_Indication
11963 then
11964 -- Find type of new declaration. The constraints of the two
11965 -- views must match statically, but there is no point in
11966 -- creating an itype for the full view.
11967
11968 if Nkind (Obj_Def) = N_Subtype_Indication then
11969 Find_Type (Subtype_Mark (Obj_Def));
11970 New_T := Entity (Subtype_Mark (Obj_Def));
11971
11972 else
11973 Find_Type (Obj_Def);
11974 New_T := Entity (Obj_Def);
11975 end if;
11976
11977 T := Etype (Prev);
11978
11979 else
11980 -- The full view may impose a constraint, even if the partial
11981 -- view does not, so construct the subtype.
11982
11983 New_T := Find_Type_Of_Object (Obj_Def, N);
11984 T := New_T;
11985 end if;
11986
11987 else
11988 -- Current declaration is illegal, diagnosed below in Enter_Name
11989
11990 T := Empty;
11991 New_T := Any_Type;
11992 end if;
11993
11994 -- If previous full declaration or a renaming declaration exists, or if
11995 -- a homograph is present, let Enter_Name handle it, either with an
11996 -- error or with the removal of an overridden implicit subprogram.
11997 -- The previous one is a full declaration if it has an expression
11998 -- (which in the case of an aggregate is indicated by the Init flag).
11999
12000 if Ekind (Prev) /= E_Constant
12001 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
12002 or else Present (Expression (Parent (Prev)))
12003 or else Has_Init_Expression (Parent (Prev))
12004 or else Present (Full_View (Prev))
12005 then
12006 Enter_Name (Id);
12007
12008 -- Verify that types of both declarations match, or else that both types
12009 -- are anonymous access types whose designated subtypes statically match
12010 -- (as allowed in Ada 2005 by AI-385).
12011
12012 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
12013 and then
12014 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
12015 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
12016 or else Is_Access_Constant (Etype (New_T)) /=
12017 Is_Access_Constant (Etype (Prev))
12018 or else Can_Never_Be_Null (Etype (New_T)) /=
12019 Can_Never_Be_Null (Etype (Prev))
12020 or else Null_Exclusion_Present (Parent (Prev)) /=
12021 Null_Exclusion_Present (Parent (Id))
12022 or else not Subtypes_Statically_Match
12023 (Designated_Type (Etype (Prev)),
12024 Designated_Type (Etype (New_T))))
12025 then
12026 Error_Msg_Sloc := Sloc (Prev);
12027 Error_Msg_N ("type does not match declaration#", N);
12028 Set_Full_View (Prev, Id);
12029 Set_Etype (Id, Any_Type);
12030
12031 -- A deferred constant whose type is an anonymous array is always
12032 -- illegal (unless imported). A detailed error message might be
12033 -- helpful for Ada beginners.
12034
12035 if Nkind (Object_Definition (Parent (Prev)))
12036 = N_Constrained_Array_Definition
12037 and then Nkind (Object_Definition (N))
12038 = N_Constrained_Array_Definition
12039 then
12040 Error_Msg_N ("\each anonymous array is a distinct type", N);
12041 Error_Msg_N ("a deferred constant must have a named type",
12042 Object_Definition (Parent (Prev)));
12043 end if;
12044
12045 elsif
12046 Null_Exclusion_Present (Parent (Prev))
12047 and then not Null_Exclusion_Present (N)
12048 then
12049 Error_Msg_Sloc := Sloc (Prev);
12050 Error_Msg_N ("null-exclusion does not match declaration#", N);
12051 Set_Full_View (Prev, Id);
12052 Set_Etype (Id, Any_Type);
12053
12054 -- If so, process the full constant declaration
12055
12056 else
12057 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
12058 -- the deferred declaration is constrained, then the subtype defined
12059 -- by the subtype_indication in the full declaration shall match it
12060 -- statically.
12061
12062 Check_Possible_Deferred_Completion
12063 (Prev_Id => Prev,
12064 Prev_Obj_Def => Object_Definition (Parent (Prev)),
12065 Curr_Obj_Def => Obj_Def);
12066
12067 Set_Full_View (Prev, Id);
12068 Set_Is_Public (Id, Is_Public (Prev));
12069 Set_Is_Internal (Id);
12070 Append_Entity (Id, Current_Scope);
12071
12072 -- Check ALIASED present if present before (RM 7.4(7))
12073
12074 if Is_Aliased (Prev)
12075 and then not Aliased_Present (N)
12076 then
12077 Error_Msg_Sloc := Sloc (Prev);
12078 Error_Msg_N ("ALIASED required (see declaration #)", N);
12079 end if;
12080
12081 -- Check that placement is in private part and that the incomplete
12082 -- declaration appeared in the visible part.
12083
12084 if Ekind (Current_Scope) = E_Package
12085 and then not In_Private_Part (Current_Scope)
12086 then
12087 Error_Msg_Sloc := Sloc (Prev);
12088 Error_Msg_N
12089 ("full constant for declaration # must be in private part", N);
12090
12091 elsif Ekind (Current_Scope) = E_Package
12092 and then
12093 List_Containing (Parent (Prev)) /=
12094 Visible_Declarations (Package_Specification (Current_Scope))
12095 then
12096 Error_Msg_N
12097 ("deferred constant must be declared in visible part",
12098 Parent (Prev));
12099 end if;
12100
12101 if Is_Access_Type (T)
12102 and then Nkind (Expression (N)) = N_Allocator
12103 then
12104 Check_Recursive_Declaration (Designated_Type (T));
12105 end if;
12106
12107 -- A deferred constant is a visible entity. If type has invariants,
12108 -- verify that the initial value satisfies them.
12109
12110 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
12111 Insert_After (N,
12112 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
12113 end if;
12114 end if;
12115 end Constant_Redeclaration;
12116
12117 ----------------------
12118 -- Constrain_Access --
12119 ----------------------
12120
12121 procedure Constrain_Access
12122 (Def_Id : in out Entity_Id;
12123 S : Node_Id;
12124 Related_Nod : Node_Id)
12125 is
12126 T : constant Entity_Id := Entity (Subtype_Mark (S));
12127 Desig_Type : constant Entity_Id := Designated_Type (T);
12128 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
12129 Constraint_OK : Boolean := True;
12130
12131 begin
12132 if Is_Array_Type (Desig_Type) then
12133 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
12134
12135 elsif (Is_Record_Type (Desig_Type)
12136 or else Is_Incomplete_Or_Private_Type (Desig_Type))
12137 and then not Is_Constrained (Desig_Type)
12138 then
12139 -- ??? The following code is a temporary bypass to ignore a
12140 -- discriminant constraint on access type if it is constraining
12141 -- the current record. Avoid creating the implicit subtype of the
12142 -- record we are currently compiling since right now, we cannot
12143 -- handle these. For now, just return the access type itself.
12144
12145 if Desig_Type = Current_Scope
12146 and then No (Def_Id)
12147 then
12148 Set_Ekind (Desig_Subtype, E_Record_Subtype);
12149 Def_Id := Entity (Subtype_Mark (S));
12150
12151 -- This call added to ensure that the constraint is analyzed
12152 -- (needed for a B test). Note that we still return early from
12153 -- this procedure to avoid recursive processing. ???
12154
12155 Constrain_Discriminated_Type
12156 (Desig_Subtype, S, Related_Nod, For_Access => True);
12157 return;
12158 end if;
12159
12160 -- Enforce rule that the constraint is illegal if there is an
12161 -- unconstrained view of the designated type. This means that the
12162 -- partial view (either a private type declaration or a derivation
12163 -- from a private type) has no discriminants. (Defect Report
12164 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12165
12166 -- Rule updated for Ada 2005: The private type is said to have
12167 -- a constrained partial view, given that objects of the type
12168 -- can be declared. Furthermore, the rule applies to all access
12169 -- types, unlike the rule concerning default discriminants (see
12170 -- RM 3.7.1(7/3))
12171
12172 if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005)
12173 and then Has_Private_Declaration (Desig_Type)
12174 and then In_Open_Scopes (Scope (Desig_Type))
12175 and then Has_Discriminants (Desig_Type)
12176 then
12177 declare
12178 Pack : constant Node_Id :=
12179 Unit_Declaration_Node (Scope (Desig_Type));
12180 Decls : List_Id;
12181 Decl : Node_Id;
12182
12183 begin
12184 if Nkind (Pack) = N_Package_Declaration then
12185 Decls := Visible_Declarations (Specification (Pack));
12186 Decl := First (Decls);
12187 while Present (Decl) loop
12188 if (Nkind (Decl) = N_Private_Type_Declaration
12189 and then Chars (Defining_Identifier (Decl)) =
12190 Chars (Desig_Type))
12191
12192 or else
12193 (Nkind (Decl) = N_Full_Type_Declaration
12194 and then
12195 Chars (Defining_Identifier (Decl)) =
12196 Chars (Desig_Type)
12197 and then Is_Derived_Type (Desig_Type)
12198 and then
12199 Has_Private_Declaration (Etype (Desig_Type)))
12200 then
12201 if No (Discriminant_Specifications (Decl)) then
12202 Error_Msg_N
12203 ("cannot constrain access type if designated "
12204 & "type has constrained partial view", S);
12205 end if;
12206
12207 exit;
12208 end if;
12209
12210 Next (Decl);
12211 end loop;
12212 end if;
12213 end;
12214 end if;
12215
12216 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
12217 For_Access => True);
12218
12219 elsif Is_Concurrent_Type (Desig_Type)
12220 and then not Is_Constrained (Desig_Type)
12221 then
12222 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
12223
12224 else
12225 Error_Msg_N ("invalid constraint on access type", S);
12226
12227 -- We simply ignore an invalid constraint
12228
12229 Desig_Subtype := Desig_Type;
12230 Constraint_OK := False;
12231 end if;
12232
12233 if No (Def_Id) then
12234 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
12235 else
12236 Set_Ekind (Def_Id, E_Access_Subtype);
12237 end if;
12238
12239 if Constraint_OK then
12240 Set_Etype (Def_Id, Base_Type (T));
12241
12242 if Is_Private_Type (Desig_Type) then
12243 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
12244 end if;
12245 else
12246 Set_Etype (Def_Id, Any_Type);
12247 end if;
12248
12249 Set_Size_Info (Def_Id, T);
12250 Set_Is_Constrained (Def_Id, Constraint_OK);
12251 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
12252 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12253 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
12254
12255 Conditional_Delay (Def_Id, T);
12256
12257 -- AI-363 : Subtypes of general access types whose designated types have
12258 -- default discriminants are disallowed. In instances, the rule has to
12259 -- be checked against the actual, of which T is the subtype. In a
12260 -- generic body, the rule is checked assuming that the actual type has
12261 -- defaulted discriminants.
12262
12263 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
12264 if Ekind (Base_Type (T)) = E_General_Access_Type
12265 and then Has_Defaulted_Discriminants (Desig_Type)
12266 then
12267 if Ada_Version < Ada_2005 then
12268 Error_Msg_N
12269 ("access subtype of general access type would not " &
12270 "be allowed in Ada 2005?y?", S);
12271 else
12272 Error_Msg_N
12273 ("access subtype of general access type not allowed", S);
12274 end if;
12275
12276 Error_Msg_N ("\discriminants have defaults", S);
12277
12278 elsif Is_Access_Type (T)
12279 and then Is_Generic_Type (Desig_Type)
12280 and then Has_Discriminants (Desig_Type)
12281 and then In_Package_Body (Current_Scope)
12282 then
12283 if Ada_Version < Ada_2005 then
12284 Error_Msg_N
12285 ("access subtype would not be allowed in generic body "
12286 & "in Ada 2005?y?", S);
12287 else
12288 Error_Msg_N
12289 ("access subtype not allowed in generic body", S);
12290 end if;
12291
12292 Error_Msg_N
12293 ("\designated type is a discriminated formal", S);
12294 end if;
12295 end if;
12296 end Constrain_Access;
12297
12298 ---------------------
12299 -- Constrain_Array --
12300 ---------------------
12301
12302 procedure Constrain_Array
12303 (Def_Id : in out Entity_Id;
12304 SI : Node_Id;
12305 Related_Nod : Node_Id;
12306 Related_Id : Entity_Id;
12307 Suffix : Character)
12308 is
12309 C : constant Node_Id := Constraint (SI);
12310 Number_Of_Constraints : Nat := 0;
12311 Index : Node_Id;
12312 S, T : Entity_Id;
12313 Constraint_OK : Boolean := True;
12314
12315 begin
12316 T := Entity (Subtype_Mark (SI));
12317
12318 if Is_Access_Type (T) then
12319 T := Designated_Type (T);
12320 end if;
12321
12322 -- If an index constraint follows a subtype mark in a subtype indication
12323 -- then the type or subtype denoted by the subtype mark must not already
12324 -- impose an index constraint. The subtype mark must denote either an
12325 -- unconstrained array type or an access type whose designated type
12326 -- is such an array type... (RM 3.6.1)
12327
12328 if Is_Constrained (T) then
12329 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
12330 Constraint_OK := False;
12331
12332 else
12333 S := First (Constraints (C));
12334 while Present (S) loop
12335 Number_Of_Constraints := Number_Of_Constraints + 1;
12336 Next (S);
12337 end loop;
12338
12339 -- In either case, the index constraint must provide a discrete
12340 -- range for each index of the array type and the type of each
12341 -- discrete range must be the same as that of the corresponding
12342 -- index. (RM 3.6.1)
12343
12344 if Number_Of_Constraints /= Number_Dimensions (T) then
12345 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
12346 Constraint_OK := False;
12347
12348 else
12349 S := First (Constraints (C));
12350 Index := First_Index (T);
12351 Analyze (Index);
12352
12353 -- Apply constraints to each index type
12354
12355 for J in 1 .. Number_Of_Constraints loop
12356 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
12357 Next (Index);
12358 Next (S);
12359 end loop;
12360
12361 end if;
12362 end if;
12363
12364 if No (Def_Id) then
12365 Def_Id :=
12366 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
12367 Set_Parent (Def_Id, Related_Nod);
12368
12369 else
12370 Set_Ekind (Def_Id, E_Array_Subtype);
12371 end if;
12372
12373 Set_Size_Info (Def_Id, (T));
12374 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12375 Set_Etype (Def_Id, Base_Type (T));
12376
12377 if Constraint_OK then
12378 Set_First_Index (Def_Id, First (Constraints (C)));
12379 else
12380 Set_First_Index (Def_Id, First_Index (T));
12381 end if;
12382
12383 Set_Is_Constrained (Def_Id, True);
12384 Set_Is_Aliased (Def_Id, Is_Aliased (T));
12385 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12386
12387 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
12388 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
12389
12390 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
12391 -- We need to initialize the attribute because if Def_Id is previously
12392 -- analyzed through a limited_with clause, it will have the attributes
12393 -- of an incomplete type, one of which is an Elist that overlaps the
12394 -- Packed_Array_Impl_Type field.
12395
12396 Set_Packed_Array_Impl_Type (Def_Id, Empty);
12397
12398 -- Build a freeze node if parent still needs one. Also make sure that
12399 -- the Depends_On_Private status is set because the subtype will need
12400 -- reprocessing at the time the base type does, and also we must set a
12401 -- conditional delay.
12402
12403 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
12404 Conditional_Delay (Def_Id, T);
12405 end Constrain_Array;
12406
12407 ------------------------------
12408 -- Constrain_Component_Type --
12409 ------------------------------
12410
12411 function Constrain_Component_Type
12412 (Comp : Entity_Id;
12413 Constrained_Typ : Entity_Id;
12414 Related_Node : Node_Id;
12415 Typ : Entity_Id;
12416 Constraints : Elist_Id) return Entity_Id
12417 is
12418 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
12419 Compon_Type : constant Entity_Id := Etype (Comp);
12420
12421 function Build_Constrained_Array_Type
12422 (Old_Type : Entity_Id) return Entity_Id;
12423 -- If Old_Type is an array type, one of whose indexes is constrained
12424 -- by a discriminant, build an Itype whose constraint replaces the
12425 -- discriminant with its value in the constraint.
12426
12427 function Build_Constrained_Discriminated_Type
12428 (Old_Type : Entity_Id) return Entity_Id;
12429 -- Ditto for record components
12430
12431 function Build_Constrained_Access_Type
12432 (Old_Type : Entity_Id) return Entity_Id;
12433 -- Ditto for access types. Makes use of previous two functions, to
12434 -- constrain designated type.
12435
12436 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
12437 -- T is an array or discriminated type, C is a list of constraints
12438 -- that apply to T. This routine builds the constrained subtype.
12439
12440 function Is_Discriminant (Expr : Node_Id) return Boolean;
12441 -- Returns True if Expr is a discriminant
12442
12443 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
12444 -- Find the value of discriminant Discrim in Constraint
12445
12446 -----------------------------------
12447 -- Build_Constrained_Access_Type --
12448 -----------------------------------
12449
12450 function Build_Constrained_Access_Type
12451 (Old_Type : Entity_Id) return Entity_Id
12452 is
12453 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
12454 Itype : Entity_Id;
12455 Desig_Subtype : Entity_Id;
12456 Scop : Entity_Id;
12457
12458 begin
12459 -- if the original access type was not embedded in the enclosing
12460 -- type definition, there is no need to produce a new access
12461 -- subtype. In fact every access type with an explicit constraint
12462 -- generates an itype whose scope is the enclosing record.
12463
12464 if not Is_Type (Scope (Old_Type)) then
12465 return Old_Type;
12466
12467 elsif Is_Array_Type (Desig_Type) then
12468 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
12469
12470 elsif Has_Discriminants (Desig_Type) then
12471
12472 -- This may be an access type to an enclosing record type for
12473 -- which we are constructing the constrained components. Return
12474 -- the enclosing record subtype. This is not always correct,
12475 -- but avoids infinite recursion. ???
12476
12477 Desig_Subtype := Any_Type;
12478
12479 for J in reverse 0 .. Scope_Stack.Last loop
12480 Scop := Scope_Stack.Table (J).Entity;
12481
12482 if Is_Type (Scop)
12483 and then Base_Type (Scop) = Base_Type (Desig_Type)
12484 then
12485 Desig_Subtype := Scop;
12486 end if;
12487
12488 exit when not Is_Type (Scop);
12489 end loop;
12490
12491 if Desig_Subtype = Any_Type then
12492 Desig_Subtype :=
12493 Build_Constrained_Discriminated_Type (Desig_Type);
12494 end if;
12495
12496 else
12497 return Old_Type;
12498 end if;
12499
12500 if Desig_Subtype /= Desig_Type then
12501
12502 -- The Related_Node better be here or else we won't be able
12503 -- to attach new itypes to a node in the tree.
12504
12505 pragma Assert (Present (Related_Node));
12506
12507 Itype := Create_Itype (E_Access_Subtype, Related_Node);
12508
12509 Set_Etype (Itype, Base_Type (Old_Type));
12510 Set_Size_Info (Itype, (Old_Type));
12511 Set_Directly_Designated_Type (Itype, Desig_Subtype);
12512 Set_Depends_On_Private (Itype, Has_Private_Component
12513 (Old_Type));
12514 Set_Is_Access_Constant (Itype, Is_Access_Constant
12515 (Old_Type));
12516
12517 -- The new itype needs freezing when it depends on a not frozen
12518 -- type and the enclosing subtype needs freezing.
12519
12520 if Has_Delayed_Freeze (Constrained_Typ)
12521 and then not Is_Frozen (Constrained_Typ)
12522 then
12523 Conditional_Delay (Itype, Base_Type (Old_Type));
12524 end if;
12525
12526 return Itype;
12527
12528 else
12529 return Old_Type;
12530 end if;
12531 end Build_Constrained_Access_Type;
12532
12533 ----------------------------------
12534 -- Build_Constrained_Array_Type --
12535 ----------------------------------
12536
12537 function Build_Constrained_Array_Type
12538 (Old_Type : Entity_Id) return Entity_Id
12539 is
12540 Lo_Expr : Node_Id;
12541 Hi_Expr : Node_Id;
12542 Old_Index : Node_Id;
12543 Range_Node : Node_Id;
12544 Constr_List : List_Id;
12545
12546 Need_To_Create_Itype : Boolean := False;
12547
12548 begin
12549 Old_Index := First_Index (Old_Type);
12550 while Present (Old_Index) loop
12551 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
12552
12553 if Is_Discriminant (Lo_Expr)
12554 or else
12555 Is_Discriminant (Hi_Expr)
12556 then
12557 Need_To_Create_Itype := True;
12558 end if;
12559
12560 Next_Index (Old_Index);
12561 end loop;
12562
12563 if Need_To_Create_Itype then
12564 Constr_List := New_List;
12565
12566 Old_Index := First_Index (Old_Type);
12567 while Present (Old_Index) loop
12568 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
12569
12570 if Is_Discriminant (Lo_Expr) then
12571 Lo_Expr := Get_Discr_Value (Lo_Expr);
12572 end if;
12573
12574 if Is_Discriminant (Hi_Expr) then
12575 Hi_Expr := Get_Discr_Value (Hi_Expr);
12576 end if;
12577
12578 Range_Node :=
12579 Make_Range
12580 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
12581
12582 Append (Range_Node, To => Constr_List);
12583
12584 Next_Index (Old_Index);
12585 end loop;
12586
12587 return Build_Subtype (Old_Type, Constr_List);
12588
12589 else
12590 return Old_Type;
12591 end if;
12592 end Build_Constrained_Array_Type;
12593
12594 ------------------------------------------
12595 -- Build_Constrained_Discriminated_Type --
12596 ------------------------------------------
12597
12598 function Build_Constrained_Discriminated_Type
12599 (Old_Type : Entity_Id) return Entity_Id
12600 is
12601 Expr : Node_Id;
12602 Constr_List : List_Id;
12603 Old_Constraint : Elmt_Id;
12604
12605 Need_To_Create_Itype : Boolean := False;
12606
12607 begin
12608 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
12609 while Present (Old_Constraint) loop
12610 Expr := Node (Old_Constraint);
12611
12612 if Is_Discriminant (Expr) then
12613 Need_To_Create_Itype := True;
12614 end if;
12615
12616 Next_Elmt (Old_Constraint);
12617 end loop;
12618
12619 if Need_To_Create_Itype then
12620 Constr_List := New_List;
12621
12622 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
12623 while Present (Old_Constraint) loop
12624 Expr := Node (Old_Constraint);
12625
12626 if Is_Discriminant (Expr) then
12627 Expr := Get_Discr_Value (Expr);
12628 end if;
12629
12630 Append (New_Copy_Tree (Expr), To => Constr_List);
12631
12632 Next_Elmt (Old_Constraint);
12633 end loop;
12634
12635 return Build_Subtype (Old_Type, Constr_List);
12636
12637 else
12638 return Old_Type;
12639 end if;
12640 end Build_Constrained_Discriminated_Type;
12641
12642 -------------------
12643 -- Build_Subtype --
12644 -------------------
12645
12646 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
12647 Indic : Node_Id;
12648 Subtyp_Decl : Node_Id;
12649 Def_Id : Entity_Id;
12650 Btyp : Entity_Id := Base_Type (T);
12651
12652 begin
12653 -- The Related_Node better be here or else we won't be able to
12654 -- attach new itypes to a node in the tree.
12655
12656 pragma Assert (Present (Related_Node));
12657
12658 -- If the view of the component's type is incomplete or private
12659 -- with unknown discriminants, then the constraint must be applied
12660 -- to the full type.
12661
12662 if Has_Unknown_Discriminants (Btyp)
12663 and then Present (Underlying_Type (Btyp))
12664 then
12665 Btyp := Underlying_Type (Btyp);
12666 end if;
12667
12668 Indic :=
12669 Make_Subtype_Indication (Loc,
12670 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
12671 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
12672
12673 Def_Id := Create_Itype (Ekind (T), Related_Node);
12674
12675 Subtyp_Decl :=
12676 Make_Subtype_Declaration (Loc,
12677 Defining_Identifier => Def_Id,
12678 Subtype_Indication => Indic);
12679
12680 Set_Parent (Subtyp_Decl, Parent (Related_Node));
12681
12682 -- Itypes must be analyzed with checks off (see package Itypes)
12683
12684 Analyze (Subtyp_Decl, Suppress => All_Checks);
12685
12686 return Def_Id;
12687 end Build_Subtype;
12688
12689 ---------------------
12690 -- Get_Discr_Value --
12691 ---------------------
12692
12693 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
12694 D : Entity_Id;
12695 E : Elmt_Id;
12696
12697 begin
12698 -- The discriminant may be declared for the type, in which case we
12699 -- find it by iterating over the list of discriminants. If the
12700 -- discriminant is inherited from a parent type, it appears as the
12701 -- corresponding discriminant of the current type. This will be the
12702 -- case when constraining an inherited component whose constraint is
12703 -- given by a discriminant of the parent.
12704
12705 D := First_Discriminant (Typ);
12706 E := First_Elmt (Constraints);
12707
12708 while Present (D) loop
12709 if D = Entity (Discrim)
12710 or else D = CR_Discriminant (Entity (Discrim))
12711 or else Corresponding_Discriminant (D) = Entity (Discrim)
12712 then
12713 return Node (E);
12714 end if;
12715
12716 Next_Discriminant (D);
12717 Next_Elmt (E);
12718 end loop;
12719
12720 -- The Corresponding_Discriminant mechanism is incomplete, because
12721 -- the correspondence between new and old discriminants is not one
12722 -- to one: one new discriminant can constrain several old ones. In
12723 -- that case, scan sequentially the stored_constraint, the list of
12724 -- discriminants of the parents, and the constraints.
12725
12726 -- Previous code checked for the present of the Stored_Constraint
12727 -- list for the derived type, but did not use it at all. Should it
12728 -- be present when the component is a discriminated task type?
12729
12730 if Is_Derived_Type (Typ)
12731 and then Scope (Entity (Discrim)) = Etype (Typ)
12732 then
12733 D := First_Discriminant (Etype (Typ));
12734 E := First_Elmt (Constraints);
12735 while Present (D) loop
12736 if D = Entity (Discrim) then
12737 return Node (E);
12738 end if;
12739
12740 Next_Discriminant (D);
12741 Next_Elmt (E);
12742 end loop;
12743 end if;
12744
12745 -- Something is wrong if we did not find the value
12746
12747 raise Program_Error;
12748 end Get_Discr_Value;
12749
12750 ---------------------
12751 -- Is_Discriminant --
12752 ---------------------
12753
12754 function Is_Discriminant (Expr : Node_Id) return Boolean is
12755 Discrim_Scope : Entity_Id;
12756
12757 begin
12758 if Denotes_Discriminant (Expr) then
12759 Discrim_Scope := Scope (Entity (Expr));
12760
12761 -- Either we have a reference to one of Typ's discriminants,
12762
12763 pragma Assert (Discrim_Scope = Typ
12764
12765 -- or to the discriminants of the parent type, in the case
12766 -- of a derivation of a tagged type with variants.
12767
12768 or else Discrim_Scope = Etype (Typ)
12769 or else Full_View (Discrim_Scope) = Etype (Typ)
12770
12771 -- or same as above for the case where the discriminants
12772 -- were declared in Typ's private view.
12773
12774 or else (Is_Private_Type (Discrim_Scope)
12775 and then Chars (Discrim_Scope) = Chars (Typ))
12776
12777 -- or else we are deriving from the full view and the
12778 -- discriminant is declared in the private entity.
12779
12780 or else (Is_Private_Type (Typ)
12781 and then Chars (Discrim_Scope) = Chars (Typ))
12782
12783 -- Or we are constrained the corresponding record of a
12784 -- synchronized type that completes a private declaration.
12785
12786 or else (Is_Concurrent_Record_Type (Typ)
12787 and then
12788 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
12789
12790 -- or we have a class-wide type, in which case make sure the
12791 -- discriminant found belongs to the root type.
12792
12793 or else (Is_Class_Wide_Type (Typ)
12794 and then Etype (Typ) = Discrim_Scope));
12795
12796 return True;
12797 end if;
12798
12799 -- In all other cases we have something wrong
12800
12801 return False;
12802 end Is_Discriminant;
12803
12804 -- Start of processing for Constrain_Component_Type
12805
12806 begin
12807 if Nkind (Parent (Comp)) = N_Component_Declaration
12808 and then Comes_From_Source (Parent (Comp))
12809 and then Comes_From_Source
12810 (Subtype_Indication (Component_Definition (Parent (Comp))))
12811 and then
12812 Is_Entity_Name
12813 (Subtype_Indication (Component_Definition (Parent (Comp))))
12814 then
12815 return Compon_Type;
12816
12817 elsif Is_Array_Type (Compon_Type) then
12818 return Build_Constrained_Array_Type (Compon_Type);
12819
12820 elsif Has_Discriminants (Compon_Type) then
12821 return Build_Constrained_Discriminated_Type (Compon_Type);
12822
12823 elsif Is_Access_Type (Compon_Type) then
12824 return Build_Constrained_Access_Type (Compon_Type);
12825
12826 else
12827 return Compon_Type;
12828 end if;
12829 end Constrain_Component_Type;
12830
12831 --------------------------
12832 -- Constrain_Concurrent --
12833 --------------------------
12834
12835 -- For concurrent types, the associated record value type carries the same
12836 -- discriminants, so when we constrain a concurrent type, we must constrain
12837 -- the corresponding record type as well.
12838
12839 procedure Constrain_Concurrent
12840 (Def_Id : in out Entity_Id;
12841 SI : Node_Id;
12842 Related_Nod : Node_Id;
12843 Related_Id : Entity_Id;
12844 Suffix : Character)
12845 is
12846 -- Retrieve Base_Type to ensure getting to the concurrent type in the
12847 -- case of a private subtype (needed when only doing semantic analysis).
12848
12849 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
12850 T_Val : Entity_Id;
12851
12852 begin
12853 if Is_Access_Type (T_Ent) then
12854 T_Ent := Designated_Type (T_Ent);
12855 end if;
12856
12857 T_Val := Corresponding_Record_Type (T_Ent);
12858
12859 if Present (T_Val) then
12860
12861 if No (Def_Id) then
12862 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12863 end if;
12864
12865 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12866
12867 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12868 Set_Corresponding_Record_Type (Def_Id,
12869 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
12870
12871 else
12872 -- If there is no associated record, expansion is disabled and this
12873 -- is a generic context. Create a subtype in any case, so that
12874 -- semantic analysis can proceed.
12875
12876 if No (Def_Id) then
12877 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12878 end if;
12879
12880 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12881 end if;
12882 end Constrain_Concurrent;
12883
12884 ------------------------------------
12885 -- Constrain_Corresponding_Record --
12886 ------------------------------------
12887
12888 function Constrain_Corresponding_Record
12889 (Prot_Subt : Entity_Id;
12890 Corr_Rec : Entity_Id;
12891 Related_Nod : Node_Id) return Entity_Id
12892 is
12893 T_Sub : constant Entity_Id :=
12894 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
12895
12896 begin
12897 Set_Etype (T_Sub, Corr_Rec);
12898 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
12899 Set_Is_Constrained (T_Sub, True);
12900 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
12901 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
12902
12903 if Has_Discriminants (Prot_Subt) then -- False only if errors.
12904 Set_Discriminant_Constraint
12905 (T_Sub, Discriminant_Constraint (Prot_Subt));
12906 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
12907 Create_Constrained_Components
12908 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
12909 end if;
12910
12911 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
12912
12913 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
12914 Conditional_Delay (T_Sub, Corr_Rec);
12915
12916 else
12917 -- This is a component subtype: it will be frozen in the context of
12918 -- the enclosing record's init_proc, so that discriminant references
12919 -- are resolved to discriminals. (Note: we used to skip freezing
12920 -- altogether in that case, which caused errors downstream for
12921 -- components of a bit packed array type).
12922
12923 Set_Has_Delayed_Freeze (T_Sub);
12924 end if;
12925
12926 return T_Sub;
12927 end Constrain_Corresponding_Record;
12928
12929 -----------------------
12930 -- Constrain_Decimal --
12931 -----------------------
12932
12933 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
12934 T : constant Entity_Id := Entity (Subtype_Mark (S));
12935 C : constant Node_Id := Constraint (S);
12936 Loc : constant Source_Ptr := Sloc (C);
12937 Range_Expr : Node_Id;
12938 Digits_Expr : Node_Id;
12939 Digits_Val : Uint;
12940 Bound_Val : Ureal;
12941
12942 begin
12943 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
12944
12945 if Nkind (C) = N_Range_Constraint then
12946 Range_Expr := Range_Expression (C);
12947 Digits_Val := Digits_Value (T);
12948
12949 else
12950 pragma Assert (Nkind (C) = N_Digits_Constraint);
12951
12952 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
12953
12954 Digits_Expr := Digits_Expression (C);
12955 Analyze_And_Resolve (Digits_Expr, Any_Integer);
12956
12957 Check_Digits_Expression (Digits_Expr);
12958 Digits_Val := Expr_Value (Digits_Expr);
12959
12960 if Digits_Val > Digits_Value (T) then
12961 Error_Msg_N
12962 ("digits expression is incompatible with subtype", C);
12963 Digits_Val := Digits_Value (T);
12964 end if;
12965
12966 if Present (Range_Constraint (C)) then
12967 Range_Expr := Range_Expression (Range_Constraint (C));
12968 else
12969 Range_Expr := Empty;
12970 end if;
12971 end if;
12972
12973 Set_Etype (Def_Id, Base_Type (T));
12974 Set_Size_Info (Def_Id, (T));
12975 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12976 Set_Delta_Value (Def_Id, Delta_Value (T));
12977 Set_Scale_Value (Def_Id, Scale_Value (T));
12978 Set_Small_Value (Def_Id, Small_Value (T));
12979 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
12980 Set_Digits_Value (Def_Id, Digits_Val);
12981
12982 -- Manufacture range from given digits value if no range present
12983
12984 if No (Range_Expr) then
12985 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
12986 Range_Expr :=
12987 Make_Range (Loc,
12988 Low_Bound =>
12989 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
12990 High_Bound =>
12991 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
12992 end if;
12993
12994 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
12995 Set_Discrete_RM_Size (Def_Id);
12996
12997 -- Unconditionally delay the freeze, since we cannot set size
12998 -- information in all cases correctly until the freeze point.
12999
13000 Set_Has_Delayed_Freeze (Def_Id);
13001 end Constrain_Decimal;
13002
13003 ----------------------------------
13004 -- Constrain_Discriminated_Type --
13005 ----------------------------------
13006
13007 procedure Constrain_Discriminated_Type
13008 (Def_Id : Entity_Id;
13009 S : Node_Id;
13010 Related_Nod : Node_Id;
13011 For_Access : Boolean := False)
13012 is
13013 E : constant Entity_Id := Entity (Subtype_Mark (S));
13014 T : Entity_Id;
13015 C : Node_Id;
13016 Elist : Elist_Id := New_Elmt_List;
13017
13018 procedure Fixup_Bad_Constraint;
13019 -- This is called after finding a bad constraint, and after having
13020 -- posted an appropriate error message. The mission is to leave the
13021 -- entity T in as reasonable state as possible.
13022
13023 --------------------------
13024 -- Fixup_Bad_Constraint --
13025 --------------------------
13026
13027 procedure Fixup_Bad_Constraint is
13028 begin
13029 -- Set a reasonable Ekind for the entity. For an incomplete type,
13030 -- we can't do much, but for other types, we can set the proper
13031 -- corresponding subtype kind.
13032
13033 if Ekind (T) = E_Incomplete_Type then
13034 Set_Ekind (Def_Id, Ekind (T));
13035 else
13036 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
13037 end if;
13038
13039 -- Set Etype to the known type, to reduce chances of cascaded errors
13040
13041 Set_Etype (Def_Id, E);
13042 Set_Error_Posted (Def_Id);
13043 end Fixup_Bad_Constraint;
13044
13045 -- Start of processing for Constrain_Discriminated_Type
13046
13047 begin
13048 C := Constraint (S);
13049
13050 -- A discriminant constraint is only allowed in a subtype indication,
13051 -- after a subtype mark. This subtype mark must denote either a type
13052 -- with discriminants, or an access type whose designated type is a
13053 -- type with discriminants. A discriminant constraint specifies the
13054 -- values of these discriminants (RM 3.7.2(5)).
13055
13056 T := Base_Type (Entity (Subtype_Mark (S)));
13057
13058 if Is_Access_Type (T) then
13059 T := Designated_Type (T);
13060 end if;
13061
13062 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
13063 -- Avoid generating an error for access-to-incomplete subtypes.
13064
13065 if Ada_Version >= Ada_2005
13066 and then Ekind (T) = E_Incomplete_Type
13067 and then Nkind (Parent (S)) = N_Subtype_Declaration
13068 and then not Is_Itype (Def_Id)
13069 then
13070 -- A little sanity check, emit an error message if the type
13071 -- has discriminants to begin with. Type T may be a regular
13072 -- incomplete type or imported via a limited with clause.
13073
13074 if Has_Discriminants (T)
13075 or else (From_Limited_With (T)
13076 and then Present (Non_Limited_View (T))
13077 and then Nkind (Parent (Non_Limited_View (T))) =
13078 N_Full_Type_Declaration
13079 and then Present (Discriminant_Specifications
13080 (Parent (Non_Limited_View (T)))))
13081 then
13082 Error_Msg_N
13083 ("(Ada 2005) incomplete subtype may not be constrained", C);
13084 else
13085 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13086 end if;
13087
13088 Fixup_Bad_Constraint;
13089 return;
13090
13091 -- Check that the type has visible discriminants. The type may be
13092 -- a private type with unknown discriminants whose full view has
13093 -- discriminants which are invisible.
13094
13095 elsif not Has_Discriminants (T)
13096 or else
13097 (Has_Unknown_Discriminants (T)
13098 and then Is_Private_Type (T))
13099 then
13100 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13101 Fixup_Bad_Constraint;
13102 return;
13103
13104 elsif Is_Constrained (E)
13105 or else (Ekind (E) = E_Class_Wide_Subtype
13106 and then Present (Discriminant_Constraint (E)))
13107 then
13108 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
13109 Fixup_Bad_Constraint;
13110 return;
13111 end if;
13112
13113 -- T may be an unconstrained subtype (e.g. a generic actual).
13114 -- Constraint applies to the base type.
13115
13116 T := Base_Type (T);
13117
13118 Elist := Build_Discriminant_Constraints (T, S);
13119
13120 -- If the list returned was empty we had an error in building the
13121 -- discriminant constraint. We have also already signalled an error
13122 -- in the incomplete type case
13123
13124 if Is_Empty_Elmt_List (Elist) then
13125 Fixup_Bad_Constraint;
13126 return;
13127 end if;
13128
13129 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
13130 end Constrain_Discriminated_Type;
13131
13132 ---------------------------
13133 -- Constrain_Enumeration --
13134 ---------------------------
13135
13136 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
13137 T : constant Entity_Id := Entity (Subtype_Mark (S));
13138 C : constant Node_Id := Constraint (S);
13139
13140 begin
13141 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13142
13143 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
13144
13145 Set_Etype (Def_Id, Base_Type (T));
13146 Set_Size_Info (Def_Id, (T));
13147 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13148 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13149
13150 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13151
13152 Set_Discrete_RM_Size (Def_Id);
13153 end Constrain_Enumeration;
13154
13155 ----------------------
13156 -- Constrain_Float --
13157 ----------------------
13158
13159 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
13160 T : constant Entity_Id := Entity (Subtype_Mark (S));
13161 C : Node_Id;
13162 D : Node_Id;
13163 Rais : Node_Id;
13164
13165 begin
13166 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
13167
13168 Set_Etype (Def_Id, Base_Type (T));
13169 Set_Size_Info (Def_Id, (T));
13170 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13171
13172 -- Process the constraint
13173
13174 C := Constraint (S);
13175
13176 -- Digits constraint present
13177
13178 if Nkind (C) = N_Digits_Constraint then
13179
13180 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13181 Check_Restriction (No_Obsolescent_Features, C);
13182
13183 if Warn_On_Obsolescent_Feature then
13184 Error_Msg_N
13185 ("subtype digits constraint is an " &
13186 "obsolescent feature (RM J.3(8))?j?", C);
13187 end if;
13188
13189 D := Digits_Expression (C);
13190 Analyze_And_Resolve (D, Any_Integer);
13191 Check_Digits_Expression (D);
13192 Set_Digits_Value (Def_Id, Expr_Value (D));
13193
13194 -- Check that digits value is in range. Obviously we can do this
13195 -- at compile time, but it is strictly a runtime check, and of
13196 -- course there is an ACVC test that checks this.
13197
13198 if Digits_Value (Def_Id) > Digits_Value (T) then
13199 Error_Msg_Uint_1 := Digits_Value (T);
13200 Error_Msg_N ("??digits value is too large, maximum is ^", D);
13201 Rais :=
13202 Make_Raise_Constraint_Error (Sloc (D),
13203 Reason => CE_Range_Check_Failed);
13204 Insert_Action (Declaration_Node (Def_Id), Rais);
13205 end if;
13206
13207 C := Range_Constraint (C);
13208
13209 -- No digits constraint present
13210
13211 else
13212 Set_Digits_Value (Def_Id, Digits_Value (T));
13213 end if;
13214
13215 -- Range constraint present
13216
13217 if Nkind (C) = N_Range_Constraint then
13218 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13219
13220 -- No range constraint present
13221
13222 else
13223 pragma Assert (No (C));
13224 Set_Scalar_Range (Def_Id, Scalar_Range (T));
13225 end if;
13226
13227 Set_Is_Constrained (Def_Id);
13228 end Constrain_Float;
13229
13230 ---------------------
13231 -- Constrain_Index --
13232 ---------------------
13233
13234 procedure Constrain_Index
13235 (Index : Node_Id;
13236 S : Node_Id;
13237 Related_Nod : Node_Id;
13238 Related_Id : Entity_Id;
13239 Suffix : Character;
13240 Suffix_Index : Nat)
13241 is
13242 Def_Id : Entity_Id;
13243 R : Node_Id := Empty;
13244 T : constant Entity_Id := Etype (Index);
13245
13246 begin
13247 Def_Id :=
13248 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
13249 Set_Etype (Def_Id, Base_Type (T));
13250
13251 if Nkind (S) = N_Range
13252 or else
13253 (Nkind (S) = N_Attribute_Reference
13254 and then Attribute_Name (S) = Name_Range)
13255 then
13256 -- A Range attribute will be transformed into N_Range by Resolve
13257
13258 Analyze (S);
13259 Set_Etype (S, T);
13260 R := S;
13261
13262 Process_Range_Expr_In_Decl (R, T);
13263
13264 if not Error_Posted (S)
13265 and then
13266 (Nkind (S) /= N_Range
13267 or else not Covers (T, (Etype (Low_Bound (S))))
13268 or else not Covers (T, (Etype (High_Bound (S)))))
13269 then
13270 if Base_Type (T) /= Any_Type
13271 and then Etype (Low_Bound (S)) /= Any_Type
13272 and then Etype (High_Bound (S)) /= Any_Type
13273 then
13274 Error_Msg_N ("range expected", S);
13275 end if;
13276 end if;
13277
13278 elsif Nkind (S) = N_Subtype_Indication then
13279
13280 -- The parser has verified that this is a discrete indication
13281
13282 Resolve_Discrete_Subtype_Indication (S, T);
13283 Bad_Predicated_Subtype_Use
13284 ("subtype& has predicate, not allowed in index constraint",
13285 S, Entity (Subtype_Mark (S)));
13286
13287 R := Range_Expression (Constraint (S));
13288
13289 -- Capture values of bounds and generate temporaries for them if
13290 -- needed, since checks may cause duplication of the expressions
13291 -- which must not be reevaluated.
13292
13293 -- The forced evaluation removes side effects from expressions, which
13294 -- should occur also in GNATprove mode. Otherwise, we end up with
13295 -- unexpected insertions of actions at places where this is not
13296 -- supposed to occur, e.g. on default parameters of a call.
13297
13298 if Expander_Active or GNATprove_Mode then
13299 Force_Evaluation
13300 (Low_Bound (R), Related_Id => Def_Id, Is_Low_Bound => True);
13301 Force_Evaluation
13302 (High_Bound (R), Related_Id => Def_Id, Is_High_Bound => True);
13303 end if;
13304
13305 elsif Nkind (S) = N_Discriminant_Association then
13306
13307 -- Syntactically valid in subtype indication
13308
13309 Error_Msg_N ("invalid index constraint", S);
13310 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13311 return;
13312
13313 -- Subtype_Mark case, no anonymous subtypes to construct
13314
13315 else
13316 Analyze (S);
13317
13318 if Is_Entity_Name (S) then
13319 if not Is_Type (Entity (S)) then
13320 Error_Msg_N ("expect subtype mark for index constraint", S);
13321
13322 elsif Base_Type (Entity (S)) /= Base_Type (T) then
13323 Wrong_Type (S, Base_Type (T));
13324
13325 -- Check error of subtype with predicate in index constraint
13326
13327 else
13328 Bad_Predicated_Subtype_Use
13329 ("subtype& has predicate, not allowed in index constraint",
13330 S, Entity (S));
13331 end if;
13332
13333 return;
13334
13335 else
13336 Error_Msg_N ("invalid index constraint", S);
13337 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13338 return;
13339 end if;
13340 end if;
13341
13342 -- Complete construction of the Itype
13343
13344 if Is_Modular_Integer_Type (T) then
13345 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13346
13347 elsif Is_Integer_Type (T) then
13348 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13349
13350 else
13351 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13352 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13353 Set_First_Literal (Def_Id, First_Literal (T));
13354 end if;
13355
13356 Set_Size_Info (Def_Id, (T));
13357 Set_RM_Size (Def_Id, RM_Size (T));
13358 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13359
13360 Set_Scalar_Range (Def_Id, R);
13361
13362 Set_Etype (S, Def_Id);
13363 Set_Discrete_RM_Size (Def_Id);
13364 end Constrain_Index;
13365
13366 -----------------------
13367 -- Constrain_Integer --
13368 -----------------------
13369
13370 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
13371 T : constant Entity_Id := Entity (Subtype_Mark (S));
13372 C : constant Node_Id := Constraint (S);
13373
13374 begin
13375 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13376
13377 if Is_Modular_Integer_Type (T) then
13378 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13379 else
13380 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13381 end if;
13382
13383 Set_Etype (Def_Id, Base_Type (T));
13384 Set_Size_Info (Def_Id, (T));
13385 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13386 Set_Discrete_RM_Size (Def_Id);
13387 end Constrain_Integer;
13388
13389 ------------------------------
13390 -- Constrain_Ordinary_Fixed --
13391 ------------------------------
13392
13393 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
13394 T : constant Entity_Id := Entity (Subtype_Mark (S));
13395 C : Node_Id;
13396 D : Node_Id;
13397 Rais : Node_Id;
13398
13399 begin
13400 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
13401 Set_Etype (Def_Id, Base_Type (T));
13402 Set_Size_Info (Def_Id, (T));
13403 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13404 Set_Small_Value (Def_Id, Small_Value (T));
13405
13406 -- Process the constraint
13407
13408 C := Constraint (S);
13409
13410 -- Delta constraint present
13411
13412 if Nkind (C) = N_Delta_Constraint then
13413
13414 Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
13415 Check_Restriction (No_Obsolescent_Features, C);
13416
13417 if Warn_On_Obsolescent_Feature then
13418 Error_Msg_S
13419 ("subtype delta constraint is an " &
13420 "obsolescent feature (RM J.3(7))?j?");
13421 end if;
13422
13423 D := Delta_Expression (C);
13424 Analyze_And_Resolve (D, Any_Real);
13425 Check_Delta_Expression (D);
13426 Set_Delta_Value (Def_Id, Expr_Value_R (D));
13427
13428 -- Check that delta value is in range. Obviously we can do this
13429 -- at compile time, but it is strictly a runtime check, and of
13430 -- course there is an ACVC test that checks this.
13431
13432 if Delta_Value (Def_Id) < Delta_Value (T) then
13433 Error_Msg_N ("??delta value is too small", D);
13434 Rais :=
13435 Make_Raise_Constraint_Error (Sloc (D),
13436 Reason => CE_Range_Check_Failed);
13437 Insert_Action (Declaration_Node (Def_Id), Rais);
13438 end if;
13439
13440 C := Range_Constraint (C);
13441
13442 -- No delta constraint present
13443
13444 else
13445 Set_Delta_Value (Def_Id, Delta_Value (T));
13446 end if;
13447
13448 -- Range constraint present
13449
13450 if Nkind (C) = N_Range_Constraint then
13451 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13452
13453 -- No range constraint present
13454
13455 else
13456 pragma Assert (No (C));
13457 Set_Scalar_Range (Def_Id, Scalar_Range (T));
13458 end if;
13459
13460 Set_Discrete_RM_Size (Def_Id);
13461
13462 -- Unconditionally delay the freeze, since we cannot set size
13463 -- information in all cases correctly until the freeze point.
13464
13465 Set_Has_Delayed_Freeze (Def_Id);
13466 end Constrain_Ordinary_Fixed;
13467
13468 -----------------------
13469 -- Contain_Interface --
13470 -----------------------
13471
13472 function Contain_Interface
13473 (Iface : Entity_Id;
13474 Ifaces : Elist_Id) return Boolean
13475 is
13476 Iface_Elmt : Elmt_Id;
13477
13478 begin
13479 if Present (Ifaces) then
13480 Iface_Elmt := First_Elmt (Ifaces);
13481 while Present (Iface_Elmt) loop
13482 if Node (Iface_Elmt) = Iface then
13483 return True;
13484 end if;
13485
13486 Next_Elmt (Iface_Elmt);
13487 end loop;
13488 end if;
13489
13490 return False;
13491 end Contain_Interface;
13492
13493 ---------------------------
13494 -- Convert_Scalar_Bounds --
13495 ---------------------------
13496
13497 procedure Convert_Scalar_Bounds
13498 (N : Node_Id;
13499 Parent_Type : Entity_Id;
13500 Derived_Type : Entity_Id;
13501 Loc : Source_Ptr)
13502 is
13503 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
13504
13505 Lo : Node_Id;
13506 Hi : Node_Id;
13507 Rng : Node_Id;
13508
13509 begin
13510 -- Defend against previous errors
13511
13512 if No (Scalar_Range (Derived_Type)) then
13513 Check_Error_Detected;
13514 return;
13515 end if;
13516
13517 Lo := Build_Scalar_Bound
13518 (Type_Low_Bound (Derived_Type),
13519 Parent_Type, Implicit_Base);
13520
13521 Hi := Build_Scalar_Bound
13522 (Type_High_Bound (Derived_Type),
13523 Parent_Type, Implicit_Base);
13524
13525 Rng :=
13526 Make_Range (Loc,
13527 Low_Bound => Lo,
13528 High_Bound => Hi);
13529
13530 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
13531
13532 Set_Parent (Rng, N);
13533 Set_Scalar_Range (Derived_Type, Rng);
13534
13535 -- Analyze the bounds
13536
13537 Analyze_And_Resolve (Lo, Implicit_Base);
13538 Analyze_And_Resolve (Hi, Implicit_Base);
13539
13540 -- Analyze the range itself, except that we do not analyze it if
13541 -- the bounds are real literals, and we have a fixed-point type.
13542 -- The reason for this is that we delay setting the bounds in this
13543 -- case till we know the final Small and Size values (see circuit
13544 -- in Freeze.Freeze_Fixed_Point_Type for further details).
13545
13546 if Is_Fixed_Point_Type (Parent_Type)
13547 and then Nkind (Lo) = N_Real_Literal
13548 and then Nkind (Hi) = N_Real_Literal
13549 then
13550 return;
13551
13552 -- Here we do the analysis of the range
13553
13554 -- Note: we do this manually, since if we do a normal Analyze and
13555 -- Resolve call, there are problems with the conversions used for
13556 -- the derived type range.
13557
13558 else
13559 Set_Etype (Rng, Implicit_Base);
13560 Set_Analyzed (Rng, True);
13561 end if;
13562 end Convert_Scalar_Bounds;
13563
13564 -------------------
13565 -- Copy_And_Swap --
13566 -------------------
13567
13568 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
13569 begin
13570 -- Initialize new full declaration entity by copying the pertinent
13571 -- fields of the corresponding private declaration entity.
13572
13573 -- We temporarily set Ekind to a value appropriate for a type to
13574 -- avoid assert failures in Einfo from checking for setting type
13575 -- attributes on something that is not a type. Ekind (Priv) is an
13576 -- appropriate choice, since it allowed the attributes to be set
13577 -- in the first place. This Ekind value will be modified later.
13578
13579 Set_Ekind (Full, Ekind (Priv));
13580
13581 -- Also set Etype temporarily to Any_Type, again, in the absence
13582 -- of errors, it will be properly reset, and if there are errors,
13583 -- then we want a value of Any_Type to remain.
13584
13585 Set_Etype (Full, Any_Type);
13586
13587 -- Now start copying attributes
13588
13589 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
13590
13591 if Has_Discriminants (Full) then
13592 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
13593 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
13594 end if;
13595
13596 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
13597 Set_Homonym (Full, Homonym (Priv));
13598 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
13599 Set_Is_Public (Full, Is_Public (Priv));
13600 Set_Is_Pure (Full, Is_Pure (Priv));
13601 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
13602 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
13603 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
13604 Set_Has_Pragma_Unreferenced_Objects
13605 (Full, Has_Pragma_Unreferenced_Objects
13606 (Priv));
13607
13608 Conditional_Delay (Full, Priv);
13609
13610 if Is_Tagged_Type (Full) then
13611 Set_Direct_Primitive_Operations
13612 (Full, Direct_Primitive_Operations (Priv));
13613 Set_No_Tagged_Streams_Pragma
13614 (Full, No_Tagged_Streams_Pragma (Priv));
13615
13616 if Is_Base_Type (Priv) then
13617 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
13618 end if;
13619 end if;
13620
13621 Set_Is_Volatile (Full, Is_Volatile (Priv));
13622 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
13623 Set_Scope (Full, Scope (Priv));
13624 Set_Next_Entity (Full, Next_Entity (Priv));
13625 Set_First_Entity (Full, First_Entity (Priv));
13626 Set_Last_Entity (Full, Last_Entity (Priv));
13627
13628 -- If access types have been recorded for later handling, keep them in
13629 -- the full view so that they get handled when the full view freeze
13630 -- node is expanded.
13631
13632 if Present (Freeze_Node (Priv))
13633 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
13634 then
13635 Ensure_Freeze_Node (Full);
13636 Set_Access_Types_To_Process
13637 (Freeze_Node (Full),
13638 Access_Types_To_Process (Freeze_Node (Priv)));
13639 end if;
13640
13641 -- Swap the two entities. Now Private is the full type entity and Full
13642 -- is the private one. They will be swapped back at the end of the
13643 -- private part. This swapping ensures that the entity that is visible
13644 -- in the private part is the full declaration.
13645
13646 Exchange_Entities (Priv, Full);
13647 Append_Entity (Full, Scope (Full));
13648 end Copy_And_Swap;
13649
13650 -------------------------------------
13651 -- Copy_Array_Base_Type_Attributes --
13652 -------------------------------------
13653
13654 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
13655 begin
13656 Set_Component_Alignment (T1, Component_Alignment (T2));
13657 Set_Component_Type (T1, Component_Type (T2));
13658 Set_Component_Size (T1, Component_Size (T2));
13659 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
13660 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
13661 Set_Has_Protected (T1, Has_Protected (T2));
13662 Set_Has_Task (T1, Has_Task (T2));
13663 Set_Is_Packed (T1, Is_Packed (T2));
13664 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
13665 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
13666 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
13667 end Copy_Array_Base_Type_Attributes;
13668
13669 -----------------------------------
13670 -- Copy_Array_Subtype_Attributes --
13671 -----------------------------------
13672
13673 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
13674 begin
13675 Set_Size_Info (T1, T2);
13676
13677 Set_First_Index (T1, First_Index (T2));
13678 Set_Is_Aliased (T1, Is_Aliased (T2));
13679 Set_Is_Volatile (T1, Is_Volatile (T2));
13680 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
13681 Set_Is_Constrained (T1, Is_Constrained (T2));
13682 Set_Depends_On_Private (T1, Has_Private_Component (T2));
13683 Inherit_Rep_Item_Chain (T1, T2);
13684 Set_Convention (T1, Convention (T2));
13685 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
13686 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
13687 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
13688 end Copy_Array_Subtype_Attributes;
13689
13690 -----------------------------------
13691 -- Create_Constrained_Components --
13692 -----------------------------------
13693
13694 procedure Create_Constrained_Components
13695 (Subt : Entity_Id;
13696 Decl_Node : Node_Id;
13697 Typ : Entity_Id;
13698 Constraints : Elist_Id)
13699 is
13700 Loc : constant Source_Ptr := Sloc (Subt);
13701 Comp_List : constant Elist_Id := New_Elmt_List;
13702 Parent_Type : constant Entity_Id := Etype (Typ);
13703 Assoc_List : constant List_Id := New_List;
13704 Discr_Val : Elmt_Id;
13705 Errors : Boolean;
13706 New_C : Entity_Id;
13707 Old_C : Entity_Id;
13708 Is_Static : Boolean := True;
13709
13710 procedure Collect_Fixed_Components (Typ : Entity_Id);
13711 -- Collect parent type components that do not appear in a variant part
13712
13713 procedure Create_All_Components;
13714 -- Iterate over Comp_List to create the components of the subtype
13715
13716 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
13717 -- Creates a new component from Old_Compon, copying all the fields from
13718 -- it, including its Etype, inserts the new component in the Subt entity
13719 -- chain and returns the new component.
13720
13721 function Is_Variant_Record (T : Entity_Id) return Boolean;
13722 -- If true, and discriminants are static, collect only components from
13723 -- variants selected by discriminant values.
13724
13725 ------------------------------
13726 -- Collect_Fixed_Components --
13727 ------------------------------
13728
13729 procedure Collect_Fixed_Components (Typ : Entity_Id) is
13730 begin
13731 -- Build association list for discriminants, and find components of the
13732 -- variant part selected by the values of the discriminants.
13733
13734 Old_C := First_Discriminant (Typ);
13735 Discr_Val := First_Elmt (Constraints);
13736 while Present (Old_C) loop
13737 Append_To (Assoc_List,
13738 Make_Component_Association (Loc,
13739 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
13740 Expression => New_Copy (Node (Discr_Val))));
13741
13742 Next_Elmt (Discr_Val);
13743 Next_Discriminant (Old_C);
13744 end loop;
13745
13746 -- The tag and the possible parent component are unconditionally in
13747 -- the subtype.
13748
13749 if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
13750 Old_C := First_Component (Typ);
13751 while Present (Old_C) loop
13752 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
13753 Append_Elmt (Old_C, Comp_List);
13754 end if;
13755
13756 Next_Component (Old_C);
13757 end loop;
13758 end if;
13759 end Collect_Fixed_Components;
13760
13761 ---------------------------
13762 -- Create_All_Components --
13763 ---------------------------
13764
13765 procedure Create_All_Components is
13766 Comp : Elmt_Id;
13767
13768 begin
13769 Comp := First_Elmt (Comp_List);
13770 while Present (Comp) loop
13771 Old_C := Node (Comp);
13772 New_C := Create_Component (Old_C);
13773
13774 Set_Etype
13775 (New_C,
13776 Constrain_Component_Type
13777 (Old_C, Subt, Decl_Node, Typ, Constraints));
13778 Set_Is_Public (New_C, Is_Public (Subt));
13779
13780 Next_Elmt (Comp);
13781 end loop;
13782 end Create_All_Components;
13783
13784 ----------------------
13785 -- Create_Component --
13786 ----------------------
13787
13788 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
13789 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
13790
13791 begin
13792 if Ekind (Old_Compon) = E_Discriminant
13793 and then Is_Completely_Hidden (Old_Compon)
13794 then
13795 -- This is a shadow discriminant created for a discriminant of
13796 -- the parent type, which needs to be present in the subtype.
13797 -- Give the shadow discriminant an internal name that cannot
13798 -- conflict with that of visible components.
13799
13800 Set_Chars (New_Compon, New_Internal_Name ('C'));
13801 end if;
13802
13803 -- Set the parent so we have a proper link for freezing etc. This is
13804 -- not a real parent pointer, since of course our parent does not own
13805 -- up to us and reference us, we are an illegitimate child of the
13806 -- original parent.
13807
13808 Set_Parent (New_Compon, Parent (Old_Compon));
13809
13810 -- If the old component's Esize was already determined and is a
13811 -- static value, then the new component simply inherits it. Otherwise
13812 -- the old component's size may require run-time determination, but
13813 -- the new component's size still might be statically determinable
13814 -- (if, for example it has a static constraint). In that case we want
13815 -- Layout_Type to recompute the component's size, so we reset its
13816 -- size and positional fields.
13817
13818 if Frontend_Layout_On_Target
13819 and then not Known_Static_Esize (Old_Compon)
13820 then
13821 Set_Esize (New_Compon, Uint_0);
13822 Init_Normalized_First_Bit (New_Compon);
13823 Init_Normalized_Position (New_Compon);
13824 Init_Normalized_Position_Max (New_Compon);
13825 end if;
13826
13827 -- We do not want this node marked as Comes_From_Source, since
13828 -- otherwise it would get first class status and a separate cross-
13829 -- reference line would be generated. Illegitimate children do not
13830 -- rate such recognition.
13831
13832 Set_Comes_From_Source (New_Compon, False);
13833
13834 -- But it is a real entity, and a birth certificate must be properly
13835 -- registered by entering it into the entity list.
13836
13837 Enter_Name (New_Compon);
13838
13839 return New_Compon;
13840 end Create_Component;
13841
13842 -----------------------
13843 -- Is_Variant_Record --
13844 -----------------------
13845
13846 function Is_Variant_Record (T : Entity_Id) return Boolean is
13847 begin
13848 return Nkind (Parent (T)) = N_Full_Type_Declaration
13849 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
13850 and then Present (Component_List (Type_Definition (Parent (T))))
13851 and then
13852 Present
13853 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
13854 end Is_Variant_Record;
13855
13856 -- Start of processing for Create_Constrained_Components
13857
13858 begin
13859 pragma Assert (Subt /= Base_Type (Subt));
13860 pragma Assert (Typ = Base_Type (Typ));
13861
13862 Set_First_Entity (Subt, Empty);
13863 Set_Last_Entity (Subt, Empty);
13864
13865 -- Check whether constraint is fully static, in which case we can
13866 -- optimize the list of components.
13867
13868 Discr_Val := First_Elmt (Constraints);
13869 while Present (Discr_Val) loop
13870 if not Is_OK_Static_Expression (Node (Discr_Val)) then
13871 Is_Static := False;
13872 exit;
13873 end if;
13874
13875 Next_Elmt (Discr_Val);
13876 end loop;
13877
13878 Set_Has_Static_Discriminants (Subt, Is_Static);
13879
13880 Push_Scope (Subt);
13881
13882 -- Inherit the discriminants of the parent type
13883
13884 Add_Discriminants : declare
13885 Num_Disc : Int;
13886 Num_Gird : Int;
13887
13888 begin
13889 Num_Disc := 0;
13890 Old_C := First_Discriminant (Typ);
13891
13892 while Present (Old_C) loop
13893 Num_Disc := Num_Disc + 1;
13894 New_C := Create_Component (Old_C);
13895 Set_Is_Public (New_C, Is_Public (Subt));
13896 Next_Discriminant (Old_C);
13897 end loop;
13898
13899 -- For an untagged derived subtype, the number of discriminants may
13900 -- be smaller than the number of inherited discriminants, because
13901 -- several of them may be renamed by a single new discriminant or
13902 -- constrained. In this case, add the hidden discriminants back into
13903 -- the subtype, because they need to be present if the optimizer of
13904 -- the GCC 4.x back-end decides to break apart assignments between
13905 -- objects using the parent view into member-wise assignments.
13906
13907 Num_Gird := 0;
13908
13909 if Is_Derived_Type (Typ)
13910 and then not Is_Tagged_Type (Typ)
13911 then
13912 Old_C := First_Stored_Discriminant (Typ);
13913
13914 while Present (Old_C) loop
13915 Num_Gird := Num_Gird + 1;
13916 Next_Stored_Discriminant (Old_C);
13917 end loop;
13918 end if;
13919
13920 if Num_Gird > Num_Disc then
13921
13922 -- Find out multiple uses of new discriminants, and add hidden
13923 -- components for the extra renamed discriminants. We recognize
13924 -- multiple uses through the Corresponding_Discriminant of a
13925 -- new discriminant: if it constrains several old discriminants,
13926 -- this field points to the last one in the parent type. The
13927 -- stored discriminants of the derived type have the same name
13928 -- as those of the parent.
13929
13930 declare
13931 Constr : Elmt_Id;
13932 New_Discr : Entity_Id;
13933 Old_Discr : Entity_Id;
13934
13935 begin
13936 Constr := First_Elmt (Stored_Constraint (Typ));
13937 Old_Discr := First_Stored_Discriminant (Typ);
13938 while Present (Constr) loop
13939 if Is_Entity_Name (Node (Constr))
13940 and then Ekind (Entity (Node (Constr))) = E_Discriminant
13941 then
13942 New_Discr := Entity (Node (Constr));
13943
13944 if Chars (Corresponding_Discriminant (New_Discr)) /=
13945 Chars (Old_Discr)
13946 then
13947 -- The new discriminant has been used to rename a
13948 -- subsequent old discriminant. Introduce a shadow
13949 -- component for the current old discriminant.
13950
13951 New_C := Create_Component (Old_Discr);
13952 Set_Original_Record_Component (New_C, Old_Discr);
13953 end if;
13954
13955 else
13956 -- The constraint has eliminated the old discriminant.
13957 -- Introduce a shadow component.
13958
13959 New_C := Create_Component (Old_Discr);
13960 Set_Original_Record_Component (New_C, Old_Discr);
13961 end if;
13962
13963 Next_Elmt (Constr);
13964 Next_Stored_Discriminant (Old_Discr);
13965 end loop;
13966 end;
13967 end if;
13968 end Add_Discriminants;
13969
13970 if Is_Static
13971 and then Is_Variant_Record (Typ)
13972 then
13973 Collect_Fixed_Components (Typ);
13974
13975 Gather_Components (
13976 Typ,
13977 Component_List (Type_Definition (Parent (Typ))),
13978 Governed_By => Assoc_List,
13979 Into => Comp_List,
13980 Report_Errors => Errors);
13981 pragma Assert (not Errors);
13982
13983 Create_All_Components;
13984
13985 -- If the subtype declaration is created for a tagged type derivation
13986 -- with constraints, we retrieve the record definition of the parent
13987 -- type to select the components of the proper variant.
13988
13989 elsif Is_Static
13990 and then Is_Tagged_Type (Typ)
13991 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
13992 and then
13993 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
13994 and then Is_Variant_Record (Parent_Type)
13995 then
13996 Collect_Fixed_Components (Typ);
13997
13998 Gather_Components
13999 (Typ,
14000 Component_List (Type_Definition (Parent (Parent_Type))),
14001 Governed_By => Assoc_List,
14002 Into => Comp_List,
14003 Report_Errors => Errors);
14004
14005 -- Note: previously there was a check at this point that no errors
14006 -- were detected. As a consequence of AI05-220 there may be an error
14007 -- if an inherited discriminant that controls a variant has a non-
14008 -- static constraint.
14009
14010 -- If the tagged derivation has a type extension, collect all the
14011 -- new components therein.
14012
14013 if Present (Record_Extension_Part (Type_Definition (Parent (Typ))))
14014 then
14015 Old_C := First_Component (Typ);
14016 while Present (Old_C) loop
14017 if Original_Record_Component (Old_C) = Old_C
14018 and then Chars (Old_C) /= Name_uTag
14019 and then Chars (Old_C) /= Name_uParent
14020 then
14021 Append_Elmt (Old_C, Comp_List);
14022 end if;
14023
14024 Next_Component (Old_C);
14025 end loop;
14026 end if;
14027
14028 Create_All_Components;
14029
14030 else
14031 -- If discriminants are not static, or if this is a multi-level type
14032 -- extension, we have to include all components of the parent type.
14033
14034 Old_C := First_Component (Typ);
14035 while Present (Old_C) loop
14036 New_C := Create_Component (Old_C);
14037
14038 Set_Etype
14039 (New_C,
14040 Constrain_Component_Type
14041 (Old_C, Subt, Decl_Node, Typ, Constraints));
14042 Set_Is_Public (New_C, Is_Public (Subt));
14043
14044 Next_Component (Old_C);
14045 end loop;
14046 end if;
14047
14048 End_Scope;
14049 end Create_Constrained_Components;
14050
14051 ------------------------------------------
14052 -- Decimal_Fixed_Point_Type_Declaration --
14053 ------------------------------------------
14054
14055 procedure Decimal_Fixed_Point_Type_Declaration
14056 (T : Entity_Id;
14057 Def : Node_Id)
14058 is
14059 Loc : constant Source_Ptr := Sloc (Def);
14060 Digs_Expr : constant Node_Id := Digits_Expression (Def);
14061 Delta_Expr : constant Node_Id := Delta_Expression (Def);
14062 Implicit_Base : Entity_Id;
14063 Digs_Val : Uint;
14064 Delta_Val : Ureal;
14065 Scale_Val : Uint;
14066 Bound_Val : Ureal;
14067
14068 begin
14069 Check_SPARK_05_Restriction
14070 ("decimal fixed point type is not allowed", Def);
14071 Check_Restriction (No_Fixed_Point, Def);
14072
14073 -- Create implicit base type
14074
14075 Implicit_Base :=
14076 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
14077 Set_Etype (Implicit_Base, Implicit_Base);
14078
14079 -- Analyze and process delta expression
14080
14081 Analyze_And_Resolve (Delta_Expr, Universal_Real);
14082
14083 Check_Delta_Expression (Delta_Expr);
14084 Delta_Val := Expr_Value_R (Delta_Expr);
14085
14086 -- Check delta is power of 10, and determine scale value from it
14087
14088 declare
14089 Val : Ureal;
14090
14091 begin
14092 Scale_Val := Uint_0;
14093 Val := Delta_Val;
14094
14095 if Val < Ureal_1 then
14096 while Val < Ureal_1 loop
14097 Val := Val * Ureal_10;
14098 Scale_Val := Scale_Val + 1;
14099 end loop;
14100
14101 if Scale_Val > 18 then
14102 Error_Msg_N ("scale exceeds maximum value of 18", Def);
14103 Scale_Val := UI_From_Int (+18);
14104 end if;
14105
14106 else
14107 while Val > Ureal_1 loop
14108 Val := Val / Ureal_10;
14109 Scale_Val := Scale_Val - 1;
14110 end loop;
14111
14112 if Scale_Val < -18 then
14113 Error_Msg_N ("scale is less than minimum value of -18", Def);
14114 Scale_Val := UI_From_Int (-18);
14115 end if;
14116 end if;
14117
14118 if Val /= Ureal_1 then
14119 Error_Msg_N ("delta expression must be a power of 10", Def);
14120 Delta_Val := Ureal_10 ** (-Scale_Val);
14121 end if;
14122 end;
14123
14124 -- Set delta, scale and small (small = delta for decimal type)
14125
14126 Set_Delta_Value (Implicit_Base, Delta_Val);
14127 Set_Scale_Value (Implicit_Base, Scale_Val);
14128 Set_Small_Value (Implicit_Base, Delta_Val);
14129
14130 -- Analyze and process digits expression
14131
14132 Analyze_And_Resolve (Digs_Expr, Any_Integer);
14133 Check_Digits_Expression (Digs_Expr);
14134 Digs_Val := Expr_Value (Digs_Expr);
14135
14136 if Digs_Val > 18 then
14137 Digs_Val := UI_From_Int (+18);
14138 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
14139 end if;
14140
14141 Set_Digits_Value (Implicit_Base, Digs_Val);
14142 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
14143
14144 -- Set range of base type from digits value for now. This will be
14145 -- expanded to represent the true underlying base range by Freeze.
14146
14147 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
14148
14149 -- Note: We leave size as zero for now, size will be set at freeze
14150 -- time. We have to do this for ordinary fixed-point, because the size
14151 -- depends on the specified small, and we might as well do the same for
14152 -- decimal fixed-point.
14153
14154 pragma Assert (Esize (Implicit_Base) = Uint_0);
14155
14156 -- If there are bounds given in the declaration use them as the
14157 -- bounds of the first named subtype.
14158
14159 if Present (Real_Range_Specification (Def)) then
14160 declare
14161 RRS : constant Node_Id := Real_Range_Specification (Def);
14162 Low : constant Node_Id := Low_Bound (RRS);
14163 High : constant Node_Id := High_Bound (RRS);
14164 Low_Val : Ureal;
14165 High_Val : Ureal;
14166
14167 begin
14168 Analyze_And_Resolve (Low, Any_Real);
14169 Analyze_And_Resolve (High, Any_Real);
14170 Check_Real_Bound (Low);
14171 Check_Real_Bound (High);
14172 Low_Val := Expr_Value_R (Low);
14173 High_Val := Expr_Value_R (High);
14174
14175 if Low_Val < (-Bound_Val) then
14176 Error_Msg_N
14177 ("range low bound too small for digits value", Low);
14178 Low_Val := -Bound_Val;
14179 end if;
14180
14181 if High_Val > Bound_Val then
14182 Error_Msg_N
14183 ("range high bound too large for digits value", High);
14184 High_Val := Bound_Val;
14185 end if;
14186
14187 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
14188 end;
14189
14190 -- If no explicit range, use range that corresponds to given
14191 -- digits value. This will end up as the final range for the
14192 -- first subtype.
14193
14194 else
14195 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
14196 end if;
14197
14198 -- Complete entity for first subtype. The inheritance of the rep item
14199 -- chain ensures that SPARK-related pragmas are not clobbered when the
14200 -- decimal fixed point type acts as a full view of a private type.
14201
14202 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
14203 Set_Etype (T, Implicit_Base);
14204 Set_Size_Info (T, Implicit_Base);
14205 Inherit_Rep_Item_Chain (T, Implicit_Base);
14206 Set_Digits_Value (T, Digs_Val);
14207 Set_Delta_Value (T, Delta_Val);
14208 Set_Small_Value (T, Delta_Val);
14209 Set_Scale_Value (T, Scale_Val);
14210 Set_Is_Constrained (T);
14211 end Decimal_Fixed_Point_Type_Declaration;
14212
14213 -----------------------------------
14214 -- Derive_Progenitor_Subprograms --
14215 -----------------------------------
14216
14217 procedure Derive_Progenitor_Subprograms
14218 (Parent_Type : Entity_Id;
14219 Tagged_Type : Entity_Id)
14220 is
14221 E : Entity_Id;
14222 Elmt : Elmt_Id;
14223 Iface : Entity_Id;
14224 Iface_Elmt : Elmt_Id;
14225 Iface_Subp : Entity_Id;
14226 New_Subp : Entity_Id := Empty;
14227 Prim_Elmt : Elmt_Id;
14228 Subp : Entity_Id;
14229 Typ : Entity_Id;
14230
14231 begin
14232 pragma Assert (Ada_Version >= Ada_2005
14233 and then Is_Record_Type (Tagged_Type)
14234 and then Is_Tagged_Type (Tagged_Type)
14235 and then Has_Interfaces (Tagged_Type));
14236
14237 -- Step 1: Transfer to the full-view primitives associated with the
14238 -- partial-view that cover interface primitives. Conceptually this
14239 -- work should be done later by Process_Full_View; done here to
14240 -- simplify its implementation at later stages. It can be safely
14241 -- done here because interfaces must be visible in the partial and
14242 -- private view (RM 7.3(7.3/2)).
14243
14244 -- Small optimization: This work is only required if the parent may
14245 -- have entities whose Alias attribute reference an interface primitive.
14246 -- Such a situation may occur if the parent is an abstract type and the
14247 -- primitive has not been yet overridden or if the parent is a generic
14248 -- formal type covering interfaces.
14249
14250 -- If the tagged type is not abstract, it cannot have abstract
14251 -- primitives (the only entities in the list of primitives of
14252 -- non-abstract tagged types that can reference abstract primitives
14253 -- through its Alias attribute are the internal entities that have
14254 -- attribute Interface_Alias, and these entities are generated later
14255 -- by Add_Internal_Interface_Entities).
14256
14257 if In_Private_Part (Current_Scope)
14258 and then (Is_Abstract_Type (Parent_Type)
14259 or else
14260 Is_Generic_Type (Parent_Type))
14261 then
14262 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
14263 while Present (Elmt) loop
14264 Subp := Node (Elmt);
14265
14266 -- At this stage it is not possible to have entities in the list
14267 -- of primitives that have attribute Interface_Alias.
14268
14269 pragma Assert (No (Interface_Alias (Subp)));
14270
14271 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
14272
14273 if Is_Interface (Typ) then
14274 E := Find_Primitive_Covering_Interface
14275 (Tagged_Type => Tagged_Type,
14276 Iface_Prim => Subp);
14277
14278 if Present (E)
14279 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
14280 then
14281 Replace_Elmt (Elmt, E);
14282 Remove_Homonym (Subp);
14283 end if;
14284 end if;
14285
14286 Next_Elmt (Elmt);
14287 end loop;
14288 end if;
14289
14290 -- Step 2: Add primitives of progenitors that are not implemented by
14291 -- parents of Tagged_Type.
14292
14293 if Present (Interfaces (Base_Type (Tagged_Type))) then
14294 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
14295 while Present (Iface_Elmt) loop
14296 Iface := Node (Iface_Elmt);
14297
14298 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
14299 while Present (Prim_Elmt) loop
14300 Iface_Subp := Node (Prim_Elmt);
14301
14302 -- Exclude derivation of predefined primitives except those
14303 -- that come from source, or are inherited from one that comes
14304 -- from source. Required to catch declarations of equality
14305 -- operators of interfaces. For example:
14306
14307 -- type Iface is interface;
14308 -- function "=" (Left, Right : Iface) return Boolean;
14309
14310 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
14311 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
14312 then
14313 E := Find_Primitive_Covering_Interface
14314 (Tagged_Type => Tagged_Type,
14315 Iface_Prim => Iface_Subp);
14316
14317 -- If not found we derive a new primitive leaving its alias
14318 -- attribute referencing the interface primitive.
14319
14320 if No (E) then
14321 Derive_Subprogram
14322 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14323
14324 -- Ada 2012 (AI05-0197): If the covering primitive's name
14325 -- differs from the name of the interface primitive then it
14326 -- is a private primitive inherited from a parent type. In
14327 -- such case, given that Tagged_Type covers the interface,
14328 -- the inherited private primitive becomes visible. For such
14329 -- purpose we add a new entity that renames the inherited
14330 -- private primitive.
14331
14332 elsif Chars (E) /= Chars (Iface_Subp) then
14333 pragma Assert (Has_Suffix (E, 'P'));
14334 Derive_Subprogram
14335 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14336 Set_Alias (New_Subp, E);
14337 Set_Is_Abstract_Subprogram (New_Subp,
14338 Is_Abstract_Subprogram (E));
14339
14340 -- Propagate to the full view interface entities associated
14341 -- with the partial view.
14342
14343 elsif In_Private_Part (Current_Scope)
14344 and then Present (Alias (E))
14345 and then Alias (E) = Iface_Subp
14346 and then
14347 List_Containing (Parent (E)) /=
14348 Private_Declarations
14349 (Specification
14350 (Unit_Declaration_Node (Current_Scope)))
14351 then
14352 Append_Elmt (E, Primitive_Operations (Tagged_Type));
14353 end if;
14354 end if;
14355
14356 Next_Elmt (Prim_Elmt);
14357 end loop;
14358
14359 Next_Elmt (Iface_Elmt);
14360 end loop;
14361 end if;
14362 end Derive_Progenitor_Subprograms;
14363
14364 -----------------------
14365 -- Derive_Subprogram --
14366 -----------------------
14367
14368 procedure Derive_Subprogram
14369 (New_Subp : in out Entity_Id;
14370 Parent_Subp : Entity_Id;
14371 Derived_Type : Entity_Id;
14372 Parent_Type : Entity_Id;
14373 Actual_Subp : Entity_Id := Empty)
14374 is
14375 Formal : Entity_Id;
14376 -- Formal parameter of parent primitive operation
14377
14378 Formal_Of_Actual : Entity_Id;
14379 -- Formal parameter of actual operation, when the derivation is to
14380 -- create a renaming for a primitive operation of an actual in an
14381 -- instantiation.
14382
14383 New_Formal : Entity_Id;
14384 -- Formal of inherited operation
14385
14386 Visible_Subp : Entity_Id := Parent_Subp;
14387
14388 function Is_Private_Overriding return Boolean;
14389 -- If Subp is a private overriding of a visible operation, the inherited
14390 -- operation derives from the overridden op (even though its body is the
14391 -- overriding one) and the inherited operation is visible now. See
14392 -- sem_disp to see the full details of the handling of the overridden
14393 -- subprogram, which is removed from the list of primitive operations of
14394 -- the type. The overridden subprogram is saved locally in Visible_Subp,
14395 -- and used to diagnose abstract operations that need overriding in the
14396 -- derived type.
14397
14398 procedure Replace_Type (Id, New_Id : Entity_Id);
14399 -- When the type is an anonymous access type, create a new access type
14400 -- designating the derived type.
14401
14402 procedure Set_Derived_Name;
14403 -- This procedure sets the appropriate Chars name for New_Subp. This
14404 -- is normally just a copy of the parent name. An exception arises for
14405 -- type support subprograms, where the name is changed to reflect the
14406 -- name of the derived type, e.g. if type foo is derived from type bar,
14407 -- then a procedure barDA is derived with a name fooDA.
14408
14409 ---------------------------
14410 -- Is_Private_Overriding --
14411 ---------------------------
14412
14413 function Is_Private_Overriding return Boolean is
14414 Prev : Entity_Id;
14415
14416 begin
14417 -- If the parent is not a dispatching operation there is no
14418 -- need to investigate overridings
14419
14420 if not Is_Dispatching_Operation (Parent_Subp) then
14421 return False;
14422 end if;
14423
14424 -- The visible operation that is overridden is a homonym of the
14425 -- parent subprogram. We scan the homonym chain to find the one
14426 -- whose alias is the subprogram we are deriving.
14427
14428 Prev := Current_Entity (Parent_Subp);
14429 while Present (Prev) loop
14430 if Ekind (Prev) = Ekind (Parent_Subp)
14431 and then Alias (Prev) = Parent_Subp
14432 and then Scope (Parent_Subp) = Scope (Prev)
14433 and then not Is_Hidden (Prev)
14434 then
14435 Visible_Subp := Prev;
14436 return True;
14437 end if;
14438
14439 Prev := Homonym (Prev);
14440 end loop;
14441
14442 return False;
14443 end Is_Private_Overriding;
14444
14445 ------------------
14446 -- Replace_Type --
14447 ------------------
14448
14449 procedure Replace_Type (Id, New_Id : Entity_Id) is
14450 Id_Type : constant Entity_Id := Etype (Id);
14451 Acc_Type : Entity_Id;
14452 Par : constant Node_Id := Parent (Derived_Type);
14453
14454 begin
14455 -- When the type is an anonymous access type, create a new access
14456 -- type designating the derived type. This itype must be elaborated
14457 -- at the point of the derivation, not on subsequent calls that may
14458 -- be out of the proper scope for Gigi, so we insert a reference to
14459 -- it after the derivation.
14460
14461 if Ekind (Id_Type) = E_Anonymous_Access_Type then
14462 declare
14463 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
14464
14465 begin
14466 if Ekind (Desig_Typ) = E_Record_Type_With_Private
14467 and then Present (Full_View (Desig_Typ))
14468 and then not Is_Private_Type (Parent_Type)
14469 then
14470 Desig_Typ := Full_View (Desig_Typ);
14471 end if;
14472
14473 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
14474
14475 -- Ada 2005 (AI-251): Handle also derivations of abstract
14476 -- interface primitives.
14477
14478 or else (Is_Interface (Desig_Typ)
14479 and then not Is_Class_Wide_Type (Desig_Typ))
14480 then
14481 Acc_Type := New_Copy (Id_Type);
14482 Set_Etype (Acc_Type, Acc_Type);
14483 Set_Scope (Acc_Type, New_Subp);
14484
14485 -- Set size of anonymous access type. If we have an access
14486 -- to an unconstrained array, this is a fat pointer, so it
14487 -- is sizes at twice addtress size.
14488
14489 if Is_Array_Type (Desig_Typ)
14490 and then not Is_Constrained (Desig_Typ)
14491 then
14492 Init_Size (Acc_Type, 2 * System_Address_Size);
14493
14494 -- Other cases use a thin pointer
14495
14496 else
14497 Init_Size (Acc_Type, System_Address_Size);
14498 end if;
14499
14500 -- Set remaining characterstics of anonymous access type
14501
14502 Init_Alignment (Acc_Type);
14503 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
14504
14505 Set_Etype (New_Id, Acc_Type);
14506 Set_Scope (New_Id, New_Subp);
14507
14508 -- Create a reference to it
14509
14510 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
14511
14512 else
14513 Set_Etype (New_Id, Id_Type);
14514 end if;
14515 end;
14516
14517 -- In Ada2012, a formal may have an incomplete type but the type
14518 -- derivation that inherits the primitive follows the full view.
14519
14520 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
14521 or else
14522 (Ekind (Id_Type) = E_Record_Type_With_Private
14523 and then Present (Full_View (Id_Type))
14524 and then
14525 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
14526 or else
14527 (Ada_Version >= Ada_2012
14528 and then Ekind (Id_Type) = E_Incomplete_Type
14529 and then Full_View (Id_Type) = Parent_Type)
14530 then
14531 -- Constraint checks on formals are generated during expansion,
14532 -- based on the signature of the original subprogram. The bounds
14533 -- of the derived type are not relevant, and thus we can use
14534 -- the base type for the formals. However, the return type may be
14535 -- used in a context that requires that the proper static bounds
14536 -- be used (a case statement, for example) and for those cases
14537 -- we must use the derived type (first subtype), not its base.
14538
14539 -- If the derived_type_definition has no constraints, we know that
14540 -- the derived type has the same constraints as the first subtype
14541 -- of the parent, and we can also use it rather than its base,
14542 -- which can lead to more efficient code.
14543
14544 if Etype (Id) = Parent_Type then
14545 if Is_Scalar_Type (Parent_Type)
14546 and then
14547 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
14548 then
14549 Set_Etype (New_Id, Derived_Type);
14550
14551 elsif Nkind (Par) = N_Full_Type_Declaration
14552 and then
14553 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
14554 and then
14555 Is_Entity_Name
14556 (Subtype_Indication (Type_Definition (Par)))
14557 then
14558 Set_Etype (New_Id, Derived_Type);
14559
14560 else
14561 Set_Etype (New_Id, Base_Type (Derived_Type));
14562 end if;
14563
14564 else
14565 Set_Etype (New_Id, Base_Type (Derived_Type));
14566 end if;
14567
14568 else
14569 Set_Etype (New_Id, Etype (Id));
14570 end if;
14571 end Replace_Type;
14572
14573 ----------------------
14574 -- Set_Derived_Name --
14575 ----------------------
14576
14577 procedure Set_Derived_Name is
14578 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
14579 begin
14580 if Nm = TSS_Null then
14581 Set_Chars (New_Subp, Chars (Parent_Subp));
14582 else
14583 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
14584 end if;
14585 end Set_Derived_Name;
14586
14587 -- Start of processing for Derive_Subprogram
14588
14589 begin
14590 New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
14591 Set_Ekind (New_Subp, Ekind (Parent_Subp));
14592
14593 -- Check whether the inherited subprogram is a private operation that
14594 -- should be inherited but not yet made visible. Such subprograms can
14595 -- become visible at a later point (e.g., the private part of a public
14596 -- child unit) via Declare_Inherited_Private_Subprograms. If the
14597 -- following predicate is true, then this is not such a private
14598 -- operation and the subprogram simply inherits the name of the parent
14599 -- subprogram. Note the special check for the names of controlled
14600 -- operations, which are currently exempted from being inherited with
14601 -- a hidden name because they must be findable for generation of
14602 -- implicit run-time calls.
14603
14604 if not Is_Hidden (Parent_Subp)
14605 or else Is_Internal (Parent_Subp)
14606 or else Is_Private_Overriding
14607 or else Is_Internal_Name (Chars (Parent_Subp))
14608 or else Nam_In (Chars (Parent_Subp), Name_Initialize,
14609 Name_Adjust,
14610 Name_Finalize)
14611 then
14612 Set_Derived_Name;
14613
14614 -- An inherited dispatching equality will be overridden by an internally
14615 -- generated one, or by an explicit one, so preserve its name and thus
14616 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
14617 -- private operation it may become invisible if the full view has
14618 -- progenitors, and the dispatch table will be malformed.
14619 -- We check that the type is limited to handle the anomalous declaration
14620 -- of Limited_Controlled, which is derived from a non-limited type, and
14621 -- which is handled specially elsewhere as well.
14622
14623 elsif Chars (Parent_Subp) = Name_Op_Eq
14624 and then Is_Dispatching_Operation (Parent_Subp)
14625 and then Etype (Parent_Subp) = Standard_Boolean
14626 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
14627 and then
14628 Etype (First_Formal (Parent_Subp)) =
14629 Etype (Next_Formal (First_Formal (Parent_Subp)))
14630 then
14631 Set_Derived_Name;
14632
14633 -- If parent is hidden, this can be a regular derivation if the
14634 -- parent is immediately visible in a non-instantiating context,
14635 -- or if we are in the private part of an instance. This test
14636 -- should still be refined ???
14637
14638 -- The test for In_Instance_Not_Visible avoids inheriting the derived
14639 -- operation as a non-visible operation in cases where the parent
14640 -- subprogram might not be visible now, but was visible within the
14641 -- original generic, so it would be wrong to make the inherited
14642 -- subprogram non-visible now. (Not clear if this test is fully
14643 -- correct; are there any cases where we should declare the inherited
14644 -- operation as not visible to avoid it being overridden, e.g., when
14645 -- the parent type is a generic actual with private primitives ???)
14646
14647 -- (they should be treated the same as other private inherited
14648 -- subprograms, but it's not clear how to do this cleanly). ???
14649
14650 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
14651 and then Is_Immediately_Visible (Parent_Subp)
14652 and then not In_Instance)
14653 or else In_Instance_Not_Visible
14654 then
14655 Set_Derived_Name;
14656
14657 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
14658 -- overrides an interface primitive because interface primitives
14659 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
14660
14661 elsif Ada_Version >= Ada_2005
14662 and then Is_Dispatching_Operation (Parent_Subp)
14663 and then Covers_Some_Interface (Parent_Subp)
14664 then
14665 Set_Derived_Name;
14666
14667 -- Otherwise, the type is inheriting a private operation, so enter
14668 -- it with a special name so it can't be overridden.
14669
14670 else
14671 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
14672 end if;
14673
14674 Set_Parent (New_Subp, Parent (Derived_Type));
14675
14676 if Present (Actual_Subp) then
14677 Replace_Type (Actual_Subp, New_Subp);
14678 else
14679 Replace_Type (Parent_Subp, New_Subp);
14680 end if;
14681
14682 Conditional_Delay (New_Subp, Parent_Subp);
14683
14684 -- If we are creating a renaming for a primitive operation of an
14685 -- actual of a generic derived type, we must examine the signature
14686 -- of the actual primitive, not that of the generic formal, which for
14687 -- example may be an interface. However the name and initial value
14688 -- of the inherited operation are those of the formal primitive.
14689
14690 Formal := First_Formal (Parent_Subp);
14691
14692 if Present (Actual_Subp) then
14693 Formal_Of_Actual := First_Formal (Actual_Subp);
14694 else
14695 Formal_Of_Actual := Empty;
14696 end if;
14697
14698 while Present (Formal) loop
14699 New_Formal := New_Copy (Formal);
14700
14701 -- Normally we do not go copying parents, but in the case of
14702 -- formals, we need to link up to the declaration (which is the
14703 -- parameter specification), and it is fine to link up to the
14704 -- original formal's parameter specification in this case.
14705
14706 Set_Parent (New_Formal, Parent (Formal));
14707 Append_Entity (New_Formal, New_Subp);
14708
14709 if Present (Formal_Of_Actual) then
14710 Replace_Type (Formal_Of_Actual, New_Formal);
14711 Next_Formal (Formal_Of_Actual);
14712 else
14713 Replace_Type (Formal, New_Formal);
14714 end if;
14715
14716 Next_Formal (Formal);
14717 end loop;
14718
14719 -- If this derivation corresponds to a tagged generic actual, then
14720 -- primitive operations rename those of the actual. Otherwise the
14721 -- primitive operations rename those of the parent type, If the parent
14722 -- renames an intrinsic operator, so does the new subprogram. We except
14723 -- concatenation, which is always properly typed, and does not get
14724 -- expanded as other intrinsic operations.
14725
14726 if No (Actual_Subp) then
14727 if Is_Intrinsic_Subprogram (Parent_Subp) then
14728 Set_Is_Intrinsic_Subprogram (New_Subp);
14729
14730 if Present (Alias (Parent_Subp))
14731 and then Chars (Parent_Subp) /= Name_Op_Concat
14732 then
14733 Set_Alias (New_Subp, Alias (Parent_Subp));
14734 else
14735 Set_Alias (New_Subp, Parent_Subp);
14736 end if;
14737
14738 else
14739 Set_Alias (New_Subp, Parent_Subp);
14740 end if;
14741
14742 else
14743 Set_Alias (New_Subp, Actual_Subp);
14744 end if;
14745
14746 -- Inherit the "ghostness" from the parent subprogram
14747
14748 if Is_Ghost_Entity (Alias (New_Subp)) then
14749 Set_Is_Ghost_Entity (New_Subp);
14750 end if;
14751
14752 -- Derived subprograms of a tagged type must inherit the convention
14753 -- of the parent subprogram (a requirement of AI-117). Derived
14754 -- subprograms of untagged types simply get convention Ada by default.
14755
14756 -- If the derived type is a tagged generic formal type with unknown
14757 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
14758
14759 -- However, if the type is derived from a generic formal, the further
14760 -- inherited subprogram has the convention of the non-generic ancestor.
14761 -- Otherwise there would be no way to override the operation.
14762 -- (This is subject to forthcoming ARG discussions).
14763
14764 if Is_Tagged_Type (Derived_Type) then
14765 if Is_Generic_Type (Derived_Type)
14766 and then Has_Unknown_Discriminants (Derived_Type)
14767 then
14768 Set_Convention (New_Subp, Convention_Intrinsic);
14769
14770 else
14771 if Is_Generic_Type (Parent_Type)
14772 and then Has_Unknown_Discriminants (Parent_Type)
14773 then
14774 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
14775 else
14776 Set_Convention (New_Subp, Convention (Parent_Subp));
14777 end if;
14778 end if;
14779 end if;
14780
14781 -- Predefined controlled operations retain their name even if the parent
14782 -- is hidden (see above), but they are not primitive operations if the
14783 -- ancestor is not visible, for example if the parent is a private
14784 -- extension completed with a controlled extension. Note that a full
14785 -- type that is controlled can break privacy: the flag Is_Controlled is
14786 -- set on both views of the type.
14787
14788 if Is_Controlled (Parent_Type)
14789 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
14790 Name_Adjust,
14791 Name_Finalize)
14792 and then Is_Hidden (Parent_Subp)
14793 and then not Is_Visibly_Controlled (Parent_Type)
14794 then
14795 Set_Is_Hidden (New_Subp);
14796 end if;
14797
14798 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
14799 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
14800
14801 if Ekind (Parent_Subp) = E_Procedure then
14802 Set_Is_Valued_Procedure
14803 (New_Subp, Is_Valued_Procedure (Parent_Subp));
14804 else
14805 Set_Has_Controlling_Result
14806 (New_Subp, Has_Controlling_Result (Parent_Subp));
14807 end if;
14808
14809 -- No_Return must be inherited properly. If this is overridden in the
14810 -- case of a dispatching operation, then a check is made in Sem_Disp
14811 -- that the overriding operation is also No_Return (no such check is
14812 -- required for the case of non-dispatching operation.
14813
14814 Set_No_Return (New_Subp, No_Return (Parent_Subp));
14815
14816 -- A derived function with a controlling result is abstract. If the
14817 -- Derived_Type is a nonabstract formal generic derived type, then
14818 -- inherited operations are not abstract: the required check is done at
14819 -- instantiation time. If the derivation is for a generic actual, the
14820 -- function is not abstract unless the actual is.
14821
14822 if Is_Generic_Type (Derived_Type)
14823 and then not Is_Abstract_Type (Derived_Type)
14824 then
14825 null;
14826
14827 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
14828 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
14829
14830 -- A subprogram subject to pragma Extensions_Visible with value False
14831 -- requires overriding if the subprogram has at least one controlling
14832 -- OUT parameter (SPARK RM 6.1.7(6)).
14833
14834 elsif Ada_Version >= Ada_2005
14835 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14836 or else (Is_Tagged_Type (Derived_Type)
14837 and then Etype (New_Subp) = Derived_Type
14838 and then not Is_Null_Extension (Derived_Type))
14839 or else (Is_Tagged_Type (Derived_Type)
14840 and then Ekind (Etype (New_Subp)) =
14841 E_Anonymous_Access_Type
14842 and then Designated_Type (Etype (New_Subp)) =
14843 Derived_Type
14844 and then not Is_Null_Extension (Derived_Type))
14845 or else (Comes_From_Source (Alias (New_Subp))
14846 and then Is_EVF_Procedure (Alias (New_Subp))))
14847 and then No (Actual_Subp)
14848 then
14849 if not Is_Tagged_Type (Derived_Type)
14850 or else Is_Abstract_Type (Derived_Type)
14851 or else Is_Abstract_Subprogram (Alias (New_Subp))
14852 then
14853 Set_Is_Abstract_Subprogram (New_Subp);
14854 else
14855 Set_Requires_Overriding (New_Subp);
14856 end if;
14857
14858 elsif Ada_Version < Ada_2005
14859 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14860 or else (Is_Tagged_Type (Derived_Type)
14861 and then Etype (New_Subp) = Derived_Type
14862 and then No (Actual_Subp)))
14863 then
14864 Set_Is_Abstract_Subprogram (New_Subp);
14865
14866 -- AI05-0097 : an inherited operation that dispatches on result is
14867 -- abstract if the derived type is abstract, even if the parent type
14868 -- is concrete and the derived type is a null extension.
14869
14870 elsif Has_Controlling_Result (Alias (New_Subp))
14871 and then Is_Abstract_Type (Etype (New_Subp))
14872 then
14873 Set_Is_Abstract_Subprogram (New_Subp);
14874
14875 -- Finally, if the parent type is abstract we must verify that all
14876 -- inherited operations are either non-abstract or overridden, or that
14877 -- the derived type itself is abstract (this check is performed at the
14878 -- end of a package declaration, in Check_Abstract_Overriding). A
14879 -- private overriding in the parent type will not be visible in the
14880 -- derivation if we are not in an inner package or in a child unit of
14881 -- the parent type, in which case the abstractness of the inherited
14882 -- operation is carried to the new subprogram.
14883
14884 elsif Is_Abstract_Type (Parent_Type)
14885 and then not In_Open_Scopes (Scope (Parent_Type))
14886 and then Is_Private_Overriding
14887 and then Is_Abstract_Subprogram (Visible_Subp)
14888 then
14889 if No (Actual_Subp) then
14890 Set_Alias (New_Subp, Visible_Subp);
14891 Set_Is_Abstract_Subprogram (New_Subp, True);
14892
14893 else
14894 -- If this is a derivation for an instance of a formal derived
14895 -- type, abstractness comes from the primitive operation of the
14896 -- actual, not from the operation inherited from the ancestor.
14897
14898 Set_Is_Abstract_Subprogram
14899 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
14900 end if;
14901 end if;
14902
14903 New_Overloaded_Entity (New_Subp, Derived_Type);
14904
14905 -- Check for case of a derived subprogram for the instantiation of a
14906 -- formal derived tagged type, if so mark the subprogram as dispatching
14907 -- and inherit the dispatching attributes of the actual subprogram. The
14908 -- derived subprogram is effectively renaming of the actual subprogram,
14909 -- so it needs to have the same attributes as the actual.
14910
14911 if Present (Actual_Subp)
14912 and then Is_Dispatching_Operation (Actual_Subp)
14913 then
14914 Set_Is_Dispatching_Operation (New_Subp);
14915
14916 if Present (DTC_Entity (Actual_Subp)) then
14917 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
14918 Set_DT_Position_Value (New_Subp, DT_Position (Actual_Subp));
14919 end if;
14920 end if;
14921
14922 -- Indicate that a derived subprogram does not require a body and that
14923 -- it does not require processing of default expressions.
14924
14925 Set_Has_Completion (New_Subp);
14926 Set_Default_Expressions_Processed (New_Subp);
14927
14928 if Ekind (New_Subp) = E_Function then
14929 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
14930 end if;
14931 end Derive_Subprogram;
14932
14933 ------------------------
14934 -- Derive_Subprograms --
14935 ------------------------
14936
14937 procedure Derive_Subprograms
14938 (Parent_Type : Entity_Id;
14939 Derived_Type : Entity_Id;
14940 Generic_Actual : Entity_Id := Empty)
14941 is
14942 Op_List : constant Elist_Id :=
14943 Collect_Primitive_Operations (Parent_Type);
14944
14945 function Check_Derived_Type return Boolean;
14946 -- Check that all the entities derived from Parent_Type are found in
14947 -- the list of primitives of Derived_Type exactly in the same order.
14948
14949 procedure Derive_Interface_Subprogram
14950 (New_Subp : in out Entity_Id;
14951 Subp : Entity_Id;
14952 Actual_Subp : Entity_Id);
14953 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
14954 -- (which is an interface primitive). If Generic_Actual is present then
14955 -- Actual_Subp is the actual subprogram corresponding with the generic
14956 -- subprogram Subp.
14957
14958 function Check_Derived_Type return Boolean is
14959 E : Entity_Id;
14960 Elmt : Elmt_Id;
14961 List : Elist_Id;
14962 New_Subp : Entity_Id;
14963 Op_Elmt : Elmt_Id;
14964 Subp : Entity_Id;
14965
14966 begin
14967 -- Traverse list of entities in the current scope searching for
14968 -- an incomplete type whose full-view is derived type
14969
14970 E := First_Entity (Scope (Derived_Type));
14971 while Present (E) and then E /= Derived_Type loop
14972 if Ekind (E) = E_Incomplete_Type
14973 and then Present (Full_View (E))
14974 and then Full_View (E) = Derived_Type
14975 then
14976 -- Disable this test if Derived_Type completes an incomplete
14977 -- type because in such case more primitives can be added
14978 -- later to the list of primitives of Derived_Type by routine
14979 -- Process_Incomplete_Dependents
14980
14981 return True;
14982 end if;
14983
14984 E := Next_Entity (E);
14985 end loop;
14986
14987 List := Collect_Primitive_Operations (Derived_Type);
14988 Elmt := First_Elmt (List);
14989
14990 Op_Elmt := First_Elmt (Op_List);
14991 while Present (Op_Elmt) loop
14992 Subp := Node (Op_Elmt);
14993 New_Subp := Node (Elmt);
14994
14995 -- At this early stage Derived_Type has no entities with attribute
14996 -- Interface_Alias. In addition, such primitives are always
14997 -- located at the end of the list of primitives of Parent_Type.
14998 -- Therefore, if found we can safely stop processing pending
14999 -- entities.
15000
15001 exit when Present (Interface_Alias (Subp));
15002
15003 -- Handle hidden entities
15004
15005 if not Is_Predefined_Dispatching_Operation (Subp)
15006 and then Is_Hidden (Subp)
15007 then
15008 if Present (New_Subp)
15009 and then Primitive_Names_Match (Subp, New_Subp)
15010 then
15011 Next_Elmt (Elmt);
15012 end if;
15013
15014 else
15015 if not Present (New_Subp)
15016 or else Ekind (Subp) /= Ekind (New_Subp)
15017 or else not Primitive_Names_Match (Subp, New_Subp)
15018 then
15019 return False;
15020 end if;
15021
15022 Next_Elmt (Elmt);
15023 end if;
15024
15025 Next_Elmt (Op_Elmt);
15026 end loop;
15027
15028 return True;
15029 end Check_Derived_Type;
15030
15031 ---------------------------------
15032 -- Derive_Interface_Subprogram --
15033 ---------------------------------
15034
15035 procedure Derive_Interface_Subprogram
15036 (New_Subp : in out Entity_Id;
15037 Subp : Entity_Id;
15038 Actual_Subp : Entity_Id)
15039 is
15040 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
15041 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
15042
15043 begin
15044 pragma Assert (Is_Interface (Iface_Type));
15045
15046 Derive_Subprogram
15047 (New_Subp => New_Subp,
15048 Parent_Subp => Iface_Subp,
15049 Derived_Type => Derived_Type,
15050 Parent_Type => Iface_Type,
15051 Actual_Subp => Actual_Subp);
15052
15053 -- Given that this new interface entity corresponds with a primitive
15054 -- of the parent that was not overridden we must leave it associated
15055 -- with its parent primitive to ensure that it will share the same
15056 -- dispatch table slot when overridden.
15057
15058 if No (Actual_Subp) then
15059 Set_Alias (New_Subp, Subp);
15060
15061 -- For instantiations this is not needed since the previous call to
15062 -- Derive_Subprogram leaves the entity well decorated.
15063
15064 else
15065 pragma Assert (Alias (New_Subp) = Actual_Subp);
15066 null;
15067 end if;
15068 end Derive_Interface_Subprogram;
15069
15070 -- Local variables
15071
15072 Alias_Subp : Entity_Id;
15073 Act_List : Elist_Id;
15074 Act_Elmt : Elmt_Id;
15075 Act_Subp : Entity_Id := Empty;
15076 Elmt : Elmt_Id;
15077 Need_Search : Boolean := False;
15078 New_Subp : Entity_Id := Empty;
15079 Parent_Base : Entity_Id;
15080 Subp : Entity_Id;
15081
15082 -- Start of processing for Derive_Subprograms
15083
15084 begin
15085 if Ekind (Parent_Type) = E_Record_Type_With_Private
15086 and then Has_Discriminants (Parent_Type)
15087 and then Present (Full_View (Parent_Type))
15088 then
15089 Parent_Base := Full_View (Parent_Type);
15090 else
15091 Parent_Base := Parent_Type;
15092 end if;
15093
15094 if Present (Generic_Actual) then
15095 Act_List := Collect_Primitive_Operations (Generic_Actual);
15096 Act_Elmt := First_Elmt (Act_List);
15097 else
15098 Act_List := No_Elist;
15099 Act_Elmt := No_Elmt;
15100 end if;
15101
15102 -- Derive primitives inherited from the parent. Note that if the generic
15103 -- actual is present, this is not really a type derivation, it is a
15104 -- completion within an instance.
15105
15106 -- Case 1: Derived_Type does not implement interfaces
15107
15108 if not Is_Tagged_Type (Derived_Type)
15109 or else (not Has_Interfaces (Derived_Type)
15110 and then not (Present (Generic_Actual)
15111 and then Has_Interfaces (Generic_Actual)))
15112 then
15113 Elmt := First_Elmt (Op_List);
15114 while Present (Elmt) loop
15115 Subp := Node (Elmt);
15116
15117 -- Literals are derived earlier in the process of building the
15118 -- derived type, and are skipped here.
15119
15120 if Ekind (Subp) = E_Enumeration_Literal then
15121 null;
15122
15123 -- The actual is a direct descendant and the common primitive
15124 -- operations appear in the same order.
15125
15126 -- If the generic parent type is present, the derived type is an
15127 -- instance of a formal derived type, and within the instance its
15128 -- operations are those of the actual. We derive from the formal
15129 -- type but make the inherited operations aliases of the
15130 -- corresponding operations of the actual.
15131
15132 else
15133 pragma Assert (No (Node (Act_Elmt))
15134 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
15135 and then
15136 Type_Conformant
15137 (Subp, Node (Act_Elmt),
15138 Skip_Controlling_Formals => True)));
15139
15140 Derive_Subprogram
15141 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
15142
15143 if Present (Act_Elmt) then
15144 Next_Elmt (Act_Elmt);
15145 end if;
15146 end if;
15147
15148 Next_Elmt (Elmt);
15149 end loop;
15150
15151 -- Case 2: Derived_Type implements interfaces
15152
15153 else
15154 -- If the parent type has no predefined primitives we remove
15155 -- predefined primitives from the list of primitives of generic
15156 -- actual to simplify the complexity of this algorithm.
15157
15158 if Present (Generic_Actual) then
15159 declare
15160 Has_Predefined_Primitives : Boolean := False;
15161
15162 begin
15163 -- Check if the parent type has predefined primitives
15164
15165 Elmt := First_Elmt (Op_List);
15166 while Present (Elmt) loop
15167 Subp := Node (Elmt);
15168
15169 if Is_Predefined_Dispatching_Operation (Subp)
15170 and then not Comes_From_Source (Ultimate_Alias (Subp))
15171 then
15172 Has_Predefined_Primitives := True;
15173 exit;
15174 end if;
15175
15176 Next_Elmt (Elmt);
15177 end loop;
15178
15179 -- Remove predefined primitives of Generic_Actual. We must use
15180 -- an auxiliary list because in case of tagged types the value
15181 -- returned by Collect_Primitive_Operations is the value stored
15182 -- in its Primitive_Operations attribute (and we don't want to
15183 -- modify its current contents).
15184
15185 if not Has_Predefined_Primitives then
15186 declare
15187 Aux_List : constant Elist_Id := New_Elmt_List;
15188
15189 begin
15190 Elmt := First_Elmt (Act_List);
15191 while Present (Elmt) loop
15192 Subp := Node (Elmt);
15193
15194 if not Is_Predefined_Dispatching_Operation (Subp)
15195 or else Comes_From_Source (Subp)
15196 then
15197 Append_Elmt (Subp, Aux_List);
15198 end if;
15199
15200 Next_Elmt (Elmt);
15201 end loop;
15202
15203 Act_List := Aux_List;
15204 end;
15205 end if;
15206
15207 Act_Elmt := First_Elmt (Act_List);
15208 Act_Subp := Node (Act_Elmt);
15209 end;
15210 end if;
15211
15212 -- Stage 1: If the generic actual is not present we derive the
15213 -- primitives inherited from the parent type. If the generic parent
15214 -- type is present, the derived type is an instance of a formal
15215 -- derived type, and within the instance its operations are those of
15216 -- the actual. We derive from the formal type but make the inherited
15217 -- operations aliases of the corresponding operations of the actual.
15218
15219 Elmt := First_Elmt (Op_List);
15220 while Present (Elmt) loop
15221 Subp := Node (Elmt);
15222 Alias_Subp := Ultimate_Alias (Subp);
15223
15224 -- Do not derive internal entities of the parent that link
15225 -- interface primitives with their covering primitive. These
15226 -- entities will be added to this type when frozen.
15227
15228 if Present (Interface_Alias (Subp)) then
15229 goto Continue;
15230 end if;
15231
15232 -- If the generic actual is present find the corresponding
15233 -- operation in the generic actual. If the parent type is a
15234 -- direct ancestor of the derived type then, even if it is an
15235 -- interface, the operations are inherited from the primary
15236 -- dispatch table and are in the proper order. If we detect here
15237 -- that primitives are not in the same order we traverse the list
15238 -- of primitive operations of the actual to find the one that
15239 -- implements the interface primitive.
15240
15241 if Need_Search
15242 or else
15243 (Present (Generic_Actual)
15244 and then Present (Act_Subp)
15245 and then not
15246 (Primitive_Names_Match (Subp, Act_Subp)
15247 and then
15248 Type_Conformant (Subp, Act_Subp,
15249 Skip_Controlling_Formals => True)))
15250 then
15251 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
15252 Use_Full_View => True));
15253
15254 -- Remember that we need searching for all pending primitives
15255
15256 Need_Search := True;
15257
15258 -- Handle entities associated with interface primitives
15259
15260 if Present (Alias_Subp)
15261 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
15262 and then not Is_Predefined_Dispatching_Operation (Subp)
15263 then
15264 -- Search for the primitive in the homonym chain
15265
15266 Act_Subp :=
15267 Find_Primitive_Covering_Interface
15268 (Tagged_Type => Generic_Actual,
15269 Iface_Prim => Alias_Subp);
15270
15271 -- Previous search may not locate primitives covering
15272 -- interfaces defined in generics units or instantiations.
15273 -- (it fails if the covering primitive has formals whose
15274 -- type is also defined in generics or instantiations).
15275 -- In such case we search in the list of primitives of the
15276 -- generic actual for the internal entity that links the
15277 -- interface primitive and the covering primitive.
15278
15279 if No (Act_Subp)
15280 and then Is_Generic_Type (Parent_Type)
15281 then
15282 -- This code has been designed to handle only generic
15283 -- formals that implement interfaces that are defined
15284 -- in a generic unit or instantiation. If this code is
15285 -- needed for other cases we must review it because
15286 -- (given that it relies on Original_Location to locate
15287 -- the primitive of Generic_Actual that covers the
15288 -- interface) it could leave linked through attribute
15289 -- Alias entities of unrelated instantiations).
15290
15291 pragma Assert
15292 (Is_Generic_Unit
15293 (Scope (Find_Dispatching_Type (Alias_Subp)))
15294 or else
15295 Instantiation_Depth
15296 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
15297
15298 declare
15299 Iface_Prim_Loc : constant Source_Ptr :=
15300 Original_Location (Sloc (Alias_Subp));
15301
15302 Elmt : Elmt_Id;
15303 Prim : Entity_Id;
15304
15305 begin
15306 Elmt :=
15307 First_Elmt (Primitive_Operations (Generic_Actual));
15308
15309 Search : while Present (Elmt) loop
15310 Prim := Node (Elmt);
15311
15312 if Present (Interface_Alias (Prim))
15313 and then Original_Location
15314 (Sloc (Interface_Alias (Prim))) =
15315 Iface_Prim_Loc
15316 then
15317 Act_Subp := Alias (Prim);
15318 exit Search;
15319 end if;
15320
15321 Next_Elmt (Elmt);
15322 end loop Search;
15323 end;
15324 end if;
15325
15326 pragma Assert (Present (Act_Subp)
15327 or else Is_Abstract_Type (Generic_Actual)
15328 or else Serious_Errors_Detected > 0);
15329
15330 -- Handle predefined primitives plus the rest of user-defined
15331 -- primitives
15332
15333 else
15334 Act_Elmt := First_Elmt (Act_List);
15335 while Present (Act_Elmt) loop
15336 Act_Subp := Node (Act_Elmt);
15337
15338 exit when Primitive_Names_Match (Subp, Act_Subp)
15339 and then Type_Conformant
15340 (Subp, Act_Subp,
15341 Skip_Controlling_Formals => True)
15342 and then No (Interface_Alias (Act_Subp));
15343
15344 Next_Elmt (Act_Elmt);
15345 end loop;
15346
15347 if No (Act_Elmt) then
15348 Act_Subp := Empty;
15349 end if;
15350 end if;
15351 end if;
15352
15353 -- Case 1: If the parent is a limited interface then it has the
15354 -- predefined primitives of synchronized interfaces. However, the
15355 -- actual type may be a non-limited type and hence it does not
15356 -- have such primitives.
15357
15358 if Present (Generic_Actual)
15359 and then not Present (Act_Subp)
15360 and then Is_Limited_Interface (Parent_Base)
15361 and then Is_Predefined_Interface_Primitive (Subp)
15362 then
15363 null;
15364
15365 -- Case 2: Inherit entities associated with interfaces that were
15366 -- not covered by the parent type. We exclude here null interface
15367 -- primitives because they do not need special management.
15368
15369 -- We also exclude interface operations that are renamings. If the
15370 -- subprogram is an explicit renaming of an interface primitive,
15371 -- it is a regular primitive operation, and the presence of its
15372 -- alias is not relevant: it has to be derived like any other
15373 -- primitive.
15374
15375 elsif Present (Alias (Subp))
15376 and then Nkind (Unit_Declaration_Node (Subp)) /=
15377 N_Subprogram_Renaming_Declaration
15378 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
15379 and then not
15380 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
15381 and then Null_Present (Parent (Alias_Subp)))
15382 then
15383 -- If this is an abstract private type then we transfer the
15384 -- derivation of the interface primitive from the partial view
15385 -- to the full view. This is safe because all the interfaces
15386 -- must be visible in the partial view. Done to avoid adding
15387 -- a new interface derivation to the private part of the
15388 -- enclosing package; otherwise this new derivation would be
15389 -- decorated as hidden when the analysis of the enclosing
15390 -- package completes.
15391
15392 if Is_Abstract_Type (Derived_Type)
15393 and then In_Private_Part (Current_Scope)
15394 and then Has_Private_Declaration (Derived_Type)
15395 then
15396 declare
15397 Partial_View : Entity_Id;
15398 Elmt : Elmt_Id;
15399 Ent : Entity_Id;
15400
15401 begin
15402 Partial_View := First_Entity (Current_Scope);
15403 loop
15404 exit when No (Partial_View)
15405 or else (Has_Private_Declaration (Partial_View)
15406 and then
15407 Full_View (Partial_View) = Derived_Type);
15408
15409 Next_Entity (Partial_View);
15410 end loop;
15411
15412 -- If the partial view was not found then the source code
15413 -- has errors and the derivation is not needed.
15414
15415 if Present (Partial_View) then
15416 Elmt :=
15417 First_Elmt (Primitive_Operations (Partial_View));
15418 while Present (Elmt) loop
15419 Ent := Node (Elmt);
15420
15421 if Present (Alias (Ent))
15422 and then Ultimate_Alias (Ent) = Alias (Subp)
15423 then
15424 Append_Elmt
15425 (Ent, Primitive_Operations (Derived_Type));
15426 exit;
15427 end if;
15428
15429 Next_Elmt (Elmt);
15430 end loop;
15431
15432 -- If the interface primitive was not found in the
15433 -- partial view then this interface primitive was
15434 -- overridden. We add a derivation to activate in
15435 -- Derive_Progenitor_Subprograms the machinery to
15436 -- search for it.
15437
15438 if No (Elmt) then
15439 Derive_Interface_Subprogram
15440 (New_Subp => New_Subp,
15441 Subp => Subp,
15442 Actual_Subp => Act_Subp);
15443 end if;
15444 end if;
15445 end;
15446 else
15447 Derive_Interface_Subprogram
15448 (New_Subp => New_Subp,
15449 Subp => Subp,
15450 Actual_Subp => Act_Subp);
15451 end if;
15452
15453 -- Case 3: Common derivation
15454
15455 else
15456 Derive_Subprogram
15457 (New_Subp => New_Subp,
15458 Parent_Subp => Subp,
15459 Derived_Type => Derived_Type,
15460 Parent_Type => Parent_Base,
15461 Actual_Subp => Act_Subp);
15462 end if;
15463
15464 -- No need to update Act_Elm if we must search for the
15465 -- corresponding operation in the generic actual
15466
15467 if not Need_Search
15468 and then Present (Act_Elmt)
15469 then
15470 Next_Elmt (Act_Elmt);
15471 Act_Subp := Node (Act_Elmt);
15472 end if;
15473
15474 <<Continue>>
15475 Next_Elmt (Elmt);
15476 end loop;
15477
15478 -- Inherit additional operations from progenitors. If the derived
15479 -- type is a generic actual, there are not new primitive operations
15480 -- for the type because it has those of the actual, and therefore
15481 -- nothing needs to be done. The renamings generated above are not
15482 -- primitive operations, and their purpose is simply to make the
15483 -- proper operations visible within an instantiation.
15484
15485 if No (Generic_Actual) then
15486 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
15487 end if;
15488 end if;
15489
15490 -- Final check: Direct descendants must have their primitives in the
15491 -- same order. We exclude from this test untagged types and instances
15492 -- of formal derived types. We skip this test if we have already
15493 -- reported serious errors in the sources.
15494
15495 pragma Assert (not Is_Tagged_Type (Derived_Type)
15496 or else Present (Generic_Actual)
15497 or else Serious_Errors_Detected > 0
15498 or else Check_Derived_Type);
15499 end Derive_Subprograms;
15500
15501 --------------------------------
15502 -- Derived_Standard_Character --
15503 --------------------------------
15504
15505 procedure Derived_Standard_Character
15506 (N : Node_Id;
15507 Parent_Type : Entity_Id;
15508 Derived_Type : Entity_Id)
15509 is
15510 Loc : constant Source_Ptr := Sloc (N);
15511 Def : constant Node_Id := Type_Definition (N);
15512 Indic : constant Node_Id := Subtype_Indication (Def);
15513 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
15514 Implicit_Base : constant Entity_Id :=
15515 Create_Itype
15516 (E_Enumeration_Type, N, Derived_Type, 'B');
15517
15518 Lo : Node_Id;
15519 Hi : Node_Id;
15520
15521 begin
15522 Discard_Node (Process_Subtype (Indic, N));
15523
15524 Set_Etype (Implicit_Base, Parent_Base);
15525 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
15526 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
15527
15528 Set_Is_Character_Type (Implicit_Base, True);
15529 Set_Has_Delayed_Freeze (Implicit_Base);
15530
15531 -- The bounds of the implicit base are the bounds of the parent base.
15532 -- Note that their type is the parent base.
15533
15534 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
15535 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
15536
15537 Set_Scalar_Range (Implicit_Base,
15538 Make_Range (Loc,
15539 Low_Bound => Lo,
15540 High_Bound => Hi));
15541
15542 Conditional_Delay (Derived_Type, Parent_Type);
15543
15544 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
15545 Set_Etype (Derived_Type, Implicit_Base);
15546 Set_Size_Info (Derived_Type, Parent_Type);
15547
15548 if Unknown_RM_Size (Derived_Type) then
15549 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
15550 end if;
15551
15552 Set_Is_Character_Type (Derived_Type, True);
15553
15554 if Nkind (Indic) /= N_Subtype_Indication then
15555
15556 -- If no explicit constraint, the bounds are those
15557 -- of the parent type.
15558
15559 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
15560 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
15561 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
15562 end if;
15563
15564 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
15565
15566 -- Because the implicit base is used in the conversion of the bounds, we
15567 -- have to freeze it now. This is similar to what is done for numeric
15568 -- types, and it equally suspicious, but otherwise a non-static bound
15569 -- will have a reference to an unfrozen type, which is rejected by Gigi
15570 -- (???). This requires specific care for definition of stream
15571 -- attributes. For details, see comments at the end of
15572 -- Build_Derived_Numeric_Type.
15573
15574 Freeze_Before (N, Implicit_Base);
15575 end Derived_Standard_Character;
15576
15577 ------------------------------
15578 -- Derived_Type_Declaration --
15579 ------------------------------
15580
15581 procedure Derived_Type_Declaration
15582 (T : Entity_Id;
15583 N : Node_Id;
15584 Is_Completion : Boolean)
15585 is
15586 Parent_Type : Entity_Id;
15587
15588 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
15589 -- Check whether the parent type is a generic formal, or derives
15590 -- directly or indirectly from one.
15591
15592 ------------------------
15593 -- Comes_From_Generic --
15594 ------------------------
15595
15596 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
15597 begin
15598 if Is_Generic_Type (Typ) then
15599 return True;
15600
15601 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
15602 return True;
15603
15604 elsif Is_Private_Type (Typ)
15605 and then Present (Full_View (Typ))
15606 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
15607 then
15608 return True;
15609
15610 elsif Is_Generic_Actual_Type (Typ) then
15611 return True;
15612
15613 else
15614 return False;
15615 end if;
15616 end Comes_From_Generic;
15617
15618 -- Local variables
15619
15620 Def : constant Node_Id := Type_Definition (N);
15621 Iface_Def : Node_Id;
15622 Indic : constant Node_Id := Subtype_Indication (Def);
15623 Extension : constant Node_Id := Record_Extension_Part (Def);
15624 Parent_Node : Node_Id;
15625 Taggd : Boolean;
15626
15627 -- Start of processing for Derived_Type_Declaration
15628
15629 begin
15630 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
15631
15632 -- Ada 2005 (AI-251): In case of interface derivation check that the
15633 -- parent is also an interface.
15634
15635 if Interface_Present (Def) then
15636 Check_SPARK_05_Restriction ("interface is not allowed", Def);
15637
15638 if not Is_Interface (Parent_Type) then
15639 Diagnose_Interface (Indic, Parent_Type);
15640
15641 else
15642 Parent_Node := Parent (Base_Type (Parent_Type));
15643 Iface_Def := Type_Definition (Parent_Node);
15644
15645 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
15646 -- other limited interfaces.
15647
15648 if Limited_Present (Def) then
15649 if Limited_Present (Iface_Def) then
15650 null;
15651
15652 elsif Protected_Present (Iface_Def) then
15653 Error_Msg_NE
15654 ("descendant of& must be declared"
15655 & " as a protected interface",
15656 N, Parent_Type);
15657
15658 elsif Synchronized_Present (Iface_Def) then
15659 Error_Msg_NE
15660 ("descendant of& must be declared"
15661 & " as a synchronized interface",
15662 N, Parent_Type);
15663
15664 elsif Task_Present (Iface_Def) then
15665 Error_Msg_NE
15666 ("descendant of& must be declared as a task interface",
15667 N, Parent_Type);
15668
15669 else
15670 Error_Msg_N
15671 ("(Ada 2005) limited interface cannot "
15672 & "inherit from non-limited interface", Indic);
15673 end if;
15674
15675 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
15676 -- from non-limited or limited interfaces.
15677
15678 elsif not Protected_Present (Def)
15679 and then not Synchronized_Present (Def)
15680 and then not Task_Present (Def)
15681 then
15682 if Limited_Present (Iface_Def) then
15683 null;
15684
15685 elsif Protected_Present (Iface_Def) then
15686 Error_Msg_NE
15687 ("descendant of& must be declared"
15688 & " as a protected interface",
15689 N, Parent_Type);
15690
15691 elsif Synchronized_Present (Iface_Def) then
15692 Error_Msg_NE
15693 ("descendant of& must be declared"
15694 & " as a synchronized interface",
15695 N, Parent_Type);
15696
15697 elsif Task_Present (Iface_Def) then
15698 Error_Msg_NE
15699 ("descendant of& must be declared as a task interface",
15700 N, Parent_Type);
15701 else
15702 null;
15703 end if;
15704 end if;
15705 end if;
15706 end if;
15707
15708 if Is_Tagged_Type (Parent_Type)
15709 and then Is_Concurrent_Type (Parent_Type)
15710 and then not Is_Interface (Parent_Type)
15711 then
15712 Error_Msg_N
15713 ("parent type of a record extension cannot be "
15714 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
15715 Set_Etype (T, Any_Type);
15716 return;
15717 end if;
15718
15719 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
15720 -- interfaces
15721
15722 if Is_Tagged_Type (Parent_Type)
15723 and then Is_Non_Empty_List (Interface_List (Def))
15724 then
15725 declare
15726 Intf : Node_Id;
15727 T : Entity_Id;
15728
15729 begin
15730 Intf := First (Interface_List (Def));
15731 while Present (Intf) loop
15732 T := Find_Type_Of_Subtype_Indic (Intf);
15733
15734 if not Is_Interface (T) then
15735 Diagnose_Interface (Intf, T);
15736
15737 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
15738 -- a limited type from having a nonlimited progenitor.
15739
15740 elsif (Limited_Present (Def)
15741 or else (not Is_Interface (Parent_Type)
15742 and then Is_Limited_Type (Parent_Type)))
15743 and then not Is_Limited_Interface (T)
15744 then
15745 Error_Msg_NE
15746 ("progenitor interface& of limited type must be limited",
15747 N, T);
15748 end if;
15749
15750 Next (Intf);
15751 end loop;
15752 end;
15753 end if;
15754
15755 if Parent_Type = Any_Type
15756 or else Etype (Parent_Type) = Any_Type
15757 or else (Is_Class_Wide_Type (Parent_Type)
15758 and then Etype (Parent_Type) = T)
15759 then
15760 -- If Parent_Type is undefined or illegal, make new type into a
15761 -- subtype of Any_Type, and set a few attributes to prevent cascaded
15762 -- errors. If this is a self-definition, emit error now.
15763
15764 if T = Parent_Type or else T = Etype (Parent_Type) then
15765 Error_Msg_N ("type cannot be used in its own definition", Indic);
15766 end if;
15767
15768 Set_Ekind (T, Ekind (Parent_Type));
15769 Set_Etype (T, Any_Type);
15770 Set_Scalar_Range (T, Scalar_Range (Any_Type));
15771
15772 if Is_Tagged_Type (T)
15773 and then Is_Record_Type (T)
15774 then
15775 Set_Direct_Primitive_Operations (T, New_Elmt_List);
15776 end if;
15777
15778 return;
15779 end if;
15780
15781 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
15782 -- an interface is special because the list of interfaces in the full
15783 -- view can be given in any order. For example:
15784
15785 -- type A is interface;
15786 -- type B is interface and A;
15787 -- type D is new B with private;
15788 -- private
15789 -- type D is new A and B with null record; -- 1 --
15790
15791 -- In this case we perform the following transformation of -1-:
15792
15793 -- type D is new B and A with null record;
15794
15795 -- If the parent of the full-view covers the parent of the partial-view
15796 -- we have two possible cases:
15797
15798 -- 1) They have the same parent
15799 -- 2) The parent of the full-view implements some further interfaces
15800
15801 -- In both cases we do not need to perform the transformation. In the
15802 -- first case the source program is correct and the transformation is
15803 -- not needed; in the second case the source program does not fulfill
15804 -- the no-hidden interfaces rule (AI-396) and the error will be reported
15805 -- later.
15806
15807 -- This transformation not only simplifies the rest of the analysis of
15808 -- this type declaration but also simplifies the correct generation of
15809 -- the object layout to the expander.
15810
15811 if In_Private_Part (Current_Scope)
15812 and then Is_Interface (Parent_Type)
15813 then
15814 declare
15815 Iface : Node_Id;
15816 Partial_View : Entity_Id;
15817 Partial_View_Parent : Entity_Id;
15818 New_Iface : Node_Id;
15819
15820 begin
15821 -- Look for the associated private type declaration
15822
15823 Partial_View := First_Entity (Current_Scope);
15824 loop
15825 exit when No (Partial_View)
15826 or else (Has_Private_Declaration (Partial_View)
15827 and then Full_View (Partial_View) = T);
15828
15829 Next_Entity (Partial_View);
15830 end loop;
15831
15832 -- If the partial view was not found then the source code has
15833 -- errors and the transformation is not needed.
15834
15835 if Present (Partial_View) then
15836 Partial_View_Parent := Etype (Partial_View);
15837
15838 -- If the parent of the full-view covers the parent of the
15839 -- partial-view we have nothing else to do.
15840
15841 if Interface_Present_In_Ancestor
15842 (Parent_Type, Partial_View_Parent)
15843 then
15844 null;
15845
15846 -- Traverse the list of interfaces of the full-view to look
15847 -- for the parent of the partial-view and perform the tree
15848 -- transformation.
15849
15850 else
15851 Iface := First (Interface_List (Def));
15852 while Present (Iface) loop
15853 if Etype (Iface) = Etype (Partial_View) then
15854 Rewrite (Subtype_Indication (Def),
15855 New_Copy (Subtype_Indication
15856 (Parent (Partial_View))));
15857
15858 New_Iface :=
15859 Make_Identifier (Sloc (N), Chars (Parent_Type));
15860 Append (New_Iface, Interface_List (Def));
15861
15862 -- Analyze the transformed code
15863
15864 Derived_Type_Declaration (T, N, Is_Completion);
15865 return;
15866 end if;
15867
15868 Next (Iface);
15869 end loop;
15870 end if;
15871 end if;
15872 end;
15873 end if;
15874
15875 -- Only composite types other than array types are allowed to have
15876 -- discriminants.
15877
15878 if Present (Discriminant_Specifications (N)) then
15879 if (Is_Elementary_Type (Parent_Type)
15880 or else
15881 Is_Array_Type (Parent_Type))
15882 and then not Error_Posted (N)
15883 then
15884 Error_Msg_N
15885 ("elementary or array type cannot have discriminants",
15886 Defining_Identifier (First (Discriminant_Specifications (N))));
15887 Set_Has_Discriminants (T, False);
15888
15889 -- The type is allowed to have discriminants
15890
15891 else
15892 Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
15893 end if;
15894 end if;
15895
15896 -- In Ada 83, a derived type defined in a package specification cannot
15897 -- be used for further derivation until the end of its visible part.
15898 -- Note that derivation in the private part of the package is allowed.
15899
15900 if Ada_Version = Ada_83
15901 and then Is_Derived_Type (Parent_Type)
15902 and then In_Visible_Part (Scope (Parent_Type))
15903 then
15904 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
15905 Error_Msg_N
15906 ("(Ada 83): premature use of type for derivation", Indic);
15907 end if;
15908 end if;
15909
15910 -- Check for early use of incomplete or private type
15911
15912 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
15913 Error_Msg_N ("premature derivation of incomplete type", Indic);
15914 return;
15915
15916 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
15917 and then not Comes_From_Generic (Parent_Type))
15918 or else Has_Private_Component (Parent_Type)
15919 then
15920 -- The ancestor type of a formal type can be incomplete, in which
15921 -- case only the operations of the partial view are available in the
15922 -- generic. Subsequent checks may be required when the full view is
15923 -- analyzed to verify that a derivation from a tagged type has an
15924 -- extension.
15925
15926 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
15927 null;
15928
15929 elsif No (Underlying_Type (Parent_Type))
15930 or else Has_Private_Component (Parent_Type)
15931 then
15932 Error_Msg_N
15933 ("premature derivation of derived or private type", Indic);
15934
15935 -- Flag the type itself as being in error, this prevents some
15936 -- nasty problems with subsequent uses of the malformed type.
15937
15938 Set_Error_Posted (T);
15939
15940 -- Check that within the immediate scope of an untagged partial
15941 -- view it's illegal to derive from the partial view if the
15942 -- full view is tagged. (7.3(7))
15943
15944 -- We verify that the Parent_Type is a partial view by checking
15945 -- that it is not a Full_Type_Declaration (i.e. a private type or
15946 -- private extension declaration), to distinguish a partial view
15947 -- from a derivation from a private type which also appears as
15948 -- E_Private_Type. If the parent base type is not declared in an
15949 -- enclosing scope there is no need to check.
15950
15951 elsif Present (Full_View (Parent_Type))
15952 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
15953 and then not Is_Tagged_Type (Parent_Type)
15954 and then Is_Tagged_Type (Full_View (Parent_Type))
15955 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15956 then
15957 Error_Msg_N
15958 ("premature derivation from type with tagged full view",
15959 Indic);
15960 end if;
15961 end if;
15962
15963 -- Check that form of derivation is appropriate
15964
15965 Taggd := Is_Tagged_Type (Parent_Type);
15966
15967 -- Set the parent type to the class-wide type's specific type in this
15968 -- case to prevent cascading errors
15969
15970 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
15971 Error_Msg_N ("parent type must not be a class-wide type", Indic);
15972 Set_Etype (T, Etype (Parent_Type));
15973 return;
15974 end if;
15975
15976 if Present (Extension) and then not Taggd then
15977 Error_Msg_N
15978 ("type derived from untagged type cannot have extension", Indic);
15979
15980 elsif No (Extension) and then Taggd then
15981
15982 -- If this declaration is within a private part (or body) of a
15983 -- generic instantiation then the derivation is allowed (the parent
15984 -- type can only appear tagged in this case if it's a generic actual
15985 -- type, since it would otherwise have been rejected in the analysis
15986 -- of the generic template).
15987
15988 if not Is_Generic_Actual_Type (Parent_Type)
15989 or else In_Visible_Part (Scope (Parent_Type))
15990 then
15991 if Is_Class_Wide_Type (Parent_Type) then
15992 Error_Msg_N
15993 ("parent type must not be a class-wide type", Indic);
15994
15995 -- Use specific type to prevent cascaded errors.
15996
15997 Parent_Type := Etype (Parent_Type);
15998
15999 else
16000 Error_Msg_N
16001 ("type derived from tagged type must have extension", Indic);
16002 end if;
16003 end if;
16004 end if;
16005
16006 -- AI-443: Synchronized formal derived types require a private
16007 -- extension. There is no point in checking the ancestor type or
16008 -- the progenitors since the construct is wrong to begin with.
16009
16010 if Ada_Version >= Ada_2005
16011 and then Is_Generic_Type (T)
16012 and then Present (Original_Node (N))
16013 then
16014 declare
16015 Decl : constant Node_Id := Original_Node (N);
16016
16017 begin
16018 if Nkind (Decl) = N_Formal_Type_Declaration
16019 and then Nkind (Formal_Type_Definition (Decl)) =
16020 N_Formal_Derived_Type_Definition
16021 and then Synchronized_Present (Formal_Type_Definition (Decl))
16022 and then No (Extension)
16023
16024 -- Avoid emitting a duplicate error message
16025
16026 and then not Error_Posted (Indic)
16027 then
16028 Error_Msg_N
16029 ("synchronized derived type must have extension", N);
16030 end if;
16031 end;
16032 end if;
16033
16034 if Null_Exclusion_Present (Def)
16035 and then not Is_Access_Type (Parent_Type)
16036 then
16037 Error_Msg_N ("null exclusion can only apply to an access type", N);
16038 end if;
16039
16040 -- Avoid deriving parent primitives of underlying record views
16041
16042 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
16043 Derive_Subps => not Is_Underlying_Record_View (T));
16044
16045 -- AI-419: The parent type of an explicitly limited derived type must
16046 -- be a limited type or a limited interface.
16047
16048 if Limited_Present (Def) then
16049 Set_Is_Limited_Record (T);
16050
16051 if Is_Interface (T) then
16052 Set_Is_Limited_Interface (T);
16053 end if;
16054
16055 if not Is_Limited_Type (Parent_Type)
16056 and then
16057 (not Is_Interface (Parent_Type)
16058 or else not Is_Limited_Interface (Parent_Type))
16059 then
16060 -- AI05-0096: a derivation in the private part of an instance is
16061 -- legal if the generic formal is untagged limited, and the actual
16062 -- is non-limited.
16063
16064 if Is_Generic_Actual_Type (Parent_Type)
16065 and then In_Private_Part (Current_Scope)
16066 and then
16067 not Is_Tagged_Type
16068 (Generic_Parent_Type (Parent (Parent_Type)))
16069 then
16070 null;
16071
16072 else
16073 Error_Msg_NE
16074 ("parent type& of limited type must be limited",
16075 N, Parent_Type);
16076 end if;
16077 end if;
16078 end if;
16079
16080 -- In SPARK, there are no derived type definitions other than type
16081 -- extensions of tagged record types.
16082
16083 if No (Extension) then
16084 Check_SPARK_05_Restriction
16085 ("derived type is not allowed", Original_Node (N));
16086 end if;
16087 end Derived_Type_Declaration;
16088
16089 ------------------------
16090 -- Diagnose_Interface --
16091 ------------------------
16092
16093 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
16094 begin
16095 if not Is_Interface (E) and then E /= Any_Type then
16096 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
16097 end if;
16098 end Diagnose_Interface;
16099
16100 ----------------------------------
16101 -- Enumeration_Type_Declaration --
16102 ----------------------------------
16103
16104 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16105 Ev : Uint;
16106 L : Node_Id;
16107 R_Node : Node_Id;
16108 B_Node : Node_Id;
16109
16110 begin
16111 -- Create identifier node representing lower bound
16112
16113 B_Node := New_Node (N_Identifier, Sloc (Def));
16114 L := First (Literals (Def));
16115 Set_Chars (B_Node, Chars (L));
16116 Set_Entity (B_Node, L);
16117 Set_Etype (B_Node, T);
16118 Set_Is_Static_Expression (B_Node, True);
16119
16120 R_Node := New_Node (N_Range, Sloc (Def));
16121 Set_Low_Bound (R_Node, B_Node);
16122
16123 Set_Ekind (T, E_Enumeration_Type);
16124 Set_First_Literal (T, L);
16125 Set_Etype (T, T);
16126 Set_Is_Constrained (T);
16127
16128 Ev := Uint_0;
16129
16130 -- Loop through literals of enumeration type setting pos and rep values
16131 -- except that if the Ekind is already set, then it means the literal
16132 -- was already constructed (case of a derived type declaration and we
16133 -- should not disturb the Pos and Rep values.
16134
16135 while Present (L) loop
16136 if Ekind (L) /= E_Enumeration_Literal then
16137 Set_Ekind (L, E_Enumeration_Literal);
16138 Set_Enumeration_Pos (L, Ev);
16139 Set_Enumeration_Rep (L, Ev);
16140 Set_Is_Known_Valid (L, True);
16141 end if;
16142
16143 Set_Etype (L, T);
16144 New_Overloaded_Entity (L);
16145 Generate_Definition (L);
16146 Set_Convention (L, Convention_Intrinsic);
16147
16148 -- Case of character literal
16149
16150 if Nkind (L) = N_Defining_Character_Literal then
16151 Set_Is_Character_Type (T, True);
16152
16153 -- Check violation of No_Wide_Characters
16154
16155 if Restriction_Check_Required (No_Wide_Characters) then
16156 Get_Name_String (Chars (L));
16157
16158 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
16159 Check_Restriction (No_Wide_Characters, L);
16160 end if;
16161 end if;
16162 end if;
16163
16164 Ev := Ev + 1;
16165 Next (L);
16166 end loop;
16167
16168 -- Now create a node representing upper bound
16169
16170 B_Node := New_Node (N_Identifier, Sloc (Def));
16171 Set_Chars (B_Node, Chars (Last (Literals (Def))));
16172 Set_Entity (B_Node, Last (Literals (Def)));
16173 Set_Etype (B_Node, T);
16174 Set_Is_Static_Expression (B_Node, True);
16175
16176 Set_High_Bound (R_Node, B_Node);
16177
16178 -- Initialize various fields of the type. Some of this information
16179 -- may be overwritten later through rep.clauses.
16180
16181 Set_Scalar_Range (T, R_Node);
16182 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
16183 Set_Enum_Esize (T);
16184 Set_Enum_Pos_To_Rep (T, Empty);
16185
16186 -- Set Discard_Names if configuration pragma set, or if there is
16187 -- a parameterless pragma in the current declarative region
16188
16189 if Global_Discard_Names or else Discard_Names (Scope (T)) then
16190 Set_Discard_Names (T);
16191 end if;
16192
16193 -- Process end label if there is one
16194
16195 if Present (Def) then
16196 Process_End_Label (Def, 'e', T);
16197 end if;
16198 end Enumeration_Type_Declaration;
16199
16200 ---------------------------------
16201 -- Expand_To_Stored_Constraint --
16202 ---------------------------------
16203
16204 function Expand_To_Stored_Constraint
16205 (Typ : Entity_Id;
16206 Constraint : Elist_Id) return Elist_Id
16207 is
16208 Explicitly_Discriminated_Type : Entity_Id;
16209 Expansion : Elist_Id;
16210 Discriminant : Entity_Id;
16211
16212 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
16213 -- Find the nearest type that actually specifies discriminants
16214
16215 ---------------------------------
16216 -- Type_With_Explicit_Discrims --
16217 ---------------------------------
16218
16219 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
16220 Typ : constant E := Base_Type (Id);
16221
16222 begin
16223 if Ekind (Typ) in Incomplete_Or_Private_Kind then
16224 if Present (Full_View (Typ)) then
16225 return Type_With_Explicit_Discrims (Full_View (Typ));
16226 end if;
16227
16228 else
16229 if Has_Discriminants (Typ) then
16230 return Typ;
16231 end if;
16232 end if;
16233
16234 if Etype (Typ) = Typ then
16235 return Empty;
16236 elsif Has_Discriminants (Typ) then
16237 return Typ;
16238 else
16239 return Type_With_Explicit_Discrims (Etype (Typ));
16240 end if;
16241
16242 end Type_With_Explicit_Discrims;
16243
16244 -- Start of processing for Expand_To_Stored_Constraint
16245
16246 begin
16247 if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then
16248 return No_Elist;
16249 end if;
16250
16251 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
16252
16253 if No (Explicitly_Discriminated_Type) then
16254 return No_Elist;
16255 end if;
16256
16257 Expansion := New_Elmt_List;
16258
16259 Discriminant :=
16260 First_Stored_Discriminant (Explicitly_Discriminated_Type);
16261 while Present (Discriminant) loop
16262 Append_Elmt
16263 (Get_Discriminant_Value
16264 (Discriminant, Explicitly_Discriminated_Type, Constraint),
16265 To => Expansion);
16266 Next_Stored_Discriminant (Discriminant);
16267 end loop;
16268
16269 return Expansion;
16270 end Expand_To_Stored_Constraint;
16271
16272 ---------------------------
16273 -- Find_Hidden_Interface --
16274 ---------------------------
16275
16276 function Find_Hidden_Interface
16277 (Src : Elist_Id;
16278 Dest : Elist_Id) return Entity_Id
16279 is
16280 Iface : Entity_Id;
16281 Iface_Elmt : Elmt_Id;
16282
16283 begin
16284 if Present (Src) and then Present (Dest) then
16285 Iface_Elmt := First_Elmt (Src);
16286 while Present (Iface_Elmt) loop
16287 Iface := Node (Iface_Elmt);
16288
16289 if Is_Interface (Iface)
16290 and then not Contain_Interface (Iface, Dest)
16291 then
16292 return Iface;
16293 end if;
16294
16295 Next_Elmt (Iface_Elmt);
16296 end loop;
16297 end if;
16298
16299 return Empty;
16300 end Find_Hidden_Interface;
16301
16302 --------------------
16303 -- Find_Type_Name --
16304 --------------------
16305
16306 function Find_Type_Name (N : Node_Id) return Entity_Id is
16307 Id : constant Entity_Id := Defining_Identifier (N);
16308 Prev : Entity_Id;
16309 New_Id : Entity_Id;
16310 Prev_Par : Node_Id;
16311
16312 procedure Check_Duplicate_Aspects;
16313 -- Check that aspects specified in a completion have not been specified
16314 -- already in the partial view. Type_Invariant and others can be
16315 -- specified on either view but never on both.
16316
16317 procedure Tag_Mismatch;
16318 -- Diagnose a tagged partial view whose full view is untagged.
16319 -- We post the message on the full view, with a reference to
16320 -- the previous partial view. The partial view can be private
16321 -- or incomplete, and these are handled in a different manner,
16322 -- so we determine the position of the error message from the
16323 -- respective slocs of both.
16324
16325 -----------------------------
16326 -- Check_Duplicate_Aspects --
16327 -----------------------------
16328 procedure Check_Duplicate_Aspects is
16329 Prev_Aspects : constant List_Id := Aspect_Specifications (Prev_Par);
16330 Full_Aspects : constant List_Id := Aspect_Specifications (N);
16331 F_Spec, P_Spec : Node_Id;
16332
16333 begin
16334 if Present (Prev_Aspects) and then Present (Full_Aspects) then
16335 F_Spec := First (Full_Aspects);
16336 while Present (F_Spec) loop
16337 P_Spec := First (Prev_Aspects);
16338 while Present (P_Spec) loop
16339 if Chars (Identifier (P_Spec)) = Chars (Identifier (F_Spec))
16340 then
16341 Error_Msg_N
16342 ("aspect already specified in private declaration",
16343 F_Spec);
16344 Remove (F_Spec);
16345 return;
16346 end if;
16347
16348 Next (P_Spec);
16349 end loop;
16350
16351 Next (F_Spec);
16352 end loop;
16353 end if;
16354 end Check_Duplicate_Aspects;
16355
16356 ------------------
16357 -- Tag_Mismatch --
16358 ------------------
16359
16360 procedure Tag_Mismatch is
16361 begin
16362 if Sloc (Prev) < Sloc (Id) then
16363 if Ada_Version >= Ada_2012
16364 and then Nkind (N) = N_Private_Type_Declaration
16365 then
16366 Error_Msg_NE
16367 ("declaration of private } must be a tagged type ", Id, Prev);
16368 else
16369 Error_Msg_NE
16370 ("full declaration of } must be a tagged type ", Id, Prev);
16371 end if;
16372
16373 else
16374 if Ada_Version >= Ada_2012
16375 and then Nkind (N) = N_Private_Type_Declaration
16376 then
16377 Error_Msg_NE
16378 ("declaration of private } must be a tagged type ", Prev, Id);
16379 else
16380 Error_Msg_NE
16381 ("full declaration of } must be a tagged type ", Prev, Id);
16382 end if;
16383 end if;
16384 end Tag_Mismatch;
16385
16386 -- Start of processing for Find_Type_Name
16387
16388 begin
16389 -- Find incomplete declaration, if one was given
16390
16391 Prev := Current_Entity_In_Scope (Id);
16392
16393 -- New type declaration
16394
16395 if No (Prev) then
16396 Enter_Name (Id);
16397 return Id;
16398
16399 -- Previous declaration exists
16400
16401 else
16402 Prev_Par := Parent (Prev);
16403
16404 -- Error if not incomplete/private case except if previous
16405 -- declaration is implicit, etc. Enter_Name will emit error if
16406 -- appropriate.
16407
16408 if not Is_Incomplete_Or_Private_Type (Prev) then
16409 Enter_Name (Id);
16410 New_Id := Id;
16411
16412 -- Check invalid completion of private or incomplete type
16413
16414 elsif not Nkind_In (N, N_Full_Type_Declaration,
16415 N_Task_Type_Declaration,
16416 N_Protected_Type_Declaration)
16417 and then
16418 (Ada_Version < Ada_2012
16419 or else not Is_Incomplete_Type (Prev)
16420 or else not Nkind_In (N, N_Private_Type_Declaration,
16421 N_Private_Extension_Declaration))
16422 then
16423 -- Completion must be a full type declarations (RM 7.3(4))
16424
16425 Error_Msg_Sloc := Sloc (Prev);
16426 Error_Msg_NE ("invalid completion of }", Id, Prev);
16427
16428 -- Set scope of Id to avoid cascaded errors. Entity is never
16429 -- examined again, except when saving globals in generics.
16430
16431 Set_Scope (Id, Current_Scope);
16432 New_Id := Id;
16433
16434 -- If this is a repeated incomplete declaration, no further
16435 -- checks are possible.
16436
16437 if Nkind (N) = N_Incomplete_Type_Declaration then
16438 return Prev;
16439 end if;
16440
16441 -- Case of full declaration of incomplete type
16442
16443 elsif Ekind (Prev) = E_Incomplete_Type
16444 and then (Ada_Version < Ada_2012
16445 or else No (Full_View (Prev))
16446 or else not Is_Private_Type (Full_View (Prev)))
16447 then
16448 -- Indicate that the incomplete declaration has a matching full
16449 -- declaration. The defining occurrence of the incomplete
16450 -- declaration remains the visible one, and the procedure
16451 -- Get_Full_View dereferences it whenever the type is used.
16452
16453 if Present (Full_View (Prev)) then
16454 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
16455 end if;
16456
16457 Set_Full_View (Prev, Id);
16458 Append_Entity (Id, Current_Scope);
16459 Set_Is_Public (Id, Is_Public (Prev));
16460 Set_Is_Internal (Id);
16461 New_Id := Prev;
16462
16463 -- If the incomplete view is tagged, a class_wide type has been
16464 -- created already. Use it for the private type as well, in order
16465 -- to prevent multiple incompatible class-wide types that may be
16466 -- created for self-referential anonymous access components.
16467
16468 if Is_Tagged_Type (Prev)
16469 and then Present (Class_Wide_Type (Prev))
16470 then
16471 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
16472 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
16473
16474 -- The type of the classwide type is the current Id. Previously
16475 -- this was not done for private declarations because of order-
16476 -- of elaboration issues in the back-end, but gigi now handles
16477 -- this properly.
16478
16479 Set_Etype (Class_Wide_Type (Id), Id);
16480 end if;
16481
16482 -- Case of full declaration of private type
16483
16484 else
16485 -- If the private type was a completion of an incomplete type then
16486 -- update Prev to reference the private type
16487
16488 if Ada_Version >= Ada_2012
16489 and then Ekind (Prev) = E_Incomplete_Type
16490 and then Present (Full_View (Prev))
16491 and then Is_Private_Type (Full_View (Prev))
16492 then
16493 Prev := Full_View (Prev);
16494 Prev_Par := Parent (Prev);
16495 end if;
16496
16497 if Nkind (N) = N_Full_Type_Declaration
16498 and then Nkind_In
16499 (Type_Definition (N), N_Record_Definition,
16500 N_Derived_Type_Definition)
16501 and then Interface_Present (Type_Definition (N))
16502 then
16503 Error_Msg_N
16504 ("completion of private type cannot be an interface", N);
16505 end if;
16506
16507 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
16508 if Etype (Prev) /= Prev then
16509
16510 -- Prev is a private subtype or a derived type, and needs
16511 -- no completion.
16512
16513 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
16514 New_Id := Id;
16515
16516 elsif Ekind (Prev) = E_Private_Type
16517 and then Nkind_In (N, N_Task_Type_Declaration,
16518 N_Protected_Type_Declaration)
16519 then
16520 Error_Msg_N
16521 ("completion of nonlimited type cannot be limited", N);
16522
16523 elsif Ekind (Prev) = E_Record_Type_With_Private
16524 and then Nkind_In (N, N_Task_Type_Declaration,
16525 N_Protected_Type_Declaration)
16526 then
16527 if not Is_Limited_Record (Prev) then
16528 Error_Msg_N
16529 ("completion of nonlimited type cannot be limited", N);
16530
16531 elsif No (Interface_List (N)) then
16532 Error_Msg_N
16533 ("completion of tagged private type must be tagged",
16534 N);
16535 end if;
16536 end if;
16537
16538 -- Ada 2005 (AI-251): Private extension declaration of a task
16539 -- type or a protected type. This case arises when covering
16540 -- interface types.
16541
16542 elsif Nkind_In (N, N_Task_Type_Declaration,
16543 N_Protected_Type_Declaration)
16544 then
16545 null;
16546
16547 elsif Nkind (N) /= N_Full_Type_Declaration
16548 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
16549 then
16550 Error_Msg_N
16551 ("full view of private extension must be an extension", N);
16552
16553 elsif not (Abstract_Present (Parent (Prev)))
16554 and then Abstract_Present (Type_Definition (N))
16555 then
16556 Error_Msg_N
16557 ("full view of non-abstract extension cannot be abstract", N);
16558 end if;
16559
16560 if not In_Private_Part (Current_Scope) then
16561 Error_Msg_N
16562 ("declaration of full view must appear in private part", N);
16563 end if;
16564
16565 if Ada_Version >= Ada_2012 then
16566 Check_Duplicate_Aspects;
16567 end if;
16568
16569 Copy_And_Swap (Prev, Id);
16570 Set_Has_Private_Declaration (Prev);
16571 Set_Has_Private_Declaration (Id);
16572
16573 -- AI12-0133: Indicate whether we have a partial view with
16574 -- unknown discriminants, in which case initialization of objects
16575 -- of the type do not receive an invariant check.
16576
16577 Set_Partial_View_Has_Unknown_Discr
16578 (Prev, Has_Unknown_Discriminants (Id));
16579
16580 -- Preserve aspect and iterator flags that may have been set on
16581 -- the partial view.
16582
16583 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
16584 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
16585
16586 -- If no error, propagate freeze_node from private to full view.
16587 -- It may have been generated for an early operational item.
16588
16589 if Present (Freeze_Node (Id))
16590 and then Serious_Errors_Detected = 0
16591 and then No (Full_View (Id))
16592 then
16593 Set_Freeze_Node (Prev, Freeze_Node (Id));
16594 Set_Freeze_Node (Id, Empty);
16595 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
16596 end if;
16597
16598 Set_Full_View (Id, Prev);
16599 New_Id := Prev;
16600 end if;
16601
16602 -- Verify that full declaration conforms to partial one
16603
16604 if Is_Incomplete_Or_Private_Type (Prev)
16605 and then Present (Discriminant_Specifications (Prev_Par))
16606 then
16607 if Present (Discriminant_Specifications (N)) then
16608 if Ekind (Prev) = E_Incomplete_Type then
16609 Check_Discriminant_Conformance (N, Prev, Prev);
16610 else
16611 Check_Discriminant_Conformance (N, Prev, Id);
16612 end if;
16613
16614 else
16615 Error_Msg_N
16616 ("missing discriminants in full type declaration", N);
16617
16618 -- To avoid cascaded errors on subsequent use, share the
16619 -- discriminants of the partial view.
16620
16621 Set_Discriminant_Specifications (N,
16622 Discriminant_Specifications (Prev_Par));
16623 end if;
16624 end if;
16625
16626 -- A prior untagged partial view can have an associated class-wide
16627 -- type due to use of the class attribute, and in this case the full
16628 -- type must also be tagged. This Ada 95 usage is deprecated in favor
16629 -- of incomplete tagged declarations, but we check for it.
16630
16631 if Is_Type (Prev)
16632 and then (Is_Tagged_Type (Prev)
16633 or else Present (Class_Wide_Type (Prev)))
16634 then
16635 -- Ada 2012 (AI05-0162): A private type may be the completion of
16636 -- an incomplete type.
16637
16638 if Ada_Version >= Ada_2012
16639 and then Is_Incomplete_Type (Prev)
16640 and then Nkind_In (N, N_Private_Type_Declaration,
16641 N_Private_Extension_Declaration)
16642 then
16643 -- No need to check private extensions since they are tagged
16644
16645 if Nkind (N) = N_Private_Type_Declaration
16646 and then not Tagged_Present (N)
16647 then
16648 Tag_Mismatch;
16649 end if;
16650
16651 -- The full declaration is either a tagged type (including
16652 -- a synchronized type that implements interfaces) or a
16653 -- type extension, otherwise this is an error.
16654
16655 elsif Nkind_In (N, N_Task_Type_Declaration,
16656 N_Protected_Type_Declaration)
16657 then
16658 if No (Interface_List (N)) and then not Error_Posted (N) then
16659 Tag_Mismatch;
16660 end if;
16661
16662 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
16663
16664 -- Indicate that the previous declaration (tagged incomplete
16665 -- or private declaration) requires the same on the full one.
16666
16667 if not Tagged_Present (Type_Definition (N)) then
16668 Tag_Mismatch;
16669 Set_Is_Tagged_Type (Id);
16670 end if;
16671
16672 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
16673 if No (Record_Extension_Part (Type_Definition (N))) then
16674 Error_Msg_NE
16675 ("full declaration of } must be a record extension",
16676 Prev, Id);
16677
16678 -- Set some attributes to produce a usable full view
16679
16680 Set_Is_Tagged_Type (Id);
16681 end if;
16682
16683 else
16684 Tag_Mismatch;
16685 end if;
16686 end if;
16687
16688 if Present (Prev)
16689 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
16690 and then Present (Premature_Use (Parent (Prev)))
16691 then
16692 Error_Msg_Sloc := Sloc (N);
16693 Error_Msg_N
16694 ("\full declaration #", Premature_Use (Parent (Prev)));
16695 end if;
16696
16697 return New_Id;
16698 end if;
16699 end Find_Type_Name;
16700
16701 -------------------------
16702 -- Find_Type_Of_Object --
16703 -------------------------
16704
16705 function Find_Type_Of_Object
16706 (Obj_Def : Node_Id;
16707 Related_Nod : Node_Id) return Entity_Id
16708 is
16709 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
16710 P : Node_Id := Parent (Obj_Def);
16711 T : Entity_Id;
16712 Nam : Name_Id;
16713
16714 begin
16715 -- If the parent is a component_definition node we climb to the
16716 -- component_declaration node
16717
16718 if Nkind (P) = N_Component_Definition then
16719 P := Parent (P);
16720 end if;
16721
16722 -- Case of an anonymous array subtype
16723
16724 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
16725 N_Unconstrained_Array_Definition)
16726 then
16727 T := Empty;
16728 Array_Type_Declaration (T, Obj_Def);
16729
16730 -- Create an explicit subtype whenever possible
16731
16732 elsif Nkind (P) /= N_Component_Declaration
16733 and then Def_Kind = N_Subtype_Indication
16734 then
16735 -- Base name of subtype on object name, which will be unique in
16736 -- the current scope.
16737
16738 -- If this is a duplicate declaration, return base type, to avoid
16739 -- generating duplicate anonymous types.
16740
16741 if Error_Posted (P) then
16742 Analyze (Subtype_Mark (Obj_Def));
16743 return Entity (Subtype_Mark (Obj_Def));
16744 end if;
16745
16746 Nam :=
16747 New_External_Name
16748 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
16749
16750 T := Make_Defining_Identifier (Sloc (P), Nam);
16751
16752 Insert_Action (Obj_Def,
16753 Make_Subtype_Declaration (Sloc (P),
16754 Defining_Identifier => T,
16755 Subtype_Indication => Relocate_Node (Obj_Def)));
16756
16757 -- This subtype may need freezing, and this will not be done
16758 -- automatically if the object declaration is not in declarative
16759 -- part. Since this is an object declaration, the type cannot always
16760 -- be frozen here. Deferred constants do not freeze their type
16761 -- (which often enough will be private).
16762
16763 if Nkind (P) = N_Object_Declaration
16764 and then Constant_Present (P)
16765 and then No (Expression (P))
16766 then
16767 null;
16768
16769 -- Here we freeze the base type of object type to catch premature use
16770 -- of discriminated private type without a full view.
16771
16772 else
16773 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
16774 end if;
16775
16776 -- Ada 2005 AI-406: the object definition in an object declaration
16777 -- can be an access definition.
16778
16779 elsif Def_Kind = N_Access_Definition then
16780 T := Access_Definition (Related_Nod, Obj_Def);
16781
16782 Set_Is_Local_Anonymous_Access
16783 (T,
16784 V => (Ada_Version < Ada_2012)
16785 or else (Nkind (P) /= N_Object_Declaration)
16786 or else Is_Library_Level_Entity (Defining_Identifier (P)));
16787
16788 -- Otherwise, the object definition is just a subtype_mark
16789
16790 else
16791 T := Process_Subtype (Obj_Def, Related_Nod);
16792
16793 -- If expansion is disabled an object definition that is an aggregate
16794 -- will not get expanded and may lead to scoping problems in the back
16795 -- end, if the object is referenced in an inner scope. In that case
16796 -- create an itype reference for the object definition now. This
16797 -- may be redundant in some cases, but harmless.
16798
16799 if Is_Itype (T)
16800 and then Nkind (Related_Nod) = N_Object_Declaration
16801 and then ASIS_Mode
16802 then
16803 Build_Itype_Reference (T, Related_Nod);
16804 end if;
16805 end if;
16806
16807 return T;
16808 end Find_Type_Of_Object;
16809
16810 --------------------------------
16811 -- Find_Type_Of_Subtype_Indic --
16812 --------------------------------
16813
16814 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
16815 Typ : Entity_Id;
16816
16817 begin
16818 -- Case of subtype mark with a constraint
16819
16820 if Nkind (S) = N_Subtype_Indication then
16821 Find_Type (Subtype_Mark (S));
16822 Typ := Entity (Subtype_Mark (S));
16823
16824 if not
16825 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
16826 then
16827 Error_Msg_N
16828 ("incorrect constraint for this kind of type", Constraint (S));
16829 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
16830 end if;
16831
16832 -- Otherwise we have a subtype mark without a constraint
16833
16834 elsif Error_Posted (S) then
16835 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
16836 return Any_Type;
16837
16838 else
16839 Find_Type (S);
16840 Typ := Entity (S);
16841 end if;
16842
16843 -- Check No_Wide_Characters restriction
16844
16845 Check_Wide_Character_Restriction (Typ, S);
16846
16847 return Typ;
16848 end Find_Type_Of_Subtype_Indic;
16849
16850 -------------------------------------
16851 -- Floating_Point_Type_Declaration --
16852 -------------------------------------
16853
16854 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16855 Digs : constant Node_Id := Digits_Expression (Def);
16856 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
16857 Digs_Val : Uint;
16858 Base_Typ : Entity_Id;
16859 Implicit_Base : Entity_Id;
16860 Bound : Node_Id;
16861
16862 function Can_Derive_From (E : Entity_Id) return Boolean;
16863 -- Find if given digits value, and possibly a specified range, allows
16864 -- derivation from specified type
16865
16866 function Find_Base_Type return Entity_Id;
16867 -- Find a predefined base type that Def can derive from, or generate
16868 -- an error and substitute Long_Long_Float if none exists.
16869
16870 ---------------------
16871 -- Can_Derive_From --
16872 ---------------------
16873
16874 function Can_Derive_From (E : Entity_Id) return Boolean is
16875 Spec : constant Entity_Id := Real_Range_Specification (Def);
16876
16877 begin
16878 -- Check specified "digits" constraint
16879
16880 if Digs_Val > Digits_Value (E) then
16881 return False;
16882 end if;
16883
16884 -- Check for matching range, if specified
16885
16886 if Present (Spec) then
16887 if Expr_Value_R (Type_Low_Bound (E)) >
16888 Expr_Value_R (Low_Bound (Spec))
16889 then
16890 return False;
16891 end if;
16892
16893 if Expr_Value_R (Type_High_Bound (E)) <
16894 Expr_Value_R (High_Bound (Spec))
16895 then
16896 return False;
16897 end if;
16898 end if;
16899
16900 return True;
16901 end Can_Derive_From;
16902
16903 --------------------
16904 -- Find_Base_Type --
16905 --------------------
16906
16907 function Find_Base_Type return Entity_Id is
16908 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
16909
16910 begin
16911 -- Iterate over the predefined types in order, returning the first
16912 -- one that Def can derive from.
16913
16914 while Present (Choice) loop
16915 if Can_Derive_From (Node (Choice)) then
16916 return Node (Choice);
16917 end if;
16918
16919 Next_Elmt (Choice);
16920 end loop;
16921
16922 -- If we can't derive from any existing type, use Long_Long_Float
16923 -- and give appropriate message explaining the problem.
16924
16925 if Digs_Val > Max_Digs_Val then
16926 -- It might be the case that there is a type with the requested
16927 -- range, just not the combination of digits and range.
16928
16929 Error_Msg_N
16930 ("no predefined type has requested range and precision",
16931 Real_Range_Specification (Def));
16932
16933 else
16934 Error_Msg_N
16935 ("range too large for any predefined type",
16936 Real_Range_Specification (Def));
16937 end if;
16938
16939 return Standard_Long_Long_Float;
16940 end Find_Base_Type;
16941
16942 -- Start of processing for Floating_Point_Type_Declaration
16943
16944 begin
16945 Check_Restriction (No_Floating_Point, Def);
16946
16947 -- Create an implicit base type
16948
16949 Implicit_Base :=
16950 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
16951
16952 -- Analyze and verify digits value
16953
16954 Analyze_And_Resolve (Digs, Any_Integer);
16955 Check_Digits_Expression (Digs);
16956 Digs_Val := Expr_Value (Digs);
16957
16958 -- Process possible range spec and find correct type to derive from
16959
16960 Process_Real_Range_Specification (Def);
16961
16962 -- Check that requested number of digits is not too high.
16963
16964 if Digs_Val > Max_Digs_Val then
16965
16966 -- The check for Max_Base_Digits may be somewhat expensive, as it
16967 -- requires reading System, so only do it when necessary.
16968
16969 declare
16970 Max_Base_Digits : constant Uint :=
16971 Expr_Value
16972 (Expression
16973 (Parent (RTE (RE_Max_Base_Digits))));
16974
16975 begin
16976 if Digs_Val > Max_Base_Digits then
16977 Error_Msg_Uint_1 := Max_Base_Digits;
16978 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
16979
16980 elsif No (Real_Range_Specification (Def)) then
16981 Error_Msg_Uint_1 := Max_Digs_Val;
16982 Error_Msg_N ("types with more than ^ digits need range spec "
16983 & "(RM 3.5.7(6))", Digs);
16984 end if;
16985 end;
16986 end if;
16987
16988 -- Find a suitable type to derive from or complain and use a substitute
16989
16990 Base_Typ := Find_Base_Type;
16991
16992 -- If there are bounds given in the declaration use them as the bounds
16993 -- of the type, otherwise use the bounds of the predefined base type
16994 -- that was chosen based on the Digits value.
16995
16996 if Present (Real_Range_Specification (Def)) then
16997 Set_Scalar_Range (T, Real_Range_Specification (Def));
16998 Set_Is_Constrained (T);
16999
17000 -- The bounds of this range must be converted to machine numbers
17001 -- in accordance with RM 4.9(38).
17002
17003 Bound := Type_Low_Bound (T);
17004
17005 if Nkind (Bound) = N_Real_Literal then
17006 Set_Realval
17007 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17008 Set_Is_Machine_Number (Bound);
17009 end if;
17010
17011 Bound := Type_High_Bound (T);
17012
17013 if Nkind (Bound) = N_Real_Literal then
17014 Set_Realval
17015 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17016 Set_Is_Machine_Number (Bound);
17017 end if;
17018
17019 else
17020 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
17021 end if;
17022
17023 -- Complete definition of implicit base and declared first subtype. The
17024 -- inheritance of the rep item chain ensures that SPARK-related pragmas
17025 -- are not clobbered when the floating point type acts as a full view of
17026 -- a private type.
17027
17028 Set_Etype (Implicit_Base, Base_Typ);
17029 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
17030 Set_Size_Info (Implicit_Base, Base_Typ);
17031 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
17032 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
17033 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
17034 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
17035
17036 Set_Ekind (T, E_Floating_Point_Subtype);
17037 Set_Etype (T, Implicit_Base);
17038 Set_Size_Info (T, Implicit_Base);
17039 Set_RM_Size (T, RM_Size (Implicit_Base));
17040 Inherit_Rep_Item_Chain (T, Implicit_Base);
17041 Set_Digits_Value (T, Digs_Val);
17042 end Floating_Point_Type_Declaration;
17043
17044 ----------------------------
17045 -- Get_Discriminant_Value --
17046 ----------------------------
17047
17048 -- This is the situation:
17049
17050 -- There is a non-derived type
17051
17052 -- type T0 (Dx, Dy, Dz...)
17053
17054 -- There are zero or more levels of derivation, with each derivation
17055 -- either purely inheriting the discriminants, or defining its own.
17056
17057 -- type Ti is new Ti-1
17058 -- or
17059 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
17060 -- or
17061 -- subtype Ti is ...
17062
17063 -- The subtype issue is avoided by the use of Original_Record_Component,
17064 -- and the fact that derived subtypes also derive the constraints.
17065
17066 -- This chain leads back from
17067
17068 -- Typ_For_Constraint
17069
17070 -- Typ_For_Constraint has discriminants, and the value for each
17071 -- discriminant is given by its corresponding Elmt of Constraints.
17072
17073 -- Discriminant is some discriminant in this hierarchy
17074
17075 -- We need to return its value
17076
17077 -- We do this by recursively searching each level, and looking for
17078 -- Discriminant. Once we get to the bottom, we start backing up
17079 -- returning the value for it which may in turn be a discriminant
17080 -- further up, so on the backup we continue the substitution.
17081
17082 function Get_Discriminant_Value
17083 (Discriminant : Entity_Id;
17084 Typ_For_Constraint : Entity_Id;
17085 Constraint : Elist_Id) return Node_Id
17086 is
17087 function Root_Corresponding_Discriminant
17088 (Discr : Entity_Id) return Entity_Id;
17089 -- Given a discriminant, traverse the chain of inherited discriminants
17090 -- and return the topmost discriminant.
17091
17092 function Search_Derivation_Levels
17093 (Ti : Entity_Id;
17094 Discrim_Values : Elist_Id;
17095 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
17096 -- This is the routine that performs the recursive search of levels
17097 -- as described above.
17098
17099 -------------------------------------
17100 -- Root_Corresponding_Discriminant --
17101 -------------------------------------
17102
17103 function Root_Corresponding_Discriminant
17104 (Discr : Entity_Id) return Entity_Id
17105 is
17106 D : Entity_Id;
17107
17108 begin
17109 D := Discr;
17110 while Present (Corresponding_Discriminant (D)) loop
17111 D := Corresponding_Discriminant (D);
17112 end loop;
17113
17114 return D;
17115 end Root_Corresponding_Discriminant;
17116
17117 ------------------------------
17118 -- Search_Derivation_Levels --
17119 ------------------------------
17120
17121 function Search_Derivation_Levels
17122 (Ti : Entity_Id;
17123 Discrim_Values : Elist_Id;
17124 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
17125 is
17126 Assoc : Elmt_Id;
17127 Disc : Entity_Id;
17128 Result : Node_Or_Entity_Id;
17129 Result_Entity : Node_Id;
17130
17131 begin
17132 -- If inappropriate type, return Error, this happens only in
17133 -- cascaded error situations, and we want to avoid a blow up.
17134
17135 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
17136 return Error;
17137 end if;
17138
17139 -- Look deeper if possible. Use Stored_Constraints only for
17140 -- untagged types. For tagged types use the given constraint.
17141 -- This asymmetry needs explanation???
17142
17143 if not Stored_Discrim_Values
17144 and then Present (Stored_Constraint (Ti))
17145 and then not Is_Tagged_Type (Ti)
17146 then
17147 Result :=
17148 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
17149 else
17150 declare
17151 Td : constant Entity_Id := Etype (Ti);
17152
17153 begin
17154 if Td = Ti then
17155 Result := Discriminant;
17156
17157 else
17158 if Present (Stored_Constraint (Ti)) then
17159 Result :=
17160 Search_Derivation_Levels
17161 (Td, Stored_Constraint (Ti), True);
17162 else
17163 Result :=
17164 Search_Derivation_Levels
17165 (Td, Discrim_Values, Stored_Discrim_Values);
17166 end if;
17167 end if;
17168 end;
17169 end if;
17170
17171 -- Extra underlying places to search, if not found above. For
17172 -- concurrent types, the relevant discriminant appears in the
17173 -- corresponding record. For a type derived from a private type
17174 -- without discriminant, the full view inherits the discriminants
17175 -- of the full view of the parent.
17176
17177 if Result = Discriminant then
17178 if Is_Concurrent_Type (Ti)
17179 and then Present (Corresponding_Record_Type (Ti))
17180 then
17181 Result :=
17182 Search_Derivation_Levels (
17183 Corresponding_Record_Type (Ti),
17184 Discrim_Values,
17185 Stored_Discrim_Values);
17186
17187 elsif Is_Private_Type (Ti)
17188 and then not Has_Discriminants (Ti)
17189 and then Present (Full_View (Ti))
17190 and then Etype (Full_View (Ti)) /= Ti
17191 then
17192 Result :=
17193 Search_Derivation_Levels (
17194 Full_View (Ti),
17195 Discrim_Values,
17196 Stored_Discrim_Values);
17197 end if;
17198 end if;
17199
17200 -- If Result is not a (reference to a) discriminant, return it,
17201 -- otherwise set Result_Entity to the discriminant.
17202
17203 if Nkind (Result) = N_Defining_Identifier then
17204 pragma Assert (Result = Discriminant);
17205 Result_Entity := Result;
17206
17207 else
17208 if not Denotes_Discriminant (Result) then
17209 return Result;
17210 end if;
17211
17212 Result_Entity := Entity (Result);
17213 end if;
17214
17215 -- See if this level of derivation actually has discriminants because
17216 -- tagged derivations can add them, hence the lower levels need not
17217 -- have any.
17218
17219 if not Has_Discriminants (Ti) then
17220 return Result;
17221 end if;
17222
17223 -- Scan Ti's discriminants for Result_Entity, and return its
17224 -- corresponding value, if any.
17225
17226 Result_Entity := Original_Record_Component (Result_Entity);
17227
17228 Assoc := First_Elmt (Discrim_Values);
17229
17230 if Stored_Discrim_Values then
17231 Disc := First_Stored_Discriminant (Ti);
17232 else
17233 Disc := First_Discriminant (Ti);
17234 end if;
17235
17236 while Present (Disc) loop
17237 pragma Assert (Present (Assoc));
17238
17239 if Original_Record_Component (Disc) = Result_Entity then
17240 return Node (Assoc);
17241 end if;
17242
17243 Next_Elmt (Assoc);
17244
17245 if Stored_Discrim_Values then
17246 Next_Stored_Discriminant (Disc);
17247 else
17248 Next_Discriminant (Disc);
17249 end if;
17250 end loop;
17251
17252 -- Could not find it
17253
17254 return Result;
17255 end Search_Derivation_Levels;
17256
17257 -- Local Variables
17258
17259 Result : Node_Or_Entity_Id;
17260
17261 -- Start of processing for Get_Discriminant_Value
17262
17263 begin
17264 -- ??? This routine is a gigantic mess and will be deleted. For the
17265 -- time being just test for the trivial case before calling recurse.
17266
17267 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
17268 declare
17269 D : Entity_Id;
17270 E : Elmt_Id;
17271
17272 begin
17273 D := First_Discriminant (Typ_For_Constraint);
17274 E := First_Elmt (Constraint);
17275 while Present (D) loop
17276 if Chars (D) = Chars (Discriminant) then
17277 return Node (E);
17278 end if;
17279
17280 Next_Discriminant (D);
17281 Next_Elmt (E);
17282 end loop;
17283 end;
17284 end if;
17285
17286 Result := Search_Derivation_Levels
17287 (Typ_For_Constraint, Constraint, False);
17288
17289 -- ??? hack to disappear when this routine is gone
17290
17291 if Nkind (Result) = N_Defining_Identifier then
17292 declare
17293 D : Entity_Id;
17294 E : Elmt_Id;
17295
17296 begin
17297 D := First_Discriminant (Typ_For_Constraint);
17298 E := First_Elmt (Constraint);
17299 while Present (D) loop
17300 if Root_Corresponding_Discriminant (D) = Discriminant then
17301 return Node (E);
17302 end if;
17303
17304 Next_Discriminant (D);
17305 Next_Elmt (E);
17306 end loop;
17307 end;
17308 end if;
17309
17310 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
17311 return Result;
17312 end Get_Discriminant_Value;
17313
17314 --------------------------
17315 -- Has_Range_Constraint --
17316 --------------------------
17317
17318 function Has_Range_Constraint (N : Node_Id) return Boolean is
17319 C : constant Node_Id := Constraint (N);
17320
17321 begin
17322 if Nkind (C) = N_Range_Constraint then
17323 return True;
17324
17325 elsif Nkind (C) = N_Digits_Constraint then
17326 return
17327 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
17328 or else Present (Range_Constraint (C));
17329
17330 elsif Nkind (C) = N_Delta_Constraint then
17331 return Present (Range_Constraint (C));
17332
17333 else
17334 return False;
17335 end if;
17336 end Has_Range_Constraint;
17337
17338 ------------------------
17339 -- Inherit_Components --
17340 ------------------------
17341
17342 function Inherit_Components
17343 (N : Node_Id;
17344 Parent_Base : Entity_Id;
17345 Derived_Base : Entity_Id;
17346 Is_Tagged : Boolean;
17347 Inherit_Discr : Boolean;
17348 Discs : Elist_Id) return Elist_Id
17349 is
17350 Assoc_List : constant Elist_Id := New_Elmt_List;
17351
17352 procedure Inherit_Component
17353 (Old_C : Entity_Id;
17354 Plain_Discrim : Boolean := False;
17355 Stored_Discrim : Boolean := False);
17356 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
17357 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
17358 -- True, Old_C is a stored discriminant. If they are both false then
17359 -- Old_C is a regular component.
17360
17361 -----------------------
17362 -- Inherit_Component --
17363 -----------------------
17364
17365 procedure Inherit_Component
17366 (Old_C : Entity_Id;
17367 Plain_Discrim : Boolean := False;
17368 Stored_Discrim : Boolean := False)
17369 is
17370 procedure Set_Anonymous_Type (Id : Entity_Id);
17371 -- Id denotes the entity of an access discriminant or anonymous
17372 -- access component. Set the type of Id to either the same type of
17373 -- Old_C or create a new one depending on whether the parent and
17374 -- the child types are in the same scope.
17375
17376 ------------------------
17377 -- Set_Anonymous_Type --
17378 ------------------------
17379
17380 procedure Set_Anonymous_Type (Id : Entity_Id) is
17381 Old_Typ : constant Entity_Id := Etype (Old_C);
17382
17383 begin
17384 if Scope (Parent_Base) = Scope (Derived_Base) then
17385 Set_Etype (Id, Old_Typ);
17386
17387 -- The parent and the derived type are in two different scopes.
17388 -- Reuse the type of the original discriminant / component by
17389 -- copying it in order to preserve all attributes.
17390
17391 else
17392 declare
17393 Typ : constant Entity_Id := New_Copy (Old_Typ);
17394
17395 begin
17396 Set_Etype (Id, Typ);
17397
17398 -- Since we do not generate component declarations for
17399 -- inherited components, associate the itype with the
17400 -- derived type.
17401
17402 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
17403 Set_Scope (Typ, Derived_Base);
17404 end;
17405 end if;
17406 end Set_Anonymous_Type;
17407
17408 -- Local variables and constants
17409
17410 New_C : constant Entity_Id := New_Copy (Old_C);
17411
17412 Corr_Discrim : Entity_Id;
17413 Discrim : Entity_Id;
17414
17415 -- Start of processing for Inherit_Component
17416
17417 begin
17418 pragma Assert (not Is_Tagged or not Stored_Discrim);
17419
17420 Set_Parent (New_C, Parent (Old_C));
17421
17422 -- Regular discriminants and components must be inserted in the scope
17423 -- of the Derived_Base. Do it here.
17424
17425 if not Stored_Discrim then
17426 Enter_Name (New_C);
17427 end if;
17428
17429 -- For tagged types the Original_Record_Component must point to
17430 -- whatever this field was pointing to in the parent type. This has
17431 -- already been achieved by the call to New_Copy above.
17432
17433 if not Is_Tagged then
17434 Set_Original_Record_Component (New_C, New_C);
17435 end if;
17436
17437 -- Set the proper type of an access discriminant
17438
17439 if Ekind (New_C) = E_Discriminant
17440 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
17441 then
17442 Set_Anonymous_Type (New_C);
17443 end if;
17444
17445 -- If we have inherited a component then see if its Etype contains
17446 -- references to Parent_Base discriminants. In this case, replace
17447 -- these references with the constraints given in Discs. We do not
17448 -- do this for the partial view of private types because this is
17449 -- not needed (only the components of the full view will be used
17450 -- for code generation) and cause problem. We also avoid this
17451 -- transformation in some error situations.
17452
17453 if Ekind (New_C) = E_Component then
17454
17455 -- Set the proper type of an anonymous access component
17456
17457 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
17458 Set_Anonymous_Type (New_C);
17459
17460 elsif (Is_Private_Type (Derived_Base)
17461 and then not Is_Generic_Type (Derived_Base))
17462 or else (Is_Empty_Elmt_List (Discs)
17463 and then not Expander_Active)
17464 then
17465 Set_Etype (New_C, Etype (Old_C));
17466
17467 else
17468 -- The current component introduces a circularity of the
17469 -- following kind:
17470
17471 -- limited with Pack_2;
17472 -- package Pack_1 is
17473 -- type T_1 is tagged record
17474 -- Comp : access Pack_2.T_2;
17475 -- ...
17476 -- end record;
17477 -- end Pack_1;
17478
17479 -- with Pack_1;
17480 -- package Pack_2 is
17481 -- type T_2 is new Pack_1.T_1 with ...;
17482 -- end Pack_2;
17483
17484 Set_Etype
17485 (New_C,
17486 Constrain_Component_Type
17487 (Old_C, Derived_Base, N, Parent_Base, Discs));
17488 end if;
17489 end if;
17490
17491 -- In derived tagged types it is illegal to reference a non
17492 -- discriminant component in the parent type. To catch this, mark
17493 -- these components with an Ekind of E_Void. This will be reset in
17494 -- Record_Type_Definition after processing the record extension of
17495 -- the derived type.
17496
17497 -- If the declaration is a private extension, there is no further
17498 -- record extension to process, and the components retain their
17499 -- current kind, because they are visible at this point.
17500
17501 if Is_Tagged and then Ekind (New_C) = E_Component
17502 and then Nkind (N) /= N_Private_Extension_Declaration
17503 then
17504 Set_Ekind (New_C, E_Void);
17505 end if;
17506
17507 if Plain_Discrim then
17508 Set_Corresponding_Discriminant (New_C, Old_C);
17509 Build_Discriminal (New_C);
17510
17511 -- If we are explicitly inheriting a stored discriminant it will be
17512 -- completely hidden.
17513
17514 elsif Stored_Discrim then
17515 Set_Corresponding_Discriminant (New_C, Empty);
17516 Set_Discriminal (New_C, Empty);
17517 Set_Is_Completely_Hidden (New_C);
17518
17519 -- Set the Original_Record_Component of each discriminant in the
17520 -- derived base to point to the corresponding stored that we just
17521 -- created.
17522
17523 Discrim := First_Discriminant (Derived_Base);
17524 while Present (Discrim) loop
17525 Corr_Discrim := Corresponding_Discriminant (Discrim);
17526
17527 -- Corr_Discrim could be missing in an error situation
17528
17529 if Present (Corr_Discrim)
17530 and then Original_Record_Component (Corr_Discrim) = Old_C
17531 then
17532 Set_Original_Record_Component (Discrim, New_C);
17533 end if;
17534
17535 Next_Discriminant (Discrim);
17536 end loop;
17537
17538 Append_Entity (New_C, Derived_Base);
17539 end if;
17540
17541 if not Is_Tagged then
17542 Append_Elmt (Old_C, Assoc_List);
17543 Append_Elmt (New_C, Assoc_List);
17544 end if;
17545 end Inherit_Component;
17546
17547 -- Variables local to Inherit_Component
17548
17549 Loc : constant Source_Ptr := Sloc (N);
17550
17551 Parent_Discrim : Entity_Id;
17552 Stored_Discrim : Entity_Id;
17553 D : Entity_Id;
17554 Component : Entity_Id;
17555
17556 -- Start of processing for Inherit_Components
17557
17558 begin
17559 if not Is_Tagged then
17560 Append_Elmt (Parent_Base, Assoc_List);
17561 Append_Elmt (Derived_Base, Assoc_List);
17562 end if;
17563
17564 -- Inherit parent discriminants if needed
17565
17566 if Inherit_Discr then
17567 Parent_Discrim := First_Discriminant (Parent_Base);
17568 while Present (Parent_Discrim) loop
17569 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
17570 Next_Discriminant (Parent_Discrim);
17571 end loop;
17572 end if;
17573
17574 -- Create explicit stored discrims for untagged types when necessary
17575
17576 if not Has_Unknown_Discriminants (Derived_Base)
17577 and then Has_Discriminants (Parent_Base)
17578 and then not Is_Tagged
17579 and then
17580 (not Inherit_Discr
17581 or else First_Discriminant (Parent_Base) /=
17582 First_Stored_Discriminant (Parent_Base))
17583 then
17584 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
17585 while Present (Stored_Discrim) loop
17586 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
17587 Next_Stored_Discriminant (Stored_Discrim);
17588 end loop;
17589 end if;
17590
17591 -- See if we can apply the second transformation for derived types, as
17592 -- explained in point 6. in the comments above Build_Derived_Record_Type
17593 -- This is achieved by appending Derived_Base discriminants into Discs,
17594 -- which has the side effect of returning a non empty Discs list to the
17595 -- caller of Inherit_Components, which is what we want. This must be
17596 -- done for private derived types if there are explicit stored
17597 -- discriminants, to ensure that we can retrieve the values of the
17598 -- constraints provided in the ancestors.
17599
17600 if Inherit_Discr
17601 and then Is_Empty_Elmt_List (Discs)
17602 and then Present (First_Discriminant (Derived_Base))
17603 and then
17604 (not Is_Private_Type (Derived_Base)
17605 or else Is_Completely_Hidden
17606 (First_Stored_Discriminant (Derived_Base))
17607 or else Is_Generic_Type (Derived_Base))
17608 then
17609 D := First_Discriminant (Derived_Base);
17610 while Present (D) loop
17611 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
17612 Next_Discriminant (D);
17613 end loop;
17614 end if;
17615
17616 -- Finally, inherit non-discriminant components unless they are not
17617 -- visible because defined or inherited from the full view of the
17618 -- parent. Don't inherit the _parent field of the parent type.
17619
17620 Component := First_Entity (Parent_Base);
17621 while Present (Component) loop
17622
17623 -- Ada 2005 (AI-251): Do not inherit components associated with
17624 -- secondary tags of the parent.
17625
17626 if Ekind (Component) = E_Component
17627 and then Present (Related_Type (Component))
17628 then
17629 null;
17630
17631 elsif Ekind (Component) /= E_Component
17632 or else Chars (Component) = Name_uParent
17633 then
17634 null;
17635
17636 -- If the derived type is within the parent type's declarative
17637 -- region, then the components can still be inherited even though
17638 -- they aren't visible at this point. This can occur for cases
17639 -- such as within public child units where the components must
17640 -- become visible upon entering the child unit's private part.
17641
17642 elsif not Is_Visible_Component (Component)
17643 and then not In_Open_Scopes (Scope (Parent_Base))
17644 then
17645 null;
17646
17647 elsif Ekind_In (Derived_Base, E_Private_Type,
17648 E_Limited_Private_Type)
17649 then
17650 null;
17651
17652 else
17653 Inherit_Component (Component);
17654 end if;
17655
17656 Next_Entity (Component);
17657 end loop;
17658
17659 -- For tagged derived types, inherited discriminants cannot be used in
17660 -- component declarations of the record extension part. To achieve this
17661 -- we mark the inherited discriminants as not visible.
17662
17663 if Is_Tagged and then Inherit_Discr then
17664 D := First_Discriminant (Derived_Base);
17665 while Present (D) loop
17666 Set_Is_Immediately_Visible (D, False);
17667 Next_Discriminant (D);
17668 end loop;
17669 end if;
17670
17671 return Assoc_List;
17672 end Inherit_Components;
17673
17674 -----------------------------
17675 -- Inherit_Predicate_Flags --
17676 -----------------------------
17677
17678 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
17679 begin
17680 Set_Has_Predicates (Subt, Has_Predicates (Par));
17681 Set_Has_Static_Predicate_Aspect
17682 (Subt, Has_Static_Predicate_Aspect (Par));
17683 Set_Has_Dynamic_Predicate_Aspect
17684 (Subt, Has_Dynamic_Predicate_Aspect (Par));
17685 end Inherit_Predicate_Flags;
17686
17687 ----------------------
17688 -- Is_EVF_Procedure --
17689 ----------------------
17690
17691 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is
17692 Formal : Entity_Id;
17693
17694 begin
17695 -- Examine the formals of an Extensions_Visible False procedure looking
17696 -- for a controlling OUT parameter.
17697
17698 if Ekind (Subp) = E_Procedure
17699 and then Extensions_Visible_Status (Subp) = Extensions_Visible_False
17700 then
17701 Formal := First_Formal (Subp);
17702 while Present (Formal) loop
17703 if Ekind (Formal) = E_Out_Parameter
17704 and then Is_Controlling_Formal (Formal)
17705 then
17706 return True;
17707 end if;
17708
17709 Next_Formal (Formal);
17710 end loop;
17711 end if;
17712
17713 return False;
17714 end Is_EVF_Procedure;
17715
17716 -----------------------
17717 -- Is_Null_Extension --
17718 -----------------------
17719
17720 function Is_Null_Extension (T : Entity_Id) return Boolean is
17721 Type_Decl : constant Node_Id := Parent (Base_Type (T));
17722 Comp_List : Node_Id;
17723 Comp : Node_Id;
17724
17725 begin
17726 if Nkind (Type_Decl) /= N_Full_Type_Declaration
17727 or else not Is_Tagged_Type (T)
17728 or else Nkind (Type_Definition (Type_Decl)) /=
17729 N_Derived_Type_Definition
17730 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
17731 then
17732 return False;
17733 end if;
17734
17735 Comp_List :=
17736 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
17737
17738 if Present (Discriminant_Specifications (Type_Decl)) then
17739 return False;
17740
17741 elsif Present (Comp_List)
17742 and then Is_Non_Empty_List (Component_Items (Comp_List))
17743 then
17744 Comp := First (Component_Items (Comp_List));
17745
17746 -- Only user-defined components are relevant. The component list
17747 -- may also contain a parent component and internal components
17748 -- corresponding to secondary tags, but these do not determine
17749 -- whether this is a null extension.
17750
17751 while Present (Comp) loop
17752 if Comes_From_Source (Comp) then
17753 return False;
17754 end if;
17755
17756 Next (Comp);
17757 end loop;
17758
17759 return True;
17760
17761 else
17762 return True;
17763 end if;
17764 end Is_Null_Extension;
17765
17766 ------------------------------
17767 -- Is_Valid_Constraint_Kind --
17768 ------------------------------
17769
17770 function Is_Valid_Constraint_Kind
17771 (T_Kind : Type_Kind;
17772 Constraint_Kind : Node_Kind) return Boolean
17773 is
17774 begin
17775 case T_Kind is
17776 when Enumeration_Kind |
17777 Integer_Kind =>
17778 return Constraint_Kind = N_Range_Constraint;
17779
17780 when Decimal_Fixed_Point_Kind =>
17781 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
17782 N_Range_Constraint);
17783
17784 when Ordinary_Fixed_Point_Kind =>
17785 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
17786 N_Range_Constraint);
17787
17788 when Float_Kind =>
17789 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
17790 N_Range_Constraint);
17791
17792 when Access_Kind |
17793 Array_Kind |
17794 E_Record_Type |
17795 E_Record_Subtype |
17796 Class_Wide_Kind |
17797 E_Incomplete_Type |
17798 Private_Kind |
17799 Concurrent_Kind =>
17800 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
17801
17802 when others =>
17803 return True; -- Error will be detected later
17804 end case;
17805 end Is_Valid_Constraint_Kind;
17806
17807 --------------------------
17808 -- Is_Visible_Component --
17809 --------------------------
17810
17811 function Is_Visible_Component
17812 (C : Entity_Id;
17813 N : Node_Id := Empty) return Boolean
17814 is
17815 Original_Comp : Entity_Id := Empty;
17816 Original_Scope : Entity_Id;
17817 Type_Scope : Entity_Id;
17818
17819 function Is_Local_Type (Typ : Entity_Id) return Boolean;
17820 -- Check whether parent type of inherited component is declared locally,
17821 -- possibly within a nested package or instance. The current scope is
17822 -- the derived record itself.
17823
17824 -------------------
17825 -- Is_Local_Type --
17826 -------------------
17827
17828 function Is_Local_Type (Typ : Entity_Id) return Boolean is
17829 Scop : Entity_Id;
17830
17831 begin
17832 Scop := Scope (Typ);
17833 while Present (Scop)
17834 and then Scop /= Standard_Standard
17835 loop
17836 if Scop = Scope (Current_Scope) then
17837 return True;
17838 end if;
17839
17840 Scop := Scope (Scop);
17841 end loop;
17842
17843 return False;
17844 end Is_Local_Type;
17845
17846 -- Start of processing for Is_Visible_Component
17847
17848 begin
17849 if Ekind_In (C, E_Component, E_Discriminant) then
17850 Original_Comp := Original_Record_Component (C);
17851 end if;
17852
17853 if No (Original_Comp) then
17854
17855 -- Premature usage, or previous error
17856
17857 return False;
17858
17859 else
17860 Original_Scope := Scope (Original_Comp);
17861 Type_Scope := Scope (Base_Type (Scope (C)));
17862 end if;
17863
17864 -- This test only concerns tagged types
17865
17866 if not Is_Tagged_Type (Original_Scope) then
17867 return True;
17868
17869 -- If it is _Parent or _Tag, there is no visibility issue
17870
17871 elsif not Comes_From_Source (Original_Comp) then
17872 return True;
17873
17874 -- Discriminants are visible unless the (private) type has unknown
17875 -- discriminants. If the discriminant reference is inserted for a
17876 -- discriminant check on a full view it is also visible.
17877
17878 elsif Ekind (Original_Comp) = E_Discriminant
17879 and then
17880 (not Has_Unknown_Discriminants (Original_Scope)
17881 or else (Present (N)
17882 and then Nkind (N) = N_Selected_Component
17883 and then Nkind (Prefix (N)) = N_Type_Conversion
17884 and then not Comes_From_Source (Prefix (N))))
17885 then
17886 return True;
17887
17888 -- In the body of an instantiation, no need to check for the visibility
17889 -- of a component.
17890
17891 elsif In_Instance_Body then
17892 return True;
17893
17894 -- If the component has been declared in an ancestor which is currently
17895 -- a private type, then it is not visible. The same applies if the
17896 -- component's containing type is not in an open scope and the original
17897 -- component's enclosing type is a visible full view of a private type
17898 -- (which can occur in cases where an attempt is being made to reference
17899 -- a component in a sibling package that is inherited from a visible
17900 -- component of a type in an ancestor package; the component in the
17901 -- sibling package should not be visible even though the component it
17902 -- inherited from is visible). This does not apply however in the case
17903 -- where the scope of the type is a private child unit, or when the
17904 -- parent comes from a local package in which the ancestor is currently
17905 -- visible. The latter suppression of visibility is needed for cases
17906 -- that are tested in B730006.
17907
17908 elsif Is_Private_Type (Original_Scope)
17909 or else
17910 (not Is_Private_Descendant (Type_Scope)
17911 and then not In_Open_Scopes (Type_Scope)
17912 and then Has_Private_Declaration (Original_Scope))
17913 then
17914 -- If the type derives from an entity in a formal package, there
17915 -- are no additional visible components.
17916
17917 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
17918 N_Formal_Package_Declaration
17919 then
17920 return False;
17921
17922 -- if we are not in the private part of the current package, there
17923 -- are no additional visible components.
17924
17925 elsif Ekind (Scope (Current_Scope)) = E_Package
17926 and then not In_Private_Part (Scope (Current_Scope))
17927 then
17928 return False;
17929 else
17930 return
17931 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
17932 and then In_Open_Scopes (Scope (Original_Scope))
17933 and then Is_Local_Type (Type_Scope);
17934 end if;
17935
17936 -- There is another weird way in which a component may be invisible when
17937 -- the private and the full view are not derived from the same ancestor.
17938 -- Here is an example :
17939
17940 -- type A1 is tagged record F1 : integer; end record;
17941 -- type A2 is new A1 with record F2 : integer; end record;
17942 -- type T is new A1 with private;
17943 -- private
17944 -- type T is new A2 with null record;
17945
17946 -- In this case, the full view of T inherits F1 and F2 but the private
17947 -- view inherits only F1
17948
17949 else
17950 declare
17951 Ancestor : Entity_Id := Scope (C);
17952
17953 begin
17954 loop
17955 if Ancestor = Original_Scope then
17956 return True;
17957 elsif Ancestor = Etype (Ancestor) then
17958 return False;
17959 end if;
17960
17961 Ancestor := Etype (Ancestor);
17962 end loop;
17963 end;
17964 end if;
17965 end Is_Visible_Component;
17966
17967 --------------------------
17968 -- Make_Class_Wide_Type --
17969 --------------------------
17970
17971 procedure Make_Class_Wide_Type (T : Entity_Id) is
17972 CW_Type : Entity_Id;
17973 CW_Name : Name_Id;
17974 Next_E : Entity_Id;
17975
17976 begin
17977 if Present (Class_Wide_Type (T)) then
17978
17979 -- The class-wide type is a partially decorated entity created for a
17980 -- unanalyzed tagged type referenced through a limited with clause.
17981 -- When the tagged type is analyzed, its class-wide type needs to be
17982 -- redecorated. Note that we reuse the entity created by Decorate_
17983 -- Tagged_Type in order to preserve all links.
17984
17985 if Materialize_Entity (Class_Wide_Type (T)) then
17986 CW_Type := Class_Wide_Type (T);
17987 Set_Materialize_Entity (CW_Type, False);
17988
17989 -- The class wide type can have been defined by the partial view, in
17990 -- which case everything is already done.
17991
17992 else
17993 return;
17994 end if;
17995
17996 -- Default case, we need to create a new class-wide type
17997
17998 else
17999 CW_Type :=
18000 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
18001 end if;
18002
18003 -- Inherit root type characteristics
18004
18005 CW_Name := Chars (CW_Type);
18006 Next_E := Next_Entity (CW_Type);
18007 Copy_Node (T, CW_Type);
18008 Set_Comes_From_Source (CW_Type, False);
18009 Set_Chars (CW_Type, CW_Name);
18010 Set_Parent (CW_Type, Parent (T));
18011 Set_Next_Entity (CW_Type, Next_E);
18012
18013 -- Ensure we have a new freeze node for the class-wide type. The partial
18014 -- view may have freeze action of its own, requiring a proper freeze
18015 -- node, and the same freeze node cannot be shared between the two
18016 -- types.
18017
18018 Set_Has_Delayed_Freeze (CW_Type);
18019 Set_Freeze_Node (CW_Type, Empty);
18020
18021 -- Customize the class-wide type: It has no prim. op., it cannot be
18022 -- abstract and its Etype points back to the specific root type.
18023
18024 Set_Ekind (CW_Type, E_Class_Wide_Type);
18025 Set_Is_Tagged_Type (CW_Type, True);
18026 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
18027 Set_Is_Abstract_Type (CW_Type, False);
18028 Set_Is_Constrained (CW_Type, False);
18029 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
18030 Set_Default_SSO (CW_Type);
18031
18032 if Ekind (T) = E_Class_Wide_Subtype then
18033 Set_Etype (CW_Type, Etype (Base_Type (T)));
18034 else
18035 Set_Etype (CW_Type, T);
18036 end if;
18037
18038 Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams);
18039
18040 -- If this is the class_wide type of a constrained subtype, it does
18041 -- not have discriminants.
18042
18043 Set_Has_Discriminants (CW_Type,
18044 Has_Discriminants (T) and then not Is_Constrained (T));
18045
18046 Set_Has_Unknown_Discriminants (CW_Type, True);
18047 Set_Class_Wide_Type (T, CW_Type);
18048 Set_Equivalent_Type (CW_Type, Empty);
18049
18050 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
18051
18052 Set_Class_Wide_Type (CW_Type, CW_Type);
18053 end Make_Class_Wide_Type;
18054
18055 ----------------
18056 -- Make_Index --
18057 ----------------
18058
18059 procedure Make_Index
18060 (N : Node_Id;
18061 Related_Nod : Node_Id;
18062 Related_Id : Entity_Id := Empty;
18063 Suffix_Index : Nat := 1;
18064 In_Iter_Schm : Boolean := False)
18065 is
18066 R : Node_Id;
18067 T : Entity_Id;
18068 Def_Id : Entity_Id := Empty;
18069 Found : Boolean := False;
18070
18071 begin
18072 -- For a discrete range used in a constrained array definition and
18073 -- defined by a range, an implicit conversion to the predefined type
18074 -- INTEGER is assumed if each bound is either a numeric literal, a named
18075 -- number, or an attribute, and the type of both bounds (prior to the
18076 -- implicit conversion) is the type universal_integer. Otherwise, both
18077 -- bounds must be of the same discrete type, other than universal
18078 -- integer; this type must be determinable independently of the
18079 -- context, but using the fact that the type must be discrete and that
18080 -- both bounds must have the same type.
18081
18082 -- Character literals also have a universal type in the absence of
18083 -- of additional context, and are resolved to Standard_Character.
18084
18085 if Nkind (N) = N_Range then
18086
18087 -- The index is given by a range constraint. The bounds are known
18088 -- to be of a consistent type.
18089
18090 if not Is_Overloaded (N) then
18091 T := Etype (N);
18092
18093 -- For universal bounds, choose the specific predefined type
18094
18095 if T = Universal_Integer then
18096 T := Standard_Integer;
18097
18098 elsif T = Any_Character then
18099 Ambiguous_Character (Low_Bound (N));
18100
18101 T := Standard_Character;
18102 end if;
18103
18104 -- The node may be overloaded because some user-defined operators
18105 -- are available, but if a universal interpretation exists it is
18106 -- also the selected one.
18107
18108 elsif Universal_Interpretation (N) = Universal_Integer then
18109 T := Standard_Integer;
18110
18111 else
18112 T := Any_Type;
18113
18114 declare
18115 Ind : Interp_Index;
18116 It : Interp;
18117
18118 begin
18119 Get_First_Interp (N, Ind, It);
18120 while Present (It.Typ) loop
18121 if Is_Discrete_Type (It.Typ) then
18122
18123 if Found
18124 and then not Covers (It.Typ, T)
18125 and then not Covers (T, It.Typ)
18126 then
18127 Error_Msg_N ("ambiguous bounds in discrete range", N);
18128 exit;
18129 else
18130 T := It.Typ;
18131 Found := True;
18132 end if;
18133 end if;
18134
18135 Get_Next_Interp (Ind, It);
18136 end loop;
18137
18138 if T = Any_Type then
18139 Error_Msg_N ("discrete type required for range", N);
18140 Set_Etype (N, Any_Type);
18141 return;
18142
18143 elsif T = Universal_Integer then
18144 T := Standard_Integer;
18145 end if;
18146 end;
18147 end if;
18148
18149 if not Is_Discrete_Type (T) then
18150 Error_Msg_N ("discrete type required for range", N);
18151 Set_Etype (N, Any_Type);
18152 return;
18153 end if;
18154
18155 if Nkind (Low_Bound (N)) = N_Attribute_Reference
18156 and then Attribute_Name (Low_Bound (N)) = Name_First
18157 and then Is_Entity_Name (Prefix (Low_Bound (N)))
18158 and then Is_Type (Entity (Prefix (Low_Bound (N))))
18159 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
18160 then
18161 -- The type of the index will be the type of the prefix, as long
18162 -- as the upper bound is 'Last of the same type.
18163
18164 Def_Id := Entity (Prefix (Low_Bound (N)));
18165
18166 if Nkind (High_Bound (N)) /= N_Attribute_Reference
18167 or else Attribute_Name (High_Bound (N)) /= Name_Last
18168 or else not Is_Entity_Name (Prefix (High_Bound (N)))
18169 or else Entity (Prefix (High_Bound (N))) /= Def_Id
18170 then
18171 Def_Id := Empty;
18172 end if;
18173 end if;
18174
18175 R := N;
18176 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
18177
18178 elsif Nkind (N) = N_Subtype_Indication then
18179
18180 -- The index is given by a subtype with a range constraint
18181
18182 T := Base_Type (Entity (Subtype_Mark (N)));
18183
18184 if not Is_Discrete_Type (T) then
18185 Error_Msg_N ("discrete type required for range", N);
18186 Set_Etype (N, Any_Type);
18187 return;
18188 end if;
18189
18190 R := Range_Expression (Constraint (N));
18191
18192 Resolve (R, T);
18193 Process_Range_Expr_In_Decl
18194 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
18195
18196 elsif Nkind (N) = N_Attribute_Reference then
18197
18198 -- Catch beginner's error (use of attribute other than 'Range)
18199
18200 if Attribute_Name (N) /= Name_Range then
18201 Error_Msg_N ("expect attribute ''Range", N);
18202 Set_Etype (N, Any_Type);
18203 return;
18204 end if;
18205
18206 -- If the node denotes the range of a type mark, that is also the
18207 -- resulting type, and we do not need to create an Itype for it.
18208
18209 if Is_Entity_Name (Prefix (N))
18210 and then Comes_From_Source (N)
18211 and then Is_Type (Entity (Prefix (N)))
18212 and then Is_Discrete_Type (Entity (Prefix (N)))
18213 then
18214 Def_Id := Entity (Prefix (N));
18215 end if;
18216
18217 Analyze_And_Resolve (N);
18218 T := Etype (N);
18219 R := N;
18220
18221 -- If none of the above, must be a subtype. We convert this to a
18222 -- range attribute reference because in the case of declared first
18223 -- named subtypes, the types in the range reference can be different
18224 -- from the type of the entity. A range attribute normalizes the
18225 -- reference and obtains the correct types for the bounds.
18226
18227 -- This transformation is in the nature of an expansion, is only
18228 -- done if expansion is active. In particular, it is not done on
18229 -- formal generic types, because we need to retain the name of the
18230 -- original index for instantiation purposes.
18231
18232 else
18233 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
18234 Error_Msg_N ("invalid subtype mark in discrete range ", N);
18235 Set_Etype (N, Any_Integer);
18236 return;
18237
18238 else
18239 -- The type mark may be that of an incomplete type. It is only
18240 -- now that we can get the full view, previous analysis does
18241 -- not look specifically for a type mark.
18242
18243 Set_Entity (N, Get_Full_View (Entity (N)));
18244 Set_Etype (N, Entity (N));
18245 Def_Id := Entity (N);
18246
18247 if not Is_Discrete_Type (Def_Id) then
18248 Error_Msg_N ("discrete type required for index", N);
18249 Set_Etype (N, Any_Type);
18250 return;
18251 end if;
18252 end if;
18253
18254 if Expander_Active then
18255 Rewrite (N,
18256 Make_Attribute_Reference (Sloc (N),
18257 Attribute_Name => Name_Range,
18258 Prefix => Relocate_Node (N)));
18259
18260 -- The original was a subtype mark that does not freeze. This
18261 -- means that the rewritten version must not freeze either.
18262
18263 Set_Must_Not_Freeze (N);
18264 Set_Must_Not_Freeze (Prefix (N));
18265 Analyze_And_Resolve (N);
18266 T := Etype (N);
18267 R := N;
18268
18269 -- If expander is inactive, type is legal, nothing else to construct
18270
18271 else
18272 return;
18273 end if;
18274 end if;
18275
18276 if not Is_Discrete_Type (T) then
18277 Error_Msg_N ("discrete type required for range", N);
18278 Set_Etype (N, Any_Type);
18279 return;
18280
18281 elsif T = Any_Type then
18282 Set_Etype (N, Any_Type);
18283 return;
18284 end if;
18285
18286 -- We will now create the appropriate Itype to describe the range, but
18287 -- first a check. If we originally had a subtype, then we just label
18288 -- the range with this subtype. Not only is there no need to construct
18289 -- a new subtype, but it is wrong to do so for two reasons:
18290
18291 -- 1. A legality concern, if we have a subtype, it must not freeze,
18292 -- and the Itype would cause freezing incorrectly
18293
18294 -- 2. An efficiency concern, if we created an Itype, it would not be
18295 -- recognized as the same type for the purposes of eliminating
18296 -- checks in some circumstances.
18297
18298 -- We signal this case by setting the subtype entity in Def_Id
18299
18300 if No (Def_Id) then
18301 Def_Id :=
18302 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
18303 Set_Etype (Def_Id, Base_Type (T));
18304
18305 if Is_Signed_Integer_Type (T) then
18306 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
18307
18308 elsif Is_Modular_Integer_Type (T) then
18309 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
18310
18311 else
18312 Set_Ekind (Def_Id, E_Enumeration_Subtype);
18313 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
18314 Set_First_Literal (Def_Id, First_Literal (T));
18315 end if;
18316
18317 Set_Size_Info (Def_Id, (T));
18318 Set_RM_Size (Def_Id, RM_Size (T));
18319 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
18320
18321 Set_Scalar_Range (Def_Id, R);
18322 Conditional_Delay (Def_Id, T);
18323
18324 if Nkind (N) = N_Subtype_Indication then
18325 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
18326 end if;
18327
18328 -- In the subtype indication case, if the immediate parent of the
18329 -- new subtype is non-static, then the subtype we create is non-
18330 -- static, even if its bounds are static.
18331
18332 if Nkind (N) = N_Subtype_Indication
18333 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
18334 then
18335 Set_Is_Non_Static_Subtype (Def_Id);
18336 end if;
18337 end if;
18338
18339 -- Final step is to label the index with this constructed type
18340
18341 Set_Etype (N, Def_Id);
18342 end Make_Index;
18343
18344 ------------------------------
18345 -- Modular_Type_Declaration --
18346 ------------------------------
18347
18348 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
18349 Mod_Expr : constant Node_Id := Expression (Def);
18350 M_Val : Uint;
18351
18352 procedure Set_Modular_Size (Bits : Int);
18353 -- Sets RM_Size to Bits, and Esize to normal word size above this
18354
18355 ----------------------
18356 -- Set_Modular_Size --
18357 ----------------------
18358
18359 procedure Set_Modular_Size (Bits : Int) is
18360 begin
18361 Set_RM_Size (T, UI_From_Int (Bits));
18362
18363 if Bits <= 8 then
18364 Init_Esize (T, 8);
18365
18366 elsif Bits <= 16 then
18367 Init_Esize (T, 16);
18368
18369 elsif Bits <= 32 then
18370 Init_Esize (T, 32);
18371
18372 else
18373 Init_Esize (T, System_Max_Binary_Modulus_Power);
18374 end if;
18375
18376 if not Non_Binary_Modulus (T) and then Esize (T) = RM_Size (T) then
18377 Set_Is_Known_Valid (T);
18378 end if;
18379 end Set_Modular_Size;
18380
18381 -- Start of processing for Modular_Type_Declaration
18382
18383 begin
18384 -- If the mod expression is (exactly) 2 * literal, where literal is
18385 -- 64 or less,then almost certainly the * was meant to be **. Warn.
18386
18387 if Warn_On_Suspicious_Modulus_Value
18388 and then Nkind (Mod_Expr) = N_Op_Multiply
18389 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
18390 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
18391 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
18392 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
18393 then
18394 Error_Msg_N
18395 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
18396 end if;
18397
18398 -- Proceed with analysis of mod expression
18399
18400 Analyze_And_Resolve (Mod_Expr, Any_Integer);
18401 Set_Etype (T, T);
18402 Set_Ekind (T, E_Modular_Integer_Type);
18403 Init_Alignment (T);
18404 Set_Is_Constrained (T);
18405
18406 if not Is_OK_Static_Expression (Mod_Expr) then
18407 Flag_Non_Static_Expr
18408 ("non-static expression used for modular type bound!", Mod_Expr);
18409 M_Val := 2 ** System_Max_Binary_Modulus_Power;
18410 else
18411 M_Val := Expr_Value (Mod_Expr);
18412 end if;
18413
18414 if M_Val < 1 then
18415 Error_Msg_N ("modulus value must be positive", Mod_Expr);
18416 M_Val := 2 ** System_Max_Binary_Modulus_Power;
18417 end if;
18418
18419 if M_Val > 2 ** Standard_Long_Integer_Size then
18420 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
18421 end if;
18422
18423 Set_Modulus (T, M_Val);
18424
18425 -- Create bounds for the modular type based on the modulus given in
18426 -- the type declaration and then analyze and resolve those bounds.
18427
18428 Set_Scalar_Range (T,
18429 Make_Range (Sloc (Mod_Expr),
18430 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
18431 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
18432
18433 -- Properly analyze the literals for the range. We do this manually
18434 -- because we can't go calling Resolve, since we are resolving these
18435 -- bounds with the type, and this type is certainly not complete yet.
18436
18437 Set_Etype (Low_Bound (Scalar_Range (T)), T);
18438 Set_Etype (High_Bound (Scalar_Range (T)), T);
18439 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
18440 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
18441
18442 -- Loop through powers of two to find number of bits required
18443
18444 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
18445
18446 -- Binary case
18447
18448 if M_Val = 2 ** Bits then
18449 Set_Modular_Size (Bits);
18450 return;
18451
18452 -- Non-binary case
18453
18454 elsif M_Val < 2 ** Bits then
18455 Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
18456 Set_Non_Binary_Modulus (T);
18457
18458 if Bits > System_Max_Nonbinary_Modulus_Power then
18459 Error_Msg_Uint_1 :=
18460 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
18461 Error_Msg_F
18462 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
18463 Set_Modular_Size (System_Max_Binary_Modulus_Power);
18464 return;
18465
18466 else
18467 -- In the non-binary case, set size as per RM 13.3(55)
18468
18469 Set_Modular_Size (Bits);
18470 return;
18471 end if;
18472 end if;
18473
18474 end loop;
18475
18476 -- If we fall through, then the size exceed System.Max_Binary_Modulus
18477 -- so we just signal an error and set the maximum size.
18478
18479 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
18480 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
18481
18482 Set_Modular_Size (System_Max_Binary_Modulus_Power);
18483 Init_Alignment (T);
18484
18485 end Modular_Type_Declaration;
18486
18487 --------------------------
18488 -- New_Concatenation_Op --
18489 --------------------------
18490
18491 procedure New_Concatenation_Op (Typ : Entity_Id) is
18492 Loc : constant Source_Ptr := Sloc (Typ);
18493 Op : Entity_Id;
18494
18495 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
18496 -- Create abbreviated declaration for the formal of a predefined
18497 -- Operator 'Op' of type 'Typ'
18498
18499 --------------------
18500 -- Make_Op_Formal --
18501 --------------------
18502
18503 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
18504 Formal : Entity_Id;
18505 begin
18506 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
18507 Set_Etype (Formal, Typ);
18508 Set_Mechanism (Formal, Default_Mechanism);
18509 return Formal;
18510 end Make_Op_Formal;
18511
18512 -- Start of processing for New_Concatenation_Op
18513
18514 begin
18515 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
18516
18517 Set_Ekind (Op, E_Operator);
18518 Set_Scope (Op, Current_Scope);
18519 Set_Etype (Op, Typ);
18520 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
18521 Set_Is_Immediately_Visible (Op);
18522 Set_Is_Intrinsic_Subprogram (Op);
18523 Set_Has_Completion (Op);
18524 Append_Entity (Op, Current_Scope);
18525
18526 Set_Name_Entity_Id (Name_Op_Concat, Op);
18527
18528 Append_Entity (Make_Op_Formal (Typ, Op), Op);
18529 Append_Entity (Make_Op_Formal (Typ, Op), Op);
18530 end New_Concatenation_Op;
18531
18532 -------------------------
18533 -- OK_For_Limited_Init --
18534 -------------------------
18535
18536 -- ???Check all calls of this, and compare the conditions under which it's
18537 -- called.
18538
18539 function OK_For_Limited_Init
18540 (Typ : Entity_Id;
18541 Exp : Node_Id) return Boolean
18542 is
18543 begin
18544 return Is_CPP_Constructor_Call (Exp)
18545 or else (Ada_Version >= Ada_2005
18546 and then not Debug_Flag_Dot_L
18547 and then OK_For_Limited_Init_In_05 (Typ, Exp));
18548 end OK_For_Limited_Init;
18549
18550 -------------------------------
18551 -- OK_For_Limited_Init_In_05 --
18552 -------------------------------
18553
18554 function OK_For_Limited_Init_In_05
18555 (Typ : Entity_Id;
18556 Exp : Node_Id) return Boolean
18557 is
18558 begin
18559 -- An object of a limited interface type can be initialized with any
18560 -- expression of a nonlimited descendant type.
18561
18562 if Is_Class_Wide_Type (Typ)
18563 and then Is_Limited_Interface (Typ)
18564 and then not Is_Limited_Type (Etype (Exp))
18565 then
18566 return True;
18567 end if;
18568
18569 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
18570 -- case of limited aggregates (including extension aggregates), and
18571 -- function calls. The function call may have been given in prefixed
18572 -- notation, in which case the original node is an indexed component.
18573 -- If the function is parameterless, the original node was an explicit
18574 -- dereference. The function may also be parameterless, in which case
18575 -- the source node is just an identifier.
18576
18577 case Nkind (Original_Node (Exp)) is
18578 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
18579 return True;
18580
18581 when N_Identifier =>
18582 return Present (Entity (Original_Node (Exp)))
18583 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
18584
18585 when N_Qualified_Expression =>
18586 return
18587 OK_For_Limited_Init_In_05
18588 (Typ, Expression (Original_Node (Exp)));
18589
18590 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
18591 -- with a function call, the expander has rewritten the call into an
18592 -- N_Type_Conversion node to force displacement of the pointer to
18593 -- reference the component containing the secondary dispatch table.
18594 -- Otherwise a type conversion is not a legal context.
18595 -- A return statement for a build-in-place function returning a
18596 -- synchronized type also introduces an unchecked conversion.
18597
18598 when N_Type_Conversion |
18599 N_Unchecked_Type_Conversion =>
18600 return not Comes_From_Source (Exp)
18601 and then
18602 OK_For_Limited_Init_In_05
18603 (Typ, Expression (Original_Node (Exp)));
18604
18605 when N_Indexed_Component |
18606 N_Selected_Component |
18607 N_Explicit_Dereference =>
18608 return Nkind (Exp) = N_Function_Call;
18609
18610 -- A use of 'Input is a function call, hence allowed. Normally the
18611 -- attribute will be changed to a call, but the attribute by itself
18612 -- can occur with -gnatc.
18613
18614 when N_Attribute_Reference =>
18615 return Attribute_Name (Original_Node (Exp)) = Name_Input;
18616
18617 -- For a case expression, all dependent expressions must be legal
18618
18619 when N_Case_Expression =>
18620 declare
18621 Alt : Node_Id;
18622
18623 begin
18624 Alt := First (Alternatives (Original_Node (Exp)));
18625 while Present (Alt) loop
18626 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
18627 return False;
18628 end if;
18629
18630 Next (Alt);
18631 end loop;
18632
18633 return True;
18634 end;
18635
18636 -- For an if expression, all dependent expressions must be legal
18637
18638 when N_If_Expression =>
18639 declare
18640 Then_Expr : constant Node_Id :=
18641 Next (First (Expressions (Original_Node (Exp))));
18642 Else_Expr : constant Node_Id := Next (Then_Expr);
18643 begin
18644 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
18645 and then
18646 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
18647 end;
18648
18649 when others =>
18650 return False;
18651 end case;
18652 end OK_For_Limited_Init_In_05;
18653
18654 -------------------------------------------
18655 -- Ordinary_Fixed_Point_Type_Declaration --
18656 -------------------------------------------
18657
18658 procedure Ordinary_Fixed_Point_Type_Declaration
18659 (T : Entity_Id;
18660 Def : Node_Id)
18661 is
18662 Loc : constant Source_Ptr := Sloc (Def);
18663 Delta_Expr : constant Node_Id := Delta_Expression (Def);
18664 RRS : constant Node_Id := Real_Range_Specification (Def);
18665 Implicit_Base : Entity_Id;
18666 Delta_Val : Ureal;
18667 Small_Val : Ureal;
18668 Low_Val : Ureal;
18669 High_Val : Ureal;
18670
18671 begin
18672 Check_Restriction (No_Fixed_Point, Def);
18673
18674 -- Create implicit base type
18675
18676 Implicit_Base :=
18677 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
18678 Set_Etype (Implicit_Base, Implicit_Base);
18679
18680 -- Analyze and process delta expression
18681
18682 Analyze_And_Resolve (Delta_Expr, Any_Real);
18683
18684 Check_Delta_Expression (Delta_Expr);
18685 Delta_Val := Expr_Value_R (Delta_Expr);
18686
18687 Set_Delta_Value (Implicit_Base, Delta_Val);
18688
18689 -- Compute default small from given delta, which is the largest power
18690 -- of two that does not exceed the given delta value.
18691
18692 declare
18693 Tmp : Ureal;
18694 Scale : Int;
18695
18696 begin
18697 Tmp := Ureal_1;
18698 Scale := 0;
18699
18700 if Delta_Val < Ureal_1 then
18701 while Delta_Val < Tmp loop
18702 Tmp := Tmp / Ureal_2;
18703 Scale := Scale + 1;
18704 end loop;
18705
18706 else
18707 loop
18708 Tmp := Tmp * Ureal_2;
18709 exit when Tmp > Delta_Val;
18710 Scale := Scale - 1;
18711 end loop;
18712 end if;
18713
18714 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
18715 end;
18716
18717 Set_Small_Value (Implicit_Base, Small_Val);
18718
18719 -- If no range was given, set a dummy range
18720
18721 if RRS <= Empty_Or_Error then
18722 Low_Val := -Small_Val;
18723 High_Val := Small_Val;
18724
18725 -- Otherwise analyze and process given range
18726
18727 else
18728 declare
18729 Low : constant Node_Id := Low_Bound (RRS);
18730 High : constant Node_Id := High_Bound (RRS);
18731
18732 begin
18733 Analyze_And_Resolve (Low, Any_Real);
18734 Analyze_And_Resolve (High, Any_Real);
18735 Check_Real_Bound (Low);
18736 Check_Real_Bound (High);
18737
18738 -- Obtain and set the range
18739
18740 Low_Val := Expr_Value_R (Low);
18741 High_Val := Expr_Value_R (High);
18742
18743 if Low_Val > High_Val then
18744 Error_Msg_NE ("??fixed point type& has null range", Def, T);
18745 end if;
18746 end;
18747 end if;
18748
18749 -- The range for both the implicit base and the declared first subtype
18750 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
18751 -- set a temporary range in place. Note that the bounds of the base
18752 -- type will be widened to be symmetrical and to fill the available
18753 -- bits when the type is frozen.
18754
18755 -- We could do this with all discrete types, and probably should, but
18756 -- we absolutely have to do it for fixed-point, since the end-points
18757 -- of the range and the size are determined by the small value, which
18758 -- could be reset before the freeze point.
18759
18760 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
18761 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
18762
18763 -- Complete definition of first subtype. The inheritance of the rep item
18764 -- chain ensures that SPARK-related pragmas are not clobbered when the
18765 -- ordinary fixed point type acts as a full view of a private type.
18766
18767 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
18768 Set_Etype (T, Implicit_Base);
18769 Init_Size_Align (T);
18770 Inherit_Rep_Item_Chain (T, Implicit_Base);
18771 Set_Small_Value (T, Small_Val);
18772 Set_Delta_Value (T, Delta_Val);
18773 Set_Is_Constrained (T);
18774 end Ordinary_Fixed_Point_Type_Declaration;
18775
18776 ----------------------------------
18777 -- Preanalyze_Assert_Expression --
18778 ----------------------------------
18779
18780 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
18781 begin
18782 In_Assertion_Expr := In_Assertion_Expr + 1;
18783 Preanalyze_Spec_Expression (N, T);
18784 In_Assertion_Expr := In_Assertion_Expr - 1;
18785 end Preanalyze_Assert_Expression;
18786
18787 -----------------------------------
18788 -- Preanalyze_Default_Expression --
18789 -----------------------------------
18790
18791 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
18792 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
18793 begin
18794 In_Default_Expr := True;
18795 Preanalyze_Spec_Expression (N, T);
18796 In_Default_Expr := Save_In_Default_Expr;
18797 end Preanalyze_Default_Expression;
18798
18799 --------------------------------
18800 -- Preanalyze_Spec_Expression --
18801 --------------------------------
18802
18803 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
18804 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
18805 begin
18806 In_Spec_Expression := True;
18807 Preanalyze_And_Resolve (N, T);
18808 In_Spec_Expression := Save_In_Spec_Expression;
18809 end Preanalyze_Spec_Expression;
18810
18811 ----------------------------------------
18812 -- Prepare_Private_Subtype_Completion --
18813 ----------------------------------------
18814
18815 procedure Prepare_Private_Subtype_Completion
18816 (Id : Entity_Id;
18817 Related_Nod : Node_Id)
18818 is
18819 Id_B : constant Entity_Id := Base_Type (Id);
18820 Full_B : Entity_Id := Full_View (Id_B);
18821 Full : Entity_Id;
18822
18823 begin
18824 if Present (Full_B) then
18825
18826 -- Get to the underlying full view if necessary
18827
18828 if Is_Private_Type (Full_B)
18829 and then Present (Underlying_Full_View (Full_B))
18830 then
18831 Full_B := Underlying_Full_View (Full_B);
18832 end if;
18833
18834 -- The Base_Type is already completed, we can complete the subtype
18835 -- now. We have to create a new entity with the same name, Thus we
18836 -- can't use Create_Itype.
18837
18838 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
18839 Set_Is_Itype (Full);
18840 Set_Associated_Node_For_Itype (Full, Related_Nod);
18841 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
18842 end if;
18843
18844 -- The parent subtype may be private, but the base might not, in some
18845 -- nested instances. In that case, the subtype does not need to be
18846 -- exchanged. It would still be nice to make private subtypes and their
18847 -- bases consistent at all times ???
18848
18849 if Is_Private_Type (Id_B) then
18850 Append_Elmt (Id, Private_Dependents (Id_B));
18851 end if;
18852 end Prepare_Private_Subtype_Completion;
18853
18854 ---------------------------
18855 -- Process_Discriminants --
18856 ---------------------------
18857
18858 procedure Process_Discriminants
18859 (N : Node_Id;
18860 Prev : Entity_Id := Empty)
18861 is
18862 Elist : constant Elist_Id := New_Elmt_List;
18863 Id : Node_Id;
18864 Discr : Node_Id;
18865 Discr_Number : Uint;
18866 Discr_Type : Entity_Id;
18867 Default_Present : Boolean := False;
18868 Default_Not_Present : Boolean := False;
18869
18870 begin
18871 -- A composite type other than an array type can have discriminants.
18872 -- On entry, the current scope is the composite type.
18873
18874 -- The discriminants are initially entered into the scope of the type
18875 -- via Enter_Name with the default Ekind of E_Void to prevent premature
18876 -- use, as explained at the end of this procedure.
18877
18878 Discr := First (Discriminant_Specifications (N));
18879 while Present (Discr) loop
18880 Enter_Name (Defining_Identifier (Discr));
18881
18882 -- For navigation purposes we add a reference to the discriminant
18883 -- in the entity for the type. If the current declaration is a
18884 -- completion, place references on the partial view. Otherwise the
18885 -- type is the current scope.
18886
18887 if Present (Prev) then
18888
18889 -- The references go on the partial view, if present. If the
18890 -- partial view has discriminants, the references have been
18891 -- generated already.
18892
18893 if not Has_Discriminants (Prev) then
18894 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
18895 end if;
18896 else
18897 Generate_Reference
18898 (Current_Scope, Defining_Identifier (Discr), 'd');
18899 end if;
18900
18901 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
18902 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
18903
18904 -- Ada 2005 (AI-254)
18905
18906 if Present (Access_To_Subprogram_Definition
18907 (Discriminant_Type (Discr)))
18908 and then Protected_Present (Access_To_Subprogram_Definition
18909 (Discriminant_Type (Discr)))
18910 then
18911 Discr_Type :=
18912 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
18913 end if;
18914
18915 else
18916 Find_Type (Discriminant_Type (Discr));
18917 Discr_Type := Etype (Discriminant_Type (Discr));
18918
18919 if Error_Posted (Discriminant_Type (Discr)) then
18920 Discr_Type := Any_Type;
18921 end if;
18922 end if;
18923
18924 -- Handling of discriminants that are access types
18925
18926 if Is_Access_Type (Discr_Type) then
18927
18928 -- Ada 2005 (AI-230): Access discriminant allowed in non-
18929 -- limited record types
18930
18931 if Ada_Version < Ada_2005 then
18932 Check_Access_Discriminant_Requires_Limited
18933 (Discr, Discriminant_Type (Discr));
18934 end if;
18935
18936 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
18937 Error_Msg_N
18938 ("(Ada 83) access discriminant not allowed", Discr);
18939 end if;
18940
18941 -- If not access type, must be a discrete type
18942
18943 elsif not Is_Discrete_Type (Discr_Type) then
18944 Error_Msg_N
18945 ("discriminants must have a discrete or access type",
18946 Discriminant_Type (Discr));
18947 end if;
18948
18949 Set_Etype (Defining_Identifier (Discr), Discr_Type);
18950
18951 -- If a discriminant specification includes the assignment compound
18952 -- delimiter followed by an expression, the expression is the default
18953 -- expression of the discriminant; the default expression must be of
18954 -- the type of the discriminant. (RM 3.7.1) Since this expression is
18955 -- a default expression, we do the special preanalysis, since this
18956 -- expression does not freeze (see section "Handling of Default and
18957 -- Per-Object Expressions" in spec of package Sem).
18958
18959 if Present (Expression (Discr)) then
18960 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
18961
18962 -- Legaity checks
18963
18964 if Nkind (N) = N_Formal_Type_Declaration then
18965 Error_Msg_N
18966 ("discriminant defaults not allowed for formal type",
18967 Expression (Discr));
18968
18969 -- Flag an error for a tagged type with defaulted discriminants,
18970 -- excluding limited tagged types when compiling for Ada 2012
18971 -- (see AI05-0214).
18972
18973 elsif Is_Tagged_Type (Current_Scope)
18974 and then (not Is_Limited_Type (Current_Scope)
18975 or else Ada_Version < Ada_2012)
18976 and then Comes_From_Source (N)
18977 then
18978 -- Note: see similar test in Check_Or_Process_Discriminants, to
18979 -- handle the (illegal) case of the completion of an untagged
18980 -- view with discriminants with defaults by a tagged full view.
18981 -- We skip the check if Discr does not come from source, to
18982 -- account for the case of an untagged derived type providing
18983 -- defaults for a renamed discriminant from a private untagged
18984 -- ancestor with a tagged full view (ACATS B460006).
18985
18986 if Ada_Version >= Ada_2012 then
18987 Error_Msg_N
18988 ("discriminants of nonlimited tagged type cannot have"
18989 & " defaults",
18990 Expression (Discr));
18991 else
18992 Error_Msg_N
18993 ("discriminants of tagged type cannot have defaults",
18994 Expression (Discr));
18995 end if;
18996
18997 else
18998 Default_Present := True;
18999 Append_Elmt (Expression (Discr), Elist);
19000
19001 -- Tag the defining identifiers for the discriminants with
19002 -- their corresponding default expressions from the tree.
19003
19004 Set_Discriminant_Default_Value
19005 (Defining_Identifier (Discr), Expression (Discr));
19006 end if;
19007
19008 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
19009 -- gets set unless we can be sure that no range check is required.
19010
19011 if (GNATprove_Mode or not Expander_Active)
19012 and then not
19013 Is_In_Range
19014 (Expression (Discr), Discr_Type, Assume_Valid => True)
19015 then
19016 Set_Do_Range_Check (Expression (Discr));
19017 end if;
19018
19019 -- No default discriminant value given
19020
19021 else
19022 Default_Not_Present := True;
19023 end if;
19024
19025 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
19026 -- Discr_Type but with the null-exclusion attribute
19027
19028 if Ada_Version >= Ada_2005 then
19029
19030 -- Ada 2005 (AI-231): Static checks
19031
19032 if Can_Never_Be_Null (Discr_Type) then
19033 Null_Exclusion_Static_Checks (Discr);
19034
19035 elsif Is_Access_Type (Discr_Type)
19036 and then Null_Exclusion_Present (Discr)
19037
19038 -- No need to check itypes because in their case this check
19039 -- was done at their point of creation
19040
19041 and then not Is_Itype (Discr_Type)
19042 then
19043 if Can_Never_Be_Null (Discr_Type) then
19044 Error_Msg_NE
19045 ("`NOT NULL` not allowed (& already excludes null)",
19046 Discr,
19047 Discr_Type);
19048 end if;
19049
19050 Set_Etype (Defining_Identifier (Discr),
19051 Create_Null_Excluding_Itype
19052 (T => Discr_Type,
19053 Related_Nod => Discr));
19054
19055 -- Check for improper null exclusion if the type is otherwise
19056 -- legal for a discriminant.
19057
19058 elsif Null_Exclusion_Present (Discr)
19059 and then Is_Discrete_Type (Discr_Type)
19060 then
19061 Error_Msg_N
19062 ("null exclusion can only apply to an access type", Discr);
19063 end if;
19064
19065 -- Ada 2005 (AI-402): access discriminants of nonlimited types
19066 -- can't have defaults. Synchronized types, or types that are
19067 -- explicitly limited are fine, but special tests apply to derived
19068 -- types in generics: in a generic body we have to assume the
19069 -- worst, and therefore defaults are not allowed if the parent is
19070 -- a generic formal private type (see ACATS B370001).
19071
19072 if Is_Access_Type (Discr_Type) and then Default_Present then
19073 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
19074 or else Is_Limited_Record (Current_Scope)
19075 or else Is_Concurrent_Type (Current_Scope)
19076 or else Is_Concurrent_Record_Type (Current_Scope)
19077 or else Ekind (Current_Scope) = E_Limited_Private_Type
19078 then
19079 if not Is_Derived_Type (Current_Scope)
19080 or else not Is_Generic_Type (Etype (Current_Scope))
19081 or else not In_Package_Body (Scope (Etype (Current_Scope)))
19082 or else Limited_Present
19083 (Type_Definition (Parent (Current_Scope)))
19084 then
19085 null;
19086
19087 else
19088 Error_Msg_N
19089 ("access discriminants of nonlimited types cannot "
19090 & "have defaults", Expression (Discr));
19091 end if;
19092
19093 elsif Present (Expression (Discr)) then
19094 Error_Msg_N
19095 ("(Ada 2005) access discriminants of nonlimited types "
19096 & "cannot have defaults", Expression (Discr));
19097 end if;
19098 end if;
19099 end if;
19100
19101 -- A discriminant cannot be effectively volatile. This check is only
19102 -- relevant when SPARK_Mode is on as it is not standard Ada legality
19103 -- rule (SPARK RM 7.1.3(6)).
19104
19105 if SPARK_Mode = On
19106 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
19107 then
19108 Error_Msg_N ("discriminant cannot be volatile", Discr);
19109 end if;
19110
19111 Next (Discr);
19112 end loop;
19113
19114 -- An element list consisting of the default expressions of the
19115 -- discriminants is constructed in the above loop and used to set
19116 -- the Discriminant_Constraint attribute for the type. If an object
19117 -- is declared of this (record or task) type without any explicit
19118 -- discriminant constraint given, this element list will form the
19119 -- actual parameters for the corresponding initialization procedure
19120 -- for the type.
19121
19122 Set_Discriminant_Constraint (Current_Scope, Elist);
19123 Set_Stored_Constraint (Current_Scope, No_Elist);
19124
19125 -- Default expressions must be provided either for all or for none
19126 -- of the discriminants of a discriminant part. (RM 3.7.1)
19127
19128 if Default_Present and then Default_Not_Present then
19129 Error_Msg_N
19130 ("incomplete specification of defaults for discriminants", N);
19131 end if;
19132
19133 -- The use of the name of a discriminant is not allowed in default
19134 -- expressions of a discriminant part if the specification of the
19135 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
19136
19137 -- To detect this, the discriminant names are entered initially with an
19138 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
19139 -- attempt to use a void entity (for example in an expression that is
19140 -- type-checked) produces the error message: premature usage. Now after
19141 -- completing the semantic analysis of the discriminant part, we can set
19142 -- the Ekind of all the discriminants appropriately.
19143
19144 Discr := First (Discriminant_Specifications (N));
19145 Discr_Number := Uint_1;
19146 while Present (Discr) loop
19147 Id := Defining_Identifier (Discr);
19148 Set_Ekind (Id, E_Discriminant);
19149 Init_Component_Location (Id);
19150 Init_Esize (Id);
19151 Set_Discriminant_Number (Id, Discr_Number);
19152
19153 -- Make sure this is always set, even in illegal programs
19154
19155 Set_Corresponding_Discriminant (Id, Empty);
19156
19157 -- Initialize the Original_Record_Component to the entity itself.
19158 -- Inherit_Components will propagate the right value to
19159 -- discriminants in derived record types.
19160
19161 Set_Original_Record_Component (Id, Id);
19162
19163 -- Create the discriminal for the discriminant
19164
19165 Build_Discriminal (Id);
19166
19167 Next (Discr);
19168 Discr_Number := Discr_Number + 1;
19169 end loop;
19170
19171 Set_Has_Discriminants (Current_Scope);
19172 end Process_Discriminants;
19173
19174 -----------------------
19175 -- Process_Full_View --
19176 -----------------------
19177
19178 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
19179 procedure Collect_Implemented_Interfaces
19180 (Typ : Entity_Id;
19181 Ifaces : Elist_Id);
19182 -- Ada 2005: Gather all the interfaces that Typ directly or
19183 -- inherently implements. Duplicate entries are not added to
19184 -- the list Ifaces.
19185
19186 ------------------------------------
19187 -- Collect_Implemented_Interfaces --
19188 ------------------------------------
19189
19190 procedure Collect_Implemented_Interfaces
19191 (Typ : Entity_Id;
19192 Ifaces : Elist_Id)
19193 is
19194 Iface : Entity_Id;
19195 Iface_Elmt : Elmt_Id;
19196
19197 begin
19198 -- Abstract interfaces are only associated with tagged record types
19199
19200 if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then
19201 return;
19202 end if;
19203
19204 -- Recursively climb to the ancestors
19205
19206 if Etype (Typ) /= Typ
19207
19208 -- Protect the frontend against wrong cyclic declarations like:
19209
19210 -- type B is new A with private;
19211 -- type C is new A with private;
19212 -- private
19213 -- type B is new C with null record;
19214 -- type C is new B with null record;
19215
19216 and then Etype (Typ) /= Priv_T
19217 and then Etype (Typ) /= Full_T
19218 then
19219 -- Keep separate the management of private type declarations
19220
19221 if Ekind (Typ) = E_Record_Type_With_Private then
19222
19223 -- Handle the following illegal usage:
19224 -- type Private_Type is tagged private;
19225 -- private
19226 -- type Private_Type is new Type_Implementing_Iface;
19227
19228 if Present (Full_View (Typ))
19229 and then Etype (Typ) /= Full_View (Typ)
19230 then
19231 if Is_Interface (Etype (Typ)) then
19232 Append_Unique_Elmt (Etype (Typ), Ifaces);
19233 end if;
19234
19235 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
19236 end if;
19237
19238 -- Non-private types
19239
19240 else
19241 if Is_Interface (Etype (Typ)) then
19242 Append_Unique_Elmt (Etype (Typ), Ifaces);
19243 end if;
19244
19245 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
19246 end if;
19247 end if;
19248
19249 -- Handle entities in the list of abstract interfaces
19250
19251 if Present (Interfaces (Typ)) then
19252 Iface_Elmt := First_Elmt (Interfaces (Typ));
19253 while Present (Iface_Elmt) loop
19254 Iface := Node (Iface_Elmt);
19255
19256 pragma Assert (Is_Interface (Iface));
19257
19258 if not Contain_Interface (Iface, Ifaces) then
19259 Append_Elmt (Iface, Ifaces);
19260 Collect_Implemented_Interfaces (Iface, Ifaces);
19261 end if;
19262
19263 Next_Elmt (Iface_Elmt);
19264 end loop;
19265 end if;
19266 end Collect_Implemented_Interfaces;
19267
19268 -- Local variables
19269
19270 Full_Indic : Node_Id;
19271 Full_Parent : Entity_Id;
19272 Priv_Parent : Entity_Id;
19273
19274 -- Start of processing for Process_Full_View
19275
19276 begin
19277 -- First some sanity checks that must be done after semantic
19278 -- decoration of the full view and thus cannot be placed with other
19279 -- similar checks in Find_Type_Name
19280
19281 if not Is_Limited_Type (Priv_T)
19282 and then (Is_Limited_Type (Full_T)
19283 or else Is_Limited_Composite (Full_T))
19284 then
19285 if In_Instance then
19286 null;
19287 else
19288 Error_Msg_N
19289 ("completion of nonlimited type cannot be limited", Full_T);
19290 Explain_Limited_Type (Full_T, Full_T);
19291 end if;
19292
19293 elsif Is_Abstract_Type (Full_T)
19294 and then not Is_Abstract_Type (Priv_T)
19295 then
19296 Error_Msg_N
19297 ("completion of nonabstract type cannot be abstract", Full_T);
19298
19299 elsif Is_Tagged_Type (Priv_T)
19300 and then Is_Limited_Type (Priv_T)
19301 and then not Is_Limited_Type (Full_T)
19302 then
19303 -- If pragma CPP_Class was applied to the private declaration
19304 -- propagate the limitedness to the full-view
19305
19306 if Is_CPP_Class (Priv_T) then
19307 Set_Is_Limited_Record (Full_T);
19308
19309 -- GNAT allow its own definition of Limited_Controlled to disobey
19310 -- this rule in order in ease the implementation. This test is safe
19311 -- because Root_Controlled is defined in a child of System that
19312 -- normal programs are not supposed to use.
19313
19314 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
19315 Set_Is_Limited_Composite (Full_T);
19316 else
19317 Error_Msg_N
19318 ("completion of limited tagged type must be limited", Full_T);
19319 end if;
19320
19321 elsif Is_Generic_Type (Priv_T) then
19322 Error_Msg_N ("generic type cannot have a completion", Full_T);
19323 end if;
19324
19325 -- Check that ancestor interfaces of private and full views are
19326 -- consistent. We omit this check for synchronized types because
19327 -- they are performed on the corresponding record type when frozen.
19328
19329 if Ada_Version >= Ada_2005
19330 and then Is_Tagged_Type (Priv_T)
19331 and then Is_Tagged_Type (Full_T)
19332 and then not Is_Concurrent_Type (Full_T)
19333 then
19334 declare
19335 Iface : Entity_Id;
19336 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
19337 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
19338
19339 begin
19340 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
19341 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
19342
19343 -- Ada 2005 (AI-251): The partial view shall be a descendant of
19344 -- an interface type if and only if the full type is descendant
19345 -- of the interface type (AARM 7.3 (7.3/2)).
19346
19347 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
19348
19349 if Present (Iface) then
19350 Error_Msg_NE
19351 ("interface in partial view& not implemented by full type "
19352 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
19353 end if;
19354
19355 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
19356
19357 if Present (Iface) then
19358 Error_Msg_NE
19359 ("interface & not implemented by partial view "
19360 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
19361 end if;
19362 end;
19363 end if;
19364
19365 if Is_Tagged_Type (Priv_T)
19366 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19367 and then Is_Derived_Type (Full_T)
19368 then
19369 Priv_Parent := Etype (Priv_T);
19370
19371 -- The full view of a private extension may have been transformed
19372 -- into an unconstrained derived type declaration and a subtype
19373 -- declaration (see build_derived_record_type for details).
19374
19375 if Nkind (N) = N_Subtype_Declaration then
19376 Full_Indic := Subtype_Indication (N);
19377 Full_Parent := Etype (Base_Type (Full_T));
19378 else
19379 Full_Indic := Subtype_Indication (Type_Definition (N));
19380 Full_Parent := Etype (Full_T);
19381 end if;
19382
19383 -- Check that the parent type of the full type is a descendant of
19384 -- the ancestor subtype given in the private extension. If either
19385 -- entity has an Etype equal to Any_Type then we had some previous
19386 -- error situation [7.3(8)].
19387
19388 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
19389 return;
19390
19391 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
19392 -- any order. Therefore we don't have to check that its parent must
19393 -- be a descendant of the parent of the private type declaration.
19394
19395 elsif Is_Interface (Priv_Parent)
19396 and then Is_Interface (Full_Parent)
19397 then
19398 null;
19399
19400 -- Ada 2005 (AI-251): If the parent of the private type declaration
19401 -- is an interface there is no need to check that it is an ancestor
19402 -- of the associated full type declaration. The required tests for
19403 -- this case are performed by Build_Derived_Record_Type.
19404
19405 elsif not Is_Interface (Base_Type (Priv_Parent))
19406 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
19407 then
19408 Error_Msg_N
19409 ("parent of full type must descend from parent"
19410 & " of private extension", Full_Indic);
19411
19412 -- First check a formal restriction, and then proceed with checking
19413 -- Ada rules. Since the formal restriction is not a serious error, we
19414 -- don't prevent further error detection for this check, hence the
19415 -- ELSE.
19416
19417 else
19418 -- In formal mode, when completing a private extension the type
19419 -- named in the private part must be exactly the same as that
19420 -- named in the visible part.
19421
19422 if Priv_Parent /= Full_Parent then
19423 Error_Msg_Name_1 := Chars (Priv_Parent);
19424 Check_SPARK_05_Restriction ("% expected", Full_Indic);
19425 end if;
19426
19427 -- Check the rules of 7.3(10): if the private extension inherits
19428 -- known discriminants, then the full type must also inherit those
19429 -- discriminants from the same (ancestor) type, and the parent
19430 -- subtype of the full type must be constrained if and only if
19431 -- the ancestor subtype of the private extension is constrained.
19432
19433 if No (Discriminant_Specifications (Parent (Priv_T)))
19434 and then not Has_Unknown_Discriminants (Priv_T)
19435 and then Has_Discriminants (Base_Type (Priv_Parent))
19436 then
19437 declare
19438 Priv_Indic : constant Node_Id :=
19439 Subtype_Indication (Parent (Priv_T));
19440
19441 Priv_Constr : constant Boolean :=
19442 Is_Constrained (Priv_Parent)
19443 or else
19444 Nkind (Priv_Indic) = N_Subtype_Indication
19445 or else
19446 Is_Constrained (Entity (Priv_Indic));
19447
19448 Full_Constr : constant Boolean :=
19449 Is_Constrained (Full_Parent)
19450 or else
19451 Nkind (Full_Indic) = N_Subtype_Indication
19452 or else
19453 Is_Constrained (Entity (Full_Indic));
19454
19455 Priv_Discr : Entity_Id;
19456 Full_Discr : Entity_Id;
19457
19458 begin
19459 Priv_Discr := First_Discriminant (Priv_Parent);
19460 Full_Discr := First_Discriminant (Full_Parent);
19461 while Present (Priv_Discr) and then Present (Full_Discr) loop
19462 if Original_Record_Component (Priv_Discr) =
19463 Original_Record_Component (Full_Discr)
19464 or else
19465 Corresponding_Discriminant (Priv_Discr) =
19466 Corresponding_Discriminant (Full_Discr)
19467 then
19468 null;
19469 else
19470 exit;
19471 end if;
19472
19473 Next_Discriminant (Priv_Discr);
19474 Next_Discriminant (Full_Discr);
19475 end loop;
19476
19477 if Present (Priv_Discr) or else Present (Full_Discr) then
19478 Error_Msg_N
19479 ("full view must inherit discriminants of the parent"
19480 & " type used in the private extension", Full_Indic);
19481
19482 elsif Priv_Constr and then not Full_Constr then
19483 Error_Msg_N
19484 ("parent subtype of full type must be constrained",
19485 Full_Indic);
19486
19487 elsif Full_Constr and then not Priv_Constr then
19488 Error_Msg_N
19489 ("parent subtype of full type must be unconstrained",
19490 Full_Indic);
19491 end if;
19492 end;
19493
19494 -- Check the rules of 7.3(12): if a partial view has neither
19495 -- known or unknown discriminants, then the full type
19496 -- declaration shall define a definite subtype.
19497
19498 elsif not Has_Unknown_Discriminants (Priv_T)
19499 and then not Has_Discriminants (Priv_T)
19500 and then not Is_Constrained (Full_T)
19501 then
19502 Error_Msg_N
19503 ("full view must define a constrained type if partial view"
19504 & " has no discriminants", Full_T);
19505 end if;
19506
19507 -- ??????? Do we implement the following properly ?????
19508 -- If the ancestor subtype of a private extension has constrained
19509 -- discriminants, then the parent subtype of the full view shall
19510 -- impose a statically matching constraint on those discriminants
19511 -- [7.3(13)].
19512 end if;
19513
19514 else
19515 -- For untagged types, verify that a type without discriminants is
19516 -- not completed with an unconstrained type. A separate error message
19517 -- is produced if the full type has defaulted discriminants.
19518
19519 if not Is_Indefinite_Subtype (Priv_T)
19520 and then Is_Indefinite_Subtype (Full_T)
19521 then
19522 Error_Msg_Sloc := Sloc (Parent (Priv_T));
19523 Error_Msg_NE
19524 ("full view of& not compatible with declaration#",
19525 Full_T, Priv_T);
19526
19527 if not Is_Tagged_Type (Full_T) then
19528 Error_Msg_N
19529 ("\one is constrained, the other unconstrained", Full_T);
19530 end if;
19531 end if;
19532 end if;
19533
19534 -- AI-419: verify that the use of "limited" is consistent
19535
19536 declare
19537 Orig_Decl : constant Node_Id := Original_Node (N);
19538
19539 begin
19540 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19541 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
19542 and then Nkind
19543 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
19544 then
19545 if not Limited_Present (Parent (Priv_T))
19546 and then not Synchronized_Present (Parent (Priv_T))
19547 and then Limited_Present (Type_Definition (Orig_Decl))
19548 then
19549 Error_Msg_N
19550 ("full view of non-limited extension cannot be limited", N);
19551
19552 -- Conversely, if the partial view carries the limited keyword,
19553 -- the full view must as well, even if it may be redundant.
19554
19555 elsif Limited_Present (Parent (Priv_T))
19556 and then not Limited_Present (Type_Definition (Orig_Decl))
19557 then
19558 Error_Msg_N
19559 ("full view of limited extension must be explicitly limited",
19560 N);
19561 end if;
19562 end if;
19563 end;
19564
19565 -- Ada 2005 (AI-443): A synchronized private extension must be
19566 -- completed by a task or protected type.
19567
19568 if Ada_Version >= Ada_2005
19569 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19570 and then Synchronized_Present (Parent (Priv_T))
19571 and then not Is_Concurrent_Type (Full_T)
19572 then
19573 Error_Msg_N ("full view of synchronized extension must " &
19574 "be synchronized type", N);
19575 end if;
19576
19577 -- Ada 2005 AI-363: if the full view has discriminants with
19578 -- defaults, it is illegal to declare constrained access subtypes
19579 -- whose designated type is the current type. This allows objects
19580 -- of the type that are declared in the heap to be unconstrained.
19581
19582 if not Has_Unknown_Discriminants (Priv_T)
19583 and then not Has_Discriminants (Priv_T)
19584 and then Has_Discriminants (Full_T)
19585 and then
19586 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
19587 then
19588 Set_Has_Constrained_Partial_View (Full_T);
19589 Set_Has_Constrained_Partial_View (Priv_T);
19590 end if;
19591
19592 -- Create a full declaration for all its subtypes recorded in
19593 -- Private_Dependents and swap them similarly to the base type. These
19594 -- are subtypes that have been define before the full declaration of
19595 -- the private type. We also swap the entry in Private_Dependents list
19596 -- so we can properly restore the private view on exit from the scope.
19597
19598 declare
19599 Priv_Elmt : Elmt_Id;
19600 Priv_Scop : Entity_Id;
19601 Priv : Entity_Id;
19602 Full : Entity_Id;
19603
19604 begin
19605 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
19606 while Present (Priv_Elmt) loop
19607 Priv := Node (Priv_Elmt);
19608 Priv_Scop := Scope (Priv);
19609
19610 if Ekind_In (Priv, E_Private_Subtype,
19611 E_Limited_Private_Subtype,
19612 E_Record_Subtype_With_Private)
19613 then
19614 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
19615 Set_Is_Itype (Full);
19616 Set_Parent (Full, Parent (Priv));
19617 Set_Associated_Node_For_Itype (Full, N);
19618
19619 -- Now we need to complete the private subtype, but since the
19620 -- base type has already been swapped, we must also swap the
19621 -- subtypes (and thus, reverse the arguments in the call to
19622 -- Complete_Private_Subtype). Also note that we may need to
19623 -- re-establish the scope of the private subtype.
19624
19625 Copy_And_Swap (Priv, Full);
19626
19627 if not In_Open_Scopes (Priv_Scop) then
19628 Push_Scope (Priv_Scop);
19629
19630 else
19631 -- Reset Priv_Scop to Empty to indicate no scope was pushed
19632
19633 Priv_Scop := Empty;
19634 end if;
19635
19636 Complete_Private_Subtype (Full, Priv, Full_T, N);
19637
19638 if Present (Priv_Scop) then
19639 Pop_Scope;
19640 end if;
19641
19642 Replace_Elmt (Priv_Elmt, Full);
19643 end if;
19644
19645 Next_Elmt (Priv_Elmt);
19646 end loop;
19647 end;
19648
19649 -- If the private view was tagged, copy the new primitive operations
19650 -- from the private view to the full view.
19651
19652 if Is_Tagged_Type (Full_T) then
19653 declare
19654 Disp_Typ : Entity_Id;
19655 Full_List : Elist_Id;
19656 Prim : Entity_Id;
19657 Prim_Elmt : Elmt_Id;
19658 Priv_List : Elist_Id;
19659
19660 function Contains
19661 (E : Entity_Id;
19662 L : Elist_Id) return Boolean;
19663 -- Determine whether list L contains element E
19664
19665 --------------
19666 -- Contains --
19667 --------------
19668
19669 function Contains
19670 (E : Entity_Id;
19671 L : Elist_Id) return Boolean
19672 is
19673 List_Elmt : Elmt_Id;
19674
19675 begin
19676 List_Elmt := First_Elmt (L);
19677 while Present (List_Elmt) loop
19678 if Node (List_Elmt) = E then
19679 return True;
19680 end if;
19681
19682 Next_Elmt (List_Elmt);
19683 end loop;
19684
19685 return False;
19686 end Contains;
19687
19688 -- Start of processing
19689
19690 begin
19691 if Is_Tagged_Type (Priv_T) then
19692 Priv_List := Primitive_Operations (Priv_T);
19693 Prim_Elmt := First_Elmt (Priv_List);
19694
19695 -- In the case of a concurrent type completing a private tagged
19696 -- type, primitives may have been declared in between the two
19697 -- views. These subprograms need to be wrapped the same way
19698 -- entries and protected procedures are handled because they
19699 -- cannot be directly shared by the two views.
19700
19701 if Is_Concurrent_Type (Full_T) then
19702 declare
19703 Conc_Typ : constant Entity_Id :=
19704 Corresponding_Record_Type (Full_T);
19705 Curr_Nod : Node_Id := Parent (Conc_Typ);
19706 Wrap_Spec : Node_Id;
19707
19708 begin
19709 while Present (Prim_Elmt) loop
19710 Prim := Node (Prim_Elmt);
19711
19712 if Comes_From_Source (Prim)
19713 and then not Is_Abstract_Subprogram (Prim)
19714 then
19715 Wrap_Spec :=
19716 Make_Subprogram_Declaration (Sloc (Prim),
19717 Specification =>
19718 Build_Wrapper_Spec
19719 (Subp_Id => Prim,
19720 Obj_Typ => Conc_Typ,
19721 Formals =>
19722 Parameter_Specifications (
19723 Parent (Prim))));
19724
19725 Insert_After (Curr_Nod, Wrap_Spec);
19726 Curr_Nod := Wrap_Spec;
19727
19728 Analyze (Wrap_Spec);
19729 end if;
19730
19731 Next_Elmt (Prim_Elmt);
19732 end loop;
19733
19734 return;
19735 end;
19736
19737 -- For non-concurrent types, transfer explicit primitives, but
19738 -- omit those inherited from the parent of the private view
19739 -- since they will be re-inherited later on.
19740
19741 else
19742 Full_List := Primitive_Operations (Full_T);
19743
19744 while Present (Prim_Elmt) loop
19745 Prim := Node (Prim_Elmt);
19746
19747 if Comes_From_Source (Prim)
19748 and then not Contains (Prim, Full_List)
19749 then
19750 Append_Elmt (Prim, Full_List);
19751 end if;
19752
19753 Next_Elmt (Prim_Elmt);
19754 end loop;
19755 end if;
19756
19757 -- Untagged private view
19758
19759 else
19760 Full_List := Primitive_Operations (Full_T);
19761
19762 -- In this case the partial view is untagged, so here we locate
19763 -- all of the earlier primitives that need to be treated as
19764 -- dispatching (those that appear between the two views). Note
19765 -- that these additional operations must all be new operations
19766 -- (any earlier operations that override inherited operations
19767 -- of the full view will already have been inserted in the
19768 -- primitives list, marked by Check_Operation_From_Private_View
19769 -- as dispatching. Note that implicit "/=" operators are
19770 -- excluded from being added to the primitives list since they
19771 -- shouldn't be treated as dispatching (tagged "/=" is handled
19772 -- specially).
19773
19774 Prim := Next_Entity (Full_T);
19775 while Present (Prim) and then Prim /= Priv_T loop
19776 if Ekind_In (Prim, E_Procedure, E_Function) then
19777 Disp_Typ := Find_Dispatching_Type (Prim);
19778
19779 if Disp_Typ = Full_T
19780 and then (Chars (Prim) /= Name_Op_Ne
19781 or else Comes_From_Source (Prim))
19782 then
19783 Check_Controlling_Formals (Full_T, Prim);
19784
19785 if not Is_Dispatching_Operation (Prim) then
19786 Append_Elmt (Prim, Full_List);
19787 Set_Is_Dispatching_Operation (Prim, True);
19788 Set_DT_Position_Value (Prim, No_Uint);
19789 end if;
19790
19791 elsif Is_Dispatching_Operation (Prim)
19792 and then Disp_Typ /= Full_T
19793 then
19794
19795 -- Verify that it is not otherwise controlled by a
19796 -- formal or a return value of type T.
19797
19798 Check_Controlling_Formals (Disp_Typ, Prim);
19799 end if;
19800 end if;
19801
19802 Next_Entity (Prim);
19803 end loop;
19804 end if;
19805
19806 -- For the tagged case, the two views can share the same primitive
19807 -- operations list and the same class-wide type. Update attributes
19808 -- of the class-wide type which depend on the full declaration.
19809
19810 if Is_Tagged_Type (Priv_T) then
19811 Set_Direct_Primitive_Operations (Priv_T, Full_List);
19812 Set_Class_Wide_Type
19813 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
19814
19815 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
19816 Set_Has_Protected
19817 (Class_Wide_Type (Priv_T), Has_Protected (Full_T));
19818 end if;
19819 end;
19820 end if;
19821
19822 -- Ada 2005 AI 161: Check preelaborable initialization consistency
19823
19824 if Known_To_Have_Preelab_Init (Priv_T) then
19825
19826 -- Case where there is a pragma Preelaborable_Initialization. We
19827 -- always allow this in predefined units, which is cheating a bit,
19828 -- but it means we don't have to struggle to meet the requirements in
19829 -- the RM for having Preelaborable Initialization. Otherwise we
19830 -- require that the type meets the RM rules. But we can't check that
19831 -- yet, because of the rule about overriding Initialize, so we simply
19832 -- set a flag that will be checked at freeze time.
19833
19834 if not In_Predefined_Unit (Full_T) then
19835 Set_Must_Have_Preelab_Init (Full_T);
19836 end if;
19837 end if;
19838
19839 -- If pragma CPP_Class was applied to the private type declaration,
19840 -- propagate it now to the full type declaration.
19841
19842 if Is_CPP_Class (Priv_T) then
19843 Set_Is_CPP_Class (Full_T);
19844 Set_Convention (Full_T, Convention_CPP);
19845
19846 -- Check that components of imported CPP types do not have default
19847 -- expressions.
19848
19849 Check_CPP_Type_Has_No_Defaults (Full_T);
19850 end if;
19851
19852 -- If the private view has user specified stream attributes, then so has
19853 -- the full view.
19854
19855 -- Why the test, how could these flags be already set in Full_T ???
19856
19857 if Has_Specified_Stream_Read (Priv_T) then
19858 Set_Has_Specified_Stream_Read (Full_T);
19859 end if;
19860
19861 if Has_Specified_Stream_Write (Priv_T) then
19862 Set_Has_Specified_Stream_Write (Full_T);
19863 end if;
19864
19865 if Has_Specified_Stream_Input (Priv_T) then
19866 Set_Has_Specified_Stream_Input (Full_T);
19867 end if;
19868
19869 if Has_Specified_Stream_Output (Priv_T) then
19870 Set_Has_Specified_Stream_Output (Full_T);
19871 end if;
19872
19873 -- Propagate the attributes related to pragma Default_Initial_Condition
19874 -- from the private to the full view. Note that both flags are mutually
19875 -- exclusive.
19876
19877 if Has_Default_Init_Cond (Priv_T)
19878 or else Has_Inherited_Default_Init_Cond (Priv_T)
19879 then
19880 Propagate_Default_Init_Cond_Attributes
19881 (From_Typ => Priv_T,
19882 To_Typ => Full_T,
19883 Private_To_Full_View => True);
19884
19885 -- In the case where the full view is derived from another private type,
19886 -- the attributes related to pragma Default_Initial_Condition must be
19887 -- propagated from the full to the private view to maintain consistency
19888 -- of views.
19889
19890 -- package Pack is
19891 -- type Parent_Typ is private
19892 -- with Default_Initial_Condition ...;
19893 -- private
19894 -- type Parent_Typ is ...;
19895 -- end Pack;
19896
19897 -- with Pack; use Pack;
19898 -- package Pack_2 is
19899 -- type Deriv_Typ is private; -- must inherit
19900 -- private
19901 -- type Deriv_Typ is new Parent_Typ; -- must inherit
19902 -- end Pack_2;
19903
19904 elsif Has_Default_Init_Cond (Full_T)
19905 or else Has_Inherited_Default_Init_Cond (Full_T)
19906 then
19907 Propagate_Default_Init_Cond_Attributes
19908 (From_Typ => Full_T,
19909 To_Typ => Priv_T,
19910 Private_To_Full_View => True);
19911 end if;
19912
19913 -- Propagate the attributes related to pragma Ghost from the private to
19914 -- the full view.
19915
19916 if Is_Ghost_Entity (Priv_T) then
19917 Set_Is_Ghost_Entity (Full_T);
19918
19919 -- The Ghost policy in effect at the point of declaration and at the
19920 -- point of completion must match (SPARK RM 6.9(15)).
19921
19922 Check_Ghost_Completion (Priv_T, Full_T);
19923
19924 -- In the case where the private view of a tagged type lacks a parent
19925 -- type and is subject to pragma Ghost, ensure that the parent type
19926 -- specified by the full view is also Ghost (SPARK RM 6.9(9)).
19927
19928 if Is_Derived_Type (Full_T) then
19929 Check_Ghost_Derivation (Full_T);
19930 end if;
19931 end if;
19932
19933 -- Propagate invariants to full type
19934
19935 if Has_Invariants (Priv_T) then
19936 Set_Has_Invariants (Full_T);
19937 Set_Invariant_Procedure (Full_T, Invariant_Procedure (Priv_T));
19938 end if;
19939
19940 if Has_Inheritable_Invariants (Priv_T) then
19941 Set_Has_Inheritable_Invariants (Full_T);
19942 end if;
19943
19944 -- Check hidden inheritance of class-wide type invariants
19945
19946 if Ada_Version >= Ada_2012
19947 and then not Has_Inheritable_Invariants (Full_T)
19948 and then In_Private_Part (Current_Scope)
19949 and then Has_Interfaces (Full_T)
19950 then
19951 declare
19952 Ifaces : Elist_Id;
19953 AI : Elmt_Id;
19954
19955 begin
19956 Collect_Interfaces (Full_T, Ifaces, Exclude_Parents => True);
19957
19958 AI := First_Elmt (Ifaces);
19959 while Present (AI) loop
19960 if Has_Inheritable_Invariants (Node (AI)) then
19961 Error_Msg_N
19962 ("hidden inheritance of class-wide type invariants " &
19963 "not allowed", N);
19964 exit;
19965 end if;
19966
19967 Next_Elmt (AI);
19968 end loop;
19969 end;
19970 end if;
19971
19972 -- Propagate predicates to full type, and predicate function if already
19973 -- defined. It is not clear that this can actually happen? the partial
19974 -- view cannot be frozen yet, and the predicate function has not been
19975 -- built. Still it is a cheap check and seems safer to make it.
19976
19977 if Has_Predicates (Priv_T) then
19978 if Present (Predicate_Function (Priv_T)) then
19979 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
19980 end if;
19981
19982 Set_Has_Predicates (Full_T);
19983 end if;
19984 end Process_Full_View;
19985
19986 -----------------------------------
19987 -- Process_Incomplete_Dependents --
19988 -----------------------------------
19989
19990 procedure Process_Incomplete_Dependents
19991 (N : Node_Id;
19992 Full_T : Entity_Id;
19993 Inc_T : Entity_Id)
19994 is
19995 Inc_Elmt : Elmt_Id;
19996 Priv_Dep : Entity_Id;
19997 New_Subt : Entity_Id;
19998
19999 Disc_Constraint : Elist_Id;
20000
20001 begin
20002 if No (Private_Dependents (Inc_T)) then
20003 return;
20004 end if;
20005
20006 -- Itypes that may be generated by the completion of an incomplete
20007 -- subtype are not used by the back-end and not attached to the tree.
20008 -- They are created only for constraint-checking purposes.
20009
20010 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
20011 while Present (Inc_Elmt) loop
20012 Priv_Dep := Node (Inc_Elmt);
20013
20014 if Ekind (Priv_Dep) = E_Subprogram_Type then
20015
20016 -- An Access_To_Subprogram type may have a return type or a
20017 -- parameter type that is incomplete. Replace with the full view.
20018
20019 if Etype (Priv_Dep) = Inc_T then
20020 Set_Etype (Priv_Dep, Full_T);
20021 end if;
20022
20023 declare
20024 Formal : Entity_Id;
20025
20026 begin
20027 Formal := First_Formal (Priv_Dep);
20028 while Present (Formal) loop
20029 if Etype (Formal) = Inc_T then
20030 Set_Etype (Formal, Full_T);
20031 end if;
20032
20033 Next_Formal (Formal);
20034 end loop;
20035 end;
20036
20037 elsif Is_Overloadable (Priv_Dep) then
20038
20039 -- If a subprogram in the incomplete dependents list is primitive
20040 -- for a tagged full type then mark it as a dispatching operation,
20041 -- check whether it overrides an inherited subprogram, and check
20042 -- restrictions on its controlling formals. Note that a protected
20043 -- operation is never dispatching: only its wrapper operation
20044 -- (which has convention Ada) is.
20045
20046 if Is_Tagged_Type (Full_T)
20047 and then Is_Primitive (Priv_Dep)
20048 and then Convention (Priv_Dep) /= Convention_Protected
20049 then
20050 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
20051 Set_Is_Dispatching_Operation (Priv_Dep);
20052 Check_Controlling_Formals (Full_T, Priv_Dep);
20053 end if;
20054
20055 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
20056
20057 -- Can happen during processing of a body before the completion
20058 -- of a TA type. Ignore, because spec is also on dependent list.
20059
20060 return;
20061
20062 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
20063 -- corresponding subtype of the full view.
20064
20065 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
20066 Set_Subtype_Indication
20067 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
20068 Set_Etype (Priv_Dep, Full_T);
20069 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
20070 Set_Analyzed (Parent (Priv_Dep), False);
20071
20072 -- Reanalyze the declaration, suppressing the call to
20073 -- Enter_Name to avoid duplicate names.
20074
20075 Analyze_Subtype_Declaration
20076 (N => Parent (Priv_Dep),
20077 Skip => True);
20078
20079 -- Dependent is a subtype
20080
20081 else
20082 -- We build a new subtype indication using the full view of the
20083 -- incomplete parent. The discriminant constraints have been
20084 -- elaborated already at the point of the subtype declaration.
20085
20086 New_Subt := Create_Itype (E_Void, N);
20087
20088 if Has_Discriminants (Full_T) then
20089 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
20090 else
20091 Disc_Constraint := No_Elist;
20092 end if;
20093
20094 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
20095 Set_Full_View (Priv_Dep, New_Subt);
20096 end if;
20097
20098 Next_Elmt (Inc_Elmt);
20099 end loop;
20100 end Process_Incomplete_Dependents;
20101
20102 --------------------------------
20103 -- Process_Range_Expr_In_Decl --
20104 --------------------------------
20105
20106 procedure Process_Range_Expr_In_Decl
20107 (R : Node_Id;
20108 T : Entity_Id;
20109 Subtyp : Entity_Id := Empty;
20110 Check_List : List_Id := Empty_List;
20111 R_Check_Off : Boolean := False;
20112 In_Iter_Schm : Boolean := False)
20113 is
20114 Lo, Hi : Node_Id;
20115 R_Checks : Check_Result;
20116 Insert_Node : Node_Id;
20117 Def_Id : Entity_Id;
20118
20119 begin
20120 Analyze_And_Resolve (R, Base_Type (T));
20121
20122 if Nkind (R) = N_Range then
20123
20124 -- In SPARK, all ranges should be static, with the exception of the
20125 -- discrete type definition of a loop parameter specification.
20126
20127 if not In_Iter_Schm
20128 and then not Is_OK_Static_Range (R)
20129 then
20130 Check_SPARK_05_Restriction ("range should be static", R);
20131 end if;
20132
20133 Lo := Low_Bound (R);
20134 Hi := High_Bound (R);
20135
20136 -- Validity checks on the range of a quantified expression are
20137 -- delayed until the construct is transformed into a loop.
20138
20139 if Nkind (Parent (R)) = N_Loop_Parameter_Specification
20140 and then Nkind (Parent (Parent (R))) = N_Quantified_Expression
20141 then
20142 null;
20143
20144 -- We need to ensure validity of the bounds here, because if we
20145 -- go ahead and do the expansion, then the expanded code will get
20146 -- analyzed with range checks suppressed and we miss the check.
20147
20148 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
20149 -- the temporaries generated by routine Remove_Side_Effects by means
20150 -- of validity checks must use the same names. When a range appears
20151 -- in the parent of a generic, the range is processed with checks
20152 -- disabled as part of the generic context and with checks enabled
20153 -- for code generation purposes. This leads to link issues as the
20154 -- generic contains references to xxx_FIRST/_LAST, but the inlined
20155 -- template sees the temporaries generated by Remove_Side_Effects.
20156
20157 else
20158 Validity_Check_Range (R, Subtyp);
20159 end if;
20160
20161 -- If there were errors in the declaration, try and patch up some
20162 -- common mistakes in the bounds. The cases handled are literals
20163 -- which are Integer where the expected type is Real and vice versa.
20164 -- These corrections allow the compilation process to proceed further
20165 -- along since some basic assumptions of the format of the bounds
20166 -- are guaranteed.
20167
20168 if Etype (R) = Any_Type then
20169 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
20170 Rewrite (Lo,
20171 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
20172
20173 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
20174 Rewrite (Hi,
20175 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
20176
20177 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
20178 Rewrite (Lo,
20179 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
20180
20181 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
20182 Rewrite (Hi,
20183 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
20184 end if;
20185
20186 Set_Etype (Lo, T);
20187 Set_Etype (Hi, T);
20188 end if;
20189
20190 -- If the bounds of the range have been mistakenly given as string
20191 -- literals (perhaps in place of character literals), then an error
20192 -- has already been reported, but we rewrite the string literal as a
20193 -- bound of the range's type to avoid blowups in later processing
20194 -- that looks at static values.
20195
20196 if Nkind (Lo) = N_String_Literal then
20197 Rewrite (Lo,
20198 Make_Attribute_Reference (Sloc (Lo),
20199 Prefix => New_Occurrence_Of (T, Sloc (Lo)),
20200 Attribute_Name => Name_First));
20201 Analyze_And_Resolve (Lo);
20202 end if;
20203
20204 if Nkind (Hi) = N_String_Literal then
20205 Rewrite (Hi,
20206 Make_Attribute_Reference (Sloc (Hi),
20207 Prefix => New_Occurrence_Of (T, Sloc (Hi)),
20208 Attribute_Name => Name_First));
20209 Analyze_And_Resolve (Hi);
20210 end if;
20211
20212 -- If bounds aren't scalar at this point then exit, avoiding
20213 -- problems with further processing of the range in this procedure.
20214
20215 if not Is_Scalar_Type (Etype (Lo)) then
20216 return;
20217 end if;
20218
20219 -- Resolve (actually Sem_Eval) has checked that the bounds are in
20220 -- then range of the base type. Here we check whether the bounds
20221 -- are in the range of the subtype itself. Note that if the bounds
20222 -- represent the null range the Constraint_Error exception should
20223 -- not be raised.
20224
20225 -- ??? The following code should be cleaned up as follows
20226
20227 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
20228 -- is done in the call to Range_Check (R, T); below
20229
20230 -- 2. The use of R_Check_Off should be investigated and possibly
20231 -- removed, this would clean up things a bit.
20232
20233 if Is_Null_Range (Lo, Hi) then
20234 null;
20235
20236 else
20237 -- Capture values of bounds and generate temporaries for them
20238 -- if needed, before applying checks, since checks may cause
20239 -- duplication of the expression without forcing evaluation.
20240
20241 -- The forced evaluation removes side effects from expressions,
20242 -- which should occur also in GNATprove mode. Otherwise, we end up
20243 -- with unexpected insertions of actions at places where this is
20244 -- not supposed to occur, e.g. on default parameters of a call.
20245
20246 if Expander_Active or GNATprove_Mode then
20247
20248 -- Call Force_Evaluation to create declarations as needed to
20249 -- deal with side effects, and also create typ_FIRST/LAST
20250 -- entities for bounds if we have a subtype name.
20251
20252 -- Note: we do this transformation even if expansion is not
20253 -- active if we are in GNATprove_Mode since the transformation
20254 -- is in general required to ensure that the resulting tree has
20255 -- proper Ada semantics.
20256
20257 Force_Evaluation
20258 (Lo, Related_Id => Subtyp, Is_Low_Bound => True);
20259 Force_Evaluation
20260 (Hi, Related_Id => Subtyp, Is_High_Bound => True);
20261 end if;
20262
20263 -- We use a flag here instead of suppressing checks on the type
20264 -- because the type we check against isn't necessarily the place
20265 -- where we put the check.
20266
20267 if not R_Check_Off then
20268 R_Checks := Get_Range_Checks (R, T);
20269
20270 -- Look up tree to find an appropriate insertion point. We
20271 -- can't just use insert_actions because later processing
20272 -- depends on the insertion node. Prior to Ada 2012 the
20273 -- insertion point could only be a declaration or a loop, but
20274 -- quantified expressions can appear within any context in an
20275 -- expression, and the insertion point can be any statement,
20276 -- pragma, or declaration.
20277
20278 Insert_Node := Parent (R);
20279 while Present (Insert_Node) loop
20280 exit when
20281 Nkind (Insert_Node) in N_Declaration
20282 and then
20283 not Nkind_In
20284 (Insert_Node, N_Component_Declaration,
20285 N_Loop_Parameter_Specification,
20286 N_Function_Specification,
20287 N_Procedure_Specification);
20288
20289 exit when Nkind (Insert_Node) in N_Later_Decl_Item
20290 or else Nkind (Insert_Node) in
20291 N_Statement_Other_Than_Procedure_Call
20292 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
20293 N_Pragma);
20294
20295 Insert_Node := Parent (Insert_Node);
20296 end loop;
20297
20298 -- Why would Type_Decl not be present??? Without this test,
20299 -- short regression tests fail.
20300
20301 if Present (Insert_Node) then
20302
20303 -- Case of loop statement. Verify that the range is part
20304 -- of the subtype indication of the iteration scheme.
20305
20306 if Nkind (Insert_Node) = N_Loop_Statement then
20307 declare
20308 Indic : Node_Id;
20309
20310 begin
20311 Indic := Parent (R);
20312 while Present (Indic)
20313 and then Nkind (Indic) /= N_Subtype_Indication
20314 loop
20315 Indic := Parent (Indic);
20316 end loop;
20317
20318 if Present (Indic) then
20319 Def_Id := Etype (Subtype_Mark (Indic));
20320
20321 Insert_Range_Checks
20322 (R_Checks,
20323 Insert_Node,
20324 Def_Id,
20325 Sloc (Insert_Node),
20326 R,
20327 Do_Before => True);
20328 end if;
20329 end;
20330
20331 -- Insertion before a declaration. If the declaration
20332 -- includes discriminants, the list of applicable checks
20333 -- is given by the caller.
20334
20335 elsif Nkind (Insert_Node) in N_Declaration then
20336 Def_Id := Defining_Identifier (Insert_Node);
20337
20338 if (Ekind (Def_Id) = E_Record_Type
20339 and then Depends_On_Discriminant (R))
20340 or else
20341 (Ekind (Def_Id) = E_Protected_Type
20342 and then Has_Discriminants (Def_Id))
20343 then
20344 Append_Range_Checks
20345 (R_Checks,
20346 Check_List, Def_Id, Sloc (Insert_Node), R);
20347
20348 else
20349 Insert_Range_Checks
20350 (R_Checks,
20351 Insert_Node, Def_Id, Sloc (Insert_Node), R);
20352
20353 end if;
20354
20355 -- Insertion before a statement. Range appears in the
20356 -- context of a quantified expression. Insertion will
20357 -- take place when expression is expanded.
20358
20359 else
20360 null;
20361 end if;
20362 end if;
20363 end if;
20364 end if;
20365
20366 -- Case of other than an explicit N_Range node
20367
20368 -- The forced evaluation removes side effects from expressions, which
20369 -- should occur also in GNATprove mode. Otherwise, we end up with
20370 -- unexpected insertions of actions at places where this is not
20371 -- supposed to occur, e.g. on default parameters of a call.
20372
20373 elsif Expander_Active or GNATprove_Mode then
20374 Get_Index_Bounds (R, Lo, Hi);
20375 Force_Evaluation (Lo);
20376 Force_Evaluation (Hi);
20377 end if;
20378 end Process_Range_Expr_In_Decl;
20379
20380 --------------------------------------
20381 -- Process_Real_Range_Specification --
20382 --------------------------------------
20383
20384 procedure Process_Real_Range_Specification (Def : Node_Id) is
20385 Spec : constant Node_Id := Real_Range_Specification (Def);
20386 Lo : Node_Id;
20387 Hi : Node_Id;
20388 Err : Boolean := False;
20389
20390 procedure Analyze_Bound (N : Node_Id);
20391 -- Analyze and check one bound
20392
20393 -------------------
20394 -- Analyze_Bound --
20395 -------------------
20396
20397 procedure Analyze_Bound (N : Node_Id) is
20398 begin
20399 Analyze_And_Resolve (N, Any_Real);
20400
20401 if not Is_OK_Static_Expression (N) then
20402 Flag_Non_Static_Expr
20403 ("bound in real type definition is not static!", N);
20404 Err := True;
20405 end if;
20406 end Analyze_Bound;
20407
20408 -- Start of processing for Process_Real_Range_Specification
20409
20410 begin
20411 if Present (Spec) then
20412 Lo := Low_Bound (Spec);
20413 Hi := High_Bound (Spec);
20414 Analyze_Bound (Lo);
20415 Analyze_Bound (Hi);
20416
20417 -- If error, clear away junk range specification
20418
20419 if Err then
20420 Set_Real_Range_Specification (Def, Empty);
20421 end if;
20422 end if;
20423 end Process_Real_Range_Specification;
20424
20425 ---------------------
20426 -- Process_Subtype --
20427 ---------------------
20428
20429 function Process_Subtype
20430 (S : Node_Id;
20431 Related_Nod : Node_Id;
20432 Related_Id : Entity_Id := Empty;
20433 Suffix : Character := ' ') return Entity_Id
20434 is
20435 P : Node_Id;
20436 Def_Id : Entity_Id;
20437 Error_Node : Node_Id;
20438 Full_View_Id : Entity_Id;
20439 Subtype_Mark_Id : Entity_Id;
20440
20441 May_Have_Null_Exclusion : Boolean;
20442
20443 procedure Check_Incomplete (T : Entity_Id);
20444 -- Called to verify that an incomplete type is not used prematurely
20445
20446 ----------------------
20447 -- Check_Incomplete --
20448 ----------------------
20449
20450 procedure Check_Incomplete (T : Entity_Id) is
20451 begin
20452 -- Ada 2005 (AI-412): Incomplete subtypes are legal
20453
20454 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
20455 and then
20456 not (Ada_Version >= Ada_2005
20457 and then
20458 (Nkind (Parent (T)) = N_Subtype_Declaration
20459 or else (Nkind (Parent (T)) = N_Subtype_Indication
20460 and then Nkind (Parent (Parent (T))) =
20461 N_Subtype_Declaration)))
20462 then
20463 Error_Msg_N ("invalid use of type before its full declaration", T);
20464 end if;
20465 end Check_Incomplete;
20466
20467 -- Start of processing for Process_Subtype
20468
20469 begin
20470 -- Case of no constraints present
20471
20472 if Nkind (S) /= N_Subtype_Indication then
20473 Find_Type (S);
20474 Check_Incomplete (S);
20475 P := Parent (S);
20476
20477 -- Ada 2005 (AI-231): Static check
20478
20479 if Ada_Version >= Ada_2005
20480 and then Present (P)
20481 and then Null_Exclusion_Present (P)
20482 and then Nkind (P) /= N_Access_To_Object_Definition
20483 and then not Is_Access_Type (Entity (S))
20484 then
20485 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
20486 end if;
20487
20488 -- The following is ugly, can't we have a range or even a flag???
20489
20490 May_Have_Null_Exclusion :=
20491 Nkind_In (P, N_Access_Definition,
20492 N_Access_Function_Definition,
20493 N_Access_Procedure_Definition,
20494 N_Access_To_Object_Definition,
20495 N_Allocator,
20496 N_Component_Definition)
20497 or else
20498 Nkind_In (P, N_Derived_Type_Definition,
20499 N_Discriminant_Specification,
20500 N_Formal_Object_Declaration,
20501 N_Object_Declaration,
20502 N_Object_Renaming_Declaration,
20503 N_Parameter_Specification,
20504 N_Subtype_Declaration);
20505
20506 -- Create an Itype that is a duplicate of Entity (S) but with the
20507 -- null-exclusion attribute.
20508
20509 if May_Have_Null_Exclusion
20510 and then Is_Access_Type (Entity (S))
20511 and then Null_Exclusion_Present (P)
20512
20513 -- No need to check the case of an access to object definition.
20514 -- It is correct to define double not-null pointers.
20515
20516 -- Example:
20517 -- type Not_Null_Int_Ptr is not null access Integer;
20518 -- type Acc is not null access Not_Null_Int_Ptr;
20519
20520 and then Nkind (P) /= N_Access_To_Object_Definition
20521 then
20522 if Can_Never_Be_Null (Entity (S)) then
20523 case Nkind (Related_Nod) is
20524 when N_Full_Type_Declaration =>
20525 if Nkind (Type_Definition (Related_Nod))
20526 in N_Array_Type_Definition
20527 then
20528 Error_Node :=
20529 Subtype_Indication
20530 (Component_Definition
20531 (Type_Definition (Related_Nod)));
20532 else
20533 Error_Node :=
20534 Subtype_Indication (Type_Definition (Related_Nod));
20535 end if;
20536
20537 when N_Subtype_Declaration =>
20538 Error_Node := Subtype_Indication (Related_Nod);
20539
20540 when N_Object_Declaration =>
20541 Error_Node := Object_Definition (Related_Nod);
20542
20543 when N_Component_Declaration =>
20544 Error_Node :=
20545 Subtype_Indication (Component_Definition (Related_Nod));
20546
20547 when N_Allocator =>
20548 Error_Node := Expression (Related_Nod);
20549
20550 when others =>
20551 pragma Assert (False);
20552 Error_Node := Related_Nod;
20553 end case;
20554
20555 Error_Msg_NE
20556 ("`NOT NULL` not allowed (& already excludes null)",
20557 Error_Node,
20558 Entity (S));
20559 end if;
20560
20561 Set_Etype (S,
20562 Create_Null_Excluding_Itype
20563 (T => Entity (S),
20564 Related_Nod => P));
20565 Set_Entity (S, Etype (S));
20566 end if;
20567
20568 return Entity (S);
20569
20570 -- Case of constraint present, so that we have an N_Subtype_Indication
20571 -- node (this node is created only if constraints are present).
20572
20573 else
20574 Find_Type (Subtype_Mark (S));
20575
20576 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
20577 and then not
20578 (Nkind (Parent (S)) = N_Subtype_Declaration
20579 and then Is_Itype (Defining_Identifier (Parent (S))))
20580 then
20581 Check_Incomplete (Subtype_Mark (S));
20582 end if;
20583
20584 P := Parent (S);
20585 Subtype_Mark_Id := Entity (Subtype_Mark (S));
20586
20587 -- Explicit subtype declaration case
20588
20589 if Nkind (P) = N_Subtype_Declaration then
20590 Def_Id := Defining_Identifier (P);
20591
20592 -- Explicit derived type definition case
20593
20594 elsif Nkind (P) = N_Derived_Type_Definition then
20595 Def_Id := Defining_Identifier (Parent (P));
20596
20597 -- Implicit case, the Def_Id must be created as an implicit type.
20598 -- The one exception arises in the case of concurrent types, array
20599 -- and access types, where other subsidiary implicit types may be
20600 -- created and must appear before the main implicit type. In these
20601 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
20602 -- has not yet been called to create Def_Id.
20603
20604 else
20605 if Is_Array_Type (Subtype_Mark_Id)
20606 or else Is_Concurrent_Type (Subtype_Mark_Id)
20607 or else Is_Access_Type (Subtype_Mark_Id)
20608 then
20609 Def_Id := Empty;
20610
20611 -- For the other cases, we create a new unattached Itype,
20612 -- and set the indication to ensure it gets attached later.
20613
20614 else
20615 Def_Id :=
20616 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
20617 end if;
20618 end if;
20619
20620 -- If the kind of constraint is invalid for this kind of type,
20621 -- then give an error, and then pretend no constraint was given.
20622
20623 if not Is_Valid_Constraint_Kind
20624 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
20625 then
20626 Error_Msg_N
20627 ("incorrect constraint for this kind of type", Constraint (S));
20628
20629 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
20630
20631 -- Set Ekind of orphan itype, to prevent cascaded errors
20632
20633 if Present (Def_Id) then
20634 Set_Ekind (Def_Id, Ekind (Any_Type));
20635 end if;
20636
20637 -- Make recursive call, having got rid of the bogus constraint
20638
20639 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
20640 end if;
20641
20642 -- Remaining processing depends on type. Select on Base_Type kind to
20643 -- ensure getting to the concrete type kind in the case of a private
20644 -- subtype (needed when only doing semantic analysis).
20645
20646 case Ekind (Base_Type (Subtype_Mark_Id)) is
20647 when Access_Kind =>
20648
20649 -- If this is a constraint on a class-wide type, discard it.
20650 -- There is currently no way to express a partial discriminant
20651 -- constraint on a type with unknown discriminants. This is
20652 -- a pathology that the ACATS wisely decides not to test.
20653
20654 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
20655 if Comes_From_Source (S) then
20656 Error_Msg_N
20657 ("constraint on class-wide type ignored??",
20658 Constraint (S));
20659 end if;
20660
20661 if Nkind (P) = N_Subtype_Declaration then
20662 Set_Subtype_Indication (P,
20663 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
20664 end if;
20665
20666 return Subtype_Mark_Id;
20667 end if;
20668
20669 Constrain_Access (Def_Id, S, Related_Nod);
20670
20671 if Expander_Active
20672 and then Is_Itype (Designated_Type (Def_Id))
20673 and then Nkind (Related_Nod) = N_Subtype_Declaration
20674 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
20675 then
20676 Build_Itype_Reference
20677 (Designated_Type (Def_Id), Related_Nod);
20678 end if;
20679
20680 when Array_Kind =>
20681 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
20682
20683 when Decimal_Fixed_Point_Kind =>
20684 Constrain_Decimal (Def_Id, S);
20685
20686 when Enumeration_Kind =>
20687 Constrain_Enumeration (Def_Id, S);
20688 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
20689
20690 when Ordinary_Fixed_Point_Kind =>
20691 Constrain_Ordinary_Fixed (Def_Id, S);
20692
20693 when Float_Kind =>
20694 Constrain_Float (Def_Id, S);
20695
20696 when Integer_Kind =>
20697 Constrain_Integer (Def_Id, S);
20698 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
20699
20700 when E_Record_Type |
20701 E_Record_Subtype |
20702 Class_Wide_Kind |
20703 E_Incomplete_Type =>
20704 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
20705
20706 if Ekind (Def_Id) = E_Incomplete_Type then
20707 Set_Private_Dependents (Def_Id, New_Elmt_List);
20708 end if;
20709
20710 when Private_Kind =>
20711 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
20712 Set_Private_Dependents (Def_Id, New_Elmt_List);
20713
20714 -- In case of an invalid constraint prevent further processing
20715 -- since the type constructed is missing expected fields.
20716
20717 if Etype (Def_Id) = Any_Type then
20718 return Def_Id;
20719 end if;
20720
20721 -- If the full view is that of a task with discriminants,
20722 -- we must constrain both the concurrent type and its
20723 -- corresponding record type. Otherwise we will just propagate
20724 -- the constraint to the full view, if available.
20725
20726 if Present (Full_View (Subtype_Mark_Id))
20727 and then Has_Discriminants (Subtype_Mark_Id)
20728 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
20729 then
20730 Full_View_Id :=
20731 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
20732
20733 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
20734 Constrain_Concurrent (Full_View_Id, S,
20735 Related_Nod, Related_Id, Suffix);
20736 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
20737 Set_Full_View (Def_Id, Full_View_Id);
20738
20739 -- Introduce an explicit reference to the private subtype,
20740 -- to prevent scope anomalies in gigi if first use appears
20741 -- in a nested context, e.g. a later function body.
20742 -- Should this be generated in other contexts than a full
20743 -- type declaration?
20744
20745 if Is_Itype (Def_Id)
20746 and then
20747 Nkind (Parent (P)) = N_Full_Type_Declaration
20748 then
20749 Build_Itype_Reference (Def_Id, Parent (P));
20750 end if;
20751
20752 else
20753 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
20754 end if;
20755
20756 when Concurrent_Kind =>
20757 Constrain_Concurrent (Def_Id, S,
20758 Related_Nod, Related_Id, Suffix);
20759
20760 when others =>
20761 Error_Msg_N ("invalid subtype mark in subtype indication", S);
20762 end case;
20763
20764 -- Size and Convention are always inherited from the base type
20765
20766 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
20767 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
20768
20769 return Def_Id;
20770 end if;
20771 end Process_Subtype;
20772
20773 --------------------------------------------
20774 -- Propagate_Default_Init_Cond_Attributes --
20775 --------------------------------------------
20776
20777 procedure Propagate_Default_Init_Cond_Attributes
20778 (From_Typ : Entity_Id;
20779 To_Typ : Entity_Id;
20780 Parent_To_Derivation : Boolean := False;
20781 Private_To_Full_View : Boolean := False)
20782 is
20783 procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id);
20784 -- Remove the default initial procedure (if any) from the rep chain of
20785 -- type Typ.
20786
20787 ----------------------------------------
20788 -- Remove_Default_Init_Cond_Procedure --
20789 ----------------------------------------
20790
20791 procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id) is
20792 Found : Boolean := False;
20793 Prev : Entity_Id;
20794 Subp : Entity_Id;
20795
20796 begin
20797 Prev := Typ;
20798 Subp := Subprograms_For_Type (Typ);
20799 while Present (Subp) loop
20800 if Is_Default_Init_Cond_Procedure (Subp) then
20801 Found := True;
20802 exit;
20803 end if;
20804
20805 Prev := Subp;
20806 Subp := Subprograms_For_Type (Subp);
20807 end loop;
20808
20809 if Found then
20810 Set_Subprograms_For_Type (Prev, Subprograms_For_Type (Subp));
20811 Set_Subprograms_For_Type (Subp, Empty);
20812 end if;
20813 end Remove_Default_Init_Cond_Procedure;
20814
20815 -- Local variables
20816
20817 Inherit_Procedure : Boolean := False;
20818
20819 -- Start of processing for Propagate_Default_Init_Cond_Attributes
20820
20821 begin
20822 if Has_Default_Init_Cond (From_Typ) then
20823
20824 -- A derived type inherits the attributes from its parent type
20825
20826 if Parent_To_Derivation then
20827 Set_Has_Inherited_Default_Init_Cond (To_Typ);
20828
20829 -- A full view shares the attributes with its private view
20830
20831 else
20832 Set_Has_Default_Init_Cond (To_Typ);
20833 end if;
20834
20835 Inherit_Procedure := True;
20836
20837 -- Due to the order of expansion, a derived private type is processed
20838 -- by two routines which both attempt to set the attributes related
20839 -- to pragma Default_Initial_Condition - Build_Derived_Type and then
20840 -- Process_Full_View.
20841
20842 -- package Pack is
20843 -- type Parent_Typ is private
20844 -- with Default_Initial_Condition ...;
20845 -- private
20846 -- type Parent_Typ is ...;
20847 -- end Pack;
20848
20849 -- with Pack; use Pack;
20850 -- package Pack_2 is
20851 -- type Deriv_Typ is private
20852 -- with Default_Initial_Condition ...;
20853 -- private
20854 -- type Deriv_Typ is new Parent_Typ;
20855 -- end Pack_2;
20856
20857 -- When Build_Derived_Type operates, it sets the attributes on the
20858 -- full view without taking into account that the private view may
20859 -- define its own default initial condition procedure. This becomes
20860 -- apparent in Process_Full_View which must undo some of the work by
20861 -- Build_Derived_Type and propagate the attributes from the private
20862 -- to the full view.
20863
20864 if Private_To_Full_View then
20865 Set_Has_Inherited_Default_Init_Cond (To_Typ, False);
20866 Remove_Default_Init_Cond_Procedure (To_Typ);
20867 end if;
20868
20869 -- A type must inherit the default initial condition procedure from a
20870 -- parent type when the parent itself is inheriting the procedure or
20871 -- when it is defining one. This circuitry is also used when dealing
20872 -- with the private / full view of a type.
20873
20874 elsif Has_Inherited_Default_Init_Cond (From_Typ)
20875 or (Parent_To_Derivation
20876 and Present (Get_Pragma
20877 (From_Typ, Pragma_Default_Initial_Condition)))
20878 then
20879 Set_Has_Inherited_Default_Init_Cond (To_Typ);
20880 Inherit_Procedure := True;
20881 end if;
20882
20883 if Inherit_Procedure
20884 and then No (Default_Init_Cond_Procedure (To_Typ))
20885 then
20886 Set_Default_Init_Cond_Procedure
20887 (To_Typ, Default_Init_Cond_Procedure (From_Typ));
20888 end if;
20889 end Propagate_Default_Init_Cond_Attributes;
20890
20891 -----------------------------
20892 -- Record_Type_Declaration --
20893 -----------------------------
20894
20895 procedure Record_Type_Declaration
20896 (T : Entity_Id;
20897 N : Node_Id;
20898 Prev : Entity_Id)
20899 is
20900 Def : constant Node_Id := Type_Definition (N);
20901 Is_Tagged : Boolean;
20902 Tag_Comp : Entity_Id;
20903
20904 begin
20905 -- These flags must be initialized before calling Process_Discriminants
20906 -- because this routine makes use of them.
20907
20908 Set_Ekind (T, E_Record_Type);
20909 Set_Etype (T, T);
20910 Init_Size_Align (T);
20911 Set_Interfaces (T, No_Elist);
20912 Set_Stored_Constraint (T, No_Elist);
20913 Set_Default_SSO (T);
20914
20915 -- Normal case
20916
20917 if Ada_Version < Ada_2005 or else not Interface_Present (Def) then
20918 if Limited_Present (Def) then
20919 Check_SPARK_05_Restriction ("limited is not allowed", N);
20920 end if;
20921
20922 if Abstract_Present (Def) then
20923 Check_SPARK_05_Restriction ("abstract is not allowed", N);
20924 end if;
20925
20926 -- The flag Is_Tagged_Type might have already been set by
20927 -- Find_Type_Name if it detected an error for declaration T. This
20928 -- arises in the case of private tagged types where the full view
20929 -- omits the word tagged.
20930
20931 Is_Tagged :=
20932 Tagged_Present (Def)
20933 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
20934
20935 Set_Is_Limited_Record (T, Limited_Present (Def));
20936
20937 if Is_Tagged then
20938 Set_Is_Tagged_Type (T, True);
20939 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
20940 end if;
20941
20942 -- Type is abstract if full declaration carries keyword, or if
20943 -- previous partial view did.
20944
20945 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
20946 or else Abstract_Present (Def));
20947
20948 else
20949 Check_SPARK_05_Restriction ("interface is not allowed", N);
20950
20951 Is_Tagged := True;
20952 Analyze_Interface_Declaration (T, Def);
20953
20954 if Present (Discriminant_Specifications (N)) then
20955 Error_Msg_N
20956 ("interface types cannot have discriminants",
20957 Defining_Identifier
20958 (First (Discriminant_Specifications (N))));
20959 end if;
20960 end if;
20961
20962 -- First pass: if there are self-referential access components,
20963 -- create the required anonymous access type declarations, and if
20964 -- need be an incomplete type declaration for T itself.
20965
20966 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
20967
20968 if Ada_Version >= Ada_2005
20969 and then Present (Interface_List (Def))
20970 then
20971 Check_Interfaces (N, Def);
20972
20973 declare
20974 Ifaces_List : Elist_Id;
20975
20976 begin
20977 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
20978 -- already in the parents.
20979
20980 Collect_Interfaces
20981 (T => T,
20982 Ifaces_List => Ifaces_List,
20983 Exclude_Parents => True);
20984
20985 Set_Interfaces (T, Ifaces_List);
20986 end;
20987 end if;
20988
20989 -- Records constitute a scope for the component declarations within.
20990 -- The scope is created prior to the processing of these declarations.
20991 -- Discriminants are processed first, so that they are visible when
20992 -- processing the other components. The Ekind of the record type itself
20993 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
20994
20995 -- Enter record scope
20996
20997 Push_Scope (T);
20998
20999 -- If an incomplete or private type declaration was already given for
21000 -- the type, then this scope already exists, and the discriminants have
21001 -- been declared within. We must verify that the full declaration
21002 -- matches the incomplete one.
21003
21004 Check_Or_Process_Discriminants (N, T, Prev);
21005
21006 Set_Is_Constrained (T, not Has_Discriminants (T));
21007 Set_Has_Delayed_Freeze (T, True);
21008
21009 -- For tagged types add a manually analyzed component corresponding
21010 -- to the component _tag, the corresponding piece of tree will be
21011 -- expanded as part of the freezing actions if it is not a CPP_Class.
21012
21013 if Is_Tagged then
21014
21015 -- Do not add the tag unless we are in expansion mode
21016
21017 if Expander_Active then
21018 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
21019 Enter_Name (Tag_Comp);
21020
21021 Set_Ekind (Tag_Comp, E_Component);
21022 Set_Is_Tag (Tag_Comp);
21023 Set_Is_Aliased (Tag_Comp);
21024 Set_Etype (Tag_Comp, RTE (RE_Tag));
21025 Set_DT_Entry_Count (Tag_Comp, No_Uint);
21026 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
21027 Init_Component_Location (Tag_Comp);
21028
21029 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
21030 -- implemented interfaces.
21031
21032 if Has_Interfaces (T) then
21033 Add_Interface_Tag_Components (N, T);
21034 end if;
21035 end if;
21036
21037 Make_Class_Wide_Type (T);
21038 Set_Direct_Primitive_Operations (T, New_Elmt_List);
21039 end if;
21040
21041 -- We must suppress range checks when processing record components in
21042 -- the presence of discriminants, since we don't want spurious checks to
21043 -- be generated during their analysis, but Suppress_Range_Checks flags
21044 -- must be reset the after processing the record definition.
21045
21046 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
21047 -- couldn't we just use the normal range check suppression method here.
21048 -- That would seem cleaner ???
21049
21050 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
21051 Set_Kill_Range_Checks (T, True);
21052 Record_Type_Definition (Def, Prev);
21053 Set_Kill_Range_Checks (T, False);
21054 else
21055 Record_Type_Definition (Def, Prev);
21056 end if;
21057
21058 -- Exit from record scope
21059
21060 End_Scope;
21061
21062 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
21063 -- the implemented interfaces and associate them an aliased entity.
21064
21065 if Is_Tagged
21066 and then not Is_Empty_List (Interface_List (Def))
21067 then
21068 Derive_Progenitor_Subprograms (T, T);
21069 end if;
21070
21071 Check_Function_Writable_Actuals (N);
21072 end Record_Type_Declaration;
21073
21074 ----------------------------
21075 -- Record_Type_Definition --
21076 ----------------------------
21077
21078 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
21079 Component : Entity_Id;
21080 Ctrl_Components : Boolean := False;
21081 Final_Storage_Only : Boolean;
21082 T : Entity_Id;
21083
21084 begin
21085 if Ekind (Prev_T) = E_Incomplete_Type then
21086 T := Full_View (Prev_T);
21087 else
21088 T := Prev_T;
21089 end if;
21090
21091 -- In SPARK, tagged types and type extensions may only be declared in
21092 -- the specification of library unit packages.
21093
21094 if Present (Def) and then Is_Tagged_Type (T) then
21095 declare
21096 Typ : Node_Id;
21097 Ctxt : Node_Id;
21098
21099 begin
21100 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
21101 Typ := Parent (Def);
21102 else
21103 pragma Assert
21104 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
21105 Typ := Parent (Parent (Def));
21106 end if;
21107
21108 Ctxt := Parent (Typ);
21109
21110 if Nkind (Ctxt) = N_Package_Body
21111 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
21112 then
21113 Check_SPARK_05_Restriction
21114 ("type should be defined in package specification", Typ);
21115
21116 elsif Nkind (Ctxt) /= N_Package_Specification
21117 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
21118 then
21119 Check_SPARK_05_Restriction
21120 ("type should be defined in library unit package", Typ);
21121 end if;
21122 end;
21123 end if;
21124
21125 Final_Storage_Only := not Is_Controlled (T);
21126
21127 -- Ada 2005: Check whether an explicit Limited is present in a derived
21128 -- type declaration.
21129
21130 if Nkind (Parent (Def)) = N_Derived_Type_Definition
21131 and then Limited_Present (Parent (Def))
21132 then
21133 Set_Is_Limited_Record (T);
21134 end if;
21135
21136 -- If the component list of a record type is defined by the reserved
21137 -- word null and there is no discriminant part, then the record type has
21138 -- no components and all records of the type are null records (RM 3.7)
21139 -- This procedure is also called to process the extension part of a
21140 -- record extension, in which case the current scope may have inherited
21141 -- components.
21142
21143 if No (Def)
21144 or else No (Component_List (Def))
21145 or else Null_Present (Component_List (Def))
21146 then
21147 if not Is_Tagged_Type (T) then
21148 Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
21149 end if;
21150
21151 else
21152 Analyze_Declarations (Component_Items (Component_List (Def)));
21153
21154 if Present (Variant_Part (Component_List (Def))) then
21155 Check_SPARK_05_Restriction ("variant part is not allowed", Def);
21156 Analyze (Variant_Part (Component_List (Def)));
21157 end if;
21158 end if;
21159
21160 -- After completing the semantic analysis of the record definition,
21161 -- record components, both new and inherited, are accessible. Set their
21162 -- kind accordingly. Exclude malformed itypes from illegal declarations,
21163 -- whose Ekind may be void.
21164
21165 Component := First_Entity (Current_Scope);
21166 while Present (Component) loop
21167 if Ekind (Component) = E_Void
21168 and then not Is_Itype (Component)
21169 then
21170 Set_Ekind (Component, E_Component);
21171 Init_Component_Location (Component);
21172 end if;
21173
21174 if Has_Task (Etype (Component)) then
21175 Set_Has_Task (T);
21176 end if;
21177
21178 if Has_Protected (Etype (Component)) then
21179 Set_Has_Protected (T);
21180 end if;
21181
21182 if Ekind (Component) /= E_Component then
21183 null;
21184
21185 -- Do not set Has_Controlled_Component on a class-wide equivalent
21186 -- type. See Make_CW_Equivalent_Type.
21187
21188 elsif not Is_Class_Wide_Equivalent_Type (T)
21189 and then (Has_Controlled_Component (Etype (Component))
21190 or else (Chars (Component) /= Name_uParent
21191 and then Is_Controlled (Etype (Component))))
21192 then
21193 Set_Has_Controlled_Component (T, True);
21194 Final_Storage_Only :=
21195 Final_Storage_Only
21196 and then Finalize_Storage_Only (Etype (Component));
21197 Ctrl_Components := True;
21198 end if;
21199
21200 Next_Entity (Component);
21201 end loop;
21202
21203 -- A Type is Finalize_Storage_Only only if all its controlled components
21204 -- are also.
21205
21206 if Ctrl_Components then
21207 Set_Finalize_Storage_Only (T, Final_Storage_Only);
21208 end if;
21209
21210 -- Place reference to end record on the proper entity, which may
21211 -- be a partial view.
21212
21213 if Present (Def) then
21214 Process_End_Label (Def, 'e', Prev_T);
21215 end if;
21216 end Record_Type_Definition;
21217
21218 ------------------------
21219 -- Replace_Components --
21220 ------------------------
21221
21222 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
21223 function Process (N : Node_Id) return Traverse_Result;
21224
21225 -------------
21226 -- Process --
21227 -------------
21228
21229 function Process (N : Node_Id) return Traverse_Result is
21230 Comp : Entity_Id;
21231
21232 begin
21233 if Nkind (N) = N_Discriminant_Specification then
21234 Comp := First_Discriminant (Typ);
21235 while Present (Comp) loop
21236 if Chars (Comp) = Chars (Defining_Identifier (N)) then
21237 Set_Defining_Identifier (N, Comp);
21238 exit;
21239 end if;
21240
21241 Next_Discriminant (Comp);
21242 end loop;
21243
21244 elsif Nkind (N) = N_Component_Declaration then
21245 Comp := First_Component (Typ);
21246 while Present (Comp) loop
21247 if Chars (Comp) = Chars (Defining_Identifier (N)) then
21248 Set_Defining_Identifier (N, Comp);
21249 exit;
21250 end if;
21251
21252 Next_Component (Comp);
21253 end loop;
21254 end if;
21255
21256 return OK;
21257 end Process;
21258
21259 procedure Replace is new Traverse_Proc (Process);
21260
21261 -- Start of processing for Replace_Components
21262
21263 begin
21264 Replace (Decl);
21265 end Replace_Components;
21266
21267 -------------------------------
21268 -- Set_Completion_Referenced --
21269 -------------------------------
21270
21271 procedure Set_Completion_Referenced (E : Entity_Id) is
21272 begin
21273 -- If in main unit, mark entity that is a completion as referenced,
21274 -- warnings go on the partial view when needed.
21275
21276 if In_Extended_Main_Source_Unit (E) then
21277 Set_Referenced (E);
21278 end if;
21279 end Set_Completion_Referenced;
21280
21281 ---------------------
21282 -- Set_Default_SSO --
21283 ---------------------
21284
21285 procedure Set_Default_SSO (T : Entity_Id) is
21286 begin
21287 case Opt.Default_SSO is
21288 when ' ' =>
21289 null;
21290 when 'L' =>
21291 Set_SSO_Set_Low_By_Default (T, True);
21292 when 'H' =>
21293 Set_SSO_Set_High_By_Default (T, True);
21294 when others =>
21295 raise Program_Error;
21296 end case;
21297 end Set_Default_SSO;
21298
21299 ---------------------
21300 -- Set_Fixed_Range --
21301 ---------------------
21302
21303 -- The range for fixed-point types is complicated by the fact that we
21304 -- do not know the exact end points at the time of the declaration. This
21305 -- is true for three reasons:
21306
21307 -- A size clause may affect the fudging of the end-points.
21308 -- A small clause may affect the values of the end-points.
21309 -- We try to include the end-points if it does not affect the size.
21310
21311 -- This means that the actual end-points must be established at the
21312 -- point when the type is frozen. Meanwhile, we first narrow the range
21313 -- as permitted (so that it will fit if necessary in a small specified
21314 -- size), and then build a range subtree with these narrowed bounds.
21315 -- Set_Fixed_Range constructs the range from real literal values, and
21316 -- sets the range as the Scalar_Range of the given fixed-point type entity.
21317
21318 -- The parent of this range is set to point to the entity so that it is
21319 -- properly hooked into the tree (unlike normal Scalar_Range entries for
21320 -- other scalar types, which are just pointers to the range in the
21321 -- original tree, this would otherwise be an orphan).
21322
21323 -- The tree is left unanalyzed. When the type is frozen, the processing
21324 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
21325 -- analyzed, and uses this as an indication that it should complete
21326 -- work on the range (it will know the final small and size values).
21327
21328 procedure Set_Fixed_Range
21329 (E : Entity_Id;
21330 Loc : Source_Ptr;
21331 Lo : Ureal;
21332 Hi : Ureal)
21333 is
21334 S : constant Node_Id :=
21335 Make_Range (Loc,
21336 Low_Bound => Make_Real_Literal (Loc, Lo),
21337 High_Bound => Make_Real_Literal (Loc, Hi));
21338 begin
21339 Set_Scalar_Range (E, S);
21340 Set_Parent (S, E);
21341
21342 -- Before the freeze point, the bounds of a fixed point are universal
21343 -- and carry the corresponding type.
21344
21345 Set_Etype (Low_Bound (S), Universal_Real);
21346 Set_Etype (High_Bound (S), Universal_Real);
21347 end Set_Fixed_Range;
21348
21349 ----------------------------------
21350 -- Set_Scalar_Range_For_Subtype --
21351 ----------------------------------
21352
21353 procedure Set_Scalar_Range_For_Subtype
21354 (Def_Id : Entity_Id;
21355 R : Node_Id;
21356 Subt : Entity_Id)
21357 is
21358 Kind : constant Entity_Kind := Ekind (Def_Id);
21359
21360 begin
21361 -- Defend against previous error
21362
21363 if Nkind (R) = N_Error then
21364 return;
21365 end if;
21366
21367 Set_Scalar_Range (Def_Id, R);
21368
21369 -- We need to link the range into the tree before resolving it so
21370 -- that types that are referenced, including importantly the subtype
21371 -- itself, are properly frozen (Freeze_Expression requires that the
21372 -- expression be properly linked into the tree). Of course if it is
21373 -- already linked in, then we do not disturb the current link.
21374
21375 if No (Parent (R)) then
21376 Set_Parent (R, Def_Id);
21377 end if;
21378
21379 -- Reset the kind of the subtype during analysis of the range, to
21380 -- catch possible premature use in the bounds themselves.
21381
21382 Set_Ekind (Def_Id, E_Void);
21383 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
21384 Set_Ekind (Def_Id, Kind);
21385 end Set_Scalar_Range_For_Subtype;
21386
21387 --------------------------------------------------------
21388 -- Set_Stored_Constraint_From_Discriminant_Constraint --
21389 --------------------------------------------------------
21390
21391 procedure Set_Stored_Constraint_From_Discriminant_Constraint
21392 (E : Entity_Id)
21393 is
21394 begin
21395 -- Make sure set if encountered during Expand_To_Stored_Constraint
21396
21397 Set_Stored_Constraint (E, No_Elist);
21398
21399 -- Give it the right value
21400
21401 if Is_Constrained (E) and then Has_Discriminants (E) then
21402 Set_Stored_Constraint (E,
21403 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
21404 end if;
21405 end Set_Stored_Constraint_From_Discriminant_Constraint;
21406
21407 -------------------------------------
21408 -- Signed_Integer_Type_Declaration --
21409 -------------------------------------
21410
21411 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
21412 Implicit_Base : Entity_Id;
21413 Base_Typ : Entity_Id;
21414 Lo_Val : Uint;
21415 Hi_Val : Uint;
21416 Errs : Boolean := False;
21417 Lo : Node_Id;
21418 Hi : Node_Id;
21419
21420 function Can_Derive_From (E : Entity_Id) return Boolean;
21421 -- Determine whether given bounds allow derivation from specified type
21422
21423 procedure Check_Bound (Expr : Node_Id);
21424 -- Check bound to make sure it is integral and static. If not, post
21425 -- appropriate error message and set Errs flag
21426
21427 ---------------------
21428 -- Can_Derive_From --
21429 ---------------------
21430
21431 -- Note we check both bounds against both end values, to deal with
21432 -- strange types like ones with a range of 0 .. -12341234.
21433
21434 function Can_Derive_From (E : Entity_Id) return Boolean is
21435 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
21436 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
21437 begin
21438 return Lo <= Lo_Val and then Lo_Val <= Hi
21439 and then
21440 Lo <= Hi_Val and then Hi_Val <= Hi;
21441 end Can_Derive_From;
21442
21443 -----------------
21444 -- Check_Bound --
21445 -----------------
21446
21447 procedure Check_Bound (Expr : Node_Id) is
21448 begin
21449 -- If a range constraint is used as an integer type definition, each
21450 -- bound of the range must be defined by a static expression of some
21451 -- integer type, but the two bounds need not have the same integer
21452 -- type (Negative bounds are allowed.) (RM 3.5.4)
21453
21454 if not Is_Integer_Type (Etype (Expr)) then
21455 Error_Msg_N
21456 ("integer type definition bounds must be of integer type", Expr);
21457 Errs := True;
21458
21459 elsif not Is_OK_Static_Expression (Expr) then
21460 Flag_Non_Static_Expr
21461 ("non-static expression used for integer type bound!", Expr);
21462 Errs := True;
21463
21464 -- The bounds are folded into literals, and we set their type to be
21465 -- universal, to avoid typing difficulties: we cannot set the type
21466 -- of the literal to the new type, because this would be a forward
21467 -- reference for the back end, and if the original type is user-
21468 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
21469
21470 else
21471 if Is_Entity_Name (Expr) then
21472 Fold_Uint (Expr, Expr_Value (Expr), True);
21473 end if;
21474
21475 Set_Etype (Expr, Universal_Integer);
21476 end if;
21477 end Check_Bound;
21478
21479 -- Start of processing for Signed_Integer_Type_Declaration
21480
21481 begin
21482 -- Create an anonymous base type
21483
21484 Implicit_Base :=
21485 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
21486
21487 -- Analyze and check the bounds, they can be of any integer type
21488
21489 Lo := Low_Bound (Def);
21490 Hi := High_Bound (Def);
21491
21492 -- Arbitrarily use Integer as the type if either bound had an error
21493
21494 if Hi = Error or else Lo = Error then
21495 Base_Typ := Any_Integer;
21496 Set_Error_Posted (T, True);
21497
21498 -- Here both bounds are OK expressions
21499
21500 else
21501 Analyze_And_Resolve (Lo, Any_Integer);
21502 Analyze_And_Resolve (Hi, Any_Integer);
21503
21504 Check_Bound (Lo);
21505 Check_Bound (Hi);
21506
21507 if Errs then
21508 Hi := Type_High_Bound (Standard_Long_Long_Integer);
21509 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
21510 end if;
21511
21512 -- Find type to derive from
21513
21514 Lo_Val := Expr_Value (Lo);
21515 Hi_Val := Expr_Value (Hi);
21516
21517 if Can_Derive_From (Standard_Short_Short_Integer) then
21518 Base_Typ := Base_Type (Standard_Short_Short_Integer);
21519
21520 elsif Can_Derive_From (Standard_Short_Integer) then
21521 Base_Typ := Base_Type (Standard_Short_Integer);
21522
21523 elsif Can_Derive_From (Standard_Integer) then
21524 Base_Typ := Base_Type (Standard_Integer);
21525
21526 elsif Can_Derive_From (Standard_Long_Integer) then
21527 Base_Typ := Base_Type (Standard_Long_Integer);
21528
21529 elsif Can_Derive_From (Standard_Long_Long_Integer) then
21530 Check_Restriction (No_Long_Long_Integers, Def);
21531 Base_Typ := Base_Type (Standard_Long_Long_Integer);
21532
21533 else
21534 Base_Typ := Base_Type (Standard_Long_Long_Integer);
21535 Error_Msg_N ("integer type definition bounds out of range", Def);
21536 Hi := Type_High_Bound (Standard_Long_Long_Integer);
21537 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
21538 end if;
21539 end if;
21540
21541 -- Complete both implicit base and declared first subtype entities. The
21542 -- inheritance of the rep item chain ensures that SPARK-related pragmas
21543 -- are not clobbered when the signed integer type acts as a full view of
21544 -- a private type.
21545
21546 Set_Etype (Implicit_Base, Base_Typ);
21547 Set_Size_Info (Implicit_Base, Base_Typ);
21548 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
21549 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
21550 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
21551
21552 Set_Ekind (T, E_Signed_Integer_Subtype);
21553 Set_Etype (T, Implicit_Base);
21554 Set_Size_Info (T, Implicit_Base);
21555 Inherit_Rep_Item_Chain (T, Implicit_Base);
21556 Set_Scalar_Range (T, Def);
21557 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
21558 Set_Is_Constrained (T);
21559 end Signed_Integer_Type_Declaration;
21560
21561 end Sem_Ch3;