[Ada] Spurious error on instantiation with type with unknown discriminants
[gcc.git] / gcc / ada / sem_ch3.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Elists; use Elists;
32 with Einfo; use Einfo;
33 with Errout; use Errout;
34 with Eval_Fat; use Eval_Fat;
35 with Exp_Ch3; use Exp_Ch3;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Disp; use Exp_Disp;
38 with Exp_Dist; use Exp_Dist;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Freeze; use Freeze;
42 with Ghost; use Ghost;
43 with Itypes; use Itypes;
44 with Layout; use Layout;
45 with Lib; use Lib;
46 with Lib.Xref; use Lib.Xref;
47 with Namet; use Namet;
48 with Nmake; use Nmake;
49 with Opt; use Opt;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Case; use Sem_Case;
56 with Sem_Cat; use Sem_Cat;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch7; use Sem_Ch7;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Dim; use Sem_Dim;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elab; use Sem_Elab;
65 with Sem_Elim; use Sem_Elim;
66 with Sem_Eval; use Sem_Eval;
67 with Sem_Mech; use Sem_Mech;
68 with Sem_Res; use Sem_Res;
69 with Sem_Smem; use Sem_Smem;
70 with Sem_Type; use Sem_Type;
71 with Sem_Util; use Sem_Util;
72 with Sem_Warn; use Sem_Warn;
73 with Stand; use Stand;
74 with Sinfo; use Sinfo;
75 with Sinput; use Sinput;
76 with Snames; use Snames;
77 with Targparm; use Targparm;
78 with Tbuild; use Tbuild;
79 with Ttypes; use Ttypes;
80 with Uintp; use Uintp;
81 with Urealp; use Urealp;
82
83 package body Sem_Ch3 is
84
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
88
89 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
92 -- record type.
93
94 procedure Build_Derived_Type
95 (N : Node_Id;
96 Parent_Type : Entity_Id;
97 Derived_Type : Entity_Id;
98 Is_Completion : Boolean;
99 Derive_Subps : Boolean := True);
100 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
101 -- the N_Full_Type_Declaration node containing the derived type definition.
102 -- Parent_Type is the entity for the parent type in the derived type
103 -- definition and Derived_Type the actual derived type. Is_Completion must
104 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
105 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
106 -- completion of a private type declaration. If Is_Completion is set to
107 -- True, N is the completion of a private type declaration and Derived_Type
108 -- is different from the defining identifier inside N (i.e. Derived_Type /=
109 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
110 -- subprograms should be derived. The only case where this parameter is
111 -- False is when Build_Derived_Type is recursively called to process an
112 -- implicit derived full type for a type derived from a private type (in
113 -- that case the subprograms must only be derived for the private view of
114 -- the type).
115 --
116 -- ??? These flags need a bit of re-examination and re-documentation:
117 -- ??? are they both necessary (both seem related to the recursion)?
118
119 procedure Build_Derived_Access_Type
120 (N : Node_Id;
121 Parent_Type : Entity_Id;
122 Derived_Type : Entity_Id);
123 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
124 -- create an implicit base if the parent type is constrained or if the
125 -- subtype indication has a constraint.
126
127 procedure Build_Derived_Array_Type
128 (N : Node_Id;
129 Parent_Type : Entity_Id;
130 Derived_Type : Entity_Id);
131 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
132 -- create an implicit base if the parent type is constrained or if the
133 -- subtype indication has a constraint.
134
135 procedure Build_Derived_Concurrent_Type
136 (N : Node_Id;
137 Parent_Type : Entity_Id;
138 Derived_Type : Entity_Id);
139 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
140 -- protected type, inherit entries and protected subprograms, check
141 -- legality of discriminant constraints if any.
142
143 procedure Build_Derived_Enumeration_Type
144 (N : Node_Id;
145 Parent_Type : Entity_Id;
146 Derived_Type : Entity_Id);
147 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
148 -- type, we must create a new list of literals. Types derived from
149 -- Character and [Wide_]Wide_Character are special-cased.
150
151 procedure Build_Derived_Numeric_Type
152 (N : Node_Id;
153 Parent_Type : Entity_Id;
154 Derived_Type : Entity_Id);
155 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
156 -- an anonymous base type, and propagate constraint to subtype if needed.
157
158 procedure Build_Derived_Private_Type
159 (N : Node_Id;
160 Parent_Type : Entity_Id;
161 Derived_Type : Entity_Id;
162 Is_Completion : Boolean;
163 Derive_Subps : Boolean := True);
164 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
165 -- because the parent may or may not have a completion, and the derivation
166 -- may itself be a completion.
167
168 procedure Build_Derived_Record_Type
169 (N : Node_Id;
170 Parent_Type : Entity_Id;
171 Derived_Type : Entity_Id;
172 Derive_Subps : Boolean := True);
173 -- Subsidiary procedure used for tagged and untagged record types
174 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
175 -- All parameters are as in Build_Derived_Type except that N, in
176 -- addition to being an N_Full_Type_Declaration node, can also be an
177 -- N_Private_Extension_Declaration node. See the definition of this routine
178 -- for much more info. Derive_Subps indicates whether subprograms should be
179 -- derived from the parent type. The only case where Derive_Subps is False
180 -- is for an implicit derived full type for a type derived from a private
181 -- type (see Build_Derived_Type).
182
183 procedure Build_Discriminal (Discrim : Entity_Id);
184 -- Create the discriminal corresponding to discriminant Discrim, that is
185 -- the parameter corresponding to Discrim to be used in initialization
186 -- procedures for the type where Discrim is a discriminant. Discriminals
187 -- are not used during semantic analysis, and are not fully defined
188 -- entities until expansion. Thus they are not given a scope until
189 -- initialization procedures are built.
190
191 function Build_Discriminant_Constraints
192 (T : Entity_Id;
193 Def : Node_Id;
194 Derived_Def : Boolean := False) return Elist_Id;
195 -- Validate discriminant constraints and return the list of the constraints
196 -- in order of discriminant declarations, where T is the discriminated
197 -- unconstrained type. Def is the N_Subtype_Indication node where the
198 -- discriminants constraints for T are specified. Derived_Def is True
199 -- when building the discriminant constraints in a derived type definition
200 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
201 -- type and Def is the constraint "(xxx)" on T and this routine sets the
202 -- Corresponding_Discriminant field of the discriminants in the derived
203 -- type D to point to the corresponding discriminants in the parent type T.
204
205 procedure Build_Discriminated_Subtype
206 (T : Entity_Id;
207 Def_Id : Entity_Id;
208 Elist : Elist_Id;
209 Related_Nod : Node_Id;
210 For_Access : Boolean := False);
211 -- Subsidiary procedure to Constrain_Discriminated_Type and to
212 -- Process_Incomplete_Dependents. Given
213 --
214 -- T (a possibly discriminated base type)
215 -- Def_Id (a very partially built subtype for T),
216 --
217 -- the call completes Def_Id to be the appropriate E_*_Subtype.
218 --
219 -- The Elist is the list of discriminant constraints if any (it is set
220 -- to No_Elist if T is not a discriminated type, and to an empty list if
221 -- T has discriminants but there are no discriminant constraints). The
222 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
223 -- The For_Access says whether or not this subtype is really constraining
224 -- an access type. That is its sole purpose is the designated type of an
225 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
226 -- is built to avoid freezing T when the access subtype is frozen.
227
228 function Build_Scalar_Bound
229 (Bound : Node_Id;
230 Par_T : Entity_Id;
231 Der_T : Entity_Id) return Node_Id;
232 -- The bounds of a derived scalar type are conversions of the bounds of
233 -- the parent type. Optimize the representation if the bounds are literals.
234 -- Needs a more complete spec--what are the parameters exactly, and what
235 -- exactly is the returned value, and how is Bound affected???
236
237 procedure Build_Underlying_Full_View
238 (N : Node_Id;
239 Typ : Entity_Id;
240 Par : Entity_Id);
241 -- If the completion of a private type is itself derived from a private
242 -- type, or if the full view of a private subtype is itself private, the
243 -- back-end has no way to compute the actual size of this type. We build
244 -- an internal subtype declaration of the proper parent type to convey
245 -- this information. This extra mechanism is needed because a full
246 -- view cannot itself have a full view (it would get clobbered during
247 -- view exchanges).
248
249 procedure Check_Access_Discriminant_Requires_Limited
250 (D : Node_Id;
251 Loc : Node_Id);
252 -- Check the restriction that the type to which an access discriminant
253 -- belongs must be a concurrent type or a descendant of a type with
254 -- the reserved word 'limited' in its declaration.
255
256 procedure Check_Anonymous_Access_Components
257 (Typ_Decl : Node_Id;
258 Typ : Entity_Id;
259 Prev : Entity_Id;
260 Comp_List : Node_Id);
261 -- Ada 2005 AI-382: an access component in a record definition can refer to
262 -- the enclosing record, in which case it denotes the type itself, and not
263 -- the current instance of the type. We create an anonymous access type for
264 -- the component, and flag it as an access to a component, so accessibility
265 -- checks are properly performed on it. The declaration of the access type
266 -- is placed ahead of that of the record to prevent order-of-elaboration
267 -- circularity issues in Gigi. We create an incomplete type for the record
268 -- declaration, which is the designated type of the anonymous access.
269
270 procedure Check_Delta_Expression (E : Node_Id);
271 -- Check that the expression represented by E is suitable for use as a
272 -- delta expression, i.e. it is of real type and is static.
273
274 procedure Check_Digits_Expression (E : Node_Id);
275 -- Check that the expression represented by E is suitable for use as a
276 -- digits expression, i.e. it is of integer type, positive and static.
277
278 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
279 -- Validate the initialization of an object declaration. T is the required
280 -- type, and Exp is the initialization expression.
281
282 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
283 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
284
285 procedure Check_Or_Process_Discriminants
286 (N : Node_Id;
287 T : Entity_Id;
288 Prev : Entity_Id := Empty);
289 -- If N is the full declaration of the completion T of an incomplete or
290 -- private type, check its discriminants (which are already known to be
291 -- conformant with those of the partial view, see Find_Type_Name),
292 -- otherwise process them. Prev is the entity of the partial declaration,
293 -- if any.
294
295 procedure Check_Real_Bound (Bound : Node_Id);
296 -- Check given bound for being of real type and static. If not, post an
297 -- appropriate message, and rewrite the bound with the real literal zero.
298
299 procedure Constant_Redeclaration
300 (Id : Entity_Id;
301 N : Node_Id;
302 T : out Entity_Id);
303 -- Various checks on legality of full declaration of deferred constant.
304 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
305 -- node. The caller has not yet set any attributes of this entity.
306
307 function Contain_Interface
308 (Iface : Entity_Id;
309 Ifaces : Elist_Id) return Boolean;
310 -- Ada 2005: Determine whether Iface is present in the list Ifaces
311
312 procedure Convert_Scalar_Bounds
313 (N : Node_Id;
314 Parent_Type : Entity_Id;
315 Derived_Type : Entity_Id;
316 Loc : Source_Ptr);
317 -- For derived scalar types, convert the bounds in the type definition to
318 -- the derived type, and complete their analysis. Given a constraint of the
319 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
320 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
321 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
322 -- subtype are conversions of those bounds to the derived_type, so that
323 -- their typing is consistent.
324
325 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
326 -- Copies attributes from array base type T2 to array base type T1. Copies
327 -- only attributes that apply to base types, but not subtypes.
328
329 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
330 -- Copies attributes from array subtype T2 to array subtype T1. Copies
331 -- attributes that apply to both subtypes and base types.
332
333 procedure Create_Constrained_Components
334 (Subt : Entity_Id;
335 Decl_Node : Node_Id;
336 Typ : Entity_Id;
337 Constraints : Elist_Id);
338 -- Build the list of entities for a constrained discriminated record
339 -- subtype. If a component depends on a discriminant, replace its subtype
340 -- using the discriminant values in the discriminant constraint. Subt
341 -- is the defining identifier for the subtype whose list of constrained
342 -- entities we will create. Decl_Node is the type declaration node where
343 -- we will attach all the itypes created. Typ is the base discriminated
344 -- type for the subtype Subt. Constraints is the list of discriminant
345 -- constraints for Typ.
346
347 function Constrain_Component_Type
348 (Comp : Entity_Id;
349 Constrained_Typ : Entity_Id;
350 Related_Node : Node_Id;
351 Typ : Entity_Id;
352 Constraints : Elist_Id) return Entity_Id;
353 -- Given a discriminated base type Typ, a list of discriminant constraints,
354 -- Constraints, for Typ and a component Comp of Typ, create and return the
355 -- type corresponding to Etype (Comp) where all discriminant references
356 -- are replaced with the corresponding constraint. If Etype (Comp) contains
357 -- no discriminant references then it is returned as-is. Constrained_Typ
358 -- is the final constrained subtype to which the constrained component
359 -- belongs. Related_Node is the node where we attach all created itypes.
360
361 procedure Constrain_Access
362 (Def_Id : in out Entity_Id;
363 S : Node_Id;
364 Related_Nod : Node_Id);
365 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
366 -- an anonymous type created for a subtype indication. In that case it is
367 -- created in the procedure and attached to Related_Nod.
368
369 procedure Constrain_Array
370 (Def_Id : in out Entity_Id;
371 SI : Node_Id;
372 Related_Nod : Node_Id;
373 Related_Id : Entity_Id;
374 Suffix : Character);
375 -- Apply a list of index constraints to an unconstrained array type. The
376 -- first parameter is the entity for the resulting subtype. A value of
377 -- Empty for Def_Id indicates that an implicit type must be created, but
378 -- creation is delayed (and must be done by this procedure) because other
379 -- subsidiary implicit types must be created first (which is why Def_Id
380 -- is an in/out parameter). The second parameter is a subtype indication
381 -- node for the constrained array to be created (e.g. something of the
382 -- form string (1 .. 10)). Related_Nod gives the place where this type
383 -- has to be inserted in the tree. The Related_Id and Suffix parameters
384 -- are used to build the associated Implicit type name.
385
386 procedure Constrain_Concurrent
387 (Def_Id : in out Entity_Id;
388 SI : Node_Id;
389 Related_Nod : Node_Id;
390 Related_Id : Entity_Id;
391 Suffix : Character);
392 -- Apply list of discriminant constraints to an unconstrained concurrent
393 -- type.
394 --
395 -- SI is the N_Subtype_Indication node containing the constraint and
396 -- the unconstrained type to constrain.
397 --
398 -- Def_Id is the entity for the resulting constrained subtype. A value
399 -- of Empty for Def_Id indicates that an implicit type must be created,
400 -- but creation is delayed (and must be done by this procedure) because
401 -- other subsidiary implicit types must be created first (which is why
402 -- Def_Id is an in/out parameter).
403 --
404 -- Related_Nod gives the place where this type has to be inserted
405 -- in the tree.
406 --
407 -- The last two arguments are used to create its external name if needed.
408
409 function Constrain_Corresponding_Record
410 (Prot_Subt : Entity_Id;
411 Corr_Rec : Entity_Id;
412 Related_Nod : Node_Id) return Entity_Id;
413 -- When constraining a protected type or task type with discriminants,
414 -- constrain the corresponding record with the same discriminant values.
415
416 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
417 -- Constrain a decimal fixed point type with a digits constraint and/or a
418 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
419
420 procedure Constrain_Discriminated_Type
421 (Def_Id : Entity_Id;
422 S : Node_Id;
423 Related_Nod : Node_Id;
424 For_Access : Boolean := False);
425 -- Process discriminant constraints of composite type. Verify that values
426 -- have been provided for all discriminants, that the original type is
427 -- unconstrained, and that the types of the supplied expressions match
428 -- the discriminant types. The first three parameters are like in routine
429 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
430 -- of For_Access.
431
432 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
433 -- Constrain an enumeration type with a range constraint. This is identical
434 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
435
436 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
437 -- Constrain a floating point type with either a digits constraint
438 -- and/or a range constraint, building a E_Floating_Point_Subtype.
439
440 procedure Constrain_Index
441 (Index : Node_Id;
442 S : Node_Id;
443 Related_Nod : Node_Id;
444 Related_Id : Entity_Id;
445 Suffix : Character;
446 Suffix_Index : Nat);
447 -- Process an index constraint S in a constrained array declaration. The
448 -- constraint can be a subtype name, or a range with or without an explicit
449 -- subtype mark. The index is the corresponding index of the unconstrained
450 -- array. The Related_Id and Suffix parameters are used to build the
451 -- associated Implicit type name.
452
453 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
454 -- Build subtype of a signed or modular integer type
455
456 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
457 -- Constrain an ordinary fixed point type with a range constraint, and
458 -- build an E_Ordinary_Fixed_Point_Subtype entity.
459
460 procedure Copy_And_Swap (Priv, Full : Entity_Id);
461 -- Copy the Priv entity into the entity of its full declaration then swap
462 -- the two entities in such a manner that the former private type is now
463 -- seen as a full type.
464
465 procedure Decimal_Fixed_Point_Type_Declaration
466 (T : Entity_Id;
467 Def : Node_Id);
468 -- Create a new decimal fixed point type, and apply the constraint to
469 -- obtain a subtype of this new type.
470
471 procedure Complete_Private_Subtype
472 (Priv : Entity_Id;
473 Full : Entity_Id;
474 Full_Base : Entity_Id;
475 Related_Nod : Node_Id);
476 -- Complete the implicit full view of a private subtype by setting the
477 -- appropriate semantic fields. If the full view of the parent is a record
478 -- type, build constrained components of subtype.
479
480 procedure Derive_Progenitor_Subprograms
481 (Parent_Type : Entity_Id;
482 Tagged_Type : Entity_Id);
483 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
484 -- operations of progenitors of Tagged_Type, and replace the subsidiary
485 -- subtypes with Tagged_Type, to build the specs of the inherited interface
486 -- primitives. The derived primitives are aliased to those of the
487 -- interface. This routine takes care also of transferring to the full view
488 -- subprograms associated with the partial view of Tagged_Type that cover
489 -- interface primitives.
490
491 procedure Derived_Standard_Character
492 (N : Node_Id;
493 Parent_Type : Entity_Id;
494 Derived_Type : Entity_Id);
495 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
496 -- derivations from types Standard.Character and Standard.Wide_Character.
497
498 procedure Derived_Type_Declaration
499 (T : Entity_Id;
500 N : Node_Id;
501 Is_Completion : Boolean);
502 -- Process a derived type declaration. Build_Derived_Type is invoked
503 -- to process the actual derived type definition. Parameters N and
504 -- Is_Completion have the same meaning as in Build_Derived_Type.
505 -- T is the N_Defining_Identifier for the entity defined in the
506 -- N_Full_Type_Declaration node N, that is T is the derived type.
507
508 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
509 -- Insert each literal in symbol table, as an overloadable identifier. Each
510 -- enumeration type is mapped into a sequence of integers, and each literal
511 -- is defined as a constant with integer value. If any of the literals are
512 -- character literals, the type is a character type, which means that
513 -- strings are legal aggregates for arrays of components of the type.
514
515 function Expand_To_Stored_Constraint
516 (Typ : Entity_Id;
517 Constraint : Elist_Id) return Elist_Id;
518 -- Given a constraint (i.e. a list of expressions) on the discriminants of
519 -- Typ, expand it into a constraint on the stored discriminants and return
520 -- the new list of expressions constraining the stored discriminants.
521
522 function Find_Type_Of_Object
523 (Obj_Def : Node_Id;
524 Related_Nod : Node_Id) return Entity_Id;
525 -- Get type entity for object referenced by Obj_Def, attaching the implicit
526 -- types generated to Related_Nod.
527
528 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
529 -- Create a new float and apply the constraint to obtain subtype of it
530
531 function Has_Range_Constraint (N : Node_Id) return Boolean;
532 -- Given an N_Subtype_Indication node N, return True if a range constraint
533 -- is present, either directly, or as part of a digits or delta constraint.
534 -- In addition, a digits constraint in the decimal case returns True, since
535 -- it establishes a default range if no explicit range is present.
536
537 function Inherit_Components
538 (N : Node_Id;
539 Parent_Base : Entity_Id;
540 Derived_Base : Entity_Id;
541 Is_Tagged : Boolean;
542 Inherit_Discr : Boolean;
543 Discs : Elist_Id) return Elist_Id;
544 -- Called from Build_Derived_Record_Type to inherit the components of
545 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
546 -- For more information on derived types and component inheritance please
547 -- consult the comment above the body of Build_Derived_Record_Type.
548 --
549 -- N is the original derived type declaration
550 --
551 -- Is_Tagged is set if we are dealing with tagged types
552 --
553 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
554 -- Parent_Base, otherwise no discriminants are inherited.
555 --
556 -- Discs gives the list of constraints that apply to Parent_Base in the
557 -- derived type declaration. If Discs is set to No_Elist, then we have
558 -- the following situation:
559 --
560 -- type Parent (D1..Dn : ..) is [tagged] record ...;
561 -- type Derived is new Parent [with ...];
562 --
563 -- which gets treated as
564 --
565 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
566 --
567 -- For untagged types the returned value is an association list. The list
568 -- starts from the association (Parent_Base => Derived_Base), and then it
569 -- contains a sequence of the associations of the form
570 --
571 -- (Old_Component => New_Component),
572 --
573 -- where Old_Component is the Entity_Id of a component in Parent_Base and
574 -- New_Component is the Entity_Id of the corresponding component in
575 -- Derived_Base. For untagged records, this association list is needed when
576 -- copying the record declaration for the derived base. In the tagged case
577 -- the value returned is irrelevant.
578
579 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
580 -- Propagate static and dynamic predicate flags from a parent to the
581 -- subtype in a subtype declaration with and without constraints.
582
583 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean;
584 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
585 -- Determine whether subprogram Subp is a procedure subject to pragma
586 -- Extensions_Visible with value False and has at least one controlling
587 -- parameter of mode OUT.
588
589 function Is_Valid_Constraint_Kind
590 (T_Kind : Type_Kind;
591 Constraint_Kind : Node_Kind) return Boolean;
592 -- Returns True if it is legal to apply the given kind of constraint to the
593 -- given kind of type (index constraint to an array type, for example).
594
595 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
596 -- Create new modular type. Verify that modulus is in bounds
597
598 procedure New_Concatenation_Op (Typ : Entity_Id);
599 -- Create an abbreviated declaration for an operator in order to
600 -- materialize concatenation on array types.
601
602 procedure Ordinary_Fixed_Point_Type_Declaration
603 (T : Entity_Id;
604 Def : Node_Id);
605 -- Create a new ordinary fixed point type, and apply the constraint to
606 -- obtain subtype of it.
607
608 procedure Prepare_Private_Subtype_Completion
609 (Id : Entity_Id;
610 Related_Nod : Node_Id);
611 -- Id is a subtype of some private type. Creates the full declaration
612 -- associated with Id whenever possible, i.e. when the full declaration
613 -- of the base type is already known. Records each subtype into
614 -- Private_Dependents of the base type.
615
616 procedure Process_Incomplete_Dependents
617 (N : Node_Id;
618 Full_T : Entity_Id;
619 Inc_T : Entity_Id);
620 -- Process all entities that depend on an incomplete type. There include
621 -- subtypes, subprogram types that mention the incomplete type in their
622 -- profiles, and subprogram with access parameters that designate the
623 -- incomplete type.
624
625 -- Inc_T is the defining identifier of an incomplete type declaration, its
626 -- Ekind is E_Incomplete_Type.
627 --
628 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
629 --
630 -- Full_T is N's defining identifier.
631 --
632 -- Subtypes of incomplete types with discriminants are completed when the
633 -- parent type is. This is simpler than private subtypes, because they can
634 -- only appear in the same scope, and there is no need to exchange views.
635 -- Similarly, access_to_subprogram types may have a parameter or a return
636 -- type that is an incomplete type, and that must be replaced with the
637 -- full type.
638 --
639 -- If the full type is tagged, subprogram with access parameters that
640 -- designated the incomplete may be primitive operations of the full type,
641 -- and have to be processed accordingly.
642
643 procedure Process_Real_Range_Specification (Def : Node_Id);
644 -- Given the type definition for a real type, this procedure processes and
645 -- checks the real range specification of this type definition if one is
646 -- present. If errors are found, error messages are posted, and the
647 -- Real_Range_Specification of Def is reset to Empty.
648
649 procedure Record_Type_Declaration
650 (T : Entity_Id;
651 N : Node_Id;
652 Prev : Entity_Id);
653 -- Process a record type declaration (for both untagged and tagged
654 -- records). Parameters T and N are exactly like in procedure
655 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
656 -- for this routine. If this is the completion of an incomplete type
657 -- declaration, Prev is the entity of the incomplete declaration, used for
658 -- cross-referencing. Otherwise Prev = T.
659
660 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
661 -- This routine is used to process the actual record type definition (both
662 -- for untagged and tagged records). Def is a record type definition node.
663 -- This procedure analyzes the components in this record type definition.
664 -- Prev_T is the entity for the enclosing record type. It is provided so
665 -- that its Has_Task flag can be set if any of the component have Has_Task
666 -- set. If the declaration is the completion of an incomplete type
667 -- declaration, Prev_T is the original incomplete type, whose full view is
668 -- the record type.
669
670 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
671 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
672 -- build a copy of the declaration tree of the parent, and we create
673 -- independently the list of components for the derived type. Semantic
674 -- information uses the component entities, but record representation
675 -- clauses are validated on the declaration tree. This procedure replaces
676 -- discriminants and components in the declaration with those that have
677 -- been created by Inherit_Components.
678
679 procedure Set_Fixed_Range
680 (E : Entity_Id;
681 Loc : Source_Ptr;
682 Lo : Ureal;
683 Hi : Ureal);
684 -- Build a range node with the given bounds and set it as the Scalar_Range
685 -- of the given fixed-point type entity. Loc is the source location used
686 -- for the constructed range. See body for further details.
687
688 procedure Set_Scalar_Range_For_Subtype
689 (Def_Id : Entity_Id;
690 R : Node_Id;
691 Subt : Entity_Id);
692 -- This routine is used to set the scalar range field for a subtype given
693 -- Def_Id, the entity for the subtype, and R, the range expression for the
694 -- scalar range. Subt provides the parent subtype to be used to analyze,
695 -- resolve, and check the given range.
696
697 procedure Set_Default_SSO (T : Entity_Id);
698 -- T is the entity for an array or record being declared. This procedure
699 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
700 -- to the setting of Opt.Default_SSO.
701
702 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
703 -- Create a new signed integer entity, and apply the constraint to obtain
704 -- the required first named subtype of this type.
705
706 procedure Set_Stored_Constraint_From_Discriminant_Constraint
707 (E : Entity_Id);
708 -- E is some record type. This routine computes E's Stored_Constraint
709 -- from its Discriminant_Constraint.
710
711 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
712 -- Check that an entity in a list of progenitors is an interface,
713 -- emit error otherwise.
714
715 -----------------------
716 -- Access_Definition --
717 -----------------------
718
719 function Access_Definition
720 (Related_Nod : Node_Id;
721 N : Node_Id) return Entity_Id
722 is
723 Anon_Type : Entity_Id;
724 Anon_Scope : Entity_Id;
725 Desig_Type : Entity_Id;
726 Enclosing_Prot_Type : Entity_Id := Empty;
727
728 begin
729 Check_SPARK_05_Restriction ("access type is not allowed", N);
730
731 if Is_Entry (Current_Scope)
732 and then Is_Task_Type (Etype (Scope (Current_Scope)))
733 then
734 Error_Msg_N ("task entries cannot have access parameters", N);
735 return Empty;
736 end if;
737
738 -- Ada 2005: For an object declaration the corresponding anonymous
739 -- type is declared in the current scope.
740
741 -- If the access definition is the return type of another access to
742 -- function, scope is the current one, because it is the one of the
743 -- current type declaration, except for the pathological case below.
744
745 if Nkind_In (Related_Nod, N_Object_Declaration,
746 N_Access_Function_Definition)
747 then
748 Anon_Scope := Current_Scope;
749
750 -- A pathological case: function returning access functions that
751 -- return access functions, etc. Each anonymous access type created
752 -- is in the enclosing scope of the outermost function.
753
754 declare
755 Par : Node_Id;
756
757 begin
758 Par := Related_Nod;
759 while Nkind_In (Par, N_Access_Function_Definition,
760 N_Access_Definition)
761 loop
762 Par := Parent (Par);
763 end loop;
764
765 if Nkind (Par) = N_Function_Specification then
766 Anon_Scope := Scope (Defining_Entity (Par));
767 end if;
768 end;
769
770 -- For the anonymous function result case, retrieve the scope of the
771 -- function specification's associated entity rather than using the
772 -- current scope. The current scope will be the function itself if the
773 -- formal part is currently being analyzed, but will be the parent scope
774 -- in the case of a parameterless function, and we always want to use
775 -- the function's parent scope. Finally, if the function is a child
776 -- unit, we must traverse the tree to retrieve the proper entity.
777
778 elsif Nkind (Related_Nod) = N_Function_Specification
779 and then Nkind (Parent (N)) /= N_Parameter_Specification
780 then
781 -- If the current scope is a protected type, the anonymous access
782 -- is associated with one of the protected operations, and must
783 -- be available in the scope that encloses the protected declaration.
784 -- Otherwise the type is in the scope enclosing the subprogram.
785
786 -- If the function has formals, The return type of a subprogram
787 -- declaration is analyzed in the scope of the subprogram (see
788 -- Process_Formals) and thus the protected type, if present, is
789 -- the scope of the current function scope.
790
791 if Ekind (Current_Scope) = E_Protected_Type then
792 Enclosing_Prot_Type := Current_Scope;
793
794 elsif Ekind (Current_Scope) = E_Function
795 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
796 then
797 Enclosing_Prot_Type := Scope (Current_Scope);
798 end if;
799
800 if Present (Enclosing_Prot_Type) then
801 Anon_Scope := Scope (Enclosing_Prot_Type);
802
803 else
804 Anon_Scope := Scope (Defining_Entity (Related_Nod));
805 end if;
806
807 -- For an access type definition, if the current scope is a child
808 -- unit it is the scope of the type.
809
810 elsif Is_Compilation_Unit (Current_Scope) then
811 Anon_Scope := Current_Scope;
812
813 -- For access formals, access components, and access discriminants, the
814 -- scope is that of the enclosing declaration,
815
816 else
817 Anon_Scope := Scope (Current_Scope);
818 end if;
819
820 Anon_Type :=
821 Create_Itype
822 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
823
824 if All_Present (N)
825 and then Ada_Version >= Ada_2005
826 then
827 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
828 end if;
829
830 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
831 -- the corresponding semantic routine
832
833 if Present (Access_To_Subprogram_Definition (N)) then
834
835 -- Compiler runtime units are compiled in Ada 2005 mode when building
836 -- the runtime library but must also be compilable in Ada 95 mode
837 -- (when bootstrapping the compiler).
838
839 Check_Compiler_Unit ("anonymous access to subprogram", N);
840
841 Access_Subprogram_Declaration
842 (T_Name => Anon_Type,
843 T_Def => Access_To_Subprogram_Definition (N));
844
845 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
846 Set_Ekind
847 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
848 else
849 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
850 end if;
851
852 Set_Can_Use_Internal_Rep
853 (Anon_Type, not Always_Compatible_Rep_On_Target);
854
855 -- If the anonymous access is associated with a protected operation,
856 -- create a reference to it after the enclosing protected definition
857 -- because the itype will be used in the subsequent bodies.
858
859 -- If the anonymous access itself is protected, a full type
860 -- declaratiton will be created for it, so that the equivalent
861 -- record type can be constructed. For further details, see
862 -- Replace_Anonymous_Access_To_Protected-Subprogram.
863
864 if Ekind (Current_Scope) = E_Protected_Type
865 and then not Protected_Present (Access_To_Subprogram_Definition (N))
866 then
867 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
868 end if;
869
870 return Anon_Type;
871 end if;
872
873 Find_Type (Subtype_Mark (N));
874 Desig_Type := Entity (Subtype_Mark (N));
875
876 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
877 Set_Etype (Anon_Type, Anon_Type);
878
879 -- Make sure the anonymous access type has size and alignment fields
880 -- set, as required by gigi. This is necessary in the case of the
881 -- Task_Body_Procedure.
882
883 if not Has_Private_Component (Desig_Type) then
884 Layout_Type (Anon_Type);
885 end if;
886
887 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
888 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
889 -- the null value is allowed. In Ada 95 the null value is never allowed.
890
891 if Ada_Version >= Ada_2005 then
892 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
893 else
894 Set_Can_Never_Be_Null (Anon_Type, True);
895 end if;
896
897 -- The anonymous access type is as public as the discriminated type or
898 -- subprogram that defines it. It is imported (for back-end purposes)
899 -- if the designated type is.
900
901 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
902
903 -- Ada 2005 (AI-231): Propagate the access-constant attribute
904
905 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
906
907 -- The context is either a subprogram declaration, object declaration,
908 -- or an access discriminant, in a private or a full type declaration.
909 -- In the case of a subprogram, if the designated type is incomplete,
910 -- the operation will be a primitive operation of the full type, to be
911 -- updated subsequently. If the type is imported through a limited_with
912 -- clause, the subprogram is not a primitive operation of the type
913 -- (which is declared elsewhere in some other scope).
914
915 if Ekind (Desig_Type) = E_Incomplete_Type
916 and then not From_Limited_With (Desig_Type)
917 and then Is_Overloadable (Current_Scope)
918 then
919 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
920 Set_Has_Delayed_Freeze (Current_Scope);
921 end if;
922
923 -- Ada 2005: If the designated type is an interface that may contain
924 -- tasks, create a Master entity for the declaration. This must be done
925 -- before expansion of the full declaration, because the declaration may
926 -- include an expression that is an allocator, whose expansion needs the
927 -- proper Master for the created tasks.
928
929 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
930 then
931 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
932 then
933 Build_Class_Wide_Master (Anon_Type);
934
935 -- Similarly, if the type is an anonymous access that designates
936 -- tasks, create a master entity for it in the current context.
937
938 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
939 then
940 Build_Master_Entity (Defining_Identifier (Related_Nod));
941 Build_Master_Renaming (Anon_Type);
942 end if;
943 end if;
944
945 -- For a private component of a protected type, it is imperative that
946 -- the back-end elaborate the type immediately after the protected
947 -- declaration, because this type will be used in the declarations
948 -- created for the component within each protected body, so we must
949 -- create an itype reference for it now.
950
951 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
952 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
953
954 -- Similarly, if the access definition is the return result of a
955 -- function, create an itype reference for it because it will be used
956 -- within the function body. For a regular function that is not a
957 -- compilation unit, insert reference after the declaration. For a
958 -- protected operation, insert it after the enclosing protected type
959 -- declaration. In either case, do not create a reference for a type
960 -- obtained through a limited_with clause, because this would introduce
961 -- semantic dependencies.
962
963 -- Similarly, do not create a reference if the designated type is a
964 -- generic formal, because no use of it will reach the backend.
965
966 elsif Nkind (Related_Nod) = N_Function_Specification
967 and then not From_Limited_With (Desig_Type)
968 and then not Is_Generic_Type (Desig_Type)
969 then
970 if Present (Enclosing_Prot_Type) then
971 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
972
973 elsif Is_List_Member (Parent (Related_Nod))
974 and then Nkind (Parent (N)) /= N_Parameter_Specification
975 then
976 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
977 end if;
978
979 -- Finally, create an itype reference for an object declaration of an
980 -- anonymous access type. This is strictly necessary only for deferred
981 -- constants, but in any case will avoid out-of-scope problems in the
982 -- back-end.
983
984 elsif Nkind (Related_Nod) = N_Object_Declaration then
985 Build_Itype_Reference (Anon_Type, Related_Nod);
986 end if;
987
988 return Anon_Type;
989 end Access_Definition;
990
991 -----------------------------------
992 -- Access_Subprogram_Declaration --
993 -----------------------------------
994
995 procedure Access_Subprogram_Declaration
996 (T_Name : Entity_Id;
997 T_Def : Node_Id)
998 is
999 procedure Check_For_Premature_Usage (Def : Node_Id);
1000 -- Check that type T_Name is not used, directly or recursively, as a
1001 -- parameter or a return type in Def. Def is either a subtype, an
1002 -- access_definition, or an access_to_subprogram_definition.
1003
1004 -------------------------------
1005 -- Check_For_Premature_Usage --
1006 -------------------------------
1007
1008 procedure Check_For_Premature_Usage (Def : Node_Id) is
1009 Param : Node_Id;
1010
1011 begin
1012 -- Check for a subtype mark
1013
1014 if Nkind (Def) in N_Has_Etype then
1015 if Etype (Def) = T_Name then
1016 Error_Msg_N
1017 ("type& cannot be used before end of its declaration", Def);
1018 end if;
1019
1020 -- If this is not a subtype, then this is an access_definition
1021
1022 elsif Nkind (Def) = N_Access_Definition then
1023 if Present (Access_To_Subprogram_Definition (Def)) then
1024 Check_For_Premature_Usage
1025 (Access_To_Subprogram_Definition (Def));
1026 else
1027 Check_For_Premature_Usage (Subtype_Mark (Def));
1028 end if;
1029
1030 -- The only cases left are N_Access_Function_Definition and
1031 -- N_Access_Procedure_Definition.
1032
1033 else
1034 if Present (Parameter_Specifications (Def)) then
1035 Param := First (Parameter_Specifications (Def));
1036 while Present (Param) loop
1037 Check_For_Premature_Usage (Parameter_Type (Param));
1038 Param := Next (Param);
1039 end loop;
1040 end if;
1041
1042 if Nkind (Def) = N_Access_Function_Definition then
1043 Check_For_Premature_Usage (Result_Definition (Def));
1044 end if;
1045 end if;
1046 end Check_For_Premature_Usage;
1047
1048 -- Local variables
1049
1050 Formals : constant List_Id := Parameter_Specifications (T_Def);
1051 Formal : Entity_Id;
1052 D_Ityp : Node_Id;
1053 Desig_Type : constant Entity_Id :=
1054 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1055
1056 -- Start of processing for Access_Subprogram_Declaration
1057
1058 begin
1059 Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1060
1061 -- Associate the Itype node with the inner full-type declaration or
1062 -- subprogram spec or entry body. This is required to handle nested
1063 -- anonymous declarations. For example:
1064
1065 -- procedure P
1066 -- (X : access procedure
1067 -- (Y : access procedure
1068 -- (Z : access T)))
1069
1070 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1071 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1072 N_Private_Type_Declaration,
1073 N_Private_Extension_Declaration,
1074 N_Procedure_Specification,
1075 N_Function_Specification,
1076 N_Entry_Body)
1077
1078 or else
1079 Nkind_In (D_Ityp, N_Object_Declaration,
1080 N_Object_Renaming_Declaration,
1081 N_Formal_Object_Declaration,
1082 N_Formal_Type_Declaration,
1083 N_Task_Type_Declaration,
1084 N_Protected_Type_Declaration))
1085 loop
1086 D_Ityp := Parent (D_Ityp);
1087 pragma Assert (D_Ityp /= Empty);
1088 end loop;
1089
1090 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1091
1092 if Nkind_In (D_Ityp, N_Procedure_Specification,
1093 N_Function_Specification)
1094 then
1095 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1096
1097 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1098 N_Object_Declaration,
1099 N_Object_Renaming_Declaration,
1100 N_Formal_Type_Declaration)
1101 then
1102 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1103 end if;
1104
1105 if Nkind (T_Def) = N_Access_Function_Definition then
1106 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1107 declare
1108 Acc : constant Node_Id := Result_Definition (T_Def);
1109
1110 begin
1111 if Present (Access_To_Subprogram_Definition (Acc))
1112 and then
1113 Protected_Present (Access_To_Subprogram_Definition (Acc))
1114 then
1115 Set_Etype
1116 (Desig_Type,
1117 Replace_Anonymous_Access_To_Protected_Subprogram
1118 (T_Def));
1119
1120 else
1121 Set_Etype
1122 (Desig_Type,
1123 Access_Definition (T_Def, Result_Definition (T_Def)));
1124 end if;
1125 end;
1126
1127 else
1128 Analyze (Result_Definition (T_Def));
1129
1130 declare
1131 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1132
1133 begin
1134 -- If a null exclusion is imposed on the result type, then
1135 -- create a null-excluding itype (an access subtype) and use
1136 -- it as the function's Etype.
1137
1138 if Is_Access_Type (Typ)
1139 and then Null_Exclusion_In_Return_Present (T_Def)
1140 then
1141 Set_Etype (Desig_Type,
1142 Create_Null_Excluding_Itype
1143 (T => Typ,
1144 Related_Nod => T_Def,
1145 Scope_Id => Current_Scope));
1146
1147 else
1148 if From_Limited_With (Typ) then
1149
1150 -- AI05-151: Incomplete types are allowed in all basic
1151 -- declarations, including access to subprograms.
1152
1153 if Ada_Version >= Ada_2012 then
1154 null;
1155
1156 else
1157 Error_Msg_NE
1158 ("illegal use of incomplete type&",
1159 Result_Definition (T_Def), Typ);
1160 end if;
1161
1162 elsif Ekind (Current_Scope) = E_Package
1163 and then In_Private_Part (Current_Scope)
1164 then
1165 if Ekind (Typ) = E_Incomplete_Type then
1166 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1167
1168 elsif Is_Class_Wide_Type (Typ)
1169 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1170 then
1171 Append_Elmt
1172 (Desig_Type, Private_Dependents (Etype (Typ)));
1173 end if;
1174 end if;
1175
1176 Set_Etype (Desig_Type, Typ);
1177 end if;
1178 end;
1179 end if;
1180
1181 if not (Is_Type (Etype (Desig_Type))) then
1182 Error_Msg_N
1183 ("expect type in function specification",
1184 Result_Definition (T_Def));
1185 end if;
1186
1187 else
1188 Set_Etype (Desig_Type, Standard_Void_Type);
1189 end if;
1190
1191 if Present (Formals) then
1192 Push_Scope (Desig_Type);
1193
1194 -- Some special tests here. These special tests can be removed
1195 -- if and when Itypes always have proper parent pointers to their
1196 -- declarations???
1197
1198 -- Special test 1) Link defining_identifier of formals. Required by
1199 -- First_Formal to provide its functionality.
1200
1201 declare
1202 F : Node_Id;
1203
1204 begin
1205 F := First (Formals);
1206
1207 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1208 -- when it is part of an unconstrained type and subtype expansion
1209 -- is disabled. To avoid back-end problems with shared profiles,
1210 -- use previous subprogram type as the designated type, and then
1211 -- remove scope added above.
1212
1213 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1214 then
1215 Set_Etype (T_Name, T_Name);
1216 Init_Size_Align (T_Name);
1217 Set_Directly_Designated_Type (T_Name,
1218 Scope (Defining_Identifier (F)));
1219 End_Scope;
1220 return;
1221 end if;
1222
1223 while Present (F) loop
1224 if No (Parent (Defining_Identifier (F))) then
1225 Set_Parent (Defining_Identifier (F), F);
1226 end if;
1227
1228 Next (F);
1229 end loop;
1230 end;
1231
1232 Process_Formals (Formals, Parent (T_Def));
1233
1234 -- Special test 2) End_Scope requires that the parent pointer be set
1235 -- to something reasonable, but Itypes don't have parent pointers. So
1236 -- we set it and then unset it ???
1237
1238 Set_Parent (Desig_Type, T_Name);
1239 End_Scope;
1240 Set_Parent (Desig_Type, Empty);
1241 end if;
1242
1243 -- Check for premature usage of the type being defined
1244
1245 Check_For_Premature_Usage (T_Def);
1246
1247 -- The return type and/or any parameter type may be incomplete. Mark the
1248 -- subprogram_type as depending on the incomplete type, so that it can
1249 -- be updated when the full type declaration is seen. This only applies
1250 -- to incomplete types declared in some enclosing scope, not to limited
1251 -- views from other packages.
1252
1253 -- Prior to Ada 2012, access to functions can only have in_parameters.
1254
1255 if Present (Formals) then
1256 Formal := First_Formal (Desig_Type);
1257 while Present (Formal) loop
1258 if Ekind (Formal) /= E_In_Parameter
1259 and then Nkind (T_Def) = N_Access_Function_Definition
1260 and then Ada_Version < Ada_2012
1261 then
1262 Error_Msg_N ("functions can only have IN parameters", Formal);
1263 end if;
1264
1265 if Ekind (Etype (Formal)) = E_Incomplete_Type
1266 and then In_Open_Scopes (Scope (Etype (Formal)))
1267 then
1268 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1269 Set_Has_Delayed_Freeze (Desig_Type);
1270 end if;
1271
1272 Next_Formal (Formal);
1273 end loop;
1274 end if;
1275
1276 -- Check whether an indirect call without actuals may be possible. This
1277 -- is used when resolving calls whose result is then indexed.
1278
1279 May_Need_Actuals (Desig_Type);
1280
1281 -- If the return type is incomplete, this is legal as long as the type
1282 -- is declared in the current scope and will be completed in it (rather
1283 -- than being part of limited view).
1284
1285 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1286 and then not Has_Delayed_Freeze (Desig_Type)
1287 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1288 then
1289 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1290 Set_Has_Delayed_Freeze (Desig_Type);
1291 end if;
1292
1293 Check_Delayed_Subprogram (Desig_Type);
1294
1295 if Protected_Present (T_Def) then
1296 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1297 Set_Convention (Desig_Type, Convention_Protected);
1298 else
1299 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1300 end if;
1301
1302 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1303
1304 Set_Etype (T_Name, T_Name);
1305 Init_Size_Align (T_Name);
1306 Set_Directly_Designated_Type (T_Name, Desig_Type);
1307
1308 Generate_Reference_To_Formals (T_Name);
1309
1310 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1311
1312 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1313
1314 Check_Restriction (No_Access_Subprograms, T_Def);
1315 end Access_Subprogram_Declaration;
1316
1317 ----------------------------
1318 -- Access_Type_Declaration --
1319 ----------------------------
1320
1321 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1322 P : constant Node_Id := Parent (Def);
1323 S : constant Node_Id := Subtype_Indication (Def);
1324
1325 Full_Desig : Entity_Id;
1326
1327 begin
1328 Check_SPARK_05_Restriction ("access type is not allowed", Def);
1329
1330 -- Check for permissible use of incomplete type
1331
1332 if Nkind (S) /= N_Subtype_Indication then
1333 Analyze (S);
1334
1335 if Present (Entity (S))
1336 and then Ekind (Root_Type (Entity (S))) = E_Incomplete_Type
1337 then
1338 Set_Directly_Designated_Type (T, Entity (S));
1339
1340 -- If the designated type is a limited view, we cannot tell if
1341 -- the full view contains tasks, and there is no way to handle
1342 -- that full view in a client. We create a master entity for the
1343 -- scope, which will be used when a client determines that one
1344 -- is needed.
1345
1346 if From_Limited_With (Entity (S))
1347 and then not Is_Class_Wide_Type (Entity (S))
1348 then
1349 Set_Ekind (T, E_Access_Type);
1350 Build_Master_Entity (T);
1351 Build_Master_Renaming (T);
1352 end if;
1353
1354 else
1355 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1356 end if;
1357
1358 -- If the access definition is of the form: ACCESS NOT NULL ..
1359 -- the subtype indication must be of an access type. Create
1360 -- a null-excluding subtype of it.
1361
1362 if Null_Excluding_Subtype (Def) then
1363 if not Is_Access_Type (Entity (S)) then
1364 Error_Msg_N ("null exclusion must apply to access type", Def);
1365
1366 else
1367 declare
1368 Loc : constant Source_Ptr := Sloc (S);
1369 Decl : Node_Id;
1370 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1371
1372 begin
1373 Decl :=
1374 Make_Subtype_Declaration (Loc,
1375 Defining_Identifier => Nam,
1376 Subtype_Indication =>
1377 New_Occurrence_Of (Entity (S), Loc));
1378 Set_Null_Exclusion_Present (Decl);
1379 Insert_Before (Parent (Def), Decl);
1380 Analyze (Decl);
1381 Set_Entity (S, Nam);
1382 end;
1383 end if;
1384 end if;
1385
1386 else
1387 Set_Directly_Designated_Type (T,
1388 Process_Subtype (S, P, T, 'P'));
1389 end if;
1390
1391 if All_Present (Def) or Constant_Present (Def) then
1392 Set_Ekind (T, E_General_Access_Type);
1393 else
1394 Set_Ekind (T, E_Access_Type);
1395 end if;
1396
1397 Full_Desig := Designated_Type (T);
1398
1399 if Base_Type (Full_Desig) = T then
1400 Error_Msg_N ("access type cannot designate itself", S);
1401
1402 -- In Ada 2005, the type may have a limited view through some unit in
1403 -- its own context, allowing the following circularity that cannot be
1404 -- detected earlier.
1405
1406 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1407 then
1408 Error_Msg_N
1409 ("access type cannot designate its own class-wide type", S);
1410
1411 -- Clean up indication of tagged status to prevent cascaded errors
1412
1413 Set_Is_Tagged_Type (T, False);
1414 end if;
1415
1416 Set_Etype (T, T);
1417
1418 -- If the type has appeared already in a with_type clause, it is frozen
1419 -- and the pointer size is already set. Else, initialize.
1420
1421 if not From_Limited_With (T) then
1422 Init_Size_Align (T);
1423 end if;
1424
1425 -- Note that Has_Task is always false, since the access type itself
1426 -- is not a task type. See Einfo for more description on this point.
1427 -- Exactly the same consideration applies to Has_Controlled_Component
1428 -- and to Has_Protected.
1429
1430 Set_Has_Task (T, False);
1431 Set_Has_Protected (T, False);
1432 Set_Has_Timing_Event (T, False);
1433 Set_Has_Controlled_Component (T, False);
1434
1435 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1436 -- problems where an incomplete view of this entity has been previously
1437 -- established by a limited with and an overlaid version of this field
1438 -- (Stored_Constraint) was initialized for the incomplete view.
1439
1440 -- This reset is performed in most cases except where the access type
1441 -- has been created for the purposes of allocating or deallocating a
1442 -- build-in-place object. Such access types have explicitly set pools
1443 -- and finalization masters.
1444
1445 if No (Associated_Storage_Pool (T)) then
1446 Set_Finalization_Master (T, Empty);
1447 end if;
1448
1449 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1450 -- attributes
1451
1452 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1453 Set_Is_Access_Constant (T, Constant_Present (Def));
1454 end Access_Type_Declaration;
1455
1456 ----------------------------------
1457 -- Add_Interface_Tag_Components --
1458 ----------------------------------
1459
1460 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1461 Loc : constant Source_Ptr := Sloc (N);
1462 L : List_Id;
1463 Last_Tag : Node_Id;
1464
1465 procedure Add_Tag (Iface : Entity_Id);
1466 -- Add tag for one of the progenitor interfaces
1467
1468 -------------
1469 -- Add_Tag --
1470 -------------
1471
1472 procedure Add_Tag (Iface : Entity_Id) is
1473 Decl : Node_Id;
1474 Def : Node_Id;
1475 Tag : Entity_Id;
1476 Offset : Entity_Id;
1477
1478 begin
1479 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1480
1481 -- This is a reasonable place to propagate predicates
1482
1483 if Has_Predicates (Iface) then
1484 Set_Has_Predicates (Typ);
1485 end if;
1486
1487 Def :=
1488 Make_Component_Definition (Loc,
1489 Aliased_Present => True,
1490 Subtype_Indication =>
1491 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1492
1493 Tag := Make_Temporary (Loc, 'V');
1494
1495 Decl :=
1496 Make_Component_Declaration (Loc,
1497 Defining_Identifier => Tag,
1498 Component_Definition => Def);
1499
1500 Analyze_Component_Declaration (Decl);
1501
1502 Set_Analyzed (Decl);
1503 Set_Ekind (Tag, E_Component);
1504 Set_Is_Tag (Tag);
1505 Set_Is_Aliased (Tag);
1506 Set_Related_Type (Tag, Iface);
1507 Init_Component_Location (Tag);
1508
1509 pragma Assert (Is_Frozen (Iface));
1510
1511 Set_DT_Entry_Count (Tag,
1512 DT_Entry_Count (First_Entity (Iface)));
1513
1514 if No (Last_Tag) then
1515 Prepend (Decl, L);
1516 else
1517 Insert_After (Last_Tag, Decl);
1518 end if;
1519
1520 Last_Tag := Decl;
1521
1522 -- If the ancestor has discriminants we need to give special support
1523 -- to store the offset_to_top value of the secondary dispatch tables.
1524 -- For this purpose we add a supplementary component just after the
1525 -- field that contains the tag associated with each secondary DT.
1526
1527 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1528 Def :=
1529 Make_Component_Definition (Loc,
1530 Subtype_Indication =>
1531 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1532
1533 Offset := Make_Temporary (Loc, 'V');
1534
1535 Decl :=
1536 Make_Component_Declaration (Loc,
1537 Defining_Identifier => Offset,
1538 Component_Definition => Def);
1539
1540 Analyze_Component_Declaration (Decl);
1541
1542 Set_Analyzed (Decl);
1543 Set_Ekind (Offset, E_Component);
1544 Set_Is_Aliased (Offset);
1545 Set_Related_Type (Offset, Iface);
1546 Init_Component_Location (Offset);
1547 Insert_After (Last_Tag, Decl);
1548 Last_Tag := Decl;
1549 end if;
1550 end Add_Tag;
1551
1552 -- Local variables
1553
1554 Elmt : Elmt_Id;
1555 Ext : Node_Id;
1556 Comp : Node_Id;
1557
1558 -- Start of processing for Add_Interface_Tag_Components
1559
1560 begin
1561 if not RTE_Available (RE_Interface_Tag) then
1562 Error_Msg
1563 ("(Ada 2005) interface types not supported by this run-time!",
1564 Sloc (N));
1565 return;
1566 end if;
1567
1568 if Ekind (Typ) /= E_Record_Type
1569 or else (Is_Concurrent_Record_Type (Typ)
1570 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1571 or else (not Is_Concurrent_Record_Type (Typ)
1572 and then No (Interfaces (Typ))
1573 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1574 then
1575 return;
1576 end if;
1577
1578 -- Find the current last tag
1579
1580 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1581 Ext := Record_Extension_Part (Type_Definition (N));
1582 else
1583 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1584 Ext := Type_Definition (N);
1585 end if;
1586
1587 Last_Tag := Empty;
1588
1589 if not (Present (Component_List (Ext))) then
1590 Set_Null_Present (Ext, False);
1591 L := New_List;
1592 Set_Component_List (Ext,
1593 Make_Component_List (Loc,
1594 Component_Items => L,
1595 Null_Present => False));
1596 else
1597 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1598 L := Component_Items
1599 (Component_List
1600 (Record_Extension_Part
1601 (Type_Definition (N))));
1602 else
1603 L := Component_Items
1604 (Component_List
1605 (Type_Definition (N)));
1606 end if;
1607
1608 -- Find the last tag component
1609
1610 Comp := First (L);
1611 while Present (Comp) loop
1612 if Nkind (Comp) = N_Component_Declaration
1613 and then Is_Tag (Defining_Identifier (Comp))
1614 then
1615 Last_Tag := Comp;
1616 end if;
1617
1618 Next (Comp);
1619 end loop;
1620 end if;
1621
1622 -- At this point L references the list of components and Last_Tag
1623 -- references the current last tag (if any). Now we add the tag
1624 -- corresponding with all the interfaces that are not implemented
1625 -- by the parent.
1626
1627 if Present (Interfaces (Typ)) then
1628 Elmt := First_Elmt (Interfaces (Typ));
1629 while Present (Elmt) loop
1630 Add_Tag (Node (Elmt));
1631 Next_Elmt (Elmt);
1632 end loop;
1633 end if;
1634 end Add_Interface_Tag_Components;
1635
1636 -------------------------------------
1637 -- Add_Internal_Interface_Entities --
1638 -------------------------------------
1639
1640 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1641 Elmt : Elmt_Id;
1642 Iface : Entity_Id;
1643 Iface_Elmt : Elmt_Id;
1644 Iface_Prim : Entity_Id;
1645 Ifaces_List : Elist_Id;
1646 New_Subp : Entity_Id := Empty;
1647 Prim : Entity_Id;
1648 Restore_Scope : Boolean := False;
1649
1650 begin
1651 pragma Assert (Ada_Version >= Ada_2005
1652 and then Is_Record_Type (Tagged_Type)
1653 and then Is_Tagged_Type (Tagged_Type)
1654 and then Has_Interfaces (Tagged_Type)
1655 and then not Is_Interface (Tagged_Type));
1656
1657 -- Ensure that the internal entities are added to the scope of the type
1658
1659 if Scope (Tagged_Type) /= Current_Scope then
1660 Push_Scope (Scope (Tagged_Type));
1661 Restore_Scope := True;
1662 end if;
1663
1664 Collect_Interfaces (Tagged_Type, Ifaces_List);
1665
1666 Iface_Elmt := First_Elmt (Ifaces_List);
1667 while Present (Iface_Elmt) loop
1668 Iface := Node (Iface_Elmt);
1669
1670 -- Originally we excluded here from this processing interfaces that
1671 -- are parents of Tagged_Type because their primitives are located
1672 -- in the primary dispatch table (and hence no auxiliary internal
1673 -- entities are required to handle secondary dispatch tables in such
1674 -- case). However, these auxiliary entities are also required to
1675 -- handle derivations of interfaces in formals of generics (see
1676 -- Derive_Subprograms).
1677
1678 Elmt := First_Elmt (Primitive_Operations (Iface));
1679 while Present (Elmt) loop
1680 Iface_Prim := Node (Elmt);
1681
1682 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1683 Prim :=
1684 Find_Primitive_Covering_Interface
1685 (Tagged_Type => Tagged_Type,
1686 Iface_Prim => Iface_Prim);
1687
1688 if No (Prim) and then Serious_Errors_Detected > 0 then
1689 goto Continue;
1690 end if;
1691
1692 pragma Assert (Present (Prim));
1693
1694 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1695 -- differs from the name of the interface primitive then it is
1696 -- a private primitive inherited from a parent type. In such
1697 -- case, given that Tagged_Type covers the interface, the
1698 -- inherited private primitive becomes visible. For such
1699 -- purpose we add a new entity that renames the inherited
1700 -- private primitive.
1701
1702 if Chars (Prim) /= Chars (Iface_Prim) then
1703 pragma Assert (Has_Suffix (Prim, 'P'));
1704 Derive_Subprogram
1705 (New_Subp => New_Subp,
1706 Parent_Subp => Iface_Prim,
1707 Derived_Type => Tagged_Type,
1708 Parent_Type => Iface);
1709 Set_Alias (New_Subp, Prim);
1710 Set_Is_Abstract_Subprogram
1711 (New_Subp, Is_Abstract_Subprogram (Prim));
1712 end if;
1713
1714 Derive_Subprogram
1715 (New_Subp => New_Subp,
1716 Parent_Subp => Iface_Prim,
1717 Derived_Type => Tagged_Type,
1718 Parent_Type => Iface);
1719
1720 declare
1721 Anc : Entity_Id;
1722 begin
1723 if Is_Inherited_Operation (Prim)
1724 and then Present (Alias (Prim))
1725 then
1726 Anc := Alias (Prim);
1727 else
1728 Anc := Overridden_Operation (Prim);
1729 end if;
1730
1731 -- Apply legality checks in RM 6.1.1 (10-13) concerning
1732 -- nonconforming preconditions in both an ancestor and
1733 -- a progenitor operation.
1734
1735 -- If the operation is a primitive wrapper it is an explicit
1736 -- (overriding) operqtion and all is fine.
1737
1738 if Present (Anc)
1739 and then Has_Non_Trivial_Precondition (Anc)
1740 and then Has_Non_Trivial_Precondition (Iface_Prim)
1741 then
1742 if Is_Abstract_Subprogram (Prim)
1743 or else
1744 (Ekind (Prim) = E_Procedure
1745 and then Nkind (Parent (Prim)) =
1746 N_Procedure_Specification
1747 and then Null_Present (Parent (Prim)))
1748 or else Is_Primitive_Wrapper (Prim)
1749 then
1750 null;
1751
1752 -- The operation is inherited and must be overridden
1753
1754 elsif not Comes_From_Source (Prim) then
1755 Error_Msg_NE
1756 ("&inherits non-conforming preconditions and must "
1757 & "be overridden (RM 6.1.1 (10-16)",
1758 Parent (Tagged_Type), Prim);
1759 end if;
1760 end if;
1761 end;
1762
1763 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1764 -- associated with interface types. These entities are
1765 -- only registered in the list of primitives of its
1766 -- corresponding tagged type because they are only used
1767 -- to fill the contents of the secondary dispatch tables.
1768 -- Therefore they are removed from the homonym chains.
1769
1770 Set_Is_Hidden (New_Subp);
1771 Set_Is_Internal (New_Subp);
1772 Set_Alias (New_Subp, Prim);
1773 Set_Is_Abstract_Subprogram
1774 (New_Subp, Is_Abstract_Subprogram (Prim));
1775 Set_Interface_Alias (New_Subp, Iface_Prim);
1776
1777 -- If the returned type is an interface then propagate it to
1778 -- the returned type. Needed by the thunk to generate the code
1779 -- which displaces "this" to reference the corresponding
1780 -- secondary dispatch table in the returned object.
1781
1782 if Is_Interface (Etype (Iface_Prim)) then
1783 Set_Etype (New_Subp, Etype (Iface_Prim));
1784 end if;
1785
1786 -- Internal entities associated with interface types are only
1787 -- registered in the list of primitives of the tagged type.
1788 -- They are only used to fill the contents of the secondary
1789 -- dispatch tables. Therefore they are not needed in the
1790 -- homonym chains.
1791
1792 Remove_Homonym (New_Subp);
1793
1794 -- Hidden entities associated with interfaces must have set
1795 -- the Has_Delay_Freeze attribute to ensure that, in case
1796 -- of locally defined tagged types (or compiling with static
1797 -- dispatch tables generation disabled) the corresponding
1798 -- entry of the secondary dispatch table is filled when such
1799 -- an entity is frozen. This is an expansion activity that must
1800 -- be suppressed for ASIS because it leads to gigi elaboration
1801 -- issues in annotate mode.
1802
1803 if not ASIS_Mode then
1804 Set_Has_Delayed_Freeze (New_Subp);
1805 end if;
1806 end if;
1807
1808 <<Continue>>
1809 Next_Elmt (Elmt);
1810 end loop;
1811
1812 Next_Elmt (Iface_Elmt);
1813 end loop;
1814
1815 if Restore_Scope then
1816 Pop_Scope;
1817 end if;
1818 end Add_Internal_Interface_Entities;
1819
1820 -----------------------------------
1821 -- Analyze_Component_Declaration --
1822 -----------------------------------
1823
1824 procedure Analyze_Component_Declaration (N : Node_Id) is
1825 Loc : constant Source_Ptr := Sloc (Component_Definition (N));
1826 Id : constant Entity_Id := Defining_Identifier (N);
1827 E : constant Node_Id := Expression (N);
1828 Typ : constant Node_Id :=
1829 Subtype_Indication (Component_Definition (N));
1830 T : Entity_Id;
1831 P : Entity_Id;
1832
1833 function Contains_POC (Constr : Node_Id) return Boolean;
1834 -- Determines whether a constraint uses the discriminant of a record
1835 -- type thus becoming a per-object constraint (POC).
1836
1837 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1838 -- Typ is the type of the current component, check whether this type is
1839 -- a limited type. Used to validate declaration against that of
1840 -- enclosing record.
1841
1842 ------------------
1843 -- Contains_POC --
1844 ------------------
1845
1846 function Contains_POC (Constr : Node_Id) return Boolean is
1847 begin
1848 -- Prevent cascaded errors
1849
1850 if Error_Posted (Constr) then
1851 return False;
1852 end if;
1853
1854 case Nkind (Constr) is
1855 when N_Attribute_Reference =>
1856 return Attribute_Name (Constr) = Name_Access
1857 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1858
1859 when N_Discriminant_Association =>
1860 return Denotes_Discriminant (Expression (Constr));
1861
1862 when N_Identifier =>
1863 return Denotes_Discriminant (Constr);
1864
1865 when N_Index_Or_Discriminant_Constraint =>
1866 declare
1867 IDC : Node_Id;
1868
1869 begin
1870 IDC := First (Constraints (Constr));
1871 while Present (IDC) loop
1872
1873 -- One per-object constraint is sufficient
1874
1875 if Contains_POC (IDC) then
1876 return True;
1877 end if;
1878
1879 Next (IDC);
1880 end loop;
1881
1882 return False;
1883 end;
1884
1885 when N_Range =>
1886 return Denotes_Discriminant (Low_Bound (Constr))
1887 or else
1888 Denotes_Discriminant (High_Bound (Constr));
1889
1890 when N_Range_Constraint =>
1891 return Denotes_Discriminant (Range_Expression (Constr));
1892
1893 when others =>
1894 return False;
1895 end case;
1896 end Contains_POC;
1897
1898 ----------------------
1899 -- Is_Known_Limited --
1900 ----------------------
1901
1902 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1903 P : constant Entity_Id := Etype (Typ);
1904 R : constant Entity_Id := Root_Type (Typ);
1905
1906 begin
1907 if Is_Limited_Record (Typ) then
1908 return True;
1909
1910 -- If the root type is limited (and not a limited interface)
1911 -- so is the current type
1912
1913 elsif Is_Limited_Record (R)
1914 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1915 then
1916 return True;
1917
1918 -- Else the type may have a limited interface progenitor, but a
1919 -- limited record parent.
1920
1921 elsif R /= P and then Is_Limited_Record (P) then
1922 return True;
1923
1924 else
1925 return False;
1926 end if;
1927 end Is_Known_Limited;
1928
1929 -- Start of processing for Analyze_Component_Declaration
1930
1931 begin
1932 Generate_Definition (Id);
1933 Enter_Name (Id);
1934
1935 if Present (Typ) then
1936 T := Find_Type_Of_Object
1937 (Subtype_Indication (Component_Definition (N)), N);
1938
1939 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1940 Check_SPARK_05_Restriction ("subtype mark required", Typ);
1941 end if;
1942
1943 -- Ada 2005 (AI-230): Access Definition case
1944
1945 else
1946 pragma Assert (Present
1947 (Access_Definition (Component_Definition (N))));
1948
1949 T := Access_Definition
1950 (Related_Nod => N,
1951 N => Access_Definition (Component_Definition (N)));
1952 Set_Is_Local_Anonymous_Access (T);
1953
1954 -- Ada 2005 (AI-254)
1955
1956 if Present (Access_To_Subprogram_Definition
1957 (Access_Definition (Component_Definition (N))))
1958 and then Protected_Present (Access_To_Subprogram_Definition
1959 (Access_Definition
1960 (Component_Definition (N))))
1961 then
1962 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1963 end if;
1964 end if;
1965
1966 -- If the subtype is a constrained subtype of the enclosing record,
1967 -- (which must have a partial view) the back-end does not properly
1968 -- handle the recursion. Rewrite the component declaration with an
1969 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1970 -- the tree directly because side effects have already been removed from
1971 -- discriminant constraints.
1972
1973 if Ekind (T) = E_Access_Subtype
1974 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1975 and then Comes_From_Source (T)
1976 and then Nkind (Parent (T)) = N_Subtype_Declaration
1977 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1978 then
1979 Rewrite
1980 (Subtype_Indication (Component_Definition (N)),
1981 New_Copy_Tree (Subtype_Indication (Parent (T))));
1982 T := Find_Type_Of_Object
1983 (Subtype_Indication (Component_Definition (N)), N);
1984 end if;
1985
1986 -- If the component declaration includes a default expression, then we
1987 -- check that the component is not of a limited type (RM 3.7(5)),
1988 -- and do the special preanalysis of the expression (see section on
1989 -- "Handling of Default and Per-Object Expressions" in the spec of
1990 -- package Sem).
1991
1992 if Present (E) then
1993 Check_SPARK_05_Restriction ("default expression is not allowed", E);
1994 Preanalyze_Default_Expression (E, T);
1995 Check_Initialization (T, E);
1996
1997 if Ada_Version >= Ada_2005
1998 and then Ekind (T) = E_Anonymous_Access_Type
1999 and then Etype (E) /= Any_Type
2000 then
2001 -- Check RM 3.9.2(9): "if the expected type for an expression is
2002 -- an anonymous access-to-specific tagged type, then the object
2003 -- designated by the expression shall not be dynamically tagged
2004 -- unless it is a controlling operand in a call on a dispatching
2005 -- operation"
2006
2007 if Is_Tagged_Type (Directly_Designated_Type (T))
2008 and then
2009 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
2010 and then
2011 Ekind (Directly_Designated_Type (Etype (E))) =
2012 E_Class_Wide_Type
2013 then
2014 Error_Msg_N
2015 ("access to specific tagged type required (RM 3.9.2(9))", E);
2016 end if;
2017
2018 -- (Ada 2005: AI-230): Accessibility check for anonymous
2019 -- components
2020
2021 if Type_Access_Level (Etype (E)) >
2022 Deepest_Type_Access_Level (T)
2023 then
2024 Error_Msg_N
2025 ("expression has deeper access level than component " &
2026 "(RM 3.10.2 (12.2))", E);
2027 end if;
2028
2029 -- The initialization expression is a reference to an access
2030 -- discriminant. The type of the discriminant is always deeper
2031 -- than any access type.
2032
2033 if Ekind (Etype (E)) = E_Anonymous_Access_Type
2034 and then Is_Entity_Name (E)
2035 and then Ekind (Entity (E)) = E_In_Parameter
2036 and then Present (Discriminal_Link (Entity (E)))
2037 then
2038 Error_Msg_N
2039 ("discriminant has deeper accessibility level than target",
2040 E);
2041 end if;
2042 end if;
2043 end if;
2044
2045 -- The parent type may be a private view with unknown discriminants,
2046 -- and thus unconstrained. Regular components must be constrained.
2047
2048 if not Is_Definite_Subtype (T) and then Chars (Id) /= Name_uParent then
2049 if Is_Class_Wide_Type (T) then
2050 Error_Msg_N
2051 ("class-wide subtype with unknown discriminants" &
2052 " in component declaration",
2053 Subtype_Indication (Component_Definition (N)));
2054 else
2055 Error_Msg_N
2056 ("unconstrained subtype in component declaration",
2057 Subtype_Indication (Component_Definition (N)));
2058 end if;
2059
2060 -- Components cannot be abstract, except for the special case of
2061 -- the _Parent field (case of extending an abstract tagged type)
2062
2063 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2064 Error_Msg_N ("type of a component cannot be abstract", N);
2065 end if;
2066
2067 Set_Etype (Id, T);
2068 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2069
2070 -- The component declaration may have a per-object constraint, set
2071 -- the appropriate flag in the defining identifier of the subtype.
2072
2073 if Present (Subtype_Indication (Component_Definition (N))) then
2074 declare
2075 Sindic : constant Node_Id :=
2076 Subtype_Indication (Component_Definition (N));
2077 begin
2078 if Nkind (Sindic) = N_Subtype_Indication
2079 and then Present (Constraint (Sindic))
2080 and then Contains_POC (Constraint (Sindic))
2081 then
2082 Set_Has_Per_Object_Constraint (Id);
2083 end if;
2084 end;
2085 end if;
2086
2087 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2088 -- out some static checks.
2089
2090 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2091 Null_Exclusion_Static_Checks (N);
2092 end if;
2093
2094 -- If this component is private (or depends on a private type), flag the
2095 -- record type to indicate that some operations are not available.
2096
2097 P := Private_Component (T);
2098
2099 if Present (P) then
2100
2101 -- Check for circular definitions
2102
2103 if P = Any_Type then
2104 Set_Etype (Id, Any_Type);
2105
2106 -- There is a gap in the visibility of operations only if the
2107 -- component type is not defined in the scope of the record type.
2108
2109 elsif Scope (P) = Scope (Current_Scope) then
2110 null;
2111
2112 elsif Is_Limited_Type (P) then
2113 Set_Is_Limited_Composite (Current_Scope);
2114
2115 else
2116 Set_Is_Private_Composite (Current_Scope);
2117 end if;
2118 end if;
2119
2120 if P /= Any_Type
2121 and then Is_Limited_Type (T)
2122 and then Chars (Id) /= Name_uParent
2123 and then Is_Tagged_Type (Current_Scope)
2124 then
2125 if Is_Derived_Type (Current_Scope)
2126 and then not Is_Known_Limited (Current_Scope)
2127 then
2128 Error_Msg_N
2129 ("extension of nonlimited type cannot have limited components",
2130 N);
2131
2132 if Is_Interface (Root_Type (Current_Scope)) then
2133 Error_Msg_N
2134 ("\limitedness is not inherited from limited interface", N);
2135 Error_Msg_N ("\add LIMITED to type indication", N);
2136 end if;
2137
2138 Explain_Limited_Type (T, N);
2139 Set_Etype (Id, Any_Type);
2140 Set_Is_Limited_Composite (Current_Scope, False);
2141
2142 elsif not Is_Derived_Type (Current_Scope)
2143 and then not Is_Limited_Record (Current_Scope)
2144 and then not Is_Concurrent_Type (Current_Scope)
2145 then
2146 Error_Msg_N
2147 ("nonlimited tagged type cannot have limited components", N);
2148 Explain_Limited_Type (T, N);
2149 Set_Etype (Id, Any_Type);
2150 Set_Is_Limited_Composite (Current_Scope, False);
2151 end if;
2152 end if;
2153
2154 -- If the component is an unconstrained task or protected type with
2155 -- discriminants, the component and the enclosing record are limited
2156 -- and the component is constrained by its default values. Compute
2157 -- its actual subtype, else it may be allocated the maximum size by
2158 -- the backend, and possibly overflow.
2159
2160 if Is_Concurrent_Type (T)
2161 and then not Is_Constrained (T)
2162 and then Has_Discriminants (T)
2163 and then not Has_Discriminants (Current_Scope)
2164 then
2165 declare
2166 Act_T : constant Entity_Id := Build_Default_Subtype (T, N);
2167
2168 begin
2169 Set_Etype (Id, Act_T);
2170
2171 -- Rewrite component definition to use the constrained subtype
2172
2173 Rewrite (Component_Definition (N),
2174 Make_Component_Definition (Loc,
2175 Subtype_Indication => New_Occurrence_Of (Act_T, Loc)));
2176 end;
2177 end if;
2178
2179 Set_Original_Record_Component (Id, Id);
2180
2181 if Has_Aspects (N) then
2182 Analyze_Aspect_Specifications (N, Id);
2183 end if;
2184
2185 Analyze_Dimension (N);
2186 end Analyze_Component_Declaration;
2187
2188 --------------------------
2189 -- Analyze_Declarations --
2190 --------------------------
2191
2192 procedure Analyze_Declarations (L : List_Id) is
2193 Decl : Node_Id;
2194
2195 procedure Adjust_Decl;
2196 -- Adjust Decl not to include implicit label declarations, since these
2197 -- have strange Sloc values that result in elaboration check problems.
2198 -- (They have the sloc of the label as found in the source, and that
2199 -- is ahead of the current declarative part).
2200
2201 procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id);
2202 -- Create the subprogram bodies which verify the run-time semantics of
2203 -- the pragmas listed below for each elibigle type found in declarative
2204 -- list Decls. The pragmas are:
2205 --
2206 -- Default_Initial_Condition
2207 -- Invariant
2208 -- Type_Invariant
2209 --
2210 -- Context denotes the owner of the declarative list.
2211
2212 procedure Check_Entry_Contracts;
2213 -- Perform a pre-analysis of the pre- and postconditions of an entry
2214 -- declaration. This must be done before full resolution and creation
2215 -- of the parameter block, etc. to catch illegal uses within the
2216 -- contract expression. Full analysis of the expression is done when
2217 -- the contract is processed.
2218
2219 function Contains_Lib_Incomplete_Type (Pkg : Entity_Id) return Boolean;
2220 -- Check if a nested package has entities within it that rely on library
2221 -- level private types where the full view has not been completed for
2222 -- the purposes of checking if it is acceptable to freeze an expression
2223 -- function at the point of declaration.
2224
2225 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2226 -- Determine whether Body_Decl denotes the body of a late controlled
2227 -- primitive (either Initialize, Adjust or Finalize). If this is the
2228 -- case, add a proper spec if the body lacks one. The spec is inserted
2229 -- before Body_Decl and immediately analyzed.
2230
2231 procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id);
2232 -- Spec_Id is the entity of a package that may define abstract states,
2233 -- and in the case of a child unit, whose ancestors may define abstract
2234 -- states. If the states have partial visible refinement, remove the
2235 -- partial visibility of each constituent at the end of the package
2236 -- spec and body declarations.
2237
2238 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2239 -- Spec_Id is the entity of a package that may define abstract states.
2240 -- If the states have visible refinement, remove the visibility of each
2241 -- constituent at the end of the package body declaration.
2242
2243 procedure Resolve_Aspects;
2244 -- Utility to resolve the expressions of aspects at the end of a list of
2245 -- declarations, or before a declaration that freezes previous entities,
2246 -- such as in a subprogram body.
2247
2248 -----------------
2249 -- Adjust_Decl --
2250 -----------------
2251
2252 procedure Adjust_Decl is
2253 begin
2254 while Present (Prev (Decl))
2255 and then Nkind (Decl) = N_Implicit_Label_Declaration
2256 loop
2257 Prev (Decl);
2258 end loop;
2259 end Adjust_Decl;
2260
2261 ----------------------------
2262 -- Build_Assertion_Bodies --
2263 ----------------------------
2264
2265 procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id) is
2266 procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id);
2267 -- Create the subprogram bodies which verify the run-time semantics
2268 -- of the pragmas listed below for type Typ. The pragmas are:
2269 --
2270 -- Default_Initial_Condition
2271 -- Invariant
2272 -- Type_Invariant
2273
2274 -------------------------------------
2275 -- Build_Assertion_Bodies_For_Type --
2276 -------------------------------------
2277
2278 procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id) is
2279 begin
2280 -- Preanalyze and resolve the Default_Initial_Condition assertion
2281 -- expression at the end of the declarations to catch any errors.
2282
2283 if Has_DIC (Typ) then
2284 Build_DIC_Procedure_Body (Typ);
2285 end if;
2286
2287 if Nkind (Context) = N_Package_Specification then
2288
2289 -- Preanalyze and resolve the class-wide invariants of an
2290 -- interface at the end of whichever declarative part has the
2291 -- interface type. Note that an interface may be declared in
2292 -- any non-package declarative part, but reaching the end of
2293 -- such a declarative part will always freeze the type and
2294 -- generate the invariant procedure (see Freeze_Type).
2295
2296 if Is_Interface (Typ) then
2297
2298 -- Interfaces are treated as the partial view of a private
2299 -- type, in order to achieve uniformity with the general
2300 -- case. As a result, an interface receives only a "partial"
2301 -- invariant procedure, which is never called.
2302
2303 if Has_Own_Invariants (Typ) then
2304 Build_Invariant_Procedure_Body
2305 (Typ => Typ,
2306 Partial_Invariant => True);
2307 end if;
2308
2309 -- Preanalyze and resolve the invariants of a private type
2310 -- at the end of the visible declarations to catch potential
2311 -- errors. Inherited class-wide invariants are not included
2312 -- because they have already been resolved.
2313
2314 elsif Decls = Visible_Declarations (Context)
2315 and then Ekind_In (Typ, E_Limited_Private_Type,
2316 E_Private_Type,
2317 E_Record_Type_With_Private)
2318 and then Has_Own_Invariants (Typ)
2319 then
2320 Build_Invariant_Procedure_Body
2321 (Typ => Typ,
2322 Partial_Invariant => True);
2323
2324 -- Preanalyze and resolve the invariants of a private type's
2325 -- full view at the end of the private declarations to catch
2326 -- potential errors.
2327
2328 elsif Decls = Private_Declarations (Context)
2329 and then not Is_Private_Type (Typ)
2330 and then Has_Private_Declaration (Typ)
2331 and then Has_Invariants (Typ)
2332 then
2333 Build_Invariant_Procedure_Body (Typ);
2334 end if;
2335 end if;
2336 end Build_Assertion_Bodies_For_Type;
2337
2338 -- Local variables
2339
2340 Decl : Node_Id;
2341 Decl_Id : Entity_Id;
2342
2343 -- Start of processing for Build_Assertion_Bodies
2344
2345 begin
2346 Decl := First (Decls);
2347 while Present (Decl) loop
2348 if Is_Declaration (Decl) then
2349 Decl_Id := Defining_Entity (Decl);
2350
2351 if Is_Type (Decl_Id) then
2352 Build_Assertion_Bodies_For_Type (Decl_Id);
2353 end if;
2354 end if;
2355
2356 Next (Decl);
2357 end loop;
2358 end Build_Assertion_Bodies;
2359
2360 ---------------------------
2361 -- Check_Entry_Contracts --
2362 ---------------------------
2363
2364 procedure Check_Entry_Contracts is
2365 ASN : Node_Id;
2366 Ent : Entity_Id;
2367 Exp : Node_Id;
2368
2369 begin
2370 Ent := First_Entity (Current_Scope);
2371 while Present (Ent) loop
2372
2373 -- This only concerns entries with pre/postconditions
2374
2375 if Ekind (Ent) = E_Entry
2376 and then Present (Contract (Ent))
2377 and then Present (Pre_Post_Conditions (Contract (Ent)))
2378 then
2379 ASN := Pre_Post_Conditions (Contract (Ent));
2380 Push_Scope (Ent);
2381 Install_Formals (Ent);
2382
2383 -- Pre/postconditions are rewritten as Check pragmas. Analysis
2384 -- is performed on a copy of the pragma expression, to prevent
2385 -- modifying the original expression.
2386
2387 while Present (ASN) loop
2388 if Nkind (ASN) = N_Pragma then
2389 Exp :=
2390 New_Copy_Tree
2391 (Expression
2392 (First (Pragma_Argument_Associations (ASN))));
2393 Set_Parent (Exp, ASN);
2394
2395 Preanalyze_Assert_Expression (Exp, Standard_Boolean);
2396 end if;
2397
2398 ASN := Next_Pragma (ASN);
2399 end loop;
2400
2401 End_Scope;
2402 end if;
2403
2404 Next_Entity (Ent);
2405 end loop;
2406 end Check_Entry_Contracts;
2407
2408 ----------------------------------
2409 -- Contains_Lib_Incomplete_Type --
2410 ----------------------------------
2411
2412 function Contains_Lib_Incomplete_Type (Pkg : Entity_Id) return Boolean is
2413 Curr : Entity_Id;
2414
2415 begin
2416 -- Avoid looking through scopes that do not meet the precondition of
2417 -- Pkg not being within a library unit spec.
2418
2419 if not Is_Compilation_Unit (Pkg)
2420 and then not Is_Generic_Instance (Pkg)
2421 and then not In_Package_Body (Enclosing_Lib_Unit_Entity (Pkg))
2422 then
2423 -- Loop through all entities in the current scope to identify
2424 -- an entity that depends on a private type.
2425
2426 Curr := First_Entity (Pkg);
2427 loop
2428 if Nkind (Curr) in N_Entity
2429 and then Depends_On_Private (Curr)
2430 then
2431 return True;
2432 end if;
2433
2434 exit when Last_Entity (Current_Scope) = Curr;
2435 Curr := Next_Entity (Curr);
2436 end loop;
2437 end if;
2438
2439 return False;
2440 end Contains_Lib_Incomplete_Type;
2441
2442 --------------------------------------
2443 -- Handle_Late_Controlled_Primitive --
2444 --------------------------------------
2445
2446 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2447 Body_Spec : constant Node_Id := Specification (Body_Decl);
2448 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2449 Loc : constant Source_Ptr := Sloc (Body_Id);
2450 Params : constant List_Id :=
2451 Parameter_Specifications (Body_Spec);
2452 Spec : Node_Id;
2453 Spec_Id : Entity_Id;
2454 Typ : Node_Id;
2455
2456 begin
2457 -- Consider only procedure bodies whose name matches one of the three
2458 -- controlled primitives.
2459
2460 if Nkind (Body_Spec) /= N_Procedure_Specification
2461 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2462 Name_Finalize,
2463 Name_Initialize)
2464 then
2465 return;
2466
2467 -- A controlled primitive must have exactly one formal which is not
2468 -- an anonymous access type.
2469
2470 elsif List_Length (Params) /= 1 then
2471 return;
2472 end if;
2473
2474 Typ := Parameter_Type (First (Params));
2475
2476 if Nkind (Typ) = N_Access_Definition then
2477 return;
2478 end if;
2479
2480 Find_Type (Typ);
2481
2482 -- The type of the formal must be derived from [Limited_]Controlled
2483
2484 if not Is_Controlled (Entity (Typ)) then
2485 return;
2486 end if;
2487
2488 -- Check whether a specification exists for this body. We do not
2489 -- analyze the spec of the body in full, because it will be analyzed
2490 -- again when the body is properly analyzed, and we cannot create
2491 -- duplicate entries in the formals chain. We look for an explicit
2492 -- specification because the body may be an overriding operation and
2493 -- an inherited spec may be present.
2494
2495 Spec_Id := Current_Entity (Body_Id);
2496
2497 while Present (Spec_Id) loop
2498 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure)
2499 and then Scope (Spec_Id) = Current_Scope
2500 and then Present (First_Formal (Spec_Id))
2501 and then No (Next_Formal (First_Formal (Spec_Id)))
2502 and then Etype (First_Formal (Spec_Id)) = Entity (Typ)
2503 and then Comes_From_Source (Spec_Id)
2504 then
2505 return;
2506 end if;
2507
2508 Spec_Id := Homonym (Spec_Id);
2509 end loop;
2510
2511 -- At this point the body is known to be a late controlled primitive.
2512 -- Generate a matching spec and insert it before the body. Note the
2513 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2514 -- tree in this case.
2515
2516 Spec := Copy_Separate_Tree (Body_Spec);
2517
2518 -- Ensure that the subprogram declaration does not inherit the null
2519 -- indicator from the body as we now have a proper spec/body pair.
2520
2521 Set_Null_Present (Spec, False);
2522
2523 -- Ensure that the freeze node is inserted after the declaration of
2524 -- the primitive since its expansion will freeze the primitive.
2525
2526 Decl := Make_Subprogram_Declaration (Loc, Specification => Spec);
2527
2528 Insert_Before_And_Analyze (Body_Decl, Decl);
2529 end Handle_Late_Controlled_Primitive;
2530
2531 ----------------------------------------
2532 -- Remove_Partial_Visible_Refinements --
2533 ----------------------------------------
2534
2535 procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id) is
2536 State_Elmt : Elmt_Id;
2537 begin
2538 if Present (Abstract_States (Spec_Id)) then
2539 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2540 while Present (State_Elmt) loop
2541 Set_Has_Partial_Visible_Refinement (Node (State_Elmt), False);
2542 Next_Elmt (State_Elmt);
2543 end loop;
2544 end if;
2545
2546 -- For a child unit, also hide the partial state refinement from
2547 -- ancestor packages.
2548
2549 if Is_Child_Unit (Spec_Id) then
2550 Remove_Partial_Visible_Refinements (Scope (Spec_Id));
2551 end if;
2552 end Remove_Partial_Visible_Refinements;
2553
2554 --------------------------------
2555 -- Remove_Visible_Refinements --
2556 --------------------------------
2557
2558 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2559 State_Elmt : Elmt_Id;
2560 begin
2561 if Present (Abstract_States (Spec_Id)) then
2562 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2563 while Present (State_Elmt) loop
2564 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2565 Next_Elmt (State_Elmt);
2566 end loop;
2567 end if;
2568 end Remove_Visible_Refinements;
2569
2570 ---------------------
2571 -- Resolve_Aspects --
2572 ---------------------
2573
2574 procedure Resolve_Aspects is
2575 E : Entity_Id;
2576
2577 begin
2578 E := First_Entity (Current_Scope);
2579 while Present (E) loop
2580 Resolve_Aspect_Expressions (E);
2581 Next_Entity (E);
2582 end loop;
2583 end Resolve_Aspects;
2584
2585 -- Local variables
2586
2587 Context : Node_Id := Empty;
2588 Freeze_From : Entity_Id := Empty;
2589 Next_Decl : Node_Id;
2590
2591 Body_Seen : Boolean := False;
2592 -- Flag set when the first body [stub] is encountered
2593
2594 -- Start of processing for Analyze_Declarations
2595
2596 begin
2597 if Restriction_Check_Required (SPARK_05) then
2598 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2599 end if;
2600
2601 Decl := First (L);
2602 while Present (Decl) loop
2603
2604 -- Package spec cannot contain a package declaration in SPARK
2605
2606 if Nkind (Decl) = N_Package_Declaration
2607 and then Nkind (Parent (L)) = N_Package_Specification
2608 then
2609 Check_SPARK_05_Restriction
2610 ("package specification cannot contain a package declaration",
2611 Decl);
2612 end if;
2613
2614 -- Complete analysis of declaration
2615
2616 Analyze (Decl);
2617 Next_Decl := Next (Decl);
2618
2619 if No (Freeze_From) then
2620 Freeze_From := First_Entity (Current_Scope);
2621 end if;
2622
2623 -- At the end of a declarative part, freeze remaining entities
2624 -- declared in it. The end of the visible declarations of package
2625 -- specification is not the end of a declarative part if private
2626 -- declarations are present. The end of a package declaration is a
2627 -- freezing point only if it a library package. A task definition or
2628 -- protected type definition is not a freeze point either. Finally,
2629 -- we do not freeze entities in generic scopes, because there is no
2630 -- code generated for them and freeze nodes will be generated for
2631 -- the instance.
2632
2633 -- The end of a package instantiation is not a freeze point, but
2634 -- for now we make it one, because the generic body is inserted
2635 -- (currently) immediately after. Generic instantiations will not
2636 -- be a freeze point once delayed freezing of bodies is implemented.
2637 -- (This is needed in any case for early instantiations ???).
2638
2639 if No (Next_Decl) then
2640 if Nkind (Parent (L)) = N_Component_List then
2641 null;
2642
2643 elsif Nkind_In (Parent (L), N_Protected_Definition,
2644 N_Task_Definition)
2645 then
2646 Check_Entry_Contracts;
2647
2648 elsif Nkind (Parent (L)) /= N_Package_Specification then
2649 if Nkind (Parent (L)) = N_Package_Body then
2650 Freeze_From := First_Entity (Current_Scope);
2651 end if;
2652
2653 -- There may have been several freezing points previously,
2654 -- for example object declarations or subprogram bodies, but
2655 -- at the end of a declarative part we check freezing from
2656 -- the beginning, even though entities may already be frozen,
2657 -- in order to perform visibility checks on delayed aspects.
2658
2659 Adjust_Decl;
2660
2661 -- If the current scope is a generic subprogram body. Skip the
2662 -- generic formal parameters that are not frozen here.
2663
2664 if Is_Subprogram (Current_Scope)
2665 and then Nkind (Unit_Declaration_Node (Current_Scope)) =
2666 N_Generic_Subprogram_Declaration
2667 and then Present (First_Entity (Current_Scope))
2668 then
2669 while Is_Generic_Formal (Freeze_From) loop
2670 Freeze_From := Next_Entity (Freeze_From);
2671 end loop;
2672
2673 Freeze_All (Freeze_From, Decl);
2674 Freeze_From := Last_Entity (Current_Scope);
2675
2676 else
2677 -- For declarations in a subprogram body there is no issue
2678 -- with name resolution in aspect specifications, but in
2679 -- ASIS mode we need to preanalyze aspect specifications
2680 -- that may otherwise only be analyzed during expansion
2681 -- (e.g. during generation of a related subprogram).
2682
2683 if ASIS_Mode then
2684 Resolve_Aspects;
2685 end if;
2686
2687 Freeze_All (First_Entity (Current_Scope), Decl);
2688 Freeze_From := Last_Entity (Current_Scope);
2689 end if;
2690
2691 -- Current scope is a package specification
2692
2693 elsif Scope (Current_Scope) /= Standard_Standard
2694 and then not Is_Child_Unit (Current_Scope)
2695 and then No (Generic_Parent (Parent (L)))
2696 then
2697 -- ARM rule 13.1.1(11/3): usage names in aspect definitions are
2698 -- resolved at the end of the immediately enclosing declaration
2699 -- list (AI05-0183-1).
2700
2701 Resolve_Aspects;
2702
2703 elsif L /= Visible_Declarations (Parent (L))
2704 or else No (Private_Declarations (Parent (L)))
2705 or else Is_Empty_List (Private_Declarations (Parent (L)))
2706 then
2707 Adjust_Decl;
2708
2709 -- End of a package declaration
2710
2711 -- In compilation mode the expansion of freeze node takes care
2712 -- of resolving expressions of all aspects in the list. In ASIS
2713 -- mode this must be done explicitly.
2714
2715 if ASIS_Mode
2716 and then Scope (Current_Scope) = Standard_Standard
2717 then
2718 Resolve_Aspects;
2719 end if;
2720
2721 -- This is a freeze point because it is the end of a
2722 -- compilation unit.
2723
2724 Freeze_All (First_Entity (Current_Scope), Decl);
2725 Freeze_From := Last_Entity (Current_Scope);
2726
2727 -- At the end of the visible declarations the expressions in
2728 -- aspects of all entities declared so far must be resolved.
2729 -- The entities themselves might be frozen later, and the
2730 -- generated pragmas and attribute definition clauses analyzed
2731 -- in full at that point, but name resolution must take place
2732 -- now.
2733 -- In addition to being the proper semantics, this is mandatory
2734 -- within generic units, because global name capture requires
2735 -- those expressions to be analyzed, given that the generated
2736 -- pragmas do not appear in the original generic tree.
2737
2738 elsif Serious_Errors_Detected = 0 then
2739 Resolve_Aspects;
2740 end if;
2741
2742 -- If next node is a body then freeze all types before the body.
2743 -- An exception occurs for some expander-generated bodies. If these
2744 -- are generated at places where in general language rules would not
2745 -- allow a freeze point, then we assume that the expander has
2746 -- explicitly checked that all required types are properly frozen,
2747 -- and we do not cause general freezing here. This special circuit
2748 -- is used when the encountered body is marked as having already
2749 -- been analyzed.
2750
2751 -- In all other cases (bodies that come from source, and expander
2752 -- generated bodies that have not been analyzed yet), freeze all
2753 -- types now. Note that in the latter case, the expander must take
2754 -- care to attach the bodies at a proper place in the tree so as to
2755 -- not cause unwanted freezing at that point.
2756
2757 -- It is also necessary to check for a case where both an expression
2758 -- function is used and the current scope depends on an incomplete
2759 -- private type from a library unit, otherwise premature freezing of
2760 -- the private type will occur.
2761
2762 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl)
2763 and then ((Nkind (Next_Decl) /= N_Subprogram_Body
2764 or else not Was_Expression_Function (Next_Decl))
2765 or else (not Is_Ignored_Ghost_Entity (Current_Scope)
2766 and then not Contains_Lib_Incomplete_Type
2767 (Current_Scope)))
2768 then
2769 -- When a controlled type is frozen, the expander generates stream
2770 -- and controlled-type support routines. If the freeze is caused
2771 -- by the stand-alone body of Initialize, Adjust, or Finalize, the
2772 -- expander will end up using the wrong version of these routines,
2773 -- as the body has not been processed yet. To remedy this, detect
2774 -- a late controlled primitive and create a proper spec for it.
2775 -- This ensures that the primitive will override its inherited
2776 -- counterpart before the freeze takes place.
2777
2778 -- If the declaration we just processed is a body, do not attempt
2779 -- to examine Next_Decl as the late primitive idiom can only apply
2780 -- to the first encountered body.
2781
2782 -- The spec of the late primitive is not generated in ASIS mode to
2783 -- ensure a consistent list of primitives that indicates the true
2784 -- semantic structure of the program (which is not relevant when
2785 -- generating executable code).
2786
2787 -- ??? A cleaner approach may be possible and/or this solution
2788 -- could be extended to general-purpose late primitives, TBD.
2789
2790 if not ASIS_Mode
2791 and then not Body_Seen
2792 and then not Is_Body (Decl)
2793 then
2794 Body_Seen := True;
2795
2796 if Nkind (Next_Decl) = N_Subprogram_Body then
2797 Handle_Late_Controlled_Primitive (Next_Decl);
2798 end if;
2799
2800 else
2801 -- In ASIS mode, if the next declaration is a body, complete
2802 -- the analysis of declarations so far.
2803
2804 Resolve_Aspects;
2805 end if;
2806
2807 Adjust_Decl;
2808
2809 -- The generated body of an expression function does not freeze,
2810 -- unless it is a completion, in which case only the expression
2811 -- itself freezes. This is handled when the body itself is
2812 -- analyzed (see Freeze_Expr_Types, sem_ch6.adb).
2813
2814 Freeze_All (Freeze_From, Decl);
2815 Freeze_From := Last_Entity (Current_Scope);
2816 end if;
2817
2818 Decl := Next_Decl;
2819 end loop;
2820
2821 -- Post-freezing actions
2822
2823 if Present (L) then
2824 Context := Parent (L);
2825
2826 -- Certain contract annocations have forward visibility semantics and
2827 -- must be analyzed after all declarative items have been processed.
2828 -- This timing ensures that entities referenced by such contracts are
2829 -- visible.
2830
2831 -- Analyze the contract of an immediately enclosing package spec or
2832 -- body first because other contracts may depend on its information.
2833
2834 if Nkind (Context) = N_Package_Body then
2835 Analyze_Package_Body_Contract (Defining_Entity (Context));
2836
2837 elsif Nkind (Context) = N_Package_Specification then
2838 Analyze_Package_Contract (Defining_Entity (Context));
2839 end if;
2840
2841 -- Analyze the contracts of various constructs in the declarative
2842 -- list.
2843
2844 Analyze_Contracts (L);
2845
2846 if Nkind (Context) = N_Package_Body then
2847
2848 -- Ensure that all abstract states and objects declared in the
2849 -- state space of a package body are utilized as constituents.
2850
2851 Check_Unused_Body_States (Defining_Entity (Context));
2852
2853 -- State refinements are visible up to the end of the package body
2854 -- declarations. Hide the state refinements from visibility to
2855 -- restore the original state conditions.
2856
2857 Remove_Visible_Refinements (Corresponding_Spec (Context));
2858 Remove_Partial_Visible_Refinements (Corresponding_Spec (Context));
2859
2860 elsif Nkind (Context) = N_Package_Specification then
2861
2862 -- Partial state refinements are visible up to the end of the
2863 -- package spec declarations. Hide the partial state refinements
2864 -- from visibility to restore the original state conditions.
2865
2866 Remove_Partial_Visible_Refinements (Defining_Entity (Context));
2867 end if;
2868
2869 -- Verify that all abstract states found in any package declared in
2870 -- the input declarative list have proper refinements. The check is
2871 -- performed only when the context denotes a block, entry, package,
2872 -- protected, subprogram, or task body (SPARK RM 7.2.2(3)).
2873
2874 Check_State_Refinements (Context);
2875
2876 -- Create the subprogram bodies which verify the run-time semantics
2877 -- of pragmas Default_Initial_Condition and [Type_]Invariant for all
2878 -- types within the current declarative list. This ensures that all
2879 -- assertion expressions are preanalyzed and resolved at the end of
2880 -- the declarative part. Note that the resolution happens even when
2881 -- freezing does not take place.
2882
2883 Build_Assertion_Bodies (L, Context);
2884 end if;
2885 end Analyze_Declarations;
2886
2887 -----------------------------------
2888 -- Analyze_Full_Type_Declaration --
2889 -----------------------------------
2890
2891 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2892 Def : constant Node_Id := Type_Definition (N);
2893 Def_Id : constant Entity_Id := Defining_Identifier (N);
2894 T : Entity_Id;
2895 Prev : Entity_Id;
2896
2897 Is_Remote : constant Boolean :=
2898 (Is_Remote_Types (Current_Scope)
2899 or else Is_Remote_Call_Interface (Current_Scope))
2900 and then not (In_Private_Part (Current_Scope)
2901 or else In_Package_Body (Current_Scope));
2902
2903 procedure Check_Nonoverridable_Aspects;
2904 -- Apply the rule in RM 13.1.1(18.4/4) on iterator aspects that cannot
2905 -- be overridden, and can only be confirmed on derivation.
2906
2907 procedure Check_Ops_From_Incomplete_Type;
2908 -- If there is a tagged incomplete partial view of the type, traverse
2909 -- the primitives of the incomplete view and change the type of any
2910 -- controlling formals and result to indicate the full view. The
2911 -- primitives will be added to the full type's primitive operations
2912 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2913 -- is called from Process_Incomplete_Dependents).
2914
2915 ----------------------------------
2916 -- Check_Nonoverridable_Aspects --
2917 ----------------------------------
2918
2919 procedure Check_Nonoverridable_Aspects is
2920 function Get_Aspect_Spec
2921 (Specs : List_Id;
2922 Aspect_Name : Name_Id) return Node_Id;
2923 -- Check whether a list of aspect specifications includes an entry
2924 -- for a specific aspect. The list is either that of a partial or
2925 -- a full view.
2926
2927 ---------------------
2928 -- Get_Aspect_Spec --
2929 ---------------------
2930
2931 function Get_Aspect_Spec
2932 (Specs : List_Id;
2933 Aspect_Name : Name_Id) return Node_Id
2934 is
2935 Spec : Node_Id;
2936
2937 begin
2938 Spec := First (Specs);
2939 while Present (Spec) loop
2940 if Chars (Identifier (Spec)) = Aspect_Name then
2941 return Spec;
2942 end if;
2943 Next (Spec);
2944 end loop;
2945
2946 return Empty;
2947 end Get_Aspect_Spec;
2948
2949 -- Local variables
2950
2951 Prev_Aspects : constant List_Id :=
2952 Aspect_Specifications (Parent (Def_Id));
2953 Par_Type : Entity_Id;
2954 Prev_Aspect : Node_Id;
2955
2956 -- Start of processing for Check_Nonoverridable_Aspects
2957
2958 begin
2959 -- Get parent type of derived type. Note that Prev is the entity in
2960 -- the partial declaration, but its contents are now those of full
2961 -- view, while Def_Id reflects the partial view.
2962
2963 if Is_Private_Type (Def_Id) then
2964 Par_Type := Etype (Full_View (Def_Id));
2965 else
2966 Par_Type := Etype (Def_Id);
2967 end if;
2968
2969 -- If there is an inherited Implicit_Dereference, verify that it is
2970 -- made explicit in the partial view.
2971
2972 if Has_Discriminants (Base_Type (Par_Type))
2973 and then Nkind (Parent (Prev)) = N_Full_Type_Declaration
2974 and then Present (Discriminant_Specifications (Parent (Prev)))
2975 and then Present (Get_Reference_Discriminant (Par_Type))
2976 then
2977 Prev_Aspect :=
2978 Get_Aspect_Spec (Prev_Aspects, Name_Implicit_Dereference);
2979
2980 if No (Prev_Aspect)
2981 and then Present
2982 (Discriminant_Specifications
2983 (Original_Node (Parent (Prev))))
2984 then
2985 Error_Msg_N
2986 ("type does not inherit implicit dereference", Prev);
2987
2988 else
2989 -- If one of the views has the aspect specified, verify that it
2990 -- is consistent with that of the parent.
2991
2992 declare
2993 Par_Discr : constant Entity_Id :=
2994 Get_Reference_Discriminant (Par_Type);
2995 Cur_Discr : constant Entity_Id :=
2996 Get_Reference_Discriminant (Prev);
2997
2998 begin
2999 if Corresponding_Discriminant (Cur_Discr) /= Par_Discr then
3000 Error_Msg_N ("aspect incosistent with that of parent", N);
3001 end if;
3002
3003 -- Check that specification in partial view matches the
3004 -- inherited aspect. Compare names directly because aspect
3005 -- expression may not be analyzed.
3006
3007 if Present (Prev_Aspect)
3008 and then Nkind (Expression (Prev_Aspect)) = N_Identifier
3009 and then Chars (Expression (Prev_Aspect)) /=
3010 Chars (Cur_Discr)
3011 then
3012 Error_Msg_N
3013 ("aspect incosistent with that of parent", N);
3014 end if;
3015 end;
3016 end if;
3017 end if;
3018
3019 -- TBD : other nonoverridable aspects.
3020 end Check_Nonoverridable_Aspects;
3021
3022 ------------------------------------
3023 -- Check_Ops_From_Incomplete_Type --
3024 ------------------------------------
3025
3026 procedure Check_Ops_From_Incomplete_Type is
3027 Elmt : Elmt_Id;
3028 Formal : Entity_Id;
3029 Op : Entity_Id;
3030
3031 begin
3032 if Prev /= T
3033 and then Ekind (Prev) = E_Incomplete_Type
3034 and then Is_Tagged_Type (Prev)
3035 and then Is_Tagged_Type (T)
3036 then
3037 Elmt := First_Elmt (Primitive_Operations (Prev));
3038 while Present (Elmt) loop
3039 Op := Node (Elmt);
3040
3041 Formal := First_Formal (Op);
3042 while Present (Formal) loop
3043 if Etype (Formal) = Prev then
3044 Set_Etype (Formal, T);
3045 end if;
3046
3047 Next_Formal (Formal);
3048 end loop;
3049
3050 if Etype (Op) = Prev then
3051 Set_Etype (Op, T);
3052 end if;
3053
3054 Next_Elmt (Elmt);
3055 end loop;
3056 end if;
3057 end Check_Ops_From_Incomplete_Type;
3058
3059 -- Start of processing for Analyze_Full_Type_Declaration
3060
3061 begin
3062 Prev := Find_Type_Name (N);
3063
3064 -- The full view, if present, now points to the current type. If there
3065 -- is an incomplete partial view, set a link to it, to simplify the
3066 -- retrieval of primitive operations of the type.
3067
3068 -- Ada 2005 (AI-50217): If the type was previously decorated when
3069 -- imported through a LIMITED WITH clause, it appears as incomplete
3070 -- but has no full view.
3071
3072 if Ekind (Prev) = E_Incomplete_Type
3073 and then Present (Full_View (Prev))
3074 then
3075 T := Full_View (Prev);
3076 Set_Incomplete_View (N, Parent (Prev));
3077 else
3078 T := Prev;
3079 end if;
3080
3081 Set_Is_Pure (T, Is_Pure (Current_Scope));
3082
3083 -- We set the flag Is_First_Subtype here. It is needed to set the
3084 -- corresponding flag for the Implicit class-wide-type created
3085 -- during tagged types processing.
3086
3087 Set_Is_First_Subtype (T, True);
3088
3089 -- Only composite types other than array types are allowed to have
3090 -- discriminants.
3091
3092 case Nkind (Def) is
3093
3094 -- For derived types, the rule will be checked once we've figured
3095 -- out the parent type.
3096
3097 when N_Derived_Type_Definition =>
3098 null;
3099
3100 -- For record types, discriminants are allowed, unless we are in
3101 -- SPARK.
3102
3103 when N_Record_Definition =>
3104 if Present (Discriminant_Specifications (N)) then
3105 Check_SPARK_05_Restriction
3106 ("discriminant type is not allowed",
3107 Defining_Identifier
3108 (First (Discriminant_Specifications (N))));
3109 end if;
3110
3111 when others =>
3112 if Present (Discriminant_Specifications (N)) then
3113 Error_Msg_N
3114 ("elementary or array type cannot have discriminants",
3115 Defining_Identifier
3116 (First (Discriminant_Specifications (N))));
3117 end if;
3118 end case;
3119
3120 -- Elaborate the type definition according to kind, and generate
3121 -- subsidiary (implicit) subtypes where needed. We skip this if it was
3122 -- already done (this happens during the reanalysis that follows a call
3123 -- to the high level optimizer).
3124
3125 if not Analyzed (T) then
3126 Set_Analyzed (T);
3127
3128 -- Set the SPARK mode from the current context
3129
3130 Set_SPARK_Pragma (T, SPARK_Mode_Pragma);
3131 Set_SPARK_Pragma_Inherited (T);
3132
3133 case Nkind (Def) is
3134 when N_Access_To_Subprogram_Definition =>
3135 Access_Subprogram_Declaration (T, Def);
3136
3137 -- If this is a remote access to subprogram, we must create the
3138 -- equivalent fat pointer type, and related subprograms.
3139
3140 if Is_Remote then
3141 Process_Remote_AST_Declaration (N);
3142 end if;
3143
3144 -- Validate categorization rule against access type declaration
3145 -- usually a violation in Pure unit, Shared_Passive unit.
3146
3147 Validate_Access_Type_Declaration (T, N);
3148
3149 when N_Access_To_Object_Definition =>
3150 Access_Type_Declaration (T, Def);
3151
3152 -- Validate categorization rule against access type declaration
3153 -- usually a violation in Pure unit, Shared_Passive unit.
3154
3155 Validate_Access_Type_Declaration (T, N);
3156
3157 -- If we are in a Remote_Call_Interface package and define a
3158 -- RACW, then calling stubs and specific stream attributes
3159 -- must be added.
3160
3161 if Is_Remote
3162 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
3163 then
3164 Add_RACW_Features (Def_Id);
3165 end if;
3166
3167 when N_Array_Type_Definition =>
3168 Array_Type_Declaration (T, Def);
3169
3170 when N_Derived_Type_Definition =>
3171 Derived_Type_Declaration (T, N, T /= Def_Id);
3172
3173 -- Inherit predicates from parent, and protect against illegal
3174 -- derivations.
3175
3176 if Is_Type (T) and then Has_Predicates (T) then
3177 Set_Has_Predicates (Def_Id);
3178 end if;
3179
3180 -- Save the scenario for examination by the ABE Processing
3181 -- phase.
3182
3183 Record_Elaboration_Scenario (N);
3184
3185 when N_Enumeration_Type_Definition =>
3186 Enumeration_Type_Declaration (T, Def);
3187
3188 when N_Floating_Point_Definition =>
3189 Floating_Point_Type_Declaration (T, Def);
3190
3191 when N_Decimal_Fixed_Point_Definition =>
3192 Decimal_Fixed_Point_Type_Declaration (T, Def);
3193
3194 when N_Ordinary_Fixed_Point_Definition =>
3195 Ordinary_Fixed_Point_Type_Declaration (T, Def);
3196
3197 when N_Signed_Integer_Type_Definition =>
3198 Signed_Integer_Type_Declaration (T, Def);
3199
3200 when N_Modular_Type_Definition =>
3201 Modular_Type_Declaration (T, Def);
3202
3203 when N_Record_Definition =>
3204 Record_Type_Declaration (T, N, Prev);
3205
3206 -- If declaration has a parse error, nothing to elaborate.
3207
3208 when N_Error =>
3209 null;
3210
3211 when others =>
3212 raise Program_Error;
3213 end case;
3214 end if;
3215
3216 if Etype (T) = Any_Type then
3217 return;
3218 end if;
3219
3220 -- Controlled type is not allowed in SPARK
3221
3222 if Is_Visibly_Controlled (T) then
3223 Check_SPARK_05_Restriction ("controlled type is not allowed", N);
3224 end if;
3225
3226 -- Some common processing for all types
3227
3228 Set_Depends_On_Private (T, Has_Private_Component (T));
3229 Check_Ops_From_Incomplete_Type;
3230
3231 -- Both the declared entity, and its anonymous base type if one was
3232 -- created, need freeze nodes allocated.
3233
3234 declare
3235 B : constant Entity_Id := Base_Type (T);
3236
3237 begin
3238 -- In the case where the base type differs from the first subtype, we
3239 -- pre-allocate a freeze node, and set the proper link to the first
3240 -- subtype. Freeze_Entity will use this preallocated freeze node when
3241 -- it freezes the entity.
3242
3243 -- This does not apply if the base type is a generic type, whose
3244 -- declaration is independent of the current derived definition.
3245
3246 if B /= T and then not Is_Generic_Type (B) then
3247 Ensure_Freeze_Node (B);
3248 Set_First_Subtype_Link (Freeze_Node (B), T);
3249 end if;
3250
3251 -- A type that is imported through a limited_with clause cannot
3252 -- generate any code, and thus need not be frozen. However, an access
3253 -- type with an imported designated type needs a finalization list,
3254 -- which may be referenced in some other package that has non-limited
3255 -- visibility on the designated type. Thus we must create the
3256 -- finalization list at the point the access type is frozen, to
3257 -- prevent unsatisfied references at link time.
3258
3259 if not From_Limited_With (T) or else Is_Access_Type (T) then
3260 Set_Has_Delayed_Freeze (T);
3261 end if;
3262 end;
3263
3264 -- Case where T is the full declaration of some private type which has
3265 -- been swapped in Defining_Identifier (N).
3266
3267 if T /= Def_Id and then Is_Private_Type (Def_Id) then
3268 Process_Full_View (N, T, Def_Id);
3269
3270 -- Record the reference. The form of this is a little strange, since
3271 -- the full declaration has been swapped in. So the first parameter
3272 -- here represents the entity to which a reference is made which is
3273 -- the "real" entity, i.e. the one swapped in, and the second
3274 -- parameter provides the reference location.
3275
3276 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
3277 -- since we don't want a complaint about the full type being an
3278 -- unwanted reference to the private type
3279
3280 declare
3281 B : constant Boolean := Has_Pragma_Unreferenced (T);
3282 begin
3283 Set_Has_Pragma_Unreferenced (T, False);
3284 Generate_Reference (T, T, 'c');
3285 Set_Has_Pragma_Unreferenced (T, B);
3286 end;
3287
3288 Set_Completion_Referenced (Def_Id);
3289
3290 -- For completion of incomplete type, process incomplete dependents
3291 -- and always mark the full type as referenced (it is the incomplete
3292 -- type that we get for any real reference).
3293
3294 elsif Ekind (Prev) = E_Incomplete_Type then
3295 Process_Incomplete_Dependents (N, T, Prev);
3296 Generate_Reference (Prev, Def_Id, 'c');
3297 Set_Completion_Referenced (Def_Id);
3298
3299 -- If not private type or incomplete type completion, this is a real
3300 -- definition of a new entity, so record it.
3301
3302 else
3303 Generate_Definition (Def_Id);
3304 end if;
3305
3306 -- Propagate any pending access types whose finalization masters need to
3307 -- be fully initialized from the partial to the full view. Guard against
3308 -- an illegal full view that remains unanalyzed.
3309
3310 if Is_Type (Def_Id) and then Is_Incomplete_Or_Private_Type (Prev) then
3311 Set_Pending_Access_Types (Def_Id, Pending_Access_Types (Prev));
3312 end if;
3313
3314 if Chars (Scope (Def_Id)) = Name_System
3315 and then Chars (Def_Id) = Name_Address
3316 and then In_Predefined_Unit (N)
3317 then
3318 Set_Is_Descendant_Of_Address (Def_Id);
3319 Set_Is_Descendant_Of_Address (Base_Type (Def_Id));
3320 Set_Is_Descendant_Of_Address (Prev);
3321 end if;
3322
3323 Set_Optimize_Alignment_Flags (Def_Id);
3324 Check_Eliminated (Def_Id);
3325
3326 -- If the declaration is a completion and aspects are present, apply
3327 -- them to the entity for the type which is currently the partial
3328 -- view, but which is the one that will be frozen.
3329
3330 if Has_Aspects (N) then
3331
3332 -- In most cases the partial view is a private type, and both views
3333 -- appear in different declarative parts. In the unusual case where
3334 -- the partial view is incomplete, perform the analysis on the
3335 -- full view, to prevent freezing anomalies with the corresponding
3336 -- class-wide type, which otherwise might be frozen before the
3337 -- dispatch table is built.
3338
3339 if Prev /= Def_Id
3340 and then Ekind (Prev) /= E_Incomplete_Type
3341 then
3342 Analyze_Aspect_Specifications (N, Prev);
3343
3344 -- Normal case
3345
3346 else
3347 Analyze_Aspect_Specifications (N, Def_Id);
3348 end if;
3349 end if;
3350
3351 if Is_Derived_Type (Prev)
3352 and then Def_Id /= Prev
3353 then
3354 Check_Nonoverridable_Aspects;
3355 end if;
3356 end Analyze_Full_Type_Declaration;
3357
3358 ----------------------------------
3359 -- Analyze_Incomplete_Type_Decl --
3360 ----------------------------------
3361
3362 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
3363 F : constant Boolean := Is_Pure (Current_Scope);
3364 T : Entity_Id;
3365
3366 begin
3367 Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
3368
3369 Generate_Definition (Defining_Identifier (N));
3370
3371 -- Process an incomplete declaration. The identifier must not have been
3372 -- declared already in the scope. However, an incomplete declaration may
3373 -- appear in the private part of a package, for a private type that has
3374 -- already been declared.
3375
3376 -- In this case, the discriminants (if any) must match
3377
3378 T := Find_Type_Name (N);
3379
3380 Set_Ekind (T, E_Incomplete_Type);
3381 Set_Etype (T, T);
3382 Set_Is_First_Subtype (T);
3383 Init_Size_Align (T);
3384
3385 -- Set the SPARK mode from the current context
3386
3387 Set_SPARK_Pragma (T, SPARK_Mode_Pragma);
3388 Set_SPARK_Pragma_Inherited (T);
3389
3390 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
3391 -- incomplete types.
3392
3393 if Tagged_Present (N) then
3394 Set_Is_Tagged_Type (T, True);
3395 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3396 Make_Class_Wide_Type (T);
3397 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3398 end if;
3399
3400 Set_Stored_Constraint (T, No_Elist);
3401
3402 if Present (Discriminant_Specifications (N)) then
3403 Push_Scope (T);
3404 Process_Discriminants (N);
3405 End_Scope;
3406 end if;
3407
3408 -- If the type has discriminants, nontrivial subtypes may be declared
3409 -- before the full view of the type. The full views of those subtypes
3410 -- will be built after the full view of the type.
3411
3412 Set_Private_Dependents (T, New_Elmt_List);
3413 Set_Is_Pure (T, F);
3414 end Analyze_Incomplete_Type_Decl;
3415
3416 -----------------------------------
3417 -- Analyze_Interface_Declaration --
3418 -----------------------------------
3419
3420 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
3421 CW : constant Entity_Id := Class_Wide_Type (T);
3422
3423 begin
3424 Set_Is_Tagged_Type (T);
3425 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3426
3427 Set_Is_Limited_Record (T, Limited_Present (Def)
3428 or else Task_Present (Def)
3429 or else Protected_Present (Def)
3430 or else Synchronized_Present (Def));
3431
3432 -- Type is abstract if full declaration carries keyword, or if previous
3433 -- partial view did.
3434
3435 Set_Is_Abstract_Type (T);
3436 Set_Is_Interface (T);
3437
3438 -- Type is a limited interface if it includes the keyword limited, task,
3439 -- protected, or synchronized.
3440
3441 Set_Is_Limited_Interface
3442 (T, Limited_Present (Def)
3443 or else Protected_Present (Def)
3444 or else Synchronized_Present (Def)
3445 or else Task_Present (Def));
3446
3447 Set_Interfaces (T, New_Elmt_List);
3448 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3449
3450 -- Complete the decoration of the class-wide entity if it was already
3451 -- built (i.e. during the creation of the limited view)
3452
3453 if Present (CW) then
3454 Set_Is_Interface (CW);
3455 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
3456 end if;
3457
3458 -- Check runtime support for synchronized interfaces
3459
3460 if (Is_Task_Interface (T)
3461 or else Is_Protected_Interface (T)
3462 or else Is_Synchronized_Interface (T))
3463 and then not RTE_Available (RE_Select_Specific_Data)
3464 then
3465 Error_Msg_CRT ("synchronized interfaces", T);
3466 end if;
3467 end Analyze_Interface_Declaration;
3468
3469 -----------------------------
3470 -- Analyze_Itype_Reference --
3471 -----------------------------
3472
3473 -- Nothing to do. This node is placed in the tree only for the benefit of
3474 -- back end processing, and has no effect on the semantic processing.
3475
3476 procedure Analyze_Itype_Reference (N : Node_Id) is
3477 begin
3478 pragma Assert (Is_Itype (Itype (N)));
3479 null;
3480 end Analyze_Itype_Reference;
3481
3482 --------------------------------
3483 -- Analyze_Number_Declaration --
3484 --------------------------------
3485
3486 procedure Analyze_Number_Declaration (N : Node_Id) is
3487 E : constant Node_Id := Expression (N);
3488 Id : constant Entity_Id := Defining_Identifier (N);
3489 Index : Interp_Index;
3490 It : Interp;
3491 T : Entity_Id;
3492
3493 begin
3494 Generate_Definition (Id);
3495 Enter_Name (Id);
3496
3497 -- This is an optimization of a common case of an integer literal
3498
3499 if Nkind (E) = N_Integer_Literal then
3500 Set_Is_Static_Expression (E, True);
3501 Set_Etype (E, Universal_Integer);
3502
3503 Set_Etype (Id, Universal_Integer);
3504 Set_Ekind (Id, E_Named_Integer);
3505 Set_Is_Frozen (Id, True);
3506 return;
3507 end if;
3508
3509 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3510
3511 -- Process expression, replacing error by integer zero, to avoid
3512 -- cascaded errors or aborts further along in the processing
3513
3514 -- Replace Error by integer zero, which seems least likely to cause
3515 -- cascaded errors.
3516
3517 if E = Error then
3518 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
3519 Set_Error_Posted (E);
3520 end if;
3521
3522 Analyze (E);
3523
3524 -- Verify that the expression is static and numeric. If
3525 -- the expression is overloaded, we apply the preference
3526 -- rule that favors root numeric types.
3527
3528 if not Is_Overloaded (E) then
3529 T := Etype (E);
3530 if Has_Dynamic_Predicate_Aspect (T) then
3531 Error_Msg_N
3532 ("subtype has dynamic predicate, "
3533 & "not allowed in number declaration", N);
3534 end if;
3535
3536 else
3537 T := Any_Type;
3538
3539 Get_First_Interp (E, Index, It);
3540 while Present (It.Typ) loop
3541 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
3542 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
3543 then
3544 if T = Any_Type then
3545 T := It.Typ;
3546
3547 elsif It.Typ = Universal_Real
3548 or else
3549 It.Typ = Universal_Integer
3550 then
3551 -- Choose universal interpretation over any other
3552
3553 T := It.Typ;
3554 exit;
3555 end if;
3556 end if;
3557
3558 Get_Next_Interp (Index, It);
3559 end loop;
3560 end if;
3561
3562 if Is_Integer_Type (T) then
3563 Resolve (E, T);
3564 Set_Etype (Id, Universal_Integer);
3565 Set_Ekind (Id, E_Named_Integer);
3566
3567 elsif Is_Real_Type (T) then
3568
3569 -- Because the real value is converted to universal_real, this is a
3570 -- legal context for a universal fixed expression.
3571
3572 if T = Universal_Fixed then
3573 declare
3574 Loc : constant Source_Ptr := Sloc (N);
3575 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3576 Subtype_Mark =>
3577 New_Occurrence_Of (Universal_Real, Loc),
3578 Expression => Relocate_Node (E));
3579
3580 begin
3581 Rewrite (E, Conv);
3582 Analyze (E);
3583 end;
3584
3585 elsif T = Any_Fixed then
3586 Error_Msg_N ("illegal context for mixed mode operation", E);
3587
3588 -- Expression is of the form : universal_fixed * integer. Try to
3589 -- resolve as universal_real.
3590
3591 T := Universal_Real;
3592 Set_Etype (E, T);
3593 end if;
3594
3595 Resolve (E, T);
3596 Set_Etype (Id, Universal_Real);
3597 Set_Ekind (Id, E_Named_Real);
3598
3599 else
3600 Wrong_Type (E, Any_Numeric);
3601 Resolve (E, T);
3602
3603 Set_Etype (Id, T);
3604 Set_Ekind (Id, E_Constant);
3605 Set_Never_Set_In_Source (Id, True);
3606 Set_Is_True_Constant (Id, True);
3607 return;
3608 end if;
3609
3610 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3611 Set_Etype (E, Etype (Id));
3612 end if;
3613
3614 if not Is_OK_Static_Expression (E) then
3615 Flag_Non_Static_Expr
3616 ("non-static expression used in number declaration!", E);
3617 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3618 Set_Etype (E, Any_Type);
3619 end if;
3620
3621 Analyze_Dimension (N);
3622 end Analyze_Number_Declaration;
3623
3624 --------------------------------
3625 -- Analyze_Object_Declaration --
3626 --------------------------------
3627
3628 -- WARNING: This routine manages Ghost regions. Return statements must be
3629 -- replaced by gotos which jump to the end of the routine and restore the
3630 -- Ghost mode.
3631
3632 procedure Analyze_Object_Declaration (N : Node_Id) is
3633 Loc : constant Source_Ptr := Sloc (N);
3634 Id : constant Entity_Id := Defining_Identifier (N);
3635 Act_T : Entity_Id;
3636 T : Entity_Id;
3637
3638 E : Node_Id := Expression (N);
3639 -- E is set to Expression (N) throughout this routine. When Expression
3640 -- (N) is modified, E is changed accordingly.
3641
3642 Prev_Entity : Entity_Id := Empty;
3643
3644 procedure Check_Dynamic_Object (Typ : Entity_Id);
3645 -- A library-level object with non-static discriminant constraints may
3646 -- require dynamic allocation. The declaration is illegal if the
3647 -- profile includes the restriction No_Implicit_Heap_Allocations.
3648
3649 procedure Check_For_Null_Excluding_Components
3650 (Obj_Typ : Entity_Id;
3651 Obj_Decl : Node_Id);
3652 -- Verify that each null-excluding component of object declaration
3653 -- Obj_Decl carrying type Obj_Typ has explicit initialization. Emit
3654 -- a compile-time warning if this is not the case.
3655
3656 function Count_Tasks (T : Entity_Id) return Uint;
3657 -- This function is called when a non-generic library level object of a
3658 -- task type is declared. Its function is to count the static number of
3659 -- tasks declared within the type (it is only called if Has_Task is set
3660 -- for T). As a side effect, if an array of tasks with non-static bounds
3661 -- or a variant record type is encountered, Check_Restriction is called
3662 -- indicating the count is unknown.
3663
3664 function Delayed_Aspect_Present return Boolean;
3665 -- If the declaration has an expression that is an aggregate, and it
3666 -- has aspects that require delayed analysis, the resolution of the
3667 -- aggregate must be deferred to the freeze point of the object. This
3668 -- special processing was created for address clauses, but it must
3669 -- also apply to Alignment. This must be done before the aspect
3670 -- specifications are analyzed because we must handle the aggregate
3671 -- before the analysis of the object declaration is complete.
3672
3673 -- Any other relevant delayed aspects on object declarations ???
3674
3675 --------------------------
3676 -- Check_Dynamic_Object --
3677 --------------------------
3678
3679 procedure Check_Dynamic_Object (Typ : Entity_Id) is
3680 Comp : Entity_Id;
3681 Obj_Type : Entity_Id;
3682
3683 begin
3684 Obj_Type := Typ;
3685
3686 if Is_Private_Type (Obj_Type)
3687 and then Present (Full_View (Obj_Type))
3688 then
3689 Obj_Type := Full_View (Obj_Type);
3690 end if;
3691
3692 if Known_Static_Esize (Obj_Type) then
3693 return;
3694 end if;
3695
3696 if Restriction_Active (No_Implicit_Heap_Allocations)
3697 and then Expander_Active
3698 and then Has_Discriminants (Obj_Type)
3699 then
3700 Comp := First_Component (Obj_Type);
3701 while Present (Comp) loop
3702 if Known_Static_Esize (Etype (Comp))
3703 or else Size_Known_At_Compile_Time (Etype (Comp))
3704 then
3705 null;
3706
3707 elsif not Discriminated_Size (Comp)
3708 and then Comes_From_Source (Comp)
3709 then
3710 Error_Msg_NE
3711 ("component& of non-static size will violate restriction "
3712 & "No_Implicit_Heap_Allocation?", N, Comp);
3713
3714 elsif Is_Record_Type (Etype (Comp)) then
3715 Check_Dynamic_Object (Etype (Comp));
3716 end if;
3717
3718 Next_Component (Comp);
3719 end loop;
3720 end if;
3721 end Check_Dynamic_Object;
3722
3723 -----------------------------------------
3724 -- Check_For_Null_Excluding_Components --
3725 -----------------------------------------
3726
3727 procedure Check_For_Null_Excluding_Components
3728 (Obj_Typ : Entity_Id;
3729 Obj_Decl : Node_Id)
3730 is
3731 procedure Check_Component
3732 (Comp_Typ : Entity_Id;
3733 Comp_Decl : Node_Id := Empty;
3734 Array_Comp : Boolean := False);
3735 -- Apply a compile-time null-exclusion check on a component denoted
3736 -- by its declaration Comp_Decl and type Comp_Typ, and all of its
3737 -- subcomponents (if any).
3738
3739 ---------------------
3740 -- Check_Component --
3741 ---------------------
3742
3743 procedure Check_Component
3744 (Comp_Typ : Entity_Id;
3745 Comp_Decl : Node_Id := Empty;
3746 Array_Comp : Boolean := False)
3747 is
3748 Comp : Entity_Id;
3749 T : Entity_Id;
3750
3751 begin
3752 -- Do not consider internally-generated components or those that
3753 -- are already initialized.
3754
3755 if Present (Comp_Decl)
3756 and then (not Comes_From_Source (Comp_Decl)
3757 or else Present (Expression (Comp_Decl)))
3758 then
3759 return;
3760 end if;
3761
3762 if Is_Incomplete_Or_Private_Type (Comp_Typ)
3763 and then Present (Full_View (Comp_Typ))
3764 then
3765 T := Full_View (Comp_Typ);
3766 else
3767 T := Comp_Typ;
3768 end if;
3769
3770 -- Verify a component of a null-excluding access type
3771
3772 if Is_Access_Type (T)
3773 and then Can_Never_Be_Null (T)
3774 then
3775 if Comp_Decl = Obj_Decl then
3776 Null_Exclusion_Static_Checks
3777 (N => Obj_Decl,
3778 Comp => Empty,
3779 Array_Comp => Array_Comp);
3780
3781 else
3782 Null_Exclusion_Static_Checks
3783 (N => Obj_Decl,
3784 Comp => Comp_Decl,
3785 Array_Comp => Array_Comp);
3786 end if;
3787
3788 -- Check array components
3789
3790 elsif Is_Array_Type (T) then
3791
3792 -- There is no suitable component when the object is of an
3793 -- array type. However, a namable component may appear at some
3794 -- point during the recursive inspection, but not at the top
3795 -- level. At the top level just indicate array component case.
3796
3797 if Comp_Decl = Obj_Decl then
3798 Check_Component (Component_Type (T), Array_Comp => True);
3799 else
3800 Check_Component (Component_Type (T), Comp_Decl);
3801 end if;
3802
3803 -- Verify all components of type T
3804
3805 -- Note: No checks are performed on types with discriminants due
3806 -- to complexities involving variants. ???
3807
3808 elsif (Is_Concurrent_Type (T)
3809 or else Is_Incomplete_Or_Private_Type (T)
3810 or else Is_Record_Type (T))
3811 and then not Has_Discriminants (T)
3812 then
3813 Comp := First_Component (T);
3814 while Present (Comp) loop
3815 Check_Component (Etype (Comp), Parent (Comp));
3816
3817 Comp := Next_Component (Comp);
3818 end loop;
3819 end if;
3820 end Check_Component;
3821
3822 -- Start processing for Check_For_Null_Excluding_Components
3823
3824 begin
3825 Check_Component (Obj_Typ, Obj_Decl);
3826 end Check_For_Null_Excluding_Components;
3827
3828 -----------------
3829 -- Count_Tasks --
3830 -----------------
3831
3832 function Count_Tasks (T : Entity_Id) return Uint is
3833 C : Entity_Id;
3834 X : Node_Id;
3835 V : Uint;
3836
3837 begin
3838 if Is_Task_Type (T) then
3839 return Uint_1;
3840
3841 elsif Is_Record_Type (T) then
3842 if Has_Discriminants (T) then
3843 Check_Restriction (Max_Tasks, N);
3844 return Uint_0;
3845
3846 else
3847 V := Uint_0;
3848 C := First_Component (T);
3849 while Present (C) loop
3850 V := V + Count_Tasks (Etype (C));
3851 Next_Component (C);
3852 end loop;
3853
3854 return V;
3855 end if;
3856
3857 elsif Is_Array_Type (T) then
3858 X := First_Index (T);
3859 V := Count_Tasks (Component_Type (T));
3860 while Present (X) loop
3861 C := Etype (X);
3862
3863 if not Is_OK_Static_Subtype (C) then
3864 Check_Restriction (Max_Tasks, N);
3865 return Uint_0;
3866 else
3867 V := V * (UI_Max (Uint_0,
3868 Expr_Value (Type_High_Bound (C)) -
3869 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3870 end if;
3871
3872 Next_Index (X);
3873 end loop;
3874
3875 return V;
3876
3877 else
3878 return Uint_0;
3879 end if;
3880 end Count_Tasks;
3881
3882 ----------------------------
3883 -- Delayed_Aspect_Present --
3884 ----------------------------
3885
3886 function Delayed_Aspect_Present return Boolean is
3887 A : Node_Id;
3888 A_Id : Aspect_Id;
3889
3890 begin
3891 if Present (Aspect_Specifications (N)) then
3892 A := First (Aspect_Specifications (N));
3893 A_Id := Get_Aspect_Id (Chars (Identifier (A)));
3894 while Present (A) loop
3895 if A_Id = Aspect_Alignment or else A_Id = Aspect_Address then
3896 return True;
3897 end if;
3898
3899 Next (A);
3900 end loop;
3901 end if;
3902
3903 return False;
3904 end Delayed_Aspect_Present;
3905
3906 -- Local variables
3907
3908 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
3909 -- Save the Ghost mode to restore on exit
3910
3911 Related_Id : Entity_Id;
3912
3913 -- Start of processing for Analyze_Object_Declaration
3914
3915 begin
3916 -- There are three kinds of implicit types generated by an
3917 -- object declaration:
3918
3919 -- 1. Those generated by the original Object Definition
3920
3921 -- 2. Those generated by the Expression
3922
3923 -- 3. Those used to constrain the Object Definition with the
3924 -- expression constraints when the definition is unconstrained.
3925
3926 -- They must be generated in this order to avoid order of elaboration
3927 -- issues. Thus the first step (after entering the name) is to analyze
3928 -- the object definition.
3929
3930 if Constant_Present (N) then
3931 Prev_Entity := Current_Entity_In_Scope (Id);
3932
3933 if Present (Prev_Entity)
3934 and then
3935 -- If the homograph is an implicit subprogram, it is overridden
3936 -- by the current declaration.
3937
3938 ((Is_Overloadable (Prev_Entity)
3939 and then Is_Inherited_Operation (Prev_Entity))
3940
3941 -- The current object is a discriminal generated for an entry
3942 -- family index. Even though the index is a constant, in this
3943 -- particular context there is no true constant redeclaration.
3944 -- Enter_Name will handle the visibility.
3945
3946 or else
3947 (Is_Discriminal (Id)
3948 and then Ekind (Discriminal_Link (Id)) =
3949 E_Entry_Index_Parameter)
3950
3951 -- The current object is the renaming for a generic declared
3952 -- within the instance.
3953
3954 or else
3955 (Ekind (Prev_Entity) = E_Package
3956 and then Nkind (Parent (Prev_Entity)) =
3957 N_Package_Renaming_Declaration
3958 and then not Comes_From_Source (Prev_Entity)
3959 and then
3960 Is_Generic_Instance (Renamed_Entity (Prev_Entity)))
3961
3962 -- The entity may be a homonym of a private component of the
3963 -- enclosing protected object, for which we create a local
3964 -- renaming declaration. The declaration is legal, even if
3965 -- useless when it just captures that component.
3966
3967 or else
3968 (Ekind (Scope (Current_Scope)) = E_Protected_Type
3969 and then Nkind (Parent (Prev_Entity)) =
3970 N_Object_Renaming_Declaration))
3971 then
3972 Prev_Entity := Empty;
3973 end if;
3974 end if;
3975
3976 if Present (Prev_Entity) then
3977
3978 -- The object declaration is Ghost when it completes a deferred Ghost
3979 -- constant.
3980
3981 Mark_And_Set_Ghost_Completion (N, Prev_Entity);
3982
3983 Constant_Redeclaration (Id, N, T);
3984
3985 Generate_Reference (Prev_Entity, Id, 'c');
3986 Set_Completion_Referenced (Id);
3987
3988 if Error_Posted (N) then
3989
3990 -- Type mismatch or illegal redeclaration; do not analyze
3991 -- expression to avoid cascaded errors.
3992
3993 T := Find_Type_Of_Object (Object_Definition (N), N);
3994 Set_Etype (Id, T);
3995 Set_Ekind (Id, E_Variable);
3996 goto Leave;
3997 end if;
3998
3999 -- In the normal case, enter identifier at the start to catch premature
4000 -- usage in the initialization expression.
4001
4002 else
4003 Generate_Definition (Id);
4004 Enter_Name (Id);
4005
4006 Mark_Coextensions (N, Object_Definition (N));
4007
4008 T := Find_Type_Of_Object (Object_Definition (N), N);
4009
4010 if Nkind (Object_Definition (N)) = N_Access_Definition
4011 and then Present
4012 (Access_To_Subprogram_Definition (Object_Definition (N)))
4013 and then Protected_Present
4014 (Access_To_Subprogram_Definition (Object_Definition (N)))
4015 then
4016 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
4017 end if;
4018
4019 if Error_Posted (Id) then
4020 Set_Etype (Id, T);
4021 Set_Ekind (Id, E_Variable);
4022 goto Leave;
4023 end if;
4024 end if;
4025
4026 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
4027 -- out some static checks.
4028
4029 if Ada_Version >= Ada_2005 then
4030
4031 -- In case of aggregates we must also take care of the correct
4032 -- initialization of nested aggregates bug this is done at the
4033 -- point of the analysis of the aggregate (see sem_aggr.adb) ???
4034
4035 if Can_Never_Be_Null (T) then
4036 if Present (Expression (N))
4037 and then Nkind (Expression (N)) = N_Aggregate
4038 then
4039 null;
4040
4041 else
4042 declare
4043 Save_Typ : constant Entity_Id := Etype (Id);
4044 begin
4045 Set_Etype (Id, T); -- Temp. decoration for static checks
4046 Null_Exclusion_Static_Checks (N);
4047 Set_Etype (Id, Save_Typ);
4048 end;
4049 end if;
4050
4051 -- We might be dealing with an object of a composite type containing
4052 -- null-excluding components without an aggregate, so we must verify
4053 -- that such components have default initialization.
4054
4055 else
4056 Check_For_Null_Excluding_Components (T, N);
4057 end if;
4058 end if;
4059
4060 -- Object is marked pure if it is in a pure scope
4061
4062 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4063
4064 -- If deferred constant, make sure context is appropriate. We detect
4065 -- a deferred constant as a constant declaration with no expression.
4066 -- A deferred constant can appear in a package body if its completion
4067 -- is by means of an interface pragma.
4068
4069 if Constant_Present (N) and then No (E) then
4070
4071 -- A deferred constant may appear in the declarative part of the
4072 -- following constructs:
4073
4074 -- blocks
4075 -- entry bodies
4076 -- extended return statements
4077 -- package specs
4078 -- package bodies
4079 -- subprogram bodies
4080 -- task bodies
4081
4082 -- When declared inside a package spec, a deferred constant must be
4083 -- completed by a full constant declaration or pragma Import. In all
4084 -- other cases, the only proper completion is pragma Import. Extended
4085 -- return statements are flagged as invalid contexts because they do
4086 -- not have a declarative part and so cannot accommodate the pragma.
4087
4088 if Ekind (Current_Scope) = E_Return_Statement then
4089 Error_Msg_N
4090 ("invalid context for deferred constant declaration (RM 7.4)",
4091 N);
4092 Error_Msg_N
4093 ("\declaration requires an initialization expression",
4094 N);
4095 Set_Constant_Present (N, False);
4096
4097 -- In Ada 83, deferred constant must be of private type
4098
4099 elsif not Is_Private_Type (T) then
4100 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
4101 Error_Msg_N
4102 ("(Ada 83) deferred constant must be private type", N);
4103 end if;
4104 end if;
4105
4106 -- If not a deferred constant, then the object declaration freezes
4107 -- its type, unless the object is of an anonymous type and has delayed
4108 -- aspects. In that case the type is frozen when the object itself is.
4109
4110 else
4111 Check_Fully_Declared (T, N);
4112
4113 if Has_Delayed_Aspects (Id)
4114 and then Is_Array_Type (T)
4115 and then Is_Itype (T)
4116 then
4117 Set_Has_Delayed_Freeze (T);
4118 else
4119 Freeze_Before (N, T);
4120 end if;
4121 end if;
4122
4123 -- If the object was created by a constrained array definition, then
4124 -- set the link in both the anonymous base type and anonymous subtype
4125 -- that are built to represent the array type to point to the object.
4126
4127 if Nkind (Object_Definition (Declaration_Node (Id))) =
4128 N_Constrained_Array_Definition
4129 then
4130 Set_Related_Array_Object (T, Id);
4131 Set_Related_Array_Object (Base_Type (T), Id);
4132 end if;
4133
4134 -- Special checks for protected objects not at library level
4135
4136 if Has_Protected (T) and then not Is_Library_Level_Entity (Id) then
4137 Check_Restriction (No_Local_Protected_Objects, Id);
4138
4139 -- Protected objects with interrupt handlers must be at library level
4140
4141 -- Ada 2005: This test is not needed (and the corresponding clause
4142 -- in the RM is removed) because accessibility checks are sufficient
4143 -- to make handlers not at the library level illegal.
4144
4145 -- AI05-0303: The AI is in fact a binding interpretation, and thus
4146 -- applies to the '95 version of the language as well.
4147
4148 if Is_Protected_Type (T)
4149 and then Has_Interrupt_Handler (T)
4150 and then Ada_Version < Ada_95
4151 then
4152 Error_Msg_N
4153 ("interrupt object can only be declared at library level", Id);
4154 end if;
4155 end if;
4156
4157 -- Check for violation of No_Local_Timing_Events
4158
4159 if Has_Timing_Event (T) and then not Is_Library_Level_Entity (Id) then
4160 Check_Restriction (No_Local_Timing_Events, Id);
4161 end if;
4162
4163 -- The actual subtype of the object is the nominal subtype, unless
4164 -- the nominal one is unconstrained and obtained from the expression.
4165
4166 Act_T := T;
4167
4168 -- These checks should be performed before the initialization expression
4169 -- is considered, so that the Object_Definition node is still the same
4170 -- as in source code.
4171
4172 -- In SPARK, the nominal subtype is always given by a subtype mark
4173 -- and must not be unconstrained. (The only exception to this is the
4174 -- acceptance of declarations of constants of type String.)
4175
4176 if not Nkind_In (Object_Definition (N), N_Expanded_Name, N_Identifier)
4177 then
4178 Check_SPARK_05_Restriction
4179 ("subtype mark required", Object_Definition (N));
4180
4181 elsif Is_Array_Type (T)
4182 and then not Is_Constrained (T)
4183 and then T /= Standard_String
4184 then
4185 Check_SPARK_05_Restriction
4186 ("subtype mark of constrained type expected",
4187 Object_Definition (N));
4188 end if;
4189
4190 if Is_Library_Level_Entity (Id) then
4191 Check_Dynamic_Object (T);
4192 end if;
4193
4194 -- There are no aliased objects in SPARK
4195
4196 if Aliased_Present (N) then
4197 Check_SPARK_05_Restriction ("aliased object is not allowed", N);
4198 end if;
4199
4200 -- Process initialization expression if present and not in error
4201
4202 if Present (E) and then E /= Error then
4203
4204 -- Generate an error in case of CPP class-wide object initialization.
4205 -- Required because otherwise the expansion of the class-wide
4206 -- assignment would try to use 'size to initialize the object
4207 -- (primitive that is not available in CPP tagged types).
4208
4209 if Is_Class_Wide_Type (Act_T)
4210 and then
4211 (Is_CPP_Class (Root_Type (Etype (Act_T)))
4212 or else
4213 (Present (Full_View (Root_Type (Etype (Act_T))))
4214 and then
4215 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
4216 then
4217 Error_Msg_N
4218 ("predefined assignment not available for 'C'P'P tagged types",
4219 E);
4220 end if;
4221
4222 Mark_Coextensions (N, E);
4223 Analyze (E);
4224
4225 -- In case of errors detected in the analysis of the expression,
4226 -- decorate it with the expected type to avoid cascaded errors
4227
4228 if No (Etype (E)) then
4229 Set_Etype (E, T);
4230 end if;
4231
4232 -- If an initialization expression is present, then we set the
4233 -- Is_True_Constant flag. It will be reset if this is a variable
4234 -- and it is indeed modified.
4235
4236 Set_Is_True_Constant (Id, True);
4237
4238 -- If we are analyzing a constant declaration, set its completion
4239 -- flag after analyzing and resolving the expression.
4240
4241 if Constant_Present (N) then
4242 Set_Has_Completion (Id);
4243 end if;
4244
4245 -- Set type and resolve (type may be overridden later on). Note:
4246 -- Ekind (Id) must still be E_Void at this point so that incorrect
4247 -- early usage within E is properly diagnosed.
4248
4249 Set_Etype (Id, T);
4250
4251 -- If the expression is an aggregate we must look ahead to detect
4252 -- the possible presence of an address clause, and defer resolution
4253 -- and expansion of the aggregate to the freeze point of the entity.
4254
4255 -- This is not always legal because the aggregate may contain other
4256 -- references that need freezing, e.g. references to other entities
4257 -- with address clauses. In any case, when compiling with -gnatI the
4258 -- presence of the address clause must be ignored.
4259
4260 if Comes_From_Source (N)
4261 and then Expander_Active
4262 and then Nkind (E) = N_Aggregate
4263 and then
4264 ((Present (Following_Address_Clause (N))
4265 and then not Ignore_Rep_Clauses)
4266 or else Delayed_Aspect_Present)
4267 then
4268 Set_Etype (E, T);
4269
4270 else
4271
4272 -- If the expression is a formal that is a "subprogram pointer"
4273 -- this is illegal in accessibility terms. Add an explicit
4274 -- conversion to force the corresponding check, as is done for
4275 -- assignments.
4276
4277 if Comes_From_Source (N)
4278 and then Is_Entity_Name (E)
4279 and then Present (Entity (E))
4280 and then Is_Formal (Entity (E))
4281 and then
4282 Ekind (Etype (Entity (E))) = E_Anonymous_Access_Subprogram_Type
4283 and then Ekind (T) /= E_Anonymous_Access_Subprogram_Type
4284 then
4285 Rewrite (E, Convert_To (T, Relocate_Node (E)));
4286 end if;
4287
4288 Resolve (E, T);
4289 end if;
4290
4291 -- No further action needed if E is a call to an inlined function
4292 -- which returns an unconstrained type and it has been expanded into
4293 -- a procedure call. In that case N has been replaced by an object
4294 -- declaration without initializing expression and it has been
4295 -- analyzed (see Expand_Inlined_Call).
4296
4297 if Back_End_Inlining
4298 and then Expander_Active
4299 and then Nkind (E) = N_Function_Call
4300 and then Nkind (Name (E)) in N_Has_Entity
4301 and then Is_Inlined (Entity (Name (E)))
4302 and then not Is_Constrained (Etype (E))
4303 and then Analyzed (N)
4304 and then No (Expression (N))
4305 then
4306 goto Leave;
4307 end if;
4308
4309 -- If E is null and has been replaced by an N_Raise_Constraint_Error
4310 -- node (which was marked already-analyzed), we need to set the type
4311 -- to something other than Any_Access in order to keep gigi happy.
4312
4313 if Etype (E) = Any_Access then
4314 Set_Etype (E, T);
4315 end if;
4316
4317 -- If the object is an access to variable, the initialization
4318 -- expression cannot be an access to constant.
4319
4320 if Is_Access_Type (T)
4321 and then not Is_Access_Constant (T)
4322 and then Is_Access_Type (Etype (E))
4323 and then Is_Access_Constant (Etype (E))
4324 then
4325 Error_Msg_N
4326 ("access to variable cannot be initialized with an "
4327 & "access-to-constant expression", E);
4328 end if;
4329
4330 if not Assignment_OK (N) then
4331 Check_Initialization (T, E);
4332 end if;
4333
4334 Check_Unset_Reference (E);
4335
4336 -- If this is a variable, then set current value. If this is a
4337 -- declared constant of a scalar type with a static expression,
4338 -- indicate that it is always valid.
4339
4340 if not Constant_Present (N) then
4341 if Compile_Time_Known_Value (E) then
4342 Set_Current_Value (Id, E);
4343 end if;
4344
4345 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
4346 Set_Is_Known_Valid (Id);
4347 end if;
4348
4349 -- Deal with setting of null flags
4350
4351 if Is_Access_Type (T) then
4352 if Known_Non_Null (E) then
4353 Set_Is_Known_Non_Null (Id, True);
4354 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
4355 Set_Is_Known_Null (Id, True);
4356 end if;
4357 end if;
4358
4359 -- Check incorrect use of dynamically tagged expressions
4360
4361 if Is_Tagged_Type (T) then
4362 Check_Dynamically_Tagged_Expression
4363 (Expr => E,
4364 Typ => T,
4365 Related_Nod => N);
4366 end if;
4367
4368 Apply_Scalar_Range_Check (E, T);
4369 Apply_Static_Length_Check (E, T);
4370
4371 if Nkind (Original_Node (N)) = N_Object_Declaration
4372 and then Comes_From_Source (Original_Node (N))
4373
4374 -- Only call test if needed
4375
4376 and then Restriction_Check_Required (SPARK_05)
4377 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
4378 then
4379 Check_SPARK_05_Restriction
4380 ("initialization expression is not appropriate", E);
4381 end if;
4382
4383 -- A formal parameter of a specific tagged type whose related
4384 -- subprogram is subject to pragma Extensions_Visible with value
4385 -- "False" cannot be implicitly converted to a class-wide type by
4386 -- means of an initialization expression (SPARK RM 6.1.7(3)). Do
4387 -- not consider internally generated expressions.
4388
4389 if Is_Class_Wide_Type (T)
4390 and then Comes_From_Source (E)
4391 and then Is_EVF_Expression (E)
4392 then
4393 Error_Msg_N
4394 ("formal parameter cannot be implicitly converted to "
4395 & "class-wide type when Extensions_Visible is False", E);
4396 end if;
4397 end if;
4398
4399 -- If the No_Streams restriction is set, check that the type of the
4400 -- object is not, and does not contain, any subtype derived from
4401 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
4402 -- Has_Stream just for efficiency reasons. There is no point in
4403 -- spending time on a Has_Stream check if the restriction is not set.
4404
4405 if Restriction_Check_Required (No_Streams) then
4406 if Has_Stream (T) then
4407 Check_Restriction (No_Streams, N);
4408 end if;
4409 end if;
4410
4411 -- Deal with predicate check before we start to do major rewriting. It
4412 -- is OK to initialize and then check the initialized value, since the
4413 -- object goes out of scope if we get a predicate failure. Note that we
4414 -- do this in the analyzer and not the expander because the analyzer
4415 -- does some substantial rewriting in some cases.
4416
4417 -- We need a predicate check if the type has predicates that are not
4418 -- ignored, and if either there is an initializing expression, or for
4419 -- default initialization when we have at least one case of an explicit
4420 -- default initial value and then this is not an internal declaration
4421 -- whose initialization comes later (as for an aggregate expansion).
4422
4423 if not Suppress_Assignment_Checks (N)
4424 and then Present (Predicate_Function (T))
4425 and then not Predicates_Ignored (T)
4426 and then not No_Initialization (N)
4427 and then
4428 (Present (E)
4429 or else
4430 Is_Partially_Initialized_Type (T, Include_Implicit => False))
4431 then
4432 -- If the type has a static predicate and the expression is known at
4433 -- compile time, see if the expression satisfies the predicate.
4434
4435 if Present (E) then
4436 Check_Expression_Against_Static_Predicate (E, T);
4437 end if;
4438
4439 -- If the type is a null record and there is no explicit initial
4440 -- expression, no predicate check applies.
4441
4442 if No (E) and then Is_Null_Record_Type (T) then
4443 null;
4444
4445 -- Do not generate a predicate check if the initialization expression
4446 -- is a type conversion because the conversion has been subjected to
4447 -- the same check. This is a small optimization which avoid redundant
4448 -- checks.
4449
4450 elsif Present (E) and then Nkind (E) = N_Type_Conversion then
4451 null;
4452
4453 else
4454 Insert_After (N,
4455 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
4456 end if;
4457 end if;
4458
4459 -- Case of unconstrained type
4460
4461 if not Is_Definite_Subtype (T) then
4462
4463 -- In SPARK, a declaration of unconstrained type is allowed
4464 -- only for constants of type string.
4465
4466 if Is_String_Type (T) and then not Constant_Present (N) then
4467 Check_SPARK_05_Restriction
4468 ("declaration of object of unconstrained type not allowed", N);
4469 end if;
4470
4471 -- Nothing to do in deferred constant case
4472
4473 if Constant_Present (N) and then No (E) then
4474 null;
4475
4476 -- Case of no initialization present
4477
4478 elsif No (E) then
4479 if No_Initialization (N) then
4480 null;
4481
4482 elsif Is_Class_Wide_Type (T) then
4483 Error_Msg_N
4484 ("initialization required in class-wide declaration ", N);
4485
4486 else
4487 Error_Msg_N
4488 ("unconstrained subtype not allowed (need initialization)",
4489 Object_Definition (N));
4490
4491 if Is_Record_Type (T) and then Has_Discriminants (T) then
4492 Error_Msg_N
4493 ("\provide initial value or explicit discriminant values",
4494 Object_Definition (N));
4495
4496 Error_Msg_NE
4497 ("\or give default discriminant values for type&",
4498 Object_Definition (N), T);
4499
4500 elsif Is_Array_Type (T) then
4501 Error_Msg_N
4502 ("\provide initial value or explicit array bounds",
4503 Object_Definition (N));
4504 end if;
4505 end if;
4506
4507 -- Case of initialization present but in error. Set initial
4508 -- expression as absent (but do not make above complaints)
4509
4510 elsif E = Error then
4511 Set_Expression (N, Empty);
4512 E := Empty;
4513
4514 -- Case of initialization present
4515
4516 else
4517 -- Check restrictions in Ada 83
4518
4519 if not Constant_Present (N) then
4520
4521 -- Unconstrained variables not allowed in Ada 83 mode
4522
4523 if Ada_Version = Ada_83
4524 and then Comes_From_Source (Object_Definition (N))
4525 then
4526 Error_Msg_N
4527 ("(Ada 83) unconstrained variable not allowed",
4528 Object_Definition (N));
4529 end if;
4530 end if;
4531
4532 -- Now we constrain the variable from the initializing expression
4533
4534 -- If the expression is an aggregate, it has been expanded into
4535 -- individual assignments. Retrieve the actual type from the
4536 -- expanded construct.
4537
4538 if Is_Array_Type (T)
4539 and then No_Initialization (N)
4540 and then Nkind (Original_Node (E)) = N_Aggregate
4541 then
4542 Act_T := Etype (E);
4543
4544 -- In case of class-wide interface object declarations we delay
4545 -- the generation of the equivalent record type declarations until
4546 -- its expansion because there are cases in they are not required.
4547
4548 elsif Is_Interface (T) then
4549 null;
4550
4551 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
4552 -- we should prevent the generation of another Itype with the
4553 -- same name as the one already generated, or we end up with
4554 -- two identical types in GNATprove.
4555
4556 elsif GNATprove_Mode then
4557 null;
4558
4559 -- If the type is an unchecked union, no subtype can be built from
4560 -- the expression. Rewrite declaration as a renaming, which the
4561 -- back-end can handle properly. This is a rather unusual case,
4562 -- because most unchecked_union declarations have default values
4563 -- for discriminants and are thus not indefinite.
4564
4565 elsif Is_Unchecked_Union (T) then
4566 if Constant_Present (N) or else Nkind (E) = N_Function_Call then
4567 Set_Ekind (Id, E_Constant);
4568 else
4569 Set_Ekind (Id, E_Variable);
4570 end if;
4571
4572 Rewrite (N,
4573 Make_Object_Renaming_Declaration (Loc,
4574 Defining_Identifier => Id,
4575 Subtype_Mark => New_Occurrence_Of (T, Loc),
4576 Name => E));
4577
4578 Set_Renamed_Object (Id, E);
4579 Freeze_Before (N, T);
4580 Set_Is_Frozen (Id);
4581 goto Leave;
4582
4583 else
4584 -- Ensure that the generated subtype has a unique external name
4585 -- when the related object is public. This guarantees that the
4586 -- subtype and its bounds will not be affected by switches or
4587 -- pragmas that may offset the internal counter due to extra
4588 -- generated code.
4589
4590 if Is_Public (Id) then
4591 Related_Id := Id;
4592 else
4593 Related_Id := Empty;
4594 end if;
4595
4596 Expand_Subtype_From_Expr
4597 (N => N,
4598 Unc_Type => T,
4599 Subtype_Indic => Object_Definition (N),
4600 Exp => E,
4601 Related_Id => Related_Id);
4602
4603 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
4604 end if;
4605
4606 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
4607
4608 if Aliased_Present (N) then
4609 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4610 end if;
4611
4612 Freeze_Before (N, Act_T);
4613 Freeze_Before (N, T);
4614 end if;
4615
4616 elsif Is_Array_Type (T)
4617 and then No_Initialization (N)
4618 and then (Nkind (Original_Node (E)) = N_Aggregate
4619 or else (Nkind (Original_Node (E)) = N_Qualified_Expression
4620 and then Nkind (Original_Node (Expression
4621 (Original_Node (E)))) = N_Aggregate))
4622 then
4623 if not Is_Entity_Name (Object_Definition (N)) then
4624 Act_T := Etype (E);
4625 Check_Compile_Time_Size (Act_T);
4626
4627 if Aliased_Present (N) then
4628 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4629 end if;
4630 end if;
4631
4632 -- When the given object definition and the aggregate are specified
4633 -- independently, and their lengths might differ do a length check.
4634 -- This cannot happen if the aggregate is of the form (others =>...)
4635
4636 if not Is_Constrained (T) then
4637 null;
4638
4639 elsif Nkind (E) = N_Raise_Constraint_Error then
4640
4641 -- Aggregate is statically illegal. Place back in declaration
4642
4643 Set_Expression (N, E);
4644 Set_No_Initialization (N, False);
4645
4646 elsif T = Etype (E) then
4647 null;
4648
4649 elsif Nkind (E) = N_Aggregate
4650 and then Present (Component_Associations (E))
4651 and then Present (Choice_List (First (Component_Associations (E))))
4652 and then
4653 Nkind (First (Choice_List (First (Component_Associations (E))))) =
4654 N_Others_Choice
4655 then
4656 null;
4657
4658 else
4659 Apply_Length_Check (E, T);
4660 end if;
4661
4662 -- If the type is limited unconstrained with defaulted discriminants and
4663 -- there is no expression, then the object is constrained by the
4664 -- defaults, so it is worthwhile building the corresponding subtype.
4665
4666 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
4667 and then not Is_Constrained (T)
4668 and then Has_Discriminants (T)
4669 then
4670 if No (E) then
4671 Act_T := Build_Default_Subtype (T, N);
4672 else
4673 -- Ada 2005: A limited object may be initialized by means of an
4674 -- aggregate. If the type has default discriminants it has an
4675 -- unconstrained nominal type, Its actual subtype will be obtained
4676 -- from the aggregate, and not from the default discriminants.
4677
4678 Act_T := Etype (E);
4679 end if;
4680
4681 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
4682
4683 elsif Nkind (E) = N_Function_Call
4684 and then Constant_Present (N)
4685 and then Has_Unconstrained_Elements (Etype (E))
4686 then
4687 -- The back-end has problems with constants of a discriminated type
4688 -- with defaults, if the initial value is a function call. We
4689 -- generate an intermediate temporary that will receive a reference
4690 -- to the result of the call. The initialization expression then
4691 -- becomes a dereference of that temporary.
4692
4693 Remove_Side_Effects (E);
4694
4695 -- If this is a constant declaration of an unconstrained type and
4696 -- the initialization is an aggregate, we can use the subtype of the
4697 -- aggregate for the declared entity because it is immutable.
4698
4699 elsif not Is_Constrained (T)
4700 and then Has_Discriminants (T)
4701 and then Constant_Present (N)
4702 and then not Has_Unchecked_Union (T)
4703 and then Nkind (E) = N_Aggregate
4704 then
4705 Act_T := Etype (E);
4706 end if;
4707
4708 -- Check No_Wide_Characters restriction
4709
4710 Check_Wide_Character_Restriction (T, Object_Definition (N));
4711
4712 -- Indicate this is not set in source. Certainly true for constants, and
4713 -- true for variables so far (will be reset for a variable if and when
4714 -- we encounter a modification in the source).
4715
4716 Set_Never_Set_In_Source (Id);
4717
4718 -- Now establish the proper kind and type of the object
4719
4720 if Constant_Present (N) then
4721 Set_Ekind (Id, E_Constant);
4722 Set_Is_True_Constant (Id);
4723
4724 else
4725 Set_Ekind (Id, E_Variable);
4726
4727 -- A variable is set as shared passive if it appears in a shared
4728 -- passive package, and is at the outer level. This is not done for
4729 -- entities generated during expansion, because those are always
4730 -- manipulated locally.
4731
4732 if Is_Shared_Passive (Current_Scope)
4733 and then Is_Library_Level_Entity (Id)
4734 and then Comes_From_Source (Id)
4735 then
4736 Set_Is_Shared_Passive (Id);
4737 Check_Shared_Var (Id, T, N);
4738 end if;
4739
4740 -- Set Has_Initial_Value if initializing expression present. Note
4741 -- that if there is no initializing expression, we leave the state
4742 -- of this flag unchanged (usually it will be False, but notably in
4743 -- the case of exception choice variables, it will already be true).
4744
4745 if Present (E) then
4746 Set_Has_Initial_Value (Id);
4747 end if;
4748 end if;
4749
4750 -- Set the SPARK mode from the current context (may be overwritten later
4751 -- with explicit pragma).
4752
4753 Set_SPARK_Pragma (Id, SPARK_Mode_Pragma);
4754 Set_SPARK_Pragma_Inherited (Id);
4755
4756 -- Preserve relevant elaboration-related attributes of the context which
4757 -- are no longer available or very expensive to recompute once analysis,
4758 -- resolution, and expansion are over.
4759
4760 Mark_Elaboration_Attributes
4761 (N_Id => Id,
4762 Checks => True,
4763 Warnings => True);
4764
4765 -- Initialize alignment and size and capture alignment setting
4766
4767 Init_Alignment (Id);
4768 Init_Esize (Id);
4769 Set_Optimize_Alignment_Flags (Id);
4770
4771 -- Deal with aliased case
4772
4773 if Aliased_Present (N) then
4774 Set_Is_Aliased (Id);
4775
4776 -- If the object is aliased and the type is unconstrained with
4777 -- defaulted discriminants and there is no expression, then the
4778 -- object is constrained by the defaults, so it is worthwhile
4779 -- building the corresponding subtype.
4780
4781 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4782 -- unconstrained, then only establish an actual subtype if the
4783 -- nominal subtype is indefinite. In definite cases the object is
4784 -- unconstrained in Ada 2005.
4785
4786 if No (E)
4787 and then Is_Record_Type (T)
4788 and then not Is_Constrained (T)
4789 and then Has_Discriminants (T)
4790 and then (Ada_Version < Ada_2005
4791 or else not Is_Definite_Subtype (T))
4792 then
4793 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
4794 end if;
4795 end if;
4796
4797 -- Now we can set the type of the object
4798
4799 Set_Etype (Id, Act_T);
4800
4801 -- Non-constant object is marked to be treated as volatile if type is
4802 -- volatile and we clear the Current_Value setting that may have been
4803 -- set above. Doing so for constants isn't required and might interfere
4804 -- with possible uses of the object as a static expression in contexts
4805 -- incompatible with volatility (e.g. as a case-statement alternative).
4806
4807 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
4808 Set_Treat_As_Volatile (Id);
4809 Set_Current_Value (Id, Empty);
4810 end if;
4811
4812 -- Deal with controlled types
4813
4814 if Has_Controlled_Component (Etype (Id))
4815 or else Is_Controlled (Etype (Id))
4816 then
4817 if not Is_Library_Level_Entity (Id) then
4818 Check_Restriction (No_Nested_Finalization, N);
4819 else
4820 Validate_Controlled_Object (Id);
4821 end if;
4822 end if;
4823
4824 if Has_Task (Etype (Id)) then
4825 Check_Restriction (No_Tasking, N);
4826
4827 -- Deal with counting max tasks
4828
4829 -- Nothing to do if inside a generic
4830
4831 if Inside_A_Generic then
4832 null;
4833
4834 -- If library level entity, then count tasks
4835
4836 elsif Is_Library_Level_Entity (Id) then
4837 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4838
4839 -- If not library level entity, then indicate we don't know max
4840 -- tasks and also check task hierarchy restriction and blocking
4841 -- operation (since starting a task is definitely blocking).
4842
4843 else
4844 Check_Restriction (Max_Tasks, N);
4845 Check_Restriction (No_Task_Hierarchy, N);
4846 Check_Potentially_Blocking_Operation (N);
4847 end if;
4848
4849 -- A rather specialized test. If we see two tasks being declared
4850 -- of the same type in the same object declaration, and the task
4851 -- has an entry with an address clause, we know that program error
4852 -- will be raised at run time since we can't have two tasks with
4853 -- entries at the same address.
4854
4855 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4856 declare
4857 E : Entity_Id;
4858
4859 begin
4860 E := First_Entity (Etype (Id));
4861 while Present (E) loop
4862 if Ekind (E) = E_Entry
4863 and then Present (Get_Attribute_Definition_Clause
4864 (E, Attribute_Address))
4865 then
4866 Error_Msg_Warn := SPARK_Mode /= On;
4867 Error_Msg_N
4868 ("more than one task with same entry address<<", N);
4869 Error_Msg_N ("\Program_Error [<<", N);
4870 Insert_Action (N,
4871 Make_Raise_Program_Error (Loc,
4872 Reason => PE_Duplicated_Entry_Address));
4873 exit;
4874 end if;
4875
4876 Next_Entity (E);
4877 end loop;
4878 end;
4879 end if;
4880 end if;
4881
4882 -- Some simple constant-propagation: if the expression is a constant
4883 -- string initialized with a literal, share the literal. This avoids
4884 -- a run-time copy.
4885
4886 if Present (E)
4887 and then Is_Entity_Name (E)
4888 and then Ekind (Entity (E)) = E_Constant
4889 and then Base_Type (Etype (E)) = Standard_String
4890 then
4891 declare
4892 Val : constant Node_Id := Constant_Value (Entity (E));
4893 begin
4894 if Present (Val) and then Nkind (Val) = N_String_Literal then
4895 Rewrite (E, New_Copy (Val));
4896 end if;
4897 end;
4898 end if;
4899
4900 -- Another optimization: if the nominal subtype is unconstrained and
4901 -- the expression is a function call that returns an unconstrained
4902 -- type, rewrite the declaration as a renaming of the result of the
4903 -- call. The exceptions below are cases where the copy is expected,
4904 -- either by the back end (Aliased case) or by the semantics, as for
4905 -- initializing controlled types or copying tags for class-wide types.
4906
4907 if Present (E)
4908 and then Nkind (E) = N_Explicit_Dereference
4909 and then Nkind (Original_Node (E)) = N_Function_Call
4910 and then not Is_Library_Level_Entity (Id)
4911 and then not Is_Constrained (Underlying_Type (T))
4912 and then not Is_Aliased (Id)
4913 and then not Is_Class_Wide_Type (T)
4914 and then not Is_Controlled (T)
4915 and then not Has_Controlled_Component (Base_Type (T))
4916 and then Expander_Active
4917 then
4918 Rewrite (N,
4919 Make_Object_Renaming_Declaration (Loc,
4920 Defining_Identifier => Id,
4921 Access_Definition => Empty,
4922 Subtype_Mark => New_Occurrence_Of
4923 (Base_Type (Etype (Id)), Loc),
4924 Name => E));
4925
4926 Set_Renamed_Object (Id, E);
4927
4928 -- Force generation of debugging information for the constant and for
4929 -- the renamed function call.
4930
4931 Set_Debug_Info_Needed (Id);
4932 Set_Debug_Info_Needed (Entity (Prefix (E)));
4933 end if;
4934
4935 if Present (Prev_Entity)
4936 and then Is_Frozen (Prev_Entity)
4937 and then not Error_Posted (Id)
4938 then
4939 Error_Msg_N ("full constant declaration appears too late", N);
4940 end if;
4941
4942 Check_Eliminated (Id);
4943
4944 -- Deal with setting In_Private_Part flag if in private part
4945
4946 if Ekind (Scope (Id)) = E_Package
4947 and then In_Private_Part (Scope (Id))
4948 then
4949 Set_In_Private_Part (Id);
4950 end if;
4951
4952 <<Leave>>
4953 -- Initialize the refined state of a variable here because this is a
4954 -- common destination for legal and illegal object declarations.
4955
4956 if Ekind (Id) = E_Variable then
4957 Set_Encapsulating_State (Id, Empty);
4958 end if;
4959
4960 if Has_Aspects (N) then
4961 Analyze_Aspect_Specifications (N, Id);
4962 end if;
4963
4964 Analyze_Dimension (N);
4965
4966 -- Verify whether the object declaration introduces an illegal hidden
4967 -- state within a package subject to a null abstract state.
4968
4969 if Ekind (Id) = E_Variable then
4970 Check_No_Hidden_State (Id);
4971 end if;
4972
4973 Restore_Ghost_Mode (Saved_GM);
4974 end Analyze_Object_Declaration;
4975
4976 ---------------------------
4977 -- Analyze_Others_Choice --
4978 ---------------------------
4979
4980 -- Nothing to do for the others choice node itself, the semantic analysis
4981 -- of the others choice will occur as part of the processing of the parent
4982
4983 procedure Analyze_Others_Choice (N : Node_Id) is
4984 pragma Warnings (Off, N);
4985 begin
4986 null;
4987 end Analyze_Others_Choice;
4988
4989 -------------------------------------------
4990 -- Analyze_Private_Extension_Declaration --
4991 -------------------------------------------
4992
4993 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4994 Indic : constant Node_Id := Subtype_Indication (N);
4995 T : constant Entity_Id := Defining_Identifier (N);
4996 Iface : Entity_Id;
4997 Iface_Elmt : Elmt_Id;
4998 Parent_Base : Entity_Id;
4999 Parent_Type : Entity_Id;
5000
5001 begin
5002 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
5003
5004 if Is_Non_Empty_List (Interface_List (N)) then
5005 declare
5006 Intf : Node_Id;
5007 T : Entity_Id;
5008
5009 begin
5010 Intf := First (Interface_List (N));
5011 while Present (Intf) loop
5012 T := Find_Type_Of_Subtype_Indic (Intf);
5013
5014 Diagnose_Interface (Intf, T);
5015 Next (Intf);
5016 end loop;
5017 end;
5018 end if;
5019
5020 Generate_Definition (T);
5021
5022 -- For other than Ada 2012, just enter the name in the current scope
5023
5024 if Ada_Version < Ada_2012 then
5025 Enter_Name (T);
5026
5027 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
5028 -- case of private type that completes an incomplete type.
5029
5030 else
5031 declare
5032 Prev : Entity_Id;
5033
5034 begin
5035 Prev := Find_Type_Name (N);
5036
5037 pragma Assert (Prev = T
5038 or else (Ekind (Prev) = E_Incomplete_Type
5039 and then Present (Full_View (Prev))
5040 and then Full_View (Prev) = T));
5041 end;
5042 end if;
5043
5044 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
5045 Parent_Base := Base_Type (Parent_Type);
5046
5047 if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then
5048 Set_Ekind (T, Ekind (Parent_Type));
5049 Set_Etype (T, Any_Type);
5050 goto Leave;
5051
5052 elsif not Is_Tagged_Type (Parent_Type) then
5053 Error_Msg_N
5054 ("parent of type extension must be a tagged type ", Indic);
5055 goto Leave;
5056
5057 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
5058 Error_Msg_N ("premature derivation of incomplete type", Indic);
5059 goto Leave;
5060
5061 elsif Is_Concurrent_Type (Parent_Type) then
5062 Error_Msg_N
5063 ("parent type of a private extension cannot be a synchronized "
5064 & "tagged type (RM 3.9.1 (3/1))", N);
5065
5066 Set_Etype (T, Any_Type);
5067 Set_Ekind (T, E_Limited_Private_Type);
5068 Set_Private_Dependents (T, New_Elmt_List);
5069 Set_Error_Posted (T);
5070 goto Leave;
5071 end if;
5072
5073 -- Perhaps the parent type should be changed to the class-wide type's
5074 -- specific type in this case to prevent cascading errors ???
5075
5076 if Is_Class_Wide_Type (Parent_Type) then
5077 Error_Msg_N
5078 ("parent of type extension must not be a class-wide type", Indic);
5079 goto Leave;
5080 end if;
5081
5082 if (not Is_Package_Or_Generic_Package (Current_Scope)
5083 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
5084 or else In_Private_Part (Current_Scope)
5085 then
5086 Error_Msg_N ("invalid context for private extension", N);
5087 end if;
5088
5089 -- Set common attributes
5090
5091 Set_Is_Pure (T, Is_Pure (Current_Scope));
5092 Set_Scope (T, Current_Scope);
5093 Set_Ekind (T, E_Record_Type_With_Private);
5094 Init_Size_Align (T);
5095 Set_Default_SSO (T);
5096 Set_No_Reordering (T, No_Component_Reordering);
5097
5098 Set_Etype (T, Parent_Base);
5099 Propagate_Concurrent_Flags (T, Parent_Base);
5100
5101 Set_Convention (T, Convention (Parent_Type));
5102 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
5103 Set_Is_First_Subtype (T);
5104 Make_Class_Wide_Type (T);
5105
5106 -- Set the SPARK mode from the current context
5107
5108 Set_SPARK_Pragma (T, SPARK_Mode_Pragma);
5109 Set_SPARK_Pragma_Inherited (T);
5110
5111 if Unknown_Discriminants_Present (N) then
5112 Set_Discriminant_Constraint (T, No_Elist);
5113 end if;
5114
5115 Build_Derived_Record_Type (N, Parent_Type, T);
5116
5117 -- A private extension inherits the Default_Initial_Condition pragma
5118 -- coming from any parent type within the derivation chain.
5119
5120 if Has_DIC (Parent_Type) then
5121 Set_Has_Inherited_DIC (T);
5122 end if;
5123
5124 -- A private extension inherits any class-wide invariants coming from a
5125 -- parent type or an interface. Note that the invariant procedure of the
5126 -- parent type should not be inherited because the private extension may
5127 -- define invariants of its own.
5128
5129 if Has_Inherited_Invariants (Parent_Type)
5130 or else Has_Inheritable_Invariants (Parent_Type)
5131 then
5132 Set_Has_Inherited_Invariants (T);
5133
5134 elsif Present (Interfaces (T)) then
5135 Iface_Elmt := First_Elmt (Interfaces (T));
5136 while Present (Iface_Elmt) loop
5137 Iface := Node (Iface_Elmt);
5138
5139 if Has_Inheritable_Invariants (Iface) then
5140 Set_Has_Inherited_Invariants (T);
5141 exit;
5142 end if;
5143
5144 Next_Elmt (Iface_Elmt);
5145 end loop;
5146 end if;
5147
5148 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
5149 -- synchronized formal derived type.
5150
5151 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
5152 Set_Is_Limited_Record (T);
5153
5154 -- Formal derived type case
5155
5156 if Is_Generic_Type (T) then
5157
5158 -- The parent must be a tagged limited type or a synchronized
5159 -- interface.
5160
5161 if (not Is_Tagged_Type (Parent_Type)
5162 or else not Is_Limited_Type (Parent_Type))
5163 and then
5164 (not Is_Interface (Parent_Type)
5165 or else not Is_Synchronized_Interface (Parent_Type))
5166 then
5167 Error_Msg_NE
5168 ("parent type of & must be tagged limited or synchronized",
5169 N, T);
5170 end if;
5171
5172 -- The progenitors (if any) must be limited or synchronized
5173 -- interfaces.
5174
5175 if Present (Interfaces (T)) then
5176 Iface_Elmt := First_Elmt (Interfaces (T));
5177 while Present (Iface_Elmt) loop
5178 Iface := Node (Iface_Elmt);
5179
5180 if not Is_Limited_Interface (Iface)
5181 and then not Is_Synchronized_Interface (Iface)
5182 then
5183 Error_Msg_NE
5184 ("progenitor & must be limited or synchronized",
5185 N, Iface);
5186 end if;
5187
5188 Next_Elmt (Iface_Elmt);
5189 end loop;
5190 end if;
5191
5192 -- Regular derived extension, the parent must be a limited or
5193 -- synchronized interface.
5194
5195 else
5196 if not Is_Interface (Parent_Type)
5197 or else (not Is_Limited_Interface (Parent_Type)
5198 and then not Is_Synchronized_Interface (Parent_Type))
5199 then
5200 Error_Msg_NE
5201 ("parent type of & must be limited interface", N, T);
5202 end if;
5203 end if;
5204
5205 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
5206 -- extension with a synchronized parent must be explicitly declared
5207 -- synchronized, because the full view will be a synchronized type.
5208 -- This must be checked before the check for limited types below,
5209 -- to ensure that types declared limited are not allowed to extend
5210 -- synchronized interfaces.
5211
5212 elsif Is_Interface (Parent_Type)
5213 and then Is_Synchronized_Interface (Parent_Type)
5214 and then not Synchronized_Present (N)
5215 then
5216 Error_Msg_NE
5217 ("private extension of& must be explicitly synchronized",
5218 N, Parent_Type);
5219
5220 elsif Limited_Present (N) then
5221 Set_Is_Limited_Record (T);
5222
5223 if not Is_Limited_Type (Parent_Type)
5224 and then
5225 (not Is_Interface (Parent_Type)
5226 or else not Is_Limited_Interface (Parent_Type))
5227 then
5228 Error_Msg_NE ("parent type& of limited extension must be limited",
5229 N, Parent_Type);
5230 end if;
5231 end if;
5232
5233 -- Remember that its parent type has a private extension. Used to warn
5234 -- on public primitives of the parent type defined after its private
5235 -- extensions (see Check_Dispatching_Operation).
5236
5237 Set_Has_Private_Extension (Parent_Type);
5238
5239 <<Leave>>
5240 if Has_Aspects (N) then
5241 Analyze_Aspect_Specifications (N, T);
5242 end if;
5243 end Analyze_Private_Extension_Declaration;
5244
5245 ---------------------------------
5246 -- Analyze_Subtype_Declaration --
5247 ---------------------------------
5248
5249 procedure Analyze_Subtype_Declaration
5250 (N : Node_Id;
5251 Skip : Boolean := False)
5252 is
5253 Id : constant Entity_Id := Defining_Identifier (N);
5254 R_Checks : Check_Result;
5255 T : Entity_Id;
5256
5257 begin
5258 Generate_Definition (Id);
5259 Set_Is_Pure (Id, Is_Pure (Current_Scope));
5260 Init_Size_Align (Id);
5261
5262 -- The following guard condition on Enter_Name is to handle cases where
5263 -- the defining identifier has already been entered into the scope but
5264 -- the declaration as a whole needs to be analyzed.
5265
5266 -- This case in particular happens for derived enumeration types. The
5267 -- derived enumeration type is processed as an inserted enumeration type
5268 -- declaration followed by a rewritten subtype declaration. The defining
5269 -- identifier, however, is entered into the name scope very early in the
5270 -- processing of the original type declaration and therefore needs to be
5271 -- avoided here, when the created subtype declaration is analyzed. (See
5272 -- Build_Derived_Types)
5273
5274 -- This also happens when the full view of a private type is derived
5275 -- type with constraints. In this case the entity has been introduced
5276 -- in the private declaration.
5277
5278 -- Finally this happens in some complex cases when validity checks are
5279 -- enabled, where the same subtype declaration may be analyzed twice.
5280 -- This can happen if the subtype is created by the pre-analysis of
5281 -- an attribute tht gives the range of a loop statement, and the loop
5282 -- itself appears within an if_statement that will be rewritten during
5283 -- expansion.
5284
5285 if Skip
5286 or else (Present (Etype (Id))
5287 and then (Is_Private_Type (Etype (Id))
5288 or else Is_Task_Type (Etype (Id))
5289 or else Is_Rewrite_Substitution (N)))
5290 then
5291 null;
5292
5293 elsif Current_Entity (Id) = Id then
5294 null;
5295
5296 else
5297 Enter_Name (Id);
5298 end if;
5299
5300 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
5301
5302 -- Class-wide equivalent types of records with unknown discriminants
5303 -- involve the generation of an itype which serves as the private view
5304 -- of a constrained record subtype. In such cases the base type of the
5305 -- current subtype we are processing is the private itype. Use the full
5306 -- of the private itype when decorating various attributes.
5307
5308 if Is_Itype (T)
5309 and then Is_Private_Type (T)
5310 and then Present (Full_View (T))
5311 then
5312 T := Full_View (T);
5313 end if;
5314
5315 -- Inherit common attributes
5316
5317 Set_Is_Volatile (Id, Is_Volatile (T));
5318 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
5319 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
5320 Set_Convention (Id, Convention (T));
5321
5322 -- If ancestor has predicates then so does the subtype, and in addition
5323 -- we must delay the freeze to properly arrange predicate inheritance.
5324
5325 -- The Ancestor_Type test is really unpleasant, there seem to be cases
5326 -- in which T = ID, so the above tests and assignments do nothing???
5327
5328 if Has_Predicates (T)
5329 or else (Present (Ancestor_Subtype (T))
5330 and then Has_Predicates (Ancestor_Subtype (T)))
5331 then
5332 Set_Has_Predicates (Id);
5333 Set_Has_Delayed_Freeze (Id);
5334
5335 -- Generated subtypes inherit the predicate function from the parent
5336 -- (no aspects to examine on the generated declaration).
5337
5338 if not Comes_From_Source (N) then
5339 Set_Ekind (Id, Ekind (T));
5340
5341 if Present (Predicate_Function (Id)) then
5342 null;
5343
5344 elsif Present (Predicate_Function (T)) then
5345 Set_Predicate_Function (Id, Predicate_Function (T));
5346
5347 elsif Present (Ancestor_Subtype (T))
5348 and then Present (Predicate_Function (Ancestor_Subtype (T)))
5349 then
5350 Set_Predicate_Function (Id,
5351 Predicate_Function (Ancestor_Subtype (T)));
5352 end if;
5353 end if;
5354 end if;
5355
5356 -- Subtype of Boolean cannot have a constraint in SPARK
5357
5358 if Is_Boolean_Type (T)
5359 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
5360 then
5361 Check_SPARK_05_Restriction
5362 ("subtype of Boolean cannot have constraint", N);
5363 end if;
5364
5365 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5366 declare
5367 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5368 One_Cstr : Node_Id;
5369 Low : Node_Id;
5370 High : Node_Id;
5371
5372 begin
5373 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
5374 One_Cstr := First (Constraints (Cstr));
5375 while Present (One_Cstr) loop
5376
5377 -- Index or discriminant constraint in SPARK must be a
5378 -- subtype mark.
5379
5380 if not
5381 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
5382 then
5383 Check_SPARK_05_Restriction
5384 ("subtype mark required", One_Cstr);
5385
5386 -- String subtype must have a lower bound of 1 in SPARK.
5387 -- Note that we do not need to test for the non-static case
5388 -- here, since that was already taken care of in
5389 -- Process_Range_Expr_In_Decl.
5390
5391 elsif Base_Type (T) = Standard_String then
5392 Get_Index_Bounds (One_Cstr, Low, High);
5393
5394 if Is_OK_Static_Expression (Low)
5395 and then Expr_Value (Low) /= 1
5396 then
5397 Check_SPARK_05_Restriction
5398 ("String subtype must have lower bound of 1", N);
5399 end if;
5400 end if;
5401
5402 Next (One_Cstr);
5403 end loop;
5404 end if;
5405 end;
5406 end if;
5407
5408 -- In the case where there is no constraint given in the subtype
5409 -- indication, Process_Subtype just returns the Subtype_Mark, so its
5410 -- semantic attributes must be established here.
5411
5412 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
5413 Set_Etype (Id, Base_Type (T));
5414
5415 -- Subtype of unconstrained array without constraint is not allowed
5416 -- in SPARK.
5417
5418 if Is_Array_Type (T) and then not Is_Constrained (T) then
5419 Check_SPARK_05_Restriction
5420 ("subtype of unconstrained array must have constraint", N);
5421 end if;
5422
5423 case Ekind (T) is
5424 when Array_Kind =>
5425 Set_Ekind (Id, E_Array_Subtype);
5426 Copy_Array_Subtype_Attributes (Id, T);
5427
5428 when Decimal_Fixed_Point_Kind =>
5429 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
5430 Set_Digits_Value (Id, Digits_Value (T));
5431 Set_Delta_Value (Id, Delta_Value (T));
5432 Set_Scale_Value (Id, Scale_Value (T));
5433 Set_Small_Value (Id, Small_Value (T));
5434 Set_Scalar_Range (Id, Scalar_Range (T));
5435 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
5436 Set_Is_Constrained (Id, Is_Constrained (T));
5437 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5438 Set_RM_Size (Id, RM_Size (T));
5439
5440 when Enumeration_Kind =>
5441 Set_Ekind (Id, E_Enumeration_Subtype);
5442 Set_First_Literal (Id, First_Literal (Base_Type (T)));
5443 Set_Scalar_Range (Id, Scalar_Range (T));
5444 Set_Is_Character_Type (Id, Is_Character_Type (T));
5445 Set_Is_Constrained (Id, Is_Constrained (T));
5446 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5447 Set_RM_Size (Id, RM_Size (T));
5448
5449 when Ordinary_Fixed_Point_Kind =>
5450 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
5451 Set_Scalar_Range (Id, Scalar_Range (T));
5452 Set_Small_Value (Id, Small_Value (T));
5453 Set_Delta_Value (Id, Delta_Value (T));
5454 Set_Is_Constrained (Id, Is_Constrained (T));
5455 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5456 Set_RM_Size (Id, RM_Size (T));
5457
5458 when Float_Kind =>
5459 Set_Ekind (Id, E_Floating_Point_Subtype);
5460 Set_Scalar_Range (Id, Scalar_Range (T));
5461 Set_Digits_Value (Id, Digits_Value (T));
5462 Set_Is_Constrained (Id, Is_Constrained (T));
5463
5464 -- If the floating point type has dimensions, these will be
5465 -- inherited subsequently when Analyze_Dimensions is called.
5466
5467 when Signed_Integer_Kind =>
5468 Set_Ekind (Id, E_Signed_Integer_Subtype);
5469 Set_Scalar_Range (Id, Scalar_Range (T));
5470 Set_Is_Constrained (Id, Is_Constrained (T));
5471 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5472 Set_RM_Size (Id, RM_Size (T));
5473
5474 when Modular_Integer_Kind =>
5475 Set_Ekind (Id, E_Modular_Integer_Subtype);
5476 Set_Scalar_Range (Id, Scalar_Range (T));
5477 Set_Is_Constrained (Id, Is_Constrained (T));
5478 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5479 Set_RM_Size (Id, RM_Size (T));
5480
5481 when Class_Wide_Kind =>
5482 Set_Ekind (Id, E_Class_Wide_Subtype);
5483 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5484 Set_Cloned_Subtype (Id, T);
5485 Set_Is_Tagged_Type (Id, True);
5486 Set_Has_Unknown_Discriminants
5487 (Id, True);
5488 Set_No_Tagged_Streams_Pragma
5489 (Id, No_Tagged_Streams_Pragma (T));
5490
5491 if Ekind (T) = E_Class_Wide_Subtype then
5492 Set_Equivalent_Type (Id, Equivalent_Type (T));
5493 end if;
5494
5495 when E_Record_Subtype
5496 | E_Record_Type
5497 =>
5498 Set_Ekind (Id, E_Record_Subtype);
5499
5500 if Ekind (T) = E_Record_Subtype
5501 and then Present (Cloned_Subtype (T))
5502 then
5503 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
5504 else
5505 Set_Cloned_Subtype (Id, T);
5506 end if;
5507
5508 Set_First_Entity (Id, First_Entity (T));
5509 Set_Last_Entity (Id, Last_Entity (T));
5510 Set_Has_Discriminants (Id, Has_Discriminants (T));
5511 Set_Is_Constrained (Id, Is_Constrained (T));
5512 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
5513 Set_Has_Implicit_Dereference
5514 (Id, Has_Implicit_Dereference (T));
5515 Set_Has_Unknown_Discriminants
5516 (Id, Has_Unknown_Discriminants (T));
5517
5518 if Has_Discriminants (T) then
5519 Set_Discriminant_Constraint
5520 (Id, Discriminant_Constraint (T));
5521 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5522
5523 elsif Has_Unknown_Discriminants (Id) then
5524 Set_Discriminant_Constraint (Id, No_Elist);
5525 end if;
5526
5527 if Is_Tagged_Type (T) then
5528 Set_Is_Tagged_Type (Id, True);
5529 Set_No_Tagged_Streams_Pragma
5530 (Id, No_Tagged_Streams_Pragma (T));
5531 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
5532 Set_Direct_Primitive_Operations
5533 (Id, Direct_Primitive_Operations (T));
5534 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5535
5536 if Is_Interface (T) then
5537 Set_Is_Interface (Id);
5538 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
5539 end if;
5540 end if;
5541
5542 when Private_Kind =>
5543 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5544 Set_Has_Discriminants (Id, Has_Discriminants (T));
5545 Set_Is_Constrained (Id, Is_Constrained (T));
5546 Set_First_Entity (Id, First_Entity (T));
5547 Set_Last_Entity (Id, Last_Entity (T));
5548 Set_Private_Dependents (Id, New_Elmt_List);
5549 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
5550 Set_Has_Implicit_Dereference
5551 (Id, Has_Implicit_Dereference (T));
5552 Set_Has_Unknown_Discriminants
5553 (Id, Has_Unknown_Discriminants (T));
5554 Set_Known_To_Have_Preelab_Init
5555 (Id, Known_To_Have_Preelab_Init (T));
5556
5557 if Is_Tagged_Type (T) then
5558 Set_Is_Tagged_Type (Id);
5559 Set_No_Tagged_Streams_Pragma (Id,
5560 No_Tagged_Streams_Pragma (T));
5561 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
5562 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5563 Set_Direct_Primitive_Operations (Id,
5564 Direct_Primitive_Operations (T));
5565 end if;
5566
5567 -- In general the attributes of the subtype of a private type
5568 -- are the attributes of the partial view of parent. However,
5569 -- the full view may be a discriminated type, and the subtype
5570 -- must share the discriminant constraint to generate correct
5571 -- calls to initialization procedures.
5572
5573 if Has_Discriminants (T) then
5574 Set_Discriminant_Constraint
5575 (Id, Discriminant_Constraint (T));
5576 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5577
5578 elsif Present (Full_View (T))
5579 and then Has_Discriminants (Full_View (T))
5580 then
5581 Set_Discriminant_Constraint
5582 (Id, Discriminant_Constraint (Full_View (T)));
5583 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5584
5585 -- This would seem semantically correct, but apparently
5586 -- generates spurious errors about missing components ???
5587
5588 -- Set_Has_Discriminants (Id);
5589 end if;
5590
5591 Prepare_Private_Subtype_Completion (Id, N);
5592
5593 -- If this is the subtype of a constrained private type with
5594 -- discriminants that has got a full view and we also have
5595 -- built a completion just above, show that the completion
5596 -- is a clone of the full view to the back-end.
5597
5598 if Has_Discriminants (T)
5599 and then not Has_Unknown_Discriminants (T)
5600 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
5601 and then Present (Full_View (T))
5602 and then Present (Full_View (Id))
5603 then
5604 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
5605 end if;
5606
5607 when Access_Kind =>
5608 Set_Ekind (Id, E_Access_Subtype);
5609 Set_Is_Constrained (Id, Is_Constrained (T));
5610 Set_Is_Access_Constant
5611 (Id, Is_Access_Constant (T));
5612 Set_Directly_Designated_Type
5613 (Id, Designated_Type (T));
5614 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
5615
5616 -- A Pure library_item must not contain the declaration of a
5617 -- named access type, except within a subprogram, generic
5618 -- subprogram, task unit, or protected unit, or if it has
5619 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
5620
5621 if Comes_From_Source (Id)
5622 and then In_Pure_Unit
5623 and then not In_Subprogram_Task_Protected_Unit
5624 and then not No_Pool_Assigned (Id)
5625 then
5626 Error_Msg_N
5627 ("named access types not allowed in pure unit", N);
5628 end if;
5629
5630 when Concurrent_Kind =>
5631 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5632 Set_Corresponding_Record_Type (Id,
5633 Corresponding_Record_Type (T));
5634 Set_First_Entity (Id, First_Entity (T));
5635 Set_First_Private_Entity (Id, First_Private_Entity (T));
5636 Set_Has_Discriminants (Id, Has_Discriminants (T));
5637 Set_Is_Constrained (Id, Is_Constrained (T));
5638 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5639 Set_Last_Entity (Id, Last_Entity (T));
5640
5641 if Is_Tagged_Type (T) then
5642 Set_No_Tagged_Streams_Pragma
5643 (Id, No_Tagged_Streams_Pragma (T));
5644 end if;
5645
5646 if Has_Discriminants (T) then
5647 Set_Discriminant_Constraint
5648 (Id, Discriminant_Constraint (T));
5649 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5650 end if;
5651
5652 when Incomplete_Kind =>
5653 if Ada_Version >= Ada_2005 then
5654
5655 -- In Ada 2005 an incomplete type can be explicitly tagged:
5656 -- propagate indication. Note that we also have to include
5657 -- subtypes for Ada 2012 extended use of incomplete types.
5658
5659 Set_Ekind (Id, E_Incomplete_Subtype);
5660 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5661 Set_Private_Dependents (Id, New_Elmt_List);
5662
5663 if Is_Tagged_Type (Id) then
5664 Set_No_Tagged_Streams_Pragma
5665 (Id, No_Tagged_Streams_Pragma (T));
5666 Set_Direct_Primitive_Operations (Id, New_Elmt_List);
5667 end if;
5668
5669 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
5670 -- incomplete type visible through a limited with clause.
5671
5672 if From_Limited_With (T)
5673 and then Present (Non_Limited_View (T))
5674 then
5675 Set_From_Limited_With (Id);
5676 Set_Non_Limited_View (Id, Non_Limited_View (T));
5677
5678 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5679 -- to the private dependents of the original incomplete
5680 -- type for future transformation.
5681
5682 else
5683 Append_Elmt (Id, Private_Dependents (T));
5684 end if;
5685
5686 -- If the subtype name denotes an incomplete type an error
5687 -- was already reported by Process_Subtype.
5688
5689 else
5690 Set_Etype (Id, Any_Type);
5691 end if;
5692
5693 when others =>
5694 raise Program_Error;
5695 end case;
5696
5697 -- If there is no constraint in the subtype indication, the
5698 -- declared entity inherits predicates from the parent.
5699
5700 Inherit_Predicate_Flags (Id, T);
5701 end if;
5702
5703 if Etype (Id) = Any_Type then
5704 goto Leave;
5705 end if;
5706
5707 -- Some common processing on all types
5708
5709 Set_Size_Info (Id, T);
5710 Set_First_Rep_Item (Id, First_Rep_Item (T));
5711
5712 -- If the parent type is a generic actual, so is the subtype. This may
5713 -- happen in a nested instance. Why Comes_From_Source test???
5714
5715 if not Comes_From_Source (N) then
5716 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
5717 end if;
5718
5719 -- If this is a subtype declaration for an actual in an instance,
5720 -- inherit static and dynamic predicates if any.
5721
5722 -- If declaration has no aspect specifications, inherit predicate
5723 -- info as well. Unclear how to handle the case of both specified
5724 -- and inherited predicates ??? Other inherited aspects, such as
5725 -- invariants, should be OK, but the combination with later pragmas
5726 -- may also require special merging.
5727
5728 if Has_Predicates (T)
5729 and then Present (Predicate_Function (T))
5730 and then
5731 ((In_Instance and then not Comes_From_Source (N))
5732 or else No (Aspect_Specifications (N)))
5733 then
5734 Set_Subprograms_For_Type (Id, Subprograms_For_Type (T));
5735
5736 if Has_Static_Predicate (T) then
5737 Set_Has_Static_Predicate (Id);
5738 Set_Static_Discrete_Predicate (Id, Static_Discrete_Predicate (T));
5739 end if;
5740 end if;
5741
5742 -- Remaining processing depends on characteristics of base type
5743
5744 T := Etype (Id);
5745
5746 Set_Is_Immediately_Visible (Id, True);
5747 Set_Depends_On_Private (Id, Has_Private_Component (T));
5748 Set_Is_Descendant_Of_Address (Id, Is_Descendant_Of_Address (T));
5749
5750 if Is_Interface (T) then
5751 Set_Is_Interface (Id);
5752 end if;
5753
5754 if Present (Generic_Parent_Type (N))
5755 and then
5756 (Nkind (Parent (Generic_Parent_Type (N))) /=
5757 N_Formal_Type_Declaration
5758 or else Nkind (Formal_Type_Definition
5759 (Parent (Generic_Parent_Type (N)))) /=
5760 N_Formal_Private_Type_Definition)
5761 then
5762 if Is_Tagged_Type (Id) then
5763
5764 -- If this is a generic actual subtype for a synchronized type,
5765 -- the primitive operations are those of the corresponding record
5766 -- for which there is a separate subtype declaration.
5767
5768 if Is_Concurrent_Type (Id) then
5769 null;
5770 elsif Is_Class_Wide_Type (Id) then
5771 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
5772 else
5773 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
5774 end if;
5775
5776 elsif Scope (Etype (Id)) /= Standard_Standard then
5777 Derive_Subprograms (Generic_Parent_Type (N), Id);
5778 end if;
5779 end if;
5780
5781 if Is_Private_Type (T) and then Present (Full_View (T)) then
5782 Conditional_Delay (Id, Full_View (T));
5783
5784 -- The subtypes of components or subcomponents of protected types
5785 -- do not need freeze nodes, which would otherwise appear in the
5786 -- wrong scope (before the freeze node for the protected type). The
5787 -- proper subtypes are those of the subcomponents of the corresponding
5788 -- record.
5789
5790 elsif Ekind (Scope (Id)) /= E_Protected_Type
5791 and then Present (Scope (Scope (Id))) -- error defense
5792 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
5793 then
5794 Conditional_Delay (Id, T);
5795 end if;
5796
5797 -- If we have a subtype of an incomplete type whose full type is a
5798 -- derived numeric type, we need to have a freeze node for the subtype.
5799 -- Otherwise gigi will complain while computing the (static) bounds of
5800 -- the subtype.
5801
5802 if Is_Itype (T)
5803 and then Is_Elementary_Type (Id)
5804 and then Etype (Id) /= Id
5805 then
5806 declare
5807 Partial : constant Entity_Id :=
5808 Incomplete_Or_Partial_View (First_Subtype (Id));
5809 begin
5810 if Present (Partial)
5811 and then Ekind (Partial) = E_Incomplete_Type
5812 then
5813 Set_Has_Delayed_Freeze (Id);
5814 end if;
5815 end;
5816 end if;
5817
5818 -- Check that Constraint_Error is raised for a scalar subtype indication
5819 -- when the lower or upper bound of a non-null range lies outside the
5820 -- range of the type mark.
5821
5822 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5823 if Is_Scalar_Type (Etype (Id))
5824 and then Scalar_Range (Id) /=
5825 Scalar_Range
5826 (Etype (Subtype_Mark (Subtype_Indication (N))))
5827 then
5828 Apply_Range_Check
5829 (Scalar_Range (Id),
5830 Etype (Subtype_Mark (Subtype_Indication (N))));
5831
5832 -- In the array case, check compatibility for each index
5833
5834 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
5835 then
5836 -- This really should be a subprogram that finds the indications
5837 -- to check???
5838
5839 declare
5840 Subt_Index : Node_Id := First_Index (Id);
5841 Target_Index : Node_Id :=
5842 First_Index (Etype
5843 (Subtype_Mark (Subtype_Indication (N))));
5844 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
5845
5846 begin
5847 while Present (Subt_Index) loop
5848 if ((Nkind (Subt_Index) = N_Identifier
5849 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
5850 or else Nkind (Subt_Index) = N_Subtype_Indication)
5851 and then
5852 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
5853 then
5854 declare
5855 Target_Typ : constant Entity_Id :=
5856 Etype (Target_Index);
5857 begin
5858 R_Checks :=
5859 Get_Range_Checks
5860 (Scalar_Range (Etype (Subt_Index)),
5861 Target_Typ,
5862 Etype (Subt_Index),
5863 Defining_Identifier (N));
5864
5865 -- Reset Has_Dynamic_Range_Check on the subtype to
5866 -- prevent elision of the index check due to a dynamic
5867 -- check generated for a preceding index (needed since
5868 -- Insert_Range_Checks tries to avoid generating
5869 -- redundant checks on a given declaration).
5870
5871 Set_Has_Dynamic_Range_Check (N, False);
5872
5873 Insert_Range_Checks
5874 (R_Checks,
5875 N,
5876 Target_Typ,
5877 Sloc (Defining_Identifier (N)));
5878
5879 -- Record whether this index involved a dynamic check
5880
5881 Has_Dyn_Chk :=
5882 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
5883 end;
5884 end if;
5885
5886 Next_Index (Subt_Index);
5887 Next_Index (Target_Index);
5888 end loop;
5889
5890 -- Finally, mark whether the subtype involves dynamic checks
5891
5892 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
5893 end;
5894 end if;
5895 end if;
5896
5897 Set_Optimize_Alignment_Flags (Id);
5898 Check_Eliminated (Id);
5899
5900 <<Leave>>
5901 if Has_Aspects (N) then
5902 Analyze_Aspect_Specifications (N, Id);
5903 end if;
5904
5905 Analyze_Dimension (N);
5906
5907 -- Check No_Dynamic_Sized_Objects restriction, which disallows subtype
5908 -- indications on composite types where the constraints are dynamic.
5909 -- Note that object declarations and aggregates generate implicit
5910 -- subtype declarations, which this covers. One special case is that the
5911 -- implicitly generated "=" for discriminated types includes an
5912 -- offending subtype declaration, which is harmless, so we ignore it
5913 -- here.
5914
5915 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5916 declare
5917 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5918 begin
5919 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint
5920 and then not (Is_Internal (Id)
5921 and then Is_TSS (Scope (Id),
5922 TSS_Composite_Equality))
5923 and then not Within_Init_Proc
5924 and then not All_Composite_Constraints_Static (Cstr)
5925 then
5926 Check_Restriction (No_Dynamic_Sized_Objects, Cstr);
5927 end if;
5928 end;
5929 end if;
5930 end Analyze_Subtype_Declaration;
5931
5932 --------------------------------
5933 -- Analyze_Subtype_Indication --
5934 --------------------------------
5935
5936 procedure Analyze_Subtype_Indication (N : Node_Id) is
5937 T : constant Entity_Id := Subtype_Mark (N);
5938 R : constant Node_Id := Range_Expression (Constraint (N));
5939
5940 begin
5941 Analyze (T);
5942
5943 if R /= Error then
5944 Analyze (R);
5945 Set_Etype (N, Etype (R));
5946 Resolve (R, Entity (T));
5947 else
5948 Set_Error_Posted (R);
5949 Set_Error_Posted (T);
5950 end if;
5951 end Analyze_Subtype_Indication;
5952
5953 --------------------------
5954 -- Analyze_Variant_Part --
5955 --------------------------
5956
5957 procedure Analyze_Variant_Part (N : Node_Id) is
5958 Discr_Name : Node_Id;
5959 Discr_Type : Entity_Id;
5960
5961 procedure Process_Variant (A : Node_Id);
5962 -- Analyze declarations for a single variant
5963
5964 package Analyze_Variant_Choices is
5965 new Generic_Analyze_Choices (Process_Variant);
5966 use Analyze_Variant_Choices;
5967
5968 ---------------------
5969 -- Process_Variant --
5970 ---------------------
5971
5972 procedure Process_Variant (A : Node_Id) is
5973 CL : constant Node_Id := Component_List (A);
5974 begin
5975 if not Null_Present (CL) then
5976 Analyze_Declarations (Component_Items (CL));
5977
5978 if Present (Variant_Part (CL)) then
5979 Analyze (Variant_Part (CL));
5980 end if;
5981 end if;
5982 end Process_Variant;
5983
5984 -- Start of processing for Analyze_Variant_Part
5985
5986 begin
5987 Discr_Name := Name (N);
5988 Analyze (Discr_Name);
5989
5990 -- If Discr_Name bad, get out (prevent cascaded errors)
5991
5992 if Etype (Discr_Name) = Any_Type then
5993 return;
5994 end if;
5995
5996 -- Check invalid discriminant in variant part
5997
5998 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
5999 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
6000 end if;
6001
6002 Discr_Type := Etype (Entity (Discr_Name));
6003
6004 if not Is_Discrete_Type (Discr_Type) then
6005 Error_Msg_N
6006 ("discriminant in a variant part must be of a discrete type",
6007 Name (N));
6008 return;
6009 end if;
6010
6011 -- Now analyze the choices, which also analyzes the declarations that
6012 -- are associated with each choice.
6013
6014 Analyze_Choices (Variants (N), Discr_Type);
6015
6016 -- Note: we used to instantiate and call Check_Choices here to check
6017 -- that the choices covered the discriminant, but it's too early to do
6018 -- that because of statically predicated subtypes, whose analysis may
6019 -- be deferred to their freeze point which may be as late as the freeze
6020 -- point of the containing record. So this call is now to be found in
6021 -- Freeze_Record_Declaration.
6022
6023 end Analyze_Variant_Part;
6024
6025 ----------------------------
6026 -- Array_Type_Declaration --
6027 ----------------------------
6028
6029 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
6030 Component_Def : constant Node_Id := Component_Definition (Def);
6031 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
6032 P : constant Node_Id := Parent (Def);
6033 Element_Type : Entity_Id;
6034 Implicit_Base : Entity_Id;
6035 Index : Node_Id;
6036 Nb_Index : Nat;
6037 Priv : Entity_Id;
6038 Related_Id : Entity_Id := Empty;
6039
6040 begin
6041 if Nkind (Def) = N_Constrained_Array_Definition then
6042 Index := First (Discrete_Subtype_Definitions (Def));
6043 else
6044 Index := First (Subtype_Marks (Def));
6045 end if;
6046
6047 -- Find proper names for the implicit types which may be public. In case
6048 -- of anonymous arrays we use the name of the first object of that type
6049 -- as prefix.
6050
6051 if No (T) then
6052 Related_Id := Defining_Identifier (P);
6053 else
6054 Related_Id := T;
6055 end if;
6056
6057 Nb_Index := 1;
6058 while Present (Index) loop
6059 Analyze (Index);
6060
6061 -- Test for odd case of trying to index a type by the type itself
6062
6063 if Is_Entity_Name (Index) and then Entity (Index) = T then
6064 Error_Msg_N ("type& cannot be indexed by itself", Index);
6065 Set_Entity (Index, Standard_Boolean);
6066 Set_Etype (Index, Standard_Boolean);
6067 end if;
6068
6069 -- Check SPARK restriction requiring a subtype mark
6070
6071 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
6072 Check_SPARK_05_Restriction ("subtype mark required", Index);
6073 end if;
6074
6075 -- Add a subtype declaration for each index of private array type
6076 -- declaration whose etype is also private. For example:
6077
6078 -- package Pkg is
6079 -- type Index is private;
6080 -- private
6081 -- type Table is array (Index) of ...
6082 -- end;
6083
6084 -- This is currently required by the expander for the internally
6085 -- generated equality subprogram of records with variant parts in
6086 -- which the etype of some component is such private type.
6087
6088 if Ekind (Current_Scope) = E_Package
6089 and then In_Private_Part (Current_Scope)
6090 and then Has_Private_Declaration (Etype (Index))
6091 then
6092 declare
6093 Loc : constant Source_Ptr := Sloc (Def);
6094 Decl : Entity_Id;
6095 New_E : Entity_Id;
6096
6097 begin
6098 New_E := Make_Temporary (Loc, 'T');
6099 Set_Is_Internal (New_E);
6100
6101 Decl :=
6102 Make_Subtype_Declaration (Loc,
6103 Defining_Identifier => New_E,
6104 Subtype_Indication =>
6105 New_Occurrence_Of (Etype (Index), Loc));
6106
6107 Insert_Before (Parent (Def), Decl);
6108 Analyze (Decl);
6109 Set_Etype (Index, New_E);
6110
6111 -- If the index is a range or a subtype indication it carries
6112 -- no entity. Example:
6113
6114 -- package Pkg is
6115 -- type T is private;
6116 -- private
6117 -- type T is new Natural;
6118 -- Table : array (T(1) .. T(10)) of Boolean;
6119 -- end Pkg;
6120
6121 -- Otherwise the type of the reference is its entity.
6122
6123 if Is_Entity_Name (Index) then
6124 Set_Entity (Index, New_E);
6125 end if;
6126 end;
6127 end if;
6128
6129 Make_Index (Index, P, Related_Id, Nb_Index);
6130
6131 -- Check error of subtype with predicate for index type
6132
6133 Bad_Predicated_Subtype_Use
6134 ("subtype& has predicate, not allowed as index subtype",
6135 Index, Etype (Index));
6136
6137 -- Move to next index
6138
6139 Next_Index (Index);
6140 Nb_Index := Nb_Index + 1;
6141 end loop;
6142
6143 -- Process subtype indication if one is present
6144
6145 if Present (Component_Typ) then
6146 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
6147
6148 Set_Etype (Component_Typ, Element_Type);
6149
6150 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
6151 Check_SPARK_05_Restriction
6152 ("subtype mark required", Component_Typ);
6153 end if;
6154
6155 -- Ada 2005 (AI-230): Access Definition case
6156
6157 else pragma Assert (Present (Access_Definition (Component_Def)));
6158
6159 -- Indicate that the anonymous access type is created by the
6160 -- array type declaration.
6161
6162 Element_Type := Access_Definition
6163 (Related_Nod => P,
6164 N => Access_Definition (Component_Def));
6165 Set_Is_Local_Anonymous_Access (Element_Type);
6166
6167 -- Propagate the parent. This field is needed if we have to generate
6168 -- the master_id associated with an anonymous access to task type
6169 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
6170
6171 Set_Parent (Element_Type, Parent (T));
6172
6173 -- Ada 2005 (AI-230): In case of components that are anonymous access
6174 -- types the level of accessibility depends on the enclosing type
6175 -- declaration
6176
6177 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
6178
6179 -- Ada 2005 (AI-254)
6180
6181 declare
6182 CD : constant Node_Id :=
6183 Access_To_Subprogram_Definition
6184 (Access_Definition (Component_Def));
6185 begin
6186 if Present (CD) and then Protected_Present (CD) then
6187 Element_Type :=
6188 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
6189 end if;
6190 end;
6191 end if;
6192
6193 -- Constrained array case
6194
6195 if No (T) then
6196 T := Create_Itype (E_Void, P, Related_Id, 'T');
6197 end if;
6198
6199 if Nkind (Def) = N_Constrained_Array_Definition then
6200
6201 -- Establish Implicit_Base as unconstrained base type
6202
6203 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
6204
6205 Set_Etype (Implicit_Base, Implicit_Base);
6206 Set_Scope (Implicit_Base, Current_Scope);
6207 Set_Has_Delayed_Freeze (Implicit_Base);
6208 Set_Default_SSO (Implicit_Base);
6209
6210 -- The constrained array type is a subtype of the unconstrained one
6211
6212 Set_Ekind (T, E_Array_Subtype);
6213 Init_Size_Align (T);
6214 Set_Etype (T, Implicit_Base);
6215 Set_Scope (T, Current_Scope);
6216 Set_Is_Constrained (T);
6217 Set_First_Index (T,
6218 First (Discrete_Subtype_Definitions (Def)));
6219 Set_Has_Delayed_Freeze (T);
6220
6221 -- Complete setup of implicit base type
6222
6223 Set_Component_Size (Implicit_Base, Uint_0);
6224 Set_Component_Type (Implicit_Base, Element_Type);
6225 Set_Finalize_Storage_Only
6226 (Implicit_Base,
6227 Finalize_Storage_Only (Element_Type));
6228 Set_First_Index (Implicit_Base, First_Index (T));
6229 Set_Has_Controlled_Component
6230 (Implicit_Base,
6231 Has_Controlled_Component (Element_Type)
6232 or else Is_Controlled (Element_Type));
6233 Set_Packed_Array_Impl_Type
6234 (Implicit_Base, Empty);
6235
6236 Propagate_Concurrent_Flags (Implicit_Base, Element_Type);
6237
6238 -- Unconstrained array case
6239
6240 else
6241 Set_Ekind (T, E_Array_Type);
6242 Init_Size_Align (T);
6243 Set_Etype (T, T);
6244 Set_Scope (T, Current_Scope);
6245 Set_Component_Size (T, Uint_0);
6246 Set_Is_Constrained (T, False);
6247 Set_First_Index (T, First (Subtype_Marks (Def)));
6248 Set_Has_Delayed_Freeze (T, True);
6249 Propagate_Concurrent_Flags (T, Element_Type);
6250 Set_Has_Controlled_Component (T, Has_Controlled_Component
6251 (Element_Type)
6252 or else
6253 Is_Controlled (Element_Type));
6254 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
6255 (Element_Type));
6256 Set_Default_SSO (T);
6257 end if;
6258
6259 -- Common attributes for both cases
6260
6261 Set_Component_Type (Base_Type (T), Element_Type);
6262 Set_Packed_Array_Impl_Type (T, Empty);
6263
6264 if Aliased_Present (Component_Definition (Def)) then
6265 Check_SPARK_05_Restriction
6266 ("aliased is not allowed", Component_Definition (Def));
6267 Set_Has_Aliased_Components (Etype (T));
6268 end if;
6269
6270 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
6271 -- array type to ensure that objects of this type are initialized.
6272
6273 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
6274 Set_Can_Never_Be_Null (T);
6275
6276 if Null_Exclusion_Present (Component_Definition (Def))
6277
6278 -- No need to check itypes because in their case this check was
6279 -- done at their point of creation
6280
6281 and then not Is_Itype (Element_Type)
6282 then
6283 Error_Msg_N
6284 ("`NOT NULL` not allowed (null already excluded)",
6285 Subtype_Indication (Component_Definition (Def)));
6286 end if;
6287 end if;
6288
6289 Priv := Private_Component (Element_Type);
6290
6291 if Present (Priv) then
6292
6293 -- Check for circular definitions
6294
6295 if Priv = Any_Type then
6296 Set_Component_Type (Etype (T), Any_Type);
6297
6298 -- There is a gap in the visibility of operations on the composite
6299 -- type only if the component type is defined in a different scope.
6300
6301 elsif Scope (Priv) = Current_Scope then
6302 null;
6303
6304 elsif Is_Limited_Type (Priv) then
6305 Set_Is_Limited_Composite (Etype (T));
6306 Set_Is_Limited_Composite (T);
6307 else
6308 Set_Is_Private_Composite (Etype (T));
6309 Set_Is_Private_Composite (T);
6310 end if;
6311 end if;
6312
6313 -- A syntax error in the declaration itself may lead to an empty index
6314 -- list, in which case do a minimal patch.
6315
6316 if No (First_Index (T)) then
6317 Error_Msg_N ("missing index definition in array type declaration", T);
6318
6319 declare
6320 Indexes : constant List_Id :=
6321 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
6322 begin
6323 Set_Discrete_Subtype_Definitions (Def, Indexes);
6324 Set_First_Index (T, First (Indexes));
6325 return;
6326 end;
6327 end if;
6328
6329 -- Create a concatenation operator for the new type. Internal array
6330 -- types created for packed entities do not need such, they are
6331 -- compatible with the user-defined type.
6332
6333 if Number_Dimensions (T) = 1
6334 and then not Is_Packed_Array_Impl_Type (T)
6335 then
6336 New_Concatenation_Op (T);
6337 end if;
6338
6339 -- In the case of an unconstrained array the parser has already verified
6340 -- that all the indexes are unconstrained but we still need to make sure
6341 -- that the element type is constrained.
6342
6343 if not Is_Definite_Subtype (Element_Type) then
6344 Error_Msg_N
6345 ("unconstrained element type in array declaration",
6346 Subtype_Indication (Component_Def));
6347
6348 elsif Is_Abstract_Type (Element_Type) then
6349 Error_Msg_N
6350 ("the type of a component cannot be abstract",
6351 Subtype_Indication (Component_Def));
6352 end if;
6353
6354 -- There may be an invariant declared for the component type, but
6355 -- the construction of the component invariant checking procedure
6356 -- takes place during expansion.
6357 end Array_Type_Declaration;
6358
6359 ------------------------------------------------------
6360 -- Replace_Anonymous_Access_To_Protected_Subprogram --
6361 ------------------------------------------------------
6362
6363 function Replace_Anonymous_Access_To_Protected_Subprogram
6364 (N : Node_Id) return Entity_Id
6365 is
6366 Loc : constant Source_Ptr := Sloc (N);
6367
6368 Curr_Scope : constant Scope_Stack_Entry :=
6369 Scope_Stack.Table (Scope_Stack.Last);
6370
6371 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
6372
6373 Acc : Node_Id;
6374 -- Access definition in declaration
6375
6376 Comp : Node_Id;
6377 -- Object definition or formal definition with an access definition
6378
6379 Decl : Node_Id;
6380 -- Declaration of anonymous access to subprogram type
6381
6382 Spec : Node_Id;
6383 -- Original specification in access to subprogram
6384
6385 P : Node_Id;
6386
6387 begin
6388 Set_Is_Internal (Anon);
6389
6390 case Nkind (N) is
6391 when N_Constrained_Array_Definition
6392 | N_Component_Declaration
6393 | N_Unconstrained_Array_Definition
6394 =>
6395 Comp := Component_Definition (N);
6396 Acc := Access_Definition (Comp);
6397
6398 when N_Discriminant_Specification =>
6399 Comp := Discriminant_Type (N);
6400 Acc := Comp;
6401
6402 when N_Parameter_Specification =>
6403 Comp := Parameter_Type (N);
6404 Acc := Comp;
6405
6406 when N_Access_Function_Definition =>
6407 Comp := Result_Definition (N);
6408 Acc := Comp;
6409
6410 when N_Object_Declaration =>
6411 Comp := Object_Definition (N);
6412 Acc := Comp;
6413
6414 when N_Function_Specification =>
6415 Comp := Result_Definition (N);
6416 Acc := Comp;
6417
6418 when others =>
6419 raise Program_Error;
6420 end case;
6421
6422 Spec := Access_To_Subprogram_Definition (Acc);
6423
6424 Decl :=
6425 Make_Full_Type_Declaration (Loc,
6426 Defining_Identifier => Anon,
6427 Type_Definition => Copy_Separate_Tree (Spec));
6428
6429 Mark_Rewrite_Insertion (Decl);
6430
6431 -- In ASIS mode, analyze the profile on the original node, because
6432 -- the separate copy does not provide enough links to recover the
6433 -- original tree. Analysis is limited to type annotations, within
6434 -- a temporary scope that serves as an anonymous subprogram to collect
6435 -- otherwise useless temporaries and itypes.
6436
6437 if ASIS_Mode then
6438 declare
6439 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
6440
6441 begin
6442 if Nkind (Spec) = N_Access_Function_Definition then
6443 Set_Ekind (Typ, E_Function);
6444 else
6445 Set_Ekind (Typ, E_Procedure);
6446 end if;
6447
6448 Set_Parent (Typ, N);
6449 Set_Scope (Typ, Current_Scope);
6450 Push_Scope (Typ);
6451
6452 -- Nothing to do if procedure is parameterless
6453
6454 if Present (Parameter_Specifications (Spec)) then
6455 Process_Formals (Parameter_Specifications (Spec), Spec);
6456 end if;
6457
6458 if Nkind (Spec) = N_Access_Function_Definition then
6459 declare
6460 Def : constant Node_Id := Result_Definition (Spec);
6461
6462 begin
6463 -- The result might itself be an anonymous access type, so
6464 -- have to recurse.
6465
6466 if Nkind (Def) = N_Access_Definition then
6467 if Present (Access_To_Subprogram_Definition (Def)) then
6468 Set_Etype
6469 (Def,
6470 Replace_Anonymous_Access_To_Protected_Subprogram
6471 (Spec));
6472 else
6473 Find_Type (Subtype_Mark (Def));
6474 end if;
6475
6476 else
6477 Find_Type (Def);
6478 end if;
6479 end;
6480 end if;
6481
6482 End_Scope;
6483 end;
6484 end if;
6485
6486 -- Insert the new declaration in the nearest enclosing scope. If the
6487 -- parent is a body and N is its return type, the declaration belongs
6488 -- in the enclosing scope. Likewise if N is the type of a parameter.
6489
6490 P := Parent (N);
6491
6492 if Nkind (N) = N_Function_Specification
6493 and then Nkind (P) = N_Subprogram_Body
6494 then
6495 P := Parent (P);
6496 elsif Nkind (N) = N_Parameter_Specification
6497 and then Nkind (P) in N_Subprogram_Specification
6498 and then Nkind (Parent (P)) = N_Subprogram_Body
6499 then
6500 P := Parent (Parent (P));
6501 end if;
6502
6503 while Present (P) and then not Has_Declarations (P) loop
6504 P := Parent (P);
6505 end loop;
6506
6507 pragma Assert (Present (P));
6508
6509 if Nkind (P) = N_Package_Specification then
6510 Prepend (Decl, Visible_Declarations (P));
6511 else
6512 Prepend (Decl, Declarations (P));
6513 end if;
6514
6515 -- Replace the anonymous type with an occurrence of the new declaration.
6516 -- In all cases the rewritten node does not have the null-exclusion
6517 -- attribute because (if present) it was already inherited by the
6518 -- anonymous entity (Anon). Thus, in case of components we do not
6519 -- inherit this attribute.
6520
6521 if Nkind (N) = N_Parameter_Specification then
6522 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6523 Set_Etype (Defining_Identifier (N), Anon);
6524 Set_Null_Exclusion_Present (N, False);
6525
6526 elsif Nkind (N) = N_Object_Declaration then
6527 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6528 Set_Etype (Defining_Identifier (N), Anon);
6529
6530 elsif Nkind (N) = N_Access_Function_Definition then
6531 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6532
6533 elsif Nkind (N) = N_Function_Specification then
6534 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6535 Set_Etype (Defining_Unit_Name (N), Anon);
6536
6537 else
6538 Rewrite (Comp,
6539 Make_Component_Definition (Loc,
6540 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
6541 end if;
6542
6543 Mark_Rewrite_Insertion (Comp);
6544
6545 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition)
6546 or else (Nkind (Parent (N)) = N_Full_Type_Declaration
6547 and then not Is_Type (Current_Scope))
6548 then
6549
6550 -- Declaration can be analyzed in the current scope.
6551
6552 Analyze (Decl);
6553
6554 else
6555 -- Temporarily remove the current scope (record or subprogram) from
6556 -- the stack to add the new declarations to the enclosing scope.
6557 -- The anonymous entity is an Itype with the proper attributes.
6558
6559 Scope_Stack.Decrement_Last;
6560 Analyze (Decl);
6561 Set_Is_Itype (Anon);
6562 Set_Associated_Node_For_Itype (Anon, N);
6563 Scope_Stack.Append (Curr_Scope);
6564 end if;
6565
6566 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
6567 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
6568 return Anon;
6569 end Replace_Anonymous_Access_To_Protected_Subprogram;
6570
6571 -------------------------------
6572 -- Build_Derived_Access_Type --
6573 -------------------------------
6574
6575 procedure Build_Derived_Access_Type
6576 (N : Node_Id;
6577 Parent_Type : Entity_Id;
6578 Derived_Type : Entity_Id)
6579 is
6580 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
6581
6582 Desig_Type : Entity_Id;
6583 Discr : Entity_Id;
6584 Discr_Con_Elist : Elist_Id;
6585 Discr_Con_El : Elmt_Id;
6586 Subt : Entity_Id;
6587
6588 begin
6589 -- Set the designated type so it is available in case this is an access
6590 -- to a self-referential type, e.g. a standard list type with a next
6591 -- pointer. Will be reset after subtype is built.
6592
6593 Set_Directly_Designated_Type
6594 (Derived_Type, Designated_Type (Parent_Type));
6595
6596 Subt := Process_Subtype (S, N);
6597
6598 if Nkind (S) /= N_Subtype_Indication
6599 and then Subt /= Base_Type (Subt)
6600 then
6601 Set_Ekind (Derived_Type, E_Access_Subtype);
6602 end if;
6603
6604 if Ekind (Derived_Type) = E_Access_Subtype then
6605 declare
6606 Pbase : constant Entity_Id := Base_Type (Parent_Type);
6607 Ibase : constant Entity_Id :=
6608 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
6609 Svg_Chars : constant Name_Id := Chars (Ibase);
6610 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
6611
6612 begin
6613 Copy_Node (Pbase, Ibase);
6614
6615 -- Restore Itype status after Copy_Node
6616
6617 Set_Is_Itype (Ibase);
6618 Set_Associated_Node_For_Itype (Ibase, N);
6619
6620 Set_Chars (Ibase, Svg_Chars);
6621 Set_Next_Entity (Ibase, Svg_Next_E);
6622 Set_Sloc (Ibase, Sloc (Derived_Type));
6623 Set_Scope (Ibase, Scope (Derived_Type));
6624 Set_Freeze_Node (Ibase, Empty);
6625 Set_Is_Frozen (Ibase, False);
6626 Set_Comes_From_Source (Ibase, False);
6627 Set_Is_First_Subtype (Ibase, False);
6628
6629 Set_Etype (Ibase, Pbase);
6630 Set_Etype (Derived_Type, Ibase);
6631 end;
6632 end if;
6633
6634 Set_Directly_Designated_Type
6635 (Derived_Type, Designated_Type (Subt));
6636
6637 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
6638 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
6639 Set_Size_Info (Derived_Type, Parent_Type);
6640 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
6641 Set_Depends_On_Private (Derived_Type,
6642 Has_Private_Component (Derived_Type));
6643 Conditional_Delay (Derived_Type, Subt);
6644
6645 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
6646 -- that it is not redundant.
6647
6648 if Null_Exclusion_Present (Type_Definition (N)) then
6649 Set_Can_Never_Be_Null (Derived_Type);
6650
6651 elsif Can_Never_Be_Null (Parent_Type) then
6652 Set_Can_Never_Be_Null (Derived_Type);
6653 end if;
6654
6655 -- Note: we do not copy the Storage_Size_Variable, since we always go to
6656 -- the root type for this information.
6657
6658 -- Apply range checks to discriminants for derived record case
6659 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
6660
6661 Desig_Type := Designated_Type (Derived_Type);
6662
6663 if Is_Composite_Type (Desig_Type)
6664 and then (not Is_Array_Type (Desig_Type))
6665 and then Has_Discriminants (Desig_Type)
6666 and then Base_Type (Desig_Type) /= Desig_Type
6667 then
6668 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
6669 Discr_Con_El := First_Elmt (Discr_Con_Elist);
6670
6671 Discr := First_Discriminant (Base_Type (Desig_Type));
6672 while Present (Discr_Con_El) loop
6673 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
6674 Next_Elmt (Discr_Con_El);
6675 Next_Discriminant (Discr);
6676 end loop;
6677 end if;
6678 end Build_Derived_Access_Type;
6679
6680 ------------------------------
6681 -- Build_Derived_Array_Type --
6682 ------------------------------
6683
6684 procedure Build_Derived_Array_Type
6685 (N : Node_Id;
6686 Parent_Type : Entity_Id;
6687 Derived_Type : Entity_Id)
6688 is
6689 Loc : constant Source_Ptr := Sloc (N);
6690 Tdef : constant Node_Id := Type_Definition (N);
6691 Indic : constant Node_Id := Subtype_Indication (Tdef);
6692 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6693 Implicit_Base : Entity_Id := Empty;
6694 New_Indic : Node_Id;
6695
6696 procedure Make_Implicit_Base;
6697 -- If the parent subtype is constrained, the derived type is a subtype
6698 -- of an implicit base type derived from the parent base.
6699
6700 ------------------------
6701 -- Make_Implicit_Base --
6702 ------------------------
6703
6704 procedure Make_Implicit_Base is
6705 begin
6706 Implicit_Base :=
6707 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6708
6709 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6710 Set_Etype (Implicit_Base, Parent_Base);
6711
6712 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
6713 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
6714
6715 Set_Has_Delayed_Freeze (Implicit_Base, True);
6716 end Make_Implicit_Base;
6717
6718 -- Start of processing for Build_Derived_Array_Type
6719
6720 begin
6721 if not Is_Constrained (Parent_Type) then
6722 if Nkind (Indic) /= N_Subtype_Indication then
6723 Set_Ekind (Derived_Type, E_Array_Type);
6724
6725 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6726 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
6727
6728 Set_Has_Delayed_Freeze (Derived_Type, True);
6729
6730 else
6731 Make_Implicit_Base;
6732 Set_Etype (Derived_Type, Implicit_Base);
6733
6734 New_Indic :=
6735 Make_Subtype_Declaration (Loc,
6736 Defining_Identifier => Derived_Type,
6737 Subtype_Indication =>
6738 Make_Subtype_Indication (Loc,
6739 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6740 Constraint => Constraint (Indic)));
6741
6742 Rewrite (N, New_Indic);
6743 Analyze (N);
6744 end if;
6745
6746 else
6747 if Nkind (Indic) /= N_Subtype_Indication then
6748 Make_Implicit_Base;
6749
6750 Set_Ekind (Derived_Type, Ekind (Parent_Type));
6751 Set_Etype (Derived_Type, Implicit_Base);
6752 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6753
6754 else
6755 Error_Msg_N ("illegal constraint on constrained type", Indic);
6756 end if;
6757 end if;
6758
6759 -- If parent type is not a derived type itself, and is declared in
6760 -- closed scope (e.g. a subprogram), then we must explicitly introduce
6761 -- the new type's concatenation operator since Derive_Subprograms
6762 -- will not inherit the parent's operator. If the parent type is
6763 -- unconstrained, the operator is of the unconstrained base type.
6764
6765 if Number_Dimensions (Parent_Type) = 1
6766 and then not Is_Limited_Type (Parent_Type)
6767 and then not Is_Derived_Type (Parent_Type)
6768 and then not Is_Package_Or_Generic_Package
6769 (Scope (Base_Type (Parent_Type)))
6770 then
6771 if not Is_Constrained (Parent_Type)
6772 and then Is_Constrained (Derived_Type)
6773 then
6774 New_Concatenation_Op (Implicit_Base);
6775 else
6776 New_Concatenation_Op (Derived_Type);
6777 end if;
6778 end if;
6779 end Build_Derived_Array_Type;
6780
6781 -----------------------------------
6782 -- Build_Derived_Concurrent_Type --
6783 -----------------------------------
6784
6785 procedure Build_Derived_Concurrent_Type
6786 (N : Node_Id;
6787 Parent_Type : Entity_Id;
6788 Derived_Type : Entity_Id)
6789 is
6790 Loc : constant Source_Ptr := Sloc (N);
6791
6792 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
6793 Corr_Decl : Node_Id;
6794 Corr_Decl_Needed : Boolean;
6795 -- If the derived type has fewer discriminants than its parent, the
6796 -- corresponding record is also a derived type, in order to account for
6797 -- the bound discriminants. We create a full type declaration for it in
6798 -- this case.
6799
6800 Constraint_Present : constant Boolean :=
6801 Nkind (Subtype_Indication (Type_Definition (N))) =
6802 N_Subtype_Indication;
6803
6804 D_Constraint : Node_Id;
6805 New_Constraint : Elist_Id := No_Elist;
6806 Old_Disc : Entity_Id;
6807 New_Disc : Entity_Id;
6808 New_N : Node_Id;
6809
6810 begin
6811 Set_Stored_Constraint (Derived_Type, No_Elist);
6812 Corr_Decl_Needed := False;
6813 Old_Disc := Empty;
6814
6815 if Present (Discriminant_Specifications (N))
6816 and then Constraint_Present
6817 then
6818 Old_Disc := First_Discriminant (Parent_Type);
6819 New_Disc := First (Discriminant_Specifications (N));
6820 while Present (New_Disc) and then Present (Old_Disc) loop
6821 Next_Discriminant (Old_Disc);
6822 Next (New_Disc);
6823 end loop;
6824 end if;
6825
6826 if Present (Old_Disc) and then Expander_Active then
6827
6828 -- The new type has fewer discriminants, so we need to create a new
6829 -- corresponding record, which is derived from the corresponding
6830 -- record of the parent, and has a stored constraint that captures
6831 -- the values of the discriminant constraints. The corresponding
6832 -- record is needed only if expander is active and code generation is
6833 -- enabled.
6834
6835 -- The type declaration for the derived corresponding record has the
6836 -- same discriminant part and constraints as the current declaration.
6837 -- Copy the unanalyzed tree to build declaration.
6838
6839 Corr_Decl_Needed := True;
6840 New_N := Copy_Separate_Tree (N);
6841
6842 Corr_Decl :=
6843 Make_Full_Type_Declaration (Loc,
6844 Defining_Identifier => Corr_Record,
6845 Discriminant_Specifications =>
6846 Discriminant_Specifications (New_N),
6847 Type_Definition =>
6848 Make_Derived_Type_Definition (Loc,
6849 Subtype_Indication =>
6850 Make_Subtype_Indication (Loc,
6851 Subtype_Mark =>
6852 New_Occurrence_Of
6853 (Corresponding_Record_Type (Parent_Type), Loc),
6854 Constraint =>
6855 Constraint
6856 (Subtype_Indication (Type_Definition (New_N))))));
6857 end if;
6858
6859 -- Copy Storage_Size and Relative_Deadline variables if task case
6860
6861 if Is_Task_Type (Parent_Type) then
6862 Set_Storage_Size_Variable (Derived_Type,
6863 Storage_Size_Variable (Parent_Type));
6864 Set_Relative_Deadline_Variable (Derived_Type,
6865 Relative_Deadline_Variable (Parent_Type));
6866 end if;
6867
6868 if Present (Discriminant_Specifications (N)) then
6869 Push_Scope (Derived_Type);
6870 Check_Or_Process_Discriminants (N, Derived_Type);
6871
6872 if Constraint_Present then
6873 New_Constraint :=
6874 Expand_To_Stored_Constraint
6875 (Parent_Type,
6876 Build_Discriminant_Constraints
6877 (Parent_Type,
6878 Subtype_Indication (Type_Definition (N)), True));
6879 end if;
6880
6881 End_Scope;
6882
6883 elsif Constraint_Present then
6884
6885 -- Build constrained subtype, copying the constraint, and derive
6886 -- from it to create a derived constrained type.
6887
6888 declare
6889 Loc : constant Source_Ptr := Sloc (N);
6890 Anon : constant Entity_Id :=
6891 Make_Defining_Identifier (Loc,
6892 Chars => New_External_Name (Chars (Derived_Type), 'T'));
6893 Decl : Node_Id;
6894
6895 begin
6896 Decl :=
6897 Make_Subtype_Declaration (Loc,
6898 Defining_Identifier => Anon,
6899 Subtype_Indication =>
6900 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
6901 Insert_Before (N, Decl);
6902 Analyze (Decl);
6903
6904 Rewrite (Subtype_Indication (Type_Definition (N)),
6905 New_Occurrence_Of (Anon, Loc));
6906 Set_Analyzed (Derived_Type, False);
6907 Analyze (N);
6908 return;
6909 end;
6910 end if;
6911
6912 -- By default, operations and private data are inherited from parent.
6913 -- However, in the presence of bound discriminants, a new corresponding
6914 -- record will be created, see below.
6915
6916 Set_Has_Discriminants
6917 (Derived_Type, Has_Discriminants (Parent_Type));
6918 Set_Corresponding_Record_Type
6919 (Derived_Type, Corresponding_Record_Type (Parent_Type));
6920
6921 -- Is_Constrained is set according the parent subtype, but is set to
6922 -- False if the derived type is declared with new discriminants.
6923
6924 Set_Is_Constrained
6925 (Derived_Type,
6926 (Is_Constrained (Parent_Type) or else Constraint_Present)
6927 and then not Present (Discriminant_Specifications (N)));
6928
6929 if Constraint_Present then
6930 if not Has_Discriminants (Parent_Type) then
6931 Error_Msg_N ("untagged parent must have discriminants", N);
6932
6933 elsif Present (Discriminant_Specifications (N)) then
6934
6935 -- Verify that new discriminants are used to constrain old ones
6936
6937 D_Constraint :=
6938 First
6939 (Constraints
6940 (Constraint (Subtype_Indication (Type_Definition (N)))));
6941
6942 Old_Disc := First_Discriminant (Parent_Type);
6943
6944 while Present (D_Constraint) loop
6945 if Nkind (D_Constraint) /= N_Discriminant_Association then
6946
6947 -- Positional constraint. If it is a reference to a new
6948 -- discriminant, it constrains the corresponding old one.
6949
6950 if Nkind (D_Constraint) = N_Identifier then
6951 New_Disc := First_Discriminant (Derived_Type);
6952 while Present (New_Disc) loop
6953 exit when Chars (New_Disc) = Chars (D_Constraint);
6954 Next_Discriminant (New_Disc);
6955 end loop;
6956
6957 if Present (New_Disc) then
6958 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
6959 end if;
6960 end if;
6961
6962 Next_Discriminant (Old_Disc);
6963
6964 -- if this is a named constraint, search by name for the old
6965 -- discriminants constrained by the new one.
6966
6967 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
6968
6969 -- Find new discriminant with that name
6970
6971 New_Disc := First_Discriminant (Derived_Type);
6972 while Present (New_Disc) loop
6973 exit when
6974 Chars (New_Disc) = Chars (Expression (D_Constraint));
6975 Next_Discriminant (New_Disc);
6976 end loop;
6977
6978 if Present (New_Disc) then
6979
6980 -- Verify that new discriminant renames some discriminant
6981 -- of the parent type, and associate the new discriminant
6982 -- with one or more old ones that it renames.
6983
6984 declare
6985 Selector : Node_Id;
6986
6987 begin
6988 Selector := First (Selector_Names (D_Constraint));
6989 while Present (Selector) loop
6990 Old_Disc := First_Discriminant (Parent_Type);
6991 while Present (Old_Disc) loop
6992 exit when Chars (Old_Disc) = Chars (Selector);
6993 Next_Discriminant (Old_Disc);
6994 end loop;
6995
6996 if Present (Old_Disc) then
6997 Set_Corresponding_Discriminant
6998 (New_Disc, Old_Disc);
6999 end if;
7000
7001 Next (Selector);
7002 end loop;
7003 end;
7004 end if;
7005 end if;
7006
7007 Next (D_Constraint);
7008 end loop;
7009
7010 New_Disc := First_Discriminant (Derived_Type);
7011 while Present (New_Disc) loop
7012 if No (Corresponding_Discriminant (New_Disc)) then
7013 Error_Msg_NE
7014 ("new discriminant& must constrain old one", N, New_Disc);
7015
7016 elsif not
7017 Subtypes_Statically_Compatible
7018 (Etype (New_Disc),
7019 Etype (Corresponding_Discriminant (New_Disc)))
7020 then
7021 Error_Msg_NE
7022 ("& not statically compatible with parent discriminant",
7023 N, New_Disc);
7024 end if;
7025
7026 Next_Discriminant (New_Disc);
7027 end loop;
7028 end if;
7029
7030 elsif Present (Discriminant_Specifications (N)) then
7031 Error_Msg_N
7032 ("missing discriminant constraint in untagged derivation", N);
7033 end if;
7034
7035 -- The entity chain of the derived type includes the new discriminants
7036 -- but shares operations with the parent.
7037
7038 if Present (Discriminant_Specifications (N)) then
7039 Old_Disc := First_Discriminant (Parent_Type);
7040 while Present (Old_Disc) loop
7041 if No (Next_Entity (Old_Disc))
7042 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
7043 then
7044 Set_Next_Entity
7045 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
7046 exit;
7047 end if;
7048
7049 Next_Discriminant (Old_Disc);
7050 end loop;
7051
7052 else
7053 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
7054 if Has_Discriminants (Parent_Type) then
7055 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7056 Set_Discriminant_Constraint (
7057 Derived_Type, Discriminant_Constraint (Parent_Type));
7058 end if;
7059 end if;
7060
7061 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
7062
7063 Set_Has_Completion (Derived_Type);
7064
7065 if Corr_Decl_Needed then
7066 Set_Stored_Constraint (Derived_Type, New_Constraint);
7067 Insert_After (N, Corr_Decl);
7068 Analyze (Corr_Decl);
7069 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
7070 end if;
7071 end Build_Derived_Concurrent_Type;
7072
7073 ------------------------------------
7074 -- Build_Derived_Enumeration_Type --
7075 ------------------------------------
7076
7077 procedure Build_Derived_Enumeration_Type
7078 (N : Node_Id;
7079 Parent_Type : Entity_Id;
7080 Derived_Type : Entity_Id)
7081 is
7082 Loc : constant Source_Ptr := Sloc (N);
7083 Def : constant Node_Id := Type_Definition (N);
7084 Indic : constant Node_Id := Subtype_Indication (Def);
7085 Implicit_Base : Entity_Id;
7086 Literal : Entity_Id;
7087 New_Lit : Entity_Id;
7088 Literals_List : List_Id;
7089 Type_Decl : Node_Id;
7090 Hi, Lo : Node_Id;
7091 Rang_Expr : Node_Id;
7092
7093 begin
7094 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
7095 -- not have explicit literals lists we need to process types derived
7096 -- from them specially. This is handled by Derived_Standard_Character.
7097 -- If the parent type is a generic type, there are no literals either,
7098 -- and we construct the same skeletal representation as for the generic
7099 -- parent type.
7100
7101 if Is_Standard_Character_Type (Parent_Type) then
7102 Derived_Standard_Character (N, Parent_Type, Derived_Type);
7103
7104 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
7105 declare
7106 Lo : Node_Id;
7107 Hi : Node_Id;
7108
7109 begin
7110 if Nkind (Indic) /= N_Subtype_Indication then
7111 Lo :=
7112 Make_Attribute_Reference (Loc,
7113 Attribute_Name => Name_First,
7114 Prefix => New_Occurrence_Of (Derived_Type, Loc));
7115 Set_Etype (Lo, Derived_Type);
7116
7117 Hi :=
7118 Make_Attribute_Reference (Loc,
7119 Attribute_Name => Name_Last,
7120 Prefix => New_Occurrence_Of (Derived_Type, Loc));
7121 Set_Etype (Hi, Derived_Type);
7122
7123 Set_Scalar_Range (Derived_Type,
7124 Make_Range (Loc,
7125 Low_Bound => Lo,
7126 High_Bound => Hi));
7127 else
7128
7129 -- Analyze subtype indication and verify compatibility
7130 -- with parent type.
7131
7132 if Base_Type (Process_Subtype (Indic, N)) /=
7133 Base_Type (Parent_Type)
7134 then
7135 Error_Msg_N
7136 ("illegal constraint for formal discrete type", N);
7137 end if;
7138 end if;
7139 end;
7140
7141 else
7142 -- If a constraint is present, analyze the bounds to catch
7143 -- premature usage of the derived literals.
7144
7145 if Nkind (Indic) = N_Subtype_Indication
7146 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
7147 then
7148 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
7149 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
7150 end if;
7151
7152 -- Introduce an implicit base type for the derived type even if there
7153 -- is no constraint attached to it, since this seems closer to the
7154 -- Ada semantics. Build a full type declaration tree for the derived
7155 -- type using the implicit base type as the defining identifier. The
7156 -- build a subtype declaration tree which applies the constraint (if
7157 -- any) have it replace the derived type declaration.
7158
7159 Literal := First_Literal (Parent_Type);
7160 Literals_List := New_List;
7161 while Present (Literal)
7162 and then Ekind (Literal) = E_Enumeration_Literal
7163 loop
7164 -- Literals of the derived type have the same representation as
7165 -- those of the parent type, but this representation can be
7166 -- overridden by an explicit representation clause. Indicate
7167 -- that there is no explicit representation given yet. These
7168 -- derived literals are implicit operations of the new type,
7169 -- and can be overridden by explicit ones.
7170
7171 if Nkind (Literal) = N_Defining_Character_Literal then
7172 New_Lit :=
7173 Make_Defining_Character_Literal (Loc, Chars (Literal));
7174 else
7175 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
7176 end if;
7177
7178 Set_Ekind (New_Lit, E_Enumeration_Literal);
7179 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
7180 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
7181 Set_Enumeration_Rep_Expr (New_Lit, Empty);
7182 Set_Alias (New_Lit, Literal);
7183 Set_Is_Known_Valid (New_Lit, True);
7184
7185 Append (New_Lit, Literals_List);
7186 Next_Literal (Literal);
7187 end loop;
7188
7189 Implicit_Base :=
7190 Make_Defining_Identifier (Sloc (Derived_Type),
7191 Chars => New_External_Name (Chars (Derived_Type), 'B'));
7192
7193 -- Indicate the proper nature of the derived type. This must be done
7194 -- before analysis of the literals, to recognize cases when a literal
7195 -- may be hidden by a previous explicit function definition (cf.
7196 -- c83031a).
7197
7198 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
7199 Set_Etype (Derived_Type, Implicit_Base);
7200
7201 Type_Decl :=
7202 Make_Full_Type_Declaration (Loc,
7203 Defining_Identifier => Implicit_Base,
7204 Discriminant_Specifications => No_List,
7205 Type_Definition =>
7206 Make_Enumeration_Type_Definition (Loc, Literals_List));
7207
7208 Mark_Rewrite_Insertion (Type_Decl);
7209 Insert_Before (N, Type_Decl);
7210 Analyze (Type_Decl);
7211
7212 -- The anonymous base now has a full declaration, but this base
7213 -- is not a first subtype.
7214
7215 Set_Is_First_Subtype (Implicit_Base, False);
7216
7217 -- After the implicit base is analyzed its Etype needs to be changed
7218 -- to reflect the fact that it is derived from the parent type which
7219 -- was ignored during analysis. We also set the size at this point.
7220
7221 Set_Etype (Implicit_Base, Parent_Type);
7222
7223 Set_Size_Info (Implicit_Base, Parent_Type);
7224 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
7225 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
7226
7227 -- Copy other flags from parent type
7228
7229 Set_Has_Non_Standard_Rep
7230 (Implicit_Base, Has_Non_Standard_Rep
7231 (Parent_Type));
7232 Set_Has_Pragma_Ordered
7233 (Implicit_Base, Has_Pragma_Ordered
7234 (Parent_Type));
7235 Set_Has_Delayed_Freeze (Implicit_Base);
7236
7237 -- Process the subtype indication including a validation check on the
7238 -- constraint, if any. If a constraint is given, its bounds must be
7239 -- implicitly converted to the new type.
7240
7241 if Nkind (Indic) = N_Subtype_Indication then
7242 declare
7243 R : constant Node_Id :=
7244 Range_Expression (Constraint (Indic));
7245
7246 begin
7247 if Nkind (R) = N_Range then
7248 Hi := Build_Scalar_Bound
7249 (High_Bound (R), Parent_Type, Implicit_Base);
7250 Lo := Build_Scalar_Bound
7251 (Low_Bound (R), Parent_Type, Implicit_Base);
7252
7253 else
7254 -- Constraint is a Range attribute. Replace with explicit
7255 -- mention of the bounds of the prefix, which must be a
7256 -- subtype.
7257
7258 Analyze (Prefix (R));
7259 Hi :=
7260 Convert_To (Implicit_Base,
7261 Make_Attribute_Reference (Loc,
7262 Attribute_Name => Name_Last,
7263 Prefix =>
7264 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
7265
7266 Lo :=
7267 Convert_To (Implicit_Base,
7268 Make_Attribute_Reference (Loc,
7269 Attribute_Name => Name_First,
7270 Prefix =>
7271 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
7272 end if;
7273 end;
7274
7275 else
7276 Hi :=
7277 Build_Scalar_Bound
7278 (Type_High_Bound (Parent_Type),
7279 Parent_Type, Implicit_Base);
7280 Lo :=
7281 Build_Scalar_Bound
7282 (Type_Low_Bound (Parent_Type),
7283 Parent_Type, Implicit_Base);
7284 end if;
7285
7286 Rang_Expr :=
7287 Make_Range (Loc,
7288 Low_Bound => Lo,
7289 High_Bound => Hi);
7290
7291 -- If we constructed a default range for the case where no range
7292 -- was given, then the expressions in the range must not freeze
7293 -- since they do not correspond to expressions in the source.
7294 -- However, if the type inherits predicates the expressions will
7295 -- be elaborated earlier and must freeze.
7296
7297 if Nkind (Indic) /= N_Subtype_Indication
7298 and then not Has_Predicates (Derived_Type)
7299 then
7300 Set_Must_Not_Freeze (Lo);
7301 Set_Must_Not_Freeze (Hi);
7302 Set_Must_Not_Freeze (Rang_Expr);
7303 end if;
7304
7305 Rewrite (N,
7306 Make_Subtype_Declaration (Loc,
7307 Defining_Identifier => Derived_Type,
7308 Subtype_Indication =>
7309 Make_Subtype_Indication (Loc,
7310 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
7311 Constraint =>
7312 Make_Range_Constraint (Loc,
7313 Range_Expression => Rang_Expr))));
7314
7315 Analyze (N);
7316
7317 -- Propagate the aspects from the original type declaration to the
7318 -- declaration of the implicit base.
7319
7320 Move_Aspects (From => Original_Node (N), To => Type_Decl);
7321
7322 -- Apply a range check. Since this range expression doesn't have an
7323 -- Etype, we have to specifically pass the Source_Typ parameter. Is
7324 -- this right???
7325
7326 if Nkind (Indic) = N_Subtype_Indication then
7327 Apply_Range_Check
7328 (Range_Expression (Constraint (Indic)), Parent_Type,
7329 Source_Typ => Entity (Subtype_Mark (Indic)));
7330 end if;
7331 end if;
7332 end Build_Derived_Enumeration_Type;
7333
7334 --------------------------------
7335 -- Build_Derived_Numeric_Type --
7336 --------------------------------
7337
7338 procedure Build_Derived_Numeric_Type
7339 (N : Node_Id;
7340 Parent_Type : Entity_Id;
7341 Derived_Type : Entity_Id)
7342 is
7343 Loc : constant Source_Ptr := Sloc (N);
7344 Tdef : constant Node_Id := Type_Definition (N);
7345 Indic : constant Node_Id := Subtype_Indication (Tdef);
7346 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
7347 No_Constraint : constant Boolean := Nkind (Indic) /=
7348 N_Subtype_Indication;
7349 Implicit_Base : Entity_Id;
7350
7351 Lo : Node_Id;
7352 Hi : Node_Id;
7353
7354 begin
7355 -- Process the subtype indication including a validation check on
7356 -- the constraint if any.
7357
7358 Discard_Node (Process_Subtype (Indic, N));
7359
7360 -- Introduce an implicit base type for the derived type even if there
7361 -- is no constraint attached to it, since this seems closer to the Ada
7362 -- semantics.
7363
7364 Implicit_Base :=
7365 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
7366
7367 Set_Etype (Implicit_Base, Parent_Base);
7368 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
7369 Set_Size_Info (Implicit_Base, Parent_Base);
7370 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
7371 Set_Parent (Implicit_Base, Parent (Derived_Type));
7372 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
7373
7374 -- Set RM Size for discrete type or decimal fixed-point type
7375 -- Ordinary fixed-point is excluded, why???
7376
7377 if Is_Discrete_Type (Parent_Base)
7378 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
7379 then
7380 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
7381 end if;
7382
7383 Set_Has_Delayed_Freeze (Implicit_Base);
7384
7385 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
7386 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
7387
7388 Set_Scalar_Range (Implicit_Base,
7389 Make_Range (Loc,
7390 Low_Bound => Lo,
7391 High_Bound => Hi));
7392
7393 if Has_Infinities (Parent_Base) then
7394 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
7395 end if;
7396
7397 -- The Derived_Type, which is the entity of the declaration, is a
7398 -- subtype of the implicit base. Its Ekind is a subtype, even in the
7399 -- absence of an explicit constraint.
7400
7401 Set_Etype (Derived_Type, Implicit_Base);
7402
7403 -- If we did not have a constraint, then the Ekind is set from the
7404 -- parent type (otherwise Process_Subtype has set the bounds)
7405
7406 if No_Constraint then
7407 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
7408 end if;
7409
7410 -- If we did not have a range constraint, then set the range from the
7411 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
7412
7413 if No_Constraint or else not Has_Range_Constraint (Indic) then
7414 Set_Scalar_Range (Derived_Type,
7415 Make_Range (Loc,
7416 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
7417 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
7418 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7419
7420 if Has_Infinities (Parent_Type) then
7421 Set_Includes_Infinities (Scalar_Range (Derived_Type));
7422 end if;
7423
7424 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
7425 end if;
7426
7427 Set_Is_Descendant_Of_Address (Derived_Type,
7428 Is_Descendant_Of_Address (Parent_Type));
7429 Set_Is_Descendant_Of_Address (Implicit_Base,
7430 Is_Descendant_Of_Address (Parent_Type));
7431
7432 -- Set remaining type-specific fields, depending on numeric type
7433
7434 if Is_Modular_Integer_Type (Parent_Type) then
7435 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
7436
7437 Set_Non_Binary_Modulus
7438 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
7439
7440 Set_Is_Known_Valid
7441 (Implicit_Base, Is_Known_Valid (Parent_Base));
7442
7443 elsif Is_Floating_Point_Type (Parent_Type) then
7444
7445 -- Digits of base type is always copied from the digits value of
7446 -- the parent base type, but the digits of the derived type will
7447 -- already have been set if there was a constraint present.
7448
7449 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
7450 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
7451
7452 if No_Constraint then
7453 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
7454 end if;
7455
7456 elsif Is_Fixed_Point_Type (Parent_Type) then
7457
7458 -- Small of base type and derived type are always copied from the
7459 -- parent base type, since smalls never change. The delta of the
7460 -- base type is also copied from the parent base type. However the
7461 -- delta of the derived type will have been set already if a
7462 -- constraint was present.
7463
7464 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
7465 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
7466 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
7467
7468 if No_Constraint then
7469 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
7470 end if;
7471
7472 -- The scale and machine radix in the decimal case are always
7473 -- copied from the parent base type.
7474
7475 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
7476 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
7477 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
7478
7479 Set_Machine_Radix_10
7480 (Derived_Type, Machine_Radix_10 (Parent_Base));
7481 Set_Machine_Radix_10
7482 (Implicit_Base, Machine_Radix_10 (Parent_Base));
7483
7484 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
7485
7486 if No_Constraint then
7487 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
7488
7489 else
7490 -- the analysis of the subtype_indication sets the
7491 -- digits value of the derived type.
7492
7493 null;
7494 end if;
7495 end if;
7496 end if;
7497
7498 if Is_Integer_Type (Parent_Type) then
7499 Set_Has_Shift_Operator
7500 (Implicit_Base, Has_Shift_Operator (Parent_Type));
7501 end if;
7502
7503 -- The type of the bounds is that of the parent type, and they
7504 -- must be converted to the derived type.
7505
7506 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
7507
7508 -- The implicit_base should be frozen when the derived type is frozen,
7509 -- but note that it is used in the conversions of the bounds. For fixed
7510 -- types we delay the determination of the bounds until the proper
7511 -- freezing point. For other numeric types this is rejected by GCC, for
7512 -- reasons that are currently unclear (???), so we choose to freeze the
7513 -- implicit base now. In the case of integers and floating point types
7514 -- this is harmless because subsequent representation clauses cannot
7515 -- affect anything, but it is still baffling that we cannot use the
7516 -- same mechanism for all derived numeric types.
7517
7518 -- There is a further complication: actually some representation
7519 -- clauses can affect the implicit base type. For example, attribute
7520 -- definition clauses for stream-oriented attributes need to set the
7521 -- corresponding TSS entries on the base type, and this normally
7522 -- cannot be done after the base type is frozen, so the circuitry in
7523 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
7524 -- and not use Set_TSS in this case.
7525
7526 -- There are also consequences for the case of delayed representation
7527 -- aspects for some cases. For example, a Size aspect is delayed and
7528 -- should not be evaluated to the freeze point. This early freezing
7529 -- means that the size attribute evaluation happens too early???
7530
7531 if Is_Fixed_Point_Type (Parent_Type) then
7532 Conditional_Delay (Implicit_Base, Parent_Type);
7533 else
7534 Freeze_Before (N, Implicit_Base);
7535 end if;
7536 end Build_Derived_Numeric_Type;
7537
7538 --------------------------------
7539 -- Build_Derived_Private_Type --
7540 --------------------------------
7541
7542 procedure Build_Derived_Private_Type
7543 (N : Node_Id;
7544 Parent_Type : Entity_Id;
7545 Derived_Type : Entity_Id;
7546 Is_Completion : Boolean;
7547 Derive_Subps : Boolean := True)
7548 is
7549 Loc : constant Source_Ptr := Sloc (N);
7550 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
7551 Par_Scope : constant Entity_Id := Scope (Par_Base);
7552 Full_N : constant Node_Id := New_Copy_Tree (N);
7553 Full_Der : Entity_Id := New_Copy (Derived_Type);
7554 Full_P : Entity_Id;
7555
7556 procedure Build_Full_Derivation;
7557 -- Build full derivation, i.e. derive from the full view
7558
7559 procedure Copy_And_Build;
7560 -- Copy derived type declaration, replace parent with its full view,
7561 -- and build derivation
7562
7563 ---------------------------
7564 -- Build_Full_Derivation --
7565 ---------------------------
7566
7567 procedure Build_Full_Derivation is
7568 begin
7569 -- If parent scope is not open, install the declarations
7570
7571 if not In_Open_Scopes (Par_Scope) then
7572 Install_Private_Declarations (Par_Scope);
7573 Install_Visible_Declarations (Par_Scope);
7574 Copy_And_Build;
7575 Uninstall_Declarations (Par_Scope);
7576
7577 -- If parent scope is open and in another unit, and parent has a
7578 -- completion, then the derivation is taking place in the visible
7579 -- part of a child unit. In that case retrieve the full view of
7580 -- the parent momentarily.
7581
7582 elsif not In_Same_Source_Unit (N, Parent_Type) then
7583 Full_P := Full_View (Parent_Type);
7584 Exchange_Declarations (Parent_Type);
7585 Copy_And_Build;
7586 Exchange_Declarations (Full_P);
7587
7588 -- Otherwise it is a local derivation
7589
7590 else
7591 Copy_And_Build;
7592 end if;
7593 end Build_Full_Derivation;
7594
7595 --------------------
7596 -- Copy_And_Build --
7597 --------------------
7598
7599 procedure Copy_And_Build is
7600 Full_Parent : Entity_Id := Parent_Type;
7601
7602 begin
7603 -- If the parent is itself derived from another private type,
7604 -- installing the private declarations has not affected its
7605 -- privacy status, so use its own full view explicitly.
7606
7607 if Is_Private_Type (Full_Parent)
7608 and then Present (Full_View (Full_Parent))
7609 then
7610 Full_Parent := Full_View (Full_Parent);
7611 end if;
7612
7613 -- And its underlying full view if necessary
7614
7615 if Is_Private_Type (Full_Parent)
7616 and then Present (Underlying_Full_View (Full_Parent))
7617 then
7618 Full_Parent := Underlying_Full_View (Full_Parent);
7619 end if;
7620
7621 -- For record, access and most enumeration types, derivation from
7622 -- the full view requires a fully-fledged declaration. In the other
7623 -- cases, just use an itype.
7624
7625 if Ekind (Full_Parent) in Record_Kind
7626 or else Ekind (Full_Parent) in Access_Kind
7627 or else
7628 (Ekind (Full_Parent) in Enumeration_Kind
7629 and then not Is_Standard_Character_Type (Full_Parent)
7630 and then not Is_Generic_Type (Root_Type (Full_Parent)))
7631 then
7632 -- Copy and adjust declaration to provide a completion for what
7633 -- is originally a private declaration. Indicate that full view
7634 -- is internally generated.
7635
7636 Set_Comes_From_Source (Full_N, False);
7637 Set_Comes_From_Source (Full_Der, False);
7638 Set_Parent (Full_Der, Full_N);
7639 Set_Defining_Identifier (Full_N, Full_Der);
7640
7641 -- If there are no constraints, adjust the subtype mark
7642
7643 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
7644 N_Subtype_Indication
7645 then
7646 Set_Subtype_Indication
7647 (Type_Definition (Full_N),
7648 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
7649 end if;
7650
7651 Insert_After (N, Full_N);
7652
7653 -- Build full view of derived type from full view of parent which
7654 -- is now installed. Subprograms have been derived on the partial
7655 -- view, the completion does not derive them anew.
7656
7657 if Ekind (Full_Parent) in Record_Kind then
7658
7659 -- If parent type is tagged, the completion inherits the proper
7660 -- primitive operations.
7661
7662 if Is_Tagged_Type (Parent_Type) then
7663 Build_Derived_Record_Type
7664 (Full_N, Full_Parent, Full_Der, Derive_Subps);
7665 else
7666 Build_Derived_Record_Type
7667 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
7668 end if;
7669
7670 else
7671 Build_Derived_Type
7672 (Full_N, Full_Parent, Full_Der,
7673 Is_Completion => False, Derive_Subps => False);
7674 end if;
7675
7676 -- The full declaration has been introduced into the tree and
7677 -- processed in the step above. It should not be analyzed again
7678 -- (when encountered later in the current list of declarations)
7679 -- to prevent spurious name conflicts. The full entity remains
7680 -- invisible.
7681
7682 Set_Analyzed (Full_N);
7683
7684 else
7685 Full_Der :=
7686 Make_Defining_Identifier (Sloc (Derived_Type),
7687 Chars => Chars (Derived_Type));
7688 Set_Is_Itype (Full_Der);
7689 Set_Associated_Node_For_Itype (Full_Der, N);
7690 Set_Parent (Full_Der, N);
7691 Build_Derived_Type
7692 (N, Full_Parent, Full_Der,
7693 Is_Completion => False, Derive_Subps => False);
7694 end if;
7695
7696 Set_Has_Private_Declaration (Full_Der);
7697 Set_Has_Private_Declaration (Derived_Type);
7698
7699 Set_Scope (Full_Der, Scope (Derived_Type));
7700 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
7701 Set_Has_Size_Clause (Full_Der, False);
7702 Set_Has_Alignment_Clause (Full_Der, False);
7703 Set_Has_Delayed_Freeze (Full_Der);
7704 Set_Is_Frozen (Full_Der, False);
7705 Set_Freeze_Node (Full_Der, Empty);
7706 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
7707 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
7708
7709 -- The convention on the base type may be set in the private part
7710 -- and not propagated to the subtype until later, so we obtain the
7711 -- convention from the base type of the parent.
7712
7713 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
7714 end Copy_And_Build;
7715
7716 -- Start of processing for Build_Derived_Private_Type
7717
7718 begin
7719 if Is_Tagged_Type (Parent_Type) then
7720 Full_P := Full_View (Parent_Type);
7721
7722 -- A type extension of a type with unknown discriminants is an
7723 -- indefinite type that the back-end cannot handle directly.
7724 -- We treat it as a private type, and build a completion that is
7725 -- derived from the full view of the parent, and hopefully has
7726 -- known discriminants.
7727
7728 -- If the full view of the parent type has an underlying record view,
7729 -- use it to generate the underlying record view of this derived type
7730 -- (required for chains of derivations with unknown discriminants).
7731
7732 -- Minor optimization: we avoid the generation of useless underlying
7733 -- record view entities if the private type declaration has unknown
7734 -- discriminants but its corresponding full view has no
7735 -- discriminants.
7736
7737 if Has_Unknown_Discriminants (Parent_Type)
7738 and then Present (Full_P)
7739 and then (Has_Discriminants (Full_P)
7740 or else Present (Underlying_Record_View (Full_P)))
7741 and then not In_Open_Scopes (Par_Scope)
7742 and then Expander_Active
7743 then
7744 declare
7745 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
7746 New_Ext : constant Node_Id :=
7747 Copy_Separate_Tree
7748 (Record_Extension_Part (Type_Definition (N)));
7749 Decl : Node_Id;
7750
7751 begin
7752 Build_Derived_Record_Type
7753 (N, Parent_Type, Derived_Type, Derive_Subps);
7754
7755 -- Build anonymous completion, as a derivation from the full
7756 -- view of the parent. This is not a completion in the usual
7757 -- sense, because the current type is not private.
7758
7759 Decl :=
7760 Make_Full_Type_Declaration (Loc,
7761 Defining_Identifier => Full_Der,
7762 Type_Definition =>
7763 Make_Derived_Type_Definition (Loc,
7764 Subtype_Indication =>
7765 New_Copy_Tree
7766 (Subtype_Indication (Type_Definition (N))),
7767 Record_Extension_Part => New_Ext));
7768
7769 -- If the parent type has an underlying record view, use it
7770 -- here to build the new underlying record view.
7771
7772 if Present (Underlying_Record_View (Full_P)) then
7773 pragma Assert
7774 (Nkind (Subtype_Indication (Type_Definition (Decl)))
7775 = N_Identifier);
7776 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
7777 Underlying_Record_View (Full_P));
7778 end if;
7779
7780 Install_Private_Declarations (Par_Scope);
7781 Install_Visible_Declarations (Par_Scope);
7782 Insert_Before (N, Decl);
7783
7784 -- Mark entity as an underlying record view before analysis,
7785 -- to avoid generating the list of its primitive operations
7786 -- (which is not really required for this entity) and thus
7787 -- prevent spurious errors associated with missing overriding
7788 -- of abstract primitives (overridden only for Derived_Type).
7789
7790 Set_Ekind (Full_Der, E_Record_Type);
7791 Set_Is_Underlying_Record_View (Full_Der);
7792 Set_Default_SSO (Full_Der);
7793 Set_No_Reordering (Full_Der, No_Component_Reordering);
7794
7795 Analyze (Decl);
7796
7797 pragma Assert (Has_Discriminants (Full_Der)
7798 and then not Has_Unknown_Discriminants (Full_Der));
7799
7800 Uninstall_Declarations (Par_Scope);
7801
7802 -- Freeze the underlying record view, to prevent generation of
7803 -- useless dispatching information, which is simply shared with
7804 -- the real derived type.
7805
7806 Set_Is_Frozen (Full_Der);
7807
7808 -- If the derived type has access discriminants, create
7809 -- references to their anonymous types now, to prevent
7810 -- back-end problems when their first use is in generated
7811 -- bodies of primitives.
7812
7813 declare
7814 E : Entity_Id;
7815
7816 begin
7817 E := First_Entity (Full_Der);
7818
7819 while Present (E) loop
7820 if Ekind (E) = E_Discriminant
7821 and then Ekind (Etype (E)) = E_Anonymous_Access_Type
7822 then
7823 Build_Itype_Reference (Etype (E), Decl);
7824 end if;
7825
7826 Next_Entity (E);
7827 end loop;
7828 end;
7829
7830 -- Set up links between real entity and underlying record view
7831
7832 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
7833 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
7834 end;
7835
7836 -- If discriminants are known, build derived record
7837
7838 else
7839 Build_Derived_Record_Type
7840 (N, Parent_Type, Derived_Type, Derive_Subps);
7841 end if;
7842
7843 return;
7844
7845 elsif Has_Discriminants (Parent_Type) then
7846
7847 -- Build partial view of derived type from partial view of parent.
7848 -- This must be done before building the full derivation because the
7849 -- second derivation will modify the discriminants of the first and
7850 -- the discriminants are chained with the rest of the components in
7851 -- the full derivation.
7852
7853 Build_Derived_Record_Type
7854 (N, Parent_Type, Derived_Type, Derive_Subps);
7855
7856 -- Build the full derivation if this is not the anonymous derived
7857 -- base type created by Build_Derived_Record_Type in the constrained
7858 -- case (see point 5. of its head comment) since we build it for the
7859 -- derived subtype. And skip it for protected types altogether, as
7860 -- gigi does not use these types directly.
7861
7862 if Present (Full_View (Parent_Type))
7863 and then not Is_Itype (Derived_Type)
7864 and then not (Ekind (Full_View (Parent_Type)) in Protected_Kind)
7865 then
7866 declare
7867 Der_Base : constant Entity_Id := Base_Type (Derived_Type);
7868 Discr : Entity_Id;
7869 Last_Discr : Entity_Id;
7870
7871 begin
7872 -- If this is not a completion, construct the implicit full
7873 -- view by deriving from the full view of the parent type.
7874 -- But if this is a completion, the derived private type
7875 -- being built is a full view and the full derivation can
7876 -- only be its underlying full view.
7877
7878 Build_Full_Derivation;
7879
7880 if not Is_Completion then
7881 Set_Full_View (Derived_Type, Full_Der);
7882 else
7883 Set_Underlying_Full_View (Derived_Type, Full_Der);
7884 Set_Is_Underlying_Full_View (Full_Der);
7885 end if;
7886
7887 if not Is_Base_Type (Derived_Type) then
7888 Set_Full_View (Der_Base, Base_Type (Full_Der));
7889 end if;
7890
7891 -- Copy the discriminant list from full view to the partial
7892 -- view (base type and its subtype). Gigi requires that the
7893 -- partial and full views have the same discriminants.
7894
7895 -- Note that since the partial view points to discriminants
7896 -- in the full view, their scope will be that of the full
7897 -- view. This might cause some front end problems and need
7898 -- adjustment???
7899
7900 Discr := First_Discriminant (Base_Type (Full_Der));
7901 Set_First_Entity (Der_Base, Discr);
7902
7903 loop
7904 Last_Discr := Discr;
7905 Next_Discriminant (Discr);
7906 exit when No (Discr);
7907 end loop;
7908
7909 Set_Last_Entity (Der_Base, Last_Discr);
7910 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
7911 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
7912 end;
7913 end if;
7914
7915 elsif Present (Full_View (Parent_Type))
7916 and then Has_Discriminants (Full_View (Parent_Type))
7917 then
7918 if Has_Unknown_Discriminants (Parent_Type)
7919 and then Nkind (Subtype_Indication (Type_Definition (N))) =
7920 N_Subtype_Indication
7921 then
7922 Error_Msg_N
7923 ("cannot constrain type with unknown discriminants",
7924 Subtype_Indication (Type_Definition (N)));
7925 return;
7926 end if;
7927
7928 -- If this is not a completion, construct the implicit full view by
7929 -- deriving from the full view of the parent type. But if this is a
7930 -- completion, the derived private type being built is a full view
7931 -- and the full derivation can only be its underlying full view.
7932
7933 Build_Full_Derivation;
7934
7935 if not Is_Completion then
7936 Set_Full_View (Derived_Type, Full_Der);
7937 else
7938 Set_Underlying_Full_View (Derived_Type, Full_Der);
7939 Set_Is_Underlying_Full_View (Full_Der);
7940 end if;
7941
7942 -- In any case, the primitive operations are inherited from the
7943 -- parent type, not from the internal full view.
7944
7945 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
7946
7947 if Derive_Subps then
7948 Derive_Subprograms (Parent_Type, Derived_Type);
7949 end if;
7950
7951 Set_Stored_Constraint (Derived_Type, No_Elist);
7952 Set_Is_Constrained
7953 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
7954
7955 else
7956 -- Untagged type, No discriminants on either view
7957
7958 if Nkind (Subtype_Indication (Type_Definition (N))) =
7959 N_Subtype_Indication
7960 then
7961 Error_Msg_N
7962 ("illegal constraint on type without discriminants", N);
7963 end if;
7964
7965 if Present (Discriminant_Specifications (N))
7966 and then Present (Full_View (Parent_Type))
7967 and then not Is_Tagged_Type (Full_View (Parent_Type))
7968 then
7969 Error_Msg_N ("cannot add discriminants to untagged type", N);
7970 end if;
7971
7972 Set_Stored_Constraint (Derived_Type, No_Elist);
7973 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7974
7975 Set_Is_Controlled_Active
7976 (Derived_Type, Is_Controlled_Active (Parent_Type));
7977
7978 Set_Disable_Controlled
7979 (Derived_Type, Disable_Controlled (Parent_Type));
7980
7981 Set_Has_Controlled_Component
7982 (Derived_Type, Has_Controlled_Component (Parent_Type));
7983
7984 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7985
7986 if not Is_Controlled (Parent_Type) then
7987 Set_Finalize_Storage_Only
7988 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
7989 end if;
7990
7991 -- If this is not a completion, construct the implicit full view by
7992 -- deriving from the full view of the parent type.
7993
7994 -- ??? If the parent is untagged private and its completion is
7995 -- tagged, this mechanism will not work because we cannot derive from
7996 -- the tagged full view unless we have an extension.
7997
7998 if Present (Full_View (Parent_Type))
7999 and then not Is_Tagged_Type (Full_View (Parent_Type))
8000 and then not Is_Completion
8001 then
8002 Build_Full_Derivation;
8003 Set_Full_View (Derived_Type, Full_Der);
8004 end if;
8005 end if;
8006
8007 Set_Has_Unknown_Discriminants (Derived_Type,
8008 Has_Unknown_Discriminants (Parent_Type));
8009
8010 if Is_Private_Type (Derived_Type) then
8011 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8012 end if;
8013
8014 -- If the parent base type is in scope, add the derived type to its
8015 -- list of private dependents, because its full view may become
8016 -- visible subsequently (in a nested private part, a body, or in a
8017 -- further child unit).
8018
8019 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
8020 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
8021
8022 -- Check for unusual case where a type completed by a private
8023 -- derivation occurs within a package nested in a child unit, and
8024 -- the parent is declared in an ancestor.
8025
8026 if Is_Child_Unit (Scope (Current_Scope))
8027 and then Is_Completion
8028 and then In_Private_Part (Current_Scope)
8029 and then Scope (Parent_Type) /= Current_Scope
8030
8031 -- Note that if the parent has a completion in the private part,
8032 -- (which is itself a derivation from some other private type)
8033 -- it is that completion that is visible, there is no full view
8034 -- available, and no special processing is needed.
8035
8036 and then Present (Full_View (Parent_Type))
8037 then
8038 -- In this case, the full view of the parent type will become
8039 -- visible in the body of the enclosing child, and only then will
8040 -- the current type be possibly non-private. Build an underlying
8041 -- full view that will be installed when the enclosing child body
8042 -- is compiled.
8043
8044 if Present (Underlying_Full_View (Derived_Type)) then
8045 Full_Der := Underlying_Full_View (Derived_Type);
8046 else
8047 Build_Full_Derivation;
8048 Set_Underlying_Full_View (Derived_Type, Full_Der);
8049 Set_Is_Underlying_Full_View (Full_Der);
8050 end if;
8051
8052 -- The full view will be used to swap entities on entry/exit to
8053 -- the body, and must appear in the entity list for the package.
8054
8055 Append_Entity (Full_Der, Scope (Derived_Type));
8056 end if;
8057 end if;
8058 end Build_Derived_Private_Type;
8059
8060 -------------------------------
8061 -- Build_Derived_Record_Type --
8062 -------------------------------
8063
8064 -- 1. INTRODUCTION
8065
8066 -- Ideally we would like to use the same model of type derivation for
8067 -- tagged and untagged record types. Unfortunately this is not quite
8068 -- possible because the semantics of representation clauses is different
8069 -- for tagged and untagged records under inheritance. Consider the
8070 -- following:
8071
8072 -- type R (...) is [tagged] record ... end record;
8073 -- type T (...) is new R (...) [with ...];
8074
8075 -- The representation clauses for T can specify a completely different
8076 -- record layout from R's. Hence the same component can be placed in two
8077 -- very different positions in objects of type T and R. If R and T are
8078 -- tagged types, representation clauses for T can only specify the layout
8079 -- of non inherited components, thus components that are common in R and T
8080 -- have the same position in objects of type R and T.
8081
8082 -- This has two implications. The first is that the entire tree for R's
8083 -- declaration needs to be copied for T in the untagged case, so that T
8084 -- can be viewed as a record type of its own with its own representation
8085 -- clauses. The second implication is the way we handle discriminants.
8086 -- Specifically, in the untagged case we need a way to communicate to Gigi
8087 -- what are the real discriminants in the record, while for the semantics
8088 -- we need to consider those introduced by the user to rename the
8089 -- discriminants in the parent type. This is handled by introducing the
8090 -- notion of stored discriminants. See below for more.
8091
8092 -- Fortunately the way regular components are inherited can be handled in
8093 -- the same way in tagged and untagged types.
8094
8095 -- To complicate things a bit more the private view of a private extension
8096 -- cannot be handled in the same way as the full view (for one thing the
8097 -- semantic rules are somewhat different). We will explain what differs
8098 -- below.
8099
8100 -- 2. DISCRIMINANTS UNDER INHERITANCE
8101
8102 -- The semantic rules governing the discriminants of derived types are
8103 -- quite subtle.
8104
8105 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
8106 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
8107
8108 -- If parent type has discriminants, then the discriminants that are
8109 -- declared in the derived type are [3.4 (11)]:
8110
8111 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
8112 -- there is one;
8113
8114 -- o Otherwise, each discriminant of the parent type (implicitly declared
8115 -- in the same order with the same specifications). In this case, the
8116 -- discriminants are said to be "inherited", or if unknown in the parent
8117 -- are also unknown in the derived type.
8118
8119 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
8120
8121 -- o The parent subtype must be constrained;
8122
8123 -- o If the parent type is not a tagged type, then each discriminant of
8124 -- the derived type must be used in the constraint defining a parent
8125 -- subtype. [Implementation note: This ensures that the new discriminant
8126 -- can share storage with an existing discriminant.]
8127
8128 -- For the derived type each discriminant of the parent type is either
8129 -- inherited, constrained to equal some new discriminant of the derived
8130 -- type, or constrained to the value of an expression.
8131
8132 -- When inherited or constrained to equal some new discriminant, the
8133 -- parent discriminant and the discriminant of the derived type are said
8134 -- to "correspond".
8135
8136 -- If a discriminant of the parent type is constrained to a specific value
8137 -- in the derived type definition, then the discriminant is said to be
8138 -- "specified" by that derived type definition.
8139
8140 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
8141
8142 -- We have spoken about stored discriminants in point 1 (introduction)
8143 -- above. There are two sorts of stored discriminants: implicit and
8144 -- explicit. As long as the derived type inherits the same discriminants as
8145 -- the root record type, stored discriminants are the same as regular
8146 -- discriminants, and are said to be implicit. However, if any discriminant
8147 -- in the root type was renamed in the derived type, then the derived
8148 -- type will contain explicit stored discriminants. Explicit stored
8149 -- discriminants are discriminants in addition to the semantically visible
8150 -- discriminants defined for the derived type. Stored discriminants are
8151 -- used by Gigi to figure out what are the physical discriminants in
8152 -- objects of the derived type (see precise definition in einfo.ads).
8153 -- As an example, consider the following:
8154
8155 -- type R (D1, D2, D3 : Int) is record ... end record;
8156 -- type T1 is new R;
8157 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
8158 -- type T3 is new T2;
8159 -- type T4 (Y : Int) is new T3 (Y, 99);
8160
8161 -- The following table summarizes the discriminants and stored
8162 -- discriminants in R and T1 through T4:
8163
8164 -- Type Discrim Stored Discrim Comment
8165 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
8166 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
8167 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
8168 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
8169 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
8170
8171 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
8172 -- find the corresponding discriminant in the parent type, while
8173 -- Original_Record_Component (abbreviated ORC below) the actual physical
8174 -- component that is renamed. Finally the field Is_Completely_Hidden
8175 -- (abbreviated ICH below) is set for all explicit stored discriminants
8176 -- (see einfo.ads for more info). For the above example this gives:
8177
8178 -- Discrim CD ORC ICH
8179 -- ^^^^^^^ ^^ ^^^ ^^^
8180 -- D1 in R empty itself no
8181 -- D2 in R empty itself no
8182 -- D3 in R empty itself no
8183
8184 -- D1 in T1 D1 in R itself no
8185 -- D2 in T1 D2 in R itself no
8186 -- D3 in T1 D3 in R itself no
8187
8188 -- X1 in T2 D3 in T1 D3 in T2 no
8189 -- X2 in T2 D1 in T1 D1 in T2 no
8190 -- D1 in T2 empty itself yes
8191 -- D2 in T2 empty itself yes
8192 -- D3 in T2 empty itself yes
8193
8194 -- X1 in T3 X1 in T2 D3 in T3 no
8195 -- X2 in T3 X2 in T2 D1 in T3 no
8196 -- D1 in T3 empty itself yes
8197 -- D2 in T3 empty itself yes
8198 -- D3 in T3 empty itself yes
8199
8200 -- Y in T4 X1 in T3 D3 in T4 no
8201 -- D1 in T4 empty itself yes
8202 -- D2 in T4 empty itself yes
8203 -- D3 in T4 empty itself yes
8204
8205 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
8206
8207 -- Type derivation for tagged types is fairly straightforward. If no
8208 -- discriminants are specified by the derived type, these are inherited
8209 -- from the parent. No explicit stored discriminants are ever necessary.
8210 -- The only manipulation that is done to the tree is that of adding a
8211 -- _parent field with parent type and constrained to the same constraint
8212 -- specified for the parent in the derived type definition. For instance:
8213
8214 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
8215 -- type T1 is new R with null record;
8216 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
8217
8218 -- are changed into:
8219
8220 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
8221 -- _parent : R (D1, D2, D3);
8222 -- end record;
8223
8224 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
8225 -- _parent : T1 (X2, 88, X1);
8226 -- end record;
8227
8228 -- The discriminants actually present in R, T1 and T2 as well as their CD,
8229 -- ORC and ICH fields are:
8230
8231 -- Discrim CD ORC ICH
8232 -- ^^^^^^^ ^^ ^^^ ^^^
8233 -- D1 in R empty itself no
8234 -- D2 in R empty itself no
8235 -- D3 in R empty itself no
8236
8237 -- D1 in T1 D1 in R D1 in R no
8238 -- D2 in T1 D2 in R D2 in R no
8239 -- D3 in T1 D3 in R D3 in R no
8240
8241 -- X1 in T2 D3 in T1 D3 in R no
8242 -- X2 in T2 D1 in T1 D1 in R no
8243
8244 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
8245 --
8246 -- Regardless of whether we dealing with a tagged or untagged type
8247 -- we will transform all derived type declarations of the form
8248 --
8249 -- type T is new R (...) [with ...];
8250 -- or
8251 -- subtype S is R (...);
8252 -- type T is new S [with ...];
8253 -- into
8254 -- type BT is new R [with ...];
8255 -- subtype T is BT (...);
8256 --
8257 -- That is, the base derived type is constrained only if it has no
8258 -- discriminants. The reason for doing this is that GNAT's semantic model
8259 -- assumes that a base type with discriminants is unconstrained.
8260 --
8261 -- Note that, strictly speaking, the above transformation is not always
8262 -- correct. Consider for instance the following excerpt from ACVC b34011a:
8263 --
8264 -- procedure B34011A is
8265 -- type REC (D : integer := 0) is record
8266 -- I : Integer;
8267 -- end record;
8268
8269 -- package P is
8270 -- type T6 is new Rec;
8271 -- function F return T6;
8272 -- end P;
8273
8274 -- use P;
8275 -- package Q6 is
8276 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
8277 -- end Q6;
8278 --
8279 -- The definition of Q6.U is illegal. However transforming Q6.U into
8280
8281 -- type BaseU is new T6;
8282 -- subtype U is BaseU (Q6.F.I)
8283
8284 -- turns U into a legal subtype, which is incorrect. To avoid this problem
8285 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
8286 -- the transformation described above.
8287
8288 -- There is another instance where the above transformation is incorrect.
8289 -- Consider:
8290
8291 -- package Pack is
8292 -- type Base (D : Integer) is tagged null record;
8293 -- procedure P (X : Base);
8294
8295 -- type Der is new Base (2) with null record;
8296 -- procedure P (X : Der);
8297 -- end Pack;
8298
8299 -- Then the above transformation turns this into
8300
8301 -- type Der_Base is new Base with null record;
8302 -- -- procedure P (X : Base) is implicitly inherited here
8303 -- -- as procedure P (X : Der_Base).
8304
8305 -- subtype Der is Der_Base (2);
8306 -- procedure P (X : Der);
8307 -- -- The overriding of P (X : Der_Base) is illegal since we
8308 -- -- have a parameter conformance problem.
8309
8310 -- To get around this problem, after having semantically processed Der_Base
8311 -- and the rewritten subtype declaration for Der, we copy Der_Base field
8312 -- Discriminant_Constraint from Der so that when parameter conformance is
8313 -- checked when P is overridden, no semantic errors are flagged.
8314
8315 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
8316
8317 -- Regardless of whether we are dealing with a tagged or untagged type
8318 -- we will transform all derived type declarations of the form
8319
8320 -- type R (D1, .., Dn : ...) is [tagged] record ...;
8321 -- type T is new R [with ...];
8322 -- into
8323 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
8324
8325 -- The reason for such transformation is that it allows us to implement a
8326 -- very clean form of component inheritance as explained below.
8327
8328 -- Note that this transformation is not achieved by direct tree rewriting
8329 -- and manipulation, but rather by redoing the semantic actions that the
8330 -- above transformation will entail. This is done directly in routine
8331 -- Inherit_Components.
8332
8333 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
8334
8335 -- In both tagged and untagged derived types, regular non discriminant
8336 -- components are inherited in the derived type from the parent type. In
8337 -- the absence of discriminants component, inheritance is straightforward
8338 -- as components can simply be copied from the parent.
8339
8340 -- If the parent has discriminants, inheriting components constrained with
8341 -- these discriminants requires caution. Consider the following example:
8342
8343 -- type R (D1, D2 : Positive) is [tagged] record
8344 -- S : String (D1 .. D2);
8345 -- end record;
8346
8347 -- type T1 is new R [with null record];
8348 -- type T2 (X : positive) is new R (1, X) [with null record];
8349
8350 -- As explained in 6. above, T1 is rewritten as
8351 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
8352 -- which makes the treatment for T1 and T2 identical.
8353
8354 -- What we want when inheriting S, is that references to D1 and D2 in R are
8355 -- replaced with references to their correct constraints, i.e. D1 and D2 in
8356 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
8357 -- with either discriminant references in the derived type or expressions.
8358 -- This replacement is achieved as follows: before inheriting R's
8359 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
8360 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
8361 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
8362 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
8363 -- by String (1 .. X).
8364
8365 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
8366
8367 -- We explain here the rules governing private type extensions relevant to
8368 -- type derivation. These rules are explained on the following example:
8369
8370 -- type D [(...)] is new A [(...)] with private; <-- partial view
8371 -- type D [(...)] is new P [(...)] with null record; <-- full view
8372
8373 -- Type A is called the ancestor subtype of the private extension.
8374 -- Type P is the parent type of the full view of the private extension. It
8375 -- must be A or a type derived from A.
8376
8377 -- The rules concerning the discriminants of private type extensions are
8378 -- [7.3(10-13)]:
8379
8380 -- o If a private extension inherits known discriminants from the ancestor
8381 -- subtype, then the full view must also inherit its discriminants from
8382 -- the ancestor subtype and the parent subtype of the full view must be
8383 -- constrained if and only if the ancestor subtype is constrained.
8384
8385 -- o If a partial view has unknown discriminants, then the full view may
8386 -- define a definite or an indefinite subtype, with or without
8387 -- discriminants.
8388
8389 -- o If a partial view has neither known nor unknown discriminants, then
8390 -- the full view must define a definite subtype.
8391
8392 -- o If the ancestor subtype of a private extension has constrained
8393 -- discriminants, then the parent subtype of the full view must impose a
8394 -- statically matching constraint on those discriminants.
8395
8396 -- This means that only the following forms of private extensions are
8397 -- allowed:
8398
8399 -- type D is new A with private; <-- partial view
8400 -- type D is new P with null record; <-- full view
8401
8402 -- If A has no discriminants than P has no discriminants, otherwise P must
8403 -- inherit A's discriminants.
8404
8405 -- type D is new A (...) with private; <-- partial view
8406 -- type D is new P (:::) with null record; <-- full view
8407
8408 -- P must inherit A's discriminants and (...) and (:::) must statically
8409 -- match.
8410
8411 -- subtype A is R (...);
8412 -- type D is new A with private; <-- partial view
8413 -- type D is new P with null record; <-- full view
8414
8415 -- P must have inherited R's discriminants and must be derived from A or
8416 -- any of its subtypes.
8417
8418 -- type D (..) is new A with private; <-- partial view
8419 -- type D (..) is new P [(:::)] with null record; <-- full view
8420
8421 -- No specific constraints on P's discriminants or constraint (:::).
8422 -- Note that A can be unconstrained, but the parent subtype P must either
8423 -- be constrained or (:::) must be present.
8424
8425 -- type D (..) is new A [(...)] with private; <-- partial view
8426 -- type D (..) is new P [(:::)] with null record; <-- full view
8427
8428 -- P's constraints on A's discriminants must statically match those
8429 -- imposed by (...).
8430
8431 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
8432
8433 -- The full view of a private extension is handled exactly as described
8434 -- above. The model chose for the private view of a private extension is
8435 -- the same for what concerns discriminants (i.e. they receive the same
8436 -- treatment as in the tagged case). However, the private view of the
8437 -- private extension always inherits the components of the parent base,
8438 -- without replacing any discriminant reference. Strictly speaking this is
8439 -- incorrect. However, Gigi never uses this view to generate code so this
8440 -- is a purely semantic issue. In theory, a set of transformations similar
8441 -- to those given in 5. and 6. above could be applied to private views of
8442 -- private extensions to have the same model of component inheritance as
8443 -- for non private extensions. However, this is not done because it would
8444 -- further complicate private type processing. Semantically speaking, this
8445 -- leaves us in an uncomfortable situation. As an example consider:
8446
8447 -- package Pack is
8448 -- type R (D : integer) is tagged record
8449 -- S : String (1 .. D);
8450 -- end record;
8451 -- procedure P (X : R);
8452 -- type T is new R (1) with private;
8453 -- private
8454 -- type T is new R (1) with null record;
8455 -- end;
8456
8457 -- This is transformed into:
8458
8459 -- package Pack is
8460 -- type R (D : integer) is tagged record
8461 -- S : String (1 .. D);
8462 -- end record;
8463 -- procedure P (X : R);
8464 -- type T is new R (1) with private;
8465 -- private
8466 -- type BaseT is new R with null record;
8467 -- subtype T is BaseT (1);
8468 -- end;
8469
8470 -- (strictly speaking the above is incorrect Ada)
8471
8472 -- From the semantic standpoint the private view of private extension T
8473 -- should be flagged as constrained since one can clearly have
8474 --
8475 -- Obj : T;
8476 --
8477 -- in a unit withing Pack. However, when deriving subprograms for the
8478 -- private view of private extension T, T must be seen as unconstrained
8479 -- since T has discriminants (this is a constraint of the current
8480 -- subprogram derivation model). Thus, when processing the private view of
8481 -- a private extension such as T, we first mark T as unconstrained, we
8482 -- process it, we perform program derivation and just before returning from
8483 -- Build_Derived_Record_Type we mark T as constrained.
8484
8485 -- ??? Are there are other uncomfortable cases that we will have to
8486 -- deal with.
8487
8488 -- 10. RECORD_TYPE_WITH_PRIVATE complications
8489
8490 -- Types that are derived from a visible record type and have a private
8491 -- extension present other peculiarities. They behave mostly like private
8492 -- types, but if they have primitive operations defined, these will not
8493 -- have the proper signatures for further inheritance, because other
8494 -- primitive operations will use the implicit base that we define for
8495 -- private derivations below. This affect subprogram inheritance (see
8496 -- Derive_Subprograms for details). We also derive the implicit base from
8497 -- the base type of the full view, so that the implicit base is a record
8498 -- type and not another private type, This avoids infinite loops.
8499
8500 procedure Build_Derived_Record_Type
8501 (N : Node_Id;
8502 Parent_Type : Entity_Id;
8503 Derived_Type : Entity_Id;
8504 Derive_Subps : Boolean := True)
8505 is
8506 Discriminant_Specs : constant Boolean :=
8507 Present (Discriminant_Specifications (N));
8508 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
8509 Loc : constant Source_Ptr := Sloc (N);
8510 Private_Extension : constant Boolean :=
8511 Nkind (N) = N_Private_Extension_Declaration;
8512 Assoc_List : Elist_Id;
8513 Constraint_Present : Boolean;
8514 Constrs : Elist_Id;
8515 Discrim : Entity_Id;
8516 Indic : Node_Id;
8517 Inherit_Discrims : Boolean := False;
8518 Last_Discrim : Entity_Id;
8519 New_Base : Entity_Id;
8520 New_Decl : Node_Id;
8521 New_Discrs : Elist_Id;
8522 New_Indic : Node_Id;
8523 Parent_Base : Entity_Id;
8524 Save_Etype : Entity_Id;
8525 Save_Discr_Constr : Elist_Id;
8526 Save_Next_Entity : Entity_Id;
8527 Type_Def : Node_Id;
8528
8529 Discs : Elist_Id := New_Elmt_List;
8530 -- An empty Discs list means that there were no constraints in the
8531 -- subtype indication or that there was an error processing it.
8532
8533 begin
8534 if Ekind (Parent_Type) = E_Record_Type_With_Private
8535 and then Present (Full_View (Parent_Type))
8536 and then Has_Discriminants (Parent_Type)
8537 then
8538 Parent_Base := Base_Type (Full_View (Parent_Type));
8539 else
8540 Parent_Base := Base_Type (Parent_Type);
8541 end if;
8542
8543 -- AI05-0115: if this is a derivation from a private type in some
8544 -- other scope that may lead to invisible components for the derived
8545 -- type, mark it accordingly.
8546
8547 if Is_Private_Type (Parent_Type) then
8548 if Scope (Parent_Base) = Scope (Derived_Type) then
8549 null;
8550
8551 elsif In_Open_Scopes (Scope (Parent_Base))
8552 and then In_Private_Part (Scope (Parent_Base))
8553 then
8554 null;
8555
8556 else
8557 Set_Has_Private_Ancestor (Derived_Type);
8558 end if;
8559
8560 else
8561 Set_Has_Private_Ancestor
8562 (Derived_Type, Has_Private_Ancestor (Parent_Type));
8563 end if;
8564
8565 -- Before we start the previously documented transformations, here is
8566 -- little fix for size and alignment of tagged types. Normally when we
8567 -- derive type D from type P, we copy the size and alignment of P as the
8568 -- default for D, and in the absence of explicit representation clauses
8569 -- for D, the size and alignment are indeed the same as the parent.
8570
8571 -- But this is wrong for tagged types, since fields may be added, and
8572 -- the default size may need to be larger, and the default alignment may
8573 -- need to be larger.
8574
8575 -- We therefore reset the size and alignment fields in the tagged case.
8576 -- Note that the size and alignment will in any case be at least as
8577 -- large as the parent type (since the derived type has a copy of the
8578 -- parent type in the _parent field)
8579
8580 -- The type is also marked as being tagged here, which is needed when
8581 -- processing components with a self-referential anonymous access type
8582 -- in the call to Check_Anonymous_Access_Components below. Note that
8583 -- this flag is also set later on for completeness.
8584
8585 if Is_Tagged then
8586 Set_Is_Tagged_Type (Derived_Type);
8587 Init_Size_Align (Derived_Type);
8588 end if;
8589
8590 -- STEP 0a: figure out what kind of derived type declaration we have
8591
8592 if Private_Extension then
8593 Type_Def := N;
8594 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
8595 Set_Default_SSO (Derived_Type);
8596 Set_No_Reordering (Derived_Type, No_Component_Reordering);
8597
8598 else
8599 Type_Def := Type_Definition (N);
8600
8601 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8602 -- Parent_Base can be a private type or private extension. However,
8603 -- for tagged types with an extension the newly added fields are
8604 -- visible and hence the Derived_Type is always an E_Record_Type.
8605 -- (except that the parent may have its own private fields).
8606 -- For untagged types we preserve the Ekind of the Parent_Base.
8607
8608 if Present (Record_Extension_Part (Type_Def)) then
8609 Set_Ekind (Derived_Type, E_Record_Type);
8610 Set_Default_SSO (Derived_Type);
8611 Set_No_Reordering (Derived_Type, No_Component_Reordering);
8612
8613 -- Create internal access types for components with anonymous
8614 -- access types.
8615
8616 if Ada_Version >= Ada_2005 then
8617 Check_Anonymous_Access_Components
8618 (N, Derived_Type, Derived_Type,
8619 Component_List (Record_Extension_Part (Type_Def)));
8620 end if;
8621
8622 else
8623 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8624 end if;
8625 end if;
8626
8627 -- Indic can either be an N_Identifier if the subtype indication
8628 -- contains no constraint or an N_Subtype_Indication if the subtype
8629 -- indication has a constraint.
8630
8631 Indic := Subtype_Indication (Type_Def);
8632 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
8633
8634 -- Check that the type has visible discriminants. The type may be
8635 -- a private type with unknown discriminants whose full view has
8636 -- discriminants which are invisible.
8637
8638 if Constraint_Present then
8639 if not Has_Discriminants (Parent_Base)
8640 or else
8641 (Has_Unknown_Discriminants (Parent_Base)
8642 and then Is_Private_Type (Parent_Base))
8643 then
8644 Error_Msg_N
8645 ("invalid constraint: type has no discriminant",
8646 Constraint (Indic));
8647
8648 Constraint_Present := False;
8649 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8650
8651 elsif Is_Constrained (Parent_Type) then
8652 Error_Msg_N
8653 ("invalid constraint: parent type is already constrained",
8654 Constraint (Indic));
8655
8656 Constraint_Present := False;
8657 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8658 end if;
8659 end if;
8660
8661 -- STEP 0b: If needed, apply transformation given in point 5. above
8662
8663 if not Private_Extension
8664 and then Has_Discriminants (Parent_Type)
8665 and then not Discriminant_Specs
8666 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
8667 then
8668 -- First, we must analyze the constraint (see comment in point 5.)
8669 -- The constraint may come from the subtype indication of the full
8670 -- declaration.
8671
8672 if Constraint_Present then
8673 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
8674
8675 -- If there is no explicit constraint, there might be one that is
8676 -- inherited from a constrained parent type. In that case verify that
8677 -- it conforms to the constraint in the partial view. In perverse
8678 -- cases the parent subtypes of the partial and full view can have
8679 -- different constraints.
8680
8681 elsif Present (Stored_Constraint (Parent_Type)) then
8682 New_Discrs := Stored_Constraint (Parent_Type);
8683
8684 else
8685 New_Discrs := No_Elist;
8686 end if;
8687
8688 if Has_Discriminants (Derived_Type)
8689 and then Has_Private_Declaration (Derived_Type)
8690 and then Present (Discriminant_Constraint (Derived_Type))
8691 and then Present (New_Discrs)
8692 then
8693 -- Verify that constraints of the full view statically match
8694 -- those given in the partial view.
8695
8696 declare
8697 C1, C2 : Elmt_Id;
8698
8699 begin
8700 C1 := First_Elmt (New_Discrs);
8701 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
8702 while Present (C1) and then Present (C2) loop
8703 if Fully_Conformant_Expressions (Node (C1), Node (C2))
8704 or else
8705 (Is_OK_Static_Expression (Node (C1))
8706 and then Is_OK_Static_Expression (Node (C2))
8707 and then
8708 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
8709 then
8710 null;
8711
8712 else
8713 if Constraint_Present then
8714 Error_Msg_N
8715 ("constraint not conformant to previous declaration",
8716 Node (C1));
8717 else
8718 Error_Msg_N
8719 ("constraint of full view is incompatible "
8720 & "with partial view", N);
8721 end if;
8722 end if;
8723
8724 Next_Elmt (C1);
8725 Next_Elmt (C2);
8726 end loop;
8727 end;
8728 end if;
8729
8730 -- Insert and analyze the declaration for the unconstrained base type
8731
8732 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
8733
8734 New_Decl :=
8735 Make_Full_Type_Declaration (Loc,
8736 Defining_Identifier => New_Base,
8737 Type_Definition =>
8738 Make_Derived_Type_Definition (Loc,
8739 Abstract_Present => Abstract_Present (Type_Def),
8740 Limited_Present => Limited_Present (Type_Def),
8741 Subtype_Indication =>
8742 New_Occurrence_Of (Parent_Base, Loc),
8743 Record_Extension_Part =>
8744 Relocate_Node (Record_Extension_Part (Type_Def)),
8745 Interface_List => Interface_List (Type_Def)));
8746
8747 Set_Parent (New_Decl, Parent (N));
8748 Mark_Rewrite_Insertion (New_Decl);
8749 Insert_Before (N, New_Decl);
8750
8751 -- In the extension case, make sure ancestor is frozen appropriately
8752 -- (see also non-discriminated case below).
8753
8754 if Present (Record_Extension_Part (Type_Def))
8755 or else Is_Interface (Parent_Base)
8756 then
8757 Freeze_Before (New_Decl, Parent_Type);
8758 end if;
8759
8760 -- Note that this call passes False for the Derive_Subps parameter
8761 -- because subprogram derivation is deferred until after creating
8762 -- the subtype (see below).
8763
8764 Build_Derived_Type
8765 (New_Decl, Parent_Base, New_Base,
8766 Is_Completion => False, Derive_Subps => False);
8767
8768 -- ??? This needs re-examination to determine whether the
8769 -- above call can simply be replaced by a call to Analyze.
8770
8771 Set_Analyzed (New_Decl);
8772
8773 -- Insert and analyze the declaration for the constrained subtype
8774
8775 if Constraint_Present then
8776 New_Indic :=
8777 Make_Subtype_Indication (Loc,
8778 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8779 Constraint => Relocate_Node (Constraint (Indic)));
8780
8781 else
8782 declare
8783 Constr_List : constant List_Id := New_List;
8784 C : Elmt_Id;
8785 Expr : Node_Id;
8786
8787 begin
8788 C := First_Elmt (Discriminant_Constraint (Parent_Type));
8789 while Present (C) loop
8790 Expr := Node (C);
8791
8792 -- It is safe here to call New_Copy_Tree since we called
8793 -- Force_Evaluation on each constraint previously
8794 -- in Build_Discriminant_Constraints.
8795
8796 Append (New_Copy_Tree (Expr), To => Constr_List);
8797
8798 Next_Elmt (C);
8799 end loop;
8800
8801 New_Indic :=
8802 Make_Subtype_Indication (Loc,
8803 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8804 Constraint =>
8805 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
8806 end;
8807 end if;
8808
8809 Rewrite (N,
8810 Make_Subtype_Declaration (Loc,
8811 Defining_Identifier => Derived_Type,
8812 Subtype_Indication => New_Indic));
8813
8814 Analyze (N);
8815
8816 -- Derivation of subprograms must be delayed until the full subtype
8817 -- has been established, to ensure proper overriding of subprograms
8818 -- inherited by full types. If the derivations occurred as part of
8819 -- the call to Build_Derived_Type above, then the check for type
8820 -- conformance would fail because earlier primitive subprograms
8821 -- could still refer to the full type prior the change to the new
8822 -- subtype and hence would not match the new base type created here.
8823 -- Subprograms are not derived, however, when Derive_Subps is False
8824 -- (since otherwise there could be redundant derivations).
8825
8826 if Derive_Subps then
8827 Derive_Subprograms (Parent_Type, Derived_Type);
8828 end if;
8829
8830 -- For tagged types the Discriminant_Constraint of the new base itype
8831 -- is inherited from the first subtype so that no subtype conformance
8832 -- problem arise when the first subtype overrides primitive
8833 -- operations inherited by the implicit base type.
8834
8835 if Is_Tagged then
8836 Set_Discriminant_Constraint
8837 (New_Base, Discriminant_Constraint (Derived_Type));
8838 end if;
8839
8840 return;
8841 end if;
8842
8843 -- If we get here Derived_Type will have no discriminants or it will be
8844 -- a discriminated unconstrained base type.
8845
8846 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8847
8848 if Is_Tagged then
8849
8850 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8851 -- The declaration of a specific descendant of an interface type
8852 -- freezes the interface type (RM 13.14).
8853
8854 if not Private_Extension or else Is_Interface (Parent_Base) then
8855 Freeze_Before (N, Parent_Type);
8856 end if;
8857
8858 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8859 -- cannot be declared at a deeper level than its parent type is
8860 -- removed. The check on derivation within a generic body is also
8861 -- relaxed, but there's a restriction that a derived tagged type
8862 -- cannot be declared in a generic body if it's derived directly
8863 -- or indirectly from a formal type of that generic.
8864
8865 if Ada_Version >= Ada_2005 then
8866 if Present (Enclosing_Generic_Body (Derived_Type)) then
8867 declare
8868 Ancestor_Type : Entity_Id;
8869
8870 begin
8871 -- Check to see if any ancestor of the derived type is a
8872 -- formal type.
8873
8874 Ancestor_Type := Parent_Type;
8875 while not Is_Generic_Type (Ancestor_Type)
8876 and then Etype (Ancestor_Type) /= Ancestor_Type
8877 loop
8878 Ancestor_Type := Etype (Ancestor_Type);
8879 end loop;
8880
8881 -- If the derived type does have a formal type as an
8882 -- ancestor, then it's an error if the derived type is
8883 -- declared within the body of the generic unit that
8884 -- declares the formal type in its generic formal part. It's
8885 -- sufficient to check whether the ancestor type is declared
8886 -- inside the same generic body as the derived type (such as
8887 -- within a nested generic spec), in which case the
8888 -- derivation is legal. If the formal type is declared
8889 -- outside of that generic body, then it's guaranteed that
8890 -- the derived type is declared within the generic body of
8891 -- the generic unit declaring the formal type.
8892
8893 if Is_Generic_Type (Ancestor_Type)
8894 and then Enclosing_Generic_Body (Ancestor_Type) /=
8895 Enclosing_Generic_Body (Derived_Type)
8896 then
8897 Error_Msg_NE
8898 ("parent type of& must not be descendant of formal type"
8899 & " of an enclosing generic body",
8900 Indic, Derived_Type);
8901 end if;
8902 end;
8903 end if;
8904
8905 elsif Type_Access_Level (Derived_Type) /=
8906 Type_Access_Level (Parent_Type)
8907 and then not Is_Generic_Type (Derived_Type)
8908 then
8909 if Is_Controlled (Parent_Type) then
8910 Error_Msg_N
8911 ("controlled type must be declared at the library level",
8912 Indic);
8913 else
8914 Error_Msg_N
8915 ("type extension at deeper accessibility level than parent",
8916 Indic);
8917 end if;
8918
8919 else
8920 declare
8921 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
8922 begin
8923 if Present (GB)
8924 and then GB /= Enclosing_Generic_Body (Parent_Base)
8925 then
8926 Error_Msg_NE
8927 ("parent type of& must not be outside generic body"
8928 & " (RM 3.9.1(4))",
8929 Indic, Derived_Type);
8930 end if;
8931 end;
8932 end if;
8933 end if;
8934
8935 -- Ada 2005 (AI-251)
8936
8937 if Ada_Version >= Ada_2005 and then Is_Tagged then
8938
8939 -- "The declaration of a specific descendant of an interface type
8940 -- freezes the interface type" (RM 13.14).
8941
8942 declare
8943 Iface : Node_Id;
8944 begin
8945 if Is_Non_Empty_List (Interface_List (Type_Def)) then
8946 Iface := First (Interface_List (Type_Def));
8947 while Present (Iface) loop
8948 Freeze_Before (N, Etype (Iface));
8949 Next (Iface);
8950 end loop;
8951 end if;
8952 end;
8953 end if;
8954
8955 -- STEP 1b : preliminary cleanup of the full view of private types
8956
8957 -- If the type is already marked as having discriminants, then it's the
8958 -- completion of a private type or private extension and we need to
8959 -- retain the discriminants from the partial view if the current
8960 -- declaration has Discriminant_Specifications so that we can verify
8961 -- conformance. However, we must remove any existing components that
8962 -- were inherited from the parent (and attached in Copy_And_Swap)
8963 -- because the full type inherits all appropriate components anyway, and
8964 -- we do not want the partial view's components interfering.
8965
8966 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
8967 Discrim := First_Discriminant (Derived_Type);
8968 loop
8969 Last_Discrim := Discrim;
8970 Next_Discriminant (Discrim);
8971 exit when No (Discrim);
8972 end loop;
8973
8974 Set_Last_Entity (Derived_Type, Last_Discrim);
8975
8976 -- In all other cases wipe out the list of inherited components (even
8977 -- inherited discriminants), it will be properly rebuilt here.
8978
8979 else
8980 Set_First_Entity (Derived_Type, Empty);
8981 Set_Last_Entity (Derived_Type, Empty);
8982 end if;
8983
8984 -- STEP 1c: Initialize some flags for the Derived_Type
8985
8986 -- The following flags must be initialized here so that
8987 -- Process_Discriminants can check that discriminants of tagged types do
8988 -- not have a default initial value and that access discriminants are
8989 -- only specified for limited records. For completeness, these flags are
8990 -- also initialized along with all the other flags below.
8991
8992 -- AI-419: Limitedness is not inherited from an interface parent, so to
8993 -- be limited in that case the type must be explicitly declared as
8994 -- limited. However, task and protected interfaces are always limited.
8995
8996 if Limited_Present (Type_Def) then
8997 Set_Is_Limited_Record (Derived_Type);
8998
8999 elsif Is_Limited_Record (Parent_Type)
9000 or else (Present (Full_View (Parent_Type))
9001 and then Is_Limited_Record (Full_View (Parent_Type)))
9002 then
9003 if not Is_Interface (Parent_Type)
9004 or else Is_Synchronized_Interface (Parent_Type)
9005 or else Is_Protected_Interface (Parent_Type)
9006 or else Is_Task_Interface (Parent_Type)
9007 then
9008 Set_Is_Limited_Record (Derived_Type);
9009 end if;
9010 end if;
9011
9012 -- STEP 2a: process discriminants of derived type if any
9013
9014 Push_Scope (Derived_Type);
9015
9016 if Discriminant_Specs then
9017 Set_Has_Unknown_Discriminants (Derived_Type, False);
9018
9019 -- The following call initializes fields Has_Discriminants and
9020 -- Discriminant_Constraint, unless we are processing the completion
9021 -- of a private type declaration.
9022
9023 Check_Or_Process_Discriminants (N, Derived_Type);
9024
9025 -- For untagged types, the constraint on the Parent_Type must be
9026 -- present and is used to rename the discriminants.
9027
9028 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
9029 Error_Msg_N ("untagged parent must have discriminants", Indic);
9030
9031 elsif not Is_Tagged and then not Constraint_Present then
9032 Error_Msg_N
9033 ("discriminant constraint needed for derived untagged records",
9034 Indic);
9035
9036 -- Otherwise the parent subtype must be constrained unless we have a
9037 -- private extension.
9038
9039 elsif not Constraint_Present
9040 and then not Private_Extension
9041 and then not Is_Constrained (Parent_Type)
9042 then
9043 Error_Msg_N
9044 ("unconstrained type not allowed in this context", Indic);
9045
9046 elsif Constraint_Present then
9047 -- The following call sets the field Corresponding_Discriminant
9048 -- for the discriminants in the Derived_Type.
9049
9050 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
9051
9052 -- For untagged types all new discriminants must rename
9053 -- discriminants in the parent. For private extensions new
9054 -- discriminants cannot rename old ones (implied by [7.3(13)]).
9055
9056 Discrim := First_Discriminant (Derived_Type);
9057 while Present (Discrim) loop
9058 if not Is_Tagged
9059 and then No (Corresponding_Discriminant (Discrim))
9060 then
9061 Error_Msg_N
9062 ("new discriminants must constrain old ones", Discrim);
9063
9064 elsif Private_Extension
9065 and then Present (Corresponding_Discriminant (Discrim))
9066 then
9067 Error_Msg_N
9068 ("only static constraints allowed for parent"
9069 & " discriminants in the partial view", Indic);
9070 exit;
9071 end if;
9072
9073 -- If a new discriminant is used in the constraint, then its
9074 -- subtype must be statically compatible with the parent
9075 -- discriminant's subtype (3.7(15)).
9076
9077 -- However, if the record contains an array constrained by
9078 -- the discriminant but with some different bound, the compiler
9079 -- tries to create a smaller range for the discriminant type.
9080 -- (See exp_ch3.Adjust_Discriminants). In this case, where
9081 -- the discriminant type is a scalar type, the check must use
9082 -- the original discriminant type in the parent declaration.
9083
9084 declare
9085 Corr_Disc : constant Entity_Id :=
9086 Corresponding_Discriminant (Discrim);
9087 Disc_Type : constant Entity_Id := Etype (Discrim);
9088 Corr_Type : Entity_Id;
9089
9090 begin
9091 if Present (Corr_Disc) then
9092 if Is_Scalar_Type (Disc_Type) then
9093 Corr_Type :=
9094 Entity (Discriminant_Type (Parent (Corr_Disc)));
9095 else
9096 Corr_Type := Etype (Corr_Disc);
9097 end if;
9098
9099 if not
9100 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
9101 then
9102 Error_Msg_N
9103 ("subtype must be compatible "
9104 & "with parent discriminant",
9105 Discrim);
9106 end if;
9107 end if;
9108 end;
9109
9110 Next_Discriminant (Discrim);
9111 end loop;
9112
9113 -- Check whether the constraints of the full view statically
9114 -- match those imposed by the parent subtype [7.3(13)].
9115
9116 if Present (Stored_Constraint (Derived_Type)) then
9117 declare
9118 C1, C2 : Elmt_Id;
9119
9120 begin
9121 C1 := First_Elmt (Discs);
9122 C2 := First_Elmt (Stored_Constraint (Derived_Type));
9123 while Present (C1) and then Present (C2) loop
9124 if not
9125 Fully_Conformant_Expressions (Node (C1), Node (C2))
9126 then
9127 Error_Msg_N
9128 ("not conformant with previous declaration",
9129 Node (C1));
9130 end if;
9131
9132 Next_Elmt (C1);
9133 Next_Elmt (C2);
9134 end loop;
9135 end;
9136 end if;
9137 end if;
9138
9139 -- STEP 2b: No new discriminants, inherit discriminants if any
9140
9141 else
9142 if Private_Extension then
9143 Set_Has_Unknown_Discriminants
9144 (Derived_Type,
9145 Has_Unknown_Discriminants (Parent_Type)
9146 or else Unknown_Discriminants_Present (N));
9147
9148 -- The partial view of the parent may have unknown discriminants,
9149 -- but if the full view has discriminants and the parent type is
9150 -- in scope they must be inherited.
9151
9152 elsif Has_Unknown_Discriminants (Parent_Type)
9153 and then
9154 (not Has_Discriminants (Parent_Type)
9155 or else not In_Open_Scopes (Scope (Parent_Base)))
9156 then
9157 Set_Has_Unknown_Discriminants (Derived_Type);
9158 end if;
9159
9160 if not Has_Unknown_Discriminants (Derived_Type)
9161 and then not Has_Unknown_Discriminants (Parent_Base)
9162 and then Has_Discriminants (Parent_Type)
9163 then
9164 Inherit_Discrims := True;
9165 Set_Has_Discriminants
9166 (Derived_Type, True);
9167 Set_Discriminant_Constraint
9168 (Derived_Type, Discriminant_Constraint (Parent_Base));
9169 end if;
9170
9171 -- The following test is true for private types (remember
9172 -- transformation 5. is not applied to those) and in an error
9173 -- situation.
9174
9175 if Constraint_Present then
9176 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
9177 end if;
9178
9179 -- For now mark a new derived type as constrained only if it has no
9180 -- discriminants. At the end of Build_Derived_Record_Type we properly
9181 -- set this flag in the case of private extensions. See comments in
9182 -- point 9. just before body of Build_Derived_Record_Type.
9183
9184 Set_Is_Constrained
9185 (Derived_Type,
9186 not (Inherit_Discrims
9187 or else Has_Unknown_Discriminants (Derived_Type)));
9188 end if;
9189
9190 -- STEP 3: initialize fields of derived type
9191
9192 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
9193 Set_Stored_Constraint (Derived_Type, No_Elist);
9194
9195 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
9196 -- but cannot be interfaces
9197
9198 if not Private_Extension
9199 and then Ekind (Derived_Type) /= E_Private_Type
9200 and then Ekind (Derived_Type) /= E_Limited_Private_Type
9201 then
9202 if Interface_Present (Type_Def) then
9203 Analyze_Interface_Declaration (Derived_Type, Type_Def);
9204 end if;
9205
9206 Set_Interfaces (Derived_Type, No_Elist);
9207 end if;
9208
9209 -- Fields inherited from the Parent_Type
9210
9211 Set_Has_Specified_Layout
9212 (Derived_Type, Has_Specified_Layout (Parent_Type));
9213 Set_Is_Limited_Composite
9214 (Derived_Type, Is_Limited_Composite (Parent_Type));
9215 Set_Is_Private_Composite
9216 (Derived_Type, Is_Private_Composite (Parent_Type));
9217
9218 if Is_Tagged_Type (Parent_Type) then
9219 Set_No_Tagged_Streams_Pragma
9220 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9221 end if;
9222
9223 -- Fields inherited from the Parent_Base
9224
9225 Set_Has_Controlled_Component
9226 (Derived_Type, Has_Controlled_Component (Parent_Base));
9227 Set_Has_Non_Standard_Rep
9228 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
9229 Set_Has_Primitive_Operations
9230 (Derived_Type, Has_Primitive_Operations (Parent_Base));
9231
9232 -- Set fields for private derived types
9233
9234 if Is_Private_Type (Derived_Type) then
9235 Set_Depends_On_Private (Derived_Type, True);
9236 Set_Private_Dependents (Derived_Type, New_Elmt_List);
9237 end if;
9238
9239 -- Inherit fields for non-private types. If this is the completion of a
9240 -- derivation from a private type, the parent itself is private and the
9241 -- attributes come from its full view, which must be present.
9242
9243 if Is_Record_Type (Derived_Type) then
9244 declare
9245 Parent_Full : Entity_Id;
9246
9247 begin
9248 if Is_Private_Type (Parent_Base)
9249 and then not Is_Record_Type (Parent_Base)
9250 then
9251 Parent_Full := Full_View (Parent_Base);
9252 else
9253 Parent_Full := Parent_Base;
9254 end if;
9255
9256 Set_Component_Alignment
9257 (Derived_Type, Component_Alignment (Parent_Full));
9258 Set_C_Pass_By_Copy
9259 (Derived_Type, C_Pass_By_Copy (Parent_Full));
9260 Set_Has_Complex_Representation
9261 (Derived_Type, Has_Complex_Representation (Parent_Full));
9262
9263 -- For untagged types, inherit the layout by default to avoid
9264 -- costly changes of representation for type conversions.
9265
9266 if not Is_Tagged then
9267 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Full));
9268 Set_No_Reordering (Derived_Type, No_Reordering (Parent_Full));
9269 end if;
9270 end;
9271 end if;
9272
9273 -- Set fields for tagged types
9274
9275 if Is_Tagged then
9276 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
9277
9278 -- All tagged types defined in Ada.Finalization are controlled
9279
9280 if Chars (Scope (Derived_Type)) = Name_Finalization
9281 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
9282 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
9283 then
9284 Set_Is_Controlled_Active (Derived_Type);
9285 else
9286 Set_Is_Controlled_Active
9287 (Derived_Type, Is_Controlled_Active (Parent_Base));
9288 end if;
9289
9290 -- Minor optimization: there is no need to generate the class-wide
9291 -- entity associated with an underlying record view.
9292
9293 if not Is_Underlying_Record_View (Derived_Type) then
9294 Make_Class_Wide_Type (Derived_Type);
9295 end if;
9296
9297 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
9298
9299 if Has_Discriminants (Derived_Type)
9300 and then Constraint_Present
9301 then
9302 Set_Stored_Constraint
9303 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
9304 end if;
9305
9306 if Ada_Version >= Ada_2005 then
9307 declare
9308 Ifaces_List : Elist_Id;
9309
9310 begin
9311 -- Checks rules 3.9.4 (13/2 and 14/2)
9312
9313 if Comes_From_Source (Derived_Type)
9314 and then not Is_Private_Type (Derived_Type)
9315 and then Is_Interface (Parent_Type)
9316 and then not Is_Interface (Derived_Type)
9317 then
9318 if Is_Task_Interface (Parent_Type) then
9319 Error_Msg_N
9320 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
9321 Derived_Type);
9322
9323 elsif Is_Protected_Interface (Parent_Type) then
9324 Error_Msg_N
9325 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
9326 Derived_Type);
9327 end if;
9328 end if;
9329
9330 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
9331
9332 Check_Interfaces (N, Type_Def);
9333
9334 -- Ada 2005 (AI-251): Collect the list of progenitors that are
9335 -- not already in the parents.
9336
9337 Collect_Interfaces
9338 (T => Derived_Type,
9339 Ifaces_List => Ifaces_List,
9340 Exclude_Parents => True);
9341
9342 Set_Interfaces (Derived_Type, Ifaces_List);
9343
9344 -- If the derived type is the anonymous type created for
9345 -- a declaration whose parent has a constraint, propagate
9346 -- the interface list to the source type. This must be done
9347 -- prior to the completion of the analysis of the source type
9348 -- because the components in the extension may contain current
9349 -- instances whose legality depends on some ancestor.
9350
9351 if Is_Itype (Derived_Type) then
9352 declare
9353 Def : constant Node_Id :=
9354 Associated_Node_For_Itype (Derived_Type);
9355 begin
9356 if Present (Def)
9357 and then Nkind (Def) = N_Full_Type_Declaration
9358 then
9359 Set_Interfaces
9360 (Defining_Identifier (Def), Ifaces_List);
9361 end if;
9362 end;
9363 end if;
9364
9365 -- A type extension is automatically Ghost when one of its
9366 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
9367 -- also inherited when the parent type is Ghost, but this is
9368 -- done in Build_Derived_Type as the mechanism also handles
9369 -- untagged derivations.
9370
9371 if Implements_Ghost_Interface (Derived_Type) then
9372 Set_Is_Ghost_Entity (Derived_Type);
9373 end if;
9374 end;
9375 end if;
9376 end if;
9377
9378 -- STEP 4: Inherit components from the parent base and constrain them.
9379 -- Apply the second transformation described in point 6. above.
9380
9381 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
9382 or else not Has_Discriminants (Parent_Type)
9383 or else not Is_Constrained (Parent_Type)
9384 then
9385 Constrs := Discs;
9386 else
9387 Constrs := Discriminant_Constraint (Parent_Type);
9388 end if;
9389
9390 Assoc_List :=
9391 Inherit_Components
9392 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
9393
9394 -- STEP 5a: Copy the parent record declaration for untagged types
9395
9396 Set_Has_Implicit_Dereference
9397 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
9398
9399 if not Is_Tagged then
9400
9401 -- Discriminant_Constraint (Derived_Type) has been properly
9402 -- constructed. Save it and temporarily set it to Empty because we
9403 -- do not want the call to New_Copy_Tree below to mess this list.
9404
9405 if Has_Discriminants (Derived_Type) then
9406 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
9407 Set_Discriminant_Constraint (Derived_Type, No_Elist);
9408 else
9409 Save_Discr_Constr := No_Elist;
9410 end if;
9411
9412 -- Save the Etype field of Derived_Type. It is correctly set now,
9413 -- but the call to New_Copy tree may remap it to point to itself,
9414 -- which is not what we want. Ditto for the Next_Entity field.
9415
9416 Save_Etype := Etype (Derived_Type);
9417 Save_Next_Entity := Next_Entity (Derived_Type);
9418
9419 -- Assoc_List maps all stored discriminants in the Parent_Base to
9420 -- stored discriminants in the Derived_Type. It is fundamental that
9421 -- no types or itypes with discriminants other than the stored
9422 -- discriminants appear in the entities declared inside
9423 -- Derived_Type, since the back end cannot deal with it.
9424
9425 New_Decl :=
9426 New_Copy_Tree
9427 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
9428 Copy_Dimensions_Of_Components (Derived_Type);
9429
9430 -- Restore the fields saved prior to the New_Copy_Tree call
9431 -- and compute the stored constraint.
9432
9433 Set_Etype (Derived_Type, Save_Etype);
9434 Set_Next_Entity (Derived_Type, Save_Next_Entity);
9435
9436 if Has_Discriminants (Derived_Type) then
9437 Set_Discriminant_Constraint
9438 (Derived_Type, Save_Discr_Constr);
9439 Set_Stored_Constraint
9440 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
9441 Replace_Components (Derived_Type, New_Decl);
9442 end if;
9443
9444 -- Insert the new derived type declaration
9445
9446 Rewrite (N, New_Decl);
9447
9448 -- STEP 5b: Complete the processing for record extensions in generics
9449
9450 -- There is no completion for record extensions declared in the
9451 -- parameter part of a generic, so we need to complete processing for
9452 -- these generic record extensions here. The Record_Type_Definition call
9453 -- will change the Ekind of the components from E_Void to E_Component.
9454
9455 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
9456 Record_Type_Definition (Empty, Derived_Type);
9457
9458 -- STEP 5c: Process the record extension for non private tagged types
9459
9460 elsif not Private_Extension then
9461 Expand_Record_Extension (Derived_Type, Type_Def);
9462
9463 -- Note : previously in ASIS mode we set the Parent_Subtype of the
9464 -- derived type to propagate some semantic information. This led
9465 -- to other ASIS failures and has been removed.
9466
9467 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
9468 -- implemented interfaces if we are in expansion mode
9469
9470 if Expander_Active
9471 and then Has_Interfaces (Derived_Type)
9472 then
9473 Add_Interface_Tag_Components (N, Derived_Type);
9474 end if;
9475
9476 -- Analyze the record extension
9477
9478 Record_Type_Definition
9479 (Record_Extension_Part (Type_Def), Derived_Type);
9480 end if;
9481
9482 End_Scope;
9483
9484 -- Nothing else to do if there is an error in the derivation.
9485 -- An unusual case: the full view may be derived from a type in an
9486 -- instance, when the partial view was used illegally as an actual
9487 -- in that instance, leading to a circular definition.
9488
9489 if Etype (Derived_Type) = Any_Type
9490 or else Etype (Parent_Type) = Derived_Type
9491 then
9492 return;
9493 end if;
9494
9495 -- Set delayed freeze and then derive subprograms, we need to do
9496 -- this in this order so that derived subprograms inherit the
9497 -- derived freeze if necessary.
9498
9499 Set_Has_Delayed_Freeze (Derived_Type);
9500
9501 if Derive_Subps then
9502 Derive_Subprograms (Parent_Type, Derived_Type);
9503 end if;
9504
9505 -- If we have a private extension which defines a constrained derived
9506 -- type mark as constrained here after we have derived subprograms. See
9507 -- comment on point 9. just above the body of Build_Derived_Record_Type.
9508
9509 if Private_Extension and then Inherit_Discrims then
9510 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
9511 Set_Is_Constrained (Derived_Type, True);
9512 Set_Discriminant_Constraint (Derived_Type, Discs);
9513
9514 elsif Is_Constrained (Parent_Type) then
9515 Set_Is_Constrained
9516 (Derived_Type, True);
9517 Set_Discriminant_Constraint
9518 (Derived_Type, Discriminant_Constraint (Parent_Type));
9519 end if;
9520 end if;
9521
9522 -- Update the class-wide type, which shares the now-completed entity
9523 -- list with its specific type. In case of underlying record views,
9524 -- we do not generate the corresponding class wide entity.
9525
9526 if Is_Tagged
9527 and then not Is_Underlying_Record_View (Derived_Type)
9528 then
9529 Set_First_Entity
9530 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
9531 Set_Last_Entity
9532 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
9533 end if;
9534
9535 Check_Function_Writable_Actuals (N);
9536 end Build_Derived_Record_Type;
9537
9538 ------------------------
9539 -- Build_Derived_Type --
9540 ------------------------
9541
9542 procedure Build_Derived_Type
9543 (N : Node_Id;
9544 Parent_Type : Entity_Id;
9545 Derived_Type : Entity_Id;
9546 Is_Completion : Boolean;
9547 Derive_Subps : Boolean := True)
9548 is
9549 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
9550
9551 begin
9552 -- Set common attributes
9553
9554 Set_Scope (Derived_Type, Current_Scope);
9555 Set_Etype (Derived_Type, Parent_Base);
9556 Set_Ekind (Derived_Type, Ekind (Parent_Base));
9557 Propagate_Concurrent_Flags (Derived_Type, Parent_Base);
9558
9559 Set_Size_Info (Derived_Type, Parent_Type);
9560 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
9561
9562 Set_Is_Controlled_Active
9563 (Derived_Type, Is_Controlled_Active (Parent_Type));
9564
9565 Set_Disable_Controlled (Derived_Type, Disable_Controlled (Parent_Type));
9566 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
9567 Set_Is_Volatile (Derived_Type, Is_Volatile (Parent_Type));
9568
9569 if Is_Tagged_Type (Derived_Type) then
9570 Set_No_Tagged_Streams_Pragma
9571 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9572 end if;
9573
9574 -- If the parent has primitive routines, set the derived type link
9575
9576 if Has_Primitive_Operations (Parent_Type) then
9577 Set_Derived_Type_Link (Parent_Base, Derived_Type);
9578 end if;
9579
9580 -- If the parent type is a private subtype, the convention on the base
9581 -- type may be set in the private part, and not propagated to the
9582 -- subtype until later, so we obtain the convention from the base type.
9583
9584 Set_Convention (Derived_Type, Convention (Parent_Base));
9585
9586 -- Set SSO default for record or array type
9587
9588 if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type))
9589 and then Is_Base_Type (Derived_Type)
9590 then
9591 Set_Default_SSO (Derived_Type);
9592 end if;
9593
9594 -- A derived type inherits the Default_Initial_Condition pragma coming
9595 -- from any parent type within the derivation chain.
9596
9597 if Has_DIC (Parent_Type) then
9598 Set_Has_Inherited_DIC (Derived_Type);
9599 end if;
9600
9601 -- A derived type inherits any class-wide invariants coming from a
9602 -- parent type or an interface. Note that the invariant procedure of
9603 -- the parent type should not be inherited because the derived type may
9604 -- define invariants of its own.
9605
9606 if not Is_Interface (Derived_Type) then
9607 if Has_Inherited_Invariants (Parent_Type)
9608 or else Has_Inheritable_Invariants (Parent_Type)
9609 then
9610 Set_Has_Inherited_Invariants (Derived_Type);
9611
9612 elsif Is_Concurrent_Type (Derived_Type)
9613 or else Is_Tagged_Type (Derived_Type)
9614 then
9615 declare
9616 Iface : Entity_Id;
9617 Ifaces : Elist_Id;
9618 Iface_Elmt : Elmt_Id;
9619
9620 begin
9621 Collect_Interfaces
9622 (T => Derived_Type,
9623 Ifaces_List => Ifaces,
9624 Exclude_Parents => True);
9625
9626 if Present (Ifaces) then
9627 Iface_Elmt := First_Elmt (Ifaces);
9628 while Present (Iface_Elmt) loop
9629 Iface := Node (Iface_Elmt);
9630
9631 if Has_Inheritable_Invariants (Iface) then
9632 Set_Has_Inherited_Invariants (Derived_Type);
9633 exit;
9634 end if;
9635
9636 Next_Elmt (Iface_Elmt);
9637 end loop;
9638 end if;
9639 end;
9640 end if;
9641 end if;
9642
9643 -- We similarly inherit predicates. Note that for scalar derived types
9644 -- the predicate is inherited from the first subtype, and not from its
9645 -- (anonymous) base type.
9646
9647 if Has_Predicates (Parent_Type)
9648 or else Has_Predicates (First_Subtype (Parent_Type))
9649 then
9650 Set_Has_Predicates (Derived_Type);
9651 end if;
9652
9653 -- The derived type inherits representation clauses from the parent
9654 -- type, and from any interfaces.
9655
9656 Inherit_Rep_Item_Chain (Derived_Type, Parent_Type);
9657
9658 declare
9659 Iface : Node_Id := First (Abstract_Interface_List (Derived_Type));
9660 begin
9661 while Present (Iface) loop
9662 Inherit_Rep_Item_Chain (Derived_Type, Entity (Iface));
9663 Next (Iface);
9664 end loop;
9665 end;
9666
9667 -- If the parent type has delayed rep aspects, then mark the derived
9668 -- type as possibly inheriting a delayed rep aspect.
9669
9670 if Has_Delayed_Rep_Aspects (Parent_Type) then
9671 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
9672 end if;
9673
9674 -- A derived type becomes Ghost when its parent type is also Ghost
9675 -- (SPARK RM 6.9(9)). Note that the Ghost-related attributes are not
9676 -- directly inherited because the Ghost policy in effect may differ.
9677
9678 if Is_Ghost_Entity (Parent_Type) then
9679 Set_Is_Ghost_Entity (Derived_Type);
9680 end if;
9681
9682 -- Type dependent processing
9683
9684 case Ekind (Parent_Type) is
9685 when Numeric_Kind =>
9686 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
9687
9688 when Array_Kind =>
9689 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
9690
9691 when Class_Wide_Kind
9692 | E_Record_Subtype
9693 | E_Record_Type
9694 =>
9695 Build_Derived_Record_Type
9696 (N, Parent_Type, Derived_Type, Derive_Subps);
9697 return;
9698
9699 when Enumeration_Kind =>
9700 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
9701
9702 when Access_Kind =>
9703 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
9704
9705 when Incomplete_Or_Private_Kind =>
9706 Build_Derived_Private_Type
9707 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
9708
9709 -- For discriminated types, the derivation includes deriving
9710 -- primitive operations. For others it is done below.
9711
9712 if Is_Tagged_Type (Parent_Type)
9713 or else Has_Discriminants (Parent_Type)
9714 or else (Present (Full_View (Parent_Type))
9715 and then Has_Discriminants (Full_View (Parent_Type)))
9716 then
9717 return;
9718 end if;
9719
9720 when Concurrent_Kind =>
9721 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
9722
9723 when others =>
9724 raise Program_Error;
9725 end case;
9726
9727 -- Nothing more to do if some error occurred
9728
9729 if Etype (Derived_Type) = Any_Type then
9730 return;
9731 end if;
9732
9733 -- Set delayed freeze and then derive subprograms, we need to do this
9734 -- in this order so that derived subprograms inherit the derived freeze
9735 -- if necessary.
9736
9737 Set_Has_Delayed_Freeze (Derived_Type);
9738
9739 if Derive_Subps then
9740 Derive_Subprograms (Parent_Type, Derived_Type);
9741 end if;
9742
9743 Set_Has_Primitive_Operations
9744 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
9745 end Build_Derived_Type;
9746
9747 -----------------------
9748 -- Build_Discriminal --
9749 -----------------------
9750
9751 procedure Build_Discriminal (Discrim : Entity_Id) is
9752 D_Minal : Entity_Id;
9753 CR_Disc : Entity_Id;
9754
9755 begin
9756 -- A discriminal has the same name as the discriminant
9757
9758 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9759
9760 Set_Ekind (D_Minal, E_In_Parameter);
9761 Set_Mechanism (D_Minal, Default_Mechanism);
9762 Set_Etype (D_Minal, Etype (Discrim));
9763 Set_Scope (D_Minal, Current_Scope);
9764 Set_Parent (D_Minal, Parent (Discrim));
9765
9766 Set_Discriminal (Discrim, D_Minal);
9767 Set_Discriminal_Link (D_Minal, Discrim);
9768
9769 -- For task types, build at once the discriminants of the corresponding
9770 -- record, which are needed if discriminants are used in entry defaults
9771 -- and in family bounds.
9772
9773 if Is_Concurrent_Type (Current_Scope)
9774 or else
9775 Is_Limited_Type (Current_Scope)
9776 then
9777 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9778
9779 Set_Ekind (CR_Disc, E_In_Parameter);
9780 Set_Mechanism (CR_Disc, Default_Mechanism);
9781 Set_Etype (CR_Disc, Etype (Discrim));
9782 Set_Scope (CR_Disc, Current_Scope);
9783 Set_Discriminal_Link (CR_Disc, Discrim);
9784 Set_CR_Discriminant (Discrim, CR_Disc);
9785 end if;
9786 end Build_Discriminal;
9787
9788 ------------------------------------
9789 -- Build_Discriminant_Constraints --
9790 ------------------------------------
9791
9792 function Build_Discriminant_Constraints
9793 (T : Entity_Id;
9794 Def : Node_Id;
9795 Derived_Def : Boolean := False) return Elist_Id
9796 is
9797 C : constant Node_Id := Constraint (Def);
9798 Nb_Discr : constant Nat := Number_Discriminants (T);
9799
9800 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
9801 -- Saves the expression corresponding to a given discriminant in T
9802
9803 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
9804 -- Return the Position number within array Discr_Expr of a discriminant
9805 -- D within the discriminant list of the discriminated type T.
9806
9807 procedure Process_Discriminant_Expression
9808 (Expr : Node_Id;
9809 D : Entity_Id);
9810 -- If this is a discriminant constraint on a partial view, do not
9811 -- generate an overflow check on the discriminant expression. The check
9812 -- will be generated when constraining the full view. Otherwise the
9813 -- backend creates duplicate symbols for the temporaries corresponding
9814 -- to the expressions to be checked, causing spurious assembler errors.
9815
9816 ------------------
9817 -- Pos_Of_Discr --
9818 ------------------
9819
9820 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
9821 Disc : Entity_Id;
9822
9823 begin
9824 Disc := First_Discriminant (T);
9825 for J in Discr_Expr'Range loop
9826 if Disc = D then
9827 return J;
9828 end if;
9829
9830 Next_Discriminant (Disc);
9831 end loop;
9832
9833 -- Note: Since this function is called on discriminants that are
9834 -- known to belong to the discriminated type, falling through the
9835 -- loop with no match signals an internal compiler error.
9836
9837 raise Program_Error;
9838 end Pos_Of_Discr;
9839
9840 -------------------------------------
9841 -- Process_Discriminant_Expression --
9842 -------------------------------------
9843
9844 procedure Process_Discriminant_Expression
9845 (Expr : Node_Id;
9846 D : Entity_Id)
9847 is
9848 BDT : constant Entity_Id := Base_Type (Etype (D));
9849
9850 begin
9851 -- If this is a discriminant constraint on a partial view, do
9852 -- not generate an overflow on the discriminant expression. The
9853 -- check will be generated when constraining the full view.
9854
9855 if Is_Private_Type (T)
9856 and then Present (Full_View (T))
9857 then
9858 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
9859 else
9860 Analyze_And_Resolve (Expr, BDT);
9861 end if;
9862 end Process_Discriminant_Expression;
9863
9864 -- Declarations local to Build_Discriminant_Constraints
9865
9866 Discr : Entity_Id;
9867 E : Entity_Id;
9868 Elist : constant Elist_Id := New_Elmt_List;
9869
9870 Constr : Node_Id;
9871 Expr : Node_Id;
9872 Id : Node_Id;
9873 Position : Nat;
9874 Found : Boolean;
9875
9876 Discrim_Present : Boolean := False;
9877
9878 -- Start of processing for Build_Discriminant_Constraints
9879
9880 begin
9881 -- The following loop will process positional associations only.
9882 -- For a positional association, the (single) discriminant is
9883 -- implicitly specified by position, in textual order (RM 3.7.2).
9884
9885 Discr := First_Discriminant (T);
9886 Constr := First (Constraints (C));
9887 for D in Discr_Expr'Range loop
9888 exit when Nkind (Constr) = N_Discriminant_Association;
9889
9890 if No (Constr) then
9891 Error_Msg_N ("too few discriminants given in constraint", C);
9892 return New_Elmt_List;
9893
9894 elsif Nkind (Constr) = N_Range
9895 or else (Nkind (Constr) = N_Attribute_Reference
9896 and then Attribute_Name (Constr) = Name_Range)
9897 then
9898 Error_Msg_N
9899 ("a range is not a valid discriminant constraint", Constr);
9900 Discr_Expr (D) := Error;
9901
9902 elsif Nkind (Constr) = N_Subtype_Indication then
9903 Error_Msg_N
9904 ("a subtype indication is not a valid discriminant constraint",
9905 Constr);
9906 Discr_Expr (D) := Error;
9907
9908 else
9909 Process_Discriminant_Expression (Constr, Discr);
9910 Discr_Expr (D) := Constr;
9911 end if;
9912
9913 Next_Discriminant (Discr);
9914 Next (Constr);
9915 end loop;
9916
9917 if No (Discr) and then Present (Constr) then
9918 Error_Msg_N ("too many discriminants given in constraint", Constr);
9919 return New_Elmt_List;
9920 end if;
9921
9922 -- Named associations can be given in any order, but if both positional
9923 -- and named associations are used in the same discriminant constraint,
9924 -- then positional associations must occur first, at their normal
9925 -- position. Hence once a named association is used, the rest of the
9926 -- discriminant constraint must use only named associations.
9927
9928 while Present (Constr) loop
9929
9930 -- Positional association forbidden after a named association
9931
9932 if Nkind (Constr) /= N_Discriminant_Association then
9933 Error_Msg_N ("positional association follows named one", Constr);
9934 return New_Elmt_List;
9935
9936 -- Otherwise it is a named association
9937
9938 else
9939 -- E records the type of the discriminants in the named
9940 -- association. All the discriminants specified in the same name
9941 -- association must have the same type.
9942
9943 E := Empty;
9944
9945 -- Search the list of discriminants in T to see if the simple name
9946 -- given in the constraint matches any of them.
9947
9948 Id := First (Selector_Names (Constr));
9949 while Present (Id) loop
9950 Found := False;
9951
9952 -- If Original_Discriminant is present, we are processing a
9953 -- generic instantiation and this is an instance node. We need
9954 -- to find the name of the corresponding discriminant in the
9955 -- actual record type T and not the name of the discriminant in
9956 -- the generic formal. Example:
9957
9958 -- generic
9959 -- type G (D : int) is private;
9960 -- package P is
9961 -- subtype W is G (D => 1);
9962 -- end package;
9963 -- type Rec (X : int) is record ... end record;
9964 -- package Q is new P (G => Rec);
9965
9966 -- At the point of the instantiation, formal type G is Rec
9967 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9968 -- which really looks like "subtype W is Rec (D => 1);" at
9969 -- the point of instantiation, we want to find the discriminant
9970 -- that corresponds to D in Rec, i.e. X.
9971
9972 if Present (Original_Discriminant (Id))
9973 and then In_Instance
9974 then
9975 Discr := Find_Corresponding_Discriminant (Id, T);
9976 Found := True;
9977
9978 else
9979 Discr := First_Discriminant (T);
9980 while Present (Discr) loop
9981 if Chars (Discr) = Chars (Id) then
9982 Found := True;
9983 exit;
9984 end if;
9985
9986 Next_Discriminant (Discr);
9987 end loop;
9988
9989 if not Found then
9990 Error_Msg_N ("& does not match any discriminant", Id);
9991 return New_Elmt_List;
9992
9993 -- If the parent type is a generic formal, preserve the
9994 -- name of the discriminant for subsequent instances.
9995 -- see comment at the beginning of this if statement.
9996
9997 elsif Is_Generic_Type (Root_Type (T)) then
9998 Set_Original_Discriminant (Id, Discr);
9999 end if;
10000 end if;
10001
10002 Position := Pos_Of_Discr (T, Discr);
10003
10004 if Present (Discr_Expr (Position)) then
10005 Error_Msg_N ("duplicate constraint for discriminant&", Id);
10006
10007 else
10008 -- Each discriminant specified in the same named association
10009 -- must be associated with a separate copy of the
10010 -- corresponding expression.
10011
10012 if Present (Next (Id)) then
10013 Expr := New_Copy_Tree (Expression (Constr));
10014 Set_Parent (Expr, Parent (Expression (Constr)));
10015 else
10016 Expr := Expression (Constr);
10017 end if;
10018
10019 Discr_Expr (Position) := Expr;
10020 Process_Discriminant_Expression (Expr, Discr);
10021 end if;
10022
10023 -- A discriminant association with more than one discriminant
10024 -- name is only allowed if the named discriminants are all of
10025 -- the same type (RM 3.7.1(8)).
10026
10027 if E = Empty then
10028 E := Base_Type (Etype (Discr));
10029
10030 elsif Base_Type (Etype (Discr)) /= E then
10031 Error_Msg_N
10032 ("all discriminants in an association " &
10033 "must have the same type", Id);
10034 end if;
10035
10036 Next (Id);
10037 end loop;
10038 end if;
10039
10040 Next (Constr);
10041 end loop;
10042
10043 -- A discriminant constraint must provide exactly one value for each
10044 -- discriminant of the type (RM 3.7.1(8)).
10045
10046 for J in Discr_Expr'Range loop
10047 if No (Discr_Expr (J)) then
10048 Error_Msg_N ("too few discriminants given in constraint", C);
10049 return New_Elmt_List;
10050 end if;
10051 end loop;
10052
10053 -- Determine if there are discriminant expressions in the constraint
10054
10055 for J in Discr_Expr'Range loop
10056 if Denotes_Discriminant
10057 (Discr_Expr (J), Check_Concurrent => True)
10058 then
10059 Discrim_Present := True;
10060 end if;
10061 end loop;
10062
10063 -- Build an element list consisting of the expressions given in the
10064 -- discriminant constraint and apply the appropriate checks. The list
10065 -- is constructed after resolving any named discriminant associations
10066 -- and therefore the expressions appear in the textual order of the
10067 -- discriminants.
10068
10069 Discr := First_Discriminant (T);
10070 for J in Discr_Expr'Range loop
10071 if Discr_Expr (J) /= Error then
10072 Append_Elmt (Discr_Expr (J), Elist);
10073
10074 -- If any of the discriminant constraints is given by a
10075 -- discriminant and we are in a derived type declaration we
10076 -- have a discriminant renaming. Establish link between new
10077 -- and old discriminant. The new discriminant has an implicit
10078 -- dereference if the old one does.
10079
10080 if Denotes_Discriminant (Discr_Expr (J)) then
10081 if Derived_Def then
10082 declare
10083 New_Discr : constant Entity_Id := Entity (Discr_Expr (J));
10084
10085 begin
10086 Set_Corresponding_Discriminant (New_Discr, Discr);
10087 Set_Has_Implicit_Dereference (New_Discr,
10088 Has_Implicit_Dereference (Discr));
10089 end;
10090 end if;
10091
10092 -- Force the evaluation of non-discriminant expressions.
10093 -- If we have found a discriminant in the constraint 3.4(26)
10094 -- and 3.8(18) demand that no range checks are performed are
10095 -- after evaluation. If the constraint is for a component
10096 -- definition that has a per-object constraint, expressions are
10097 -- evaluated but not checked either. In all other cases perform
10098 -- a range check.
10099
10100 else
10101 if Discrim_Present then
10102 null;
10103
10104 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
10105 and then Has_Per_Object_Constraint
10106 (Defining_Identifier (Parent (Parent (Def))))
10107 then
10108 null;
10109
10110 elsif Is_Access_Type (Etype (Discr)) then
10111 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
10112
10113 else
10114 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
10115 end if;
10116
10117 Force_Evaluation (Discr_Expr (J));
10118 end if;
10119
10120 -- Check that the designated type of an access discriminant's
10121 -- expression is not a class-wide type unless the discriminant's
10122 -- designated type is also class-wide.
10123
10124 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
10125 and then not Is_Class_Wide_Type
10126 (Designated_Type (Etype (Discr)))
10127 and then Etype (Discr_Expr (J)) /= Any_Type
10128 and then Is_Class_Wide_Type
10129 (Designated_Type (Etype (Discr_Expr (J))))
10130 then
10131 Wrong_Type (Discr_Expr (J), Etype (Discr));
10132
10133 elsif Is_Access_Type (Etype (Discr))
10134 and then not Is_Access_Constant (Etype (Discr))
10135 and then Is_Access_Type (Etype (Discr_Expr (J)))
10136 and then Is_Access_Constant (Etype (Discr_Expr (J)))
10137 then
10138 Error_Msg_NE
10139 ("constraint for discriminant& must be access to variable",
10140 Def, Discr);
10141 end if;
10142 end if;
10143
10144 Next_Discriminant (Discr);
10145 end loop;
10146
10147 return Elist;
10148 end Build_Discriminant_Constraints;
10149
10150 ---------------------------------
10151 -- Build_Discriminated_Subtype --
10152 ---------------------------------
10153
10154 procedure Build_Discriminated_Subtype
10155 (T : Entity_Id;
10156 Def_Id : Entity_Id;
10157 Elist : Elist_Id;
10158 Related_Nod : Node_Id;
10159 For_Access : Boolean := False)
10160 is
10161 Has_Discrs : constant Boolean := Has_Discriminants (T);
10162 Constrained : constant Boolean :=
10163 (Has_Discrs
10164 and then not Is_Empty_Elmt_List (Elist)
10165 and then not Is_Class_Wide_Type (T))
10166 or else Is_Constrained (T);
10167
10168 begin
10169 if Ekind (T) = E_Record_Type then
10170 if For_Access then
10171 Set_Ekind (Def_Id, E_Private_Subtype);
10172 Set_Is_For_Access_Subtype (Def_Id, True);
10173 else
10174 Set_Ekind (Def_Id, E_Record_Subtype);
10175 end if;
10176
10177 -- Inherit preelaboration flag from base, for types for which it
10178 -- may have been set: records, private types, protected types.
10179
10180 Set_Known_To_Have_Preelab_Init
10181 (Def_Id, Known_To_Have_Preelab_Init (T));
10182
10183 elsif Ekind (T) = E_Task_Type then
10184 Set_Ekind (Def_Id, E_Task_Subtype);
10185
10186 elsif Ekind (T) = E_Protected_Type then
10187 Set_Ekind (Def_Id, E_Protected_Subtype);
10188 Set_Known_To_Have_Preelab_Init
10189 (Def_Id, Known_To_Have_Preelab_Init (T));
10190
10191 elsif Is_Private_Type (T) then
10192 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
10193 Set_Known_To_Have_Preelab_Init
10194 (Def_Id, Known_To_Have_Preelab_Init (T));
10195
10196 -- Private subtypes may have private dependents
10197
10198 Set_Private_Dependents (Def_Id, New_Elmt_List);
10199
10200 elsif Is_Class_Wide_Type (T) then
10201 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
10202
10203 else
10204 -- Incomplete type. Attach subtype to list of dependents, to be
10205 -- completed with full view of parent type, unless is it the
10206 -- designated subtype of a record component within an init_proc.
10207 -- This last case arises for a component of an access type whose
10208 -- designated type is incomplete (e.g. a Taft Amendment type).
10209 -- The designated subtype is within an inner scope, and needs no
10210 -- elaboration, because only the access type is needed in the
10211 -- initialization procedure.
10212
10213 if Ekind (T) = E_Incomplete_Type then
10214 Set_Ekind (Def_Id, E_Incomplete_Subtype);
10215 else
10216 Set_Ekind (Def_Id, Ekind (T));
10217 end if;
10218
10219 if For_Access and then Within_Init_Proc then
10220 null;
10221 else
10222 Append_Elmt (Def_Id, Private_Dependents (T));
10223 end if;
10224 end if;
10225
10226 Set_Etype (Def_Id, T);
10227 Init_Size_Align (Def_Id);
10228 Set_Has_Discriminants (Def_Id, Has_Discrs);
10229 Set_Is_Constrained (Def_Id, Constrained);
10230
10231 Set_First_Entity (Def_Id, First_Entity (T));
10232 Set_Last_Entity (Def_Id, Last_Entity (T));
10233 Set_Has_Implicit_Dereference
10234 (Def_Id, Has_Implicit_Dereference (T));
10235 Set_Has_Pragma_Unreferenced_Objects
10236 (Def_Id, Has_Pragma_Unreferenced_Objects (T));
10237
10238 -- If the subtype is the completion of a private declaration, there may
10239 -- have been representation clauses for the partial view, and they must
10240 -- be preserved. Build_Derived_Type chains the inherited clauses with
10241 -- the ones appearing on the extension. If this comes from a subtype
10242 -- declaration, all clauses are inherited.
10243
10244 if No (First_Rep_Item (Def_Id)) then
10245 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10246 end if;
10247
10248 if Is_Tagged_Type (T) then
10249 Set_Is_Tagged_Type (Def_Id);
10250 Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T));
10251 Make_Class_Wide_Type (Def_Id);
10252 end if;
10253
10254 Set_Stored_Constraint (Def_Id, No_Elist);
10255
10256 if Has_Discrs then
10257 Set_Discriminant_Constraint (Def_Id, Elist);
10258 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
10259 end if;
10260
10261 if Is_Tagged_Type (T) then
10262
10263 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
10264 -- concurrent record type (which has the list of primitive
10265 -- operations).
10266
10267 if Ada_Version >= Ada_2005
10268 and then Is_Concurrent_Type (T)
10269 then
10270 Set_Corresponding_Record_Type (Def_Id,
10271 Corresponding_Record_Type (T));
10272 else
10273 Set_Direct_Primitive_Operations (Def_Id,
10274 Direct_Primitive_Operations (T));
10275 end if;
10276
10277 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
10278 end if;
10279
10280 -- Subtypes introduced by component declarations do not need to be
10281 -- marked as delayed, and do not get freeze nodes, because the semantics
10282 -- verifies that the parents of the subtypes are frozen before the
10283 -- enclosing record is frozen.
10284
10285 if not Is_Type (Scope (Def_Id)) then
10286 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
10287
10288 if Is_Private_Type (T)
10289 and then Present (Full_View (T))
10290 then
10291 Conditional_Delay (Def_Id, Full_View (T));
10292 else
10293 Conditional_Delay (Def_Id, T);
10294 end if;
10295 end if;
10296
10297 if Is_Record_Type (T) then
10298 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
10299
10300 if Has_Discrs
10301 and then not Is_Empty_Elmt_List (Elist)
10302 and then not For_Access
10303 then
10304 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
10305
10306 elsif not For_Access then
10307 Set_Cloned_Subtype (Def_Id, T);
10308 end if;
10309 end if;
10310 end Build_Discriminated_Subtype;
10311
10312 ---------------------------
10313 -- Build_Itype_Reference --
10314 ---------------------------
10315
10316 procedure Build_Itype_Reference
10317 (Ityp : Entity_Id;
10318 Nod : Node_Id)
10319 is
10320 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
10321 begin
10322
10323 -- Itype references are only created for use by the back-end
10324
10325 if Inside_A_Generic then
10326 return;
10327 else
10328 Set_Itype (IR, Ityp);
10329
10330 -- If Nod is a library unit entity, then Insert_After won't work,
10331 -- because Nod is not a member of any list. Therefore, we use
10332 -- Add_Global_Declaration in this case. This can happen if we have a
10333 -- build-in-place library function.
10334
10335 if (Nkind (Nod) in N_Entity and then Is_Compilation_Unit (Nod))
10336 or else
10337 (Nkind (Nod) = N_Defining_Program_Unit_Name
10338 and then Is_Compilation_Unit (Defining_Identifier (Nod)))
10339 then
10340 Add_Global_Declaration (IR);
10341 else
10342 Insert_After (Nod, IR);
10343 end if;
10344 end if;
10345 end Build_Itype_Reference;
10346
10347 ------------------------
10348 -- Build_Scalar_Bound --
10349 ------------------------
10350
10351 function Build_Scalar_Bound
10352 (Bound : Node_Id;
10353 Par_T : Entity_Id;
10354 Der_T : Entity_Id) return Node_Id
10355 is
10356 New_Bound : Entity_Id;
10357
10358 begin
10359 -- Note: not clear why this is needed, how can the original bound
10360 -- be unanalyzed at this point? and if it is, what business do we
10361 -- have messing around with it? and why is the base type of the
10362 -- parent type the right type for the resolution. It probably is
10363 -- not. It is OK for the new bound we are creating, but not for
10364 -- the old one??? Still if it never happens, no problem.
10365
10366 Analyze_And_Resolve (Bound, Base_Type (Par_T));
10367
10368 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
10369 New_Bound := New_Copy (Bound);
10370 Set_Etype (New_Bound, Der_T);
10371 Set_Analyzed (New_Bound);
10372
10373 elsif Is_Entity_Name (Bound) then
10374 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
10375
10376 -- The following is almost certainly wrong. What business do we have
10377 -- relocating a node (Bound) that is presumably still attached to
10378 -- the tree elsewhere???
10379
10380 else
10381 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
10382 end if;
10383
10384 Set_Etype (New_Bound, Der_T);
10385 return New_Bound;
10386 end Build_Scalar_Bound;
10387
10388 --------------------------------
10389 -- Build_Underlying_Full_View --
10390 --------------------------------
10391
10392 procedure Build_Underlying_Full_View
10393 (N : Node_Id;
10394 Typ : Entity_Id;
10395 Par : Entity_Id)
10396 is
10397 Loc : constant Source_Ptr := Sloc (N);
10398 Subt : constant Entity_Id :=
10399 Make_Defining_Identifier
10400 (Loc, New_External_Name (Chars (Typ), 'S'));
10401
10402 Constr : Node_Id;
10403 Indic : Node_Id;
10404 C : Node_Id;
10405 Id : Node_Id;
10406
10407 procedure Set_Discriminant_Name (Id : Node_Id);
10408 -- If the derived type has discriminants, they may rename discriminants
10409 -- of the parent. When building the full view of the parent, we need to
10410 -- recover the names of the original discriminants if the constraint is
10411 -- given by named associations.
10412
10413 ---------------------------
10414 -- Set_Discriminant_Name --
10415 ---------------------------
10416
10417 procedure Set_Discriminant_Name (Id : Node_Id) is
10418 Disc : Entity_Id;
10419
10420 begin
10421 Set_Original_Discriminant (Id, Empty);
10422
10423 if Has_Discriminants (Typ) then
10424 Disc := First_Discriminant (Typ);
10425 while Present (Disc) loop
10426 if Chars (Disc) = Chars (Id)
10427 and then Present (Corresponding_Discriminant (Disc))
10428 then
10429 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
10430 end if;
10431 Next_Discriminant (Disc);
10432 end loop;
10433 end if;
10434 end Set_Discriminant_Name;
10435
10436 -- Start of processing for Build_Underlying_Full_View
10437
10438 begin
10439 if Nkind (N) = N_Full_Type_Declaration then
10440 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
10441
10442 elsif Nkind (N) = N_Subtype_Declaration then
10443 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
10444
10445 elsif Nkind (N) = N_Component_Declaration then
10446 Constr :=
10447 New_Copy_Tree
10448 (Constraint (Subtype_Indication (Component_Definition (N))));
10449
10450 else
10451 raise Program_Error;
10452 end if;
10453
10454 C := First (Constraints (Constr));
10455 while Present (C) loop
10456 if Nkind (C) = N_Discriminant_Association then
10457 Id := First (Selector_Names (C));
10458 while Present (Id) loop
10459 Set_Discriminant_Name (Id);
10460 Next (Id);
10461 end loop;
10462 end if;
10463
10464 Next (C);
10465 end loop;
10466
10467 Indic :=
10468 Make_Subtype_Declaration (Loc,
10469 Defining_Identifier => Subt,
10470 Subtype_Indication =>
10471 Make_Subtype_Indication (Loc,
10472 Subtype_Mark => New_Occurrence_Of (Par, Loc),
10473 Constraint => New_Copy_Tree (Constr)));
10474
10475 -- If this is a component subtype for an outer itype, it is not
10476 -- a list member, so simply set the parent link for analysis: if
10477 -- the enclosing type does not need to be in a declarative list,
10478 -- neither do the components.
10479
10480 if Is_List_Member (N)
10481 and then Nkind (N) /= N_Component_Declaration
10482 then
10483 Insert_Before (N, Indic);
10484 else
10485 Set_Parent (Indic, Parent (N));
10486 end if;
10487
10488 Analyze (Indic);
10489 Set_Underlying_Full_View (Typ, Full_View (Subt));
10490 Set_Is_Underlying_Full_View (Full_View (Subt));
10491 end Build_Underlying_Full_View;
10492
10493 -------------------------------
10494 -- Check_Abstract_Overriding --
10495 -------------------------------
10496
10497 procedure Check_Abstract_Overriding (T : Entity_Id) is
10498 Alias_Subp : Entity_Id;
10499 Elmt : Elmt_Id;
10500 Op_List : Elist_Id;
10501 Subp : Entity_Id;
10502 Type_Def : Node_Id;
10503
10504 procedure Check_Pragma_Implemented (Subp : Entity_Id);
10505 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
10506 -- which has pragma Implemented already set. Check whether Subp's entity
10507 -- kind conforms to the implementation kind of the overridden routine.
10508
10509 procedure Check_Pragma_Implemented
10510 (Subp : Entity_Id;
10511 Iface_Subp : Entity_Id);
10512 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
10513 -- Iface_Subp and both entities have pragma Implemented already set on
10514 -- them. Check whether the two implementation kinds are conforming.
10515
10516 procedure Inherit_Pragma_Implemented
10517 (Subp : Entity_Id;
10518 Iface_Subp : Entity_Id);
10519 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
10520 -- subprogram Iface_Subp which has been marked by pragma Implemented.
10521 -- Propagate the implementation kind of Iface_Subp to Subp.
10522
10523 ------------------------------
10524 -- Check_Pragma_Implemented --
10525 ------------------------------
10526
10527 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
10528 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
10529 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
10530 Subp_Alias : constant Entity_Id := Alias (Subp);
10531 Contr_Typ : Entity_Id;
10532 Impl_Subp : Entity_Id;
10533
10534 begin
10535 -- Subp must have an alias since it is a hidden entity used to link
10536 -- an interface subprogram to its overriding counterpart.
10537
10538 pragma Assert (Present (Subp_Alias));
10539
10540 -- Handle aliases to synchronized wrappers
10541
10542 Impl_Subp := Subp_Alias;
10543
10544 if Is_Primitive_Wrapper (Impl_Subp) then
10545 Impl_Subp := Wrapped_Entity (Impl_Subp);
10546 end if;
10547
10548 -- Extract the type of the controlling formal
10549
10550 Contr_Typ := Etype (First_Formal (Subp_Alias));
10551
10552 if Is_Concurrent_Record_Type (Contr_Typ) then
10553 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
10554 end if;
10555
10556 -- An interface subprogram whose implementation kind is By_Entry must
10557 -- be implemented by an entry.
10558
10559 if Impl_Kind = Name_By_Entry
10560 and then Ekind (Impl_Subp) /= E_Entry
10561 then
10562 Error_Msg_Node_2 := Iface_Alias;
10563 Error_Msg_NE
10564 ("type & must implement abstract subprogram & with an entry",
10565 Subp_Alias, Contr_Typ);
10566
10567 elsif Impl_Kind = Name_By_Protected_Procedure then
10568
10569 -- An interface subprogram whose implementation kind is By_
10570 -- Protected_Procedure cannot be implemented by a primitive
10571 -- procedure of a task type.
10572
10573 if Ekind (Contr_Typ) /= E_Protected_Type then
10574 Error_Msg_Node_2 := Contr_Typ;
10575 Error_Msg_NE
10576 ("interface subprogram & cannot be implemented by a " &
10577 "primitive procedure of task type &", Subp_Alias,
10578 Iface_Alias);
10579
10580 -- An interface subprogram whose implementation kind is By_
10581 -- Protected_Procedure must be implemented by a procedure.
10582
10583 elsif Ekind (Impl_Subp) /= E_Procedure then
10584 Error_Msg_Node_2 := Iface_Alias;
10585 Error_Msg_NE
10586 ("type & must implement abstract subprogram & with a " &
10587 "procedure", Subp_Alias, Contr_Typ);
10588
10589 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10590 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10591 then
10592 Error_Msg_Name_1 := Impl_Kind;
10593 Error_Msg_N
10594 ("overriding operation& must have synchronization%",
10595 Subp_Alias);
10596 end if;
10597
10598 -- If primitive has Optional synchronization, overriding operation
10599 -- must match if it has an explicit synchronization..
10600
10601 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10602 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10603 then
10604 Error_Msg_Name_1 := Impl_Kind;
10605 Error_Msg_N
10606 ("overriding operation& must have syncrhonization%",
10607 Subp_Alias);
10608 end if;
10609 end Check_Pragma_Implemented;
10610
10611 ------------------------------
10612 -- Check_Pragma_Implemented --
10613 ------------------------------
10614
10615 procedure Check_Pragma_Implemented
10616 (Subp : Entity_Id;
10617 Iface_Subp : Entity_Id)
10618 is
10619 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10620 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
10621
10622 begin
10623 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
10624 -- and overriding subprogram are different. In general this is an
10625 -- error except when the implementation kind of the overridden
10626 -- subprograms is By_Any or Optional.
10627
10628 if Iface_Kind /= Subp_Kind
10629 and then Iface_Kind /= Name_By_Any
10630 and then Iface_Kind /= Name_Optional
10631 then
10632 if Iface_Kind = Name_By_Entry then
10633 Error_Msg_N
10634 ("incompatible implementation kind, overridden subprogram " &
10635 "is marked By_Entry", Subp);
10636 else
10637 Error_Msg_N
10638 ("incompatible implementation kind, overridden subprogram " &
10639 "is marked By_Protected_Procedure", Subp);
10640 end if;
10641 end if;
10642 end Check_Pragma_Implemented;
10643
10644 --------------------------------
10645 -- Inherit_Pragma_Implemented --
10646 --------------------------------
10647
10648 procedure Inherit_Pragma_Implemented
10649 (Subp : Entity_Id;
10650 Iface_Subp : Entity_Id)
10651 is
10652 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10653 Loc : constant Source_Ptr := Sloc (Subp);
10654 Impl_Prag : Node_Id;
10655
10656 begin
10657 -- Since the implementation kind is stored as a representation item
10658 -- rather than a flag, create a pragma node.
10659
10660 Impl_Prag :=
10661 Make_Pragma (Loc,
10662 Chars => Name_Implemented,
10663 Pragma_Argument_Associations => New_List (
10664 Make_Pragma_Argument_Association (Loc,
10665 Expression => New_Occurrence_Of (Subp, Loc)),
10666
10667 Make_Pragma_Argument_Association (Loc,
10668 Expression => Make_Identifier (Loc, Iface_Kind))));
10669
10670 -- The pragma doesn't need to be analyzed because it is internally
10671 -- built. It is safe to directly register it as a rep item since we
10672 -- are only interested in the characters of the implementation kind.
10673
10674 Record_Rep_Item (Subp, Impl_Prag);
10675 end Inherit_Pragma_Implemented;
10676
10677 -- Start of processing for Check_Abstract_Overriding
10678
10679 begin
10680 Op_List := Primitive_Operations (T);
10681
10682 -- Loop to check primitive operations
10683
10684 Elmt := First_Elmt (Op_List);
10685 while Present (Elmt) loop
10686 Subp := Node (Elmt);
10687 Alias_Subp := Alias (Subp);
10688
10689 -- Inherited subprograms are identified by the fact that they do not
10690 -- come from source, and the associated source location is the
10691 -- location of the first subtype of the derived type.
10692
10693 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
10694 -- subprograms that "require overriding".
10695
10696 -- Special exception, do not complain about failure to override the
10697 -- stream routines _Input and _Output, as well as the primitive
10698 -- operations used in dispatching selects since we always provide
10699 -- automatic overridings for these subprograms.
10700
10701 -- The partial view of T may have been a private extension, for
10702 -- which inherited functions dispatching on result are abstract.
10703 -- If the full view is a null extension, there is no need for
10704 -- overriding in Ada 2005, but wrappers need to be built for them
10705 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
10706
10707 if Is_Null_Extension (T)
10708 and then Has_Controlling_Result (Subp)
10709 and then Ada_Version >= Ada_2005
10710 and then Present (Alias_Subp)
10711 and then not Comes_From_Source (Subp)
10712 and then not Is_Abstract_Subprogram (Alias_Subp)
10713 and then not Is_Access_Type (Etype (Subp))
10714 then
10715 null;
10716
10717 -- Ada 2005 (AI-251): Internal entities of interfaces need no
10718 -- processing because this check is done with the aliased
10719 -- entity
10720
10721 elsif Present (Interface_Alias (Subp)) then
10722 null;
10723
10724 elsif (Is_Abstract_Subprogram (Subp)
10725 or else Requires_Overriding (Subp)
10726 or else
10727 (Has_Controlling_Result (Subp)
10728 and then Present (Alias_Subp)
10729 and then not Comes_From_Source (Subp)
10730 and then Sloc (Subp) = Sloc (First_Subtype (T))))
10731 and then not Is_TSS (Subp, TSS_Stream_Input)
10732 and then not Is_TSS (Subp, TSS_Stream_Output)
10733 and then not Is_Abstract_Type (T)
10734 and then not Is_Predefined_Interface_Primitive (Subp)
10735
10736 -- Ada 2005 (AI-251): Do not consider hidden entities associated
10737 -- with abstract interface types because the check will be done
10738 -- with the aliased entity (otherwise we generate a duplicated
10739 -- error message).
10740
10741 and then not Present (Interface_Alias (Subp))
10742 then
10743 if Present (Alias_Subp) then
10744
10745 -- Only perform the check for a derived subprogram when the
10746 -- type has an explicit record extension. This avoids incorrect
10747 -- flagging of abstract subprograms for the case of a type
10748 -- without an extension that is derived from a formal type
10749 -- with a tagged actual (can occur within a private part).
10750
10751 -- Ada 2005 (AI-391): In the case of an inherited function with
10752 -- a controlling result of the type, the rule does not apply if
10753 -- the type is a null extension (unless the parent function
10754 -- itself is abstract, in which case the function must still be
10755 -- be overridden). The expander will generate an overriding
10756 -- wrapper function calling the parent subprogram (see
10757 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
10758
10759 Type_Def := Type_Definition (Parent (T));
10760
10761 if Nkind (Type_Def) = N_Derived_Type_Definition
10762 and then Present (Record_Extension_Part (Type_Def))
10763 and then
10764 (Ada_Version < Ada_2005
10765 or else not Is_Null_Extension (T)
10766 or else Ekind (Subp) = E_Procedure
10767 or else not Has_Controlling_Result (Subp)
10768 or else Is_Abstract_Subprogram (Alias_Subp)
10769 or else Requires_Overriding (Subp)
10770 or else Is_Access_Type (Etype (Subp)))
10771 then
10772 -- Avoid reporting error in case of abstract predefined
10773 -- primitive inherited from interface type because the
10774 -- body of internally generated predefined primitives
10775 -- of tagged types are generated later by Freeze_Type
10776
10777 if Is_Interface (Root_Type (T))
10778 and then Is_Abstract_Subprogram (Subp)
10779 and then Is_Predefined_Dispatching_Operation (Subp)
10780 and then not Comes_From_Source (Ultimate_Alias (Subp))
10781 then
10782 null;
10783
10784 -- A null extension is not obliged to override an inherited
10785 -- procedure subject to pragma Extensions_Visible with value
10786 -- False and at least one controlling OUT parameter
10787 -- (SPARK RM 6.1.7(6)).
10788
10789 elsif Is_Null_Extension (T)
10790 and then Is_EVF_Procedure (Subp)
10791 then
10792 null;
10793
10794 else
10795 Error_Msg_NE
10796 ("type must be declared abstract or & overridden",
10797 T, Subp);
10798
10799 -- Traverse the whole chain of aliased subprograms to
10800 -- complete the error notification. This is especially
10801 -- useful for traceability of the chain of entities when
10802 -- the subprogram corresponds with an interface
10803 -- subprogram (which may be defined in another package).
10804
10805 if Present (Alias_Subp) then
10806 declare
10807 E : Entity_Id;
10808
10809 begin
10810 E := Subp;
10811 while Present (Alias (E)) loop
10812
10813 -- Avoid reporting redundant errors on entities
10814 -- inherited from interfaces
10815
10816 if Sloc (E) /= Sloc (T) then
10817 Error_Msg_Sloc := Sloc (E);
10818 Error_Msg_NE
10819 ("\& has been inherited #", T, Subp);
10820 end if;
10821
10822 E := Alias (E);
10823 end loop;
10824
10825 Error_Msg_Sloc := Sloc (E);
10826
10827 -- AI05-0068: report if there is an overriding
10828 -- non-abstract subprogram that is invisible.
10829
10830 if Is_Hidden (E)
10831 and then not Is_Abstract_Subprogram (E)
10832 then
10833 Error_Msg_NE
10834 ("\& subprogram# is not visible",
10835 T, Subp);
10836
10837 -- Clarify the case where a non-null extension must
10838 -- override inherited procedure subject to pragma
10839 -- Extensions_Visible with value False and at least
10840 -- one controlling OUT param.
10841
10842 elsif Is_EVF_Procedure (E) then
10843 Error_Msg_NE
10844 ("\& # is subject to Extensions_Visible False",
10845 T, Subp);
10846
10847 else
10848 Error_Msg_NE
10849 ("\& has been inherited from subprogram #",
10850 T, Subp);
10851 end if;
10852 end;
10853 end if;
10854 end if;
10855
10856 -- Ada 2005 (AI-345): Protected or task type implementing
10857 -- abstract interfaces.
10858
10859 elsif Is_Concurrent_Record_Type (T)
10860 and then Present (Interfaces (T))
10861 then
10862 -- There is no need to check here RM 9.4(11.9/3) since we
10863 -- are processing the corresponding record type and the
10864 -- mode of the overriding subprograms was verified by
10865 -- Check_Conformance when the corresponding concurrent
10866 -- type declaration was analyzed.
10867
10868 Error_Msg_NE
10869 ("interface subprogram & must be overridden", T, Subp);
10870
10871 -- Examine primitive operations of synchronized type to find
10872 -- homonyms that have the wrong profile.
10873
10874 declare
10875 Prim : Entity_Id;
10876
10877 begin
10878 Prim := First_Entity (Corresponding_Concurrent_Type (T));
10879 while Present (Prim) loop
10880 if Chars (Prim) = Chars (Subp) then
10881 Error_Msg_NE
10882 ("profile is not type conformant with prefixed "
10883 & "view profile of inherited operation&",
10884 Prim, Subp);
10885 end if;
10886
10887 Next_Entity (Prim);
10888 end loop;
10889 end;
10890 end if;
10891
10892 else
10893 Error_Msg_Node_2 := T;
10894 Error_Msg_N
10895 ("abstract subprogram& not allowed for type&", Subp);
10896
10897 -- Also post unconditional warning on the type (unconditional
10898 -- so that if there are more than one of these cases, we get
10899 -- them all, and not just the first one).
10900
10901 Error_Msg_Node_2 := Subp;
10902 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
10903 end if;
10904
10905 -- A subprogram subject to pragma Extensions_Visible with value
10906 -- "True" cannot override a subprogram subject to the same pragma
10907 -- with value "False" (SPARK RM 6.1.7(5)).
10908
10909 elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True
10910 and then Present (Overridden_Operation (Subp))
10911 and then Extensions_Visible_Status (Overridden_Operation (Subp)) =
10912 Extensions_Visible_False
10913 then
10914 Error_Msg_Sloc := Sloc (Overridden_Operation (Subp));
10915 Error_Msg_N
10916 ("subprogram & with Extensions_Visible True cannot override "
10917 & "subprogram # with Extensions_Visible False", Subp);
10918 end if;
10919
10920 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10921
10922 -- Subp is an expander-generated procedure which maps an interface
10923 -- alias to a protected wrapper. The interface alias is flagged by
10924 -- pragma Implemented. Ensure that Subp is a procedure when the
10925 -- implementation kind is By_Protected_Procedure or an entry when
10926 -- By_Entry.
10927
10928 if Ada_Version >= Ada_2012
10929 and then Is_Hidden (Subp)
10930 and then Present (Interface_Alias (Subp))
10931 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
10932 then
10933 Check_Pragma_Implemented (Subp);
10934 end if;
10935
10936 -- Subp is an interface primitive which overrides another interface
10937 -- primitive marked with pragma Implemented.
10938
10939 if Ada_Version >= Ada_2012
10940 and then Present (Overridden_Operation (Subp))
10941 and then Has_Rep_Pragma
10942 (Overridden_Operation (Subp), Name_Implemented)
10943 then
10944 -- If the overriding routine is also marked by Implemented, check
10945 -- that the two implementation kinds are conforming.
10946
10947 if Has_Rep_Pragma (Subp, Name_Implemented) then
10948 Check_Pragma_Implemented
10949 (Subp => Subp,
10950 Iface_Subp => Overridden_Operation (Subp));
10951
10952 -- Otherwise the overriding routine inherits the implementation
10953 -- kind from the overridden subprogram.
10954
10955 else
10956 Inherit_Pragma_Implemented
10957 (Subp => Subp,
10958 Iface_Subp => Overridden_Operation (Subp));
10959 end if;
10960 end if;
10961
10962 -- If the operation is a wrapper for a synchronized primitive, it
10963 -- may be called indirectly through a dispatching select. We assume
10964 -- that it will be referenced elsewhere indirectly, and suppress
10965 -- warnings about an unused entity.
10966
10967 if Is_Primitive_Wrapper (Subp)
10968 and then Present (Wrapped_Entity (Subp))
10969 then
10970 Set_Referenced (Wrapped_Entity (Subp));
10971 end if;
10972
10973 Next_Elmt (Elmt);
10974 end loop;
10975 end Check_Abstract_Overriding;
10976
10977 ------------------------------------------------
10978 -- Check_Access_Discriminant_Requires_Limited --
10979 ------------------------------------------------
10980
10981 procedure Check_Access_Discriminant_Requires_Limited
10982 (D : Node_Id;
10983 Loc : Node_Id)
10984 is
10985 begin
10986 -- A discriminant_specification for an access discriminant shall appear
10987 -- only in the declaration for a task or protected type, or for a type
10988 -- with the reserved word 'limited' in its definition or in one of its
10989 -- ancestors (RM 3.7(10)).
10990
10991 -- AI-0063: The proper condition is that type must be immutably limited,
10992 -- or else be a partial view.
10993
10994 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
10995 if Is_Limited_View (Current_Scope)
10996 or else
10997 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
10998 and then Limited_Present (Parent (Current_Scope)))
10999 then
11000 null;
11001
11002 else
11003 Error_Msg_N
11004 ("access discriminants allowed only for limited types", Loc);
11005 end if;
11006 end if;
11007 end Check_Access_Discriminant_Requires_Limited;
11008
11009 -----------------------------------
11010 -- Check_Aliased_Component_Types --
11011 -----------------------------------
11012
11013 procedure Check_Aliased_Component_Types (T : Entity_Id) is
11014 C : Entity_Id;
11015
11016 begin
11017 -- ??? Also need to check components of record extensions, but not
11018 -- components of protected types (which are always limited).
11019
11020 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
11021 -- types to be unconstrained. This is safe because it is illegal to
11022 -- create access subtypes to such types with explicit discriminant
11023 -- constraints.
11024
11025 if not Is_Limited_Type (T) then
11026 if Ekind (T) = E_Record_Type then
11027 C := First_Component (T);
11028 while Present (C) loop
11029 if Is_Aliased (C)
11030 and then Has_Discriminants (Etype (C))
11031 and then not Is_Constrained (Etype (C))
11032 and then not In_Instance_Body
11033 and then Ada_Version < Ada_2005
11034 then
11035 Error_Msg_N
11036 ("aliased component must be constrained (RM 3.6(11))",
11037 C);
11038 end if;
11039
11040 Next_Component (C);
11041 end loop;
11042
11043 elsif Ekind (T) = E_Array_Type then
11044 if Has_Aliased_Components (T)
11045 and then Has_Discriminants (Component_Type (T))
11046 and then not Is_Constrained (Component_Type (T))
11047 and then not In_Instance_Body
11048 and then Ada_Version < Ada_2005
11049 then
11050 Error_Msg_N
11051 ("aliased component type must be constrained (RM 3.6(11))",
11052 T);
11053 end if;
11054 end if;
11055 end if;
11056 end Check_Aliased_Component_Types;
11057
11058 ---------------------------------------
11059 -- Check_Anonymous_Access_Components --
11060 ---------------------------------------
11061
11062 procedure Check_Anonymous_Access_Components
11063 (Typ_Decl : Node_Id;
11064 Typ : Entity_Id;
11065 Prev : Entity_Id;
11066 Comp_List : Node_Id)
11067 is
11068 Loc : constant Source_Ptr := Sloc (Typ_Decl);
11069 Anon_Access : Entity_Id;
11070 Acc_Def : Node_Id;
11071 Comp : Node_Id;
11072 Comp_Def : Node_Id;
11073 Decl : Node_Id;
11074 Type_Def : Node_Id;
11075
11076 procedure Build_Incomplete_Type_Declaration;
11077 -- If the record type contains components that include an access to the
11078 -- current record, then create an incomplete type declaration for the
11079 -- record, to be used as the designated type of the anonymous access.
11080 -- This is done only once, and only if there is no previous partial
11081 -- view of the type.
11082
11083 function Designates_T (Subt : Node_Id) return Boolean;
11084 -- Check whether a node designates the enclosing record type, or 'Class
11085 -- of that type
11086
11087 function Mentions_T (Acc_Def : Node_Id) return Boolean;
11088 -- Check whether an access definition includes a reference to
11089 -- the enclosing record type. The reference can be a subtype mark
11090 -- in the access definition itself, a 'Class attribute reference, or
11091 -- recursively a reference appearing in a parameter specification
11092 -- or result definition of an access_to_subprogram definition.
11093
11094 --------------------------------------
11095 -- Build_Incomplete_Type_Declaration --
11096 --------------------------------------
11097
11098 procedure Build_Incomplete_Type_Declaration is
11099 Decl : Node_Id;
11100 Inc_T : Entity_Id;
11101 H : Entity_Id;
11102
11103 -- Is_Tagged indicates whether the type is tagged. It is tagged if
11104 -- it's "is new ... with record" or else "is tagged record ...".
11105
11106 Is_Tagged : constant Boolean :=
11107 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
11108 and then
11109 Present (Record_Extension_Part (Type_Definition (Typ_Decl))))
11110 or else
11111 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
11112 and then Tagged_Present (Type_Definition (Typ_Decl)));
11113
11114 begin
11115 -- If there is a previous partial view, no need to create a new one
11116 -- If the partial view, given by Prev, is incomplete, If Prev is
11117 -- a private declaration, full declaration is flagged accordingly.
11118
11119 if Prev /= Typ then
11120 if Is_Tagged then
11121 Make_Class_Wide_Type (Prev);
11122 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
11123 Set_Etype (Class_Wide_Type (Typ), Typ);
11124 end if;
11125
11126 return;
11127
11128 elsif Has_Private_Declaration (Typ) then
11129
11130 -- If we refer to T'Class inside T, and T is the completion of a
11131 -- private type, then make sure the class-wide type exists.
11132
11133 if Is_Tagged then
11134 Make_Class_Wide_Type (Typ);
11135 end if;
11136
11137 return;
11138
11139 -- If there was a previous anonymous access type, the incomplete
11140 -- type declaration will have been created already.
11141
11142 elsif Present (Current_Entity (Typ))
11143 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
11144 and then Full_View (Current_Entity (Typ)) = Typ
11145 then
11146 if Is_Tagged
11147 and then Comes_From_Source (Current_Entity (Typ))
11148 and then not Is_Tagged_Type (Current_Entity (Typ))
11149 then
11150 Make_Class_Wide_Type (Typ);
11151 Error_Msg_N
11152 ("incomplete view of tagged type should be declared tagged??",
11153 Parent (Current_Entity (Typ)));
11154 end if;
11155 return;
11156
11157 else
11158 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
11159 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
11160
11161 -- Type has already been inserted into the current scope. Remove
11162 -- it, and add incomplete declaration for type, so that subsequent
11163 -- anonymous access types can use it. The entity is unchained from
11164 -- the homonym list and from immediate visibility. After analysis,
11165 -- the entity in the incomplete declaration becomes immediately
11166 -- visible in the record declaration that follows.
11167
11168 H := Current_Entity (Typ);
11169
11170 if H = Typ then
11171 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
11172 else
11173 while Present (H)
11174 and then Homonym (H) /= Typ
11175 loop
11176 H := Homonym (Typ);
11177 end loop;
11178
11179 Set_Homonym (H, Homonym (Typ));
11180 end if;
11181
11182 Insert_Before (Typ_Decl, Decl);
11183 Analyze (Decl);
11184 Set_Full_View (Inc_T, Typ);
11185
11186 if Is_Tagged then
11187
11188 -- Create a common class-wide type for both views, and set the
11189 -- Etype of the class-wide type to the full view.
11190
11191 Make_Class_Wide_Type (Inc_T);
11192 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
11193 Set_Etype (Class_Wide_Type (Typ), Typ);
11194 end if;
11195 end if;
11196 end Build_Incomplete_Type_Declaration;
11197
11198 ------------------
11199 -- Designates_T --
11200 ------------------
11201
11202 function Designates_T (Subt : Node_Id) return Boolean is
11203 Type_Id : constant Name_Id := Chars (Typ);
11204
11205 function Names_T (Nam : Node_Id) return Boolean;
11206 -- The record type has not been introduced in the current scope
11207 -- yet, so we must examine the name of the type itself, either
11208 -- an identifier T, or an expanded name of the form P.T, where
11209 -- P denotes the current scope.
11210
11211 -------------
11212 -- Names_T --
11213 -------------
11214
11215 function Names_T (Nam : Node_Id) return Boolean is
11216 begin
11217 if Nkind (Nam) = N_Identifier then
11218 return Chars (Nam) = Type_Id;
11219
11220 elsif Nkind (Nam) = N_Selected_Component then
11221 if Chars (Selector_Name (Nam)) = Type_Id then
11222 if Nkind (Prefix (Nam)) = N_Identifier then
11223 return Chars (Prefix (Nam)) = Chars (Current_Scope);
11224
11225 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
11226 return Chars (Selector_Name (Prefix (Nam))) =
11227 Chars (Current_Scope);
11228 else
11229 return False;
11230 end if;
11231
11232 else
11233 return False;
11234 end if;
11235
11236 else
11237 return False;
11238 end if;
11239 end Names_T;
11240
11241 -- Start of processing for Designates_T
11242
11243 begin
11244 if Nkind (Subt) = N_Identifier then
11245 return Chars (Subt) = Type_Id;
11246
11247 -- Reference can be through an expanded name which has not been
11248 -- analyzed yet, and which designates enclosing scopes.
11249
11250 elsif Nkind (Subt) = N_Selected_Component then
11251 if Names_T (Subt) then
11252 return True;
11253
11254 -- Otherwise it must denote an entity that is already visible.
11255 -- The access definition may name a subtype of the enclosing
11256 -- type, if there is a previous incomplete declaration for it.
11257
11258 else
11259 Find_Selected_Component (Subt);
11260 return
11261 Is_Entity_Name (Subt)
11262 and then Scope (Entity (Subt)) = Current_Scope
11263 and then
11264 (Chars (Base_Type (Entity (Subt))) = Type_Id
11265 or else
11266 (Is_Class_Wide_Type (Entity (Subt))
11267 and then
11268 Chars (Etype (Base_Type (Entity (Subt)))) =
11269 Type_Id));
11270 end if;
11271
11272 -- A reference to the current type may appear as the prefix of
11273 -- a 'Class attribute.
11274
11275 elsif Nkind (Subt) = N_Attribute_Reference
11276 and then Attribute_Name (Subt) = Name_Class
11277 then
11278 return Names_T (Prefix (Subt));
11279
11280 else
11281 return False;
11282 end if;
11283 end Designates_T;
11284
11285 ----------------
11286 -- Mentions_T --
11287 ----------------
11288
11289 function Mentions_T (Acc_Def : Node_Id) return Boolean is
11290 Param_Spec : Node_Id;
11291
11292 Acc_Subprg : constant Node_Id :=
11293 Access_To_Subprogram_Definition (Acc_Def);
11294
11295 begin
11296 if No (Acc_Subprg) then
11297 return Designates_T (Subtype_Mark (Acc_Def));
11298 end if;
11299
11300 -- Component is an access_to_subprogram: examine its formals,
11301 -- and result definition in the case of an access_to_function.
11302
11303 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
11304 while Present (Param_Spec) loop
11305 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
11306 and then Mentions_T (Parameter_Type (Param_Spec))
11307 then
11308 return True;
11309
11310 elsif Designates_T (Parameter_Type (Param_Spec)) then
11311 return True;
11312 end if;
11313
11314 Next (Param_Spec);
11315 end loop;
11316
11317 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
11318 if Nkind (Result_Definition (Acc_Subprg)) =
11319 N_Access_Definition
11320 then
11321 return Mentions_T (Result_Definition (Acc_Subprg));
11322 else
11323 return Designates_T (Result_Definition (Acc_Subprg));
11324 end if;
11325 end if;
11326
11327 return False;
11328 end Mentions_T;
11329
11330 -- Start of processing for Check_Anonymous_Access_Components
11331
11332 begin
11333 if No (Comp_List) then
11334 return;
11335 end if;
11336
11337 Comp := First (Component_Items (Comp_List));
11338 while Present (Comp) loop
11339 if Nkind (Comp) = N_Component_Declaration
11340 and then Present
11341 (Access_Definition (Component_Definition (Comp)))
11342 and then
11343 Mentions_T (Access_Definition (Component_Definition (Comp)))
11344 then
11345 Comp_Def := Component_Definition (Comp);
11346 Acc_Def :=
11347 Access_To_Subprogram_Definition (Access_Definition (Comp_Def));
11348
11349 Build_Incomplete_Type_Declaration;
11350 Anon_Access := Make_Temporary (Loc, 'S');
11351
11352 -- Create a declaration for the anonymous access type: either
11353 -- an access_to_object or an access_to_subprogram.
11354
11355 if Present (Acc_Def) then
11356 if Nkind (Acc_Def) = N_Access_Function_Definition then
11357 Type_Def :=
11358 Make_Access_Function_Definition (Loc,
11359 Parameter_Specifications =>
11360 Parameter_Specifications (Acc_Def),
11361 Result_Definition => Result_Definition (Acc_Def));
11362 else
11363 Type_Def :=
11364 Make_Access_Procedure_Definition (Loc,
11365 Parameter_Specifications =>
11366 Parameter_Specifications (Acc_Def));
11367 end if;
11368
11369 else
11370 Type_Def :=
11371 Make_Access_To_Object_Definition (Loc,
11372 Subtype_Indication =>
11373 Relocate_Node
11374 (Subtype_Mark (Access_Definition (Comp_Def))));
11375
11376 Set_Constant_Present
11377 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
11378 Set_All_Present
11379 (Type_Def, All_Present (Access_Definition (Comp_Def)));
11380 end if;
11381
11382 Set_Null_Exclusion_Present
11383 (Type_Def,
11384 Null_Exclusion_Present (Access_Definition (Comp_Def)));
11385
11386 Decl :=
11387 Make_Full_Type_Declaration (Loc,
11388 Defining_Identifier => Anon_Access,
11389 Type_Definition => Type_Def);
11390
11391 Insert_Before (Typ_Decl, Decl);
11392 Analyze (Decl);
11393
11394 -- If an access to subprogram, create the extra formals
11395
11396 if Present (Acc_Def) then
11397 Create_Extra_Formals (Designated_Type (Anon_Access));
11398
11399 -- If an access to object, preserve entity of designated type,
11400 -- for ASIS use, before rewriting the component definition.
11401
11402 else
11403 declare
11404 Desig : Entity_Id;
11405
11406 begin
11407 Desig := Entity (Subtype_Indication (Type_Def));
11408
11409 -- If the access definition is to the current record,
11410 -- the visible entity at this point is an incomplete
11411 -- type. Retrieve the full view to simplify ASIS queries
11412
11413 if Ekind (Desig) = E_Incomplete_Type then
11414 Desig := Full_View (Desig);
11415 end if;
11416
11417 Set_Entity
11418 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
11419 end;
11420 end if;
11421
11422 Rewrite (Comp_Def,
11423 Make_Component_Definition (Loc,
11424 Subtype_Indication =>
11425 New_Occurrence_Of (Anon_Access, Loc)));
11426
11427 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
11428 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
11429 else
11430 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
11431 end if;
11432
11433 Set_Is_Local_Anonymous_Access (Anon_Access);
11434 end if;
11435
11436 Next (Comp);
11437 end loop;
11438
11439 if Present (Variant_Part (Comp_List)) then
11440 declare
11441 V : Node_Id;
11442 begin
11443 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
11444 while Present (V) loop
11445 Check_Anonymous_Access_Components
11446 (Typ_Decl, Typ, Prev, Component_List (V));
11447 Next_Non_Pragma (V);
11448 end loop;
11449 end;
11450 end if;
11451 end Check_Anonymous_Access_Components;
11452
11453 ----------------------
11454 -- Check_Completion --
11455 ----------------------
11456
11457 procedure Check_Completion (Body_Id : Node_Id := Empty) is
11458 E : Entity_Id;
11459
11460 procedure Post_Error;
11461 -- Post error message for lack of completion for entity E
11462
11463 ----------------
11464 -- Post_Error --
11465 ----------------
11466
11467 procedure Post_Error is
11468 procedure Missing_Body;
11469 -- Output missing body message
11470
11471 ------------------
11472 -- Missing_Body --
11473 ------------------
11474
11475 procedure Missing_Body is
11476 begin
11477 -- Spec is in same unit, so we can post on spec
11478
11479 if In_Same_Source_Unit (Body_Id, E) then
11480 Error_Msg_N ("missing body for &", E);
11481
11482 -- Spec is in a separate unit, so we have to post on the body
11483
11484 else
11485 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
11486 end if;
11487 end Missing_Body;
11488
11489 -- Start of processing for Post_Error
11490
11491 begin
11492 if not Comes_From_Source (E) then
11493 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
11494
11495 -- It may be an anonymous protected type created for a
11496 -- single variable. Post error on variable, if present.
11497
11498 declare
11499 Var : Entity_Id;
11500
11501 begin
11502 Var := First_Entity (Current_Scope);
11503 while Present (Var) loop
11504 exit when Etype (Var) = E
11505 and then Comes_From_Source (Var);
11506
11507 Next_Entity (Var);
11508 end loop;
11509
11510 if Present (Var) then
11511 E := Var;
11512 end if;
11513 end;
11514 end if;
11515 end if;
11516
11517 -- If a generated entity has no completion, then either previous
11518 -- semantic errors have disabled the expansion phase, or else we had
11519 -- missing subunits, or else we are compiling without expansion,
11520 -- or else something is very wrong.
11521
11522 if not Comes_From_Source (E) then
11523 pragma Assert
11524 (Serious_Errors_Detected > 0
11525 or else Configurable_Run_Time_Violations > 0
11526 or else Subunits_Missing
11527 or else not Expander_Active);
11528 return;
11529
11530 -- Here for source entity
11531
11532 else
11533 -- Here if no body to post the error message, so we post the error
11534 -- on the declaration that has no completion. This is not really
11535 -- the right place to post it, think about this later ???
11536
11537 if No (Body_Id) then
11538 if Is_Type (E) then
11539 Error_Msg_NE
11540 ("missing full declaration for }", Parent (E), E);
11541 else
11542 Error_Msg_NE ("missing body for &", Parent (E), E);
11543 end if;
11544
11545 -- Package body has no completion for a declaration that appears
11546 -- in the corresponding spec. Post error on the body, with a
11547 -- reference to the non-completed declaration.
11548
11549 else
11550 Error_Msg_Sloc := Sloc (E);
11551
11552 if Is_Type (E) then
11553 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
11554
11555 elsif Is_Overloadable (E)
11556 and then Current_Entity_In_Scope (E) /= E
11557 then
11558 -- It may be that the completion is mistyped and appears as
11559 -- a distinct overloading of the entity.
11560
11561 declare
11562 Candidate : constant Entity_Id :=
11563 Current_Entity_In_Scope (E);
11564 Decl : constant Node_Id :=
11565 Unit_Declaration_Node (Candidate);
11566
11567 begin
11568 if Is_Overloadable (Candidate)
11569 and then Ekind (Candidate) = Ekind (E)
11570 and then Nkind (Decl) = N_Subprogram_Body
11571 and then Acts_As_Spec (Decl)
11572 then
11573 Check_Type_Conformant (Candidate, E);
11574
11575 else
11576 Missing_Body;
11577 end if;
11578 end;
11579
11580 else
11581 Missing_Body;
11582 end if;
11583 end if;
11584 end if;
11585 end Post_Error;
11586
11587 -- Local variables
11588
11589 Pack_Id : constant Entity_Id := Current_Scope;
11590
11591 -- Start of processing for Check_Completion
11592
11593 begin
11594 E := First_Entity (Pack_Id);
11595 while Present (E) loop
11596 if Is_Intrinsic_Subprogram (E) then
11597 null;
11598
11599 -- The following situation requires special handling: a child unit
11600 -- that appears in the context clause of the body of its parent:
11601
11602 -- procedure Parent.Child (...);
11603
11604 -- with Parent.Child;
11605 -- package body Parent is
11606
11607 -- Here Parent.Child appears as a local entity, but should not be
11608 -- flagged as requiring completion, because it is a compilation
11609 -- unit.
11610
11611 -- Ignore missing completion for a subprogram that does not come from
11612 -- source (including the _Call primitive operation of RAS types,
11613 -- which has to have the flag Comes_From_Source for other purposes):
11614 -- we assume that the expander will provide the missing completion.
11615 -- In case of previous errors, other expansion actions that provide
11616 -- bodies for null procedures with not be invoked, so inhibit message
11617 -- in those cases.
11618
11619 -- Note that E_Operator is not in the list that follows, because
11620 -- this kind is reserved for predefined operators, that are
11621 -- intrinsic and do not need completion.
11622
11623 elsif Ekind_In (E, E_Function,
11624 E_Procedure,
11625 E_Generic_Function,
11626 E_Generic_Procedure)
11627 then
11628 if Has_Completion (E) then
11629 null;
11630
11631 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
11632 null;
11633
11634 elsif Is_Subprogram (E)
11635 and then (not Comes_From_Source (E)
11636 or else Chars (E) = Name_uCall)
11637 then
11638 null;
11639
11640 elsif
11641 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
11642 then
11643 null;
11644
11645 elsif Nkind (Parent (E)) = N_Procedure_Specification
11646 and then Null_Present (Parent (E))
11647 and then Serious_Errors_Detected > 0
11648 then
11649 null;
11650
11651 else
11652 Post_Error;
11653 end if;
11654
11655 elsif Is_Entry (E) then
11656 if not Has_Completion (E) and then
11657 (Ekind (Scope (E)) = E_Protected_Object
11658 or else Ekind (Scope (E)) = E_Protected_Type)
11659 then
11660 Post_Error;
11661 end if;
11662
11663 elsif Is_Package_Or_Generic_Package (E) then
11664 if Unit_Requires_Body (E) then
11665 if not Has_Completion (E)
11666 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
11667 N_Compilation_Unit
11668 then
11669 Post_Error;
11670 end if;
11671
11672 elsif not Is_Child_Unit (E) then
11673 May_Need_Implicit_Body (E);
11674 end if;
11675
11676 -- A formal incomplete type (Ada 2012) does not require a completion;
11677 -- other incomplete type declarations do.
11678
11679 elsif Ekind (E) = E_Incomplete_Type
11680 and then No (Underlying_Type (E))
11681 and then not Is_Generic_Type (E)
11682 then
11683 Post_Error;
11684
11685 elsif Ekind_In (E, E_Task_Type, E_Protected_Type)
11686 and then not Has_Completion (E)
11687 then
11688 Post_Error;
11689
11690 -- A single task declared in the current scope is a constant, verify
11691 -- that the body of its anonymous type is in the same scope. If the
11692 -- task is defined elsewhere, this may be a renaming declaration for
11693 -- which no completion is needed.
11694
11695 elsif Ekind (E) = E_Constant
11696 and then Ekind (Etype (E)) = E_Task_Type
11697 and then not Has_Completion (Etype (E))
11698 and then Scope (Etype (E)) = Current_Scope
11699 then
11700 Post_Error;
11701
11702 elsif Ekind (E) = E_Protected_Object
11703 and then not Has_Completion (Etype (E))
11704 then
11705 Post_Error;
11706
11707 elsif Ekind (E) = E_Record_Type then
11708 if Is_Tagged_Type (E) then
11709 Check_Abstract_Overriding (E);
11710 Check_Conventions (E);
11711 end if;
11712
11713 Check_Aliased_Component_Types (E);
11714
11715 elsif Ekind (E) = E_Array_Type then
11716 Check_Aliased_Component_Types (E);
11717
11718 end if;
11719
11720 Next_Entity (E);
11721 end loop;
11722 end Check_Completion;
11723
11724 ------------------------------------
11725 -- Check_CPP_Type_Has_No_Defaults --
11726 ------------------------------------
11727
11728 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
11729 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
11730 Clist : Node_Id;
11731 Comp : Node_Id;
11732
11733 begin
11734 -- Obtain the component list
11735
11736 if Nkind (Tdef) = N_Record_Definition then
11737 Clist := Component_List (Tdef);
11738 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
11739 Clist := Component_List (Record_Extension_Part (Tdef));
11740 end if;
11741
11742 -- Check all components to ensure no default expressions
11743
11744 if Present (Clist) then
11745 Comp := First (Component_Items (Clist));
11746 while Present (Comp) loop
11747 if Present (Expression (Comp)) then
11748 Error_Msg_N
11749 ("component of imported 'C'P'P type cannot have "
11750 & "default expression", Expression (Comp));
11751 end if;
11752
11753 Next (Comp);
11754 end loop;
11755 end if;
11756 end Check_CPP_Type_Has_No_Defaults;
11757
11758 ----------------------------
11759 -- Check_Delta_Expression --
11760 ----------------------------
11761
11762 procedure Check_Delta_Expression (E : Node_Id) is
11763 begin
11764 if not (Is_Real_Type (Etype (E))) then
11765 Wrong_Type (E, Any_Real);
11766
11767 elsif not Is_OK_Static_Expression (E) then
11768 Flag_Non_Static_Expr
11769 ("non-static expression used for delta value!", E);
11770
11771 elsif not UR_Is_Positive (Expr_Value_R (E)) then
11772 Error_Msg_N ("delta expression must be positive", E);
11773
11774 else
11775 return;
11776 end if;
11777
11778 -- If any of above errors occurred, then replace the incorrect
11779 -- expression by the real 0.1, which should prevent further errors.
11780
11781 Rewrite (E,
11782 Make_Real_Literal (Sloc (E), Ureal_Tenth));
11783 Analyze_And_Resolve (E, Standard_Float);
11784 end Check_Delta_Expression;
11785
11786 -----------------------------
11787 -- Check_Digits_Expression --
11788 -----------------------------
11789
11790 procedure Check_Digits_Expression (E : Node_Id) is
11791 begin
11792 if not (Is_Integer_Type (Etype (E))) then
11793 Wrong_Type (E, Any_Integer);
11794
11795 elsif not Is_OK_Static_Expression (E) then
11796 Flag_Non_Static_Expr
11797 ("non-static expression used for digits value!", E);
11798
11799 elsif Expr_Value (E) <= 0 then
11800 Error_Msg_N ("digits value must be greater than zero", E);
11801
11802 else
11803 return;
11804 end if;
11805
11806 -- If any of above errors occurred, then replace the incorrect
11807 -- expression by the integer 1, which should prevent further errors.
11808
11809 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
11810 Analyze_And_Resolve (E, Standard_Integer);
11811
11812 end Check_Digits_Expression;
11813
11814 --------------------------
11815 -- Check_Initialization --
11816 --------------------------
11817
11818 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
11819 begin
11820 -- Special processing for limited types
11821
11822 if Is_Limited_Type (T)
11823 and then not In_Instance
11824 and then not In_Inlined_Body
11825 then
11826 if not OK_For_Limited_Init (T, Exp) then
11827
11828 -- In GNAT mode, this is just a warning, to allow it to be evilly
11829 -- turned off. Otherwise it is a real error.
11830
11831 if GNAT_Mode then
11832 Error_Msg_N
11833 ("??cannot initialize entities of limited type!", Exp);
11834
11835 elsif Ada_Version < Ada_2005 then
11836
11837 -- The side effect removal machinery may generate illegal Ada
11838 -- code to avoid the usage of access types and 'reference in
11839 -- SPARK mode. Since this is legal code with respect to theorem
11840 -- proving, do not emit the error.
11841
11842 if GNATprove_Mode
11843 and then Nkind (Exp) = N_Function_Call
11844 and then Nkind (Parent (Exp)) = N_Object_Declaration
11845 and then not Comes_From_Source
11846 (Defining_Identifier (Parent (Exp)))
11847 then
11848 null;
11849
11850 else
11851 Error_Msg_N
11852 ("cannot initialize entities of limited type", Exp);
11853 Explain_Limited_Type (T, Exp);
11854 end if;
11855
11856 else
11857 -- Specialize error message according to kind of illegal
11858 -- initial expression.
11859
11860 if Nkind (Exp) = N_Type_Conversion
11861 and then Nkind (Expression (Exp)) = N_Function_Call
11862 then
11863 -- No error for internally-generated object declarations,
11864 -- which can come from build-in-place assignment statements.
11865
11866 if Nkind (Parent (Exp)) = N_Object_Declaration
11867 and then not Comes_From_Source
11868 (Defining_Identifier (Parent (Exp)))
11869 then
11870 null;
11871
11872 else
11873 Error_Msg_N
11874 ("illegal context for call to function with limited "
11875 & "result", Exp);
11876 end if;
11877
11878 else
11879 Error_Msg_N
11880 ("initialization of limited object requires aggregate or "
11881 & "function call", Exp);
11882 end if;
11883 end if;
11884 end if;
11885 end if;
11886
11887 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11888 -- set unless we can be sure that no range check is required.
11889
11890 if (GNATprove_Mode or not Expander_Active)
11891 and then Is_Scalar_Type (T)
11892 and then not Is_In_Range (Exp, T, Assume_Valid => True)
11893 then
11894 Set_Do_Range_Check (Exp);
11895 end if;
11896 end Check_Initialization;
11897
11898 ----------------------
11899 -- Check_Interfaces --
11900 ----------------------
11901
11902 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
11903 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
11904
11905 Iface : Node_Id;
11906 Iface_Def : Node_Id;
11907 Iface_Typ : Entity_Id;
11908 Parent_Node : Node_Id;
11909
11910 Is_Task : Boolean := False;
11911 -- Set True if parent type or any progenitor is a task interface
11912
11913 Is_Protected : Boolean := False;
11914 -- Set True if parent type or any progenitor is a protected interface
11915
11916 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
11917 -- Check that a progenitor is compatible with declaration. If an error
11918 -- message is output, it is posted on Error_Node.
11919
11920 ------------------
11921 -- Check_Ifaces --
11922 ------------------
11923
11924 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
11925 Iface_Id : constant Entity_Id :=
11926 Defining_Identifier (Parent (Iface_Def));
11927 Type_Def : Node_Id;
11928
11929 begin
11930 if Nkind (N) = N_Private_Extension_Declaration then
11931 Type_Def := N;
11932 else
11933 Type_Def := Type_Definition (N);
11934 end if;
11935
11936 if Is_Task_Interface (Iface_Id) then
11937 Is_Task := True;
11938
11939 elsif Is_Protected_Interface (Iface_Id) then
11940 Is_Protected := True;
11941 end if;
11942
11943 if Is_Synchronized_Interface (Iface_Id) then
11944
11945 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11946 -- extension derived from a synchronized interface must explicitly
11947 -- be declared synchronized, because the full view will be a
11948 -- synchronized type.
11949
11950 if Nkind (N) = N_Private_Extension_Declaration then
11951 if not Synchronized_Present (N) then
11952 Error_Msg_NE
11953 ("private extension of& must be explicitly synchronized",
11954 N, Iface_Id);
11955 end if;
11956
11957 -- However, by 3.9.4(16/2), a full type that is a record extension
11958 -- is never allowed to derive from a synchronized interface (note
11959 -- that interfaces must be excluded from this check, because those
11960 -- are represented by derived type definitions in some cases).
11961
11962 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11963 and then not Interface_Present (Type_Definition (N))
11964 then
11965 Error_Msg_N ("record extension cannot derive from synchronized "
11966 & "interface", Error_Node);
11967 end if;
11968 end if;
11969
11970 -- Check that the characteristics of the progenitor are compatible
11971 -- with the explicit qualifier in the declaration.
11972 -- The check only applies to qualifiers that come from source.
11973 -- Limited_Present also appears in the declaration of corresponding
11974 -- records, and the check does not apply to them.
11975
11976 if Limited_Present (Type_Def)
11977 and then not
11978 Is_Concurrent_Record_Type (Defining_Identifier (N))
11979 then
11980 if Is_Limited_Interface (Parent_Type)
11981 and then not Is_Limited_Interface (Iface_Id)
11982 then
11983 Error_Msg_NE
11984 ("progenitor & must be limited interface",
11985 Error_Node, Iface_Id);
11986
11987 elsif
11988 (Task_Present (Iface_Def)
11989 or else Protected_Present (Iface_Def)
11990 or else Synchronized_Present (Iface_Def))
11991 and then Nkind (N) /= N_Private_Extension_Declaration
11992 and then not Error_Posted (N)
11993 then
11994 Error_Msg_NE
11995 ("progenitor & must be limited interface",
11996 Error_Node, Iface_Id);
11997 end if;
11998
11999 -- Protected interfaces can only inherit from limited, synchronized
12000 -- or protected interfaces.
12001
12002 elsif Nkind (N) = N_Full_Type_Declaration
12003 and then Protected_Present (Type_Def)
12004 then
12005 if Limited_Present (Iface_Def)
12006 or else Synchronized_Present (Iface_Def)
12007 or else Protected_Present (Iface_Def)
12008 then
12009 null;
12010
12011 elsif Task_Present (Iface_Def) then
12012 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
12013 & "from task interface", Error_Node);
12014
12015 else
12016 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
12017 & "from non-limited interface", Error_Node);
12018 end if;
12019
12020 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
12021 -- limited and synchronized.
12022
12023 elsif Synchronized_Present (Type_Def) then
12024 if Limited_Present (Iface_Def)
12025 or else Synchronized_Present (Iface_Def)
12026 then
12027 null;
12028
12029 elsif Protected_Present (Iface_Def)
12030 and then Nkind (N) /= N_Private_Extension_Declaration
12031 then
12032 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
12033 & "from protected interface", Error_Node);
12034
12035 elsif Task_Present (Iface_Def)
12036 and then Nkind (N) /= N_Private_Extension_Declaration
12037 then
12038 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
12039 & "from task interface", Error_Node);
12040
12041 elsif not Is_Limited_Interface (Iface_Id) then
12042 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
12043 & "from non-limited interface", Error_Node);
12044 end if;
12045
12046 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
12047 -- synchronized or task interfaces.
12048
12049 elsif Nkind (N) = N_Full_Type_Declaration
12050 and then Task_Present (Type_Def)
12051 then
12052 if Limited_Present (Iface_Def)
12053 or else Synchronized_Present (Iface_Def)
12054 or else Task_Present (Iface_Def)
12055 then
12056 null;
12057
12058 elsif Protected_Present (Iface_Def) then
12059 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
12060 & "protected interface", Error_Node);
12061
12062 else
12063 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
12064 & "non-limited interface", Error_Node);
12065 end if;
12066 end if;
12067 end Check_Ifaces;
12068
12069 -- Start of processing for Check_Interfaces
12070
12071 begin
12072 if Is_Interface (Parent_Type) then
12073 if Is_Task_Interface (Parent_Type) then
12074 Is_Task := True;
12075
12076 elsif Is_Protected_Interface (Parent_Type) then
12077 Is_Protected := True;
12078 end if;
12079 end if;
12080
12081 if Nkind (N) = N_Private_Extension_Declaration then
12082
12083 -- Check that progenitors are compatible with declaration
12084
12085 Iface := First (Interface_List (Def));
12086 while Present (Iface) loop
12087 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
12088
12089 Parent_Node := Parent (Base_Type (Iface_Typ));
12090 Iface_Def := Type_Definition (Parent_Node);
12091
12092 if not Is_Interface (Iface_Typ) then
12093 Diagnose_Interface (Iface, Iface_Typ);
12094 else
12095 Check_Ifaces (Iface_Def, Iface);
12096 end if;
12097
12098 Next (Iface);
12099 end loop;
12100
12101 if Is_Task and Is_Protected then
12102 Error_Msg_N
12103 ("type cannot derive from task and protected interface", N);
12104 end if;
12105
12106 return;
12107 end if;
12108
12109 -- Full type declaration of derived type.
12110 -- Check compatibility with parent if it is interface type
12111
12112 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
12113 and then Is_Interface (Parent_Type)
12114 then
12115 Parent_Node := Parent (Parent_Type);
12116
12117 -- More detailed checks for interface varieties
12118
12119 Check_Ifaces
12120 (Iface_Def => Type_Definition (Parent_Node),
12121 Error_Node => Subtype_Indication (Type_Definition (N)));
12122 end if;
12123
12124 Iface := First (Interface_List (Def));
12125 while Present (Iface) loop
12126 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
12127
12128 Parent_Node := Parent (Base_Type (Iface_Typ));
12129 Iface_Def := Type_Definition (Parent_Node);
12130
12131 if not Is_Interface (Iface_Typ) then
12132 Diagnose_Interface (Iface, Iface_Typ);
12133
12134 else
12135 -- "The declaration of a specific descendant of an interface
12136 -- type freezes the interface type" RM 13.14
12137
12138 Freeze_Before (N, Iface_Typ);
12139 Check_Ifaces (Iface_Def, Error_Node => Iface);
12140 end if;
12141
12142 Next (Iface);
12143 end loop;
12144
12145 if Is_Task and Is_Protected then
12146 Error_Msg_N
12147 ("type cannot derive from task and protected interface", N);
12148 end if;
12149 end Check_Interfaces;
12150
12151 ------------------------------------
12152 -- Check_Or_Process_Discriminants --
12153 ------------------------------------
12154
12155 -- If an incomplete or private type declaration was already given for the
12156 -- type, the discriminants may have already been processed if they were
12157 -- present on the incomplete declaration. In this case a full conformance
12158 -- check has been performed in Find_Type_Name, and we then recheck here
12159 -- some properties that can't be checked on the partial view alone.
12160 -- Otherwise we call Process_Discriminants.
12161
12162 procedure Check_Or_Process_Discriminants
12163 (N : Node_Id;
12164 T : Entity_Id;
12165 Prev : Entity_Id := Empty)
12166 is
12167 begin
12168 if Has_Discriminants (T) then
12169
12170 -- Discriminants are already set on T if they were already present
12171 -- on the partial view. Make them visible to component declarations.
12172
12173 declare
12174 D : Entity_Id;
12175 -- Discriminant on T (full view) referencing expr on partial view
12176
12177 Prev_D : Entity_Id;
12178 -- Entity of corresponding discriminant on partial view
12179
12180 New_D : Node_Id;
12181 -- Discriminant specification for full view, expression is
12182 -- the syntactic copy on full view (which has been checked for
12183 -- conformance with partial view), only used here to post error
12184 -- message.
12185
12186 begin
12187 D := First_Discriminant (T);
12188 New_D := First (Discriminant_Specifications (N));
12189 while Present (D) loop
12190 Prev_D := Current_Entity (D);
12191 Set_Current_Entity (D);
12192 Set_Is_Immediately_Visible (D);
12193 Set_Homonym (D, Prev_D);
12194
12195 -- Handle the case where there is an untagged partial view and
12196 -- the full view is tagged: must disallow discriminants with
12197 -- defaults, unless compiling for Ada 2012, which allows a
12198 -- limited tagged type to have defaulted discriminants (see
12199 -- AI05-0214). However, suppress error here if it was already
12200 -- reported on the default expression of the partial view.
12201
12202 if Is_Tagged_Type (T)
12203 and then Present (Expression (Parent (D)))
12204 and then (not Is_Limited_Type (Current_Scope)
12205 or else Ada_Version < Ada_2012)
12206 and then not Error_Posted (Expression (Parent (D)))
12207 then
12208 if Ada_Version >= Ada_2012 then
12209 Error_Msg_N
12210 ("discriminants of nonlimited tagged type cannot have "
12211 & "defaults",
12212 Expression (New_D));
12213 else
12214 Error_Msg_N
12215 ("discriminants of tagged type cannot have defaults",
12216 Expression (New_D));
12217 end if;
12218 end if;
12219
12220 -- Ada 2005 (AI-230): Access discriminant allowed in
12221 -- non-limited record types.
12222
12223 if Ada_Version < Ada_2005 then
12224
12225 -- This restriction gets applied to the full type here. It
12226 -- has already been applied earlier to the partial view.
12227
12228 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
12229 end if;
12230
12231 Next_Discriminant (D);
12232 Next (New_D);
12233 end loop;
12234 end;
12235
12236 elsif Present (Discriminant_Specifications (N)) then
12237 Process_Discriminants (N, Prev);
12238 end if;
12239 end Check_Or_Process_Discriminants;
12240
12241 ----------------------
12242 -- Check_Real_Bound --
12243 ----------------------
12244
12245 procedure Check_Real_Bound (Bound : Node_Id) is
12246 begin
12247 if not Is_Real_Type (Etype (Bound)) then
12248 Error_Msg_N
12249 ("bound in real type definition must be of real type", Bound);
12250
12251 elsif not Is_OK_Static_Expression (Bound) then
12252 Flag_Non_Static_Expr
12253 ("non-static expression used for real type bound!", Bound);
12254
12255 else
12256 return;
12257 end if;
12258
12259 Rewrite
12260 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
12261 Analyze (Bound);
12262 Resolve (Bound, Standard_Float);
12263 end Check_Real_Bound;
12264
12265 ------------------------------
12266 -- Complete_Private_Subtype --
12267 ------------------------------
12268
12269 procedure Complete_Private_Subtype
12270 (Priv : Entity_Id;
12271 Full : Entity_Id;
12272 Full_Base : Entity_Id;
12273 Related_Nod : Node_Id)
12274 is
12275 Save_Next_Entity : Entity_Id;
12276 Save_Homonym : Entity_Id;
12277
12278 begin
12279 -- Set semantic attributes for (implicit) private subtype completion.
12280 -- If the full type has no discriminants, then it is a copy of the
12281 -- full view of the base. Otherwise, it is a subtype of the base with
12282 -- a possible discriminant constraint. Save and restore the original
12283 -- Next_Entity field of full to ensure that the calls to Copy_Node do
12284 -- not corrupt the entity chain.
12285
12286 -- Note that the type of the full view is the same entity as the type
12287 -- of the partial view. In this fashion, the subtype has access to the
12288 -- correct view of the parent.
12289
12290 Save_Next_Entity := Next_Entity (Full);
12291 Save_Homonym := Homonym (Priv);
12292
12293 case Ekind (Full_Base) is
12294 when Class_Wide_Kind
12295 | Private_Kind
12296 | Protected_Kind
12297 | Task_Kind
12298 | E_Record_Subtype
12299 | E_Record_Type
12300 =>
12301 Copy_Node (Priv, Full);
12302
12303 Set_Has_Discriminants
12304 (Full, Has_Discriminants (Full_Base));
12305 Set_Has_Unknown_Discriminants
12306 (Full, Has_Unknown_Discriminants (Full_Base));
12307 Set_First_Entity (Full, First_Entity (Full_Base));
12308 Set_Last_Entity (Full, Last_Entity (Full_Base));
12309
12310 -- If the underlying base type is constrained, we know that the
12311 -- full view of the subtype is constrained as well (the converse
12312 -- is not necessarily true).
12313
12314 if Is_Constrained (Full_Base) then
12315 Set_Is_Constrained (Full);
12316 end if;
12317
12318 when others =>
12319 Copy_Node (Full_Base, Full);
12320
12321 Set_Chars (Full, Chars (Priv));
12322 Conditional_Delay (Full, Priv);
12323 Set_Sloc (Full, Sloc (Priv));
12324 end case;
12325
12326 Set_Next_Entity (Full, Save_Next_Entity);
12327 Set_Homonym (Full, Save_Homonym);
12328 Set_Associated_Node_For_Itype (Full, Related_Nod);
12329
12330 -- Set common attributes for all subtypes: kind, convention, etc.
12331
12332 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
12333 Set_Convention (Full, Convention (Full_Base));
12334
12335 -- The Etype of the full view is inconsistent. Gigi needs to see the
12336 -- structural full view, which is what the current scheme gives: the
12337 -- Etype of the full view is the etype of the full base. However, if the
12338 -- full base is a derived type, the full view then looks like a subtype
12339 -- of the parent, not a subtype of the full base. If instead we write:
12340
12341 -- Set_Etype (Full, Full_Base);
12342
12343 -- then we get inconsistencies in the front-end (confusion between
12344 -- views). Several outstanding bugs are related to this ???
12345
12346 Set_Is_First_Subtype (Full, False);
12347 Set_Scope (Full, Scope (Priv));
12348 Set_Size_Info (Full, Full_Base);
12349 Set_RM_Size (Full, RM_Size (Full_Base));
12350 Set_Is_Itype (Full);
12351
12352 -- For the unusual case of a type with unknown discriminants whose
12353 -- completion is an array, use the proper full base.
12354
12355 if Is_Array_Type (Full_Base)
12356 and then Has_Unknown_Discriminants (Priv)
12357 then
12358 Set_Etype (Full, Full_Base);
12359 end if;
12360
12361 -- A subtype of a private-type-without-discriminants, whose full-view
12362 -- has discriminants with default expressions, is not constrained.
12363
12364 if not Has_Discriminants (Priv) then
12365 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
12366
12367 if Has_Discriminants (Full_Base) then
12368 Set_Discriminant_Constraint
12369 (Full, Discriminant_Constraint (Full_Base));
12370
12371 -- The partial view may have been indefinite, the full view
12372 -- might not be.
12373
12374 Set_Has_Unknown_Discriminants
12375 (Full, Has_Unknown_Discriminants (Full_Base));
12376 end if;
12377 end if;
12378
12379 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
12380 Set_Depends_On_Private (Full, Has_Private_Component (Full));
12381
12382 -- Freeze the private subtype entity if its parent is delayed, and not
12383 -- already frozen. We skip this processing if the type is an anonymous
12384 -- subtype of a record component, or is the corresponding record of a
12385 -- protected type, since these are processed when the enclosing type
12386 -- is frozen. If the parent type is declared in a nested package then
12387 -- the freezing of the private and full views also happens later.
12388
12389 if not Is_Type (Scope (Full)) then
12390 if Is_Itype (Priv)
12391 and then In_Same_Source_Unit (Full, Full_Base)
12392 and then Scope (Full_Base) /= Scope (Full)
12393 then
12394 Set_Has_Delayed_Freeze (Full);
12395 Set_Has_Delayed_Freeze (Priv);
12396
12397 else
12398 Set_Has_Delayed_Freeze (Full,
12399 Has_Delayed_Freeze (Full_Base)
12400 and then not Is_Frozen (Full_Base));
12401 end if;
12402 end if;
12403
12404 Set_Freeze_Node (Full, Empty);
12405 Set_Is_Frozen (Full, False);
12406 Set_Full_View (Priv, Full);
12407
12408 if Has_Discriminants (Full) then
12409 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
12410 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
12411
12412 if Has_Unknown_Discriminants (Full) then
12413 Set_Discriminant_Constraint (Full, No_Elist);
12414 end if;
12415 end if;
12416
12417 if Ekind (Full_Base) = E_Record_Type
12418 and then Has_Discriminants (Full_Base)
12419 and then Has_Discriminants (Priv) -- might not, if errors
12420 and then not Has_Unknown_Discriminants (Priv)
12421 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
12422 then
12423 Create_Constrained_Components
12424 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
12425
12426 -- If the full base is itself derived from private, build a congruent
12427 -- subtype of its underlying type, for use by the back end. For a
12428 -- constrained record component, the declaration cannot be placed on
12429 -- the component list, but it must nevertheless be built an analyzed, to
12430 -- supply enough information for Gigi to compute the size of component.
12431
12432 elsif Ekind (Full_Base) in Private_Kind
12433 and then Is_Derived_Type (Full_Base)
12434 and then Has_Discriminants (Full_Base)
12435 and then (Ekind (Current_Scope) /= E_Record_Subtype)
12436 then
12437 if not Is_Itype (Priv)
12438 and then
12439 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
12440 then
12441 Build_Underlying_Full_View
12442 (Parent (Priv), Full, Etype (Full_Base));
12443
12444 elsif Nkind (Related_Nod) = N_Component_Declaration then
12445 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
12446 end if;
12447
12448 elsif Is_Record_Type (Full_Base) then
12449
12450 -- Show Full is simply a renaming of Full_Base
12451
12452 Set_Cloned_Subtype (Full, Full_Base);
12453 end if;
12454
12455 -- It is unsafe to share the bounds of a scalar type, because the Itype
12456 -- is elaborated on demand, and if a bound is non-static then different
12457 -- orders of elaboration in different units will lead to different
12458 -- external symbols.
12459
12460 if Is_Scalar_Type (Full_Base) then
12461 Set_Scalar_Range (Full,
12462 Make_Range (Sloc (Related_Nod),
12463 Low_Bound =>
12464 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
12465 High_Bound =>
12466 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
12467
12468 -- This completion inherits the bounds of the full parent, but if
12469 -- the parent is an unconstrained floating point type, so is the
12470 -- completion.
12471
12472 if Is_Floating_Point_Type (Full_Base) then
12473 Set_Includes_Infinities
12474 (Scalar_Range (Full), Has_Infinities (Full_Base));
12475 end if;
12476 end if;
12477
12478 -- ??? It seems that a lot of fields are missing that should be copied
12479 -- from Full_Base to Full. Here are some that are introduced in a
12480 -- non-disruptive way but a cleanup is necessary.
12481
12482 if Is_Tagged_Type (Full_Base) then
12483 Set_Is_Tagged_Type (Full);
12484 Set_Direct_Primitive_Operations
12485 (Full, Direct_Primitive_Operations (Full_Base));
12486 Set_No_Tagged_Streams_Pragma
12487 (Full, No_Tagged_Streams_Pragma (Full_Base));
12488
12489 -- Inherit class_wide type of full_base in case the partial view was
12490 -- not tagged. Otherwise it has already been created when the private
12491 -- subtype was analyzed.
12492
12493 if No (Class_Wide_Type (Full)) then
12494 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
12495 end if;
12496
12497 -- If this is a subtype of a protected or task type, constrain its
12498 -- corresponding record, unless this is a subtype without constraints,
12499 -- i.e. a simple renaming as with an actual subtype in an instance.
12500
12501 elsif Is_Concurrent_Type (Full_Base) then
12502 if Has_Discriminants (Full)
12503 and then Present (Corresponding_Record_Type (Full_Base))
12504 and then
12505 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
12506 then
12507 Set_Corresponding_Record_Type (Full,
12508 Constrain_Corresponding_Record
12509 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
12510
12511 else
12512 Set_Corresponding_Record_Type (Full,
12513 Corresponding_Record_Type (Full_Base));
12514 end if;
12515 end if;
12516
12517 -- Link rep item chain, and also setting of Has_Predicates from private
12518 -- subtype to full subtype, since we will need these on the full subtype
12519 -- to create the predicate function. Note that the full subtype may
12520 -- already have rep items, inherited from the full view of the base
12521 -- type, so we must be sure not to overwrite these entries.
12522
12523 declare
12524 Append : Boolean;
12525 Item : Node_Id;
12526 Next_Item : Node_Id;
12527 Priv_Item : Node_Id;
12528
12529 begin
12530 Item := First_Rep_Item (Full);
12531 Priv_Item := First_Rep_Item (Priv);
12532
12533 -- If no existing rep items on full type, we can just link directly
12534 -- to the list of items on the private type, if any exist.. Same if
12535 -- the rep items are only those inherited from the base
12536
12537 if (No (Item)
12538 or else Nkind (Item) /= N_Aspect_Specification
12539 or else Entity (Item) = Full_Base)
12540 and then Present (First_Rep_Item (Priv))
12541 then
12542 Set_First_Rep_Item (Full, Priv_Item);
12543
12544 -- Otherwise, search to the end of items currently linked to the full
12545 -- subtype and append the private items to the end. However, if Priv
12546 -- and Full already have the same list of rep items, then the append
12547 -- is not done, as that would create a circularity.
12548 --
12549 -- The partial view may have a predicate and the rep item lists of
12550 -- both views agree when inherited from the same ancestor. In that
12551 -- case, simply propagate the list from one view to the other.
12552 -- A more complex analysis needed here ???
12553
12554 elsif Present (Priv_Item)
12555 and then Item = Next_Rep_Item (Priv_Item)
12556 then
12557 Set_First_Rep_Item (Full, Priv_Item);
12558
12559 elsif Item /= Priv_Item then
12560 Append := True;
12561 loop
12562 Next_Item := Next_Rep_Item (Item);
12563 exit when No (Next_Item);
12564 Item := Next_Item;
12565
12566 -- If the private view has aspect specifications, the full view
12567 -- inherits them. Since these aspects may already have been
12568 -- attached to the full view during derivation, do not append
12569 -- them if already present.
12570
12571 if Item = First_Rep_Item (Priv) then
12572 Append := False;
12573 exit;
12574 end if;
12575 end loop;
12576
12577 -- And link the private type items at the end of the chain
12578
12579 if Append then
12580 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
12581 end if;
12582 end if;
12583 end;
12584
12585 -- Make sure Has_Predicates is set on full type if it is set on the
12586 -- private type. Note that it may already be set on the full type and
12587 -- if so, we don't want to unset it. Similarly, propagate information
12588 -- about delayed aspects, because the corresponding pragmas must be
12589 -- analyzed when one of the views is frozen. This last step is needed
12590 -- in particular when the full type is a scalar type for which an
12591 -- anonymous base type is constructed.
12592
12593 -- The predicate functions are generated either at the freeze point
12594 -- of the type or at the end of the visible part, and we must avoid
12595 -- generating them twice.
12596
12597 if Has_Predicates (Priv) then
12598 Set_Has_Predicates (Full);
12599
12600 if Present (Predicate_Function (Priv))
12601 and then No (Predicate_Function (Full))
12602 then
12603 Set_Predicate_Function (Full, Predicate_Function (Priv));
12604 end if;
12605 end if;
12606
12607 if Has_Delayed_Aspects (Priv) then
12608 Set_Has_Delayed_Aspects (Full);
12609 end if;
12610 end Complete_Private_Subtype;
12611
12612 ----------------------------
12613 -- Constant_Redeclaration --
12614 ----------------------------
12615
12616 procedure Constant_Redeclaration
12617 (Id : Entity_Id;
12618 N : Node_Id;
12619 T : out Entity_Id)
12620 is
12621 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
12622 Obj_Def : constant Node_Id := Object_Definition (N);
12623 New_T : Entity_Id;
12624
12625 procedure Check_Possible_Deferred_Completion
12626 (Prev_Id : Entity_Id;
12627 Prev_Obj_Def : Node_Id;
12628 Curr_Obj_Def : Node_Id);
12629 -- Determine whether the two object definitions describe the partial
12630 -- and the full view of a constrained deferred constant. Generate
12631 -- a subtype for the full view and verify that it statically matches
12632 -- the subtype of the partial view.
12633
12634 procedure Check_Recursive_Declaration (Typ : Entity_Id);
12635 -- If deferred constant is an access type initialized with an allocator,
12636 -- check whether there is an illegal recursion in the definition,
12637 -- through a default value of some record subcomponent. This is normally
12638 -- detected when generating init procs, but requires this additional
12639 -- mechanism when expansion is disabled.
12640
12641 ----------------------------------------
12642 -- Check_Possible_Deferred_Completion --
12643 ----------------------------------------
12644
12645 procedure Check_Possible_Deferred_Completion
12646 (Prev_Id : Entity_Id;
12647 Prev_Obj_Def : Node_Id;
12648 Curr_Obj_Def : Node_Id)
12649 is
12650 begin
12651 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
12652 and then Present (Constraint (Prev_Obj_Def))
12653 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
12654 and then Present (Constraint (Curr_Obj_Def))
12655 then
12656 declare
12657 Loc : constant Source_Ptr := Sloc (N);
12658 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
12659 Decl : constant Node_Id :=
12660 Make_Subtype_Declaration (Loc,
12661 Defining_Identifier => Def_Id,
12662 Subtype_Indication =>
12663 Relocate_Node (Curr_Obj_Def));
12664
12665 begin
12666 Insert_Before_And_Analyze (N, Decl);
12667 Set_Etype (Id, Def_Id);
12668
12669 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
12670 Error_Msg_Sloc := Sloc (Prev_Id);
12671 Error_Msg_N ("subtype does not statically match deferred "
12672 & "declaration #", N);
12673 end if;
12674 end;
12675 end if;
12676 end Check_Possible_Deferred_Completion;
12677
12678 ---------------------------------
12679 -- Check_Recursive_Declaration --
12680 ---------------------------------
12681
12682 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
12683 Comp : Entity_Id;
12684
12685 begin
12686 if Is_Record_Type (Typ) then
12687 Comp := First_Component (Typ);
12688 while Present (Comp) loop
12689 if Comes_From_Source (Comp) then
12690 if Present (Expression (Parent (Comp)))
12691 and then Is_Entity_Name (Expression (Parent (Comp)))
12692 and then Entity (Expression (Parent (Comp))) = Prev
12693 then
12694 Error_Msg_Sloc := Sloc (Parent (Comp));
12695 Error_Msg_NE
12696 ("illegal circularity with declaration for & #",
12697 N, Comp);
12698 return;
12699
12700 elsif Is_Record_Type (Etype (Comp)) then
12701 Check_Recursive_Declaration (Etype (Comp));
12702 end if;
12703 end if;
12704
12705 Next_Component (Comp);
12706 end loop;
12707 end if;
12708 end Check_Recursive_Declaration;
12709
12710 -- Start of processing for Constant_Redeclaration
12711
12712 begin
12713 if Nkind (Parent (Prev)) = N_Object_Declaration then
12714 if Nkind (Object_Definition
12715 (Parent (Prev))) = N_Subtype_Indication
12716 then
12717 -- Find type of new declaration. The constraints of the two
12718 -- views must match statically, but there is no point in
12719 -- creating an itype for the full view.
12720
12721 if Nkind (Obj_Def) = N_Subtype_Indication then
12722 Find_Type (Subtype_Mark (Obj_Def));
12723 New_T := Entity (Subtype_Mark (Obj_Def));
12724
12725 else
12726 Find_Type (Obj_Def);
12727 New_T := Entity (Obj_Def);
12728 end if;
12729
12730 T := Etype (Prev);
12731
12732 else
12733 -- The full view may impose a constraint, even if the partial
12734 -- view does not, so construct the subtype.
12735
12736 New_T := Find_Type_Of_Object (Obj_Def, N);
12737 T := New_T;
12738 end if;
12739
12740 else
12741 -- Current declaration is illegal, diagnosed below in Enter_Name
12742
12743 T := Empty;
12744 New_T := Any_Type;
12745 end if;
12746
12747 -- If previous full declaration or a renaming declaration exists, or if
12748 -- a homograph is present, let Enter_Name handle it, either with an
12749 -- error or with the removal of an overridden implicit subprogram.
12750 -- The previous one is a full declaration if it has an expression
12751 -- (which in the case of an aggregate is indicated by the Init flag).
12752
12753 if Ekind (Prev) /= E_Constant
12754 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
12755 or else Present (Expression (Parent (Prev)))
12756 or else Has_Init_Expression (Parent (Prev))
12757 or else Present (Full_View (Prev))
12758 then
12759 Enter_Name (Id);
12760
12761 -- Verify that types of both declarations match, or else that both types
12762 -- are anonymous access types whose designated subtypes statically match
12763 -- (as allowed in Ada 2005 by AI-385).
12764
12765 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
12766 and then
12767 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
12768 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
12769 or else Is_Access_Constant (Etype (New_T)) /=
12770 Is_Access_Constant (Etype (Prev))
12771 or else Can_Never_Be_Null (Etype (New_T)) /=
12772 Can_Never_Be_Null (Etype (Prev))
12773 or else Null_Exclusion_Present (Parent (Prev)) /=
12774 Null_Exclusion_Present (Parent (Id))
12775 or else not Subtypes_Statically_Match
12776 (Designated_Type (Etype (Prev)),
12777 Designated_Type (Etype (New_T))))
12778 then
12779 Error_Msg_Sloc := Sloc (Prev);
12780 Error_Msg_N ("type does not match declaration#", N);
12781 Set_Full_View (Prev, Id);
12782 Set_Etype (Id, Any_Type);
12783
12784 -- A deferred constant whose type is an anonymous array is always
12785 -- illegal (unless imported). A detailed error message might be
12786 -- helpful for Ada beginners.
12787
12788 if Nkind (Object_Definition (Parent (Prev)))
12789 = N_Constrained_Array_Definition
12790 and then Nkind (Object_Definition (N))
12791 = N_Constrained_Array_Definition
12792 then
12793 Error_Msg_N ("\each anonymous array is a distinct type", N);
12794 Error_Msg_N ("a deferred constant must have a named type",
12795 Object_Definition (Parent (Prev)));
12796 end if;
12797
12798 elsif
12799 Null_Exclusion_Present (Parent (Prev))
12800 and then not Null_Exclusion_Present (N)
12801 then
12802 Error_Msg_Sloc := Sloc (Prev);
12803 Error_Msg_N ("null-exclusion does not match declaration#", N);
12804 Set_Full_View (Prev, Id);
12805 Set_Etype (Id, Any_Type);
12806
12807 -- If so, process the full constant declaration
12808
12809 else
12810 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
12811 -- the deferred declaration is constrained, then the subtype defined
12812 -- by the subtype_indication in the full declaration shall match it
12813 -- statically.
12814
12815 Check_Possible_Deferred_Completion
12816 (Prev_Id => Prev,
12817 Prev_Obj_Def => Object_Definition (Parent (Prev)),
12818 Curr_Obj_Def => Obj_Def);
12819
12820 Set_Full_View (Prev, Id);
12821 Set_Is_Public (Id, Is_Public (Prev));
12822 Set_Is_Internal (Id);
12823 Append_Entity (Id, Current_Scope);
12824
12825 -- Check ALIASED present if present before (RM 7.4(7))
12826
12827 if Is_Aliased (Prev)
12828 and then not Aliased_Present (N)
12829 then
12830 Error_Msg_Sloc := Sloc (Prev);
12831 Error_Msg_N ("ALIASED required (see declaration #)", N);
12832 end if;
12833
12834 -- Check that placement is in private part and that the incomplete
12835 -- declaration appeared in the visible part.
12836
12837 if Ekind (Current_Scope) = E_Package
12838 and then not In_Private_Part (Current_Scope)
12839 then
12840 Error_Msg_Sloc := Sloc (Prev);
12841 Error_Msg_N
12842 ("full constant for declaration # must be in private part", N);
12843
12844 elsif Ekind (Current_Scope) = E_Package
12845 and then
12846 List_Containing (Parent (Prev)) /=
12847 Visible_Declarations (Package_Specification (Current_Scope))
12848 then
12849 Error_Msg_N
12850 ("deferred constant must be declared in visible part",
12851 Parent (Prev));
12852 end if;
12853
12854 if Is_Access_Type (T)
12855 and then Nkind (Expression (N)) = N_Allocator
12856 then
12857 Check_Recursive_Declaration (Designated_Type (T));
12858 end if;
12859
12860 -- A deferred constant is a visible entity. If type has invariants,
12861 -- verify that the initial value satisfies them. This is not done in
12862 -- GNATprove mode, as GNATprove handles invariant checks itself.
12863
12864 if Has_Invariants (T)
12865 and then Present (Invariant_Procedure (T))
12866 and then not GNATprove_Mode
12867 then
12868 Insert_After (N,
12869 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
12870 end if;
12871 end if;
12872 end Constant_Redeclaration;
12873
12874 ----------------------
12875 -- Constrain_Access --
12876 ----------------------
12877
12878 procedure Constrain_Access
12879 (Def_Id : in out Entity_Id;
12880 S : Node_Id;
12881 Related_Nod : Node_Id)
12882 is
12883 T : constant Entity_Id := Entity (Subtype_Mark (S));
12884 Desig_Type : constant Entity_Id := Designated_Type (T);
12885 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
12886 Constraint_OK : Boolean := True;
12887
12888 begin
12889 if Is_Array_Type (Desig_Type) then
12890 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
12891
12892 elsif (Is_Record_Type (Desig_Type)
12893 or else Is_Incomplete_Or_Private_Type (Desig_Type))
12894 and then not Is_Constrained (Desig_Type)
12895 then
12896 -- ??? The following code is a temporary bypass to ignore a
12897 -- discriminant constraint on access type if it is constraining
12898 -- the current record. Avoid creating the implicit subtype of the
12899 -- record we are currently compiling since right now, we cannot
12900 -- handle these. For now, just return the access type itself.
12901
12902 if Desig_Type = Current_Scope
12903 and then No (Def_Id)
12904 then
12905 Set_Ekind (Desig_Subtype, E_Record_Subtype);
12906 Def_Id := Entity (Subtype_Mark (S));
12907
12908 -- This call added to ensure that the constraint is analyzed
12909 -- (needed for a B test). Note that we still return early from
12910 -- this procedure to avoid recursive processing. ???
12911
12912 Constrain_Discriminated_Type
12913 (Desig_Subtype, S, Related_Nod, For_Access => True);
12914 return;
12915 end if;
12916
12917 -- Enforce rule that the constraint is illegal if there is an
12918 -- unconstrained view of the designated type. This means that the
12919 -- partial view (either a private type declaration or a derivation
12920 -- from a private type) has no discriminants. (Defect Report
12921 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12922
12923 -- Rule updated for Ada 2005: The private type is said to have
12924 -- a constrained partial view, given that objects of the type
12925 -- can be declared. Furthermore, the rule applies to all access
12926 -- types, unlike the rule concerning default discriminants (see
12927 -- RM 3.7.1(7/3))
12928
12929 if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005)
12930 and then Has_Private_Declaration (Desig_Type)
12931 and then In_Open_Scopes (Scope (Desig_Type))
12932 and then Has_Discriminants (Desig_Type)
12933 then
12934 declare
12935 Pack : constant Node_Id :=
12936 Unit_Declaration_Node (Scope (Desig_Type));
12937 Decls : List_Id;
12938 Decl : Node_Id;
12939
12940 begin
12941 if Nkind (Pack) = N_Package_Declaration then
12942 Decls := Visible_Declarations (Specification (Pack));
12943 Decl := First (Decls);
12944 while Present (Decl) loop
12945 if (Nkind (Decl) = N_Private_Type_Declaration
12946 and then Chars (Defining_Identifier (Decl)) =
12947 Chars (Desig_Type))
12948
12949 or else
12950 (Nkind (Decl) = N_Full_Type_Declaration
12951 and then
12952 Chars (Defining_Identifier (Decl)) =
12953 Chars (Desig_Type)
12954 and then Is_Derived_Type (Desig_Type)
12955 and then
12956 Has_Private_Declaration (Etype (Desig_Type)))
12957 then
12958 if No (Discriminant_Specifications (Decl)) then
12959 Error_Msg_N
12960 ("cannot constrain access type if designated "
12961 & "type has constrained partial view", S);
12962 end if;
12963
12964 exit;
12965 end if;
12966
12967 Next (Decl);
12968 end loop;
12969 end if;
12970 end;
12971 end if;
12972
12973 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
12974 For_Access => True);
12975
12976 elsif Is_Concurrent_Type (Desig_Type)
12977 and then not Is_Constrained (Desig_Type)
12978 then
12979 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
12980
12981 else
12982 Error_Msg_N ("invalid constraint on access type", S);
12983
12984 -- We simply ignore an invalid constraint
12985
12986 Desig_Subtype := Desig_Type;
12987 Constraint_OK := False;
12988 end if;
12989
12990 if No (Def_Id) then
12991 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
12992 else
12993 Set_Ekind (Def_Id, E_Access_Subtype);
12994 end if;
12995
12996 if Constraint_OK then
12997 Set_Etype (Def_Id, Base_Type (T));
12998
12999 if Is_Private_Type (Desig_Type) then
13000 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
13001 end if;
13002 else
13003 Set_Etype (Def_Id, Any_Type);
13004 end if;
13005
13006 Set_Size_Info (Def_Id, T);
13007 Set_Is_Constrained (Def_Id, Constraint_OK);
13008 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
13009 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13010 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
13011
13012 Conditional_Delay (Def_Id, T);
13013
13014 -- AI-363 : Subtypes of general access types whose designated types have
13015 -- default discriminants are disallowed. In instances, the rule has to
13016 -- be checked against the actual, of which T is the subtype. In a
13017 -- generic body, the rule is checked assuming that the actual type has
13018 -- defaulted discriminants.
13019
13020 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
13021 if Ekind (Base_Type (T)) = E_General_Access_Type
13022 and then Has_Defaulted_Discriminants (Desig_Type)
13023 then
13024 if Ada_Version < Ada_2005 then
13025 Error_Msg_N
13026 ("access subtype of general access type would not " &
13027 "be allowed in Ada 2005?y?", S);
13028 else
13029 Error_Msg_N
13030 ("access subtype of general access type not allowed", S);
13031 end if;
13032
13033 Error_Msg_N ("\discriminants have defaults", S);
13034
13035 elsif Is_Access_Type (T)
13036 and then Is_Generic_Type (Desig_Type)
13037 and then Has_Discriminants (Desig_Type)
13038 and then In_Package_Body (Current_Scope)
13039 then
13040 if Ada_Version < Ada_2005 then
13041 Error_Msg_N
13042 ("access subtype would not be allowed in generic body "
13043 & "in Ada 2005?y?", S);
13044 else
13045 Error_Msg_N
13046 ("access subtype not allowed in generic body", S);
13047 end if;
13048
13049 Error_Msg_N
13050 ("\designated type is a discriminated formal", S);
13051 end if;
13052 end if;
13053 end Constrain_Access;
13054
13055 ---------------------
13056 -- Constrain_Array --
13057 ---------------------
13058
13059 procedure Constrain_Array
13060 (Def_Id : in out Entity_Id;
13061 SI : Node_Id;
13062 Related_Nod : Node_Id;
13063 Related_Id : Entity_Id;
13064 Suffix : Character)
13065 is
13066 C : constant Node_Id := Constraint (SI);
13067 Number_Of_Constraints : Nat := 0;
13068 Index : Node_Id;
13069 S, T : Entity_Id;
13070 Constraint_OK : Boolean := True;
13071
13072 begin
13073 T := Entity (Subtype_Mark (SI));
13074
13075 if Is_Access_Type (T) then
13076 T := Designated_Type (T);
13077 end if;
13078
13079 -- If an index constraint follows a subtype mark in a subtype indication
13080 -- then the type or subtype denoted by the subtype mark must not already
13081 -- impose an index constraint. The subtype mark must denote either an
13082 -- unconstrained array type or an access type whose designated type
13083 -- is such an array type... (RM 3.6.1)
13084
13085 if Is_Constrained (T) then
13086 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
13087 Constraint_OK := False;
13088
13089 else
13090 S := First (Constraints (C));
13091 while Present (S) loop
13092 Number_Of_Constraints := Number_Of_Constraints + 1;
13093 Next (S);
13094 end loop;
13095
13096 -- In either case, the index constraint must provide a discrete
13097 -- range for each index of the array type and the type of each
13098 -- discrete range must be the same as that of the corresponding
13099 -- index. (RM 3.6.1)
13100
13101 if Number_Of_Constraints /= Number_Dimensions (T) then
13102 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
13103 Constraint_OK := False;
13104
13105 else
13106 S := First (Constraints (C));
13107 Index := First_Index (T);
13108 Analyze (Index);
13109
13110 -- Apply constraints to each index type
13111
13112 for J in 1 .. Number_Of_Constraints loop
13113 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
13114 Next (Index);
13115 Next (S);
13116 end loop;
13117
13118 end if;
13119 end if;
13120
13121 if No (Def_Id) then
13122 Def_Id :=
13123 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
13124 Set_Parent (Def_Id, Related_Nod);
13125
13126 else
13127 Set_Ekind (Def_Id, E_Array_Subtype);
13128 end if;
13129
13130 Set_Size_Info (Def_Id, (T));
13131 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13132 Set_Etype (Def_Id, Base_Type (T));
13133
13134 if Constraint_OK then
13135 Set_First_Index (Def_Id, First (Constraints (C)));
13136 else
13137 Set_First_Index (Def_Id, First_Index (T));
13138 end if;
13139
13140 Set_Is_Constrained (Def_Id, True);
13141 Set_Is_Aliased (Def_Id, Is_Aliased (T));
13142 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13143
13144 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
13145 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
13146
13147 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
13148 -- We need to initialize the attribute because if Def_Id is previously
13149 -- analyzed through a limited_with clause, it will have the attributes
13150 -- of an incomplete type, one of which is an Elist that overlaps the
13151 -- Packed_Array_Impl_Type field.
13152
13153 Set_Packed_Array_Impl_Type (Def_Id, Empty);
13154
13155 -- Build a freeze node if parent still needs one. Also make sure that
13156 -- the Depends_On_Private status is set because the subtype will need
13157 -- reprocessing at the time the base type does, and also we must set a
13158 -- conditional delay.
13159
13160 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
13161 Conditional_Delay (Def_Id, T);
13162 end Constrain_Array;
13163
13164 ------------------------------
13165 -- Constrain_Component_Type --
13166 ------------------------------
13167
13168 function Constrain_Component_Type
13169 (Comp : Entity_Id;
13170 Constrained_Typ : Entity_Id;
13171 Related_Node : Node_Id;
13172 Typ : Entity_Id;
13173 Constraints : Elist_Id) return Entity_Id
13174 is
13175 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
13176 Compon_Type : constant Entity_Id := Etype (Comp);
13177
13178 function Build_Constrained_Array_Type
13179 (Old_Type : Entity_Id) return Entity_Id;
13180 -- If Old_Type is an array type, one of whose indexes is constrained
13181 -- by a discriminant, build an Itype whose constraint replaces the
13182 -- discriminant with its value in the constraint.
13183
13184 function Build_Constrained_Discriminated_Type
13185 (Old_Type : Entity_Id) return Entity_Id;
13186 -- Ditto for record components
13187
13188 function Build_Constrained_Access_Type
13189 (Old_Type : Entity_Id) return Entity_Id;
13190 -- Ditto for access types. Makes use of previous two functions, to
13191 -- constrain designated type.
13192
13193 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
13194 -- T is an array or discriminated type, C is a list of constraints
13195 -- that apply to T. This routine builds the constrained subtype.
13196
13197 function Is_Discriminant (Expr : Node_Id) return Boolean;
13198 -- Returns True if Expr is a discriminant
13199
13200 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
13201 -- Find the value of discriminant Discrim in Constraint
13202
13203 -----------------------------------
13204 -- Build_Constrained_Access_Type --
13205 -----------------------------------
13206
13207 function Build_Constrained_Access_Type
13208 (Old_Type : Entity_Id) return Entity_Id
13209 is
13210 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
13211 Itype : Entity_Id;
13212 Desig_Subtype : Entity_Id;
13213 Scop : Entity_Id;
13214
13215 begin
13216 -- if the original access type was not embedded in the enclosing
13217 -- type definition, there is no need to produce a new access
13218 -- subtype. In fact every access type with an explicit constraint
13219 -- generates an itype whose scope is the enclosing record.
13220
13221 if not Is_Type (Scope (Old_Type)) then
13222 return Old_Type;
13223
13224 elsif Is_Array_Type (Desig_Type) then
13225 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
13226
13227 elsif Has_Discriminants (Desig_Type) then
13228
13229 -- This may be an access type to an enclosing record type for
13230 -- which we are constructing the constrained components. Return
13231 -- the enclosing record subtype. This is not always correct,
13232 -- but avoids infinite recursion. ???
13233
13234 Desig_Subtype := Any_Type;
13235
13236 for J in reverse 0 .. Scope_Stack.Last loop
13237 Scop := Scope_Stack.Table (J).Entity;
13238
13239 if Is_Type (Scop)
13240 and then Base_Type (Scop) = Base_Type (Desig_Type)
13241 then
13242 Desig_Subtype := Scop;
13243 end if;
13244
13245 exit when not Is_Type (Scop);
13246 end loop;
13247
13248 if Desig_Subtype = Any_Type then
13249 Desig_Subtype :=
13250 Build_Constrained_Discriminated_Type (Desig_Type);
13251 end if;
13252
13253 else
13254 return Old_Type;
13255 end if;
13256
13257 if Desig_Subtype /= Desig_Type then
13258
13259 -- The Related_Node better be here or else we won't be able
13260 -- to attach new itypes to a node in the tree.
13261
13262 pragma Assert (Present (Related_Node));
13263
13264 Itype := Create_Itype (E_Access_Subtype, Related_Node);
13265
13266 Set_Etype (Itype, Base_Type (Old_Type));
13267 Set_Size_Info (Itype, (Old_Type));
13268 Set_Directly_Designated_Type (Itype, Desig_Subtype);
13269 Set_Depends_On_Private (Itype, Has_Private_Component
13270 (Old_Type));
13271 Set_Is_Access_Constant (Itype, Is_Access_Constant
13272 (Old_Type));
13273
13274 -- The new itype needs freezing when it depends on a not frozen
13275 -- type and the enclosing subtype needs freezing.
13276
13277 if Has_Delayed_Freeze (Constrained_Typ)
13278 and then not Is_Frozen (Constrained_Typ)
13279 then
13280 Conditional_Delay (Itype, Base_Type (Old_Type));
13281 end if;
13282
13283 return Itype;
13284
13285 else
13286 return Old_Type;
13287 end if;
13288 end Build_Constrained_Access_Type;
13289
13290 ----------------------------------
13291 -- Build_Constrained_Array_Type --
13292 ----------------------------------
13293
13294 function Build_Constrained_Array_Type
13295 (Old_Type : Entity_Id) return Entity_Id
13296 is
13297 Lo_Expr : Node_Id;
13298 Hi_Expr : Node_Id;
13299 Old_Index : Node_Id;
13300 Range_Node : Node_Id;
13301 Constr_List : List_Id;
13302
13303 Need_To_Create_Itype : Boolean := False;
13304
13305 begin
13306 Old_Index := First_Index (Old_Type);
13307 while Present (Old_Index) loop
13308 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
13309
13310 if Is_Discriminant (Lo_Expr)
13311 or else
13312 Is_Discriminant (Hi_Expr)
13313 then
13314 Need_To_Create_Itype := True;
13315 end if;
13316
13317 Next_Index (Old_Index);
13318 end loop;
13319
13320 if Need_To_Create_Itype then
13321 Constr_List := New_List;
13322
13323 Old_Index := First_Index (Old_Type);
13324 while Present (Old_Index) loop
13325 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
13326
13327 if Is_Discriminant (Lo_Expr) then
13328 Lo_Expr := Get_Discr_Value (Lo_Expr);
13329 end if;
13330
13331 if Is_Discriminant (Hi_Expr) then
13332 Hi_Expr := Get_Discr_Value (Hi_Expr);
13333 end if;
13334
13335 Range_Node :=
13336 Make_Range
13337 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
13338
13339 Append (Range_Node, To => Constr_List);
13340
13341 Next_Index (Old_Index);
13342 end loop;
13343
13344 return Build_Subtype (Old_Type, Constr_List);
13345
13346 else
13347 return Old_Type;
13348 end if;
13349 end Build_Constrained_Array_Type;
13350
13351 ------------------------------------------
13352 -- Build_Constrained_Discriminated_Type --
13353 ------------------------------------------
13354
13355 function Build_Constrained_Discriminated_Type
13356 (Old_Type : Entity_Id) return Entity_Id
13357 is
13358 Expr : Node_Id;
13359 Constr_List : List_Id;
13360 Old_Constraint : Elmt_Id;
13361
13362 Need_To_Create_Itype : Boolean := False;
13363
13364 begin
13365 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
13366 while Present (Old_Constraint) loop
13367 Expr := Node (Old_Constraint);
13368
13369 if Is_Discriminant (Expr) then
13370 Need_To_Create_Itype := True;
13371 end if;
13372
13373 Next_Elmt (Old_Constraint);
13374 end loop;
13375
13376 if Need_To_Create_Itype then
13377 Constr_List := New_List;
13378
13379 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
13380 while Present (Old_Constraint) loop
13381 Expr := Node (Old_Constraint);
13382
13383 if Is_Discriminant (Expr) then
13384 Expr := Get_Discr_Value (Expr);
13385 end if;
13386
13387 Append (New_Copy_Tree (Expr), To => Constr_List);
13388
13389 Next_Elmt (Old_Constraint);
13390 end loop;
13391
13392 return Build_Subtype (Old_Type, Constr_List);
13393
13394 else
13395 return Old_Type;
13396 end if;
13397 end Build_Constrained_Discriminated_Type;
13398
13399 -------------------
13400 -- Build_Subtype --
13401 -------------------
13402
13403 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
13404 Indic : Node_Id;
13405 Subtyp_Decl : Node_Id;
13406 Def_Id : Entity_Id;
13407 Btyp : Entity_Id := Base_Type (T);
13408
13409 begin
13410 -- The Related_Node better be here or else we won't be able to
13411 -- attach new itypes to a node in the tree.
13412
13413 pragma Assert (Present (Related_Node));
13414
13415 -- If the view of the component's type is incomplete or private
13416 -- with unknown discriminants, then the constraint must be applied
13417 -- to the full type.
13418
13419 if Has_Unknown_Discriminants (Btyp)
13420 and then Present (Underlying_Type (Btyp))
13421 then
13422 Btyp := Underlying_Type (Btyp);
13423 end if;
13424
13425 Indic :=
13426 Make_Subtype_Indication (Loc,
13427 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
13428 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
13429
13430 Def_Id := Create_Itype (Ekind (T), Related_Node);
13431
13432 Subtyp_Decl :=
13433 Make_Subtype_Declaration (Loc,
13434 Defining_Identifier => Def_Id,
13435 Subtype_Indication => Indic);
13436
13437 Set_Parent (Subtyp_Decl, Parent (Related_Node));
13438
13439 -- Itypes must be analyzed with checks off (see package Itypes)
13440
13441 Analyze (Subtyp_Decl, Suppress => All_Checks);
13442
13443 if Is_Itype (Def_Id) and then Has_Predicates (T) then
13444 Inherit_Predicate_Flags (Def_Id, T);
13445
13446 -- Indicate where the predicate function may be found.
13447
13448 if Is_Itype (T) then
13449 if Present (Predicate_Function (Def_Id)) then
13450 null;
13451
13452 elsif Present (Predicate_Function (T)) then
13453 Set_Predicate_Function (Def_Id, Predicate_Function (T));
13454
13455 else
13456 Set_Predicated_Parent (Def_Id, Predicated_Parent (T));
13457 end if;
13458
13459 elsif No (Predicate_Function (Def_Id)) then
13460 Set_Predicated_Parent (Def_Id, T);
13461 end if;
13462 end if;
13463
13464 return Def_Id;
13465 end Build_Subtype;
13466
13467 ---------------------
13468 -- Get_Discr_Value --
13469 ---------------------
13470
13471 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
13472 D : Entity_Id;
13473 E : Elmt_Id;
13474
13475 begin
13476 -- The discriminant may be declared for the type, in which case we
13477 -- find it by iterating over the list of discriminants. If the
13478 -- discriminant is inherited from a parent type, it appears as the
13479 -- corresponding discriminant of the current type. This will be the
13480 -- case when constraining an inherited component whose constraint is
13481 -- given by a discriminant of the parent.
13482
13483 D := First_Discriminant (Typ);
13484 E := First_Elmt (Constraints);
13485
13486 while Present (D) loop
13487 if D = Entity (Discrim)
13488 or else D = CR_Discriminant (Entity (Discrim))
13489 or else Corresponding_Discriminant (D) = Entity (Discrim)
13490 then
13491 return Node (E);
13492 end if;
13493
13494 Next_Discriminant (D);
13495 Next_Elmt (E);
13496 end loop;
13497
13498 -- The Corresponding_Discriminant mechanism is incomplete, because
13499 -- the correspondence between new and old discriminants is not one
13500 -- to one: one new discriminant can constrain several old ones. In
13501 -- that case, scan sequentially the stored_constraint, the list of
13502 -- discriminants of the parents, and the constraints.
13503
13504 -- Previous code checked for the present of the Stored_Constraint
13505 -- list for the derived type, but did not use it at all. Should it
13506 -- be present when the component is a discriminated task type?
13507
13508 if Is_Derived_Type (Typ)
13509 and then Scope (Entity (Discrim)) = Etype (Typ)
13510 then
13511 D := First_Discriminant (Etype (Typ));
13512 E := First_Elmt (Constraints);
13513 while Present (D) loop
13514 if D = Entity (Discrim) then
13515 return Node (E);
13516 end if;
13517
13518 Next_Discriminant (D);
13519 Next_Elmt (E);
13520 end loop;
13521 end if;
13522
13523 -- Something is wrong if we did not find the value
13524
13525 raise Program_Error;
13526 end Get_Discr_Value;
13527
13528 ---------------------
13529 -- Is_Discriminant --
13530 ---------------------
13531
13532 function Is_Discriminant (Expr : Node_Id) return Boolean is
13533 Discrim_Scope : Entity_Id;
13534
13535 begin
13536 if Denotes_Discriminant (Expr) then
13537 Discrim_Scope := Scope (Entity (Expr));
13538
13539 -- Either we have a reference to one of Typ's discriminants,
13540
13541 pragma Assert (Discrim_Scope = Typ
13542
13543 -- or to the discriminants of the parent type, in the case
13544 -- of a derivation of a tagged type with variants.
13545
13546 or else Discrim_Scope = Etype (Typ)
13547 or else Full_View (Discrim_Scope) = Etype (Typ)
13548
13549 -- or same as above for the case where the discriminants
13550 -- were declared in Typ's private view.
13551
13552 or else (Is_Private_Type (Discrim_Scope)
13553 and then Chars (Discrim_Scope) = Chars (Typ))
13554
13555 -- or else we are deriving from the full view and the
13556 -- discriminant is declared in the private entity.
13557
13558 or else (Is_Private_Type (Typ)
13559 and then Chars (Discrim_Scope) = Chars (Typ))
13560
13561 -- Or we are constrained the corresponding record of a
13562 -- synchronized type that completes a private declaration.
13563
13564 or else (Is_Concurrent_Record_Type (Typ)
13565 and then
13566 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
13567
13568 -- or we have a class-wide type, in which case make sure the
13569 -- discriminant found belongs to the root type.
13570
13571 or else (Is_Class_Wide_Type (Typ)
13572 and then Etype (Typ) = Discrim_Scope));
13573
13574 return True;
13575 end if;
13576
13577 -- In all other cases we have something wrong
13578
13579 return False;
13580 end Is_Discriminant;
13581
13582 -- Start of processing for Constrain_Component_Type
13583
13584 begin
13585 if Nkind (Parent (Comp)) = N_Component_Declaration
13586 and then Comes_From_Source (Parent (Comp))
13587 and then Comes_From_Source
13588 (Subtype_Indication (Component_Definition (Parent (Comp))))
13589 and then
13590 Is_Entity_Name
13591 (Subtype_Indication (Component_Definition (Parent (Comp))))
13592 then
13593 return Compon_Type;
13594
13595 elsif Is_Array_Type (Compon_Type) then
13596 return Build_Constrained_Array_Type (Compon_Type);
13597
13598 elsif Has_Discriminants (Compon_Type) then
13599 return Build_Constrained_Discriminated_Type (Compon_Type);
13600
13601 elsif Is_Access_Type (Compon_Type) then
13602 return Build_Constrained_Access_Type (Compon_Type);
13603
13604 else
13605 return Compon_Type;
13606 end if;
13607 end Constrain_Component_Type;
13608
13609 --------------------------
13610 -- Constrain_Concurrent --
13611 --------------------------
13612
13613 -- For concurrent types, the associated record value type carries the same
13614 -- discriminants, so when we constrain a concurrent type, we must constrain
13615 -- the corresponding record type as well.
13616
13617 procedure Constrain_Concurrent
13618 (Def_Id : in out Entity_Id;
13619 SI : Node_Id;
13620 Related_Nod : Node_Id;
13621 Related_Id : Entity_Id;
13622 Suffix : Character)
13623 is
13624 -- Retrieve Base_Type to ensure getting to the concurrent type in the
13625 -- case of a private subtype (needed when only doing semantic analysis).
13626
13627 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
13628 T_Val : Entity_Id;
13629
13630 begin
13631 if Is_Access_Type (T_Ent) then
13632 T_Ent := Designated_Type (T_Ent);
13633 end if;
13634
13635 T_Val := Corresponding_Record_Type (T_Ent);
13636
13637 if Present (T_Val) then
13638
13639 if No (Def_Id) then
13640 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
13641
13642 -- Elaborate itype now, as it may be used in a subsequent
13643 -- synchronized operation in another scope.
13644
13645 if Nkind (Related_Nod) = N_Full_Type_Declaration then
13646 Build_Itype_Reference (Def_Id, Related_Nod);
13647 end if;
13648 end if;
13649
13650 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
13651 Set_First_Private_Entity (Def_Id, First_Private_Entity (T_Ent));
13652
13653 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13654 Set_Corresponding_Record_Type (Def_Id,
13655 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
13656
13657 else
13658 -- If there is no associated record, expansion is disabled and this
13659 -- is a generic context. Create a subtype in any case, so that
13660 -- semantic analysis can proceed.
13661
13662 if No (Def_Id) then
13663 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
13664 end if;
13665
13666 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
13667 end if;
13668 end Constrain_Concurrent;
13669
13670 ------------------------------------
13671 -- Constrain_Corresponding_Record --
13672 ------------------------------------
13673
13674 function Constrain_Corresponding_Record
13675 (Prot_Subt : Entity_Id;
13676 Corr_Rec : Entity_Id;
13677 Related_Nod : Node_Id) return Entity_Id
13678 is
13679 T_Sub : constant Entity_Id :=
13680 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
13681
13682 begin
13683 Set_Etype (T_Sub, Corr_Rec);
13684 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
13685 Set_Is_Constrained (T_Sub, True);
13686 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
13687 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
13688
13689 if Has_Discriminants (Prot_Subt) then -- False only if errors.
13690 Set_Discriminant_Constraint
13691 (T_Sub, Discriminant_Constraint (Prot_Subt));
13692 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
13693 Create_Constrained_Components
13694 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
13695 end if;
13696
13697 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
13698
13699 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
13700 Conditional_Delay (T_Sub, Corr_Rec);
13701
13702 else
13703 -- This is a component subtype: it will be frozen in the context of
13704 -- the enclosing record's init_proc, so that discriminant references
13705 -- are resolved to discriminals. (Note: we used to skip freezing
13706 -- altogether in that case, which caused errors downstream for
13707 -- components of a bit packed array type).
13708
13709 Set_Has_Delayed_Freeze (T_Sub);
13710 end if;
13711
13712 return T_Sub;
13713 end Constrain_Corresponding_Record;
13714
13715 -----------------------
13716 -- Constrain_Decimal --
13717 -----------------------
13718
13719 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
13720 T : constant Entity_Id := Entity (Subtype_Mark (S));
13721 C : constant Node_Id := Constraint (S);
13722 Loc : constant Source_Ptr := Sloc (C);
13723 Range_Expr : Node_Id;
13724 Digits_Expr : Node_Id;
13725 Digits_Val : Uint;
13726 Bound_Val : Ureal;
13727
13728 begin
13729 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
13730
13731 if Nkind (C) = N_Range_Constraint then
13732 Range_Expr := Range_Expression (C);
13733 Digits_Val := Digits_Value (T);
13734
13735 else
13736 pragma Assert (Nkind (C) = N_Digits_Constraint);
13737
13738 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13739
13740 Digits_Expr := Digits_Expression (C);
13741 Analyze_And_Resolve (Digits_Expr, Any_Integer);
13742
13743 Check_Digits_Expression (Digits_Expr);
13744 Digits_Val := Expr_Value (Digits_Expr);
13745
13746 if Digits_Val > Digits_Value (T) then
13747 Error_Msg_N
13748 ("digits expression is incompatible with subtype", C);
13749 Digits_Val := Digits_Value (T);
13750 end if;
13751
13752 if Present (Range_Constraint (C)) then
13753 Range_Expr := Range_Expression (Range_Constraint (C));
13754 else
13755 Range_Expr := Empty;
13756 end if;
13757 end if;
13758
13759 Set_Etype (Def_Id, Base_Type (T));
13760 Set_Size_Info (Def_Id, (T));
13761 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13762 Set_Delta_Value (Def_Id, Delta_Value (T));
13763 Set_Scale_Value (Def_Id, Scale_Value (T));
13764 Set_Small_Value (Def_Id, Small_Value (T));
13765 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
13766 Set_Digits_Value (Def_Id, Digits_Val);
13767
13768 -- Manufacture range from given digits value if no range present
13769
13770 if No (Range_Expr) then
13771 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
13772 Range_Expr :=
13773 Make_Range (Loc,
13774 Low_Bound =>
13775 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
13776 High_Bound =>
13777 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
13778 end if;
13779
13780 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
13781 Set_Discrete_RM_Size (Def_Id);
13782
13783 -- Unconditionally delay the freeze, since we cannot set size
13784 -- information in all cases correctly until the freeze point.
13785
13786 Set_Has_Delayed_Freeze (Def_Id);
13787 end Constrain_Decimal;
13788
13789 ----------------------------------
13790 -- Constrain_Discriminated_Type --
13791 ----------------------------------
13792
13793 procedure Constrain_Discriminated_Type
13794 (Def_Id : Entity_Id;
13795 S : Node_Id;
13796 Related_Nod : Node_Id;
13797 For_Access : Boolean := False)
13798 is
13799 E : Entity_Id := Entity (Subtype_Mark (S));
13800 T : Entity_Id;
13801
13802 procedure Fixup_Bad_Constraint;
13803 -- Called after finding a bad constraint, and after having posted an
13804 -- appropriate error message. The goal is to leave type Def_Id in as
13805 -- reasonable state as possible.
13806
13807 --------------------------
13808 -- Fixup_Bad_Constraint --
13809 --------------------------
13810
13811 procedure Fixup_Bad_Constraint is
13812 begin
13813 -- Set a reasonable Ekind for the entity, including incomplete types.
13814
13815 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
13816
13817 -- Set Etype to the known type, to reduce chances of cascaded errors
13818
13819 Set_Etype (Def_Id, E);
13820 Set_Error_Posted (Def_Id);
13821 end Fixup_Bad_Constraint;
13822
13823 -- Local variables
13824
13825 C : Node_Id;
13826 Constr : Elist_Id := New_Elmt_List;
13827
13828 -- Start of processing for Constrain_Discriminated_Type
13829
13830 begin
13831 C := Constraint (S);
13832
13833 -- A discriminant constraint is only allowed in a subtype indication,
13834 -- after a subtype mark. This subtype mark must denote either a type
13835 -- with discriminants, or an access type whose designated type is a
13836 -- type with discriminants. A discriminant constraint specifies the
13837 -- values of these discriminants (RM 3.7.2(5)).
13838
13839 T := Base_Type (Entity (Subtype_Mark (S)));
13840
13841 if Is_Access_Type (T) then
13842 T := Designated_Type (T);
13843 end if;
13844
13845 -- In an instance it may be necessary to retrieve the full view of a
13846 -- type with unknown discriminants, or a full view with defaulted
13847 -- discriminants. In other contexts the constraint is illegal.
13848
13849 if In_Instance
13850 and then Is_Private_Type (T)
13851 and then Present (Full_View (T))
13852 and then
13853 (Has_Unknown_Discriminants (T)
13854 or else
13855 (not Has_Discriminants (T)
13856 and then Has_Discriminants (Full_View (T))
13857 and then Present (Discriminant_Default_Value
13858 (First_Discriminant (Full_View (T))))))
13859 then
13860 T := Full_View (T);
13861 E := Full_View (E);
13862 end if;
13863
13864 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal. Avoid
13865 -- generating an error for access-to-incomplete subtypes.
13866
13867 if Ada_Version >= Ada_2005
13868 and then Ekind (T) = E_Incomplete_Type
13869 and then Nkind (Parent (S)) = N_Subtype_Declaration
13870 and then not Is_Itype (Def_Id)
13871 then
13872 -- A little sanity check: emit an error message if the type has
13873 -- discriminants to begin with. Type T may be a regular incomplete
13874 -- type or imported via a limited with clause.
13875
13876 if Has_Discriminants (T)
13877 or else (From_Limited_With (T)
13878 and then Present (Non_Limited_View (T))
13879 and then Nkind (Parent (Non_Limited_View (T))) =
13880 N_Full_Type_Declaration
13881 and then Present (Discriminant_Specifications
13882 (Parent (Non_Limited_View (T)))))
13883 then
13884 Error_Msg_N
13885 ("(Ada 2005) incomplete subtype may not be constrained", C);
13886 else
13887 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13888 end if;
13889
13890 Fixup_Bad_Constraint;
13891 return;
13892
13893 -- Check that the type has visible discriminants. The type may be
13894 -- a private type with unknown discriminants whose full view has
13895 -- discriminants which are invisible.
13896
13897 elsif not Has_Discriminants (T)
13898 or else
13899 (Has_Unknown_Discriminants (T)
13900 and then Is_Private_Type (T))
13901 then
13902 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13903 Fixup_Bad_Constraint;
13904 return;
13905
13906 elsif Is_Constrained (E)
13907 or else (Ekind (E) = E_Class_Wide_Subtype
13908 and then Present (Discriminant_Constraint (E)))
13909 then
13910 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
13911 Fixup_Bad_Constraint;
13912 return;
13913 end if;
13914
13915 -- T may be an unconstrained subtype (e.g. a generic actual). Constraint
13916 -- applies to the base type.
13917
13918 T := Base_Type (T);
13919
13920 Constr := Build_Discriminant_Constraints (T, S);
13921
13922 -- If the list returned was empty we had an error in building the
13923 -- discriminant constraint. We have also already signalled an error
13924 -- in the incomplete type case
13925
13926 if Is_Empty_Elmt_List (Constr) then
13927 Fixup_Bad_Constraint;
13928 return;
13929 end if;
13930
13931 Build_Discriminated_Subtype (T, Def_Id, Constr, Related_Nod, For_Access);
13932 end Constrain_Discriminated_Type;
13933
13934 ---------------------------
13935 -- Constrain_Enumeration --
13936 ---------------------------
13937
13938 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
13939 T : constant Entity_Id := Entity (Subtype_Mark (S));
13940 C : constant Node_Id := Constraint (S);
13941
13942 begin
13943 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13944
13945 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
13946
13947 Set_Etype (Def_Id, Base_Type (T));
13948 Set_Size_Info (Def_Id, (T));
13949 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13950 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13951
13952 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13953
13954 Set_Discrete_RM_Size (Def_Id);
13955 end Constrain_Enumeration;
13956
13957 ----------------------
13958 -- Constrain_Float --
13959 ----------------------
13960
13961 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
13962 T : constant Entity_Id := Entity (Subtype_Mark (S));
13963 C : Node_Id;
13964 D : Node_Id;
13965 Rais : Node_Id;
13966
13967 begin
13968 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
13969
13970 Set_Etype (Def_Id, Base_Type (T));
13971 Set_Size_Info (Def_Id, (T));
13972 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13973
13974 -- Process the constraint
13975
13976 C := Constraint (S);
13977
13978 -- Digits constraint present
13979
13980 if Nkind (C) = N_Digits_Constraint then
13981
13982 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13983 Check_Restriction (No_Obsolescent_Features, C);
13984
13985 if Warn_On_Obsolescent_Feature then
13986 Error_Msg_N
13987 ("subtype digits constraint is an " &
13988 "obsolescent feature (RM J.3(8))?j?", C);
13989 end if;
13990
13991 D := Digits_Expression (C);
13992 Analyze_And_Resolve (D, Any_Integer);
13993 Check_Digits_Expression (D);
13994 Set_Digits_Value (Def_Id, Expr_Value (D));
13995
13996 -- Check that digits value is in range. Obviously we can do this
13997 -- at compile time, but it is strictly a runtime check, and of
13998 -- course there is an ACVC test that checks this.
13999
14000 if Digits_Value (Def_Id) > Digits_Value (T) then
14001 Error_Msg_Uint_1 := Digits_Value (T);
14002 Error_Msg_N ("??digits value is too large, maximum is ^", D);
14003 Rais :=
14004 Make_Raise_Constraint_Error (Sloc (D),
14005 Reason => CE_Range_Check_Failed);
14006 Insert_Action (Declaration_Node (Def_Id), Rais);
14007 end if;
14008
14009 C := Range_Constraint (C);
14010
14011 -- No digits constraint present
14012
14013 else
14014 Set_Digits_Value (Def_Id, Digits_Value (T));
14015 end if;
14016
14017 -- Range constraint present
14018
14019 if Nkind (C) = N_Range_Constraint then
14020 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14021
14022 -- No range constraint present
14023
14024 else
14025 pragma Assert (No (C));
14026 Set_Scalar_Range (Def_Id, Scalar_Range (T));
14027 end if;
14028
14029 Set_Is_Constrained (Def_Id);
14030 end Constrain_Float;
14031
14032 ---------------------
14033 -- Constrain_Index --
14034 ---------------------
14035
14036 procedure Constrain_Index
14037 (Index : Node_Id;
14038 S : Node_Id;
14039 Related_Nod : Node_Id;
14040 Related_Id : Entity_Id;
14041 Suffix : Character;
14042 Suffix_Index : Nat)
14043 is
14044 Def_Id : Entity_Id;
14045 R : Node_Id := Empty;
14046 T : constant Entity_Id := Etype (Index);
14047
14048 begin
14049 Def_Id :=
14050 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
14051 Set_Etype (Def_Id, Base_Type (T));
14052
14053 if Nkind (S) = N_Range
14054 or else
14055 (Nkind (S) = N_Attribute_Reference
14056 and then Attribute_Name (S) = Name_Range)
14057 then
14058 -- A Range attribute will be transformed into N_Range by Resolve
14059
14060 Analyze (S);
14061 Set_Etype (S, T);
14062 R := S;
14063
14064 Process_Range_Expr_In_Decl (R, T);
14065
14066 if not Error_Posted (S)
14067 and then
14068 (Nkind (S) /= N_Range
14069 or else not Covers (T, (Etype (Low_Bound (S))))
14070 or else not Covers (T, (Etype (High_Bound (S)))))
14071 then
14072 if Base_Type (T) /= Any_Type
14073 and then Etype (Low_Bound (S)) /= Any_Type
14074 and then Etype (High_Bound (S)) /= Any_Type
14075 then
14076 Error_Msg_N ("range expected", S);
14077 end if;
14078 end if;
14079
14080 elsif Nkind (S) = N_Subtype_Indication then
14081
14082 -- The parser has verified that this is a discrete indication
14083
14084 Resolve_Discrete_Subtype_Indication (S, T);
14085 Bad_Predicated_Subtype_Use
14086 ("subtype& has predicate, not allowed in index constraint",
14087 S, Entity (Subtype_Mark (S)));
14088
14089 R := Range_Expression (Constraint (S));
14090
14091 -- Capture values of bounds and generate temporaries for them if
14092 -- needed, since checks may cause duplication of the expressions
14093 -- which must not be reevaluated.
14094
14095 -- The forced evaluation removes side effects from expressions, which
14096 -- should occur also in GNATprove mode. Otherwise, we end up with
14097 -- unexpected insertions of actions at places where this is not
14098 -- supposed to occur, e.g. on default parameters of a call.
14099
14100 if Expander_Active or GNATprove_Mode then
14101 Force_Evaluation
14102 (Low_Bound (R), Related_Id => Def_Id, Is_Low_Bound => True);
14103 Force_Evaluation
14104 (High_Bound (R), Related_Id => Def_Id, Is_High_Bound => True);
14105 end if;
14106
14107 elsif Nkind (S) = N_Discriminant_Association then
14108
14109 -- Syntactically valid in subtype indication
14110
14111 Error_Msg_N ("invalid index constraint", S);
14112 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
14113 return;
14114
14115 -- Subtype_Mark case, no anonymous subtypes to construct
14116
14117 else
14118 Analyze (S);
14119
14120 if Is_Entity_Name (S) then
14121 if not Is_Type (Entity (S)) then
14122 Error_Msg_N ("expect subtype mark for index constraint", S);
14123
14124 elsif Base_Type (Entity (S)) /= Base_Type (T) then
14125 Wrong_Type (S, Base_Type (T));
14126
14127 -- Check error of subtype with predicate in index constraint
14128
14129 else
14130 Bad_Predicated_Subtype_Use
14131 ("subtype& has predicate, not allowed in index constraint",
14132 S, Entity (S));
14133 end if;
14134
14135 return;
14136
14137 else
14138 Error_Msg_N ("invalid index constraint", S);
14139 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
14140 return;
14141 end if;
14142 end if;
14143
14144 -- Complete construction of the Itype
14145
14146 if Is_Modular_Integer_Type (T) then
14147 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
14148
14149 elsif Is_Integer_Type (T) then
14150 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
14151
14152 else
14153 Set_Ekind (Def_Id, E_Enumeration_Subtype);
14154 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
14155 Set_First_Literal (Def_Id, First_Literal (T));
14156 end if;
14157
14158 Set_Size_Info (Def_Id, (T));
14159 Set_RM_Size (Def_Id, RM_Size (T));
14160 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14161
14162 Set_Scalar_Range (Def_Id, R);
14163
14164 Set_Etype (S, Def_Id);
14165 Set_Discrete_RM_Size (Def_Id);
14166 end Constrain_Index;
14167
14168 -----------------------
14169 -- Constrain_Integer --
14170 -----------------------
14171
14172 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
14173 T : constant Entity_Id := Entity (Subtype_Mark (S));
14174 C : constant Node_Id := Constraint (S);
14175
14176 begin
14177 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14178
14179 if Is_Modular_Integer_Type (T) then
14180 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
14181 else
14182 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
14183 end if;
14184
14185 Set_Etype (Def_Id, Base_Type (T));
14186 Set_Size_Info (Def_Id, (T));
14187 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14188 Set_Discrete_RM_Size (Def_Id);
14189 end Constrain_Integer;
14190
14191 ------------------------------
14192 -- Constrain_Ordinary_Fixed --
14193 ------------------------------
14194
14195 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
14196 T : constant Entity_Id := Entity (Subtype_Mark (S));
14197 C : Node_Id;
14198 D : Node_Id;
14199 Rais : Node_Id;
14200
14201 begin
14202 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
14203 Set_Etype (Def_Id, Base_Type (T));
14204 Set_Size_Info (Def_Id, (T));
14205 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14206 Set_Small_Value (Def_Id, Small_Value (T));
14207
14208 -- Process the constraint
14209
14210 C := Constraint (S);
14211
14212 -- Delta constraint present
14213
14214 if Nkind (C) = N_Delta_Constraint then
14215
14216 Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
14217 Check_Restriction (No_Obsolescent_Features, C);
14218
14219 if Warn_On_Obsolescent_Feature then
14220 Error_Msg_S
14221 ("subtype delta constraint is an " &
14222 "obsolescent feature (RM J.3(7))?j?");
14223 end if;
14224
14225 D := Delta_Expression (C);
14226 Analyze_And_Resolve (D, Any_Real);
14227 Check_Delta_Expression (D);
14228 Set_Delta_Value (Def_Id, Expr_Value_R (D));
14229
14230 -- Check that delta value is in range. Obviously we can do this
14231 -- at compile time, but it is strictly a runtime check, and of
14232 -- course there is an ACVC test that checks this.
14233
14234 if Delta_Value (Def_Id) < Delta_Value (T) then
14235 Error_Msg_N ("??delta value is too small", D);
14236 Rais :=
14237 Make_Raise_Constraint_Error (Sloc (D),
14238 Reason => CE_Range_Check_Failed);
14239 Insert_Action (Declaration_Node (Def_Id), Rais);
14240 end if;
14241
14242 C := Range_Constraint (C);
14243
14244 -- No delta constraint present
14245
14246 else
14247 Set_Delta_Value (Def_Id, Delta_Value (T));
14248 end if;
14249
14250 -- Range constraint present
14251
14252 if Nkind (C) = N_Range_Constraint then
14253 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14254
14255 -- No range constraint present
14256
14257 else
14258 pragma Assert (No (C));
14259 Set_Scalar_Range (Def_Id, Scalar_Range (T));
14260 end if;
14261
14262 Set_Discrete_RM_Size (Def_Id);
14263
14264 -- Unconditionally delay the freeze, since we cannot set size
14265 -- information in all cases correctly until the freeze point.
14266
14267 Set_Has_Delayed_Freeze (Def_Id);
14268 end Constrain_Ordinary_Fixed;
14269
14270 -----------------------
14271 -- Contain_Interface --
14272 -----------------------
14273
14274 function Contain_Interface
14275 (Iface : Entity_Id;
14276 Ifaces : Elist_Id) return Boolean
14277 is
14278 Iface_Elmt : Elmt_Id;
14279
14280 begin
14281 if Present (Ifaces) then
14282 Iface_Elmt := First_Elmt (Ifaces);
14283 while Present (Iface_Elmt) loop
14284 if Node (Iface_Elmt) = Iface then
14285 return True;
14286 end if;
14287
14288 Next_Elmt (Iface_Elmt);
14289 end loop;
14290 end if;
14291
14292 return False;
14293 end Contain_Interface;
14294
14295 ---------------------------
14296 -- Convert_Scalar_Bounds --
14297 ---------------------------
14298
14299 procedure Convert_Scalar_Bounds
14300 (N : Node_Id;
14301 Parent_Type : Entity_Id;
14302 Derived_Type : Entity_Id;
14303 Loc : Source_Ptr)
14304 is
14305 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
14306
14307 Lo : Node_Id;
14308 Hi : Node_Id;
14309 Rng : Node_Id;
14310
14311 begin
14312 -- Defend against previous errors
14313
14314 if No (Scalar_Range (Derived_Type)) then
14315 Check_Error_Detected;
14316 return;
14317 end if;
14318
14319 Lo := Build_Scalar_Bound
14320 (Type_Low_Bound (Derived_Type),
14321 Parent_Type, Implicit_Base);
14322
14323 Hi := Build_Scalar_Bound
14324 (Type_High_Bound (Derived_Type),
14325 Parent_Type, Implicit_Base);
14326
14327 Rng :=
14328 Make_Range (Loc,
14329 Low_Bound => Lo,
14330 High_Bound => Hi);
14331
14332 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
14333
14334 Set_Parent (Rng, N);
14335 Set_Scalar_Range (Derived_Type, Rng);
14336
14337 -- Analyze the bounds
14338
14339 Analyze_And_Resolve (Lo, Implicit_Base);
14340 Analyze_And_Resolve (Hi, Implicit_Base);
14341
14342 -- Analyze the range itself, except that we do not analyze it if
14343 -- the bounds are real literals, and we have a fixed-point type.
14344 -- The reason for this is that we delay setting the bounds in this
14345 -- case till we know the final Small and Size values (see circuit
14346 -- in Freeze.Freeze_Fixed_Point_Type for further details).
14347
14348 if Is_Fixed_Point_Type (Parent_Type)
14349 and then Nkind (Lo) = N_Real_Literal
14350 and then Nkind (Hi) = N_Real_Literal
14351 then
14352 return;
14353
14354 -- Here we do the analysis of the range
14355
14356 -- Note: we do this manually, since if we do a normal Analyze and
14357 -- Resolve call, there are problems with the conversions used for
14358 -- the derived type range.
14359
14360 else
14361 Set_Etype (Rng, Implicit_Base);
14362 Set_Analyzed (Rng, True);
14363 end if;
14364 end Convert_Scalar_Bounds;
14365
14366 -------------------
14367 -- Copy_And_Swap --
14368 -------------------
14369
14370 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
14371 begin
14372 -- Initialize new full declaration entity by copying the pertinent
14373 -- fields of the corresponding private declaration entity.
14374
14375 -- We temporarily set Ekind to a value appropriate for a type to
14376 -- avoid assert failures in Einfo from checking for setting type
14377 -- attributes on something that is not a type. Ekind (Priv) is an
14378 -- appropriate choice, since it allowed the attributes to be set
14379 -- in the first place. This Ekind value will be modified later.
14380
14381 Set_Ekind (Full, Ekind (Priv));
14382
14383 -- Also set Etype temporarily to Any_Type, again, in the absence
14384 -- of errors, it will be properly reset, and if there are errors,
14385 -- then we want a value of Any_Type to remain.
14386
14387 Set_Etype (Full, Any_Type);
14388
14389 -- Now start copying attributes
14390
14391 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
14392
14393 if Has_Discriminants (Full) then
14394 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
14395 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
14396 end if;
14397
14398 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
14399 Set_Homonym (Full, Homonym (Priv));
14400 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
14401 Set_Is_Public (Full, Is_Public (Priv));
14402 Set_Is_Pure (Full, Is_Pure (Priv));
14403 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
14404 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
14405 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
14406 Set_Has_Pragma_Unreferenced_Objects
14407 (Full, Has_Pragma_Unreferenced_Objects
14408 (Priv));
14409
14410 Conditional_Delay (Full, Priv);
14411
14412 if Is_Tagged_Type (Full) then
14413 Set_Direct_Primitive_Operations
14414 (Full, Direct_Primitive_Operations (Priv));
14415 Set_No_Tagged_Streams_Pragma
14416 (Full, No_Tagged_Streams_Pragma (Priv));
14417
14418 if Is_Base_Type (Priv) then
14419 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
14420 end if;
14421 end if;
14422
14423 Set_Is_Volatile (Full, Is_Volatile (Priv));
14424 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
14425 Set_Scope (Full, Scope (Priv));
14426 Set_Next_Entity (Full, Next_Entity (Priv));
14427 Set_First_Entity (Full, First_Entity (Priv));
14428 Set_Last_Entity (Full, Last_Entity (Priv));
14429
14430 -- If access types have been recorded for later handling, keep them in
14431 -- the full view so that they get handled when the full view freeze
14432 -- node is expanded.
14433
14434 if Present (Freeze_Node (Priv))
14435 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
14436 then
14437 Ensure_Freeze_Node (Full);
14438 Set_Access_Types_To_Process
14439 (Freeze_Node (Full),
14440 Access_Types_To_Process (Freeze_Node (Priv)));
14441 end if;
14442
14443 -- Swap the two entities. Now Private is the full type entity and Full
14444 -- is the private one. They will be swapped back at the end of the
14445 -- private part. This swapping ensures that the entity that is visible
14446 -- in the private part is the full declaration.
14447
14448 Exchange_Entities (Priv, Full);
14449 Append_Entity (Full, Scope (Full));
14450 end Copy_And_Swap;
14451
14452 -------------------------------------
14453 -- Copy_Array_Base_Type_Attributes --
14454 -------------------------------------
14455
14456 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
14457 begin
14458 Set_Component_Alignment (T1, Component_Alignment (T2));
14459 Set_Component_Type (T1, Component_Type (T2));
14460 Set_Component_Size (T1, Component_Size (T2));
14461 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
14462 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
14463 Propagate_Concurrent_Flags (T1, T2);
14464 Set_Is_Packed (T1, Is_Packed (T2));
14465 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
14466 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
14467 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
14468 end Copy_Array_Base_Type_Attributes;
14469
14470 -----------------------------------
14471 -- Copy_Array_Subtype_Attributes --
14472 -----------------------------------
14473
14474 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
14475 begin
14476 Set_Size_Info (T1, T2);
14477
14478 Set_First_Index (T1, First_Index (T2));
14479 Set_Is_Aliased (T1, Is_Aliased (T2));
14480 Set_Is_Volatile (T1, Is_Volatile (T2));
14481 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
14482 Set_Is_Constrained (T1, Is_Constrained (T2));
14483 Set_Depends_On_Private (T1, Has_Private_Component (T2));
14484 Inherit_Rep_Item_Chain (T1, T2);
14485 Set_Convention (T1, Convention (T2));
14486 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
14487 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
14488 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
14489 end Copy_Array_Subtype_Attributes;
14490
14491 -----------------------------------
14492 -- Create_Constrained_Components --
14493 -----------------------------------
14494
14495 procedure Create_Constrained_Components
14496 (Subt : Entity_Id;
14497 Decl_Node : Node_Id;
14498 Typ : Entity_Id;
14499 Constraints : Elist_Id)
14500 is
14501 Loc : constant Source_Ptr := Sloc (Subt);
14502 Comp_List : constant Elist_Id := New_Elmt_List;
14503 Parent_Type : constant Entity_Id := Etype (Typ);
14504 Assoc_List : constant List_Id := New_List;
14505 Discr_Val : Elmt_Id;
14506 Errors : Boolean;
14507 New_C : Entity_Id;
14508 Old_C : Entity_Id;
14509 Is_Static : Boolean := True;
14510
14511 procedure Collect_Fixed_Components (Typ : Entity_Id);
14512 -- Collect parent type components that do not appear in a variant part
14513
14514 procedure Create_All_Components;
14515 -- Iterate over Comp_List to create the components of the subtype
14516
14517 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
14518 -- Creates a new component from Old_Compon, copying all the fields from
14519 -- it, including its Etype, inserts the new component in the Subt entity
14520 -- chain and returns the new component.
14521
14522 function Is_Variant_Record (T : Entity_Id) return Boolean;
14523 -- If true, and discriminants are static, collect only components from
14524 -- variants selected by discriminant values.
14525
14526 ------------------------------
14527 -- Collect_Fixed_Components --
14528 ------------------------------
14529
14530 procedure Collect_Fixed_Components (Typ : Entity_Id) is
14531 begin
14532 -- Build association list for discriminants, and find components of the
14533 -- variant part selected by the values of the discriminants.
14534
14535 Old_C := First_Discriminant (Typ);
14536 Discr_Val := First_Elmt (Constraints);
14537 while Present (Old_C) loop
14538 Append_To (Assoc_List,
14539 Make_Component_Association (Loc,
14540 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
14541 Expression => New_Copy (Node (Discr_Val))));
14542
14543 Next_Elmt (Discr_Val);
14544 Next_Discriminant (Old_C);
14545 end loop;
14546
14547 -- The tag and the possible parent component are unconditionally in
14548 -- the subtype.
14549
14550 if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
14551 Old_C := First_Component (Typ);
14552 while Present (Old_C) loop
14553 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
14554 Append_Elmt (Old_C, Comp_List);
14555 end if;
14556
14557 Next_Component (Old_C);
14558 end loop;
14559 end if;
14560 end Collect_Fixed_Components;
14561
14562 ---------------------------
14563 -- Create_All_Components --
14564 ---------------------------
14565
14566 procedure Create_All_Components is
14567 Comp : Elmt_Id;
14568
14569 begin
14570 Comp := First_Elmt (Comp_List);
14571 while Present (Comp) loop
14572 Old_C := Node (Comp);
14573 New_C := Create_Component (Old_C);
14574
14575 Set_Etype
14576 (New_C,
14577 Constrain_Component_Type
14578 (Old_C, Subt, Decl_Node, Typ, Constraints));
14579 Set_Is_Public (New_C, Is_Public (Subt));
14580
14581 Next_Elmt (Comp);
14582 end loop;
14583 end Create_All_Components;
14584
14585 ----------------------
14586 -- Create_Component --
14587 ----------------------
14588
14589 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
14590 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
14591
14592 begin
14593 if Ekind (Old_Compon) = E_Discriminant
14594 and then Is_Completely_Hidden (Old_Compon)
14595 then
14596 -- This is a shadow discriminant created for a discriminant of
14597 -- the parent type, which needs to be present in the subtype.
14598 -- Give the shadow discriminant an internal name that cannot
14599 -- conflict with that of visible components.
14600
14601 Set_Chars (New_Compon, New_Internal_Name ('C'));
14602 end if;
14603
14604 -- Set the parent so we have a proper link for freezing etc. This is
14605 -- not a real parent pointer, since of course our parent does not own
14606 -- up to us and reference us, we are an illegitimate child of the
14607 -- original parent.
14608
14609 Set_Parent (New_Compon, Parent (Old_Compon));
14610
14611 -- We do not want this node marked as Comes_From_Source, since
14612 -- otherwise it would get first class status and a separate cross-
14613 -- reference line would be generated. Illegitimate children do not
14614 -- rate such recognition.
14615
14616 Set_Comes_From_Source (New_Compon, False);
14617
14618 -- But it is a real entity, and a birth certificate must be properly
14619 -- registered by entering it into the entity list.
14620
14621 Enter_Name (New_Compon);
14622
14623 return New_Compon;
14624 end Create_Component;
14625
14626 -----------------------
14627 -- Is_Variant_Record --
14628 -----------------------
14629
14630 function Is_Variant_Record (T : Entity_Id) return Boolean is
14631 begin
14632 return Nkind (Parent (T)) = N_Full_Type_Declaration
14633 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
14634 and then Present (Component_List (Type_Definition (Parent (T))))
14635 and then
14636 Present
14637 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
14638 end Is_Variant_Record;
14639
14640 -- Start of processing for Create_Constrained_Components
14641
14642 begin
14643 pragma Assert (Subt /= Base_Type (Subt));
14644 pragma Assert (Typ = Base_Type (Typ));
14645
14646 Set_First_Entity (Subt, Empty);
14647 Set_Last_Entity (Subt, Empty);
14648
14649 -- Check whether constraint is fully static, in which case we can
14650 -- optimize the list of components.
14651
14652 Discr_Val := First_Elmt (Constraints);
14653 while Present (Discr_Val) loop
14654 if not Is_OK_Static_Expression (Node (Discr_Val)) then
14655 Is_Static := False;
14656 exit;
14657 end if;
14658
14659 Next_Elmt (Discr_Val);
14660 end loop;
14661
14662 Set_Has_Static_Discriminants (Subt, Is_Static);
14663
14664 Push_Scope (Subt);
14665
14666 -- Inherit the discriminants of the parent type
14667
14668 Add_Discriminants : declare
14669 Num_Disc : Nat;
14670 Num_Gird : Nat;
14671
14672 begin
14673 Num_Disc := 0;
14674 Old_C := First_Discriminant (Typ);
14675
14676 while Present (Old_C) loop
14677 Num_Disc := Num_Disc + 1;
14678 New_C := Create_Component (Old_C);
14679 Set_Is_Public (New_C, Is_Public (Subt));
14680 Next_Discriminant (Old_C);
14681 end loop;
14682
14683 -- For an untagged derived subtype, the number of discriminants may
14684 -- be smaller than the number of inherited discriminants, because
14685 -- several of them may be renamed by a single new discriminant or
14686 -- constrained. In this case, add the hidden discriminants back into
14687 -- the subtype, because they need to be present if the optimizer of
14688 -- the GCC 4.x back-end decides to break apart assignments between
14689 -- objects using the parent view into member-wise assignments.
14690
14691 Num_Gird := 0;
14692
14693 if Is_Derived_Type (Typ)
14694 and then not Is_Tagged_Type (Typ)
14695 then
14696 Old_C := First_Stored_Discriminant (Typ);
14697
14698 while Present (Old_C) loop
14699 Num_Gird := Num_Gird + 1;
14700 Next_Stored_Discriminant (Old_C);
14701 end loop;
14702 end if;
14703
14704 if Num_Gird > Num_Disc then
14705
14706 -- Find out multiple uses of new discriminants, and add hidden
14707 -- components for the extra renamed discriminants. We recognize
14708 -- multiple uses through the Corresponding_Discriminant of a
14709 -- new discriminant: if it constrains several old discriminants,
14710 -- this field points to the last one in the parent type. The
14711 -- stored discriminants of the derived type have the same name
14712 -- as those of the parent.
14713
14714 declare
14715 Constr : Elmt_Id;
14716 New_Discr : Entity_Id;
14717 Old_Discr : Entity_Id;
14718
14719 begin
14720 Constr := First_Elmt (Stored_Constraint (Typ));
14721 Old_Discr := First_Stored_Discriminant (Typ);
14722 while Present (Constr) loop
14723 if Is_Entity_Name (Node (Constr))
14724 and then Ekind (Entity (Node (Constr))) = E_Discriminant
14725 then
14726 New_Discr := Entity (Node (Constr));
14727
14728 if Chars (Corresponding_Discriminant (New_Discr)) /=
14729 Chars (Old_Discr)
14730 then
14731 -- The new discriminant has been used to rename a
14732 -- subsequent old discriminant. Introduce a shadow
14733 -- component for the current old discriminant.
14734
14735 New_C := Create_Component (Old_Discr);
14736 Set_Original_Record_Component (New_C, Old_Discr);
14737 end if;
14738
14739 else
14740 -- The constraint has eliminated the old discriminant.
14741 -- Introduce a shadow component.
14742
14743 New_C := Create_Component (Old_Discr);
14744 Set_Original_Record_Component (New_C, Old_Discr);
14745 end if;
14746
14747 Next_Elmt (Constr);
14748 Next_Stored_Discriminant (Old_Discr);
14749 end loop;
14750 end;
14751 end if;
14752 end Add_Discriminants;
14753
14754 if Is_Static
14755 and then Is_Variant_Record (Typ)
14756 then
14757 Collect_Fixed_Components (Typ);
14758
14759 Gather_Components (
14760 Typ,
14761 Component_List (Type_Definition (Parent (Typ))),
14762 Governed_By => Assoc_List,
14763 Into => Comp_List,
14764 Report_Errors => Errors);
14765 pragma Assert (not Errors
14766 or else Serious_Errors_Detected > 0);
14767
14768 Create_All_Components;
14769
14770 -- If the subtype declaration is created for a tagged type derivation
14771 -- with constraints, we retrieve the record definition of the parent
14772 -- type to select the components of the proper variant.
14773
14774 elsif Is_Static
14775 and then Is_Tagged_Type (Typ)
14776 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
14777 and then
14778 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
14779 and then Is_Variant_Record (Parent_Type)
14780 then
14781 Collect_Fixed_Components (Typ);
14782
14783 Gather_Components
14784 (Typ,
14785 Component_List (Type_Definition (Parent (Parent_Type))),
14786 Governed_By => Assoc_List,
14787 Into => Comp_List,
14788 Report_Errors => Errors);
14789
14790 -- Note: previously there was a check at this point that no errors
14791 -- were detected. As a consequence of AI05-220 there may be an error
14792 -- if an inherited discriminant that controls a variant has a non-
14793 -- static constraint.
14794
14795 -- If the tagged derivation has a type extension, collect all the
14796 -- new components therein.
14797
14798 if Present (Record_Extension_Part (Type_Definition (Parent (Typ))))
14799 then
14800 Old_C := First_Component (Typ);
14801 while Present (Old_C) loop
14802 if Original_Record_Component (Old_C) = Old_C
14803 and then Chars (Old_C) /= Name_uTag
14804 and then Chars (Old_C) /= Name_uParent
14805 then
14806 Append_Elmt (Old_C, Comp_List);
14807 end if;
14808
14809 Next_Component (Old_C);
14810 end loop;
14811 end if;
14812
14813 Create_All_Components;
14814
14815 else
14816 -- If discriminants are not static, or if this is a multi-level type
14817 -- extension, we have to include all components of the parent type.
14818
14819 Old_C := First_Component (Typ);
14820 while Present (Old_C) loop
14821 New_C := Create_Component (Old_C);
14822
14823 Set_Etype
14824 (New_C,
14825 Constrain_Component_Type
14826 (Old_C, Subt, Decl_Node, Typ, Constraints));
14827 Set_Is_Public (New_C, Is_Public (Subt));
14828
14829 Next_Component (Old_C);
14830 end loop;
14831 end if;
14832
14833 End_Scope;
14834 end Create_Constrained_Components;
14835
14836 ------------------------------------------
14837 -- Decimal_Fixed_Point_Type_Declaration --
14838 ------------------------------------------
14839
14840 procedure Decimal_Fixed_Point_Type_Declaration
14841 (T : Entity_Id;
14842 Def : Node_Id)
14843 is
14844 Loc : constant Source_Ptr := Sloc (Def);
14845 Digs_Expr : constant Node_Id := Digits_Expression (Def);
14846 Delta_Expr : constant Node_Id := Delta_Expression (Def);
14847 Implicit_Base : Entity_Id;
14848 Digs_Val : Uint;
14849 Delta_Val : Ureal;
14850 Scale_Val : Uint;
14851 Bound_Val : Ureal;
14852
14853 begin
14854 Check_SPARK_05_Restriction
14855 ("decimal fixed point type is not allowed", Def);
14856 Check_Restriction (No_Fixed_Point, Def);
14857
14858 -- Create implicit base type
14859
14860 Implicit_Base :=
14861 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
14862 Set_Etype (Implicit_Base, Implicit_Base);
14863
14864 -- Analyze and process delta expression
14865
14866 Analyze_And_Resolve (Delta_Expr, Universal_Real);
14867
14868 Check_Delta_Expression (Delta_Expr);
14869 Delta_Val := Expr_Value_R (Delta_Expr);
14870
14871 -- Check delta is power of 10, and determine scale value from it
14872
14873 declare
14874 Val : Ureal;
14875
14876 begin
14877 Scale_Val := Uint_0;
14878 Val := Delta_Val;
14879
14880 if Val < Ureal_1 then
14881 while Val < Ureal_1 loop
14882 Val := Val * Ureal_10;
14883 Scale_Val := Scale_Val + 1;
14884 end loop;
14885
14886 if Scale_Val > 18 then
14887 Error_Msg_N ("scale exceeds maximum value of 18", Def);
14888 Scale_Val := UI_From_Int (+18);
14889 end if;
14890
14891 else
14892 while Val > Ureal_1 loop
14893 Val := Val / Ureal_10;
14894 Scale_Val := Scale_Val - 1;
14895 end loop;
14896
14897 if Scale_Val < -18 then
14898 Error_Msg_N ("scale is less than minimum value of -18", Def);
14899 Scale_Val := UI_From_Int (-18);
14900 end if;
14901 end if;
14902
14903 if Val /= Ureal_1 then
14904 Error_Msg_N ("delta expression must be a power of 10", Def);
14905 Delta_Val := Ureal_10 ** (-Scale_Val);
14906 end if;
14907 end;
14908
14909 -- Set delta, scale and small (small = delta for decimal type)
14910
14911 Set_Delta_Value (Implicit_Base, Delta_Val);
14912 Set_Scale_Value (Implicit_Base, Scale_Val);
14913 Set_Small_Value (Implicit_Base, Delta_Val);
14914
14915 -- Analyze and process digits expression
14916
14917 Analyze_And_Resolve (Digs_Expr, Any_Integer);
14918 Check_Digits_Expression (Digs_Expr);
14919 Digs_Val := Expr_Value (Digs_Expr);
14920
14921 if Digs_Val > 18 then
14922 Digs_Val := UI_From_Int (+18);
14923 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
14924 end if;
14925
14926 Set_Digits_Value (Implicit_Base, Digs_Val);
14927 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
14928
14929 -- Set range of base type from digits value for now. This will be
14930 -- expanded to represent the true underlying base range by Freeze.
14931
14932 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
14933
14934 -- Note: We leave size as zero for now, size will be set at freeze
14935 -- time. We have to do this for ordinary fixed-point, because the size
14936 -- depends on the specified small, and we might as well do the same for
14937 -- decimal fixed-point.
14938
14939 pragma Assert (Esize (Implicit_Base) = Uint_0);
14940
14941 -- If there are bounds given in the declaration use them as the
14942 -- bounds of the first named subtype.
14943
14944 if Present (Real_Range_Specification (Def)) then
14945 declare
14946 RRS : constant Node_Id := Real_Range_Specification (Def);
14947 Low : constant Node_Id := Low_Bound (RRS);
14948 High : constant Node_Id := High_Bound (RRS);
14949 Low_Val : Ureal;
14950 High_Val : Ureal;
14951
14952 begin
14953 Analyze_And_Resolve (Low, Any_Real);
14954 Analyze_And_Resolve (High, Any_Real);
14955 Check_Real_Bound (Low);
14956 Check_Real_Bound (High);
14957 Low_Val := Expr_Value_R (Low);
14958 High_Val := Expr_Value_R (High);
14959
14960 if Low_Val < (-Bound_Val) then
14961 Error_Msg_N
14962 ("range low bound too small for digits value", Low);
14963 Low_Val := -Bound_Val;
14964 end if;
14965
14966 if High_Val > Bound_Val then
14967 Error_Msg_N
14968 ("range high bound too large for digits value", High);
14969 High_Val := Bound_Val;
14970 end if;
14971
14972 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
14973 end;
14974
14975 -- If no explicit range, use range that corresponds to given
14976 -- digits value. This will end up as the final range for the
14977 -- first subtype.
14978
14979 else
14980 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
14981 end if;
14982
14983 -- Complete entity for first subtype. The inheritance of the rep item
14984 -- chain ensures that SPARK-related pragmas are not clobbered when the
14985 -- decimal fixed point type acts as a full view of a private type.
14986
14987 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
14988 Set_Etype (T, Implicit_Base);
14989 Set_Size_Info (T, Implicit_Base);
14990 Inherit_Rep_Item_Chain (T, Implicit_Base);
14991 Set_Digits_Value (T, Digs_Val);
14992 Set_Delta_Value (T, Delta_Val);
14993 Set_Small_Value (T, Delta_Val);
14994 Set_Scale_Value (T, Scale_Val);
14995 Set_Is_Constrained (T);
14996 end Decimal_Fixed_Point_Type_Declaration;
14997
14998 -----------------------------------
14999 -- Derive_Progenitor_Subprograms --
15000 -----------------------------------
15001
15002 procedure Derive_Progenitor_Subprograms
15003 (Parent_Type : Entity_Id;
15004 Tagged_Type : Entity_Id)
15005 is
15006 E : Entity_Id;
15007 Elmt : Elmt_Id;
15008 Iface : Entity_Id;
15009 Iface_Elmt : Elmt_Id;
15010 Iface_Subp : Entity_Id;
15011 New_Subp : Entity_Id := Empty;
15012 Prim_Elmt : Elmt_Id;
15013 Subp : Entity_Id;
15014 Typ : Entity_Id;
15015
15016 begin
15017 pragma Assert (Ada_Version >= Ada_2005
15018 and then Is_Record_Type (Tagged_Type)
15019 and then Is_Tagged_Type (Tagged_Type)
15020 and then Has_Interfaces (Tagged_Type));
15021
15022 -- Step 1: Transfer to the full-view primitives associated with the
15023 -- partial-view that cover interface primitives. Conceptually this
15024 -- work should be done later by Process_Full_View; done here to
15025 -- simplify its implementation at later stages. It can be safely
15026 -- done here because interfaces must be visible in the partial and
15027 -- private view (RM 7.3(7.3/2)).
15028
15029 -- Small optimization: This work is only required if the parent may
15030 -- have entities whose Alias attribute reference an interface primitive.
15031 -- Such a situation may occur if the parent is an abstract type and the
15032 -- primitive has not been yet overridden or if the parent is a generic
15033 -- formal type covering interfaces.
15034
15035 -- If the tagged type is not abstract, it cannot have abstract
15036 -- primitives (the only entities in the list of primitives of
15037 -- non-abstract tagged types that can reference abstract primitives
15038 -- through its Alias attribute are the internal entities that have
15039 -- attribute Interface_Alias, and these entities are generated later
15040 -- by Add_Internal_Interface_Entities).
15041
15042 if In_Private_Part (Current_Scope)
15043 and then (Is_Abstract_Type (Parent_Type)
15044 or else
15045 Is_Generic_Type (Parent_Type))
15046 then
15047 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
15048 while Present (Elmt) loop
15049 Subp := Node (Elmt);
15050
15051 -- At this stage it is not possible to have entities in the list
15052 -- of primitives that have attribute Interface_Alias.
15053
15054 pragma Assert (No (Interface_Alias (Subp)));
15055
15056 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
15057
15058 if Is_Interface (Typ) then
15059 E := Find_Primitive_Covering_Interface
15060 (Tagged_Type => Tagged_Type,
15061 Iface_Prim => Subp);
15062
15063 if Present (E)
15064 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
15065 then
15066 Replace_Elmt (Elmt, E);
15067 Remove_Homonym (Subp);
15068 end if;
15069 end if;
15070
15071 Next_Elmt (Elmt);
15072 end loop;
15073 end if;
15074
15075 -- Step 2: Add primitives of progenitors that are not implemented by
15076 -- parents of Tagged_Type.
15077
15078 if Present (Interfaces (Base_Type (Tagged_Type))) then
15079 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
15080 while Present (Iface_Elmt) loop
15081 Iface := Node (Iface_Elmt);
15082
15083 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
15084 while Present (Prim_Elmt) loop
15085 Iface_Subp := Node (Prim_Elmt);
15086
15087 -- Exclude derivation of predefined primitives except those
15088 -- that come from source, or are inherited from one that comes
15089 -- from source. Required to catch declarations of equality
15090 -- operators of interfaces. For example:
15091
15092 -- type Iface is interface;
15093 -- function "=" (Left, Right : Iface) return Boolean;
15094
15095 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
15096 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
15097 then
15098 E := Find_Primitive_Covering_Interface
15099 (Tagged_Type => Tagged_Type,
15100 Iface_Prim => Iface_Subp);
15101
15102 -- If not found we derive a new primitive leaving its alias
15103 -- attribute referencing the interface primitive.
15104
15105 if No (E) then
15106 Derive_Subprogram
15107 (New_Subp, Iface_Subp, Tagged_Type, Iface);
15108
15109 -- Ada 2012 (AI05-0197): If the covering primitive's name
15110 -- differs from the name of the interface primitive then it
15111 -- is a private primitive inherited from a parent type. In
15112 -- such case, given that Tagged_Type covers the interface,
15113 -- the inherited private primitive becomes visible. For such
15114 -- purpose we add a new entity that renames the inherited
15115 -- private primitive.
15116
15117 elsif Chars (E) /= Chars (Iface_Subp) then
15118 pragma Assert (Has_Suffix (E, 'P'));
15119 Derive_Subprogram
15120 (New_Subp, Iface_Subp, Tagged_Type, Iface);
15121 Set_Alias (New_Subp, E);
15122 Set_Is_Abstract_Subprogram (New_Subp,
15123 Is_Abstract_Subprogram (E));
15124
15125 -- Propagate to the full view interface entities associated
15126 -- with the partial view.
15127
15128 elsif In_Private_Part (Current_Scope)
15129 and then Present (Alias (E))
15130 and then Alias (E) = Iface_Subp
15131 and then
15132 List_Containing (Parent (E)) /=
15133 Private_Declarations
15134 (Specification
15135 (Unit_Declaration_Node (Current_Scope)))
15136 then
15137 Append_Elmt (E, Primitive_Operations (Tagged_Type));
15138 end if;
15139 end if;
15140
15141 Next_Elmt (Prim_Elmt);
15142 end loop;
15143
15144 Next_Elmt (Iface_Elmt);
15145 end loop;
15146 end if;
15147 end Derive_Progenitor_Subprograms;
15148
15149 -----------------------
15150 -- Derive_Subprogram --
15151 -----------------------
15152
15153 procedure Derive_Subprogram
15154 (New_Subp : out Entity_Id;
15155 Parent_Subp : Entity_Id;
15156 Derived_Type : Entity_Id;
15157 Parent_Type : Entity_Id;
15158 Actual_Subp : Entity_Id := Empty)
15159 is
15160 Formal : Entity_Id;
15161 -- Formal parameter of parent primitive operation
15162
15163 Formal_Of_Actual : Entity_Id;
15164 -- Formal parameter of actual operation, when the derivation is to
15165 -- create a renaming for a primitive operation of an actual in an
15166 -- instantiation.
15167
15168 New_Formal : Entity_Id;
15169 -- Formal of inherited operation
15170
15171 Visible_Subp : Entity_Id := Parent_Subp;
15172
15173 function Is_Private_Overriding return Boolean;
15174 -- If Subp is a private overriding of a visible operation, the inherited
15175 -- operation derives from the overridden op (even though its body is the
15176 -- overriding one) and the inherited operation is visible now. See
15177 -- sem_disp to see the full details of the handling of the overridden
15178 -- subprogram, which is removed from the list of primitive operations of
15179 -- the type. The overridden subprogram is saved locally in Visible_Subp,
15180 -- and used to diagnose abstract operations that need overriding in the
15181 -- derived type.
15182
15183 procedure Replace_Type (Id, New_Id : Entity_Id);
15184 -- When the type is an anonymous access type, create a new access type
15185 -- designating the derived type.
15186
15187 procedure Set_Derived_Name;
15188 -- This procedure sets the appropriate Chars name for New_Subp. This
15189 -- is normally just a copy of the parent name. An exception arises for
15190 -- type support subprograms, where the name is changed to reflect the
15191 -- name of the derived type, e.g. if type foo is derived from type bar,
15192 -- then a procedure barDA is derived with a name fooDA.
15193
15194 ---------------------------
15195 -- Is_Private_Overriding --
15196 ---------------------------
15197
15198 function Is_Private_Overriding return Boolean is
15199 Prev : Entity_Id;
15200
15201 begin
15202 -- If the parent is not a dispatching operation there is no
15203 -- need to investigate overridings
15204
15205 if not Is_Dispatching_Operation (Parent_Subp) then
15206 return False;
15207 end if;
15208
15209 -- The visible operation that is overridden is a homonym of the
15210 -- parent subprogram. We scan the homonym chain to find the one
15211 -- whose alias is the subprogram we are deriving.
15212
15213 Prev := Current_Entity (Parent_Subp);
15214 while Present (Prev) loop
15215 if Ekind (Prev) = Ekind (Parent_Subp)
15216 and then Alias (Prev) = Parent_Subp
15217 and then Scope (Parent_Subp) = Scope (Prev)
15218 and then not Is_Hidden (Prev)
15219 then
15220 Visible_Subp := Prev;
15221 return True;
15222 end if;
15223
15224 Prev := Homonym (Prev);
15225 end loop;
15226
15227 return False;
15228 end Is_Private_Overriding;
15229
15230 ------------------
15231 -- Replace_Type --
15232 ------------------
15233
15234 procedure Replace_Type (Id, New_Id : Entity_Id) is
15235 Id_Type : constant Entity_Id := Etype (Id);
15236 Acc_Type : Entity_Id;
15237 Par : constant Node_Id := Parent (Derived_Type);
15238
15239 begin
15240 -- When the type is an anonymous access type, create a new access
15241 -- type designating the derived type. This itype must be elaborated
15242 -- at the point of the derivation, not on subsequent calls that may
15243 -- be out of the proper scope for Gigi, so we insert a reference to
15244 -- it after the derivation.
15245
15246 if Ekind (Id_Type) = E_Anonymous_Access_Type then
15247 declare
15248 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
15249
15250 begin
15251 if Ekind (Desig_Typ) = E_Record_Type_With_Private
15252 and then Present (Full_View (Desig_Typ))
15253 and then not Is_Private_Type (Parent_Type)
15254 then
15255 Desig_Typ := Full_View (Desig_Typ);
15256 end if;
15257
15258 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
15259
15260 -- Ada 2005 (AI-251): Handle also derivations of abstract
15261 -- interface primitives.
15262
15263 or else (Is_Interface (Desig_Typ)
15264 and then not Is_Class_Wide_Type (Desig_Typ))
15265 then
15266 Acc_Type := New_Copy (Id_Type);
15267 Set_Etype (Acc_Type, Acc_Type);
15268 Set_Scope (Acc_Type, New_Subp);
15269
15270 -- Set size of anonymous access type. If we have an access
15271 -- to an unconstrained array, this is a fat pointer, so it
15272 -- is sizes at twice addtress size.
15273
15274 if Is_Array_Type (Desig_Typ)
15275 and then not Is_Constrained (Desig_Typ)
15276 then
15277 Init_Size (Acc_Type, 2 * System_Address_Size);
15278
15279 -- Other cases use a thin pointer
15280
15281 else
15282 Init_Size (Acc_Type, System_Address_Size);
15283 end if;
15284
15285 -- Set remaining characterstics of anonymous access type
15286
15287 Init_Alignment (Acc_Type);
15288 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
15289
15290 Set_Etype (New_Id, Acc_Type);
15291 Set_Scope (New_Id, New_Subp);
15292
15293 -- Create a reference to it
15294
15295 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
15296
15297 else
15298 Set_Etype (New_Id, Id_Type);
15299 end if;
15300 end;
15301
15302 -- In Ada2012, a formal may have an incomplete type but the type
15303 -- derivation that inherits the primitive follows the full view.
15304
15305 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
15306 or else
15307 (Ekind (Id_Type) = E_Record_Type_With_Private
15308 and then Present (Full_View (Id_Type))
15309 and then
15310 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
15311 or else
15312 (Ada_Version >= Ada_2012
15313 and then Ekind (Id_Type) = E_Incomplete_Type
15314 and then Full_View (Id_Type) = Parent_Type)
15315 then
15316 -- Constraint checks on formals are generated during expansion,
15317 -- based on the signature of the original subprogram. The bounds
15318 -- of the derived type are not relevant, and thus we can use
15319 -- the base type for the formals. However, the return type may be
15320 -- used in a context that requires that the proper static bounds
15321 -- be used (a case statement, for example) and for those cases
15322 -- we must use the derived type (first subtype), not its base.
15323
15324 -- If the derived_type_definition has no constraints, we know that
15325 -- the derived type has the same constraints as the first subtype
15326 -- of the parent, and we can also use it rather than its base,
15327 -- which can lead to more efficient code.
15328
15329 if Etype (Id) = Parent_Type then
15330 if Is_Scalar_Type (Parent_Type)
15331 and then
15332 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
15333 then
15334 Set_Etype (New_Id, Derived_Type);
15335
15336 elsif Nkind (Par) = N_Full_Type_Declaration
15337 and then
15338 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
15339 and then
15340 Is_Entity_Name
15341 (Subtype_Indication (Type_Definition (Par)))
15342 then
15343 Set_Etype (New_Id, Derived_Type);
15344
15345 else
15346 Set_Etype (New_Id, Base_Type (Derived_Type));
15347 end if;
15348
15349 else
15350 Set_Etype (New_Id, Base_Type (Derived_Type));
15351 end if;
15352
15353 else
15354 Set_Etype (New_Id, Etype (Id));
15355 end if;
15356 end Replace_Type;
15357
15358 ----------------------
15359 -- Set_Derived_Name --
15360 ----------------------
15361
15362 procedure Set_Derived_Name is
15363 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
15364 begin
15365 if Nm = TSS_Null then
15366 Set_Chars (New_Subp, Chars (Parent_Subp));
15367 else
15368 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
15369 end if;
15370 end Set_Derived_Name;
15371
15372 -- Start of processing for Derive_Subprogram
15373
15374 begin
15375 New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
15376 Set_Ekind (New_Subp, Ekind (Parent_Subp));
15377
15378 -- Check whether the inherited subprogram is a private operation that
15379 -- should be inherited but not yet made visible. Such subprograms can
15380 -- become visible at a later point (e.g., the private part of a public
15381 -- child unit) via Declare_Inherited_Private_Subprograms. If the
15382 -- following predicate is true, then this is not such a private
15383 -- operation and the subprogram simply inherits the name of the parent
15384 -- subprogram. Note the special check for the names of controlled
15385 -- operations, which are currently exempted from being inherited with
15386 -- a hidden name because they must be findable for generation of
15387 -- implicit run-time calls.
15388
15389 if not Is_Hidden (Parent_Subp)
15390 or else Is_Internal (Parent_Subp)
15391 or else Is_Private_Overriding
15392 or else Is_Internal_Name (Chars (Parent_Subp))
15393 or else (Is_Controlled (Parent_Type)
15394 and then Nam_In (Chars (Parent_Subp), Name_Adjust,
15395 Name_Finalize,
15396 Name_Initialize))
15397 then
15398 Set_Derived_Name;
15399
15400 -- An inherited dispatching equality will be overridden by an internally
15401 -- generated one, or by an explicit one, so preserve its name and thus
15402 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
15403 -- private operation it may become invisible if the full view has
15404 -- progenitors, and the dispatch table will be malformed.
15405 -- We check that the type is limited to handle the anomalous declaration
15406 -- of Limited_Controlled, which is derived from a non-limited type, and
15407 -- which is handled specially elsewhere as well.
15408
15409 elsif Chars (Parent_Subp) = Name_Op_Eq
15410 and then Is_Dispatching_Operation (Parent_Subp)
15411 and then Etype (Parent_Subp) = Standard_Boolean
15412 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
15413 and then
15414 Etype (First_Formal (Parent_Subp)) =
15415 Etype (Next_Formal (First_Formal (Parent_Subp)))
15416 then
15417 Set_Derived_Name;
15418
15419 -- If parent is hidden, this can be a regular derivation if the
15420 -- parent is immediately visible in a non-instantiating context,
15421 -- or if we are in the private part of an instance. This test
15422 -- should still be refined ???
15423
15424 -- The test for In_Instance_Not_Visible avoids inheriting the derived
15425 -- operation as a non-visible operation in cases where the parent
15426 -- subprogram might not be visible now, but was visible within the
15427 -- original generic, so it would be wrong to make the inherited
15428 -- subprogram non-visible now. (Not clear if this test is fully
15429 -- correct; are there any cases where we should declare the inherited
15430 -- operation as not visible to avoid it being overridden, e.g., when
15431 -- the parent type is a generic actual with private primitives ???)
15432
15433 -- (they should be treated the same as other private inherited
15434 -- subprograms, but it's not clear how to do this cleanly). ???
15435
15436 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15437 and then Is_Immediately_Visible (Parent_Subp)
15438 and then not In_Instance)
15439 or else In_Instance_Not_Visible
15440 then
15441 Set_Derived_Name;
15442
15443 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
15444 -- overrides an interface primitive because interface primitives
15445 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
15446
15447 elsif Ada_Version >= Ada_2005
15448 and then Is_Dispatching_Operation (Parent_Subp)
15449 and then Present (Covered_Interface_Op (Parent_Subp))
15450 then
15451 Set_Derived_Name;
15452
15453 -- Otherwise, the type is inheriting a private operation, so enter it
15454 -- with a special name so it can't be overridden.
15455
15456 else
15457 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
15458 end if;
15459
15460 Set_Parent (New_Subp, Parent (Derived_Type));
15461
15462 if Present (Actual_Subp) then
15463 Replace_Type (Actual_Subp, New_Subp);
15464 else
15465 Replace_Type (Parent_Subp, New_Subp);
15466 end if;
15467
15468 Conditional_Delay (New_Subp, Parent_Subp);
15469
15470 -- If we are creating a renaming for a primitive operation of an
15471 -- actual of a generic derived type, we must examine the signature
15472 -- of the actual primitive, not that of the generic formal, which for
15473 -- example may be an interface. However the name and initial value
15474 -- of the inherited operation are those of the formal primitive.
15475
15476 Formal := First_Formal (Parent_Subp);
15477
15478 if Present (Actual_Subp) then
15479 Formal_Of_Actual := First_Formal (Actual_Subp);
15480 else
15481 Formal_Of_Actual := Empty;
15482 end if;
15483
15484 while Present (Formal) loop
15485 New_Formal := New_Copy (Formal);
15486
15487 -- Normally we do not go copying parents, but in the case of
15488 -- formals, we need to link up to the declaration (which is the
15489 -- parameter specification), and it is fine to link up to the
15490 -- original formal's parameter specification in this case.
15491
15492 Set_Parent (New_Formal, Parent (Formal));
15493 Append_Entity (New_Formal, New_Subp);
15494
15495 if Present (Formal_Of_Actual) then
15496 Replace_Type (Formal_Of_Actual, New_Formal);
15497 Next_Formal (Formal_Of_Actual);
15498 else
15499 Replace_Type (Formal, New_Formal);
15500 end if;
15501
15502 Next_Formal (Formal);
15503 end loop;
15504
15505 -- If this derivation corresponds to a tagged generic actual, then
15506 -- primitive operations rename those of the actual. Otherwise the
15507 -- primitive operations rename those of the parent type, If the parent
15508 -- renames an intrinsic operator, so does the new subprogram. We except
15509 -- concatenation, which is always properly typed, and does not get
15510 -- expanded as other intrinsic operations.
15511
15512 if No (Actual_Subp) then
15513 if Is_Intrinsic_Subprogram (Parent_Subp) then
15514 Set_Is_Intrinsic_Subprogram (New_Subp);
15515
15516 if Present (Alias (Parent_Subp))
15517 and then Chars (Parent_Subp) /= Name_Op_Concat
15518 then
15519 Set_Alias (New_Subp, Alias (Parent_Subp));
15520 else
15521 Set_Alias (New_Subp, Parent_Subp);
15522 end if;
15523
15524 else
15525 Set_Alias (New_Subp, Parent_Subp);
15526 end if;
15527
15528 else
15529 Set_Alias (New_Subp, Actual_Subp);
15530 end if;
15531
15532 -- Derived subprograms of a tagged type must inherit the convention
15533 -- of the parent subprogram (a requirement of AI-117). Derived
15534 -- subprograms of untagged types simply get convention Ada by default.
15535
15536 -- If the derived type is a tagged generic formal type with unknown
15537 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
15538
15539 -- However, if the type is derived from a generic formal, the further
15540 -- inherited subprogram has the convention of the non-generic ancestor.
15541 -- Otherwise there would be no way to override the operation.
15542 -- (This is subject to forthcoming ARG discussions).
15543
15544 if Is_Tagged_Type (Derived_Type) then
15545 if Is_Generic_Type (Derived_Type)
15546 and then Has_Unknown_Discriminants (Derived_Type)
15547 then
15548 Set_Convention (New_Subp, Convention_Intrinsic);
15549
15550 else
15551 if Is_Generic_Type (Parent_Type)
15552 and then Has_Unknown_Discriminants (Parent_Type)
15553 then
15554 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
15555 else
15556 Set_Convention (New_Subp, Convention (Parent_Subp));
15557 end if;
15558 end if;
15559 end if;
15560
15561 -- Predefined controlled operations retain their name even if the parent
15562 -- is hidden (see above), but they are not primitive operations if the
15563 -- ancestor is not visible, for example if the parent is a private
15564 -- extension completed with a controlled extension. Note that a full
15565 -- type that is controlled can break privacy: the flag Is_Controlled is
15566 -- set on both views of the type.
15567
15568 if Is_Controlled (Parent_Type)
15569 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
15570 Name_Adjust,
15571 Name_Finalize)
15572 and then Is_Hidden (Parent_Subp)
15573 and then not Is_Visibly_Controlled (Parent_Type)
15574 then
15575 Set_Is_Hidden (New_Subp);
15576 end if;
15577
15578 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
15579 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
15580
15581 if Ekind (Parent_Subp) = E_Procedure then
15582 Set_Is_Valued_Procedure
15583 (New_Subp, Is_Valued_Procedure (Parent_Subp));
15584 else
15585 Set_Has_Controlling_Result
15586 (New_Subp, Has_Controlling_Result (Parent_Subp));
15587 end if;
15588
15589 -- No_Return must be inherited properly. If this is overridden in the
15590 -- case of a dispatching operation, then a check is made in Sem_Disp
15591 -- that the overriding operation is also No_Return (no such check is
15592 -- required for the case of non-dispatching operation.
15593
15594 Set_No_Return (New_Subp, No_Return (Parent_Subp));
15595
15596 -- A derived function with a controlling result is abstract. If the
15597 -- Derived_Type is a nonabstract formal generic derived type, then
15598 -- inherited operations are not abstract: the required check is done at
15599 -- instantiation time. If the derivation is for a generic actual, the
15600 -- function is not abstract unless the actual is.
15601
15602 if Is_Generic_Type (Derived_Type)
15603 and then not Is_Abstract_Type (Derived_Type)
15604 then
15605 null;
15606
15607 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
15608 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
15609
15610 -- A subprogram subject to pragma Extensions_Visible with value False
15611 -- requires overriding if the subprogram has at least one controlling
15612 -- OUT parameter (SPARK RM 6.1.7(6)).
15613
15614 elsif Ada_Version >= Ada_2005
15615 and then (Is_Abstract_Subprogram (Alias (New_Subp))
15616 or else (Is_Tagged_Type (Derived_Type)
15617 and then Etype (New_Subp) = Derived_Type
15618 and then not Is_Null_Extension (Derived_Type))
15619 or else (Is_Tagged_Type (Derived_Type)
15620 and then Ekind (Etype (New_Subp)) =
15621 E_Anonymous_Access_Type
15622 and then Designated_Type (Etype (New_Subp)) =
15623 Derived_Type
15624 and then not Is_Null_Extension (Derived_Type))
15625 or else (Comes_From_Source (Alias (New_Subp))
15626 and then Is_EVF_Procedure (Alias (New_Subp))))
15627 and then No (Actual_Subp)
15628 then
15629 if not Is_Tagged_Type (Derived_Type)
15630 or else Is_Abstract_Type (Derived_Type)
15631 or else Is_Abstract_Subprogram (Alias (New_Subp))
15632 then
15633 Set_Is_Abstract_Subprogram (New_Subp);
15634 else
15635 Set_Requires_Overriding (New_Subp);
15636 end if;
15637
15638 elsif Ada_Version < Ada_2005
15639 and then (Is_Abstract_Subprogram (Alias (New_Subp))
15640 or else (Is_Tagged_Type (Derived_Type)
15641 and then Etype (New_Subp) = Derived_Type
15642 and then No (Actual_Subp)))
15643 then
15644 Set_Is_Abstract_Subprogram (New_Subp);
15645
15646 -- AI05-0097 : an inherited operation that dispatches on result is
15647 -- abstract if the derived type is abstract, even if the parent type
15648 -- is concrete and the derived type is a null extension.
15649
15650 elsif Has_Controlling_Result (Alias (New_Subp))
15651 and then Is_Abstract_Type (Etype (New_Subp))
15652 then
15653 Set_Is_Abstract_Subprogram (New_Subp);
15654
15655 -- Finally, if the parent type is abstract we must verify that all
15656 -- inherited operations are either non-abstract or overridden, or that
15657 -- the derived type itself is abstract (this check is performed at the
15658 -- end of a package declaration, in Check_Abstract_Overriding). A
15659 -- private overriding in the parent type will not be visible in the
15660 -- derivation if we are not in an inner package or in a child unit of
15661 -- the parent type, in which case the abstractness of the inherited
15662 -- operation is carried to the new subprogram.
15663
15664 elsif Is_Abstract_Type (Parent_Type)
15665 and then not In_Open_Scopes (Scope (Parent_Type))
15666 and then Is_Private_Overriding
15667 and then Is_Abstract_Subprogram (Visible_Subp)
15668 then
15669 if No (Actual_Subp) then
15670 Set_Alias (New_Subp, Visible_Subp);
15671 Set_Is_Abstract_Subprogram (New_Subp, True);
15672
15673 else
15674 -- If this is a derivation for an instance of a formal derived
15675 -- type, abstractness comes from the primitive operation of the
15676 -- actual, not from the operation inherited from the ancestor.
15677
15678 Set_Is_Abstract_Subprogram
15679 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
15680 end if;
15681 end if;
15682
15683 New_Overloaded_Entity (New_Subp, Derived_Type);
15684
15685 -- Ada RM 6.1.1 (15): If a subprogram inherits nonconforming class-wide
15686 -- preconditions and the derived type is abstract, the derived operation
15687 -- is abstract as well if parent subprogram is not abstract or null.
15688
15689 if Is_Abstract_Type (Derived_Type)
15690 and then Has_Non_Trivial_Precondition (Parent_Subp)
15691 and then Present (Interfaces (Derived_Type))
15692 then
15693
15694 -- Add useful attributes of subprogram before the freeze point,
15695 -- in case freezing is delayed or there are previous errors.
15696
15697 Set_Is_Dispatching_Operation (New_Subp);
15698
15699 declare
15700 Iface_Prim : constant Entity_Id := Covered_Interface_Op (New_Subp);
15701
15702 begin
15703 if Present (Iface_Prim)
15704 and then Has_Non_Trivial_Precondition (Iface_Prim)
15705 then
15706 Set_Is_Abstract_Subprogram (New_Subp);
15707 end if;
15708 end;
15709 end if;
15710
15711 -- Check for case of a derived subprogram for the instantiation of a
15712 -- formal derived tagged type, if so mark the subprogram as dispatching
15713 -- and inherit the dispatching attributes of the actual subprogram. The
15714 -- derived subprogram is effectively renaming of the actual subprogram,
15715 -- so it needs to have the same attributes as the actual.
15716
15717 if Present (Actual_Subp)
15718 and then Is_Dispatching_Operation (Actual_Subp)
15719 then
15720 Set_Is_Dispatching_Operation (New_Subp);
15721
15722 if Present (DTC_Entity (Actual_Subp)) then
15723 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
15724 Set_DT_Position_Value (New_Subp, DT_Position (Actual_Subp));
15725 end if;
15726 end if;
15727
15728 -- Indicate that a derived subprogram does not require a body and that
15729 -- it does not require processing of default expressions.
15730
15731 Set_Has_Completion (New_Subp);
15732 Set_Default_Expressions_Processed (New_Subp);
15733
15734 if Ekind (New_Subp) = E_Function then
15735 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
15736 end if;
15737 end Derive_Subprogram;
15738
15739 ------------------------
15740 -- Derive_Subprograms --
15741 ------------------------
15742
15743 procedure Derive_Subprograms
15744 (Parent_Type : Entity_Id;
15745 Derived_Type : Entity_Id;
15746 Generic_Actual : Entity_Id := Empty)
15747 is
15748 Op_List : constant Elist_Id :=
15749 Collect_Primitive_Operations (Parent_Type);
15750
15751 function Check_Derived_Type return Boolean;
15752 -- Check that all the entities derived from Parent_Type are found in
15753 -- the list of primitives of Derived_Type exactly in the same order.
15754
15755 procedure Derive_Interface_Subprogram
15756 (New_Subp : out Entity_Id;
15757 Subp : Entity_Id;
15758 Actual_Subp : Entity_Id);
15759 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
15760 -- (which is an interface primitive). If Generic_Actual is present then
15761 -- Actual_Subp is the actual subprogram corresponding with the generic
15762 -- subprogram Subp.
15763
15764 ------------------------
15765 -- Check_Derived_Type --
15766 ------------------------
15767
15768 function Check_Derived_Type return Boolean is
15769 E : Entity_Id;
15770 Elmt : Elmt_Id;
15771 List : Elist_Id;
15772 New_Subp : Entity_Id;
15773 Op_Elmt : Elmt_Id;
15774 Subp : Entity_Id;
15775
15776 begin
15777 -- Traverse list of entities in the current scope searching for
15778 -- an incomplete type whose full-view is derived type.
15779
15780 E := First_Entity (Scope (Derived_Type));
15781 while Present (E) and then E /= Derived_Type loop
15782 if Ekind (E) = E_Incomplete_Type
15783 and then Present (Full_View (E))
15784 and then Full_View (E) = Derived_Type
15785 then
15786 -- Disable this test if Derived_Type completes an incomplete
15787 -- type because in such case more primitives can be added
15788 -- later to the list of primitives of Derived_Type by routine
15789 -- Process_Incomplete_Dependents
15790
15791 return True;
15792 end if;
15793
15794 E := Next_Entity (E);
15795 end loop;
15796
15797 List := Collect_Primitive_Operations (Derived_Type);
15798 Elmt := First_Elmt (List);
15799
15800 Op_Elmt := First_Elmt (Op_List);
15801 while Present (Op_Elmt) loop
15802 Subp := Node (Op_Elmt);
15803 New_Subp := Node (Elmt);
15804
15805 -- At this early stage Derived_Type has no entities with attribute
15806 -- Interface_Alias. In addition, such primitives are always
15807 -- located at the end of the list of primitives of Parent_Type.
15808 -- Therefore, if found we can safely stop processing pending
15809 -- entities.
15810
15811 exit when Present (Interface_Alias (Subp));
15812
15813 -- Handle hidden entities
15814
15815 if not Is_Predefined_Dispatching_Operation (Subp)
15816 and then Is_Hidden (Subp)
15817 then
15818 if Present (New_Subp)
15819 and then Primitive_Names_Match (Subp, New_Subp)
15820 then
15821 Next_Elmt (Elmt);
15822 end if;
15823
15824 else
15825 if not Present (New_Subp)
15826 or else Ekind (Subp) /= Ekind (New_Subp)
15827 or else not Primitive_Names_Match (Subp, New_Subp)
15828 then
15829 return False;
15830 end if;
15831
15832 Next_Elmt (Elmt);
15833 end if;
15834
15835 Next_Elmt (Op_Elmt);
15836 end loop;
15837
15838 return True;
15839 end Check_Derived_Type;
15840
15841 ---------------------------------
15842 -- Derive_Interface_Subprogram --
15843 ---------------------------------
15844
15845 procedure Derive_Interface_Subprogram
15846 (New_Subp : out Entity_Id;
15847 Subp : Entity_Id;
15848 Actual_Subp : Entity_Id)
15849 is
15850 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
15851 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
15852
15853 begin
15854 pragma Assert (Is_Interface (Iface_Type));
15855
15856 Derive_Subprogram
15857 (New_Subp => New_Subp,
15858 Parent_Subp => Iface_Subp,
15859 Derived_Type => Derived_Type,
15860 Parent_Type => Iface_Type,
15861 Actual_Subp => Actual_Subp);
15862
15863 -- Given that this new interface entity corresponds with a primitive
15864 -- of the parent that was not overridden we must leave it associated
15865 -- with its parent primitive to ensure that it will share the same
15866 -- dispatch table slot when overridden. We must set the Alias to Subp
15867 -- (instead of Iface_Subp), and we must fix Is_Abstract_Subprogram
15868 -- (in case we inherited Subp from Iface_Type via a nonabstract
15869 -- generic formal type).
15870
15871 if No (Actual_Subp) then
15872 Set_Alias (New_Subp, Subp);
15873
15874 declare
15875 T : Entity_Id := Find_Dispatching_Type (Subp);
15876 begin
15877 while Etype (T) /= T loop
15878 if Is_Generic_Type (T) and then not Is_Abstract_Type (T) then
15879 Set_Is_Abstract_Subprogram (New_Subp, False);
15880 exit;
15881 end if;
15882
15883 T := Etype (T);
15884 end loop;
15885 end;
15886
15887 -- For instantiations this is not needed since the previous call to
15888 -- Derive_Subprogram leaves the entity well decorated.
15889
15890 else
15891 pragma Assert (Alias (New_Subp) = Actual_Subp);
15892 null;
15893 end if;
15894 end Derive_Interface_Subprogram;
15895
15896 -- Local variables
15897
15898 Alias_Subp : Entity_Id;
15899 Act_List : Elist_Id;
15900 Act_Elmt : Elmt_Id;
15901 Act_Subp : Entity_Id := Empty;
15902 Elmt : Elmt_Id;
15903 Need_Search : Boolean := False;
15904 New_Subp : Entity_Id := Empty;
15905 Parent_Base : Entity_Id;
15906 Subp : Entity_Id;
15907
15908 -- Start of processing for Derive_Subprograms
15909
15910 begin
15911 if Ekind (Parent_Type) = E_Record_Type_With_Private
15912 and then Has_Discriminants (Parent_Type)
15913 and then Present (Full_View (Parent_Type))
15914 then
15915 Parent_Base := Full_View (Parent_Type);
15916 else
15917 Parent_Base := Parent_Type;
15918 end if;
15919
15920 if Present (Generic_Actual) then
15921 Act_List := Collect_Primitive_Operations (Generic_Actual);
15922 Act_Elmt := First_Elmt (Act_List);
15923 else
15924 Act_List := No_Elist;
15925 Act_Elmt := No_Elmt;
15926 end if;
15927
15928 -- Derive primitives inherited from the parent. Note that if the generic
15929 -- actual is present, this is not really a type derivation, it is a
15930 -- completion within an instance.
15931
15932 -- Case 1: Derived_Type does not implement interfaces
15933
15934 if not Is_Tagged_Type (Derived_Type)
15935 or else (not Has_Interfaces (Derived_Type)
15936 and then not (Present (Generic_Actual)
15937 and then Has_Interfaces (Generic_Actual)))
15938 then
15939 Elmt := First_Elmt (Op_List);
15940 while Present (Elmt) loop
15941 Subp := Node (Elmt);
15942
15943 -- Literals are derived earlier in the process of building the
15944 -- derived type, and are skipped here.
15945
15946 if Ekind (Subp) = E_Enumeration_Literal then
15947 null;
15948
15949 -- The actual is a direct descendant and the common primitive
15950 -- operations appear in the same order.
15951
15952 -- If the generic parent type is present, the derived type is an
15953 -- instance of a formal derived type, and within the instance its
15954 -- operations are those of the actual. We derive from the formal
15955 -- type but make the inherited operations aliases of the
15956 -- corresponding operations of the actual.
15957
15958 else
15959 pragma Assert (No (Node (Act_Elmt))
15960 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
15961 and then
15962 Type_Conformant
15963 (Subp, Node (Act_Elmt),
15964 Skip_Controlling_Formals => True)));
15965
15966 Derive_Subprogram
15967 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
15968
15969 if Present (Act_Elmt) then
15970 Next_Elmt (Act_Elmt);
15971 end if;
15972 end if;
15973
15974 Next_Elmt (Elmt);
15975 end loop;
15976
15977 -- Case 2: Derived_Type implements interfaces
15978
15979 else
15980 -- If the parent type has no predefined primitives we remove
15981 -- predefined primitives from the list of primitives of generic
15982 -- actual to simplify the complexity of this algorithm.
15983
15984 if Present (Generic_Actual) then
15985 declare
15986 Has_Predefined_Primitives : Boolean := False;
15987
15988 begin
15989 -- Check if the parent type has predefined primitives
15990
15991 Elmt := First_Elmt (Op_List);
15992 while Present (Elmt) loop
15993 Subp := Node (Elmt);
15994
15995 if Is_Predefined_Dispatching_Operation (Subp)
15996 and then not Comes_From_Source (Ultimate_Alias (Subp))
15997 then
15998 Has_Predefined_Primitives := True;
15999 exit;
16000 end if;
16001
16002 Next_Elmt (Elmt);
16003 end loop;
16004
16005 -- Remove predefined primitives of Generic_Actual. We must use
16006 -- an auxiliary list because in case of tagged types the value
16007 -- returned by Collect_Primitive_Operations is the value stored
16008 -- in its Primitive_Operations attribute (and we don't want to
16009 -- modify its current contents).
16010
16011 if not Has_Predefined_Primitives then
16012 declare
16013 Aux_List : constant Elist_Id := New_Elmt_List;
16014
16015 begin
16016 Elmt := First_Elmt (Act_List);
16017 while Present (Elmt) loop
16018 Subp := Node (Elmt);
16019
16020 if not Is_Predefined_Dispatching_Operation (Subp)
16021 or else Comes_From_Source (Subp)
16022 then
16023 Append_Elmt (Subp, Aux_List);
16024 end if;
16025
16026 Next_Elmt (Elmt);
16027 end loop;
16028
16029 Act_List := Aux_List;
16030 end;
16031 end if;
16032
16033 Act_Elmt := First_Elmt (Act_List);
16034 Act_Subp := Node (Act_Elmt);
16035 end;
16036 end if;
16037
16038 -- Stage 1: If the generic actual is not present we derive the
16039 -- primitives inherited from the parent type. If the generic parent
16040 -- type is present, the derived type is an instance of a formal
16041 -- derived type, and within the instance its operations are those of
16042 -- the actual. We derive from the formal type but make the inherited
16043 -- operations aliases of the corresponding operations of the actual.
16044
16045 Elmt := First_Elmt (Op_List);
16046 while Present (Elmt) loop
16047 Subp := Node (Elmt);
16048 Alias_Subp := Ultimate_Alias (Subp);
16049
16050 -- Do not derive internal entities of the parent that link
16051 -- interface primitives with their covering primitive. These
16052 -- entities will be added to this type when frozen.
16053
16054 if Present (Interface_Alias (Subp)) then
16055 goto Continue;
16056 end if;
16057
16058 -- If the generic actual is present find the corresponding
16059 -- operation in the generic actual. If the parent type is a
16060 -- direct ancestor of the derived type then, even if it is an
16061 -- interface, the operations are inherited from the primary
16062 -- dispatch table and are in the proper order. If we detect here
16063 -- that primitives are not in the same order we traverse the list
16064 -- of primitive operations of the actual to find the one that
16065 -- implements the interface primitive.
16066
16067 if Need_Search
16068 or else
16069 (Present (Generic_Actual)
16070 and then Present (Act_Subp)
16071 and then not
16072 (Primitive_Names_Match (Subp, Act_Subp)
16073 and then
16074 Type_Conformant (Subp, Act_Subp,
16075 Skip_Controlling_Formals => True)))
16076 then
16077 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
16078 Use_Full_View => True));
16079
16080 -- Remember that we need searching for all pending primitives
16081
16082 Need_Search := True;
16083
16084 -- Handle entities associated with interface primitives
16085
16086 if Present (Alias_Subp)
16087 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
16088 and then not Is_Predefined_Dispatching_Operation (Subp)
16089 then
16090 -- Search for the primitive in the homonym chain
16091
16092 Act_Subp :=
16093 Find_Primitive_Covering_Interface
16094 (Tagged_Type => Generic_Actual,
16095 Iface_Prim => Alias_Subp);
16096
16097 -- Previous search may not locate primitives covering
16098 -- interfaces defined in generics units or instantiations.
16099 -- (it fails if the covering primitive has formals whose
16100 -- type is also defined in generics or instantiations).
16101 -- In such case we search in the list of primitives of the
16102 -- generic actual for the internal entity that links the
16103 -- interface primitive and the covering primitive.
16104
16105 if No (Act_Subp)
16106 and then Is_Generic_Type (Parent_Type)
16107 then
16108 -- This code has been designed to handle only generic
16109 -- formals that implement interfaces that are defined
16110 -- in a generic unit or instantiation. If this code is
16111 -- needed for other cases we must review it because
16112 -- (given that it relies on Original_Location to locate
16113 -- the primitive of Generic_Actual that covers the
16114 -- interface) it could leave linked through attribute
16115 -- Alias entities of unrelated instantiations).
16116
16117 pragma Assert
16118 (Is_Generic_Unit
16119 (Scope (Find_Dispatching_Type (Alias_Subp)))
16120 or else
16121 Instantiation_Depth
16122 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
16123
16124 declare
16125 Iface_Prim_Loc : constant Source_Ptr :=
16126 Original_Location (Sloc (Alias_Subp));
16127
16128 Elmt : Elmt_Id;
16129 Prim : Entity_Id;
16130
16131 begin
16132 Elmt :=
16133 First_Elmt (Primitive_Operations (Generic_Actual));
16134
16135 Search : while Present (Elmt) loop
16136 Prim := Node (Elmt);
16137
16138 if Present (Interface_Alias (Prim))
16139 and then Original_Location
16140 (Sloc (Interface_Alias (Prim))) =
16141 Iface_Prim_Loc
16142 then
16143 Act_Subp := Alias (Prim);
16144 exit Search;
16145 end if;
16146
16147 Next_Elmt (Elmt);
16148 end loop Search;
16149 end;
16150 end if;
16151
16152 pragma Assert (Present (Act_Subp)
16153 or else Is_Abstract_Type (Generic_Actual)
16154 or else Serious_Errors_Detected > 0);
16155
16156 -- Handle predefined primitives plus the rest of user-defined
16157 -- primitives
16158
16159 else
16160 Act_Elmt := First_Elmt (Act_List);
16161 while Present (Act_Elmt) loop
16162 Act_Subp := Node (Act_Elmt);
16163
16164 exit when Primitive_Names_Match (Subp, Act_Subp)
16165 and then Type_Conformant
16166 (Subp, Act_Subp,
16167 Skip_Controlling_Formals => True)
16168 and then No (Interface_Alias (Act_Subp));
16169
16170 Next_Elmt (Act_Elmt);
16171 end loop;
16172
16173 if No (Act_Elmt) then
16174 Act_Subp := Empty;
16175 end if;
16176 end if;
16177 end if;
16178
16179 -- Case 1: If the parent is a limited interface then it has the
16180 -- predefined primitives of synchronized interfaces. However, the
16181 -- actual type may be a non-limited type and hence it does not
16182 -- have such primitives.
16183
16184 if Present (Generic_Actual)
16185 and then not Present (Act_Subp)
16186 and then Is_Limited_Interface (Parent_Base)
16187 and then Is_Predefined_Interface_Primitive (Subp)
16188 then
16189 null;
16190
16191 -- Case 2: Inherit entities associated with interfaces that were
16192 -- not covered by the parent type. We exclude here null interface
16193 -- primitives because they do not need special management.
16194
16195 -- We also exclude interface operations that are renamings. If the
16196 -- subprogram is an explicit renaming of an interface primitive,
16197 -- it is a regular primitive operation, and the presence of its
16198 -- alias is not relevant: it has to be derived like any other
16199 -- primitive.
16200
16201 elsif Present (Alias (Subp))
16202 and then Nkind (Unit_Declaration_Node (Subp)) /=
16203 N_Subprogram_Renaming_Declaration
16204 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
16205 and then not
16206 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
16207 and then Null_Present (Parent (Alias_Subp)))
16208 then
16209 -- If this is an abstract private type then we transfer the
16210 -- derivation of the interface primitive from the partial view
16211 -- to the full view. This is safe because all the interfaces
16212 -- must be visible in the partial view. Done to avoid adding
16213 -- a new interface derivation to the private part of the
16214 -- enclosing package; otherwise this new derivation would be
16215 -- decorated as hidden when the analysis of the enclosing
16216 -- package completes.
16217
16218 if Is_Abstract_Type (Derived_Type)
16219 and then In_Private_Part (Current_Scope)
16220 and then Has_Private_Declaration (Derived_Type)
16221 then
16222 declare
16223 Partial_View : Entity_Id;
16224 Elmt : Elmt_Id;
16225 Ent : Entity_Id;
16226
16227 begin
16228 Partial_View := First_Entity (Current_Scope);
16229 loop
16230 exit when No (Partial_View)
16231 or else (Has_Private_Declaration (Partial_View)
16232 and then
16233 Full_View (Partial_View) = Derived_Type);
16234
16235 Next_Entity (Partial_View);
16236 end loop;
16237
16238 -- If the partial view was not found then the source code
16239 -- has errors and the derivation is not needed.
16240
16241 if Present (Partial_View) then
16242 Elmt :=
16243 First_Elmt (Primitive_Operations (Partial_View));
16244 while Present (Elmt) loop
16245 Ent := Node (Elmt);
16246
16247 if Present (Alias (Ent))
16248 and then Ultimate_Alias (Ent) = Alias (Subp)
16249 then
16250 Append_Elmt
16251 (Ent, Primitive_Operations (Derived_Type));
16252 exit;
16253 end if;
16254
16255 Next_Elmt (Elmt);
16256 end loop;
16257
16258 -- If the interface primitive was not found in the
16259 -- partial view then this interface primitive was
16260 -- overridden. We add a derivation to activate in
16261 -- Derive_Progenitor_Subprograms the machinery to
16262 -- search for it.
16263
16264 if No (Elmt) then
16265 Derive_Interface_Subprogram
16266 (New_Subp => New_Subp,
16267 Subp => Subp,
16268 Actual_Subp => Act_Subp);
16269 end if;
16270 end if;
16271 end;
16272 else
16273 Derive_Interface_Subprogram
16274 (New_Subp => New_Subp,
16275 Subp => Subp,
16276 Actual_Subp => Act_Subp);
16277 end if;
16278
16279 -- Case 3: Common derivation
16280
16281 else
16282 Derive_Subprogram
16283 (New_Subp => New_Subp,
16284 Parent_Subp => Subp,
16285 Derived_Type => Derived_Type,
16286 Parent_Type => Parent_Base,
16287 Actual_Subp => Act_Subp);
16288 end if;
16289
16290 -- No need to update Act_Elm if we must search for the
16291 -- corresponding operation in the generic actual
16292
16293 if not Need_Search
16294 and then Present (Act_Elmt)
16295 then
16296 Next_Elmt (Act_Elmt);
16297 Act_Subp := Node (Act_Elmt);
16298 end if;
16299
16300 <<Continue>>
16301 Next_Elmt (Elmt);
16302 end loop;
16303
16304 -- Inherit additional operations from progenitors. If the derived
16305 -- type is a generic actual, there are not new primitive operations
16306 -- for the type because it has those of the actual, and therefore
16307 -- nothing needs to be done. The renamings generated above are not
16308 -- primitive operations, and their purpose is simply to make the
16309 -- proper operations visible within an instantiation.
16310
16311 if No (Generic_Actual) then
16312 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
16313 end if;
16314 end if;
16315
16316 -- Final check: Direct descendants must have their primitives in the
16317 -- same order. We exclude from this test untagged types and instances
16318 -- of formal derived types. We skip this test if we have already
16319 -- reported serious errors in the sources.
16320
16321 pragma Assert (not Is_Tagged_Type (Derived_Type)
16322 or else Present (Generic_Actual)
16323 or else Serious_Errors_Detected > 0
16324 or else Check_Derived_Type);
16325 end Derive_Subprograms;
16326
16327 --------------------------------
16328 -- Derived_Standard_Character --
16329 --------------------------------
16330
16331 procedure Derived_Standard_Character
16332 (N : Node_Id;
16333 Parent_Type : Entity_Id;
16334 Derived_Type : Entity_Id)
16335 is
16336 Loc : constant Source_Ptr := Sloc (N);
16337 Def : constant Node_Id := Type_Definition (N);
16338 Indic : constant Node_Id := Subtype_Indication (Def);
16339 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
16340 Implicit_Base : constant Entity_Id :=
16341 Create_Itype
16342 (E_Enumeration_Type, N, Derived_Type, 'B');
16343
16344 Lo : Node_Id;
16345 Hi : Node_Id;
16346
16347 begin
16348 Discard_Node (Process_Subtype (Indic, N));
16349
16350 Set_Etype (Implicit_Base, Parent_Base);
16351 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
16352 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
16353
16354 Set_Is_Character_Type (Implicit_Base, True);
16355 Set_Has_Delayed_Freeze (Implicit_Base);
16356
16357 -- The bounds of the implicit base are the bounds of the parent base.
16358 -- Note that their type is the parent base.
16359
16360 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
16361 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
16362
16363 Set_Scalar_Range (Implicit_Base,
16364 Make_Range (Loc,
16365 Low_Bound => Lo,
16366 High_Bound => Hi));
16367
16368 Conditional_Delay (Derived_Type, Parent_Type);
16369
16370 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
16371 Set_Etype (Derived_Type, Implicit_Base);
16372 Set_Size_Info (Derived_Type, Parent_Type);
16373
16374 if Unknown_RM_Size (Derived_Type) then
16375 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
16376 end if;
16377
16378 Set_Is_Character_Type (Derived_Type, True);
16379
16380 if Nkind (Indic) /= N_Subtype_Indication then
16381
16382 -- If no explicit constraint, the bounds are those
16383 -- of the parent type.
16384
16385 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
16386 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
16387 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
16388 end if;
16389
16390 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
16391
16392 -- Because the implicit base is used in the conversion of the bounds, we
16393 -- have to freeze it now. This is similar to what is done for numeric
16394 -- types, and it equally suspicious, but otherwise a non-static bound
16395 -- will have a reference to an unfrozen type, which is rejected by Gigi
16396 -- (???). This requires specific care for definition of stream
16397 -- attributes. For details, see comments at the end of
16398 -- Build_Derived_Numeric_Type.
16399
16400 Freeze_Before (N, Implicit_Base);
16401 end Derived_Standard_Character;
16402
16403 ------------------------------
16404 -- Derived_Type_Declaration --
16405 ------------------------------
16406
16407 procedure Derived_Type_Declaration
16408 (T : Entity_Id;
16409 N : Node_Id;
16410 Is_Completion : Boolean)
16411 is
16412 Parent_Type : Entity_Id;
16413
16414 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
16415 -- Check whether the parent type is a generic formal, or derives
16416 -- directly or indirectly from one.
16417
16418 ------------------------
16419 -- Comes_From_Generic --
16420 ------------------------
16421
16422 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
16423 begin
16424 if Is_Generic_Type (Typ) then
16425 return True;
16426
16427 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
16428 return True;
16429
16430 elsif Is_Private_Type (Typ)
16431 and then Present (Full_View (Typ))
16432 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
16433 then
16434 return True;
16435
16436 elsif Is_Generic_Actual_Type (Typ) then
16437 return True;
16438
16439 else
16440 return False;
16441 end if;
16442 end Comes_From_Generic;
16443
16444 -- Local variables
16445
16446 Def : constant Node_Id := Type_Definition (N);
16447 Iface_Def : Node_Id;
16448 Indic : constant Node_Id := Subtype_Indication (Def);
16449 Extension : constant Node_Id := Record_Extension_Part (Def);
16450 Parent_Node : Node_Id;
16451 Taggd : Boolean;
16452
16453 -- Start of processing for Derived_Type_Declaration
16454
16455 begin
16456 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
16457
16458 if SPARK_Mode = On
16459 and then Is_Tagged_Type (Parent_Type)
16460 then
16461 declare
16462 Partial_View : constant Entity_Id :=
16463 Incomplete_Or_Partial_View (Parent_Type);
16464
16465 begin
16466 -- If the partial view was not found then the parent type is not
16467 -- a private type. Otherwise check if the partial view is a tagged
16468 -- private type.
16469
16470 if Present (Partial_View)
16471 and then Is_Private_Type (Partial_View)
16472 and then not Is_Tagged_Type (Partial_View)
16473 then
16474 Error_Msg_NE
16475 ("cannot derive from & declared as untagged private "
16476 & "(SPARK RM 3.4(1))", N, Partial_View);
16477 end if;
16478 end;
16479 end if;
16480
16481 -- Ada 2005 (AI-251): In case of interface derivation check that the
16482 -- parent is also an interface.
16483
16484 if Interface_Present (Def) then
16485 Check_SPARK_05_Restriction ("interface is not allowed", Def);
16486
16487 if not Is_Interface (Parent_Type) then
16488 Diagnose_Interface (Indic, Parent_Type);
16489
16490 else
16491 Parent_Node := Parent (Base_Type (Parent_Type));
16492 Iface_Def := Type_Definition (Parent_Node);
16493
16494 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
16495 -- other limited interfaces.
16496
16497 if Limited_Present (Def) then
16498 if Limited_Present (Iface_Def) then
16499 null;
16500
16501 elsif Protected_Present (Iface_Def) then
16502 Error_Msg_NE
16503 ("descendant of & must be declared as a protected "
16504 & "interface", N, Parent_Type);
16505
16506 elsif Synchronized_Present (Iface_Def) then
16507 Error_Msg_NE
16508 ("descendant of & must be declared as a synchronized "
16509 & "interface", N, Parent_Type);
16510
16511 elsif Task_Present (Iface_Def) then
16512 Error_Msg_NE
16513 ("descendant of & must be declared as a task interface",
16514 N, Parent_Type);
16515
16516 else
16517 Error_Msg_N
16518 ("(Ada 2005) limited interface cannot inherit from "
16519 & "non-limited interface", Indic);
16520 end if;
16521
16522 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
16523 -- from non-limited or limited interfaces.
16524
16525 elsif not Protected_Present (Def)
16526 and then not Synchronized_Present (Def)
16527 and then not Task_Present (Def)
16528 then
16529 if Limited_Present (Iface_Def) then
16530 null;
16531
16532 elsif Protected_Present (Iface_Def) then
16533 Error_Msg_NE
16534 ("descendant of & must be declared as a protected "
16535 & "interface", N, Parent_Type);
16536
16537 elsif Synchronized_Present (Iface_Def) then
16538 Error_Msg_NE
16539 ("descendant of & must be declared as a synchronized "
16540 & "interface", N, Parent_Type);
16541
16542 elsif Task_Present (Iface_Def) then
16543 Error_Msg_NE
16544 ("descendant of & must be declared as a task interface",
16545 N, Parent_Type);
16546 else
16547 null;
16548 end if;
16549 end if;
16550 end if;
16551 end if;
16552
16553 if Is_Tagged_Type (Parent_Type)
16554 and then Is_Concurrent_Type (Parent_Type)
16555 and then not Is_Interface (Parent_Type)
16556 then
16557 Error_Msg_N
16558 ("parent type of a record extension cannot be a synchronized "
16559 & "tagged type (RM 3.9.1 (3/1))", N);
16560 Set_Etype (T, Any_Type);
16561 return;
16562 end if;
16563
16564 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
16565 -- interfaces
16566
16567 if Is_Tagged_Type (Parent_Type)
16568 and then Is_Non_Empty_List (Interface_List (Def))
16569 then
16570 declare
16571 Intf : Node_Id;
16572 T : Entity_Id;
16573
16574 begin
16575 Intf := First (Interface_List (Def));
16576 while Present (Intf) loop
16577 T := Find_Type_Of_Subtype_Indic (Intf);
16578
16579 if not Is_Interface (T) then
16580 Diagnose_Interface (Intf, T);
16581
16582 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
16583 -- a limited type from having a nonlimited progenitor.
16584
16585 elsif (Limited_Present (Def)
16586 or else (not Is_Interface (Parent_Type)
16587 and then Is_Limited_Type (Parent_Type)))
16588 and then not Is_Limited_Interface (T)
16589 then
16590 Error_Msg_NE
16591 ("progenitor interface& of limited type must be limited",
16592 N, T);
16593 end if;
16594
16595 Next (Intf);
16596 end loop;
16597 end;
16598 end if;
16599
16600 if Parent_Type = Any_Type
16601 or else Etype (Parent_Type) = Any_Type
16602 or else (Is_Class_Wide_Type (Parent_Type)
16603 and then Etype (Parent_Type) = T)
16604 then
16605 -- If Parent_Type is undefined or illegal, make new type into a
16606 -- subtype of Any_Type, and set a few attributes to prevent cascaded
16607 -- errors. If this is a self-definition, emit error now.
16608
16609 if T = Parent_Type or else T = Etype (Parent_Type) then
16610 Error_Msg_N ("type cannot be used in its own definition", Indic);
16611 end if;
16612
16613 Set_Ekind (T, Ekind (Parent_Type));
16614 Set_Etype (T, Any_Type);
16615 Set_Scalar_Range (T, Scalar_Range (Any_Type));
16616
16617 if Is_Tagged_Type (T)
16618 and then Is_Record_Type (T)
16619 then
16620 Set_Direct_Primitive_Operations (T, New_Elmt_List);
16621 end if;
16622
16623 return;
16624 end if;
16625
16626 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
16627 -- an interface is special because the list of interfaces in the full
16628 -- view can be given in any order. For example:
16629
16630 -- type A is interface;
16631 -- type B is interface and A;
16632 -- type D is new B with private;
16633 -- private
16634 -- type D is new A and B with null record; -- 1 --
16635
16636 -- In this case we perform the following transformation of -1-:
16637
16638 -- type D is new B and A with null record;
16639
16640 -- If the parent of the full-view covers the parent of the partial-view
16641 -- we have two possible cases:
16642
16643 -- 1) They have the same parent
16644 -- 2) The parent of the full-view implements some further interfaces
16645
16646 -- In both cases we do not need to perform the transformation. In the
16647 -- first case the source program is correct and the transformation is
16648 -- not needed; in the second case the source program does not fulfill
16649 -- the no-hidden interfaces rule (AI-396) and the error will be reported
16650 -- later.
16651
16652 -- This transformation not only simplifies the rest of the analysis of
16653 -- this type declaration but also simplifies the correct generation of
16654 -- the object layout to the expander.
16655
16656 if In_Private_Part (Current_Scope)
16657 and then Is_Interface (Parent_Type)
16658 then
16659 declare
16660 Iface : Node_Id;
16661 Partial_View : Entity_Id;
16662 Partial_View_Parent : Entity_Id;
16663 New_Iface : Node_Id;
16664
16665 begin
16666 -- Look for the associated private type declaration
16667
16668 Partial_View := Incomplete_Or_Partial_View (T);
16669
16670 -- If the partial view was not found then the source code has
16671 -- errors and the transformation is not needed.
16672
16673 if Present (Partial_View) then
16674 Partial_View_Parent := Etype (Partial_View);
16675
16676 -- If the parent of the full-view covers the parent of the
16677 -- partial-view we have nothing else to do.
16678
16679 if Interface_Present_In_Ancestor
16680 (Parent_Type, Partial_View_Parent)
16681 then
16682 null;
16683
16684 -- Traverse the list of interfaces of the full-view to look
16685 -- for the parent of the partial-view and perform the tree
16686 -- transformation.
16687
16688 else
16689 Iface := First (Interface_List (Def));
16690 while Present (Iface) loop
16691 if Etype (Iface) = Etype (Partial_View) then
16692 Rewrite (Subtype_Indication (Def),
16693 New_Copy (Subtype_Indication
16694 (Parent (Partial_View))));
16695
16696 New_Iface :=
16697 Make_Identifier (Sloc (N), Chars (Parent_Type));
16698 Append (New_Iface, Interface_List (Def));
16699
16700 -- Analyze the transformed code
16701
16702 Derived_Type_Declaration (T, N, Is_Completion);
16703 return;
16704 end if;
16705
16706 Next (Iface);
16707 end loop;
16708 end if;
16709 end if;
16710 end;
16711 end if;
16712
16713 -- Only composite types other than array types are allowed to have
16714 -- discriminants.
16715
16716 if Present (Discriminant_Specifications (N)) then
16717 if (Is_Elementary_Type (Parent_Type)
16718 or else
16719 Is_Array_Type (Parent_Type))
16720 and then not Error_Posted (N)
16721 then
16722 Error_Msg_N
16723 ("elementary or array type cannot have discriminants",
16724 Defining_Identifier (First (Discriminant_Specifications (N))));
16725
16726 -- Unset Has_Discriminants flag to prevent cascaded errors, but
16727 -- only if we are not already processing a malformed syntax tree.
16728
16729 if Is_Type (T) then
16730 Set_Has_Discriminants (T, False);
16731 end if;
16732
16733 -- The type is allowed to have discriminants
16734
16735 else
16736 Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
16737 end if;
16738 end if;
16739
16740 -- In Ada 83, a derived type defined in a package specification cannot
16741 -- be used for further derivation until the end of its visible part.
16742 -- Note that derivation in the private part of the package is allowed.
16743
16744 if Ada_Version = Ada_83
16745 and then Is_Derived_Type (Parent_Type)
16746 and then In_Visible_Part (Scope (Parent_Type))
16747 then
16748 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
16749 Error_Msg_N
16750 ("(Ada 83): premature use of type for derivation", Indic);
16751 end if;
16752 end if;
16753
16754 -- Check for early use of incomplete or private type
16755
16756 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
16757 Error_Msg_N ("premature derivation of incomplete type", Indic);
16758 return;
16759
16760 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
16761 and then not Comes_From_Generic (Parent_Type))
16762 or else Has_Private_Component (Parent_Type)
16763 then
16764 -- The ancestor type of a formal type can be incomplete, in which
16765 -- case only the operations of the partial view are available in the
16766 -- generic. Subsequent checks may be required when the full view is
16767 -- analyzed to verify that a derivation from a tagged type has an
16768 -- extension.
16769
16770 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
16771 null;
16772
16773 elsif No (Underlying_Type (Parent_Type))
16774 or else Has_Private_Component (Parent_Type)
16775 then
16776 Error_Msg_N
16777 ("premature derivation of derived or private type", Indic);
16778
16779 -- Flag the type itself as being in error, this prevents some
16780 -- nasty problems with subsequent uses of the malformed type.
16781
16782 Set_Error_Posted (T);
16783
16784 -- Check that within the immediate scope of an untagged partial
16785 -- view it's illegal to derive from the partial view if the
16786 -- full view is tagged. (7.3(7))
16787
16788 -- We verify that the Parent_Type is a partial view by checking
16789 -- that it is not a Full_Type_Declaration (i.e. a private type or
16790 -- private extension declaration), to distinguish a partial view
16791 -- from a derivation from a private type which also appears as
16792 -- E_Private_Type. If the parent base type is not declared in an
16793 -- enclosing scope there is no need to check.
16794
16795 elsif Present (Full_View (Parent_Type))
16796 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
16797 and then not Is_Tagged_Type (Parent_Type)
16798 and then Is_Tagged_Type (Full_View (Parent_Type))
16799 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
16800 then
16801 Error_Msg_N
16802 ("premature derivation from type with tagged full view",
16803 Indic);
16804 end if;
16805 end if;
16806
16807 -- Check that form of derivation is appropriate
16808
16809 Taggd := Is_Tagged_Type (Parent_Type);
16810
16811 -- Set the parent type to the class-wide type's specific type in this
16812 -- case to prevent cascading errors
16813
16814 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
16815 Error_Msg_N ("parent type must not be a class-wide type", Indic);
16816 Set_Etype (T, Etype (Parent_Type));
16817 return;
16818 end if;
16819
16820 if Present (Extension) and then not Taggd then
16821 Error_Msg_N
16822 ("type derived from untagged type cannot have extension", Indic);
16823
16824 elsif No (Extension) and then Taggd then
16825
16826 -- If this declaration is within a private part (or body) of a
16827 -- generic instantiation then the derivation is allowed (the parent
16828 -- type can only appear tagged in this case if it's a generic actual
16829 -- type, since it would otherwise have been rejected in the analysis
16830 -- of the generic template).
16831
16832 if not Is_Generic_Actual_Type (Parent_Type)
16833 or else In_Visible_Part (Scope (Parent_Type))
16834 then
16835 if Is_Class_Wide_Type (Parent_Type) then
16836 Error_Msg_N
16837 ("parent type must not be a class-wide type", Indic);
16838
16839 -- Use specific type to prevent cascaded errors.
16840
16841 Parent_Type := Etype (Parent_Type);
16842
16843 else
16844 Error_Msg_N
16845 ("type derived from tagged type must have extension", Indic);
16846 end if;
16847 end if;
16848 end if;
16849
16850 -- AI-443: Synchronized formal derived types require a private
16851 -- extension. There is no point in checking the ancestor type or
16852 -- the progenitors since the construct is wrong to begin with.
16853
16854 if Ada_Version >= Ada_2005
16855 and then Is_Generic_Type (T)
16856 and then Present (Original_Node (N))
16857 then
16858 declare
16859 Decl : constant Node_Id := Original_Node (N);
16860
16861 begin
16862 if Nkind (Decl) = N_Formal_Type_Declaration
16863 and then Nkind (Formal_Type_Definition (Decl)) =
16864 N_Formal_Derived_Type_Definition
16865 and then Synchronized_Present (Formal_Type_Definition (Decl))
16866 and then No (Extension)
16867
16868 -- Avoid emitting a duplicate error message
16869
16870 and then not Error_Posted (Indic)
16871 then
16872 Error_Msg_N
16873 ("synchronized derived type must have extension", N);
16874 end if;
16875 end;
16876 end if;
16877
16878 if Null_Exclusion_Present (Def)
16879 and then not Is_Access_Type (Parent_Type)
16880 then
16881 Error_Msg_N ("null exclusion can only apply to an access type", N);
16882 end if;
16883
16884 -- Avoid deriving parent primitives of underlying record views
16885
16886 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
16887 Derive_Subps => not Is_Underlying_Record_View (T));
16888
16889 -- AI-419: The parent type of an explicitly limited derived type must
16890 -- be a limited type or a limited interface.
16891
16892 if Limited_Present (Def) then
16893 Set_Is_Limited_Record (T);
16894
16895 if Is_Interface (T) then
16896 Set_Is_Limited_Interface (T);
16897 end if;
16898
16899 if not Is_Limited_Type (Parent_Type)
16900 and then
16901 (not Is_Interface (Parent_Type)
16902 or else not Is_Limited_Interface (Parent_Type))
16903 then
16904 -- AI05-0096: a derivation in the private part of an instance is
16905 -- legal if the generic formal is untagged limited, and the actual
16906 -- is non-limited.
16907
16908 if Is_Generic_Actual_Type (Parent_Type)
16909 and then In_Private_Part (Current_Scope)
16910 and then
16911 not Is_Tagged_Type
16912 (Generic_Parent_Type (Parent (Parent_Type)))
16913 then
16914 null;
16915
16916 else
16917 Error_Msg_NE
16918 ("parent type& of limited type must be limited",
16919 N, Parent_Type);
16920 end if;
16921 end if;
16922 end if;
16923
16924 -- In SPARK, there are no derived type definitions other than type
16925 -- extensions of tagged record types.
16926
16927 if No (Extension) then
16928 Check_SPARK_05_Restriction
16929 ("derived type is not allowed", Original_Node (N));
16930 end if;
16931 end Derived_Type_Declaration;
16932
16933 ------------------------
16934 -- Diagnose_Interface --
16935 ------------------------
16936
16937 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
16938 begin
16939 if not Is_Interface (E) and then E /= Any_Type then
16940 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
16941 end if;
16942 end Diagnose_Interface;
16943
16944 ----------------------------------
16945 -- Enumeration_Type_Declaration --
16946 ----------------------------------
16947
16948 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16949 Ev : Uint;
16950 L : Node_Id;
16951 R_Node : Node_Id;
16952 B_Node : Node_Id;
16953
16954 begin
16955 -- Create identifier node representing lower bound
16956
16957 B_Node := New_Node (N_Identifier, Sloc (Def));
16958 L := First (Literals (Def));
16959 Set_Chars (B_Node, Chars (L));
16960 Set_Entity (B_Node, L);
16961 Set_Etype (B_Node, T);
16962 Set_Is_Static_Expression (B_Node, True);
16963
16964 R_Node := New_Node (N_Range, Sloc (Def));
16965 Set_Low_Bound (R_Node, B_Node);
16966
16967 Set_Ekind (T, E_Enumeration_Type);
16968 Set_First_Literal (T, L);
16969 Set_Etype (T, T);
16970 Set_Is_Constrained (T);
16971
16972 Ev := Uint_0;
16973
16974 -- Loop through literals of enumeration type setting pos and rep values
16975 -- except that if the Ekind is already set, then it means the literal
16976 -- was already constructed (case of a derived type declaration and we
16977 -- should not disturb the Pos and Rep values.
16978
16979 while Present (L) loop
16980 if Ekind (L) /= E_Enumeration_Literal then
16981 Set_Ekind (L, E_Enumeration_Literal);
16982 Set_Enumeration_Pos (L, Ev);
16983 Set_Enumeration_Rep (L, Ev);
16984 Set_Is_Known_Valid (L, True);
16985 end if;
16986
16987 Set_Etype (L, T);
16988 New_Overloaded_Entity (L);
16989 Generate_Definition (L);
16990 Set_Convention (L, Convention_Intrinsic);
16991
16992 -- Case of character literal
16993
16994 if Nkind (L) = N_Defining_Character_Literal then
16995 Set_Is_Character_Type (T, True);
16996
16997 -- Check violation of No_Wide_Characters
16998
16999 if Restriction_Check_Required (No_Wide_Characters) then
17000 Get_Name_String (Chars (L));
17001
17002 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
17003 Check_Restriction (No_Wide_Characters, L);
17004 end if;
17005 end if;
17006 end if;
17007
17008 Ev := Ev + 1;
17009 Next (L);
17010 end loop;
17011
17012 -- Now create a node representing upper bound
17013
17014 B_Node := New_Node (N_Identifier, Sloc (Def));
17015 Set_Chars (B_Node, Chars (Last (Literals (Def))));
17016 Set_Entity (B_Node, Last (Literals (Def)));
17017 Set_Etype (B_Node, T);
17018 Set_Is_Static_Expression (B_Node, True);
17019
17020 Set_High_Bound (R_Node, B_Node);
17021
17022 -- Initialize various fields of the type. Some of this information
17023 -- may be overwritten later through rep.clauses.
17024
17025 Set_Scalar_Range (T, R_Node);
17026 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
17027 Set_Enum_Esize (T);
17028 Set_Enum_Pos_To_Rep (T, Empty);
17029
17030 -- Set Discard_Names if configuration pragma set, or if there is
17031 -- a parameterless pragma in the current declarative region
17032
17033 if Global_Discard_Names or else Discard_Names (Scope (T)) then
17034 Set_Discard_Names (T);
17035 end if;
17036
17037 -- Process end label if there is one
17038
17039 if Present (Def) then
17040 Process_End_Label (Def, 'e', T);
17041 end if;
17042 end Enumeration_Type_Declaration;
17043
17044 ---------------------------------
17045 -- Expand_To_Stored_Constraint --
17046 ---------------------------------
17047
17048 function Expand_To_Stored_Constraint
17049 (Typ : Entity_Id;
17050 Constraint : Elist_Id) return Elist_Id
17051 is
17052 Explicitly_Discriminated_Type : Entity_Id;
17053 Expansion : Elist_Id;
17054 Discriminant : Entity_Id;
17055
17056 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
17057 -- Find the nearest type that actually specifies discriminants
17058
17059 ---------------------------------
17060 -- Type_With_Explicit_Discrims --
17061 ---------------------------------
17062
17063 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
17064 Typ : constant E := Base_Type (Id);
17065
17066 begin
17067 if Ekind (Typ) in Incomplete_Or_Private_Kind then
17068 if Present (Full_View (Typ)) then
17069 return Type_With_Explicit_Discrims (Full_View (Typ));
17070 end if;
17071
17072 else
17073 if Has_Discriminants (Typ) then
17074 return Typ;
17075 end if;
17076 end if;
17077
17078 if Etype (Typ) = Typ then
17079 return Empty;
17080 elsif Has_Discriminants (Typ) then
17081 return Typ;
17082 else
17083 return Type_With_Explicit_Discrims (Etype (Typ));
17084 end if;
17085
17086 end Type_With_Explicit_Discrims;
17087
17088 -- Start of processing for Expand_To_Stored_Constraint
17089
17090 begin
17091 if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then
17092 return No_Elist;
17093 end if;
17094
17095 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
17096
17097 if No (Explicitly_Discriminated_Type) then
17098 return No_Elist;
17099 end if;
17100
17101 Expansion := New_Elmt_List;
17102
17103 Discriminant :=
17104 First_Stored_Discriminant (Explicitly_Discriminated_Type);
17105 while Present (Discriminant) loop
17106 Append_Elmt
17107 (Get_Discriminant_Value
17108 (Discriminant, Explicitly_Discriminated_Type, Constraint),
17109 To => Expansion);
17110 Next_Stored_Discriminant (Discriminant);
17111 end loop;
17112
17113 return Expansion;
17114 end Expand_To_Stored_Constraint;
17115
17116 ---------------------------
17117 -- Find_Hidden_Interface --
17118 ---------------------------
17119
17120 function Find_Hidden_Interface
17121 (Src : Elist_Id;
17122 Dest : Elist_Id) return Entity_Id
17123 is
17124 Iface : Entity_Id;
17125 Iface_Elmt : Elmt_Id;
17126
17127 begin
17128 if Present (Src) and then Present (Dest) then
17129 Iface_Elmt := First_Elmt (Src);
17130 while Present (Iface_Elmt) loop
17131 Iface := Node (Iface_Elmt);
17132
17133 if Is_Interface (Iface)
17134 and then not Contain_Interface (Iface, Dest)
17135 then
17136 return Iface;
17137 end if;
17138
17139 Next_Elmt (Iface_Elmt);
17140 end loop;
17141 end if;
17142
17143 return Empty;
17144 end Find_Hidden_Interface;
17145
17146 --------------------
17147 -- Find_Type_Name --
17148 --------------------
17149
17150 function Find_Type_Name (N : Node_Id) return Entity_Id is
17151 Id : constant Entity_Id := Defining_Identifier (N);
17152 New_Id : Entity_Id;
17153 Prev : Entity_Id;
17154 Prev_Par : Node_Id;
17155
17156 procedure Check_Duplicate_Aspects;
17157 -- Check that aspects specified in a completion have not been specified
17158 -- already in the partial view.
17159
17160 procedure Tag_Mismatch;
17161 -- Diagnose a tagged partial view whose full view is untagged. We post
17162 -- the message on the full view, with a reference to the previous
17163 -- partial view. The partial view can be private or incomplete, and
17164 -- these are handled in a different manner, so we determine the position
17165 -- of the error message from the respective slocs of both.
17166
17167 -----------------------------
17168 -- Check_Duplicate_Aspects --
17169 -----------------------------
17170
17171 procedure Check_Duplicate_Aspects is
17172 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id;
17173 -- Return the corresponding aspect of the partial view which matches
17174 -- the aspect id of Asp. Return Empty is no such aspect exists.
17175
17176 -----------------------------
17177 -- Get_Partial_View_Aspect --
17178 -----------------------------
17179
17180 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id is
17181 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp);
17182 Prev_Asps : constant List_Id := Aspect_Specifications (Prev_Par);
17183 Prev_Asp : Node_Id;
17184
17185 begin
17186 if Present (Prev_Asps) then
17187 Prev_Asp := First (Prev_Asps);
17188 while Present (Prev_Asp) loop
17189 if Get_Aspect_Id (Prev_Asp) = Asp_Id then
17190 return Prev_Asp;
17191 end if;
17192
17193 Next (Prev_Asp);
17194 end loop;
17195 end if;
17196
17197 return Empty;
17198 end Get_Partial_View_Aspect;
17199
17200 -- Local variables
17201
17202 Full_Asps : constant List_Id := Aspect_Specifications (N);
17203 Full_Asp : Node_Id;
17204 Part_Asp : Node_Id;
17205
17206 -- Start of processing for Check_Duplicate_Aspects
17207
17208 begin
17209 if Present (Full_Asps) then
17210 Full_Asp := First (Full_Asps);
17211 while Present (Full_Asp) loop
17212 Part_Asp := Get_Partial_View_Aspect (Full_Asp);
17213
17214 -- An aspect and its class-wide counterpart are two distinct
17215 -- aspects and may apply to both views of an entity.
17216
17217 if Present (Part_Asp)
17218 and then Class_Present (Part_Asp) = Class_Present (Full_Asp)
17219 then
17220 Error_Msg_N
17221 ("aspect already specified in private declaration",
17222 Full_Asp);
17223
17224 Remove (Full_Asp);
17225 return;
17226 end if;
17227
17228 if Has_Discriminants (Prev)
17229 and then not Has_Unknown_Discriminants (Prev)
17230 and then Get_Aspect_Id (Full_Asp) =
17231 Aspect_Implicit_Dereference
17232 then
17233 Error_Msg_N
17234 ("cannot specify aspect if partial view has known "
17235 & "discriminants", Full_Asp);
17236 end if;
17237
17238 Next (Full_Asp);
17239 end loop;
17240 end if;
17241 end Check_Duplicate_Aspects;
17242
17243 ------------------
17244 -- Tag_Mismatch --
17245 ------------------
17246
17247 procedure Tag_Mismatch is
17248 begin
17249 if Sloc (Prev) < Sloc (Id) then
17250 if Ada_Version >= Ada_2012
17251 and then Nkind (N) = N_Private_Type_Declaration
17252 then
17253 Error_Msg_NE
17254 ("declaration of private } must be a tagged type ", Id, Prev);
17255 else
17256 Error_Msg_NE
17257 ("full declaration of } must be a tagged type ", Id, Prev);
17258 end if;
17259
17260 else
17261 if Ada_Version >= Ada_2012
17262 and then Nkind (N) = N_Private_Type_Declaration
17263 then
17264 Error_Msg_NE
17265 ("declaration of private } must be a tagged type ", Prev, Id);
17266 else
17267 Error_Msg_NE
17268 ("full declaration of } must be a tagged type ", Prev, Id);
17269 end if;
17270 end if;
17271 end Tag_Mismatch;
17272
17273 -- Start of processing for Find_Type_Name
17274
17275 begin
17276 -- Find incomplete declaration, if one was given
17277
17278 Prev := Current_Entity_In_Scope (Id);
17279
17280 -- New type declaration
17281
17282 if No (Prev) then
17283 Enter_Name (Id);
17284 return Id;
17285
17286 -- Previous declaration exists
17287
17288 else
17289 Prev_Par := Parent (Prev);
17290
17291 -- Error if not incomplete/private case except if previous
17292 -- declaration is implicit, etc. Enter_Name will emit error if
17293 -- appropriate.
17294
17295 if not Is_Incomplete_Or_Private_Type (Prev) then
17296 Enter_Name (Id);
17297 New_Id := Id;
17298
17299 -- Check invalid completion of private or incomplete type
17300
17301 elsif not Nkind_In (N, N_Full_Type_Declaration,
17302 N_Task_Type_Declaration,
17303 N_Protected_Type_Declaration)
17304 and then
17305 (Ada_Version < Ada_2012
17306 or else not Is_Incomplete_Type (Prev)
17307 or else not Nkind_In (N, N_Private_Type_Declaration,
17308 N_Private_Extension_Declaration))
17309 then
17310 -- Completion must be a full type declarations (RM 7.3(4))
17311
17312 Error_Msg_Sloc := Sloc (Prev);
17313 Error_Msg_NE ("invalid completion of }", Id, Prev);
17314
17315 -- Set scope of Id to avoid cascaded errors. Entity is never
17316 -- examined again, except when saving globals in generics.
17317
17318 Set_Scope (Id, Current_Scope);
17319 New_Id := Id;
17320
17321 -- If this is a repeated incomplete declaration, no further
17322 -- checks are possible.
17323
17324 if Nkind (N) = N_Incomplete_Type_Declaration then
17325 return Prev;
17326 end if;
17327
17328 -- Case of full declaration of incomplete type
17329
17330 elsif Ekind (Prev) = E_Incomplete_Type
17331 and then (Ada_Version < Ada_2012
17332 or else No (Full_View (Prev))
17333 or else not Is_Private_Type (Full_View (Prev)))
17334 then
17335 -- Indicate that the incomplete declaration has a matching full
17336 -- declaration. The defining occurrence of the incomplete
17337 -- declaration remains the visible one, and the procedure
17338 -- Get_Full_View dereferences it whenever the type is used.
17339
17340 if Present (Full_View (Prev)) then
17341 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
17342 end if;
17343
17344 Set_Full_View (Prev, Id);
17345 Append_Entity (Id, Current_Scope);
17346 Set_Is_Public (Id, Is_Public (Prev));
17347 Set_Is_Internal (Id);
17348 New_Id := Prev;
17349
17350 -- If the incomplete view is tagged, a class_wide type has been
17351 -- created already. Use it for the private type as well, in order
17352 -- to prevent multiple incompatible class-wide types that may be
17353 -- created for self-referential anonymous access components.
17354
17355 if Is_Tagged_Type (Prev)
17356 and then Present (Class_Wide_Type (Prev))
17357 then
17358 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
17359 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
17360
17361 -- Type of the class-wide type is the current Id. Previously
17362 -- this was not done for private declarations because of order-
17363 -- of-elaboration issues in the back end, but gigi now handles
17364 -- this properly.
17365
17366 Set_Etype (Class_Wide_Type (Id), Id);
17367 end if;
17368
17369 -- Case of full declaration of private type
17370
17371 else
17372 -- If the private type was a completion of an incomplete type then
17373 -- update Prev to reference the private type
17374
17375 if Ada_Version >= Ada_2012
17376 and then Ekind (Prev) = E_Incomplete_Type
17377 and then Present (Full_View (Prev))
17378 and then Is_Private_Type (Full_View (Prev))
17379 then
17380 Prev := Full_View (Prev);
17381 Prev_Par := Parent (Prev);
17382 end if;
17383
17384 if Nkind (N) = N_Full_Type_Declaration
17385 and then Nkind_In
17386 (Type_Definition (N), N_Record_Definition,
17387 N_Derived_Type_Definition)
17388 and then Interface_Present (Type_Definition (N))
17389 then
17390 Error_Msg_N
17391 ("completion of private type cannot be an interface", N);
17392 end if;
17393
17394 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
17395 if Etype (Prev) /= Prev then
17396
17397 -- Prev is a private subtype or a derived type, and needs
17398 -- no completion.
17399
17400 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
17401 New_Id := Id;
17402
17403 elsif Ekind (Prev) = E_Private_Type
17404 and then Nkind_In (N, N_Task_Type_Declaration,
17405 N_Protected_Type_Declaration)
17406 then
17407 Error_Msg_N
17408 ("completion of nonlimited type cannot be limited", N);
17409
17410 elsif Ekind (Prev) = E_Record_Type_With_Private
17411 and then Nkind_In (N, N_Task_Type_Declaration,
17412 N_Protected_Type_Declaration)
17413 then
17414 if not Is_Limited_Record (Prev) then
17415 Error_Msg_N
17416 ("completion of nonlimited type cannot be limited", N);
17417
17418 elsif No (Interface_List (N)) then
17419 Error_Msg_N
17420 ("completion of tagged private type must be tagged",
17421 N);
17422 end if;
17423 end if;
17424
17425 -- Ada 2005 (AI-251): Private extension declaration of a task
17426 -- type or a protected type. This case arises when covering
17427 -- interface types.
17428
17429 elsif Nkind_In (N, N_Task_Type_Declaration,
17430 N_Protected_Type_Declaration)
17431 then
17432 null;
17433
17434 elsif Nkind (N) /= N_Full_Type_Declaration
17435 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
17436 then
17437 Error_Msg_N
17438 ("full view of private extension must be an extension", N);
17439
17440 elsif not (Abstract_Present (Parent (Prev)))
17441 and then Abstract_Present (Type_Definition (N))
17442 then
17443 Error_Msg_N
17444 ("full view of non-abstract extension cannot be abstract", N);
17445 end if;
17446
17447 if not In_Private_Part (Current_Scope) then
17448 Error_Msg_N
17449 ("declaration of full view must appear in private part", N);
17450 end if;
17451
17452 if Ada_Version >= Ada_2012 then
17453 Check_Duplicate_Aspects;
17454 end if;
17455
17456 Copy_And_Swap (Prev, Id);
17457 Set_Has_Private_Declaration (Prev);
17458 Set_Has_Private_Declaration (Id);
17459
17460 -- AI12-0133: Indicate whether we have a partial view with
17461 -- unknown discriminants, in which case initialization of objects
17462 -- of the type do not receive an invariant check.
17463
17464 Set_Partial_View_Has_Unknown_Discr
17465 (Prev, Has_Unknown_Discriminants (Id));
17466
17467 -- Preserve aspect and iterator flags that may have been set on
17468 -- the partial view.
17469
17470 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
17471 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
17472
17473 -- If no error, propagate freeze_node from private to full view.
17474 -- It may have been generated for an early operational item.
17475
17476 if Present (Freeze_Node (Id))
17477 and then Serious_Errors_Detected = 0
17478 and then No (Full_View (Id))
17479 then
17480 Set_Freeze_Node (Prev, Freeze_Node (Id));
17481 Set_Freeze_Node (Id, Empty);
17482 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
17483 end if;
17484
17485 Set_Full_View (Id, Prev);
17486 New_Id := Prev;
17487 end if;
17488
17489 -- Verify that full declaration conforms to partial one
17490
17491 if Is_Incomplete_Or_Private_Type (Prev)
17492 and then Present (Discriminant_Specifications (Prev_Par))
17493 then
17494 if Present (Discriminant_Specifications (N)) then
17495 if Ekind (Prev) = E_Incomplete_Type then
17496 Check_Discriminant_Conformance (N, Prev, Prev);
17497 else
17498 Check_Discriminant_Conformance (N, Prev, Id);
17499 end if;
17500
17501 else
17502 Error_Msg_N
17503 ("missing discriminants in full type declaration", N);
17504
17505 -- To avoid cascaded errors on subsequent use, share the
17506 -- discriminants of the partial view.
17507
17508 Set_Discriminant_Specifications (N,
17509 Discriminant_Specifications (Prev_Par));
17510 end if;
17511 end if;
17512
17513 -- A prior untagged partial view can have an associated class-wide
17514 -- type due to use of the class attribute, and in this case the full
17515 -- type must also be tagged. This Ada 95 usage is deprecated in favor
17516 -- of incomplete tagged declarations, but we check for it.
17517
17518 if Is_Type (Prev)
17519 and then (Is_Tagged_Type (Prev)
17520 or else Present (Class_Wide_Type (Prev)))
17521 then
17522 -- Ada 2012 (AI05-0162): A private type may be the completion of
17523 -- an incomplete type.
17524
17525 if Ada_Version >= Ada_2012
17526 and then Is_Incomplete_Type (Prev)
17527 and then Nkind_In (N, N_Private_Type_Declaration,
17528 N_Private_Extension_Declaration)
17529 then
17530 -- No need to check private extensions since they are tagged
17531
17532 if Nkind (N) = N_Private_Type_Declaration
17533 and then not Tagged_Present (N)
17534 then
17535 Tag_Mismatch;
17536 end if;
17537
17538 -- The full declaration is either a tagged type (including
17539 -- a synchronized type that implements interfaces) or a
17540 -- type extension, otherwise this is an error.
17541
17542 elsif Nkind_In (N, N_Task_Type_Declaration,
17543 N_Protected_Type_Declaration)
17544 then
17545 if No (Interface_List (N)) and then not Error_Posted (N) then
17546 Tag_Mismatch;
17547 end if;
17548
17549 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
17550
17551 -- Indicate that the previous declaration (tagged incomplete
17552 -- or private declaration) requires the same on the full one.
17553
17554 if not Tagged_Present (Type_Definition (N)) then
17555 Tag_Mismatch;
17556 Set_Is_Tagged_Type (Id);
17557 end if;
17558
17559 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
17560 if No (Record_Extension_Part (Type_Definition (N))) then
17561 Error_Msg_NE
17562 ("full declaration of } must be a record extension",
17563 Prev, Id);
17564
17565 -- Set some attributes to produce a usable full view
17566
17567 Set_Is_Tagged_Type (Id);
17568 end if;
17569
17570 else
17571 Tag_Mismatch;
17572 end if;
17573 end if;
17574
17575 if Present (Prev)
17576 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
17577 and then Present (Premature_Use (Parent (Prev)))
17578 then
17579 Error_Msg_Sloc := Sloc (N);
17580 Error_Msg_N
17581 ("\full declaration #", Premature_Use (Parent (Prev)));
17582 end if;
17583
17584 return New_Id;
17585 end if;
17586 end Find_Type_Name;
17587
17588 -------------------------
17589 -- Find_Type_Of_Object --
17590 -------------------------
17591
17592 function Find_Type_Of_Object
17593 (Obj_Def : Node_Id;
17594 Related_Nod : Node_Id) return Entity_Id
17595 is
17596 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
17597 P : Node_Id := Parent (Obj_Def);
17598 T : Entity_Id;
17599 Nam : Name_Id;
17600
17601 begin
17602 -- If the parent is a component_definition node we climb to the
17603 -- component_declaration node
17604
17605 if Nkind (P) = N_Component_Definition then
17606 P := Parent (P);
17607 end if;
17608
17609 -- Case of an anonymous array subtype
17610
17611 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
17612 N_Unconstrained_Array_Definition)
17613 then
17614 T := Empty;
17615 Array_Type_Declaration (T, Obj_Def);
17616
17617 -- Create an explicit subtype whenever possible
17618
17619 elsif Nkind (P) /= N_Component_Declaration
17620 and then Def_Kind = N_Subtype_Indication
17621 then
17622 -- Base name of subtype on object name, which will be unique in
17623 -- the current scope.
17624
17625 -- If this is a duplicate declaration, return base type, to avoid
17626 -- generating duplicate anonymous types.
17627
17628 if Error_Posted (P) then
17629 Analyze (Subtype_Mark (Obj_Def));
17630 return Entity (Subtype_Mark (Obj_Def));
17631 end if;
17632
17633 Nam :=
17634 New_External_Name
17635 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
17636
17637 T := Make_Defining_Identifier (Sloc (P), Nam);
17638
17639 Insert_Action (Obj_Def,
17640 Make_Subtype_Declaration (Sloc (P),
17641 Defining_Identifier => T,
17642 Subtype_Indication => Relocate_Node (Obj_Def)));
17643
17644 -- This subtype may need freezing, and this will not be done
17645 -- automatically if the object declaration is not in declarative
17646 -- part. Since this is an object declaration, the type cannot always
17647 -- be frozen here. Deferred constants do not freeze their type
17648 -- (which often enough will be private).
17649
17650 if Nkind (P) = N_Object_Declaration
17651 and then Constant_Present (P)
17652 and then No (Expression (P))
17653 then
17654 null;
17655
17656 -- Here we freeze the base type of object type to catch premature use
17657 -- of discriminated private type without a full view.
17658
17659 else
17660 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
17661 end if;
17662
17663 -- Ada 2005 AI-406: the object definition in an object declaration
17664 -- can be an access definition.
17665
17666 elsif Def_Kind = N_Access_Definition then
17667 T := Access_Definition (Related_Nod, Obj_Def);
17668
17669 Set_Is_Local_Anonymous_Access
17670 (T,
17671 V => (Ada_Version < Ada_2012)
17672 or else (Nkind (P) /= N_Object_Declaration)
17673 or else Is_Library_Level_Entity (Defining_Identifier (P)));
17674
17675 -- Otherwise, the object definition is just a subtype_mark
17676
17677 else
17678 T := Process_Subtype (Obj_Def, Related_Nod);
17679
17680 -- If expansion is disabled an object definition that is an aggregate
17681 -- will not get expanded and may lead to scoping problems in the back
17682 -- end, if the object is referenced in an inner scope. In that case
17683 -- create an itype reference for the object definition now. This
17684 -- may be redundant in some cases, but harmless.
17685
17686 if Is_Itype (T)
17687 and then Nkind (Related_Nod) = N_Object_Declaration
17688 and then ASIS_Mode
17689 then
17690 Build_Itype_Reference (T, Related_Nod);
17691 end if;
17692 end if;
17693
17694 return T;
17695 end Find_Type_Of_Object;
17696
17697 --------------------------------
17698 -- Find_Type_Of_Subtype_Indic --
17699 --------------------------------
17700
17701 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
17702 Typ : Entity_Id;
17703
17704 begin
17705 -- Case of subtype mark with a constraint
17706
17707 if Nkind (S) = N_Subtype_Indication then
17708 Find_Type (Subtype_Mark (S));
17709 Typ := Entity (Subtype_Mark (S));
17710
17711 if not
17712 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
17713 then
17714 Error_Msg_N
17715 ("incorrect constraint for this kind of type", Constraint (S));
17716 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
17717 end if;
17718
17719 -- Otherwise we have a subtype mark without a constraint
17720
17721 elsif Error_Posted (S) then
17722 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
17723 return Any_Type;
17724
17725 else
17726 Find_Type (S);
17727 Typ := Entity (S);
17728 end if;
17729
17730 -- Check No_Wide_Characters restriction
17731
17732 Check_Wide_Character_Restriction (Typ, S);
17733
17734 return Typ;
17735 end Find_Type_Of_Subtype_Indic;
17736
17737 -------------------------------------
17738 -- Floating_Point_Type_Declaration --
17739 -------------------------------------
17740
17741 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
17742 Digs : constant Node_Id := Digits_Expression (Def);
17743 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
17744 Digs_Val : Uint;
17745 Base_Typ : Entity_Id;
17746 Implicit_Base : Entity_Id;
17747 Bound : Node_Id;
17748
17749 function Can_Derive_From (E : Entity_Id) return Boolean;
17750 -- Find if given digits value, and possibly a specified range, allows
17751 -- derivation from specified type
17752
17753 function Find_Base_Type return Entity_Id;
17754 -- Find a predefined base type that Def can derive from, or generate
17755 -- an error and substitute Long_Long_Float if none exists.
17756
17757 ---------------------
17758 -- Can_Derive_From --
17759 ---------------------
17760
17761 function Can_Derive_From (E : Entity_Id) return Boolean is
17762 Spec : constant Entity_Id := Real_Range_Specification (Def);
17763
17764 begin
17765 -- Check specified "digits" constraint
17766
17767 if Digs_Val > Digits_Value (E) then
17768 return False;
17769 end if;
17770
17771 -- Check for matching range, if specified
17772
17773 if Present (Spec) then
17774 if Expr_Value_R (Type_Low_Bound (E)) >
17775 Expr_Value_R (Low_Bound (Spec))
17776 then
17777 return False;
17778 end if;
17779
17780 if Expr_Value_R (Type_High_Bound (E)) <
17781 Expr_Value_R (High_Bound (Spec))
17782 then
17783 return False;
17784 end if;
17785 end if;
17786
17787 return True;
17788 end Can_Derive_From;
17789
17790 --------------------
17791 -- Find_Base_Type --
17792 --------------------
17793
17794 function Find_Base_Type return Entity_Id is
17795 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
17796
17797 begin
17798 -- Iterate over the predefined types in order, returning the first
17799 -- one that Def can derive from.
17800
17801 while Present (Choice) loop
17802 if Can_Derive_From (Node (Choice)) then
17803 return Node (Choice);
17804 end if;
17805
17806 Next_Elmt (Choice);
17807 end loop;
17808
17809 -- If we can't derive from any existing type, use Long_Long_Float
17810 -- and give appropriate message explaining the problem.
17811
17812 if Digs_Val > Max_Digs_Val then
17813 -- It might be the case that there is a type with the requested
17814 -- range, just not the combination of digits and range.
17815
17816 Error_Msg_N
17817 ("no predefined type has requested range and precision",
17818 Real_Range_Specification (Def));
17819
17820 else
17821 Error_Msg_N
17822 ("range too large for any predefined type",
17823 Real_Range_Specification (Def));
17824 end if;
17825
17826 return Standard_Long_Long_Float;
17827 end Find_Base_Type;
17828
17829 -- Start of processing for Floating_Point_Type_Declaration
17830
17831 begin
17832 Check_Restriction (No_Floating_Point, Def);
17833
17834 -- Create an implicit base type
17835
17836 Implicit_Base :=
17837 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
17838
17839 -- Analyze and verify digits value
17840
17841 Analyze_And_Resolve (Digs, Any_Integer);
17842 Check_Digits_Expression (Digs);
17843 Digs_Val := Expr_Value (Digs);
17844
17845 -- Process possible range spec and find correct type to derive from
17846
17847 Process_Real_Range_Specification (Def);
17848
17849 -- Check that requested number of digits is not too high.
17850
17851 if Digs_Val > Max_Digs_Val then
17852
17853 -- The check for Max_Base_Digits may be somewhat expensive, as it
17854 -- requires reading System, so only do it when necessary.
17855
17856 declare
17857 Max_Base_Digits : constant Uint :=
17858 Expr_Value
17859 (Expression
17860 (Parent (RTE (RE_Max_Base_Digits))));
17861
17862 begin
17863 if Digs_Val > Max_Base_Digits then
17864 Error_Msg_Uint_1 := Max_Base_Digits;
17865 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
17866
17867 elsif No (Real_Range_Specification (Def)) then
17868 Error_Msg_Uint_1 := Max_Digs_Val;
17869 Error_Msg_N ("types with more than ^ digits need range spec "
17870 & "(RM 3.5.7(6))", Digs);
17871 end if;
17872 end;
17873 end if;
17874
17875 -- Find a suitable type to derive from or complain and use a substitute
17876
17877 Base_Typ := Find_Base_Type;
17878
17879 -- If there are bounds given in the declaration use them as the bounds
17880 -- of the type, otherwise use the bounds of the predefined base type
17881 -- that was chosen based on the Digits value.
17882
17883 if Present (Real_Range_Specification (Def)) then
17884 Set_Scalar_Range (T, Real_Range_Specification (Def));
17885 Set_Is_Constrained (T);
17886
17887 -- The bounds of this range must be converted to machine numbers
17888 -- in accordance with RM 4.9(38).
17889
17890 Bound := Type_Low_Bound (T);
17891
17892 if Nkind (Bound) = N_Real_Literal then
17893 Set_Realval
17894 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17895 Set_Is_Machine_Number (Bound);
17896 end if;
17897
17898 Bound := Type_High_Bound (T);
17899
17900 if Nkind (Bound) = N_Real_Literal then
17901 Set_Realval
17902 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17903 Set_Is_Machine_Number (Bound);
17904 end if;
17905
17906 else
17907 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
17908 end if;
17909
17910 -- Complete definition of implicit base and declared first subtype. The
17911 -- inheritance of the rep item chain ensures that SPARK-related pragmas
17912 -- are not clobbered when the floating point type acts as a full view of
17913 -- a private type.
17914
17915 Set_Etype (Implicit_Base, Base_Typ);
17916 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
17917 Set_Size_Info (Implicit_Base, Base_Typ);
17918 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
17919 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
17920 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
17921 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
17922
17923 Set_Ekind (T, E_Floating_Point_Subtype);
17924 Set_Etype (T, Implicit_Base);
17925 Set_Size_Info (T, Implicit_Base);
17926 Set_RM_Size (T, RM_Size (Implicit_Base));
17927 Inherit_Rep_Item_Chain (T, Implicit_Base);
17928 Set_Digits_Value (T, Digs_Val);
17929 end Floating_Point_Type_Declaration;
17930
17931 ----------------------------
17932 -- Get_Discriminant_Value --
17933 ----------------------------
17934
17935 -- This is the situation:
17936
17937 -- There is a non-derived type
17938
17939 -- type T0 (Dx, Dy, Dz...)
17940
17941 -- There are zero or more levels of derivation, with each derivation
17942 -- either purely inheriting the discriminants, or defining its own.
17943
17944 -- type Ti is new Ti-1
17945 -- or
17946 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
17947 -- or
17948 -- subtype Ti is ...
17949
17950 -- The subtype issue is avoided by the use of Original_Record_Component,
17951 -- and the fact that derived subtypes also derive the constraints.
17952
17953 -- This chain leads back from
17954
17955 -- Typ_For_Constraint
17956
17957 -- Typ_For_Constraint has discriminants, and the value for each
17958 -- discriminant is given by its corresponding Elmt of Constraints.
17959
17960 -- Discriminant is some discriminant in this hierarchy
17961
17962 -- We need to return its value
17963
17964 -- We do this by recursively searching each level, and looking for
17965 -- Discriminant. Once we get to the bottom, we start backing up
17966 -- returning the value for it which may in turn be a discriminant
17967 -- further up, so on the backup we continue the substitution.
17968
17969 function Get_Discriminant_Value
17970 (Discriminant : Entity_Id;
17971 Typ_For_Constraint : Entity_Id;
17972 Constraint : Elist_Id) return Node_Id
17973 is
17974 function Root_Corresponding_Discriminant
17975 (Discr : Entity_Id) return Entity_Id;
17976 -- Given a discriminant, traverse the chain of inherited discriminants
17977 -- and return the topmost discriminant.
17978
17979 function Search_Derivation_Levels
17980 (Ti : Entity_Id;
17981 Discrim_Values : Elist_Id;
17982 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
17983 -- This is the routine that performs the recursive search of levels
17984 -- as described above.
17985
17986 -------------------------------------
17987 -- Root_Corresponding_Discriminant --
17988 -------------------------------------
17989
17990 function Root_Corresponding_Discriminant
17991 (Discr : Entity_Id) return Entity_Id
17992 is
17993 D : Entity_Id;
17994
17995 begin
17996 D := Discr;
17997 while Present (Corresponding_Discriminant (D)) loop
17998 D := Corresponding_Discriminant (D);
17999 end loop;
18000
18001 return D;
18002 end Root_Corresponding_Discriminant;
18003
18004 ------------------------------
18005 -- Search_Derivation_Levels --
18006 ------------------------------
18007
18008 function Search_Derivation_Levels
18009 (Ti : Entity_Id;
18010 Discrim_Values : Elist_Id;
18011 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
18012 is
18013 Assoc : Elmt_Id;
18014 Disc : Entity_Id;
18015 Result : Node_Or_Entity_Id;
18016 Result_Entity : Node_Id;
18017
18018 begin
18019 -- If inappropriate type, return Error, this happens only in
18020 -- cascaded error situations, and we want to avoid a blow up.
18021
18022 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
18023 return Error;
18024 end if;
18025
18026 -- Look deeper if possible. Use Stored_Constraints only for
18027 -- untagged types. For tagged types use the given constraint.
18028 -- This asymmetry needs explanation???
18029
18030 if not Stored_Discrim_Values
18031 and then Present (Stored_Constraint (Ti))
18032 and then not Is_Tagged_Type (Ti)
18033 then
18034 Result :=
18035 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
18036
18037 else
18038 declare
18039 Td : Entity_Id := Etype (Ti);
18040
18041 begin
18042 -- If the parent type is private, the full view may include
18043 -- renamed discriminants, and it is those stored values that
18044 -- may be needed (the partial view never has more information
18045 -- than the full view).
18046
18047 if Is_Private_Type (Td) and then Present (Full_View (Td)) then
18048 Td := Full_View (Td);
18049 end if;
18050
18051 if Td = Ti then
18052 Result := Discriminant;
18053
18054 else
18055 if Present (Stored_Constraint (Ti)) then
18056 Result :=
18057 Search_Derivation_Levels
18058 (Td, Stored_Constraint (Ti), True);
18059 else
18060 Result :=
18061 Search_Derivation_Levels
18062 (Td, Discrim_Values, Stored_Discrim_Values);
18063 end if;
18064 end if;
18065 end;
18066 end if;
18067
18068 -- Extra underlying places to search, if not found above. For
18069 -- concurrent types, the relevant discriminant appears in the
18070 -- corresponding record. For a type derived from a private type
18071 -- without discriminant, the full view inherits the discriminants
18072 -- of the full view of the parent.
18073
18074 if Result = Discriminant then
18075 if Is_Concurrent_Type (Ti)
18076 and then Present (Corresponding_Record_Type (Ti))
18077 then
18078 Result :=
18079 Search_Derivation_Levels (
18080 Corresponding_Record_Type (Ti),
18081 Discrim_Values,
18082 Stored_Discrim_Values);
18083
18084 elsif Is_Private_Type (Ti)
18085 and then not Has_Discriminants (Ti)
18086 and then Present (Full_View (Ti))
18087 and then Etype (Full_View (Ti)) /= Ti
18088 then
18089 Result :=
18090 Search_Derivation_Levels (
18091 Full_View (Ti),
18092 Discrim_Values,
18093 Stored_Discrim_Values);
18094 end if;
18095 end if;
18096
18097 -- If Result is not a (reference to a) discriminant, return it,
18098 -- otherwise set Result_Entity to the discriminant.
18099
18100 if Nkind (Result) = N_Defining_Identifier then
18101 pragma Assert (Result = Discriminant);
18102 Result_Entity := Result;
18103
18104 else
18105 if not Denotes_Discriminant (Result) then
18106 return Result;
18107 end if;
18108
18109 Result_Entity := Entity (Result);
18110 end if;
18111
18112 -- See if this level of derivation actually has discriminants because
18113 -- tagged derivations can add them, hence the lower levels need not
18114 -- have any.
18115
18116 if not Has_Discriminants (Ti) then
18117 return Result;
18118 end if;
18119
18120 -- Scan Ti's discriminants for Result_Entity, and return its
18121 -- corresponding value, if any.
18122
18123 Result_Entity := Original_Record_Component (Result_Entity);
18124
18125 Assoc := First_Elmt (Discrim_Values);
18126
18127 if Stored_Discrim_Values then
18128 Disc := First_Stored_Discriminant (Ti);
18129 else
18130 Disc := First_Discriminant (Ti);
18131 end if;
18132
18133 while Present (Disc) loop
18134
18135 -- If no further associations return the discriminant, value will
18136 -- be found on the second pass.
18137
18138 if No (Assoc) then
18139 return Result;
18140 end if;
18141
18142 if Original_Record_Component (Disc) = Result_Entity then
18143 return Node (Assoc);
18144 end if;
18145
18146 Next_Elmt (Assoc);
18147
18148 if Stored_Discrim_Values then
18149 Next_Stored_Discriminant (Disc);
18150 else
18151 Next_Discriminant (Disc);
18152 end if;
18153 end loop;
18154
18155 -- Could not find it
18156
18157 return Result;
18158 end Search_Derivation_Levels;
18159
18160 -- Local Variables
18161
18162 Result : Node_Or_Entity_Id;
18163
18164 -- Start of processing for Get_Discriminant_Value
18165
18166 begin
18167 -- ??? This routine is a gigantic mess and will be deleted. For the
18168 -- time being just test for the trivial case before calling recurse.
18169
18170 -- We are now celebrating the 20th anniversary of this comment!
18171
18172 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
18173 declare
18174 D : Entity_Id;
18175 E : Elmt_Id;
18176
18177 begin
18178 D := First_Discriminant (Typ_For_Constraint);
18179 E := First_Elmt (Constraint);
18180 while Present (D) loop
18181 if Chars (D) = Chars (Discriminant) then
18182 return Node (E);
18183 end if;
18184
18185 Next_Discriminant (D);
18186 Next_Elmt (E);
18187 end loop;
18188 end;
18189 end if;
18190
18191 Result := Search_Derivation_Levels
18192 (Typ_For_Constraint, Constraint, False);
18193
18194 -- ??? hack to disappear when this routine is gone
18195
18196 if Nkind (Result) = N_Defining_Identifier then
18197 declare
18198 D : Entity_Id;
18199 E : Elmt_Id;
18200
18201 begin
18202 D := First_Discriminant (Typ_For_Constraint);
18203 E := First_Elmt (Constraint);
18204 while Present (D) loop
18205 if Root_Corresponding_Discriminant (D) = Discriminant then
18206 return Node (E);
18207 end if;
18208
18209 Next_Discriminant (D);
18210 Next_Elmt (E);
18211 end loop;
18212 end;
18213 end if;
18214
18215 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
18216 return Result;
18217 end Get_Discriminant_Value;
18218
18219 --------------------------
18220 -- Has_Range_Constraint --
18221 --------------------------
18222
18223 function Has_Range_Constraint (N : Node_Id) return Boolean is
18224 C : constant Node_Id := Constraint (N);
18225
18226 begin
18227 if Nkind (C) = N_Range_Constraint then
18228 return True;
18229
18230 elsif Nkind (C) = N_Digits_Constraint then
18231 return
18232 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
18233 or else Present (Range_Constraint (C));
18234
18235 elsif Nkind (C) = N_Delta_Constraint then
18236 return Present (Range_Constraint (C));
18237
18238 else
18239 return False;
18240 end if;
18241 end Has_Range_Constraint;
18242
18243 ------------------------
18244 -- Inherit_Components --
18245 ------------------------
18246
18247 function Inherit_Components
18248 (N : Node_Id;
18249 Parent_Base : Entity_Id;
18250 Derived_Base : Entity_Id;
18251 Is_Tagged : Boolean;
18252 Inherit_Discr : Boolean;
18253 Discs : Elist_Id) return Elist_Id
18254 is
18255 Assoc_List : constant Elist_Id := New_Elmt_List;
18256
18257 procedure Inherit_Component
18258 (Old_C : Entity_Id;
18259 Plain_Discrim : Boolean := False;
18260 Stored_Discrim : Boolean := False);
18261 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
18262 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
18263 -- True, Old_C is a stored discriminant. If they are both false then
18264 -- Old_C is a regular component.
18265
18266 -----------------------
18267 -- Inherit_Component --
18268 -----------------------
18269
18270 procedure Inherit_Component
18271 (Old_C : Entity_Id;
18272 Plain_Discrim : Boolean := False;
18273 Stored_Discrim : Boolean := False)
18274 is
18275 procedure Set_Anonymous_Type (Id : Entity_Id);
18276 -- Id denotes the entity of an access discriminant or anonymous
18277 -- access component. Set the type of Id to either the same type of
18278 -- Old_C or create a new one depending on whether the parent and
18279 -- the child types are in the same scope.
18280
18281 ------------------------
18282 -- Set_Anonymous_Type --
18283 ------------------------
18284
18285 procedure Set_Anonymous_Type (Id : Entity_Id) is
18286 Old_Typ : constant Entity_Id := Etype (Old_C);
18287
18288 begin
18289 if Scope (Parent_Base) = Scope (Derived_Base) then
18290 Set_Etype (Id, Old_Typ);
18291
18292 -- The parent and the derived type are in two different scopes.
18293 -- Reuse the type of the original discriminant / component by
18294 -- copying it in order to preserve all attributes.
18295
18296 else
18297 declare
18298 Typ : constant Entity_Id := New_Copy (Old_Typ);
18299
18300 begin
18301 Set_Etype (Id, Typ);
18302
18303 -- Since we do not generate component declarations for
18304 -- inherited components, associate the itype with the
18305 -- derived type.
18306
18307 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
18308 Set_Scope (Typ, Derived_Base);
18309 end;
18310 end if;
18311 end Set_Anonymous_Type;
18312
18313 -- Local variables and constants
18314
18315 New_C : constant Entity_Id := New_Copy (Old_C);
18316
18317 Corr_Discrim : Entity_Id;
18318 Discrim : Entity_Id;
18319
18320 -- Start of processing for Inherit_Component
18321
18322 begin
18323 pragma Assert (not Is_Tagged or not Stored_Discrim);
18324
18325 Set_Parent (New_C, Parent (Old_C));
18326
18327 -- Regular discriminants and components must be inserted in the scope
18328 -- of the Derived_Base. Do it here.
18329
18330 if not Stored_Discrim then
18331 Enter_Name (New_C);
18332 end if;
18333
18334 -- For tagged types the Original_Record_Component must point to
18335 -- whatever this field was pointing to in the parent type. This has
18336 -- already been achieved by the call to New_Copy above.
18337
18338 if not Is_Tagged then
18339 Set_Original_Record_Component (New_C, New_C);
18340 Set_Corresponding_Record_Component (New_C, Old_C);
18341 end if;
18342
18343 -- Set the proper type of an access discriminant
18344
18345 if Ekind (New_C) = E_Discriminant
18346 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
18347 then
18348 Set_Anonymous_Type (New_C);
18349 end if;
18350
18351 -- If we have inherited a component then see if its Etype contains
18352 -- references to Parent_Base discriminants. In this case, replace
18353 -- these references with the constraints given in Discs. We do not
18354 -- do this for the partial view of private types because this is
18355 -- not needed (only the components of the full view will be used
18356 -- for code generation) and cause problem. We also avoid this
18357 -- transformation in some error situations.
18358
18359 if Ekind (New_C) = E_Component then
18360
18361 -- Set the proper type of an anonymous access component
18362
18363 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
18364 Set_Anonymous_Type (New_C);
18365
18366 elsif (Is_Private_Type (Derived_Base)
18367 and then not Is_Generic_Type (Derived_Base))
18368 or else (Is_Empty_Elmt_List (Discs)
18369 and then not Expander_Active)
18370 then
18371 Set_Etype (New_C, Etype (Old_C));
18372
18373 else
18374 -- The current component introduces a circularity of the
18375 -- following kind:
18376
18377 -- limited with Pack_2;
18378 -- package Pack_1 is
18379 -- type T_1 is tagged record
18380 -- Comp : access Pack_2.T_2;
18381 -- ...
18382 -- end record;
18383 -- end Pack_1;
18384
18385 -- with Pack_1;
18386 -- package Pack_2 is
18387 -- type T_2 is new Pack_1.T_1 with ...;
18388 -- end Pack_2;
18389
18390 Set_Etype
18391 (New_C,
18392 Constrain_Component_Type
18393 (Old_C, Derived_Base, N, Parent_Base, Discs));
18394 end if;
18395 end if;
18396
18397 -- In derived tagged types it is illegal to reference a non
18398 -- discriminant component in the parent type. To catch this, mark
18399 -- these components with an Ekind of E_Void. This will be reset in
18400 -- Record_Type_Definition after processing the record extension of
18401 -- the derived type.
18402
18403 -- If the declaration is a private extension, there is no further
18404 -- record extension to process, and the components retain their
18405 -- current kind, because they are visible at this point.
18406
18407 if Is_Tagged and then Ekind (New_C) = E_Component
18408 and then Nkind (N) /= N_Private_Extension_Declaration
18409 then
18410 Set_Ekind (New_C, E_Void);
18411 end if;
18412
18413 if Plain_Discrim then
18414 Set_Corresponding_Discriminant (New_C, Old_C);
18415 Build_Discriminal (New_C);
18416
18417 -- If we are explicitly inheriting a stored discriminant it will be
18418 -- completely hidden.
18419
18420 elsif Stored_Discrim then
18421 Set_Corresponding_Discriminant (New_C, Empty);
18422 Set_Discriminal (New_C, Empty);
18423 Set_Is_Completely_Hidden (New_C);
18424
18425 -- Set the Original_Record_Component of each discriminant in the
18426 -- derived base to point to the corresponding stored that we just
18427 -- created.
18428
18429 Discrim := First_Discriminant (Derived_Base);
18430 while Present (Discrim) loop
18431 Corr_Discrim := Corresponding_Discriminant (Discrim);
18432
18433 -- Corr_Discrim could be missing in an error situation
18434
18435 if Present (Corr_Discrim)
18436 and then Original_Record_Component (Corr_Discrim) = Old_C
18437 then
18438 Set_Original_Record_Component (Discrim, New_C);
18439 Set_Corresponding_Record_Component (Discrim, Empty);
18440 end if;
18441
18442 Next_Discriminant (Discrim);
18443 end loop;
18444
18445 Append_Entity (New_C, Derived_Base);
18446 end if;
18447
18448 if not Is_Tagged then
18449 Append_Elmt (Old_C, Assoc_List);
18450 Append_Elmt (New_C, Assoc_List);
18451 end if;
18452 end Inherit_Component;
18453
18454 -- Variables local to Inherit_Component
18455
18456 Loc : constant Source_Ptr := Sloc (N);
18457
18458 Parent_Discrim : Entity_Id;
18459 Stored_Discrim : Entity_Id;
18460 D : Entity_Id;
18461 Component : Entity_Id;
18462
18463 -- Start of processing for Inherit_Components
18464
18465 begin
18466 if not Is_Tagged then
18467 Append_Elmt (Parent_Base, Assoc_List);
18468 Append_Elmt (Derived_Base, Assoc_List);
18469 end if;
18470
18471 -- Inherit parent discriminants if needed
18472
18473 if Inherit_Discr then
18474 Parent_Discrim := First_Discriminant (Parent_Base);
18475 while Present (Parent_Discrim) loop
18476 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
18477 Next_Discriminant (Parent_Discrim);
18478 end loop;
18479 end if;
18480
18481 -- Create explicit stored discrims for untagged types when necessary
18482
18483 if not Has_Unknown_Discriminants (Derived_Base)
18484 and then Has_Discriminants (Parent_Base)
18485 and then not Is_Tagged
18486 and then
18487 (not Inherit_Discr
18488 or else First_Discriminant (Parent_Base) /=
18489 First_Stored_Discriminant (Parent_Base))
18490 then
18491 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
18492 while Present (Stored_Discrim) loop
18493 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
18494 Next_Stored_Discriminant (Stored_Discrim);
18495 end loop;
18496 end if;
18497
18498 -- See if we can apply the second transformation for derived types, as
18499 -- explained in point 6. in the comments above Build_Derived_Record_Type
18500 -- This is achieved by appending Derived_Base discriminants into Discs,
18501 -- which has the side effect of returning a non empty Discs list to the
18502 -- caller of Inherit_Components, which is what we want. This must be
18503 -- done for private derived types if there are explicit stored
18504 -- discriminants, to ensure that we can retrieve the values of the
18505 -- constraints provided in the ancestors.
18506
18507 if Inherit_Discr
18508 and then Is_Empty_Elmt_List (Discs)
18509 and then Present (First_Discriminant (Derived_Base))
18510 and then
18511 (not Is_Private_Type (Derived_Base)
18512 or else Is_Completely_Hidden
18513 (First_Stored_Discriminant (Derived_Base))
18514 or else Is_Generic_Type (Derived_Base))
18515 then
18516 D := First_Discriminant (Derived_Base);
18517 while Present (D) loop
18518 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
18519 Next_Discriminant (D);
18520 end loop;
18521 end if;
18522
18523 -- Finally, inherit non-discriminant components unless they are not
18524 -- visible because defined or inherited from the full view of the
18525 -- parent. Don't inherit the _parent field of the parent type.
18526
18527 Component := First_Entity (Parent_Base);
18528 while Present (Component) loop
18529
18530 -- Ada 2005 (AI-251): Do not inherit components associated with
18531 -- secondary tags of the parent.
18532
18533 if Ekind (Component) = E_Component
18534 and then Present (Related_Type (Component))
18535 then
18536 null;
18537
18538 elsif Ekind (Component) /= E_Component
18539 or else Chars (Component) = Name_uParent
18540 then
18541 null;
18542
18543 -- If the derived type is within the parent type's declarative
18544 -- region, then the components can still be inherited even though
18545 -- they aren't visible at this point. This can occur for cases
18546 -- such as within public child units where the components must
18547 -- become visible upon entering the child unit's private part.
18548
18549 elsif not Is_Visible_Component (Component)
18550 and then not In_Open_Scopes (Scope (Parent_Base))
18551 then
18552 null;
18553
18554 elsif Ekind_In (Derived_Base, E_Private_Type,
18555 E_Limited_Private_Type)
18556 then
18557 null;
18558
18559 else
18560 Inherit_Component (Component);
18561 end if;
18562
18563 Next_Entity (Component);
18564 end loop;
18565
18566 -- For tagged derived types, inherited discriminants cannot be used in
18567 -- component declarations of the record extension part. To achieve this
18568 -- we mark the inherited discriminants as not visible.
18569
18570 if Is_Tagged and then Inherit_Discr then
18571 D := First_Discriminant (Derived_Base);
18572 while Present (D) loop
18573 Set_Is_Immediately_Visible (D, False);
18574 Next_Discriminant (D);
18575 end loop;
18576 end if;
18577
18578 return Assoc_List;
18579 end Inherit_Components;
18580
18581 -----------------------------
18582 -- Inherit_Predicate_Flags --
18583 -----------------------------
18584
18585 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
18586 begin
18587 if Present (Predicate_Function (Subt)) then
18588 return;
18589 end if;
18590
18591 Set_Has_Predicates (Subt, Has_Predicates (Par));
18592 Set_Has_Static_Predicate_Aspect
18593 (Subt, Has_Static_Predicate_Aspect (Par));
18594 Set_Has_Dynamic_Predicate_Aspect
18595 (Subt, Has_Dynamic_Predicate_Aspect (Par));
18596
18597 -- A named subtype does not inherit the predicate function of its
18598 -- parent but an itype declared for a loop index needs the discrete
18599 -- predicate information of its parent to execute the loop properly.
18600
18601 if Is_Itype (Subt) and then Present (Predicate_Function (Par)) then
18602 Set_Subprograms_For_Type (Subt, Subprograms_For_Type (Par));
18603
18604 if Has_Static_Predicate (Par) then
18605 Set_Static_Discrete_Predicate
18606 (Subt, Static_Discrete_Predicate (Par));
18607 end if;
18608 end if;
18609 end Inherit_Predicate_Flags;
18610
18611 ----------------------
18612 -- Is_EVF_Procedure --
18613 ----------------------
18614
18615 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is
18616 Formal : Entity_Id;
18617
18618 begin
18619 -- Examine the formals of an Extensions_Visible False procedure looking
18620 -- for a controlling OUT parameter.
18621
18622 if Ekind (Subp) = E_Procedure
18623 and then Extensions_Visible_Status (Subp) = Extensions_Visible_False
18624 then
18625 Formal := First_Formal (Subp);
18626 while Present (Formal) loop
18627 if Ekind (Formal) = E_Out_Parameter
18628 and then Is_Controlling_Formal (Formal)
18629 then
18630 return True;
18631 end if;
18632
18633 Next_Formal (Formal);
18634 end loop;
18635 end if;
18636
18637 return False;
18638 end Is_EVF_Procedure;
18639
18640 -----------------------
18641 -- Is_Null_Extension --
18642 -----------------------
18643
18644 function Is_Null_Extension (T : Entity_Id) return Boolean is
18645 Type_Decl : constant Node_Id := Parent (Base_Type (T));
18646 Comp_List : Node_Id;
18647 Comp : Node_Id;
18648
18649 begin
18650 if Nkind (Type_Decl) /= N_Full_Type_Declaration
18651 or else not Is_Tagged_Type (T)
18652 or else Nkind (Type_Definition (Type_Decl)) /=
18653 N_Derived_Type_Definition
18654 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
18655 then
18656 return False;
18657 end if;
18658
18659 Comp_List :=
18660 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
18661
18662 if Present (Discriminant_Specifications (Type_Decl)) then
18663 return False;
18664
18665 elsif Present (Comp_List)
18666 and then Is_Non_Empty_List (Component_Items (Comp_List))
18667 then
18668 Comp := First (Component_Items (Comp_List));
18669
18670 -- Only user-defined components are relevant. The component list
18671 -- may also contain a parent component and internal components
18672 -- corresponding to secondary tags, but these do not determine
18673 -- whether this is a null extension.
18674
18675 while Present (Comp) loop
18676 if Comes_From_Source (Comp) then
18677 return False;
18678 end if;
18679
18680 Next (Comp);
18681 end loop;
18682
18683 return True;
18684
18685 else
18686 return True;
18687 end if;
18688 end Is_Null_Extension;
18689
18690 ------------------------------
18691 -- Is_Valid_Constraint_Kind --
18692 ------------------------------
18693
18694 function Is_Valid_Constraint_Kind
18695 (T_Kind : Type_Kind;
18696 Constraint_Kind : Node_Kind) return Boolean
18697 is
18698 begin
18699 case T_Kind is
18700 when Enumeration_Kind
18701 | Integer_Kind
18702 =>
18703 return Constraint_Kind = N_Range_Constraint;
18704
18705 when Decimal_Fixed_Point_Kind =>
18706 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
18707 N_Range_Constraint);
18708
18709 when Ordinary_Fixed_Point_Kind =>
18710 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
18711 N_Range_Constraint);
18712
18713 when Float_Kind =>
18714 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
18715 N_Range_Constraint);
18716
18717 when Access_Kind
18718 | Array_Kind
18719 | Class_Wide_Kind
18720 | Concurrent_Kind
18721 | Private_Kind
18722 | E_Incomplete_Type
18723 | E_Record_Subtype
18724 | E_Record_Type
18725 =>
18726 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
18727
18728 when others =>
18729 return True; -- Error will be detected later
18730 end case;
18731 end Is_Valid_Constraint_Kind;
18732
18733 --------------------------
18734 -- Is_Visible_Component --
18735 --------------------------
18736
18737 function Is_Visible_Component
18738 (C : Entity_Id;
18739 N : Node_Id := Empty) return Boolean
18740 is
18741 Original_Comp : Entity_Id := Empty;
18742 Original_Type : Entity_Id;
18743 Type_Scope : Entity_Id;
18744
18745 function Is_Local_Type (Typ : Entity_Id) return Boolean;
18746 -- Check whether parent type of inherited component is declared locally,
18747 -- possibly within a nested package or instance. The current scope is
18748 -- the derived record itself.
18749
18750 -------------------
18751 -- Is_Local_Type --
18752 -------------------
18753
18754 function Is_Local_Type (Typ : Entity_Id) return Boolean is
18755 Scop : Entity_Id;
18756
18757 begin
18758 Scop := Scope (Typ);
18759 while Present (Scop)
18760 and then Scop /= Standard_Standard
18761 loop
18762 if Scop = Scope (Current_Scope) then
18763 return True;
18764 end if;
18765
18766 Scop := Scope (Scop);
18767 end loop;
18768
18769 return False;
18770 end Is_Local_Type;
18771
18772 -- Start of processing for Is_Visible_Component
18773
18774 begin
18775 if Ekind_In (C, E_Component, E_Discriminant) then
18776 Original_Comp := Original_Record_Component (C);
18777 end if;
18778
18779 if No (Original_Comp) then
18780
18781 -- Premature usage, or previous error
18782
18783 return False;
18784
18785 else
18786 Original_Type := Scope (Original_Comp);
18787 Type_Scope := Scope (Base_Type (Scope (C)));
18788 end if;
18789
18790 -- This test only concerns tagged types
18791
18792 if not Is_Tagged_Type (Original_Type) then
18793 return True;
18794
18795 -- If it is _Parent or _Tag, there is no visibility issue
18796
18797 elsif not Comes_From_Source (Original_Comp) then
18798 return True;
18799
18800 -- Discriminants are visible unless the (private) type has unknown
18801 -- discriminants. If the discriminant reference is inserted for a
18802 -- discriminant check on a full view it is also visible.
18803
18804 elsif Ekind (Original_Comp) = E_Discriminant
18805 and then
18806 (not Has_Unknown_Discriminants (Original_Type)
18807 or else (Present (N)
18808 and then Nkind (N) = N_Selected_Component
18809 and then Nkind (Prefix (N)) = N_Type_Conversion
18810 and then not Comes_From_Source (Prefix (N))))
18811 then
18812 return True;
18813
18814 -- In the body of an instantiation, check the visibility of a component
18815 -- in case it has a homograph that is a primitive operation of a private
18816 -- type which was not visible in the generic unit.
18817
18818 -- Should Is_Prefixed_Call be propagated from template to instance???
18819
18820 elsif In_Instance_Body then
18821 if not Is_Tagged_Type (Original_Type)
18822 or else not Is_Private_Type (Original_Type)
18823 then
18824 return True;
18825
18826 else
18827 declare
18828 Subp_Elmt : Elmt_Id;
18829
18830 begin
18831 Subp_Elmt := First_Elmt (Primitive_Operations (Original_Type));
18832 while Present (Subp_Elmt) loop
18833
18834 -- The component is hidden by a primitive operation
18835
18836 if Chars (Node (Subp_Elmt)) = Chars (C) then
18837 return False;
18838 end if;
18839
18840 Next_Elmt (Subp_Elmt);
18841 end loop;
18842
18843 return True;
18844 end;
18845 end if;
18846
18847 -- If the component has been declared in an ancestor which is currently
18848 -- a private type, then it is not visible. The same applies if the
18849 -- component's containing type is not in an open scope and the original
18850 -- component's enclosing type is a visible full view of a private type
18851 -- (which can occur in cases where an attempt is being made to reference
18852 -- a component in a sibling package that is inherited from a visible
18853 -- component of a type in an ancestor package; the component in the
18854 -- sibling package should not be visible even though the component it
18855 -- inherited from is visible). This does not apply however in the case
18856 -- where the scope of the type is a private child unit, or when the
18857 -- parent comes from a local package in which the ancestor is currently
18858 -- visible. The latter suppression of visibility is needed for cases
18859 -- that are tested in B730006.
18860
18861 elsif Is_Private_Type (Original_Type)
18862 or else
18863 (not Is_Private_Descendant (Type_Scope)
18864 and then not In_Open_Scopes (Type_Scope)
18865 and then Has_Private_Declaration (Original_Type))
18866 then
18867 -- If the type derives from an entity in a formal package, there
18868 -- are no additional visible components.
18869
18870 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
18871 N_Formal_Package_Declaration
18872 then
18873 return False;
18874
18875 -- if we are not in the private part of the current package, there
18876 -- are no additional visible components.
18877
18878 elsif Ekind (Scope (Current_Scope)) = E_Package
18879 and then not In_Private_Part (Scope (Current_Scope))
18880 then
18881 return False;
18882 else
18883 return
18884 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
18885 and then In_Open_Scopes (Scope (Original_Type))
18886 and then Is_Local_Type (Type_Scope);
18887 end if;
18888
18889 -- There is another weird way in which a component may be invisible when
18890 -- the private and the full view are not derived from the same ancestor.
18891 -- Here is an example :
18892
18893 -- type A1 is tagged record F1 : integer; end record;
18894 -- type A2 is new A1 with record F2 : integer; end record;
18895 -- type T is new A1 with private;
18896 -- private
18897 -- type T is new A2 with null record;
18898
18899 -- In this case, the full view of T inherits F1 and F2 but the private
18900 -- view inherits only F1
18901
18902 else
18903 declare
18904 Ancestor : Entity_Id := Scope (C);
18905
18906 begin
18907 loop
18908 if Ancestor = Original_Type then
18909 return True;
18910
18911 -- The ancestor may have a partial view of the original type,
18912 -- but if the full view is in scope, as in a child body, the
18913 -- component is visible.
18914
18915 elsif In_Private_Part (Scope (Original_Type))
18916 and then Full_View (Ancestor) = Original_Type
18917 then
18918 return True;
18919
18920 elsif Ancestor = Etype (Ancestor) then
18921
18922 -- No further ancestors to examine
18923
18924 return False;
18925 end if;
18926
18927 Ancestor := Etype (Ancestor);
18928 end loop;
18929 end;
18930 end if;
18931 end Is_Visible_Component;
18932
18933 --------------------------
18934 -- Make_Class_Wide_Type --
18935 --------------------------
18936
18937 procedure Make_Class_Wide_Type (T : Entity_Id) is
18938 CW_Type : Entity_Id;
18939 CW_Name : Name_Id;
18940 Next_E : Entity_Id;
18941
18942 begin
18943 if Present (Class_Wide_Type (T)) then
18944
18945 -- The class-wide type is a partially decorated entity created for a
18946 -- unanalyzed tagged type referenced through a limited with clause.
18947 -- When the tagged type is analyzed, its class-wide type needs to be
18948 -- redecorated. Note that we reuse the entity created by Decorate_
18949 -- Tagged_Type in order to preserve all links.
18950
18951 if Materialize_Entity (Class_Wide_Type (T)) then
18952 CW_Type := Class_Wide_Type (T);
18953 Set_Materialize_Entity (CW_Type, False);
18954
18955 -- The class wide type can have been defined by the partial view, in
18956 -- which case everything is already done.
18957
18958 else
18959 return;
18960 end if;
18961
18962 -- Default case, we need to create a new class-wide type
18963
18964 else
18965 CW_Type :=
18966 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
18967 end if;
18968
18969 -- Inherit root type characteristics
18970
18971 CW_Name := Chars (CW_Type);
18972 Next_E := Next_Entity (CW_Type);
18973 Copy_Node (T, CW_Type);
18974 Set_Comes_From_Source (CW_Type, False);
18975 Set_Chars (CW_Type, CW_Name);
18976 Set_Parent (CW_Type, Parent (T));
18977 Set_Next_Entity (CW_Type, Next_E);
18978
18979 -- Ensure we have a new freeze node for the class-wide type. The partial
18980 -- view may have freeze action of its own, requiring a proper freeze
18981 -- node, and the same freeze node cannot be shared between the two
18982 -- types.
18983
18984 Set_Has_Delayed_Freeze (CW_Type);
18985 Set_Freeze_Node (CW_Type, Empty);
18986
18987 -- Customize the class-wide type: It has no prim. op., it cannot be
18988 -- abstract, its Etype points back to the specific root type, and it
18989 -- cannot have any invariants.
18990
18991 Set_Ekind (CW_Type, E_Class_Wide_Type);
18992 Set_Is_Tagged_Type (CW_Type, True);
18993 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
18994 Set_Is_Abstract_Type (CW_Type, False);
18995 Set_Is_Constrained (CW_Type, False);
18996 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
18997 Set_Default_SSO (CW_Type);
18998 Set_Has_Inheritable_Invariants (CW_Type, False);
18999 Set_Has_Inherited_Invariants (CW_Type, False);
19000 Set_Has_Own_Invariants (CW_Type, False);
19001
19002 if Ekind (T) = E_Class_Wide_Subtype then
19003 Set_Etype (CW_Type, Etype (Base_Type (T)));
19004 else
19005 Set_Etype (CW_Type, T);
19006 end if;
19007
19008 Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams);
19009
19010 -- If this is the class_wide type of a constrained subtype, it does
19011 -- not have discriminants.
19012
19013 Set_Has_Discriminants (CW_Type,
19014 Has_Discriminants (T) and then not Is_Constrained (T));
19015
19016 Set_Has_Unknown_Discriminants (CW_Type, True);
19017 Set_Class_Wide_Type (T, CW_Type);
19018 Set_Equivalent_Type (CW_Type, Empty);
19019
19020 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
19021
19022 Set_Class_Wide_Type (CW_Type, CW_Type);
19023 end Make_Class_Wide_Type;
19024
19025 ----------------
19026 -- Make_Index --
19027 ----------------
19028
19029 procedure Make_Index
19030 (N : Node_Id;
19031 Related_Nod : Node_Id;
19032 Related_Id : Entity_Id := Empty;
19033 Suffix_Index : Nat := 1;
19034 In_Iter_Schm : Boolean := False)
19035 is
19036 R : Node_Id;
19037 T : Entity_Id;
19038 Def_Id : Entity_Id := Empty;
19039 Found : Boolean := False;
19040
19041 begin
19042 -- For a discrete range used in a constrained array definition and
19043 -- defined by a range, an implicit conversion to the predefined type
19044 -- INTEGER is assumed if each bound is either a numeric literal, a named
19045 -- number, or an attribute, and the type of both bounds (prior to the
19046 -- implicit conversion) is the type universal_integer. Otherwise, both
19047 -- bounds must be of the same discrete type, other than universal
19048 -- integer; this type must be determinable independently of the
19049 -- context, but using the fact that the type must be discrete and that
19050 -- both bounds must have the same type.
19051
19052 -- Character literals also have a universal type in the absence of
19053 -- of additional context, and are resolved to Standard_Character.
19054
19055 if Nkind (N) = N_Range then
19056
19057 -- The index is given by a range constraint. The bounds are known
19058 -- to be of a consistent type.
19059
19060 if not Is_Overloaded (N) then
19061 T := Etype (N);
19062
19063 -- For universal bounds, choose the specific predefined type
19064
19065 if T = Universal_Integer then
19066 T := Standard_Integer;
19067
19068 elsif T = Any_Character then
19069 Ambiguous_Character (Low_Bound (N));
19070
19071 T := Standard_Character;
19072 end if;
19073
19074 -- The node may be overloaded because some user-defined operators
19075 -- are available, but if a universal interpretation exists it is
19076 -- also the selected one.
19077
19078 elsif Universal_Interpretation (N) = Universal_Integer then
19079 T := Standard_Integer;
19080
19081 else
19082 T := Any_Type;
19083
19084 declare
19085 Ind : Interp_Index;
19086 It : Interp;
19087
19088 begin
19089 Get_First_Interp (N, Ind, It);
19090 while Present (It.Typ) loop
19091 if Is_Discrete_Type (It.Typ) then
19092
19093 if Found
19094 and then not Covers (It.Typ, T)
19095 and then not Covers (T, It.Typ)
19096 then
19097 Error_Msg_N ("ambiguous bounds in discrete range", N);
19098 exit;
19099 else
19100 T := It.Typ;
19101 Found := True;
19102 end if;
19103 end if;
19104
19105 Get_Next_Interp (Ind, It);
19106 end loop;
19107
19108 if T = Any_Type then
19109 Error_Msg_N ("discrete type required for range", N);
19110 Set_Etype (N, Any_Type);
19111 return;
19112
19113 elsif T = Universal_Integer then
19114 T := Standard_Integer;
19115 end if;
19116 end;
19117 end if;
19118
19119 if not Is_Discrete_Type (T) then
19120 Error_Msg_N ("discrete type required for range", N);
19121 Set_Etype (N, Any_Type);
19122 return;
19123 end if;
19124
19125 if Nkind (Low_Bound (N)) = N_Attribute_Reference
19126 and then Attribute_Name (Low_Bound (N)) = Name_First
19127 and then Is_Entity_Name (Prefix (Low_Bound (N)))
19128 and then Is_Type (Entity (Prefix (Low_Bound (N))))
19129 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
19130 then
19131 -- The type of the index will be the type of the prefix, as long
19132 -- as the upper bound is 'Last of the same type.
19133
19134 Def_Id := Entity (Prefix (Low_Bound (N)));
19135
19136 if Nkind (High_Bound (N)) /= N_Attribute_Reference
19137 or else Attribute_Name (High_Bound (N)) /= Name_Last
19138 or else not Is_Entity_Name (Prefix (High_Bound (N)))
19139 or else Entity (Prefix (High_Bound (N))) /= Def_Id
19140 then
19141 Def_Id := Empty;
19142 end if;
19143 end if;
19144
19145 R := N;
19146 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
19147
19148 elsif Nkind (N) = N_Subtype_Indication then
19149
19150 -- The index is given by a subtype with a range constraint
19151
19152 T := Base_Type (Entity (Subtype_Mark (N)));
19153
19154 if not Is_Discrete_Type (T) then
19155 Error_Msg_N ("discrete type required for range", N);
19156 Set_Etype (N, Any_Type);
19157 return;
19158 end if;
19159
19160 R := Range_Expression (Constraint (N));
19161
19162 Resolve (R, T);
19163 Process_Range_Expr_In_Decl
19164 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
19165
19166 elsif Nkind (N) = N_Attribute_Reference then
19167
19168 -- Catch beginner's error (use of attribute other than 'Range)
19169
19170 if Attribute_Name (N) /= Name_Range then
19171 Error_Msg_N ("expect attribute ''Range", N);
19172 Set_Etype (N, Any_Type);
19173 return;
19174 end if;
19175
19176 -- If the node denotes the range of a type mark, that is also the
19177 -- resulting type, and we do not need to create an Itype for it.
19178
19179 if Is_Entity_Name (Prefix (N))
19180 and then Comes_From_Source (N)
19181 and then Is_Type (Entity (Prefix (N)))
19182 and then Is_Discrete_Type (Entity (Prefix (N)))
19183 then
19184 Def_Id := Entity (Prefix (N));
19185 end if;
19186
19187 Analyze_And_Resolve (N);
19188 T := Etype (N);
19189 R := N;
19190
19191 -- If none of the above, must be a subtype. We convert this to a
19192 -- range attribute reference because in the case of declared first
19193 -- named subtypes, the types in the range reference can be different
19194 -- from the type of the entity. A range attribute normalizes the
19195 -- reference and obtains the correct types for the bounds.
19196
19197 -- This transformation is in the nature of an expansion, is only
19198 -- done if expansion is active. In particular, it is not done on
19199 -- formal generic types, because we need to retain the name of the
19200 -- original index for instantiation purposes.
19201
19202 else
19203 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
19204 Error_Msg_N ("invalid subtype mark in discrete range ", N);
19205 Set_Etype (N, Any_Integer);
19206 return;
19207
19208 else
19209 -- The type mark may be that of an incomplete type. It is only
19210 -- now that we can get the full view, previous analysis does
19211 -- not look specifically for a type mark.
19212
19213 Set_Entity (N, Get_Full_View (Entity (N)));
19214 Set_Etype (N, Entity (N));
19215 Def_Id := Entity (N);
19216
19217 if not Is_Discrete_Type (Def_Id) then
19218 Error_Msg_N ("discrete type required for index", N);
19219 Set_Etype (N, Any_Type);
19220 return;
19221 end if;
19222 end if;
19223
19224 if Expander_Active then
19225 Rewrite (N,
19226 Make_Attribute_Reference (Sloc (N),
19227 Attribute_Name => Name_Range,
19228 Prefix => Relocate_Node (N)));
19229
19230 -- The original was a subtype mark that does not freeze. This
19231 -- means that the rewritten version must not freeze either.
19232
19233 Set_Must_Not_Freeze (N);
19234 Set_Must_Not_Freeze (Prefix (N));
19235 Analyze_And_Resolve (N);
19236 T := Etype (N);
19237 R := N;
19238
19239 -- If expander is inactive, type is legal, nothing else to construct
19240
19241 else
19242 return;
19243 end if;
19244 end if;
19245
19246 if not Is_Discrete_Type (T) then
19247 Error_Msg_N ("discrete type required for range", N);
19248 Set_Etype (N, Any_Type);
19249 return;
19250
19251 elsif T = Any_Type then
19252 Set_Etype (N, Any_Type);
19253 return;
19254 end if;
19255
19256 -- We will now create the appropriate Itype to describe the range, but
19257 -- first a check. If we originally had a subtype, then we just label
19258 -- the range with this subtype. Not only is there no need to construct
19259 -- a new subtype, but it is wrong to do so for two reasons:
19260
19261 -- 1. A legality concern, if we have a subtype, it must not freeze,
19262 -- and the Itype would cause freezing incorrectly
19263
19264 -- 2. An efficiency concern, if we created an Itype, it would not be
19265 -- recognized as the same type for the purposes of eliminating
19266 -- checks in some circumstances.
19267
19268 -- We signal this case by setting the subtype entity in Def_Id
19269
19270 if No (Def_Id) then
19271 Def_Id :=
19272 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
19273 Set_Etype (Def_Id, Base_Type (T));
19274
19275 if Is_Signed_Integer_Type (T) then
19276 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
19277
19278 elsif Is_Modular_Integer_Type (T) then
19279 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
19280
19281 else
19282 Set_Ekind (Def_Id, E_Enumeration_Subtype);
19283 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
19284 Set_First_Literal (Def_Id, First_Literal (T));
19285 end if;
19286
19287 Set_Size_Info (Def_Id, (T));
19288 Set_RM_Size (Def_Id, RM_Size (T));
19289 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
19290
19291 Set_Scalar_Range (Def_Id, R);
19292 Conditional_Delay (Def_Id, T);
19293
19294 if Nkind (N) = N_Subtype_Indication then
19295 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
19296 end if;
19297
19298 -- In the subtype indication case, if the immediate parent of the
19299 -- new subtype is non-static, then the subtype we create is non-
19300 -- static, even if its bounds are static.
19301
19302 if Nkind (N) = N_Subtype_Indication
19303 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
19304 then
19305 Set_Is_Non_Static_Subtype (Def_Id);
19306 end if;
19307 end if;
19308
19309 -- Final step is to label the index with this constructed type
19310
19311 Set_Etype (N, Def_Id);
19312 end Make_Index;
19313
19314 ------------------------------
19315 -- Modular_Type_Declaration --
19316 ------------------------------
19317
19318 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
19319 Mod_Expr : constant Node_Id := Expression (Def);
19320 M_Val : Uint;
19321
19322 procedure Set_Modular_Size (Bits : Int);
19323 -- Sets RM_Size to Bits, and Esize to normal word size above this
19324
19325 ----------------------
19326 -- Set_Modular_Size --
19327 ----------------------
19328
19329 procedure Set_Modular_Size (Bits : Int) is
19330 begin
19331 Set_RM_Size (T, UI_From_Int (Bits));
19332
19333 if Bits <= 8 then
19334 Init_Esize (T, 8);
19335
19336 elsif Bits <= 16 then
19337 Init_Esize (T, 16);
19338
19339 elsif Bits <= 32 then
19340 Init_Esize (T, 32);
19341
19342 else
19343 Init_Esize (T, System_Max_Binary_Modulus_Power);
19344 end if;
19345
19346 if not Non_Binary_Modulus (T) and then Esize (T) = RM_Size (T) then
19347 Set_Is_Known_Valid (T);
19348 end if;
19349 end Set_Modular_Size;
19350
19351 -- Start of processing for Modular_Type_Declaration
19352
19353 begin
19354 -- If the mod expression is (exactly) 2 * literal, where literal is
19355 -- 64 or less,then almost certainly the * was meant to be **. Warn.
19356
19357 if Warn_On_Suspicious_Modulus_Value
19358 and then Nkind (Mod_Expr) = N_Op_Multiply
19359 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
19360 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
19361 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
19362 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
19363 then
19364 Error_Msg_N
19365 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
19366 end if;
19367
19368 -- Proceed with analysis of mod expression
19369
19370 Analyze_And_Resolve (Mod_Expr, Any_Integer);
19371 Set_Etype (T, T);
19372 Set_Ekind (T, E_Modular_Integer_Type);
19373 Init_Alignment (T);
19374 Set_Is_Constrained (T);
19375
19376 if not Is_OK_Static_Expression (Mod_Expr) then
19377 Flag_Non_Static_Expr
19378 ("non-static expression used for modular type bound!", Mod_Expr);
19379 M_Val := 2 ** System_Max_Binary_Modulus_Power;
19380 else
19381 M_Val := Expr_Value (Mod_Expr);
19382 end if;
19383
19384 if M_Val < 1 then
19385 Error_Msg_N ("modulus value must be positive", Mod_Expr);
19386 M_Val := 2 ** System_Max_Binary_Modulus_Power;
19387 end if;
19388
19389 if M_Val > 2 ** Standard_Long_Integer_Size then
19390 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
19391 end if;
19392
19393 Set_Modulus (T, M_Val);
19394
19395 -- Create bounds for the modular type based on the modulus given in
19396 -- the type declaration and then analyze and resolve those bounds.
19397
19398 Set_Scalar_Range (T,
19399 Make_Range (Sloc (Mod_Expr),
19400 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
19401 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
19402
19403 -- Properly analyze the literals for the range. We do this manually
19404 -- because we can't go calling Resolve, since we are resolving these
19405 -- bounds with the type, and this type is certainly not complete yet.
19406
19407 Set_Etype (Low_Bound (Scalar_Range (T)), T);
19408 Set_Etype (High_Bound (Scalar_Range (T)), T);
19409 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
19410 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
19411
19412 -- Loop through powers of two to find number of bits required
19413
19414 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
19415
19416 -- Binary case
19417
19418 if M_Val = 2 ** Bits then
19419 Set_Modular_Size (Bits);
19420 return;
19421
19422 -- Nonbinary case
19423
19424 elsif M_Val < 2 ** Bits then
19425 Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
19426 Set_Non_Binary_Modulus (T);
19427
19428 if Bits > System_Max_Nonbinary_Modulus_Power then
19429 Error_Msg_Uint_1 :=
19430 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
19431 Error_Msg_F
19432 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
19433 Set_Modular_Size (System_Max_Binary_Modulus_Power);
19434 return;
19435
19436 else
19437 -- In the nonbinary case, set size as per RM 13.3(55)
19438
19439 Set_Modular_Size (Bits);
19440 return;
19441 end if;
19442 end if;
19443
19444 end loop;
19445
19446 -- If we fall through, then the size exceed System.Max_Binary_Modulus
19447 -- so we just signal an error and set the maximum size.
19448
19449 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
19450 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
19451
19452 Set_Modular_Size (System_Max_Binary_Modulus_Power);
19453 Init_Alignment (T);
19454
19455 end Modular_Type_Declaration;
19456
19457 --------------------------
19458 -- New_Concatenation_Op --
19459 --------------------------
19460
19461 procedure New_Concatenation_Op (Typ : Entity_Id) is
19462 Loc : constant Source_Ptr := Sloc (Typ);
19463 Op : Entity_Id;
19464
19465 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
19466 -- Create abbreviated declaration for the formal of a predefined
19467 -- Operator 'Op' of type 'Typ'
19468
19469 --------------------
19470 -- Make_Op_Formal --
19471 --------------------
19472
19473 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
19474 Formal : Entity_Id;
19475 begin
19476 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
19477 Set_Etype (Formal, Typ);
19478 Set_Mechanism (Formal, Default_Mechanism);
19479 return Formal;
19480 end Make_Op_Formal;
19481
19482 -- Start of processing for New_Concatenation_Op
19483
19484 begin
19485 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
19486
19487 Set_Ekind (Op, E_Operator);
19488 Set_Scope (Op, Current_Scope);
19489 Set_Etype (Op, Typ);
19490 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
19491 Set_Is_Immediately_Visible (Op);
19492 Set_Is_Intrinsic_Subprogram (Op);
19493 Set_Has_Completion (Op);
19494 Append_Entity (Op, Current_Scope);
19495
19496 Set_Name_Entity_Id (Name_Op_Concat, Op);
19497
19498 Append_Entity (Make_Op_Formal (Typ, Op), Op);
19499 Append_Entity (Make_Op_Formal (Typ, Op), Op);
19500 end New_Concatenation_Op;
19501
19502 -------------------------
19503 -- OK_For_Limited_Init --
19504 -------------------------
19505
19506 -- ???Check all calls of this, and compare the conditions under which it's
19507 -- called.
19508
19509 function OK_For_Limited_Init
19510 (Typ : Entity_Id;
19511 Exp : Node_Id) return Boolean
19512 is
19513 begin
19514 return Is_CPP_Constructor_Call (Exp)
19515 or else (Ada_Version >= Ada_2005
19516 and then not Debug_Flag_Dot_L
19517 and then OK_For_Limited_Init_In_05 (Typ, Exp));
19518 end OK_For_Limited_Init;
19519
19520 -------------------------------
19521 -- OK_For_Limited_Init_In_05 --
19522 -------------------------------
19523
19524 function OK_For_Limited_Init_In_05
19525 (Typ : Entity_Id;
19526 Exp : Node_Id) return Boolean
19527 is
19528 begin
19529 -- An object of a limited interface type can be initialized with any
19530 -- expression of a nonlimited descendant type. However this does not
19531 -- apply if this is a view conversion of some other expression. This
19532 -- is checked below.
19533
19534 if Is_Class_Wide_Type (Typ)
19535 and then Is_Limited_Interface (Typ)
19536 and then not Is_Limited_Type (Etype (Exp))
19537 and then Nkind (Exp) /= N_Type_Conversion
19538 then
19539 return True;
19540 end if;
19541
19542 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
19543 -- case of limited aggregates (including extension aggregates), and
19544 -- function calls. The function call may have been given in prefixed
19545 -- notation, in which case the original node is an indexed component.
19546 -- If the function is parameterless, the original node was an explicit
19547 -- dereference. The function may also be parameterless, in which case
19548 -- the source node is just an identifier.
19549
19550 -- A branch of a conditional expression may have been removed if the
19551 -- condition is statically known. This happens during expansion, and
19552 -- thus will not happen if previous errors were encountered. The check
19553 -- will have been performed on the chosen branch, which replaces the
19554 -- original conditional expression.
19555
19556 if No (Exp) then
19557 return True;
19558 end if;
19559
19560 case Nkind (Original_Node (Exp)) is
19561 when N_Aggregate
19562 | N_Extension_Aggregate
19563 | N_Function_Call
19564 | N_Op
19565 =>
19566 return True;
19567
19568 when N_Identifier =>
19569 return Present (Entity (Original_Node (Exp)))
19570 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
19571
19572 when N_Qualified_Expression =>
19573 return
19574 OK_For_Limited_Init_In_05
19575 (Typ, Expression (Original_Node (Exp)));
19576
19577 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
19578 -- with a function call, the expander has rewritten the call into an
19579 -- N_Type_Conversion node to force displacement of the pointer to
19580 -- reference the component containing the secondary dispatch table.
19581 -- Otherwise a type conversion is not a legal context.
19582 -- A return statement for a build-in-place function returning a
19583 -- synchronized type also introduces an unchecked conversion.
19584
19585 when N_Type_Conversion
19586 | N_Unchecked_Type_Conversion
19587 =>
19588 return not Comes_From_Source (Exp)
19589 and then
19590 OK_For_Limited_Init_In_05
19591 (Typ, Expression (Original_Node (Exp)));
19592
19593 when N_Explicit_Dereference
19594 | N_Indexed_Component
19595 | N_Selected_Component
19596 =>
19597 return Nkind (Exp) = N_Function_Call;
19598
19599 -- A use of 'Input is a function call, hence allowed. Normally the
19600 -- attribute will be changed to a call, but the attribute by itself
19601 -- can occur with -gnatc.
19602
19603 when N_Attribute_Reference =>
19604 return Attribute_Name (Original_Node (Exp)) = Name_Input;
19605
19606 -- "return raise ..." is OK
19607
19608 when N_Raise_Expression =>
19609 return True;
19610
19611 -- For a case expression, all dependent expressions must be legal
19612
19613 when N_Case_Expression =>
19614 declare
19615 Alt : Node_Id;
19616
19617 begin
19618 Alt := First (Alternatives (Original_Node (Exp)));
19619 while Present (Alt) loop
19620 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
19621 return False;
19622 end if;
19623
19624 Next (Alt);
19625 end loop;
19626
19627 return True;
19628 end;
19629
19630 -- For an if expression, all dependent expressions must be legal
19631
19632 when N_If_Expression =>
19633 declare
19634 Then_Expr : constant Node_Id :=
19635 Next (First (Expressions (Original_Node (Exp))));
19636 Else_Expr : constant Node_Id := Next (Then_Expr);
19637 begin
19638 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
19639 and then
19640 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
19641 end;
19642
19643 when others =>
19644 return False;
19645 end case;
19646 end OK_For_Limited_Init_In_05;
19647
19648 -------------------------------------------
19649 -- Ordinary_Fixed_Point_Type_Declaration --
19650 -------------------------------------------
19651
19652 procedure Ordinary_Fixed_Point_Type_Declaration
19653 (T : Entity_Id;
19654 Def : Node_Id)
19655 is
19656 Loc : constant Source_Ptr := Sloc (Def);
19657 Delta_Expr : constant Node_Id := Delta_Expression (Def);
19658 RRS : constant Node_Id := Real_Range_Specification (Def);
19659 Implicit_Base : Entity_Id;
19660 Delta_Val : Ureal;
19661 Small_Val : Ureal;
19662 Low_Val : Ureal;
19663 High_Val : Ureal;
19664
19665 begin
19666 Check_Restriction (No_Fixed_Point, Def);
19667
19668 -- Create implicit base type
19669
19670 Implicit_Base :=
19671 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
19672 Set_Etype (Implicit_Base, Implicit_Base);
19673
19674 -- Analyze and process delta expression
19675
19676 Analyze_And_Resolve (Delta_Expr, Any_Real);
19677
19678 Check_Delta_Expression (Delta_Expr);
19679 Delta_Val := Expr_Value_R (Delta_Expr);
19680
19681 Set_Delta_Value (Implicit_Base, Delta_Val);
19682
19683 -- Compute default small from given delta, which is the largest power
19684 -- of two that does not exceed the given delta value.
19685
19686 declare
19687 Tmp : Ureal;
19688 Scale : Int;
19689
19690 begin
19691 Tmp := Ureal_1;
19692 Scale := 0;
19693
19694 if Delta_Val < Ureal_1 then
19695 while Delta_Val < Tmp loop
19696 Tmp := Tmp / Ureal_2;
19697 Scale := Scale + 1;
19698 end loop;
19699
19700 else
19701 loop
19702 Tmp := Tmp * Ureal_2;
19703 exit when Tmp > Delta_Val;
19704 Scale := Scale - 1;
19705 end loop;
19706 end if;
19707
19708 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
19709 end;
19710
19711 Set_Small_Value (Implicit_Base, Small_Val);
19712
19713 -- If no range was given, set a dummy range
19714
19715 if RRS <= Empty_Or_Error then
19716 Low_Val := -Small_Val;
19717 High_Val := Small_Val;
19718
19719 -- Otherwise analyze and process given range
19720
19721 else
19722 declare
19723 Low : constant Node_Id := Low_Bound (RRS);
19724 High : constant Node_Id := High_Bound (RRS);
19725
19726 begin
19727 Analyze_And_Resolve (Low, Any_Real);
19728 Analyze_And_Resolve (High, Any_Real);
19729 Check_Real_Bound (Low);
19730 Check_Real_Bound (High);
19731
19732 -- Obtain and set the range
19733
19734 Low_Val := Expr_Value_R (Low);
19735 High_Val := Expr_Value_R (High);
19736
19737 if Low_Val > High_Val then
19738 Error_Msg_NE ("??fixed point type& has null range", Def, T);
19739 end if;
19740 end;
19741 end if;
19742
19743 -- The range for both the implicit base and the declared first subtype
19744 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
19745 -- set a temporary range in place. Note that the bounds of the base
19746 -- type will be widened to be symmetrical and to fill the available
19747 -- bits when the type is frozen.
19748
19749 -- We could do this with all discrete types, and probably should, but
19750 -- we absolutely have to do it for fixed-point, since the end-points
19751 -- of the range and the size are determined by the small value, which
19752 -- could be reset before the freeze point.
19753
19754 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
19755 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
19756
19757 -- Complete definition of first subtype. The inheritance of the rep item
19758 -- chain ensures that SPARK-related pragmas are not clobbered when the
19759 -- ordinary fixed point type acts as a full view of a private type.
19760
19761 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
19762 Set_Etype (T, Implicit_Base);
19763 Init_Size_Align (T);
19764 Inherit_Rep_Item_Chain (T, Implicit_Base);
19765 Set_Small_Value (T, Small_Val);
19766 Set_Delta_Value (T, Delta_Val);
19767 Set_Is_Constrained (T);
19768 end Ordinary_Fixed_Point_Type_Declaration;
19769
19770 ----------------------------------
19771 -- Preanalyze_Assert_Expression --
19772 ----------------------------------
19773
19774 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
19775 begin
19776 In_Assertion_Expr := In_Assertion_Expr + 1;
19777 Preanalyze_Spec_Expression (N, T);
19778 In_Assertion_Expr := In_Assertion_Expr - 1;
19779 end Preanalyze_Assert_Expression;
19780
19781 -----------------------------------
19782 -- Preanalyze_Default_Expression --
19783 -----------------------------------
19784
19785 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
19786 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
19787 begin
19788 In_Default_Expr := True;
19789 Preanalyze_Spec_Expression (N, T);
19790 In_Default_Expr := Save_In_Default_Expr;
19791 end Preanalyze_Default_Expression;
19792
19793 --------------------------------
19794 -- Preanalyze_Spec_Expression --
19795 --------------------------------
19796
19797 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
19798 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
19799 begin
19800 In_Spec_Expression := True;
19801 Preanalyze_And_Resolve (N, T);
19802 In_Spec_Expression := Save_In_Spec_Expression;
19803 end Preanalyze_Spec_Expression;
19804
19805 ----------------------------------------
19806 -- Prepare_Private_Subtype_Completion --
19807 ----------------------------------------
19808
19809 procedure Prepare_Private_Subtype_Completion
19810 (Id : Entity_Id;
19811 Related_Nod : Node_Id)
19812 is
19813 Id_B : constant Entity_Id := Base_Type (Id);
19814 Full_B : Entity_Id := Full_View (Id_B);
19815 Full : Entity_Id;
19816
19817 begin
19818 if Present (Full_B) then
19819
19820 -- Get to the underlying full view if necessary
19821
19822 if Is_Private_Type (Full_B)
19823 and then Present (Underlying_Full_View (Full_B))
19824 then
19825 Full_B := Underlying_Full_View (Full_B);
19826 end if;
19827
19828 -- The Base_Type is already completed, we can complete the subtype
19829 -- now. We have to create a new entity with the same name, Thus we
19830 -- can't use Create_Itype.
19831
19832 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
19833 Set_Is_Itype (Full);
19834 Set_Associated_Node_For_Itype (Full, Related_Nod);
19835 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
19836 end if;
19837
19838 -- The parent subtype may be private, but the base might not, in some
19839 -- nested instances. In that case, the subtype does not need to be
19840 -- exchanged. It would still be nice to make private subtypes and their
19841 -- bases consistent at all times ???
19842
19843 if Is_Private_Type (Id_B) then
19844 Append_Elmt (Id, Private_Dependents (Id_B));
19845 end if;
19846 end Prepare_Private_Subtype_Completion;
19847
19848 ---------------------------
19849 -- Process_Discriminants --
19850 ---------------------------
19851
19852 procedure Process_Discriminants
19853 (N : Node_Id;
19854 Prev : Entity_Id := Empty)
19855 is
19856 Elist : constant Elist_Id := New_Elmt_List;
19857 Id : Node_Id;
19858 Discr : Node_Id;
19859 Discr_Number : Uint;
19860 Discr_Type : Entity_Id;
19861 Default_Present : Boolean := False;
19862 Default_Not_Present : Boolean := False;
19863
19864 begin
19865 -- A composite type other than an array type can have discriminants.
19866 -- On entry, the current scope is the composite type.
19867
19868 -- The discriminants are initially entered into the scope of the type
19869 -- via Enter_Name with the default Ekind of E_Void to prevent premature
19870 -- use, as explained at the end of this procedure.
19871
19872 Discr := First (Discriminant_Specifications (N));
19873 while Present (Discr) loop
19874 Enter_Name (Defining_Identifier (Discr));
19875
19876 -- For navigation purposes we add a reference to the discriminant
19877 -- in the entity for the type. If the current declaration is a
19878 -- completion, place references on the partial view. Otherwise the
19879 -- type is the current scope.
19880
19881 if Present (Prev) then
19882
19883 -- The references go on the partial view, if present. If the
19884 -- partial view has discriminants, the references have been
19885 -- generated already.
19886
19887 if not Has_Discriminants (Prev) then
19888 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
19889 end if;
19890 else
19891 Generate_Reference
19892 (Current_Scope, Defining_Identifier (Discr), 'd');
19893 end if;
19894
19895 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
19896 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
19897
19898 -- Ada 2005 (AI-254)
19899
19900 if Present (Access_To_Subprogram_Definition
19901 (Discriminant_Type (Discr)))
19902 and then Protected_Present (Access_To_Subprogram_Definition
19903 (Discriminant_Type (Discr)))
19904 then
19905 Discr_Type :=
19906 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
19907 end if;
19908
19909 else
19910 Find_Type (Discriminant_Type (Discr));
19911 Discr_Type := Etype (Discriminant_Type (Discr));
19912
19913 if Error_Posted (Discriminant_Type (Discr)) then
19914 Discr_Type := Any_Type;
19915 end if;
19916 end if;
19917
19918 -- Handling of discriminants that are access types
19919
19920 if Is_Access_Type (Discr_Type) then
19921
19922 -- Ada 2005 (AI-230): Access discriminant allowed in non-
19923 -- limited record types
19924
19925 if Ada_Version < Ada_2005 then
19926 Check_Access_Discriminant_Requires_Limited
19927 (Discr, Discriminant_Type (Discr));
19928 end if;
19929
19930 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
19931 Error_Msg_N
19932 ("(Ada 83) access discriminant not allowed", Discr);
19933 end if;
19934
19935 -- If not access type, must be a discrete type
19936
19937 elsif not Is_Discrete_Type (Discr_Type) then
19938 Error_Msg_N
19939 ("discriminants must have a discrete or access type",
19940 Discriminant_Type (Discr));
19941 end if;
19942
19943 Set_Etype (Defining_Identifier (Discr), Discr_Type);
19944
19945 -- If a discriminant specification includes the assignment compound
19946 -- delimiter followed by an expression, the expression is the default
19947 -- expression of the discriminant; the default expression must be of
19948 -- the type of the discriminant. (RM 3.7.1) Since this expression is
19949 -- a default expression, we do the special preanalysis, since this
19950 -- expression does not freeze (see section "Handling of Default and
19951 -- Per-Object Expressions" in spec of package Sem).
19952
19953 if Present (Expression (Discr)) then
19954 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
19955
19956 -- Legaity checks
19957
19958 if Nkind (N) = N_Formal_Type_Declaration then
19959 Error_Msg_N
19960 ("discriminant defaults not allowed for formal type",
19961 Expression (Discr));
19962
19963 -- Flag an error for a tagged type with defaulted discriminants,
19964 -- excluding limited tagged types when compiling for Ada 2012
19965 -- (see AI05-0214).
19966
19967 elsif Is_Tagged_Type (Current_Scope)
19968 and then (not Is_Limited_Type (Current_Scope)
19969 or else Ada_Version < Ada_2012)
19970 and then Comes_From_Source (N)
19971 then
19972 -- Note: see similar test in Check_Or_Process_Discriminants, to
19973 -- handle the (illegal) case of the completion of an untagged
19974 -- view with discriminants with defaults by a tagged full view.
19975 -- We skip the check if Discr does not come from source, to
19976 -- account for the case of an untagged derived type providing
19977 -- defaults for a renamed discriminant from a private untagged
19978 -- ancestor with a tagged full view (ACATS B460006).
19979
19980 if Ada_Version >= Ada_2012 then
19981 Error_Msg_N
19982 ("discriminants of nonlimited tagged type cannot have"
19983 & " defaults",
19984 Expression (Discr));
19985 else
19986 Error_Msg_N
19987 ("discriminants of tagged type cannot have defaults",
19988 Expression (Discr));
19989 end if;
19990
19991 else
19992 Default_Present := True;
19993 Append_Elmt (Expression (Discr), Elist);
19994
19995 -- Tag the defining identifiers for the discriminants with
19996 -- their corresponding default expressions from the tree.
19997
19998 Set_Discriminant_Default_Value
19999 (Defining_Identifier (Discr), Expression (Discr));
20000 end if;
20001
20002 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
20003 -- gets set unless we can be sure that no range check is required.
20004
20005 if (GNATprove_Mode or not Expander_Active)
20006 and then not
20007 Is_In_Range
20008 (Expression (Discr), Discr_Type, Assume_Valid => True)
20009 then
20010 Set_Do_Range_Check (Expression (Discr));
20011 end if;
20012
20013 -- No default discriminant value given
20014
20015 else
20016 Default_Not_Present := True;
20017 end if;
20018
20019 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
20020 -- Discr_Type but with the null-exclusion attribute
20021
20022 if Ada_Version >= Ada_2005 then
20023
20024 -- Ada 2005 (AI-231): Static checks
20025
20026 if Can_Never_Be_Null (Discr_Type) then
20027 Null_Exclusion_Static_Checks (Discr);
20028
20029 elsif Is_Access_Type (Discr_Type)
20030 and then Null_Exclusion_Present (Discr)
20031
20032 -- No need to check itypes because in their case this check
20033 -- was done at their point of creation
20034
20035 and then not Is_Itype (Discr_Type)
20036 then
20037 if Can_Never_Be_Null (Discr_Type) then
20038 Error_Msg_NE
20039 ("`NOT NULL` not allowed (& already excludes null)",
20040 Discr,
20041 Discr_Type);
20042 end if;
20043
20044 Set_Etype (Defining_Identifier (Discr),
20045 Create_Null_Excluding_Itype
20046 (T => Discr_Type,
20047 Related_Nod => Discr));
20048
20049 -- Check for improper null exclusion if the type is otherwise
20050 -- legal for a discriminant.
20051
20052 elsif Null_Exclusion_Present (Discr)
20053 and then Is_Discrete_Type (Discr_Type)
20054 then
20055 Error_Msg_N
20056 ("null exclusion can only apply to an access type", Discr);
20057 end if;
20058
20059 -- Ada 2005 (AI-402): access discriminants of nonlimited types
20060 -- can't have defaults. Synchronized types, or types that are
20061 -- explicitly limited are fine, but special tests apply to derived
20062 -- types in generics: in a generic body we have to assume the
20063 -- worst, and therefore defaults are not allowed if the parent is
20064 -- a generic formal private type (see ACATS B370001).
20065
20066 if Is_Access_Type (Discr_Type) and then Default_Present then
20067 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
20068 or else Is_Limited_Record (Current_Scope)
20069 or else Is_Concurrent_Type (Current_Scope)
20070 or else Is_Concurrent_Record_Type (Current_Scope)
20071 or else Ekind (Current_Scope) = E_Limited_Private_Type
20072 then
20073 if not Is_Derived_Type (Current_Scope)
20074 or else not Is_Generic_Type (Etype (Current_Scope))
20075 or else not In_Package_Body (Scope (Etype (Current_Scope)))
20076 or else Limited_Present
20077 (Type_Definition (Parent (Current_Scope)))
20078 then
20079 null;
20080
20081 else
20082 Error_Msg_N
20083 ("access discriminants of nonlimited types cannot "
20084 & "have defaults", Expression (Discr));
20085 end if;
20086
20087 elsif Present (Expression (Discr)) then
20088 Error_Msg_N
20089 ("(Ada 2005) access discriminants of nonlimited types "
20090 & "cannot have defaults", Expression (Discr));
20091 end if;
20092 end if;
20093 end if;
20094
20095 -- A discriminant cannot be effectively volatile (SPARK RM 7.1.3(6)).
20096 -- This check is relevant only when SPARK_Mode is on as it is not a
20097 -- standard Ada legality rule.
20098
20099 if SPARK_Mode = On
20100 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
20101 then
20102 Error_Msg_N ("discriminant cannot be volatile", Discr);
20103 end if;
20104
20105 Next (Discr);
20106 end loop;
20107
20108 -- An element list consisting of the default expressions of the
20109 -- discriminants is constructed in the above loop and used to set
20110 -- the Discriminant_Constraint attribute for the type. If an object
20111 -- is declared of this (record or task) type without any explicit
20112 -- discriminant constraint given, this element list will form the
20113 -- actual parameters for the corresponding initialization procedure
20114 -- for the type.
20115
20116 Set_Discriminant_Constraint (Current_Scope, Elist);
20117 Set_Stored_Constraint (Current_Scope, No_Elist);
20118
20119 -- Default expressions must be provided either for all or for none
20120 -- of the discriminants of a discriminant part. (RM 3.7.1)
20121
20122 if Default_Present and then Default_Not_Present then
20123 Error_Msg_N
20124 ("incomplete specification of defaults for discriminants", N);
20125 end if;
20126
20127 -- The use of the name of a discriminant is not allowed in default
20128 -- expressions of a discriminant part if the specification of the
20129 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
20130
20131 -- To detect this, the discriminant names are entered initially with an
20132 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
20133 -- attempt to use a void entity (for example in an expression that is
20134 -- type-checked) produces the error message: premature usage. Now after
20135 -- completing the semantic analysis of the discriminant part, we can set
20136 -- the Ekind of all the discriminants appropriately.
20137
20138 Discr := First (Discriminant_Specifications (N));
20139 Discr_Number := Uint_1;
20140 while Present (Discr) loop
20141 Id := Defining_Identifier (Discr);
20142 Set_Ekind (Id, E_Discriminant);
20143 Init_Component_Location (Id);
20144 Init_Esize (Id);
20145 Set_Discriminant_Number (Id, Discr_Number);
20146
20147 -- Make sure this is always set, even in illegal programs
20148
20149 Set_Corresponding_Discriminant (Id, Empty);
20150
20151 -- Initialize the Original_Record_Component to the entity itself.
20152 -- Inherit_Components will propagate the right value to
20153 -- discriminants in derived record types.
20154
20155 Set_Original_Record_Component (Id, Id);
20156
20157 -- Create the discriminal for the discriminant
20158
20159 Build_Discriminal (Id);
20160
20161 Next (Discr);
20162 Discr_Number := Discr_Number + 1;
20163 end loop;
20164
20165 Set_Has_Discriminants (Current_Scope);
20166 end Process_Discriminants;
20167
20168 -----------------------
20169 -- Process_Full_View --
20170 -----------------------
20171
20172 -- WARNING: This routine manages Ghost regions. Return statements must be
20173 -- replaced by gotos which jump to the end of the routine and restore the
20174 -- Ghost mode.
20175
20176 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
20177 procedure Collect_Implemented_Interfaces
20178 (Typ : Entity_Id;
20179 Ifaces : Elist_Id);
20180 -- Ada 2005: Gather all the interfaces that Typ directly or
20181 -- inherently implements. Duplicate entries are not added to
20182 -- the list Ifaces.
20183
20184 ------------------------------------
20185 -- Collect_Implemented_Interfaces --
20186 ------------------------------------
20187
20188 procedure Collect_Implemented_Interfaces
20189 (Typ : Entity_Id;
20190 Ifaces : Elist_Id)
20191 is
20192 Iface : Entity_Id;
20193 Iface_Elmt : Elmt_Id;
20194
20195 begin
20196 -- Abstract interfaces are only associated with tagged record types
20197
20198 if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then
20199 return;
20200 end if;
20201
20202 -- Recursively climb to the ancestors
20203
20204 if Etype (Typ) /= Typ
20205
20206 -- Protect the frontend against wrong cyclic declarations like:
20207
20208 -- type B is new A with private;
20209 -- type C is new A with private;
20210 -- private
20211 -- type B is new C with null record;
20212 -- type C is new B with null record;
20213
20214 and then Etype (Typ) /= Priv_T
20215 and then Etype (Typ) /= Full_T
20216 then
20217 -- Keep separate the management of private type declarations
20218
20219 if Ekind (Typ) = E_Record_Type_With_Private then
20220
20221 -- Handle the following illegal usage:
20222 -- type Private_Type is tagged private;
20223 -- private
20224 -- type Private_Type is new Type_Implementing_Iface;
20225
20226 if Present (Full_View (Typ))
20227 and then Etype (Typ) /= Full_View (Typ)
20228 then
20229 if Is_Interface (Etype (Typ)) then
20230 Append_Unique_Elmt (Etype (Typ), Ifaces);
20231 end if;
20232
20233 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
20234 end if;
20235
20236 -- Non-private types
20237
20238 else
20239 if Is_Interface (Etype (Typ)) then
20240 Append_Unique_Elmt (Etype (Typ), Ifaces);
20241 end if;
20242
20243 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
20244 end if;
20245 end if;
20246
20247 -- Handle entities in the list of abstract interfaces
20248
20249 if Present (Interfaces (Typ)) then
20250 Iface_Elmt := First_Elmt (Interfaces (Typ));
20251 while Present (Iface_Elmt) loop
20252 Iface := Node (Iface_Elmt);
20253
20254 pragma Assert (Is_Interface (Iface));
20255
20256 if not Contain_Interface (Iface, Ifaces) then
20257 Append_Elmt (Iface, Ifaces);
20258 Collect_Implemented_Interfaces (Iface, Ifaces);
20259 end if;
20260
20261 Next_Elmt (Iface_Elmt);
20262 end loop;
20263 end if;
20264 end Collect_Implemented_Interfaces;
20265
20266 -- Local variables
20267
20268 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
20269
20270 Full_Indic : Node_Id;
20271 Full_Parent : Entity_Id;
20272 Priv_Parent : Entity_Id;
20273
20274 -- Start of processing for Process_Full_View
20275
20276 begin
20277 Mark_And_Set_Ghost_Completion (N, Priv_T);
20278
20279 -- First some sanity checks that must be done after semantic
20280 -- decoration of the full view and thus cannot be placed with other
20281 -- similar checks in Find_Type_Name
20282
20283 if not Is_Limited_Type (Priv_T)
20284 and then (Is_Limited_Type (Full_T)
20285 or else Is_Limited_Composite (Full_T))
20286 then
20287 if In_Instance then
20288 null;
20289 else
20290 Error_Msg_N
20291 ("completion of nonlimited type cannot be limited", Full_T);
20292 Explain_Limited_Type (Full_T, Full_T);
20293 end if;
20294
20295 elsif Is_Abstract_Type (Full_T)
20296 and then not Is_Abstract_Type (Priv_T)
20297 then
20298 Error_Msg_N
20299 ("completion of nonabstract type cannot be abstract", Full_T);
20300
20301 elsif Is_Tagged_Type (Priv_T)
20302 and then Is_Limited_Type (Priv_T)
20303 and then not Is_Limited_Type (Full_T)
20304 then
20305 -- If pragma CPP_Class was applied to the private declaration
20306 -- propagate the limitedness to the full-view
20307
20308 if Is_CPP_Class (Priv_T) then
20309 Set_Is_Limited_Record (Full_T);
20310
20311 -- GNAT allow its own definition of Limited_Controlled to disobey
20312 -- this rule in order in ease the implementation. This test is safe
20313 -- because Root_Controlled is defined in a child of System that
20314 -- normal programs are not supposed to use.
20315
20316 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
20317 Set_Is_Limited_Composite (Full_T);
20318 else
20319 Error_Msg_N
20320 ("completion of limited tagged type must be limited", Full_T);
20321 end if;
20322
20323 elsif Is_Generic_Type (Priv_T) then
20324 Error_Msg_N ("generic type cannot have a completion", Full_T);
20325 end if;
20326
20327 -- Check that ancestor interfaces of private and full views are
20328 -- consistent. We omit this check for synchronized types because
20329 -- they are performed on the corresponding record type when frozen.
20330
20331 if Ada_Version >= Ada_2005
20332 and then Is_Tagged_Type (Priv_T)
20333 and then Is_Tagged_Type (Full_T)
20334 and then not Is_Concurrent_Type (Full_T)
20335 then
20336 declare
20337 Iface : Entity_Id;
20338 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
20339 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
20340
20341 begin
20342 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
20343 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
20344
20345 -- Ada 2005 (AI-251): The partial view shall be a descendant of
20346 -- an interface type if and only if the full type is descendant
20347 -- of the interface type (AARM 7.3 (7.3/2)).
20348
20349 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
20350
20351 if Present (Iface) then
20352 Error_Msg_NE
20353 ("interface in partial view& not implemented by full type "
20354 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
20355 end if;
20356
20357 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
20358
20359 if Present (Iface) then
20360 Error_Msg_NE
20361 ("interface & not implemented by partial view "
20362 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
20363 end if;
20364 end;
20365 end if;
20366
20367 if Is_Tagged_Type (Priv_T)
20368 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20369 and then Is_Derived_Type (Full_T)
20370 then
20371 Priv_Parent := Etype (Priv_T);
20372
20373 -- The full view of a private extension may have been transformed
20374 -- into an unconstrained derived type declaration and a subtype
20375 -- declaration (see build_derived_record_type for details).
20376
20377 if Nkind (N) = N_Subtype_Declaration then
20378 Full_Indic := Subtype_Indication (N);
20379 Full_Parent := Etype (Base_Type (Full_T));
20380 else
20381 Full_Indic := Subtype_Indication (Type_Definition (N));
20382 Full_Parent := Etype (Full_T);
20383 end if;
20384
20385 -- Check that the parent type of the full type is a descendant of
20386 -- the ancestor subtype given in the private extension. If either
20387 -- entity has an Etype equal to Any_Type then we had some previous
20388 -- error situation [7.3(8)].
20389
20390 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
20391 goto Leave;
20392
20393 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
20394 -- any order. Therefore we don't have to check that its parent must
20395 -- be a descendant of the parent of the private type declaration.
20396
20397 elsif Is_Interface (Priv_Parent)
20398 and then Is_Interface (Full_Parent)
20399 then
20400 null;
20401
20402 -- Ada 2005 (AI-251): If the parent of the private type declaration
20403 -- is an interface there is no need to check that it is an ancestor
20404 -- of the associated full type declaration. The required tests for
20405 -- this case are performed by Build_Derived_Record_Type.
20406
20407 elsif not Is_Interface (Base_Type (Priv_Parent))
20408 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
20409 then
20410 Error_Msg_N
20411 ("parent of full type must descend from parent of private "
20412 & "extension", Full_Indic);
20413
20414 -- First check a formal restriction, and then proceed with checking
20415 -- Ada rules. Since the formal restriction is not a serious error, we
20416 -- don't prevent further error detection for this check, hence the
20417 -- ELSE.
20418
20419 else
20420 -- In formal mode, when completing a private extension the type
20421 -- named in the private part must be exactly the same as that
20422 -- named in the visible part.
20423
20424 if Priv_Parent /= Full_Parent then
20425 Error_Msg_Name_1 := Chars (Priv_Parent);
20426 Check_SPARK_05_Restriction ("% expected", Full_Indic);
20427 end if;
20428
20429 -- Check the rules of 7.3(10): if the private extension inherits
20430 -- known discriminants, then the full type must also inherit those
20431 -- discriminants from the same (ancestor) type, and the parent
20432 -- subtype of the full type must be constrained if and only if
20433 -- the ancestor subtype of the private extension is constrained.
20434
20435 if No (Discriminant_Specifications (Parent (Priv_T)))
20436 and then not Has_Unknown_Discriminants (Priv_T)
20437 and then Has_Discriminants (Base_Type (Priv_Parent))
20438 then
20439 declare
20440 Priv_Indic : constant Node_Id :=
20441 Subtype_Indication (Parent (Priv_T));
20442
20443 Priv_Constr : constant Boolean :=
20444 Is_Constrained (Priv_Parent)
20445 or else
20446 Nkind (Priv_Indic) = N_Subtype_Indication
20447 or else
20448 Is_Constrained (Entity (Priv_Indic));
20449
20450 Full_Constr : constant Boolean :=
20451 Is_Constrained (Full_Parent)
20452 or else
20453 Nkind (Full_Indic) = N_Subtype_Indication
20454 or else
20455 Is_Constrained (Entity (Full_Indic));
20456
20457 Priv_Discr : Entity_Id;
20458 Full_Discr : Entity_Id;
20459
20460 begin
20461 Priv_Discr := First_Discriminant (Priv_Parent);
20462 Full_Discr := First_Discriminant (Full_Parent);
20463 while Present (Priv_Discr) and then Present (Full_Discr) loop
20464 if Original_Record_Component (Priv_Discr) =
20465 Original_Record_Component (Full_Discr)
20466 or else
20467 Corresponding_Discriminant (Priv_Discr) =
20468 Corresponding_Discriminant (Full_Discr)
20469 then
20470 null;
20471 else
20472 exit;
20473 end if;
20474
20475 Next_Discriminant (Priv_Discr);
20476 Next_Discriminant (Full_Discr);
20477 end loop;
20478
20479 if Present (Priv_Discr) or else Present (Full_Discr) then
20480 Error_Msg_N
20481 ("full view must inherit discriminants of the parent "
20482 & "type used in the private extension", Full_Indic);
20483
20484 elsif Priv_Constr and then not Full_Constr then
20485 Error_Msg_N
20486 ("parent subtype of full type must be constrained",
20487 Full_Indic);
20488
20489 elsif Full_Constr and then not Priv_Constr then
20490 Error_Msg_N
20491 ("parent subtype of full type must be unconstrained",
20492 Full_Indic);
20493 end if;
20494 end;
20495
20496 -- Check the rules of 7.3(12): if a partial view has neither
20497 -- known or unknown discriminants, then the full type
20498 -- declaration shall define a definite subtype.
20499
20500 elsif not Has_Unknown_Discriminants (Priv_T)
20501 and then not Has_Discriminants (Priv_T)
20502 and then not Is_Constrained (Full_T)
20503 then
20504 Error_Msg_N
20505 ("full view must define a constrained type if partial view "
20506 & "has no discriminants", Full_T);
20507 end if;
20508
20509 -- ??????? Do we implement the following properly ?????
20510 -- If the ancestor subtype of a private extension has constrained
20511 -- discriminants, then the parent subtype of the full view shall
20512 -- impose a statically matching constraint on those discriminants
20513 -- [7.3(13)].
20514 end if;
20515
20516 else
20517 -- For untagged types, verify that a type without discriminants is
20518 -- not completed with an unconstrained type. A separate error message
20519 -- is produced if the full type has defaulted discriminants.
20520
20521 if Is_Definite_Subtype (Priv_T)
20522 and then not Is_Definite_Subtype (Full_T)
20523 then
20524 Error_Msg_Sloc := Sloc (Parent (Priv_T));
20525 Error_Msg_NE
20526 ("full view of& not compatible with declaration#",
20527 Full_T, Priv_T);
20528
20529 if not Is_Tagged_Type (Full_T) then
20530 Error_Msg_N
20531 ("\one is constrained, the other unconstrained", Full_T);
20532 end if;
20533 end if;
20534 end if;
20535
20536 -- AI-419: verify that the use of "limited" is consistent
20537
20538 declare
20539 Orig_Decl : constant Node_Id := Original_Node (N);
20540
20541 begin
20542 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20543 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
20544 and then Nkind
20545 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
20546 then
20547 if not Limited_Present (Parent (Priv_T))
20548 and then not Synchronized_Present (Parent (Priv_T))
20549 and then Limited_Present (Type_Definition (Orig_Decl))
20550 then
20551 Error_Msg_N
20552 ("full view of non-limited extension cannot be limited", N);
20553
20554 -- Conversely, if the partial view carries the limited keyword,
20555 -- the full view must as well, even if it may be redundant.
20556
20557 elsif Limited_Present (Parent (Priv_T))
20558 and then not Limited_Present (Type_Definition (Orig_Decl))
20559 then
20560 Error_Msg_N
20561 ("full view of limited extension must be explicitly limited",
20562 N);
20563 end if;
20564 end if;
20565 end;
20566
20567 -- Ada 2005 (AI-443): A synchronized private extension must be
20568 -- completed by a task or protected type.
20569
20570 if Ada_Version >= Ada_2005
20571 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20572 and then Synchronized_Present (Parent (Priv_T))
20573 and then not Is_Concurrent_Type (Full_T)
20574 then
20575 Error_Msg_N ("full view of synchronized extension must " &
20576 "be synchronized type", N);
20577 end if;
20578
20579 -- Ada 2005 AI-363: if the full view has discriminants with
20580 -- defaults, it is illegal to declare constrained access subtypes
20581 -- whose designated type is the current type. This allows objects
20582 -- of the type that are declared in the heap to be unconstrained.
20583
20584 if not Has_Unknown_Discriminants (Priv_T)
20585 and then not Has_Discriminants (Priv_T)
20586 and then Has_Discriminants (Full_T)
20587 and then
20588 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
20589 then
20590 Set_Has_Constrained_Partial_View (Full_T);
20591 Set_Has_Constrained_Partial_View (Priv_T);
20592 end if;
20593
20594 -- Create a full declaration for all its subtypes recorded in
20595 -- Private_Dependents and swap them similarly to the base type. These
20596 -- are subtypes that have been define before the full declaration of
20597 -- the private type. We also swap the entry in Private_Dependents list
20598 -- so we can properly restore the private view on exit from the scope.
20599
20600 declare
20601 Priv_Elmt : Elmt_Id;
20602 Priv_Scop : Entity_Id;
20603 Priv : Entity_Id;
20604 Full : Entity_Id;
20605
20606 begin
20607 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
20608 while Present (Priv_Elmt) loop
20609 Priv := Node (Priv_Elmt);
20610 Priv_Scop := Scope (Priv);
20611
20612 if Ekind_In (Priv, E_Private_Subtype,
20613 E_Limited_Private_Subtype,
20614 E_Record_Subtype_With_Private)
20615 then
20616 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
20617 Set_Is_Itype (Full);
20618 Set_Parent (Full, Parent (Priv));
20619 Set_Associated_Node_For_Itype (Full, N);
20620
20621 -- Now we need to complete the private subtype, but since the
20622 -- base type has already been swapped, we must also swap the
20623 -- subtypes (and thus, reverse the arguments in the call to
20624 -- Complete_Private_Subtype). Also note that we may need to
20625 -- re-establish the scope of the private subtype.
20626
20627 Copy_And_Swap (Priv, Full);
20628
20629 if not In_Open_Scopes (Priv_Scop) then
20630 Push_Scope (Priv_Scop);
20631
20632 else
20633 -- Reset Priv_Scop to Empty to indicate no scope was pushed
20634
20635 Priv_Scop := Empty;
20636 end if;
20637
20638 Complete_Private_Subtype (Full, Priv, Full_T, N);
20639
20640 if Present (Priv_Scop) then
20641 Pop_Scope;
20642 end if;
20643
20644 Replace_Elmt (Priv_Elmt, Full);
20645 end if;
20646
20647 Next_Elmt (Priv_Elmt);
20648 end loop;
20649 end;
20650
20651 -- If the private view was tagged, copy the new primitive operations
20652 -- from the private view to the full view.
20653
20654 if Is_Tagged_Type (Full_T) then
20655 declare
20656 Disp_Typ : Entity_Id;
20657 Full_List : Elist_Id;
20658 Prim : Entity_Id;
20659 Prim_Elmt : Elmt_Id;
20660 Priv_List : Elist_Id;
20661
20662 function Contains
20663 (E : Entity_Id;
20664 L : Elist_Id) return Boolean;
20665 -- Determine whether list L contains element E
20666
20667 --------------
20668 -- Contains --
20669 --------------
20670
20671 function Contains
20672 (E : Entity_Id;
20673 L : Elist_Id) return Boolean
20674 is
20675 List_Elmt : Elmt_Id;
20676
20677 begin
20678 List_Elmt := First_Elmt (L);
20679 while Present (List_Elmt) loop
20680 if Node (List_Elmt) = E then
20681 return True;
20682 end if;
20683
20684 Next_Elmt (List_Elmt);
20685 end loop;
20686
20687 return False;
20688 end Contains;
20689
20690 -- Start of processing
20691
20692 begin
20693 if Is_Tagged_Type (Priv_T) then
20694 Priv_List := Primitive_Operations (Priv_T);
20695 Prim_Elmt := First_Elmt (Priv_List);
20696
20697 -- In the case of a concurrent type completing a private tagged
20698 -- type, primitives may have been declared in between the two
20699 -- views. These subprograms need to be wrapped the same way
20700 -- entries and protected procedures are handled because they
20701 -- cannot be directly shared by the two views.
20702
20703 if Is_Concurrent_Type (Full_T) then
20704 declare
20705 Conc_Typ : constant Entity_Id :=
20706 Corresponding_Record_Type (Full_T);
20707 Curr_Nod : Node_Id := Parent (Conc_Typ);
20708 Wrap_Spec : Node_Id;
20709
20710 begin
20711 while Present (Prim_Elmt) loop
20712 Prim := Node (Prim_Elmt);
20713
20714 if Comes_From_Source (Prim)
20715 and then not Is_Abstract_Subprogram (Prim)
20716 then
20717 Wrap_Spec :=
20718 Make_Subprogram_Declaration (Sloc (Prim),
20719 Specification =>
20720 Build_Wrapper_Spec
20721 (Subp_Id => Prim,
20722 Obj_Typ => Conc_Typ,
20723 Formals =>
20724 Parameter_Specifications
20725 (Parent (Prim))));
20726
20727 Insert_After (Curr_Nod, Wrap_Spec);
20728 Curr_Nod := Wrap_Spec;
20729
20730 Analyze (Wrap_Spec);
20731
20732 -- Remove the wrapper from visibility to avoid
20733 -- spurious conflict with the wrapped entity.
20734
20735 Set_Is_Immediately_Visible
20736 (Defining_Entity (Specification (Wrap_Spec)),
20737 False);
20738 end if;
20739
20740 Next_Elmt (Prim_Elmt);
20741 end loop;
20742
20743 goto Leave;
20744 end;
20745
20746 -- For non-concurrent types, transfer explicit primitives, but
20747 -- omit those inherited from the parent of the private view
20748 -- since they will be re-inherited later on.
20749
20750 else
20751 Full_List := Primitive_Operations (Full_T);
20752
20753 while Present (Prim_Elmt) loop
20754 Prim := Node (Prim_Elmt);
20755
20756 if Comes_From_Source (Prim)
20757 and then not Contains (Prim, Full_List)
20758 then
20759 Append_Elmt (Prim, Full_List);
20760 end if;
20761
20762 Next_Elmt (Prim_Elmt);
20763 end loop;
20764 end if;
20765
20766 -- Untagged private view
20767
20768 else
20769 Full_List := Primitive_Operations (Full_T);
20770
20771 -- In this case the partial view is untagged, so here we locate
20772 -- all of the earlier primitives that need to be treated as
20773 -- dispatching (those that appear between the two views). Note
20774 -- that these additional operations must all be new operations
20775 -- (any earlier operations that override inherited operations
20776 -- of the full view will already have been inserted in the
20777 -- primitives list, marked by Check_Operation_From_Private_View
20778 -- as dispatching. Note that implicit "/=" operators are
20779 -- excluded from being added to the primitives list since they
20780 -- shouldn't be treated as dispatching (tagged "/=" is handled
20781 -- specially).
20782
20783 Prim := Next_Entity (Full_T);
20784 while Present (Prim) and then Prim /= Priv_T loop
20785 if Ekind_In (Prim, E_Procedure, E_Function) then
20786 Disp_Typ := Find_Dispatching_Type (Prim);
20787
20788 if Disp_Typ = Full_T
20789 and then (Chars (Prim) /= Name_Op_Ne
20790 or else Comes_From_Source (Prim))
20791 then
20792 Check_Controlling_Formals (Full_T, Prim);
20793
20794 if not Is_Dispatching_Operation (Prim) then
20795 Append_Elmt (Prim, Full_List);
20796 Set_Is_Dispatching_Operation (Prim, True);
20797 Set_DT_Position_Value (Prim, No_Uint);
20798 end if;
20799
20800 elsif Is_Dispatching_Operation (Prim)
20801 and then Disp_Typ /= Full_T
20802 then
20803
20804 -- Verify that it is not otherwise controlled by a
20805 -- formal or a return value of type T.
20806
20807 Check_Controlling_Formals (Disp_Typ, Prim);
20808 end if;
20809 end if;
20810
20811 Next_Entity (Prim);
20812 end loop;
20813 end if;
20814
20815 -- For the tagged case, the two views can share the same primitive
20816 -- operations list and the same class-wide type. Update attributes
20817 -- of the class-wide type which depend on the full declaration.
20818
20819 if Is_Tagged_Type (Priv_T) then
20820 Set_Direct_Primitive_Operations (Priv_T, Full_List);
20821 Set_Class_Wide_Type
20822 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
20823
20824 Propagate_Concurrent_Flags (Class_Wide_Type (Priv_T), Full_T);
20825 end if;
20826 end;
20827 end if;
20828
20829 -- Ada 2005 AI 161: Check preelaborable initialization consistency
20830
20831 if Known_To_Have_Preelab_Init (Priv_T) then
20832
20833 -- Case where there is a pragma Preelaborable_Initialization. We
20834 -- always allow this in predefined units, which is cheating a bit,
20835 -- but it means we don't have to struggle to meet the requirements in
20836 -- the RM for having Preelaborable Initialization. Otherwise we
20837 -- require that the type meets the RM rules. But we can't check that
20838 -- yet, because of the rule about overriding Initialize, so we simply
20839 -- set a flag that will be checked at freeze time.
20840
20841 if not In_Predefined_Unit (Full_T) then
20842 Set_Must_Have_Preelab_Init (Full_T);
20843 end if;
20844 end if;
20845
20846 -- If pragma CPP_Class was applied to the private type declaration,
20847 -- propagate it now to the full type declaration.
20848
20849 if Is_CPP_Class (Priv_T) then
20850 Set_Is_CPP_Class (Full_T);
20851 Set_Convention (Full_T, Convention_CPP);
20852
20853 -- Check that components of imported CPP types do not have default
20854 -- expressions.
20855
20856 Check_CPP_Type_Has_No_Defaults (Full_T);
20857 end if;
20858
20859 -- If the private view has user specified stream attributes, then so has
20860 -- the full view.
20861
20862 -- Why the test, how could these flags be already set in Full_T ???
20863
20864 if Has_Specified_Stream_Read (Priv_T) then
20865 Set_Has_Specified_Stream_Read (Full_T);
20866 end if;
20867
20868 if Has_Specified_Stream_Write (Priv_T) then
20869 Set_Has_Specified_Stream_Write (Full_T);
20870 end if;
20871
20872 if Has_Specified_Stream_Input (Priv_T) then
20873 Set_Has_Specified_Stream_Input (Full_T);
20874 end if;
20875
20876 if Has_Specified_Stream_Output (Priv_T) then
20877 Set_Has_Specified_Stream_Output (Full_T);
20878 end if;
20879
20880 -- Propagate Default_Initial_Condition-related attributes from the
20881 -- partial view to the full view and its base type.
20882
20883 Propagate_DIC_Attributes (Full_T, From_Typ => Priv_T);
20884 Propagate_DIC_Attributes (Base_Type (Full_T), From_Typ => Priv_T);
20885
20886 -- Propagate invariant-related attributes from the partial view to the
20887 -- full view and its base type.
20888
20889 Propagate_Invariant_Attributes (Full_T, From_Typ => Priv_T);
20890 Propagate_Invariant_Attributes (Base_Type (Full_T), From_Typ => Priv_T);
20891
20892 -- AI12-0041: Detect an attempt to inherit a class-wide type invariant
20893 -- in the full view without advertising the inheritance in the partial
20894 -- view. This can only occur when the partial view has no parent type
20895 -- and the full view has an interface as a parent. Any other scenarios
20896 -- are illegal because implemented interfaces must match between the
20897 -- two views.
20898
20899 if Is_Tagged_Type (Priv_T) and then Is_Tagged_Type (Full_T) then
20900 declare
20901 Full_Par : constant Entity_Id := Etype (Full_T);
20902 Priv_Par : constant Entity_Id := Etype (Priv_T);
20903
20904 begin
20905 if not Is_Interface (Priv_Par)
20906 and then Is_Interface (Full_Par)
20907 and then Has_Inheritable_Invariants (Full_Par)
20908 then
20909 Error_Msg_N
20910 ("hidden inheritance of class-wide type invariants not "
20911 & "allowed", N);
20912 end if;
20913 end;
20914 end if;
20915
20916 -- Propagate predicates to full type, and predicate function if already
20917 -- defined. It is not clear that this can actually happen? the partial
20918 -- view cannot be frozen yet, and the predicate function has not been
20919 -- built. Still it is a cheap check and seems safer to make it.
20920
20921 if Has_Predicates (Priv_T) then
20922 Set_Has_Predicates (Full_T);
20923
20924 if Present (Predicate_Function (Priv_T)) then
20925 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
20926 end if;
20927 end if;
20928
20929 <<Leave>>
20930 Restore_Ghost_Mode (Saved_GM);
20931 end Process_Full_View;
20932
20933 -----------------------------------
20934 -- Process_Incomplete_Dependents --
20935 -----------------------------------
20936
20937 procedure Process_Incomplete_Dependents
20938 (N : Node_Id;
20939 Full_T : Entity_Id;
20940 Inc_T : Entity_Id)
20941 is
20942 Inc_Elmt : Elmt_Id;
20943 Priv_Dep : Entity_Id;
20944 New_Subt : Entity_Id;
20945
20946 Disc_Constraint : Elist_Id;
20947
20948 begin
20949 if No (Private_Dependents (Inc_T)) then
20950 return;
20951 end if;
20952
20953 -- Itypes that may be generated by the completion of an incomplete
20954 -- subtype are not used by the back-end and not attached to the tree.
20955 -- They are created only for constraint-checking purposes.
20956
20957 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
20958 while Present (Inc_Elmt) loop
20959 Priv_Dep := Node (Inc_Elmt);
20960
20961 if Ekind (Priv_Dep) = E_Subprogram_Type then
20962
20963 -- An Access_To_Subprogram type may have a return type or a
20964 -- parameter type that is incomplete. Replace with the full view.
20965
20966 if Etype (Priv_Dep) = Inc_T then
20967 Set_Etype (Priv_Dep, Full_T);
20968 end if;
20969
20970 declare
20971 Formal : Entity_Id;
20972
20973 begin
20974 Formal := First_Formal (Priv_Dep);
20975 while Present (Formal) loop
20976 if Etype (Formal) = Inc_T then
20977 Set_Etype (Formal, Full_T);
20978 end if;
20979
20980 Next_Formal (Formal);
20981 end loop;
20982 end;
20983
20984 elsif Is_Overloadable (Priv_Dep) then
20985
20986 -- If a subprogram in the incomplete dependents list is primitive
20987 -- for a tagged full type then mark it as a dispatching operation,
20988 -- check whether it overrides an inherited subprogram, and check
20989 -- restrictions on its controlling formals. Note that a protected
20990 -- operation is never dispatching: only its wrapper operation
20991 -- (which has convention Ada) is.
20992
20993 if Is_Tagged_Type (Full_T)
20994 and then Is_Primitive (Priv_Dep)
20995 and then Convention (Priv_Dep) /= Convention_Protected
20996 then
20997 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
20998 Set_Is_Dispatching_Operation (Priv_Dep);
20999 Check_Controlling_Formals (Full_T, Priv_Dep);
21000 end if;
21001
21002 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
21003
21004 -- Can happen during processing of a body before the completion
21005 -- of a TA type. Ignore, because spec is also on dependent list.
21006
21007 return;
21008
21009 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
21010 -- corresponding subtype of the full view.
21011
21012 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype
21013 and then Comes_From_Source (Priv_Dep)
21014 then
21015 Set_Subtype_Indication
21016 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
21017 Set_Etype (Priv_Dep, Full_T);
21018 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
21019 Set_Analyzed (Parent (Priv_Dep), False);
21020
21021 -- Reanalyze the declaration, suppressing the call to Enter_Name
21022 -- to avoid duplicate names.
21023
21024 Analyze_Subtype_Declaration
21025 (N => Parent (Priv_Dep),
21026 Skip => True);
21027
21028 -- Dependent is a subtype
21029
21030 else
21031 -- We build a new subtype indication using the full view of the
21032 -- incomplete parent. The discriminant constraints have been
21033 -- elaborated already at the point of the subtype declaration.
21034
21035 New_Subt := Create_Itype (E_Void, N);
21036
21037 if Has_Discriminants (Full_T) then
21038 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
21039 else
21040 Disc_Constraint := No_Elist;
21041 end if;
21042
21043 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
21044 Set_Full_View (Priv_Dep, New_Subt);
21045 end if;
21046
21047 Next_Elmt (Inc_Elmt);
21048 end loop;
21049 end Process_Incomplete_Dependents;
21050
21051 --------------------------------
21052 -- Process_Range_Expr_In_Decl --
21053 --------------------------------
21054
21055 procedure Process_Range_Expr_In_Decl
21056 (R : Node_Id;
21057 T : Entity_Id;
21058 Subtyp : Entity_Id := Empty;
21059 Check_List : List_Id := Empty_List;
21060 R_Check_Off : Boolean := False;
21061 In_Iter_Schm : Boolean := False)
21062 is
21063 Lo, Hi : Node_Id;
21064 R_Checks : Check_Result;
21065 Insert_Node : Node_Id;
21066 Def_Id : Entity_Id;
21067
21068 begin
21069 Analyze_And_Resolve (R, Base_Type (T));
21070
21071 if Nkind (R) = N_Range then
21072
21073 -- In SPARK, all ranges should be static, with the exception of the
21074 -- discrete type definition of a loop parameter specification.
21075
21076 if not In_Iter_Schm
21077 and then not Is_OK_Static_Range (R)
21078 then
21079 Check_SPARK_05_Restriction ("range should be static", R);
21080 end if;
21081
21082 Lo := Low_Bound (R);
21083 Hi := High_Bound (R);
21084
21085 -- Validity checks on the range of a quantified expression are
21086 -- delayed until the construct is transformed into a loop.
21087
21088 if Nkind (Parent (R)) = N_Loop_Parameter_Specification
21089 and then Nkind (Parent (Parent (R))) = N_Quantified_Expression
21090 then
21091 null;
21092
21093 -- We need to ensure validity of the bounds here, because if we
21094 -- go ahead and do the expansion, then the expanded code will get
21095 -- analyzed with range checks suppressed and we miss the check.
21096
21097 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
21098 -- the temporaries generated by routine Remove_Side_Effects by means
21099 -- of validity checks must use the same names. When a range appears
21100 -- in the parent of a generic, the range is processed with checks
21101 -- disabled as part of the generic context and with checks enabled
21102 -- for code generation purposes. This leads to link issues as the
21103 -- generic contains references to xxx_FIRST/_LAST, but the inlined
21104 -- template sees the temporaries generated by Remove_Side_Effects.
21105
21106 else
21107 Validity_Check_Range (R, Subtyp);
21108 end if;
21109
21110 -- If there were errors in the declaration, try and patch up some
21111 -- common mistakes in the bounds. The cases handled are literals
21112 -- which are Integer where the expected type is Real and vice versa.
21113 -- These corrections allow the compilation process to proceed further
21114 -- along since some basic assumptions of the format of the bounds
21115 -- are guaranteed.
21116
21117 if Etype (R) = Any_Type then
21118 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
21119 Rewrite (Lo,
21120 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
21121
21122 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
21123 Rewrite (Hi,
21124 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
21125
21126 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
21127 Rewrite (Lo,
21128 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
21129
21130 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
21131 Rewrite (Hi,
21132 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
21133 end if;
21134
21135 Set_Etype (Lo, T);
21136 Set_Etype (Hi, T);
21137 end if;
21138
21139 -- If the bounds of the range have been mistakenly given as string
21140 -- literals (perhaps in place of character literals), then an error
21141 -- has already been reported, but we rewrite the string literal as a
21142 -- bound of the range's type to avoid blowups in later processing
21143 -- that looks at static values.
21144
21145 if Nkind (Lo) = N_String_Literal then
21146 Rewrite (Lo,
21147 Make_Attribute_Reference (Sloc (Lo),
21148 Prefix => New_Occurrence_Of (T, Sloc (Lo)),
21149 Attribute_Name => Name_First));
21150 Analyze_And_Resolve (Lo);
21151 end if;
21152
21153 if Nkind (Hi) = N_String_Literal then
21154 Rewrite (Hi,
21155 Make_Attribute_Reference (Sloc (Hi),
21156 Prefix => New_Occurrence_Of (T, Sloc (Hi)),
21157 Attribute_Name => Name_First));
21158 Analyze_And_Resolve (Hi);
21159 end if;
21160
21161 -- If bounds aren't scalar at this point then exit, avoiding
21162 -- problems with further processing of the range in this procedure.
21163
21164 if not Is_Scalar_Type (Etype (Lo)) then
21165 return;
21166 end if;
21167
21168 -- Resolve (actually Sem_Eval) has checked that the bounds are in
21169 -- then range of the base type. Here we check whether the bounds
21170 -- are in the range of the subtype itself. Note that if the bounds
21171 -- represent the null range the Constraint_Error exception should
21172 -- not be raised.
21173
21174 -- ??? The following code should be cleaned up as follows
21175
21176 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
21177 -- is done in the call to Range_Check (R, T); below
21178
21179 -- 2. The use of R_Check_Off should be investigated and possibly
21180 -- removed, this would clean up things a bit.
21181
21182 if Is_Null_Range (Lo, Hi) then
21183 null;
21184
21185 else
21186 -- Capture values of bounds and generate temporaries for them
21187 -- if needed, before applying checks, since checks may cause
21188 -- duplication of the expression without forcing evaluation.
21189
21190 -- The forced evaluation removes side effects from expressions,
21191 -- which should occur also in GNATprove mode. Otherwise, we end up
21192 -- with unexpected insertions of actions at places where this is
21193 -- not supposed to occur, e.g. on default parameters of a call.
21194
21195 if Expander_Active or GNATprove_Mode then
21196
21197 -- Call Force_Evaluation to create declarations as needed to
21198 -- deal with side effects, and also create typ_FIRST/LAST
21199 -- entities for bounds if we have a subtype name.
21200
21201 -- Note: we do this transformation even if expansion is not
21202 -- active if we are in GNATprove_Mode since the transformation
21203 -- is in general required to ensure that the resulting tree has
21204 -- proper Ada semantics.
21205
21206 Force_Evaluation
21207 (Lo, Related_Id => Subtyp, Is_Low_Bound => True);
21208 Force_Evaluation
21209 (Hi, Related_Id => Subtyp, Is_High_Bound => True);
21210 end if;
21211
21212 -- We use a flag here instead of suppressing checks on the type
21213 -- because the type we check against isn't necessarily the place
21214 -- where we put the check.
21215
21216 if not R_Check_Off then
21217 R_Checks := Get_Range_Checks (R, T);
21218
21219 -- Look up tree to find an appropriate insertion point. We
21220 -- can't just use insert_actions because later processing
21221 -- depends on the insertion node. Prior to Ada 2012 the
21222 -- insertion point could only be a declaration or a loop, but
21223 -- quantified expressions can appear within any context in an
21224 -- expression, and the insertion point can be any statement,
21225 -- pragma, or declaration.
21226
21227 Insert_Node := Parent (R);
21228 while Present (Insert_Node) loop
21229 exit when
21230 Nkind (Insert_Node) in N_Declaration
21231 and then
21232 not Nkind_In
21233 (Insert_Node, N_Component_Declaration,
21234 N_Loop_Parameter_Specification,
21235 N_Function_Specification,
21236 N_Procedure_Specification);
21237
21238 exit when Nkind (Insert_Node) in N_Later_Decl_Item
21239 or else Nkind (Insert_Node) in
21240 N_Statement_Other_Than_Procedure_Call
21241 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
21242 N_Pragma);
21243
21244 Insert_Node := Parent (Insert_Node);
21245 end loop;
21246
21247 -- Why would Type_Decl not be present??? Without this test,
21248 -- short regression tests fail.
21249
21250 if Present (Insert_Node) then
21251
21252 -- Case of loop statement. Verify that the range is part
21253 -- of the subtype indication of the iteration scheme.
21254
21255 if Nkind (Insert_Node) = N_Loop_Statement then
21256 declare
21257 Indic : Node_Id;
21258
21259 begin
21260 Indic := Parent (R);
21261 while Present (Indic)
21262 and then Nkind (Indic) /= N_Subtype_Indication
21263 loop
21264 Indic := Parent (Indic);
21265 end loop;
21266
21267 if Present (Indic) then
21268 Def_Id := Etype (Subtype_Mark (Indic));
21269
21270 Insert_Range_Checks
21271 (R_Checks,
21272 Insert_Node,
21273 Def_Id,
21274 Sloc (Insert_Node),
21275 R,
21276 Do_Before => True);
21277 end if;
21278 end;
21279
21280 -- Insertion before a declaration. If the declaration
21281 -- includes discriminants, the list of applicable checks
21282 -- is given by the caller.
21283
21284 elsif Nkind (Insert_Node) in N_Declaration then
21285 Def_Id := Defining_Identifier (Insert_Node);
21286
21287 if (Ekind (Def_Id) = E_Record_Type
21288 and then Depends_On_Discriminant (R))
21289 or else
21290 (Ekind (Def_Id) = E_Protected_Type
21291 and then Has_Discriminants (Def_Id))
21292 then
21293 Append_Range_Checks
21294 (R_Checks,
21295 Check_List, Def_Id, Sloc (Insert_Node), R);
21296
21297 else
21298 Insert_Range_Checks
21299 (R_Checks,
21300 Insert_Node, Def_Id, Sloc (Insert_Node), R);
21301
21302 end if;
21303
21304 -- Insertion before a statement. Range appears in the
21305 -- context of a quantified expression. Insertion will
21306 -- take place when expression is expanded.
21307
21308 else
21309 null;
21310 end if;
21311 end if;
21312 end if;
21313 end if;
21314
21315 -- Case of other than an explicit N_Range node
21316
21317 -- The forced evaluation removes side effects from expressions, which
21318 -- should occur also in GNATprove mode. Otherwise, we end up with
21319 -- unexpected insertions of actions at places where this is not
21320 -- supposed to occur, e.g. on default parameters of a call.
21321
21322 elsif Expander_Active or GNATprove_Mode then
21323 Get_Index_Bounds (R, Lo, Hi);
21324 Force_Evaluation (Lo);
21325 Force_Evaluation (Hi);
21326 end if;
21327 end Process_Range_Expr_In_Decl;
21328
21329 --------------------------------------
21330 -- Process_Real_Range_Specification --
21331 --------------------------------------
21332
21333 procedure Process_Real_Range_Specification (Def : Node_Id) is
21334 Spec : constant Node_Id := Real_Range_Specification (Def);
21335 Lo : Node_Id;
21336 Hi : Node_Id;
21337 Err : Boolean := False;
21338
21339 procedure Analyze_Bound (N : Node_Id);
21340 -- Analyze and check one bound
21341
21342 -------------------
21343 -- Analyze_Bound --
21344 -------------------
21345
21346 procedure Analyze_Bound (N : Node_Id) is
21347 begin
21348 Analyze_And_Resolve (N, Any_Real);
21349
21350 if not Is_OK_Static_Expression (N) then
21351 Flag_Non_Static_Expr
21352 ("bound in real type definition is not static!", N);
21353 Err := True;
21354 end if;
21355 end Analyze_Bound;
21356
21357 -- Start of processing for Process_Real_Range_Specification
21358
21359 begin
21360 if Present (Spec) then
21361 Lo := Low_Bound (Spec);
21362 Hi := High_Bound (Spec);
21363 Analyze_Bound (Lo);
21364 Analyze_Bound (Hi);
21365
21366 -- If error, clear away junk range specification
21367
21368 if Err then
21369 Set_Real_Range_Specification (Def, Empty);
21370 end if;
21371 end if;
21372 end Process_Real_Range_Specification;
21373
21374 ---------------------
21375 -- Process_Subtype --
21376 ---------------------
21377
21378 function Process_Subtype
21379 (S : Node_Id;
21380 Related_Nod : Node_Id;
21381 Related_Id : Entity_Id := Empty;
21382 Suffix : Character := ' ') return Entity_Id
21383 is
21384 P : Node_Id;
21385 Def_Id : Entity_Id;
21386 Error_Node : Node_Id;
21387 Full_View_Id : Entity_Id;
21388 Subtype_Mark_Id : Entity_Id;
21389
21390 May_Have_Null_Exclusion : Boolean;
21391
21392 procedure Check_Incomplete (T : Node_Id);
21393 -- Called to verify that an incomplete type is not used prematurely
21394
21395 ----------------------
21396 -- Check_Incomplete --
21397 ----------------------
21398
21399 procedure Check_Incomplete (T : Node_Id) is
21400 begin
21401 -- Ada 2005 (AI-412): Incomplete subtypes are legal
21402
21403 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
21404 and then
21405 not (Ada_Version >= Ada_2005
21406 and then
21407 (Nkind (Parent (T)) = N_Subtype_Declaration
21408 or else (Nkind (Parent (T)) = N_Subtype_Indication
21409 and then Nkind (Parent (Parent (T))) =
21410 N_Subtype_Declaration)))
21411 then
21412 Error_Msg_N ("invalid use of type before its full declaration", T);
21413 end if;
21414 end Check_Incomplete;
21415
21416 -- Start of processing for Process_Subtype
21417
21418 begin
21419 -- Case of no constraints present
21420
21421 if Nkind (S) /= N_Subtype_Indication then
21422 Find_Type (S);
21423
21424 -- No way to proceed if the subtype indication is malformed. This
21425 -- will happen for example when the subtype indication in an object
21426 -- declaration is missing altogether and the expression is analyzed
21427 -- as if it were that indication.
21428
21429 if not Is_Entity_Name (S) then
21430 return Any_Type;
21431 end if;
21432
21433 Check_Incomplete (S);
21434 P := Parent (S);
21435
21436 -- Ada 2005 (AI-231): Static check
21437
21438 if Ada_Version >= Ada_2005
21439 and then Present (P)
21440 and then Null_Exclusion_Present (P)
21441 and then Nkind (P) /= N_Access_To_Object_Definition
21442 and then not Is_Access_Type (Entity (S))
21443 then
21444 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
21445 end if;
21446
21447 -- The following is ugly, can't we have a range or even a flag???
21448
21449 May_Have_Null_Exclusion :=
21450 Nkind_In (P, N_Access_Definition,
21451 N_Access_Function_Definition,
21452 N_Access_Procedure_Definition,
21453 N_Access_To_Object_Definition,
21454 N_Allocator,
21455 N_Component_Definition)
21456 or else
21457 Nkind_In (P, N_Derived_Type_Definition,
21458 N_Discriminant_Specification,
21459 N_Formal_Object_Declaration,
21460 N_Object_Declaration,
21461 N_Object_Renaming_Declaration,
21462 N_Parameter_Specification,
21463 N_Subtype_Declaration);
21464
21465 -- Create an Itype that is a duplicate of Entity (S) but with the
21466 -- null-exclusion attribute.
21467
21468 if May_Have_Null_Exclusion
21469 and then Is_Access_Type (Entity (S))
21470 and then Null_Exclusion_Present (P)
21471
21472 -- No need to check the case of an access to object definition.
21473 -- It is correct to define double not-null pointers.
21474
21475 -- Example:
21476 -- type Not_Null_Int_Ptr is not null access Integer;
21477 -- type Acc is not null access Not_Null_Int_Ptr;
21478
21479 and then Nkind (P) /= N_Access_To_Object_Definition
21480 then
21481 if Can_Never_Be_Null (Entity (S)) then
21482 case Nkind (Related_Nod) is
21483 when N_Full_Type_Declaration =>
21484 if Nkind (Type_Definition (Related_Nod))
21485 in N_Array_Type_Definition
21486 then
21487 Error_Node :=
21488 Subtype_Indication
21489 (Component_Definition
21490 (Type_Definition (Related_Nod)));
21491 else
21492 Error_Node :=
21493 Subtype_Indication (Type_Definition (Related_Nod));
21494 end if;
21495
21496 when N_Subtype_Declaration =>
21497 Error_Node := Subtype_Indication (Related_Nod);
21498
21499 when N_Object_Declaration =>
21500 Error_Node := Object_Definition (Related_Nod);
21501
21502 when N_Component_Declaration =>
21503 Error_Node :=
21504 Subtype_Indication (Component_Definition (Related_Nod));
21505
21506 when N_Allocator =>
21507 Error_Node := Expression (Related_Nod);
21508
21509 when others =>
21510 pragma Assert (False);
21511 Error_Node := Related_Nod;
21512 end case;
21513
21514 Error_Msg_NE
21515 ("`NOT NULL` not allowed (& already excludes null)",
21516 Error_Node,
21517 Entity (S));
21518 end if;
21519
21520 Set_Etype (S,
21521 Create_Null_Excluding_Itype
21522 (T => Entity (S),
21523 Related_Nod => P));
21524 Set_Entity (S, Etype (S));
21525 end if;
21526
21527 return Entity (S);
21528
21529 -- Case of constraint present, so that we have an N_Subtype_Indication
21530 -- node (this node is created only if constraints are present).
21531
21532 else
21533 Find_Type (Subtype_Mark (S));
21534
21535 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
21536 and then not
21537 (Nkind (Parent (S)) = N_Subtype_Declaration
21538 and then Is_Itype (Defining_Identifier (Parent (S))))
21539 then
21540 Check_Incomplete (Subtype_Mark (S));
21541 end if;
21542
21543 P := Parent (S);
21544 Subtype_Mark_Id := Entity (Subtype_Mark (S));
21545
21546 -- Explicit subtype declaration case
21547
21548 if Nkind (P) = N_Subtype_Declaration then
21549 Def_Id := Defining_Identifier (P);
21550
21551 -- Explicit derived type definition case
21552
21553 elsif Nkind (P) = N_Derived_Type_Definition then
21554 Def_Id := Defining_Identifier (Parent (P));
21555
21556 -- Implicit case, the Def_Id must be created as an implicit type.
21557 -- The one exception arises in the case of concurrent types, array
21558 -- and access types, where other subsidiary implicit types may be
21559 -- created and must appear before the main implicit type. In these
21560 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
21561 -- has not yet been called to create Def_Id.
21562
21563 else
21564 if Is_Array_Type (Subtype_Mark_Id)
21565 or else Is_Concurrent_Type (Subtype_Mark_Id)
21566 or else Is_Access_Type (Subtype_Mark_Id)
21567 then
21568 Def_Id := Empty;
21569
21570 -- For the other cases, we create a new unattached Itype,
21571 -- and set the indication to ensure it gets attached later.
21572
21573 else
21574 Def_Id :=
21575 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
21576 end if;
21577 end if;
21578
21579 -- If the kind of constraint is invalid for this kind of type,
21580 -- then give an error, and then pretend no constraint was given.
21581
21582 if not Is_Valid_Constraint_Kind
21583 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
21584 then
21585 Error_Msg_N
21586 ("incorrect constraint for this kind of type", Constraint (S));
21587
21588 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
21589
21590 -- Set Ekind of orphan itype, to prevent cascaded errors
21591
21592 if Present (Def_Id) then
21593 Set_Ekind (Def_Id, Ekind (Any_Type));
21594 end if;
21595
21596 -- Make recursive call, having got rid of the bogus constraint
21597
21598 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
21599 end if;
21600
21601 -- Remaining processing depends on type. Select on Base_Type kind to
21602 -- ensure getting to the concrete type kind in the case of a private
21603 -- subtype (needed when only doing semantic analysis).
21604
21605 case Ekind (Base_Type (Subtype_Mark_Id)) is
21606 when Access_Kind =>
21607
21608 -- If this is a constraint on a class-wide type, discard it.
21609 -- There is currently no way to express a partial discriminant
21610 -- constraint on a type with unknown discriminants. This is
21611 -- a pathology that the ACATS wisely decides not to test.
21612
21613 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
21614 if Comes_From_Source (S) then
21615 Error_Msg_N
21616 ("constraint on class-wide type ignored??",
21617 Constraint (S));
21618 end if;
21619
21620 if Nkind (P) = N_Subtype_Declaration then
21621 Set_Subtype_Indication (P,
21622 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
21623 end if;
21624
21625 return Subtype_Mark_Id;
21626 end if;
21627
21628 Constrain_Access (Def_Id, S, Related_Nod);
21629
21630 if Expander_Active
21631 and then Is_Itype (Designated_Type (Def_Id))
21632 and then Nkind (Related_Nod) = N_Subtype_Declaration
21633 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
21634 then
21635 Build_Itype_Reference
21636 (Designated_Type (Def_Id), Related_Nod);
21637 end if;
21638
21639 when Array_Kind =>
21640 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
21641
21642 when Decimal_Fixed_Point_Kind =>
21643 Constrain_Decimal (Def_Id, S);
21644
21645 when Enumeration_Kind =>
21646 Constrain_Enumeration (Def_Id, S);
21647
21648 when Ordinary_Fixed_Point_Kind =>
21649 Constrain_Ordinary_Fixed (Def_Id, S);
21650
21651 when Float_Kind =>
21652 Constrain_Float (Def_Id, S);
21653
21654 when Integer_Kind =>
21655 Constrain_Integer (Def_Id, S);
21656
21657 when Class_Wide_Kind
21658 | E_Incomplete_Type
21659 | E_Record_Subtype
21660 | E_Record_Type
21661 =>
21662 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
21663
21664 if Ekind (Def_Id) = E_Incomplete_Type then
21665 Set_Private_Dependents (Def_Id, New_Elmt_List);
21666 end if;
21667
21668 when Private_Kind =>
21669
21670 -- A private type with unknown discriminants may be completed
21671 -- by an unconstrained array type.
21672
21673 if Has_Unknown_Discriminants (Subtype_Mark_Id)
21674 and then Present (Full_View (Subtype_Mark_Id))
21675 and then Is_Array_Type (Full_View (Subtype_Mark_Id))
21676 then
21677 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
21678
21679 -- ... but more comonly by a discriminated record type.
21680
21681 else
21682 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
21683 end if;
21684
21685 -- The base type may be private but Def_Id may be a full view
21686 -- in an instance.
21687
21688 if Is_Private_Type (Def_Id) then
21689 Set_Private_Dependents (Def_Id, New_Elmt_List);
21690 end if;
21691
21692 -- In case of an invalid constraint prevent further processing
21693 -- since the type constructed is missing expected fields.
21694
21695 if Etype (Def_Id) = Any_Type then
21696 return Def_Id;
21697 end if;
21698
21699 -- If the full view is that of a task with discriminants,
21700 -- we must constrain both the concurrent type and its
21701 -- corresponding record type. Otherwise we will just propagate
21702 -- the constraint to the full view, if available.
21703
21704 if Present (Full_View (Subtype_Mark_Id))
21705 and then Has_Discriminants (Subtype_Mark_Id)
21706 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
21707 then
21708 Full_View_Id :=
21709 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
21710
21711 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
21712 Constrain_Concurrent (Full_View_Id, S,
21713 Related_Nod, Related_Id, Suffix);
21714 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
21715 Set_Full_View (Def_Id, Full_View_Id);
21716
21717 -- Introduce an explicit reference to the private subtype,
21718 -- to prevent scope anomalies in gigi if first use appears
21719 -- in a nested context, e.g. a later function body.
21720 -- Should this be generated in other contexts than a full
21721 -- type declaration?
21722
21723 if Is_Itype (Def_Id)
21724 and then
21725 Nkind (Parent (P)) = N_Full_Type_Declaration
21726 then
21727 Build_Itype_Reference (Def_Id, Parent (P));
21728 end if;
21729
21730 else
21731 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
21732 end if;
21733
21734 when Concurrent_Kind =>
21735 Constrain_Concurrent (Def_Id, S,
21736 Related_Nod, Related_Id, Suffix);
21737
21738 when others =>
21739 Error_Msg_N ("invalid subtype mark in subtype indication", S);
21740 end case;
21741
21742 -- Size, Alignment, Representation aspects and Convention are always
21743 -- inherited from the base type.
21744
21745 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
21746 Set_Rep_Info (Def_Id, (Subtype_Mark_Id));
21747 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
21748
21749 -- The anonymous subtype created for the subtype indication
21750 -- inherits the predicates of the parent.
21751
21752 if Has_Predicates (Subtype_Mark_Id) then
21753 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
21754
21755 -- Indicate where the predicate function may be found.
21756
21757 if No (Predicate_Function (Def_Id)) then
21758 Set_Predicated_Parent (Def_Id, Subtype_Mark_Id);
21759 end if;
21760 end if;
21761
21762 return Def_Id;
21763 end if;
21764 end Process_Subtype;
21765
21766 -----------------------------
21767 -- Record_Type_Declaration --
21768 -----------------------------
21769
21770 procedure Record_Type_Declaration
21771 (T : Entity_Id;
21772 N : Node_Id;
21773 Prev : Entity_Id)
21774 is
21775 Def : constant Node_Id := Type_Definition (N);
21776 Is_Tagged : Boolean;
21777 Tag_Comp : Entity_Id;
21778
21779 begin
21780 -- These flags must be initialized before calling Process_Discriminants
21781 -- because this routine makes use of them.
21782
21783 Set_Ekind (T, E_Record_Type);
21784 Set_Etype (T, T);
21785 Init_Size_Align (T);
21786 Set_Interfaces (T, No_Elist);
21787 Set_Stored_Constraint (T, No_Elist);
21788 Set_Default_SSO (T);
21789 Set_No_Reordering (T, No_Component_Reordering);
21790
21791 -- Normal case
21792
21793 if Ada_Version < Ada_2005 or else not Interface_Present (Def) then
21794 if Limited_Present (Def) then
21795 Check_SPARK_05_Restriction ("limited is not allowed", N);
21796 end if;
21797
21798 if Abstract_Present (Def) then
21799 Check_SPARK_05_Restriction ("abstract is not allowed", N);
21800 end if;
21801
21802 -- The flag Is_Tagged_Type might have already been set by
21803 -- Find_Type_Name if it detected an error for declaration T. This
21804 -- arises in the case of private tagged types where the full view
21805 -- omits the word tagged.
21806
21807 Is_Tagged :=
21808 Tagged_Present (Def)
21809 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
21810
21811 Set_Is_Limited_Record (T, Limited_Present (Def));
21812
21813 if Is_Tagged then
21814 Set_Is_Tagged_Type (T, True);
21815 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
21816 end if;
21817
21818 -- Type is abstract if full declaration carries keyword, or if
21819 -- previous partial view did.
21820
21821 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
21822 or else Abstract_Present (Def));
21823
21824 else
21825 Check_SPARK_05_Restriction ("interface is not allowed", N);
21826
21827 Is_Tagged := True;
21828 Analyze_Interface_Declaration (T, Def);
21829
21830 if Present (Discriminant_Specifications (N)) then
21831 Error_Msg_N
21832 ("interface types cannot have discriminants",
21833 Defining_Identifier
21834 (First (Discriminant_Specifications (N))));
21835 end if;
21836 end if;
21837
21838 -- First pass: if there are self-referential access components,
21839 -- create the required anonymous access type declarations, and if
21840 -- need be an incomplete type declaration for T itself.
21841
21842 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
21843
21844 if Ada_Version >= Ada_2005
21845 and then Present (Interface_List (Def))
21846 then
21847 Check_Interfaces (N, Def);
21848
21849 declare
21850 Ifaces_List : Elist_Id;
21851
21852 begin
21853 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
21854 -- already in the parents.
21855
21856 Collect_Interfaces
21857 (T => T,
21858 Ifaces_List => Ifaces_List,
21859 Exclude_Parents => True);
21860
21861 Set_Interfaces (T, Ifaces_List);
21862 end;
21863 end if;
21864
21865 -- Records constitute a scope for the component declarations within.
21866 -- The scope is created prior to the processing of these declarations.
21867 -- Discriminants are processed first, so that they are visible when
21868 -- processing the other components. The Ekind of the record type itself
21869 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
21870
21871 -- Enter record scope
21872
21873 Push_Scope (T);
21874
21875 -- If an incomplete or private type declaration was already given for
21876 -- the type, then this scope already exists, and the discriminants have
21877 -- been declared within. We must verify that the full declaration
21878 -- matches the incomplete one.
21879
21880 Check_Or_Process_Discriminants (N, T, Prev);
21881
21882 Set_Is_Constrained (T, not Has_Discriminants (T));
21883 Set_Has_Delayed_Freeze (T, True);
21884
21885 -- For tagged types add a manually analyzed component corresponding
21886 -- to the component _tag, the corresponding piece of tree will be
21887 -- expanded as part of the freezing actions if it is not a CPP_Class.
21888
21889 if Is_Tagged then
21890
21891 -- Do not add the tag unless we are in expansion mode
21892
21893 if Expander_Active then
21894 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
21895 Enter_Name (Tag_Comp);
21896
21897 Set_Ekind (Tag_Comp, E_Component);
21898 Set_Is_Tag (Tag_Comp);
21899 Set_Is_Aliased (Tag_Comp);
21900 Set_Etype (Tag_Comp, RTE (RE_Tag));
21901 Set_DT_Entry_Count (Tag_Comp, No_Uint);
21902 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
21903 Init_Component_Location (Tag_Comp);
21904
21905 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
21906 -- implemented interfaces.
21907
21908 if Has_Interfaces (T) then
21909 Add_Interface_Tag_Components (N, T);
21910 end if;
21911 end if;
21912
21913 Make_Class_Wide_Type (T);
21914 Set_Direct_Primitive_Operations (T, New_Elmt_List);
21915 end if;
21916
21917 -- We must suppress range checks when processing record components in
21918 -- the presence of discriminants, since we don't want spurious checks to
21919 -- be generated during their analysis, but Suppress_Range_Checks flags
21920 -- must be reset the after processing the record definition.
21921
21922 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
21923 -- couldn't we just use the normal range check suppression method here.
21924 -- That would seem cleaner ???
21925
21926 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
21927 Set_Kill_Range_Checks (T, True);
21928 Record_Type_Definition (Def, Prev);
21929 Set_Kill_Range_Checks (T, False);
21930 else
21931 Record_Type_Definition (Def, Prev);
21932 end if;
21933
21934 -- Exit from record scope
21935
21936 End_Scope;
21937
21938 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
21939 -- the implemented interfaces and associate them an aliased entity.
21940
21941 if Is_Tagged
21942 and then not Is_Empty_List (Interface_List (Def))
21943 then
21944 Derive_Progenitor_Subprograms (T, T);
21945 end if;
21946
21947 Check_Function_Writable_Actuals (N);
21948 end Record_Type_Declaration;
21949
21950 ----------------------------
21951 -- Record_Type_Definition --
21952 ----------------------------
21953
21954 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
21955 Component : Entity_Id;
21956 Ctrl_Components : Boolean := False;
21957 Final_Storage_Only : Boolean;
21958 T : Entity_Id;
21959
21960 begin
21961 if Ekind (Prev_T) = E_Incomplete_Type then
21962 T := Full_View (Prev_T);
21963 else
21964 T := Prev_T;
21965 end if;
21966
21967 -- In SPARK, tagged types and type extensions may only be declared in
21968 -- the specification of library unit packages.
21969
21970 if Present (Def) and then Is_Tagged_Type (T) then
21971 declare
21972 Typ : Node_Id;
21973 Ctxt : Node_Id;
21974
21975 begin
21976 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
21977 Typ := Parent (Def);
21978 else
21979 pragma Assert
21980 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
21981 Typ := Parent (Parent (Def));
21982 end if;
21983
21984 Ctxt := Parent (Typ);
21985
21986 if Nkind (Ctxt) = N_Package_Body
21987 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
21988 then
21989 Check_SPARK_05_Restriction
21990 ("type should be defined in package specification", Typ);
21991
21992 elsif Nkind (Ctxt) /= N_Package_Specification
21993 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
21994 then
21995 Check_SPARK_05_Restriction
21996 ("type should be defined in library unit package", Typ);
21997 end if;
21998 end;
21999 end if;
22000
22001 Final_Storage_Only := not Is_Controlled (T);
22002
22003 -- Ada 2005: Check whether an explicit Limited is present in a derived
22004 -- type declaration.
22005
22006 if Nkind (Parent (Def)) = N_Derived_Type_Definition
22007 and then Limited_Present (Parent (Def))
22008 then
22009 Set_Is_Limited_Record (T);
22010 end if;
22011
22012 -- If the component list of a record type is defined by the reserved
22013 -- word null and there is no discriminant part, then the record type has
22014 -- no components and all records of the type are null records (RM 3.7)
22015 -- This procedure is also called to process the extension part of a
22016 -- record extension, in which case the current scope may have inherited
22017 -- components.
22018
22019 if No (Def)
22020 or else No (Component_List (Def))
22021 or else Null_Present (Component_List (Def))
22022 then
22023 if not Is_Tagged_Type (T) then
22024 Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
22025 end if;
22026
22027 else
22028 Analyze_Declarations (Component_Items (Component_List (Def)));
22029
22030 if Present (Variant_Part (Component_List (Def))) then
22031 Check_SPARK_05_Restriction ("variant part is not allowed", Def);
22032 Analyze (Variant_Part (Component_List (Def)));
22033 end if;
22034 end if;
22035
22036 -- After completing the semantic analysis of the record definition,
22037 -- record components, both new and inherited, are accessible. Set their
22038 -- kind accordingly. Exclude malformed itypes from illegal declarations,
22039 -- whose Ekind may be void.
22040
22041 Component := First_Entity (Current_Scope);
22042 while Present (Component) loop
22043 if Ekind (Component) = E_Void
22044 and then not Is_Itype (Component)
22045 then
22046 Set_Ekind (Component, E_Component);
22047 Init_Component_Location (Component);
22048 end if;
22049
22050 Propagate_Concurrent_Flags (T, Etype (Component));
22051
22052 if Ekind (Component) /= E_Component then
22053 null;
22054
22055 -- Do not set Has_Controlled_Component on a class-wide equivalent
22056 -- type. See Make_CW_Equivalent_Type.
22057
22058 elsif not Is_Class_Wide_Equivalent_Type (T)
22059 and then (Has_Controlled_Component (Etype (Component))
22060 or else (Chars (Component) /= Name_uParent
22061 and then Is_Controlled (Etype (Component))))
22062 then
22063 Set_Has_Controlled_Component (T, True);
22064 Final_Storage_Only :=
22065 Final_Storage_Only
22066 and then Finalize_Storage_Only (Etype (Component));
22067 Ctrl_Components := True;
22068 end if;
22069
22070 Next_Entity (Component);
22071 end loop;
22072
22073 -- A Type is Finalize_Storage_Only only if all its controlled components
22074 -- are also.
22075
22076 if Ctrl_Components then
22077 Set_Finalize_Storage_Only (T, Final_Storage_Only);
22078 end if;
22079
22080 -- Place reference to end record on the proper entity, which may
22081 -- be a partial view.
22082
22083 if Present (Def) then
22084 Process_End_Label (Def, 'e', Prev_T);
22085 end if;
22086 end Record_Type_Definition;
22087
22088 ------------------------
22089 -- Replace_Components --
22090 ------------------------
22091
22092 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
22093 function Process (N : Node_Id) return Traverse_Result;
22094
22095 -------------
22096 -- Process --
22097 -------------
22098
22099 function Process (N : Node_Id) return Traverse_Result is
22100 Comp : Entity_Id;
22101
22102 begin
22103 if Nkind (N) = N_Discriminant_Specification then
22104 Comp := First_Discriminant (Typ);
22105 while Present (Comp) loop
22106 if Chars (Comp) = Chars (Defining_Identifier (N)) then
22107 Set_Defining_Identifier (N, Comp);
22108 exit;
22109 end if;
22110
22111 Next_Discriminant (Comp);
22112 end loop;
22113
22114 elsif Nkind (N) = N_Variant_Part then
22115 Comp := First_Discriminant (Typ);
22116 while Present (Comp) loop
22117 if Chars (Comp) = Chars (Name (N)) then
22118 Set_Entity (Name (N), Comp);
22119 exit;
22120 end if;
22121
22122 Next_Discriminant (Comp);
22123 end loop;
22124
22125 elsif Nkind (N) = N_Component_Declaration then
22126 Comp := First_Component (Typ);
22127 while Present (Comp) loop
22128 if Chars (Comp) = Chars (Defining_Identifier (N)) then
22129 Set_Defining_Identifier (N, Comp);
22130 exit;
22131 end if;
22132
22133 Next_Component (Comp);
22134 end loop;
22135 end if;
22136
22137 return OK;
22138 end Process;
22139
22140 procedure Replace is new Traverse_Proc (Process);
22141
22142 -- Start of processing for Replace_Components
22143
22144 begin
22145 Replace (Decl);
22146 end Replace_Components;
22147
22148 -------------------------------
22149 -- Set_Completion_Referenced --
22150 -------------------------------
22151
22152 procedure Set_Completion_Referenced (E : Entity_Id) is
22153 begin
22154 -- If in main unit, mark entity that is a completion as referenced,
22155 -- warnings go on the partial view when needed.
22156
22157 if In_Extended_Main_Source_Unit (E) then
22158 Set_Referenced (E);
22159 end if;
22160 end Set_Completion_Referenced;
22161
22162 ---------------------
22163 -- Set_Default_SSO --
22164 ---------------------
22165
22166 procedure Set_Default_SSO (T : Entity_Id) is
22167 begin
22168 case Opt.Default_SSO is
22169 when ' ' =>
22170 null;
22171 when 'L' =>
22172 Set_SSO_Set_Low_By_Default (T, True);
22173 when 'H' =>
22174 Set_SSO_Set_High_By_Default (T, True);
22175 when others =>
22176 raise Program_Error;
22177 end case;
22178 end Set_Default_SSO;
22179
22180 ---------------------
22181 -- Set_Fixed_Range --
22182 ---------------------
22183
22184 -- The range for fixed-point types is complicated by the fact that we
22185 -- do not know the exact end points at the time of the declaration. This
22186 -- is true for three reasons:
22187
22188 -- A size clause may affect the fudging of the end-points.
22189 -- A small clause may affect the values of the end-points.
22190 -- We try to include the end-points if it does not affect the size.
22191
22192 -- This means that the actual end-points must be established at the
22193 -- point when the type is frozen. Meanwhile, we first narrow the range
22194 -- as permitted (so that it will fit if necessary in a small specified
22195 -- size), and then build a range subtree with these narrowed bounds.
22196 -- Set_Fixed_Range constructs the range from real literal values, and
22197 -- sets the range as the Scalar_Range of the given fixed-point type entity.
22198
22199 -- The parent of this range is set to point to the entity so that it is
22200 -- properly hooked into the tree (unlike normal Scalar_Range entries for
22201 -- other scalar types, which are just pointers to the range in the
22202 -- original tree, this would otherwise be an orphan).
22203
22204 -- The tree is left unanalyzed. When the type is frozen, the processing
22205 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
22206 -- analyzed, and uses this as an indication that it should complete
22207 -- work on the range (it will know the final small and size values).
22208
22209 procedure Set_Fixed_Range
22210 (E : Entity_Id;
22211 Loc : Source_Ptr;
22212 Lo : Ureal;
22213 Hi : Ureal)
22214 is
22215 S : constant Node_Id :=
22216 Make_Range (Loc,
22217 Low_Bound => Make_Real_Literal (Loc, Lo),
22218 High_Bound => Make_Real_Literal (Loc, Hi));
22219 begin
22220 Set_Scalar_Range (E, S);
22221 Set_Parent (S, E);
22222
22223 -- Before the freeze point, the bounds of a fixed point are universal
22224 -- and carry the corresponding type.
22225
22226 Set_Etype (Low_Bound (S), Universal_Real);
22227 Set_Etype (High_Bound (S), Universal_Real);
22228 end Set_Fixed_Range;
22229
22230 ----------------------------------
22231 -- Set_Scalar_Range_For_Subtype --
22232 ----------------------------------
22233
22234 procedure Set_Scalar_Range_For_Subtype
22235 (Def_Id : Entity_Id;
22236 R : Node_Id;
22237 Subt : Entity_Id)
22238 is
22239 Kind : constant Entity_Kind := Ekind (Def_Id);
22240
22241 begin
22242 -- Defend against previous error
22243
22244 if Nkind (R) = N_Error then
22245 return;
22246 end if;
22247
22248 Set_Scalar_Range (Def_Id, R);
22249
22250 -- We need to link the range into the tree before resolving it so
22251 -- that types that are referenced, including importantly the subtype
22252 -- itself, are properly frozen (Freeze_Expression requires that the
22253 -- expression be properly linked into the tree). Of course if it is
22254 -- already linked in, then we do not disturb the current link.
22255
22256 if No (Parent (R)) then
22257 Set_Parent (R, Def_Id);
22258 end if;
22259
22260 -- Reset the kind of the subtype during analysis of the range, to
22261 -- catch possible premature use in the bounds themselves.
22262
22263 Set_Ekind (Def_Id, E_Void);
22264 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
22265 Set_Ekind (Def_Id, Kind);
22266 end Set_Scalar_Range_For_Subtype;
22267
22268 --------------------------------------------------------
22269 -- Set_Stored_Constraint_From_Discriminant_Constraint --
22270 --------------------------------------------------------
22271
22272 procedure Set_Stored_Constraint_From_Discriminant_Constraint
22273 (E : Entity_Id)
22274 is
22275 begin
22276 -- Make sure set if encountered during Expand_To_Stored_Constraint
22277
22278 Set_Stored_Constraint (E, No_Elist);
22279
22280 -- Give it the right value
22281
22282 if Is_Constrained (E) and then Has_Discriminants (E) then
22283 Set_Stored_Constraint (E,
22284 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
22285 end if;
22286 end Set_Stored_Constraint_From_Discriminant_Constraint;
22287
22288 -------------------------------------
22289 -- Signed_Integer_Type_Declaration --
22290 -------------------------------------
22291
22292 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
22293 Implicit_Base : Entity_Id;
22294 Base_Typ : Entity_Id;
22295 Lo_Val : Uint;
22296 Hi_Val : Uint;
22297 Errs : Boolean := False;
22298 Lo : Node_Id;
22299 Hi : Node_Id;
22300
22301 function Can_Derive_From (E : Entity_Id) return Boolean;
22302 -- Determine whether given bounds allow derivation from specified type
22303
22304 procedure Check_Bound (Expr : Node_Id);
22305 -- Check bound to make sure it is integral and static. If not, post
22306 -- appropriate error message and set Errs flag
22307
22308 ---------------------
22309 -- Can_Derive_From --
22310 ---------------------
22311
22312 -- Note we check both bounds against both end values, to deal with
22313 -- strange types like ones with a range of 0 .. -12341234.
22314
22315 function Can_Derive_From (E : Entity_Id) return Boolean is
22316 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
22317 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
22318 begin
22319 return Lo <= Lo_Val and then Lo_Val <= Hi
22320 and then
22321 Lo <= Hi_Val and then Hi_Val <= Hi;
22322 end Can_Derive_From;
22323
22324 -----------------
22325 -- Check_Bound --
22326 -----------------
22327
22328 procedure Check_Bound (Expr : Node_Id) is
22329 begin
22330 -- If a range constraint is used as an integer type definition, each
22331 -- bound of the range must be defined by a static expression of some
22332 -- integer type, but the two bounds need not have the same integer
22333 -- type (Negative bounds are allowed.) (RM 3.5.4)
22334
22335 if not Is_Integer_Type (Etype (Expr)) then
22336 Error_Msg_N
22337 ("integer type definition bounds must be of integer type", Expr);
22338 Errs := True;
22339
22340 elsif not Is_OK_Static_Expression (Expr) then
22341 Flag_Non_Static_Expr
22342 ("non-static expression used for integer type bound!", Expr);
22343 Errs := True;
22344
22345 -- The bounds are folded into literals, and we set their type to be
22346 -- universal, to avoid typing difficulties: we cannot set the type
22347 -- of the literal to the new type, because this would be a forward
22348 -- reference for the back end, and if the original type is user-
22349 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
22350
22351 else
22352 if Is_Entity_Name (Expr) then
22353 Fold_Uint (Expr, Expr_Value (Expr), True);
22354 end if;
22355
22356 Set_Etype (Expr, Universal_Integer);
22357 end if;
22358 end Check_Bound;
22359
22360 -- Start of processing for Signed_Integer_Type_Declaration
22361
22362 begin
22363 -- Create an anonymous base type
22364
22365 Implicit_Base :=
22366 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
22367
22368 -- Analyze and check the bounds, they can be of any integer type
22369
22370 Lo := Low_Bound (Def);
22371 Hi := High_Bound (Def);
22372
22373 -- Arbitrarily use Integer as the type if either bound had an error
22374
22375 if Hi = Error or else Lo = Error then
22376 Base_Typ := Any_Integer;
22377 Set_Error_Posted (T, True);
22378
22379 -- Here both bounds are OK expressions
22380
22381 else
22382 Analyze_And_Resolve (Lo, Any_Integer);
22383 Analyze_And_Resolve (Hi, Any_Integer);
22384
22385 Check_Bound (Lo);
22386 Check_Bound (Hi);
22387
22388 if Errs then
22389 Hi := Type_High_Bound (Standard_Long_Long_Integer);
22390 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
22391 end if;
22392
22393 -- Find type to derive from
22394
22395 Lo_Val := Expr_Value (Lo);
22396 Hi_Val := Expr_Value (Hi);
22397
22398 if Can_Derive_From (Standard_Short_Short_Integer) then
22399 Base_Typ := Base_Type (Standard_Short_Short_Integer);
22400
22401 elsif Can_Derive_From (Standard_Short_Integer) then
22402 Base_Typ := Base_Type (Standard_Short_Integer);
22403
22404 elsif Can_Derive_From (Standard_Integer) then
22405 Base_Typ := Base_Type (Standard_Integer);
22406
22407 elsif Can_Derive_From (Standard_Long_Integer) then
22408 Base_Typ := Base_Type (Standard_Long_Integer);
22409
22410 elsif Can_Derive_From (Standard_Long_Long_Integer) then
22411 Check_Restriction (No_Long_Long_Integers, Def);
22412 Base_Typ := Base_Type (Standard_Long_Long_Integer);
22413
22414 else
22415 Base_Typ := Base_Type (Standard_Long_Long_Integer);
22416 Error_Msg_N ("integer type definition bounds out of range", Def);
22417 Hi := Type_High_Bound (Standard_Long_Long_Integer);
22418 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
22419 end if;
22420 end if;
22421
22422 -- Complete both implicit base and declared first subtype entities. The
22423 -- inheritance of the rep item chain ensures that SPARK-related pragmas
22424 -- are not clobbered when the signed integer type acts as a full view of
22425 -- a private type.
22426
22427 Set_Etype (Implicit_Base, Base_Typ);
22428 Set_Size_Info (Implicit_Base, Base_Typ);
22429 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
22430 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
22431 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
22432
22433 Set_Ekind (T, E_Signed_Integer_Subtype);
22434 Set_Etype (T, Implicit_Base);
22435 Set_Size_Info (T, Implicit_Base);
22436 Inherit_Rep_Item_Chain (T, Implicit_Base);
22437 Set_Scalar_Range (T, Def);
22438 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
22439 Set_Is_Constrained (T);
22440 end Signed_Integer_Type_Declaration;
22441
22442 end Sem_Ch3;