[multiple changes]
[gcc.git] / gcc / ada / sem_ch4.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 4 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Exp_Util; use Exp_Util;
33 with Fname; use Fname;
34 with Itypes; use Itypes;
35 with Lib; use Lib;
36 with Lib.Xref; use Lib.Xref;
37 with Namet; use Namet;
38 with Namet.Sp; use Namet.Sp;
39 with Nlists; use Nlists;
40 with Nmake; use Nmake;
41 with Opt; use Opt;
42 with Output; use Output;
43 with Restrict; use Restrict;
44 with Rident; use Rident;
45 with Sem; use Sem;
46 with Sem_Aux; use Sem_Aux;
47 with Sem_Case; use Sem_Case;
48 with Sem_Cat; use Sem_Cat;
49 with Sem_Ch3; use Sem_Ch3;
50 with Sem_Ch6; use Sem_Ch6;
51 with Sem_Ch8; use Sem_Ch8;
52 with Sem_Dim; use Sem_Dim;
53 with Sem_Disp; use Sem_Disp;
54 with Sem_Dist; use Sem_Dist;
55 with Sem_Eval; use Sem_Eval;
56 with Sem_Res; use Sem_Res;
57 with Sem_Type; use Sem_Type;
58 with Sem_Util; use Sem_Util;
59 with Sem_Warn; use Sem_Warn;
60 with Stand; use Stand;
61 with Sinfo; use Sinfo;
62 with Snames; use Snames;
63 with Tbuild; use Tbuild;
64 with Uintp; use Uintp;
65
66 package body Sem_Ch4 is
67
68 -----------------------
69 -- Local Subprograms --
70 -----------------------
71
72 procedure Analyze_Concatenation_Rest (N : Node_Id);
73 -- Does the "rest" of the work of Analyze_Concatenation, after the left
74 -- operand has been analyzed. See Analyze_Concatenation for details.
75
76 procedure Analyze_Expression (N : Node_Id);
77 -- For expressions that are not names, this is just a call to analyze.
78 -- If the expression is a name, it may be a call to a parameterless
79 -- function, and if so must be converted into an explicit call node
80 -- and analyzed as such. This deproceduring must be done during the first
81 -- pass of overload resolution, because otherwise a procedure call with
82 -- overloaded actuals may fail to resolve.
83
84 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id);
85 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call
86 -- is an operator name or an expanded name whose selector is an operator
87 -- name, and one possible interpretation is as a predefined operator.
88
89 procedure Analyze_Overloaded_Selected_Component (N : Node_Id);
90 -- If the prefix of a selected_component is overloaded, the proper
91 -- interpretation that yields a record type with the proper selector
92 -- name must be selected.
93
94 procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id);
95 -- Procedure to analyze a user defined binary operator, which is resolved
96 -- like a function, but instead of a list of actuals it is presented
97 -- with the left and right operands of an operator node.
98
99 procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id);
100 -- Procedure to analyze a user defined unary operator, which is resolved
101 -- like a function, but instead of a list of actuals, it is presented with
102 -- the operand of the operator node.
103
104 procedure Ambiguous_Operands (N : Node_Id);
105 -- For equality, membership, and comparison operators with overloaded
106 -- arguments, list possible interpretations.
107
108 procedure Analyze_One_Call
109 (N : Node_Id;
110 Nam : Entity_Id;
111 Report : Boolean;
112 Success : out Boolean;
113 Skip_First : Boolean := False);
114 -- Check one interpretation of an overloaded subprogram name for
115 -- compatibility with the types of the actuals in a call. If there is a
116 -- single interpretation which does not match, post error if Report is
117 -- set to True.
118 --
119 -- Nam is the entity that provides the formals against which the actuals
120 -- are checked. Nam is either the name of a subprogram, or the internal
121 -- subprogram type constructed for an access_to_subprogram. If the actuals
122 -- are compatible with Nam, then Nam is added to the list of candidate
123 -- interpretations for N, and Success is set to True.
124 --
125 -- The flag Skip_First is used when analyzing a call that was rewritten
126 -- from object notation. In this case the first actual may have to receive
127 -- an explicit dereference, depending on the first formal of the operation
128 -- being called. The caller will have verified that the object is legal
129 -- for the call. If the remaining parameters match, the first parameter
130 -- will rewritten as a dereference if needed, prior to completing analysis.
131
132 procedure Check_Misspelled_Selector
133 (Prefix : Entity_Id;
134 Sel : Node_Id);
135 -- Give possible misspelling diagnostic if Sel is likely to be a mis-
136 -- spelling of one of the selectors of the Prefix. This is called by
137 -- Analyze_Selected_Component after producing an invalid selector error
138 -- message.
139
140 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean;
141 -- Verify that type T is declared in scope S. Used to find interpretations
142 -- for operators given by expanded names. This is abstracted as a separate
143 -- function to handle extensions to System, where S is System, but T is
144 -- declared in the extension.
145
146 procedure Find_Arithmetic_Types
147 (L, R : Node_Id;
148 Op_Id : Entity_Id;
149 N : Node_Id);
150 -- L and R are the operands of an arithmetic operator. Find
151 -- consistent pairs of interpretations for L and R that have a
152 -- numeric type consistent with the semantics of the operator.
153
154 procedure Find_Comparison_Types
155 (L, R : Node_Id;
156 Op_Id : Entity_Id;
157 N : Node_Id);
158 -- L and R are operands of a comparison operator. Find consistent
159 -- pairs of interpretations for L and R.
160
161 procedure Find_Concatenation_Types
162 (L, R : Node_Id;
163 Op_Id : Entity_Id;
164 N : Node_Id);
165 -- For the four varieties of concatenation
166
167 procedure Find_Equality_Types
168 (L, R : Node_Id;
169 Op_Id : Entity_Id;
170 N : Node_Id);
171 -- Ditto for equality operators
172
173 procedure Find_Boolean_Types
174 (L, R : Node_Id;
175 Op_Id : Entity_Id;
176 N : Node_Id);
177 -- Ditto for binary logical operations
178
179 procedure Find_Negation_Types
180 (R : Node_Id;
181 Op_Id : Entity_Id;
182 N : Node_Id);
183 -- Find consistent interpretation for operand of negation operator
184
185 procedure Find_Non_Universal_Interpretations
186 (N : Node_Id;
187 R : Node_Id;
188 Op_Id : Entity_Id;
189 T1 : Entity_Id);
190 -- For equality and comparison operators, the result is always boolean,
191 -- and the legality of the operation is determined from the visibility
192 -- of the operand types. If one of the operands has a universal interpre-
193 -- tation, the legality check uses some compatible non-universal
194 -- interpretation of the other operand. N can be an operator node, or
195 -- a function call whose name is an operator designator. Any_Access, which
196 -- is the initial type of the literal NULL, is a universal type for the
197 -- purpose of this routine.
198
199 function Find_Primitive_Operation (N : Node_Id) return Boolean;
200 -- Find candidate interpretations for the name Obj.Proc when it appears
201 -- in a subprogram renaming declaration.
202
203 procedure Find_Unary_Types
204 (R : Node_Id;
205 Op_Id : Entity_Id;
206 N : Node_Id);
207 -- Unary arithmetic types: plus, minus, abs
208
209 procedure Check_Arithmetic_Pair
210 (T1, T2 : Entity_Id;
211 Op_Id : Entity_Id;
212 N : Node_Id);
213 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid
214 -- types for left and right operand. Determine whether they constitute
215 -- a valid pair for the given operator, and record the corresponding
216 -- interpretation of the operator node. The node N may be an operator
217 -- node (the usual case) or a function call whose prefix is an operator
218 -- designator. In both cases Op_Id is the operator name itself.
219
220 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id);
221 -- Give detailed information on overloaded call where none of the
222 -- interpretations match. N is the call node, Nam the designator for
223 -- the overloaded entity being called.
224
225 function Junk_Operand (N : Node_Id) return Boolean;
226 -- Test for an operand that is an inappropriate entity (e.g. a package
227 -- name or a label). If so, issue an error message and return True. If
228 -- the operand is not an inappropriate entity kind, return False.
229
230 procedure Operator_Check (N : Node_Id);
231 -- Verify that an operator has received some valid interpretation. If none
232 -- was found, determine whether a use clause would make the operation
233 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
234 -- every type compatible with the operator, even if the operator for the
235 -- type is not directly visible. The routine uses this type to emit a more
236 -- informative message.
237
238 function Process_Implicit_Dereference_Prefix
239 (E : Entity_Id;
240 P : Node_Id) return Entity_Id;
241 -- Called when P is the prefix of an implicit dereference, denoting an
242 -- object E. The function returns the designated type of the prefix, taking
243 -- into account that the designated type of an anonymous access type may be
244 -- a limited view, when the non-limited view is visible.
245 -- If in semantics only mode (-gnatc or generic), the function also records
246 -- that the prefix is a reference to E, if any. Normally, such a reference
247 -- is generated only when the implicit dereference is expanded into an
248 -- explicit one, but for consistency we must generate the reference when
249 -- expansion is disabled as well.
250
251 procedure Remove_Abstract_Operations (N : Node_Id);
252 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
253 -- operation is not a candidate interpretation.
254
255 function Try_Container_Indexing
256 (N : Node_Id;
257 Prefix : Node_Id;
258 Exprs : List_Id) return Boolean;
259 -- AI05-0139: Generalized indexing to support iterators over containers
260
261 function Try_Indexed_Call
262 (N : Node_Id;
263 Nam : Entity_Id;
264 Typ : Entity_Id;
265 Skip_First : Boolean) return Boolean;
266 -- If a function has defaults for all its actuals, a call to it may in fact
267 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
268 -- interpretation as an indexing, prior to analysis as a call. If both are
269 -- possible, the node is overloaded with both interpretations (same symbol
270 -- but two different types). If the call is written in prefix form, the
271 -- prefix becomes the first parameter in the call, and only the remaining
272 -- actuals must be checked for the presence of defaults.
273
274 function Try_Indirect_Call
275 (N : Node_Id;
276 Nam : Entity_Id;
277 Typ : Entity_Id) return Boolean;
278 -- Similarly, a function F that needs no actuals can return an access to a
279 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
280 -- the call may be overloaded with both interpretations.
281
282 function Try_Object_Operation
283 (N : Node_Id;
284 CW_Test_Only : Boolean := False) return Boolean;
285 -- Ada 2005 (AI-252): Support the object.operation notation. If node N
286 -- is a call in this notation, it is transformed into a normal subprogram
287 -- call where the prefix is a parameter, and True is returned. If node
288 -- N is not of this form, it is unchanged, and False is returned. if
289 -- CW_Test_Only is true then N is an N_Selected_Component node which
290 -- is part of a call to an entry or procedure of a tagged concurrent
291 -- type and this routine is invoked to search for class-wide subprograms
292 -- conflicting with the target entity.
293
294 procedure wpo (T : Entity_Id);
295 pragma Warnings (Off, wpo);
296 -- Used for debugging: obtain list of primitive operations even if
297 -- type is not frozen and dispatch table is not built yet.
298
299 ------------------------
300 -- Ambiguous_Operands --
301 ------------------------
302
303 procedure Ambiguous_Operands (N : Node_Id) is
304 procedure List_Operand_Interps (Opnd : Node_Id);
305
306 --------------------------
307 -- List_Operand_Interps --
308 --------------------------
309
310 procedure List_Operand_Interps (Opnd : Node_Id) is
311 Nam : Node_Id;
312 Err : Node_Id := N;
313
314 begin
315 if Is_Overloaded (Opnd) then
316 if Nkind (Opnd) in N_Op then
317 Nam := Opnd;
318 elsif Nkind (Opnd) = N_Function_Call then
319 Nam := Name (Opnd);
320 elsif Ada_Version >= Ada_2012 then
321 declare
322 It : Interp;
323 I : Interp_Index;
324
325 begin
326 Get_First_Interp (Opnd, I, It);
327 while Present (It.Nam) loop
328 if Has_Implicit_Dereference (It.Typ) then
329 Error_Msg_N
330 ("can be interpreted as implicit dereference", Opnd);
331 return;
332 end if;
333
334 Get_Next_Interp (I, It);
335 end loop;
336 end;
337
338 return;
339 end if;
340
341 else
342 return;
343 end if;
344
345 if Opnd = Left_Opnd (N) then
346 Error_Msg_N ("\left operand has the following interpretations", N);
347 else
348 Error_Msg_N
349 ("\right operand has the following interpretations", N);
350 Err := Opnd;
351 end if;
352
353 List_Interps (Nam, Err);
354 end List_Operand_Interps;
355
356 -- Start of processing for Ambiguous_Operands
357
358 begin
359 if Nkind (N) in N_Membership_Test then
360 Error_Msg_N ("ambiguous operands for membership", N);
361
362 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
363 Error_Msg_N ("ambiguous operands for equality", N);
364
365 else
366 Error_Msg_N ("ambiguous operands for comparison", N);
367 end if;
368
369 if All_Errors_Mode then
370 List_Operand_Interps (Left_Opnd (N));
371 List_Operand_Interps (Right_Opnd (N));
372 else
373 Error_Msg_N ("\use -gnatf switch for details", N);
374 end if;
375 end Ambiguous_Operands;
376
377 -----------------------
378 -- Analyze_Aggregate --
379 -----------------------
380
381 -- Most of the analysis of Aggregates requires that the type be known,
382 -- and is therefore put off until resolution.
383
384 procedure Analyze_Aggregate (N : Node_Id) is
385 begin
386 if No (Etype (N)) then
387 Set_Etype (N, Any_Composite);
388 end if;
389 end Analyze_Aggregate;
390
391 -----------------------
392 -- Analyze_Allocator --
393 -----------------------
394
395 procedure Analyze_Allocator (N : Node_Id) is
396 Loc : constant Source_Ptr := Sloc (N);
397 Sav_Errs : constant Nat := Serious_Errors_Detected;
398 E : Node_Id := Expression (N);
399 Acc_Type : Entity_Id;
400 Type_Id : Entity_Id;
401 P : Node_Id;
402 C : Node_Id;
403
404 begin
405 Check_SPARK_Restriction ("allocator is not allowed", N);
406
407 -- Deal with allocator restrictions
408
409 -- In accordance with H.4(7), the No_Allocators restriction only applies
410 -- to user-written allocators. The same consideration applies to the
411 -- No_Allocators_Before_Elaboration restriction.
412
413 if Comes_From_Source (N) then
414 Check_Restriction (No_Allocators, N);
415
416 -- Processing for No_Allocators_After_Elaboration, loop to look at
417 -- enclosing context, checking task case and main subprogram case.
418
419 C := N;
420 P := Parent (C);
421 while Present (P) loop
422
423 -- In both cases we need a handled sequence of statements, where
424 -- the occurrence of the allocator is within the statements.
425
426 if Nkind (P) = N_Handled_Sequence_Of_Statements
427 and then Is_List_Member (C)
428 and then List_Containing (C) = Statements (P)
429 then
430 -- Check for allocator within task body, this is a definite
431 -- violation of No_Allocators_After_Elaboration we can detect.
432
433 if Nkind (Original_Node (Parent (P))) = N_Task_Body then
434 Check_Restriction (No_Allocators_After_Elaboration, N);
435 exit;
436 end if;
437
438 -- The other case is appearance in a subprogram body. This may
439 -- be a violation if this is a library level subprogram, and it
440 -- turns out to be used as the main program, but only the
441 -- binder knows that, so just record the occurrence.
442
443 if Nkind (Original_Node (Parent (P))) = N_Subprogram_Body
444 and then Nkind (Parent (Parent (P))) = N_Compilation_Unit
445 then
446 Set_Has_Allocator (Current_Sem_Unit);
447 end if;
448 end if;
449
450 C := P;
451 P := Parent (C);
452 end loop;
453 end if;
454
455 -- Ada 2012 (AI05-0111-3): Analyze the subpool_specification, if
456 -- any. The expected type for the name is any type. A non-overloading
457 -- rule then requires it to be of a type descended from
458 -- System.Storage_Pools.Subpools.Subpool_Handle.
459
460 -- This isn't exactly what the AI says, but it seems to be the right
461 -- rule. The AI should be fixed.???
462
463 declare
464 Subpool : constant Node_Id := Subpool_Handle_Name (N);
465
466 begin
467 if Present (Subpool) then
468 Analyze (Subpool);
469
470 if Is_Overloaded (Subpool) then
471 Error_Msg_N ("ambiguous subpool handle", Subpool);
472 end if;
473
474 -- Check that Etype (Subpool) is descended from Subpool_Handle
475
476 Resolve (Subpool);
477 end if;
478 end;
479
480 -- Analyze the qualified expression or subtype indication
481
482 if Nkind (E) = N_Qualified_Expression then
483 Acc_Type := Create_Itype (E_Allocator_Type, N);
484 Set_Etype (Acc_Type, Acc_Type);
485 Find_Type (Subtype_Mark (E));
486
487 -- Analyze the qualified expression, and apply the name resolution
488 -- rule given in 4.7(3).
489
490 Analyze (E);
491 Type_Id := Etype (E);
492 Set_Directly_Designated_Type (Acc_Type, Type_Id);
493
494 Resolve (Expression (E), Type_Id);
495
496 -- Allocators generated by the build-in-place expansion mechanism
497 -- are explicitly marked as coming from source but do not need to be
498 -- checked for limited initialization. To exclude this case, ensure
499 -- that the parent of the allocator is a source node.
500
501 if Is_Limited_Type (Type_Id)
502 and then Comes_From_Source (N)
503 and then Comes_From_Source (Parent (N))
504 and then not In_Instance_Body
505 then
506 if not OK_For_Limited_Init (Type_Id, Expression (E)) then
507 Error_Msg_N ("initialization not allowed for limited types", N);
508 Explain_Limited_Type (Type_Id, N);
509 end if;
510 end if;
511
512 -- A qualified expression requires an exact match of the type,
513 -- class-wide matching is not allowed.
514
515 -- if Is_Class_Wide_Type (Type_Id)
516 -- and then Base_Type
517 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
518 -- then
519 -- Wrong_Type (Expression (E), Type_Id);
520 -- end if;
521
522 Check_Non_Static_Context (Expression (E));
523
524 -- We don't analyze the qualified expression itself because it's
525 -- part of the allocator
526
527 Set_Etype (E, Type_Id);
528
529 -- Case where allocator has a subtype indication
530
531 else
532 declare
533 Def_Id : Entity_Id;
534 Base_Typ : Entity_Id;
535
536 begin
537 -- If the allocator includes a N_Subtype_Indication then a
538 -- constraint is present, otherwise the node is a subtype mark.
539 -- Introduce an explicit subtype declaration into the tree
540 -- defining some anonymous subtype and rewrite the allocator to
541 -- use this subtype rather than the subtype indication.
542
543 -- It is important to introduce the explicit subtype declaration
544 -- so that the bounds of the subtype indication are attached to
545 -- the tree in case the allocator is inside a generic unit.
546
547 if Nkind (E) = N_Subtype_Indication then
548
549 -- A constraint is only allowed for a composite type in Ada
550 -- 95. In Ada 83, a constraint is also allowed for an
551 -- access-to-composite type, but the constraint is ignored.
552
553 Find_Type (Subtype_Mark (E));
554 Base_Typ := Entity (Subtype_Mark (E));
555
556 if Is_Elementary_Type (Base_Typ) then
557 if not (Ada_Version = Ada_83
558 and then Is_Access_Type (Base_Typ))
559 then
560 Error_Msg_N ("constraint not allowed here", E);
561
562 if Nkind (Constraint (E)) =
563 N_Index_Or_Discriminant_Constraint
564 then
565 Error_Msg_N -- CODEFIX
566 ("\if qualified expression was meant, " &
567 "use apostrophe", Constraint (E));
568 end if;
569 end if;
570
571 -- Get rid of the bogus constraint:
572
573 Rewrite (E, New_Copy_Tree (Subtype_Mark (E)));
574 Analyze_Allocator (N);
575 return;
576
577 -- Ada 2005, AI-363: if the designated type has a constrained
578 -- partial view, it cannot receive a discriminant constraint,
579 -- and the allocated object is unconstrained.
580
581 elsif Ada_Version >= Ada_2005
582 and then Effectively_Has_Constrained_Partial_View
583 (Typ => Base_Typ,
584 Scop => Current_Scope)
585 then
586 Error_Msg_N
587 ("constraint not allowed when type " &
588 "has a constrained partial view", Constraint (E));
589 end if;
590
591 if Expander_Active then
592 Def_Id := Make_Temporary (Loc, 'S');
593
594 Insert_Action (E,
595 Make_Subtype_Declaration (Loc,
596 Defining_Identifier => Def_Id,
597 Subtype_Indication => Relocate_Node (E)));
598
599 if Sav_Errs /= Serious_Errors_Detected
600 and then Nkind (Constraint (E)) =
601 N_Index_Or_Discriminant_Constraint
602 then
603 Error_Msg_N -- CODEFIX
604 ("if qualified expression was meant, " &
605 "use apostrophe!", Constraint (E));
606 end if;
607
608 E := New_Occurrence_Of (Def_Id, Loc);
609 Rewrite (Expression (N), E);
610 end if;
611 end if;
612
613 Type_Id := Process_Subtype (E, N);
614 Acc_Type := Create_Itype (E_Allocator_Type, N);
615 Set_Etype (Acc_Type, Acc_Type);
616 Set_Directly_Designated_Type (Acc_Type, Type_Id);
617 Check_Fully_Declared (Type_Id, N);
618
619 -- Ada 2005 (AI-231): If the designated type is itself an access
620 -- type that excludes null, its default initialization will
621 -- be a null object, and we can insert an unconditional raise
622 -- before the allocator.
623
624 -- Ada 2012 (AI-104): A not null indication here is altogether
625 -- illegal.
626
627 if Can_Never_Be_Null (Type_Id) then
628 declare
629 Not_Null_Check : constant Node_Id :=
630 Make_Raise_Constraint_Error (Sloc (E),
631 Reason => CE_Null_Not_Allowed);
632
633 begin
634 if Expander_Active then
635 Insert_Action (N, Not_Null_Check);
636 Analyze (Not_Null_Check);
637
638 else
639 -- Seems weird for the following to be a warning ???
640
641 Error_Msg_N ("null value not allowed here??", E);
642 end if;
643 end;
644 end if;
645
646 -- Check restriction against dynamically allocated protected
647 -- objects. Note that when limited aggregates are supported,
648 -- a similar test should be applied to an allocator with a
649 -- qualified expression ???
650
651 if Is_Protected_Type (Type_Id) then
652 Check_Restriction (No_Protected_Type_Allocators, N);
653 end if;
654
655 -- Check for missing initialization. Skip this check if we already
656 -- had errors on analyzing the allocator, since in that case these
657 -- are probably cascaded errors.
658
659 if Is_Indefinite_Subtype (Type_Id)
660 and then Serious_Errors_Detected = Sav_Errs
661 then
662 -- The build-in-place machinery may produce an allocator when
663 -- the designated type is indefinite but the underlying type is
664 -- not. In this case the unknown discriminants are meaningless
665 -- and should not trigger error messages. Check the parent node
666 -- because the allocator is marked as coming from source.
667
668 if Present (Underlying_Type (Type_Id))
669 and then not Is_Indefinite_Subtype (Underlying_Type (Type_Id))
670 and then not Comes_From_Source (Parent (N))
671 then
672 null;
673
674 elsif Is_Class_Wide_Type (Type_Id) then
675 Error_Msg_N
676 ("initialization required in class-wide allocation", N);
677
678 else
679 if Ada_Version < Ada_2005
680 and then Is_Limited_Type (Type_Id)
681 then
682 Error_Msg_N ("unconstrained allocation not allowed", N);
683
684 if Is_Array_Type (Type_Id) then
685 Error_Msg_N
686 ("\constraint with array bounds required", N);
687
688 elsif Has_Unknown_Discriminants (Type_Id) then
689 null;
690
691 else pragma Assert (Has_Discriminants (Type_Id));
692 Error_Msg_N
693 ("\constraint with discriminant values required", N);
694 end if;
695
696 -- Limited Ada 2005 and general non-limited case
697
698 else
699 Error_Msg_N
700 ("uninitialized unconstrained allocation not allowed",
701 N);
702
703 if Is_Array_Type (Type_Id) then
704 Error_Msg_N
705 ("\qualified expression or constraint with " &
706 "array bounds required", N);
707
708 elsif Has_Unknown_Discriminants (Type_Id) then
709 Error_Msg_N ("\qualified expression required", N);
710
711 else pragma Assert (Has_Discriminants (Type_Id));
712 Error_Msg_N
713 ("\qualified expression or constraint with " &
714 "discriminant values required", N);
715 end if;
716 end if;
717 end if;
718 end if;
719 end;
720 end if;
721
722 if Is_Abstract_Type (Type_Id) then
723 Error_Msg_N ("cannot allocate abstract object", E);
724 end if;
725
726 if Has_Task (Designated_Type (Acc_Type)) then
727 Check_Restriction (No_Tasking, N);
728 Check_Restriction (Max_Tasks, N);
729 Check_Restriction (No_Task_Allocators, N);
730 end if;
731
732 -- AI05-0013-1: No_Nested_Finalization forbids allocators if the access
733 -- type is nested, and the designated type needs finalization. The rule
734 -- is conservative in that class-wide types need finalization.
735
736 if Needs_Finalization (Designated_Type (Acc_Type))
737 and then not Is_Library_Level_Entity (Acc_Type)
738 then
739 Check_Restriction (No_Nested_Finalization, N);
740 end if;
741
742 -- Check that an allocator of a nested access type doesn't create a
743 -- protected object when restriction No_Local_Protected_Objects applies.
744 -- We don't have an equivalent to Has_Task for protected types, so only
745 -- cases where the designated type itself is a protected type are
746 -- currently checked. ???
747
748 if Is_Protected_Type (Designated_Type (Acc_Type))
749 and then not Is_Library_Level_Entity (Acc_Type)
750 then
751 Check_Restriction (No_Local_Protected_Objects, N);
752 end if;
753
754 -- If the No_Streams restriction is set, check that the type of the
755 -- object is not, and does not contain, any subtype derived from
756 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
757 -- Has_Stream just for efficiency reasons. There is no point in
758 -- spending time on a Has_Stream check if the restriction is not set.
759
760 if Restriction_Check_Required (No_Streams) then
761 if Has_Stream (Designated_Type (Acc_Type)) then
762 Check_Restriction (No_Streams, N);
763 end if;
764 end if;
765
766 Set_Etype (N, Acc_Type);
767
768 if not Is_Library_Level_Entity (Acc_Type) then
769 Check_Restriction (No_Local_Allocators, N);
770 end if;
771
772 if Serious_Errors_Detected > Sav_Errs then
773 Set_Error_Posted (N);
774 Set_Etype (N, Any_Type);
775 end if;
776 end Analyze_Allocator;
777
778 ---------------------------
779 -- Analyze_Arithmetic_Op --
780 ---------------------------
781
782 procedure Analyze_Arithmetic_Op (N : Node_Id) is
783 L : constant Node_Id := Left_Opnd (N);
784 R : constant Node_Id := Right_Opnd (N);
785 Op_Id : Entity_Id;
786
787 begin
788 Candidate_Type := Empty;
789 Analyze_Expression (L);
790 Analyze_Expression (R);
791
792 -- If the entity is already set, the node is the instantiation of a
793 -- generic node with a non-local reference, or was manufactured by a
794 -- call to Make_Op_xxx. In either case the entity is known to be valid,
795 -- and we do not need to collect interpretations, instead we just get
796 -- the single possible interpretation.
797
798 Op_Id := Entity (N);
799
800 if Present (Op_Id) then
801 if Ekind (Op_Id) = E_Operator then
802
803 if Nkind_In (N, N_Op_Divide, N_Op_Mod, N_Op_Multiply, N_Op_Rem)
804 and then Treat_Fixed_As_Integer (N)
805 then
806 null;
807 else
808 Set_Etype (N, Any_Type);
809 Find_Arithmetic_Types (L, R, Op_Id, N);
810 end if;
811
812 else
813 Set_Etype (N, Any_Type);
814 Add_One_Interp (N, Op_Id, Etype (Op_Id));
815 end if;
816
817 -- Entity is not already set, so we do need to collect interpretations
818
819 else
820 Op_Id := Get_Name_Entity_Id (Chars (N));
821 Set_Etype (N, Any_Type);
822
823 while Present (Op_Id) loop
824 if Ekind (Op_Id) = E_Operator
825 and then Present (Next_Entity (First_Entity (Op_Id)))
826 then
827 Find_Arithmetic_Types (L, R, Op_Id, N);
828
829 -- The following may seem superfluous, because an operator cannot
830 -- be generic, but this ignores the cleverness of the author of
831 -- ACVC bc1013a.
832
833 elsif Is_Overloadable (Op_Id) then
834 Analyze_User_Defined_Binary_Op (N, Op_Id);
835 end if;
836
837 Op_Id := Homonym (Op_Id);
838 end loop;
839 end if;
840
841 Operator_Check (N);
842 end Analyze_Arithmetic_Op;
843
844 ------------------
845 -- Analyze_Call --
846 ------------------
847
848 -- Function, procedure, and entry calls are checked here. The Name in
849 -- the call may be overloaded. The actuals have been analyzed and may
850 -- themselves be overloaded. On exit from this procedure, the node N
851 -- may have zero, one or more interpretations. In the first case an
852 -- error message is produced. In the last case, the node is flagged
853 -- as overloaded and the interpretations are collected in All_Interp.
854
855 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
856 -- the type-checking is similar to that of other calls.
857
858 procedure Analyze_Call (N : Node_Id) is
859 Actuals : constant List_Id := Parameter_Associations (N);
860 Nam : Node_Id;
861 X : Interp_Index;
862 It : Interp;
863 Nam_Ent : Entity_Id;
864 Success : Boolean := False;
865
866 Deref : Boolean := False;
867 -- Flag indicates whether an interpretation of the prefix is a
868 -- parameterless call that returns an access_to_subprogram.
869
870 procedure Check_Mixed_Parameter_And_Named_Associations;
871 -- Check that parameter and named associations are not mixed. This is
872 -- a restriction in SPARK mode.
873
874 function Name_Denotes_Function return Boolean;
875 -- If the type of the name is an access to subprogram, this may be the
876 -- type of a name, or the return type of the function being called. If
877 -- the name is not an entity then it can denote a protected function.
878 -- Until we distinguish Etype from Return_Type, we must use this routine
879 -- to resolve the meaning of the name in the call.
880
881 procedure No_Interpretation;
882 -- Output error message when no valid interpretation exists
883
884 --------------------------------------------------
885 -- Check_Mixed_Parameter_And_Named_Associations --
886 --------------------------------------------------
887
888 procedure Check_Mixed_Parameter_And_Named_Associations is
889 Actual : Node_Id;
890 Named_Seen : Boolean;
891
892 begin
893 Named_Seen := False;
894
895 Actual := First (Actuals);
896 while Present (Actual) loop
897 case Nkind (Actual) is
898 when N_Parameter_Association =>
899 if Named_Seen then
900 Check_SPARK_Restriction
901 ("named association cannot follow positional one",
902 Actual);
903 exit;
904 end if;
905 when others =>
906 Named_Seen := True;
907 end case;
908
909 Next (Actual);
910 end loop;
911 end Check_Mixed_Parameter_And_Named_Associations;
912
913 ---------------------------
914 -- Name_Denotes_Function --
915 ---------------------------
916
917 function Name_Denotes_Function return Boolean is
918 begin
919 if Is_Entity_Name (Nam) then
920 return Ekind (Entity (Nam)) = E_Function;
921
922 elsif Nkind (Nam) = N_Selected_Component then
923 return Ekind (Entity (Selector_Name (Nam))) = E_Function;
924
925 else
926 return False;
927 end if;
928 end Name_Denotes_Function;
929
930 -----------------------
931 -- No_Interpretation --
932 -----------------------
933
934 procedure No_Interpretation is
935 L : constant Boolean := Is_List_Member (N);
936 K : constant Node_Kind := Nkind (Parent (N));
937
938 begin
939 -- If the node is in a list whose parent is not an expression then it
940 -- must be an attempted procedure call.
941
942 if L and then K not in N_Subexpr then
943 if Ekind (Entity (Nam)) = E_Generic_Procedure then
944 Error_Msg_NE
945 ("must instantiate generic procedure& before call",
946 Nam, Entity (Nam));
947 else
948 Error_Msg_N
949 ("procedure or entry name expected", Nam);
950 end if;
951
952 -- Check for tasking cases where only an entry call will do
953
954 elsif not L
955 and then Nkind_In (K, N_Entry_Call_Alternative,
956 N_Triggering_Alternative)
957 then
958 Error_Msg_N ("entry name expected", Nam);
959
960 -- Otherwise give general error message
961
962 else
963 Error_Msg_N ("invalid prefix in call", Nam);
964 end if;
965 end No_Interpretation;
966
967 -- Start of processing for Analyze_Call
968
969 begin
970 if Restriction_Check_Required (SPARK) then
971 Check_Mixed_Parameter_And_Named_Associations;
972 end if;
973
974 -- Initialize the type of the result of the call to the error type,
975 -- which will be reset if the type is successfully resolved.
976
977 Set_Etype (N, Any_Type);
978
979 Nam := Name (N);
980
981 if not Is_Overloaded (Nam) then
982
983 -- Only one interpretation to check
984
985 if Ekind (Etype (Nam)) = E_Subprogram_Type then
986 Nam_Ent := Etype (Nam);
987
988 -- If the prefix is an access_to_subprogram, this may be an indirect
989 -- call. This is the case if the name in the call is not an entity
990 -- name, or if it is a function name in the context of a procedure
991 -- call. In this latter case, we have a call to a parameterless
992 -- function that returns a pointer_to_procedure which is the entity
993 -- being called. Finally, F (X) may be a call to a parameterless
994 -- function that returns a pointer to a function with parameters.
995
996 elsif Is_Access_Type (Etype (Nam))
997 and then Ekind (Designated_Type (Etype (Nam))) = E_Subprogram_Type
998 and then
999 (not Name_Denotes_Function
1000 or else Nkind (N) = N_Procedure_Call_Statement
1001 or else
1002 (Nkind (Parent (N)) /= N_Explicit_Dereference
1003 and then Is_Entity_Name (Nam)
1004 and then No (First_Formal (Entity (Nam)))
1005 and then Present (Actuals)))
1006 then
1007 Nam_Ent := Designated_Type (Etype (Nam));
1008 Insert_Explicit_Dereference (Nam);
1009
1010 -- Selected component case. Simple entry or protected operation,
1011 -- where the entry name is given by the selector name.
1012
1013 elsif Nkind (Nam) = N_Selected_Component then
1014 Nam_Ent := Entity (Selector_Name (Nam));
1015
1016 if not Ekind_In (Nam_Ent, E_Entry,
1017 E_Entry_Family,
1018 E_Function,
1019 E_Procedure)
1020 then
1021 Error_Msg_N ("name in call is not a callable entity", Nam);
1022 Set_Etype (N, Any_Type);
1023 return;
1024 end if;
1025
1026 -- If the name is an Indexed component, it can be a call to a member
1027 -- of an entry family. The prefix must be a selected component whose
1028 -- selector is the entry. Analyze_Procedure_Call normalizes several
1029 -- kinds of call into this form.
1030
1031 elsif Nkind (Nam) = N_Indexed_Component then
1032 if Nkind (Prefix (Nam)) = N_Selected_Component then
1033 Nam_Ent := Entity (Selector_Name (Prefix (Nam)));
1034 else
1035 Error_Msg_N ("name in call is not a callable entity", Nam);
1036 Set_Etype (N, Any_Type);
1037 return;
1038 end if;
1039
1040 elsif not Is_Entity_Name (Nam) then
1041 Error_Msg_N ("name in call is not a callable entity", Nam);
1042 Set_Etype (N, Any_Type);
1043 return;
1044
1045 else
1046 Nam_Ent := Entity (Nam);
1047
1048 -- If no interpretations, give error message
1049
1050 if not Is_Overloadable (Nam_Ent) then
1051 No_Interpretation;
1052 return;
1053 end if;
1054 end if;
1055
1056 -- Operations generated for RACW stub types are called only through
1057 -- dispatching, and can never be the static interpretation of a call.
1058
1059 if Is_RACW_Stub_Type_Operation (Nam_Ent) then
1060 No_Interpretation;
1061 return;
1062 end if;
1063
1064 Analyze_One_Call (N, Nam_Ent, True, Success);
1065
1066 -- If this is an indirect call, the return type of the access_to
1067 -- subprogram may be an incomplete type. At the point of the call,
1068 -- use the full type if available, and at the same time update the
1069 -- return type of the access_to_subprogram.
1070
1071 if Success
1072 and then Nkind (Nam) = N_Explicit_Dereference
1073 and then Ekind (Etype (N)) = E_Incomplete_Type
1074 and then Present (Full_View (Etype (N)))
1075 then
1076 Set_Etype (N, Full_View (Etype (N)));
1077 Set_Etype (Nam_Ent, Etype (N));
1078 end if;
1079
1080 else
1081 -- An overloaded selected component must denote overloaded operations
1082 -- of a concurrent type. The interpretations are attached to the
1083 -- simple name of those operations.
1084
1085 if Nkind (Nam) = N_Selected_Component then
1086 Nam := Selector_Name (Nam);
1087 end if;
1088
1089 Get_First_Interp (Nam, X, It);
1090
1091 while Present (It.Nam) loop
1092 Nam_Ent := It.Nam;
1093 Deref := False;
1094
1095 -- Name may be call that returns an access to subprogram, or more
1096 -- generally an overloaded expression one of whose interpretations
1097 -- yields an access to subprogram. If the name is an entity, we do
1098 -- not dereference, because the node is a call that returns the
1099 -- access type: note difference between f(x), where the call may
1100 -- return an access subprogram type, and f(x)(y), where the type
1101 -- returned by the call to f is implicitly dereferenced to analyze
1102 -- the outer call.
1103
1104 if Is_Access_Type (Nam_Ent) then
1105 Nam_Ent := Designated_Type (Nam_Ent);
1106
1107 elsif Is_Access_Type (Etype (Nam_Ent))
1108 and then
1109 (not Is_Entity_Name (Nam)
1110 or else Nkind (N) = N_Procedure_Call_Statement)
1111 and then Ekind (Designated_Type (Etype (Nam_Ent)))
1112 = E_Subprogram_Type
1113 then
1114 Nam_Ent := Designated_Type (Etype (Nam_Ent));
1115
1116 if Is_Entity_Name (Nam) then
1117 Deref := True;
1118 end if;
1119 end if;
1120
1121 -- If the call has been rewritten from a prefixed call, the first
1122 -- parameter has been analyzed, but may need a subsequent
1123 -- dereference, so skip its analysis now.
1124
1125 if N /= Original_Node (N)
1126 and then Nkind (Original_Node (N)) = Nkind (N)
1127 and then Nkind (Name (N)) /= Nkind (Name (Original_Node (N)))
1128 and then Present (Parameter_Associations (N))
1129 and then Present (Etype (First (Parameter_Associations (N))))
1130 then
1131 Analyze_One_Call
1132 (N, Nam_Ent, False, Success, Skip_First => True);
1133 else
1134 Analyze_One_Call (N, Nam_Ent, False, Success);
1135 end if;
1136
1137 -- If the interpretation succeeds, mark the proper type of the
1138 -- prefix (any valid candidate will do). If not, remove the
1139 -- candidate interpretation. This only needs to be done for
1140 -- overloaded protected operations, for other entities disambi-
1141 -- guation is done directly in Resolve.
1142
1143 if Success then
1144 if Deref
1145 and then Nkind (Parent (N)) /= N_Explicit_Dereference
1146 then
1147 Set_Entity (Nam, It.Nam);
1148 Insert_Explicit_Dereference (Nam);
1149 Set_Etype (Nam, Nam_Ent);
1150
1151 else
1152 Set_Etype (Nam, It.Typ);
1153 end if;
1154
1155 elsif Nkind_In (Name (N), N_Selected_Component,
1156 N_Function_Call)
1157 then
1158 Remove_Interp (X);
1159 end if;
1160
1161 Get_Next_Interp (X, It);
1162 end loop;
1163
1164 -- If the name is the result of a function call, it can only
1165 -- be a call to a function returning an access to subprogram.
1166 -- Insert explicit dereference.
1167
1168 if Nkind (Nam) = N_Function_Call then
1169 Insert_Explicit_Dereference (Nam);
1170 end if;
1171
1172 if Etype (N) = Any_Type then
1173
1174 -- None of the interpretations is compatible with the actuals
1175
1176 Diagnose_Call (N, Nam);
1177
1178 -- Special checks for uninstantiated put routines
1179
1180 if Nkind (N) = N_Procedure_Call_Statement
1181 and then Is_Entity_Name (Nam)
1182 and then Chars (Nam) = Name_Put
1183 and then List_Length (Actuals) = 1
1184 then
1185 declare
1186 Arg : constant Node_Id := First (Actuals);
1187 Typ : Entity_Id;
1188
1189 begin
1190 if Nkind (Arg) = N_Parameter_Association then
1191 Typ := Etype (Explicit_Actual_Parameter (Arg));
1192 else
1193 Typ := Etype (Arg);
1194 end if;
1195
1196 if Is_Signed_Integer_Type (Typ) then
1197 Error_Msg_N
1198 ("possible missing instantiation of " &
1199 "'Text_'I'O.'Integer_'I'O!", Nam);
1200
1201 elsif Is_Modular_Integer_Type (Typ) then
1202 Error_Msg_N
1203 ("possible missing instantiation of " &
1204 "'Text_'I'O.'Modular_'I'O!", Nam);
1205
1206 elsif Is_Floating_Point_Type (Typ) then
1207 Error_Msg_N
1208 ("possible missing instantiation of " &
1209 "'Text_'I'O.'Float_'I'O!", Nam);
1210
1211 elsif Is_Ordinary_Fixed_Point_Type (Typ) then
1212 Error_Msg_N
1213 ("possible missing instantiation of " &
1214 "'Text_'I'O.'Fixed_'I'O!", Nam);
1215
1216 elsif Is_Decimal_Fixed_Point_Type (Typ) then
1217 Error_Msg_N
1218 ("possible missing instantiation of " &
1219 "'Text_'I'O.'Decimal_'I'O!", Nam);
1220
1221 elsif Is_Enumeration_Type (Typ) then
1222 Error_Msg_N
1223 ("possible missing instantiation of " &
1224 "'Text_'I'O.'Enumeration_'I'O!", Nam);
1225 end if;
1226 end;
1227 end if;
1228
1229 elsif not Is_Overloaded (N)
1230 and then Is_Entity_Name (Nam)
1231 then
1232 -- Resolution yields a single interpretation. Verify that the
1233 -- reference has capitalization consistent with the declaration.
1234
1235 Set_Entity_With_Style_Check (Nam, Entity (Nam));
1236 Generate_Reference (Entity (Nam), Nam);
1237
1238 Set_Etype (Nam, Etype (Entity (Nam)));
1239 else
1240 Remove_Abstract_Operations (N);
1241 end if;
1242
1243 End_Interp_List;
1244 end if;
1245 end Analyze_Call;
1246
1247 -----------------------------
1248 -- Analyze_Case_Expression --
1249 -----------------------------
1250
1251 procedure Analyze_Case_Expression (N : Node_Id) is
1252 Expr : constant Node_Id := Expression (N);
1253 FirstX : constant Node_Id := Expression (First (Alternatives (N)));
1254 Alt : Node_Id;
1255 Exp_Type : Entity_Id;
1256 Exp_Btype : Entity_Id;
1257
1258 Dont_Care : Boolean;
1259 Others_Present : Boolean;
1260
1261 procedure Non_Static_Choice_Error (Choice : Node_Id);
1262 -- Error routine invoked by the generic instantiation below when
1263 -- the case expression has a non static choice.
1264
1265 package Case_Choices_Processing is new
1266 Generic_Choices_Processing
1267 (Get_Alternatives => Alternatives,
1268 Get_Choices => Discrete_Choices,
1269 Process_Empty_Choice => No_OP,
1270 Process_Non_Static_Choice => Non_Static_Choice_Error,
1271 Process_Associated_Node => No_OP);
1272 use Case_Choices_Processing;
1273
1274 -----------------------------
1275 -- Non_Static_Choice_Error --
1276 -----------------------------
1277
1278 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1279 begin
1280 Flag_Non_Static_Expr
1281 ("choice given in case expression is not static!", Choice);
1282 end Non_Static_Choice_Error;
1283
1284 -- Start of processing for Analyze_Case_Expression
1285
1286 begin
1287 if Comes_From_Source (N) then
1288 Check_Compiler_Unit (N);
1289 end if;
1290
1291 Analyze_And_Resolve (Expr, Any_Discrete);
1292 Check_Unset_Reference (Expr);
1293 Exp_Type := Etype (Expr);
1294 Exp_Btype := Base_Type (Exp_Type);
1295
1296 Alt := First (Alternatives (N));
1297 while Present (Alt) loop
1298 Analyze (Expression (Alt));
1299 Next (Alt);
1300 end loop;
1301
1302 if not Is_Overloaded (FirstX) then
1303 Set_Etype (N, Etype (FirstX));
1304
1305 else
1306 declare
1307 I : Interp_Index;
1308 It : Interp;
1309
1310 begin
1311 Set_Etype (N, Any_Type);
1312
1313 Get_First_Interp (FirstX, I, It);
1314 while Present (It.Nam) loop
1315
1316 -- For each interpretation of the first expression, we only
1317 -- add the interpretation if every other expression in the
1318 -- case expression alternatives has a compatible type.
1319
1320 Alt := Next (First (Alternatives (N)));
1321 while Present (Alt) loop
1322 exit when not Has_Compatible_Type (Expression (Alt), It.Typ);
1323 Next (Alt);
1324 end loop;
1325
1326 if No (Alt) then
1327 Add_One_Interp (N, It.Typ, It.Typ);
1328 end if;
1329
1330 Get_Next_Interp (I, It);
1331 end loop;
1332 end;
1333 end if;
1334
1335 Exp_Btype := Base_Type (Exp_Type);
1336
1337 -- The expression must be of a discrete type which must be determinable
1338 -- independently of the context in which the expression occurs, but
1339 -- using the fact that the expression must be of a discrete type.
1340 -- Moreover, the type this expression must not be a character literal
1341 -- (which is always ambiguous).
1342
1343 -- If error already reported by Resolve, nothing more to do
1344
1345 if Exp_Btype = Any_Discrete
1346 or else Exp_Btype = Any_Type
1347 then
1348 return;
1349
1350 elsif Exp_Btype = Any_Character then
1351 Error_Msg_N
1352 ("character literal as case expression is ambiguous", Expr);
1353 return;
1354 end if;
1355
1356 -- If the case expression is a formal object of mode in out, then
1357 -- treat it as having a nonstatic subtype by forcing use of the base
1358 -- type (which has to get passed to Check_Case_Choices below). Also
1359 -- use base type when the case expression is parenthesized.
1360
1361 if Paren_Count (Expr) > 0
1362 or else (Is_Entity_Name (Expr)
1363 and then Ekind (Entity (Expr)) = E_Generic_In_Out_Parameter)
1364 then
1365 Exp_Type := Exp_Btype;
1366 end if;
1367
1368 -- Call instantiated Analyze_Choices which does the rest of the work
1369
1370 Analyze_Choices (N, Exp_Type, Dont_Care, Others_Present);
1371
1372 if Exp_Type = Universal_Integer and then not Others_Present then
1373 Error_Msg_N
1374 ("case on universal integer requires OTHERS choice", Expr);
1375 end if;
1376 end Analyze_Case_Expression;
1377
1378 ---------------------------
1379 -- Analyze_Comparison_Op --
1380 ---------------------------
1381
1382 procedure Analyze_Comparison_Op (N : Node_Id) is
1383 L : constant Node_Id := Left_Opnd (N);
1384 R : constant Node_Id := Right_Opnd (N);
1385 Op_Id : Entity_Id := Entity (N);
1386
1387 begin
1388 Set_Etype (N, Any_Type);
1389 Candidate_Type := Empty;
1390
1391 Analyze_Expression (L);
1392 Analyze_Expression (R);
1393
1394 if Present (Op_Id) then
1395 if Ekind (Op_Id) = E_Operator then
1396 Find_Comparison_Types (L, R, Op_Id, N);
1397 else
1398 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1399 end if;
1400
1401 if Is_Overloaded (L) then
1402 Set_Etype (L, Intersect_Types (L, R));
1403 end if;
1404
1405 else
1406 Op_Id := Get_Name_Entity_Id (Chars (N));
1407 while Present (Op_Id) loop
1408 if Ekind (Op_Id) = E_Operator then
1409 Find_Comparison_Types (L, R, Op_Id, N);
1410 else
1411 Analyze_User_Defined_Binary_Op (N, Op_Id);
1412 end if;
1413
1414 Op_Id := Homonym (Op_Id);
1415 end loop;
1416 end if;
1417
1418 Operator_Check (N);
1419 end Analyze_Comparison_Op;
1420
1421 ---------------------------
1422 -- Analyze_Concatenation --
1423 ---------------------------
1424
1425 procedure Analyze_Concatenation (N : Node_Id) is
1426
1427 -- We wish to avoid deep recursion, because concatenations are often
1428 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1429 -- operands nonrecursively until we find something that is not a
1430 -- concatenation (A in this case), or has already been analyzed. We
1431 -- analyze that, and then walk back up the tree following Parent
1432 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1433 -- work at each level. The Parent pointers allow us to avoid recursion,
1434 -- and thus avoid running out of memory.
1435
1436 NN : Node_Id := N;
1437 L : Node_Id;
1438
1439 begin
1440 Candidate_Type := Empty;
1441
1442 -- The following code is equivalent to:
1443
1444 -- Set_Etype (N, Any_Type);
1445 -- Analyze_Expression (Left_Opnd (N));
1446 -- Analyze_Concatenation_Rest (N);
1447
1448 -- where the Analyze_Expression call recurses back here if the left
1449 -- operand is a concatenation.
1450
1451 -- Walk down left operands
1452
1453 loop
1454 Set_Etype (NN, Any_Type);
1455 L := Left_Opnd (NN);
1456 exit when Nkind (L) /= N_Op_Concat or else Analyzed (L);
1457 NN := L;
1458 end loop;
1459
1460 -- Now (given the above example) NN is A&B and L is A
1461
1462 -- First analyze L ...
1463
1464 Analyze_Expression (L);
1465
1466 -- ... then walk NN back up until we reach N (where we started), calling
1467 -- Analyze_Concatenation_Rest along the way.
1468
1469 loop
1470 Analyze_Concatenation_Rest (NN);
1471 exit when NN = N;
1472 NN := Parent (NN);
1473 end loop;
1474 end Analyze_Concatenation;
1475
1476 --------------------------------
1477 -- Analyze_Concatenation_Rest --
1478 --------------------------------
1479
1480 -- If the only one-dimensional array type in scope is String,
1481 -- this is the resulting type of the operation. Otherwise there
1482 -- will be a concatenation operation defined for each user-defined
1483 -- one-dimensional array.
1484
1485 procedure Analyze_Concatenation_Rest (N : Node_Id) is
1486 L : constant Node_Id := Left_Opnd (N);
1487 R : constant Node_Id := Right_Opnd (N);
1488 Op_Id : Entity_Id := Entity (N);
1489 LT : Entity_Id;
1490 RT : Entity_Id;
1491
1492 begin
1493 Analyze_Expression (R);
1494
1495 -- If the entity is present, the node appears in an instance, and
1496 -- denotes a predefined concatenation operation. The resulting type is
1497 -- obtained from the arguments when possible. If the arguments are
1498 -- aggregates, the array type and the concatenation type must be
1499 -- visible.
1500
1501 if Present (Op_Id) then
1502 if Ekind (Op_Id) = E_Operator then
1503 LT := Base_Type (Etype (L));
1504 RT := Base_Type (Etype (R));
1505
1506 if Is_Array_Type (LT)
1507 and then (RT = LT or else RT = Base_Type (Component_Type (LT)))
1508 then
1509 Add_One_Interp (N, Op_Id, LT);
1510
1511 elsif Is_Array_Type (RT)
1512 and then LT = Base_Type (Component_Type (RT))
1513 then
1514 Add_One_Interp (N, Op_Id, RT);
1515
1516 -- If one operand is a string type or a user-defined array type,
1517 -- and the other is a literal, result is of the specific type.
1518
1519 elsif
1520 (Root_Type (LT) = Standard_String
1521 or else Scope (LT) /= Standard_Standard)
1522 and then Etype (R) = Any_String
1523 then
1524 Add_One_Interp (N, Op_Id, LT);
1525
1526 elsif
1527 (Root_Type (RT) = Standard_String
1528 or else Scope (RT) /= Standard_Standard)
1529 and then Etype (L) = Any_String
1530 then
1531 Add_One_Interp (N, Op_Id, RT);
1532
1533 elsif not Is_Generic_Type (Etype (Op_Id)) then
1534 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1535
1536 else
1537 -- Type and its operations must be visible
1538
1539 Set_Entity (N, Empty);
1540 Analyze_Concatenation (N);
1541 end if;
1542
1543 else
1544 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1545 end if;
1546
1547 else
1548 Op_Id := Get_Name_Entity_Id (Name_Op_Concat);
1549 while Present (Op_Id) loop
1550 if Ekind (Op_Id) = E_Operator then
1551
1552 -- Do not consider operators declared in dead code, they can
1553 -- not be part of the resolution.
1554
1555 if Is_Eliminated (Op_Id) then
1556 null;
1557 else
1558 Find_Concatenation_Types (L, R, Op_Id, N);
1559 end if;
1560
1561 else
1562 Analyze_User_Defined_Binary_Op (N, Op_Id);
1563 end if;
1564
1565 Op_Id := Homonym (Op_Id);
1566 end loop;
1567 end if;
1568
1569 Operator_Check (N);
1570 end Analyze_Concatenation_Rest;
1571
1572 -------------------------
1573 -- Analyze_Equality_Op --
1574 -------------------------
1575
1576 procedure Analyze_Equality_Op (N : Node_Id) is
1577 Loc : constant Source_Ptr := Sloc (N);
1578 L : constant Node_Id := Left_Opnd (N);
1579 R : constant Node_Id := Right_Opnd (N);
1580 Op_Id : Entity_Id;
1581
1582 begin
1583 Set_Etype (N, Any_Type);
1584 Candidate_Type := Empty;
1585
1586 Analyze_Expression (L);
1587 Analyze_Expression (R);
1588
1589 -- If the entity is set, the node is a generic instance with a non-local
1590 -- reference to the predefined operator or to a user-defined function.
1591 -- It can also be an inequality that is expanded into the negation of a
1592 -- call to a user-defined equality operator.
1593
1594 -- For the predefined case, the result is Boolean, regardless of the
1595 -- type of the operands. The operands may even be limited, if they are
1596 -- generic actuals. If they are overloaded, label the left argument with
1597 -- the common type that must be present, or with the type of the formal
1598 -- of the user-defined function.
1599
1600 if Present (Entity (N)) then
1601 Op_Id := Entity (N);
1602
1603 if Ekind (Op_Id) = E_Operator then
1604 Add_One_Interp (N, Op_Id, Standard_Boolean);
1605 else
1606 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1607 end if;
1608
1609 if Is_Overloaded (L) then
1610 if Ekind (Op_Id) = E_Operator then
1611 Set_Etype (L, Intersect_Types (L, R));
1612 else
1613 Set_Etype (L, Etype (First_Formal (Op_Id)));
1614 end if;
1615 end if;
1616
1617 else
1618 Op_Id := Get_Name_Entity_Id (Chars (N));
1619 while Present (Op_Id) loop
1620 if Ekind (Op_Id) = E_Operator then
1621 Find_Equality_Types (L, R, Op_Id, N);
1622 else
1623 Analyze_User_Defined_Binary_Op (N, Op_Id);
1624 end if;
1625
1626 Op_Id := Homonym (Op_Id);
1627 end loop;
1628 end if;
1629
1630 -- If there was no match, and the operator is inequality, this may
1631 -- be a case where inequality has not been made explicit, as for
1632 -- tagged types. Analyze the node as the negation of an equality
1633 -- operation. This cannot be done earlier, because before analysis
1634 -- we cannot rule out the presence of an explicit inequality.
1635
1636 if Etype (N) = Any_Type
1637 and then Nkind (N) = N_Op_Ne
1638 then
1639 Op_Id := Get_Name_Entity_Id (Name_Op_Eq);
1640 while Present (Op_Id) loop
1641 if Ekind (Op_Id) = E_Operator then
1642 Find_Equality_Types (L, R, Op_Id, N);
1643 else
1644 Analyze_User_Defined_Binary_Op (N, Op_Id);
1645 end if;
1646
1647 Op_Id := Homonym (Op_Id);
1648 end loop;
1649
1650 if Etype (N) /= Any_Type then
1651 Op_Id := Entity (N);
1652
1653 Rewrite (N,
1654 Make_Op_Not (Loc,
1655 Right_Opnd =>
1656 Make_Op_Eq (Loc,
1657 Left_Opnd => Left_Opnd (N),
1658 Right_Opnd => Right_Opnd (N))));
1659
1660 Set_Entity (Right_Opnd (N), Op_Id);
1661 Analyze (N);
1662 end if;
1663 end if;
1664
1665 Operator_Check (N);
1666 end Analyze_Equality_Op;
1667
1668 ----------------------------------
1669 -- Analyze_Explicit_Dereference --
1670 ----------------------------------
1671
1672 procedure Analyze_Explicit_Dereference (N : Node_Id) is
1673 Loc : constant Source_Ptr := Sloc (N);
1674 P : constant Node_Id := Prefix (N);
1675 T : Entity_Id;
1676 I : Interp_Index;
1677 It : Interp;
1678 New_N : Node_Id;
1679
1680 function Is_Function_Type return Boolean;
1681 -- Check whether node may be interpreted as an implicit function call
1682
1683 ----------------------
1684 -- Is_Function_Type --
1685 ----------------------
1686
1687 function Is_Function_Type return Boolean is
1688 I : Interp_Index;
1689 It : Interp;
1690
1691 begin
1692 if not Is_Overloaded (N) then
1693 return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type
1694 and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type;
1695
1696 else
1697 Get_First_Interp (N, I, It);
1698 while Present (It.Nam) loop
1699 if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type
1700 or else Etype (Base_Type (It.Typ)) = Standard_Void_Type
1701 then
1702 return False;
1703 end if;
1704
1705 Get_Next_Interp (I, It);
1706 end loop;
1707
1708 return True;
1709 end if;
1710 end Is_Function_Type;
1711
1712 -- Start of processing for Analyze_Explicit_Dereference
1713
1714 begin
1715 -- If source node, check SPARK restriction. We guard this with the
1716 -- source node check, because ???
1717
1718 if Comes_From_Source (N) then
1719 Check_SPARK_Restriction ("explicit dereference is not allowed", N);
1720 end if;
1721
1722 -- In formal verification mode, keep track of all reads and writes
1723 -- through explicit dereferences.
1724
1725 if Alfa_Mode then
1726 Alfa.Generate_Dereference (N);
1727 end if;
1728
1729 Analyze (P);
1730 Set_Etype (N, Any_Type);
1731
1732 -- Test for remote access to subprogram type, and if so return
1733 -- after rewriting the original tree.
1734
1735 if Remote_AST_E_Dereference (P) then
1736 return;
1737 end if;
1738
1739 -- Normal processing for other than remote access to subprogram type
1740
1741 if not Is_Overloaded (P) then
1742 if Is_Access_Type (Etype (P)) then
1743
1744 -- Set the Etype. We need to go through Is_For_Access_Subtypes to
1745 -- avoid other problems caused by the Private_Subtype and it is
1746 -- safe to go to the Base_Type because this is the same as
1747 -- converting the access value to its Base_Type.
1748
1749 declare
1750 DT : Entity_Id := Designated_Type (Etype (P));
1751
1752 begin
1753 if Ekind (DT) = E_Private_Subtype
1754 and then Is_For_Access_Subtype (DT)
1755 then
1756 DT := Base_Type (DT);
1757 end if;
1758
1759 -- An explicit dereference is a legal occurrence of an
1760 -- incomplete type imported through a limited_with clause,
1761 -- if the full view is visible.
1762
1763 if From_With_Type (DT)
1764 and then not From_With_Type (Scope (DT))
1765 and then
1766 (Is_Immediately_Visible (Scope (DT))
1767 or else
1768 (Is_Child_Unit (Scope (DT))
1769 and then Is_Visible_Child_Unit (Scope (DT))))
1770 then
1771 Set_Etype (N, Available_View (DT));
1772
1773 else
1774 Set_Etype (N, DT);
1775 end if;
1776 end;
1777
1778 elsif Etype (P) /= Any_Type then
1779 Error_Msg_N ("prefix of dereference must be an access type", N);
1780 return;
1781 end if;
1782
1783 else
1784 Get_First_Interp (P, I, It);
1785 while Present (It.Nam) loop
1786 T := It.Typ;
1787
1788 if Is_Access_Type (T) then
1789 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
1790 end if;
1791
1792 Get_Next_Interp (I, It);
1793 end loop;
1794
1795 -- Error if no interpretation of the prefix has an access type
1796
1797 if Etype (N) = Any_Type then
1798 Error_Msg_N
1799 ("access type required in prefix of explicit dereference", P);
1800 Set_Etype (N, Any_Type);
1801 return;
1802 end if;
1803 end if;
1804
1805 if Is_Function_Type
1806 and then Nkind (Parent (N)) /= N_Indexed_Component
1807
1808 and then (Nkind (Parent (N)) /= N_Function_Call
1809 or else N /= Name (Parent (N)))
1810
1811 and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement
1812 or else N /= Name (Parent (N)))
1813
1814 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
1815 and then (Nkind (Parent (N)) /= N_Attribute_Reference
1816 or else
1817 (Attribute_Name (Parent (N)) /= Name_Address
1818 and then
1819 Attribute_Name (Parent (N)) /= Name_Access))
1820 then
1821 -- Name is a function call with no actuals, in a context that
1822 -- requires deproceduring (including as an actual in an enclosing
1823 -- function or procedure call). There are some pathological cases
1824 -- where the prefix might include functions that return access to
1825 -- subprograms and others that return a regular type. Disambiguation
1826 -- of those has to take place in Resolve.
1827
1828 New_N :=
1829 Make_Function_Call (Loc,
1830 Name => Make_Explicit_Dereference (Loc, P),
1831 Parameter_Associations => New_List);
1832
1833 -- If the prefix is overloaded, remove operations that have formals,
1834 -- we know that this is a parameterless call.
1835
1836 if Is_Overloaded (P) then
1837 Get_First_Interp (P, I, It);
1838 while Present (It.Nam) loop
1839 T := It.Typ;
1840
1841 if No (First_Formal (Base_Type (Designated_Type (T)))) then
1842 Set_Etype (P, T);
1843 else
1844 Remove_Interp (I);
1845 end if;
1846
1847 Get_Next_Interp (I, It);
1848 end loop;
1849 end if;
1850
1851 Rewrite (N, New_N);
1852 Analyze (N);
1853
1854 elsif not Is_Function_Type
1855 and then Is_Overloaded (N)
1856 then
1857 -- The prefix may include access to subprograms and other access
1858 -- types. If the context selects the interpretation that is a
1859 -- function call (not a procedure call) we cannot rewrite the node
1860 -- yet, but we include the result of the call interpretation.
1861
1862 Get_First_Interp (N, I, It);
1863 while Present (It.Nam) loop
1864 if Ekind (Base_Type (It.Typ)) = E_Subprogram_Type
1865 and then Etype (Base_Type (It.Typ)) /= Standard_Void_Type
1866 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
1867 then
1868 Add_One_Interp (N, Etype (It.Typ), Etype (It.Typ));
1869 end if;
1870
1871 Get_Next_Interp (I, It);
1872 end loop;
1873 end if;
1874
1875 -- A value of remote access-to-class-wide must not be dereferenced
1876 -- (RM E.2.2(16)).
1877
1878 Validate_Remote_Access_To_Class_Wide_Type (N);
1879 end Analyze_Explicit_Dereference;
1880
1881 ------------------------
1882 -- Analyze_Expression --
1883 ------------------------
1884
1885 procedure Analyze_Expression (N : Node_Id) is
1886 begin
1887 Analyze (N);
1888 Check_Parameterless_Call (N);
1889 end Analyze_Expression;
1890
1891 -------------------------------------
1892 -- Analyze_Expression_With_Actions --
1893 -------------------------------------
1894
1895 procedure Analyze_Expression_With_Actions (N : Node_Id) is
1896 A : Node_Id;
1897
1898 begin
1899 A := First (Actions (N));
1900 loop
1901 Analyze (A);
1902 Next (A);
1903 exit when No (A);
1904 end loop;
1905
1906 Analyze_Expression (Expression (N));
1907 Set_Etype (N, Etype (Expression (N)));
1908 end Analyze_Expression_With_Actions;
1909
1910 ---------------------------
1911 -- Analyze_If_Expression --
1912 ---------------------------
1913
1914 procedure Analyze_If_Expression (N : Node_Id) is
1915 Condition : constant Node_Id := First (Expressions (N));
1916 Then_Expr : constant Node_Id := Next (Condition);
1917 Else_Expr : Node_Id;
1918
1919 begin
1920 -- Defend against error of missing expressions from previous error
1921
1922 if No (Then_Expr) then
1923 Check_Error_Detected;
1924 return;
1925 end if;
1926
1927 Check_SPARK_Restriction ("if expression is not allowed", N);
1928
1929 Else_Expr := Next (Then_Expr);
1930
1931 if Comes_From_Source (N) then
1932 Check_Compiler_Unit (N);
1933 end if;
1934
1935 Analyze_Expression (Condition);
1936 Analyze_Expression (Then_Expr);
1937
1938 if Present (Else_Expr) then
1939 Analyze_Expression (Else_Expr);
1940 end if;
1941
1942 -- If then expression not overloaded, then that decides the type
1943
1944 if not Is_Overloaded (Then_Expr) then
1945 Set_Etype (N, Etype (Then_Expr));
1946
1947 -- Case where then expression is overloaded
1948
1949 else
1950 declare
1951 I : Interp_Index;
1952 It : Interp;
1953
1954 begin
1955 Set_Etype (N, Any_Type);
1956
1957 -- Shouldn't the following statement be down in the ELSE of the
1958 -- following loop? ???
1959
1960 Get_First_Interp (Then_Expr, I, It);
1961
1962 -- if no Else_Expression the conditional must be boolean
1963
1964 if No (Else_Expr) then
1965 Set_Etype (N, Standard_Boolean);
1966
1967 -- Else_Expression Present. For each possible intepretation of
1968 -- the Then_Expression, add it only if the Else_Expression has
1969 -- a compatible type.
1970
1971 else
1972 while Present (It.Nam) loop
1973 if Has_Compatible_Type (Else_Expr, It.Typ) then
1974 Add_One_Interp (N, It.Typ, It.Typ);
1975 end if;
1976
1977 Get_Next_Interp (I, It);
1978 end loop;
1979 end if;
1980 end;
1981 end if;
1982 end Analyze_If_Expression;
1983
1984 ------------------------------------
1985 -- Analyze_Indexed_Component_Form --
1986 ------------------------------------
1987
1988 procedure Analyze_Indexed_Component_Form (N : Node_Id) is
1989 P : constant Node_Id := Prefix (N);
1990 Exprs : constant List_Id := Expressions (N);
1991 Exp : Node_Id;
1992 P_T : Entity_Id;
1993 E : Node_Id;
1994 U_N : Entity_Id;
1995
1996 procedure Process_Function_Call;
1997 -- Prefix in indexed component form is an overloadable entity,
1998 -- so the node is a function call. Reformat it as such.
1999
2000 procedure Process_Indexed_Component;
2001 -- Prefix in indexed component form is actually an indexed component.
2002 -- This routine processes it, knowing that the prefix is already
2003 -- resolved.
2004
2005 procedure Process_Indexed_Component_Or_Slice;
2006 -- An indexed component with a single index may designate a slice if
2007 -- the index is a subtype mark. This routine disambiguates these two
2008 -- cases by resolving the prefix to see if it is a subtype mark.
2009
2010 procedure Process_Overloaded_Indexed_Component;
2011 -- If the prefix of an indexed component is overloaded, the proper
2012 -- interpretation is selected by the index types and the context.
2013
2014 ---------------------------
2015 -- Process_Function_Call --
2016 ---------------------------
2017
2018 procedure Process_Function_Call is
2019 Actual : Node_Id;
2020
2021 begin
2022 Change_Node (N, N_Function_Call);
2023 Set_Name (N, P);
2024 Set_Parameter_Associations (N, Exprs);
2025
2026 -- Analyze actuals prior to analyzing the call itself
2027
2028 Actual := First (Parameter_Associations (N));
2029 while Present (Actual) loop
2030 Analyze (Actual);
2031 Check_Parameterless_Call (Actual);
2032
2033 -- Move to next actual. Note that we use Next, not Next_Actual
2034 -- here. The reason for this is a bit subtle. If a function call
2035 -- includes named associations, the parser recognizes the node as
2036 -- a call, and it is analyzed as such. If all associations are
2037 -- positional, the parser builds an indexed_component node, and
2038 -- it is only after analysis of the prefix that the construct
2039 -- is recognized as a call, in which case Process_Function_Call
2040 -- rewrites the node and analyzes the actuals. If the list of
2041 -- actuals is malformed, the parser may leave the node as an
2042 -- indexed component (despite the presence of named associations).
2043 -- The iterator Next_Actual is equivalent to Next if the list is
2044 -- positional, but follows the normalized chain of actuals when
2045 -- named associations are present. In this case normalization has
2046 -- not taken place, and actuals remain unanalyzed, which leads to
2047 -- subsequent crashes or loops if there is an attempt to continue
2048 -- analysis of the program.
2049
2050 Next (Actual);
2051 end loop;
2052
2053 Analyze_Call (N);
2054 end Process_Function_Call;
2055
2056 -------------------------------
2057 -- Process_Indexed_Component --
2058 -------------------------------
2059
2060 procedure Process_Indexed_Component is
2061 Exp : Node_Id;
2062 Array_Type : Entity_Id;
2063 Index : Node_Id;
2064 Pent : Entity_Id := Empty;
2065
2066 begin
2067 Exp := First (Exprs);
2068
2069 if Is_Overloaded (P) then
2070 Process_Overloaded_Indexed_Component;
2071
2072 else
2073 Array_Type := Etype (P);
2074
2075 if Is_Entity_Name (P) then
2076 Pent := Entity (P);
2077 elsif Nkind (P) = N_Selected_Component
2078 and then Is_Entity_Name (Selector_Name (P))
2079 then
2080 Pent := Entity (Selector_Name (P));
2081 end if;
2082
2083 -- Prefix must be appropriate for an array type, taking into
2084 -- account a possible implicit dereference.
2085
2086 if Is_Access_Type (Array_Type) then
2087 Error_Msg_NW
2088 (Warn_On_Dereference, "?d?implicit dereference", N);
2089 Array_Type := Process_Implicit_Dereference_Prefix (Pent, P);
2090 end if;
2091
2092 if Is_Array_Type (Array_Type) then
2093 null;
2094
2095 elsif Present (Pent) and then Ekind (Pent) = E_Entry_Family then
2096 Analyze (Exp);
2097 Set_Etype (N, Any_Type);
2098
2099 if not Has_Compatible_Type
2100 (Exp, Entry_Index_Type (Pent))
2101 then
2102 Error_Msg_N ("invalid index type in entry name", N);
2103
2104 elsif Present (Next (Exp)) then
2105 Error_Msg_N ("too many subscripts in entry reference", N);
2106
2107 else
2108 Set_Etype (N, Etype (P));
2109 end if;
2110
2111 return;
2112
2113 elsif Is_Record_Type (Array_Type)
2114 and then Remote_AST_I_Dereference (P)
2115 then
2116 return;
2117
2118 elsif Try_Container_Indexing (N, P, Exprs) then
2119 return;
2120
2121 elsif Array_Type = Any_Type then
2122 Set_Etype (N, Any_Type);
2123
2124 -- In most cases the analysis of the prefix will have emitted
2125 -- an error already, but if the prefix may be interpreted as a
2126 -- call in prefixed notation, the report is left to the caller.
2127 -- To prevent cascaded errors, report only if no previous ones.
2128
2129 if Serious_Errors_Detected = 0 then
2130 Error_Msg_N ("invalid prefix in indexed component", P);
2131
2132 if Nkind (P) = N_Expanded_Name then
2133 Error_Msg_NE ("\& is not visible", P, Selector_Name (P));
2134 end if;
2135 end if;
2136
2137 return;
2138
2139 -- Here we definitely have a bad indexing
2140
2141 else
2142 if Nkind (Parent (N)) = N_Requeue_Statement
2143 and then Present (Pent) and then Ekind (Pent) = E_Entry
2144 then
2145 Error_Msg_N
2146 ("REQUEUE does not permit parameters", First (Exprs));
2147
2148 elsif Is_Entity_Name (P)
2149 and then Etype (P) = Standard_Void_Type
2150 then
2151 Error_Msg_NE ("incorrect use of&", P, Entity (P));
2152
2153 else
2154 Error_Msg_N ("array type required in indexed component", P);
2155 end if;
2156
2157 Set_Etype (N, Any_Type);
2158 return;
2159 end if;
2160
2161 Index := First_Index (Array_Type);
2162 while Present (Index) and then Present (Exp) loop
2163 if not Has_Compatible_Type (Exp, Etype (Index)) then
2164 Wrong_Type (Exp, Etype (Index));
2165 Set_Etype (N, Any_Type);
2166 return;
2167 end if;
2168
2169 Next_Index (Index);
2170 Next (Exp);
2171 end loop;
2172
2173 Set_Etype (N, Component_Type (Array_Type));
2174 Check_Implicit_Dereference (N, Etype (N));
2175
2176 if Present (Index) then
2177 Error_Msg_N
2178 ("too few subscripts in array reference", First (Exprs));
2179
2180 elsif Present (Exp) then
2181 Error_Msg_N ("too many subscripts in array reference", Exp);
2182 end if;
2183 end if;
2184 end Process_Indexed_Component;
2185
2186 ----------------------------------------
2187 -- Process_Indexed_Component_Or_Slice --
2188 ----------------------------------------
2189
2190 procedure Process_Indexed_Component_Or_Slice is
2191 begin
2192 Exp := First (Exprs);
2193 while Present (Exp) loop
2194 Analyze_Expression (Exp);
2195 Next (Exp);
2196 end loop;
2197
2198 Exp := First (Exprs);
2199
2200 -- If one index is present, and it is a subtype name, then the
2201 -- node denotes a slice (note that the case of an explicit range
2202 -- for a slice was already built as an N_Slice node in the first
2203 -- place, so that case is not handled here).
2204
2205 -- We use a replace rather than a rewrite here because this is one
2206 -- of the cases in which the tree built by the parser is plain wrong.
2207
2208 if No (Next (Exp))
2209 and then Is_Entity_Name (Exp)
2210 and then Is_Type (Entity (Exp))
2211 then
2212 Replace (N,
2213 Make_Slice (Sloc (N),
2214 Prefix => P,
2215 Discrete_Range => New_Copy (Exp)));
2216 Analyze (N);
2217
2218 -- Otherwise (more than one index present, or single index is not
2219 -- a subtype name), then we have the indexed component case.
2220
2221 else
2222 Process_Indexed_Component;
2223 end if;
2224 end Process_Indexed_Component_Or_Slice;
2225
2226 ------------------------------------------
2227 -- Process_Overloaded_Indexed_Component --
2228 ------------------------------------------
2229
2230 procedure Process_Overloaded_Indexed_Component is
2231 Exp : Node_Id;
2232 I : Interp_Index;
2233 It : Interp;
2234 Typ : Entity_Id;
2235 Index : Node_Id;
2236 Found : Boolean;
2237
2238 begin
2239 Set_Etype (N, Any_Type);
2240
2241 Get_First_Interp (P, I, It);
2242 while Present (It.Nam) loop
2243 Typ := It.Typ;
2244
2245 if Is_Access_Type (Typ) then
2246 Typ := Designated_Type (Typ);
2247 Error_Msg_NW
2248 (Warn_On_Dereference, "?d?implicit dereference", N);
2249 end if;
2250
2251 if Is_Array_Type (Typ) then
2252
2253 -- Got a candidate: verify that index types are compatible
2254
2255 Index := First_Index (Typ);
2256 Found := True;
2257 Exp := First (Exprs);
2258 while Present (Index) and then Present (Exp) loop
2259 if Has_Compatible_Type (Exp, Etype (Index)) then
2260 null;
2261 else
2262 Found := False;
2263 Remove_Interp (I);
2264 exit;
2265 end if;
2266
2267 Next_Index (Index);
2268 Next (Exp);
2269 end loop;
2270
2271 if Found and then No (Index) and then No (Exp) then
2272 declare
2273 CT : constant Entity_Id :=
2274 Base_Type (Component_Type (Typ));
2275 begin
2276 Add_One_Interp (N, CT, CT);
2277 Check_Implicit_Dereference (N, CT);
2278 end;
2279 end if;
2280
2281 elsif Try_Container_Indexing (N, P, Exprs) then
2282 return;
2283
2284 end if;
2285
2286 Get_Next_Interp (I, It);
2287 end loop;
2288
2289 if Etype (N) = Any_Type then
2290 Error_Msg_N ("no legal interpretation for indexed component", N);
2291 Set_Is_Overloaded (N, False);
2292 end if;
2293
2294 End_Interp_List;
2295 end Process_Overloaded_Indexed_Component;
2296
2297 -- Start of processing for Analyze_Indexed_Component_Form
2298
2299 begin
2300 -- Get name of array, function or type
2301
2302 Analyze (P);
2303
2304 if Nkind (N) in N_Subprogram_Call then
2305
2306 -- If P is an explicit dereference whose prefix is of a
2307 -- remote access-to-subprogram type, then N has already
2308 -- been rewritten as a subprogram call and analyzed.
2309
2310 return;
2311 end if;
2312
2313 pragma Assert (Nkind (N) = N_Indexed_Component);
2314
2315 P_T := Base_Type (Etype (P));
2316
2317 if Is_Entity_Name (P) and then Present (Entity (P)) then
2318 U_N := Entity (P);
2319
2320 if Is_Type (U_N) then
2321
2322 -- Reformat node as a type conversion
2323
2324 E := Remove_Head (Exprs);
2325
2326 if Present (First (Exprs)) then
2327 Error_Msg_N
2328 ("argument of type conversion must be single expression", N);
2329 end if;
2330
2331 Change_Node (N, N_Type_Conversion);
2332 Set_Subtype_Mark (N, P);
2333 Set_Etype (N, U_N);
2334 Set_Expression (N, E);
2335
2336 -- After changing the node, call for the specific Analysis
2337 -- routine directly, to avoid a double call to the expander.
2338
2339 Analyze_Type_Conversion (N);
2340 return;
2341 end if;
2342
2343 if Is_Overloadable (U_N) then
2344 Process_Function_Call;
2345
2346 elsif Ekind (Etype (P)) = E_Subprogram_Type
2347 or else (Is_Access_Type (Etype (P))
2348 and then
2349 Ekind (Designated_Type (Etype (P))) =
2350 E_Subprogram_Type)
2351 then
2352 -- Call to access_to-subprogram with possible implicit dereference
2353
2354 Process_Function_Call;
2355
2356 elsif Is_Generic_Subprogram (U_N) then
2357
2358 -- A common beginner's (or C++ templates fan) error
2359
2360 Error_Msg_N ("generic subprogram cannot be called", N);
2361 Set_Etype (N, Any_Type);
2362 return;
2363
2364 else
2365 Process_Indexed_Component_Or_Slice;
2366 end if;
2367
2368 -- If not an entity name, prefix is an expression that may denote
2369 -- an array or an access-to-subprogram.
2370
2371 else
2372 if Ekind (P_T) = E_Subprogram_Type
2373 or else (Is_Access_Type (P_T)
2374 and then
2375 Ekind (Designated_Type (P_T)) = E_Subprogram_Type)
2376 then
2377 Process_Function_Call;
2378
2379 elsif Nkind (P) = N_Selected_Component
2380 and then Is_Overloadable (Entity (Selector_Name (P)))
2381 then
2382 Process_Function_Call;
2383
2384 else
2385 -- Indexed component, slice, or a call to a member of a family
2386 -- entry, which will be converted to an entry call later.
2387
2388 Process_Indexed_Component_Or_Slice;
2389 end if;
2390 end if;
2391
2392 Analyze_Dimension (N);
2393 end Analyze_Indexed_Component_Form;
2394
2395 ------------------------
2396 -- Analyze_Logical_Op --
2397 ------------------------
2398
2399 procedure Analyze_Logical_Op (N : Node_Id) is
2400 L : constant Node_Id := Left_Opnd (N);
2401 R : constant Node_Id := Right_Opnd (N);
2402 Op_Id : Entity_Id := Entity (N);
2403
2404 begin
2405 Set_Etype (N, Any_Type);
2406 Candidate_Type := Empty;
2407
2408 Analyze_Expression (L);
2409 Analyze_Expression (R);
2410
2411 if Present (Op_Id) then
2412
2413 if Ekind (Op_Id) = E_Operator then
2414 Find_Boolean_Types (L, R, Op_Id, N);
2415 else
2416 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2417 end if;
2418
2419 else
2420 Op_Id := Get_Name_Entity_Id (Chars (N));
2421 while Present (Op_Id) loop
2422 if Ekind (Op_Id) = E_Operator then
2423 Find_Boolean_Types (L, R, Op_Id, N);
2424 else
2425 Analyze_User_Defined_Binary_Op (N, Op_Id);
2426 end if;
2427
2428 Op_Id := Homonym (Op_Id);
2429 end loop;
2430 end if;
2431
2432 Operator_Check (N);
2433 end Analyze_Logical_Op;
2434
2435 ---------------------------
2436 -- Analyze_Membership_Op --
2437 ---------------------------
2438
2439 procedure Analyze_Membership_Op (N : Node_Id) is
2440 Loc : constant Source_Ptr := Sloc (N);
2441 L : constant Node_Id := Left_Opnd (N);
2442 R : constant Node_Id := Right_Opnd (N);
2443
2444 Index : Interp_Index;
2445 It : Interp;
2446 Found : Boolean := False;
2447 I_F : Interp_Index;
2448 T_F : Entity_Id;
2449
2450 procedure Try_One_Interp (T1 : Entity_Id);
2451 -- Routine to try one proposed interpretation. Note that the context
2452 -- of the operation plays no role in resolving the arguments, so that
2453 -- if there is more than one interpretation of the operands that is
2454 -- compatible with a membership test, the operation is ambiguous.
2455
2456 --------------------
2457 -- Try_One_Interp --
2458 --------------------
2459
2460 procedure Try_One_Interp (T1 : Entity_Id) is
2461 begin
2462 if Has_Compatible_Type (R, T1) then
2463 if Found
2464 and then Base_Type (T1) /= Base_Type (T_F)
2465 then
2466 It := Disambiguate (L, I_F, Index, Any_Type);
2467
2468 if It = No_Interp then
2469 Ambiguous_Operands (N);
2470 Set_Etype (L, Any_Type);
2471 return;
2472
2473 else
2474 T_F := It.Typ;
2475 end if;
2476
2477 else
2478 Found := True;
2479 T_F := T1;
2480 I_F := Index;
2481 end if;
2482
2483 Set_Etype (L, T_F);
2484 end if;
2485 end Try_One_Interp;
2486
2487 procedure Analyze_Set_Membership;
2488 -- If a set of alternatives is present, analyze each and find the
2489 -- common type to which they must all resolve.
2490
2491 ----------------------------
2492 -- Analyze_Set_Membership --
2493 ----------------------------
2494
2495 procedure Analyze_Set_Membership is
2496 Alt : Node_Id;
2497 Index : Interp_Index;
2498 It : Interp;
2499 Candidate_Interps : Node_Id;
2500 Common_Type : Entity_Id := Empty;
2501
2502 begin
2503 Analyze (L);
2504 Candidate_Interps := L;
2505
2506 if not Is_Overloaded (L) then
2507 Common_Type := Etype (L);
2508
2509 Alt := First (Alternatives (N));
2510 while Present (Alt) loop
2511 Analyze (Alt);
2512
2513 if not Has_Compatible_Type (Alt, Common_Type) then
2514 Wrong_Type (Alt, Common_Type);
2515 end if;
2516
2517 Next (Alt);
2518 end loop;
2519
2520 else
2521 Alt := First (Alternatives (N));
2522 while Present (Alt) loop
2523 Analyze (Alt);
2524 if not Is_Overloaded (Alt) then
2525 Common_Type := Etype (Alt);
2526
2527 else
2528 Get_First_Interp (Alt, Index, It);
2529 while Present (It.Typ) loop
2530 if not
2531 Has_Compatible_Type (Candidate_Interps, It.Typ)
2532 then
2533 Remove_Interp (Index);
2534 end if;
2535
2536 Get_Next_Interp (Index, It);
2537 end loop;
2538
2539 Get_First_Interp (Alt, Index, It);
2540
2541 if No (It.Typ) then
2542 Error_Msg_N ("alternative has no legal type", Alt);
2543 return;
2544 end if;
2545
2546 -- If alternative is not overloaded, we have a unique type
2547 -- for all of them.
2548
2549 Set_Etype (Alt, It.Typ);
2550 Get_Next_Interp (Index, It);
2551
2552 if No (It.Typ) then
2553 Set_Is_Overloaded (Alt, False);
2554 Common_Type := Etype (Alt);
2555 end if;
2556
2557 Candidate_Interps := Alt;
2558 end if;
2559
2560 Next (Alt);
2561 end loop;
2562 end if;
2563
2564 Set_Etype (N, Standard_Boolean);
2565
2566 if Present (Common_Type) then
2567 Set_Etype (L, Common_Type);
2568 Set_Is_Overloaded (L, False);
2569
2570 else
2571 Error_Msg_N ("cannot resolve membership operation", N);
2572 end if;
2573 end Analyze_Set_Membership;
2574
2575 -- Start of processing for Analyze_Membership_Op
2576
2577 begin
2578 Analyze_Expression (L);
2579
2580 if No (R)
2581 and then Ada_Version >= Ada_2012
2582 then
2583 Analyze_Set_Membership;
2584 return;
2585 end if;
2586
2587 if Nkind (R) = N_Range
2588 or else (Nkind (R) = N_Attribute_Reference
2589 and then Attribute_Name (R) = Name_Range)
2590 then
2591 Analyze (R);
2592
2593 if not Is_Overloaded (L) then
2594 Try_One_Interp (Etype (L));
2595
2596 else
2597 Get_First_Interp (L, Index, It);
2598 while Present (It.Typ) loop
2599 Try_One_Interp (It.Typ);
2600 Get_Next_Interp (Index, It);
2601 end loop;
2602 end if;
2603
2604 -- If not a range, it can be a subtype mark, or else it is a degenerate
2605 -- membership test with a singleton value, i.e. a test for equality,
2606 -- if the types are compatible.
2607
2608 else
2609 Analyze (R);
2610
2611 if Is_Entity_Name (R)
2612 and then Is_Type (Entity (R))
2613 then
2614 Find_Type (R);
2615 Check_Fully_Declared (Entity (R), R);
2616
2617 elsif Ada_Version >= Ada_2012
2618 and then Has_Compatible_Type (R, Etype (L))
2619 then
2620 if Nkind (N) = N_In then
2621 Rewrite (N,
2622 Make_Op_Eq (Loc,
2623 Left_Opnd => L,
2624 Right_Opnd => R));
2625 else
2626 Rewrite (N,
2627 Make_Op_Ne (Loc,
2628 Left_Opnd => L,
2629 Right_Opnd => R));
2630 end if;
2631
2632 Analyze (N);
2633 return;
2634
2635 else
2636 -- In all versions of the language, if we reach this point there
2637 -- is a previous error that will be diagnosed below.
2638
2639 Find_Type (R);
2640 end if;
2641 end if;
2642
2643 -- Compatibility between expression and subtype mark or range is
2644 -- checked during resolution. The result of the operation is Boolean
2645 -- in any case.
2646
2647 Set_Etype (N, Standard_Boolean);
2648
2649 if Comes_From_Source (N)
2650 and then Present (Right_Opnd (N))
2651 and then Is_CPP_Class (Etype (Etype (Right_Opnd (N))))
2652 then
2653 Error_Msg_N ("membership test not applicable to cpp-class types", N);
2654 end if;
2655 end Analyze_Membership_Op;
2656
2657 -----------------
2658 -- Analyze_Mod --
2659 -----------------
2660
2661 procedure Analyze_Mod (N : Node_Id) is
2662 begin
2663 -- A special warning check, if we have an expression of the form:
2664 -- expr mod 2 * literal
2665 -- where literal is 64 or less, then probably what was meant was
2666 -- expr mod 2 ** literal
2667 -- so issue an appropriate warning.
2668
2669 if Warn_On_Suspicious_Modulus_Value
2670 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
2671 and then Intval (Right_Opnd (N)) = Uint_2
2672 and then Nkind (Parent (N)) = N_Op_Multiply
2673 and then Nkind (Right_Opnd (Parent (N))) = N_Integer_Literal
2674 and then Intval (Right_Opnd (Parent (N))) <= Uint_64
2675 then
2676 Error_Msg_N
2677 ("suspicious MOD value, was '*'* intended'??M?", Parent (N));
2678 end if;
2679
2680 -- Remaining processing is same as for other arithmetic operators
2681
2682 Analyze_Arithmetic_Op (N);
2683 end Analyze_Mod;
2684
2685 ----------------------
2686 -- Analyze_Negation --
2687 ----------------------
2688
2689 procedure Analyze_Negation (N : Node_Id) is
2690 R : constant Node_Id := Right_Opnd (N);
2691 Op_Id : Entity_Id := Entity (N);
2692
2693 begin
2694 Set_Etype (N, Any_Type);
2695 Candidate_Type := Empty;
2696
2697 Analyze_Expression (R);
2698
2699 if Present (Op_Id) then
2700 if Ekind (Op_Id) = E_Operator then
2701 Find_Negation_Types (R, Op_Id, N);
2702 else
2703 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2704 end if;
2705
2706 else
2707 Op_Id := Get_Name_Entity_Id (Chars (N));
2708 while Present (Op_Id) loop
2709 if Ekind (Op_Id) = E_Operator then
2710 Find_Negation_Types (R, Op_Id, N);
2711 else
2712 Analyze_User_Defined_Unary_Op (N, Op_Id);
2713 end if;
2714
2715 Op_Id := Homonym (Op_Id);
2716 end loop;
2717 end if;
2718
2719 Operator_Check (N);
2720 end Analyze_Negation;
2721
2722 ------------------
2723 -- Analyze_Null --
2724 ------------------
2725
2726 procedure Analyze_Null (N : Node_Id) is
2727 begin
2728 Check_SPARK_Restriction ("null is not allowed", N);
2729
2730 Set_Etype (N, Any_Access);
2731 end Analyze_Null;
2732
2733 ----------------------
2734 -- Analyze_One_Call --
2735 ----------------------
2736
2737 procedure Analyze_One_Call
2738 (N : Node_Id;
2739 Nam : Entity_Id;
2740 Report : Boolean;
2741 Success : out Boolean;
2742 Skip_First : Boolean := False)
2743 is
2744 Actuals : constant List_Id := Parameter_Associations (N);
2745 Prev_T : constant Entity_Id := Etype (N);
2746
2747 Must_Skip : constant Boolean := Skip_First
2748 or else Nkind (Original_Node (N)) = N_Selected_Component
2749 or else
2750 (Nkind (Original_Node (N)) = N_Indexed_Component
2751 and then Nkind (Prefix (Original_Node (N)))
2752 = N_Selected_Component);
2753 -- The first formal must be omitted from the match when trying to find
2754 -- a primitive operation that is a possible interpretation, and also
2755 -- after the call has been rewritten, because the corresponding actual
2756 -- is already known to be compatible, and because this may be an
2757 -- indexing of a call with default parameters.
2758
2759 Formal : Entity_Id;
2760 Actual : Node_Id;
2761 Is_Indexed : Boolean := False;
2762 Is_Indirect : Boolean := False;
2763 Subp_Type : constant Entity_Id := Etype (Nam);
2764 Norm_OK : Boolean;
2765
2766 function Operator_Hidden_By (Fun : Entity_Id) return Boolean;
2767 -- There may be a user-defined operator that hides the current
2768 -- interpretation. We must check for this independently of the
2769 -- analysis of the call with the user-defined operation, because
2770 -- the parameter names may be wrong and yet the hiding takes place.
2771 -- This fixes a problem with ACATS test B34014O.
2772 --
2773 -- When the type Address is a visible integer type, and the DEC
2774 -- system extension is visible, the predefined operator may be
2775 -- hidden as well, by one of the address operations in auxdec.
2776 -- Finally, The abstract operations on address do not hide the
2777 -- predefined operator (this is the purpose of making them abstract).
2778
2779 procedure Indicate_Name_And_Type;
2780 -- If candidate interpretation matches, indicate name and type of
2781 -- result on call node.
2782
2783 ----------------------------
2784 -- Indicate_Name_And_Type --
2785 ----------------------------
2786
2787 procedure Indicate_Name_And_Type is
2788 begin
2789 Add_One_Interp (N, Nam, Etype (Nam));
2790 Check_Implicit_Dereference (N, Etype (Nam));
2791 Success := True;
2792
2793 -- If the prefix of the call is a name, indicate the entity
2794 -- being called. If it is not a name, it is an expression that
2795 -- denotes an access to subprogram or else an entry or family. In
2796 -- the latter case, the name is a selected component, and the entity
2797 -- being called is noted on the selector.
2798
2799 if not Is_Type (Nam) then
2800 if Is_Entity_Name (Name (N)) then
2801 Set_Entity (Name (N), Nam);
2802
2803 elsif Nkind (Name (N)) = N_Selected_Component then
2804 Set_Entity (Selector_Name (Name (N)), Nam);
2805 end if;
2806 end if;
2807
2808 if Debug_Flag_E and not Report then
2809 Write_Str (" Overloaded call ");
2810 Write_Int (Int (N));
2811 Write_Str (" compatible with ");
2812 Write_Int (Int (Nam));
2813 Write_Eol;
2814 end if;
2815 end Indicate_Name_And_Type;
2816
2817 ------------------------
2818 -- Operator_Hidden_By --
2819 ------------------------
2820
2821 function Operator_Hidden_By (Fun : Entity_Id) return Boolean is
2822 Act1 : constant Node_Id := First_Actual (N);
2823 Act2 : constant Node_Id := Next_Actual (Act1);
2824 Form1 : constant Entity_Id := First_Formal (Fun);
2825 Form2 : constant Entity_Id := Next_Formal (Form1);
2826
2827 begin
2828 if Ekind (Fun) /= E_Function
2829 or else Is_Abstract_Subprogram (Fun)
2830 then
2831 return False;
2832
2833 elsif not Has_Compatible_Type (Act1, Etype (Form1)) then
2834 return False;
2835
2836 elsif Present (Form2) then
2837 if
2838 No (Act2) or else not Has_Compatible_Type (Act2, Etype (Form2))
2839 then
2840 return False;
2841 end if;
2842
2843 elsif Present (Act2) then
2844 return False;
2845 end if;
2846
2847 -- Now we know that the arity of the operator matches the function,
2848 -- and the function call is a valid interpretation. The function
2849 -- hides the operator if it has the right signature, or if one of
2850 -- its operands is a non-abstract operation on Address when this is
2851 -- a visible integer type.
2852
2853 return Hides_Op (Fun, Nam)
2854 or else Is_Descendent_Of_Address (Etype (Form1))
2855 or else
2856 (Present (Form2)
2857 and then Is_Descendent_Of_Address (Etype (Form2)));
2858 end Operator_Hidden_By;
2859
2860 -- Start of processing for Analyze_One_Call
2861
2862 begin
2863 Success := False;
2864
2865 -- If the subprogram has no formals or if all the formals have defaults,
2866 -- and the return type is an array type, the node may denote an indexing
2867 -- of the result of a parameterless call. In Ada 2005, the subprogram
2868 -- may have one non-defaulted formal, and the call may have been written
2869 -- in prefix notation, so that the rebuilt parameter list has more than
2870 -- one actual.
2871
2872 if not Is_Overloadable (Nam)
2873 and then Ekind (Nam) /= E_Subprogram_Type
2874 and then Ekind (Nam) /= E_Entry_Family
2875 then
2876 return;
2877 end if;
2878
2879 -- An indexing requires at least one actual
2880
2881 if not Is_Empty_List (Actuals)
2882 and then
2883 (Needs_No_Actuals (Nam)
2884 or else
2885 (Needs_One_Actual (Nam)
2886 and then Present (Next_Actual (First (Actuals)))))
2887 then
2888 if Is_Array_Type (Subp_Type) then
2889 Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type, Must_Skip);
2890
2891 elsif Is_Access_Type (Subp_Type)
2892 and then Is_Array_Type (Designated_Type (Subp_Type))
2893 then
2894 Is_Indexed :=
2895 Try_Indexed_Call
2896 (N, Nam, Designated_Type (Subp_Type), Must_Skip);
2897
2898 -- The prefix can also be a parameterless function that returns an
2899 -- access to subprogram, in which case this is an indirect call.
2900 -- If this succeeds, an explicit dereference is added later on,
2901 -- in Analyze_Call or Resolve_Call.
2902
2903 elsif Is_Access_Type (Subp_Type)
2904 and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type
2905 then
2906 Is_Indirect := Try_Indirect_Call (N, Nam, Subp_Type);
2907 end if;
2908
2909 end if;
2910
2911 -- If the call has been transformed into a slice, it is of the form
2912 -- F (Subtype) where F is parameterless. The node has been rewritten in
2913 -- Try_Indexed_Call and there is nothing else to do.
2914
2915 if Is_Indexed
2916 and then Nkind (N) = N_Slice
2917 then
2918 return;
2919 end if;
2920
2921 Normalize_Actuals
2922 (N, Nam, (Report and not Is_Indexed and not Is_Indirect), Norm_OK);
2923
2924 if not Norm_OK then
2925
2926 -- If an indirect call is a possible interpretation, indicate
2927 -- success to the caller.
2928
2929 if Is_Indirect then
2930 Success := True;
2931 return;
2932
2933 -- Mismatch in number or names of parameters
2934
2935 elsif Debug_Flag_E then
2936 Write_Str (" normalization fails in call ");
2937 Write_Int (Int (N));
2938 Write_Str (" with subprogram ");
2939 Write_Int (Int (Nam));
2940 Write_Eol;
2941 end if;
2942
2943 -- If the context expects a function call, discard any interpretation
2944 -- that is a procedure. If the node is not overloaded, leave as is for
2945 -- better error reporting when type mismatch is found.
2946
2947 elsif Nkind (N) = N_Function_Call
2948 and then Is_Overloaded (Name (N))
2949 and then Ekind (Nam) = E_Procedure
2950 then
2951 return;
2952
2953 -- Ditto for function calls in a procedure context
2954
2955 elsif Nkind (N) = N_Procedure_Call_Statement
2956 and then Is_Overloaded (Name (N))
2957 and then Etype (Nam) /= Standard_Void_Type
2958 then
2959 return;
2960
2961 elsif No (Actuals) then
2962
2963 -- If Normalize succeeds, then there are default parameters for
2964 -- all formals.
2965
2966 Indicate_Name_And_Type;
2967
2968 elsif Ekind (Nam) = E_Operator then
2969 if Nkind (N) = N_Procedure_Call_Statement then
2970 return;
2971 end if;
2972
2973 -- This can occur when the prefix of the call is an operator
2974 -- name or an expanded name whose selector is an operator name.
2975
2976 Analyze_Operator_Call (N, Nam);
2977
2978 if Etype (N) /= Prev_T then
2979
2980 -- Check that operator is not hidden by a function interpretation
2981
2982 if Is_Overloaded (Name (N)) then
2983 declare
2984 I : Interp_Index;
2985 It : Interp;
2986
2987 begin
2988 Get_First_Interp (Name (N), I, It);
2989 while Present (It.Nam) loop
2990 if Operator_Hidden_By (It.Nam) then
2991 Set_Etype (N, Prev_T);
2992 return;
2993 end if;
2994
2995 Get_Next_Interp (I, It);
2996 end loop;
2997 end;
2998 end if;
2999
3000 -- If operator matches formals, record its name on the call.
3001 -- If the operator is overloaded, Resolve will select the
3002 -- correct one from the list of interpretations. The call
3003 -- node itself carries the first candidate.
3004
3005 Set_Entity (Name (N), Nam);
3006 Success := True;
3007
3008 elsif Report and then Etype (N) = Any_Type then
3009 Error_Msg_N ("incompatible arguments for operator", N);
3010 end if;
3011
3012 else
3013 -- Normalize_Actuals has chained the named associations in the
3014 -- correct order of the formals.
3015
3016 Actual := First_Actual (N);
3017 Formal := First_Formal (Nam);
3018
3019 -- If we are analyzing a call rewritten from object notation, skip
3020 -- first actual, which may be rewritten later as an explicit
3021 -- dereference.
3022
3023 if Must_Skip then
3024 Next_Actual (Actual);
3025 Next_Formal (Formal);
3026 end if;
3027
3028 while Present (Actual) and then Present (Formal) loop
3029 if Nkind (Parent (Actual)) /= N_Parameter_Association
3030 or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal)
3031 then
3032 -- The actual can be compatible with the formal, but we must
3033 -- also check that the context is not an address type that is
3034 -- visibly an integer type, as is the case in VMS_64. In this
3035 -- case the use of literals is illegal, except in the body of
3036 -- descendents of system, where arithmetic operations on
3037 -- address are of course used.
3038
3039 if Has_Compatible_Type (Actual, Etype (Formal))
3040 and then
3041 (Etype (Actual) /= Universal_Integer
3042 or else not Is_Descendent_Of_Address (Etype (Formal))
3043 or else
3044 Is_Predefined_File_Name
3045 (Unit_File_Name (Get_Source_Unit (N))))
3046 then
3047 Next_Actual (Actual);
3048 Next_Formal (Formal);
3049
3050 else
3051 if Debug_Flag_E then
3052 Write_Str (" type checking fails in call ");
3053 Write_Int (Int (N));
3054 Write_Str (" with formal ");
3055 Write_Int (Int (Formal));
3056 Write_Str (" in subprogram ");
3057 Write_Int (Int (Nam));
3058 Write_Eol;
3059 end if;
3060
3061 if Report and not Is_Indexed and not Is_Indirect then
3062
3063 -- Ada 2005 (AI-251): Complete the error notification
3064 -- to help new Ada 2005 users.
3065
3066 if Is_Class_Wide_Type (Etype (Formal))
3067 and then Is_Interface (Etype (Etype (Formal)))
3068 and then not Interface_Present_In_Ancestor
3069 (Typ => Etype (Actual),
3070 Iface => Etype (Etype (Formal)))
3071 then
3072 Error_Msg_NE
3073 ("(Ada 2005) does not implement interface }",
3074 Actual, Etype (Etype (Formal)));
3075 end if;
3076
3077 Wrong_Type (Actual, Etype (Formal));
3078
3079 if Nkind (Actual) = N_Op_Eq
3080 and then Nkind (Left_Opnd (Actual)) = N_Identifier
3081 then
3082 Formal := First_Formal (Nam);
3083 while Present (Formal) loop
3084 if Chars (Left_Opnd (Actual)) = Chars (Formal) then
3085 Error_Msg_N -- CODEFIX
3086 ("possible misspelling of `='>`!", Actual);
3087 exit;
3088 end if;
3089
3090 Next_Formal (Formal);
3091 end loop;
3092 end if;
3093
3094 if All_Errors_Mode then
3095 Error_Msg_Sloc := Sloc (Nam);
3096
3097 if Etype (Formal) = Any_Type then
3098 Error_Msg_N
3099 ("there is no legal actual parameter", Actual);
3100 end if;
3101
3102 if Is_Overloadable (Nam)
3103 and then Present (Alias (Nam))
3104 and then not Comes_From_Source (Nam)
3105 then
3106 Error_Msg_NE
3107 ("\\ =='> in call to inherited operation & #!",
3108 Actual, Nam);
3109
3110 elsif Ekind (Nam) = E_Subprogram_Type then
3111 declare
3112 Access_To_Subprogram_Typ :
3113 constant Entity_Id :=
3114 Defining_Identifier
3115 (Associated_Node_For_Itype (Nam));
3116 begin
3117 Error_Msg_NE (
3118 "\\ =='> in call to dereference of &#!",
3119 Actual, Access_To_Subprogram_Typ);
3120 end;
3121
3122 else
3123 Error_Msg_NE
3124 ("\\ =='> in call to &#!", Actual, Nam);
3125
3126 end if;
3127 end if;
3128 end if;
3129
3130 return;
3131 end if;
3132
3133 else
3134 -- Normalize_Actuals has verified that a default value exists
3135 -- for this formal. Current actual names a subsequent formal.
3136
3137 Next_Formal (Formal);
3138 end if;
3139 end loop;
3140
3141 -- On exit, all actuals match
3142
3143 Indicate_Name_And_Type;
3144 end if;
3145 end Analyze_One_Call;
3146
3147 ---------------------------
3148 -- Analyze_Operator_Call --
3149 ---------------------------
3150
3151 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is
3152 Op_Name : constant Name_Id := Chars (Op_Id);
3153 Act1 : constant Node_Id := First_Actual (N);
3154 Act2 : constant Node_Id := Next_Actual (Act1);
3155
3156 begin
3157 -- Binary operator case
3158
3159 if Present (Act2) then
3160
3161 -- If more than two operands, then not binary operator after all
3162
3163 if Present (Next_Actual (Act2)) then
3164 return;
3165 end if;
3166
3167 -- Otherwise action depends on operator
3168
3169 case Op_Name is
3170 when Name_Op_Add |
3171 Name_Op_Subtract |
3172 Name_Op_Multiply |
3173 Name_Op_Divide |
3174 Name_Op_Mod |
3175 Name_Op_Rem |
3176 Name_Op_Expon =>
3177 Find_Arithmetic_Types (Act1, Act2, Op_Id, N);
3178
3179 when Name_Op_And |
3180 Name_Op_Or |
3181 Name_Op_Xor =>
3182 Find_Boolean_Types (Act1, Act2, Op_Id, N);
3183
3184 when Name_Op_Lt |
3185 Name_Op_Le |
3186 Name_Op_Gt |
3187 Name_Op_Ge =>
3188 Find_Comparison_Types (Act1, Act2, Op_Id, N);
3189
3190 when Name_Op_Eq |
3191 Name_Op_Ne =>
3192 Find_Equality_Types (Act1, Act2, Op_Id, N);
3193
3194 when Name_Op_Concat =>
3195 Find_Concatenation_Types (Act1, Act2, Op_Id, N);
3196
3197 -- Is this when others, or should it be an abort???
3198
3199 when others =>
3200 null;
3201 end case;
3202
3203 -- Unary operator case
3204
3205 else
3206 case Op_Name is
3207 when Name_Op_Subtract |
3208 Name_Op_Add |
3209 Name_Op_Abs =>
3210 Find_Unary_Types (Act1, Op_Id, N);
3211
3212 when Name_Op_Not =>
3213 Find_Negation_Types (Act1, Op_Id, N);
3214
3215 -- Is this when others correct, or should it be an abort???
3216
3217 when others =>
3218 null;
3219 end case;
3220 end if;
3221 end Analyze_Operator_Call;
3222
3223 -------------------------------------------
3224 -- Analyze_Overloaded_Selected_Component --
3225 -------------------------------------------
3226
3227 procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is
3228 Nam : constant Node_Id := Prefix (N);
3229 Sel : constant Node_Id := Selector_Name (N);
3230 Comp : Entity_Id;
3231 I : Interp_Index;
3232 It : Interp;
3233 T : Entity_Id;
3234
3235 begin
3236 Set_Etype (Sel, Any_Type);
3237
3238 Get_First_Interp (Nam, I, It);
3239 while Present (It.Typ) loop
3240 if Is_Access_Type (It.Typ) then
3241 T := Designated_Type (It.Typ);
3242 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
3243 else
3244 T := It.Typ;
3245 end if;
3246
3247 -- Locate the component. For a private prefix the selector can denote
3248 -- a discriminant.
3249
3250 if Is_Record_Type (T) or else Is_Private_Type (T) then
3251
3252 -- If the prefix is a class-wide type, the visible components are
3253 -- those of the base type.
3254
3255 if Is_Class_Wide_Type (T) then
3256 T := Etype (T);
3257 end if;
3258
3259 Comp := First_Entity (T);
3260 while Present (Comp) loop
3261 if Chars (Comp) = Chars (Sel)
3262 and then Is_Visible_Component (Comp)
3263 then
3264
3265 -- AI05-105: if the context is an object renaming with
3266 -- an anonymous access type, the expected type of the
3267 -- object must be anonymous. This is a name resolution rule.
3268
3269 if Nkind (Parent (N)) /= N_Object_Renaming_Declaration
3270 or else No (Access_Definition (Parent (N)))
3271 or else Ekind (Etype (Comp)) = E_Anonymous_Access_Type
3272 or else
3273 Ekind (Etype (Comp)) = E_Anonymous_Access_Subprogram_Type
3274 then
3275 Set_Entity (Sel, Comp);
3276 Set_Etype (Sel, Etype (Comp));
3277 Add_One_Interp (N, Etype (Comp), Etype (Comp));
3278 Check_Implicit_Dereference (N, Etype (Comp));
3279
3280 -- This also specifies a candidate to resolve the name.
3281 -- Further overloading will be resolved from context.
3282 -- The selector name itself does not carry overloading
3283 -- information.
3284
3285 Set_Etype (Nam, It.Typ);
3286
3287 else
3288 -- Named access type in the context of a renaming
3289 -- declaration with an access definition. Remove
3290 -- inapplicable candidate.
3291
3292 Remove_Interp (I);
3293 end if;
3294 end if;
3295
3296 Next_Entity (Comp);
3297 end loop;
3298
3299 elsif Is_Concurrent_Type (T) then
3300 Comp := First_Entity (T);
3301 while Present (Comp)
3302 and then Comp /= First_Private_Entity (T)
3303 loop
3304 if Chars (Comp) = Chars (Sel) then
3305 if Is_Overloadable (Comp) then
3306 Add_One_Interp (Sel, Comp, Etype (Comp));
3307 else
3308 Set_Entity_With_Style_Check (Sel, Comp);
3309 Generate_Reference (Comp, Sel);
3310 end if;
3311
3312 Set_Etype (Sel, Etype (Comp));
3313 Set_Etype (N, Etype (Comp));
3314 Set_Etype (Nam, It.Typ);
3315
3316 -- For access type case, introduce explicit dereference for
3317 -- more uniform treatment of entry calls. Do this only once
3318 -- if several interpretations yield an access type.
3319
3320 if Is_Access_Type (Etype (Nam))
3321 and then Nkind (Nam) /= N_Explicit_Dereference
3322 then
3323 Insert_Explicit_Dereference (Nam);
3324 Error_Msg_NW
3325 (Warn_On_Dereference, "?d?implicit dereference", N);
3326 end if;
3327 end if;
3328
3329 Next_Entity (Comp);
3330 end loop;
3331
3332 Set_Is_Overloaded (N, Is_Overloaded (Sel));
3333 end if;
3334
3335 Get_Next_Interp (I, It);
3336 end loop;
3337
3338 if Etype (N) = Any_Type
3339 and then not Try_Object_Operation (N)
3340 then
3341 Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel);
3342 Set_Entity (Sel, Any_Id);
3343 Set_Etype (Sel, Any_Type);
3344 end if;
3345 end Analyze_Overloaded_Selected_Component;
3346
3347 ----------------------------------
3348 -- Analyze_Qualified_Expression --
3349 ----------------------------------
3350
3351 procedure Analyze_Qualified_Expression (N : Node_Id) is
3352 Mark : constant Entity_Id := Subtype_Mark (N);
3353 Expr : constant Node_Id := Expression (N);
3354 I : Interp_Index;
3355 It : Interp;
3356 T : Entity_Id;
3357
3358 begin
3359 Analyze_Expression (Expr);
3360
3361 Set_Etype (N, Any_Type);
3362 Find_Type (Mark);
3363 T := Entity (Mark);
3364 Set_Etype (N, T);
3365
3366 if T = Any_Type then
3367 return;
3368 end if;
3369
3370 Check_Fully_Declared (T, N);
3371
3372 -- If expected type is class-wide, check for exact match before
3373 -- expansion, because if the expression is a dispatching call it
3374 -- may be rewritten as explicit dereference with class-wide result.
3375 -- If expression is overloaded, retain only interpretations that
3376 -- will yield exact matches.
3377
3378 if Is_Class_Wide_Type (T) then
3379 if not Is_Overloaded (Expr) then
3380 if Base_Type (Etype (Expr)) /= Base_Type (T) then
3381 if Nkind (Expr) = N_Aggregate then
3382 Error_Msg_N ("type of aggregate cannot be class-wide", Expr);
3383 else
3384 Wrong_Type (Expr, T);
3385 end if;
3386 end if;
3387
3388 else
3389 Get_First_Interp (Expr, I, It);
3390
3391 while Present (It.Nam) loop
3392 if Base_Type (It.Typ) /= Base_Type (T) then
3393 Remove_Interp (I);
3394 end if;
3395
3396 Get_Next_Interp (I, It);
3397 end loop;
3398 end if;
3399 end if;
3400
3401 Set_Etype (N, T);
3402 end Analyze_Qualified_Expression;
3403
3404 -----------------------------------
3405 -- Analyze_Quantified_Expression --
3406 -----------------------------------
3407
3408 procedure Analyze_Quantified_Expression (N : Node_Id) is
3409 QE_Scop : Entity_Id;
3410
3411 function Is_Empty_Range (Typ : Entity_Id) return Boolean;
3412 -- If the iterator is part of a quantified expression, and the range is
3413 -- known to be statically empty, emit a warning and replace expression
3414 -- with its static value. Returns True if the replacement occurs.
3415
3416 --------------------
3417 -- Is_Empty_Range --
3418 --------------------
3419
3420 function Is_Empty_Range (Typ : Entity_Id) return Boolean is
3421 Loc : constant Source_Ptr := Sloc (N);
3422
3423 begin
3424 if Is_Array_Type (Typ)
3425 and then Compile_Time_Known_Bounds (Typ)
3426 and then
3427 (Expr_Value (Type_Low_Bound (Etype (First_Index (Typ)))) >
3428 Expr_Value (Type_High_Bound (Etype (First_Index (Typ)))))
3429 then
3430 Preanalyze_And_Resolve (Condition (N), Standard_Boolean);
3431
3432 if All_Present (N) then
3433 Error_Msg_N
3434 ("??quantified expression with ALL "
3435 & "over a null range has value True", N);
3436 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
3437
3438 else
3439 Error_Msg_N
3440 ("??quantified expression with SOME "
3441 & "over a null range has value False", N);
3442 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
3443 end if;
3444
3445 Analyze (N);
3446 return True;
3447
3448 else
3449 return False;
3450 end if;
3451 end Is_Empty_Range;
3452
3453 -- Start of processing for Analyze_Quantified_Expression
3454
3455 begin
3456 Check_SPARK_Restriction ("quantified expression is not allowed", N);
3457
3458 -- Create a scope to emulate the loop-like behavior of the quantified
3459 -- expression. The scope is needed to provide proper visibility of the
3460 -- loop variable.
3461
3462 QE_Scop := New_Internal_Entity (E_Loop, Current_Scope, Sloc (N), 'L');
3463 Set_Etype (QE_Scop, Standard_Void_Type);
3464 Set_Scope (QE_Scop, Current_Scope);
3465 Set_Parent (QE_Scop, N);
3466
3467 Push_Scope (QE_Scop);
3468
3469 -- All constituents are preanalyzed and resolved to avoid untimely
3470 -- generation of various temporaries and types. Full analysis and
3471 -- expansion is carried out when the quantified expression is
3472 -- transformed into an expression with actions.
3473
3474 if Present (Iterator_Specification (N)) then
3475 Preanalyze (Iterator_Specification (N));
3476
3477 if Is_Entity_Name (Name (Iterator_Specification (N)))
3478 and then Is_Empty_Range (Etype (Name (Iterator_Specification (N))))
3479 then
3480 return;
3481 end if;
3482
3483 else
3484 Preanalyze (Loop_Parameter_Specification (N));
3485 end if;
3486
3487 Preanalyze_And_Resolve (Condition (N), Standard_Boolean);
3488
3489 End_Scope;
3490
3491 Set_Etype (N, Standard_Boolean);
3492 end Analyze_Quantified_Expression;
3493
3494 -------------------
3495 -- Analyze_Range --
3496 -------------------
3497
3498 procedure Analyze_Range (N : Node_Id) is
3499 L : constant Node_Id := Low_Bound (N);
3500 H : constant Node_Id := High_Bound (N);
3501 I1, I2 : Interp_Index;
3502 It1, It2 : Interp;
3503
3504 procedure Check_Common_Type (T1, T2 : Entity_Id);
3505 -- Verify the compatibility of two types, and choose the
3506 -- non universal one if the other is universal.
3507
3508 procedure Check_High_Bound (T : Entity_Id);
3509 -- Test one interpretation of the low bound against all those
3510 -- of the high bound.
3511
3512 procedure Check_Universal_Expression (N : Node_Id);
3513 -- In Ada 83, reject bounds of a universal range that are not literals
3514 -- or entity names.
3515
3516 -----------------------
3517 -- Check_Common_Type --
3518 -----------------------
3519
3520 procedure Check_Common_Type (T1, T2 : Entity_Id) is
3521 begin
3522 if Covers (T1 => T1, T2 => T2)
3523 or else
3524 Covers (T1 => T2, T2 => T1)
3525 then
3526 if T1 = Universal_Integer
3527 or else T1 = Universal_Real
3528 or else T1 = Any_Character
3529 then
3530 Add_One_Interp (N, Base_Type (T2), Base_Type (T2));
3531
3532 elsif T1 = T2 then
3533 Add_One_Interp (N, T1, T1);
3534
3535 else
3536 Add_One_Interp (N, Base_Type (T1), Base_Type (T1));
3537 end if;
3538 end if;
3539 end Check_Common_Type;
3540
3541 ----------------------
3542 -- Check_High_Bound --
3543 ----------------------
3544
3545 procedure Check_High_Bound (T : Entity_Id) is
3546 begin
3547 if not Is_Overloaded (H) then
3548 Check_Common_Type (T, Etype (H));
3549 else
3550 Get_First_Interp (H, I2, It2);
3551 while Present (It2.Typ) loop
3552 Check_Common_Type (T, It2.Typ);
3553 Get_Next_Interp (I2, It2);
3554 end loop;
3555 end if;
3556 end Check_High_Bound;
3557
3558 -----------------------------
3559 -- Is_Universal_Expression --
3560 -----------------------------
3561
3562 procedure Check_Universal_Expression (N : Node_Id) is
3563 begin
3564 if Etype (N) = Universal_Integer
3565 and then Nkind (N) /= N_Integer_Literal
3566 and then not Is_Entity_Name (N)
3567 and then Nkind (N) /= N_Attribute_Reference
3568 then
3569 Error_Msg_N ("illegal bound in discrete range", N);
3570 end if;
3571 end Check_Universal_Expression;
3572
3573 -- Start of processing for Analyze_Range
3574
3575 begin
3576 Set_Etype (N, Any_Type);
3577 Analyze_Expression (L);
3578 Analyze_Expression (H);
3579
3580 if Etype (L) = Any_Type or else Etype (H) = Any_Type then
3581 return;
3582
3583 else
3584 if not Is_Overloaded (L) then
3585 Check_High_Bound (Etype (L));
3586 else
3587 Get_First_Interp (L, I1, It1);
3588 while Present (It1.Typ) loop
3589 Check_High_Bound (It1.Typ);
3590 Get_Next_Interp (I1, It1);
3591 end loop;
3592 end if;
3593
3594 -- If result is Any_Type, then we did not find a compatible pair
3595
3596 if Etype (N) = Any_Type then
3597 Error_Msg_N ("incompatible types in range ", N);
3598 end if;
3599 end if;
3600
3601 if Ada_Version = Ada_83
3602 and then
3603 (Nkind (Parent (N)) = N_Loop_Parameter_Specification
3604 or else Nkind (Parent (N)) = N_Constrained_Array_Definition)
3605 then
3606 Check_Universal_Expression (L);
3607 Check_Universal_Expression (H);
3608 end if;
3609 end Analyze_Range;
3610
3611 -----------------------
3612 -- Analyze_Reference --
3613 -----------------------
3614
3615 procedure Analyze_Reference (N : Node_Id) is
3616 P : constant Node_Id := Prefix (N);
3617 E : Entity_Id;
3618 T : Entity_Id;
3619 Acc_Type : Entity_Id;
3620
3621 begin
3622 Analyze (P);
3623
3624 -- An interesting error check, if we take the 'Reference of an object
3625 -- for which a pragma Atomic or Volatile has been given, and the type
3626 -- of the object is not Atomic or Volatile, then we are in trouble. The
3627 -- problem is that no trace of the atomic/volatile status will remain
3628 -- for the backend to respect when it deals with the resulting pointer,
3629 -- since the pointer type will not be marked atomic (it is a pointer to
3630 -- the base type of the object).
3631
3632 -- It is not clear if that can ever occur, but in case it does, we will
3633 -- generate an error message. Not clear if this message can ever be
3634 -- generated, and pretty clear that it represents a bug if it is, still
3635 -- seems worth checking, except in CodePeer mode where we do not really
3636 -- care and don't want to bother the user.
3637
3638 T := Etype (P);
3639
3640 if Is_Entity_Name (P)
3641 and then Is_Object_Reference (P)
3642 and then not CodePeer_Mode
3643 then
3644 E := Entity (P);
3645 T := Etype (P);
3646
3647 if (Has_Atomic_Components (E)
3648 and then not Has_Atomic_Components (T))
3649 or else
3650 (Has_Volatile_Components (E)
3651 and then not Has_Volatile_Components (T))
3652 or else (Is_Atomic (E) and then not Is_Atomic (T))
3653 or else (Is_Volatile (E) and then not Is_Volatile (T))
3654 then
3655 Error_Msg_N ("cannot take reference to Atomic/Volatile object", N);
3656 end if;
3657 end if;
3658
3659 -- Carry on with normal processing
3660
3661 Acc_Type := Create_Itype (E_Allocator_Type, N);
3662 Set_Etype (Acc_Type, Acc_Type);
3663 Set_Directly_Designated_Type (Acc_Type, Etype (P));
3664 Set_Etype (N, Acc_Type);
3665 end Analyze_Reference;
3666
3667 --------------------------------
3668 -- Analyze_Selected_Component --
3669 --------------------------------
3670
3671 -- Prefix is a record type or a task or protected type. In the latter case,
3672 -- the selector must denote a visible entry.
3673
3674 procedure Analyze_Selected_Component (N : Node_Id) is
3675 Name : constant Node_Id := Prefix (N);
3676 Sel : constant Node_Id := Selector_Name (N);
3677 Act_Decl : Node_Id;
3678 Comp : Entity_Id;
3679 Has_Candidate : Boolean := False;
3680 In_Scope : Boolean;
3681 Parent_N : Node_Id;
3682 Pent : Entity_Id := Empty;
3683 Prefix_Type : Entity_Id;
3684
3685 Type_To_Use : Entity_Id;
3686 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
3687 -- a class-wide type, we use its root type, whose components are
3688 -- present in the class-wide type.
3689
3690 Is_Single_Concurrent_Object : Boolean;
3691 -- Set True if the prefix is a single task or a single protected object
3692
3693 procedure Find_Component_In_Instance (Rec : Entity_Id);
3694 -- In an instance, a component of a private extension may not be visible
3695 -- while it was visible in the generic. Search candidate scope for a
3696 -- component with the proper identifier. This is only done if all other
3697 -- searches have failed. When the match is found (it always will be),
3698 -- the Etype of both N and Sel are set from this component, and the
3699 -- entity of Sel is set to reference this component.
3700
3701 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean;
3702 -- It is known that the parent of N denotes a subprogram call. Comp
3703 -- is an overloadable component of the concurrent type of the prefix.
3704 -- Determine whether all formals of the parent of N and Comp are mode
3705 -- conformant. If the parent node is not analyzed yet it may be an
3706 -- indexed component rather than a function call.
3707
3708 --------------------------------
3709 -- Find_Component_In_Instance --
3710 --------------------------------
3711
3712 procedure Find_Component_In_Instance (Rec : Entity_Id) is
3713 Comp : Entity_Id;
3714
3715 begin
3716 Comp := First_Component (Rec);
3717 while Present (Comp) loop
3718 if Chars (Comp) = Chars (Sel) then
3719 Set_Entity_With_Style_Check (Sel, Comp);
3720 Set_Etype (Sel, Etype (Comp));
3721 Set_Etype (N, Etype (Comp));
3722 return;
3723 end if;
3724
3725 Next_Component (Comp);
3726 end loop;
3727
3728 -- This must succeed because code was legal in the generic
3729
3730 raise Program_Error;
3731 end Find_Component_In_Instance;
3732
3733 ------------------------------
3734 -- Has_Mode_Conformant_Spec --
3735 ------------------------------
3736
3737 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean is
3738 Comp_Param : Entity_Id;
3739 Param : Node_Id;
3740 Param_Typ : Entity_Id;
3741
3742 begin
3743 Comp_Param := First_Formal (Comp);
3744
3745 if Nkind (Parent (N)) = N_Indexed_Component then
3746 Param := First (Expressions (Parent (N)));
3747 else
3748 Param := First (Parameter_Associations (Parent (N)));
3749 end if;
3750
3751 while Present (Comp_Param)
3752 and then Present (Param)
3753 loop
3754 Param_Typ := Find_Parameter_Type (Param);
3755
3756 if Present (Param_Typ)
3757 and then
3758 not Conforming_Types
3759 (Etype (Comp_Param), Param_Typ, Mode_Conformant)
3760 then
3761 return False;
3762 end if;
3763
3764 Next_Formal (Comp_Param);
3765 Next (Param);
3766 end loop;
3767
3768 -- One of the specs has additional formals
3769
3770 if Present (Comp_Param) or else Present (Param) then
3771 return False;
3772 end if;
3773
3774 return True;
3775 end Has_Mode_Conformant_Spec;
3776
3777 -- Start of processing for Analyze_Selected_Component
3778
3779 begin
3780 Set_Etype (N, Any_Type);
3781
3782 if Is_Overloaded (Name) then
3783 Analyze_Overloaded_Selected_Component (N);
3784 return;
3785
3786 elsif Etype (Name) = Any_Type then
3787 Set_Entity (Sel, Any_Id);
3788 Set_Etype (Sel, Any_Type);
3789 return;
3790
3791 else
3792 Prefix_Type := Etype (Name);
3793 end if;
3794
3795 if Is_Access_Type (Prefix_Type) then
3796
3797 -- A RACW object can never be used as prefix of a selected component
3798 -- since that means it is dereferenced without being a controlling
3799 -- operand of a dispatching operation (RM E.2.2(16/1)). Before
3800 -- reporting an error, we must check whether this is actually a
3801 -- dispatching call in prefix form.
3802
3803 if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type)
3804 and then Comes_From_Source (N)
3805 then
3806 if Try_Object_Operation (N) then
3807 return;
3808 else
3809 Error_Msg_N
3810 ("invalid dereference of a remote access-to-class-wide value",
3811 N);
3812 end if;
3813
3814 -- Normal case of selected component applied to access type
3815
3816 else
3817 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
3818
3819 if Is_Entity_Name (Name) then
3820 Pent := Entity (Name);
3821 elsif Nkind (Name) = N_Selected_Component
3822 and then Is_Entity_Name (Selector_Name (Name))
3823 then
3824 Pent := Entity (Selector_Name (Name));
3825 end if;
3826
3827 Prefix_Type := Process_Implicit_Dereference_Prefix (Pent, Name);
3828 end if;
3829
3830 -- If we have an explicit dereference of a remote access-to-class-wide
3831 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
3832 -- have to check for the case of a prefix that is a controlling operand
3833 -- of a prefixed dispatching call, as the dereference is legal in that
3834 -- case. Normally this condition is checked in Validate_Remote_Access_
3835 -- To_Class_Wide_Type, but we have to defer the checking for selected
3836 -- component prefixes because of the prefixed dispatching call case.
3837 -- Note that implicit dereferences are checked for this just above.
3838
3839 elsif Nkind (Name) = N_Explicit_Dereference
3840 and then Is_Remote_Access_To_Class_Wide_Type (Etype (Prefix (Name)))
3841 and then Comes_From_Source (N)
3842 then
3843 if Try_Object_Operation (N) then
3844 return;
3845 else
3846 Error_Msg_N
3847 ("invalid dereference of a remote access-to-class-wide value",
3848 N);
3849 end if;
3850 end if;
3851
3852 -- (Ada 2005): if the prefix is the limited view of a type, and
3853 -- the context already includes the full view, use the full view
3854 -- in what follows, either to retrieve a component of to find
3855 -- a primitive operation. If the prefix is an explicit dereference,
3856 -- set the type of the prefix to reflect this transformation.
3857 -- If the non-limited view is itself an incomplete type, get the
3858 -- full view if available.
3859
3860 if Is_Incomplete_Type (Prefix_Type)
3861 and then From_With_Type (Prefix_Type)
3862 and then Present (Non_Limited_View (Prefix_Type))
3863 then
3864 Prefix_Type := Get_Full_View (Non_Limited_View (Prefix_Type));
3865
3866 if Nkind (N) = N_Explicit_Dereference then
3867 Set_Etype (Prefix (N), Prefix_Type);
3868 end if;
3869
3870 elsif Ekind (Prefix_Type) = E_Class_Wide_Type
3871 and then From_With_Type (Prefix_Type)
3872 and then Present (Non_Limited_View (Etype (Prefix_Type)))
3873 then
3874 Prefix_Type :=
3875 Class_Wide_Type (Non_Limited_View (Etype (Prefix_Type)));
3876
3877 if Nkind (N) = N_Explicit_Dereference then
3878 Set_Etype (Prefix (N), Prefix_Type);
3879 end if;
3880 end if;
3881
3882 if Ekind (Prefix_Type) = E_Private_Subtype then
3883 Prefix_Type := Base_Type (Prefix_Type);
3884 end if;
3885
3886 Type_To_Use := Prefix_Type;
3887
3888 -- For class-wide types, use the entity list of the root type. This
3889 -- indirection is specially important for private extensions because
3890 -- only the root type get switched (not the class-wide type).
3891
3892 if Is_Class_Wide_Type (Prefix_Type) then
3893 Type_To_Use := Root_Type (Prefix_Type);
3894 end if;
3895
3896 -- If the prefix is a single concurrent object, use its name in error
3897 -- messages, rather than that of its anonymous type.
3898
3899 Is_Single_Concurrent_Object :=
3900 Is_Concurrent_Type (Prefix_Type)
3901 and then Is_Internal_Name (Chars (Prefix_Type))
3902 and then not Is_Derived_Type (Prefix_Type)
3903 and then Is_Entity_Name (Name);
3904
3905 Comp := First_Entity (Type_To_Use);
3906
3907 -- If the selector has an original discriminant, the node appears in
3908 -- an instance. Replace the discriminant with the corresponding one
3909 -- in the current discriminated type. For nested generics, this must
3910 -- be done transitively, so note the new original discriminant.
3911
3912 if Nkind (Sel) = N_Identifier
3913 and then In_Instance
3914 and then Present (Original_Discriminant (Sel))
3915 then
3916 Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type);
3917
3918 -- Mark entity before rewriting, for completeness and because
3919 -- subsequent semantic checks might examine the original node.
3920
3921 Set_Entity (Sel, Comp);
3922 Rewrite (Selector_Name (N), New_Occurrence_Of (Comp, Sloc (N)));
3923 Set_Original_Discriminant (Selector_Name (N), Comp);
3924 Set_Etype (N, Etype (Comp));
3925 Check_Implicit_Dereference (N, Etype (Comp));
3926
3927 if Is_Access_Type (Etype (Name)) then
3928 Insert_Explicit_Dereference (Name);
3929 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
3930 end if;
3931
3932 elsif Is_Record_Type (Prefix_Type) then
3933
3934 -- Find component with given name. In an instance, if the node is
3935 -- known as a prefixed call, do not examine components whose
3936 -- visibility may be accidental.
3937
3938 while Present (Comp) and then not Is_Prefixed_Call (N) loop
3939 if Chars (Comp) = Chars (Sel)
3940 and then Is_Visible_Component (Comp, N)
3941 then
3942 Set_Entity_With_Style_Check (Sel, Comp);
3943 Set_Etype (Sel, Etype (Comp));
3944
3945 if Ekind (Comp) = E_Discriminant then
3946 if Is_Unchecked_Union (Base_Type (Prefix_Type)) then
3947 Error_Msg_N
3948 ("cannot reference discriminant of unchecked union",
3949 Sel);
3950 end if;
3951
3952 if Is_Generic_Type (Prefix_Type)
3953 or else
3954 Is_Generic_Type (Root_Type (Prefix_Type))
3955 then
3956 Set_Original_Discriminant (Sel, Comp);
3957 end if;
3958 end if;
3959
3960 -- Resolve the prefix early otherwise it is not possible to
3961 -- build the actual subtype of the component: it may need
3962 -- to duplicate this prefix and duplication is only allowed
3963 -- on fully resolved expressions.
3964
3965 Resolve (Name);
3966
3967 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
3968 -- subtypes in a package specification.
3969 -- Example:
3970
3971 -- limited with Pkg;
3972 -- package Pkg is
3973 -- type Acc_Inc is access Pkg.T;
3974 -- X : Acc_Inc;
3975 -- N : Natural := X.all.Comp; -- ERROR, limited view
3976 -- end Pkg; -- Comp is not visible
3977
3978 if Nkind (Name) = N_Explicit_Dereference
3979 and then From_With_Type (Etype (Prefix (Name)))
3980 and then not Is_Potentially_Use_Visible (Etype (Name))
3981 and then Nkind (Parent (Cunit_Entity (Current_Sem_Unit))) =
3982 N_Package_Specification
3983 then
3984 Error_Msg_NE
3985 ("premature usage of incomplete}", Prefix (Name),
3986 Etype (Prefix (Name)));
3987 end if;
3988
3989 -- We never need an actual subtype for the case of a selection
3990 -- for a indexed component of a non-packed array, since in
3991 -- this case gigi generates all the checks and can find the
3992 -- necessary bounds information.
3993
3994 -- We also do not need an actual subtype for the case of a
3995 -- first, last, length, or range attribute applied to a
3996 -- non-packed array, since gigi can again get the bounds in
3997 -- these cases (gigi cannot handle the packed case, since it
3998 -- has the bounds of the packed array type, not the original
3999 -- bounds of the type). However, if the prefix is itself a
4000 -- selected component, as in a.b.c (i), gigi may regard a.b.c
4001 -- as a dynamic-sized temporary, so we do generate an actual
4002 -- subtype for this case.
4003
4004 Parent_N := Parent (N);
4005
4006 if not Is_Packed (Etype (Comp))
4007 and then
4008 ((Nkind (Parent_N) = N_Indexed_Component
4009 and then Nkind (Name) /= N_Selected_Component)
4010 or else
4011 (Nkind (Parent_N) = N_Attribute_Reference
4012 and then (Attribute_Name (Parent_N) = Name_First
4013 or else
4014 Attribute_Name (Parent_N) = Name_Last
4015 or else
4016 Attribute_Name (Parent_N) = Name_Length
4017 or else
4018 Attribute_Name (Parent_N) = Name_Range)))
4019 then
4020 Set_Etype (N, Etype (Comp));
4021
4022 -- If full analysis is not enabled, we do not generate an
4023 -- actual subtype, because in the absence of expansion
4024 -- reference to a formal of a protected type, for example,
4025 -- will not be properly transformed, and will lead to
4026 -- out-of-scope references in gigi.
4027
4028 -- In all other cases, we currently build an actual subtype.
4029 -- It seems likely that many of these cases can be avoided,
4030 -- but right now, the front end makes direct references to the
4031 -- bounds (e.g. in generating a length check), and if we do
4032 -- not make an actual subtype, we end up getting a direct
4033 -- reference to a discriminant, which will not do.
4034
4035 elsif Full_Analysis then
4036 Act_Decl :=
4037 Build_Actual_Subtype_Of_Component (Etype (Comp), N);
4038 Insert_Action (N, Act_Decl);
4039
4040 if No (Act_Decl) then
4041 Set_Etype (N, Etype (Comp));
4042
4043 else
4044 -- Component type depends on discriminants. Enter the
4045 -- main attributes of the subtype.
4046
4047 declare
4048 Subt : constant Entity_Id :=
4049 Defining_Identifier (Act_Decl);
4050
4051 begin
4052 Set_Etype (Subt, Base_Type (Etype (Comp)));
4053 Set_Ekind (Subt, Ekind (Etype (Comp)));
4054 Set_Etype (N, Subt);
4055 end;
4056 end if;
4057
4058 -- If Full_Analysis not enabled, just set the Etype
4059
4060 else
4061 Set_Etype (N, Etype (Comp));
4062 end if;
4063
4064 Check_Implicit_Dereference (N, Etype (N));
4065 return;
4066 end if;
4067
4068 -- If the prefix is a private extension, check only the visible
4069 -- components of the partial view. This must include the tag,
4070 -- which can appear in expanded code in a tag check.
4071
4072 if Ekind (Type_To_Use) = E_Record_Type_With_Private
4073 and then Chars (Selector_Name (N)) /= Name_uTag
4074 then
4075 exit when Comp = Last_Entity (Type_To_Use);
4076 end if;
4077
4078 Next_Entity (Comp);
4079 end loop;
4080
4081 -- Ada 2005 (AI-252): The selected component can be interpreted as
4082 -- a prefixed view of a subprogram. Depending on the context, this is
4083 -- either a name that can appear in a renaming declaration, or part
4084 -- of an enclosing call given in prefix form.
4085
4086 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
4087 -- selected component should resolve to a name.
4088
4089 if Ada_Version >= Ada_2005
4090 and then Is_Tagged_Type (Prefix_Type)
4091 and then not Is_Concurrent_Type (Prefix_Type)
4092 then
4093 if Nkind (Parent (N)) = N_Generic_Association
4094 or else Nkind (Parent (N)) = N_Requeue_Statement
4095 or else Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
4096 then
4097 if Find_Primitive_Operation (N) then
4098 return;
4099 end if;
4100
4101 elsif Try_Object_Operation (N) then
4102 return;
4103 end if;
4104
4105 -- If the transformation fails, it will be necessary to redo the
4106 -- analysis with all errors enabled, to indicate candidate
4107 -- interpretations and reasons for each failure ???
4108
4109 end if;
4110
4111 elsif Is_Private_Type (Prefix_Type) then
4112
4113 -- Allow access only to discriminants of the type. If the type has
4114 -- no full view, gigi uses the parent type for the components, so we
4115 -- do the same here.
4116
4117 if No (Full_View (Prefix_Type)) then
4118 Type_To_Use := Root_Type (Base_Type (Prefix_Type));
4119 Comp := First_Entity (Type_To_Use);
4120 end if;
4121
4122 while Present (Comp) loop
4123 if Chars (Comp) = Chars (Sel) then
4124 if Ekind (Comp) = E_Discriminant then
4125 Set_Entity_With_Style_Check (Sel, Comp);
4126 Generate_Reference (Comp, Sel);
4127
4128 Set_Etype (Sel, Etype (Comp));
4129 Set_Etype (N, Etype (Comp));
4130 Check_Implicit_Dereference (N, Etype (N));
4131
4132 if Is_Generic_Type (Prefix_Type)
4133 or else Is_Generic_Type (Root_Type (Prefix_Type))
4134 then
4135 Set_Original_Discriminant (Sel, Comp);
4136 end if;
4137
4138 -- Before declaring an error, check whether this is tagged
4139 -- private type and a call to a primitive operation.
4140
4141 elsif Ada_Version >= Ada_2005
4142 and then Is_Tagged_Type (Prefix_Type)
4143 and then Try_Object_Operation (N)
4144 then
4145 return;
4146
4147 else
4148 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4149 Error_Msg_NE ("invisible selector& for }", N, Sel);
4150 Set_Entity (Sel, Any_Id);
4151 Set_Etype (N, Any_Type);
4152 end if;
4153
4154 return;
4155 end if;
4156
4157 Next_Entity (Comp);
4158 end loop;
4159
4160 elsif Is_Concurrent_Type (Prefix_Type) then
4161
4162 -- Find visible operation with given name. For a protected type,
4163 -- the possible candidates are discriminants, entries or protected
4164 -- procedures. For a task type, the set can only include entries or
4165 -- discriminants if the task type is not an enclosing scope. If it
4166 -- is an enclosing scope (e.g. in an inner task) then all entities
4167 -- are visible, but the prefix must denote the enclosing scope, i.e.
4168 -- can only be a direct name or an expanded name.
4169
4170 Set_Etype (Sel, Any_Type);
4171 In_Scope := In_Open_Scopes (Prefix_Type);
4172
4173 while Present (Comp) loop
4174 if Chars (Comp) = Chars (Sel) then
4175 if Is_Overloadable (Comp) then
4176 Add_One_Interp (Sel, Comp, Etype (Comp));
4177
4178 -- If the prefix is tagged, the correct interpretation may
4179 -- lie in the primitive or class-wide operations of the
4180 -- type. Perform a simple conformance check to determine
4181 -- whether Try_Object_Operation should be invoked even if
4182 -- a visible entity is found.
4183
4184 if Is_Tagged_Type (Prefix_Type)
4185 and then
4186 Nkind_In (Parent (N), N_Procedure_Call_Statement,
4187 N_Function_Call,
4188 N_Indexed_Component)
4189 and then Has_Mode_Conformant_Spec (Comp)
4190 then
4191 Has_Candidate := True;
4192 end if;
4193
4194 -- Note: a selected component may not denote a component of a
4195 -- protected type (4.1.3(7)).
4196
4197 elsif Ekind_In (Comp, E_Discriminant, E_Entry_Family)
4198 or else (In_Scope
4199 and then not Is_Protected_Type (Prefix_Type)
4200 and then Is_Entity_Name (Name))
4201 then
4202 Set_Entity_With_Style_Check (Sel, Comp);
4203 Generate_Reference (Comp, Sel);
4204
4205 -- The selector is not overloadable, so we have a candidate
4206 -- interpretation.
4207
4208 Has_Candidate := True;
4209
4210 else
4211 goto Next_Comp;
4212 end if;
4213
4214 Set_Etype (Sel, Etype (Comp));
4215 Set_Etype (N, Etype (Comp));
4216
4217 if Ekind (Comp) = E_Discriminant then
4218 Set_Original_Discriminant (Sel, Comp);
4219 end if;
4220
4221 -- For access type case, introduce explicit dereference for
4222 -- more uniform treatment of entry calls.
4223
4224 if Is_Access_Type (Etype (Name)) then
4225 Insert_Explicit_Dereference (Name);
4226 Error_Msg_NW
4227 (Warn_On_Dereference, "?d?implicit dereference", N);
4228 end if;
4229 end if;
4230
4231 <<Next_Comp>>
4232 Next_Entity (Comp);
4233 exit when not In_Scope
4234 and then
4235 Comp = First_Private_Entity (Base_Type (Prefix_Type));
4236 end loop;
4237
4238 -- If there is no visible entity with the given name or none of the
4239 -- visible entities are plausible interpretations, check whether
4240 -- there is some other primitive operation with that name.
4241
4242 if Ada_Version >= Ada_2005
4243 and then Is_Tagged_Type (Prefix_Type)
4244 then
4245 if (Etype (N) = Any_Type
4246 or else not Has_Candidate)
4247 and then Try_Object_Operation (N)
4248 then
4249 return;
4250
4251 -- If the context is not syntactically a procedure call, it
4252 -- may be a call to a primitive function declared outside of
4253 -- the synchronized type.
4254
4255 -- If the context is a procedure call, there might still be
4256 -- an overloading between an entry and a primitive procedure
4257 -- declared outside of the synchronized type, called in prefix
4258 -- notation. This is harder to disambiguate because in one case
4259 -- the controlling formal is implicit ???
4260
4261 elsif Nkind (Parent (N)) /= N_Procedure_Call_Statement
4262 and then Nkind (Parent (N)) /= N_Indexed_Component
4263 and then Try_Object_Operation (N)
4264 then
4265 return;
4266 end if;
4267
4268 -- Ada 2012 (AI05-0090-1): If we found a candidate of a call to an
4269 -- entry or procedure of a tagged concurrent type we must check
4270 -- if there are class-wide subprograms covering the primitive. If
4271 -- true then Try_Object_Operation reports the error.
4272
4273 if Has_Candidate
4274 and then Is_Concurrent_Type (Prefix_Type)
4275 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
4276
4277 -- Duplicate the call. This is required to avoid problems with
4278 -- the tree transformations performed by Try_Object_Operation.
4279 -- Set properly the parent of the copied call, because it is
4280 -- about to be reanalyzed.
4281
4282 then
4283 declare
4284 Par : constant Node_Id := New_Copy_Tree (Parent (N));
4285
4286 begin
4287 Set_Parent (Par, Parent (Parent (N)));
4288
4289 if Try_Object_Operation
4290 (Sinfo.Name (Par), CW_Test_Only => True)
4291 then
4292 return;
4293 end if;
4294 end;
4295 end if;
4296 end if;
4297
4298 if Etype (N) = Any_Type and then Is_Protected_Type (Prefix_Type) then
4299
4300 -- Case of a prefix of a protected type: selector might denote
4301 -- an invisible private component.
4302
4303 Comp := First_Private_Entity (Base_Type (Prefix_Type));
4304 while Present (Comp) and then Chars (Comp) /= Chars (Sel) loop
4305 Next_Entity (Comp);
4306 end loop;
4307
4308 if Present (Comp) then
4309 if Is_Single_Concurrent_Object then
4310 Error_Msg_Node_2 := Entity (Name);
4311 Error_Msg_NE ("invisible selector& for &", N, Sel);
4312
4313 else
4314 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4315 Error_Msg_NE ("invisible selector& for }", N, Sel);
4316 end if;
4317 return;
4318 end if;
4319 end if;
4320
4321 Set_Is_Overloaded (N, Is_Overloaded (Sel));
4322
4323 else
4324 -- Invalid prefix
4325
4326 Error_Msg_NE ("invalid prefix in selected component&", N, Sel);
4327 end if;
4328
4329 -- If N still has no type, the component is not defined in the prefix
4330
4331 if Etype (N) = Any_Type then
4332
4333 if Is_Single_Concurrent_Object then
4334 Error_Msg_Node_2 := Entity (Name);
4335 Error_Msg_NE ("no selector& for&", N, Sel);
4336
4337 Check_Misspelled_Selector (Type_To_Use, Sel);
4338
4339 elsif Is_Generic_Type (Prefix_Type)
4340 and then Ekind (Prefix_Type) = E_Record_Type_With_Private
4341 and then Prefix_Type /= Etype (Prefix_Type)
4342 and then Is_Record_Type (Etype (Prefix_Type))
4343 then
4344 -- If this is a derived formal type, the parent may have
4345 -- different visibility at this point. Try for an inherited
4346 -- component before reporting an error.
4347
4348 Set_Etype (Prefix (N), Etype (Prefix_Type));
4349 Analyze_Selected_Component (N);
4350 return;
4351
4352 -- Similarly, if this is the actual for a formal derived type, the
4353 -- component inherited from the generic parent may not be visible
4354 -- in the actual, but the selected component is legal.
4355
4356 elsif Ekind (Prefix_Type) = E_Record_Subtype_With_Private
4357 and then Is_Generic_Actual_Type (Prefix_Type)
4358 and then Present (Full_View (Prefix_Type))
4359 then
4360
4361 Find_Component_In_Instance
4362 (Generic_Parent_Type (Parent (Prefix_Type)));
4363 return;
4364
4365 -- Finally, the formal and the actual may be private extensions,
4366 -- but the generic is declared in a child unit of the parent, and
4367 -- an additional step is needed to retrieve the proper scope.
4368
4369 elsif In_Instance
4370 and then Present (Parent_Subtype (Etype (Base_Type (Prefix_Type))))
4371 then
4372 Find_Component_In_Instance
4373 (Parent_Subtype (Etype (Base_Type (Prefix_Type))));
4374 return;
4375
4376 -- Component not found, specialize error message when appropriate
4377
4378 else
4379 if Ekind (Prefix_Type) = E_Record_Subtype then
4380
4381 -- Check whether this is a component of the base type which
4382 -- is absent from a statically constrained subtype. This will
4383 -- raise constraint error at run time, but is not a compile-
4384 -- time error. When the selector is illegal for base type as
4385 -- well fall through and generate a compilation error anyway.
4386
4387 Comp := First_Component (Base_Type (Prefix_Type));
4388 while Present (Comp) loop
4389 if Chars (Comp) = Chars (Sel)
4390 and then Is_Visible_Component (Comp)
4391 then
4392 Set_Entity_With_Style_Check (Sel, Comp);
4393 Generate_Reference (Comp, Sel);
4394 Set_Etype (Sel, Etype (Comp));
4395 Set_Etype (N, Etype (Comp));
4396
4397 -- Emit appropriate message. Gigi will replace the
4398 -- node subsequently with the appropriate Raise.
4399
4400 -- In Alfa mode, this is made into an error to simplify
4401 -- the processing of the formal verification backend.
4402
4403 if Alfa_Mode then
4404 Apply_Compile_Time_Constraint_Error
4405 (N, "component not present in }",
4406 CE_Discriminant_Check_Failed,
4407 Ent => Prefix_Type, Rep => False);
4408 else
4409 Apply_Compile_Time_Constraint_Error
4410 (N, "component not present in }??",
4411 CE_Discriminant_Check_Failed,
4412 Ent => Prefix_Type, Rep => False);
4413 end if;
4414
4415 Set_Raises_Constraint_Error (N);
4416 return;
4417 end if;
4418
4419 Next_Component (Comp);
4420 end loop;
4421
4422 end if;
4423
4424 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4425 Error_Msg_NE ("no selector& for}", N, Sel);
4426
4427 -- Add information in the case of an incomplete prefix
4428
4429 if Is_Incomplete_Type (Type_To_Use) then
4430 declare
4431 Inc : constant Entity_Id := First_Subtype (Type_To_Use);
4432
4433 begin
4434 if From_With_Type (Scope (Type_To_Use)) then
4435 Error_Msg_NE
4436 ("\limited view of& has no components", N, Inc);
4437
4438 else
4439 Error_Msg_NE
4440 ("\premature usage of incomplete type&", N, Inc);
4441
4442 if Nkind (Parent (Inc)) =
4443 N_Incomplete_Type_Declaration
4444 then
4445 -- Record location of premature use in entity so that
4446 -- a continuation message is generated when the
4447 -- completion is seen.
4448
4449 Set_Premature_Use (Parent (Inc), N);
4450 end if;
4451 end if;
4452 end;
4453 end if;
4454
4455 Check_Misspelled_Selector (Type_To_Use, Sel);
4456 end if;
4457
4458 Set_Entity (Sel, Any_Id);
4459 Set_Etype (Sel, Any_Type);
4460 end if;
4461 end Analyze_Selected_Component;
4462
4463 ---------------------------
4464 -- Analyze_Short_Circuit --
4465 ---------------------------
4466
4467 procedure Analyze_Short_Circuit (N : Node_Id) is
4468 L : constant Node_Id := Left_Opnd (N);
4469 R : constant Node_Id := Right_Opnd (N);
4470 Ind : Interp_Index;
4471 It : Interp;
4472
4473 begin
4474 Analyze_Expression (L);
4475 Analyze_Expression (R);
4476 Set_Etype (N, Any_Type);
4477
4478 if not Is_Overloaded (L) then
4479 if Root_Type (Etype (L)) = Standard_Boolean
4480 and then Has_Compatible_Type (R, Etype (L))
4481 then
4482 Add_One_Interp (N, Etype (L), Etype (L));
4483 end if;
4484
4485 else
4486 Get_First_Interp (L, Ind, It);
4487 while Present (It.Typ) loop
4488 if Root_Type (It.Typ) = Standard_Boolean
4489 and then Has_Compatible_Type (R, It.Typ)
4490 then
4491 Add_One_Interp (N, It.Typ, It.Typ);
4492 end if;
4493
4494 Get_Next_Interp (Ind, It);
4495 end loop;
4496 end if;
4497
4498 -- Here we have failed to find an interpretation. Clearly we know that
4499 -- it is not the case that both operands can have an interpretation of
4500 -- Boolean, but this is by far the most likely intended interpretation.
4501 -- So we simply resolve both operands as Booleans, and at least one of
4502 -- these resolutions will generate an error message, and we do not need
4503 -- to give another error message on the short circuit operation itself.
4504
4505 if Etype (N) = Any_Type then
4506 Resolve (L, Standard_Boolean);
4507 Resolve (R, Standard_Boolean);
4508 Set_Etype (N, Standard_Boolean);
4509 end if;
4510 end Analyze_Short_Circuit;
4511
4512 -------------------
4513 -- Analyze_Slice --
4514 -------------------
4515
4516 procedure Analyze_Slice (N : Node_Id) is
4517 D : constant Node_Id := Discrete_Range (N);
4518 P : constant Node_Id := Prefix (N);
4519 Array_Type : Entity_Id;
4520 Index_Type : Entity_Id;
4521
4522 procedure Analyze_Overloaded_Slice;
4523 -- If the prefix is overloaded, select those interpretations that
4524 -- yield a one-dimensional array type.
4525
4526 ------------------------------
4527 -- Analyze_Overloaded_Slice --
4528 ------------------------------
4529
4530 procedure Analyze_Overloaded_Slice is
4531 I : Interp_Index;
4532 It : Interp;
4533 Typ : Entity_Id;
4534
4535 begin
4536 Set_Etype (N, Any_Type);
4537
4538 Get_First_Interp (P, I, It);
4539 while Present (It.Nam) loop
4540 Typ := It.Typ;
4541
4542 if Is_Access_Type (Typ) then
4543 Typ := Designated_Type (Typ);
4544 Error_Msg_NW
4545 (Warn_On_Dereference, "?d?implicit dereference", N);
4546 end if;
4547
4548 if Is_Array_Type (Typ)
4549 and then Number_Dimensions (Typ) = 1
4550 and then Has_Compatible_Type (D, Etype (First_Index (Typ)))
4551 then
4552 Add_One_Interp (N, Typ, Typ);
4553 end if;
4554
4555 Get_Next_Interp (I, It);
4556 end loop;
4557
4558 if Etype (N) = Any_Type then
4559 Error_Msg_N ("expect array type in prefix of slice", N);
4560 end if;
4561 end Analyze_Overloaded_Slice;
4562
4563 -- Start of processing for Analyze_Slice
4564
4565 begin
4566 if Comes_From_Source (N) then
4567 Check_SPARK_Restriction ("slice is not allowed", N);
4568 end if;
4569
4570 Analyze (P);
4571 Analyze (D);
4572
4573 if Is_Overloaded (P) then
4574 Analyze_Overloaded_Slice;
4575
4576 else
4577 Array_Type := Etype (P);
4578 Set_Etype (N, Any_Type);
4579
4580 if Is_Access_Type (Array_Type) then
4581 Array_Type := Designated_Type (Array_Type);
4582 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
4583 end if;
4584
4585 if not Is_Array_Type (Array_Type) then
4586 Wrong_Type (P, Any_Array);
4587
4588 elsif Number_Dimensions (Array_Type) > 1 then
4589 Error_Msg_N
4590 ("type is not one-dimensional array in slice prefix", N);
4591
4592 else
4593 if Ekind (Array_Type) = E_String_Literal_Subtype then
4594 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
4595 else
4596 Index_Type := Etype (First_Index (Array_Type));
4597 end if;
4598
4599 if not Has_Compatible_Type (D, Index_Type) then
4600 Wrong_Type (D, Index_Type);
4601 else
4602 Set_Etype (N, Array_Type);
4603 end if;
4604 end if;
4605 end if;
4606 end Analyze_Slice;
4607
4608 -----------------------------
4609 -- Analyze_Type_Conversion --
4610 -----------------------------
4611
4612 procedure Analyze_Type_Conversion (N : Node_Id) is
4613 Expr : constant Node_Id := Expression (N);
4614 T : Entity_Id;
4615
4616 begin
4617 -- If Conversion_OK is set, then the Etype is already set, and the
4618 -- only processing required is to analyze the expression. This is
4619 -- used to construct certain "illegal" conversions which are not
4620 -- allowed by Ada semantics, but can be handled OK by Gigi, see
4621 -- Sinfo for further details.
4622
4623 if Conversion_OK (N) then
4624 Analyze (Expr);
4625 return;
4626 end if;
4627
4628 -- Otherwise full type analysis is required, as well as some semantic
4629 -- checks to make sure the argument of the conversion is appropriate.
4630
4631 Find_Type (Subtype_Mark (N));
4632 T := Entity (Subtype_Mark (N));
4633 Set_Etype (N, T);
4634 Check_Fully_Declared (T, N);
4635 Analyze_Expression (Expr);
4636 Validate_Remote_Type_Type_Conversion (N);
4637
4638 -- Only remaining step is validity checks on the argument. These
4639 -- are skipped if the conversion does not come from the source.
4640
4641 if not Comes_From_Source (N) then
4642 return;
4643
4644 -- If there was an error in a generic unit, no need to replicate the
4645 -- error message. Conversely, constant-folding in the generic may
4646 -- transform the argument of a conversion into a string literal, which
4647 -- is legal. Therefore the following tests are not performed in an
4648 -- instance.
4649
4650 elsif In_Instance then
4651 return;
4652
4653 elsif Nkind (Expr) = N_Null then
4654 Error_Msg_N ("argument of conversion cannot be null", N);
4655 Error_Msg_N ("\use qualified expression instead", N);
4656 Set_Etype (N, Any_Type);
4657
4658 elsif Nkind (Expr) = N_Aggregate then
4659 Error_Msg_N ("argument of conversion cannot be aggregate", N);
4660 Error_Msg_N ("\use qualified expression instead", N);
4661
4662 elsif Nkind (Expr) = N_Allocator then
4663 Error_Msg_N ("argument of conversion cannot be an allocator", N);
4664 Error_Msg_N ("\use qualified expression instead", N);
4665
4666 elsif Nkind (Expr) = N_String_Literal then
4667 Error_Msg_N ("argument of conversion cannot be string literal", N);
4668 Error_Msg_N ("\use qualified expression instead", N);
4669
4670 elsif Nkind (Expr) = N_Character_Literal then
4671 if Ada_Version = Ada_83 then
4672 Resolve (Expr, T);
4673 else
4674 Error_Msg_N ("argument of conversion cannot be character literal",
4675 N);
4676 Error_Msg_N ("\use qualified expression instead", N);
4677 end if;
4678
4679 elsif Nkind (Expr) = N_Attribute_Reference
4680 and then
4681 (Attribute_Name (Expr) = Name_Access or else
4682 Attribute_Name (Expr) = Name_Unchecked_Access or else
4683 Attribute_Name (Expr) = Name_Unrestricted_Access)
4684 then
4685 Error_Msg_N ("argument of conversion cannot be access", N);
4686 Error_Msg_N ("\use qualified expression instead", N);
4687 end if;
4688 end Analyze_Type_Conversion;
4689
4690 ----------------------
4691 -- Analyze_Unary_Op --
4692 ----------------------
4693
4694 procedure Analyze_Unary_Op (N : Node_Id) is
4695 R : constant Node_Id := Right_Opnd (N);
4696 Op_Id : Entity_Id := Entity (N);
4697
4698 begin
4699 Set_Etype (N, Any_Type);
4700 Candidate_Type := Empty;
4701
4702 Analyze_Expression (R);
4703
4704 if Present (Op_Id) then
4705 if Ekind (Op_Id) = E_Operator then
4706 Find_Unary_Types (R, Op_Id, N);
4707 else
4708 Add_One_Interp (N, Op_Id, Etype (Op_Id));
4709 end if;
4710
4711 else
4712 Op_Id := Get_Name_Entity_Id (Chars (N));
4713 while Present (Op_Id) loop
4714 if Ekind (Op_Id) = E_Operator then
4715 if No (Next_Entity (First_Entity (Op_Id))) then
4716 Find_Unary_Types (R, Op_Id, N);
4717 end if;
4718
4719 elsif Is_Overloadable (Op_Id) then
4720 Analyze_User_Defined_Unary_Op (N, Op_Id);
4721 end if;
4722
4723 Op_Id := Homonym (Op_Id);
4724 end loop;
4725 end if;
4726
4727 Operator_Check (N);
4728 end Analyze_Unary_Op;
4729
4730 ----------------------------------
4731 -- Analyze_Unchecked_Expression --
4732 ----------------------------------
4733
4734 procedure Analyze_Unchecked_Expression (N : Node_Id) is
4735 begin
4736 Analyze (Expression (N), Suppress => All_Checks);
4737 Set_Etype (N, Etype (Expression (N)));
4738 Save_Interps (Expression (N), N);
4739 end Analyze_Unchecked_Expression;
4740
4741 ---------------------------------------
4742 -- Analyze_Unchecked_Type_Conversion --
4743 ---------------------------------------
4744
4745 procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is
4746 begin
4747 Find_Type (Subtype_Mark (N));
4748 Analyze_Expression (Expression (N));
4749 Set_Etype (N, Entity (Subtype_Mark (N)));
4750 end Analyze_Unchecked_Type_Conversion;
4751
4752 ------------------------------------
4753 -- Analyze_User_Defined_Binary_Op --
4754 ------------------------------------
4755
4756 procedure Analyze_User_Defined_Binary_Op
4757 (N : Node_Id;
4758 Op_Id : Entity_Id)
4759 is
4760 begin
4761 -- Only do analysis if the operator Comes_From_Source, since otherwise
4762 -- the operator was generated by the expander, and all such operators
4763 -- always refer to the operators in package Standard.
4764
4765 if Comes_From_Source (N) then
4766 declare
4767 F1 : constant Entity_Id := First_Formal (Op_Id);
4768 F2 : constant Entity_Id := Next_Formal (F1);
4769
4770 begin
4771 -- Verify that Op_Id is a visible binary function. Note that since
4772 -- we know Op_Id is overloaded, potentially use visible means use
4773 -- visible for sure (RM 9.4(11)).
4774
4775 if Ekind (Op_Id) = E_Function
4776 and then Present (F2)
4777 and then (Is_Immediately_Visible (Op_Id)
4778 or else Is_Potentially_Use_Visible (Op_Id))
4779 and then Has_Compatible_Type (Left_Opnd (N), Etype (F1))
4780 and then Has_Compatible_Type (Right_Opnd (N), Etype (F2))
4781 then
4782 Add_One_Interp (N, Op_Id, Etype (Op_Id));
4783
4784 -- If the left operand is overloaded, indicate that the
4785 -- current type is a viable candidate. This is redundant
4786 -- in most cases, but for equality and comparison operators
4787 -- where the context does not impose a type on the operands,
4788 -- setting the proper type is necessary to avoid subsequent
4789 -- ambiguities during resolution, when both user-defined and
4790 -- predefined operators may be candidates.
4791
4792 if Is_Overloaded (Left_Opnd (N)) then
4793 Set_Etype (Left_Opnd (N), Etype (F1));
4794 end if;
4795
4796 if Debug_Flag_E then
4797 Write_Str ("user defined operator ");
4798 Write_Name (Chars (Op_Id));
4799 Write_Str (" on node ");
4800 Write_Int (Int (N));
4801 Write_Eol;
4802 end if;
4803 end if;
4804 end;
4805 end if;
4806 end Analyze_User_Defined_Binary_Op;
4807
4808 -----------------------------------
4809 -- Analyze_User_Defined_Unary_Op --
4810 -----------------------------------
4811
4812 procedure Analyze_User_Defined_Unary_Op
4813 (N : Node_Id;
4814 Op_Id : Entity_Id)
4815 is
4816 begin
4817 -- Only do analysis if the operator Comes_From_Source, since otherwise
4818 -- the operator was generated by the expander, and all such operators
4819 -- always refer to the operators in package Standard.
4820
4821 if Comes_From_Source (N) then
4822 declare
4823 F : constant Entity_Id := First_Formal (Op_Id);
4824
4825 begin
4826 -- Verify that Op_Id is a visible unary function. Note that since
4827 -- we know Op_Id is overloaded, potentially use visible means use
4828 -- visible for sure (RM 9.4(11)).
4829
4830 if Ekind (Op_Id) = E_Function
4831 and then No (Next_Formal (F))
4832 and then (Is_Immediately_Visible (Op_Id)
4833 or else Is_Potentially_Use_Visible (Op_Id))
4834 and then Has_Compatible_Type (Right_Opnd (N), Etype (F))
4835 then
4836 Add_One_Interp (N, Op_Id, Etype (Op_Id));
4837 end if;
4838 end;
4839 end if;
4840 end Analyze_User_Defined_Unary_Op;
4841
4842 ---------------------------
4843 -- Check_Arithmetic_Pair --
4844 ---------------------------
4845
4846 procedure Check_Arithmetic_Pair
4847 (T1, T2 : Entity_Id;
4848 Op_Id : Entity_Id;
4849 N : Node_Id)
4850 is
4851 Op_Name : constant Name_Id := Chars (Op_Id);
4852
4853 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean;
4854 -- Check whether the fixed-point type Typ has a user-defined operator
4855 -- (multiplication or division) that should hide the corresponding
4856 -- predefined operator. Used to implement Ada 2005 AI-264, to make
4857 -- such operators more visible and therefore useful.
4858
4859 -- If the name of the operation is an expanded name with prefix
4860 -- Standard, the predefined universal fixed operator is available,
4861 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
4862
4863 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id;
4864 -- Get specific type (i.e. non-universal type if there is one)
4865
4866 ------------------
4867 -- Has_Fixed_Op --
4868 ------------------
4869
4870 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean is
4871 Bas : constant Entity_Id := Base_Type (Typ);
4872 Ent : Entity_Id;
4873 F1 : Entity_Id;
4874 F2 : Entity_Id;
4875
4876 begin
4877 -- If the universal_fixed operation is given explicitly the rule
4878 -- concerning primitive operations of the type do not apply.
4879
4880 if Nkind (N) = N_Function_Call
4881 and then Nkind (Name (N)) = N_Expanded_Name
4882 and then Entity (Prefix (Name (N))) = Standard_Standard
4883 then
4884 return False;
4885 end if;
4886
4887 -- The operation is treated as primitive if it is declared in the
4888 -- same scope as the type, and therefore on the same entity chain.
4889
4890 Ent := Next_Entity (Typ);
4891 while Present (Ent) loop
4892 if Chars (Ent) = Chars (Op) then
4893 F1 := First_Formal (Ent);
4894 F2 := Next_Formal (F1);
4895
4896 -- The operation counts as primitive if either operand or
4897 -- result are of the given base type, and both operands are
4898 -- fixed point types.
4899
4900 if (Base_Type (Etype (F1)) = Bas
4901 and then Is_Fixed_Point_Type (Etype (F2)))
4902
4903 or else
4904 (Base_Type (Etype (F2)) = Bas
4905 and then Is_Fixed_Point_Type (Etype (F1)))
4906
4907 or else
4908 (Base_Type (Etype (Ent)) = Bas
4909 and then Is_Fixed_Point_Type (Etype (F1))
4910 and then Is_Fixed_Point_Type (Etype (F2)))
4911 then
4912 return True;
4913 end if;
4914 end if;
4915
4916 Next_Entity (Ent);
4917 end loop;
4918
4919 return False;
4920 end Has_Fixed_Op;
4921
4922 -------------------
4923 -- Specific_Type --
4924 -------------------
4925
4926 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id is
4927 begin
4928 if T1 = Universal_Integer or else T1 = Universal_Real then
4929 return Base_Type (T2);
4930 else
4931 return Base_Type (T1);
4932 end if;
4933 end Specific_Type;
4934
4935 -- Start of processing for Check_Arithmetic_Pair
4936
4937 begin
4938 if Op_Name = Name_Op_Add or else Op_Name = Name_Op_Subtract then
4939
4940 if Is_Numeric_Type (T1)
4941 and then Is_Numeric_Type (T2)
4942 and then (Covers (T1 => T1, T2 => T2)
4943 or else
4944 Covers (T1 => T2, T2 => T1))
4945 then
4946 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
4947 end if;
4948
4949 elsif Op_Name = Name_Op_Multiply or else Op_Name = Name_Op_Divide then
4950
4951 if Is_Fixed_Point_Type (T1)
4952 and then (Is_Fixed_Point_Type (T2)
4953 or else T2 = Universal_Real)
4954 then
4955 -- If Treat_Fixed_As_Integer is set then the Etype is already set
4956 -- and no further processing is required (this is the case of an
4957 -- operator constructed by Exp_Fixd for a fixed point operation)
4958 -- Otherwise add one interpretation with universal fixed result
4959 -- If the operator is given in functional notation, it comes
4960 -- from source and Fixed_As_Integer cannot apply.
4961
4962 if (Nkind (N) not in N_Op
4963 or else not Treat_Fixed_As_Integer (N))
4964 and then
4965 (not Has_Fixed_Op (T1, Op_Id)
4966 or else Nkind (Parent (N)) = N_Type_Conversion)
4967 then
4968 Add_One_Interp (N, Op_Id, Universal_Fixed);
4969 end if;
4970
4971 elsif Is_Fixed_Point_Type (T2)
4972 and then (Nkind (N) not in N_Op
4973 or else not Treat_Fixed_As_Integer (N))
4974 and then T1 = Universal_Real
4975 and then
4976 (not Has_Fixed_Op (T1, Op_Id)
4977 or else Nkind (Parent (N)) = N_Type_Conversion)
4978 then
4979 Add_One_Interp (N, Op_Id, Universal_Fixed);
4980
4981 elsif Is_Numeric_Type (T1)
4982 and then Is_Numeric_Type (T2)
4983 and then (Covers (T1 => T1, T2 => T2)
4984 or else
4985 Covers (T1 => T2, T2 => T1))
4986 then
4987 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
4988
4989 elsif Is_Fixed_Point_Type (T1)
4990 and then (Base_Type (T2) = Base_Type (Standard_Integer)
4991 or else T2 = Universal_Integer)
4992 then
4993 Add_One_Interp (N, Op_Id, T1);
4994
4995 elsif T2 = Universal_Real
4996 and then Base_Type (T1) = Base_Type (Standard_Integer)
4997 and then Op_Name = Name_Op_Multiply
4998 then
4999 Add_One_Interp (N, Op_Id, Any_Fixed);
5000
5001 elsif T1 = Universal_Real
5002 and then Base_Type (T2) = Base_Type (Standard_Integer)
5003 then
5004 Add_One_Interp (N, Op_Id, Any_Fixed);
5005
5006 elsif Is_Fixed_Point_Type (T2)
5007 and then (Base_Type (T1) = Base_Type (Standard_Integer)
5008 or else T1 = Universal_Integer)
5009 and then Op_Name = Name_Op_Multiply
5010 then
5011 Add_One_Interp (N, Op_Id, T2);
5012
5013 elsif T1 = Universal_Real and then T2 = Universal_Integer then
5014 Add_One_Interp (N, Op_Id, T1);
5015
5016 elsif T2 = Universal_Real
5017 and then T1 = Universal_Integer
5018 and then Op_Name = Name_Op_Multiply
5019 then
5020 Add_One_Interp (N, Op_Id, T2);
5021 end if;
5022
5023 elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
5024
5025 -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
5026 -- set does not require any special processing, since the Etype is
5027 -- already set (case of operation constructed by Exp_Fixed).
5028
5029 if Is_Integer_Type (T1)
5030 and then (Covers (T1 => T1, T2 => T2)
5031 or else
5032 Covers (T1 => T2, T2 => T1))
5033 then
5034 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5035 end if;
5036
5037 elsif Op_Name = Name_Op_Expon then
5038 if Is_Numeric_Type (T1)
5039 and then not Is_Fixed_Point_Type (T1)
5040 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5041 or else T2 = Universal_Integer)
5042 then
5043 Add_One_Interp (N, Op_Id, Base_Type (T1));
5044 end if;
5045
5046 else pragma Assert (Nkind (N) in N_Op_Shift);
5047
5048 -- If not one of the predefined operators, the node may be one
5049 -- of the intrinsic functions. Its kind is always specific, and
5050 -- we can use it directly, rather than the name of the operation.
5051
5052 if Is_Integer_Type (T1)
5053 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5054 or else T2 = Universal_Integer)
5055 then
5056 Add_One_Interp (N, Op_Id, Base_Type (T1));
5057 end if;
5058 end if;
5059 end Check_Arithmetic_Pair;
5060
5061 -------------------------------
5062 -- Check_Misspelled_Selector --
5063 -------------------------------
5064
5065 procedure Check_Misspelled_Selector
5066 (Prefix : Entity_Id;
5067 Sel : Node_Id)
5068 is
5069 Max_Suggestions : constant := 2;
5070 Nr_Of_Suggestions : Natural := 0;
5071
5072 Suggestion_1 : Entity_Id := Empty;
5073 Suggestion_2 : Entity_Id := Empty;
5074
5075 Comp : Entity_Id;
5076
5077 begin
5078 -- All the components of the prefix of selector Sel are matched
5079 -- against Sel and a count is maintained of possible misspellings.
5080 -- When at the end of the analysis there are one or two (not more!)
5081 -- possible misspellings, these misspellings will be suggested as
5082 -- possible correction.
5083
5084 if not (Is_Private_Type (Prefix) or else Is_Record_Type (Prefix)) then
5085
5086 -- Concurrent types should be handled as well ???
5087
5088 return;
5089 end if;
5090
5091 Comp := First_Entity (Prefix);
5092 while Nr_Of_Suggestions <= Max_Suggestions and then Present (Comp) loop
5093 if Is_Visible_Component (Comp) then
5094 if Is_Bad_Spelling_Of (Chars (Comp), Chars (Sel)) then
5095 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
5096
5097 case Nr_Of_Suggestions is
5098 when 1 => Suggestion_1 := Comp;
5099 when 2 => Suggestion_2 := Comp;
5100 when others => exit;
5101 end case;
5102 end if;
5103 end if;
5104
5105 Comp := Next_Entity (Comp);
5106 end loop;
5107
5108 -- Report at most two suggestions
5109
5110 if Nr_Of_Suggestions = 1 then
5111 Error_Msg_NE -- CODEFIX
5112 ("\possible misspelling of&", Sel, Suggestion_1);
5113
5114 elsif Nr_Of_Suggestions = 2 then
5115 Error_Msg_Node_2 := Suggestion_2;
5116 Error_Msg_NE -- CODEFIX
5117 ("\possible misspelling of& or&", Sel, Suggestion_1);
5118 end if;
5119 end Check_Misspelled_Selector;
5120
5121 ----------------------
5122 -- Defined_In_Scope --
5123 ----------------------
5124
5125 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean
5126 is
5127 S1 : constant Entity_Id := Scope (Base_Type (T));
5128 begin
5129 return S1 = S
5130 or else (S1 = System_Aux_Id and then S = Scope (S1));
5131 end Defined_In_Scope;
5132
5133 -------------------
5134 -- Diagnose_Call --
5135 -------------------
5136
5137 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is
5138 Actual : Node_Id;
5139 X : Interp_Index;
5140 It : Interp;
5141 Err_Mode : Boolean;
5142 New_Nam : Node_Id;
5143 Void_Interp_Seen : Boolean := False;
5144
5145 Success : Boolean;
5146 pragma Warnings (Off, Boolean);
5147
5148 begin
5149 if Ada_Version >= Ada_2005 then
5150 Actual := First_Actual (N);
5151 while Present (Actual) loop
5152
5153 -- Ada 2005 (AI-50217): Post an error in case of premature
5154 -- usage of an entity from the limited view.
5155
5156 if not Analyzed (Etype (Actual))
5157 and then From_With_Type (Etype (Actual))
5158 then
5159 Error_Msg_Qual_Level := 1;
5160 Error_Msg_NE
5161 ("missing with_clause for scope of imported type&",
5162 Actual, Etype (Actual));
5163 Error_Msg_Qual_Level := 0;
5164 end if;
5165
5166 Next_Actual (Actual);
5167 end loop;
5168 end if;
5169
5170 -- Analyze each candidate call again, with full error reporting
5171 -- for each.
5172
5173 Error_Msg_N
5174 ("no candidate interpretations match the actuals:!", Nam);
5175 Err_Mode := All_Errors_Mode;
5176 All_Errors_Mode := True;
5177
5178 -- If this is a call to an operation of a concurrent type,
5179 -- the failed interpretations have been removed from the
5180 -- name. Recover them to provide full diagnostics.
5181
5182 if Nkind (Parent (Nam)) = N_Selected_Component then
5183 Set_Entity (Nam, Empty);
5184 New_Nam := New_Copy_Tree (Parent (Nam));
5185 Set_Is_Overloaded (New_Nam, False);
5186 Set_Is_Overloaded (Selector_Name (New_Nam), False);
5187 Set_Parent (New_Nam, Parent (Parent (Nam)));
5188 Analyze_Selected_Component (New_Nam);
5189 Get_First_Interp (Selector_Name (New_Nam), X, It);
5190 else
5191 Get_First_Interp (Nam, X, It);
5192 end if;
5193
5194 while Present (It.Nam) loop
5195 if Etype (It.Nam) = Standard_Void_Type then
5196 Void_Interp_Seen := True;
5197 end if;
5198
5199 Analyze_One_Call (N, It.Nam, True, Success);
5200 Get_Next_Interp (X, It);
5201 end loop;
5202
5203 if Nkind (N) = N_Function_Call then
5204 Get_First_Interp (Nam, X, It);
5205 while Present (It.Nam) loop
5206 if Ekind_In (It.Nam, E_Function, E_Operator) then
5207 return;
5208 else
5209 Get_Next_Interp (X, It);
5210 end if;
5211 end loop;
5212
5213 -- If all interpretations are procedures, this deserves a
5214 -- more precise message. Ditto if this appears as the prefix
5215 -- of a selected component, which may be a lexical error.
5216
5217 Error_Msg_N
5218 ("\context requires function call, found procedure name", Nam);
5219
5220 if Nkind (Parent (N)) = N_Selected_Component
5221 and then N = Prefix (Parent (N))
5222 then
5223 Error_Msg_N -- CODEFIX
5224 ("\period should probably be semicolon", Parent (N));
5225 end if;
5226
5227 elsif Nkind (N) = N_Procedure_Call_Statement
5228 and then not Void_Interp_Seen
5229 then
5230 Error_Msg_N (
5231 "\function name found in procedure call", Nam);
5232 end if;
5233
5234 All_Errors_Mode := Err_Mode;
5235 end Diagnose_Call;
5236
5237 ---------------------------
5238 -- Find_Arithmetic_Types --
5239 ---------------------------
5240
5241 procedure Find_Arithmetic_Types
5242 (L, R : Node_Id;
5243 Op_Id : Entity_Id;
5244 N : Node_Id)
5245 is
5246 Index1 : Interp_Index;
5247 Index2 : Interp_Index;
5248 It1 : Interp;
5249 It2 : Interp;
5250
5251 procedure Check_Right_Argument (T : Entity_Id);
5252 -- Check right operand of operator
5253
5254 --------------------------
5255 -- Check_Right_Argument --
5256 --------------------------
5257
5258 procedure Check_Right_Argument (T : Entity_Id) is
5259 begin
5260 if not Is_Overloaded (R) then
5261 Check_Arithmetic_Pair (T, Etype (R), Op_Id, N);
5262 else
5263 Get_First_Interp (R, Index2, It2);
5264 while Present (It2.Typ) loop
5265 Check_Arithmetic_Pair (T, It2.Typ, Op_Id, N);
5266 Get_Next_Interp (Index2, It2);
5267 end loop;
5268 end if;
5269 end Check_Right_Argument;
5270
5271 -- Start of processing for Find_Arithmetic_Types
5272
5273 begin
5274 if not Is_Overloaded (L) then
5275 Check_Right_Argument (Etype (L));
5276
5277 else
5278 Get_First_Interp (L, Index1, It1);
5279 while Present (It1.Typ) loop
5280 Check_Right_Argument (It1.Typ);
5281 Get_Next_Interp (Index1, It1);
5282 end loop;
5283 end if;
5284
5285 end Find_Arithmetic_Types;
5286
5287 ------------------------
5288 -- Find_Boolean_Types --
5289 ------------------------
5290
5291 procedure Find_Boolean_Types
5292 (L, R : Node_Id;
5293 Op_Id : Entity_Id;
5294 N : Node_Id)
5295 is
5296 Index : Interp_Index;
5297 It : Interp;
5298
5299 procedure Check_Numeric_Argument (T : Entity_Id);
5300 -- Special case for logical operations one of whose operands is an
5301 -- integer literal. If both are literal the result is any modular type.
5302
5303 ----------------------------
5304 -- Check_Numeric_Argument --
5305 ----------------------------
5306
5307 procedure Check_Numeric_Argument (T : Entity_Id) is
5308 begin
5309 if T = Universal_Integer then
5310 Add_One_Interp (N, Op_Id, Any_Modular);
5311
5312 elsif Is_Modular_Integer_Type (T) then
5313 Add_One_Interp (N, Op_Id, T);
5314 end if;
5315 end Check_Numeric_Argument;
5316
5317 -- Start of processing for Find_Boolean_Types
5318
5319 begin
5320 if not Is_Overloaded (L) then
5321 if Etype (L) = Universal_Integer
5322 or else Etype (L) = Any_Modular
5323 then
5324 if not Is_Overloaded (R) then
5325 Check_Numeric_Argument (Etype (R));
5326
5327 else
5328 Get_First_Interp (R, Index, It);
5329 while Present (It.Typ) loop
5330 Check_Numeric_Argument (It.Typ);
5331 Get_Next_Interp (Index, It);
5332 end loop;
5333 end if;
5334
5335 -- If operands are aggregates, we must assume that they may be
5336 -- boolean arrays, and leave disambiguation for the second pass.
5337 -- If only one is an aggregate, verify that the other one has an
5338 -- interpretation as a boolean array
5339
5340 elsif Nkind (L) = N_Aggregate then
5341 if Nkind (R) = N_Aggregate then
5342 Add_One_Interp (N, Op_Id, Etype (L));
5343
5344 elsif not Is_Overloaded (R) then
5345 if Valid_Boolean_Arg (Etype (R)) then
5346 Add_One_Interp (N, Op_Id, Etype (R));
5347 end if;
5348
5349 else
5350 Get_First_Interp (R, Index, It);
5351 while Present (It.Typ) loop
5352 if Valid_Boolean_Arg (It.Typ) then
5353 Add_One_Interp (N, Op_Id, It.Typ);
5354 end if;
5355
5356 Get_Next_Interp (Index, It);
5357 end loop;
5358 end if;
5359
5360 elsif Valid_Boolean_Arg (Etype (L))
5361 and then Has_Compatible_Type (R, Etype (L))
5362 then
5363 Add_One_Interp (N, Op_Id, Etype (L));
5364 end if;
5365
5366 else
5367 Get_First_Interp (L, Index, It);
5368 while Present (It.Typ) loop
5369 if Valid_Boolean_Arg (It.Typ)
5370 and then Has_Compatible_Type (R, It.Typ)
5371 then
5372 Add_One_Interp (N, Op_Id, It.Typ);
5373 end if;
5374
5375 Get_Next_Interp (Index, It);
5376 end loop;
5377 end if;
5378 end Find_Boolean_Types;
5379
5380 ---------------------------
5381 -- Find_Comparison_Types --
5382 ---------------------------
5383
5384 procedure Find_Comparison_Types
5385 (L, R : Node_Id;
5386 Op_Id : Entity_Id;
5387 N : Node_Id)
5388 is
5389 Index : Interp_Index;
5390 It : Interp;
5391 Found : Boolean := False;
5392 I_F : Interp_Index;
5393 T_F : Entity_Id;
5394 Scop : Entity_Id := Empty;
5395
5396 procedure Try_One_Interp (T1 : Entity_Id);
5397 -- Routine to try one proposed interpretation. Note that the context
5398 -- of the operator plays no role in resolving the arguments, so that
5399 -- if there is more than one interpretation of the operands that is
5400 -- compatible with comparison, the operation is ambiguous.
5401
5402 --------------------
5403 -- Try_One_Interp --
5404 --------------------
5405
5406 procedure Try_One_Interp (T1 : Entity_Id) is
5407 begin
5408
5409 -- If the operator is an expanded name, then the type of the operand
5410 -- must be defined in the corresponding scope. If the type is
5411 -- universal, the context will impose the correct type.
5412
5413 if Present (Scop)
5414 and then not Defined_In_Scope (T1, Scop)
5415 and then T1 /= Universal_Integer
5416 and then T1 /= Universal_Real
5417 and then T1 /= Any_String
5418 and then T1 /= Any_Composite
5419 then
5420 return;
5421 end if;
5422
5423 if Valid_Comparison_Arg (T1)
5424 and then Has_Compatible_Type (R, T1)
5425 then
5426 if Found
5427 and then Base_Type (T1) /= Base_Type (T_F)
5428 then
5429 It := Disambiguate (L, I_F, Index, Any_Type);
5430
5431 if It = No_Interp then
5432 Ambiguous_Operands (N);
5433 Set_Etype (L, Any_Type);
5434 return;
5435
5436 else
5437 T_F := It.Typ;
5438 end if;
5439
5440 else
5441 Found := True;
5442 T_F := T1;
5443 I_F := Index;
5444 end if;
5445
5446 Set_Etype (L, T_F);
5447 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
5448
5449 end if;
5450 end Try_One_Interp;
5451
5452 -- Start of processing for Find_Comparison_Types
5453
5454 begin
5455 -- If left operand is aggregate, the right operand has to
5456 -- provide a usable type for it.
5457
5458 if Nkind (L) = N_Aggregate
5459 and then Nkind (R) /= N_Aggregate
5460 then
5461 Find_Comparison_Types (L => R, R => L, Op_Id => Op_Id, N => N);
5462 return;
5463 end if;
5464
5465 if Nkind (N) = N_Function_Call
5466 and then Nkind (Name (N)) = N_Expanded_Name
5467 then
5468 Scop := Entity (Prefix (Name (N)));
5469
5470 -- The prefix may be a package renaming, and the subsequent test
5471 -- requires the original package.
5472
5473 if Ekind (Scop) = E_Package
5474 and then Present (Renamed_Entity (Scop))
5475 then
5476 Scop := Renamed_Entity (Scop);
5477 Set_Entity (Prefix (Name (N)), Scop);
5478 end if;
5479 end if;
5480
5481 if not Is_Overloaded (L) then
5482 Try_One_Interp (Etype (L));
5483
5484 else
5485 Get_First_Interp (L, Index, It);
5486 while Present (It.Typ) loop
5487 Try_One_Interp (It.Typ);
5488 Get_Next_Interp (Index, It);
5489 end loop;
5490 end if;
5491 end Find_Comparison_Types;
5492
5493 ----------------------------------------
5494 -- Find_Non_Universal_Interpretations --
5495 ----------------------------------------
5496
5497 procedure Find_Non_Universal_Interpretations
5498 (N : Node_Id;
5499 R : Node_Id;
5500 Op_Id : Entity_Id;
5501 T1 : Entity_Id)
5502 is
5503 Index : Interp_Index;
5504 It : Interp;
5505
5506 begin
5507 if T1 = Universal_Integer
5508 or else T1 = Universal_Real
5509
5510 -- If the left operand of an equality operator is null, the visibility
5511 -- of the operator must be determined from the interpretation of the
5512 -- right operand. This processing must be done for Any_Access, which
5513 -- is the internal representation of the type of the literal null.
5514
5515 or else T1 = Any_Access
5516 then
5517 if not Is_Overloaded (R) then
5518 Add_One_Interp
5519 (N, Op_Id, Standard_Boolean, Base_Type (Etype (R)));
5520 else
5521 Get_First_Interp (R, Index, It);
5522 while Present (It.Typ) loop
5523 if Covers (It.Typ, T1) then
5524 Add_One_Interp
5525 (N, Op_Id, Standard_Boolean, Base_Type (It.Typ));
5526 end if;
5527
5528 Get_Next_Interp (Index, It);
5529 end loop;
5530 end if;
5531 else
5532 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (T1));
5533 end if;
5534 end Find_Non_Universal_Interpretations;
5535
5536 ------------------------------
5537 -- Find_Concatenation_Types --
5538 ------------------------------
5539
5540 procedure Find_Concatenation_Types
5541 (L, R : Node_Id;
5542 Op_Id : Entity_Id;
5543 N : Node_Id)
5544 is
5545 Op_Type : constant Entity_Id := Etype (Op_Id);
5546
5547 begin
5548 if Is_Array_Type (Op_Type)
5549 and then not Is_Limited_Type (Op_Type)
5550
5551 and then (Has_Compatible_Type (L, Op_Type)
5552 or else
5553 Has_Compatible_Type (L, Component_Type (Op_Type)))
5554
5555 and then (Has_Compatible_Type (R, Op_Type)
5556 or else
5557 Has_Compatible_Type (R, Component_Type (Op_Type)))
5558 then
5559 Add_One_Interp (N, Op_Id, Op_Type);
5560 end if;
5561 end Find_Concatenation_Types;
5562
5563 -------------------------
5564 -- Find_Equality_Types --
5565 -------------------------
5566
5567 procedure Find_Equality_Types
5568 (L, R : Node_Id;
5569 Op_Id : Entity_Id;
5570 N : Node_Id)
5571 is
5572 Index : Interp_Index;
5573 It : Interp;
5574 Found : Boolean := False;
5575 I_F : Interp_Index;
5576 T_F : Entity_Id;
5577 Scop : Entity_Id := Empty;
5578
5579 procedure Try_One_Interp (T1 : Entity_Id);
5580 -- The context of the equality operator plays no role in resolving the
5581 -- arguments, so that if there is more than one interpretation of the
5582 -- operands that is compatible with equality, the construct is ambiguous
5583 -- and an error can be emitted now, after trying to disambiguate, i.e.
5584 -- applying preference rules.
5585
5586 --------------------
5587 -- Try_One_Interp --
5588 --------------------
5589
5590 procedure Try_One_Interp (T1 : Entity_Id) is
5591 Bas : constant Entity_Id := Base_Type (T1);
5592
5593 begin
5594 -- If the operator is an expanded name, then the type of the operand
5595 -- must be defined in the corresponding scope. If the type is
5596 -- universal, the context will impose the correct type. An anonymous
5597 -- type for a 'Access reference is also universal in this sense, as
5598 -- the actual type is obtained from context.
5599 -- In Ada 2005, the equality operator for anonymous access types
5600 -- is declared in Standard, and preference rules apply to it.
5601
5602 if Present (Scop) then
5603 if Defined_In_Scope (T1, Scop)
5604 or else T1 = Universal_Integer
5605 or else T1 = Universal_Real
5606 or else T1 = Any_Access
5607 or else T1 = Any_String
5608 or else T1 = Any_Composite
5609 or else (Ekind (T1) = E_Access_Subprogram_Type
5610 and then not Comes_From_Source (T1))
5611 then
5612 null;
5613
5614 elsif Ekind (T1) = E_Anonymous_Access_Type
5615 and then Scop = Standard_Standard
5616 then
5617 null;
5618
5619 else
5620 -- The scope does not contain an operator for the type
5621
5622 return;
5623 end if;
5624
5625 -- If we have infix notation, the operator must be usable. Within
5626 -- an instance, if the type is already established we know it is
5627 -- correct. If an operand is universal it is compatible with any
5628 -- numeric type.
5629
5630 -- In Ada 2005, the equality on anonymous access types is declared
5631 -- in Standard, and is always visible.
5632
5633 elsif In_Open_Scopes (Scope (Bas))
5634 or else Is_Potentially_Use_Visible (Bas)
5635 or else In_Use (Bas)
5636 or else (In_Use (Scope (Bas)) and then not Is_Hidden (Bas))
5637 or else (In_Instance
5638 and then
5639 (First_Subtype (T1) = First_Subtype (Etype (R))
5640 or else
5641 (Is_Numeric_Type (T1)
5642 and then Is_Universal_Numeric_Type (Etype (R)))))
5643 or else Ekind (T1) = E_Anonymous_Access_Type
5644 then
5645 null;
5646
5647 else
5648 -- Save candidate type for subsequent error message, if any
5649
5650 if not Is_Limited_Type (T1) then
5651 Candidate_Type := T1;
5652 end if;
5653
5654 return;
5655 end if;
5656
5657 -- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
5658 -- Do not allow anonymous access types in equality operators.
5659
5660 if Ada_Version < Ada_2005
5661 and then Ekind (T1) = E_Anonymous_Access_Type
5662 then
5663 return;
5664 end if;
5665
5666 -- If the right operand has a type compatible with T1, check for an
5667 -- acceptable interpretation, unless T1 is limited (no predefined
5668 -- equality available), or this is use of a "/=" for a tagged type.
5669 -- In the latter case, possible interpretations of equality need to
5670 -- be considered, we don't want the default inequality declared in
5671 -- Standard to be chosen, and the "/=" will be rewritten as a
5672 -- negation of "=" (see the end of Analyze_Equality_Op). This ensures
5673 -- that that rewriting happens during analysis rather than being
5674 -- delayed until expansion (this is needed for ASIS, which only sees
5675 -- the unexpanded tree). Note that if the node is N_Op_Ne, but Op_Id
5676 -- is Name_Op_Eq then we still proceed with the interpretation,
5677 -- because that indicates the potential rewriting case where the
5678 -- interpretation to consider is actually "=" and the node may be
5679 -- about to be rewritten by Analyze_Equality_Op.
5680
5681 if T1 /= Standard_Void_Type
5682 and then Has_Compatible_Type (R, T1)
5683
5684 and then
5685 ((not Is_Limited_Type (T1)
5686 and then not Is_Limited_Composite (T1))
5687
5688 or else
5689 (Is_Array_Type (T1)
5690 and then not Is_Limited_Type (Component_Type (T1))
5691 and then Available_Full_View_Of_Component (T1)))
5692
5693 and then
5694 (Nkind (N) /= N_Op_Ne
5695 or else not Is_Tagged_Type (T1)
5696 or else Chars (Op_Id) = Name_Op_Eq)
5697 then
5698 if Found
5699 and then Base_Type (T1) /= Base_Type (T_F)
5700 then
5701 It := Disambiguate (L, I_F, Index, Any_Type);
5702
5703 if It = No_Interp then
5704 Ambiguous_Operands (N);
5705 Set_Etype (L, Any_Type);
5706 return;
5707
5708 else
5709 T_F := It.Typ;
5710 end if;
5711
5712 else
5713 Found := True;
5714 T_F := T1;
5715 I_F := Index;
5716 end if;
5717
5718 if not Analyzed (L) then
5719 Set_Etype (L, T_F);
5720 end if;
5721
5722 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
5723
5724 -- Case of operator was not visible, Etype still set to Any_Type
5725
5726 if Etype (N) = Any_Type then
5727 Found := False;
5728 end if;
5729
5730 elsif Scop = Standard_Standard
5731 and then Ekind (T1) = E_Anonymous_Access_Type
5732 then
5733 Found := True;
5734 end if;
5735 end Try_One_Interp;
5736
5737 -- Start of processing for Find_Equality_Types
5738
5739 begin
5740 -- If left operand is aggregate, the right operand has to
5741 -- provide a usable type for it.
5742
5743 if Nkind (L) = N_Aggregate
5744 and then Nkind (R) /= N_Aggregate
5745 then
5746 Find_Equality_Types (L => R, R => L, Op_Id => Op_Id, N => N);
5747 return;
5748 end if;
5749
5750 if Nkind (N) = N_Function_Call
5751 and then Nkind (Name (N)) = N_Expanded_Name
5752 then
5753 Scop := Entity (Prefix (Name (N)));
5754
5755 -- The prefix may be a package renaming, and the subsequent test
5756 -- requires the original package.
5757
5758 if Ekind (Scop) = E_Package
5759 and then Present (Renamed_Entity (Scop))
5760 then
5761 Scop := Renamed_Entity (Scop);
5762 Set_Entity (Prefix (Name (N)), Scop);
5763 end if;
5764 end if;
5765
5766 if not Is_Overloaded (L) then
5767 Try_One_Interp (Etype (L));
5768
5769 else
5770 Get_First_Interp (L, Index, It);
5771 while Present (It.Typ) loop
5772 Try_One_Interp (It.Typ);
5773 Get_Next_Interp (Index, It);
5774 end loop;
5775 end if;
5776 end Find_Equality_Types;
5777
5778 -------------------------
5779 -- Find_Negation_Types --
5780 -------------------------
5781
5782 procedure Find_Negation_Types
5783 (R : Node_Id;
5784 Op_Id : Entity_Id;
5785 N : Node_Id)
5786 is
5787 Index : Interp_Index;
5788 It : Interp;
5789
5790 begin
5791 if not Is_Overloaded (R) then
5792 if Etype (R) = Universal_Integer then
5793 Add_One_Interp (N, Op_Id, Any_Modular);
5794 elsif Valid_Boolean_Arg (Etype (R)) then
5795 Add_One_Interp (N, Op_Id, Etype (R));
5796 end if;
5797
5798 else
5799 Get_First_Interp (R, Index, It);
5800 while Present (It.Typ) loop
5801 if Valid_Boolean_Arg (It.Typ) then
5802 Add_One_Interp (N, Op_Id, It.Typ);
5803 end if;
5804
5805 Get_Next_Interp (Index, It);
5806 end loop;
5807 end if;
5808 end Find_Negation_Types;
5809
5810 ------------------------------
5811 -- Find_Primitive_Operation --
5812 ------------------------------
5813
5814 function Find_Primitive_Operation (N : Node_Id) return Boolean is
5815 Obj : constant Node_Id := Prefix (N);
5816 Op : constant Node_Id := Selector_Name (N);
5817
5818 Prim : Elmt_Id;
5819 Prims : Elist_Id;
5820 Typ : Entity_Id;
5821
5822 begin
5823 Set_Etype (Op, Any_Type);
5824
5825 if Is_Access_Type (Etype (Obj)) then
5826 Typ := Designated_Type (Etype (Obj));
5827 else
5828 Typ := Etype (Obj);
5829 end if;
5830
5831 if Is_Class_Wide_Type (Typ) then
5832 Typ := Root_Type (Typ);
5833 end if;
5834
5835 Prims := Primitive_Operations (Typ);
5836
5837 Prim := First_Elmt (Prims);
5838 while Present (Prim) loop
5839 if Chars (Node (Prim)) = Chars (Op) then
5840 Add_One_Interp (Op, Node (Prim), Etype (Node (Prim)));
5841 Set_Etype (N, Etype (Node (Prim)));
5842 end if;
5843
5844 Next_Elmt (Prim);
5845 end loop;
5846
5847 -- Now look for class-wide operations of the type or any of its
5848 -- ancestors by iterating over the homonyms of the selector.
5849
5850 declare
5851 Cls_Type : constant Entity_Id := Class_Wide_Type (Typ);
5852 Hom : Entity_Id;
5853
5854 begin
5855 Hom := Current_Entity (Op);
5856 while Present (Hom) loop
5857 if (Ekind (Hom) = E_Procedure
5858 or else
5859 Ekind (Hom) = E_Function)
5860 and then Scope (Hom) = Scope (Typ)
5861 and then Present (First_Formal (Hom))
5862 and then
5863 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
5864 or else
5865 (Is_Access_Type (Etype (First_Formal (Hom)))
5866 and then
5867 Ekind (Etype (First_Formal (Hom))) =
5868 E_Anonymous_Access_Type
5869 and then
5870 Base_Type
5871 (Designated_Type (Etype (First_Formal (Hom)))) =
5872 Cls_Type))
5873 then
5874 Add_One_Interp (Op, Hom, Etype (Hom));
5875 Set_Etype (N, Etype (Hom));
5876 end if;
5877
5878 Hom := Homonym (Hom);
5879 end loop;
5880 end;
5881
5882 return Etype (Op) /= Any_Type;
5883 end Find_Primitive_Operation;
5884
5885 ----------------------
5886 -- Find_Unary_Types --
5887 ----------------------
5888
5889 procedure Find_Unary_Types
5890 (R : Node_Id;
5891 Op_Id : Entity_Id;
5892 N : Node_Id)
5893 is
5894 Index : Interp_Index;
5895 It : Interp;
5896
5897 begin
5898 if not Is_Overloaded (R) then
5899 if Is_Numeric_Type (Etype (R)) then
5900
5901 -- In an instance a generic actual may be a numeric type even if
5902 -- the formal in the generic unit was not. In that case, the
5903 -- predefined operator was not a possible interpretation in the
5904 -- generic, and cannot be one in the instance.
5905
5906 if In_Instance
5907 and then
5908 not Is_Numeric_Type (Corresponding_Generic_Type (Etype (R)))
5909 then
5910 null;
5911 else
5912 Add_One_Interp (N, Op_Id, Base_Type (Etype (R)));
5913 end if;
5914 end if;
5915
5916 else
5917 Get_First_Interp (R, Index, It);
5918 while Present (It.Typ) loop
5919 if Is_Numeric_Type (It.Typ) then
5920 if In_Instance
5921 and then
5922 not Is_Numeric_Type
5923 (Corresponding_Generic_Type (Etype (It.Typ)))
5924 then
5925 null;
5926
5927 else
5928 Add_One_Interp (N, Op_Id, Base_Type (It.Typ));
5929 end if;
5930 end if;
5931
5932 Get_Next_Interp (Index, It);
5933 end loop;
5934 end if;
5935 end Find_Unary_Types;
5936
5937 ------------------
5938 -- Junk_Operand --
5939 ------------------
5940
5941 function Junk_Operand (N : Node_Id) return Boolean is
5942 Enode : Node_Id;
5943
5944 begin
5945 if Error_Posted (N) then
5946 return False;
5947 end if;
5948
5949 -- Get entity to be tested
5950
5951 if Is_Entity_Name (N)
5952 and then Present (Entity (N))
5953 then
5954 Enode := N;
5955
5956 -- An odd case, a procedure name gets converted to a very peculiar
5957 -- function call, and here is where we detect this happening.
5958
5959 elsif Nkind (N) = N_Function_Call
5960 and then Is_Entity_Name (Name (N))
5961 and then Present (Entity (Name (N)))
5962 then
5963 Enode := Name (N);
5964
5965 -- Another odd case, there are at least some cases of selected
5966 -- components where the selected component is not marked as having
5967 -- an entity, even though the selector does have an entity
5968
5969 elsif Nkind (N) = N_Selected_Component
5970 and then Present (Entity (Selector_Name (N)))
5971 then
5972 Enode := Selector_Name (N);
5973
5974 else
5975 return False;
5976 end if;
5977
5978 -- Now test the entity we got to see if it is a bad case
5979
5980 case Ekind (Entity (Enode)) is
5981
5982 when E_Package =>
5983 Error_Msg_N
5984 ("package name cannot be used as operand", Enode);
5985
5986 when Generic_Unit_Kind =>
5987 Error_Msg_N
5988 ("generic unit name cannot be used as operand", Enode);
5989
5990 when Type_Kind =>
5991 Error_Msg_N
5992 ("subtype name cannot be used as operand", Enode);
5993
5994 when Entry_Kind =>
5995 Error_Msg_N
5996 ("entry name cannot be used as operand", Enode);
5997
5998 when E_Procedure =>
5999 Error_Msg_N
6000 ("procedure name cannot be used as operand", Enode);
6001
6002 when E_Exception =>
6003 Error_Msg_N
6004 ("exception name cannot be used as operand", Enode);
6005
6006 when E_Block | E_Label | E_Loop =>
6007 Error_Msg_N
6008 ("label name cannot be used as operand", Enode);
6009
6010 when others =>
6011 return False;
6012
6013 end case;
6014
6015 return True;
6016 end Junk_Operand;
6017
6018 --------------------
6019 -- Operator_Check --
6020 --------------------
6021
6022 procedure Operator_Check (N : Node_Id) is
6023 begin
6024 Remove_Abstract_Operations (N);
6025
6026 -- Test for case of no interpretation found for operator
6027
6028 if Etype (N) = Any_Type then
6029 declare
6030 L : Node_Id;
6031 R : Node_Id;
6032 Op_Id : Entity_Id := Empty;
6033
6034 begin
6035 R := Right_Opnd (N);
6036
6037 if Nkind (N) in N_Binary_Op then
6038 L := Left_Opnd (N);
6039 else
6040 L := Empty;
6041 end if;
6042
6043 -- If either operand has no type, then don't complain further,
6044 -- since this simply means that we have a propagated error.
6045
6046 if R = Error
6047 or else Etype (R) = Any_Type
6048 or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type)
6049 then
6050 return;
6051
6052 -- We explicitly check for the case of concatenation of component
6053 -- with component to avoid reporting spurious matching array types
6054 -- that might happen to be lurking in distant packages (such as
6055 -- run-time packages). This also prevents inconsistencies in the
6056 -- messages for certain ACVC B tests, which can vary depending on
6057 -- types declared in run-time interfaces. Another improvement when
6058 -- aggregates are present is to look for a well-typed operand.
6059
6060 elsif Present (Candidate_Type)
6061 and then (Nkind (N) /= N_Op_Concat
6062 or else Is_Array_Type (Etype (L))
6063 or else Is_Array_Type (Etype (R)))
6064 then
6065 if Nkind (N) = N_Op_Concat then
6066 if Etype (L) /= Any_Composite
6067 and then Is_Array_Type (Etype (L))
6068 then
6069 Candidate_Type := Etype (L);
6070
6071 elsif Etype (R) /= Any_Composite
6072 and then Is_Array_Type (Etype (R))
6073 then
6074 Candidate_Type := Etype (R);
6075 end if;
6076 end if;
6077
6078 Error_Msg_NE -- CODEFIX
6079 ("operator for} is not directly visible!",
6080 N, First_Subtype (Candidate_Type));
6081
6082 declare
6083 U : constant Node_Id :=
6084 Cunit (Get_Source_Unit (Candidate_Type));
6085 begin
6086 if Unit_Is_Visible (U) then
6087 Error_Msg_N -- CODEFIX
6088 ("use clause would make operation legal!", N);
6089 else
6090 Error_Msg_NE -- CODEFIX
6091 ("add with_clause and use_clause for&!",
6092 N, Defining_Entity (Unit (U)));
6093 end if;
6094 end;
6095 return;
6096
6097 -- If either operand is a junk operand (e.g. package name), then
6098 -- post appropriate error messages, but do not complain further.
6099
6100 -- Note that the use of OR in this test instead of OR ELSE is
6101 -- quite deliberate, we may as well check both operands in the
6102 -- binary operator case.
6103
6104 elsif Junk_Operand (R)
6105 or (Nkind (N) in N_Binary_Op and then Junk_Operand (L))
6106 then
6107 return;
6108
6109 -- If we have a logical operator, one of whose operands is
6110 -- Boolean, then we know that the other operand cannot resolve to
6111 -- Boolean (since we got no interpretations), but in that case we
6112 -- pretty much know that the other operand should be Boolean, so
6113 -- resolve it that way (generating an error)
6114
6115 elsif Nkind_In (N, N_Op_And, N_Op_Or, N_Op_Xor) then
6116 if Etype (L) = Standard_Boolean then
6117 Resolve (R, Standard_Boolean);
6118 return;
6119 elsif Etype (R) = Standard_Boolean then
6120 Resolve (L, Standard_Boolean);
6121 return;
6122 end if;
6123
6124 -- For an arithmetic operator or comparison operator, if one
6125 -- of the operands is numeric, then we know the other operand
6126 -- is not the same numeric type. If it is a non-numeric type,
6127 -- then probably it is intended to match the other operand.
6128
6129 elsif Nkind_In (N, N_Op_Add,
6130 N_Op_Divide,
6131 N_Op_Ge,
6132 N_Op_Gt,
6133 N_Op_Le)
6134 or else
6135 Nkind_In (N, N_Op_Lt,
6136 N_Op_Mod,
6137 N_Op_Multiply,
6138 N_Op_Rem,
6139 N_Op_Subtract)
6140 then
6141 if Is_Numeric_Type (Etype (L))
6142 and then not Is_Numeric_Type (Etype (R))
6143 then
6144 Resolve (R, Etype (L));
6145 return;
6146
6147 elsif Is_Numeric_Type (Etype (R))
6148 and then not Is_Numeric_Type (Etype (L))
6149 then
6150 Resolve (L, Etype (R));
6151 return;
6152 end if;
6153
6154 -- Comparisons on A'Access are common enough to deserve a
6155 -- special message.
6156
6157 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne)
6158 and then Ekind (Etype (L)) = E_Access_Attribute_Type
6159 and then Ekind (Etype (R)) = E_Access_Attribute_Type
6160 then
6161 Error_Msg_N
6162 ("two access attributes cannot be compared directly", N);
6163 Error_Msg_N
6164 ("\use qualified expression for one of the operands",
6165 N);
6166 return;
6167
6168 -- Another one for C programmers
6169
6170 elsif Nkind (N) = N_Op_Concat
6171 and then Valid_Boolean_Arg (Etype (L))
6172 and then Valid_Boolean_Arg (Etype (R))
6173 then
6174 Error_Msg_N ("invalid operands for concatenation", N);
6175 Error_Msg_N -- CODEFIX
6176 ("\maybe AND was meant", N);
6177 return;
6178
6179 -- A special case for comparison of access parameter with null
6180
6181 elsif Nkind (N) = N_Op_Eq
6182 and then Is_Entity_Name (L)
6183 and then Nkind (Parent (Entity (L))) = N_Parameter_Specification
6184 and then Nkind (Parameter_Type (Parent (Entity (L)))) =
6185 N_Access_Definition
6186 and then Nkind (R) = N_Null
6187 then
6188 Error_Msg_N ("access parameter is not allowed to be null", L);
6189 Error_Msg_N ("\(call would raise Constraint_Error)", L);
6190 return;
6191
6192 -- Another special case for exponentiation, where the right
6193 -- operand must be Natural, independently of the base.
6194
6195 elsif Nkind (N) = N_Op_Expon
6196 and then Is_Numeric_Type (Etype (L))
6197 and then not Is_Overloaded (R)
6198 and then
6199 First_Subtype (Base_Type (Etype (R))) /= Standard_Integer
6200 and then Base_Type (Etype (R)) /= Universal_Integer
6201 then
6202 if Ada_Version >= Ada_2012
6203 and then Has_Dimension_System (Etype (L))
6204 then
6205 Error_Msg_NE
6206 ("exponent for dimensioned type must be a rational" &
6207 ", found}", R, Etype (R));
6208 else
6209 Error_Msg_NE
6210 ("exponent must be of type Natural, found}", R, Etype (R));
6211 end if;
6212
6213 return;
6214 end if;
6215
6216 -- If we fall through then just give general message. Note that in
6217 -- the following messages, if the operand is overloaded we choose
6218 -- an arbitrary type to complain about, but that is probably more
6219 -- useful than not giving a type at all.
6220
6221 if Nkind (N) in N_Unary_Op then
6222 Error_Msg_Node_2 := Etype (R);
6223 Error_Msg_N ("operator& not defined for}", N);
6224 return;
6225
6226 else
6227 if Nkind (N) in N_Binary_Op then
6228 if not Is_Overloaded (L)
6229 and then not Is_Overloaded (R)
6230 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
6231 then
6232 Error_Msg_Node_2 := First_Subtype (Etype (R));
6233 Error_Msg_N ("there is no applicable operator& for}", N);
6234
6235 else
6236 -- Another attempt to find a fix: one of the candidate
6237 -- interpretations may not be use-visible. This has
6238 -- already been checked for predefined operators, so
6239 -- we examine only user-defined functions.
6240
6241 Op_Id := Get_Name_Entity_Id (Chars (N));
6242
6243 while Present (Op_Id) loop
6244 if Ekind (Op_Id) /= E_Operator
6245 and then Is_Overloadable (Op_Id)
6246 then
6247 if not Is_Immediately_Visible (Op_Id)
6248 and then not In_Use (Scope (Op_Id))
6249 and then not Is_Abstract_Subprogram (Op_Id)
6250 and then not Is_Hidden (Op_Id)
6251 and then Ekind (Scope (Op_Id)) = E_Package
6252 and then
6253 Has_Compatible_Type
6254 (L, Etype (First_Formal (Op_Id)))
6255 and then Present
6256 (Next_Formal (First_Formal (Op_Id)))
6257 and then
6258 Has_Compatible_Type
6259 (R,
6260 Etype (Next_Formal (First_Formal (Op_Id))))
6261 then
6262 Error_Msg_N
6263 ("No legal interpretation for operator&", N);
6264 Error_Msg_NE
6265 ("\use clause on& would make operation legal",
6266 N, Scope (Op_Id));
6267 exit;
6268 end if;
6269 end if;
6270
6271 Op_Id := Homonym (Op_Id);
6272 end loop;
6273
6274 if No (Op_Id) then
6275 Error_Msg_N ("invalid operand types for operator&", N);
6276
6277 if Nkind (N) /= N_Op_Concat then
6278 Error_Msg_NE ("\left operand has}!", N, Etype (L));
6279 Error_Msg_NE ("\right operand has}!", N, Etype (R));
6280 end if;
6281 end if;
6282 end if;
6283 end if;
6284 end if;
6285 end;
6286 end if;
6287 end Operator_Check;
6288
6289 -----------------------------------------
6290 -- Process_Implicit_Dereference_Prefix --
6291 -----------------------------------------
6292
6293 function Process_Implicit_Dereference_Prefix
6294 (E : Entity_Id;
6295 P : Entity_Id) return Entity_Id
6296 is
6297 Ref : Node_Id;
6298 Typ : constant Entity_Id := Designated_Type (Etype (P));
6299
6300 begin
6301 if Present (E)
6302 and then (Operating_Mode = Check_Semantics or else not Expander_Active)
6303 then
6304 -- We create a dummy reference to E to ensure that the reference
6305 -- is not considered as part of an assignment (an implicit
6306 -- dereference can never assign to its prefix). The Comes_From_Source
6307 -- attribute needs to be propagated for accurate warnings.
6308
6309 Ref := New_Reference_To (E, Sloc (P));
6310 Set_Comes_From_Source (Ref, Comes_From_Source (P));
6311 Generate_Reference (E, Ref);
6312 end if;
6313
6314 -- An implicit dereference is a legal occurrence of an
6315 -- incomplete type imported through a limited_with clause,
6316 -- if the full view is visible.
6317
6318 if From_With_Type (Typ)
6319 and then not From_With_Type (Scope (Typ))
6320 and then
6321 (Is_Immediately_Visible (Scope (Typ))
6322 or else
6323 (Is_Child_Unit (Scope (Typ))
6324 and then Is_Visible_Child_Unit (Scope (Typ))))
6325 then
6326 return Available_View (Typ);
6327 else
6328 return Typ;
6329 end if;
6330
6331 end Process_Implicit_Dereference_Prefix;
6332
6333 --------------------------------
6334 -- Remove_Abstract_Operations --
6335 --------------------------------
6336
6337 procedure Remove_Abstract_Operations (N : Node_Id) is
6338 Abstract_Op : Entity_Id := Empty;
6339 Address_Kludge : Boolean := False;
6340 I : Interp_Index;
6341 It : Interp;
6342
6343 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
6344 -- activate this if either extensions are enabled, or if the abstract
6345 -- operation in question comes from a predefined file. This latter test
6346 -- allows us to use abstract to make operations invisible to users. In
6347 -- particular, if type Address is non-private and abstract subprograms
6348 -- are used to hide its operators, they will be truly hidden.
6349
6350 type Operand_Position is (First_Op, Second_Op);
6351 Univ_Type : constant Entity_Id := Universal_Interpretation (N);
6352
6353 procedure Remove_Address_Interpretations (Op : Operand_Position);
6354 -- Ambiguities may arise when the operands are literal and the address
6355 -- operations in s-auxdec are visible. In that case, remove the
6356 -- interpretation of a literal as Address, to retain the semantics of
6357 -- Address as a private type.
6358
6359 ------------------------------------
6360 -- Remove_Address_Interpretations --
6361 ------------------------------------
6362
6363 procedure Remove_Address_Interpretations (Op : Operand_Position) is
6364 Formal : Entity_Id;
6365
6366 begin
6367 if Is_Overloaded (N) then
6368 Get_First_Interp (N, I, It);
6369 while Present (It.Nam) loop
6370 Formal := First_Entity (It.Nam);
6371
6372 if Op = Second_Op then
6373 Formal := Next_Entity (Formal);
6374 end if;
6375
6376 if Is_Descendent_Of_Address (Etype (Formal)) then
6377 Address_Kludge := True;
6378 Remove_Interp (I);
6379 end if;
6380
6381 Get_Next_Interp (I, It);
6382 end loop;
6383 end if;
6384 end Remove_Address_Interpretations;
6385
6386 -- Start of processing for Remove_Abstract_Operations
6387
6388 begin
6389 if Is_Overloaded (N) then
6390 if Debug_Flag_V then
6391 Write_Str ("Remove_Abstract_Operations: ");
6392 Write_Overloads (N);
6393 end if;
6394
6395 Get_First_Interp (N, I, It);
6396
6397 while Present (It.Nam) loop
6398 if Is_Overloadable (It.Nam)
6399 and then Is_Abstract_Subprogram (It.Nam)
6400 and then not Is_Dispatching_Operation (It.Nam)
6401 then
6402 Abstract_Op := It.Nam;
6403
6404 if Is_Descendent_Of_Address (It.Typ) then
6405 Address_Kludge := True;
6406 Remove_Interp (I);
6407 exit;
6408
6409 -- In Ada 2005, this operation does not participate in overload
6410 -- resolution. If the operation is defined in a predefined
6411 -- unit, it is one of the operations declared abstract in some
6412 -- variants of System, and it must be removed as well.
6413
6414 elsif Ada_Version >= Ada_2005
6415 or else Is_Predefined_File_Name
6416 (Unit_File_Name (Get_Source_Unit (It.Nam)))
6417 then
6418 Remove_Interp (I);
6419 exit;
6420 end if;
6421 end if;
6422
6423 Get_Next_Interp (I, It);
6424 end loop;
6425
6426 if No (Abstract_Op) then
6427
6428 -- If some interpretation yields an integer type, it is still
6429 -- possible that there are address interpretations. Remove them
6430 -- if one operand is a literal, to avoid spurious ambiguities
6431 -- on systems where Address is a visible integer type.
6432
6433 if Is_Overloaded (N)
6434 and then Nkind (N) in N_Op
6435 and then Is_Integer_Type (Etype (N))
6436 then
6437 if Nkind (N) in N_Binary_Op then
6438 if Nkind (Right_Opnd (N)) = N_Integer_Literal then
6439 Remove_Address_Interpretations (Second_Op);
6440
6441 elsif Nkind (Right_Opnd (N)) = N_Integer_Literal then
6442 Remove_Address_Interpretations (First_Op);
6443 end if;
6444 end if;
6445 end if;
6446
6447 elsif Nkind (N) in N_Op then
6448
6449 -- Remove interpretations that treat literals as addresses. This
6450 -- is never appropriate, even when Address is defined as a visible
6451 -- Integer type. The reason is that we would really prefer Address
6452 -- to behave as a private type, even in this case, which is there
6453 -- only to accommodate oddities of VMS address sizes. If Address
6454 -- is a visible integer type, we get lots of overload ambiguities.
6455
6456 if Nkind (N) in N_Binary_Op then
6457 declare
6458 U1 : constant Boolean :=
6459 Present (Universal_Interpretation (Right_Opnd (N)));
6460 U2 : constant Boolean :=
6461 Present (Universal_Interpretation (Left_Opnd (N)));
6462
6463 begin
6464 if U1 then
6465 Remove_Address_Interpretations (Second_Op);
6466 end if;
6467
6468 if U2 then
6469 Remove_Address_Interpretations (First_Op);
6470 end if;
6471
6472 if not (U1 and U2) then
6473
6474 -- Remove corresponding predefined operator, which is
6475 -- always added to the overload set.
6476
6477 Get_First_Interp (N, I, It);
6478 while Present (It.Nam) loop
6479 if Scope (It.Nam) = Standard_Standard
6480 and then Base_Type (It.Typ) =
6481 Base_Type (Etype (Abstract_Op))
6482 then
6483 Remove_Interp (I);
6484 end if;
6485
6486 Get_Next_Interp (I, It);
6487 end loop;
6488
6489 elsif Is_Overloaded (N)
6490 and then Present (Univ_Type)
6491 then
6492 -- If both operands have a universal interpretation,
6493 -- it is still necessary to remove interpretations that
6494 -- yield Address. Any remaining ambiguities will be
6495 -- removed in Disambiguate.
6496
6497 Get_First_Interp (N, I, It);
6498 while Present (It.Nam) loop
6499 if Is_Descendent_Of_Address (It.Typ) then
6500 Remove_Interp (I);
6501
6502 elsif not Is_Type (It.Nam) then
6503 Set_Entity (N, It.Nam);
6504 end if;
6505
6506 Get_Next_Interp (I, It);
6507 end loop;
6508 end if;
6509 end;
6510 end if;
6511
6512 elsif Nkind (N) = N_Function_Call
6513 and then
6514 (Nkind (Name (N)) = N_Operator_Symbol
6515 or else
6516 (Nkind (Name (N)) = N_Expanded_Name
6517 and then
6518 Nkind (Selector_Name (Name (N))) = N_Operator_Symbol))
6519 then
6520
6521 declare
6522 Arg1 : constant Node_Id := First (Parameter_Associations (N));
6523 U1 : constant Boolean :=
6524 Present (Universal_Interpretation (Arg1));
6525 U2 : constant Boolean :=
6526 Present (Next (Arg1)) and then
6527 Present (Universal_Interpretation (Next (Arg1)));
6528
6529 begin
6530 if U1 then
6531 Remove_Address_Interpretations (First_Op);
6532 end if;
6533
6534 if U2 then
6535 Remove_Address_Interpretations (Second_Op);
6536 end if;
6537
6538 if not (U1 and U2) then
6539 Get_First_Interp (N, I, It);
6540 while Present (It.Nam) loop
6541 if Scope (It.Nam) = Standard_Standard
6542 and then It.Typ = Base_Type (Etype (Abstract_Op))
6543 then
6544 Remove_Interp (I);
6545 end if;
6546
6547 Get_Next_Interp (I, It);
6548 end loop;
6549 end if;
6550 end;
6551 end if;
6552
6553 -- If the removal has left no valid interpretations, emit an error
6554 -- message now and label node as illegal.
6555
6556 if Present (Abstract_Op) then
6557 Get_First_Interp (N, I, It);
6558
6559 if No (It.Nam) then
6560
6561 -- Removal of abstract operation left no viable candidate
6562
6563 Set_Etype (N, Any_Type);
6564 Error_Msg_Sloc := Sloc (Abstract_Op);
6565 Error_Msg_NE
6566 ("cannot call abstract operation& declared#", N, Abstract_Op);
6567
6568 -- In Ada 2005, an abstract operation may disable predefined
6569 -- operators. Since the context is not yet known, we mark the
6570 -- predefined operators as potentially hidden. Do not include
6571 -- predefined operators when addresses are involved since this
6572 -- case is handled separately.
6573
6574 elsif Ada_Version >= Ada_2005
6575 and then not Address_Kludge
6576 then
6577 while Present (It.Nam) loop
6578 if Is_Numeric_Type (It.Typ)
6579 and then Scope (It.Typ) = Standard_Standard
6580 then
6581 Set_Abstract_Op (I, Abstract_Op);
6582 end if;
6583
6584 Get_Next_Interp (I, It);
6585 end loop;
6586 end if;
6587 end if;
6588
6589 if Debug_Flag_V then
6590 Write_Str ("Remove_Abstract_Operations done: ");
6591 Write_Overloads (N);
6592 end if;
6593 end if;
6594 end Remove_Abstract_Operations;
6595
6596 ----------------------------
6597 -- Try_Container_Indexing --
6598 ----------------------------
6599
6600 function Try_Container_Indexing
6601 (N : Node_Id;
6602 Prefix : Node_Id;
6603 Exprs : List_Id) return Boolean
6604 is
6605 Loc : constant Source_Ptr := Sloc (N);
6606 Assoc : List_Id;
6607 Disc : Entity_Id;
6608 Func : Entity_Id;
6609 Func_Name : Node_Id;
6610 Indexing : Node_Id;
6611
6612 begin
6613
6614 -- Check whether type has a specified indexing aspect
6615
6616 Func_Name := Empty;
6617
6618 if Is_Variable (Prefix) then
6619 Func_Name := Find_Aspect (Etype (Prefix), Aspect_Variable_Indexing);
6620 end if;
6621
6622 if No (Func_Name) then
6623 Func_Name := Find_Aspect (Etype (Prefix), Aspect_Constant_Indexing);
6624 end if;
6625
6626 -- If aspect does not exist the expression is illegal. Error is
6627 -- diagnosed in caller.
6628
6629 if No (Func_Name) then
6630
6631 -- The prefix itself may be an indexing of a container
6632 -- rewrite as such and re-analyze.
6633
6634 if Has_Implicit_Dereference (Etype (Prefix)) then
6635 Build_Explicit_Dereference
6636 (Prefix, First_Discriminant (Etype (Prefix)));
6637 return Try_Container_Indexing (N, Prefix, Exprs);
6638
6639 else
6640 return False;
6641 end if;
6642 end if;
6643
6644 Assoc := New_List (Relocate_Node (Prefix));
6645
6646 -- A generalized iterator may have nore than one index expression, so
6647 -- transfer all of them to the argument list to be used in the call.
6648
6649 declare
6650 Arg : Node_Id;
6651 begin
6652 Arg := First (Exprs);
6653 while Present (Arg) loop
6654 Append (Relocate_Node (Arg), Assoc);
6655 Next (Arg);
6656 end loop;
6657 end;
6658
6659 if not Is_Overloaded (Func_Name) then
6660 Func := Entity (Func_Name);
6661 Indexing :=
6662 Make_Function_Call (Loc,
6663 Name => New_Occurrence_Of (Func, Loc),
6664 Parameter_Associations => Assoc);
6665 Rewrite (N, Indexing);
6666 Analyze (N);
6667
6668 -- If the return type of the indexing function is a reference type,
6669 -- add the dereference as a possible interpretation. Note that the
6670 -- indexing aspect may be a function that returns the element type
6671 -- with no intervening implicit dereference.
6672
6673 if Has_Discriminants (Etype (Func)) then
6674 Disc := First_Discriminant (Etype (Func));
6675 while Present (Disc) loop
6676 if Has_Implicit_Dereference (Disc) then
6677 Add_One_Interp (N, Disc, Designated_Type (Etype (Disc)));
6678 exit;
6679 end if;
6680
6681 Next_Discriminant (Disc);
6682 end loop;
6683 end if;
6684
6685 else
6686 Indexing := Make_Function_Call (Loc,
6687 Name => Make_Identifier (Loc, Chars (Func_Name)),
6688 Parameter_Associations => Assoc);
6689
6690 Rewrite (N, Indexing);
6691
6692 declare
6693 I : Interp_Index;
6694 It : Interp;
6695 Success : Boolean;
6696
6697 begin
6698 Get_First_Interp (Func_Name, I, It);
6699 Set_Etype (N, Any_Type);
6700 while Present (It.Nam) loop
6701 Analyze_One_Call (N, It.Nam, False, Success);
6702 if Success then
6703 Set_Etype (Name (N), It.Typ);
6704 Set_Entity (Name (N), It.Nam);
6705
6706 -- Add implicit dereference interpretation
6707
6708 if Has_Discriminants (Etype (It.Nam)) then
6709 Disc := First_Discriminant (Etype (It.Nam));
6710 while Present (Disc) loop
6711 if Has_Implicit_Dereference (Disc) then
6712 Add_One_Interp
6713 (N, Disc, Designated_Type (Etype (Disc)));
6714 exit;
6715 end if;
6716
6717 Next_Discriminant (Disc);
6718 end loop;
6719 end if;
6720
6721 exit;
6722 end if;
6723 Get_Next_Interp (I, It);
6724 end loop;
6725 end;
6726 end if;
6727
6728 if Etype (N) = Any_Type then
6729 Error_Msg_NE
6730 ("container cannot be indexed with&", N, Etype (First (Exprs)));
6731 Rewrite (N, New_Occurrence_Of (Any_Id, Loc));
6732 else
6733 Analyze (N);
6734 end if;
6735
6736 return True;
6737 end Try_Container_Indexing;
6738
6739 -----------------------
6740 -- Try_Indirect_Call --
6741 -----------------------
6742
6743 function Try_Indirect_Call
6744 (N : Node_Id;
6745 Nam : Entity_Id;
6746 Typ : Entity_Id) return Boolean
6747 is
6748 Actual : Node_Id;
6749 Formal : Entity_Id;
6750
6751 Call_OK : Boolean;
6752 pragma Warnings (Off, Call_OK);
6753
6754 begin
6755 Normalize_Actuals (N, Designated_Type (Typ), False, Call_OK);
6756
6757 Actual := First_Actual (N);
6758 Formal := First_Formal (Designated_Type (Typ));
6759 while Present (Actual) and then Present (Formal) loop
6760 if not Has_Compatible_Type (Actual, Etype (Formal)) then
6761 return False;
6762 end if;
6763
6764 Next (Actual);
6765 Next_Formal (Formal);
6766 end loop;
6767
6768 if No (Actual) and then No (Formal) then
6769 Add_One_Interp (N, Nam, Etype (Designated_Type (Typ)));
6770
6771 -- Nam is a candidate interpretation for the name in the call,
6772 -- if it is not an indirect call.
6773
6774 if not Is_Type (Nam)
6775 and then Is_Entity_Name (Name (N))
6776 then
6777 Set_Entity (Name (N), Nam);
6778 end if;
6779
6780 return True;
6781 else
6782 return False;
6783 end if;
6784 end Try_Indirect_Call;
6785
6786 ----------------------
6787 -- Try_Indexed_Call --
6788 ----------------------
6789
6790 function Try_Indexed_Call
6791 (N : Node_Id;
6792 Nam : Entity_Id;
6793 Typ : Entity_Id;
6794 Skip_First : Boolean) return Boolean
6795 is
6796 Loc : constant Source_Ptr := Sloc (N);
6797 Actuals : constant List_Id := Parameter_Associations (N);
6798 Actual : Node_Id;
6799 Index : Entity_Id;
6800
6801 begin
6802 Actual := First (Actuals);
6803
6804 -- If the call was originally written in prefix form, skip the first
6805 -- actual, which is obviously not defaulted.
6806
6807 if Skip_First then
6808 Next (Actual);
6809 end if;
6810
6811 Index := First_Index (Typ);
6812 while Present (Actual) and then Present (Index) loop
6813
6814 -- If the parameter list has a named association, the expression
6815 -- is definitely a call and not an indexed component.
6816
6817 if Nkind (Actual) = N_Parameter_Association then
6818 return False;
6819 end if;
6820
6821 if Is_Entity_Name (Actual)
6822 and then Is_Type (Entity (Actual))
6823 and then No (Next (Actual))
6824 then
6825 -- A single actual that is a type name indicates a slice if the
6826 -- type is discrete, and an error otherwise.
6827
6828 if Is_Discrete_Type (Entity (Actual)) then
6829 Rewrite (N,
6830 Make_Slice (Loc,
6831 Prefix =>
6832 Make_Function_Call (Loc,
6833 Name => Relocate_Node (Name (N))),
6834 Discrete_Range =>
6835 New_Occurrence_Of (Entity (Actual), Sloc (Actual))));
6836
6837 Analyze (N);
6838
6839 else
6840 Error_Msg_N ("invalid use of type in expression", Actual);
6841 Set_Etype (N, Any_Type);
6842 end if;
6843
6844 return True;
6845
6846 elsif not Has_Compatible_Type (Actual, Etype (Index)) then
6847 return False;
6848 end if;
6849
6850 Next (Actual);
6851 Next_Index (Index);
6852 end loop;
6853
6854 if No (Actual) and then No (Index) then
6855 Add_One_Interp (N, Nam, Component_Type (Typ));
6856
6857 -- Nam is a candidate interpretation for the name in the call,
6858 -- if it is not an indirect call.
6859
6860 if not Is_Type (Nam)
6861 and then Is_Entity_Name (Name (N))
6862 then
6863 Set_Entity (Name (N), Nam);
6864 end if;
6865
6866 return True;
6867 else
6868 return False;
6869 end if;
6870 end Try_Indexed_Call;
6871
6872 --------------------------
6873 -- Try_Object_Operation --
6874 --------------------------
6875
6876 function Try_Object_Operation
6877 (N : Node_Id; CW_Test_Only : Boolean := False) return Boolean
6878 is
6879 K : constant Node_Kind := Nkind (Parent (N));
6880 Is_Subprg_Call : constant Boolean := K in N_Subprogram_Call;
6881 Loc : constant Source_Ptr := Sloc (N);
6882 Obj : constant Node_Id := Prefix (N);
6883
6884 Subprog : constant Node_Id :=
6885 Make_Identifier (Sloc (Selector_Name (N)),
6886 Chars => Chars (Selector_Name (N)));
6887 -- Identifier on which possible interpretations will be collected
6888
6889 Report_Error : Boolean := False;
6890 -- If no candidate interpretation matches the context, redo the
6891 -- analysis with error enabled to provide additional information.
6892
6893 Actual : Node_Id;
6894 Candidate : Entity_Id := Empty;
6895 New_Call_Node : Node_Id := Empty;
6896 Node_To_Replace : Node_Id;
6897 Obj_Type : Entity_Id := Etype (Obj);
6898 Success : Boolean := False;
6899
6900 function Valid_Candidate
6901 (Success : Boolean;
6902 Call : Node_Id;
6903 Subp : Entity_Id) return Entity_Id;
6904 -- If the subprogram is a valid interpretation, record it, and add
6905 -- to the list of interpretations of Subprog. Otherwise return Empty.
6906
6907 procedure Complete_Object_Operation
6908 (Call_Node : Node_Id;
6909 Node_To_Replace : Node_Id);
6910 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
6911 -- Call_Node, insert the object (or its dereference) as the first actual
6912 -- in the call, and complete the analysis of the call.
6913
6914 procedure Report_Ambiguity (Op : Entity_Id);
6915 -- If a prefixed procedure call is ambiguous, indicate whether the
6916 -- call includes an implicit dereference or an implicit 'Access.
6917
6918 procedure Transform_Object_Operation
6919 (Call_Node : out Node_Id;
6920 Node_To_Replace : out Node_Id);
6921 -- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
6922 -- Call_Node is the resulting subprogram call, Node_To_Replace is
6923 -- either N or the parent of N, and Subprog is a reference to the
6924 -- subprogram we are trying to match.
6925
6926 function Try_Class_Wide_Operation
6927 (Call_Node : Node_Id;
6928 Node_To_Replace : Node_Id) return Boolean;
6929 -- Traverse all ancestor types looking for a class-wide subprogram
6930 -- for which the current operation is a valid non-dispatching call.
6931
6932 procedure Try_One_Prefix_Interpretation (T : Entity_Id);
6933 -- If prefix is overloaded, its interpretation may include different
6934 -- tagged types, and we must examine the primitive operations and
6935 -- the class-wide operations of each in order to find candidate
6936 -- interpretations for the call as a whole.
6937
6938 function Try_Primitive_Operation
6939 (Call_Node : Node_Id;
6940 Node_To_Replace : Node_Id) return Boolean;
6941 -- Traverse the list of primitive subprograms looking for a dispatching
6942 -- operation for which the current node is a valid call .
6943
6944 ---------------------
6945 -- Valid_Candidate --
6946 ---------------------
6947
6948 function Valid_Candidate
6949 (Success : Boolean;
6950 Call : Node_Id;
6951 Subp : Entity_Id) return Entity_Id
6952 is
6953 Arr_Type : Entity_Id;
6954 Comp_Type : Entity_Id;
6955
6956 begin
6957 -- If the subprogram is a valid interpretation, record it in global
6958 -- variable Subprog, to collect all possible overloadings.
6959
6960 if Success then
6961 if Subp /= Entity (Subprog) then
6962 Add_One_Interp (Subprog, Subp, Etype (Subp));
6963 end if;
6964 end if;
6965
6966 -- If the call may be an indexed call, retrieve component type of
6967 -- resulting expression, and add possible interpretation.
6968
6969 Arr_Type := Empty;
6970 Comp_Type := Empty;
6971
6972 if Nkind (Call) = N_Function_Call
6973 and then Nkind (Parent (N)) = N_Indexed_Component
6974 and then Needs_One_Actual (Subp)
6975 then
6976 if Is_Array_Type (Etype (Subp)) then
6977 Arr_Type := Etype (Subp);
6978
6979 elsif Is_Access_Type (Etype (Subp))
6980 and then Is_Array_Type (Designated_Type (Etype (Subp)))
6981 then
6982 Arr_Type := Designated_Type (Etype (Subp));
6983 end if;
6984 end if;
6985
6986 if Present (Arr_Type) then
6987
6988 -- Verify that the actuals (excluding the object) match the types
6989 -- of the indexes.
6990
6991 declare
6992 Actual : Node_Id;
6993 Index : Node_Id;
6994
6995 begin
6996 Actual := Next (First_Actual (Call));
6997 Index := First_Index (Arr_Type);
6998 while Present (Actual) and then Present (Index) loop
6999 if not Has_Compatible_Type (Actual, Etype (Index)) then
7000 Arr_Type := Empty;
7001 exit;
7002 end if;
7003
7004 Next_Actual (Actual);
7005 Next_Index (Index);
7006 end loop;
7007
7008 if No (Actual)
7009 and then No (Index)
7010 and then Present (Arr_Type)
7011 then
7012 Comp_Type := Component_Type (Arr_Type);
7013 end if;
7014 end;
7015
7016 if Present (Comp_Type)
7017 and then Etype (Subprog) /= Comp_Type
7018 then
7019 Add_One_Interp (Subprog, Subp, Comp_Type);
7020 end if;
7021 end if;
7022
7023 if Etype (Call) /= Any_Type then
7024 return Subp;
7025 else
7026 return Empty;
7027 end if;
7028 end Valid_Candidate;
7029
7030 -------------------------------
7031 -- Complete_Object_Operation --
7032 -------------------------------
7033
7034 procedure Complete_Object_Operation
7035 (Call_Node : Node_Id;
7036 Node_To_Replace : Node_Id)
7037 is
7038 Control : constant Entity_Id := First_Formal (Entity (Subprog));
7039 Formal_Type : constant Entity_Id := Etype (Control);
7040 First_Actual : Node_Id;
7041
7042 begin
7043 -- Place the name of the operation, with its interpretations,
7044 -- on the rewritten call.
7045
7046 Set_Name (Call_Node, Subprog);
7047
7048 First_Actual := First (Parameter_Associations (Call_Node));
7049
7050 -- For cross-reference purposes, treat the new node as being in
7051 -- the source if the original one is. Set entity and type, even
7052 -- though they may be overwritten during resolution if overloaded.
7053
7054 Set_Comes_From_Source (Subprog, Comes_From_Source (N));
7055 Set_Comes_From_Source (Call_Node, Comes_From_Source (N));
7056
7057 if Nkind (N) = N_Selected_Component
7058 and then not Inside_A_Generic
7059 then
7060 Set_Entity (Selector_Name (N), Entity (Subprog));
7061 Set_Etype (Selector_Name (N), Etype (Entity (Subprog)));
7062 end if;
7063
7064 -- If need be, rewrite first actual as an explicit dereference
7065 -- If the call is overloaded, the rewriting can only be done
7066 -- once the primitive operation is identified.
7067
7068 if Is_Overloaded (Subprog) then
7069
7070 -- The prefix itself may be overloaded, and its interpretations
7071 -- must be propagated to the new actual in the call.
7072
7073 if Is_Overloaded (Obj) then
7074 Save_Interps (Obj, First_Actual);
7075 end if;
7076
7077 Rewrite (First_Actual, Obj);
7078
7079 elsif not Is_Access_Type (Formal_Type)
7080 and then Is_Access_Type (Etype (Obj))
7081 then
7082 Rewrite (First_Actual,
7083 Make_Explicit_Dereference (Sloc (Obj), Obj));
7084 Analyze (First_Actual);
7085
7086 -- If we need to introduce an explicit dereference, verify that
7087 -- the resulting actual is compatible with the mode of the formal.
7088
7089 if Ekind (First_Formal (Entity (Subprog))) /= E_In_Parameter
7090 and then Is_Access_Constant (Etype (Obj))
7091 then
7092 Error_Msg_NE
7093 ("expect variable in call to&", Prefix (N), Entity (Subprog));
7094 end if;
7095
7096 -- Conversely, if the formal is an access parameter and the object
7097 -- is not, replace the actual with a 'Access reference. Its analysis
7098 -- will check that the object is aliased.
7099
7100 elsif Is_Access_Type (Formal_Type)
7101 and then not Is_Access_Type (Etype (Obj))
7102 then
7103 -- A special case: A.all'access is illegal if A is an access to a
7104 -- constant and the context requires an access to a variable.
7105
7106 if not Is_Access_Constant (Formal_Type) then
7107 if (Nkind (Obj) = N_Explicit_Dereference
7108 and then Is_Access_Constant (Etype (Prefix (Obj))))
7109 or else not Is_Variable (Obj)
7110 then
7111 Error_Msg_NE
7112 ("actual for& must be a variable", Obj, Control);
7113 end if;
7114 end if;
7115
7116 Rewrite (First_Actual,
7117 Make_Attribute_Reference (Loc,
7118 Attribute_Name => Name_Access,
7119 Prefix => Relocate_Node (Obj)));
7120
7121 if not Is_Aliased_View (Obj) then
7122 Error_Msg_NE
7123 ("object in prefixed call to& must be aliased"
7124 & " (RM-2005 4.3.1 (13))",
7125 Prefix (First_Actual), Subprog);
7126 end if;
7127
7128 Analyze (First_Actual);
7129
7130 else
7131 if Is_Overloaded (Obj) then
7132 Save_Interps (Obj, First_Actual);
7133 end if;
7134
7135 Rewrite (First_Actual, Obj);
7136 end if;
7137
7138 Rewrite (Node_To_Replace, Call_Node);
7139
7140 -- Propagate the interpretations collected in subprog to the new
7141 -- function call node, to be resolved from context.
7142
7143 if Is_Overloaded (Subprog) then
7144 Save_Interps (Subprog, Node_To_Replace);
7145
7146 else
7147 Analyze (Node_To_Replace);
7148
7149 -- If the operation has been rewritten into a call, which may get
7150 -- subsequently an explicit dereference, preserve the type on the
7151 -- original node (selected component or indexed component) for
7152 -- subsequent legality tests, e.g. Is_Variable. which examines
7153 -- the original node.
7154
7155 if Nkind (Node_To_Replace) = N_Function_Call then
7156 Set_Etype
7157 (Original_Node (Node_To_Replace), Etype (Node_To_Replace));
7158 end if;
7159 end if;
7160 end Complete_Object_Operation;
7161
7162 ----------------------
7163 -- Report_Ambiguity --
7164 ----------------------
7165
7166 procedure Report_Ambiguity (Op : Entity_Id) is
7167 Access_Actual : constant Boolean :=
7168 Is_Access_Type (Etype (Prefix (N)));
7169 Access_Formal : Boolean := False;
7170
7171 begin
7172 Error_Msg_Sloc := Sloc (Op);
7173
7174 if Present (First_Formal (Op)) then
7175 Access_Formal := Is_Access_Type (Etype (First_Formal (Op)));
7176 end if;
7177
7178 if Access_Formal and then not Access_Actual then
7179 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
7180 Error_Msg_N
7181 ("\possible interpretation"
7182 & " (inherited, with implicit 'Access) #", N);
7183 else
7184 Error_Msg_N
7185 ("\possible interpretation (with implicit 'Access) #", N);
7186 end if;
7187
7188 elsif not Access_Formal and then Access_Actual then
7189 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
7190 Error_Msg_N
7191 ("\possible interpretation"
7192 & " ( inherited, with implicit dereference) #", N);
7193 else
7194 Error_Msg_N
7195 ("\possible interpretation (with implicit dereference) #", N);
7196 end if;
7197
7198 else
7199 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
7200 Error_Msg_N ("\possible interpretation (inherited)#", N);
7201 else
7202 Error_Msg_N -- CODEFIX
7203 ("\possible interpretation#", N);
7204 end if;
7205 end if;
7206 end Report_Ambiguity;
7207
7208 --------------------------------
7209 -- Transform_Object_Operation --
7210 --------------------------------
7211
7212 procedure Transform_Object_Operation
7213 (Call_Node : out Node_Id;
7214 Node_To_Replace : out Node_Id)
7215 is
7216 Dummy : constant Node_Id := New_Copy (Obj);
7217 -- Placeholder used as a first parameter in the call, replaced
7218 -- eventually by the proper object.
7219
7220 Parent_Node : constant Node_Id := Parent (N);
7221
7222 Actual : Node_Id;
7223 Actuals : List_Id;
7224
7225 begin
7226 -- Common case covering 1) Call to a procedure and 2) Call to a
7227 -- function that has some additional actuals.
7228
7229 if Nkind (Parent_Node) in N_Subprogram_Call
7230
7231 -- N is a selected component node containing the name of the
7232 -- subprogram. If N is not the name of the parent node we must
7233 -- not replace the parent node by the new construct. This case
7234 -- occurs when N is a parameterless call to a subprogram that
7235 -- is an actual parameter of a call to another subprogram. For
7236 -- example:
7237 -- Some_Subprogram (..., Obj.Operation, ...)
7238
7239 and then Name (Parent_Node) = N
7240 then
7241 Node_To_Replace := Parent_Node;
7242
7243 Actuals := Parameter_Associations (Parent_Node);
7244
7245 if Present (Actuals) then
7246 Prepend (Dummy, Actuals);
7247 else
7248 Actuals := New_List (Dummy);
7249 end if;
7250
7251 if Nkind (Parent_Node) = N_Procedure_Call_Statement then
7252 Call_Node :=
7253 Make_Procedure_Call_Statement (Loc,
7254 Name => New_Copy (Subprog),
7255 Parameter_Associations => Actuals);
7256
7257 else
7258 Call_Node :=
7259 Make_Function_Call (Loc,
7260 Name => New_Copy (Subprog),
7261 Parameter_Associations => Actuals);
7262
7263 end if;
7264
7265 -- Before analysis, a function call appears as an indexed component
7266 -- if there are no named associations.
7267
7268 elsif Nkind (Parent_Node) = N_Indexed_Component
7269 and then N = Prefix (Parent_Node)
7270 then
7271 Node_To_Replace := Parent_Node;
7272 Actuals := Expressions (Parent_Node);
7273
7274 Actual := First (Actuals);
7275 while Present (Actual) loop
7276 Analyze (Actual);
7277 Next (Actual);
7278 end loop;
7279
7280 Prepend (Dummy, Actuals);
7281
7282 Call_Node :=
7283 Make_Function_Call (Loc,
7284 Name => New_Copy (Subprog),
7285 Parameter_Associations => Actuals);
7286
7287 -- Parameterless call: Obj.F is rewritten as F (Obj)
7288
7289 else
7290 Node_To_Replace := N;
7291
7292 Call_Node :=
7293 Make_Function_Call (Loc,
7294 Name => New_Copy (Subprog),
7295 Parameter_Associations => New_List (Dummy));
7296 end if;
7297 end Transform_Object_Operation;
7298
7299 ------------------------------
7300 -- Try_Class_Wide_Operation --
7301 ------------------------------
7302
7303 function Try_Class_Wide_Operation
7304 (Call_Node : Node_Id;
7305 Node_To_Replace : Node_Id) return Boolean
7306 is
7307 Anc_Type : Entity_Id;
7308 Matching_Op : Entity_Id := Empty;
7309 Error : Boolean;
7310
7311 procedure Traverse_Homonyms
7312 (Anc_Type : Entity_Id;
7313 Error : out Boolean);
7314 -- Traverse the homonym chain of the subprogram searching for those
7315 -- homonyms whose first formal has the Anc_Type's class-wide type,
7316 -- or an anonymous access type designating the class-wide type. If
7317 -- an ambiguity is detected, then Error is set to True.
7318
7319 procedure Traverse_Interfaces
7320 (Anc_Type : Entity_Id;
7321 Error : out Boolean);
7322 -- Traverse the list of interfaces, if any, associated with Anc_Type
7323 -- and search for acceptable class-wide homonyms associated with each
7324 -- interface. If an ambiguity is detected, then Error is set to True.
7325
7326 -----------------------
7327 -- Traverse_Homonyms --
7328 -----------------------
7329
7330 procedure Traverse_Homonyms
7331 (Anc_Type : Entity_Id;
7332 Error : out Boolean)
7333 is
7334 Cls_Type : Entity_Id;
7335 Hom : Entity_Id;
7336 Hom_Ref : Node_Id;
7337 Success : Boolean;
7338
7339 begin
7340 Error := False;
7341
7342 Cls_Type := Class_Wide_Type (Anc_Type);
7343
7344 Hom := Current_Entity (Subprog);
7345
7346 -- Find a non-hidden operation whose first parameter is of the
7347 -- class-wide type, a subtype thereof, or an anonymous access
7348 -- to same. If in an instance, the operation can be considered
7349 -- even if hidden (it may be hidden because the instantiation is
7350 -- expanded after the containing package has been analyzed).
7351
7352 while Present (Hom) loop
7353 if Ekind_In (Hom, E_Procedure, E_Function)
7354 and then (not Is_Hidden (Hom) or else In_Instance)
7355 and then Scope (Hom) = Scope (Anc_Type)
7356 and then Present (First_Formal (Hom))
7357 and then
7358 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
7359 or else
7360 (Is_Access_Type (Etype (First_Formal (Hom)))
7361 and then
7362 Ekind (Etype (First_Formal (Hom))) =
7363 E_Anonymous_Access_Type
7364 and then
7365 Base_Type
7366 (Designated_Type (Etype (First_Formal (Hom)))) =
7367 Cls_Type))
7368 then
7369 -- If the context is a procedure call, ignore functions
7370 -- in the name of the call.
7371
7372 if Ekind (Hom) = E_Function
7373 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
7374 and then N = Name (Parent (N))
7375 then
7376 goto Next_Hom;
7377
7378 -- If the context is a function call, ignore procedures
7379 -- in the name of the call.
7380
7381 elsif Ekind (Hom) = E_Procedure
7382 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
7383 then
7384 goto Next_Hom;
7385 end if;
7386
7387 Set_Etype (Call_Node, Any_Type);
7388 Set_Is_Overloaded (Call_Node, False);
7389 Success := False;
7390
7391 if No (Matching_Op) then
7392 Hom_Ref := New_Reference_To (Hom, Sloc (Subprog));
7393 Set_Etype (Call_Node, Any_Type);
7394 Set_Parent (Call_Node, Parent (Node_To_Replace));
7395
7396 Set_Name (Call_Node, Hom_Ref);
7397
7398 Analyze_One_Call
7399 (N => Call_Node,
7400 Nam => Hom,
7401 Report => Report_Error,
7402 Success => Success,
7403 Skip_First => True);
7404
7405 Matching_Op :=
7406 Valid_Candidate (Success, Call_Node, Hom);
7407
7408 else
7409 Analyze_One_Call
7410 (N => Call_Node,
7411 Nam => Hom,
7412 Report => Report_Error,
7413 Success => Success,
7414 Skip_First => True);
7415
7416 if Present (Valid_Candidate (Success, Call_Node, Hom))
7417 and then Nkind (Call_Node) /= N_Function_Call
7418 then
7419 Error_Msg_NE ("ambiguous call to&", N, Hom);
7420 Report_Ambiguity (Matching_Op);
7421 Report_Ambiguity (Hom);
7422 Error := True;
7423 return;
7424 end if;
7425 end if;
7426 end if;
7427
7428 <<Next_Hom>>
7429 Hom := Homonym (Hom);
7430 end loop;
7431 end Traverse_Homonyms;
7432
7433 -------------------------
7434 -- Traverse_Interfaces --
7435 -------------------------
7436
7437 procedure Traverse_Interfaces
7438 (Anc_Type : Entity_Id;
7439 Error : out Boolean)
7440 is
7441 Intface_List : constant List_Id :=
7442 Abstract_Interface_List (Anc_Type);
7443 Intface : Node_Id;
7444
7445 begin
7446 Error := False;
7447
7448 if Is_Non_Empty_List (Intface_List) then
7449 Intface := First (Intface_List);
7450 while Present (Intface) loop
7451
7452 -- Look for acceptable class-wide homonyms associated with
7453 -- the interface.
7454
7455 Traverse_Homonyms (Etype (Intface), Error);
7456
7457 if Error then
7458 return;
7459 end if;
7460
7461 -- Continue the search by looking at each of the interface's
7462 -- associated interface ancestors.
7463
7464 Traverse_Interfaces (Etype (Intface), Error);
7465
7466 if Error then
7467 return;
7468 end if;
7469
7470 Next (Intface);
7471 end loop;
7472 end if;
7473 end Traverse_Interfaces;
7474
7475 -- Start of processing for Try_Class_Wide_Operation
7476
7477 begin
7478 -- If we are searching only for conflicting class-wide subprograms
7479 -- then initialize directly Matching_Op with the target entity.
7480
7481 if CW_Test_Only then
7482 Matching_Op := Entity (Selector_Name (N));
7483 end if;
7484
7485 -- Loop through ancestor types (including interfaces), traversing
7486 -- the homonym chain of the subprogram, trying out those homonyms
7487 -- whose first formal has the class-wide type of the ancestor, or
7488 -- an anonymous access type designating the class-wide type.
7489
7490 Anc_Type := Obj_Type;
7491 loop
7492 -- Look for a match among homonyms associated with the ancestor
7493
7494 Traverse_Homonyms (Anc_Type, Error);
7495
7496 if Error then
7497 return True;
7498 end if;
7499
7500 -- Continue the search for matches among homonyms associated with
7501 -- any interfaces implemented by the ancestor.
7502
7503 Traverse_Interfaces (Anc_Type, Error);
7504
7505 if Error then
7506 return True;
7507 end if;
7508
7509 exit when Etype (Anc_Type) = Anc_Type;
7510 Anc_Type := Etype (Anc_Type);
7511 end loop;
7512
7513 if Present (Matching_Op) then
7514 Set_Etype (Call_Node, Etype (Matching_Op));
7515 end if;
7516
7517 return Present (Matching_Op);
7518 end Try_Class_Wide_Operation;
7519
7520 -----------------------------------
7521 -- Try_One_Prefix_Interpretation --
7522 -----------------------------------
7523
7524 procedure Try_One_Prefix_Interpretation (T : Entity_Id) is
7525 begin
7526 Obj_Type := T;
7527
7528 if Is_Access_Type (Obj_Type) then
7529 Obj_Type := Designated_Type (Obj_Type);
7530 end if;
7531
7532 if Ekind (Obj_Type) = E_Private_Subtype then
7533 Obj_Type := Base_Type (Obj_Type);
7534 end if;
7535
7536 if Is_Class_Wide_Type (Obj_Type) then
7537 Obj_Type := Etype (Class_Wide_Type (Obj_Type));
7538 end if;
7539
7540 -- The type may have be obtained through a limited_with clause,
7541 -- in which case the primitive operations are available on its
7542 -- non-limited view. If still incomplete, retrieve full view.
7543
7544 if Ekind (Obj_Type) = E_Incomplete_Type
7545 and then From_With_Type (Obj_Type)
7546 then
7547 Obj_Type := Get_Full_View (Non_Limited_View (Obj_Type));
7548 end if;
7549
7550 -- If the object is not tagged, or the type is still an incomplete
7551 -- type, this is not a prefixed call.
7552
7553 if not Is_Tagged_Type (Obj_Type)
7554 or else Is_Incomplete_Type (Obj_Type)
7555 then
7556 return;
7557 end if;
7558
7559 declare
7560 Dup_Call_Node : constant Node_Id := New_Copy (New_Call_Node);
7561 CW_Result : Boolean;
7562 Prim_Result : Boolean;
7563 pragma Unreferenced (CW_Result);
7564
7565 begin
7566 if not CW_Test_Only then
7567 Prim_Result :=
7568 Try_Primitive_Operation
7569 (Call_Node => New_Call_Node,
7570 Node_To_Replace => Node_To_Replace);
7571 end if;
7572
7573 -- Check if there is a class-wide subprogram covering the
7574 -- primitive. This check must be done even if a candidate
7575 -- was found in order to report ambiguous calls.
7576
7577 if not (Prim_Result) then
7578 CW_Result :=
7579 Try_Class_Wide_Operation
7580 (Call_Node => New_Call_Node,
7581 Node_To_Replace => Node_To_Replace);
7582
7583 -- If we found a primitive we search for class-wide subprograms
7584 -- using a duplicate of the call node (done to avoid missing its
7585 -- decoration if there is no ambiguity).
7586
7587 else
7588 CW_Result :=
7589 Try_Class_Wide_Operation
7590 (Call_Node => Dup_Call_Node,
7591 Node_To_Replace => Node_To_Replace);
7592 end if;
7593 end;
7594 end Try_One_Prefix_Interpretation;
7595
7596 -----------------------------
7597 -- Try_Primitive_Operation --
7598 -----------------------------
7599
7600 function Try_Primitive_Operation
7601 (Call_Node : Node_Id;
7602 Node_To_Replace : Node_Id) return Boolean
7603 is
7604 Elmt : Elmt_Id;
7605 Prim_Op : Entity_Id;
7606 Matching_Op : Entity_Id := Empty;
7607 Prim_Op_Ref : Node_Id := Empty;
7608
7609 Corr_Type : Entity_Id := Empty;
7610 -- If the prefix is a synchronized type, the controlling type of
7611 -- the primitive operation is the corresponding record type, else
7612 -- this is the object type itself.
7613
7614 Success : Boolean := False;
7615
7616 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id;
7617 -- For tagged types the candidate interpretations are found in
7618 -- the list of primitive operations of the type and its ancestors.
7619 -- For formal tagged types we have to find the operations declared
7620 -- in the same scope as the type (including in the generic formal
7621 -- part) because the type itself carries no primitive operations,
7622 -- except for formal derived types that inherit the operations of
7623 -- the parent and progenitors.
7624 -- If the context is a generic subprogram body, the generic formals
7625 -- are visible by name, but are not in the entity list of the
7626 -- subprogram because that list starts with the subprogram formals.
7627 -- We retrieve the candidate operations from the generic declaration.
7628
7629 function Is_Private_Overriding (Op : Entity_Id) return Boolean;
7630 -- An operation that overrides an inherited operation in the private
7631 -- part of its package may be hidden, but if the inherited operation
7632 -- is visible a direct call to it will dispatch to the private one,
7633 -- which is therefore a valid candidate.
7634
7635 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean;
7636 -- Verify that the prefix, dereferenced if need be, is a valid
7637 -- controlling argument in a call to Op. The remaining actuals
7638 -- are checked in the subsequent call to Analyze_One_Call.
7639
7640 ------------------------------
7641 -- Collect_Generic_Type_Ops --
7642 ------------------------------
7643
7644 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id is
7645 Bas : constant Entity_Id := Base_Type (T);
7646 Candidates : constant Elist_Id := New_Elmt_List;
7647 Subp : Entity_Id;
7648 Formal : Entity_Id;
7649
7650 procedure Check_Candidate;
7651 -- The operation is a candidate if its first parameter is a
7652 -- controlling operand of the desired type.
7653
7654 -----------------------
7655 -- Check_Candidate; --
7656 -----------------------
7657
7658 procedure Check_Candidate is
7659 begin
7660 Formal := First_Formal (Subp);
7661
7662 if Present (Formal)
7663 and then Is_Controlling_Formal (Formal)
7664 and then
7665 (Base_Type (Etype (Formal)) = Bas
7666 or else
7667 (Is_Access_Type (Etype (Formal))
7668 and then Designated_Type (Etype (Formal)) = Bas))
7669 then
7670 Append_Elmt (Subp, Candidates);
7671 end if;
7672 end Check_Candidate;
7673
7674 -- Start of processing for Collect_Generic_Type_Ops
7675
7676 begin
7677 if Is_Derived_Type (T) then
7678 return Primitive_Operations (T);
7679
7680 elsif Ekind_In (Scope (T), E_Procedure, E_Function) then
7681
7682 -- Scan the list of generic formals to find subprograms
7683 -- that may have a first controlling formal of the type.
7684
7685 if Nkind (Unit_Declaration_Node (Scope (T)))
7686 = N_Generic_Subprogram_Declaration
7687 then
7688 declare
7689 Decl : Node_Id;
7690
7691 begin
7692 Decl :=
7693 First (Generic_Formal_Declarations
7694 (Unit_Declaration_Node (Scope (T))));
7695 while Present (Decl) loop
7696 if Nkind (Decl) in N_Formal_Subprogram_Declaration then
7697 Subp := Defining_Entity (Decl);
7698 Check_Candidate;
7699 end if;
7700
7701 Next (Decl);
7702 end loop;
7703 end;
7704 end if;
7705 return Candidates;
7706
7707 else
7708 -- Scan the list of entities declared in the same scope as
7709 -- the type. In general this will be an open scope, given that
7710 -- the call we are analyzing can only appear within a generic
7711 -- declaration or body (either the one that declares T, or a
7712 -- child unit).
7713
7714 -- For a subtype representing a generic actual type, go to the
7715 -- base type.
7716
7717 if Is_Generic_Actual_Type (T) then
7718 Subp := First_Entity (Scope (Base_Type (T)));
7719 else
7720 Subp := First_Entity (Scope (T));
7721 end if;
7722
7723 while Present (Subp) loop
7724 if Is_Overloadable (Subp) then
7725 Check_Candidate;
7726 end if;
7727
7728 Next_Entity (Subp);
7729 end loop;
7730
7731 return Candidates;
7732 end if;
7733 end Collect_Generic_Type_Ops;
7734
7735 ---------------------------
7736 -- Is_Private_Overriding --
7737 ---------------------------
7738
7739 function Is_Private_Overriding (Op : Entity_Id) return Boolean is
7740 Visible_Op : constant Entity_Id := Homonym (Op);
7741
7742 begin
7743 return Present (Visible_Op)
7744 and then Scope (Op) = Scope (Visible_Op)
7745 and then not Comes_From_Source (Visible_Op)
7746 and then Alias (Visible_Op) = Op
7747 and then not Is_Hidden (Visible_Op);
7748 end Is_Private_Overriding;
7749
7750 -----------------------------
7751 -- Valid_First_Argument_Of --
7752 -----------------------------
7753
7754 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean is
7755 Typ : Entity_Id := Etype (First_Formal (Op));
7756
7757 begin
7758 if Is_Concurrent_Type (Typ)
7759 and then Present (Corresponding_Record_Type (Typ))
7760 then
7761 Typ := Corresponding_Record_Type (Typ);
7762 end if;
7763
7764 -- Simple case. Object may be a subtype of the tagged type or
7765 -- may be the corresponding record of a synchronized type.
7766
7767 return Obj_Type = Typ
7768 or else Base_Type (Obj_Type) = Typ
7769 or else Corr_Type = Typ
7770
7771 -- Prefix can be dereferenced
7772
7773 or else
7774 (Is_Access_Type (Corr_Type)
7775 and then Designated_Type (Corr_Type) = Typ)
7776
7777 -- Formal is an access parameter, for which the object
7778 -- can provide an access.
7779
7780 or else
7781 (Ekind (Typ) = E_Anonymous_Access_Type
7782 and then
7783 Base_Type (Designated_Type (Typ)) = Base_Type (Corr_Type));
7784 end Valid_First_Argument_Of;
7785
7786 -- Start of processing for Try_Primitive_Operation
7787
7788 begin
7789 -- Look for subprograms in the list of primitive operations. The name
7790 -- must be identical, and the kind of call indicates the expected
7791 -- kind of operation (function or procedure). If the type is a
7792 -- (tagged) synchronized type, the primitive ops are attached to the
7793 -- corresponding record (base) type.
7794
7795 if Is_Concurrent_Type (Obj_Type) then
7796 if Present (Corresponding_Record_Type (Obj_Type)) then
7797 Corr_Type := Base_Type (Corresponding_Record_Type (Obj_Type));
7798 Elmt := First_Elmt (Primitive_Operations (Corr_Type));
7799 else
7800 Corr_Type := Obj_Type;
7801 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
7802 end if;
7803
7804 elsif not Is_Generic_Type (Obj_Type) then
7805 Corr_Type := Obj_Type;
7806 Elmt := First_Elmt (Primitive_Operations (Obj_Type));
7807
7808 else
7809 Corr_Type := Obj_Type;
7810 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
7811 end if;
7812
7813 while Present (Elmt) loop
7814 Prim_Op := Node (Elmt);
7815
7816 if Chars (Prim_Op) = Chars (Subprog)
7817 and then Present (First_Formal (Prim_Op))
7818 and then Valid_First_Argument_Of (Prim_Op)
7819 and then
7820 (Nkind (Call_Node) = N_Function_Call)
7821 = (Ekind (Prim_Op) = E_Function)
7822 then
7823 -- Ada 2005 (AI-251): If this primitive operation corresponds
7824 -- with an immediate ancestor interface there is no need to add
7825 -- it to the list of interpretations; the corresponding aliased
7826 -- primitive is also in this list of primitive operations and
7827 -- will be used instead.
7828
7829 if (Present (Interface_Alias (Prim_Op))
7830 and then Is_Ancestor (Find_Dispatching_Type
7831 (Alias (Prim_Op)), Corr_Type))
7832
7833 -- Do not consider hidden primitives unless the type is in an
7834 -- open scope or we are within an instance, where visibility
7835 -- is known to be correct, or else if this is an overriding
7836 -- operation in the private part for an inherited operation.
7837
7838 or else (Is_Hidden (Prim_Op)
7839 and then not Is_Immediately_Visible (Obj_Type)
7840 and then not In_Instance
7841 and then not Is_Private_Overriding (Prim_Op))
7842 then
7843 goto Continue;
7844 end if;
7845
7846 Set_Etype (Call_Node, Any_Type);
7847 Set_Is_Overloaded (Call_Node, False);
7848
7849 if No (Matching_Op) then
7850 Prim_Op_Ref := New_Reference_To (Prim_Op, Sloc (Subprog));
7851 Candidate := Prim_Op;
7852
7853 Set_Parent (Call_Node, Parent (Node_To_Replace));
7854
7855 Set_Name (Call_Node, Prim_Op_Ref);
7856 Success := False;
7857
7858 Analyze_One_Call
7859 (N => Call_Node,
7860 Nam => Prim_Op,
7861 Report => Report_Error,
7862 Success => Success,
7863 Skip_First => True);
7864
7865 Matching_Op := Valid_Candidate (Success, Call_Node, Prim_Op);
7866
7867 -- More than one interpretation, collect for subsequent
7868 -- disambiguation. If this is a procedure call and there
7869 -- is another match, report ambiguity now.
7870
7871 else
7872 Analyze_One_Call
7873 (N => Call_Node,
7874 Nam => Prim_Op,
7875 Report => Report_Error,
7876 Success => Success,
7877 Skip_First => True);
7878
7879 if Present (Valid_Candidate (Success, Call_Node, Prim_Op))
7880 and then Nkind (Call_Node) /= N_Function_Call
7881 then
7882 Error_Msg_NE ("ambiguous call to&", N, Prim_Op);
7883 Report_Ambiguity (Matching_Op);
7884 Report_Ambiguity (Prim_Op);
7885 return True;
7886 end if;
7887 end if;
7888 end if;
7889
7890 <<Continue>>
7891 Next_Elmt (Elmt);
7892 end loop;
7893
7894 if Present (Matching_Op) then
7895 Set_Etype (Call_Node, Etype (Matching_Op));
7896 end if;
7897
7898 return Present (Matching_Op);
7899 end Try_Primitive_Operation;
7900
7901 -- Start of processing for Try_Object_Operation
7902
7903 begin
7904 Analyze_Expression (Obj);
7905
7906 -- Analyze the actuals if node is known to be a subprogram call
7907
7908 if Is_Subprg_Call and then N = Name (Parent (N)) then
7909 Actual := First (Parameter_Associations (Parent (N)));
7910 while Present (Actual) loop
7911 Analyze_Expression (Actual);
7912 Next (Actual);
7913 end loop;
7914 end if;
7915
7916 -- Build a subprogram call node, using a copy of Obj as its first
7917 -- actual. This is a placeholder, to be replaced by an explicit
7918 -- dereference when needed.
7919
7920 Transform_Object_Operation
7921 (Call_Node => New_Call_Node,
7922 Node_To_Replace => Node_To_Replace);
7923
7924 Set_Etype (New_Call_Node, Any_Type);
7925 Set_Etype (Subprog, Any_Type);
7926 Set_Parent (New_Call_Node, Parent (Node_To_Replace));
7927
7928 if not Is_Overloaded (Obj) then
7929 Try_One_Prefix_Interpretation (Obj_Type);
7930
7931 else
7932 declare
7933 I : Interp_Index;
7934 It : Interp;
7935 begin
7936 Get_First_Interp (Obj, I, It);
7937 while Present (It.Nam) loop
7938 Try_One_Prefix_Interpretation (It.Typ);
7939 Get_Next_Interp (I, It);
7940 end loop;
7941 end;
7942 end if;
7943
7944 if Etype (New_Call_Node) /= Any_Type then
7945
7946 -- No need to complete the tree transformations if we are only
7947 -- searching for conflicting class-wide subprograms
7948
7949 if CW_Test_Only then
7950 return False;
7951 else
7952 Complete_Object_Operation
7953 (Call_Node => New_Call_Node,
7954 Node_To_Replace => Node_To_Replace);
7955 return True;
7956 end if;
7957
7958 elsif Present (Candidate) then
7959
7960 -- The argument list is not type correct. Re-analyze with error
7961 -- reporting enabled, and use one of the possible candidates.
7962 -- In All_Errors_Mode, re-analyze all failed interpretations.
7963
7964 if All_Errors_Mode then
7965 Report_Error := True;
7966 if Try_Primitive_Operation
7967 (Call_Node => New_Call_Node,
7968 Node_To_Replace => Node_To_Replace)
7969
7970 or else
7971 Try_Class_Wide_Operation
7972 (Call_Node => New_Call_Node,
7973 Node_To_Replace => Node_To_Replace)
7974 then
7975 null;
7976 end if;
7977
7978 else
7979 Analyze_One_Call
7980 (N => New_Call_Node,
7981 Nam => Candidate,
7982 Report => True,
7983 Success => Success,
7984 Skip_First => True);
7985 end if;
7986
7987 -- No need for further errors
7988
7989 return True;
7990
7991 else
7992 -- There was no candidate operation, so report it as an error
7993 -- in the caller: Analyze_Selected_Component.
7994
7995 return False;
7996 end if;
7997 end Try_Object_Operation;
7998
7999 ---------
8000 -- wpo --
8001 ---------
8002
8003 procedure wpo (T : Entity_Id) is
8004 Op : Entity_Id;
8005 E : Elmt_Id;
8006
8007 begin
8008 if not Is_Tagged_Type (T) then
8009 return;
8010 end if;
8011
8012 E := First_Elmt (Primitive_Operations (Base_Type (T)));
8013 while Present (E) loop
8014 Op := Node (E);
8015 Write_Int (Int (Op));
8016 Write_Str (" === ");
8017 Write_Name (Chars (Op));
8018 Write_Str (" in ");
8019 Write_Name (Chars (Scope (Op)));
8020 Next_Elmt (E);
8021 Write_Eol;
8022 end loop;
8023 end wpo;
8024
8025 end Sem_Ch4;