742e1c9afae81e7b103279eea30fddbc10db06f7
[gcc.git] / gcc / ada / sem_ch4.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 4 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2011, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Exp_Util; use Exp_Util;
33 with Fname; use Fname;
34 with Itypes; use Itypes;
35 with Lib; use Lib;
36 with Lib.Xref; use Lib.Xref;
37 with Namet; use Namet;
38 with Namet.Sp; use Namet.Sp;
39 with Nlists; use Nlists;
40 with Nmake; use Nmake;
41 with Opt; use Opt;
42 with Output; use Output;
43 with Restrict; use Restrict;
44 with Rident; use Rident;
45 with Sem; use Sem;
46 with Sem_Aux; use Sem_Aux;
47 with Sem_Case; use Sem_Case;
48 with Sem_Cat; use Sem_Cat;
49 with Sem_Ch3; use Sem_Ch3;
50 with Sem_Ch5; use Sem_Ch5;
51 with Sem_Ch6; use Sem_Ch6;
52 with Sem_Ch8; use Sem_Ch8;
53 with Sem_Disp; use Sem_Disp;
54 with Sem_Dist; use Sem_Dist;
55 with Sem_Eval; use Sem_Eval;
56 with Sem_Res; use Sem_Res;
57 with Sem_Type; use Sem_Type;
58 with Sem_Util; use Sem_Util;
59 with Sem_Warn; use Sem_Warn;
60 with Stand; use Stand;
61 with Sinfo; use Sinfo;
62 with Snames; use Snames;
63 with Tbuild; use Tbuild;
64
65 package body Sem_Ch4 is
66
67 -----------------------
68 -- Local Subprograms --
69 -----------------------
70
71 procedure Analyze_Concatenation_Rest (N : Node_Id);
72 -- Does the "rest" of the work of Analyze_Concatenation, after the left
73 -- operand has been analyzed. See Analyze_Concatenation for details.
74
75 procedure Analyze_Expression (N : Node_Id);
76 -- For expressions that are not names, this is just a call to analyze.
77 -- If the expression is a name, it may be a call to a parameterless
78 -- function, and if so must be converted into an explicit call node
79 -- and analyzed as such. This deproceduring must be done during the first
80 -- pass of overload resolution, because otherwise a procedure call with
81 -- overloaded actuals may fail to resolve.
82
83 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id);
84 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call
85 -- is an operator name or an expanded name whose selector is an operator
86 -- name, and one possible interpretation is as a predefined operator.
87
88 procedure Analyze_Overloaded_Selected_Component (N : Node_Id);
89 -- If the prefix of a selected_component is overloaded, the proper
90 -- interpretation that yields a record type with the proper selector
91 -- name must be selected.
92
93 procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id);
94 -- Procedure to analyze a user defined binary operator, which is resolved
95 -- like a function, but instead of a list of actuals it is presented
96 -- with the left and right operands of an operator node.
97
98 procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id);
99 -- Procedure to analyze a user defined unary operator, which is resolved
100 -- like a function, but instead of a list of actuals, it is presented with
101 -- the operand of the operator node.
102
103 procedure Ambiguous_Operands (N : Node_Id);
104 -- For equality, membership, and comparison operators with overloaded
105 -- arguments, list possible interpretations.
106
107 procedure Analyze_One_Call
108 (N : Node_Id;
109 Nam : Entity_Id;
110 Report : Boolean;
111 Success : out Boolean;
112 Skip_First : Boolean := False);
113 -- Check one interpretation of an overloaded subprogram name for
114 -- compatibility with the types of the actuals in a call. If there is a
115 -- single interpretation which does not match, post error if Report is
116 -- set to True.
117 --
118 -- Nam is the entity that provides the formals against which the actuals
119 -- are checked. Nam is either the name of a subprogram, or the internal
120 -- subprogram type constructed for an access_to_subprogram. If the actuals
121 -- are compatible with Nam, then Nam is added to the list of candidate
122 -- interpretations for N, and Success is set to True.
123 --
124 -- The flag Skip_First is used when analyzing a call that was rewritten
125 -- from object notation. In this case the first actual may have to receive
126 -- an explicit dereference, depending on the first formal of the operation
127 -- being called. The caller will have verified that the object is legal
128 -- for the call. If the remaining parameters match, the first parameter
129 -- will rewritten as a dereference if needed, prior to completing analysis.
130
131 procedure Check_Misspelled_Selector
132 (Prefix : Entity_Id;
133 Sel : Node_Id);
134 -- Give possible misspelling diagnostic if Sel is likely to be a mis-
135 -- spelling of one of the selectors of the Prefix. This is called by
136 -- Analyze_Selected_Component after producing an invalid selector error
137 -- message.
138
139 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean;
140 -- Verify that type T is declared in scope S. Used to find interpretations
141 -- for operators given by expanded names. This is abstracted as a separate
142 -- function to handle extensions to System, where S is System, but T is
143 -- declared in the extension.
144
145 procedure Find_Arithmetic_Types
146 (L, R : Node_Id;
147 Op_Id : Entity_Id;
148 N : Node_Id);
149 -- L and R are the operands of an arithmetic operator. Find
150 -- consistent pairs of interpretations for L and R that have a
151 -- numeric type consistent with the semantics of the operator.
152
153 procedure Find_Comparison_Types
154 (L, R : Node_Id;
155 Op_Id : Entity_Id;
156 N : Node_Id);
157 -- L and R are operands of a comparison operator. Find consistent
158 -- pairs of interpretations for L and R.
159
160 procedure Find_Concatenation_Types
161 (L, R : Node_Id;
162 Op_Id : Entity_Id;
163 N : Node_Id);
164 -- For the four varieties of concatenation
165
166 procedure Find_Equality_Types
167 (L, R : Node_Id;
168 Op_Id : Entity_Id;
169 N : Node_Id);
170 -- Ditto for equality operators
171
172 procedure Find_Boolean_Types
173 (L, R : Node_Id;
174 Op_Id : Entity_Id;
175 N : Node_Id);
176 -- Ditto for binary logical operations
177
178 procedure Find_Negation_Types
179 (R : Node_Id;
180 Op_Id : Entity_Id;
181 N : Node_Id);
182 -- Find consistent interpretation for operand of negation operator
183
184 procedure Find_Non_Universal_Interpretations
185 (N : Node_Id;
186 R : Node_Id;
187 Op_Id : Entity_Id;
188 T1 : Entity_Id);
189 -- For equality and comparison operators, the result is always boolean,
190 -- and the legality of the operation is determined from the visibility
191 -- of the operand types. If one of the operands has a universal interpre-
192 -- tation, the legality check uses some compatible non-universal
193 -- interpretation of the other operand. N can be an operator node, or
194 -- a function call whose name is an operator designator.
195
196 function Find_Primitive_Operation (N : Node_Id) return Boolean;
197 -- Find candidate interpretations for the name Obj.Proc when it appears
198 -- in a subprogram renaming declaration.
199
200 procedure Find_Unary_Types
201 (R : Node_Id;
202 Op_Id : Entity_Id;
203 N : Node_Id);
204 -- Unary arithmetic types: plus, minus, abs
205
206 procedure Check_Arithmetic_Pair
207 (T1, T2 : Entity_Id;
208 Op_Id : Entity_Id;
209 N : Node_Id);
210 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid
211 -- types for left and right operand. Determine whether they constitute
212 -- a valid pair for the given operator, and record the corresponding
213 -- interpretation of the operator node. The node N may be an operator
214 -- node (the usual case) or a function call whose prefix is an operator
215 -- designator. In both cases Op_Id is the operator name itself.
216
217 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id);
218 -- Give detailed information on overloaded call where none of the
219 -- interpretations match. N is the call node, Nam the designator for
220 -- the overloaded entity being called.
221
222 function Junk_Operand (N : Node_Id) return Boolean;
223 -- Test for an operand that is an inappropriate entity (e.g. a package
224 -- name or a label). If so, issue an error message and return True. If
225 -- the operand is not an inappropriate entity kind, return False.
226
227 procedure Operator_Check (N : Node_Id);
228 -- Verify that an operator has received some valid interpretation. If none
229 -- was found, determine whether a use clause would make the operation
230 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
231 -- every type compatible with the operator, even if the operator for the
232 -- type is not directly visible. The routine uses this type to emit a more
233 -- informative message.
234
235 function Process_Implicit_Dereference_Prefix
236 (E : Entity_Id;
237 P : Node_Id) return Entity_Id;
238 -- Called when P is the prefix of an implicit dereference, denoting an
239 -- object E. The function returns the designated type of the prefix, taking
240 -- into account that the designated type of an anonymous access type may be
241 -- a limited view, when the non-limited view is visible.
242 -- If in semantics only mode (-gnatc or generic), the function also records
243 -- that the prefix is a reference to E, if any. Normally, such a reference
244 -- is generated only when the implicit dereference is expanded into an
245 -- explicit one, but for consistency we must generate the reference when
246 -- expansion is disabled as well.
247
248 procedure Remove_Abstract_Operations (N : Node_Id);
249 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
250 -- operation is not a candidate interpretation.
251
252 function Try_Container_Indexing
253 (N : Node_Id;
254 Prefix : Node_Id;
255 Expr : Node_Id) return Boolean;
256 -- AI05-0139: Generalized indexing to support iterators over containers
257
258 function Try_Indexed_Call
259 (N : Node_Id;
260 Nam : Entity_Id;
261 Typ : Entity_Id;
262 Skip_First : Boolean) return Boolean;
263 -- If a function has defaults for all its actuals, a call to it may in fact
264 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
265 -- interpretation as an indexing, prior to analysis as a call. If both are
266 -- possible, the node is overloaded with both interpretations (same symbol
267 -- but two different types). If the call is written in prefix form, the
268 -- prefix becomes the first parameter in the call, and only the remaining
269 -- actuals must be checked for the presence of defaults.
270
271 function Try_Indirect_Call
272 (N : Node_Id;
273 Nam : Entity_Id;
274 Typ : Entity_Id) return Boolean;
275 -- Similarly, a function F that needs no actuals can return an access to a
276 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
277 -- the call may be overloaded with both interpretations.
278
279 function Try_Object_Operation
280 (N : Node_Id;
281 CW_Test_Only : Boolean := False) return Boolean;
282 -- Ada 2005 (AI-252): Support the object.operation notation. If node N
283 -- is a call in this notation, it is transformed into a normal subprogram
284 -- call where the prefix is a parameter, and True is returned. If node
285 -- N is not of this form, it is unchanged, and False is returned. if
286 -- CW_Test_Only is true then N is an N_Selected_Component node which
287 -- is part of a call to an entry or procedure of a tagged concurrent
288 -- type and this routine is invoked to search for class-wide subprograms
289 -- conflicting with the target entity.
290
291 procedure wpo (T : Entity_Id);
292 pragma Warnings (Off, wpo);
293 -- Used for debugging: obtain list of primitive operations even if
294 -- type is not frozen and dispatch table is not built yet.
295
296 ------------------------
297 -- Ambiguous_Operands --
298 ------------------------
299
300 procedure Ambiguous_Operands (N : Node_Id) is
301 procedure List_Operand_Interps (Opnd : Node_Id);
302
303 --------------------------
304 -- List_Operand_Interps --
305 --------------------------
306
307 procedure List_Operand_Interps (Opnd : Node_Id) is
308 Nam : Node_Id;
309 Err : Node_Id := N;
310
311 begin
312 if Is_Overloaded (Opnd) then
313 if Nkind (Opnd) in N_Op then
314 Nam := Opnd;
315 elsif Nkind (Opnd) = N_Function_Call then
316 Nam := Name (Opnd);
317 elsif Ada_Version >= Ada_2012 then
318 declare
319 It : Interp;
320 I : Interp_Index;
321
322 begin
323 Get_First_Interp (Opnd, I, It);
324 while Present (It.Nam) loop
325 if Has_Implicit_Dereference (It.Typ) then
326 Error_Msg_N
327 ("can be interpreted as implicit dereference", Opnd);
328 return;
329 end if;
330
331 Get_Next_Interp (I, It);
332 end loop;
333 end;
334
335 return;
336 end if;
337
338 else
339 return;
340 end if;
341
342 if Opnd = Left_Opnd (N) then
343 Error_Msg_N ("\left operand has the following interpretations", N);
344 else
345 Error_Msg_N
346 ("\right operand has the following interpretations", N);
347 Err := Opnd;
348 end if;
349
350 List_Interps (Nam, Err);
351 end List_Operand_Interps;
352
353 -- Start of processing for Ambiguous_Operands
354
355 begin
356 if Nkind (N) in N_Membership_Test then
357 Error_Msg_N ("ambiguous operands for membership", N);
358
359 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
360 Error_Msg_N ("ambiguous operands for equality", N);
361
362 else
363 Error_Msg_N ("ambiguous operands for comparison", N);
364 end if;
365
366 if All_Errors_Mode then
367 List_Operand_Interps (Left_Opnd (N));
368 List_Operand_Interps (Right_Opnd (N));
369 else
370 Error_Msg_N ("\use -gnatf switch for details", N);
371 end if;
372 end Ambiguous_Operands;
373
374 -----------------------
375 -- Analyze_Aggregate --
376 -----------------------
377
378 -- Most of the analysis of Aggregates requires that the type be known,
379 -- and is therefore put off until resolution.
380
381 procedure Analyze_Aggregate (N : Node_Id) is
382 begin
383 if No (Etype (N)) then
384 Set_Etype (N, Any_Composite);
385 end if;
386 end Analyze_Aggregate;
387
388 -----------------------
389 -- Analyze_Allocator --
390 -----------------------
391
392 procedure Analyze_Allocator (N : Node_Id) is
393 Loc : constant Source_Ptr := Sloc (N);
394 Sav_Errs : constant Nat := Serious_Errors_Detected;
395 E : Node_Id := Expression (N);
396 Acc_Type : Entity_Id;
397 Type_Id : Entity_Id;
398 P : Node_Id;
399 C : Node_Id;
400
401 begin
402 Check_SPARK_Restriction ("allocator is not allowed", N);
403
404 -- Deal with allocator restrictions
405
406 -- In accordance with H.4(7), the No_Allocators restriction only applies
407 -- to user-written allocators. The same consideration applies to the
408 -- No_Allocators_Before_Elaboration restriction.
409
410 if Comes_From_Source (N) then
411 Check_Restriction (No_Allocators, N);
412
413 -- Processing for No_Allocators_After_Elaboration, loop to look at
414 -- enclosing context, checking task case and main subprogram case.
415
416 C := N;
417 P := Parent (C);
418 while Present (P) loop
419
420 -- In both cases we need a handled sequence of statements, where
421 -- the occurrence of the allocator is within the statements.
422
423 if Nkind (P) = N_Handled_Sequence_Of_Statements
424 and then Is_List_Member (C)
425 and then List_Containing (C) = Statements (P)
426 then
427 -- Check for allocator within task body, this is a definite
428 -- violation of No_Allocators_After_Elaboration we can detect.
429
430 if Nkind (Original_Node (Parent (P))) = N_Task_Body then
431 Check_Restriction (No_Allocators_After_Elaboration, N);
432 exit;
433 end if;
434
435 -- The other case is appearance in a subprogram body. This may
436 -- be a violation if this is a library level subprogram, and it
437 -- turns out to be used as the main program, but only the
438 -- binder knows that, so just record the occurrence.
439
440 if Nkind (Original_Node (Parent (P))) = N_Subprogram_Body
441 and then Nkind (Parent (Parent (P))) = N_Compilation_Unit
442 then
443 Set_Has_Allocator (Current_Sem_Unit);
444 end if;
445 end if;
446
447 C := P;
448 P := Parent (C);
449 end loop;
450 end if;
451
452 -- Ada 2012 (AI05-0111-3): Analyze the subpool_specification, if
453 -- any. The expected type for the name is any type. A non-overloading
454 -- rule then requires it to be of a type descended from
455 -- System.Storage_Pools.Subpools.Subpool_Handle.
456
457 -- This isn't exactly what the AI says, but it seems to be the right
458 -- rule. The AI should be fixed.???
459
460 declare
461 Subpool : constant Node_Id := Subpool_Handle_Name (N);
462
463 begin
464 if Present (Subpool) then
465 Analyze (Subpool);
466
467 if Is_Overloaded (Subpool) then
468 Error_Msg_N ("ambiguous subpool handle", Subpool);
469 end if;
470
471 -- Check that Etype (Subpool) is descended from Subpool_Handle
472
473 Resolve (Subpool);
474 end if;
475 end;
476
477 -- Analyze the qualified expression or subtype indication
478
479 if Nkind (E) = N_Qualified_Expression then
480 Acc_Type := Create_Itype (E_Allocator_Type, N);
481 Set_Etype (Acc_Type, Acc_Type);
482 Find_Type (Subtype_Mark (E));
483
484 -- Analyze the qualified expression, and apply the name resolution
485 -- rule given in 4.7(3).
486
487 Analyze (E);
488 Type_Id := Etype (E);
489 Set_Directly_Designated_Type (Acc_Type, Type_Id);
490
491 Resolve (Expression (E), Type_Id);
492
493 -- Allocators generated by the build-in-place expansion mechanism
494 -- are explicitly marked as coming from source but do not need to be
495 -- checked for limited initialization. To exclude this case, ensure
496 -- that the parent of the allocator is a source node.
497
498 if Is_Limited_Type (Type_Id)
499 and then Comes_From_Source (N)
500 and then Comes_From_Source (Parent (N))
501 and then not In_Instance_Body
502 then
503 if not OK_For_Limited_Init (Type_Id, Expression (E)) then
504 Error_Msg_N ("initialization not allowed for limited types", N);
505 Explain_Limited_Type (Type_Id, N);
506 end if;
507 end if;
508
509 -- A qualified expression requires an exact match of the type,
510 -- class-wide matching is not allowed.
511
512 -- if Is_Class_Wide_Type (Type_Id)
513 -- and then Base_Type
514 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
515 -- then
516 -- Wrong_Type (Expression (E), Type_Id);
517 -- end if;
518
519 Check_Non_Static_Context (Expression (E));
520
521 -- We don't analyze the qualified expression itself because it's
522 -- part of the allocator
523
524 Set_Etype (E, Type_Id);
525
526 -- Case where allocator has a subtype indication
527
528 else
529 declare
530 Def_Id : Entity_Id;
531 Base_Typ : Entity_Id;
532
533 begin
534 -- If the allocator includes a N_Subtype_Indication then a
535 -- constraint is present, otherwise the node is a subtype mark.
536 -- Introduce an explicit subtype declaration into the tree
537 -- defining some anonymous subtype and rewrite the allocator to
538 -- use this subtype rather than the subtype indication.
539
540 -- It is important to introduce the explicit subtype declaration
541 -- so that the bounds of the subtype indication are attached to
542 -- the tree in case the allocator is inside a generic unit.
543
544 if Nkind (E) = N_Subtype_Indication then
545
546 -- A constraint is only allowed for a composite type in Ada
547 -- 95. In Ada 83, a constraint is also allowed for an
548 -- access-to-composite type, but the constraint is ignored.
549
550 Find_Type (Subtype_Mark (E));
551 Base_Typ := Entity (Subtype_Mark (E));
552
553 if Is_Elementary_Type (Base_Typ) then
554 if not (Ada_Version = Ada_83
555 and then Is_Access_Type (Base_Typ))
556 then
557 Error_Msg_N ("constraint not allowed here", E);
558
559 if Nkind (Constraint (E)) =
560 N_Index_Or_Discriminant_Constraint
561 then
562 Error_Msg_N -- CODEFIX
563 ("\if qualified expression was meant, " &
564 "use apostrophe", Constraint (E));
565 end if;
566 end if;
567
568 -- Get rid of the bogus constraint:
569
570 Rewrite (E, New_Copy_Tree (Subtype_Mark (E)));
571 Analyze_Allocator (N);
572 return;
573
574 -- Ada 2005, AI-363: if the designated type has a constrained
575 -- partial view, it cannot receive a discriminant constraint,
576 -- and the allocated object is unconstrained.
577
578 elsif Ada_Version >= Ada_2005
579 and then Has_Constrained_Partial_View (Base_Typ)
580 then
581 Error_Msg_N
582 ("constraint no allowed when type " &
583 "has a constrained partial view", Constraint (E));
584 end if;
585
586 if Expander_Active then
587 Def_Id := Make_Temporary (Loc, 'S');
588
589 Insert_Action (E,
590 Make_Subtype_Declaration (Loc,
591 Defining_Identifier => Def_Id,
592 Subtype_Indication => Relocate_Node (E)));
593
594 if Sav_Errs /= Serious_Errors_Detected
595 and then Nkind (Constraint (E)) =
596 N_Index_Or_Discriminant_Constraint
597 then
598 Error_Msg_N -- CODEFIX
599 ("if qualified expression was meant, " &
600 "use apostrophe!", Constraint (E));
601 end if;
602
603 E := New_Occurrence_Of (Def_Id, Loc);
604 Rewrite (Expression (N), E);
605 end if;
606 end if;
607
608 Type_Id := Process_Subtype (E, N);
609 Acc_Type := Create_Itype (E_Allocator_Type, N);
610 Set_Etype (Acc_Type, Acc_Type);
611 Set_Directly_Designated_Type (Acc_Type, Type_Id);
612 Check_Fully_Declared (Type_Id, N);
613
614 -- Ada 2005 (AI-231): If the designated type is itself an access
615 -- type that excludes null, its default initialization will
616 -- be a null object, and we can insert an unconditional raise
617 -- before the allocator.
618
619 -- Ada 2012 (AI-104): A not null indication here is altogether
620 -- illegal.
621
622 if Can_Never_Be_Null (Type_Id) then
623 declare
624 Not_Null_Check : constant Node_Id :=
625 Make_Raise_Constraint_Error (Sloc (E),
626 Reason => CE_Null_Not_Allowed);
627
628 begin
629 if Ada_Version >= Ada_2012 then
630 Error_Msg_N
631 ("an uninitialized allocator cannot have"
632 & " a null exclusion", N);
633
634 elsif Expander_Active then
635 Insert_Action (N, Not_Null_Check);
636 Analyze (Not_Null_Check);
637
638 else
639 Error_Msg_N ("null value not allowed here?", E);
640 end if;
641 end;
642 end if;
643
644 -- Check restriction against dynamically allocated protected
645 -- objects. Note that when limited aggregates are supported,
646 -- a similar test should be applied to an allocator with a
647 -- qualified expression ???
648
649 if Is_Protected_Type (Type_Id) then
650 Check_Restriction (No_Protected_Type_Allocators, N);
651 end if;
652
653 -- Check for missing initialization. Skip this check if we already
654 -- had errors on analyzing the allocator, since in that case these
655 -- are probably cascaded errors.
656
657 if Is_Indefinite_Subtype (Type_Id)
658 and then Serious_Errors_Detected = Sav_Errs
659 then
660 if Is_Class_Wide_Type (Type_Id) then
661 Error_Msg_N
662 ("initialization required in class-wide allocation", N);
663 else
664 if Ada_Version < Ada_2005
665 and then Is_Limited_Type (Type_Id)
666 then
667 Error_Msg_N ("unconstrained allocation not allowed", N);
668
669 if Is_Array_Type (Type_Id) then
670 Error_Msg_N
671 ("\constraint with array bounds required", N);
672
673 elsif Has_Unknown_Discriminants (Type_Id) then
674 null;
675
676 else pragma Assert (Has_Discriminants (Type_Id));
677 Error_Msg_N
678 ("\constraint with discriminant values required", N);
679 end if;
680
681 -- Limited Ada 2005 and general non-limited case
682
683 else
684 Error_Msg_N
685 ("uninitialized unconstrained allocation not allowed",
686 N);
687
688 if Is_Array_Type (Type_Id) then
689 Error_Msg_N
690 ("\qualified expression or constraint with " &
691 "array bounds required", N);
692
693 elsif Has_Unknown_Discriminants (Type_Id) then
694 Error_Msg_N ("\qualified expression required", N);
695
696 else pragma Assert (Has_Discriminants (Type_Id));
697 Error_Msg_N
698 ("\qualified expression or constraint with " &
699 "discriminant values required", N);
700 end if;
701 end if;
702 end if;
703 end if;
704 end;
705 end if;
706
707 if Is_Abstract_Type (Type_Id) then
708 Error_Msg_N ("cannot allocate abstract object", E);
709 end if;
710
711 if Has_Task (Designated_Type (Acc_Type)) then
712 Check_Restriction (No_Tasking, N);
713 Check_Restriction (Max_Tasks, N);
714 Check_Restriction (No_Task_Allocators, N);
715 end if;
716
717 -- AI05-0013-1: No_Nested_Finalization forbids allocators if the access
718 -- type is nested, and the designated type needs finalization. The rule
719 -- is conservative in that class-wide types need finalization.
720
721 if Needs_Finalization (Designated_Type (Acc_Type))
722 and then not Is_Library_Level_Entity (Acc_Type)
723 then
724 Check_Restriction (No_Nested_Finalization, N);
725 end if;
726
727 -- Check that an allocator of a nested access type doesn't create a
728 -- protected object when restriction No_Local_Protected_Objects applies.
729 -- We don't have an equivalent to Has_Task for protected types, so only
730 -- cases where the designated type itself is a protected type are
731 -- currently checked. ???
732
733 if Is_Protected_Type (Designated_Type (Acc_Type))
734 and then not Is_Library_Level_Entity (Acc_Type)
735 then
736 Check_Restriction (No_Local_Protected_Objects, N);
737 end if;
738
739 -- If the No_Streams restriction is set, check that the type of the
740 -- object is not, and does not contain, any subtype derived from
741 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
742 -- Has_Stream just for efficiency reasons. There is no point in
743 -- spending time on a Has_Stream check if the restriction is not set.
744
745 if Restriction_Check_Required (No_Streams) then
746 if Has_Stream (Designated_Type (Acc_Type)) then
747 Check_Restriction (No_Streams, N);
748 end if;
749 end if;
750
751 Set_Etype (N, Acc_Type);
752
753 if not Is_Library_Level_Entity (Acc_Type) then
754 Check_Restriction (No_Local_Allocators, N);
755 end if;
756
757 if Serious_Errors_Detected > Sav_Errs then
758 Set_Error_Posted (N);
759 Set_Etype (N, Any_Type);
760 end if;
761 end Analyze_Allocator;
762
763 ---------------------------
764 -- Analyze_Arithmetic_Op --
765 ---------------------------
766
767 procedure Analyze_Arithmetic_Op (N : Node_Id) is
768 L : constant Node_Id := Left_Opnd (N);
769 R : constant Node_Id := Right_Opnd (N);
770 Op_Id : Entity_Id;
771
772 begin
773 Candidate_Type := Empty;
774 Analyze_Expression (L);
775 Analyze_Expression (R);
776
777 -- If the entity is already set, the node is the instantiation of a
778 -- generic node with a non-local reference, or was manufactured by a
779 -- call to Make_Op_xxx. In either case the entity is known to be valid,
780 -- and we do not need to collect interpretations, instead we just get
781 -- the single possible interpretation.
782
783 Op_Id := Entity (N);
784
785 if Present (Op_Id) then
786 if Ekind (Op_Id) = E_Operator then
787
788 if Nkind_In (N, N_Op_Divide, N_Op_Mod, N_Op_Multiply, N_Op_Rem)
789 and then Treat_Fixed_As_Integer (N)
790 then
791 null;
792 else
793 Set_Etype (N, Any_Type);
794 Find_Arithmetic_Types (L, R, Op_Id, N);
795 end if;
796
797 else
798 Set_Etype (N, Any_Type);
799 Add_One_Interp (N, Op_Id, Etype (Op_Id));
800 end if;
801
802 -- Entity is not already set, so we do need to collect interpretations
803
804 else
805 Op_Id := Get_Name_Entity_Id (Chars (N));
806 Set_Etype (N, Any_Type);
807
808 while Present (Op_Id) loop
809 if Ekind (Op_Id) = E_Operator
810 and then Present (Next_Entity (First_Entity (Op_Id)))
811 then
812 Find_Arithmetic_Types (L, R, Op_Id, N);
813
814 -- The following may seem superfluous, because an operator cannot
815 -- be generic, but this ignores the cleverness of the author of
816 -- ACVC bc1013a.
817
818 elsif Is_Overloadable (Op_Id) then
819 Analyze_User_Defined_Binary_Op (N, Op_Id);
820 end if;
821
822 Op_Id := Homonym (Op_Id);
823 end loop;
824 end if;
825
826 Operator_Check (N);
827 end Analyze_Arithmetic_Op;
828
829 ------------------
830 -- Analyze_Call --
831 ------------------
832
833 -- Function, procedure, and entry calls are checked here. The Name in
834 -- the call may be overloaded. The actuals have been analyzed and may
835 -- themselves be overloaded. On exit from this procedure, the node N
836 -- may have zero, one or more interpretations. In the first case an
837 -- error message is produced. In the last case, the node is flagged
838 -- as overloaded and the interpretations are collected in All_Interp.
839
840 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
841 -- the type-checking is similar to that of other calls.
842
843 procedure Analyze_Call (N : Node_Id) is
844 Actuals : constant List_Id := Parameter_Associations (N);
845 Nam : Node_Id;
846 X : Interp_Index;
847 It : Interp;
848 Nam_Ent : Entity_Id;
849 Success : Boolean := False;
850
851 Deref : Boolean := False;
852 -- Flag indicates whether an interpretation of the prefix is a
853 -- parameterless call that returns an access_to_subprogram.
854
855 procedure Check_Mixed_Parameter_And_Named_Associations;
856 -- Check that parameter and named associations are not mixed. This is
857 -- a restriction in SPARK mode.
858
859 function Name_Denotes_Function return Boolean;
860 -- If the type of the name is an access to subprogram, this may be the
861 -- type of a name, or the return type of the function being called. If
862 -- the name is not an entity then it can denote a protected function.
863 -- Until we distinguish Etype from Return_Type, we must use this routine
864 -- to resolve the meaning of the name in the call.
865
866 procedure No_Interpretation;
867 -- Output error message when no valid interpretation exists
868
869 --------------------------------------------------
870 -- Check_Mixed_Parameter_And_Named_Associations --
871 --------------------------------------------------
872
873 procedure Check_Mixed_Parameter_And_Named_Associations is
874 Actual : Node_Id;
875 Named_Seen : Boolean;
876
877 begin
878 Named_Seen := False;
879
880 Actual := First (Actuals);
881 while Present (Actual) loop
882 case Nkind (Actual) is
883 when N_Parameter_Association =>
884 if Named_Seen then
885 Check_SPARK_Restriction
886 ("named association cannot follow positional one",
887 Actual);
888 exit;
889 end if;
890 when others =>
891 Named_Seen := True;
892 end case;
893
894 Next (Actual);
895 end loop;
896 end Check_Mixed_Parameter_And_Named_Associations;
897
898 ---------------------------
899 -- Name_Denotes_Function --
900 ---------------------------
901
902 function Name_Denotes_Function return Boolean is
903 begin
904 if Is_Entity_Name (Nam) then
905 return Ekind (Entity (Nam)) = E_Function;
906
907 elsif Nkind (Nam) = N_Selected_Component then
908 return Ekind (Entity (Selector_Name (Nam))) = E_Function;
909
910 else
911 return False;
912 end if;
913 end Name_Denotes_Function;
914
915 -----------------------
916 -- No_Interpretation --
917 -----------------------
918
919 procedure No_Interpretation is
920 L : constant Boolean := Is_List_Member (N);
921 K : constant Node_Kind := Nkind (Parent (N));
922
923 begin
924 -- If the node is in a list whose parent is not an expression then it
925 -- must be an attempted procedure call.
926
927 if L and then K not in N_Subexpr then
928 if Ekind (Entity (Nam)) = E_Generic_Procedure then
929 Error_Msg_NE
930 ("must instantiate generic procedure& before call",
931 Nam, Entity (Nam));
932 else
933 Error_Msg_N
934 ("procedure or entry name expected", Nam);
935 end if;
936
937 -- Check for tasking cases where only an entry call will do
938
939 elsif not L
940 and then Nkind_In (K, N_Entry_Call_Alternative,
941 N_Triggering_Alternative)
942 then
943 Error_Msg_N ("entry name expected", Nam);
944
945 -- Otherwise give general error message
946
947 else
948 Error_Msg_N ("invalid prefix in call", Nam);
949 end if;
950 end No_Interpretation;
951
952 -- Start of processing for Analyze_Call
953
954 begin
955 if Restriction_Check_Required (SPARK) then
956 Check_Mixed_Parameter_And_Named_Associations;
957 end if;
958
959 -- Initialize the type of the result of the call to the error type,
960 -- which will be reset if the type is successfully resolved.
961
962 Set_Etype (N, Any_Type);
963
964 Nam := Name (N);
965
966 if not Is_Overloaded (Nam) then
967
968 -- Only one interpretation to check
969
970 if Ekind (Etype (Nam)) = E_Subprogram_Type then
971 Nam_Ent := Etype (Nam);
972
973 -- If the prefix is an access_to_subprogram, this may be an indirect
974 -- call. This is the case if the name in the call is not an entity
975 -- name, or if it is a function name in the context of a procedure
976 -- call. In this latter case, we have a call to a parameterless
977 -- function that returns a pointer_to_procedure which is the entity
978 -- being called. Finally, F (X) may be a call to a parameterless
979 -- function that returns a pointer to a function with parameters.
980
981 elsif Is_Access_Type (Etype (Nam))
982 and then Ekind (Designated_Type (Etype (Nam))) = E_Subprogram_Type
983 and then
984 (not Name_Denotes_Function
985 or else Nkind (N) = N_Procedure_Call_Statement
986 or else
987 (Nkind (Parent (N)) /= N_Explicit_Dereference
988 and then Is_Entity_Name (Nam)
989 and then No (First_Formal (Entity (Nam)))
990 and then Present (Actuals)))
991 then
992 Nam_Ent := Designated_Type (Etype (Nam));
993 Insert_Explicit_Dereference (Nam);
994
995 -- Selected component case. Simple entry or protected operation,
996 -- where the entry name is given by the selector name.
997
998 elsif Nkind (Nam) = N_Selected_Component then
999 Nam_Ent := Entity (Selector_Name (Nam));
1000
1001 if not Ekind_In (Nam_Ent, E_Entry,
1002 E_Entry_Family,
1003 E_Function,
1004 E_Procedure)
1005 then
1006 Error_Msg_N ("name in call is not a callable entity", Nam);
1007 Set_Etype (N, Any_Type);
1008 return;
1009 end if;
1010
1011 -- If the name is an Indexed component, it can be a call to a member
1012 -- of an entry family. The prefix must be a selected component whose
1013 -- selector is the entry. Analyze_Procedure_Call normalizes several
1014 -- kinds of call into this form.
1015
1016 elsif Nkind (Nam) = N_Indexed_Component then
1017 if Nkind (Prefix (Nam)) = N_Selected_Component then
1018 Nam_Ent := Entity (Selector_Name (Prefix (Nam)));
1019 else
1020 Error_Msg_N ("name in call is not a callable entity", Nam);
1021 Set_Etype (N, Any_Type);
1022 return;
1023 end if;
1024
1025 elsif not Is_Entity_Name (Nam) then
1026 Error_Msg_N ("name in call is not a callable entity", Nam);
1027 Set_Etype (N, Any_Type);
1028 return;
1029
1030 else
1031 Nam_Ent := Entity (Nam);
1032
1033 -- If no interpretations, give error message
1034
1035 if not Is_Overloadable (Nam_Ent) then
1036 No_Interpretation;
1037 return;
1038 end if;
1039 end if;
1040
1041 -- Operations generated for RACW stub types are called only through
1042 -- dispatching, and can never be the static interpretation of a call.
1043
1044 if Is_RACW_Stub_Type_Operation (Nam_Ent) then
1045 No_Interpretation;
1046 return;
1047 end if;
1048
1049 Analyze_One_Call (N, Nam_Ent, True, Success);
1050
1051 -- If this is an indirect call, the return type of the access_to
1052 -- subprogram may be an incomplete type. At the point of the call,
1053 -- use the full type if available, and at the same time update the
1054 -- return type of the access_to_subprogram.
1055
1056 if Success
1057 and then Nkind (Nam) = N_Explicit_Dereference
1058 and then Ekind (Etype (N)) = E_Incomplete_Type
1059 and then Present (Full_View (Etype (N)))
1060 then
1061 Set_Etype (N, Full_View (Etype (N)));
1062 Set_Etype (Nam_Ent, Etype (N));
1063 end if;
1064
1065 else
1066 -- An overloaded selected component must denote overloaded operations
1067 -- of a concurrent type. The interpretations are attached to the
1068 -- simple name of those operations.
1069
1070 if Nkind (Nam) = N_Selected_Component then
1071 Nam := Selector_Name (Nam);
1072 end if;
1073
1074 Get_First_Interp (Nam, X, It);
1075
1076 while Present (It.Nam) loop
1077 Nam_Ent := It.Nam;
1078 Deref := False;
1079
1080 -- Name may be call that returns an access to subprogram, or more
1081 -- generally an overloaded expression one of whose interpretations
1082 -- yields an access to subprogram. If the name is an entity, we do
1083 -- not dereference, because the node is a call that returns the
1084 -- access type: note difference between f(x), where the call may
1085 -- return an access subprogram type, and f(x)(y), where the type
1086 -- returned by the call to f is implicitly dereferenced to analyze
1087 -- the outer call.
1088
1089 if Is_Access_Type (Nam_Ent) then
1090 Nam_Ent := Designated_Type (Nam_Ent);
1091
1092 elsif Is_Access_Type (Etype (Nam_Ent))
1093 and then
1094 (not Is_Entity_Name (Nam)
1095 or else Nkind (N) = N_Procedure_Call_Statement)
1096 and then Ekind (Designated_Type (Etype (Nam_Ent)))
1097 = E_Subprogram_Type
1098 then
1099 Nam_Ent := Designated_Type (Etype (Nam_Ent));
1100
1101 if Is_Entity_Name (Nam) then
1102 Deref := True;
1103 end if;
1104 end if;
1105
1106 -- If the call has been rewritten from a prefixed call, the first
1107 -- parameter has been analyzed, but may need a subsequent
1108 -- dereference, so skip its analysis now.
1109
1110 if N /= Original_Node (N)
1111 and then Nkind (Original_Node (N)) = Nkind (N)
1112 and then Nkind (Name (N)) /= Nkind (Name (Original_Node (N)))
1113 and then Present (Parameter_Associations (N))
1114 and then Present (Etype (First (Parameter_Associations (N))))
1115 then
1116 Analyze_One_Call
1117 (N, Nam_Ent, False, Success, Skip_First => True);
1118 else
1119 Analyze_One_Call (N, Nam_Ent, False, Success);
1120 end if;
1121
1122 -- If the interpretation succeeds, mark the proper type of the
1123 -- prefix (any valid candidate will do). If not, remove the
1124 -- candidate interpretation. This only needs to be done for
1125 -- overloaded protected operations, for other entities disambi-
1126 -- guation is done directly in Resolve.
1127
1128 if Success then
1129 if Deref
1130 and then Nkind (Parent (N)) /= N_Explicit_Dereference
1131 then
1132 Set_Entity (Nam, It.Nam);
1133 Insert_Explicit_Dereference (Nam);
1134 Set_Etype (Nam, Nam_Ent);
1135
1136 else
1137 Set_Etype (Nam, It.Typ);
1138 end if;
1139
1140 elsif Nkind_In (Name (N), N_Selected_Component,
1141 N_Function_Call)
1142 then
1143 Remove_Interp (X);
1144 end if;
1145
1146 Get_Next_Interp (X, It);
1147 end loop;
1148
1149 -- If the name is the result of a function call, it can only
1150 -- be a call to a function returning an access to subprogram.
1151 -- Insert explicit dereference.
1152
1153 if Nkind (Nam) = N_Function_Call then
1154 Insert_Explicit_Dereference (Nam);
1155 end if;
1156
1157 if Etype (N) = Any_Type then
1158
1159 -- None of the interpretations is compatible with the actuals
1160
1161 Diagnose_Call (N, Nam);
1162
1163 -- Special checks for uninstantiated put routines
1164
1165 if Nkind (N) = N_Procedure_Call_Statement
1166 and then Is_Entity_Name (Nam)
1167 and then Chars (Nam) = Name_Put
1168 and then List_Length (Actuals) = 1
1169 then
1170 declare
1171 Arg : constant Node_Id := First (Actuals);
1172 Typ : Entity_Id;
1173
1174 begin
1175 if Nkind (Arg) = N_Parameter_Association then
1176 Typ := Etype (Explicit_Actual_Parameter (Arg));
1177 else
1178 Typ := Etype (Arg);
1179 end if;
1180
1181 if Is_Signed_Integer_Type (Typ) then
1182 Error_Msg_N
1183 ("possible missing instantiation of " &
1184 "'Text_'I'O.'Integer_'I'O!", Nam);
1185
1186 elsif Is_Modular_Integer_Type (Typ) then
1187 Error_Msg_N
1188 ("possible missing instantiation of " &
1189 "'Text_'I'O.'Modular_'I'O!", Nam);
1190
1191 elsif Is_Floating_Point_Type (Typ) then
1192 Error_Msg_N
1193 ("possible missing instantiation of " &
1194 "'Text_'I'O.'Float_'I'O!", Nam);
1195
1196 elsif Is_Ordinary_Fixed_Point_Type (Typ) then
1197 Error_Msg_N
1198 ("possible missing instantiation of " &
1199 "'Text_'I'O.'Fixed_'I'O!", Nam);
1200
1201 elsif Is_Decimal_Fixed_Point_Type (Typ) then
1202 Error_Msg_N
1203 ("possible missing instantiation of " &
1204 "'Text_'I'O.'Decimal_'I'O!", Nam);
1205
1206 elsif Is_Enumeration_Type (Typ) then
1207 Error_Msg_N
1208 ("possible missing instantiation of " &
1209 "'Text_'I'O.'Enumeration_'I'O!", Nam);
1210 end if;
1211 end;
1212 end if;
1213
1214 elsif not Is_Overloaded (N)
1215 and then Is_Entity_Name (Nam)
1216 then
1217 -- Resolution yields a single interpretation. Verify that the
1218 -- reference has capitalization consistent with the declaration.
1219
1220 Set_Entity_With_Style_Check (Nam, Entity (Nam));
1221 Generate_Reference (Entity (Nam), Nam);
1222
1223 Set_Etype (Nam, Etype (Entity (Nam)));
1224 else
1225 Remove_Abstract_Operations (N);
1226 end if;
1227
1228 End_Interp_List;
1229 end if;
1230 end Analyze_Call;
1231
1232 -----------------------------
1233 -- Analyze_Case_Expression --
1234 -----------------------------
1235
1236 procedure Analyze_Case_Expression (N : Node_Id) is
1237 Expr : constant Node_Id := Expression (N);
1238 FirstX : constant Node_Id := Expression (First (Alternatives (N)));
1239 Alt : Node_Id;
1240 Exp_Type : Entity_Id;
1241 Exp_Btype : Entity_Id;
1242
1243 Dont_Care : Boolean;
1244 Others_Present : Boolean;
1245
1246 procedure Non_Static_Choice_Error (Choice : Node_Id);
1247 -- Error routine invoked by the generic instantiation below when
1248 -- the case expression has a non static choice.
1249
1250 package Case_Choices_Processing is new
1251 Generic_Choices_Processing
1252 (Get_Alternatives => Alternatives,
1253 Get_Choices => Discrete_Choices,
1254 Process_Empty_Choice => No_OP,
1255 Process_Non_Static_Choice => Non_Static_Choice_Error,
1256 Process_Associated_Node => No_OP);
1257 use Case_Choices_Processing;
1258
1259 -----------------------------
1260 -- Non_Static_Choice_Error --
1261 -----------------------------
1262
1263 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1264 begin
1265 Flag_Non_Static_Expr
1266 ("choice given in case expression is not static!", Choice);
1267 end Non_Static_Choice_Error;
1268
1269 -- Start of processing for Analyze_Case_Expression
1270
1271 begin
1272 if Comes_From_Source (N) then
1273 Check_Compiler_Unit (N);
1274 end if;
1275
1276 Analyze_And_Resolve (Expr, Any_Discrete);
1277 Check_Unset_Reference (Expr);
1278 Exp_Type := Etype (Expr);
1279 Exp_Btype := Base_Type (Exp_Type);
1280
1281 Alt := First (Alternatives (N));
1282 while Present (Alt) loop
1283 Analyze (Expression (Alt));
1284 Next (Alt);
1285 end loop;
1286
1287 if not Is_Overloaded (FirstX) then
1288 Set_Etype (N, Etype (FirstX));
1289
1290 else
1291 declare
1292 I : Interp_Index;
1293 It : Interp;
1294
1295 begin
1296 Set_Etype (N, Any_Type);
1297
1298 Get_First_Interp (FirstX, I, It);
1299 while Present (It.Nam) loop
1300
1301 -- For each interpretation of the first expression, we only
1302 -- add the interpretation if every other expression in the
1303 -- case expression alternatives has a compatible type.
1304
1305 Alt := Next (First (Alternatives (N)));
1306 while Present (Alt) loop
1307 exit when not Has_Compatible_Type (Expression (Alt), It.Typ);
1308 Next (Alt);
1309 end loop;
1310
1311 if No (Alt) then
1312 Add_One_Interp (N, It.Typ, It.Typ);
1313 end if;
1314
1315 Get_Next_Interp (I, It);
1316 end loop;
1317 end;
1318 end if;
1319
1320 Exp_Btype := Base_Type (Exp_Type);
1321
1322 -- The expression must be of a discrete type which must be determinable
1323 -- independently of the context in which the expression occurs, but
1324 -- using the fact that the expression must be of a discrete type.
1325 -- Moreover, the type this expression must not be a character literal
1326 -- (which is always ambiguous).
1327
1328 -- If error already reported by Resolve, nothing more to do
1329
1330 if Exp_Btype = Any_Discrete
1331 or else Exp_Btype = Any_Type
1332 then
1333 return;
1334
1335 elsif Exp_Btype = Any_Character then
1336 Error_Msg_N
1337 ("character literal as case expression is ambiguous", Expr);
1338 return;
1339 end if;
1340
1341 -- If the case expression is a formal object of mode in out, then
1342 -- treat it as having a nonstatic subtype by forcing use of the base
1343 -- type (which has to get passed to Check_Case_Choices below). Also
1344 -- use base type when the case expression is parenthesized.
1345
1346 if Paren_Count (Expr) > 0
1347 or else (Is_Entity_Name (Expr)
1348 and then Ekind (Entity (Expr)) = E_Generic_In_Out_Parameter)
1349 then
1350 Exp_Type := Exp_Btype;
1351 end if;
1352
1353 -- Call instantiated Analyze_Choices which does the rest of the work
1354
1355 Analyze_Choices (N, Exp_Type, Dont_Care, Others_Present);
1356
1357 if Exp_Type = Universal_Integer and then not Others_Present then
1358 Error_Msg_N
1359 ("case on universal integer requires OTHERS choice", Expr);
1360 end if;
1361 end Analyze_Case_Expression;
1362
1363 ---------------------------
1364 -- Analyze_Comparison_Op --
1365 ---------------------------
1366
1367 procedure Analyze_Comparison_Op (N : Node_Id) is
1368 L : constant Node_Id := Left_Opnd (N);
1369 R : constant Node_Id := Right_Opnd (N);
1370 Op_Id : Entity_Id := Entity (N);
1371
1372 begin
1373 Set_Etype (N, Any_Type);
1374 Candidate_Type := Empty;
1375
1376 Analyze_Expression (L);
1377 Analyze_Expression (R);
1378
1379 if Present (Op_Id) then
1380 if Ekind (Op_Id) = E_Operator then
1381 Find_Comparison_Types (L, R, Op_Id, N);
1382 else
1383 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1384 end if;
1385
1386 if Is_Overloaded (L) then
1387 Set_Etype (L, Intersect_Types (L, R));
1388 end if;
1389
1390 else
1391 Op_Id := Get_Name_Entity_Id (Chars (N));
1392 while Present (Op_Id) loop
1393 if Ekind (Op_Id) = E_Operator then
1394 Find_Comparison_Types (L, R, Op_Id, N);
1395 else
1396 Analyze_User_Defined_Binary_Op (N, Op_Id);
1397 end if;
1398
1399 Op_Id := Homonym (Op_Id);
1400 end loop;
1401 end if;
1402
1403 Operator_Check (N);
1404 end Analyze_Comparison_Op;
1405
1406 ---------------------------
1407 -- Analyze_Concatenation --
1408 ---------------------------
1409
1410 procedure Analyze_Concatenation (N : Node_Id) is
1411
1412 -- We wish to avoid deep recursion, because concatenations are often
1413 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1414 -- operands nonrecursively until we find something that is not a
1415 -- concatenation (A in this case), or has already been analyzed. We
1416 -- analyze that, and then walk back up the tree following Parent
1417 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1418 -- work at each level. The Parent pointers allow us to avoid recursion,
1419 -- and thus avoid running out of memory.
1420
1421 NN : Node_Id := N;
1422 L : Node_Id;
1423
1424 begin
1425 Candidate_Type := Empty;
1426
1427 -- The following code is equivalent to:
1428
1429 -- Set_Etype (N, Any_Type);
1430 -- Analyze_Expression (Left_Opnd (N));
1431 -- Analyze_Concatenation_Rest (N);
1432
1433 -- where the Analyze_Expression call recurses back here if the left
1434 -- operand is a concatenation.
1435
1436 -- Walk down left operands
1437
1438 loop
1439 Set_Etype (NN, Any_Type);
1440 L := Left_Opnd (NN);
1441 exit when Nkind (L) /= N_Op_Concat or else Analyzed (L);
1442 NN := L;
1443 end loop;
1444
1445 -- Now (given the above example) NN is A&B and L is A
1446
1447 -- First analyze L ...
1448
1449 Analyze_Expression (L);
1450
1451 -- ... then walk NN back up until we reach N (where we started), calling
1452 -- Analyze_Concatenation_Rest along the way.
1453
1454 loop
1455 Analyze_Concatenation_Rest (NN);
1456 exit when NN = N;
1457 NN := Parent (NN);
1458 end loop;
1459 end Analyze_Concatenation;
1460
1461 --------------------------------
1462 -- Analyze_Concatenation_Rest --
1463 --------------------------------
1464
1465 -- If the only one-dimensional array type in scope is String,
1466 -- this is the resulting type of the operation. Otherwise there
1467 -- will be a concatenation operation defined for each user-defined
1468 -- one-dimensional array.
1469
1470 procedure Analyze_Concatenation_Rest (N : Node_Id) is
1471 L : constant Node_Id := Left_Opnd (N);
1472 R : constant Node_Id := Right_Opnd (N);
1473 Op_Id : Entity_Id := Entity (N);
1474 LT : Entity_Id;
1475 RT : Entity_Id;
1476
1477 begin
1478 Analyze_Expression (R);
1479
1480 -- If the entity is present, the node appears in an instance, and
1481 -- denotes a predefined concatenation operation. The resulting type is
1482 -- obtained from the arguments when possible. If the arguments are
1483 -- aggregates, the array type and the concatenation type must be
1484 -- visible.
1485
1486 if Present (Op_Id) then
1487 if Ekind (Op_Id) = E_Operator then
1488 LT := Base_Type (Etype (L));
1489 RT := Base_Type (Etype (R));
1490
1491 if Is_Array_Type (LT)
1492 and then (RT = LT or else RT = Base_Type (Component_Type (LT)))
1493 then
1494 Add_One_Interp (N, Op_Id, LT);
1495
1496 elsif Is_Array_Type (RT)
1497 and then LT = Base_Type (Component_Type (RT))
1498 then
1499 Add_One_Interp (N, Op_Id, RT);
1500
1501 -- If one operand is a string type or a user-defined array type,
1502 -- and the other is a literal, result is of the specific type.
1503
1504 elsif
1505 (Root_Type (LT) = Standard_String
1506 or else Scope (LT) /= Standard_Standard)
1507 and then Etype (R) = Any_String
1508 then
1509 Add_One_Interp (N, Op_Id, LT);
1510
1511 elsif
1512 (Root_Type (RT) = Standard_String
1513 or else Scope (RT) /= Standard_Standard)
1514 and then Etype (L) = Any_String
1515 then
1516 Add_One_Interp (N, Op_Id, RT);
1517
1518 elsif not Is_Generic_Type (Etype (Op_Id)) then
1519 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1520
1521 else
1522 -- Type and its operations must be visible
1523
1524 Set_Entity (N, Empty);
1525 Analyze_Concatenation (N);
1526 end if;
1527
1528 else
1529 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1530 end if;
1531
1532 else
1533 Op_Id := Get_Name_Entity_Id (Name_Op_Concat);
1534 while Present (Op_Id) loop
1535 if Ekind (Op_Id) = E_Operator then
1536
1537 -- Do not consider operators declared in dead code, they can
1538 -- not be part of the resolution.
1539
1540 if Is_Eliminated (Op_Id) then
1541 null;
1542 else
1543 Find_Concatenation_Types (L, R, Op_Id, N);
1544 end if;
1545
1546 else
1547 Analyze_User_Defined_Binary_Op (N, Op_Id);
1548 end if;
1549
1550 Op_Id := Homonym (Op_Id);
1551 end loop;
1552 end if;
1553
1554 Operator_Check (N);
1555 end Analyze_Concatenation_Rest;
1556
1557 ------------------------------------
1558 -- Analyze_Conditional_Expression --
1559 ------------------------------------
1560
1561 procedure Analyze_Conditional_Expression (N : Node_Id) is
1562 Condition : constant Node_Id := First (Expressions (N));
1563 Then_Expr : constant Node_Id := Next (Condition);
1564 Else_Expr : Node_Id;
1565
1566 begin
1567 -- Defend against error of missing expressions from previous error
1568
1569 if No (Then_Expr) then
1570 return;
1571 end if;
1572
1573 Check_SPARK_Restriction ("conditional expression is not allowed", N);
1574
1575 Else_Expr := Next (Then_Expr);
1576
1577 if Comes_From_Source (N) then
1578 Check_Compiler_Unit (N);
1579 end if;
1580
1581 Analyze_Expression (Condition);
1582 Analyze_Expression (Then_Expr);
1583
1584 if Present (Else_Expr) then
1585 Analyze_Expression (Else_Expr);
1586 end if;
1587
1588 -- If then expression not overloaded, then that decides the type
1589
1590 if not Is_Overloaded (Then_Expr) then
1591 Set_Etype (N, Etype (Then_Expr));
1592
1593 -- Case where then expression is overloaded
1594
1595 else
1596 declare
1597 I : Interp_Index;
1598 It : Interp;
1599
1600 begin
1601 Set_Etype (N, Any_Type);
1602
1603 -- Shouldn't the following statement be down in the ELSE of the
1604 -- following loop? ???
1605
1606 Get_First_Interp (Then_Expr, I, It);
1607
1608 -- if no Else_Expression the conditional must be boolean
1609
1610 if No (Else_Expr) then
1611 Set_Etype (N, Standard_Boolean);
1612
1613 -- Else_Expression Present. For each possible intepretation of
1614 -- the Then_Expression, add it only if the Else_Expression has
1615 -- a compatible type.
1616
1617 else
1618 while Present (It.Nam) loop
1619 if Has_Compatible_Type (Else_Expr, It.Typ) then
1620 Add_One_Interp (N, It.Typ, It.Typ);
1621 end if;
1622
1623 Get_Next_Interp (I, It);
1624 end loop;
1625 end if;
1626 end;
1627 end if;
1628 end Analyze_Conditional_Expression;
1629
1630 -------------------------
1631 -- Analyze_Equality_Op --
1632 -------------------------
1633
1634 procedure Analyze_Equality_Op (N : Node_Id) is
1635 Loc : constant Source_Ptr := Sloc (N);
1636 L : constant Node_Id := Left_Opnd (N);
1637 R : constant Node_Id := Right_Opnd (N);
1638 Op_Id : Entity_Id;
1639
1640 begin
1641 Set_Etype (N, Any_Type);
1642 Candidate_Type := Empty;
1643
1644 Analyze_Expression (L);
1645 Analyze_Expression (R);
1646
1647 -- If the entity is set, the node is a generic instance with a non-local
1648 -- reference to the predefined operator or to a user-defined function.
1649 -- It can also be an inequality that is expanded into the negation of a
1650 -- call to a user-defined equality operator.
1651
1652 -- For the predefined case, the result is Boolean, regardless of the
1653 -- type of the operands. The operands may even be limited, if they are
1654 -- generic actuals. If they are overloaded, label the left argument with
1655 -- the common type that must be present, or with the type of the formal
1656 -- of the user-defined function.
1657
1658 if Present (Entity (N)) then
1659 Op_Id := Entity (N);
1660
1661 if Ekind (Op_Id) = E_Operator then
1662 Add_One_Interp (N, Op_Id, Standard_Boolean);
1663 else
1664 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1665 end if;
1666
1667 if Is_Overloaded (L) then
1668 if Ekind (Op_Id) = E_Operator then
1669 Set_Etype (L, Intersect_Types (L, R));
1670 else
1671 Set_Etype (L, Etype (First_Formal (Op_Id)));
1672 end if;
1673 end if;
1674
1675 else
1676 Op_Id := Get_Name_Entity_Id (Chars (N));
1677 while Present (Op_Id) loop
1678 if Ekind (Op_Id) = E_Operator then
1679 Find_Equality_Types (L, R, Op_Id, N);
1680 else
1681 Analyze_User_Defined_Binary_Op (N, Op_Id);
1682 end if;
1683
1684 Op_Id := Homonym (Op_Id);
1685 end loop;
1686 end if;
1687
1688 -- If there was no match, and the operator is inequality, this may
1689 -- be a case where inequality has not been made explicit, as for
1690 -- tagged types. Analyze the node as the negation of an equality
1691 -- operation. This cannot be done earlier, because before analysis
1692 -- we cannot rule out the presence of an explicit inequality.
1693
1694 if Etype (N) = Any_Type
1695 and then Nkind (N) = N_Op_Ne
1696 then
1697 Op_Id := Get_Name_Entity_Id (Name_Op_Eq);
1698 while Present (Op_Id) loop
1699 if Ekind (Op_Id) = E_Operator then
1700 Find_Equality_Types (L, R, Op_Id, N);
1701 else
1702 Analyze_User_Defined_Binary_Op (N, Op_Id);
1703 end if;
1704
1705 Op_Id := Homonym (Op_Id);
1706 end loop;
1707
1708 if Etype (N) /= Any_Type then
1709 Op_Id := Entity (N);
1710
1711 Rewrite (N,
1712 Make_Op_Not (Loc,
1713 Right_Opnd =>
1714 Make_Op_Eq (Loc,
1715 Left_Opnd => Left_Opnd (N),
1716 Right_Opnd => Right_Opnd (N))));
1717
1718 Set_Entity (Right_Opnd (N), Op_Id);
1719 Analyze (N);
1720 end if;
1721 end if;
1722
1723 Operator_Check (N);
1724 end Analyze_Equality_Op;
1725
1726 ----------------------------------
1727 -- Analyze_Explicit_Dereference --
1728 ----------------------------------
1729
1730 procedure Analyze_Explicit_Dereference (N : Node_Id) is
1731 Loc : constant Source_Ptr := Sloc (N);
1732 P : constant Node_Id := Prefix (N);
1733 T : Entity_Id;
1734 I : Interp_Index;
1735 It : Interp;
1736 New_N : Node_Id;
1737
1738 function Is_Function_Type return Boolean;
1739 -- Check whether node may be interpreted as an implicit function call
1740
1741 ----------------------
1742 -- Is_Function_Type --
1743 ----------------------
1744
1745 function Is_Function_Type return Boolean is
1746 I : Interp_Index;
1747 It : Interp;
1748
1749 begin
1750 if not Is_Overloaded (N) then
1751 return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type
1752 and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type;
1753
1754 else
1755 Get_First_Interp (N, I, It);
1756 while Present (It.Nam) loop
1757 if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type
1758 or else Etype (Base_Type (It.Typ)) = Standard_Void_Type
1759 then
1760 return False;
1761 end if;
1762
1763 Get_Next_Interp (I, It);
1764 end loop;
1765
1766 return True;
1767 end if;
1768 end Is_Function_Type;
1769
1770 -- Start of processing for Analyze_Explicit_Dereference
1771
1772 begin
1773 -- If source node, check SPARK restriction. We guard this with the
1774 -- source node check, because ???
1775
1776 if Comes_From_Source (N) then
1777 Check_SPARK_Restriction ("explicit dereference is not allowed", N);
1778 end if;
1779
1780 -- In formal verification mode, keep track of all reads and writes
1781 -- through explicit dereferences.
1782
1783 if Alfa_Mode then
1784 Alfa.Generate_Dereference (N);
1785 end if;
1786
1787 Analyze (P);
1788 Set_Etype (N, Any_Type);
1789
1790 -- Test for remote access to subprogram type, and if so return
1791 -- after rewriting the original tree.
1792
1793 if Remote_AST_E_Dereference (P) then
1794 return;
1795 end if;
1796
1797 -- Normal processing for other than remote access to subprogram type
1798
1799 if not Is_Overloaded (P) then
1800 if Is_Access_Type (Etype (P)) then
1801
1802 -- Set the Etype. We need to go through Is_For_Access_Subtypes to
1803 -- avoid other problems caused by the Private_Subtype and it is
1804 -- safe to go to the Base_Type because this is the same as
1805 -- converting the access value to its Base_Type.
1806
1807 declare
1808 DT : Entity_Id := Designated_Type (Etype (P));
1809
1810 begin
1811 if Ekind (DT) = E_Private_Subtype
1812 and then Is_For_Access_Subtype (DT)
1813 then
1814 DT := Base_Type (DT);
1815 end if;
1816
1817 -- An explicit dereference is a legal occurrence of an
1818 -- incomplete type imported through a limited_with clause,
1819 -- if the full view is visible.
1820
1821 if From_With_Type (DT)
1822 and then not From_With_Type (Scope (DT))
1823 and then
1824 (Is_Immediately_Visible (Scope (DT))
1825 or else
1826 (Is_Child_Unit (Scope (DT))
1827 and then Is_Visible_Child_Unit (Scope (DT))))
1828 then
1829 Set_Etype (N, Available_View (DT));
1830
1831 else
1832 Set_Etype (N, DT);
1833 end if;
1834 end;
1835
1836 elsif Etype (P) /= Any_Type then
1837 Error_Msg_N ("prefix of dereference must be an access type", N);
1838 return;
1839 end if;
1840
1841 else
1842 Get_First_Interp (P, I, It);
1843 while Present (It.Nam) loop
1844 T := It.Typ;
1845
1846 if Is_Access_Type (T) then
1847 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
1848 end if;
1849
1850 Get_Next_Interp (I, It);
1851 end loop;
1852
1853 -- Error if no interpretation of the prefix has an access type
1854
1855 if Etype (N) = Any_Type then
1856 Error_Msg_N
1857 ("access type required in prefix of explicit dereference", P);
1858 Set_Etype (N, Any_Type);
1859 return;
1860 end if;
1861 end if;
1862
1863 if Is_Function_Type
1864 and then Nkind (Parent (N)) /= N_Indexed_Component
1865
1866 and then (Nkind (Parent (N)) /= N_Function_Call
1867 or else N /= Name (Parent (N)))
1868
1869 and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement
1870 or else N /= Name (Parent (N)))
1871
1872 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
1873 and then (Nkind (Parent (N)) /= N_Attribute_Reference
1874 or else
1875 (Attribute_Name (Parent (N)) /= Name_Address
1876 and then
1877 Attribute_Name (Parent (N)) /= Name_Access))
1878 then
1879 -- Name is a function call with no actuals, in a context that
1880 -- requires deproceduring (including as an actual in an enclosing
1881 -- function or procedure call). There are some pathological cases
1882 -- where the prefix might include functions that return access to
1883 -- subprograms and others that return a regular type. Disambiguation
1884 -- of those has to take place in Resolve.
1885
1886 New_N :=
1887 Make_Function_Call (Loc,
1888 Name => Make_Explicit_Dereference (Loc, P),
1889 Parameter_Associations => New_List);
1890
1891 -- If the prefix is overloaded, remove operations that have formals,
1892 -- we know that this is a parameterless call.
1893
1894 if Is_Overloaded (P) then
1895 Get_First_Interp (P, I, It);
1896 while Present (It.Nam) loop
1897 T := It.Typ;
1898
1899 if No (First_Formal (Base_Type (Designated_Type (T)))) then
1900 Set_Etype (P, T);
1901 else
1902 Remove_Interp (I);
1903 end if;
1904
1905 Get_Next_Interp (I, It);
1906 end loop;
1907 end if;
1908
1909 Rewrite (N, New_N);
1910 Analyze (N);
1911
1912 elsif not Is_Function_Type
1913 and then Is_Overloaded (N)
1914 then
1915 -- The prefix may include access to subprograms and other access
1916 -- types. If the context selects the interpretation that is a
1917 -- function call (not a procedure call) we cannot rewrite the node
1918 -- yet, but we include the result of the call interpretation.
1919
1920 Get_First_Interp (N, I, It);
1921 while Present (It.Nam) loop
1922 if Ekind (Base_Type (It.Typ)) = E_Subprogram_Type
1923 and then Etype (Base_Type (It.Typ)) /= Standard_Void_Type
1924 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
1925 then
1926 Add_One_Interp (N, Etype (It.Typ), Etype (It.Typ));
1927 end if;
1928
1929 Get_Next_Interp (I, It);
1930 end loop;
1931 end if;
1932
1933 -- A value of remote access-to-class-wide must not be dereferenced
1934 -- (RM E.2.2(16)).
1935
1936 Validate_Remote_Access_To_Class_Wide_Type (N);
1937 end Analyze_Explicit_Dereference;
1938
1939 ------------------------
1940 -- Analyze_Expression --
1941 ------------------------
1942
1943 procedure Analyze_Expression (N : Node_Id) is
1944 begin
1945 Analyze (N);
1946 Check_Parameterless_Call (N);
1947 end Analyze_Expression;
1948
1949 -------------------------------------
1950 -- Analyze_Expression_With_Actions --
1951 -------------------------------------
1952
1953 procedure Analyze_Expression_With_Actions (N : Node_Id) is
1954 A : Node_Id;
1955
1956 begin
1957 A := First (Actions (N));
1958 loop
1959 Analyze (A);
1960 Next (A);
1961 exit when No (A);
1962 end loop;
1963
1964 Analyze_Expression (Expression (N));
1965 Set_Etype (N, Etype (Expression (N)));
1966 end Analyze_Expression_With_Actions;
1967
1968 ------------------------------------
1969 -- Analyze_Indexed_Component_Form --
1970 ------------------------------------
1971
1972 procedure Analyze_Indexed_Component_Form (N : Node_Id) is
1973 P : constant Node_Id := Prefix (N);
1974 Exprs : constant List_Id := Expressions (N);
1975 Exp : Node_Id;
1976 P_T : Entity_Id;
1977 E : Node_Id;
1978 U_N : Entity_Id;
1979
1980 procedure Process_Function_Call;
1981 -- Prefix in indexed component form is an overloadable entity,
1982 -- so the node is a function call. Reformat it as such.
1983
1984 procedure Process_Indexed_Component;
1985 -- Prefix in indexed component form is actually an indexed component.
1986 -- This routine processes it, knowing that the prefix is already
1987 -- resolved.
1988
1989 procedure Process_Indexed_Component_Or_Slice;
1990 -- An indexed component with a single index may designate a slice if
1991 -- the index is a subtype mark. This routine disambiguates these two
1992 -- cases by resolving the prefix to see if it is a subtype mark.
1993
1994 procedure Process_Overloaded_Indexed_Component;
1995 -- If the prefix of an indexed component is overloaded, the proper
1996 -- interpretation is selected by the index types and the context.
1997
1998 ---------------------------
1999 -- Process_Function_Call --
2000 ---------------------------
2001
2002 procedure Process_Function_Call is
2003 Actual : Node_Id;
2004
2005 begin
2006 Change_Node (N, N_Function_Call);
2007 Set_Name (N, P);
2008 Set_Parameter_Associations (N, Exprs);
2009
2010 -- Analyze actuals prior to analyzing the call itself
2011
2012 Actual := First (Parameter_Associations (N));
2013 while Present (Actual) loop
2014 Analyze (Actual);
2015 Check_Parameterless_Call (Actual);
2016
2017 -- Move to next actual. Note that we use Next, not Next_Actual
2018 -- here. The reason for this is a bit subtle. If a function call
2019 -- includes named associations, the parser recognizes the node as
2020 -- a call, and it is analyzed as such. If all associations are
2021 -- positional, the parser builds an indexed_component node, and
2022 -- it is only after analysis of the prefix that the construct
2023 -- is recognized as a call, in which case Process_Function_Call
2024 -- rewrites the node and analyzes the actuals. If the list of
2025 -- actuals is malformed, the parser may leave the node as an
2026 -- indexed component (despite the presence of named associations).
2027 -- The iterator Next_Actual is equivalent to Next if the list is
2028 -- positional, but follows the normalized chain of actuals when
2029 -- named associations are present. In this case normalization has
2030 -- not taken place, and actuals remain unanalyzed, which leads to
2031 -- subsequent crashes or loops if there is an attempt to continue
2032 -- analysis of the program.
2033
2034 Next (Actual);
2035 end loop;
2036
2037 Analyze_Call (N);
2038 end Process_Function_Call;
2039
2040 -------------------------------
2041 -- Process_Indexed_Component --
2042 -------------------------------
2043
2044 procedure Process_Indexed_Component is
2045 Exp : Node_Id;
2046 Array_Type : Entity_Id;
2047 Index : Node_Id;
2048 Pent : Entity_Id := Empty;
2049
2050 begin
2051 Exp := First (Exprs);
2052
2053 if Is_Overloaded (P) then
2054 Process_Overloaded_Indexed_Component;
2055
2056 else
2057 Array_Type := Etype (P);
2058
2059 if Is_Entity_Name (P) then
2060 Pent := Entity (P);
2061 elsif Nkind (P) = N_Selected_Component
2062 and then Is_Entity_Name (Selector_Name (P))
2063 then
2064 Pent := Entity (Selector_Name (P));
2065 end if;
2066
2067 -- Prefix must be appropriate for an array type, taking into
2068 -- account a possible implicit dereference.
2069
2070 if Is_Access_Type (Array_Type) then
2071 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
2072 Array_Type := Process_Implicit_Dereference_Prefix (Pent, P);
2073 end if;
2074
2075 if Is_Array_Type (Array_Type) then
2076 null;
2077
2078 elsif Present (Pent) and then Ekind (Pent) = E_Entry_Family then
2079 Analyze (Exp);
2080 Set_Etype (N, Any_Type);
2081
2082 if not Has_Compatible_Type
2083 (Exp, Entry_Index_Type (Pent))
2084 then
2085 Error_Msg_N ("invalid index type in entry name", N);
2086
2087 elsif Present (Next (Exp)) then
2088 Error_Msg_N ("too many subscripts in entry reference", N);
2089
2090 else
2091 Set_Etype (N, Etype (P));
2092 end if;
2093
2094 return;
2095
2096 elsif Is_Record_Type (Array_Type)
2097 and then Remote_AST_I_Dereference (P)
2098 then
2099 return;
2100
2101 elsif Try_Container_Indexing (N, P, Exp) then
2102 return;
2103
2104 elsif Array_Type = Any_Type then
2105 Set_Etype (N, Any_Type);
2106
2107 -- In most cases the analysis of the prefix will have emitted
2108 -- an error already, but if the prefix may be interpreted as a
2109 -- call in prefixed notation, the report is left to the caller.
2110 -- To prevent cascaded errors, report only if no previous ones.
2111
2112 if Serious_Errors_Detected = 0 then
2113 Error_Msg_N ("invalid prefix in indexed component", P);
2114
2115 if Nkind (P) = N_Expanded_Name then
2116 Error_Msg_NE ("\& is not visible", P, Selector_Name (P));
2117 end if;
2118 end if;
2119
2120 return;
2121
2122 -- Here we definitely have a bad indexing
2123
2124 else
2125 if Nkind (Parent (N)) = N_Requeue_Statement
2126 and then Present (Pent) and then Ekind (Pent) = E_Entry
2127 then
2128 Error_Msg_N
2129 ("REQUEUE does not permit parameters", First (Exprs));
2130
2131 elsif Is_Entity_Name (P)
2132 and then Etype (P) = Standard_Void_Type
2133 then
2134 Error_Msg_NE ("incorrect use of&", P, Entity (P));
2135
2136 else
2137 Error_Msg_N ("array type required in indexed component", P);
2138 end if;
2139
2140 Set_Etype (N, Any_Type);
2141 return;
2142 end if;
2143
2144 Index := First_Index (Array_Type);
2145 while Present (Index) and then Present (Exp) loop
2146 if not Has_Compatible_Type (Exp, Etype (Index)) then
2147 Wrong_Type (Exp, Etype (Index));
2148 Set_Etype (N, Any_Type);
2149 return;
2150 end if;
2151
2152 Next_Index (Index);
2153 Next (Exp);
2154 end loop;
2155
2156 Set_Etype (N, Component_Type (Array_Type));
2157 Check_Implicit_Dereference (N, Etype (N));
2158
2159 if Present (Index) then
2160 Error_Msg_N
2161 ("too few subscripts in array reference", First (Exprs));
2162
2163 elsif Present (Exp) then
2164 Error_Msg_N ("too many subscripts in array reference", Exp);
2165 end if;
2166 end if;
2167 end Process_Indexed_Component;
2168
2169 ----------------------------------------
2170 -- Process_Indexed_Component_Or_Slice --
2171 ----------------------------------------
2172
2173 procedure Process_Indexed_Component_Or_Slice is
2174 begin
2175 Exp := First (Exprs);
2176 while Present (Exp) loop
2177 Analyze_Expression (Exp);
2178 Next (Exp);
2179 end loop;
2180
2181 Exp := First (Exprs);
2182
2183 -- If one index is present, and it is a subtype name, then the
2184 -- node denotes a slice (note that the case of an explicit range
2185 -- for a slice was already built as an N_Slice node in the first
2186 -- place, so that case is not handled here).
2187
2188 -- We use a replace rather than a rewrite here because this is one
2189 -- of the cases in which the tree built by the parser is plain wrong.
2190
2191 if No (Next (Exp))
2192 and then Is_Entity_Name (Exp)
2193 and then Is_Type (Entity (Exp))
2194 then
2195 Replace (N,
2196 Make_Slice (Sloc (N),
2197 Prefix => P,
2198 Discrete_Range => New_Copy (Exp)));
2199 Analyze (N);
2200
2201 -- Otherwise (more than one index present, or single index is not
2202 -- a subtype name), then we have the indexed component case.
2203
2204 else
2205 Process_Indexed_Component;
2206 end if;
2207 end Process_Indexed_Component_Or_Slice;
2208
2209 ------------------------------------------
2210 -- Process_Overloaded_Indexed_Component --
2211 ------------------------------------------
2212
2213 procedure Process_Overloaded_Indexed_Component is
2214 Exp : Node_Id;
2215 I : Interp_Index;
2216 It : Interp;
2217 Typ : Entity_Id;
2218 Index : Node_Id;
2219 Found : Boolean;
2220
2221 begin
2222 Set_Etype (N, Any_Type);
2223
2224 Get_First_Interp (P, I, It);
2225 while Present (It.Nam) loop
2226 Typ := It.Typ;
2227
2228 if Is_Access_Type (Typ) then
2229 Typ := Designated_Type (Typ);
2230 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
2231 end if;
2232
2233 if Is_Array_Type (Typ) then
2234
2235 -- Got a candidate: verify that index types are compatible
2236
2237 Index := First_Index (Typ);
2238 Found := True;
2239 Exp := First (Exprs);
2240 while Present (Index) and then Present (Exp) loop
2241 if Has_Compatible_Type (Exp, Etype (Index)) then
2242 null;
2243 else
2244 Found := False;
2245 Remove_Interp (I);
2246 exit;
2247 end if;
2248
2249 Next_Index (Index);
2250 Next (Exp);
2251 end loop;
2252
2253 if Found and then No (Index) and then No (Exp) then
2254 declare
2255 CT : constant Entity_Id :=
2256 Base_Type (Component_Type (Typ));
2257 begin
2258 Add_One_Interp (N, CT, CT);
2259 Check_Implicit_Dereference (N, CT);
2260 end;
2261 end if;
2262
2263 elsif Try_Container_Indexing (N, P, First (Exprs)) then
2264 return;
2265
2266 end if;
2267
2268 Get_Next_Interp (I, It);
2269 end loop;
2270
2271 if Etype (N) = Any_Type then
2272 Error_Msg_N ("no legal interpretation for indexed component", N);
2273 Set_Is_Overloaded (N, False);
2274 end if;
2275
2276 End_Interp_List;
2277 end Process_Overloaded_Indexed_Component;
2278
2279 -- Start of processing for Analyze_Indexed_Component_Form
2280
2281 begin
2282 -- Get name of array, function or type
2283
2284 Analyze (P);
2285
2286 if Nkind_In (N, N_Function_Call, N_Procedure_Call_Statement) then
2287
2288 -- If P is an explicit dereference whose prefix is of a
2289 -- remote access-to-subprogram type, then N has already
2290 -- been rewritten as a subprogram call and analyzed.
2291
2292 return;
2293 end if;
2294
2295 pragma Assert (Nkind (N) = N_Indexed_Component);
2296
2297 P_T := Base_Type (Etype (P));
2298
2299 if Is_Entity_Name (P) and then Present (Entity (P)) then
2300 U_N := Entity (P);
2301
2302 if Is_Type (U_N) then
2303
2304 -- Reformat node as a type conversion
2305
2306 E := Remove_Head (Exprs);
2307
2308 if Present (First (Exprs)) then
2309 Error_Msg_N
2310 ("argument of type conversion must be single expression", N);
2311 end if;
2312
2313 Change_Node (N, N_Type_Conversion);
2314 Set_Subtype_Mark (N, P);
2315 Set_Etype (N, U_N);
2316 Set_Expression (N, E);
2317
2318 -- After changing the node, call for the specific Analysis
2319 -- routine directly, to avoid a double call to the expander.
2320
2321 Analyze_Type_Conversion (N);
2322 return;
2323 end if;
2324
2325 if Is_Overloadable (U_N) then
2326 Process_Function_Call;
2327
2328 elsif Ekind (Etype (P)) = E_Subprogram_Type
2329 or else (Is_Access_Type (Etype (P))
2330 and then
2331 Ekind (Designated_Type (Etype (P))) =
2332 E_Subprogram_Type)
2333 then
2334 -- Call to access_to-subprogram with possible implicit dereference
2335
2336 Process_Function_Call;
2337
2338 elsif Is_Generic_Subprogram (U_N) then
2339
2340 -- A common beginner's (or C++ templates fan) error
2341
2342 Error_Msg_N ("generic subprogram cannot be called", N);
2343 Set_Etype (N, Any_Type);
2344 return;
2345
2346 else
2347 Process_Indexed_Component_Or_Slice;
2348 end if;
2349
2350 -- If not an entity name, prefix is an expression that may denote
2351 -- an array or an access-to-subprogram.
2352
2353 else
2354 if Ekind (P_T) = E_Subprogram_Type
2355 or else (Is_Access_Type (P_T)
2356 and then
2357 Ekind (Designated_Type (P_T)) = E_Subprogram_Type)
2358 then
2359 Process_Function_Call;
2360
2361 elsif Nkind (P) = N_Selected_Component
2362 and then Is_Overloadable (Entity (Selector_Name (P)))
2363 then
2364 Process_Function_Call;
2365
2366 else
2367 -- Indexed component, slice, or a call to a member of a family
2368 -- entry, which will be converted to an entry call later.
2369
2370 Process_Indexed_Component_Or_Slice;
2371 end if;
2372 end if;
2373 end Analyze_Indexed_Component_Form;
2374
2375 ------------------------
2376 -- Analyze_Logical_Op --
2377 ------------------------
2378
2379 procedure Analyze_Logical_Op (N : Node_Id) is
2380 L : constant Node_Id := Left_Opnd (N);
2381 R : constant Node_Id := Right_Opnd (N);
2382 Op_Id : Entity_Id := Entity (N);
2383
2384 begin
2385 Set_Etype (N, Any_Type);
2386 Candidate_Type := Empty;
2387
2388 Analyze_Expression (L);
2389 Analyze_Expression (R);
2390
2391 if Present (Op_Id) then
2392
2393 if Ekind (Op_Id) = E_Operator then
2394 Find_Boolean_Types (L, R, Op_Id, N);
2395 else
2396 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2397 end if;
2398
2399 else
2400 Op_Id := Get_Name_Entity_Id (Chars (N));
2401 while Present (Op_Id) loop
2402 if Ekind (Op_Id) = E_Operator then
2403 Find_Boolean_Types (L, R, Op_Id, N);
2404 else
2405 Analyze_User_Defined_Binary_Op (N, Op_Id);
2406 end if;
2407
2408 Op_Id := Homonym (Op_Id);
2409 end loop;
2410 end if;
2411
2412 Operator_Check (N);
2413 end Analyze_Logical_Op;
2414
2415 ---------------------------
2416 -- Analyze_Membership_Op --
2417 ---------------------------
2418
2419 procedure Analyze_Membership_Op (N : Node_Id) is
2420 Loc : constant Source_Ptr := Sloc (N);
2421 L : constant Node_Id := Left_Opnd (N);
2422 R : constant Node_Id := Right_Opnd (N);
2423
2424 Index : Interp_Index;
2425 It : Interp;
2426 Found : Boolean := False;
2427 I_F : Interp_Index;
2428 T_F : Entity_Id;
2429
2430 procedure Try_One_Interp (T1 : Entity_Id);
2431 -- Routine to try one proposed interpretation. Note that the context
2432 -- of the operation plays no role in resolving the arguments, so that
2433 -- if there is more than one interpretation of the operands that is
2434 -- compatible with a membership test, the operation is ambiguous.
2435
2436 --------------------
2437 -- Try_One_Interp --
2438 --------------------
2439
2440 procedure Try_One_Interp (T1 : Entity_Id) is
2441 begin
2442 if Has_Compatible_Type (R, T1) then
2443 if Found
2444 and then Base_Type (T1) /= Base_Type (T_F)
2445 then
2446 It := Disambiguate (L, I_F, Index, Any_Type);
2447
2448 if It = No_Interp then
2449 Ambiguous_Operands (N);
2450 Set_Etype (L, Any_Type);
2451 return;
2452
2453 else
2454 T_F := It.Typ;
2455 end if;
2456
2457 else
2458 Found := True;
2459 T_F := T1;
2460 I_F := Index;
2461 end if;
2462
2463 Set_Etype (L, T_F);
2464 end if;
2465 end Try_One_Interp;
2466
2467 procedure Analyze_Set_Membership;
2468 -- If a set of alternatives is present, analyze each and find the
2469 -- common type to which they must all resolve.
2470
2471 ----------------------------
2472 -- Analyze_Set_Membership --
2473 ----------------------------
2474
2475 procedure Analyze_Set_Membership is
2476 Alt : Node_Id;
2477 Index : Interp_Index;
2478 It : Interp;
2479 Candidate_Interps : Node_Id;
2480 Common_Type : Entity_Id := Empty;
2481
2482 begin
2483 Analyze (L);
2484 Candidate_Interps := L;
2485
2486 if not Is_Overloaded (L) then
2487 Common_Type := Etype (L);
2488
2489 Alt := First (Alternatives (N));
2490 while Present (Alt) loop
2491 Analyze (Alt);
2492
2493 if not Has_Compatible_Type (Alt, Common_Type) then
2494 Wrong_Type (Alt, Common_Type);
2495 end if;
2496
2497 Next (Alt);
2498 end loop;
2499
2500 else
2501 Alt := First (Alternatives (N));
2502 while Present (Alt) loop
2503 Analyze (Alt);
2504 if not Is_Overloaded (Alt) then
2505 Common_Type := Etype (Alt);
2506
2507 else
2508 Get_First_Interp (Alt, Index, It);
2509 while Present (It.Typ) loop
2510 if not
2511 Has_Compatible_Type (Candidate_Interps, It.Typ)
2512 then
2513 Remove_Interp (Index);
2514 end if;
2515
2516 Get_Next_Interp (Index, It);
2517 end loop;
2518
2519 Get_First_Interp (Alt, Index, It);
2520
2521 if No (It.Typ) then
2522 Error_Msg_N ("alternative has no legal type", Alt);
2523 return;
2524 end if;
2525
2526 -- If alternative is not overloaded, we have a unique type
2527 -- for all of them.
2528
2529 Set_Etype (Alt, It.Typ);
2530 Get_Next_Interp (Index, It);
2531
2532 if No (It.Typ) then
2533 Set_Is_Overloaded (Alt, False);
2534 Common_Type := Etype (Alt);
2535 end if;
2536
2537 Candidate_Interps := Alt;
2538 end if;
2539
2540 Next (Alt);
2541 end loop;
2542 end if;
2543
2544 Set_Etype (N, Standard_Boolean);
2545
2546 if Present (Common_Type) then
2547 Set_Etype (L, Common_Type);
2548 Set_Is_Overloaded (L, False);
2549
2550 else
2551 Error_Msg_N ("cannot resolve membership operation", N);
2552 end if;
2553 end Analyze_Set_Membership;
2554
2555 -- Start of processing for Analyze_Membership_Op
2556
2557 begin
2558 Analyze_Expression (L);
2559
2560 if No (R)
2561 and then Ada_Version >= Ada_2012
2562 then
2563 Analyze_Set_Membership;
2564 return;
2565 end if;
2566
2567 if Nkind (R) = N_Range
2568 or else (Nkind (R) = N_Attribute_Reference
2569 and then Attribute_Name (R) = Name_Range)
2570 then
2571 Analyze (R);
2572
2573 if not Is_Overloaded (L) then
2574 Try_One_Interp (Etype (L));
2575
2576 else
2577 Get_First_Interp (L, Index, It);
2578 while Present (It.Typ) loop
2579 Try_One_Interp (It.Typ);
2580 Get_Next_Interp (Index, It);
2581 end loop;
2582 end if;
2583
2584 -- If not a range, it can be a subtype mark, or else it is a degenerate
2585 -- membership test with a singleton value, i.e. a test for equality,
2586 -- if the types are compatible.
2587
2588 else
2589 Analyze (R);
2590
2591 if Is_Entity_Name (R)
2592 and then Is_Type (Entity (R))
2593 then
2594 Find_Type (R);
2595 Check_Fully_Declared (Entity (R), R);
2596
2597 elsif Ada_Version >= Ada_2012
2598 and then Has_Compatible_Type (R, Etype (L))
2599 then
2600 if Nkind (N) = N_In then
2601 Rewrite (N,
2602 Make_Op_Eq (Loc,
2603 Left_Opnd => L,
2604 Right_Opnd => R));
2605 else
2606 Rewrite (N,
2607 Make_Op_Ne (Loc,
2608 Left_Opnd => L,
2609 Right_Opnd => R));
2610 end if;
2611
2612 Analyze (N);
2613 return;
2614
2615 else
2616 -- In all versions of the language, if we reach this point there
2617 -- is a previous error that will be diagnosed below.
2618
2619 Find_Type (R);
2620 end if;
2621 end if;
2622
2623 -- Compatibility between expression and subtype mark or range is
2624 -- checked during resolution. The result of the operation is Boolean
2625 -- in any case.
2626
2627 Set_Etype (N, Standard_Boolean);
2628
2629 if Comes_From_Source (N)
2630 and then Present (Right_Opnd (N))
2631 and then Is_CPP_Class (Etype (Etype (Right_Opnd (N))))
2632 then
2633 Error_Msg_N ("membership test not applicable to cpp-class types", N);
2634 end if;
2635 end Analyze_Membership_Op;
2636
2637 ----------------------
2638 -- Analyze_Negation --
2639 ----------------------
2640
2641 procedure Analyze_Negation (N : Node_Id) is
2642 R : constant Node_Id := Right_Opnd (N);
2643 Op_Id : Entity_Id := Entity (N);
2644
2645 begin
2646 Set_Etype (N, Any_Type);
2647 Candidate_Type := Empty;
2648
2649 Analyze_Expression (R);
2650
2651 if Present (Op_Id) then
2652 if Ekind (Op_Id) = E_Operator then
2653 Find_Negation_Types (R, Op_Id, N);
2654 else
2655 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2656 end if;
2657
2658 else
2659 Op_Id := Get_Name_Entity_Id (Chars (N));
2660 while Present (Op_Id) loop
2661 if Ekind (Op_Id) = E_Operator then
2662 Find_Negation_Types (R, Op_Id, N);
2663 else
2664 Analyze_User_Defined_Unary_Op (N, Op_Id);
2665 end if;
2666
2667 Op_Id := Homonym (Op_Id);
2668 end loop;
2669 end if;
2670
2671 Operator_Check (N);
2672 end Analyze_Negation;
2673
2674 ------------------
2675 -- Analyze_Null --
2676 ------------------
2677
2678 procedure Analyze_Null (N : Node_Id) is
2679 begin
2680 Check_SPARK_Restriction ("null is not allowed", N);
2681
2682 Set_Etype (N, Any_Access);
2683 end Analyze_Null;
2684
2685 ----------------------
2686 -- Analyze_One_Call --
2687 ----------------------
2688
2689 procedure Analyze_One_Call
2690 (N : Node_Id;
2691 Nam : Entity_Id;
2692 Report : Boolean;
2693 Success : out Boolean;
2694 Skip_First : Boolean := False)
2695 is
2696 Actuals : constant List_Id := Parameter_Associations (N);
2697 Prev_T : constant Entity_Id := Etype (N);
2698
2699 Must_Skip : constant Boolean := Skip_First
2700 or else Nkind (Original_Node (N)) = N_Selected_Component
2701 or else
2702 (Nkind (Original_Node (N)) = N_Indexed_Component
2703 and then Nkind (Prefix (Original_Node (N)))
2704 = N_Selected_Component);
2705 -- The first formal must be omitted from the match when trying to find
2706 -- a primitive operation that is a possible interpretation, and also
2707 -- after the call has been rewritten, because the corresponding actual
2708 -- is already known to be compatible, and because this may be an
2709 -- indexing of a call with default parameters.
2710
2711 Formal : Entity_Id;
2712 Actual : Node_Id;
2713 Is_Indexed : Boolean := False;
2714 Is_Indirect : Boolean := False;
2715 Subp_Type : constant Entity_Id := Etype (Nam);
2716 Norm_OK : Boolean;
2717
2718 function Operator_Hidden_By (Fun : Entity_Id) return Boolean;
2719 -- There may be a user-defined operator that hides the current
2720 -- interpretation. We must check for this independently of the
2721 -- analysis of the call with the user-defined operation, because
2722 -- the parameter names may be wrong and yet the hiding takes place.
2723 -- This fixes a problem with ACATS test B34014O.
2724 --
2725 -- When the type Address is a visible integer type, and the DEC
2726 -- system extension is visible, the predefined operator may be
2727 -- hidden as well, by one of the address operations in auxdec.
2728 -- Finally, The abstract operations on address do not hide the
2729 -- predefined operator (this is the purpose of making them abstract).
2730
2731 procedure Indicate_Name_And_Type;
2732 -- If candidate interpretation matches, indicate name and type of
2733 -- result on call node.
2734
2735 ----------------------------
2736 -- Indicate_Name_And_Type --
2737 ----------------------------
2738
2739 procedure Indicate_Name_And_Type is
2740 begin
2741 Add_One_Interp (N, Nam, Etype (Nam));
2742 Check_Implicit_Dereference (N, Etype (Nam));
2743 Success := True;
2744
2745 -- If the prefix of the call is a name, indicate the entity
2746 -- being called. If it is not a name, it is an expression that
2747 -- denotes an access to subprogram or else an entry or family. In
2748 -- the latter case, the name is a selected component, and the entity
2749 -- being called is noted on the selector.
2750
2751 if not Is_Type (Nam) then
2752 if Is_Entity_Name (Name (N)) then
2753 Set_Entity (Name (N), Nam);
2754
2755 elsif Nkind (Name (N)) = N_Selected_Component then
2756 Set_Entity (Selector_Name (Name (N)), Nam);
2757 end if;
2758 end if;
2759
2760 if Debug_Flag_E and not Report then
2761 Write_Str (" Overloaded call ");
2762 Write_Int (Int (N));
2763 Write_Str (" compatible with ");
2764 Write_Int (Int (Nam));
2765 Write_Eol;
2766 end if;
2767 end Indicate_Name_And_Type;
2768
2769 ------------------------
2770 -- Operator_Hidden_By --
2771 ------------------------
2772
2773 function Operator_Hidden_By (Fun : Entity_Id) return Boolean is
2774 Act1 : constant Node_Id := First_Actual (N);
2775 Act2 : constant Node_Id := Next_Actual (Act1);
2776 Form1 : constant Entity_Id := First_Formal (Fun);
2777 Form2 : constant Entity_Id := Next_Formal (Form1);
2778
2779 begin
2780 if Ekind (Fun) /= E_Function
2781 or else Is_Abstract_Subprogram (Fun)
2782 then
2783 return False;
2784
2785 elsif not Has_Compatible_Type (Act1, Etype (Form1)) then
2786 return False;
2787
2788 elsif Present (Form2) then
2789 if
2790 No (Act2) or else not Has_Compatible_Type (Act2, Etype (Form2))
2791 then
2792 return False;
2793 end if;
2794
2795 elsif Present (Act2) then
2796 return False;
2797 end if;
2798
2799 -- Now we know that the arity of the operator matches the function,
2800 -- and the function call is a valid interpretation. The function
2801 -- hides the operator if it has the right signature, or if one of
2802 -- its operands is a non-abstract operation on Address when this is
2803 -- a visible integer type.
2804
2805 return Hides_Op (Fun, Nam)
2806 or else Is_Descendent_Of_Address (Etype (Form1))
2807 or else
2808 (Present (Form2)
2809 and then Is_Descendent_Of_Address (Etype (Form2)));
2810 end Operator_Hidden_By;
2811
2812 -- Start of processing for Analyze_One_Call
2813
2814 begin
2815 Success := False;
2816
2817 -- If the subprogram has no formals or if all the formals have defaults,
2818 -- and the return type is an array type, the node may denote an indexing
2819 -- of the result of a parameterless call. In Ada 2005, the subprogram
2820 -- may have one non-defaulted formal, and the call may have been written
2821 -- in prefix notation, so that the rebuilt parameter list has more than
2822 -- one actual.
2823
2824 if not Is_Overloadable (Nam)
2825 and then Ekind (Nam) /= E_Subprogram_Type
2826 and then Ekind (Nam) /= E_Entry_Family
2827 then
2828 return;
2829 end if;
2830
2831 -- An indexing requires at least one actual
2832
2833 if not Is_Empty_List (Actuals)
2834 and then
2835 (Needs_No_Actuals (Nam)
2836 or else
2837 (Needs_One_Actual (Nam)
2838 and then Present (Next_Actual (First (Actuals)))))
2839 then
2840 if Is_Array_Type (Subp_Type) then
2841 Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type, Must_Skip);
2842
2843 elsif Is_Access_Type (Subp_Type)
2844 and then Is_Array_Type (Designated_Type (Subp_Type))
2845 then
2846 Is_Indexed :=
2847 Try_Indexed_Call
2848 (N, Nam, Designated_Type (Subp_Type), Must_Skip);
2849
2850 -- The prefix can also be a parameterless function that returns an
2851 -- access to subprogram, in which case this is an indirect call.
2852 -- If this succeeds, an explicit dereference is added later on,
2853 -- in Analyze_Call or Resolve_Call.
2854
2855 elsif Is_Access_Type (Subp_Type)
2856 and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type
2857 then
2858 Is_Indirect := Try_Indirect_Call (N, Nam, Subp_Type);
2859 end if;
2860
2861 end if;
2862
2863 -- If the call has been transformed into a slice, it is of the form
2864 -- F (Subtype) where F is parameterless. The node has been rewritten in
2865 -- Try_Indexed_Call and there is nothing else to do.
2866
2867 if Is_Indexed
2868 and then Nkind (N) = N_Slice
2869 then
2870 return;
2871 end if;
2872
2873 Normalize_Actuals
2874 (N, Nam, (Report and not Is_Indexed and not Is_Indirect), Norm_OK);
2875
2876 if not Norm_OK then
2877
2878 -- If an indirect call is a possible interpretation, indicate
2879 -- success to the caller.
2880
2881 if Is_Indirect then
2882 Success := True;
2883 return;
2884
2885 -- Mismatch in number or names of parameters
2886
2887 elsif Debug_Flag_E then
2888 Write_Str (" normalization fails in call ");
2889 Write_Int (Int (N));
2890 Write_Str (" with subprogram ");
2891 Write_Int (Int (Nam));
2892 Write_Eol;
2893 end if;
2894
2895 -- If the context expects a function call, discard any interpretation
2896 -- that is a procedure. If the node is not overloaded, leave as is for
2897 -- better error reporting when type mismatch is found.
2898
2899 elsif Nkind (N) = N_Function_Call
2900 and then Is_Overloaded (Name (N))
2901 and then Ekind (Nam) = E_Procedure
2902 then
2903 return;
2904
2905 -- Ditto for function calls in a procedure context
2906
2907 elsif Nkind (N) = N_Procedure_Call_Statement
2908 and then Is_Overloaded (Name (N))
2909 and then Etype (Nam) /= Standard_Void_Type
2910 then
2911 return;
2912
2913 elsif No (Actuals) then
2914
2915 -- If Normalize succeeds, then there are default parameters for
2916 -- all formals.
2917
2918 Indicate_Name_And_Type;
2919
2920 elsif Ekind (Nam) = E_Operator then
2921 if Nkind (N) = N_Procedure_Call_Statement then
2922 return;
2923 end if;
2924
2925 -- This can occur when the prefix of the call is an operator
2926 -- name or an expanded name whose selector is an operator name.
2927
2928 Analyze_Operator_Call (N, Nam);
2929
2930 if Etype (N) /= Prev_T then
2931
2932 -- Check that operator is not hidden by a function interpretation
2933
2934 if Is_Overloaded (Name (N)) then
2935 declare
2936 I : Interp_Index;
2937 It : Interp;
2938
2939 begin
2940 Get_First_Interp (Name (N), I, It);
2941 while Present (It.Nam) loop
2942 if Operator_Hidden_By (It.Nam) then
2943 Set_Etype (N, Prev_T);
2944 return;
2945 end if;
2946
2947 Get_Next_Interp (I, It);
2948 end loop;
2949 end;
2950 end if;
2951
2952 -- If operator matches formals, record its name on the call.
2953 -- If the operator is overloaded, Resolve will select the
2954 -- correct one from the list of interpretations. The call
2955 -- node itself carries the first candidate.
2956
2957 Set_Entity (Name (N), Nam);
2958 Success := True;
2959
2960 elsif Report and then Etype (N) = Any_Type then
2961 Error_Msg_N ("incompatible arguments for operator", N);
2962 end if;
2963
2964 else
2965 -- Normalize_Actuals has chained the named associations in the
2966 -- correct order of the formals.
2967
2968 Actual := First_Actual (N);
2969 Formal := First_Formal (Nam);
2970
2971 -- If we are analyzing a call rewritten from object notation, skip
2972 -- first actual, which may be rewritten later as an explicit
2973 -- dereference.
2974
2975 if Must_Skip then
2976 Next_Actual (Actual);
2977 Next_Formal (Formal);
2978 end if;
2979
2980 while Present (Actual) and then Present (Formal) loop
2981 if Nkind (Parent (Actual)) /= N_Parameter_Association
2982 or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal)
2983 then
2984 -- The actual can be compatible with the formal, but we must
2985 -- also check that the context is not an address type that is
2986 -- visibly an integer type, as is the case in VMS_64. In this
2987 -- case the use of literals is illegal, except in the body of
2988 -- descendents of system, where arithmetic operations on
2989 -- address are of course used.
2990
2991 if Has_Compatible_Type (Actual, Etype (Formal))
2992 and then
2993 (Etype (Actual) /= Universal_Integer
2994 or else not Is_Descendent_Of_Address (Etype (Formal))
2995 or else
2996 Is_Predefined_File_Name
2997 (Unit_File_Name (Get_Source_Unit (N))))
2998 then
2999 Next_Actual (Actual);
3000 Next_Formal (Formal);
3001
3002 else
3003 if Debug_Flag_E then
3004 Write_Str (" type checking fails in call ");
3005 Write_Int (Int (N));
3006 Write_Str (" with formal ");
3007 Write_Int (Int (Formal));
3008 Write_Str (" in subprogram ");
3009 Write_Int (Int (Nam));
3010 Write_Eol;
3011 end if;
3012
3013 if Report and not Is_Indexed and not Is_Indirect then
3014
3015 -- Ada 2005 (AI-251): Complete the error notification
3016 -- to help new Ada 2005 users.
3017
3018 if Is_Class_Wide_Type (Etype (Formal))
3019 and then Is_Interface (Etype (Etype (Formal)))
3020 and then not Interface_Present_In_Ancestor
3021 (Typ => Etype (Actual),
3022 Iface => Etype (Etype (Formal)))
3023 then
3024 Error_Msg_NE
3025 ("(Ada 2005) does not implement interface }",
3026 Actual, Etype (Etype (Formal)));
3027 end if;
3028
3029 Wrong_Type (Actual, Etype (Formal));
3030
3031 if Nkind (Actual) = N_Op_Eq
3032 and then Nkind (Left_Opnd (Actual)) = N_Identifier
3033 then
3034 Formal := First_Formal (Nam);
3035 while Present (Formal) loop
3036 if Chars (Left_Opnd (Actual)) = Chars (Formal) then
3037 Error_Msg_N -- CODEFIX
3038 ("possible misspelling of `='>`!", Actual);
3039 exit;
3040 end if;
3041
3042 Next_Formal (Formal);
3043 end loop;
3044 end if;
3045
3046 if All_Errors_Mode then
3047 Error_Msg_Sloc := Sloc (Nam);
3048
3049 if Etype (Formal) = Any_Type then
3050 Error_Msg_N
3051 ("there is no legal actual parameter", Actual);
3052 end if;
3053
3054 if Is_Overloadable (Nam)
3055 and then Present (Alias (Nam))
3056 and then not Comes_From_Source (Nam)
3057 then
3058 Error_Msg_NE
3059 ("\\ =='> in call to inherited operation & #!",
3060 Actual, Nam);
3061
3062 elsif Ekind (Nam) = E_Subprogram_Type then
3063 declare
3064 Access_To_Subprogram_Typ :
3065 constant Entity_Id :=
3066 Defining_Identifier
3067 (Associated_Node_For_Itype (Nam));
3068 begin
3069 Error_Msg_NE (
3070 "\\ =='> in call to dereference of &#!",
3071 Actual, Access_To_Subprogram_Typ);
3072 end;
3073
3074 else
3075 Error_Msg_NE
3076 ("\\ =='> in call to &#!", Actual, Nam);
3077
3078 end if;
3079 end if;
3080 end if;
3081
3082 return;
3083 end if;
3084
3085 else
3086 -- Normalize_Actuals has verified that a default value exists
3087 -- for this formal. Current actual names a subsequent formal.
3088
3089 Next_Formal (Formal);
3090 end if;
3091 end loop;
3092
3093 -- On exit, all actuals match
3094
3095 Indicate_Name_And_Type;
3096 end if;
3097 end Analyze_One_Call;
3098
3099 ---------------------------
3100 -- Analyze_Operator_Call --
3101 ---------------------------
3102
3103 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is
3104 Op_Name : constant Name_Id := Chars (Op_Id);
3105 Act1 : constant Node_Id := First_Actual (N);
3106 Act2 : constant Node_Id := Next_Actual (Act1);
3107
3108 begin
3109 -- Binary operator case
3110
3111 if Present (Act2) then
3112
3113 -- If more than two operands, then not binary operator after all
3114
3115 if Present (Next_Actual (Act2)) then
3116 return;
3117
3118 elsif Op_Name = Name_Op_Add
3119 or else Op_Name = Name_Op_Subtract
3120 or else Op_Name = Name_Op_Multiply
3121 or else Op_Name = Name_Op_Divide
3122 or else Op_Name = Name_Op_Mod
3123 or else Op_Name = Name_Op_Rem
3124 or else Op_Name = Name_Op_Expon
3125 then
3126 Find_Arithmetic_Types (Act1, Act2, Op_Id, N);
3127
3128 elsif Op_Name = Name_Op_And
3129 or else Op_Name = Name_Op_Or
3130 or else Op_Name = Name_Op_Xor
3131 then
3132 Find_Boolean_Types (Act1, Act2, Op_Id, N);
3133
3134 elsif Op_Name = Name_Op_Lt
3135 or else Op_Name = Name_Op_Le
3136 or else Op_Name = Name_Op_Gt
3137 or else Op_Name = Name_Op_Ge
3138 then
3139 Find_Comparison_Types (Act1, Act2, Op_Id, N);
3140
3141 elsif Op_Name = Name_Op_Eq
3142 or else Op_Name = Name_Op_Ne
3143 then
3144 Find_Equality_Types (Act1, Act2, Op_Id, N);
3145
3146 elsif Op_Name = Name_Op_Concat then
3147 Find_Concatenation_Types (Act1, Act2, Op_Id, N);
3148
3149 -- Is this else null correct, or should it be an abort???
3150
3151 else
3152 null;
3153 end if;
3154
3155 -- Unary operator case
3156
3157 else
3158 if Op_Name = Name_Op_Subtract or else
3159 Op_Name = Name_Op_Add or else
3160 Op_Name = Name_Op_Abs
3161 then
3162 Find_Unary_Types (Act1, Op_Id, N);
3163
3164 elsif
3165 Op_Name = Name_Op_Not
3166 then
3167 Find_Negation_Types (Act1, Op_Id, N);
3168
3169 -- Is this else null correct, or should it be an abort???
3170
3171 else
3172 null;
3173 end if;
3174 end if;
3175 end Analyze_Operator_Call;
3176
3177 -------------------------------------------
3178 -- Analyze_Overloaded_Selected_Component --
3179 -------------------------------------------
3180
3181 procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is
3182 Nam : constant Node_Id := Prefix (N);
3183 Sel : constant Node_Id := Selector_Name (N);
3184 Comp : Entity_Id;
3185 I : Interp_Index;
3186 It : Interp;
3187 T : Entity_Id;
3188
3189 begin
3190 Set_Etype (Sel, Any_Type);
3191
3192 Get_First_Interp (Nam, I, It);
3193 while Present (It.Typ) loop
3194 if Is_Access_Type (It.Typ) then
3195 T := Designated_Type (It.Typ);
3196 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
3197 else
3198 T := It.Typ;
3199 end if;
3200
3201 -- Locate the component. For a private prefix the selector can denote
3202 -- a discriminant.
3203
3204 if Is_Record_Type (T) or else Is_Private_Type (T) then
3205
3206 -- If the prefix is a class-wide type, the visible components are
3207 -- those of the base type.
3208
3209 if Is_Class_Wide_Type (T) then
3210 T := Etype (T);
3211 end if;
3212
3213 Comp := First_Entity (T);
3214 while Present (Comp) loop
3215 if Chars (Comp) = Chars (Sel)
3216 and then Is_Visible_Component (Comp)
3217 then
3218
3219 -- AI05-105: if the context is an object renaming with
3220 -- an anonymous access type, the expected type of the
3221 -- object must be anonymous. This is a name resolution rule.
3222
3223 if Nkind (Parent (N)) /= N_Object_Renaming_Declaration
3224 or else No (Access_Definition (Parent (N)))
3225 or else Ekind (Etype (Comp)) = E_Anonymous_Access_Type
3226 or else
3227 Ekind (Etype (Comp)) = E_Anonymous_Access_Subprogram_Type
3228 then
3229 Set_Entity (Sel, Comp);
3230 Set_Etype (Sel, Etype (Comp));
3231 Add_One_Interp (N, Etype (Comp), Etype (Comp));
3232 Check_Implicit_Dereference (N, Etype (Comp));
3233
3234 -- This also specifies a candidate to resolve the name.
3235 -- Further overloading will be resolved from context.
3236 -- The selector name itself does not carry overloading
3237 -- information.
3238
3239 Set_Etype (Nam, It.Typ);
3240
3241 else
3242 -- Named access type in the context of a renaming
3243 -- declaration with an access definition. Remove
3244 -- inapplicable candidate.
3245
3246 Remove_Interp (I);
3247 end if;
3248 end if;
3249
3250 Next_Entity (Comp);
3251 end loop;
3252
3253 elsif Is_Concurrent_Type (T) then
3254 Comp := First_Entity (T);
3255 while Present (Comp)
3256 and then Comp /= First_Private_Entity (T)
3257 loop
3258 if Chars (Comp) = Chars (Sel) then
3259 if Is_Overloadable (Comp) then
3260 Add_One_Interp (Sel, Comp, Etype (Comp));
3261 else
3262 Set_Entity_With_Style_Check (Sel, Comp);
3263 Generate_Reference (Comp, Sel);
3264 end if;
3265
3266 Set_Etype (Sel, Etype (Comp));
3267 Set_Etype (N, Etype (Comp));
3268 Set_Etype (Nam, It.Typ);
3269
3270 -- For access type case, introduce explicit dereference for
3271 -- more uniform treatment of entry calls. Do this only once
3272 -- if several interpretations yield an access type.
3273
3274 if Is_Access_Type (Etype (Nam))
3275 and then Nkind (Nam) /= N_Explicit_Dereference
3276 then
3277 Insert_Explicit_Dereference (Nam);
3278 Error_Msg_NW
3279 (Warn_On_Dereference, "?implicit dereference", N);
3280 end if;
3281 end if;
3282
3283 Next_Entity (Comp);
3284 end loop;
3285
3286 Set_Is_Overloaded (N, Is_Overloaded (Sel));
3287 end if;
3288
3289 Get_Next_Interp (I, It);
3290 end loop;
3291
3292 if Etype (N) = Any_Type
3293 and then not Try_Object_Operation (N)
3294 then
3295 Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel);
3296 Set_Entity (Sel, Any_Id);
3297 Set_Etype (Sel, Any_Type);
3298 end if;
3299 end Analyze_Overloaded_Selected_Component;
3300
3301 ----------------------------------
3302 -- Analyze_Qualified_Expression --
3303 ----------------------------------
3304
3305 procedure Analyze_Qualified_Expression (N : Node_Id) is
3306 Mark : constant Entity_Id := Subtype_Mark (N);
3307 Expr : constant Node_Id := Expression (N);
3308 I : Interp_Index;
3309 It : Interp;
3310 T : Entity_Id;
3311
3312 begin
3313 Analyze_Expression (Expr);
3314
3315 Set_Etype (N, Any_Type);
3316 Find_Type (Mark);
3317 T := Entity (Mark);
3318 Set_Etype (N, T);
3319
3320 if T = Any_Type then
3321 return;
3322 end if;
3323
3324 Check_Fully_Declared (T, N);
3325
3326 -- If expected type is class-wide, check for exact match before
3327 -- expansion, because if the expression is a dispatching call it
3328 -- may be rewritten as explicit dereference with class-wide result.
3329 -- If expression is overloaded, retain only interpretations that
3330 -- will yield exact matches.
3331
3332 if Is_Class_Wide_Type (T) then
3333 if not Is_Overloaded (Expr) then
3334 if Base_Type (Etype (Expr)) /= Base_Type (T) then
3335 if Nkind (Expr) = N_Aggregate then
3336 Error_Msg_N ("type of aggregate cannot be class-wide", Expr);
3337 else
3338 Wrong_Type (Expr, T);
3339 end if;
3340 end if;
3341
3342 else
3343 Get_First_Interp (Expr, I, It);
3344
3345 while Present (It.Nam) loop
3346 if Base_Type (It.Typ) /= Base_Type (T) then
3347 Remove_Interp (I);
3348 end if;
3349
3350 Get_Next_Interp (I, It);
3351 end loop;
3352 end if;
3353 end if;
3354
3355 Set_Etype (N, T);
3356 end Analyze_Qualified_Expression;
3357
3358 -----------------------------------
3359 -- Analyze_Quantified_Expression --
3360 -----------------------------------
3361
3362 procedure Analyze_Quantified_Expression (N : Node_Id) is
3363 Loc : constant Source_Ptr := Sloc (N);
3364 Ent : constant Entity_Id :=
3365 New_Internal_Entity
3366 (E_Loop, Current_Scope, Sloc (N), 'L');
3367
3368 Iterator : Node_Id;
3369
3370 begin
3371 Set_Etype (Ent, Standard_Void_Type);
3372 Set_Scope (Ent, Current_Scope);
3373 Set_Parent (Ent, N);
3374
3375 Check_SPARK_Restriction ("quantified expression is not allowed", N);
3376
3377 -- If expansion is enabled (and not in Alfa mode), the condition is
3378 -- analyzed after rewritten as a loop. So we only need to set the type.
3379
3380 if Operating_Mode /= Check_Semantics
3381 and then not Alfa_Mode
3382 then
3383 Set_Etype (N, Standard_Boolean);
3384 return;
3385 end if;
3386
3387 if Present (Loop_Parameter_Specification (N)) then
3388 Iterator :=
3389 Make_Iteration_Scheme (Loc,
3390 Loop_Parameter_Specification =>
3391 Loop_Parameter_Specification (N));
3392 else
3393 Iterator :=
3394 Make_Iteration_Scheme (Loc,
3395 Iterator_Specification =>
3396 Iterator_Specification (N));
3397 end if;
3398
3399 Push_Scope (Ent);
3400 Set_Parent (Iterator, N);
3401 Analyze_Iteration_Scheme (Iterator);
3402
3403 -- The loop specification may have been converted into an iterator
3404 -- specification during its analysis. Update the quantified node
3405 -- accordingly.
3406
3407 if Present (Iterator_Specification (Iterator)) then
3408 Set_Iterator_Specification
3409 (N, Iterator_Specification (Iterator));
3410 Set_Loop_Parameter_Specification (N, Empty);
3411 end if;
3412
3413 Analyze (Condition (N));
3414 End_Scope;
3415 Set_Etype (N, Standard_Boolean);
3416 end Analyze_Quantified_Expression;
3417
3418 -------------------
3419 -- Analyze_Range --
3420 -------------------
3421
3422 procedure Analyze_Range (N : Node_Id) is
3423 L : constant Node_Id := Low_Bound (N);
3424 H : constant Node_Id := High_Bound (N);
3425 I1, I2 : Interp_Index;
3426 It1, It2 : Interp;
3427
3428 procedure Check_Common_Type (T1, T2 : Entity_Id);
3429 -- Verify the compatibility of two types, and choose the
3430 -- non universal one if the other is universal.
3431
3432 procedure Check_High_Bound (T : Entity_Id);
3433 -- Test one interpretation of the low bound against all those
3434 -- of the high bound.
3435
3436 procedure Check_Universal_Expression (N : Node_Id);
3437 -- In Ada83, reject bounds of a universal range that are not
3438 -- literals or entity names.
3439
3440 -----------------------
3441 -- Check_Common_Type --
3442 -----------------------
3443
3444 procedure Check_Common_Type (T1, T2 : Entity_Id) is
3445 begin
3446 if Covers (T1 => T1, T2 => T2)
3447 or else
3448 Covers (T1 => T2, T2 => T1)
3449 then
3450 if T1 = Universal_Integer
3451 or else T1 = Universal_Real
3452 or else T1 = Any_Character
3453 then
3454 Add_One_Interp (N, Base_Type (T2), Base_Type (T2));
3455
3456 elsif T1 = T2 then
3457 Add_One_Interp (N, T1, T1);
3458
3459 else
3460 Add_One_Interp (N, Base_Type (T1), Base_Type (T1));
3461 end if;
3462 end if;
3463 end Check_Common_Type;
3464
3465 ----------------------
3466 -- Check_High_Bound --
3467 ----------------------
3468
3469 procedure Check_High_Bound (T : Entity_Id) is
3470 begin
3471 if not Is_Overloaded (H) then
3472 Check_Common_Type (T, Etype (H));
3473 else
3474 Get_First_Interp (H, I2, It2);
3475 while Present (It2.Typ) loop
3476 Check_Common_Type (T, It2.Typ);
3477 Get_Next_Interp (I2, It2);
3478 end loop;
3479 end if;
3480 end Check_High_Bound;
3481
3482 -----------------------------
3483 -- Is_Universal_Expression --
3484 -----------------------------
3485
3486 procedure Check_Universal_Expression (N : Node_Id) is
3487 begin
3488 if Etype (N) = Universal_Integer
3489 and then Nkind (N) /= N_Integer_Literal
3490 and then not Is_Entity_Name (N)
3491 and then Nkind (N) /= N_Attribute_Reference
3492 then
3493 Error_Msg_N ("illegal bound in discrete range", N);
3494 end if;
3495 end Check_Universal_Expression;
3496
3497 -- Start of processing for Analyze_Range
3498
3499 begin
3500 Set_Etype (N, Any_Type);
3501 Analyze_Expression (L);
3502 Analyze_Expression (H);
3503
3504 if Etype (L) = Any_Type or else Etype (H) = Any_Type then
3505 return;
3506
3507 else
3508 if not Is_Overloaded (L) then
3509 Check_High_Bound (Etype (L));
3510 else
3511 Get_First_Interp (L, I1, It1);
3512 while Present (It1.Typ) loop
3513 Check_High_Bound (It1.Typ);
3514 Get_Next_Interp (I1, It1);
3515 end loop;
3516 end if;
3517
3518 -- If result is Any_Type, then we did not find a compatible pair
3519
3520 if Etype (N) = Any_Type then
3521 Error_Msg_N ("incompatible types in range ", N);
3522 end if;
3523 end if;
3524
3525 if Ada_Version = Ada_83
3526 and then
3527 (Nkind (Parent (N)) = N_Loop_Parameter_Specification
3528 or else Nkind (Parent (N)) = N_Constrained_Array_Definition)
3529 then
3530 Check_Universal_Expression (L);
3531 Check_Universal_Expression (H);
3532 end if;
3533 end Analyze_Range;
3534
3535 -----------------------
3536 -- Analyze_Reference --
3537 -----------------------
3538
3539 procedure Analyze_Reference (N : Node_Id) is
3540 P : constant Node_Id := Prefix (N);
3541 E : Entity_Id;
3542 T : Entity_Id;
3543 Acc_Type : Entity_Id;
3544
3545 begin
3546 Analyze (P);
3547
3548 -- An interesting error check, if we take the 'Reference of an object
3549 -- for which a pragma Atomic or Volatile has been given, and the type
3550 -- of the object is not Atomic or Volatile, then we are in trouble. The
3551 -- problem is that no trace of the atomic/volatile status will remain
3552 -- for the backend to respect when it deals with the resulting pointer,
3553 -- since the pointer type will not be marked atomic (it is a pointer to
3554 -- the base type of the object).
3555
3556 -- It is not clear if that can ever occur, but in case it does, we will
3557 -- generate an error message. Not clear if this message can ever be
3558 -- generated, and pretty clear that it represents a bug if it is, still
3559 -- seems worth checking, except in CodePeer mode where we do not really
3560 -- care and don't want to bother the user.
3561
3562 T := Etype (P);
3563
3564 if Is_Entity_Name (P)
3565 and then Is_Object_Reference (P)
3566 and then not CodePeer_Mode
3567 then
3568 E := Entity (P);
3569 T := Etype (P);
3570
3571 if (Has_Atomic_Components (E)
3572 and then not Has_Atomic_Components (T))
3573 or else
3574 (Has_Volatile_Components (E)
3575 and then not Has_Volatile_Components (T))
3576 or else (Is_Atomic (E) and then not Is_Atomic (T))
3577 or else (Is_Volatile (E) and then not Is_Volatile (T))
3578 then
3579 Error_Msg_N ("cannot take reference to Atomic/Volatile object", N);
3580 end if;
3581 end if;
3582
3583 -- Carry on with normal processing
3584
3585 Acc_Type := Create_Itype (E_Allocator_Type, N);
3586 Set_Etype (Acc_Type, Acc_Type);
3587 Set_Directly_Designated_Type (Acc_Type, Etype (P));
3588 Set_Etype (N, Acc_Type);
3589 end Analyze_Reference;
3590
3591 --------------------------------
3592 -- Analyze_Selected_Component --
3593 --------------------------------
3594
3595 -- Prefix is a record type or a task or protected type. In the latter case,
3596 -- the selector must denote a visible entry.
3597
3598 procedure Analyze_Selected_Component (N : Node_Id) is
3599 Name : constant Node_Id := Prefix (N);
3600 Sel : constant Node_Id := Selector_Name (N);
3601 Act_Decl : Node_Id;
3602 Comp : Entity_Id;
3603 Has_Candidate : Boolean := False;
3604 In_Scope : Boolean;
3605 Parent_N : Node_Id;
3606 Pent : Entity_Id := Empty;
3607 Prefix_Type : Entity_Id;
3608
3609 Type_To_Use : Entity_Id;
3610 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
3611 -- a class-wide type, we use its root type, whose components are
3612 -- present in the class-wide type.
3613
3614 Is_Single_Concurrent_Object : Boolean;
3615 -- Set True if the prefix is a single task or a single protected object
3616
3617 procedure Find_Component_In_Instance (Rec : Entity_Id);
3618 -- In an instance, a component of a private extension may not be visible
3619 -- while it was visible in the generic. Search candidate scope for a
3620 -- component with the proper identifier. This is only done if all other
3621 -- searches have failed. When the match is found (it always will be),
3622 -- the Etype of both N and Sel are set from this component, and the
3623 -- entity of Sel is set to reference this component.
3624
3625 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean;
3626 -- It is known that the parent of N denotes a subprogram call. Comp
3627 -- is an overloadable component of the concurrent type of the prefix.
3628 -- Determine whether all formals of the parent of N and Comp are mode
3629 -- conformant. If the parent node is not analyzed yet it may be an
3630 -- indexed component rather than a function call.
3631
3632 --------------------------------
3633 -- Find_Component_In_Instance --
3634 --------------------------------
3635
3636 procedure Find_Component_In_Instance (Rec : Entity_Id) is
3637 Comp : Entity_Id;
3638
3639 begin
3640 Comp := First_Component (Rec);
3641 while Present (Comp) loop
3642 if Chars (Comp) = Chars (Sel) then
3643 Set_Entity_With_Style_Check (Sel, Comp);
3644 Set_Etype (Sel, Etype (Comp));
3645 Set_Etype (N, Etype (Comp));
3646 return;
3647 end if;
3648
3649 Next_Component (Comp);
3650 end loop;
3651
3652 -- This must succeed because code was legal in the generic
3653
3654 raise Program_Error;
3655 end Find_Component_In_Instance;
3656
3657 ------------------------------
3658 -- Has_Mode_Conformant_Spec --
3659 ------------------------------
3660
3661 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean is
3662 Comp_Param : Entity_Id;
3663 Param : Node_Id;
3664 Param_Typ : Entity_Id;
3665
3666 begin
3667 Comp_Param := First_Formal (Comp);
3668
3669 if Nkind (Parent (N)) = N_Indexed_Component then
3670 Param := First (Expressions (Parent (N)));
3671 else
3672 Param := First (Parameter_Associations (Parent (N)));
3673 end if;
3674
3675 while Present (Comp_Param)
3676 and then Present (Param)
3677 loop
3678 Param_Typ := Find_Parameter_Type (Param);
3679
3680 if Present (Param_Typ)
3681 and then
3682 not Conforming_Types
3683 (Etype (Comp_Param), Param_Typ, Mode_Conformant)
3684 then
3685 return False;
3686 end if;
3687
3688 Next_Formal (Comp_Param);
3689 Next (Param);
3690 end loop;
3691
3692 -- One of the specs has additional formals
3693
3694 if Present (Comp_Param) or else Present (Param) then
3695 return False;
3696 end if;
3697
3698 return True;
3699 end Has_Mode_Conformant_Spec;
3700
3701 -- Start of processing for Analyze_Selected_Component
3702
3703 begin
3704 Set_Etype (N, Any_Type);
3705
3706 if Is_Overloaded (Name) then
3707 Analyze_Overloaded_Selected_Component (N);
3708 return;
3709
3710 elsif Etype (Name) = Any_Type then
3711 Set_Entity (Sel, Any_Id);
3712 Set_Etype (Sel, Any_Type);
3713 return;
3714
3715 else
3716 Prefix_Type := Etype (Name);
3717 end if;
3718
3719 if Is_Access_Type (Prefix_Type) then
3720
3721 -- A RACW object can never be used as prefix of a selected component
3722 -- since that means it is dereferenced without being a controlling
3723 -- operand of a dispatching operation (RM E.2.2(16/1)). Before
3724 -- reporting an error, we must check whether this is actually a
3725 -- dispatching call in prefix form.
3726
3727 if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type)
3728 and then Comes_From_Source (N)
3729 then
3730 if Try_Object_Operation (N) then
3731 return;
3732 else
3733 Error_Msg_N
3734 ("invalid dereference of a remote access-to-class-wide value",
3735 N);
3736 end if;
3737
3738 -- Normal case of selected component applied to access type
3739
3740 else
3741 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
3742
3743 if Is_Entity_Name (Name) then
3744 Pent := Entity (Name);
3745 elsif Nkind (Name) = N_Selected_Component
3746 and then Is_Entity_Name (Selector_Name (Name))
3747 then
3748 Pent := Entity (Selector_Name (Name));
3749 end if;
3750
3751 Prefix_Type := Process_Implicit_Dereference_Prefix (Pent, Name);
3752 end if;
3753
3754 -- If we have an explicit dereference of a remote access-to-class-wide
3755 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
3756 -- have to check for the case of a prefix that is a controlling operand
3757 -- of a prefixed dispatching call, as the dereference is legal in that
3758 -- case. Normally this condition is checked in Validate_Remote_Access_
3759 -- To_Class_Wide_Type, but we have to defer the checking for selected
3760 -- component prefixes because of the prefixed dispatching call case.
3761 -- Note that implicit dereferences are checked for this just above.
3762
3763 elsif Nkind (Name) = N_Explicit_Dereference
3764 and then Is_Remote_Access_To_Class_Wide_Type (Etype (Prefix (Name)))
3765 and then Comes_From_Source (N)
3766 then
3767 if Try_Object_Operation (N) then
3768 return;
3769 else
3770 Error_Msg_N
3771 ("invalid dereference of a remote access-to-class-wide value",
3772 N);
3773 end if;
3774 end if;
3775
3776 -- (Ada 2005): if the prefix is the limited view of a type, and
3777 -- the context already includes the full view, use the full view
3778 -- in what follows, either to retrieve a component of to find
3779 -- a primitive operation. If the prefix is an explicit dereference,
3780 -- set the type of the prefix to reflect this transformation.
3781 -- If the non-limited view is itself an incomplete type, get the
3782 -- full view if available.
3783
3784 if Is_Incomplete_Type (Prefix_Type)
3785 and then From_With_Type (Prefix_Type)
3786 and then Present (Non_Limited_View (Prefix_Type))
3787 then
3788 Prefix_Type := Get_Full_View (Non_Limited_View (Prefix_Type));
3789
3790 if Nkind (N) = N_Explicit_Dereference then
3791 Set_Etype (Prefix (N), Prefix_Type);
3792 end if;
3793
3794 elsif Ekind (Prefix_Type) = E_Class_Wide_Type
3795 and then From_With_Type (Prefix_Type)
3796 and then Present (Non_Limited_View (Etype (Prefix_Type)))
3797 then
3798 Prefix_Type :=
3799 Class_Wide_Type (Non_Limited_View (Etype (Prefix_Type)));
3800
3801 if Nkind (N) = N_Explicit_Dereference then
3802 Set_Etype (Prefix (N), Prefix_Type);
3803 end if;
3804 end if;
3805
3806 if Ekind (Prefix_Type) = E_Private_Subtype then
3807 Prefix_Type := Base_Type (Prefix_Type);
3808 end if;
3809
3810 Type_To_Use := Prefix_Type;
3811
3812 -- For class-wide types, use the entity list of the root type. This
3813 -- indirection is specially important for private extensions because
3814 -- only the root type get switched (not the class-wide type).
3815
3816 if Is_Class_Wide_Type (Prefix_Type) then
3817 Type_To_Use := Root_Type (Prefix_Type);
3818 end if;
3819
3820 -- If the prefix is a single concurrent object, use its name in error
3821 -- messages, rather than that of its anonymous type.
3822
3823 Is_Single_Concurrent_Object :=
3824 Is_Concurrent_Type (Prefix_Type)
3825 and then Is_Internal_Name (Chars (Prefix_Type))
3826 and then not Is_Derived_Type (Prefix_Type)
3827 and then Is_Entity_Name (Name);
3828
3829 Comp := First_Entity (Type_To_Use);
3830
3831 -- If the selector has an original discriminant, the node appears in
3832 -- an instance. Replace the discriminant with the corresponding one
3833 -- in the current discriminated type. For nested generics, this must
3834 -- be done transitively, so note the new original discriminant.
3835
3836 if Nkind (Sel) = N_Identifier
3837 and then In_Instance
3838 and then Present (Original_Discriminant (Sel))
3839 then
3840 Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type);
3841
3842 -- Mark entity before rewriting, for completeness and because
3843 -- subsequent semantic checks might examine the original node.
3844
3845 Set_Entity (Sel, Comp);
3846 Rewrite (Selector_Name (N),
3847 New_Occurrence_Of (Comp, Sloc (N)));
3848 Set_Original_Discriminant (Selector_Name (N), Comp);
3849 Set_Etype (N, Etype (Comp));
3850 Check_Implicit_Dereference (N, Etype (Comp));
3851
3852 if Is_Access_Type (Etype (Name)) then
3853 Insert_Explicit_Dereference (Name);
3854 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
3855 end if;
3856
3857 elsif Is_Record_Type (Prefix_Type) then
3858
3859 -- Find component with given name
3860
3861 while Present (Comp) loop
3862 if Chars (Comp) = Chars (Sel)
3863 and then Is_Visible_Component (Comp)
3864 then
3865 Set_Entity_With_Style_Check (Sel, Comp);
3866 Set_Etype (Sel, Etype (Comp));
3867
3868 if Ekind (Comp) = E_Discriminant then
3869 if Is_Unchecked_Union (Base_Type (Prefix_Type)) then
3870 Error_Msg_N
3871 ("cannot reference discriminant of Unchecked_Union",
3872 Sel);
3873 end if;
3874
3875 if Is_Generic_Type (Prefix_Type)
3876 or else
3877 Is_Generic_Type (Root_Type (Prefix_Type))
3878 then
3879 Set_Original_Discriminant (Sel, Comp);
3880 end if;
3881 end if;
3882
3883 -- Resolve the prefix early otherwise it is not possible to
3884 -- build the actual subtype of the component: it may need
3885 -- to duplicate this prefix and duplication is only allowed
3886 -- on fully resolved expressions.
3887
3888 Resolve (Name);
3889
3890 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
3891 -- subtypes in a package specification.
3892 -- Example:
3893
3894 -- limited with Pkg;
3895 -- package Pkg is
3896 -- type Acc_Inc is access Pkg.T;
3897 -- X : Acc_Inc;
3898 -- N : Natural := X.all.Comp; -- ERROR, limited view
3899 -- end Pkg; -- Comp is not visible
3900
3901 if Nkind (Name) = N_Explicit_Dereference
3902 and then From_With_Type (Etype (Prefix (Name)))
3903 and then not Is_Potentially_Use_Visible (Etype (Name))
3904 and then Nkind (Parent (Cunit_Entity (Current_Sem_Unit))) =
3905 N_Package_Specification
3906 then
3907 Error_Msg_NE
3908 ("premature usage of incomplete}", Prefix (Name),
3909 Etype (Prefix (Name)));
3910 end if;
3911
3912 -- We never need an actual subtype for the case of a selection
3913 -- for a indexed component of a non-packed array, since in
3914 -- this case gigi generates all the checks and can find the
3915 -- necessary bounds information.
3916
3917 -- We also do not need an actual subtype for the case of a
3918 -- first, last, length, or range attribute applied to a
3919 -- non-packed array, since gigi can again get the bounds in
3920 -- these cases (gigi cannot handle the packed case, since it
3921 -- has the bounds of the packed array type, not the original
3922 -- bounds of the type). However, if the prefix is itself a
3923 -- selected component, as in a.b.c (i), gigi may regard a.b.c
3924 -- as a dynamic-sized temporary, so we do generate an actual
3925 -- subtype for this case.
3926
3927 Parent_N := Parent (N);
3928
3929 if not Is_Packed (Etype (Comp))
3930 and then
3931 ((Nkind (Parent_N) = N_Indexed_Component
3932 and then Nkind (Name) /= N_Selected_Component)
3933 or else
3934 (Nkind (Parent_N) = N_Attribute_Reference
3935 and then (Attribute_Name (Parent_N) = Name_First
3936 or else
3937 Attribute_Name (Parent_N) = Name_Last
3938 or else
3939 Attribute_Name (Parent_N) = Name_Length
3940 or else
3941 Attribute_Name (Parent_N) = Name_Range)))
3942 then
3943 Set_Etype (N, Etype (Comp));
3944
3945 -- If full analysis is not enabled, we do not generate an
3946 -- actual subtype, because in the absence of expansion
3947 -- reference to a formal of a protected type, for example,
3948 -- will not be properly transformed, and will lead to
3949 -- out-of-scope references in gigi.
3950
3951 -- In all other cases, we currently build an actual subtype.
3952 -- It seems likely that many of these cases can be avoided,
3953 -- but right now, the front end makes direct references to the
3954 -- bounds (e.g. in generating a length check), and if we do
3955 -- not make an actual subtype, we end up getting a direct
3956 -- reference to a discriminant, which will not do.
3957
3958 elsif Full_Analysis then
3959 Act_Decl :=
3960 Build_Actual_Subtype_Of_Component (Etype (Comp), N);
3961 Insert_Action (N, Act_Decl);
3962
3963 if No (Act_Decl) then
3964 Set_Etype (N, Etype (Comp));
3965
3966 else
3967 -- Component type depends on discriminants. Enter the
3968 -- main attributes of the subtype.
3969
3970 declare
3971 Subt : constant Entity_Id :=
3972 Defining_Identifier (Act_Decl);
3973
3974 begin
3975 Set_Etype (Subt, Base_Type (Etype (Comp)));
3976 Set_Ekind (Subt, Ekind (Etype (Comp)));
3977 Set_Etype (N, Subt);
3978 end;
3979 end if;
3980
3981 -- If Full_Analysis not enabled, just set the Etype
3982
3983 else
3984 Set_Etype (N, Etype (Comp));
3985 end if;
3986
3987 Check_Implicit_Dereference (N, Etype (N));
3988 return;
3989 end if;
3990
3991 -- If the prefix is a private extension, check only the visible
3992 -- components of the partial view. This must include the tag,
3993 -- which can appear in expanded code in a tag check.
3994
3995 if Ekind (Type_To_Use) = E_Record_Type_With_Private
3996 and then Chars (Selector_Name (N)) /= Name_uTag
3997 then
3998 exit when Comp = Last_Entity (Type_To_Use);
3999 end if;
4000
4001 Next_Entity (Comp);
4002 end loop;
4003
4004 -- Ada 2005 (AI-252): The selected component can be interpreted as
4005 -- a prefixed view of a subprogram. Depending on the context, this is
4006 -- either a name that can appear in a renaming declaration, or part
4007 -- of an enclosing call given in prefix form.
4008
4009 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
4010 -- selected component should resolve to a name.
4011
4012 if Ada_Version >= Ada_2005
4013 and then Is_Tagged_Type (Prefix_Type)
4014 and then not Is_Concurrent_Type (Prefix_Type)
4015 then
4016 if Nkind (Parent (N)) = N_Generic_Association
4017 or else Nkind (Parent (N)) = N_Requeue_Statement
4018 or else Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
4019 then
4020 if Find_Primitive_Operation (N) then
4021 return;
4022 end if;
4023
4024 elsif Try_Object_Operation (N) then
4025 return;
4026 end if;
4027
4028 -- If the transformation fails, it will be necessary to redo the
4029 -- analysis with all errors enabled, to indicate candidate
4030 -- interpretations and reasons for each failure ???
4031
4032 end if;
4033
4034 elsif Is_Private_Type (Prefix_Type) then
4035
4036 -- Allow access only to discriminants of the type. If the type has
4037 -- no full view, gigi uses the parent type for the components, so we
4038 -- do the same here.
4039
4040 if No (Full_View (Prefix_Type)) then
4041 Type_To_Use := Root_Type (Base_Type (Prefix_Type));
4042 Comp := First_Entity (Type_To_Use);
4043 end if;
4044
4045 while Present (Comp) loop
4046 if Chars (Comp) = Chars (Sel) then
4047 if Ekind (Comp) = E_Discriminant then
4048 Set_Entity_With_Style_Check (Sel, Comp);
4049 Generate_Reference (Comp, Sel);
4050
4051 Set_Etype (Sel, Etype (Comp));
4052 Set_Etype (N, Etype (Comp));
4053 Check_Implicit_Dereference (N, Etype (N));
4054
4055 if Is_Generic_Type (Prefix_Type)
4056 or else Is_Generic_Type (Root_Type (Prefix_Type))
4057 then
4058 Set_Original_Discriminant (Sel, Comp);
4059 end if;
4060
4061 -- Before declaring an error, check whether this is tagged
4062 -- private type and a call to a primitive operation.
4063
4064 elsif Ada_Version >= Ada_2005
4065 and then Is_Tagged_Type (Prefix_Type)
4066 and then Try_Object_Operation (N)
4067 then
4068 return;
4069
4070 else
4071 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4072 Error_Msg_NE ("invisible selector& for }", N, Sel);
4073 Set_Entity (Sel, Any_Id);
4074 Set_Etype (N, Any_Type);
4075 end if;
4076
4077 return;
4078 end if;
4079
4080 Next_Entity (Comp);
4081 end loop;
4082
4083 elsif Is_Concurrent_Type (Prefix_Type) then
4084
4085 -- Find visible operation with given name. For a protected type,
4086 -- the possible candidates are discriminants, entries or protected
4087 -- procedures. For a task type, the set can only include entries or
4088 -- discriminants if the task type is not an enclosing scope. If it
4089 -- is an enclosing scope (e.g. in an inner task) then all entities
4090 -- are visible, but the prefix must denote the enclosing scope, i.e.
4091 -- can only be a direct name or an expanded name.
4092
4093 Set_Etype (Sel, Any_Type);
4094 In_Scope := In_Open_Scopes (Prefix_Type);
4095
4096 while Present (Comp) loop
4097 if Chars (Comp) = Chars (Sel) then
4098 if Is_Overloadable (Comp) then
4099 Add_One_Interp (Sel, Comp, Etype (Comp));
4100
4101 -- If the prefix is tagged, the correct interpretation may
4102 -- lie in the primitive or class-wide operations of the
4103 -- type. Perform a simple conformance check to determine
4104 -- whether Try_Object_Operation should be invoked even if
4105 -- a visible entity is found.
4106
4107 if Is_Tagged_Type (Prefix_Type)
4108 and then
4109 Nkind_In (Parent (N), N_Procedure_Call_Statement,
4110 N_Function_Call,
4111 N_Indexed_Component)
4112 and then Has_Mode_Conformant_Spec (Comp)
4113 then
4114 Has_Candidate := True;
4115 end if;
4116
4117 -- Note: a selected component may not denote a component of a
4118 -- protected type (4.1.3(7)).
4119
4120 elsif Ekind_In (Comp, E_Discriminant, E_Entry_Family)
4121 or else (In_Scope
4122 and then not Is_Protected_Type (Prefix_Type)
4123 and then Is_Entity_Name (Name))
4124 then
4125 Set_Entity_With_Style_Check (Sel, Comp);
4126 Generate_Reference (Comp, Sel);
4127
4128 -- The selector is not overloadable, so we have a candidate
4129 -- interpretation.
4130
4131 Has_Candidate := True;
4132
4133 else
4134 goto Next_Comp;
4135 end if;
4136
4137 Set_Etype (Sel, Etype (Comp));
4138 Set_Etype (N, Etype (Comp));
4139
4140 if Ekind (Comp) = E_Discriminant then
4141 Set_Original_Discriminant (Sel, Comp);
4142 end if;
4143
4144 -- For access type case, introduce explicit dereference for
4145 -- more uniform treatment of entry calls.
4146
4147 if Is_Access_Type (Etype (Name)) then
4148 Insert_Explicit_Dereference (Name);
4149 Error_Msg_NW
4150 (Warn_On_Dereference, "?implicit dereference", N);
4151 end if;
4152 end if;
4153
4154 <<Next_Comp>>
4155 Next_Entity (Comp);
4156 exit when not In_Scope
4157 and then
4158 Comp = First_Private_Entity (Base_Type (Prefix_Type));
4159 end loop;
4160
4161 -- If there is no visible entity with the given name or none of the
4162 -- visible entities are plausible interpretations, check whether
4163 -- there is some other primitive operation with that name.
4164
4165 if Ada_Version >= Ada_2005
4166 and then Is_Tagged_Type (Prefix_Type)
4167 then
4168 if (Etype (N) = Any_Type
4169 or else not Has_Candidate)
4170 and then Try_Object_Operation (N)
4171 then
4172 return;
4173
4174 -- If the context is not syntactically a procedure call, it
4175 -- may be a call to a primitive function declared outside of
4176 -- the synchronized type.
4177
4178 -- If the context is a procedure call, there might still be
4179 -- an overloading between an entry and a primitive procedure
4180 -- declared outside of the synchronized type, called in prefix
4181 -- notation. This is harder to disambiguate because in one case
4182 -- the controlling formal is implicit ???
4183
4184 elsif Nkind (Parent (N)) /= N_Procedure_Call_Statement
4185 and then Nkind (Parent (N)) /= N_Indexed_Component
4186 and then Try_Object_Operation (N)
4187 then
4188 return;
4189 end if;
4190
4191 -- Ada 2012 (AI05-0090-1): If we found a candidate of a call to an
4192 -- entry or procedure of a tagged concurrent type we must check
4193 -- if there are class-wide subprograms covering the primitive. If
4194 -- true then Try_Object_Operation reports the error.
4195
4196 if Has_Candidate
4197 and then Is_Concurrent_Type (Prefix_Type)
4198 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
4199
4200 -- Duplicate the call. This is required to avoid problems with
4201 -- the tree transformations performed by Try_Object_Operation.
4202
4203 and then
4204 Try_Object_Operation
4205 (N => Sinfo.Name (New_Copy_Tree (Parent (N))),
4206 CW_Test_Only => True)
4207 then
4208 return;
4209 end if;
4210 end if;
4211
4212 if Etype (N) = Any_Type and then Is_Protected_Type (Prefix_Type) then
4213
4214 -- Case of a prefix of a protected type: selector might denote
4215 -- an invisible private component.
4216
4217 Comp := First_Private_Entity (Base_Type (Prefix_Type));
4218 while Present (Comp) and then Chars (Comp) /= Chars (Sel) loop
4219 Next_Entity (Comp);
4220 end loop;
4221
4222 if Present (Comp) then
4223 if Is_Single_Concurrent_Object then
4224 Error_Msg_Node_2 := Entity (Name);
4225 Error_Msg_NE ("invisible selector& for &", N, Sel);
4226
4227 else
4228 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4229 Error_Msg_NE ("invisible selector& for }", N, Sel);
4230 end if;
4231 return;
4232 end if;
4233 end if;
4234
4235 Set_Is_Overloaded (N, Is_Overloaded (Sel));
4236
4237 else
4238 -- Invalid prefix
4239
4240 Error_Msg_NE ("invalid prefix in selected component&", N, Sel);
4241 end if;
4242
4243 -- If N still has no type, the component is not defined in the prefix
4244
4245 if Etype (N) = Any_Type then
4246
4247 if Is_Single_Concurrent_Object then
4248 Error_Msg_Node_2 := Entity (Name);
4249 Error_Msg_NE ("no selector& for&", N, Sel);
4250
4251 Check_Misspelled_Selector (Type_To_Use, Sel);
4252
4253 elsif Is_Generic_Type (Prefix_Type)
4254 and then Ekind (Prefix_Type) = E_Record_Type_With_Private
4255 and then Prefix_Type /= Etype (Prefix_Type)
4256 and then Is_Record_Type (Etype (Prefix_Type))
4257 then
4258 -- If this is a derived formal type, the parent may have
4259 -- different visibility at this point. Try for an inherited
4260 -- component before reporting an error.
4261
4262 Set_Etype (Prefix (N), Etype (Prefix_Type));
4263 Analyze_Selected_Component (N);
4264 return;
4265
4266 -- Similarly, if this is the actual for a formal derived type, the
4267 -- component inherited from the generic parent may not be visible
4268 -- in the actual, but the selected component is legal.
4269
4270 elsif Ekind (Prefix_Type) = E_Record_Subtype_With_Private
4271 and then Is_Generic_Actual_Type (Prefix_Type)
4272 and then Present (Full_View (Prefix_Type))
4273 then
4274
4275 Find_Component_In_Instance
4276 (Generic_Parent_Type (Parent (Prefix_Type)));
4277 return;
4278
4279 -- Finally, the formal and the actual may be private extensions,
4280 -- but the generic is declared in a child unit of the parent, and
4281 -- an additional step is needed to retrieve the proper scope.
4282
4283 elsif In_Instance
4284 and then Present (Parent_Subtype (Etype (Base_Type (Prefix_Type))))
4285 then
4286 Find_Component_In_Instance
4287 (Parent_Subtype (Etype (Base_Type (Prefix_Type))));
4288 return;
4289
4290 -- Component not found, specialize error message when appropriate
4291
4292 else
4293 if Ekind (Prefix_Type) = E_Record_Subtype then
4294
4295 -- Check whether this is a component of the base type which
4296 -- is absent from a statically constrained subtype. This will
4297 -- raise constraint error at run time, but is not a compile-
4298 -- time error. When the selector is illegal for base type as
4299 -- well fall through and generate a compilation error anyway.
4300
4301 Comp := First_Component (Base_Type (Prefix_Type));
4302 while Present (Comp) loop
4303 if Chars (Comp) = Chars (Sel)
4304 and then Is_Visible_Component (Comp)
4305 then
4306 Set_Entity_With_Style_Check (Sel, Comp);
4307 Generate_Reference (Comp, Sel);
4308 Set_Etype (Sel, Etype (Comp));
4309 Set_Etype (N, Etype (Comp));
4310
4311 -- Emit appropriate message. Gigi will replace the
4312 -- node subsequently with the appropriate Raise.
4313
4314 Apply_Compile_Time_Constraint_Error
4315 (N, "component not present in }?",
4316 CE_Discriminant_Check_Failed,
4317 Ent => Prefix_Type, Rep => False);
4318 Set_Raises_Constraint_Error (N);
4319 return;
4320 end if;
4321
4322 Next_Component (Comp);
4323 end loop;
4324
4325 end if;
4326
4327 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4328 Error_Msg_NE ("no selector& for}", N, Sel);
4329
4330 -- Add information in the case of an incomplete prefix
4331
4332 if Is_Incomplete_Type (Type_To_Use) then
4333 declare
4334 Inc : constant Entity_Id := First_Subtype (Type_To_Use);
4335
4336 begin
4337 if From_With_Type (Scope (Type_To_Use)) then
4338 Error_Msg_NE
4339 ("\limited view of& has no components", N, Inc);
4340
4341 else
4342 Error_Msg_NE
4343 ("\premature usage of incomplete type&", N, Inc);
4344
4345 if Nkind (Parent (Inc)) =
4346 N_Incomplete_Type_Declaration
4347 then
4348 -- Record location of premature use in entity so that
4349 -- a continuation message is generated when the
4350 -- completion is seen.
4351
4352 Set_Premature_Use (Parent (Inc), N);
4353 end if;
4354 end if;
4355 end;
4356 end if;
4357
4358 Check_Misspelled_Selector (Type_To_Use, Sel);
4359 end if;
4360
4361 Set_Entity (Sel, Any_Id);
4362 Set_Etype (Sel, Any_Type);
4363 end if;
4364 end Analyze_Selected_Component;
4365
4366 ---------------------------
4367 -- Analyze_Short_Circuit --
4368 ---------------------------
4369
4370 procedure Analyze_Short_Circuit (N : Node_Id) is
4371 L : constant Node_Id := Left_Opnd (N);
4372 R : constant Node_Id := Right_Opnd (N);
4373 Ind : Interp_Index;
4374 It : Interp;
4375
4376 begin
4377 Analyze_Expression (L);
4378 Analyze_Expression (R);
4379 Set_Etype (N, Any_Type);
4380
4381 if not Is_Overloaded (L) then
4382 if Root_Type (Etype (L)) = Standard_Boolean
4383 and then Has_Compatible_Type (R, Etype (L))
4384 then
4385 Add_One_Interp (N, Etype (L), Etype (L));
4386 end if;
4387
4388 else
4389 Get_First_Interp (L, Ind, It);
4390 while Present (It.Typ) loop
4391 if Root_Type (It.Typ) = Standard_Boolean
4392 and then Has_Compatible_Type (R, It.Typ)
4393 then
4394 Add_One_Interp (N, It.Typ, It.Typ);
4395 end if;
4396
4397 Get_Next_Interp (Ind, It);
4398 end loop;
4399 end if;
4400
4401 -- Here we have failed to find an interpretation. Clearly we know that
4402 -- it is not the case that both operands can have an interpretation of
4403 -- Boolean, but this is by far the most likely intended interpretation.
4404 -- So we simply resolve both operands as Booleans, and at least one of
4405 -- these resolutions will generate an error message, and we do not need
4406 -- to give another error message on the short circuit operation itself.
4407
4408 if Etype (N) = Any_Type then
4409 Resolve (L, Standard_Boolean);
4410 Resolve (R, Standard_Boolean);
4411 Set_Etype (N, Standard_Boolean);
4412 end if;
4413 end Analyze_Short_Circuit;
4414
4415 -------------------
4416 -- Analyze_Slice --
4417 -------------------
4418
4419 procedure Analyze_Slice (N : Node_Id) is
4420 P : constant Node_Id := Prefix (N);
4421 D : constant Node_Id := Discrete_Range (N);
4422 Array_Type : Entity_Id;
4423
4424 procedure Analyze_Overloaded_Slice;
4425 -- If the prefix is overloaded, select those interpretations that
4426 -- yield a one-dimensional array type.
4427
4428 ------------------------------
4429 -- Analyze_Overloaded_Slice --
4430 ------------------------------
4431
4432 procedure Analyze_Overloaded_Slice is
4433 I : Interp_Index;
4434 It : Interp;
4435 Typ : Entity_Id;
4436
4437 begin
4438 Set_Etype (N, Any_Type);
4439
4440 Get_First_Interp (P, I, It);
4441 while Present (It.Nam) loop
4442 Typ := It.Typ;
4443
4444 if Is_Access_Type (Typ) then
4445 Typ := Designated_Type (Typ);
4446 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
4447 end if;
4448
4449 if Is_Array_Type (Typ)
4450 and then Number_Dimensions (Typ) = 1
4451 and then Has_Compatible_Type (D, Etype (First_Index (Typ)))
4452 then
4453 Add_One_Interp (N, Typ, Typ);
4454 end if;
4455
4456 Get_Next_Interp (I, It);
4457 end loop;
4458
4459 if Etype (N) = Any_Type then
4460 Error_Msg_N ("expect array type in prefix of slice", N);
4461 end if;
4462 end Analyze_Overloaded_Slice;
4463
4464 -- Start of processing for Analyze_Slice
4465
4466 begin
4467 if Comes_From_Source (N) then
4468 Check_SPARK_Restriction ("slice is not allowed", N);
4469 end if;
4470
4471 Analyze (P);
4472 Analyze (D);
4473
4474 if Is_Overloaded (P) then
4475 Analyze_Overloaded_Slice;
4476
4477 else
4478 Array_Type := Etype (P);
4479 Set_Etype (N, Any_Type);
4480
4481 if Is_Access_Type (Array_Type) then
4482 Array_Type := Designated_Type (Array_Type);
4483 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
4484 end if;
4485
4486 if not Is_Array_Type (Array_Type) then
4487 Wrong_Type (P, Any_Array);
4488
4489 elsif Number_Dimensions (Array_Type) > 1 then
4490 Error_Msg_N
4491 ("type is not one-dimensional array in slice prefix", N);
4492
4493 elsif not
4494 Has_Compatible_Type (D, Etype (First_Index (Array_Type)))
4495 then
4496 Wrong_Type (D, Etype (First_Index (Array_Type)));
4497
4498 else
4499 Set_Etype (N, Array_Type);
4500 end if;
4501 end if;
4502 end Analyze_Slice;
4503
4504 -----------------------------
4505 -- Analyze_Type_Conversion --
4506 -----------------------------
4507
4508 procedure Analyze_Type_Conversion (N : Node_Id) is
4509 Expr : constant Node_Id := Expression (N);
4510 T : Entity_Id;
4511
4512 begin
4513 -- If Conversion_OK is set, then the Etype is already set, and the
4514 -- only processing required is to analyze the expression. This is
4515 -- used to construct certain "illegal" conversions which are not
4516 -- allowed by Ada semantics, but can be handled OK by Gigi, see
4517 -- Sinfo for further details.
4518
4519 if Conversion_OK (N) then
4520 Analyze (Expr);
4521 return;
4522 end if;
4523
4524 -- Otherwise full type analysis is required, as well as some semantic
4525 -- checks to make sure the argument of the conversion is appropriate.
4526
4527 Find_Type (Subtype_Mark (N));
4528 T := Entity (Subtype_Mark (N));
4529 Set_Etype (N, T);
4530 Check_Fully_Declared (T, N);
4531 Analyze_Expression (Expr);
4532 Validate_Remote_Type_Type_Conversion (N);
4533
4534 -- Only remaining step is validity checks on the argument. These
4535 -- are skipped if the conversion does not come from the source.
4536
4537 if not Comes_From_Source (N) then
4538 return;
4539
4540 -- If there was an error in a generic unit, no need to replicate the
4541 -- error message. Conversely, constant-folding in the generic may
4542 -- transform the argument of a conversion into a string literal, which
4543 -- is legal. Therefore the following tests are not performed in an
4544 -- instance.
4545
4546 elsif In_Instance then
4547 return;
4548
4549 elsif Nkind (Expr) = N_Null then
4550 Error_Msg_N ("argument of conversion cannot be null", N);
4551 Error_Msg_N ("\use qualified expression instead", N);
4552 Set_Etype (N, Any_Type);
4553
4554 elsif Nkind (Expr) = N_Aggregate then
4555 Error_Msg_N ("argument of conversion cannot be aggregate", N);
4556 Error_Msg_N ("\use qualified expression instead", N);
4557
4558 elsif Nkind (Expr) = N_Allocator then
4559 Error_Msg_N ("argument of conversion cannot be an allocator", N);
4560 Error_Msg_N ("\use qualified expression instead", N);
4561
4562 elsif Nkind (Expr) = N_String_Literal then
4563 Error_Msg_N ("argument of conversion cannot be string literal", N);
4564 Error_Msg_N ("\use qualified expression instead", N);
4565
4566 elsif Nkind (Expr) = N_Character_Literal then
4567 if Ada_Version = Ada_83 then
4568 Resolve (Expr, T);
4569 else
4570 Error_Msg_N ("argument of conversion cannot be character literal",
4571 N);
4572 Error_Msg_N ("\use qualified expression instead", N);
4573 end if;
4574
4575 elsif Nkind (Expr) = N_Attribute_Reference
4576 and then
4577 (Attribute_Name (Expr) = Name_Access or else
4578 Attribute_Name (Expr) = Name_Unchecked_Access or else
4579 Attribute_Name (Expr) = Name_Unrestricted_Access)
4580 then
4581 Error_Msg_N ("argument of conversion cannot be access", N);
4582 Error_Msg_N ("\use qualified expression instead", N);
4583 end if;
4584 end Analyze_Type_Conversion;
4585
4586 ----------------------
4587 -- Analyze_Unary_Op --
4588 ----------------------
4589
4590 procedure Analyze_Unary_Op (N : Node_Id) is
4591 R : constant Node_Id := Right_Opnd (N);
4592 Op_Id : Entity_Id := Entity (N);
4593
4594 begin
4595 Set_Etype (N, Any_Type);
4596 Candidate_Type := Empty;
4597
4598 Analyze_Expression (R);
4599
4600 if Present (Op_Id) then
4601 if Ekind (Op_Id) = E_Operator then
4602 Find_Unary_Types (R, Op_Id, N);
4603 else
4604 Add_One_Interp (N, Op_Id, Etype (Op_Id));
4605 end if;
4606
4607 else
4608 Op_Id := Get_Name_Entity_Id (Chars (N));
4609 while Present (Op_Id) loop
4610 if Ekind (Op_Id) = E_Operator then
4611 if No (Next_Entity (First_Entity (Op_Id))) then
4612 Find_Unary_Types (R, Op_Id, N);
4613 end if;
4614
4615 elsif Is_Overloadable (Op_Id) then
4616 Analyze_User_Defined_Unary_Op (N, Op_Id);
4617 end if;
4618
4619 Op_Id := Homonym (Op_Id);
4620 end loop;
4621 end if;
4622
4623 Operator_Check (N);
4624 end Analyze_Unary_Op;
4625
4626 ----------------------------------
4627 -- Analyze_Unchecked_Expression --
4628 ----------------------------------
4629
4630 procedure Analyze_Unchecked_Expression (N : Node_Id) is
4631 begin
4632 Analyze (Expression (N), Suppress => All_Checks);
4633 Set_Etype (N, Etype (Expression (N)));
4634 Save_Interps (Expression (N), N);
4635 end Analyze_Unchecked_Expression;
4636
4637 ---------------------------------------
4638 -- Analyze_Unchecked_Type_Conversion --
4639 ---------------------------------------
4640
4641 procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is
4642 begin
4643 Find_Type (Subtype_Mark (N));
4644 Analyze_Expression (Expression (N));
4645 Set_Etype (N, Entity (Subtype_Mark (N)));
4646 end Analyze_Unchecked_Type_Conversion;
4647
4648 ------------------------------------
4649 -- Analyze_User_Defined_Binary_Op --
4650 ------------------------------------
4651
4652 procedure Analyze_User_Defined_Binary_Op
4653 (N : Node_Id;
4654 Op_Id : Entity_Id)
4655 is
4656 begin
4657 -- Only do analysis if the operator Comes_From_Source, since otherwise
4658 -- the operator was generated by the expander, and all such operators
4659 -- always refer to the operators in package Standard.
4660
4661 if Comes_From_Source (N) then
4662 declare
4663 F1 : constant Entity_Id := First_Formal (Op_Id);
4664 F2 : constant Entity_Id := Next_Formal (F1);
4665
4666 begin
4667 -- Verify that Op_Id is a visible binary function. Note that since
4668 -- we know Op_Id is overloaded, potentially use visible means use
4669 -- visible for sure (RM 9.4(11)).
4670
4671 if Ekind (Op_Id) = E_Function
4672 and then Present (F2)
4673 and then (Is_Immediately_Visible (Op_Id)
4674 or else Is_Potentially_Use_Visible (Op_Id))
4675 and then Has_Compatible_Type (Left_Opnd (N), Etype (F1))
4676 and then Has_Compatible_Type (Right_Opnd (N), Etype (F2))
4677 then
4678 Add_One_Interp (N, Op_Id, Etype (Op_Id));
4679
4680 -- If the left operand is overloaded, indicate that the
4681 -- current type is a viable candidate. This is redundant
4682 -- in most cases, but for equality and comparison operators
4683 -- where the context does not impose a type on the operands,
4684 -- setting the proper type is necessary to avoid subsequent
4685 -- ambiguities during resolution, when both user-defined and
4686 -- predefined operators may be candidates.
4687
4688 if Is_Overloaded (Left_Opnd (N)) then
4689 Set_Etype (Left_Opnd (N), Etype (F1));
4690 end if;
4691
4692 if Debug_Flag_E then
4693 Write_Str ("user defined operator ");
4694 Write_Name (Chars (Op_Id));
4695 Write_Str (" on node ");
4696 Write_Int (Int (N));
4697 Write_Eol;
4698 end if;
4699 end if;
4700 end;
4701 end if;
4702 end Analyze_User_Defined_Binary_Op;
4703
4704 -----------------------------------
4705 -- Analyze_User_Defined_Unary_Op --
4706 -----------------------------------
4707
4708 procedure Analyze_User_Defined_Unary_Op
4709 (N : Node_Id;
4710 Op_Id : Entity_Id)
4711 is
4712 begin
4713 -- Only do analysis if the operator Comes_From_Source, since otherwise
4714 -- the operator was generated by the expander, and all such operators
4715 -- always refer to the operators in package Standard.
4716
4717 if Comes_From_Source (N) then
4718 declare
4719 F : constant Entity_Id := First_Formal (Op_Id);
4720
4721 begin
4722 -- Verify that Op_Id is a visible unary function. Note that since
4723 -- we know Op_Id is overloaded, potentially use visible means use
4724 -- visible for sure (RM 9.4(11)).
4725
4726 if Ekind (Op_Id) = E_Function
4727 and then No (Next_Formal (F))
4728 and then (Is_Immediately_Visible (Op_Id)
4729 or else Is_Potentially_Use_Visible (Op_Id))
4730 and then Has_Compatible_Type (Right_Opnd (N), Etype (F))
4731 then
4732 Add_One_Interp (N, Op_Id, Etype (Op_Id));
4733 end if;
4734 end;
4735 end if;
4736 end Analyze_User_Defined_Unary_Op;
4737
4738 ---------------------------
4739 -- Check_Arithmetic_Pair --
4740 ---------------------------
4741
4742 procedure Check_Arithmetic_Pair
4743 (T1, T2 : Entity_Id;
4744 Op_Id : Entity_Id;
4745 N : Node_Id)
4746 is
4747 Op_Name : constant Name_Id := Chars (Op_Id);
4748
4749 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean;
4750 -- Check whether the fixed-point type Typ has a user-defined operator
4751 -- (multiplication or division) that should hide the corresponding
4752 -- predefined operator. Used to implement Ada 2005 AI-264, to make
4753 -- such operators more visible and therefore useful.
4754
4755 -- If the name of the operation is an expanded name with prefix
4756 -- Standard, the predefined universal fixed operator is available,
4757 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
4758
4759 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id;
4760 -- Get specific type (i.e. non-universal type if there is one)
4761
4762 ------------------
4763 -- Has_Fixed_Op --
4764 ------------------
4765
4766 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean is
4767 Bas : constant Entity_Id := Base_Type (Typ);
4768 Ent : Entity_Id;
4769 F1 : Entity_Id;
4770 F2 : Entity_Id;
4771
4772 begin
4773 -- If the universal_fixed operation is given explicitly the rule
4774 -- concerning primitive operations of the type do not apply.
4775
4776 if Nkind (N) = N_Function_Call
4777 and then Nkind (Name (N)) = N_Expanded_Name
4778 and then Entity (Prefix (Name (N))) = Standard_Standard
4779 then
4780 return False;
4781 end if;
4782
4783 -- The operation is treated as primitive if it is declared in the
4784 -- same scope as the type, and therefore on the same entity chain.
4785
4786 Ent := Next_Entity (Typ);
4787 while Present (Ent) loop
4788 if Chars (Ent) = Chars (Op) then
4789 F1 := First_Formal (Ent);
4790 F2 := Next_Formal (F1);
4791
4792 -- The operation counts as primitive if either operand or
4793 -- result are of the given base type, and both operands are
4794 -- fixed point types.
4795
4796 if (Base_Type (Etype (F1)) = Bas
4797 and then Is_Fixed_Point_Type (Etype (F2)))
4798
4799 or else
4800 (Base_Type (Etype (F2)) = Bas
4801 and then Is_Fixed_Point_Type (Etype (F1)))
4802
4803 or else
4804 (Base_Type (Etype (Ent)) = Bas
4805 and then Is_Fixed_Point_Type (Etype (F1))
4806 and then Is_Fixed_Point_Type (Etype (F2)))
4807 then
4808 return True;
4809 end if;
4810 end if;
4811
4812 Next_Entity (Ent);
4813 end loop;
4814
4815 return False;
4816 end Has_Fixed_Op;
4817
4818 -------------------
4819 -- Specific_Type --
4820 -------------------
4821
4822 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id is
4823 begin
4824 if T1 = Universal_Integer or else T1 = Universal_Real then
4825 return Base_Type (T2);
4826 else
4827 return Base_Type (T1);
4828 end if;
4829 end Specific_Type;
4830
4831 -- Start of processing for Check_Arithmetic_Pair
4832
4833 begin
4834 if Op_Name = Name_Op_Add or else Op_Name = Name_Op_Subtract then
4835
4836 if Is_Numeric_Type (T1)
4837 and then Is_Numeric_Type (T2)
4838 and then (Covers (T1 => T1, T2 => T2)
4839 or else
4840 Covers (T1 => T2, T2 => T1))
4841 then
4842 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
4843 end if;
4844
4845 elsif Op_Name = Name_Op_Multiply or else Op_Name = Name_Op_Divide then
4846
4847 if Is_Fixed_Point_Type (T1)
4848 and then (Is_Fixed_Point_Type (T2)
4849 or else T2 = Universal_Real)
4850 then
4851 -- If Treat_Fixed_As_Integer is set then the Etype is already set
4852 -- and no further processing is required (this is the case of an
4853 -- operator constructed by Exp_Fixd for a fixed point operation)
4854 -- Otherwise add one interpretation with universal fixed result
4855 -- If the operator is given in functional notation, it comes
4856 -- from source and Fixed_As_Integer cannot apply.
4857
4858 if (Nkind (N) not in N_Op
4859 or else not Treat_Fixed_As_Integer (N))
4860 and then
4861 (not Has_Fixed_Op (T1, Op_Id)
4862 or else Nkind (Parent (N)) = N_Type_Conversion)
4863 then
4864 Add_One_Interp (N, Op_Id, Universal_Fixed);
4865 end if;
4866
4867 elsif Is_Fixed_Point_Type (T2)
4868 and then (Nkind (N) not in N_Op
4869 or else not Treat_Fixed_As_Integer (N))
4870 and then T1 = Universal_Real
4871 and then
4872 (not Has_Fixed_Op (T1, Op_Id)
4873 or else Nkind (Parent (N)) = N_Type_Conversion)
4874 then
4875 Add_One_Interp (N, Op_Id, Universal_Fixed);
4876
4877 elsif Is_Numeric_Type (T1)
4878 and then Is_Numeric_Type (T2)
4879 and then (Covers (T1 => T1, T2 => T2)
4880 or else
4881 Covers (T1 => T2, T2 => T1))
4882 then
4883 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
4884
4885 elsif Is_Fixed_Point_Type (T1)
4886 and then (Base_Type (T2) = Base_Type (Standard_Integer)
4887 or else T2 = Universal_Integer)
4888 then
4889 Add_One_Interp (N, Op_Id, T1);
4890
4891 elsif T2 = Universal_Real
4892 and then Base_Type (T1) = Base_Type (Standard_Integer)
4893 and then Op_Name = Name_Op_Multiply
4894 then
4895 Add_One_Interp (N, Op_Id, Any_Fixed);
4896
4897 elsif T1 = Universal_Real
4898 and then Base_Type (T2) = Base_Type (Standard_Integer)
4899 then
4900 Add_One_Interp (N, Op_Id, Any_Fixed);
4901
4902 elsif Is_Fixed_Point_Type (T2)
4903 and then (Base_Type (T1) = Base_Type (Standard_Integer)
4904 or else T1 = Universal_Integer)
4905 and then Op_Name = Name_Op_Multiply
4906 then
4907 Add_One_Interp (N, Op_Id, T2);
4908
4909 elsif T1 = Universal_Real and then T2 = Universal_Integer then
4910 Add_One_Interp (N, Op_Id, T1);
4911
4912 elsif T2 = Universal_Real
4913 and then T1 = Universal_Integer
4914 and then Op_Name = Name_Op_Multiply
4915 then
4916 Add_One_Interp (N, Op_Id, T2);
4917 end if;
4918
4919 elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
4920
4921 -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
4922 -- set does not require any special processing, since the Etype is
4923 -- already set (case of operation constructed by Exp_Fixed).
4924
4925 if Is_Integer_Type (T1)
4926 and then (Covers (T1 => T1, T2 => T2)
4927 or else
4928 Covers (T1 => T2, T2 => T1))
4929 then
4930 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
4931 end if;
4932
4933 elsif Op_Name = Name_Op_Expon then
4934 if Is_Numeric_Type (T1)
4935 and then not Is_Fixed_Point_Type (T1)
4936 and then (Base_Type (T2) = Base_Type (Standard_Integer)
4937 or else T2 = Universal_Integer)
4938 then
4939 Add_One_Interp (N, Op_Id, Base_Type (T1));
4940 end if;
4941
4942 else pragma Assert (Nkind (N) in N_Op_Shift);
4943
4944 -- If not one of the predefined operators, the node may be one
4945 -- of the intrinsic functions. Its kind is always specific, and
4946 -- we can use it directly, rather than the name of the operation.
4947
4948 if Is_Integer_Type (T1)
4949 and then (Base_Type (T2) = Base_Type (Standard_Integer)
4950 or else T2 = Universal_Integer)
4951 then
4952 Add_One_Interp (N, Op_Id, Base_Type (T1));
4953 end if;
4954 end if;
4955 end Check_Arithmetic_Pair;
4956
4957 -------------------------------
4958 -- Check_Misspelled_Selector --
4959 -------------------------------
4960
4961 procedure Check_Misspelled_Selector
4962 (Prefix : Entity_Id;
4963 Sel : Node_Id)
4964 is
4965 Max_Suggestions : constant := 2;
4966 Nr_Of_Suggestions : Natural := 0;
4967
4968 Suggestion_1 : Entity_Id := Empty;
4969 Suggestion_2 : Entity_Id := Empty;
4970
4971 Comp : Entity_Id;
4972
4973 begin
4974 -- All the components of the prefix of selector Sel are matched
4975 -- against Sel and a count is maintained of possible misspellings.
4976 -- When at the end of the analysis there are one or two (not more!)
4977 -- possible misspellings, these misspellings will be suggested as
4978 -- possible correction.
4979
4980 if not (Is_Private_Type (Prefix) or else Is_Record_Type (Prefix)) then
4981
4982 -- Concurrent types should be handled as well ???
4983
4984 return;
4985 end if;
4986
4987 Comp := First_Entity (Prefix);
4988 while Nr_Of_Suggestions <= Max_Suggestions and then Present (Comp) loop
4989 if Is_Visible_Component (Comp) then
4990 if Is_Bad_Spelling_Of (Chars (Comp), Chars (Sel)) then
4991 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
4992
4993 case Nr_Of_Suggestions is
4994 when 1 => Suggestion_1 := Comp;
4995 when 2 => Suggestion_2 := Comp;
4996 when others => exit;
4997 end case;
4998 end if;
4999 end if;
5000
5001 Comp := Next_Entity (Comp);
5002 end loop;
5003
5004 -- Report at most two suggestions
5005
5006 if Nr_Of_Suggestions = 1 then
5007 Error_Msg_NE -- CODEFIX
5008 ("\possible misspelling of&", Sel, Suggestion_1);
5009
5010 elsif Nr_Of_Suggestions = 2 then
5011 Error_Msg_Node_2 := Suggestion_2;
5012 Error_Msg_NE -- CODEFIX
5013 ("\possible misspelling of& or&", Sel, Suggestion_1);
5014 end if;
5015 end Check_Misspelled_Selector;
5016
5017 ----------------------
5018 -- Defined_In_Scope --
5019 ----------------------
5020
5021 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean
5022 is
5023 S1 : constant Entity_Id := Scope (Base_Type (T));
5024 begin
5025 return S1 = S
5026 or else (S1 = System_Aux_Id and then S = Scope (S1));
5027 end Defined_In_Scope;
5028
5029 -------------------
5030 -- Diagnose_Call --
5031 -------------------
5032
5033 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is
5034 Actual : Node_Id;
5035 X : Interp_Index;
5036 It : Interp;
5037 Err_Mode : Boolean;
5038 New_Nam : Node_Id;
5039 Void_Interp_Seen : Boolean := False;
5040
5041 Success : Boolean;
5042 pragma Warnings (Off, Boolean);
5043
5044 begin
5045 if Ada_Version >= Ada_2005 then
5046 Actual := First_Actual (N);
5047 while Present (Actual) loop
5048
5049 -- Ada 2005 (AI-50217): Post an error in case of premature
5050 -- usage of an entity from the limited view.
5051
5052 if not Analyzed (Etype (Actual))
5053 and then From_With_Type (Etype (Actual))
5054 then
5055 Error_Msg_Qual_Level := 1;
5056 Error_Msg_NE
5057 ("missing with_clause for scope of imported type&",
5058 Actual, Etype (Actual));
5059 Error_Msg_Qual_Level := 0;
5060 end if;
5061
5062 Next_Actual (Actual);
5063 end loop;
5064 end if;
5065
5066 -- Analyze each candidate call again, with full error reporting
5067 -- for each.
5068
5069 Error_Msg_N
5070 ("no candidate interpretations match the actuals:!", Nam);
5071 Err_Mode := All_Errors_Mode;
5072 All_Errors_Mode := True;
5073
5074 -- If this is a call to an operation of a concurrent type,
5075 -- the failed interpretations have been removed from the
5076 -- name. Recover them to provide full diagnostics.
5077
5078 if Nkind (Parent (Nam)) = N_Selected_Component then
5079 Set_Entity (Nam, Empty);
5080 New_Nam := New_Copy_Tree (Parent (Nam));
5081 Set_Is_Overloaded (New_Nam, False);
5082 Set_Is_Overloaded (Selector_Name (New_Nam), False);
5083 Set_Parent (New_Nam, Parent (Parent (Nam)));
5084 Analyze_Selected_Component (New_Nam);
5085 Get_First_Interp (Selector_Name (New_Nam), X, It);
5086 else
5087 Get_First_Interp (Nam, X, It);
5088 end if;
5089
5090 while Present (It.Nam) loop
5091 if Etype (It.Nam) = Standard_Void_Type then
5092 Void_Interp_Seen := True;
5093 end if;
5094
5095 Analyze_One_Call (N, It.Nam, True, Success);
5096 Get_Next_Interp (X, It);
5097 end loop;
5098
5099 if Nkind (N) = N_Function_Call then
5100 Get_First_Interp (Nam, X, It);
5101 while Present (It.Nam) loop
5102 if Ekind_In (It.Nam, E_Function, E_Operator) then
5103 return;
5104 else
5105 Get_Next_Interp (X, It);
5106 end if;
5107 end loop;
5108
5109 -- If all interpretations are procedures, this deserves a
5110 -- more precise message. Ditto if this appears as the prefix
5111 -- of a selected component, which may be a lexical error.
5112
5113 Error_Msg_N
5114 ("\context requires function call, found procedure name", Nam);
5115
5116 if Nkind (Parent (N)) = N_Selected_Component
5117 and then N = Prefix (Parent (N))
5118 then
5119 Error_Msg_N -- CODEFIX
5120 ("\period should probably be semicolon", Parent (N));
5121 end if;
5122
5123 elsif Nkind (N) = N_Procedure_Call_Statement
5124 and then not Void_Interp_Seen
5125 then
5126 Error_Msg_N (
5127 "\function name found in procedure call", Nam);
5128 end if;
5129
5130 All_Errors_Mode := Err_Mode;
5131 end Diagnose_Call;
5132
5133 ---------------------------
5134 -- Find_Arithmetic_Types --
5135 ---------------------------
5136
5137 procedure Find_Arithmetic_Types
5138 (L, R : Node_Id;
5139 Op_Id : Entity_Id;
5140 N : Node_Id)
5141 is
5142 Index1 : Interp_Index;
5143 Index2 : Interp_Index;
5144 It1 : Interp;
5145 It2 : Interp;
5146
5147 procedure Check_Right_Argument (T : Entity_Id);
5148 -- Check right operand of operator
5149
5150 --------------------------
5151 -- Check_Right_Argument --
5152 --------------------------
5153
5154 procedure Check_Right_Argument (T : Entity_Id) is
5155 begin
5156 if not Is_Overloaded (R) then
5157 Check_Arithmetic_Pair (T, Etype (R), Op_Id, N);
5158 else
5159 Get_First_Interp (R, Index2, It2);
5160 while Present (It2.Typ) loop
5161 Check_Arithmetic_Pair (T, It2.Typ, Op_Id, N);
5162 Get_Next_Interp (Index2, It2);
5163 end loop;
5164 end if;
5165 end Check_Right_Argument;
5166
5167 -- Start of processing for Find_Arithmetic_Types
5168
5169 begin
5170 if not Is_Overloaded (L) then
5171 Check_Right_Argument (Etype (L));
5172
5173 else
5174 Get_First_Interp (L, Index1, It1);
5175 while Present (It1.Typ) loop
5176 Check_Right_Argument (It1.Typ);
5177 Get_Next_Interp (Index1, It1);
5178 end loop;
5179 end if;
5180
5181 end Find_Arithmetic_Types;
5182
5183 ------------------------
5184 -- Find_Boolean_Types --
5185 ------------------------
5186
5187 procedure Find_Boolean_Types
5188 (L, R : Node_Id;
5189 Op_Id : Entity_Id;
5190 N : Node_Id)
5191 is
5192 Index : Interp_Index;
5193 It : Interp;
5194
5195 procedure Check_Numeric_Argument (T : Entity_Id);
5196 -- Special case for logical operations one of whose operands is an
5197 -- integer literal. If both are literal the result is any modular type.
5198
5199 ----------------------------
5200 -- Check_Numeric_Argument --
5201 ----------------------------
5202
5203 procedure Check_Numeric_Argument (T : Entity_Id) is
5204 begin
5205 if T = Universal_Integer then
5206 Add_One_Interp (N, Op_Id, Any_Modular);
5207
5208 elsif Is_Modular_Integer_Type (T) then
5209 Add_One_Interp (N, Op_Id, T);
5210 end if;
5211 end Check_Numeric_Argument;
5212
5213 -- Start of processing for Find_Boolean_Types
5214
5215 begin
5216 if not Is_Overloaded (L) then
5217 if Etype (L) = Universal_Integer
5218 or else Etype (L) = Any_Modular
5219 then
5220 if not Is_Overloaded (R) then
5221 Check_Numeric_Argument (Etype (R));
5222
5223 else
5224 Get_First_Interp (R, Index, It);
5225 while Present (It.Typ) loop
5226 Check_Numeric_Argument (It.Typ);
5227 Get_Next_Interp (Index, It);
5228 end loop;
5229 end if;
5230
5231 -- If operands are aggregates, we must assume that they may be
5232 -- boolean arrays, and leave disambiguation for the second pass.
5233 -- If only one is an aggregate, verify that the other one has an
5234 -- interpretation as a boolean array
5235
5236 elsif Nkind (L) = N_Aggregate then
5237 if Nkind (R) = N_Aggregate then
5238 Add_One_Interp (N, Op_Id, Etype (L));
5239
5240 elsif not Is_Overloaded (R) then
5241 if Valid_Boolean_Arg (Etype (R)) then
5242 Add_One_Interp (N, Op_Id, Etype (R));
5243 end if;
5244
5245 else
5246 Get_First_Interp (R, Index, It);
5247 while Present (It.Typ) loop
5248 if Valid_Boolean_Arg (It.Typ) then
5249 Add_One_Interp (N, Op_Id, It.Typ);
5250 end if;
5251
5252 Get_Next_Interp (Index, It);
5253 end loop;
5254 end if;
5255
5256 elsif Valid_Boolean_Arg (Etype (L))
5257 and then Has_Compatible_Type (R, Etype (L))
5258 then
5259 Add_One_Interp (N, Op_Id, Etype (L));
5260 end if;
5261
5262 else
5263 Get_First_Interp (L, Index, It);
5264 while Present (It.Typ) loop
5265 if Valid_Boolean_Arg (It.Typ)
5266 and then Has_Compatible_Type (R, It.Typ)
5267 then
5268 Add_One_Interp (N, Op_Id, It.Typ);
5269 end if;
5270
5271 Get_Next_Interp (Index, It);
5272 end loop;
5273 end if;
5274 end Find_Boolean_Types;
5275
5276 ---------------------------
5277 -- Find_Comparison_Types --
5278 ---------------------------
5279
5280 procedure Find_Comparison_Types
5281 (L, R : Node_Id;
5282 Op_Id : Entity_Id;
5283 N : Node_Id)
5284 is
5285 Index : Interp_Index;
5286 It : Interp;
5287 Found : Boolean := False;
5288 I_F : Interp_Index;
5289 T_F : Entity_Id;
5290 Scop : Entity_Id := Empty;
5291
5292 procedure Try_One_Interp (T1 : Entity_Id);
5293 -- Routine to try one proposed interpretation. Note that the context
5294 -- of the operator plays no role in resolving the arguments, so that
5295 -- if there is more than one interpretation of the operands that is
5296 -- compatible with comparison, the operation is ambiguous.
5297
5298 --------------------
5299 -- Try_One_Interp --
5300 --------------------
5301
5302 procedure Try_One_Interp (T1 : Entity_Id) is
5303 begin
5304
5305 -- If the operator is an expanded name, then the type of the operand
5306 -- must be defined in the corresponding scope. If the type is
5307 -- universal, the context will impose the correct type.
5308
5309 if Present (Scop)
5310 and then not Defined_In_Scope (T1, Scop)
5311 and then T1 /= Universal_Integer
5312 and then T1 /= Universal_Real
5313 and then T1 /= Any_String
5314 and then T1 /= Any_Composite
5315 then
5316 return;
5317 end if;
5318
5319 if Valid_Comparison_Arg (T1)
5320 and then Has_Compatible_Type (R, T1)
5321 then
5322 if Found
5323 and then Base_Type (T1) /= Base_Type (T_F)
5324 then
5325 It := Disambiguate (L, I_F, Index, Any_Type);
5326
5327 if It = No_Interp then
5328 Ambiguous_Operands (N);
5329 Set_Etype (L, Any_Type);
5330 return;
5331
5332 else
5333 T_F := It.Typ;
5334 end if;
5335
5336 else
5337 Found := True;
5338 T_F := T1;
5339 I_F := Index;
5340 end if;
5341
5342 Set_Etype (L, T_F);
5343 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
5344
5345 end if;
5346 end Try_One_Interp;
5347
5348 -- Start of processing for Find_Comparison_Types
5349
5350 begin
5351 -- If left operand is aggregate, the right operand has to
5352 -- provide a usable type for it.
5353
5354 if Nkind (L) = N_Aggregate
5355 and then Nkind (R) /= N_Aggregate
5356 then
5357 Find_Comparison_Types (L => R, R => L, Op_Id => Op_Id, N => N);
5358 return;
5359 end if;
5360
5361 if Nkind (N) = N_Function_Call
5362 and then Nkind (Name (N)) = N_Expanded_Name
5363 then
5364 Scop := Entity (Prefix (Name (N)));
5365
5366 -- The prefix may be a package renaming, and the subsequent test
5367 -- requires the original package.
5368
5369 if Ekind (Scop) = E_Package
5370 and then Present (Renamed_Entity (Scop))
5371 then
5372 Scop := Renamed_Entity (Scop);
5373 Set_Entity (Prefix (Name (N)), Scop);
5374 end if;
5375 end if;
5376
5377 if not Is_Overloaded (L) then
5378 Try_One_Interp (Etype (L));
5379
5380 else
5381 Get_First_Interp (L, Index, It);
5382 while Present (It.Typ) loop
5383 Try_One_Interp (It.Typ);
5384 Get_Next_Interp (Index, It);
5385 end loop;
5386 end if;
5387 end Find_Comparison_Types;
5388
5389 ----------------------------------------
5390 -- Find_Non_Universal_Interpretations --
5391 ----------------------------------------
5392
5393 procedure Find_Non_Universal_Interpretations
5394 (N : Node_Id;
5395 R : Node_Id;
5396 Op_Id : Entity_Id;
5397 T1 : Entity_Id)
5398 is
5399 Index : Interp_Index;
5400 It : Interp;
5401
5402 begin
5403 if T1 = Universal_Integer
5404 or else T1 = Universal_Real
5405 then
5406 if not Is_Overloaded (R) then
5407 Add_One_Interp
5408 (N, Op_Id, Standard_Boolean, Base_Type (Etype (R)));
5409 else
5410 Get_First_Interp (R, Index, It);
5411 while Present (It.Typ) loop
5412 if Covers (It.Typ, T1) then
5413 Add_One_Interp
5414 (N, Op_Id, Standard_Boolean, Base_Type (It.Typ));
5415 end if;
5416
5417 Get_Next_Interp (Index, It);
5418 end loop;
5419 end if;
5420 else
5421 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (T1));
5422 end if;
5423 end Find_Non_Universal_Interpretations;
5424
5425 ------------------------------
5426 -- Find_Concatenation_Types --
5427 ------------------------------
5428
5429 procedure Find_Concatenation_Types
5430 (L, R : Node_Id;
5431 Op_Id : Entity_Id;
5432 N : Node_Id)
5433 is
5434 Op_Type : constant Entity_Id := Etype (Op_Id);
5435
5436 begin
5437 if Is_Array_Type (Op_Type)
5438 and then not Is_Limited_Type (Op_Type)
5439
5440 and then (Has_Compatible_Type (L, Op_Type)
5441 or else
5442 Has_Compatible_Type (L, Component_Type (Op_Type)))
5443
5444 and then (Has_Compatible_Type (R, Op_Type)
5445 or else
5446 Has_Compatible_Type (R, Component_Type (Op_Type)))
5447 then
5448 Add_One_Interp (N, Op_Id, Op_Type);
5449 end if;
5450 end Find_Concatenation_Types;
5451
5452 -------------------------
5453 -- Find_Equality_Types --
5454 -------------------------
5455
5456 procedure Find_Equality_Types
5457 (L, R : Node_Id;
5458 Op_Id : Entity_Id;
5459 N : Node_Id)
5460 is
5461 Index : Interp_Index;
5462 It : Interp;
5463 Found : Boolean := False;
5464 I_F : Interp_Index;
5465 T_F : Entity_Id;
5466 Scop : Entity_Id := Empty;
5467
5468 procedure Try_One_Interp (T1 : Entity_Id);
5469 -- The context of the equality operator plays no role in resolving the
5470 -- arguments, so that if there is more than one interpretation of the
5471 -- operands that is compatible with equality, the construct is ambiguous
5472 -- and an error can be emitted now, after trying to disambiguate, i.e.
5473 -- applying preference rules.
5474
5475 --------------------
5476 -- Try_One_Interp --
5477 --------------------
5478
5479 procedure Try_One_Interp (T1 : Entity_Id) is
5480 Bas : constant Entity_Id := Base_Type (T1);
5481
5482 begin
5483 -- If the operator is an expanded name, then the type of the operand
5484 -- must be defined in the corresponding scope. If the type is
5485 -- universal, the context will impose the correct type. An anonymous
5486 -- type for a 'Access reference is also universal in this sense, as
5487 -- the actual type is obtained from context.
5488 -- In Ada 2005, the equality operator for anonymous access types
5489 -- is declared in Standard, and preference rules apply to it.
5490
5491 if Present (Scop) then
5492 if Defined_In_Scope (T1, Scop)
5493 or else T1 = Universal_Integer
5494 or else T1 = Universal_Real
5495 or else T1 = Any_Access
5496 or else T1 = Any_String
5497 or else T1 = Any_Composite
5498 or else (Ekind (T1) = E_Access_Subprogram_Type
5499 and then not Comes_From_Source (T1))
5500 then
5501 null;
5502
5503 elsif Ekind (T1) = E_Anonymous_Access_Type
5504 and then Scop = Standard_Standard
5505 then
5506 null;
5507
5508 else
5509 -- The scope does not contain an operator for the type
5510
5511 return;
5512 end if;
5513
5514 -- If we have infix notation, the operator must be usable.
5515 -- Within an instance, if the type is already established we
5516 -- know it is correct.
5517 -- In Ada 2005, the equality on anonymous access types is declared
5518 -- in Standard, and is always visible.
5519
5520 elsif In_Open_Scopes (Scope (Bas))
5521 or else Is_Potentially_Use_Visible (Bas)
5522 or else In_Use (Bas)
5523 or else (In_Use (Scope (Bas))
5524 and then not Is_Hidden (Bas))
5525 or else (In_Instance
5526 and then First_Subtype (T1) = First_Subtype (Etype (R)))
5527 or else Ekind (T1) = E_Anonymous_Access_Type
5528 then
5529 null;
5530
5531 else
5532 -- Save candidate type for subsequent error message, if any
5533
5534 if not Is_Limited_Type (T1) then
5535 Candidate_Type := T1;
5536 end if;
5537
5538 return;
5539 end if;
5540
5541 -- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
5542 -- Do not allow anonymous access types in equality operators.
5543
5544 if Ada_Version < Ada_2005
5545 and then Ekind (T1) = E_Anonymous_Access_Type
5546 then
5547 return;
5548 end if;
5549
5550 if T1 /= Standard_Void_Type
5551 and then not Is_Limited_Type (T1)
5552 and then not Is_Limited_Composite (T1)
5553 and then Has_Compatible_Type (R, T1)
5554 then
5555 if Found
5556 and then Base_Type (T1) /= Base_Type (T_F)
5557 then
5558 It := Disambiguate (L, I_F, Index, Any_Type);
5559
5560 if It = No_Interp then
5561 Ambiguous_Operands (N);
5562 Set_Etype (L, Any_Type);
5563 return;
5564
5565 else
5566 T_F := It.Typ;
5567 end if;
5568
5569 else
5570 Found := True;
5571 T_F := T1;
5572 I_F := Index;
5573 end if;
5574
5575 if not Analyzed (L) then
5576 Set_Etype (L, T_F);
5577 end if;
5578
5579 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
5580
5581 -- Case of operator was not visible, Etype still set to Any_Type
5582
5583 if Etype (N) = Any_Type then
5584 Found := False;
5585 end if;
5586
5587 elsif Scop = Standard_Standard
5588 and then Ekind (T1) = E_Anonymous_Access_Type
5589 then
5590 Found := True;
5591 end if;
5592 end Try_One_Interp;
5593
5594 -- Start of processing for Find_Equality_Types
5595
5596 begin
5597 -- If left operand is aggregate, the right operand has to
5598 -- provide a usable type for it.
5599
5600 if Nkind (L) = N_Aggregate
5601 and then Nkind (R) /= N_Aggregate
5602 then
5603 Find_Equality_Types (L => R, R => L, Op_Id => Op_Id, N => N);
5604 return;
5605 end if;
5606
5607 if Nkind (N) = N_Function_Call
5608 and then Nkind (Name (N)) = N_Expanded_Name
5609 then
5610 Scop := Entity (Prefix (Name (N)));
5611
5612 -- The prefix may be a package renaming, and the subsequent test
5613 -- requires the original package.
5614
5615 if Ekind (Scop) = E_Package
5616 and then Present (Renamed_Entity (Scop))
5617 then
5618 Scop := Renamed_Entity (Scop);
5619 Set_Entity (Prefix (Name (N)), Scop);
5620 end if;
5621 end if;
5622
5623 if not Is_Overloaded (L) then
5624 Try_One_Interp (Etype (L));
5625
5626 else
5627 Get_First_Interp (L, Index, It);
5628 while Present (It.Typ) loop
5629 Try_One_Interp (It.Typ);
5630 Get_Next_Interp (Index, It);
5631 end loop;
5632 end if;
5633 end Find_Equality_Types;
5634
5635 -------------------------
5636 -- Find_Negation_Types --
5637 -------------------------
5638
5639 procedure Find_Negation_Types
5640 (R : Node_Id;
5641 Op_Id : Entity_Id;
5642 N : Node_Id)
5643 is
5644 Index : Interp_Index;
5645 It : Interp;
5646
5647 begin
5648 if not Is_Overloaded (R) then
5649 if Etype (R) = Universal_Integer then
5650 Add_One_Interp (N, Op_Id, Any_Modular);
5651 elsif Valid_Boolean_Arg (Etype (R)) then
5652 Add_One_Interp (N, Op_Id, Etype (R));
5653 end if;
5654
5655 else
5656 Get_First_Interp (R, Index, It);
5657 while Present (It.Typ) loop
5658 if Valid_Boolean_Arg (It.Typ) then
5659 Add_One_Interp (N, Op_Id, It.Typ);
5660 end if;
5661
5662 Get_Next_Interp (Index, It);
5663 end loop;
5664 end if;
5665 end Find_Negation_Types;
5666
5667 ------------------------------
5668 -- Find_Primitive_Operation --
5669 ------------------------------
5670
5671 function Find_Primitive_Operation (N : Node_Id) return Boolean is
5672 Obj : constant Node_Id := Prefix (N);
5673 Op : constant Node_Id := Selector_Name (N);
5674
5675 Prim : Elmt_Id;
5676 Prims : Elist_Id;
5677 Typ : Entity_Id;
5678
5679 begin
5680 Set_Etype (Op, Any_Type);
5681
5682 if Is_Access_Type (Etype (Obj)) then
5683 Typ := Designated_Type (Etype (Obj));
5684 else
5685 Typ := Etype (Obj);
5686 end if;
5687
5688 if Is_Class_Wide_Type (Typ) then
5689 Typ := Root_Type (Typ);
5690 end if;
5691
5692 Prims := Primitive_Operations (Typ);
5693
5694 Prim := First_Elmt (Prims);
5695 while Present (Prim) loop
5696 if Chars (Node (Prim)) = Chars (Op) then
5697 Add_One_Interp (Op, Node (Prim), Etype (Node (Prim)));
5698 Set_Etype (N, Etype (Node (Prim)));
5699 end if;
5700
5701 Next_Elmt (Prim);
5702 end loop;
5703
5704 -- Now look for class-wide operations of the type or any of its
5705 -- ancestors by iterating over the homonyms of the selector.
5706
5707 declare
5708 Cls_Type : constant Entity_Id := Class_Wide_Type (Typ);
5709 Hom : Entity_Id;
5710
5711 begin
5712 Hom := Current_Entity (Op);
5713 while Present (Hom) loop
5714 if (Ekind (Hom) = E_Procedure
5715 or else
5716 Ekind (Hom) = E_Function)
5717 and then Scope (Hom) = Scope (Typ)
5718 and then Present (First_Formal (Hom))
5719 and then
5720 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
5721 or else
5722 (Is_Access_Type (Etype (First_Formal (Hom)))
5723 and then
5724 Ekind (Etype (First_Formal (Hom))) =
5725 E_Anonymous_Access_Type
5726 and then
5727 Base_Type
5728 (Designated_Type (Etype (First_Formal (Hom)))) =
5729 Cls_Type))
5730 then
5731 Add_One_Interp (Op, Hom, Etype (Hom));
5732 Set_Etype (N, Etype (Hom));
5733 end if;
5734
5735 Hom := Homonym (Hom);
5736 end loop;
5737 end;
5738
5739 return Etype (Op) /= Any_Type;
5740 end Find_Primitive_Operation;
5741
5742 ----------------------
5743 -- Find_Unary_Types --
5744 ----------------------
5745
5746 procedure Find_Unary_Types
5747 (R : Node_Id;
5748 Op_Id : Entity_Id;
5749 N : Node_Id)
5750 is
5751 Index : Interp_Index;
5752 It : Interp;
5753
5754 begin
5755 if not Is_Overloaded (R) then
5756 if Is_Numeric_Type (Etype (R)) then
5757 Add_One_Interp (N, Op_Id, Base_Type (Etype (R)));
5758 end if;
5759
5760 else
5761 Get_First_Interp (R, Index, It);
5762 while Present (It.Typ) loop
5763 if Is_Numeric_Type (It.Typ) then
5764 Add_One_Interp (N, Op_Id, Base_Type (It.Typ));
5765 end if;
5766
5767 Get_Next_Interp (Index, It);
5768 end loop;
5769 end if;
5770 end Find_Unary_Types;
5771
5772 ------------------
5773 -- Junk_Operand --
5774 ------------------
5775
5776 function Junk_Operand (N : Node_Id) return Boolean is
5777 Enode : Node_Id;
5778
5779 begin
5780 if Error_Posted (N) then
5781 return False;
5782 end if;
5783
5784 -- Get entity to be tested
5785
5786 if Is_Entity_Name (N)
5787 and then Present (Entity (N))
5788 then
5789 Enode := N;
5790
5791 -- An odd case, a procedure name gets converted to a very peculiar
5792 -- function call, and here is where we detect this happening.
5793
5794 elsif Nkind (N) = N_Function_Call
5795 and then Is_Entity_Name (Name (N))
5796 and then Present (Entity (Name (N)))
5797 then
5798 Enode := Name (N);
5799
5800 -- Another odd case, there are at least some cases of selected
5801 -- components where the selected component is not marked as having
5802 -- an entity, even though the selector does have an entity
5803
5804 elsif Nkind (N) = N_Selected_Component
5805 and then Present (Entity (Selector_Name (N)))
5806 then
5807 Enode := Selector_Name (N);
5808
5809 else
5810 return False;
5811 end if;
5812
5813 -- Now test the entity we got to see if it is a bad case
5814
5815 case Ekind (Entity (Enode)) is
5816
5817 when E_Package =>
5818 Error_Msg_N
5819 ("package name cannot be used as operand", Enode);
5820
5821 when Generic_Unit_Kind =>
5822 Error_Msg_N
5823 ("generic unit name cannot be used as operand", Enode);
5824
5825 when Type_Kind =>
5826 Error_Msg_N
5827 ("subtype name cannot be used as operand", Enode);
5828
5829 when Entry_Kind =>
5830 Error_Msg_N
5831 ("entry name cannot be used as operand", Enode);
5832
5833 when E_Procedure =>
5834 Error_Msg_N
5835 ("procedure name cannot be used as operand", Enode);
5836
5837 when E_Exception =>
5838 Error_Msg_N
5839 ("exception name cannot be used as operand", Enode);
5840
5841 when E_Block | E_Label | E_Loop =>
5842 Error_Msg_N
5843 ("label name cannot be used as operand", Enode);
5844
5845 when others =>
5846 return False;
5847
5848 end case;
5849
5850 return True;
5851 end Junk_Operand;
5852
5853 --------------------
5854 -- Operator_Check --
5855 --------------------
5856
5857 procedure Operator_Check (N : Node_Id) is
5858 begin
5859 Remove_Abstract_Operations (N);
5860
5861 -- Test for case of no interpretation found for operator
5862
5863 if Etype (N) = Any_Type then
5864 declare
5865 L : Node_Id;
5866 R : Node_Id;
5867 Op_Id : Entity_Id := Empty;
5868
5869 begin
5870 R := Right_Opnd (N);
5871
5872 if Nkind (N) in N_Binary_Op then
5873 L := Left_Opnd (N);
5874 else
5875 L := Empty;
5876 end if;
5877
5878 -- If either operand has no type, then don't complain further,
5879 -- since this simply means that we have a propagated error.
5880
5881 if R = Error
5882 or else Etype (R) = Any_Type
5883 or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type)
5884 then
5885 return;
5886
5887 -- We explicitly check for the case of concatenation of component
5888 -- with component to avoid reporting spurious matching array types
5889 -- that might happen to be lurking in distant packages (such as
5890 -- run-time packages). This also prevents inconsistencies in the
5891 -- messages for certain ACVC B tests, which can vary depending on
5892 -- types declared in run-time interfaces. Another improvement when
5893 -- aggregates are present is to look for a well-typed operand.
5894
5895 elsif Present (Candidate_Type)
5896 and then (Nkind (N) /= N_Op_Concat
5897 or else Is_Array_Type (Etype (L))
5898 or else Is_Array_Type (Etype (R)))
5899 then
5900 if Nkind (N) = N_Op_Concat then
5901 if Etype (L) /= Any_Composite
5902 and then Is_Array_Type (Etype (L))
5903 then
5904 Candidate_Type := Etype (L);
5905
5906 elsif Etype (R) /= Any_Composite
5907 and then Is_Array_Type (Etype (R))
5908 then
5909 Candidate_Type := Etype (R);
5910 end if;
5911 end if;
5912
5913 Error_Msg_NE -- CODEFIX
5914 ("operator for} is not directly visible!",
5915 N, First_Subtype (Candidate_Type));
5916
5917 declare
5918 U : constant Node_Id :=
5919 Cunit (Get_Source_Unit (Candidate_Type));
5920 begin
5921 if Unit_Is_Visible (U) then
5922 Error_Msg_N -- CODEFIX
5923 ("use clause would make operation legal!", N);
5924 else
5925 Error_Msg_NE -- CODEFIX
5926 ("add with_clause and use_clause for&!",
5927 N, Defining_Entity (Unit (U)));
5928 end if;
5929 end;
5930 return;
5931
5932 -- If either operand is a junk operand (e.g. package name), then
5933 -- post appropriate error messages, but do not complain further.
5934
5935 -- Note that the use of OR in this test instead of OR ELSE is
5936 -- quite deliberate, we may as well check both operands in the
5937 -- binary operator case.
5938
5939 elsif Junk_Operand (R)
5940 or (Nkind (N) in N_Binary_Op and then Junk_Operand (L))
5941 then
5942 return;
5943
5944 -- If we have a logical operator, one of whose operands is
5945 -- Boolean, then we know that the other operand cannot resolve to
5946 -- Boolean (since we got no interpretations), but in that case we
5947 -- pretty much know that the other operand should be Boolean, so
5948 -- resolve it that way (generating an error)
5949
5950 elsif Nkind_In (N, N_Op_And, N_Op_Or, N_Op_Xor) then
5951 if Etype (L) = Standard_Boolean then
5952 Resolve (R, Standard_Boolean);
5953 return;
5954 elsif Etype (R) = Standard_Boolean then
5955 Resolve (L, Standard_Boolean);
5956 return;
5957 end if;
5958
5959 -- For an arithmetic operator or comparison operator, if one
5960 -- of the operands is numeric, then we know the other operand
5961 -- is not the same numeric type. If it is a non-numeric type,
5962 -- then probably it is intended to match the other operand.
5963
5964 elsif Nkind_In (N, N_Op_Add,
5965 N_Op_Divide,
5966 N_Op_Ge,
5967 N_Op_Gt,
5968 N_Op_Le)
5969 or else
5970 Nkind_In (N, N_Op_Lt,
5971 N_Op_Mod,
5972 N_Op_Multiply,
5973 N_Op_Rem,
5974 N_Op_Subtract)
5975 then
5976 if Is_Numeric_Type (Etype (L))
5977 and then not Is_Numeric_Type (Etype (R))
5978 then
5979 Resolve (R, Etype (L));
5980 return;
5981
5982 elsif Is_Numeric_Type (Etype (R))
5983 and then not Is_Numeric_Type (Etype (L))
5984 then
5985 Resolve (L, Etype (R));
5986 return;
5987 end if;
5988
5989 -- Comparisons on A'Access are common enough to deserve a
5990 -- special message.
5991
5992 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne)
5993 and then Ekind (Etype (L)) = E_Access_Attribute_Type
5994 and then Ekind (Etype (R)) = E_Access_Attribute_Type
5995 then
5996 Error_Msg_N
5997 ("two access attributes cannot be compared directly", N);
5998 Error_Msg_N
5999 ("\use qualified expression for one of the operands",
6000 N);
6001 return;
6002
6003 -- Another one for C programmers
6004
6005 elsif Nkind (N) = N_Op_Concat
6006 and then Valid_Boolean_Arg (Etype (L))
6007 and then Valid_Boolean_Arg (Etype (R))
6008 then
6009 Error_Msg_N ("invalid operands for concatenation", N);
6010 Error_Msg_N -- CODEFIX
6011 ("\maybe AND was meant", N);
6012 return;
6013
6014 -- A special case for comparison of access parameter with null
6015
6016 elsif Nkind (N) = N_Op_Eq
6017 and then Is_Entity_Name (L)
6018 and then Nkind (Parent (Entity (L))) = N_Parameter_Specification
6019 and then Nkind (Parameter_Type (Parent (Entity (L)))) =
6020 N_Access_Definition
6021 and then Nkind (R) = N_Null
6022 then
6023 Error_Msg_N ("access parameter is not allowed to be null", L);
6024 Error_Msg_N ("\(call would raise Constraint_Error)", L);
6025 return;
6026
6027 -- Another special case for exponentiation, where the right
6028 -- operand must be Natural, independently of the base.
6029
6030 elsif Nkind (N) = N_Op_Expon
6031 and then Is_Numeric_Type (Etype (L))
6032 and then not Is_Overloaded (R)
6033 and then
6034 First_Subtype (Base_Type (Etype (R))) /= Standard_Integer
6035 and then Base_Type (Etype (R)) /= Universal_Integer
6036 then
6037 Error_Msg_NE
6038 ("exponent must be of type Natural, found}", R, Etype (R));
6039 return;
6040 end if;
6041
6042 -- If we fall through then just give general message. Note that in
6043 -- the following messages, if the operand is overloaded we choose
6044 -- an arbitrary type to complain about, but that is probably more
6045 -- useful than not giving a type at all.
6046
6047 if Nkind (N) in N_Unary_Op then
6048 Error_Msg_Node_2 := Etype (R);
6049 Error_Msg_N ("operator& not defined for}", N);
6050 return;
6051
6052 else
6053 if Nkind (N) in N_Binary_Op then
6054 if not Is_Overloaded (L)
6055 and then not Is_Overloaded (R)
6056 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
6057 then
6058 Error_Msg_Node_2 := First_Subtype (Etype (R));
6059 Error_Msg_N ("there is no applicable operator& for}", N);
6060
6061 else
6062 -- Another attempt to find a fix: one of the candidate
6063 -- interpretations may not be use-visible. This has
6064 -- already been checked for predefined operators, so
6065 -- we examine only user-defined functions.
6066
6067 Op_Id := Get_Name_Entity_Id (Chars (N));
6068
6069 while Present (Op_Id) loop
6070 if Ekind (Op_Id) /= E_Operator
6071 and then Is_Overloadable (Op_Id)
6072 then
6073 if not Is_Immediately_Visible (Op_Id)
6074 and then not In_Use (Scope (Op_Id))
6075 and then not Is_Abstract_Subprogram (Op_Id)
6076 and then not Is_Hidden (Op_Id)
6077 and then Ekind (Scope (Op_Id)) = E_Package
6078 and then
6079 Has_Compatible_Type
6080 (L, Etype (First_Formal (Op_Id)))
6081 and then Present
6082 (Next_Formal (First_Formal (Op_Id)))
6083 and then
6084 Has_Compatible_Type
6085 (R,
6086 Etype (Next_Formal (First_Formal (Op_Id))))
6087 then
6088 Error_Msg_N
6089 ("No legal interpretation for operator&", N);
6090 Error_Msg_NE
6091 ("\use clause on& would make operation legal",
6092 N, Scope (Op_Id));
6093 exit;
6094 end if;
6095 end if;
6096
6097 Op_Id := Homonym (Op_Id);
6098 end loop;
6099
6100 if No (Op_Id) then
6101 Error_Msg_N ("invalid operand types for operator&", N);
6102
6103 if Nkind (N) /= N_Op_Concat then
6104 Error_Msg_NE ("\left operand has}!", N, Etype (L));
6105 Error_Msg_NE ("\right operand has}!", N, Etype (R));
6106 end if;
6107 end if;
6108 end if;
6109 end if;
6110 end if;
6111 end;
6112 end if;
6113 end Operator_Check;
6114
6115 -----------------------------------------
6116 -- Process_Implicit_Dereference_Prefix --
6117 -----------------------------------------
6118
6119 function Process_Implicit_Dereference_Prefix
6120 (E : Entity_Id;
6121 P : Entity_Id) return Entity_Id
6122 is
6123 Ref : Node_Id;
6124 Typ : constant Entity_Id := Designated_Type (Etype (P));
6125
6126 begin
6127 if Present (E)
6128 and then (Operating_Mode = Check_Semantics or else not Expander_Active)
6129 then
6130 -- We create a dummy reference to E to ensure that the reference
6131 -- is not considered as part of an assignment (an implicit
6132 -- dereference can never assign to its prefix). The Comes_From_Source
6133 -- attribute needs to be propagated for accurate warnings.
6134
6135 Ref := New_Reference_To (E, Sloc (P));
6136 Set_Comes_From_Source (Ref, Comes_From_Source (P));
6137 Generate_Reference (E, Ref);
6138 end if;
6139
6140 -- An implicit dereference is a legal occurrence of an
6141 -- incomplete type imported through a limited_with clause,
6142 -- if the full view is visible.
6143
6144 if From_With_Type (Typ)
6145 and then not From_With_Type (Scope (Typ))
6146 and then
6147 (Is_Immediately_Visible (Scope (Typ))
6148 or else
6149 (Is_Child_Unit (Scope (Typ))
6150 and then Is_Visible_Child_Unit (Scope (Typ))))
6151 then
6152 return Available_View (Typ);
6153 else
6154 return Typ;
6155 end if;
6156
6157 end Process_Implicit_Dereference_Prefix;
6158
6159 --------------------------------
6160 -- Remove_Abstract_Operations --
6161 --------------------------------
6162
6163 procedure Remove_Abstract_Operations (N : Node_Id) is
6164 Abstract_Op : Entity_Id := Empty;
6165 Address_Kludge : Boolean := False;
6166 I : Interp_Index;
6167 It : Interp;
6168
6169 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
6170 -- activate this if either extensions are enabled, or if the abstract
6171 -- operation in question comes from a predefined file. This latter test
6172 -- allows us to use abstract to make operations invisible to users. In
6173 -- particular, if type Address is non-private and abstract subprograms
6174 -- are used to hide its operators, they will be truly hidden.
6175
6176 type Operand_Position is (First_Op, Second_Op);
6177 Univ_Type : constant Entity_Id := Universal_Interpretation (N);
6178
6179 procedure Remove_Address_Interpretations (Op : Operand_Position);
6180 -- Ambiguities may arise when the operands are literal and the address
6181 -- operations in s-auxdec are visible. In that case, remove the
6182 -- interpretation of a literal as Address, to retain the semantics of
6183 -- Address as a private type.
6184
6185 ------------------------------------
6186 -- Remove_Address_Interpretations --
6187 ------------------------------------
6188
6189 procedure Remove_Address_Interpretations (Op : Operand_Position) is
6190 Formal : Entity_Id;
6191
6192 begin
6193 if Is_Overloaded (N) then
6194 Get_First_Interp (N, I, It);
6195 while Present (It.Nam) loop
6196 Formal := First_Entity (It.Nam);
6197
6198 if Op = Second_Op then
6199 Formal := Next_Entity (Formal);
6200 end if;
6201
6202 if Is_Descendent_Of_Address (Etype (Formal)) then
6203 Address_Kludge := True;
6204 Remove_Interp (I);
6205 end if;
6206
6207 Get_Next_Interp (I, It);
6208 end loop;
6209 end if;
6210 end Remove_Address_Interpretations;
6211
6212 -- Start of processing for Remove_Abstract_Operations
6213
6214 begin
6215 if Is_Overloaded (N) then
6216 Get_First_Interp (N, I, It);
6217
6218 while Present (It.Nam) loop
6219 if Is_Overloadable (It.Nam)
6220 and then Is_Abstract_Subprogram (It.Nam)
6221 and then not Is_Dispatching_Operation (It.Nam)
6222 then
6223 Abstract_Op := It.Nam;
6224
6225 if Is_Descendent_Of_Address (It.Typ) then
6226 Address_Kludge := True;
6227 Remove_Interp (I);
6228 exit;
6229
6230 -- In Ada 2005, this operation does not participate in Overload
6231 -- resolution. If the operation is defined in a predefined
6232 -- unit, it is one of the operations declared abstract in some
6233 -- variants of System, and it must be removed as well.
6234
6235 elsif Ada_Version >= Ada_2005
6236 or else Is_Predefined_File_Name
6237 (Unit_File_Name (Get_Source_Unit (It.Nam)))
6238 then
6239 Remove_Interp (I);
6240 exit;
6241 end if;
6242 end if;
6243
6244 Get_Next_Interp (I, It);
6245 end loop;
6246
6247 if No (Abstract_Op) then
6248
6249 -- If some interpretation yields an integer type, it is still
6250 -- possible that there are address interpretations. Remove them
6251 -- if one operand is a literal, to avoid spurious ambiguities
6252 -- on systems where Address is a visible integer type.
6253
6254 if Is_Overloaded (N)
6255 and then Nkind (N) in N_Op
6256 and then Is_Integer_Type (Etype (N))
6257 then
6258 if Nkind (N) in N_Binary_Op then
6259 if Nkind (Right_Opnd (N)) = N_Integer_Literal then
6260 Remove_Address_Interpretations (Second_Op);
6261
6262 elsif Nkind (Right_Opnd (N)) = N_Integer_Literal then
6263 Remove_Address_Interpretations (First_Op);
6264 end if;
6265 end if;
6266 end if;
6267
6268 elsif Nkind (N) in N_Op then
6269
6270 -- Remove interpretations that treat literals as addresses. This
6271 -- is never appropriate, even when Address is defined as a visible
6272 -- Integer type. The reason is that we would really prefer Address
6273 -- to behave as a private type, even in this case, which is there
6274 -- only to accommodate oddities of VMS address sizes. If Address
6275 -- is a visible integer type, we get lots of overload ambiguities.
6276
6277 if Nkind (N) in N_Binary_Op then
6278 declare
6279 U1 : constant Boolean :=
6280 Present (Universal_Interpretation (Right_Opnd (N)));
6281 U2 : constant Boolean :=
6282 Present (Universal_Interpretation (Left_Opnd (N)));
6283
6284 begin
6285 if U1 then
6286 Remove_Address_Interpretations (Second_Op);
6287 end if;
6288
6289 if U2 then
6290 Remove_Address_Interpretations (First_Op);
6291 end if;
6292
6293 if not (U1 and U2) then
6294
6295 -- Remove corresponding predefined operator, which is
6296 -- always added to the overload set.
6297
6298 Get_First_Interp (N, I, It);
6299 while Present (It.Nam) loop
6300 if Scope (It.Nam) = Standard_Standard
6301 and then Base_Type (It.Typ) =
6302 Base_Type (Etype (Abstract_Op))
6303 then
6304 Remove_Interp (I);
6305 end if;
6306
6307 Get_Next_Interp (I, It);
6308 end loop;
6309
6310 elsif Is_Overloaded (N)
6311 and then Present (Univ_Type)
6312 then
6313 -- If both operands have a universal interpretation,
6314 -- it is still necessary to remove interpretations that
6315 -- yield Address. Any remaining ambiguities will be
6316 -- removed in Disambiguate.
6317
6318 Get_First_Interp (N, I, It);
6319 while Present (It.Nam) loop
6320 if Is_Descendent_Of_Address (It.Typ) then
6321 Remove_Interp (I);
6322
6323 elsif not Is_Type (It.Nam) then
6324 Set_Entity (N, It.Nam);
6325 end if;
6326
6327 Get_Next_Interp (I, It);
6328 end loop;
6329 end if;
6330 end;
6331 end if;
6332
6333 elsif Nkind (N) = N_Function_Call
6334 and then
6335 (Nkind (Name (N)) = N_Operator_Symbol
6336 or else
6337 (Nkind (Name (N)) = N_Expanded_Name
6338 and then
6339 Nkind (Selector_Name (Name (N))) = N_Operator_Symbol))
6340 then
6341
6342 declare
6343 Arg1 : constant Node_Id := First (Parameter_Associations (N));
6344 U1 : constant Boolean :=
6345 Present (Universal_Interpretation (Arg1));
6346 U2 : constant Boolean :=
6347 Present (Next (Arg1)) and then
6348 Present (Universal_Interpretation (Next (Arg1)));
6349
6350 begin
6351 if U1 then
6352 Remove_Address_Interpretations (First_Op);
6353 end if;
6354
6355 if U2 then
6356 Remove_Address_Interpretations (Second_Op);
6357 end if;
6358
6359 if not (U1 and U2) then
6360 Get_First_Interp (N, I, It);
6361 while Present (It.Nam) loop
6362 if Scope (It.Nam) = Standard_Standard
6363 and then It.Typ = Base_Type (Etype (Abstract_Op))
6364 then
6365 Remove_Interp (I);
6366 end if;
6367
6368 Get_Next_Interp (I, It);
6369 end loop;
6370 end if;
6371 end;
6372 end if;
6373
6374 -- If the removal has left no valid interpretations, emit an error
6375 -- message now and label node as illegal.
6376
6377 if Present (Abstract_Op) then
6378 Get_First_Interp (N, I, It);
6379
6380 if No (It.Nam) then
6381
6382 -- Removal of abstract operation left no viable candidate
6383
6384 Set_Etype (N, Any_Type);
6385 Error_Msg_Sloc := Sloc (Abstract_Op);
6386 Error_Msg_NE
6387 ("cannot call abstract operation& declared#", N, Abstract_Op);
6388
6389 -- In Ada 2005, an abstract operation may disable predefined
6390 -- operators. Since the context is not yet known, we mark the
6391 -- predefined operators as potentially hidden. Do not include
6392 -- predefined operators when addresses are involved since this
6393 -- case is handled separately.
6394
6395 elsif Ada_Version >= Ada_2005
6396 and then not Address_Kludge
6397 then
6398 while Present (It.Nam) loop
6399 if Is_Numeric_Type (It.Typ)
6400 and then Scope (It.Typ) = Standard_Standard
6401 then
6402 Set_Abstract_Op (I, Abstract_Op);
6403 end if;
6404
6405 Get_Next_Interp (I, It);
6406 end loop;
6407 end if;
6408 end if;
6409 end if;
6410 end Remove_Abstract_Operations;
6411
6412 ----------------------------
6413 -- Try_Container_Indexing --
6414 ----------------------------
6415
6416 function Try_Container_Indexing
6417 (N : Node_Id;
6418 Prefix : Node_Id;
6419 Expr : Node_Id) return Boolean
6420 is
6421 Loc : constant Source_Ptr := Sloc (N);
6422 Disc : Entity_Id;
6423 Func : Entity_Id;
6424 Func_Name : Node_Id;
6425 Indexing : Node_Id;
6426 Is_Var : Boolean;
6427 Ritem : Node_Id;
6428
6429 begin
6430
6431 -- Check whether type has a specified indexing aspect.
6432
6433 Func_Name := Empty;
6434 Is_Var := False;
6435
6436 Ritem := First_Rep_Item (Etype (Prefix));
6437 while Present (Ritem) loop
6438 if Nkind (Ritem) = N_Aspect_Specification then
6439
6440 -- Prefer Variable_Indexing, but will settle for Constant.
6441
6442 if Get_Aspect_Id (Chars (Identifier (Ritem))) =
6443 Aspect_Constant_Indexing
6444 then
6445 Func_Name := Expression (Ritem);
6446
6447 elsif Get_Aspect_Id (Chars (Identifier (Ritem))) =
6448 Aspect_Variable_Indexing
6449 then
6450 Func_Name := Expression (Ritem);
6451 Is_Var := True;
6452 exit;
6453 end if;
6454 end if;
6455
6456 Next_Rep_Item (Ritem);
6457 end loop;
6458
6459 -- If aspect does not exist the expression is illegal. Error is
6460 -- diagnosed in caller.
6461
6462 if No (Func_Name) then
6463
6464 -- The prefix itself may be an indexing of a container
6465 -- rewrite as such and re-analyze.
6466
6467 if Has_Implicit_Dereference (Etype (Prefix)) then
6468 Build_Explicit_Dereference
6469 (Prefix, First_Discriminant (Etype (Prefix)));
6470 return Try_Container_Indexing (N, Prefix, Expr);
6471
6472 else
6473 return False;
6474 end if;
6475 end if;
6476
6477 if Is_Var
6478 and then not Is_Variable (Prefix)
6479 then
6480 Error_Msg_N ("Variable indexing cannot be applied to a constant", N);
6481 end if;
6482
6483 if not Is_Overloaded (Func_Name) then
6484 Func := Entity (Func_Name);
6485 Indexing := Make_Function_Call (Loc,
6486 Name => New_Occurrence_Of (Func, Loc),
6487 Parameter_Associations =>
6488 New_List (Relocate_Node (Prefix), Relocate_Node (Expr)));
6489 Rewrite (N, Indexing);
6490 Analyze (N);
6491
6492 -- The return type of the indexing function is a reference type, so
6493 -- add the dereference as a possible interpretation.
6494
6495 Disc := First_Discriminant (Etype (Func));
6496 while Present (Disc) loop
6497 if Has_Implicit_Dereference (Disc) then
6498 Add_One_Interp (N, Disc, Designated_Type (Etype (Disc)));
6499 exit;
6500 end if;
6501
6502 Next_Discriminant (Disc);
6503 end loop;
6504
6505 else
6506 Indexing := Make_Function_Call (Loc,
6507 Name => Make_Identifier (Loc, Chars (Func_Name)),
6508 Parameter_Associations =>
6509 New_List (Relocate_Node (Prefix), Relocate_Node (Expr)));
6510
6511 Rewrite (N, Indexing);
6512
6513 declare
6514 I : Interp_Index;
6515 It : Interp;
6516 Success : Boolean;
6517
6518 begin
6519 Get_First_Interp (Func_Name, I, It);
6520 Set_Etype (N, Any_Type);
6521 while Present (It.Nam) loop
6522 Analyze_One_Call (N, It.Nam, False, Success);
6523 if Success then
6524 Set_Etype (Name (N), It.Typ);
6525
6526 -- Add implicit dereference interpretation.
6527
6528 Disc := First_Discriminant (Etype (It.Nam));
6529
6530 while Present (Disc) loop
6531 if Has_Implicit_Dereference (Disc) then
6532 Add_One_Interp
6533 (N, Disc, Designated_Type (Etype (Disc)));
6534 exit;
6535 end if;
6536
6537 Next_Discriminant (Disc);
6538 end loop;
6539 end if;
6540 Get_Next_Interp (I, It);
6541 end loop;
6542 end;
6543 end if;
6544
6545 return True;
6546 end Try_Container_Indexing;
6547
6548 -----------------------
6549 -- Try_Indirect_Call --
6550 -----------------------
6551
6552 function Try_Indirect_Call
6553 (N : Node_Id;
6554 Nam : Entity_Id;
6555 Typ : Entity_Id) return Boolean
6556 is
6557 Actual : Node_Id;
6558 Formal : Entity_Id;
6559
6560 Call_OK : Boolean;
6561 pragma Warnings (Off, Call_OK);
6562
6563 begin
6564 Normalize_Actuals (N, Designated_Type (Typ), False, Call_OK);
6565
6566 Actual := First_Actual (N);
6567 Formal := First_Formal (Designated_Type (Typ));
6568 while Present (Actual) and then Present (Formal) loop
6569 if not Has_Compatible_Type (Actual, Etype (Formal)) then
6570 return False;
6571 end if;
6572
6573 Next (Actual);
6574 Next_Formal (Formal);
6575 end loop;
6576
6577 if No (Actual) and then No (Formal) then
6578 Add_One_Interp (N, Nam, Etype (Designated_Type (Typ)));
6579
6580 -- Nam is a candidate interpretation for the name in the call,
6581 -- if it is not an indirect call.
6582
6583 if not Is_Type (Nam)
6584 and then Is_Entity_Name (Name (N))
6585 then
6586 Set_Entity (Name (N), Nam);
6587 end if;
6588
6589 return True;
6590 else
6591 return False;
6592 end if;
6593 end Try_Indirect_Call;
6594
6595 ----------------------
6596 -- Try_Indexed_Call --
6597 ----------------------
6598
6599 function Try_Indexed_Call
6600 (N : Node_Id;
6601 Nam : Entity_Id;
6602 Typ : Entity_Id;
6603 Skip_First : Boolean) return Boolean
6604 is
6605 Loc : constant Source_Ptr := Sloc (N);
6606 Actuals : constant List_Id := Parameter_Associations (N);
6607 Actual : Node_Id;
6608 Index : Entity_Id;
6609
6610 begin
6611 Actual := First (Actuals);
6612
6613 -- If the call was originally written in prefix form, skip the first
6614 -- actual, which is obviously not defaulted.
6615
6616 if Skip_First then
6617 Next (Actual);
6618 end if;
6619
6620 Index := First_Index (Typ);
6621 while Present (Actual) and then Present (Index) loop
6622
6623 -- If the parameter list has a named association, the expression
6624 -- is definitely a call and not an indexed component.
6625
6626 if Nkind (Actual) = N_Parameter_Association then
6627 return False;
6628 end if;
6629
6630 if Is_Entity_Name (Actual)
6631 and then Is_Type (Entity (Actual))
6632 and then No (Next (Actual))
6633 then
6634 -- A single actual that is a type name indicates a slice if the
6635 -- type is discrete, and an error otherwise.
6636
6637 if Is_Discrete_Type (Entity (Actual)) then
6638 Rewrite (N,
6639 Make_Slice (Loc,
6640 Prefix =>
6641 Make_Function_Call (Loc,
6642 Name => Relocate_Node (Name (N))),
6643 Discrete_Range =>
6644 New_Occurrence_Of (Entity (Actual), Sloc (Actual))));
6645
6646 Analyze (N);
6647
6648 else
6649 Error_Msg_N ("invalid use of type in expression", Actual);
6650 Set_Etype (N, Any_Type);
6651 end if;
6652
6653 return True;
6654
6655 elsif not Has_Compatible_Type (Actual, Etype (Index)) then
6656 return False;
6657 end if;
6658
6659 Next (Actual);
6660 Next_Index (Index);
6661 end loop;
6662
6663 if No (Actual) and then No (Index) then
6664 Add_One_Interp (N, Nam, Component_Type (Typ));
6665
6666 -- Nam is a candidate interpretation for the name in the call,
6667 -- if it is not an indirect call.
6668
6669 if not Is_Type (Nam)
6670 and then Is_Entity_Name (Name (N))
6671 then
6672 Set_Entity (Name (N), Nam);
6673 end if;
6674
6675 return True;
6676 else
6677 return False;
6678 end if;
6679 end Try_Indexed_Call;
6680
6681 --------------------------
6682 -- Try_Object_Operation --
6683 --------------------------
6684
6685 function Try_Object_Operation
6686 (N : Node_Id; CW_Test_Only : Boolean := False) return Boolean
6687 is
6688 K : constant Node_Kind := Nkind (Parent (N));
6689 Is_Subprg_Call : constant Boolean := Nkind_In
6690 (K, N_Procedure_Call_Statement,
6691 N_Function_Call);
6692 Loc : constant Source_Ptr := Sloc (N);
6693 Obj : constant Node_Id := Prefix (N);
6694
6695 Subprog : constant Node_Id :=
6696 Make_Identifier (Sloc (Selector_Name (N)),
6697 Chars => Chars (Selector_Name (N)));
6698 -- Identifier on which possible interpretations will be collected
6699
6700 Report_Error : Boolean := False;
6701 -- If no candidate interpretation matches the context, redo the
6702 -- analysis with error enabled to provide additional information.
6703
6704 Actual : Node_Id;
6705 Candidate : Entity_Id := Empty;
6706 New_Call_Node : Node_Id := Empty;
6707 Node_To_Replace : Node_Id;
6708 Obj_Type : Entity_Id := Etype (Obj);
6709 Success : Boolean := False;
6710
6711 function Valid_Candidate
6712 (Success : Boolean;
6713 Call : Node_Id;
6714 Subp : Entity_Id) return Entity_Id;
6715 -- If the subprogram is a valid interpretation, record it, and add
6716 -- to the list of interpretations of Subprog. Otherwise return Empty.
6717
6718 procedure Complete_Object_Operation
6719 (Call_Node : Node_Id;
6720 Node_To_Replace : Node_Id);
6721 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
6722 -- Call_Node, insert the object (or its dereference) as the first actual
6723 -- in the call, and complete the analysis of the call.
6724
6725 procedure Report_Ambiguity (Op : Entity_Id);
6726 -- If a prefixed procedure call is ambiguous, indicate whether the
6727 -- call includes an implicit dereference or an implicit 'Access.
6728
6729 procedure Transform_Object_Operation
6730 (Call_Node : out Node_Id;
6731 Node_To_Replace : out Node_Id);
6732 -- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
6733 -- Call_Node is the resulting subprogram call, Node_To_Replace is
6734 -- either N or the parent of N, and Subprog is a reference to the
6735 -- subprogram we are trying to match.
6736
6737 function Try_Class_Wide_Operation
6738 (Call_Node : Node_Id;
6739 Node_To_Replace : Node_Id) return Boolean;
6740 -- Traverse all ancestor types looking for a class-wide subprogram
6741 -- for which the current operation is a valid non-dispatching call.
6742
6743 procedure Try_One_Prefix_Interpretation (T : Entity_Id);
6744 -- If prefix is overloaded, its interpretation may include different
6745 -- tagged types, and we must examine the primitive operations and
6746 -- the class-wide operations of each in order to find candidate
6747 -- interpretations for the call as a whole.
6748
6749 function Try_Primitive_Operation
6750 (Call_Node : Node_Id;
6751 Node_To_Replace : Node_Id) return Boolean;
6752 -- Traverse the list of primitive subprograms looking for a dispatching
6753 -- operation for which the current node is a valid call .
6754
6755 ---------------------
6756 -- Valid_Candidate --
6757 ---------------------
6758
6759 function Valid_Candidate
6760 (Success : Boolean;
6761 Call : Node_Id;
6762 Subp : Entity_Id) return Entity_Id
6763 is
6764 Arr_Type : Entity_Id;
6765 Comp_Type : Entity_Id;
6766
6767 begin
6768 -- If the subprogram is a valid interpretation, record it in global
6769 -- variable Subprog, to collect all possible overloadings.
6770
6771 if Success then
6772 if Subp /= Entity (Subprog) then
6773 Add_One_Interp (Subprog, Subp, Etype (Subp));
6774 end if;
6775 end if;
6776
6777 -- If the call may be an indexed call, retrieve component type of
6778 -- resulting expression, and add possible interpretation.
6779
6780 Arr_Type := Empty;
6781 Comp_Type := Empty;
6782
6783 if Nkind (Call) = N_Function_Call
6784 and then Nkind (Parent (N)) = N_Indexed_Component
6785 and then Needs_One_Actual (Subp)
6786 then
6787 if Is_Array_Type (Etype (Subp)) then
6788 Arr_Type := Etype (Subp);
6789
6790 elsif Is_Access_Type (Etype (Subp))
6791 and then Is_Array_Type (Designated_Type (Etype (Subp)))
6792 then
6793 Arr_Type := Designated_Type (Etype (Subp));
6794 end if;
6795 end if;
6796
6797 if Present (Arr_Type) then
6798
6799 -- Verify that the actuals (excluding the object) match the types
6800 -- of the indexes.
6801
6802 declare
6803 Actual : Node_Id;
6804 Index : Node_Id;
6805
6806 begin
6807 Actual := Next (First_Actual (Call));
6808 Index := First_Index (Arr_Type);
6809 while Present (Actual) and then Present (Index) loop
6810 if not Has_Compatible_Type (Actual, Etype (Index)) then
6811 Arr_Type := Empty;
6812 exit;
6813 end if;
6814
6815 Next_Actual (Actual);
6816 Next_Index (Index);
6817 end loop;
6818
6819 if No (Actual)
6820 and then No (Index)
6821 and then Present (Arr_Type)
6822 then
6823 Comp_Type := Component_Type (Arr_Type);
6824 end if;
6825 end;
6826
6827 if Present (Comp_Type)
6828 and then Etype (Subprog) /= Comp_Type
6829 then
6830 Add_One_Interp (Subprog, Subp, Comp_Type);
6831 end if;
6832 end if;
6833
6834 if Etype (Call) /= Any_Type then
6835 return Subp;
6836 else
6837 return Empty;
6838 end if;
6839 end Valid_Candidate;
6840
6841 -------------------------------
6842 -- Complete_Object_Operation --
6843 -------------------------------
6844
6845 procedure Complete_Object_Operation
6846 (Call_Node : Node_Id;
6847 Node_To_Replace : Node_Id)
6848 is
6849 Control : constant Entity_Id := First_Formal (Entity (Subprog));
6850 Formal_Type : constant Entity_Id := Etype (Control);
6851 First_Actual : Node_Id;
6852
6853 begin
6854 -- Place the name of the operation, with its interpretations,
6855 -- on the rewritten call.
6856
6857 Set_Name (Call_Node, Subprog);
6858
6859 First_Actual := First (Parameter_Associations (Call_Node));
6860
6861 -- For cross-reference purposes, treat the new node as being in
6862 -- the source if the original one is.
6863
6864 Set_Comes_From_Source (Subprog, Comes_From_Source (N));
6865 Set_Comes_From_Source (Call_Node, Comes_From_Source (N));
6866
6867 if Nkind (N) = N_Selected_Component
6868 and then not Inside_A_Generic
6869 then
6870 Set_Entity (Selector_Name (N), Entity (Subprog));
6871 end if;
6872
6873 -- If need be, rewrite first actual as an explicit dereference
6874 -- If the call is overloaded, the rewriting can only be done
6875 -- once the primitive operation is identified.
6876
6877 if Is_Overloaded (Subprog) then
6878
6879 -- The prefix itself may be overloaded, and its interpretations
6880 -- must be propagated to the new actual in the call.
6881
6882 if Is_Overloaded (Obj) then
6883 Save_Interps (Obj, First_Actual);
6884 end if;
6885
6886 Rewrite (First_Actual, Obj);
6887
6888 elsif not Is_Access_Type (Formal_Type)
6889 and then Is_Access_Type (Etype (Obj))
6890 then
6891 Rewrite (First_Actual,
6892 Make_Explicit_Dereference (Sloc (Obj), Obj));
6893 Analyze (First_Actual);
6894
6895 -- If we need to introduce an explicit dereference, verify that
6896 -- the resulting actual is compatible with the mode of the formal.
6897
6898 if Ekind (First_Formal (Entity (Subprog))) /= E_In_Parameter
6899 and then Is_Access_Constant (Etype (Obj))
6900 then
6901 Error_Msg_NE
6902 ("expect variable in call to&", Prefix (N), Entity (Subprog));
6903 end if;
6904
6905 -- Conversely, if the formal is an access parameter and the object
6906 -- is not, replace the actual with a 'Access reference. Its analysis
6907 -- will check that the object is aliased.
6908
6909 elsif Is_Access_Type (Formal_Type)
6910 and then not Is_Access_Type (Etype (Obj))
6911 then
6912 -- A special case: A.all'access is illegal if A is an access to a
6913 -- constant and the context requires an access to a variable.
6914
6915 if not Is_Access_Constant (Formal_Type) then
6916 if (Nkind (Obj) = N_Explicit_Dereference
6917 and then Is_Access_Constant (Etype (Prefix (Obj))))
6918 or else not Is_Variable (Obj)
6919 then
6920 Error_Msg_NE
6921 ("actual for& must be a variable", Obj, Control);
6922 end if;
6923 end if;
6924
6925 Rewrite (First_Actual,
6926 Make_Attribute_Reference (Loc,
6927 Attribute_Name => Name_Access,
6928 Prefix => Relocate_Node (Obj)));
6929
6930 if not Is_Aliased_View (Obj) then
6931 Error_Msg_NE
6932 ("object in prefixed call to& must be aliased"
6933 & " (RM-2005 4.3.1 (13))",
6934 Prefix (First_Actual), Subprog);
6935 end if;
6936
6937 Analyze (First_Actual);
6938
6939 else
6940 if Is_Overloaded (Obj) then
6941 Save_Interps (Obj, First_Actual);
6942 end if;
6943
6944 Rewrite (First_Actual, Obj);
6945 end if;
6946
6947 Rewrite (Node_To_Replace, Call_Node);
6948
6949 -- Propagate the interpretations collected in subprog to the new
6950 -- function call node, to be resolved from context.
6951
6952 if Is_Overloaded (Subprog) then
6953 Save_Interps (Subprog, Node_To_Replace);
6954
6955 else
6956 Analyze (Node_To_Replace);
6957
6958 -- If the operation has been rewritten into a call, which may get
6959 -- subsequently an explicit dereference, preserve the type on the
6960 -- original node (selected component or indexed component) for
6961 -- subsequent legality tests, e.g. Is_Variable. which examines
6962 -- the original node.
6963
6964 if Nkind (Node_To_Replace) = N_Function_Call then
6965 Set_Etype
6966 (Original_Node (Node_To_Replace), Etype (Node_To_Replace));
6967 end if;
6968 end if;
6969 end Complete_Object_Operation;
6970
6971 ----------------------
6972 -- Report_Ambiguity --
6973 ----------------------
6974
6975 procedure Report_Ambiguity (Op : Entity_Id) is
6976 Access_Actual : constant Boolean :=
6977 Is_Access_Type (Etype (Prefix (N)));
6978 Access_Formal : Boolean := False;
6979
6980 begin
6981 Error_Msg_Sloc := Sloc (Op);
6982
6983 if Present (First_Formal (Op)) then
6984 Access_Formal := Is_Access_Type (Etype (First_Formal (Op)));
6985 end if;
6986
6987 if Access_Formal and then not Access_Actual then
6988 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
6989 Error_Msg_N
6990 ("\possible interpretation"
6991 & " (inherited, with implicit 'Access) #", N);
6992 else
6993 Error_Msg_N
6994 ("\possible interpretation (with implicit 'Access) #", N);
6995 end if;
6996
6997 elsif not Access_Formal and then Access_Actual then
6998 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
6999 Error_Msg_N
7000 ("\possible interpretation"
7001 & " ( inherited, with implicit dereference) #", N);
7002 else
7003 Error_Msg_N
7004 ("\possible interpretation (with implicit dereference) #", N);
7005 end if;
7006
7007 else
7008 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
7009 Error_Msg_N ("\possible interpretation (inherited)#", N);
7010 else
7011 Error_Msg_N -- CODEFIX
7012 ("\possible interpretation#", N);
7013 end if;
7014 end if;
7015 end Report_Ambiguity;
7016
7017 --------------------------------
7018 -- Transform_Object_Operation --
7019 --------------------------------
7020
7021 procedure Transform_Object_Operation
7022 (Call_Node : out Node_Id;
7023 Node_To_Replace : out Node_Id)
7024 is
7025 Dummy : constant Node_Id := New_Copy (Obj);
7026 -- Placeholder used as a first parameter in the call, replaced
7027 -- eventually by the proper object.
7028
7029 Parent_Node : constant Node_Id := Parent (N);
7030
7031 Actual : Node_Id;
7032 Actuals : List_Id;
7033
7034 begin
7035 -- Common case covering 1) Call to a procedure and 2) Call to a
7036 -- function that has some additional actuals.
7037
7038 if Nkind_In (Parent_Node, N_Function_Call,
7039 N_Procedure_Call_Statement)
7040
7041 -- N is a selected component node containing the name of the
7042 -- subprogram. If N is not the name of the parent node we must
7043 -- not replace the parent node by the new construct. This case
7044 -- occurs when N is a parameterless call to a subprogram that
7045 -- is an actual parameter of a call to another subprogram. For
7046 -- example:
7047 -- Some_Subprogram (..., Obj.Operation, ...)
7048
7049 and then Name (Parent_Node) = N
7050 then
7051 Node_To_Replace := Parent_Node;
7052
7053 Actuals := Parameter_Associations (Parent_Node);
7054
7055 if Present (Actuals) then
7056 Prepend (Dummy, Actuals);
7057 else
7058 Actuals := New_List (Dummy);
7059 end if;
7060
7061 if Nkind (Parent_Node) = N_Procedure_Call_Statement then
7062 Call_Node :=
7063 Make_Procedure_Call_Statement (Loc,
7064 Name => New_Copy (Subprog),
7065 Parameter_Associations => Actuals);
7066
7067 else
7068 Call_Node :=
7069 Make_Function_Call (Loc,
7070 Name => New_Copy (Subprog),
7071 Parameter_Associations => Actuals);
7072
7073 end if;
7074
7075 -- Before analysis, a function call appears as an indexed component
7076 -- if there are no named associations.
7077
7078 elsif Nkind (Parent_Node) = N_Indexed_Component
7079 and then N = Prefix (Parent_Node)
7080 then
7081 Node_To_Replace := Parent_Node;
7082 Actuals := Expressions (Parent_Node);
7083
7084 Actual := First (Actuals);
7085 while Present (Actual) loop
7086 Analyze (Actual);
7087 Next (Actual);
7088 end loop;
7089
7090 Prepend (Dummy, Actuals);
7091
7092 Call_Node :=
7093 Make_Function_Call (Loc,
7094 Name => New_Copy (Subprog),
7095 Parameter_Associations => Actuals);
7096
7097 -- Parameterless call: Obj.F is rewritten as F (Obj)
7098
7099 else
7100 Node_To_Replace := N;
7101
7102 Call_Node :=
7103 Make_Function_Call (Loc,
7104 Name => New_Copy (Subprog),
7105 Parameter_Associations => New_List (Dummy));
7106 end if;
7107 end Transform_Object_Operation;
7108
7109 ------------------------------
7110 -- Try_Class_Wide_Operation --
7111 ------------------------------
7112
7113 function Try_Class_Wide_Operation
7114 (Call_Node : Node_Id;
7115 Node_To_Replace : Node_Id) return Boolean
7116 is
7117 Anc_Type : Entity_Id;
7118 Matching_Op : Entity_Id := Empty;
7119 Error : Boolean;
7120
7121 procedure Traverse_Homonyms
7122 (Anc_Type : Entity_Id;
7123 Error : out Boolean);
7124 -- Traverse the homonym chain of the subprogram searching for those
7125 -- homonyms whose first formal has the Anc_Type's class-wide type,
7126 -- or an anonymous access type designating the class-wide type. If
7127 -- an ambiguity is detected, then Error is set to True.
7128
7129 procedure Traverse_Interfaces
7130 (Anc_Type : Entity_Id;
7131 Error : out Boolean);
7132 -- Traverse the list of interfaces, if any, associated with Anc_Type
7133 -- and search for acceptable class-wide homonyms associated with each
7134 -- interface. If an ambiguity is detected, then Error is set to True.
7135
7136 -----------------------
7137 -- Traverse_Homonyms --
7138 -----------------------
7139
7140 procedure Traverse_Homonyms
7141 (Anc_Type : Entity_Id;
7142 Error : out Boolean)
7143 is
7144 Cls_Type : Entity_Id;
7145 Hom : Entity_Id;
7146 Hom_Ref : Node_Id;
7147 Success : Boolean;
7148
7149 begin
7150 Error := False;
7151
7152 Cls_Type := Class_Wide_Type (Anc_Type);
7153
7154 Hom := Current_Entity (Subprog);
7155
7156 -- Find a non-hidden operation whose first parameter is of the
7157 -- class-wide type, a subtype thereof, or an anonymous access
7158 -- to same.
7159
7160 while Present (Hom) loop
7161 if Ekind_In (Hom, E_Procedure, E_Function)
7162 and then not Is_Hidden (Hom)
7163 and then Scope (Hom) = Scope (Anc_Type)
7164 and then Present (First_Formal (Hom))
7165 and then
7166 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
7167 or else
7168 (Is_Access_Type (Etype (First_Formal (Hom)))
7169 and then
7170 Ekind (Etype (First_Formal (Hom))) =
7171 E_Anonymous_Access_Type
7172 and then
7173 Base_Type
7174 (Designated_Type (Etype (First_Formal (Hom)))) =
7175 Cls_Type))
7176 then
7177 -- If the context is a procedure call, ignore functions
7178 -- in the name of the call.
7179
7180 if Ekind (Hom) = E_Function
7181 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
7182 and then N = Name (Parent (N))
7183 then
7184 goto Next_Hom;
7185
7186 -- If the context is a function call, ignore procedures
7187 -- in the name of the call.
7188
7189 elsif Ekind (Hom) = E_Procedure
7190 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
7191 then
7192 goto Next_Hom;
7193 end if;
7194
7195 Set_Etype (Call_Node, Any_Type);
7196 Set_Is_Overloaded (Call_Node, False);
7197 Success := False;
7198
7199 if No (Matching_Op) then
7200 Hom_Ref := New_Reference_To (Hom, Sloc (Subprog));
7201 Set_Etype (Call_Node, Any_Type);
7202 Set_Parent (Call_Node, Parent (Node_To_Replace));
7203
7204 Set_Name (Call_Node, Hom_Ref);
7205
7206 Analyze_One_Call
7207 (N => Call_Node,
7208 Nam => Hom,
7209 Report => Report_Error,
7210 Success => Success,
7211 Skip_First => True);
7212
7213 Matching_Op :=
7214 Valid_Candidate (Success, Call_Node, Hom);
7215
7216 else
7217 Analyze_One_Call
7218 (N => Call_Node,
7219 Nam => Hom,
7220 Report => Report_Error,
7221 Success => Success,
7222 Skip_First => True);
7223
7224 if Present (Valid_Candidate (Success, Call_Node, Hom))
7225 and then Nkind (Call_Node) /= N_Function_Call
7226 then
7227 Error_Msg_NE ("ambiguous call to&", N, Hom);
7228 Report_Ambiguity (Matching_Op);
7229 Report_Ambiguity (Hom);
7230 Error := True;
7231 return;
7232 end if;
7233 end if;
7234 end if;
7235
7236 <<Next_Hom>>
7237 Hom := Homonym (Hom);
7238 end loop;
7239 end Traverse_Homonyms;
7240
7241 -------------------------
7242 -- Traverse_Interfaces --
7243 -------------------------
7244
7245 procedure Traverse_Interfaces
7246 (Anc_Type : Entity_Id;
7247 Error : out Boolean)
7248 is
7249 Intface_List : constant List_Id :=
7250 Abstract_Interface_List (Anc_Type);
7251 Intface : Node_Id;
7252
7253 begin
7254 Error := False;
7255
7256 if Is_Non_Empty_List (Intface_List) then
7257 Intface := First (Intface_List);
7258 while Present (Intface) loop
7259
7260 -- Look for acceptable class-wide homonyms associated with
7261 -- the interface.
7262
7263 Traverse_Homonyms (Etype (Intface), Error);
7264
7265 if Error then
7266 return;
7267 end if;
7268
7269 -- Continue the search by looking at each of the interface's
7270 -- associated interface ancestors.
7271
7272 Traverse_Interfaces (Etype (Intface), Error);
7273
7274 if Error then
7275 return;
7276 end if;
7277
7278 Next (Intface);
7279 end loop;
7280 end if;
7281 end Traverse_Interfaces;
7282
7283 -- Start of processing for Try_Class_Wide_Operation
7284
7285 begin
7286 -- If we are searching only for conflicting class-wide subprograms
7287 -- then initialize directly Matching_Op with the target entity.
7288
7289 if CW_Test_Only then
7290 Matching_Op := Entity (Selector_Name (N));
7291 end if;
7292
7293 -- Loop through ancestor types (including interfaces), traversing
7294 -- the homonym chain of the subprogram, trying out those homonyms
7295 -- whose first formal has the class-wide type of the ancestor, or
7296 -- an anonymous access type designating the class-wide type.
7297
7298 Anc_Type := Obj_Type;
7299 loop
7300 -- Look for a match among homonyms associated with the ancestor
7301
7302 Traverse_Homonyms (Anc_Type, Error);
7303
7304 if Error then
7305 return True;
7306 end if;
7307
7308 -- Continue the search for matches among homonyms associated with
7309 -- any interfaces implemented by the ancestor.
7310
7311 Traverse_Interfaces (Anc_Type, Error);
7312
7313 if Error then
7314 return True;
7315 end if;
7316
7317 exit when Etype (Anc_Type) = Anc_Type;
7318 Anc_Type := Etype (Anc_Type);
7319 end loop;
7320
7321 if Present (Matching_Op) then
7322 Set_Etype (Call_Node, Etype (Matching_Op));
7323 end if;
7324
7325 return Present (Matching_Op);
7326 end Try_Class_Wide_Operation;
7327
7328 -----------------------------------
7329 -- Try_One_Prefix_Interpretation --
7330 -----------------------------------
7331
7332 procedure Try_One_Prefix_Interpretation (T : Entity_Id) is
7333 begin
7334 Obj_Type := T;
7335
7336 if Is_Access_Type (Obj_Type) then
7337 Obj_Type := Designated_Type (Obj_Type);
7338 end if;
7339
7340 if Ekind (Obj_Type) = E_Private_Subtype then
7341 Obj_Type := Base_Type (Obj_Type);
7342 end if;
7343
7344 if Is_Class_Wide_Type (Obj_Type) then
7345 Obj_Type := Etype (Class_Wide_Type (Obj_Type));
7346 end if;
7347
7348 -- The type may have be obtained through a limited_with clause,
7349 -- in which case the primitive operations are available on its
7350 -- non-limited view. If still incomplete, retrieve full view.
7351
7352 if Ekind (Obj_Type) = E_Incomplete_Type
7353 and then From_With_Type (Obj_Type)
7354 then
7355 Obj_Type := Get_Full_View (Non_Limited_View (Obj_Type));
7356 end if;
7357
7358 -- If the object is not tagged, or the type is still an incomplete
7359 -- type, this is not a prefixed call.
7360
7361 if not Is_Tagged_Type (Obj_Type)
7362 or else Is_Incomplete_Type (Obj_Type)
7363 then
7364 return;
7365 end if;
7366
7367 declare
7368 Dup_Call_Node : constant Node_Id := New_Copy (New_Call_Node);
7369 CW_Result : Boolean;
7370 Prim_Result : Boolean;
7371 pragma Unreferenced (CW_Result);
7372
7373 begin
7374 if not CW_Test_Only then
7375 Prim_Result :=
7376 Try_Primitive_Operation
7377 (Call_Node => New_Call_Node,
7378 Node_To_Replace => Node_To_Replace);
7379 end if;
7380
7381 -- Check if there is a class-wide subprogram covering the
7382 -- primitive. This check must be done even if a candidate
7383 -- was found in order to report ambiguous calls.
7384
7385 if not (Prim_Result) then
7386 CW_Result :=
7387 Try_Class_Wide_Operation
7388 (Call_Node => New_Call_Node,
7389 Node_To_Replace => Node_To_Replace);
7390
7391 -- If we found a primitive we search for class-wide subprograms
7392 -- using a duplicate of the call node (done to avoid missing its
7393 -- decoration if there is no ambiguity).
7394
7395 else
7396 CW_Result :=
7397 Try_Class_Wide_Operation
7398 (Call_Node => Dup_Call_Node,
7399 Node_To_Replace => Node_To_Replace);
7400 end if;
7401 end;
7402 end Try_One_Prefix_Interpretation;
7403
7404 -----------------------------
7405 -- Try_Primitive_Operation --
7406 -----------------------------
7407
7408 function Try_Primitive_Operation
7409 (Call_Node : Node_Id;
7410 Node_To_Replace : Node_Id) return Boolean
7411 is
7412 Elmt : Elmt_Id;
7413 Prim_Op : Entity_Id;
7414 Matching_Op : Entity_Id := Empty;
7415 Prim_Op_Ref : Node_Id := Empty;
7416
7417 Corr_Type : Entity_Id := Empty;
7418 -- If the prefix is a synchronized type, the controlling type of
7419 -- the primitive operation is the corresponding record type, else
7420 -- this is the object type itself.
7421
7422 Success : Boolean := False;
7423
7424 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id;
7425 -- For tagged types the candidate interpretations are found in
7426 -- the list of primitive operations of the type and its ancestors.
7427 -- For formal tagged types we have to find the operations declared
7428 -- in the same scope as the type (including in the generic formal
7429 -- part) because the type itself carries no primitive operations,
7430 -- except for formal derived types that inherit the operations of
7431 -- the parent and progenitors.
7432 -- If the context is a generic subprogram body, the generic formals
7433 -- are visible by name, but are not in the entity list of the
7434 -- subprogram because that list starts with the subprogram formals.
7435 -- We retrieve the candidate operations from the generic declaration.
7436
7437 function Is_Private_Overriding (Op : Entity_Id) return Boolean;
7438 -- An operation that overrides an inherited operation in the private
7439 -- part of its package may be hidden, but if the inherited operation
7440 -- is visible a direct call to it will dispatch to the private one,
7441 -- which is therefore a valid candidate.
7442
7443 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean;
7444 -- Verify that the prefix, dereferenced if need be, is a valid
7445 -- controlling argument in a call to Op. The remaining actuals
7446 -- are checked in the subsequent call to Analyze_One_Call.
7447
7448 ------------------------------
7449 -- Collect_Generic_Type_Ops --
7450 ------------------------------
7451
7452 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id is
7453 Bas : constant Entity_Id := Base_Type (T);
7454 Candidates : constant Elist_Id := New_Elmt_List;
7455 Subp : Entity_Id;
7456 Formal : Entity_Id;
7457
7458 procedure Check_Candidate;
7459 -- The operation is a candidate if its first parameter is a
7460 -- controlling operand of the desired type.
7461
7462 -----------------------
7463 -- Check_Candidate; --
7464 -----------------------
7465
7466 procedure Check_Candidate is
7467 begin
7468 Formal := First_Formal (Subp);
7469
7470 if Present (Formal)
7471 and then Is_Controlling_Formal (Formal)
7472 and then
7473 (Base_Type (Etype (Formal)) = Bas
7474 or else
7475 (Is_Access_Type (Etype (Formal))
7476 and then Designated_Type (Etype (Formal)) = Bas))
7477 then
7478 Append_Elmt (Subp, Candidates);
7479 end if;
7480 end Check_Candidate;
7481
7482 -- Start of processing for Collect_Generic_Type_Ops
7483
7484 begin
7485 if Is_Derived_Type (T) then
7486 return Primitive_Operations (T);
7487
7488 elsif Ekind_In (Scope (T), E_Procedure, E_Function) then
7489
7490 -- Scan the list of generic formals to find subprograms
7491 -- that may have a first controlling formal of the type.
7492
7493 if Nkind (Unit_Declaration_Node (Scope (T)))
7494 = N_Generic_Subprogram_Declaration
7495 then
7496 declare
7497 Decl : Node_Id;
7498
7499 begin
7500 Decl :=
7501 First (Generic_Formal_Declarations
7502 (Unit_Declaration_Node (Scope (T))));
7503 while Present (Decl) loop
7504 if Nkind (Decl) in N_Formal_Subprogram_Declaration then
7505 Subp := Defining_Entity (Decl);
7506 Check_Candidate;
7507 end if;
7508
7509 Next (Decl);
7510 end loop;
7511 end;
7512 end if;
7513 return Candidates;
7514
7515 else
7516 -- Scan the list of entities declared in the same scope as
7517 -- the type. In general this will be an open scope, given that
7518 -- the call we are analyzing can only appear within a generic
7519 -- declaration or body (either the one that declares T, or a
7520 -- child unit).
7521
7522 -- For a subtype representing a generic actual type, go to the
7523 -- base type.
7524
7525 if Is_Generic_Actual_Type (T) then
7526 Subp := First_Entity (Scope (Base_Type (T)));
7527 else
7528 Subp := First_Entity (Scope (T));
7529 end if;
7530
7531 while Present (Subp) loop
7532 if Is_Overloadable (Subp) then
7533 Check_Candidate;
7534 end if;
7535
7536 Next_Entity (Subp);
7537 end loop;
7538
7539 return Candidates;
7540 end if;
7541 end Collect_Generic_Type_Ops;
7542
7543 ---------------------------
7544 -- Is_Private_Overriding --
7545 ---------------------------
7546
7547 function Is_Private_Overriding (Op : Entity_Id) return Boolean is
7548 Visible_Op : constant Entity_Id := Homonym (Op);
7549
7550 begin
7551 return Present (Visible_Op)
7552 and then Scope (Op) = Scope (Visible_Op)
7553 and then not Comes_From_Source (Visible_Op)
7554 and then Alias (Visible_Op) = Op
7555 and then not Is_Hidden (Visible_Op);
7556 end Is_Private_Overriding;
7557
7558 -----------------------------
7559 -- Valid_First_Argument_Of --
7560 -----------------------------
7561
7562 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean is
7563 Typ : Entity_Id := Etype (First_Formal (Op));
7564
7565 begin
7566 if Is_Concurrent_Type (Typ)
7567 and then Present (Corresponding_Record_Type (Typ))
7568 then
7569 Typ := Corresponding_Record_Type (Typ);
7570 end if;
7571
7572 -- Simple case. Object may be a subtype of the tagged type or
7573 -- may be the corresponding record of a synchronized type.
7574
7575 return Obj_Type = Typ
7576 or else Base_Type (Obj_Type) = Typ
7577 or else Corr_Type = Typ
7578
7579 -- Prefix can be dereferenced
7580
7581 or else
7582 (Is_Access_Type (Corr_Type)
7583 and then Designated_Type (Corr_Type) = Typ)
7584
7585 -- Formal is an access parameter, for which the object
7586 -- can provide an access.
7587
7588 or else
7589 (Ekind (Typ) = E_Anonymous_Access_Type
7590 and then
7591 Base_Type (Designated_Type (Typ)) = Base_Type (Corr_Type));
7592 end Valid_First_Argument_Of;
7593
7594 -- Start of processing for Try_Primitive_Operation
7595
7596 begin
7597 -- Look for subprograms in the list of primitive operations. The name
7598 -- must be identical, and the kind of call indicates the expected
7599 -- kind of operation (function or procedure). If the type is a
7600 -- (tagged) synchronized type, the primitive ops are attached to the
7601 -- corresponding record (base) type.
7602
7603 if Is_Concurrent_Type (Obj_Type) then
7604 if Present (Corresponding_Record_Type (Obj_Type)) then
7605 Corr_Type := Base_Type (Corresponding_Record_Type (Obj_Type));
7606 Elmt := First_Elmt (Primitive_Operations (Corr_Type));
7607 else
7608 Corr_Type := Obj_Type;
7609 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
7610 end if;
7611
7612 elsif not Is_Generic_Type (Obj_Type) then
7613 Corr_Type := Obj_Type;
7614 Elmt := First_Elmt (Primitive_Operations (Obj_Type));
7615
7616 else
7617 Corr_Type := Obj_Type;
7618 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
7619 end if;
7620
7621 while Present (Elmt) loop
7622 Prim_Op := Node (Elmt);
7623
7624 if Chars (Prim_Op) = Chars (Subprog)
7625 and then Present (First_Formal (Prim_Op))
7626 and then Valid_First_Argument_Of (Prim_Op)
7627 and then
7628 (Nkind (Call_Node) = N_Function_Call)
7629 = (Ekind (Prim_Op) = E_Function)
7630 then
7631 -- Ada 2005 (AI-251): If this primitive operation corresponds
7632 -- with an immediate ancestor interface there is no need to add
7633 -- it to the list of interpretations; the corresponding aliased
7634 -- primitive is also in this list of primitive operations and
7635 -- will be used instead.
7636
7637 if (Present (Interface_Alias (Prim_Op))
7638 and then Is_Ancestor (Find_Dispatching_Type
7639 (Alias (Prim_Op)), Corr_Type))
7640
7641 -- Do not consider hidden primitives unless the type is in an
7642 -- open scope or we are within an instance, where visibility
7643 -- is known to be correct, or else if this is an overriding
7644 -- operation in the private part for an inherited operation.
7645
7646 or else (Is_Hidden (Prim_Op)
7647 and then not Is_Immediately_Visible (Obj_Type)
7648 and then not In_Instance
7649 and then not Is_Private_Overriding (Prim_Op))
7650 then
7651 goto Continue;
7652 end if;
7653
7654 Set_Etype (Call_Node, Any_Type);
7655 Set_Is_Overloaded (Call_Node, False);
7656
7657 if No (Matching_Op) then
7658 Prim_Op_Ref := New_Reference_To (Prim_Op, Sloc (Subprog));
7659 Candidate := Prim_Op;
7660
7661 Set_Parent (Call_Node, Parent (Node_To_Replace));
7662
7663 Set_Name (Call_Node, Prim_Op_Ref);
7664 Success := False;
7665
7666 Analyze_One_Call
7667 (N => Call_Node,
7668 Nam => Prim_Op,
7669 Report => Report_Error,
7670 Success => Success,
7671 Skip_First => True);
7672
7673 Matching_Op := Valid_Candidate (Success, Call_Node, Prim_Op);
7674
7675 -- More than one interpretation, collect for subsequent
7676 -- disambiguation. If this is a procedure call and there
7677 -- is another match, report ambiguity now.
7678
7679 else
7680 Analyze_One_Call
7681 (N => Call_Node,
7682 Nam => Prim_Op,
7683 Report => Report_Error,
7684 Success => Success,
7685 Skip_First => True);
7686
7687 if Present (Valid_Candidate (Success, Call_Node, Prim_Op))
7688 and then Nkind (Call_Node) /= N_Function_Call
7689 then
7690 Error_Msg_NE ("ambiguous call to&", N, Prim_Op);
7691 Report_Ambiguity (Matching_Op);
7692 Report_Ambiguity (Prim_Op);
7693 return True;
7694 end if;
7695 end if;
7696 end if;
7697
7698 <<Continue>>
7699 Next_Elmt (Elmt);
7700 end loop;
7701
7702 if Present (Matching_Op) then
7703 Set_Etype (Call_Node, Etype (Matching_Op));
7704 end if;
7705
7706 return Present (Matching_Op);
7707 end Try_Primitive_Operation;
7708
7709 -- Start of processing for Try_Object_Operation
7710
7711 begin
7712 Analyze_Expression (Obj);
7713
7714 -- Analyze the actuals if node is known to be a subprogram call
7715
7716 if Is_Subprg_Call and then N = Name (Parent (N)) then
7717 Actual := First (Parameter_Associations (Parent (N)));
7718 while Present (Actual) loop
7719 Analyze_Expression (Actual);
7720 Next (Actual);
7721 end loop;
7722 end if;
7723
7724 -- Build a subprogram call node, using a copy of Obj as its first
7725 -- actual. This is a placeholder, to be replaced by an explicit
7726 -- dereference when needed.
7727
7728 Transform_Object_Operation
7729 (Call_Node => New_Call_Node,
7730 Node_To_Replace => Node_To_Replace);
7731
7732 Set_Etype (New_Call_Node, Any_Type);
7733 Set_Etype (Subprog, Any_Type);
7734 Set_Parent (New_Call_Node, Parent (Node_To_Replace));
7735
7736 if not Is_Overloaded (Obj) then
7737 Try_One_Prefix_Interpretation (Obj_Type);
7738
7739 else
7740 declare
7741 I : Interp_Index;
7742 It : Interp;
7743 begin
7744 Get_First_Interp (Obj, I, It);
7745 while Present (It.Nam) loop
7746 Try_One_Prefix_Interpretation (It.Typ);
7747 Get_Next_Interp (I, It);
7748 end loop;
7749 end;
7750 end if;
7751
7752 if Etype (New_Call_Node) /= Any_Type then
7753
7754 -- No need to complete the tree transformations if we are only
7755 -- searching for conflicting class-wide subprograms
7756
7757 if CW_Test_Only then
7758 return False;
7759 else
7760 Complete_Object_Operation
7761 (Call_Node => New_Call_Node,
7762 Node_To_Replace => Node_To_Replace);
7763 return True;
7764 end if;
7765
7766 elsif Present (Candidate) then
7767
7768 -- The argument list is not type correct. Re-analyze with error
7769 -- reporting enabled, and use one of the possible candidates.
7770 -- In All_Errors_Mode, re-analyze all failed interpretations.
7771
7772 if All_Errors_Mode then
7773 Report_Error := True;
7774 if Try_Primitive_Operation
7775 (Call_Node => New_Call_Node,
7776 Node_To_Replace => Node_To_Replace)
7777
7778 or else
7779 Try_Class_Wide_Operation
7780 (Call_Node => New_Call_Node,
7781 Node_To_Replace => Node_To_Replace)
7782 then
7783 null;
7784 end if;
7785
7786 else
7787 Analyze_One_Call
7788 (N => New_Call_Node,
7789 Nam => Candidate,
7790 Report => True,
7791 Success => Success,
7792 Skip_First => True);
7793 end if;
7794
7795 -- No need for further errors
7796
7797 return True;
7798
7799 else
7800 -- There was no candidate operation, so report it as an error
7801 -- in the caller: Analyze_Selected_Component.
7802
7803 return False;
7804 end if;
7805 end Try_Object_Operation;
7806
7807 ---------
7808 -- wpo --
7809 ---------
7810
7811 procedure wpo (T : Entity_Id) is
7812 Op : Entity_Id;
7813 E : Elmt_Id;
7814
7815 begin
7816 if not Is_Tagged_Type (T) then
7817 return;
7818 end if;
7819
7820 E := First_Elmt (Primitive_Operations (Base_Type (T)));
7821 while Present (E) loop
7822 Op := Node (E);
7823 Write_Int (Int (Op));
7824 Write_Str (" === ");
7825 Write_Name (Chars (Op));
7826 Write_Str (" in ");
7827 Write_Name (Chars (Scope (Op)));
7828 Next_Elmt (E);
7829 Write_Eol;
7830 end loop;
7831 end wpo;
7832
7833 end Sem_Ch4;