[multiple changes]
[gcc.git] / gcc / ada / sem_ch5.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 5 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Einfo; use Einfo;
29 with Errout; use Errout;
30 with Expander; use Expander;
31 with Exp_Util; use Exp_Util;
32 with Freeze; use Freeze;
33 with Lib; use Lib;
34 with Lib.Xref; use Lib.Xref;
35 with Namet; use Namet;
36 with Nlists; use Nlists;
37 with Nmake; use Nmake;
38 with Opt; use Opt;
39 with Rtsfind; use Rtsfind;
40 with Sem; use Sem;
41 with Sem_Aux; use Sem_Aux;
42 with Sem_Case; use Sem_Case;
43 with Sem_Ch3; use Sem_Ch3;
44 with Sem_Ch8; use Sem_Ch8;
45 with Sem_Disp; use Sem_Disp;
46 with Sem_Elab; use Sem_Elab;
47 with Sem_Eval; use Sem_Eval;
48 with Sem_Res; use Sem_Res;
49 with Sem_Type; use Sem_Type;
50 with Sem_Util; use Sem_Util;
51 with Sem_Warn; use Sem_Warn;
52 with Snames; use Snames;
53 with Stand; use Stand;
54 with Sinfo; use Sinfo;
55 with Targparm; use Targparm;
56 with Tbuild; use Tbuild;
57 with Uintp; use Uintp;
58
59 package body Sem_Ch5 is
60
61 Unblocked_Exit_Count : Nat := 0;
62 -- This variable is used when processing if statements, case statements,
63 -- and block statements. It counts the number of exit points that are not
64 -- blocked by unconditional transfer instructions: for IF and CASE, these
65 -- are the branches of the conditional; for a block, they are the statement
66 -- sequence of the block, and the statement sequences of any exception
67 -- handlers that are part of the block. When processing is complete, if
68 -- this count is zero, it means that control cannot fall through the IF,
69 -- CASE or block statement. This is used for the generation of warning
70 -- messages. This variable is recursively saved on entry to processing the
71 -- construct, and restored on exit.
72
73 ------------------------
74 -- Analyze_Assignment --
75 ------------------------
76
77 procedure Analyze_Assignment (N : Node_Id) is
78 Lhs : constant Node_Id := Name (N);
79 Rhs : constant Node_Id := Expression (N);
80 T1 : Entity_Id;
81 T2 : Entity_Id;
82 Decl : Node_Id;
83
84 procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
85 -- N is the node for the left hand side of an assignment, and it is not
86 -- a variable. This routine issues an appropriate diagnostic.
87
88 procedure Kill_Lhs;
89 -- This is called to kill current value settings of a simple variable
90 -- on the left hand side. We call it if we find any error in analyzing
91 -- the assignment, and at the end of processing before setting any new
92 -- current values in place.
93
94 procedure Set_Assignment_Type
95 (Opnd : Node_Id;
96 Opnd_Type : in out Entity_Id);
97 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type
98 -- is the nominal subtype. This procedure is used to deal with cases
99 -- where the nominal subtype must be replaced by the actual subtype.
100
101 -------------------------------
102 -- Diagnose_Non_Variable_Lhs --
103 -------------------------------
104
105 procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
106 begin
107 -- Not worth posting another error if left hand side already
108 -- flagged as being illegal in some respect.
109
110 if Error_Posted (N) then
111 return;
112
113 -- Some special bad cases of entity names
114
115 elsif Is_Entity_Name (N) then
116 declare
117 Ent : constant Entity_Id := Entity (N);
118
119 begin
120 if Ekind (Ent) = E_In_Parameter then
121 Error_Msg_N
122 ("assignment to IN mode parameter not allowed", N);
123
124 -- Renamings of protected private components are turned into
125 -- constants when compiling a protected function. In the case
126 -- of single protected types, the private component appears
127 -- directly.
128
129 elsif (Is_Prival (Ent)
130 and then
131 (Ekind (Current_Scope) = E_Function
132 or else Ekind (Enclosing_Dynamic_Scope (
133 Current_Scope)) = E_Function))
134 or else
135 (Ekind (Ent) = E_Component
136 and then Is_Protected_Type (Scope (Ent)))
137 then
138 Error_Msg_N
139 ("protected function cannot modify protected object", N);
140
141 elsif Ekind (Ent) = E_Loop_Parameter then
142 Error_Msg_N
143 ("assignment to loop parameter not allowed", N);
144
145 else
146 Error_Msg_N
147 ("left hand side of assignment must be a variable", N);
148 end if;
149 end;
150
151 -- For indexed components or selected components, test prefix
152
153 elsif Nkind (N) = N_Indexed_Component then
154 Diagnose_Non_Variable_Lhs (Prefix (N));
155
156 -- Another special case for assignment to discriminant
157
158 elsif Nkind (N) = N_Selected_Component then
159 if Present (Entity (Selector_Name (N)))
160 and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
161 then
162 Error_Msg_N
163 ("assignment to discriminant not allowed", N);
164 else
165 Diagnose_Non_Variable_Lhs (Prefix (N));
166 end if;
167
168 else
169 -- If we fall through, we have no special message to issue!
170
171 Error_Msg_N ("left hand side of assignment must be a variable", N);
172 end if;
173 end Diagnose_Non_Variable_Lhs;
174
175 --------------
176 -- Kill_LHS --
177 --------------
178
179 procedure Kill_Lhs is
180 begin
181 if Is_Entity_Name (Lhs) then
182 declare
183 Ent : constant Entity_Id := Entity (Lhs);
184 begin
185 if Present (Ent) then
186 Kill_Current_Values (Ent);
187 end if;
188 end;
189 end if;
190 end Kill_Lhs;
191
192 -------------------------
193 -- Set_Assignment_Type --
194 -------------------------
195
196 procedure Set_Assignment_Type
197 (Opnd : Node_Id;
198 Opnd_Type : in out Entity_Id)
199 is
200 begin
201 Require_Entity (Opnd);
202
203 -- If the assignment operand is an in-out or out parameter, then we
204 -- get the actual subtype (needed for the unconstrained case).
205 -- If the operand is the actual in an entry declaration, then within
206 -- the accept statement it is replaced with a local renaming, which
207 -- may also have an actual subtype.
208
209 if Is_Entity_Name (Opnd)
210 and then (Ekind (Entity (Opnd)) = E_Out_Parameter
211 or else Ekind (Entity (Opnd)) =
212 E_In_Out_Parameter
213 or else Ekind (Entity (Opnd)) =
214 E_Generic_In_Out_Parameter
215 or else
216 (Ekind (Entity (Opnd)) = E_Variable
217 and then Nkind (Parent (Entity (Opnd))) =
218 N_Object_Renaming_Declaration
219 and then Nkind (Parent (Parent (Entity (Opnd)))) =
220 N_Accept_Statement))
221 then
222 Opnd_Type := Get_Actual_Subtype (Opnd);
223
224 -- If assignment operand is a component reference, then we get the
225 -- actual subtype of the component for the unconstrained case.
226
227 elsif Nkind_In (Opnd, N_Selected_Component, N_Explicit_Dereference)
228 and then not Is_Unchecked_Union (Opnd_Type)
229 then
230 Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
231
232 if Present (Decl) then
233 Insert_Action (N, Decl);
234 Mark_Rewrite_Insertion (Decl);
235 Analyze (Decl);
236 Opnd_Type := Defining_Identifier (Decl);
237 Set_Etype (Opnd, Opnd_Type);
238 Freeze_Itype (Opnd_Type, N);
239
240 elsif Is_Constrained (Etype (Opnd)) then
241 Opnd_Type := Etype (Opnd);
242 end if;
243
244 -- For slice, use the constrained subtype created for the slice
245
246 elsif Nkind (Opnd) = N_Slice then
247 Opnd_Type := Etype (Opnd);
248 end if;
249 end Set_Assignment_Type;
250
251 -- Start of processing for Analyze_Assignment
252
253 begin
254 Mark_Coextensions (N, Rhs);
255
256 Analyze (Rhs);
257 Analyze (Lhs);
258
259 -- Start type analysis for assignment
260
261 T1 := Etype (Lhs);
262
263 -- In the most general case, both Lhs and Rhs can be overloaded, and we
264 -- must compute the intersection of the possible types on each side.
265
266 if Is_Overloaded (Lhs) then
267 declare
268 I : Interp_Index;
269 It : Interp;
270
271 begin
272 T1 := Any_Type;
273 Get_First_Interp (Lhs, I, It);
274
275 while Present (It.Typ) loop
276 if Has_Compatible_Type (Rhs, It.Typ) then
277 if T1 /= Any_Type then
278
279 -- An explicit dereference is overloaded if the prefix
280 -- is. Try to remove the ambiguity on the prefix, the
281 -- error will be posted there if the ambiguity is real.
282
283 if Nkind (Lhs) = N_Explicit_Dereference then
284 declare
285 PI : Interp_Index;
286 PI1 : Interp_Index := 0;
287 PIt : Interp;
288 Found : Boolean;
289
290 begin
291 Found := False;
292 Get_First_Interp (Prefix (Lhs), PI, PIt);
293
294 while Present (PIt.Typ) loop
295 if Is_Access_Type (PIt.Typ)
296 and then Has_Compatible_Type
297 (Rhs, Designated_Type (PIt.Typ))
298 then
299 if Found then
300 PIt :=
301 Disambiguate (Prefix (Lhs),
302 PI1, PI, Any_Type);
303
304 if PIt = No_Interp then
305 Error_Msg_N
306 ("ambiguous left-hand side"
307 & " in assignment", Lhs);
308 exit;
309 else
310 Resolve (Prefix (Lhs), PIt.Typ);
311 end if;
312
313 exit;
314 else
315 Found := True;
316 PI1 := PI;
317 end if;
318 end if;
319
320 Get_Next_Interp (PI, PIt);
321 end loop;
322 end;
323
324 else
325 Error_Msg_N
326 ("ambiguous left-hand side in assignment", Lhs);
327 exit;
328 end if;
329 else
330 T1 := It.Typ;
331 end if;
332 end if;
333
334 Get_Next_Interp (I, It);
335 end loop;
336 end;
337
338 if T1 = Any_Type then
339 Error_Msg_N
340 ("no valid types for left-hand side for assignment", Lhs);
341 Kill_Lhs;
342 return;
343 end if;
344 end if;
345
346 -- The resulting assignment type is T1, so now we will resolve the
347 -- left hand side of the assignment using this determined type.
348
349 Resolve (Lhs, T1);
350
351 -- Cases where Lhs is not a variable
352
353 if not Is_Variable (Lhs) then
354
355 -- Ada 2005 (AI-327): Check assignment to the attribute Priority of
356 -- a protected object.
357
358 declare
359 Ent : Entity_Id;
360 S : Entity_Id;
361
362 begin
363 if Ada_Version >= Ada_2005 then
364
365 -- Handle chains of renamings
366
367 Ent := Lhs;
368 while Nkind (Ent) in N_Has_Entity
369 and then Present (Entity (Ent))
370 and then Present (Renamed_Object (Entity (Ent)))
371 loop
372 Ent := Renamed_Object (Entity (Ent));
373 end loop;
374
375 if (Nkind (Ent) = N_Attribute_Reference
376 and then Attribute_Name (Ent) = Name_Priority)
377
378 -- Renamings of the attribute Priority applied to protected
379 -- objects have been previously expanded into calls to the
380 -- Get_Ceiling run-time subprogram.
381
382 or else
383 (Nkind (Ent) = N_Function_Call
384 and then (Entity (Name (Ent)) = RTE (RE_Get_Ceiling)
385 or else
386 Entity (Name (Ent)) = RTE (RO_PE_Get_Ceiling)))
387 then
388 -- The enclosing subprogram cannot be a protected function
389
390 S := Current_Scope;
391 while not (Is_Subprogram (S)
392 and then Convention (S) = Convention_Protected)
393 and then S /= Standard_Standard
394 loop
395 S := Scope (S);
396 end loop;
397
398 if Ekind (S) = E_Function
399 and then Convention (S) = Convention_Protected
400 then
401 Error_Msg_N
402 ("protected function cannot modify protected object",
403 Lhs);
404 end if;
405
406 -- Changes of the ceiling priority of the protected object
407 -- are only effective if the Ceiling_Locking policy is in
408 -- effect (AARM D.5.2 (5/2)).
409
410 if Locking_Policy /= 'C' then
411 Error_Msg_N ("assignment to the attribute PRIORITY has " &
412 "no effect?", Lhs);
413 Error_Msg_N ("\since no Locking_Policy has been " &
414 "specified", Lhs);
415 end if;
416
417 return;
418 end if;
419 end if;
420 end;
421
422 Diagnose_Non_Variable_Lhs (Lhs);
423 return;
424
425 -- Error of assigning to limited type. We do however allow this in
426 -- certain cases where the front end generates the assignments.
427
428 elsif Is_Limited_Type (T1)
429 and then not Assignment_OK (Lhs)
430 and then not Assignment_OK (Original_Node (Lhs))
431 and then not Is_Value_Type (T1)
432 then
433 -- CPP constructors can only be called in declarations
434
435 if Is_CPP_Constructor_Call (Rhs) then
436 Error_Msg_N ("invalid use of 'C'P'P constructor", Rhs);
437 else
438 Error_Msg_N
439 ("left hand of assignment must not be limited type", Lhs);
440 Explain_Limited_Type (T1, Lhs);
441 end if;
442 return;
443
444 -- Enforce RM 3.9.3 (8): the target of an assignment operation cannot be
445 -- abstract. This is only checked when the assignment Comes_From_Source,
446 -- because in some cases the expander generates such assignments (such
447 -- in the _assign operation for an abstract type).
448
449 elsif Is_Abstract_Type (T1) and then Comes_From_Source (N) then
450 Error_Msg_N
451 ("target of assignment operation must not be abstract", Lhs);
452 end if;
453
454 -- Resolution may have updated the subtype, in case the left-hand
455 -- side is a private protected component. Use the correct subtype
456 -- to avoid scoping issues in the back-end.
457
458 T1 := Etype (Lhs);
459
460 -- Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
461 -- type. For example:
462
463 -- limited with P;
464 -- package Pkg is
465 -- type Acc is access P.T;
466 -- end Pkg;
467
468 -- with Pkg; use Acc;
469 -- procedure Example is
470 -- A, B : Acc;
471 -- begin
472 -- A.all := B.all; -- ERROR
473 -- end Example;
474
475 if Nkind (Lhs) = N_Explicit_Dereference
476 and then Ekind (T1) = E_Incomplete_Type
477 then
478 Error_Msg_N ("invalid use of incomplete type", Lhs);
479 Kill_Lhs;
480 return;
481 end if;
482
483 -- Now we can complete the resolution of the right hand side
484
485 Set_Assignment_Type (Lhs, T1);
486 Resolve (Rhs, T1);
487
488 -- This is the point at which we check for an unset reference
489
490 Check_Unset_Reference (Rhs);
491 Check_Unprotected_Access (Lhs, Rhs);
492
493 -- Remaining steps are skipped if Rhs was syntactically in error
494
495 if Rhs = Error then
496 Kill_Lhs;
497 return;
498 end if;
499
500 T2 := Etype (Rhs);
501
502 if not Covers (T1, T2) then
503 Wrong_Type (Rhs, Etype (Lhs));
504 Kill_Lhs;
505 return;
506 end if;
507
508 -- Ada 2005 (AI-326): In case of explicit dereference of incomplete
509 -- types, use the non-limited view if available
510
511 if Nkind (Rhs) = N_Explicit_Dereference
512 and then Ekind (T2) = E_Incomplete_Type
513 and then Is_Tagged_Type (T2)
514 and then Present (Non_Limited_View (T2))
515 then
516 T2 := Non_Limited_View (T2);
517 end if;
518
519 Set_Assignment_Type (Rhs, T2);
520
521 if Total_Errors_Detected /= 0 then
522 if No (T1) then
523 T1 := Any_Type;
524 end if;
525
526 if No (T2) then
527 T2 := Any_Type;
528 end if;
529 end if;
530
531 if T1 = Any_Type or else T2 = Any_Type then
532 Kill_Lhs;
533 return;
534 end if;
535
536 -- If the rhs is class-wide or dynamically tagged, then require the lhs
537 -- to be class-wide. The case where the rhs is a dynamically tagged call
538 -- to a dispatching operation with a controlling access result is
539 -- excluded from this check, since the target has an access type (and
540 -- no tag propagation occurs in that case).
541
542 if (Is_Class_Wide_Type (T2)
543 or else (Is_Dynamically_Tagged (Rhs)
544 and then not Is_Access_Type (T1)))
545 and then not Is_Class_Wide_Type (T1)
546 then
547 Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
548
549 elsif Is_Class_Wide_Type (T1)
550 and then not Is_Class_Wide_Type (T2)
551 and then not Is_Tag_Indeterminate (Rhs)
552 and then not Is_Dynamically_Tagged (Rhs)
553 then
554 Error_Msg_N ("dynamically tagged expression required!", Rhs);
555 end if;
556
557 -- Propagate the tag from a class-wide target to the rhs when the rhs
558 -- is a tag-indeterminate call.
559
560 if Is_Tag_Indeterminate (Rhs) then
561 if Is_Class_Wide_Type (T1) then
562 Propagate_Tag (Lhs, Rhs);
563
564 elsif Nkind (Rhs) = N_Function_Call
565 and then Is_Entity_Name (Name (Rhs))
566 and then Is_Abstract_Subprogram (Entity (Name (Rhs)))
567 then
568 Error_Msg_N
569 ("call to abstract function must be dispatching", Name (Rhs));
570
571 elsif Nkind (Rhs) = N_Qualified_Expression
572 and then Nkind (Expression (Rhs)) = N_Function_Call
573 and then Is_Entity_Name (Name (Expression (Rhs)))
574 and then
575 Is_Abstract_Subprogram (Entity (Name (Expression (Rhs))))
576 then
577 Error_Msg_N
578 ("call to abstract function must be dispatching",
579 Name (Expression (Rhs)));
580 end if;
581 end if;
582
583 -- Ada 2005 (AI-385): When the lhs type is an anonymous access type,
584 -- apply an implicit conversion of the rhs to that type to force
585 -- appropriate static and run-time accessibility checks. This applies
586 -- as well to anonymous access-to-subprogram types that are component
587 -- subtypes or formal parameters.
588
589 if Ada_Version >= Ada_2005
590 and then Is_Access_Type (T1)
591 then
592 if Is_Local_Anonymous_Access (T1)
593 or else Ekind (T2) = E_Anonymous_Access_Subprogram_Type
594 then
595 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
596 Analyze_And_Resolve (Rhs, T1);
597 end if;
598 end if;
599
600 -- Ada 2005 (AI-231): Assignment to not null variable
601
602 if Ada_Version >= Ada_2005
603 and then Can_Never_Be_Null (T1)
604 and then not Assignment_OK (Lhs)
605 then
606 -- Case where we know the right hand side is null
607
608 if Known_Null (Rhs) then
609 Apply_Compile_Time_Constraint_Error
610 (N => Rhs,
611 Msg => "(Ada 2005) null not allowed in null-excluding objects?",
612 Reason => CE_Null_Not_Allowed);
613
614 -- We still mark this as a possible modification, that's necessary
615 -- to reset Is_True_Constant, and desirable for xref purposes.
616
617 Note_Possible_Modification (Lhs, Sure => True);
618 return;
619
620 -- If we know the right hand side is non-null, then we convert to the
621 -- target type, since we don't need a run time check in that case.
622
623 elsif not Can_Never_Be_Null (T2) then
624 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
625 Analyze_And_Resolve (Rhs, T1);
626 end if;
627 end if;
628
629 if Is_Scalar_Type (T1) then
630 Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
631
632 -- For array types, verify that lengths match. If the right hand side
633 -- if a function call that has been inlined, the assignment has been
634 -- rewritten as a block, and the constraint check will be applied to the
635 -- assignment within the block.
636
637 elsif Is_Array_Type (T1)
638 and then
639 (Nkind (Rhs) /= N_Type_Conversion
640 or else Is_Constrained (Etype (Rhs)))
641 and then
642 (Nkind (Rhs) /= N_Function_Call
643 or else Nkind (N) /= N_Block_Statement)
644 then
645 -- Assignment verifies that the length of the Lsh and Rhs are equal,
646 -- but of course the indexes do not have to match. If the right-hand
647 -- side is a type conversion to an unconstrained type, a length check
648 -- is performed on the expression itself during expansion. In rare
649 -- cases, the redundant length check is computed on an index type
650 -- with a different representation, triggering incorrect code in
651 -- the back end.
652
653 Apply_Length_Check (Rhs, Etype (Lhs));
654
655 else
656 -- Discriminant checks are applied in the course of expansion
657
658 null;
659 end if;
660
661 -- Note: modifications of the Lhs may only be recorded after
662 -- checks have been applied.
663
664 Note_Possible_Modification (Lhs, Sure => True);
665
666 -- ??? a real accessibility check is needed when ???
667
668 -- Post warning for redundant assignment or variable to itself
669
670 if Warn_On_Redundant_Constructs
671
672 -- We only warn for source constructs
673
674 and then Comes_From_Source (N)
675
676 -- Where the object is the same on both sides
677
678 and then Same_Object (Lhs, Original_Node (Rhs))
679
680 -- But exclude the case where the right side was an operation
681 -- that got rewritten (e.g. JUNK + K, where K was known to be
682 -- zero). We don't want to warn in such a case, since it is
683 -- reasonable to write such expressions especially when K is
684 -- defined symbolically in some other package.
685
686 and then Nkind (Original_Node (Rhs)) not in N_Op
687 then
688 if Nkind (Lhs) in N_Has_Entity then
689 Error_Msg_NE -- CODEFIX
690 ("?useless assignment of & to itself!", N, Entity (Lhs));
691 else
692 Error_Msg_N -- CODEFIX
693 ("?useless assignment of object to itself!", N);
694 end if;
695 end if;
696
697 -- Check for non-allowed composite assignment
698
699 if not Support_Composite_Assign_On_Target
700 and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
701 and then (not Has_Size_Clause (T1) or else Esize (T1) > 64)
702 then
703 Error_Msg_CRT ("composite assignment", N);
704 end if;
705
706 -- Check elaboration warning for left side if not in elab code
707
708 if not In_Subprogram_Or_Concurrent_Unit then
709 Check_Elab_Assign (Lhs);
710 end if;
711
712 -- Set Referenced_As_LHS if appropriate. We only set this flag if the
713 -- assignment is a source assignment in the extended main source unit.
714 -- We are not interested in any reference information outside this
715 -- context, or in compiler generated assignment statements.
716
717 if Comes_From_Source (N)
718 and then In_Extended_Main_Source_Unit (Lhs)
719 then
720 Set_Referenced_Modified (Lhs, Out_Param => False);
721 end if;
722
723 -- Final step. If left side is an entity, then we may be able to
724 -- reset the current tracked values to new safe values. We only have
725 -- something to do if the left side is an entity name, and expansion
726 -- has not modified the node into something other than an assignment,
727 -- and of course we only capture values if it is safe to do so.
728
729 if Is_Entity_Name (Lhs)
730 and then Nkind (N) = N_Assignment_Statement
731 then
732 declare
733 Ent : constant Entity_Id := Entity (Lhs);
734
735 begin
736 if Safe_To_Capture_Value (N, Ent) then
737
738 -- If simple variable on left side, warn if this assignment
739 -- blots out another one (rendering it useless) and note
740 -- location of assignment in case no one references value.
741 -- We only do this for source assignments, otherwise we can
742 -- generate bogus warnings when an assignment is rewritten as
743 -- another assignment, and gets tied up with itself.
744
745 -- Note: we don't use Record_Last_Assignment here, because we
746 -- have lots of other stuff to do under control of this test.
747
748 if Warn_On_Modified_Unread
749 and then Is_Assignable (Ent)
750 and then Comes_From_Source (N)
751 and then In_Extended_Main_Source_Unit (Ent)
752 then
753 Warn_On_Useless_Assignment (Ent, N);
754 Set_Last_Assignment (Ent, Lhs);
755 end if;
756
757 -- If we are assigning an access type and the left side is an
758 -- entity, then make sure that the Is_Known_[Non_]Null flags
759 -- properly reflect the state of the entity after assignment.
760
761 if Is_Access_Type (T1) then
762 if Known_Non_Null (Rhs) then
763 Set_Is_Known_Non_Null (Ent, True);
764
765 elsif Known_Null (Rhs)
766 and then not Can_Never_Be_Null (Ent)
767 then
768 Set_Is_Known_Null (Ent, True);
769
770 else
771 Set_Is_Known_Null (Ent, False);
772
773 if not Can_Never_Be_Null (Ent) then
774 Set_Is_Known_Non_Null (Ent, False);
775 end if;
776 end if;
777
778 -- For discrete types, we may be able to set the current value
779 -- if the value is known at compile time.
780
781 elsif Is_Discrete_Type (T1)
782 and then Compile_Time_Known_Value (Rhs)
783 then
784 Set_Current_Value (Ent, Rhs);
785 else
786 Set_Current_Value (Ent, Empty);
787 end if;
788
789 -- If not safe to capture values, kill them
790
791 else
792 Kill_Lhs;
793 end if;
794 end;
795 end if;
796 end Analyze_Assignment;
797
798 -----------------------------
799 -- Analyze_Block_Statement --
800 -----------------------------
801
802 procedure Analyze_Block_Statement (N : Node_Id) is
803 Decls : constant List_Id := Declarations (N);
804 Id : constant Node_Id := Identifier (N);
805 HSS : constant Node_Id := Handled_Statement_Sequence (N);
806
807 begin
808 -- If no handled statement sequence is present, things are really
809 -- messed up, and we just return immediately (this is a defence
810 -- against previous errors).
811
812 if No (HSS) then
813 return;
814 end if;
815
816 -- Normal processing with HSS present
817
818 declare
819 EH : constant List_Id := Exception_Handlers (HSS);
820 Ent : Entity_Id := Empty;
821 S : Entity_Id;
822
823 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
824 -- Recursively save value of this global, will be restored on exit
825
826 begin
827 -- Initialize unblocked exit count for statements of begin block
828 -- plus one for each exception handler that is present.
829
830 Unblocked_Exit_Count := 1;
831
832 if Present (EH) then
833 Unblocked_Exit_Count := Unblocked_Exit_Count + List_Length (EH);
834 end if;
835
836 -- If a label is present analyze it and mark it as referenced
837
838 if Present (Id) then
839 Analyze (Id);
840 Ent := Entity (Id);
841
842 -- An error defense. If we have an identifier, but no entity,
843 -- then something is wrong. If we have previous errors, then
844 -- just remove the identifier and continue, otherwise raise
845 -- an exception.
846
847 if No (Ent) then
848 if Total_Errors_Detected /= 0 then
849 Set_Identifier (N, Empty);
850 else
851 raise Program_Error;
852 end if;
853
854 else
855 Set_Ekind (Ent, E_Block);
856 Generate_Reference (Ent, N, ' ');
857 Generate_Definition (Ent);
858
859 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
860 Set_Label_Construct (Parent (Ent), N);
861 end if;
862 end if;
863 end if;
864
865 -- If no entity set, create a label entity
866
867 if No (Ent) then
868 Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
869 Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
870 Set_Parent (Ent, N);
871 end if;
872
873 Set_Etype (Ent, Standard_Void_Type);
874 Set_Block_Node (Ent, Identifier (N));
875 Push_Scope (Ent);
876
877 if Present (Decls) then
878 Analyze_Declarations (Decls);
879 Check_Completion;
880 Inspect_Deferred_Constant_Completion (Decls);
881 end if;
882
883 Analyze (HSS);
884 Process_End_Label (HSS, 'e', Ent);
885
886 -- If exception handlers are present, then we indicate that
887 -- enclosing scopes contain a block with handlers. We only
888 -- need to mark non-generic scopes.
889
890 if Present (EH) then
891 S := Scope (Ent);
892 loop
893 Set_Has_Nested_Block_With_Handler (S);
894 exit when Is_Overloadable (S)
895 or else Ekind (S) = E_Package
896 or else Is_Generic_Unit (S);
897 S := Scope (S);
898 end loop;
899 end if;
900
901 Check_References (Ent);
902 Warn_On_Useless_Assignments (Ent);
903 End_Scope;
904
905 if Unblocked_Exit_Count = 0 then
906 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
907 Check_Unreachable_Code (N);
908 else
909 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
910 end if;
911 end;
912 end Analyze_Block_Statement;
913
914 ----------------------------
915 -- Analyze_Case_Statement --
916 ----------------------------
917
918 procedure Analyze_Case_Statement (N : Node_Id) is
919 Exp : Node_Id;
920 Exp_Type : Entity_Id;
921 Exp_Btype : Entity_Id;
922 Last_Choice : Nat;
923 Dont_Care : Boolean;
924 Others_Present : Boolean;
925
926 pragma Warnings (Off, Last_Choice);
927 pragma Warnings (Off, Dont_Care);
928 -- Don't care about assigned values
929
930 Statements_Analyzed : Boolean := False;
931 -- Set True if at least some statement sequences get analyzed.
932 -- If False on exit, means we had a serious error that prevented
933 -- full analysis of the case statement, and as a result it is not
934 -- a good idea to output warning messages about unreachable code.
935
936 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
937 -- Recursively save value of this global, will be restored on exit
938
939 procedure Non_Static_Choice_Error (Choice : Node_Id);
940 -- Error routine invoked by the generic instantiation below when
941 -- the case statement has a non static choice.
942
943 procedure Process_Statements (Alternative : Node_Id);
944 -- Analyzes all the statements associated with a case alternative.
945 -- Needed by the generic instantiation below.
946
947 package Case_Choices_Processing is new
948 Generic_Choices_Processing
949 (Get_Alternatives => Alternatives,
950 Get_Choices => Discrete_Choices,
951 Process_Empty_Choice => No_OP,
952 Process_Non_Static_Choice => Non_Static_Choice_Error,
953 Process_Associated_Node => Process_Statements);
954 use Case_Choices_Processing;
955 -- Instantiation of the generic choice processing package
956
957 -----------------------------
958 -- Non_Static_Choice_Error --
959 -----------------------------
960
961 procedure Non_Static_Choice_Error (Choice : Node_Id) is
962 begin
963 Flag_Non_Static_Expr
964 ("choice given in case statement is not static!", Choice);
965 end Non_Static_Choice_Error;
966
967 ------------------------
968 -- Process_Statements --
969 ------------------------
970
971 procedure Process_Statements (Alternative : Node_Id) is
972 Choices : constant List_Id := Discrete_Choices (Alternative);
973 Ent : Entity_Id;
974
975 begin
976 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
977 Statements_Analyzed := True;
978
979 -- An interesting optimization. If the case statement expression
980 -- is a simple entity, then we can set the current value within
981 -- an alternative if the alternative has one possible value.
982
983 -- case N is
984 -- when 1 => alpha
985 -- when 2 | 3 => beta
986 -- when others => gamma
987
988 -- Here we know that N is initially 1 within alpha, but for beta
989 -- and gamma, we do not know anything more about the initial value.
990
991 if Is_Entity_Name (Exp) then
992 Ent := Entity (Exp);
993
994 if Ekind_In (Ent, E_Variable,
995 E_In_Out_Parameter,
996 E_Out_Parameter)
997 then
998 if List_Length (Choices) = 1
999 and then Nkind (First (Choices)) in N_Subexpr
1000 and then Compile_Time_Known_Value (First (Choices))
1001 then
1002 Set_Current_Value (Entity (Exp), First (Choices));
1003 end if;
1004
1005 Analyze_Statements (Statements (Alternative));
1006
1007 -- After analyzing the case, set the current value to empty
1008 -- since we won't know what it is for the next alternative
1009 -- (unless reset by this same circuit), or after the case.
1010
1011 Set_Current_Value (Entity (Exp), Empty);
1012 return;
1013 end if;
1014 end if;
1015
1016 -- Case where expression is not an entity name of a variable
1017
1018 Analyze_Statements (Statements (Alternative));
1019 end Process_Statements;
1020
1021 -- Table to record choices. Put after subprograms since we make
1022 -- a call to Number_Of_Choices to get the right number of entries.
1023
1024 Case_Table : Choice_Table_Type (1 .. Number_Of_Choices (N));
1025 pragma Warnings (Off, Case_Table);
1026
1027 -- Start of processing for Analyze_Case_Statement
1028
1029 begin
1030 Unblocked_Exit_Count := 0;
1031 Exp := Expression (N);
1032 Analyze (Exp);
1033
1034 -- The expression must be of any discrete type. In rare cases, the
1035 -- expander constructs a case statement whose expression has a private
1036 -- type whose full view is discrete. This can happen when generating
1037 -- a stream operation for a variant type after the type is frozen,
1038 -- when the partial of view of the type of the discriminant is private.
1039 -- In that case, use the full view to analyze case alternatives.
1040
1041 if not Is_Overloaded (Exp)
1042 and then not Comes_From_Source (N)
1043 and then Is_Private_Type (Etype (Exp))
1044 and then Present (Full_View (Etype (Exp)))
1045 and then Is_Discrete_Type (Full_View (Etype (Exp)))
1046 then
1047 Resolve (Exp, Etype (Exp));
1048 Exp_Type := Full_View (Etype (Exp));
1049
1050 else
1051 Analyze_And_Resolve (Exp, Any_Discrete);
1052 Exp_Type := Etype (Exp);
1053 end if;
1054
1055 Check_Unset_Reference (Exp);
1056 Exp_Btype := Base_Type (Exp_Type);
1057
1058 -- The expression must be of a discrete type which must be determinable
1059 -- independently of the context in which the expression occurs, but
1060 -- using the fact that the expression must be of a discrete type.
1061 -- Moreover, the type this expression must not be a character literal
1062 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
1063
1064 -- If error already reported by Resolve, nothing more to do
1065
1066 if Exp_Btype = Any_Discrete
1067 or else Exp_Btype = Any_Type
1068 then
1069 return;
1070
1071 elsif Exp_Btype = Any_Character then
1072 Error_Msg_N
1073 ("character literal as case expression is ambiguous", Exp);
1074 return;
1075
1076 elsif Ada_Version = Ada_83
1077 and then (Is_Generic_Type (Exp_Btype)
1078 or else Is_Generic_Type (Root_Type (Exp_Btype)))
1079 then
1080 Error_Msg_N
1081 ("(Ada 83) case expression cannot be of a generic type", Exp);
1082 return;
1083 end if;
1084
1085 -- If the case expression is a formal object of mode in out, then
1086 -- treat it as having a nonstatic subtype by forcing use of the base
1087 -- type (which has to get passed to Check_Case_Choices below). Also
1088 -- use base type when the case expression is parenthesized.
1089
1090 if Paren_Count (Exp) > 0
1091 or else (Is_Entity_Name (Exp)
1092 and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
1093 then
1094 Exp_Type := Exp_Btype;
1095 end if;
1096
1097 -- Call instantiated Analyze_Choices which does the rest of the work
1098
1099 Analyze_Choices
1100 (N, Exp_Type, Case_Table, Last_Choice, Dont_Care, Others_Present);
1101
1102 if Exp_Type = Universal_Integer and then not Others_Present then
1103 Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
1104 end if;
1105
1106 -- If all our exits were blocked by unconditional transfers of control,
1107 -- then the entire CASE statement acts as an unconditional transfer of
1108 -- control, so treat it like one, and check unreachable code. Skip this
1109 -- test if we had serious errors preventing any statement analysis.
1110
1111 if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
1112 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1113 Check_Unreachable_Code (N);
1114 else
1115 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1116 end if;
1117
1118 if not Expander_Active
1119 and then Compile_Time_Known_Value (Expression (N))
1120 and then Serious_Errors_Detected = 0
1121 then
1122 declare
1123 Chosen : constant Node_Id := Find_Static_Alternative (N);
1124 Alt : Node_Id;
1125
1126 begin
1127 Alt := First (Alternatives (N));
1128 while Present (Alt) loop
1129 if Alt /= Chosen then
1130 Remove_Warning_Messages (Statements (Alt));
1131 end if;
1132
1133 Next (Alt);
1134 end loop;
1135 end;
1136 end if;
1137 end Analyze_Case_Statement;
1138
1139 ----------------------------
1140 -- Analyze_Exit_Statement --
1141 ----------------------------
1142
1143 -- If the exit includes a name, it must be the name of a currently open
1144 -- loop. Otherwise there must be an innermost open loop on the stack,
1145 -- to which the statement implicitly refers.
1146
1147 procedure Analyze_Exit_Statement (N : Node_Id) is
1148 Target : constant Node_Id := Name (N);
1149 Cond : constant Node_Id := Condition (N);
1150 Scope_Id : Entity_Id;
1151 U_Name : Entity_Id;
1152 Kind : Entity_Kind;
1153
1154 begin
1155 if No (Cond) then
1156 Check_Unreachable_Code (N);
1157 end if;
1158
1159 if Present (Target) then
1160 Analyze (Target);
1161 U_Name := Entity (Target);
1162
1163 if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
1164 Error_Msg_N ("invalid loop name in exit statement", N);
1165 return;
1166 else
1167 Set_Has_Exit (U_Name);
1168 end if;
1169
1170 else
1171 U_Name := Empty;
1172 end if;
1173
1174 for J in reverse 0 .. Scope_Stack.Last loop
1175 Scope_Id := Scope_Stack.Table (J).Entity;
1176 Kind := Ekind (Scope_Id);
1177
1178 if Kind = E_Loop
1179 and then (No (Target) or else Scope_Id = U_Name) then
1180 Set_Has_Exit (Scope_Id);
1181 exit;
1182
1183 elsif Kind = E_Block
1184 or else Kind = E_Loop
1185 or else Kind = E_Return_Statement
1186 then
1187 null;
1188
1189 else
1190 Error_Msg_N
1191 ("cannot exit from program unit or accept statement", N);
1192 return;
1193 end if;
1194 end loop;
1195
1196 -- Verify that if present the condition is a Boolean expression
1197
1198 if Present (Cond) then
1199 Analyze_And_Resolve (Cond, Any_Boolean);
1200 Check_Unset_Reference (Cond);
1201 end if;
1202
1203 -- Chain exit statement to associated loop entity
1204
1205 Set_Next_Exit_Statement (N, First_Exit_Statement (Scope_Id));
1206 Set_First_Exit_Statement (Scope_Id, N);
1207
1208 -- Since the exit may take us out of a loop, any previous assignment
1209 -- statement is not useless, so clear last assignment indications. It
1210 -- is OK to keep other current values, since if the exit statement
1211 -- does not exit, then the current values are still valid.
1212
1213 Kill_Current_Values (Last_Assignment_Only => True);
1214 end Analyze_Exit_Statement;
1215
1216 ----------------------------
1217 -- Analyze_Goto_Statement --
1218 ----------------------------
1219
1220 procedure Analyze_Goto_Statement (N : Node_Id) is
1221 Label : constant Node_Id := Name (N);
1222 Scope_Id : Entity_Id;
1223 Label_Scope : Entity_Id;
1224 Label_Ent : Entity_Id;
1225
1226 begin
1227 Check_Unreachable_Code (N);
1228 Kill_Current_Values (Last_Assignment_Only => True);
1229
1230 Analyze (Label);
1231 Label_Ent := Entity (Label);
1232
1233 -- Ignore previous error
1234
1235 if Label_Ent = Any_Id then
1236 return;
1237
1238 -- We just have a label as the target of a goto
1239
1240 elsif Ekind (Label_Ent) /= E_Label then
1241 Error_Msg_N ("target of goto statement must be a label", Label);
1242 return;
1243
1244 -- Check that the target of the goto is reachable according to Ada
1245 -- scoping rules. Note: the special gotos we generate for optimizing
1246 -- local handling of exceptions would violate these rules, but we mark
1247 -- such gotos as analyzed when built, so this code is never entered.
1248
1249 elsif not Reachable (Label_Ent) then
1250 Error_Msg_N ("target of goto statement is not reachable", Label);
1251 return;
1252 end if;
1253
1254 -- Here if goto passes initial validity checks
1255
1256 Label_Scope := Enclosing_Scope (Label_Ent);
1257
1258 for J in reverse 0 .. Scope_Stack.Last loop
1259 Scope_Id := Scope_Stack.Table (J).Entity;
1260
1261 if Label_Scope = Scope_Id
1262 or else (Ekind (Scope_Id) /= E_Block
1263 and then Ekind (Scope_Id) /= E_Loop
1264 and then Ekind (Scope_Id) /= E_Return_Statement)
1265 then
1266 if Scope_Id /= Label_Scope then
1267 Error_Msg_N
1268 ("cannot exit from program unit or accept statement", N);
1269 end if;
1270
1271 return;
1272 end if;
1273 end loop;
1274
1275 raise Program_Error;
1276 end Analyze_Goto_Statement;
1277
1278 --------------------------
1279 -- Analyze_If_Statement --
1280 --------------------------
1281
1282 -- A special complication arises in the analysis of if statements
1283
1284 -- The expander has circuitry to completely delete code that it
1285 -- can tell will not be executed (as a result of compile time known
1286 -- conditions). In the analyzer, we ensure that code that will be
1287 -- deleted in this manner is analyzed but not expanded. This is
1288 -- obviously more efficient, but more significantly, difficulties
1289 -- arise if code is expanded and then eliminated (e.g. exception
1290 -- table entries disappear). Similarly, itypes generated in deleted
1291 -- code must be frozen from start, because the nodes on which they
1292 -- depend will not be available at the freeze point.
1293
1294 procedure Analyze_If_Statement (N : Node_Id) is
1295 E : Node_Id;
1296
1297 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1298 -- Recursively save value of this global, will be restored on exit
1299
1300 Save_In_Deleted_Code : Boolean;
1301
1302 Del : Boolean := False;
1303 -- This flag gets set True if a True condition has been found,
1304 -- which means that remaining ELSE/ELSIF parts are deleted.
1305
1306 procedure Analyze_Cond_Then (Cnode : Node_Id);
1307 -- This is applied to either the N_If_Statement node itself or
1308 -- to an N_Elsif_Part node. It deals with analyzing the condition
1309 -- and the THEN statements associated with it.
1310
1311 -----------------------
1312 -- Analyze_Cond_Then --
1313 -----------------------
1314
1315 procedure Analyze_Cond_Then (Cnode : Node_Id) is
1316 Cond : constant Node_Id := Condition (Cnode);
1317 Tstm : constant List_Id := Then_Statements (Cnode);
1318
1319 begin
1320 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1321 Analyze_And_Resolve (Cond, Any_Boolean);
1322 Check_Unset_Reference (Cond);
1323 Set_Current_Value_Condition (Cnode);
1324
1325 -- If already deleting, then just analyze then statements
1326
1327 if Del then
1328 Analyze_Statements (Tstm);
1329
1330 -- Compile time known value, not deleting yet
1331
1332 elsif Compile_Time_Known_Value (Cond) then
1333 Save_In_Deleted_Code := In_Deleted_Code;
1334
1335 -- If condition is True, then analyze the THEN statements
1336 -- and set no expansion for ELSE and ELSIF parts.
1337
1338 if Is_True (Expr_Value (Cond)) then
1339 Analyze_Statements (Tstm);
1340 Del := True;
1341 Expander_Mode_Save_And_Set (False);
1342 In_Deleted_Code := True;
1343
1344 -- If condition is False, analyze THEN with expansion off
1345
1346 else -- Is_False (Expr_Value (Cond))
1347 Expander_Mode_Save_And_Set (False);
1348 In_Deleted_Code := True;
1349 Analyze_Statements (Tstm);
1350 Expander_Mode_Restore;
1351 In_Deleted_Code := Save_In_Deleted_Code;
1352 end if;
1353
1354 -- Not known at compile time, not deleting, normal analysis
1355
1356 else
1357 Analyze_Statements (Tstm);
1358 end if;
1359 end Analyze_Cond_Then;
1360
1361 -- Start of Analyze_If_Statement
1362
1363 begin
1364 -- Initialize exit count for else statements. If there is no else
1365 -- part, this count will stay non-zero reflecting the fact that the
1366 -- uncovered else case is an unblocked exit.
1367
1368 Unblocked_Exit_Count := 1;
1369 Analyze_Cond_Then (N);
1370
1371 -- Now to analyze the elsif parts if any are present
1372
1373 if Present (Elsif_Parts (N)) then
1374 E := First (Elsif_Parts (N));
1375 while Present (E) loop
1376 Analyze_Cond_Then (E);
1377 Next (E);
1378 end loop;
1379 end if;
1380
1381 if Present (Else_Statements (N)) then
1382 Analyze_Statements (Else_Statements (N));
1383 end if;
1384
1385 -- If all our exits were blocked by unconditional transfers of control,
1386 -- then the entire IF statement acts as an unconditional transfer of
1387 -- control, so treat it like one, and check unreachable code.
1388
1389 if Unblocked_Exit_Count = 0 then
1390 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1391 Check_Unreachable_Code (N);
1392 else
1393 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1394 end if;
1395
1396 if Del then
1397 Expander_Mode_Restore;
1398 In_Deleted_Code := Save_In_Deleted_Code;
1399 end if;
1400
1401 if not Expander_Active
1402 and then Compile_Time_Known_Value (Condition (N))
1403 and then Serious_Errors_Detected = 0
1404 then
1405 if Is_True (Expr_Value (Condition (N))) then
1406 Remove_Warning_Messages (Else_Statements (N));
1407
1408 if Present (Elsif_Parts (N)) then
1409 E := First (Elsif_Parts (N));
1410 while Present (E) loop
1411 Remove_Warning_Messages (Then_Statements (E));
1412 Next (E);
1413 end loop;
1414 end if;
1415
1416 else
1417 Remove_Warning_Messages (Then_Statements (N));
1418 end if;
1419 end if;
1420 end Analyze_If_Statement;
1421
1422 ----------------------------------------
1423 -- Analyze_Implicit_Label_Declaration --
1424 ----------------------------------------
1425
1426 -- An implicit label declaration is generated in the innermost
1427 -- enclosing declarative part. This is done for labels as well as
1428 -- block and loop names.
1429
1430 -- Note: any changes in this routine may need to be reflected in
1431 -- Analyze_Label_Entity.
1432
1433 procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
1434 Id : constant Node_Id := Defining_Identifier (N);
1435 begin
1436 Enter_Name (Id);
1437 Set_Ekind (Id, E_Label);
1438 Set_Etype (Id, Standard_Void_Type);
1439 Set_Enclosing_Scope (Id, Current_Scope);
1440 end Analyze_Implicit_Label_Declaration;
1441
1442 ------------------------------
1443 -- Analyze_Iteration_Scheme --
1444 ------------------------------
1445
1446 procedure Analyze_Iteration_Scheme (N : Node_Id) is
1447
1448 procedure Process_Bounds (R : Node_Id);
1449 -- If the iteration is given by a range, create temporaries and
1450 -- assignment statements block to capture the bounds and perform
1451 -- required finalization actions in case a bound includes a function
1452 -- call that uses the temporary stack. We first pre-analyze a copy of
1453 -- the range in order to determine the expected type, and analyze and
1454 -- resolve the original bounds.
1455
1456 procedure Check_Controlled_Array_Attribute (DS : Node_Id);
1457 -- If the bounds are given by a 'Range reference on a function call
1458 -- that returns a controlled array, introduce an explicit declaration
1459 -- to capture the bounds, so that the function result can be finalized
1460 -- in timely fashion.
1461
1462 --------------------
1463 -- Process_Bounds --
1464 --------------------
1465
1466 procedure Process_Bounds (R : Node_Id) is
1467 Loc : constant Source_Ptr := Sloc (N);
1468 R_Copy : constant Node_Id := New_Copy_Tree (R);
1469 Lo : constant Node_Id := Low_Bound (R);
1470 Hi : constant Node_Id := High_Bound (R);
1471 New_Lo_Bound : Node_Id;
1472 New_Hi_Bound : Node_Id;
1473 Typ : Entity_Id;
1474 Save_Analysis : Boolean;
1475
1476 function One_Bound
1477 (Original_Bound : Node_Id;
1478 Analyzed_Bound : Node_Id) return Node_Id;
1479 -- Capture value of bound and return captured value
1480
1481 ---------------
1482 -- One_Bound --
1483 ---------------
1484
1485 function One_Bound
1486 (Original_Bound : Node_Id;
1487 Analyzed_Bound : Node_Id) return Node_Id
1488 is
1489 Assign : Node_Id;
1490 Id : Entity_Id;
1491 Decl : Node_Id;
1492
1493 begin
1494 -- If the bound is a constant or an object, no need for a separate
1495 -- declaration. If the bound is the result of previous expansion
1496 -- it is already analyzed and should not be modified. Note that
1497 -- the Bound will be resolved later, if needed, as part of the
1498 -- call to Make_Index (literal bounds may need to be resolved to
1499 -- type Integer).
1500
1501 if Analyzed (Original_Bound) then
1502 return Original_Bound;
1503
1504 elsif Nkind_In (Analyzed_Bound, N_Integer_Literal,
1505 N_Character_Literal)
1506 or else Is_Entity_Name (Analyzed_Bound)
1507 then
1508 Analyze_And_Resolve (Original_Bound, Typ);
1509 return Original_Bound;
1510 end if;
1511
1512 -- Here we need to capture the value
1513
1514 Analyze_And_Resolve (Original_Bound, Typ);
1515
1516 Id := Make_Temporary (Loc, 'S', Original_Bound);
1517
1518 -- Normally, the best approach is simply to generate a constant
1519 -- declaration that captures the bound. However, there is a nasty
1520 -- case where this is wrong. If the bound is complex, and has a
1521 -- possible use of the secondary stack, we need to generate a
1522 -- separate assignment statement to ensure the creation of a block
1523 -- which will release the secondary stack.
1524
1525 -- We prefer the constant declaration, since it leaves us with a
1526 -- proper trace of the value, useful in optimizations that get rid
1527 -- of junk range checks.
1528
1529 -- Probably we want something like the Side_Effect_Free routine
1530 -- in Exp_Util, but for now, we just optimize the cases of 'Last
1531 -- and 'First applied to an entity, since these are the important
1532 -- cases for range check optimizations.
1533
1534 if Nkind (Original_Bound) = N_Attribute_Reference
1535 and then (Attribute_Name (Original_Bound) = Name_First
1536 or else
1537 Attribute_Name (Original_Bound) = Name_Last)
1538 and then Is_Entity_Name (Prefix (Original_Bound))
1539 then
1540 Decl :=
1541 Make_Object_Declaration (Loc,
1542 Defining_Identifier => Id,
1543 Constant_Present => True,
1544 Object_Definition => New_Occurrence_Of (Typ, Loc),
1545 Expression => Relocate_Node (Original_Bound));
1546
1547 Insert_Before (Parent (N), Decl);
1548 Analyze (Decl);
1549 Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
1550 return Expression (Decl);
1551 end if;
1552
1553 -- Here we make a declaration with a separate assignment statement
1554
1555 Decl :=
1556 Make_Object_Declaration (Loc,
1557 Defining_Identifier => Id,
1558 Object_Definition => New_Occurrence_Of (Typ, Loc));
1559
1560 Insert_Before (Parent (N), Decl);
1561 Analyze (Decl);
1562
1563 Assign :=
1564 Make_Assignment_Statement (Loc,
1565 Name => New_Occurrence_Of (Id, Loc),
1566 Expression => Relocate_Node (Original_Bound));
1567
1568 Insert_Before (Parent (N), Assign);
1569 Analyze (Assign);
1570
1571 Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
1572
1573 if Nkind (Assign) = N_Assignment_Statement then
1574 return Expression (Assign);
1575 else
1576 return Original_Bound;
1577 end if;
1578 end One_Bound;
1579
1580 -- Start of processing for Process_Bounds
1581
1582 begin
1583 -- Determine expected type of range by analyzing separate copy
1584 -- Do the analysis and resolution of the copy of the bounds with
1585 -- expansion disabled, to prevent the generation of finalization
1586 -- actions on each bound. This prevents memory leaks when the
1587 -- bounds contain calls to functions returning controlled arrays.
1588
1589 Set_Parent (R_Copy, Parent (R));
1590 Save_Analysis := Full_Analysis;
1591 Full_Analysis := False;
1592 Expander_Mode_Save_And_Set (False);
1593
1594 Analyze (R_Copy);
1595
1596 if Is_Overloaded (R_Copy) then
1597
1598 -- Apply preference rules for range of predefined integer types,
1599 -- or diagnose true ambiguity.
1600
1601 declare
1602 I : Interp_Index;
1603 It : Interp;
1604 Found : Entity_Id := Empty;
1605
1606 begin
1607 Get_First_Interp (R_Copy, I, It);
1608 while Present (It.Typ) loop
1609 if Is_Discrete_Type (It.Typ) then
1610 if No (Found) then
1611 Found := It.Typ;
1612 else
1613 if Scope (Found) = Standard_Standard then
1614 null;
1615
1616 elsif Scope (It.Typ) = Standard_Standard then
1617 Found := It.Typ;
1618
1619 else
1620 -- Both of them are user-defined
1621
1622 Error_Msg_N
1623 ("ambiguous bounds in range of iteration",
1624 R_Copy);
1625 Error_Msg_N ("\possible interpretations:", R_Copy);
1626 Error_Msg_NE ("\\} ", R_Copy, Found);
1627 Error_Msg_NE ("\\} ", R_Copy, It.Typ);
1628 exit;
1629 end if;
1630 end if;
1631 end if;
1632
1633 Get_Next_Interp (I, It);
1634 end loop;
1635 end;
1636 end if;
1637
1638 Resolve (R_Copy);
1639 Expander_Mode_Restore;
1640 Full_Analysis := Save_Analysis;
1641
1642 Typ := Etype (R_Copy);
1643
1644 -- If the type of the discrete range is Universal_Integer, then
1645 -- the bound's type must be resolved to Integer, and any object
1646 -- used to hold the bound must also have type Integer, unless the
1647 -- literal bounds are constant-folded expressions that carry a user-
1648 -- defined type.
1649
1650 if Typ = Universal_Integer then
1651 if Nkind (Lo) = N_Integer_Literal
1652 and then Present (Etype (Lo))
1653 and then Scope (Etype (Lo)) /= Standard_Standard
1654 then
1655 Typ := Etype (Lo);
1656
1657 elsif Nkind (Hi) = N_Integer_Literal
1658 and then Present (Etype (Hi))
1659 and then Scope (Etype (Hi)) /= Standard_Standard
1660 then
1661 Typ := Etype (Hi);
1662
1663 else
1664 Typ := Standard_Integer;
1665 end if;
1666 end if;
1667
1668 Set_Etype (R, Typ);
1669
1670 New_Lo_Bound := One_Bound (Lo, Low_Bound (R_Copy));
1671 New_Hi_Bound := One_Bound (Hi, High_Bound (R_Copy));
1672
1673 -- Propagate staticness to loop range itself, in case the
1674 -- corresponding subtype is static.
1675
1676 if New_Lo_Bound /= Lo
1677 and then Is_Static_Expression (New_Lo_Bound)
1678 then
1679 Rewrite (Low_Bound (R), New_Copy (New_Lo_Bound));
1680 end if;
1681
1682 if New_Hi_Bound /= Hi
1683 and then Is_Static_Expression (New_Hi_Bound)
1684 then
1685 Rewrite (High_Bound (R), New_Copy (New_Hi_Bound));
1686 end if;
1687 end Process_Bounds;
1688
1689 --------------------------------------
1690 -- Check_Controlled_Array_Attribute --
1691 --------------------------------------
1692
1693 procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
1694 begin
1695 if Nkind (DS) = N_Attribute_Reference
1696 and then Is_Entity_Name (Prefix (DS))
1697 and then Ekind (Entity (Prefix (DS))) = E_Function
1698 and then Is_Array_Type (Etype (Entity (Prefix (DS))))
1699 and then
1700 Is_Controlled (
1701 Component_Type (Etype (Entity (Prefix (DS)))))
1702 and then Expander_Active
1703 then
1704 declare
1705 Loc : constant Source_Ptr := Sloc (N);
1706 Arr : constant Entity_Id := Etype (Entity (Prefix (DS)));
1707 Indx : constant Entity_Id :=
1708 Base_Type (Etype (First_Index (Arr)));
1709 Subt : constant Entity_Id := Make_Temporary (Loc, 'S');
1710 Decl : Node_Id;
1711
1712 begin
1713 Decl :=
1714 Make_Subtype_Declaration (Loc,
1715 Defining_Identifier => Subt,
1716 Subtype_Indication =>
1717 Make_Subtype_Indication (Loc,
1718 Subtype_Mark => New_Reference_To (Indx, Loc),
1719 Constraint =>
1720 Make_Range_Constraint (Loc,
1721 Relocate_Node (DS))));
1722 Insert_Before (Parent (N), Decl);
1723 Analyze (Decl);
1724
1725 Rewrite (DS,
1726 Make_Attribute_Reference (Loc,
1727 Prefix => New_Reference_To (Subt, Loc),
1728 Attribute_Name => Attribute_Name (DS)));
1729 Analyze (DS);
1730 end;
1731 end if;
1732 end Check_Controlled_Array_Attribute;
1733
1734 -- Start of processing for Analyze_Iteration_Scheme
1735
1736 begin
1737 if Analyzed (N) then
1738 return;
1739 end if;
1740
1741 -- For an infinite loop, there is no iteration scheme
1742
1743 if No (N) then
1744 return;
1745
1746 else
1747 declare
1748 Cond : constant Node_Id := Condition (N);
1749
1750 begin
1751 -- For WHILE loop, verify that the condition is a Boolean
1752 -- expression and resolve and check it.
1753
1754 if Present (Cond) then
1755 Analyze_And_Resolve (Cond, Any_Boolean);
1756 Check_Unset_Reference (Cond);
1757 Set_Current_Value_Condition (N);
1758 return;
1759
1760 elsif Present (Iterator_Specification (N)) then
1761 Analyze_Iterator_Specification (Iterator_Specification (N));
1762
1763 -- Else we have a FOR loop
1764
1765 else
1766 declare
1767 LP : constant Node_Id := Loop_Parameter_Specification (N);
1768 Id : constant Entity_Id := Defining_Identifier (LP);
1769 DS : constant Node_Id := Discrete_Subtype_Definition (LP);
1770
1771 begin
1772 Enter_Name (Id);
1773
1774 -- We always consider the loop variable to be referenced,
1775 -- since the loop may be used just for counting purposes.
1776
1777 Generate_Reference (Id, N, ' ');
1778
1779 -- Check for case of loop variable hiding a local
1780 -- variable (used later on to give a nice warning
1781 -- if the hidden variable is never assigned).
1782
1783 declare
1784 H : constant Entity_Id := Homonym (Id);
1785 begin
1786 if Present (H)
1787 and then Enclosing_Dynamic_Scope (H) =
1788 Enclosing_Dynamic_Scope (Id)
1789 and then Ekind (H) = E_Variable
1790 and then Is_Discrete_Type (Etype (H))
1791 then
1792 Set_Hiding_Loop_Variable (H, Id);
1793 end if;
1794 end;
1795
1796 -- Now analyze the subtype definition. If it is
1797 -- a range, create temporaries for bounds.
1798
1799 if Nkind (DS) = N_Range
1800 and then Expander_Active
1801 then
1802 Process_Bounds (DS);
1803 else
1804 Analyze (DS);
1805
1806 if Nkind (DS) = N_Function_Call
1807 or else
1808 (Is_Entity_Name (DS)
1809 and then not Is_Type (Entity (DS)))
1810 then
1811
1812 -- this is an iterator specification. Rewrite as
1813 -- such and analyze.
1814
1815 declare
1816 I_Spec : constant Node_Id :=
1817 Make_Iterator_Specification (Sloc (LP),
1818 Defining_Identifier => Relocate_Node (Id),
1819 Name => Relocate_Node (DS),
1820 Subtype_Indication => Empty,
1821 Reverse_Present => Reverse_Present (LP));
1822
1823 begin
1824 Set_Iterator_Specification (N, I_Spec);
1825 Set_Loop_Parameter_Specification (N, Empty);
1826 Analyze_Iterator_Specification (I_Spec);
1827 return;
1828 end;
1829 end if;
1830 end if;
1831
1832 if DS = Error then
1833 return;
1834 end if;
1835
1836 -- The subtype indication may denote the completion
1837 -- of an incomplete type declaration.
1838
1839 if Is_Entity_Name (DS)
1840 and then Present (Entity (DS))
1841 and then Is_Type (Entity (DS))
1842 and then Ekind (Entity (DS)) = E_Incomplete_Type
1843 then
1844 Set_Entity (DS, Get_Full_View (Entity (DS)));
1845 Set_Etype (DS, Entity (DS));
1846 end if;
1847
1848 if not Is_Discrete_Type (Etype (DS)) then
1849 Wrong_Type (DS, Any_Discrete);
1850 Set_Etype (DS, Any_Type);
1851 end if;
1852
1853 Check_Controlled_Array_Attribute (DS);
1854
1855 Make_Index (DS, LP);
1856
1857 Set_Ekind (Id, E_Loop_Parameter);
1858 Set_Etype (Id, Etype (DS));
1859
1860 -- Treat a range as an implicit reference to the type, to
1861 -- inhibit spurious warnings.
1862
1863 Generate_Reference (Base_Type (Etype (DS)), N, ' ');
1864 Set_Is_Known_Valid (Id, True);
1865
1866 -- The loop is not a declarative part, so the only entity
1867 -- declared "within" must be frozen explicitly.
1868
1869 declare
1870 Flist : constant List_Id := Freeze_Entity (Id, N);
1871 begin
1872 if Is_Non_Empty_List (Flist) then
1873 Insert_Actions (N, Flist);
1874 end if;
1875 end;
1876
1877 -- Check for null or possibly null range and issue warning.
1878 -- We suppress such messages in generic templates and
1879 -- instances, because in practice they tend to be dubious
1880 -- in these cases.
1881
1882 if Nkind (DS) = N_Range
1883 and then Comes_From_Source (N)
1884 then
1885 declare
1886 L : constant Node_Id := Low_Bound (DS);
1887 H : constant Node_Id := High_Bound (DS);
1888
1889 begin
1890 -- If range of loop is null, issue warning
1891
1892 if Compile_Time_Compare
1893 (L, H, Assume_Valid => True) = GT
1894 then
1895 -- Suppress the warning if inside a generic
1896 -- template or instance, since in practice
1897 -- they tend to be dubious in these cases since
1898 -- they can result from intended parametrization.
1899
1900 if not Inside_A_Generic
1901 and then not In_Instance
1902 then
1903 -- Specialize msg if invalid values could make
1904 -- the loop non-null after all.
1905
1906 if Compile_Time_Compare
1907 (L, H, Assume_Valid => False) = GT
1908 then
1909 Error_Msg_N
1910 ("?loop range is null, "
1911 & "loop will not execute",
1912 DS);
1913
1914 -- Since we know the range of the loop is
1915 -- null, set the appropriate flag to remove
1916 -- the loop entirely during expansion.
1917
1918 Set_Is_Null_Loop (Parent (N));
1919
1920 -- Here is where the loop could execute because
1921 -- of invalid values, so issue appropriate
1922 -- message and in this case we do not set the
1923 -- Is_Null_Loop flag since the loop may execute.
1924
1925 else
1926 Error_Msg_N
1927 ("?loop range may be null, "
1928 & "loop may not execute",
1929 DS);
1930 Error_Msg_N
1931 ("?can only execute if invalid values "
1932 & "are present",
1933 DS);
1934 end if;
1935 end if;
1936
1937 -- In either case, suppress warnings in the body of
1938 -- the loop, since it is likely that these warnings
1939 -- will be inappropriate if the loop never actually
1940 -- executes, which is unlikely.
1941
1942 Set_Suppress_Loop_Warnings (Parent (N));
1943
1944 -- The other case for a warning is a reverse loop
1945 -- where the upper bound is the integer literal
1946 -- zero or one, and the lower bound can be positive.
1947
1948 -- For example, we have
1949
1950 -- for J in reverse N .. 1 loop
1951
1952 -- In practice, this is very likely to be a case
1953 -- of reversing the bounds incorrectly in the range.
1954
1955 elsif Reverse_Present (LP)
1956 and then Nkind (Original_Node (H)) =
1957 N_Integer_Literal
1958 and then (Intval (Original_Node (H)) = Uint_0
1959 or else
1960 Intval (Original_Node (H)) = Uint_1)
1961 then
1962 Error_Msg_N ("?loop range may be null", DS);
1963 Error_Msg_N ("\?bounds may be wrong way round", DS);
1964 end if;
1965 end;
1966 end if;
1967 end;
1968 end if;
1969 end;
1970 end if;
1971 end Analyze_Iteration_Scheme;
1972
1973 -------------------------------------
1974 -- Analyze_Iterator_Specification --
1975 -------------------------------------
1976
1977 procedure Analyze_Iterator_Specification (N : Node_Id) is
1978 Def_Id : constant Node_Id := Defining_Identifier (N);
1979 Subt : constant Node_Id := Subtype_Indication (N);
1980 Container : constant Node_Id := Name (N);
1981
1982 Ent : Entity_Id;
1983 Typ : Entity_Id;
1984
1985 begin
1986 Enter_Name (Def_Id);
1987 Set_Ekind (Def_Id, E_Variable);
1988
1989 if Present (Subt) then
1990 Analyze (Subt);
1991 end if;
1992
1993 Analyze_And_Resolve (Container);
1994 Typ := Etype (Container);
1995
1996 if Is_Array_Type (Typ) then
1997 if Of_Present (N) then
1998 Set_Etype (Def_Id, Component_Type (Typ));
1999
2000 else
2001 Set_Etype (Def_Id, Etype (First_Index (Typ)));
2002 end if;
2003
2004 else
2005 -- Iteration over a container.
2006
2007 Set_Ekind (Def_Id, E_Loop_Parameter);
2008 if Of_Present (N) then
2009
2010 -- Find the Element_Type in the package instance that defines
2011 -- the container type.
2012
2013 Ent := First_Entity (Scope (Typ));
2014 while Present (Ent) loop
2015 if Chars (Ent) = Name_Element_Type then
2016 Set_Etype (Def_Id, Ent);
2017 exit;
2018 end if;
2019
2020 Next_Entity (Ent);
2021 end loop;
2022
2023 else
2024
2025 -- Find the Cursor type in similar fashion.
2026
2027 Ent := First_Entity (Scope (Typ));
2028 while Present (Ent) loop
2029 if Chars (Ent) = Name_Cursor then
2030 Set_Etype (Def_Id, Ent);
2031 exit;
2032 end if;
2033
2034 Next_Entity (Ent);
2035 end loop;
2036 end if;
2037 end if;
2038 end Analyze_Iterator_Specification;
2039
2040 -------------------
2041 -- Analyze_Label --
2042 -------------------
2043
2044 -- Note: the semantic work required for analyzing labels (setting them as
2045 -- reachable) was done in a prepass through the statements in the block,
2046 -- so that forward gotos would be properly handled. See Analyze_Statements
2047 -- for further details. The only processing required here is to deal with
2048 -- optimizations that depend on an assumption of sequential control flow,
2049 -- since of course the occurrence of a label breaks this assumption.
2050
2051 procedure Analyze_Label (N : Node_Id) is
2052 pragma Warnings (Off, N);
2053 begin
2054 Kill_Current_Values;
2055 end Analyze_Label;
2056
2057 --------------------------
2058 -- Analyze_Label_Entity --
2059 --------------------------
2060
2061 procedure Analyze_Label_Entity (E : Entity_Id) is
2062 begin
2063 Set_Ekind (E, E_Label);
2064 Set_Etype (E, Standard_Void_Type);
2065 Set_Enclosing_Scope (E, Current_Scope);
2066 Set_Reachable (E, True);
2067 end Analyze_Label_Entity;
2068
2069 ----------------------------
2070 -- Analyze_Loop_Statement --
2071 ----------------------------
2072
2073 procedure Analyze_Loop_Statement (N : Node_Id) is
2074 Loop_Statement : constant Node_Id := N;
2075
2076 Id : constant Node_Id := Identifier (Loop_Statement);
2077 Iter : constant Node_Id := Iteration_Scheme (Loop_Statement);
2078 Ent : Entity_Id;
2079
2080 begin
2081 if Present (Id) then
2082
2083 -- Make name visible, e.g. for use in exit statements. Loop
2084 -- labels are always considered to be referenced.
2085
2086 Analyze (Id);
2087 Ent := Entity (Id);
2088
2089 -- Guard against serious error (typically, a scope mismatch when
2090 -- semantic analysis is requested) by creating loop entity to
2091 -- continue analysis.
2092
2093 if No (Ent) then
2094 if Total_Errors_Detected /= 0 then
2095 Ent :=
2096 New_Internal_Entity
2097 (E_Loop, Current_Scope, Sloc (Loop_Statement), 'L');
2098 else
2099 raise Program_Error;
2100 end if;
2101
2102 else
2103 Generate_Reference (Ent, Loop_Statement, ' ');
2104 Generate_Definition (Ent);
2105
2106 -- If we found a label, mark its type. If not, ignore it, since it
2107 -- means we have a conflicting declaration, which would already
2108 -- have been diagnosed at declaration time. Set Label_Construct
2109 -- of the implicit label declaration, which is not created by the
2110 -- parser for generic units.
2111
2112 if Ekind (Ent) = E_Label then
2113 Set_Ekind (Ent, E_Loop);
2114
2115 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
2116 Set_Label_Construct (Parent (Ent), Loop_Statement);
2117 end if;
2118 end if;
2119 end if;
2120
2121 -- Case of no identifier present
2122
2123 else
2124 Ent :=
2125 New_Internal_Entity
2126 (E_Loop, Current_Scope, Sloc (Loop_Statement), 'L');
2127 Set_Etype (Ent, Standard_Void_Type);
2128 Set_Parent (Ent, Loop_Statement);
2129 end if;
2130
2131 -- Kill current values on entry to loop, since statements in body of
2132 -- loop may have been executed before the loop is entered. Similarly we
2133 -- kill values after the loop, since we do not know that the body of the
2134 -- loop was executed.
2135
2136 Kill_Current_Values;
2137 Push_Scope (Ent);
2138 Analyze_Iteration_Scheme (Iter);
2139 Analyze_Statements (Statements (Loop_Statement));
2140 Process_End_Label (Loop_Statement, 'e', Ent);
2141 End_Scope;
2142 Kill_Current_Values;
2143
2144 -- Check for infinite loop. Skip check for generated code, since it
2145 -- justs waste time and makes debugging the routine called harder.
2146
2147 -- Note that we have to wait till the body of the loop is fully analyzed
2148 -- before making this call, since Check_Infinite_Loop_Warning relies on
2149 -- being able to use semantic visibility information to find references.
2150
2151 if Comes_From_Source (N) then
2152 Check_Infinite_Loop_Warning (N);
2153 end if;
2154
2155 -- Code after loop is unreachable if the loop has no WHILE or FOR
2156 -- and contains no EXIT statements within the body of the loop.
2157
2158 if No (Iter) and then not Has_Exit (Ent) then
2159 Check_Unreachable_Code (N);
2160 end if;
2161 end Analyze_Loop_Statement;
2162
2163 ----------------------------
2164 -- Analyze_Null_Statement --
2165 ----------------------------
2166
2167 -- Note: the semantics of the null statement is implemented by a single
2168 -- null statement, too bad everything isn't as simple as this!
2169
2170 procedure Analyze_Null_Statement (N : Node_Id) is
2171 pragma Warnings (Off, N);
2172 begin
2173 null;
2174 end Analyze_Null_Statement;
2175
2176 ------------------------
2177 -- Analyze_Statements --
2178 ------------------------
2179
2180 procedure Analyze_Statements (L : List_Id) is
2181 S : Node_Id;
2182 Lab : Entity_Id;
2183
2184 begin
2185 -- The labels declared in the statement list are reachable from
2186 -- statements in the list. We do this as a prepass so that any
2187 -- goto statement will be properly flagged if its target is not
2188 -- reachable. This is not required, but is nice behavior!
2189
2190 S := First (L);
2191 while Present (S) loop
2192 if Nkind (S) = N_Label then
2193 Analyze (Identifier (S));
2194 Lab := Entity (Identifier (S));
2195
2196 -- If we found a label mark it as reachable
2197
2198 if Ekind (Lab) = E_Label then
2199 Generate_Definition (Lab);
2200 Set_Reachable (Lab);
2201
2202 if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
2203 Set_Label_Construct (Parent (Lab), S);
2204 end if;
2205
2206 -- If we failed to find a label, it means the implicit declaration
2207 -- of the label was hidden. A for-loop parameter can do this to
2208 -- a label with the same name inside the loop, since the implicit
2209 -- label declaration is in the innermost enclosing body or block
2210 -- statement.
2211
2212 else
2213 Error_Msg_Sloc := Sloc (Lab);
2214 Error_Msg_N
2215 ("implicit label declaration for & is hidden#",
2216 Identifier (S));
2217 end if;
2218 end if;
2219
2220 Next (S);
2221 end loop;
2222
2223 -- Perform semantic analysis on all statements
2224
2225 Conditional_Statements_Begin;
2226
2227 S := First (L);
2228 while Present (S) loop
2229 Analyze (S);
2230 Next (S);
2231 end loop;
2232
2233 Conditional_Statements_End;
2234
2235 -- Make labels unreachable. Visibility is not sufficient, because
2236 -- labels in one if-branch for example are not reachable from the
2237 -- other branch, even though their declarations are in the enclosing
2238 -- declarative part.
2239
2240 S := First (L);
2241 while Present (S) loop
2242 if Nkind (S) = N_Label then
2243 Set_Reachable (Entity (Identifier (S)), False);
2244 end if;
2245
2246 Next (S);
2247 end loop;
2248 end Analyze_Statements;
2249
2250 ----------------------------
2251 -- Check_Unreachable_Code --
2252 ----------------------------
2253
2254 procedure Check_Unreachable_Code (N : Node_Id) is
2255 Error_Loc : Source_Ptr;
2256 P : Node_Id;
2257
2258 begin
2259 if Is_List_Member (N)
2260 and then Comes_From_Source (N)
2261 then
2262 declare
2263 Nxt : Node_Id;
2264
2265 begin
2266 Nxt := Original_Node (Next (N));
2267
2268 -- If a label follows us, then we never have dead code, since
2269 -- someone could branch to the label, so we just ignore it.
2270
2271 if Nkind (Nxt) = N_Label then
2272 return;
2273
2274 -- Otherwise see if we have a real statement following us
2275
2276 elsif Present (Nxt)
2277 and then Comes_From_Source (Nxt)
2278 and then Is_Statement (Nxt)
2279 then
2280 -- Special very annoying exception. If we have a return that
2281 -- follows a raise, then we allow it without a warning, since
2282 -- the Ada RM annoyingly requires a useless return here!
2283
2284 if Nkind (Original_Node (N)) /= N_Raise_Statement
2285 or else Nkind (Nxt) /= N_Simple_Return_Statement
2286 then
2287 -- The rather strange shenanigans with the warning message
2288 -- here reflects the fact that Kill_Dead_Code is very good
2289 -- at removing warnings in deleted code, and this is one
2290 -- warning we would prefer NOT to have removed.
2291
2292 Error_Loc := Sloc (Nxt);
2293
2294 -- If we have unreachable code, analyze and remove the
2295 -- unreachable code, since it is useless and we don't
2296 -- want to generate junk warnings.
2297
2298 -- We skip this step if we are not in code generation mode.
2299 -- This is the one case where we remove dead code in the
2300 -- semantics as opposed to the expander, and we do not want
2301 -- to remove code if we are not in code generation mode,
2302 -- since this messes up the ASIS trees.
2303
2304 -- Note that one might react by moving the whole circuit to
2305 -- exp_ch5, but then we lose the warning in -gnatc mode.
2306
2307 if Operating_Mode = Generate_Code then
2308 loop
2309 Nxt := Next (N);
2310
2311 -- Quit deleting when we have nothing more to delete
2312 -- or if we hit a label (since someone could transfer
2313 -- control to a label, so we should not delete it).
2314
2315 exit when No (Nxt) or else Nkind (Nxt) = N_Label;
2316
2317 -- Statement/declaration is to be deleted
2318
2319 Analyze (Nxt);
2320 Remove (Nxt);
2321 Kill_Dead_Code (Nxt);
2322 end loop;
2323 end if;
2324
2325 -- Now issue the warning
2326
2327 Error_Msg ("?unreachable code!", Error_Loc);
2328 end if;
2329
2330 -- If the unconditional transfer of control instruction is
2331 -- the last statement of a sequence, then see if our parent
2332 -- is one of the constructs for which we count unblocked exits,
2333 -- and if so, adjust the count.
2334
2335 else
2336 P := Parent (N);
2337
2338 -- Statements in THEN part or ELSE part of IF statement
2339
2340 if Nkind (P) = N_If_Statement then
2341 null;
2342
2343 -- Statements in ELSIF part of an IF statement
2344
2345 elsif Nkind (P) = N_Elsif_Part then
2346 P := Parent (P);
2347 pragma Assert (Nkind (P) = N_If_Statement);
2348
2349 -- Statements in CASE statement alternative
2350
2351 elsif Nkind (P) = N_Case_Statement_Alternative then
2352 P := Parent (P);
2353 pragma Assert (Nkind (P) = N_Case_Statement);
2354
2355 -- Statements in body of block
2356
2357 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
2358 and then Nkind (Parent (P)) = N_Block_Statement
2359 then
2360 null;
2361
2362 -- Statements in exception handler in a block
2363
2364 elsif Nkind (P) = N_Exception_Handler
2365 and then Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements
2366 and then Nkind (Parent (Parent (P))) = N_Block_Statement
2367 then
2368 null;
2369
2370 -- None of these cases, so return
2371
2372 else
2373 return;
2374 end if;
2375
2376 -- This was one of the cases we are looking for (i.e. the
2377 -- parent construct was IF, CASE or block) so decrement count.
2378
2379 Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
2380 end if;
2381 end;
2382 end if;
2383 end Check_Unreachable_Code;
2384
2385 end Sem_Ch5;