[multiple changes]
[gcc.git] / gcc / ada / sem_ch5.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 5 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Einfo; use Einfo;
29 with Errout; use Errout;
30 with Expander; use Expander;
31 with Exp_Util; use Exp_Util;
32 with Freeze; use Freeze;
33 with Lib; use Lib;
34 with Lib.Xref; use Lib.Xref;
35 with Namet; use Namet;
36 with Nlists; use Nlists;
37 with Nmake; use Nmake;
38 with Opt; use Opt;
39 with Rtsfind; use Rtsfind;
40 with Sem; use Sem;
41 with Sem_Aux; use Sem_Aux;
42 with Sem_Case; use Sem_Case;
43 with Sem_Ch3; use Sem_Ch3;
44 with Sem_Ch8; use Sem_Ch8;
45 with Sem_Disp; use Sem_Disp;
46 with Sem_Elab; use Sem_Elab;
47 with Sem_Eval; use Sem_Eval;
48 with Sem_Res; use Sem_Res;
49 with Sem_Type; use Sem_Type;
50 with Sem_Util; use Sem_Util;
51 with Sem_Warn; use Sem_Warn;
52 with Snames; use Snames;
53 with Stand; use Stand;
54 with Sinfo; use Sinfo;
55 with Targparm; use Targparm;
56 with Tbuild; use Tbuild;
57 with Uintp; use Uintp;
58
59 package body Sem_Ch5 is
60
61 Unblocked_Exit_Count : Nat := 0;
62 -- This variable is used when processing if statements, case statements,
63 -- and block statements. It counts the number of exit points that are not
64 -- blocked by unconditional transfer instructions: for IF and CASE, these
65 -- are the branches of the conditional; for a block, they are the statement
66 -- sequence of the block, and the statement sequences of any exception
67 -- handlers that are part of the block. When processing is complete, if
68 -- this count is zero, it means that control cannot fall through the IF,
69 -- CASE or block statement. This is used for the generation of warning
70 -- messages. This variable is recursively saved on entry to processing the
71 -- construct, and restored on exit.
72
73 ------------------------
74 -- Analyze_Assignment --
75 ------------------------
76
77 procedure Analyze_Assignment (N : Node_Id) is
78 Lhs : constant Node_Id := Name (N);
79 Rhs : constant Node_Id := Expression (N);
80 T1 : Entity_Id;
81 T2 : Entity_Id;
82 Decl : Node_Id;
83
84 procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
85 -- N is the node for the left hand side of an assignment, and it is not
86 -- a variable. This routine issues an appropriate diagnostic.
87
88 procedure Kill_Lhs;
89 -- This is called to kill current value settings of a simple variable
90 -- on the left hand side. We call it if we find any error in analyzing
91 -- the assignment, and at the end of processing before setting any new
92 -- current values in place.
93
94 procedure Set_Assignment_Type
95 (Opnd : Node_Id;
96 Opnd_Type : in out Entity_Id);
97 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type
98 -- is the nominal subtype. This procedure is used to deal with cases
99 -- where the nominal subtype must be replaced by the actual subtype.
100
101 -------------------------------
102 -- Diagnose_Non_Variable_Lhs --
103 -------------------------------
104
105 procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
106 begin
107 -- Not worth posting another error if left hand side already
108 -- flagged as being illegal in some respect.
109
110 if Error_Posted (N) then
111 return;
112
113 -- Some special bad cases of entity names
114
115 elsif Is_Entity_Name (N) then
116 declare
117 Ent : constant Entity_Id := Entity (N);
118
119 begin
120 if Ekind (Ent) = E_In_Parameter then
121 Error_Msg_N
122 ("assignment to IN mode parameter not allowed", N);
123
124 -- Renamings of protected private components are turned into
125 -- constants when compiling a protected function. In the case
126 -- of single protected types, the private component appears
127 -- directly.
128
129 elsif (Is_Prival (Ent)
130 and then
131 (Ekind (Current_Scope) = E_Function
132 or else Ekind (Enclosing_Dynamic_Scope (
133 Current_Scope)) = E_Function))
134 or else
135 (Ekind (Ent) = E_Component
136 and then Is_Protected_Type (Scope (Ent)))
137 then
138 Error_Msg_N
139 ("protected function cannot modify protected object", N);
140
141 elsif Ekind (Ent) = E_Loop_Parameter then
142 Error_Msg_N
143 ("assignment to loop parameter not allowed", N);
144
145 else
146 Error_Msg_N
147 ("left hand side of assignment must be a variable", N);
148 end if;
149 end;
150
151 -- For indexed components or selected components, test prefix
152
153 elsif Nkind (N) = N_Indexed_Component then
154 Diagnose_Non_Variable_Lhs (Prefix (N));
155
156 -- Another special case for assignment to discriminant
157
158 elsif Nkind (N) = N_Selected_Component then
159 if Present (Entity (Selector_Name (N)))
160 and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
161 then
162 Error_Msg_N
163 ("assignment to discriminant not allowed", N);
164 else
165 Diagnose_Non_Variable_Lhs (Prefix (N));
166 end if;
167
168 else
169 -- If we fall through, we have no special message to issue!
170
171 Error_Msg_N ("left hand side of assignment must be a variable", N);
172 end if;
173 end Diagnose_Non_Variable_Lhs;
174
175 --------------
176 -- Kill_LHS --
177 --------------
178
179 procedure Kill_Lhs is
180 begin
181 if Is_Entity_Name (Lhs) then
182 declare
183 Ent : constant Entity_Id := Entity (Lhs);
184 begin
185 if Present (Ent) then
186 Kill_Current_Values (Ent);
187 end if;
188 end;
189 end if;
190 end Kill_Lhs;
191
192 -------------------------
193 -- Set_Assignment_Type --
194 -------------------------
195
196 procedure Set_Assignment_Type
197 (Opnd : Node_Id;
198 Opnd_Type : in out Entity_Id)
199 is
200 begin
201 Require_Entity (Opnd);
202
203 -- If the assignment operand is an in-out or out parameter, then we
204 -- get the actual subtype (needed for the unconstrained case).
205 -- If the operand is the actual in an entry declaration, then within
206 -- the accept statement it is replaced with a local renaming, which
207 -- may also have an actual subtype.
208
209 if Is_Entity_Name (Opnd)
210 and then (Ekind (Entity (Opnd)) = E_Out_Parameter
211 or else Ekind (Entity (Opnd)) =
212 E_In_Out_Parameter
213 or else Ekind (Entity (Opnd)) =
214 E_Generic_In_Out_Parameter
215 or else
216 (Ekind (Entity (Opnd)) = E_Variable
217 and then Nkind (Parent (Entity (Opnd))) =
218 N_Object_Renaming_Declaration
219 and then Nkind (Parent (Parent (Entity (Opnd)))) =
220 N_Accept_Statement))
221 then
222 Opnd_Type := Get_Actual_Subtype (Opnd);
223
224 -- If assignment operand is a component reference, then we get the
225 -- actual subtype of the component for the unconstrained case.
226
227 elsif Nkind_In (Opnd, N_Selected_Component, N_Explicit_Dereference)
228 and then not Is_Unchecked_Union (Opnd_Type)
229 then
230 Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
231
232 if Present (Decl) then
233 Insert_Action (N, Decl);
234 Mark_Rewrite_Insertion (Decl);
235 Analyze (Decl);
236 Opnd_Type := Defining_Identifier (Decl);
237 Set_Etype (Opnd, Opnd_Type);
238 Freeze_Itype (Opnd_Type, N);
239
240 elsif Is_Constrained (Etype (Opnd)) then
241 Opnd_Type := Etype (Opnd);
242 end if;
243
244 -- For slice, use the constrained subtype created for the slice
245
246 elsif Nkind (Opnd) = N_Slice then
247 Opnd_Type := Etype (Opnd);
248 end if;
249 end Set_Assignment_Type;
250
251 -- Start of processing for Analyze_Assignment
252
253 begin
254 Mark_Coextensions (N, Rhs);
255
256 Analyze (Rhs);
257 Analyze (Lhs);
258
259 -- Start type analysis for assignment
260
261 T1 := Etype (Lhs);
262
263 -- In the most general case, both Lhs and Rhs can be overloaded, and we
264 -- must compute the intersection of the possible types on each side.
265
266 if Is_Overloaded (Lhs) then
267 declare
268 I : Interp_Index;
269 It : Interp;
270
271 begin
272 T1 := Any_Type;
273 Get_First_Interp (Lhs, I, It);
274
275 while Present (It.Typ) loop
276 if Has_Compatible_Type (Rhs, It.Typ) then
277 if T1 /= Any_Type then
278
279 -- An explicit dereference is overloaded if the prefix
280 -- is. Try to remove the ambiguity on the prefix, the
281 -- error will be posted there if the ambiguity is real.
282
283 if Nkind (Lhs) = N_Explicit_Dereference then
284 declare
285 PI : Interp_Index;
286 PI1 : Interp_Index := 0;
287 PIt : Interp;
288 Found : Boolean;
289
290 begin
291 Found := False;
292 Get_First_Interp (Prefix (Lhs), PI, PIt);
293
294 while Present (PIt.Typ) loop
295 if Is_Access_Type (PIt.Typ)
296 and then Has_Compatible_Type
297 (Rhs, Designated_Type (PIt.Typ))
298 then
299 if Found then
300 PIt :=
301 Disambiguate (Prefix (Lhs),
302 PI1, PI, Any_Type);
303
304 if PIt = No_Interp then
305 Error_Msg_N
306 ("ambiguous left-hand side"
307 & " in assignment", Lhs);
308 exit;
309 else
310 Resolve (Prefix (Lhs), PIt.Typ);
311 end if;
312
313 exit;
314 else
315 Found := True;
316 PI1 := PI;
317 end if;
318 end if;
319
320 Get_Next_Interp (PI, PIt);
321 end loop;
322 end;
323
324 else
325 Error_Msg_N
326 ("ambiguous left-hand side in assignment", Lhs);
327 exit;
328 end if;
329 else
330 T1 := It.Typ;
331 end if;
332 end if;
333
334 Get_Next_Interp (I, It);
335 end loop;
336 end;
337
338 if T1 = Any_Type then
339 Error_Msg_N
340 ("no valid types for left-hand side for assignment", Lhs);
341 Kill_Lhs;
342 return;
343 end if;
344 end if;
345
346 -- The resulting assignment type is T1, so now we will resolve the
347 -- left hand side of the assignment using this determined type.
348
349 Resolve (Lhs, T1);
350
351 -- Cases where Lhs is not a variable
352
353 if not Is_Variable (Lhs) then
354
355 -- Ada 2005 (AI-327): Check assignment to the attribute Priority of
356 -- a protected object.
357
358 declare
359 Ent : Entity_Id;
360 S : Entity_Id;
361
362 begin
363 if Ada_Version >= Ada_2005 then
364
365 -- Handle chains of renamings
366
367 Ent := Lhs;
368 while Nkind (Ent) in N_Has_Entity
369 and then Present (Entity (Ent))
370 and then Present (Renamed_Object (Entity (Ent)))
371 loop
372 Ent := Renamed_Object (Entity (Ent));
373 end loop;
374
375 if (Nkind (Ent) = N_Attribute_Reference
376 and then Attribute_Name (Ent) = Name_Priority)
377
378 -- Renamings of the attribute Priority applied to protected
379 -- objects have been previously expanded into calls to the
380 -- Get_Ceiling run-time subprogram.
381
382 or else
383 (Nkind (Ent) = N_Function_Call
384 and then (Entity (Name (Ent)) = RTE (RE_Get_Ceiling)
385 or else
386 Entity (Name (Ent)) = RTE (RO_PE_Get_Ceiling)))
387 then
388 -- The enclosing subprogram cannot be a protected function
389
390 S := Current_Scope;
391 while not (Is_Subprogram (S)
392 and then Convention (S) = Convention_Protected)
393 and then S /= Standard_Standard
394 loop
395 S := Scope (S);
396 end loop;
397
398 if Ekind (S) = E_Function
399 and then Convention (S) = Convention_Protected
400 then
401 Error_Msg_N
402 ("protected function cannot modify protected object",
403 Lhs);
404 end if;
405
406 -- Changes of the ceiling priority of the protected object
407 -- are only effective if the Ceiling_Locking policy is in
408 -- effect (AARM D.5.2 (5/2)).
409
410 if Locking_Policy /= 'C' then
411 Error_Msg_N ("assignment to the attribute PRIORITY has " &
412 "no effect?", Lhs);
413 Error_Msg_N ("\since no Locking_Policy has been " &
414 "specified", Lhs);
415 end if;
416
417 return;
418 end if;
419 end if;
420 end;
421
422 Diagnose_Non_Variable_Lhs (Lhs);
423 return;
424
425 -- Error of assigning to limited type. We do however allow this in
426 -- certain cases where the front end generates the assignments.
427
428 elsif Is_Limited_Type (T1)
429 and then not Assignment_OK (Lhs)
430 and then not Assignment_OK (Original_Node (Lhs))
431 and then not Is_Value_Type (T1)
432 then
433 -- CPP constructors can only be called in declarations
434
435 if Is_CPP_Constructor_Call (Rhs) then
436 Error_Msg_N ("invalid use of 'C'P'P constructor", Rhs);
437 else
438 Error_Msg_N
439 ("left hand of assignment must not be limited type", Lhs);
440 Explain_Limited_Type (T1, Lhs);
441 end if;
442 return;
443
444 -- Enforce RM 3.9.3 (8): the target of an assignment operation cannot be
445 -- abstract. This is only checked when the assignment Comes_From_Source,
446 -- because in some cases the expander generates such assignments (such
447 -- in the _assign operation for an abstract type).
448
449 elsif Is_Abstract_Type (T1) and then Comes_From_Source (N) then
450 Error_Msg_N
451 ("target of assignment operation must not be abstract", Lhs);
452 end if;
453
454 -- Resolution may have updated the subtype, in case the left-hand
455 -- side is a private protected component. Use the correct subtype
456 -- to avoid scoping issues in the back-end.
457
458 T1 := Etype (Lhs);
459
460 -- Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
461 -- type. For example:
462
463 -- limited with P;
464 -- package Pkg is
465 -- type Acc is access P.T;
466 -- end Pkg;
467
468 -- with Pkg; use Acc;
469 -- procedure Example is
470 -- A, B : Acc;
471 -- begin
472 -- A.all := B.all; -- ERROR
473 -- end Example;
474
475 if Nkind (Lhs) = N_Explicit_Dereference
476 and then Ekind (T1) = E_Incomplete_Type
477 then
478 Error_Msg_N ("invalid use of incomplete type", Lhs);
479 Kill_Lhs;
480 return;
481 end if;
482
483 -- Now we can complete the resolution of the right hand side
484
485 Set_Assignment_Type (Lhs, T1);
486 Resolve (Rhs, T1);
487
488 -- This is the point at which we check for an unset reference
489
490 Check_Unset_Reference (Rhs);
491 Check_Unprotected_Access (Lhs, Rhs);
492
493 -- Remaining steps are skipped if Rhs was syntactically in error
494
495 if Rhs = Error then
496 Kill_Lhs;
497 return;
498 end if;
499
500 T2 := Etype (Rhs);
501
502 if not Covers (T1, T2) then
503 Wrong_Type (Rhs, Etype (Lhs));
504 Kill_Lhs;
505 return;
506 end if;
507
508 -- Ada 2005 (AI-326): In case of explicit dereference of incomplete
509 -- types, use the non-limited view if available
510
511 if Nkind (Rhs) = N_Explicit_Dereference
512 and then Ekind (T2) = E_Incomplete_Type
513 and then Is_Tagged_Type (T2)
514 and then Present (Non_Limited_View (T2))
515 then
516 T2 := Non_Limited_View (T2);
517 end if;
518
519 Set_Assignment_Type (Rhs, T2);
520
521 if Total_Errors_Detected /= 0 then
522 if No (T1) then
523 T1 := Any_Type;
524 end if;
525
526 if No (T2) then
527 T2 := Any_Type;
528 end if;
529 end if;
530
531 if T1 = Any_Type or else T2 = Any_Type then
532 Kill_Lhs;
533 return;
534 end if;
535
536 -- If the rhs is class-wide or dynamically tagged, then require the lhs
537 -- to be class-wide. The case where the rhs is a dynamically tagged call
538 -- to a dispatching operation with a controlling access result is
539 -- excluded from this check, since the target has an access type (and
540 -- no tag propagation occurs in that case).
541
542 if (Is_Class_Wide_Type (T2)
543 or else (Is_Dynamically_Tagged (Rhs)
544 and then not Is_Access_Type (T1)))
545 and then not Is_Class_Wide_Type (T1)
546 then
547 Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
548
549 elsif Is_Class_Wide_Type (T1)
550 and then not Is_Class_Wide_Type (T2)
551 and then not Is_Tag_Indeterminate (Rhs)
552 and then not Is_Dynamically_Tagged (Rhs)
553 then
554 Error_Msg_N ("dynamically tagged expression required!", Rhs);
555 end if;
556
557 -- Propagate the tag from a class-wide target to the rhs when the rhs
558 -- is a tag-indeterminate call.
559
560 if Is_Tag_Indeterminate (Rhs) then
561 if Is_Class_Wide_Type (T1) then
562 Propagate_Tag (Lhs, Rhs);
563
564 elsif Nkind (Rhs) = N_Function_Call
565 and then Is_Entity_Name (Name (Rhs))
566 and then Is_Abstract_Subprogram (Entity (Name (Rhs)))
567 then
568 Error_Msg_N
569 ("call to abstract function must be dispatching", Name (Rhs));
570
571 elsif Nkind (Rhs) = N_Qualified_Expression
572 and then Nkind (Expression (Rhs)) = N_Function_Call
573 and then Is_Entity_Name (Name (Expression (Rhs)))
574 and then
575 Is_Abstract_Subprogram (Entity (Name (Expression (Rhs))))
576 then
577 Error_Msg_N
578 ("call to abstract function must be dispatching",
579 Name (Expression (Rhs)));
580 end if;
581 end if;
582
583 -- Ada 2005 (AI-385): When the lhs type is an anonymous access type,
584 -- apply an implicit conversion of the rhs to that type to force
585 -- appropriate static and run-time accessibility checks. This applies
586 -- as well to anonymous access-to-subprogram types that are component
587 -- subtypes or formal parameters.
588
589 if Ada_Version >= Ada_2005
590 and then Is_Access_Type (T1)
591 then
592 if Is_Local_Anonymous_Access (T1)
593 or else Ekind (T2) = E_Anonymous_Access_Subprogram_Type
594 then
595 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
596 Analyze_And_Resolve (Rhs, T1);
597 end if;
598 end if;
599
600 -- Ada 2005 (AI-231): Assignment to not null variable
601
602 if Ada_Version >= Ada_2005
603 and then Can_Never_Be_Null (T1)
604 and then not Assignment_OK (Lhs)
605 then
606 -- Case where we know the right hand side is null
607
608 if Known_Null (Rhs) then
609 Apply_Compile_Time_Constraint_Error
610 (N => Rhs,
611 Msg => "(Ada 2005) null not allowed in null-excluding objects?",
612 Reason => CE_Null_Not_Allowed);
613
614 -- We still mark this as a possible modification, that's necessary
615 -- to reset Is_True_Constant, and desirable for xref purposes.
616
617 Note_Possible_Modification (Lhs, Sure => True);
618 return;
619
620 -- If we know the right hand side is non-null, then we convert to the
621 -- target type, since we don't need a run time check in that case.
622
623 elsif not Can_Never_Be_Null (T2) then
624 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
625 Analyze_And_Resolve (Rhs, T1);
626 end if;
627 end if;
628
629 if Is_Scalar_Type (T1) then
630 Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
631
632 -- For array types, verify that lengths match. If the right hand side
633 -- if a function call that has been inlined, the assignment has been
634 -- rewritten as a block, and the constraint check will be applied to the
635 -- assignment within the block.
636
637 elsif Is_Array_Type (T1)
638 and then
639 (Nkind (Rhs) /= N_Type_Conversion
640 or else Is_Constrained (Etype (Rhs)))
641 and then
642 (Nkind (Rhs) /= N_Function_Call
643 or else Nkind (N) /= N_Block_Statement)
644 then
645 -- Assignment verifies that the length of the Lsh and Rhs are equal,
646 -- but of course the indexes do not have to match. If the right-hand
647 -- side is a type conversion to an unconstrained type, a length check
648 -- is performed on the expression itself during expansion. In rare
649 -- cases, the redundant length check is computed on an index type
650 -- with a different representation, triggering incorrect code in
651 -- the back end.
652
653 Apply_Length_Check (Rhs, Etype (Lhs));
654
655 else
656 -- Discriminant checks are applied in the course of expansion
657
658 null;
659 end if;
660
661 -- Note: modifications of the Lhs may only be recorded after
662 -- checks have been applied.
663
664 Note_Possible_Modification (Lhs, Sure => True);
665 Check_Order_Dependence;
666
667 -- ??? a real accessibility check is needed when ???
668
669 -- Post warning for redundant assignment or variable to itself
670
671 if Warn_On_Redundant_Constructs
672
673 -- We only warn for source constructs
674
675 and then Comes_From_Source (N)
676
677 -- Where the object is the same on both sides
678
679 and then Same_Object (Lhs, Original_Node (Rhs))
680
681 -- But exclude the case where the right side was an operation
682 -- that got rewritten (e.g. JUNK + K, where K was known to be
683 -- zero). We don't want to warn in such a case, since it is
684 -- reasonable to write such expressions especially when K is
685 -- defined symbolically in some other package.
686
687 and then Nkind (Original_Node (Rhs)) not in N_Op
688 then
689 if Nkind (Lhs) in N_Has_Entity then
690 Error_Msg_NE -- CODEFIX
691 ("?useless assignment of & to itself!", N, Entity (Lhs));
692 else
693 Error_Msg_N -- CODEFIX
694 ("?useless assignment of object to itself!", N);
695 end if;
696 end if;
697
698 -- Check for non-allowed composite assignment
699
700 if not Support_Composite_Assign_On_Target
701 and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
702 and then (not Has_Size_Clause (T1) or else Esize (T1) > 64)
703 then
704 Error_Msg_CRT ("composite assignment", N);
705 end if;
706
707 -- Check elaboration warning for left side if not in elab code
708
709 if not In_Subprogram_Or_Concurrent_Unit then
710 Check_Elab_Assign (Lhs);
711 end if;
712
713 -- Set Referenced_As_LHS if appropriate. We only set this flag if the
714 -- assignment is a source assignment in the extended main source unit.
715 -- We are not interested in any reference information outside this
716 -- context, or in compiler generated assignment statements.
717
718 if Comes_From_Source (N)
719 and then In_Extended_Main_Source_Unit (Lhs)
720 then
721 Set_Referenced_Modified (Lhs, Out_Param => False);
722 end if;
723
724 -- Final step. If left side is an entity, then we may be able to
725 -- reset the current tracked values to new safe values. We only have
726 -- something to do if the left side is an entity name, and expansion
727 -- has not modified the node into something other than an assignment,
728 -- and of course we only capture values if it is safe to do so.
729
730 if Is_Entity_Name (Lhs)
731 and then Nkind (N) = N_Assignment_Statement
732 then
733 declare
734 Ent : constant Entity_Id := Entity (Lhs);
735
736 begin
737 if Safe_To_Capture_Value (N, Ent) then
738
739 -- If simple variable on left side, warn if this assignment
740 -- blots out another one (rendering it useless) and note
741 -- location of assignment in case no one references value.
742 -- We only do this for source assignments, otherwise we can
743 -- generate bogus warnings when an assignment is rewritten as
744 -- another assignment, and gets tied up with itself.
745
746 -- Note: we don't use Record_Last_Assignment here, because we
747 -- have lots of other stuff to do under control of this test.
748
749 if Warn_On_Modified_Unread
750 and then Is_Assignable (Ent)
751 and then Comes_From_Source (N)
752 and then In_Extended_Main_Source_Unit (Ent)
753 then
754 Warn_On_Useless_Assignment (Ent, N);
755 Set_Last_Assignment (Ent, Lhs);
756 end if;
757
758 -- If we are assigning an access type and the left side is an
759 -- entity, then make sure that the Is_Known_[Non_]Null flags
760 -- properly reflect the state of the entity after assignment.
761
762 if Is_Access_Type (T1) then
763 if Known_Non_Null (Rhs) then
764 Set_Is_Known_Non_Null (Ent, True);
765
766 elsif Known_Null (Rhs)
767 and then not Can_Never_Be_Null (Ent)
768 then
769 Set_Is_Known_Null (Ent, True);
770
771 else
772 Set_Is_Known_Null (Ent, False);
773
774 if not Can_Never_Be_Null (Ent) then
775 Set_Is_Known_Non_Null (Ent, False);
776 end if;
777 end if;
778
779 -- For discrete types, we may be able to set the current value
780 -- if the value is known at compile time.
781
782 elsif Is_Discrete_Type (T1)
783 and then Compile_Time_Known_Value (Rhs)
784 then
785 Set_Current_Value (Ent, Rhs);
786 else
787 Set_Current_Value (Ent, Empty);
788 end if;
789
790 -- If not safe to capture values, kill them
791
792 else
793 Kill_Lhs;
794 end if;
795 end;
796 end if;
797 end Analyze_Assignment;
798
799 -----------------------------
800 -- Analyze_Block_Statement --
801 -----------------------------
802
803 procedure Analyze_Block_Statement (N : Node_Id) is
804 Decls : constant List_Id := Declarations (N);
805 Id : constant Node_Id := Identifier (N);
806 HSS : constant Node_Id := Handled_Statement_Sequence (N);
807
808 begin
809 -- If no handled statement sequence is present, things are really
810 -- messed up, and we just return immediately (this is a defence
811 -- against previous errors).
812
813 if No (HSS) then
814 return;
815 end if;
816
817 -- Normal processing with HSS present
818
819 declare
820 EH : constant List_Id := Exception_Handlers (HSS);
821 Ent : Entity_Id := Empty;
822 S : Entity_Id;
823
824 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
825 -- Recursively save value of this global, will be restored on exit
826
827 begin
828 -- Initialize unblocked exit count for statements of begin block
829 -- plus one for each exception handler that is present.
830
831 Unblocked_Exit_Count := 1;
832
833 if Present (EH) then
834 Unblocked_Exit_Count := Unblocked_Exit_Count + List_Length (EH);
835 end if;
836
837 -- If a label is present analyze it and mark it as referenced
838
839 if Present (Id) then
840 Analyze (Id);
841 Ent := Entity (Id);
842
843 -- An error defense. If we have an identifier, but no entity,
844 -- then something is wrong. If we have previous errors, then
845 -- just remove the identifier and continue, otherwise raise
846 -- an exception.
847
848 if No (Ent) then
849 if Total_Errors_Detected /= 0 then
850 Set_Identifier (N, Empty);
851 else
852 raise Program_Error;
853 end if;
854
855 else
856 Set_Ekind (Ent, E_Block);
857 Generate_Reference (Ent, N, ' ');
858 Generate_Definition (Ent);
859
860 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
861 Set_Label_Construct (Parent (Ent), N);
862 end if;
863 end if;
864 end if;
865
866 -- If no entity set, create a label entity
867
868 if No (Ent) then
869 Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
870 Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
871 Set_Parent (Ent, N);
872 end if;
873
874 Set_Etype (Ent, Standard_Void_Type);
875 Set_Block_Node (Ent, Identifier (N));
876 Push_Scope (Ent);
877
878 if Present (Decls) then
879 Analyze_Declarations (Decls);
880 Check_Completion;
881 Inspect_Deferred_Constant_Completion (Decls);
882 end if;
883
884 Analyze (HSS);
885 Process_End_Label (HSS, 'e', Ent);
886
887 -- If exception handlers are present, then we indicate that
888 -- enclosing scopes contain a block with handlers. We only
889 -- need to mark non-generic scopes.
890
891 if Present (EH) then
892 S := Scope (Ent);
893 loop
894 Set_Has_Nested_Block_With_Handler (S);
895 exit when Is_Overloadable (S)
896 or else Ekind (S) = E_Package
897 or else Is_Generic_Unit (S);
898 S := Scope (S);
899 end loop;
900 end if;
901
902 Check_References (Ent);
903 Warn_On_Useless_Assignments (Ent);
904 End_Scope;
905
906 if Unblocked_Exit_Count = 0 then
907 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
908 Check_Unreachable_Code (N);
909 else
910 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
911 end if;
912 end;
913 end Analyze_Block_Statement;
914
915 ----------------------------
916 -- Analyze_Case_Statement --
917 ----------------------------
918
919 procedure Analyze_Case_Statement (N : Node_Id) is
920 Exp : Node_Id;
921 Exp_Type : Entity_Id;
922 Exp_Btype : Entity_Id;
923 Last_Choice : Nat;
924 Dont_Care : Boolean;
925 Others_Present : Boolean;
926
927 pragma Warnings (Off, Last_Choice);
928 pragma Warnings (Off, Dont_Care);
929 -- Don't care about assigned values
930
931 Statements_Analyzed : Boolean := False;
932 -- Set True if at least some statement sequences get analyzed.
933 -- If False on exit, means we had a serious error that prevented
934 -- full analysis of the case statement, and as a result it is not
935 -- a good idea to output warning messages about unreachable code.
936
937 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
938 -- Recursively save value of this global, will be restored on exit
939
940 procedure Non_Static_Choice_Error (Choice : Node_Id);
941 -- Error routine invoked by the generic instantiation below when
942 -- the case statement has a non static choice.
943
944 procedure Process_Statements (Alternative : Node_Id);
945 -- Analyzes all the statements associated with a case alternative.
946 -- Needed by the generic instantiation below.
947
948 package Case_Choices_Processing is new
949 Generic_Choices_Processing
950 (Get_Alternatives => Alternatives,
951 Get_Choices => Discrete_Choices,
952 Process_Empty_Choice => No_OP,
953 Process_Non_Static_Choice => Non_Static_Choice_Error,
954 Process_Associated_Node => Process_Statements);
955 use Case_Choices_Processing;
956 -- Instantiation of the generic choice processing package
957
958 -----------------------------
959 -- Non_Static_Choice_Error --
960 -----------------------------
961
962 procedure Non_Static_Choice_Error (Choice : Node_Id) is
963 begin
964 Flag_Non_Static_Expr
965 ("choice given in case statement is not static!", Choice);
966 end Non_Static_Choice_Error;
967
968 ------------------------
969 -- Process_Statements --
970 ------------------------
971
972 procedure Process_Statements (Alternative : Node_Id) is
973 Choices : constant List_Id := Discrete_Choices (Alternative);
974 Ent : Entity_Id;
975
976 begin
977 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
978 Statements_Analyzed := True;
979
980 -- An interesting optimization. If the case statement expression
981 -- is a simple entity, then we can set the current value within
982 -- an alternative if the alternative has one possible value.
983
984 -- case N is
985 -- when 1 => alpha
986 -- when 2 | 3 => beta
987 -- when others => gamma
988
989 -- Here we know that N is initially 1 within alpha, but for beta
990 -- and gamma, we do not know anything more about the initial value.
991
992 if Is_Entity_Name (Exp) then
993 Ent := Entity (Exp);
994
995 if Ekind_In (Ent, E_Variable,
996 E_In_Out_Parameter,
997 E_Out_Parameter)
998 then
999 if List_Length (Choices) = 1
1000 and then Nkind (First (Choices)) in N_Subexpr
1001 and then Compile_Time_Known_Value (First (Choices))
1002 then
1003 Set_Current_Value (Entity (Exp), First (Choices));
1004 end if;
1005
1006 Analyze_Statements (Statements (Alternative));
1007
1008 -- After analyzing the case, set the current value to empty
1009 -- since we won't know what it is for the next alternative
1010 -- (unless reset by this same circuit), or after the case.
1011
1012 Set_Current_Value (Entity (Exp), Empty);
1013 return;
1014 end if;
1015 end if;
1016
1017 -- Case where expression is not an entity name of a variable
1018
1019 Analyze_Statements (Statements (Alternative));
1020 end Process_Statements;
1021
1022 -- Start of processing for Analyze_Case_Statement
1023
1024 begin
1025 Unblocked_Exit_Count := 0;
1026 Exp := Expression (N);
1027 Analyze (Exp);
1028
1029 -- The expression must be of any discrete type. In rare cases, the
1030 -- expander constructs a case statement whose expression has a private
1031 -- type whose full view is discrete. This can happen when generating
1032 -- a stream operation for a variant type after the type is frozen,
1033 -- when the partial of view of the type of the discriminant is private.
1034 -- In that case, use the full view to analyze case alternatives.
1035
1036 if not Is_Overloaded (Exp)
1037 and then not Comes_From_Source (N)
1038 and then Is_Private_Type (Etype (Exp))
1039 and then Present (Full_View (Etype (Exp)))
1040 and then Is_Discrete_Type (Full_View (Etype (Exp)))
1041 then
1042 Resolve (Exp, Etype (Exp));
1043 Exp_Type := Full_View (Etype (Exp));
1044
1045 else
1046 Analyze_And_Resolve (Exp, Any_Discrete);
1047 Exp_Type := Etype (Exp);
1048 end if;
1049
1050 Check_Unset_Reference (Exp);
1051 Exp_Btype := Base_Type (Exp_Type);
1052
1053 -- The expression must be of a discrete type which must be determinable
1054 -- independently of the context in which the expression occurs, but
1055 -- using the fact that the expression must be of a discrete type.
1056 -- Moreover, the type this expression must not be a character literal
1057 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
1058
1059 -- If error already reported by Resolve, nothing more to do
1060
1061 if Exp_Btype = Any_Discrete
1062 or else Exp_Btype = Any_Type
1063 then
1064 return;
1065
1066 elsif Exp_Btype = Any_Character then
1067 Error_Msg_N
1068 ("character literal as case expression is ambiguous", Exp);
1069 return;
1070
1071 elsif Ada_Version = Ada_83
1072 and then (Is_Generic_Type (Exp_Btype)
1073 or else Is_Generic_Type (Root_Type (Exp_Btype)))
1074 then
1075 Error_Msg_N
1076 ("(Ada 83) case expression cannot be of a generic type", Exp);
1077 return;
1078 end if;
1079
1080 -- If the case expression is a formal object of mode in out, then
1081 -- treat it as having a nonstatic subtype by forcing use of the base
1082 -- type (which has to get passed to Check_Case_Choices below). Also
1083 -- use base type when the case expression is parenthesized.
1084
1085 if Paren_Count (Exp) > 0
1086 or else (Is_Entity_Name (Exp)
1087 and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
1088 then
1089 Exp_Type := Exp_Btype;
1090 end if;
1091
1092 -- Call instantiated Analyze_Choices which does the rest of the work
1093
1094 Analyze_Choices (N, Exp_Type, Dont_Care, Others_Present);
1095
1096 if Exp_Type = Universal_Integer and then not Others_Present then
1097 Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
1098 end if;
1099
1100 -- If all our exits were blocked by unconditional transfers of control,
1101 -- then the entire CASE statement acts as an unconditional transfer of
1102 -- control, so treat it like one, and check unreachable code. Skip this
1103 -- test if we had serious errors preventing any statement analysis.
1104
1105 if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
1106 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1107 Check_Unreachable_Code (N);
1108 else
1109 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1110 end if;
1111
1112 if not Expander_Active
1113 and then Compile_Time_Known_Value (Expression (N))
1114 and then Serious_Errors_Detected = 0
1115 then
1116 declare
1117 Chosen : constant Node_Id := Find_Static_Alternative (N);
1118 Alt : Node_Id;
1119
1120 begin
1121 Alt := First (Alternatives (N));
1122 while Present (Alt) loop
1123 if Alt /= Chosen then
1124 Remove_Warning_Messages (Statements (Alt));
1125 end if;
1126
1127 Next (Alt);
1128 end loop;
1129 end;
1130 end if;
1131 end Analyze_Case_Statement;
1132
1133 ----------------------------
1134 -- Analyze_Exit_Statement --
1135 ----------------------------
1136
1137 -- If the exit includes a name, it must be the name of a currently open
1138 -- loop. Otherwise there must be an innermost open loop on the stack,
1139 -- to which the statement implicitly refers.
1140
1141 procedure Analyze_Exit_Statement (N : Node_Id) is
1142 Target : constant Node_Id := Name (N);
1143 Cond : constant Node_Id := Condition (N);
1144 Scope_Id : Entity_Id;
1145 U_Name : Entity_Id;
1146 Kind : Entity_Kind;
1147
1148 begin
1149 if No (Cond) then
1150 Check_Unreachable_Code (N);
1151 end if;
1152
1153 if Present (Target) then
1154 Analyze (Target);
1155 U_Name := Entity (Target);
1156
1157 if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
1158 Error_Msg_N ("invalid loop name in exit statement", N);
1159 return;
1160 else
1161 Set_Has_Exit (U_Name);
1162 end if;
1163
1164 else
1165 U_Name := Empty;
1166 end if;
1167
1168 for J in reverse 0 .. Scope_Stack.Last loop
1169 Scope_Id := Scope_Stack.Table (J).Entity;
1170 Kind := Ekind (Scope_Id);
1171
1172 if Kind = E_Loop
1173 and then (No (Target) or else Scope_Id = U_Name) then
1174 Set_Has_Exit (Scope_Id);
1175 exit;
1176
1177 elsif Kind = E_Block
1178 or else Kind = E_Loop
1179 or else Kind = E_Return_Statement
1180 then
1181 null;
1182
1183 else
1184 Error_Msg_N
1185 ("cannot exit from program unit or accept statement", N);
1186 return;
1187 end if;
1188 end loop;
1189
1190 -- Verify that if present the condition is a Boolean expression
1191
1192 if Present (Cond) then
1193 Analyze_And_Resolve (Cond, Any_Boolean);
1194 Check_Unset_Reference (Cond);
1195 end if;
1196
1197 -- Chain exit statement to associated loop entity
1198
1199 Set_Next_Exit_Statement (N, First_Exit_Statement (Scope_Id));
1200 Set_First_Exit_Statement (Scope_Id, N);
1201
1202 -- Since the exit may take us out of a loop, any previous assignment
1203 -- statement is not useless, so clear last assignment indications. It
1204 -- is OK to keep other current values, since if the exit statement
1205 -- does not exit, then the current values are still valid.
1206
1207 Kill_Current_Values (Last_Assignment_Only => True);
1208 end Analyze_Exit_Statement;
1209
1210 ----------------------------
1211 -- Analyze_Goto_Statement --
1212 ----------------------------
1213
1214 procedure Analyze_Goto_Statement (N : Node_Id) is
1215 Label : constant Node_Id := Name (N);
1216 Scope_Id : Entity_Id;
1217 Label_Scope : Entity_Id;
1218 Label_Ent : Entity_Id;
1219
1220 begin
1221 Check_Unreachable_Code (N);
1222 Kill_Current_Values (Last_Assignment_Only => True);
1223
1224 Analyze (Label);
1225 Label_Ent := Entity (Label);
1226
1227 -- Ignore previous error
1228
1229 if Label_Ent = Any_Id then
1230 return;
1231
1232 -- We just have a label as the target of a goto
1233
1234 elsif Ekind (Label_Ent) /= E_Label then
1235 Error_Msg_N ("target of goto statement must be a label", Label);
1236 return;
1237
1238 -- Check that the target of the goto is reachable according to Ada
1239 -- scoping rules. Note: the special gotos we generate for optimizing
1240 -- local handling of exceptions would violate these rules, but we mark
1241 -- such gotos as analyzed when built, so this code is never entered.
1242
1243 elsif not Reachable (Label_Ent) then
1244 Error_Msg_N ("target of goto statement is not reachable", Label);
1245 return;
1246 end if;
1247
1248 -- Here if goto passes initial validity checks
1249
1250 Label_Scope := Enclosing_Scope (Label_Ent);
1251
1252 for J in reverse 0 .. Scope_Stack.Last loop
1253 Scope_Id := Scope_Stack.Table (J).Entity;
1254
1255 if Label_Scope = Scope_Id
1256 or else (Ekind (Scope_Id) /= E_Block
1257 and then Ekind (Scope_Id) /= E_Loop
1258 and then Ekind (Scope_Id) /= E_Return_Statement)
1259 then
1260 if Scope_Id /= Label_Scope then
1261 Error_Msg_N
1262 ("cannot exit from program unit or accept statement", N);
1263 end if;
1264
1265 return;
1266 end if;
1267 end loop;
1268
1269 raise Program_Error;
1270 end Analyze_Goto_Statement;
1271
1272 --------------------------
1273 -- Analyze_If_Statement --
1274 --------------------------
1275
1276 -- A special complication arises in the analysis of if statements
1277
1278 -- The expander has circuitry to completely delete code that it
1279 -- can tell will not be executed (as a result of compile time known
1280 -- conditions). In the analyzer, we ensure that code that will be
1281 -- deleted in this manner is analyzed but not expanded. This is
1282 -- obviously more efficient, but more significantly, difficulties
1283 -- arise if code is expanded and then eliminated (e.g. exception
1284 -- table entries disappear). Similarly, itypes generated in deleted
1285 -- code must be frozen from start, because the nodes on which they
1286 -- depend will not be available at the freeze point.
1287
1288 procedure Analyze_If_Statement (N : Node_Id) is
1289 E : Node_Id;
1290
1291 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1292 -- Recursively save value of this global, will be restored on exit
1293
1294 Save_In_Deleted_Code : Boolean;
1295
1296 Del : Boolean := False;
1297 -- This flag gets set True if a True condition has been found,
1298 -- which means that remaining ELSE/ELSIF parts are deleted.
1299
1300 procedure Analyze_Cond_Then (Cnode : Node_Id);
1301 -- This is applied to either the N_If_Statement node itself or
1302 -- to an N_Elsif_Part node. It deals with analyzing the condition
1303 -- and the THEN statements associated with it.
1304
1305 -----------------------
1306 -- Analyze_Cond_Then --
1307 -----------------------
1308
1309 procedure Analyze_Cond_Then (Cnode : Node_Id) is
1310 Cond : constant Node_Id := Condition (Cnode);
1311 Tstm : constant List_Id := Then_Statements (Cnode);
1312
1313 begin
1314 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1315 Analyze_And_Resolve (Cond, Any_Boolean);
1316 Check_Unset_Reference (Cond);
1317 Set_Current_Value_Condition (Cnode);
1318
1319 -- If already deleting, then just analyze then statements
1320
1321 if Del then
1322 Analyze_Statements (Tstm);
1323
1324 -- Compile time known value, not deleting yet
1325
1326 elsif Compile_Time_Known_Value (Cond) then
1327 Save_In_Deleted_Code := In_Deleted_Code;
1328
1329 -- If condition is True, then analyze the THEN statements
1330 -- and set no expansion for ELSE and ELSIF parts.
1331
1332 if Is_True (Expr_Value (Cond)) then
1333 Analyze_Statements (Tstm);
1334 Del := True;
1335 Expander_Mode_Save_And_Set (False);
1336 In_Deleted_Code := True;
1337
1338 -- If condition is False, analyze THEN with expansion off
1339
1340 else -- Is_False (Expr_Value (Cond))
1341 Expander_Mode_Save_And_Set (False);
1342 In_Deleted_Code := True;
1343 Analyze_Statements (Tstm);
1344 Expander_Mode_Restore;
1345 In_Deleted_Code := Save_In_Deleted_Code;
1346 end if;
1347
1348 -- Not known at compile time, not deleting, normal analysis
1349
1350 else
1351 Analyze_Statements (Tstm);
1352 end if;
1353 end Analyze_Cond_Then;
1354
1355 -- Start of Analyze_If_Statement
1356
1357 begin
1358 -- Initialize exit count for else statements. If there is no else
1359 -- part, this count will stay non-zero reflecting the fact that the
1360 -- uncovered else case is an unblocked exit.
1361
1362 Unblocked_Exit_Count := 1;
1363 Analyze_Cond_Then (N);
1364
1365 -- Now to analyze the elsif parts if any are present
1366
1367 if Present (Elsif_Parts (N)) then
1368 E := First (Elsif_Parts (N));
1369 while Present (E) loop
1370 Analyze_Cond_Then (E);
1371 Next (E);
1372 end loop;
1373 end if;
1374
1375 if Present (Else_Statements (N)) then
1376 Analyze_Statements (Else_Statements (N));
1377 end if;
1378
1379 -- If all our exits were blocked by unconditional transfers of control,
1380 -- then the entire IF statement acts as an unconditional transfer of
1381 -- control, so treat it like one, and check unreachable code.
1382
1383 if Unblocked_Exit_Count = 0 then
1384 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1385 Check_Unreachable_Code (N);
1386 else
1387 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1388 end if;
1389
1390 if Del then
1391 Expander_Mode_Restore;
1392 In_Deleted_Code := Save_In_Deleted_Code;
1393 end if;
1394
1395 if not Expander_Active
1396 and then Compile_Time_Known_Value (Condition (N))
1397 and then Serious_Errors_Detected = 0
1398 then
1399 if Is_True (Expr_Value (Condition (N))) then
1400 Remove_Warning_Messages (Else_Statements (N));
1401
1402 if Present (Elsif_Parts (N)) then
1403 E := First (Elsif_Parts (N));
1404 while Present (E) loop
1405 Remove_Warning_Messages (Then_Statements (E));
1406 Next (E);
1407 end loop;
1408 end if;
1409
1410 else
1411 Remove_Warning_Messages (Then_Statements (N));
1412 end if;
1413 end if;
1414 end Analyze_If_Statement;
1415
1416 ----------------------------------------
1417 -- Analyze_Implicit_Label_Declaration --
1418 ----------------------------------------
1419
1420 -- An implicit label declaration is generated in the innermost
1421 -- enclosing declarative part. This is done for labels as well as
1422 -- block and loop names.
1423
1424 -- Note: any changes in this routine may need to be reflected in
1425 -- Analyze_Label_Entity.
1426
1427 procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
1428 Id : constant Node_Id := Defining_Identifier (N);
1429 begin
1430 Enter_Name (Id);
1431 Set_Ekind (Id, E_Label);
1432 Set_Etype (Id, Standard_Void_Type);
1433 Set_Enclosing_Scope (Id, Current_Scope);
1434 end Analyze_Implicit_Label_Declaration;
1435
1436 ------------------------------
1437 -- Analyze_Iteration_Scheme --
1438 ------------------------------
1439
1440 procedure Analyze_Iteration_Scheme (N : Node_Id) is
1441
1442 procedure Process_Bounds (R : Node_Id);
1443 -- If the iteration is given by a range, create temporaries and
1444 -- assignment statements block to capture the bounds and perform
1445 -- required finalization actions in case a bound includes a function
1446 -- call that uses the temporary stack. We first pre-analyze a copy of
1447 -- the range in order to determine the expected type, and analyze and
1448 -- resolve the original bounds.
1449
1450 procedure Check_Controlled_Array_Attribute (DS : Node_Id);
1451 -- If the bounds are given by a 'Range reference on a function call
1452 -- that returns a controlled array, introduce an explicit declaration
1453 -- to capture the bounds, so that the function result can be finalized
1454 -- in timely fashion.
1455
1456 --------------------
1457 -- Process_Bounds --
1458 --------------------
1459
1460 procedure Process_Bounds (R : Node_Id) is
1461 Loc : constant Source_Ptr := Sloc (N);
1462 R_Copy : constant Node_Id := New_Copy_Tree (R);
1463 Lo : constant Node_Id := Low_Bound (R);
1464 Hi : constant Node_Id := High_Bound (R);
1465 New_Lo_Bound : Node_Id;
1466 New_Hi_Bound : Node_Id;
1467 Typ : Entity_Id;
1468 Save_Analysis : Boolean;
1469
1470 function One_Bound
1471 (Original_Bound : Node_Id;
1472 Analyzed_Bound : Node_Id) return Node_Id;
1473 -- Capture value of bound and return captured value
1474
1475 ---------------
1476 -- One_Bound --
1477 ---------------
1478
1479 function One_Bound
1480 (Original_Bound : Node_Id;
1481 Analyzed_Bound : Node_Id) return Node_Id
1482 is
1483 Assign : Node_Id;
1484 Id : Entity_Id;
1485 Decl : Node_Id;
1486
1487 begin
1488 -- If the bound is a constant or an object, no need for a separate
1489 -- declaration. If the bound is the result of previous expansion
1490 -- it is already analyzed and should not be modified. Note that
1491 -- the Bound will be resolved later, if needed, as part of the
1492 -- call to Make_Index (literal bounds may need to be resolved to
1493 -- type Integer).
1494
1495 if Analyzed (Original_Bound) then
1496 return Original_Bound;
1497
1498 elsif Nkind_In (Analyzed_Bound, N_Integer_Literal,
1499 N_Character_Literal)
1500 or else Is_Entity_Name (Analyzed_Bound)
1501 then
1502 Analyze_And_Resolve (Original_Bound, Typ);
1503 return Original_Bound;
1504 end if;
1505
1506 -- Here we need to capture the value
1507
1508 Analyze_And_Resolve (Original_Bound, Typ);
1509
1510 Id := Make_Temporary (Loc, 'S', Original_Bound);
1511
1512 -- Normally, the best approach is simply to generate a constant
1513 -- declaration that captures the bound. However, there is a nasty
1514 -- case where this is wrong. If the bound is complex, and has a
1515 -- possible use of the secondary stack, we need to generate a
1516 -- separate assignment statement to ensure the creation of a block
1517 -- which will release the secondary stack.
1518
1519 -- We prefer the constant declaration, since it leaves us with a
1520 -- proper trace of the value, useful in optimizations that get rid
1521 -- of junk range checks.
1522
1523 -- Probably we want something like the Side_Effect_Free routine
1524 -- in Exp_Util, but for now, we just optimize the cases of 'Last
1525 -- and 'First applied to an entity, since these are the important
1526 -- cases for range check optimizations.
1527
1528 if Nkind (Original_Bound) = N_Attribute_Reference
1529 and then (Attribute_Name (Original_Bound) = Name_First
1530 or else
1531 Attribute_Name (Original_Bound) = Name_Last)
1532 and then Is_Entity_Name (Prefix (Original_Bound))
1533 then
1534 Decl :=
1535 Make_Object_Declaration (Loc,
1536 Defining_Identifier => Id,
1537 Constant_Present => True,
1538 Object_Definition => New_Occurrence_Of (Typ, Loc),
1539 Expression => Relocate_Node (Original_Bound));
1540
1541 Insert_Before (Parent (N), Decl);
1542 Analyze (Decl);
1543 Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
1544 return Expression (Decl);
1545 end if;
1546
1547 -- Here we make a declaration with a separate assignment
1548 -- statement, and insert before loop header.
1549
1550 Decl :=
1551 Make_Object_Declaration (Loc,
1552 Defining_Identifier => Id,
1553 Object_Definition => New_Occurrence_Of (Typ, Loc));
1554
1555 Assign :=
1556 Make_Assignment_Statement (Loc,
1557 Name => New_Occurrence_Of (Id, Loc),
1558 Expression => Relocate_Node (Original_Bound));
1559
1560 Insert_Actions (Parent (N), New_List (Decl, Assign));
1561
1562 Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
1563
1564 if Nkind (Assign) = N_Assignment_Statement then
1565 return Expression (Assign);
1566 else
1567 return Original_Bound;
1568 end if;
1569 end One_Bound;
1570
1571 -- Start of processing for Process_Bounds
1572
1573 begin
1574 -- Determine expected type of range by analyzing separate copy
1575 -- Do the analysis and resolution of the copy of the bounds with
1576 -- expansion disabled, to prevent the generation of finalization
1577 -- actions on each bound. This prevents memory leaks when the
1578 -- bounds contain calls to functions returning controlled arrays.
1579
1580 Set_Parent (R_Copy, Parent (R));
1581 Save_Analysis := Full_Analysis;
1582 Full_Analysis := False;
1583 Expander_Mode_Save_And_Set (False);
1584
1585 Analyze (R_Copy);
1586
1587 if Is_Overloaded (R_Copy) then
1588
1589 -- Apply preference rules for range of predefined integer types,
1590 -- or diagnose true ambiguity.
1591
1592 declare
1593 I : Interp_Index;
1594 It : Interp;
1595 Found : Entity_Id := Empty;
1596
1597 begin
1598 Get_First_Interp (R_Copy, I, It);
1599 while Present (It.Typ) loop
1600 if Is_Discrete_Type (It.Typ) then
1601 if No (Found) then
1602 Found := It.Typ;
1603 else
1604 if Scope (Found) = Standard_Standard then
1605 null;
1606
1607 elsif Scope (It.Typ) = Standard_Standard then
1608 Found := It.Typ;
1609
1610 else
1611 -- Both of them are user-defined
1612
1613 Error_Msg_N
1614 ("ambiguous bounds in range of iteration",
1615 R_Copy);
1616 Error_Msg_N ("\possible interpretations:", R_Copy);
1617 Error_Msg_NE ("\\} ", R_Copy, Found);
1618 Error_Msg_NE ("\\} ", R_Copy, It.Typ);
1619 exit;
1620 end if;
1621 end if;
1622 end if;
1623
1624 Get_Next_Interp (I, It);
1625 end loop;
1626 end;
1627 end if;
1628
1629 Resolve (R_Copy);
1630 Expander_Mode_Restore;
1631 Full_Analysis := Save_Analysis;
1632
1633 Typ := Etype (R_Copy);
1634
1635 -- If the type of the discrete range is Universal_Integer, then
1636 -- the bound's type must be resolved to Integer, and any object
1637 -- used to hold the bound must also have type Integer, unless the
1638 -- literal bounds are constant-folded expressions that carry a user-
1639 -- defined type.
1640
1641 if Typ = Universal_Integer then
1642 if Nkind (Lo) = N_Integer_Literal
1643 and then Present (Etype (Lo))
1644 and then Scope (Etype (Lo)) /= Standard_Standard
1645 then
1646 Typ := Etype (Lo);
1647
1648 elsif Nkind (Hi) = N_Integer_Literal
1649 and then Present (Etype (Hi))
1650 and then Scope (Etype (Hi)) /= Standard_Standard
1651 then
1652 Typ := Etype (Hi);
1653
1654 else
1655 Typ := Standard_Integer;
1656 end if;
1657 end if;
1658
1659 Set_Etype (R, Typ);
1660
1661 New_Lo_Bound := One_Bound (Lo, Low_Bound (R_Copy));
1662 New_Hi_Bound := One_Bound (Hi, High_Bound (R_Copy));
1663
1664 -- Propagate staticness to loop range itself, in case the
1665 -- corresponding subtype is static.
1666
1667 if New_Lo_Bound /= Lo
1668 and then Is_Static_Expression (New_Lo_Bound)
1669 then
1670 Rewrite (Low_Bound (R), New_Copy (New_Lo_Bound));
1671 end if;
1672
1673 if New_Hi_Bound /= Hi
1674 and then Is_Static_Expression (New_Hi_Bound)
1675 then
1676 Rewrite (High_Bound (R), New_Copy (New_Hi_Bound));
1677 end if;
1678 end Process_Bounds;
1679
1680 --------------------------------------
1681 -- Check_Controlled_Array_Attribute --
1682 --------------------------------------
1683
1684 procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
1685 begin
1686 if Nkind (DS) = N_Attribute_Reference
1687 and then Is_Entity_Name (Prefix (DS))
1688 and then Ekind (Entity (Prefix (DS))) = E_Function
1689 and then Is_Array_Type (Etype (Entity (Prefix (DS))))
1690 and then
1691 Is_Controlled (
1692 Component_Type (Etype (Entity (Prefix (DS)))))
1693 and then Expander_Active
1694 then
1695 declare
1696 Loc : constant Source_Ptr := Sloc (N);
1697 Arr : constant Entity_Id := Etype (Entity (Prefix (DS)));
1698 Indx : constant Entity_Id :=
1699 Base_Type (Etype (First_Index (Arr)));
1700 Subt : constant Entity_Id := Make_Temporary (Loc, 'S');
1701 Decl : Node_Id;
1702
1703 begin
1704 Decl :=
1705 Make_Subtype_Declaration (Loc,
1706 Defining_Identifier => Subt,
1707 Subtype_Indication =>
1708 Make_Subtype_Indication (Loc,
1709 Subtype_Mark => New_Reference_To (Indx, Loc),
1710 Constraint =>
1711 Make_Range_Constraint (Loc,
1712 Relocate_Node (DS))));
1713 Insert_Before (Parent (N), Decl);
1714 Analyze (Decl);
1715
1716 Rewrite (DS,
1717 Make_Attribute_Reference (Loc,
1718 Prefix => New_Reference_To (Subt, Loc),
1719 Attribute_Name => Attribute_Name (DS)));
1720 Analyze (DS);
1721 end;
1722 end if;
1723 end Check_Controlled_Array_Attribute;
1724
1725 -- Start of processing for Analyze_Iteration_Scheme
1726
1727 begin
1728 -- If this is a rewritten quantified expression, the iteration
1729 -- scheme has been analyzed already. Do no repeat analysis because
1730 -- the loop variable is already declared.
1731
1732 if Analyzed (N) then
1733 return;
1734 end if;
1735
1736 -- For an infinite loop, there is no iteration scheme
1737
1738 if No (N) then
1739 return;
1740 end if;
1741
1742 -- Iteration scheme is present
1743
1744 declare
1745 Cond : constant Node_Id := Condition (N);
1746
1747 begin
1748 -- For WHILE loop, verify that the condition is a Boolean
1749 -- expression and resolve and check it.
1750
1751 if Present (Cond) then
1752 Analyze_And_Resolve (Cond, Any_Boolean);
1753 Check_Unset_Reference (Cond);
1754 Set_Current_Value_Condition (N);
1755 return;
1756
1757 elsif Present (Iterator_Specification (N)) then
1758 Analyze_Iterator_Specification (Iterator_Specification (N));
1759
1760 -- Else we have a FOR loop
1761
1762 else
1763 declare
1764 LP : constant Node_Id := Loop_Parameter_Specification (N);
1765 Id : constant Entity_Id := Defining_Identifier (LP);
1766 DS : constant Node_Id := Discrete_Subtype_Definition (LP);
1767
1768 begin
1769 Enter_Name (Id);
1770
1771 -- We always consider the loop variable to be referenced,
1772 -- since the loop may be used just for counting purposes.
1773
1774 Generate_Reference (Id, N, ' ');
1775
1776 -- Check for the case of loop variable hiding a local variable
1777 -- (used later on to give a nice warning if the hidden variable
1778 -- is never assigned).
1779
1780 declare
1781 H : constant Entity_Id := Homonym (Id);
1782 begin
1783 if Present (H)
1784 and then Enclosing_Dynamic_Scope (H) =
1785 Enclosing_Dynamic_Scope (Id)
1786 and then Ekind (H) = E_Variable
1787 and then Is_Discrete_Type (Etype (H))
1788 then
1789 Set_Hiding_Loop_Variable (H, Id);
1790 end if;
1791 end;
1792
1793 -- Now analyze the subtype definition. If it is a range, create
1794 -- temporaries for bounds.
1795
1796 if Nkind (DS) = N_Range
1797 and then Expander_Active
1798 then
1799 Process_Bounds (DS);
1800
1801 -- Not a range or expander not active (is that right???)
1802
1803 else
1804 Analyze (DS);
1805
1806 if Nkind (DS) = N_Function_Call
1807 or else
1808 (Is_Entity_Name (DS)
1809 and then not Is_Type (Entity (DS)))
1810 then
1811 -- This is an iterator specification. Rewrite as such
1812 -- and analyze.
1813
1814 declare
1815 I_Spec : constant Node_Id :=
1816 Make_Iterator_Specification (Sloc (LP),
1817 Defining_Identifier =>
1818 Relocate_Node (Id),
1819 Name =>
1820 Relocate_Node (DS),
1821 Subtype_Indication =>
1822 Empty,
1823 Reverse_Present =>
1824 Reverse_Present (LP));
1825 begin
1826 Set_Iterator_Specification (N, I_Spec);
1827 Set_Loop_Parameter_Specification (N, Empty);
1828 Analyze_Iterator_Specification (I_Spec);
1829 return;
1830 end;
1831 end if;
1832 end if;
1833
1834 if DS = Error then
1835 return;
1836 end if;
1837
1838 -- Some additional checks if we are iterating through a type
1839
1840 if Is_Entity_Name (DS)
1841 and then Present (Entity (DS))
1842 and then Is_Type (Entity (DS))
1843 then
1844 -- The subtype indication may denote the completion of an
1845 -- incomplete type declaration.
1846
1847 if Ekind (Entity (DS)) = E_Incomplete_Type then
1848 Set_Entity (DS, Get_Full_View (Entity (DS)));
1849 Set_Etype (DS, Entity (DS));
1850 end if;
1851
1852 -- Attempt to iterate through non-static predicate
1853
1854 if Is_Discrete_Type (Entity (DS))
1855 and then Present (Predicate_Function (Entity (DS)))
1856 and then No (Static_Predicate (Entity (DS)))
1857 then
1858 Bad_Predicated_Subtype_Use
1859 ("cannot use subtype& with non-static "
1860 & "predicate for loop iteration", DS, Entity (DS));
1861 end if;
1862 end if;
1863
1864 -- Error if not discrete type
1865
1866 if not Is_Discrete_Type (Etype (DS)) then
1867 Wrong_Type (DS, Any_Discrete);
1868 Set_Etype (DS, Any_Type);
1869 end if;
1870
1871 Check_Controlled_Array_Attribute (DS);
1872
1873 Make_Index (DS, LP);
1874
1875 Set_Ekind (Id, E_Loop_Parameter);
1876 Set_Etype (Id, Etype (DS));
1877
1878 -- Treat a range as an implicit reference to the type, to
1879 -- inhibit spurious warnings.
1880
1881 Generate_Reference (Base_Type (Etype (DS)), N, ' ');
1882 Set_Is_Known_Valid (Id, True);
1883
1884 -- The loop is not a declarative part, so the only entity
1885 -- declared "within" must be frozen explicitly.
1886
1887 declare
1888 Flist : constant List_Id := Freeze_Entity (Id, N);
1889 begin
1890 if Is_Non_Empty_List (Flist) then
1891 Insert_Actions (N, Flist);
1892 end if;
1893 end;
1894
1895 -- Check for null or possibly null range and issue warning. We
1896 -- suppress such messages in generic templates and instances,
1897 -- because in practice they tend to be dubious in these cases.
1898
1899 if Nkind (DS) = N_Range and then Comes_From_Source (N) then
1900 declare
1901 L : constant Node_Id := Low_Bound (DS);
1902 H : constant Node_Id := High_Bound (DS);
1903
1904 begin
1905 -- If range of loop is null, issue warning
1906
1907 if Compile_Time_Compare
1908 (L, H, Assume_Valid => True) = GT
1909 then
1910 -- Suppress the warning if inside a generic template
1911 -- or instance, since in practice they tend to be
1912 -- dubious in these cases since they can result from
1913 -- intended parametrization.
1914
1915 if not Inside_A_Generic
1916 and then not In_Instance
1917 then
1918 -- Specialize msg if invalid values could make
1919 -- the loop non-null after all.
1920
1921 if Compile_Time_Compare
1922 (L, H, Assume_Valid => False) = GT
1923 then
1924 Error_Msg_N
1925 ("?loop range is null, loop will not execute",
1926 DS);
1927
1928 -- Since we know the range of the loop is
1929 -- null, set the appropriate flag to remove
1930 -- the loop entirely during expansion.
1931
1932 Set_Is_Null_Loop (Parent (N));
1933
1934 -- Here is where the loop could execute because
1935 -- of invalid values, so issue appropriate
1936 -- message and in this case we do not set the
1937 -- Is_Null_Loop flag since the loop may execute.
1938
1939 else
1940 Error_Msg_N
1941 ("?loop range may be null, "
1942 & "loop may not execute",
1943 DS);
1944 Error_Msg_N
1945 ("?can only execute if invalid values "
1946 & "are present",
1947 DS);
1948 end if;
1949 end if;
1950
1951 -- In either case, suppress warnings in the body of
1952 -- the loop, since it is likely that these warnings
1953 -- will be inappropriate if the loop never actually
1954 -- executes, which is likely.
1955
1956 Set_Suppress_Loop_Warnings (Parent (N));
1957
1958 -- The other case for a warning is a reverse loop
1959 -- where the upper bound is the integer literal zero
1960 -- or one, and the lower bound can be positive.
1961
1962 -- For example, we have
1963
1964 -- for J in reverse N .. 1 loop
1965
1966 -- In practice, this is very likely to be a case of
1967 -- reversing the bounds incorrectly in the range.
1968
1969 elsif Reverse_Present (LP)
1970 and then Nkind (Original_Node (H)) =
1971 N_Integer_Literal
1972 and then (Intval (Original_Node (H)) = Uint_0
1973 or else
1974 Intval (Original_Node (H)) = Uint_1)
1975 then
1976 Error_Msg_N ("?loop range may be null", DS);
1977 Error_Msg_N ("\?bounds may be wrong way round", DS);
1978 end if;
1979 end;
1980 end if;
1981 end;
1982 end if;
1983 end;
1984 end Analyze_Iteration_Scheme;
1985
1986 -------------------------------------
1987 -- Analyze_Iterator_Specification --
1988 -------------------------------------
1989
1990 procedure Analyze_Iterator_Specification (N : Node_Id) is
1991 Def_Id : constant Node_Id := Defining_Identifier (N);
1992 Subt : constant Node_Id := Subtype_Indication (N);
1993 Container : constant Node_Id := Name (N);
1994
1995 Ent : Entity_Id;
1996 Typ : Entity_Id;
1997
1998 begin
1999 Enter_Name (Def_Id);
2000 Set_Ekind (Def_Id, E_Variable);
2001
2002 if Present (Subt) then
2003 Analyze (Subt);
2004 end if;
2005
2006 Analyze_And_Resolve (Container);
2007 Typ := Etype (Container);
2008
2009 if Is_Array_Type (Typ) then
2010 if Of_Present (N) then
2011 Set_Etype (Def_Id, Component_Type (Typ));
2012 else
2013 Error_Msg_N
2014 ("to iterate over the elements of an array, use 'O'F", N);
2015 Set_Etype (Def_Id, Etype (First_Index (Typ)));
2016 end if;
2017
2018 -- Iteration over a container
2019
2020 else
2021 Set_Ekind (Def_Id, E_Loop_Parameter);
2022
2023 if Of_Present (N) then
2024
2025 -- Find the Element_Type in the package instance that defines the
2026 -- container type.
2027
2028 Ent := First_Entity (Scope (Typ));
2029 while Present (Ent) loop
2030 if Chars (Ent) = Name_Element_Type then
2031 Set_Etype (Def_Id, Ent);
2032 exit;
2033 end if;
2034
2035 Next_Entity (Ent);
2036 end loop;
2037
2038 else
2039 -- Find the Cursor type in similar fashion
2040
2041 Ent := First_Entity (Scope (Typ));
2042 while Present (Ent) loop
2043 if Chars (Ent) = Name_Cursor then
2044 Set_Etype (Def_Id, Ent);
2045 exit;
2046 end if;
2047
2048 Next_Entity (Ent);
2049 end loop;
2050 end if;
2051 end if;
2052 end Analyze_Iterator_Specification;
2053
2054 -------------------
2055 -- Analyze_Label --
2056 -------------------
2057
2058 -- Note: the semantic work required for analyzing labels (setting them as
2059 -- reachable) was done in a prepass through the statements in the block,
2060 -- so that forward gotos would be properly handled. See Analyze_Statements
2061 -- for further details. The only processing required here is to deal with
2062 -- optimizations that depend on an assumption of sequential control flow,
2063 -- since of course the occurrence of a label breaks this assumption.
2064
2065 procedure Analyze_Label (N : Node_Id) is
2066 pragma Warnings (Off, N);
2067 begin
2068 Kill_Current_Values;
2069 end Analyze_Label;
2070
2071 --------------------------
2072 -- Analyze_Label_Entity --
2073 --------------------------
2074
2075 procedure Analyze_Label_Entity (E : Entity_Id) is
2076 begin
2077 Set_Ekind (E, E_Label);
2078 Set_Etype (E, Standard_Void_Type);
2079 Set_Enclosing_Scope (E, Current_Scope);
2080 Set_Reachable (E, True);
2081 end Analyze_Label_Entity;
2082
2083 ----------------------------
2084 -- Analyze_Loop_Statement --
2085 ----------------------------
2086
2087 procedure Analyze_Loop_Statement (N : Node_Id) is
2088 Loop_Statement : constant Node_Id := N;
2089
2090 Id : constant Node_Id := Identifier (Loop_Statement);
2091 Iter : constant Node_Id := Iteration_Scheme (Loop_Statement);
2092 Ent : Entity_Id;
2093
2094 begin
2095 if Present (Id) then
2096
2097 -- Make name visible, e.g. for use in exit statements. Loop
2098 -- labels are always considered to be referenced.
2099
2100 Analyze (Id);
2101 Ent := Entity (Id);
2102
2103 -- Guard against serious error (typically, a scope mismatch when
2104 -- semantic analysis is requested) by creating loop entity to
2105 -- continue analysis.
2106
2107 if No (Ent) then
2108 if Total_Errors_Detected /= 0 then
2109 Ent :=
2110 New_Internal_Entity
2111 (E_Loop, Current_Scope, Sloc (Loop_Statement), 'L');
2112 else
2113 raise Program_Error;
2114 end if;
2115
2116 else
2117 Generate_Reference (Ent, Loop_Statement, ' ');
2118 Generate_Definition (Ent);
2119
2120 -- If we found a label, mark its type. If not, ignore it, since it
2121 -- means we have a conflicting declaration, which would already
2122 -- have been diagnosed at declaration time. Set Label_Construct
2123 -- of the implicit label declaration, which is not created by the
2124 -- parser for generic units.
2125
2126 if Ekind (Ent) = E_Label then
2127 Set_Ekind (Ent, E_Loop);
2128
2129 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
2130 Set_Label_Construct (Parent (Ent), Loop_Statement);
2131 end if;
2132 end if;
2133 end if;
2134
2135 -- Case of no identifier present
2136
2137 else
2138 Ent :=
2139 New_Internal_Entity
2140 (E_Loop, Current_Scope, Sloc (Loop_Statement), 'L');
2141 Set_Etype (Ent, Standard_Void_Type);
2142 Set_Parent (Ent, Loop_Statement);
2143 end if;
2144
2145 -- Kill current values on entry to loop, since statements in body of
2146 -- loop may have been executed before the loop is entered. Similarly we
2147 -- kill values after the loop, since we do not know that the body of the
2148 -- loop was executed.
2149
2150 Kill_Current_Values;
2151 Push_Scope (Ent);
2152 Analyze_Iteration_Scheme (Iter);
2153 Analyze_Statements (Statements (Loop_Statement));
2154 Process_End_Label (Loop_Statement, 'e', Ent);
2155 End_Scope;
2156 Kill_Current_Values;
2157
2158 -- Check for infinite loop. Skip check for generated code, since it
2159 -- justs waste time and makes debugging the routine called harder.
2160
2161 -- Note that we have to wait till the body of the loop is fully analyzed
2162 -- before making this call, since Check_Infinite_Loop_Warning relies on
2163 -- being able to use semantic visibility information to find references.
2164
2165 if Comes_From_Source (N) then
2166 Check_Infinite_Loop_Warning (N);
2167 end if;
2168
2169 -- Code after loop is unreachable if the loop has no WHILE or FOR
2170 -- and contains no EXIT statements within the body of the loop.
2171
2172 if No (Iter) and then not Has_Exit (Ent) then
2173 Check_Unreachable_Code (N);
2174 end if;
2175 end Analyze_Loop_Statement;
2176
2177 ----------------------------
2178 -- Analyze_Null_Statement --
2179 ----------------------------
2180
2181 -- Note: the semantics of the null statement is implemented by a single
2182 -- null statement, too bad everything isn't as simple as this!
2183
2184 procedure Analyze_Null_Statement (N : Node_Id) is
2185 pragma Warnings (Off, N);
2186 begin
2187 null;
2188 end Analyze_Null_Statement;
2189
2190 ------------------------
2191 -- Analyze_Statements --
2192 ------------------------
2193
2194 procedure Analyze_Statements (L : List_Id) is
2195 S : Node_Id;
2196 Lab : Entity_Id;
2197
2198 begin
2199 -- The labels declared in the statement list are reachable from
2200 -- statements in the list. We do this as a prepass so that any
2201 -- goto statement will be properly flagged if its target is not
2202 -- reachable. This is not required, but is nice behavior!
2203
2204 S := First (L);
2205 while Present (S) loop
2206 if Nkind (S) = N_Label then
2207 Analyze (Identifier (S));
2208 Lab := Entity (Identifier (S));
2209
2210 -- If we found a label mark it as reachable
2211
2212 if Ekind (Lab) = E_Label then
2213 Generate_Definition (Lab);
2214 Set_Reachable (Lab);
2215
2216 if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
2217 Set_Label_Construct (Parent (Lab), S);
2218 end if;
2219
2220 -- If we failed to find a label, it means the implicit declaration
2221 -- of the label was hidden. A for-loop parameter can do this to
2222 -- a label with the same name inside the loop, since the implicit
2223 -- label declaration is in the innermost enclosing body or block
2224 -- statement.
2225
2226 else
2227 Error_Msg_Sloc := Sloc (Lab);
2228 Error_Msg_N
2229 ("implicit label declaration for & is hidden#",
2230 Identifier (S));
2231 end if;
2232 end if;
2233
2234 Next (S);
2235 end loop;
2236
2237 -- Perform semantic analysis on all statements
2238
2239 Conditional_Statements_Begin;
2240
2241 S := First (L);
2242 while Present (S) loop
2243 Analyze (S);
2244 Next (S);
2245 end loop;
2246
2247 Conditional_Statements_End;
2248
2249 -- Make labels unreachable. Visibility is not sufficient, because
2250 -- labels in one if-branch for example are not reachable from the
2251 -- other branch, even though their declarations are in the enclosing
2252 -- declarative part.
2253
2254 S := First (L);
2255 while Present (S) loop
2256 if Nkind (S) = N_Label then
2257 Set_Reachable (Entity (Identifier (S)), False);
2258 end if;
2259
2260 Next (S);
2261 end loop;
2262 end Analyze_Statements;
2263
2264 ----------------------------
2265 -- Check_Unreachable_Code --
2266 ----------------------------
2267
2268 procedure Check_Unreachable_Code (N : Node_Id) is
2269 Error_Loc : Source_Ptr;
2270 P : Node_Id;
2271
2272 begin
2273 if Is_List_Member (N)
2274 and then Comes_From_Source (N)
2275 then
2276 declare
2277 Nxt : Node_Id;
2278
2279 begin
2280 Nxt := Original_Node (Next (N));
2281
2282 -- If a label follows us, then we never have dead code, since
2283 -- someone could branch to the label, so we just ignore it.
2284
2285 if Nkind (Nxt) = N_Label then
2286 return;
2287
2288 -- Otherwise see if we have a real statement following us
2289
2290 elsif Present (Nxt)
2291 and then Comes_From_Source (Nxt)
2292 and then Is_Statement (Nxt)
2293 then
2294 -- Special very annoying exception. If we have a return that
2295 -- follows a raise, then we allow it without a warning, since
2296 -- the Ada RM annoyingly requires a useless return here!
2297
2298 if Nkind (Original_Node (N)) /= N_Raise_Statement
2299 or else Nkind (Nxt) /= N_Simple_Return_Statement
2300 then
2301 -- The rather strange shenanigans with the warning message
2302 -- here reflects the fact that Kill_Dead_Code is very good
2303 -- at removing warnings in deleted code, and this is one
2304 -- warning we would prefer NOT to have removed.
2305
2306 Error_Loc := Sloc (Nxt);
2307
2308 -- If we have unreachable code, analyze and remove the
2309 -- unreachable code, since it is useless and we don't
2310 -- want to generate junk warnings.
2311
2312 -- We skip this step if we are not in code generation mode.
2313 -- This is the one case where we remove dead code in the
2314 -- semantics as opposed to the expander, and we do not want
2315 -- to remove code if we are not in code generation mode,
2316 -- since this messes up the ASIS trees.
2317
2318 -- Note that one might react by moving the whole circuit to
2319 -- exp_ch5, but then we lose the warning in -gnatc mode.
2320
2321 if Operating_Mode = Generate_Code then
2322 loop
2323 Nxt := Next (N);
2324
2325 -- Quit deleting when we have nothing more to delete
2326 -- or if we hit a label (since someone could transfer
2327 -- control to a label, so we should not delete it).
2328
2329 exit when No (Nxt) or else Nkind (Nxt) = N_Label;
2330
2331 -- Statement/declaration is to be deleted
2332
2333 Analyze (Nxt);
2334 Remove (Nxt);
2335 Kill_Dead_Code (Nxt);
2336 end loop;
2337 end if;
2338
2339 -- Now issue the warning
2340
2341 Error_Msg ("?unreachable code!", Error_Loc);
2342 end if;
2343
2344 -- If the unconditional transfer of control instruction is
2345 -- the last statement of a sequence, then see if our parent
2346 -- is one of the constructs for which we count unblocked exits,
2347 -- and if so, adjust the count.
2348
2349 else
2350 P := Parent (N);
2351
2352 -- Statements in THEN part or ELSE part of IF statement
2353
2354 if Nkind (P) = N_If_Statement then
2355 null;
2356
2357 -- Statements in ELSIF part of an IF statement
2358
2359 elsif Nkind (P) = N_Elsif_Part then
2360 P := Parent (P);
2361 pragma Assert (Nkind (P) = N_If_Statement);
2362
2363 -- Statements in CASE statement alternative
2364
2365 elsif Nkind (P) = N_Case_Statement_Alternative then
2366 P := Parent (P);
2367 pragma Assert (Nkind (P) = N_Case_Statement);
2368
2369 -- Statements in body of block
2370
2371 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
2372 and then Nkind (Parent (P)) = N_Block_Statement
2373 then
2374 null;
2375
2376 -- Statements in exception handler in a block
2377
2378 elsif Nkind (P) = N_Exception_Handler
2379 and then Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements
2380 and then Nkind (Parent (Parent (P))) = N_Block_Statement
2381 then
2382 null;
2383
2384 -- None of these cases, so return
2385
2386 else
2387 return;
2388 end if;
2389
2390 -- This was one of the cases we are looking for (i.e. the
2391 -- parent construct was IF, CASE or block) so decrement count.
2392
2393 Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
2394 end if;
2395 end;
2396 end if;
2397 end Check_Unreachable_Code;
2398
2399 end Sem_Ch5;