sem_ch3.adb (Access_Definition): A formal object declaration is a legal context for...
[gcc.git] / gcc / ada / sem_ch6.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2008, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Ch6; use Exp_Ch6;
34 with Exp_Ch7; use Exp_Ch7;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Tss; use Exp_Tss;
38 with Exp_Util; use Exp_Util;
39 with Fname; use Fname;
40 with Freeze; use Freeze;
41 with Itypes; use Itypes;
42 with Lib.Xref; use Lib.Xref;
43 with Layout; use Layout;
44 with Namet; use Namet;
45 with Lib; use Lib;
46 with Nlists; use Nlists;
47 with Nmake; use Nmake;
48 with Opt; use Opt;
49 with Output; use Output;
50 with Rtsfind; use Rtsfind;
51 with Sem; use Sem;
52 with Sem_Cat; use Sem_Cat;
53 with Sem_Ch3; use Sem_Ch3;
54 with Sem_Ch4; use Sem_Ch4;
55 with Sem_Ch5; use Sem_Ch5;
56 with Sem_Ch8; use Sem_Ch8;
57 with Sem_Ch10; use Sem_Ch10;
58 with Sem_Ch12; use Sem_Ch12;
59 with Sem_Disp; use Sem_Disp;
60 with Sem_Dist; use Sem_Dist;
61 with Sem_Elim; use Sem_Elim;
62 with Sem_Eval; use Sem_Eval;
63 with Sem_Mech; use Sem_Mech;
64 with Sem_Prag; use Sem_Prag;
65 with Sem_Res; use Sem_Res;
66 with Sem_Util; use Sem_Util;
67 with Sem_Type; use Sem_Type;
68 with Sem_Warn; use Sem_Warn;
69 with Sinput; use Sinput;
70 with Stand; use Stand;
71 with Sinfo; use Sinfo;
72 with Sinfo.CN; use Sinfo.CN;
73 with Snames; use Snames;
74 with Stringt; use Stringt;
75 with Style;
76 with Stylesw; use Stylesw;
77 with Tbuild; use Tbuild;
78 with Uintp; use Uintp;
79 with Urealp; use Urealp;
80 with Validsw; use Validsw;
81
82 package body Sem_Ch6 is
83
84 May_Hide_Profile : Boolean := False;
85 -- This flag is used to indicate that two formals in two subprograms being
86 -- checked for conformance differ only in that one is an access parameter
87 -- while the other is of a general access type with the same designated
88 -- type. In this case, if the rest of the signatures match, a call to
89 -- either subprogram may be ambiguous, which is worth a warning. The flag
90 -- is set in Compatible_Types, and the warning emitted in
91 -- New_Overloaded_Entity.
92
93 -----------------------
94 -- Local Subprograms --
95 -----------------------
96
97 procedure Analyze_Return_Statement (N : Node_Id);
98 -- Common processing for simple_ and extended_return_statements
99
100 procedure Analyze_Function_Return (N : Node_Id);
101 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
102 -- applies to a [generic] function.
103
104 procedure Analyze_Return_Type (N : Node_Id);
105 -- Subsidiary to Process_Formals: analyze subtype mark in function
106 -- specification, in a context where the formals are visible and hide
107 -- outer homographs.
108
109 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
110 -- Analyze a generic subprogram body. N is the body to be analyzed, and
111 -- Gen_Id is the defining entity Id for the corresponding spec.
112
113 procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id);
114 -- If a subprogram has pragma Inline and inlining is active, use generic
115 -- machinery to build an unexpanded body for the subprogram. This body is
116 -- subsequently used for inline expansions at call sites. If subprogram can
117 -- be inlined (depending on size and nature of local declarations) this
118 -- function returns true. Otherwise subprogram body is treated normally.
119 -- If proper warnings are enabled and the subprogram contains a construct
120 -- that cannot be inlined, the offending construct is flagged accordingly.
121
122 procedure Check_Conformance
123 (New_Id : Entity_Id;
124 Old_Id : Entity_Id;
125 Ctype : Conformance_Type;
126 Errmsg : Boolean;
127 Conforms : out Boolean;
128 Err_Loc : Node_Id := Empty;
129 Get_Inst : Boolean := False;
130 Skip_Controlling_Formals : Boolean := False);
131 -- Given two entities, this procedure checks that the profiles associated
132 -- with these entities meet the conformance criterion given by the third
133 -- parameter. If they conform, Conforms is set True and control returns
134 -- to the caller. If they do not conform, Conforms is set to False, and
135 -- in addition, if Errmsg is True on the call, proper messages are output
136 -- to complain about the conformance failure. If Err_Loc is non_Empty
137 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
138 -- error messages are placed on the appropriate part of the construct
139 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
140 -- against a formal access-to-subprogram type so Get_Instance_Of must
141 -- be called.
142
143 procedure Check_Subprogram_Order (N : Node_Id);
144 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
145 -- the alpha ordering rule for N if this ordering requirement applicable.
146
147 procedure Check_Returns
148 (HSS : Node_Id;
149 Mode : Character;
150 Err : out Boolean;
151 Proc : Entity_Id := Empty);
152 -- Called to check for missing return statements in a function body, or for
153 -- returns present in a procedure body which has No_Return set. HSS is the
154 -- handled statement sequence for the subprogram body. This procedure
155 -- checks all flow paths to make sure they either have return (Mode = 'F',
156 -- used for functions) or do not have a return (Mode = 'P', used for
157 -- No_Return procedures). The flag Err is set if there are any control
158 -- paths not explicitly terminated by a return in the function case, and is
159 -- True otherwise. Proc is the entity for the procedure case and is used
160 -- in posting the warning message.
161
162 procedure Enter_Overloaded_Entity (S : Entity_Id);
163 -- This procedure makes S, a new overloaded entity, into the first visible
164 -- entity with that name.
165
166 procedure Install_Entity (E : Entity_Id);
167 -- Make single entity visible. Used for generic formals as well
168
169 function Is_Non_Overriding_Operation
170 (Prev_E : Entity_Id;
171 New_E : Entity_Id) return Boolean;
172 -- Enforce the rule given in 12.3(18): a private operation in an instance
173 -- overrides an inherited operation only if the corresponding operation
174 -- was overriding in the generic. This can happen for primitive operations
175 -- of types derived (in the generic unit) from formal private or formal
176 -- derived types.
177
178 procedure Make_Inequality_Operator (S : Entity_Id);
179 -- Create the declaration for an inequality operator that is implicitly
180 -- created by a user-defined equality operator that yields a boolean.
181
182 procedure May_Need_Actuals (Fun : Entity_Id);
183 -- Flag functions that can be called without parameters, i.e. those that
184 -- have no parameters, or those for which defaults exist for all parameters
185
186 procedure Process_PPCs
187 (N : Node_Id;
188 Spec_Id : Entity_Id;
189 Body_Id : Entity_Id);
190 -- Called from Analyze_Body to deal with scanning post conditions for the
191 -- body and assembling and inserting the _postconditions procedure. N is
192 -- the node for the subprogram body and Body_Id/Spec_Id are the entities
193 -- for the body and separate spec (if there is no separate spec, Spec_Id
194 -- is Empty).
195
196 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
197 -- Formal_Id is an formal parameter entity. This procedure deals with
198 -- setting the proper validity status for this entity, which depends
199 -- on the kind of parameter and the validity checking mode.
200
201 ------------------------------
202 -- Analyze_Return_Statement --
203 ------------------------------
204
205 procedure Analyze_Return_Statement (N : Node_Id) is
206
207 pragma Assert (Nkind_In (N, N_Simple_Return_Statement,
208 N_Extended_Return_Statement));
209
210 Returns_Object : constant Boolean :=
211 Nkind (N) = N_Extended_Return_Statement
212 or else
213 (Nkind (N) = N_Simple_Return_Statement
214 and then Present (Expression (N)));
215 -- True if we're returning something; that is, "return <expression>;"
216 -- or "return Result : T [:= ...]". False for "return;". Used for error
217 -- checking: If Returns_Object is True, N should apply to a function
218 -- body; otherwise N should apply to a procedure body, entry body,
219 -- accept statement, or extended return statement.
220
221 function Find_What_It_Applies_To return Entity_Id;
222 -- Find the entity representing the innermost enclosing body, accept
223 -- statement, or extended return statement. If the result is a callable
224 -- construct or extended return statement, then this will be the value
225 -- of the Return_Applies_To attribute. Otherwise, the program is
226 -- illegal. See RM-6.5(4/2).
227
228 -----------------------------
229 -- Find_What_It_Applies_To --
230 -----------------------------
231
232 function Find_What_It_Applies_To return Entity_Id is
233 Result : Entity_Id := Empty;
234
235 begin
236 -- Loop outward through the Scope_Stack, skipping blocks and loops
237
238 for J in reverse 0 .. Scope_Stack.Last loop
239 Result := Scope_Stack.Table (J).Entity;
240 exit when Ekind (Result) /= E_Block and then
241 Ekind (Result) /= E_Loop;
242 end loop;
243
244 pragma Assert (Present (Result));
245 return Result;
246 end Find_What_It_Applies_To;
247
248 -- Local declarations
249
250 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
251 Kind : constant Entity_Kind := Ekind (Scope_Id);
252 Loc : constant Source_Ptr := Sloc (N);
253 Stm_Entity : constant Entity_Id :=
254 New_Internal_Entity
255 (E_Return_Statement, Current_Scope, Loc, 'R');
256
257 -- Start of processing for Analyze_Return_Statement
258
259 begin
260 Set_Return_Statement_Entity (N, Stm_Entity);
261
262 Set_Etype (Stm_Entity, Standard_Void_Type);
263 Set_Return_Applies_To (Stm_Entity, Scope_Id);
264
265 -- Place Return entity on scope stack, to simplify enforcement of 6.5
266 -- (4/2): an inner return statement will apply to this extended return.
267
268 if Nkind (N) = N_Extended_Return_Statement then
269 Push_Scope (Stm_Entity);
270 end if;
271
272 -- Check that pragma No_Return is obeyed
273
274 if No_Return (Scope_Id) then
275 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
276 end if;
277
278 -- Warn on any unassigned OUT parameters if in procedure
279
280 if Ekind (Scope_Id) = E_Procedure then
281 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
282 end if;
283
284 -- Check that functions return objects, and other things do not
285
286 if Kind = E_Function or else Kind = E_Generic_Function then
287 if not Returns_Object then
288 Error_Msg_N ("missing expression in return from function", N);
289 end if;
290
291 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
292 if Returns_Object then
293 Error_Msg_N ("procedure cannot return value (use function)", N);
294 end if;
295
296 elsif Kind = E_Entry or else Kind = E_Entry_Family then
297 if Returns_Object then
298 if Is_Protected_Type (Scope (Scope_Id)) then
299 Error_Msg_N ("entry body cannot return value", N);
300 else
301 Error_Msg_N ("accept statement cannot return value", N);
302 end if;
303 end if;
304
305 elsif Kind = E_Return_Statement then
306
307 -- We are nested within another return statement, which must be an
308 -- extended_return_statement.
309
310 if Returns_Object then
311 Error_Msg_N
312 ("extended_return_statement cannot return value; " &
313 "use `""RETURN;""`", N);
314 end if;
315
316 else
317 Error_Msg_N ("illegal context for return statement", N);
318 end if;
319
320 if Kind = E_Function or else Kind = E_Generic_Function then
321 Analyze_Function_Return (N);
322 end if;
323
324 if Nkind (N) = N_Extended_Return_Statement then
325 End_Scope;
326 end if;
327
328 Kill_Current_Values (Last_Assignment_Only => True);
329 Check_Unreachable_Code (N);
330 end Analyze_Return_Statement;
331
332 ---------------------------------------------
333 -- Analyze_Abstract_Subprogram_Declaration --
334 ---------------------------------------------
335
336 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
337 Designator : constant Entity_Id :=
338 Analyze_Subprogram_Specification (Specification (N));
339 Scop : constant Entity_Id := Current_Scope;
340
341 begin
342 Generate_Definition (Designator);
343 Set_Is_Abstract_Subprogram (Designator);
344 New_Overloaded_Entity (Designator);
345 Check_Delayed_Subprogram (Designator);
346
347 Set_Categorization_From_Scope (Designator, Scop);
348
349 if Ekind (Scope (Designator)) = E_Protected_Type then
350 Error_Msg_N
351 ("abstract subprogram not allowed in protected type", N);
352
353 -- Issue a warning if the abstract subprogram is neither a dispatching
354 -- operation nor an operation that overrides an inherited subprogram or
355 -- predefined operator, since this most likely indicates a mistake.
356
357 elsif Warn_On_Redundant_Constructs
358 and then not Is_Dispatching_Operation (Designator)
359 and then not Is_Overriding_Operation (Designator)
360 and then (not Is_Operator_Symbol_Name (Chars (Designator))
361 or else Scop /= Scope (Etype (First_Formal (Designator))))
362 then
363 Error_Msg_N
364 ("?abstract subprogram is not dispatching or overriding", N);
365 end if;
366
367 Generate_Reference_To_Formals (Designator);
368 end Analyze_Abstract_Subprogram_Declaration;
369
370 ----------------------------------------
371 -- Analyze_Extended_Return_Statement --
372 ----------------------------------------
373
374 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
375 begin
376 Analyze_Return_Statement (N);
377 end Analyze_Extended_Return_Statement;
378
379 ----------------------------
380 -- Analyze_Function_Call --
381 ----------------------------
382
383 procedure Analyze_Function_Call (N : Node_Id) is
384 P : constant Node_Id := Name (N);
385 L : constant List_Id := Parameter_Associations (N);
386 Actual : Node_Id;
387
388 begin
389 Analyze (P);
390
391 -- A call of the form A.B (X) may be an Ada05 call, which is rewritten
392 -- as B (A, X). If the rewriting is successful, the call has been
393 -- analyzed and we just return.
394
395 if Nkind (P) = N_Selected_Component
396 and then Name (N) /= P
397 and then Is_Rewrite_Substitution (N)
398 and then Present (Etype (N))
399 then
400 return;
401 end if;
402
403 -- If error analyzing name, then set Any_Type as result type and return
404
405 if Etype (P) = Any_Type then
406 Set_Etype (N, Any_Type);
407 return;
408 end if;
409
410 -- Otherwise analyze the parameters
411
412 if Present (L) then
413 Actual := First (L);
414 while Present (Actual) loop
415 Analyze (Actual);
416 Check_Parameterless_Call (Actual);
417 Next (Actual);
418 end loop;
419 end if;
420
421 Analyze_Call (N);
422 end Analyze_Function_Call;
423
424 -----------------------------
425 -- Analyze_Function_Return --
426 -----------------------------
427
428 procedure Analyze_Function_Return (N : Node_Id) is
429 Loc : constant Source_Ptr := Sloc (N);
430 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
431 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
432
433 R_Type : constant Entity_Id := Etype (Scope_Id);
434 -- Function result subtype
435
436 procedure Check_Limited_Return (Expr : Node_Id);
437 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning
438 -- limited types. Used only for simple return statements.
439 -- Expr is the expression returned.
440
441 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
442 -- Check that the return_subtype_indication properly matches the result
443 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
444
445 --------------------------
446 -- Check_Limited_Return --
447 --------------------------
448
449 procedure Check_Limited_Return (Expr : Node_Id) is
450 begin
451 -- Ada 2005 (AI-318-02): Return-by-reference types have been
452 -- removed and replaced by anonymous access results. This is an
453 -- incompatibility with Ada 95. Not clear whether this should be
454 -- enforced yet or perhaps controllable with special switch. ???
455
456 if Is_Limited_Type (R_Type)
457 and then Comes_From_Source (N)
458 and then not In_Instance_Body
459 and then not OK_For_Limited_Init_In_05 (Expr)
460 then
461 -- Error in Ada 2005
462
463 if Ada_Version >= Ada_05
464 and then not Debug_Flag_Dot_L
465 and then not GNAT_Mode
466 then
467 Error_Msg_N
468 ("(Ada 2005) cannot copy object of a limited type " &
469 "(RM-2005 6.5(5.5/2))", Expr);
470 if Is_Inherently_Limited_Type (R_Type) then
471 Error_Msg_N
472 ("\return by reference not permitted in Ada 2005", Expr);
473 end if;
474
475 -- Warn in Ada 95 mode, to give folks a heads up about this
476 -- incompatibility.
477
478 -- In GNAT mode, this is just a warning, to allow it to be
479 -- evilly turned off. Otherwise it is a real error.
480
481 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
482 if Is_Inherently_Limited_Type (R_Type) then
483 Error_Msg_N
484 ("return by reference not permitted in Ada 2005 " &
485 "(RM-2005 6.5(5.5/2))?", Expr);
486 else
487 Error_Msg_N
488 ("cannot copy object of a limited type in Ada 2005 " &
489 "(RM-2005 6.5(5.5/2))?", Expr);
490 end if;
491
492 -- Ada 95 mode, compatibility warnings disabled
493
494 else
495 return; -- skip continuation messages below
496 end if;
497
498 Error_Msg_N
499 ("\consider switching to return of access type", Expr);
500 Explain_Limited_Type (R_Type, Expr);
501 end if;
502 end Check_Limited_Return;
503
504 -------------------------------------
505 -- Check_Return_Subtype_Indication --
506 -------------------------------------
507
508 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
509 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
510 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
511 -- Subtype given in the extended return statement;
512 -- this must match R_Type.
513
514 Subtype_Ind : constant Node_Id :=
515 Object_Definition (Original_Node (Obj_Decl));
516
517 R_Type_Is_Anon_Access :
518 constant Boolean :=
519 Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type
520 or else
521 Ekind (R_Type) = E_Anonymous_Access_Protected_Subprogram_Type
522 or else
523 Ekind (R_Type) = E_Anonymous_Access_Type;
524 -- True if return type of the function is an anonymous access type
525 -- Can't we make Is_Anonymous_Access_Type in einfo ???
526
527 R_Stm_Type_Is_Anon_Access :
528 constant Boolean :=
529 Ekind (R_Stm_Type) = E_Anonymous_Access_Subprogram_Type
530 or else
531 Ekind (R_Stm_Type) = E_Anonymous_Access_Protected_Subprogram_Type
532 or else
533 Ekind (R_Stm_Type) = E_Anonymous_Access_Type;
534 -- True if type of the return object is an anonymous access type
535
536 begin
537 -- First, avoid cascade errors:
538
539 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
540 return;
541 end if;
542
543 -- "return access T" case; check that the return statement also has
544 -- "access T", and that the subtypes statically match:
545 -- if this is an access to subprogram the signatures must match.
546
547 if R_Type_Is_Anon_Access then
548 if R_Stm_Type_Is_Anon_Access then
549 if
550 Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
551 then
552 if Base_Type (Designated_Type (R_Stm_Type)) /=
553 Base_Type (Designated_Type (R_Type))
554 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
555 then
556 Error_Msg_N
557 ("subtype must statically match function result subtype",
558 Subtype_Mark (Subtype_Ind));
559 end if;
560
561 else
562 -- For two anonymous access to subprogram types, the
563 -- types themselves must be type conformant.
564
565 if not Conforming_Types
566 (R_Stm_Type, R_Type, Fully_Conformant)
567 then
568 Error_Msg_N
569 ("subtype must statically match function result subtype",
570 Subtype_Ind);
571 end if;
572 end if;
573
574 else
575 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
576 end if;
577
578 -- Subtype_indication case; check that the types are the same, and
579 -- statically match if appropriate. A null exclusion may be present
580 -- on the return type, on the function specification, on the object
581 -- declaration or on the subtype itself.
582
583 elsif Base_Type (R_Stm_Type) = Base_Type (R_Type) then
584 if Is_Access_Type (R_Type)
585 and then
586 (Can_Never_Be_Null (R_Type)
587 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
588 Can_Never_Be_Null (R_Stm_Type)
589 then
590 Error_Msg_N
591 ("subtype must statically match function result subtype",
592 Subtype_Ind);
593 end if;
594
595 if Is_Constrained (R_Type) then
596 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
597 Error_Msg_N
598 ("subtype must statically match function result subtype",
599 Subtype_Ind);
600 end if;
601 end if;
602
603 -- If the function's result type doesn't match the return object
604 -- entity's type, then we check for the case where the result type
605 -- is class-wide, and allow the declaration if the type of the object
606 -- definition matches the class-wide type. This prevents rejection
607 -- in the case where the object declaration is initialized by a call
608 -- to a build-in-place function with a specific result type and the
609 -- object entity had its type changed to that specific type. (Note
610 -- that the ARG believes that return objects should be allowed to
611 -- have a type covered by a class-wide result type in any case, so
612 -- once that relaxation is made (see AI05-32), the above check for
613 -- type compatibility should be changed to test Covers rather than
614 -- equality, and then the following special test will no longer be
615 -- needed. ???)
616
617 elsif Is_Class_Wide_Type (R_Type)
618 and then
619 R_Type = Etype (Object_Definition (Original_Node (Obj_Decl)))
620 then
621 null;
622
623 else
624 Error_Msg_N
625 ("wrong type for return_subtype_indication", Subtype_Ind);
626 end if;
627 end Check_Return_Subtype_Indication;
628
629 ---------------------
630 -- Local Variables --
631 ---------------------
632
633 Expr : Node_Id;
634
635 -- Start of processing for Analyze_Function_Return
636
637 begin
638 Set_Return_Present (Scope_Id);
639
640 if Nkind (N) = N_Simple_Return_Statement then
641 Expr := Expression (N);
642 Analyze_And_Resolve (Expr, R_Type);
643 Check_Limited_Return (Expr);
644
645 else
646 -- Analyze parts specific to extended_return_statement:
647
648 declare
649 Obj_Decl : constant Node_Id :=
650 Last (Return_Object_Declarations (N));
651
652 HSS : constant Node_Id := Handled_Statement_Sequence (N);
653
654 begin
655 Expr := Expression (Obj_Decl);
656
657 -- Note: The check for OK_For_Limited_Init will happen in
658 -- Analyze_Object_Declaration; we treat it as a normal
659 -- object declaration.
660
661 Analyze (Obj_Decl);
662
663 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
664 Check_Return_Subtype_Indication (Obj_Decl);
665
666 if Present (HSS) then
667 Analyze (HSS);
668
669 if Present (Exception_Handlers (HSS)) then
670
671 -- ???Has_Nested_Block_With_Handler needs to be set.
672 -- Probably by creating an actual N_Block_Statement.
673 -- Probably in Expand.
674
675 null;
676 end if;
677 end if;
678
679 Check_References (Stm_Entity);
680 end;
681 end if;
682
683 -- Case of Expr present
684
685 if Present (Expr)
686
687 -- Defend against previous errors
688
689 and then Nkind (Expr) /= N_Empty
690 and then Present (Etype (Expr))
691 then
692 -- Apply constraint check. Note that this is done before the implicit
693 -- conversion of the expression done for anonymous access types to
694 -- ensure correct generation of the null-excluding check associated
695 -- with null-excluding expressions found in return statements.
696
697 Apply_Constraint_Check (Expr, R_Type);
698
699 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
700 -- type, apply an implicit conversion of the expression to that type
701 -- to force appropriate static and run-time accessibility checks.
702
703 if Ada_Version >= Ada_05
704 and then Ekind (R_Type) = E_Anonymous_Access_Type
705 then
706 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
707 Analyze_And_Resolve (Expr, R_Type);
708 end if;
709
710 -- If the result type is class-wide, then check that the return
711 -- expression's type is not declared at a deeper level than the
712 -- function (RM05-6.5(5.6/2)).
713
714 if Ada_Version >= Ada_05
715 and then Is_Class_Wide_Type (R_Type)
716 then
717 if Type_Access_Level (Etype (Expr)) >
718 Subprogram_Access_Level (Scope_Id)
719 then
720 Error_Msg_N
721 ("level of return expression type is deeper than " &
722 "class-wide function!", Expr);
723 end if;
724 end if;
725
726 if (Is_Class_Wide_Type (Etype (Expr))
727 or else Is_Dynamically_Tagged (Expr))
728 and then not Is_Class_Wide_Type (R_Type)
729 then
730 Error_Msg_N
731 ("dynamically tagged expression not allowed!", Expr);
732 end if;
733
734 -- ??? A real run-time accessibility check is needed in cases
735 -- involving dereferences of access parameters. For now we just
736 -- check the static cases.
737
738 if (Ada_Version < Ada_05 or else Debug_Flag_Dot_L)
739 and then Is_Inherently_Limited_Type (Etype (Scope_Id))
740 and then Object_Access_Level (Expr) >
741 Subprogram_Access_Level (Scope_Id)
742 then
743 Rewrite (N,
744 Make_Raise_Program_Error (Loc,
745 Reason => PE_Accessibility_Check_Failed));
746 Analyze (N);
747
748 Error_Msg_N
749 ("cannot return a local value by reference?", N);
750 Error_Msg_NE
751 ("\& will be raised at run time?",
752 N, Standard_Program_Error);
753 end if;
754
755 if Known_Null (Expr)
756 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
757 and then Null_Exclusion_Present (Parent (Scope_Id))
758 then
759 Apply_Compile_Time_Constraint_Error
760 (N => Expr,
761 Msg => "(Ada 2005) null not allowed for "
762 & "null-excluding return?",
763 Reason => CE_Null_Not_Allowed);
764 end if;
765 end if;
766 end Analyze_Function_Return;
767
768 -------------------------------------
769 -- Analyze_Generic_Subprogram_Body --
770 -------------------------------------
771
772 procedure Analyze_Generic_Subprogram_Body
773 (N : Node_Id;
774 Gen_Id : Entity_Id)
775 is
776 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
777 Kind : constant Entity_Kind := Ekind (Gen_Id);
778 Body_Id : Entity_Id;
779 New_N : Node_Id;
780 Spec : Node_Id;
781
782 begin
783 -- Copy body and disable expansion while analyzing the generic For a
784 -- stub, do not copy the stub (which would load the proper body), this
785 -- will be done when the proper body is analyzed.
786
787 if Nkind (N) /= N_Subprogram_Body_Stub then
788 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
789 Rewrite (N, New_N);
790 Start_Generic;
791 end if;
792
793 Spec := Specification (N);
794
795 -- Within the body of the generic, the subprogram is callable, and
796 -- behaves like the corresponding non-generic unit.
797
798 Body_Id := Defining_Entity (Spec);
799
800 if Kind = E_Generic_Procedure
801 and then Nkind (Spec) /= N_Procedure_Specification
802 then
803 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
804 return;
805
806 elsif Kind = E_Generic_Function
807 and then Nkind (Spec) /= N_Function_Specification
808 then
809 Error_Msg_N ("invalid body for generic function ", Body_Id);
810 return;
811 end if;
812
813 Set_Corresponding_Body (Gen_Decl, Body_Id);
814
815 if Has_Completion (Gen_Id)
816 and then Nkind (Parent (N)) /= N_Subunit
817 then
818 Error_Msg_N ("duplicate generic body", N);
819 return;
820 else
821 Set_Has_Completion (Gen_Id);
822 end if;
823
824 if Nkind (N) = N_Subprogram_Body_Stub then
825 Set_Ekind (Defining_Entity (Specification (N)), Kind);
826 else
827 Set_Corresponding_Spec (N, Gen_Id);
828 end if;
829
830 if Nkind (Parent (N)) = N_Compilation_Unit then
831 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
832 end if;
833
834 -- Make generic parameters immediately visible in the body. They are
835 -- needed to process the formals declarations. Then make the formals
836 -- visible in a separate step.
837
838 Push_Scope (Gen_Id);
839
840 declare
841 E : Entity_Id;
842 First_Ent : Entity_Id;
843
844 begin
845 First_Ent := First_Entity (Gen_Id);
846
847 E := First_Ent;
848 while Present (E) and then not Is_Formal (E) loop
849 Install_Entity (E);
850 Next_Entity (E);
851 end loop;
852
853 Set_Use (Generic_Formal_Declarations (Gen_Decl));
854
855 -- Now generic formals are visible, and the specification can be
856 -- analyzed, for subsequent conformance check.
857
858 Body_Id := Analyze_Subprogram_Specification (Spec);
859
860 -- Make formal parameters visible
861
862 if Present (E) then
863
864 -- E is the first formal parameter, we loop through the formals
865 -- installing them so that they will be visible.
866
867 Set_First_Entity (Gen_Id, E);
868 while Present (E) loop
869 Install_Entity (E);
870 Next_Formal (E);
871 end loop;
872 end if;
873
874 -- Visible generic entity is callable within its own body
875
876 Set_Ekind (Gen_Id, Ekind (Body_Id));
877 Set_Ekind (Body_Id, E_Subprogram_Body);
878 Set_Convention (Body_Id, Convention (Gen_Id));
879 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
880 Set_Scope (Body_Id, Scope (Gen_Id));
881 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
882
883 if Nkind (N) = N_Subprogram_Body_Stub then
884
885 -- No body to analyze, so restore state of generic unit
886
887 Set_Ekind (Gen_Id, Kind);
888 Set_Ekind (Body_Id, Kind);
889
890 if Present (First_Ent) then
891 Set_First_Entity (Gen_Id, First_Ent);
892 end if;
893
894 End_Scope;
895 return;
896 end if;
897
898 -- If this is a compilation unit, it must be made visible explicitly,
899 -- because the compilation of the declaration, unlike other library
900 -- unit declarations, does not. If it is not a unit, the following
901 -- is redundant but harmless.
902
903 Set_Is_Immediately_Visible (Gen_Id);
904 Reference_Body_Formals (Gen_Id, Body_Id);
905
906 if Is_Child_Unit (Gen_Id) then
907 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
908 end if;
909
910 Set_Actual_Subtypes (N, Current_Scope);
911 Process_PPCs (N, Gen_Id, Body_Id);
912
913 -- If the generic unit carries pre- or post-conditions, copy them
914 -- to the original generic tree, so that they are properly added
915 -- to any instantiation.
916
917 declare
918 Orig : constant Node_Id := Original_Node (N);
919 Cond : Node_Id;
920
921 begin
922 Cond := First (Declarations (N));
923 while Present (Cond) loop
924 if Nkind (Cond) = N_Pragma
925 and then Pragma_Name (Cond) = Name_Check
926 then
927 Prepend (New_Copy_Tree (Cond), Declarations (Orig));
928
929 elsif Nkind (Cond) = N_Pragma
930 and then Pragma_Name (Cond) = Name_Postcondition
931 then
932 Set_Ekind (Defining_Entity (Orig), Ekind (Gen_Id));
933 Prepend (New_Copy_Tree (Cond), Declarations (Orig));
934 else
935 exit;
936 end if;
937
938 Next (Cond);
939 end loop;
940 end;
941
942 Analyze_Declarations (Declarations (N));
943 Check_Completion;
944 Analyze (Handled_Statement_Sequence (N));
945
946 Save_Global_References (Original_Node (N));
947
948 -- Prior to exiting the scope, include generic formals again (if any
949 -- are present) in the set of local entities.
950
951 if Present (First_Ent) then
952 Set_First_Entity (Gen_Id, First_Ent);
953 end if;
954
955 Check_References (Gen_Id);
956 end;
957
958 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
959 End_Scope;
960 Check_Subprogram_Order (N);
961
962 -- Outside of its body, unit is generic again
963
964 Set_Ekind (Gen_Id, Kind);
965 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
966
967 if Style_Check then
968 Style.Check_Identifier (Body_Id, Gen_Id);
969 end if;
970 End_Generic;
971 end Analyze_Generic_Subprogram_Body;
972
973 -----------------------------
974 -- Analyze_Operator_Symbol --
975 -----------------------------
976
977 -- An operator symbol such as "+" or "and" may appear in context where the
978 -- literal denotes an entity name, such as "+"(x, y) or in context when it
979 -- is just a string, as in (conjunction = "or"). In these cases the parser
980 -- generates this node, and the semantics does the disambiguation. Other
981 -- such case are actuals in an instantiation, the generic unit in an
982 -- instantiation, and pragma arguments.
983
984 procedure Analyze_Operator_Symbol (N : Node_Id) is
985 Par : constant Node_Id := Parent (N);
986
987 begin
988 if (Nkind (Par) = N_Function_Call
989 and then N = Name (Par))
990 or else Nkind (Par) = N_Function_Instantiation
991 or else (Nkind (Par) = N_Indexed_Component
992 and then N = Prefix (Par))
993 or else (Nkind (Par) = N_Pragma_Argument_Association
994 and then not Is_Pragma_String_Literal (Par))
995 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
996 or else (Nkind (Par) = N_Attribute_Reference
997 and then Attribute_Name (Par) /= Name_Value)
998 then
999 Find_Direct_Name (N);
1000
1001 else
1002 Change_Operator_Symbol_To_String_Literal (N);
1003 Analyze (N);
1004 end if;
1005 end Analyze_Operator_Symbol;
1006
1007 -----------------------------------
1008 -- Analyze_Parameter_Association --
1009 -----------------------------------
1010
1011 procedure Analyze_Parameter_Association (N : Node_Id) is
1012 begin
1013 Analyze (Explicit_Actual_Parameter (N));
1014 end Analyze_Parameter_Association;
1015
1016 ----------------------------
1017 -- Analyze_Procedure_Call --
1018 ----------------------------
1019
1020 procedure Analyze_Procedure_Call (N : Node_Id) is
1021 Loc : constant Source_Ptr := Sloc (N);
1022 P : constant Node_Id := Name (N);
1023 Actuals : constant List_Id := Parameter_Associations (N);
1024 Actual : Node_Id;
1025 New_N : Node_Id;
1026
1027 procedure Analyze_Call_And_Resolve;
1028 -- Do Analyze and Resolve calls for procedure call
1029
1030 ------------------------------
1031 -- Analyze_Call_And_Resolve --
1032 ------------------------------
1033
1034 procedure Analyze_Call_And_Resolve is
1035 begin
1036 if Nkind (N) = N_Procedure_Call_Statement then
1037 Analyze_Call (N);
1038 Resolve (N, Standard_Void_Type);
1039 else
1040 Analyze (N);
1041 end if;
1042 end Analyze_Call_And_Resolve;
1043
1044 -- Start of processing for Analyze_Procedure_Call
1045
1046 begin
1047 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1048 -- a procedure call or an entry call. The prefix may denote an access
1049 -- to subprogram type, in which case an implicit dereference applies.
1050 -- If the prefix is an indexed component (without implicit dereference)
1051 -- then the construct denotes a call to a member of an entire family.
1052 -- If the prefix is a simple name, it may still denote a call to a
1053 -- parameterless member of an entry family. Resolution of these various
1054 -- interpretations is delicate.
1055
1056 Analyze (P);
1057
1058 -- If this is a call of the form Obj.Op, the call may have been
1059 -- analyzed and possibly rewritten into a block, in which case
1060 -- we are done.
1061
1062 if Analyzed (N) then
1063 return;
1064 end if;
1065
1066 -- If error analyzing prefix, then set Any_Type as result and return
1067
1068 if Etype (P) = Any_Type then
1069 Set_Etype (N, Any_Type);
1070 return;
1071 end if;
1072
1073 -- Otherwise analyze the parameters
1074
1075 if Present (Actuals) then
1076 Actual := First (Actuals);
1077
1078 while Present (Actual) loop
1079 Analyze (Actual);
1080 Check_Parameterless_Call (Actual);
1081 Next (Actual);
1082 end loop;
1083 end if;
1084
1085 -- Special processing for Elab_Spec and Elab_Body calls
1086
1087 if Nkind (P) = N_Attribute_Reference
1088 and then (Attribute_Name (P) = Name_Elab_Spec
1089 or else Attribute_Name (P) = Name_Elab_Body)
1090 then
1091 if Present (Actuals) then
1092 Error_Msg_N
1093 ("no parameters allowed for this call", First (Actuals));
1094 return;
1095 end if;
1096
1097 Set_Etype (N, Standard_Void_Type);
1098 Set_Analyzed (N);
1099
1100 elsif Is_Entity_Name (P)
1101 and then Is_Record_Type (Etype (Entity (P)))
1102 and then Remote_AST_I_Dereference (P)
1103 then
1104 return;
1105
1106 elsif Is_Entity_Name (P)
1107 and then Ekind (Entity (P)) /= E_Entry_Family
1108 then
1109 if Is_Access_Type (Etype (P))
1110 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1111 and then No (Actuals)
1112 and then Comes_From_Source (N)
1113 then
1114 Error_Msg_N ("missing explicit dereference in call", N);
1115 end if;
1116
1117 Analyze_Call_And_Resolve;
1118
1119 -- If the prefix is the simple name of an entry family, this is
1120 -- a parameterless call from within the task body itself.
1121
1122 elsif Is_Entity_Name (P)
1123 and then Nkind (P) = N_Identifier
1124 and then Ekind (Entity (P)) = E_Entry_Family
1125 and then Present (Actuals)
1126 and then No (Next (First (Actuals)))
1127 then
1128 -- Can be call to parameterless entry family. What appears to be the
1129 -- sole argument is in fact the entry index. Rewrite prefix of node
1130 -- accordingly. Source representation is unchanged by this
1131 -- transformation.
1132
1133 New_N :=
1134 Make_Indexed_Component (Loc,
1135 Prefix =>
1136 Make_Selected_Component (Loc,
1137 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1138 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1139 Expressions => Actuals);
1140 Set_Name (N, New_N);
1141 Set_Etype (New_N, Standard_Void_Type);
1142 Set_Parameter_Associations (N, No_List);
1143 Analyze_Call_And_Resolve;
1144
1145 elsif Nkind (P) = N_Explicit_Dereference then
1146 if Ekind (Etype (P)) = E_Subprogram_Type then
1147 Analyze_Call_And_Resolve;
1148 else
1149 Error_Msg_N ("expect access to procedure in call", P);
1150 end if;
1151
1152 -- The name can be a selected component or an indexed component that
1153 -- yields an access to subprogram. Such a prefix is legal if the call
1154 -- has parameter associations.
1155
1156 elsif Is_Access_Type (Etype (P))
1157 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1158 then
1159 if Present (Actuals) then
1160 Analyze_Call_And_Resolve;
1161 else
1162 Error_Msg_N ("missing explicit dereference in call ", N);
1163 end if;
1164
1165 -- If not an access to subprogram, then the prefix must resolve to the
1166 -- name of an entry, entry family, or protected operation.
1167
1168 -- For the case of a simple entry call, P is a selected component where
1169 -- the prefix is the task and the selector name is the entry. A call to
1170 -- a protected procedure will have the same syntax. If the protected
1171 -- object contains overloaded operations, the entity may appear as a
1172 -- function, the context will select the operation whose type is Void.
1173
1174 elsif Nkind (P) = N_Selected_Component
1175 and then (Ekind (Entity (Selector_Name (P))) = E_Entry
1176 or else
1177 Ekind (Entity (Selector_Name (P))) = E_Procedure
1178 or else
1179 Ekind (Entity (Selector_Name (P))) = E_Function)
1180 then
1181 Analyze_Call_And_Resolve;
1182
1183 elsif Nkind (P) = N_Selected_Component
1184 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1185 and then Present (Actuals)
1186 and then No (Next (First (Actuals)))
1187 then
1188 -- Can be call to parameterless entry family. What appears to be the
1189 -- sole argument is in fact the entry index. Rewrite prefix of node
1190 -- accordingly. Source representation is unchanged by this
1191 -- transformation.
1192
1193 New_N :=
1194 Make_Indexed_Component (Loc,
1195 Prefix => New_Copy (P),
1196 Expressions => Actuals);
1197 Set_Name (N, New_N);
1198 Set_Etype (New_N, Standard_Void_Type);
1199 Set_Parameter_Associations (N, No_List);
1200 Analyze_Call_And_Resolve;
1201
1202 -- For the case of a reference to an element of an entry family, P is
1203 -- an indexed component whose prefix is a selected component (task and
1204 -- entry family), and whose index is the entry family index.
1205
1206 elsif Nkind (P) = N_Indexed_Component
1207 and then Nkind (Prefix (P)) = N_Selected_Component
1208 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1209 then
1210 Analyze_Call_And_Resolve;
1211
1212 -- If the prefix is the name of an entry family, it is a call from
1213 -- within the task body itself.
1214
1215 elsif Nkind (P) = N_Indexed_Component
1216 and then Nkind (Prefix (P)) = N_Identifier
1217 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1218 then
1219 New_N :=
1220 Make_Selected_Component (Loc,
1221 Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1222 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1223 Rewrite (Prefix (P), New_N);
1224 Analyze (P);
1225 Analyze_Call_And_Resolve;
1226
1227 -- Anything else is an error
1228
1229 else
1230 Error_Msg_N ("invalid procedure or entry call", N);
1231 end if;
1232 end Analyze_Procedure_Call;
1233
1234 -------------------------------------
1235 -- Analyze_Simple_Return_Statement --
1236 -------------------------------------
1237
1238 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
1239 begin
1240 if Present (Expression (N)) then
1241 Mark_Coextensions (N, Expression (N));
1242 end if;
1243
1244 Analyze_Return_Statement (N);
1245 end Analyze_Simple_Return_Statement;
1246
1247 -------------------------
1248 -- Analyze_Return_Type --
1249 -------------------------
1250
1251 procedure Analyze_Return_Type (N : Node_Id) is
1252 Designator : constant Entity_Id := Defining_Entity (N);
1253 Typ : Entity_Id := Empty;
1254
1255 begin
1256 -- Normal case where result definition does not indicate an error
1257
1258 if Result_Definition (N) /= Error then
1259 if Nkind (Result_Definition (N)) = N_Access_Definition then
1260 Typ := Access_Definition (N, Result_Definition (N));
1261 Set_Parent (Typ, Result_Definition (N));
1262 Set_Is_Local_Anonymous_Access (Typ);
1263 Set_Etype (Designator, Typ);
1264
1265 -- Subtype_Mark case
1266
1267 else
1268 Find_Type (Result_Definition (N));
1269 Typ := Entity (Result_Definition (N));
1270 Set_Etype (Designator, Typ);
1271
1272 if Ekind (Typ) = E_Incomplete_Type
1273 and then Is_Value_Type (Typ)
1274 then
1275 null;
1276
1277 elsif Ekind (Typ) = E_Incomplete_Type
1278 or else (Is_Class_Wide_Type (Typ)
1279 and then
1280 Ekind (Root_Type (Typ)) = E_Incomplete_Type)
1281 then
1282 Error_Msg_N
1283 ("invalid use of incomplete type", Result_Definition (N));
1284 end if;
1285 end if;
1286
1287 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1288
1289 Null_Exclusion_Static_Checks (N);
1290
1291 -- Case where result definition does indicate an error
1292
1293 else
1294 Set_Etype (Designator, Any_Type);
1295 end if;
1296 end Analyze_Return_Type;
1297
1298 -----------------------------
1299 -- Analyze_Subprogram_Body --
1300 -----------------------------
1301
1302 -- This procedure is called for regular subprogram bodies, generic bodies,
1303 -- and for subprogram stubs of both kinds. In the case of stubs, only the
1304 -- specification matters, and is used to create a proper declaration for
1305 -- the subprogram, or to perform conformance checks.
1306
1307 procedure Analyze_Subprogram_Body (N : Node_Id) is
1308 Loc : constant Source_Ptr := Sloc (N);
1309 Body_Deleted : constant Boolean := False;
1310 Body_Spec : constant Node_Id := Specification (N);
1311 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
1312 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
1313 Conformant : Boolean;
1314 HSS : Node_Id;
1315 Missing_Ret : Boolean;
1316 P_Ent : Entity_Id;
1317 Prot_Typ : Entity_Id := Empty;
1318 Spec_Id : Entity_Id;
1319 Spec_Decl : Node_Id := Empty;
1320
1321 Last_Real_Spec_Entity : Entity_Id := Empty;
1322 -- When we analyze a separate spec, the entity chain ends up containing
1323 -- the formals, as well as any itypes generated during analysis of the
1324 -- default expressions for parameters, or the arguments of associated
1325 -- precondition/postcondition pragmas (which are analyzed in the context
1326 -- of the spec since they have visibility on formals).
1327 --
1328 -- These entities belong with the spec and not the body. However we do
1329 -- the analysis of the body in the context of the spec (again to obtain
1330 -- visibility to the formals), and all the entities generated during
1331 -- this analysis end up also chained to the entity chain of the spec.
1332 -- But they really belong to the body, and there is circuitry to move
1333 -- them from the spec to the body.
1334 --
1335 -- However, when we do this move, we don't want to move the real spec
1336 -- entities (first para above) to the body. The Last_Real_Spec_Entity
1337 -- variable points to the last real spec entity, so we only move those
1338 -- chained beyond that point. It is initialized to Empty to deal with
1339 -- the case where there is no separate spec.
1340
1341 procedure Check_Anonymous_Return;
1342 -- (Ada 2005): if a function returns an access type that denotes a task,
1343 -- or a type that contains tasks, we must create a master entity for
1344 -- the anonymous type, which typically will be used in an allocator
1345 -- in the body of the function.
1346
1347 procedure Check_Inline_Pragma (Spec : in out Node_Id);
1348 -- Look ahead to recognize a pragma that may appear after the body.
1349 -- If there is a previous spec, check that it appears in the same
1350 -- declarative part. If the pragma is Inline_Always, perform inlining
1351 -- unconditionally, otherwise only if Front_End_Inlining is requested.
1352 -- If the body acts as a spec, and inlining is required, we create a
1353 -- subprogram declaration for it, in order to attach the body to inline.
1354 -- If pragma does not appear after the body, check whether there is
1355 -- an inline pragma before any local declarations.
1356
1357 function Disambiguate_Spec return Entity_Id;
1358 -- When a primitive is declared between the private view and the full
1359 -- view of a concurrent type which implements an interface, a special
1360 -- mechanism is used to find the corresponding spec of the primitive
1361 -- body.
1362
1363 function Is_Private_Concurrent_Primitive
1364 (Subp_Id : Entity_Id) return Boolean;
1365 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
1366 -- type that implements an interface and has a private view.
1367
1368 procedure Set_Trivial_Subprogram (N : Node_Id);
1369 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
1370 -- subprogram whose body is being analyzed. N is the statement node
1371 -- causing the flag to be set, if the following statement is a return
1372 -- of an entity, we mark the entity as set in source to suppress any
1373 -- warning on the stylized use of function stubs with a dummy return.
1374
1375 procedure Verify_Overriding_Indicator;
1376 -- If there was a previous spec, the entity has been entered in the
1377 -- current scope previously. If the body itself carries an overriding
1378 -- indicator, check that it is consistent with the known status of the
1379 -- entity.
1380
1381 ----------------------------
1382 -- Check_Anonymous_Return --
1383 ----------------------------
1384
1385 procedure Check_Anonymous_Return is
1386 Decl : Node_Id;
1387 Scop : Entity_Id;
1388
1389 begin
1390 if Present (Spec_Id) then
1391 Scop := Spec_Id;
1392 else
1393 Scop := Body_Id;
1394 end if;
1395
1396 if Ekind (Scop) = E_Function
1397 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
1398 and then Has_Task (Designated_Type (Etype (Scop)))
1399 and then Expander_Active
1400 then
1401 Decl :=
1402 Make_Object_Declaration (Loc,
1403 Defining_Identifier =>
1404 Make_Defining_Identifier (Loc, Name_uMaster),
1405 Constant_Present => True,
1406 Object_Definition =>
1407 New_Reference_To (RTE (RE_Master_Id), Loc),
1408 Expression =>
1409 Make_Explicit_Dereference (Loc,
1410 New_Reference_To (RTE (RE_Current_Master), Loc)));
1411
1412 if Present (Declarations (N)) then
1413 Prepend (Decl, Declarations (N));
1414 else
1415 Set_Declarations (N, New_List (Decl));
1416 end if;
1417
1418 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
1419 Set_Has_Master_Entity (Scop);
1420 end if;
1421 end Check_Anonymous_Return;
1422
1423 -------------------------
1424 -- Check_Inline_Pragma --
1425 -------------------------
1426
1427 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
1428 Prag : Node_Id;
1429 Plist : List_Id;
1430
1431 function Is_Inline_Pragma (N : Node_Id) return Boolean;
1432 -- True when N is a pragma Inline or Inline_Always that applies
1433 -- to this subprogram.
1434
1435 -----------------------
1436 -- Is_Inline_Pragma --
1437 -----------------------
1438
1439 function Is_Inline_Pragma (N : Node_Id) return Boolean is
1440 begin
1441 return
1442 Nkind (N) = N_Pragma
1443 and then
1444 (Pragma_Name (N) = Name_Inline_Always
1445 or else
1446 (Front_End_Inlining
1447 and then Pragma_Name (N) = Name_Inline))
1448 and then
1449 Chars
1450 (Expression (First (Pragma_Argument_Associations (N))))
1451 = Chars (Body_Id);
1452 end Is_Inline_Pragma;
1453
1454 -- Start of processing for Check_Inline_Pragma
1455
1456 begin
1457 if not Expander_Active then
1458 return;
1459 end if;
1460
1461 if Is_List_Member (N)
1462 and then Present (Next (N))
1463 and then Is_Inline_Pragma (Next (N))
1464 then
1465 Prag := Next (N);
1466
1467 elsif Nkind (N) /= N_Subprogram_Body_Stub
1468 and then Present (Declarations (N))
1469 and then Is_Inline_Pragma (First (Declarations (N)))
1470 then
1471 Prag := First (Declarations (N));
1472
1473 else
1474 Prag := Empty;
1475 end if;
1476
1477 if Present (Prag) then
1478 if Present (Spec_Id) then
1479 if List_Containing (N) =
1480 List_Containing (Unit_Declaration_Node (Spec_Id))
1481 then
1482 Analyze (Prag);
1483 end if;
1484
1485 else
1486 -- Create a subprogram declaration, to make treatment uniform
1487
1488 declare
1489 Subp : constant Entity_Id :=
1490 Make_Defining_Identifier (Loc, Chars (Body_Id));
1491 Decl : constant Node_Id :=
1492 Make_Subprogram_Declaration (Loc,
1493 Specification => New_Copy_Tree (Specification (N)));
1494 begin
1495 Set_Defining_Unit_Name (Specification (Decl), Subp);
1496
1497 if Present (First_Formal (Body_Id)) then
1498 Plist := Copy_Parameter_List (Body_Id);
1499 Set_Parameter_Specifications
1500 (Specification (Decl), Plist);
1501 end if;
1502
1503 Insert_Before (N, Decl);
1504 Analyze (Decl);
1505 Analyze (Prag);
1506 Set_Has_Pragma_Inline (Subp);
1507
1508 if Pragma_Name (Prag) = Name_Inline_Always then
1509 Set_Is_Inlined (Subp);
1510 Set_Has_Pragma_Inline_Always (Subp);
1511 end if;
1512
1513 Spec := Subp;
1514 end;
1515 end if;
1516 end if;
1517 end Check_Inline_Pragma;
1518
1519 -----------------------
1520 -- Disambiguate_Spec --
1521 -----------------------
1522
1523 function Disambiguate_Spec return Entity_Id is
1524 Priv_Spec : Entity_Id;
1525 Spec_N : Entity_Id;
1526
1527 procedure Replace_Types (To_Corresponding : Boolean);
1528 -- Depending on the flag, replace the type of formal parameters of
1529 -- Body_Id if it is a concurrent type implementing interfaces with
1530 -- the corresponding record type or the other way around.
1531
1532 procedure Replace_Types (To_Corresponding : Boolean) is
1533 Formal : Entity_Id;
1534 Formal_Typ : Entity_Id;
1535
1536 begin
1537 Formal := First_Formal (Body_Id);
1538 while Present (Formal) loop
1539 Formal_Typ := Etype (Formal);
1540
1541 -- From concurrent type to corresponding record
1542
1543 if To_Corresponding then
1544 if Is_Concurrent_Type (Formal_Typ)
1545 and then Present (Corresponding_Record_Type (Formal_Typ))
1546 and then Present (Interfaces (
1547 Corresponding_Record_Type (Formal_Typ)))
1548 then
1549 Set_Etype (Formal,
1550 Corresponding_Record_Type (Formal_Typ));
1551 end if;
1552
1553 -- From corresponding record to concurrent type
1554
1555 else
1556 if Is_Concurrent_Record_Type (Formal_Typ)
1557 and then Present (Interfaces (Formal_Typ))
1558 then
1559 Set_Etype (Formal,
1560 Corresponding_Concurrent_Type (Formal_Typ));
1561 end if;
1562 end if;
1563
1564 Next_Formal (Formal);
1565 end loop;
1566 end Replace_Types;
1567
1568 -- Start of processing for Disambiguate_Spec
1569
1570 begin
1571 -- Try to retrieve the specification of the body as is. All error
1572 -- messages are suppressed because the body may not have a spec in
1573 -- its current state.
1574
1575 Spec_N := Find_Corresponding_Spec (N, False);
1576
1577 -- It is possible that this is the body of a primitive declared
1578 -- between a private and a full view of a concurrent type. The
1579 -- controlling parameter of the spec carries the concurrent type,
1580 -- not the corresponding record type as transformed by Analyze_
1581 -- Subprogram_Specification. In such cases, we undo the change
1582 -- made by the analysis of the specification and try to find the
1583 -- spec again.
1584
1585 -- Note that wrappers already have their corresponding specs and
1586 -- bodies set during their creation, so if the candidate spec is
1587 -- a wrapper, then we definately need to swap all types to their
1588 -- original concurrent status.
1589
1590 if No (Spec_N)
1591 or else Is_Primitive_Wrapper (Spec_N)
1592 then
1593 -- Restore all references of corresponding record types to the
1594 -- original concurrent types.
1595
1596 Replace_Types (To_Corresponding => False);
1597 Priv_Spec := Find_Corresponding_Spec (N, False);
1598
1599 -- The current body truly belongs to a primitive declared between
1600 -- a private and a full view. We leave the modified body as is,
1601 -- and return the true spec.
1602
1603 if Present (Priv_Spec)
1604 and then Is_Private_Primitive (Priv_Spec)
1605 then
1606 return Priv_Spec;
1607 end if;
1608
1609 -- In case that this is some sort of error, restore the original
1610 -- state of the body.
1611
1612 Replace_Types (To_Corresponding => True);
1613 end if;
1614
1615 return Spec_N;
1616 end Disambiguate_Spec;
1617
1618 -------------------------------------
1619 -- Is_Private_Concurrent_Primitive --
1620 -------------------------------------
1621
1622 function Is_Private_Concurrent_Primitive
1623 (Subp_Id : Entity_Id) return Boolean
1624 is
1625 Formal_Typ : Entity_Id;
1626
1627 begin
1628 if Present (First_Formal (Subp_Id)) then
1629 Formal_Typ := Etype (First_Formal (Subp_Id));
1630
1631 if Is_Concurrent_Record_Type (Formal_Typ) then
1632 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
1633 end if;
1634
1635 -- The type of the first formal is a concurrent tagged type with
1636 -- a private view.
1637
1638 return
1639 Is_Concurrent_Type (Formal_Typ)
1640 and then Is_Tagged_Type (Formal_Typ)
1641 and then Has_Private_Declaration (Formal_Typ);
1642 end if;
1643
1644 return False;
1645 end Is_Private_Concurrent_Primitive;
1646
1647 ----------------------------
1648 -- Set_Trivial_Subprogram --
1649 ----------------------------
1650
1651 procedure Set_Trivial_Subprogram (N : Node_Id) is
1652 Nxt : constant Node_Id := Next (N);
1653
1654 begin
1655 Set_Is_Trivial_Subprogram (Body_Id);
1656
1657 if Present (Spec_Id) then
1658 Set_Is_Trivial_Subprogram (Spec_Id);
1659 end if;
1660
1661 if Present (Nxt)
1662 and then Nkind (Nxt) = N_Simple_Return_Statement
1663 and then No (Next (Nxt))
1664 and then Present (Expression (Nxt))
1665 and then Is_Entity_Name (Expression (Nxt))
1666 then
1667 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
1668 end if;
1669 end Set_Trivial_Subprogram;
1670
1671 ---------------------------------
1672 -- Verify_Overriding_Indicator --
1673 ---------------------------------
1674
1675 procedure Verify_Overriding_Indicator is
1676 begin
1677 if Must_Override (Body_Spec) then
1678 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
1679 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
1680 then
1681 null;
1682
1683 elsif not Is_Overriding_Operation (Spec_Id) then
1684 Error_Msg_NE
1685 ("subprogram& is not overriding", Body_Spec, Spec_Id);
1686 end if;
1687
1688 elsif Must_Not_Override (Body_Spec) then
1689 if Is_Overriding_Operation (Spec_Id) then
1690 Error_Msg_NE
1691 ("subprogram& overrides inherited operation",
1692 Body_Spec, Spec_Id);
1693
1694 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
1695 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
1696 then
1697 Error_Msg_NE
1698 ("subprogram & overrides predefined operator ",
1699 Body_Spec, Spec_Id);
1700
1701 -- If this is not a primitive operation the overriding indicator
1702 -- is altogether illegal.
1703
1704 elsif not Is_Primitive (Spec_Id) then
1705 Error_Msg_N ("overriding indicator only allowed " &
1706 "if subprogram is primitive",
1707 Body_Spec);
1708 end if;
1709 end if;
1710 end Verify_Overriding_Indicator;
1711
1712 -- Start of processing for Analyze_Subprogram_Body
1713
1714 begin
1715 if Debug_Flag_C then
1716 Write_Str ("==== Compiling subprogram body ");
1717 Write_Name (Chars (Body_Id));
1718 Write_Str (" from ");
1719 Write_Location (Loc);
1720 Write_Eol;
1721 end if;
1722
1723 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
1724
1725 -- Generic subprograms are handled separately. They always have a
1726 -- generic specification. Determine whether current scope has a
1727 -- previous declaration.
1728
1729 -- If the subprogram body is defined within an instance of the same
1730 -- name, the instance appears as a package renaming, and will be hidden
1731 -- within the subprogram.
1732
1733 if Present (Prev_Id)
1734 and then not Is_Overloadable (Prev_Id)
1735 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
1736 or else Comes_From_Source (Prev_Id))
1737 then
1738 if Is_Generic_Subprogram (Prev_Id) then
1739 Spec_Id := Prev_Id;
1740 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
1741 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
1742
1743 Analyze_Generic_Subprogram_Body (N, Spec_Id);
1744 return;
1745
1746 else
1747 -- Previous entity conflicts with subprogram name. Attempting to
1748 -- enter name will post error.
1749
1750 Enter_Name (Body_Id);
1751 return;
1752 end if;
1753
1754 -- Non-generic case, find the subprogram declaration, if one was seen,
1755 -- or enter new overloaded entity in the current scope. If the
1756 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
1757 -- part of the context of one of its subunits. No need to redo the
1758 -- analysis.
1759
1760 elsif Prev_Id = Body_Id
1761 and then Has_Completion (Body_Id)
1762 then
1763 return;
1764
1765 else
1766 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
1767
1768 if Nkind (N) = N_Subprogram_Body_Stub
1769 or else No (Corresponding_Spec (N))
1770 then
1771 if Is_Private_Concurrent_Primitive (Body_Id) then
1772 Spec_Id := Disambiguate_Spec;
1773 else
1774 Spec_Id := Find_Corresponding_Spec (N);
1775 end if;
1776
1777 -- If this is a duplicate body, no point in analyzing it
1778
1779 if Error_Posted (N) then
1780 return;
1781 end if;
1782
1783 -- A subprogram body should cause freezing of its own declaration,
1784 -- but if there was no previous explicit declaration, then the
1785 -- subprogram will get frozen too late (there may be code within
1786 -- the body that depends on the subprogram having been frozen,
1787 -- such as uses of extra formals), so we force it to be frozen
1788 -- here. Same holds if the body and spec are compilation units.
1789
1790 if No (Spec_Id) then
1791 Freeze_Before (N, Body_Id);
1792
1793 elsif Nkind (Parent (N)) = N_Compilation_Unit then
1794 Freeze_Before (N, Spec_Id);
1795 end if;
1796
1797 else
1798 Spec_Id := Corresponding_Spec (N);
1799 end if;
1800 end if;
1801
1802 -- Do not inline any subprogram that contains nested subprograms, since
1803 -- the backend inlining circuit seems to generate uninitialized
1804 -- references in this case. We know this happens in the case of front
1805 -- end ZCX support, but it also appears it can happen in other cases as
1806 -- well. The backend often rejects attempts to inline in the case of
1807 -- nested procedures anyway, so little if anything is lost by this.
1808 -- Note that this is test is for the benefit of the back-end. There is
1809 -- a separate test for front-end inlining that also rejects nested
1810 -- subprograms.
1811
1812 -- Do not do this test if errors have been detected, because in some
1813 -- error cases, this code blows up, and we don't need it anyway if
1814 -- there have been errors, since we won't get to the linker anyway.
1815
1816 if Comes_From_Source (Body_Id)
1817 and then Serious_Errors_Detected = 0
1818 then
1819 P_Ent := Body_Id;
1820 loop
1821 P_Ent := Scope (P_Ent);
1822 exit when No (P_Ent) or else P_Ent = Standard_Standard;
1823
1824 if Is_Subprogram (P_Ent) then
1825 Set_Is_Inlined (P_Ent, False);
1826
1827 if Comes_From_Source (P_Ent)
1828 and then Has_Pragma_Inline (P_Ent)
1829 then
1830 Cannot_Inline
1831 ("cannot inline& (nested subprogram)?",
1832 N, P_Ent);
1833 end if;
1834 end if;
1835 end loop;
1836 end if;
1837
1838 Check_Inline_Pragma (Spec_Id);
1839
1840 -- Case of fully private operation in the body of the protected type.
1841 -- We must create a declaration for the subprogram, in order to attach
1842 -- the protected subprogram that will be used in internal calls.
1843
1844 if No (Spec_Id)
1845 and then Comes_From_Source (N)
1846 and then Is_Protected_Type (Current_Scope)
1847 then
1848 declare
1849 Decl : Node_Id;
1850 Plist : List_Id;
1851 Formal : Entity_Id;
1852 New_Spec : Node_Id;
1853
1854 begin
1855 Formal := First_Formal (Body_Id);
1856
1857 -- The protected operation always has at least one formal, namely
1858 -- the object itself, but it is only placed in the parameter list
1859 -- if expansion is enabled.
1860
1861 if Present (Formal)
1862 or else Expander_Active
1863 then
1864 Plist := Copy_Parameter_List (Body_Id);
1865 else
1866 Plist := No_List;
1867 end if;
1868
1869 if Nkind (Body_Spec) = N_Procedure_Specification then
1870 New_Spec :=
1871 Make_Procedure_Specification (Loc,
1872 Defining_Unit_Name =>
1873 Make_Defining_Identifier (Sloc (Body_Id),
1874 Chars => Chars (Body_Id)),
1875 Parameter_Specifications => Plist);
1876 else
1877 New_Spec :=
1878 Make_Function_Specification (Loc,
1879 Defining_Unit_Name =>
1880 Make_Defining_Identifier (Sloc (Body_Id),
1881 Chars => Chars (Body_Id)),
1882 Parameter_Specifications => Plist,
1883 Result_Definition =>
1884 New_Occurrence_Of (Etype (Body_Id), Loc));
1885 end if;
1886
1887 Decl :=
1888 Make_Subprogram_Declaration (Loc,
1889 Specification => New_Spec);
1890 Insert_Before (N, Decl);
1891 Spec_Id := Defining_Unit_Name (New_Spec);
1892
1893 -- Indicate that the entity comes from source, to ensure that
1894 -- cross-reference information is properly generated. The body
1895 -- itself is rewritten during expansion, and the body entity will
1896 -- not appear in calls to the operation.
1897
1898 Set_Comes_From_Source (Spec_Id, True);
1899 Analyze (Decl);
1900 Set_Has_Completion (Spec_Id);
1901 Set_Convention (Spec_Id, Convention_Protected);
1902 end;
1903
1904 elsif Present (Spec_Id) then
1905 Spec_Decl := Unit_Declaration_Node (Spec_Id);
1906 Verify_Overriding_Indicator;
1907
1908 -- In general, the spec will be frozen when we start analyzing the
1909 -- body. However, for internally generated operations, such as
1910 -- wrapper functions for inherited operations with controlling
1911 -- results, the spec may not have been frozen by the time we
1912 -- expand the freeze actions that include the bodies. In particular,
1913 -- extra formals for accessibility or for return-in-place may need
1914 -- to be generated. Freeze nodes, if any, are inserted before the
1915 -- current body.
1916
1917 if not Is_Frozen (Spec_Id)
1918 and then Expander_Active
1919 then
1920 -- Force the generation of its freezing node to ensure proper
1921 -- management of access types in the backend.
1922
1923 -- This is definitely needed for some cases, but it is not clear
1924 -- why, to be investigated further???
1925
1926 Set_Has_Delayed_Freeze (Spec_Id);
1927 Insert_Actions (N, Freeze_Entity (Spec_Id, Loc));
1928 end if;
1929 end if;
1930
1931 if Chars (Body_Id) = Name_uPostconditions then
1932 Set_Has_Postconditions (Current_Scope);
1933 end if;
1934
1935 -- Place subprogram on scope stack, and make formals visible. If there
1936 -- is a spec, the visible entity remains that of the spec.
1937
1938 if Present (Spec_Id) then
1939 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
1940
1941 if Is_Child_Unit (Spec_Id) then
1942 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
1943 end if;
1944
1945 if Style_Check then
1946 Style.Check_Identifier (Body_Id, Spec_Id);
1947 end if;
1948
1949 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
1950 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
1951
1952 if Is_Abstract_Subprogram (Spec_Id) then
1953 Error_Msg_N ("an abstract subprogram cannot have a body", N);
1954 return;
1955
1956 else
1957 Set_Convention (Body_Id, Convention (Spec_Id));
1958 Set_Has_Completion (Spec_Id);
1959
1960 if Is_Protected_Type (Scope (Spec_Id)) then
1961 Prot_Typ := Scope (Spec_Id);
1962 end if;
1963
1964 -- If this is a body generated for a renaming, do not check for
1965 -- full conformance. The check is redundant, because the spec of
1966 -- the body is a copy of the spec in the renaming declaration,
1967 -- and the test can lead to spurious errors on nested defaults.
1968
1969 if Present (Spec_Decl)
1970 and then not Comes_From_Source (N)
1971 and then
1972 (Nkind (Original_Node (Spec_Decl)) =
1973 N_Subprogram_Renaming_Declaration
1974 or else (Present (Corresponding_Body (Spec_Decl))
1975 and then
1976 Nkind (Unit_Declaration_Node
1977 (Corresponding_Body (Spec_Decl))) =
1978 N_Subprogram_Renaming_Declaration))
1979 then
1980 Conformant := True;
1981
1982 else
1983 Check_Conformance
1984 (Body_Id, Spec_Id,
1985 Fully_Conformant, True, Conformant, Body_Id);
1986 end if;
1987
1988 -- If the body is not fully conformant, we have to decide if we
1989 -- should analyze it or not. If it has a really messed up profile
1990 -- then we probably should not analyze it, since we will get too
1991 -- many bogus messages.
1992
1993 -- Our decision is to go ahead in the non-fully conformant case
1994 -- only if it is at least mode conformant with the spec. Note
1995 -- that the call to Check_Fully_Conformant has issued the proper
1996 -- error messages to complain about the lack of conformance.
1997
1998 if not Conformant
1999 and then not Mode_Conformant (Body_Id, Spec_Id)
2000 then
2001 return;
2002 end if;
2003 end if;
2004
2005 if Spec_Id /= Body_Id then
2006 Reference_Body_Formals (Spec_Id, Body_Id);
2007 end if;
2008
2009 if Nkind (N) /= N_Subprogram_Body_Stub then
2010 Set_Corresponding_Spec (N, Spec_Id);
2011
2012 -- Ada 2005 (AI-345): If the operation is a primitive operation
2013 -- of a concurrent type, the type of the first parameter has been
2014 -- replaced with the corresponding record, which is the proper
2015 -- run-time structure to use. However, within the body there may
2016 -- be uses of the formals that depend on primitive operations
2017 -- of the type (in particular calls in prefixed form) for which
2018 -- we need the original concurrent type. The operation may have
2019 -- several controlling formals, so the replacement must be done
2020 -- for all of them.
2021
2022 if Comes_From_Source (Spec_Id)
2023 and then Present (First_Entity (Spec_Id))
2024 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
2025 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
2026 and then
2027 Present (Interfaces (Etype (First_Entity (Spec_Id))))
2028 and then
2029 Present
2030 (Corresponding_Concurrent_Type
2031 (Etype (First_Entity (Spec_Id))))
2032 then
2033 declare
2034 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
2035 Form : Entity_Id;
2036
2037 begin
2038 Form := First_Formal (Spec_Id);
2039 while Present (Form) loop
2040 if Etype (Form) = Typ then
2041 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
2042 end if;
2043
2044 Next_Formal (Form);
2045 end loop;
2046 end;
2047 end if;
2048
2049 -- Make the formals visible, and place subprogram on scope stack.
2050 -- This is also the point at which we set Last_Real_Spec_Entity
2051 -- to mark the entities which will not be moved to the body.
2052
2053 Install_Formals (Spec_Id);
2054 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
2055 Push_Scope (Spec_Id);
2056
2057 -- Make sure that the subprogram is immediately visible. For
2058 -- child units that have no separate spec this is indispensable.
2059 -- Otherwise it is safe albeit redundant.
2060
2061 Set_Is_Immediately_Visible (Spec_Id);
2062 end if;
2063
2064 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
2065 Set_Ekind (Body_Id, E_Subprogram_Body);
2066 Set_Scope (Body_Id, Scope (Spec_Id));
2067 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
2068
2069 -- Case of subprogram body with no previous spec
2070
2071 else
2072 if Style_Check
2073 and then Comes_From_Source (Body_Id)
2074 and then not Suppress_Style_Checks (Body_Id)
2075 and then not In_Instance
2076 then
2077 Style.Body_With_No_Spec (N);
2078 end if;
2079
2080 New_Overloaded_Entity (Body_Id);
2081
2082 if Nkind (N) /= N_Subprogram_Body_Stub then
2083 Set_Acts_As_Spec (N);
2084 Generate_Definition (Body_Id);
2085 Generate_Reference
2086 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
2087 Generate_Reference_To_Formals (Body_Id);
2088 Install_Formals (Body_Id);
2089 Push_Scope (Body_Id);
2090 end if;
2091 end if;
2092
2093 -- If the return type is an anonymous access type whose designated type
2094 -- is the limited view of a class-wide type and the non-limited view is
2095 -- available, update the return type accordingly.
2096
2097 if Ada_Version >= Ada_05
2098 and then Comes_From_Source (N)
2099 then
2100 declare
2101 Etyp : Entity_Id;
2102 Rtyp : Entity_Id;
2103
2104 begin
2105 Rtyp := Etype (Current_Scope);
2106
2107 if Ekind (Rtyp) = E_Anonymous_Access_Type then
2108 Etyp := Directly_Designated_Type (Rtyp);
2109
2110 if Is_Class_Wide_Type (Etyp)
2111 and then From_With_Type (Etyp)
2112 then
2113 Set_Directly_Designated_Type
2114 (Etype (Current_Scope), Available_View (Etyp));
2115 end if;
2116 end if;
2117 end;
2118 end if;
2119
2120 -- If this is the proper body of a stub, we must verify that the stub
2121 -- conforms to the body, and to the previous spec if one was present.
2122 -- we know already that the body conforms to that spec. This test is
2123 -- only required for subprograms that come from source.
2124
2125 if Nkind (Parent (N)) = N_Subunit
2126 and then Comes_From_Source (N)
2127 and then not Error_Posted (Body_Id)
2128 and then Nkind (Corresponding_Stub (Parent (N))) =
2129 N_Subprogram_Body_Stub
2130 then
2131 declare
2132 Old_Id : constant Entity_Id :=
2133 Defining_Entity
2134 (Specification (Corresponding_Stub (Parent (N))));
2135
2136 Conformant : Boolean := False;
2137
2138 begin
2139 if No (Spec_Id) then
2140 Check_Fully_Conformant (Body_Id, Old_Id);
2141
2142 else
2143 Check_Conformance
2144 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
2145
2146 if not Conformant then
2147
2148 -- The stub was taken to be a new declaration. Indicate
2149 -- that it lacks a body.
2150
2151 Set_Has_Completion (Old_Id, False);
2152 end if;
2153 end if;
2154 end;
2155 end if;
2156
2157 Set_Has_Completion (Body_Id);
2158 Check_Eliminated (Body_Id);
2159
2160 if Nkind (N) = N_Subprogram_Body_Stub then
2161 return;
2162
2163 elsif Present (Spec_Id)
2164 and then Expander_Active
2165 and then
2166 (Has_Pragma_Inline_Always (Spec_Id)
2167 or else (Has_Pragma_Inline (Spec_Id) and Front_End_Inlining))
2168 then
2169 Build_Body_To_Inline (N, Spec_Id);
2170 end if;
2171
2172 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
2173 -- if its specification we have to install the private withed units.
2174 -- This holds for child units as well.
2175
2176 if Is_Compilation_Unit (Body_Id)
2177 or else Nkind (Parent (N)) = N_Compilation_Unit
2178 then
2179 Install_Private_With_Clauses (Body_Id);
2180 end if;
2181
2182 Check_Anonymous_Return;
2183
2184 -- Set the Protected_Formal field of each extra formal of the protected
2185 -- subprogram to reference the corresponding extra formal of the
2186 -- subprogram that implements it. For regular formals this occurs when
2187 -- the protected subprogram's declaration is expanded, but the extra
2188 -- formals don't get created until the subprogram is frozen. We need to
2189 -- do this before analyzing the protected subprogram's body so that any
2190 -- references to the original subprogram's extra formals will be changed
2191 -- refer to the implementing subprogram's formals (see Expand_Formal).
2192
2193 if Present (Spec_Id)
2194 and then Is_Protected_Type (Scope (Spec_Id))
2195 and then Present (Protected_Body_Subprogram (Spec_Id))
2196 then
2197 declare
2198 Impl_Subp : constant Entity_Id :=
2199 Protected_Body_Subprogram (Spec_Id);
2200 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
2201 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
2202 begin
2203 while Present (Prot_Ext_Formal) loop
2204 pragma Assert (Present (Impl_Ext_Formal));
2205 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
2206 Next_Formal_With_Extras (Prot_Ext_Formal);
2207 Next_Formal_With_Extras (Impl_Ext_Formal);
2208 end loop;
2209 end;
2210 end if;
2211
2212 -- Now we can go on to analyze the body
2213
2214 HSS := Handled_Statement_Sequence (N);
2215 Set_Actual_Subtypes (N, Current_Scope);
2216
2217 -- Deal with preconditions and postconditions
2218
2219 Process_PPCs (N, Spec_Id, Body_Id);
2220
2221 -- Add a declaration for the Protection object, renaming declarations
2222 -- for discriminals and privals and finally a declaration for the entry
2223 -- family index (if applicable). This form of early expansion is done
2224 -- when the Expander is active because Install_Private_Data_Declarations
2225 -- references entities which were created during regular expansion.
2226
2227 if Expander_Active
2228 and then Comes_From_Source (N)
2229 and then Present (Prot_Typ)
2230 and then Present (Spec_Id)
2231 and then not Is_Eliminated (Spec_Id)
2232 then
2233 Install_Private_Data_Declarations
2234 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
2235 end if;
2236
2237 -- Analyze the declarations (this call will analyze the precondition
2238 -- Check pragmas we prepended to the list, as well as the declaration
2239 -- of the _Postconditions procedure).
2240
2241 Analyze_Declarations (Declarations (N));
2242
2243 -- Check completion, and analyze the statements
2244
2245 Check_Completion;
2246 Inspect_Deferred_Constant_Completion (Declarations (N));
2247 Analyze (HSS);
2248
2249 -- Deal with end of scope processing for the body
2250
2251 Process_End_Label (HSS, 't', Current_Scope);
2252 End_Scope;
2253 Check_Subprogram_Order (N);
2254 Set_Analyzed (Body_Id);
2255
2256 -- If we have a separate spec, then the analysis of the declarations
2257 -- caused the entities in the body to be chained to the spec id, but
2258 -- we want them chained to the body id. Only the formal parameters
2259 -- end up chained to the spec id in this case.
2260
2261 if Present (Spec_Id) then
2262
2263 -- We must conform to the categorization of our spec
2264
2265 Validate_Categorization_Dependency (N, Spec_Id);
2266
2267 -- And if this is a child unit, the parent units must conform
2268
2269 if Is_Child_Unit (Spec_Id) then
2270 Validate_Categorization_Dependency
2271 (Unit_Declaration_Node (Spec_Id), Spec_Id);
2272 end if;
2273
2274 -- Here is where we move entities from the spec to the body
2275
2276 -- Case where there are entities that stay with the spec
2277
2278 if Present (Last_Real_Spec_Entity) then
2279
2280 -- No body entities (happens when the only real spec entities
2281 -- come from precondition and postcondition pragmas)
2282
2283 if No (Last_Entity (Body_Id)) then
2284 Set_First_Entity
2285 (Body_Id, Next_Entity (Last_Real_Spec_Entity));
2286
2287 -- Body entities present (formals), so chain stuff past them
2288
2289 else
2290 Set_Next_Entity
2291 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
2292 end if;
2293
2294 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
2295 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
2296 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
2297
2298 -- Case where there are no spec entities, in this case there can
2299 -- be no body entities either, so just move everything.
2300
2301 else
2302 pragma Assert (No (Last_Entity (Body_Id)));
2303 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
2304 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
2305 Set_First_Entity (Spec_Id, Empty);
2306 Set_Last_Entity (Spec_Id, Empty);
2307 end if;
2308 end if;
2309
2310 -- If function, check return statements
2311
2312 if Nkind (Body_Spec) = N_Function_Specification then
2313 declare
2314 Id : Entity_Id;
2315
2316 begin
2317 if Present (Spec_Id) then
2318 Id := Spec_Id;
2319 else
2320 Id := Body_Id;
2321 end if;
2322
2323 if Return_Present (Id) then
2324 Check_Returns (HSS, 'F', Missing_Ret);
2325
2326 if Missing_Ret then
2327 Set_Has_Missing_Return (Id);
2328 end if;
2329
2330 elsif not Is_Machine_Code_Subprogram (Id)
2331 and then not Body_Deleted
2332 then
2333 Error_Msg_N ("missing RETURN statement in function body", N);
2334 end if;
2335 end;
2336
2337 -- If procedure with No_Return, check returns
2338
2339 elsif Nkind (Body_Spec) = N_Procedure_Specification
2340 and then Present (Spec_Id)
2341 and then No_Return (Spec_Id)
2342 then
2343 Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
2344 end if;
2345
2346 -- Now we are going to check for variables that are never modified in
2347 -- the body of the procedure. But first we deal with a special case
2348 -- where we want to modify this check. If the body of the subprogram
2349 -- starts with a raise statement or its equivalent, or if the body
2350 -- consists entirely of a null statement, then it is pretty obvious
2351 -- that it is OK to not reference the parameters. For example, this
2352 -- might be the following common idiom for a stubbed function:
2353 -- statement of the procedure raises an exception. In particular this
2354 -- deals with the common idiom of a stubbed function, which might
2355 -- appear as something like
2356
2357 -- function F (A : Integer) return Some_Type;
2358 -- X : Some_Type;
2359 -- begin
2360 -- raise Program_Error;
2361 -- return X;
2362 -- end F;
2363
2364 -- Here the purpose of X is simply to satisfy the annoying requirement
2365 -- in Ada that there be at least one return, and we certainly do not
2366 -- want to go posting warnings on X that it is not initialized! On
2367 -- the other hand, if X is entirely unreferenced that should still
2368 -- get a warning.
2369
2370 -- What we do is to detect these cases, and if we find them, flag the
2371 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
2372 -- suppress unwanted warnings. For the case of the function stub above
2373 -- we have a special test to set X as apparently assigned to suppress
2374 -- the warning.
2375
2376 declare
2377 Stm : Node_Id;
2378
2379 begin
2380 -- Skip initial labels (for one thing this occurs when we are in
2381 -- front end ZCX mode, but in any case it is irrelevant), and also
2382 -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
2383
2384 Stm := First (Statements (HSS));
2385 while Nkind (Stm) = N_Label
2386 or else Nkind (Stm) in N_Push_xxx_Label
2387 loop
2388 Next (Stm);
2389 end loop;
2390
2391 -- Do the test on the original statement before expansion
2392
2393 declare
2394 Ostm : constant Node_Id := Original_Node (Stm);
2395
2396 begin
2397 -- If explicit raise statement, turn on flag
2398
2399 if Nkind (Ostm) = N_Raise_Statement then
2400 Set_Trivial_Subprogram (Stm);
2401
2402 -- If null statement, and no following statements, turn on flag
2403
2404 elsif Nkind (Stm) = N_Null_Statement
2405 and then Comes_From_Source (Stm)
2406 and then No (Next (Stm))
2407 then
2408 Set_Trivial_Subprogram (Stm);
2409
2410 -- Check for explicit call cases which likely raise an exception
2411
2412 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
2413 if Is_Entity_Name (Name (Ostm)) then
2414 declare
2415 Ent : constant Entity_Id := Entity (Name (Ostm));
2416
2417 begin
2418 -- If the procedure is marked No_Return, then likely it
2419 -- raises an exception, but in any case it is not coming
2420 -- back here, so turn on the flag.
2421
2422 if Ekind (Ent) = E_Procedure
2423 and then No_Return (Ent)
2424 then
2425 Set_Trivial_Subprogram (Stm);
2426 end if;
2427 end;
2428 end if;
2429 end if;
2430 end;
2431 end;
2432
2433 -- Check for variables that are never modified
2434
2435 declare
2436 E1, E2 : Entity_Id;
2437
2438 begin
2439 -- If there is a separate spec, then transfer Never_Set_In_Source
2440 -- flags from out parameters to the corresponding entities in the
2441 -- body. The reason we do that is we want to post error flags on
2442 -- the body entities, not the spec entities.
2443
2444 if Present (Spec_Id) then
2445 E1 := First_Entity (Spec_Id);
2446 while Present (E1) loop
2447 if Ekind (E1) = E_Out_Parameter then
2448 E2 := First_Entity (Body_Id);
2449 while Present (E2) loop
2450 exit when Chars (E1) = Chars (E2);
2451 Next_Entity (E2);
2452 end loop;
2453
2454 if Present (E2) then
2455 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
2456 end if;
2457 end if;
2458
2459 Next_Entity (E1);
2460 end loop;
2461 end if;
2462
2463 -- Check references in body unless it was deleted. Note that the
2464 -- check of Body_Deleted here is not just for efficiency, it is
2465 -- necessary to avoid junk warnings on formal parameters.
2466
2467 if not Body_Deleted then
2468 Check_References (Body_Id);
2469 end if;
2470 end;
2471 end Analyze_Subprogram_Body;
2472
2473 ------------------------------------
2474 -- Analyze_Subprogram_Declaration --
2475 ------------------------------------
2476
2477 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
2478 Designator : constant Entity_Id :=
2479 Analyze_Subprogram_Specification (Specification (N));
2480 Scop : constant Entity_Id := Current_Scope;
2481
2482 -- Start of processing for Analyze_Subprogram_Declaration
2483
2484 begin
2485 Generate_Definition (Designator);
2486
2487 -- Check for RCI unit subprogram declarations for illegal inlined
2488 -- subprograms and subprograms having access parameter or limited
2489 -- parameter without Read and Write attributes (RM E.2.3(12-13)).
2490
2491 Validate_RCI_Subprogram_Declaration (N);
2492
2493 Trace_Scope
2494 (N,
2495 Defining_Entity (N),
2496 " Analyze subprogram spec: ");
2497
2498 if Debug_Flag_C then
2499 Write_Str ("==== Compiling subprogram spec ");
2500 Write_Name (Chars (Designator));
2501 Write_Str (" from ");
2502 Write_Location (Sloc (N));
2503 Write_Eol;
2504 end if;
2505
2506 New_Overloaded_Entity (Designator);
2507 Check_Delayed_Subprogram (Designator);
2508
2509 -- If the type of the first formal of the current subprogram is a non
2510 -- generic tagged private type , mark the subprogram as being a private
2511 -- primitive.
2512
2513 if Present (First_Formal (Designator)) then
2514 declare
2515 Formal_Typ : constant Entity_Id :=
2516 Etype (First_Formal (Designator));
2517 begin
2518 Set_Is_Private_Primitive (Designator,
2519 Is_Tagged_Type (Formal_Typ)
2520 and then Is_Private_Type (Formal_Typ)
2521 and then not Is_Generic_Actual_Type (Formal_Typ));
2522 end;
2523 end if;
2524
2525 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
2526 -- or null.
2527
2528 if Ada_Version >= Ada_05
2529 and then Comes_From_Source (N)
2530 and then Is_Dispatching_Operation (Designator)
2531 then
2532 declare
2533 E : Entity_Id;
2534 Etyp : Entity_Id;
2535
2536 begin
2537 if Has_Controlling_Result (Designator) then
2538 Etyp := Etype (Designator);
2539
2540 else
2541 E := First_Entity (Designator);
2542 while Present (E)
2543 and then Is_Formal (E)
2544 and then not Is_Controlling_Formal (E)
2545 loop
2546 Next_Entity (E);
2547 end loop;
2548
2549 Etyp := Etype (E);
2550 end if;
2551
2552 if Is_Access_Type (Etyp) then
2553 Etyp := Directly_Designated_Type (Etyp);
2554 end if;
2555
2556 if Is_Interface (Etyp)
2557 and then not Is_Abstract_Subprogram (Designator)
2558 and then not (Ekind (Designator) = E_Procedure
2559 and then Null_Present (Specification (N)))
2560 then
2561 Error_Msg_Name_1 := Chars (Defining_Entity (N));
2562 Error_Msg_N
2563 ("(Ada 2005) interface subprogram % must be abstract or null",
2564 N);
2565 end if;
2566 end;
2567 end if;
2568
2569 -- What is the following code for, it used to be
2570
2571 -- ??? Set_Suppress_Elaboration_Checks
2572 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
2573
2574 -- The following seems equivalent, but a bit dubious
2575
2576 if Elaboration_Checks_Suppressed (Designator) then
2577 Set_Kill_Elaboration_Checks (Designator);
2578 end if;
2579
2580 if Scop /= Standard_Standard
2581 and then not Is_Child_Unit (Designator)
2582 then
2583 Set_Categorization_From_Scope (Designator, Scop);
2584 else
2585 -- For a compilation unit, check for library-unit pragmas
2586
2587 Push_Scope (Designator);
2588 Set_Categorization_From_Pragmas (N);
2589 Validate_Categorization_Dependency (N, Designator);
2590 Pop_Scope;
2591 end if;
2592
2593 -- For a compilation unit, set body required. This flag will only be
2594 -- reset if a valid Import or Interface pragma is processed later on.
2595
2596 if Nkind (Parent (N)) = N_Compilation_Unit then
2597 Set_Body_Required (Parent (N), True);
2598
2599 if Ada_Version >= Ada_05
2600 and then Nkind (Specification (N)) = N_Procedure_Specification
2601 and then Null_Present (Specification (N))
2602 then
2603 Error_Msg_N
2604 ("null procedure cannot be declared at library level", N);
2605 end if;
2606 end if;
2607
2608 Generate_Reference_To_Formals (Designator);
2609 Check_Eliminated (Designator);
2610
2611 -- Ada 2005: if procedure is declared with "is null" qualifier,
2612 -- it requires no body.
2613
2614 if Nkind (Specification (N)) = N_Procedure_Specification
2615 and then Null_Present (Specification (N))
2616 then
2617 Set_Has_Completion (Designator);
2618 Set_Is_Inlined (Designator);
2619
2620 if Is_Protected_Type (Current_Scope) then
2621 Error_Msg_N
2622 ("protected operation cannot be a null procedure", N);
2623 end if;
2624 end if;
2625 end Analyze_Subprogram_Declaration;
2626
2627 --------------------------------------
2628 -- Analyze_Subprogram_Specification --
2629 --------------------------------------
2630
2631 -- Reminder: N here really is a subprogram specification (not a subprogram
2632 -- declaration). This procedure is called to analyze the specification in
2633 -- both subprogram bodies and subprogram declarations (specs).
2634
2635 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
2636 Designator : constant Entity_Id := Defining_Entity (N);
2637 Formals : constant List_Id := Parameter_Specifications (N);
2638
2639 -- Start of processing for Analyze_Subprogram_Specification
2640
2641 begin
2642 Generate_Definition (Designator);
2643
2644 if Nkind (N) = N_Function_Specification then
2645 Set_Ekind (Designator, E_Function);
2646 Set_Mechanism (Designator, Default_Mechanism);
2647
2648 else
2649 Set_Ekind (Designator, E_Procedure);
2650 Set_Etype (Designator, Standard_Void_Type);
2651 end if;
2652
2653 -- Introduce new scope for analysis of the formals and the return type
2654
2655 Set_Scope (Designator, Current_Scope);
2656
2657 if Present (Formals) then
2658 Push_Scope (Designator);
2659 Process_Formals (Formals, N);
2660
2661 -- Ada 2005 (AI-345): If this is an overriding operation of an
2662 -- inherited interface operation, and the controlling type is
2663 -- a synchronized type, replace the type with its corresponding
2664 -- record, to match the proper signature of an overriding operation.
2665
2666 if Ada_Version >= Ada_05 then
2667 declare
2668 Formal : Entity_Id;
2669 Formal_Typ : Entity_Id;
2670 Rec_Typ : Entity_Id;
2671
2672 begin
2673 Formal := First_Formal (Designator);
2674 while Present (Formal) loop
2675 Formal_Typ := Etype (Formal);
2676
2677 if Is_Concurrent_Type (Formal_Typ)
2678 and then Present (Corresponding_Record_Type (Formal_Typ))
2679 then
2680 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
2681
2682 if Present (Interfaces (Rec_Typ)) then
2683 Set_Etype (Formal, Rec_Typ);
2684 end if;
2685 end if;
2686
2687 Next_Formal (Formal);
2688 end loop;
2689 end;
2690 end if;
2691
2692 End_Scope;
2693
2694 elsif Nkind (N) = N_Function_Specification then
2695 Analyze_Return_Type (N);
2696 end if;
2697
2698 if Nkind (N) = N_Function_Specification then
2699 if Nkind (Designator) = N_Defining_Operator_Symbol then
2700 Valid_Operator_Definition (Designator);
2701 end if;
2702
2703 May_Need_Actuals (Designator);
2704
2705 -- Ada 2005 (AI-251): If the return type is abstract, verify that
2706 -- the subprogram is abstract also. This does not apply to renaming
2707 -- declarations, where abstractness is inherited.
2708 -- In case of primitives associated with abstract interface types
2709 -- the check is applied later (see Analyze_Subprogram_Declaration).
2710
2711 if Is_Abstract_Type (Etype (Designator))
2712 and then not Is_Interface (Etype (Designator))
2713 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
2714 and then Nkind (Parent (N)) /=
2715 N_Abstract_Subprogram_Declaration
2716 and then
2717 (Nkind (Parent (N))) /= N_Formal_Abstract_Subprogram_Declaration
2718 then
2719 Error_Msg_N
2720 ("function that returns abstract type must be abstract", N);
2721 end if;
2722 end if;
2723
2724 return Designator;
2725 end Analyze_Subprogram_Specification;
2726
2727 --------------------------
2728 -- Build_Body_To_Inline --
2729 --------------------------
2730
2731 procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id) is
2732 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
2733 Original_Body : Node_Id;
2734 Body_To_Analyze : Node_Id;
2735 Max_Size : constant := 10;
2736 Stat_Count : Integer := 0;
2737
2738 function Has_Excluded_Declaration (Decls : List_Id) return Boolean;
2739 -- Check for declarations that make inlining not worthwhile
2740
2741 function Has_Excluded_Statement (Stats : List_Id) return Boolean;
2742 -- Check for statements that make inlining not worthwhile: any tasking
2743 -- statement, nested at any level. Keep track of total number of
2744 -- elementary statements, as a measure of acceptable size.
2745
2746 function Has_Pending_Instantiation return Boolean;
2747 -- If some enclosing body contains instantiations that appear before the
2748 -- corresponding generic body, the enclosing body has a freeze node so
2749 -- that it can be elaborated after the generic itself. This might
2750 -- conflict with subsequent inlinings, so that it is unsafe to try to
2751 -- inline in such a case.
2752
2753 function Has_Single_Return return Boolean;
2754 -- In general we cannot inline functions that return unconstrained type.
2755 -- However, we can handle such functions if all return statements return
2756 -- a local variable that is the only declaration in the body of the
2757 -- function. In that case the call can be replaced by that local
2758 -- variable as is done for other inlined calls.
2759
2760 procedure Remove_Pragmas;
2761 -- A pragma Unreferenced or pragma Unmodified that mentions a formal
2762 -- parameter has no meaning when the body is inlined and the formals
2763 -- are rewritten. Remove it from body to inline. The analysis of the
2764 -- non-inlined body will handle the pragma properly.
2765
2766 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
2767 -- If the body of the subprogram includes a call that returns an
2768 -- unconstrained type, the secondary stack is involved, and it
2769 -- is not worth inlining.
2770
2771 ------------------------------
2772 -- Has_Excluded_Declaration --
2773 ------------------------------
2774
2775 function Has_Excluded_Declaration (Decls : List_Id) return Boolean is
2776 D : Node_Id;
2777
2778 function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
2779 -- Nested subprograms make a given body ineligible for inlining, but
2780 -- we make an exception for instantiations of unchecked conversion.
2781 -- The body has not been analyzed yet, so check the name, and verify
2782 -- that the visible entity with that name is the predefined unit.
2783
2784 -----------------------------
2785 -- Is_Unchecked_Conversion --
2786 -----------------------------
2787
2788 function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
2789 Id : constant Node_Id := Name (D);
2790 Conv : Entity_Id;
2791
2792 begin
2793 if Nkind (Id) = N_Identifier
2794 and then Chars (Id) = Name_Unchecked_Conversion
2795 then
2796 Conv := Current_Entity (Id);
2797
2798 elsif Nkind_In (Id, N_Selected_Component, N_Expanded_Name)
2799 and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
2800 then
2801 Conv := Current_Entity (Selector_Name (Id));
2802 else
2803 return False;
2804 end if;
2805
2806 return Present (Conv)
2807 and then Is_Predefined_File_Name
2808 (Unit_File_Name (Get_Source_Unit (Conv)))
2809 and then Is_Intrinsic_Subprogram (Conv);
2810 end Is_Unchecked_Conversion;
2811
2812 -- Start of processing for Has_Excluded_Declaration
2813
2814 begin
2815 D := First (Decls);
2816 while Present (D) loop
2817 if (Nkind (D) = N_Function_Instantiation
2818 and then not Is_Unchecked_Conversion (D))
2819 or else Nkind_In (D, N_Protected_Type_Declaration,
2820 N_Package_Declaration,
2821 N_Package_Instantiation,
2822 N_Subprogram_Body,
2823 N_Procedure_Instantiation,
2824 N_Task_Type_Declaration)
2825 then
2826 Cannot_Inline
2827 ("cannot inline & (non-allowed declaration)?", D, Subp);
2828 return True;
2829 end if;
2830
2831 Next (D);
2832 end loop;
2833
2834 return False;
2835 end Has_Excluded_Declaration;
2836
2837 ----------------------------
2838 -- Has_Excluded_Statement --
2839 ----------------------------
2840
2841 function Has_Excluded_Statement (Stats : List_Id) return Boolean is
2842 S : Node_Id;
2843 E : Node_Id;
2844
2845 begin
2846 S := First (Stats);
2847 while Present (S) loop
2848 Stat_Count := Stat_Count + 1;
2849
2850 if Nkind_In (S, N_Abort_Statement,
2851 N_Asynchronous_Select,
2852 N_Conditional_Entry_Call,
2853 N_Delay_Relative_Statement,
2854 N_Delay_Until_Statement,
2855 N_Selective_Accept,
2856 N_Timed_Entry_Call)
2857 then
2858 Cannot_Inline
2859 ("cannot inline & (non-allowed statement)?", S, Subp);
2860 return True;
2861
2862 elsif Nkind (S) = N_Block_Statement then
2863 if Present (Declarations (S))
2864 and then Has_Excluded_Declaration (Declarations (S))
2865 then
2866 return True;
2867
2868 elsif Present (Handled_Statement_Sequence (S))
2869 and then
2870 (Present
2871 (Exception_Handlers (Handled_Statement_Sequence (S)))
2872 or else
2873 Has_Excluded_Statement
2874 (Statements (Handled_Statement_Sequence (S))))
2875 then
2876 return True;
2877 end if;
2878
2879 elsif Nkind (S) = N_Case_Statement then
2880 E := First (Alternatives (S));
2881 while Present (E) loop
2882 if Has_Excluded_Statement (Statements (E)) then
2883 return True;
2884 end if;
2885
2886 Next (E);
2887 end loop;
2888
2889 elsif Nkind (S) = N_If_Statement then
2890 if Has_Excluded_Statement (Then_Statements (S)) then
2891 return True;
2892 end if;
2893
2894 if Present (Elsif_Parts (S)) then
2895 E := First (Elsif_Parts (S));
2896 while Present (E) loop
2897 if Has_Excluded_Statement (Then_Statements (E)) then
2898 return True;
2899 end if;
2900 Next (E);
2901 end loop;
2902 end if;
2903
2904 if Present (Else_Statements (S))
2905 and then Has_Excluded_Statement (Else_Statements (S))
2906 then
2907 return True;
2908 end if;
2909
2910 elsif Nkind (S) = N_Loop_Statement
2911 and then Has_Excluded_Statement (Statements (S))
2912 then
2913 return True;
2914 end if;
2915
2916 Next (S);
2917 end loop;
2918
2919 return False;
2920 end Has_Excluded_Statement;
2921
2922 -------------------------------
2923 -- Has_Pending_Instantiation --
2924 -------------------------------
2925
2926 function Has_Pending_Instantiation return Boolean is
2927 S : Entity_Id;
2928
2929 begin
2930 S := Current_Scope;
2931 while Present (S) loop
2932 if Is_Compilation_Unit (S)
2933 or else Is_Child_Unit (S)
2934 then
2935 return False;
2936 elsif Ekind (S) = E_Package
2937 and then Has_Forward_Instantiation (S)
2938 then
2939 return True;
2940 end if;
2941
2942 S := Scope (S);
2943 end loop;
2944
2945 return False;
2946 end Has_Pending_Instantiation;
2947
2948 ------------------------
2949 -- Has_Single_Return --
2950 ------------------------
2951
2952 function Has_Single_Return return Boolean is
2953 Return_Statement : Node_Id := Empty;
2954
2955 function Check_Return (N : Node_Id) return Traverse_Result;
2956
2957 ------------------
2958 -- Check_Return --
2959 ------------------
2960
2961 function Check_Return (N : Node_Id) return Traverse_Result is
2962 begin
2963 if Nkind (N) = N_Simple_Return_Statement then
2964 if Present (Expression (N))
2965 and then Is_Entity_Name (Expression (N))
2966 then
2967 if No (Return_Statement) then
2968 Return_Statement := N;
2969 return OK;
2970
2971 elsif Chars (Expression (N)) =
2972 Chars (Expression (Return_Statement))
2973 then
2974 return OK;
2975
2976 else
2977 return Abandon;
2978 end if;
2979
2980 else
2981 -- Expression has wrong form
2982
2983 return Abandon;
2984 end if;
2985
2986 else
2987 return OK;
2988 end if;
2989 end Check_Return;
2990
2991 function Check_All_Returns is new Traverse_Func (Check_Return);
2992
2993 -- Start of processing for Has_Single_Return
2994
2995 begin
2996 return Check_All_Returns (N) = OK
2997 and then Present (Declarations (N))
2998 and then Present (First (Declarations (N)))
2999 and then Chars (Expression (Return_Statement)) =
3000 Chars (Defining_Identifier (First (Declarations (N))));
3001 end Has_Single_Return;
3002
3003 --------------------
3004 -- Remove_Pragmas --
3005 --------------------
3006
3007 procedure Remove_Pragmas is
3008 Decl : Node_Id;
3009 Nxt : Node_Id;
3010
3011 begin
3012 Decl := First (Declarations (Body_To_Analyze));
3013 while Present (Decl) loop
3014 Nxt := Next (Decl);
3015
3016 if Nkind (Decl) = N_Pragma
3017 and then (Pragma_Name (Decl) = Name_Unreferenced
3018 or else
3019 Pragma_Name (Decl) = Name_Unmodified)
3020 then
3021 Remove (Decl);
3022 end if;
3023
3024 Decl := Nxt;
3025 end loop;
3026 end Remove_Pragmas;
3027
3028 --------------------------
3029 -- Uses_Secondary_Stack --
3030 --------------------------
3031
3032 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
3033 function Check_Call (N : Node_Id) return Traverse_Result;
3034 -- Look for function calls that return an unconstrained type
3035
3036 ----------------
3037 -- Check_Call --
3038 ----------------
3039
3040 function Check_Call (N : Node_Id) return Traverse_Result is
3041 begin
3042 if Nkind (N) = N_Function_Call
3043 and then Is_Entity_Name (Name (N))
3044 and then Is_Composite_Type (Etype (Entity (Name (N))))
3045 and then not Is_Constrained (Etype (Entity (Name (N))))
3046 then
3047 Cannot_Inline
3048 ("cannot inline & (call returns unconstrained type)?",
3049 N, Subp);
3050 return Abandon;
3051 else
3052 return OK;
3053 end if;
3054 end Check_Call;
3055
3056 function Check_Calls is new Traverse_Func (Check_Call);
3057
3058 begin
3059 return Check_Calls (Bod) = Abandon;
3060 end Uses_Secondary_Stack;
3061
3062 -- Start of processing for Build_Body_To_Inline
3063
3064 begin
3065 if Nkind (Decl) = N_Subprogram_Declaration
3066 and then Present (Body_To_Inline (Decl))
3067 then
3068 return; -- Done already.
3069
3070 -- Functions that return unconstrained composite types require
3071 -- secondary stack handling, and cannot currently be inlined, unless
3072 -- all return statements return a local variable that is the first
3073 -- local declaration in the body.
3074
3075 elsif Ekind (Subp) = E_Function
3076 and then not Is_Scalar_Type (Etype (Subp))
3077 and then not Is_Access_Type (Etype (Subp))
3078 and then not Is_Constrained (Etype (Subp))
3079 then
3080 if not Has_Single_Return then
3081 Cannot_Inline
3082 ("cannot inline & (unconstrained return type)?", N, Subp);
3083 return;
3084 end if;
3085
3086 -- Ditto for functions that return controlled types, where controlled
3087 -- actions interfere in complex ways with inlining.
3088
3089 elsif Ekind (Subp) = E_Function
3090 and then Controlled_Type (Etype (Subp))
3091 then
3092 Cannot_Inline
3093 ("cannot inline & (controlled return type)?", N, Subp);
3094 return;
3095 end if;
3096
3097 if Present (Declarations (N))
3098 and then Has_Excluded_Declaration (Declarations (N))
3099 then
3100 return;
3101 end if;
3102
3103 if Present (Handled_Statement_Sequence (N)) then
3104 if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
3105 Cannot_Inline
3106 ("cannot inline& (exception handler)?",
3107 First (Exception_Handlers (Handled_Statement_Sequence (N))),
3108 Subp);
3109 return;
3110 elsif
3111 Has_Excluded_Statement
3112 (Statements (Handled_Statement_Sequence (N)))
3113 then
3114 return;
3115 end if;
3116 end if;
3117
3118 -- We do not inline a subprogram that is too large, unless it is
3119 -- marked Inline_Always. This pragma does not suppress the other
3120 -- checks on inlining (forbidden declarations, handlers, etc).
3121
3122 if Stat_Count > Max_Size
3123 and then not Has_Pragma_Inline_Always (Subp)
3124 then
3125 Cannot_Inline ("cannot inline& (body too large)?", N, Subp);
3126 return;
3127 end if;
3128
3129 if Has_Pending_Instantiation then
3130 Cannot_Inline
3131 ("cannot inline& (forward instance within enclosing body)?",
3132 N, Subp);
3133 return;
3134 end if;
3135
3136 -- Within an instance, the body to inline must be treated as a nested
3137 -- generic, so that the proper global references are preserved.
3138
3139 -- Note that we do not do this at the library level, because it is not
3140 -- needed, and furthermore this causes trouble if front end inlining
3141 -- is activated (-gnatN).
3142
3143 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
3144 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
3145 Original_Body := Copy_Generic_Node (N, Empty, True);
3146 else
3147 Original_Body := Copy_Separate_Tree (N);
3148 end if;
3149
3150 -- We need to capture references to the formals in order to substitute
3151 -- the actuals at the point of inlining, i.e. instantiation. To treat
3152 -- the formals as globals to the body to inline, we nest it within
3153 -- a dummy parameterless subprogram, declared within the real one.
3154 -- To avoid generating an internal name (which is never public, and
3155 -- which affects serial numbers of other generated names), we use
3156 -- an internal symbol that cannot conflict with user declarations.
3157
3158 Set_Parameter_Specifications (Specification (Original_Body), No_List);
3159 Set_Defining_Unit_Name
3160 (Specification (Original_Body),
3161 Make_Defining_Identifier (Sloc (N), Name_uParent));
3162 Set_Corresponding_Spec (Original_Body, Empty);
3163
3164 Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
3165
3166 -- Set return type of function, which is also global and does not need
3167 -- to be resolved.
3168
3169 if Ekind (Subp) = E_Function then
3170 Set_Result_Definition (Specification (Body_To_Analyze),
3171 New_Occurrence_Of (Etype (Subp), Sloc (N)));
3172 end if;
3173
3174 if No (Declarations (N)) then
3175 Set_Declarations (N, New_List (Body_To_Analyze));
3176 else
3177 Append (Body_To_Analyze, Declarations (N));
3178 end if;
3179
3180 Expander_Mode_Save_And_Set (False);
3181 Remove_Pragmas;
3182
3183 Analyze (Body_To_Analyze);
3184 Push_Scope (Defining_Entity (Body_To_Analyze));
3185 Save_Global_References (Original_Body);
3186 End_Scope;
3187 Remove (Body_To_Analyze);
3188
3189 Expander_Mode_Restore;
3190
3191 -- Restore environment if previously saved
3192
3193 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
3194 Restore_Env;
3195 end if;
3196
3197 -- If secondary stk used there is no point in inlining. We have
3198 -- already issued the warning in this case, so nothing to do.
3199
3200 if Uses_Secondary_Stack (Body_To_Analyze) then
3201 return;
3202 end if;
3203
3204 Set_Body_To_Inline (Decl, Original_Body);
3205 Set_Ekind (Defining_Entity (Original_Body), Ekind (Subp));
3206 Set_Is_Inlined (Subp);
3207 end Build_Body_To_Inline;
3208
3209 -------------------
3210 -- Cannot_Inline --
3211 -------------------
3212
3213 procedure Cannot_Inline (Msg : String; N : Node_Id; Subp : Entity_Id) is
3214 begin
3215 -- Do not emit warning if this is a predefined unit which is not
3216 -- the main unit. With validity checks enabled, some predefined
3217 -- subprograms may contain nested subprograms and become ineligible
3218 -- for inlining.
3219
3220 if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
3221 and then not In_Extended_Main_Source_Unit (Subp)
3222 then
3223 null;
3224
3225 elsif Has_Pragma_Inline_Always (Subp) then
3226
3227 -- Remove last character (question mark) to make this into an error,
3228 -- because the Inline_Always pragma cannot be obeyed.
3229
3230 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
3231
3232 elsif Ineffective_Inline_Warnings then
3233 Error_Msg_NE (Msg, N, Subp);
3234 end if;
3235 end Cannot_Inline;
3236
3237 -----------------------
3238 -- Check_Conformance --
3239 -----------------------
3240
3241 procedure Check_Conformance
3242 (New_Id : Entity_Id;
3243 Old_Id : Entity_Id;
3244 Ctype : Conformance_Type;
3245 Errmsg : Boolean;
3246 Conforms : out Boolean;
3247 Err_Loc : Node_Id := Empty;
3248 Get_Inst : Boolean := False;
3249 Skip_Controlling_Formals : Boolean := False)
3250 is
3251 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
3252 -- Post error message for conformance error on given node. Two messages
3253 -- are output. The first points to the previous declaration with a
3254 -- general "no conformance" message. The second is the detailed reason,
3255 -- supplied as Msg. The parameter N provide information for a possible
3256 -- & insertion in the message, and also provides the location for
3257 -- posting the message in the absence of a specified Err_Loc location.
3258
3259 -----------------------
3260 -- Conformance_Error --
3261 -----------------------
3262
3263 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
3264 Enode : Node_Id;
3265
3266 begin
3267 Conforms := False;
3268
3269 if Errmsg then
3270 if No (Err_Loc) then
3271 Enode := N;
3272 else
3273 Enode := Err_Loc;
3274 end if;
3275
3276 Error_Msg_Sloc := Sloc (Old_Id);
3277
3278 case Ctype is
3279 when Type_Conformant =>
3280 Error_Msg_N
3281 ("not type conformant with declaration#!", Enode);
3282
3283 when Mode_Conformant =>
3284 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
3285 Error_Msg_N
3286 ("not mode conformant with operation inherited#!",
3287 Enode);
3288 else
3289 Error_Msg_N
3290 ("not mode conformant with declaration#!", Enode);
3291 end if;
3292
3293 when Subtype_Conformant =>
3294 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
3295 Error_Msg_N
3296 ("not subtype conformant with operation inherited#!",
3297 Enode);
3298 else
3299 Error_Msg_N
3300 ("not subtype conformant with declaration#!", Enode);
3301 end if;
3302
3303 when Fully_Conformant =>
3304 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
3305 Error_Msg_N
3306 ("not fully conformant with operation inherited#!",
3307 Enode);
3308 else
3309 Error_Msg_N
3310 ("not fully conformant with declaration#!", Enode);
3311 end if;
3312 end case;
3313
3314 Error_Msg_NE (Msg, Enode, N);
3315 end if;
3316 end Conformance_Error;
3317
3318 -- Local Variables
3319
3320 Old_Type : constant Entity_Id := Etype (Old_Id);
3321 New_Type : constant Entity_Id := Etype (New_Id);
3322 Old_Formal : Entity_Id;
3323 New_Formal : Entity_Id;
3324 Access_Types_Match : Boolean;
3325 Old_Formal_Base : Entity_Id;
3326 New_Formal_Base : Entity_Id;
3327
3328 -- Start of processing for Check_Conformance
3329
3330 begin
3331 Conforms := True;
3332
3333 -- We need a special case for operators, since they don't appear
3334 -- explicitly.
3335
3336 if Ctype = Type_Conformant then
3337 if Ekind (New_Id) = E_Operator
3338 and then Operator_Matches_Spec (New_Id, Old_Id)
3339 then
3340 return;
3341 end if;
3342 end if;
3343
3344 -- If both are functions/operators, check return types conform
3345
3346 if Old_Type /= Standard_Void_Type
3347 and then New_Type /= Standard_Void_Type
3348 then
3349
3350 -- If we are checking interface conformance we omit controlling
3351 -- arguments and result, because we are only checking the conformance
3352 -- of the remaining parameters.
3353
3354 if Has_Controlling_Result (Old_Id)
3355 and then Has_Controlling_Result (New_Id)
3356 and then Skip_Controlling_Formals
3357 then
3358 null;
3359
3360 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
3361 Conformance_Error ("\return type does not match!", New_Id);
3362 return;
3363 end if;
3364
3365 -- Ada 2005 (AI-231): In case of anonymous access types check the
3366 -- null-exclusion and access-to-constant attributes match.
3367
3368 if Ada_Version >= Ada_05
3369 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
3370 and then
3371 (Can_Never_Be_Null (Old_Type)
3372 /= Can_Never_Be_Null (New_Type)
3373 or else Is_Access_Constant (Etype (Old_Type))
3374 /= Is_Access_Constant (Etype (New_Type)))
3375 then
3376 Conformance_Error ("\return type does not match!", New_Id);
3377 return;
3378 end if;
3379
3380 -- If either is a function/operator and the other isn't, error
3381
3382 elsif Old_Type /= Standard_Void_Type
3383 or else New_Type /= Standard_Void_Type
3384 then
3385 Conformance_Error ("\functions can only match functions!", New_Id);
3386 return;
3387 end if;
3388
3389 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
3390 -- If this is a renaming as body, refine error message to indicate that
3391 -- the conflict is with the original declaration. If the entity is not
3392 -- frozen, the conventions don't have to match, the one of the renamed
3393 -- entity is inherited.
3394
3395 if Ctype >= Subtype_Conformant then
3396 if Convention (Old_Id) /= Convention (New_Id) then
3397
3398 if not Is_Frozen (New_Id) then
3399 null;
3400
3401 elsif Present (Err_Loc)
3402 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
3403 and then Present (Corresponding_Spec (Err_Loc))
3404 then
3405 Error_Msg_Name_1 := Chars (New_Id);
3406 Error_Msg_Name_2 :=
3407 Name_Ada + Convention_Id'Pos (Convention (New_Id));
3408
3409 Conformance_Error ("\prior declaration for% has convention %!");
3410
3411 else
3412 Conformance_Error ("\calling conventions do not match!");
3413 end if;
3414
3415 return;
3416
3417 elsif Is_Formal_Subprogram (Old_Id)
3418 or else Is_Formal_Subprogram (New_Id)
3419 then
3420 Conformance_Error ("\formal subprograms not allowed!");
3421 return;
3422 end if;
3423 end if;
3424
3425 -- Deal with parameters
3426
3427 -- Note: we use the entity information, rather than going directly
3428 -- to the specification in the tree. This is not only simpler, but
3429 -- absolutely necessary for some cases of conformance tests between
3430 -- operators, where the declaration tree simply does not exist!
3431
3432 Old_Formal := First_Formal (Old_Id);
3433 New_Formal := First_Formal (New_Id);
3434
3435 while Present (Old_Formal) and then Present (New_Formal) loop
3436 if Is_Controlling_Formal (Old_Formal)
3437 and then Is_Controlling_Formal (New_Formal)
3438 and then Skip_Controlling_Formals
3439 then
3440 goto Skip_Controlling_Formal;
3441 end if;
3442
3443 if Ctype = Fully_Conformant then
3444
3445 -- Names must match. Error message is more accurate if we do
3446 -- this before checking that the types of the formals match.
3447
3448 if Chars (Old_Formal) /= Chars (New_Formal) then
3449 Conformance_Error ("\name & does not match!", New_Formal);
3450
3451 -- Set error posted flag on new formal as well to stop
3452 -- junk cascaded messages in some cases.
3453
3454 Set_Error_Posted (New_Formal);
3455 return;
3456 end if;
3457 end if;
3458
3459 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
3460 -- case occurs whenever a subprogram is being renamed and one of its
3461 -- parameters imposes a null exclusion. For example:
3462
3463 -- type T is null record;
3464 -- type Acc_T is access T;
3465 -- subtype Acc_T_Sub is Acc_T;
3466
3467 -- procedure P (Obj : not null Acc_T_Sub); -- itype
3468 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
3469 -- renames P;
3470
3471 Old_Formal_Base := Etype (Old_Formal);
3472 New_Formal_Base := Etype (New_Formal);
3473
3474 if Get_Inst then
3475 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
3476 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
3477 end if;
3478
3479 Access_Types_Match := Ada_Version >= Ada_05
3480
3481 -- Ensure that this rule is only applied when New_Id is a
3482 -- renaming of Old_Id.
3483
3484 and then Nkind (Parent (Parent (New_Id))) =
3485 N_Subprogram_Renaming_Declaration
3486 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
3487 and then Present (Entity (Name (Parent (Parent (New_Id)))))
3488 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
3489
3490 -- Now handle the allowed access-type case
3491
3492 and then Is_Access_Type (Old_Formal_Base)
3493 and then Is_Access_Type (New_Formal_Base)
3494
3495 -- The type kinds must match. The only exception occurs with
3496 -- multiple generics of the form:
3497
3498 -- generic generic
3499 -- type F is private; type A is private;
3500 -- type F_Ptr is access F; type A_Ptr is access A;
3501 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
3502 -- package F_Pack is ... package A_Pack is
3503 -- package F_Inst is
3504 -- new F_Pack (A, A_Ptr, A_P);
3505
3506 -- When checking for conformance between the parameters of A_P
3507 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
3508 -- because the compiler has transformed A_Ptr into a subtype of
3509 -- F_Ptr. We catch this case in the code below.
3510
3511 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
3512 or else
3513 (Is_Generic_Type (Old_Formal_Base)
3514 and then Is_Generic_Type (New_Formal_Base)
3515 and then Is_Internal (New_Formal_Base)
3516 and then Etype (Etype (New_Formal_Base)) =
3517 Old_Formal_Base))
3518 and then Directly_Designated_Type (Old_Formal_Base) =
3519 Directly_Designated_Type (New_Formal_Base)
3520 and then ((Is_Itype (Old_Formal_Base)
3521 and then Can_Never_Be_Null (Old_Formal_Base))
3522 or else
3523 (Is_Itype (New_Formal_Base)
3524 and then Can_Never_Be_Null (New_Formal_Base)));
3525
3526 -- Types must always match. In the visible part of an instance,
3527 -- usual overloading rules for dispatching operations apply, and
3528 -- we check base types (not the actual subtypes).
3529
3530 if In_Instance_Visible_Part
3531 and then Is_Dispatching_Operation (New_Id)
3532 then
3533 if not Conforming_Types
3534 (T1 => Base_Type (Etype (Old_Formal)),
3535 T2 => Base_Type (Etype (New_Formal)),
3536 Ctype => Ctype,
3537 Get_Inst => Get_Inst)
3538 and then not Access_Types_Match
3539 then
3540 Conformance_Error ("\type of & does not match!", New_Formal);
3541 return;
3542 end if;
3543
3544 elsif not Conforming_Types
3545 (T1 => Old_Formal_Base,
3546 T2 => New_Formal_Base,
3547 Ctype => Ctype,
3548 Get_Inst => Get_Inst)
3549 and then not Access_Types_Match
3550 then
3551 Conformance_Error ("\type of & does not match!", New_Formal);
3552 return;
3553 end if;
3554
3555 -- For mode conformance, mode must match
3556
3557 if Ctype >= Mode_Conformant then
3558 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
3559 Conformance_Error ("\mode of & does not match!", New_Formal);
3560 return;
3561
3562 -- Part of mode conformance for access types is having the same
3563 -- constant modifier.
3564
3565 elsif Access_Types_Match
3566 and then Is_Access_Constant (Old_Formal_Base) /=
3567 Is_Access_Constant (New_Formal_Base)
3568 then
3569 Conformance_Error
3570 ("\constant modifier does not match!", New_Formal);
3571 return;
3572 end if;
3573 end if;
3574
3575 if Ctype >= Subtype_Conformant then
3576
3577 -- Ada 2005 (AI-231): In case of anonymous access types check
3578 -- the null-exclusion and access-to-constant attributes must
3579 -- match.
3580
3581 if Ada_Version >= Ada_05
3582 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
3583 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
3584 and then
3585 (Can_Never_Be_Null (Old_Formal) /=
3586 Can_Never_Be_Null (New_Formal)
3587 or else
3588 Is_Access_Constant (Etype (Old_Formal)) /=
3589 Is_Access_Constant (Etype (New_Formal)))
3590 then
3591 -- It is allowed to omit the null-exclusion in case of stream
3592 -- attribute subprograms. We recognize stream subprograms
3593 -- through their TSS-generated suffix.
3594
3595 declare
3596 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
3597 begin
3598 if TSS_Name /= TSS_Stream_Read
3599 and then TSS_Name /= TSS_Stream_Write
3600 and then TSS_Name /= TSS_Stream_Input
3601 and then TSS_Name /= TSS_Stream_Output
3602 then
3603 Conformance_Error
3604 ("\type of & does not match!", New_Formal);
3605 return;
3606 end if;
3607 end;
3608 end if;
3609 end if;
3610
3611 -- Full conformance checks
3612
3613 if Ctype = Fully_Conformant then
3614
3615 -- We have checked already that names match
3616
3617 if Parameter_Mode (Old_Formal) = E_In_Parameter then
3618
3619 -- Check default expressions for in parameters
3620
3621 declare
3622 NewD : constant Boolean :=
3623 Present (Default_Value (New_Formal));
3624 OldD : constant Boolean :=
3625 Present (Default_Value (Old_Formal));
3626 begin
3627 if NewD or OldD then
3628
3629 -- The old default value has been analyzed because the
3630 -- current full declaration will have frozen everything
3631 -- before. The new default value has not been analyzed,
3632 -- so analyze it now before we check for conformance.
3633
3634 if NewD then
3635 Push_Scope (New_Id);
3636 Preanalyze_Spec_Expression
3637 (Default_Value (New_Formal), Etype (New_Formal));
3638 End_Scope;
3639 end if;
3640
3641 if not (NewD and OldD)
3642 or else not Fully_Conformant_Expressions
3643 (Default_Value (Old_Formal),
3644 Default_Value (New_Formal))
3645 then
3646 Conformance_Error
3647 ("\default expression for & does not match!",
3648 New_Formal);
3649 return;
3650 end if;
3651 end if;
3652 end;
3653 end if;
3654 end if;
3655
3656 -- A couple of special checks for Ada 83 mode. These checks are
3657 -- skipped if either entity is an operator in package Standard,
3658 -- or if either old or new instance is not from the source program.
3659
3660 if Ada_Version = Ada_83
3661 and then Sloc (Old_Id) > Standard_Location
3662 and then Sloc (New_Id) > Standard_Location
3663 and then Comes_From_Source (Old_Id)
3664 and then Comes_From_Source (New_Id)
3665 then
3666 declare
3667 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
3668 New_Param : constant Node_Id := Declaration_Node (New_Formal);
3669
3670 begin
3671 -- Explicit IN must be present or absent in both cases. This
3672 -- test is required only in the full conformance case.
3673
3674 if In_Present (Old_Param) /= In_Present (New_Param)
3675 and then Ctype = Fully_Conformant
3676 then
3677 Conformance_Error
3678 ("\(Ada 83) IN must appear in both declarations",
3679 New_Formal);
3680 return;
3681 end if;
3682
3683 -- Grouping (use of comma in param lists) must be the same
3684 -- This is where we catch a misconformance like:
3685
3686 -- A, B : Integer
3687 -- A : Integer; B : Integer
3688
3689 -- which are represented identically in the tree except
3690 -- for the setting of the flags More_Ids and Prev_Ids.
3691
3692 if More_Ids (Old_Param) /= More_Ids (New_Param)
3693 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
3694 then
3695 Conformance_Error
3696 ("\grouping of & does not match!", New_Formal);
3697 return;
3698 end if;
3699 end;
3700 end if;
3701
3702 -- This label is required when skipping controlling formals
3703
3704 <<Skip_Controlling_Formal>>
3705
3706 Next_Formal (Old_Formal);
3707 Next_Formal (New_Formal);
3708 end loop;
3709
3710 if Present (Old_Formal) then
3711 Conformance_Error ("\too few parameters!");
3712 return;
3713
3714 elsif Present (New_Formal) then
3715 Conformance_Error ("\too many parameters!", New_Formal);
3716 return;
3717 end if;
3718 end Check_Conformance;
3719
3720 -----------------------
3721 -- Check_Conventions --
3722 -----------------------
3723
3724 procedure Check_Conventions (Typ : Entity_Id) is
3725 Ifaces_List : Elist_Id;
3726
3727 procedure Check_Convention (Op : Entity_Id);
3728 -- Verify that the convention of inherited dispatching operation Op is
3729 -- consistent among all subprograms it overrides. In order to minimize
3730 -- the search, Search_From is utilized to designate a specific point in
3731 -- the list rather than iterating over the whole list once more.
3732
3733 ----------------------
3734 -- Check_Convention --
3735 ----------------------
3736
3737 procedure Check_Convention (Op : Entity_Id) is
3738 Iface_Elmt : Elmt_Id;
3739 Iface_Prim_Elmt : Elmt_Id;
3740 Iface_Prim : Entity_Id;
3741
3742 begin
3743 Iface_Elmt := First_Elmt (Ifaces_List);
3744 while Present (Iface_Elmt) loop
3745 Iface_Prim_Elmt :=
3746 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
3747 while Present (Iface_Prim_Elmt) loop
3748 Iface_Prim := Node (Iface_Prim_Elmt);
3749
3750 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
3751 and then Convention (Iface_Prim) /= Convention (Op)
3752 then
3753 Error_Msg_N
3754 ("inconsistent conventions in primitive operations", Typ);
3755
3756 Error_Msg_Name_1 := Chars (Op);
3757 Error_Msg_Name_2 := Get_Convention_Name (Convention (Op));
3758 Error_Msg_Sloc := Sloc (Op);
3759
3760 if Comes_From_Source (Op) then
3761 if not Is_Overriding_Operation (Op) then
3762 Error_Msg_N ("\\primitive % defined #", Typ);
3763 else
3764 Error_Msg_N ("\\overriding operation % with " &
3765 "convention % defined #", Typ);
3766 end if;
3767
3768 else pragma Assert (Present (Alias (Op)));
3769 Error_Msg_Sloc := Sloc (Alias (Op));
3770 Error_Msg_N ("\\inherited operation % with " &
3771 "convention % defined #", Typ);
3772 end if;
3773
3774 Error_Msg_Name_1 := Chars (Op);
3775 Error_Msg_Name_2 :=
3776 Get_Convention_Name (Convention (Iface_Prim));
3777 Error_Msg_Sloc := Sloc (Iface_Prim);
3778 Error_Msg_N ("\\overridden operation % with " &
3779 "convention % defined #", Typ);
3780
3781 -- Avoid cascading errors
3782
3783 return;
3784 end if;
3785
3786 Next_Elmt (Iface_Prim_Elmt);
3787 end loop;
3788
3789 Next_Elmt (Iface_Elmt);
3790 end loop;
3791 end Check_Convention;
3792
3793 -- Local variables
3794
3795 Prim_Op : Entity_Id;
3796 Prim_Op_Elmt : Elmt_Id;
3797
3798 -- Start of processing for Check_Conventions
3799
3800 begin
3801 if not Has_Interfaces (Typ) then
3802 return;
3803 end if;
3804
3805 Collect_Interfaces (Typ, Ifaces_List);
3806
3807 -- The algorithm checks every overriding dispatching operation against
3808 -- all the corresponding overridden dispatching operations, detecting
3809 -- differences in conventions.
3810
3811 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
3812 while Present (Prim_Op_Elmt) loop
3813 Prim_Op := Node (Prim_Op_Elmt);
3814
3815 -- A small optimization: skip the predefined dispatching operations
3816 -- since they always have the same convention.
3817
3818 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
3819 Check_Convention (Prim_Op);
3820 end if;
3821
3822 Next_Elmt (Prim_Op_Elmt);
3823 end loop;
3824 end Check_Conventions;
3825
3826 ------------------------------
3827 -- Check_Delayed_Subprogram --
3828 ------------------------------
3829
3830 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
3831 F : Entity_Id;
3832
3833 procedure Possible_Freeze (T : Entity_Id);
3834 -- T is the type of either a formal parameter or of the return type.
3835 -- If T is not yet frozen and needs a delayed freeze, then the
3836 -- subprogram itself must be delayed.
3837
3838 ---------------------
3839 -- Possible_Freeze --
3840 ---------------------
3841
3842 procedure Possible_Freeze (T : Entity_Id) is
3843 begin
3844 if Has_Delayed_Freeze (T)
3845 and then not Is_Frozen (T)
3846 then
3847 Set_Has_Delayed_Freeze (Designator);
3848
3849 elsif Is_Access_Type (T)
3850 and then Has_Delayed_Freeze (Designated_Type (T))
3851 and then not Is_Frozen (Designated_Type (T))
3852 then
3853 Set_Has_Delayed_Freeze (Designator);
3854 end if;
3855 end Possible_Freeze;
3856
3857 -- Start of processing for Check_Delayed_Subprogram
3858
3859 begin
3860 -- Never need to freeze abstract subprogram
3861
3862 if Ekind (Designator) /= E_Subprogram_Type
3863 and then Is_Abstract_Subprogram (Designator)
3864 then
3865 null;
3866 else
3867 -- Need delayed freeze if return type itself needs a delayed
3868 -- freeze and is not yet frozen.
3869
3870 Possible_Freeze (Etype (Designator));
3871 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
3872
3873 -- Need delayed freeze if any of the formal types themselves need
3874 -- a delayed freeze and are not yet frozen.
3875
3876 F := First_Formal (Designator);
3877 while Present (F) loop
3878 Possible_Freeze (Etype (F));
3879 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
3880 Next_Formal (F);
3881 end loop;
3882 end if;
3883
3884 -- Mark functions that return by reference. Note that it cannot be
3885 -- done for delayed_freeze subprograms because the underlying
3886 -- returned type may not be known yet (for private types)
3887
3888 if not Has_Delayed_Freeze (Designator)
3889 and then Expander_Active
3890 then
3891 declare
3892 Typ : constant Entity_Id := Etype (Designator);
3893 Utyp : constant Entity_Id := Underlying_Type (Typ);
3894
3895 begin
3896 if Is_Inherently_Limited_Type (Typ) then
3897 Set_Returns_By_Ref (Designator);
3898
3899 elsif Present (Utyp) and then CW_Or_Controlled_Type (Utyp) then
3900 Set_Returns_By_Ref (Designator);
3901 end if;
3902 end;
3903 end if;
3904 end Check_Delayed_Subprogram;
3905
3906 ------------------------------------
3907 -- Check_Discriminant_Conformance --
3908 ------------------------------------
3909
3910 procedure Check_Discriminant_Conformance
3911 (N : Node_Id;
3912 Prev : Entity_Id;
3913 Prev_Loc : Node_Id)
3914 is
3915 Old_Discr : Entity_Id := First_Discriminant (Prev);
3916 New_Discr : Node_Id := First (Discriminant_Specifications (N));
3917 New_Discr_Id : Entity_Id;
3918 New_Discr_Type : Entity_Id;
3919
3920 procedure Conformance_Error (Msg : String; N : Node_Id);
3921 -- Post error message for conformance error on given node. Two messages
3922 -- are output. The first points to the previous declaration with a
3923 -- general "no conformance" message. The second is the detailed reason,
3924 -- supplied as Msg. The parameter N provide information for a possible
3925 -- & insertion in the message.
3926
3927 -----------------------
3928 -- Conformance_Error --
3929 -----------------------
3930
3931 procedure Conformance_Error (Msg : String; N : Node_Id) is
3932 begin
3933 Error_Msg_Sloc := Sloc (Prev_Loc);
3934 Error_Msg_N ("not fully conformant with declaration#!", N);
3935 Error_Msg_NE (Msg, N, N);
3936 end Conformance_Error;
3937
3938 -- Start of processing for Check_Discriminant_Conformance
3939
3940 begin
3941 while Present (Old_Discr) and then Present (New_Discr) loop
3942
3943 New_Discr_Id := Defining_Identifier (New_Discr);
3944
3945 -- The subtype mark of the discriminant on the full type has not
3946 -- been analyzed so we do it here. For an access discriminant a new
3947 -- type is created.
3948
3949 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
3950 New_Discr_Type :=
3951 Access_Definition (N, Discriminant_Type (New_Discr));
3952
3953 else
3954 Analyze (Discriminant_Type (New_Discr));
3955 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
3956 end if;
3957
3958 if not Conforming_Types
3959 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
3960 then
3961 Conformance_Error ("type of & does not match!", New_Discr_Id);
3962 return;
3963 else
3964 -- Treat the new discriminant as an occurrence of the old one,
3965 -- for navigation purposes, and fill in some semantic
3966 -- information, for completeness.
3967
3968 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
3969 Set_Etype (New_Discr_Id, Etype (Old_Discr));
3970 Set_Scope (New_Discr_Id, Scope (Old_Discr));
3971 end if;
3972
3973 -- Names must match
3974
3975 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
3976 Conformance_Error ("name & does not match!", New_Discr_Id);
3977 return;
3978 end if;
3979
3980 -- Default expressions must match
3981
3982 declare
3983 NewD : constant Boolean :=
3984 Present (Expression (New_Discr));
3985 OldD : constant Boolean :=
3986 Present (Expression (Parent (Old_Discr)));
3987
3988 begin
3989 if NewD or OldD then
3990
3991 -- The old default value has been analyzed and expanded,
3992 -- because the current full declaration will have frozen
3993 -- everything before. The new default values have not been
3994 -- expanded, so expand now to check conformance.
3995
3996 if NewD then
3997 Preanalyze_Spec_Expression
3998 (Expression (New_Discr), New_Discr_Type);
3999 end if;
4000
4001 if not (NewD and OldD)
4002 or else not Fully_Conformant_Expressions
4003 (Expression (Parent (Old_Discr)),
4004 Expression (New_Discr))
4005
4006 then
4007 Conformance_Error
4008 ("default expression for & does not match!",
4009 New_Discr_Id);
4010 return;
4011 end if;
4012 end if;
4013 end;
4014
4015 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
4016
4017 if Ada_Version = Ada_83 then
4018 declare
4019 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
4020
4021 begin
4022 -- Grouping (use of comma in param lists) must be the same
4023 -- This is where we catch a misconformance like:
4024
4025 -- A,B : Integer
4026 -- A : Integer; B : Integer
4027
4028 -- which are represented identically in the tree except
4029 -- for the setting of the flags More_Ids and Prev_Ids.
4030
4031 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
4032 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
4033 then
4034 Conformance_Error
4035 ("grouping of & does not match!", New_Discr_Id);
4036 return;
4037 end if;
4038 end;
4039 end if;
4040
4041 Next_Discriminant (Old_Discr);
4042 Next (New_Discr);
4043 end loop;
4044
4045 if Present (Old_Discr) then
4046 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
4047 return;
4048
4049 elsif Present (New_Discr) then
4050 Conformance_Error
4051 ("too many discriminants!", Defining_Identifier (New_Discr));
4052 return;
4053 end if;
4054 end Check_Discriminant_Conformance;
4055
4056 ----------------------------
4057 -- Check_Fully_Conformant --
4058 ----------------------------
4059
4060 procedure Check_Fully_Conformant
4061 (New_Id : Entity_Id;
4062 Old_Id : Entity_Id;
4063 Err_Loc : Node_Id := Empty)
4064 is
4065 Result : Boolean;
4066 pragma Warnings (Off, Result);
4067 begin
4068 Check_Conformance
4069 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
4070 end Check_Fully_Conformant;
4071
4072 ---------------------------
4073 -- Check_Mode_Conformant --
4074 ---------------------------
4075
4076 procedure Check_Mode_Conformant
4077 (New_Id : Entity_Id;
4078 Old_Id : Entity_Id;
4079 Err_Loc : Node_Id := Empty;
4080 Get_Inst : Boolean := False)
4081 is
4082 Result : Boolean;
4083 pragma Warnings (Off, Result);
4084 begin
4085 Check_Conformance
4086 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
4087 end Check_Mode_Conformant;
4088
4089 --------------------------------
4090 -- Check_Overriding_Indicator --
4091 --------------------------------
4092
4093 procedure Check_Overriding_Indicator
4094 (Subp : Entity_Id;
4095 Overridden_Subp : Entity_Id;
4096 Is_Primitive : Boolean)
4097 is
4098 Decl : Node_Id;
4099 Spec : Node_Id;
4100
4101 begin
4102 -- No overriding indicator for literals
4103
4104 if Ekind (Subp) = E_Enumeration_Literal then
4105 return;
4106
4107 elsif Ekind (Subp) = E_Entry then
4108 Decl := Parent (Subp);
4109
4110 else
4111 Decl := Unit_Declaration_Node (Subp);
4112 end if;
4113
4114 if Nkind_In (Decl, N_Subprogram_Body,
4115 N_Subprogram_Body_Stub,
4116 N_Subprogram_Declaration,
4117 N_Abstract_Subprogram_Declaration,
4118 N_Subprogram_Renaming_Declaration)
4119 then
4120 Spec := Specification (Decl);
4121
4122 elsif Nkind (Decl) = N_Entry_Declaration then
4123 Spec := Decl;
4124
4125 else
4126 return;
4127 end if;
4128
4129 if Present (Overridden_Subp) then
4130 if Must_Not_Override (Spec) then
4131 Error_Msg_Sloc := Sloc (Overridden_Subp);
4132
4133 if Ekind (Subp) = E_Entry then
4134 Error_Msg_NE
4135 ("entry & overrides inherited operation #", Spec, Subp);
4136 else
4137 Error_Msg_NE
4138 ("subprogram & overrides inherited operation #", Spec, Subp);
4139 end if;
4140
4141 elsif Is_Subprogram (Subp) then
4142 Set_Is_Overriding_Operation (Subp);
4143 end if;
4144
4145 -- If Subp is an operator, it may override a predefined operation.
4146 -- In that case overridden_subp is empty because of our implicit
4147 -- representation for predefined operators. We have to check whether the
4148 -- signature of Subp matches that of a predefined operator. Note that
4149 -- first argument provides the name of the operator, and the second
4150 -- argument the signature that may match that of a standard operation.
4151 -- If the indicator is overriding, then the operator must match a
4152 -- predefined signature, because we know already that there is no
4153 -- explicit overridden operation.
4154
4155 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
4156
4157 if Must_Not_Override (Spec) then
4158 if not Is_Primitive then
4159 Error_Msg_N
4160 ("overriding indicator only allowed "
4161 & "if subprogram is primitive", Subp);
4162
4163 elsif Operator_Matches_Spec (Subp, Subp) then
4164 Error_Msg_NE
4165 ("subprogram & overrides predefined operator ", Spec, Subp);
4166 end if;
4167
4168 elsif Is_Overriding_Operation (Subp) then
4169 null;
4170
4171 elsif Must_Override (Spec) then
4172 if not Operator_Matches_Spec (Subp, Subp) then
4173 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
4174
4175 else
4176 Set_Is_Overriding_Operation (Subp);
4177 end if;
4178 end if;
4179
4180 elsif Must_Override (Spec) then
4181 if Ekind (Subp) = E_Entry then
4182 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
4183 else
4184 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
4185 end if;
4186
4187 -- If the operation is marked "not overriding" and it's not primitive
4188 -- then an error is issued, unless this is an operation of a task or
4189 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
4190 -- has been specified have already been checked above.
4191
4192 elsif Must_Not_Override (Spec)
4193 and then not Is_Primitive
4194 and then Ekind (Subp) /= E_Entry
4195 and then Ekind (Scope (Subp)) /= E_Protected_Type
4196 then
4197 Error_Msg_N
4198 ("overriding indicator only allowed if subprogram is primitive",
4199 Subp);
4200 return;
4201 end if;
4202 end Check_Overriding_Indicator;
4203
4204 -------------------
4205 -- Check_Returns --
4206 -------------------
4207
4208 -- Note: this procedure needs to know far too much about how the expander
4209 -- messes with exceptions. The use of the flag Exception_Junk and the
4210 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
4211 -- works, but is not very clean. It would be better if the expansion
4212 -- routines would leave Original_Node working nicely, and we could use
4213 -- Original_Node here to ignore all the peculiar expander messing ???
4214
4215 procedure Check_Returns
4216 (HSS : Node_Id;
4217 Mode : Character;
4218 Err : out Boolean;
4219 Proc : Entity_Id := Empty)
4220 is
4221 Handler : Node_Id;
4222
4223 procedure Check_Statement_Sequence (L : List_Id);
4224 -- Internal recursive procedure to check a list of statements for proper
4225 -- termination by a return statement (or a transfer of control or a
4226 -- compound statement that is itself internally properly terminated).
4227
4228 ------------------------------
4229 -- Check_Statement_Sequence --
4230 ------------------------------
4231
4232 procedure Check_Statement_Sequence (L : List_Id) is
4233 Last_Stm : Node_Id;
4234 Stm : Node_Id;
4235 Kind : Node_Kind;
4236
4237 Raise_Exception_Call : Boolean;
4238 -- Set True if statement sequence terminated by Raise_Exception call
4239 -- or a Reraise_Occurrence call.
4240
4241 begin
4242 Raise_Exception_Call := False;
4243
4244 -- Get last real statement
4245
4246 Last_Stm := Last (L);
4247
4248 -- Deal with digging out exception handler statement sequences that
4249 -- have been transformed by the local raise to goto optimization.
4250 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
4251 -- optimization has occurred, we are looking at something like:
4252
4253 -- begin
4254 -- original stmts in block
4255
4256 -- exception \
4257 -- when excep1 => |
4258 -- goto L1; | omitted if No_Exception_Propagation
4259 -- when excep2 => |
4260 -- goto L2; /
4261 -- end;
4262
4263 -- goto L3; -- skip handler when exception not raised
4264
4265 -- <<L1>> -- target label for local exception
4266 -- begin
4267 -- estmts1
4268 -- end;
4269
4270 -- goto L3;
4271
4272 -- <<L2>>
4273 -- begin
4274 -- estmts2
4275 -- end;
4276
4277 -- <<L3>>
4278
4279 -- and what we have to do is to dig out the estmts1 and estmts2
4280 -- sequences (which were the original sequences of statements in
4281 -- the exception handlers) and check them.
4282
4283 if Nkind (Last_Stm) = N_Label
4284 and then Exception_Junk (Last_Stm)
4285 then
4286 Stm := Last_Stm;
4287 loop
4288 Prev (Stm);
4289 exit when No (Stm);
4290 exit when Nkind (Stm) /= N_Block_Statement;
4291 exit when not Exception_Junk (Stm);
4292 Prev (Stm);
4293 exit when No (Stm);
4294 exit when Nkind (Stm) /= N_Label;
4295 exit when not Exception_Junk (Stm);
4296 Check_Statement_Sequence
4297 (Statements (Handled_Statement_Sequence (Next (Stm))));
4298
4299 Prev (Stm);
4300 Last_Stm := Stm;
4301 exit when No (Stm);
4302 exit when Nkind (Stm) /= N_Goto_Statement;
4303 exit when not Exception_Junk (Stm);
4304 end loop;
4305 end if;
4306
4307 -- Don't count pragmas
4308
4309 while Nkind (Last_Stm) = N_Pragma
4310
4311 -- Don't count call to SS_Release (can happen after Raise_Exception)
4312
4313 or else
4314 (Nkind (Last_Stm) = N_Procedure_Call_Statement
4315 and then
4316 Nkind (Name (Last_Stm)) = N_Identifier
4317 and then
4318 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
4319
4320 -- Don't count exception junk
4321
4322 or else
4323 (Nkind_In (Last_Stm, N_Goto_Statement,
4324 N_Label,
4325 N_Object_Declaration)
4326 and then Exception_Junk (Last_Stm))
4327 or else Nkind (Last_Stm) in N_Push_xxx_Label
4328 or else Nkind (Last_Stm) in N_Pop_xxx_Label
4329 loop
4330 Prev (Last_Stm);
4331 end loop;
4332
4333 -- Here we have the "real" last statement
4334
4335 Kind := Nkind (Last_Stm);
4336
4337 -- Transfer of control, OK. Note that in the No_Return procedure
4338 -- case, we already diagnosed any explicit return statements, so
4339 -- we can treat them as OK in this context.
4340
4341 if Is_Transfer (Last_Stm) then
4342 return;
4343
4344 -- Check cases of explicit non-indirect procedure calls
4345
4346 elsif Kind = N_Procedure_Call_Statement
4347 and then Is_Entity_Name (Name (Last_Stm))
4348 then
4349 -- Check call to Raise_Exception procedure which is treated
4350 -- specially, as is a call to Reraise_Occurrence.
4351
4352 -- We suppress the warning in these cases since it is likely that
4353 -- the programmer really does not expect to deal with the case
4354 -- of Null_Occurrence, and thus would find a warning about a
4355 -- missing return curious, and raising Program_Error does not
4356 -- seem such a bad behavior if this does occur.
4357
4358 -- Note that in the Ada 2005 case for Raise_Exception, the actual
4359 -- behavior will be to raise Constraint_Error (see AI-329).
4360
4361 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
4362 or else
4363 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
4364 then
4365 Raise_Exception_Call := True;
4366
4367 -- For Raise_Exception call, test first argument, if it is
4368 -- an attribute reference for a 'Identity call, then we know
4369 -- that the call cannot possibly return.
4370
4371 declare
4372 Arg : constant Node_Id :=
4373 Original_Node (First_Actual (Last_Stm));
4374 begin
4375 if Nkind (Arg) = N_Attribute_Reference
4376 and then Attribute_Name (Arg) = Name_Identity
4377 then
4378 return;
4379 end if;
4380 end;
4381 end if;
4382
4383 -- If statement, need to look inside if there is an else and check
4384 -- each constituent statement sequence for proper termination.
4385
4386 elsif Kind = N_If_Statement
4387 and then Present (Else_Statements (Last_Stm))
4388 then
4389 Check_Statement_Sequence (Then_Statements (Last_Stm));
4390 Check_Statement_Sequence (Else_Statements (Last_Stm));
4391
4392 if Present (Elsif_Parts (Last_Stm)) then
4393 declare
4394 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
4395
4396 begin
4397 while Present (Elsif_Part) loop
4398 Check_Statement_Sequence (Then_Statements (Elsif_Part));
4399 Next (Elsif_Part);
4400 end loop;
4401 end;
4402 end if;
4403
4404 return;
4405
4406 -- Case statement, check each case for proper termination
4407
4408 elsif Kind = N_Case_Statement then
4409 declare
4410 Case_Alt : Node_Id;
4411 begin
4412 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
4413 while Present (Case_Alt) loop
4414 Check_Statement_Sequence (Statements (Case_Alt));
4415 Next_Non_Pragma (Case_Alt);
4416 end loop;
4417 end;
4418
4419 return;
4420
4421 -- Block statement, check its handled sequence of statements
4422
4423 elsif Kind = N_Block_Statement then
4424 declare
4425 Err1 : Boolean;
4426
4427 begin
4428 Check_Returns
4429 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
4430
4431 if Err1 then
4432 Err := True;
4433 end if;
4434
4435 return;
4436 end;
4437
4438 -- Loop statement. If there is an iteration scheme, we can definitely
4439 -- fall out of the loop. Similarly if there is an exit statement, we
4440 -- can fall out. In either case we need a following return.
4441
4442 elsif Kind = N_Loop_Statement then
4443 if Present (Iteration_Scheme (Last_Stm))
4444 or else Has_Exit (Entity (Identifier (Last_Stm)))
4445 then
4446 null;
4447
4448 -- A loop with no exit statement or iteration scheme is either
4449 -- an infinite loop, or it has some other exit (raise/return).
4450 -- In either case, no warning is required.
4451
4452 else
4453 return;
4454 end if;
4455
4456 -- Timed entry call, check entry call and delay alternatives
4457
4458 -- Note: in expanded code, the timed entry call has been converted
4459 -- to a set of expanded statements on which the check will work
4460 -- correctly in any case.
4461
4462 elsif Kind = N_Timed_Entry_Call then
4463 declare
4464 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
4465 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
4466
4467 begin
4468 -- If statement sequence of entry call alternative is missing,
4469 -- then we can definitely fall through, and we post the error
4470 -- message on the entry call alternative itself.
4471
4472 if No (Statements (ECA)) then
4473 Last_Stm := ECA;
4474
4475 -- If statement sequence of delay alternative is missing, then
4476 -- we can definitely fall through, and we post the error
4477 -- message on the delay alternative itself.
4478
4479 -- Note: if both ECA and DCA are missing the return, then we
4480 -- post only one message, should be enough to fix the bugs.
4481 -- If not we will get a message next time on the DCA when the
4482 -- ECA is fixed!
4483
4484 elsif No (Statements (DCA)) then
4485 Last_Stm := DCA;
4486
4487 -- Else check both statement sequences
4488
4489 else
4490 Check_Statement_Sequence (Statements (ECA));
4491 Check_Statement_Sequence (Statements (DCA));
4492 return;
4493 end if;
4494 end;
4495
4496 -- Conditional entry call, check entry call and else part
4497
4498 -- Note: in expanded code, the conditional entry call has been
4499 -- converted to a set of expanded statements on which the check
4500 -- will work correctly in any case.
4501
4502 elsif Kind = N_Conditional_Entry_Call then
4503 declare
4504 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
4505
4506 begin
4507 -- If statement sequence of entry call alternative is missing,
4508 -- then we can definitely fall through, and we post the error
4509 -- message on the entry call alternative itself.
4510
4511 if No (Statements (ECA)) then
4512 Last_Stm := ECA;
4513
4514 -- Else check statement sequence and else part
4515
4516 else
4517 Check_Statement_Sequence (Statements (ECA));
4518 Check_Statement_Sequence (Else_Statements (Last_Stm));
4519 return;
4520 end if;
4521 end;
4522 end if;
4523
4524 -- If we fall through, issue appropriate message
4525
4526 if Mode = 'F' then
4527 if not Raise_Exception_Call then
4528 Error_Msg_N
4529 ("?RETURN statement missing following this statement!",
4530 Last_Stm);
4531 Error_Msg_N
4532 ("\?Program_Error may be raised at run time!",
4533 Last_Stm);
4534 end if;
4535
4536 -- Note: we set Err even though we have not issued a warning
4537 -- because we still have a case of a missing return. This is
4538 -- an extremely marginal case, probably will never be noticed
4539 -- but we might as well get it right.
4540
4541 Err := True;
4542
4543 -- Otherwise we have the case of a procedure marked No_Return
4544
4545 else
4546 if not Raise_Exception_Call then
4547 Error_Msg_N
4548 ("?implied return after this statement " &
4549 "will raise Program_Error",
4550 Last_Stm);
4551 Error_Msg_NE
4552 ("\?procedure & is marked as No_Return!",
4553 Last_Stm, Proc);
4554 end if;
4555
4556 declare
4557 RE : constant Node_Id :=
4558 Make_Raise_Program_Error (Sloc (Last_Stm),
4559 Reason => PE_Implicit_Return);
4560 begin
4561 Insert_After (Last_Stm, RE);
4562 Analyze (RE);
4563 end;
4564 end if;
4565 end Check_Statement_Sequence;
4566
4567 -- Start of processing for Check_Returns
4568
4569 begin
4570 Err := False;
4571 Check_Statement_Sequence (Statements (HSS));
4572
4573 if Present (Exception_Handlers (HSS)) then
4574 Handler := First_Non_Pragma (Exception_Handlers (HSS));
4575 while Present (Handler) loop
4576 Check_Statement_Sequence (Statements (Handler));
4577 Next_Non_Pragma (Handler);
4578 end loop;
4579 end if;
4580 end Check_Returns;
4581
4582 ----------------------------
4583 -- Check_Subprogram_Order --
4584 ----------------------------
4585
4586 procedure Check_Subprogram_Order (N : Node_Id) is
4587
4588 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
4589 -- This is used to check if S1 > S2 in the sense required by this
4590 -- test, for example nameab < namec, but name2 < name10.
4591
4592 -----------------------------
4593 -- Subprogram_Name_Greater --
4594 -----------------------------
4595
4596 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
4597 L1, L2 : Positive;
4598 N1, N2 : Natural;
4599
4600 begin
4601 -- Remove trailing numeric parts
4602
4603 L1 := S1'Last;
4604 while S1 (L1) in '0' .. '9' loop
4605 L1 := L1 - 1;
4606 end loop;
4607
4608 L2 := S2'Last;
4609 while S2 (L2) in '0' .. '9' loop
4610 L2 := L2 - 1;
4611 end loop;
4612
4613 -- If non-numeric parts non-equal, that's decisive
4614
4615 if S1 (S1'First .. L1) < S2 (S2'First .. L2) then
4616 return False;
4617
4618 elsif S1 (S1'First .. L1) > S2 (S2'First .. L2) then
4619 return True;
4620
4621 -- If non-numeric parts equal, compare suffixed numeric parts. Note
4622 -- that a missing suffix is treated as numeric zero in this test.
4623
4624 else
4625 N1 := 0;
4626 while L1 < S1'Last loop
4627 L1 := L1 + 1;
4628 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
4629 end loop;
4630
4631 N2 := 0;
4632 while L2 < S2'Last loop
4633 L2 := L2 + 1;
4634 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
4635 end loop;
4636
4637 return N1 > N2;
4638 end if;
4639 end Subprogram_Name_Greater;
4640
4641 -- Start of processing for Check_Subprogram_Order
4642
4643 begin
4644 -- Check body in alpha order if this is option
4645
4646 if Style_Check
4647 and then Style_Check_Order_Subprograms
4648 and then Nkind (N) = N_Subprogram_Body
4649 and then Comes_From_Source (N)
4650 and then In_Extended_Main_Source_Unit (N)
4651 then
4652 declare
4653 LSN : String_Ptr
4654 renames Scope_Stack.Table
4655 (Scope_Stack.Last).Last_Subprogram_Name;
4656
4657 Body_Id : constant Entity_Id :=
4658 Defining_Entity (Specification (N));
4659
4660 begin
4661 Get_Decoded_Name_String (Chars (Body_Id));
4662
4663 if LSN /= null then
4664 if Subprogram_Name_Greater
4665 (LSN.all, Name_Buffer (1 .. Name_Len))
4666 then
4667 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
4668 end if;
4669
4670 Free (LSN);
4671 end if;
4672
4673 LSN := new String'(Name_Buffer (1 .. Name_Len));
4674 end;
4675 end if;
4676 end Check_Subprogram_Order;
4677
4678 ------------------------------
4679 -- Check_Subtype_Conformant --
4680 ------------------------------
4681
4682 procedure Check_Subtype_Conformant
4683 (New_Id : Entity_Id;
4684 Old_Id : Entity_Id;
4685 Err_Loc : Node_Id := Empty;
4686 Skip_Controlling_Formals : Boolean := False)
4687 is
4688 Result : Boolean;
4689 pragma Warnings (Off, Result);
4690 begin
4691 Check_Conformance
4692 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
4693 Skip_Controlling_Formals => Skip_Controlling_Formals);
4694 end Check_Subtype_Conformant;
4695
4696 ---------------------------
4697 -- Check_Type_Conformant --
4698 ---------------------------
4699
4700 procedure Check_Type_Conformant
4701 (New_Id : Entity_Id;
4702 Old_Id : Entity_Id;
4703 Err_Loc : Node_Id := Empty)
4704 is
4705 Result : Boolean;
4706 pragma Warnings (Off, Result);
4707 begin
4708 Check_Conformance
4709 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
4710 end Check_Type_Conformant;
4711
4712 ----------------------
4713 -- Conforming_Types --
4714 ----------------------
4715
4716 function Conforming_Types
4717 (T1 : Entity_Id;
4718 T2 : Entity_Id;
4719 Ctype : Conformance_Type;
4720 Get_Inst : Boolean := False) return Boolean
4721 is
4722 Type_1 : Entity_Id := T1;
4723 Type_2 : Entity_Id := T2;
4724 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
4725
4726 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
4727 -- If neither T1 nor T2 are generic actual types, or if they are in
4728 -- different scopes (e.g. parent and child instances), then verify that
4729 -- the base types are equal. Otherwise T1 and T2 must be on the same
4730 -- subtype chain. The whole purpose of this procedure is to prevent
4731 -- spurious ambiguities in an instantiation that may arise if two
4732 -- distinct generic types are instantiated with the same actual.
4733
4734 function Find_Designated_Type (T : Entity_Id) return Entity_Id;
4735 -- An access parameter can designate an incomplete type. If the
4736 -- incomplete type is the limited view of a type from a limited_
4737 -- with_clause, check whether the non-limited view is available. If
4738 -- it is a (non-limited) incomplete type, get the full view.
4739
4740 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
4741 -- Returns True if and only if either T1 denotes a limited view of T2
4742 -- or T2 denotes a limited view of T1. This can arise when the limited
4743 -- with view of a type is used in a subprogram declaration and the
4744 -- subprogram body is in the scope of a regular with clause for the
4745 -- same unit. In such a case, the two type entities can be considered
4746 -- identical for purposes of conformance checking.
4747
4748 ----------------------
4749 -- Base_Types_Match --
4750 ----------------------
4751
4752 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
4753 begin
4754 if T1 = T2 then
4755 return True;
4756
4757 elsif Base_Type (T1) = Base_Type (T2) then
4758
4759 -- The following is too permissive. A more precise test should
4760 -- check that the generic actual is an ancestor subtype of the
4761 -- other ???.
4762
4763 return not Is_Generic_Actual_Type (T1)
4764 or else not Is_Generic_Actual_Type (T2)
4765 or else Scope (T1) /= Scope (T2);
4766
4767 else
4768 return False;
4769 end if;
4770 end Base_Types_Match;
4771
4772 --------------------------
4773 -- Find_Designated_Type --
4774 --------------------------
4775
4776 function Find_Designated_Type (T : Entity_Id) return Entity_Id is
4777 Desig : Entity_Id;
4778
4779 begin
4780 Desig := Directly_Designated_Type (T);
4781
4782 if Ekind (Desig) = E_Incomplete_Type then
4783
4784 -- If regular incomplete type, get full view if available
4785
4786 if Present (Full_View (Desig)) then
4787 Desig := Full_View (Desig);
4788
4789 -- If limited view of a type, get non-limited view if available,
4790 -- and check again for a regular incomplete type.
4791
4792 elsif Present (Non_Limited_View (Desig)) then
4793 Desig := Get_Full_View (Non_Limited_View (Desig));
4794 end if;
4795 end if;
4796
4797 return Desig;
4798 end Find_Designated_Type;
4799
4800 -------------------------------
4801 -- Matches_Limited_With_View --
4802 -------------------------------
4803
4804 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
4805 begin
4806 -- In some cases a type imported through a limited_with clause, and
4807 -- its nonlimited view are both visible, for example in an anonymous
4808 -- access-to-class-wide type in a formal. Both entities designate the
4809 -- same type.
4810
4811 if From_With_Type (T1)
4812 and then T2 = Available_View (T1)
4813 then
4814 return True;
4815
4816 elsif From_With_Type (T2)
4817 and then T1 = Available_View (T2)
4818 then
4819 return True;
4820
4821 else
4822 return False;
4823 end if;
4824 end Matches_Limited_With_View;
4825
4826 -- Start of processing for Conforming_Types
4827
4828 begin
4829 -- The context is an instance association for a formal
4830 -- access-to-subprogram type; the formal parameter types require
4831 -- mapping because they may denote other formal parameters of the
4832 -- generic unit.
4833
4834 if Get_Inst then
4835 Type_1 := Get_Instance_Of (T1);
4836 Type_2 := Get_Instance_Of (T2);
4837 end if;
4838
4839 -- If one of the types is a view of the other introduced by a limited
4840 -- with clause, treat these as conforming for all purposes.
4841
4842 if Matches_Limited_With_View (T1, T2) then
4843 return True;
4844
4845 elsif Base_Types_Match (Type_1, Type_2) then
4846 return Ctype <= Mode_Conformant
4847 or else Subtypes_Statically_Match (Type_1, Type_2);
4848
4849 elsif Is_Incomplete_Or_Private_Type (Type_1)
4850 and then Present (Full_View (Type_1))
4851 and then Base_Types_Match (Full_View (Type_1), Type_2)
4852 then
4853 return Ctype <= Mode_Conformant
4854 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
4855
4856 elsif Ekind (Type_2) = E_Incomplete_Type
4857 and then Present (Full_View (Type_2))
4858 and then Base_Types_Match (Type_1, Full_View (Type_2))
4859 then
4860 return Ctype <= Mode_Conformant
4861 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
4862
4863 elsif Is_Private_Type (Type_2)
4864 and then In_Instance
4865 and then Present (Full_View (Type_2))
4866 and then Base_Types_Match (Type_1, Full_View (Type_2))
4867 then
4868 return Ctype <= Mode_Conformant
4869 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
4870 end if;
4871
4872 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
4873 -- treated recursively because they carry a signature.
4874
4875 Are_Anonymous_Access_To_Subprogram_Types :=
4876 Ekind (Type_1) = Ekind (Type_2)
4877 and then
4878 (Ekind (Type_1) = E_Anonymous_Access_Subprogram_Type
4879 or else
4880 Ekind (Type_1) = E_Anonymous_Access_Protected_Subprogram_Type);
4881
4882 -- Test anonymous access type case. For this case, static subtype
4883 -- matching is required for mode conformance (RM 6.3.1(15)). We check
4884 -- the base types because we may have built internal subtype entities
4885 -- to handle null-excluding types (see Process_Formals).
4886
4887 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
4888 and then
4889 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
4890 or else Are_Anonymous_Access_To_Subprogram_Types -- Ada 2005 (AI-254)
4891 then
4892 declare
4893 Desig_1 : Entity_Id;
4894 Desig_2 : Entity_Id;
4895
4896 begin
4897 -- In Ada2005, access constant indicators must match for
4898 -- subtype conformance.
4899
4900 if Ada_Version >= Ada_05
4901 and then Ctype >= Subtype_Conformant
4902 and then
4903 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
4904 then
4905 return False;
4906 end if;
4907
4908 Desig_1 := Find_Designated_Type (Type_1);
4909
4910 Desig_2 := Find_Designated_Type (Type_2);
4911
4912 -- If the context is an instance association for a formal
4913 -- access-to-subprogram type; formal access parameter designated
4914 -- types require mapping because they may denote other formal
4915 -- parameters of the generic unit.
4916
4917 if Get_Inst then
4918 Desig_1 := Get_Instance_Of (Desig_1);
4919 Desig_2 := Get_Instance_Of (Desig_2);
4920 end if;
4921
4922 -- It is possible for a Class_Wide_Type to be introduced for an
4923 -- incomplete type, in which case there is a separate class_ wide
4924 -- type for the full view. The types conform if their Etypes
4925 -- conform, i.e. one may be the full view of the other. This can
4926 -- only happen in the context of an access parameter, other uses
4927 -- of an incomplete Class_Wide_Type are illegal.
4928
4929 if Is_Class_Wide_Type (Desig_1)
4930 and then Is_Class_Wide_Type (Desig_2)
4931 then
4932 return
4933 Conforming_Types
4934 (Etype (Base_Type (Desig_1)),
4935 Etype (Base_Type (Desig_2)), Ctype);
4936
4937 elsif Are_Anonymous_Access_To_Subprogram_Types then
4938 if Ada_Version < Ada_05 then
4939 return Ctype = Type_Conformant
4940 or else
4941 Subtypes_Statically_Match (Desig_1, Desig_2);
4942
4943 -- We must check the conformance of the signatures themselves
4944
4945 else
4946 declare
4947 Conformant : Boolean;
4948 begin
4949 Check_Conformance
4950 (Desig_1, Desig_2, Ctype, False, Conformant);
4951 return Conformant;
4952 end;
4953 end if;
4954
4955 else
4956 return Base_Type (Desig_1) = Base_Type (Desig_2)
4957 and then (Ctype = Type_Conformant
4958 or else
4959 Subtypes_Statically_Match (Desig_1, Desig_2));
4960 end if;
4961 end;
4962
4963 -- Otherwise definitely no match
4964
4965 else
4966 if ((Ekind (Type_1) = E_Anonymous_Access_Type
4967 and then Is_Access_Type (Type_2))
4968 or else (Ekind (Type_2) = E_Anonymous_Access_Type
4969 and then Is_Access_Type (Type_1)))
4970 and then
4971 Conforming_Types
4972 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
4973 then
4974 May_Hide_Profile := True;
4975 end if;
4976
4977 return False;
4978 end if;
4979 end Conforming_Types;
4980
4981 --------------------------
4982 -- Create_Extra_Formals --
4983 --------------------------
4984
4985 procedure Create_Extra_Formals (E : Entity_Id) is
4986 Formal : Entity_Id;
4987 First_Extra : Entity_Id := Empty;
4988 Last_Extra : Entity_Id;
4989 Formal_Type : Entity_Id;
4990 P_Formal : Entity_Id := Empty;
4991
4992 function Add_Extra_Formal
4993 (Assoc_Entity : Entity_Id;
4994 Typ : Entity_Id;
4995 Scope : Entity_Id;
4996 Suffix : String) return Entity_Id;
4997 -- Add an extra formal to the current list of formals and extra formals.
4998 -- The extra formal is added to the end of the list of extra formals,
4999 -- and also returned as the result. These formals are always of mode IN.
5000 -- The new formal has the type Typ, is declared in Scope, and its name
5001 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
5002
5003 ----------------------
5004 -- Add_Extra_Formal --
5005 ----------------------
5006
5007 function Add_Extra_Formal
5008 (Assoc_Entity : Entity_Id;
5009 Typ : Entity_Id;
5010 Scope : Entity_Id;
5011 Suffix : String) return Entity_Id
5012 is
5013 EF : constant Entity_Id :=
5014 Make_Defining_Identifier (Sloc (Assoc_Entity),
5015 Chars => New_External_Name (Chars (Assoc_Entity),
5016 Suffix => Suffix));
5017
5018 begin
5019 -- A little optimization. Never generate an extra formal for the
5020 -- _init operand of an initialization procedure, since it could
5021 -- never be used.
5022
5023 if Chars (Formal) = Name_uInit then
5024 return Empty;
5025 end if;
5026
5027 Set_Ekind (EF, E_In_Parameter);
5028 Set_Actual_Subtype (EF, Typ);
5029 Set_Etype (EF, Typ);
5030 Set_Scope (EF, Scope);
5031 Set_Mechanism (EF, Default_Mechanism);
5032 Set_Formal_Validity (EF);
5033
5034 if No (First_Extra) then
5035 First_Extra := EF;
5036 Set_Extra_Formals (Scope, First_Extra);
5037 end if;
5038
5039 if Present (Last_Extra) then
5040 Set_Extra_Formal (Last_Extra, EF);
5041 end if;
5042
5043 Last_Extra := EF;
5044
5045 return EF;
5046 end Add_Extra_Formal;
5047
5048 -- Start of processing for Create_Extra_Formals
5049
5050 begin
5051 -- We never generate extra formals if expansion is not active
5052 -- because we don't need them unless we are generating code.
5053
5054 if not Expander_Active then
5055 return;
5056 end if;
5057
5058 -- If this is a derived subprogram then the subtypes of the parent
5059 -- subprogram's formal parameters will be used to to determine the need
5060 -- for extra formals.
5061
5062 if Is_Overloadable (E) and then Present (Alias (E)) then
5063 P_Formal := First_Formal (Alias (E));
5064 end if;
5065
5066 Last_Extra := Empty;
5067 Formal := First_Formal (E);
5068 while Present (Formal) loop
5069 Last_Extra := Formal;
5070 Next_Formal (Formal);
5071 end loop;
5072
5073 -- If Extra_formals were already created, don't do it again. This
5074 -- situation may arise for subprogram types created as part of
5075 -- dispatching calls (see Expand_Dispatching_Call)
5076
5077 if Present (Last_Extra) and then
5078 Present (Extra_Formal (Last_Extra))
5079 then
5080 return;
5081 end if;
5082
5083 -- If the subprogram is a predefined dispatching subprogram then don't
5084 -- generate any extra constrained or accessibility level formals. In
5085 -- general we suppress these for internal subprograms (by not calling
5086 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
5087 -- generated stream attributes do get passed through because extra
5088 -- build-in-place formals are needed in some cases (limited 'Input).
5089
5090 if Is_Predefined_Dispatching_Operation (E) then
5091 goto Test_For_BIP_Extras;
5092 end if;
5093
5094 Formal := First_Formal (E);
5095 while Present (Formal) loop
5096
5097 -- Create extra formal for supporting the attribute 'Constrained.
5098 -- The case of a private type view without discriminants also
5099 -- requires the extra formal if the underlying type has defaulted
5100 -- discriminants.
5101
5102 if Ekind (Formal) /= E_In_Parameter then
5103 if Present (P_Formal) then
5104 Formal_Type := Etype (P_Formal);
5105 else
5106 Formal_Type := Etype (Formal);
5107 end if;
5108
5109 -- Do not produce extra formals for Unchecked_Union parameters.
5110 -- Jump directly to the end of the loop.
5111
5112 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
5113 goto Skip_Extra_Formal_Generation;
5114 end if;
5115
5116 if not Has_Discriminants (Formal_Type)
5117 and then Ekind (Formal_Type) in Private_Kind
5118 and then Present (Underlying_Type (Formal_Type))
5119 then
5120 Formal_Type := Underlying_Type (Formal_Type);
5121 end if;
5122
5123 if Has_Discriminants (Formal_Type)
5124 and then not Is_Constrained (Formal_Type)
5125 and then not Is_Indefinite_Subtype (Formal_Type)
5126 then
5127 Set_Extra_Constrained
5128 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "F"));
5129 end if;
5130 end if;
5131
5132 -- Create extra formal for supporting accessibility checking. This
5133 -- is done for both anonymous access formals and formals of named
5134 -- access types that are marked as controlling formals. The latter
5135 -- case can occur when Expand_Dispatching_Call creates a subprogram
5136 -- type and substitutes the types of access-to-class-wide actuals
5137 -- for the anonymous access-to-specific-type of controlling formals.
5138 -- Base_Type is applied because in cases where there is a null
5139 -- exclusion the formal may have an access subtype.
5140
5141 -- This is suppressed if we specifically suppress accessibility
5142 -- checks at the package level for either the subprogram, or the
5143 -- package in which it resides. However, we do not suppress it
5144 -- simply if the scope has accessibility checks suppressed, since
5145 -- this could cause trouble when clients are compiled with a
5146 -- different suppression setting. The explicit checks at the
5147 -- package level are safe from this point of view.
5148
5149 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
5150 or else (Is_Controlling_Formal (Formal)
5151 and then Is_Access_Type (Base_Type (Etype (Formal)))))
5152 and then not
5153 (Explicit_Suppress (E, Accessibility_Check)
5154 or else
5155 Explicit_Suppress (Scope (E), Accessibility_Check))
5156 and then
5157 (No (P_Formal)
5158 or else Present (Extra_Accessibility (P_Formal)))
5159 then
5160 -- Temporary kludge: for now we avoid creating the extra formal
5161 -- for access parameters of protected operations because of
5162 -- problem with the case of internal protected calls. ???
5163
5164 if Nkind (Parent (Parent (Parent (E)))) /= N_Protected_Definition
5165 and then Nkind (Parent (Parent (Parent (E)))) /= N_Protected_Body
5166 then
5167 Set_Extra_Accessibility
5168 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "F"));
5169 end if;
5170 end if;
5171
5172 -- This label is required when skipping extra formal generation for
5173 -- Unchecked_Union parameters.
5174
5175 <<Skip_Extra_Formal_Generation>>
5176
5177 if Present (P_Formal) then
5178 Next_Formal (P_Formal);
5179 end if;
5180
5181 Next_Formal (Formal);
5182 end loop;
5183
5184 <<Test_For_BIP_Extras>>
5185
5186 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
5187 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
5188
5189 if Ada_Version >= Ada_05 and then Is_Build_In_Place_Function (E) then
5190 declare
5191 Result_Subt : constant Entity_Id := Etype (E);
5192
5193 Discard : Entity_Id;
5194 pragma Warnings (Off, Discard);
5195
5196 begin
5197 -- In the case of functions with unconstrained result subtypes,
5198 -- add a 3-state formal indicating whether the return object is
5199 -- allocated by the caller (0), or should be allocated by the
5200 -- callee on the secondary stack (1) or in the global heap (2).
5201 -- For the moment we just use Natural for the type of this formal.
5202 -- Note that this formal isn't usually needed in the case where
5203 -- the result subtype is constrained, but it is needed when the
5204 -- function has a tagged result, because generally such functions
5205 -- can be called in a dispatching context and such calls must be
5206 -- handled like calls to a class-wide function.
5207
5208 if not Is_Constrained (Underlying_Type (Result_Subt))
5209 or else Is_Tagged_Type (Underlying_Type (Result_Subt))
5210 then
5211 Discard :=
5212 Add_Extra_Formal
5213 (E, Standard_Natural,
5214 E, BIP_Formal_Suffix (BIP_Alloc_Form));
5215 end if;
5216
5217 -- In the case of functions whose result type has controlled
5218 -- parts, we have an extra formal of type
5219 -- System.Finalization_Implementation.Finalizable_Ptr_Ptr. That
5220 -- is, we are passing a pointer to a finalization list (which is
5221 -- itself a pointer). This extra formal is then passed along to
5222 -- Move_Final_List in case of successful completion of a return
5223 -- statement. We cannot pass an 'in out' parameter, because we
5224 -- need to update the finalization list during an abort-deferred
5225 -- region, rather than using copy-back after the function
5226 -- returns. This is true even if we are able to get away with
5227 -- having 'in out' parameters, which are normally illegal for
5228 -- functions. This formal is also needed when the function has
5229 -- a tagged result, because generally such functions can be called
5230 -- in a dispatching context and such calls must be handled like
5231 -- calls to class-wide functions.
5232
5233 if Controlled_Type (Result_Subt)
5234 or else Is_Tagged_Type (Underlying_Type (Result_Subt))
5235 then
5236 Discard :=
5237 Add_Extra_Formal
5238 (E, RTE (RE_Finalizable_Ptr_Ptr),
5239 E, BIP_Formal_Suffix (BIP_Final_List));
5240 end if;
5241
5242 -- If the result type contains tasks, we have two extra formals:
5243 -- the master of the tasks to be created, and the caller's
5244 -- activation chain.
5245
5246 if Has_Task (Result_Subt) then
5247 Discard :=
5248 Add_Extra_Formal
5249 (E, RTE (RE_Master_Id),
5250 E, BIP_Formal_Suffix (BIP_Master));
5251 Discard :=
5252 Add_Extra_Formal
5253 (E, RTE (RE_Activation_Chain_Access),
5254 E, BIP_Formal_Suffix (BIP_Activation_Chain));
5255 end if;
5256
5257 -- All build-in-place functions get an extra formal that will be
5258 -- passed the address of the return object within the caller.
5259
5260 declare
5261 Formal_Type : constant Entity_Id :=
5262 Create_Itype
5263 (E_Anonymous_Access_Type, E,
5264 Scope_Id => Scope (E));
5265 begin
5266 Set_Directly_Designated_Type (Formal_Type, Result_Subt);
5267 Set_Etype (Formal_Type, Formal_Type);
5268 Set_Depends_On_Private
5269 (Formal_Type, Has_Private_Component (Formal_Type));
5270 Set_Is_Public (Formal_Type, Is_Public (Scope (Formal_Type)));
5271 Set_Is_Access_Constant (Formal_Type, False);
5272
5273 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
5274 -- the designated type comes from the limited view (for
5275 -- back-end purposes).
5276
5277 Set_From_With_Type (Formal_Type, From_With_Type (Result_Subt));
5278
5279 Layout_Type (Formal_Type);
5280
5281 Discard :=
5282 Add_Extra_Formal
5283 (E, Formal_Type, E, BIP_Formal_Suffix (BIP_Object_Access));
5284 end;
5285 end;
5286 end if;
5287 end Create_Extra_Formals;
5288
5289 -----------------------------
5290 -- Enter_Overloaded_Entity --
5291 -----------------------------
5292
5293 procedure Enter_Overloaded_Entity (S : Entity_Id) is
5294 E : Entity_Id := Current_Entity_In_Scope (S);
5295 C_E : Entity_Id := Current_Entity (S);
5296
5297 begin
5298 if Present (E) then
5299 Set_Has_Homonym (E);
5300 Set_Has_Homonym (S);
5301 end if;
5302
5303 Set_Is_Immediately_Visible (S);
5304 Set_Scope (S, Current_Scope);
5305
5306 -- Chain new entity if front of homonym in current scope, so that
5307 -- homonyms are contiguous.
5308
5309 if Present (E)
5310 and then E /= C_E
5311 then
5312 while Homonym (C_E) /= E loop
5313 C_E := Homonym (C_E);
5314 end loop;
5315
5316 Set_Homonym (C_E, S);
5317
5318 else
5319 E := C_E;
5320 Set_Current_Entity (S);
5321 end if;
5322
5323 Set_Homonym (S, E);
5324
5325 Append_Entity (S, Current_Scope);
5326 Set_Public_Status (S);
5327
5328 if Debug_Flag_E then
5329 Write_Str ("New overloaded entity chain: ");
5330 Write_Name (Chars (S));
5331
5332 E := S;
5333 while Present (E) loop
5334 Write_Str (" "); Write_Int (Int (E));
5335 E := Homonym (E);
5336 end loop;
5337
5338 Write_Eol;
5339 end if;
5340
5341 -- Generate warning for hiding
5342
5343 if Warn_On_Hiding
5344 and then Comes_From_Source (S)
5345 and then In_Extended_Main_Source_Unit (S)
5346 then
5347 E := S;
5348 loop
5349 E := Homonym (E);
5350 exit when No (E);
5351
5352 -- Warn unless genuine overloading
5353
5354 if (not Is_Overloadable (E) or else Subtype_Conformant (E, S))
5355 and then (Is_Immediately_Visible (E)
5356 or else
5357 Is_Potentially_Use_Visible (S))
5358 then
5359 Error_Msg_Sloc := Sloc (E);
5360 Error_Msg_N ("declaration of & hides one#?", S);
5361 end if;
5362 end loop;
5363 end if;
5364 end Enter_Overloaded_Entity;
5365
5366 -----------------------------
5367 -- Find_Corresponding_Spec --
5368 -----------------------------
5369
5370 function Find_Corresponding_Spec
5371 (N : Node_Id;
5372 Post_Error : Boolean := True) return Entity_Id
5373 is
5374 Spec : constant Node_Id := Specification (N);
5375 Designator : constant Entity_Id := Defining_Entity (Spec);
5376
5377 E : Entity_Id;
5378
5379 begin
5380 E := Current_Entity (Designator);
5381 while Present (E) loop
5382
5383 -- We are looking for a matching spec. It must have the same scope,
5384 -- and the same name, and either be type conformant, or be the case
5385 -- of a library procedure spec and its body (which belong to one
5386 -- another regardless of whether they are type conformant or not).
5387
5388 if Scope (E) = Current_Scope then
5389 if Current_Scope = Standard_Standard
5390 or else (Ekind (E) = Ekind (Designator)
5391 and then Type_Conformant (E, Designator))
5392 then
5393 -- Within an instantiation, we know that spec and body are
5394 -- subtype conformant, because they were subtype conformant
5395 -- in the generic. We choose the subtype-conformant entity
5396 -- here as well, to resolve spurious ambiguities in the
5397 -- instance that were not present in the generic (i.e. when
5398 -- two different types are given the same actual). If we are
5399 -- looking for a spec to match a body, full conformance is
5400 -- expected.
5401
5402 if In_Instance then
5403 Set_Convention (Designator, Convention (E));
5404
5405 if Nkind (N) = N_Subprogram_Body
5406 and then Present (Homonym (E))
5407 and then not Fully_Conformant (E, Designator)
5408 then
5409 goto Next_Entity;
5410
5411 elsif not Subtype_Conformant (E, Designator) then
5412 goto Next_Entity;
5413 end if;
5414 end if;
5415
5416 if not Has_Completion (E) then
5417 if Nkind (N) /= N_Subprogram_Body_Stub then
5418 Set_Corresponding_Spec (N, E);
5419 end if;
5420
5421 Set_Has_Completion (E);
5422 return E;
5423
5424 elsif Nkind (Parent (N)) = N_Subunit then
5425
5426 -- If this is the proper body of a subunit, the completion
5427 -- flag is set when analyzing the stub.
5428
5429 return E;
5430
5431 -- If E is an internal function with a controlling result
5432 -- that was created for an operation inherited by a null
5433 -- extension, it may be overridden by a body without a previous
5434 -- spec (one more reason why these should be shunned). In that
5435 -- case remove the generated body, because the current one is
5436 -- the explicit overriding.
5437
5438 elsif Ekind (E) = E_Function
5439 and then Ada_Version >= Ada_05
5440 and then not Comes_From_Source (E)
5441 and then Has_Controlling_Result (E)
5442 and then Is_Null_Extension (Etype (E))
5443 and then Comes_From_Source (Spec)
5444 then
5445 Set_Has_Completion (E, False);
5446
5447 if Expander_Active then
5448 Remove
5449 (Unit_Declaration_Node
5450 (Corresponding_Body (Unit_Declaration_Node (E))));
5451 return E;
5452
5453 -- If expansion is disabled, the wrapper function has not
5454 -- been generated, and this is the standard case of a late
5455 -- body overriding an inherited operation.
5456
5457 else
5458 return Empty;
5459 end if;
5460
5461 -- If the body already exists, then this is an error unless
5462 -- the previous declaration is the implicit declaration of a
5463 -- derived subprogram, or this is a spurious overloading in an
5464 -- instance.
5465
5466 elsif No (Alias (E))
5467 and then not Is_Intrinsic_Subprogram (E)
5468 and then not In_Instance
5469 and then Post_Error
5470 then
5471 Error_Msg_Sloc := Sloc (E);
5472 if Is_Imported (E) then
5473 Error_Msg_NE
5474 ("body not allowed for imported subprogram & declared#",
5475 N, E);
5476 else
5477 Error_Msg_NE ("duplicate body for & declared#", N, E);
5478 end if;
5479 end if;
5480
5481 -- Child units cannot be overloaded, so a conformance mismatch
5482 -- between body and a previous spec is an error.
5483
5484 elsif Is_Child_Unit (E)
5485 and then
5486 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
5487 and then
5488 Nkind (Parent (Unit_Declaration_Node (Designator))) =
5489 N_Compilation_Unit
5490 and then Post_Error
5491 then
5492 Error_Msg_N
5493 ("body of child unit does not match previous declaration", N);
5494 end if;
5495 end if;
5496
5497 <<Next_Entity>>
5498 E := Homonym (E);
5499 end loop;
5500
5501 -- On exit, we know that no previous declaration of subprogram exists
5502
5503 return Empty;
5504 end Find_Corresponding_Spec;
5505
5506 ----------------------
5507 -- Fully_Conformant --
5508 ----------------------
5509
5510 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
5511 Result : Boolean;
5512 begin
5513 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
5514 return Result;
5515 end Fully_Conformant;
5516
5517 ----------------------------------
5518 -- Fully_Conformant_Expressions --
5519 ----------------------------------
5520
5521 function Fully_Conformant_Expressions
5522 (Given_E1 : Node_Id;
5523 Given_E2 : Node_Id) return Boolean
5524 is
5525 E1 : constant Node_Id := Original_Node (Given_E1);
5526 E2 : constant Node_Id := Original_Node (Given_E2);
5527 -- We always test conformance on original nodes, since it is possible
5528 -- for analysis and/or expansion to make things look as though they
5529 -- conform when they do not, e.g. by converting 1+2 into 3.
5530
5531 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
5532 renames Fully_Conformant_Expressions;
5533
5534 function FCL (L1, L2 : List_Id) return Boolean;
5535 -- Compare elements of two lists for conformance. Elements have to
5536 -- be conformant, and actuals inserted as default parameters do not
5537 -- match explicit actuals with the same value.
5538
5539 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
5540 -- Compare an operator node with a function call
5541
5542 ---------
5543 -- FCL --
5544 ---------
5545
5546 function FCL (L1, L2 : List_Id) return Boolean is
5547 N1, N2 : Node_Id;
5548
5549 begin
5550 if L1 = No_List then
5551 N1 := Empty;
5552 else
5553 N1 := First (L1);
5554 end if;
5555
5556 if L2 = No_List then
5557 N2 := Empty;
5558 else
5559 N2 := First (L2);
5560 end if;
5561
5562 -- Compare two lists, skipping rewrite insertions (we want to
5563 -- compare the original trees, not the expanded versions!)
5564
5565 loop
5566 if Is_Rewrite_Insertion (N1) then
5567 Next (N1);
5568 elsif Is_Rewrite_Insertion (N2) then
5569 Next (N2);
5570 elsif No (N1) then
5571 return No (N2);
5572 elsif No (N2) then
5573 return False;
5574 elsif not FCE (N1, N2) then
5575 return False;
5576 else
5577 Next (N1);
5578 Next (N2);
5579 end if;
5580 end loop;
5581 end FCL;
5582
5583 ---------
5584 -- FCO --
5585 ---------
5586
5587 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
5588 Actuals : constant List_Id := Parameter_Associations (Call_Node);
5589 Act : Node_Id;
5590
5591 begin
5592 if No (Actuals)
5593 or else Entity (Op_Node) /= Entity (Name (Call_Node))
5594 then
5595 return False;
5596
5597 else
5598 Act := First (Actuals);
5599
5600 if Nkind (Op_Node) in N_Binary_Op then
5601
5602 if not FCE (Left_Opnd (Op_Node), Act) then
5603 return False;
5604 end if;
5605
5606 Next (Act);
5607 end if;
5608
5609 return Present (Act)
5610 and then FCE (Right_Opnd (Op_Node), Act)
5611 and then No (Next (Act));
5612 end if;
5613 end FCO;
5614
5615 -- Start of processing for Fully_Conformant_Expressions
5616
5617 begin
5618 -- Non-conformant if paren count does not match. Note: if some idiot
5619 -- complains that we don't do this right for more than 3 levels of
5620 -- parentheses, they will be treated with the respect they deserve!
5621
5622 if Paren_Count (E1) /= Paren_Count (E2) then
5623 return False;
5624
5625 -- If same entities are referenced, then they are conformant even if
5626 -- they have different forms (RM 8.3.1(19-20)).
5627
5628 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
5629 if Present (Entity (E1)) then
5630 return Entity (E1) = Entity (E2)
5631 or else (Chars (Entity (E1)) = Chars (Entity (E2))
5632 and then Ekind (Entity (E1)) = E_Discriminant
5633 and then Ekind (Entity (E2)) = E_In_Parameter);
5634
5635 elsif Nkind (E1) = N_Expanded_Name
5636 and then Nkind (E2) = N_Expanded_Name
5637 and then Nkind (Selector_Name (E1)) = N_Character_Literal
5638 and then Nkind (Selector_Name (E2)) = N_Character_Literal
5639 then
5640 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
5641
5642 else
5643 -- Identifiers in component associations don't always have
5644 -- entities, but their names must conform.
5645
5646 return Nkind (E1) = N_Identifier
5647 and then Nkind (E2) = N_Identifier
5648 and then Chars (E1) = Chars (E2);
5649 end if;
5650
5651 elsif Nkind (E1) = N_Character_Literal
5652 and then Nkind (E2) = N_Expanded_Name
5653 then
5654 return Nkind (Selector_Name (E2)) = N_Character_Literal
5655 and then Chars (E1) = Chars (Selector_Name (E2));
5656
5657 elsif Nkind (E2) = N_Character_Literal
5658 and then Nkind (E1) = N_Expanded_Name
5659 then
5660 return Nkind (Selector_Name (E1)) = N_Character_Literal
5661 and then Chars (E2) = Chars (Selector_Name (E1));
5662
5663 elsif Nkind (E1) in N_Op
5664 and then Nkind (E2) = N_Function_Call
5665 then
5666 return FCO (E1, E2);
5667
5668 elsif Nkind (E2) in N_Op
5669 and then Nkind (E1) = N_Function_Call
5670 then
5671 return FCO (E2, E1);
5672
5673 -- Otherwise we must have the same syntactic entity
5674
5675 elsif Nkind (E1) /= Nkind (E2) then
5676 return False;
5677
5678 -- At this point, we specialize by node type
5679
5680 else
5681 case Nkind (E1) is
5682
5683 when N_Aggregate =>
5684 return
5685 FCL (Expressions (E1), Expressions (E2))
5686 and then FCL (Component_Associations (E1),
5687 Component_Associations (E2));
5688
5689 when N_Allocator =>
5690 if Nkind (Expression (E1)) = N_Qualified_Expression
5691 or else
5692 Nkind (Expression (E2)) = N_Qualified_Expression
5693 then
5694 return FCE (Expression (E1), Expression (E2));
5695
5696 -- Check that the subtype marks and any constraints
5697 -- are conformant
5698
5699 else
5700 declare
5701 Indic1 : constant Node_Id := Expression (E1);
5702 Indic2 : constant Node_Id := Expression (E2);
5703 Elt1 : Node_Id;
5704 Elt2 : Node_Id;
5705
5706 begin
5707 if Nkind (Indic1) /= N_Subtype_Indication then
5708 return
5709 Nkind (Indic2) /= N_Subtype_Indication
5710 and then Entity (Indic1) = Entity (Indic2);
5711
5712 elsif Nkind (Indic2) /= N_Subtype_Indication then
5713 return
5714 Nkind (Indic1) /= N_Subtype_Indication
5715 and then Entity (Indic1) = Entity (Indic2);
5716
5717 else
5718 if Entity (Subtype_Mark (Indic1)) /=
5719 Entity (Subtype_Mark (Indic2))
5720 then
5721 return False;
5722 end if;
5723
5724 Elt1 := First (Constraints (Constraint (Indic1)));
5725 Elt2 := First (Constraints (Constraint (Indic2)));
5726
5727 while Present (Elt1) and then Present (Elt2) loop
5728 if not FCE (Elt1, Elt2) then
5729 return False;
5730 end if;
5731
5732 Next (Elt1);
5733 Next (Elt2);
5734 end loop;
5735
5736 return True;
5737 end if;
5738 end;
5739 end if;
5740
5741 when N_Attribute_Reference =>
5742 return
5743 Attribute_Name (E1) = Attribute_Name (E2)
5744 and then FCL (Expressions (E1), Expressions (E2));
5745
5746 when N_Binary_Op =>
5747 return
5748 Entity (E1) = Entity (E2)
5749 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
5750 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
5751
5752 when N_And_Then | N_Or_Else | N_Membership_Test =>
5753 return
5754 FCE (Left_Opnd (E1), Left_Opnd (E2))
5755 and then
5756 FCE (Right_Opnd (E1), Right_Opnd (E2));
5757
5758 when N_Character_Literal =>
5759 return
5760 Char_Literal_Value (E1) = Char_Literal_Value (E2);
5761
5762 when N_Component_Association =>
5763 return
5764 FCL (Choices (E1), Choices (E2))
5765 and then FCE (Expression (E1), Expression (E2));
5766
5767 when N_Conditional_Expression =>
5768 return
5769 FCL (Expressions (E1), Expressions (E2));
5770
5771 when N_Explicit_Dereference =>
5772 return
5773 FCE (Prefix (E1), Prefix (E2));
5774
5775 when N_Extension_Aggregate =>
5776 return
5777 FCL (Expressions (E1), Expressions (E2))
5778 and then Null_Record_Present (E1) =
5779 Null_Record_Present (E2)
5780 and then FCL (Component_Associations (E1),
5781 Component_Associations (E2));
5782
5783 when N_Function_Call =>
5784 return
5785 FCE (Name (E1), Name (E2))
5786 and then FCL (Parameter_Associations (E1),
5787 Parameter_Associations (E2));
5788
5789 when N_Indexed_Component =>
5790 return
5791 FCE (Prefix (E1), Prefix (E2))
5792 and then FCL (Expressions (E1), Expressions (E2));
5793
5794 when N_Integer_Literal =>
5795 return (Intval (E1) = Intval (E2));
5796
5797 when N_Null =>
5798 return True;
5799
5800 when N_Operator_Symbol =>
5801 return
5802 Chars (E1) = Chars (E2);
5803
5804 when N_Others_Choice =>
5805 return True;
5806
5807 when N_Parameter_Association =>
5808 return
5809 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
5810 and then FCE (Explicit_Actual_Parameter (E1),
5811 Explicit_Actual_Parameter (E2));
5812
5813 when N_Qualified_Expression =>
5814 return
5815 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
5816 and then FCE (Expression (E1), Expression (E2));
5817
5818 when N_Range =>
5819 return
5820 FCE (Low_Bound (E1), Low_Bound (E2))
5821 and then FCE (High_Bound (E1), High_Bound (E2));
5822
5823 when N_Real_Literal =>
5824 return (Realval (E1) = Realval (E2));
5825
5826 when N_Selected_Component =>
5827 return
5828 FCE (Prefix (E1), Prefix (E2))
5829 and then FCE (Selector_Name (E1), Selector_Name (E2));
5830
5831 when N_Slice =>
5832 return
5833 FCE (Prefix (E1), Prefix (E2))
5834 and then FCE (Discrete_Range (E1), Discrete_Range (E2));
5835
5836 when N_String_Literal =>
5837 declare
5838 S1 : constant String_Id := Strval (E1);
5839 S2 : constant String_Id := Strval (E2);
5840 L1 : constant Nat := String_Length (S1);
5841 L2 : constant Nat := String_Length (S2);
5842
5843 begin
5844 if L1 /= L2 then
5845 return False;
5846
5847 else
5848 for J in 1 .. L1 loop
5849 if Get_String_Char (S1, J) /=
5850 Get_String_Char (S2, J)
5851 then
5852 return False;
5853 end if;
5854 end loop;
5855
5856 return True;
5857 end if;
5858 end;
5859
5860 when N_Type_Conversion =>
5861 return
5862 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
5863 and then FCE (Expression (E1), Expression (E2));
5864
5865 when N_Unary_Op =>
5866 return
5867 Entity (E1) = Entity (E2)
5868 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
5869
5870 when N_Unchecked_Type_Conversion =>
5871 return
5872 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
5873 and then FCE (Expression (E1), Expression (E2));
5874
5875 -- All other node types cannot appear in this context. Strictly
5876 -- we should raise a fatal internal error. Instead we just ignore
5877 -- the nodes. This means that if anyone makes a mistake in the
5878 -- expander and mucks an expression tree irretrievably, the
5879 -- result will be a failure to detect a (probably very obscure)
5880 -- case of non-conformance, which is better than bombing on some
5881 -- case where two expressions do in fact conform.
5882
5883 when others =>
5884 return True;
5885
5886 end case;
5887 end if;
5888 end Fully_Conformant_Expressions;
5889
5890 ----------------------------------------
5891 -- Fully_Conformant_Discrete_Subtypes --
5892 ----------------------------------------
5893
5894 function Fully_Conformant_Discrete_Subtypes
5895 (Given_S1 : Node_Id;
5896 Given_S2 : Node_Id) return Boolean
5897 is
5898 S1 : constant Node_Id := Original_Node (Given_S1);
5899 S2 : constant Node_Id := Original_Node (Given_S2);
5900
5901 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
5902 -- Special-case for a bound given by a discriminant, which in the body
5903 -- is replaced with the discriminal of the enclosing type.
5904
5905 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
5906 -- Check both bounds
5907
5908 -----------------------
5909 -- Conforming_Bounds --
5910 -----------------------
5911
5912 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
5913 begin
5914 if Is_Entity_Name (B1)
5915 and then Is_Entity_Name (B2)
5916 and then Ekind (Entity (B1)) = E_Discriminant
5917 then
5918 return Chars (B1) = Chars (B2);
5919
5920 else
5921 return Fully_Conformant_Expressions (B1, B2);
5922 end if;
5923 end Conforming_Bounds;
5924
5925 -----------------------
5926 -- Conforming_Ranges --
5927 -----------------------
5928
5929 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
5930 begin
5931 return
5932 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
5933 and then
5934 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
5935 end Conforming_Ranges;
5936
5937 -- Start of processing for Fully_Conformant_Discrete_Subtypes
5938
5939 begin
5940 if Nkind (S1) /= Nkind (S2) then
5941 return False;
5942
5943 elsif Is_Entity_Name (S1) then
5944 return Entity (S1) = Entity (S2);
5945
5946 elsif Nkind (S1) = N_Range then
5947 return Conforming_Ranges (S1, S2);
5948
5949 elsif Nkind (S1) = N_Subtype_Indication then
5950 return
5951 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
5952 and then
5953 Conforming_Ranges
5954 (Range_Expression (Constraint (S1)),
5955 Range_Expression (Constraint (S2)));
5956 else
5957 return True;
5958 end if;
5959 end Fully_Conformant_Discrete_Subtypes;
5960
5961 --------------------
5962 -- Install_Entity --
5963 --------------------
5964
5965 procedure Install_Entity (E : Entity_Id) is
5966 Prev : constant Entity_Id := Current_Entity (E);
5967 begin
5968 Set_Is_Immediately_Visible (E);
5969 Set_Current_Entity (E);
5970 Set_Homonym (E, Prev);
5971 end Install_Entity;
5972
5973 ---------------------
5974 -- Install_Formals --
5975 ---------------------
5976
5977 procedure Install_Formals (Id : Entity_Id) is
5978 F : Entity_Id;
5979 begin
5980 F := First_Formal (Id);
5981 while Present (F) loop
5982 Install_Entity (F);
5983 Next_Formal (F);
5984 end loop;
5985 end Install_Formals;
5986
5987 -----------------------------
5988 -- Is_Interface_Conformant --
5989 -----------------------------
5990
5991 function Is_Interface_Conformant
5992 (Tagged_Type : Entity_Id;
5993 Iface_Prim : Entity_Id;
5994 Prim : Entity_Id) return Boolean
5995 is
5996 Iface : constant Entity_Id := Find_Dispatching_Type (Iface_Prim);
5997 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
5998
5999 begin
6000 pragma Assert (Is_Subprogram (Iface_Prim)
6001 and then Is_Subprogram (Prim)
6002 and then Is_Dispatching_Operation (Iface_Prim)
6003 and then Is_Dispatching_Operation (Prim));
6004
6005 pragma Assert (Is_Interface (Iface)
6006 or else (Present (Alias (Iface_Prim))
6007 and then
6008 Is_Interface
6009 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
6010
6011 if Prim = Iface_Prim
6012 or else not Is_Subprogram (Prim)
6013 or else Ekind (Prim) /= Ekind (Iface_Prim)
6014 or else not Is_Dispatching_Operation (Prim)
6015 or else Scope (Prim) /= Scope (Tagged_Type)
6016 or else No (Typ)
6017 or else Base_Type (Typ) /= Tagged_Type
6018 or else not Primitive_Names_Match (Iface_Prim, Prim)
6019 then
6020 return False;
6021
6022 -- Case of a procedure, or a function that does not have a controlling
6023 -- result (I or access I).
6024
6025 elsif Ekind (Iface_Prim) = E_Procedure
6026 or else Etype (Prim) = Etype (Iface_Prim)
6027 or else not Has_Controlling_Result (Prim)
6028 then
6029 return Type_Conformant (Prim, Iface_Prim,
6030 Skip_Controlling_Formals => True);
6031
6032 -- Case of a function returning an interface, or an access to one.
6033 -- Check that the return types correspond.
6034
6035 elsif Implements_Interface (Typ, Iface) then
6036 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
6037 /=
6038 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
6039 then
6040 return False;
6041 else
6042 return
6043 Type_Conformant (Prim, Iface_Prim,
6044 Skip_Controlling_Formals => True);
6045 end if;
6046
6047 else
6048 return False;
6049 end if;
6050 end Is_Interface_Conformant;
6051
6052 ---------------------------------
6053 -- Is_Non_Overriding_Operation --
6054 ---------------------------------
6055
6056 function Is_Non_Overriding_Operation
6057 (Prev_E : Entity_Id;
6058 New_E : Entity_Id) return Boolean
6059 is
6060 Formal : Entity_Id;
6061 F_Typ : Entity_Id;
6062 G_Typ : Entity_Id := Empty;
6063
6064 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
6065 -- If F_Type is a derived type associated with a generic actual subtype,
6066 -- then return its Generic_Parent_Type attribute, else return Empty.
6067
6068 function Types_Correspond
6069 (P_Type : Entity_Id;
6070 N_Type : Entity_Id) return Boolean;
6071 -- Returns true if and only if the types (or designated types in the
6072 -- case of anonymous access types) are the same or N_Type is derived
6073 -- directly or indirectly from P_Type.
6074
6075 -----------------------------
6076 -- Get_Generic_Parent_Type --
6077 -----------------------------
6078
6079 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
6080 G_Typ : Entity_Id;
6081 Indic : Node_Id;
6082
6083 begin
6084 if Is_Derived_Type (F_Typ)
6085 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
6086 then
6087 -- The tree must be traversed to determine the parent subtype in
6088 -- the generic unit, which unfortunately isn't always available
6089 -- via semantic attributes. ??? (Note: The use of Original_Node
6090 -- is needed for cases where a full derived type has been
6091 -- rewritten.)
6092
6093 Indic := Subtype_Indication
6094 (Type_Definition (Original_Node (Parent (F_Typ))));
6095
6096 if Nkind (Indic) = N_Subtype_Indication then
6097 G_Typ := Entity (Subtype_Mark (Indic));
6098 else
6099 G_Typ := Entity (Indic);
6100 end if;
6101
6102 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
6103 and then Present (Generic_Parent_Type (Parent (G_Typ)))
6104 then
6105 return Generic_Parent_Type (Parent (G_Typ));
6106 end if;
6107 end if;
6108
6109 return Empty;
6110 end Get_Generic_Parent_Type;
6111
6112 ----------------------
6113 -- Types_Correspond --
6114 ----------------------
6115
6116 function Types_Correspond
6117 (P_Type : Entity_Id;
6118 N_Type : Entity_Id) return Boolean
6119 is
6120 Prev_Type : Entity_Id := Base_Type (P_Type);
6121 New_Type : Entity_Id := Base_Type (N_Type);
6122
6123 begin
6124 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
6125 Prev_Type := Designated_Type (Prev_Type);
6126 end if;
6127
6128 if Ekind (New_Type) = E_Anonymous_Access_Type then
6129 New_Type := Designated_Type (New_Type);
6130 end if;
6131
6132 if Prev_Type = New_Type then
6133 return True;
6134
6135 elsif not Is_Class_Wide_Type (New_Type) then
6136 while Etype (New_Type) /= New_Type loop
6137 New_Type := Etype (New_Type);
6138 if New_Type = Prev_Type then
6139 return True;
6140 end if;
6141 end loop;
6142 end if;
6143 return False;
6144 end Types_Correspond;
6145
6146 -- Start of processing for Is_Non_Overriding_Operation
6147
6148 begin
6149 -- In the case where both operations are implicit derived subprograms
6150 -- then neither overrides the other. This can only occur in certain
6151 -- obscure cases (e.g., derivation from homographs created in a generic
6152 -- instantiation).
6153
6154 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
6155 return True;
6156
6157 elsif Ekind (Current_Scope) = E_Package
6158 and then Is_Generic_Instance (Current_Scope)
6159 and then In_Private_Part (Current_Scope)
6160 and then Comes_From_Source (New_E)
6161 then
6162 -- We examine the formals and result subtype of the inherited
6163 -- operation, to determine whether their type is derived from (the
6164 -- instance of) a generic type.
6165
6166 Formal := First_Formal (Prev_E);
6167
6168 while Present (Formal) loop
6169 F_Typ := Base_Type (Etype (Formal));
6170
6171 if Ekind (F_Typ) = E_Anonymous_Access_Type then
6172 F_Typ := Designated_Type (F_Typ);
6173 end if;
6174
6175 G_Typ := Get_Generic_Parent_Type (F_Typ);
6176
6177 Next_Formal (Formal);
6178 end loop;
6179
6180 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
6181 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
6182 end if;
6183
6184 if No (G_Typ) then
6185 return False;
6186 end if;
6187
6188 -- If the generic type is a private type, then the original
6189 -- operation was not overriding in the generic, because there was
6190 -- no primitive operation to override.
6191
6192 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
6193 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
6194 N_Formal_Private_Type_Definition
6195 then
6196 return True;
6197
6198 -- The generic parent type is the ancestor of a formal derived
6199 -- type declaration. We need to check whether it has a primitive
6200 -- operation that should be overridden by New_E in the generic.
6201
6202 else
6203 declare
6204 P_Formal : Entity_Id;
6205 N_Formal : Entity_Id;
6206 P_Typ : Entity_Id;
6207 N_Typ : Entity_Id;
6208 P_Prim : Entity_Id;
6209 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
6210
6211 begin
6212 while Present (Prim_Elt) loop
6213 P_Prim := Node (Prim_Elt);
6214
6215 if Chars (P_Prim) = Chars (New_E)
6216 and then Ekind (P_Prim) = Ekind (New_E)
6217 then
6218 P_Formal := First_Formal (P_Prim);
6219 N_Formal := First_Formal (New_E);
6220 while Present (P_Formal) and then Present (N_Formal) loop
6221 P_Typ := Etype (P_Formal);
6222 N_Typ := Etype (N_Formal);
6223
6224 if not Types_Correspond (P_Typ, N_Typ) then
6225 exit;
6226 end if;
6227
6228 Next_Entity (P_Formal);
6229 Next_Entity (N_Formal);
6230 end loop;
6231
6232 -- Found a matching primitive operation belonging to the
6233 -- formal ancestor type, so the new subprogram is
6234 -- overriding.
6235
6236 if No (P_Formal)
6237 and then No (N_Formal)
6238 and then (Ekind (New_E) /= E_Function
6239 or else
6240 Types_Correspond
6241 (Etype (P_Prim), Etype (New_E)))
6242 then
6243 return False;
6244 end if;
6245 end if;
6246
6247 Next_Elmt (Prim_Elt);
6248 end loop;
6249
6250 -- If no match found, then the new subprogram does not
6251 -- override in the generic (nor in the instance).
6252
6253 return True;
6254 end;
6255 end if;
6256 else
6257 return False;
6258 end if;
6259 end Is_Non_Overriding_Operation;
6260
6261 ------------------------------
6262 -- Make_Inequality_Operator --
6263 ------------------------------
6264
6265 -- S is the defining identifier of an equality operator. We build a
6266 -- subprogram declaration with the right signature. This operation is
6267 -- intrinsic, because it is always expanded as the negation of the
6268 -- call to the equality function.
6269
6270 procedure Make_Inequality_Operator (S : Entity_Id) is
6271 Loc : constant Source_Ptr := Sloc (S);
6272 Decl : Node_Id;
6273 Formals : List_Id;
6274 Op_Name : Entity_Id;
6275
6276 FF : constant Entity_Id := First_Formal (S);
6277 NF : constant Entity_Id := Next_Formal (FF);
6278
6279 begin
6280 -- Check that equality was properly defined, ignore call if not
6281
6282 if No (NF) then
6283 return;
6284 end if;
6285
6286 declare
6287 A : constant Entity_Id :=
6288 Make_Defining_Identifier (Sloc (FF),
6289 Chars => Chars (FF));
6290
6291 B : constant Entity_Id :=
6292 Make_Defining_Identifier (Sloc (NF),
6293 Chars => Chars (NF));
6294
6295 begin
6296 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
6297
6298 Formals := New_List (
6299 Make_Parameter_Specification (Loc,
6300 Defining_Identifier => A,
6301 Parameter_Type =>
6302 New_Reference_To (Etype (First_Formal (S)),
6303 Sloc (Etype (First_Formal (S))))),
6304
6305 Make_Parameter_Specification (Loc,
6306 Defining_Identifier => B,
6307 Parameter_Type =>
6308 New_Reference_To (Etype (Next_Formal (First_Formal (S))),
6309 Sloc (Etype (Next_Formal (First_Formal (S)))))));
6310
6311 Decl :=
6312 Make_Subprogram_Declaration (Loc,
6313 Specification =>
6314 Make_Function_Specification (Loc,
6315 Defining_Unit_Name => Op_Name,
6316 Parameter_Specifications => Formals,
6317 Result_Definition =>
6318 New_Reference_To (Standard_Boolean, Loc)));
6319
6320 -- Insert inequality right after equality if it is explicit or after
6321 -- the derived type when implicit. These entities are created only
6322 -- for visibility purposes, and eventually replaced in the course of
6323 -- expansion, so they do not need to be attached to the tree and seen
6324 -- by the back-end. Keeping them internal also avoids spurious
6325 -- freezing problems. The declaration is inserted in the tree for
6326 -- analysis, and removed afterwards. If the equality operator comes
6327 -- from an explicit declaration, attach the inequality immediately
6328 -- after. Else the equality is inherited from a derived type
6329 -- declaration, so insert inequality after that declaration.
6330
6331 if No (Alias (S)) then
6332 Insert_After (Unit_Declaration_Node (S), Decl);
6333 elsif Is_List_Member (Parent (S)) then
6334 Insert_After (Parent (S), Decl);
6335 else
6336 Insert_After (Parent (Etype (First_Formal (S))), Decl);
6337 end if;
6338
6339 Mark_Rewrite_Insertion (Decl);
6340 Set_Is_Intrinsic_Subprogram (Op_Name);
6341 Analyze (Decl);
6342 Remove (Decl);
6343 Set_Has_Completion (Op_Name);
6344 Set_Corresponding_Equality (Op_Name, S);
6345 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
6346 end;
6347 end Make_Inequality_Operator;
6348
6349 ----------------------
6350 -- May_Need_Actuals --
6351 ----------------------
6352
6353 procedure May_Need_Actuals (Fun : Entity_Id) is
6354 F : Entity_Id;
6355 B : Boolean;
6356
6357 begin
6358 F := First_Formal (Fun);
6359 B := True;
6360 while Present (F) loop
6361 if No (Default_Value (F)) then
6362 B := False;
6363 exit;
6364 end if;
6365
6366 Next_Formal (F);
6367 end loop;
6368
6369 Set_Needs_No_Actuals (Fun, B);
6370 end May_Need_Actuals;
6371
6372 ---------------------
6373 -- Mode_Conformant --
6374 ---------------------
6375
6376 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
6377 Result : Boolean;
6378 begin
6379 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
6380 return Result;
6381 end Mode_Conformant;
6382
6383 ---------------------------
6384 -- New_Overloaded_Entity --
6385 ---------------------------
6386
6387 procedure New_Overloaded_Entity
6388 (S : Entity_Id;
6389 Derived_Type : Entity_Id := Empty)
6390 is
6391 Overridden_Subp : Entity_Id := Empty;
6392 -- Set if the current scope has an operation that is type-conformant
6393 -- with S, and becomes hidden by S.
6394
6395 Is_Primitive_Subp : Boolean;
6396 -- Set to True if the new subprogram is primitive
6397
6398 E : Entity_Id;
6399 -- Entity that S overrides
6400
6401 Prev_Vis : Entity_Id := Empty;
6402 -- Predecessor of E in Homonym chain
6403
6404 procedure Check_For_Primitive_Subprogram
6405 (Is_Primitive : out Boolean;
6406 Is_Overriding : Boolean := False);
6407 -- If the subprogram being analyzed is a primitive operation of the type
6408 -- of a formal or result, set the Has_Primitive_Operations flag on the
6409 -- type, and set Is_Primitive to True (otherwise set to False). Set the
6410 -- corresponding flag on the entity itself for later use.
6411
6412 procedure Check_Synchronized_Overriding
6413 (Def_Id : Entity_Id;
6414 Overridden_Subp : out Entity_Id);
6415 -- First determine if Def_Id is an entry or a subprogram either defined
6416 -- in the scope of a task or protected type, or is a primitive of such
6417 -- a type. Check whether Def_Id overrides a subprogram of an interface
6418 -- implemented by the synchronized type, return the overridden entity
6419 -- or Empty.
6420
6421 function Is_Private_Declaration (E : Entity_Id) return Boolean;
6422 -- Check that E is declared in the private part of the current package,
6423 -- or in the package body, where it may hide a previous declaration.
6424 -- We can't use In_Private_Part by itself because this flag is also
6425 -- set when freezing entities, so we must examine the place of the
6426 -- declaration in the tree, and recognize wrapper packages as well.
6427
6428 ------------------------------------
6429 -- Check_For_Primitive_Subprogram --
6430 ------------------------------------
6431
6432 procedure Check_For_Primitive_Subprogram
6433 (Is_Primitive : out Boolean;
6434 Is_Overriding : Boolean := False)
6435 is
6436 Formal : Entity_Id;
6437 F_Typ : Entity_Id;
6438 B_Typ : Entity_Id;
6439
6440 function Visible_Part_Type (T : Entity_Id) return Boolean;
6441 -- Returns true if T is declared in the visible part of
6442 -- the current package scope; otherwise returns false.
6443 -- Assumes that T is declared in a package.
6444
6445 procedure Check_Private_Overriding (T : Entity_Id);
6446 -- Checks that if a primitive abstract subprogram of a visible
6447 -- abstract type is declared in a private part, then it must
6448 -- override an abstract subprogram declared in the visible part.
6449 -- Also checks that if a primitive function with a controlling
6450 -- result is declared in a private part, then it must override
6451 -- a function declared in the visible part.
6452
6453 ------------------------------
6454 -- Check_Private_Overriding --
6455 ------------------------------
6456
6457 procedure Check_Private_Overriding (T : Entity_Id) is
6458 begin
6459 if Ekind (Current_Scope) = E_Package
6460 and then In_Private_Part (Current_Scope)
6461 and then Visible_Part_Type (T)
6462 and then not In_Instance
6463 then
6464 if Is_Abstract_Type (T)
6465 and then Is_Abstract_Subprogram (S)
6466 and then (not Is_Overriding
6467 or else not Is_Abstract_Subprogram (E))
6468 then
6469 Error_Msg_N ("abstract subprograms must be visible "
6470 & "(RM 3.9.3(10))!", S);
6471
6472 elsif Ekind (S) = E_Function
6473 and then Is_Tagged_Type (T)
6474 and then T = Base_Type (Etype (S))
6475 and then not Is_Overriding
6476 then
6477 Error_Msg_N
6478 ("private function with tagged result must"
6479 & " override visible-part function", S);
6480 Error_Msg_N
6481 ("\move subprogram to the visible part"
6482 & " (RM 3.9.3(10))", S);
6483 end if;
6484 end if;
6485 end Check_Private_Overriding;
6486
6487 -----------------------
6488 -- Visible_Part_Type --
6489 -----------------------
6490
6491 function Visible_Part_Type (T : Entity_Id) return Boolean is
6492 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
6493 N : Node_Id;
6494
6495 begin
6496 -- If the entity is a private type, then it must be
6497 -- declared in a visible part.
6498
6499 if Ekind (T) in Private_Kind then
6500 return True;
6501 end if;
6502
6503 -- Otherwise, we traverse the visible part looking for its
6504 -- corresponding declaration. We cannot use the declaration
6505 -- node directly because in the private part the entity of a
6506 -- private type is the one in the full view, which does not
6507 -- indicate that it is the completion of something visible.
6508
6509 N := First (Visible_Declarations (Specification (P)));
6510 while Present (N) loop
6511 if Nkind (N) = N_Full_Type_Declaration
6512 and then Present (Defining_Identifier (N))
6513 and then T = Defining_Identifier (N)
6514 then
6515 return True;
6516
6517 elsif Nkind_In (N, N_Private_Type_Declaration,
6518 N_Private_Extension_Declaration)
6519 and then Present (Defining_Identifier (N))
6520 and then T = Full_View (Defining_Identifier (N))
6521 then
6522 return True;
6523 end if;
6524
6525 Next (N);
6526 end loop;
6527
6528 return False;
6529 end Visible_Part_Type;
6530
6531 -- Start of processing for Check_For_Primitive_Subprogram
6532
6533 begin
6534 Is_Primitive := False;
6535
6536 if not Comes_From_Source (S) then
6537 null;
6538
6539 -- If subprogram is at library level, it is not primitive operation
6540
6541 elsif Current_Scope = Standard_Standard then
6542 null;
6543
6544 elsif ((Ekind (Current_Scope) = E_Package
6545 or else Ekind (Current_Scope) = E_Generic_Package)
6546 and then not In_Package_Body (Current_Scope))
6547 or else Is_Overriding
6548 then
6549 -- For function, check return type
6550
6551 if Ekind (S) = E_Function then
6552 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
6553 F_Typ := Designated_Type (Etype (S));
6554 else
6555 F_Typ := Etype (S);
6556 end if;
6557
6558 B_Typ := Base_Type (F_Typ);
6559
6560 if Scope (B_Typ) = Current_Scope
6561 and then not Is_Class_Wide_Type (B_Typ)
6562 and then not Is_Generic_Type (B_Typ)
6563 then
6564 Is_Primitive := True;
6565 Set_Has_Primitive_Operations (B_Typ);
6566 Set_Is_Primitive (S);
6567 Check_Private_Overriding (B_Typ);
6568 end if;
6569 end if;
6570
6571 -- For all subprograms, check formals
6572
6573 Formal := First_Formal (S);
6574 while Present (Formal) loop
6575 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
6576 F_Typ := Designated_Type (Etype (Formal));
6577 else
6578 F_Typ := Etype (Formal);
6579 end if;
6580
6581 B_Typ := Base_Type (F_Typ);
6582
6583 if Ekind (B_Typ) = E_Access_Subtype then
6584 B_Typ := Base_Type (B_Typ);
6585 end if;
6586
6587 if Scope (B_Typ) = Current_Scope
6588 and then not Is_Class_Wide_Type (B_Typ)
6589 and then not Is_Generic_Type (B_Typ)
6590 then
6591 Is_Primitive := True;
6592 Set_Is_Primitive (S);
6593 Set_Has_Primitive_Operations (B_Typ);
6594 Check_Private_Overriding (B_Typ);
6595 end if;
6596
6597 Next_Formal (Formal);
6598 end loop;
6599 end if;
6600 end Check_For_Primitive_Subprogram;
6601
6602 -----------------------------------
6603 -- Check_Synchronized_Overriding --
6604 -----------------------------------
6605
6606 procedure Check_Synchronized_Overriding
6607 (Def_Id : Entity_Id;
6608 Overridden_Subp : out Entity_Id)
6609 is
6610 Ifaces_List : Elist_Id;
6611 In_Scope : Boolean;
6612 Typ : Entity_Id;
6613
6614 function Matches_Prefixed_View_Profile
6615 (Prim_Params : List_Id;
6616 Iface_Params : List_Id) return Boolean;
6617 -- Determine whether a subprogram's parameter profile Prim_Params
6618 -- matches that of a potentially overridden interface subprogram
6619 -- Iface_Params. Also determine if the type of first parameter of
6620 -- Iface_Params is an implemented interface.
6621
6622 -----------------------------------
6623 -- Matches_Prefixed_View_Profile --
6624 -----------------------------------
6625
6626 function Matches_Prefixed_View_Profile
6627 (Prim_Params : List_Id;
6628 Iface_Params : List_Id) return Boolean
6629 is
6630 Iface_Id : Entity_Id;
6631 Iface_Param : Node_Id;
6632 Iface_Typ : Entity_Id;
6633 Prim_Id : Entity_Id;
6634 Prim_Param : Node_Id;
6635 Prim_Typ : Entity_Id;
6636
6637 function Is_Implemented
6638 (Ifaces_List : Elist_Id;
6639 Iface : Entity_Id) return Boolean;
6640 -- Determine if Iface is implemented by the current task or
6641 -- protected type.
6642
6643 --------------------
6644 -- Is_Implemented --
6645 --------------------
6646
6647 function Is_Implemented
6648 (Ifaces_List : Elist_Id;
6649 Iface : Entity_Id) return Boolean
6650 is
6651 Iface_Elmt : Elmt_Id;
6652
6653 begin
6654 Iface_Elmt := First_Elmt (Ifaces_List);
6655 while Present (Iface_Elmt) loop
6656 if Node (Iface_Elmt) = Iface then
6657 return True;
6658 end if;
6659
6660 Next_Elmt (Iface_Elmt);
6661 end loop;
6662
6663 return False;
6664 end Is_Implemented;
6665
6666 -- Start of processing for Matches_Prefixed_View_Profile
6667
6668 begin
6669 Iface_Param := First (Iface_Params);
6670 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
6671
6672 if Is_Access_Type (Iface_Typ) then
6673 Iface_Typ := Designated_Type (Iface_Typ);
6674 end if;
6675
6676 Prim_Param := First (Prim_Params);
6677
6678 -- The first parameter of the potentially overridden subprogram
6679 -- must be an interface implemented by Prim.
6680
6681 if not Is_Interface (Iface_Typ)
6682 or else not Is_Implemented (Ifaces_List, Iface_Typ)
6683 then
6684 return False;
6685 end if;
6686
6687 -- The checks on the object parameters are done, move onto the
6688 -- rest of the parameters.
6689
6690 if not In_Scope then
6691 Prim_Param := Next (Prim_Param);
6692 end if;
6693
6694 Iface_Param := Next (Iface_Param);
6695 while Present (Iface_Param) and then Present (Prim_Param) loop
6696 Iface_Id := Defining_Identifier (Iface_Param);
6697 Iface_Typ := Find_Parameter_Type (Iface_Param);
6698
6699 Prim_Id := Defining_Identifier (Prim_Param);
6700 Prim_Typ := Find_Parameter_Type (Prim_Param);
6701
6702 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
6703 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
6704 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
6705 then
6706 Iface_Typ := Designated_Type (Iface_Typ);
6707 Prim_Typ := Designated_Type (Prim_Typ);
6708 end if;
6709
6710 -- Case of multiple interface types inside a parameter profile
6711
6712 -- (Obj_Param : in out Iface; ...; Param : Iface)
6713
6714 -- If the interface type is implemented, then the matching type
6715 -- in the primitive should be the implementing record type.
6716
6717 if Ekind (Iface_Typ) = E_Record_Type
6718 and then Is_Interface (Iface_Typ)
6719 and then Is_Implemented (Ifaces_List, Iface_Typ)
6720 then
6721 if Prim_Typ /= Typ then
6722 return False;
6723 end if;
6724
6725 -- The two parameters must be both mode and subtype conformant
6726
6727 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
6728 or else not
6729 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
6730 then
6731 return False;
6732 end if;
6733
6734 Next (Iface_Param);
6735 Next (Prim_Param);
6736 end loop;
6737
6738 -- One of the two lists contains more parameters than the other
6739
6740 if Present (Iface_Param) or else Present (Prim_Param) then
6741 return False;
6742 end if;
6743
6744 return True;
6745 end Matches_Prefixed_View_Profile;
6746
6747 -- Start of processing for Check_Synchronized_Overriding
6748
6749 begin
6750 Overridden_Subp := Empty;
6751
6752 -- Def_Id must be an entry or a subprogram. We should skip predefined
6753 -- primitives internally generated by the frontend; however at this
6754 -- stage predefined primitives are still not fully decorated. As a
6755 -- minor optimization we skip here internally generated subprograms.
6756
6757 if (Ekind (Def_Id) /= E_Entry
6758 and then Ekind (Def_Id) /= E_Function
6759 and then Ekind (Def_Id) /= E_Procedure)
6760 or else not Comes_From_Source (Def_Id)
6761 then
6762 return;
6763 end if;
6764
6765 -- Search for the concurrent declaration since it contains the list
6766 -- of all implemented interfaces. In this case, the subprogram is
6767 -- declared within the scope of a protected or a task type.
6768
6769 if Present (Scope (Def_Id))
6770 and then Is_Concurrent_Type (Scope (Def_Id))
6771 and then not Is_Generic_Actual_Type (Scope (Def_Id))
6772 then
6773 Typ := Scope (Def_Id);
6774 In_Scope := True;
6775
6776 -- The enclosing scope is not a synchronized type and the subprogram
6777 -- has no formals
6778
6779 elsif No (First_Formal (Def_Id)) then
6780 return;
6781
6782 -- The subprogram has formals and hence it may be a primitive of a
6783 -- concurrent type
6784
6785 else
6786 Typ := Etype (First_Formal (Def_Id));
6787
6788 if Is_Access_Type (Typ) then
6789 Typ := Directly_Designated_Type (Typ);
6790 end if;
6791
6792 if Is_Concurrent_Type (Typ)
6793 and then not Is_Generic_Actual_Type (Typ)
6794 then
6795 In_Scope := False;
6796
6797 -- This case occurs when the concurrent type is declared within
6798 -- a generic unit. As a result the corresponding record has been
6799 -- built and used as the type of the first formal, we just have
6800 -- to retrieve the corresponding concurrent type.
6801
6802 elsif Is_Concurrent_Record_Type (Typ)
6803 and then Present (Corresponding_Concurrent_Type (Typ))
6804 then
6805 Typ := Corresponding_Concurrent_Type (Typ);
6806 In_Scope := False;
6807
6808 else
6809 return;
6810 end if;
6811 end if;
6812
6813 -- There is no overriding to check if is an inherited operation in a
6814 -- type derivation on for a generic actual.
6815
6816 Collect_Interfaces (Typ, Ifaces_List);
6817
6818 if Is_Empty_Elmt_List (Ifaces_List) then
6819 return;
6820 end if;
6821
6822 -- Determine whether entry or subprogram Def_Id overrides a primitive
6823 -- operation that belongs to one of the interfaces in Ifaces_List.
6824
6825 declare
6826 Candidate : Entity_Id := Empty;
6827 Hom : Entity_Id := Empty;
6828 Iface_Typ : Entity_Id;
6829 Subp : Entity_Id := Empty;
6830
6831 begin
6832 -- Traverse the homonym chain, looking at a potentially
6833 -- overridden subprogram that belongs to an implemented
6834 -- interface.
6835
6836 Hom := Current_Entity_In_Scope (Def_Id);
6837 while Present (Hom) loop
6838 Subp := Hom;
6839
6840 if Subp = Def_Id
6841 or else not Is_Overloadable (Subp)
6842 or else not Is_Primitive (Subp)
6843 or else not Is_Dispatching_Operation (Subp)
6844 or else not Is_Interface (Find_Dispatching_Type (Subp))
6845 then
6846 null;
6847
6848 -- Entries and procedures can override abstract or null
6849 -- interface procedures
6850
6851 elsif (Ekind (Def_Id) = E_Procedure
6852 or else Ekind (Def_Id) = E_Entry)
6853 and then Ekind (Subp) = E_Procedure
6854 and then Matches_Prefixed_View_Profile
6855 (Parameter_Specifications (Parent (Def_Id)),
6856 Parameter_Specifications (Parent (Subp)))
6857 then
6858 Candidate := Subp;
6859
6860 -- For an overridden subprogram Subp, check whether the mode
6861 -- of its first parameter is correct depending on the kind
6862 -- of synchronized type.
6863
6864 declare
6865 Formal : constant Node_Id := First_Formal (Candidate);
6866
6867 begin
6868 -- In order for an entry or a protected procedure to
6869 -- override, the first parameter of the overridden
6870 -- routine must be of mode "out", "in out" or
6871 -- access-to-variable.
6872
6873 if (Ekind (Candidate) = E_Entry
6874 or else Ekind (Candidate) = E_Procedure)
6875 and then Is_Protected_Type (Typ)
6876 and then Ekind (Formal) /= E_In_Out_Parameter
6877 and then Ekind (Formal) /= E_Out_Parameter
6878 and then Nkind (Parameter_Type (Parent (Formal)))
6879 /= N_Access_Definition
6880 then
6881 null;
6882
6883 -- All other cases are OK since a task entry or routine
6884 -- does not have a restriction on the mode of the first
6885 -- parameter of the overridden interface routine.
6886
6887 else
6888 Overridden_Subp := Candidate;
6889 return;
6890 end if;
6891 end;
6892
6893 -- Functions can override abstract interface functions
6894
6895 elsif Ekind (Def_Id) = E_Function
6896 and then Ekind (Subp) = E_Function
6897 and then Matches_Prefixed_View_Profile
6898 (Parameter_Specifications (Parent (Def_Id)),
6899 Parameter_Specifications (Parent (Subp)))
6900 and then Etype (Result_Definition (Parent (Def_Id))) =
6901 Etype (Result_Definition (Parent (Subp)))
6902 then
6903 Overridden_Subp := Subp;
6904 return;
6905 end if;
6906
6907 Hom := Homonym (Hom);
6908 end loop;
6909
6910 -- After examining all candidates for overriding, we are
6911 -- left with the best match which is a mode incompatible
6912 -- interface routine. Do not emit an error if the Expander
6913 -- is active since this error will be detected later on
6914 -- after all concurrent types are expanded and all wrappers
6915 -- are built. This check is meant for spec-only
6916 -- compilations.
6917
6918 if Present (Candidate)
6919 and then not Expander_Active
6920 then
6921 Iface_Typ :=
6922 Find_Parameter_Type (Parent (First_Formal (Candidate)));
6923
6924 -- Def_Id is primitive of a protected type, declared
6925 -- inside the type, and the candidate is primitive of a
6926 -- limited or synchronized interface.
6927
6928 if In_Scope
6929 and then Is_Protected_Type (Typ)
6930 and then
6931 (Is_Limited_Interface (Iface_Typ)
6932 or else Is_Protected_Interface (Iface_Typ)
6933 or else Is_Synchronized_Interface (Iface_Typ)
6934 or else Is_Task_Interface (Iface_Typ))
6935 then
6936 -- Must reword this message, comma before to in -gnatj
6937 -- mode ???
6938
6939 Error_Msg_NE
6940 ("first formal of & must be of mode `OUT`, `IN OUT`"
6941 & " or access-to-variable", Typ, Candidate);
6942 Error_Msg_N
6943 ("\to be overridden by protected procedure or entry "
6944 & "(RM 9.4(11.9/2))", Typ);
6945 end if;
6946 end if;
6947
6948 Overridden_Subp := Candidate;
6949 return;
6950 end;
6951 end Check_Synchronized_Overriding;
6952
6953 ----------------------------
6954 -- Is_Private_Declaration --
6955 ----------------------------
6956
6957 function Is_Private_Declaration (E : Entity_Id) return Boolean is
6958 Priv_Decls : List_Id;
6959 Decl : constant Node_Id := Unit_Declaration_Node (E);
6960
6961 begin
6962 if Is_Package_Or_Generic_Package (Current_Scope)
6963 and then In_Private_Part (Current_Scope)
6964 then
6965 Priv_Decls :=
6966 Private_Declarations (
6967 Specification (Unit_Declaration_Node (Current_Scope)));
6968
6969 return In_Package_Body (Current_Scope)
6970 or else
6971 (Is_List_Member (Decl)
6972 and then List_Containing (Decl) = Priv_Decls)
6973 or else (Nkind (Parent (Decl)) = N_Package_Specification
6974 and then not Is_Compilation_Unit (
6975 Defining_Entity (Parent (Decl)))
6976 and then List_Containing (Parent (Parent (Decl)))
6977 = Priv_Decls);
6978 else
6979 return False;
6980 end if;
6981 end Is_Private_Declaration;
6982
6983 -- Start of processing for New_Overloaded_Entity
6984
6985 begin
6986 -- We need to look for an entity that S may override. This must be a
6987 -- homonym in the current scope, so we look for the first homonym of
6988 -- S in the current scope as the starting point for the search.
6989
6990 E := Current_Entity_In_Scope (S);
6991
6992 -- If there is no homonym then this is definitely not overriding
6993
6994 if No (E) then
6995 Enter_Overloaded_Entity (S);
6996 Check_Dispatching_Operation (S, Empty);
6997 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
6998
6999 -- If subprogram has an explicit declaration, check whether it
7000 -- has an overriding indicator.
7001
7002 if Comes_From_Source (S) then
7003 Check_Synchronized_Overriding (S, Overridden_Subp);
7004 Check_Overriding_Indicator
7005 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
7006 end if;
7007
7008 -- If there is a homonym that is not overloadable, then we have an
7009 -- error, except for the special cases checked explicitly below.
7010
7011 elsif not Is_Overloadable (E) then
7012
7013 -- Check for spurious conflict produced by a subprogram that has the
7014 -- same name as that of the enclosing generic package. The conflict
7015 -- occurs within an instance, between the subprogram and the renaming
7016 -- declaration for the package. After the subprogram, the package
7017 -- renaming declaration becomes hidden.
7018
7019 if Ekind (E) = E_Package
7020 and then Present (Renamed_Object (E))
7021 and then Renamed_Object (E) = Current_Scope
7022 and then Nkind (Parent (Renamed_Object (E))) =
7023 N_Package_Specification
7024 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
7025 then
7026 Set_Is_Hidden (E);
7027 Set_Is_Immediately_Visible (E, False);
7028 Enter_Overloaded_Entity (S);
7029 Set_Homonym (S, Homonym (E));
7030 Check_Dispatching_Operation (S, Empty);
7031 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
7032
7033 -- If the subprogram is implicit it is hidden by the previous
7034 -- declaration. However if it is dispatching, it must appear in the
7035 -- dispatch table anyway, because it can be dispatched to even if it
7036 -- cannot be called directly.
7037
7038 elsif Present (Alias (S))
7039 and then not Comes_From_Source (S)
7040 then
7041 Set_Scope (S, Current_Scope);
7042
7043 if Is_Dispatching_Operation (Alias (S)) then
7044 Check_Dispatching_Operation (S, Empty);
7045 end if;
7046
7047 return;
7048
7049 else
7050 Error_Msg_Sloc := Sloc (E);
7051
7052 -- Generate message, with useful additional warning if in generic
7053
7054 if Is_Generic_Unit (E) then
7055 Error_Msg_N ("previous generic unit cannot be overloaded", S);
7056 Error_Msg_N ("\& conflicts with declaration#", S);
7057 else
7058 Error_Msg_N ("& conflicts with declaration#", S);
7059 end if;
7060
7061 return;
7062 end if;
7063
7064 -- E exists and is overloadable
7065
7066 else
7067 -- Ada 2005 (AI-251): Derivation of abstract interface primitives
7068 -- need no check against the homonym chain. They are directly added
7069 -- to the list of primitive operations of Derived_Type.
7070
7071 if Ada_Version >= Ada_05
7072 and then Present (Derived_Type)
7073 and then Is_Dispatching_Operation (Alias (S))
7074 and then Present (Find_Dispatching_Type (Alias (S)))
7075 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
7076 then
7077 goto Add_New_Entity;
7078 end if;
7079
7080 Check_Synchronized_Overriding (S, Overridden_Subp);
7081
7082 -- Loop through E and its homonyms to determine if any of them is
7083 -- the candidate for overriding by S.
7084
7085 while Present (E) loop
7086
7087 -- Definitely not interesting if not in the current scope
7088
7089 if Scope (E) /= Current_Scope then
7090 null;
7091
7092 -- Check if we have type conformance
7093
7094 elsif Type_Conformant (E, S) then
7095
7096 -- If the old and new entities have the same profile and one
7097 -- is not the body of the other, then this is an error, unless
7098 -- one of them is implicitly declared.
7099
7100 -- There are some cases when both can be implicit, for example
7101 -- when both a literal and a function that overrides it are
7102 -- inherited in a derivation, or when an inherited operation
7103 -- of a tagged full type overrides the inherited operation of
7104 -- a private extension. Ada 83 had a special rule for the
7105 -- literal case. In Ada95, the later implicit operation hides
7106 -- the former, and the literal is always the former. In the
7107 -- odd case where both are derived operations declared at the
7108 -- same point, both operations should be declared, and in that
7109 -- case we bypass the following test and proceed to the next
7110 -- part (this can only occur for certain obscure cases
7111 -- involving homographs in instances and can't occur for
7112 -- dispatching operations ???). Note that the following
7113 -- condition is less than clear. For example, it's not at all
7114 -- clear why there's a test for E_Entry here. ???
7115
7116 if Present (Alias (S))
7117 and then (No (Alias (E))
7118 or else Comes_From_Source (E)
7119 or else Is_Dispatching_Operation (E))
7120 and then
7121 (Ekind (E) = E_Entry
7122 or else Ekind (E) /= E_Enumeration_Literal)
7123 then
7124 -- When an derived operation is overloaded it may be due to
7125 -- the fact that the full view of a private extension
7126 -- re-inherits. It has to be dealt with.
7127
7128 if Is_Package_Or_Generic_Package (Current_Scope)
7129 and then In_Private_Part (Current_Scope)
7130 then
7131 Check_Operation_From_Private_View (S, E);
7132 end if;
7133
7134 -- In any case the implicit operation remains hidden by
7135 -- the existing declaration, which is overriding.
7136
7137 Set_Is_Overriding_Operation (E);
7138
7139 if Comes_From_Source (E) then
7140 Check_Overriding_Indicator (E, S, Is_Primitive => False);
7141
7142 -- Indicate that E overrides the operation from which
7143 -- S is inherited.
7144
7145 if Present (Alias (S)) then
7146 Set_Overridden_Operation (E, Alias (S));
7147 else
7148 Set_Overridden_Operation (E, S);
7149 end if;
7150 end if;
7151
7152 return;
7153
7154 -- Within an instance, the renaming declarations for
7155 -- actual subprograms may become ambiguous, but they do
7156 -- not hide each other.
7157
7158 elsif Ekind (E) /= E_Entry
7159 and then not Comes_From_Source (E)
7160 and then not Is_Generic_Instance (E)
7161 and then (Present (Alias (E))
7162 or else Is_Intrinsic_Subprogram (E))
7163 and then (not In_Instance
7164 or else No (Parent (E))
7165 or else Nkind (Unit_Declaration_Node (E)) /=
7166 N_Subprogram_Renaming_Declaration)
7167 then
7168 -- A subprogram child unit is not allowed to override
7169 -- an inherited subprogram (10.1.1(20)).
7170
7171 if Is_Child_Unit (S) then
7172 Error_Msg_N
7173 ("child unit overrides inherited subprogram in parent",
7174 S);
7175 return;
7176 end if;
7177
7178 if Is_Non_Overriding_Operation (E, S) then
7179 Enter_Overloaded_Entity (S);
7180 if No (Derived_Type)
7181 or else Is_Tagged_Type (Derived_Type)
7182 then
7183 Check_Dispatching_Operation (S, Empty);
7184 end if;
7185
7186 return;
7187 end if;
7188
7189 -- E is a derived operation or an internal operator which
7190 -- is being overridden. Remove E from further visibility.
7191 -- Furthermore, if E is a dispatching operation, it must be
7192 -- replaced in the list of primitive operations of its type
7193 -- (see Override_Dispatching_Operation).
7194
7195 Overridden_Subp := E;
7196
7197 declare
7198 Prev : Entity_Id;
7199
7200 begin
7201 Prev := First_Entity (Current_Scope);
7202
7203 while Present (Prev)
7204 and then Next_Entity (Prev) /= E
7205 loop
7206 Next_Entity (Prev);
7207 end loop;
7208
7209 -- It is possible for E to be in the current scope and
7210 -- yet not in the entity chain. This can only occur in a
7211 -- generic context where E is an implicit concatenation
7212 -- in the formal part, because in a generic body the
7213 -- entity chain starts with the formals.
7214
7215 pragma Assert
7216 (Present (Prev) or else Chars (E) = Name_Op_Concat);
7217
7218 -- E must be removed both from the entity_list of the
7219 -- current scope, and from the visibility chain
7220
7221 if Debug_Flag_E then
7222 Write_Str ("Override implicit operation ");
7223 Write_Int (Int (E));
7224 Write_Eol;
7225 end if;
7226
7227 -- If E is a predefined concatenation, it stands for four
7228 -- different operations. As a result, a single explicit
7229 -- declaration does not hide it. In a possible ambiguous
7230 -- situation, Disambiguate chooses the user-defined op,
7231 -- so it is correct to retain the previous internal one.
7232
7233 if Chars (E) /= Name_Op_Concat
7234 or else Ekind (E) /= E_Operator
7235 then
7236 -- For nondispatching derived operations that are
7237 -- overridden by a subprogram declared in the private
7238 -- part of a package, we retain the derived
7239 -- subprogram but mark it as not immediately visible.
7240 -- If the derived operation was declared in the
7241 -- visible part then this ensures that it will still
7242 -- be visible outside the package with the proper
7243 -- signature (calls from outside must also be
7244 -- directed to this version rather than the
7245 -- overriding one, unlike the dispatching case).
7246 -- Calls from inside the package will still resolve
7247 -- to the overriding subprogram since the derived one
7248 -- is marked as not visible within the package.
7249
7250 -- If the private operation is dispatching, we achieve
7251 -- the overriding by keeping the implicit operation
7252 -- but setting its alias to be the overriding one. In
7253 -- this fashion the proper body is executed in all
7254 -- cases, but the original signature is used outside
7255 -- of the package.
7256
7257 -- If the overriding is not in the private part, we
7258 -- remove the implicit operation altogether.
7259
7260 if Is_Private_Declaration (S) then
7261
7262 if not Is_Dispatching_Operation (E) then
7263 Set_Is_Immediately_Visible (E, False);
7264 else
7265 -- Work done in Override_Dispatching_Operation,
7266 -- so nothing else need to be done here.
7267
7268 null;
7269 end if;
7270
7271 else
7272 -- Find predecessor of E in Homonym chain
7273
7274 if E = Current_Entity (E) then
7275 Prev_Vis := Empty;
7276 else
7277 Prev_Vis := Current_Entity (E);
7278 while Homonym (Prev_Vis) /= E loop
7279 Prev_Vis := Homonym (Prev_Vis);
7280 end loop;
7281 end if;
7282
7283 if Prev_Vis /= Empty then
7284
7285 -- Skip E in the visibility chain
7286
7287 Set_Homonym (Prev_Vis, Homonym (E));
7288
7289 else
7290 Set_Name_Entity_Id (Chars (E), Homonym (E));
7291 end if;
7292
7293 Set_Next_Entity (Prev, Next_Entity (E));
7294
7295 if No (Next_Entity (Prev)) then
7296 Set_Last_Entity (Current_Scope, Prev);
7297 end if;
7298
7299 end if;
7300 end if;
7301
7302 Enter_Overloaded_Entity (S);
7303 Set_Is_Overriding_Operation (S);
7304 Check_Overriding_Indicator (S, E, Is_Primitive => True);
7305
7306 -- Indicate that S overrides the operation from which
7307 -- E is inherited.
7308
7309 if Comes_From_Source (S) then
7310 if Present (Alias (E)) then
7311 Set_Overridden_Operation (S, Alias (E));
7312 else
7313 Set_Overridden_Operation (S, E);
7314 end if;
7315 end if;
7316
7317 if Is_Dispatching_Operation (E) then
7318
7319 -- An overriding dispatching subprogram inherits the
7320 -- convention of the overridden subprogram (by
7321 -- AI-117).
7322
7323 Set_Convention (S, Convention (E));
7324 Check_Dispatching_Operation (S, E);
7325
7326 else
7327 Check_Dispatching_Operation (S, Empty);
7328 end if;
7329
7330 Check_For_Primitive_Subprogram
7331 (Is_Primitive_Subp, Is_Overriding => True);
7332 goto Check_Inequality;
7333 end;
7334
7335 -- Apparent redeclarations in instances can occur when two
7336 -- formal types get the same actual type. The subprograms in
7337 -- in the instance are legal, even if not callable from the
7338 -- outside. Calls from within are disambiguated elsewhere.
7339 -- For dispatching operations in the visible part, the usual
7340 -- rules apply, and operations with the same profile are not
7341 -- legal (B830001).
7342
7343 elsif (In_Instance_Visible_Part
7344 and then not Is_Dispatching_Operation (E))
7345 or else In_Instance_Not_Visible
7346 then
7347 null;
7348
7349 -- Here we have a real error (identical profile)
7350
7351 else
7352 Error_Msg_Sloc := Sloc (E);
7353
7354 -- Avoid cascaded errors if the entity appears in
7355 -- subsequent calls.
7356
7357 Set_Scope (S, Current_Scope);
7358
7359 -- Generate error, with extra useful warning for the case
7360 -- of a generic instance with no completion.
7361
7362 if Is_Generic_Instance (S)
7363 and then not Has_Completion (E)
7364 then
7365 Error_Msg_N
7366 ("instantiation cannot provide body for&", S);
7367 Error_Msg_N ("\& conflicts with declaration#", S);
7368 else
7369 Error_Msg_N ("& conflicts with declaration#", S);
7370 end if;
7371
7372 return;
7373 end if;
7374
7375 else
7376 -- If one subprogram has an access parameter and the other
7377 -- a parameter of an access type, calls to either might be
7378 -- ambiguous. Verify that parameters match except for the
7379 -- access parameter.
7380
7381 if May_Hide_Profile then
7382 declare
7383 F1 : Entity_Id;
7384 F2 : Entity_Id;
7385 begin
7386 F1 := First_Formal (S);
7387 F2 := First_Formal (E);
7388 while Present (F1) and then Present (F2) loop
7389 if Is_Access_Type (Etype (F1)) then
7390 if not Is_Access_Type (Etype (F2))
7391 or else not Conforming_Types
7392 (Designated_Type (Etype (F1)),
7393 Designated_Type (Etype (F2)),
7394 Type_Conformant)
7395 then
7396 May_Hide_Profile := False;
7397 end if;
7398
7399 elsif
7400 not Conforming_Types
7401 (Etype (F1), Etype (F2), Type_Conformant)
7402 then
7403 May_Hide_Profile := False;
7404 end if;
7405
7406 Next_Formal (F1);
7407 Next_Formal (F2);
7408 end loop;
7409
7410 if May_Hide_Profile
7411 and then No (F1)
7412 and then No (F2)
7413 then
7414 Error_Msg_NE ("calls to& may be ambiguous?", S, S);
7415 end if;
7416 end;
7417 end if;
7418 end if;
7419
7420 E := Homonym (E);
7421 end loop;
7422
7423 <<Add_New_Entity>>
7424
7425 -- On exit, we know that S is a new entity
7426
7427 Enter_Overloaded_Entity (S);
7428 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
7429 Check_Overriding_Indicator
7430 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
7431
7432 -- If S is a derived operation for an untagged type then by
7433 -- definition it's not a dispatching operation (even if the parent
7434 -- operation was dispatching), so we don't call
7435 -- Check_Dispatching_Operation in that case.
7436
7437 if No (Derived_Type)
7438 or else Is_Tagged_Type (Derived_Type)
7439 then
7440 Check_Dispatching_Operation (S, Empty);
7441 end if;
7442 end if;
7443
7444 -- If this is a user-defined equality operator that is not a derived
7445 -- subprogram, create the corresponding inequality. If the operation is
7446 -- dispatching, the expansion is done elsewhere, and we do not create
7447 -- an explicit inequality operation.
7448
7449 <<Check_Inequality>>
7450 if Chars (S) = Name_Op_Eq
7451 and then Etype (S) = Standard_Boolean
7452 and then Present (Parent (S))
7453 and then not Is_Dispatching_Operation (S)
7454 then
7455 Make_Inequality_Operator (S);
7456 end if;
7457 end New_Overloaded_Entity;
7458
7459 ---------------------
7460 -- Process_Formals --
7461 ---------------------
7462
7463 procedure Process_Formals
7464 (T : List_Id;
7465 Related_Nod : Node_Id)
7466 is
7467 Param_Spec : Node_Id;
7468 Formal : Entity_Id;
7469 Formal_Type : Entity_Id;
7470 Default : Node_Id;
7471 Ptype : Entity_Id;
7472
7473 Num_Out_Params : Nat := 0;
7474 First_Out_Param : Entity_Id := Empty;
7475 -- Used for setting Is_Only_Out_Parameter
7476
7477 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
7478 -- Check whether the default has a class-wide type. After analysis the
7479 -- default has the type of the formal, so we must also check explicitly
7480 -- for an access attribute.
7481
7482 ---------------------------
7483 -- Is_Class_Wide_Default --
7484 ---------------------------
7485
7486 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
7487 begin
7488 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
7489 or else (Nkind (D) = N_Attribute_Reference
7490 and then Attribute_Name (D) = Name_Access
7491 and then Is_Class_Wide_Type (Etype (Prefix (D))));
7492 end Is_Class_Wide_Default;
7493
7494 -- Start of processing for Process_Formals
7495
7496 begin
7497 -- In order to prevent premature use of the formals in the same formal
7498 -- part, the Ekind is left undefined until all default expressions are
7499 -- analyzed. The Ekind is established in a separate loop at the end.
7500
7501 Param_Spec := First (T);
7502 while Present (Param_Spec) loop
7503 Formal := Defining_Identifier (Param_Spec);
7504 Set_Never_Set_In_Source (Formal, True);
7505 Enter_Name (Formal);
7506
7507 -- Case of ordinary parameters
7508
7509 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
7510 Find_Type (Parameter_Type (Param_Spec));
7511 Ptype := Parameter_Type (Param_Spec);
7512
7513 if Ptype = Error then
7514 goto Continue;
7515 end if;
7516
7517 Formal_Type := Entity (Ptype);
7518
7519 if Is_Incomplete_Type (Formal_Type)
7520 or else
7521 (Is_Class_Wide_Type (Formal_Type)
7522 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
7523 then
7524 -- Ada 2005 (AI-326): Tagged incomplete types allowed
7525
7526 if Is_Tagged_Type (Formal_Type) then
7527 null;
7528
7529 -- Special handling of Value_Type for CIL case
7530
7531 elsif Is_Value_Type (Formal_Type) then
7532 null;
7533
7534 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
7535 N_Access_Procedure_Definition)
7536 then
7537 Error_Msg_N ("invalid use of incomplete type", Param_Spec);
7538
7539 -- An incomplete type that is not tagged is allowed in an
7540 -- access-to-subprogram type only if it is a local declaration
7541 -- with a forthcoming completion (3.10.1 (9.2/2)).
7542
7543 elsif Scope (Formal_Type) /= Scope (Current_Scope) then
7544 Error_Msg_N
7545 ("invalid use of limited view of type", Param_Spec);
7546 end if;
7547
7548 elsif Ekind (Formal_Type) = E_Void then
7549 Error_Msg_NE ("premature use of&",
7550 Parameter_Type (Param_Spec), Formal_Type);
7551 end if;
7552
7553 -- Ada 2005 (AI-231): Create and decorate an internal subtype
7554 -- declaration corresponding to the null-excluding type of the
7555 -- formal in the enclosing scope. Finally, replace the parameter
7556 -- type of the formal with the internal subtype.
7557
7558 if Ada_Version >= Ada_05
7559 and then Null_Exclusion_Present (Param_Spec)
7560 then
7561 if not Is_Access_Type (Formal_Type) then
7562 Error_Msg_N
7563 ("`NOT NULL` allowed only for an access type", Param_Spec);
7564
7565 else
7566 if Can_Never_Be_Null (Formal_Type)
7567 and then Comes_From_Source (Related_Nod)
7568 then
7569 Error_Msg_NE
7570 ("`NOT NULL` not allowed (& already excludes null)",
7571 Param_Spec,
7572 Formal_Type);
7573 end if;
7574
7575 Formal_Type :=
7576 Create_Null_Excluding_Itype
7577 (T => Formal_Type,
7578 Related_Nod => Related_Nod,
7579 Scope_Id => Scope (Current_Scope));
7580
7581 -- If the designated type of the itype is an itype we
7582 -- decorate it with the Has_Delayed_Freeze attribute to
7583 -- avoid problems with the backend.
7584
7585 -- Example:
7586 -- type T is access procedure;
7587 -- procedure Op (O : not null T);
7588
7589 if Is_Itype (Directly_Designated_Type (Formal_Type)) then
7590 Set_Has_Delayed_Freeze (Formal_Type);
7591 end if;
7592 end if;
7593 end if;
7594
7595 -- An access formal type
7596
7597 else
7598 Formal_Type :=
7599 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
7600
7601 -- No need to continue if we already notified errors
7602
7603 if not Present (Formal_Type) then
7604 return;
7605 end if;
7606
7607 -- Ada 2005 (AI-254)
7608
7609 declare
7610 AD : constant Node_Id :=
7611 Access_To_Subprogram_Definition
7612 (Parameter_Type (Param_Spec));
7613 begin
7614 if Present (AD) and then Protected_Present (AD) then
7615 Formal_Type :=
7616 Replace_Anonymous_Access_To_Protected_Subprogram
7617 (Param_Spec);
7618 end if;
7619 end;
7620 end if;
7621
7622 Set_Etype (Formal, Formal_Type);
7623 Default := Expression (Param_Spec);
7624
7625 if Present (Default) then
7626 if Out_Present (Param_Spec) then
7627 Error_Msg_N
7628 ("default initialization only allowed for IN parameters",
7629 Param_Spec);
7630 end if;
7631
7632 -- Do the special preanalysis of the expression (see section on
7633 -- "Handling of Default Expressions" in the spec of package Sem).
7634
7635 Preanalyze_Spec_Expression (Default, Formal_Type);
7636
7637 -- An access to constant cannot be the default for
7638 -- an access parameter that is an access to variable.
7639
7640 if Ekind (Formal_Type) = E_Anonymous_Access_Type
7641 and then not Is_Access_Constant (Formal_Type)
7642 and then Is_Access_Type (Etype (Default))
7643 and then Is_Access_Constant (Etype (Default))
7644 then
7645 Error_Msg_N
7646 ("formal that is access to variable cannot be initialized " &
7647 "with an access-to-constant expression", Default);
7648 end if;
7649
7650 -- Check that the designated type of an access parameter's default
7651 -- is not a class-wide type unless the parameter's designated type
7652 -- is also class-wide.
7653
7654 if Ekind (Formal_Type) = E_Anonymous_Access_Type
7655 and then not From_With_Type (Formal_Type)
7656 and then Is_Class_Wide_Default (Default)
7657 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
7658 then
7659 Error_Msg_N
7660 ("access to class-wide expression not allowed here", Default);
7661 end if;
7662 end if;
7663
7664 -- Ada 2005 (AI-231): Static checks
7665
7666 if Ada_Version >= Ada_05
7667 and then Is_Access_Type (Etype (Formal))
7668 and then Can_Never_Be_Null (Etype (Formal))
7669 then
7670 Null_Exclusion_Static_Checks (Param_Spec);
7671 end if;
7672
7673 <<Continue>>
7674 Next (Param_Spec);
7675 end loop;
7676
7677 -- If this is the formal part of a function specification, analyze the
7678 -- subtype mark in the context where the formals are visible but not
7679 -- yet usable, and may hide outer homographs.
7680
7681 if Nkind (Related_Nod) = N_Function_Specification then
7682 Analyze_Return_Type (Related_Nod);
7683 end if;
7684
7685 -- Now set the kind (mode) of each formal
7686
7687 Param_Spec := First (T);
7688
7689 while Present (Param_Spec) loop
7690 Formal := Defining_Identifier (Param_Spec);
7691 Set_Formal_Mode (Formal);
7692
7693 if Ekind (Formal) = E_In_Parameter then
7694 Set_Default_Value (Formal, Expression (Param_Spec));
7695
7696 if Present (Expression (Param_Spec)) then
7697 Default := Expression (Param_Spec);
7698
7699 if Is_Scalar_Type (Etype (Default)) then
7700 if Nkind
7701 (Parameter_Type (Param_Spec)) /= N_Access_Definition
7702 then
7703 Formal_Type := Entity (Parameter_Type (Param_Spec));
7704
7705 else
7706 Formal_Type := Access_Definition
7707 (Related_Nod, Parameter_Type (Param_Spec));
7708 end if;
7709
7710 Apply_Scalar_Range_Check (Default, Formal_Type);
7711 end if;
7712 end if;
7713
7714 elsif Ekind (Formal) = E_Out_Parameter then
7715 Num_Out_Params := Num_Out_Params + 1;
7716
7717 if Num_Out_Params = 1 then
7718 First_Out_Param := Formal;
7719 end if;
7720
7721 elsif Ekind (Formal) = E_In_Out_Parameter then
7722 Num_Out_Params := Num_Out_Params + 1;
7723 end if;
7724
7725 Next (Param_Spec);
7726 end loop;
7727
7728 if Present (First_Out_Param) and then Num_Out_Params = 1 then
7729 Set_Is_Only_Out_Parameter (First_Out_Param);
7730 end if;
7731 end Process_Formals;
7732
7733 ------------------
7734 -- Process_PPCs --
7735 ------------------
7736
7737 procedure Process_PPCs
7738 (N : Node_Id;
7739 Spec_Id : Entity_Id;
7740 Body_Id : Entity_Id)
7741 is
7742 Loc : constant Source_Ptr := Sloc (N);
7743 Prag : Node_Id;
7744 Plist : List_Id := No_List;
7745 Subp : Entity_Id;
7746 Parms : List_Id;
7747
7748 function Grab_PPC (Nam : Name_Id) return Node_Id;
7749 -- Prag contains an analyzed precondition or postcondition pragma.
7750 -- This function copies the pragma, changes it to the corresponding
7751 -- Check pragma and returns the Check pragma as the result. The
7752 -- argument Nam is either Name_Precondition or Name_Postcondition.
7753
7754 --------------
7755 -- Grab_PPC --
7756 --------------
7757
7758 function Grab_PPC (Nam : Name_Id) return Node_Id is
7759 CP : constant Node_Id := New_Copy_Tree (Prag);
7760
7761 begin
7762 -- Set Analyzed to false, since we want to reanalyze the check
7763 -- procedure. Note that it is only at the outer level that we
7764 -- do this fiddling, for the spec cases, the already preanalyzed
7765 -- parameters are not affected.
7766
7767 -- For a postcondition pragma within a generic, preserve the pragma
7768 -- for later expansion.
7769
7770 Set_Analyzed (CP, False);
7771
7772 if Nam = Name_Postcondition
7773 and then not Expander_Active
7774 then
7775 return CP;
7776 end if;
7777
7778 -- Change pragma into corresponding pragma Check
7779
7780 Prepend_To (Pragma_Argument_Associations (CP),
7781 Make_Pragma_Argument_Association (Sloc (Prag),
7782 Expression =>
7783 Make_Identifier (Loc,
7784 Chars => Nam)));
7785 Set_Pragma_Identifier (CP,
7786 Make_Identifier (Sloc (Prag),
7787 Chars => Name_Check));
7788
7789 return CP;
7790 end Grab_PPC;
7791
7792 -- Start of processing for Process_PPCs
7793
7794 begin
7795 -- Nothing to do if we are not generating code
7796
7797 if Operating_Mode /= Generate_Code then
7798 return;
7799 end if;
7800
7801 -- Grab preconditions from spec
7802
7803 if Present (Spec_Id) then
7804
7805 -- Loop through PPC pragmas from spec. Note that preconditions from
7806 -- the body will be analyzed and converted when we scan the body
7807 -- declarations below.
7808
7809 Prag := Spec_PPC_List (Spec_Id);
7810 while Present (Prag) loop
7811 if Pragma_Name (Prag) = Name_Precondition
7812 and then PPC_Enabled (Prag)
7813 then
7814 -- Add pragma Check at the start of the declarations of N.
7815 -- Note that this processing reverses the order of the list,
7816 -- which is what we want since new entries were chained to
7817 -- the head of the list.
7818
7819 Prepend (Grab_PPC (Name_Precondition), Declarations (N));
7820 end if;
7821
7822 Prag := Next_Pragma (Prag);
7823 end loop;
7824 end if;
7825
7826 -- Build postconditions procedure if needed and prepend the following
7827 -- declaration to the start of the declarations for the subprogram.
7828
7829 -- procedure _postconditions [(_Result : resulttype)] is
7830 -- begin
7831 -- pragma Check (Postcondition, condition [,message]);
7832 -- pragma Check (Postcondition, condition [,message]);
7833 -- ...
7834 -- end;
7835
7836 -- First we deal with the postconditions in the body
7837
7838 if Is_Non_Empty_List (Declarations (N)) then
7839
7840 -- Loop through declarations
7841
7842 Prag := First (Declarations (N));
7843 while Present (Prag) loop
7844 if Nkind (Prag) = N_Pragma then
7845
7846 -- If pragma, capture if enabled postcondition, else ignore
7847
7848 if Pragma_Name (Prag) = Name_Postcondition
7849 and then Check_Enabled (Name_Postcondition)
7850 then
7851 if Plist = No_List then
7852 Plist := Empty_List;
7853 end if;
7854
7855 Analyze (Prag);
7856
7857 -- If expansion is disabled, as in a generic unit,
7858 -- save pragma for later expansion.
7859
7860 if not Expander_Active then
7861 Prepend (Grab_PPC (Name_Postcondition), Declarations (N));
7862 else
7863 Append (Grab_PPC (Name_Postcondition), Plist);
7864 end if;
7865 end if;
7866
7867 Next (Prag);
7868
7869 -- Not a pragma, if comes from source, then end scan
7870
7871 elsif Comes_From_Source (Prag) then
7872 exit;
7873
7874 -- Skip stuff not coming from source
7875
7876 else
7877 Next (Prag);
7878 end if;
7879 end loop;
7880 end if;
7881
7882 -- Now deal with any postconditions from the spec
7883
7884 if Present (Spec_Id) then
7885
7886 -- Loop through PPC pragmas from spec
7887
7888 Prag := Spec_PPC_List (Spec_Id);
7889 while Present (Prag) loop
7890 if Pragma_Name (Prag) = Name_Postcondition
7891 and then PPC_Enabled (Prag)
7892 then
7893 if Plist = No_List then
7894 Plist := Empty_List;
7895 end if;
7896
7897 if not Expander_Active then
7898 Prepend (Grab_PPC (Name_Postcondition), Declarations (N));
7899 else
7900 Append (Grab_PPC (Name_Postcondition), Plist);
7901 end if;
7902 end if;
7903
7904 Prag := Next_Pragma (Prag);
7905 end loop;
7906 end if;
7907
7908 -- If we had any postconditions and expansion is enabled, build
7909 -- the Postconditions procedure.
7910
7911 if Present (Plist)
7912 and then Expander_Active
7913 then
7914 Subp := Defining_Entity (N);
7915
7916 if Etype (Subp) /= Standard_Void_Type then
7917 Parms := New_List (
7918 Make_Parameter_Specification (Loc,
7919 Defining_Identifier =>
7920 Make_Defining_Identifier (Loc,
7921 Chars => Name_uResult),
7922 Parameter_Type => New_Occurrence_Of (Etype (Subp), Loc)));
7923 else
7924 Parms := No_List;
7925 end if;
7926
7927 Prepend_To (Declarations (N),
7928 Make_Subprogram_Body (Loc,
7929 Specification =>
7930 Make_Procedure_Specification (Loc,
7931 Defining_Unit_Name =>
7932 Make_Defining_Identifier (Loc,
7933 Chars => Name_uPostconditions),
7934 Parameter_Specifications => Parms),
7935
7936 Declarations => Empty_List,
7937
7938 Handled_Statement_Sequence =>
7939 Make_Handled_Sequence_Of_Statements (Loc,
7940 Statements => Plist)));
7941
7942 if Present (Spec_Id) then
7943 Set_Has_Postconditions (Spec_Id);
7944 else
7945 Set_Has_Postconditions (Body_Id);
7946 end if;
7947 end if;
7948 end Process_PPCs;
7949
7950 ----------------------------
7951 -- Reference_Body_Formals --
7952 ----------------------------
7953
7954 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
7955 Fs : Entity_Id;
7956 Fb : Entity_Id;
7957
7958 begin
7959 if Error_Posted (Spec) then
7960 return;
7961 end if;
7962
7963 -- Iterate over both lists. They may be of different lengths if the two
7964 -- specs are not conformant.
7965
7966 Fs := First_Formal (Spec);
7967 Fb := First_Formal (Bod);
7968 while Present (Fs) and then Present (Fb) loop
7969 Generate_Reference (Fs, Fb, 'b');
7970
7971 if Style_Check then
7972 Style.Check_Identifier (Fb, Fs);
7973 end if;
7974
7975 Set_Spec_Entity (Fb, Fs);
7976 Set_Referenced (Fs, False);
7977 Next_Formal (Fs);
7978 Next_Formal (Fb);
7979 end loop;
7980 end Reference_Body_Formals;
7981
7982 -------------------------
7983 -- Set_Actual_Subtypes --
7984 -------------------------
7985
7986 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
7987 Loc : constant Source_Ptr := Sloc (N);
7988 Decl : Node_Id;
7989 Formal : Entity_Id;
7990 T : Entity_Id;
7991 First_Stmt : Node_Id := Empty;
7992 AS_Needed : Boolean;
7993
7994 begin
7995 -- If this is an empty initialization procedure, no need to create
7996 -- actual subtypes (small optimization).
7997
7998 if Ekind (Subp) = E_Procedure
7999 and then Is_Null_Init_Proc (Subp)
8000 then
8001 return;
8002 end if;
8003
8004 Formal := First_Formal (Subp);
8005 while Present (Formal) loop
8006 T := Etype (Formal);
8007
8008 -- We never need an actual subtype for a constrained formal
8009
8010 if Is_Constrained (T) then
8011 AS_Needed := False;
8012
8013 -- If we have unknown discriminants, then we do not need an actual
8014 -- subtype, or more accurately we cannot figure it out! Note that
8015 -- all class-wide types have unknown discriminants.
8016
8017 elsif Has_Unknown_Discriminants (T) then
8018 AS_Needed := False;
8019
8020 -- At this stage we have an unconstrained type that may need an
8021 -- actual subtype. For sure the actual subtype is needed if we have
8022 -- an unconstrained array type.
8023
8024 elsif Is_Array_Type (T) then
8025 AS_Needed := True;
8026
8027 -- The only other case needing an actual subtype is an unconstrained
8028 -- record type which is an IN parameter (we cannot generate actual
8029 -- subtypes for the OUT or IN OUT case, since an assignment can
8030 -- change the discriminant values. However we exclude the case of
8031 -- initialization procedures, since discriminants are handled very
8032 -- specially in this context, see the section entitled "Handling of
8033 -- Discriminants" in Einfo.
8034
8035 -- We also exclude the case of Discrim_SO_Functions (functions used
8036 -- in front end layout mode for size/offset values), since in such
8037 -- functions only discriminants are referenced, and not only are such
8038 -- subtypes not needed, but they cannot always be generated, because
8039 -- of order of elaboration issues.
8040
8041 elsif Is_Record_Type (T)
8042 and then Ekind (Formal) = E_In_Parameter
8043 and then Chars (Formal) /= Name_uInit
8044 and then not Is_Unchecked_Union (T)
8045 and then not Is_Discrim_SO_Function (Subp)
8046 then
8047 AS_Needed := True;
8048
8049 -- All other cases do not need an actual subtype
8050
8051 else
8052 AS_Needed := False;
8053 end if;
8054
8055 -- Generate actual subtypes for unconstrained arrays and
8056 -- unconstrained discriminated records.
8057
8058 if AS_Needed then
8059 if Nkind (N) = N_Accept_Statement then
8060
8061 -- If expansion is active, The formal is replaced by a local
8062 -- variable that renames the corresponding entry of the
8063 -- parameter block, and it is this local variable that may
8064 -- require an actual subtype.
8065
8066 if Expander_Active then
8067 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
8068 else
8069 Decl := Build_Actual_Subtype (T, Formal);
8070 end if;
8071
8072 if Present (Handled_Statement_Sequence (N)) then
8073 First_Stmt :=
8074 First (Statements (Handled_Statement_Sequence (N)));
8075 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
8076 Mark_Rewrite_Insertion (Decl);
8077 else
8078 -- If the accept statement has no body, there will be no
8079 -- reference to the actuals, so no need to compute actual
8080 -- subtypes.
8081
8082 return;
8083 end if;
8084
8085 else
8086 Decl := Build_Actual_Subtype (T, Formal);
8087 Prepend (Decl, Declarations (N));
8088 Mark_Rewrite_Insertion (Decl);
8089 end if;
8090
8091 -- The declaration uses the bounds of an existing object, and
8092 -- therefore needs no constraint checks.
8093
8094 Analyze (Decl, Suppress => All_Checks);
8095
8096 -- We need to freeze manually the generated type when it is
8097 -- inserted anywhere else than in a declarative part.
8098
8099 if Present (First_Stmt) then
8100 Insert_List_Before_And_Analyze (First_Stmt,
8101 Freeze_Entity (Defining_Identifier (Decl), Loc));
8102 end if;
8103
8104 if Nkind (N) = N_Accept_Statement
8105 and then Expander_Active
8106 then
8107 Set_Actual_Subtype (Renamed_Object (Formal),
8108 Defining_Identifier (Decl));
8109 else
8110 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
8111 end if;
8112 end if;
8113
8114 Next_Formal (Formal);
8115 end loop;
8116 end Set_Actual_Subtypes;
8117
8118 ---------------------
8119 -- Set_Formal_Mode --
8120 ---------------------
8121
8122 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
8123 Spec : constant Node_Id := Parent (Formal_Id);
8124
8125 begin
8126 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
8127 -- since we ensure that corresponding actuals are always valid at the
8128 -- point of the call.
8129
8130 if Out_Present (Spec) then
8131 if Ekind (Scope (Formal_Id)) = E_Function
8132 or else Ekind (Scope (Formal_Id)) = E_Generic_Function
8133 then
8134 Error_Msg_N ("functions can only have IN parameters", Spec);
8135 Set_Ekind (Formal_Id, E_In_Parameter);
8136
8137 elsif In_Present (Spec) then
8138 Set_Ekind (Formal_Id, E_In_Out_Parameter);
8139
8140 else
8141 Set_Ekind (Formal_Id, E_Out_Parameter);
8142 Set_Never_Set_In_Source (Formal_Id, True);
8143 Set_Is_True_Constant (Formal_Id, False);
8144 Set_Current_Value (Formal_Id, Empty);
8145 end if;
8146
8147 else
8148 Set_Ekind (Formal_Id, E_In_Parameter);
8149 end if;
8150
8151 -- Set Is_Known_Non_Null for access parameters since the language
8152 -- guarantees that access parameters are always non-null. We also set
8153 -- Can_Never_Be_Null, since there is no way to change the value.
8154
8155 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
8156
8157 -- Ada 2005 (AI-231): In Ada95, access parameters are always non-
8158 -- null; In Ada 2005, only if then null_exclusion is explicit.
8159
8160 if Ada_Version < Ada_05
8161 or else Can_Never_Be_Null (Etype (Formal_Id))
8162 then
8163 Set_Is_Known_Non_Null (Formal_Id);
8164 Set_Can_Never_Be_Null (Formal_Id);
8165 end if;
8166
8167 -- Ada 2005 (AI-231): Null-exclusion access subtype
8168
8169 elsif Is_Access_Type (Etype (Formal_Id))
8170 and then Can_Never_Be_Null (Etype (Formal_Id))
8171 then
8172 Set_Is_Known_Non_Null (Formal_Id);
8173 end if;
8174
8175 Set_Mechanism (Formal_Id, Default_Mechanism);
8176 Set_Formal_Validity (Formal_Id);
8177 end Set_Formal_Mode;
8178
8179 -------------------------
8180 -- Set_Formal_Validity --
8181 -------------------------
8182
8183 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
8184 begin
8185 -- If no validity checking, then we cannot assume anything about the
8186 -- validity of parameters, since we do not know there is any checking
8187 -- of the validity on the call side.
8188
8189 if not Validity_Checks_On then
8190 return;
8191
8192 -- If validity checking for parameters is enabled, this means we are
8193 -- not supposed to make any assumptions about argument values.
8194
8195 elsif Validity_Check_Parameters then
8196 return;
8197
8198 -- If we are checking in parameters, we will assume that the caller is
8199 -- also checking parameters, so we can assume the parameter is valid.
8200
8201 elsif Ekind (Formal_Id) = E_In_Parameter
8202 and then Validity_Check_In_Params
8203 then
8204 Set_Is_Known_Valid (Formal_Id, True);
8205
8206 -- Similar treatment for IN OUT parameters
8207
8208 elsif Ekind (Formal_Id) = E_In_Out_Parameter
8209 and then Validity_Check_In_Out_Params
8210 then
8211 Set_Is_Known_Valid (Formal_Id, True);
8212 end if;
8213 end Set_Formal_Validity;
8214
8215 ------------------------
8216 -- Subtype_Conformant --
8217 ------------------------
8218
8219 function Subtype_Conformant
8220 (New_Id : Entity_Id;
8221 Old_Id : Entity_Id;
8222 Skip_Controlling_Formals : Boolean := False) return Boolean
8223 is
8224 Result : Boolean;
8225 begin
8226 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
8227 Skip_Controlling_Formals => Skip_Controlling_Formals);
8228 return Result;
8229 end Subtype_Conformant;
8230
8231 ---------------------
8232 -- Type_Conformant --
8233 ---------------------
8234
8235 function Type_Conformant
8236 (New_Id : Entity_Id;
8237 Old_Id : Entity_Id;
8238 Skip_Controlling_Formals : Boolean := False) return Boolean
8239 is
8240 Result : Boolean;
8241 begin
8242 May_Hide_Profile := False;
8243
8244 Check_Conformance
8245 (New_Id, Old_Id, Type_Conformant, False, Result,
8246 Skip_Controlling_Formals => Skip_Controlling_Formals);
8247 return Result;
8248 end Type_Conformant;
8249
8250 -------------------------------
8251 -- Valid_Operator_Definition --
8252 -------------------------------
8253
8254 procedure Valid_Operator_Definition (Designator : Entity_Id) is
8255 N : Integer := 0;
8256 F : Entity_Id;
8257 Id : constant Name_Id := Chars (Designator);
8258 N_OK : Boolean;
8259
8260 begin
8261 F := First_Formal (Designator);
8262 while Present (F) loop
8263 N := N + 1;
8264
8265 if Present (Default_Value (F)) then
8266 Error_Msg_N
8267 ("default values not allowed for operator parameters",
8268 Parent (F));
8269 end if;
8270
8271 Next_Formal (F);
8272 end loop;
8273
8274 -- Verify that user-defined operators have proper number of arguments
8275 -- First case of operators which can only be unary
8276
8277 if Id = Name_Op_Not
8278 or else Id = Name_Op_Abs
8279 then
8280 N_OK := (N = 1);
8281
8282 -- Case of operators which can be unary or binary
8283
8284 elsif Id = Name_Op_Add
8285 or Id = Name_Op_Subtract
8286 then
8287 N_OK := (N in 1 .. 2);
8288
8289 -- All other operators can only be binary
8290
8291 else
8292 N_OK := (N = 2);
8293 end if;
8294
8295 if not N_OK then
8296 Error_Msg_N
8297 ("incorrect number of arguments for operator", Designator);
8298 end if;
8299
8300 if Id = Name_Op_Ne
8301 and then Base_Type (Etype (Designator)) = Standard_Boolean
8302 and then not Is_Intrinsic_Subprogram (Designator)
8303 then
8304 Error_Msg_N
8305 ("explicit definition of inequality not allowed", Designator);
8306 end if;
8307 end Valid_Operator_Definition;
8308
8309 end Sem_Ch6;