7d4bcd1521186973cb8e1b31fb6a2d2ccabb27e1
[gcc.git] / gcc / ada / sem_ch6.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Ch6; use Exp_Ch6;
34 with Exp_Ch7; use Exp_Ch7;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Tss; use Exp_Tss;
38 with Exp_Util; use Exp_Util;
39 with Fname; use Fname;
40 with Freeze; use Freeze;
41 with Itypes; use Itypes;
42 with Lib.Xref; use Lib.Xref;
43 with Layout; use Layout;
44 with Namet; use Namet;
45 with Lib; use Lib;
46 with Nlists; use Nlists;
47 with Nmake; use Nmake;
48 with Opt; use Opt;
49 with Output; use Output;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Cat; use Sem_Cat;
56 with Sem_Ch3; use Sem_Ch3;
57 with Sem_Ch4; use Sem_Ch4;
58 with Sem_Ch5; use Sem_Ch5;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch10; use Sem_Ch10;
61 with Sem_Ch12; use Sem_Ch12;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elim; use Sem_Elim;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Mech; use Sem_Mech;
67 with Sem_Prag; use Sem_Prag;
68 with Sem_Res; use Sem_Res;
69 with Sem_Util; use Sem_Util;
70 with Sem_Type; use Sem_Type;
71 with Sem_Warn; use Sem_Warn;
72 with Sinput; use Sinput;
73 with Stand; use Stand;
74 with Sinfo; use Sinfo;
75 with Sinfo.CN; use Sinfo.CN;
76 with Snames; use Snames;
77 with Stringt; use Stringt;
78 with Style;
79 with Stylesw; use Stylesw;
80 with Tbuild; use Tbuild;
81 with Uintp; use Uintp;
82 with Urealp; use Urealp;
83 with Validsw; use Validsw;
84
85 package body Sem_Ch6 is
86
87 May_Hide_Profile : Boolean := False;
88 -- This flag is used to indicate that two formals in two subprograms being
89 -- checked for conformance differ only in that one is an access parameter
90 -- while the other is of a general access type with the same designated
91 -- type. In this case, if the rest of the signatures match, a call to
92 -- either subprogram may be ambiguous, which is worth a warning. The flag
93 -- is set in Compatible_Types, and the warning emitted in
94 -- New_Overloaded_Entity.
95
96 -----------------------
97 -- Local Subprograms --
98 -----------------------
99
100 procedure Analyze_Return_Statement (N : Node_Id);
101 -- Common processing for simple_ and extended_return_statements
102
103 procedure Analyze_Function_Return (N : Node_Id);
104 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
105 -- applies to a [generic] function.
106
107 procedure Analyze_Return_Type (N : Node_Id);
108 -- Subsidiary to Process_Formals: analyze subtype mark in function
109 -- specification, in a context where the formals are visible and hide
110 -- outer homographs.
111
112 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
113 -- Does all the real work of Analyze_Subprogram_Body
114
115 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
116 -- Analyze a generic subprogram body. N is the body to be analyzed, and
117 -- Gen_Id is the defining entity Id for the corresponding spec.
118
119 procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id);
120 -- If a subprogram has pragma Inline and inlining is active, use generic
121 -- machinery to build an unexpanded body for the subprogram. This body is
122 -- subsequently used for inline expansions at call sites. If subprogram can
123 -- be inlined (depending on size and nature of local declarations) this
124 -- function returns true. Otherwise subprogram body is treated normally.
125 -- If proper warnings are enabled and the subprogram contains a construct
126 -- that cannot be inlined, the offending construct is flagged accordingly.
127
128 procedure Check_Conformance
129 (New_Id : Entity_Id;
130 Old_Id : Entity_Id;
131 Ctype : Conformance_Type;
132 Errmsg : Boolean;
133 Conforms : out Boolean;
134 Err_Loc : Node_Id := Empty;
135 Get_Inst : Boolean := False;
136 Skip_Controlling_Formals : Boolean := False);
137 -- Given two entities, this procedure checks that the profiles associated
138 -- with these entities meet the conformance criterion given by the third
139 -- parameter. If they conform, Conforms is set True and control returns
140 -- to the caller. If they do not conform, Conforms is set to False, and
141 -- in addition, if Errmsg is True on the call, proper messages are output
142 -- to complain about the conformance failure. If Err_Loc is non_Empty
143 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
144 -- error messages are placed on the appropriate part of the construct
145 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
146 -- against a formal access-to-subprogram type so Get_Instance_Of must
147 -- be called.
148
149 procedure Check_Subprogram_Order (N : Node_Id);
150 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
151 -- the alpha ordering rule for N if this ordering requirement applicable.
152
153 procedure Check_Returns
154 (HSS : Node_Id;
155 Mode : Character;
156 Err : out Boolean;
157 Proc : Entity_Id := Empty);
158 -- Called to check for missing return statements in a function body, or for
159 -- returns present in a procedure body which has No_Return set. HSS is the
160 -- handled statement sequence for the subprogram body. This procedure
161 -- checks all flow paths to make sure they either have return (Mode = 'F',
162 -- used for functions) or do not have a return (Mode = 'P', used for
163 -- No_Return procedures). The flag Err is set if there are any control
164 -- paths not explicitly terminated by a return in the function case, and is
165 -- True otherwise. Proc is the entity for the procedure case and is used
166 -- in posting the warning message.
167
168 procedure Enter_Overloaded_Entity (S : Entity_Id);
169 -- This procedure makes S, a new overloaded entity, into the first visible
170 -- entity with that name.
171
172 procedure Install_Entity (E : Entity_Id);
173 -- Make single entity visible. Used for generic formals as well
174
175 function Is_Non_Overriding_Operation
176 (Prev_E : Entity_Id;
177 New_E : Entity_Id) return Boolean;
178 -- Enforce the rule given in 12.3(18): a private operation in an instance
179 -- overrides an inherited operation only if the corresponding operation
180 -- was overriding in the generic. This can happen for primitive operations
181 -- of types derived (in the generic unit) from formal private or formal
182 -- derived types.
183
184 procedure Make_Inequality_Operator (S : Entity_Id);
185 -- Create the declaration for an inequality operator that is implicitly
186 -- created by a user-defined equality operator that yields a boolean.
187
188 procedure May_Need_Actuals (Fun : Entity_Id);
189 -- Flag functions that can be called without parameters, i.e. those that
190 -- have no parameters, or those for which defaults exist for all parameters
191
192 procedure Process_PPCs
193 (N : Node_Id;
194 Spec_Id : Entity_Id;
195 Body_Id : Entity_Id);
196 -- Called from Analyze[_Generic]_Subprogram_Body to deal with scanning post
197 -- conditions for the body and assembling and inserting the _postconditions
198 -- procedure. N is the node for the subprogram body and Body_Id/Spec_Id are
199 -- the entities for the body and separate spec (if there is no separate
200 -- spec, Spec_Id is Empty).
201
202 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
203 -- Formal_Id is an formal parameter entity. This procedure deals with
204 -- setting the proper validity status for this entity, which depends on
205 -- the kind of parameter and the validity checking mode.
206
207 ------------------------------
208 -- Analyze_Return_Statement --
209 ------------------------------
210
211 procedure Analyze_Return_Statement (N : Node_Id) is
212
213 pragma Assert (Nkind_In (N, N_Simple_Return_Statement,
214 N_Extended_Return_Statement));
215
216 Returns_Object : constant Boolean :=
217 Nkind (N) = N_Extended_Return_Statement
218 or else
219 (Nkind (N) = N_Simple_Return_Statement
220 and then Present (Expression (N)));
221 -- True if we're returning something; that is, "return <expression>;"
222 -- or "return Result : T [:= ...]". False for "return;". Used for error
223 -- checking: If Returns_Object is True, N should apply to a function
224 -- body; otherwise N should apply to a procedure body, entry body,
225 -- accept statement, or extended return statement.
226
227 function Find_What_It_Applies_To return Entity_Id;
228 -- Find the entity representing the innermost enclosing body, accept
229 -- statement, or extended return statement. If the result is a callable
230 -- construct or extended return statement, then this will be the value
231 -- of the Return_Applies_To attribute. Otherwise, the program is
232 -- illegal. See RM-6.5(4/2).
233
234 -----------------------------
235 -- Find_What_It_Applies_To --
236 -----------------------------
237
238 function Find_What_It_Applies_To return Entity_Id is
239 Result : Entity_Id := Empty;
240
241 begin
242 -- Loop outward through the Scope_Stack, skipping blocks and loops
243
244 for J in reverse 0 .. Scope_Stack.Last loop
245 Result := Scope_Stack.Table (J).Entity;
246 exit when Ekind (Result) /= E_Block and then
247 Ekind (Result) /= E_Loop;
248 end loop;
249
250 pragma Assert (Present (Result));
251 return Result;
252 end Find_What_It_Applies_To;
253
254 -- Local declarations
255
256 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
257 Kind : constant Entity_Kind := Ekind (Scope_Id);
258 Loc : constant Source_Ptr := Sloc (N);
259 Stm_Entity : constant Entity_Id :=
260 New_Internal_Entity
261 (E_Return_Statement, Current_Scope, Loc, 'R');
262
263 -- Start of processing for Analyze_Return_Statement
264
265 begin
266 Set_Return_Statement_Entity (N, Stm_Entity);
267
268 Set_Etype (Stm_Entity, Standard_Void_Type);
269 Set_Return_Applies_To (Stm_Entity, Scope_Id);
270
271 -- Place Return entity on scope stack, to simplify enforcement of 6.5
272 -- (4/2): an inner return statement will apply to this extended return.
273
274 if Nkind (N) = N_Extended_Return_Statement then
275 Push_Scope (Stm_Entity);
276 end if;
277
278 -- Check that pragma No_Return is obeyed. Don't complain about the
279 -- implicitly-generated return that is placed at the end.
280
281 if No_Return (Scope_Id) and then Comes_From_Source (N) then
282 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
283 end if;
284
285 -- Warn on any unassigned OUT parameters if in procedure
286
287 if Ekind (Scope_Id) = E_Procedure then
288 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
289 end if;
290
291 -- Check that functions return objects, and other things do not
292
293 if Kind = E_Function or else Kind = E_Generic_Function then
294 if not Returns_Object then
295 Error_Msg_N ("missing expression in return from function", N);
296 end if;
297
298 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
299 if Returns_Object then
300 Error_Msg_N ("procedure cannot return value (use function)", N);
301 end if;
302
303 elsif Kind = E_Entry or else Kind = E_Entry_Family then
304 if Returns_Object then
305 if Is_Protected_Type (Scope (Scope_Id)) then
306 Error_Msg_N ("entry body cannot return value", N);
307 else
308 Error_Msg_N ("accept statement cannot return value", N);
309 end if;
310 end if;
311
312 elsif Kind = E_Return_Statement then
313
314 -- We are nested within another return statement, which must be an
315 -- extended_return_statement.
316
317 if Returns_Object then
318 Error_Msg_N
319 ("extended_return_statement cannot return value; " &
320 "use `""RETURN;""`", N);
321 end if;
322
323 else
324 Error_Msg_N ("illegal context for return statement", N);
325 end if;
326
327 if Kind = E_Function or else Kind = E_Generic_Function then
328 Analyze_Function_Return (N);
329 end if;
330
331 if Nkind (N) = N_Extended_Return_Statement then
332 End_Scope;
333 end if;
334
335 Kill_Current_Values (Last_Assignment_Only => True);
336 Check_Unreachable_Code (N);
337 end Analyze_Return_Statement;
338
339 ---------------------------------------------
340 -- Analyze_Abstract_Subprogram_Declaration --
341 ---------------------------------------------
342
343 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
344 Designator : constant Entity_Id :=
345 Analyze_Subprogram_Specification (Specification (N));
346 Scop : constant Entity_Id := Current_Scope;
347
348 begin
349 Generate_Definition (Designator);
350 Set_Is_Abstract_Subprogram (Designator);
351 New_Overloaded_Entity (Designator);
352 Check_Delayed_Subprogram (Designator);
353
354 Set_Categorization_From_Scope (Designator, Scop);
355
356 if Ekind (Scope (Designator)) = E_Protected_Type then
357 Error_Msg_N
358 ("abstract subprogram not allowed in protected type", N);
359
360 -- Issue a warning if the abstract subprogram is neither a dispatching
361 -- operation nor an operation that overrides an inherited subprogram or
362 -- predefined operator, since this most likely indicates a mistake.
363
364 elsif Warn_On_Redundant_Constructs
365 and then not Is_Dispatching_Operation (Designator)
366 and then not Is_Overriding_Operation (Designator)
367 and then (not Is_Operator_Symbol_Name (Chars (Designator))
368 or else Scop /= Scope (Etype (First_Formal (Designator))))
369 then
370 Error_Msg_N
371 ("?abstract subprogram is not dispatching or overriding", N);
372 end if;
373
374 Generate_Reference_To_Formals (Designator);
375 Check_Eliminated (Designator);
376 end Analyze_Abstract_Subprogram_Declaration;
377
378 ----------------------------------------
379 -- Analyze_Extended_Return_Statement --
380 ----------------------------------------
381
382 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
383 begin
384 Analyze_Return_Statement (N);
385 end Analyze_Extended_Return_Statement;
386
387 ----------------------------
388 -- Analyze_Function_Call --
389 ----------------------------
390
391 procedure Analyze_Function_Call (N : Node_Id) is
392 P : constant Node_Id := Name (N);
393 L : constant List_Id := Parameter_Associations (N);
394 Actual : Node_Id;
395
396 begin
397 Analyze (P);
398
399 -- A call of the form A.B (X) may be an Ada05 call, which is rewritten
400 -- as B (A, X). If the rewriting is successful, the call has been
401 -- analyzed and we just return.
402
403 if Nkind (P) = N_Selected_Component
404 and then Name (N) /= P
405 and then Is_Rewrite_Substitution (N)
406 and then Present (Etype (N))
407 then
408 return;
409 end if;
410
411 -- If error analyzing name, then set Any_Type as result type and return
412
413 if Etype (P) = Any_Type then
414 Set_Etype (N, Any_Type);
415 return;
416 end if;
417
418 -- Otherwise analyze the parameters
419
420 if Present (L) then
421 Actual := First (L);
422 while Present (Actual) loop
423 Analyze (Actual);
424 Check_Parameterless_Call (Actual);
425 Next (Actual);
426 end loop;
427 end if;
428
429 Analyze_Call (N);
430 end Analyze_Function_Call;
431
432 -----------------------------
433 -- Analyze_Function_Return --
434 -----------------------------
435
436 procedure Analyze_Function_Return (N : Node_Id) is
437 Loc : constant Source_Ptr := Sloc (N);
438 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
439 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
440
441 R_Type : constant Entity_Id := Etype (Scope_Id);
442 -- Function result subtype
443
444 procedure Check_Limited_Return (Expr : Node_Id);
445 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning
446 -- limited types. Used only for simple return statements.
447 -- Expr is the expression returned.
448
449 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
450 -- Check that the return_subtype_indication properly matches the result
451 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
452
453 --------------------------
454 -- Check_Limited_Return --
455 --------------------------
456
457 procedure Check_Limited_Return (Expr : Node_Id) is
458 begin
459 -- Ada 2005 (AI-318-02): Return-by-reference types have been
460 -- removed and replaced by anonymous access results. This is an
461 -- incompatibility with Ada 95. Not clear whether this should be
462 -- enforced yet or perhaps controllable with special switch. ???
463
464 if Is_Limited_Type (R_Type)
465 and then Comes_From_Source (N)
466 and then not In_Instance_Body
467 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
468 then
469 -- Error in Ada 2005
470
471 if Ada_Version >= Ada_05
472 and then not Debug_Flag_Dot_L
473 and then not GNAT_Mode
474 then
475 Error_Msg_N
476 ("(Ada 2005) cannot copy object of a limited type " &
477 "(RM-2005 6.5(5.5/2))", Expr);
478 if Is_Inherently_Limited_Type (R_Type) then
479 Error_Msg_N
480 ("\return by reference not permitted in Ada 2005", Expr);
481 end if;
482
483 -- Warn in Ada 95 mode, to give folks a heads up about this
484 -- incompatibility.
485
486 -- In GNAT mode, this is just a warning, to allow it to be
487 -- evilly turned off. Otherwise it is a real error.
488
489 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
490 if Is_Inherently_Limited_Type (R_Type) then
491 Error_Msg_N
492 ("return by reference not permitted in Ada 2005 " &
493 "(RM-2005 6.5(5.5/2))?", Expr);
494 else
495 Error_Msg_N
496 ("cannot copy object of a limited type in Ada 2005 " &
497 "(RM-2005 6.5(5.5/2))?", Expr);
498 end if;
499
500 -- Ada 95 mode, compatibility warnings disabled
501
502 else
503 return; -- skip continuation messages below
504 end if;
505
506 Error_Msg_N
507 ("\consider switching to return of access type", Expr);
508 Explain_Limited_Type (R_Type, Expr);
509 end if;
510 end Check_Limited_Return;
511
512 -------------------------------------
513 -- Check_Return_Subtype_Indication --
514 -------------------------------------
515
516 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
517 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
518 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
519 -- Subtype given in the extended return statement;
520 -- this must match R_Type.
521
522 Subtype_Ind : constant Node_Id :=
523 Object_Definition (Original_Node (Obj_Decl));
524
525 R_Type_Is_Anon_Access :
526 constant Boolean :=
527 Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type
528 or else
529 Ekind (R_Type) = E_Anonymous_Access_Protected_Subprogram_Type
530 or else
531 Ekind (R_Type) = E_Anonymous_Access_Type;
532 -- True if return type of the function is an anonymous access type
533 -- Can't we make Is_Anonymous_Access_Type in einfo ???
534
535 R_Stm_Type_Is_Anon_Access :
536 constant Boolean :=
537 Ekind (R_Stm_Type) = E_Anonymous_Access_Subprogram_Type
538 or else
539 Ekind (R_Stm_Type) = E_Anonymous_Access_Protected_Subprogram_Type
540 or else
541 Ekind (R_Stm_Type) = E_Anonymous_Access_Type;
542 -- True if type of the return object is an anonymous access type
543
544 begin
545 -- First, avoid cascade errors:
546
547 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
548 return;
549 end if;
550
551 -- "return access T" case; check that the return statement also has
552 -- "access T", and that the subtypes statically match:
553 -- if this is an access to subprogram the signatures must match.
554
555 if R_Type_Is_Anon_Access then
556 if R_Stm_Type_Is_Anon_Access then
557 if
558 Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
559 then
560 if Base_Type (Designated_Type (R_Stm_Type)) /=
561 Base_Type (Designated_Type (R_Type))
562 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
563 then
564 Error_Msg_N
565 ("subtype must statically match function result subtype",
566 Subtype_Mark (Subtype_Ind));
567 end if;
568
569 else
570 -- For two anonymous access to subprogram types, the
571 -- types themselves must be type conformant.
572
573 if not Conforming_Types
574 (R_Stm_Type, R_Type, Fully_Conformant)
575 then
576 Error_Msg_N
577 ("subtype must statically match function result subtype",
578 Subtype_Ind);
579 end if;
580 end if;
581
582 else
583 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
584 end if;
585
586 -- Subtype indication case: check that the return object's type is
587 -- covered by the result type, and that the subtypes statically match
588 -- when the result subtype is constrained. Also handle record types
589 -- with unknown discriminants for which we have built the underlying
590 -- record view. Coverage is needed to allow specific-type return
591 -- objects when the result type is class-wide (see AI05-32).
592
593 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
594 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
595 and then
596 Covers
597 (Base_Type (R_Type),
598 Underlying_Record_View (Base_Type (R_Stm_Type))))
599 then
600 -- A null exclusion may be present on the return type, on the
601 -- function specification, on the object declaration or on the
602 -- subtype itself.
603
604 if Is_Access_Type (R_Type)
605 and then
606 (Can_Never_Be_Null (R_Type)
607 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
608 Can_Never_Be_Null (R_Stm_Type)
609 then
610 Error_Msg_N
611 ("subtype must statically match function result subtype",
612 Subtype_Ind);
613 end if;
614
615 if Is_Constrained (R_Type) then
616 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
617 Error_Msg_N
618 ("subtype must statically match function result subtype",
619 Subtype_Ind);
620 end if;
621 end if;
622
623 elsif Etype (Base_Type (R_Type)) = R_Stm_Type
624 and then Is_Null_Extension (Base_Type (R_Type))
625 then
626 null;
627
628 else
629 Error_Msg_N
630 ("wrong type for return_subtype_indication", Subtype_Ind);
631 end if;
632 end Check_Return_Subtype_Indication;
633
634 ---------------------
635 -- Local Variables --
636 ---------------------
637
638 Expr : Node_Id;
639
640 -- Start of processing for Analyze_Function_Return
641
642 begin
643 Set_Return_Present (Scope_Id);
644
645 if Nkind (N) = N_Simple_Return_Statement then
646 Expr := Expression (N);
647 Analyze_And_Resolve (Expr, R_Type);
648 Check_Limited_Return (Expr);
649
650 else
651 -- Analyze parts specific to extended_return_statement:
652
653 declare
654 Obj_Decl : constant Node_Id :=
655 Last (Return_Object_Declarations (N));
656
657 HSS : constant Node_Id := Handled_Statement_Sequence (N);
658
659 begin
660 Expr := Expression (Obj_Decl);
661
662 -- Note: The check for OK_For_Limited_Init will happen in
663 -- Analyze_Object_Declaration; we treat it as a normal
664 -- object declaration.
665
666 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
667 Analyze (Obj_Decl);
668
669 Check_Return_Subtype_Indication (Obj_Decl);
670
671 if Present (HSS) then
672 Analyze (HSS);
673
674 if Present (Exception_Handlers (HSS)) then
675
676 -- ???Has_Nested_Block_With_Handler needs to be set.
677 -- Probably by creating an actual N_Block_Statement.
678 -- Probably in Expand.
679
680 null;
681 end if;
682 end if;
683
684 Check_References (Stm_Entity);
685 end;
686 end if;
687
688 -- Case of Expr present
689
690 if Present (Expr)
691
692 -- Defend against previous errors
693
694 and then Nkind (Expr) /= N_Empty
695 and then Present (Etype (Expr))
696 then
697 -- Apply constraint check. Note that this is done before the implicit
698 -- conversion of the expression done for anonymous access types to
699 -- ensure correct generation of the null-excluding check associated
700 -- with null-excluding expressions found in return statements.
701
702 Apply_Constraint_Check (Expr, R_Type);
703
704 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
705 -- type, apply an implicit conversion of the expression to that type
706 -- to force appropriate static and run-time accessibility checks.
707
708 if Ada_Version >= Ada_05
709 and then Ekind (R_Type) = E_Anonymous_Access_Type
710 then
711 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
712 Analyze_And_Resolve (Expr, R_Type);
713 end if;
714
715 -- If the result type is class-wide, then check that the return
716 -- expression's type is not declared at a deeper level than the
717 -- function (RM05-6.5(5.6/2)).
718
719 if Ada_Version >= Ada_05
720 and then Is_Class_Wide_Type (R_Type)
721 then
722 if Type_Access_Level (Etype (Expr)) >
723 Subprogram_Access_Level (Scope_Id)
724 then
725 Error_Msg_N
726 ("level of return expression type is deeper than " &
727 "class-wide function!", Expr);
728 end if;
729 end if;
730
731 -- Check incorrect use of dynamically tagged expression
732
733 if Is_Tagged_Type (R_Type) then
734 Check_Dynamically_Tagged_Expression
735 (Expr => Expr,
736 Typ => R_Type,
737 Related_Nod => N);
738 end if;
739
740 -- ??? A real run-time accessibility check is needed in cases
741 -- involving dereferences of access parameters. For now we just
742 -- check the static cases.
743
744 if (Ada_Version < Ada_05 or else Debug_Flag_Dot_L)
745 and then Is_Inherently_Limited_Type (Etype (Scope_Id))
746 and then Object_Access_Level (Expr) >
747 Subprogram_Access_Level (Scope_Id)
748 then
749 Rewrite (N,
750 Make_Raise_Program_Error (Loc,
751 Reason => PE_Accessibility_Check_Failed));
752 Analyze (N);
753
754 Error_Msg_N
755 ("cannot return a local value by reference?", N);
756 Error_Msg_NE
757 ("\& will be raised at run time?",
758 N, Standard_Program_Error);
759 end if;
760
761 if Known_Null (Expr)
762 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
763 and then Null_Exclusion_Present (Parent (Scope_Id))
764 then
765 Apply_Compile_Time_Constraint_Error
766 (N => Expr,
767 Msg => "(Ada 2005) null not allowed for "
768 & "null-excluding return?",
769 Reason => CE_Null_Not_Allowed);
770 end if;
771 end if;
772 end Analyze_Function_Return;
773
774 -------------------------------------
775 -- Analyze_Generic_Subprogram_Body --
776 -------------------------------------
777
778 procedure Analyze_Generic_Subprogram_Body
779 (N : Node_Id;
780 Gen_Id : Entity_Id)
781 is
782 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
783 Kind : constant Entity_Kind := Ekind (Gen_Id);
784 Body_Id : Entity_Id;
785 New_N : Node_Id;
786 Spec : Node_Id;
787
788 begin
789 -- Copy body and disable expansion while analyzing the generic For a
790 -- stub, do not copy the stub (which would load the proper body), this
791 -- will be done when the proper body is analyzed.
792
793 if Nkind (N) /= N_Subprogram_Body_Stub then
794 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
795 Rewrite (N, New_N);
796 Start_Generic;
797 end if;
798
799 Spec := Specification (N);
800
801 -- Within the body of the generic, the subprogram is callable, and
802 -- behaves like the corresponding non-generic unit.
803
804 Body_Id := Defining_Entity (Spec);
805
806 if Kind = E_Generic_Procedure
807 and then Nkind (Spec) /= N_Procedure_Specification
808 then
809 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
810 return;
811
812 elsif Kind = E_Generic_Function
813 and then Nkind (Spec) /= N_Function_Specification
814 then
815 Error_Msg_N ("invalid body for generic function ", Body_Id);
816 return;
817 end if;
818
819 Set_Corresponding_Body (Gen_Decl, Body_Id);
820
821 if Has_Completion (Gen_Id)
822 and then Nkind (Parent (N)) /= N_Subunit
823 then
824 Error_Msg_N ("duplicate generic body", N);
825 return;
826 else
827 Set_Has_Completion (Gen_Id);
828 end if;
829
830 if Nkind (N) = N_Subprogram_Body_Stub then
831 Set_Ekind (Defining_Entity (Specification (N)), Kind);
832 else
833 Set_Corresponding_Spec (N, Gen_Id);
834 end if;
835
836 if Nkind (Parent (N)) = N_Compilation_Unit then
837 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
838 end if;
839
840 -- Make generic parameters immediately visible in the body. They are
841 -- needed to process the formals declarations. Then make the formals
842 -- visible in a separate step.
843
844 Push_Scope (Gen_Id);
845
846 declare
847 E : Entity_Id;
848 First_Ent : Entity_Id;
849
850 begin
851 First_Ent := First_Entity (Gen_Id);
852
853 E := First_Ent;
854 while Present (E) and then not Is_Formal (E) loop
855 Install_Entity (E);
856 Next_Entity (E);
857 end loop;
858
859 Set_Use (Generic_Formal_Declarations (Gen_Decl));
860
861 -- Now generic formals are visible, and the specification can be
862 -- analyzed, for subsequent conformance check.
863
864 Body_Id := Analyze_Subprogram_Specification (Spec);
865
866 -- Make formal parameters visible
867
868 if Present (E) then
869
870 -- E is the first formal parameter, we loop through the formals
871 -- installing them so that they will be visible.
872
873 Set_First_Entity (Gen_Id, E);
874 while Present (E) loop
875 Install_Entity (E);
876 Next_Formal (E);
877 end loop;
878 end if;
879
880 -- Visible generic entity is callable within its own body
881
882 Set_Ekind (Gen_Id, Ekind (Body_Id));
883 Set_Ekind (Body_Id, E_Subprogram_Body);
884 Set_Convention (Body_Id, Convention (Gen_Id));
885 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
886 Set_Scope (Body_Id, Scope (Gen_Id));
887 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
888
889 if Nkind (N) = N_Subprogram_Body_Stub then
890
891 -- No body to analyze, so restore state of generic unit
892
893 Set_Ekind (Gen_Id, Kind);
894 Set_Ekind (Body_Id, Kind);
895
896 if Present (First_Ent) then
897 Set_First_Entity (Gen_Id, First_Ent);
898 end if;
899
900 End_Scope;
901 return;
902 end if;
903
904 -- If this is a compilation unit, it must be made visible explicitly,
905 -- because the compilation of the declaration, unlike other library
906 -- unit declarations, does not. If it is not a unit, the following
907 -- is redundant but harmless.
908
909 Set_Is_Immediately_Visible (Gen_Id);
910 Reference_Body_Formals (Gen_Id, Body_Id);
911
912 if Is_Child_Unit (Gen_Id) then
913 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
914 end if;
915
916 Set_Actual_Subtypes (N, Current_Scope);
917 Process_PPCs (N, Gen_Id, Body_Id);
918
919 -- If the generic unit carries pre- or post-conditions, copy them
920 -- to the original generic tree, so that they are properly added
921 -- to any instantiation.
922
923 declare
924 Orig : constant Node_Id := Original_Node (N);
925 Cond : Node_Id;
926
927 begin
928 Cond := First (Declarations (N));
929 while Present (Cond) loop
930 if Nkind (Cond) = N_Pragma
931 and then Pragma_Name (Cond) = Name_Check
932 then
933 Prepend (New_Copy_Tree (Cond), Declarations (Orig));
934
935 elsif Nkind (Cond) = N_Pragma
936 and then Pragma_Name (Cond) = Name_Postcondition
937 then
938 Set_Ekind (Defining_Entity (Orig), Ekind (Gen_Id));
939 Prepend (New_Copy_Tree (Cond), Declarations (Orig));
940 else
941 exit;
942 end if;
943
944 Next (Cond);
945 end loop;
946 end;
947
948 Analyze_Declarations (Declarations (N));
949 Check_Completion;
950 Analyze (Handled_Statement_Sequence (N));
951
952 Save_Global_References (Original_Node (N));
953
954 -- Prior to exiting the scope, include generic formals again (if any
955 -- are present) in the set of local entities.
956
957 if Present (First_Ent) then
958 Set_First_Entity (Gen_Id, First_Ent);
959 end if;
960
961 Check_References (Gen_Id);
962 end;
963
964 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
965 End_Scope;
966 Check_Subprogram_Order (N);
967
968 -- Outside of its body, unit is generic again
969
970 Set_Ekind (Gen_Id, Kind);
971 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
972
973 if Style_Check then
974 Style.Check_Identifier (Body_Id, Gen_Id);
975 end if;
976 End_Generic;
977 end Analyze_Generic_Subprogram_Body;
978
979 -----------------------------
980 -- Analyze_Operator_Symbol --
981 -----------------------------
982
983 -- An operator symbol such as "+" or "and" may appear in context where the
984 -- literal denotes an entity name, such as "+"(x, y) or in context when it
985 -- is just a string, as in (conjunction = "or"). In these cases the parser
986 -- generates this node, and the semantics does the disambiguation. Other
987 -- such case are actuals in an instantiation, the generic unit in an
988 -- instantiation, and pragma arguments.
989
990 procedure Analyze_Operator_Symbol (N : Node_Id) is
991 Par : constant Node_Id := Parent (N);
992
993 begin
994 if (Nkind (Par) = N_Function_Call
995 and then N = Name (Par))
996 or else Nkind (Par) = N_Function_Instantiation
997 or else (Nkind (Par) = N_Indexed_Component
998 and then N = Prefix (Par))
999 or else (Nkind (Par) = N_Pragma_Argument_Association
1000 and then not Is_Pragma_String_Literal (Par))
1001 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
1002 or else (Nkind (Par) = N_Attribute_Reference
1003 and then Attribute_Name (Par) /= Name_Value)
1004 then
1005 Find_Direct_Name (N);
1006
1007 else
1008 Change_Operator_Symbol_To_String_Literal (N);
1009 Analyze (N);
1010 end if;
1011 end Analyze_Operator_Symbol;
1012
1013 -----------------------------------
1014 -- Analyze_Parameter_Association --
1015 -----------------------------------
1016
1017 procedure Analyze_Parameter_Association (N : Node_Id) is
1018 begin
1019 Analyze (Explicit_Actual_Parameter (N));
1020 end Analyze_Parameter_Association;
1021
1022 ----------------------------
1023 -- Analyze_Procedure_Call --
1024 ----------------------------
1025
1026 procedure Analyze_Procedure_Call (N : Node_Id) is
1027 Loc : constant Source_Ptr := Sloc (N);
1028 P : constant Node_Id := Name (N);
1029 Actuals : constant List_Id := Parameter_Associations (N);
1030 Actual : Node_Id;
1031 New_N : Node_Id;
1032
1033 procedure Analyze_Call_And_Resolve;
1034 -- Do Analyze and Resolve calls for procedure call
1035
1036 ------------------------------
1037 -- Analyze_Call_And_Resolve --
1038 ------------------------------
1039
1040 procedure Analyze_Call_And_Resolve is
1041 begin
1042 if Nkind (N) = N_Procedure_Call_Statement then
1043 Analyze_Call (N);
1044 Resolve (N, Standard_Void_Type);
1045 else
1046 Analyze (N);
1047 end if;
1048 end Analyze_Call_And_Resolve;
1049
1050 -- Start of processing for Analyze_Procedure_Call
1051
1052 begin
1053 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1054 -- a procedure call or an entry call. The prefix may denote an access
1055 -- to subprogram type, in which case an implicit dereference applies.
1056 -- If the prefix is an indexed component (without implicit dereference)
1057 -- then the construct denotes a call to a member of an entire family.
1058 -- If the prefix is a simple name, it may still denote a call to a
1059 -- parameterless member of an entry family. Resolution of these various
1060 -- interpretations is delicate.
1061
1062 Analyze (P);
1063
1064 -- If this is a call of the form Obj.Op, the call may have been
1065 -- analyzed and possibly rewritten into a block, in which case
1066 -- we are done.
1067
1068 if Analyzed (N) then
1069 return;
1070 end if;
1071
1072 -- If error analyzing prefix, then set Any_Type as result and return
1073
1074 if Etype (P) = Any_Type then
1075 Set_Etype (N, Any_Type);
1076 return;
1077 end if;
1078
1079 -- Otherwise analyze the parameters
1080
1081 if Present (Actuals) then
1082 Actual := First (Actuals);
1083
1084 while Present (Actual) loop
1085 Analyze (Actual);
1086 Check_Parameterless_Call (Actual);
1087 Next (Actual);
1088 end loop;
1089 end if;
1090
1091 -- Special processing for Elab_Spec and Elab_Body calls
1092
1093 if Nkind (P) = N_Attribute_Reference
1094 and then (Attribute_Name (P) = Name_Elab_Spec
1095 or else Attribute_Name (P) = Name_Elab_Body)
1096 then
1097 if Present (Actuals) then
1098 Error_Msg_N
1099 ("no parameters allowed for this call", First (Actuals));
1100 return;
1101 end if;
1102
1103 Set_Etype (N, Standard_Void_Type);
1104 Set_Analyzed (N);
1105
1106 elsif Is_Entity_Name (P)
1107 and then Is_Record_Type (Etype (Entity (P)))
1108 and then Remote_AST_I_Dereference (P)
1109 then
1110 return;
1111
1112 elsif Is_Entity_Name (P)
1113 and then Ekind (Entity (P)) /= E_Entry_Family
1114 then
1115 if Is_Access_Type (Etype (P))
1116 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1117 and then No (Actuals)
1118 and then Comes_From_Source (N)
1119 then
1120 Error_Msg_N ("missing explicit dereference in call", N);
1121 end if;
1122
1123 Analyze_Call_And_Resolve;
1124
1125 -- If the prefix is the simple name of an entry family, this is
1126 -- a parameterless call from within the task body itself.
1127
1128 elsif Is_Entity_Name (P)
1129 and then Nkind (P) = N_Identifier
1130 and then Ekind (Entity (P)) = E_Entry_Family
1131 and then Present (Actuals)
1132 and then No (Next (First (Actuals)))
1133 then
1134 -- Can be call to parameterless entry family. What appears to be the
1135 -- sole argument is in fact the entry index. Rewrite prefix of node
1136 -- accordingly. Source representation is unchanged by this
1137 -- transformation.
1138
1139 New_N :=
1140 Make_Indexed_Component (Loc,
1141 Prefix =>
1142 Make_Selected_Component (Loc,
1143 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1144 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1145 Expressions => Actuals);
1146 Set_Name (N, New_N);
1147 Set_Etype (New_N, Standard_Void_Type);
1148 Set_Parameter_Associations (N, No_List);
1149 Analyze_Call_And_Resolve;
1150
1151 elsif Nkind (P) = N_Explicit_Dereference then
1152 if Ekind (Etype (P)) = E_Subprogram_Type then
1153 Analyze_Call_And_Resolve;
1154 else
1155 Error_Msg_N ("expect access to procedure in call", P);
1156 end if;
1157
1158 -- The name can be a selected component or an indexed component that
1159 -- yields an access to subprogram. Such a prefix is legal if the call
1160 -- has parameter associations.
1161
1162 elsif Is_Access_Type (Etype (P))
1163 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1164 then
1165 if Present (Actuals) then
1166 Analyze_Call_And_Resolve;
1167 else
1168 Error_Msg_N ("missing explicit dereference in call ", N);
1169 end if;
1170
1171 -- If not an access to subprogram, then the prefix must resolve to the
1172 -- name of an entry, entry family, or protected operation.
1173
1174 -- For the case of a simple entry call, P is a selected component where
1175 -- the prefix is the task and the selector name is the entry. A call to
1176 -- a protected procedure will have the same syntax. If the protected
1177 -- object contains overloaded operations, the entity may appear as a
1178 -- function, the context will select the operation whose type is Void.
1179
1180 elsif Nkind (P) = N_Selected_Component
1181 and then (Ekind (Entity (Selector_Name (P))) = E_Entry
1182 or else
1183 Ekind (Entity (Selector_Name (P))) = E_Procedure
1184 or else
1185 Ekind (Entity (Selector_Name (P))) = E_Function)
1186 then
1187 Analyze_Call_And_Resolve;
1188
1189 elsif Nkind (P) = N_Selected_Component
1190 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1191 and then Present (Actuals)
1192 and then No (Next (First (Actuals)))
1193 then
1194 -- Can be call to parameterless entry family. What appears to be the
1195 -- sole argument is in fact the entry index. Rewrite prefix of node
1196 -- accordingly. Source representation is unchanged by this
1197 -- transformation.
1198
1199 New_N :=
1200 Make_Indexed_Component (Loc,
1201 Prefix => New_Copy (P),
1202 Expressions => Actuals);
1203 Set_Name (N, New_N);
1204 Set_Etype (New_N, Standard_Void_Type);
1205 Set_Parameter_Associations (N, No_List);
1206 Analyze_Call_And_Resolve;
1207
1208 -- For the case of a reference to an element of an entry family, P is
1209 -- an indexed component whose prefix is a selected component (task and
1210 -- entry family), and whose index is the entry family index.
1211
1212 elsif Nkind (P) = N_Indexed_Component
1213 and then Nkind (Prefix (P)) = N_Selected_Component
1214 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1215 then
1216 Analyze_Call_And_Resolve;
1217
1218 -- If the prefix is the name of an entry family, it is a call from
1219 -- within the task body itself.
1220
1221 elsif Nkind (P) = N_Indexed_Component
1222 and then Nkind (Prefix (P)) = N_Identifier
1223 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1224 then
1225 New_N :=
1226 Make_Selected_Component (Loc,
1227 Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1228 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1229 Rewrite (Prefix (P), New_N);
1230 Analyze (P);
1231 Analyze_Call_And_Resolve;
1232
1233 -- Anything else is an error
1234
1235 else
1236 Error_Msg_N ("invalid procedure or entry call", N);
1237 end if;
1238 end Analyze_Procedure_Call;
1239
1240 -------------------------------------
1241 -- Analyze_Simple_Return_Statement --
1242 -------------------------------------
1243
1244 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
1245 begin
1246 if Present (Expression (N)) then
1247 Mark_Coextensions (N, Expression (N));
1248 end if;
1249
1250 Analyze_Return_Statement (N);
1251 end Analyze_Simple_Return_Statement;
1252
1253 -------------------------
1254 -- Analyze_Return_Type --
1255 -------------------------
1256
1257 procedure Analyze_Return_Type (N : Node_Id) is
1258 Designator : constant Entity_Id := Defining_Entity (N);
1259 Typ : Entity_Id := Empty;
1260
1261 begin
1262 -- Normal case where result definition does not indicate an error
1263
1264 if Result_Definition (N) /= Error then
1265 if Nkind (Result_Definition (N)) = N_Access_Definition then
1266
1267 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
1268
1269 declare
1270 AD : constant Node_Id :=
1271 Access_To_Subprogram_Definition (Result_Definition (N));
1272 begin
1273 if Present (AD) and then Protected_Present (AD) then
1274 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1275 else
1276 Typ := Access_Definition (N, Result_Definition (N));
1277 end if;
1278 end;
1279
1280 Set_Parent (Typ, Result_Definition (N));
1281 Set_Is_Local_Anonymous_Access (Typ);
1282 Set_Etype (Designator, Typ);
1283
1284 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1285
1286 Null_Exclusion_Static_Checks (N);
1287
1288 -- Subtype_Mark case
1289
1290 else
1291 Find_Type (Result_Definition (N));
1292 Typ := Entity (Result_Definition (N));
1293 Set_Etype (Designator, Typ);
1294
1295 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1296
1297 Null_Exclusion_Static_Checks (N);
1298
1299 -- If a null exclusion is imposed on the result type, then create
1300 -- a null-excluding itype (an access subtype) and use it as the
1301 -- function's Etype. Note that the null exclusion checks are done
1302 -- right before this, because they don't get applied to types that
1303 -- do not come from source.
1304
1305 if Is_Access_Type (Typ)
1306 and then Null_Exclusion_Present (N)
1307 then
1308 Set_Etype (Designator,
1309 Create_Null_Excluding_Itype
1310 (T => Typ,
1311 Related_Nod => N,
1312 Scope_Id => Scope (Current_Scope)));
1313
1314 -- The new subtype must be elaborated before use because
1315 -- it is visible outside of the function. However its base
1316 -- type may not be frozen yet, so the reference that will
1317 -- force elaboration must be attached to the freezing of
1318 -- the base type.
1319
1320 -- If the return specification appears on a proper body,
1321 -- the subtype will have been created already on the spec.
1322
1323 if Is_Frozen (Typ) then
1324 if Nkind (Parent (N)) = N_Subprogram_Body
1325 and then Nkind (Parent (Parent (N))) = N_Subunit
1326 then
1327 null;
1328 else
1329 Build_Itype_Reference (Etype (Designator), Parent (N));
1330 end if;
1331
1332 else
1333 Ensure_Freeze_Node (Typ);
1334
1335 declare
1336 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
1337 begin
1338 Set_Itype (IR, Etype (Designator));
1339 Append_Freeze_Actions (Typ, New_List (IR));
1340 end;
1341 end if;
1342
1343 else
1344 Set_Etype (Designator, Typ);
1345 end if;
1346
1347 if Ekind (Typ) = E_Incomplete_Type
1348 and then Is_Value_Type (Typ)
1349 then
1350 null;
1351
1352 elsif Ekind (Typ) = E_Incomplete_Type
1353 or else (Is_Class_Wide_Type (Typ)
1354 and then
1355 Ekind (Root_Type (Typ)) = E_Incomplete_Type)
1356 then
1357 Error_Msg_NE
1358 ("invalid use of incomplete type&", Designator, Typ);
1359 end if;
1360 end if;
1361
1362 -- Case where result definition does indicate an error
1363
1364 else
1365 Set_Etype (Designator, Any_Type);
1366 end if;
1367 end Analyze_Return_Type;
1368
1369 -----------------------------
1370 -- Analyze_Subprogram_Body --
1371 -----------------------------
1372
1373 procedure Analyze_Subprogram_Body (N : Node_Id) is
1374 Loc : constant Source_Ptr := Sloc (N);
1375 Body_Spec : constant Node_Id := Specification (N);
1376 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
1377
1378 begin
1379 if Debug_Flag_C then
1380 Write_Str ("==> subprogram body ");
1381 Write_Name (Chars (Body_Id));
1382 Write_Str (" from ");
1383 Write_Location (Loc);
1384 Write_Eol;
1385 Indent;
1386 end if;
1387
1388 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
1389
1390 -- The real work is split out into the helper, so it can do "return;"
1391 -- without skipping the debug output:
1392
1393 Analyze_Subprogram_Body_Helper (N);
1394
1395 if Debug_Flag_C then
1396 Outdent;
1397 Write_Str ("<== subprogram body ");
1398 Write_Name (Chars (Body_Id));
1399 Write_Str (" from ");
1400 Write_Location (Loc);
1401 Write_Eol;
1402 end if;
1403 end Analyze_Subprogram_Body;
1404
1405 ------------------------------------
1406 -- Analyze_Subprogram_Body_Helper --
1407 ------------------------------------
1408
1409 -- This procedure is called for regular subprogram bodies, generic bodies,
1410 -- and for subprogram stubs of both kinds. In the case of stubs, only the
1411 -- specification matters, and is used to create a proper declaration for
1412 -- the subprogram, or to perform conformance checks.
1413
1414 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
1415 Loc : constant Source_Ptr := Sloc (N);
1416 Body_Deleted : constant Boolean := False;
1417 Body_Spec : constant Node_Id := Specification (N);
1418 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
1419 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
1420 Conformant : Boolean;
1421 HSS : Node_Id;
1422 Missing_Ret : Boolean;
1423 P_Ent : Entity_Id;
1424 Prot_Typ : Entity_Id := Empty;
1425 Spec_Id : Entity_Id;
1426 Spec_Decl : Node_Id := Empty;
1427
1428 Last_Real_Spec_Entity : Entity_Id := Empty;
1429 -- When we analyze a separate spec, the entity chain ends up containing
1430 -- the formals, as well as any itypes generated during analysis of the
1431 -- default expressions for parameters, or the arguments of associated
1432 -- precondition/postcondition pragmas (which are analyzed in the context
1433 -- of the spec since they have visibility on formals).
1434 --
1435 -- These entities belong with the spec and not the body. However we do
1436 -- the analysis of the body in the context of the spec (again to obtain
1437 -- visibility to the formals), and all the entities generated during
1438 -- this analysis end up also chained to the entity chain of the spec.
1439 -- But they really belong to the body, and there is circuitry to move
1440 -- them from the spec to the body.
1441 --
1442 -- However, when we do this move, we don't want to move the real spec
1443 -- entities (first para above) to the body. The Last_Real_Spec_Entity
1444 -- variable points to the last real spec entity, so we only move those
1445 -- chained beyond that point. It is initialized to Empty to deal with
1446 -- the case where there is no separate spec.
1447
1448 procedure Check_Anonymous_Return;
1449 -- Ada 2005: if a function returns an access type that denotes a task,
1450 -- or a type that contains tasks, we must create a master entity for
1451 -- the anonymous type, which typically will be used in an allocator
1452 -- in the body of the function.
1453
1454 procedure Check_Inline_Pragma (Spec : in out Node_Id);
1455 -- Look ahead to recognize a pragma that may appear after the body.
1456 -- If there is a previous spec, check that it appears in the same
1457 -- declarative part. If the pragma is Inline_Always, perform inlining
1458 -- unconditionally, otherwise only if Front_End_Inlining is requested.
1459 -- If the body acts as a spec, and inlining is required, we create a
1460 -- subprogram declaration for it, in order to attach the body to inline.
1461 -- If pragma does not appear after the body, check whether there is
1462 -- an inline pragma before any local declarations.
1463
1464 function Disambiguate_Spec return Entity_Id;
1465 -- When a primitive is declared between the private view and the full
1466 -- view of a concurrent type which implements an interface, a special
1467 -- mechanism is used to find the corresponding spec of the primitive
1468 -- body.
1469
1470 function Is_Private_Concurrent_Primitive
1471 (Subp_Id : Entity_Id) return Boolean;
1472 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
1473 -- type that implements an interface and has a private view.
1474
1475 procedure Set_Trivial_Subprogram (N : Node_Id);
1476 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
1477 -- subprogram whose body is being analyzed. N is the statement node
1478 -- causing the flag to be set, if the following statement is a return
1479 -- of an entity, we mark the entity as set in source to suppress any
1480 -- warning on the stylized use of function stubs with a dummy return.
1481
1482 procedure Verify_Overriding_Indicator;
1483 -- If there was a previous spec, the entity has been entered in the
1484 -- current scope previously. If the body itself carries an overriding
1485 -- indicator, check that it is consistent with the known status of the
1486 -- entity.
1487
1488 ----------------------------
1489 -- Check_Anonymous_Return --
1490 ----------------------------
1491
1492 procedure Check_Anonymous_Return is
1493 Decl : Node_Id;
1494 Par : Node_Id;
1495 Scop : Entity_Id;
1496
1497 begin
1498 if Present (Spec_Id) then
1499 Scop := Spec_Id;
1500 else
1501 Scop := Body_Id;
1502 end if;
1503
1504 if Ekind (Scop) = E_Function
1505 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
1506 and then not Is_Thunk (Scop)
1507 and then (Has_Task (Designated_Type (Etype (Scop)))
1508 or else
1509 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
1510 and then
1511 Is_Limited_Record (Designated_Type (Etype (Scop)))))
1512 and then Expander_Active
1513
1514 -- Avoid cases with no tasking support
1515
1516 and then RTE_Available (RE_Current_Master)
1517 and then not Restriction_Active (No_Task_Hierarchy)
1518 then
1519 Decl :=
1520 Make_Object_Declaration (Loc,
1521 Defining_Identifier =>
1522 Make_Defining_Identifier (Loc, Name_uMaster),
1523 Constant_Present => True,
1524 Object_Definition =>
1525 New_Reference_To (RTE (RE_Master_Id), Loc),
1526 Expression =>
1527 Make_Explicit_Dereference (Loc,
1528 New_Reference_To (RTE (RE_Current_Master), Loc)));
1529
1530 if Present (Declarations (N)) then
1531 Prepend (Decl, Declarations (N));
1532 else
1533 Set_Declarations (N, New_List (Decl));
1534 end if;
1535
1536 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
1537 Set_Has_Master_Entity (Scop);
1538
1539 -- Now mark the containing scope as a task master
1540
1541 Par := N;
1542 while Nkind (Par) /= N_Compilation_Unit loop
1543 Par := Parent (Par);
1544 pragma Assert (Present (Par));
1545
1546 -- If we fall off the top, we are at the outer level, and
1547 -- the environment task is our effective master, so nothing
1548 -- to mark.
1549
1550 if Nkind_In
1551 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
1552 then
1553 Set_Is_Task_Master (Par, True);
1554 exit;
1555 end if;
1556 end loop;
1557 end if;
1558 end Check_Anonymous_Return;
1559
1560 -------------------------
1561 -- Check_Inline_Pragma --
1562 -------------------------
1563
1564 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
1565 Prag : Node_Id;
1566 Plist : List_Id;
1567
1568 function Is_Inline_Pragma (N : Node_Id) return Boolean;
1569 -- True when N is a pragma Inline or Inline_Always that applies
1570 -- to this subprogram.
1571
1572 -----------------------
1573 -- Is_Inline_Pragma --
1574 -----------------------
1575
1576 function Is_Inline_Pragma (N : Node_Id) return Boolean is
1577 begin
1578 return
1579 Nkind (N) = N_Pragma
1580 and then
1581 (Pragma_Name (N) = Name_Inline_Always
1582 or else
1583 (Front_End_Inlining
1584 and then Pragma_Name (N) = Name_Inline))
1585 and then
1586 Chars
1587 (Expression (First (Pragma_Argument_Associations (N))))
1588 = Chars (Body_Id);
1589 end Is_Inline_Pragma;
1590
1591 -- Start of processing for Check_Inline_Pragma
1592
1593 begin
1594 if not Expander_Active then
1595 return;
1596 end if;
1597
1598 if Is_List_Member (N)
1599 and then Present (Next (N))
1600 and then Is_Inline_Pragma (Next (N))
1601 then
1602 Prag := Next (N);
1603
1604 elsif Nkind (N) /= N_Subprogram_Body_Stub
1605 and then Present (Declarations (N))
1606 and then Is_Inline_Pragma (First (Declarations (N)))
1607 then
1608 Prag := First (Declarations (N));
1609
1610 else
1611 Prag := Empty;
1612 end if;
1613
1614 if Present (Prag) then
1615 if Present (Spec_Id) then
1616 if List_Containing (N) =
1617 List_Containing (Unit_Declaration_Node (Spec_Id))
1618 then
1619 Analyze (Prag);
1620 end if;
1621
1622 else
1623 -- Create a subprogram declaration, to make treatment uniform
1624
1625 declare
1626 Subp : constant Entity_Id :=
1627 Make_Defining_Identifier (Loc, Chars (Body_Id));
1628 Decl : constant Node_Id :=
1629 Make_Subprogram_Declaration (Loc,
1630 Specification => New_Copy_Tree (Specification (N)));
1631 begin
1632 Set_Defining_Unit_Name (Specification (Decl), Subp);
1633
1634 if Present (First_Formal (Body_Id)) then
1635 Plist := Copy_Parameter_List (Body_Id);
1636 Set_Parameter_Specifications
1637 (Specification (Decl), Plist);
1638 end if;
1639
1640 Insert_Before (N, Decl);
1641 Analyze (Decl);
1642 Analyze (Prag);
1643 Set_Has_Pragma_Inline (Subp);
1644
1645 if Pragma_Name (Prag) = Name_Inline_Always then
1646 Set_Is_Inlined (Subp);
1647 Set_Has_Pragma_Inline_Always (Subp);
1648 end if;
1649
1650 Spec := Subp;
1651 end;
1652 end if;
1653 end if;
1654 end Check_Inline_Pragma;
1655
1656 -----------------------
1657 -- Disambiguate_Spec --
1658 -----------------------
1659
1660 function Disambiguate_Spec return Entity_Id is
1661 Priv_Spec : Entity_Id;
1662 Spec_N : Entity_Id;
1663
1664 procedure Replace_Types (To_Corresponding : Boolean);
1665 -- Depending on the flag, replace the type of formal parameters of
1666 -- Body_Id if it is a concurrent type implementing interfaces with
1667 -- the corresponding record type or the other way around.
1668
1669 procedure Replace_Types (To_Corresponding : Boolean) is
1670 Formal : Entity_Id;
1671 Formal_Typ : Entity_Id;
1672
1673 begin
1674 Formal := First_Formal (Body_Id);
1675 while Present (Formal) loop
1676 Formal_Typ := Etype (Formal);
1677
1678 -- From concurrent type to corresponding record
1679
1680 if To_Corresponding then
1681 if Is_Concurrent_Type (Formal_Typ)
1682 and then Present (Corresponding_Record_Type (Formal_Typ))
1683 and then Present (Interfaces (
1684 Corresponding_Record_Type (Formal_Typ)))
1685 then
1686 Set_Etype (Formal,
1687 Corresponding_Record_Type (Formal_Typ));
1688 end if;
1689
1690 -- From corresponding record to concurrent type
1691
1692 else
1693 if Is_Concurrent_Record_Type (Formal_Typ)
1694 and then Present (Interfaces (Formal_Typ))
1695 then
1696 Set_Etype (Formal,
1697 Corresponding_Concurrent_Type (Formal_Typ));
1698 end if;
1699 end if;
1700
1701 Next_Formal (Formal);
1702 end loop;
1703 end Replace_Types;
1704
1705 -- Start of processing for Disambiguate_Spec
1706
1707 begin
1708 -- Try to retrieve the specification of the body as is. All error
1709 -- messages are suppressed because the body may not have a spec in
1710 -- its current state.
1711
1712 Spec_N := Find_Corresponding_Spec (N, False);
1713
1714 -- It is possible that this is the body of a primitive declared
1715 -- between a private and a full view of a concurrent type. The
1716 -- controlling parameter of the spec carries the concurrent type,
1717 -- not the corresponding record type as transformed by Analyze_
1718 -- Subprogram_Specification. In such cases, we undo the change
1719 -- made by the analysis of the specification and try to find the
1720 -- spec again.
1721
1722 -- Note that wrappers already have their corresponding specs and
1723 -- bodies set during their creation, so if the candidate spec is
1724 -- a wrapper, then we definitely need to swap all types to their
1725 -- original concurrent status.
1726
1727 if No (Spec_N)
1728 or else Is_Primitive_Wrapper (Spec_N)
1729 then
1730 -- Restore all references of corresponding record types to the
1731 -- original concurrent types.
1732
1733 Replace_Types (To_Corresponding => False);
1734 Priv_Spec := Find_Corresponding_Spec (N, False);
1735
1736 -- The current body truly belongs to a primitive declared between
1737 -- a private and a full view. We leave the modified body as is,
1738 -- and return the true spec.
1739
1740 if Present (Priv_Spec)
1741 and then Is_Private_Primitive (Priv_Spec)
1742 then
1743 return Priv_Spec;
1744 end if;
1745
1746 -- In case that this is some sort of error, restore the original
1747 -- state of the body.
1748
1749 Replace_Types (To_Corresponding => True);
1750 end if;
1751
1752 return Spec_N;
1753 end Disambiguate_Spec;
1754
1755 -------------------------------------
1756 -- Is_Private_Concurrent_Primitive --
1757 -------------------------------------
1758
1759 function Is_Private_Concurrent_Primitive
1760 (Subp_Id : Entity_Id) return Boolean
1761 is
1762 Formal_Typ : Entity_Id;
1763
1764 begin
1765 if Present (First_Formal (Subp_Id)) then
1766 Formal_Typ := Etype (First_Formal (Subp_Id));
1767
1768 if Is_Concurrent_Record_Type (Formal_Typ) then
1769 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
1770 end if;
1771
1772 -- The type of the first formal is a concurrent tagged type with
1773 -- a private view.
1774
1775 return
1776 Is_Concurrent_Type (Formal_Typ)
1777 and then Is_Tagged_Type (Formal_Typ)
1778 and then Has_Private_Declaration (Formal_Typ);
1779 end if;
1780
1781 return False;
1782 end Is_Private_Concurrent_Primitive;
1783
1784 ----------------------------
1785 -- Set_Trivial_Subprogram --
1786 ----------------------------
1787
1788 procedure Set_Trivial_Subprogram (N : Node_Id) is
1789 Nxt : constant Node_Id := Next (N);
1790
1791 begin
1792 Set_Is_Trivial_Subprogram (Body_Id);
1793
1794 if Present (Spec_Id) then
1795 Set_Is_Trivial_Subprogram (Spec_Id);
1796 end if;
1797
1798 if Present (Nxt)
1799 and then Nkind (Nxt) = N_Simple_Return_Statement
1800 and then No (Next (Nxt))
1801 and then Present (Expression (Nxt))
1802 and then Is_Entity_Name (Expression (Nxt))
1803 then
1804 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
1805 end if;
1806 end Set_Trivial_Subprogram;
1807
1808 ---------------------------------
1809 -- Verify_Overriding_Indicator --
1810 ---------------------------------
1811
1812 procedure Verify_Overriding_Indicator is
1813 begin
1814 if Must_Override (Body_Spec) then
1815 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
1816 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
1817 then
1818 null;
1819
1820 elsif not Is_Overriding_Operation (Spec_Id) then
1821 Error_Msg_NE
1822 ("subprogram& is not overriding", Body_Spec, Spec_Id);
1823 end if;
1824
1825 elsif Must_Not_Override (Body_Spec) then
1826 if Is_Overriding_Operation (Spec_Id) then
1827 Error_Msg_NE
1828 ("subprogram& overrides inherited operation",
1829 Body_Spec, Spec_Id);
1830
1831 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
1832 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
1833 then
1834 Error_Msg_NE
1835 ("subprogram & overrides predefined operator ",
1836 Body_Spec, Spec_Id);
1837
1838 -- If this is not a primitive operation or protected subprogram,
1839 -- then the overriding indicator is altogether illegal.
1840
1841 elsif not Is_Primitive (Spec_Id)
1842 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
1843 then
1844 Error_Msg_N ("overriding indicator only allowed " &
1845 "if subprogram is primitive",
1846 Body_Spec);
1847 end if;
1848
1849 elsif Style_Check -- ??? incorrect use of Style_Check!
1850 and then Is_Overriding_Operation (Spec_Id)
1851 then
1852 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
1853 Style.Missing_Overriding (N, Body_Id);
1854 end if;
1855 end Verify_Overriding_Indicator;
1856
1857 -- Start of processing for Analyze_Subprogram_Body_Helper
1858
1859 begin
1860 -- Generic subprograms are handled separately. They always have a
1861 -- generic specification. Determine whether current scope has a
1862 -- previous declaration.
1863
1864 -- If the subprogram body is defined within an instance of the same
1865 -- name, the instance appears as a package renaming, and will be hidden
1866 -- within the subprogram.
1867
1868 if Present (Prev_Id)
1869 and then not Is_Overloadable (Prev_Id)
1870 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
1871 or else Comes_From_Source (Prev_Id))
1872 then
1873 if Is_Generic_Subprogram (Prev_Id) then
1874 Spec_Id := Prev_Id;
1875 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
1876 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
1877
1878 Analyze_Generic_Subprogram_Body (N, Spec_Id);
1879 return;
1880
1881 else
1882 -- Previous entity conflicts with subprogram name. Attempting to
1883 -- enter name will post error.
1884
1885 Enter_Name (Body_Id);
1886 return;
1887 end if;
1888
1889 -- Non-generic case, find the subprogram declaration, if one was seen,
1890 -- or enter new overloaded entity in the current scope. If the
1891 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
1892 -- part of the context of one of its subunits. No need to redo the
1893 -- analysis.
1894
1895 elsif Prev_Id = Body_Id
1896 and then Has_Completion (Body_Id)
1897 then
1898 return;
1899
1900 else
1901 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
1902
1903 if Nkind (N) = N_Subprogram_Body_Stub
1904 or else No (Corresponding_Spec (N))
1905 then
1906 if Is_Private_Concurrent_Primitive (Body_Id) then
1907 Spec_Id := Disambiguate_Spec;
1908 else
1909 Spec_Id := Find_Corresponding_Spec (N);
1910 end if;
1911
1912 -- If this is a duplicate body, no point in analyzing it
1913
1914 if Error_Posted (N) then
1915 return;
1916 end if;
1917
1918 -- A subprogram body should cause freezing of its own declaration,
1919 -- but if there was no previous explicit declaration, then the
1920 -- subprogram will get frozen too late (there may be code within
1921 -- the body that depends on the subprogram having been frozen,
1922 -- such as uses of extra formals), so we force it to be frozen
1923 -- here. Same holds if the body and spec are compilation units.
1924 -- Finally, if the return type is an anonymous access to protected
1925 -- subprogram, it must be frozen before the body because its
1926 -- expansion has generated an equivalent type that is used when
1927 -- elaborating the body.
1928
1929 if No (Spec_Id) then
1930 Freeze_Before (N, Body_Id);
1931
1932 elsif Nkind (Parent (N)) = N_Compilation_Unit then
1933 Freeze_Before (N, Spec_Id);
1934
1935 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
1936 Freeze_Before (N, Etype (Body_Id));
1937 end if;
1938
1939 else
1940 Spec_Id := Corresponding_Spec (N);
1941 end if;
1942 end if;
1943
1944 -- Do not inline any subprogram that contains nested subprograms, since
1945 -- the backend inlining circuit seems to generate uninitialized
1946 -- references in this case. We know this happens in the case of front
1947 -- end ZCX support, but it also appears it can happen in other cases as
1948 -- well. The backend often rejects attempts to inline in the case of
1949 -- nested procedures anyway, so little if anything is lost by this.
1950 -- Note that this is test is for the benefit of the back-end. There is
1951 -- a separate test for front-end inlining that also rejects nested
1952 -- subprograms.
1953
1954 -- Do not do this test if errors have been detected, because in some
1955 -- error cases, this code blows up, and we don't need it anyway if
1956 -- there have been errors, since we won't get to the linker anyway.
1957
1958 if Comes_From_Source (Body_Id)
1959 and then Serious_Errors_Detected = 0
1960 then
1961 P_Ent := Body_Id;
1962 loop
1963 P_Ent := Scope (P_Ent);
1964 exit when No (P_Ent) or else P_Ent = Standard_Standard;
1965
1966 if Is_Subprogram (P_Ent) then
1967 Set_Is_Inlined (P_Ent, False);
1968
1969 if Comes_From_Source (P_Ent)
1970 and then Has_Pragma_Inline (P_Ent)
1971 then
1972 Cannot_Inline
1973 ("cannot inline& (nested subprogram)?",
1974 N, P_Ent);
1975 end if;
1976 end if;
1977 end loop;
1978 end if;
1979
1980 Check_Inline_Pragma (Spec_Id);
1981
1982 -- Deal with special case of a fully private operation in the body of
1983 -- the protected type. We must create a declaration for the subprogram,
1984 -- in order to attach the protected subprogram that will be used in
1985 -- internal calls. We exclude compiler generated bodies from the
1986 -- expander since the issue does not arise for those cases.
1987
1988 if No (Spec_Id)
1989 and then Comes_From_Source (N)
1990 and then Is_Protected_Type (Current_Scope)
1991 then
1992 declare
1993 Decl : Node_Id;
1994 Plist : List_Id;
1995 Formal : Entity_Id;
1996 New_Spec : Node_Id;
1997
1998 begin
1999 Formal := First_Formal (Body_Id);
2000
2001 -- The protected operation always has at least one formal, namely
2002 -- the object itself, but it is only placed in the parameter list
2003 -- if expansion is enabled.
2004
2005 if Present (Formal)
2006 or else Expander_Active
2007 then
2008 Plist := Copy_Parameter_List (Body_Id);
2009 else
2010 Plist := No_List;
2011 end if;
2012
2013 if Nkind (Body_Spec) = N_Procedure_Specification then
2014 New_Spec :=
2015 Make_Procedure_Specification (Loc,
2016 Defining_Unit_Name =>
2017 Make_Defining_Identifier (Sloc (Body_Id),
2018 Chars => Chars (Body_Id)),
2019 Parameter_Specifications => Plist);
2020 else
2021 New_Spec :=
2022 Make_Function_Specification (Loc,
2023 Defining_Unit_Name =>
2024 Make_Defining_Identifier (Sloc (Body_Id),
2025 Chars => Chars (Body_Id)),
2026 Parameter_Specifications => Plist,
2027 Result_Definition =>
2028 New_Occurrence_Of (Etype (Body_Id), Loc));
2029 end if;
2030
2031 Decl :=
2032 Make_Subprogram_Declaration (Loc,
2033 Specification => New_Spec);
2034 Insert_Before (N, Decl);
2035 Spec_Id := Defining_Unit_Name (New_Spec);
2036
2037 -- Indicate that the entity comes from source, to ensure that
2038 -- cross-reference information is properly generated. The body
2039 -- itself is rewritten during expansion, and the body entity will
2040 -- not appear in calls to the operation.
2041
2042 Set_Comes_From_Source (Spec_Id, True);
2043 Analyze (Decl);
2044 Set_Has_Completion (Spec_Id);
2045 Set_Convention (Spec_Id, Convention_Protected);
2046 end;
2047 end if;
2048
2049 -- If a separate spec is present, then deal with freezing issues
2050
2051 if Present (Spec_Id) then
2052 Spec_Decl := Unit_Declaration_Node (Spec_Id);
2053 Verify_Overriding_Indicator;
2054
2055 -- In general, the spec will be frozen when we start analyzing the
2056 -- body. However, for internally generated operations, such as
2057 -- wrapper functions for inherited operations with controlling
2058 -- results, the spec may not have been frozen by the time we
2059 -- expand the freeze actions that include the bodies. In particular,
2060 -- extra formals for accessibility or for return-in-place may need
2061 -- to be generated. Freeze nodes, if any, are inserted before the
2062 -- current body.
2063
2064 if not Is_Frozen (Spec_Id)
2065 and then Expander_Active
2066 then
2067 -- Force the generation of its freezing node to ensure proper
2068 -- management of access types in the backend.
2069
2070 -- This is definitely needed for some cases, but it is not clear
2071 -- why, to be investigated further???
2072
2073 Set_Has_Delayed_Freeze (Spec_Id);
2074 Insert_Actions (N, Freeze_Entity (Spec_Id, Loc));
2075 end if;
2076 end if;
2077
2078 -- Mark presence of postcondition proc in current scope
2079
2080 if Chars (Body_Id) = Name_uPostconditions then
2081 Set_Has_Postconditions (Current_Scope);
2082 end if;
2083
2084 -- Place subprogram on scope stack, and make formals visible. If there
2085 -- is a spec, the visible entity remains that of the spec.
2086
2087 if Present (Spec_Id) then
2088 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
2089
2090 if Is_Child_Unit (Spec_Id) then
2091 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
2092 end if;
2093
2094 if Style_Check then
2095 Style.Check_Identifier (Body_Id, Spec_Id);
2096 end if;
2097
2098 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
2099 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
2100
2101 if Is_Abstract_Subprogram (Spec_Id) then
2102 Error_Msg_N ("an abstract subprogram cannot have a body", N);
2103 return;
2104
2105 else
2106 Set_Convention (Body_Id, Convention (Spec_Id));
2107 Set_Has_Completion (Spec_Id);
2108
2109 if Is_Protected_Type (Scope (Spec_Id)) then
2110 Prot_Typ := Scope (Spec_Id);
2111 end if;
2112
2113 -- If this is a body generated for a renaming, do not check for
2114 -- full conformance. The check is redundant, because the spec of
2115 -- the body is a copy of the spec in the renaming declaration,
2116 -- and the test can lead to spurious errors on nested defaults.
2117
2118 if Present (Spec_Decl)
2119 and then not Comes_From_Source (N)
2120 and then
2121 (Nkind (Original_Node (Spec_Decl)) =
2122 N_Subprogram_Renaming_Declaration
2123 or else (Present (Corresponding_Body (Spec_Decl))
2124 and then
2125 Nkind (Unit_Declaration_Node
2126 (Corresponding_Body (Spec_Decl))) =
2127 N_Subprogram_Renaming_Declaration))
2128 then
2129 Conformant := True;
2130
2131 else
2132 Check_Conformance
2133 (Body_Id, Spec_Id,
2134 Fully_Conformant, True, Conformant, Body_Id);
2135 end if;
2136
2137 -- If the body is not fully conformant, we have to decide if we
2138 -- should analyze it or not. If it has a really messed up profile
2139 -- then we probably should not analyze it, since we will get too
2140 -- many bogus messages.
2141
2142 -- Our decision is to go ahead in the non-fully conformant case
2143 -- only if it is at least mode conformant with the spec. Note
2144 -- that the call to Check_Fully_Conformant has issued the proper
2145 -- error messages to complain about the lack of conformance.
2146
2147 if not Conformant
2148 and then not Mode_Conformant (Body_Id, Spec_Id)
2149 then
2150 return;
2151 end if;
2152 end if;
2153
2154 if Spec_Id /= Body_Id then
2155 Reference_Body_Formals (Spec_Id, Body_Id);
2156 end if;
2157
2158 if Nkind (N) /= N_Subprogram_Body_Stub then
2159 Set_Corresponding_Spec (N, Spec_Id);
2160
2161 -- Ada 2005 (AI-345): If the operation is a primitive operation
2162 -- of a concurrent type, the type of the first parameter has been
2163 -- replaced with the corresponding record, which is the proper
2164 -- run-time structure to use. However, within the body there may
2165 -- be uses of the formals that depend on primitive operations
2166 -- of the type (in particular calls in prefixed form) for which
2167 -- we need the original concurrent type. The operation may have
2168 -- several controlling formals, so the replacement must be done
2169 -- for all of them.
2170
2171 if Comes_From_Source (Spec_Id)
2172 and then Present (First_Entity (Spec_Id))
2173 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
2174 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
2175 and then
2176 Present (Interfaces (Etype (First_Entity (Spec_Id))))
2177 and then
2178 Present
2179 (Corresponding_Concurrent_Type
2180 (Etype (First_Entity (Spec_Id))))
2181 then
2182 declare
2183 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
2184 Form : Entity_Id;
2185
2186 begin
2187 Form := First_Formal (Spec_Id);
2188 while Present (Form) loop
2189 if Etype (Form) = Typ then
2190 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
2191 end if;
2192
2193 Next_Formal (Form);
2194 end loop;
2195 end;
2196 end if;
2197
2198 -- Make the formals visible, and place subprogram on scope stack.
2199 -- This is also the point at which we set Last_Real_Spec_Entity
2200 -- to mark the entities which will not be moved to the body.
2201
2202 Install_Formals (Spec_Id);
2203 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
2204 Push_Scope (Spec_Id);
2205
2206 -- Make sure that the subprogram is immediately visible. For
2207 -- child units that have no separate spec this is indispensable.
2208 -- Otherwise it is safe albeit redundant.
2209
2210 Set_Is_Immediately_Visible (Spec_Id);
2211 end if;
2212
2213 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
2214 Set_Ekind (Body_Id, E_Subprogram_Body);
2215 Set_Scope (Body_Id, Scope (Spec_Id));
2216 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
2217
2218 -- Case of subprogram body with no previous spec
2219
2220 else
2221 if Style_Check
2222 and then Comes_From_Source (Body_Id)
2223 and then not Suppress_Style_Checks (Body_Id)
2224 and then not In_Instance
2225 then
2226 Style.Body_With_No_Spec (N);
2227 end if;
2228
2229 New_Overloaded_Entity (Body_Id);
2230
2231 if Nkind (N) /= N_Subprogram_Body_Stub then
2232 Set_Acts_As_Spec (N);
2233 Generate_Definition (Body_Id);
2234 Generate_Reference
2235 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
2236 Generate_Reference_To_Formals (Body_Id);
2237 Install_Formals (Body_Id);
2238 Push_Scope (Body_Id);
2239 end if;
2240 end if;
2241
2242 -- If the return type is an anonymous access type whose designated type
2243 -- is the limited view of a class-wide type and the non-limited view is
2244 -- available, update the return type accordingly.
2245
2246 if Ada_Version >= Ada_05
2247 and then Comes_From_Source (N)
2248 then
2249 declare
2250 Etyp : Entity_Id;
2251 Rtyp : Entity_Id;
2252
2253 begin
2254 Rtyp := Etype (Current_Scope);
2255
2256 if Ekind (Rtyp) = E_Anonymous_Access_Type then
2257 Etyp := Directly_Designated_Type (Rtyp);
2258
2259 if Is_Class_Wide_Type (Etyp)
2260 and then From_With_Type (Etyp)
2261 then
2262 Set_Directly_Designated_Type
2263 (Etype (Current_Scope), Available_View (Etyp));
2264 end if;
2265 end if;
2266 end;
2267 end if;
2268
2269 -- If this is the proper body of a stub, we must verify that the stub
2270 -- conforms to the body, and to the previous spec if one was present.
2271 -- we know already that the body conforms to that spec. This test is
2272 -- only required for subprograms that come from source.
2273
2274 if Nkind (Parent (N)) = N_Subunit
2275 and then Comes_From_Source (N)
2276 and then not Error_Posted (Body_Id)
2277 and then Nkind (Corresponding_Stub (Parent (N))) =
2278 N_Subprogram_Body_Stub
2279 then
2280 declare
2281 Old_Id : constant Entity_Id :=
2282 Defining_Entity
2283 (Specification (Corresponding_Stub (Parent (N))));
2284
2285 Conformant : Boolean := False;
2286
2287 begin
2288 if No (Spec_Id) then
2289 Check_Fully_Conformant (Body_Id, Old_Id);
2290
2291 else
2292 Check_Conformance
2293 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
2294
2295 if not Conformant then
2296
2297 -- The stub was taken to be a new declaration. Indicate
2298 -- that it lacks a body.
2299
2300 Set_Has_Completion (Old_Id, False);
2301 end if;
2302 end if;
2303 end;
2304 end if;
2305
2306 Set_Has_Completion (Body_Id);
2307 Check_Eliminated (Body_Id);
2308
2309 if Nkind (N) = N_Subprogram_Body_Stub then
2310 return;
2311
2312 elsif Present (Spec_Id)
2313 and then Expander_Active
2314 and then
2315 (Has_Pragma_Inline_Always (Spec_Id)
2316 or else (Has_Pragma_Inline (Spec_Id) and Front_End_Inlining))
2317 then
2318 Build_Body_To_Inline (N, Spec_Id);
2319 end if;
2320
2321 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
2322 -- if its specification we have to install the private withed units.
2323 -- This holds for child units as well.
2324
2325 if Is_Compilation_Unit (Body_Id)
2326 or else Nkind (Parent (N)) = N_Compilation_Unit
2327 then
2328 Install_Private_With_Clauses (Body_Id);
2329 end if;
2330
2331 Check_Anonymous_Return;
2332
2333 -- Set the Protected_Formal field of each extra formal of the protected
2334 -- subprogram to reference the corresponding extra formal of the
2335 -- subprogram that implements it. For regular formals this occurs when
2336 -- the protected subprogram's declaration is expanded, but the extra
2337 -- formals don't get created until the subprogram is frozen. We need to
2338 -- do this before analyzing the protected subprogram's body so that any
2339 -- references to the original subprogram's extra formals will be changed
2340 -- refer to the implementing subprogram's formals (see Expand_Formal).
2341
2342 if Present (Spec_Id)
2343 and then Is_Protected_Type (Scope (Spec_Id))
2344 and then Present (Protected_Body_Subprogram (Spec_Id))
2345 then
2346 declare
2347 Impl_Subp : constant Entity_Id :=
2348 Protected_Body_Subprogram (Spec_Id);
2349 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
2350 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
2351 begin
2352 while Present (Prot_Ext_Formal) loop
2353 pragma Assert (Present (Impl_Ext_Formal));
2354 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
2355 Next_Formal_With_Extras (Prot_Ext_Formal);
2356 Next_Formal_With_Extras (Impl_Ext_Formal);
2357 end loop;
2358 end;
2359 end if;
2360
2361 -- Now we can go on to analyze the body
2362
2363 HSS := Handled_Statement_Sequence (N);
2364 Set_Actual_Subtypes (N, Current_Scope);
2365
2366 -- Deal with preconditions and postconditions
2367
2368 Process_PPCs (N, Spec_Id, Body_Id);
2369
2370 -- Add a declaration for the Protection object, renaming declarations
2371 -- for discriminals and privals and finally a declaration for the entry
2372 -- family index (if applicable). This form of early expansion is done
2373 -- when the Expander is active because Install_Private_Data_Declarations
2374 -- references entities which were created during regular expansion.
2375
2376 if Expander_Active
2377 and then Comes_From_Source (N)
2378 and then Present (Prot_Typ)
2379 and then Present (Spec_Id)
2380 and then not Is_Eliminated (Spec_Id)
2381 then
2382 Install_Private_Data_Declarations
2383 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
2384 end if;
2385
2386 -- Analyze the declarations (this call will analyze the precondition
2387 -- Check pragmas we prepended to the list, as well as the declaration
2388 -- of the _Postconditions procedure).
2389
2390 Analyze_Declarations (Declarations (N));
2391
2392 -- Check completion, and analyze the statements
2393
2394 Check_Completion;
2395 Inspect_Deferred_Constant_Completion (Declarations (N));
2396 Analyze (HSS);
2397
2398 -- Deal with end of scope processing for the body
2399
2400 Process_End_Label (HSS, 't', Current_Scope);
2401 End_Scope;
2402 Check_Subprogram_Order (N);
2403 Set_Analyzed (Body_Id);
2404
2405 -- If we have a separate spec, then the analysis of the declarations
2406 -- caused the entities in the body to be chained to the spec id, but
2407 -- we want them chained to the body id. Only the formal parameters
2408 -- end up chained to the spec id in this case.
2409
2410 if Present (Spec_Id) then
2411
2412 -- We must conform to the categorization of our spec
2413
2414 Validate_Categorization_Dependency (N, Spec_Id);
2415
2416 -- And if this is a child unit, the parent units must conform
2417
2418 if Is_Child_Unit (Spec_Id) then
2419 Validate_Categorization_Dependency
2420 (Unit_Declaration_Node (Spec_Id), Spec_Id);
2421 end if;
2422
2423 -- Here is where we move entities from the spec to the body
2424
2425 -- Case where there are entities that stay with the spec
2426
2427 if Present (Last_Real_Spec_Entity) then
2428
2429 -- No body entities (happens when the only real spec entities
2430 -- come from precondition and postcondition pragmas)
2431
2432 if No (Last_Entity (Body_Id)) then
2433 Set_First_Entity
2434 (Body_Id, Next_Entity (Last_Real_Spec_Entity));
2435
2436 -- Body entities present (formals), so chain stuff past them
2437
2438 else
2439 Set_Next_Entity
2440 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
2441 end if;
2442
2443 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
2444 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
2445 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
2446
2447 -- Case where there are no spec entities, in this case there can
2448 -- be no body entities either, so just move everything.
2449
2450 else
2451 pragma Assert (No (Last_Entity (Body_Id)));
2452 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
2453 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
2454 Set_First_Entity (Spec_Id, Empty);
2455 Set_Last_Entity (Spec_Id, Empty);
2456 end if;
2457 end if;
2458
2459 -- If function, check return statements
2460
2461 if Nkind (Body_Spec) = N_Function_Specification then
2462 declare
2463 Id : Entity_Id;
2464
2465 begin
2466 if Present (Spec_Id) then
2467 Id := Spec_Id;
2468 else
2469 Id := Body_Id;
2470 end if;
2471
2472 if Return_Present (Id) then
2473 Check_Returns (HSS, 'F', Missing_Ret);
2474
2475 if Missing_Ret then
2476 Set_Has_Missing_Return (Id);
2477 end if;
2478
2479 elsif not Is_Machine_Code_Subprogram (Id)
2480 and then not Body_Deleted
2481 then
2482 Error_Msg_N ("missing RETURN statement in function body", N);
2483 end if;
2484 end;
2485
2486 -- If procedure with No_Return, check returns
2487
2488 elsif Nkind (Body_Spec) = N_Procedure_Specification
2489 and then Present (Spec_Id)
2490 and then No_Return (Spec_Id)
2491 then
2492 Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
2493 end if;
2494
2495 -- Now we are going to check for variables that are never modified in
2496 -- the body of the procedure. But first we deal with a special case
2497 -- where we want to modify this check. If the body of the subprogram
2498 -- starts with a raise statement or its equivalent, or if the body
2499 -- consists entirely of a null statement, then it is pretty obvious
2500 -- that it is OK to not reference the parameters. For example, this
2501 -- might be the following common idiom for a stubbed function:
2502 -- statement of the procedure raises an exception. In particular this
2503 -- deals with the common idiom of a stubbed function, which might
2504 -- appear as something like
2505
2506 -- function F (A : Integer) return Some_Type;
2507 -- X : Some_Type;
2508 -- begin
2509 -- raise Program_Error;
2510 -- return X;
2511 -- end F;
2512
2513 -- Here the purpose of X is simply to satisfy the annoying requirement
2514 -- in Ada that there be at least one return, and we certainly do not
2515 -- want to go posting warnings on X that it is not initialized! On
2516 -- the other hand, if X is entirely unreferenced that should still
2517 -- get a warning.
2518
2519 -- What we do is to detect these cases, and if we find them, flag the
2520 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
2521 -- suppress unwanted warnings. For the case of the function stub above
2522 -- we have a special test to set X as apparently assigned to suppress
2523 -- the warning.
2524
2525 declare
2526 Stm : Node_Id;
2527
2528 begin
2529 -- Skip initial labels (for one thing this occurs when we are in
2530 -- front end ZCX mode, but in any case it is irrelevant), and also
2531 -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
2532
2533 Stm := First (Statements (HSS));
2534 while Nkind (Stm) = N_Label
2535 or else Nkind (Stm) in N_Push_xxx_Label
2536 loop
2537 Next (Stm);
2538 end loop;
2539
2540 -- Do the test on the original statement before expansion
2541
2542 declare
2543 Ostm : constant Node_Id := Original_Node (Stm);
2544
2545 begin
2546 -- If explicit raise statement, turn on flag
2547
2548 if Nkind (Ostm) = N_Raise_Statement then
2549 Set_Trivial_Subprogram (Stm);
2550
2551 -- If null statement, and no following statements, turn on flag
2552
2553 elsif Nkind (Stm) = N_Null_Statement
2554 and then Comes_From_Source (Stm)
2555 and then No (Next (Stm))
2556 then
2557 Set_Trivial_Subprogram (Stm);
2558
2559 -- Check for explicit call cases which likely raise an exception
2560
2561 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
2562 if Is_Entity_Name (Name (Ostm)) then
2563 declare
2564 Ent : constant Entity_Id := Entity (Name (Ostm));
2565
2566 begin
2567 -- If the procedure is marked No_Return, then likely it
2568 -- raises an exception, but in any case it is not coming
2569 -- back here, so turn on the flag.
2570
2571 if Ekind (Ent) = E_Procedure
2572 and then No_Return (Ent)
2573 then
2574 Set_Trivial_Subprogram (Stm);
2575 end if;
2576 end;
2577 end if;
2578 end if;
2579 end;
2580 end;
2581
2582 -- Check for variables that are never modified
2583
2584 declare
2585 E1, E2 : Entity_Id;
2586
2587 begin
2588 -- If there is a separate spec, then transfer Never_Set_In_Source
2589 -- flags from out parameters to the corresponding entities in the
2590 -- body. The reason we do that is we want to post error flags on
2591 -- the body entities, not the spec entities.
2592
2593 if Present (Spec_Id) then
2594 E1 := First_Entity (Spec_Id);
2595 while Present (E1) loop
2596 if Ekind (E1) = E_Out_Parameter then
2597 E2 := First_Entity (Body_Id);
2598 while Present (E2) loop
2599 exit when Chars (E1) = Chars (E2);
2600 Next_Entity (E2);
2601 end loop;
2602
2603 if Present (E2) then
2604 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
2605 end if;
2606 end if;
2607
2608 Next_Entity (E1);
2609 end loop;
2610 end if;
2611
2612 -- Check references in body unless it was deleted. Note that the
2613 -- check of Body_Deleted here is not just for efficiency, it is
2614 -- necessary to avoid junk warnings on formal parameters.
2615
2616 if not Body_Deleted then
2617 Check_References (Body_Id);
2618 end if;
2619 end;
2620 end Analyze_Subprogram_Body_Helper;
2621
2622 ------------------------------------
2623 -- Analyze_Subprogram_Declaration --
2624 ------------------------------------
2625
2626 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
2627 Loc : constant Source_Ptr := Sloc (N);
2628 Designator : Entity_Id;
2629 Form : Node_Id;
2630 Scop : constant Entity_Id := Current_Scope;
2631 Null_Body : Node_Id := Empty;
2632
2633 -- Start of processing for Analyze_Subprogram_Declaration
2634
2635 begin
2636 -- For a null procedure, capture the profile before analysis, for
2637 -- expansion at the freeze point and at each point of call.
2638 -- The body will only be used if the procedure has preconditions.
2639 -- In that case the body is analyzed at the freeze point.
2640
2641 if Nkind (Specification (N)) = N_Procedure_Specification
2642 and then Null_Present (Specification (N))
2643 and then Expander_Active
2644 then
2645 Null_Body :=
2646 Make_Subprogram_Body (Loc,
2647 Specification =>
2648 New_Copy_Tree (Specification (N)),
2649 Declarations =>
2650 New_List,
2651 Handled_Statement_Sequence =>
2652 Make_Handled_Sequence_Of_Statements (Loc,
2653 Statements => New_List (Make_Null_Statement (Loc))));
2654
2655 -- Create new entities for body and formals
2656
2657 Set_Defining_Unit_Name (Specification (Null_Body),
2658 Make_Defining_Identifier (Loc, Chars (Defining_Entity (N))));
2659 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
2660
2661 Form := First (Parameter_Specifications (Specification (Null_Body)));
2662 while Present (Form) loop
2663 Set_Defining_Identifier (Form,
2664 Make_Defining_Identifier (Loc,
2665 Chars (Defining_Identifier (Form))));
2666 Next (Form);
2667 end loop;
2668
2669 if Is_Protected_Type (Current_Scope) then
2670 Error_Msg_N
2671 ("protected operation cannot be a null procedure", N);
2672 end if;
2673 end if;
2674
2675 Designator := Analyze_Subprogram_Specification (Specification (N));
2676 Generate_Definition (Designator);
2677
2678 if Debug_Flag_C then
2679 Write_Str ("==> subprogram spec ");
2680 Write_Name (Chars (Designator));
2681 Write_Str (" from ");
2682 Write_Location (Sloc (N));
2683 Write_Eol;
2684 Indent;
2685 end if;
2686
2687 if Nkind (Specification (N)) = N_Procedure_Specification
2688 and then Null_Present (Specification (N))
2689 then
2690 Set_Has_Completion (Designator);
2691
2692 if Present (Null_Body) then
2693 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
2694 Set_Body_To_Inline (N, Null_Body);
2695 Set_Is_Inlined (Designator);
2696 end if;
2697 end if;
2698
2699 Validate_RCI_Subprogram_Declaration (N);
2700 New_Overloaded_Entity (Designator);
2701 Check_Delayed_Subprogram (Designator);
2702
2703 -- If the type of the first formal of the current subprogram is a
2704 -- nongeneric tagged private type, mark the subprogram as being a
2705 -- private primitive. Ditto if this is a function with controlling
2706 -- result, and the return type is currently private.
2707
2708 if Has_Controlling_Result (Designator)
2709 and then Is_Private_Type (Etype (Designator))
2710 and then not Is_Generic_Actual_Type (Etype (Designator))
2711 then
2712 Set_Is_Private_Primitive (Designator);
2713
2714 elsif Present (First_Formal (Designator)) then
2715 declare
2716 Formal_Typ : constant Entity_Id :=
2717 Etype (First_Formal (Designator));
2718 begin
2719 Set_Is_Private_Primitive (Designator,
2720 Is_Tagged_Type (Formal_Typ)
2721 and then Is_Private_Type (Formal_Typ)
2722 and then not Is_Generic_Actual_Type (Formal_Typ));
2723 end;
2724 end if;
2725
2726 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
2727 -- or null.
2728
2729 if Ada_Version >= Ada_05
2730 and then Comes_From_Source (N)
2731 and then Is_Dispatching_Operation (Designator)
2732 then
2733 declare
2734 E : Entity_Id;
2735 Etyp : Entity_Id;
2736
2737 begin
2738 if Has_Controlling_Result (Designator) then
2739 Etyp := Etype (Designator);
2740
2741 else
2742 E := First_Entity (Designator);
2743 while Present (E)
2744 and then Is_Formal (E)
2745 and then not Is_Controlling_Formal (E)
2746 loop
2747 Next_Entity (E);
2748 end loop;
2749
2750 Etyp := Etype (E);
2751 end if;
2752
2753 if Is_Access_Type (Etyp) then
2754 Etyp := Directly_Designated_Type (Etyp);
2755 end if;
2756
2757 if Is_Interface (Etyp)
2758 and then not Is_Abstract_Subprogram (Designator)
2759 and then not (Ekind (Designator) = E_Procedure
2760 and then Null_Present (Specification (N)))
2761 then
2762 Error_Msg_Name_1 := Chars (Defining_Entity (N));
2763 Error_Msg_N
2764 ("(Ada 2005) interface subprogram % must be abstract or null",
2765 N);
2766 end if;
2767 end;
2768 end if;
2769
2770 -- What is the following code for, it used to be
2771
2772 -- ??? Set_Suppress_Elaboration_Checks
2773 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
2774
2775 -- The following seems equivalent, but a bit dubious
2776
2777 if Elaboration_Checks_Suppressed (Designator) then
2778 Set_Kill_Elaboration_Checks (Designator);
2779 end if;
2780
2781 if Scop /= Standard_Standard
2782 and then not Is_Child_Unit (Designator)
2783 then
2784 Set_Categorization_From_Scope (Designator, Scop);
2785 else
2786 -- For a compilation unit, check for library-unit pragmas
2787
2788 Push_Scope (Designator);
2789 Set_Categorization_From_Pragmas (N);
2790 Validate_Categorization_Dependency (N, Designator);
2791 Pop_Scope;
2792 end if;
2793
2794 -- For a compilation unit, set body required. This flag will only be
2795 -- reset if a valid Import or Interface pragma is processed later on.
2796
2797 if Nkind (Parent (N)) = N_Compilation_Unit then
2798 Set_Body_Required (Parent (N), True);
2799
2800 if Ada_Version >= Ada_05
2801 and then Nkind (Specification (N)) = N_Procedure_Specification
2802 and then Null_Present (Specification (N))
2803 then
2804 Error_Msg_N
2805 ("null procedure cannot be declared at library level", N);
2806 end if;
2807 end if;
2808
2809 Generate_Reference_To_Formals (Designator);
2810 Check_Eliminated (Designator);
2811
2812 if Debug_Flag_C then
2813 Outdent;
2814 Write_Str ("<== subprogram spec ");
2815 Write_Name (Chars (Designator));
2816 Write_Str (" from ");
2817 Write_Location (Sloc (N));
2818 Write_Eol;
2819 end if;
2820 end Analyze_Subprogram_Declaration;
2821
2822 --------------------------------------
2823 -- Analyze_Subprogram_Specification --
2824 --------------------------------------
2825
2826 -- Reminder: N here really is a subprogram specification (not a subprogram
2827 -- declaration). This procedure is called to analyze the specification in
2828 -- both subprogram bodies and subprogram declarations (specs).
2829
2830 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
2831 Designator : constant Entity_Id := Defining_Entity (N);
2832 Formals : constant List_Id := Parameter_Specifications (N);
2833
2834 -- Start of processing for Analyze_Subprogram_Specification
2835
2836 begin
2837 Generate_Definition (Designator);
2838
2839 if Nkind (N) = N_Function_Specification then
2840 Set_Ekind (Designator, E_Function);
2841 Set_Mechanism (Designator, Default_Mechanism);
2842
2843 else
2844 Set_Ekind (Designator, E_Procedure);
2845 Set_Etype (Designator, Standard_Void_Type);
2846 end if;
2847
2848 -- Introduce new scope for analysis of the formals and the return type
2849
2850 Set_Scope (Designator, Current_Scope);
2851
2852 if Present (Formals) then
2853 Push_Scope (Designator);
2854 Process_Formals (Formals, N);
2855
2856 -- Ada 2005 (AI-345): If this is an overriding operation of an
2857 -- inherited interface operation, and the controlling type is
2858 -- a synchronized type, replace the type with its corresponding
2859 -- record, to match the proper signature of an overriding operation.
2860 -- Same processing for an access parameter whose designated type is
2861 -- derived from a synchronized interface.
2862
2863 if Ada_Version >= Ada_05 then
2864 declare
2865 Formal : Entity_Id;
2866 Formal_Typ : Entity_Id;
2867 Rec_Typ : Entity_Id;
2868 Desig_Typ : Entity_Id;
2869
2870 begin
2871 Formal := First_Formal (Designator);
2872 while Present (Formal) loop
2873 Formal_Typ := Etype (Formal);
2874
2875 if Is_Concurrent_Type (Formal_Typ)
2876 and then Present (Corresponding_Record_Type (Formal_Typ))
2877 then
2878 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
2879
2880 if Present (Interfaces (Rec_Typ)) then
2881 Set_Etype (Formal, Rec_Typ);
2882 end if;
2883
2884 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
2885 Desig_Typ := Designated_Type (Formal_Typ);
2886
2887 if Is_Concurrent_Type (Desig_Typ)
2888 and then Present (Corresponding_Record_Type (Desig_Typ))
2889 then
2890 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
2891
2892 if Present (Interfaces (Rec_Typ)) then
2893 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
2894 end if;
2895 end if;
2896 end if;
2897
2898 Next_Formal (Formal);
2899 end loop;
2900 end;
2901 end if;
2902
2903 End_Scope;
2904
2905 -- The subprogram scope is pushed and popped around the processing of
2906 -- the return type for consistency with call above to Process_Formals
2907 -- (which itself can call Analyze_Return_Type), and to ensure that any
2908 -- itype created for the return type will be associated with the proper
2909 -- scope.
2910
2911 elsif Nkind (N) = N_Function_Specification then
2912 Push_Scope (Designator);
2913
2914 Analyze_Return_Type (N);
2915
2916 End_Scope;
2917 end if;
2918
2919 if Nkind (N) = N_Function_Specification then
2920 if Nkind (Designator) = N_Defining_Operator_Symbol then
2921 Valid_Operator_Definition (Designator);
2922 end if;
2923
2924 May_Need_Actuals (Designator);
2925
2926 -- Ada 2005 (AI-251): If the return type is abstract, verify that
2927 -- the subprogram is abstract also. This does not apply to renaming
2928 -- declarations, where abstractness is inherited.
2929 -- In case of primitives associated with abstract interface types
2930 -- the check is applied later (see Analyze_Subprogram_Declaration).
2931
2932 if Is_Abstract_Type (Etype (Designator))
2933 and then not Is_Interface (Etype (Designator))
2934 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
2935 and then Nkind (Parent (N)) /=
2936 N_Abstract_Subprogram_Declaration
2937 and then
2938 (Nkind (Parent (N))) /= N_Formal_Abstract_Subprogram_Declaration
2939 then
2940 Error_Msg_N
2941 ("function that returns abstract type must be abstract", N);
2942 end if;
2943 end if;
2944
2945 return Designator;
2946 end Analyze_Subprogram_Specification;
2947
2948 --------------------------
2949 -- Build_Body_To_Inline --
2950 --------------------------
2951
2952 procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id) is
2953 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
2954 Original_Body : Node_Id;
2955 Body_To_Analyze : Node_Id;
2956 Max_Size : constant := 10;
2957 Stat_Count : Integer := 0;
2958
2959 function Has_Excluded_Declaration (Decls : List_Id) return Boolean;
2960 -- Check for declarations that make inlining not worthwhile
2961
2962 function Has_Excluded_Statement (Stats : List_Id) return Boolean;
2963 -- Check for statements that make inlining not worthwhile: any tasking
2964 -- statement, nested at any level. Keep track of total number of
2965 -- elementary statements, as a measure of acceptable size.
2966
2967 function Has_Pending_Instantiation return Boolean;
2968 -- If some enclosing body contains instantiations that appear before the
2969 -- corresponding generic body, the enclosing body has a freeze node so
2970 -- that it can be elaborated after the generic itself. This might
2971 -- conflict with subsequent inlinings, so that it is unsafe to try to
2972 -- inline in such a case.
2973
2974 function Has_Single_Return return Boolean;
2975 -- In general we cannot inline functions that return unconstrained type.
2976 -- However, we can handle such functions if all return statements return
2977 -- a local variable that is the only declaration in the body of the
2978 -- function. In that case the call can be replaced by that local
2979 -- variable as is done for other inlined calls.
2980
2981 procedure Remove_Pragmas;
2982 -- A pragma Unreferenced or pragma Unmodified that mentions a formal
2983 -- parameter has no meaning when the body is inlined and the formals
2984 -- are rewritten. Remove it from body to inline. The analysis of the
2985 -- non-inlined body will handle the pragma properly.
2986
2987 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
2988 -- If the body of the subprogram includes a call that returns an
2989 -- unconstrained type, the secondary stack is involved, and it
2990 -- is not worth inlining.
2991
2992 ------------------------------
2993 -- Has_Excluded_Declaration --
2994 ------------------------------
2995
2996 function Has_Excluded_Declaration (Decls : List_Id) return Boolean is
2997 D : Node_Id;
2998
2999 function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
3000 -- Nested subprograms make a given body ineligible for inlining, but
3001 -- we make an exception for instantiations of unchecked conversion.
3002 -- The body has not been analyzed yet, so check the name, and verify
3003 -- that the visible entity with that name is the predefined unit.
3004
3005 -----------------------------
3006 -- Is_Unchecked_Conversion --
3007 -----------------------------
3008
3009 function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
3010 Id : constant Node_Id := Name (D);
3011 Conv : Entity_Id;
3012
3013 begin
3014 if Nkind (Id) = N_Identifier
3015 and then Chars (Id) = Name_Unchecked_Conversion
3016 then
3017 Conv := Current_Entity (Id);
3018
3019 elsif Nkind_In (Id, N_Selected_Component, N_Expanded_Name)
3020 and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
3021 then
3022 Conv := Current_Entity (Selector_Name (Id));
3023 else
3024 return False;
3025 end if;
3026
3027 return Present (Conv)
3028 and then Is_Predefined_File_Name
3029 (Unit_File_Name (Get_Source_Unit (Conv)))
3030 and then Is_Intrinsic_Subprogram (Conv);
3031 end Is_Unchecked_Conversion;
3032
3033 -- Start of processing for Has_Excluded_Declaration
3034
3035 begin
3036 D := First (Decls);
3037 while Present (D) loop
3038 if (Nkind (D) = N_Function_Instantiation
3039 and then not Is_Unchecked_Conversion (D))
3040 or else Nkind_In (D, N_Protected_Type_Declaration,
3041 N_Package_Declaration,
3042 N_Package_Instantiation,
3043 N_Subprogram_Body,
3044 N_Procedure_Instantiation,
3045 N_Task_Type_Declaration)
3046 then
3047 Cannot_Inline
3048 ("cannot inline & (non-allowed declaration)?", D, Subp);
3049 return True;
3050 end if;
3051
3052 Next (D);
3053 end loop;
3054
3055 return False;
3056 end Has_Excluded_Declaration;
3057
3058 ----------------------------
3059 -- Has_Excluded_Statement --
3060 ----------------------------
3061
3062 function Has_Excluded_Statement (Stats : List_Id) return Boolean is
3063 S : Node_Id;
3064 E : Node_Id;
3065
3066 begin
3067 S := First (Stats);
3068 while Present (S) loop
3069 Stat_Count := Stat_Count + 1;
3070
3071 if Nkind_In (S, N_Abort_Statement,
3072 N_Asynchronous_Select,
3073 N_Conditional_Entry_Call,
3074 N_Delay_Relative_Statement,
3075 N_Delay_Until_Statement,
3076 N_Selective_Accept,
3077 N_Timed_Entry_Call)
3078 then
3079 Cannot_Inline
3080 ("cannot inline & (non-allowed statement)?", S, Subp);
3081 return True;
3082
3083 elsif Nkind (S) = N_Block_Statement then
3084 if Present (Declarations (S))
3085 and then Has_Excluded_Declaration (Declarations (S))
3086 then
3087 return True;
3088
3089 elsif Present (Handled_Statement_Sequence (S))
3090 and then
3091 (Present
3092 (Exception_Handlers (Handled_Statement_Sequence (S)))
3093 or else
3094 Has_Excluded_Statement
3095 (Statements (Handled_Statement_Sequence (S))))
3096 then
3097 return True;
3098 end if;
3099
3100 elsif Nkind (S) = N_Case_Statement then
3101 E := First (Alternatives (S));
3102 while Present (E) loop
3103 if Has_Excluded_Statement (Statements (E)) then
3104 return True;
3105 end if;
3106
3107 Next (E);
3108 end loop;
3109
3110 elsif Nkind (S) = N_If_Statement then
3111 if Has_Excluded_Statement (Then_Statements (S)) then
3112 return True;
3113 end if;
3114
3115 if Present (Elsif_Parts (S)) then
3116 E := First (Elsif_Parts (S));
3117 while Present (E) loop
3118 if Has_Excluded_Statement (Then_Statements (E)) then
3119 return True;
3120 end if;
3121 Next (E);
3122 end loop;
3123 end if;
3124
3125 if Present (Else_Statements (S))
3126 and then Has_Excluded_Statement (Else_Statements (S))
3127 then
3128 return True;
3129 end if;
3130
3131 elsif Nkind (S) = N_Loop_Statement
3132 and then Has_Excluded_Statement (Statements (S))
3133 then
3134 return True;
3135 end if;
3136
3137 Next (S);
3138 end loop;
3139
3140 return False;
3141 end Has_Excluded_Statement;
3142
3143 -------------------------------
3144 -- Has_Pending_Instantiation --
3145 -------------------------------
3146
3147 function Has_Pending_Instantiation return Boolean is
3148 S : Entity_Id;
3149
3150 begin
3151 S := Current_Scope;
3152 while Present (S) loop
3153 if Is_Compilation_Unit (S)
3154 or else Is_Child_Unit (S)
3155 then
3156 return False;
3157 elsif Ekind (S) = E_Package
3158 and then Has_Forward_Instantiation (S)
3159 then
3160 return True;
3161 end if;
3162
3163 S := Scope (S);
3164 end loop;
3165
3166 return False;
3167 end Has_Pending_Instantiation;
3168
3169 ------------------------
3170 -- Has_Single_Return --
3171 ------------------------
3172
3173 function Has_Single_Return return Boolean is
3174 Return_Statement : Node_Id := Empty;
3175
3176 function Check_Return (N : Node_Id) return Traverse_Result;
3177
3178 ------------------
3179 -- Check_Return --
3180 ------------------
3181
3182 function Check_Return (N : Node_Id) return Traverse_Result is
3183 begin
3184 if Nkind (N) = N_Simple_Return_Statement then
3185 if Present (Expression (N))
3186 and then Is_Entity_Name (Expression (N))
3187 then
3188 if No (Return_Statement) then
3189 Return_Statement := N;
3190 return OK;
3191
3192 elsif Chars (Expression (N)) =
3193 Chars (Expression (Return_Statement))
3194 then
3195 return OK;
3196
3197 else
3198 return Abandon;
3199 end if;
3200
3201 else
3202 -- Expression has wrong form
3203
3204 return Abandon;
3205 end if;
3206
3207 else
3208 return OK;
3209 end if;
3210 end Check_Return;
3211
3212 function Check_All_Returns is new Traverse_Func (Check_Return);
3213
3214 -- Start of processing for Has_Single_Return
3215
3216 begin
3217 return Check_All_Returns (N) = OK
3218 and then Present (Declarations (N))
3219 and then Present (First (Declarations (N)))
3220 and then Chars (Expression (Return_Statement)) =
3221 Chars (Defining_Identifier (First (Declarations (N))));
3222 end Has_Single_Return;
3223
3224 --------------------
3225 -- Remove_Pragmas --
3226 --------------------
3227
3228 procedure Remove_Pragmas is
3229 Decl : Node_Id;
3230 Nxt : Node_Id;
3231
3232 begin
3233 Decl := First (Declarations (Body_To_Analyze));
3234 while Present (Decl) loop
3235 Nxt := Next (Decl);
3236
3237 if Nkind (Decl) = N_Pragma
3238 and then (Pragma_Name (Decl) = Name_Unreferenced
3239 or else
3240 Pragma_Name (Decl) = Name_Unmodified)
3241 then
3242 Remove (Decl);
3243 end if;
3244
3245 Decl := Nxt;
3246 end loop;
3247 end Remove_Pragmas;
3248
3249 --------------------------
3250 -- Uses_Secondary_Stack --
3251 --------------------------
3252
3253 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
3254 function Check_Call (N : Node_Id) return Traverse_Result;
3255 -- Look for function calls that return an unconstrained type
3256
3257 ----------------
3258 -- Check_Call --
3259 ----------------
3260
3261 function Check_Call (N : Node_Id) return Traverse_Result is
3262 begin
3263 if Nkind (N) = N_Function_Call
3264 and then Is_Entity_Name (Name (N))
3265 and then Is_Composite_Type (Etype (Entity (Name (N))))
3266 and then not Is_Constrained (Etype (Entity (Name (N))))
3267 then
3268 Cannot_Inline
3269 ("cannot inline & (call returns unconstrained type)?",
3270 N, Subp);
3271 return Abandon;
3272 else
3273 return OK;
3274 end if;
3275 end Check_Call;
3276
3277 function Check_Calls is new Traverse_Func (Check_Call);
3278
3279 begin
3280 return Check_Calls (Bod) = Abandon;
3281 end Uses_Secondary_Stack;
3282
3283 -- Start of processing for Build_Body_To_Inline
3284
3285 begin
3286 -- Return immediately if done already
3287
3288 if Nkind (Decl) = N_Subprogram_Declaration
3289 and then Present (Body_To_Inline (Decl))
3290 then
3291 return;
3292
3293 -- Functions that return unconstrained composite types require
3294 -- secondary stack handling, and cannot currently be inlined, unless
3295 -- all return statements return a local variable that is the first
3296 -- local declaration in the body.
3297
3298 elsif Ekind (Subp) = E_Function
3299 and then not Is_Scalar_Type (Etype (Subp))
3300 and then not Is_Access_Type (Etype (Subp))
3301 and then not Is_Constrained (Etype (Subp))
3302 then
3303 if not Has_Single_Return then
3304 Cannot_Inline
3305 ("cannot inline & (unconstrained return type)?", N, Subp);
3306 return;
3307 end if;
3308
3309 -- Ditto for functions that return controlled types, where controlled
3310 -- actions interfere in complex ways with inlining.
3311
3312 elsif Ekind (Subp) = E_Function
3313 and then Needs_Finalization (Etype (Subp))
3314 then
3315 Cannot_Inline
3316 ("cannot inline & (controlled return type)?", N, Subp);
3317 return;
3318 end if;
3319
3320 if Present (Declarations (N))
3321 and then Has_Excluded_Declaration (Declarations (N))
3322 then
3323 return;
3324 end if;
3325
3326 if Present (Handled_Statement_Sequence (N)) then
3327 if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
3328 Cannot_Inline
3329 ("cannot inline& (exception handler)?",
3330 First (Exception_Handlers (Handled_Statement_Sequence (N))),
3331 Subp);
3332 return;
3333 elsif
3334 Has_Excluded_Statement
3335 (Statements (Handled_Statement_Sequence (N)))
3336 then
3337 return;
3338 end if;
3339 end if;
3340
3341 -- We do not inline a subprogram that is too large, unless it is
3342 -- marked Inline_Always. This pragma does not suppress the other
3343 -- checks on inlining (forbidden declarations, handlers, etc).
3344
3345 if Stat_Count > Max_Size
3346 and then not Has_Pragma_Inline_Always (Subp)
3347 then
3348 Cannot_Inline ("cannot inline& (body too large)?", N, Subp);
3349 return;
3350 end if;
3351
3352 if Has_Pending_Instantiation then
3353 Cannot_Inline
3354 ("cannot inline& (forward instance within enclosing body)?",
3355 N, Subp);
3356 return;
3357 end if;
3358
3359 -- Within an instance, the body to inline must be treated as a nested
3360 -- generic, so that the proper global references are preserved.
3361
3362 -- Note that we do not do this at the library level, because it is not
3363 -- needed, and furthermore this causes trouble if front end inlining
3364 -- is activated (-gnatN).
3365
3366 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
3367 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
3368 Original_Body := Copy_Generic_Node (N, Empty, True);
3369 else
3370 Original_Body := Copy_Separate_Tree (N);
3371 end if;
3372
3373 -- We need to capture references to the formals in order to substitute
3374 -- the actuals at the point of inlining, i.e. instantiation. To treat
3375 -- the formals as globals to the body to inline, we nest it within
3376 -- a dummy parameterless subprogram, declared within the real one.
3377 -- To avoid generating an internal name (which is never public, and
3378 -- which affects serial numbers of other generated names), we use
3379 -- an internal symbol that cannot conflict with user declarations.
3380
3381 Set_Parameter_Specifications (Specification (Original_Body), No_List);
3382 Set_Defining_Unit_Name
3383 (Specification (Original_Body),
3384 Make_Defining_Identifier (Sloc (N), Name_uParent));
3385 Set_Corresponding_Spec (Original_Body, Empty);
3386
3387 Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
3388
3389 -- Set return type of function, which is also global and does not need
3390 -- to be resolved.
3391
3392 if Ekind (Subp) = E_Function then
3393 Set_Result_Definition (Specification (Body_To_Analyze),
3394 New_Occurrence_Of (Etype (Subp), Sloc (N)));
3395 end if;
3396
3397 if No (Declarations (N)) then
3398 Set_Declarations (N, New_List (Body_To_Analyze));
3399 else
3400 Append (Body_To_Analyze, Declarations (N));
3401 end if;
3402
3403 Expander_Mode_Save_And_Set (False);
3404 Remove_Pragmas;
3405
3406 Analyze (Body_To_Analyze);
3407 Push_Scope (Defining_Entity (Body_To_Analyze));
3408 Save_Global_References (Original_Body);
3409 End_Scope;
3410 Remove (Body_To_Analyze);
3411
3412 Expander_Mode_Restore;
3413
3414 -- Restore environment if previously saved
3415
3416 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
3417 Restore_Env;
3418 end if;
3419
3420 -- If secondary stk used there is no point in inlining. We have
3421 -- already issued the warning in this case, so nothing to do.
3422
3423 if Uses_Secondary_Stack (Body_To_Analyze) then
3424 return;
3425 end if;
3426
3427 Set_Body_To_Inline (Decl, Original_Body);
3428 Set_Ekind (Defining_Entity (Original_Body), Ekind (Subp));
3429 Set_Is_Inlined (Subp);
3430 end Build_Body_To_Inline;
3431
3432 -------------------
3433 -- Cannot_Inline --
3434 -------------------
3435
3436 procedure Cannot_Inline (Msg : String; N : Node_Id; Subp : Entity_Id) is
3437 begin
3438 -- Do not emit warning if this is a predefined unit which is not
3439 -- the main unit. With validity checks enabled, some predefined
3440 -- subprograms may contain nested subprograms and become ineligible
3441 -- for inlining.
3442
3443 if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
3444 and then not In_Extended_Main_Source_Unit (Subp)
3445 then
3446 null;
3447
3448 elsif Has_Pragma_Inline_Always (Subp) then
3449
3450 -- Remove last character (question mark) to make this into an error,
3451 -- because the Inline_Always pragma cannot be obeyed.
3452
3453 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
3454
3455 elsif Ineffective_Inline_Warnings then
3456 Error_Msg_NE (Msg, N, Subp);
3457 end if;
3458 end Cannot_Inline;
3459
3460 -----------------------
3461 -- Check_Conformance --
3462 -----------------------
3463
3464 procedure Check_Conformance
3465 (New_Id : Entity_Id;
3466 Old_Id : Entity_Id;
3467 Ctype : Conformance_Type;
3468 Errmsg : Boolean;
3469 Conforms : out Boolean;
3470 Err_Loc : Node_Id := Empty;
3471 Get_Inst : Boolean := False;
3472 Skip_Controlling_Formals : Boolean := False)
3473 is
3474 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
3475 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
3476 -- If Errmsg is True, then processing continues to post an error message
3477 -- for conformance error on given node. Two messages are output. The
3478 -- first message points to the previous declaration with a general "no
3479 -- conformance" message. The second is the detailed reason, supplied as
3480 -- Msg. The parameter N provide information for a possible & insertion
3481 -- in the message, and also provides the location for posting the
3482 -- message in the absence of a specified Err_Loc location.
3483
3484 -----------------------
3485 -- Conformance_Error --
3486 -----------------------
3487
3488 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
3489 Enode : Node_Id;
3490
3491 begin
3492 Conforms := False;
3493
3494 if Errmsg then
3495 if No (Err_Loc) then
3496 Enode := N;
3497 else
3498 Enode := Err_Loc;
3499 end if;
3500
3501 Error_Msg_Sloc := Sloc (Old_Id);
3502
3503 case Ctype is
3504 when Type_Conformant =>
3505 Error_Msg_N -- CODEFIX
3506 ("not type conformant with declaration#!", Enode);
3507
3508 when Mode_Conformant =>
3509 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
3510 Error_Msg_N -- CODEFIX???
3511 ("not mode conformant with operation inherited#!",
3512 Enode);
3513 else
3514 Error_Msg_N -- CODEFIX???
3515 ("not mode conformant with declaration#!", Enode);
3516 end if;
3517
3518 when Subtype_Conformant =>
3519 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
3520 Error_Msg_N -- CODEFIX???
3521 ("not subtype conformant with operation inherited#!",
3522 Enode);
3523 else
3524 Error_Msg_N -- CODEFIX???
3525 ("not subtype conformant with declaration#!", Enode);
3526 end if;
3527
3528 when Fully_Conformant =>
3529 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
3530 Error_Msg_N -- CODEFIX
3531 ("not fully conformant with operation inherited#!",
3532 Enode);
3533 else
3534 Error_Msg_N -- CODEFIX
3535 ("not fully conformant with declaration#!", Enode);
3536 end if;
3537 end case;
3538
3539 Error_Msg_NE (Msg, Enode, N);
3540 end if;
3541 end Conformance_Error;
3542
3543 -- Local Variables
3544
3545 Old_Type : constant Entity_Id := Etype (Old_Id);
3546 New_Type : constant Entity_Id := Etype (New_Id);
3547 Old_Formal : Entity_Id;
3548 New_Formal : Entity_Id;
3549 Access_Types_Match : Boolean;
3550 Old_Formal_Base : Entity_Id;
3551 New_Formal_Base : Entity_Id;
3552
3553 -- Start of processing for Check_Conformance
3554
3555 begin
3556 Conforms := True;
3557
3558 -- We need a special case for operators, since they don't appear
3559 -- explicitly.
3560
3561 if Ctype = Type_Conformant then
3562 if Ekind (New_Id) = E_Operator
3563 and then Operator_Matches_Spec (New_Id, Old_Id)
3564 then
3565 return;
3566 end if;
3567 end if;
3568
3569 -- If both are functions/operators, check return types conform
3570
3571 if Old_Type /= Standard_Void_Type
3572 and then New_Type /= Standard_Void_Type
3573 then
3574
3575 -- If we are checking interface conformance we omit controlling
3576 -- arguments and result, because we are only checking the conformance
3577 -- of the remaining parameters.
3578
3579 if Has_Controlling_Result (Old_Id)
3580 and then Has_Controlling_Result (New_Id)
3581 and then Skip_Controlling_Formals
3582 then
3583 null;
3584
3585 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
3586 Conformance_Error ("\return type does not match!", New_Id);
3587 return;
3588 end if;
3589
3590 -- Ada 2005 (AI-231): In case of anonymous access types check the
3591 -- null-exclusion and access-to-constant attributes match.
3592
3593 if Ada_Version >= Ada_05
3594 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
3595 and then
3596 (Can_Never_Be_Null (Old_Type)
3597 /= Can_Never_Be_Null (New_Type)
3598 or else Is_Access_Constant (Etype (Old_Type))
3599 /= Is_Access_Constant (Etype (New_Type)))
3600 then
3601 Conformance_Error ("\return type does not match!", New_Id);
3602 return;
3603 end if;
3604
3605 -- If either is a function/operator and the other isn't, error
3606
3607 elsif Old_Type /= Standard_Void_Type
3608 or else New_Type /= Standard_Void_Type
3609 then
3610 Conformance_Error ("\functions can only match functions!", New_Id);
3611 return;
3612 end if;
3613
3614 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
3615 -- If this is a renaming as body, refine error message to indicate that
3616 -- the conflict is with the original declaration. If the entity is not
3617 -- frozen, the conventions don't have to match, the one of the renamed
3618 -- entity is inherited.
3619
3620 if Ctype >= Subtype_Conformant then
3621 if Convention (Old_Id) /= Convention (New_Id) then
3622
3623 if not Is_Frozen (New_Id) then
3624 null;
3625
3626 elsif Present (Err_Loc)
3627 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
3628 and then Present (Corresponding_Spec (Err_Loc))
3629 then
3630 Error_Msg_Name_1 := Chars (New_Id);
3631 Error_Msg_Name_2 :=
3632 Name_Ada + Convention_Id'Pos (Convention (New_Id));
3633
3634 Conformance_Error ("\prior declaration for% has convention %!");
3635
3636 else
3637 Conformance_Error ("\calling conventions do not match!");
3638 end if;
3639
3640 return;
3641
3642 elsif Is_Formal_Subprogram (Old_Id)
3643 or else Is_Formal_Subprogram (New_Id)
3644 then
3645 Conformance_Error ("\formal subprograms not allowed!");
3646 return;
3647 end if;
3648 end if;
3649
3650 -- Deal with parameters
3651
3652 -- Note: we use the entity information, rather than going directly
3653 -- to the specification in the tree. This is not only simpler, but
3654 -- absolutely necessary for some cases of conformance tests between
3655 -- operators, where the declaration tree simply does not exist!
3656
3657 Old_Formal := First_Formal (Old_Id);
3658 New_Formal := First_Formal (New_Id);
3659 while Present (Old_Formal) and then Present (New_Formal) loop
3660 if Is_Controlling_Formal (Old_Formal)
3661 and then Is_Controlling_Formal (New_Formal)
3662 and then Skip_Controlling_Formals
3663 then
3664 -- The controlling formals will have different types when
3665 -- comparing an interface operation with its match, but both
3666 -- or neither must be access parameters.
3667
3668 if Is_Access_Type (Etype (Old_Formal))
3669 =
3670 Is_Access_Type (Etype (New_Formal))
3671 then
3672 goto Skip_Controlling_Formal;
3673 else
3674 Conformance_Error
3675 ("\access parameter does not match!", New_Formal);
3676 end if;
3677 end if;
3678
3679 if Ctype = Fully_Conformant then
3680
3681 -- Names must match. Error message is more accurate if we do
3682 -- this before checking that the types of the formals match.
3683
3684 if Chars (Old_Formal) /= Chars (New_Formal) then
3685 Conformance_Error ("\name & does not match!", New_Formal);
3686
3687 -- Set error posted flag on new formal as well to stop
3688 -- junk cascaded messages in some cases.
3689
3690 Set_Error_Posted (New_Formal);
3691 return;
3692 end if;
3693 end if;
3694
3695 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
3696 -- case occurs whenever a subprogram is being renamed and one of its
3697 -- parameters imposes a null exclusion. For example:
3698
3699 -- type T is null record;
3700 -- type Acc_T is access T;
3701 -- subtype Acc_T_Sub is Acc_T;
3702
3703 -- procedure P (Obj : not null Acc_T_Sub); -- itype
3704 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
3705 -- renames P;
3706
3707 Old_Formal_Base := Etype (Old_Formal);
3708 New_Formal_Base := Etype (New_Formal);
3709
3710 if Get_Inst then
3711 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
3712 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
3713 end if;
3714
3715 Access_Types_Match := Ada_Version >= Ada_05
3716
3717 -- Ensure that this rule is only applied when New_Id is a
3718 -- renaming of Old_Id.
3719
3720 and then Nkind (Parent (Parent (New_Id))) =
3721 N_Subprogram_Renaming_Declaration
3722 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
3723 and then Present (Entity (Name (Parent (Parent (New_Id)))))
3724 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
3725
3726 -- Now handle the allowed access-type case
3727
3728 and then Is_Access_Type (Old_Formal_Base)
3729 and then Is_Access_Type (New_Formal_Base)
3730
3731 -- The type kinds must match. The only exception occurs with
3732 -- multiple generics of the form:
3733
3734 -- generic generic
3735 -- type F is private; type A is private;
3736 -- type F_Ptr is access F; type A_Ptr is access A;
3737 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
3738 -- package F_Pack is ... package A_Pack is
3739 -- package F_Inst is
3740 -- new F_Pack (A, A_Ptr, A_P);
3741
3742 -- When checking for conformance between the parameters of A_P
3743 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
3744 -- because the compiler has transformed A_Ptr into a subtype of
3745 -- F_Ptr. We catch this case in the code below.
3746
3747 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
3748 or else
3749 (Is_Generic_Type (Old_Formal_Base)
3750 and then Is_Generic_Type (New_Formal_Base)
3751 and then Is_Internal (New_Formal_Base)
3752 and then Etype (Etype (New_Formal_Base)) =
3753 Old_Formal_Base))
3754 and then Directly_Designated_Type (Old_Formal_Base) =
3755 Directly_Designated_Type (New_Formal_Base)
3756 and then ((Is_Itype (Old_Formal_Base)
3757 and then Can_Never_Be_Null (Old_Formal_Base))
3758 or else
3759 (Is_Itype (New_Formal_Base)
3760 and then Can_Never_Be_Null (New_Formal_Base)));
3761
3762 -- Types must always match. In the visible part of an instance,
3763 -- usual overloading rules for dispatching operations apply, and
3764 -- we check base types (not the actual subtypes).
3765
3766 if In_Instance_Visible_Part
3767 and then Is_Dispatching_Operation (New_Id)
3768 then
3769 if not Conforming_Types
3770 (T1 => Base_Type (Etype (Old_Formal)),
3771 T2 => Base_Type (Etype (New_Formal)),
3772 Ctype => Ctype,
3773 Get_Inst => Get_Inst)
3774 and then not Access_Types_Match
3775 then
3776 Conformance_Error ("\type of & does not match!", New_Formal);
3777 return;
3778 end if;
3779
3780 elsif not Conforming_Types
3781 (T1 => Old_Formal_Base,
3782 T2 => New_Formal_Base,
3783 Ctype => Ctype,
3784 Get_Inst => Get_Inst)
3785 and then not Access_Types_Match
3786 then
3787 -- Don't give error message if old type is Any_Type. This test
3788 -- avoids some cascaded errors, e.g. in case of a bad spec.
3789
3790 if Errmsg and then Old_Formal_Base = Any_Type then
3791 Conforms := False;
3792 else
3793 Conformance_Error ("\type of & does not match!", New_Formal);
3794 end if;
3795
3796 return;
3797 end if;
3798
3799 -- For mode conformance, mode must match
3800
3801 if Ctype >= Mode_Conformant then
3802 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
3803 Conformance_Error ("\mode of & does not match!", New_Formal);
3804 return;
3805
3806 -- Part of mode conformance for access types is having the same
3807 -- constant modifier.
3808
3809 elsif Access_Types_Match
3810 and then Is_Access_Constant (Old_Formal_Base) /=
3811 Is_Access_Constant (New_Formal_Base)
3812 then
3813 Conformance_Error
3814 ("\constant modifier does not match!", New_Formal);
3815 return;
3816 end if;
3817 end if;
3818
3819 if Ctype >= Subtype_Conformant then
3820
3821 -- Ada 2005 (AI-231): In case of anonymous access types check
3822 -- the null-exclusion and access-to-constant attributes must
3823 -- match.
3824
3825 if Ada_Version >= Ada_05
3826 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
3827 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
3828 and then
3829 (Can_Never_Be_Null (Old_Formal) /=
3830 Can_Never_Be_Null (New_Formal)
3831 or else
3832 Is_Access_Constant (Etype (Old_Formal)) /=
3833 Is_Access_Constant (Etype (New_Formal)))
3834 then
3835 -- It is allowed to omit the null-exclusion in case of stream
3836 -- attribute subprograms. We recognize stream subprograms
3837 -- through their TSS-generated suffix.
3838
3839 declare
3840 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
3841 begin
3842 if TSS_Name /= TSS_Stream_Read
3843 and then TSS_Name /= TSS_Stream_Write
3844 and then TSS_Name /= TSS_Stream_Input
3845 and then TSS_Name /= TSS_Stream_Output
3846 then
3847 Conformance_Error
3848 ("\type of & does not match!", New_Formal);
3849 return;
3850 end if;
3851 end;
3852 end if;
3853 end if;
3854
3855 -- Full conformance checks
3856
3857 if Ctype = Fully_Conformant then
3858
3859 -- We have checked already that names match
3860
3861 if Parameter_Mode (Old_Formal) = E_In_Parameter then
3862
3863 -- Check default expressions for in parameters
3864
3865 declare
3866 NewD : constant Boolean :=
3867 Present (Default_Value (New_Formal));
3868 OldD : constant Boolean :=
3869 Present (Default_Value (Old_Formal));
3870 begin
3871 if NewD or OldD then
3872
3873 -- The old default value has been analyzed because the
3874 -- current full declaration will have frozen everything
3875 -- before. The new default value has not been analyzed,
3876 -- so analyze it now before we check for conformance.
3877
3878 if NewD then
3879 Push_Scope (New_Id);
3880 Preanalyze_Spec_Expression
3881 (Default_Value (New_Formal), Etype (New_Formal));
3882 End_Scope;
3883 end if;
3884
3885 if not (NewD and OldD)
3886 or else not Fully_Conformant_Expressions
3887 (Default_Value (Old_Formal),
3888 Default_Value (New_Formal))
3889 then
3890 Conformance_Error
3891 ("\default expression for & does not match!",
3892 New_Formal);
3893 return;
3894 end if;
3895 end if;
3896 end;
3897 end if;
3898 end if;
3899
3900 -- A couple of special checks for Ada 83 mode. These checks are
3901 -- skipped if either entity is an operator in package Standard,
3902 -- or if either old or new instance is not from the source program.
3903
3904 if Ada_Version = Ada_83
3905 and then Sloc (Old_Id) > Standard_Location
3906 and then Sloc (New_Id) > Standard_Location
3907 and then Comes_From_Source (Old_Id)
3908 and then Comes_From_Source (New_Id)
3909 then
3910 declare
3911 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
3912 New_Param : constant Node_Id := Declaration_Node (New_Formal);
3913
3914 begin
3915 -- Explicit IN must be present or absent in both cases. This
3916 -- test is required only in the full conformance case.
3917
3918 if In_Present (Old_Param) /= In_Present (New_Param)
3919 and then Ctype = Fully_Conformant
3920 then
3921 Conformance_Error
3922 ("\(Ada 83) IN must appear in both declarations",
3923 New_Formal);
3924 return;
3925 end if;
3926
3927 -- Grouping (use of comma in param lists) must be the same
3928 -- This is where we catch a misconformance like:
3929
3930 -- A, B : Integer
3931 -- A : Integer; B : Integer
3932
3933 -- which are represented identically in the tree except
3934 -- for the setting of the flags More_Ids and Prev_Ids.
3935
3936 if More_Ids (Old_Param) /= More_Ids (New_Param)
3937 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
3938 then
3939 Conformance_Error
3940 ("\grouping of & does not match!", New_Formal);
3941 return;
3942 end if;
3943 end;
3944 end if;
3945
3946 -- This label is required when skipping controlling formals
3947
3948 <<Skip_Controlling_Formal>>
3949
3950 Next_Formal (Old_Formal);
3951 Next_Formal (New_Formal);
3952 end loop;
3953
3954 if Present (Old_Formal) then
3955 Conformance_Error ("\too few parameters!");
3956 return;
3957
3958 elsif Present (New_Formal) then
3959 Conformance_Error ("\too many parameters!", New_Formal);
3960 return;
3961 end if;
3962 end Check_Conformance;
3963
3964 -----------------------
3965 -- Check_Conventions --
3966 -----------------------
3967
3968 procedure Check_Conventions (Typ : Entity_Id) is
3969 Ifaces_List : Elist_Id;
3970
3971 procedure Check_Convention (Op : Entity_Id);
3972 -- Verify that the convention of inherited dispatching operation Op is
3973 -- consistent among all subprograms it overrides. In order to minimize
3974 -- the search, Search_From is utilized to designate a specific point in
3975 -- the list rather than iterating over the whole list once more.
3976
3977 ----------------------
3978 -- Check_Convention --
3979 ----------------------
3980
3981 procedure Check_Convention (Op : Entity_Id) is
3982 Iface_Elmt : Elmt_Id;
3983 Iface_Prim_Elmt : Elmt_Id;
3984 Iface_Prim : Entity_Id;
3985
3986 begin
3987 Iface_Elmt := First_Elmt (Ifaces_List);
3988 while Present (Iface_Elmt) loop
3989 Iface_Prim_Elmt :=
3990 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
3991 while Present (Iface_Prim_Elmt) loop
3992 Iface_Prim := Node (Iface_Prim_Elmt);
3993
3994 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
3995 and then Convention (Iface_Prim) /= Convention (Op)
3996 then
3997 Error_Msg_N
3998 ("inconsistent conventions in primitive operations", Typ);
3999
4000 Error_Msg_Name_1 := Chars (Op);
4001 Error_Msg_Name_2 := Get_Convention_Name (Convention (Op));
4002 Error_Msg_Sloc := Sloc (Op);
4003
4004 if Comes_From_Source (Op) then
4005 if not Is_Overriding_Operation (Op) then
4006 Error_Msg_N ("\\primitive % defined #", Typ);
4007 else
4008 Error_Msg_N ("\\overriding operation % with " &
4009 "convention % defined #", Typ);
4010 end if;
4011
4012 else pragma Assert (Present (Alias (Op)));
4013 Error_Msg_Sloc := Sloc (Alias (Op));
4014 Error_Msg_N ("\\inherited operation % with " &
4015 "convention % defined #", Typ);
4016 end if;
4017
4018 Error_Msg_Name_1 := Chars (Op);
4019 Error_Msg_Name_2 :=
4020 Get_Convention_Name (Convention (Iface_Prim));
4021 Error_Msg_Sloc := Sloc (Iface_Prim);
4022 Error_Msg_N ("\\overridden operation % with " &
4023 "convention % defined #", Typ);
4024
4025 -- Avoid cascading errors
4026
4027 return;
4028 end if;
4029
4030 Next_Elmt (Iface_Prim_Elmt);
4031 end loop;
4032
4033 Next_Elmt (Iface_Elmt);
4034 end loop;
4035 end Check_Convention;
4036
4037 -- Local variables
4038
4039 Prim_Op : Entity_Id;
4040 Prim_Op_Elmt : Elmt_Id;
4041
4042 -- Start of processing for Check_Conventions
4043
4044 begin
4045 if not Has_Interfaces (Typ) then
4046 return;
4047 end if;
4048
4049 Collect_Interfaces (Typ, Ifaces_List);
4050
4051 -- The algorithm checks every overriding dispatching operation against
4052 -- all the corresponding overridden dispatching operations, detecting
4053 -- differences in conventions.
4054
4055 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
4056 while Present (Prim_Op_Elmt) loop
4057 Prim_Op := Node (Prim_Op_Elmt);
4058
4059 -- A small optimization: skip the predefined dispatching operations
4060 -- since they always have the same convention.
4061
4062 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
4063 Check_Convention (Prim_Op);
4064 end if;
4065
4066 Next_Elmt (Prim_Op_Elmt);
4067 end loop;
4068 end Check_Conventions;
4069
4070 ------------------------------
4071 -- Check_Delayed_Subprogram --
4072 ------------------------------
4073
4074 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
4075 F : Entity_Id;
4076
4077 procedure Possible_Freeze (T : Entity_Id);
4078 -- T is the type of either a formal parameter or of the return type.
4079 -- If T is not yet frozen and needs a delayed freeze, then the
4080 -- subprogram itself must be delayed. If T is the limited view of an
4081 -- incomplete type the subprogram must be frozen as well, because
4082 -- T may depend on local types that have not been frozen yet.
4083
4084 ---------------------
4085 -- Possible_Freeze --
4086 ---------------------
4087
4088 procedure Possible_Freeze (T : Entity_Id) is
4089 begin
4090 if Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
4091 Set_Has_Delayed_Freeze (Designator);
4092
4093 elsif Is_Access_Type (T)
4094 and then Has_Delayed_Freeze (Designated_Type (T))
4095 and then not Is_Frozen (Designated_Type (T))
4096 then
4097 Set_Has_Delayed_Freeze (Designator);
4098
4099 elsif Ekind (T) = E_Incomplete_Type and then From_With_Type (T) then
4100 Set_Has_Delayed_Freeze (Designator);
4101 end if;
4102
4103 end Possible_Freeze;
4104
4105 -- Start of processing for Check_Delayed_Subprogram
4106
4107 begin
4108 -- Never need to freeze abstract subprogram
4109
4110 if Ekind (Designator) /= E_Subprogram_Type
4111 and then Is_Abstract_Subprogram (Designator)
4112 then
4113 null;
4114 else
4115 -- Need delayed freeze if return type itself needs a delayed
4116 -- freeze and is not yet frozen.
4117
4118 Possible_Freeze (Etype (Designator));
4119 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
4120
4121 -- Need delayed freeze if any of the formal types themselves need
4122 -- a delayed freeze and are not yet frozen.
4123
4124 F := First_Formal (Designator);
4125 while Present (F) loop
4126 Possible_Freeze (Etype (F));
4127 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
4128 Next_Formal (F);
4129 end loop;
4130 end if;
4131
4132 -- Mark functions that return by reference. Note that it cannot be
4133 -- done for delayed_freeze subprograms because the underlying
4134 -- returned type may not be known yet (for private types)
4135
4136 if not Has_Delayed_Freeze (Designator)
4137 and then Expander_Active
4138 then
4139 declare
4140 Typ : constant Entity_Id := Etype (Designator);
4141 Utyp : constant Entity_Id := Underlying_Type (Typ);
4142
4143 begin
4144 if Is_Inherently_Limited_Type (Typ) then
4145 Set_Returns_By_Ref (Designator);
4146
4147 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
4148 Set_Returns_By_Ref (Designator);
4149 end if;
4150 end;
4151 end if;
4152 end Check_Delayed_Subprogram;
4153
4154 ------------------------------------
4155 -- Check_Discriminant_Conformance --
4156 ------------------------------------
4157
4158 procedure Check_Discriminant_Conformance
4159 (N : Node_Id;
4160 Prev : Entity_Id;
4161 Prev_Loc : Node_Id)
4162 is
4163 Old_Discr : Entity_Id := First_Discriminant (Prev);
4164 New_Discr : Node_Id := First (Discriminant_Specifications (N));
4165 New_Discr_Id : Entity_Id;
4166 New_Discr_Type : Entity_Id;
4167
4168 procedure Conformance_Error (Msg : String; N : Node_Id);
4169 -- Post error message for conformance error on given node. Two messages
4170 -- are output. The first points to the previous declaration with a
4171 -- general "no conformance" message. The second is the detailed reason,
4172 -- supplied as Msg. The parameter N provide information for a possible
4173 -- & insertion in the message.
4174
4175 -----------------------
4176 -- Conformance_Error --
4177 -----------------------
4178
4179 procedure Conformance_Error (Msg : String; N : Node_Id) is
4180 begin
4181 Error_Msg_Sloc := Sloc (Prev_Loc);
4182 Error_Msg_N -- CODEFIX
4183 ("not fully conformant with declaration#!", N);
4184 Error_Msg_NE (Msg, N, N);
4185 end Conformance_Error;
4186
4187 -- Start of processing for Check_Discriminant_Conformance
4188
4189 begin
4190 while Present (Old_Discr) and then Present (New_Discr) loop
4191
4192 New_Discr_Id := Defining_Identifier (New_Discr);
4193
4194 -- The subtype mark of the discriminant on the full type has not
4195 -- been analyzed so we do it here. For an access discriminant a new
4196 -- type is created.
4197
4198 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
4199 New_Discr_Type :=
4200 Access_Definition (N, Discriminant_Type (New_Discr));
4201
4202 else
4203 Analyze (Discriminant_Type (New_Discr));
4204 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
4205
4206 -- Ada 2005: if the discriminant definition carries a null
4207 -- exclusion, create an itype to check properly for consistency
4208 -- with partial declaration.
4209
4210 if Is_Access_Type (New_Discr_Type)
4211 and then Null_Exclusion_Present (New_Discr)
4212 then
4213 New_Discr_Type :=
4214 Create_Null_Excluding_Itype
4215 (T => New_Discr_Type,
4216 Related_Nod => New_Discr,
4217 Scope_Id => Current_Scope);
4218 end if;
4219 end if;
4220
4221 if not Conforming_Types
4222 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
4223 then
4224 Conformance_Error ("type of & does not match!", New_Discr_Id);
4225 return;
4226 else
4227 -- Treat the new discriminant as an occurrence of the old one,
4228 -- for navigation purposes, and fill in some semantic
4229 -- information, for completeness.
4230
4231 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
4232 Set_Etype (New_Discr_Id, Etype (Old_Discr));
4233 Set_Scope (New_Discr_Id, Scope (Old_Discr));
4234 end if;
4235
4236 -- Names must match
4237
4238 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
4239 Conformance_Error ("name & does not match!", New_Discr_Id);
4240 return;
4241 end if;
4242
4243 -- Default expressions must match
4244
4245 declare
4246 NewD : constant Boolean :=
4247 Present (Expression (New_Discr));
4248 OldD : constant Boolean :=
4249 Present (Expression (Parent (Old_Discr)));
4250
4251 begin
4252 if NewD or OldD then
4253
4254 -- The old default value has been analyzed and expanded,
4255 -- because the current full declaration will have frozen
4256 -- everything before. The new default values have not been
4257 -- expanded, so expand now to check conformance.
4258
4259 if NewD then
4260 Preanalyze_Spec_Expression
4261 (Expression (New_Discr), New_Discr_Type);
4262 end if;
4263
4264 if not (NewD and OldD)
4265 or else not Fully_Conformant_Expressions
4266 (Expression (Parent (Old_Discr)),
4267 Expression (New_Discr))
4268
4269 then
4270 Conformance_Error
4271 ("default expression for & does not match!",
4272 New_Discr_Id);
4273 return;
4274 end if;
4275 end if;
4276 end;
4277
4278 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
4279
4280 if Ada_Version = Ada_83 then
4281 declare
4282 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
4283
4284 begin
4285 -- Grouping (use of comma in param lists) must be the same
4286 -- This is where we catch a misconformance like:
4287
4288 -- A,B : Integer
4289 -- A : Integer; B : Integer
4290
4291 -- which are represented identically in the tree except
4292 -- for the setting of the flags More_Ids and Prev_Ids.
4293
4294 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
4295 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
4296 then
4297 Conformance_Error
4298 ("grouping of & does not match!", New_Discr_Id);
4299 return;
4300 end if;
4301 end;
4302 end if;
4303
4304 Next_Discriminant (Old_Discr);
4305 Next (New_Discr);
4306 end loop;
4307
4308 if Present (Old_Discr) then
4309 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
4310 return;
4311
4312 elsif Present (New_Discr) then
4313 Conformance_Error
4314 ("too many discriminants!", Defining_Identifier (New_Discr));
4315 return;
4316 end if;
4317 end Check_Discriminant_Conformance;
4318
4319 ----------------------------
4320 -- Check_Fully_Conformant --
4321 ----------------------------
4322
4323 procedure Check_Fully_Conformant
4324 (New_Id : Entity_Id;
4325 Old_Id : Entity_Id;
4326 Err_Loc : Node_Id := Empty)
4327 is
4328 Result : Boolean;
4329 pragma Warnings (Off, Result);
4330 begin
4331 Check_Conformance
4332 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
4333 end Check_Fully_Conformant;
4334
4335 ---------------------------
4336 -- Check_Mode_Conformant --
4337 ---------------------------
4338
4339 procedure Check_Mode_Conformant
4340 (New_Id : Entity_Id;
4341 Old_Id : Entity_Id;
4342 Err_Loc : Node_Id := Empty;
4343 Get_Inst : Boolean := False)
4344 is
4345 Result : Boolean;
4346 pragma Warnings (Off, Result);
4347 begin
4348 Check_Conformance
4349 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
4350 end Check_Mode_Conformant;
4351
4352 --------------------------------
4353 -- Check_Overriding_Indicator --
4354 --------------------------------
4355
4356 procedure Check_Overriding_Indicator
4357 (Subp : Entity_Id;
4358 Overridden_Subp : Entity_Id;
4359 Is_Primitive : Boolean)
4360 is
4361 Decl : Node_Id;
4362 Spec : Node_Id;
4363
4364 begin
4365 -- No overriding indicator for literals
4366
4367 if Ekind (Subp) = E_Enumeration_Literal then
4368 return;
4369
4370 elsif Ekind (Subp) = E_Entry then
4371 Decl := Parent (Subp);
4372
4373 else
4374 Decl := Unit_Declaration_Node (Subp);
4375 end if;
4376
4377 if Nkind_In (Decl, N_Subprogram_Body,
4378 N_Subprogram_Body_Stub,
4379 N_Subprogram_Declaration,
4380 N_Abstract_Subprogram_Declaration,
4381 N_Subprogram_Renaming_Declaration)
4382 then
4383 Spec := Specification (Decl);
4384
4385 elsif Nkind (Decl) = N_Entry_Declaration then
4386 Spec := Decl;
4387
4388 else
4389 return;
4390 end if;
4391
4392 -- The overriding operation is type conformant with the overridden one,
4393 -- but the names of the formals are not required to match. If the names
4394 -- appear permuted in the overriding operation, this is a possible
4395 -- source of confusion that is worth diagnosing. Controlling formals
4396 -- often carry names that reflect the type, and it is not worthwhile
4397 -- requiring that their names match.
4398
4399 if Present (Overridden_Subp)
4400 and then Nkind (Subp) /= N_Defining_Operator_Symbol
4401 then
4402 declare
4403 Form1 : Entity_Id;
4404 Form2 : Entity_Id;
4405
4406 begin
4407 Form1 := First_Formal (Subp);
4408 Form2 := First_Formal (Overridden_Subp);
4409
4410 -- If the overriding operation is a synchronized operation, skip
4411 -- the first parameter of the overridden operation, which is
4412 -- implicit in the new one. If the operation is declared in the
4413 -- body it is not primitive and all formals must match.
4414
4415 if Is_Concurrent_Type (Scope (Subp))
4416 and then Is_Tagged_Type (Scope (Subp))
4417 and then not Has_Completion (Scope (Subp))
4418 then
4419 Form2 := Next_Formal (Form2);
4420 end if;
4421
4422 if Present (Form1) then
4423 Form1 := Next_Formal (Form1);
4424 Form2 := Next_Formal (Form2);
4425 end if;
4426
4427 while Present (Form1) loop
4428 if not Is_Controlling_Formal (Form1)
4429 and then Present (Next_Formal (Form2))
4430 and then Chars (Form1) = Chars (Next_Formal (Form2))
4431 then
4432 Error_Msg_Node_2 := Alias (Overridden_Subp);
4433 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
4434 Error_Msg_NE ("& does not match corresponding formal of&#",
4435 Form1, Form1);
4436 exit;
4437 end if;
4438
4439 Next_Formal (Form1);
4440 Next_Formal (Form2);
4441 end loop;
4442 end;
4443 end if;
4444
4445 if Present (Overridden_Subp) then
4446 if Must_Not_Override (Spec) then
4447 Error_Msg_Sloc := Sloc (Overridden_Subp);
4448
4449 if Ekind (Subp) = E_Entry then
4450 Error_Msg_NE
4451 ("entry & overrides inherited operation #", Spec, Subp);
4452 else
4453 Error_Msg_NE
4454 ("subprogram & overrides inherited operation #", Spec, Subp);
4455 end if;
4456
4457 elsif Is_Subprogram (Subp) then
4458 Set_Is_Overriding_Operation (Subp);
4459 end if;
4460
4461 -- If primitive flag is set or this is a protected operation, then
4462 -- the operation is overriding at the point of its declaration, so
4463 -- warn if necessary. Otherwise it may have been declared before the
4464 -- operation it overrides and no check is required.
4465
4466 if Style_Check
4467 and then not Must_Override (Spec)
4468 and then (Is_Primitive
4469 or else Ekind (Scope (Subp)) = E_Protected_Type)
4470 then
4471 Style.Missing_Overriding (Decl, Subp);
4472 end if;
4473
4474 -- If Subp is an operator, it may override a predefined operation.
4475 -- In that case overridden_subp is empty because of our implicit
4476 -- representation for predefined operators. We have to check whether the
4477 -- signature of Subp matches that of a predefined operator. Note that
4478 -- first argument provides the name of the operator, and the second
4479 -- argument the signature that may match that of a standard operation.
4480 -- If the indicator is overriding, then the operator must match a
4481 -- predefined signature, because we know already that there is no
4482 -- explicit overridden operation.
4483
4484 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
4485
4486 if Must_Not_Override (Spec) then
4487
4488 -- If this is not a primitive operation or protected subprogram,
4489 -- then "not overriding" is illegal.
4490
4491 if not Is_Primitive
4492 and then Ekind (Scope (Subp)) /= E_Protected_Type
4493 then
4494 Error_Msg_N
4495 ("overriding indicator only allowed "
4496 & "if subprogram is primitive", Subp);
4497
4498 elsif Operator_Matches_Spec (Subp, Subp) then
4499 Error_Msg_NE
4500 ("subprogram & overrides predefined operator ", Spec, Subp);
4501 end if;
4502
4503 elsif Must_Override (Spec) then
4504 if Is_Overriding_Operation (Subp) then
4505 Set_Is_Overriding_Operation (Subp);
4506
4507 elsif not Operator_Matches_Spec (Subp, Subp) then
4508 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
4509 end if;
4510
4511 elsif not Error_Posted (Subp)
4512 and then Style_Check
4513 and then Operator_Matches_Spec (Subp, Subp)
4514 and then
4515 not Is_Predefined_File_Name
4516 (Unit_File_Name (Get_Source_Unit (Subp)))
4517 then
4518 Set_Is_Overriding_Operation (Subp);
4519
4520 -- If style checks are enabled, indicate that the indicator is
4521 -- missing. However, at the point of declaration, the type of
4522 -- which this is a primitive operation may be private, in which
4523 -- case the indicator would be premature.
4524
4525 if Has_Private_Declaration (Etype (Subp))
4526 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
4527 then
4528 null;
4529 else
4530 Style.Missing_Overriding (Decl, Subp);
4531 end if;
4532 end if;
4533
4534 elsif Must_Override (Spec) then
4535 if Ekind (Subp) = E_Entry then
4536 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
4537 else
4538 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
4539 end if;
4540
4541 -- If the operation is marked "not overriding" and it's not primitive
4542 -- then an error is issued, unless this is an operation of a task or
4543 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
4544 -- has been specified have already been checked above.
4545
4546 elsif Must_Not_Override (Spec)
4547 and then not Is_Primitive
4548 and then Ekind (Subp) /= E_Entry
4549 and then Ekind (Scope (Subp)) /= E_Protected_Type
4550 then
4551 Error_Msg_N
4552 ("overriding indicator only allowed if subprogram is primitive",
4553 Subp);
4554 return;
4555 end if;
4556 end Check_Overriding_Indicator;
4557
4558 -------------------
4559 -- Check_Returns --
4560 -------------------
4561
4562 -- Note: this procedure needs to know far too much about how the expander
4563 -- messes with exceptions. The use of the flag Exception_Junk and the
4564 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
4565 -- works, but is not very clean. It would be better if the expansion
4566 -- routines would leave Original_Node working nicely, and we could use
4567 -- Original_Node here to ignore all the peculiar expander messing ???
4568
4569 procedure Check_Returns
4570 (HSS : Node_Id;
4571 Mode : Character;
4572 Err : out Boolean;
4573 Proc : Entity_Id := Empty)
4574 is
4575 Handler : Node_Id;
4576
4577 procedure Check_Statement_Sequence (L : List_Id);
4578 -- Internal recursive procedure to check a list of statements for proper
4579 -- termination by a return statement (or a transfer of control or a
4580 -- compound statement that is itself internally properly terminated).
4581
4582 ------------------------------
4583 -- Check_Statement_Sequence --
4584 ------------------------------
4585
4586 procedure Check_Statement_Sequence (L : List_Id) is
4587 Last_Stm : Node_Id;
4588 Stm : Node_Id;
4589 Kind : Node_Kind;
4590
4591 Raise_Exception_Call : Boolean;
4592 -- Set True if statement sequence terminated by Raise_Exception call
4593 -- or a Reraise_Occurrence call.
4594
4595 begin
4596 Raise_Exception_Call := False;
4597
4598 -- Get last real statement
4599
4600 Last_Stm := Last (L);
4601
4602 -- Deal with digging out exception handler statement sequences that
4603 -- have been transformed by the local raise to goto optimization.
4604 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
4605 -- optimization has occurred, we are looking at something like:
4606
4607 -- begin
4608 -- original stmts in block
4609
4610 -- exception \
4611 -- when excep1 => |
4612 -- goto L1; | omitted if No_Exception_Propagation
4613 -- when excep2 => |
4614 -- goto L2; /
4615 -- end;
4616
4617 -- goto L3; -- skip handler when exception not raised
4618
4619 -- <<L1>> -- target label for local exception
4620 -- begin
4621 -- estmts1
4622 -- end;
4623
4624 -- goto L3;
4625
4626 -- <<L2>>
4627 -- begin
4628 -- estmts2
4629 -- end;
4630
4631 -- <<L3>>
4632
4633 -- and what we have to do is to dig out the estmts1 and estmts2
4634 -- sequences (which were the original sequences of statements in
4635 -- the exception handlers) and check them.
4636
4637 if Nkind (Last_Stm) = N_Label
4638 and then Exception_Junk (Last_Stm)
4639 then
4640 Stm := Last_Stm;
4641 loop
4642 Prev (Stm);
4643 exit when No (Stm);
4644 exit when Nkind (Stm) /= N_Block_Statement;
4645 exit when not Exception_Junk (Stm);
4646 Prev (Stm);
4647 exit when No (Stm);
4648 exit when Nkind (Stm) /= N_Label;
4649 exit when not Exception_Junk (Stm);
4650 Check_Statement_Sequence
4651 (Statements (Handled_Statement_Sequence (Next (Stm))));
4652
4653 Prev (Stm);
4654 Last_Stm := Stm;
4655 exit when No (Stm);
4656 exit when Nkind (Stm) /= N_Goto_Statement;
4657 exit when not Exception_Junk (Stm);
4658 end loop;
4659 end if;
4660
4661 -- Don't count pragmas
4662
4663 while Nkind (Last_Stm) = N_Pragma
4664
4665 -- Don't count call to SS_Release (can happen after Raise_Exception)
4666
4667 or else
4668 (Nkind (Last_Stm) = N_Procedure_Call_Statement
4669 and then
4670 Nkind (Name (Last_Stm)) = N_Identifier
4671 and then
4672 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
4673
4674 -- Don't count exception junk
4675
4676 or else
4677 (Nkind_In (Last_Stm, N_Goto_Statement,
4678 N_Label,
4679 N_Object_Declaration)
4680 and then Exception_Junk (Last_Stm))
4681 or else Nkind (Last_Stm) in N_Push_xxx_Label
4682 or else Nkind (Last_Stm) in N_Pop_xxx_Label
4683 loop
4684 Prev (Last_Stm);
4685 end loop;
4686
4687 -- Here we have the "real" last statement
4688
4689 Kind := Nkind (Last_Stm);
4690
4691 -- Transfer of control, OK. Note that in the No_Return procedure
4692 -- case, we already diagnosed any explicit return statements, so
4693 -- we can treat them as OK in this context.
4694
4695 if Is_Transfer (Last_Stm) then
4696 return;
4697
4698 -- Check cases of explicit non-indirect procedure calls
4699
4700 elsif Kind = N_Procedure_Call_Statement
4701 and then Is_Entity_Name (Name (Last_Stm))
4702 then
4703 -- Check call to Raise_Exception procedure which is treated
4704 -- specially, as is a call to Reraise_Occurrence.
4705
4706 -- We suppress the warning in these cases since it is likely that
4707 -- the programmer really does not expect to deal with the case
4708 -- of Null_Occurrence, and thus would find a warning about a
4709 -- missing return curious, and raising Program_Error does not
4710 -- seem such a bad behavior if this does occur.
4711
4712 -- Note that in the Ada 2005 case for Raise_Exception, the actual
4713 -- behavior will be to raise Constraint_Error (see AI-329).
4714
4715 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
4716 or else
4717 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
4718 then
4719 Raise_Exception_Call := True;
4720
4721 -- For Raise_Exception call, test first argument, if it is
4722 -- an attribute reference for a 'Identity call, then we know
4723 -- that the call cannot possibly return.
4724
4725 declare
4726 Arg : constant Node_Id :=
4727 Original_Node (First_Actual (Last_Stm));
4728 begin
4729 if Nkind (Arg) = N_Attribute_Reference
4730 and then Attribute_Name (Arg) = Name_Identity
4731 then
4732 return;
4733 end if;
4734 end;
4735 end if;
4736
4737 -- If statement, need to look inside if there is an else and check
4738 -- each constituent statement sequence for proper termination.
4739
4740 elsif Kind = N_If_Statement
4741 and then Present (Else_Statements (Last_Stm))
4742 then
4743 Check_Statement_Sequence (Then_Statements (Last_Stm));
4744 Check_Statement_Sequence (Else_Statements (Last_Stm));
4745
4746 if Present (Elsif_Parts (Last_Stm)) then
4747 declare
4748 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
4749
4750 begin
4751 while Present (Elsif_Part) loop
4752 Check_Statement_Sequence (Then_Statements (Elsif_Part));
4753 Next (Elsif_Part);
4754 end loop;
4755 end;
4756 end if;
4757
4758 return;
4759
4760 -- Case statement, check each case for proper termination
4761
4762 elsif Kind = N_Case_Statement then
4763 declare
4764 Case_Alt : Node_Id;
4765 begin
4766 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
4767 while Present (Case_Alt) loop
4768 Check_Statement_Sequence (Statements (Case_Alt));
4769 Next_Non_Pragma (Case_Alt);
4770 end loop;
4771 end;
4772
4773 return;
4774
4775 -- Block statement, check its handled sequence of statements
4776
4777 elsif Kind = N_Block_Statement then
4778 declare
4779 Err1 : Boolean;
4780
4781 begin
4782 Check_Returns
4783 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
4784
4785 if Err1 then
4786 Err := True;
4787 end if;
4788
4789 return;
4790 end;
4791
4792 -- Loop statement. If there is an iteration scheme, we can definitely
4793 -- fall out of the loop. Similarly if there is an exit statement, we
4794 -- can fall out. In either case we need a following return.
4795
4796 elsif Kind = N_Loop_Statement then
4797 if Present (Iteration_Scheme (Last_Stm))
4798 or else Has_Exit (Entity (Identifier (Last_Stm)))
4799 then
4800 null;
4801
4802 -- A loop with no exit statement or iteration scheme is either
4803 -- an infinite loop, or it has some other exit (raise/return).
4804 -- In either case, no warning is required.
4805
4806 else
4807 return;
4808 end if;
4809
4810 -- Timed entry call, check entry call and delay alternatives
4811
4812 -- Note: in expanded code, the timed entry call has been converted
4813 -- to a set of expanded statements on which the check will work
4814 -- correctly in any case.
4815
4816 elsif Kind = N_Timed_Entry_Call then
4817 declare
4818 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
4819 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
4820
4821 begin
4822 -- If statement sequence of entry call alternative is missing,
4823 -- then we can definitely fall through, and we post the error
4824 -- message on the entry call alternative itself.
4825
4826 if No (Statements (ECA)) then
4827 Last_Stm := ECA;
4828
4829 -- If statement sequence of delay alternative is missing, then
4830 -- we can definitely fall through, and we post the error
4831 -- message on the delay alternative itself.
4832
4833 -- Note: if both ECA and DCA are missing the return, then we
4834 -- post only one message, should be enough to fix the bugs.
4835 -- If not we will get a message next time on the DCA when the
4836 -- ECA is fixed!
4837
4838 elsif No (Statements (DCA)) then
4839 Last_Stm := DCA;
4840
4841 -- Else check both statement sequences
4842
4843 else
4844 Check_Statement_Sequence (Statements (ECA));
4845 Check_Statement_Sequence (Statements (DCA));
4846 return;
4847 end if;
4848 end;
4849
4850 -- Conditional entry call, check entry call and else part
4851
4852 -- Note: in expanded code, the conditional entry call has been
4853 -- converted to a set of expanded statements on which the check
4854 -- will work correctly in any case.
4855
4856 elsif Kind = N_Conditional_Entry_Call then
4857 declare
4858 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
4859
4860 begin
4861 -- If statement sequence of entry call alternative is missing,
4862 -- then we can definitely fall through, and we post the error
4863 -- message on the entry call alternative itself.
4864
4865 if No (Statements (ECA)) then
4866 Last_Stm := ECA;
4867
4868 -- Else check statement sequence and else part
4869
4870 else
4871 Check_Statement_Sequence (Statements (ECA));
4872 Check_Statement_Sequence (Else_Statements (Last_Stm));
4873 return;
4874 end if;
4875 end;
4876 end if;
4877
4878 -- If we fall through, issue appropriate message
4879
4880 if Mode = 'F' then
4881 if not Raise_Exception_Call then
4882 Error_Msg_N
4883 ("?RETURN statement missing following this statement!",
4884 Last_Stm);
4885 Error_Msg_N
4886 ("\?Program_Error may be raised at run time!",
4887 Last_Stm);
4888 end if;
4889
4890 -- Note: we set Err even though we have not issued a warning
4891 -- because we still have a case of a missing return. This is
4892 -- an extremely marginal case, probably will never be noticed
4893 -- but we might as well get it right.
4894
4895 Err := True;
4896
4897 -- Otherwise we have the case of a procedure marked No_Return
4898
4899 else
4900 if not Raise_Exception_Call then
4901 Error_Msg_N
4902 ("?implied return after this statement " &
4903 "will raise Program_Error",
4904 Last_Stm);
4905 Error_Msg_NE
4906 ("\?procedure & is marked as No_Return!",
4907 Last_Stm, Proc);
4908 end if;
4909
4910 declare
4911 RE : constant Node_Id :=
4912 Make_Raise_Program_Error (Sloc (Last_Stm),
4913 Reason => PE_Implicit_Return);
4914 begin
4915 Insert_After (Last_Stm, RE);
4916 Analyze (RE);
4917 end;
4918 end if;
4919 end Check_Statement_Sequence;
4920
4921 -- Start of processing for Check_Returns
4922
4923 begin
4924 Err := False;
4925 Check_Statement_Sequence (Statements (HSS));
4926
4927 if Present (Exception_Handlers (HSS)) then
4928 Handler := First_Non_Pragma (Exception_Handlers (HSS));
4929 while Present (Handler) loop
4930 Check_Statement_Sequence (Statements (Handler));
4931 Next_Non_Pragma (Handler);
4932 end loop;
4933 end if;
4934 end Check_Returns;
4935
4936 ----------------------------
4937 -- Check_Subprogram_Order --
4938 ----------------------------
4939
4940 procedure Check_Subprogram_Order (N : Node_Id) is
4941
4942 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
4943 -- This is used to check if S1 > S2 in the sense required by this
4944 -- test, for example nameab < namec, but name2 < name10.
4945
4946 -----------------------------
4947 -- Subprogram_Name_Greater --
4948 -----------------------------
4949
4950 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
4951 L1, L2 : Positive;
4952 N1, N2 : Natural;
4953
4954 begin
4955 -- Remove trailing numeric parts
4956
4957 L1 := S1'Last;
4958 while S1 (L1) in '0' .. '9' loop
4959 L1 := L1 - 1;
4960 end loop;
4961
4962 L2 := S2'Last;
4963 while S2 (L2) in '0' .. '9' loop
4964 L2 := L2 - 1;
4965 end loop;
4966
4967 -- If non-numeric parts non-equal, that's decisive
4968
4969 if S1 (S1'First .. L1) < S2 (S2'First .. L2) then
4970 return False;
4971
4972 elsif S1 (S1'First .. L1) > S2 (S2'First .. L2) then
4973 return True;
4974
4975 -- If non-numeric parts equal, compare suffixed numeric parts. Note
4976 -- that a missing suffix is treated as numeric zero in this test.
4977
4978 else
4979 N1 := 0;
4980 while L1 < S1'Last loop
4981 L1 := L1 + 1;
4982 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
4983 end loop;
4984
4985 N2 := 0;
4986 while L2 < S2'Last loop
4987 L2 := L2 + 1;
4988 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
4989 end loop;
4990
4991 return N1 > N2;
4992 end if;
4993 end Subprogram_Name_Greater;
4994
4995 -- Start of processing for Check_Subprogram_Order
4996
4997 begin
4998 -- Check body in alpha order if this is option
4999
5000 if Style_Check
5001 and then Style_Check_Order_Subprograms
5002 and then Nkind (N) = N_Subprogram_Body
5003 and then Comes_From_Source (N)
5004 and then In_Extended_Main_Source_Unit (N)
5005 then
5006 declare
5007 LSN : String_Ptr
5008 renames Scope_Stack.Table
5009 (Scope_Stack.Last).Last_Subprogram_Name;
5010
5011 Body_Id : constant Entity_Id :=
5012 Defining_Entity (Specification (N));
5013
5014 begin
5015 Get_Decoded_Name_String (Chars (Body_Id));
5016
5017 if LSN /= null then
5018 if Subprogram_Name_Greater
5019 (LSN.all, Name_Buffer (1 .. Name_Len))
5020 then
5021 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
5022 end if;
5023
5024 Free (LSN);
5025 end if;
5026
5027 LSN := new String'(Name_Buffer (1 .. Name_Len));
5028 end;
5029 end if;
5030 end Check_Subprogram_Order;
5031
5032 ------------------------------
5033 -- Check_Subtype_Conformant --
5034 ------------------------------
5035
5036 procedure Check_Subtype_Conformant
5037 (New_Id : Entity_Id;
5038 Old_Id : Entity_Id;
5039 Err_Loc : Node_Id := Empty;
5040 Skip_Controlling_Formals : Boolean := False)
5041 is
5042 Result : Boolean;
5043 pragma Warnings (Off, Result);
5044 begin
5045 Check_Conformance
5046 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
5047 Skip_Controlling_Formals => Skip_Controlling_Formals);
5048 end Check_Subtype_Conformant;
5049
5050 ---------------------------
5051 -- Check_Type_Conformant --
5052 ---------------------------
5053
5054 procedure Check_Type_Conformant
5055 (New_Id : Entity_Id;
5056 Old_Id : Entity_Id;
5057 Err_Loc : Node_Id := Empty)
5058 is
5059 Result : Boolean;
5060 pragma Warnings (Off, Result);
5061 begin
5062 Check_Conformance
5063 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
5064 end Check_Type_Conformant;
5065
5066 ----------------------
5067 -- Conforming_Types --
5068 ----------------------
5069
5070 function Conforming_Types
5071 (T1 : Entity_Id;
5072 T2 : Entity_Id;
5073 Ctype : Conformance_Type;
5074 Get_Inst : Boolean := False) return Boolean
5075 is
5076 Type_1 : Entity_Id := T1;
5077 Type_2 : Entity_Id := T2;
5078 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
5079
5080 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
5081 -- If neither T1 nor T2 are generic actual types, or if they are in
5082 -- different scopes (e.g. parent and child instances), then verify that
5083 -- the base types are equal. Otherwise T1 and T2 must be on the same
5084 -- subtype chain. The whole purpose of this procedure is to prevent
5085 -- spurious ambiguities in an instantiation that may arise if two
5086 -- distinct generic types are instantiated with the same actual.
5087
5088 function Find_Designated_Type (T : Entity_Id) return Entity_Id;
5089 -- An access parameter can designate an incomplete type. If the
5090 -- incomplete type is the limited view of a type from a limited_
5091 -- with_clause, check whether the non-limited view is available. If
5092 -- it is a (non-limited) incomplete type, get the full view.
5093
5094 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
5095 -- Returns True if and only if either T1 denotes a limited view of T2
5096 -- or T2 denotes a limited view of T1. This can arise when the limited
5097 -- with view of a type is used in a subprogram declaration and the
5098 -- subprogram body is in the scope of a regular with clause for the
5099 -- same unit. In such a case, the two type entities can be considered
5100 -- identical for purposes of conformance checking.
5101
5102 ----------------------
5103 -- Base_Types_Match --
5104 ----------------------
5105
5106 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
5107 begin
5108 if T1 = T2 then
5109 return True;
5110
5111 elsif Base_Type (T1) = Base_Type (T2) then
5112
5113 -- The following is too permissive. A more precise test should
5114 -- check that the generic actual is an ancestor subtype of the
5115 -- other ???.
5116
5117 return not Is_Generic_Actual_Type (T1)
5118 or else not Is_Generic_Actual_Type (T2)
5119 or else Scope (T1) /= Scope (T2);
5120
5121 else
5122 return False;
5123 end if;
5124 end Base_Types_Match;
5125
5126 --------------------------
5127 -- Find_Designated_Type --
5128 --------------------------
5129
5130 function Find_Designated_Type (T : Entity_Id) return Entity_Id is
5131 Desig : Entity_Id;
5132
5133 begin
5134 Desig := Directly_Designated_Type (T);
5135
5136 if Ekind (Desig) = E_Incomplete_Type then
5137
5138 -- If regular incomplete type, get full view if available
5139
5140 if Present (Full_View (Desig)) then
5141 Desig := Full_View (Desig);
5142
5143 -- If limited view of a type, get non-limited view if available,
5144 -- and check again for a regular incomplete type.
5145
5146 elsif Present (Non_Limited_View (Desig)) then
5147 Desig := Get_Full_View (Non_Limited_View (Desig));
5148 end if;
5149 end if;
5150
5151 return Desig;
5152 end Find_Designated_Type;
5153
5154 -------------------------------
5155 -- Matches_Limited_With_View --
5156 -------------------------------
5157
5158 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
5159 begin
5160 -- In some cases a type imported through a limited_with clause, and
5161 -- its nonlimited view are both visible, for example in an anonymous
5162 -- access-to-class-wide type in a formal. Both entities designate the
5163 -- same type.
5164
5165 if From_With_Type (T1)
5166 and then T2 = Available_View (T1)
5167 then
5168 return True;
5169
5170 elsif From_With_Type (T2)
5171 and then T1 = Available_View (T2)
5172 then
5173 return True;
5174
5175 else
5176 return False;
5177 end if;
5178 end Matches_Limited_With_View;
5179
5180 -- Start of processing for Conforming_Types
5181
5182 begin
5183 -- The context is an instance association for a formal
5184 -- access-to-subprogram type; the formal parameter types require
5185 -- mapping because they may denote other formal parameters of the
5186 -- generic unit.
5187
5188 if Get_Inst then
5189 Type_1 := Get_Instance_Of (T1);
5190 Type_2 := Get_Instance_Of (T2);
5191 end if;
5192
5193 -- If one of the types is a view of the other introduced by a limited
5194 -- with clause, treat these as conforming for all purposes.
5195
5196 if Matches_Limited_With_View (T1, T2) then
5197 return True;
5198
5199 elsif Base_Types_Match (Type_1, Type_2) then
5200 return Ctype <= Mode_Conformant
5201 or else Subtypes_Statically_Match (Type_1, Type_2);
5202
5203 elsif Is_Incomplete_Or_Private_Type (Type_1)
5204 and then Present (Full_View (Type_1))
5205 and then Base_Types_Match (Full_View (Type_1), Type_2)
5206 then
5207 return Ctype <= Mode_Conformant
5208 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
5209
5210 elsif Ekind (Type_2) = E_Incomplete_Type
5211 and then Present (Full_View (Type_2))
5212 and then Base_Types_Match (Type_1, Full_View (Type_2))
5213 then
5214 return Ctype <= Mode_Conformant
5215 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
5216
5217 elsif Is_Private_Type (Type_2)
5218 and then In_Instance
5219 and then Present (Full_View (Type_2))
5220 and then Base_Types_Match (Type_1, Full_View (Type_2))
5221 then
5222 return Ctype <= Mode_Conformant
5223 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
5224 end if;
5225
5226 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
5227 -- treated recursively because they carry a signature.
5228
5229 Are_Anonymous_Access_To_Subprogram_Types :=
5230 Ekind (Type_1) = Ekind (Type_2)
5231 and then
5232 (Ekind (Type_1) = E_Anonymous_Access_Subprogram_Type
5233 or else
5234 Ekind (Type_1) = E_Anonymous_Access_Protected_Subprogram_Type);
5235
5236 -- Test anonymous access type case. For this case, static subtype
5237 -- matching is required for mode conformance (RM 6.3.1(15)). We check
5238 -- the base types because we may have built internal subtype entities
5239 -- to handle null-excluding types (see Process_Formals).
5240
5241 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
5242 and then
5243 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
5244 or else Are_Anonymous_Access_To_Subprogram_Types -- Ada 2005 (AI-254)
5245 then
5246 declare
5247 Desig_1 : Entity_Id;
5248 Desig_2 : Entity_Id;
5249
5250 begin
5251 -- In Ada2005, access constant indicators must match for
5252 -- subtype conformance.
5253
5254 if Ada_Version >= Ada_05
5255 and then Ctype >= Subtype_Conformant
5256 and then
5257 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
5258 then
5259 return False;
5260 end if;
5261
5262 Desig_1 := Find_Designated_Type (Type_1);
5263
5264 Desig_2 := Find_Designated_Type (Type_2);
5265
5266 -- If the context is an instance association for a formal
5267 -- access-to-subprogram type; formal access parameter designated
5268 -- types require mapping because they may denote other formal
5269 -- parameters of the generic unit.
5270
5271 if Get_Inst then
5272 Desig_1 := Get_Instance_Of (Desig_1);
5273 Desig_2 := Get_Instance_Of (Desig_2);
5274 end if;
5275
5276 -- It is possible for a Class_Wide_Type to be introduced for an
5277 -- incomplete type, in which case there is a separate class_ wide
5278 -- type for the full view. The types conform if their Etypes
5279 -- conform, i.e. one may be the full view of the other. This can
5280 -- only happen in the context of an access parameter, other uses
5281 -- of an incomplete Class_Wide_Type are illegal.
5282
5283 if Is_Class_Wide_Type (Desig_1)
5284 and then Is_Class_Wide_Type (Desig_2)
5285 then
5286 return
5287 Conforming_Types
5288 (Etype (Base_Type (Desig_1)),
5289 Etype (Base_Type (Desig_2)), Ctype);
5290
5291 elsif Are_Anonymous_Access_To_Subprogram_Types then
5292 if Ada_Version < Ada_05 then
5293 return Ctype = Type_Conformant
5294 or else
5295 Subtypes_Statically_Match (Desig_1, Desig_2);
5296
5297 -- We must check the conformance of the signatures themselves
5298
5299 else
5300 declare
5301 Conformant : Boolean;
5302 begin
5303 Check_Conformance
5304 (Desig_1, Desig_2, Ctype, False, Conformant);
5305 return Conformant;
5306 end;
5307 end if;
5308
5309 else
5310 return Base_Type (Desig_1) = Base_Type (Desig_2)
5311 and then (Ctype = Type_Conformant
5312 or else
5313 Subtypes_Statically_Match (Desig_1, Desig_2));
5314 end if;
5315 end;
5316
5317 -- Otherwise definitely no match
5318
5319 else
5320 if ((Ekind (Type_1) = E_Anonymous_Access_Type
5321 and then Is_Access_Type (Type_2))
5322 or else (Ekind (Type_2) = E_Anonymous_Access_Type
5323 and then Is_Access_Type (Type_1)))
5324 and then
5325 Conforming_Types
5326 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
5327 then
5328 May_Hide_Profile := True;
5329 end if;
5330
5331 return False;
5332 end if;
5333 end Conforming_Types;
5334
5335 --------------------------
5336 -- Create_Extra_Formals --
5337 --------------------------
5338
5339 procedure Create_Extra_Formals (E : Entity_Id) is
5340 Formal : Entity_Id;
5341 First_Extra : Entity_Id := Empty;
5342 Last_Extra : Entity_Id;
5343 Formal_Type : Entity_Id;
5344 P_Formal : Entity_Id := Empty;
5345
5346 function Add_Extra_Formal
5347 (Assoc_Entity : Entity_Id;
5348 Typ : Entity_Id;
5349 Scope : Entity_Id;
5350 Suffix : String) return Entity_Id;
5351 -- Add an extra formal to the current list of formals and extra formals.
5352 -- The extra formal is added to the end of the list of extra formals,
5353 -- and also returned as the result. These formals are always of mode IN.
5354 -- The new formal has the type Typ, is declared in Scope, and its name
5355 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
5356
5357 ----------------------
5358 -- Add_Extra_Formal --
5359 ----------------------
5360
5361 function Add_Extra_Formal
5362 (Assoc_Entity : Entity_Id;
5363 Typ : Entity_Id;
5364 Scope : Entity_Id;
5365 Suffix : String) return Entity_Id
5366 is
5367 EF : constant Entity_Id :=
5368 Make_Defining_Identifier (Sloc (Assoc_Entity),
5369 Chars => New_External_Name (Chars (Assoc_Entity),
5370 Suffix => Suffix));
5371
5372 begin
5373 -- A little optimization. Never generate an extra formal for the
5374 -- _init operand of an initialization procedure, since it could
5375 -- never be used.
5376
5377 if Chars (Formal) = Name_uInit then
5378 return Empty;
5379 end if;
5380
5381 Set_Ekind (EF, E_In_Parameter);
5382 Set_Actual_Subtype (EF, Typ);
5383 Set_Etype (EF, Typ);
5384 Set_Scope (EF, Scope);
5385 Set_Mechanism (EF, Default_Mechanism);
5386 Set_Formal_Validity (EF);
5387
5388 if No (First_Extra) then
5389 First_Extra := EF;
5390 Set_Extra_Formals (Scope, First_Extra);
5391 end if;
5392
5393 if Present (Last_Extra) then
5394 Set_Extra_Formal (Last_Extra, EF);
5395 end if;
5396
5397 Last_Extra := EF;
5398
5399 return EF;
5400 end Add_Extra_Formal;
5401
5402 -- Start of processing for Create_Extra_Formals
5403
5404 begin
5405 -- We never generate extra formals if expansion is not active
5406 -- because we don't need them unless we are generating code.
5407
5408 if not Expander_Active then
5409 return;
5410 end if;
5411
5412 -- If this is a derived subprogram then the subtypes of the parent
5413 -- subprogram's formal parameters will be used to determine the need
5414 -- for extra formals.
5415
5416 if Is_Overloadable (E) and then Present (Alias (E)) then
5417 P_Formal := First_Formal (Alias (E));
5418 end if;
5419
5420 Last_Extra := Empty;
5421 Formal := First_Formal (E);
5422 while Present (Formal) loop
5423 Last_Extra := Formal;
5424 Next_Formal (Formal);
5425 end loop;
5426
5427 -- If Extra_formals were already created, don't do it again. This
5428 -- situation may arise for subprogram types created as part of
5429 -- dispatching calls (see Expand_Dispatching_Call)
5430
5431 if Present (Last_Extra) and then
5432 Present (Extra_Formal (Last_Extra))
5433 then
5434 return;
5435 end if;
5436
5437 -- If the subprogram is a predefined dispatching subprogram then don't
5438 -- generate any extra constrained or accessibility level formals. In
5439 -- general we suppress these for internal subprograms (by not calling
5440 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
5441 -- generated stream attributes do get passed through because extra
5442 -- build-in-place formals are needed in some cases (limited 'Input).
5443
5444 if Is_Predefined_Dispatching_Operation (E) then
5445 goto Test_For_BIP_Extras;
5446 end if;
5447
5448 Formal := First_Formal (E);
5449 while Present (Formal) loop
5450
5451 -- Create extra formal for supporting the attribute 'Constrained.
5452 -- The case of a private type view without discriminants also
5453 -- requires the extra formal if the underlying type has defaulted
5454 -- discriminants.
5455
5456 if Ekind (Formal) /= E_In_Parameter then
5457 if Present (P_Formal) then
5458 Formal_Type := Etype (P_Formal);
5459 else
5460 Formal_Type := Etype (Formal);
5461 end if;
5462
5463 -- Do not produce extra formals for Unchecked_Union parameters.
5464 -- Jump directly to the end of the loop.
5465
5466 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
5467 goto Skip_Extra_Formal_Generation;
5468 end if;
5469
5470 if not Has_Discriminants (Formal_Type)
5471 and then Ekind (Formal_Type) in Private_Kind
5472 and then Present (Underlying_Type (Formal_Type))
5473 then
5474 Formal_Type := Underlying_Type (Formal_Type);
5475 end if;
5476
5477 if Has_Discriminants (Formal_Type)
5478 and then not Is_Constrained (Formal_Type)
5479 and then not Is_Indefinite_Subtype (Formal_Type)
5480 then
5481 Set_Extra_Constrained
5482 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "F"));
5483 end if;
5484 end if;
5485
5486 -- Create extra formal for supporting accessibility checking. This
5487 -- is done for both anonymous access formals and formals of named
5488 -- access types that are marked as controlling formals. The latter
5489 -- case can occur when Expand_Dispatching_Call creates a subprogram
5490 -- type and substitutes the types of access-to-class-wide actuals
5491 -- for the anonymous access-to-specific-type of controlling formals.
5492 -- Base_Type is applied because in cases where there is a null
5493 -- exclusion the formal may have an access subtype.
5494
5495 -- This is suppressed if we specifically suppress accessibility
5496 -- checks at the package level for either the subprogram, or the
5497 -- package in which it resides. However, we do not suppress it
5498 -- simply if the scope has accessibility checks suppressed, since
5499 -- this could cause trouble when clients are compiled with a
5500 -- different suppression setting. The explicit checks at the
5501 -- package level are safe from this point of view.
5502
5503 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
5504 or else (Is_Controlling_Formal (Formal)
5505 and then Is_Access_Type (Base_Type (Etype (Formal)))))
5506 and then not
5507 (Explicit_Suppress (E, Accessibility_Check)
5508 or else
5509 Explicit_Suppress (Scope (E), Accessibility_Check))
5510 and then
5511 (No (P_Formal)
5512 or else Present (Extra_Accessibility (P_Formal)))
5513 then
5514 Set_Extra_Accessibility
5515 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "F"));
5516 end if;
5517
5518 -- This label is required when skipping extra formal generation for
5519 -- Unchecked_Union parameters.
5520
5521 <<Skip_Extra_Formal_Generation>>
5522
5523 if Present (P_Formal) then
5524 Next_Formal (P_Formal);
5525 end if;
5526
5527 Next_Formal (Formal);
5528 end loop;
5529
5530 <<Test_For_BIP_Extras>>
5531
5532 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
5533 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
5534
5535 if Ada_Version >= Ada_05 and then Is_Build_In_Place_Function (E) then
5536 declare
5537 Result_Subt : constant Entity_Id := Etype (E);
5538
5539 Discard : Entity_Id;
5540 pragma Warnings (Off, Discard);
5541
5542 begin
5543 -- In the case of functions with unconstrained result subtypes,
5544 -- add a 3-state formal indicating whether the return object is
5545 -- allocated by the caller (0), or should be allocated by the
5546 -- callee on the secondary stack (1) or in the global heap (2).
5547 -- For the moment we just use Natural for the type of this formal.
5548 -- Note that this formal isn't usually needed in the case where
5549 -- the result subtype is constrained, but it is needed when the
5550 -- function has a tagged result, because generally such functions
5551 -- can be called in a dispatching context and such calls must be
5552 -- handled like calls to a class-wide function.
5553
5554 if not Is_Constrained (Underlying_Type (Result_Subt))
5555 or else Is_Tagged_Type (Underlying_Type (Result_Subt))
5556 then
5557 Discard :=
5558 Add_Extra_Formal
5559 (E, Standard_Natural,
5560 E, BIP_Formal_Suffix (BIP_Alloc_Form));
5561 end if;
5562
5563 -- In the case of functions whose result type has controlled
5564 -- parts, we have an extra formal of type
5565 -- System.Finalization_Implementation.Finalizable_Ptr_Ptr. That
5566 -- is, we are passing a pointer to a finalization list (which is
5567 -- itself a pointer). This extra formal is then passed along to
5568 -- Move_Final_List in case of successful completion of a return
5569 -- statement. We cannot pass an 'in out' parameter, because we
5570 -- need to update the finalization list during an abort-deferred
5571 -- region, rather than using copy-back after the function
5572 -- returns. This is true even if we are able to get away with
5573 -- having 'in out' parameters, which are normally illegal for
5574 -- functions. This formal is also needed when the function has
5575 -- a tagged result.
5576
5577 if Needs_BIP_Final_List (E) then
5578 Discard :=
5579 Add_Extra_Formal
5580 (E, RTE (RE_Finalizable_Ptr_Ptr),
5581 E, BIP_Formal_Suffix (BIP_Final_List));
5582 end if;
5583
5584 -- If the result type contains tasks, we have two extra formals:
5585 -- the master of the tasks to be created, and the caller's
5586 -- activation chain.
5587
5588 if Has_Task (Result_Subt) then
5589 Discard :=
5590 Add_Extra_Formal
5591 (E, RTE (RE_Master_Id),
5592 E, BIP_Formal_Suffix (BIP_Master));
5593 Discard :=
5594 Add_Extra_Formal
5595 (E, RTE (RE_Activation_Chain_Access),
5596 E, BIP_Formal_Suffix (BIP_Activation_Chain));
5597 end if;
5598
5599 -- All build-in-place functions get an extra formal that will be
5600 -- passed the address of the return object within the caller.
5601
5602 declare
5603 Formal_Type : constant Entity_Id :=
5604 Create_Itype
5605 (E_Anonymous_Access_Type, E,
5606 Scope_Id => Scope (E));
5607 begin
5608 Set_Directly_Designated_Type (Formal_Type, Result_Subt);
5609 Set_Etype (Formal_Type, Formal_Type);
5610 Set_Depends_On_Private
5611 (Formal_Type, Has_Private_Component (Formal_Type));
5612 Set_Is_Public (Formal_Type, Is_Public (Scope (Formal_Type)));
5613 Set_Is_Access_Constant (Formal_Type, False);
5614
5615 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
5616 -- the designated type comes from the limited view (for
5617 -- back-end purposes).
5618
5619 Set_From_With_Type (Formal_Type, From_With_Type (Result_Subt));
5620
5621 Layout_Type (Formal_Type);
5622
5623 Discard :=
5624 Add_Extra_Formal
5625 (E, Formal_Type, E, BIP_Formal_Suffix (BIP_Object_Access));
5626 end;
5627 end;
5628 end if;
5629 end Create_Extra_Formals;
5630
5631 -----------------------------
5632 -- Enter_Overloaded_Entity --
5633 -----------------------------
5634
5635 procedure Enter_Overloaded_Entity (S : Entity_Id) is
5636 E : Entity_Id := Current_Entity_In_Scope (S);
5637 C_E : Entity_Id := Current_Entity (S);
5638
5639 begin
5640 if Present (E) then
5641 Set_Has_Homonym (E);
5642 Set_Has_Homonym (S);
5643 end if;
5644
5645 Set_Is_Immediately_Visible (S);
5646 Set_Scope (S, Current_Scope);
5647
5648 -- Chain new entity if front of homonym in current scope, so that
5649 -- homonyms are contiguous.
5650
5651 if Present (E)
5652 and then E /= C_E
5653 then
5654 while Homonym (C_E) /= E loop
5655 C_E := Homonym (C_E);
5656 end loop;
5657
5658 Set_Homonym (C_E, S);
5659
5660 else
5661 E := C_E;
5662 Set_Current_Entity (S);
5663 end if;
5664
5665 Set_Homonym (S, E);
5666
5667 Append_Entity (S, Current_Scope);
5668 Set_Public_Status (S);
5669
5670 if Debug_Flag_E then
5671 Write_Str ("New overloaded entity chain: ");
5672 Write_Name (Chars (S));
5673
5674 E := S;
5675 while Present (E) loop
5676 Write_Str (" "); Write_Int (Int (E));
5677 E := Homonym (E);
5678 end loop;
5679
5680 Write_Eol;
5681 end if;
5682
5683 -- Generate warning for hiding
5684
5685 if Warn_On_Hiding
5686 and then Comes_From_Source (S)
5687 and then In_Extended_Main_Source_Unit (S)
5688 then
5689 E := S;
5690 loop
5691 E := Homonym (E);
5692 exit when No (E);
5693
5694 -- Warn unless genuine overloading
5695
5696 if (not Is_Overloadable (E) or else Subtype_Conformant (E, S))
5697 and then (Is_Immediately_Visible (E)
5698 or else
5699 Is_Potentially_Use_Visible (S))
5700 then
5701 Error_Msg_Sloc := Sloc (E);
5702 Error_Msg_N ("declaration of & hides one#?", S);
5703 end if;
5704 end loop;
5705 end if;
5706 end Enter_Overloaded_Entity;
5707
5708 -----------------------------
5709 -- Find_Corresponding_Spec --
5710 -----------------------------
5711
5712 function Find_Corresponding_Spec
5713 (N : Node_Id;
5714 Post_Error : Boolean := True) return Entity_Id
5715 is
5716 Spec : constant Node_Id := Specification (N);
5717 Designator : constant Entity_Id := Defining_Entity (Spec);
5718
5719 E : Entity_Id;
5720
5721 begin
5722 E := Current_Entity (Designator);
5723 while Present (E) loop
5724
5725 -- We are looking for a matching spec. It must have the same scope,
5726 -- and the same name, and either be type conformant, or be the case
5727 -- of a library procedure spec and its body (which belong to one
5728 -- another regardless of whether they are type conformant or not).
5729
5730 if Scope (E) = Current_Scope then
5731 if Current_Scope = Standard_Standard
5732 or else (Ekind (E) = Ekind (Designator)
5733 and then Type_Conformant (E, Designator))
5734 then
5735 -- Within an instantiation, we know that spec and body are
5736 -- subtype conformant, because they were subtype conformant
5737 -- in the generic. We choose the subtype-conformant entity
5738 -- here as well, to resolve spurious ambiguities in the
5739 -- instance that were not present in the generic (i.e. when
5740 -- two different types are given the same actual). If we are
5741 -- looking for a spec to match a body, full conformance is
5742 -- expected.
5743
5744 if In_Instance then
5745 Set_Convention (Designator, Convention (E));
5746
5747 if Nkind (N) = N_Subprogram_Body
5748 and then Present (Homonym (E))
5749 and then not Fully_Conformant (E, Designator)
5750 then
5751 goto Next_Entity;
5752
5753 elsif not Subtype_Conformant (E, Designator) then
5754 goto Next_Entity;
5755 end if;
5756 end if;
5757
5758 if not Has_Completion (E) then
5759 if Nkind (N) /= N_Subprogram_Body_Stub then
5760 Set_Corresponding_Spec (N, E);
5761 end if;
5762
5763 Set_Has_Completion (E);
5764 return E;
5765
5766 elsif Nkind (Parent (N)) = N_Subunit then
5767
5768 -- If this is the proper body of a subunit, the completion
5769 -- flag is set when analyzing the stub.
5770
5771 return E;
5772
5773 -- If E is an internal function with a controlling result
5774 -- that was created for an operation inherited by a null
5775 -- extension, it may be overridden by a body without a previous
5776 -- spec (one more reason why these should be shunned). In that
5777 -- case remove the generated body, because the current one is
5778 -- the explicit overriding.
5779
5780 elsif Ekind (E) = E_Function
5781 and then Ada_Version >= Ada_05
5782 and then not Comes_From_Source (E)
5783 and then Has_Controlling_Result (E)
5784 and then Is_Null_Extension (Etype (E))
5785 and then Comes_From_Source (Spec)
5786 then
5787 Set_Has_Completion (E, False);
5788
5789 if Expander_Active then
5790 Remove
5791 (Unit_Declaration_Node
5792 (Corresponding_Body (Unit_Declaration_Node (E))));
5793 return E;
5794
5795 -- If expansion is disabled, the wrapper function has not
5796 -- been generated, and this is the standard case of a late
5797 -- body overriding an inherited operation.
5798
5799 else
5800 return Empty;
5801 end if;
5802
5803 -- If the body already exists, then this is an error unless
5804 -- the previous declaration is the implicit declaration of a
5805 -- derived subprogram, or this is a spurious overloading in an
5806 -- instance.
5807
5808 elsif No (Alias (E))
5809 and then not Is_Intrinsic_Subprogram (E)
5810 and then not In_Instance
5811 and then Post_Error
5812 then
5813 Error_Msg_Sloc := Sloc (E);
5814
5815 if Is_Imported (E) then
5816 Error_Msg_NE
5817 ("body not allowed for imported subprogram & declared#",
5818 N, E);
5819 else
5820 Error_Msg_NE ("duplicate body for & declared#", N, E);
5821 end if;
5822 end if;
5823
5824 -- Child units cannot be overloaded, so a conformance mismatch
5825 -- between body and a previous spec is an error.
5826
5827 elsif Is_Child_Unit (E)
5828 and then
5829 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
5830 and then
5831 Nkind (Parent (Unit_Declaration_Node (Designator))) =
5832 N_Compilation_Unit
5833 and then Post_Error
5834 then
5835 Error_Msg_N
5836 ("body of child unit does not match previous declaration", N);
5837 end if;
5838 end if;
5839
5840 <<Next_Entity>>
5841 E := Homonym (E);
5842 end loop;
5843
5844 -- On exit, we know that no previous declaration of subprogram exists
5845
5846 return Empty;
5847 end Find_Corresponding_Spec;
5848
5849 ----------------------
5850 -- Fully_Conformant --
5851 ----------------------
5852
5853 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
5854 Result : Boolean;
5855 begin
5856 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
5857 return Result;
5858 end Fully_Conformant;
5859
5860 ----------------------------------
5861 -- Fully_Conformant_Expressions --
5862 ----------------------------------
5863
5864 function Fully_Conformant_Expressions
5865 (Given_E1 : Node_Id;
5866 Given_E2 : Node_Id) return Boolean
5867 is
5868 E1 : constant Node_Id := Original_Node (Given_E1);
5869 E2 : constant Node_Id := Original_Node (Given_E2);
5870 -- We always test conformance on original nodes, since it is possible
5871 -- for analysis and/or expansion to make things look as though they
5872 -- conform when they do not, e.g. by converting 1+2 into 3.
5873
5874 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
5875 renames Fully_Conformant_Expressions;
5876
5877 function FCL (L1, L2 : List_Id) return Boolean;
5878 -- Compare elements of two lists for conformance. Elements have to
5879 -- be conformant, and actuals inserted as default parameters do not
5880 -- match explicit actuals with the same value.
5881
5882 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
5883 -- Compare an operator node with a function call
5884
5885 ---------
5886 -- FCL --
5887 ---------
5888
5889 function FCL (L1, L2 : List_Id) return Boolean is
5890 N1, N2 : Node_Id;
5891
5892 begin
5893 if L1 = No_List then
5894 N1 := Empty;
5895 else
5896 N1 := First (L1);
5897 end if;
5898
5899 if L2 = No_List then
5900 N2 := Empty;
5901 else
5902 N2 := First (L2);
5903 end if;
5904
5905 -- Compare two lists, skipping rewrite insertions (we want to
5906 -- compare the original trees, not the expanded versions!)
5907
5908 loop
5909 if Is_Rewrite_Insertion (N1) then
5910 Next (N1);
5911 elsif Is_Rewrite_Insertion (N2) then
5912 Next (N2);
5913 elsif No (N1) then
5914 return No (N2);
5915 elsif No (N2) then
5916 return False;
5917 elsif not FCE (N1, N2) then
5918 return False;
5919 else
5920 Next (N1);
5921 Next (N2);
5922 end if;
5923 end loop;
5924 end FCL;
5925
5926 ---------
5927 -- FCO --
5928 ---------
5929
5930 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
5931 Actuals : constant List_Id := Parameter_Associations (Call_Node);
5932 Act : Node_Id;
5933
5934 begin
5935 if No (Actuals)
5936 or else Entity (Op_Node) /= Entity (Name (Call_Node))
5937 then
5938 return False;
5939
5940 else
5941 Act := First (Actuals);
5942
5943 if Nkind (Op_Node) in N_Binary_Op then
5944 if not FCE (Left_Opnd (Op_Node), Act) then
5945 return False;
5946 end if;
5947
5948 Next (Act);
5949 end if;
5950
5951 return Present (Act)
5952 and then FCE (Right_Opnd (Op_Node), Act)
5953 and then No (Next (Act));
5954 end if;
5955 end FCO;
5956
5957 -- Start of processing for Fully_Conformant_Expressions
5958
5959 begin
5960 -- Non-conformant if paren count does not match. Note: if some idiot
5961 -- complains that we don't do this right for more than 3 levels of
5962 -- parentheses, they will be treated with the respect they deserve!
5963
5964 if Paren_Count (E1) /= Paren_Count (E2) then
5965 return False;
5966
5967 -- If same entities are referenced, then they are conformant even if
5968 -- they have different forms (RM 8.3.1(19-20)).
5969
5970 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
5971 if Present (Entity (E1)) then
5972 return Entity (E1) = Entity (E2)
5973 or else (Chars (Entity (E1)) = Chars (Entity (E2))
5974 and then Ekind (Entity (E1)) = E_Discriminant
5975 and then Ekind (Entity (E2)) = E_In_Parameter);
5976
5977 elsif Nkind (E1) = N_Expanded_Name
5978 and then Nkind (E2) = N_Expanded_Name
5979 and then Nkind (Selector_Name (E1)) = N_Character_Literal
5980 and then Nkind (Selector_Name (E2)) = N_Character_Literal
5981 then
5982 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
5983
5984 else
5985 -- Identifiers in component associations don't always have
5986 -- entities, but their names must conform.
5987
5988 return Nkind (E1) = N_Identifier
5989 and then Nkind (E2) = N_Identifier
5990 and then Chars (E1) = Chars (E2);
5991 end if;
5992
5993 elsif Nkind (E1) = N_Character_Literal
5994 and then Nkind (E2) = N_Expanded_Name
5995 then
5996 return Nkind (Selector_Name (E2)) = N_Character_Literal
5997 and then Chars (E1) = Chars (Selector_Name (E2));
5998
5999 elsif Nkind (E2) = N_Character_Literal
6000 and then Nkind (E1) = N_Expanded_Name
6001 then
6002 return Nkind (Selector_Name (E1)) = N_Character_Literal
6003 and then Chars (E2) = Chars (Selector_Name (E1));
6004
6005 elsif Nkind (E1) in N_Op
6006 and then Nkind (E2) = N_Function_Call
6007 then
6008 return FCO (E1, E2);
6009
6010 elsif Nkind (E2) in N_Op
6011 and then Nkind (E1) = N_Function_Call
6012 then
6013 return FCO (E2, E1);
6014
6015 -- Otherwise we must have the same syntactic entity
6016
6017 elsif Nkind (E1) /= Nkind (E2) then
6018 return False;
6019
6020 -- At this point, we specialize by node type
6021
6022 else
6023 case Nkind (E1) is
6024
6025 when N_Aggregate =>
6026 return
6027 FCL (Expressions (E1), Expressions (E2))
6028 and then FCL (Component_Associations (E1),
6029 Component_Associations (E2));
6030
6031 when N_Allocator =>
6032 if Nkind (Expression (E1)) = N_Qualified_Expression
6033 or else
6034 Nkind (Expression (E2)) = N_Qualified_Expression
6035 then
6036 return FCE (Expression (E1), Expression (E2));
6037
6038 -- Check that the subtype marks and any constraints
6039 -- are conformant
6040
6041 else
6042 declare
6043 Indic1 : constant Node_Id := Expression (E1);
6044 Indic2 : constant Node_Id := Expression (E2);
6045 Elt1 : Node_Id;
6046 Elt2 : Node_Id;
6047
6048 begin
6049 if Nkind (Indic1) /= N_Subtype_Indication then
6050 return
6051 Nkind (Indic2) /= N_Subtype_Indication
6052 and then Entity (Indic1) = Entity (Indic2);
6053
6054 elsif Nkind (Indic2) /= N_Subtype_Indication then
6055 return
6056 Nkind (Indic1) /= N_Subtype_Indication
6057 and then Entity (Indic1) = Entity (Indic2);
6058
6059 else
6060 if Entity (Subtype_Mark (Indic1)) /=
6061 Entity (Subtype_Mark (Indic2))
6062 then
6063 return False;
6064 end if;
6065
6066 Elt1 := First (Constraints (Constraint (Indic1)));
6067 Elt2 := First (Constraints (Constraint (Indic2)));
6068 while Present (Elt1) and then Present (Elt2) loop
6069 if not FCE (Elt1, Elt2) then
6070 return False;
6071 end if;
6072
6073 Next (Elt1);
6074 Next (Elt2);
6075 end loop;
6076
6077 return True;
6078 end if;
6079 end;
6080 end if;
6081
6082 when N_Attribute_Reference =>
6083 return
6084 Attribute_Name (E1) = Attribute_Name (E2)
6085 and then FCL (Expressions (E1), Expressions (E2));
6086
6087 when N_Binary_Op =>
6088 return
6089 Entity (E1) = Entity (E2)
6090 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
6091 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
6092
6093 when N_Short_Circuit | N_Membership_Test =>
6094 return
6095 FCE (Left_Opnd (E1), Left_Opnd (E2))
6096 and then
6097 FCE (Right_Opnd (E1), Right_Opnd (E2));
6098
6099 when N_Character_Literal =>
6100 return
6101 Char_Literal_Value (E1) = Char_Literal_Value (E2);
6102
6103 when N_Component_Association =>
6104 return
6105 FCL (Choices (E1), Choices (E2))
6106 and then FCE (Expression (E1), Expression (E2));
6107
6108 when N_Conditional_Expression =>
6109 return
6110 FCL (Expressions (E1), Expressions (E2));
6111
6112 when N_Explicit_Dereference =>
6113 return
6114 FCE (Prefix (E1), Prefix (E2));
6115
6116 when N_Extension_Aggregate =>
6117 return
6118 FCL (Expressions (E1), Expressions (E2))
6119 and then Null_Record_Present (E1) =
6120 Null_Record_Present (E2)
6121 and then FCL (Component_Associations (E1),
6122 Component_Associations (E2));
6123
6124 when N_Function_Call =>
6125 return
6126 FCE (Name (E1), Name (E2))
6127 and then FCL (Parameter_Associations (E1),
6128 Parameter_Associations (E2));
6129
6130 when N_Indexed_Component =>
6131 return
6132 FCE (Prefix (E1), Prefix (E2))
6133 and then FCL (Expressions (E1), Expressions (E2));
6134
6135 when N_Integer_Literal =>
6136 return (Intval (E1) = Intval (E2));
6137
6138 when N_Null =>
6139 return True;
6140
6141 when N_Operator_Symbol =>
6142 return
6143 Chars (E1) = Chars (E2);
6144
6145 when N_Others_Choice =>
6146 return True;
6147
6148 when N_Parameter_Association =>
6149 return
6150 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
6151 and then FCE (Explicit_Actual_Parameter (E1),
6152 Explicit_Actual_Parameter (E2));
6153
6154 when N_Qualified_Expression =>
6155 return
6156 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
6157 and then FCE (Expression (E1), Expression (E2));
6158
6159 when N_Range =>
6160 return
6161 FCE (Low_Bound (E1), Low_Bound (E2))
6162 and then FCE (High_Bound (E1), High_Bound (E2));
6163
6164 when N_Real_Literal =>
6165 return (Realval (E1) = Realval (E2));
6166
6167 when N_Selected_Component =>
6168 return
6169 FCE (Prefix (E1), Prefix (E2))
6170 and then FCE (Selector_Name (E1), Selector_Name (E2));
6171
6172 when N_Slice =>
6173 return
6174 FCE (Prefix (E1), Prefix (E2))
6175 and then FCE (Discrete_Range (E1), Discrete_Range (E2));
6176
6177 when N_String_Literal =>
6178 declare
6179 S1 : constant String_Id := Strval (E1);
6180 S2 : constant String_Id := Strval (E2);
6181 L1 : constant Nat := String_Length (S1);
6182 L2 : constant Nat := String_Length (S2);
6183
6184 begin
6185 if L1 /= L2 then
6186 return False;
6187
6188 else
6189 for J in 1 .. L1 loop
6190 if Get_String_Char (S1, J) /=
6191 Get_String_Char (S2, J)
6192 then
6193 return False;
6194 end if;
6195 end loop;
6196
6197 return True;
6198 end if;
6199 end;
6200
6201 when N_Type_Conversion =>
6202 return
6203 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
6204 and then FCE (Expression (E1), Expression (E2));
6205
6206 when N_Unary_Op =>
6207 return
6208 Entity (E1) = Entity (E2)
6209 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
6210
6211 when N_Unchecked_Type_Conversion =>
6212 return
6213 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
6214 and then FCE (Expression (E1), Expression (E2));
6215
6216 -- All other node types cannot appear in this context. Strictly
6217 -- we should raise a fatal internal error. Instead we just ignore
6218 -- the nodes. This means that if anyone makes a mistake in the
6219 -- expander and mucks an expression tree irretrievably, the
6220 -- result will be a failure to detect a (probably very obscure)
6221 -- case of non-conformance, which is better than bombing on some
6222 -- case where two expressions do in fact conform.
6223
6224 when others =>
6225 return True;
6226
6227 end case;
6228 end if;
6229 end Fully_Conformant_Expressions;
6230
6231 ----------------------------------------
6232 -- Fully_Conformant_Discrete_Subtypes --
6233 ----------------------------------------
6234
6235 function Fully_Conformant_Discrete_Subtypes
6236 (Given_S1 : Node_Id;
6237 Given_S2 : Node_Id) return Boolean
6238 is
6239 S1 : constant Node_Id := Original_Node (Given_S1);
6240 S2 : constant Node_Id := Original_Node (Given_S2);
6241
6242 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
6243 -- Special-case for a bound given by a discriminant, which in the body
6244 -- is replaced with the discriminal of the enclosing type.
6245
6246 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
6247 -- Check both bounds
6248
6249 -----------------------
6250 -- Conforming_Bounds --
6251 -----------------------
6252
6253 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
6254 begin
6255 if Is_Entity_Name (B1)
6256 and then Is_Entity_Name (B2)
6257 and then Ekind (Entity (B1)) = E_Discriminant
6258 then
6259 return Chars (B1) = Chars (B2);
6260
6261 else
6262 return Fully_Conformant_Expressions (B1, B2);
6263 end if;
6264 end Conforming_Bounds;
6265
6266 -----------------------
6267 -- Conforming_Ranges --
6268 -----------------------
6269
6270 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
6271 begin
6272 return
6273 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
6274 and then
6275 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
6276 end Conforming_Ranges;
6277
6278 -- Start of processing for Fully_Conformant_Discrete_Subtypes
6279
6280 begin
6281 if Nkind (S1) /= Nkind (S2) then
6282 return False;
6283
6284 elsif Is_Entity_Name (S1) then
6285 return Entity (S1) = Entity (S2);
6286
6287 elsif Nkind (S1) = N_Range then
6288 return Conforming_Ranges (S1, S2);
6289
6290 elsif Nkind (S1) = N_Subtype_Indication then
6291 return
6292 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
6293 and then
6294 Conforming_Ranges
6295 (Range_Expression (Constraint (S1)),
6296 Range_Expression (Constraint (S2)));
6297 else
6298 return True;
6299 end if;
6300 end Fully_Conformant_Discrete_Subtypes;
6301
6302 --------------------
6303 -- Install_Entity --
6304 --------------------
6305
6306 procedure Install_Entity (E : Entity_Id) is
6307 Prev : constant Entity_Id := Current_Entity (E);
6308 begin
6309 Set_Is_Immediately_Visible (E);
6310 Set_Current_Entity (E);
6311 Set_Homonym (E, Prev);
6312 end Install_Entity;
6313
6314 ---------------------
6315 -- Install_Formals --
6316 ---------------------
6317
6318 procedure Install_Formals (Id : Entity_Id) is
6319 F : Entity_Id;
6320 begin
6321 F := First_Formal (Id);
6322 while Present (F) loop
6323 Install_Entity (F);
6324 Next_Formal (F);
6325 end loop;
6326 end Install_Formals;
6327
6328 -----------------------------
6329 -- Is_Interface_Conformant --
6330 -----------------------------
6331
6332 function Is_Interface_Conformant
6333 (Tagged_Type : Entity_Id;
6334 Iface_Prim : Entity_Id;
6335 Prim : Entity_Id) return Boolean
6336 is
6337 Iface : constant Entity_Id := Find_Dispatching_Type (Iface_Prim);
6338 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
6339
6340 begin
6341 pragma Assert (Is_Subprogram (Iface_Prim)
6342 and then Is_Subprogram (Prim)
6343 and then Is_Dispatching_Operation (Iface_Prim)
6344 and then Is_Dispatching_Operation (Prim));
6345
6346 pragma Assert (Is_Interface (Iface)
6347 or else (Present (Alias (Iface_Prim))
6348 and then
6349 Is_Interface
6350 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
6351
6352 if Prim = Iface_Prim
6353 or else not Is_Subprogram (Prim)
6354 or else Ekind (Prim) /= Ekind (Iface_Prim)
6355 or else not Is_Dispatching_Operation (Prim)
6356 or else Scope (Prim) /= Scope (Tagged_Type)
6357 or else No (Typ)
6358 or else Base_Type (Typ) /= Tagged_Type
6359 or else not Primitive_Names_Match (Iface_Prim, Prim)
6360 then
6361 return False;
6362
6363 -- Case of a procedure, or a function that does not have a controlling
6364 -- result (I or access I).
6365
6366 elsif Ekind (Iface_Prim) = E_Procedure
6367 or else Etype (Prim) = Etype (Iface_Prim)
6368 or else not Has_Controlling_Result (Prim)
6369 then
6370 return Type_Conformant (Prim, Iface_Prim,
6371 Skip_Controlling_Formals => True);
6372
6373 -- Case of a function returning an interface, or an access to one.
6374 -- Check that the return types correspond.
6375
6376 elsif Implements_Interface (Typ, Iface) then
6377 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
6378 /=
6379 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
6380 then
6381 return False;
6382 else
6383 return
6384 Type_Conformant (Prim, Iface_Prim,
6385 Skip_Controlling_Formals => True);
6386 end if;
6387
6388 else
6389 return False;
6390 end if;
6391 end Is_Interface_Conformant;
6392
6393 ---------------------------------
6394 -- Is_Non_Overriding_Operation --
6395 ---------------------------------
6396
6397 function Is_Non_Overriding_Operation
6398 (Prev_E : Entity_Id;
6399 New_E : Entity_Id) return Boolean
6400 is
6401 Formal : Entity_Id;
6402 F_Typ : Entity_Id;
6403 G_Typ : Entity_Id := Empty;
6404
6405 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
6406 -- If F_Type is a derived type associated with a generic actual subtype,
6407 -- then return its Generic_Parent_Type attribute, else return Empty.
6408
6409 function Types_Correspond
6410 (P_Type : Entity_Id;
6411 N_Type : Entity_Id) return Boolean;
6412 -- Returns true if and only if the types (or designated types in the
6413 -- case of anonymous access types) are the same or N_Type is derived
6414 -- directly or indirectly from P_Type.
6415
6416 -----------------------------
6417 -- Get_Generic_Parent_Type --
6418 -----------------------------
6419
6420 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
6421 G_Typ : Entity_Id;
6422 Indic : Node_Id;
6423
6424 begin
6425 if Is_Derived_Type (F_Typ)
6426 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
6427 then
6428 -- The tree must be traversed to determine the parent subtype in
6429 -- the generic unit, which unfortunately isn't always available
6430 -- via semantic attributes. ??? (Note: The use of Original_Node
6431 -- is needed for cases where a full derived type has been
6432 -- rewritten.)
6433
6434 Indic := Subtype_Indication
6435 (Type_Definition (Original_Node (Parent (F_Typ))));
6436
6437 if Nkind (Indic) = N_Subtype_Indication then
6438 G_Typ := Entity (Subtype_Mark (Indic));
6439 else
6440 G_Typ := Entity (Indic);
6441 end if;
6442
6443 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
6444 and then Present (Generic_Parent_Type (Parent (G_Typ)))
6445 then
6446 return Generic_Parent_Type (Parent (G_Typ));
6447 end if;
6448 end if;
6449
6450 return Empty;
6451 end Get_Generic_Parent_Type;
6452
6453 ----------------------
6454 -- Types_Correspond --
6455 ----------------------
6456
6457 function Types_Correspond
6458 (P_Type : Entity_Id;
6459 N_Type : Entity_Id) return Boolean
6460 is
6461 Prev_Type : Entity_Id := Base_Type (P_Type);
6462 New_Type : Entity_Id := Base_Type (N_Type);
6463
6464 begin
6465 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
6466 Prev_Type := Designated_Type (Prev_Type);
6467 end if;
6468
6469 if Ekind (New_Type) = E_Anonymous_Access_Type then
6470 New_Type := Designated_Type (New_Type);
6471 end if;
6472
6473 if Prev_Type = New_Type then
6474 return True;
6475
6476 elsif not Is_Class_Wide_Type (New_Type) then
6477 while Etype (New_Type) /= New_Type loop
6478 New_Type := Etype (New_Type);
6479 if New_Type = Prev_Type then
6480 return True;
6481 end if;
6482 end loop;
6483 end if;
6484 return False;
6485 end Types_Correspond;
6486
6487 -- Start of processing for Is_Non_Overriding_Operation
6488
6489 begin
6490 -- In the case where both operations are implicit derived subprograms
6491 -- then neither overrides the other. This can only occur in certain
6492 -- obscure cases (e.g., derivation from homographs created in a generic
6493 -- instantiation).
6494
6495 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
6496 return True;
6497
6498 elsif Ekind (Current_Scope) = E_Package
6499 and then Is_Generic_Instance (Current_Scope)
6500 and then In_Private_Part (Current_Scope)
6501 and then Comes_From_Source (New_E)
6502 then
6503 -- We examine the formals and result subtype of the inherited
6504 -- operation, to determine whether their type is derived from (the
6505 -- instance of) a generic type.
6506
6507 Formal := First_Formal (Prev_E);
6508
6509 while Present (Formal) loop
6510 F_Typ := Base_Type (Etype (Formal));
6511
6512 if Ekind (F_Typ) = E_Anonymous_Access_Type then
6513 F_Typ := Designated_Type (F_Typ);
6514 end if;
6515
6516 G_Typ := Get_Generic_Parent_Type (F_Typ);
6517
6518 Next_Formal (Formal);
6519 end loop;
6520
6521 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
6522 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
6523 end if;
6524
6525 if No (G_Typ) then
6526 return False;
6527 end if;
6528
6529 -- If the generic type is a private type, then the original operation
6530 -- was not overriding in the generic, because there was no primitive
6531 -- operation to override.
6532
6533 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
6534 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
6535 N_Formal_Private_Type_Definition
6536 then
6537 return True;
6538
6539 -- The generic parent type is the ancestor of a formal derived
6540 -- type declaration. We need to check whether it has a primitive
6541 -- operation that should be overridden by New_E in the generic.
6542
6543 else
6544 declare
6545 P_Formal : Entity_Id;
6546 N_Formal : Entity_Id;
6547 P_Typ : Entity_Id;
6548 N_Typ : Entity_Id;
6549 P_Prim : Entity_Id;
6550 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
6551
6552 begin
6553 while Present (Prim_Elt) loop
6554 P_Prim := Node (Prim_Elt);
6555
6556 if Chars (P_Prim) = Chars (New_E)
6557 and then Ekind (P_Prim) = Ekind (New_E)
6558 then
6559 P_Formal := First_Formal (P_Prim);
6560 N_Formal := First_Formal (New_E);
6561 while Present (P_Formal) and then Present (N_Formal) loop
6562 P_Typ := Etype (P_Formal);
6563 N_Typ := Etype (N_Formal);
6564
6565 if not Types_Correspond (P_Typ, N_Typ) then
6566 exit;
6567 end if;
6568
6569 Next_Entity (P_Formal);
6570 Next_Entity (N_Formal);
6571 end loop;
6572
6573 -- Found a matching primitive operation belonging to the
6574 -- formal ancestor type, so the new subprogram is
6575 -- overriding.
6576
6577 if No (P_Formal)
6578 and then No (N_Formal)
6579 and then (Ekind (New_E) /= E_Function
6580 or else
6581 Types_Correspond
6582 (Etype (P_Prim), Etype (New_E)))
6583 then
6584 return False;
6585 end if;
6586 end if;
6587
6588 Next_Elmt (Prim_Elt);
6589 end loop;
6590
6591 -- If no match found, then the new subprogram does not
6592 -- override in the generic (nor in the instance).
6593
6594 return True;
6595 end;
6596 end if;
6597 else
6598 return False;
6599 end if;
6600 end Is_Non_Overriding_Operation;
6601
6602 ------------------------------
6603 -- Make_Inequality_Operator --
6604 ------------------------------
6605
6606 -- S is the defining identifier of an equality operator. We build a
6607 -- subprogram declaration with the right signature. This operation is
6608 -- intrinsic, because it is always expanded as the negation of the
6609 -- call to the equality function.
6610
6611 procedure Make_Inequality_Operator (S : Entity_Id) is
6612 Loc : constant Source_Ptr := Sloc (S);
6613 Decl : Node_Id;
6614 Formals : List_Id;
6615 Op_Name : Entity_Id;
6616
6617 FF : constant Entity_Id := First_Formal (S);
6618 NF : constant Entity_Id := Next_Formal (FF);
6619
6620 begin
6621 -- Check that equality was properly defined, ignore call if not
6622
6623 if No (NF) then
6624 return;
6625 end if;
6626
6627 declare
6628 A : constant Entity_Id :=
6629 Make_Defining_Identifier (Sloc (FF),
6630 Chars => Chars (FF));
6631
6632 B : constant Entity_Id :=
6633 Make_Defining_Identifier (Sloc (NF),
6634 Chars => Chars (NF));
6635
6636 begin
6637 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
6638
6639 Formals := New_List (
6640 Make_Parameter_Specification (Loc,
6641 Defining_Identifier => A,
6642 Parameter_Type =>
6643 New_Reference_To (Etype (First_Formal (S)),
6644 Sloc (Etype (First_Formal (S))))),
6645
6646 Make_Parameter_Specification (Loc,
6647 Defining_Identifier => B,
6648 Parameter_Type =>
6649 New_Reference_To (Etype (Next_Formal (First_Formal (S))),
6650 Sloc (Etype (Next_Formal (First_Formal (S)))))));
6651
6652 Decl :=
6653 Make_Subprogram_Declaration (Loc,
6654 Specification =>
6655 Make_Function_Specification (Loc,
6656 Defining_Unit_Name => Op_Name,
6657 Parameter_Specifications => Formals,
6658 Result_Definition =>
6659 New_Reference_To (Standard_Boolean, Loc)));
6660
6661 -- Insert inequality right after equality if it is explicit or after
6662 -- the derived type when implicit. These entities are created only
6663 -- for visibility purposes, and eventually replaced in the course of
6664 -- expansion, so they do not need to be attached to the tree and seen
6665 -- by the back-end. Keeping them internal also avoids spurious
6666 -- freezing problems. The declaration is inserted in the tree for
6667 -- analysis, and removed afterwards. If the equality operator comes
6668 -- from an explicit declaration, attach the inequality immediately
6669 -- after. Else the equality is inherited from a derived type
6670 -- declaration, so insert inequality after that declaration.
6671
6672 if No (Alias (S)) then
6673 Insert_After (Unit_Declaration_Node (S), Decl);
6674 elsif Is_List_Member (Parent (S)) then
6675 Insert_After (Parent (S), Decl);
6676 else
6677 Insert_After (Parent (Etype (First_Formal (S))), Decl);
6678 end if;
6679
6680 Mark_Rewrite_Insertion (Decl);
6681 Set_Is_Intrinsic_Subprogram (Op_Name);
6682 Analyze (Decl);
6683 Remove (Decl);
6684 Set_Has_Completion (Op_Name);
6685 Set_Corresponding_Equality (Op_Name, S);
6686 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
6687 end;
6688 end Make_Inequality_Operator;
6689
6690 ----------------------
6691 -- May_Need_Actuals --
6692 ----------------------
6693
6694 procedure May_Need_Actuals (Fun : Entity_Id) is
6695 F : Entity_Id;
6696 B : Boolean;
6697
6698 begin
6699 F := First_Formal (Fun);
6700 B := True;
6701 while Present (F) loop
6702 if No (Default_Value (F)) then
6703 B := False;
6704 exit;
6705 end if;
6706
6707 Next_Formal (F);
6708 end loop;
6709
6710 Set_Needs_No_Actuals (Fun, B);
6711 end May_Need_Actuals;
6712
6713 ---------------------
6714 -- Mode_Conformant --
6715 ---------------------
6716
6717 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
6718 Result : Boolean;
6719 begin
6720 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
6721 return Result;
6722 end Mode_Conformant;
6723
6724 ---------------------------
6725 -- New_Overloaded_Entity --
6726 ---------------------------
6727
6728 procedure New_Overloaded_Entity
6729 (S : Entity_Id;
6730 Derived_Type : Entity_Id := Empty)
6731 is
6732 Overridden_Subp : Entity_Id := Empty;
6733 -- Set if the current scope has an operation that is type-conformant
6734 -- with S, and becomes hidden by S.
6735
6736 Is_Primitive_Subp : Boolean;
6737 -- Set to True if the new subprogram is primitive
6738
6739 E : Entity_Id;
6740 -- Entity that S overrides
6741
6742 Prev_Vis : Entity_Id := Empty;
6743 -- Predecessor of E in Homonym chain
6744
6745 procedure Check_For_Primitive_Subprogram
6746 (Is_Primitive : out Boolean;
6747 Is_Overriding : Boolean := False);
6748 -- If the subprogram being analyzed is a primitive operation of the type
6749 -- of a formal or result, set the Has_Primitive_Operations flag on the
6750 -- type, and set Is_Primitive to True (otherwise set to False). Set the
6751 -- corresponding flag on the entity itself for later use.
6752
6753 procedure Check_Synchronized_Overriding
6754 (Def_Id : Entity_Id;
6755 Overridden_Subp : out Entity_Id);
6756 -- First determine if Def_Id is an entry or a subprogram either defined
6757 -- in the scope of a task or protected type, or is a primitive of such
6758 -- a type. Check whether Def_Id overrides a subprogram of an interface
6759 -- implemented by the synchronized type, return the overridden entity
6760 -- or Empty.
6761
6762 function Is_Private_Declaration (E : Entity_Id) return Boolean;
6763 -- Check that E is declared in the private part of the current package,
6764 -- or in the package body, where it may hide a previous declaration.
6765 -- We can't use In_Private_Part by itself because this flag is also
6766 -- set when freezing entities, so we must examine the place of the
6767 -- declaration in the tree, and recognize wrapper packages as well.
6768
6769 function Is_Overriding_Alias
6770 (Old_E : Entity_Id;
6771 New_E : Entity_Id) return Boolean;
6772 -- Check whether new subprogram and old subprogram are both inherited
6773 -- from subprograms that have distinct dispatch table entries. This can
6774 -- occur with derivations from instances with accidental homonyms.
6775 -- The function is conservative given that the converse is only true
6776 -- within instances that contain accidental overloadings.
6777
6778 ------------------------------------
6779 -- Check_For_Primitive_Subprogram --
6780 ------------------------------------
6781
6782 procedure Check_For_Primitive_Subprogram
6783 (Is_Primitive : out Boolean;
6784 Is_Overriding : Boolean := False)
6785 is
6786 Formal : Entity_Id;
6787 F_Typ : Entity_Id;
6788 B_Typ : Entity_Id;
6789
6790 function Visible_Part_Type (T : Entity_Id) return Boolean;
6791 -- Returns true if T is declared in the visible part of the current
6792 -- package scope; otherwise returns false. Assumes that T is declared
6793 -- in a package.
6794
6795 procedure Check_Private_Overriding (T : Entity_Id);
6796 -- Checks that if a primitive abstract subprogram of a visible
6797 -- abstract type is declared in a private part, then it must override
6798 -- an abstract subprogram declared in the visible part. Also checks
6799 -- that if a primitive function with a controlling result is declared
6800 -- in a private part, then it must override a function declared in
6801 -- the visible part.
6802
6803 ------------------------------
6804 -- Check_Private_Overriding --
6805 ------------------------------
6806
6807 procedure Check_Private_Overriding (T : Entity_Id) is
6808 begin
6809 if Is_Package_Or_Generic_Package (Current_Scope)
6810 and then In_Private_Part (Current_Scope)
6811 and then Visible_Part_Type (T)
6812 and then not In_Instance
6813 then
6814 if Is_Abstract_Type (T)
6815 and then Is_Abstract_Subprogram (S)
6816 and then (not Is_Overriding
6817 or else not Is_Abstract_Subprogram (E))
6818 then
6819 Error_Msg_N ("abstract subprograms must be visible "
6820 & "(RM 3.9.3(10))!", S);
6821
6822 elsif Ekind (S) = E_Function
6823 and then Is_Tagged_Type (T)
6824 and then T = Base_Type (Etype (S))
6825 and then not Is_Overriding
6826 then
6827 Error_Msg_N
6828 ("private function with tagged result must"
6829 & " override visible-part function", S);
6830 Error_Msg_N
6831 ("\move subprogram to the visible part"
6832 & " (RM 3.9.3(10))", S);
6833 end if;
6834 end if;
6835 end Check_Private_Overriding;
6836
6837 -----------------------
6838 -- Visible_Part_Type --
6839 -----------------------
6840
6841 function Visible_Part_Type (T : Entity_Id) return Boolean is
6842 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
6843 N : Node_Id;
6844
6845 begin
6846 -- If the entity is a private type, then it must be declared in a
6847 -- visible part.
6848
6849 if Ekind (T) in Private_Kind then
6850 return True;
6851 end if;
6852
6853 -- Otherwise, we traverse the visible part looking for its
6854 -- corresponding declaration. We cannot use the declaration
6855 -- node directly because in the private part the entity of a
6856 -- private type is the one in the full view, which does not
6857 -- indicate that it is the completion of something visible.
6858
6859 N := First (Visible_Declarations (Specification (P)));
6860 while Present (N) loop
6861 if Nkind (N) = N_Full_Type_Declaration
6862 and then Present (Defining_Identifier (N))
6863 and then T = Defining_Identifier (N)
6864 then
6865 return True;
6866
6867 elsif Nkind_In (N, N_Private_Type_Declaration,
6868 N_Private_Extension_Declaration)
6869 and then Present (Defining_Identifier (N))
6870 and then T = Full_View (Defining_Identifier (N))
6871 then
6872 return True;
6873 end if;
6874
6875 Next (N);
6876 end loop;
6877
6878 return False;
6879 end Visible_Part_Type;
6880
6881 -- Start of processing for Check_For_Primitive_Subprogram
6882
6883 begin
6884 Is_Primitive := False;
6885
6886 if not Comes_From_Source (S) then
6887 null;
6888
6889 -- If subprogram is at library level, it is not primitive operation
6890
6891 elsif Current_Scope = Standard_Standard then
6892 null;
6893
6894 elsif (Is_Package_Or_Generic_Package (Current_Scope)
6895 and then not In_Package_Body (Current_Scope))
6896 or else Is_Overriding
6897 then
6898 -- For function, check return type
6899
6900 if Ekind (S) = E_Function then
6901 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
6902 F_Typ := Designated_Type (Etype (S));
6903 else
6904 F_Typ := Etype (S);
6905 end if;
6906
6907 B_Typ := Base_Type (F_Typ);
6908
6909 if Scope (B_Typ) = Current_Scope
6910 and then not Is_Class_Wide_Type (B_Typ)
6911 and then not Is_Generic_Type (B_Typ)
6912 then
6913 Is_Primitive := True;
6914 Set_Has_Primitive_Operations (B_Typ);
6915 Set_Is_Primitive (S);
6916 Check_Private_Overriding (B_Typ);
6917 end if;
6918 end if;
6919
6920 -- For all subprograms, check formals
6921
6922 Formal := First_Formal (S);
6923 while Present (Formal) loop
6924 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
6925 F_Typ := Designated_Type (Etype (Formal));
6926 else
6927 F_Typ := Etype (Formal);
6928 end if;
6929
6930 B_Typ := Base_Type (F_Typ);
6931
6932 if Ekind (B_Typ) = E_Access_Subtype then
6933 B_Typ := Base_Type (B_Typ);
6934 end if;
6935
6936 if Scope (B_Typ) = Current_Scope
6937 and then not Is_Class_Wide_Type (B_Typ)
6938 and then not Is_Generic_Type (B_Typ)
6939 then
6940 Is_Primitive := True;
6941 Set_Is_Primitive (S);
6942 Set_Has_Primitive_Operations (B_Typ);
6943 Check_Private_Overriding (B_Typ);
6944 end if;
6945
6946 Next_Formal (Formal);
6947 end loop;
6948 end if;
6949 end Check_For_Primitive_Subprogram;
6950
6951 -----------------------------------
6952 -- Check_Synchronized_Overriding --
6953 -----------------------------------
6954
6955 procedure Check_Synchronized_Overriding
6956 (Def_Id : Entity_Id;
6957 Overridden_Subp : out Entity_Id)
6958 is
6959 Ifaces_List : Elist_Id;
6960 In_Scope : Boolean;
6961 Typ : Entity_Id;
6962
6963 function Matches_Prefixed_View_Profile
6964 (Prim_Params : List_Id;
6965 Iface_Params : List_Id) return Boolean;
6966 -- Determine whether a subprogram's parameter profile Prim_Params
6967 -- matches that of a potentially overridden interface subprogram
6968 -- Iface_Params. Also determine if the type of first parameter of
6969 -- Iface_Params is an implemented interface.
6970
6971 -----------------------------------
6972 -- Matches_Prefixed_View_Profile --
6973 -----------------------------------
6974
6975 function Matches_Prefixed_View_Profile
6976 (Prim_Params : List_Id;
6977 Iface_Params : List_Id) return Boolean
6978 is
6979 Iface_Id : Entity_Id;
6980 Iface_Param : Node_Id;
6981 Iface_Typ : Entity_Id;
6982 Prim_Id : Entity_Id;
6983 Prim_Param : Node_Id;
6984 Prim_Typ : Entity_Id;
6985
6986 function Is_Implemented
6987 (Ifaces_List : Elist_Id;
6988 Iface : Entity_Id) return Boolean;
6989 -- Determine if Iface is implemented by the current task or
6990 -- protected type.
6991
6992 --------------------
6993 -- Is_Implemented --
6994 --------------------
6995
6996 function Is_Implemented
6997 (Ifaces_List : Elist_Id;
6998 Iface : Entity_Id) return Boolean
6999 is
7000 Iface_Elmt : Elmt_Id;
7001
7002 begin
7003 Iface_Elmt := First_Elmt (Ifaces_List);
7004 while Present (Iface_Elmt) loop
7005 if Node (Iface_Elmt) = Iface then
7006 return True;
7007 end if;
7008
7009 Next_Elmt (Iface_Elmt);
7010 end loop;
7011
7012 return False;
7013 end Is_Implemented;
7014
7015 -- Start of processing for Matches_Prefixed_View_Profile
7016
7017 begin
7018 Iface_Param := First (Iface_Params);
7019 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
7020
7021 if Is_Access_Type (Iface_Typ) then
7022 Iface_Typ := Designated_Type (Iface_Typ);
7023 end if;
7024
7025 Prim_Param := First (Prim_Params);
7026
7027 -- The first parameter of the potentially overridden subprogram
7028 -- must be an interface implemented by Prim.
7029
7030 if not Is_Interface (Iface_Typ)
7031 or else not Is_Implemented (Ifaces_List, Iface_Typ)
7032 then
7033 return False;
7034 end if;
7035
7036 -- The checks on the object parameters are done, move onto the
7037 -- rest of the parameters.
7038
7039 if not In_Scope then
7040 Prim_Param := Next (Prim_Param);
7041 end if;
7042
7043 Iface_Param := Next (Iface_Param);
7044 while Present (Iface_Param) and then Present (Prim_Param) loop
7045 Iface_Id := Defining_Identifier (Iface_Param);
7046 Iface_Typ := Find_Parameter_Type (Iface_Param);
7047
7048 Prim_Id := Defining_Identifier (Prim_Param);
7049 Prim_Typ := Find_Parameter_Type (Prim_Param);
7050
7051 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
7052 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
7053 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
7054 then
7055 Iface_Typ := Designated_Type (Iface_Typ);
7056 Prim_Typ := Designated_Type (Prim_Typ);
7057 end if;
7058
7059 -- Case of multiple interface types inside a parameter profile
7060
7061 -- (Obj_Param : in out Iface; ...; Param : Iface)
7062
7063 -- If the interface type is implemented, then the matching type
7064 -- in the primitive should be the implementing record type.
7065
7066 if Ekind (Iface_Typ) = E_Record_Type
7067 and then Is_Interface (Iface_Typ)
7068 and then Is_Implemented (Ifaces_List, Iface_Typ)
7069 then
7070 if Prim_Typ /= Typ then
7071 return False;
7072 end if;
7073
7074 -- The two parameters must be both mode and subtype conformant
7075
7076 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
7077 or else not
7078 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
7079 then
7080 return False;
7081 end if;
7082
7083 Next (Iface_Param);
7084 Next (Prim_Param);
7085 end loop;
7086
7087 -- One of the two lists contains more parameters than the other
7088
7089 if Present (Iface_Param) or else Present (Prim_Param) then
7090 return False;
7091 end if;
7092
7093 return True;
7094 end Matches_Prefixed_View_Profile;
7095
7096 -- Start of processing for Check_Synchronized_Overriding
7097
7098 begin
7099 Overridden_Subp := Empty;
7100
7101 -- Def_Id must be an entry or a subprogram. We should skip predefined
7102 -- primitives internally generated by the frontend; however at this
7103 -- stage predefined primitives are still not fully decorated. As a
7104 -- minor optimization we skip here internally generated subprograms.
7105
7106 if (Ekind (Def_Id) /= E_Entry
7107 and then Ekind (Def_Id) /= E_Function
7108 and then Ekind (Def_Id) /= E_Procedure)
7109 or else not Comes_From_Source (Def_Id)
7110 then
7111 return;
7112 end if;
7113
7114 -- Search for the concurrent declaration since it contains the list
7115 -- of all implemented interfaces. In this case, the subprogram is
7116 -- declared within the scope of a protected or a task type.
7117
7118 if Present (Scope (Def_Id))
7119 and then Is_Concurrent_Type (Scope (Def_Id))
7120 and then not Is_Generic_Actual_Type (Scope (Def_Id))
7121 then
7122 Typ := Scope (Def_Id);
7123 In_Scope := True;
7124
7125 -- The enclosing scope is not a synchronized type and the subprogram
7126 -- has no formals
7127
7128 elsif No (First_Formal (Def_Id)) then
7129 return;
7130
7131 -- The subprogram has formals and hence it may be a primitive of a
7132 -- concurrent type
7133
7134 else
7135 Typ := Etype (First_Formal (Def_Id));
7136
7137 if Is_Access_Type (Typ) then
7138 Typ := Directly_Designated_Type (Typ);
7139 end if;
7140
7141 if Is_Concurrent_Type (Typ)
7142 and then not Is_Generic_Actual_Type (Typ)
7143 then
7144 In_Scope := False;
7145
7146 -- This case occurs when the concurrent type is declared within
7147 -- a generic unit. As a result the corresponding record has been
7148 -- built and used as the type of the first formal, we just have
7149 -- to retrieve the corresponding concurrent type.
7150
7151 elsif Is_Concurrent_Record_Type (Typ)
7152 and then Present (Corresponding_Concurrent_Type (Typ))
7153 then
7154 Typ := Corresponding_Concurrent_Type (Typ);
7155 In_Scope := False;
7156
7157 else
7158 return;
7159 end if;
7160 end if;
7161
7162 -- There is no overriding to check if is an inherited operation in a
7163 -- type derivation on for a generic actual.
7164
7165 Collect_Interfaces (Typ, Ifaces_List);
7166
7167 if Is_Empty_Elmt_List (Ifaces_List) then
7168 return;
7169 end if;
7170
7171 -- Determine whether entry or subprogram Def_Id overrides a primitive
7172 -- operation that belongs to one of the interfaces in Ifaces_List.
7173
7174 declare
7175 Candidate : Entity_Id := Empty;
7176 Hom : Entity_Id := Empty;
7177 Iface_Typ : Entity_Id;
7178 Subp : Entity_Id := Empty;
7179
7180 begin
7181 -- Traverse the homonym chain, looking at a potentially
7182 -- overridden subprogram that belongs to an implemented
7183 -- interface.
7184
7185 Hom := Current_Entity_In_Scope (Def_Id);
7186 while Present (Hom) loop
7187 Subp := Hom;
7188
7189 if Subp = Def_Id
7190 or else not Is_Overloadable (Subp)
7191 or else not Is_Primitive (Subp)
7192 or else not Is_Dispatching_Operation (Subp)
7193 or else not Present (Find_Dispatching_Type (Subp))
7194 or else not Is_Interface (Find_Dispatching_Type (Subp))
7195 then
7196 null;
7197
7198 -- Entries and procedures can override abstract or null
7199 -- interface procedures
7200
7201 elsif (Ekind (Def_Id) = E_Procedure
7202 or else Ekind (Def_Id) = E_Entry)
7203 and then Ekind (Subp) = E_Procedure
7204 and then Matches_Prefixed_View_Profile
7205 (Parameter_Specifications (Parent (Def_Id)),
7206 Parameter_Specifications (Parent (Subp)))
7207 then
7208 Candidate := Subp;
7209
7210 -- For an overridden subprogram Subp, check whether the mode
7211 -- of its first parameter is correct depending on the kind
7212 -- of synchronized type.
7213
7214 declare
7215 Formal : constant Node_Id := First_Formal (Candidate);
7216
7217 begin
7218 -- In order for an entry or a protected procedure to
7219 -- override, the first parameter of the overridden
7220 -- routine must be of mode "out", "in out" or
7221 -- access-to-variable.
7222
7223 if (Ekind (Candidate) = E_Entry
7224 or else Ekind (Candidate) = E_Procedure)
7225 and then Is_Protected_Type (Typ)
7226 and then Ekind (Formal) /= E_In_Out_Parameter
7227 and then Ekind (Formal) /= E_Out_Parameter
7228 and then Nkind (Parameter_Type (Parent (Formal)))
7229 /= N_Access_Definition
7230 then
7231 null;
7232
7233 -- All other cases are OK since a task entry or routine
7234 -- does not have a restriction on the mode of the first
7235 -- parameter of the overridden interface routine.
7236
7237 else
7238 Overridden_Subp := Candidate;
7239 return;
7240 end if;
7241 end;
7242
7243 -- Functions can override abstract interface functions
7244
7245 elsif Ekind (Def_Id) = E_Function
7246 and then Ekind (Subp) = E_Function
7247 and then Matches_Prefixed_View_Profile
7248 (Parameter_Specifications (Parent (Def_Id)),
7249 Parameter_Specifications (Parent (Subp)))
7250 and then Etype (Result_Definition (Parent (Def_Id))) =
7251 Etype (Result_Definition (Parent (Subp)))
7252 then
7253 Overridden_Subp := Subp;
7254 return;
7255 end if;
7256
7257 Hom := Homonym (Hom);
7258 end loop;
7259
7260 -- After examining all candidates for overriding, we are
7261 -- left with the best match which is a mode incompatible
7262 -- interface routine. Do not emit an error if the Expander
7263 -- is active since this error will be detected later on
7264 -- after all concurrent types are expanded and all wrappers
7265 -- are built. This check is meant for spec-only
7266 -- compilations.
7267
7268 if Present (Candidate)
7269 and then not Expander_Active
7270 then
7271 Iface_Typ :=
7272 Find_Parameter_Type (Parent (First_Formal (Candidate)));
7273
7274 -- Def_Id is primitive of a protected type, declared
7275 -- inside the type, and the candidate is primitive of a
7276 -- limited or synchronized interface.
7277
7278 if In_Scope
7279 and then Is_Protected_Type (Typ)
7280 and then
7281 (Is_Limited_Interface (Iface_Typ)
7282 or else Is_Protected_Interface (Iface_Typ)
7283 or else Is_Synchronized_Interface (Iface_Typ)
7284 or else Is_Task_Interface (Iface_Typ))
7285 then
7286 -- Must reword this message, comma before to in -gnatj
7287 -- mode ???
7288
7289 Error_Msg_NE
7290 ("first formal of & must be of mode `OUT`, `IN OUT`"
7291 & " or access-to-variable", Typ, Candidate);
7292 Error_Msg_N
7293 ("\to be overridden by protected procedure or entry "
7294 & "(RM 9.4(11.9/2))", Typ);
7295 end if;
7296 end if;
7297
7298 Overridden_Subp := Candidate;
7299 return;
7300 end;
7301 end Check_Synchronized_Overriding;
7302
7303 ----------------------------
7304 -- Is_Private_Declaration --
7305 ----------------------------
7306
7307 function Is_Private_Declaration (E : Entity_Id) return Boolean is
7308 Priv_Decls : List_Id;
7309 Decl : constant Node_Id := Unit_Declaration_Node (E);
7310
7311 begin
7312 if Is_Package_Or_Generic_Package (Current_Scope)
7313 and then In_Private_Part (Current_Scope)
7314 then
7315 Priv_Decls :=
7316 Private_Declarations (
7317 Specification (Unit_Declaration_Node (Current_Scope)));
7318
7319 return In_Package_Body (Current_Scope)
7320 or else
7321 (Is_List_Member (Decl)
7322 and then List_Containing (Decl) = Priv_Decls)
7323 or else (Nkind (Parent (Decl)) = N_Package_Specification
7324 and then not
7325 Is_Compilation_Unit
7326 (Defining_Entity (Parent (Decl)))
7327 and then List_Containing (Parent (Parent (Decl)))
7328 = Priv_Decls);
7329 else
7330 return False;
7331 end if;
7332 end Is_Private_Declaration;
7333
7334 --------------------------
7335 -- Is_Overriding_Alias --
7336 --------------------------
7337
7338 function Is_Overriding_Alias
7339 (Old_E : Entity_Id;
7340 New_E : Entity_Id) return Boolean
7341 is
7342 AO : constant Entity_Id := Alias (Old_E);
7343 AN : constant Entity_Id := Alias (New_E);
7344
7345 begin
7346 return Scope (AO) /= Scope (AN)
7347 or else No (DTC_Entity (AO))
7348 or else No (DTC_Entity (AN))
7349 or else DT_Position (AO) = DT_Position (AN);
7350 end Is_Overriding_Alias;
7351
7352 -- Start of processing for New_Overloaded_Entity
7353
7354 begin
7355 -- We need to look for an entity that S may override. This must be a
7356 -- homonym in the current scope, so we look for the first homonym of
7357 -- S in the current scope as the starting point for the search.
7358
7359 E := Current_Entity_In_Scope (S);
7360
7361 -- If there is no homonym then this is definitely not overriding
7362
7363 if No (E) then
7364 Enter_Overloaded_Entity (S);
7365 Check_Dispatching_Operation (S, Empty);
7366 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
7367
7368 -- If subprogram has an explicit declaration, check whether it
7369 -- has an overriding indicator.
7370
7371 if Comes_From_Source (S) then
7372 Check_Synchronized_Overriding (S, Overridden_Subp);
7373 Check_Overriding_Indicator
7374 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
7375 end if;
7376
7377 -- If there is a homonym that is not overloadable, then we have an
7378 -- error, except for the special cases checked explicitly below.
7379
7380 elsif not Is_Overloadable (E) then
7381
7382 -- Check for spurious conflict produced by a subprogram that has the
7383 -- same name as that of the enclosing generic package. The conflict
7384 -- occurs within an instance, between the subprogram and the renaming
7385 -- declaration for the package. After the subprogram, the package
7386 -- renaming declaration becomes hidden.
7387
7388 if Ekind (E) = E_Package
7389 and then Present (Renamed_Object (E))
7390 and then Renamed_Object (E) = Current_Scope
7391 and then Nkind (Parent (Renamed_Object (E))) =
7392 N_Package_Specification
7393 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
7394 then
7395 Set_Is_Hidden (E);
7396 Set_Is_Immediately_Visible (E, False);
7397 Enter_Overloaded_Entity (S);
7398 Set_Homonym (S, Homonym (E));
7399 Check_Dispatching_Operation (S, Empty);
7400 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
7401
7402 -- If the subprogram is implicit it is hidden by the previous
7403 -- declaration. However if it is dispatching, it must appear in the
7404 -- dispatch table anyway, because it can be dispatched to even if it
7405 -- cannot be called directly.
7406
7407 elsif Present (Alias (S))
7408 and then not Comes_From_Source (S)
7409 then
7410 Set_Scope (S, Current_Scope);
7411
7412 if Is_Dispatching_Operation (Alias (S)) then
7413 Check_Dispatching_Operation (S, Empty);
7414 end if;
7415
7416 return;
7417
7418 else
7419 Error_Msg_Sloc := Sloc (E);
7420
7421 -- Generate message, with useful additional warning if in generic
7422
7423 if Is_Generic_Unit (E) then
7424 Error_Msg_N ("previous generic unit cannot be overloaded", S);
7425 Error_Msg_N ("\& conflicts with declaration#", S);
7426 else
7427 Error_Msg_N ("& conflicts with declaration#", S);
7428 end if;
7429
7430 return;
7431 end if;
7432
7433 -- E exists and is overloadable
7434
7435 else
7436 -- Ada 2005 (AI-251): Derivation of abstract interface primitives
7437 -- need no check against the homonym chain. They are directly added
7438 -- to the list of primitive operations of Derived_Type.
7439
7440 if Ada_Version >= Ada_05
7441 and then Present (Derived_Type)
7442 and then Is_Dispatching_Operation (Alias (S))
7443 and then Present (Find_Dispatching_Type (Alias (S)))
7444 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
7445 then
7446 goto Add_New_Entity;
7447 end if;
7448
7449 Check_Synchronized_Overriding (S, Overridden_Subp);
7450
7451 -- Loop through E and its homonyms to determine if any of them is
7452 -- the candidate for overriding by S.
7453
7454 while Present (E) loop
7455
7456 -- Definitely not interesting if not in the current scope
7457
7458 if Scope (E) /= Current_Scope then
7459 null;
7460
7461 -- Check if we have type conformance
7462
7463 elsif Type_Conformant (E, S) then
7464
7465 -- If the old and new entities have the same profile and one
7466 -- is not the body of the other, then this is an error, unless
7467 -- one of them is implicitly declared.
7468
7469 -- There are some cases when both can be implicit, for example
7470 -- when both a literal and a function that overrides it are
7471 -- inherited in a derivation, or when an inherited operation
7472 -- of a tagged full type overrides the inherited operation of
7473 -- a private extension. Ada 83 had a special rule for the
7474 -- literal case. In Ada95, the later implicit operation hides
7475 -- the former, and the literal is always the former. In the
7476 -- odd case where both are derived operations declared at the
7477 -- same point, both operations should be declared, and in that
7478 -- case we bypass the following test and proceed to the next
7479 -- part. This can only occur for certain obscure cases in
7480 -- instances, when an operation on a type derived from a formal
7481 -- private type does not override a homograph inherited from
7482 -- the actual. In subsequent derivations of such a type, the
7483 -- DT positions of these operations remain distinct, if they
7484 -- have been set.
7485
7486 if Present (Alias (S))
7487 and then (No (Alias (E))
7488 or else Comes_From_Source (E)
7489 or else Is_Abstract_Subprogram (S)
7490 or else
7491 (Is_Dispatching_Operation (E)
7492 and then Is_Overriding_Alias (E, S)))
7493 and then Ekind (E) /= E_Enumeration_Literal
7494 then
7495 -- When an derived operation is overloaded it may be due to
7496 -- the fact that the full view of a private extension
7497 -- re-inherits. It has to be dealt with.
7498
7499 if Is_Package_Or_Generic_Package (Current_Scope)
7500 and then In_Private_Part (Current_Scope)
7501 then
7502 Check_Operation_From_Private_View (S, E);
7503 end if;
7504
7505 -- In any case the implicit operation remains hidden by
7506 -- the existing declaration, which is overriding.
7507
7508 Set_Is_Overriding_Operation (E);
7509
7510 if Comes_From_Source (E) then
7511 Check_Overriding_Indicator (E, S, Is_Primitive => False);
7512
7513 -- Indicate that E overrides the operation from which
7514 -- S is inherited.
7515
7516 if Present (Alias (S)) then
7517 Set_Overridden_Operation (E, Alias (S));
7518 else
7519 Set_Overridden_Operation (E, S);
7520 end if;
7521 end if;
7522
7523 return;
7524
7525 -- Within an instance, the renaming declarations for actual
7526 -- subprograms may become ambiguous, but they do not hide each
7527 -- other.
7528
7529 elsif Ekind (E) /= E_Entry
7530 and then not Comes_From_Source (E)
7531 and then not Is_Generic_Instance (E)
7532 and then (Present (Alias (E))
7533 or else Is_Intrinsic_Subprogram (E))
7534 and then (not In_Instance
7535 or else No (Parent (E))
7536 or else Nkind (Unit_Declaration_Node (E)) /=
7537 N_Subprogram_Renaming_Declaration)
7538 then
7539 -- A subprogram child unit is not allowed to override an
7540 -- inherited subprogram (10.1.1(20)).
7541
7542 if Is_Child_Unit (S) then
7543 Error_Msg_N
7544 ("child unit overrides inherited subprogram in parent",
7545 S);
7546 return;
7547 end if;
7548
7549 if Is_Non_Overriding_Operation (E, S) then
7550 Enter_Overloaded_Entity (S);
7551
7552 if No (Derived_Type)
7553 or else Is_Tagged_Type (Derived_Type)
7554 then
7555 Check_Dispatching_Operation (S, Empty);
7556 end if;
7557
7558 return;
7559 end if;
7560
7561 -- E is a derived operation or an internal operator which
7562 -- is being overridden. Remove E from further visibility.
7563 -- Furthermore, if E is a dispatching operation, it must be
7564 -- replaced in the list of primitive operations of its type
7565 -- (see Override_Dispatching_Operation).
7566
7567 Overridden_Subp := E;
7568
7569 declare
7570 Prev : Entity_Id;
7571
7572 begin
7573 Prev := First_Entity (Current_Scope);
7574 while Present (Prev)
7575 and then Next_Entity (Prev) /= E
7576 loop
7577 Next_Entity (Prev);
7578 end loop;
7579
7580 -- It is possible for E to be in the current scope and
7581 -- yet not in the entity chain. This can only occur in a
7582 -- generic context where E is an implicit concatenation
7583 -- in the formal part, because in a generic body the
7584 -- entity chain starts with the formals.
7585
7586 pragma Assert
7587 (Present (Prev) or else Chars (E) = Name_Op_Concat);
7588
7589 -- E must be removed both from the entity_list of the
7590 -- current scope, and from the visibility chain
7591
7592 if Debug_Flag_E then
7593 Write_Str ("Override implicit operation ");
7594 Write_Int (Int (E));
7595 Write_Eol;
7596 end if;
7597
7598 -- If E is a predefined concatenation, it stands for four
7599 -- different operations. As a result, a single explicit
7600 -- declaration does not hide it. In a possible ambiguous
7601 -- situation, Disambiguate chooses the user-defined op,
7602 -- so it is correct to retain the previous internal one.
7603
7604 if Chars (E) /= Name_Op_Concat
7605 or else Ekind (E) /= E_Operator
7606 then
7607 -- For nondispatching derived operations that are
7608 -- overridden by a subprogram declared in the private
7609 -- part of a package, we retain the derived subprogram
7610 -- but mark it as not immediately visible. If the
7611 -- derived operation was declared in the visible part
7612 -- then this ensures that it will still be visible
7613 -- outside the package with the proper signature
7614 -- (calls from outside must also be directed to this
7615 -- version rather than the overriding one, unlike the
7616 -- dispatching case). Calls from inside the package
7617 -- will still resolve to the overriding subprogram
7618 -- since the derived one is marked as not visible
7619 -- within the package.
7620
7621 -- If the private operation is dispatching, we achieve
7622 -- the overriding by keeping the implicit operation
7623 -- but setting its alias to be the overriding one. In
7624 -- this fashion the proper body is executed in all
7625 -- cases, but the original signature is used outside
7626 -- of the package.
7627
7628 -- If the overriding is not in the private part, we
7629 -- remove the implicit operation altogether.
7630
7631 if Is_Private_Declaration (S) then
7632 if not Is_Dispatching_Operation (E) then
7633 Set_Is_Immediately_Visible (E, False);
7634 else
7635 -- Work done in Override_Dispatching_Operation,
7636 -- so nothing else need to be done here.
7637
7638 null;
7639 end if;
7640
7641 else
7642 -- Find predecessor of E in Homonym chain
7643
7644 if E = Current_Entity (E) then
7645 Prev_Vis := Empty;
7646 else
7647 Prev_Vis := Current_Entity (E);
7648 while Homonym (Prev_Vis) /= E loop
7649 Prev_Vis := Homonym (Prev_Vis);
7650 end loop;
7651 end if;
7652
7653 if Prev_Vis /= Empty then
7654
7655 -- Skip E in the visibility chain
7656
7657 Set_Homonym (Prev_Vis, Homonym (E));
7658
7659 else
7660 Set_Name_Entity_Id (Chars (E), Homonym (E));
7661 end if;
7662
7663 Set_Next_Entity (Prev, Next_Entity (E));
7664
7665 if No (Next_Entity (Prev)) then
7666 Set_Last_Entity (Current_Scope, Prev);
7667 end if;
7668
7669 end if;
7670 end if;
7671
7672 Enter_Overloaded_Entity (S);
7673 Set_Is_Overriding_Operation (S);
7674 Check_Overriding_Indicator (S, E, Is_Primitive => True);
7675
7676 -- Indicate that S overrides the operation from which
7677 -- E is inherited.
7678
7679 if Comes_From_Source (S) then
7680 if Present (Alias (E)) then
7681 Set_Overridden_Operation (S, Alias (E));
7682 else
7683 Set_Overridden_Operation (S, E);
7684 end if;
7685 end if;
7686
7687 if Is_Dispatching_Operation (E) then
7688
7689 -- An overriding dispatching subprogram inherits the
7690 -- convention of the overridden subprogram (by
7691 -- AI-117).
7692
7693 Set_Convention (S, Convention (E));
7694 Check_Dispatching_Operation (S, E);
7695
7696 else
7697 Check_Dispatching_Operation (S, Empty);
7698 end if;
7699
7700 Check_For_Primitive_Subprogram
7701 (Is_Primitive_Subp, Is_Overriding => True);
7702 goto Check_Inequality;
7703 end;
7704
7705 -- Apparent redeclarations in instances can occur when two
7706 -- formal types get the same actual type. The subprograms in
7707 -- in the instance are legal, even if not callable from the
7708 -- outside. Calls from within are disambiguated elsewhere.
7709 -- For dispatching operations in the visible part, the usual
7710 -- rules apply, and operations with the same profile are not
7711 -- legal (B830001).
7712
7713 elsif (In_Instance_Visible_Part
7714 and then not Is_Dispatching_Operation (E))
7715 or else In_Instance_Not_Visible
7716 then
7717 null;
7718
7719 -- Here we have a real error (identical profile)
7720
7721 else
7722 Error_Msg_Sloc := Sloc (E);
7723
7724 -- Avoid cascaded errors if the entity appears in
7725 -- subsequent calls.
7726
7727 Set_Scope (S, Current_Scope);
7728
7729 -- Generate error, with extra useful warning for the case
7730 -- of a generic instance with no completion.
7731
7732 if Is_Generic_Instance (S)
7733 and then not Has_Completion (E)
7734 then
7735 Error_Msg_N
7736 ("instantiation cannot provide body for&", S);
7737 Error_Msg_N ("\& conflicts with declaration#", S);
7738 else
7739 Error_Msg_N ("& conflicts with declaration#", S);
7740 end if;
7741
7742 return;
7743 end if;
7744
7745 else
7746 -- If one subprogram has an access parameter and the other
7747 -- a parameter of an access type, calls to either might be
7748 -- ambiguous. Verify that parameters match except for the
7749 -- access parameter.
7750
7751 if May_Hide_Profile then
7752 declare
7753 F1 : Entity_Id;
7754 F2 : Entity_Id;
7755
7756 begin
7757 F1 := First_Formal (S);
7758 F2 := First_Formal (E);
7759 while Present (F1) and then Present (F2) loop
7760 if Is_Access_Type (Etype (F1)) then
7761 if not Is_Access_Type (Etype (F2))
7762 or else not Conforming_Types
7763 (Designated_Type (Etype (F1)),
7764 Designated_Type (Etype (F2)),
7765 Type_Conformant)
7766 then
7767 May_Hide_Profile := False;
7768 end if;
7769
7770 elsif
7771 not Conforming_Types
7772 (Etype (F1), Etype (F2), Type_Conformant)
7773 then
7774 May_Hide_Profile := False;
7775 end if;
7776
7777 Next_Formal (F1);
7778 Next_Formal (F2);
7779 end loop;
7780
7781 if May_Hide_Profile
7782 and then No (F1)
7783 and then No (F2)
7784 then
7785 Error_Msg_NE ("calls to& may be ambiguous?", S, S);
7786 end if;
7787 end;
7788 end if;
7789 end if;
7790
7791 E := Homonym (E);
7792 end loop;
7793
7794 <<Add_New_Entity>>
7795
7796 -- On exit, we know that S is a new entity
7797
7798 Enter_Overloaded_Entity (S);
7799 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
7800 Check_Overriding_Indicator
7801 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
7802
7803 -- If S is a derived operation for an untagged type then by
7804 -- definition it's not a dispatching operation (even if the parent
7805 -- operation was dispatching), so we don't call
7806 -- Check_Dispatching_Operation in that case.
7807
7808 if No (Derived_Type)
7809 or else Is_Tagged_Type (Derived_Type)
7810 then
7811 Check_Dispatching_Operation (S, Empty);
7812 end if;
7813 end if;
7814
7815 -- If this is a user-defined equality operator that is not a derived
7816 -- subprogram, create the corresponding inequality. If the operation is
7817 -- dispatching, the expansion is done elsewhere, and we do not create
7818 -- an explicit inequality operation.
7819
7820 <<Check_Inequality>>
7821 if Chars (S) = Name_Op_Eq
7822 and then Etype (S) = Standard_Boolean
7823 and then Present (Parent (S))
7824 and then not Is_Dispatching_Operation (S)
7825 then
7826 Make_Inequality_Operator (S);
7827 end if;
7828 end New_Overloaded_Entity;
7829
7830 ---------------------
7831 -- Process_Formals --
7832 ---------------------
7833
7834 procedure Process_Formals
7835 (T : List_Id;
7836 Related_Nod : Node_Id)
7837 is
7838 Param_Spec : Node_Id;
7839 Formal : Entity_Id;
7840 Formal_Type : Entity_Id;
7841 Default : Node_Id;
7842 Ptype : Entity_Id;
7843
7844 Num_Out_Params : Nat := 0;
7845 First_Out_Param : Entity_Id := Empty;
7846 -- Used for setting Is_Only_Out_Parameter
7847
7848 function Designates_From_With_Type (Typ : Entity_Id) return Boolean;
7849 -- Determine whether an access type designates a type coming from a
7850 -- limited view.
7851
7852 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
7853 -- Check whether the default has a class-wide type. After analysis the
7854 -- default has the type of the formal, so we must also check explicitly
7855 -- for an access attribute.
7856
7857 -------------------------------
7858 -- Designates_From_With_Type --
7859 -------------------------------
7860
7861 function Designates_From_With_Type (Typ : Entity_Id) return Boolean is
7862 Desig : Entity_Id := Typ;
7863
7864 begin
7865 if Is_Access_Type (Desig) then
7866 Desig := Directly_Designated_Type (Desig);
7867 end if;
7868
7869 if Is_Class_Wide_Type (Desig) then
7870 Desig := Root_Type (Desig);
7871 end if;
7872
7873 return
7874 Ekind (Desig) = E_Incomplete_Type
7875 and then From_With_Type (Desig);
7876 end Designates_From_With_Type;
7877
7878 ---------------------------
7879 -- Is_Class_Wide_Default --
7880 ---------------------------
7881
7882 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
7883 begin
7884 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
7885 or else (Nkind (D) = N_Attribute_Reference
7886 and then Attribute_Name (D) = Name_Access
7887 and then Is_Class_Wide_Type (Etype (Prefix (D))));
7888 end Is_Class_Wide_Default;
7889
7890 -- Start of processing for Process_Formals
7891
7892 begin
7893 -- In order to prevent premature use of the formals in the same formal
7894 -- part, the Ekind is left undefined until all default expressions are
7895 -- analyzed. The Ekind is established in a separate loop at the end.
7896
7897 Param_Spec := First (T);
7898 while Present (Param_Spec) loop
7899 Formal := Defining_Identifier (Param_Spec);
7900 Set_Never_Set_In_Source (Formal, True);
7901 Enter_Name (Formal);
7902
7903 -- Case of ordinary parameters
7904
7905 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
7906 Find_Type (Parameter_Type (Param_Spec));
7907 Ptype := Parameter_Type (Param_Spec);
7908
7909 if Ptype = Error then
7910 goto Continue;
7911 end if;
7912
7913 Formal_Type := Entity (Ptype);
7914
7915 if Is_Incomplete_Type (Formal_Type)
7916 or else
7917 (Is_Class_Wide_Type (Formal_Type)
7918 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
7919 then
7920 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
7921 -- primitive operations, as long as their completion is
7922 -- in the same declarative part. If in the private part
7923 -- this means that the type cannot be a Taft-amendment type.
7924 -- Check is done on package exit. For access to subprograms,
7925 -- the use is legal for Taft-amendment types.
7926
7927 if Is_Tagged_Type (Formal_Type) then
7928 if Ekind (Scope (Current_Scope)) = E_Package
7929 and then In_Private_Part (Scope (Current_Scope))
7930 and then not From_With_Type (Formal_Type)
7931 and then not Is_Class_Wide_Type (Formal_Type)
7932 then
7933 if not Nkind_In
7934 (Parent (T), N_Access_Function_Definition,
7935 N_Access_Procedure_Definition)
7936 then
7937 Append_Elmt
7938 (Current_Scope,
7939 Private_Dependents (Base_Type (Formal_Type)));
7940 end if;
7941 end if;
7942
7943 -- Special handling of Value_Type for CIL case
7944
7945 elsif Is_Value_Type (Formal_Type) then
7946 null;
7947
7948 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
7949 N_Access_Procedure_Definition)
7950 then
7951 Error_Msg_NE
7952 ("invalid use of incomplete type&",
7953 Param_Spec, Formal_Type);
7954
7955 -- Further checks on the legality of incomplete types
7956 -- in formal parts must be delayed until the freeze point
7957 -- of the enclosing subprogram or access to subprogram.
7958 end if;
7959
7960 elsif Ekind (Formal_Type) = E_Void then
7961 Error_Msg_NE ("premature use of&",
7962 Parameter_Type (Param_Spec), Formal_Type);
7963 end if;
7964
7965 -- Ada 2005 (AI-231): Create and decorate an internal subtype
7966 -- declaration corresponding to the null-excluding type of the
7967 -- formal in the enclosing scope. Finally, replace the parameter
7968 -- type of the formal with the internal subtype.
7969
7970 if Ada_Version >= Ada_05
7971 and then Null_Exclusion_Present (Param_Spec)
7972 then
7973 if not Is_Access_Type (Formal_Type) then
7974 Error_Msg_N
7975 ("`NOT NULL` allowed only for an access type", Param_Spec);
7976
7977 else
7978 if Can_Never_Be_Null (Formal_Type)
7979 and then Comes_From_Source (Related_Nod)
7980 then
7981 Error_Msg_NE
7982 ("`NOT NULL` not allowed (& already excludes null)",
7983 Param_Spec,
7984 Formal_Type);
7985 end if;
7986
7987 Formal_Type :=
7988 Create_Null_Excluding_Itype
7989 (T => Formal_Type,
7990 Related_Nod => Related_Nod,
7991 Scope_Id => Scope (Current_Scope));
7992
7993 -- If the designated type of the itype is an itype we
7994 -- decorate it with the Has_Delayed_Freeze attribute to
7995 -- avoid problems with the backend.
7996
7997 -- Example:
7998 -- type T is access procedure;
7999 -- procedure Op (O : not null T);
8000
8001 if Is_Itype (Directly_Designated_Type (Formal_Type)) then
8002 Set_Has_Delayed_Freeze (Formal_Type);
8003 end if;
8004 end if;
8005 end if;
8006
8007 -- An access formal type
8008
8009 else
8010 Formal_Type :=
8011 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
8012
8013 -- No need to continue if we already notified errors
8014
8015 if not Present (Formal_Type) then
8016 return;
8017 end if;
8018
8019 -- Ada 2005 (AI-254)
8020
8021 declare
8022 AD : constant Node_Id :=
8023 Access_To_Subprogram_Definition
8024 (Parameter_Type (Param_Spec));
8025 begin
8026 if Present (AD) and then Protected_Present (AD) then
8027 Formal_Type :=
8028 Replace_Anonymous_Access_To_Protected_Subprogram
8029 (Param_Spec);
8030 end if;
8031 end;
8032 end if;
8033
8034 Set_Etype (Formal, Formal_Type);
8035 Default := Expression (Param_Spec);
8036
8037 if Present (Default) then
8038 if Out_Present (Param_Spec) then
8039 Error_Msg_N
8040 ("default initialization only allowed for IN parameters",
8041 Param_Spec);
8042 end if;
8043
8044 -- Do the special preanalysis of the expression (see section on
8045 -- "Handling of Default Expressions" in the spec of package Sem).
8046
8047 Preanalyze_Spec_Expression (Default, Formal_Type);
8048
8049 -- An access to constant cannot be the default for
8050 -- an access parameter that is an access to variable.
8051
8052 if Ekind (Formal_Type) = E_Anonymous_Access_Type
8053 and then not Is_Access_Constant (Formal_Type)
8054 and then Is_Access_Type (Etype (Default))
8055 and then Is_Access_Constant (Etype (Default))
8056 then
8057 Error_Msg_N
8058 ("formal that is access to variable cannot be initialized " &
8059 "with an access-to-constant expression", Default);
8060 end if;
8061
8062 -- Check that the designated type of an access parameter's default
8063 -- is not a class-wide type unless the parameter's designated type
8064 -- is also class-wide.
8065
8066 if Ekind (Formal_Type) = E_Anonymous_Access_Type
8067 and then not Designates_From_With_Type (Formal_Type)
8068 and then Is_Class_Wide_Default (Default)
8069 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
8070 then
8071 Error_Msg_N
8072 ("access to class-wide expression not allowed here", Default);
8073 end if;
8074
8075 -- Check incorrect use of dynamically tagged expressions
8076
8077 if Is_Tagged_Type (Formal_Type) then
8078 Check_Dynamically_Tagged_Expression
8079 (Expr => Default,
8080 Typ => Formal_Type,
8081 Related_Nod => Default);
8082 end if;
8083 end if;
8084
8085 -- Ada 2005 (AI-231): Static checks
8086
8087 if Ada_Version >= Ada_05
8088 and then Is_Access_Type (Etype (Formal))
8089 and then Can_Never_Be_Null (Etype (Formal))
8090 then
8091 Null_Exclusion_Static_Checks (Param_Spec);
8092 end if;
8093
8094 <<Continue>>
8095 Next (Param_Spec);
8096 end loop;
8097
8098 -- If this is the formal part of a function specification, analyze the
8099 -- subtype mark in the context where the formals are visible but not
8100 -- yet usable, and may hide outer homographs.
8101
8102 if Nkind (Related_Nod) = N_Function_Specification then
8103 Analyze_Return_Type (Related_Nod);
8104 end if;
8105
8106 -- Now set the kind (mode) of each formal
8107
8108 Param_Spec := First (T);
8109
8110 while Present (Param_Spec) loop
8111 Formal := Defining_Identifier (Param_Spec);
8112 Set_Formal_Mode (Formal);
8113
8114 if Ekind (Formal) = E_In_Parameter then
8115 Set_Default_Value (Formal, Expression (Param_Spec));
8116
8117 if Present (Expression (Param_Spec)) then
8118 Default := Expression (Param_Spec);
8119
8120 if Is_Scalar_Type (Etype (Default)) then
8121 if Nkind
8122 (Parameter_Type (Param_Spec)) /= N_Access_Definition
8123 then
8124 Formal_Type := Entity (Parameter_Type (Param_Spec));
8125
8126 else
8127 Formal_Type := Access_Definition
8128 (Related_Nod, Parameter_Type (Param_Spec));
8129 end if;
8130
8131 Apply_Scalar_Range_Check (Default, Formal_Type);
8132 end if;
8133 end if;
8134
8135 elsif Ekind (Formal) = E_Out_Parameter then
8136 Num_Out_Params := Num_Out_Params + 1;
8137
8138 if Num_Out_Params = 1 then
8139 First_Out_Param := Formal;
8140 end if;
8141
8142 elsif Ekind (Formal) = E_In_Out_Parameter then
8143 Num_Out_Params := Num_Out_Params + 1;
8144 end if;
8145
8146 Next (Param_Spec);
8147 end loop;
8148
8149 if Present (First_Out_Param) and then Num_Out_Params = 1 then
8150 Set_Is_Only_Out_Parameter (First_Out_Param);
8151 end if;
8152 end Process_Formals;
8153
8154 ------------------
8155 -- Process_PPCs --
8156 ------------------
8157
8158 procedure Process_PPCs
8159 (N : Node_Id;
8160 Spec_Id : Entity_Id;
8161 Body_Id : Entity_Id)
8162 is
8163 Loc : constant Source_Ptr := Sloc (N);
8164 Prag : Node_Id;
8165 Plist : List_Id := No_List;
8166 Subp : Entity_Id;
8167 Parms : List_Id;
8168
8169 function Grab_PPC (Nam : Name_Id) return Node_Id;
8170 -- Prag contains an analyzed precondition or postcondition pragma.
8171 -- This function copies the pragma, changes it to the corresponding
8172 -- Check pragma and returns the Check pragma as the result. The
8173 -- argument Nam is either Name_Precondition or Name_Postcondition.
8174
8175 --------------
8176 -- Grab_PPC --
8177 --------------
8178
8179 function Grab_PPC (Nam : Name_Id) return Node_Id is
8180 CP : constant Node_Id := New_Copy_Tree (Prag);
8181
8182 begin
8183 -- Set Analyzed to false, since we want to reanalyze the check
8184 -- procedure. Note that it is only at the outer level that we
8185 -- do this fiddling, for the spec cases, the already preanalyzed
8186 -- parameters are not affected.
8187
8188 -- For a postcondition pragma within a generic, preserve the pragma
8189 -- for later expansion.
8190
8191 Set_Analyzed (CP, False);
8192
8193 if Nam = Name_Postcondition
8194 and then not Expander_Active
8195 then
8196 return CP;
8197 end if;
8198
8199 -- Change pragma into corresponding pragma Check
8200
8201 Prepend_To (Pragma_Argument_Associations (CP),
8202 Make_Pragma_Argument_Association (Sloc (Prag),
8203 Expression =>
8204 Make_Identifier (Loc,
8205 Chars => Nam)));
8206 Set_Pragma_Identifier (CP,
8207 Make_Identifier (Sloc (Prag),
8208 Chars => Name_Check));
8209
8210 return CP;
8211 end Grab_PPC;
8212
8213 -- Start of processing for Process_PPCs
8214
8215 begin
8216 -- Nothing to do if we are not generating code
8217
8218 if Operating_Mode /= Generate_Code then
8219 return;
8220 end if;
8221
8222 -- Grab preconditions from spec
8223
8224 if Present (Spec_Id) then
8225
8226 -- Loop through PPC pragmas from spec. Note that preconditions from
8227 -- the body will be analyzed and converted when we scan the body
8228 -- declarations below.
8229
8230 Prag := Spec_PPC_List (Spec_Id);
8231 while Present (Prag) loop
8232 if Pragma_Name (Prag) = Name_Precondition
8233 and then PPC_Enabled (Prag)
8234 then
8235 -- Add pragma Check at the start of the declarations of N.
8236 -- Note that this processing reverses the order of the list,
8237 -- which is what we want since new entries were chained to
8238 -- the head of the list.
8239
8240 Prepend (Grab_PPC (Name_Precondition), Declarations (N));
8241 end if;
8242
8243 Prag := Next_Pragma (Prag);
8244 end loop;
8245 end if;
8246
8247 -- Build postconditions procedure if needed and prepend the following
8248 -- declaration to the start of the declarations for the subprogram.
8249
8250 -- procedure _postconditions [(_Result : resulttype)] is
8251 -- begin
8252 -- pragma Check (Postcondition, condition [,message]);
8253 -- pragma Check (Postcondition, condition [,message]);
8254 -- ...
8255 -- end;
8256
8257 -- First we deal with the postconditions in the body
8258
8259 if Is_Non_Empty_List (Declarations (N)) then
8260
8261 -- Loop through declarations
8262
8263 Prag := First (Declarations (N));
8264 while Present (Prag) loop
8265 if Nkind (Prag) = N_Pragma then
8266
8267 -- If pragma, capture if enabled postcondition, else ignore
8268
8269 if Pragma_Name (Prag) = Name_Postcondition
8270 and then Check_Enabled (Name_Postcondition)
8271 then
8272 if Plist = No_List then
8273 Plist := Empty_List;
8274 end if;
8275
8276 Analyze (Prag);
8277
8278 -- If expansion is disabled, as in a generic unit,
8279 -- save pragma for later expansion.
8280
8281 if not Expander_Active then
8282 Prepend (Grab_PPC (Name_Postcondition), Declarations (N));
8283 else
8284 Append (Grab_PPC (Name_Postcondition), Plist);
8285 end if;
8286 end if;
8287
8288 Next (Prag);
8289
8290 -- Not a pragma, if comes from source, then end scan
8291
8292 elsif Comes_From_Source (Prag) then
8293 exit;
8294
8295 -- Skip stuff not coming from source
8296
8297 else
8298 Next (Prag);
8299 end if;
8300 end loop;
8301 end if;
8302
8303 -- Now deal with any postconditions from the spec
8304
8305 if Present (Spec_Id) then
8306
8307 -- Loop through PPC pragmas from spec
8308
8309 Prag := Spec_PPC_List (Spec_Id);
8310 while Present (Prag) loop
8311 if Pragma_Name (Prag) = Name_Postcondition
8312 and then PPC_Enabled (Prag)
8313 then
8314 if Plist = No_List then
8315 Plist := Empty_List;
8316 end if;
8317
8318 if not Expander_Active then
8319 Prepend (Grab_PPC (Name_Postcondition), Declarations (N));
8320 else
8321 Append (Grab_PPC (Name_Postcondition), Plist);
8322 end if;
8323 end if;
8324
8325 Prag := Next_Pragma (Prag);
8326 end loop;
8327 end if;
8328
8329 -- If we had any postconditions and expansion is enabled, build
8330 -- the _Postconditions procedure.
8331
8332 if Present (Plist)
8333 and then Expander_Active
8334 then
8335 Subp := Defining_Entity (N);
8336
8337 if Etype (Subp) /= Standard_Void_Type then
8338 Parms := New_List (
8339 Make_Parameter_Specification (Loc,
8340 Defining_Identifier =>
8341 Make_Defining_Identifier (Loc,
8342 Chars => Name_uResult),
8343 Parameter_Type => New_Occurrence_Of (Etype (Subp), Loc)));
8344 else
8345 Parms := No_List;
8346 end if;
8347
8348 declare
8349 Post_Proc : constant Entity_Id :=
8350 Make_Defining_Identifier (Loc,
8351 Chars => Name_uPostconditions);
8352 -- The entity for the _Postconditions procedure
8353 begin
8354 Prepend_To (Declarations (N),
8355 Make_Subprogram_Body (Loc,
8356 Specification =>
8357 Make_Procedure_Specification (Loc,
8358 Defining_Unit_Name => Post_Proc,
8359 Parameter_Specifications => Parms),
8360
8361 Declarations => Empty_List,
8362
8363 Handled_Statement_Sequence =>
8364 Make_Handled_Sequence_Of_Statements (Loc,
8365 Statements => Plist)));
8366
8367 -- If this is a procedure, set the Postcondition_Proc attribute
8368
8369 if Etype (Subp) = Standard_Void_Type then
8370 Set_Postcondition_Proc (Spec_Id, Post_Proc);
8371 end if;
8372 end;
8373
8374 if Present (Spec_Id) then
8375 Set_Has_Postconditions (Spec_Id);
8376 else
8377 Set_Has_Postconditions (Body_Id);
8378 end if;
8379 end if;
8380 end Process_PPCs;
8381
8382 ----------------------------
8383 -- Reference_Body_Formals --
8384 ----------------------------
8385
8386 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
8387 Fs : Entity_Id;
8388 Fb : Entity_Id;
8389
8390 begin
8391 if Error_Posted (Spec) then
8392 return;
8393 end if;
8394
8395 -- Iterate over both lists. They may be of different lengths if the two
8396 -- specs are not conformant.
8397
8398 Fs := First_Formal (Spec);
8399 Fb := First_Formal (Bod);
8400 while Present (Fs) and then Present (Fb) loop
8401 Generate_Reference (Fs, Fb, 'b');
8402
8403 if Style_Check then
8404 Style.Check_Identifier (Fb, Fs);
8405 end if;
8406
8407 Set_Spec_Entity (Fb, Fs);
8408 Set_Referenced (Fs, False);
8409 Next_Formal (Fs);
8410 Next_Formal (Fb);
8411 end loop;
8412 end Reference_Body_Formals;
8413
8414 -------------------------
8415 -- Set_Actual_Subtypes --
8416 -------------------------
8417
8418 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
8419 Loc : constant Source_Ptr := Sloc (N);
8420 Decl : Node_Id;
8421 Formal : Entity_Id;
8422 T : Entity_Id;
8423 First_Stmt : Node_Id := Empty;
8424 AS_Needed : Boolean;
8425
8426 begin
8427 -- If this is an empty initialization procedure, no need to create
8428 -- actual subtypes (small optimization).
8429
8430 if Ekind (Subp) = E_Procedure
8431 and then Is_Null_Init_Proc (Subp)
8432 then
8433 return;
8434 end if;
8435
8436 Formal := First_Formal (Subp);
8437 while Present (Formal) loop
8438 T := Etype (Formal);
8439
8440 -- We never need an actual subtype for a constrained formal
8441
8442 if Is_Constrained (T) then
8443 AS_Needed := False;
8444
8445 -- If we have unknown discriminants, then we do not need an actual
8446 -- subtype, or more accurately we cannot figure it out! Note that
8447 -- all class-wide types have unknown discriminants.
8448
8449 elsif Has_Unknown_Discriminants (T) then
8450 AS_Needed := False;
8451
8452 -- At this stage we have an unconstrained type that may need an
8453 -- actual subtype. For sure the actual subtype is needed if we have
8454 -- an unconstrained array type.
8455
8456 elsif Is_Array_Type (T) then
8457 AS_Needed := True;
8458
8459 -- The only other case needing an actual subtype is an unconstrained
8460 -- record type which is an IN parameter (we cannot generate actual
8461 -- subtypes for the OUT or IN OUT case, since an assignment can
8462 -- change the discriminant values. However we exclude the case of
8463 -- initialization procedures, since discriminants are handled very
8464 -- specially in this context, see the section entitled "Handling of
8465 -- Discriminants" in Einfo.
8466
8467 -- We also exclude the case of Discrim_SO_Functions (functions used
8468 -- in front end layout mode for size/offset values), since in such
8469 -- functions only discriminants are referenced, and not only are such
8470 -- subtypes not needed, but they cannot always be generated, because
8471 -- of order of elaboration issues.
8472
8473 elsif Is_Record_Type (T)
8474 and then Ekind (Formal) = E_In_Parameter
8475 and then Chars (Formal) /= Name_uInit
8476 and then not Is_Unchecked_Union (T)
8477 and then not Is_Discrim_SO_Function (Subp)
8478 then
8479 AS_Needed := True;
8480
8481 -- All other cases do not need an actual subtype
8482
8483 else
8484 AS_Needed := False;
8485 end if;
8486
8487 -- Generate actual subtypes for unconstrained arrays and
8488 -- unconstrained discriminated records.
8489
8490 if AS_Needed then
8491 if Nkind (N) = N_Accept_Statement then
8492
8493 -- If expansion is active, The formal is replaced by a local
8494 -- variable that renames the corresponding entry of the
8495 -- parameter block, and it is this local variable that may
8496 -- require an actual subtype.
8497
8498 if Expander_Active then
8499 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
8500 else
8501 Decl := Build_Actual_Subtype (T, Formal);
8502 end if;
8503
8504 if Present (Handled_Statement_Sequence (N)) then
8505 First_Stmt :=
8506 First (Statements (Handled_Statement_Sequence (N)));
8507 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
8508 Mark_Rewrite_Insertion (Decl);
8509 else
8510 -- If the accept statement has no body, there will be no
8511 -- reference to the actuals, so no need to compute actual
8512 -- subtypes.
8513
8514 return;
8515 end if;
8516
8517 else
8518 Decl := Build_Actual_Subtype (T, Formal);
8519 Prepend (Decl, Declarations (N));
8520 Mark_Rewrite_Insertion (Decl);
8521 end if;
8522
8523 -- The declaration uses the bounds of an existing object, and
8524 -- therefore needs no constraint checks.
8525
8526 Analyze (Decl, Suppress => All_Checks);
8527
8528 -- We need to freeze manually the generated type when it is
8529 -- inserted anywhere else than in a declarative part.
8530
8531 if Present (First_Stmt) then
8532 Insert_List_Before_And_Analyze (First_Stmt,
8533 Freeze_Entity (Defining_Identifier (Decl), Loc));
8534 end if;
8535
8536 if Nkind (N) = N_Accept_Statement
8537 and then Expander_Active
8538 then
8539 Set_Actual_Subtype (Renamed_Object (Formal),
8540 Defining_Identifier (Decl));
8541 else
8542 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
8543 end if;
8544 end if;
8545
8546 Next_Formal (Formal);
8547 end loop;
8548 end Set_Actual_Subtypes;
8549
8550 ---------------------
8551 -- Set_Formal_Mode --
8552 ---------------------
8553
8554 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
8555 Spec : constant Node_Id := Parent (Formal_Id);
8556
8557 begin
8558 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
8559 -- since we ensure that corresponding actuals are always valid at the
8560 -- point of the call.
8561
8562 if Out_Present (Spec) then
8563 if Ekind (Scope (Formal_Id)) = E_Function
8564 or else Ekind (Scope (Formal_Id)) = E_Generic_Function
8565 then
8566 Error_Msg_N ("functions can only have IN parameters", Spec);
8567 Set_Ekind (Formal_Id, E_In_Parameter);
8568
8569 elsif In_Present (Spec) then
8570 Set_Ekind (Formal_Id, E_In_Out_Parameter);
8571
8572 else
8573 Set_Ekind (Formal_Id, E_Out_Parameter);
8574 Set_Never_Set_In_Source (Formal_Id, True);
8575 Set_Is_True_Constant (Formal_Id, False);
8576 Set_Current_Value (Formal_Id, Empty);
8577 end if;
8578
8579 else
8580 Set_Ekind (Formal_Id, E_In_Parameter);
8581 end if;
8582
8583 -- Set Is_Known_Non_Null for access parameters since the language
8584 -- guarantees that access parameters are always non-null. We also set
8585 -- Can_Never_Be_Null, since there is no way to change the value.
8586
8587 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
8588
8589 -- Ada 2005 (AI-231): In Ada95, access parameters are always non-
8590 -- null; In Ada 2005, only if then null_exclusion is explicit.
8591
8592 if Ada_Version < Ada_05
8593 or else Can_Never_Be_Null (Etype (Formal_Id))
8594 then
8595 Set_Is_Known_Non_Null (Formal_Id);
8596 Set_Can_Never_Be_Null (Formal_Id);
8597 end if;
8598
8599 -- Ada 2005 (AI-231): Null-exclusion access subtype
8600
8601 elsif Is_Access_Type (Etype (Formal_Id))
8602 and then Can_Never_Be_Null (Etype (Formal_Id))
8603 then
8604 Set_Is_Known_Non_Null (Formal_Id);
8605 end if;
8606
8607 Set_Mechanism (Formal_Id, Default_Mechanism);
8608 Set_Formal_Validity (Formal_Id);
8609 end Set_Formal_Mode;
8610
8611 -------------------------
8612 -- Set_Formal_Validity --
8613 -------------------------
8614
8615 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
8616 begin
8617 -- If no validity checking, then we cannot assume anything about the
8618 -- validity of parameters, since we do not know there is any checking
8619 -- of the validity on the call side.
8620
8621 if not Validity_Checks_On then
8622 return;
8623
8624 -- If validity checking for parameters is enabled, this means we are
8625 -- not supposed to make any assumptions about argument values.
8626
8627 elsif Validity_Check_Parameters then
8628 return;
8629
8630 -- If we are checking in parameters, we will assume that the caller is
8631 -- also checking parameters, so we can assume the parameter is valid.
8632
8633 elsif Ekind (Formal_Id) = E_In_Parameter
8634 and then Validity_Check_In_Params
8635 then
8636 Set_Is_Known_Valid (Formal_Id, True);
8637
8638 -- Similar treatment for IN OUT parameters
8639
8640 elsif Ekind (Formal_Id) = E_In_Out_Parameter
8641 and then Validity_Check_In_Out_Params
8642 then
8643 Set_Is_Known_Valid (Formal_Id, True);
8644 end if;
8645 end Set_Formal_Validity;
8646
8647 ------------------------
8648 -- Subtype_Conformant --
8649 ------------------------
8650
8651 function Subtype_Conformant
8652 (New_Id : Entity_Id;
8653 Old_Id : Entity_Id;
8654 Skip_Controlling_Formals : Boolean := False) return Boolean
8655 is
8656 Result : Boolean;
8657 begin
8658 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
8659 Skip_Controlling_Formals => Skip_Controlling_Formals);
8660 return Result;
8661 end Subtype_Conformant;
8662
8663 ---------------------
8664 -- Type_Conformant --
8665 ---------------------
8666
8667 function Type_Conformant
8668 (New_Id : Entity_Id;
8669 Old_Id : Entity_Id;
8670 Skip_Controlling_Formals : Boolean := False) return Boolean
8671 is
8672 Result : Boolean;
8673 begin
8674 May_Hide_Profile := False;
8675
8676 Check_Conformance
8677 (New_Id, Old_Id, Type_Conformant, False, Result,
8678 Skip_Controlling_Formals => Skip_Controlling_Formals);
8679 return Result;
8680 end Type_Conformant;
8681
8682 -------------------------------
8683 -- Valid_Operator_Definition --
8684 -------------------------------
8685
8686 procedure Valid_Operator_Definition (Designator : Entity_Id) is
8687 N : Integer := 0;
8688 F : Entity_Id;
8689 Id : constant Name_Id := Chars (Designator);
8690 N_OK : Boolean;
8691
8692 begin
8693 F := First_Formal (Designator);
8694 while Present (F) loop
8695 N := N + 1;
8696
8697 if Present (Default_Value (F)) then
8698 Error_Msg_N
8699 ("default values not allowed for operator parameters",
8700 Parent (F));
8701 end if;
8702
8703 Next_Formal (F);
8704 end loop;
8705
8706 -- Verify that user-defined operators have proper number of arguments
8707 -- First case of operators which can only be unary
8708
8709 if Id = Name_Op_Not
8710 or else Id = Name_Op_Abs
8711 then
8712 N_OK := (N = 1);
8713
8714 -- Case of operators which can be unary or binary
8715
8716 elsif Id = Name_Op_Add
8717 or Id = Name_Op_Subtract
8718 then
8719 N_OK := (N in 1 .. 2);
8720
8721 -- All other operators can only be binary
8722
8723 else
8724 N_OK := (N = 2);
8725 end if;
8726
8727 if not N_OK then
8728 Error_Msg_N
8729 ("incorrect number of arguments for operator", Designator);
8730 end if;
8731
8732 if Id = Name_Op_Ne
8733 and then Base_Type (Etype (Designator)) = Standard_Boolean
8734 and then not Is_Intrinsic_Subprogram (Designator)
8735 then
8736 Error_Msg_N
8737 ("explicit definition of inequality not allowed", Designator);
8738 end if;
8739 end Valid_Operator_Definition;
8740
8741 end Sem_Ch6;