[multiple changes]
[gcc.git] / gcc / ada / sem_ch6.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2011, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Ch6; use Exp_Ch6;
34 with Exp_Ch7; use Exp_Ch7;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Tss; use Exp_Tss;
38 with Exp_Util; use Exp_Util;
39 with Fname; use Fname;
40 with Freeze; use Freeze;
41 with Itypes; use Itypes;
42 with Lib.Xref; use Lib.Xref;
43 with Layout; use Layout;
44 with Namet; use Namet;
45 with Lib; use Lib;
46 with Nlists; use Nlists;
47 with Nmake; use Nmake;
48 with Opt; use Opt;
49 with Output; use Output;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Cat; use Sem_Cat;
56 with Sem_Ch3; use Sem_Ch3;
57 with Sem_Ch4; use Sem_Ch4;
58 with Sem_Ch5; use Sem_Ch5;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch10; use Sem_Ch10;
61 with Sem_Ch12; use Sem_Ch12;
62 with Sem_Ch13; use Sem_Ch13;
63 with Sem_Disp; use Sem_Disp;
64 with Sem_Dist; use Sem_Dist;
65 with Sem_Elim; use Sem_Elim;
66 with Sem_Eval; use Sem_Eval;
67 with Sem_Mech; use Sem_Mech;
68 with Sem_Prag; use Sem_Prag;
69 with Sem_Res; use Sem_Res;
70 with Sem_Util; use Sem_Util;
71 with Sem_Type; use Sem_Type;
72 with Sem_Warn; use Sem_Warn;
73 with Sinput; use Sinput;
74 with Stand; use Stand;
75 with Sinfo; use Sinfo;
76 with Sinfo.CN; use Sinfo.CN;
77 with Snames; use Snames;
78 with Stringt; use Stringt;
79 with Style;
80 with Stylesw; use Stylesw;
81 with Tbuild; use Tbuild;
82 with Uintp; use Uintp;
83 with Urealp; use Urealp;
84 with Validsw; use Validsw;
85
86 package body Sem_Ch6 is
87
88 May_Hide_Profile : Boolean := False;
89 -- This flag is used to indicate that two formals in two subprograms being
90 -- checked for conformance differ only in that one is an access parameter
91 -- while the other is of a general access type with the same designated
92 -- type. In this case, if the rest of the signatures match, a call to
93 -- either subprogram may be ambiguous, which is worth a warning. The flag
94 -- is set in Compatible_Types, and the warning emitted in
95 -- New_Overloaded_Entity.
96
97 -----------------------
98 -- Local Subprograms --
99 -----------------------
100
101 procedure Analyze_Return_Statement (N : Node_Id);
102 -- Common processing for simple and extended return statements
103
104 procedure Analyze_Function_Return (N : Node_Id);
105 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
106 -- applies to a [generic] function.
107
108 procedure Analyze_Return_Type (N : Node_Id);
109 -- Subsidiary to Process_Formals: analyze subtype mark in function
110 -- specification in a context where the formals are visible and hide
111 -- outer homographs.
112
113 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
114 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
115 -- that we can use RETURN but not skip the debug output at the end.
116
117 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
118 -- Analyze a generic subprogram body. N is the body to be analyzed, and
119 -- Gen_Id is the defining entity Id for the corresponding spec.
120
121 procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id);
122 -- If a subprogram has pragma Inline and inlining is active, use generic
123 -- machinery to build an unexpanded body for the subprogram. This body is
124 -- subsequently used for inline expansions at call sites. If subprogram can
125 -- be inlined (depending on size and nature of local declarations) this
126 -- function returns true. Otherwise subprogram body is treated normally.
127 -- If proper warnings are enabled and the subprogram contains a construct
128 -- that cannot be inlined, the offending construct is flagged accordingly.
129
130 function Can_Override_Operator (Subp : Entity_Id) return Boolean;
131 -- Returns true if Subp can override a predefined operator.
132
133 procedure Check_Conformance
134 (New_Id : Entity_Id;
135 Old_Id : Entity_Id;
136 Ctype : Conformance_Type;
137 Errmsg : Boolean;
138 Conforms : out Boolean;
139 Err_Loc : Node_Id := Empty;
140 Get_Inst : Boolean := False;
141 Skip_Controlling_Formals : Boolean := False);
142 -- Given two entities, this procedure checks that the profiles associated
143 -- with these entities meet the conformance criterion given by the third
144 -- parameter. If they conform, Conforms is set True and control returns
145 -- to the caller. If they do not conform, Conforms is set to False, and
146 -- in addition, if Errmsg is True on the call, proper messages are output
147 -- to complain about the conformance failure. If Err_Loc is non_Empty
148 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
149 -- error messages are placed on the appropriate part of the construct
150 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
151 -- against a formal access-to-subprogram type so Get_Instance_Of must
152 -- be called.
153
154 procedure Check_Subprogram_Order (N : Node_Id);
155 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
156 -- the alpha ordering rule for N if this ordering requirement applicable.
157
158 procedure Check_Returns
159 (HSS : Node_Id;
160 Mode : Character;
161 Err : out Boolean;
162 Proc : Entity_Id := Empty);
163 -- Called to check for missing return statements in a function body, or for
164 -- returns present in a procedure body which has No_Return set. HSS is the
165 -- handled statement sequence for the subprogram body. This procedure
166 -- checks all flow paths to make sure they either have return (Mode = 'F',
167 -- used for functions) or do not have a return (Mode = 'P', used for
168 -- No_Return procedures). The flag Err is set if there are any control
169 -- paths not explicitly terminated by a return in the function case, and is
170 -- True otherwise. Proc is the entity for the procedure case and is used
171 -- in posting the warning message.
172
173 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
174 -- In Ada 2012, a primitive equality operator on an untagged record type
175 -- must appear before the type is frozen, and have the same visibility as
176 -- that of the type. This procedure checks that this rule is met, and
177 -- otherwise emits an error on the subprogram declaration and a warning
178 -- on the earlier freeze point if it is easy to locate.
179
180 procedure Enter_Overloaded_Entity (S : Entity_Id);
181 -- This procedure makes S, a new overloaded entity, into the first visible
182 -- entity with that name.
183
184 procedure Install_Entity (E : Entity_Id);
185 -- Make single entity visible (used for generic formals as well)
186
187 function Is_Non_Overriding_Operation
188 (Prev_E : Entity_Id;
189 New_E : Entity_Id) return Boolean;
190 -- Enforce the rule given in 12.3(18): a private operation in an instance
191 -- overrides an inherited operation only if the corresponding operation
192 -- was overriding in the generic. This can happen for primitive operations
193 -- of types derived (in the generic unit) from formal private or formal
194 -- derived types.
195
196 procedure Make_Inequality_Operator (S : Entity_Id);
197 -- Create the declaration for an inequality operator that is implicitly
198 -- created by a user-defined equality operator that yields a boolean.
199
200 procedure May_Need_Actuals (Fun : Entity_Id);
201 -- Flag functions that can be called without parameters, i.e. those that
202 -- have no parameters, or those for which defaults exist for all parameters
203
204 procedure Process_PPCs
205 (N : Node_Id;
206 Spec_Id : Entity_Id;
207 Body_Id : Entity_Id);
208 -- Called from Analyze[_Generic]_Subprogram_Body to deal with scanning post
209 -- conditions for the body and assembling and inserting the _postconditions
210 -- procedure. N is the node for the subprogram body and Body_Id/Spec_Id are
211 -- the entities for the body and separate spec (if there is no separate
212 -- spec, Spec_Id is Empty). Note that invariants and predicates may also
213 -- provide postconditions, and are also handled in this procedure.
214
215 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
216 -- Formal_Id is an formal parameter entity. This procedure deals with
217 -- setting the proper validity status for this entity, which depends on
218 -- the kind of parameter and the validity checking mode.
219
220 ---------------------------------------------
221 -- Analyze_Abstract_Subprogram_Declaration --
222 ---------------------------------------------
223
224 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
225 Designator : constant Entity_Id :=
226 Analyze_Subprogram_Specification (Specification (N));
227 Scop : constant Entity_Id := Current_Scope;
228
229 begin
230 Check_SPARK_Restriction ("abstract subprogram is not allowed", N);
231
232 Generate_Definition (Designator);
233 Set_Contract (Designator, Make_Contract (Sloc (Designator)));
234 Set_Is_Abstract_Subprogram (Designator);
235 New_Overloaded_Entity (Designator);
236 Check_Delayed_Subprogram (Designator);
237
238 Set_Categorization_From_Scope (Designator, Scop);
239
240 if Ekind (Scope (Designator)) = E_Protected_Type then
241 Error_Msg_N
242 ("abstract subprogram not allowed in protected type", N);
243
244 -- Issue a warning if the abstract subprogram is neither a dispatching
245 -- operation nor an operation that overrides an inherited subprogram or
246 -- predefined operator, since this most likely indicates a mistake.
247
248 elsif Warn_On_Redundant_Constructs
249 and then not Is_Dispatching_Operation (Designator)
250 and then not Present (Overridden_Operation (Designator))
251 and then (not Is_Operator_Symbol_Name (Chars (Designator))
252 or else Scop /= Scope (Etype (First_Formal (Designator))))
253 then
254 Error_Msg_N
255 ("?abstract subprogram is not dispatching or overriding", N);
256 end if;
257
258 Generate_Reference_To_Formals (Designator);
259 Check_Eliminated (Designator);
260
261 if Has_Aspects (N) then
262 Analyze_Aspect_Specifications (N, Designator);
263 end if;
264 end Analyze_Abstract_Subprogram_Declaration;
265
266 ---------------------------------
267 -- Analyze_Expression_Function --
268 ---------------------------------
269
270 procedure Analyze_Expression_Function (N : Node_Id) is
271 Loc : constant Source_Ptr := Sloc (N);
272 LocX : constant Source_Ptr := Sloc (Expression (N));
273 Def_Id : constant Entity_Id := Defining_Entity (Specification (N));
274 New_Body : Node_Id;
275 New_Decl : Node_Id;
276
277 Prev : constant Entity_Id := Current_Entity_In_Scope (Def_Id);
278 -- If the expression is a completion, Prev is the entity whose
279 -- declaration is completed.
280
281 begin
282 -- This is one of the occasions on which we transform the tree during
283 -- semantic analysis. If this is a completion, transform the expression
284 -- function into an equivalent subprogram body, and analyze it.
285
286 -- Expression functions are inlined unconditionally. The back-end will
287 -- determine whether this is possible.
288
289 Inline_Processing_Required := True;
290
291 New_Body :=
292 Make_Subprogram_Body (Loc,
293 Specification => Specification (N),
294 Declarations => Empty_List,
295 Handled_Statement_Sequence =>
296 Make_Handled_Sequence_Of_Statements (LocX,
297 Statements => New_List (
298 Make_Simple_Return_Statement (LocX,
299 Expression => Expression (N)))));
300
301 if Present (Prev)
302 and then Ekind (Prev) = E_Generic_Function
303 then
304 -- If the expression completes a generic subprogram, we must create a
305 -- separate node for the body, because at instantiation the original
306 -- node of the generic copy must be a generic subprogram body, and
307 -- cannot be a expression function. Otherwise we just rewrite the
308 -- expression with the non-generic body.
309
310 Insert_After (N, New_Body);
311 Rewrite (N, Make_Null_Statement (Loc));
312 Analyze (N);
313 Analyze (New_Body);
314 Set_Is_Inlined (Prev);
315
316 elsif Present (Prev) then
317 Rewrite (N, New_Body);
318 Set_Is_Inlined (Prev);
319 Analyze (N);
320
321 -- If this is not a completion, create both a declaration and a body,
322 -- so that the expression can be inlined whenever possible.
323
324 else
325 New_Decl :=
326 Make_Subprogram_Declaration (Loc,
327 Specification => Specification (N));
328 Rewrite (N, New_Decl);
329 Analyze (N);
330 Set_Is_Inlined (Defining_Entity (New_Decl));
331
332 -- Create new set of formals for specification in body.
333
334 Set_Specification (New_Body,
335 Make_Function_Specification (Loc,
336 Defining_Unit_Name =>
337 Make_Defining_Identifier (Loc, Chars (Defining_Entity (N))),
338 Parameter_Specifications =>
339 Copy_Parameter_List (Defining_Entity (New_Decl)),
340 Result_Definition =>
341 New_Copy_Tree (Result_Definition (Specification (New_Decl)))));
342
343 Insert_After (N, New_Body);
344 Analyze (New_Body);
345 end if;
346 end Analyze_Expression_Function;
347
348 ----------------------------------------
349 -- Analyze_Extended_Return_Statement --
350 ----------------------------------------
351
352 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
353 begin
354 Analyze_Return_Statement (N);
355 end Analyze_Extended_Return_Statement;
356
357 ----------------------------
358 -- Analyze_Function_Call --
359 ----------------------------
360
361 procedure Analyze_Function_Call (N : Node_Id) is
362 P : constant Node_Id := Name (N);
363 Actuals : constant List_Id := Parameter_Associations (N);
364 Actual : Node_Id;
365
366 begin
367 Analyze (P);
368
369 -- A call of the form A.B (X) may be an Ada05 call, which is rewritten
370 -- as B (A, X). If the rewriting is successful, the call has been
371 -- analyzed and we just return.
372
373 if Nkind (P) = N_Selected_Component
374 and then Name (N) /= P
375 and then Is_Rewrite_Substitution (N)
376 and then Present (Etype (N))
377 then
378 return;
379 end if;
380
381 -- If error analyzing name, then set Any_Type as result type and return
382
383 if Etype (P) = Any_Type then
384 Set_Etype (N, Any_Type);
385 return;
386 end if;
387
388 -- Otherwise analyze the parameters
389
390 if Present (Actuals) then
391 Actual := First (Actuals);
392 while Present (Actual) loop
393 Analyze (Actual);
394 Check_Parameterless_Call (Actual);
395 Next (Actual);
396 end loop;
397 end if;
398
399 Analyze_Call (N);
400 end Analyze_Function_Call;
401
402 -----------------------------
403 -- Analyze_Function_Return --
404 -----------------------------
405
406 procedure Analyze_Function_Return (N : Node_Id) is
407 Loc : constant Source_Ptr := Sloc (N);
408 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
409 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
410
411 R_Type : constant Entity_Id := Etype (Scope_Id);
412 -- Function result subtype
413
414 procedure Check_Limited_Return (Expr : Node_Id);
415 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning
416 -- limited types. Used only for simple return statements.
417 -- Expr is the expression returned.
418
419 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
420 -- Check that the return_subtype_indication properly matches the result
421 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
422
423 --------------------------
424 -- Check_Limited_Return --
425 --------------------------
426
427 procedure Check_Limited_Return (Expr : Node_Id) is
428 begin
429 -- Ada 2005 (AI-318-02): Return-by-reference types have been
430 -- removed and replaced by anonymous access results. This is an
431 -- incompatibility with Ada 95. Not clear whether this should be
432 -- enforced yet or perhaps controllable with special switch. ???
433
434 if Is_Limited_Type (R_Type)
435 and then Comes_From_Source (N)
436 and then not In_Instance_Body
437 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
438 then
439 -- Error in Ada 2005
440
441 if Ada_Version >= Ada_2005
442 and then not Debug_Flag_Dot_L
443 and then not GNAT_Mode
444 then
445 Error_Msg_N
446 ("(Ada 2005) cannot copy object of a limited type " &
447 "(RM-2005 6.5(5.5/2))", Expr);
448
449 if Is_Immutably_Limited_Type (R_Type) then
450 Error_Msg_N
451 ("\return by reference not permitted in Ada 2005", Expr);
452 end if;
453
454 -- Warn in Ada 95 mode, to give folks a heads up about this
455 -- incompatibility.
456
457 -- In GNAT mode, this is just a warning, to allow it to be
458 -- evilly turned off. Otherwise it is a real error.
459
460 -- In a generic context, simplify the warning because it makes
461 -- no sense to discuss pass-by-reference or copy.
462
463 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
464 if Inside_A_Generic then
465 Error_Msg_N
466 ("return of limited object not permitted in Ada2005 "
467 & "(RM-2005 6.5(5.5/2))?", Expr);
468
469 elsif Is_Immutably_Limited_Type (R_Type) then
470 Error_Msg_N
471 ("return by reference not permitted in Ada 2005 "
472 & "(RM-2005 6.5(5.5/2))?", Expr);
473 else
474 Error_Msg_N
475 ("cannot copy object of a limited type in Ada 2005 "
476 & "(RM-2005 6.5(5.5/2))?", Expr);
477 end if;
478
479 -- Ada 95 mode, compatibility warnings disabled
480
481 else
482 return; -- skip continuation messages below
483 end if;
484
485 if not Inside_A_Generic then
486 Error_Msg_N
487 ("\consider switching to return of access type", Expr);
488 Explain_Limited_Type (R_Type, Expr);
489 end if;
490 end if;
491 end Check_Limited_Return;
492
493 -------------------------------------
494 -- Check_Return_Subtype_Indication --
495 -------------------------------------
496
497 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
498 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
499
500 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
501 -- Subtype given in the extended return statement (must match R_Type)
502
503 Subtype_Ind : constant Node_Id :=
504 Object_Definition (Original_Node (Obj_Decl));
505
506 R_Type_Is_Anon_Access :
507 constant Boolean :=
508 Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type
509 or else
510 Ekind (R_Type) = E_Anonymous_Access_Protected_Subprogram_Type
511 or else
512 Ekind (R_Type) = E_Anonymous_Access_Type;
513 -- True if return type of the function is an anonymous access type
514 -- Can't we make Is_Anonymous_Access_Type in einfo ???
515
516 R_Stm_Type_Is_Anon_Access :
517 constant Boolean :=
518 Ekind (R_Stm_Type) = E_Anonymous_Access_Subprogram_Type
519 or else
520 Ekind (R_Stm_Type) = E_Anonymous_Access_Protected_Subprogram_Type
521 or else
522 Ekind (R_Stm_Type) = E_Anonymous_Access_Type;
523 -- True if type of the return object is an anonymous access type
524
525 begin
526 -- First, avoid cascaded errors
527
528 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
529 return;
530 end if;
531
532 -- "return access T" case; check that the return statement also has
533 -- "access T", and that the subtypes statically match:
534 -- if this is an access to subprogram the signatures must match.
535
536 if R_Type_Is_Anon_Access then
537 if R_Stm_Type_Is_Anon_Access then
538 if
539 Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
540 then
541 if Base_Type (Designated_Type (R_Stm_Type)) /=
542 Base_Type (Designated_Type (R_Type))
543 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
544 then
545 Error_Msg_N
546 ("subtype must statically match function result subtype",
547 Subtype_Mark (Subtype_Ind));
548 end if;
549
550 else
551 -- For two anonymous access to subprogram types, the
552 -- types themselves must be type conformant.
553
554 if not Conforming_Types
555 (R_Stm_Type, R_Type, Fully_Conformant)
556 then
557 Error_Msg_N
558 ("subtype must statically match function result subtype",
559 Subtype_Ind);
560 end if;
561 end if;
562
563 else
564 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
565 end if;
566
567 -- Subtype indication case: check that the return object's type is
568 -- covered by the result type, and that the subtypes statically match
569 -- when the result subtype is constrained. Also handle record types
570 -- with unknown discriminants for which we have built the underlying
571 -- record view. Coverage is needed to allow specific-type return
572 -- objects when the result type is class-wide (see AI05-32).
573
574 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
575 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
576 and then
577 Covers
578 (Base_Type (R_Type),
579 Underlying_Record_View (Base_Type (R_Stm_Type))))
580 then
581 -- A null exclusion may be present on the return type, on the
582 -- function specification, on the object declaration or on the
583 -- subtype itself.
584
585 if Is_Access_Type (R_Type)
586 and then
587 (Can_Never_Be_Null (R_Type)
588 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
589 Can_Never_Be_Null (R_Stm_Type)
590 then
591 Error_Msg_N
592 ("subtype must statically match function result subtype",
593 Subtype_Ind);
594 end if;
595
596 -- AI05-103: for elementary types, subtypes must statically match
597
598 if Is_Constrained (R_Type)
599 or else Is_Access_Type (R_Type)
600 then
601 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
602 Error_Msg_N
603 ("subtype must statically match function result subtype",
604 Subtype_Ind);
605 end if;
606 end if;
607
608 elsif Etype (Base_Type (R_Type)) = R_Stm_Type
609 and then Is_Null_Extension (Base_Type (R_Type))
610 then
611 null;
612
613 else
614 Error_Msg_N
615 ("wrong type for return_subtype_indication", Subtype_Ind);
616 end if;
617 end Check_Return_Subtype_Indication;
618
619 ---------------------
620 -- Local Variables --
621 ---------------------
622
623 Expr : Node_Id;
624
625 -- Start of processing for Analyze_Function_Return
626
627 begin
628 Set_Return_Present (Scope_Id);
629
630 if Nkind (N) = N_Simple_Return_Statement then
631 Expr := Expression (N);
632
633 -- Guard against a malformed expression. The parser may have tried to
634 -- recover but the node is not analyzable.
635
636 if Nkind (Expr) = N_Error then
637 Set_Etype (Expr, Any_Type);
638 Expander_Mode_Save_And_Set (False);
639 return;
640
641 else
642 -- The resolution of a controlled [extension] aggregate associated
643 -- with a return statement creates a temporary which needs to be
644 -- finalized on function exit. Wrap the return statement inside a
645 -- block so that the finalization machinery can detect this case.
646 -- This early expansion is done only when the return statement is
647 -- not part of a handled sequence of statements.
648
649 if Nkind_In (Expr, N_Aggregate,
650 N_Extension_Aggregate)
651 and then Needs_Finalization (R_Type)
652 and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
653 then
654 Rewrite (N,
655 Make_Block_Statement (Loc,
656 Handled_Statement_Sequence =>
657 Make_Handled_Sequence_Of_Statements (Loc,
658 Statements => New_List (Relocate_Node (N)))));
659
660 Analyze (N);
661 return;
662 end if;
663
664 Analyze_And_Resolve (Expr, R_Type);
665 Check_Limited_Return (Expr);
666 end if;
667
668 -- RETURN only allowed in SPARK as the last statement in function
669
670 if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
671 and then
672 (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
673 or else Present (Next (N)))
674 then
675 Check_SPARK_Restriction
676 ("RETURN should be the last statement in function", N);
677 end if;
678
679 else
680 Check_SPARK_Restriction ("extended RETURN is not allowed", N);
681
682 -- Analyze parts specific to extended_return_statement:
683
684 declare
685 Obj_Decl : constant Node_Id :=
686 Last (Return_Object_Declarations (N));
687
688 HSS : constant Node_Id := Handled_Statement_Sequence (N);
689
690 begin
691 Expr := Expression (Obj_Decl);
692
693 -- Note: The check for OK_For_Limited_Init will happen in
694 -- Analyze_Object_Declaration; we treat it as a normal
695 -- object declaration.
696
697 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
698 Analyze (Obj_Decl);
699
700 Check_Return_Subtype_Indication (Obj_Decl);
701
702 if Present (HSS) then
703 Analyze (HSS);
704
705 if Present (Exception_Handlers (HSS)) then
706
707 -- ???Has_Nested_Block_With_Handler needs to be set.
708 -- Probably by creating an actual N_Block_Statement.
709 -- Probably in Expand.
710
711 null;
712 end if;
713 end if;
714
715 -- Mark the return object as referenced, since the return is an
716 -- implicit reference of the object.
717
718 Set_Referenced (Defining_Identifier (Obj_Decl));
719
720 Check_References (Stm_Entity);
721 end;
722 end if;
723
724 -- Case of Expr present
725
726 if Present (Expr)
727
728 -- Defend against previous errors
729
730 and then Nkind (Expr) /= N_Empty
731 and then Present (Etype (Expr))
732 then
733 -- Apply constraint check. Note that this is done before the implicit
734 -- conversion of the expression done for anonymous access types to
735 -- ensure correct generation of the null-excluding check associated
736 -- with null-excluding expressions found in return statements.
737
738 Apply_Constraint_Check (Expr, R_Type);
739
740 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
741 -- type, apply an implicit conversion of the expression to that type
742 -- to force appropriate static and run-time accessibility checks.
743
744 if Ada_Version >= Ada_2005
745 and then Ekind (R_Type) = E_Anonymous_Access_Type
746 then
747 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
748 Analyze_And_Resolve (Expr, R_Type);
749 end if;
750
751 -- If the result type is class-wide, then check that the return
752 -- expression's type is not declared at a deeper level than the
753 -- function (RM05-6.5(5.6/2)).
754
755 if Ada_Version >= Ada_2005
756 and then Is_Class_Wide_Type (R_Type)
757 then
758 if Type_Access_Level (Etype (Expr)) >
759 Subprogram_Access_Level (Scope_Id)
760 then
761 Error_Msg_N
762 ("level of return expression type is deeper than " &
763 "class-wide function!", Expr);
764 end if;
765 end if;
766
767 -- Check incorrect use of dynamically tagged expression
768
769 if Is_Tagged_Type (R_Type) then
770 Check_Dynamically_Tagged_Expression
771 (Expr => Expr,
772 Typ => R_Type,
773 Related_Nod => N);
774 end if;
775
776 -- ??? A real run-time accessibility check is needed in cases
777 -- involving dereferences of access parameters. For now we just
778 -- check the static cases.
779
780 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
781 and then Is_Immutably_Limited_Type (Etype (Scope_Id))
782 and then Object_Access_Level (Expr) >
783 Subprogram_Access_Level (Scope_Id)
784 then
785
786 -- Suppress the message in a generic, where the rewriting
787 -- is irrelevant.
788
789 if Inside_A_Generic then
790 null;
791
792 else
793 Rewrite (N,
794 Make_Raise_Program_Error (Loc,
795 Reason => PE_Accessibility_Check_Failed));
796 Analyze (N);
797
798 Error_Msg_N
799 ("cannot return a local value by reference?", N);
800 Error_Msg_NE
801 ("\& will be raised at run time?",
802 N, Standard_Program_Error);
803 end if;
804 end if;
805
806 if Known_Null (Expr)
807 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
808 and then Null_Exclusion_Present (Parent (Scope_Id))
809 then
810 Apply_Compile_Time_Constraint_Error
811 (N => Expr,
812 Msg => "(Ada 2005) null not allowed for "
813 & "null-excluding return?",
814 Reason => CE_Null_Not_Allowed);
815 end if;
816
817 -- Apply checks suggested by AI05-0144 (dangerous order dependence)
818
819 Check_Order_Dependence;
820 end if;
821 end Analyze_Function_Return;
822
823 -------------------------------------
824 -- Analyze_Generic_Subprogram_Body --
825 -------------------------------------
826
827 procedure Analyze_Generic_Subprogram_Body
828 (N : Node_Id;
829 Gen_Id : Entity_Id)
830 is
831 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
832 Kind : constant Entity_Kind := Ekind (Gen_Id);
833 Body_Id : Entity_Id;
834 New_N : Node_Id;
835 Spec : Node_Id;
836
837 begin
838 -- Copy body and disable expansion while analyzing the generic For a
839 -- stub, do not copy the stub (which would load the proper body), this
840 -- will be done when the proper body is analyzed.
841
842 if Nkind (N) /= N_Subprogram_Body_Stub then
843 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
844 Rewrite (N, New_N);
845 Start_Generic;
846 end if;
847
848 Spec := Specification (N);
849
850 -- Within the body of the generic, the subprogram is callable, and
851 -- behaves like the corresponding non-generic unit.
852
853 Body_Id := Defining_Entity (Spec);
854
855 if Kind = E_Generic_Procedure
856 and then Nkind (Spec) /= N_Procedure_Specification
857 then
858 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
859 return;
860
861 elsif Kind = E_Generic_Function
862 and then Nkind (Spec) /= N_Function_Specification
863 then
864 Error_Msg_N ("invalid body for generic function ", Body_Id);
865 return;
866 end if;
867
868 Set_Corresponding_Body (Gen_Decl, Body_Id);
869
870 if Has_Completion (Gen_Id)
871 and then Nkind (Parent (N)) /= N_Subunit
872 then
873 Error_Msg_N ("duplicate generic body", N);
874 return;
875 else
876 Set_Has_Completion (Gen_Id);
877 end if;
878
879 if Nkind (N) = N_Subprogram_Body_Stub then
880 Set_Ekind (Defining_Entity (Specification (N)), Kind);
881 else
882 Set_Corresponding_Spec (N, Gen_Id);
883 end if;
884
885 if Nkind (Parent (N)) = N_Compilation_Unit then
886 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
887 end if;
888
889 -- Make generic parameters immediately visible in the body. They are
890 -- needed to process the formals declarations. Then make the formals
891 -- visible in a separate step.
892
893 Push_Scope (Gen_Id);
894
895 declare
896 E : Entity_Id;
897 First_Ent : Entity_Id;
898
899 begin
900 First_Ent := First_Entity (Gen_Id);
901
902 E := First_Ent;
903 while Present (E) and then not Is_Formal (E) loop
904 Install_Entity (E);
905 Next_Entity (E);
906 end loop;
907
908 Set_Use (Generic_Formal_Declarations (Gen_Decl));
909
910 -- Now generic formals are visible, and the specification can be
911 -- analyzed, for subsequent conformance check.
912
913 Body_Id := Analyze_Subprogram_Specification (Spec);
914
915 -- Make formal parameters visible
916
917 if Present (E) then
918
919 -- E is the first formal parameter, we loop through the formals
920 -- installing them so that they will be visible.
921
922 Set_First_Entity (Gen_Id, E);
923 while Present (E) loop
924 Install_Entity (E);
925 Next_Formal (E);
926 end loop;
927 end if;
928
929 -- Visible generic entity is callable within its own body
930
931 Set_Ekind (Gen_Id, Ekind (Body_Id));
932 Set_Ekind (Body_Id, E_Subprogram_Body);
933 Set_Convention (Body_Id, Convention (Gen_Id));
934 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
935 Set_Scope (Body_Id, Scope (Gen_Id));
936 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
937
938 if Nkind (N) = N_Subprogram_Body_Stub then
939
940 -- No body to analyze, so restore state of generic unit
941
942 Set_Ekind (Gen_Id, Kind);
943 Set_Ekind (Body_Id, Kind);
944
945 if Present (First_Ent) then
946 Set_First_Entity (Gen_Id, First_Ent);
947 end if;
948
949 End_Scope;
950 return;
951 end if;
952
953 -- If this is a compilation unit, it must be made visible explicitly,
954 -- because the compilation of the declaration, unlike other library
955 -- unit declarations, does not. If it is not a unit, the following
956 -- is redundant but harmless.
957
958 Set_Is_Immediately_Visible (Gen_Id);
959 Reference_Body_Formals (Gen_Id, Body_Id);
960
961 if Is_Child_Unit (Gen_Id) then
962 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
963 end if;
964
965 Set_Actual_Subtypes (N, Current_Scope);
966
967 -- Deal with preconditions and postconditions. In formal verification
968 -- mode, we keep pre- and postconditions attached to entities rather
969 -- than inserted in the code, in order to facilitate a distinct
970 -- treatment for them.
971
972 if not ALFA_Mode then
973 Process_PPCs (N, Gen_Id, Body_Id);
974 end if;
975
976 -- If the generic unit carries pre- or post-conditions, copy them
977 -- to the original generic tree, so that they are properly added
978 -- to any instantiation.
979
980 declare
981 Orig : constant Node_Id := Original_Node (N);
982 Cond : Node_Id;
983
984 begin
985 Cond := First (Declarations (N));
986 while Present (Cond) loop
987 if Nkind (Cond) = N_Pragma
988 and then Pragma_Name (Cond) = Name_Check
989 then
990 Prepend (New_Copy_Tree (Cond), Declarations (Orig));
991
992 elsif Nkind (Cond) = N_Pragma
993 and then Pragma_Name (Cond) = Name_Postcondition
994 then
995 Set_Ekind (Defining_Entity (Orig), Ekind (Gen_Id));
996 Prepend (New_Copy_Tree (Cond), Declarations (Orig));
997 else
998 exit;
999 end if;
1000
1001 Next (Cond);
1002 end loop;
1003 end;
1004
1005 Analyze_Declarations (Declarations (N));
1006 Check_Completion;
1007 Analyze (Handled_Statement_Sequence (N));
1008
1009 Save_Global_References (Original_Node (N));
1010
1011 -- Prior to exiting the scope, include generic formals again (if any
1012 -- are present) in the set of local entities.
1013
1014 if Present (First_Ent) then
1015 Set_First_Entity (Gen_Id, First_Ent);
1016 end if;
1017
1018 Check_References (Gen_Id);
1019 end;
1020
1021 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
1022 End_Scope;
1023 Check_Subprogram_Order (N);
1024
1025 -- Outside of its body, unit is generic again
1026
1027 Set_Ekind (Gen_Id, Kind);
1028 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
1029
1030 if Style_Check then
1031 Style.Check_Identifier (Body_Id, Gen_Id);
1032 end if;
1033
1034 End_Generic;
1035 end Analyze_Generic_Subprogram_Body;
1036
1037 -----------------------------
1038 -- Analyze_Operator_Symbol --
1039 -----------------------------
1040
1041 -- An operator symbol such as "+" or "and" may appear in context where the
1042 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1043 -- is just a string, as in (conjunction = "or"). In these cases the parser
1044 -- generates this node, and the semantics does the disambiguation. Other
1045 -- such case are actuals in an instantiation, the generic unit in an
1046 -- instantiation, and pragma arguments.
1047
1048 procedure Analyze_Operator_Symbol (N : Node_Id) is
1049 Par : constant Node_Id := Parent (N);
1050
1051 begin
1052 if (Nkind (Par) = N_Function_Call
1053 and then N = Name (Par))
1054 or else Nkind (Par) = N_Function_Instantiation
1055 or else (Nkind (Par) = N_Indexed_Component
1056 and then N = Prefix (Par))
1057 or else (Nkind (Par) = N_Pragma_Argument_Association
1058 and then not Is_Pragma_String_Literal (Par))
1059 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
1060 or else (Nkind (Par) = N_Attribute_Reference
1061 and then Attribute_Name (Par) /= Name_Value)
1062 then
1063 Find_Direct_Name (N);
1064
1065 else
1066 Change_Operator_Symbol_To_String_Literal (N);
1067 Analyze (N);
1068 end if;
1069 end Analyze_Operator_Symbol;
1070
1071 -----------------------------------
1072 -- Analyze_Parameter_Association --
1073 -----------------------------------
1074
1075 procedure Analyze_Parameter_Association (N : Node_Id) is
1076 begin
1077 Analyze (Explicit_Actual_Parameter (N));
1078 end Analyze_Parameter_Association;
1079
1080 ----------------------------
1081 -- Analyze_Procedure_Call --
1082 ----------------------------
1083
1084 procedure Analyze_Procedure_Call (N : Node_Id) is
1085 Loc : constant Source_Ptr := Sloc (N);
1086 P : constant Node_Id := Name (N);
1087 Actuals : constant List_Id := Parameter_Associations (N);
1088 Actual : Node_Id;
1089 New_N : Node_Id;
1090
1091 procedure Analyze_Call_And_Resolve;
1092 -- Do Analyze and Resolve calls for procedure call
1093 -- At end, check illegal order dependence.
1094
1095 ------------------------------
1096 -- Analyze_Call_And_Resolve --
1097 ------------------------------
1098
1099 procedure Analyze_Call_And_Resolve is
1100 begin
1101 if Nkind (N) = N_Procedure_Call_Statement then
1102 Analyze_Call (N);
1103 Resolve (N, Standard_Void_Type);
1104
1105 -- Apply checks suggested by AI05-0144
1106
1107 Check_Order_Dependence;
1108
1109 else
1110 Analyze (N);
1111 end if;
1112 end Analyze_Call_And_Resolve;
1113
1114 -- Start of processing for Analyze_Procedure_Call
1115
1116 begin
1117 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1118 -- a procedure call or an entry call. The prefix may denote an access
1119 -- to subprogram type, in which case an implicit dereference applies.
1120 -- If the prefix is an indexed component (without implicit dereference)
1121 -- then the construct denotes a call to a member of an entire family.
1122 -- If the prefix is a simple name, it may still denote a call to a
1123 -- parameterless member of an entry family. Resolution of these various
1124 -- interpretations is delicate.
1125
1126 Analyze (P);
1127
1128 -- If this is a call of the form Obj.Op, the call may have been
1129 -- analyzed and possibly rewritten into a block, in which case
1130 -- we are done.
1131
1132 if Analyzed (N) then
1133 return;
1134 end if;
1135
1136 -- If there is an error analyzing the name (which may have been
1137 -- rewritten if the original call was in prefix notation) then error
1138 -- has been emitted already, mark node and return.
1139
1140 if Error_Posted (N)
1141 or else Etype (Name (N)) = Any_Type
1142 then
1143 Set_Etype (N, Any_Type);
1144 return;
1145 end if;
1146
1147 -- Otherwise analyze the parameters
1148
1149 if Present (Actuals) then
1150 Actual := First (Actuals);
1151
1152 while Present (Actual) loop
1153 Analyze (Actual);
1154 Check_Parameterless_Call (Actual);
1155 Next (Actual);
1156 end loop;
1157 end if;
1158
1159 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1160
1161 if Nkind (P) = N_Attribute_Reference
1162 and then (Attribute_Name (P) = Name_Elab_Spec
1163 or else Attribute_Name (P) = Name_Elab_Body
1164 or else Attribute_Name (P) = Name_Elab_Subp_Body)
1165 then
1166 if Present (Actuals) then
1167 Error_Msg_N
1168 ("no parameters allowed for this call", First (Actuals));
1169 return;
1170 end if;
1171
1172 Set_Etype (N, Standard_Void_Type);
1173 Set_Analyzed (N);
1174
1175 elsif Is_Entity_Name (P)
1176 and then Is_Record_Type (Etype (Entity (P)))
1177 and then Remote_AST_I_Dereference (P)
1178 then
1179 return;
1180
1181 elsif Is_Entity_Name (P)
1182 and then Ekind (Entity (P)) /= E_Entry_Family
1183 then
1184 if Is_Access_Type (Etype (P))
1185 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1186 and then No (Actuals)
1187 and then Comes_From_Source (N)
1188 then
1189 Error_Msg_N ("missing explicit dereference in call", N);
1190 end if;
1191
1192 Analyze_Call_And_Resolve;
1193
1194 -- If the prefix is the simple name of an entry family, this is
1195 -- a parameterless call from within the task body itself.
1196
1197 elsif Is_Entity_Name (P)
1198 and then Nkind (P) = N_Identifier
1199 and then Ekind (Entity (P)) = E_Entry_Family
1200 and then Present (Actuals)
1201 and then No (Next (First (Actuals)))
1202 then
1203 -- Can be call to parameterless entry family. What appears to be the
1204 -- sole argument is in fact the entry index. Rewrite prefix of node
1205 -- accordingly. Source representation is unchanged by this
1206 -- transformation.
1207
1208 New_N :=
1209 Make_Indexed_Component (Loc,
1210 Prefix =>
1211 Make_Selected_Component (Loc,
1212 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1213 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1214 Expressions => Actuals);
1215 Set_Name (N, New_N);
1216 Set_Etype (New_N, Standard_Void_Type);
1217 Set_Parameter_Associations (N, No_List);
1218 Analyze_Call_And_Resolve;
1219
1220 elsif Nkind (P) = N_Explicit_Dereference then
1221 if Ekind (Etype (P)) = E_Subprogram_Type then
1222 Analyze_Call_And_Resolve;
1223 else
1224 Error_Msg_N ("expect access to procedure in call", P);
1225 end if;
1226
1227 -- The name can be a selected component or an indexed component that
1228 -- yields an access to subprogram. Such a prefix is legal if the call
1229 -- has parameter associations.
1230
1231 elsif Is_Access_Type (Etype (P))
1232 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1233 then
1234 if Present (Actuals) then
1235 Analyze_Call_And_Resolve;
1236 else
1237 Error_Msg_N ("missing explicit dereference in call ", N);
1238 end if;
1239
1240 -- If not an access to subprogram, then the prefix must resolve to the
1241 -- name of an entry, entry family, or protected operation.
1242
1243 -- For the case of a simple entry call, P is a selected component where
1244 -- the prefix is the task and the selector name is the entry. A call to
1245 -- a protected procedure will have the same syntax. If the protected
1246 -- object contains overloaded operations, the entity may appear as a
1247 -- function, the context will select the operation whose type is Void.
1248
1249 elsif Nkind (P) = N_Selected_Component
1250 and then (Ekind (Entity (Selector_Name (P))) = E_Entry
1251 or else
1252 Ekind (Entity (Selector_Name (P))) = E_Procedure
1253 or else
1254 Ekind (Entity (Selector_Name (P))) = E_Function)
1255 then
1256 Analyze_Call_And_Resolve;
1257
1258 elsif Nkind (P) = N_Selected_Component
1259 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1260 and then Present (Actuals)
1261 and then No (Next (First (Actuals)))
1262 then
1263 -- Can be call to parameterless entry family. What appears to be the
1264 -- sole argument is in fact the entry index. Rewrite prefix of node
1265 -- accordingly. Source representation is unchanged by this
1266 -- transformation.
1267
1268 New_N :=
1269 Make_Indexed_Component (Loc,
1270 Prefix => New_Copy (P),
1271 Expressions => Actuals);
1272 Set_Name (N, New_N);
1273 Set_Etype (New_N, Standard_Void_Type);
1274 Set_Parameter_Associations (N, No_List);
1275 Analyze_Call_And_Resolve;
1276
1277 -- For the case of a reference to an element of an entry family, P is
1278 -- an indexed component whose prefix is a selected component (task and
1279 -- entry family), and whose index is the entry family index.
1280
1281 elsif Nkind (P) = N_Indexed_Component
1282 and then Nkind (Prefix (P)) = N_Selected_Component
1283 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1284 then
1285 Analyze_Call_And_Resolve;
1286
1287 -- If the prefix is the name of an entry family, it is a call from
1288 -- within the task body itself.
1289
1290 elsif Nkind (P) = N_Indexed_Component
1291 and then Nkind (Prefix (P)) = N_Identifier
1292 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1293 then
1294 New_N :=
1295 Make_Selected_Component (Loc,
1296 Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1297 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1298 Rewrite (Prefix (P), New_N);
1299 Analyze (P);
1300 Analyze_Call_And_Resolve;
1301
1302 -- Anything else is an error
1303
1304 else
1305 Error_Msg_N ("invalid procedure or entry call", N);
1306 end if;
1307 end Analyze_Procedure_Call;
1308
1309 ------------------------------
1310 -- Analyze_Return_Statement --
1311 ------------------------------
1312
1313 procedure Analyze_Return_Statement (N : Node_Id) is
1314
1315 pragma Assert (Nkind_In (N, N_Simple_Return_Statement,
1316 N_Extended_Return_Statement));
1317
1318 Returns_Object : constant Boolean :=
1319 Nkind (N) = N_Extended_Return_Statement
1320 or else
1321 (Nkind (N) = N_Simple_Return_Statement
1322 and then Present (Expression (N)));
1323 -- True if we're returning something; that is, "return <expression>;"
1324 -- or "return Result : T [:= ...]". False for "return;". Used for error
1325 -- checking: If Returns_Object is True, N should apply to a function
1326 -- body; otherwise N should apply to a procedure body, entry body,
1327 -- accept statement, or extended return statement.
1328
1329 function Find_What_It_Applies_To return Entity_Id;
1330 -- Find the entity representing the innermost enclosing body, accept
1331 -- statement, or extended return statement. If the result is a callable
1332 -- construct or extended return statement, then this will be the value
1333 -- of the Return_Applies_To attribute. Otherwise, the program is
1334 -- illegal. See RM-6.5(4/2).
1335
1336 -----------------------------
1337 -- Find_What_It_Applies_To --
1338 -----------------------------
1339
1340 function Find_What_It_Applies_To return Entity_Id is
1341 Result : Entity_Id := Empty;
1342
1343 begin
1344 -- Loop outward through the Scope_Stack, skipping blocks and loops
1345
1346 for J in reverse 0 .. Scope_Stack.Last loop
1347 Result := Scope_Stack.Table (J).Entity;
1348 exit when Ekind (Result) /= E_Block and then
1349 Ekind (Result) /= E_Loop;
1350 end loop;
1351
1352 pragma Assert (Present (Result));
1353 return Result;
1354 end Find_What_It_Applies_To;
1355
1356 -- Local declarations
1357
1358 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
1359 Kind : constant Entity_Kind := Ekind (Scope_Id);
1360 Loc : constant Source_Ptr := Sloc (N);
1361 Stm_Entity : constant Entity_Id :=
1362 New_Internal_Entity
1363 (E_Return_Statement, Current_Scope, Loc, 'R');
1364
1365 -- Start of processing for Analyze_Return_Statement
1366
1367 begin
1368 Set_Return_Statement_Entity (N, Stm_Entity);
1369
1370 Set_Etype (Stm_Entity, Standard_Void_Type);
1371 Set_Return_Applies_To (Stm_Entity, Scope_Id);
1372
1373 -- Place Return entity on scope stack, to simplify enforcement of 6.5
1374 -- (4/2): an inner return statement will apply to this extended return.
1375
1376 if Nkind (N) = N_Extended_Return_Statement then
1377 Push_Scope (Stm_Entity);
1378 end if;
1379
1380 -- Check that pragma No_Return is obeyed. Don't complain about the
1381 -- implicitly-generated return that is placed at the end.
1382
1383 if No_Return (Scope_Id) and then Comes_From_Source (N) then
1384 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
1385 end if;
1386
1387 -- Warn on any unassigned OUT parameters if in procedure
1388
1389 if Ekind (Scope_Id) = E_Procedure then
1390 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
1391 end if;
1392
1393 -- Check that functions return objects, and other things do not
1394
1395 if Kind = E_Function or else Kind = E_Generic_Function then
1396 if not Returns_Object then
1397 Error_Msg_N ("missing expression in return from function", N);
1398 end if;
1399
1400 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
1401 if Returns_Object then
1402 Error_Msg_N ("procedure cannot return value (use function)", N);
1403 end if;
1404
1405 elsif Kind = E_Entry or else Kind = E_Entry_Family then
1406 if Returns_Object then
1407 if Is_Protected_Type (Scope (Scope_Id)) then
1408 Error_Msg_N ("entry body cannot return value", N);
1409 else
1410 Error_Msg_N ("accept statement cannot return value", N);
1411 end if;
1412 end if;
1413
1414 elsif Kind = E_Return_Statement then
1415
1416 -- We are nested within another return statement, which must be an
1417 -- extended_return_statement.
1418
1419 if Returns_Object then
1420 Error_Msg_N
1421 ("extended_return_statement cannot return value; " &
1422 "use `""RETURN;""`", N);
1423 end if;
1424
1425 else
1426 Error_Msg_N ("illegal context for return statement", N);
1427 end if;
1428
1429 if Ekind_In (Kind, E_Function, E_Generic_Function) then
1430 Analyze_Function_Return (N);
1431
1432 elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
1433 Set_Return_Present (Scope_Id);
1434 end if;
1435
1436 if Nkind (N) = N_Extended_Return_Statement then
1437 End_Scope;
1438 end if;
1439
1440 Kill_Current_Values (Last_Assignment_Only => True);
1441 Check_Unreachable_Code (N);
1442 end Analyze_Return_Statement;
1443
1444 -------------------------------------
1445 -- Analyze_Simple_Return_Statement --
1446 -------------------------------------
1447
1448 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
1449 begin
1450 if Present (Expression (N)) then
1451 Mark_Coextensions (N, Expression (N));
1452 end if;
1453
1454 Analyze_Return_Statement (N);
1455 end Analyze_Simple_Return_Statement;
1456
1457 -------------------------
1458 -- Analyze_Return_Type --
1459 -------------------------
1460
1461 procedure Analyze_Return_Type (N : Node_Id) is
1462 Designator : constant Entity_Id := Defining_Entity (N);
1463 Typ : Entity_Id := Empty;
1464
1465 begin
1466 -- Normal case where result definition does not indicate an error
1467
1468 if Result_Definition (N) /= Error then
1469 if Nkind (Result_Definition (N)) = N_Access_Definition then
1470 Check_SPARK_Restriction
1471 ("access result is not allowed", Result_Definition (N));
1472
1473 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
1474
1475 declare
1476 AD : constant Node_Id :=
1477 Access_To_Subprogram_Definition (Result_Definition (N));
1478 begin
1479 if Present (AD) and then Protected_Present (AD) then
1480 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1481 else
1482 Typ := Access_Definition (N, Result_Definition (N));
1483 end if;
1484 end;
1485
1486 Set_Parent (Typ, Result_Definition (N));
1487 Set_Is_Local_Anonymous_Access (Typ);
1488 Set_Etype (Designator, Typ);
1489
1490 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1491
1492 Null_Exclusion_Static_Checks (N);
1493
1494 -- Subtype_Mark case
1495
1496 else
1497 Find_Type (Result_Definition (N));
1498 Typ := Entity (Result_Definition (N));
1499 Set_Etype (Designator, Typ);
1500
1501 -- Unconstrained array as result is not allowed in SPARK
1502
1503 if Is_Array_Type (Typ)
1504 and then not Is_Constrained (Typ)
1505 then
1506 Check_SPARK_Restriction
1507 ("returning an unconstrained array is not allowed",
1508 Result_Definition (N));
1509 end if;
1510
1511 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1512
1513 Null_Exclusion_Static_Checks (N);
1514
1515 -- If a null exclusion is imposed on the result type, then create
1516 -- a null-excluding itype (an access subtype) and use it as the
1517 -- function's Etype. Note that the null exclusion checks are done
1518 -- right before this, because they don't get applied to types that
1519 -- do not come from source.
1520
1521 if Is_Access_Type (Typ)
1522 and then Null_Exclusion_Present (N)
1523 then
1524 Set_Etype (Designator,
1525 Create_Null_Excluding_Itype
1526 (T => Typ,
1527 Related_Nod => N,
1528 Scope_Id => Scope (Current_Scope)));
1529
1530 -- The new subtype must be elaborated before use because
1531 -- it is visible outside of the function. However its base
1532 -- type may not be frozen yet, so the reference that will
1533 -- force elaboration must be attached to the freezing of
1534 -- the base type.
1535
1536 -- If the return specification appears on a proper body,
1537 -- the subtype will have been created already on the spec.
1538
1539 if Is_Frozen (Typ) then
1540 if Nkind (Parent (N)) = N_Subprogram_Body
1541 and then Nkind (Parent (Parent (N))) = N_Subunit
1542 then
1543 null;
1544 else
1545 Build_Itype_Reference (Etype (Designator), Parent (N));
1546 end if;
1547
1548 else
1549 Ensure_Freeze_Node (Typ);
1550
1551 declare
1552 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
1553 begin
1554 Set_Itype (IR, Etype (Designator));
1555 Append_Freeze_Actions (Typ, New_List (IR));
1556 end;
1557 end if;
1558
1559 else
1560 Set_Etype (Designator, Typ);
1561 end if;
1562
1563 if Ekind (Typ) = E_Incomplete_Type
1564 and then Is_Value_Type (Typ)
1565 then
1566 null;
1567
1568 elsif Ekind (Typ) = E_Incomplete_Type
1569 or else (Is_Class_Wide_Type (Typ)
1570 and then
1571 Ekind (Root_Type (Typ)) = E_Incomplete_Type)
1572 then
1573 -- AI05-0151: Tagged incomplete types are allowed in all formal
1574 -- parts. Untagged incomplete types are not allowed in bodies.
1575
1576 if Ada_Version >= Ada_2012 then
1577 if Is_Tagged_Type (Typ) then
1578 null;
1579
1580 elsif Nkind_In (Parent (Parent (N)),
1581 N_Accept_Statement,
1582 N_Entry_Body,
1583 N_Subprogram_Body)
1584 then
1585 Error_Msg_NE
1586 ("invalid use of untagged incomplete type&",
1587 Designator, Typ);
1588 end if;
1589
1590 else
1591 Error_Msg_NE
1592 ("invalid use of incomplete type&", Designator, Typ);
1593 end if;
1594 end if;
1595 end if;
1596
1597 -- Case where result definition does indicate an error
1598
1599 else
1600 Set_Etype (Designator, Any_Type);
1601 end if;
1602 end Analyze_Return_Type;
1603
1604 -----------------------------
1605 -- Analyze_Subprogram_Body --
1606 -----------------------------
1607
1608 procedure Analyze_Subprogram_Body (N : Node_Id) is
1609 Loc : constant Source_Ptr := Sloc (N);
1610 Body_Spec : constant Node_Id := Specification (N);
1611 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
1612
1613 begin
1614 if Debug_Flag_C then
1615 Write_Str ("==> subprogram body ");
1616 Write_Name (Chars (Body_Id));
1617 Write_Str (" from ");
1618 Write_Location (Loc);
1619 Write_Eol;
1620 Indent;
1621 end if;
1622
1623 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
1624
1625 -- The real work is split out into the helper, so it can do "return;"
1626 -- without skipping the debug output:
1627
1628 Analyze_Subprogram_Body_Helper (N);
1629
1630 if Debug_Flag_C then
1631 Outdent;
1632 Write_Str ("<== subprogram body ");
1633 Write_Name (Chars (Body_Id));
1634 Write_Str (" from ");
1635 Write_Location (Loc);
1636 Write_Eol;
1637 end if;
1638 end Analyze_Subprogram_Body;
1639
1640 ------------------------------------
1641 -- Analyze_Subprogram_Body_Helper --
1642 ------------------------------------
1643
1644 -- This procedure is called for regular subprogram bodies, generic bodies,
1645 -- and for subprogram stubs of both kinds. In the case of stubs, only the
1646 -- specification matters, and is used to create a proper declaration for
1647 -- the subprogram, or to perform conformance checks.
1648
1649 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
1650 Loc : constant Source_Ptr := Sloc (N);
1651 Body_Deleted : constant Boolean := False;
1652 Body_Spec : constant Node_Id := Specification (N);
1653 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
1654 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
1655 Conformant : Boolean;
1656 HSS : Node_Id;
1657 P_Ent : Entity_Id;
1658 Prot_Typ : Entity_Id := Empty;
1659 Spec_Id : Entity_Id;
1660 Spec_Decl : Node_Id := Empty;
1661
1662 Last_Real_Spec_Entity : Entity_Id := Empty;
1663 -- When we analyze a separate spec, the entity chain ends up containing
1664 -- the formals, as well as any itypes generated during analysis of the
1665 -- default expressions for parameters, or the arguments of associated
1666 -- precondition/postcondition pragmas (which are analyzed in the context
1667 -- of the spec since they have visibility on formals).
1668 --
1669 -- These entities belong with the spec and not the body. However we do
1670 -- the analysis of the body in the context of the spec (again to obtain
1671 -- visibility to the formals), and all the entities generated during
1672 -- this analysis end up also chained to the entity chain of the spec.
1673 -- But they really belong to the body, and there is circuitry to move
1674 -- them from the spec to the body.
1675 --
1676 -- However, when we do this move, we don't want to move the real spec
1677 -- entities (first para above) to the body. The Last_Real_Spec_Entity
1678 -- variable points to the last real spec entity, so we only move those
1679 -- chained beyond that point. It is initialized to Empty to deal with
1680 -- the case where there is no separate spec.
1681
1682 procedure Check_Anonymous_Return;
1683 -- Ada 2005: if a function returns an access type that denotes a task,
1684 -- or a type that contains tasks, we must create a master entity for
1685 -- the anonymous type, which typically will be used in an allocator
1686 -- in the body of the function.
1687
1688 procedure Check_Inline_Pragma (Spec : in out Node_Id);
1689 -- Look ahead to recognize a pragma that may appear after the body.
1690 -- If there is a previous spec, check that it appears in the same
1691 -- declarative part. If the pragma is Inline_Always, perform inlining
1692 -- unconditionally, otherwise only if Front_End_Inlining is requested.
1693 -- If the body acts as a spec, and inlining is required, we create a
1694 -- subprogram declaration for it, in order to attach the body to inline.
1695 -- If pragma does not appear after the body, check whether there is
1696 -- an inline pragma before any local declarations.
1697
1698 procedure Check_Missing_Return;
1699 -- Checks for a function with a no return statements, and also performs
1700 -- the warning checks implemented by Check_Returns. In formal mode, also
1701 -- verify that a function ends with a RETURN and that a procedure does
1702 -- not contain any RETURN.
1703
1704 function Disambiguate_Spec return Entity_Id;
1705 -- When a primitive is declared between the private view and the full
1706 -- view of a concurrent type which implements an interface, a special
1707 -- mechanism is used to find the corresponding spec of the primitive
1708 -- body.
1709
1710 function Is_Private_Concurrent_Primitive
1711 (Subp_Id : Entity_Id) return Boolean;
1712 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
1713 -- type that implements an interface and has a private view.
1714
1715 procedure Set_Trivial_Subprogram (N : Node_Id);
1716 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
1717 -- subprogram whose body is being analyzed. N is the statement node
1718 -- causing the flag to be set, if the following statement is a return
1719 -- of an entity, we mark the entity as set in source to suppress any
1720 -- warning on the stylized use of function stubs with a dummy return.
1721
1722 procedure Verify_Overriding_Indicator;
1723 -- If there was a previous spec, the entity has been entered in the
1724 -- current scope previously. If the body itself carries an overriding
1725 -- indicator, check that it is consistent with the known status of the
1726 -- entity.
1727
1728 ----------------------------
1729 -- Check_Anonymous_Return --
1730 ----------------------------
1731
1732 procedure Check_Anonymous_Return is
1733 Decl : Node_Id;
1734 Par : Node_Id;
1735 Scop : Entity_Id;
1736
1737 begin
1738 if Present (Spec_Id) then
1739 Scop := Spec_Id;
1740 else
1741 Scop := Body_Id;
1742 end if;
1743
1744 if Ekind (Scop) = E_Function
1745 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
1746 and then not Is_Thunk (Scop)
1747 and then (Has_Task (Designated_Type (Etype (Scop)))
1748 or else
1749 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
1750 and then
1751 Is_Limited_Record (Designated_Type (Etype (Scop)))))
1752 and then Expander_Active
1753
1754 -- Avoid cases with no tasking support
1755
1756 and then RTE_Available (RE_Current_Master)
1757 and then not Restriction_Active (No_Task_Hierarchy)
1758 then
1759 Decl :=
1760 Make_Object_Declaration (Loc,
1761 Defining_Identifier =>
1762 Make_Defining_Identifier (Loc, Name_uMaster),
1763 Constant_Present => True,
1764 Object_Definition =>
1765 New_Reference_To (RTE (RE_Master_Id), Loc),
1766 Expression =>
1767 Make_Explicit_Dereference (Loc,
1768 New_Reference_To (RTE (RE_Current_Master), Loc)));
1769
1770 if Present (Declarations (N)) then
1771 Prepend (Decl, Declarations (N));
1772 else
1773 Set_Declarations (N, New_List (Decl));
1774 end if;
1775
1776 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
1777 Set_Has_Master_Entity (Scop);
1778
1779 -- Now mark the containing scope as a task master
1780
1781 Par := N;
1782 while Nkind (Par) /= N_Compilation_Unit loop
1783 Par := Parent (Par);
1784 pragma Assert (Present (Par));
1785
1786 -- If we fall off the top, we are at the outer level, and
1787 -- the environment task is our effective master, so nothing
1788 -- to mark.
1789
1790 if Nkind_In
1791 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
1792 then
1793 Set_Is_Task_Master (Par, True);
1794 exit;
1795 end if;
1796 end loop;
1797 end if;
1798 end Check_Anonymous_Return;
1799
1800 -------------------------
1801 -- Check_Inline_Pragma --
1802 -------------------------
1803
1804 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
1805 Prag : Node_Id;
1806 Plist : List_Id;
1807
1808 function Is_Inline_Pragma (N : Node_Id) return Boolean;
1809 -- True when N is a pragma Inline or Inline_Always that applies
1810 -- to this subprogram.
1811
1812 -----------------------
1813 -- Is_Inline_Pragma --
1814 -----------------------
1815
1816 function Is_Inline_Pragma (N : Node_Id) return Boolean is
1817 begin
1818 return
1819 Nkind (N) = N_Pragma
1820 and then
1821 (Pragma_Name (N) = Name_Inline_Always
1822 or else
1823 (Front_End_Inlining
1824 and then Pragma_Name (N) = Name_Inline))
1825 and then
1826 Chars
1827 (Expression (First (Pragma_Argument_Associations (N))))
1828 = Chars (Body_Id);
1829 end Is_Inline_Pragma;
1830
1831 -- Start of processing for Check_Inline_Pragma
1832
1833 begin
1834 if not Expander_Active then
1835 return;
1836 end if;
1837
1838 if Is_List_Member (N)
1839 and then Present (Next (N))
1840 and then Is_Inline_Pragma (Next (N))
1841 then
1842 Prag := Next (N);
1843
1844 elsif Nkind (N) /= N_Subprogram_Body_Stub
1845 and then Present (Declarations (N))
1846 and then Is_Inline_Pragma (First (Declarations (N)))
1847 then
1848 Prag := First (Declarations (N));
1849
1850 else
1851 Prag := Empty;
1852 end if;
1853
1854 if Present (Prag) then
1855 if Present (Spec_Id) then
1856 if In_Same_List (N, Unit_Declaration_Node (Spec_Id)) then
1857 Analyze (Prag);
1858 end if;
1859
1860 else
1861 -- Create a subprogram declaration, to make treatment uniform
1862
1863 declare
1864 Subp : constant Entity_Id :=
1865 Make_Defining_Identifier (Loc, Chars (Body_Id));
1866 Decl : constant Node_Id :=
1867 Make_Subprogram_Declaration (Loc,
1868 Specification =>
1869 New_Copy_Tree (Specification (N)));
1870
1871 begin
1872 Set_Defining_Unit_Name (Specification (Decl), Subp);
1873
1874 if Present (First_Formal (Body_Id)) then
1875 Plist := Copy_Parameter_List (Body_Id);
1876 Set_Parameter_Specifications
1877 (Specification (Decl), Plist);
1878 end if;
1879
1880 Insert_Before (N, Decl);
1881 Analyze (Decl);
1882 Analyze (Prag);
1883 Set_Has_Pragma_Inline (Subp);
1884
1885 if Pragma_Name (Prag) = Name_Inline_Always then
1886 Set_Is_Inlined (Subp);
1887 Set_Has_Pragma_Inline_Always (Subp);
1888 end if;
1889
1890 Spec := Subp;
1891 end;
1892 end if;
1893 end if;
1894 end Check_Inline_Pragma;
1895
1896 --------------------------
1897 -- Check_Missing_Return --
1898 --------------------------
1899
1900 procedure Check_Missing_Return is
1901 Id : Entity_Id;
1902 Missing_Ret : Boolean;
1903
1904 begin
1905 if Nkind (Body_Spec) = N_Function_Specification then
1906 if Present (Spec_Id) then
1907 Id := Spec_Id;
1908 else
1909 Id := Body_Id;
1910 end if;
1911
1912 if Return_Present (Id) then
1913 Check_Returns (HSS, 'F', Missing_Ret);
1914
1915 if Missing_Ret then
1916 Set_Has_Missing_Return (Id);
1917 end if;
1918
1919 elsif (Is_Generic_Subprogram (Id)
1920 or else not Is_Machine_Code_Subprogram (Id))
1921 and then not Body_Deleted
1922 then
1923 Error_Msg_N ("missing RETURN statement in function body", N);
1924 end if;
1925
1926 -- If procedure with No_Return, check returns
1927
1928 elsif Nkind (Body_Spec) = N_Procedure_Specification
1929 and then Present (Spec_Id)
1930 and then No_Return (Spec_Id)
1931 then
1932 Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
1933 end if;
1934
1935 -- Special checks in SPARK mode
1936
1937 if Nkind (Body_Spec) = N_Function_Specification then
1938
1939 -- In SPARK mode, last statement of a function should be a return
1940
1941 declare
1942 Stat : constant Node_Id := Last_Source_Statement (HSS);
1943 begin
1944 if Present (Stat)
1945 and then not Nkind_In (Stat, N_Simple_Return_Statement,
1946 N_Extended_Return_Statement)
1947 then
1948 Check_SPARK_Restriction
1949 ("last statement in function should be RETURN", Stat);
1950 end if;
1951 end;
1952
1953 -- In SPARK mode, verify that a procedure has no return
1954
1955 elsif Nkind (Body_Spec) = N_Procedure_Specification then
1956 if Present (Spec_Id) then
1957 Id := Spec_Id;
1958 else
1959 Id := Body_Id;
1960 end if;
1961
1962 -- Would be nice to point to return statement here, can we
1963 -- borrow the Check_Returns procedure here ???
1964
1965 if Return_Present (Id) then
1966 Check_SPARK_Restriction
1967 ("procedure should not have RETURN", N);
1968 end if;
1969 end if;
1970 end Check_Missing_Return;
1971
1972 -----------------------
1973 -- Disambiguate_Spec --
1974 -----------------------
1975
1976 function Disambiguate_Spec return Entity_Id is
1977 Priv_Spec : Entity_Id;
1978 Spec_N : Entity_Id;
1979
1980 procedure Replace_Types (To_Corresponding : Boolean);
1981 -- Depending on the flag, replace the type of formal parameters of
1982 -- Body_Id if it is a concurrent type implementing interfaces with
1983 -- the corresponding record type or the other way around.
1984
1985 procedure Replace_Types (To_Corresponding : Boolean) is
1986 Formal : Entity_Id;
1987 Formal_Typ : Entity_Id;
1988
1989 begin
1990 Formal := First_Formal (Body_Id);
1991 while Present (Formal) loop
1992 Formal_Typ := Etype (Formal);
1993
1994 if Is_Class_Wide_Type (Formal_Typ) then
1995 Formal_Typ := Root_Type (Formal_Typ);
1996 end if;
1997
1998 -- From concurrent type to corresponding record
1999
2000 if To_Corresponding then
2001 if Is_Concurrent_Type (Formal_Typ)
2002 and then Present (Corresponding_Record_Type (Formal_Typ))
2003 and then Present (Interfaces (
2004 Corresponding_Record_Type (Formal_Typ)))
2005 then
2006 Set_Etype (Formal,
2007 Corresponding_Record_Type (Formal_Typ));
2008 end if;
2009
2010 -- From corresponding record to concurrent type
2011
2012 else
2013 if Is_Concurrent_Record_Type (Formal_Typ)
2014 and then Present (Interfaces (Formal_Typ))
2015 then
2016 Set_Etype (Formal,
2017 Corresponding_Concurrent_Type (Formal_Typ));
2018 end if;
2019 end if;
2020
2021 Next_Formal (Formal);
2022 end loop;
2023 end Replace_Types;
2024
2025 -- Start of processing for Disambiguate_Spec
2026
2027 begin
2028 -- Try to retrieve the specification of the body as is. All error
2029 -- messages are suppressed because the body may not have a spec in
2030 -- its current state.
2031
2032 Spec_N := Find_Corresponding_Spec (N, False);
2033
2034 -- It is possible that this is the body of a primitive declared
2035 -- between a private and a full view of a concurrent type. The
2036 -- controlling parameter of the spec carries the concurrent type,
2037 -- not the corresponding record type as transformed by Analyze_
2038 -- Subprogram_Specification. In such cases, we undo the change
2039 -- made by the analysis of the specification and try to find the
2040 -- spec again.
2041
2042 -- Note that wrappers already have their corresponding specs and
2043 -- bodies set during their creation, so if the candidate spec is
2044 -- a wrapper, then we definitely need to swap all types to their
2045 -- original concurrent status.
2046
2047 if No (Spec_N)
2048 or else Is_Primitive_Wrapper (Spec_N)
2049 then
2050 -- Restore all references of corresponding record types to the
2051 -- original concurrent types.
2052
2053 Replace_Types (To_Corresponding => False);
2054 Priv_Spec := Find_Corresponding_Spec (N, False);
2055
2056 -- The current body truly belongs to a primitive declared between
2057 -- a private and a full view. We leave the modified body as is,
2058 -- and return the true spec.
2059
2060 if Present (Priv_Spec)
2061 and then Is_Private_Primitive (Priv_Spec)
2062 then
2063 return Priv_Spec;
2064 end if;
2065
2066 -- In case that this is some sort of error, restore the original
2067 -- state of the body.
2068
2069 Replace_Types (To_Corresponding => True);
2070 end if;
2071
2072 return Spec_N;
2073 end Disambiguate_Spec;
2074
2075 -------------------------------------
2076 -- Is_Private_Concurrent_Primitive --
2077 -------------------------------------
2078
2079 function Is_Private_Concurrent_Primitive
2080 (Subp_Id : Entity_Id) return Boolean
2081 is
2082 Formal_Typ : Entity_Id;
2083
2084 begin
2085 if Present (First_Formal (Subp_Id)) then
2086 Formal_Typ := Etype (First_Formal (Subp_Id));
2087
2088 if Is_Concurrent_Record_Type (Formal_Typ) then
2089 if Is_Class_Wide_Type (Formal_Typ) then
2090 Formal_Typ := Root_Type (Formal_Typ);
2091 end if;
2092
2093 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
2094 end if;
2095
2096 -- The type of the first formal is a concurrent tagged type with
2097 -- a private view.
2098
2099 return
2100 Is_Concurrent_Type (Formal_Typ)
2101 and then Is_Tagged_Type (Formal_Typ)
2102 and then Has_Private_Declaration (Formal_Typ);
2103 end if;
2104
2105 return False;
2106 end Is_Private_Concurrent_Primitive;
2107
2108 ----------------------------
2109 -- Set_Trivial_Subprogram --
2110 ----------------------------
2111
2112 procedure Set_Trivial_Subprogram (N : Node_Id) is
2113 Nxt : constant Node_Id := Next (N);
2114
2115 begin
2116 Set_Is_Trivial_Subprogram (Body_Id);
2117
2118 if Present (Spec_Id) then
2119 Set_Is_Trivial_Subprogram (Spec_Id);
2120 end if;
2121
2122 if Present (Nxt)
2123 and then Nkind (Nxt) = N_Simple_Return_Statement
2124 and then No (Next (Nxt))
2125 and then Present (Expression (Nxt))
2126 and then Is_Entity_Name (Expression (Nxt))
2127 then
2128 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
2129 end if;
2130 end Set_Trivial_Subprogram;
2131
2132 ---------------------------------
2133 -- Verify_Overriding_Indicator --
2134 ---------------------------------
2135
2136 procedure Verify_Overriding_Indicator is
2137 begin
2138 if Must_Override (Body_Spec) then
2139 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
2140 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
2141 then
2142 null;
2143
2144 elsif not Present (Overridden_Operation (Spec_Id)) then
2145 Error_Msg_NE
2146 ("subprogram& is not overriding", Body_Spec, Spec_Id);
2147 end if;
2148
2149 elsif Must_Not_Override (Body_Spec) then
2150 if Present (Overridden_Operation (Spec_Id)) then
2151 Error_Msg_NE
2152 ("subprogram& overrides inherited operation",
2153 Body_Spec, Spec_Id);
2154
2155 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
2156 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
2157 then
2158 Error_Msg_NE
2159 ("subprogram & overrides predefined operator ",
2160 Body_Spec, Spec_Id);
2161
2162 -- If this is not a primitive operation or protected subprogram,
2163 -- then the overriding indicator is altogether illegal.
2164
2165 elsif not Is_Primitive (Spec_Id)
2166 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
2167 then
2168 Error_Msg_N
2169 ("overriding indicator only allowed " &
2170 "if subprogram is primitive",
2171 Body_Spec);
2172 end if;
2173
2174 elsif Style_Check
2175 and then Present (Overridden_Operation (Spec_Id))
2176 then
2177 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
2178 Style.Missing_Overriding (N, Body_Id);
2179
2180 elsif Style_Check
2181 and then Can_Override_Operator (Spec_Id)
2182 and then not Is_Predefined_File_Name
2183 (Unit_File_Name (Get_Source_Unit (Spec_Id)))
2184 then
2185 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
2186 Style.Missing_Overriding (N, Body_Id);
2187 end if;
2188 end Verify_Overriding_Indicator;
2189
2190 -- Start of processing for Analyze_Subprogram_Body_Helper
2191
2192 begin
2193 -- Generic subprograms are handled separately. They always have a
2194 -- generic specification. Determine whether current scope has a
2195 -- previous declaration.
2196
2197 -- If the subprogram body is defined within an instance of the same
2198 -- name, the instance appears as a package renaming, and will be hidden
2199 -- within the subprogram.
2200
2201 if Present (Prev_Id)
2202 and then not Is_Overloadable (Prev_Id)
2203 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
2204 or else Comes_From_Source (Prev_Id))
2205 then
2206 if Is_Generic_Subprogram (Prev_Id) then
2207 Spec_Id := Prev_Id;
2208 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
2209 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
2210
2211 Analyze_Generic_Subprogram_Body (N, Spec_Id);
2212
2213 if Nkind (N) = N_Subprogram_Body then
2214 HSS := Handled_Statement_Sequence (N);
2215 Check_Missing_Return;
2216 end if;
2217
2218 return;
2219
2220 else
2221 -- Previous entity conflicts with subprogram name. Attempting to
2222 -- enter name will post error.
2223
2224 Enter_Name (Body_Id);
2225 return;
2226 end if;
2227
2228 -- Non-generic case, find the subprogram declaration, if one was seen,
2229 -- or enter new overloaded entity in the current scope. If the
2230 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
2231 -- part of the context of one of its subunits. No need to redo the
2232 -- analysis.
2233
2234 elsif Prev_Id = Body_Id
2235 and then Has_Completion (Body_Id)
2236 then
2237 return;
2238
2239 else
2240 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
2241
2242 if Nkind (N) = N_Subprogram_Body_Stub
2243 or else No (Corresponding_Spec (N))
2244 then
2245 if Is_Private_Concurrent_Primitive (Body_Id) then
2246 Spec_Id := Disambiguate_Spec;
2247 else
2248 Spec_Id := Find_Corresponding_Spec (N);
2249 end if;
2250
2251 -- If this is a duplicate body, no point in analyzing it
2252
2253 if Error_Posted (N) then
2254 return;
2255 end if;
2256
2257 -- A subprogram body should cause freezing of its own declaration,
2258 -- but if there was no previous explicit declaration, then the
2259 -- subprogram will get frozen too late (there may be code within
2260 -- the body that depends on the subprogram having been frozen,
2261 -- such as uses of extra formals), so we force it to be frozen
2262 -- here. Same holds if the body and spec are compilation units.
2263 -- Finally, if the return type is an anonymous access to protected
2264 -- subprogram, it must be frozen before the body because its
2265 -- expansion has generated an equivalent type that is used when
2266 -- elaborating the body.
2267
2268 if No (Spec_Id) then
2269 Freeze_Before (N, Body_Id);
2270
2271 elsif Nkind (Parent (N)) = N_Compilation_Unit then
2272 Freeze_Before (N, Spec_Id);
2273
2274 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
2275 Freeze_Before (N, Etype (Body_Id));
2276 end if;
2277
2278 else
2279 Spec_Id := Corresponding_Spec (N);
2280 end if;
2281 end if;
2282
2283 -- Do not inline any subprogram that contains nested subprograms, since
2284 -- the backend inlining circuit seems to generate uninitialized
2285 -- references in this case. We know this happens in the case of front
2286 -- end ZCX support, but it also appears it can happen in other cases as
2287 -- well. The backend often rejects attempts to inline in the case of
2288 -- nested procedures anyway, so little if anything is lost by this.
2289 -- Note that this is test is for the benefit of the back-end. There is
2290 -- a separate test for front-end inlining that also rejects nested
2291 -- subprograms.
2292
2293 -- Do not do this test if errors have been detected, because in some
2294 -- error cases, this code blows up, and we don't need it anyway if
2295 -- there have been errors, since we won't get to the linker anyway.
2296
2297 if Comes_From_Source (Body_Id)
2298 and then Serious_Errors_Detected = 0
2299 then
2300 P_Ent := Body_Id;
2301 loop
2302 P_Ent := Scope (P_Ent);
2303 exit when No (P_Ent) or else P_Ent = Standard_Standard;
2304
2305 if Is_Subprogram (P_Ent) then
2306 Set_Is_Inlined (P_Ent, False);
2307
2308 if Comes_From_Source (P_Ent)
2309 and then Has_Pragma_Inline (P_Ent)
2310 then
2311 Cannot_Inline
2312 ("cannot inline& (nested subprogram)?",
2313 N, P_Ent);
2314 end if;
2315 end if;
2316 end loop;
2317 end if;
2318
2319 Check_Inline_Pragma (Spec_Id);
2320
2321 -- Deal with special case of a fully private operation in the body of
2322 -- the protected type. We must create a declaration for the subprogram,
2323 -- in order to attach the protected subprogram that will be used in
2324 -- internal calls. We exclude compiler generated bodies from the
2325 -- expander since the issue does not arise for those cases.
2326
2327 if No (Spec_Id)
2328 and then Comes_From_Source (N)
2329 and then Is_Protected_Type (Current_Scope)
2330 then
2331 Spec_Id := Build_Private_Protected_Declaration (N);
2332 end if;
2333
2334 -- If a separate spec is present, then deal with freezing issues
2335
2336 if Present (Spec_Id) then
2337 Spec_Decl := Unit_Declaration_Node (Spec_Id);
2338 Verify_Overriding_Indicator;
2339
2340 -- In general, the spec will be frozen when we start analyzing the
2341 -- body. However, for internally generated operations, such as
2342 -- wrapper functions for inherited operations with controlling
2343 -- results, the spec may not have been frozen by the time we expand
2344 -- the freeze actions that include the bodies. In particular, extra
2345 -- formals for accessibility or for return-in-place may need to be
2346 -- generated. Freeze nodes, if any, are inserted before the current
2347 -- body. These freeze actions are also needed in ASIS mode to enable
2348 -- the proper back-annotations.
2349
2350 if not Is_Frozen (Spec_Id)
2351 and then (Expander_Active or ASIS_Mode)
2352 then
2353 -- Force the generation of its freezing node to ensure proper
2354 -- management of access types in the backend.
2355
2356 -- This is definitely needed for some cases, but it is not clear
2357 -- why, to be investigated further???
2358
2359 Set_Has_Delayed_Freeze (Spec_Id);
2360 Freeze_Before (N, Spec_Id);
2361 end if;
2362 end if;
2363
2364 -- Mark presence of postcondition procedure in current scope and mark
2365 -- the procedure itself as needing debug info. The latter is important
2366 -- when analyzing decision coverage (for example, for MC/DC coverage).
2367
2368 if Chars (Body_Id) = Name_uPostconditions then
2369 Set_Has_Postconditions (Current_Scope);
2370 Set_Debug_Info_Needed (Body_Id);
2371 end if;
2372
2373 -- Place subprogram on scope stack, and make formals visible. If there
2374 -- is a spec, the visible entity remains that of the spec.
2375
2376 if Present (Spec_Id) then
2377 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
2378
2379 if Is_Child_Unit (Spec_Id) then
2380 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
2381 end if;
2382
2383 if Style_Check then
2384 Style.Check_Identifier (Body_Id, Spec_Id);
2385 end if;
2386
2387 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
2388 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
2389
2390 if Is_Abstract_Subprogram (Spec_Id) then
2391 Error_Msg_N ("an abstract subprogram cannot have a body", N);
2392 return;
2393
2394 else
2395 Set_Convention (Body_Id, Convention (Spec_Id));
2396 Set_Has_Completion (Spec_Id);
2397
2398 if Is_Protected_Type (Scope (Spec_Id)) then
2399 Prot_Typ := Scope (Spec_Id);
2400 end if;
2401
2402 -- If this is a body generated for a renaming, do not check for
2403 -- full conformance. The check is redundant, because the spec of
2404 -- the body is a copy of the spec in the renaming declaration,
2405 -- and the test can lead to spurious errors on nested defaults.
2406
2407 if Present (Spec_Decl)
2408 and then not Comes_From_Source (N)
2409 and then
2410 (Nkind (Original_Node (Spec_Decl)) =
2411 N_Subprogram_Renaming_Declaration
2412 or else (Present (Corresponding_Body (Spec_Decl))
2413 and then
2414 Nkind (Unit_Declaration_Node
2415 (Corresponding_Body (Spec_Decl))) =
2416 N_Subprogram_Renaming_Declaration))
2417 then
2418 Conformant := True;
2419
2420 -- Conversely, the spec may have been generated for specless body
2421 -- with an inline pragma.
2422
2423 elsif Comes_From_Source (N)
2424 and then not Comes_From_Source (Spec_Id)
2425 and then Has_Pragma_Inline (Spec_Id)
2426 then
2427 Conformant := True;
2428
2429 else
2430 Check_Conformance
2431 (Body_Id, Spec_Id,
2432 Fully_Conformant, True, Conformant, Body_Id);
2433 end if;
2434
2435 -- If the body is not fully conformant, we have to decide if we
2436 -- should analyze it or not. If it has a really messed up profile
2437 -- then we probably should not analyze it, since we will get too
2438 -- many bogus messages.
2439
2440 -- Our decision is to go ahead in the non-fully conformant case
2441 -- only if it is at least mode conformant with the spec. Note
2442 -- that the call to Check_Fully_Conformant has issued the proper
2443 -- error messages to complain about the lack of conformance.
2444
2445 if not Conformant
2446 and then not Mode_Conformant (Body_Id, Spec_Id)
2447 then
2448 return;
2449 end if;
2450 end if;
2451
2452 if Spec_Id /= Body_Id then
2453 Reference_Body_Formals (Spec_Id, Body_Id);
2454 end if;
2455
2456 if Nkind (N) /= N_Subprogram_Body_Stub then
2457 Set_Corresponding_Spec (N, Spec_Id);
2458
2459 -- Ada 2005 (AI-345): If the operation is a primitive operation
2460 -- of a concurrent type, the type of the first parameter has been
2461 -- replaced with the corresponding record, which is the proper
2462 -- run-time structure to use. However, within the body there may
2463 -- be uses of the formals that depend on primitive operations
2464 -- of the type (in particular calls in prefixed form) for which
2465 -- we need the original concurrent type. The operation may have
2466 -- several controlling formals, so the replacement must be done
2467 -- for all of them.
2468
2469 if Comes_From_Source (Spec_Id)
2470 and then Present (First_Entity (Spec_Id))
2471 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
2472 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
2473 and then
2474 Present (Interfaces (Etype (First_Entity (Spec_Id))))
2475 and then
2476 Present
2477 (Corresponding_Concurrent_Type
2478 (Etype (First_Entity (Spec_Id))))
2479 then
2480 declare
2481 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
2482 Form : Entity_Id;
2483
2484 begin
2485 Form := First_Formal (Spec_Id);
2486 while Present (Form) loop
2487 if Etype (Form) = Typ then
2488 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
2489 end if;
2490
2491 Next_Formal (Form);
2492 end loop;
2493 end;
2494 end if;
2495
2496 -- Make the formals visible, and place subprogram on scope stack.
2497 -- This is also the point at which we set Last_Real_Spec_Entity
2498 -- to mark the entities which will not be moved to the body.
2499
2500 Install_Formals (Spec_Id);
2501 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
2502 Push_Scope (Spec_Id);
2503
2504 -- Make sure that the subprogram is immediately visible. For
2505 -- child units that have no separate spec this is indispensable.
2506 -- Otherwise it is safe albeit redundant.
2507
2508 Set_Is_Immediately_Visible (Spec_Id);
2509 end if;
2510
2511 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
2512 Set_Ekind (Body_Id, E_Subprogram_Body);
2513 Set_Scope (Body_Id, Scope (Spec_Id));
2514 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
2515
2516 -- Case of subprogram body with no previous spec
2517
2518 else
2519 -- Check for style warning required
2520
2521 if Style_Check
2522
2523 -- Only apply check for source level subprograms for which checks
2524 -- have not been suppressed.
2525
2526 and then Comes_From_Source (Body_Id)
2527 and then not Suppress_Style_Checks (Body_Id)
2528
2529 -- No warnings within an instance
2530
2531 and then not In_Instance
2532
2533 -- No warnings for expression functions
2534
2535 and then Nkind (Original_Node (N)) /= N_Expression_Function
2536 then
2537 Style.Body_With_No_Spec (N);
2538 end if;
2539
2540 New_Overloaded_Entity (Body_Id);
2541
2542 if Nkind (N) /= N_Subprogram_Body_Stub then
2543 Set_Acts_As_Spec (N);
2544 Generate_Definition (Body_Id);
2545 Set_Contract (Body_Id, Make_Contract (Sloc (Body_Id)));
2546 Generate_Reference
2547 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
2548 Generate_Reference_To_Formals (Body_Id);
2549 Install_Formals (Body_Id);
2550 Push_Scope (Body_Id);
2551 end if;
2552 end if;
2553
2554 -- If the return type is an anonymous access type whose designated type
2555 -- is the limited view of a class-wide type and the non-limited view is
2556 -- available, update the return type accordingly.
2557
2558 if Ada_Version >= Ada_2005
2559 and then Comes_From_Source (N)
2560 then
2561 declare
2562 Etyp : Entity_Id;
2563 Rtyp : Entity_Id;
2564
2565 begin
2566 Rtyp := Etype (Current_Scope);
2567
2568 if Ekind (Rtyp) = E_Anonymous_Access_Type then
2569 Etyp := Directly_Designated_Type (Rtyp);
2570
2571 if Is_Class_Wide_Type (Etyp)
2572 and then From_With_Type (Etyp)
2573 then
2574 Set_Directly_Designated_Type
2575 (Etype (Current_Scope), Available_View (Etyp));
2576 end if;
2577 end if;
2578 end;
2579 end if;
2580
2581 -- If this is the proper body of a stub, we must verify that the stub
2582 -- conforms to the body, and to the previous spec if one was present.
2583 -- we know already that the body conforms to that spec. This test is
2584 -- only required for subprograms that come from source.
2585
2586 if Nkind (Parent (N)) = N_Subunit
2587 and then Comes_From_Source (N)
2588 and then not Error_Posted (Body_Id)
2589 and then Nkind (Corresponding_Stub (Parent (N))) =
2590 N_Subprogram_Body_Stub
2591 then
2592 declare
2593 Old_Id : constant Entity_Id :=
2594 Defining_Entity
2595 (Specification (Corresponding_Stub (Parent (N))));
2596
2597 Conformant : Boolean := False;
2598
2599 begin
2600 if No (Spec_Id) then
2601 Check_Fully_Conformant (Body_Id, Old_Id);
2602
2603 else
2604 Check_Conformance
2605 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
2606
2607 if not Conformant then
2608
2609 -- The stub was taken to be a new declaration. Indicate
2610 -- that it lacks a body.
2611
2612 Set_Has_Completion (Old_Id, False);
2613 end if;
2614 end if;
2615 end;
2616 end if;
2617
2618 Set_Has_Completion (Body_Id);
2619 Check_Eliminated (Body_Id);
2620
2621 if Nkind (N) = N_Subprogram_Body_Stub then
2622 return;
2623
2624 elsif Present (Spec_Id)
2625 and then Expander_Active
2626 and then
2627 (Has_Pragma_Inline_Always (Spec_Id)
2628 or else (Has_Pragma_Inline (Spec_Id) and Front_End_Inlining))
2629 then
2630 Build_Body_To_Inline (N, Spec_Id);
2631 end if;
2632
2633 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
2634 -- if its specification we have to install the private withed units.
2635 -- This holds for child units as well.
2636
2637 if Is_Compilation_Unit (Body_Id)
2638 or else Nkind (Parent (N)) = N_Compilation_Unit
2639 then
2640 Install_Private_With_Clauses (Body_Id);
2641 end if;
2642
2643 Check_Anonymous_Return;
2644
2645 -- Set the Protected_Formal field of each extra formal of the protected
2646 -- subprogram to reference the corresponding extra formal of the
2647 -- subprogram that implements it. For regular formals this occurs when
2648 -- the protected subprogram's declaration is expanded, but the extra
2649 -- formals don't get created until the subprogram is frozen. We need to
2650 -- do this before analyzing the protected subprogram's body so that any
2651 -- references to the original subprogram's extra formals will be changed
2652 -- refer to the implementing subprogram's formals (see Expand_Formal).
2653
2654 if Present (Spec_Id)
2655 and then Is_Protected_Type (Scope (Spec_Id))
2656 and then Present (Protected_Body_Subprogram (Spec_Id))
2657 then
2658 declare
2659 Impl_Subp : constant Entity_Id :=
2660 Protected_Body_Subprogram (Spec_Id);
2661 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
2662 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
2663 begin
2664 while Present (Prot_Ext_Formal) loop
2665 pragma Assert (Present (Impl_Ext_Formal));
2666 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
2667 Next_Formal_With_Extras (Prot_Ext_Formal);
2668 Next_Formal_With_Extras (Impl_Ext_Formal);
2669 end loop;
2670 end;
2671 end if;
2672
2673 -- Now we can go on to analyze the body
2674
2675 HSS := Handled_Statement_Sequence (N);
2676 Set_Actual_Subtypes (N, Current_Scope);
2677
2678 -- Deal with preconditions and postconditions. In formal verification
2679 -- mode, we keep pre- and postconditions attached to entities rather
2680 -- than inserted in the code, in order to facilitate a distinct
2681 -- treatment for them.
2682
2683 if not ALFA_Mode then
2684 Process_PPCs (N, Spec_Id, Body_Id);
2685 end if;
2686
2687 -- Add a declaration for the Protection object, renaming declarations
2688 -- for discriminals and privals and finally a declaration for the entry
2689 -- family index (if applicable). This form of early expansion is done
2690 -- when the Expander is active because Install_Private_Data_Declarations
2691 -- references entities which were created during regular expansion.
2692
2693 if Expander_Active
2694 and then Comes_From_Source (N)
2695 and then Present (Prot_Typ)
2696 and then Present (Spec_Id)
2697 and then not Is_Eliminated (Spec_Id)
2698 then
2699 Install_Private_Data_Declarations
2700 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
2701 end if;
2702
2703 -- Analyze the declarations (this call will analyze the precondition
2704 -- Check pragmas we prepended to the list, as well as the declaration
2705 -- of the _Postconditions procedure).
2706
2707 Analyze_Declarations (Declarations (N));
2708
2709 -- Check completion, and analyze the statements
2710
2711 Check_Completion;
2712 Inspect_Deferred_Constant_Completion (Declarations (N));
2713 Analyze (HSS);
2714
2715 -- Deal with end of scope processing for the body
2716
2717 Process_End_Label (HSS, 't', Current_Scope);
2718 End_Scope;
2719 Check_Subprogram_Order (N);
2720 Set_Analyzed (Body_Id);
2721
2722 -- If we have a separate spec, then the analysis of the declarations
2723 -- caused the entities in the body to be chained to the spec id, but
2724 -- we want them chained to the body id. Only the formal parameters
2725 -- end up chained to the spec id in this case.
2726
2727 if Present (Spec_Id) then
2728
2729 -- We must conform to the categorization of our spec
2730
2731 Validate_Categorization_Dependency (N, Spec_Id);
2732
2733 -- And if this is a child unit, the parent units must conform
2734
2735 if Is_Child_Unit (Spec_Id) then
2736 Validate_Categorization_Dependency
2737 (Unit_Declaration_Node (Spec_Id), Spec_Id);
2738 end if;
2739
2740 -- Here is where we move entities from the spec to the body
2741
2742 -- Case where there are entities that stay with the spec
2743
2744 if Present (Last_Real_Spec_Entity) then
2745
2746 -- No body entities (happens when the only real spec entities
2747 -- come from precondition and postcondition pragmas)
2748
2749 if No (Last_Entity (Body_Id)) then
2750 Set_First_Entity
2751 (Body_Id, Next_Entity (Last_Real_Spec_Entity));
2752
2753 -- Body entities present (formals), so chain stuff past them
2754
2755 else
2756 Set_Next_Entity
2757 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
2758 end if;
2759
2760 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
2761 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
2762 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
2763
2764 -- Case where there are no spec entities, in this case there can
2765 -- be no body entities either, so just move everything.
2766
2767 else
2768 pragma Assert (No (Last_Entity (Body_Id)));
2769 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
2770 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
2771 Set_First_Entity (Spec_Id, Empty);
2772 Set_Last_Entity (Spec_Id, Empty);
2773 end if;
2774 end if;
2775
2776 Check_Missing_Return;
2777
2778 -- Now we are going to check for variables that are never modified in
2779 -- the body of the procedure. But first we deal with a special case
2780 -- where we want to modify this check. If the body of the subprogram
2781 -- starts with a raise statement or its equivalent, or if the body
2782 -- consists entirely of a null statement, then it is pretty obvious
2783 -- that it is OK to not reference the parameters. For example, this
2784 -- might be the following common idiom for a stubbed function:
2785 -- statement of the procedure raises an exception. In particular this
2786 -- deals with the common idiom of a stubbed function, which might
2787 -- appear as something like
2788
2789 -- function F (A : Integer) return Some_Type;
2790 -- X : Some_Type;
2791 -- begin
2792 -- raise Program_Error;
2793 -- return X;
2794 -- end F;
2795
2796 -- Here the purpose of X is simply to satisfy the annoying requirement
2797 -- in Ada that there be at least one return, and we certainly do not
2798 -- want to go posting warnings on X that it is not initialized! On
2799 -- the other hand, if X is entirely unreferenced that should still
2800 -- get a warning.
2801
2802 -- What we do is to detect these cases, and if we find them, flag the
2803 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
2804 -- suppress unwanted warnings. For the case of the function stub above
2805 -- we have a special test to set X as apparently assigned to suppress
2806 -- the warning.
2807
2808 declare
2809 Stm : Node_Id;
2810
2811 begin
2812 -- Skip initial labels (for one thing this occurs when we are in
2813 -- front end ZCX mode, but in any case it is irrelevant), and also
2814 -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
2815
2816 Stm := First (Statements (HSS));
2817 while Nkind (Stm) = N_Label
2818 or else Nkind (Stm) in N_Push_xxx_Label
2819 loop
2820 Next (Stm);
2821 end loop;
2822
2823 -- Do the test on the original statement before expansion
2824
2825 declare
2826 Ostm : constant Node_Id := Original_Node (Stm);
2827
2828 begin
2829 -- If explicit raise statement, turn on flag
2830
2831 if Nkind (Ostm) = N_Raise_Statement then
2832 Set_Trivial_Subprogram (Stm);
2833
2834 -- If null statement, and no following statements, turn on flag
2835
2836 elsif Nkind (Stm) = N_Null_Statement
2837 and then Comes_From_Source (Stm)
2838 and then No (Next (Stm))
2839 then
2840 Set_Trivial_Subprogram (Stm);
2841
2842 -- Check for explicit call cases which likely raise an exception
2843
2844 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
2845 if Is_Entity_Name (Name (Ostm)) then
2846 declare
2847 Ent : constant Entity_Id := Entity (Name (Ostm));
2848
2849 begin
2850 -- If the procedure is marked No_Return, then likely it
2851 -- raises an exception, but in any case it is not coming
2852 -- back here, so turn on the flag.
2853
2854 if Present (Ent)
2855 and then Ekind (Ent) = E_Procedure
2856 and then No_Return (Ent)
2857 then
2858 Set_Trivial_Subprogram (Stm);
2859 end if;
2860 end;
2861 end if;
2862 end if;
2863 end;
2864 end;
2865
2866 -- Check for variables that are never modified
2867
2868 declare
2869 E1, E2 : Entity_Id;
2870
2871 begin
2872 -- If there is a separate spec, then transfer Never_Set_In_Source
2873 -- flags from out parameters to the corresponding entities in the
2874 -- body. The reason we do that is we want to post error flags on
2875 -- the body entities, not the spec entities.
2876
2877 if Present (Spec_Id) then
2878 E1 := First_Entity (Spec_Id);
2879 while Present (E1) loop
2880 if Ekind (E1) = E_Out_Parameter then
2881 E2 := First_Entity (Body_Id);
2882 while Present (E2) loop
2883 exit when Chars (E1) = Chars (E2);
2884 Next_Entity (E2);
2885 end loop;
2886
2887 if Present (E2) then
2888 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
2889 end if;
2890 end if;
2891
2892 Next_Entity (E1);
2893 end loop;
2894 end if;
2895
2896 -- Check references in body unless it was deleted. Note that the
2897 -- check of Body_Deleted here is not just for efficiency, it is
2898 -- necessary to avoid junk warnings on formal parameters.
2899
2900 if not Body_Deleted then
2901 Check_References (Body_Id);
2902 end if;
2903 end;
2904 end Analyze_Subprogram_Body_Helper;
2905
2906 ------------------------------------
2907 -- Analyze_Subprogram_Declaration --
2908 ------------------------------------
2909
2910 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
2911 Loc : constant Source_Ptr := Sloc (N);
2912 Scop : constant Entity_Id := Current_Scope;
2913 Designator : Entity_Id;
2914 Form : Node_Id;
2915 Null_Body : Node_Id := Empty;
2916
2917 -- Start of processing for Analyze_Subprogram_Declaration
2918
2919 begin
2920 -- Null procedures are not allowed in SPARK
2921
2922 if Nkind (Specification (N)) = N_Procedure_Specification
2923 and then Null_Present (Specification (N))
2924 then
2925 Check_SPARK_Restriction ("null procedure is not allowed", N);
2926 end if;
2927
2928 -- For a null procedure, capture the profile before analysis, for
2929 -- expansion at the freeze point and at each point of call. The body
2930 -- will only be used if the procedure has preconditions. In that case
2931 -- the body is analyzed at the freeze point.
2932
2933 if Nkind (Specification (N)) = N_Procedure_Specification
2934 and then Null_Present (Specification (N))
2935 and then Expander_Active
2936 then
2937 Null_Body :=
2938 Make_Subprogram_Body (Loc,
2939 Specification =>
2940 New_Copy_Tree (Specification (N)),
2941 Declarations =>
2942 New_List,
2943 Handled_Statement_Sequence =>
2944 Make_Handled_Sequence_Of_Statements (Loc,
2945 Statements => New_List (Make_Null_Statement (Loc))));
2946
2947 -- Create new entities for body and formals
2948
2949 Set_Defining_Unit_Name (Specification (Null_Body),
2950 Make_Defining_Identifier (Loc, Chars (Defining_Entity (N))));
2951 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
2952
2953 Form := First (Parameter_Specifications (Specification (Null_Body)));
2954 while Present (Form) loop
2955 Set_Defining_Identifier (Form,
2956 Make_Defining_Identifier (Loc,
2957 Chars (Defining_Identifier (Form))));
2958
2959 -- Resolve the types of the formals now, because the freeze point
2960 -- may appear in a different context, e.g. an instantiation.
2961
2962 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
2963 Find_Type (Parameter_Type (Form));
2964
2965 elsif
2966 No (Access_To_Subprogram_Definition (Parameter_Type (Form)))
2967 then
2968 Find_Type (Subtype_Mark (Parameter_Type (Form)));
2969
2970 else
2971
2972 -- the case of a null procedure with a formal that is an
2973 -- access_to_subprogram type, and that is used as an actual
2974 -- in an instantiation is left to the enthusiastic reader.
2975
2976 null;
2977 end if;
2978
2979 Next (Form);
2980 end loop;
2981
2982 if Is_Protected_Type (Current_Scope) then
2983 Error_Msg_N ("protected operation cannot be a null procedure", N);
2984 end if;
2985 end if;
2986
2987 Designator := Analyze_Subprogram_Specification (Specification (N));
2988 Generate_Definition (Designator);
2989 -- ??? why this call, already in Analyze_Subprogram_Specification
2990
2991 if Debug_Flag_C then
2992 Write_Str ("==> subprogram spec ");
2993 Write_Name (Chars (Designator));
2994 Write_Str (" from ");
2995 Write_Location (Sloc (N));
2996 Write_Eol;
2997 Indent;
2998 end if;
2999
3000 if Nkind (Specification (N)) = N_Procedure_Specification
3001 and then Null_Present (Specification (N))
3002 then
3003 Set_Has_Completion (Designator);
3004
3005 if Present (Null_Body) then
3006 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
3007 Set_Body_To_Inline (N, Null_Body);
3008 Set_Is_Inlined (Designator);
3009 end if;
3010 end if;
3011
3012 Validate_RCI_Subprogram_Declaration (N);
3013 New_Overloaded_Entity (Designator);
3014 Check_Delayed_Subprogram (Designator);
3015
3016 -- If the type of the first formal of the current subprogram is a
3017 -- nongeneric tagged private type, mark the subprogram as being a
3018 -- private primitive. Ditto if this is a function with controlling
3019 -- result, and the return type is currently private. In both cases,
3020 -- the type of the controlling argument or result must be in the
3021 -- current scope for the operation to be primitive.
3022
3023 if Has_Controlling_Result (Designator)
3024 and then Is_Private_Type (Etype (Designator))
3025 and then Scope (Etype (Designator)) = Current_Scope
3026 and then not Is_Generic_Actual_Type (Etype (Designator))
3027 then
3028 Set_Is_Private_Primitive (Designator);
3029
3030 elsif Present (First_Formal (Designator)) then
3031 declare
3032 Formal_Typ : constant Entity_Id :=
3033 Etype (First_Formal (Designator));
3034 begin
3035 Set_Is_Private_Primitive (Designator,
3036 Is_Tagged_Type (Formal_Typ)
3037 and then Scope (Formal_Typ) = Current_Scope
3038 and then Is_Private_Type (Formal_Typ)
3039 and then not Is_Generic_Actual_Type (Formal_Typ));
3040 end;
3041 end if;
3042
3043 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
3044 -- or null.
3045
3046 if Ada_Version >= Ada_2005
3047 and then Comes_From_Source (N)
3048 and then Is_Dispatching_Operation (Designator)
3049 then
3050 declare
3051 E : Entity_Id;
3052 Etyp : Entity_Id;
3053
3054 begin
3055 if Has_Controlling_Result (Designator) then
3056 Etyp := Etype (Designator);
3057
3058 else
3059 E := First_Entity (Designator);
3060 while Present (E)
3061 and then Is_Formal (E)
3062 and then not Is_Controlling_Formal (E)
3063 loop
3064 Next_Entity (E);
3065 end loop;
3066
3067 Etyp := Etype (E);
3068 end if;
3069
3070 if Is_Access_Type (Etyp) then
3071 Etyp := Directly_Designated_Type (Etyp);
3072 end if;
3073
3074 if Is_Interface (Etyp)
3075 and then not Is_Abstract_Subprogram (Designator)
3076 and then not (Ekind (Designator) = E_Procedure
3077 and then Null_Present (Specification (N)))
3078 then
3079 Error_Msg_Name_1 := Chars (Defining_Entity (N));
3080 Error_Msg_N
3081 ("(Ada 2005) interface subprogram % must be abstract or null",
3082 N);
3083 end if;
3084 end;
3085 end if;
3086
3087 -- What is the following code for, it used to be
3088
3089 -- ??? Set_Suppress_Elaboration_Checks
3090 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
3091
3092 -- The following seems equivalent, but a bit dubious
3093
3094 if Elaboration_Checks_Suppressed (Designator) then
3095 Set_Kill_Elaboration_Checks (Designator);
3096 end if;
3097
3098 if Scop /= Standard_Standard
3099 and then not Is_Child_Unit (Designator)
3100 then
3101 Set_Categorization_From_Scope (Designator, Scop);
3102 else
3103 -- For a compilation unit, check for library-unit pragmas
3104
3105 Push_Scope (Designator);
3106 Set_Categorization_From_Pragmas (N);
3107 Validate_Categorization_Dependency (N, Designator);
3108 Pop_Scope;
3109 end if;
3110
3111 -- For a compilation unit, set body required. This flag will only be
3112 -- reset if a valid Import or Interface pragma is processed later on.
3113
3114 if Nkind (Parent (N)) = N_Compilation_Unit then
3115 Set_Body_Required (Parent (N), True);
3116
3117 if Ada_Version >= Ada_2005
3118 and then Nkind (Specification (N)) = N_Procedure_Specification
3119 and then Null_Present (Specification (N))
3120 then
3121 Error_Msg_N
3122 ("null procedure cannot be declared at library level", N);
3123 end if;
3124 end if;
3125
3126 Generate_Reference_To_Formals (Designator);
3127 Check_Eliminated (Designator);
3128
3129 if Debug_Flag_C then
3130 Outdent;
3131 Write_Str ("<== subprogram spec ");
3132 Write_Name (Chars (Designator));
3133 Write_Str (" from ");
3134 Write_Location (Sloc (N));
3135 Write_Eol;
3136 end if;
3137
3138 if Is_Protected_Type (Current_Scope) then
3139
3140 -- Indicate that this is a protected operation, because it may be
3141 -- used in subsequent declarations within the protected type.
3142
3143 Set_Convention (Designator, Convention_Protected);
3144 end if;
3145
3146 List_Inherited_Pre_Post_Aspects (Designator);
3147
3148 if Has_Aspects (N) then
3149 Analyze_Aspect_Specifications (N, Designator);
3150 end if;
3151 end Analyze_Subprogram_Declaration;
3152
3153 --------------------------------------
3154 -- Analyze_Subprogram_Specification --
3155 --------------------------------------
3156
3157 -- Reminder: N here really is a subprogram specification (not a subprogram
3158 -- declaration). This procedure is called to analyze the specification in
3159 -- both subprogram bodies and subprogram declarations (specs).
3160
3161 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
3162 Designator : constant Entity_Id := Defining_Entity (N);
3163 Formals : constant List_Id := Parameter_Specifications (N);
3164
3165 -- Start of processing for Analyze_Subprogram_Specification
3166
3167 begin
3168 -- User-defined operator is not allowed in SPARK, except as a renaming
3169
3170 if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
3171 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
3172 then
3173 Check_SPARK_Restriction ("user-defined operator is not allowed", N);
3174 end if;
3175
3176 -- Proceed with analysis
3177
3178 Generate_Definition (Designator);
3179 Set_Contract (Designator, Make_Contract (Sloc (Designator)));
3180
3181 if Nkind (N) = N_Function_Specification then
3182 Set_Ekind (Designator, E_Function);
3183 Set_Mechanism (Designator, Default_Mechanism);
3184 else
3185 Set_Ekind (Designator, E_Procedure);
3186 Set_Etype (Designator, Standard_Void_Type);
3187 end if;
3188
3189 -- Introduce new scope for analysis of the formals and the return type
3190
3191 Set_Scope (Designator, Current_Scope);
3192
3193 if Present (Formals) then
3194 Push_Scope (Designator);
3195 Process_Formals (Formals, N);
3196
3197 -- Ada 2005 (AI-345): If this is an overriding operation of an
3198 -- inherited interface operation, and the controlling type is
3199 -- a synchronized type, replace the type with its corresponding
3200 -- record, to match the proper signature of an overriding operation.
3201 -- Same processing for an access parameter whose designated type is
3202 -- derived from a synchronized interface.
3203
3204 if Ada_Version >= Ada_2005 then
3205 declare
3206 Formal : Entity_Id;
3207 Formal_Typ : Entity_Id;
3208 Rec_Typ : Entity_Id;
3209 Desig_Typ : Entity_Id;
3210
3211 begin
3212 Formal := First_Formal (Designator);
3213 while Present (Formal) loop
3214 Formal_Typ := Etype (Formal);
3215
3216 if Is_Concurrent_Type (Formal_Typ)
3217 and then Present (Corresponding_Record_Type (Formal_Typ))
3218 then
3219 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
3220
3221 if Present (Interfaces (Rec_Typ)) then
3222 Set_Etype (Formal, Rec_Typ);
3223 end if;
3224
3225 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
3226 Desig_Typ := Designated_Type (Formal_Typ);
3227
3228 if Is_Concurrent_Type (Desig_Typ)
3229 and then Present (Corresponding_Record_Type (Desig_Typ))
3230 then
3231 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
3232
3233 if Present (Interfaces (Rec_Typ)) then
3234 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
3235 end if;
3236 end if;
3237 end if;
3238
3239 Next_Formal (Formal);
3240 end loop;
3241 end;
3242 end if;
3243
3244 End_Scope;
3245
3246 -- The subprogram scope is pushed and popped around the processing of
3247 -- the return type for consistency with call above to Process_Formals
3248 -- (which itself can call Analyze_Return_Type), and to ensure that any
3249 -- itype created for the return type will be associated with the proper
3250 -- scope.
3251
3252 elsif Nkind (N) = N_Function_Specification then
3253 Push_Scope (Designator);
3254 Analyze_Return_Type (N);
3255 End_Scope;
3256 end if;
3257
3258 -- Function case
3259
3260 if Nkind (N) = N_Function_Specification then
3261
3262 -- Deal with operator symbol case
3263
3264 if Nkind (Designator) = N_Defining_Operator_Symbol then
3265 Valid_Operator_Definition (Designator);
3266 end if;
3267
3268 May_Need_Actuals (Designator);
3269
3270 -- Ada 2005 (AI-251): If the return type is abstract, verify that
3271 -- the subprogram is abstract also. This does not apply to renaming
3272 -- declarations, where abstractness is inherited.
3273
3274 -- In case of primitives associated with abstract interface types
3275 -- the check is applied later (see Analyze_Subprogram_Declaration).
3276
3277 if not Nkind_In (Parent (N), N_Subprogram_Renaming_Declaration,
3278 N_Abstract_Subprogram_Declaration,
3279 N_Formal_Abstract_Subprogram_Declaration)
3280 then
3281 if Is_Abstract_Type (Etype (Designator))
3282 and then not Is_Interface (Etype (Designator))
3283 then
3284 Error_Msg_N
3285 ("function that returns abstract type must be abstract", N);
3286
3287 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
3288 -- access result whose designated type is abstract.
3289
3290 elsif Nkind (Result_Definition (N)) = N_Access_Definition
3291 and then
3292 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
3293 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
3294 and then Ada_Version >= Ada_2012
3295 then
3296 Error_Msg_N ("function whose access result designates "
3297 & "abstract type must be abstract", N);
3298 end if;
3299 end if;
3300 end if;
3301
3302 return Designator;
3303 end Analyze_Subprogram_Specification;
3304
3305 --------------------------
3306 -- Build_Body_To_Inline --
3307 --------------------------
3308
3309 procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id) is
3310 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
3311 Original_Body : Node_Id;
3312 Body_To_Analyze : Node_Id;
3313 Max_Size : constant := 10;
3314 Stat_Count : Integer := 0;
3315
3316 function Has_Excluded_Declaration (Decls : List_Id) return Boolean;
3317 -- Check for declarations that make inlining not worthwhile
3318
3319 function Has_Excluded_Statement (Stats : List_Id) return Boolean;
3320 -- Check for statements that make inlining not worthwhile: any tasking
3321 -- statement, nested at any level. Keep track of total number of
3322 -- elementary statements, as a measure of acceptable size.
3323
3324 function Has_Pending_Instantiation return Boolean;
3325 -- If some enclosing body contains instantiations that appear before the
3326 -- corresponding generic body, the enclosing body has a freeze node so
3327 -- that it can be elaborated after the generic itself. This might
3328 -- conflict with subsequent inlinings, so that it is unsafe to try to
3329 -- inline in such a case.
3330
3331 function Has_Single_Return return Boolean;
3332 -- In general we cannot inline functions that return unconstrained type.
3333 -- However, we can handle such functions if all return statements return
3334 -- a local variable that is the only declaration in the body of the
3335 -- function. In that case the call can be replaced by that local
3336 -- variable as is done for other inlined calls.
3337
3338 procedure Remove_Pragmas;
3339 -- A pragma Unreferenced or pragma Unmodified that mentions a formal
3340 -- parameter has no meaning when the body is inlined and the formals
3341 -- are rewritten. Remove it from body to inline. The analysis of the
3342 -- non-inlined body will handle the pragma properly.
3343
3344 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
3345 -- If the body of the subprogram includes a call that returns an
3346 -- unconstrained type, the secondary stack is involved, and it
3347 -- is not worth inlining.
3348
3349 ------------------------------
3350 -- Has_Excluded_Declaration --
3351 ------------------------------
3352
3353 function Has_Excluded_Declaration (Decls : List_Id) return Boolean is
3354 D : Node_Id;
3355
3356 function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
3357 -- Nested subprograms make a given body ineligible for inlining, but
3358 -- we make an exception for instantiations of unchecked conversion.
3359 -- The body has not been analyzed yet, so check the name, and verify
3360 -- that the visible entity with that name is the predefined unit.
3361
3362 -----------------------------
3363 -- Is_Unchecked_Conversion --
3364 -----------------------------
3365
3366 function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
3367 Id : constant Node_Id := Name (D);
3368 Conv : Entity_Id;
3369
3370 begin
3371 if Nkind (Id) = N_Identifier
3372 and then Chars (Id) = Name_Unchecked_Conversion
3373 then
3374 Conv := Current_Entity (Id);
3375
3376 elsif Nkind_In (Id, N_Selected_Component, N_Expanded_Name)
3377 and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
3378 then
3379 Conv := Current_Entity (Selector_Name (Id));
3380 else
3381 return False;
3382 end if;
3383
3384 return Present (Conv)
3385 and then Is_Predefined_File_Name
3386 (Unit_File_Name (Get_Source_Unit (Conv)))
3387 and then Is_Intrinsic_Subprogram (Conv);
3388 end Is_Unchecked_Conversion;
3389
3390 -- Start of processing for Has_Excluded_Declaration
3391
3392 begin
3393 D := First (Decls);
3394 while Present (D) loop
3395 if (Nkind (D) = N_Function_Instantiation
3396 and then not Is_Unchecked_Conversion (D))
3397 or else Nkind_In (D, N_Protected_Type_Declaration,
3398 N_Package_Declaration,
3399 N_Package_Instantiation,
3400 N_Subprogram_Body,
3401 N_Procedure_Instantiation,
3402 N_Task_Type_Declaration)
3403 then
3404 Cannot_Inline
3405 ("cannot inline & (non-allowed declaration)?", D, Subp);
3406 return True;
3407 end if;
3408
3409 Next (D);
3410 end loop;
3411
3412 return False;
3413 end Has_Excluded_Declaration;
3414
3415 ----------------------------
3416 -- Has_Excluded_Statement --
3417 ----------------------------
3418
3419 function Has_Excluded_Statement (Stats : List_Id) return Boolean is
3420 S : Node_Id;
3421 E : Node_Id;
3422
3423 begin
3424 S := First (Stats);
3425 while Present (S) loop
3426 Stat_Count := Stat_Count + 1;
3427
3428 if Nkind_In (S, N_Abort_Statement,
3429 N_Asynchronous_Select,
3430 N_Conditional_Entry_Call,
3431 N_Delay_Relative_Statement,
3432 N_Delay_Until_Statement,
3433 N_Selective_Accept,
3434 N_Timed_Entry_Call)
3435 then
3436 Cannot_Inline
3437 ("cannot inline & (non-allowed statement)?", S, Subp);
3438 return True;
3439
3440 elsif Nkind (S) = N_Block_Statement then
3441 if Present (Declarations (S))
3442 and then Has_Excluded_Declaration (Declarations (S))
3443 then
3444 return True;
3445
3446 elsif Present (Handled_Statement_Sequence (S))
3447 and then
3448 (Present
3449 (Exception_Handlers (Handled_Statement_Sequence (S)))
3450 or else
3451 Has_Excluded_Statement
3452 (Statements (Handled_Statement_Sequence (S))))
3453 then
3454 return True;
3455 end if;
3456
3457 elsif Nkind (S) = N_Case_Statement then
3458 E := First (Alternatives (S));
3459 while Present (E) loop
3460 if Has_Excluded_Statement (Statements (E)) then
3461 return True;
3462 end if;
3463
3464 Next (E);
3465 end loop;
3466
3467 elsif Nkind (S) = N_If_Statement then
3468 if Has_Excluded_Statement (Then_Statements (S)) then
3469 return True;
3470 end if;
3471
3472 if Present (Elsif_Parts (S)) then
3473 E := First (Elsif_Parts (S));
3474 while Present (E) loop
3475 if Has_Excluded_Statement (Then_Statements (E)) then
3476 return True;
3477 end if;
3478 Next (E);
3479 end loop;
3480 end if;
3481
3482 if Present (Else_Statements (S))
3483 and then Has_Excluded_Statement (Else_Statements (S))
3484 then
3485 return True;
3486 end if;
3487
3488 elsif Nkind (S) = N_Loop_Statement
3489 and then Has_Excluded_Statement (Statements (S))
3490 then
3491 return True;
3492
3493 elsif Nkind (S) = N_Extended_Return_Statement then
3494 if Has_Excluded_Statement
3495 (Statements (Handled_Statement_Sequence (S)))
3496 or else Present
3497 (Exception_Handlers (Handled_Statement_Sequence (S)))
3498 then
3499 return True;
3500 end if;
3501 end if;
3502
3503 Next (S);
3504 end loop;
3505
3506 return False;
3507 end Has_Excluded_Statement;
3508
3509 -------------------------------
3510 -- Has_Pending_Instantiation --
3511 -------------------------------
3512
3513 function Has_Pending_Instantiation return Boolean is
3514 S : Entity_Id;
3515
3516 begin
3517 S := Current_Scope;
3518 while Present (S) loop
3519 if Is_Compilation_Unit (S)
3520 or else Is_Child_Unit (S)
3521 then
3522 return False;
3523
3524 elsif Ekind (S) = E_Package
3525 and then Has_Forward_Instantiation (S)
3526 then
3527 return True;
3528 end if;
3529
3530 S := Scope (S);
3531 end loop;
3532
3533 return False;
3534 end Has_Pending_Instantiation;
3535
3536 ------------------------
3537 -- Has_Single_Return --
3538 ------------------------
3539
3540 function Has_Single_Return return Boolean is
3541 Return_Statement : Node_Id := Empty;
3542
3543 function Check_Return (N : Node_Id) return Traverse_Result;
3544
3545 ------------------
3546 -- Check_Return --
3547 ------------------
3548
3549 function Check_Return (N : Node_Id) return Traverse_Result is
3550 begin
3551 if Nkind (N) = N_Simple_Return_Statement then
3552 if Present (Expression (N))
3553 and then Is_Entity_Name (Expression (N))
3554 then
3555 if No (Return_Statement) then
3556 Return_Statement := N;
3557 return OK;
3558
3559 elsif Chars (Expression (N)) =
3560 Chars (Expression (Return_Statement))
3561 then
3562 return OK;
3563
3564 else
3565 return Abandon;
3566 end if;
3567
3568 -- A return statement within an extended return is a noop
3569 -- after inlining.
3570
3571 elsif No (Expression (N))
3572 and then Nkind (Parent (Parent (N))) =
3573 N_Extended_Return_Statement
3574 then
3575 return OK;
3576
3577 else
3578 -- Expression has wrong form
3579
3580 return Abandon;
3581 end if;
3582
3583 -- We can only inline a build-in-place function if
3584 -- it has a single extended return.
3585
3586 elsif Nkind (N) = N_Extended_Return_Statement then
3587 if No (Return_Statement) then
3588 Return_Statement := N;
3589 return OK;
3590
3591 else
3592 return Abandon;
3593 end if;
3594
3595 else
3596 return OK;
3597 end if;
3598 end Check_Return;
3599
3600 function Check_All_Returns is new Traverse_Func (Check_Return);
3601
3602 -- Start of processing for Has_Single_Return
3603
3604 begin
3605 if Check_All_Returns (N) /= OK then
3606 return False;
3607
3608 elsif Nkind (Return_Statement) = N_Extended_Return_Statement then
3609 return True;
3610
3611 else
3612 return Present (Declarations (N))
3613 and then Present (First (Declarations (N)))
3614 and then Chars (Expression (Return_Statement)) =
3615 Chars (Defining_Identifier (First (Declarations (N))));
3616 end if;
3617 end Has_Single_Return;
3618
3619 --------------------
3620 -- Remove_Pragmas --
3621 --------------------
3622
3623 procedure Remove_Pragmas is
3624 Decl : Node_Id;
3625 Nxt : Node_Id;
3626
3627 begin
3628 Decl := First (Declarations (Body_To_Analyze));
3629 while Present (Decl) loop
3630 Nxt := Next (Decl);
3631
3632 if Nkind (Decl) = N_Pragma
3633 and then (Pragma_Name (Decl) = Name_Unreferenced
3634 or else
3635 Pragma_Name (Decl) = Name_Unmodified)
3636 then
3637 Remove (Decl);
3638 end if;
3639
3640 Decl := Nxt;
3641 end loop;
3642 end Remove_Pragmas;
3643
3644 --------------------------
3645 -- Uses_Secondary_Stack --
3646 --------------------------
3647
3648 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
3649 function Check_Call (N : Node_Id) return Traverse_Result;
3650 -- Look for function calls that return an unconstrained type
3651
3652 ----------------
3653 -- Check_Call --
3654 ----------------
3655
3656 function Check_Call (N : Node_Id) return Traverse_Result is
3657 begin
3658 if Nkind (N) = N_Function_Call
3659 and then Is_Entity_Name (Name (N))
3660 and then Is_Composite_Type (Etype (Entity (Name (N))))
3661 and then not Is_Constrained (Etype (Entity (Name (N))))
3662 then
3663 Cannot_Inline
3664 ("cannot inline & (call returns unconstrained type)?",
3665 N, Subp);
3666 return Abandon;
3667 else
3668 return OK;
3669 end if;
3670 end Check_Call;
3671
3672 function Check_Calls is new Traverse_Func (Check_Call);
3673
3674 begin
3675 return Check_Calls (Bod) = Abandon;
3676 end Uses_Secondary_Stack;
3677
3678 -- Start of processing for Build_Body_To_Inline
3679
3680 begin
3681 -- Return immediately if done already
3682
3683 if Nkind (Decl) = N_Subprogram_Declaration
3684 and then Present (Body_To_Inline (Decl))
3685 then
3686 return;
3687
3688 -- Functions that return unconstrained composite types require
3689 -- secondary stack handling, and cannot currently be inlined, unless
3690 -- all return statements return a local variable that is the first
3691 -- local declaration in the body.
3692
3693 elsif Ekind (Subp) = E_Function
3694 and then not Is_Scalar_Type (Etype (Subp))
3695 and then not Is_Access_Type (Etype (Subp))
3696 and then not Is_Constrained (Etype (Subp))
3697 then
3698 if not Has_Single_Return then
3699 Cannot_Inline
3700 ("cannot inline & (unconstrained return type)?", N, Subp);
3701 return;
3702 end if;
3703
3704 -- Ditto for functions that return controlled types, where controlled
3705 -- actions interfere in complex ways with inlining.
3706
3707 elsif Ekind (Subp) = E_Function
3708 and then Needs_Finalization (Etype (Subp))
3709 then
3710 Cannot_Inline
3711 ("cannot inline & (controlled return type)?", N, Subp);
3712 return;
3713 end if;
3714
3715 if Present (Declarations (N))
3716 and then Has_Excluded_Declaration (Declarations (N))
3717 then
3718 return;
3719 end if;
3720
3721 if Present (Handled_Statement_Sequence (N)) then
3722 if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
3723 Cannot_Inline
3724 ("cannot inline& (exception handler)?",
3725 First (Exception_Handlers (Handled_Statement_Sequence (N))),
3726 Subp);
3727 return;
3728 elsif
3729 Has_Excluded_Statement
3730 (Statements (Handled_Statement_Sequence (N)))
3731 then
3732 return;
3733 end if;
3734 end if;
3735
3736 -- We do not inline a subprogram that is too large, unless it is
3737 -- marked Inline_Always. This pragma does not suppress the other
3738 -- checks on inlining (forbidden declarations, handlers, etc).
3739
3740 if Stat_Count > Max_Size
3741 and then not Has_Pragma_Inline_Always (Subp)
3742 then
3743 Cannot_Inline ("cannot inline& (body too large)?", N, Subp);
3744 return;
3745 end if;
3746
3747 if Has_Pending_Instantiation then
3748 Cannot_Inline
3749 ("cannot inline& (forward instance within enclosing body)?",
3750 N, Subp);
3751 return;
3752 end if;
3753
3754 -- Within an instance, the body to inline must be treated as a nested
3755 -- generic, so that the proper global references are preserved.
3756
3757 -- Note that we do not do this at the library level, because it is not
3758 -- needed, and furthermore this causes trouble if front end inlining
3759 -- is activated (-gnatN).
3760
3761 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
3762 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
3763 Original_Body := Copy_Generic_Node (N, Empty, True);
3764 else
3765 Original_Body := Copy_Separate_Tree (N);
3766 end if;
3767
3768 -- We need to capture references to the formals in order to substitute
3769 -- the actuals at the point of inlining, i.e. instantiation. To treat
3770 -- the formals as globals to the body to inline, we nest it within
3771 -- a dummy parameterless subprogram, declared within the real one.
3772 -- To avoid generating an internal name (which is never public, and
3773 -- which affects serial numbers of other generated names), we use
3774 -- an internal symbol that cannot conflict with user declarations.
3775
3776 Set_Parameter_Specifications (Specification (Original_Body), No_List);
3777 Set_Defining_Unit_Name
3778 (Specification (Original_Body),
3779 Make_Defining_Identifier (Sloc (N), Name_uParent));
3780 Set_Corresponding_Spec (Original_Body, Empty);
3781
3782 Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
3783
3784 -- Set return type of function, which is also global and does not need
3785 -- to be resolved.
3786
3787 if Ekind (Subp) = E_Function then
3788 Set_Result_Definition (Specification (Body_To_Analyze),
3789 New_Occurrence_Of (Etype (Subp), Sloc (N)));
3790 end if;
3791
3792 if No (Declarations (N)) then
3793 Set_Declarations (N, New_List (Body_To_Analyze));
3794 else
3795 Append (Body_To_Analyze, Declarations (N));
3796 end if;
3797
3798 Expander_Mode_Save_And_Set (False);
3799 Remove_Pragmas;
3800
3801 Analyze (Body_To_Analyze);
3802 Push_Scope (Defining_Entity (Body_To_Analyze));
3803 Save_Global_References (Original_Body);
3804 End_Scope;
3805 Remove (Body_To_Analyze);
3806
3807 Expander_Mode_Restore;
3808
3809 -- Restore environment if previously saved
3810
3811 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
3812 Restore_Env;
3813 end if;
3814
3815 -- If secondary stk used there is no point in inlining. We have
3816 -- already issued the warning in this case, so nothing to do.
3817
3818 if Uses_Secondary_Stack (Body_To_Analyze) then
3819 return;
3820 end if;
3821
3822 Set_Body_To_Inline (Decl, Original_Body);
3823 Set_Ekind (Defining_Entity (Original_Body), Ekind (Subp));
3824 Set_Is_Inlined (Subp);
3825 end Build_Body_To_Inline;
3826
3827 -------------------
3828 -- Cannot_Inline --
3829 -------------------
3830
3831 procedure Cannot_Inline (Msg : String; N : Node_Id; Subp : Entity_Id) is
3832 begin
3833 -- Do not emit warning if this is a predefined unit which is not the
3834 -- main unit. With validity checks enabled, some predefined subprograms
3835 -- may contain nested subprograms and become ineligible for inlining.
3836
3837 if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
3838 and then not In_Extended_Main_Source_Unit (Subp)
3839 then
3840 null;
3841
3842 elsif Has_Pragma_Inline_Always (Subp) then
3843
3844 -- Remove last character (question mark) to make this into an error,
3845 -- because the Inline_Always pragma cannot be obeyed.
3846
3847 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
3848
3849 elsif Ineffective_Inline_Warnings then
3850 Error_Msg_NE (Msg, N, Subp);
3851 end if;
3852 end Cannot_Inline;
3853
3854 -----------------------
3855 -- Check_Conformance --
3856 -----------------------
3857
3858 procedure Check_Conformance
3859 (New_Id : Entity_Id;
3860 Old_Id : Entity_Id;
3861 Ctype : Conformance_Type;
3862 Errmsg : Boolean;
3863 Conforms : out Boolean;
3864 Err_Loc : Node_Id := Empty;
3865 Get_Inst : Boolean := False;
3866 Skip_Controlling_Formals : Boolean := False)
3867 is
3868 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
3869 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
3870 -- If Errmsg is True, then processing continues to post an error message
3871 -- for conformance error on given node. Two messages are output. The
3872 -- first message points to the previous declaration with a general "no
3873 -- conformance" message. The second is the detailed reason, supplied as
3874 -- Msg. The parameter N provide information for a possible & insertion
3875 -- in the message, and also provides the location for posting the
3876 -- message in the absence of a specified Err_Loc location.
3877
3878 -----------------------
3879 -- Conformance_Error --
3880 -----------------------
3881
3882 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
3883 Enode : Node_Id;
3884
3885 begin
3886 Conforms := False;
3887
3888 if Errmsg then
3889 if No (Err_Loc) then
3890 Enode := N;
3891 else
3892 Enode := Err_Loc;
3893 end if;
3894
3895 Error_Msg_Sloc := Sloc (Old_Id);
3896
3897 case Ctype is
3898 when Type_Conformant =>
3899 Error_Msg_N -- CODEFIX
3900 ("not type conformant with declaration#!", Enode);
3901
3902 when Mode_Conformant =>
3903 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
3904 Error_Msg_N
3905 ("not mode conformant with operation inherited#!",
3906 Enode);
3907 else
3908 Error_Msg_N
3909 ("not mode conformant with declaration#!", Enode);
3910 end if;
3911
3912 when Subtype_Conformant =>
3913 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
3914 Error_Msg_N
3915 ("not subtype conformant with operation inherited#!",
3916 Enode);
3917 else
3918 Error_Msg_N
3919 ("not subtype conformant with declaration#!", Enode);
3920 end if;
3921
3922 when Fully_Conformant =>
3923 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
3924 Error_Msg_N -- CODEFIX
3925 ("not fully conformant with operation inherited#!",
3926 Enode);
3927 else
3928 Error_Msg_N -- CODEFIX
3929 ("not fully conformant with declaration#!", Enode);
3930 end if;
3931 end case;
3932
3933 Error_Msg_NE (Msg, Enode, N);
3934 end if;
3935 end Conformance_Error;
3936
3937 -- Local Variables
3938
3939 Old_Type : constant Entity_Id := Etype (Old_Id);
3940 New_Type : constant Entity_Id := Etype (New_Id);
3941 Old_Formal : Entity_Id;
3942 New_Formal : Entity_Id;
3943 Access_Types_Match : Boolean;
3944 Old_Formal_Base : Entity_Id;
3945 New_Formal_Base : Entity_Id;
3946
3947 -- Start of processing for Check_Conformance
3948
3949 begin
3950 Conforms := True;
3951
3952 -- We need a special case for operators, since they don't appear
3953 -- explicitly.
3954
3955 if Ctype = Type_Conformant then
3956 if Ekind (New_Id) = E_Operator
3957 and then Operator_Matches_Spec (New_Id, Old_Id)
3958 then
3959 return;
3960 end if;
3961 end if;
3962
3963 -- If both are functions/operators, check return types conform
3964
3965 if Old_Type /= Standard_Void_Type
3966 and then New_Type /= Standard_Void_Type
3967 then
3968
3969 -- If we are checking interface conformance we omit controlling
3970 -- arguments and result, because we are only checking the conformance
3971 -- of the remaining parameters.
3972
3973 if Has_Controlling_Result (Old_Id)
3974 and then Has_Controlling_Result (New_Id)
3975 and then Skip_Controlling_Formals
3976 then
3977 null;
3978
3979 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
3980 Conformance_Error ("\return type does not match!", New_Id);
3981 return;
3982 end if;
3983
3984 -- Ada 2005 (AI-231): In case of anonymous access types check the
3985 -- null-exclusion and access-to-constant attributes match.
3986
3987 if Ada_Version >= Ada_2005
3988 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
3989 and then
3990 (Can_Never_Be_Null (Old_Type)
3991 /= Can_Never_Be_Null (New_Type)
3992 or else Is_Access_Constant (Etype (Old_Type))
3993 /= Is_Access_Constant (Etype (New_Type)))
3994 then
3995 Conformance_Error ("\return type does not match!", New_Id);
3996 return;
3997 end if;
3998
3999 -- If either is a function/operator and the other isn't, error
4000
4001 elsif Old_Type /= Standard_Void_Type
4002 or else New_Type /= Standard_Void_Type
4003 then
4004 Conformance_Error ("\functions can only match functions!", New_Id);
4005 return;
4006 end if;
4007
4008 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
4009 -- If this is a renaming as body, refine error message to indicate that
4010 -- the conflict is with the original declaration. If the entity is not
4011 -- frozen, the conventions don't have to match, the one of the renamed
4012 -- entity is inherited.
4013
4014 if Ctype >= Subtype_Conformant then
4015 if Convention (Old_Id) /= Convention (New_Id) then
4016
4017 if not Is_Frozen (New_Id) then
4018 null;
4019
4020 elsif Present (Err_Loc)
4021 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
4022 and then Present (Corresponding_Spec (Err_Loc))
4023 then
4024 Error_Msg_Name_1 := Chars (New_Id);
4025 Error_Msg_Name_2 :=
4026 Name_Ada + Convention_Id'Pos (Convention (New_Id));
4027 Conformance_Error ("\prior declaration for% has convention %!");
4028
4029 else
4030 Conformance_Error ("\calling conventions do not match!");
4031 end if;
4032
4033 return;
4034
4035 elsif Is_Formal_Subprogram (Old_Id)
4036 or else Is_Formal_Subprogram (New_Id)
4037 then
4038 Conformance_Error ("\formal subprograms not allowed!");
4039 return;
4040 end if;
4041 end if;
4042
4043 -- Deal with parameters
4044
4045 -- Note: we use the entity information, rather than going directly
4046 -- to the specification in the tree. This is not only simpler, but
4047 -- absolutely necessary for some cases of conformance tests between
4048 -- operators, where the declaration tree simply does not exist!
4049
4050 Old_Formal := First_Formal (Old_Id);
4051 New_Formal := First_Formal (New_Id);
4052 while Present (Old_Formal) and then Present (New_Formal) loop
4053 if Is_Controlling_Formal (Old_Formal)
4054 and then Is_Controlling_Formal (New_Formal)
4055 and then Skip_Controlling_Formals
4056 then
4057 -- The controlling formals will have different types when
4058 -- comparing an interface operation with its match, but both
4059 -- or neither must be access parameters.
4060
4061 if Is_Access_Type (Etype (Old_Formal))
4062 =
4063 Is_Access_Type (Etype (New_Formal))
4064 then
4065 goto Skip_Controlling_Formal;
4066 else
4067 Conformance_Error
4068 ("\access parameter does not match!", New_Formal);
4069 end if;
4070 end if;
4071
4072 if Ctype = Fully_Conformant then
4073
4074 -- Names must match. Error message is more accurate if we do
4075 -- this before checking that the types of the formals match.
4076
4077 if Chars (Old_Formal) /= Chars (New_Formal) then
4078 Conformance_Error ("\name & does not match!", New_Formal);
4079
4080 -- Set error posted flag on new formal as well to stop
4081 -- junk cascaded messages in some cases.
4082
4083 Set_Error_Posted (New_Formal);
4084 return;
4085 end if;
4086
4087 -- Null exclusion must match
4088
4089 if Null_Exclusion_Present (Parent (Old_Formal))
4090 /=
4091 Null_Exclusion_Present (Parent (New_Formal))
4092 then
4093 -- Only give error if both come from source. This should be
4094 -- investigated some time, since it should not be needed ???
4095
4096 if Comes_From_Source (Old_Formal)
4097 and then
4098 Comes_From_Source (New_Formal)
4099 then
4100 Conformance_Error
4101 ("\null exclusion for & does not match", New_Formal);
4102
4103 -- Mark error posted on the new formal to avoid duplicated
4104 -- complaint about types not matching.
4105
4106 Set_Error_Posted (New_Formal);
4107 end if;
4108 end if;
4109 end if;
4110
4111 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
4112 -- case occurs whenever a subprogram is being renamed and one of its
4113 -- parameters imposes a null exclusion. For example:
4114
4115 -- type T is null record;
4116 -- type Acc_T is access T;
4117 -- subtype Acc_T_Sub is Acc_T;
4118
4119 -- procedure P (Obj : not null Acc_T_Sub); -- itype
4120 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
4121 -- renames P;
4122
4123 Old_Formal_Base := Etype (Old_Formal);
4124 New_Formal_Base := Etype (New_Formal);
4125
4126 if Get_Inst then
4127 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
4128 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
4129 end if;
4130
4131 Access_Types_Match := Ada_Version >= Ada_2005
4132
4133 -- Ensure that this rule is only applied when New_Id is a
4134 -- renaming of Old_Id.
4135
4136 and then Nkind (Parent (Parent (New_Id))) =
4137 N_Subprogram_Renaming_Declaration
4138 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
4139 and then Present (Entity (Name (Parent (Parent (New_Id)))))
4140 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
4141
4142 -- Now handle the allowed access-type case
4143
4144 and then Is_Access_Type (Old_Formal_Base)
4145 and then Is_Access_Type (New_Formal_Base)
4146
4147 -- The type kinds must match. The only exception occurs with
4148 -- multiple generics of the form:
4149
4150 -- generic generic
4151 -- type F is private; type A is private;
4152 -- type F_Ptr is access F; type A_Ptr is access A;
4153 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
4154 -- package F_Pack is ... package A_Pack is
4155 -- package F_Inst is
4156 -- new F_Pack (A, A_Ptr, A_P);
4157
4158 -- When checking for conformance between the parameters of A_P
4159 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
4160 -- because the compiler has transformed A_Ptr into a subtype of
4161 -- F_Ptr. We catch this case in the code below.
4162
4163 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
4164 or else
4165 (Is_Generic_Type (Old_Formal_Base)
4166 and then Is_Generic_Type (New_Formal_Base)
4167 and then Is_Internal (New_Formal_Base)
4168 and then Etype (Etype (New_Formal_Base)) =
4169 Old_Formal_Base))
4170 and then Directly_Designated_Type (Old_Formal_Base) =
4171 Directly_Designated_Type (New_Formal_Base)
4172 and then ((Is_Itype (Old_Formal_Base)
4173 and then Can_Never_Be_Null (Old_Formal_Base))
4174 or else
4175 (Is_Itype (New_Formal_Base)
4176 and then Can_Never_Be_Null (New_Formal_Base)));
4177
4178 -- Types must always match. In the visible part of an instance,
4179 -- usual overloading rules for dispatching operations apply, and
4180 -- we check base types (not the actual subtypes).
4181
4182 if In_Instance_Visible_Part
4183 and then Is_Dispatching_Operation (New_Id)
4184 then
4185 if not Conforming_Types
4186 (T1 => Base_Type (Etype (Old_Formal)),
4187 T2 => Base_Type (Etype (New_Formal)),
4188 Ctype => Ctype,
4189 Get_Inst => Get_Inst)
4190 and then not Access_Types_Match
4191 then
4192 Conformance_Error ("\type of & does not match!", New_Formal);
4193 return;
4194 end if;
4195
4196 elsif not Conforming_Types
4197 (T1 => Old_Formal_Base,
4198 T2 => New_Formal_Base,
4199 Ctype => Ctype,
4200 Get_Inst => Get_Inst)
4201 and then not Access_Types_Match
4202 then
4203 -- Don't give error message if old type is Any_Type. This test
4204 -- avoids some cascaded errors, e.g. in case of a bad spec.
4205
4206 if Errmsg and then Old_Formal_Base = Any_Type then
4207 Conforms := False;
4208 else
4209 Conformance_Error ("\type of & does not match!", New_Formal);
4210 end if;
4211
4212 return;
4213 end if;
4214
4215 -- For mode conformance, mode must match
4216
4217 if Ctype >= Mode_Conformant then
4218 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
4219 Conformance_Error ("\mode of & does not match!", New_Formal);
4220 return;
4221
4222 -- Part of mode conformance for access types is having the same
4223 -- constant modifier.
4224
4225 elsif Access_Types_Match
4226 and then Is_Access_Constant (Old_Formal_Base) /=
4227 Is_Access_Constant (New_Formal_Base)
4228 then
4229 Conformance_Error
4230 ("\constant modifier does not match!", New_Formal);
4231 return;
4232 end if;
4233 end if;
4234
4235 if Ctype >= Subtype_Conformant then
4236
4237 -- Ada 2005 (AI-231): In case of anonymous access types check
4238 -- the null-exclusion and access-to-constant attributes must
4239 -- match. For null exclusion, we test the types rather than the
4240 -- formals themselves, since the attribute is only set reliably
4241 -- on the formals in the Ada 95 case, and we exclude the case
4242 -- where Old_Formal is marked as controlling, to avoid errors
4243 -- when matching completing bodies with dispatching declarations
4244 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
4245
4246 if Ada_Version >= Ada_2005
4247 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
4248 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
4249 and then
4250 ((Can_Never_Be_Null (Etype (Old_Formal)) /=
4251 Can_Never_Be_Null (Etype (New_Formal))
4252 and then
4253 not Is_Controlling_Formal (Old_Formal))
4254 or else
4255 Is_Access_Constant (Etype (Old_Formal)) /=
4256 Is_Access_Constant (Etype (New_Formal)))
4257
4258 -- Do not complain if error already posted on New_Formal. This
4259 -- avoids some redundant error messages.
4260
4261 and then not Error_Posted (New_Formal)
4262 then
4263 -- It is allowed to omit the null-exclusion in case of stream
4264 -- attribute subprograms. We recognize stream subprograms
4265 -- through their TSS-generated suffix.
4266
4267 declare
4268 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
4269 begin
4270 if TSS_Name /= TSS_Stream_Read
4271 and then TSS_Name /= TSS_Stream_Write
4272 and then TSS_Name /= TSS_Stream_Input
4273 and then TSS_Name /= TSS_Stream_Output
4274 then
4275 Conformance_Error
4276 ("\type of & does not match!", New_Formal);
4277 return;
4278 end if;
4279 end;
4280 end if;
4281 end if;
4282
4283 -- Full conformance checks
4284
4285 if Ctype = Fully_Conformant then
4286
4287 -- We have checked already that names match
4288
4289 if Parameter_Mode (Old_Formal) = E_In_Parameter then
4290
4291 -- Check default expressions for in parameters
4292
4293 declare
4294 NewD : constant Boolean :=
4295 Present (Default_Value (New_Formal));
4296 OldD : constant Boolean :=
4297 Present (Default_Value (Old_Formal));
4298 begin
4299 if NewD or OldD then
4300
4301 -- The old default value has been analyzed because the
4302 -- current full declaration will have frozen everything
4303 -- before. The new default value has not been analyzed,
4304 -- so analyze it now before we check for conformance.
4305
4306 if NewD then
4307 Push_Scope (New_Id);
4308 Preanalyze_Spec_Expression
4309 (Default_Value (New_Formal), Etype (New_Formal));
4310 End_Scope;
4311 end if;
4312
4313 if not (NewD and OldD)
4314 or else not Fully_Conformant_Expressions
4315 (Default_Value (Old_Formal),
4316 Default_Value (New_Formal))
4317 then
4318 Conformance_Error
4319 ("\default expression for & does not match!",
4320 New_Formal);
4321 return;
4322 end if;
4323 end if;
4324 end;
4325 end if;
4326 end if;
4327
4328 -- A couple of special checks for Ada 83 mode. These checks are
4329 -- skipped if either entity is an operator in package Standard,
4330 -- or if either old or new instance is not from the source program.
4331
4332 if Ada_Version = Ada_83
4333 and then Sloc (Old_Id) > Standard_Location
4334 and then Sloc (New_Id) > Standard_Location
4335 and then Comes_From_Source (Old_Id)
4336 and then Comes_From_Source (New_Id)
4337 then
4338 declare
4339 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
4340 New_Param : constant Node_Id := Declaration_Node (New_Formal);
4341
4342 begin
4343 -- Explicit IN must be present or absent in both cases. This
4344 -- test is required only in the full conformance case.
4345
4346 if In_Present (Old_Param) /= In_Present (New_Param)
4347 and then Ctype = Fully_Conformant
4348 then
4349 Conformance_Error
4350 ("\(Ada 83) IN must appear in both declarations",
4351 New_Formal);
4352 return;
4353 end if;
4354
4355 -- Grouping (use of comma in param lists) must be the same
4356 -- This is where we catch a misconformance like:
4357
4358 -- A, B : Integer
4359 -- A : Integer; B : Integer
4360
4361 -- which are represented identically in the tree except
4362 -- for the setting of the flags More_Ids and Prev_Ids.
4363
4364 if More_Ids (Old_Param) /= More_Ids (New_Param)
4365 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
4366 then
4367 Conformance_Error
4368 ("\grouping of & does not match!", New_Formal);
4369 return;
4370 end if;
4371 end;
4372 end if;
4373
4374 -- This label is required when skipping controlling formals
4375
4376 <<Skip_Controlling_Formal>>
4377
4378 Next_Formal (Old_Formal);
4379 Next_Formal (New_Formal);
4380 end loop;
4381
4382 if Present (Old_Formal) then
4383 Conformance_Error ("\too few parameters!");
4384 return;
4385
4386 elsif Present (New_Formal) then
4387 Conformance_Error ("\too many parameters!", New_Formal);
4388 return;
4389 end if;
4390 end Check_Conformance;
4391
4392 -----------------------
4393 -- Check_Conventions --
4394 -----------------------
4395
4396 procedure Check_Conventions (Typ : Entity_Id) is
4397 Ifaces_List : Elist_Id;
4398
4399 procedure Check_Convention (Op : Entity_Id);
4400 -- Verify that the convention of inherited dispatching operation Op is
4401 -- consistent among all subprograms it overrides. In order to minimize
4402 -- the search, Search_From is utilized to designate a specific point in
4403 -- the list rather than iterating over the whole list once more.
4404
4405 ----------------------
4406 -- Check_Convention --
4407 ----------------------
4408
4409 procedure Check_Convention (Op : Entity_Id) is
4410 Iface_Elmt : Elmt_Id;
4411 Iface_Prim_Elmt : Elmt_Id;
4412 Iface_Prim : Entity_Id;
4413
4414 begin
4415 Iface_Elmt := First_Elmt (Ifaces_List);
4416 while Present (Iface_Elmt) loop
4417 Iface_Prim_Elmt :=
4418 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
4419 while Present (Iface_Prim_Elmt) loop
4420 Iface_Prim := Node (Iface_Prim_Elmt);
4421
4422 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
4423 and then Convention (Iface_Prim) /= Convention (Op)
4424 then
4425 Error_Msg_N
4426 ("inconsistent conventions in primitive operations", Typ);
4427
4428 Error_Msg_Name_1 := Chars (Op);
4429 Error_Msg_Name_2 := Get_Convention_Name (Convention (Op));
4430 Error_Msg_Sloc := Sloc (Op);
4431
4432 if Comes_From_Source (Op) or else No (Alias (Op)) then
4433 if not Present (Overridden_Operation (Op)) then
4434 Error_Msg_N ("\\primitive % defined #", Typ);
4435 else
4436 Error_Msg_N
4437 ("\\overriding operation % with " &
4438 "convention % defined #", Typ);
4439 end if;
4440
4441 else pragma Assert (Present (Alias (Op)));
4442 Error_Msg_Sloc := Sloc (Alias (Op));
4443 Error_Msg_N
4444 ("\\inherited operation % with " &
4445 "convention % defined #", Typ);
4446 end if;
4447
4448 Error_Msg_Name_1 := Chars (Op);
4449 Error_Msg_Name_2 :=
4450 Get_Convention_Name (Convention (Iface_Prim));
4451 Error_Msg_Sloc := Sloc (Iface_Prim);
4452 Error_Msg_N
4453 ("\\overridden operation % with " &
4454 "convention % defined #", Typ);
4455
4456 -- Avoid cascading errors
4457
4458 return;
4459 end if;
4460
4461 Next_Elmt (Iface_Prim_Elmt);
4462 end loop;
4463
4464 Next_Elmt (Iface_Elmt);
4465 end loop;
4466 end Check_Convention;
4467
4468 -- Local variables
4469
4470 Prim_Op : Entity_Id;
4471 Prim_Op_Elmt : Elmt_Id;
4472
4473 -- Start of processing for Check_Conventions
4474
4475 begin
4476 if not Has_Interfaces (Typ) then
4477 return;
4478 end if;
4479
4480 Collect_Interfaces (Typ, Ifaces_List);
4481
4482 -- The algorithm checks every overriding dispatching operation against
4483 -- all the corresponding overridden dispatching operations, detecting
4484 -- differences in conventions.
4485
4486 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
4487 while Present (Prim_Op_Elmt) loop
4488 Prim_Op := Node (Prim_Op_Elmt);
4489
4490 -- A small optimization: skip the predefined dispatching operations
4491 -- since they always have the same convention.
4492
4493 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
4494 Check_Convention (Prim_Op);
4495 end if;
4496
4497 Next_Elmt (Prim_Op_Elmt);
4498 end loop;
4499 end Check_Conventions;
4500
4501 ------------------------------
4502 -- Check_Delayed_Subprogram --
4503 ------------------------------
4504
4505 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
4506 F : Entity_Id;
4507
4508 procedure Possible_Freeze (T : Entity_Id);
4509 -- T is the type of either a formal parameter or of the return type.
4510 -- If T is not yet frozen and needs a delayed freeze, then the
4511 -- subprogram itself must be delayed. If T is the limited view of an
4512 -- incomplete type the subprogram must be frozen as well, because
4513 -- T may depend on local types that have not been frozen yet.
4514
4515 ---------------------
4516 -- Possible_Freeze --
4517 ---------------------
4518
4519 procedure Possible_Freeze (T : Entity_Id) is
4520 begin
4521 if Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
4522 Set_Has_Delayed_Freeze (Designator);
4523
4524 elsif Is_Access_Type (T)
4525 and then Has_Delayed_Freeze (Designated_Type (T))
4526 and then not Is_Frozen (Designated_Type (T))
4527 then
4528 Set_Has_Delayed_Freeze (Designator);
4529
4530 elsif Ekind (T) = E_Incomplete_Type and then From_With_Type (T) then
4531 Set_Has_Delayed_Freeze (Designator);
4532
4533 -- AI05-0151: In Ada 2012, Incomplete types can appear in the profile
4534 -- of a subprogram or entry declaration.
4535
4536 elsif Ekind (T) = E_Incomplete_Type
4537 and then Ada_Version >= Ada_2012
4538 then
4539 Set_Has_Delayed_Freeze (Designator);
4540 end if;
4541
4542 end Possible_Freeze;
4543
4544 -- Start of processing for Check_Delayed_Subprogram
4545
4546 begin
4547 -- All subprograms, including abstract subprograms, may need a freeze
4548 -- node if some formal type or the return type needs one.
4549
4550 Possible_Freeze (Etype (Designator));
4551 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
4552
4553 -- Need delayed freeze if any of the formal types themselves need
4554 -- a delayed freeze and are not yet frozen.
4555
4556 F := First_Formal (Designator);
4557 while Present (F) loop
4558 Possible_Freeze (Etype (F));
4559 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
4560 Next_Formal (F);
4561 end loop;
4562
4563 -- Mark functions that return by reference. Note that it cannot be
4564 -- done for delayed_freeze subprograms because the underlying
4565 -- returned type may not be known yet (for private types)
4566
4567 if not Has_Delayed_Freeze (Designator)
4568 and then Expander_Active
4569 then
4570 declare
4571 Typ : constant Entity_Id := Etype (Designator);
4572 Utyp : constant Entity_Id := Underlying_Type (Typ);
4573
4574 begin
4575 if Is_Immutably_Limited_Type (Typ) then
4576 Set_Returns_By_Ref (Designator);
4577
4578 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
4579 Set_Returns_By_Ref (Designator);
4580 end if;
4581 end;
4582 end if;
4583 end Check_Delayed_Subprogram;
4584
4585 ------------------------------------
4586 -- Check_Discriminant_Conformance --
4587 ------------------------------------
4588
4589 procedure Check_Discriminant_Conformance
4590 (N : Node_Id;
4591 Prev : Entity_Id;
4592 Prev_Loc : Node_Id)
4593 is
4594 Old_Discr : Entity_Id := First_Discriminant (Prev);
4595 New_Discr : Node_Id := First (Discriminant_Specifications (N));
4596 New_Discr_Id : Entity_Id;
4597 New_Discr_Type : Entity_Id;
4598
4599 procedure Conformance_Error (Msg : String; N : Node_Id);
4600 -- Post error message for conformance error on given node. Two messages
4601 -- are output. The first points to the previous declaration with a
4602 -- general "no conformance" message. The second is the detailed reason,
4603 -- supplied as Msg. The parameter N provide information for a possible
4604 -- & insertion in the message.
4605
4606 -----------------------
4607 -- Conformance_Error --
4608 -----------------------
4609
4610 procedure Conformance_Error (Msg : String; N : Node_Id) is
4611 begin
4612 Error_Msg_Sloc := Sloc (Prev_Loc);
4613 Error_Msg_N -- CODEFIX
4614 ("not fully conformant with declaration#!", N);
4615 Error_Msg_NE (Msg, N, N);
4616 end Conformance_Error;
4617
4618 -- Start of processing for Check_Discriminant_Conformance
4619
4620 begin
4621 while Present (Old_Discr) and then Present (New_Discr) loop
4622
4623 New_Discr_Id := Defining_Identifier (New_Discr);
4624
4625 -- The subtype mark of the discriminant on the full type has not
4626 -- been analyzed so we do it here. For an access discriminant a new
4627 -- type is created.
4628
4629 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
4630 New_Discr_Type :=
4631 Access_Definition (N, Discriminant_Type (New_Discr));
4632
4633 else
4634 Analyze (Discriminant_Type (New_Discr));
4635 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
4636
4637 -- Ada 2005: if the discriminant definition carries a null
4638 -- exclusion, create an itype to check properly for consistency
4639 -- with partial declaration.
4640
4641 if Is_Access_Type (New_Discr_Type)
4642 and then Null_Exclusion_Present (New_Discr)
4643 then
4644 New_Discr_Type :=
4645 Create_Null_Excluding_Itype
4646 (T => New_Discr_Type,
4647 Related_Nod => New_Discr,
4648 Scope_Id => Current_Scope);
4649 end if;
4650 end if;
4651
4652 if not Conforming_Types
4653 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
4654 then
4655 Conformance_Error ("type of & does not match!", New_Discr_Id);
4656 return;
4657 else
4658 -- Treat the new discriminant as an occurrence of the old one,
4659 -- for navigation purposes, and fill in some semantic
4660 -- information, for completeness.
4661
4662 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
4663 Set_Etype (New_Discr_Id, Etype (Old_Discr));
4664 Set_Scope (New_Discr_Id, Scope (Old_Discr));
4665 end if;
4666
4667 -- Names must match
4668
4669 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
4670 Conformance_Error ("name & does not match!", New_Discr_Id);
4671 return;
4672 end if;
4673
4674 -- Default expressions must match
4675
4676 declare
4677 NewD : constant Boolean :=
4678 Present (Expression (New_Discr));
4679 OldD : constant Boolean :=
4680 Present (Expression (Parent (Old_Discr)));
4681
4682 begin
4683 if NewD or OldD then
4684
4685 -- The old default value has been analyzed and expanded,
4686 -- because the current full declaration will have frozen
4687 -- everything before. The new default values have not been
4688 -- expanded, so expand now to check conformance.
4689
4690 if NewD then
4691 Preanalyze_Spec_Expression
4692 (Expression (New_Discr), New_Discr_Type);
4693 end if;
4694
4695 if not (NewD and OldD)
4696 or else not Fully_Conformant_Expressions
4697 (Expression (Parent (Old_Discr)),
4698 Expression (New_Discr))
4699
4700 then
4701 Conformance_Error
4702 ("default expression for & does not match!",
4703 New_Discr_Id);
4704 return;
4705 end if;
4706 end if;
4707 end;
4708
4709 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
4710
4711 if Ada_Version = Ada_83 then
4712 declare
4713 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
4714
4715 begin
4716 -- Grouping (use of comma in param lists) must be the same
4717 -- This is where we catch a misconformance like:
4718
4719 -- A, B : Integer
4720 -- A : Integer; B : Integer
4721
4722 -- which are represented identically in the tree except
4723 -- for the setting of the flags More_Ids and Prev_Ids.
4724
4725 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
4726 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
4727 then
4728 Conformance_Error
4729 ("grouping of & does not match!", New_Discr_Id);
4730 return;
4731 end if;
4732 end;
4733 end if;
4734
4735 Next_Discriminant (Old_Discr);
4736 Next (New_Discr);
4737 end loop;
4738
4739 if Present (Old_Discr) then
4740 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
4741 return;
4742
4743 elsif Present (New_Discr) then
4744 Conformance_Error
4745 ("too many discriminants!", Defining_Identifier (New_Discr));
4746 return;
4747 end if;
4748 end Check_Discriminant_Conformance;
4749
4750 ----------------------------
4751 -- Check_Fully_Conformant --
4752 ----------------------------
4753
4754 procedure Check_Fully_Conformant
4755 (New_Id : Entity_Id;
4756 Old_Id : Entity_Id;
4757 Err_Loc : Node_Id := Empty)
4758 is
4759 Result : Boolean;
4760 pragma Warnings (Off, Result);
4761 begin
4762 Check_Conformance
4763 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
4764 end Check_Fully_Conformant;
4765
4766 ---------------------------
4767 -- Check_Mode_Conformant --
4768 ---------------------------
4769
4770 procedure Check_Mode_Conformant
4771 (New_Id : Entity_Id;
4772 Old_Id : Entity_Id;
4773 Err_Loc : Node_Id := Empty;
4774 Get_Inst : Boolean := False)
4775 is
4776 Result : Boolean;
4777 pragma Warnings (Off, Result);
4778 begin
4779 Check_Conformance
4780 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
4781 end Check_Mode_Conformant;
4782
4783 --------------------------------
4784 -- Check_Overriding_Indicator --
4785 --------------------------------
4786
4787 procedure Check_Overriding_Indicator
4788 (Subp : Entity_Id;
4789 Overridden_Subp : Entity_Id;
4790 Is_Primitive : Boolean)
4791 is
4792 Decl : Node_Id;
4793 Spec : Node_Id;
4794
4795 begin
4796 -- No overriding indicator for literals
4797
4798 if Ekind (Subp) = E_Enumeration_Literal then
4799 return;
4800
4801 elsif Ekind (Subp) = E_Entry then
4802 Decl := Parent (Subp);
4803
4804 -- No point in analyzing a malformed operator
4805
4806 elsif Nkind (Subp) = N_Defining_Operator_Symbol
4807 and then Error_Posted (Subp)
4808 then
4809 return;
4810
4811 else
4812 Decl := Unit_Declaration_Node (Subp);
4813 end if;
4814
4815 if Nkind_In (Decl, N_Subprogram_Body,
4816 N_Subprogram_Body_Stub,
4817 N_Subprogram_Declaration,
4818 N_Abstract_Subprogram_Declaration,
4819 N_Subprogram_Renaming_Declaration)
4820 then
4821 Spec := Specification (Decl);
4822
4823 elsif Nkind (Decl) = N_Entry_Declaration then
4824 Spec := Decl;
4825
4826 else
4827 return;
4828 end if;
4829
4830 -- The overriding operation is type conformant with the overridden one,
4831 -- but the names of the formals are not required to match. If the names
4832 -- appear permuted in the overriding operation, this is a possible
4833 -- source of confusion that is worth diagnosing. Controlling formals
4834 -- often carry names that reflect the type, and it is not worthwhile
4835 -- requiring that their names match.
4836
4837 if Present (Overridden_Subp)
4838 and then Nkind (Subp) /= N_Defining_Operator_Symbol
4839 then
4840 declare
4841 Form1 : Entity_Id;
4842 Form2 : Entity_Id;
4843
4844 begin
4845 Form1 := First_Formal (Subp);
4846 Form2 := First_Formal (Overridden_Subp);
4847
4848 -- If the overriding operation is a synchronized operation, skip
4849 -- the first parameter of the overridden operation, which is
4850 -- implicit in the new one. If the operation is declared in the
4851 -- body it is not primitive and all formals must match.
4852
4853 if Is_Concurrent_Type (Scope (Subp))
4854 and then Is_Tagged_Type (Scope (Subp))
4855 and then not Has_Completion (Scope (Subp))
4856 then
4857 Form2 := Next_Formal (Form2);
4858 end if;
4859
4860 if Present (Form1) then
4861 Form1 := Next_Formal (Form1);
4862 Form2 := Next_Formal (Form2);
4863 end if;
4864
4865 while Present (Form1) loop
4866 if not Is_Controlling_Formal (Form1)
4867 and then Present (Next_Formal (Form2))
4868 and then Chars (Form1) = Chars (Next_Formal (Form2))
4869 then
4870 Error_Msg_Node_2 := Alias (Overridden_Subp);
4871 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
4872 Error_Msg_NE
4873 ("& does not match corresponding formal of&#",
4874 Form1, Form1);
4875 exit;
4876 end if;
4877
4878 Next_Formal (Form1);
4879 Next_Formal (Form2);
4880 end loop;
4881 end;
4882 end if;
4883
4884 -- If there is an overridden subprogram, then check that there is no
4885 -- "not overriding" indicator, and mark the subprogram as overriding.
4886 -- This is not done if the overridden subprogram is marked as hidden,
4887 -- which can occur for the case of inherited controlled operations
4888 -- (see Derive_Subprogram), unless the inherited subprogram's parent
4889 -- subprogram is not itself hidden. (Note: This condition could probably
4890 -- be simplified, leaving out the testing for the specific controlled
4891 -- cases, but it seems safer and clearer this way, and echoes similar
4892 -- special-case tests of this kind in other places.)
4893
4894 if Present (Overridden_Subp)
4895 and then (not Is_Hidden (Overridden_Subp)
4896 or else
4897 ((Chars (Overridden_Subp) = Name_Initialize
4898 or else
4899 Chars (Overridden_Subp) = Name_Adjust
4900 or else
4901 Chars (Overridden_Subp) = Name_Finalize)
4902 and then Present (Alias (Overridden_Subp))
4903 and then not Is_Hidden (Alias (Overridden_Subp))))
4904 then
4905 if Must_Not_Override (Spec) then
4906 Error_Msg_Sloc := Sloc (Overridden_Subp);
4907
4908 if Ekind (Subp) = E_Entry then
4909 Error_Msg_NE
4910 ("entry & overrides inherited operation #", Spec, Subp);
4911 else
4912 Error_Msg_NE
4913 ("subprogram & overrides inherited operation #", Spec, Subp);
4914 end if;
4915
4916 elsif Is_Subprogram (Subp) then
4917 if Is_Init_Proc (Subp) then
4918 null;
4919
4920 elsif No (Overridden_Operation (Subp)) then
4921
4922 -- For entities generated by Derive_Subprograms the overridden
4923 -- operation is the inherited primitive (which is available
4924 -- through the attribute alias)
4925
4926 if (Is_Dispatching_Operation (Subp)
4927 or else Is_Dispatching_Operation (Overridden_Subp))
4928 and then not Comes_From_Source (Overridden_Subp)
4929 and then Find_Dispatching_Type (Overridden_Subp) =
4930 Find_Dispatching_Type (Subp)
4931 and then Present (Alias (Overridden_Subp))
4932 and then Comes_From_Source (Alias (Overridden_Subp))
4933 then
4934 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
4935
4936 else
4937 Set_Overridden_Operation (Subp, Overridden_Subp);
4938 end if;
4939 end if;
4940 end if;
4941
4942 -- If primitive flag is set or this is a protected operation, then
4943 -- the operation is overriding at the point of its declaration, so
4944 -- warn if necessary. Otherwise it may have been declared before the
4945 -- operation it overrides and no check is required.
4946
4947 if Style_Check
4948 and then not Must_Override (Spec)
4949 and then (Is_Primitive
4950 or else Ekind (Scope (Subp)) = E_Protected_Type)
4951 then
4952 Style.Missing_Overriding (Decl, Subp);
4953 end if;
4954
4955 -- If Subp is an operator, it may override a predefined operation, if
4956 -- it is defined in the same scope as the type to which it applies.
4957 -- In that case Overridden_Subp is empty because of our implicit
4958 -- representation for predefined operators. We have to check whether the
4959 -- signature of Subp matches that of a predefined operator. Note that
4960 -- first argument provides the name of the operator, and the second
4961 -- argument the signature that may match that of a standard operation.
4962 -- If the indicator is overriding, then the operator must match a
4963 -- predefined signature, because we know already that there is no
4964 -- explicit overridden operation.
4965
4966 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
4967 if Must_Not_Override (Spec) then
4968
4969 -- If this is not a primitive or a protected subprogram, then
4970 -- "not overriding" is illegal.
4971
4972 if not Is_Primitive
4973 and then Ekind (Scope (Subp)) /= E_Protected_Type
4974 then
4975 Error_Msg_N
4976 ("overriding indicator only allowed "
4977 & "if subprogram is primitive", Subp);
4978
4979 elsif Can_Override_Operator (Subp) then
4980 Error_Msg_NE
4981 ("subprogram& overrides predefined operator ", Spec, Subp);
4982 end if;
4983
4984 elsif Must_Override (Spec) then
4985 if No (Overridden_Operation (Subp))
4986 and then not Can_Override_Operator (Subp)
4987 then
4988 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
4989 end if;
4990
4991 elsif not Error_Posted (Subp)
4992 and then Style_Check
4993 and then Can_Override_Operator (Subp)
4994 and then
4995 not Is_Predefined_File_Name
4996 (Unit_File_Name (Get_Source_Unit (Subp)))
4997 then
4998 -- If style checks are enabled, indicate that the indicator is
4999 -- missing. However, at the point of declaration, the type of
5000 -- which this is a primitive operation may be private, in which
5001 -- case the indicator would be premature.
5002
5003 if Has_Private_Declaration (Etype (Subp))
5004 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
5005 then
5006 null;
5007 else
5008 Style.Missing_Overriding (Decl, Subp);
5009 end if;
5010 end if;
5011
5012 elsif Must_Override (Spec) then
5013 if Ekind (Subp) = E_Entry then
5014 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
5015 else
5016 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
5017 end if;
5018
5019 -- If the operation is marked "not overriding" and it's not primitive
5020 -- then an error is issued, unless this is an operation of a task or
5021 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
5022 -- has been specified have already been checked above.
5023
5024 elsif Must_Not_Override (Spec)
5025 and then not Is_Primitive
5026 and then Ekind (Subp) /= E_Entry
5027 and then Ekind (Scope (Subp)) /= E_Protected_Type
5028 then
5029 Error_Msg_N
5030 ("overriding indicator only allowed if subprogram is primitive",
5031 Subp);
5032 return;
5033 end if;
5034 end Check_Overriding_Indicator;
5035
5036 -------------------
5037 -- Check_Returns --
5038 -------------------
5039
5040 -- Note: this procedure needs to know far too much about how the expander
5041 -- messes with exceptions. The use of the flag Exception_Junk and the
5042 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
5043 -- works, but is not very clean. It would be better if the expansion
5044 -- routines would leave Original_Node working nicely, and we could use
5045 -- Original_Node here to ignore all the peculiar expander messing ???
5046
5047 procedure Check_Returns
5048 (HSS : Node_Id;
5049 Mode : Character;
5050 Err : out Boolean;
5051 Proc : Entity_Id := Empty)
5052 is
5053 Handler : Node_Id;
5054
5055 procedure Check_Statement_Sequence (L : List_Id);
5056 -- Internal recursive procedure to check a list of statements for proper
5057 -- termination by a return statement (or a transfer of control or a
5058 -- compound statement that is itself internally properly terminated).
5059
5060 ------------------------------
5061 -- Check_Statement_Sequence --
5062 ------------------------------
5063
5064 procedure Check_Statement_Sequence (L : List_Id) is
5065 Last_Stm : Node_Id;
5066 Stm : Node_Id;
5067 Kind : Node_Kind;
5068
5069 Raise_Exception_Call : Boolean;
5070 -- Set True if statement sequence terminated by Raise_Exception call
5071 -- or a Reraise_Occurrence call.
5072
5073 begin
5074 Raise_Exception_Call := False;
5075
5076 -- Get last real statement
5077
5078 Last_Stm := Last (L);
5079
5080 -- Deal with digging out exception handler statement sequences that
5081 -- have been transformed by the local raise to goto optimization.
5082 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
5083 -- optimization has occurred, we are looking at something like:
5084
5085 -- begin
5086 -- original stmts in block
5087
5088 -- exception \
5089 -- when excep1 => |
5090 -- goto L1; | omitted if No_Exception_Propagation
5091 -- when excep2 => |
5092 -- goto L2; /
5093 -- end;
5094
5095 -- goto L3; -- skip handler when exception not raised
5096
5097 -- <<L1>> -- target label for local exception
5098 -- begin
5099 -- estmts1
5100 -- end;
5101
5102 -- goto L3;
5103
5104 -- <<L2>>
5105 -- begin
5106 -- estmts2
5107 -- end;
5108
5109 -- <<L3>>
5110
5111 -- and what we have to do is to dig out the estmts1 and estmts2
5112 -- sequences (which were the original sequences of statements in
5113 -- the exception handlers) and check them.
5114
5115 if Nkind (Last_Stm) = N_Label
5116 and then Exception_Junk (Last_Stm)
5117 then
5118 Stm := Last_Stm;
5119 loop
5120 Prev (Stm);
5121 exit when No (Stm);
5122 exit when Nkind (Stm) /= N_Block_Statement;
5123 exit when not Exception_Junk (Stm);
5124 Prev (Stm);
5125 exit when No (Stm);
5126 exit when Nkind (Stm) /= N_Label;
5127 exit when not Exception_Junk (Stm);
5128 Check_Statement_Sequence
5129 (Statements (Handled_Statement_Sequence (Next (Stm))));
5130
5131 Prev (Stm);
5132 Last_Stm := Stm;
5133 exit when No (Stm);
5134 exit when Nkind (Stm) /= N_Goto_Statement;
5135 exit when not Exception_Junk (Stm);
5136 end loop;
5137 end if;
5138
5139 -- Don't count pragmas
5140
5141 while Nkind (Last_Stm) = N_Pragma
5142
5143 -- Don't count call to SS_Release (can happen after Raise_Exception)
5144
5145 or else
5146 (Nkind (Last_Stm) = N_Procedure_Call_Statement
5147 and then
5148 Nkind (Name (Last_Stm)) = N_Identifier
5149 and then
5150 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
5151
5152 -- Don't count exception junk
5153
5154 or else
5155 (Nkind_In (Last_Stm, N_Goto_Statement,
5156 N_Label,
5157 N_Object_Declaration)
5158 and then Exception_Junk (Last_Stm))
5159 or else Nkind (Last_Stm) in N_Push_xxx_Label
5160 or else Nkind (Last_Stm) in N_Pop_xxx_Label
5161 loop
5162 Prev (Last_Stm);
5163 end loop;
5164
5165 -- Here we have the "real" last statement
5166
5167 Kind := Nkind (Last_Stm);
5168
5169 -- Transfer of control, OK. Note that in the No_Return procedure
5170 -- case, we already diagnosed any explicit return statements, so
5171 -- we can treat them as OK in this context.
5172
5173 if Is_Transfer (Last_Stm) then
5174 return;
5175
5176 -- Check cases of explicit non-indirect procedure calls
5177
5178 elsif Kind = N_Procedure_Call_Statement
5179 and then Is_Entity_Name (Name (Last_Stm))
5180 then
5181 -- Check call to Raise_Exception procedure which is treated
5182 -- specially, as is a call to Reraise_Occurrence.
5183
5184 -- We suppress the warning in these cases since it is likely that
5185 -- the programmer really does not expect to deal with the case
5186 -- of Null_Occurrence, and thus would find a warning about a
5187 -- missing return curious, and raising Program_Error does not
5188 -- seem such a bad behavior if this does occur.
5189
5190 -- Note that in the Ada 2005 case for Raise_Exception, the actual
5191 -- behavior will be to raise Constraint_Error (see AI-329).
5192
5193 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
5194 or else
5195 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
5196 then
5197 Raise_Exception_Call := True;
5198
5199 -- For Raise_Exception call, test first argument, if it is
5200 -- an attribute reference for a 'Identity call, then we know
5201 -- that the call cannot possibly return.
5202
5203 declare
5204 Arg : constant Node_Id :=
5205 Original_Node (First_Actual (Last_Stm));
5206 begin
5207 if Nkind (Arg) = N_Attribute_Reference
5208 and then Attribute_Name (Arg) = Name_Identity
5209 then
5210 return;
5211 end if;
5212 end;
5213 end if;
5214
5215 -- If statement, need to look inside if there is an else and check
5216 -- each constituent statement sequence for proper termination.
5217
5218 elsif Kind = N_If_Statement
5219 and then Present (Else_Statements (Last_Stm))
5220 then
5221 Check_Statement_Sequence (Then_Statements (Last_Stm));
5222 Check_Statement_Sequence (Else_Statements (Last_Stm));
5223
5224 if Present (Elsif_Parts (Last_Stm)) then
5225 declare
5226 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
5227
5228 begin
5229 while Present (Elsif_Part) loop
5230 Check_Statement_Sequence (Then_Statements (Elsif_Part));
5231 Next (Elsif_Part);
5232 end loop;
5233 end;
5234 end if;
5235
5236 return;
5237
5238 -- Case statement, check each case for proper termination
5239
5240 elsif Kind = N_Case_Statement then
5241 declare
5242 Case_Alt : Node_Id;
5243 begin
5244 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
5245 while Present (Case_Alt) loop
5246 Check_Statement_Sequence (Statements (Case_Alt));
5247 Next_Non_Pragma (Case_Alt);
5248 end loop;
5249 end;
5250
5251 return;
5252
5253 -- Block statement, check its handled sequence of statements
5254
5255 elsif Kind = N_Block_Statement then
5256 declare
5257 Err1 : Boolean;
5258
5259 begin
5260 Check_Returns
5261 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
5262
5263 if Err1 then
5264 Err := True;
5265 end if;
5266
5267 return;
5268 end;
5269
5270 -- Loop statement. If there is an iteration scheme, we can definitely
5271 -- fall out of the loop. Similarly if there is an exit statement, we
5272 -- can fall out. In either case we need a following return.
5273
5274 elsif Kind = N_Loop_Statement then
5275 if Present (Iteration_Scheme (Last_Stm))
5276 or else Has_Exit (Entity (Identifier (Last_Stm)))
5277 then
5278 null;
5279
5280 -- A loop with no exit statement or iteration scheme is either
5281 -- an infinite loop, or it has some other exit (raise/return).
5282 -- In either case, no warning is required.
5283
5284 else
5285 return;
5286 end if;
5287
5288 -- Timed entry call, check entry call and delay alternatives
5289
5290 -- Note: in expanded code, the timed entry call has been converted
5291 -- to a set of expanded statements on which the check will work
5292 -- correctly in any case.
5293
5294 elsif Kind = N_Timed_Entry_Call then
5295 declare
5296 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
5297 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
5298
5299 begin
5300 -- If statement sequence of entry call alternative is missing,
5301 -- then we can definitely fall through, and we post the error
5302 -- message on the entry call alternative itself.
5303
5304 if No (Statements (ECA)) then
5305 Last_Stm := ECA;
5306
5307 -- If statement sequence of delay alternative is missing, then
5308 -- we can definitely fall through, and we post the error
5309 -- message on the delay alternative itself.
5310
5311 -- Note: if both ECA and DCA are missing the return, then we
5312 -- post only one message, should be enough to fix the bugs.
5313 -- If not we will get a message next time on the DCA when the
5314 -- ECA is fixed!
5315
5316 elsif No (Statements (DCA)) then
5317 Last_Stm := DCA;
5318
5319 -- Else check both statement sequences
5320
5321 else
5322 Check_Statement_Sequence (Statements (ECA));
5323 Check_Statement_Sequence (Statements (DCA));
5324 return;
5325 end if;
5326 end;
5327
5328 -- Conditional entry call, check entry call and else part
5329
5330 -- Note: in expanded code, the conditional entry call has been
5331 -- converted to a set of expanded statements on which the check
5332 -- will work correctly in any case.
5333
5334 elsif Kind = N_Conditional_Entry_Call then
5335 declare
5336 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
5337
5338 begin
5339 -- If statement sequence of entry call alternative is missing,
5340 -- then we can definitely fall through, and we post the error
5341 -- message on the entry call alternative itself.
5342
5343 if No (Statements (ECA)) then
5344 Last_Stm := ECA;
5345
5346 -- Else check statement sequence and else part
5347
5348 else
5349 Check_Statement_Sequence (Statements (ECA));
5350 Check_Statement_Sequence (Else_Statements (Last_Stm));
5351 return;
5352 end if;
5353 end;
5354 end if;
5355
5356 -- If we fall through, issue appropriate message
5357
5358 if Mode = 'F' then
5359 if not Raise_Exception_Call then
5360 Error_Msg_N
5361 ("?RETURN statement missing following this statement!",
5362 Last_Stm);
5363 Error_Msg_N
5364 ("\?Program_Error may be raised at run time!",
5365 Last_Stm);
5366 end if;
5367
5368 -- Note: we set Err even though we have not issued a warning
5369 -- because we still have a case of a missing return. This is
5370 -- an extremely marginal case, probably will never be noticed
5371 -- but we might as well get it right.
5372
5373 Err := True;
5374
5375 -- Otherwise we have the case of a procedure marked No_Return
5376
5377 else
5378 if not Raise_Exception_Call then
5379 Error_Msg_N
5380 ("?implied return after this statement " &
5381 "will raise Program_Error",
5382 Last_Stm);
5383 Error_Msg_NE
5384 ("\?procedure & is marked as No_Return!",
5385 Last_Stm, Proc);
5386 end if;
5387
5388 declare
5389 RE : constant Node_Id :=
5390 Make_Raise_Program_Error (Sloc (Last_Stm),
5391 Reason => PE_Implicit_Return);
5392 begin
5393 Insert_After (Last_Stm, RE);
5394 Analyze (RE);
5395 end;
5396 end if;
5397 end Check_Statement_Sequence;
5398
5399 -- Start of processing for Check_Returns
5400
5401 begin
5402 Err := False;
5403 Check_Statement_Sequence (Statements (HSS));
5404
5405 if Present (Exception_Handlers (HSS)) then
5406 Handler := First_Non_Pragma (Exception_Handlers (HSS));
5407 while Present (Handler) loop
5408 Check_Statement_Sequence (Statements (Handler));
5409 Next_Non_Pragma (Handler);
5410 end loop;
5411 end if;
5412 end Check_Returns;
5413
5414 ----------------------------
5415 -- Check_Subprogram_Order --
5416 ----------------------------
5417
5418 procedure Check_Subprogram_Order (N : Node_Id) is
5419
5420 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
5421 -- This is used to check if S1 > S2 in the sense required by this
5422 -- test, for example nameab < namec, but name2 < name10.
5423
5424 -----------------------------
5425 -- Subprogram_Name_Greater --
5426 -----------------------------
5427
5428 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
5429 L1, L2 : Positive;
5430 N1, N2 : Natural;
5431
5432 begin
5433 -- Remove trailing numeric parts
5434
5435 L1 := S1'Last;
5436 while S1 (L1) in '0' .. '9' loop
5437 L1 := L1 - 1;
5438 end loop;
5439
5440 L2 := S2'Last;
5441 while S2 (L2) in '0' .. '9' loop
5442 L2 := L2 - 1;
5443 end loop;
5444
5445 -- If non-numeric parts non-equal, that's decisive
5446
5447 if S1 (S1'First .. L1) < S2 (S2'First .. L2) then
5448 return False;
5449
5450 elsif S1 (S1'First .. L1) > S2 (S2'First .. L2) then
5451 return True;
5452
5453 -- If non-numeric parts equal, compare suffixed numeric parts. Note
5454 -- that a missing suffix is treated as numeric zero in this test.
5455
5456 else
5457 N1 := 0;
5458 while L1 < S1'Last loop
5459 L1 := L1 + 1;
5460 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
5461 end loop;
5462
5463 N2 := 0;
5464 while L2 < S2'Last loop
5465 L2 := L2 + 1;
5466 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
5467 end loop;
5468
5469 return N1 > N2;
5470 end if;
5471 end Subprogram_Name_Greater;
5472
5473 -- Start of processing for Check_Subprogram_Order
5474
5475 begin
5476 -- Check body in alpha order if this is option
5477
5478 if Style_Check
5479 and then Style_Check_Order_Subprograms
5480 and then Nkind (N) = N_Subprogram_Body
5481 and then Comes_From_Source (N)
5482 and then In_Extended_Main_Source_Unit (N)
5483 then
5484 declare
5485 LSN : String_Ptr
5486 renames Scope_Stack.Table
5487 (Scope_Stack.Last).Last_Subprogram_Name;
5488
5489 Body_Id : constant Entity_Id :=
5490 Defining_Entity (Specification (N));
5491
5492 begin
5493 Get_Decoded_Name_String (Chars (Body_Id));
5494
5495 if LSN /= null then
5496 if Subprogram_Name_Greater
5497 (LSN.all, Name_Buffer (1 .. Name_Len))
5498 then
5499 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
5500 end if;
5501
5502 Free (LSN);
5503 end if;
5504
5505 LSN := new String'(Name_Buffer (1 .. Name_Len));
5506 end;
5507 end if;
5508 end Check_Subprogram_Order;
5509
5510 ------------------------------
5511 -- Check_Subtype_Conformant --
5512 ------------------------------
5513
5514 procedure Check_Subtype_Conformant
5515 (New_Id : Entity_Id;
5516 Old_Id : Entity_Id;
5517 Err_Loc : Node_Id := Empty;
5518 Skip_Controlling_Formals : Boolean := False)
5519 is
5520 Result : Boolean;
5521 pragma Warnings (Off, Result);
5522 begin
5523 Check_Conformance
5524 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
5525 Skip_Controlling_Formals => Skip_Controlling_Formals);
5526 end Check_Subtype_Conformant;
5527
5528 ---------------------------
5529 -- Check_Type_Conformant --
5530 ---------------------------
5531
5532 procedure Check_Type_Conformant
5533 (New_Id : Entity_Id;
5534 Old_Id : Entity_Id;
5535 Err_Loc : Node_Id := Empty)
5536 is
5537 Result : Boolean;
5538 pragma Warnings (Off, Result);
5539 begin
5540 Check_Conformance
5541 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
5542 end Check_Type_Conformant;
5543
5544 ---------------------------
5545 -- Can_Override_Operator --
5546 ---------------------------
5547
5548 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
5549 Typ : Entity_Id;
5550 begin
5551 if Nkind (Subp) /= N_Defining_Operator_Symbol then
5552 return False;
5553
5554 else
5555 Typ := Base_Type (Etype (First_Formal (Subp)));
5556
5557 return Operator_Matches_Spec (Subp, Subp)
5558 and then Scope (Subp) = Scope (Typ)
5559 and then not Is_Class_Wide_Type (Typ);
5560 end if;
5561 end Can_Override_Operator;
5562
5563 ----------------------
5564 -- Conforming_Types --
5565 ----------------------
5566
5567 function Conforming_Types
5568 (T1 : Entity_Id;
5569 T2 : Entity_Id;
5570 Ctype : Conformance_Type;
5571 Get_Inst : Boolean := False) return Boolean
5572 is
5573 Type_1 : Entity_Id := T1;
5574 Type_2 : Entity_Id := T2;
5575 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
5576
5577 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
5578 -- If neither T1 nor T2 are generic actual types, or if they are in
5579 -- different scopes (e.g. parent and child instances), then verify that
5580 -- the base types are equal. Otherwise T1 and T2 must be on the same
5581 -- subtype chain. The whole purpose of this procedure is to prevent
5582 -- spurious ambiguities in an instantiation that may arise if two
5583 -- distinct generic types are instantiated with the same actual.
5584
5585 function Find_Designated_Type (T : Entity_Id) return Entity_Id;
5586 -- An access parameter can designate an incomplete type. If the
5587 -- incomplete type is the limited view of a type from a limited_
5588 -- with_clause, check whether the non-limited view is available. If
5589 -- it is a (non-limited) incomplete type, get the full view.
5590
5591 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
5592 -- Returns True if and only if either T1 denotes a limited view of T2
5593 -- or T2 denotes a limited view of T1. This can arise when the limited
5594 -- with view of a type is used in a subprogram declaration and the
5595 -- subprogram body is in the scope of a regular with clause for the
5596 -- same unit. In such a case, the two type entities can be considered
5597 -- identical for purposes of conformance checking.
5598
5599 ----------------------
5600 -- Base_Types_Match --
5601 ----------------------
5602
5603 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
5604 begin
5605 if T1 = T2 then
5606 return True;
5607
5608 elsif Base_Type (T1) = Base_Type (T2) then
5609
5610 -- The following is too permissive. A more precise test should
5611 -- check that the generic actual is an ancestor subtype of the
5612 -- other ???.
5613
5614 return not Is_Generic_Actual_Type (T1)
5615 or else not Is_Generic_Actual_Type (T2)
5616 or else Scope (T1) /= Scope (T2);
5617
5618 else
5619 return False;
5620 end if;
5621 end Base_Types_Match;
5622
5623 --------------------------
5624 -- Find_Designated_Type --
5625 --------------------------
5626
5627 function Find_Designated_Type (T : Entity_Id) return Entity_Id is
5628 Desig : Entity_Id;
5629
5630 begin
5631 Desig := Directly_Designated_Type (T);
5632
5633 if Ekind (Desig) = E_Incomplete_Type then
5634
5635 -- If regular incomplete type, get full view if available
5636
5637 if Present (Full_View (Desig)) then
5638 Desig := Full_View (Desig);
5639
5640 -- If limited view of a type, get non-limited view if available,
5641 -- and check again for a regular incomplete type.
5642
5643 elsif Present (Non_Limited_View (Desig)) then
5644 Desig := Get_Full_View (Non_Limited_View (Desig));
5645 end if;
5646 end if;
5647
5648 return Desig;
5649 end Find_Designated_Type;
5650
5651 -------------------------------
5652 -- Matches_Limited_With_View --
5653 -------------------------------
5654
5655 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
5656 begin
5657 -- In some cases a type imported through a limited_with clause, and
5658 -- its nonlimited view are both visible, for example in an anonymous
5659 -- access-to-class-wide type in a formal. Both entities designate the
5660 -- same type.
5661
5662 if From_With_Type (T1)
5663 and then T2 = Available_View (T1)
5664 then
5665 return True;
5666
5667 elsif From_With_Type (T2)
5668 and then T1 = Available_View (T2)
5669 then
5670 return True;
5671
5672 else
5673 return False;
5674 end if;
5675 end Matches_Limited_With_View;
5676
5677 -- Start of processing for Conforming_Types
5678
5679 begin
5680 -- The context is an instance association for a formal
5681 -- access-to-subprogram type; the formal parameter types require
5682 -- mapping because they may denote other formal parameters of the
5683 -- generic unit.
5684
5685 if Get_Inst then
5686 Type_1 := Get_Instance_Of (T1);
5687 Type_2 := Get_Instance_Of (T2);
5688 end if;
5689
5690 -- If one of the types is a view of the other introduced by a limited
5691 -- with clause, treat these as conforming for all purposes.
5692
5693 if Matches_Limited_With_View (T1, T2) then
5694 return True;
5695
5696 elsif Base_Types_Match (Type_1, Type_2) then
5697 return Ctype <= Mode_Conformant
5698 or else Subtypes_Statically_Match (Type_1, Type_2);
5699
5700 elsif Is_Incomplete_Or_Private_Type (Type_1)
5701 and then Present (Full_View (Type_1))
5702 and then Base_Types_Match (Full_View (Type_1), Type_2)
5703 then
5704 return Ctype <= Mode_Conformant
5705 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
5706
5707 elsif Ekind (Type_2) = E_Incomplete_Type
5708 and then Present (Full_View (Type_2))
5709 and then Base_Types_Match (Type_1, Full_View (Type_2))
5710 then
5711 return Ctype <= Mode_Conformant
5712 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
5713
5714 elsif Is_Private_Type (Type_2)
5715 and then In_Instance
5716 and then Present (Full_View (Type_2))
5717 and then Base_Types_Match (Type_1, Full_View (Type_2))
5718 then
5719 return Ctype <= Mode_Conformant
5720 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
5721 end if;
5722
5723 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
5724 -- treated recursively because they carry a signature.
5725
5726 Are_Anonymous_Access_To_Subprogram_Types :=
5727 Ekind (Type_1) = Ekind (Type_2)
5728 and then
5729 (Ekind (Type_1) = E_Anonymous_Access_Subprogram_Type
5730 or else
5731 Ekind (Type_1) = E_Anonymous_Access_Protected_Subprogram_Type);
5732
5733 -- Test anonymous access type case. For this case, static subtype
5734 -- matching is required for mode conformance (RM 6.3.1(15)). We check
5735 -- the base types because we may have built internal subtype entities
5736 -- to handle null-excluding types (see Process_Formals).
5737
5738 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
5739 and then
5740 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
5741 or else Are_Anonymous_Access_To_Subprogram_Types -- Ada 2005 (AI-254)
5742 then
5743 declare
5744 Desig_1 : Entity_Id;
5745 Desig_2 : Entity_Id;
5746
5747 begin
5748 -- In Ada2005, access constant indicators must match for
5749 -- subtype conformance.
5750
5751 if Ada_Version >= Ada_2005
5752 and then Ctype >= Subtype_Conformant
5753 and then
5754 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
5755 then
5756 return False;
5757 end if;
5758
5759 Desig_1 := Find_Designated_Type (Type_1);
5760 Desig_2 := Find_Designated_Type (Type_2);
5761
5762 -- If the context is an instance association for a formal
5763 -- access-to-subprogram type; formal access parameter designated
5764 -- types require mapping because they may denote other formal
5765 -- parameters of the generic unit.
5766
5767 if Get_Inst then
5768 Desig_1 := Get_Instance_Of (Desig_1);
5769 Desig_2 := Get_Instance_Of (Desig_2);
5770 end if;
5771
5772 -- It is possible for a Class_Wide_Type to be introduced for an
5773 -- incomplete type, in which case there is a separate class_ wide
5774 -- type for the full view. The types conform if their Etypes
5775 -- conform, i.e. one may be the full view of the other. This can
5776 -- only happen in the context of an access parameter, other uses
5777 -- of an incomplete Class_Wide_Type are illegal.
5778
5779 if Is_Class_Wide_Type (Desig_1)
5780 and then
5781 Is_Class_Wide_Type (Desig_2)
5782 then
5783 return
5784 Conforming_Types
5785 (Etype (Base_Type (Desig_1)),
5786 Etype (Base_Type (Desig_2)), Ctype);
5787
5788 elsif Are_Anonymous_Access_To_Subprogram_Types then
5789 if Ada_Version < Ada_2005 then
5790 return Ctype = Type_Conformant
5791 or else
5792 Subtypes_Statically_Match (Desig_1, Desig_2);
5793
5794 -- We must check the conformance of the signatures themselves
5795
5796 else
5797 declare
5798 Conformant : Boolean;
5799 begin
5800 Check_Conformance
5801 (Desig_1, Desig_2, Ctype, False, Conformant);
5802 return Conformant;
5803 end;
5804 end if;
5805
5806 else
5807 return Base_Type (Desig_1) = Base_Type (Desig_2)
5808 and then (Ctype = Type_Conformant
5809 or else
5810 Subtypes_Statically_Match (Desig_1, Desig_2));
5811 end if;
5812 end;
5813
5814 -- Otherwise definitely no match
5815
5816 else
5817 if ((Ekind (Type_1) = E_Anonymous_Access_Type
5818 and then Is_Access_Type (Type_2))
5819 or else (Ekind (Type_2) = E_Anonymous_Access_Type
5820 and then Is_Access_Type (Type_1)))
5821 and then
5822 Conforming_Types
5823 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
5824 then
5825 May_Hide_Profile := True;
5826 end if;
5827
5828 return False;
5829 end if;
5830 end Conforming_Types;
5831
5832 --------------------------
5833 -- Create_Extra_Formals --
5834 --------------------------
5835
5836 procedure Create_Extra_Formals (E : Entity_Id) is
5837 Formal : Entity_Id;
5838 First_Extra : Entity_Id := Empty;
5839 Last_Extra : Entity_Id;
5840 Formal_Type : Entity_Id;
5841 P_Formal : Entity_Id := Empty;
5842
5843 function Add_Extra_Formal
5844 (Assoc_Entity : Entity_Id;
5845 Typ : Entity_Id;
5846 Scope : Entity_Id;
5847 Suffix : String) return Entity_Id;
5848 -- Add an extra formal to the current list of formals and extra formals.
5849 -- The extra formal is added to the end of the list of extra formals,
5850 -- and also returned as the result. These formals are always of mode IN.
5851 -- The new formal has the type Typ, is declared in Scope, and its name
5852 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
5853 -- The following suffixes are currently used. They should not be changed
5854 -- without coordinating with CodePeer, which makes use of these to
5855 -- provide better messages.
5856
5857 -- O denotes the Constrained bit.
5858 -- L denotes the accessibility level.
5859 -- BIP_xxx denotes an extra formal for a build-in-place function. See
5860 -- the full list in exp_ch6.BIP_Formal_Kind.
5861
5862 ----------------------
5863 -- Add_Extra_Formal --
5864 ----------------------
5865
5866 function Add_Extra_Formal
5867 (Assoc_Entity : Entity_Id;
5868 Typ : Entity_Id;
5869 Scope : Entity_Id;
5870 Suffix : String) return Entity_Id
5871 is
5872 EF : constant Entity_Id :=
5873 Make_Defining_Identifier (Sloc (Assoc_Entity),
5874 Chars => New_External_Name (Chars (Assoc_Entity),
5875 Suffix => Suffix));
5876
5877 begin
5878 -- A little optimization. Never generate an extra formal for the
5879 -- _init operand of an initialization procedure, since it could
5880 -- never be used.
5881
5882 if Chars (Formal) = Name_uInit then
5883 return Empty;
5884 end if;
5885
5886 Set_Ekind (EF, E_In_Parameter);
5887 Set_Actual_Subtype (EF, Typ);
5888 Set_Etype (EF, Typ);
5889 Set_Scope (EF, Scope);
5890 Set_Mechanism (EF, Default_Mechanism);
5891 Set_Formal_Validity (EF);
5892
5893 if No (First_Extra) then
5894 First_Extra := EF;
5895 Set_Extra_Formals (Scope, First_Extra);
5896 end if;
5897
5898 if Present (Last_Extra) then
5899 Set_Extra_Formal (Last_Extra, EF);
5900 end if;
5901
5902 Last_Extra := EF;
5903
5904 return EF;
5905 end Add_Extra_Formal;
5906
5907 -- Start of processing for Create_Extra_Formals
5908
5909 begin
5910 -- We never generate extra formals if expansion is not active
5911 -- because we don't need them unless we are generating code.
5912
5913 if not Expander_Active then
5914 return;
5915 end if;
5916
5917 -- If this is a derived subprogram then the subtypes of the parent
5918 -- subprogram's formal parameters will be used to determine the need
5919 -- for extra formals.
5920
5921 if Is_Overloadable (E) and then Present (Alias (E)) then
5922 P_Formal := First_Formal (Alias (E));
5923 end if;
5924
5925 Last_Extra := Empty;
5926 Formal := First_Formal (E);
5927 while Present (Formal) loop
5928 Last_Extra := Formal;
5929 Next_Formal (Formal);
5930 end loop;
5931
5932 -- If Extra_formals were already created, don't do it again. This
5933 -- situation may arise for subprogram types created as part of
5934 -- dispatching calls (see Expand_Dispatching_Call)
5935
5936 if Present (Last_Extra) and then
5937 Present (Extra_Formal (Last_Extra))
5938 then
5939 return;
5940 end if;
5941
5942 -- If the subprogram is a predefined dispatching subprogram then don't
5943 -- generate any extra constrained or accessibility level formals. In
5944 -- general we suppress these for internal subprograms (by not calling
5945 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
5946 -- generated stream attributes do get passed through because extra
5947 -- build-in-place formals are needed in some cases (limited 'Input).
5948
5949 if Is_Predefined_Internal_Operation (E) then
5950 goto Test_For_BIP_Extras;
5951 end if;
5952
5953 Formal := First_Formal (E);
5954 while Present (Formal) loop
5955
5956 -- Create extra formal for supporting the attribute 'Constrained.
5957 -- The case of a private type view without discriminants also
5958 -- requires the extra formal if the underlying type has defaulted
5959 -- discriminants.
5960
5961 if Ekind (Formal) /= E_In_Parameter then
5962 if Present (P_Formal) then
5963 Formal_Type := Etype (P_Formal);
5964 else
5965 Formal_Type := Etype (Formal);
5966 end if;
5967
5968 -- Do not produce extra formals for Unchecked_Union parameters.
5969 -- Jump directly to the end of the loop.
5970
5971 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
5972 goto Skip_Extra_Formal_Generation;
5973 end if;
5974
5975 if not Has_Discriminants (Formal_Type)
5976 and then Ekind (Formal_Type) in Private_Kind
5977 and then Present (Underlying_Type (Formal_Type))
5978 then
5979 Formal_Type := Underlying_Type (Formal_Type);
5980 end if;
5981
5982 -- Suppress the extra formal if formal's subtype is constrained or
5983 -- indefinite, or we're compiling for Ada 2012 and the underlying
5984 -- type is tagged and limited. In Ada 2012, a limited tagged type
5985 -- can have defaulted discriminants, but 'Constrained is required
5986 -- to return True, so the formal is never needed (see AI05-0214).
5987 -- Note that this ensures consistency of calling sequences for
5988 -- dispatching operations when some types in a class have defaults
5989 -- on discriminants and others do not (and requiring the extra
5990 -- formal would introduce distributed overhead).
5991
5992 if Has_Discriminants (Formal_Type)
5993 and then not Is_Constrained (Formal_Type)
5994 and then not Is_Indefinite_Subtype (Formal_Type)
5995 and then (Ada_Version < Ada_2012
5996 or else
5997 not (Is_Tagged_Type (Underlying_Type (Formal_Type))
5998 and then Is_Limited_Type (Formal_Type)))
5999 then
6000 Set_Extra_Constrained
6001 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
6002 end if;
6003 end if;
6004
6005 -- Create extra formal for supporting accessibility checking. This
6006 -- is done for both anonymous access formals and formals of named
6007 -- access types that are marked as controlling formals. The latter
6008 -- case can occur when Expand_Dispatching_Call creates a subprogram
6009 -- type and substitutes the types of access-to-class-wide actuals
6010 -- for the anonymous access-to-specific-type of controlling formals.
6011 -- Base_Type is applied because in cases where there is a null
6012 -- exclusion the formal may have an access subtype.
6013
6014 -- This is suppressed if we specifically suppress accessibility
6015 -- checks at the package level for either the subprogram, or the
6016 -- package in which it resides. However, we do not suppress it
6017 -- simply if the scope has accessibility checks suppressed, since
6018 -- this could cause trouble when clients are compiled with a
6019 -- different suppression setting. The explicit checks at the
6020 -- package level are safe from this point of view.
6021
6022 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
6023 or else (Is_Controlling_Formal (Formal)
6024 and then Is_Access_Type (Base_Type (Etype (Formal)))))
6025 and then not
6026 (Explicit_Suppress (E, Accessibility_Check)
6027 or else
6028 Explicit_Suppress (Scope (E), Accessibility_Check))
6029 and then
6030 (No (P_Formal)
6031 or else Present (Extra_Accessibility (P_Formal)))
6032 then
6033 Set_Extra_Accessibility
6034 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
6035 end if;
6036
6037 -- This label is required when skipping extra formal generation for
6038 -- Unchecked_Union parameters.
6039
6040 <<Skip_Extra_Formal_Generation>>
6041
6042 if Present (P_Formal) then
6043 Next_Formal (P_Formal);
6044 end if;
6045
6046 Next_Formal (Formal);
6047 end loop;
6048
6049 <<Test_For_BIP_Extras>>
6050
6051 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
6052 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
6053
6054 if Ada_Version >= Ada_2005 and then Is_Build_In_Place_Function (E) then
6055 declare
6056 Result_Subt : constant Entity_Id := Etype (E);
6057
6058 Discard : Entity_Id;
6059 pragma Warnings (Off, Discard);
6060
6061 begin
6062 -- In the case of functions with unconstrained result subtypes,
6063 -- add a 4-state formal indicating whether the return object is
6064 -- allocated by the caller (1), or should be allocated by the
6065 -- callee on the secondary stack (2), in the global heap (3), or
6066 -- in a user-defined storage pool (4). For the moment we just use
6067 -- Natural for the type of this formal. Note that this formal
6068 -- isn't usually needed in the case where the result subtype is
6069 -- constrained, but it is needed when the function has a tagged
6070 -- result, because generally such functions can be called in a
6071 -- dispatching context and such calls must be handled like calls
6072 -- to a class-wide function.
6073
6074 if not Is_Constrained (Underlying_Type (Result_Subt))
6075 or else Is_Tagged_Type (Underlying_Type (Result_Subt))
6076 then
6077 Discard :=
6078 Add_Extra_Formal
6079 (E, Standard_Natural,
6080 E, BIP_Formal_Suffix (BIP_Alloc_Form));
6081 end if;
6082
6083 -- In the case of functions whose result type needs finalization,
6084 -- add an extra formal which represents the finalization master.
6085
6086 if Needs_BIP_Finalization_Master (E) then
6087 Discard :=
6088 Add_Extra_Formal
6089 (E, RTE (RE_Finalization_Master_Ptr),
6090 E, BIP_Formal_Suffix (BIP_Finalization_Master));
6091 end if;
6092
6093 -- If the result type contains tasks, we have two extra formals:
6094 -- the master of the tasks to be created, and the caller's
6095 -- activation chain.
6096
6097 if Has_Task (Result_Subt) then
6098 Discard :=
6099 Add_Extra_Formal
6100 (E, RTE (RE_Master_Id),
6101 E, BIP_Formal_Suffix (BIP_Master));
6102 Discard :=
6103 Add_Extra_Formal
6104 (E, RTE (RE_Activation_Chain_Access),
6105 E, BIP_Formal_Suffix (BIP_Activation_Chain));
6106 end if;
6107
6108 -- All build-in-place functions get an extra formal that will be
6109 -- passed the address of the return object within the caller.
6110
6111 declare
6112 Formal_Type : constant Entity_Id :=
6113 Create_Itype
6114 (E_Anonymous_Access_Type, E,
6115 Scope_Id => Scope (E));
6116 begin
6117 Set_Directly_Designated_Type (Formal_Type, Result_Subt);
6118 Set_Etype (Formal_Type, Formal_Type);
6119 Set_Depends_On_Private
6120 (Formal_Type, Has_Private_Component (Formal_Type));
6121 Set_Is_Public (Formal_Type, Is_Public (Scope (Formal_Type)));
6122 Set_Is_Access_Constant (Formal_Type, False);
6123
6124 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
6125 -- the designated type comes from the limited view (for
6126 -- back-end purposes).
6127
6128 Set_From_With_Type (Formal_Type, From_With_Type (Result_Subt));
6129
6130 Layout_Type (Formal_Type);
6131
6132 Discard :=
6133 Add_Extra_Formal
6134 (E, Formal_Type, E, BIP_Formal_Suffix (BIP_Object_Access));
6135 end;
6136 end;
6137 end if;
6138 end Create_Extra_Formals;
6139
6140 -----------------------------
6141 -- Enter_Overloaded_Entity --
6142 -----------------------------
6143
6144 procedure Enter_Overloaded_Entity (S : Entity_Id) is
6145 E : Entity_Id := Current_Entity_In_Scope (S);
6146 C_E : Entity_Id := Current_Entity (S);
6147
6148 begin
6149 if Present (E) then
6150 Set_Has_Homonym (E);
6151 Set_Has_Homonym (S);
6152 end if;
6153
6154 Set_Is_Immediately_Visible (S);
6155 Set_Scope (S, Current_Scope);
6156
6157 -- Chain new entity if front of homonym in current scope, so that
6158 -- homonyms are contiguous.
6159
6160 if Present (E)
6161 and then E /= C_E
6162 then
6163 while Homonym (C_E) /= E loop
6164 C_E := Homonym (C_E);
6165 end loop;
6166
6167 Set_Homonym (C_E, S);
6168
6169 else
6170 E := C_E;
6171 Set_Current_Entity (S);
6172 end if;
6173
6174 Set_Homonym (S, E);
6175
6176 Append_Entity (S, Current_Scope);
6177 Set_Public_Status (S);
6178
6179 if Debug_Flag_E then
6180 Write_Str ("New overloaded entity chain: ");
6181 Write_Name (Chars (S));
6182
6183 E := S;
6184 while Present (E) loop
6185 Write_Str (" "); Write_Int (Int (E));
6186 E := Homonym (E);
6187 end loop;
6188
6189 Write_Eol;
6190 end if;
6191
6192 -- Generate warning for hiding
6193
6194 if Warn_On_Hiding
6195 and then Comes_From_Source (S)
6196 and then In_Extended_Main_Source_Unit (S)
6197 then
6198 E := S;
6199 loop
6200 E := Homonym (E);
6201 exit when No (E);
6202
6203 -- Warn unless genuine overloading. Do not emit warning on
6204 -- hiding predefined operators in Standard (these are either an
6205 -- (artifact of our implicit declarations, or simple noise) but
6206 -- keep warning on a operator defined on a local subtype, because
6207 -- of the real danger that different operators may be applied in
6208 -- various parts of the program.
6209
6210 -- Note that if E and S have the same scope, there is never any
6211 -- hiding. Either the two conflict, and the program is illegal,
6212 -- or S is overriding an implicit inherited subprogram.
6213
6214 if Scope (E) /= Scope (S)
6215 and then (not Is_Overloadable (E)
6216 or else Subtype_Conformant (E, S))
6217 and then (Is_Immediately_Visible (E)
6218 or else
6219 Is_Potentially_Use_Visible (S))
6220 then
6221 if Scope (E) /= Standard_Standard then
6222 Error_Msg_Sloc := Sloc (E);
6223 Error_Msg_N ("declaration of & hides one#?", S);
6224
6225 elsif Nkind (S) = N_Defining_Operator_Symbol
6226 and then
6227 Scope (Base_Type (Etype (First_Formal (S)))) /= Scope (S)
6228 then
6229 Error_Msg_N
6230 ("declaration of & hides predefined operator?", S);
6231 end if;
6232 end if;
6233 end loop;
6234 end if;
6235 end Enter_Overloaded_Entity;
6236
6237 -----------------------------
6238 -- Check_Untagged_Equality --
6239 -----------------------------
6240
6241 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
6242 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
6243 Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
6244 Obj_Decl : Node_Id;
6245
6246 begin
6247 if Nkind (Decl) = N_Subprogram_Declaration
6248 and then Is_Record_Type (Typ)
6249 and then not Is_Tagged_Type (Typ)
6250 then
6251 -- If the type is not declared in a package, or if we are in the
6252 -- body of the package or in some other scope, the new operation is
6253 -- not primitive, and therefore legal, though suspicious. If the
6254 -- type is a generic actual (sub)type, the operation is not primitive
6255 -- either because the base type is declared elsewhere.
6256
6257 if Is_Frozen (Typ) then
6258 if Ekind (Scope (Typ)) /= E_Package
6259 or else Scope (Typ) /= Current_Scope
6260 then
6261 null;
6262
6263 elsif Is_Generic_Actual_Type (Typ) then
6264 null;
6265
6266 elsif In_Package_Body (Scope (Typ)) then
6267 Error_Msg_NE
6268 ("equality operator must be declared "
6269 & "before type& is frozen", Eq_Op, Typ);
6270 Error_Msg_N
6271 ("\move declaration to package spec", Eq_Op);
6272
6273 else
6274 Error_Msg_NE
6275 ("equality operator must be declared "
6276 & "before type& is frozen", Eq_Op, Typ);
6277
6278 Obj_Decl := Next (Parent (Typ));
6279 while Present (Obj_Decl)
6280 and then Obj_Decl /= Decl
6281 loop
6282 if Nkind (Obj_Decl) = N_Object_Declaration
6283 and then Etype (Defining_Identifier (Obj_Decl)) = Typ
6284 then
6285 Error_Msg_NE ("type& is frozen by declaration?",
6286 Obj_Decl, Typ);
6287 Error_Msg_N
6288 ("\an equality operator cannot be declared after this "
6289 & "point (RM 4.5.2 (9.8)) (Ada 2012))?", Obj_Decl);
6290 exit;
6291 end if;
6292
6293 Next (Obj_Decl);
6294 end loop;
6295 end if;
6296
6297 elsif not In_Same_List (Parent (Typ), Decl)
6298 and then not Is_Limited_Type (Typ)
6299 then
6300
6301 -- This makes it illegal to have a primitive equality declared in
6302 -- the private part if the type is visible.
6303
6304 Error_Msg_N ("equality operator appears too late", Eq_Op);
6305 end if;
6306 end if;
6307 end Check_Untagged_Equality;
6308
6309 -----------------------------
6310 -- Find_Corresponding_Spec --
6311 -----------------------------
6312
6313 function Find_Corresponding_Spec
6314 (N : Node_Id;
6315 Post_Error : Boolean := True) return Entity_Id
6316 is
6317 Spec : constant Node_Id := Specification (N);
6318 Designator : constant Entity_Id := Defining_Entity (Spec);
6319
6320 E : Entity_Id;
6321
6322 begin
6323 E := Current_Entity (Designator);
6324 while Present (E) loop
6325
6326 -- We are looking for a matching spec. It must have the same scope,
6327 -- and the same name, and either be type conformant, or be the case
6328 -- of a library procedure spec and its body (which belong to one
6329 -- another regardless of whether they are type conformant or not).
6330
6331 if Scope (E) = Current_Scope then
6332 if Current_Scope = Standard_Standard
6333 or else (Ekind (E) = Ekind (Designator)
6334 and then Type_Conformant (E, Designator))
6335 then
6336 -- Within an instantiation, we know that spec and body are
6337 -- subtype conformant, because they were subtype conformant
6338 -- in the generic. We choose the subtype-conformant entity
6339 -- here as well, to resolve spurious ambiguities in the
6340 -- instance that were not present in the generic (i.e. when
6341 -- two different types are given the same actual). If we are
6342 -- looking for a spec to match a body, full conformance is
6343 -- expected.
6344
6345 if In_Instance then
6346 Set_Convention (Designator, Convention (E));
6347
6348 -- Skip past subprogram bodies and subprogram renamings that
6349 -- may appear to have a matching spec, but that aren't fully
6350 -- conformant with it. That can occur in cases where an
6351 -- actual type causes unrelated homographs in the instance.
6352
6353 if Nkind_In (N, N_Subprogram_Body,
6354 N_Subprogram_Renaming_Declaration)
6355 and then Present (Homonym (E))
6356 and then not Fully_Conformant (Designator, E)
6357 then
6358 goto Next_Entity;
6359
6360 elsif not Subtype_Conformant (Designator, E) then
6361 goto Next_Entity;
6362 end if;
6363 end if;
6364
6365 -- Ada 2012 (AI05-0165): For internally generated bodies of
6366 -- null procedures locate the internally generated spec. We
6367 -- enforce mode conformance since a tagged type may inherit
6368 -- from interfaces several null primitives which differ only
6369 -- in the mode of the formals.
6370
6371 if not (Comes_From_Source (E))
6372 and then Is_Null_Procedure (E)
6373 and then not Mode_Conformant (Designator, E)
6374 then
6375 null;
6376
6377 elsif not Has_Completion (E) then
6378 if Nkind (N) /= N_Subprogram_Body_Stub then
6379 Set_Corresponding_Spec (N, E);
6380 end if;
6381
6382 Set_Has_Completion (E);
6383 return E;
6384
6385 elsif Nkind (Parent (N)) = N_Subunit then
6386
6387 -- If this is the proper body of a subunit, the completion
6388 -- flag is set when analyzing the stub.
6389
6390 return E;
6391
6392 -- If E is an internal function with a controlling result
6393 -- that was created for an operation inherited by a null
6394 -- extension, it may be overridden by a body without a previous
6395 -- spec (one more reason why these should be shunned). In that
6396 -- case remove the generated body if present, because the
6397 -- current one is the explicit overriding.
6398
6399 elsif Ekind (E) = E_Function
6400 and then Ada_Version >= Ada_2005
6401 and then not Comes_From_Source (E)
6402 and then Has_Controlling_Result (E)
6403 and then Is_Null_Extension (Etype (E))
6404 and then Comes_From_Source (Spec)
6405 then
6406 Set_Has_Completion (E, False);
6407
6408 if Expander_Active
6409 and then Nkind (Parent (E)) = N_Function_Specification
6410 then
6411 Remove
6412 (Unit_Declaration_Node
6413 (Corresponding_Body (Unit_Declaration_Node (E))));
6414
6415 return E;
6416
6417 -- If expansion is disabled, or if the wrapper function has
6418 -- not been generated yet, this a late body overriding an
6419 -- inherited operation, or it is an overriding by some other
6420 -- declaration before the controlling result is frozen. In
6421 -- either case this is a declaration of a new entity.
6422
6423 else
6424 return Empty;
6425 end if;
6426
6427 -- If the body already exists, then this is an error unless
6428 -- the previous declaration is the implicit declaration of a
6429 -- derived subprogram. It is also legal for an instance to
6430 -- contain type conformant overloadable declarations (but the
6431 -- generic declaration may not), per 8.3(26/2).
6432
6433 elsif No (Alias (E))
6434 and then not Is_Intrinsic_Subprogram (E)
6435 and then not In_Instance
6436 and then Post_Error
6437 then
6438 Error_Msg_Sloc := Sloc (E);
6439
6440 if Is_Imported (E) then
6441 Error_Msg_NE
6442 ("body not allowed for imported subprogram & declared#",
6443 N, E);
6444 else
6445 Error_Msg_NE ("duplicate body for & declared#", N, E);
6446 end if;
6447 end if;
6448
6449 -- Child units cannot be overloaded, so a conformance mismatch
6450 -- between body and a previous spec is an error.
6451
6452 elsif Is_Child_Unit (E)
6453 and then
6454 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
6455 and then
6456 Nkind (Parent (Unit_Declaration_Node (Designator))) =
6457 N_Compilation_Unit
6458 and then Post_Error
6459 then
6460 Error_Msg_N
6461 ("body of child unit does not match previous declaration", N);
6462 end if;
6463 end if;
6464
6465 <<Next_Entity>>
6466 E := Homonym (E);
6467 end loop;
6468
6469 -- On exit, we know that no previous declaration of subprogram exists
6470
6471 return Empty;
6472 end Find_Corresponding_Spec;
6473
6474 ----------------------
6475 -- Fully_Conformant --
6476 ----------------------
6477
6478 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
6479 Result : Boolean;
6480 begin
6481 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
6482 return Result;
6483 end Fully_Conformant;
6484
6485 ----------------------------------
6486 -- Fully_Conformant_Expressions --
6487 ----------------------------------
6488
6489 function Fully_Conformant_Expressions
6490 (Given_E1 : Node_Id;
6491 Given_E2 : Node_Id) return Boolean
6492 is
6493 E1 : constant Node_Id := Original_Node (Given_E1);
6494 E2 : constant Node_Id := Original_Node (Given_E2);
6495 -- We always test conformance on original nodes, since it is possible
6496 -- for analysis and/or expansion to make things look as though they
6497 -- conform when they do not, e.g. by converting 1+2 into 3.
6498
6499 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
6500 renames Fully_Conformant_Expressions;
6501
6502 function FCL (L1, L2 : List_Id) return Boolean;
6503 -- Compare elements of two lists for conformance. Elements have to
6504 -- be conformant, and actuals inserted as default parameters do not
6505 -- match explicit actuals with the same value.
6506
6507 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
6508 -- Compare an operator node with a function call
6509
6510 ---------
6511 -- FCL --
6512 ---------
6513
6514 function FCL (L1, L2 : List_Id) return Boolean is
6515 N1, N2 : Node_Id;
6516
6517 begin
6518 if L1 = No_List then
6519 N1 := Empty;
6520 else
6521 N1 := First (L1);
6522 end if;
6523
6524 if L2 = No_List then
6525 N2 := Empty;
6526 else
6527 N2 := First (L2);
6528 end if;
6529
6530 -- Compare two lists, skipping rewrite insertions (we want to
6531 -- compare the original trees, not the expanded versions!)
6532
6533 loop
6534 if Is_Rewrite_Insertion (N1) then
6535 Next (N1);
6536 elsif Is_Rewrite_Insertion (N2) then
6537 Next (N2);
6538 elsif No (N1) then
6539 return No (N2);
6540 elsif No (N2) then
6541 return False;
6542 elsif not FCE (N1, N2) then
6543 return False;
6544 else
6545 Next (N1);
6546 Next (N2);
6547 end if;
6548 end loop;
6549 end FCL;
6550
6551 ---------
6552 -- FCO --
6553 ---------
6554
6555 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
6556 Actuals : constant List_Id := Parameter_Associations (Call_Node);
6557 Act : Node_Id;
6558
6559 begin
6560 if No (Actuals)
6561 or else Entity (Op_Node) /= Entity (Name (Call_Node))
6562 then
6563 return False;
6564
6565 else
6566 Act := First (Actuals);
6567
6568 if Nkind (Op_Node) in N_Binary_Op then
6569 if not FCE (Left_Opnd (Op_Node), Act) then
6570 return False;
6571 end if;
6572
6573 Next (Act);
6574 end if;
6575
6576 return Present (Act)
6577 and then FCE (Right_Opnd (Op_Node), Act)
6578 and then No (Next (Act));
6579 end if;
6580 end FCO;
6581
6582 -- Start of processing for Fully_Conformant_Expressions
6583
6584 begin
6585 -- Non-conformant if paren count does not match. Note: if some idiot
6586 -- complains that we don't do this right for more than 3 levels of
6587 -- parentheses, they will be treated with the respect they deserve!
6588
6589 if Paren_Count (E1) /= Paren_Count (E2) then
6590 return False;
6591
6592 -- If same entities are referenced, then they are conformant even if
6593 -- they have different forms (RM 8.3.1(19-20)).
6594
6595 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
6596 if Present (Entity (E1)) then
6597 return Entity (E1) = Entity (E2)
6598 or else (Chars (Entity (E1)) = Chars (Entity (E2))
6599 and then Ekind (Entity (E1)) = E_Discriminant
6600 and then Ekind (Entity (E2)) = E_In_Parameter);
6601
6602 elsif Nkind (E1) = N_Expanded_Name
6603 and then Nkind (E2) = N_Expanded_Name
6604 and then Nkind (Selector_Name (E1)) = N_Character_Literal
6605 and then Nkind (Selector_Name (E2)) = N_Character_Literal
6606 then
6607 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
6608
6609 else
6610 -- Identifiers in component associations don't always have
6611 -- entities, but their names must conform.
6612
6613 return Nkind (E1) = N_Identifier
6614 and then Nkind (E2) = N_Identifier
6615 and then Chars (E1) = Chars (E2);
6616 end if;
6617
6618 elsif Nkind (E1) = N_Character_Literal
6619 and then Nkind (E2) = N_Expanded_Name
6620 then
6621 return Nkind (Selector_Name (E2)) = N_Character_Literal
6622 and then Chars (E1) = Chars (Selector_Name (E2));
6623
6624 elsif Nkind (E2) = N_Character_Literal
6625 and then Nkind (E1) = N_Expanded_Name
6626 then
6627 return Nkind (Selector_Name (E1)) = N_Character_Literal
6628 and then Chars (E2) = Chars (Selector_Name (E1));
6629
6630 elsif Nkind (E1) in N_Op
6631 and then Nkind (E2) = N_Function_Call
6632 then
6633 return FCO (E1, E2);
6634
6635 elsif Nkind (E2) in N_Op
6636 and then Nkind (E1) = N_Function_Call
6637 then
6638 return FCO (E2, E1);
6639
6640 -- Otherwise we must have the same syntactic entity
6641
6642 elsif Nkind (E1) /= Nkind (E2) then
6643 return False;
6644
6645 -- At this point, we specialize by node type
6646
6647 else
6648 case Nkind (E1) is
6649
6650 when N_Aggregate =>
6651 return
6652 FCL (Expressions (E1), Expressions (E2))
6653 and then
6654 FCL (Component_Associations (E1),
6655 Component_Associations (E2));
6656
6657 when N_Allocator =>
6658 if Nkind (Expression (E1)) = N_Qualified_Expression
6659 or else
6660 Nkind (Expression (E2)) = N_Qualified_Expression
6661 then
6662 return FCE (Expression (E1), Expression (E2));
6663
6664 -- Check that the subtype marks and any constraints
6665 -- are conformant
6666
6667 else
6668 declare
6669 Indic1 : constant Node_Id := Expression (E1);
6670 Indic2 : constant Node_Id := Expression (E2);
6671 Elt1 : Node_Id;
6672 Elt2 : Node_Id;
6673
6674 begin
6675 if Nkind (Indic1) /= N_Subtype_Indication then
6676 return
6677 Nkind (Indic2) /= N_Subtype_Indication
6678 and then Entity (Indic1) = Entity (Indic2);
6679
6680 elsif Nkind (Indic2) /= N_Subtype_Indication then
6681 return
6682 Nkind (Indic1) /= N_Subtype_Indication
6683 and then Entity (Indic1) = Entity (Indic2);
6684
6685 else
6686 if Entity (Subtype_Mark (Indic1)) /=
6687 Entity (Subtype_Mark (Indic2))
6688 then
6689 return False;
6690 end if;
6691
6692 Elt1 := First (Constraints (Constraint (Indic1)));
6693 Elt2 := First (Constraints (Constraint (Indic2)));
6694 while Present (Elt1) and then Present (Elt2) loop
6695 if not FCE (Elt1, Elt2) then
6696 return False;
6697 end if;
6698
6699 Next (Elt1);
6700 Next (Elt2);
6701 end loop;
6702
6703 return True;
6704 end if;
6705 end;
6706 end if;
6707
6708 when N_Attribute_Reference =>
6709 return
6710 Attribute_Name (E1) = Attribute_Name (E2)
6711 and then FCL (Expressions (E1), Expressions (E2));
6712
6713 when N_Binary_Op =>
6714 return
6715 Entity (E1) = Entity (E2)
6716 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
6717 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
6718
6719 when N_Short_Circuit | N_Membership_Test =>
6720 return
6721 FCE (Left_Opnd (E1), Left_Opnd (E2))
6722 and then
6723 FCE (Right_Opnd (E1), Right_Opnd (E2));
6724
6725 when N_Case_Expression =>
6726 declare
6727 Alt1 : Node_Id;
6728 Alt2 : Node_Id;
6729
6730 begin
6731 if not FCE (Expression (E1), Expression (E2)) then
6732 return False;
6733
6734 else
6735 Alt1 := First (Alternatives (E1));
6736 Alt2 := First (Alternatives (E2));
6737 loop
6738 if Present (Alt1) /= Present (Alt2) then
6739 return False;
6740 elsif No (Alt1) then
6741 return True;
6742 end if;
6743
6744 if not FCE (Expression (Alt1), Expression (Alt2))
6745 or else not FCL (Discrete_Choices (Alt1),
6746 Discrete_Choices (Alt2))
6747 then
6748 return False;
6749 end if;
6750
6751 Next (Alt1);
6752 Next (Alt2);
6753 end loop;
6754 end if;
6755 end;
6756
6757 when N_Character_Literal =>
6758 return
6759 Char_Literal_Value (E1) = Char_Literal_Value (E2);
6760
6761 when N_Component_Association =>
6762 return
6763 FCL (Choices (E1), Choices (E2))
6764 and then
6765 FCE (Expression (E1), Expression (E2));
6766
6767 when N_Conditional_Expression =>
6768 return
6769 FCL (Expressions (E1), Expressions (E2));
6770
6771 when N_Explicit_Dereference =>
6772 return
6773 FCE (Prefix (E1), Prefix (E2));
6774
6775 when N_Extension_Aggregate =>
6776 return
6777 FCL (Expressions (E1), Expressions (E2))
6778 and then Null_Record_Present (E1) =
6779 Null_Record_Present (E2)
6780 and then FCL (Component_Associations (E1),
6781 Component_Associations (E2));
6782
6783 when N_Function_Call =>
6784 return
6785 FCE (Name (E1), Name (E2))
6786 and then
6787 FCL (Parameter_Associations (E1),
6788 Parameter_Associations (E2));
6789
6790 when N_Indexed_Component =>
6791 return
6792 FCE (Prefix (E1), Prefix (E2))
6793 and then
6794 FCL (Expressions (E1), Expressions (E2));
6795
6796 when N_Integer_Literal =>
6797 return (Intval (E1) = Intval (E2));
6798
6799 when N_Null =>
6800 return True;
6801
6802 when N_Operator_Symbol =>
6803 return
6804 Chars (E1) = Chars (E2);
6805
6806 when N_Others_Choice =>
6807 return True;
6808
6809 when N_Parameter_Association =>
6810 return
6811 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
6812 and then FCE (Explicit_Actual_Parameter (E1),
6813 Explicit_Actual_Parameter (E2));
6814
6815 when N_Qualified_Expression =>
6816 return
6817 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
6818 and then
6819 FCE (Expression (E1), Expression (E2));
6820
6821 when N_Quantified_Expression =>
6822 if not FCE (Condition (E1), Condition (E2)) then
6823 return False;
6824 end if;
6825
6826 if Present (Loop_Parameter_Specification (E1))
6827 and then Present (Loop_Parameter_Specification (E2))
6828 then
6829 declare
6830 L1 : constant Node_Id :=
6831 Loop_Parameter_Specification (E1);
6832 L2 : constant Node_Id :=
6833 Loop_Parameter_Specification (E2);
6834
6835 begin
6836 return
6837 Reverse_Present (L1) = Reverse_Present (L2)
6838 and then
6839 FCE (Defining_Identifier (L1),
6840 Defining_Identifier (L2))
6841 and then
6842 FCE (Discrete_Subtype_Definition (L1),
6843 Discrete_Subtype_Definition (L2));
6844 end;
6845
6846 else -- quantified expression with an iterator
6847 declare
6848 I1 : constant Node_Id := Iterator_Specification (E1);
6849 I2 : constant Node_Id := Iterator_Specification (E2);
6850
6851 begin
6852 return
6853 FCE (Defining_Identifier (I1),
6854 Defining_Identifier (I2))
6855 and then
6856 Of_Present (I1) = Of_Present (I2)
6857 and then
6858 Reverse_Present (I1) = Reverse_Present (I2)
6859 and then FCE (Name (I1), Name (I2))
6860 and then FCE (Subtype_Indication (I1),
6861 Subtype_Indication (I2));
6862 end;
6863 end if;
6864
6865 when N_Range =>
6866 return
6867 FCE (Low_Bound (E1), Low_Bound (E2))
6868 and then
6869 FCE (High_Bound (E1), High_Bound (E2));
6870
6871 when N_Real_Literal =>
6872 return (Realval (E1) = Realval (E2));
6873
6874 when N_Selected_Component =>
6875 return
6876 FCE (Prefix (E1), Prefix (E2))
6877 and then
6878 FCE (Selector_Name (E1), Selector_Name (E2));
6879
6880 when N_Slice =>
6881 return
6882 FCE (Prefix (E1), Prefix (E2))
6883 and then
6884 FCE (Discrete_Range (E1), Discrete_Range (E2));
6885
6886 when N_String_Literal =>
6887 declare
6888 S1 : constant String_Id := Strval (E1);
6889 S2 : constant String_Id := Strval (E2);
6890 L1 : constant Nat := String_Length (S1);
6891 L2 : constant Nat := String_Length (S2);
6892
6893 begin
6894 if L1 /= L2 then
6895 return False;
6896
6897 else
6898 for J in 1 .. L1 loop
6899 if Get_String_Char (S1, J) /=
6900 Get_String_Char (S2, J)
6901 then
6902 return False;
6903 end if;
6904 end loop;
6905
6906 return True;
6907 end if;
6908 end;
6909
6910 when N_Type_Conversion =>
6911 return
6912 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
6913 and then
6914 FCE (Expression (E1), Expression (E2));
6915
6916 when N_Unary_Op =>
6917 return
6918 Entity (E1) = Entity (E2)
6919 and then
6920 FCE (Right_Opnd (E1), Right_Opnd (E2));
6921
6922 when N_Unchecked_Type_Conversion =>
6923 return
6924 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
6925 and then
6926 FCE (Expression (E1), Expression (E2));
6927
6928 -- All other node types cannot appear in this context. Strictly
6929 -- we should raise a fatal internal error. Instead we just ignore
6930 -- the nodes. This means that if anyone makes a mistake in the
6931 -- expander and mucks an expression tree irretrievably, the
6932 -- result will be a failure to detect a (probably very obscure)
6933 -- case of non-conformance, which is better than bombing on some
6934 -- case where two expressions do in fact conform.
6935
6936 when others =>
6937 return True;
6938
6939 end case;
6940 end if;
6941 end Fully_Conformant_Expressions;
6942
6943 ----------------------------------------
6944 -- Fully_Conformant_Discrete_Subtypes --
6945 ----------------------------------------
6946
6947 function Fully_Conformant_Discrete_Subtypes
6948 (Given_S1 : Node_Id;
6949 Given_S2 : Node_Id) return Boolean
6950 is
6951 S1 : constant Node_Id := Original_Node (Given_S1);
6952 S2 : constant Node_Id := Original_Node (Given_S2);
6953
6954 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
6955 -- Special-case for a bound given by a discriminant, which in the body
6956 -- is replaced with the discriminal of the enclosing type.
6957
6958 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
6959 -- Check both bounds
6960
6961 -----------------------
6962 -- Conforming_Bounds --
6963 -----------------------
6964
6965 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
6966 begin
6967 if Is_Entity_Name (B1)
6968 and then Is_Entity_Name (B2)
6969 and then Ekind (Entity (B1)) = E_Discriminant
6970 then
6971 return Chars (B1) = Chars (B2);
6972
6973 else
6974 return Fully_Conformant_Expressions (B1, B2);
6975 end if;
6976 end Conforming_Bounds;
6977
6978 -----------------------
6979 -- Conforming_Ranges --
6980 -----------------------
6981
6982 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
6983 begin
6984 return
6985 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
6986 and then
6987 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
6988 end Conforming_Ranges;
6989
6990 -- Start of processing for Fully_Conformant_Discrete_Subtypes
6991
6992 begin
6993 if Nkind (S1) /= Nkind (S2) then
6994 return False;
6995
6996 elsif Is_Entity_Name (S1) then
6997 return Entity (S1) = Entity (S2);
6998
6999 elsif Nkind (S1) = N_Range then
7000 return Conforming_Ranges (S1, S2);
7001
7002 elsif Nkind (S1) = N_Subtype_Indication then
7003 return
7004 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
7005 and then
7006 Conforming_Ranges
7007 (Range_Expression (Constraint (S1)),
7008 Range_Expression (Constraint (S2)));
7009 else
7010 return True;
7011 end if;
7012 end Fully_Conformant_Discrete_Subtypes;
7013
7014 --------------------
7015 -- Install_Entity --
7016 --------------------
7017
7018 procedure Install_Entity (E : Entity_Id) is
7019 Prev : constant Entity_Id := Current_Entity (E);
7020 begin
7021 Set_Is_Immediately_Visible (E);
7022 Set_Current_Entity (E);
7023 Set_Homonym (E, Prev);
7024 end Install_Entity;
7025
7026 ---------------------
7027 -- Install_Formals --
7028 ---------------------
7029
7030 procedure Install_Formals (Id : Entity_Id) is
7031 F : Entity_Id;
7032 begin
7033 F := First_Formal (Id);
7034 while Present (F) loop
7035 Install_Entity (F);
7036 Next_Formal (F);
7037 end loop;
7038 end Install_Formals;
7039
7040 -----------------------------
7041 -- Is_Interface_Conformant --
7042 -----------------------------
7043
7044 function Is_Interface_Conformant
7045 (Tagged_Type : Entity_Id;
7046 Iface_Prim : Entity_Id;
7047 Prim : Entity_Id) return Boolean
7048 is
7049 Iface : constant Entity_Id := Find_Dispatching_Type (Iface_Prim);
7050 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
7051
7052 function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
7053 -- Return the controlling formal of Prim
7054
7055 ------------------------
7056 -- Controlling_Formal --
7057 ------------------------
7058
7059 function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
7060 E : Entity_Id := First_Entity (Prim);
7061
7062 begin
7063 while Present (E) loop
7064 if Is_Formal (E) and then Is_Controlling_Formal (E) then
7065 return E;
7066 end if;
7067
7068 Next_Entity (E);
7069 end loop;
7070
7071 return Empty;
7072 end Controlling_Formal;
7073
7074 -- Local variables
7075
7076 Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
7077 Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
7078
7079 -- Start of processing for Is_Interface_Conformant
7080
7081 begin
7082 pragma Assert (Is_Subprogram (Iface_Prim)
7083 and then Is_Subprogram (Prim)
7084 and then Is_Dispatching_Operation (Iface_Prim)
7085 and then Is_Dispatching_Operation (Prim));
7086
7087 pragma Assert (Is_Interface (Iface)
7088 or else (Present (Alias (Iface_Prim))
7089 and then
7090 Is_Interface
7091 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
7092
7093 if Prim = Iface_Prim
7094 or else not Is_Subprogram (Prim)
7095 or else Ekind (Prim) /= Ekind (Iface_Prim)
7096 or else not Is_Dispatching_Operation (Prim)
7097 or else Scope (Prim) /= Scope (Tagged_Type)
7098 or else No (Typ)
7099 or else Base_Type (Typ) /= Tagged_Type
7100 or else not Primitive_Names_Match (Iface_Prim, Prim)
7101 then
7102 return False;
7103
7104 -- The mode of the controlling formals must match
7105
7106 elsif Present (Iface_Ctrl_F)
7107 and then Present (Prim_Ctrl_F)
7108 and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
7109 then
7110 return False;
7111
7112 -- Case of a procedure, or a function whose result type matches the
7113 -- result type of the interface primitive, or a function that has no
7114 -- controlling result (I or access I).
7115
7116 elsif Ekind (Iface_Prim) = E_Procedure
7117 or else Etype (Prim) = Etype (Iface_Prim)
7118 or else not Has_Controlling_Result (Prim)
7119 then
7120 return Type_Conformant
7121 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
7122
7123 -- Case of a function returning an interface, or an access to one.
7124 -- Check that the return types correspond.
7125
7126 elsif Implements_Interface (Typ, Iface) then
7127 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
7128 /=
7129 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
7130 then
7131 return False;
7132 else
7133 return
7134 Type_Conformant (Prim, Iface_Prim,
7135 Skip_Controlling_Formals => True);
7136 end if;
7137
7138 else
7139 return False;
7140 end if;
7141 end Is_Interface_Conformant;
7142
7143 ---------------------------------
7144 -- Is_Non_Overriding_Operation --
7145 ---------------------------------
7146
7147 function Is_Non_Overriding_Operation
7148 (Prev_E : Entity_Id;
7149 New_E : Entity_Id) return Boolean
7150 is
7151 Formal : Entity_Id;
7152 F_Typ : Entity_Id;
7153 G_Typ : Entity_Id := Empty;
7154
7155 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
7156 -- If F_Type is a derived type associated with a generic actual subtype,
7157 -- then return its Generic_Parent_Type attribute, else return Empty.
7158
7159 function Types_Correspond
7160 (P_Type : Entity_Id;
7161 N_Type : Entity_Id) return Boolean;
7162 -- Returns true if and only if the types (or designated types in the
7163 -- case of anonymous access types) are the same or N_Type is derived
7164 -- directly or indirectly from P_Type.
7165
7166 -----------------------------
7167 -- Get_Generic_Parent_Type --
7168 -----------------------------
7169
7170 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
7171 G_Typ : Entity_Id;
7172 Indic : Node_Id;
7173
7174 begin
7175 if Is_Derived_Type (F_Typ)
7176 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
7177 then
7178 -- The tree must be traversed to determine the parent subtype in
7179 -- the generic unit, which unfortunately isn't always available
7180 -- via semantic attributes. ??? (Note: The use of Original_Node
7181 -- is needed for cases where a full derived type has been
7182 -- rewritten.)
7183
7184 Indic := Subtype_Indication
7185 (Type_Definition (Original_Node (Parent (F_Typ))));
7186
7187 if Nkind (Indic) = N_Subtype_Indication then
7188 G_Typ := Entity (Subtype_Mark (Indic));
7189 else
7190 G_Typ := Entity (Indic);
7191 end if;
7192
7193 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
7194 and then Present (Generic_Parent_Type (Parent (G_Typ)))
7195 then
7196 return Generic_Parent_Type (Parent (G_Typ));
7197 end if;
7198 end if;
7199
7200 return Empty;
7201 end Get_Generic_Parent_Type;
7202
7203 ----------------------
7204 -- Types_Correspond --
7205 ----------------------
7206
7207 function Types_Correspond
7208 (P_Type : Entity_Id;
7209 N_Type : Entity_Id) return Boolean
7210 is
7211 Prev_Type : Entity_Id := Base_Type (P_Type);
7212 New_Type : Entity_Id := Base_Type (N_Type);
7213
7214 begin
7215 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
7216 Prev_Type := Designated_Type (Prev_Type);
7217 end if;
7218
7219 if Ekind (New_Type) = E_Anonymous_Access_Type then
7220 New_Type := Designated_Type (New_Type);
7221 end if;
7222
7223 if Prev_Type = New_Type then
7224 return True;
7225
7226 elsif not Is_Class_Wide_Type (New_Type) then
7227 while Etype (New_Type) /= New_Type loop
7228 New_Type := Etype (New_Type);
7229 if New_Type = Prev_Type then
7230 return True;
7231 end if;
7232 end loop;
7233 end if;
7234 return False;
7235 end Types_Correspond;
7236
7237 -- Start of processing for Is_Non_Overriding_Operation
7238
7239 begin
7240 -- In the case where both operations are implicit derived subprograms
7241 -- then neither overrides the other. This can only occur in certain
7242 -- obscure cases (e.g., derivation from homographs created in a generic
7243 -- instantiation).
7244
7245 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
7246 return True;
7247
7248 elsif Ekind (Current_Scope) = E_Package
7249 and then Is_Generic_Instance (Current_Scope)
7250 and then In_Private_Part (Current_Scope)
7251 and then Comes_From_Source (New_E)
7252 then
7253 -- We examine the formals and result subtype of the inherited
7254 -- operation, to determine whether their type is derived from (the
7255 -- instance of) a generic type.
7256
7257 Formal := First_Formal (Prev_E);
7258 while Present (Formal) loop
7259 F_Typ := Base_Type (Etype (Formal));
7260
7261 if Ekind (F_Typ) = E_Anonymous_Access_Type then
7262 F_Typ := Designated_Type (F_Typ);
7263 end if;
7264
7265 G_Typ := Get_Generic_Parent_Type (F_Typ);
7266
7267 Next_Formal (Formal);
7268 end loop;
7269
7270 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
7271 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
7272 end if;
7273
7274 if No (G_Typ) then
7275 return False;
7276 end if;
7277
7278 -- If the generic type is a private type, then the original operation
7279 -- was not overriding in the generic, because there was no primitive
7280 -- operation to override.
7281
7282 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
7283 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
7284 N_Formal_Private_Type_Definition
7285 then
7286 return True;
7287
7288 -- The generic parent type is the ancestor of a formal derived
7289 -- type declaration. We need to check whether it has a primitive
7290 -- operation that should be overridden by New_E in the generic.
7291
7292 else
7293 declare
7294 P_Formal : Entity_Id;
7295 N_Formal : Entity_Id;
7296 P_Typ : Entity_Id;
7297 N_Typ : Entity_Id;
7298 P_Prim : Entity_Id;
7299 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
7300
7301 begin
7302 while Present (Prim_Elt) loop
7303 P_Prim := Node (Prim_Elt);
7304
7305 if Chars (P_Prim) = Chars (New_E)
7306 and then Ekind (P_Prim) = Ekind (New_E)
7307 then
7308 P_Formal := First_Formal (P_Prim);
7309 N_Formal := First_Formal (New_E);
7310 while Present (P_Formal) and then Present (N_Formal) loop
7311 P_Typ := Etype (P_Formal);
7312 N_Typ := Etype (N_Formal);
7313
7314 if not Types_Correspond (P_Typ, N_Typ) then
7315 exit;
7316 end if;
7317
7318 Next_Entity (P_Formal);
7319 Next_Entity (N_Formal);
7320 end loop;
7321
7322 -- Found a matching primitive operation belonging to the
7323 -- formal ancestor type, so the new subprogram is
7324 -- overriding.
7325
7326 if No (P_Formal)
7327 and then No (N_Formal)
7328 and then (Ekind (New_E) /= E_Function
7329 or else
7330 Types_Correspond
7331 (Etype (P_Prim), Etype (New_E)))
7332 then
7333 return False;
7334 end if;
7335 end if;
7336
7337 Next_Elmt (Prim_Elt);
7338 end loop;
7339
7340 -- If no match found, then the new subprogram does not
7341 -- override in the generic (nor in the instance).
7342
7343 return True;
7344 end;
7345 end if;
7346 else
7347 return False;
7348 end if;
7349 end Is_Non_Overriding_Operation;
7350
7351 -------------------------------------
7352 -- List_Inherited_Pre_Post_Aspects --
7353 -------------------------------------
7354
7355 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
7356 begin
7357 if Opt.List_Inherited_Aspects
7358 and then (Is_Subprogram (E) or else Is_Generic_Subprogram (E))
7359 then
7360 declare
7361 Inherited : constant Subprogram_List :=
7362 Inherited_Subprograms (E);
7363 P : Node_Id;
7364
7365 begin
7366 for J in Inherited'Range loop
7367 P := Spec_PPC_List (Contract (Inherited (J)));
7368
7369 while Present (P) loop
7370 Error_Msg_Sloc := Sloc (P);
7371
7372 if Class_Present (P) and then not Split_PPC (P) then
7373 if Pragma_Name (P) = Name_Precondition then
7374 Error_Msg_N
7375 ("?info: & inherits `Pre''Class` aspect from #", E);
7376 else
7377 Error_Msg_N
7378 ("?info: & inherits `Post''Class` aspect from #", E);
7379 end if;
7380 end if;
7381
7382 P := Next_Pragma (P);
7383 end loop;
7384 end loop;
7385 end;
7386 end if;
7387 end List_Inherited_Pre_Post_Aspects;
7388
7389 ------------------------------
7390 -- Make_Inequality_Operator --
7391 ------------------------------
7392
7393 -- S is the defining identifier of an equality operator. We build a
7394 -- subprogram declaration with the right signature. This operation is
7395 -- intrinsic, because it is always expanded as the negation of the
7396 -- call to the equality function.
7397
7398 procedure Make_Inequality_Operator (S : Entity_Id) is
7399 Loc : constant Source_Ptr := Sloc (S);
7400 Decl : Node_Id;
7401 Formals : List_Id;
7402 Op_Name : Entity_Id;
7403
7404 FF : constant Entity_Id := First_Formal (S);
7405 NF : constant Entity_Id := Next_Formal (FF);
7406
7407 begin
7408 -- Check that equality was properly defined, ignore call if not
7409
7410 if No (NF) then
7411 return;
7412 end if;
7413
7414 declare
7415 A : constant Entity_Id :=
7416 Make_Defining_Identifier (Sloc (FF),
7417 Chars => Chars (FF));
7418
7419 B : constant Entity_Id :=
7420 Make_Defining_Identifier (Sloc (NF),
7421 Chars => Chars (NF));
7422
7423 begin
7424 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
7425
7426 Formals := New_List (
7427 Make_Parameter_Specification (Loc,
7428 Defining_Identifier => A,
7429 Parameter_Type =>
7430 New_Reference_To (Etype (First_Formal (S)),
7431 Sloc (Etype (First_Formal (S))))),
7432
7433 Make_Parameter_Specification (Loc,
7434 Defining_Identifier => B,
7435 Parameter_Type =>
7436 New_Reference_To (Etype (Next_Formal (First_Formal (S))),
7437 Sloc (Etype (Next_Formal (First_Formal (S)))))));
7438
7439 Decl :=
7440 Make_Subprogram_Declaration (Loc,
7441 Specification =>
7442 Make_Function_Specification (Loc,
7443 Defining_Unit_Name => Op_Name,
7444 Parameter_Specifications => Formals,
7445 Result_Definition =>
7446 New_Reference_To (Standard_Boolean, Loc)));
7447
7448 -- Insert inequality right after equality if it is explicit or after
7449 -- the derived type when implicit. These entities are created only
7450 -- for visibility purposes, and eventually replaced in the course of
7451 -- expansion, so they do not need to be attached to the tree and seen
7452 -- by the back-end. Keeping them internal also avoids spurious
7453 -- freezing problems. The declaration is inserted in the tree for
7454 -- analysis, and removed afterwards. If the equality operator comes
7455 -- from an explicit declaration, attach the inequality immediately
7456 -- after. Else the equality is inherited from a derived type
7457 -- declaration, so insert inequality after that declaration.
7458
7459 if No (Alias (S)) then
7460 Insert_After (Unit_Declaration_Node (S), Decl);
7461 elsif Is_List_Member (Parent (S)) then
7462 Insert_After (Parent (S), Decl);
7463 else
7464 Insert_After (Parent (Etype (First_Formal (S))), Decl);
7465 end if;
7466
7467 Mark_Rewrite_Insertion (Decl);
7468 Set_Is_Intrinsic_Subprogram (Op_Name);
7469 Analyze (Decl);
7470 Remove (Decl);
7471 Set_Has_Completion (Op_Name);
7472 Set_Corresponding_Equality (Op_Name, S);
7473 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
7474 end;
7475 end Make_Inequality_Operator;
7476
7477 ----------------------
7478 -- May_Need_Actuals --
7479 ----------------------
7480
7481 procedure May_Need_Actuals (Fun : Entity_Id) is
7482 F : Entity_Id;
7483 B : Boolean;
7484
7485 begin
7486 F := First_Formal (Fun);
7487 B := True;
7488 while Present (F) loop
7489 if No (Default_Value (F)) then
7490 B := False;
7491 exit;
7492 end if;
7493
7494 Next_Formal (F);
7495 end loop;
7496
7497 Set_Needs_No_Actuals (Fun, B);
7498 end May_Need_Actuals;
7499
7500 ---------------------
7501 -- Mode_Conformant --
7502 ---------------------
7503
7504 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
7505 Result : Boolean;
7506 begin
7507 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
7508 return Result;
7509 end Mode_Conformant;
7510
7511 ---------------------------
7512 -- New_Overloaded_Entity --
7513 ---------------------------
7514
7515 procedure New_Overloaded_Entity
7516 (S : Entity_Id;
7517 Derived_Type : Entity_Id := Empty)
7518 is
7519 Overridden_Subp : Entity_Id := Empty;
7520 -- Set if the current scope has an operation that is type-conformant
7521 -- with S, and becomes hidden by S.
7522
7523 Is_Primitive_Subp : Boolean;
7524 -- Set to True if the new subprogram is primitive
7525
7526 E : Entity_Id;
7527 -- Entity that S overrides
7528
7529 Prev_Vis : Entity_Id := Empty;
7530 -- Predecessor of E in Homonym chain
7531
7532 procedure Check_For_Primitive_Subprogram
7533 (Is_Primitive : out Boolean;
7534 Is_Overriding : Boolean := False);
7535 -- If the subprogram being analyzed is a primitive operation of the type
7536 -- of a formal or result, set the Has_Primitive_Operations flag on the
7537 -- type, and set Is_Primitive to True (otherwise set to False). Set the
7538 -- corresponding flag on the entity itself for later use.
7539
7540 procedure Check_Synchronized_Overriding
7541 (Def_Id : Entity_Id;
7542 Overridden_Subp : out Entity_Id);
7543 -- First determine if Def_Id is an entry or a subprogram either defined
7544 -- in the scope of a task or protected type, or is a primitive of such
7545 -- a type. Check whether Def_Id overrides a subprogram of an interface
7546 -- implemented by the synchronized type, return the overridden entity
7547 -- or Empty.
7548
7549 function Is_Private_Declaration (E : Entity_Id) return Boolean;
7550 -- Check that E is declared in the private part of the current package,
7551 -- or in the package body, where it may hide a previous declaration.
7552 -- We can't use In_Private_Part by itself because this flag is also
7553 -- set when freezing entities, so we must examine the place of the
7554 -- declaration in the tree, and recognize wrapper packages as well.
7555
7556 function Is_Overriding_Alias
7557 (Old_E : Entity_Id;
7558 New_E : Entity_Id) return Boolean;
7559 -- Check whether new subprogram and old subprogram are both inherited
7560 -- from subprograms that have distinct dispatch table entries. This can
7561 -- occur with derivations from instances with accidental homonyms.
7562 -- The function is conservative given that the converse is only true
7563 -- within instances that contain accidental overloadings.
7564
7565 ------------------------------------
7566 -- Check_For_Primitive_Subprogram --
7567 ------------------------------------
7568
7569 procedure Check_For_Primitive_Subprogram
7570 (Is_Primitive : out Boolean;
7571 Is_Overriding : Boolean := False)
7572 is
7573 Formal : Entity_Id;
7574 F_Typ : Entity_Id;
7575 B_Typ : Entity_Id;
7576
7577 function Visible_Part_Type (T : Entity_Id) return Boolean;
7578 -- Returns true if T is declared in the visible part of the current
7579 -- package scope; otherwise returns false. Assumes that T is declared
7580 -- in a package.
7581
7582 procedure Check_Private_Overriding (T : Entity_Id);
7583 -- Checks that if a primitive abstract subprogram of a visible
7584 -- abstract type is declared in a private part, then it must override
7585 -- an abstract subprogram declared in the visible part. Also checks
7586 -- that if a primitive function with a controlling result is declared
7587 -- in a private part, then it must override a function declared in
7588 -- the visible part.
7589
7590 ------------------------------
7591 -- Check_Private_Overriding --
7592 ------------------------------
7593
7594 procedure Check_Private_Overriding (T : Entity_Id) is
7595 begin
7596 if Is_Package_Or_Generic_Package (Current_Scope)
7597 and then In_Private_Part (Current_Scope)
7598 and then Visible_Part_Type (T)
7599 and then not In_Instance
7600 then
7601 if Is_Abstract_Type (T)
7602 and then Is_Abstract_Subprogram (S)
7603 and then (not Is_Overriding
7604 or else not Is_Abstract_Subprogram (E))
7605 then
7606 Error_Msg_N
7607 ("abstract subprograms must be visible "
7608 & "(RM 3.9.3(10))!", S);
7609
7610 elsif Ekind (S) = E_Function
7611 and then not Is_Overriding
7612 then
7613 if Is_Tagged_Type (T)
7614 and then T = Base_Type (Etype (S))
7615 then
7616 Error_Msg_N
7617 ("private function with tagged result must"
7618 & " override visible-part function", S);
7619 Error_Msg_N
7620 ("\move subprogram to the visible part"
7621 & " (RM 3.9.3(10))", S);
7622
7623 -- AI05-0073: extend this test to the case of a function
7624 -- with a controlling access result.
7625
7626 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
7627 and then Is_Tagged_Type (Designated_Type (Etype (S)))
7628 and then
7629 not Is_Class_Wide_Type (Designated_Type (Etype (S)))
7630 and then Ada_Version >= Ada_2012
7631 then
7632 Error_Msg_N
7633 ("private function with controlling access result "
7634 & "must override visible-part function", S);
7635 Error_Msg_N
7636 ("\move subprogram to the visible part"
7637 & " (RM 3.9.3(10))", S);
7638 end if;
7639 end if;
7640 end if;
7641 end Check_Private_Overriding;
7642
7643 -----------------------
7644 -- Visible_Part_Type --
7645 -----------------------
7646
7647 function Visible_Part_Type (T : Entity_Id) return Boolean is
7648 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
7649 N : Node_Id;
7650
7651 begin
7652 -- If the entity is a private type, then it must be declared in a
7653 -- visible part.
7654
7655 if Ekind (T) in Private_Kind then
7656 return True;
7657 end if;
7658
7659 -- Otherwise, we traverse the visible part looking for its
7660 -- corresponding declaration. We cannot use the declaration
7661 -- node directly because in the private part the entity of a
7662 -- private type is the one in the full view, which does not
7663 -- indicate that it is the completion of something visible.
7664
7665 N := First (Visible_Declarations (Specification (P)));
7666 while Present (N) loop
7667 if Nkind (N) = N_Full_Type_Declaration
7668 and then Present (Defining_Identifier (N))
7669 and then T = Defining_Identifier (N)
7670 then
7671 return True;
7672
7673 elsif Nkind_In (N, N_Private_Type_Declaration,
7674 N_Private_Extension_Declaration)
7675 and then Present (Defining_Identifier (N))
7676 and then T = Full_View (Defining_Identifier (N))
7677 then
7678 return True;
7679 end if;
7680
7681 Next (N);
7682 end loop;
7683
7684 return False;
7685 end Visible_Part_Type;
7686
7687 -- Start of processing for Check_For_Primitive_Subprogram
7688
7689 begin
7690 Is_Primitive := False;
7691
7692 if not Comes_From_Source (S) then
7693 null;
7694
7695 -- If subprogram is at library level, it is not primitive operation
7696
7697 elsif Current_Scope = Standard_Standard then
7698 null;
7699
7700 elsif (Is_Package_Or_Generic_Package (Current_Scope)
7701 and then not In_Package_Body (Current_Scope))
7702 or else Is_Overriding
7703 then
7704 -- For function, check return type
7705
7706 if Ekind (S) = E_Function then
7707 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
7708 F_Typ := Designated_Type (Etype (S));
7709 else
7710 F_Typ := Etype (S);
7711 end if;
7712
7713 B_Typ := Base_Type (F_Typ);
7714
7715 if Scope (B_Typ) = Current_Scope
7716 and then not Is_Class_Wide_Type (B_Typ)
7717 and then not Is_Generic_Type (B_Typ)
7718 then
7719 Is_Primitive := True;
7720 Set_Has_Primitive_Operations (B_Typ);
7721 Set_Is_Primitive (S);
7722 Check_Private_Overriding (B_Typ);
7723 end if;
7724 end if;
7725
7726 -- For all subprograms, check formals
7727
7728 Formal := First_Formal (S);
7729 while Present (Formal) loop
7730 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
7731 F_Typ := Designated_Type (Etype (Formal));
7732 else
7733 F_Typ := Etype (Formal);
7734 end if;
7735
7736 B_Typ := Base_Type (F_Typ);
7737
7738 if Ekind (B_Typ) = E_Access_Subtype then
7739 B_Typ := Base_Type (B_Typ);
7740 end if;
7741
7742 if Scope (B_Typ) = Current_Scope
7743 and then not Is_Class_Wide_Type (B_Typ)
7744 and then not Is_Generic_Type (B_Typ)
7745 then
7746 Is_Primitive := True;
7747 Set_Is_Primitive (S);
7748 Set_Has_Primitive_Operations (B_Typ);
7749 Check_Private_Overriding (B_Typ);
7750 end if;
7751
7752 Next_Formal (Formal);
7753 end loop;
7754 end if;
7755 end Check_For_Primitive_Subprogram;
7756
7757 -----------------------------------
7758 -- Check_Synchronized_Overriding --
7759 -----------------------------------
7760
7761 procedure Check_Synchronized_Overriding
7762 (Def_Id : Entity_Id;
7763 Overridden_Subp : out Entity_Id)
7764 is
7765 Ifaces_List : Elist_Id;
7766 In_Scope : Boolean;
7767 Typ : Entity_Id;
7768
7769 function Matches_Prefixed_View_Profile
7770 (Prim_Params : List_Id;
7771 Iface_Params : List_Id) return Boolean;
7772 -- Determine whether a subprogram's parameter profile Prim_Params
7773 -- matches that of a potentially overridden interface subprogram
7774 -- Iface_Params. Also determine if the type of first parameter of
7775 -- Iface_Params is an implemented interface.
7776
7777 -----------------------------------
7778 -- Matches_Prefixed_View_Profile --
7779 -----------------------------------
7780
7781 function Matches_Prefixed_View_Profile
7782 (Prim_Params : List_Id;
7783 Iface_Params : List_Id) return Boolean
7784 is
7785 Iface_Id : Entity_Id;
7786 Iface_Param : Node_Id;
7787 Iface_Typ : Entity_Id;
7788 Prim_Id : Entity_Id;
7789 Prim_Param : Node_Id;
7790 Prim_Typ : Entity_Id;
7791
7792 function Is_Implemented
7793 (Ifaces_List : Elist_Id;
7794 Iface : Entity_Id) return Boolean;
7795 -- Determine if Iface is implemented by the current task or
7796 -- protected type.
7797
7798 --------------------
7799 -- Is_Implemented --
7800 --------------------
7801
7802 function Is_Implemented
7803 (Ifaces_List : Elist_Id;
7804 Iface : Entity_Id) return Boolean
7805 is
7806 Iface_Elmt : Elmt_Id;
7807
7808 begin
7809 Iface_Elmt := First_Elmt (Ifaces_List);
7810 while Present (Iface_Elmt) loop
7811 if Node (Iface_Elmt) = Iface then
7812 return True;
7813 end if;
7814
7815 Next_Elmt (Iface_Elmt);
7816 end loop;
7817
7818 return False;
7819 end Is_Implemented;
7820
7821 -- Start of processing for Matches_Prefixed_View_Profile
7822
7823 begin
7824 Iface_Param := First (Iface_Params);
7825 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
7826
7827 if Is_Access_Type (Iface_Typ) then
7828 Iface_Typ := Designated_Type (Iface_Typ);
7829 end if;
7830
7831 Prim_Param := First (Prim_Params);
7832
7833 -- The first parameter of the potentially overridden subprogram
7834 -- must be an interface implemented by Prim.
7835
7836 if not Is_Interface (Iface_Typ)
7837 or else not Is_Implemented (Ifaces_List, Iface_Typ)
7838 then
7839 return False;
7840 end if;
7841
7842 -- The checks on the object parameters are done, move onto the
7843 -- rest of the parameters.
7844
7845 if not In_Scope then
7846 Prim_Param := Next (Prim_Param);
7847 end if;
7848
7849 Iface_Param := Next (Iface_Param);
7850 while Present (Iface_Param) and then Present (Prim_Param) loop
7851 Iface_Id := Defining_Identifier (Iface_Param);
7852 Iface_Typ := Find_Parameter_Type (Iface_Param);
7853
7854 Prim_Id := Defining_Identifier (Prim_Param);
7855 Prim_Typ := Find_Parameter_Type (Prim_Param);
7856
7857 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
7858 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
7859 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
7860 then
7861 Iface_Typ := Designated_Type (Iface_Typ);
7862 Prim_Typ := Designated_Type (Prim_Typ);
7863 end if;
7864
7865 -- Case of multiple interface types inside a parameter profile
7866
7867 -- (Obj_Param : in out Iface; ...; Param : Iface)
7868
7869 -- If the interface type is implemented, then the matching type
7870 -- in the primitive should be the implementing record type.
7871
7872 if Ekind (Iface_Typ) = E_Record_Type
7873 and then Is_Interface (Iface_Typ)
7874 and then Is_Implemented (Ifaces_List, Iface_Typ)
7875 then
7876 if Prim_Typ /= Typ then
7877 return False;
7878 end if;
7879
7880 -- The two parameters must be both mode and subtype conformant
7881
7882 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
7883 or else not
7884 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
7885 then
7886 return False;
7887 end if;
7888
7889 Next (Iface_Param);
7890 Next (Prim_Param);
7891 end loop;
7892
7893 -- One of the two lists contains more parameters than the other
7894
7895 if Present (Iface_Param) or else Present (Prim_Param) then
7896 return False;
7897 end if;
7898
7899 return True;
7900 end Matches_Prefixed_View_Profile;
7901
7902 -- Start of processing for Check_Synchronized_Overriding
7903
7904 begin
7905 Overridden_Subp := Empty;
7906
7907 -- Def_Id must be an entry or a subprogram. We should skip predefined
7908 -- primitives internally generated by the frontend; however at this
7909 -- stage predefined primitives are still not fully decorated. As a
7910 -- minor optimization we skip here internally generated subprograms.
7911
7912 if (Ekind (Def_Id) /= E_Entry
7913 and then Ekind (Def_Id) /= E_Function
7914 and then Ekind (Def_Id) /= E_Procedure)
7915 or else not Comes_From_Source (Def_Id)
7916 then
7917 return;
7918 end if;
7919
7920 -- Search for the concurrent declaration since it contains the list
7921 -- of all implemented interfaces. In this case, the subprogram is
7922 -- declared within the scope of a protected or a task type.
7923
7924 if Present (Scope (Def_Id))
7925 and then Is_Concurrent_Type (Scope (Def_Id))
7926 and then not Is_Generic_Actual_Type (Scope (Def_Id))
7927 then
7928 Typ := Scope (Def_Id);
7929 In_Scope := True;
7930
7931 -- The enclosing scope is not a synchronized type and the subprogram
7932 -- has no formals.
7933
7934 elsif No (First_Formal (Def_Id)) then
7935 return;
7936
7937 -- The subprogram has formals and hence it may be a primitive of a
7938 -- concurrent type.
7939
7940 else
7941 Typ := Etype (First_Formal (Def_Id));
7942
7943 if Is_Access_Type (Typ) then
7944 Typ := Directly_Designated_Type (Typ);
7945 end if;
7946
7947 if Is_Concurrent_Type (Typ)
7948 and then not Is_Generic_Actual_Type (Typ)
7949 then
7950 In_Scope := False;
7951
7952 -- This case occurs when the concurrent type is declared within
7953 -- a generic unit. As a result the corresponding record has been
7954 -- built and used as the type of the first formal, we just have
7955 -- to retrieve the corresponding concurrent type.
7956
7957 elsif Is_Concurrent_Record_Type (Typ)
7958 and then Present (Corresponding_Concurrent_Type (Typ))
7959 then
7960 Typ := Corresponding_Concurrent_Type (Typ);
7961 In_Scope := False;
7962
7963 else
7964 return;
7965 end if;
7966 end if;
7967
7968 -- There is no overriding to check if is an inherited operation in a
7969 -- type derivation on for a generic actual.
7970
7971 Collect_Interfaces (Typ, Ifaces_List);
7972
7973 if Is_Empty_Elmt_List (Ifaces_List) then
7974 return;
7975 end if;
7976
7977 -- Determine whether entry or subprogram Def_Id overrides a primitive
7978 -- operation that belongs to one of the interfaces in Ifaces_List.
7979
7980 declare
7981 Candidate : Entity_Id := Empty;
7982 Hom : Entity_Id := Empty;
7983 Iface_Typ : Entity_Id;
7984 Subp : Entity_Id := Empty;
7985
7986 begin
7987 -- Traverse the homonym chain, looking for a potentially
7988 -- overridden subprogram that belongs to an implemented
7989 -- interface.
7990
7991 Hom := Current_Entity_In_Scope (Def_Id);
7992 while Present (Hom) loop
7993 Subp := Hom;
7994
7995 if Subp = Def_Id
7996 or else not Is_Overloadable (Subp)
7997 or else not Is_Primitive (Subp)
7998 or else not Is_Dispatching_Operation (Subp)
7999 or else not Present (Find_Dispatching_Type (Subp))
8000 or else not Is_Interface (Find_Dispatching_Type (Subp))
8001 then
8002 null;
8003
8004 -- Entries and procedures can override abstract or null
8005 -- interface procedures.
8006
8007 elsif (Ekind (Def_Id) = E_Procedure
8008 or else Ekind (Def_Id) = E_Entry)
8009 and then Ekind (Subp) = E_Procedure
8010 and then Matches_Prefixed_View_Profile
8011 (Parameter_Specifications (Parent (Def_Id)),
8012 Parameter_Specifications (Parent (Subp)))
8013 then
8014 Candidate := Subp;
8015
8016 -- For an overridden subprogram Subp, check whether the mode
8017 -- of its first parameter is correct depending on the kind
8018 -- of synchronized type.
8019
8020 declare
8021 Formal : constant Node_Id := First_Formal (Candidate);
8022
8023 begin
8024 -- In order for an entry or a protected procedure to
8025 -- override, the first parameter of the overridden
8026 -- routine must be of mode "out", "in out" or
8027 -- access-to-variable.
8028
8029 if (Ekind (Candidate) = E_Entry
8030 or else Ekind (Candidate) = E_Procedure)
8031 and then Is_Protected_Type (Typ)
8032 and then Ekind (Formal) /= E_In_Out_Parameter
8033 and then Ekind (Formal) /= E_Out_Parameter
8034 and then Nkind (Parameter_Type (Parent (Formal)))
8035 /= N_Access_Definition
8036 then
8037 null;
8038
8039 -- All other cases are OK since a task entry or routine
8040 -- does not have a restriction on the mode of the first
8041 -- parameter of the overridden interface routine.
8042
8043 else
8044 Overridden_Subp := Candidate;
8045 return;
8046 end if;
8047 end;
8048
8049 -- Functions can override abstract interface functions
8050
8051 elsif Ekind (Def_Id) = E_Function
8052 and then Ekind (Subp) = E_Function
8053 and then Matches_Prefixed_View_Profile
8054 (Parameter_Specifications (Parent (Def_Id)),
8055 Parameter_Specifications (Parent (Subp)))
8056 and then Etype (Result_Definition (Parent (Def_Id))) =
8057 Etype (Result_Definition (Parent (Subp)))
8058 then
8059 Overridden_Subp := Subp;
8060 return;
8061 end if;
8062
8063 Hom := Homonym (Hom);
8064 end loop;
8065
8066 -- After examining all candidates for overriding, we are left with
8067 -- the best match which is a mode incompatible interface routine.
8068 -- Do not emit an error if the Expander is active since this error
8069 -- will be detected later on after all concurrent types are
8070 -- expanded and all wrappers are built. This check is meant for
8071 -- spec-only compilations.
8072
8073 if Present (Candidate) and then not Expander_Active then
8074 Iface_Typ :=
8075 Find_Parameter_Type (Parent (First_Formal (Candidate)));
8076
8077 -- Def_Id is primitive of a protected type, declared inside the
8078 -- type, and the candidate is primitive of a limited or
8079 -- synchronized interface.
8080
8081 if In_Scope
8082 and then Is_Protected_Type (Typ)
8083 and then
8084 (Is_Limited_Interface (Iface_Typ)
8085 or else Is_Protected_Interface (Iface_Typ)
8086 or else Is_Synchronized_Interface (Iface_Typ)
8087 or else Is_Task_Interface (Iface_Typ))
8088 then
8089 Error_Msg_NE
8090 ("first formal of & must be of mode `OUT`, `IN OUT`"
8091 & " or access-to-variable", Typ, Candidate);
8092 Error_Msg_N
8093 ("\in order to be overridden by protected procedure or "
8094 & "entry (RM 9.4(11.9/2))", Typ);
8095 end if;
8096 end if;
8097
8098 Overridden_Subp := Candidate;
8099 return;
8100 end;
8101 end Check_Synchronized_Overriding;
8102
8103 ----------------------------
8104 -- Is_Private_Declaration --
8105 ----------------------------
8106
8107 function Is_Private_Declaration (E : Entity_Id) return Boolean is
8108 Priv_Decls : List_Id;
8109 Decl : constant Node_Id := Unit_Declaration_Node (E);
8110
8111 begin
8112 if Is_Package_Or_Generic_Package (Current_Scope)
8113 and then In_Private_Part (Current_Scope)
8114 then
8115 Priv_Decls :=
8116 Private_Declarations (
8117 Specification (Unit_Declaration_Node (Current_Scope)));
8118
8119 return In_Package_Body (Current_Scope)
8120 or else
8121 (Is_List_Member (Decl)
8122 and then List_Containing (Decl) = Priv_Decls)
8123 or else (Nkind (Parent (Decl)) = N_Package_Specification
8124 and then not
8125 Is_Compilation_Unit
8126 (Defining_Entity (Parent (Decl)))
8127 and then List_Containing (Parent (Parent (Decl)))
8128 = Priv_Decls);
8129 else
8130 return False;
8131 end if;
8132 end Is_Private_Declaration;
8133
8134 --------------------------
8135 -- Is_Overriding_Alias --
8136 --------------------------
8137
8138 function Is_Overriding_Alias
8139 (Old_E : Entity_Id;
8140 New_E : Entity_Id) return Boolean
8141 is
8142 AO : constant Entity_Id := Alias (Old_E);
8143 AN : constant Entity_Id := Alias (New_E);
8144
8145 begin
8146 return Scope (AO) /= Scope (AN)
8147 or else No (DTC_Entity (AO))
8148 or else No (DTC_Entity (AN))
8149 or else DT_Position (AO) = DT_Position (AN);
8150 end Is_Overriding_Alias;
8151
8152 -- Start of processing for New_Overloaded_Entity
8153
8154 begin
8155 -- We need to look for an entity that S may override. This must be a
8156 -- homonym in the current scope, so we look for the first homonym of
8157 -- S in the current scope as the starting point for the search.
8158
8159 E := Current_Entity_In_Scope (S);
8160
8161 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
8162 -- They are directly added to the list of primitive operations of
8163 -- Derived_Type, unless this is a rederivation in the private part
8164 -- of an operation that was already derived in the visible part of
8165 -- the current package.
8166
8167 if Ada_Version >= Ada_2005
8168 and then Present (Derived_Type)
8169 and then Present (Alias (S))
8170 and then Is_Dispatching_Operation (Alias (S))
8171 and then Present (Find_Dispatching_Type (Alias (S)))
8172 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
8173 then
8174 -- For private types, when the full-view is processed we propagate to
8175 -- the full view the non-overridden entities whose attribute "alias"
8176 -- references an interface primitive. These entities were added by
8177 -- Derive_Subprograms to ensure that interface primitives are
8178 -- covered.
8179
8180 -- Inside_Freeze_Actions is non zero when S corresponds with an
8181 -- internal entity that links an interface primitive with its
8182 -- covering primitive through attribute Interface_Alias (see
8183 -- Add_Internal_Interface_Entities).
8184
8185 if Inside_Freezing_Actions = 0
8186 and then Is_Package_Or_Generic_Package (Current_Scope)
8187 and then In_Private_Part (Current_Scope)
8188 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
8189 and then Nkind (Parent (S)) = N_Full_Type_Declaration
8190 and then Full_View (Defining_Identifier (Parent (E)))
8191 = Defining_Identifier (Parent (S))
8192 and then Alias (E) = Alias (S)
8193 then
8194 Check_Operation_From_Private_View (S, E);
8195 Set_Is_Dispatching_Operation (S);
8196
8197 -- Common case
8198
8199 else
8200 Enter_Overloaded_Entity (S);
8201 Check_Dispatching_Operation (S, Empty);
8202 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
8203 end if;
8204
8205 return;
8206 end if;
8207
8208 -- If there is no homonym then this is definitely not overriding
8209
8210 if No (E) then
8211 Enter_Overloaded_Entity (S);
8212 Check_Dispatching_Operation (S, Empty);
8213 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
8214
8215 -- If subprogram has an explicit declaration, check whether it
8216 -- has an overriding indicator.
8217
8218 if Comes_From_Source (S) then
8219 Check_Synchronized_Overriding (S, Overridden_Subp);
8220
8221 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
8222 -- it may have overridden some hidden inherited primitive. Update
8223 -- Overridden_Subp to avoid spurious errors when checking the
8224 -- overriding indicator.
8225
8226 if Ada_Version >= Ada_2012
8227 and then No (Overridden_Subp)
8228 and then Is_Dispatching_Operation (S)
8229 and then Present (Overridden_Operation (S))
8230 then
8231 Overridden_Subp := Overridden_Operation (S);
8232 end if;
8233
8234 Check_Overriding_Indicator
8235 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
8236 end if;
8237
8238 -- If there is a homonym that is not overloadable, then we have an
8239 -- error, except for the special cases checked explicitly below.
8240
8241 elsif not Is_Overloadable (E) then
8242
8243 -- Check for spurious conflict produced by a subprogram that has the
8244 -- same name as that of the enclosing generic package. The conflict
8245 -- occurs within an instance, between the subprogram and the renaming
8246 -- declaration for the package. After the subprogram, the package
8247 -- renaming declaration becomes hidden.
8248
8249 if Ekind (E) = E_Package
8250 and then Present (Renamed_Object (E))
8251 and then Renamed_Object (E) = Current_Scope
8252 and then Nkind (Parent (Renamed_Object (E))) =
8253 N_Package_Specification
8254 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
8255 then
8256 Set_Is_Hidden (E);
8257 Set_Is_Immediately_Visible (E, False);
8258 Enter_Overloaded_Entity (S);
8259 Set_Homonym (S, Homonym (E));
8260 Check_Dispatching_Operation (S, Empty);
8261 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
8262
8263 -- If the subprogram is implicit it is hidden by the previous
8264 -- declaration. However if it is dispatching, it must appear in the
8265 -- dispatch table anyway, because it can be dispatched to even if it
8266 -- cannot be called directly.
8267
8268 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
8269 Set_Scope (S, Current_Scope);
8270
8271 if Is_Dispatching_Operation (Alias (S)) then
8272 Check_Dispatching_Operation (S, Empty);
8273 end if;
8274
8275 return;
8276
8277 else
8278 Error_Msg_Sloc := Sloc (E);
8279
8280 -- Generate message, with useful additional warning if in generic
8281
8282 if Is_Generic_Unit (E) then
8283 Error_Msg_N ("previous generic unit cannot be overloaded", S);
8284 Error_Msg_N ("\& conflicts with declaration#", S);
8285 else
8286 Error_Msg_N ("& conflicts with declaration#", S);
8287 end if;
8288
8289 return;
8290 end if;
8291
8292 -- E exists and is overloadable
8293
8294 else
8295 Check_Synchronized_Overriding (S, Overridden_Subp);
8296
8297 -- Loop through E and its homonyms to determine if any of them is
8298 -- the candidate for overriding by S.
8299
8300 while Present (E) loop
8301
8302 -- Definitely not interesting if not in the current scope
8303
8304 if Scope (E) /= Current_Scope then
8305 null;
8306
8307 -- Ada 2012 (AI05-0165): For internally generated bodies of
8308 -- null procedures locate the internally generated spec. We
8309 -- enforce mode conformance since a tagged type may inherit
8310 -- from interfaces several null primitives which differ only
8311 -- in the mode of the formals.
8312
8313 elsif not Comes_From_Source (S)
8314 and then Is_Null_Procedure (S)
8315 and then not Mode_Conformant (E, S)
8316 then
8317 null;
8318
8319 -- Check if we have type conformance
8320
8321 elsif Type_Conformant (E, S) then
8322
8323 -- If the old and new entities have the same profile and one
8324 -- is not the body of the other, then this is an error, unless
8325 -- one of them is implicitly declared.
8326
8327 -- There are some cases when both can be implicit, for example
8328 -- when both a literal and a function that overrides it are
8329 -- inherited in a derivation, or when an inherited operation
8330 -- of a tagged full type overrides the inherited operation of
8331 -- a private extension. Ada 83 had a special rule for the
8332 -- literal case. In Ada95, the later implicit operation hides
8333 -- the former, and the literal is always the former. In the
8334 -- odd case where both are derived operations declared at the
8335 -- same point, both operations should be declared, and in that
8336 -- case we bypass the following test and proceed to the next
8337 -- part. This can only occur for certain obscure cases in
8338 -- instances, when an operation on a type derived from a formal
8339 -- private type does not override a homograph inherited from
8340 -- the actual. In subsequent derivations of such a type, the
8341 -- DT positions of these operations remain distinct, if they
8342 -- have been set.
8343
8344 if Present (Alias (S))
8345 and then (No (Alias (E))
8346 or else Comes_From_Source (E)
8347 or else Is_Abstract_Subprogram (S)
8348 or else
8349 (Is_Dispatching_Operation (E)
8350 and then Is_Overriding_Alias (E, S)))
8351 and then Ekind (E) /= E_Enumeration_Literal
8352 then
8353 -- When an derived operation is overloaded it may be due to
8354 -- the fact that the full view of a private extension
8355 -- re-inherits. It has to be dealt with.
8356
8357 if Is_Package_Or_Generic_Package (Current_Scope)
8358 and then In_Private_Part (Current_Scope)
8359 then
8360 Check_Operation_From_Private_View (S, E);
8361 end if;
8362
8363 -- In any case the implicit operation remains hidden by the
8364 -- existing declaration, which is overriding. Indicate that
8365 -- E overrides the operation from which S is inherited.
8366
8367 if Present (Alias (S)) then
8368 Set_Overridden_Operation (E, Alias (S));
8369 else
8370 Set_Overridden_Operation (E, S);
8371 end if;
8372
8373 if Comes_From_Source (E) then
8374 Check_Overriding_Indicator (E, S, Is_Primitive => False);
8375 end if;
8376
8377 return;
8378
8379 -- Within an instance, the renaming declarations for actual
8380 -- subprograms may become ambiguous, but they do not hide each
8381 -- other.
8382
8383 elsif Ekind (E) /= E_Entry
8384 and then not Comes_From_Source (E)
8385 and then not Is_Generic_Instance (E)
8386 and then (Present (Alias (E))
8387 or else Is_Intrinsic_Subprogram (E))
8388 and then (not In_Instance
8389 or else No (Parent (E))
8390 or else Nkind (Unit_Declaration_Node (E)) /=
8391 N_Subprogram_Renaming_Declaration)
8392 then
8393 -- A subprogram child unit is not allowed to override an
8394 -- inherited subprogram (10.1.1(20)).
8395
8396 if Is_Child_Unit (S) then
8397 Error_Msg_N
8398 ("child unit overrides inherited subprogram in parent",
8399 S);
8400 return;
8401 end if;
8402
8403 if Is_Non_Overriding_Operation (E, S) then
8404 Enter_Overloaded_Entity (S);
8405
8406 if No (Derived_Type)
8407 or else Is_Tagged_Type (Derived_Type)
8408 then
8409 Check_Dispatching_Operation (S, Empty);
8410 end if;
8411
8412 return;
8413 end if;
8414
8415 -- E is a derived operation or an internal operator which
8416 -- is being overridden. Remove E from further visibility.
8417 -- Furthermore, if E is a dispatching operation, it must be
8418 -- replaced in the list of primitive operations of its type
8419 -- (see Override_Dispatching_Operation).
8420
8421 Overridden_Subp := E;
8422
8423 declare
8424 Prev : Entity_Id;
8425
8426 begin
8427 Prev := First_Entity (Current_Scope);
8428 while Present (Prev)
8429 and then Next_Entity (Prev) /= E
8430 loop
8431 Next_Entity (Prev);
8432 end loop;
8433
8434 -- It is possible for E to be in the current scope and
8435 -- yet not in the entity chain. This can only occur in a
8436 -- generic context where E is an implicit concatenation
8437 -- in the formal part, because in a generic body the
8438 -- entity chain starts with the formals.
8439
8440 pragma Assert
8441 (Present (Prev) or else Chars (E) = Name_Op_Concat);
8442
8443 -- E must be removed both from the entity_list of the
8444 -- current scope, and from the visibility chain
8445
8446 if Debug_Flag_E then
8447 Write_Str ("Override implicit operation ");
8448 Write_Int (Int (E));
8449 Write_Eol;
8450 end if;
8451
8452 -- If E is a predefined concatenation, it stands for four
8453 -- different operations. As a result, a single explicit
8454 -- declaration does not hide it. In a possible ambiguous
8455 -- situation, Disambiguate chooses the user-defined op,
8456 -- so it is correct to retain the previous internal one.
8457
8458 if Chars (E) /= Name_Op_Concat
8459 or else Ekind (E) /= E_Operator
8460 then
8461 -- For nondispatching derived operations that are
8462 -- overridden by a subprogram declared in the private
8463 -- part of a package, we retain the derived subprogram
8464 -- but mark it as not immediately visible. If the
8465 -- derived operation was declared in the visible part
8466 -- then this ensures that it will still be visible
8467 -- outside the package with the proper signature
8468 -- (calls from outside must also be directed to this
8469 -- version rather than the overriding one, unlike the
8470 -- dispatching case). Calls from inside the package
8471 -- will still resolve to the overriding subprogram
8472 -- since the derived one is marked as not visible
8473 -- within the package.
8474
8475 -- If the private operation is dispatching, we achieve
8476 -- the overriding by keeping the implicit operation
8477 -- but setting its alias to be the overriding one. In
8478 -- this fashion the proper body is executed in all
8479 -- cases, but the original signature is used outside
8480 -- of the package.
8481
8482 -- If the overriding is not in the private part, we
8483 -- remove the implicit operation altogether.
8484
8485 if Is_Private_Declaration (S) then
8486 if not Is_Dispatching_Operation (E) then
8487 Set_Is_Immediately_Visible (E, False);
8488 else
8489 -- Work done in Override_Dispatching_Operation,
8490 -- so nothing else need to be done here.
8491
8492 null;
8493 end if;
8494
8495 else
8496 -- Find predecessor of E in Homonym chain
8497
8498 if E = Current_Entity (E) then
8499 Prev_Vis := Empty;
8500 else
8501 Prev_Vis := Current_Entity (E);
8502 while Homonym (Prev_Vis) /= E loop
8503 Prev_Vis := Homonym (Prev_Vis);
8504 end loop;
8505 end if;
8506
8507 if Prev_Vis /= Empty then
8508
8509 -- Skip E in the visibility chain
8510
8511 Set_Homonym (Prev_Vis, Homonym (E));
8512
8513 else
8514 Set_Name_Entity_Id (Chars (E), Homonym (E));
8515 end if;
8516
8517 Set_Next_Entity (Prev, Next_Entity (E));
8518
8519 if No (Next_Entity (Prev)) then
8520 Set_Last_Entity (Current_Scope, Prev);
8521 end if;
8522 end if;
8523 end if;
8524
8525 Enter_Overloaded_Entity (S);
8526
8527 -- For entities generated by Derive_Subprograms the
8528 -- overridden operation is the inherited primitive
8529 -- (which is available through the attribute alias).
8530
8531 if not (Comes_From_Source (E))
8532 and then Is_Dispatching_Operation (E)
8533 and then Find_Dispatching_Type (E) =
8534 Find_Dispatching_Type (S)
8535 and then Present (Alias (E))
8536 and then Comes_From_Source (Alias (E))
8537 then
8538 Set_Overridden_Operation (S, Alias (E));
8539
8540 -- Normal case of setting entity as overridden
8541
8542 -- Note: Static_Initialization and Overridden_Operation
8543 -- attributes use the same field in subprogram entities.
8544 -- Static_Initialization is only defined for internal
8545 -- initialization procedures, where Overridden_Operation
8546 -- is irrelevant. Therefore the setting of this attribute
8547 -- must check whether the target is an init_proc.
8548
8549 elsif not Is_Init_Proc (S) then
8550 Set_Overridden_Operation (S, E);
8551 end if;
8552
8553 Check_Overriding_Indicator (S, E, Is_Primitive => True);
8554
8555 -- If S is a user-defined subprogram or a null procedure
8556 -- expanded to override an inherited null procedure, or a
8557 -- predefined dispatching primitive then indicate that E
8558 -- overrides the operation from which S is inherited.
8559
8560 if Comes_From_Source (S)
8561 or else
8562 (Present (Parent (S))
8563 and then
8564 Nkind (Parent (S)) = N_Procedure_Specification
8565 and then
8566 Null_Present (Parent (S)))
8567 or else
8568 (Present (Alias (E))
8569 and then
8570 Is_Predefined_Dispatching_Operation (Alias (E)))
8571 then
8572 if Present (Alias (E)) then
8573 Set_Overridden_Operation (S, Alias (E));
8574 end if;
8575 end if;
8576
8577 if Is_Dispatching_Operation (E) then
8578
8579 -- An overriding dispatching subprogram inherits the
8580 -- convention of the overridden subprogram (AI-117).
8581
8582 Set_Convention (S, Convention (E));
8583 Check_Dispatching_Operation (S, E);
8584
8585 else
8586 Check_Dispatching_Operation (S, Empty);
8587 end if;
8588
8589 Check_For_Primitive_Subprogram
8590 (Is_Primitive_Subp, Is_Overriding => True);
8591 goto Check_Inequality;
8592 end;
8593
8594 -- Apparent redeclarations in instances can occur when two
8595 -- formal types get the same actual type. The subprograms in
8596 -- in the instance are legal, even if not callable from the
8597 -- outside. Calls from within are disambiguated elsewhere.
8598 -- For dispatching operations in the visible part, the usual
8599 -- rules apply, and operations with the same profile are not
8600 -- legal (B830001).
8601
8602 elsif (In_Instance_Visible_Part
8603 and then not Is_Dispatching_Operation (E))
8604 or else In_Instance_Not_Visible
8605 then
8606 null;
8607
8608 -- Here we have a real error (identical profile)
8609
8610 else
8611 Error_Msg_Sloc := Sloc (E);
8612
8613 -- Avoid cascaded errors if the entity appears in
8614 -- subsequent calls.
8615
8616 Set_Scope (S, Current_Scope);
8617
8618 -- Generate error, with extra useful warning for the case
8619 -- of a generic instance with no completion.
8620
8621 if Is_Generic_Instance (S)
8622 and then not Has_Completion (E)
8623 then
8624 Error_Msg_N
8625 ("instantiation cannot provide body for&", S);
8626 Error_Msg_N ("\& conflicts with declaration#", S);
8627 else
8628 Error_Msg_N ("& conflicts with declaration#", S);
8629 end if;
8630
8631 return;
8632 end if;
8633
8634 else
8635 -- If one subprogram has an access parameter and the other
8636 -- a parameter of an access type, calls to either might be
8637 -- ambiguous. Verify that parameters match except for the
8638 -- access parameter.
8639
8640 if May_Hide_Profile then
8641 declare
8642 F1 : Entity_Id;
8643 F2 : Entity_Id;
8644
8645 begin
8646 F1 := First_Formal (S);
8647 F2 := First_Formal (E);
8648 while Present (F1) and then Present (F2) loop
8649 if Is_Access_Type (Etype (F1)) then
8650 if not Is_Access_Type (Etype (F2))
8651 or else not Conforming_Types
8652 (Designated_Type (Etype (F1)),
8653 Designated_Type (Etype (F2)),
8654 Type_Conformant)
8655 then
8656 May_Hide_Profile := False;
8657 end if;
8658
8659 elsif
8660 not Conforming_Types
8661 (Etype (F1), Etype (F2), Type_Conformant)
8662 then
8663 May_Hide_Profile := False;
8664 end if;
8665
8666 Next_Formal (F1);
8667 Next_Formal (F2);
8668 end loop;
8669
8670 if May_Hide_Profile
8671 and then No (F1)
8672 and then No (F2)
8673 then
8674 Error_Msg_NE ("calls to& may be ambiguous?", S, S);
8675 end if;
8676 end;
8677 end if;
8678 end if;
8679
8680 E := Homonym (E);
8681 end loop;
8682
8683 -- On exit, we know that S is a new entity
8684
8685 Enter_Overloaded_Entity (S);
8686 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
8687 Check_Overriding_Indicator
8688 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
8689
8690 -- Overloading is not allowed in SPARK, except for operators
8691
8692 if Nkind (S) /= N_Defining_Operator_Symbol then
8693 Error_Msg_Sloc := Sloc (Homonym (S));
8694 Check_SPARK_Restriction
8695 ("overloading not allowed with entity#", S);
8696 end if;
8697
8698 -- If S is a derived operation for an untagged type then by
8699 -- definition it's not a dispatching operation (even if the parent
8700 -- operation was dispatching), so Check_Dispatching_Operation is not
8701 -- called in that case.
8702
8703 if No (Derived_Type)
8704 or else Is_Tagged_Type (Derived_Type)
8705 then
8706 Check_Dispatching_Operation (S, Empty);
8707 end if;
8708 end if;
8709
8710 -- If this is a user-defined equality operator that is not a derived
8711 -- subprogram, create the corresponding inequality. If the operation is
8712 -- dispatching, the expansion is done elsewhere, and we do not create
8713 -- an explicit inequality operation.
8714
8715 <<Check_Inequality>>
8716 if Chars (S) = Name_Op_Eq
8717 and then Etype (S) = Standard_Boolean
8718 and then Present (Parent (S))
8719 and then not Is_Dispatching_Operation (S)
8720 then
8721 Make_Inequality_Operator (S);
8722
8723 if Ada_Version >= Ada_2012 then
8724 Check_Untagged_Equality (S);
8725 end if;
8726 end if;
8727 end New_Overloaded_Entity;
8728
8729 ---------------------
8730 -- Process_Formals --
8731 ---------------------
8732
8733 procedure Process_Formals
8734 (T : List_Id;
8735 Related_Nod : Node_Id)
8736 is
8737 Param_Spec : Node_Id;
8738 Formal : Entity_Id;
8739 Formal_Type : Entity_Id;
8740 Default : Node_Id;
8741 Ptype : Entity_Id;
8742
8743 Num_Out_Params : Nat := 0;
8744 First_Out_Param : Entity_Id := Empty;
8745 -- Used for setting Is_Only_Out_Parameter
8746
8747 function Designates_From_With_Type (Typ : Entity_Id) return Boolean;
8748 -- Determine whether an access type designates a type coming from a
8749 -- limited view.
8750
8751 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
8752 -- Check whether the default has a class-wide type. After analysis the
8753 -- default has the type of the formal, so we must also check explicitly
8754 -- for an access attribute.
8755
8756 -------------------------------
8757 -- Designates_From_With_Type --
8758 -------------------------------
8759
8760 function Designates_From_With_Type (Typ : Entity_Id) return Boolean is
8761 Desig : Entity_Id := Typ;
8762
8763 begin
8764 if Is_Access_Type (Desig) then
8765 Desig := Directly_Designated_Type (Desig);
8766 end if;
8767
8768 if Is_Class_Wide_Type (Desig) then
8769 Desig := Root_Type (Desig);
8770 end if;
8771
8772 return
8773 Ekind (Desig) = E_Incomplete_Type
8774 and then From_With_Type (Desig);
8775 end Designates_From_With_Type;
8776
8777 ---------------------------
8778 -- Is_Class_Wide_Default --
8779 ---------------------------
8780
8781 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
8782 begin
8783 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
8784 or else (Nkind (D) = N_Attribute_Reference
8785 and then Attribute_Name (D) = Name_Access
8786 and then Is_Class_Wide_Type (Etype (Prefix (D))));
8787 end Is_Class_Wide_Default;
8788
8789 -- Start of processing for Process_Formals
8790
8791 begin
8792 -- In order to prevent premature use of the formals in the same formal
8793 -- part, the Ekind is left undefined until all default expressions are
8794 -- analyzed. The Ekind is established in a separate loop at the end.
8795
8796 Param_Spec := First (T);
8797 while Present (Param_Spec) loop
8798 Formal := Defining_Identifier (Param_Spec);
8799 Set_Never_Set_In_Source (Formal, True);
8800 Enter_Name (Formal);
8801
8802 -- Case of ordinary parameters
8803
8804 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
8805 Find_Type (Parameter_Type (Param_Spec));
8806 Ptype := Parameter_Type (Param_Spec);
8807
8808 if Ptype = Error then
8809 goto Continue;
8810 end if;
8811
8812 Formal_Type := Entity (Ptype);
8813
8814 if Is_Incomplete_Type (Formal_Type)
8815 or else
8816 (Is_Class_Wide_Type (Formal_Type)
8817 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
8818 then
8819 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
8820 -- primitive operations, as long as their completion is
8821 -- in the same declarative part. If in the private part
8822 -- this means that the type cannot be a Taft-amendment type.
8823 -- Check is done on package exit. For access to subprograms,
8824 -- the use is legal for Taft-amendment types.
8825
8826 if Is_Tagged_Type (Formal_Type) then
8827 if Ekind (Scope (Current_Scope)) = E_Package
8828 and then not From_With_Type (Formal_Type)
8829 and then not Is_Class_Wide_Type (Formal_Type)
8830 then
8831 if not Nkind_In
8832 (Parent (T), N_Access_Function_Definition,
8833 N_Access_Procedure_Definition)
8834 then
8835 Append_Elmt
8836 (Current_Scope,
8837 Private_Dependents (Base_Type (Formal_Type)));
8838
8839 -- Freezing is delayed to ensure that Register_Prim
8840 -- will get called for this operation, which is needed
8841 -- in cases where static dispatch tables aren't built.
8842 -- (Note that the same is done for controlling access
8843 -- parameter cases in function Access_Definition.)
8844
8845 Set_Has_Delayed_Freeze (Current_Scope);
8846 end if;
8847 end if;
8848
8849 -- Special handling of Value_Type for CIL case
8850
8851 elsif Is_Value_Type (Formal_Type) then
8852 null;
8853
8854 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
8855 N_Access_Procedure_Definition)
8856 then
8857
8858 -- AI05-0151: Tagged incomplete types are allowed in all
8859 -- formal parts. Untagged incomplete types are not allowed
8860 -- in bodies.
8861
8862 if Ada_Version >= Ada_2012 then
8863 if Is_Tagged_Type (Formal_Type) then
8864 null;
8865
8866 elsif Nkind_In (Parent (Parent (T)), N_Accept_Statement,
8867 N_Entry_Body,
8868 N_Subprogram_Body)
8869 then
8870 Error_Msg_NE
8871 ("invalid use of untagged incomplete type&",
8872 Ptype, Formal_Type);
8873 end if;
8874
8875 else
8876 Error_Msg_NE
8877 ("invalid use of incomplete type&",
8878 Param_Spec, Formal_Type);
8879
8880 -- Further checks on the legality of incomplete types
8881 -- in formal parts are delayed until the freeze point
8882 -- of the enclosing subprogram or access to subprogram.
8883 end if;
8884 end if;
8885
8886 elsif Ekind (Formal_Type) = E_Void then
8887 Error_Msg_NE
8888 ("premature use of&",
8889 Parameter_Type (Param_Spec), Formal_Type);
8890 end if;
8891
8892 -- Ada 2005 (AI-231): Create and decorate an internal subtype
8893 -- declaration corresponding to the null-excluding type of the
8894 -- formal in the enclosing scope. Finally, replace the parameter
8895 -- type of the formal with the internal subtype.
8896
8897 if Ada_Version >= Ada_2005
8898 and then Null_Exclusion_Present (Param_Spec)
8899 then
8900 if not Is_Access_Type (Formal_Type) then
8901 Error_Msg_N
8902 ("`NOT NULL` allowed only for an access type", Param_Spec);
8903
8904 else
8905 if Can_Never_Be_Null (Formal_Type)
8906 and then Comes_From_Source (Related_Nod)
8907 then
8908 Error_Msg_NE
8909 ("`NOT NULL` not allowed (& already excludes null)",
8910 Param_Spec, Formal_Type);
8911 end if;
8912
8913 Formal_Type :=
8914 Create_Null_Excluding_Itype
8915 (T => Formal_Type,
8916 Related_Nod => Related_Nod,
8917 Scope_Id => Scope (Current_Scope));
8918
8919 -- If the designated type of the itype is an itype we
8920 -- decorate it with the Has_Delayed_Freeze attribute to
8921 -- avoid problems with the backend.
8922
8923 -- Example:
8924 -- type T is access procedure;
8925 -- procedure Op (O : not null T);
8926
8927 if Is_Itype (Directly_Designated_Type (Formal_Type)) then
8928 Set_Has_Delayed_Freeze (Formal_Type);
8929 end if;
8930 end if;
8931 end if;
8932
8933 -- An access formal type
8934
8935 else
8936 Formal_Type :=
8937 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
8938
8939 -- No need to continue if we already notified errors
8940
8941 if not Present (Formal_Type) then
8942 return;
8943 end if;
8944
8945 -- Ada 2005 (AI-254)
8946
8947 declare
8948 AD : constant Node_Id :=
8949 Access_To_Subprogram_Definition
8950 (Parameter_Type (Param_Spec));
8951 begin
8952 if Present (AD) and then Protected_Present (AD) then
8953 Formal_Type :=
8954 Replace_Anonymous_Access_To_Protected_Subprogram
8955 (Param_Spec);
8956 end if;
8957 end;
8958 end if;
8959
8960 Set_Etype (Formal, Formal_Type);
8961
8962 Default := Expression (Param_Spec);
8963
8964 if Present (Default) then
8965 Check_SPARK_Restriction
8966 ("default expression is not allowed", Default);
8967
8968 if Out_Present (Param_Spec) then
8969 Error_Msg_N
8970 ("default initialization only allowed for IN parameters",
8971 Param_Spec);
8972 end if;
8973
8974 -- Do the special preanalysis of the expression (see section on
8975 -- "Handling of Default Expressions" in the spec of package Sem).
8976
8977 Preanalyze_Spec_Expression (Default, Formal_Type);
8978
8979 -- An access to constant cannot be the default for
8980 -- an access parameter that is an access to variable.
8981
8982 if Ekind (Formal_Type) = E_Anonymous_Access_Type
8983 and then not Is_Access_Constant (Formal_Type)
8984 and then Is_Access_Type (Etype (Default))
8985 and then Is_Access_Constant (Etype (Default))
8986 then
8987 Error_Msg_N
8988 ("formal that is access to variable cannot be initialized " &
8989 "with an access-to-constant expression", Default);
8990 end if;
8991
8992 -- Check that the designated type of an access parameter's default
8993 -- is not a class-wide type unless the parameter's designated type
8994 -- is also class-wide.
8995
8996 if Ekind (Formal_Type) = E_Anonymous_Access_Type
8997 and then not Designates_From_With_Type (Formal_Type)
8998 and then Is_Class_Wide_Default (Default)
8999 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
9000 then
9001 Error_Msg_N
9002 ("access to class-wide expression not allowed here", Default);
9003 end if;
9004
9005 -- Check incorrect use of dynamically tagged expressions
9006
9007 if Is_Tagged_Type (Formal_Type) then
9008 Check_Dynamically_Tagged_Expression
9009 (Expr => Default,
9010 Typ => Formal_Type,
9011 Related_Nod => Default);
9012 end if;
9013 end if;
9014
9015 -- Ada 2005 (AI-231): Static checks
9016
9017 if Ada_Version >= Ada_2005
9018 and then Is_Access_Type (Etype (Formal))
9019 and then Can_Never_Be_Null (Etype (Formal))
9020 then
9021 Null_Exclusion_Static_Checks (Param_Spec);
9022 end if;
9023
9024 <<Continue>>
9025 Next (Param_Spec);
9026 end loop;
9027
9028 -- If this is the formal part of a function specification, analyze the
9029 -- subtype mark in the context where the formals are visible but not
9030 -- yet usable, and may hide outer homographs.
9031
9032 if Nkind (Related_Nod) = N_Function_Specification then
9033 Analyze_Return_Type (Related_Nod);
9034 end if;
9035
9036 -- Now set the kind (mode) of each formal
9037
9038 Param_Spec := First (T);
9039 while Present (Param_Spec) loop
9040 Formal := Defining_Identifier (Param_Spec);
9041 Set_Formal_Mode (Formal);
9042
9043 if Ekind (Formal) = E_In_Parameter then
9044 Set_Default_Value (Formal, Expression (Param_Spec));
9045
9046 if Present (Expression (Param_Spec)) then
9047 Default := Expression (Param_Spec);
9048
9049 if Is_Scalar_Type (Etype (Default)) then
9050 if Nkind
9051 (Parameter_Type (Param_Spec)) /= N_Access_Definition
9052 then
9053 Formal_Type := Entity (Parameter_Type (Param_Spec));
9054
9055 else
9056 Formal_Type := Access_Definition
9057 (Related_Nod, Parameter_Type (Param_Spec));
9058 end if;
9059
9060 Apply_Scalar_Range_Check (Default, Formal_Type);
9061 end if;
9062 end if;
9063
9064 elsif Ekind (Formal) = E_Out_Parameter then
9065 Num_Out_Params := Num_Out_Params + 1;
9066
9067 if Num_Out_Params = 1 then
9068 First_Out_Param := Formal;
9069 end if;
9070
9071 elsif Ekind (Formal) = E_In_Out_Parameter then
9072 Num_Out_Params := Num_Out_Params + 1;
9073 end if;
9074
9075 Next (Param_Spec);
9076 end loop;
9077
9078 if Present (First_Out_Param) and then Num_Out_Params = 1 then
9079 Set_Is_Only_Out_Parameter (First_Out_Param);
9080 end if;
9081 end Process_Formals;
9082
9083 ------------------
9084 -- Process_PPCs --
9085 ------------------
9086
9087 procedure Process_PPCs
9088 (N : Node_Id;
9089 Spec_Id : Entity_Id;
9090 Body_Id : Entity_Id)
9091 is
9092 Loc : constant Source_Ptr := Sloc (N);
9093 Prag : Node_Id;
9094 Parms : List_Id;
9095
9096 Designator : Entity_Id;
9097 -- Subprogram designator, set from Spec_Id if present, else Body_Id
9098
9099 Precond : Node_Id := Empty;
9100 -- Set non-Empty if we prepend precondition to the declarations. This
9101 -- is used to hook up inherited preconditions (adding the condition
9102 -- expression with OR ELSE, and adding the message).
9103
9104 Inherited_Precond : Node_Id;
9105 -- Precondition inherited from parent subprogram
9106
9107 Inherited : constant Subprogram_List :=
9108 Inherited_Subprograms (Spec_Id);
9109 -- List of subprograms inherited by this subprogram
9110
9111 Plist : List_Id := No_List;
9112 -- List of generated postconditions
9113
9114 function Grab_PPC (Pspec : Entity_Id := Empty) return Node_Id;
9115 -- Prag contains an analyzed precondition or postcondition pragma. This
9116 -- function copies the pragma, changes it to the corresponding Check
9117 -- pragma and returns the Check pragma as the result. If Pspec is non-
9118 -- empty, this is the case of inheriting a PPC, where we must change
9119 -- references to parameters of the inherited subprogram to point to the
9120 -- corresponding parameters of the current subprogram.
9121
9122 function Invariants_Or_Predicates_Present return Boolean;
9123 -- Determines if any invariants or predicates are present for any OUT
9124 -- or IN OUT parameters of the subprogram, or (for a function) if the
9125 -- return value has an invariant.
9126
9127 --------------
9128 -- Grab_PPC --
9129 --------------
9130
9131 function Grab_PPC (Pspec : Entity_Id := Empty) return Node_Id is
9132 Nam : constant Name_Id := Pragma_Name (Prag);
9133 Map : Elist_Id;
9134 CP : Node_Id;
9135
9136 begin
9137 -- Prepare map if this is the case where we have to map entities of
9138 -- arguments in the overridden subprogram to corresponding entities
9139 -- of the current subprogram.
9140
9141 if No (Pspec) then
9142 Map := No_Elist;
9143
9144 else
9145 declare
9146 PF : Entity_Id;
9147 CF : Entity_Id;
9148
9149 begin
9150 Map := New_Elmt_List;
9151 PF := First_Formal (Pspec);
9152 CF := First_Formal (Designator);
9153 while Present (PF) loop
9154 Append_Elmt (PF, Map);
9155 Append_Elmt (CF, Map);
9156 Next_Formal (PF);
9157 Next_Formal (CF);
9158 end loop;
9159 end;
9160 end if;
9161
9162 -- Now we can copy the tree, doing any required substitutions
9163
9164 CP := New_Copy_Tree (Prag, Map => Map, New_Scope => Current_Scope);
9165
9166 -- Set Analyzed to false, since we want to reanalyze the check
9167 -- procedure. Note that it is only at the outer level that we
9168 -- do this fiddling, for the spec cases, the already preanalyzed
9169 -- parameters are not affected.
9170
9171 Set_Analyzed (CP, False);
9172
9173 -- We also make sure Comes_From_Source is False for the copy
9174
9175 Set_Comes_From_Source (CP, False);
9176
9177 -- For a postcondition pragma within a generic, preserve the pragma
9178 -- for later expansion.
9179
9180 if Nam = Name_Postcondition
9181 and then not Expander_Active
9182 then
9183 return CP;
9184 end if;
9185
9186 -- Change copy of pragma into corresponding pragma Check
9187
9188 Prepend_To (Pragma_Argument_Associations (CP),
9189 Make_Pragma_Argument_Association (Sloc (Prag),
9190 Expression => Make_Identifier (Loc, Nam)));
9191 Set_Pragma_Identifier (CP, Make_Identifier (Sloc (Prag), Name_Check));
9192
9193 -- If this is inherited case and the current message starts with
9194 -- "failed p", we change it to "failed inherited p...".
9195
9196 if Present (Pspec) then
9197 declare
9198 Msg : constant Node_Id :=
9199 Last (Pragma_Argument_Associations (CP));
9200
9201 begin
9202 if Chars (Msg) = Name_Message then
9203 String_To_Name_Buffer (Strval (Expression (Msg)));
9204
9205 if Name_Buffer (1 .. 8) = "failed p" then
9206 Insert_Str_In_Name_Buffer ("inherited ", 8);
9207 Set_Strval
9208 (Expression (Last (Pragma_Argument_Associations (CP))),
9209 String_From_Name_Buffer);
9210 end if;
9211 end if;
9212 end;
9213 end if;
9214
9215 -- Return the check pragma
9216
9217 return CP;
9218 end Grab_PPC;
9219
9220 --------------------------------------
9221 -- Invariants_Or_Predicates_Present --
9222 --------------------------------------
9223
9224 function Invariants_Or_Predicates_Present return Boolean is
9225 Formal : Entity_Id;
9226
9227 begin
9228 -- Check function return result
9229
9230 if Ekind (Designator) /= E_Procedure
9231 and then Has_Invariants (Etype (Designator))
9232 then
9233 return True;
9234 end if;
9235
9236 -- Check parameters
9237
9238 Formal := First_Formal (Designator);
9239 while Present (Formal) loop
9240 if Ekind (Formal) /= E_In_Parameter
9241 and then
9242 (Has_Invariants (Etype (Formal))
9243 or else Present (Predicate_Function (Etype (Formal))))
9244 then
9245 return True;
9246 end if;
9247
9248 Next_Formal (Formal);
9249 end loop;
9250
9251 return False;
9252 end Invariants_Or_Predicates_Present;
9253
9254 -- Start of processing for Process_PPCs
9255
9256 begin
9257 -- Capture designator from spec if present, else from body
9258
9259 if Present (Spec_Id) then
9260 Designator := Spec_Id;
9261 else
9262 Designator := Body_Id;
9263 end if;
9264
9265 -- Grab preconditions from spec
9266
9267 if Present (Spec_Id) then
9268
9269 -- Loop through PPC pragmas from spec. Note that preconditions from
9270 -- the body will be analyzed and converted when we scan the body
9271 -- declarations below.
9272
9273 Prag := Spec_PPC_List (Contract (Spec_Id));
9274 while Present (Prag) loop
9275 if Pragma_Name (Prag) = Name_Precondition then
9276
9277 -- For Pre (or Precondition pragma), we simply prepend the
9278 -- pragma to the list of declarations right away so that it
9279 -- will be executed at the start of the procedure. Note that
9280 -- this processing reverses the order of the list, which is
9281 -- what we want since new entries were chained to the head of
9282 -- the list. There can be more than one precondition when we
9283 -- use pragma Precondition.
9284
9285 if not Class_Present (Prag) then
9286 Prepend (Grab_PPC, Declarations (N));
9287
9288 -- For Pre'Class there can only be one pragma, and we save
9289 -- it in Precond for now. We will add inherited Pre'Class
9290 -- stuff before inserting this pragma in the declarations.
9291 else
9292 Precond := Grab_PPC;
9293 end if;
9294 end if;
9295
9296 Prag := Next_Pragma (Prag);
9297 end loop;
9298
9299 -- Now deal with inherited preconditions
9300
9301 for J in Inherited'Range loop
9302 Prag := Spec_PPC_List (Contract (Inherited (J)));
9303
9304 while Present (Prag) loop
9305 if Pragma_Name (Prag) = Name_Precondition
9306 and then Class_Present (Prag)
9307 then
9308 Inherited_Precond := Grab_PPC (Inherited (J));
9309
9310 -- No precondition so far, so establish this as the first
9311
9312 if No (Precond) then
9313 Precond := Inherited_Precond;
9314
9315 -- Here we already have a precondition, add inherited one
9316
9317 else
9318 -- Add new precondition to old one using OR ELSE
9319
9320 declare
9321 New_Expr : constant Node_Id :=
9322 Get_Pragma_Arg
9323 (Next
9324 (First
9325 (Pragma_Argument_Associations
9326 (Inherited_Precond))));
9327 Old_Expr : constant Node_Id :=
9328 Get_Pragma_Arg
9329 (Next
9330 (First
9331 (Pragma_Argument_Associations
9332 (Precond))));
9333
9334 begin
9335 if Paren_Count (Old_Expr) = 0 then
9336 Set_Paren_Count (Old_Expr, 1);
9337 end if;
9338
9339 if Paren_Count (New_Expr) = 0 then
9340 Set_Paren_Count (New_Expr, 1);
9341 end if;
9342
9343 Rewrite (Old_Expr,
9344 Make_Or_Else (Sloc (Old_Expr),
9345 Left_Opnd => Relocate_Node (Old_Expr),
9346 Right_Opnd => New_Expr));
9347 end;
9348
9349 -- Add new message in the form:
9350
9351 -- failed precondition from bla
9352 -- also failed inherited precondition from bla
9353 -- ...
9354
9355 -- Skip this if exception locations are suppressed
9356
9357 if not Exception_Locations_Suppressed then
9358 declare
9359 New_Msg : constant Node_Id :=
9360 Get_Pragma_Arg
9361 (Last
9362 (Pragma_Argument_Associations
9363 (Inherited_Precond)));
9364 Old_Msg : constant Node_Id :=
9365 Get_Pragma_Arg
9366 (Last
9367 (Pragma_Argument_Associations
9368 (Precond)));
9369 begin
9370 Start_String (Strval (Old_Msg));
9371 Store_String_Chars (ASCII.LF & " also ");
9372 Store_String_Chars (Strval (New_Msg));
9373 Set_Strval (Old_Msg, End_String);
9374 end;
9375 end if;
9376 end if;
9377 end if;
9378
9379 Prag := Next_Pragma (Prag);
9380 end loop;
9381 end loop;
9382
9383 -- If we have built a precondition for Pre'Class (including any
9384 -- Pre'Class aspects inherited from parent subprograms), then we
9385 -- insert this composite precondition at this stage.
9386
9387 if Present (Precond) then
9388 Prepend (Precond, Declarations (N));
9389 end if;
9390 end if;
9391
9392 -- Build postconditions procedure if needed and prepend the following
9393 -- declaration to the start of the declarations for the subprogram.
9394
9395 -- procedure _postconditions [(_Result : resulttype)] is
9396 -- begin
9397 -- pragma Check (Postcondition, condition [,message]);
9398 -- pragma Check (Postcondition, condition [,message]);
9399 -- ...
9400 -- Invariant_Procedure (_Result) ...
9401 -- Invariant_Procedure (Arg1)
9402 -- ...
9403 -- end;
9404
9405 -- First we deal with the postconditions in the body
9406
9407 if Is_Non_Empty_List (Declarations (N)) then
9408
9409 -- Loop through declarations
9410
9411 Prag := First (Declarations (N));
9412 while Present (Prag) loop
9413 if Nkind (Prag) = N_Pragma then
9414
9415 -- If pragma, capture if enabled postcondition, else ignore
9416
9417 if Pragma_Name (Prag) = Name_Postcondition
9418 and then Check_Enabled (Name_Postcondition)
9419 then
9420 if Plist = No_List then
9421 Plist := Empty_List;
9422 end if;
9423
9424 Analyze (Prag);
9425
9426 -- If expansion is disabled, as in a generic unit, save
9427 -- pragma for later expansion.
9428
9429 if not Expander_Active then
9430 Prepend (Grab_PPC, Declarations (N));
9431 else
9432 Append (Grab_PPC, Plist);
9433 end if;
9434 end if;
9435
9436 Next (Prag);
9437
9438 -- Not a pragma, if comes from source, then end scan
9439
9440 elsif Comes_From_Source (Prag) then
9441 exit;
9442
9443 -- Skip stuff not coming from source
9444
9445 else
9446 Next (Prag);
9447 end if;
9448 end loop;
9449 end if;
9450
9451 -- Now deal with any postconditions from the spec
9452
9453 if Present (Spec_Id) then
9454 Spec_Postconditions : declare
9455 procedure Process_Post_Conditions
9456 (Spec : Node_Id;
9457 Class : Boolean);
9458 -- This processes the Spec_PPC_List from Spec, processing any
9459 -- postconditions from the list. If Class is True, then only
9460 -- postconditions marked with Class_Present are considered.
9461 -- The caller has checked that Spec_PPC_List is non-Empty.
9462
9463 -----------------------------
9464 -- Process_Post_Conditions --
9465 -----------------------------
9466
9467 procedure Process_Post_Conditions
9468 (Spec : Node_Id;
9469 Class : Boolean)
9470 is
9471 Pspec : Node_Id;
9472
9473 begin
9474 if Class then
9475 Pspec := Spec;
9476 else
9477 Pspec := Empty;
9478 end if;
9479
9480 -- Loop through PPC pragmas from spec
9481
9482 Prag := Spec_PPC_List (Contract (Spec));
9483 loop
9484 if Pragma_Name (Prag) = Name_Postcondition
9485 and then (not Class or else Class_Present (Prag))
9486 then
9487 if Plist = No_List then
9488 Plist := Empty_List;
9489 end if;
9490
9491 if not Expander_Active then
9492 Prepend
9493 (Grab_PPC (Pspec), Declarations (N));
9494 else
9495 Append (Grab_PPC (Pspec), Plist);
9496 end if;
9497 end if;
9498
9499 Prag := Next_Pragma (Prag);
9500 exit when No (Prag);
9501 end loop;
9502 end Process_Post_Conditions;
9503
9504 -- Start of processing for Spec_Postconditions
9505
9506 begin
9507 if Present (Spec_PPC_List (Contract (Spec_Id))) then
9508 Process_Post_Conditions (Spec_Id, Class => False);
9509 end if;
9510
9511 -- Process inherited postconditions
9512
9513 for J in Inherited'Range loop
9514 if Present (Spec_PPC_List (Contract (Inherited (J)))) then
9515 Process_Post_Conditions (Inherited (J), Class => True);
9516 end if;
9517 end loop;
9518 end Spec_Postconditions;
9519 end if;
9520
9521 -- If we had any postconditions and expansion is enabled, or if the
9522 -- procedure has invariants, then build the _Postconditions procedure.
9523
9524 if (Present (Plist) or else Invariants_Or_Predicates_Present)
9525 and then Expander_Active
9526 then
9527 if No (Plist) then
9528 Plist := Empty_List;
9529 end if;
9530
9531 -- Special processing for function case
9532
9533 if Ekind (Designator) /= E_Procedure then
9534 declare
9535 Rent : constant Entity_Id :=
9536 Make_Defining_Identifier (Loc,
9537 Chars => Name_uResult);
9538 Ftyp : constant Entity_Id := Etype (Designator);
9539
9540 begin
9541 Set_Etype (Rent, Ftyp);
9542
9543 -- Add argument for return
9544
9545 Parms :=
9546 New_List (
9547 Make_Parameter_Specification (Loc,
9548 Parameter_Type => New_Occurrence_Of (Ftyp, Loc),
9549 Defining_Identifier => Rent));
9550
9551 -- Add invariant call if returning type with invariants
9552
9553 if Has_Invariants (Etype (Rent))
9554 and then Present (Invariant_Procedure (Etype (Rent)))
9555 then
9556 Append_To (Plist,
9557 Make_Invariant_Call (New_Occurrence_Of (Rent, Loc)));
9558 end if;
9559 end;
9560
9561 -- Procedure rather than a function
9562
9563 else
9564 Parms := No_List;
9565 end if;
9566
9567 -- Add invariant calls and predicate calls for parameters. Note that
9568 -- this is done for functions as well, since in Ada 2012 they can
9569 -- have IN OUT args.
9570
9571 declare
9572 Formal : Entity_Id;
9573 Ftype : Entity_Id;
9574
9575 begin
9576 Formal := First_Formal (Designator);
9577 while Present (Formal) loop
9578 if Ekind (Formal) /= E_In_Parameter then
9579 Ftype := Etype (Formal);
9580
9581 if Has_Invariants (Ftype)
9582 and then Present (Invariant_Procedure (Ftype))
9583 then
9584 Append_To (Plist,
9585 Make_Invariant_Call
9586 (New_Occurrence_Of (Formal, Loc)));
9587 end if;
9588
9589 if Present (Predicate_Function (Ftype)) then
9590 Append_To (Plist,
9591 Make_Predicate_Check
9592 (Ftype, New_Occurrence_Of (Formal, Loc)));
9593 end if;
9594 end if;
9595
9596 Next_Formal (Formal);
9597 end loop;
9598 end;
9599
9600 -- Build and insert postcondition procedure
9601
9602 declare
9603 Post_Proc : constant Entity_Id :=
9604 Make_Defining_Identifier (Loc,
9605 Chars => Name_uPostconditions);
9606 -- The entity for the _Postconditions procedure
9607
9608 begin
9609 Prepend_To (Declarations (N),
9610 Make_Subprogram_Body (Loc,
9611 Specification =>
9612 Make_Procedure_Specification (Loc,
9613 Defining_Unit_Name => Post_Proc,
9614 Parameter_Specifications => Parms),
9615
9616 Declarations => Empty_List,
9617
9618 Handled_Statement_Sequence =>
9619 Make_Handled_Sequence_Of_Statements (Loc,
9620 Statements => Plist)));
9621
9622 Set_Ekind (Post_Proc, E_Procedure);
9623
9624 -- If this is a procedure, set the Postcondition_Proc attribute on
9625 -- the proper defining entity for the subprogram.
9626
9627 if Ekind (Designator) = E_Procedure then
9628 Set_Postcondition_Proc (Designator, Post_Proc);
9629 end if;
9630 end;
9631
9632 Set_Has_Postconditions (Designator);
9633 end if;
9634 end Process_PPCs;
9635
9636 ----------------------------
9637 -- Reference_Body_Formals --
9638 ----------------------------
9639
9640 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
9641 Fs : Entity_Id;
9642 Fb : Entity_Id;
9643
9644 begin
9645 if Error_Posted (Spec) then
9646 return;
9647 end if;
9648
9649 -- Iterate over both lists. They may be of different lengths if the two
9650 -- specs are not conformant.
9651
9652 Fs := First_Formal (Spec);
9653 Fb := First_Formal (Bod);
9654 while Present (Fs) and then Present (Fb) loop
9655 Generate_Reference (Fs, Fb, 'b');
9656
9657 if Style_Check then
9658 Style.Check_Identifier (Fb, Fs);
9659 end if;
9660
9661 Set_Spec_Entity (Fb, Fs);
9662 Set_Referenced (Fs, False);
9663 Next_Formal (Fs);
9664 Next_Formal (Fb);
9665 end loop;
9666 end Reference_Body_Formals;
9667
9668 -------------------------
9669 -- Set_Actual_Subtypes --
9670 -------------------------
9671
9672 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
9673 Decl : Node_Id;
9674 Formal : Entity_Id;
9675 T : Entity_Id;
9676 First_Stmt : Node_Id := Empty;
9677 AS_Needed : Boolean;
9678
9679 begin
9680 -- If this is an empty initialization procedure, no need to create
9681 -- actual subtypes (small optimization).
9682
9683 if Ekind (Subp) = E_Procedure
9684 and then Is_Null_Init_Proc (Subp)
9685 then
9686 return;
9687 end if;
9688
9689 Formal := First_Formal (Subp);
9690 while Present (Formal) loop
9691 T := Etype (Formal);
9692
9693 -- We never need an actual subtype for a constrained formal
9694
9695 if Is_Constrained (T) then
9696 AS_Needed := False;
9697
9698 -- If we have unknown discriminants, then we do not need an actual
9699 -- subtype, or more accurately we cannot figure it out! Note that
9700 -- all class-wide types have unknown discriminants.
9701
9702 elsif Has_Unknown_Discriminants (T) then
9703 AS_Needed := False;
9704
9705 -- At this stage we have an unconstrained type that may need an
9706 -- actual subtype. For sure the actual subtype is needed if we have
9707 -- an unconstrained array type.
9708
9709 elsif Is_Array_Type (T) then
9710 AS_Needed := True;
9711
9712 -- The only other case needing an actual subtype is an unconstrained
9713 -- record type which is an IN parameter (we cannot generate actual
9714 -- subtypes for the OUT or IN OUT case, since an assignment can
9715 -- change the discriminant values. However we exclude the case of
9716 -- initialization procedures, since discriminants are handled very
9717 -- specially in this context, see the section entitled "Handling of
9718 -- Discriminants" in Einfo.
9719
9720 -- We also exclude the case of Discrim_SO_Functions (functions used
9721 -- in front end layout mode for size/offset values), since in such
9722 -- functions only discriminants are referenced, and not only are such
9723 -- subtypes not needed, but they cannot always be generated, because
9724 -- of order of elaboration issues.
9725
9726 elsif Is_Record_Type (T)
9727 and then Ekind (Formal) = E_In_Parameter
9728 and then Chars (Formal) /= Name_uInit
9729 and then not Is_Unchecked_Union (T)
9730 and then not Is_Discrim_SO_Function (Subp)
9731 then
9732 AS_Needed := True;
9733
9734 -- All other cases do not need an actual subtype
9735
9736 else
9737 AS_Needed := False;
9738 end if;
9739
9740 -- Generate actual subtypes for unconstrained arrays and
9741 -- unconstrained discriminated records.
9742
9743 if AS_Needed then
9744 if Nkind (N) = N_Accept_Statement then
9745
9746 -- If expansion is active, The formal is replaced by a local
9747 -- variable that renames the corresponding entry of the
9748 -- parameter block, and it is this local variable that may
9749 -- require an actual subtype.
9750
9751 if Expander_Active then
9752 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
9753 else
9754 Decl := Build_Actual_Subtype (T, Formal);
9755 end if;
9756
9757 if Present (Handled_Statement_Sequence (N)) then
9758 First_Stmt :=
9759 First (Statements (Handled_Statement_Sequence (N)));
9760 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
9761 Mark_Rewrite_Insertion (Decl);
9762 else
9763 -- If the accept statement has no body, there will be no
9764 -- reference to the actuals, so no need to compute actual
9765 -- subtypes.
9766
9767 return;
9768 end if;
9769
9770 else
9771 Decl := Build_Actual_Subtype (T, Formal);
9772 Prepend (Decl, Declarations (N));
9773 Mark_Rewrite_Insertion (Decl);
9774 end if;
9775
9776 -- The declaration uses the bounds of an existing object, and
9777 -- therefore needs no constraint checks.
9778
9779 Analyze (Decl, Suppress => All_Checks);
9780
9781 -- We need to freeze manually the generated type when it is
9782 -- inserted anywhere else than in a declarative part.
9783
9784 if Present (First_Stmt) then
9785 Insert_List_Before_And_Analyze (First_Stmt,
9786 Freeze_Entity (Defining_Identifier (Decl), N));
9787 end if;
9788
9789 if Nkind (N) = N_Accept_Statement
9790 and then Expander_Active
9791 then
9792 Set_Actual_Subtype (Renamed_Object (Formal),
9793 Defining_Identifier (Decl));
9794 else
9795 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
9796 end if;
9797 end if;
9798
9799 Next_Formal (Formal);
9800 end loop;
9801 end Set_Actual_Subtypes;
9802
9803 ---------------------
9804 -- Set_Formal_Mode --
9805 ---------------------
9806
9807 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
9808 Spec : constant Node_Id := Parent (Formal_Id);
9809
9810 begin
9811 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
9812 -- since we ensure that corresponding actuals are always valid at the
9813 -- point of the call.
9814
9815 if Out_Present (Spec) then
9816 if Ekind (Scope (Formal_Id)) = E_Function
9817 or else Ekind (Scope (Formal_Id)) = E_Generic_Function
9818 then
9819 -- [IN] OUT parameters allowed for functions in Ada 2012
9820
9821 if Ada_Version >= Ada_2012 then
9822 if In_Present (Spec) then
9823 Set_Ekind (Formal_Id, E_In_Out_Parameter);
9824 else
9825 Set_Ekind (Formal_Id, E_Out_Parameter);
9826 end if;
9827
9828 -- But not in earlier versions of Ada
9829
9830 else
9831 Error_Msg_N ("functions can only have IN parameters", Spec);
9832 Set_Ekind (Formal_Id, E_In_Parameter);
9833 end if;
9834
9835 elsif In_Present (Spec) then
9836 Set_Ekind (Formal_Id, E_In_Out_Parameter);
9837
9838 else
9839 Set_Ekind (Formal_Id, E_Out_Parameter);
9840 Set_Never_Set_In_Source (Formal_Id, True);
9841 Set_Is_True_Constant (Formal_Id, False);
9842 Set_Current_Value (Formal_Id, Empty);
9843 end if;
9844
9845 else
9846 Set_Ekind (Formal_Id, E_In_Parameter);
9847 end if;
9848
9849 -- Set Is_Known_Non_Null for access parameters since the language
9850 -- guarantees that access parameters are always non-null. We also set
9851 -- Can_Never_Be_Null, since there is no way to change the value.
9852
9853 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
9854
9855 -- Ada 2005 (AI-231): In Ada95, access parameters are always non-
9856 -- null; In Ada 2005, only if then null_exclusion is explicit.
9857
9858 if Ada_Version < Ada_2005
9859 or else Can_Never_Be_Null (Etype (Formal_Id))
9860 then
9861 Set_Is_Known_Non_Null (Formal_Id);
9862 Set_Can_Never_Be_Null (Formal_Id);
9863 end if;
9864
9865 -- Ada 2005 (AI-231): Null-exclusion access subtype
9866
9867 elsif Is_Access_Type (Etype (Formal_Id))
9868 and then Can_Never_Be_Null (Etype (Formal_Id))
9869 then
9870 Set_Is_Known_Non_Null (Formal_Id);
9871 end if;
9872
9873 Set_Mechanism (Formal_Id, Default_Mechanism);
9874 Set_Formal_Validity (Formal_Id);
9875 end Set_Formal_Mode;
9876
9877 -------------------------
9878 -- Set_Formal_Validity --
9879 -------------------------
9880
9881 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
9882 begin
9883 -- If no validity checking, then we cannot assume anything about the
9884 -- validity of parameters, since we do not know there is any checking
9885 -- of the validity on the call side.
9886
9887 if not Validity_Checks_On then
9888 return;
9889
9890 -- If validity checking for parameters is enabled, this means we are
9891 -- not supposed to make any assumptions about argument values.
9892
9893 elsif Validity_Check_Parameters then
9894 return;
9895
9896 -- If we are checking in parameters, we will assume that the caller is
9897 -- also checking parameters, so we can assume the parameter is valid.
9898
9899 elsif Ekind (Formal_Id) = E_In_Parameter
9900 and then Validity_Check_In_Params
9901 then
9902 Set_Is_Known_Valid (Formal_Id, True);
9903
9904 -- Similar treatment for IN OUT parameters
9905
9906 elsif Ekind (Formal_Id) = E_In_Out_Parameter
9907 and then Validity_Check_In_Out_Params
9908 then
9909 Set_Is_Known_Valid (Formal_Id, True);
9910 end if;
9911 end Set_Formal_Validity;
9912
9913 ------------------------
9914 -- Subtype_Conformant --
9915 ------------------------
9916
9917 function Subtype_Conformant
9918 (New_Id : Entity_Id;
9919 Old_Id : Entity_Id;
9920 Skip_Controlling_Formals : Boolean := False) return Boolean
9921 is
9922 Result : Boolean;
9923 begin
9924 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
9925 Skip_Controlling_Formals => Skip_Controlling_Formals);
9926 return Result;
9927 end Subtype_Conformant;
9928
9929 ---------------------
9930 -- Type_Conformant --
9931 ---------------------
9932
9933 function Type_Conformant
9934 (New_Id : Entity_Id;
9935 Old_Id : Entity_Id;
9936 Skip_Controlling_Formals : Boolean := False) return Boolean
9937 is
9938 Result : Boolean;
9939 begin
9940 May_Hide_Profile := False;
9941
9942 Check_Conformance
9943 (New_Id, Old_Id, Type_Conformant, False, Result,
9944 Skip_Controlling_Formals => Skip_Controlling_Formals);
9945 return Result;
9946 end Type_Conformant;
9947
9948 -------------------------------
9949 -- Valid_Operator_Definition --
9950 -------------------------------
9951
9952 procedure Valid_Operator_Definition (Designator : Entity_Id) is
9953 N : Integer := 0;
9954 F : Entity_Id;
9955 Id : constant Name_Id := Chars (Designator);
9956 N_OK : Boolean;
9957
9958 begin
9959 F := First_Formal (Designator);
9960 while Present (F) loop
9961 N := N + 1;
9962
9963 if Present (Default_Value (F)) then
9964 Error_Msg_N
9965 ("default values not allowed for operator parameters",
9966 Parent (F));
9967 end if;
9968
9969 Next_Formal (F);
9970 end loop;
9971
9972 -- Verify that user-defined operators have proper number of arguments
9973 -- First case of operators which can only be unary
9974
9975 if Id = Name_Op_Not
9976 or else Id = Name_Op_Abs
9977 then
9978 N_OK := (N = 1);
9979
9980 -- Case of operators which can be unary or binary
9981
9982 elsif Id = Name_Op_Add
9983 or Id = Name_Op_Subtract
9984 then
9985 N_OK := (N in 1 .. 2);
9986
9987 -- All other operators can only be binary
9988
9989 else
9990 N_OK := (N = 2);
9991 end if;
9992
9993 if not N_OK then
9994 Error_Msg_N
9995 ("incorrect number of arguments for operator", Designator);
9996 end if;
9997
9998 if Id = Name_Op_Ne
9999 and then Base_Type (Etype (Designator)) = Standard_Boolean
10000 and then not Is_Intrinsic_Subprogram (Designator)
10001 then
10002 Error_Msg_N
10003 ("explicit definition of inequality not allowed", Designator);
10004 end if;
10005 end Valid_Operator_Definition;
10006
10007 end Sem_Ch6;